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Preface

Completion of the Human Genome Project (HGP) not only yielded a greater appreciation
of the role of DNA in shaping species development and evolution, biology, and disease
susceptibility, but also helped spawn technological advances that have revolutionized the
field of human genetics. Perhaps the most significant impact of this endeavor has been on the
manner in which researchers investigate the causes of complex human diseases. Efforts to
characterize the genetic variation in the human genome have led directly to the development
and application of a diverse range of technological and bioinformatics approaches to identify
the roles of both rare and common alleles in complex disease. Such strategies range from
genome-wide association studies to whole genome sequencing, and everything in between.

Over three thousand genetic mutations have been identified that contribute to the
pathogenesis of highly penetrant human diseases. Efforts to uncover the genomic basis of
rare conditions have been successful due to the less complicated genetics of monogenic
diseases compared to complex disorders. In rare conditions, a single mutation, inherited in a
simple manner between generations in affected families, is typically sufficient to cause
disease. In contrast, complex diseases, such as diabetes, heart disease, neurological disorders,
and most kinds of cancer, result from a complicated interaction of multiple genetic and
environmental determinants, none of which are amenable to identification and characteri-
zation using the traditional approaches to monogenic disease gene discovery. Recent efforts
to characterize genetic variation in the human genome, coupled with the rapidly developing
field of genomics, have led directly to the development of new and innovative approaches to
the identification of genes contributing to complex human diseases. This volume was
prepared to present molecular methodologies used in the process of identifying a disease
gene, from the initial stages of study design to locus identification and target characteriza-
tion. The need for such a book derives from the intellectual revolution in biomedical science
and the realization that the molecular determinants of human diseases are rapidly becoming
identifiable through well-planned, technologically advanced approaches.

While descriptions of the technical procedures described here are available in the litera-
ture, there is generally a dearth of practical detail in these publications, particularly in terms
of modifications developed from personal experience and discussions of optimal study
design or potential problems that may be encountered throughout the protocol, as well as
ways to avoid them. The structure of this volume is unique in that it aims to address these
deficiencies.

This text is written at a level accessible to graduate students, postdoctoral researchers,
and bench scientists in the fields of molecular genes and molecular biology. The primary aim
of this volume is to present detailed laboratory procedures in an easy to follow format that
can be carried out with success by competent investigators lacking previous exposure to a
specific research method. The book’s main focus is on the application of molecular
approaches to disease gene identification, but overviews and case studies are also presented.

The volume begins with six introductory chapters, which provide overviews of strategies
for disease gene identification and functional characterization, and include introductions to
microbiome sequencing methods for studying human disease, as well as the emerging role of
long noncoding RNAs in human disease. The next section of the text contains chapters
presenting methods for identifying potential susceptibility loci, including practical
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procedures for genome-wide association analysis, whole genome, whole exome, and single-
cell library construction, and methylation profiling.

The volume follows with a section on current applications in human genomics, which
provide tools for target validation and functional assessment. These protocols are useful for
characterizing disease-associated loci and include methods in quantitative polymerase chain
reaction, lentiviral-mediated CRISPR-cas9, RNA interference, and luciferase reporter assay.

We end with four discursive chapters providing examples of disease gene identification
and application. The first chapter in this section is related to physiologic interpretation of
genome-wide association signals, using type 2 diabetes as a model. The following two
chapters present overviews of disease gene discovery in two distinct disorders: hereditary
hemochromatosis and small cell carcinoma of the ovary. A discussion of the reemergence of
linkage analysis, as an adjunct to association studies, concludes this section.

Completion of this volume would not have been possible without the support and
contributions of many individuals. In particular, I thank Dr. John M. Walker, the series
editor, who provided expert guidance and oversight at each step of bringing this volume to
fruition. I also appreciate the efforts of the authors, all of whom contributed outstanding
chapters. It was a pleasure working with this expert team of scientists. It is my hope that this
volume leads to the identification and characterization of many more disease-related genes,
which may someday pave the way toward more accurate and improved methods for disease
diagnosis, as well as novel and effective strategies for disease treatment and prevention.

Phoenix, AZ, USA Johanna K. DiStefano
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Chapter 1

Identification of Disease Susceptibility Alleles in the Next
Generation Sequencing Era

Johanna K. DiStefano and Christopher B. Kingsley

Abstract

The development of next generation sequencing (NGS) technologies has transformed the study of human
genetic variation. In less than a decade, NGS has facilitated the discovery of causal mutations in both rare,
monogenic diseases and common, heterogeneous disorders, leading to unprecedented improvements in
disease diagnosis and treatment strategies. Given the rapid evolution of NGS platforms, it is now possible to
analyze whole genomes and exomes quickly and affordably. Further, emerging NGS applications, such as
single-cell sequencing, have the power to address specific issues like somatic variation, which is yielding new
insights into the role of somatic mutations in cancer and late-onset diseases. Despite limitations associated
with current iterations of NGS technologies, the impact of this approach on identifying disease-causing
variants has been significant. This chapter provides an overview of several NGS platforms and applications
and discusses how these technologies can be used in concert with experimental and computational
strategies to identify variants with a causative effect on disease development and progression.

Key words Genetics, Human disease, Next generation sequencing, Causal variant, Whole genome
sequencing, Exome sequencing, Single cell sequencing, Somatic mosaicism

1 Introduction

DNA sequence variation is a common feature of all organisms. In
humans, approximately 0.1–0.4% of nucleotides differ between any
given pair of unrelated genomes [1, 2]. The vast majority of
sequence variation is comprised of single nucleotide variants
(SNVs), which occur every 100–300 bases [3], and are mostly
located within noncoding sequence [4]. A large number of inher-
ited human diseases are caused by sequence variation in single genes
[5–7], and many complex diseases, including cancer, diabetes, and
heart disease, are mediated, at least in part, by genetic factors
[8–11]. The majority of rare diseases, such as those affecting only
a small percentage of the population, result from hereditary or de
novo genetic mutations [12]. In recent years, significant effort has

Johanna K. DiStefano (ed.), Disease Gene Identification: Methods and Protocols, Methods in Molecular Biology, vol. 1706,
https://doi.org/10.1007/978-1-4939-7471-9_1, © Springer Science+Business Media, LLC 2018
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been made to identify and characterize causal variants underlying a
vast spectrum of human diseases.

Technological advances in high-throughput genotyping meth-
ods over the past two decades revolutionized the field of human
genetics. In particular, cost-effective, microarray-based genotyping
of vast numbers of SNVs enabled population-based, genome-wide
association studies for common human diseases such as diabetes,
neurological disorders, and cancer [13–17]. Genome-wide associa-
tion approaches have identified statistically significant evidence
supporting relationships between complex human diseases and
hundreds of common genetic variants in the human population.
However, finding disease-associated alleles is only the first step on
the path to identifying those variants that directly contribute to
disease risk. A major challenge inherent in these studies is moving
from identification of a genetic variant via association studies to
determination of actual causal variants through functional geno-
mics experimentation.

In the past, identification of causal variants involved querying
public databases for the presence of characterized functional ele-
ments in the vicinity of associated alleles. These functional elements
would then be prioritized for targeted resequencing of relatively
small genomic regions in affected individuals, with the goal of
identifying novel variants that directly impact disease development.
The success of such an approach depended on the means and
accuracy with which functional elements were identified, and tradi-
tional low-throughput sequencing technologies placed severe lim-
itations on the number of individuals and the span of genomic
regions that could be resequenced in an economically feasible way.

Many “next generation” technologies have emerged over the
past several years, promising inexpensive and efficient sequencing of
large amounts of genomic DNA as an alternative to microarray
genotyping studies [18]. Next generation sequencing (NGS) refers
to a field of technologies geared toward massively parallel sequence
analysis of nucleic acids. Compared with traditional Sanger
sequencing, NGS provides faster and cheaper analysis of samples
and yields a much greater amount of sequence information for each
individual sample [19, 20]. Advances in NGS technology have
removed the obstacles associated with low throughput, labor-
intensive, and expensive traditional sequencing, and is now
enabling researchers to identify many more novel sequence variants
than previously possible.

In this chapter, we briefly address popular commercial NGS
platforms and provide an overview of several NGS methods for the
identification of disease genes, including whole genome sequenc-
ing, exome sequencing, RNA-sequencing, and single-cell genome
sequencing, all of which complement the methods-based descrip-
tions found in Chapters 8–11. We also discuss the manner in which

4 Johanna K. DiStefano and Christopher B. Kingsley



NGS technologies can be used in concert with experimental and
computational strategies to identify alleles that contribute to the
development of human disease.

2 Methods

2.1 Next Generation

Sequencing (NGS)

Since theWatson–Crick publication of the three-dimensional struc-
ture of DNA in 1953 [21], a number of different techniques and
technologies have been applied to nucleic acid sequence elucidation
(Fig. 1), which has led to a revolution in the biological sciences.
The whole genome sequences that began to appear in the 1990s
were made possible only by the development of commercial instru-
ments based upon the capillary electrophoresis-based Sanger
sequencing method [22, 23]. These advances paved the way for
the birth of entire research disciplines devoted to the analysis of the
large amount of nucleotide sequence. An excellent review by
Heather and Chain [24] describes the history of DNA sequencing,
from initial efforts in RNA sequencing to emerging “third-genera-
tion sequencing” approaches, giving a thorough historical perspec-
tive of the changes in technologies that have occurred over the
years.

2.1.1 Currently Popular

NGS Platforms

NGS has emerged as a new set of technologies that have not only
reduced the cost of sequencing entire mammalian genomes from
manymillions of dollars to approximately one thousand dollars, but
also decreased the amounts of time and effort needed to complete
the task. NGS technologies have been, and continue to be, devel-
oped by a number of commercial entities, and at the time of this
writing, include those that utilize (1) fluorescent imaging such as
the Illumina NGS system and the Pacific Biosciences SMRT NGS
platform; (2) pH (i.e., Ion Torrent); and (3) nanopore technology
(i.e., Oxford Nanopore and Genia [Roche]). The Illumina platform
uses sequencing by synthesis (SBS) technology in which sequential

1970s 1980s 1990s 2000s 2010s

Primer extension 
sequencing 

Plus and minus 
method

Maxam-Gilbert 
chemical cleavage 
sequencing

Sanger chain 
termination 
sequencing

First RNA-
sequencing

Shotgun 
sequencing

Automated DNA 
sequencing 
machines

Expressed 
sequence 
tags

Stepwise 
sequencing

Pyrosequencing

Massively parallel 
signature 
sequencing

Single molecule 
sequencing

Nanopore 
sequencing

SMRT platform

Fig. 1 Timeline of technological developments in nucleic acid sequencing
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fluorophore-labeled nucleotide base addition combined with fluo-
rescence imaging determines the identity of the incorporated
nucleotide. This technology also allows DNA fragments to be
sequenced from both ends (i.e., pair-end sequencing), which
enhances detection of rearrangements (i.e., insertions, deletions,
and inversions), repetitive sequence elements, gene fusions, and
novel transcripts [25–27]. The SMRT NGS platform utilizes
zero-mode waveguides (ZMWs), which strategically permit illumi-
nation only of the bottom of the well, where a DNA polymerase/
template is immobilized. Nucleotides, each labeled with a uniquely
colored fluorophore, are exposed to the template, and when one is
held in position, it emits a light pulse. During incorporation the
phosphate chain is cleaved, releasing the fluorophore. Because
SMRT sequencing does not pause after nucleotide incorporation
for chemical cleavage and fluorescence imaging, this technology is
much faster than the SBS technology of Illumina. The Ion Torrent
takes advantage of the naturally occurring proton release that
occurs when a nucleotide is incorporated into a strand of DNA.
In each sequencing step, only a single nucleotide type is introduced
into the reaction flow cell, so only the DNA fragment with the
corresponding nucleotide as the next base will show a change in pH
signal. The nanopore approach differs from the preceding plat-
forms by pulling target DNA molecules through nanopores
embedded in synthetic polymer membranes. The Oxford Nano-
pore pulls target DNA molecules through a synthetic polymer
membrane, which elicits an electric current affected by the identity
of the nucleotides in the pore complex at that moment. The Genia
system incorporates a DNA polymerase tethered to the pore com-
plex and specifically modified dNTPs using nano-tags specific for
each nucleotide. As a primer is extended off the target DNA tem-
plate, the tag is cleaved and flows through the nanopore, inducing a
change in electric current. An in-depth review of platforms, as well
as emerging NGS technologies, can be found elsewhere [18].

2.1.2 Whole Genome

Sequencing

Despite the success of genome-wide association studies (GWAS) in
enhancing understanding of disease mechanisms, the variants iden-
tified by this approach represent only a fraction of the overall
genetic contribution to common disease risk. While many disease-
associated variants have been identified through GWAS, they have
mostly been common variants with moderate to high (i.e., >0.1)
allele frequencies and moderate to low (i.e., 1.1–1.3) odds ratios.
The accumulated results of many GWAS have called into question
the validity of the “common disease-common variant” hypothesis
for complex diseases; the proposal that common polymorphisms
contribute to a significant proportion of the susceptibility to com-
mon diseases [28–30].

6 Johanna K. DiStefano and Christopher B. Kingsley



In the face of these findings, some researchers have argued that
common variants with low odds ratios are unlikely to be responsible
for the observed familial clustering of many common diseases, such
as heart disease and diabetes, because familial clustering generally
requires that individuals who share the risk allele have a high
probability of displaying the phenotype. This has led some to
hypothesize that the majority of the inherited risk is caused by a
heterogeneous collection of rare variants that exist in the popula-
tion [31, 32]. While identification of these rare variants has become
a major focus in human genetics, study samples of tens of
thousands of carefully phenotyped and appropriately stratified indi-
viduals are required to adequately power a GWAS to identify them
[33]. Even under these conditions, this approach still fails to
account for the role of environmental factors in disease susceptibil-
ity, which in complex disorders like diabetes and heart disease may
be more impactful than genetic factors [31].

In defense of the common disease-common variant hypothesis,
however, one recent large scale sequencing study involving T2D
patients found that variants associated with that disease were over-
whelmingly common, and most fell in regions that had been previ-
ously identified by GWAS [34]. Additional studies will be needed to
validate this result and extend it to other diseases, but the question
of whether common or rare variants underlie the majority of risk for
common diseases continues to remain an open one.

Because of the limited success of GWAS, most researchers have
now turned to whole-genome sequencing (WGS) to identify rare
causal variants. WGS provides an unbiased analysis of the entire
genome, including potential, not-yet-annotated genes, noncoding
RNAs, and regulatory regions. In contrast, whole exome sequenc-
ing (WES), discussed in the following section, focuses on analysis of
the protein-coding genome. Costs associated with WGS are higher
than those of WES; however, costs for WGS are decreasing more
rapidly thanWES, and will likely approximate WES costs in the near
future. A recent comparison of the two methods in six individuals
found the distribution of sequencing quality parameters, including
the number of aligned reads covering a single position (coverage
depth), genotype quality, and the ratio of reads for the minor allele
(minor-read ratio) for SNVs and insertion-deletions (indels) to be
more uniform for WGS [35]. Differences were attributed to effects
resulting from the hybridization/capture and PCR-amplification
steps required for the preparation of WES sequencing libraries. Of
note, approximately 650 high-quality coding variants were identi-
fied by WGS, but missed by WES, suggesting that the former
method may be better for detecting exomic mutations.

WGS has been used to identify a number of mutations with
direct causal effects on diseases such as amyotrophic lateral sclerosis
[36], retinitis pigmentosa [37], dystonia [38], and autism spectrum

Next Generation Sequencing and Gene Identification 7



disorder [39]. Large-scale WGS was recently performed in ~2600
Icelanders [40]. Using a combination of filtered sequence data
(excess of homozygosity, rare, protein-coding), imputation of
these variants into >100,000 Icelanders, and GWAS, the investiga-
tors identified a recessive frameshift mutation in myosin light chain
4 (MYL4) that causes early-onset atrial fibrillation. This study
provides a strong paradigm by which WGS data can be used in
conjunction with imputation and association analysis to identify
disease-causing variants. The results also underscore how such a
design may yield a better understanding of the role of genomic
sequence variation in human diversity.

2.1.3 Whole Exome

Sequencing

WES utilizes capture of all coding regions prior to selective analysis
of the exomic content of the genome [41]. One lesson learned
from GWAS is that the genetic landscape for common diseases is
often quite complex, with many variants of small effect interacting
with each other and the environment to determine the risk for an
individual. With this in mind, many researchers turned to a simpler
case of identifying and sequencing individuals who suffer from rare,
extreme phenotypes that resemble a common disease [42]. Rare or
sporadic cases such as these can be the result of one or more
low-frequency, disease-causing variants segregating in a Mendelian
family, but are also often a result of de novo mutations in an
individual, especially dominant or haploinsufficient mutations.

Rare diseases are generally the result of a small number (often
one) of mutations with large effects. Such variants often stand out;
they tend to occur in or near coding regions, with obvious effects
such as missense, nonsense, or splice site mutations. Indeed, the
majority of all disease-causing mutations in monogenic disorders
are located in the protein-coding genome [43]. Not surprisingly,
sequence analysis of monogenic diseases is more straightforward
compared to diseases of complex etiology. The first successful
application of WES was used to identify the genetic basis of Miller
syndrome, which is characterized by severe micrognathia, cleft
lip/palate, hypoplasia or aplasia of the posterior elements of the
limbs, coloboma of the eyelids, and supernumerary nipples [44]. In
that study, the investigators captured and sequenced coding regions
of two affected siblings and two affected unrelated individuals, and
after variant filtering and use of algorithms to assess whether a
mutation was damaging, identified dihydroorotate dehydrogenase
(DHODH) as the disease gene. This study was the first to show that
WES of a small number of unrelated, affected individuals is an
efficient strategy to identify genes underlying rare monogenic dis-
eases. Since this initial study, nearly 1000 novel monogenic disease
genes have been identified using a similar design [45].

In our own unpublished studies, we applied a WES approach to
identify novel genetic mutations underpinning short QT syndrome
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(SQTS) in a Native American pedigree with a high incidence of
ventricular arrhythmias and sudden cardiac death. SQTS is a cardiac
electrical disorder characterized by an abnormally short QT interval
and associated with an increased risk of atrial and ventricular
tachyarrhythmias and sudden cardiac death [46]. Six distinct sub-
types of SQTS have been linked to six genes, although the majority
of genetic factors underpinning the disease remain unknown. We
investigated a family with a high incidence of ventricular arrhyth-
mias and sudden cardiac death, in which the disease follows an
autosomal dominant pattern of inheritance. Genetic analysis
excluded known SQTS variants in this family. To identify the muta-
tion underlying the disease in this pedigree, we performed WES for
two affected siblings using the SureSelect platform and the
HiSeq2000 sequencing system. We first filtered variants by muta-
tion type and presence in both siblings and found 1881 entries. To
prioritize variants we used an integrated knowledge mining
approach to identify genes and biological concepts associated with
SQTS. Of these, we selected several hundred variants for genotyp-
ing using the MiSeq platform in four SQTS cases, four unaffected
controls, and two individuals of unknown disease status. Out of the
788 loci analyzed, we found only five heterozygous variants that
exhibited complete sharing in cases and were absent in unaffected
controls. Three of the variants were present as missense mutations
with MAF �0.006 in the 1000 Genomes database. The fourth
variant was intronic and also present in 1000 Genomes
(MAF ¼ 0.017). The remaining variant was a novel exonic C/T
substitution in the cystic fibrosis transmembrane conductance reg-
ulator gene (CFTR, chr7: 117267757 [C/T]), which was pre-
dicted to be a stop-gain mutation by wANNOVAR (http://
wannovar.usc.edu/) and “disease causing” by MutationTaster
(http://mutationtaster.org). Although all five mutations may
potentially contribute to disease risk, the CFTR mutation warrants
further attention due to its absence from the public databases and
its potential deleterious effects on ion conductance in cardiac tissue.

2.1.4 Single-Cell

Sequencing

Recent innovations in cell isolation techniques, NGS, and bioinfor-
matics analytical methods now enable WGS of a single-cell genome.
As its name implies, single-cell sequencing analyzes the genomes of
individual cells. Single cells of interest are isolated from suspension
using any number of different methods [47] and the single copy of
the genome is amplified using techniques such as multiplex dis-
placement amplification [48]. WGS of the amplified product has
advanced the ability to observe mosaicism at the cellular level. For
example, a trio of recent studies applying single-cell sequencing to
neurons revealed that mosaicism is a widespread phenomenon in
the brain. The first study used WGS of single neurons from a
healthy individual to identify spontaneous somatic mutations as
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clonal marks to track cell lineages in human brain [49]. Lovato et al.
[50] used single-cell whole-genome sequencing of 36 neurons
from the cerebral cortex of three normal individuals to identify
thousands of mosaic SNVs. The results indicated that neuronal
mutations are enriched at sites of active transcription, in contrast
to germline and cancer SNVs, which are typically acquired during
DNA replication. The authors also performed single-cell WGS in
>160 neurons from three normal and two pathological human
brains and found � 95% of neurons in normal brain tissue to be
euploid. In a patient with hemimegalencephaly, a rare neurological
condition in which one half of the brain is much larger than the
other [51], due to somatic copy number variation (CNV) on
chromosome 1q, the investigators found unexpected tetrasomy
1q in approximately 20% of neurons, suggesting that CNVs in a
minority of cells can cause widespread brain dysfunction. Single-cell
analyses thus revealed the presence of large private and clonal
somatic CNVs in both normal and diseased human brains.

The human genome acquires mutations spontaneously with
cell division [52], which contribute to the development of human
diseases [53, 54], including cancer [55]. As experimental and ana-
lytical advances continue to reduce the technical noise from single-
cell WGA, which will improve resolution of true variants from
experimental artifacts, appreciation for the role of low-level mosaic
genetic variants in the etiology of human disease is expected
to grow.

2.1.5 Limitations of NGS NGS continues to be an evolving field and is advancing so rapidly
that almost any review article on the subject will be outdated by the
time of publication. However, while many advances have been
made, particularly in the last 5 years, many challenges associated
with the analysis of NGS have also emerged. From a technical
standpoint, longer read lengths and lower error rates will improve
the accuracy of alignment of sequences to the reference genome,
with subsequent increases in the sensitivity and specificity of detect-
ing genuine sequence variants. Analytically, improved algorithms
for variant detection, especially structural variants such as inser-
tion–deletion mutations, will more completely identify sequence
variants in genomic regions of interest. Time and cost are also issues
that must be considered with each platform. We can expect that
further refinements of the sequencing technology leading to lower
error rates, longer read lengths, and faster turnover, combined with
improved computational methods, will be effective in overcoming
these difficulties to the point where a small research group or
academic laboratory will be able to sequence large genomic regions,
or even entire genomes, in a matter of hours for only a few hundred
dollars.

10 Johanna K. DiStefano and Christopher B. Kingsley



From an analytical standpoint, the sheer volume of variants
detected with NGS represents a significant challenge. For example,
20 million SNVs and 1.5 million insertions-deletions were identi-
fied in a recent WGS study [40]. WES typically identifies ~20,000
SNVs per genome [45], although following filtering for potentially
deleterious variants, a single exome is estimated to have 100–200
potential disease-causing mutations [56]. Current figures estimate
that the average human carries ~100 mutations that cause loss-of-
function within protein-coding genes [57], although these variants
do not cause disease-related phenotypes [58]. Therefore, at this
time, the analysis of enormous amounts of sequence data and
functional validation of potential disease-causing mutations, as
opposed to mutation detection, represent the major bottlenecks
for translating sequence information into clinical practice.

2.2 Post-sequencing

Prioritization

of Potential Variants

Once a list of variants has been assembled from a WGS/WES study,
the next step is to prioritize them for experimental assays that assess
functional consequences. Prioritization of variants is typically per-
formed through a sequential set of filters until the number of
variants to be tested is reduced to a manageable size, given the
available experimental resources and appropriate experimental
approach. These filters often involve statistical analysis of genetic
association in primary and validation study samples, followed by
prediction of the functional consequences of individual sequence
variants, which makes use of genome annotation information.

The first selection criterion usually applied to presumptive
causal sequence variants is the strength of the association between
individual markers and the trait of interest in the original study
sample. Those markers showing the strongest evidence for statisti-
cal significance (i.e., lowest p-value or highest odds ratio) in the
discovery study sample are selected for validation in a second,
preferably independent, population to reduce the number of falsely
positive results. While validation samples are usually drawn from
populations of the same ethnicity as the discovery sample, different
ethnic populations can be used when many adjacent markers are
significantly associated with the outcome due to high levels of
correlation between markers (i.e., linkage disequilibrium). In
these cases, validation in a sample of a different ethnic background
can sometimes distinguish causal variants from indirectly associated
variants because of the different allele frequencies and patterns of
linkage disequilibrium among ethnic populations. For example,
validation in samples of African origin can refine genetic associa-
tions due to shorter blocks of linkage disequilibrium relative to
populations of other ethnic backgrounds, in whom linkage disequi-
librium typically spans greater intervals. This strategy can be com-
plicated, however, in that population differences in allele
frequencies may also lead to decreased power to detect genuine
genetic associations in the validation population [59].
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Analysis of the genomic context of the associated sequence
variants is typically the second step in marker prioritization. Variants
with clear functional consequences on coding sequence (e.g., non-
sense, missense, and splice site mutations) are obvious candidates
for further investigation. In addition, analytical approaches have
been developed to predict the functional consequences of nonsy-
nonymous mutations based upon the analysis of multiple sequence
alignments and/or protein three-dimensional structure [60]. For
those cases in which the associated variants occur far from any
known genes, as has been observed for most regions identified by
GWAS, genome annotation information can be very useful. For this
class of variants, colocalization with functional genomic elements
such as transcription factor binding sites, noncoding RNAs, and
regions of strong phylogenetic conservation can be taken into
consideration when prioritizing potential causal variants for down-
stream molecular characterization.

By applying genetic and genomic filters such as those described
above, the number of associated sequence variants can be pared
down to a reasonable size for in vitro and in vivo functional studies
to assess the effect of the variant on some qualitative or quantitative
outcome. For those variants that affect coding sequences of genes
whose protein products possess measurable activity, this can be a
straightforward process of expressing a version of the protein con-
taining the variant and conducting the appropriate assay. For those
variants that occur in gene-proximal regulatory elements, transcrip-
tional effects can be measured using reporter constructs containing
the variant compared with the normal sequence in transfection
experiments [61]. For those variants that occur far from known
genes, transfection experiments may also be used to measure tran-
scriptional effects, although transgenic and knockout technology in
mice has also been used, and may be more appropriate for long-
range acting regulatory sequences [62].

3 Conclusions

Massively parallel DNA sequencing capability, available with cur-
rent NGS platforms, has revolutionized the field of human genet-
ics. Up until recently, WGS was not accessible to most individual
research groups, but declining costs and greater availability of NGS
platforms through core services and commercial entities now per-
mits widespread use of this technology. NGS applications have thus
far made the greatest impact in the area of monogenic disorders,
through the identification of novel determinants of disease and
elucidating new pathways important for normal biology. These
advances not only improve management of rare disorders but also
enhance understanding of critical pathogenic mechanisms underly-
ing common, complex diseases.
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Chapter 2

Induced Pluripotent Stem Cells in Disease Modeling
and Gene Identification

Satish Kumar, John Blangero, and Joanne E. Curran

Abstract

Experimental modeling of human inherited disorders provides insight into the cellular and molecular
mechanisms involved, and the underlying genetic component influencing, the disease phenotype. The
breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap
in experimental modeling of human diseases, providing investigators with a self-renewing and, thus,
unlimited source of pluripotent cells for targeted differentiation. In principle, the entire range of cell
types found in the human body can be interrogated using an iPSC approach. Therefore, iPSC technology,
and the increasingly refined abilities to differentiate iPSCs into disease-relevant target cells, has far-reaching
implications for understanding disease pathophysiology, identifying disease-causing genes, and developing
more precise therapeutics, including advances in regenerative medicine. In this chapter, we discuss the
technological perspectives and recent developments in the application of patient-derived iPSC lines for
human disease modeling and disease gene identification.

Key words Cellular reprogramming, iPSC, Human complex disease, Genetics

1 Introduction

Genetic linkage and genome-wide association studies (GWAS) have
emerged as systematic approaches for identifying the root genetic
causes of disease [1]. However, these approaches are often accom-
panied by certain challenges, such as: (1) independent genetic
variants can produce similar phenotypes via molecularly distinct
pathways, (2) a disease phenotype can emerge from the combined
effect of multiple genetic factors, and (3) both linkage and associa-
tion approaches focus on initial localization (albeit with differently
sized support intervals) of the genetic loci. The challenge that
investigators then face is how to mechanistically connect these
genetic loci to the factors that initiate the disease process and
ultimately lead to disease presentation. Because molecular pathways
are shaped by cell-type-specific gene expression, it is preferable to
model and study the molecular basis of a disease in the affected cell
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or tissue type [2]. However, relevant human tissue or cell samples
are often difficult to obtain, sometimes requiring invasive surgery
or only becoming available post-mortem. Furthermore, isolated
cells cannot be maintained or expanded with conventional culture
conditions, and must instead be immortalized for long-term use. In
the absence of primary tissue or cells of interest, animal models and
heterologous or surrogate in vitro cell culture models have been
invaluable tools for modeling human diseases. Transgenic models
and gene targeting rely heavily on rodent models, and approxi-
mately 90% of animals used in research are mice, rats, and other
rodents [3]. While rodents are, and will continue to be, extremely
valuable models for biomedical research, rodents do not always
accurately model human disease or biological response [4]. The
evolutionary distance between rodents and humans (human-
mouse-rat ancestor diverged ~87 million years ago) [5] presents
significant differences in biological function that may limit the
immediate translational value of findings. The close phylogenetic
relationship and consequent similarity in biological processes and
physiology of nonhuman primates to humans makes them better
models for human diseases, but due to the difficult animal hus-
bandry, cost, and ethical limitations, nonhuman primates account
for only 0.28% of all the laboratory animals used in research
[3]. Similarly, the human diseases and genetic disorder models
utilizing patient-derived immortalized cell lines originating from
surrogate tissues (i.e., blood or tissue biopsies) or utilizing cell
types of interest from a heterologous species/system, often lacks
the ability to faithfully recapitulate specific properties of the primary
tissue of interest [6–10].

An alternative to these models is the stem cell-based system,
which carries the intrinsic capability for indefinite self-renewal and
the potential to model the tissue specific physiology through the
use of differentiation protocols to generate specific target cell/
tissue types. These properties enable us to study genotype–pheno-
type relationships in a broad range of human cell types and differ-
entiation states, as well as obtain large numbers of cells for
additional purposes, including drug screening and cell therapy
[11]. Embryonic stem cell (ESC) lines were first established in
mouse [12], and subsequently in human from in vitro derived
embryos [13]. However, the challenges related to bioethics, safety,
and the limited availability of disease-specific human embryonic
stem cell (hESC) lines have complicated the utilization of this
approach to its full potential. This changed dramatically in 2006
when Takahashi and Yamanaka made the seminal discovery that
mouse skin fibroblasts, using a simple cocktail of pluripotency
transcription factors, can be reprogrammed into an induced plurip-
otent stem cell (iPSC) state that shares the indefinite self-renewal
and pluripotent differentiation capacities of ESCs [14]. One year
later, these same investigators, as well as groups headed by James

18 Satish Kumar et al.



Thomson and George Daley, succeeded in converting human fibro-
blasts to iPSCs [15–17]. Reprogramming to pluripotency has now
been demonstrated starting with a variety of somatic cell types,
including immortal cell lines [18–26]. The greatest advantage of
iPSC technology is that it allows for the generation of pluripotent
cells from any individual in the context of his or her own genetic
identity. The technology has already been utilized in modeling
sporadic, as well as complex, multifactorial diseases of unknown
genetic identity by generating disease-specific cell types from
patient somatic cells [27–38].

In this chapter, we describe the ways in which human iPSCs are
generated and utilized for disease modeling, as well as for disease
gene identification. We discuss common challenges and approaches
that we and others have encountered in iPSC reprogramming, their
differentiation into target cell types, and identification and mea-
surement of disease relevant phenotypes, to provide an informed
perspective of existing technologies and in vitro iPSC-based disease
modeling in understanding human disease genetics.

2 iPSC Reprogramming

First, let us introduce an exemplary reprogramming method we use
in our laboratory to reprogram human lymphoblastoid cell lines
(LCLs) into iPSCs. The LCLs collected in genetic and epidemio-
logical studies represents one of the largest, well-characterized,
existing bioresources available for iPSC reprogramming, because a
multitude of data already exists on sample donors. For example, the
NIMH Repository and Genomic Resource alone currently stores
over 184,000 LCLs for sharing with investigators of mental
disorders [39].

To reprogram LCLs into iPSCs, the LCLs are propagated and
while still in log growth phase, nucleofected with episomal plasmids
(pCE-hOCT3/4, pCE-hSK, pCE-hUL, and pCE-mp53DD),
encoding reprogramming factors (i.e., OCT3/4, SOX2, KLF4,
LMYC, and LIN28), and mouse p53 carboxy-terminal dominant-
negative fragment using the SE Cell Line 4D-Nucleofector X Kit
and 4D-Nucleofector DN-100 program on a 4D-Nucleofector
system (Lonza; http://www.lonza.com/). The plasmids are
described in Okita et al. [40] and can be obtained from the
Addgene plasmid repository. The nucleofected LCLs are allowed
to recover for 8–12 h in LCL growth media (RPMI 1640 complete
media; all media components from Life Technologies) in a CO2

incubator at 37 �C, 5% CO2 and atmospheric O2, and then trans-
ferred onto a Matrigel matrix (Corning Inc.)-coated, six-well plate
and cultured in iPSC reprogramming media (TeSR-E7 from
STEMCELL Technologies) for 12–14 days. From days 13–15,
when iPSC-like colonies (Fig. 1a) start to appear, the cultures are
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transitioned to human iPSC/ESC maintenance media (mTeSR-1
from STEMCELL Technologies). Media is changed daily thereaf-
ter. On days 18–21, 10 to 15 colonies morphologically similar to
human ESCs (Fig. 1b) are manually picked for further cultivation
and evaluation of stem cell characteristics, such as expression of
pluripotency markers, differentiation potential, and genomic
integrity. Further details on this LCL-to-iPSC reprogramming
protocol can be found in Kumar el al. [26]. Using this protocol,
we achieved high reprogramming efficiency and a 100% success
rate. However, the reprogramming efficiency can vary significantly
among cell lines, based on our unpublished findings in more than
50 iPSC lines. Also, the differential gene expression analysis of the
cellular and EBV viral genes, as well as the quantitative PCR analysis
of the EBV DNA in the LCL reprogrammed iPSCs, shows that
transcription and replication of the EBV genome are inhibited in
the reprogrammed iPSCs, which ultimately results in the complete
depletion of the EBV genome from the reprogrammed iPSCs
[26, 41, 42].

The common aim of all somatic cell reprogramming methods is
the forced expression of reprogramming factors into the cells to be
reprogrammed. However, depending on what type of cells are
being reprogrammed, the capacity and efficiency with which the
reprogramming method can deliver reprogramming factors into
the cell types used and the downstream applications of the gener-
ated iPSCs, certain technologies have advantages over the others.

A

Day 0 1 3&5 7&9 11 13&14 15-21

LCLs in log 
growth 
phase

Nucleofect cells with 
episomes and plate on MG 
in 1.5ml of TeSRTM-E7

Without removing any 
media add 500µl of 

TeSRTM-E7

Carefully remove 1.0ml of 
spent media and add 

1.0ml of fresh TeSRTM-E7

Replace spent 
media with fresh 
TeSRTM-E7

Remove 1.0ml of spent 
TeSRTM-E7

and add 1.0ml of mTeSRTM-1

From 15 to the day iPSC 
colonies are picked 

change mTeSRTM-1 daily

5X 10X 40X

B

Fig. 1 LCL to iPSC reprogramming. (a) Schematic diagram of LCL to iPSC reprogramming. (b) Morphology of a
reprogrammed iPSC colony at 5�, 10�, and 40� original magnifications, respectively
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Therefore, to better understand the reprogramming process and
provide a basis for selecting the most suitable method, we present a
comprehensive overview of the most popular reprogramming
approaches.

2.1 Retroviral and

Lentiviral

Reprogramming

Retroviruses, a family of viruses that stably integrate into the host
genome, are one of the most common types of viruses used to
express genes at robust levels in mammalian cells, and have been
for several decades. The first iPSC reprogramming studies utilized
retroviral vectors to express reprogramming factors [14, 15]. While
retroviruses generally only infect dividing cells, because their access
to the host genome is thought to rely on the breakdown of the
nuclear envelope that occurs during mitosis [43], lentiviruses are a
genus of the retroviral family that can infect non-dividing cells,
possibly through the use of nuclear localization signals by the viral
components [44]. In an attempt to improve reprogramming effi-
ciency by utilizing both dividing and nondividing cells, the Thom-
son lab was the first to successfully demonstrate the use of lentivirus
in iPSC reprogramming [16]. Though the retro and lentiviral
vectors proved to be robust delivery vehicles for iPSC reprogram-
ming, the major drawback of these delivery systems was the random
integration of the viral genome carrying transgenes into the cellular
genome. For example, the integration site may be a regulatory or a
structural element [45]. Secondly, the copy number of viral gen-
omes integrated into the cellular genome may vary to a great extent
from experiment to experiment [15]. The presence of the trans-
genes in the reprogrammed iPSC may not only hinder their clinical
use, but may be of concern in some disease modeling and gene
discovery strategies [46].

The first generation of transgene-free iPSCs was generated with
lentiviral vectors containing loxP sites in the 50 and 30 LTR of the
viral vectors. The presence of loxP sites provided a substrate to
remove most of the transgene sequences by Cre-mediated recom-
bination [47–50]. However, this strategy removed almost all of the
transgene, except one loxP site flanked by small portions of the 50

and 30 LTRs, which remains in the iPSC genome. Also, this repro-
gramming strategy requires an additional step after iPSC repro-
gramming for the excision of the transgene, such that only a small
portion of the reprogramming vector remains integrated in the
iPSC genome. Another consideration would be how amenable
the starting material (i.e., the cells to be reprogrammed) is to
transduction. For example, LCLs show a poor transduction effi-
ciency (~0.8%) compared to human skin fibroblasts (~88%) [42].

2.2 Nonintegrating

Reprogramming

Methods

There are several reprogramming methods that leave no trace of
transgenes in the reprogrammed iPSCs (i.e., Sendai virus or adeno-
virus, episomal plasmids or minicircles, direct transfection with
reprogramming mRNA, miRNA, or protein, and transposition
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with the piggyBac transposon). However, some of these noninte-
grating reprogramming methods either have poor reprogramming
efficiency (adenovirus and proteins), or are ineffective in repro-
gramming any somatic cells other than fibroblasts (minicircles),
or require post-reprogramming excision of the vector sequence
(piggyBac). Because of these issues, we focus here on the non-
integrating reprogramming methods that are widely practiced and
use readily available reagents and kits.

2.2.1 Sendai Virus (SeV) Since its isolation in the 1950s [51], SeV has occupied a unique
position as a research tool for basic and applied biology. The SeV is
an RNA virus that remains in the cytoplasm (i.e., there is no
integration in the host genome) of the infected cells and can
robustly express reprogramming genes for a few passages. How-
ever, SeV quickly becomes diluted out and eventually lost
completely. Wild-type SeV vectors installed with Oct4, Sox2,
Klf4, and c-Myc cDNA were reported to generate transgene-free
iPSCs, dependent on passive elimination of the vector genome
through cell passage [52]. This prototype was replaced with a less
cytotoxic backbone [23] with a temperature-sensitive (ts) mutation
that facilitated the faster clearance of the vector genome [53], and is
now commercially available. The SeV reprogramming is efficient,
highly reliable, and works with many different somatic cell types
with a low workload and a complete absence of viral sequences in
most lines at higher passages [54]. The shortcomings of SeV
include relatively slow clearance of SeV RNA and the current lack
of clinical-grade SeV for reprogramming.

2.2.2 Episomal Plasmids In episomal plasmid-based reprogramming, prolonged expression
of reprogramming factors is achieved by oriP/EBNA1-based
episomal vectors. These plasmids contain Epstein-Barr virus
derived oriP/EBNA1 viral elements, which facilitate episomal plas-
mid DNA replication in dividing cells [55–57], and thus allow
expression of reprogramming factors for a long enough period to
initiate the reprogramming process while eventually being lost from
proliferating cells, leaving no footprint of the transfected plasmid.
Human episomal reprogramming was first demonstrated by the
Thomson laboratory, using a single transfection of three plasmids
containing Oct4, Sox2, Nanog, and Klf4; Oct4, Sox2, and SV40
Large T antigen; and c-myc and Lin28 [58]. However, the repro-
gramming efficiencies were significantly low. Since the publication
of the first successful episomal reprogramming, a concerted effort
has been extended to improve the efficiency of this method. Utiliz-
ing the same set of episomal plasmids, Hu et al. [59] reprogrammed
bone marrow- and cord blood-derived mononuclear cells and
confirmed the low reprogramming efficiency observed in fibro-
blasts in the earlier study. However, they found the addition of
“Thiazovivin,” a small molecule identified in a previous chemical
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screen to improve hESC survival during passaging [60], enhanced
the reprogramming efficiency by ten-fold. This study also provided
a more detailed description of the plasmid loss, showing that all of
the generated iPSC lines lost the plasmid between passages 3–15.
Later in the same year, Yu et al. [61] published feeder-free condi-
tions for the episomal reprogramming that included the improve-
ment of reprogramming efficiencies using a cocktail containing
MEK inhibitor PD0325901, GSK3b inhibitor CHIR99021,
TGF-b/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibi-
tor HA-100, and human leukemia inhibitory factor. Now, repro-
gramming media that work with a wide variety of cell types are
commercially available. Using an oriP/EBNA1 plasmid con-
structed with Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc)
plus Lin28 and another oriP/EBNA1 plasmids expressing SV40
large T antigen, and p53-shRNA, Chou et al. [62] demonstrated
highly efficient reprogramming of briefly cultured blood mononu-
clear cells. Further improvements in the reprogramming efficiency
were made in a method published by Okita et al. [63], which
employs the reprogramming factors Oct4, Sox2, Klf4, L-Myc,
and Lin28A, combined with p53 knockdown (p53-shRNA/
mp53DD). While optimizing an efficient method for LCL to
iPSC reprogramming, we used a similar strategy and confirmed
previous findings [40, 63] that p53 knockdown and removal of
SV40 large T antigen improved reprogramming efficiency and
success considerably [26]. Key advantages of episomal plasmid-
based reprogramming are the high reliability of iPSC generation
from a variety of cell types (e.g., skin fibroblast, blood-derived
CD34+ and peripheral blood mononuclear cells, and stored
LCLs) [26, 40, 63] and the quick loss of the reprogramming
agent (relative to SeV) [54]. However, episomal reprogramming
may raise concerns regarding the genetic integrity of the resulting
iPSC lines due to the use of p53 knockdown. Notably, we and
others did not observe any significant increase in structural
abnormalities in reprogrammed iPSCs [26, 54, 63].

2.2.3 mRNA Transfection In mRNA reprogramming, cells are transfected with in vitro
transcribed mRNAs that encode reprogramming factors; however,
this strategy requires mitigating the strong immunogenic response
elicited in cells due to the introduction of synthetic nucleic acid.
Warren et al. [64], reported the first successful synthetic mRNA-
based reprogramming, employing several measures to limit activa-
tion of the innate immune system by foreign nucleic acids. They
modified RNA bases by substituting 5-methylcytidine for cytidine
and pseudouridine for uridine, and added the interferon inhibitor
B18R into cell culture media [64]. The main advantages of the
RNA method are the speed of colony emergence, comparatively
high reprogramming efficiency, a complete absence of integration,
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a very low aneuploidy rate, and a low donor cell requirement
(typically 50,000 cells, but as few as 1000 human fibroblasts can
be reprogrammed) [54]. However, due to the very short half-life of
mRNAs, daily transfections are required to induce iPSCs, which
significantly increases hands-on time and overall workload. Also the
protocol requires a tissue culture incubator with oxygen control
[64]. More significantly, RNA reprogramming shows poor success
rate with different samples. Studies have reported frequent unsuc-
cessful attempts to reprogram patient-derived primary fibroblasts
[54, 65]. Further, there have been no reports to date of successful
generation of iPSCs from blood-derived cells using this methodol-
ogy. One promising approach for improving mRNA-based repro-
gramming is the inclusion of pluripotency-inducing miRNAs.
Warren et al. [66] reported increased RNA reprogramming effi-
ciencies and accelerated colony emergence by fusing Oct4 to a
heterologous transactivation domain. The conventional mRNA
method can therefore be useful for easy-to-reprogram fibroblast
samples, but needs to be further optimized to overcome the repro-
gramming resistance and excessive cell death observed with many
patient samples.

3 iPSC-Based Human Disease Modeling

The greatest advantage of iPSC technology in in vitro disease
modeling is that it allows for the generation of pluripotent cells
from any individual in the context of his or her own genetic iden-
tity, including individuals with sporadic forms of disease, as well as
those affected by complex multifactorial diseases of unknown
genetic identity [29]. The generated iPSCs from patients and suit-
able controls are differentiated into target cell types affected in the
given disease and compared for disease-relevant phenotypes
[67]. Each stage in this process poses challenges. What are the
appropriate cases and controls to include? How to identify and
generate disease-relevant target cell types? How to deal with the
heterogeneous mix of cell types that results from iPSC differentia-
tion? How to identify and analyze cellular phenotypes relevant to
the disease mechanism? Here, we discuss these challenges and
present potential approaches for addressing each.

3.1 Cases and

Controls

It is now well recognized that the genetics of iPSCs reflect the
genetics of the patient; the vast majority of the transcriptional and
epigenetic signatures and differentiation propensities are donor-
determined [68–72]. These properties, on the one hand, make
iPSCs a great tool to model human diseases, but on the other
hand, render them notoriously variable in phenotypic output and
differentiation propensities [73, 74]. There can be a possibility of
missing phenotypic effect in the phenotypic noise caused by the
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variable genetic backgrounds of unrelated iPSC lines [67]. There-
fore, because of the inherent differences resulting from the donor-
dependent variability, it seems obvious that relatively large cohorts
of iPSC lines from different donors, representing both cases and
controls, would be needed to obtain reliable results concerning the
impact of donor-specific variants. This approach has been success-
fully applied using a relatively small sample size of 4–14 different
patient-specific iPSC lines compared to similar numbers of control
cells for the identification of disease-specific cellular phenotypes
[36, 38, 75]. The derivation of iPSCs from multiple patients,
though labor intensive, is usually straightforward, enabling the
analysis of similar mutations in diverse genetic backgrounds. In
addition, patient-derived iPSCs are more beneficial than genome
editing in normal iPSCs when modeling genetically complex dis-
orders, which often involve multiple unknown loci [11]. It is thus
understandable that national and international initiatives are
already investing in major efforts to establish repositories of
human iPSCs as models for human disorders. These repositories
are aimed at generating thousands of new cell lines, for both
monogenic and complex disorders, and using nonintegrative repro-
gramming methods such as the use of Sendai viruses or episomal
vectors [11]. Also repurposing the LCL repositories, generated and
maintained in genetic and epidemiological studies worldwide,
holds great potential for generating iPSCs to model human diseases
particularly for disease gene identification [26].

3.2 Generating

Disease-Relevant

Target Cell Types

The first challenge when modeling a disease in vitro is identifying
the target cell type to investigate. Broadly speaking, iPSC-based
disease modeling is more relevant in cases where studies of patient
tissues have identified the cell types whose loss or dysfunction
causes the disease; however, target tissue and cells are difficult to
obtain or cannot be maintained or expanded with conventional
culture conditions. The repertoire of cell types that can be gener-
ated in vitro from iPSCs is impressive, but still small compared to
the number of cell types in the human body. Cell types affected in
disease are generated from iPSCs by directed differentiation. The
directed differentiation protocols utilize signaling pathways that are
responsible for in vivo differentiation of the target cell types. The
signaling pathways, are stimulated or inhibited in vitro by biological
(recombinant growth factors) or small-molecule modulators added
at specific times and concentrations [67, 76–79]. Although the
differentiation efficiency and quality of generated target cell-type
are constantly improving; the process is often inefficient and pro-
duces a heterogeneous cell population consisting of multiple cell
types or a mixture of cells at different developmental stages, mostly
consisting of fetal or immature phenotypes (for example, cardio-
myocytes [80, 81], dendritic cells [82], neural cells [79], and
pancreatic β-cells [83]. Because restricting phenotypic and
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molecular analyses to a relatively homogeneous target cell popula-
tion would facilitate comparison across different cell lines, it is
necessary to characterize and purify the disease-relevant target
cells. Some cellular phenotypes, including survival, morphology,
and protein expression or localization, can be identified by immu-
nostaining analysis of target cell-specific markers and candidate
disease proteins. For a wider array of experimental manipulations
and analyses, target cell populations can be purified by unique
combinations of surface markers, genetically encoded reporter
genes, or drug-resistance genes [67, 84–86]. Enrichment and mat-
uration protocols that modulate culture media components may
also be utilized to achieve a mature phenotype in the target cell
population [81]. In addition, many cases will require iPSC line-
specific optimization and modifications for efficient differentiation
into target cells [78]. It is remarkable that, despite these challenges,
target cells derived in vitro by iPSC differentiation often display
phenotypes observed in their mature counterparts in vivo. For
example, cellular phenotypes have been seen in models of late-
onset neurodegenerative diseases such as Parkinson’s disease,
schizophrenia, and Alzheimer’s disease [36, 38, 87–89]. Also, car-
diac disease phenotypes, such as cardiac hypertrophy, can be mod-
eled into iPSC-derived cardiomyocytes following a simple
maturation step [81].

An alternative to the iPSC-based, directed differentiation
approach is “direct programming,” which relies on forced gene
expression, generally of relevant transcription factors or micro-
RNAs, for converting one cell type into another resembling the
target cells [90–94]. While this approach is promising, it is still
unclear to what extent these programmed cells are suitable for
in-vitro disease modeling, because they may be less like their
in-vivo counterparts than cells generated by directed differentiation
of iPSCs [67, 95].

3.3 Identification

and Analysis of

Disease-Relevant

Cellular Phenotypes

For disease gene identification and validation, the goal of in vitro
disease modeling is to unveil poorly understood or unknown dis-
ease mechanism(s) and relate them to the underlying genetic com-
ponent. The key challenge to this process is to identify relevant
cellular phenotypes that accurately represent the disease pathophys-
iology and bridge the gap to causal genetic mechanisms. Increasing
numbers of reports have demonstrated that for many diseases, the
specific pathophysiology can be captured in human iPSC-based
disease models. These range from cardiovascular disease [37, 81,
96], cancer [97, 98], ocular disease [99, 100], diabetes mellitus
[101, 102], and neurological disorders of the brain [103, 104]. Sim-
ilarly, approaches utilizing phenotypes that are sensitive, unbiased,
and measurable at genome-wide scales might be most relevant to
the discovery of molecular changes and downstream candidate
gene or genetic variants. Post-genomic technologies offer a battery

26 Satish Kumar et al.



of approaches for profiling cell differences at both the population
and single-cell levels. Advances in RNA-sequencing technologies
and transcriptomics provide one of the easiest and highest through-
put approaches to cell phenotyping, and have been traditionally
used for disease gene identifications using primary or surrogate
in vitro cell models [105, 106]. Transcriptome studies of both
schizophrenia and autism spectrum disorder patient-iPSC derived
cells have identified hundreds of gene expression differences
[35, 38, 107–109]. Mapping and measuring DNA methylation
and chromatin accessibility (ATAC Seq) may extend this analysis
to provide unique epigenetic signatures, as seen for example with
the methyl-cytosine-binding protein MeCP2 that causes Rett’s
syndrome and is associated with autism spectrum disorders
[110]. Histone protein modifications can be profiled using ChIP-
seq and several histone methyl transferase enzymes are associated
with neuropsychiatric disorders. Either alone, or more likely when
combined with expression data, epigenetic profiling may identify
developmental and activity-dependent cellular phenotypes
[111–113]. Proteomic technologies could, in turn, be used to
back up the results of transcriptional profiling by measuring the
quantitative changes in protein levels [38] and identifying the
specific binding partners of candidate protein(s) in target cell
types [114, 115].

Another important consideration of cellular phenotyping is the
differentiation stage and the time point at which the target cells are
assayed. There are two issues, one is the maturation state of the
target cells, which we have discussed briefly in the previous section,
and the second is the expected time course of a given disease
process. For congenital or early-onset diseases, it may be sufficient
to model the disease in immature cells at early time points in vitro.
For late-onset diseases, it is less clear when the disease process
begins. For example, characteristic symptoms of schizophrenia
generally appear late in adolescence, and the disease is thought to
be a neurodevelopmental condition [116] that is often predated by
a prodromal period that can appear in childhood [117]. Because
damaging de novo mutations in persons with schizophrenia con-
verge in a network of genes coexpressed in the prefrontal cortex
during fetal development, one prevailing hypothesis is that disrup-
tions in fetal prefrontal cortical development underlie schizophre-
nia [118]. In human iPSC-based in vitro models of schizophrenia,
although iPSC derived neurons are electrophysiologically active,
gene expression patterns indicate that they are immature relative
to those in the human brain [119, 120]. iPSCs can be differentiated
into cortical pyramidal [121] and interneuron fates [120, 122], but
these neurons require months to fully mature in vitro and generally
lack myelination [123, 124]. Neural progenitor cells (NPCs) are a
highly replicative neural population capable of rapidly initiating
neuronal differentiation; they are easily assayed, well-suited for
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scalability, and reveal reproducible schizophrenia associated tran-
scriptomic/gene expression phenotypes [38]. Conversely, iPSC-
derived human cardiomyocytes only display disease-associated phe-
notypes in an adult-like state [125]. One approach to address this
issue is to artificially “age” target cells by challenging them with an
environmental stressor. This approach revealed a selective sensitiv-
ity in disease-derived dopaminergic neurons that otherwise
appeared indistinguishable from controls [87, 89].

4 Approaches to Identify and Validate Disease Genes

In recent years, genome-wide association studies (GWAS) have
successfully tagged thousands of disease- or trait-associated genetic
loci. However, molecular mechanisms linking genetic loci to a
disease phenotype often remain unclear. Moreover, for most com-
plex diseases and traits, associations found in GWAS explain only a
small proportion of the phenotypic variation [126, 127]. For exam-
ple, although 71 independent loci have been associated with
Crohn’s disease, they account for only 23% of the estimated herita-
bility [128]. GWAS of psychiatric diseases show an even less favor-
able picture. For instance, schizophrenia has an estimated
heritability of 80% [129, 130], but observed genetic variants cur-
rently account for <1% of the variance [131]. To bridge this gap
between genotype and disease phenotype and to better understand
the biological mechanisms and translational possibilities, the
genotype-driven approach, aided with deep phenotyping, appears
to be a more appealing and powerful strategy [132, 133]. A limita-
tion of this approach however, is that the disease pathologies are
often tissue- or cell type-specific [134–138], and due to ethical and
practical reasons, deep phenotyping analyses are often only feasible
in easily available surrogate tissues such as blood, particularly in
large population-based gene identification studies. The iPSC tech-
nologies discussed here in this chapter, along with new sequencing
technologies, genome-wide assays, and comprehensive genome
annotation are now offering opportunities to interrogate genome
function in multiple individuals at the cellular and tissue level.
Together with more precise characterization of clinical and patho-
physiologic phenotypes, a range of deep cell- or tissue-specific
phenotypes (sometimes referred to as “endophenotypes” or inter-
mediate phenotypes) and “omic-metrics” such as epigenomics,
transcriptomics, proteomics, and metabolomics can be examined
in an integrated fashion in disease-relevant cells or tissues to under-
stand the molecular mechanisms underlying the phenotypic expres-
sion of diseases [139]. It is hoped that ongoing improvements in
iPSC reprogramming, differentiation, and disease modeling cap-
abilities will facilitate the analysis of more functionally specific
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phenotypes in large-scale study samples that will exhibit higher
genetic signal-to-noise ratios and speed causal gene identification.

iPSC-based disease modeling also opened new avenues for
developing faster andmore reliable assays to investigate and validate
the biological context of the genetically identified disease loci. The
iPSC lines can be reprogrammed from cells (e.g., skin fibroblast or
blood-derived cells) of individual(s) carrying the genotype of inter-
est, representing an index variant or other potential functional
variant(s) in linkage disequilibrium (LD) with the index variant.
The generated iPSC lines are then genome-edited to correct for the
disease- or trait-associated risk allele (risk allele to wild type) and
differentiated into target cell types. This will generate isogenic
control cells that differ from the original disease/patient specific
target cells only at the target variant(s). These corrected target cells
are the perfect control for a comparative analysis using genome-
wide “omic-metrics” to understand the molecular and biological
context of the risk variant(s). Nuclease-based genome editing tech-
niques have seen great improvements in recent years, and several
technologies allowing targeted manipulation of the human genome
using designer proteins or protein-RNA hybrids that recognize
specific DNA sequences, exist to perform such genetic manipula-
tion/correction [140]. These tools include zinc fingers (ZFs),
transcription activator-like effectors (TALEs), and the CRISPR-
Cas9 system [141–145]. ZFs and TALEs are DNA-binding pro-
teins that can be fused to nucleases such as Fok1 to generate ZFNs
and TALENs [67, 146, 147]. Fok1 acts as an obligate dimer, and
DNA double-strand breaks (DSBs) are only generated when Fok1
monomers are brought together by ZFNs or TALENs targeting
adjacent DNA sequences. The bacterial CRISPR-Cas9 system, on
the other hand, uses a combination of proteins and short guide
RNAs to recognize and cleave complementary DNA sequences via
a nuclease (Cas9) [148]. When ZFNs, TALENs, or Cas9-guide
RNAs are transfected into human iPSCs, along with a targeting
construct containing homology arms 50 and 30 to the induced DSB
site, the lesion can be repaired by homologous recombination
(HR), which inserts the targeting construct into the genomic
region of interest [67, 149]. There are several reports demonstrat-
ing the feasibility of performing genome editing in human pluripo-
tent stem cells (PSCs) and iPSCs with ZFNs, TALENs, CRISPRs,
and other tools [145, 150–158]. A few studies, mostly on well
characterized, disease-causing variants, have used genome-editing
tools to generate isogenic wild-type versus mutant cell lines that
have then been differentiated into disease-relevant cell types and
shown to display phenotypic differences that give insight into dis-
ease pathophysiology. For example, Reinhardt et al. [89] generated
iPSCs from Parkinson’s disease (PD) patients carrying a G2019S
mutation (rs34637584) in the LRRK2 gene. This mutation is
associated with familial and sporadic PD. They used ZFNs to
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correct the mutation in three of the patient-derived lines and insert
the mutation into a control iPSC line. The matched cell lines were
then differentiated into midbrain dopaminergic (mDA) neurons.
Expression profiling of pairs of isogenic wild-type andmutant mDA
cell lines revealed several genes that are consistently dysregulated by
the mutant LRRK2 gene, including CPNE8, CADPS2, MAP7,
and UHRF2; remarkably, individual knockdown of each of those
genes in mutant neurons modulated their sensitivity to oxidative
stress. The investigators also established that the increased sensitiv-
ity to stress of the mutant neurons was at least in part due to
activation of ERK signaling and could be reversed with an inhibitor
of ERK phosphorylation.

5 Conclusion and Future Perspectives

The proof-of-concept emerging frommany recent studies that have
attempted to model complex disease and disorders in vitro using
iPSC-derived patient target cells has been promising. For example,
iPSC-derived neurons and neural progenitor cells (NPCs) to model
schizophrenia and Alzheimer’s disease [35, 36, 38], iPSC-derived
hepatocytes to model inherited metabolic disorders of the liver
[31], and iPSC-derived cardiomyocytes to model hypertrophic
cardiomyopathies and diabetes-induced cardiomyopathies
[81, 159], have been very encouraging. Improved methodologies
allowing reliable iPSC reprogramming from more easily accessible
cells such as blood-derived cells and stored LCLs, improved and
simplified target cell differentiation protocols, and an integrative
genome-wide approach to identify and develop standardized cellu-
lar phenotypes that accurately represent disease pathophysiology
and bridge the gap to causal genetic mechanisms, will provide the
solution to many problems. However, there remain a number of
considerable challenges ahead.

In the future, strategies will need to consider the genetic char-
acteristics of complex diseases and disorders, where despite the very
high measurable genetic component, identification of the causal
genes and variants has proved daunting. In complex diseases and
disorders, genetic risk is largely polygenic, with a mixture of many
common variants of small effect, as well as few rare variants of large
effect. In contrast, a priori we would expect to find the most robust
phenotypes in cells derived from patients carrying highly penetrant
rare variants. It will be important to connect the knowledge gained
from single gene deficits with that gained from the accumulated
effects of multiple subtle genetic risk alleles.

Both the selection of patients carrying rare variants of large
effect and the selection of patients of extremely high polygenic risk
require large patient populations to optimize the selection. When
genetic risk in selected patients is not sufficiently causal, any iPSC
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experiment will require the analysis of large numbers of patient cell
lines. This will require standardization and rigorous quality control
to reduce technical variation to an acceptable minimum. Given the
currently high reagent costs and labor-intensive nature of stem cell
research, considerable improvements and alternative strategies are
needed to integrate these processes with global efforts in patient
recruitment and accompanying clinical phenotyping and genomic
analysis. The LCL repositories that exist in many large-scale genetic
studies, where a multitude of data, including whole genome DNA
sequences of donors, provides an excellent opportunity to integrate
and utilize this technology in gene identification.

Finally, beyond the issues of variability and capacity in generat-
ing target cells lies the key question of what are the relevant cellular
phenotype(s) that can be typed efficiently in large sample sizes? We
have discussed this somewhat in detail in the previous section. We
argue that genome-wide tools, such as whole genome gene expres-
sion using microarray or RNAseq, might be most relevant in disease
gene identification. Quantitative differences in gene expression can
be directly correlated to the presence or absence of the disease or
other disease-relevant phenotypes. This approach has already been
applied in disease gene identification with mixed success using
surrogate cell models. We believe, due to the tissue-specific varia-
tion in gene expression architecture, whole genome gene expres-
sion data generated from iPSC-derived, disease-relevant target
cells, coupled with whole genome sequence data and other “omic
metric” data, will provide a more integrated platform for disease
gene identification.
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Chapter 3

Development of Targeted Therapies Based on Gene
Modification

Taylor M. Benson, Fatjon Leti, and Johanna K. DiStefano

Abstract

With the advent of next-generation sequencing (NGS) and the demand for a personalized healthcare
system, the fields of precision medicine and gene therapy are advancing in new directions. There is a push
to identify genes that contribute to disease development, either alone or in conjunction with other genes or
environmental factors, and then design targeted therapies based on this knowledge, rather than the
traditional approach of treating generalized symptoms with pharmaceuticals in a one-size-fits-all manner.
Identification of genes that contribute to disease pathogenesis and progression is critical for the maturation
of the precision medicine field. Concomitant with a better understanding of disease pathology, precision
medicine approaches can be adopted with greater confidence and are expected to lead to a new standard for
clinical practice. In this chapter, we provide a brief introduction to precision medicine, discuss the
importance of identifying genes and genetic variants that contribute to disease development and progres-
sion, offer examples of approaches that can be applied to treat specific diseases, and present some of the
current challenges and limitations of precision medicine.

Key words Precision medicine, Personalized medicine, Gene therapy, Pharmacogenomics, NGS,
GWAS

1 Introduction

Healthcare in the USA has traditionally applied a “one-size-fits-all”
approach to the treatment of disease, regardless of its etiology. Due
to heterogeneity in disease presentation, as well as overlapping
manifestations among different disorders, precise definition of phe-
notypic abnormalities in patients can be challenging. Many patients
fall through cracks in the healthcare system due to errors in diagno-
sis, lack of accurate prognostic tools, or failure to account for
differential responses to pharmaceutical treatments. Improved stra-
tegies to take patient-specific factors into consideration underlie the
practice of precision medicine. This recently constructed model for
clinical practice seeks to treat and prevent disease by addressing

Johanna K. DiStefano (ed.), Disease Gene Identification: Methods and Protocols, Methods in Molecular Biology, vol. 1706,
https://doi.org/10.1007/978-1-4939-7471-9_3, © Springer Science+Business Media, LLC 2018

39



variability in genetic, environmental, and lifestyle factors in the
individual patient.

In theory, precision medicine tailors medical treatment for
individual patients based upon shared characteristics among a
group of individuals. For example, when patients are first diagnosed
with type 2 diabetes or hypercholesterolemia, they are frequently
prescribed metformin or statins, respectively, regardless of the eti-
ology of the condition. While metformin and statins are effective
for a large proportion of patients, these pharmaceuticals do not
yield the desired effects for many individuals and cause unpleasant
side effects in others. Accounting for individual factors contribut-
ing to disease pathogenesis and pharmacogenetic response would
allow the most effective pharmacological strategy to be implemen-
ted upon diagnosis, thereby restoring the patient to health more
quickly and effectively. Likewise, strategies to monitor disease risk
and progression to more clinically severe manifestations of the
disease using biomarkers remain largely undeveloped, despite the
potential for disease prevention or reversal [1].

With the advancement of technologies such as next generation
sequencing (NGS) techniques, a shift in our understanding of the
role of genetic variants in the development of human diseases has
been experienced. While these platforms have taken several years to
yield robust results, they have produced a significant amount of
data with respect to long-term health and disease. The emerging
molecular biology methods and technologies discussed in this
book, in conjunction with pharmacogenomics studies, will be cru-
cial to more effectively diagnose and treat patients [2]. Because of
the impact that the practice of precision medicine is expected to
have on the treatment and prevention of disease, we have focused
on integrating knowledge obtained from genetic studies and
approaches to correct gene deficiencies and dysfunction in this
chapter. We also discuss some of the challenges and limitations of
precision medicine as a sustainable paradigm for healthcare.

2 The Importance of Taking into Account Genetic and Environmental Factors
in the Prevention and Treatment of Human Disease

Theoretically, the practice of precision medicine takes into account
genetic, environmental, and lifestyle factors of individual patients.
The underlying premise of this clinical approach suggests that the
better characterized genes and genetic variants are in the pathogen-
esis and progression of disease, the more effectively treatment
strategies can be administered to patients. In contrast to rare
monogenic diseases, which arise due to a defect in a single gene,
most common disorders, such as heart disease, neurocognitive
problems, and diabetes, result from the combination of many dif-
ferent factors, including genetic predisposition. For example, levels
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of circulating thyroid hormone and thyroid stimulating hormone
(TSH) are strongly dependent on genetic factors [3]; the develop-
ment of hypothyroidism and hyperthyroidism is mediated by
genetic variants, including those in the genes encoding phosphodi-
esterase 8B, iodothyronine deiodinase 1, F-actin-capping protein
subunit beta, and the TSH receptor [3]. Genetic variation also
underlies differential response to pharmacological treatments for
hypothyroidism. Approximately, 10–15% of patients who take
levothyroxine (synthetic T4 hormone) do not benefit from this
drug because they cannot effectively convert T4 to T3 due to
genetic, nutritional, or hormonal factors [4]. Knowledge of genes
and genetic variants that contribute to disease pathogenesis is
expected to facilitate the development of more specific strategies
to administer the most effective course of treatment with minimal
side effects.

Gene–environment interactions (GxE) address how different
genotypes respond to the same environmental stimuli in dissimilar
ways. In the practice of precision medicine, GxE interactions may
provide insights into the manner in which the effect of genetic
variation might be attenuated through lifestyle interventions to
prevent, treat, or manage the disease. In the case of thyroid dis-
orders, for example, 33% of thyroid hormone and TSH levels are
attributable to GxE [3]. Thus, although a patient may have a
genetic predisposition to altered thyroid function, implementation
of specific lifestyle changes may mitigate its effects. For example,
poor nutrition and sedentary behavior are known to play a role in
the progression of some thyroid diseases, while plant-based diets
are associated with lower risk of developing hypothyroidism [5].

Despite the importance of GxE interactions in the develop-
ment of disease, quantifying the manner in which environmental
exposures modulates genetic risk remains a difficult task. To address
the impact of environmental covariates in an in vitro system, a
recent study focused on changes in the cellular environment in
response to naturally occurring environmental exposures
[6]. Using allele-specific expression to characterize genetic effects
on the transcriptional response to 50 treatments in five cell types,
nearly 1500 genes with allele-specific expression were identified and
215 genes were found to participate in GxE interactions. Genes
responding to environmental changes were more likely to be iden-
tified in genome-wide association studies (GWAS) and 49% of these
genes were associated with complex traits. [6]. Examination of per
variant heritability for 18 complex traits using a mixed model
approach revealed that regulation of HDL-cholesterol, total cho-
lesterol, and mean corpuscular hemoglobin levels was largely con-
trolled by GxE interactions.

In this study, genes showing allele-specific expression induced
by environmental perturbations were also assessed and 75 variants
spanning 60 genes were identified, 28 of which were associated
with a phenotype in the GWAS catalog [6]. Results of this analysis
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suggested that caffeine upregulates expression of gastric inhibitory
polypeptide receptor (GIPR), which has been previously linked
with obesity and related traits. Higher gene expression and allele-
specific expression in response to caffeine was identified for the
major allele of a GIPR variant, rs5380, and this allele is located
on a haplotype associated with normal body mass index [7], sug-
gesting that caffeine may protect against the development of obe-
sity through its effect on gene expression and allele-specific
expression in GIPR. Similarly, in an analysis of condition-specific
changes in allele-specific expression, four genes were associated
with complex traits, including SAMM50 sorting and assembly
machinery component (SAMM50), which responded to copper,
endoplasmic reticulum aminopeptidase 1 (ERAP1), which
responded to selenium, golgi SNAP receptor complex member
2 (GOSR2), which responded to mono-n-butyl-pthalate, and lyso-
somal associated membrane protein 3 (LAMP3), which also
responded to selenium. A variant in LAMP3, rs16833703, prefer-
entially expressed the alternative allele, which is located on a pro-
tective haplotype for Parkinson’s disease [8]. In combination with
earlier studies showing reduced selenium levels in individuals with
Parkinson’s disease, these results suggest selenium may be a benefi-
cial therapeutic adjunct through its effects on allelic expression of
LAMP3.

Epigenetic components, such as DNA methylation, histone
modification, and regulatory noncoding RNAs (ncRNAs), can
also be altered by environmental factors. For example, the activity
of CYP1A2, which plays a key role in both drug metabolism and
synthesis of cholesterol and lipids, is regulated by smoking and diet
through mechanisms involving promoter hypermethylation
[9]. Likewise, diet and exercise have been shown to alter micro-
RNA (miRNA) profiles, which may lead to changes in the develop-
ment and progression of diseases such as diabetes, cardiovascular
disease, and obesity through regulation of adipogenesis and lipid
metabolism [10, 11].

3 Methods for Correcting Gene Deficiencies and Dysfunction

Gene therapy treats dysfunctional genes that underlie human dis-
ease using targeted delivery of nucleic acids. The approach is
applied when levels of protein products of affected genes are pro-
duced in inadequate amounts, by restoring levels of a deficient gene
product or inhibiting an overexpressed or defective transcript. In
essence, gene therapy can be defined as a set of approaches that
utilizes endogenous transcription or translation through the trans-
fer of exogenous genetic material. Gene therapy can be applied to
somatic or germ cells, however in the USA, the use of gene therapy
is limited to somatic cells to avoid passing side effects to future
generations.
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3.1 Gene Therapy

Approaches

Gene therapies can include gene augmentation, gene inhibition,
genome editing, and destruction of specific cells. Gene augmenta-
tion adds functional copies of a deficient gene, either transiently
through the addition of DNA plasmid or mRNA transcript, or
sustainably, through insertion of a transgene into the patient’s
genome. Lentiviruses and oncoretroviruses are convenient vectors
for transgene insertion because they provide efficient cell entry and
integration. Alternatively, transposons can be used for transgene
insertion. Transposons are excellent choices for large-scale produc-
tion and biosafety, but do not show the same efficiency in cell entry
as virus-mediated approaches. Additionally, programmable endo-
nucleases, discussed below, can direct the transposon to insert the
transgene into specific regions in the genome [12, 13].

For inhibition of overexpressed or defective disease-causing
genes, the mutated sequence is replaced with the wild type version
through editing by CRISPR/Cas9 [14] or downregulated by the
fine-tuning of antisense oligonucleotides (ASOs) [15], locked
nucleic acids (LNAs) [16] or short hairpin RNAs (shRNAs), small
interfering RNAs (siRNAs), miRNAs, and antagomirs [17, 18].

For diseases like cancer, the most effective therapeutic approach
is to target and eliminate entire populations of cells. Such mass
elimination can be achieved using cell-specific insertion of a gene
that produces a cytotoxic product [19]. Alternatively, transgenes
expressing a membrane protein that labels the cell to be attacked by
the immune system can be used to eliminate specific cells [20]. For
example, T cells are modified to express chimeric antigen receptors
to elicit a T cell response to the cancer cells expressing a specific
antigen [21].

Traditional gene therapy methods add exogenous genetic
material to the nucleus or genome at a nonspecific location,
which may result in unintended side effects. As mentioned above,
programmable endonucleases, such as zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs),
and clustered regularly interspaced short palindromic repeats/
CRISPR-associated nuclease 9 (CRISPR/Cas9) accurately bind
specific DNA sequences. With the incorporation of nucleases,
transposases, and other enzymes, these endonucleases are able to
elicit many different precise gene-editing effects. CRISPR/Cas9 is
derived frommicrobial adaptive immune defense system and can be
applied in mammalian cells as a genome-editing tool [22]. The
CRISPR/Cas9 system requires a nuclease Cas9, a single guide
RNA (sgRNA) derived from CRISPR RNA (crRNA), and transact-
ing CRISPR RNA. If there is a protospacer-adjacent motif (PAM)
on the DNA, the Cas9 is guided to the complementary sequence of
the sgRNA by base pairing. The Cas9 generates double-strand
breaks (DSBs) at the desired sites. If homologous sequences are
available, breaks are repaired by homologous directed repair
(HDR) leading to precise gene replacement or correction; if not,
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they are repaired by nonhomologous end-joining (NHEJ), poten-
tially inducing small insertion or deletion (indel) mutations.
Although CRISPR is limited by the presence of a PAM
sequence—a two to six base pair sequence on the nontarget strand
necessary for sgRNA recognition—this is an easier approach to use
compared to other programmable endonucleases as it is smaller
than ZFN and TALEN guiding proteins and needs only a single
complementary sgRNA [23].

Because genome editing induces permanent changes to the
genome, the target specificity of this technology needs to be fully
addressed prior to use in clinical trials. Off-target Cas9 activity can
disrupt expression of important genes and even lead to the devel-
opment of cancer. In China, CRISPR/Cas9 was tested for editing
of the hemoglobin subunit beta (HBB) gene as a potential treat-
ment for beta-thalassemia using human tripronuclear zygotes
[24]. While CRISPR/Cas9 was found to effectively cleave HBB—
28 of the 54 embryos showed cleavage—the efficiency of the
homologous recombination directed repair was low, the edited
embryos were mosaics, and some zygotes showed off-target cleav-
age. The endogenous hemoglobin subunit delta (HBD) gene,
which is homologous with HBB, competed with HBB as a repair
template leading to point mutations in seven zygotes. Despite an
eight base pair mismatch, CRISPR/Cas9 was also found to target
the unrelated complement C1q C chain (C1QC) locus. These
results reveal that issues related to fidelity and specificity must be
addressed before CRISPR/Cas9 gene editing can be safely used in
clinical applications.

3.2 Delivery

of Nucleic Acids

in Gene Therapy

One of the main obstacles to widespread clinical implementation of
gene therapy is delivery of transgenes. Nucleic acids are large and
negatively charged so a vector or “vehicle” for transporting them
into the cell is necessary. Once in the cell, the genetic information
enters the nucleus either as an extrachromosomal episome or
through genome integration, and must be activated to have an
effect. The delivery vehicle is either applied in vivo or ex vivo to
modify cells, depending upon the disease. Ex vivo gene therapy is
limited to dividing cells, is less immunogenic, and transgene expres-
sion can be measured before implanting the cells back to the
patient. In vivo therapy is faster and easier, but there is a greater
chance of immune response and transfection of off-target cells. A
summary of current nucleic acid delivery methods is shown in
Table 1.

For in vivo gene therapy, viruses are the most commonly used
vectors. Viruses have evolved to enter mammalian cells and deliver
genetic material to the nucleus, and therefore have high transfec-
tion efficiency. However, viruses have limited DNA packaging
capacity [25] and can cause mutagenesis, carcinogenesis [26],
undesirable immune response [27], and nonspecific insertion.
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Non-viral, or synthetic, vectors are less likely to cause immune
response or mutagenesis, have the potential to deliver more genetic
material, and are safer to synthesize [28]. However, nonviral deliv-
ery vectors are typically plasmids, which are less efficient and more
quickly degraded.

The most common nonviral vectors are liposomal vectors,
which are spherical vesicles of cationic phospholipids that bind
and transport nucleic acids into the cell [29]. The lipid bilayer of
the liposome facilitates transport through the cell membrane. As a
result of this process, the liposome enters the cell as an endosome;

Table 1
Methods for gene delivery

Delivery
method Advantages Disadvantages Selected clinical trials Ref

Viral vectors High transfection efficiency Limited DNA
packaging
capacity;
Insertional
mutation;

Immune
response;
Non-specific
insertion

Phase I/II; Completed
December 2015; Pompe
Disease treated with
adeno-associated viral
vector containing acid
alpha-glucosidase (GAA).
NCT009763532.

[25–27,
57]

Liposomal
vectors

Low risk of mutagenesis;
Delivery of RNA and DNA

Quickly
degraded;
Challenging
entry to
nucleus

Phase I; Completed April
2011; Non-Small-Cell
Lung Cancer treated with
DOTAP:Chol-fus1
liposome complex for
delivery of fus1.
NCT00059605.

[30]

Nanobombs Low risk of mutagenesis;
Delivery of RNA and DNA

Tissues must be
accessible to
be subjected
to NIR

N/A [31]

Ex vivo
transplant

Low immune response; Low
risk of blood proteins
dismantling vector;
Transgene expression is
easily measured; Low risk of
off-target cells affected

Limited to
dividing cells;
Labor
intensive

Phase I; Completed July
2011; XSCID treated with
onco-retroviral vector
treated stem cells with
gene for delivery of CD34
+ gene. NCT00028236.

Phase I; Completed
November 2014;
Osteoarthritis treated
with ex vivo cultured adult
allogenic mesenchymal
stem cells.
NCT01586312.

[32]
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however, once inside, the endosome must be dismantled to release
nucleic acids to the cytosol. Typically, the lipids of the liposome
trigger endosome destruction in response to changes in pH
[30]. Nanobombs, which are nanoparticles containing indocyanine
green and ammonium bicarbonate, have been developed to specifi-
cally deliver miRNA to cells [31]. Nanobombs can be used to
destroy tumors in vivo with minimal side effects.

Ex vivo cell transplants can be used for diseases that primarily
affect a specific cell type. In this approach, affected cells are
removed from the patient, cultured, and then modified in vitro
with a viral or nonviral vector. Successfully modified cells are then
delivered back to the patient. This approach eliminates the need for
gene delivery vectors, which may lead to improvements in safety,
cell specificity, and efficacy [32].

Stem cells are pluripotent and self-renewing, and are therefore
the best cells for ex vivo gene therapy. Hematopoietic stem cells
(HSCs) are precursors to T cells, which are involved in immune
response. T cell receptors (TCRs) bind specific antigens on target
cells to mediate their destruction, and have been successfully
manipulated to express receptors allowing recognition of target
surface molecules on tumors [33]. Regulatory T cells are responsi-
ble for turning off the body’s immune response and have also been
modified ex vivo to treat autoimmune diseases [34]. Clinically,
HSCs have been used to treat adrenoleukodystrophy [35] and
adenosine deaminase-deficient severe combined immune
deficiency [36].

Induced pluripotent stem cells (iPSCs) are a type of stem cell
that can be derived from somatic cells by introducing a cocktail of
transcription factors [37], small molecule compounds [38], or
alternate vectors [39–41] to somatic cells [42]. Because iPSCs are
derived from somatic tissue, individuals can contribute to the
development of their own pluripotent cell lines. Ocular cells,
including corneal epithelial-like cells, retinal pigment epithelium
photoreceptors, and retinal ganglion cells have all been derived
from iPSCs, and there are at least seven clinical trials of iPSC or
embryonic stem cell studies in ocular diseases currently ongoing
[43]. The first clinical study where iPSCs were used was for the
treatment of macular degeneration via retinal pigment epithelial
iPSC derived cells. In that study, skin cells were taken from a patient
with retinal damage from age-related macular degeneration, repro-
grammed into iPSCs, differentiated into retinal tissue, and then
transplanted them into the eye [44]. While the procedure did not
improve the patient’s vision, it did prove to be safe and it halted
further progression of the disease [45].

Patient-derived iPSCs can also be used in gene therapy
approaches. For example, application of exon knock-in in iPSCs
derived from Duchenne muscular dystrophy patients, followed by
differentiation of corrected iPSCs to skeletal muscle cells,

46 Taylor M. Benson et al.



successfully produced full-length dystrophin, the dysregulated gene
that causes the disease [46]. Similarly, correction of beta-
thalassemia mutations in patient-derived iPSCs promoted hemato-
poietic differentiation in mice [47].

4 Pharmacogenomics

The field of pharmacogenomics embodies the study of the role of
the human genome in determining response to pharmacological
therapy. Individual response to drugs can be mitigated by genetic
makeup, particularly by genetic variation in drug-metabolizing
enzymes and transporter proteins [48]. Genetic variants can predict
pharmacological response in terms of drug absorption, distribu-
tion, metabolism, or elimination. With the advent of broad-range
sequencing technologies, the field of pharmacogenomics has rap-
idly progressed. Patients are typically grouped by phenotype for a
certain drug reaction or drug efficacy, DNA is analyzed, and candi-
date SNPs are predicted.

A wide array of pharmaceuticals such as antidepressants, cho-
lesterol and lipid-lowering molecules, and cancer treatments have
been investigated in pharmacogenomics studies. For example, the
metabolism of warfarin, a commonly used blood thinner, is
mediated by variants in the CYP2C9 and VKORC1 genes, and
patients with these variants require a lower dosage of the drug or
treatment with an alternative anticoagulant [49]. Likewise, variants
in the CYP2D6 gene increase codeine sensitivity, and affected
individuals should be instead treated with morphine or nonopioid
analgesics [49]. Although genetic variants underlie differential
drug response, factors such as age, sex, and environmental expo-
sures may also contribute to all phases of drug metabolism and
should be taken into consideration when assessing pharmacological
outcomes of disease management [50].

5 Challenges and Limitations of Precision Medicine as a Sustainable Paradigm
for Healthcare

Precision medicine has been important for determining the efficacy
of disease treatments. For example, the erb-b2 receptor tyrosine
kinase 2 (HER2) is overexpressed in approximately 20% of breast
cancers. For HER2-positive breast cancer, treatment with the
HER2-targeted antibody, trastuzumab (i.e., Herceptin) is effective.
However, for patients without elevated HER2 levels, this therapy
yields little benefit [51]. In cystic fibrosis, traditional therapies have
focused on the secondary consequences of the disease without
taking genetic etiology into consideration. Cystic fibrosis is caused
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by mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR) gene, each of which exerts different effects on
the protein product. For example, in some cases, CFTR has
impaired activity but retains normal targeting to the cell surface,
while in others, the protein is not properly incorporated in the cell
membrane. Thus, there is substantial heterogeneity in the etiology
of the disease. Ivacaftor is a key pharmacological agent used to treat
cystic fibrosis, but because it acts by increasing the opening time of
the CFTR channel, the drug is only effective in those patients in
whom the protein has reached the cell surface. For patients who
have no CFTR incorporation at the cell surface, ivacaftor can be
combined with another drug, lumacaftor, to improve delivery of
the channel to the cell surface [49]. Increasing clinical awareness of
genetic variability in drug response is leading to better quality of life
for cystic fibrosis patients.

Progression in the field of precision medicine depends largely
on the generation and analysis of “big data,” which refers to
extremely large data sets that can be computationally analyzed to
identify patterns and associations. The healthcare industry is under-
going a paradigm shift from the reactive model of treating symp-
toms to a more predictive model based on such data [52]. A major
challenge of precision medicine is incorporating all layers of disease.
Currently, single prognostic gene biomarkers such as HER2 and
CFTR are used to diagnose and efficiently treat breast cancer and
cystic fibrosis, as mentioned above. However, interactions between
biomarkers and environmental exposures, which may be more of
the norm rather than the exception, are more difficult to evaluate
[53]. While the field of precision medicine aims to integrate data
from “omics” platforms (e.g., genomic, transcriptomic, proteomic,
and metabolomic), environmental factors, and patient information,
doing so presents a notable challenge [54]. Similarly, big data
analysis may reveal that unrelated conditions share common dysre-
gulated targets, yet converting different types of data into a simple
output to determine what treatment will bring dysregulated path-
ways to a healthy condition remains a difficult endeavor [55].

6 Conclusions

Ever since the announcement of Precision Medicine Initiative by
the US President Barack Obama in 2015, efforts to identify genetic
and pathophysiological mechanisms of many human diseases using
high throughput technologies has escalated. For precision medi-
cine to deliver results, enhancements in genomics technologies and
analytical strategies are needed, both of which have taken an
upward shift due to the recent scientific, technological, and social
developments. However, treating genetically based diseases via
gene therapy requires years of investigation and the advancement
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of delivery methods before it can be applied to clinical practice. For
instance, issues related to transgene delivery must be addressed
before treatments such as gene editing and ex vivo transplant
therapy can be realized. On the other hand, decreasing costs asso-
ciated with NGS technologies have quickly resulted in the output of
a tremendous amount of “big data,” which has consequently led to
the development of many new data analysis methodologies and
computing capacities [56]. Cutting edge molecular biology meth-
ods continue to emerge, allowing more rapid and sophisticated
means to for functional validation of genetic variants, as well as
dysregulated coding and noncoding RNA transcripts. Combined,
these approaches are expected to eventually provide a foundation
for enhanced precision in the diagnosis and clinical management of
human disease.
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Chapter 4

What Can We Learn About Human Disease from the
Nematode C. elegans?

Javier Apfeld and Scott Alper

Abstract

Numerous approaches have been taken in the hunt for human disease genes. The identification of such
genes not only provides a great deal of information about the mechanism of disease development, but also
provides potential avenues for better diagnosis and treatment. In this chapter, we review the use of the
nonmammalian model organism C. elegans for the identification of human disease genes. Studies utilizing
this relatively simple organism offer a good balance between the ability to recapitulate many aspects of
human disease, while still offering an abundance of powerful cell biological, genetic, and genomic tools for
disease gene discovery. C. elegans and other nonmammalian models have produced, and will continue to
produce, key insights into human disease pathogenesis.

Key words Caenorhabditis elegans, Genetic screens, Genomic screens, RNAi, GFP

1 Introduction

The choice of model organism for study is a balance in trade-offs.
While humans clearly are best in terms of mimicking human dis-
ease, there are practical and ethical limits to investigating disease in
people. Other mammals, most notably mice, have proved very
useful for modeling and studying human disease, but mice are
limited in both how well they recapitulate some diseases and the
ability to study them in rapid fashion. With the advent of tools like
RNA interference (RNAi) and CRISPR/Cas9 genome editing, as
well as more classical biochemical techniques, cell line studies have
been very fruitful in identifying signaling pathways, for example,
but are limited in that overall organismal physiology is generally not
present in cell culture.

Non-mammalian model organisms such as the fruit flyDrosoph-
ila melanogaster, the zebrafish Danio rerio, and the nematode
Caenorhabditis elegans serve as a happy medium [1–5], allowing
for ease of study while still having the physiology present in a whole
animal and the ability to recapitulate at least some aspects of human
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disease. These and other model organisms have played key roles in
human disease gene discovery. In the current review, we focus on
the use of C. elegans as a nonmammalian model for human disease
gene discovery. We first provide a brief introduction to C. elegans
biology and the history ofC. elegans research. Then we describe the
key genetic and genomic techniques that have madeC. elegans such
a powerful research model. Using this background information, we
illustrate two approaches that have been taken to identify human
disease genes in C. elegans. In the first set of examples, we discuss
howC. elegans disease models have been used for de novo discovery
of human disease genes and pathways. In the second set of exam-
ples, we show how human disease genes have been engineered into
C. elegans to develop models of human disease; these disease mod-
els have in turn been used to facilitate discovery of other genes that
modulate that same human disease.

2 C. elegans Overview

“You have evolved from worm to man, but much within you is still worm.”
-Friedrich Nietzsche, Thus Spoke Zarathustra

2.1 What Is

C. elegans Anyway?

Caenorhabditis elegans is a free living transparent nematode worm
[6, 7] (Fig. 1).C. elegans starts out as an egg; when these eggs hatch,
the nematodes pass through four larval stages before reaching adult-
hood. The C. elegans life cycle is relatively short, taking about 3 days
for the animals to develop, and with an overall life span of about
2–3 weeks. Adults contain only 959 somatic nuclei and grow to be
about a millimeter in length. Despite this small size, C. elegans has
many of the organ systems present in more complex organisms,

Fig. 1 Depicted is a C. elegans hermaphrodite carrying a lys-7::gfp transgene. In this animal, GFP expression is
controlled by the gut-specific lysozyme-7 promoter. The image is an overlay of fluorescence and Nomarski
images (images merged using Adobe Photoshop). Image adapted from Fig. 1 in [79]. Copyright © American
Society for Microbiology, Molecular and Cellular Biology, 27, 2007, 5544–5553, doi:https://doi.org/10.1128/
MCB.02070-06
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including a digestive system, nervous system,musculature, and repro-
ductive system. These small nematodes also exhibit complex beha-
viors. C. elegans will move toward things they like and away from
things they do not like. The nematodes also eat, excrete, and mate.

C. elegans exists as either of two sexes, a hermaphrodite or a
male. The existence of self-fertile hermaphrodites has great advan-
tages for the study of development, because mutant stocks that
would be unable to mate (such as paralyzed animals) are still able to
self-fertilize. Moreover, healthy hermaphrodites produce hundreds
of progeny, allowing the generation of large stocks quickly. When
males are present, hermaphrodites can cross-fertilize. Thus, the
presence of both sexes coupled with the relatively short life cycle
allows for rapid genetic crosses.

C. elegans is only three cells in radius, with an outer epidermal
layer, a middle muscle layer, and a central intestinal layer, with
nervous system, reproductive system, and others tissues in between.
The small size, transparent nature, and invariant cell lineage in
C. elegans led to an unprecedented view of development in this
animal. The full juvenile and adult cell lineages were reported more
than 30 years ago [8, 9], and more recently, the entire wiring
diagram of the nervous system has been determined [10]. In prin-
ciple, if a cell is moved a few microns or a single neuronal connec-
tion is altered by some genetic manipulation, it should be possible
to sort that out in C. elegans.

In the wild, C. elegans eats bacteria present in its environment
[11]. In the laboratory, C. elegans typically is maintained on small
petri dishes seeded with lawns of E. coli [12]. These bacteria are
nonpathogenic and serve as a food source. Because of their small
size, nematode manipulations are performed using a dissecting
microscope. Individual nematodes can be moved from plate to
plate using a small platinum wire “pick,” allowing investigators to
isolate individual hermaphrodites for self-fertilization and the gen-
eration of large populations, or allowing investigators to set up
crosses between the sexes. The small size of C. elegans means
hundreds or thousands of animals can be maintained inexpensively
on an individual dish. When the animals use up all the food, they
will starve, and can be maintained as starved populations for
months. For long-term storage of stocks, nematodes can be frozen
and kept in frozen vials for decades at �80 �C or in liquid nitrogen.

In summary, these little animals have many of the organs and
exhibit many of the behaviors present in mammals. Moreover, they
offer the ability to study diseases in the context of a whole, living,
and intact organism, which is not possible in isolated cells. This has
been particularly fruitful in the many diseases that affect behavior
and the nervous system as described below. Roughly 30–60% of
genes in C. elegans have orthologs or strong homologs in mammals
[13, 14], suggesting that what is discovered about gene function in
these small nematodes may be directly applicable to human devel-
opment and disease.
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2.2 Key Discoveries

in C. elegans

The modern era of C. elegans research began over 50 years ago
when Sydney Brenner first proposed using C. elegans to investigate
developmental biology and neurobiology [15, 16]. Three of the
notable discoveries that earned C. elegans researchers Nobel Prizes
included the award to Sydney Brenner, Robert Horvitz, and John
Sulston in 2002 for their discoveries related to development and
the cell death machinery [17–19]; Andrew Fire and Craig Mello in
2006 for their discovery of RNA interference (RNAi) [20]; and
Osamu Shimomura, Martin Chalfie, and Roger Tsien in 2008, for
the discovery of Green Fluorescence Protein (GFP) [21, 22] and
the demonstration that it could be a useful tool in other organisms
including C. elegans [23]. Other key discoveries include the identi-
fication of microRNAs by Victor Ambros, Gary Ruvkun, and col-
leagues [24, 25]. For a more complete list of key discoveries,
see [15].

3 The C. elegans Toolbox

The small size, rapid life cycle, and amazing genetic and genomic
tools available have made C. elegans a premier model organism for
many purposes. We outline some of these tools here.

3.1 Construction of

Transgenic Nematodes

The C. elegans germ line initially develops as a multinucleate syncy-
tium prior to membranes forming around each germ cell. Thus,
DNA injected into the hermaphrodite gonad can be captured by
numerous germ cells, making microinjection much easier than in
other systems. DNA captured in this way will form extrachromo-
somal arrays that are semi-heritable [26, 27]. Selectable markers
can then be used to maintain stable transgenic lines, and the DNA
can be integrated into the genome if desired [28, 29]. In addition
to direct microinjection, microparticle bombardment coupled with
selection methods has been developed to generate stable nematode
transgenic lines [30, 31]. More recently, sophisticated CRISPR/
Cas9-based genome engineering strategies have enabled rapid and
precise gene editing, thus facilitating the generation of animals
bearing targeted point mutations, deletions, insertions and com-
plex chromosomal rearrangements [32, 33].

The ease of C. elegans transgenic construction has served many
purposes. Transgenic arrays can be used to restore gene function to
“rescue” mutant phenotypes, greatly facilitating the cloning of
mutated genes. Another common use for transgenic animals is
the construction of GFP reporter strains. Promoter–GFP fusions
can be used to determine where in the organism a particular gene is
expressed. Protein–GFP fusions can be used for subcellular locali-
zation studies, and to quantify protein expression levels in live
animals.
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3.2 Genetic Tools

and Forward Genetics

in C. elegans

C. elegans is a diploid organism whose genome contains six chro-
mosomes: five autosomes and one sex chromosome. XX animals are
hermaphrodites; XO animals are males. The rapid lifecycle allows
for quick genetic screens and crosses. Classical forward genetic
screens used mutagens such as ethyl methanesulfonate (EMS) to
randomly generate mutations in the nematode germ line
[34–36]. F1 hermaphrodite progeny that are heterozygous for
these mutations can then be allowed to self-fertilize to isolate F2
homozygous mutants of interest. If the homozygous mutant ani-
mals are self-fertile, they can be maintained as a homozygous stock.
If the homozygous mutant animals are lethal or sterile, the screen
can be engineered to recover heterozygous siblings to maintain the
mutant stocks [37].

The ability to visualize C. elegans on a dissecting microscope or
in more detail using a compound microscope equipped with differ-
ential interference contrast (DIC) optics allows for easy identifica-
tion of mutant animals. Many classical mutants with visible
phenotypes such as Unc (uncoordinated movement) or Dpy
(dumpy shaped animals) were isolated by mutagenesis and visual
screening for morphological or behavioral phenotypes [38]. More
recently, screens have been performed for worms with altered levels
or location of GFP expression, altered movement, or altered
learning, and almost anything else C. elegans researchers can imag-
ine. There are numerous mapping strategies to determine the iden-
tity of the mutant genes ranging from crosses with strains carrying
known genetic markers, SNP mapping strains, strains carrying
deletion chromosomes, or balancer chromosomes [7, 39]. Once
the mutation is mapped to a region where a candidate gene is
found, the wild type copy of the locus can be injected into animals
in an attempt to rescue the mutant phenotype. Alternatively or
additionally, RNAi can be delivered to the animals in an attempt
to phenocopy the mutant phenotype. The candidate locus also can
be sequenced to identify mutations, although more and more
frequently whole genome sequencing is being used to identify the
causative mutation [40, 41]. To simplify mapping and mutation
identification, transposon-mediated mutagenesis is also an option
in C. elegans [35, 42].

In addition to classical forward genetic screens, many research-
ers have used modifier screens with great success [34–36]. In this
case, researchers start with a strain carrying a mutation that induces
a phenotype and then mutagenize the animals to isolate mutant
animals harboring suppressor or enhancer mutations. For example,
one could start with a mildly uncoordinated animal, mutagenize,
and screen visually using the dissecting microscope for suppressors
that restore normal movement. These modifier mutations can then
be genetically separated from the original mutation to determine if
the modifier mutation has a phenotype on its own.
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The ability to perform rapid genetic crosses also makes
C. elegans an excellent system to perform genetic epistasis studies
to place novel mutations in known genetic pathways [36].

3.3 Genomic Tools

and Reverse Genetics

in C. elegans

The discovery of RNAi opened up a whole new world for research-
ers in all fields including investigators studying C. elegans. Because
there is no interferon response in C. elegans, long dsRNAs are not
toxic to the nematode. Thus, long dsRNAs rather than siRNAs can
be delivered to C. elegans with a concomitant increase in efficiency
and specificity of knockdown. C. elegans RNAi screens generally do
not suffer from the off-target effects that have plagued mammalian
screens. The method of dsRNA delivery inC. elegans is also unique.
Andy Fire and colleagues demonstrated that E. coli engineered to
express dsRNA can be fed to C. elegans, resulting in knockdown of
the target gene [43]. Taking advantage of this technique of RNAi
feeding, the Ahringer and Vidal labs have generated two genomic
RNAi bacterial feeding libraries that cover most of the C. elegans
genome [44, 45]; each bacterial strain enables the specific RNAi
knockdown of a single gene, allowing for rapid and simple genome-
wide screening. In these genomic RNAi screens, one simply feeds
the bacteria to the nematodes, one bacterial strain at a time, and
monitors for the occurrence of the phenotype of interest. Addition-
ally, mutations that enhance RNAi-mediated knockdown have been
identified and used to increase the sensitivity of these RNAi screens
[46, 47].

While RNAi is an invaluable tool, ultimately it is important to
be able to monitor the effect of mutation of genes of interest.
Unlike RNAi gene knockdowns, mutations allow for less heteroge-
neous effects. Mutations also can cause unique effects in gene
function, such as gain of function or dominant-negative effects.
Several labs that make up the C. elegans knockout consortia have
been isolating thousands of knockout mutations available to the
community of C. elegans researchers [48, 49]. Likewise, the Cae-
norhabditis Genetics Center (CGC) is a stock center that provides
ready access to these mutations and the myriad of other mutations
that have been isolated and shared by the C. elegans research
community. More recent targeted transposon insertion [50], and
CRISPR/Cas9 genome editing [32, 33] approaches have further
enhanced the ability to perform reverse genetics in the nematode by
enabling the introduction of almost any change in any gene in the
genome.

4 Identifying Novel Human Disease Genes in C. elegans

In the next two sections, we outline several representative examples
of human disease gene identification in C. elegans. We apologize to
researchers whose work could not be included due to space
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limitations. Rather than aiming to be comprehensive, our goal is to
be illustrative. These specific examples have been chosen to illus-
trate (1) the advantages of the techniques available in C. elegans to
facilitate disease gene discovery and (2) some of the follow-up
studies in mammals that have been performed. For de novo disease
gene discovery, we outline various genetic and genomic screens for
regulators of innate immunity, obesity, and aging (Subheadings
4.1–4.3). For human disease model studies in C. elegans, we
outline the investigation of various neurodegenerative diseases
(Subheading 5).

4.1 Innate Immunity Infectious and inflammatory diseases are among the leading causes
of death throughout the world. Infectious diseases account for five
of the top ten causes of death in the developing world [51]. In
developed countries, the top three leading causes of death are heart
disease, cancer, and COPD [52]. A key factor common to these
three diseases is chronic inflammation [53–56]. This illustrates the
importance of proper regulation of innate immunity and inflamma-
tion. While a robust innate immune response is essential in our
pathogen-rich world, this response must be tightly regulated to
prevent inflammatory disease. The identification of genes that reg-
ulate innate immunity has led to the identification of numerous
genes that affect infectious or inflammatory disease [53, 54,
57–62].

C. elegans has emerged as a key model system for the discovery
of innate immune genes [63–65]. For decades, C. elegans research-
ers cultured C. elegans on petri dishes containing lawns of non-
pathogenic E. coli. However, Ausubel and colleagues discovered
that by simply replacing this E. coli lawn with any of a number of
human pathogens, the bacteria would infect and kill C. elegans
[66–68]. Since then, pathogenesis models have been developed
for Gram negative and positive bacteria, fungi, and viruses
[69–72]. C. elegans lacks migratory immune cells and does not
have an adaptive immune response. The nematode innate immune
response is composed of the production of antimicrobial peptides
and compounds that fight infection [73]. Importantly, the induc-
tion of antimicrobial production in the presence of pathogens is
mediated by conserved signaling pathways including MAP kinase
cascades [74]. However, there also are differences, most notably
the absence of an NFκB homolog in C. elegans. Many investigators
have now used C. elegans to study host-pathogen interactions.

Irazoqui and colleagues took a variety of approaches to identify
a novel innate immunity regulatory pathway conserved inC. elegans
and mammals. They first monitored changes in C. elegans gene
expression induced by infection with the Gram positive bacterial
pathogen S. aureus [75]. They then used computational analysis of
these data to determine that the C. elegans HLH-30 transcription
factor (mammalian ortholog TFEB) target DNA sequence was
overrepresented in the promoters of the genes whose expression
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was induced by S. aureus. To test if HLH-30 was involved in this
response, they generated HLH-30-GFP transgenic nematodes and
found that while HLH-30-GFP was present in both the nucleus
and cytoplasm in uninfected worms, all the HLH-30-GFP was
present in the nucleus following infection [76]. They then used
RNAseq to monitor S. aureus-induced gene expression changes in
wild type and hlh-30 mutant animals and discovered that much of
the S. aureus-induced gene expression was dependent on the func-
tion of HLH-30; moreover, both HLH-30 and its target genes
were required for full resistance to S. aureus [76]. This approach
illustrates several advantages of the nematode system, including the
ease of generating transgenic animals, localization of GFP fusions in
the transparent nematode, the availability of a deletion mutant in
hlh-30, and the availability of bacteria to deliver hlh-30 dsRNA.
Moreover, the identification of HLH-30/TFEB as a key innate
immunity regulator was validated in mammalian cells. S. aureus
infection in mammalian cell culture leads to redistribution of
TFEB into the nucleus, and inhibition of TFEB weakens the
S. aureus-induced pro-inflammatory response [75]. Using knock-
out mice, other investigators have independently shown that TFEB
affects innate immunity in mammals [77], providing further evi-
dence of the validity of the C. elegans studies.

In a follow-up to these studies, Irazoqui and colleagues used a
targeted RNAi screen in which they inhibited most of the kinases
and phosphatases in the nematode genome. This targeted RNAi
screening approach led to the identification a PLC-PKD-TFEB
pathway regulating the nematode innate immune response
[78]. They took advantage of the ease of nematode genetics to
order the various genes into a pathway, and then went on to show
that this signaling pathway functioned similarly in mouse macro-
phages [78]. This highlights the importance of the C. elegans
approach. Similar RNAi screens in mammals would have been
significantly more cumbersome and expensive, and it would have
been much more complicated to perform the genetic epistasis
studies to determine how these genes functioned in an ordered
pathway. However, once these details were worked out in
C. elegans, the confirmatory cell culture RNAi studies were much
more straightforward.

We have used a slightly different strategy with similar results:
using C. elegans as a rapid screening tool with follow-up studies in
mammalian cells and mice. We used comparative genomics RNAi
screens in C. elegans and mouse macrophages to identify innate
immunity regulators, subsequently used C. elegans infection mod-
els to obtain in vivo validation of these RNAi data, and then used
knockout mice to determine the effect of these genes in mammalian
disease. We used the ease of generating nematode transgenics to
generate 14 different antimicrobial-GFP reporter strains [79]. GFP
expression in these lines could be monitored using fluorescence
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microscopy or by using the COPAS Biosort, a flow cytometer for
C. elegans [80]. A key feature of the COPAS Biosort is that it can
analyze nematodes in 96-well format, allowing for high-
throughput screens. We used bacterial feeding RNAi to inhibit
known innate immunity regulators in C. elegans, and found several
antimicrobial-GFP reporters whose expression was regulated by
these known pathways. This formed the basis for a genomic RNAi
screen in which we screened for changes in antimicrobial-GFP
levels in the presence of E. coli. To determine if the genes identified
could regulate innate immunity in mammals, siRNAs targeting the
mouse orthologs of these genes were delivered into mouse macro-
phage cell lines and the cytokine response induced by lipopolysac-
charide (LPS) was monitored. Remarkably, 30–40% of the genes
identified in C. elegans had an RNAi-induced defect in the innate
immune response in mouse macrophages [81–83]. The ready avail-
ability of existing C. elegans knockouts allowed us to rapidly obtain
in vivo confirmation that these genes affected host defense. We
found that nine of ten C. elegans knockouts tested had altered
survival in the presence of the nematode and human pathogen
P. aeruginosa [81–83]. Armed with the RNAi data in C. elegans
and mouse macrophages, and C. elegans knockout data, we then
tested four different mouse knockout lines and found that three of
the four knockout mice exhibited an altered innate immune
response when challenged with LPS ([83, 84] and unpublished).
Thus, our comparative genomics approach is an efficient method
for finding novel innate immunity regulators.

There are several things worth noting about this approach.
First, one of the complications of RNAi screens in mammalian
cells is the high degree of false-positives due to off-target effects
[85]. This is likely not a problem in C. elegans because of the use of
long dsRNAs. Moreover, the screens inC. elegans andmacrophages
involved different methods of dsRNA delivery, different innate
immune stimuli, and different immunological readouts. It seems
highly unlikely that such different systems would coincidentally
report similar results. Plus, the ability to obtain so many nematode
mutants relatively rapidly and cheaply for in vivo validation would
just not be plausible in mice. By the time these genes had passed all
these tests, the efficiency of validating them in vivo in mice was very
high. Mammalian follow-up studies focused on genes identified in
these screens have led to the investigation of two pathways that
regulate the maintenance but not the activation phase of innate
immunity [84, 86, 87].

4.2 Obesity Obesity has become an epidemic in developed countries; more than
1/3 of adults in the USA are now obese [88]. Obesity is among the
leading causes of preventable death and also affects many comor-
bidities such as type 2 diabetes [89]. The excess fat accumulation in
obesity is caused by both genetic and environmental factors
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[90]. The ability to monitor fat accumulation in C. elegans coupled
with the ease of RNAi screening in the nematode has led to a
number of studies that identified genes that control fat accumula-
tion [91–93]. In one study, McKay et al. [94] demonstrated that
RNAi-mediated inhibition of genes known to affect fat accumula-
tion in mammals, including SREBP and C/EBP homologs, led to
arrested C. elegans development. Moreover, these animals did not
accumulate fat [94], as assayed using Sudan Black or Nile Red
staining. The authors reasoned that inhibition of other genes that
affect fat production would likewise arrest larval development and
would be lethal. The investigators used RNAi to inhibit 80 genes
known to be larval-lethal when inhibited, and discovered that ten
gene inhibitions affected fat accumulation. They then used RNAi to
verify that these genes affectedmammalian cells as well [94]. Ashrafi
et al. [95] used genome-wide RNAi screens followed by Nile Red
staining to identify the full complement of genes that alter fat
accumulation in C. elegans; these investigators identified 305 gene
inactivations that reduced fat accumulation and 112 gene inactiva-
tions that increased fat accumulation. In another approach, a GFP
reporter that localized to fat droplets was used as a screening tool to
identify RNAi treatments that altered fat accumulation [96]. All
these studies, and many others, demonstrate the ease of RNAi
screening in C. elegans coupled with the effective readout tools
available to study different diseases in a transparent organism.

4.3 Aging The study of aging in C. elegans is unusual in that prior to these
investigations, most researchers would not have even considered
aging a disease that could be investigated and manipulated geneti-
cally. Thus, not only have C. elegans studies of aging been fruitful
for finding potential human disease genes, but these studies also
established that aging was a phenomenon that could be studied
genetically in the first place.

As we grow older, we become increasingly frail and eventually
die. Age is a major risk factor for a wide variety of diseases. These
include almost all of the major neurodegenerative diseases, such as
Alzheimer’s disease and Parkinson’s disease, as well as cardiovascu-
lar disease, metabolic disease, and many cancers. Until recently,
aging was not considered a genetically tractable phenomenon and
instead was thought to result from the unregulated accumulation of
all sorts of errors that together lead to the decay in function and
death of the organism. As a result, our understanding of the
mechanisms of aging was very poor. Over the last 25 years, how-
ever, our understanding of aging has been transformed by pioneer-
ing studies inC. elegans. Powerful genetics coupled with a relatively
short life span of 20 days make C. elegans an excellent system to
study aging. Its short life span makes it possible to conduct experi-
ments that just are not practical in mice (mean life span of 2 years)
or humans (mean life span of 80 years). In addition, its simple and
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inexpensive ease of manipulation makes it possible to assay the life
span of hundreds or even thousands of worms. These studies have
shown that aging is a regulated phenomenon that can be studied
with the tools of molecular biology and genetics, and that many of
the genes that regulate aging in nematodes also regulate aging in
other organisms, including Drosophila, mice, and possibly humans.

The first forward-genetic screen for long-lived C. elegans
mutants was conducted in the 1980s by Michael Klass [97]. This
elegant genetic screen surmounted several technical challenges spe-
cific to C. elegans aging studies. Nematodes produce hundreds of
progeny, and thus, parents will rapidly be lost among their progeny
as they grow on small petri dishes. To measure the life span of a
population of worms, one has to separate each worm from its
progeny, typically by daily transfer to new petri plates until repro-
duction ends. This is a very cumbersome process. Moreover, once a
mutant worm is deemed long-lived, one needs to obtain progeny to
maintain a mutant line that can be studied; however, old worms are
no longer fertile. Klass overcame these two challenges using a
known temperature-sensitive spermatogenesis mutation. After
mutagenesis, F2 animals were each transferred singly to new “mas-
ter” plates where they reproduced at the lower permissive tempera-
ture. Some of the F3 progeny were grown at a high “restrictive”
temperature, where they developed into animals that could not self-
fertilize. Klass determined the life span of thousands of such
cohorts to identify eight long-lived mutants. He reisolated these
mutants from their respective master plates that were maintained at
the permissive temperature, since their siblings had the same muta-
tions. Three of these mutations were subsequently mapped and
shown to be in the same genetic locus, named age-1
[98, 99]. Remarkably, age-1 mutant animals lived more than
twice as long as wild-type control animals. These studies showed
that mutations in a single gene could have a dramatic effect on the
life span of a multicellular organism.

A few years later, Cynthia Kenyon’s laboratory discovered that
mutations in another gene, daf-2, could more than double
C. elegans life span; moreover, the aged daf-2 mutant animals
remained youthful in appearance and mobility, even when all
wild-type control animals had died [100]. The daf-2 mutation
was previously known to also affect the developmental decision to
form dauer larvae [101]. Under unfavorable growth conditions of
high-temperature, low food, and high population density,
C. elegans develops into developmentally arrested, stress-resistant,
nonfeeding dauer larvae; dauers can resume development into
fertile adults once they encounter a more favorable environment
[102]. daf-2 mutant animals were known to inappropriately form
dauer larvae at high temperature, but in an otherwise favorable
growth environment. Kenyon and colleagues showed that at a
low temperature where these mutant animals did not form dauers,
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they instead developed into fertile adults that were long-lived. A
few years earlier, the Riddle lab [101, 103, 104] had performed
several genetic screens and assembled a genetic pathway for the
regulation of dauer formation. Kenyon and colleagues took advan-
tage of this knowledge and asked whether a similar regulatory
pathway existed for life span. They found that daf-16, a gene
required for daf-2 mutant animals to form dauer larvae, is also
necessary for the increased life span of daf-2 mutant adults
[100]. Taken together, these findings demonstrated that aging is
subject to regulation.

Subsequent studies have shown that daf-2, age-1, and daf-16
are all part of a conserved insulin/IGF1 signaling pathway: daf-
2 encodes the worm’s only ortholog of the human insulin and
IGF1 receptor tyrosine kinases; age-1 encodes a phosphoinositide
3-kinase (PI-3 kinase); and daf-16 encodes a FOXO transcription
factor that is negatively regulated by the age-1 effector kinases
AKT-1 and AKT-2 [105, 106]. These genes are part of a well-
conserved signaling pathway, raising the question of whether insu-
lin/IGF1 signaling likewise regulated life span in other organisms.
Subsequent studies in the fruit fly Drosophila melanogaster
[106–110] and mice [111, 112] showed that manipulation of the
insulin/IGF1 signaling pathway can increase life span in fruit flies
and mice. While these follow-up mouse studies were critical to
demonstrate that these pathways were conserved in mammals,
these studies highlight the practicality of forward genetic screens
for life span inC. elegans, which would be a much more challenging
in mice.

These remarkable studies prompted the question of whether
similar mechanisms may regulate aging in humans [113, 114]. Sev-
eral candidate-based and unbiased association studies have since
identified variants in the daf-16 ortholog FOXO3A that are asso-
ciated with exceptional longevity in humans from multiple ethnic
origins [115–124]. In addition, mutations in the IGF1 receptor
gene that cause diminished IGF1 signaling were found to be more
prevalent in a cohort of Ashkenazi Jewish centenarians, compared
to control individuals that do not exhibit exceptional longevity
[125, 126]. Taken together, these findings suggest that differences
in human life span may result, at least in part, from the normal
variation in signaling by the IGF1 receptor and its transcriptional
effector FOXO3A.

Since the discovery of the regulation of life span by insulin/
IGF-1 signaling, the study of aging in C. elegans has exploded,
leading to the discovery of hundreds of genes that affect life span.
These life span-determining genes have been identified by a com-
bination of forward and reverse-genetic approaches. One of the
most fruitful approaches has been to determine the effect of each
gene on life span by systematically knocking down each gene in the
genome using RNAi. To date, three such genome-wide RNAi
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screens have been completed [127–129]. In addition, a genome-
wide RNAi screen was performed to identify genes whose knock-
down shortens life span in daf-2 mutant animals [130], as well as
numerous more targeted screens [131, 132]. It likely will take
many years until all these discoveries are replicated in mammalian
systems, but investigators are already tackling the question of
whether aging may be “druggable,” potentially leading to an exten-
sion of “health span” and life span, and a delay in the onset of many
age-related diseases [133, 134].

5 Modeling Human Diseases in C. elegans

In contrast to the above approaches which involve screening de
novo in C. elegans for genes that alter a phenotype that is involved
in human disease, an alternate approach has been to artificially
engineer the human disease into C. elegans, typically by expressing
the human disease gene in the nematode. Animals engineered to
exhibit the human disease are then used as tools to screen for
suppressors or enhancers of the disease phenotype with the goal
of finding additional gene targets that affect the disease in humans.
While there are many examples of this approach, they are perhaps
best exemplified by the study of neurodegenerative disorders in
C. elegans, as outlined below.

5.1 Poly-Glutamine

Repeat Diseases

Trinucleotide repeat diseases are typically neurodegenerative or
neuromuscular disorders caused by inheritance of a trinucleotide
repeat (often greater than 30 repeats in length) in particular genes
[135–139]. These trinucleotide repeats are formed by the expan-
sion of unstable shorter triplet repeats present in the genome
[135–139]. Some of the most studied triplet repeat disorders are
caused by expansion of CAG repeats. These are the poly-Glutamine
(polyQ) repeat diseases, which include Huntington’s disease, spi-
nocerebellar ataxias, and many others. Key questions about such
disorders include how these unstable repeats expand in the
genome, why there is apparently a threshold length for the repeat
beyond which disease occurs, and how to develop possible
treatments.

Expression of polyQ repeat proteins in C. elegansmuscle [140]
or neurons [141, 142] recapitulates some aspects of human polyQ
disease. In particular, some of these authors and others have found
a similar threshold for the number of repeats that cause disease.
Expression of roughly 35–40 repeats of polyQ-YFP were required
to induce polyQ-protein aggregation and resulting muscle or neu-
ronal dysfunction. The ability to monitor YFP-tagged polyQ-pro-
tein aggregation in this transparent organism allowed for
straightforward modifier screens to monitor polyQ-induced aggre-
gation or dysfunction. For example, Nollen et al. [143] used a
genomic RNAi screen to identify 186 genes whose inhibition led
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to increased or earlier onset aggregation of Q35-YFP (polyQ pro-
tein with 35 Q repeats). These genes fell into five broad functional
categories, including regulation of RNA metabolism, protein syn-
thesis, protein folding, protein degradation, and protein trafficking.
Similarly, candidate based-approaches have been used to identify
modifiers of polyQ aggregation in C. elegans. For example, over-
expression of the C. elegans homolog of the torsin gene suppressed
polyQ aggregation [144]. Likewise, overexpression of ubiquitin
suppressed polyQ-induced toxicity in C. elegans and mammalian
cells while inhibition of ubiquitin expression induced the opposite
effect [145]. The ease of such genetic and genomic studies in
C. elegans coupled with the ability to monitor fluorescently tagged
polyQ proteins in this transparent organism has made such studies
very straightforward and powerful.

5.2 Alzheimer’s

Disease

Alzheimer’s disease is the sixth leading cause of death in the USA,
affecting more than 5 million people in the USA and more than
35 million people worldwide [146, 147]. As is the case for most
age-dependent diseases, the incidence of Alzheimer’s disease is
expected to increase in the future. Despite intensive study, much
about Alzheimer’s disease remains a mystery, and no effective treat-
ments have been developed. Much of the research focus centers on
trying to understand the aggregation of proteins such as Tau or
beta amyloid and the resulting effects on neurological function
[146, 147].

Several investigators have used overexpression of wild type or
mutant Tau as a model for tauopathy in C. elegans [148, 149].
Kraemer and colleagues [150] expressed wild type or mutant Tau in
all nematode neurons; they observed that Tau aggregated in these
animals and that Tau overexpression led to a moderate uncoordi-
nated phenotype. They used this model as the basis for a genome-
wide RNAi screen for enhancers of this uncoordinated phenotype
[151]. The genes and pathways identified in this screen as potential
modifiers of Tau-induced pathology were very similar to those
identified in Drosophila screens, suggesting that they may be con-
served regulators that might play a role in tauopathies and Alzhei-
mer’s disease [152]. In addition to their genomic RNAi screen, the
investigators performed a forward genetic screen to identify muta-
tions that suppress the Tau-induced uncoordinated phenotype. In
this genetic screen, they identified mutations in sut-2, which sup-
pressed the Tau aggregation, uncoordinated, and neurodegenera-
tive phenotypes induced by Tau overexpression in C. elegans
[153]. Moreover, overexpression of sut-2 in nematodes exacer-
bated Tau-induced neurotoxicity, the opposite of the RNAi-
induced phenotype [154]. The role of SUT-2 was not unique to
C. elegans. Follow-up studies in mammalian cells demonstrated
that (1) Tau overexpression increased expression of the mammalian
homolog MSUT2, (2) MSUT2 RNAi in mammalian cells
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diminished aggregation of insoluble Tau, and (3) there is less
MSUT2 present in the brain in autopsy samples from Alzheimer’s
disease patients [154]. Thus, these genomic and genetic modifier
screens in C. elegans successfully identified key genes to investigate
in the human disease.

Studies in C. elegans relevant to Alzheimer’s disease are not
limited to the investigation of Tau. For example, beta-amyloid-
expressing models of disease have also been engineered in
C. elegans [155–160]. Likewise, investigation of the nematode
homologs of Presinilin 1 and 2, mutations in which cause early-
onset familial Alzheimer’s disease [161–163], led to the discovery
that nematode and human Presinilin 1 regulates Notch signaling
[164–166]. As an illustration of the power of genetic screens in
C. elegans, our lab conducted a sensitized forward genetic screen in
C. elegans to identify genes that function with the Presinilins. In
this screen, we identified mutations in two novel genes (aph-1and
pen-2) that enhanced the phenotype induced by mutation of sel-12
(Presenilin) [167]. aph-1 also was identified in a C. elegans genetic
screen for enhancers of Notch signaling [168]. These genes were
later shown to be part of the evolutionarily conserved γ-secretase
protease complex, where they regulate the maturation of Presenilin
[169], the catalytic component of this complex. This complex is
involved in the proteolytic maturation or degradation of many
transmembrane proteins, including the Amyloid Precursor Protein
(APP), which is important in Alzheimer’s disease pathogenesis, and
the Notch receptor.

5.3 Parkinson’s

Disease

Parkinson’s disease is second only to Alzheimer’s disease as the
most common neurodegenerative disease. Like Alzheimer’s dis-
ease, Parkinson’s disease usually, but not exclusively, is an
age-dependent disease, with an incidence of roughly 1% in people
over 65 rising to an incidence of 5% by age 85 [170–172]. The
primary cause of Parkinson’s disease is a loss of dopaminergic
neurons in the substantia nigra region of the brain. This results in
the neurological symptoms that are a hallmark of the disease,
including tremor of the hands, legs, limbs, and jaw, muscle rigidity
of the limbs and trunk, bradykinesia, and postural instability. A key
histological feature of patients with Parkinson’s disease is the accu-
mulation of Lewy Bodies in the brain.

A number of genomic and candidate gene-based RNAi screens
have been performed in C. elegans models of Parkinson’s disease.
These models have focused on overexpression of α-Synuclein, a key
candidate Parkinson’s disease protein. α-Synuclein is the main
component of Lewy Bodies. It is overexpressed and often misex-
pressed in the brain of Parkinson’s disease patients, and mutations
in α-Synuclein have been identified in some patients [173, 174]. -
α-Synuclein is not present inC. elegans. Nematode researchers have
taken advantage of this to overexpress α-Synuclein and screen for
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genes that affect α-Synuclein aggregation or cell function [175]. In
two studies, YFP or GFP-tagged human α-Synuclein was expressed
in nematode muscle using cell-type specific promoters. Aggregated
α-Synuclein was monitored by the appearance of punctate fluores-
cent structures, and either a genomic RNAi screen [176] or an
RNAi screen of 900 priority candidate genes (based on various
bioinformatics approaches) [177] led to the discovery of numerous
genes that affect α-Synuclein aggregation. Many of these genes, in
turn, were found to serve a neuroprotective function.

RNAi screens focusing on neurons in C. elegans are more
challenging because nematode neurons are somewhat resistant to
RNAi. Thus, to study the effects of α-Synuclein expressed in neu-
rons, Kuwahara et al. [178] took advantage of a mutation, eri-1,
that enhances RNAi in C. elegans. They expressed human
α-Synuclein in all nematode neurons in a strain carrying this eri-1
mutation. Under these conditions, there was little gross effect on
the animals. They then performed an enhancer RNAi screen target-
ing 1673 prioritized candidate genes (genes known to affect the
nervous system) to identify RNAi treatments that induced a visible
phenotype such as uncoordinated movement or growth retarda-
tion. Ten candidate genes passed their screening criteria; four of
these genes functioned in the endocytic machinery, implicating
endocytosis in the pathogenesis of α-Synuclein.

6 Conclusion

The choice of models to investigate human disease is often a trade-
off between how well the model mimics the human condition and
how easy it is to manipulate the system. Invertebrate models such as
C. elegans andD.melanogaster have been invaluable for the study of
development, signaling pathways, and many other aspects of biol-
ogy. In this chapter, we have outlined several examples that illus-
trate the ease of such C. elegans studies. Some of the features that
have renderedC. elegans such a powerful research organism include
the ease of genetics (forward genetic screening, transgenic animal
construction, mutation mapping), cell biology (using GFP in a
transparent organism with a fully described and invariant cell line-
age), genomics (RNAi and other techniques), modifier screens
(enhancement and suppression), and the ability to mimic many
human diseases. We also have highlighted how more and more
frequently, follow-up studies in mammals have validated these
nematode findings. The tools and ease of use of C. elegans and
other “simple” model organisms continues to make them invalu-
able for research, and these organisms will continue to play an
important role in our understanding of human disease and human
disease gene discovery in the future.
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Chapter 5

Microbiome Sequencing Methods for Studying Human
Diseases

Rebecca M. Davidson and L. Elaine Epperson

Abstract

Over the last decade, biologists have come to appreciate that the human body is inhabited by thousands of
bacterial species in diverse communities unique to each body site. Moreover, due to high-throughput
sequencing methods for microbial characterization in a culture-independent manner, it is becoming evident
that the microbiome plays an important role in human health and disease. This chapter focuses on the most
common form of bacterial microbiome profiling, targeted amplicon sequencing of the 16S ribosomal RNA
(rRNA) subunit encoded by 16S rDNA. We discuss important features for designing and performing
microbiome experiments on human specimens, including experimental design, sample collection, DNA
preparation, and selection of the 16S rDNA sequencing target. We also provide details for designing fusion
primers required for targeted amplicon sequencing and selecting the most appropriate high-throughput
sequencing platform. We conclude with a review of the fundamental concepts of data analysis and
interpretation for these kinds of experiments. Our goal is to provide the reader with the essential knowledge
needed to undertake microbiome experiments for application to human disease research questions.

Key words Microbiome, 16S rRNA, 16S rDNA, Targeted amplicon sequencing, Bacteria

1 Introduction

The microbiome refers to the collection of microorganisms present
within a community. While microorganisms include bacteria, fungi,
protozoa, algae, and viruses, this chapter focuses on bacterial popu-
lations present in human specimens. Traditional approaches for
studying bacterial ecology have relied on culture-dependent labo-
ratory methods that are time-consuming, species-specific, low
throughput, and underrepresentative of the diversity within a sam-
ple [1]. Current molecular and genomics methodologies, however,
allow parallel profiling of nearly all bacteria in a sample with a single
culture-independent experiment. As a result, modern microbiome
research has blossomed over the last decade as researchers have
described diverse and unique bacterial communities in a range of
environmental samples [2], human specimens, and tissue types
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[3]. The Human Microbiome Project (HMP) alone collected and
profiled over 4700 specimens sampled from 15 to 18 body sites of
242 adults between 2008 and 2012 [4]. In the context of human
disease, researchers are characterizing microbiome profiles of
healthy and sick individuals, animal models of disease, and environ-
ments in which humans may acquire infectious pathogens [5].

There are two major high-throughput sequencing approaches
for microbiome profiling. The first uses targeted amplicon sequenc-
ing, in which a conserved DNA target, such as the 16S ribosomal
RNA subunit (rRNA) encoded by ribosomal DNA (rDNA) and
present across all bacteria, is amplified by polymerase chain reaction
(PCR) and sequenced. In this method, each sequence read corre-
sponds to a copy of bacterial rDNA that is annotated and counted.
The second approach ismetagenomic sequencing, in which the total
genomic DNA isolated from a sample is sequenced using a shotgun
approach, thus nonselectively capturing all DNA sequences present
in the specimen. This method captures the most genomic informa-
tion as it is not restricted to a single taxonomic kingdom, but can be
confounded by overly abundant eukaryotic DNA from the human
host, and therefore may require significant sequencing depth to
assay the breadth of bacterial diversity in a sample. In contrast,
targeted 16S rDNA amplicon sequencing requires relatively low
read depth to profile a broad range of 16S sequence variants in a
sample. Because 16S rDNA amplicon sequencing is straightforward
and has been widely applied in studies of microbiota related to
human disease, we will focus exclusively on this approach in this
chapter. Excellent reviews of metagenomic sequencing can be
found elsewhere [6].

2 Materials and Methods

2.1 Selecting the

DNA Sequencing

Target and High-

Throughput

Sequencing Platform

Targeted amplicon sequencing of the 16S rDNA takes advantage of
the alternating hypervariable and conserved regions that occur
throughout the 1.5 kb gene. This structure is conserved across a
range of prokaryotes, including Archaea and Bacteria. The experi-
mental approach is to design universal primers within the conserved
regions of the 16S rDNA that flank one or more variable regions
containing the genetic variation used to classify each read into a
taxonomic unit. More genetic differences in the variable region lead
to better taxonomic separation of sequencing reads, which are
useful for data interpretation.

The 16S rDNA includes nine hypervariable regions (V1–V9),
each differing in length, genetic variability, and phylogenetic reso-
lution for identifying a broad spectrum of bacterial taxa [7–9]. Over
the years, many sets of universal primers have been designed to
cover various regions of the 16s rDNA, and in the literature, they
are named for their numerical position in the corresponding
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sequence of Escherichia coli. Regions V4, V5, and V6/7 have been
shown to have the highest phylogenetic resolution, while regions
V2 and V9 result in the poorest resolution [7, 10]. For universal
primer sequences to amplify across a range of bacteria, they often
contain degenerate bases. For example, in the primers that amplify
the V4 region of the 16S rDNA (Fig. 1), there are 2/19 (11%)
degenerate bases in the forward primer including Y (C or T) and
M (A or C), and 3/20 (15%) degenerate bases in the reverse primer
including N (A, C, G, or T), V (A, C, or G), and W (A or T).

The selection of primer sequences is generally based on two
things: (1) taxonomic groups and the resolution desired for the
sample type, and (2) compatibility of amplicon size with the chosen
sequencing platform. For example, some common primer sets
adapted for high-throughput sequencing include those designed
for the Human Microbiome Project (HMP) that span the V1–V3
regions using primers 27F and 534R, and the V3–V5 regions using
primers 357F and 926R (http://hmpdacc.org/doc/HMP_MDG_
454_16S_Protocol.pdf). Phylogenetically, the V1–V3 region
resolves many families of bacteria, but is less capable of distinguish-
ing among Archaea. In contrast, the V3–V5 region provides high
specificity across both prokaryotic kingdoms, but is not capable of
resolving genera within the bacterial families Enterobacteriaceae
and Pseudomonadaceae that include important human pathogens
such as Escherichia coli, Klebsiella pneumonia, and Pseudomonas
aeruginosa. The HMP primer sets yield amplicons greater than
500 bp and were designed in 2008 for use on the Roche-454
FLX Titanium sequencing platform [11]. In recent years, research-
ers have sacrificed the read length advantage of 454 sequencing for
cost effectiveness and high read depth of alternative platforms such
as MiSeq or HiSeq (Illumina) and the Ion Torrent Personal
Genome Machine (Life Technologies).

Illumina sequencers provide single- or paired-end reads of
100 bp, 150 bp, or 300 bp, while the Ion Torrent has single-end
200 bp and 400 bp sequencing chemistries. Widely used primer
sequences adapted for high-throughput Illumina sequencing were
designed by the Earth Microbiome Project (EMP) consortium [2]
and specifically target the V4 region [12]. Standard protocols for
16S amplicon sequencing using this method are available online at
the EMP website (http://www.earthmicrobiome.org/emp-stan
dard-protocols/16s/) and include primer sequences and PCR con-
ditions. For the Ion Torrent PGM platform, primers in the V3

Forward primer (515F): 5’ GTGYCAGCMGCCGCGGTAA 3’

Reverse primer (806R): 5’ GGACTACNVGGGTWTCTAAT 3’

Fig. 1 Example of universal primer sequences used for targeted 16S rDNA
amplicon sequencing of the V4 region. Degenerate bases are highlighted in red
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region (341F and 518R) and the V6 region (967F and 1046R)
[13] are available, and Life Technologies recently released a 16S
Metagenomics Kit that allows amplification and sequencing of
seven hypervariable regions of the 16S rDNA in a single experi-
ment. While this kit was evaluated to compare phylogenetic resolu-
tion of different amplicon regions, the potential advantage of
combining sequence data for all hypervariable regions in a single
analysis was not determined [10]. Theoretically, the extended
sequence information that combines all of the hypervariable
regions should be able to discern more taxa than any region alone.

Library preparation for shotgun DNA sequencing typically
comprises the following steps: (1) shearing DNA to the appropriate
size, (2) repairing the ends of the sheared DNA, and (3) ligating
sequencing adapters and barcodes onto DNA fragments. Sequenc-
ing adapters act as primers for the templating reactions prior to
sequencing and are the same for each sample. Barcodes are unique
sequence tags added to each DNA sample that allow computational
separation of reads of pooled samples following sequencing and are
used to increase throughput.

Amplicon sequencing is a relatively straightforward sequencing
method because it does not require a number of the labor-intensive
steps of the shotgun library preparation described above. Instead,
the amplicon size is based on selection of universal primers and
hypervariable region(s), and adapters and barcodes are
incorporated during PCR using fusion primers. Fusion primer
design is dependent on the sequencing platform, and some exam-
ples of fusion primer designs are shown in Fig. 2. For Illumina
sequencing (Fig. 2a), both the forward and reverse primers contain
sequencing adapters and primer pads, but only the reverse primer
contains the 12 bp Golay barcode sequence [12]. The primer pad is
a 10 bp sequence that prevents hairpin formation of the oligonu-
cleotide [14]. For Ion Torrent sequencing (Fig. 2b), both the
forward and reverse primers contain sequencing adapters, but it is
the forward primer that contains the 10–12 bp barcode sequence,
in addition to a 6 bp key sequence that is recognized by the Ion
Torrent data processing software during base calling. In both cases,
the barcode is located on only one primer. Therefore, the researcher
will utilize multiple forward primers (for Ion Torrent sequencing,
for example), each with a unique barcode tag for each sample, but
will use the same reverse primer for all samples and PCR reactions.

2.2 Experimental

Design

In designing microbiome experiments, it is important to realize
that there is high variability among individual human samples
[15, 16]. Previous work has shown that as little as 10% of taxa
may be shared across a given population, also known as the “core
microbiome,” suggesting that microbiome profiles are highly per-
sonalized. Therefore, cross-sectional studies may require a large
number of individuals to distinguish relationships among
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microbiota and clinical features or phenotypes. Otherwise, longitu-
dinal study designs with fewer test subjects and extended time-
points may be preferred. As with any biological dataset, careful
attention should be paid to collecting accurate and complete meta-
data for each subject and sample so that robust statistical analyses
may be performed. For microbiome studies in mouse models,
additional factors such as age, genotype, and cohabitation must
be considered, and comprehensive reviews on this topic are avail-
able [17, 18].

Microbiome sequencing is very sensitive to background con-
tamination as only a few copies of DNA template are needed for
PCR amplification [19, 20]. Thus, small quantities of bacterial
contaminants present in ultrapure water, sterile saline, DNA isola-
tion kits, or PCR reagents can show up in results from human-
derived samples. Bacterial contamination from laboratory benches
or sample handling can also contribute to biases in microbiome
profiling results. This is especially a problem for low biomass sam-
ples, such as skin or airway specimens, as the DNA from the
experimental sample is relatively less abundant than in other sample
types (e.g., feces) relative to background contaminants [20]. This
issue can be mitigated by using sterile technique while collecting
and processing samples and by randomizing samples across differ-
ent DNA extraction kits to minimize batch effect. In addition, the

Fig. 2 Fusion primer design for targeted amplicon sequencing on the (a) Illumina
MiSeq or HiSeq platforms or the (b) Ion Torrent Personal Genome Machine (PGM)
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inclusion of positive and negative controls, described in the section
below, can allow for computational identification and correction for
contaminating taxa in the final results.

2.3 Sample

Preparation

Considerations

To achieve thorough microbiome assessment, the essential starting
point is a good preparation of DNA. There are several choices for
DNA isolation, which include commercially available options such
as the various column-based Qiagen, Zymo Research, and
MO-BIO kits, or the traditional chemical and mechanical disrup-
tion methods, followed by phenol–chloroform extraction and eth-
anol precipitation. Perhaps the most important step in DNA
isolation for microbiome sequencing is the lysis step, in which
many types of bacteria with differing cell wall structures must be
uniformly disrupted to release DNA for subsequent PCR amplifi-
cation. This is generally accomplished with an enzymatic (lysozyme
and/or proteinase K) or mechanical (bead-beating) step. The
choice of cell lysis method will depend on the experimental ques-
tion [21]; for example, recovery of DNA from acid-fast bacilli is
improved by particular chemicals and specific bead sizes [22]. After
lysis, the DNA should be recovered and contaminants removed to
enable efficient PCR amplification. Column-based kits work well
for this step. While some DNAmay be lost to the column, phenolic
compounds that impede PCR amplification can be avoided, which
has the added benefit of not generating organic hazardous waste.

Microbiome experimentation is still in its infancy and univer-
sally accepted, standardized controls remain in a state of a develop-
ment. A number of negative controls are needed to address the
background problem mentioned in the previous section. DNA
should be prepared from water and any other solutions used
throughout sample handling, and these samples need separate bar-
coded libraries. The use of quantitative PCR (qPCR) is helpful to
confirm that the DNA present in the samples is much more abun-
dant than in the negative controls.

Positive controls are equally important for validation of micro-
biome results. The standard approach is to assemble a mock com-
munity of known DNAs in specified ratios comprising some of the
target species of interest. Multiple mock communities with differ-
ent known ratios are helpful in data interpretation because they
reveal the ability of known sequences to amplify and be identified in
an actual experiment, in addition to revealing any weaknesses in
primer function. A mock community also allows the researcher to
be confident that expected bacteria will be distinguished within the
sample. Each mock community should have its own barcoded
amplicon library that is prepared concomitantly with the sample
libraries for any given experiment.

Ideally, PCR amplification of controls and samples should be
executed in parallel, technical replicates with unique barcodes until
reproducibility is established. The computational analysis of an
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experiment is dependent on read counts obtained from the
sequencing; for this reason, it is important to aim for equal loading
of each library. The simplest way to normalize loading is to “clean”
the amplified libraries using beads (e.g., Agencourt Ampure XP) to
eliminate primers and other components of the PCR reaction that
may interfere with sequencing. After size selection, the libraries are
quantified using a fluorescence-based quantitation method (e.g.,
Qubit Fluorometric quantitation), and equal molar amounts of
each sample combined to make the final library. The combined
library is then requantified and the size distribution checked using
gel electrophoresis or the Bioanalyzer instrument (Agilent). These
measurements provide a good estimation of molarity necessary to
proceed with sequencing of the combined libraries. Separate and
combined libraries are stable at �20 ˚C for long-term storage or
4 �C for several weeks to months.

2.4 Data Analysis

Methods

The data output of 16S amplicon sequencing consists of one or
more files in FASTQ format with hundreds to thousands of
sequence reads. These reads are eventually converted into a matrix
output in which the rows are 16S sequence variants, the columns
are samples, and the cells comprise read counts for each 16S
sequence variant by sample combination. There are several analysis
steps that must occur to go from raw sequences to a matrix of
annotated read counts for downstream analyses as shown in
Fig. 3. Because of the relatively large size of amplicon sequencing
datasets, analyses are usually performed on a high performance
computing cluster with open-source, command line software
packages such as QIIME [23] and Mothur [24]. Both packages
offer modules and scripts for a range of analysis applications along
with corresponding documentation that can be accessed online:

Steps for Microbiome Data Analyses

PRE-PROCESSING OF SEQUENCE READS
1. De-multiplex sequence reads by barcode
2. Trim and filter sequence reads for length and quality

OTU PICKING PIPELINE
3. Cluster sequence reads into OTUs based on 97% identity
4. Align representative OTU sequences for phylogenetic analyses
5. Assign taxonomy to OTU clusters by aligning to 16s rDNA database

DOWNSTREAM ANALYSES
6. Normalization – equal number of reads per sample (rarefaction)
7. Count matrices at phylum, class, order, family, genus and species levels
8. Community level analyses – i.e. PCoA, alpha and beta diversity
9. Statistical integration with clinical or disease phenotypes

Fig. 3 Steps for Microbiome Data Analyses

Microbiome Methods 83



QIIME—http://qiime.org/scripts/index.html, Mothur—
http://www.mothur.org/wiki/Main_Page.

Depending on the sequencing platform, the first step is to
de-multiplex the sequence reads into separate read files for each
sample. For Ion Torrent data, sequence reads are binned based on
barcode sequence by the built-in software on the sequencing server,
and data output are provided as separate FASTQ files for each
sample. For the Illumina platform, reads may or may not be
de-multiplexed on the sequencing server, and the researcher may
need to separate the sequences by barcode using an open source
module. Once the sequence reads have been separated by DNA
sample, then quality filtering and trimming is used to remove low
quality bases and short reads from the dataset, as these can be
misannotated and may bias the overall results.

The next stage of analysis is read clustering in which reads are
aligned to each other and grouped into clusters that share a mini-
mum of 97% sequence identity based on the historical cutoff for
bacterial species identification using the 16S rRNA gene
[25]. These clusters, known as operational taxonomic units
(OTUs), are computationally defined units, but are also thought
to potentially represent unique biological entities. There are two
flavors of OTU picking pipelines: (1) de novo OTU picking, in
which all reads are included in the clustering analysis without
initially referencing a database of known 16S rDNA sequences,
and (2) open-reference OTU picking, in which reads are first
aligned to a 16S rDNA sequence database to be categorized as
known or novel, and then read clustering is performed separately
for the two groups. The advantage of open reference compared to
the de novo method is that some of the computing processes can be
run in parallel, thereby reducing the overall computing time, while
still retaining the novel OTUs acquired from the de novo method.

Once OTUs are picked, representative sequences are then cho-
sen from each cluster to build alignment-based phylogenetic trees.
This facilitates the generation of pairwise distance calculations
between OTUs used in downstream analyses. Finally, each repre-
sentative OTU sequence is compared to a curated rDNA sequence
database, such as Greengenes [22], SILVA [23], or the RDP Clas-
sifier [24], and assigned a taxonomical annotation. It should be
noted that only OTUs with significant matches to a database entry
receive a complete taxonomical annotation, from phylum to spe-
cies. Thus, some OTUs may only receive annotation at the phylum,
class, order, or family level, with no genus or species classification.

The main output file from 16S microbiome analysis is the OTU
count table, which is generated in the biological observation matrix
(BIOM) format (http://biom-format.org/), a recognized standard
of the Genomics Standards Consortium [26]. This standardized
format is useful because it is compatible with a number of existing
downstream analysis programs. After generating a BIOM table for
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the sample set, the next step is to normalize read counts to equal
numbers of reads per sample. A rarefaction analysis, or generation
of rarefaction curves, is often useful to determine the minimum
number of reads needed to detect the maximum species richness, or
alpha diversity, within a sample, and can be performed using mod-
ules in QIIME or Mothur. This number, however, is more often
defined or limited by the sample with the least number of reads in a
given experiment. It should be noted that microbiome data can be
analyzed with as few as 500 reads per sample to as many as 10,000
or more, although the ability to detect rare taxa will decrease with
fewer reads. The normalized results are presented as relative abun-
dance or percent of total reads for each taxonomic group observed
in the community. This means that a microbiome profile generated
with targeted amplicon sequencing does not represent the bacterial
load or absolute abundance of bacteria in a sample, but rather the
community composition in relative proportions. The addition of
qPCR data of the 16S gene target can potentially be used to correct
for absolute abundance, though this method has not been widely
adopted.

Common downstream analyses of normalized microbiome data
include comparing bacterial communities to each other and
between sample subgroups. This is often done with measures of
beta diversity, such as weighted and unweighted Unifrac or Bray
Curtis dissimilarity metrics [27, 28]. These methods generate dif-
ferent forms of dissimilarity matrices among samples that can be
visualized as dendrograms or in two-dimensional principle coordi-
nates analysis (PCoA) plots. These analyses can be performed with
QIIME or Mothur and visualized in programs such as
phyloSeq [29].

According to data sharing practices for sequencing data, tar-
geted amplicon sequences must be made publically available upon
publication in a scientific journal. The Genomics Standards Con-
sortium has developed a checklist of the minimum information
about a marker gene sequence (MIMARKS) that is recommended
before submission to a sequence database repository such as the
National Center for Biotechnology Information (NCBI) [30]. This
standardization provides researchers with enough information to
confidently utilize publically available data for computational
experiments or for comparisons with their own datasets.

3 Conclusions

Microbiome research has exploded over the last decade largely due
to the relative ease and high-throughput nature of targeted 16S
rDNA amplicon sequencing described in this chapter. Researchers
with molecular capabilities can easily employ this PCR method in
their laboratory and outsource the sequencing and primary analysis
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steps to Genomics and Bioinformatics Core facilities. In many
cases, a successful microbiome study is a multidisciplinary, collabo-
rative effort between basic researchers, such as biologists or immu-
nologists, and computational scientists, such as bioinformaticians
and statisticians.

In the context of human diseases, much progress has been
made in describing baseline features of the gut microbiome and
how it is affected by factors such as age, sex, diet, and environmen-
tal exposures [4, 31]. The human gut microbiome can be categor-
ized into three enterotypes based on the dominant genera present,
namely Bacteroides, Prevotella, and Ruminococcus [32], and has
been shown to be intimately connected to the mucosal immune
system, as dysbiosis has been observed in patients with autoimmune
disorders such as rheumatoid arthritis, multiple sclerosis, type 1 dia-
betes, and inflammatory bowel disease [31, 33]. Gut microbiota
specifically interact with the immune system through cellular com-
ponents and secreted metabolites, which influence the inflamma-
tion state of the intestinal mucosa [33]. Most research to date has
focused on delineating pathogenic bacterial taxa from beneficial
ones to inform potential therapeutic interventions, such as prebi-
otic and probiotic treatments. Much has also been learned by
studying changes in the gut microbiome associated with successful
treatment of ulcerative colitis [34] and intestinal infections of Clos-
tridium difficile [35] using fecal microbiota transplantation.

Research on the lung microbiome suggests that it is remarkably
stable, individualized, and relatively refractory to perturbations
[36]. Methodological studies have evaluated the most informative
and least invasive sample types to study [37]; airway samples
include bronchoalveolar lavage (BAL), bronchial or nasal brush-
ings, sputum, and biopsy. Disease states tend to correlate with
greater bacterial load and enrichment or depletion of specific taxa.
For example, the healthy lung is characterized by prevalence of
Prevotella and Veillonella, both of which are reduced in the
COPD lung [38]. Sputa from cystic fibrosis patient samples often
contain an abundance of Pseudomonas, Staphylococcus, Haemophi-
lus, and Burkholderia, and their relative composition and overall
load vary in parallel with exacerbations and antibiotic treatment
[39], patient age, stage of the disease [40], and CFTR genotype
[41]. Asthmatic and airway allergic responses have been associated
with microbial composition in the gastrointestinal tract, as demon-
strated in germ-free mouse models [42]. Development of the host
immune system depends on microbial composition of the environ-
ment, including the presence of pets in the home, for example [43].

The current challenges facing microbiome research are its rela-
tively descriptive nature and the difficulty in establishing causal
relationships between disease state, the patient’s environment,
and the bacterial taxonomic profiles in a given sample. Future
studies will need to address the analytical challenges of

86 Rebecca M. Davidson and L. Elaine Epperson



incorporating ecological, community-based data with clinical vari-
ables and outcomes to yield meaningful interpretations and preven-
tative interventions, ideally using prospective study designs
[44]. However, the integration of microbiome data with human
genetic, metabolomics, and other large-scale data types will likely
improve our understanding of the role of the microbiome in human
health [45–48].
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Chapter 6

The Emerging Role of Long Noncoding RNAs in Human
Disease

Johanna K. DiStefano

Abstract

Only a small fraction of the human genome corresponds to protein-coding genes. Historically, the vast
majority of genomic sequence was dismissed as transcriptionally silent, but recent large-scale investigations
have instead revealed a rich array of functionally significant elements, including non-protein-coding
transcripts, within the noncoding regions of the human genome. Long noncoding RNAs (lncRNAs), a
class of noncoding transcripts with lengths >200 nucleotides, are pervasively transcribed in the genome,
and have been shown to bind DNA, RNA, and protein. LncRNAs exert effects through a variety of
mechanisms that include guiding chromatin-modifying complexes to specific genomic loci, providing
molecular scaffolds, modulating transcriptional programs, and regulating miRNA expression. An increasing
number of experimental studies are providing evidence that lncRNAs mediate disease pathogenesis, thereby
challenging the concept that protein-coding genes are the sole contributors to the development of human
disease. This chapter highlights recent findings linking lncRNAs with human diseases of complex etiology,
including hepatocellular carcinoma, Alzheimer’s disease, and diabetes.

Key words Long noncoding RNAs, LncRNAs, Noncoding RNA, Hepatocellular carcinoma, Alzhei-
mer’s disease, Diabetes

1 LncRNAs: Challenging the Concept of Transcriptional Noise

Early large-scale studies estimated that approximately 5–10% of the
human genome is transcribed, and only ~1% corresponds to
protein-coding genes [1–3]. More recent findings from the Ency-
clopedia of DNA Elements (ENCODE) project reported that the
number of GENCODE-annotated exons of protein-coding genes
covers<3% of the entire genome, although greater than 80% of the
human genome was found to engage in one or more biochemical
RNA or chromatin-associated events [4]. Combined, these findings
indicate that the vast majority of transcribed sequence is non-pro-
tein-coding. Noncoding elements comprise the majority of
mammalian-conserved and recently adapted regions of the genome
[5–8]. The overwhelming majority of genetic variants associated
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with human traits or diseases have also been found to lie within
intronic and intergenic regions [9], and are enriched within non-
coding functional elements, particularly in regions located outside
of those containing protein-coding genes [4]. The idea that non-
coding regions of the human genome are transcriptionally silent
and therefore, biologically irrelevant, has been updated with a
better understanding of the deep complexity of our genetic code.

Some noncoding DNA is transcribed into functional noncod-
ing RNA (ncRNA), a superclass of endogenous transcripts, which
can be broadly classified based upon function into infrastructural
and regulatory classes. Infrastructural (or housekeeping) ncRNA
transcripts are involved in mRNA translation (ribosomal RNA and
transfer RNA), as well as splicing and rRNA modification (small
nuclear RNA and small nucleolar RNA, respectively), and are typi-
cally expressed in a constitutive manner. Regulatory ncRNAs
mainly regulate gene expression and include long noncoding
RNAs (lncRNAs) and short noncoding RNAs, such as microRNAs
(miRNAs), Piwi-interacting RNAs (pi-RNAs), small interfering
RNAs (siRNAs), promoter-associated RNAs (paRNAs), and
enhancer RNAs (eRNAs). There are approximately 60,000
ncRNAs in the human genome, 68% of which are lncRNAs
[10]. Because lncRNAs are typically expressed at much lower levels
than mRNAs, these transcripts were considered to be transcrip-
tional noise when first discovered in the early 1990s [11–13]. How-
ever, improvements in high-throughput sequencing technologies
and computational methods have enabled the identification of a
number of biologically relevant lncRNAs. Due to the emerging
evidence supporting a substantial role for lncRNAs in biological
processes underlying pathophysiology, this chapter focuses exclu-
sively on these molecules within the context of human disease.

LncRNAs are a heterogeneous class of noncoding RNAs with
transcript lengths >200 nucleotides [3]. Five major categories of
lncRNAs have been defined relative to a spatial orientation with
nearby protein-coding genes [14–17], and include (1) intergenic
lncRNAs (lincRNAs), which are transcribed from regions at least
>1 kb from protein-coding genes; (2) bidirectional lncRNAs,
which are transcribed from regions within 1 kb of promoters in
the opposite direction of the protein-coding transcript; (3) intronic
lncRNAs, which are transcribed from introns of protein-coding
genes [15, 16]; (4) sense lncRNAs, which are transcribed from the
same strand of a protein-coding transcript and overlap with one or
more exons of that transcript; and (5) antisense lncRNAs, which are
transcribed from the opposite strand of a protein-coding gene and
overlap with one or more exons of that transcript (Fig. 1).
LncRNAs can exert cis- or trans-acting effects [18]. Cis-acting
lncRNAs effects are limited to the chromosome from which they
are transcribed and involve silencing or activation of gene expres-
sion. Trans-acting lncRNAs affect genes on chromosomes other
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than the one from which they are transcribed and regulate gene
expression through recruitment of proteins to the target sites or
sequestering of transcription factors away from targeted sites of
transcription [19].

2 Characteristics and Functions of lncRNAs

Most lncRNAs are transcribed by RNA polymerase II, utilize the
same consensus splicing signals as coding genes, and are posttran-
scriptionally modified at the 50 and 30 ends [20]. Despite these
similarities with coding transcripts, lncRNAs tend to have shorter
lengths and fewer exons, compared with mRNAs [14]. Conserva-
tion of lncRNAs across species is less than mRNAs [20, 21],
although lncRNAs are likely to share similar functions [22, 23]
and correlate with transposable elements, especially endogenous

A.Intergenic lncRNA 

B.Intronic lncRNA 

C. Bidirectional lncRNA

(<1 kb)

D. Sense lncRNA

E. Antisense lncRNA

Fig. 1 The five main categories of lncRNAs. (a) Intergenic RNAs, (b) Intronic lncRNAs, (c) Bidirectional lncRNAs,
(d) Sense lncRNAs, and (e) Antisense lncRNAs. Grey boxes represent protein-coding genes, with transcrip-
tional direction depicted by arrows. Unfilled boxes depict lncRNAs. Diagonal lines in lincRNAs represent
distances >1 kb. Adapted from 16
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retroviruses [24]. Compared with protein-coding genes, lncRNAs
show stronger tissue-specific patterns of expression [25]. Many
studies have reported that lncRNAs have very low expression levels
[17]. However, a recent single-cell analysis of lncRNAs from the
developing human cortex revealed abundant expression in individ-
ual cells compared to bulk tissue studies, suggesting that analysis of
whole tissues may average gene expression signatures of many
different cell types [26, 27], thereby muting actual expression
patterns in individual cells.

LncRNAs have been shown to play a role in the regulation of
gene expression, genomic imprinting, maintenance of pluripotency,
nuclear organization and compartmentalization, and alternative
splicing [16, 19, 28, 29]. In general, lncRNAs bind to DNA,
RNA, and protein, and exert effects through these interactions.
Mechanistically, lncRNAs can be classified into four major cate-
gories that include directing chromatin-modifying complexes to
specific genomic loci, providing molecular scaffolds, modulating
transcriptional programs, and regulating gene expression [16]. As
shown in Fig. 2, these include (1) decoy lncRNAs, which regulate
transcription by binding and sequestering a protein target, but do
not exert any other effects; (2) signal lncRNAs, which regulate
transcriptional activity or pathways in response to specific cues or
stimuli; (3) scaffold lncRNAs, which act as platforms to host the
formation of molecular complexes; and (4) guide lncRNAs, which
bind protein and direct it to specific genomic loci. An excellent
description of these mechanistic molecular functions, including
lncRNA examples of each subclass, can be found elsewhere
[19]. In addition to the functions listed above, lncRNAs can inter-
act with miRNAs to exert effects on miRNA expression and activity
[31]. These “sponges” limit the number of miRNA molecules
available for binding with target genes [32], providing evidence
that miRNA–lncRNA interactions represent an additional layer of
transcriptional regulation within the cell [33].

3 LncRNA–Disease Associations

Given the critical regulatory functions of lncRNAs in the cell,
dysregulation of these molecules would be expected to contribute
to pathophysiology. Indeed, according to the lncRNADisease data-
base (http://www.cuilab.cn/lncrnadisease), a curated compilation of
experimentally supported lncRNA-disease association data, there
are more than 200 diseases associated with lncRNAs. A discussion
of lncRNA involvement in three specific diseases: hepatocellular
carcinoma, Alzheimer’s disease, and type 2 diabetes is presented
in the following sections.

94 Johanna K. DiStefano

http://www.cuilab.cn/lncrnadisease


3.1 LncRNAs

and Hepatocellular

Carcinoma: The

Incredible HULC

Hepatocellular carcinoma is the most common form of liver cancer,
and in the United States, the annual incidence of the disease is at
least 6 per 100,000 [34]. The overall 5-year survival is less than
12%, makingHCC the fastest rising cause of cancer-related death in
the United States [35]. Risk factors for HCC development include
viral infection, nonalcoholic fatty liver disease, alcohol overcon-
sumption, aflatoxin, and genetic factors; the majority of these con-
ditions contribute to the development of liver cirrhosis, which
promotes HCC formation [35]. Over the past decade, a role for
lncRNAs in the carcinogenesis, development, and prognosis of
HCC has also emerged, and has developed into a highly active
area of research. Although many lncRNAs have been identified
[36–45], this chapter focuses on one specific lncRNA, HULC,
because of the level of characterization achieved to date.

A. Decoy lncRNA

B. Signal lncRNA

C. Scaffold lncRNA

D. Guide lncRNA

Fig. 2 Mechanistic categories of lncRNAs. (a) Decoy lncRNA, (b) Signal lncRNA, (c) Scaffold lncRNA, and (d)
Guide lncRNA. Hairpin loops represent lncRNAs; black arrows represent transcriptional start sites; blue and
green circles depict transcription factors and chromatin modifying complex, respectively; yellow burst
indicates developmental or environmental signal. Plus and minus signs depict transcriptional activation or
repression, respectively. Adapted from 30
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Comprehensive reviews of HCC-associated lncRNAs can be found
elsewhere [46–49].

Panzitt et al. [50] performed a genome-wide search for novel
transcripts associated with the molecular pathogenesis of HCC.
Utilizing HCC-specific cDNA libraries and tissue samples from
46 HCCs, the authors identified a novel transcript that was upre-
gulated 33-fold over a nonneoplastic pool of liver samples in 76% of
tumors. This transcript was named HULC (highly upregulated in
liver cancer). HULC expression was low in normal tissue and not
significantly increased in other neoplastic tissues, suggesting that
upregulation of this transcript was specific to HCC. In a study of
38 patients with HCC, HULC levels were also associated with
clinical stage, intrahepatic metastases, HCC recurrence, and post-
operative survival [51]. Knockdown of HULC expression in two
hepatoma cells lines corresponded to dysregulation of many genes,
including several with an established role in liver cancer; however,
no significant sequence homology was observed between HULC
and these potential target genes. These findings not only suggested
that HULC has a general regulatory role as opposed to one specific
gene target, but also indicated that the effect of HULC on poten-
tial downstream target genes is likely not based on direct
RNA–RNA interactions.

Preliminary data showed that peripheral blood levels of HULC
RNA were substantially higher in patients with HCC compared to
individuals with no evidence of liver disease [50], a finding later
corroborated in plasma samples of HCC patients [52]. Findings
that HULC levels in blood mirror those in neoplasm indicate that
this transcript may have utility as an improved and efficient nonin-
vasive biomarker for the diagnosis and prognosis of HCC.

Transcription of HULC gives rise to a 482 bp, spliced, poly-
adenylated ncRNA that localizes to the cytoplasm and copurifies
with ribosomes of carcinoma cells [50]. HULC was found to be
evolutionarily conserved in primates, but neither mouse nor rat
genomes appeared to have a HULC homolog [50]. Initial molecu-
lar characterization of HULC identified a cAMP response element
binding (CREB) protein binding site in the proximal promoter
region that was critical for HULC promoter activity in liver cancer
[53]. In addition, HULC RNA was found to sequester miRNAs,
including miR-372, which resulted in reduced expression of its
target gene PRKACB [53].

Chronic infection with the hepatitis B virus (HBV) has been
associated with the development of hepatocellular carcinoma for
more than 3 decades [54]. Levels of HBV X protein (HBx), one of
four proteins produced by HBV, are elevated in liver cells from
patients with liver cancer [55], and HBx has been implicated in the
development of HCC because it activates genes associated with
cellular growth [56]. In an analysis of 33 clinical HCC specimens,
expression levels of HBx and HULC were positively correlated
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[57]. Knockdown of HBx expression resulted in decreased HULC
expression in hepatoma cells, while overexpression of HBx led to a
dose-dependent increase in HULC expression, suggesting that
HBx regulates HULC expression in liver cells. Subsequent molec-
ular characterization revealed a mechanism involving
HBx-mediated activation via CREB binding of the HULC pro-
moter [57]. HULC was found to downregulate p18, a tumor
suppressor gene located in close proximity to HULC on chromo-
some 6p24.3, leading to proliferation of hepatoma cells. While
HBx downregulates p18 in hepatoma cells, knockdown of HULC
was able to rescue p18 expression levels, leading the authors to
conclude that HBx-mediated upregulation of HULC promotes the
proliferation of hepatoma cells through downregulation of
p18 [57].

A recent study found that depletion of insulin growth factor
2 mRNA-binding protein 1 (IGF2BP1), but not IGF2BP2 or
IGF2BP3, corresponded with an increased half-life and higher
steady state transcript levels of HULC [58]. CNOT1 (C-C motif
chemokine receptor 4 –NOT transcription complex subunit (1), a
major component of the cytoplasmic RNA decay machinery, was
identified as a novel interaction partner for IGF2BP1, and deple-
tion of CNOT1 corresponded with increased half-life and expres-
sion of HULC. Thus, this study identified IGF2BP1 as an adaptor
protein that recruits the CCR4-NOT complex, thereby initiating
degradation of the HULC transcript [58].

Additional studies have served to shed light on the role of
HULC in HCC development. For example, HULC was found to
promote tumor angiogenesis by upregulating sphingosine kinase
1 [59], an enzyme that generates sphingosine phosphate, which
promotes cell survival, proliferation, differentiation, and angiogen-
esis [60–62]. Through a series of experiments, the authors found
that HULC increased expression of the transcription factor E2F1,
which binds to the promoter of sphingosine kinase 1. HULC was
found to sequester miR-107, which targets E2F1 for degradation
through complementary base pairing in the 30 untranslated region,
leading to upregulation of E2F1, increased activation of sphingo-
sine kinase 1, and tumor angiogenesis. These findings provide new
insight into mechanisms underlying tumor angiogenesis in HCC.

Likewise, HULC was recently found to enhance epithelial–me-
senchymal transition, which contributes to tumor metastasis and
recurrence in HCC via a signaling pathway involving zinc finger
E-box binding homeobox 1 (ZEB1) and miR-200a-3p [51]. The
authors demonstrated that HULC sequestered miR-200a-3p, lead-
ing to increased levels of ZEB1, which corresponded to stabilized
epithelial–mesenchymal transition. These findings support a direct
role for HULC in enhancing epithelial–mesenchymal transition,
revealing potentially novel mechanisms by which the lncRNA med-
iates cancer pathophysiology in HCC.
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3.2 LncsRNAs

and Alzheimer’s

Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
characterized by loss of neurons and synapses in the cerebral cortex,
accumulation of amyloid plaques and neurofibrillary tangles, and
progressive cognitive decline [63], although the disease is diag-
nosed primarily on the basis of extracellular plaque deposits of the
β-amyloid peptide (Aβ) and the flame-shaped neurofibrillary tan-
gles of the microtubule binding protein tau [64]. AD is considered
to be the most common cause of dementia and affects about 46.8
million individuals worldwide. This figure is expected to double
every 20 years, reaching 75 million by 2030 [65]. The average life
expectancy post-diagnosis is 3–5 years [66, 67], and no therapies to
stop or reverse the disease are available. Despite the public health
importance of AD, the mechanisms underlying disease pathogene-
sis are poorly understood. However, a number of studies support-
ing a role for lncRNAs in the development and progression of AD
have been accumulating in the literature over the past decade.

Brain cytoplasmic 200 RNA (BC200) is a translational regula-
tor that targets eukaryotic initiation factor 4A, and plays roles in
both regulating protein synthesis in postsynaptic dendritic micro-
domains and maintaining long-term synaptic plasticity [68]. An
early investigation of BC200 identified a 70% reduction in levels
of this ncRNA in a neocortical region known as Brodmann area
22 from AD patients compared to those of normal individuals
[69]. In an independent analysis [70], BC200 were examined in
Brodmann area 9, a prefrontal region in the superior frontal gyrus
severely affected in patients with AD [71]. BC200 levels were
significantly higher in AD tissue compared to normal tissue
[70]. BC200 expression was reduced in aging normal brains, but
significantly elevated in AD brains compared to age-matched nor-
mal brains. In the hippocampus, BC200 was also increased in AD
brains relative to unaffected brains, but not in area 17 of the same
samples. These results, combined with those from the earlier study
[69], indicate that BC200 expression varies among different brain
regions, and as such, may play a cell-specific role in the develop-
ment of AD.

A noncoding antisense transcript of β-secretase 1 (BACE1) or
BACE1-AS, was first identified as one of numerous sense–antisense
transcript pairs conserved between humans and mice [72]. Subse-
quently, BACE1-AS levels were found to be elevated up to sixfold
in various brain regions, including cerebellum, parietal lobe, hip-
pocampus, superior frontal gyrus, and entorhinal cortex, of AD
patients compared to age- and sex-matched brains [73]. Mechanis-
tically, BACE1-AS and BACE1 were found to participate in a RNA
duplex, which increased the stability of BACE1. BACE1-AS was
also found to regulate expression of BACE1 mRNA and protein,
and knockdown of BACE1-AS resulted in reduced levels of
BACE1, Aβ 1-40, and Aβ 1-42, but not APP. Upon exposure to
various cell stressors including amyloid-β 1-42 (Aβ 1-42),

98 Johanna K. DiStefano



expression of BACE1-AS increased, leading to enhanced BACE1
mRNA stability and generating additional Aβ 1-42 through a post-
transcriptional feed-forward mechanism. These data show that
BACE1 mRNA expression is under the control of a regulatory
noncoding RNA that may drive Alzheimer’s disease–associated
pathophysiology. The authors further showed that BACE1-AS pre-
vents miRNA-induced translational repression and mRNA decay of
BACE1 mRNA by “masking” a binding site for miR-485-5p.
BACE1-AS and miR-485-5p ncRNAs were found to compete
with each other for binding to the sixth exonic region of BACE1
mRNA [74]. Opposing regulatory effects of BACE1-AS and
miR-485-5p on BACE1 protein expression were also observed,
suggesting the presence of a ncRNA regulatory network that con-
trols BACE1 expression, which, when altered, may be implicated in
AD pathophysiology. Kang et al. [75] reported that the
RNA-binding protein HuD, implicated in learning and memory,
stabilized BACE1-AS, thereby enhancing BACE1 expression.
Levels of APP, BACE1, BACE1AS, and Aβ were elevated not only
in brains of HuD-overexpressing mice, but also in the superior
temporal gyrus of AD patients compared to age-matched control
tissue.

In addition to BC200 and BACE1-AS, other lncRNAs have
been associated with AD, including 17A, NDM29, and 51A
[76–78]. LncRNA 17A, which is transcribed in an antisense orien-
tation from the third intron of the G-protein-coupled receptor
51 (GPR51) gene was shown to regulate GPR51 pre-mRNA pro-
cessing and produce an alternative splicing isoform B of the GABA
B receptor that abolishes GABA B2 intracellular signaling
[78]. Levels of 17a were elevated in brain tissue from patients
with AD compared to normal brain, and 17a expression in neuro-
blastoma cells corresponded with increased secretion of Aβ secre-
tion and the Aβ �-42/ςβ �-40 peptide ratio, a biomarker for
AD. Synthesis of 17a was also found to increase in response to
inflammatory stimuli. Likewise, an investigation of the neuroblas-
toma differentiation marker (NDM29) gene, which fosters differ-
entiation of neuroblastoma cells to a nonmalignant phenotype,
found that NDM29-dependent cell maturation corresponded
with increased synthesis of amyloid precursor protein, resulting in
enhanced Aβ secretion and elevation of the Aβ�-42/Aβ�-40 ratio
[77]. NDM29 expression was increased in cerebral tissues of AD
patients and in response to inflammatory stimuli, leading to
increased Aβ formation. LncRNAs 51A, which maps in an antisense
orientation to intron 1 of the sortilin-related receptor 1 (SORL1), a
risk gene for late-onset AD, was also found to be upregulated in
cerebral cortices from AD patients [76]. Expression of 51A corre-
sponds with an alternatively spliced SORL1 isoform, which is asso-
ciated with impaired processing of amyloid precursor protein
(APP), leading to increased Aβ formation.
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Several recent analyses of lncRNAs expression profiles in AD
have been reported, providing additional insights in the etiology
and pathophysiology of the disease. For example, microarray-based
expression profiling of lncRNAs in a triple transgenic model of AD
revealed 205 dysregulated lncRNAs in comparisons of affected and
control mice [79]. Out of these dysregulated lncRNAs, 27 were
located next to protein-coding genes that were also differentially
expressed between AD and control animals, and many of the
lncRNA-mRNA pairs were dysregulated in the same direction. A
similar study applied microarray analysis to examine hippocampal
lncRNAs expression in a rat model of AD, finding a total of
315 dysregulated lncRNAs [80]. In humans, microarray analysis
of postmortem tissue samples from AD patients and age-matched
controls revealed 108 differentially expressed lncRNAs [81]. An
analysis of lncRNAs in various tissues indicated that most down-
regulated lncRNAs in AD are highly expressed in the brain but not
in other tissues. Gene set enrichment analysis identified a down-
regulated lncRNA, n341006, associated with the protein ubiquiti-
nation pathway, and a significantly upregulated lncRNA, n336934,
linked to cholesterol homeostasis. lncRNA expression signatures
could predict tissue types with equivalent accuracy as protein-
coding genes, but the number required for optimal prediction
was less compared to mRNA signatures. Using RNA-sequencing
of hippocampus samples from patients with late onset AD and
age-matched controls, Magistri et al. [82] identified several anno-
tated and nonannotated lncRNAs differentially expressed in brain
tissues, three of which were activity-dependent regulated, and one
induced by Aβ [1–29, 31–43] exposure of human neural cells.
Despite the significance of findings in mice, rats, and humans,
there is little overlap among studies, and further research is required
to fully elucidate the detailed molecular mechanisms underlying the
action of significantly dysregulated lncRNAs.

3.3 LncRNAs

and T2D Pathogenesis

The role of ncRNAs in the pathogenesis of T2D has only recently
become recognized, yet a growing list of lncRNAs involved in
glucose homeostasis is emerging, as recently reviewed by Sun and
Wong [83]. Here, we will briefly discuss two lncRNAs, H19 and
MEG3, for which a substantial amount of experimental evidence
has been reported.

H19 encodes a maternally expressed lncRNA [84] that plays a
role in cell proliferation [85], regulation of gene expression, and
development of some cancers [86]. H19 is located on chromosome
11p15.5, approximately 100 kb distal of insulin-like growth factor
2 (IGF2), and together H19 and IGF2 are transcribed from a
conserved imprinted gene cluster [85]. Both H19 and IGF2 are
abundantly expressed during fetal development, then downregu-
lated in most tissues following birth, with the exceptions of skeletal
muscle and heart. In mice, offspring with maternal deletion of H19
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are significantly heavier than those inheriting a paternal deletion,
although these findings were attributed to a gain-of-function of
IGF2, which is paternally imprinted, rather than H19 loss-of-func-
tion [87]. Final trimester maternal glucose concentrations were
significantly higher in mothers carrying pups with targeted disrup-
tion of H19 compared to wild-type animals [88]. Genetic variation
in H19 was not associated with significant changes in maternal
glucose tolerance in humans during the final trimester of preg-
nancy, although maternally transmitted H19 alleles were associated
with increased birth weight, increased head circumference, and
increased sum of skinfold thicknesses in offspring [89].

H19 levels are approximately five times lower in skeletal muscle
of patients with T2D compared to healthy individuals,
corresponding to increased bioavailability of the miRNA let-7
[90]. Under normal conditions, H19 sequesters let-7 [91], pre-
venting it from binding to target genes, insulin receptor (INSR)
and lipoprotein lipase (LPL) [91]. However, under diabetic condi-
tions, in which decreased H19 leads to enhanced let-7 levels,
expression of INSR and LPL is inhibited, leading to dysregulated
glucose metabolism in skeletal muscle. Hyperinsulinemia was
found to downregulate H19 expression through a pathway involv-
ing PI3K/AK-dependent phosphorylation of the miRNA-
processing factor KSRP, which promotes let-7 biogenesis and
subsequent H19 destabilization. Thus, these findings identified a
double-negative feedback loop between H19 and let-7 for regulat-
ing glucose homeostasis in skeletal muscle.

In addition to H19, MEG3 (maternally expressed 3 gene) has
emerged as an important player in glucose homeostasis. Like H19,
MEG3 is a maternally expressed imprinted lncRNA [92], with
established roles in cell proliferation [93–95]. MEG3 expression
was upregulated in ob/ob mice, a model for T2D, and mice fed a
high-fat diet, consisting of palmitate, oleate, or linoleate
[96]. Overexpression of MEG3 corresponded to increased hepatic
gluconeogenesis and suppressed insulin-stimulated glycogen syn-
thesis in primary hepatocytes. In addition, levels of FOXO1, G6PC,
and PEPCK increased in response to MEG3 overexpression, while
levels of palmitate-induced FOXO1, G6PC, and PEPCK were
reversed with MEG3 downregulation. The authors found that
MEG3 knockdown could also reverse triglyceride upregulation,
impaired glucose tolerance, and downregulation of glycogen con-
tent in high-fat diet-fed or ob/ob mice.

In addition to its role in mediating hepatic insulin resistance,
MEG3 affects insulin synthesis and secretion in pancreatic β-cells
[97]. MEG3 expression was significantly higher in islets compared
to exocrine glands of Balb/c mice, but islet expression was reduced
in NODmice, a model of type 1 diabetes, and db/dbmice, a model
of T2D. In isolated mouse islets and a pancreatic β-cell line, MEG3
expression was regulated by glucose. Knockdown of MEG3 in vitro
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led to impairment of insulin synthesis and secretion, and increased
the rate of β-cell apoptosis, while in vivo knockdown resulted in
impaired glucose tolerance and decreased insulin secretion,
corresponding to reduced levels of insulin-positive cells. MEG3
knockdown also corresponded with decreased levels of the tran-
scription factors, pancreatic and duodenal homeobox 1 (Pdx1) and
v-maf musculoaponeurotic fibrosarcoma oncogene family, protein
A (Mafa). These results suggest that MEG3 may affect the devel-
opment of diabetes via effects on β-cell maintenance and apoptosis.

Two recent studies examined global changes in lncRNAs
expression relative to T2D. In a study of human pancreatic islet
and β-cells, over 1000 lncRNAs were found to be islet-specific,
compared to only 9.4% of RefSeq annotated genes [98]. Further,
more than 19% of the transcribed genome in islets mapped outside
of annotated protein-coding genes. The majority of lncRNAs iden-
tified were either silent or expressed at very low levels in pancreatic
progenitors, but active in adult islets, indicating roles in pancreatic
endocrine differentiation. Likewise, six lncRNAs expressed at very
low or undetectable levels throughout in vitro differentiation
became activated only during the in vivo maturation step [98]. In
an investigation of 55 T2D susceptibility loci, nine contained islet
lncRNAs within 150 kb of the reported lead marker, including six
which have been linked directly to β-cell dysfunction
[99–103]. Suppressed expression of HI-LNC25, a candidate
lncRNA, in a human β-cell line, led to reduction in levels of
GLIS3, an islet transcription factor mutated in monogenic
diabetes.

In pancreatic islets from 89 donors with varying degrees of
glucose tolerance, nearly 500 RefSeq islet lincRNAs were identi-
fied, 54 of which were associated with gene expression (eQTL) and
exon use [104]. Seventeen lincRNAs were associated with HbA1c
levels, including HI-LNC901 (i.e., LOC283177), which also had
an eQTL (rs73036390) and whose expression was directly corre-
lated with insulin exocytosis. HI-LNC901 was coexpressed with
MAP-kinase activating death domain (MADD), synaptotagmin
11 (SYT11), and paired box 6 (PAX6), all of which have been
implicated in islet function.

Other lncRNAs have been found to harbor genetic variants
associated with T2D, including the ANRIL locus [105]. This
lncRNA maps to the INK4 locus and is required for the silencing
of the p15INK4B tumor suppressor gene [106]. Variants in ANRIL
that disrupt its expression or function may affect compensatory
increases in pancreatic β-cell mass in response to increasing
demands for insulin in the pre-diabetes state [107].
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4 Conclusions

The discovery of dysregulated lncRNAs contributes a new layer of
complexity to the molecular architecture of human disease. How-
ever, there are still many gaps in our current understanding of
lncRNA function, and further study of these molecules is expected
to yield deeper insights into mechanisms underlying the pathogen-
esis of many human diseases, development of new RNA-based
targets for the prevention and treatment of disease, and improved
methods for early detection of pathology.
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Chapter 7

Identification of Disease-Related Genes Using a
Genome-Wide Association Study Approach

Tobias Wohland and Dorit Schleinitz

Abstract

Genome-wide association studies (GWAS) provide a hypothesis-free approach to discover genetic variants
contributing to the risk of a certain disease or disease-related trait. Ongoing efforts to annotate the human
genome have helped to localize disease-causing variants and point to mechanisms by which genetic variants
might exert functional effects. By integrating bioinformatics approaches with in vivo and in vitro genomic
strategies to predict and subsequently validate the functional roles of GWAS-identified variants, disease-
related pathways can be characterized, providing new possibilities for therapeutic intervention. Here, we
describe a basic workflow, from sample preparation to data analysis, for performing a GWAS to identify
disease genes. We also discuss resources for the annotation and interpretation of GWAS results.

Key words GWAS, Affymetrix, Illumina, R, GenABEL, SNP annotation

1 Introduction

1.1 General Overview

of GWAS

A central aim in human genetics research is to identify DNA var-
iants that contribute to disease [1]. Genome-wide association stud-
ies (GWAS) analyze DNA sequence variations, primarily single
nucleotide polymorphisms (SNPs), spanning the genome to iden-
tify genetic risk factors for specific diseases [2]. In contrast to
linkage studies, which rely on segregation of alleles within families,
no prior information on relatedness is required in GWAS
[3]. Instead, association analyses compare allele frequencies of
markers with phenotypes in a population using a case-control
study design, which not only eases the burden of sample collection,
but also utilizes simpler analytical methods than those used in
family-based linkage studies. Without doubt, technological prog-
ress, large genome sequencing projects (Human Genome Project,
1000 Genomes), and the development of advanced bioinformatics
tools have allowed GWAS to evolve into a powerful approach for
investigating the genetic architecture of human disease. At the time
of this writing, the GWAS Catalog (www.ebi.ac.uk/gwas/), which
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is the largest resource for published GWAS, listing all studies
meeting the criteria of (1) assaying >100.000 SNPs, and
(2) p < 1.0 � 10�5, contained 2634 studies and 29,592 unique
SNP–trait associations [4, 5].

Allele frequency and effect size are the two dimensions used to
conceptualize disease associations [2]. Mendelian disorders are
typically characterized by rare, highly penetrant alleles with large
effect sizes. In contrast, GWAS findings are often represented by
associations of common variants with small effect sizes (Fig. 1). The
smaller the effect of the allele on the disease or trait of interest, the
larger the sample size required to detect the differences. The link-
age disequilibrium (LD) pattern in the human genome both sim-
plifies and complicates the analyses and interpretation of GWAS
results. On the one hand, SNPs can be genotyped as surrogates for
other variants contained in one LD group, thereby reducing the
number of markers to be assayed. On the other hand, however, the
lead SNP showing the strongest evidence for association is rarely
the actual causal variant, which is usually tagged by indirect associ-
ation [2]. In addition, long-range effects of regulatory active SNPs
will not always tag (only) the nearest gene. For example, variants
within introns of the fat mass and obesity-associated gene (FTO)
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Fig. 1 Spectrum of allele effects associated with disease. Mendelian disorders are characterized by rare,
highly penetrant alleles with large effect sizes, which can be identified with a small sample size. GWAS
findings are often represented by associations of common variants with small effect sizes identified in large
sample sets. Blue arrows represent the required sample size, where the top of the arrow represents a small
sample size and the base a large sample size. Adopted and edited from Bush WS & Moore JH (2012) PLoS
Computational Biology 8(12):e1002822 (see Note 1)
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have long been reproducibly associated with increased risk for
obesity and type 2 diabetes in GWAS. However, while studies in
mice demonstrated that FTO expression levels influence body mass
and composition phenotypes, no direct connection between the
obesity-associated variants and FTO expression or function have
ever been made [6]. Instead, the obesity-associated FTO region was
found to directly interact with the promoters of FTO and a nearby
gene, Iroquois-class homeodomain protein (IRX3), in human,
mouse, and zebrafish genomes [6]. Long-range enhancers within
this region also recapitulated aspects of IRX3 expression. In human
brains, FTO SNPs were associated with expression of IRX3, but not
FTO. Body-weight reduction by loss of fat mass was observed in
Irx3-deficient mice directly linking IRX3 expression with regula-
tion of body mass and composition [6].

Once a region of association has been identified, bioinformatics
approaches and functional assays become essential for pinpointing
the causal variant or the affected gene, and determining the mech-
anism by which the variant(s) exerts its effects. Genetic factors to
predict personal disease risk and identify the biological underpin-
nings of disease susceptibility may help to develop new prevention
and treatment strategies [2]. Nevertheless, the initial generation of
genome-wide SNP information per sample remains costly. How-
ever, given the fact that study participants are typically well pheno-
typed, such approaches have continuing benefit for serving in
secondary GWAS (i.e., testing for association with traits other
than the primary study) and participating in large, multicenter
consortia.

For high-density genotyping, two types of arrays are primarily
used: the Illumina® BeadArray for SNP genotyping and the Affy-
metrix® Axiom®Genome-Wide Array. The protocol described here
will refer to these arrays in a general survey, while the main focus
will be on the data handling and bioinformatics analysis (i.e., the
GenABEL workflow). Because every data-set and subsequent anal-
ysis have their own difficulties, this chapter may not cover issues
specific to certain circumstances. In light of this, we have prepared
this chapter to allow an investigator to brachiate through the single
steps to perform an individualized analysis. This chapter therefore
seeks to provide a basic, overall workflow, from sample preparation
to data analysis, for performing a GWAS to identify disease genes.
We also discuss resources for SNP annotation and interpretation of
GWAS results for subsequent downstream analyses.

1.2 Considerations in

Preparing for GWAS

1.2.1 Study Design

To achieve a meaningful result in a GWAS, a thoughtful approach
to characterize the phenotype of interest is critical (see Note 1)
[2]. Phenotypes are classified as categorical (often binary, case-
control) or quantitative (e.g., anthropometric or metabolic mea-
sures). From a statistical point of view, quantitative, disease-related
traits (i.e., endophenotypes) are preferred because they improve
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power to detect a genetic effect and often have a more interpretable
outcome. For example, a quantitative trait can represent a units-
change of the trait per allele or genotype class [2]. However, not all
disease traits have well-established measures; in this case, indivi-
duals are usually classified as either affected or unaffected. Thus,
while quantitative outcomes are preferred, they are not required for
a successful study [2, 7].

1.2.2 Standardized

Phenotype Criteria

The definition of rigorous phenotype criteria is essential, and par-
ticularly critical for multicenter studies to prevent the introduction
of site-based effects into the study [2]. However, variability in
phenotypes based on factual use of those criteria by the clinicians,
or on biased measurement, may not be completely eliminated.
Therefore, statistical analyses are going to be adjusted whereby
the participating study centers are coded into a categorical variable
and used as a covariate.

1.2.3 Power Calculations Power calculations are not only important for optimizing study
design, but are also critical for ensuring meaningful results (see
Note 2) [8]. Power calculations go hand-in-hand with sample
size. Many aspects of study design, such as selection of subjects,
definition and measurement of phenotype, choice of howmany and
which genetic variants to analyze, inclusion of covariates and other
possible confounding factors, and the statistical method to be used,
can be controlled by the researchers [8]. It is always worthwhile to
maximize the statistical power of a study, given the constraints
imposed by nature and limitations in resources (see Note 2)
[8, 9]. The power or sensitivity of a binary hypothesis test is the
probability that the test correctly rejects the null hypothesis
(H0) when the alternative hypothesis (H1) is true. Tools for
power and sample size calculations, such as the G*power program
[10, 11] or Quanto (http://biostats.usc.edu/Quanto.html), are
freely available online (see Note 3).

2 Materials and User Guides

The genome-wide genotyping wet lab protocols require specific
equipment, plastics, and reagents. To list them here would go
beyond the scope of this paper, which instead focuses on data
handling and analysis. This section thus provides information for
resources where protocols and equipment for performing a GWAS
can be found.

2.1 Target DNA 1. Depending on the platform and chip type used, 200–500 ng
purified DNA per sample is recommended for genotyping.
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2.2 Genotyping

Protocols

1. The “Axiom® 2.0 Assay Manual Workflow User Guide” is avail-
able at http://www.affymetrix.com/support/technical/manuals.
affx. The guide is set up for 96 samples; 24 sample- and 384 sam-
ple- versions are also available (see Note 4).

2. The “Infinium LCG Quad Assay Guide” for e.g., the Illumina®

Infinium Omni5Exome-4 BeadChip array (see Note 4) is avail-
able at http://support.illumina.com/array/array_kits/infinium_
humanomni5exome_beadchip_kit.html (see Note 5).

2.3 Lab Equipment,

Plastics, and Reagents

1. Equipment and supplies for the Axiom® 2.0 Assay for 96 Sam-
ples are listed in the Site Preparation Guide; additional equip-
ment and consumables are listed in the protocol (see Subheading
2.2, item 1).

2. The “Infinium assay lab setup and procedures” manual is available
at http://support.illumina.com/array/array_kits/infinium_
humanomni5exome_beadchip_kit/documentation.html and
includes all general recommendations for lab equipment, plastics,
and reagents. Additional equipment specific for the Infinium
Omni5Exome-4 BeadChip array is listed in the manual given in
Subheading 2.2, item 2.

2.4 Instruments,

Operating System, and

Software

2.4.1 Instruments

Table 1 lists the main instruments and software needed to perform
genome-wide SNP genotyping and analyze the data. For further
information and additional equipment, please refer to the manu-
facturer manuals (Subheading 2.3). More details regarding the
operating system and the data analysis software are shown below.

2.4.2 Operating System

(OS)

Because many users use Microsoft Windows, we provide a descrip-
tion based on the Microsoft OS, version 7 or newer. In general, we
recommend using a computer with Linux as OS, because exploring
data is much easier with the Linux bash shell and preserves com-
puter resources like working memory. However, all commands
displayed will work on both OS, as well as the Mac OS. Cygwin
(http://cygwin.com) is a Linux Bash Shell clone with similar func-
tionality. While working with a big text file, which is the case for
almost all genetic formats, it is absolutely necessary to have the
ability to explore the files in a fast way. The Bash Shell in Linux is the
perfect tool for doing this, and Cygwin is a good copy for Windows
(Table 2).

1. Cygwin has its own environment on the computer. Therefore,
the data need to be copied to Cygwin prior to analysis. In the
Cygwin-folder, there will be a home-folder. We recommend
creating a username- and then a data-folder within that direc-
tory. Eventually, one should create a structure as follows:
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The next few lines display some commands, which are helpful with
big text files:

Commanda Description

head
filenameb

Displays the first 10 lines of the file (one line of the file is
potentially on multiple lines of the screen in case the file
has more columns than can be displayed by the monitor)

head -nx
filename

Displays the first x lines of the file (same limitation as for
‘head filename’)

head filename
|
less -S

Displays the first 10 lines of the file (one line of the file is on
one line of the screen–not all columns are displayed;
depends on monitor width)

head filename
|
cut -d “-fx

Displays column x of the first 10 lines of a space delimited
file

aFar more commands available; combining the different commands with a pipe (|) makes

the Bash Shell an extremely powerful tool for bioinformaticians
bReplace filename by the name of your file

2.4.3 Software One major software package we will use extensively in this tutorial
is R, an environment for statistical computing and graphics, which
can be freely downloaded (Table 2) [12]. Because it is not possible
to explain every single step, we strongly encourage the reader to
become familiar with the syntax and logical behavior of R, which
will make using the package easier. In general, selecting the appro-
priate software for performing a GWAS is crucial. While there are a
number of software packages available, we recommend four widely
used tools, including PLINK [13], GWASTools [14], SNPTEST2
[15], and the GenABEL-suite [16] (Table 2). In this protocol we
will mostly use GenABEL, but provide a short overview of the
other three programs below.

1. PLINK is a command-line based, open-source program [13],
and is probably the most commonly used software for analysis of
GWAS data. PLINK has a wide range of functions and is com-
putationally efficient, because it is written in C/C++, one of the
most powerful programming languages. A disadvantage of the
native PLINK program is its limited flexibility. Due to the fact
that one will stay in a kind of isolated environment, the maxi-
mum functionality will be reached at some point. However,
extended PLINK has limited R-support, which is a strong
advantage, as R is one of the major statistical environments.
Regardless of whether PLINK is used or not, the data formats
introduced by PLINK are very commonly used in the commu-
nity and also by other software. For this reason, we will execute
PLINK in the beginning of this tutorial (Subheading 3.2.2).
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2. SNPTEST2 is another command line-based program, developed
by the authors of IMPUTE2, a widely used software solution for
imputing [15]. SNPTEST2 was directly created for a workflow
using imputed data based on imputation with IMPUTE2, which
makes it easy to use with this kind of data. Since imputed data
have a specific structure and require further editing before
importing to other software, it is worthwhile to determine
whether this program has value for the analytical needs of the
reader.

3. GWASTools is a Bioconductor package that uses the R-language
[14]. Because R is a statistical environment with a vast number
of options for all kinds of data, use of GWASTools will increase
the flexibility to edit and analyze your data. This is also true for
GenABEL, which is also an R-package (see Note 6). A strong

Table 1
Main instruments and software for the GWAS procedure

Genotyping

Affymetrix platform Illumina Platforma

Instruments GeneTitan® Multi-Channel
Instrument

l Hybridization Oven
l Water Circulator with Programmable Temperature
Controls

l HiScan System or iScan System

Software GeneChip® Command Console®

(AGCC)
Axiom™ Analysis Suite

Illumina® GenomeStudio Genotyping Module

Array e.g., Axiom® Genome-Wide
Population-Optimized
Human Arrays

e.g., Illumina® Infinium Omni5Exome-4 BeadChip
array

Data analysis

Component Comment

Computer Intel Core i3/AMD FXb

8GB RAM
Minimal requirements based on dataset of 500.000
markers and 1000 samples

Server Intel Xeon/AMD Opteronb

8–12 CPU Cores
64GB RAM

Estimated for imputation and working with imputed
data from the 1000 Genomes Project

Operating
system

Linux/Windows/Mac OS Details on the operating system: Subheading 2.4.2

Software PLINK
Cygwin (only Windows)
R/RStudio
GenABEL

More information on the software please see
Subheading 2.4.2

aThe Illumina platform for SNP genotyping requires a set of specific items related to the handling of the samples,

BeadChip arrays and reagents
bRequirements are based on current CPU architecture but older CPU generations are also possible
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advantage of GWASTools is that it eliminates one of the major
disadvantages of R, that is, the memory usage. Because every-
thing in R, by default, is stored in the memory, problems can
arise when dealing with big data on a local machine. This should
be kept in mind when it comes to GWASTools.

4. GenABEL, or more specifically the GenABEL suite [16], is also
an R-package, but unlike GWASTools, is not part of the Bio-
conductor project. The GenABEL suite has a comprehensive
range of options for reading, editing, and analyzing data.
Because of these options and its ease of use, we will focus on
the use of GenABEL in this chapter. The bioinformatics analysis
protocol given in this chapter (Subheading 3.3) was adopted
from the official GenABEL-tutorial (Table 2) [17].

Table 2
Links for user manuals and programs

Introduction to R l http://cran.us.r-project.org/doc/manuals/R-intro.pdf
l http://blog.revolutionanalytics.com/2013/08/google-video-r-
tutorials.html

Install R l https://cran.r-project.org/

Introduction to RStudio l https://www.youtube.com/watch?v ¼ 5YmcEYTSN7k

Install RStudio l https://www.rstudio.com/products/rstudio/download3/
! integrated development environment for R

Install Cygwin l https://www.cygwin.com/(only necessary for Windows)

Introduction to PLINK l http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml

Install PLINK l http://pngu.mgh.harvard.edu/~purcell/plink/download.shtml
Usage note:
! every PLINK command has to be typed in the windows command

line tool (cmd)
! to open the cmd: Press ! type “cmd” ! press enter
! to change the cmd to full-size mode type: mode 800 ! press enter

(command only necessary for Windows 7 and 8)

Introduction to SNPTEST and
SNPTEST2

l http://innovation.ox.ac.uk/licence-details/snptest/

Introduction to GenABEL l http://www.genabel.org/tutorials

Install GenABEL l https://cran.r-project.org/web/packages/GenABEL/index.html

Introduction to GWASTools l http://bioconductor.org/packages/release/bioc/html/
GWASTools.html
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3 Methods

3.1 Wet Lab

Procedures

3.1.1 DNA Preparation

For DNA extraction kits from Qiagen (e.g., QIAamp DNA Blood
Kits) or Millipore are recommended as they have been tested by
Affymetrix (please refer to the manufacturers handbooks). How-
ever, other kits may be used, as long as they avoid boiling or strong
denaturants. DNA concentration and quality can be determined
using NanoDrop™ spectrophotometry (Thermo Fisher Scientific)
or PicoGreen (Thermo Fisher Scientific). In the event that the
DNA preparation contain inhibitors (e.g., ethanol residuals, salt,
proteins), which may disturb DNA amplification procedures, an
additional cleanup step may be required (see Note 7).

3.1.2 Schematic

Workflow for Affymetrix®

and Illumina® SNP Arrays

The schematic workflow for the SNP arrays is shown in Fig. 2.

3.2 Bioinformatics

Workflow

The analysis of genomic data, especially when increasing the infor-
mational power of a data-set with imputation, is a complex process
where several steps must be considered (Fig. 3). While one can use
specifically defined protocols for the wet lab part, available bioin-
formatics methods are much more diverse. For example, specific
questions and hypotheses can require different ways to analyze the
data. While it is not possible to include all options in a single
chapter, we do provide a generalized pipeline below that should
serve as a basic foundation upon which to build a study-specific
bioinformatics flow.

3.2.1 Input Data The input data for the GWAS depends on the output data from the
genotyping-platform. As mentioned earlier, Illumina and Affyme-
trix are presently the two big players on the market. Both use self-
developed software to analyze the raw output of the genotyping
experiment. Despite the simplistic description given here, the pre-
processing of the raw data is a major step requiring a certain level of
expertise. However, most users will receive an already useable file
format from a core genotyping facility. We will describe how one
will receive the necessary PLINK format out of the raw data from
both platforms, as this represents the actual start of the GWAS
methodology in this chapter.

1. For the Illumina® GenomeStudio platform, creation of the
necessary file format is straightforward, because a plugin, which
can convert the data directly to the .ped-format, is provided by
the manufacturer (see Note 8). Please note, in this chapter, we
start from the binary file-format. Therefore, if the data is exported
in ped-format from GenomeStudio, the second plink-command
will need to be executed (Subheading 3.2.2). If GenomeStudio is
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not available, and only a “final report”- and “SnpMap”-file were
received, the all-in-one converting suite, “SNPConvert” can be
used [18]. This software is available for download at the following
github repository: https://github.com/nicolazzie/SNPConvert
/tree/master/SNPConvertGUI_WinMac. Simply save the nec-
essary .zip on the hard drive, unpack it, and run the .exe. How-
ever, because the software is written in Python 2.7, the
programming language, which is available for all OS, needs to
be installed. One further comment is necessary for Illumina®

Illumina®
Infinium LCG Quad Assay 

Day 1
Denaturing / Neutralizing 

Amplification

Day 2
Fragmentation / Precipitation

Resuspension
Hybridization to 12 BeadChips

48 DNA Samples

Day 3
Washing

BeadChip Oligo Single-Base 
Extension / Incorporation of  

Detectable Labels
Scanning

Bioinformatics

Affymetrix®
Axiom® 2.0 Assay 

Day 1
DNA-Amplification

23 ± 1 hr Incubation at 37°C 

Day 2
Fragmentation / Precipitation

Incubate overnight

96 DNA Samples

Day 3
Drying / Resuspension / QC
Denaturation / Hybridization

Hyb Time 23.5 to 24 hrs

Day 4
Ligation / Staining / 

Stabilization
Array Processing

Bioinformatics

Fig. 2 Schematic protocols for the Affymetrix® and Illumina® wet lab procedures. The protocols are scalable
and leave room to tighten or extend the time plan. Adopted from the manufacturer manuals
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arrays which contain exomic markers. Illumina® uses its own
identifiers for markers, the so-called exm-identifier, instead of
the commonly used rs-identifiers. To annotate the
exm-identifiers to rs-identifiers, Illumina® provides auxiliary-files
for different arrays at their support-homepage.

Raw data preparation

Loading the data

Exploring the data and 
descriptive statistics

Quality Control

Genome-wide association analysis 

Confirming results using 
permutation

Downstream 
analysis

Exporting results

Fig. 3 Schematic workflow for the bioinformatics pipeline
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2. Exporting data from the Axiom™ Analysis Suite is possible in
three formats: txt, PLINK (PED or TPED), and VCF. There is
no limitation regarding nonhuman data. While working with
this new Affymetrix® technology, one has to consider that Affy-
metrix® uses, similar to the exome arrays from Illumina®, its
own identifiers. The structure of these is “Affx-xxx” where xxx is
a number. Similar to Illumina®, Affymetrix® provides
annotation-files to translate affy-identifiers to rs-identifiers. For
PLINK file generation, Affymetrix® provides two methods,
using either the APT command apt-format-result (http://
media.affymetrix.com/support/developer/powertools/chang
elog/apt-format-result.html) or the Axiom Analysis suite. Both
methods allow the user to specify the identifier to be used.

3. PLINK uses different types of data formats to achieve different
goals (Table 3). All formats consist of multiple files. For further
information please see the official PLINK homepage (Table 2).

3.2.2 Data Preparation 1. For this protocol, we assume that the starting point of the
analysis is the binary PLINK format.

After opening the windows cmd, navigate to the folder where the
plink.exe was unzipped. To convert the unreadable binary format

Table 3
PLINK file formats

File
format

Associated
file types Function of file format Function of the particular file

Binary .bed – Storing and processing data directly with
PLINK; not human readable (encoded with
0 and 1); needs small amount of disk space

– Stores the genotypes
.bim – Mapping-file with

SNP-information
.fam – Information on individuals

PED .ped – Human readable file format and therefore
better to handle externally of PLINK; needs
more disk space

– Stores information of one
individual and genotype of all
SNPs in one row

.map – Mapping-file with
SNP-information

TPED .tped – Transposed human readable file format; best
readability to handle externally of PLINK;
needs more disk space

– Stores information of one SNP
and all genotypes of all
individuals in one row

.tfam – Information on individuals
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to the TPED format, which will be used as input to GenABEL (the
most often used approach with GenABEL), execute the following
commands:

2. Before the data can be explored, the files will need to be copied
to Cygwin (see folder structure above; Subheading 2.4.2). Open
Cygwin and check the files. If using Linux or Mac OS, use the
Bash shell (see Note 9).

3. In addition to the .tped and .tfam, a phenofile, which contains
phenotypic data for the cohort, is needed. This file must include
the same individuals as the .tfam-file, as well as the same IDs for
each individual, as defined in the .tfam-file. This file can be
created with the Excel program and stored as a simple text-file
(space delimited). The samples should be stored in the rows, one
individual per row, and variables are stored in the columns. The
number of columns is unrestricted. The phenofile should be
stored within the folder where the other files are, in our case
here: “c:\GWAS\”. As mentioned above, this file needs to be
copied to the respective Cygwin folder in order to explore
it. Here we see the first four lines (including the header line) of
our example phenofile (using Cygwin).
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3.3 The GenABEL-

Workflow

The protocol provided here is adopted from the official GenABEL
tutorial (Table 2) [17]. GenABEL offers many options for different
hypotheses, two of which will be described in this section. The
workflow is based on first the analysis of a binary trait (case—
control; Subheading 3.3.4) and second on the analysis of a quanti-
tative trait (Subheading 3.3.4). With more complex data than that
presented here, we recommend exploring the GenABEL tutorial in
more detail, as it provides good examples for structured association
and EIGENSTRAT analysis, as well as Mixed Models, and a com-
bination of the latter with a structured association and subsequent
meta-analysis using MetABEL. The tutorial also provides a helpful
overview of what method to use to best address a specific
analytical need.

From this point, we will describe all analyses using R. The first
step is to start R-Studio. The text, which is written behind a “#” is a
so-called code-comment. Explanations and descriptions for the
command can be added, which may help to recapitulate the pro-
gramming when the analysis is reassessed or the code is used for a
new analysis. If the code is executed in R, this text will be ignored
from the compiler.

3.3.1 Loading the Data l Install and load the GenABEL package and convert the .tped
and .tfam to GenABEL-compatible .raw-format:

l Create the gwaa.data-object while reading the data into R and
therefore, into the memory:
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l Check the number of SNPs per chromosome:

l In the .tped, the x-chromosome is defined as chromosome 23.
GenABEL would identify this as an autosome, therefore the
chromosome 23 must be recoded to X:

l Check the chromosomes again:

3.3.2 Exploring the Data l A couple of descriptive statistics:

l Create and explore a summary of the genotypic data (a couple of
possible commands for exploration are shown); the result of the
shown command is an R data frame which can be handled as
such (see Note 10):
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l One can also check specific SNPs (see Note 10):

l Some other interesting measures are the SNP-call rate or the
minor allele frequency:

l Above we summarized the genotypic data. A summary of the
sample data can also be performed. Again, the output is an R
data frame:
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“CallPP” is the sample callrate, which represents the number of
SNPs successfully genotyped for a particular sample. “Het” displays
the average heterozygosity of all SNPs of one sample.

l Again, the number of samples with a callrate smaller than a
defined threshold (e.g., 0.95) can be checked and displayed
with all summary variables:

Unfortunately, there is no detailed description available regard-
ing the output of “perid.summary()”. Therefore, the meaning of
the output columns can only be estimated: “NoMeasured”¼Num-
ber of genotyped markers per ID/sample; “NoPoly” ¼ NA;
“Hom” ¼ average homozygosity of all SNPs of one sample; “E
(Hom)” ¼ expected value of the frequency of homozygosity;
“Var” ¼ variance; “F” ¼ F-statistic.

3.3.3 Quality Control Quality control is performed in three steps: (1) exclude samples and
SNPs that do not fulfill specific criteria (low strictness); (2) check
population for possible genetic outliers; and (3) exclude samples
and SNPs that do not fulfill strict criteria.

Softened thresholds will be used in the first round, because it is
possible that “check.marker()” will exclude samples from different
populations or relatives, if present. It is recommended to have these
samples included in the analysis when performing the second step
to receive a more robust result while checking for genetic outliers.
To exclude the last outliers that will not fulfill strict criteria, the
quality control will be completed with a second “check.marker()”
call. Thresholds such as minor allele frequency (MAF), call rate, and
Hardy-Weinberg Equilibrium (HWE) are manufacturer- and
SNP-chip specific.

1. Exclude samples and SNPs that do not fulfill specific criteria (low
strictness)

l In the first round, we use a SNP- and sample call rate thresh-
old of 0.95 and a minor allele frequency cutoff of 0.01. The
false discovery rate (FDR) for unacceptably high individual
heterozygosity (het.fdr) and the cut-off for the HWE (p.
level) are set to 0 for reasons mentioned above:
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l We save the data-set without the outliers from the first round,
and then set the remaining heterozygous X-chromosome SNPs
in males to NA:

2. Check population for possible genetic outliers

l First, create a genomic kinship matrix—identity by state
(IBS) procedure.

The numbers below the diagonal (red) are the average IBS
values (orange). The numbers on the diagonal can be calculated
with the equation 0.5 plus the genomic homozygosity. Above the
diagonal, the amount of SNPs successfully genotyped in both
individuals is displayed (white).
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l Next, compute the transformation of the result to a common
distance matrix, perform a classical multidimensional scaling
(MDS), and plot the results as scatterplot to display possible
genetic outliers. The whole GenABEL approach for the outlier
detection is adapted from Price et al. [19] (see Note 11).

In this example, we see one main cluster and four smaller
clusters (red circles), which are potentially genetic outliers
(outlier-cluster) (Fig. 4). We can find these clusters using the
command “kmeans()”. “Kmeans” not only finds the outlier-
clusters, but also the main sample cluster. So the argument “cen-
ters” should be the number of outlier-clusters (n ¼ 4), plus the
main cluster (n ¼ 1)—in this case “5”. Type the following code:

These outliers could be due to errors in sample genotyping
(e.g., doubling of samples), twins or relatives in the study sample or
the presence of different ethnicities. It is worth checking the phe-
notype data for relatives, if available, and comparing these with the
result of the IBS-computation. In our example, we assume that
there are four outlier-clusters.

l As all PCs in the data set contribute to the overall variance, it is
worth checking other principal components, in addition to the
first two computed by default using the “cmdscale” command.
Compute the PCs and assess the contribution of these
(“prcomp” computes all PCs, only the first six are shown):
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As shown, the first six PCs explain only 18% of the variance,
suggesting that other PCs contribute to the variance in a not
negligible way. Therefore, it is worthwhile to check at least these
PCs. We wrote a short R-function “plot.GeneticOutlier()” for
doing so, which can be downloaded from: https://github.com/
TobiWo/Plotting_GeneticOutliers (description, installation and
further comments see repository). The function displays multiple
MDS-plots and automatically marks the clusters/outliers from the
first MDS-plot (PC1 vs. PC2), in all other MDS-plots. Further, if
the argument “return.main” is set to true, it returns the sample-
IDs, which should be kept in the analysis, i.e., the main-sample-
cluster (see source code for detailed description of all arguments). If
the above samples were real outliers, they would also build clusters
in the other MDS-plots. To compute more than two PCs, the
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Fig. 4 Scatterplot displaying the results of the multidimensional scaling (MDS) analysis to display possible
genetic outliers. The first two principal components are shown. One main cluster and four smaller clusters (red
circles) can be found
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cmdscale() call must be performed again while specifying the num-
ber of desired principal components. In the following example,
only the first four will be plotted. Compute the following:

As shown in Fig. 5, in the first MDS-plot, one small cluster
(blue circle) is not an outlier. Instead, three other samples on the
left of the main cluster are marked as outliers (red circle). One
would not identify these while looking only at the first MDS plot.
However, checking the other plots reveals that indeed, this cluster
(red circles) appears to be a real outlier-cluster (Fig. 5). To be sure
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Fig. 5 Scatterplots displaying the multidimensional scaling (MDS) analysis to identify samples outlier clusters.
Principal components one to four are shown. The small cluster (blue circle) in the MDS-plot is not an outlier.
Instead, three other samples on the left of the main cluster are marked as outliers (red circle)
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about the unclear samples (blue circles), another check for five
outlier-clusters (+1 main cluster ¼ 6) will be performed (Fig. 6).
Additionally, we return the sample IDs of the main cluster, which
we will keep in the analysis:

For the first three plots, the additional outlier-cluster (red
circles) is true, but for the remaining three, it is not (Fig. 6). We
also checked other PCs with our function (data not shown) and
could see that these three samples form an outlier-cluster in most of
the plots. Therefore, we decided to exclude these samples. How-
ever, this is a case-to-case decision that deserves careful
consideration.

3. Exclude samples and SNPs that do not fulfill strict criteria
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Fig. 6 Scatterplot displaying the multidimensional scaling (MDS) analysis for five outlier clusters. For the first
three plots, the additional outlier-cluster (red circles) is true, but for the remaining three, it is not
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We clean the data while supplying the IDs of the main-cluster
to the gwaa.data-object. Then we proceed with the second “check.
marker()” call on the remaining data-set. Instead of p.level ¼ 0, we
now use the manufacturer-defined threshold for HWE. The het.
fdr-argument is not displayed because we used the default value
of 0.01:

As shown, 2363 SNPs, but no additional samples, were dropped in
the second qc-round. We excluded these SNPs, creating a final
data-set, which will be used for the GWAS:

3.3.4 Genome-Wide

Association Analysis

For the purposes of illustration, we will perform two different
GWAS on the sample data: a qualitative (binary/case-control) anal-
ysis and a quantitative trait analysis. First, we check the phenotype
data:
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1. Case-control analysis

The qualitative case-control analysis will be conducted on the
disease phenotype, which is simply defined as “yes” (equals 1) or no
(equals 0). The “descriptives.trait()” calculates a mean and a SD
also for the binary traits sex and disease, but these results should be
ignored.

The association analysis itself is fairly easy to perform. GenA-
BEL uses the same formula-context as most statistical functions in
R. The variable before the “~” is the response variable, after the
“~”, the predictor variables are added. Multiple covariates are
connected with a plus sign. The markers for the actual GWAS are
not specifically included in the formula, as this is done by GenABEL
internally. In our example, we adjust for age and sex, as these
variables are known to influence the association between the mar-
kers and our hypothetical disease phenotype. Let us conduct the
GWAS as follows:

Following the analysis, the results are saved and the false dis-
covery rate (FDR)-corrected p-values are added to the data-frame.
The top ten most significantly associated markers are displayed (see
Note 12):
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As shown from the top10 output (column “Pc1df”), none of
the SNPs in this example reached the commonly used genome-
wide significance level of p�1�10�8 which is based on the
conservative multiple testing procedure of Bonferroni [20]. The
Bonferroni procedure indicates that for testing of n independent
hypotheses on one dataset, the statistical significance for every
single hypothesis is 1/n of the significance which would be used
for testing only one hypothesis. In addition to Bonferroni-
corrected p-values, false discovery rate (FDR) corrected p-values
are calculated (column p.FDR). In GWAS, a FDR-threshold of
5–20% is commonly used [21]. In our analysis, even with a thresh-
old of 20%, we found no statistically significant evidence for associ-
ation between SNPs and phenotype.

Another interesting output is the column “effB” which, in case
of a binary trait, represents the odds ratio (OR) on a log-scale. One
can calculate the OR and corresponding confidence interval for the
displayed top hit by exponentiation of the values from the columns
“effB” and “se_effB” (latter is standard error):
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This result can be interpreted as a 7.7-fold higher risk develop-
ing the disease when one effect allele is added to the genotype.
However, because there is no evidence of statistical significance, we
would not consider the SNP as a real hit.

2. Quantitative analysis

In the following example, the quantitative analysis will be
performed using plasma-levels of adiponectin, a protein involved
with metabolic and hormonal processes. Because the original data
points for adiponectin were not normally distributed, we would
expect that the residuals of the actual models would not be nor-
mally distributed, which violates a major assumption for linear
regression. Therefore, the data points need to be ln-transformed
prior to analysis (see output of “descriptives.trait()”).

We conduct the same function as for the binary trait example
described above, and also adjust for sex and age. However, because
we are now evaluating a quantitative trait, the argument “trait.
type” must be changed from “binominal” to “gaussian”:

Again we save the results, add false discovery rate (FDR)-
corrected p-values, and display the top ten SNPs (see Note 12):
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As with the binary analysis, none of the SNPs reach genome-
wide significance levels of association. However, if we set the
FDR-threshold to 20%, all of the SNPs show statistically significant
evidence for association with adiponectin levels, yet, we would
expect that two of the ten are false positive hits. The “effB” column
represents the actual beta or coefficient estimate of a linear regres-
sion. Because we used ln-transformation to achieve a normal distri-
bution of adiponectin values, these results are not easily
interpretable. If the transformation had not been applied, we
would interpret “effB” as the increase or decrease of adiponectin
(in μg/ml), while adding one allele “A2” to the genotype.

3.3.5 Permutation In addition to Bonferroni or FDR-corrections, permutation analy-
sis is another approach to address the problem of multiple testing
[22]. Like these methods, the general purpose of a permutation
analysis is to assess whether the GWAS result appeared by chance or
is statistically meaningful. Permutations are helpful to determine
candidate SNPs for pathway analyses. A recent study showed that
permutations are more suitable than simple multiple testing correc-
tion methods for detecting false positive hits [23]. There are differ-
ent permutation methodologies available [23], and GenABEL itself
offers a permutation option within the function “qtscore()”. This
statistical test works slightly different to “mlreg()”, which we con-
ducted for the first GWAS. This results in a minimal deviation
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regarding the output of the function. If one decides to use the
permutation functionality of “qtscore()”, it must also be performed
for the original GWAS (Subheading 3.3.4) to maintain consistency
over the different analyses. In accord, we repeated the initial
GWAS, checking then our results while using 500 permutations
with “qtscore()” (seeNote 13). Here we continue with the quanti-
tative trait, but the procedure would be the same for the binary
analysis, except the argument “trait.type” would be changed to
“binomial”:

While conducting the permutation analysis, the significant
threshold is now 0.05 and defined as:

narray:p<o:p

npermutations

“array.p” represents a collection of the minimal p-values
obtained in each permutation analysis and “o.p” is the p-value for
a particular SNP obtained in the initial analysis. In our GWAS, the
permutation reveals that none of the top hits reaches the significant
threshold, indicating that the original results occurred by chance.
Independent of such a result, it is always worth checking databases
for the biological background of your top hits. If one of the
markers lies within a gene that has biological relevance, which can
be confirmed experimentally, then the p-values are not that impor-
tant. However, a GWAS is a hypothesis-free approach to identify
possible candidates for further analysis, and should therefore pro-
duce trustworthy results.
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3.3.6 Post Analysis After performing the association tests, it is necessary to checkwhether
the results show signs of confounding, for example, from differences
in population structure. Both quantile-quantile- (Q–Q) plots and
Manhattan plots are common tools for identifying data confounding.
To demonstrate this, we will continue with the results from the
quantitative association analysis, referring to the output from
“mlreg()”; however, the approach would be the same for binary
trait analysis. To plot the data, we use the R-package “qqman”
(https://github.com/stephenturner/qqman) [24]. Because the
functions of “qqman” need a special input-data format, we must
first edit the original results (dataframe “GWAS_result_quant” in
Subheading 3.3.4):

Next, “qqman” is installed and loaded and a Q-Q-plot is made
(Fig. 7):

The Q-Q-plot in Fig. 7 displays the expected distribution of
p-values compared to the observed p-values. All black dots should
be on the red line, except those on the upper right since these refer

Disease Gene Identification Using GWAS 141

https://github.com/stephenturner/qqman


to the probable true associations. From this analysis, we can con-
clude that our data showed no confounding.

For the Manhattan plot, we run the following command,
where x is the data being referred to:

The function is designed to search for a column marked as “P”
within the input-data. The command also contains features to
change the color (argument “col”) and set the y-axes limitations
(argument “ylim”). Because we are excluding p-values over a cer-
tain threshold, this will reduce the workload for the machine. Here
we set y ¼ 1 as minimum and y ¼ 8 as maximum. This excludes all
p-values larger 0.1 (Fig. 8).

In the Manhattan plot (Fig. 8), the blue line represents the
suggestive significance threshold. While there is no defined thresh-
old for suggestive significance, p< 10�5 is commonly used. Duggal
et al. [25] determined that different genotyping technologies or
databases lead to different significant thresholds for the resulting
GWAS associations. Beside the strength of the association, the
Manhatten plot can also reveal problems in the data. If points
were scattered or the top hits were single points, rather than
clusters of associated markers (so-called chimneys), the data should
be reevaluated. While the sample data initially gave the impression
of isolated top hits, closer examination reveals that SNPs on
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Fig. 7 Quantile-quantile (Q–Q) plot. Displays the expected distribution of p-values compared to the observed
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chromosomes 1 and 16 are flanked by other markers. However,
SNPs on other chromosomes do appear to be single markers and
this could be due to the fact that we extracted the data randomly
from a larger dataset, which may have lacked flanking SNPs.

3.3.7 Imputation If genotyping is performed on the Illumina® or Affymetrix® plat-
form, the number of SNPs interrogated represents only a fraction
of those within the human genome. Although these SNPs were
chosen for specific reasons (e.g., tagging SNPs with high LD to a
maximum of other SNPs), the potential for missing interesting
markers remains a possibility. The method of imputation offers a
way to add missing data points into the dataset [26]. Imputation in
genetics is based on known haplotypes of a population. In this
method, algorithms infer genotypes for the missing SNPs based
on a reference panel. In the past, inference used genotypes from the
HapMap database, but now, the 1000 Genomes Project database
(http://www.internationalgenome.org/) is mostly used, as it offers
information on millions of markers, and makes it possible to
increase imputation quality of low-frequency variants, which scale
with the overall size of the reference panel [27].

Imputation requires several checks for quality control (pre and
post), as one might be faced with mapping problems and it is
important to know how to handle imputed data. The above-
mentioned algorithms are packed in freely available software
making imputation feasible for even novice researchers. A recent
paper for the “Beagle” software compared the most widely used
packages over a variety of parameters and presented a comprehen-
sive theoretical background for imputation [28]. Although, “Bea-
gle” in the current version is memory efficient and very fast,
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computer power, in general, must be considered as a limitation for
imputation. Therefore, we recommend a small server-cluster, with
at least 8–12 CPU cores and 64–128 GB of memory when imput-
ing from the 1000 Genomes Project database. This is even more
pertinent when conducting a GWAS based on imputed data.
Here, GenABEL, or R in general, will come to its limitations
quickly, as it is not a very fast programming language compared
to C/C++, for example. However, for imputed data, ProbABEL,
which belongs to the GenABEL suite, was designed [29].

3.3.8 Analysis

Conclusion

From our analyses, we can conclude that the presented dataset is
valid and shows no signs of confounding or related problems. The
binomial analysis found no evidence for statistically significant asso-
ciation of any marker with the disease phenotype. Likewise, the
quantitative analysis revealed no evidence for genome-wide statisti-
cal significance, although we found some suggestive hits. Multiple
testing methods produced an unclear picture: while the
FDR-procedure suggested the top ten hits were significant, permu-
tation did not. As mentioned, in the face of biological relevance,
biological experimentation may be indicated, as well as appropriate
data analysis (see Subheading 3.4), or at the very least, validation of
findings in a replication cohort. The latter is especially important
for confirming associations in independent cohorts. Because vali-
dation is necessary to increase the explanatory power of a GWAS,
one should always be conducted.

3.4 Further

Downstream Analysis

3.4.1 SNP Annotation &

Resources for Data

Interpretation

The top hits from any GWAS need to be annotated, interpreted,
and set within a biological context. Further, not only the lead SNP
should garner attention, but also the whole LD cluster. We recom-
mend checking whether associated SNPs cause changes in the
amino acid sequence, disrupt predicted transcription factor binding
sites, or have already been implicated in other diseases. A reasonable
first step to determine whether the signal has already been detected
for the trait of interest, or any other trait, is using the GWAS catalog
[4, 5] (Table 4). A freely available and widely used tool for annota-
tion is ANNOVAR, which can complete these steps [30]; however,
because it is a command-line based program, it is not as easy to use
as a general windows program. It is written in the programming
language Perl. There is a web-based version of ANNOVAR, wAN-
NOVAR, which provides good functionality, although it is not as
complete as ANNOVAR [31, 32]. Alternatively, the Variant Effect
Predictor (VEP) from Ensembl [33] can be used, either as a stand-
alone Perl script or a web interface, which is very user-friendly and
does not require command-line experience (Table 4). Other
packages include SnpEFF [34], Exomiser [35], and VarioWatch
[36]. We recommend checking the functionalities of these different
tools to decide which the best approach for the analysis in question
is. Furthermore, there are many excellent databases supporting
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literature searches (e.g., NCBI) and genome browsing (e.g., UCSC
Genome Browser [37] and Ensembl [38]). Certainly, there are
more tools available then the ones presented here and many of
them share the same objective. The omics tools website (https://
omictools.com/gwas-category) lists many available programs for
annotation.

3.4.2 Expression

Quantitative Trait Locus

(eQTL) Studies

When gene expression data are available, genotype data can be used
to identify eQTLs. There are a number of software packages avail-
able to do eQTL analysis, including “Matrix eQTL”, which is an

Table 4
Resources for data interpretation

Resource Link Description

Databases

GWAS catalog https://www.ebi.ac.uk/
gwas/

Collection of all published GWAS assaying
�100.000 SNPs and all SNP-trait associations

NCBI https://www.ncbi.nlm.nih.
gov/

National Center for biotechnology information

UCSC genome
browser

http://genome.ucsc.edu/ Graphical viewer for aligned genome annotations

Ensembl http://www.ensembl.org/
index.html

Genome browser for vertebrate genomes: Gene
annotation, alignments, predictions, regulatory
function and collection of disease data.

Software & Web-interfaces

ANNOVAR http://annovar.
openbioinformatics.org/
en/latest/

Functional annotation of genetic variants

wANNOVAR http://wannovar.wglab.org/ Web-based access to most functionalities of the
ANNOVAR software for SNP annotation

Variant effect
predictor (VEP)
(Ensembl)

http://www.ensembl.org/
info/docs/tools/vep/
index.html

Determines the effect of your variants on genes,
transcripts, protein sequence, as well as
regulatory regions

wVEP http://www.ensembl.org/
Tools/VEP

Web interface for VEP

SnpEFF http://snpeff.sourceforge.
net/

Genetic variant annotation and effect prediction
toolbox

Exomiser http://www.sanger.ac.uk/
science/tools/exomiser

Annotation, filtering and prioritizing likely
causative variants according to user-defined
criteria

VarioWatch http://genepipe.ncgm.sinica.
edu.tw/variowatch/main.
do

Annotation on human genomic variants

The resources given here are examples and the table does not claim to be complete
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R-package [39]. For an R extension, “Matrix eQTL” is extremely
fast, because the authors used special matrix-based methods for the
algorithm calculations. Combined with the fact that it is a user-
friendly software with a good tutorial, “Matrix eQTL” is a good
choice for this kind of analysis.

3.4.3 Phylogenetic

Module Complexity

Analysis—PMCA

Identifying the disease-causing or trait-modulating variant is the
main challenge following GWAS, because association signals usu-
ally tag large LD groups, and the majority of common genetic
variants are located in noncoding regions. PMCA is a computer-
aided process developed to address this issue. The PMCA method
leverages conserved co-occurring transcription factor binding site
(TFBS) patterns within cis-regulatory modules to predict cis-regu-
latory variants, i.e., variants affecting gene expression [40]. This
method is based on the assumption that important DNA sequences
have persisted throughout evolution across different species and
that variants modulating gene regulation are major contributors to
common disease risk.

3.4.4 Gene-Based

Genome-Wide Association

Study

Here we directly refer to a program developed at the University of
Hong Kong by Li et al. [41, 42] called “Knowledge-based mining
system for Genome-wide Genetic studies” or KGG. This program
combines several powerful tests such as gene-based or gene-pair
interaction-based associations. The input for KGG is simply the list
of p-values received from the GWAS. KGG connects to several
databases and performs a comprehensive secondary analysis of the
original GWAS result. Because it is based on a graphical user inter-
face and has a very good user manual, the workflow is
straightforward.

3.4.5 Analyses with

Single Markers

Once the SNP-chip data are available, new hypotheses regarding
specific SNPs present in the data can be developed, for example,
whether a particular marker of interest is associated with a specific
phenotype. In such a case, single SNPs can be extracted from the
data, recoded to the genetic model of interest, and tested for
association. For someone not familiar with programming, this is
not an easy task. However, we wrote a small program, called
“gwasrecode”, to facilitate single SNP extraction (https://github.
com/TobiWo/gwasrecode). The program is based on the .tped-
format, which is also the basis for the workflow described above. An
interesting feature of the program is that it can also extract markers
from exome data-sets generated by an Illumina platform, which use
special exm-identifiers for markers instead of the more common
rs-identifiers. While the program is in an early stage of develop-
ment, its overall functionality has been successfully tested in differ-
ent scenarios.
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4 Notes

1. Recommended reading for GWAS: Bush WS, Moore JH
(2012) Chapter 11: Genome-Wide Association Studies. PLoS
Comput Biol. 8(12):e1002822.

2. Recommend reading for statistical significance testing and
power calculation:

Sham PC, Purcell SM (2014) Statistical power and significance
testing in large-scale genetic studies. Nat Rev. Genet.
15:335–346. and McCarthy MI et al. (2008) Genome-wide
association studies for complex traits: consensus, uncertainty
and challenges. Nat Rev Genet. 9:356–369.

3. Further online resources/resources for download for statistical
power and sample size calculations (selection): http://www.
statisticalsolutions.net/pssZtest_calc.php; http://biostat.mc.
vanderbilt.edu/wiki/Main/PowerSampleSize; http://
biomath.info/power/

4. Affymetrix®–Axiom® and Illumina® offer arrays with different
design, coverage, and price, as well as custom solutions. There-
fore, manuals may differ depending on the particular array.
Please see the manuals on the manufacturers’ homepages.

5. For analysis procedures, all samples should be processed using
the same platform. In case different genotyping platforms were
used, bioinformatics adaptations are necessary to analyze the
samples in one batch.

6. We have not yet used GWASTools, and cannot give a conclu-
sion about the overall program.

7. DNA quality: a 260/280 ratio of ~1.8 is generally accepted as
“pure” for DNA; expected 260/230 values are in the range of
2.0–2.2. DNA cleanup can be performed using a variety of
methods.

8. http://support.illumina.com/array/array_software/
genomestudio/downloads.html.

9. More information on both file formats,.tfam and .tped, can be
obtained here: https://www.cog-genomics.org/plink2/
formats#tfam.

10. The “u” in the “Strand” column means that there is no strand
information available for the data. Therefore, it is undefined.
This information is not necessary to conduct a GWAS; how-
ever, it can be useful to know the strand, especially for the top
hits. An easy way to get this information is the Biomart-project
by Ensembl (http://www.ensembl.org/biomart/martview/
3bfe0120c94ba7be65e52ce273af489b). Here you can browse
through different data sets and filter for particular SNPs or
even specific SNP-chips.
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11. The following steps will take several minutes, depending on the
size of the data set and the speed of your machine.

12. You will notice that your output looks different to what is
displayed here. We cut the data-frame for space considerations
and only show the most important information. You will rec-
ognize a column called “P1df”. These are the p-values before
genomic control adjustment. “Pc1df” are then the p-values
after the adjustment and the ones you should refer to.

13. Depending on the size of your data, this can take some time.
Again, we cut the result-data-frame to display only the most
important information.
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Chapter 8

Whole Genome Library Construction for Next Generation
Sequencing

Jonathan J. Keats, Lori Cuyugan, Jonathan Adkins, and Winnie S. Liang

Abstract

With the rapid evolution of genomics technologies over the past decade, whole genome sequencing (WGS)
has become an increasingly accessible tool in biomedical research. WGS applications include analysis of
genomic DNA from single individuals, multiple related family members, and tumor/normal samples from
the same patient in the context of oncology. A number of different modalities are available for performing
WGS; this chapter focuses on wet lab library construction procedures for complex short insert WGS
libraries using the KAPA Hyper Prep Kit (Kapa Biosystems), and includes a discussion of appropriate
quality control measures for sequencing on the Illumina HiSeq2000 platform. Additional modifications to
the protocol for long insert WGS library construction, to assess structural alterations and copy number
changes, are also described.

Key words Whole genome sequencing, Next generation sequencing, Short insert whole genome
sequencing, Long insert whole genome sequencing

1 Introduction

Since the completion of the Human Genome Project [1], sequenc-
ing technology has evolved from labor-intensive and time-
consuming capillary-based sequencing [2, 3] to massively parallel
next generation sequencing (NGS) [4–6]. As a result of these
technological advancements, WGS now enables us to spell out the
entire 3.1 billion nucleotides sequence of the human genome in a
dramatically more cost-effective and timely manner. Biomedical
research, particularly in the area of oncology, has benefitted from
such development, as WGS allows comparison between tumor
genomes and the corresponding normal, or constitutional, genome
to identify tumor-specific somatic alterations.

WGS encompasses a number of distinct modalities. The most
commonly used approach comprises sequencing of short inserts
(approximately 250–300 bp long). However, additional approaches,
including mate pair sequencing, long insert WGS (inserts that are
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~850–1000 bp long), and long range sequencing (LRS), may be
utilized to identify structural aberrations and variants, with the latter
also enabling phasing analyses. In this chapter, we focus on construc-
tion of both short and long insert [7] WGS libraries.

At present, the most widely adopted sequencing platforms are
those developed by Illumina (San Diego, CA). The Illumina plat-
form utilizes a sequencing-by-synthesis (SBS) chemistry based on
proprietary reversible dye-terminator nucleotide analogues
[8, 9]. Numerous companies sell whole genome library preparation
kits to generate adapter-ligated libraries for sequencing on Illumina
platforms. Major differences among kits include variable techniques
for fragmentation and adapter ligation, DNA input amounts, adap-
ters/indexing formats, and enzymes used for polymerase chain
reaction (PCR)- enrichment of libraries, if enrichment is per-
formed. Here we describe a foundation protocol used for generat-
ing short insert WGS libraries using KAPA Hyper Prep Kit (Kapa
Biosystems), and include modifications for generating long insert
WGS libraries [7].

The KAPA Hyper Prep kit was selected for this protocol based
on (1) an experimental comparison of the Kapa Biosystems Library
Preparation kit using XT2 adapters (Agilent) against the XT2
Library Prep kit (Agilent) and the Ultra DNA Library Prep Kit
(New England Biolabs); (2) evaluation of ligation efficiency
between Agilent XT and XT2 adapters when using the KAPA
Hyper Prep Kit; and (3) evaluation of starting DNA to library
molecule conversion efficiency using the on-bead protocol versus
the Hyper Prep protocol (seeChapter 10). As the construction of an
exome library begins with the generation of a whole genome library
prior to target enrichment, analysis of pre-capture whole genome
libraries was performed. Construction of short insert WGS libraries
generates DNA fragments that are approximately 250 bp in size,
following incorporation of 123 bp indexed adapters, whereas con-
struction of whole genome libraries for whole exome capture typi-
cally generates 150–200 bp DNA fragments and may incorporate
ligation of short non-indexed adapters prior to bait hybridization.
In comparative analyses utilizing short non-barcoded adapters for
whole genome library construction during exome library prepara-
tion, we observed dramatic differences in performance among the
three kits (see Chapter 10).

2 Materials

2.1 Library

Preparation Reagents,

Consumables, and

Additional Items

1. KAPA Hyper Prep Kit (Kapa Biosystems).

2. Non-indexed XT adapters (Agilent); XT2 adapters (Agilent)
for long insert WG libraries.

3. Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific).

4. Pipette tips.
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5. Reagent reservoirs.

6. Lo-Bind 1.5 mL Eppendorf Tubes (VWR).

7. 95 microTUBE plate (for E220) or Snap Cap microTUBE (for
S220) (Covaris).

8. 96-well 0.3 mL PCR plates.

9. PCR plate seals.

10. Molecular grade absolute ethanol.

11. Molecular grade water.

12. 50 mL conical tubes for preparing ethanol washes.

13. 1� TElowE buffer (10 mM Tris–HCl, 0.1 mM EDTA,
pH ¼ 8.0).

14. Agencourt AMPure XP Beads (Beckman Coulter).

15. High Sensitivity D5000 ScreenTape and reagents for long
insert WG libraries (Agilent).

16. High Sensitivity D1000 ScreenTape and reagents (Agilent).

17. D1000 ScreenTape and reagents (Agilent).

18. Pippin Prep pre-cast gel cassettes (Sage Biosciences).

19. Ice bucket and ice.

2.2 Accessories/

Instruments

1. Pipettes (single and multichannel).

2. Qubit 3.0 Fluorometer (Thermo Fisher Scientific).

3. Ring magnet plate (Beckman Coulter Genomics).

4. Benchtop vortexer.

5. Thermal cycler with a 0.2 mL heat block and heated lid.

6. E220 or S220 Focused-ultrasonicator (Covaris).

7. 2200 Tapestation Instrument (the Bioanalyzer instrument
[Agilent] may also be used).

8. Pippin Prep (Sage Biosciences).

3 Methods

For short insert WGS library construction, the manufacturer’s
protocol for the KAPA Hyper Prep Kit can be followed. As the
protocol provides ranges for various parameters, suggested para-
meters outside of the manufacturer’s protocol are described below,
along with additional details not provided in the protocol. Recom-
mended quality control (QC) measures are shown in italics. Unless
modifications are otherwise stated (marked by asterisks), the pro-
tocol for long insert WGS library construction follows the manu-
facturer’s protocol for the KAPA Hyper kit along with short insert
WGS recommendations below. An overview of the short and long
insert WGS library preparation protocols is shown in Fig. 1.
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Fig. 1 Short versus long insert WGS library construction. A comparison of short versus long insert WGS library
generation protocols is shown. Key protocol differences include DNA fragmentation and library enrichment, as
well as an additional size selection step for constructing long insert WGS libraries
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3.1 DNA

Fragmentation

QC: a minimum DIN (DNA Integrity Number) of 7 is recom-
mended for DNA samples. Special focus should be placed on the
ratio of total nucleic acid quantity, as measured by a spectrophotome-
ter, versus double-stranded DNA (Qubit or Tapestation), as these
library preparations require double-stranded DNA (ratios >¼0.6
are recommended). Final results can also be affected by DNA impu-
rities, which can be detected by 260/280 (1.8–1.95 optimal) and
260/230 (1.9–2.2 optimal) ratios.

1. If high quality DNA is available, an input of 200 ng of double-
stranded DNA into library construction is sufficient (increased
inputs are suggested for degraded DNA [i.e., DIN < 7]). A
total of 220 ng is recommended for DNA fragmentation to
account for loss of material during this step and for size verifi-
cation following fragmentation.

*For long insert WG libraries, 220 ng of intact DNA can be
used. Degraded DNA (DIN< 7) is not recommended for long
insert WG library construction.

2. Dilute 220 ng of DNA of each sample with TElowE buffer to a
final volume of 55 μL. DNA should always be fragmented in an
EDTA-containing buffer to prevent sonication-based artifacts
during sequencing.

3. The Covaris E220 fragmentation parameters to generate
approximately 250–300 bp molecules follows:

(a) Duty cycle: 10%

(b) Peak Power: 175

(c) Cycles/burst: 200

(d) Time: 40 s

(e) Temp max: 7 �C

*Covaris E220 parameters for long insert WG library
construction:

(a) Duty cycle: 4%

(b) Peak Power: 170

(c) Cycles/Burst: 200

(d) Time: 20 s

(e) Temp max: 7 �C

4. Following fragmentation, size verification can be performed
using 5 μL (20 ng) of sample on the Tapestation using
D1000 ScreenTape, reagents, and ladder. An alternative option
for size verification is to electrophoretically separate each sam-
ple on a 2% TAE (Tris–acetate–EDTA) gel (1 h, 120 V) to
ensure that the majority of molecules fall within the expected
size ranges.
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* For size verification of long insert WGS preparations, High
Sensitivity D5000 ScreenTape and reagents may be used, or
alternatively, 5 μL of each sample can be electrophoresed on a
1.5% TAE gel (1 h, 120 V).

3.2 End Repair and

Adenylation

1. To prepare for purification, remove AMPure beads from cold
storage and equilibrate to room temperature for 30 min.

3.3 Adapter Ligation

and Purification

1. 5 μL of a 30 μM adapter stock is recommended for adapter
ligation of each sample to generate a 1:300 molar insert ends to
adaptor ends ratio (this is significantly higher than conven-
tional preparations suggesting 1:10 ratios).

*For long insert WGS libraries, 5 μL of 6 μM of Agilent XT2
adapter stock is recommended.

2. Increasing the ligation reaction time will result in an increase in
the number of ligated molecules. Fifteen minutes is sufficient
for 200 ng inputs, but a longer reaction time is recommended
for low input amounts, e.g., �100 ng.

3. During purification of adapter ligated molecules, a 1:1.8 (sam-
ple–AMPure XP bead) ratio is suggested. The recommended
purification protocol is as follows:

(a) Prepare 80% ethanol using absolute ethanol and molecu-
lar grade water.

(b) Add 198 μL of AMPure XP beads to each 110 μL sample
and pipet up and down 10� to generate a well-distributed
suspension. Incubate at room temperature for 15 min for
DNA-bead binding.

(c) Place sample plate on magnet and incubate at room tem-
perature for 5 min. The liquid will be clear after 5 min.
Leave plate on magnet until indicated.

(d) Remove and discard supernatant using a pipette. Be sure
to not disturb the beads.

(e) Add 200 μL of 80% ethanol (do not pipet to mix). Incu-
bate at room temperature for 30 s.

(f) Remove and discard supernatant using a pipette. Add an
additional 200 μL of 80% ethanol (do not pipet to mix)
and incubate at room temperature for 30 s.

(g) Remove and discard supernatant. Incubate plate at room
temperature for 5 min to allow beads to dry.

(h) Remove plate from magnet and place on bench top. Add
22.5 μL molecular water and pipet 10� to mix. Incubate
at room temperature for 2 min.

(i) Return plate to magnet and incubate at room temperature
for 5 min.

(j) Transfer 20 μL of the supernatant, which contains
adapter-ligated molecules, to a new well.
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*For long insert WGS libraries, a 1:0.8 (sample: AMPure XP
bead) ratio is recommended. Instead of adding 198 μL of AMPure
XP beads as described above, add 88 μL of beads. All other steps
described above may be followed with the exception of eluting the
final product with 22.5 μL of TElowE.

4. Completion of the purification step is a safe stopping point. At
this point, ligated DNA may be stored at �20 �C for up to
7 days.

3.4 Library

Enrichment and

Purification

1. For the enrichment cycling protocol, use an optimized primer
annealing temperature of 65 �C for 15 s. Seven PCR cycles is
sufficient for enrichment.

*For long insert WGS libraries, a pre-size selection enrichment
step is performed using the same library amplification reagent
volumes as for short insert WGS libraries and one cycle of PCR
using the following program:

(a) 98 �C for 60 s

(b) 63 �C for 30 s

(c) 72 �C for 60 s

(d) 72 �C for 2 min

(e) 4 �C hold

2. During purification of enriched library molecules, add 90 μL of
AMPure XP beads directly to each sample and pipet 10� to
mix. Incubate at room temperature for 15min. Follow steps 3c
through 3g in Subheading 3.3 above. Remove plate from
magnet and place on bench top. Resuspend in 27.5 μL molec-
ular grade water or TElowE, and pipet 10� to mix. Incubate
at room temperature for 2 min. Return plate to magnet and
incubate at room temperature for 5 min. Collect 25 μL of the
supernatant and place in a fresh well.
*For purification of long insert WGS libraries, a 1:0.8 ratio
(sample: AMPure XP beads) can be used—this entails addition
of 40 μL of beads to the 50 μL PCR reaction. Following
addition of beads, the mixture is incubated at room tempera-
ture for 10 min. Additional ethanol washes are performed
according to Subheading 3.4, step 2, with the exception that
final products are resuspended in 32.5 μL TElowE. The final
volume of 30 μL of supernatant is then transferred to a fresh
well or tube.

QC: Assess each short insert WGS library using High Sensitivity
D1000 Screentape, reagents, and ladder. Final sequencing-ready,
short insert WG libraries will be approximately 400–450 bp long.
Quantify double-stranded molecules in each library using the Qubit.
Generation of at least 1000 pM of library will be sufficient for
downstream sequencing. To generate long insert WGS libraries, disre-
gard the TapeStation QC step and proceed to the remaining sections.
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3.5 Long Insert WG

Size Selection and

Purification

(This section onward is composed of additional steps for generating
long insert WGS libraries only)

1. Using the Pippin prep, follow instructions outlined for the
“Pippin Prep Quick Guide 1.5% Agarose Gel Cassette.” Create
a narrow range protocol with collection at a target size of
975 bp (start ¼ 925 bp, end¼ 1025 bp). Use 1.5% DFMarker
K and ensure both the loading solution and buffer are at room
temperature.

2. On the protocol editor tab, select the protocol, and follow the
Quick Guide for calibrating optics, inspecting the gel cassette,
and performing the continuity test (The optics should be cali-
brated once a day and the continuity test will fail the first time it
is run each day. Any variations in temperature of the gel will
affect the test).

3. Add 11 μL of loading solution/marker K mix, equilibrated to
room temperature, to each sample. Mix well by pipetting
15–20�.

4. Follow the loading procedures in the Quick Guide. The gel will
run for approximately 45 min.

5. After the run is complete, measure the recovery volume for
each sample to calculate the volume of beads to be used for
purification of the sample.

6. For purification of size-selected molecules, use a 1:0.8 (sample:
AMPure XP bead) ratio. For example, for a 50 μL sample, add
40 μL of beads. Follow Subheading 3.4, step 2* with the
exception of resuspending the dried pellet in 22.5 μL TElowE.
The resuspension is incubated at room temperature for 2 min,
transferred to the magnet for 5 min to allow for separation of
beads from the supernatant, and finally 20 μL of the superna-
tant is transferred to a new tube. This is a safe stopping point,
and size-selected DNA may be stored at �20 �C for up to
7 days.

3.6 Long Insert WG

Library Enrichment

and Purification

1. Following size selection, an additional library enrichment step
is performed for long insert WGS libraries. The reaction is
composed of:

(a) 2� KAPA HiFi master mix—25 μL
(b) 10� Kapa PCR primers—5 μL
Make a master mix of the reaction components, including 10%

overflow, and place on ice, and then add 30 μL to each 20 μL
sample of adapter-ligated, size-selected library. Pipet 10� to mix
well and briefly centrifuge samples to collect the entire volume. The
following cycling protocol can be used:
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(a) 98 �C for 45 s

(b) 6 cycles of:

l 98 �C for 15 s

l 63 �C for 30 s

l 72 �C for 60 s

(c) 72 �C for 2 min

(d) 4 �C hold

The number of cycles may be increased or decreased, depend-
ing on the amount of input DNA used for library construction.

2. For purification of final long insert WGS libraries, a 1:1 (sam-
ple: AMPure XP bead) ratio can be used. Follow Subheading
3.4, step 2*, with the exception of resuspending the dried
pellet in 27 μL TElowE. The resuspension is incubated at
room temperature for 2 min, transferred to the magnet for
5 min to allow for separation of beads from the supernatant,
and then 25 μL of the supernatant is transferred to a fresh
Lo-Bind tube.

QC: Assess each library using High Sensitivity D5000 Screentape,
reagents, and ladder. Final sequencing-ready long insert WGS
libraries will be approximately 1000 bp long. Quantify double-
stranded molecules in each library using the Qubit. Construction of
libraries with concentrations greater than 1000 pM will be sufficient
for downstream sequencing. An example TapeStation trace of a final
long insert WGS library is shown in Fig. 2.

Fig. 2 Trace of a long insert WGS library. An example of an Agilent High Sensitivity D5000 TapeStation trace of
a final long insert WGS library is shown. The lower and upper TapeStation markers are shown at approximately
15 and 10,000 bp, respectively, along with the completed library that is approximately 1027 bp in size.
Successful library construction results in a clear defined peak
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3.7 Sequencing

Loading

Concentrations

1. While optimization of loading concentrations of libraries
should be separately performed, for short insert WGS libraries,
a recommended 17 pM of library, quantified by Qubit, may be
used as a target for clustering onto a lane of a V3 flowcell. For
long insert WG libraries, a recommended 12 pM of library,
quantified by Qubit, may be used as a target for clustering onto
a lane of a V3 flowcell.

4 Notes

1. DNA extraction:During extraction of genomic DNA for WGS
library construction, it is recommended that each sample be
treated with RNase I to remove contaminating transcripts.
Genomic DNA should also be accurately assessed and quanti-
fied prior to constructing libraries. The use of degraded DNA
will negatively impact the outcome of library construction, and
is not recommended for generation of long insert WGS
libraries under any circumstances. For precious samples with
significant degradation (i.e., DIN < 7), increasing input
amounts may be attempted. In these cases, a decrease in the
number of PCR cycles during enrichment is recommended.

2. Protocol timeline: Construction of short and long insert WGS
libraries, along with QCs, can be completed in 1.5 and 2 days,
respectively.

3. Alternative protocols: under circumstances in which large
amounts (i.e., �1 μg) of high quality genomic DNA is avail-
able, PCR-free whole genome protocols and kits are recom-
mended to reduce any bias that may be introduced during
library enrichment. The use of UMIs (unique molecular iden-
tifiers) for non-PCR-free approaches may also be considered
(see the Notes section in Chapter 10).

4. Final library concentration: if preparing libraries from
degraded samples, it is likely that final library concentrations
will be low. While we typically expect to construct final libraries
with concentrations >1000 pM for high quality samples,
sequencing may still be performed for lower yields by lowering
the volume of the denaturation reaction prior to clustering.

5. Tumor/normal whole genome analysis: for generation of paired
tumor/normal whole genomes for identification of somatic
alterations, a number of considerations should be addressed:

(a) For sequencing, higher coverage of the tumor whole
genome compared to the normal whole genome is recom-
mended to capture potential sub--clonal tumor popula-
tions and to overcome potential contaminating normal
cells.
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(b) Tumor cellularity estimates are often performed for tumor
biopsies by a board-certified pathologist. While variability
in these estimates is frequently observed compared to true
estimates based on mutation allele frequencies in sequenc-
ing data, a priori knowledge of estimates may be used to
guide determination of sequencing depth, e.g., samples
with lower tumor cellularity estimates may be sequenced
to higher depths.

(c) For somatic analysis of tumor/normal WGS, reference
controls may be prepared and sequenced alongside exper-
imental samples. Using this strategy, known point or
insertion/deletion (indels) mutations may be used as
references for somatic variant calling. A PCR-free somatic
reference generated from a matched metastatic melanoma
cell line (COLO829) and normal was recently con-
structed across multiple institutions for this purpose [10].
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Chapter 9

Whole Exome Library Construction for Next Generation
Sequencing

Winnie S. Liang, Kristi Stephenson, Jonathan Adkins,
Austin Christofferson, Adrienne Helland, Lori Cuyugan,
and Jonathan J. Keats

Abstract

Whole exome sequencing (WES) is a DNA sequencing strategy that provides a survey of base substitutions
across coding genomic locations and other regions of interest. As the coding portion of the genome
encompasses only 1–2% of the entire genome, this approach represents a more cost-effective strategy to
detect DNA alterations that may alter protein function, compared to whole genome sequencing. Although
the research community has and is currently delineating the functional implications of sequence changes in
noncoding regions of the genome, WES is a currently available assay that provides valuable information for
both discovery research and precision medicine applications. In this chapter, we present a WES library
preparation protocol using the KAPA Hyper Prep Kit with Agilent SureSelect Human All Exon V5+UTR
probes that demonstrates high DNA-to-library conversion efficiency for sequencing on the Illumina HiSeq
platform.

Key words Whole exome sequencing, Next generation sequencing, DNA substitutions, Rare dis-
eases, Coding region, Library preparation

1 Introduction

Whole exome sequencing (WES) allows for the comprehensive
survey of the coding regions of a genome to identify base changes,
and may also be used to identify copy number alterations. As this
approach entails a selection step during library construction to
specifically select genomic locations using predesigned probes,
additional targets may also be evaluated, including splice sites,
untranslated regions (UTRs), promoters, and introns. Since one
of the earliest demonstrations of exome analysis using PCR [1],
WES has become widely adopted in the biomedical research com-
munities. Pioneering efforts in both discovery research and medical
genetics largely spearheaded this widespread embrace of WES tech-
nology [2–5]. In oncology, next generation sequencing has also

Johanna K. DiStefano (ed.), Disease Gene Identification: Methods and Protocols, Methods in Molecular Biology, vol. 1706,
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dramatically enabled identification of driver events and other key
DNA mutations in specific cancer types and subtypes [6–11]. As a
result, such events have led to the development of numerous com-
mercially available, targeted sequencing panels, which provide a
more cost-efficient approach for evaluating specific genes and
mutations. Furthermore, while identification of somatic mutations
in cancer can be performed through WES of both tumor DNA and
the individual’s constitutional DNA, germ line analysis may also be
performed using WES of only an individual’s constitutional
DNA [12].

Due to the adoption of WES in multiple areas of research, off-
the-shelf WES library preparation kits are widely available. How-
ever, the performance of these kits is highly dependent on numer-
ous factors, including the quality of input DNA, the specific
enzymes used for ligation and library enrichment, types of adapters
used during ligation, etc. In this chapter, data from unbiased com-
parative analyses of various library preparation kits and protocols
are presented. While manufacturer’s protocols associated with cur-
rently available kits are often well optimized, the data presented
here demonstrate advantageous features of currently available
reagents, namely the KAPA Hyper Prep Kit from Kapa Biosystems,
during the library generation process, when used in combination
with Agilent SureSelect Human All Exon baits. We further provide
additional recommendations for generating high quality WES
libraries for next generation sequencing using the Illumina HiSeq
platform. Results from the comparisons presented in this chapter
were also utilized to outline whole genome sequencing library
construction methods (described in Chapter 8).

2 Materials

2.1 Library

Preparation

1. KAPA Hyper Prep Kit (Kapa Biosystems).

2. Non-indexed XT adapters (Agilent) or synthesized adapters.

As described in Subheading 3.3, adapters may be separately
synthesized and purchased, e.g., by Integrated DNA Technol-
ogies, using the same sequences as the Agilent adapters. It is
recommended that synthesized adapters be HPLC (high per-
formance liquid chromatography)-purified and ordered at a
concentration of 30.3 μM—5 μL of these adapters may be
used for ligation to allow for a molar ratio of approximately
100:1 for exome library preparation of 200 ng of input DNA.

3. SureSelect Human All Exon V5+UTR kit (Agilent).

4. SureSelectXT Reagent Kit (Agilent).

5. Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific).

6. Pipette tips.
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7. Reagent reservoirs.

8. Lo-Bind 1.5 mL Eppendorf Tubes.

9. 95 microTUBE plate (for E220) or Snap Cap microTUBE (for
S220) (Covaris).

10. 96-well 0.3 mL PCR plates.

11. PCR plate seals.

12. Molecular grade absolute ethanol.

13. Molecular grade water.

14. 50 mL conical tubes for preparing ethanol washes.

15. 1� TElowE buffer (10 mM Tris–HCl, 0.1 mM EDTA,
pH ¼ 8.0).

16. Agencourt AMPure XP Beads (Beckman Coulter).

17. High Sensitivity D1000 ScreenTape (Agilent) and reagents.

18. D1000 ScreenTape (Agilent) and reagents.

19. Ice bucket and ice.

2.2 Accessories/

Instruments

1. Pipettes (single and multichannel).

2. Qubit 3.0 Fluorometer (Thermo Fisher Scientific).

3. Ring magnet plate (Beckman Coulter Genomics).

4. Benchtop vortexer.

5. Thermal cycler with a 0.2 mL heat block and heated lid.

6. E220 or S220 Focused-ultrasonicator (Covaris).

7. 2200 Tapestation Instrument (Agilent; the Bioanalyzer may be
used as an alternative).

3 Methods

3.1 Evaluation of

Multiple Exome Library

Preparation Methods

Using Indexed

Adapters

During exome library generation, different types of adapters may
be ligated to end-repaired, adenylated molecules. For example,
Agilent XT2 adapters are full-length indexed adapters that are
ligated to molecules prior to library enrichment. Following ligation
and enrichment, samples are then pooled before hybridization-
capture of the exome. In contrast, Agilent XT adapters are short
non-indexed adapters that are ligated to molecules prior to enrich-
ment and exome capture. These adapters do not contain index
sequences; instead, these are incorporated during library enrich-
ment following exome capture. These kinds of adaptors result in
individual exome libraries that may be pooled after generation of
libraries, whereas the use of the first type of adapter results in a final
library containing a pool of multiple indexed exomes. In other
words, indexed adapters allow for precapture pooling of libraries,
whereas non-indexed adapters are used to generate single-plex
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exome captures such that pools may be constructed following
library construction.

For the first analysis, we compared library preparation methods
utilizing the same indexed Agilent XT2 adapters and Agilent Sur-
eSelect V5+UTR capture baits. We tested the XT2 Library Prepa-
ration kit (Agilent), the KAPA Library Preparation kit using the
with-bead or on-bead protocol (Kapa Biosystems), and the Ultra
DNA kit (New England Biolabs). Three different starting DNA
input amounts, 200 ng, 500 ng, and 1000 ng, were evaluated
across all three kits. The manufacturer’s protocols were followed
for library construction using two separate DNA samples. Final
libraries were sequenced by synthesis for 2�100 read lengths on
the Illumina HiSeq2000.

We observed dramatic differences in final library yield across
the three kits (Fig. 1). The KAPA Library Preparation kit using the
on-bead protocol showed the greatest library yield for each input
amount, with 500 ng and 1000 ng inputs resulting in the highest
yields. Following sequencing, the total number of library molecules
was estimated using Picard’s (http://broadinstitute.github.io/
picard) MarkDuplicates tool for each kit and input amount
(Fig. 2). We found that all the KAPA libraries, across all input
amounts, demonstrated the greatest number of library molecules.
Notably, the 200 ng input KAPA library showing improved perfor-
mance over the 500 ng and 1000 ng input libraries generated using
the Agilent kit. Using the same Picard tool, the percentage of
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Fig. 1 Final library yields across evaluated methods. Two samples using three different input amounts for
library preparation were compared across three library preparation kits. The amount of library yielded from
each sample, input amount, and kit are shown
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duplicated fragments was also estimated across these same kits and
input amounts (Fig. 3). Here, the 500 ng and 1000 ng input
Agilent libraries demonstrated the highest level of duplication
compared to all KAPA libraries. In a final analysis, the approximate
under-representation of GC-rich regions was evaluated using the
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Fig. 3 Percentage of duplicate reads detected. Using the MarkDuplicates tool, the percentage of duplicated
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Fig. 2 Estimated number of unique library molecules. For the KAPA on-bead and Agilent XT2 library
preparations, the total number of library molecules was estimated using the MarkDuplicates tool (Picard)
for each input amount
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Picard HSmetrics tool (Fig. 4). Both the 500 ng and 1000 ng
Agilent libraries showed the greatest under-representation of
GC-rich regions compared with all three KAPA libraries. It is
worth noting that for the Agilent and NEB libraries, the same
amount of XT2 adapter was used regardless of DNA input amount
in according with the manufacturer’s recommendation (i.e., 5 μL of
adapter), whereas the adapter amounts used for the KAPA libraries
were adjusted linearly based on the DNA input amount (i.e., 1 μL
for 200 ng input, 2.5 μL for 500 ng input, and 5 μL for 1000 ng
input). Overall, the KAPA Library Preparation Kit, using the
on-bead protocol, shows better performance compared to the Agi-
lent and NEB kits. Importantly, 200 ng input KAPA libraries
generated about the same number of unique library molecules as
Agilent libraries using 500 ng and 1000 ng input DNA.

3.2 Evaluation of

Amplification

Efficiencies of Whole

Genome Libraries

Constructed Using

Indexed Adapters

Library construction is strongly influenced by amplification effi-
ciency during library enrichment. To evaluate changes in efficien-
cies associated with variable DNA: adapter ratios used to determine
the amount of adapter to add during ligation, as well as the number
of PCR cycles used during library amplification, whole genome
libraries were constructed using 200 ng input DNA, the KAPA
Hyper Prep Kit, four separate DNA: Agilent XT2 adapter ratios,
and either four or six PCR cycles of library enrichment (Fig. 5).
Assuming that amplification efficiency remains consistent during
PCR cycles, we determined the approximate amplification effi-
ciency for the KAPA Hyper Prep Kit using indexed Agilent XT2
adapters and 200 ng of starting DNA to be 65%. While efficiency
may vary across XT2 and XT adapters, we chose to describe the use
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of XT adapters for the protocol shown here to allow for construc-
tion of individual single-plex exome libraries.

3.3 Evaluation of

DNA-to-Library

Conversion

Efficiencies Across

Kapa Biosystems Kits

To determine if conversion efficiencies vary depending on the Kapa
Biosystems’ kit used, multiple whole genome library preparations
for exome construction were performed by automation on the
Agilent Bravo robot using various DNA: Agilent XT adapter ratios
and different enrichment primer concentrations. Library conver-
sion efficiencies were calculated across libraries constructed using
either the KAPA Library Preparation Kit and the on-bead protocol
or the KAPAHyper Prep Kit (Fig. 6). A dramatic increase in library
conversion efficiency was observed when (1) the adaptor ratio and
amplification primer concentrations were increased twofold and
(2) the KAPA Hyper Prep Kit was used with an optimized 1:300
DNA: adapter ratio and a primer concentration twice that recom-
mended in the XT protocol (Agilent). At this time, we now synthe-
size our own short adaptors with a known concentration (see
Subheading 2), instead of the adaptors provided in the Agilent
kits, which are used at an explicit 1:100 molar ratio of insert ends
to adaptor ends.

3.4 Recommended

Exome Library

Construction Protocol

Using the KAPA Hyper

Prep Kit

Based on the results described in Subheadings 3.1–3.3, we recom-
mend the KAPA Hyper Prep Kit with short non-indexed Agilent
XT adapters for single-plex exome library preparation, using the
manufacturer’s protocol (see Notes 1–2). We chose to describe a
single-plex exome library construction protocol here due to its
versatility over pooled exome construction, as repooling, and
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resequencing of libraries to address bias in index breakdowns dur-
ing sequencing may be easily performed with single-plex construc-
tion. Furthermore, precapture pooled exome libraries may not yield
similar amounts of individual libraries if the DNA used for library
construction have variable levels of quality. For example, degraded
DNA appears to be represented at a lower percentage in pools
compared to higher quality DNA (see Note 1). Lastly, we describe
hybridization capture using Agilent SureSelect baits following the
SureSelect XT Target Enrichment System protocol for Illumina
Multiplexed Sequencing version 1.5 (November). We also suggest
the following modifications to the manufacturers’ protocols:

1. For high quality DNA (DIN>7), we recommend starting with
220 ng of genomic DNA to account for loss of material during
both fragmentation and size verification (see Note 3).

2. For Covaris fragmentation optimized on an E220, the follow-
ing parameters are suggested:

Duty cycle: 10%

Peak Power: 175

Cycles/Burst: 200

Time: 300 s (150 bp)

Temp max: 7
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Fig. 6 Increased conversion efficiency demonstrated by the KAPA Hyper Prep Kit. Multiple whole genome
library preparations for exome construction were performed using various DNA: Agilent XT adapter ratios and
different enrichment primer concentrations. Library conversion efficiencies were calculated for libraries
constructed using either the KAPA Library Preparation Kit (on-bead), or the KAPA Hyper Prep Kit
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Fragmented DNA may be stored at 4 �C overnight or �20 �C
for longer periods. Size verification can be performed using 2 μL
(~8 ng) of sample on the Tapestation using the High Sensitivity
D1000 ScreenTape, reagents, and ladder. An alternative option for
size verification is to electrophoretically separate 5 μL (20 ng) of
each sample on a 2% TAE (Tris–acetate–EDTA) gel (1 h, 120 V) to
ensure that the majority of molecules fall within the expected size
range (150–250 bp).

3. For adapter ligation to generate single-plex exome libraries,
Agilent XT adapters should be used. Doubling the stock con-
centration of adapters is recommended (15–30 μM). A 1:100
DNA: adapter ratio is suggested for each reaction see Note 4.

4. Increase the annealing temperature of the XT primers to 65 �C
and the number of PCR cycles to seven during the library
amplification step, prior to hybridization of exome baits.

5. For AMPure XP bead purifications, the KAPA Hyper prep
protocol can be followed with the exception of using a 1.8�
sample volume: bead volume ratio, rather than the 0.8� ratio
recommended by the KAPA protocol. This change accommo-
dates the purification of shorter molecules (approximately
150–250 bp) generated for exome library construction, com-
pared to whole genome library construction.

6. During post-capture enrichment, use PCR primers provided in
the Agilent SureSelectXT Reagent kit.

7. For final library quantitation, the Qubit dsDNA assay may be
used to quantify the amount of double-stranded library mole-
cules present. To assess the size and distribution of each final
library, they may be analyzed using D1000 ScreenTape and
reagents on the Agilent TapeStation (or using Agilent Bioana-
lyzer reagents on the Bioanalyzer instrument). An additional
option for accurate quantification of libraries is quantitative
PCR, for which off-the-shelf kits are available from numerous
commercial entities in the NGS space (Illumina, Agilent, Kapa
Biosystems, etc.) see Note 5.

3.5 Sequencing

Loading

Concentrations

While optimization of loading concentrations of libraries should be
performed separately, for whole exome libraries constructed fol-
lowing the described recommendations, 13 pM of library, quanti-
fied by Qubit, is suggested as a target for clustering onto a lane of
the V3 flowcell see Note 6.

4 Notes

1. DNA extraction: During extraction of genomic DNA for
exome library construction, it is recommended that each sam-
ple be treated with RNase I to remove contaminating RNA
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transcripts. Genomic DNA should also be accurately assessed
and quantified prior to beginning library construction. The use
of degraded DNAs will interfere with the successful construc-
tion of sequencing libraries. For precious samples showing
degradation (DIN<7), or for DNA extracted from FFPE
(formalin-fixed paraffin embedded) tissue, we recommend
increasing DNA input amounts. Degraded FFPE DNA may
be partially repaired using NEBNext FFPE DNA Repair Mix
(New England Biolabs), which fills in gaps and generates blunt-
ended molecules prior to fragmentation.

2. Experimental timeline: Construction of exome libraries, along
with QC analysis, can be completed in 3–4 days.

3. DNA fragmentation: DNA fragmentation is the first step in all
library preparation methods. The most common approaches
are mechanical or enzymatic. While a number of studies have
reported minor biases across various approaches [13, 14], the
Covaris protocol, which uses an acoustic transducer to ran-
domly shear DNA, has demonstrated consistent performance
across libraries.

4.Unique molecular identifiers (UMIs): During post-sequencing
analysis, the percentage of duplicate molecules (Picard) can be
used to evaluate the quality of a sequenced library. In general, a
lower percentage indicates that the library is less saturated by
PCR duplicates, and suggests that a sample will be more accu-
rately represented by its sequencing data. However, it is possi-
ble that two identical fragments may represent two true library
molecules that are not duplicates of one another. To address
this possibility, UMI sequences [15] can be incorporated
directly into adapters that are ligated to adenylated molecules.
In doing so, UMIs specifically tag separate molecules, which
will be separately amplified during PCR enrichment. Following
alignment of sequencing data, the reads corresponding to these
molecules, which may align to the same genomic location, will
help to differentiate between PCR duplicates and true dupli-
cates. As a result, less duplicate data will be discarded, subse-
quently increasing the amount of coverage obtained from a
sample and improving the ability to accurately estimate allele
ratios. With this approach, the ability to identify more rare
variants and mutations is enhanced. This application is also
relevant for RNA sequencing of single cells [16]. Despite con-
cerns with sequencing errors occurring at UMIs [17], and
while the use of UMIs is still being evaluated to ensure that
they do not introduce additional biases, more widespread
adoption is anticipated.

5. Library yields: if preparing libraries from degraded samples, it is
expected that final library concentrations may be lower. While
we typically expect to construct final libraries that are >1000
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pM for high quality samples, sequencing may still be performed
for lower concentrations by lowering the volume of the dena-
turation reaction prior to clustering.

6. Tumor/normal whole genome analysis: for generation of paired
tumor/normal whole exomes for identification of somatic
alterations in the context of cancer, a number of considerations
should be addressed:

(a) For sequencing, higher mean coverage of the tumor
exome compared to the normal exome is recommended
to improve detection of low frequency changes created by
sub-clonal tumor populations or contaminating normal
cells in the tumor specimen.

(b) Tumor cellularity estimates are often performed for tumor
biopsies by a board-certified pathologist prior to sequenc-
ing of a sample. While variability in these estimates is
frequently observed compared to true estimates based
on mutation allele frequencies in sequencing data, a priori
knowledge of estimates may be used to guide determina-
tion of sequencing depth, e.g., samples with lower tumor
cellularity estimates may be sequenced to higher depths.
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Chapter 10

Optimized Methodology for the Generation
of RNA-Sequencing Libraries from Low-Input Starting
Material: Enabling Analysis of Specialized Cell Types
and Clinical Samples

Kendra Walton and Brian P. O’Connor

Abstract

RNA sequencing (RNA-seq) has become an important tool for examining the role of the transcriptome to
biological processes. While RNA-seq has been widely adopted as a popular approach in many experimental
designs, from gene discovery to mechanistic validation of targets, technical issues have largely limited the
use of this technique to abundantly available sample sources. However, RNA-seq is becoming increasingly
utilized for more specialized applications, such as flow cytometry-sorted cells and clinical specimens, due to
protocol advances enabling the use of very low input material ranging from 10 pg to 10 ng of total RNA or
1–1000 intact cells. In this chapter, we present an optimized and detailed approach to RNA-seq for use with
low abundance samples.

Key words RNA-seq, Ultralow abundance, mRNA

1 Introduction

Next-generation sequencing (NGS) of RNA libraries (RNA-seq)
has become a powerful tool to examine transcriptional regulation in
multiple biological contexts, including cell identity and lineage, cell
function, tissue activity, epigenetic regulation, and disease patho-
genesis [1–3]. The types of questions addressed by RNA-seq are
determined at a fundamental level by the type of RNA library that is
produced prior to sequencing as multiple library types exist. Here
we describe the four most common types of RNA-seq applications
and present a detailed protocol to perform ultralow RNA-seq
(10 pg to 10 ng of total RNA or 1–1000 intact cells).

When a comprehensive study of the total RNA in a biological
sample is needed, it can be accomplished via library generation
using a ribosomal RNA (rRNA)-depletion approach. With this
approach, rRNA is targeted for depletion while mRNA, small
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noncoding RNA (sncRNA), long noncoding RNA (lncRNA), and
other RNA species (i.e., bacterial or viral) in a biological sample are
retained for sequencing. In general, this approach requires more
starting material and a greater depth of sequencing per sample than
other RNA-seq approaches, but retains the most information.

Alternatively, if mRNA is the primary target of a study, poly(A)
+ RNA selection can be utilized for library construction. With this
approach, all poly(A)+ RNA is selected, while rRNA, sncRNA,
lncRNA, and other RNA species are removed. This approach
requires less material and less sequencing depth per sample com-
pared with rRNA-seq, but at the expense of lost information with
respect to the other RNA species.

In recent years, methods for library construction utilizing selec-
tion techniques for a limited number of transcripts of interest (e.g.,
hundreds to thousands of targets) have enabled the study of specific
biological or disease pathways. These approaches require nominal
amounts of input material and relatively low sequencing depth per
sample, which together lead to a reduced cost per sample. This
flexibility has engendered the use of targeted RNA-seq to create
disease panels, which can be used in the clinical research space
where sample availability is limited compared to research studies
utilizing abundant sample sources, such as cell lines. However, the
need for comprehensive, unbiased approaches for examining tran-
scriptional regulation of biological and disease processes with
low-input, complex specimens remains a growing need.

Researchers use RNA-seq to study complex cell types that
require flow cytometry sorting for isolation, often resulting in
very low total starting concentrations of RNA. This kind of appli-
cation thus limits the use of traditional RNA-seq methods, such as
rRNA-depletion or poly(A)+-selection [4]. Clinical research studies
are also incorporating systems biology approaches to elucidate
novel disease pathways and mechanisms [5]. The development of
novel techniques to assess low-abundance samples, and even single
cells, with RNA-seq, has transformed our ability to ask nuanced
questions spanning the spectrum of basic science to the clinical
research setting [6, 7]. Here we present an optimized protocol for
performing RNA-seq with specialized flow cytometry-sorted cells
or precious, low-abundance clinical research samples.

2 Materials

This is a two-step library build protocol that allows sequencing
from picogram amounts of total input RNA. We use the SMART-
Seq® v4 Ultra® Low Input RNA Kit for Sequencing and Nextera®

XT DNA Library Prep Kit to build our libraries. The SMART-seq®

kit generates high quality full-length cDNA from 1 to 1000
cells or 10 pg to 10 ng of total RNA in 1–10 μl of volume.
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The SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing
incorporates the use of locked nucleic acid (LNA) technology into
an optimized template switching oligonucleotide. In addition, this
kit can produce single-cell mRNA-seq libraries that outperform
established protocols and existing kits by identifying the greatest
number of transcripts. The SMART-Seq® v4 Ultra® Low Input
RNA Kit for Sequencing has higher sensitivity and reproducibility
than earlier versions, leading to the identification of more genes
and with significantly lower background. More information on
SMART technology is available on the Clontech website (http://
www.clontech.com) [8]. The Nextera® XT DNA Library Prep kit
fragments and tags DNA simultaneously with sequencing adapters
in a single tube enzymatic reaction. Nextera® XT supports ultra-low
DNA input of up to 1 ng to enable a wide array of input
samples [9].

1. The NanoDrop spectrophotometer is used to assess RNA
purity and determine which Qubit assay to use in the following
step (see Note 1).

(a) NanoDrop spectrophotometer (any model).

(b) Pipette: 2 μl.
(c) Filtered tips.

2. The Qubit assay uses a fluorescence-based dye that binds to
DNA or RNA depending on the nucleic acid being measured.

(a) Qubit machine (any model).

(b) RNA Broad Range assay kit for RNA quantification.

(c) RNA High Sensitivity assay kit for RNA quantification.

(d) DNA High Sensitivity kit for DNA quantification.

(e) Qubit tubes.

(f) Pipettes: 2 μl, 10 μl, 200 μl, and 1000 μl.
(g) 1.7 ml eppendorf tubes or 15 ml conical tubes for master

mix (depending on the number of samples to be
processed).

(h) Filtered tips.

3. The BioAnalyzer assay gives a quantitative and qualitative
assessment of the nucleic acid of interest. It is used to measure
RNA before starting library generation and DNA at two differ-
ent steps in the protocol.

(a) Agilent 2100 BioAnalyzer.

(b) BioAnalyzer Priming station (comes with BioAnalyzer
bundle).

(c) Agilent RNA 6000 Nano Reagent Kit.

(d) Agilent RNA 6000 Pico Reagent Kit.
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(e) Agilent High Sensitivity DNA Kit.

(f) Pipettes: 2 μl, 20 μl, and 200 μl.
(g) Filtered pipette tips.

(h) Minicentrifuge.

(i) IKA vortexer (comes with BioAnalyzer bundle).

4. SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing
and Nextera® XT DNA Library Prep Kit.

(a) SMART-Seq® v4 Ultra® Low Input RNA Kit for
Sequencing (Clontech).

(b) Nextera® XT DNA library Prep kit from Illumina (see
Note 2).

(c) Single channel pipettes: 10 μl, 20 μl, 200 μl, and 1000 μl.
(d) Eight or twelve-channel pipettes: 10 μl, 20 μl, and 200 μl.
(e) Sterile reagent reservoirs.

(f) Filter tips.

(g) Vortex.

(h) Microcentrifuge for PCR tubes and 1.5 ml tubes.

(i) Mini plate centrifuge or large centrifuge with buckets
that will spin plates.

(j) 100% Molecular Biology Grade Ethanol.

(k) Nuclease-free water.

(l) Thermal cycler with heated lid.

(m) 96-well PCR plate or individual PCR tubes.

(n) Nuclease-free, low-adhesion 1.5 ml tubes.

(o) 15 ml or 50 ml conical tubes used for ethanol dilution
and mixing.

(p) Adhesive plate seals.

(q) Magnetic stand for plates or PCR tubes.

(r) TruSeq Index Plate Fixture.

3 Methods

This RNA-seq protocol allows the use of small amounts of total
RNA. We highly recommend assessing quality control (QC) at the
front and back ends of this protocol. Store all reagents as indicated
by the supplier to ensure efficiency. Be sure to work in a PCR Clean
Work Station until cDNA amplification master mix is completed
during the SMART-seq® protocol.

RNA quantification—We run three rounds of QC on samples
before starting the library build.
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3.1 NanoDrop

Quantification

Run 1 μl of purified total RNA on the NanoDrop spectrophotom-
eter to estimate concentration andmeasure the 260/230 ratio as an
estimate of nucleic acid purity. A suitable 260/230 value for pure
RNA is ~2.0 (see Note 3, Fig. 1).

3.2 Qubit

Quantification

The Qubit RNA kit is an accurate way to specifically quantitate
RNA, without also measuring DNA or protein concentrations. The
Qubit offers two options for measuring RNA concentration: the
BR (Broad Range) and HS (High Sensitivity) kits. The Qubit BR
RNA assay is used for samples between 1 ng/μl and 1 μg/μl (see
Note 4). If sample concentrations are less than 100 ng/μl accord-
ing to NanoDrop quantitation, the Qubit RNAHS Assay kit can be
used to accurately measure concentrations within the 250 pg/μ
l–100 ng/μl range (see Note 5). Prepare the correct Qubit RNA
assay based on the estimated concentration obtained with the
NanoDrop instrument. This procedure uses two known concentra-
tions of standards against which samples are measured (seeNote 6).
The standards for each kit are stored at 4 �C, while all other
reagents are stored at room temperature in the dark. Be sure to

Fig. 1 Total RNA on NanoDrop. The picture shows a good total RNA trace with 1 μl run on the NanoDrop. The
260/230 ratio is >2.0 which indicates that the RNA is “pure” and does not contain contaminants that absorb
at 230 nm. The 260/280 ratio is 1.99 and indicates that the RNA is “pure” and does not contain contaminants
such as phenol or proteins that absorb at 260 nm. In the presence of contaminants, both the 260/230 and
260/280 ratios would be decreased
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keep the dye from each kit in the dark at all times, preferably by
wrapping the dye tubes in foil.

1. Bring standards, which should be stored at 4 �C, to room
temperature for >30 min.

2. Determine the number of samples to be measured, include the
standards (n ¼ 2), and add 10% to account for pipetting dead
volume.

For example: 24 samples + 2 standards + 10% ¼ 28.6 (X)
3. To make the buffer + dye master mix, use the following

calculations.

X*199 μl ¼ μl buffer needed
Example: 28.6 � 199 μl ¼ 5691.4 μl buffer
X ¼ μl of dye
Example: X ¼ 28.6 (# of samples plus extra as determined
above)
Add 5691.4 μl of buffer + 28.6 μl of dye, vortex to mix, and
spin to collect droplets.
You can quantify 1–20 μl of sample, adjusting the volume of
master mix from 199–180 μl. We use 2 μl of our sample with
198 μl of appropriate buffer–dye master mix.

4. Set out the appropriate number of tubes accounting for each
sample and the two standards. Write the sample ID only on the
top of the tube (see Note 7).

5. After mixing the Qubit master mix (buffer + dye), aliquot the
appropriate amount of master mix into each sample tube (e.g.,
198 μl). Aliquot 190 μl of master mix into each standard tube.

6. Add 2 μl of sample to the appropriate sample tubes. Add 10 μl
of standard to the appropriate standard tube.

7. Vortex each tube for 5 s and spin to collect droplets from sides.

8. Let samples sit for 2 min before proceeding with the Qubit
assay (see Note 8).

9. Measure the samples according to the Qubit protocol (see
Note 9).

3.3 BioAnalyzer The BioAnalyzer is used to assess the RNA profile and quantify
RNA concentration. This assay is helpful for determining whether
RNA degradation is present in samples and gives an RNA Integrity
Number (RIN) based on intact 18 s and 28 s ribosomal peaks.

The RNANano kit detects RNA in the range of 25–500 ng/μl.
While the RNA Pico kit does not directly quantify samples, it can
qualitatively assess samples in the range of 250–5000 pg/μl. This
kit is not considered suitable for quantitation unless the NanoDrop
and Qubit assays fail to provide a measurement of sample concen-
tration. The Pico kit will give a quantitative value and may some-
times be the only QC measurement obtainable from samples that
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are very low in concentration. This chip also gives a RIN score for
even small amounts of total RNA. In the case of ultralow protocols,
as described here, we often use the qualitative and quantitative
values from the Pico chip for our samples.

1. Choose the correct BioAnalyzer kit based on the RNA Qubit
concentration. For the RNA Pico kit, for example, dilute sam-
ples to stay within the range specified by the kit, e.g., ~2 ng/μl,
to run on the Pico chip. Remove the kit from 4 �C and let the
contents come to room temperature for 30 min before use.
Remove ladder from �20 �C storage, thaw on ice and prepare
dilutions according to protocol. Prepare the gel matrix and
aliquot into single tubes (see Note 10).

2. Once the kit is equilibrated to room temperature for 30 min
and gel matrix had been made and aliquoted, add 1 μl of dye to
1 aliquot of gel, vortex for 10 s, and spin at 13,000 � g for
10 min. Use the gel–dye mix within 1 day.

3. Adjust the syringe clip to be compatible with the RNA chips.
The silver tab should be in the topmost slot of the three
available positions.

4. Put a new Pico RNA chip on the chip priming station and
pipette 9 μl of gel–dye mix slowly into the well that is marked
G corresponding to the third well down on the right side
(Fig. 2).

5. Be sure that the chip plunger on the chip priming station is at
1 ml, lower the lid of the chip priming station until it clicks, and
push the plunger down until the top of the plunger hooks
under the silver tab to hold the plunger in place.

6. Let the chip sit for exactly 30 s and release the plunger by
pulling up on the silver tab, allowing the plunger to pop back
up and slowly return to the 1 ml position. Let the plunger
retract back toward the 1 ml position for 5 s, and then slowly
pull the plunger back to the 1 ml position (see Note 11).

7. Once the plunger has returned to the 1 ml position, unlock the
chip priming lid from the front of the chip priming station, and
add 9 μl of gel–dye mix to the two remaining “G” wells.

8. Load 9 μl of the conditioning solution to the well that is
marked “CS”.

9. Load 5 μl of the RNA marker (green top tube) to each sample
well of the chip, including the ladder position, excluding the
“G” wells that already contain gel–dye mix and the well con-
taining CS (see Note 12).

10. Load 1 μl ladder into the designated well.

11. Pipette 1 μl of sample into each sample well. If there are less
samples than sample spaces, add 1 μl of RNAmarker (green top
tube) to each empty well.
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12. Place loaded chip horizontally onto the IKA vortexer and
vortex for 1 min at 2400 rpm.

13. Run the chip on the BioAnalyzer using the Pico Eukaryote
assay within 5 min.

14. Evaluate all QC results side by side. The results from the three
different methods of quantification should be similar, although
not necessarily identical. The RNA profile below is an example
of a good RNA trace on the Pico chip (see Note 13, Fig. 3).

3.4 Library

Preparation Using the

SMART-Seq® v4 Ultra®

Low Input RNA Kit for

Sequencing

First Strand cDNA-Synthesis (see Note 14)

1. Thaw the 10� lysis buffer, RNase inhibitor, 30 SMART-Seq®

CDS Primer IIA, SMART-Seq® v4 Oligonucleotide,
2� SeqAmp PCR Buffer, and PCR Primer IIA on ice. Thaw
5� Ultra Low First Strand Buffer, water, Ampure XP beads,
and Elution buffer at room temperature. Leave the SMART-
Scribe Reverse Transcriptase and SeqAmp DNA Polymerase at
�20 �C until ready to use.

Fig. 2 Loading a Pico BioAnalyzer chip. Pipette gel–dye matrix into the 3rd well
down on the right side (circled G). Once the chip is primed, add gel–dye mix to
the other two wells marked “G”. Add conditioning solution to the well marked
“CS”. Add marker to all sample and ladder wells. Add samples in chronological
order. Add ladder to the well marked “ladder”
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2. Determine the amount of total RNA (or number of cells) to be
used. Because concentrations are normally low for this proto-
col, we use the Pico BioAnalyzer values to determine starting
volume and concentration of samples. For this protocol, we use
3 ng of total RNA (see Note 15). A positive control (see Note
16), which is included in the kit and a negative control should
also be assayed. Bring the amount of RNA needed to 9.5 μl in
molecular biology grade water in plate or PCR tube format. We
use 96-well PCR plates for all of our applications. Set diluted
samples aside on ice.

3. Preheat a thermal cycler using the heated lid option to 72 �C.

4. Prepare 10� reaction buffer (19 μl 10� lysis buffer + 1 μl
RNase inhibitor). Do not vortex, as the lysis buffer contains a
detergent (see Note 17). Add 1 μl 10� reaction buffer to each
9.5 μl sample, and the positive and negative controls. All sam-
ples should have a final volume of 10.5 μl. Set samples aside
on ice.

5. Add 2 μl of 30 SMART-Seq® CDS Primer IIA (12 μM) to each
sample (see Note 18). Pipette up and down using a multichan-
nel pipette to mix. Close with your seal of choice or cap tubes,
and spin briefly. Proceed to next step.

18S 1,680

Name

Fragment table for sample 2:
Result Flagging Label:

Result Flagging Color:
RNA Integrity Number (RIN):

rRNA Ratio [28s / 18s]:

RNA Concentration:

1,378,9

25

0

50
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150

[FU]

200 1000 4000

2,585 pg/µl

2,6

9,6 (B,02,08)

RIN: 9,60

RNA Area:

Overall Results for sample 2:

˚Sample 2

Start Size [nt] End Size [nt] Area %of total Area

2,838
2,812
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Sample 2

[nt]
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Fig. 3 Sample RNA trace. A total RNA trace on the Pico BioAnalyzer chip shows
two distinct peaks at 18 s and 28 s for eukaryotes. The concentration of the
sample is within range of the chip and the RIN score is 9.6, indicating intact total
RNA with little to no degradation
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6. Incubate the samples at 72 �C in a preheated, hot lid thermal
cycler for 3 min.

7. While samples are incubating at 72 �C, prepare the next master
mix at room temperature. For each sample, add 4 μl 5� Ultra
Low First-Strand Buffer + 1 μl SMART-Seq® v4 Oligonucleo-
tide (48 μM) + 0.5 μl RNase Inhibitor (49 U/μl). Be sure to
include overage (see Note 19).

8. Immediately after the 3 min incubation, place samples on ice
for 2 min.

9. Preheat the thermal cycler to 42 �C.

10. While samples are on ice, remove the SMARTScribe Reverse
Transcriptase (RT) from the freezer and place in a benchtop
�20 �C cooler or on ice (see Note 20). DO NOT VORTEX
the reverse transcriptase before adding it to the master mix,
simply invert up and down or pipette gently. Add 2 μl of
SMARTScribe Reverse Transcriptase (RT) per reaction to the
master mix. Be sure to use the same amount of samples used in
Subheading 3.4, step 7 to determine how much RT to use.
After the RT is added to the master mix, the master mix tube
can be gently vortexed, and then spun to collect droplets at
bottom of tube

11. Add 7.5 μl of master mix with RT to each sample. Pipette up
and down using a multichannel pipette to mix. Close with seal
of choice or cap tubes and spin briefly. Proceed to next step.

12. Place samples on preheated thermal cycler at 42 �C with a
heated lid. Run the following program: 42 �C for 90 min/
70 �C for 10 min/4 �C hold. Samples may be stored at 4 �C
overnight or the protocol can be followed as described.

cDNA amplification by LD-PCR (see Note 21)
13. Reagents should be on ice except for the SeqAmp DNA poly-

merase, which should be at�20 �C. Gently vortex each reagent
and spin down quickly.

14. Remove the SeqAmp DNA Polymerase from freezer and place
in a benchtop �20 �C cooler or on ice. DO NOT VORTEX;
simply invert to mix.

15. Combine the following reagents for the amplification master
mix on ice in the following order: 25 μl 2� SeqAmp PCR
Buffer + 1 μl PCR Primer IIA (12 μM) + 1 μl SeqAmp DNA
Polymerase + 3 μl nuclease-free water. Account for number of
samples plus overage.

16. Once all reagents have been added to master mix, vortex briefly
and spin down to collect droplets to the bottom.

17. Add 30 μl of cDNA amplification master mix to each reaction
containing 20 μl of first-strand cDNA product. Pipette up and
down using a multichannel pipette to mix. Close with your
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choice of seal or cap tubes and spin briefly. Proceed to
next step.

18. The number of cycles of cDNA amplification is determined by
the input amount of total RNA (see Note 22, Fig. 4).

19. Place in a preheated thermal cycler with a heated lid and run
the following program: 95 �C for 1 min/98 �C for 10 s/ 65 �C
for 30 s/68 �C for 3 min/return to steps 2–4 for number of
cycles indicated in above chart/72 �C for 10 min/hold at 4 �C
forever. At this point, samples may be stored at 4 �C overnight.

Purification of Amplified cDNA using Agencourt AMPure XP
beads

20. Thaw AMPure XP beads for >30 min. Make 80% ethanol
(see Note 23). You will need a magnetic separation device
that is compatible with either plate or PCR tube format (see
Note 24).

21. Add 1 μl of 10� Lysis Buffer to each sample, mix by pipetting
up and down.

22. Vortex AMPure XP beads well to obtain a homogenous mix-
ture of beads. Add 50 μl of AMPure XP beads to each sample.

23. Mix by pipetting up and down with a multichannel pipette,
until the bead/sample mixture is homogeneous. Close with
choice of seal and spin briefly.

24. Incubate for 8 min at room temperature to allow binding
between cDNA and beads (see Note 25).

25. Briefly spin samples again and place on magnet for ~5 min until
liquid appears clear (see Note 26).

26. While samples are on magnet, remove the supernatant using a
pipette and discard (see Note 27).

27. With samples still on magnet, immediately add 200 μl of 80%
ethanol to samples and let sit for 30 s. Pipette off supernatant
and discard.

28. Repeat ethanol wash (Subheading 3.4, step 27) once more.

29. Seal or cap samples and spin down briefly to collect any remain-
ing liquid. Immediately place samples back on magnet and let

Fig. 4 Suggested PCR cycles based on starting RNA amount. The chart above shows the number of PCR cycles
suggested depending on the amount of total RNA or the number of cells the protocol started with
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sit for 30 s (still sealed or capped). Remove seal or caps and
remove any remaining ethanol with pipette.

30. Allow samples to sit for ~2 min to dry bead pellet (see Note
28).

31. Once beads are dry, add 17 μl of Elution Buffer to cover bead
pellet. Remove samples from magnet and mix well (see Note
29).

32. Incubate samples for 2 min at room temperature to rehydrate
(see Note 30).

33. Quick-spin samples and place back on magnet for 2 min or
longer until solution is completely clear (see Note 31).

34. Transfer 15–16 μl of clear supernatant (containing cDNA) to
new plate or tube (see Note 32).

35. You may stop here and store samples at �20 �C indefinitely.

Validation of cDNA using the High Sensitivity (HS) DNA kit
and BioAnalyzer from Agilent

36. If the kit is new, the gel–dye mix must be prepared (see Note
33). Allow the gel–dye mix and other kit components to
equilibrate to room temperature for 30 min.

37. Adjust the chip priming station to the correct setting for DNA
chips. Note that the silver lever is at a different position than
with an RNA chip. The lever should be at the bottom-most
position for DNA chips.

38. Put a new HS DNA chip on the chip priming station and
pipette 9 μl of gel–dye mix into the well marked G

corresponding to the third well down on the right side (Fig. 5).

39. Be sure that the chip plunger on the chip priming station is at
1 ml, lower the lid of the chip priming station, and push the
plunger down until the top of the plunger hooks under the
silver tab to hold the plunger in place.

40. Let the chip sit for exactly 60 s and release the plunger by
pulling up on the silver tab, allowing the plunger to pop back
up and slowly return to the 1 ml position. Let the plunger
retract back toward the 1 ml position for 5 s, and then slowly
pull the plunger back to the 1 ml position (see Note 11).

41. Once the plunger is returned to the 1 ml position, unlock the
chip priming lid from the front of the chip priming station, and
add 9 μl of gel–dye mix to the three remaining “G” wells.

42. Load 5 μl of the RNA marker (green-topped tube) to each
sample well of the chip, including the ladder position, but
excluding the “G” wells that already contain gel–dye mix (see
Note 12).

43. Pipette 1 μl of ladder into ladder well.
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44. Pipette 1 μl of sample into each sample well. If there are fewer
samples than sample spaces, add 1 μl of RNA marker (green-
topped tube) to each empty well.

45. Place loaded chip horizontally onto the IKA vortexer and
vortex for 1 min at ~2200 rpm (see Note 34, Fig. 6).

46. Run the chip on the BioAnalyzer within 5 min using the High
Sensitivity DNA assay.

47. Analyze the profile. The sample should peak at ~2500 bp, and
the negative control should be flat between 500 and 9000 bp
(Fig. 7).

3.5 Library

Preparation Using

Illumina Nextera® XT

DNA Library Kit

The full-length cDNA can be used with the Nextera® XT DNA
library kit. The Nextera® XT protocol can be followed using 1 ng
cDNA, and as little as 100–150 pg of amplified cDNA is sufficient.

1. Based on the concentration obtained with the BioAnalyzer,
samples are diluted accordingly for measurement on the

Fig. 5 Loading a High Sensitivity DNA Bioanalyzer chip. Gel–dye mix is added
into the well with the circled G. Once the chip is primed, add gel–dye mix to
3 remaining wells marked G. Add marker to all sample and ladder wells. Add
samples in chronological order. Add ladder to the well marked “ladder”

Generating RNA-Sequencing Libraries from Low Abundance Samples 187



Qubit. If the concentration of cDNA is >1 ng/μl, dilute the
samples at least 1:2 and run on the Qubit High Sensitivity
DNA assay. The goal is to use the Qubit measurement for
Tagmentation, while taking >2 μl of sample into the Tagmen-
tation protocol. High Sensitivity DNA standards, High Sensi-
tivity buffer, and dye are required (see Note 35).

2. Use the diluted concentrations based on the DNA High Sensi-
tivity Qubit for each sample to determine how much volume of
sample is needed to proceed to the Nextera® XT protocol,
using 1 ng total in 5 μl. Reactions can be set up in 96-well
plate format.

Tagmentation

3. Remove the cDNA, ATM, and TD from �20 �C and thaw on
ice. Invert 3–5 times to mix. The NT is stored at room temper-
ature and should be vortexed until all particulates are
resuspended.

Fig. 6 Modified IKA vortexer settings. The IKA vortexer should be set to
~2200 rpm when vortexing a DNA chip to avoid marker carryover from one
well to the next. Estimate the middle of the two set points (2000 and 2400) on
the vortexer, draw a line and manually set your knob to that speed
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4. Put the following program into a thermal cycler, choose the
heated-lid option, and label the protocol “Tagmentation”:
55 �C for 5 min/10 �C hold.

5. Add 10 μl of TD to each sample well of a 96-well plate. Add 5 μl
of the 1 ng sample to plate. Pipette up and down using a
multichannel pipette to mix. Seal plate or cap tubes and spin
briefly.

6. Add 5 μl ATM to each well. Pipette up and down using a
multichannel pipette to mix. Seal plate or cap tubes and spin
briefly.

7. Place on preprogrammed thermal cycler and run the “Tagmen-
tation” protocol.

8. Remove plate from cycler and add 5 μl NT to each well. Pipette
up and down using a multichannel pipette to mix. Seal or cap
tubes and spin briefly.

9. Incubate at room temperature for 5 min.

10. Optional: To assess tagmentation, run 1 μl sample on the
BioAnalyzer instrument using the High Sensitivity DNA chip
(see Note 36).

Amplify Libraries
This step amplifies the tagmented DNA using a limited-cycle
PCR program. This step adds the Index 1 (i7) adapters and
Index 2 (i5) adapters and sequences required for cluster
formation [9].

Fig. 7 cDNA profiles on a High Sensitivity DNA Bioanalyzer chip. (a) A High Sensitivity DNA BioAnalyzer chip
showing a trace of good cDNA from 2 ng total RNA using the SMART-Seq® v4 Ultra® Low kit and 11 cycles of
PCR. cDNA profiles should be between 400 and 10,000 bp peaking at ~2500 bp. The yield of cDNA should be
between 3.4 and 17 ng total. The yield is dependent on input amount and type of sample. (b) A High Sensitivity
DNA BioAnalyzer chip showing the negative control from total RNA using the SMART-Seq® v4 Ultra Low® kit
and 11 cycles of PCR
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11. Remove the i5 and i7 adapters from �20 �C and thaw at room
temperature for 20 min. Invert each tube, spin briefly, and set
aside (see Note 37). Remove the NPM from �20 �C and thaw
on ice.

12. Program the thermal cycler with the Library Amplification
Protocol: 72 �C for 3 min/95 �C for 30 s/95 �C for 10 s/
55 �C for 30 s/ 72 �C for 30 s/return to steps 3–5 for
12 cycles/72 �C for 5 min/10 �C hold.

13. Arrange the i7 adapters in columns 1–12 of the TruSeq Index
Plate Fixture. Arrange the i5 adapters in rows A-H of the
TruSeq Index Plate Fixture. Place plate or PCR tubes in a
PCR rack in open space of Index Plate Fixture. If building
less than 12 libraries, it is imperative that the Nextera® Low
Plex Pooling guidelines from Illumina be consulted (see Note
38; Fig. 8).

14. Using a multichannel pipette, add 5 μl of i7 index to each
sample column. Replace the caps with new orange caps for
each index.

Fig. 8 Nextera® XT dual indexing set up. Nextera® XT index set up using
Illumina’s TruSeq Index Plate Fixture. Index 1 (i7) goes across the top of the
plate (orange caps) while Index 2 (i5) goes vertically down the side (white caps).
Add i7 indexes down each column and add i5 indexes across each row. If making
less than 12 libraries please see the Illumina low plexing guidelines
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15. Using a multichannel pipette, add 5 μl of each i5 index to each
row with sample. Replace the caps with new white caps for each
index.

16. Add 15 μl NPM to each well containing sample. Pipette up and
down using a multichannel pipette to mix. Seal plate or cap
tubes and spin briefly (see Note 39).

17. Place in thermal cycler and run the Library Amplification
protocol.

18. This is a safe stopping point where samples can be stored at
4 �C for up to 2 days.

Library Clean up with AMPure XP beads—Illumina recom-
mends switching samples to a midi plate; however, we keep our
samples in 96-well PCR plates and pipette up and down to mix.

19. Remove the RSB from �20 �C and thaw at room temperature.
RSB can be stored at 4 �C after the initial thaw.

20. Remove the AMPure XP beads from 4 �C and let sit for
>30 min at room temperature.

21. Prepare 80% ethanol (see Note 23).

22. Quick spin the samples from Library Amplification.

23. Determine that there is 50 μl of PCR product (see Note 40).

24. Add 30 μl AMPure XP beads to each well. This is 0.6�
AMPure XP bead volume (see Note 41).

25. Pipette up and down 10–15 times to mix.

26. Incubate at room temperature for 5 min.

27. Place on magnetic stand and let sit for 2 min or until liquid is
clear.

28. Remove and discard the supernatant from each well.

29. With the plate on the magnet, add 200 μl of 80% ethanol,
incubate for 30 s, remove and discard all supernatant.

30. Repeat Subheading 3.5, step 29 once more for a total of two
washes.

31. Seal the plate, quick spin, and place back on magnet. Let sealed
plate sit on magnet for 30 s and remove all remaining ethanol.

32. Air dry on magnet for 2–15 min (see Note 42).

33. Remove plate from magnetic stand and resuspend in 52.5 μl
RSB to each well.

34. Pipette up and down 10–15 times to mix thoroughly.

35. Incubate plate at room temperature for 2 min (see Note 43).

36. Place on magnet until liquid is clear, at least 2 min.

37. Remove seal and transfer 50 μl to 1.7 ml eppendorf tube or
new PCR plate (see Note 44).

Generating RNA-Sequencing Libraries from Low Abundance Samples 191



38. Safe stopping point. Samples may be stored at �20 �C indefi-
nitely (see Note 45).

QC libraries on High Sensitivity BioAnalyzer chip

39. Run 2 μl of library using the High Sensitivity DNAQubit assay.
Reference Qubit QC in Subheading 3.2 being sure to use the
DNA High Sensitivity kit. If concentration is greater than
1 ng/μl dilute to ~1 ng/μl to run on the BioAnalyzer.

40. Run 1 μl of library, diluted or neat, dependent on Qubit
concentration, on a BioAnalyzer DNA High Sensitivity Chip.
Refer to Subheading 3.4, step 36.

41. Typical libraries show a broad size distribution of
~250–1000 bp. A wide variety of libraries can be sequenced
with fragments as small as 250 bp or as large as 1500 bp
(Fig. 9).

42. Proceed to normalization of samples using the reagents sup-
plied in the Nextera®XT kit or pool by hand, based on manual
QC values (see Note 46). We choose to pool based on QC
values from the BioAnalyzer and Qubit, because we like the
ability to keep our libraries at full concentration while diluting
only a portion of the library for pooling.

43. To calculate molarity, take the ng/μl concentration from the
Qubit and multiply it by 106. Divide that number by
649 � average bp size from the High Sensitivity BioAnalyzer

Fig. 9 Successful library profile. (a) Completed library from 3 ng of total RNA through the SMART-seq® V4
Ultra® Low Input kit followed by Nextera® XT library build. 1 μl library on High Sensitivity DNA BioAnalyzer
chip. Libraries can show a broad size range from 250 to 1000 bp (or larger). Libraries can successfully be
sequenced with a size of up to 1500 bp. (b) The negative control gives no library after completion of the
protocol
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measurement. To obtain the average bp size, set the regions of
interest on the BioAnalyzer between 250 bp and 1000 bp or
1500 bp as the protocol above suggests (Fig. 10).

44. The above formula can be placed into an excel sheet (in yellow
box) and Qubit concentrations (ng/μl column) and average
basepair size (bp column) inputted, and the formula will deter-
mine the nM column automatically. Be sure to use double
parentheses in your equation (yellow box; Fig. 11).

45. We recommend creating a spreadsheet in Microsoft Excel to
determine sample and diluent volume to achieve a specific
molarity. In our example, we are diluting libraries to 10 nM
in 10 mM Tris–HCl in a final volume of 10 μl. This is a simple
C1V1 ¼ C2V2 calculation put into an excel sheet.

(a) C1 ¼ nM concentration of sample,

(b) V1 ¼ � (amount of library to add)

(c) C2 ¼ 10 nM (final concentration of library)

(d) V2 ¼ 10 μl (final volume of diluted sample)

In the excel sheet, the column labeled “vol of library to 10 nM”
is V1 (V1 ¼ C2�V2/C1) so V1 ¼ (10 nM � 10 μl)/nM of
library. To determine the volume of diluent needed [column
“vol of 10mM Tris–HCl pH 8.0 (10 μl)”], take the total
volume (V2 or 10 μl) and subtract V1 (volume of library)
(Fig. 12).

Fig. 10 Molarity equation. To determine molarity use the equation above. In the ng/μl place put the ng/μl from
the Qubit High Sensitivity DNA reading, multiply that by 10^6. Divide the entire top value by 649 � the
average bp fragment for each library given by the High Sensitivity BioAnalyzer DNA chip

Fig. 11 Excel sheet molarity calculator. Enter the average bp size from the High Sensitivity DNA BioAnalyzer
chip into the bp column. Enter the ng/μl from the High Sensitivity DNA Qubit into the ng/μl column. Enter the
formula ¼ [(ng/μl � 10^6)/(649 � average library fragment length)] into the nM column and the excel sheet
will figure out your molarity based on the average bp size of your library and the concentration in ng/μl
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46. Once each sample is diluted, pool equal volumes of each sam-
ple into a 1.7 ml tube.

47. Once libraries are pooled, they are ready to be turned over to
the Genomics Core Facility for sequencing on any Illumina
platform or stored at �20 �C indefinitely.

4 Notes

1. A spectrophotometer will also work because only a preliminary
concentration is needed to determine which Qubit assay to use.

2. Nextera® XT, not Nextera kit. Be sure to purchase the
correct kit.

3. The 260/230 ratio of ~2.0 is generally accepted as “pure” for
RNA and 2.0–2.2 is acceptable. If the ratio is lower, it may
indicate contamination that absorbs at 230 nm such as EDTA,
carbohydrates, or phenol.

4. Note that to measure 1 ng/μl with the BR assay, 20 μl of
sample will need to be measured. The range of detection is
indicative of the amount of sample used. With a sample at
1 μg/μl on the NanoDrop, 1 μl can be used with the BR
assay to get an accurate concentration.

5. To measure 250 pg/μl, 20 μl of sample will need to be added.
To measure 100 ng/μl, only 1 μl of sample will need to be
added. It is possible to determine concentration using only 2 μl
of sample.

6. Qubit tubes must be used for this assay. No other 0.5 ml tubes
will give accurate results. Be sure to order the special Qubit
tubes when ordering the Qubit assay.

7. Do not write on the sides of the Qubit tubes as this may
interfere with the readings.

Fig. 12 Library dilution spreadsheet calculations. Type the nM concentration of your libraries based on the
formula from Fig. 10 into the nM column. Input the formula ¼ C2�V2/C1 into the column labeled “Vol of
library to 10 nM” so ¼ (10 nM � 10 μl)/nM of library (column 1). The 3rd column is 10 μl so subtract the 2nd
column from 10 μl to determine how much 10 mM Tris–HCl should be added to each diluted sample to obtain
a 10 nM dilution of each sample. You can dilute your samples to any concentration, keeping in mind your least
concentrated sample
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8. The Qubit assay is light sensitive. If the buffer + dye + sample
mixture will sit for longer than 2 min before reading on the
Qubit machine, place samples in a dark place.

9. Please reference the correct Qubit protocol for the type of assay
you are doing. In the case of the BR RNA assay:https://tools.
thermofisher.com/content/sfs/manuals/Qubit_RNA_BR_
Assay_UG.pdf

After Subheading 3.5 skip to page 6 step 4.1 to let the Qubit
determine the concentration of the sample for you.

10. RNA Pico Guide http://www.agilent.com/cs/library/
usermanuals/Public/G2938-90049_RNA6000Pico_QSG.pdf

11. We like to see the plunger bounce back to the 0.6 ml or 0.7 ml
mark and then slowly retract further toward the 1 ml mark of
the plunger. If the plunger does not bounce back to the 0.6 ml
mark immediately, this can indicate that there is a hole in the
gasket of the plunger. Full instructions for replacing the gasket
can be found in the BioAnalyzer kit documents.

12. Switch tips between each well of the chip when adding marker.
Also go straight down into the well with the tip, not at an angle
and don’t push through to cause a bubble in the liquid.

13. Figure 3 shows a good total RNA trace on the Pico chip from
the BioAnalyzer. The 18 s and 28 s peaks are sharp, the FU
(fluorescent unit) measurement on the Y-axis is high lending to
believability that it is a good run and RNA is concentrated. The
RIN score is 9.6, which is above our cutoff of 7.5 for this
protocol.

14. We work in 96-well plate format. We pipette samples up and
down to mix well before sealing plate. All incubation steps
require a seal for the plate before going on the thermal cycler.
We prefer an adhesive plate seal for all of our incubation
procedures.

15. We have been successful in this protocol down to 300 pg of
total RNA basing total RNA concentration off of Pico
BioAnalyzer data.

16. The positive control is supplied at 1 μg/μl, and we dilute it to
1 ng/μl using nuclease-free water.

17. With more than 18 samples, additional 10� reaction buffer
will be needed. Because the solution is foamy, expect to lose
two reaction volumes per master mix.

18. If 17 or more PCR cycles are being performed, use 1 μl of 30
SMART-Seq®CDSPrimer II A. Keep the final volume at 12.5 μl
by increasing the volume of RNA/cells in validated media to
10.5 μl, either by adding additional nuclease-free water or by
increasing sample volume. Keep the volume of 10� Reaction
Buffer at 1 μl regardless of the number of PCR cycles.

19. Make at least 10% excess for each master mix.
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20. We use a benchtop�20 �C cooler. When not in use, it is stored
at �20 �C at all times.

21. PCR Primer II A amplifies cDNA from the SMART sequences
introduced by 30 SMART-Seq® CDS Primer II A and the
SMART-Seq® v4 Oligonucleotide.

22. Because 3 ng of total RNA was used, cDNA amplification at
10 cycles was performed.

23. Make fresh 80% ethanol daily. Make enough for that day,
including overage. Each sample requires 400 μl of 80% ethanol.

24. We use the DynaMag-96 side magnet from Thermo Fisher for
plate set up. It has a 13th column for sample mixing by moving
the plate back and forth from right to left on the magnet. The
DynaMag-PCR magnet works well for PCR tube set up.

25. You can incubate for as long as 15 min. The lower the amount
of total starting RNA, the longer the incubation time. If cDNA
is left unbound to beads in the supernatant, it can be discarded
in the following two steps, which could affect yield.

26. If supernatant appears cloudy after 5 min allow to sit on mag-
net for another 5 min. Sometimes a brown halo around the
bead pellet will be seen. This is not unusual.

27. Avoid the bead/halo pellet, so sample will not inadvertently be
sucked up and discarded. Sucking up beads at this point could
cause a lower yield than expected.

28. When samples first begin to dry, the bead pellet will appear
shiny. Once the samples have dried, the pellet should be matte
in appearance, but not cracked. In a humid climate, it may take
a little longer to dry the pellet. In a dry climate, it usually takes
2–3 min to dry the pellet. We recommend checking the level of
dryness every 30 s, because overdrying the pellet to the point
of cracks will reduce cDNA yield. If cracks appear in the sam-
ples, add Elution Buffer to the pellets and let them sit for
5–15min. In addition to overdrying the pellet, leftover ethanol
will also reduce cDNA yield.

29. Samples can be mixed by pipetting up and down, being sure to
elute all beads off sides of tube or vortexing. Spin down sam-
ples after mixing.

30. Samples should be homogeneous when mixed with Elution
Buffer. To ensure adequate rehydration, samples can be incu-
bated at room temperature longer than 5 min.

31. Incubation for 2 min is the minimum amount of time recom-
mended, as it is important that all beads bind to the magnet.

32. We transfer to a 1.7 ml tube labeled with each sample name so
that we can continue on to QC of cDNA by BioAnalyzer. It is
easier to keep track of samples on the BioAnalyzer chip when
samples are not in plate format.
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33. If the HS DNA BioAnalyzer kit is new, thaw the kit to room
temperature for 30 min. Vortex the High Sensitivity dye (blue
cap) for 10 s and spin down briefly. Pipette 15 μl of dye mixture
into the High Sensitivity Gel Matrix (red cap). Cap the High
Sensitivity Gel Matrix and vortex for 10 s and quick spin.
Transfer entire volume of gel–dye mix to spin column provided
in kit. Do not touch pipette tip to spin column matrix. Spin at
2240 � g (�20%) for 10 min. Discard filter and label gel–dye
matrix with date. Gel–dye mix is good for 6 weeks and suffi-
cient for five chips. Store at 4 �C and protected from light,
preferably in the original box with the remaining kit
components.

34. Vortexing DNA chips at 2400 rpm can sometimes lead to
marker carryover. Therefore, we recommend vortexing at
2200 rpm to eliminate the long running of the upper marker
into the next sample. It is helpful to mark this speed on the
vortexer by drawing a line between 2000 rpm and 2400 rpm.

35. For good concentration readings, samples can be diluted in a
ratio of 1:2 before measurement using the Qubit instrument.
The Qubit is recommended in the Nextra XT protocol to
measure input DNA concentrations. We recommend using
>1 μl and preferably, > 2 μl in the tagmentation protocol.

36. We do not assess quality at the tagmentation step. If problems
arise with the library protocol, we recommend diluting the
original cDNA samples and rerunning the tagmentation pro-
tocol. With very low cDNA yields, we recommend checking
tagmentation at this step.

37. A benchtop centrifuge can be used to spin down adapters by
first placing a 1.7 ml eppendorf tubes in the centrifuge, and
then placing the adapter tubes in the 1.7 ml tubes. Spin as
normal.

38. Be cautious when only doing a few samples. The i7 indexes
need to be different when multiplexing which may be counter-
intuitive if a vertical method is used for working in plate
format. Illumina provides a low-plex pooling document that
should be addressed when doing less than 12 samples. This is
very important.

39. Enough NPM can be aliquoted into each well of an 8-strip
tube to enable use of a multichannel pipette for pipetting that
reagent into samples. We account for at least 10% overage in
this situation.

40. The ratio of PCR product to AMPure XP beads needs to be
3:2. For example, 50 μl PCR product to 30 μl AMPureXP
beads.

41. The Illumina protocol recommends transferring samples to a
midi plate before proceeding with AMPure XP bead clean

Generating RNA-Sequencing Libraries from Low Abundance Samples 197



up. We have found that cleanup in the PCR plate works well
and pipetting up and down to mix thoroughly is sufficient.

42. Illumina recommends drying for 15 min, but this length of
time will cause beads to crack. We dry only until the beads look
matte, but not cracked.

43. We let our plates incubate at room temperature for 5 min,
especially if beads are drier than anticipated.

44. We find QC is easier when libraries are stored in individual
eppendorf tubes, especially if doing this protocol on more than
one project. With a high throughput QC machine, it may be
easier to leave the samples in plate format.

45. According to the Illumina protocol, samples can be stored for
up to 7 days. Libraries will be stable at �20 �C indefinitely.

46. Please refer to the Nextera® XT DNA Library Prep Reference
Guide for normalization of libraries. If the final concentration
of the library is less than 15 nM, normalization is NOT recom-
mended. Normalization will yield a single-stranded library that
is pooled in equal volumes in a 1.7 ml tube, prior to loading on
the sequencer. If sending samples to a Core Sequencing Facil-
ity, let the staff know that the samples were pooled in this way,
as it changes the clustering protocol downstream in
sequencing.
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Chapter 11

Using Fluidigm C1 to Generate Single-Cell Full-Length cDNA
Libraries for mRNA Sequencing

Robert Durruthy-Durruthy and Manisha Ray

Abstract

Single-cell RNA sequencing has evolved into a benchmark application to study cellular heterogeneity,
advancing our understanding of cellular differentiation, disease progression, and gene regulation in a
multitude of research areas. The generation of high-quality cDNA, an important step in the experimental
workflow when generating sequence-ready libraries, is critical to maximizing data quality. Here we describe
a strategy that uses a microfluidic device (i.e., the C1™ IFC) to synthesize full-length cDNA from single
cells in a fully automated, nanoliter-scale format. The device also facilitates confirmation of the presence of a
single, viable cell and recording of phenotypic information, quality control measures that are crucial for
streamlining downstream data processing and enhancing overall data validity.

Key words Single-cell RNA-seq, Gene expression profiling, Full-length cDNA, Single-cell transcrip-
tomics, Cell characterization

1 Introduction

Since its introduction in 2009 [1], single-cell RNA sequencing has
become the method of choice to study transcriptional heterogene-
ity of tissues and has contributed to new biological insights in a
number of research areas, including stem cell biology [2], neurobi-
ology [3], and immunology [4]. To date, more than a dozen
techniques have been developed to generate single-cell libraries
for next-generation sequencing, each with unique sets of advan-
tages and disadvantages [5]. Despite considerable progress in the
development of new, robust protocols, all methods available today
suffer from substantial technical (nonbiological) variability due to
the minute amounts of starting material, hampering downstream
data processing and information extraction. Here we present a
strategy to generate full-length cDNA from individual cells using
a microfluidic device (i.e., integrated fluidic circuit, or IFC from
Fluidigm®). Nanoliter reaction volumes, a fully automated work-
flow, and the ability to visually confirm the presence of a single,
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viable cell combine to minimize technical noise and maximize
overall data. The following protocol describes the generation of
full-length cDNA from single cells and outlines critical steps includ-
ing IFC priming, cell loading, automated lyses, reverse transcrip-
tion, cDNA synthesis, and cDNA harvesting.

2 Materials

2.1 The C1™
Reagent Kit for mRNA

Seq (Fluidigm®)

Consists of Module

1 and Module 2

l Module 1: Cell Wash Buffer, Suspension Reagent, C1 Blocking
Reagent.

l Module 2: Loading Reagent, C1 Preloading Reagent, C1 DNA
Dilution Reagent, C1 Harvest Reagent.

– SMARTer® Ultra® Low RNA Kit for the Fluidigm C1 Sys-
tem, 10 IFCs (Takara Bio, Inc.®)

2.2 Box

1, Box 2, Advantage®

2 PCR Kit

1. C1 IFC for mRNA Seq (Fluidigm, select 5–10 μm, 10–17 μm,
or 17–25 μm).

2. C1 DNA Dilution Reagent (Fluidigm).

3. Agilent® High Sensitivity DNA chips and reagents (Agilent
Technologies).

4. MicroAmp® Clear Adhesive Film (Thermo Fisher Scientific).

5. 96-well PCR plates.

6. C1 system.

7. Centrifuges (for microcentrifuge tubes and 96-well plates).

8. Vortexer.

9. 2100 Bioanalyzer® (Agilent).

10. Thermal cycler.

11. Magnetic stand for PCR tubes.

12. Fluorometer (for PicoGreen® assay).

13. LIVE/DEAD® Viability/Cytotoxicity Kit, for mammalian
cells (Thermo Fisher Scientific).

14. ArrayControl™ RNA Spikes (Thermo Fisher Scientific).

15. The RNA Storage Solution (Thermo Fisher Scientific).

16. RNeasy® Plus Micro Kit (Qiagen®).

17. 14.3 M β-mercaptoethanol for 2 M dithiothreitol.

18. QIAshredder™ disposable cell lysate homogenizers (Qiagen).

19. INCYTO C-Chip™ Disposable Hemocytometer (Neubauer
Improved).

20. Biocontainment hood.

21. Imaging equipment compatible with C1 IFCs.
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22. Nextera® XT DNA Sample Preparation Kit (Illumina®).

23. Nextera XT DNA Library Preparation Index Kits (Illumina).

24. Quant-IT™ PicoGreen dsDNA Assay Kit (Thermo Fisher
Scientific).

25. Agencourt AMPure® XP (Beckman Coulter).

26. Ethanol.

3 Methods

3.1 Prepare Reagent

Mixes

3.1.1 (Optional) RNA

Spikes Mix

RNA spikes serve as positive controls for thermal cycling of the C1
system independent of cell capture. Although this control is not
required, we highly recommend it (see Note 1).

1. Thaw the ArrayControl RNA Spikes; remove spikes no. 1, no.
4, and no. 7 from the box.

2. Pipet the following in the three tubes:

l Tube A: 13.5 μL of RNA Storage Solution and 1.5 μL of
no. 7 RNA spikes.

l Tube B: 12.0 μL of RNA Storage Solution and 1.5 μL of
no. 4 RNA spikes.

l Tube C: 148.5 μL of RNA Storage Solution and 1.5 μL of
no. 1 RNA spikes.

3. Vortex Tube A for 3 s and centrifuge to collect contents. Pipet
1.5 μL from Tube A into Tube B. Discard Tube A.

4. Vortex Tube B for 3 s and centrifuge to collect contents. Pipet
1.5 μL from Tube B into Tube C. Discard Tube B.

5. Vortex Tube C for 3 s and centrifuge to collect contents. Tube
C is the concentrated RNA standard (RNA Spikes mix), which
can be aliquoted in 1.25 μL volumes and stored at �80 �C for
future use (see Note 2). One tube is used per C1 run.

6. Dilute the RNA Spikes mix for the Lysis final mix 100� by
combining 99 μL of C1 Loading Reagent (Fluidigm) with
1.0 μL of RNA Spikes mix (see Note 3).

7. Vortex the diluted RNA Spikes mix for 3 s and centrifuge to
collect contents.

3.1.2 Lysis Mix—Mix

a (See Note 4)

1. Mix the following reagents in a tube labeled A (total volume
20 μL):
l 1.0 μL of diluted RNA Spikes mix [or 1.0 μL of C1 DNA

Loading Reagent (Fluidigm) if RNA Spikes mix is not being
used].

l 0.5 μL of RNase Inhibitor (Clontech SMARTer kit).
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l 7.0 μL of 30 SMART CDS Primer IIA (Clontech SMARTer
kit).

l 11.5 μL of Dilution Buffer (Clontech SMARTer kit). Do
not vortex.

2. Pipet the cell lysis mix up and down a few times to mix. Keep on
ice until use.

3.1.3 Reverse

Transcription (RT)

Mix—Mix B

1. Mix the following reagents in a tube labeled B to create the RT
reaction mix (total volume 32 μL):
l 1.2 μL of C1 Loading Reagent (Fluidigm).

l 11.2 μL of 5� First-Strand Buffer (Clontech SMARTer kit).

l 1.4 μL of dithiothreitol.

l 5.6 μL of dNTP Mix (dATP, dCTP, dGTP, and dTTP, each
at 10 mM).

l 5.6 μL of SMARTer IIA Oligonucleotide (Clontech).

l 1.4 μL of RNase Inhibitor (Clontech).

l 5.6 μL of SMARTScribe Reverse Transcriptase (Clontech
SMARTer kit).

2. Vortex the RT reaction mix for 3 s and centrifuge briefly to
collect contents. Keep on ice until ready to use.

3.1.4 PCR Mix—Mix C

(See Note 5)

1. Mix the following reagents in a tube labeled C to create the
PCR mix (total volume 90 μL):
l 63.5 μL of PCR-Grade Water (Advantage 2 PCR Kit).

l 10.0 μL of 10� Advantage 2 PCR Buffer [not short ampli-
con (SA)] (Advantage 2 PCR Kit).

l 4.0 μL of 50� dNTP Mix (Advantage 2 PCR Kit).

l 4.0 μL of IS PCR Primer (Clontech SMARTer Kit).

l 4.0 μL of 50� Advantage 2 Polymerase Mix (Advantage
2 PCR Kit).

l 4.5 μL of C1 Loading Reagent (Fluidigm).

2. Vortex the PCR final mix for 3 s and centrifuge to collect
contents before use. Keep on ice until ready to use.

3.2 Prime the IFC When pipetting into the C1 IFC, always stop at the first stop on the
pipette to avoid creating bubbles in the inlets. If a bubble is intro-
duced, ensure that it floats to the top of the well. Vortex and then
centrifuge all reagents before pipetting into the IFC.

1. Add 200 μL of C1 Harvest Reagent from a 4 mL bottle into
each of the accumulators marked with red circles (Fig. 1).
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2. Pipet 20 μL of C1Harvest Reagent into each inlet marked with
solid red circles on each side of the accumulators (36 total).

3. Pipet 20 μL of C1 Harvest Reagent into each of the two inlets
marked with solid red circles in the middle of the outside
columns of inlets on each side of the IFC. These wells are
marked on the bottom of the IFC with a notch to ensure
they are easily located.

4. Pipet 20 μL of C1 Preloading Reagent into inlet 2, marked
with a purple dot.

5. Pipet 15 μL of C1 Blocking Reagent into the cell inlet and
outlet marked with white dots.

6. Pipet 20 μL of Cell Wash Buffer into inlets 5 and 6, marked
with dark gray dots.

7. Peel off white tape on bottom of IFC.

8. Place the IFC into the C1 system. Run themRNA Seq: Prime
(1771�/1772�/1773�) script. Priming takes approxi-
mately 10 min. When the Prime script has finished, tap
EJECT to remove the primed IFC from the instrument (see
Note 6).

3.3 Prepare Cells

3.3.1 Prepare LIVE/DEAD

Cell Staining Solution

(Optional)

The optional live/dead cell-staining step uses the LIVE/DEAD
Viability/Cytotoxicity Kit, which tests the viability of a cell based
on the integrity of the cell membrane. This test contains two
chemical dyes. The first dye is green fluorescent calcein AM,
which stains live cells. This dye is cell-permeable and tests for active
esterase activity in live cells. The second dye is red fluorescent
ethidium homodimer-1, which stains cells only if the integrity of
the cell membrane has been lost (see Note 7).

Fig. 1 C1 IFC priming pipetting map. Schematically shown is the C1 IFC. Inlets that are filled with reagents for
priming the IFC are color-coded
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1. Vortex dyes for 10 s, and then centrifuge before pipetting.

2. Prepare the LIVE/DEAD staining solution by combining
reagents in this order (total volume ~ 1253.13 μL):
(a) 1250 μL of Cell Wash Buffer (Fluidigm).

(b) 2.5 μL of ethidium homodimer-1 (Thermo Fisher
Scientific).

(c) 0.625 μL of Calcein AM (Thermo Fisher Scientific).

3. Vortex the LIVE/DEAD staining solution well before pipet-
ting into the IFC.

3.3.2 Prepare the Cell

Mix (See Note 8)

1. Prepare the cell mix while priming the IFC.

2. Prepare a cell suspension in native medium of 66,000–333,000
cells/mL (Fig. 2). The recommended concentration range
ensures that a total of 200–1000 cells are loaded into the
IFC. You can prepare a cell suspension with a minimum con-
centration of 66,000 cells/mL, but fewer cells will be loaded
and captured in the IFC. Preparing a cell suspension of

Fig. 2 Buoyancy assessment of cells. (a) Titration series of Cell/Suspension Reagent mix across different
ratios ranging from 50 to 100%. (b) Representative bright field image of cells that are settled on the bottom of
the well indicating incorrect cell/Suspension Reagent ratio (inadequate buoyancy). (c) Representative image of
cells that are evenly dispersed throughout the column of the well indicating correct cell/Suspension Reagent
ratio (balanced buoyancy)
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>333,000 cells/mLmay clog the fluidic channels. Suspend the
cells in a final volume of 0.5–1 mL to ensure enough cells are
available for the IFC and tube controls (see Note 9).

3. Prepare the cell mix by combining cells with Suspension
Reagent at a ratio of 3:2. For example (total volume 100 μL):
60 μL of cells (concentrated at 166–250/μL) þ 40 μL of
Suspension Reagent. The volume of cell mix may be scaled
depending on the volume of cells available. Aminimum volume
of 6 μL of cell mix is necessary for the IFC.

4. Set a P200 pipette to 60 μL, and then pipet the cell mix up and
down 5–10 times to mix, depending on whether the cells tend
to clump. Do not vortex the cell mix. Avoid bubbles when
mixing.

3.4 Load Cells 1. Use a pipette and tip to remove blocking solutions from the cell
inlet and outlet marked with teal and white dots, as shown in
Fig. 3.

2. Set a P200 pipette to 60 μL, and then pipet the cell mix up and
down 5–10 times to mix, depending on whether the cells tend
to clump. Do not vortex the cell mix. Avoid bubbles when
mixing.

3. Pipet 6 μL of the cell mix into the cell inlet marked with the teal
dot. You may pipet up to 20 μL of cell mix, but only 6 μL will
enter the IFC.

4. Perform one of these tasks:

l Staining cells: Vortex the LIVE/DEAD staining solution
well, and then pipet 20 μL of the solution into inlet
1, marked with a pink dot.

Fig. 3 C1 IFC loading pipetting map. The C1 IFC is schematically shown. Inlets that are filled (or emptied) with
reagents for loading the cells on the IFC are color-coded
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l Not staining cells: Pipet 20 μL of Cell Wash Buffer into inlet
1, marked with a pink dot (see Note 10).

5. Place the IFC into the C1. Run the mRNA Seq: Cell Load
(1771�/1772�/1773�) or mRNA Seq: Cell Load &
Stain (1771�/1772�/1773�) script.

6. When the script has finished, tap EJECT to remove the IFC
from the C1 system.

3.5 Start the Tube

Control: Lysis

and Reverse

Transcription

(Optional)

Large numbers (e.g., hundreds) of cells in the tube control may
inhibit the reaction chemistry. To ensure reliable results, we recom-
mend extraction and purification of total RNA using the Qiagen
RNeasy Plus Micro Kit (Qiagen, PN 74034), as described in Pro-
tocol A prior to performing the tube controls (see Note 11).

3.5.1 Protocol a: Tube

Controls with Purified RNA

(See Note 12)

1. Dilute cells in media for a final concentration of 100–200
cells/μL.

2. From this step on, follow the manufacturer’s instructions in the
Qiagen RNeasy Plus Micro Kit for RNA isolation. Use 20 μL
cells in media from the previous step.

3. Proceed to “Perform the Tube Control Reactions” on page
12 of the user’s guide, using the purified RNA as the prepared
cells in the lysis reaction (see Note 13).

3.5.2 Protocol B: Tube

Controls with Whole Cells

1. Pellet remaining cells. While speeds and durations of centrifu-
gation may vary, we suggest centrifuging cells at 300 � g for
5 min.

2. Remove the buffer from the pellet by gently pipetting out the
supernatant media without disturbing the cell pellet.

3. Resuspend cells in 1 mL Cell Wash Buffer by pipetting up and
down at least five times.

4. Pellet cells again and remove supernatant.

5. Wash a second time by resuspending in 1 mL of Cell Wash
Buffer by pipetting up and down at least five times.

6. Pellet cells again and remove supernatant.

7. Resuspend cells in Cell Wash Buffer to approximately 90%
original volume to keep original concentration, assuming a
10% loss.

8. Dilute your cell suspension to 100–200 cells/μL using Cell
Wash Buffer (see Note 9).

3.5.3 Perform the Tube

Control Reactions

Prepare cell lysis mix for the positive control by combining 1.0 μL
prepared cells and 2.0 μL Lysis final mix. Include a no template
control (NTC) by substituting 1.0 μL of Cell Wash Buffer in place
of the cells.
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1. In a thermal cycler, run a Lysis program corresponding to
72 �C for 3 min, 4 �C for 10 min, 25 �C for 1 min, and then
hold at 4 �C.

2. Combine RT final mix (4.0 μL) with lysis thermal products
from step 1 (3.0 μL) for a total volume of 7.0 μL.

3. Vortex the tube controls for 3 s and centrifuge to collect
contents.

4. In a thermal cycler, run the following program for reverse
transcription: 42 �C for 90 min, 70 �C for 10 min, and then
hold at 4 �C (see Note 14).

5. When the thermal cycle program is completed, prepare the
following reactions for a positive control (Tube 1) and NTC
(Tube 2): 9.0 μL PCR mix C, and 1.0 μL RT reaction.

6. Place tubes in a thermal cycler and run the following program:
95 �C for 1 min, 5 cycles of 95 �C for 20 s, 58 �C for 4 min,
68 �C for 6min, 9 cycles of 95 �C for 20 s, 64 �C for 30 s, 68 �C
for 6 min, 7 cycles of 95 �C for 30 s, 64 �C for 30 s, 68 �C for
7 min, 1 cycle of 72 �C for 10 min, and then hold at 4 �C.

7. Transfer prepared material to a post-PCR room.

8. Vortex the prepared products for 3 s and centrifuge to collect
contents.

9. Dilute the PCR product by combining 45.0 μL C1 DNA
Dilution Reagent and 1.0 μL PCR product.

3.6 Image Cells Cells may be imaged on a microscope compatible with the C1 IFC
(see Note 15). Guidelines for the selection of a microscope are
outlined in Minimum Specifications for Imaging Cells in Fluidigm
Integrated Fluidic Circuits.

Fig. 4 C1 IFC Lysis, RT and PCR pipetting map. Schematically shown is the C1 IFC. Inlets that are filled with
reagents for performing cell lysis, reverse transcription, and PCR on the IFC are color-coded
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3.7 Run Lysis,

Reverse Transcription,

and PCR on the C1

System

1. Pipet 180 μL of C1 Harvest Reagent into the four reservoirs
marked with large solid red rectangles in Fig. 4.

2. Pipet 9 μL of lysis Mix A in inlet 3, marked with an orange dot.

3. Pipet 9 μL of RT Mix B in inlet 4, marked with a yellow dot.

4. Pipet 24 μL of PCR Mix C in inlets 7 and 8, marked with
blue dots.

5. Place the IFC into theC1 system and run themRNASeq:RT&
Amp (1771�/ 1772�/1773�) script (Fig. 5, seeNote 16).

This protocol can be programmed to harvest at a convenient
time. Slide the orange box (end time) to the desired time. For
example, the harvest function could be programmed for the next
morning. To abort the harvest, tap ABORT. The IFC will no
longer be usable. Start a new experiment with a new IFC.

The PCR (1771�/1772�/1773�) script contains the ther-
mal cycling protocols shown in Table 1.

3.8 Harvest

the Amplified Products

1. When the mRNA sequencing preparation script has finished,
tap EJECT to remove the IFC from the instrument
(see Note 17).

2. Transfer the C1 IFC to a post-PCR lab environment.

3. Label a new 96-well plate Diluted Harvest Plate.

4. Aliquot 10 μL of C1 DNA Dilution Reagent into each well of
the diluted harvest plate.

Fig. 5 C1 Display. Screen capture of the C1 display after selecting the PCR script. The user can select the time
to harvest the PCR product by sliding the orange button
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5. Carefully pull back the tape covering the harvesting inlets of the
IFC using the plastic removal tool.

6. Using an 8-channel pipette, pipet the harvested amplicons
from the inlets according to Fig. 6, and place them in the
diluted harvest plate (see Note 18). The harvest amplicon
dilution will consist of 10 μL C1 DNA Dilution Reagent and
3 μL C1 harvest amplicons. Detailed instructions on pipetting
the harvested aliquots to the diluted harvest plate:

(a) Pipet the entire volume of C1 harvest amplicons out of the
left-side wells of the C1 IFC into the 10 μL of C1 DNA
Dilution Reagent in each well of the diluted harvest plate
(Fig. 7).

(b) Pipet the entire volume of C1 harvest amplicons out of the
right-side wells of the C1 IFC into the 10 μL of C1 DNA
Dilution Reagent in each well of the diluted harvest plate
(Fig. 8).

(c) Pipet the entire volume of C1 harvest amplicons out of the
left-side wells of the C1 IFC into the 10 μL of C1 DNA
Dilution Reagent in each well of the diluted harvest plate
(Fig. 9).

(d) Pipet the entire volume of C1 harvest amplicons out of the
right-side wells of the C1 IFC into the 10 μL of C1 DNA
Dilution Reagent in each well of the diluted harvest plate
(Fig. 10).

Table 1
Thermal cycling protocols

Temperature (�C) Time Cycles

Lysis program 72 3 min

Reverse transcription program 4 10 min
25 1 min
42 90 min

PCR amplification program 70 10 min
95 1 min
95 20 s 5
58 4 min
68 6 min
95 20 s 9
64 30 s
68 6 min
95 30 s 7
64 30 s
68 7 min
72 10 min
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(e) Seal, vortex the harvest plate for 10 s, and then centrifuge
it to collect harvest products. After harvesting, material
from the capture sites is arranged on the harvest plate
(Fig. 11).

Fig. 7 First three harvest product pipette steps. Schematically shown is the pipetting scheme for harvesting
the PCR products from the C1 IFC (left) to the 96-well PCR plate (right)

Fig. 6 Pipette map of reaction products on the C1 IFC. Schematically shown is the C1 IFC. Inlets that contain
harvest product are numbered
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3.9 Quantify

and Dilute Harvested

cDNA (See Note 19)

1. Label a new 96-well PCR plate “Diluted Samples”.

2. Pipet the appropriate amount of C1 Harvest Reagent to each
well of the diluted samples plate as follows per determined
sample dilution: 2 μL (1:2), 4 μL (1:3), 6 μL (1:4), 8 μL
(1:5), 10 μL (1:6), 14 μL (1:8), 18 μL (1:10), 22 μL (1:12).

3. Transfer 2 μL of the harvest sample from the harvest sample
plate to the diluted samples plate.

4. Seal the plate with adhesive film.

5. Vortex at medium speed for 20 s and centrifuge at 367 � g for
1 min.

Fig. 9 Seventh, eighth, and ninth pipetting steps. Schematically shown is the pipetting scheme for harvesting
the PCR products from the C1 IFC (left) to the 96-well PCR plate (right)

Fig. 10 Tenth, eleventh, and twelfth pipetting steps. Schematically shown is the pipetting scheme for
harvesting the PCR products from the C1 IFC (left) to the 96-well PCR plate (right)
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3.10 Prepare cDNA

for Tagmentation (See

Note 20)

1. After thawing, gently invert the tubes 3–5 times to mix
reagents, and then centrifuge tubes briefly to collect the
contents.

2. Label a new 96-well PCR plate “Library Prep”.

3. In a 1.5 mL PCR tube, combine the components of the pre-
mix: 300 μL of Tagment DNA Buffer and 150 μL of Amplicon
Tagment Mix (total volumes include 25% overage for
96 samples).

4. Vortex at low speed for 20 s and centrifuge the tube to collect
contents.

5. Aliquot equal amounts of premix into each tube of an 8-tube
strip.

6. Pipet 3.75 μL of the premix to each well of the library prep
plate using an 8-channel pipette.

7. Pipet 1.25 μL of the diluted sample from the diluted sample
plate to the library prep plate.

8. Seal plate and vortex it at medium speed for 20 s. Centrifuge at
4000 rpm for 5 min to remove bubbles.

9. Place the library prep plate in a thermal cycler and run the
following program: 55 �C for 10 min and hold at 10 �C.

10. Aliquot equal amounts of NT Buffer into each tube of an
8-tube strip. You need 1.25 μL of NT Buffer for each sample
plus 25% overage (150 μL total for 96 samples).

Fig. 11 Sample attribution in 96-well format. Schematically shown is the harvest plate with the attributed
samples as they correspond to the C1 IFC (e.g., C03 ¼ capture site 3 is well A1 in harvest plate)
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11. When the sample reaches 10 �C, pipet 1.25 μL of the NT
Buffer to each of the tagmented samples to neutralize the
samples.

12. Seal plate and vortex at medium speed. Centrifuge at 2200 � g
for 5 min.

3.11 Amplify the DNA

(See Note 21)

1. Aliquot equal volumes of Nextera PCR Master Mix (NPM)
into each tube of an 8-tube strip.

2. Pipet 3.75 μL of the aliquoted NPM to each well of the library
prep plate using an 8-channel pipette.

3. Select appropriate Index 1 (N7xx) and Index 2 (S5xx) primers
for the number of samples in your experiment. Each Index
1 Primer corresponds to a column of the 96-well plate and
each Index 2 Primer corresponds to a row.

4. Pipet 1.25 μL of Index 1 Primers (N7xx) to the corresponding
well of each row of the library prep plate using a 12- or
8-channel pipette.

5. Pipet 1.25 μL of Index 2 Primers (S5xx) to the corresponding
well of each column of the library prep plate using an
8-channel pipette.

6. Seal the plate with adhesive film and vortex at medium speed
for 20 s. Centrifuge at 2200 � g for 2 min.

7. Place the plate into a thermal cycler and perform PCR amplifi-
cation corresponding to the following thermal cycling proto-
col: 72 �C for 3 min, 95 �C for 30 s, 12 cycles of 95 �C for 10 s,
55 �C for 30 s, 72 �C for 60 s, 1 cycle of 72 �C for 5 min, and
then hold at 10 �C (see Note 22).

8. Amplified products can be stored at �20 �C for long-term
storage.

3.12 Pool and Clean

Up the Library

1. Determine the number of samples to be pooled based on
desired sequencing depth and sequencer throughput (see
Note 23).

2. Warm Agencourt AMPure XP beads to room temperature and
vortex for 1 min.

3. Make library pools by pipetting the appropriate volume from
each sample listed in Table 2 according to the determined
number of samples to be pooled.

4. To the pooled library, add the required amount of AMPure XP
beads listed in Table 2.

5. Mix well by pipetting up and down five times.

6. Incubate the bead mix at room temperature for 5 min.

7. Place the tube on a magnetic stand for 2 min.
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8. Carefully remove the supernatant without disturbing the
beads.

9. Add 180 μL of freshly prepared 70% ethanol and incubate for
30 s on the magnetic stand.

10. Remove the ethanol.

11. Repeat steps 9 and 10.

12. Allow the beads to air-dry on bench for 10–15 min.

13. Elute the samples by adding the required volume of C1 DNA
Dilution Reagent per number of samples pooled according to
Table 3.

14. Vortex the tube for 3 s and incubate it for 2 min at room
temperature.

15. Plate the tube on a magnetic stand for 2 min.

16. Transfer the entire volume of supernatant to another
PCR tube.

3.13 Repeat Cleanup 1. Add the required amount of AMPure XP beads according to
Table 4.

2. Mix well by pipetting up and down five times.

3. Incubate the bead mix 5 min at room temperature.

4. Place the tube on a magnetic stand for 2 min.

5. Carefully remove the supernatant without disturbing the
beads.

6. Add 180 μL of freshly prepared 70% ethanol and incubate for
30 s on the magnetic stand.

7. Remove the ethanol.

Table 2
Sample volume to be pooled for different pool sizes and AMPure beads required

Number of samples
to be pooled

Volume per
sample (μL)

Total pool
volume (μL)

AMPure bead volume for
cleanup (μL) (90% of total pool volume)

8 4 32 29

12 4 48 44

16 2 32 29

24 2 48 44

32 1 32 29

48 1 48 44

96 1 96 87
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8. Repeat steps 6 and 7 (see Note 24).

9. Allow beads to air-dry on bench for 10–15 min.

10. Elute the samples by adding the required volume of C1 DNA
Dilution Reagent per number of samples pooled according to
Table 5.

11. Remove the tube from the magnetic stand and vortex the tube
for 3 s.

12. Incubate at room temperature for 2 min.

13. Place the tube on the magnetic stand for 2 min.

Table 3
Elution buffer required for libraries pooled from different number of
samples

Number of
libraries pooled

Volume of C1 DNA Dilution Reagent
(volume of original sample pool; μL)

8 32

12 48

16 32

24 48

32 32

48 48

96 96

Elution buffer volume is equal to pooled library volume

Table 4
Elution buffer required for libraries pooled from different number of
samples

Number of libraries pooled
AMPure bead volume for cleanup
(90% of total pool volume; μL)

8 29

12 44

16 29

24 44

32 29

48 44

96 87
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14. Carefully transfer the supernatant to another PCR tube labeled
“SC Lib”.

15. Perform Agilent Bioanalyzer analysis in triplicate using the
Agilent High Sensitivity DNA chip for library size distribution
and quantitation. Refer to the Agilent Bioanalyzer user guide
for this step.

16. Refer to the Illumina sequencing manual to determine the
appropriate library concentration for sequencing.

4 Notes

1. This reagent mix is sufficient for 125 C1 IFCs. Due to the low
volume pipetted, we recommend making the mix in bulk and
aliquoting for future use. While ArrayControl RNA Spikes
contain eight RNA transcripts, we use only three. Alternatively,
ArrayControl Spikes can be replaced with External RNA Con-
trol Consortium (ERCC) Spike-in RNAs, which are comprised
of 92 synthetic polyadenylated RNAs with varying lengths and
molecule numbers [6]. Applicable concentrations are cell-type
dependent and need to be determined empirically (they can
range from 1:20 K to 1:1000 K). Expression data derived from
ERCC spike-ins can be used for a number of critical analysis
steps, including (but not limited to) data normalization,
low-quality data removal, technical noise assessment/removal,
and batch-effect correction.

2. Diluted RNA does not store well. Do not dilute RNA for
longer than 1 h before loading the IFC. Store only concen-
trated aliquots long term.

Table 5
Final elution buffer required for libraries pooled from different number of
samples

Number of libraries pooled
Volume of C1 DNA Dilution Reagent
(1.5� original pool volume; μL)

8 48

12 66

16 48

24 66

32 48

48 66

96 144
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3. You can combine 1 μL of the RNA Spikes mix with 9 μL of
Loading Reagent, and then combine 1 μL of the resulting mix
with 9 μL of Loading Reagent. Vortex the diluted RNA Spikes
mix for 3 s after each dilution.

4. If you are not using RNA spikes, add 1 μL of Loading Reagent
instead of the diluted RNA Spikes mix.

5. The Clontech SMARTer kit contains two PCR buffers. Do not
use the short amplicon (SA) buffer.

6. After priming the IFC, you have up to 1 h to load the IFC with
the C1 system.

7. Keep the dye tubes closed and in the dark as much as possible,
because they can hydrolyze over time. When not in use, store in
a dark, airtight bag with desiccant pack at�20 �C. Cell staining
solution may be prepared up to 2 h before loading into the C1
IFC. Keep on ice and protected from light before pipetting into
the IFC. Staining small cells (5–10 μm) takes 30 min, and
staining medium (10–17 μm) or large (17–25 μm) cells takes
60 min.

8. The quality of the cell suspension is of critical importance to
ensure a high number of cells captured on the IFC and a
successful workflow. In general, capture efficiency (i.e., the
percentage of cells captured on the IFC) depends on cell con-
centration, cell size, cell buoyancy, fraction of viable/dead cells,
and presence of debris. Determining all parameters prior to
running an experiment on the C1 IFC is recommended. Con-
centration: Cells may be counted by any preferred method. In
the absence of an established cell counting protocol, we sug-
gest using the disposable hemocytometer C-Chip by INCYTO.
The ratio of cells to suspension reagent may need to be opti-
mized to maximize cell capture, as discussed below. Do not
exceed a total of 1000 cells when loading the C1 IFC. Suitable
concentrations range from 66 cells/μL (large cells, 17–25 μm)
to 400 cells/μL (small cells, 5–10 μm). Concentrations refer to
cell suspension prior to adding Suspension Reagent. When
working with a rare, low-number target cell population, cells
can be collected (e.g., by fluorescence-activated cell sorting)
directly on the IFC. Please contact the Technical Support Team
at Fluidigm for additional information. Size: Average size and
size distribution of target cells can be determined manually
using a hemocytometer or automatically using automated
cell-counting instruments (e.g., Countess™, Vi-CELL®).
Results of this experiment determine which IFC format to
use (5–10 μm, 10–17 μm, or 17–25 μm). Target populations
with multimodal size distributions spanning a broad range of
sizes may be size-partitioned (e.g., by fluorescence-assisted cell
sorting, or FACS) prior to the workflow and run on different-
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size IFCs. Viability: Including a viability stain, such as trypan
blue, will allow for assessment of percentage of viable cells.
Buoyancy: Routinely the cells are mixed with a cell-type-
dependent volume of Cell Suspension Reagent (CSR) to
ensure optimal buoyancy of the cells throughout the cell-
loading step. Optimal buoyancy may be qualitatively deter-
mined with a serial titration of varying concentrations of cells,
ranging from 50 to 100%). In a 384-well flat-bottom plate, a
total of 10 μL of cellsþCell Suspension Reagent may be plated
(start with 5 μL cells þ5 μL CSR ¼ 50%, end with 10 μL cells
þ0 μL CSR ¼ 100%). After minimum waiting (that is, the
maximum time it takes for the cell-loading script to finish),
microscopically assess cell distribution. Evenly dispersed cells
throughout the column of the well (a few cells visible in each
focal plane) suggest optimal buoyancy. Cells visible primarily
only in one or a few focal planes suggest suboptimal buoyancy
(Fig. 2).

9. Vortex the Suspension Reagent for 5 s before use. If Suspen-
sion Reagent contains particulates, ensure that they are prop-
erly removed by vortexing. Do not vortex cells.

10. The Load and Staining script for small cells (5–10 μm) takes
30min, and for medium (10–17 μm) or large (17–25 μm) cells,
60 min.

11. For cell types that do not exhibit inhibition, sample preparation
may be performed according to Protocol B.

12. Review the Qiagen RNeasy Plus Micro Kit Protocol for proper
use and handling of material before proceeding. Some compo-
nents contain guanidine thiocyanate, which can form highly
reactive compounds when combined with bleach. Take special
care in handling and disposal.

13. Even though cells are lysed, continue with the lysis reaction as
written, because the 30 SMART primer is added to the reaction
during this step.

14. This is a potential stopping point. PCR mix and RT reaction
products can be stored at 4 �C in a thermal cycler overnight and
prepared the following morning.

15. Imaging the IFC presents a critical step of the workflow
because it enables visual confirmation of a single, viable cell
prior to processing the samples. Low-quality samples, particu-
larly doublets/multiplets (resulting from insufficient dissocia-
tion or incorrect capture) can be detected and may be removed
at later stages of the workflow (e.g., prior to library preparation
or after sequencing). These data points are challenging, if not
impossible, to identify based solely on expression data.
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16. The mRNA Seq: RT & Amp (1771�/1772�/1773�) script
may be run overnight. Approximate run times:

l Small-cell IFC: ~7.75 h (6.5 h for lysis, reverse transcrip-
tion, and amplification and 1.25 h for harvest).

l Medium- and large-cell IFCs: ~8.5 h (6.5 h for lysis,
reverse transcription, and amplification and 2 h for harvest).

17. The IFC may remain in the C1 system for up to 1 h after
harvest before you remove products from their inlets.

18. Harvest volumes may vary. Set a pipette to 3.5 μL to ensure
entire volume is extracted.

19. cDNA concentrations yielded from the C1 system may vary
with cell types and cell treatments. Both the library yield and
size distribution also vary with input cDNA/DNA concentra-
tions. To minimize library prep variation and to achieve high
library quality, the harvest concentration and dilution must be
carefully determined. We suggest using the PicoGreen assay to
determine the concentration of cDNA samples; however, other
methods can be used. We suggest using the Microsoft Excel®

worksheet, Single-Cell mRNA Seq PicoGreen Template (Flui-
digm), to quantify the library. The optimal concentration for
Nextera XT library preparation is 0.1–0.3 ng/μL. Dilute each
sample with the appropriate dilution factor to fall within this
range. This can be done with single or multiple dilution steps.
If a 384-well fluorometer is not available, an Agilent Bioanaly-
zer can be used. Samples from a C1 IFC should be run on the
Agilent Bioanalyzer with the Agilent High Sensitivity DNA
chip. The concentration of each sample is estimated with a
size range of 100–10,000 bp. Using the Single-Cell mRNA
Seq PicoGreen Template with a Qubit® fluorometer is also an
option. Input values into Concentration Estimate Table on the
Example Results tab of the template.

20. Warm Tagment DNA Buffer and NT Buffer to room tempera-
ture. Visually inspect NT Buffer to ensure that there is no
precipitate. If there is precipitate, vortex until all particulates
are resuspended.

21. Carefully read the Illumina Nextera XT DNA Library Prepara-
tion Guide for Index primer selection criteria before proceed-
ing to PCR amplification of the tagmented cDNA.

22. Ensure that the thermal cycler lid is heated during the
incubation.

23. If preferred, samples can be cleaned up individually prior to
pooling.

24. Some beads may be lost during ethanol cleanup.
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Chapter 12

MiSeq: A Next Generation Sequencing Platform
for Genomic Analysis

Rupesh Kanchi Ravi, Kendra Walton, and Mahdieh Khosroheidari

Abstract

MiSeq, Illumina’s integrated next generation sequencing instrument, uses reversible-terminator
sequencing-by-synthesis technology to provide end-to-end sequencing solutions. The MiSeq instrument
is one of the smallest benchtop sequencers that can perform onboard cluster generation, amplification,
genomic DNA sequencing, and data analysis, including base calling, alignment and variant calling, in a
single run. It performs both single- and paired-end runs with adjustable read lengths from 1� 36 base pairs
to 2� 300 base pairs. A single run can produce output data of up to 15 Gb in as little as 4 h of runtime and
can output up to 25 M single reads and 50 M paired-end reads. Thus, MiSeq provides an ideal platform for
rapid turnaround time. MiSeq is also a cost-effective tool for various analyses focused on targeted gene
sequencing (amplicon sequencing and target enrichment), metagenomics, and gene expression studies. For
these reasons, MiSeq has become one of the most widely used next generation sequencing platforms. Here,
we provide a protocol to prepare libraries for sequencing using the MiSeq instrument and basic guidelines
for analysis of output data from the MiSeq sequencing run.

Key words Next generation sequencing, Illumina, Sequencing-by-synthesis, Cluster generation,
Data analysis

1 Introduction

Over the last decade, there have been major advancements in the
field of next generation sequencing (NGS) technology leading to
several important breakthroughs in human disease research, cancer
mutation detection, metagenomics, agriculture, and evolutionary
biology [1]. The MiSeq system was first released in 2011 as a
compact benchtop sequencer using the sequencing-by-synthesis
(SBS) technology of Illumina (San Diego, CA). Benchtop sequenc-
ing platforms such as MiSeq can sequence libraries rapidly, produce
hundreds of gigabases of data, and perform data analysis in a single
integrated sequencing run. The MiSeq system includes onboard
cluster generation and data analysis and access to BaseSpace®, the
Illumina genomic analysis platform that provides onsite or internet

Johanna K. DiStefano (ed.), Disease Gene Identification: Methods and Protocols, Methods in Molecular Biology, vol. 1706,
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(cloud)-based, real-time data uploading, data analysis tools, and
run monitoring [2]. This chapter describes the MiSeq workflow
for library denaturation and dilution, instrument setup, data analy-
sis, and troubleshooting of problems that might occur during the
sequencing run.

2 Materials

2.1 Buffers,

Solutions, and

Reagents

l Illumina HT1 (Hybridization buffer) provided with the MiSeq
sequencing kit.

l 0.2 N NaOH (Prepared fresh from 1 N NaOH stock).

l 10 mM Tris–HCl pH 8.5 in 0.1% Tween 20.

l PhiX control.

l Vortexer.

l Microcentrifuge.

2.2 Sequencing

Run Kits

l MiSeq reagent kit (V2 or V3) containing MiSeq flow cell, PR2
bottle and reagent cartridge.

l Ethanol and distilled water to wash flow cell.

l Pipettes.

l Centrifuge.

2.3 Equipment l Hybex microsample incubator.

l Heat block for 1.5 mL tubes.

2.4 Instrument and

Data Analysis

Software

l MiSeq system.

l Preinstalled software: MiSeq control software (MCS), Real-time
analysis (RTA) software, and MiSeq Reporter.

3 Methods

3.1 Instrument Setup 1. Either the MiSeq reagent kit V2 or V3 can be used, depending
upon the read length and number of reads required (seeNote 1).

2. The reagent cartridges (V2 or V3) and HT1 buffer must be
removed from �20 �C and warmed to room temperature
before loading on the instrument. Ensure the reagent cartridge
is completely thawed and remove any air bubbles by mixing and
tapping gently (see Subheading 3.5).
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3. The compatible kit containing the flow cell and PR2 bottle
must be removed from 4 �C and warmed to room temperature
for 30 min before preparing the flow cell for loading.

4. A sample sheet (*.csv file; comma-separated values file) con-
taining the information on run setup, analysis of sequencing
run, list of library samples pooled, and appropriate
corresponding index sequences, is required to set up the run.
The file must be copied to the manifest folder on the MiSeq.

3.2 Denaturation and

Dilution of Libraries:

Standard

Normalization Method

The standard normalization method for denaturation and dilution
of libraries must be used when the libraries have been normalized
using standard library quantification methods (see Note 2). Dena-
ture libraries with freshly prepared NaOH, ensuring that the final
NaOH concentration is not >1 mM. Denatured libraries are then
diluted with HT1 buffer (see Note 3) [3].

1. For denaturation, 0.2 N NaOH is prepared by diluting stock
1 NNaOH (200 μL) with distilled water (800 μL) (seeNote 4).
The diluted 0.2 N NaOH must be used within 12 h of
preparation.

2. Combine 5 μL of 4 nM library and 5 μL of 0.2 N NaOH, and
mix by vortexing, followed by centrifugation at 280 � g for
1 min (For reagent kit V2, 2 nM library could be used for the
denaturation and dilution steps) (see Note 5).

3. Incubate mixture for 5 min at room temperature.

4. After incubation, add 990 μL HT1 buffer to dilute the library
to 20 pM. Vortex the mixture, and then centrifuge at 280 � g
for 1 min.

5. Depending upon user preferences, load between 6 and 20 pM
of diluted libraries (600 μL) into the reagent cartridge for
sequencing (Table 1; see Note 6).

Table 1
Preparing different concentrations of sequencing library pools

Pool loading
concentration

20 pM Denatured library
(μL)

HT1 buffer
(μL)

6 pM 180 420

8 pM 240 360

10 pM 300 300

12 pM 360 240

15 pM 450 150

20 pM 600 0
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3.3 PhiX Control,

Denaturation, and

Dilution for Low

Diversity Samples

1. The concentration of the PhiX control supplied by illumina is
10 nM. For denaturation of PhiX, mix 2 μL of the 10 nM stock
with 3 μL of 10 mM Tris–Cl, pH 8.5 in 0.1% Tween 20. The
resulting concentration of PhiX is 4 nM and is stable for up to
12 h.

2. For denaturation of the working solution of the PhiX control,
mix 5 μL of the 4 nM PhiX control with 5 μL of freshly
prepared 0.2 N NaoH, vortex briefly, and then centrifuge at
280 � g for 1 min.

3. Incubate mixture at room temperature for 5 min to
denature PhiX.

4. Dilute the denatured 4 nM Phix control library (10 μL) with
990 μL of pre-chilled HT1 and mix by inverting. The resulting
concentration is 20 pM, which is used for MiSeq Reagent kit v3
without further dilution. The 20 pM PhiX control can be
stored at �15 �C to – 25 �C up to 3 weeks.

5. When using MiSeq reagent kit v2, dilute the denatured 20 pM
PhiX control to 12.5 pM by mixing 375 μL 20 pM PhiX with
225 μL prechilled HT1. The resulting mix produces optimal
cluster density when using v2 reagents.

6. For low diversity libraries, at least 5% PhiX control is spiked-in
by mixing denatured and diluted libraries of 570–30 μL of
denatured and diluted PhiX control (see Note 7).

7. For most libraries, 1% PhiX control spike-in is used by mixing
6 μL of denatured and diluted PhiX control with 594 μL of
denatured and diluted libraries.

3.4 Denaturation and

Dilution of Libraries:

Bead-Based

Normalization Method

The bead-based normalization method for denaturation and dilu-
tion of libraries is dependent on library preparation types that
include normalization using bead-based procedures. Examples of
this type of normalization method are Nextera XT library pools and
certain Amplicon library pools.

1. Preheat an incubator to 98 �C.

2. Combine 6–10 μL of amplicon library pools with 594–590 μL
of pre-chilled HT1 buffer, respectively, for a total volume of
600 μL. For library pools from Nextera XT, mix 24 μL of
library pool with 576 μL of HT1 buffer, again the final volume
is 600 μL (Table 2).

3. Briefly vortex mixture, and then centrifuge at 280 � g for
1 min.

4. Incubate diluted library pools at 98 �C for 2 min, and then cool
immediately on ice for 5 min.
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5. The denatured and diluted libraries are now ready to be loaded
on to the MiSeq cartridge, unless the library pools have low
diversity. For low diversity libraries, similar steps as detailed
above should be followed, using the PhiX control before load-
ing on to the sequencer (see Subheading 3.3).

3.5 Sequencing

Setup

The denatured and diluted libraries, prepared by either the stan-
dard or bead-based normalization method, are ready for loading
onto the reagent cartridge and the sequencing run can be initiated.

1. Invert the thawed reagent cartridge (either V2 or V3 kit) ten
times to mix contents in the reservoir positions of the cartridge
and inspect cartridge for air bubbles or precipitates in positions
1, 2, and 4.

2. Tap cartridge gently to dispel air bubbles.

3. Load the denatured and diluted library pool of 600 μL (with or
without PhiX control) into the reservoir position labeled
“Load samples” by piercing the foil seal with tip.

4. The prepared cartridge is now ready for sequencing.

5. Before loading the MiSeq flow cell on to the sequencer, it must
first be rinsed using distilled water and dried with lint-free lens
cleaning tissue, taking care not to disturb the black flow cell
port gasket.

3.6 MiSeq Control

Software and Starting

the Run

The MiSeq control software (MCS v2.3) provides step-by-step
instructions for loading the flow cell, PR2 bottle, waste bottle,
reagent cartridge with libraries and input of manifest file location
containing the sample sheet information. TheMCS reviews the run
parameters by performing pre-run check of all run components,
disk space, and network connections. After the completion of the
pre-run check, the sequencer is ready to be started. The run time of
the sequencer depends on the selection, whether sequencing is
single- or paired-end, and read length, and can range from 4 to
56 h.

Table 2
Sample library preparation for bead-based normalization method

Library normalization
method

Library pool
(μL)

Prechilled HT1 buffer
(μL)

Amplicon 6 594
7 593
8 592
9 591

10 590

Nextera XT 24 576
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4 Diagnosis and Troubleshooting of MiSeq Setup and Sequencing

Illumina’s library and sequence-by-synthesis technology is based on
three steps: preparation of libraries, generation/amplification of
clonal clusters from libraries, and deep, massively parallel sequenc-
ing. The sequencing performance on the MiSeq system, in terms of
data quality and total data output yield, depends on various factors
such as preparation of libraries, quantification of the libraries, dena-
turation and dilution of libraries, density of clonal clusters, loading
concentration, and sequencing run parameters [4].

One of the important parameters affecting run quality, passing
filter reads, Q30 scores, and total output data yield is cluster den-
sity. Underclustering and overclustering can lead to poor perfor-
mance of the sequencing run, lower Q30 scores, introduction of
sequencing artifacts, increases in sequencing errors, and negative
effects to the total data output yield. The goal of any sequencing
run is to have good cluster densities without overclustering and
maximum total data output. Below are some of the common
problems that occur as a result of underclustering or overclustering
and approaches to diagnose them. Both troubleshooting and diag-
nosis examples are summarized in Table 3.

4.1 Low Q30 Scores Q30 scores are affected by overloaded signal intensities, which
produces decreased base intensity to background ratios and leads
to errors in base calling and overall lower data quality. The intensity
analysis tab and % Q30 plot on the sequencing analysis viewer
(SAV) provides information on the influence of cluster density on
Q30 scores to diagnose the error. The lower quality may indicate
poor template generation and may affect either Read 1 or Read 2.

4.2 Low Passing

Filter Clusters and

Data Output Yield

Cluster passing filter percentage (% PF) indicates purity of the
signals in each cluster. The decrease in % PF may be due to poor
template generation. The density box plot on the SAV compares
raw cluster density to % PF. The closer the plot between raw cluster
density to % PF, the better the sequencing run. When the % PF
decreases, the plot between raw cluster density to % PF will appear
farther apart. Low % PF results in reduced output data (seeNote 8).

4.3 Library Quality Library preparation is the most important step for generating high
quality libraries. High quality libraries produce good template gen-
eration and accurate demultiplexing. Errors that can occur during
library preparation, such as cleanup steps, can lead to the presence
of adapter dimers, primer dimers, partial library constructs, and
incorrect indexing of libraries, which affect library quantification
and subsequent cluster efficiency. Errors in library cleanup steps can
be identified using profiles obtained with the Bioanalyzer or Tapes-
tation methods.
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4.4 NaOH The quality and concentration of the NaOH solution used during
the denaturation step also affects library quality, cluster generation,
and cluster density. The NaOH solutionmust be prepared fresh and
have pH > 12.5, and the concentration of NaOH in the diluted
library samples must be <1 mM. For some libraries, Tris–HCl can
be used to neutralize the pH (see Note 3).

4.5 Library

Quantification

Library quantification has been reported as one of the most com-
mon causes of underclustering or overclustering of libraries. The
selection of an appropriate quantification method is very impor-
tant. Quantitative PCR (qPCR), picogreen/qubit method, and the
Bioanalyzer/Tapestation, and NanoDrop instruments are effective
methods for library quantification. The most effective method for
library quantification is qPCR, which measures only functional
library fragments, while ignoring primer dimers, unindexed library

Table 3
Diagnosis and correction of common problems occurring during MiSeq runs

Analysis of problem Diagnosis using SAV Correction

Low Q30 scores Affects signal intensities leading
to error in base calling, lower
data quality

Intensity and Q30 tab
profile on SAV
indicates poor template
generation

Adjust loading
concentration
between 6 and
20 pM

Low passing
filter (% PF)

Overlapping of clusters
indicating poor signal purity

In the density box plots,
% PF and raw cluster
density appear further
apart

Adjust loading
concentration
between 6 and
20 pM

Library quality Poor cleanup of libraries lead
to presence of adapter dimers,
primer dimers, partial libraries
lead to lower efficiency

Tapestation profile verifies
the quality and purity
of libraries

Appropriate
cleanup of the
libraries

Library quality Excess NaOH concentration
leads to error in library
denaturation

NaOH must be prepared
fresh, pH >12.5

Final concentration
of NaOH in diluted
libraries must be <1 mM

Tris–HCl can be
used to neutralize
the pH

Library
quantification

Inaccurate library quantification
is one of the common cause
of underclustering and
overclustering

qPCR quantification, qubit
and tapestation profile

qPCR measures
exact functional
library fragments

Flow cell loading Lower or higher loading
concentration leads to
underclustering or
overclustering

Load between
6 and 20 pM
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fragments, and free nucleotides that may be present in the sample.
The selection of the library quantification method also depends on
the type of library preparation kit, as discussed above (see Note 9).

4.6 Flow Cell

Loading Concentration

Optimal loading concentration leads to good cluster density and
sequencing data. The loading concentration directly affects the raw
cluster density and data output. The optimal raw cluster densities
are 865–965 K/mm2 for v2 MiSeq kits and 1200–1400 K/mm2

for v3 MiSeq kits (Tables 2 and 4). An optimal MiSeq run on
sequencing analysis viewer (SAV) is shown in Fig. 1 [5].

In summary, the MiSeq system provides a complete end-to-end
sequencing solution by integrating cluster generation, amplifica-
tion, sequencing, and data analysis into a single instrument. The
result is low sequencing error, high quality base-by-base accuracy,
and elimination of repetitive sequence regions or homopolymers.
MiSeq has a fast turnaround time, with less than 4 h of run time and
90 min of library preparation time.

5 Notes

1. V2 kits will produce 12–15 M single reads and 24–30 M
paired-end reads. The v2 kit offers three different cycle config-
urations, the 50-cycle kit, 300-cycle kit and 500-cycle kit with
enough chemistry to sequence dual-indexed libraries. The v3
kits produce up to 25 M single reads and offers two different

Table 4
Summary of the MiSeq sequencing run specifications

Specifications MiSeq reagent kit v2
MiSeq reagent
kit v3

Cluster generation Read length 1 � 36 bp
2 � 25 bp
2 � 150 bp
2 � 250 bp

2 � 75 bp
2 � 300 bp

Number of cycles 50, 300 And 500 cycles 150 And 600 cycles
Total run time 4–39 ha 21–56 ha

Total output data yield 0.54 Gb–8.5 Gba 3.3–15 Gba

Sequencing run
parameters

Passing filter reads 12–30 Million reads 22–50 Million reads
% Passing filter (% PF) >90% >85%
Quality scores (Q30) >90% Q30 for 1 � 36 bp and

2 � 25 bp
>80% Q30 for 2 � 150 bp
>75% Q30 for 2 � 250 bp

>85% Q30 for
2 � 75 bp

>70% Q30 for
2 � 300 bp

Raw cluster density
(K/mm2)

865–965 1200–1400

aDepends on the read length, the lower the read length, the faster the run time and the lower the output data yield
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cycle configurations, the 600-cycle kit (2 � 300 bp) and the
150-cycle kit (2 � 75 bp), both allowing for dual-indexed
libraries.

2. Standard library quantification is referencing Bioanalyzer,
qubit, qPCR, or a combination of whatever QC metric fits
best into the workflow. If libraries are normalized with a
bead-based method in the library build protocol, the “Bead-
Based Normalization” will need to be used to denature and
dilute samples, as those libraries will already be single-stranded.

3. It is imperative that the final library/pool dilution has no more
than 1 mM NaOH, as higher concentrations of NaOH inhibit
cluster formations by blocking hybridization to the flowcell.
This will decrease cluster density and result in less data.

4. Dilute NaOH in 1 mL volume so that 1 N NaOH can be
accurately pipetted. As noted above, inaccurate NaOH concen-
tration inhibits cluster formation.

5. If the library pool is low in concentration (less than 2 nM), one
of the following options can be employed: (1) the volume of
the library pool can be reduced using the SpeedVac concentra-
tor, which will increase the concentration of the pool, (2) use
SPRI bead cleanup at a 2:1 ratio with low concentration library
pool and eluting at lower volume of solution, (3) the denature
and dilute protocol for low concentration library pool can be
used by denaturation with NaOH and neutrailzation using

Fig. 1 Example of successful MiSeq sequencing run using a Sequencing Analysis Viewer (SAV) software. SAV
viewer provides information on cluster density, Q30 scores, PF. An ideal MiSeq run on V3 kit has
1200–1400 K/mm2 cluster density, >75% Q30 and >75% PF
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either HT buffer or 200 mM Tris–HCl pH 7, making sure the
final concentration is less than 1 mM.

6. Ideally, 8 pM loading concentration is recommended to
achieve higher Q30 scores, passing filter reads, and good qual-
ity reads, but optimization for individual MiSeqs and different
library preparation protocols will need to be considered.

7. For low diversity libraries where a significant number of reads
have the same sequence and therefore lack variation, base com-
positions of the reads are no longer random. To increase the
diversity (>25%), PhiX control must be spiked-in to the dena-
tured and diluted libraries before loading.

8. When looking at SAV, a gradient of the density of the flowcell
from top to bottom should be observed. The density should be
higher at the ports (bottom of picture of flowcell) and lower
toward the end of the flowcell (top of the picture of the
flowcell). If the density gradient is flipped, there are a higher
number of clusters at the back of the flowcell compared to the
front of the flowcell. This is a good indication of overclustering
(Fig. 1) [5].

9. The most important part of library quantification is consis-
tency. Labs choose different quantification methods that suit
individual workflow and time constraints, and finding what
works best for an individual lab is critical. Be willing to opti-
mize library protocols on each Illumina machine with which-
ever quantification method works best for your lab.
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Chapter 13

Methods for CpG Methylation Array Profiling Via Bisulfite
Conversion

Fatjon Leti, Lorida Llaci, Ivana Malenica, and Johanna K. DiStefano

Abstract

DNA methylation is a key factor in epigenetic regulation, and contributes to the pathogenesis of many
diseases, including various forms of cancers, and epigenetic events such X inactivation, cellular differentia-
tion and proliferation, and embryonic development. The most conserved epigenetic modification in plants,
animals, and fungi is 5-methylcytosine (5mC), which has been well characterized across a diverse range of
species. Many technologies have been developed to measure modifications in methylation with respect to
biological processes, and the most common method, long considered a gold standard for identifying
regions of methylation, is bisulfite conversion. In this technique, DNA is treated with bisulfite, which
converts cytosine residues to uracil, but does not affect cytosine residues that have been methylated, such as
5-methylcytosines. Following bisulfite conversion, the only cytosine residues remaining in the DNA,
therefore, are those that have been methylated. Subsequent sequencing can then distinguish between
unmethylated cytosines, which are displayed as thymines in the resulting amplified sequence of the sense
strand, and 5-methylcytosines, which are displayed as cytosines in the resulting amplified sequence of the
sense strand, at the single nucleotide level. In this chapter, we describe an array-based protocol for
identifying methylated DNA regions. We discuss protocols for DNA quantification, bisulfite conversion,
library preparation, and chip assembly, and present an overview of current methods for the analysis of
methylation data.

Key words DNA, Methylation, CpG, Epigenetics, Bisulfite conversion

1 Introduction

In 1975, Riggs proposed a model that DNA methylation of cyto-
sine residues in the context of CpG dinucleotides should affect
binding of regulatory proteins [1]. Since then, pioneering work
has shown that DNA methylation directly silences genes, often-
times in heritable patterns and with varying levels of regulation
[1, 2]. With the advancement of technology and a better under-
standing of methylation processes, numerous subsequent studies
have implicated methylation in the molecular etiologies of many
diseases and genetic events, including neurodegenerative and car-
diovascular diseases, diabetes and insulin secretion, various forms of
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cancers, X-inactivation, cellular differentiation and proliferation,
and embryonic development [3–8].

Epigenetic regulation occurs through a highly conserved enzy-
matic mechanism that incorporates histone deacetylases, methyl-
binding proteins, and DNA methyltransferases (DNMTs) [9]. The
5-methylcytosine (5mC) residue within a CpG sequence context is
a highly conserved epigenetic marker in plants, fungi, and animals
[10]. Approximately 60–80% of the 28 million CpG sites in the
human genome are methylated [11], and given the role of DNA
methylation in a diverse array of biological roles and gene regula-
tion, the investigation and identification of CpG sites is important
for a better understanding of disease pathogenesis and progression.

The identification and characterization of CpG sites is a grow-
ing area of research and there are many platforms available for
assessment of DNA methylation, each with advantages and disad-
vantages in specific applications [12, 13]. Bisulfite sequencing
technology is considered the gold standard for detection of methy-
lated DNA due to the qualitative and quantitative ability to identify
5mC at a single base pair resolution. Initially developed by From-
mer et al. [13], this method converts unmethylated cytosine resi-
dues into uracil residues, which are then displayed as thymines on
the resulting amplified sense strand in single-stranded DNA
sequencing. In contrast, 5mCs do not respond to bisulfite treat-
ment and will be displayed as cytosine residues on the amplified
sense strand, therefore, allowing them to be distinguished from
unmethylated cytosine residues [14].

Although new approaches for assessing methylation status are
continuously emerging, a popular bisulfite conversion method is
methyl-DNA immunoprecipitation (MeDIP), which involves dena-
turation and precipitation of cleaved DNA using a 5mC antibody,
followed by sequencing [15]. Another commonly used technology,
shotgun sequencing, has the ability to achieve single-base resolu-
tion of bisulfite sequencing, although it cannot distinguish between
5-hydroxmethylcytosine and 5mC [16]. The HumanMethyla-
tion450 BeadChip array (Illumina; San Diego, CA) allows the
analysis of 19,755 unique CpG islands and 3091 probes at
non-CpG sites. The Infinium HumanMethylation450 BeadChip
array (Illumina) can interrogate the methylation status of more
than 450,000 CpGs throughout the genome, 19,755 unique
CpG islands with additional coverage in shore regions and
miRNA promoters, as well as 3091 probes at non-CpG sites [17]
Although not as comprehensive as sequencing-based approaches,
the 450k array provides simpler analysis and interpretation. Some
currently popular methods for 450k array data analysis include
methylumi, minfi, wateRmelon, RnBeads, ChAMP, and COHCAP,
which are discussed in greater detail below.

The purpose of this chapter is to provide a detail protocol for
performing array-based interrogation of CpG methylation using
human genomic DNA. We start with a description of DNA
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quantification usingQuant-iT PicoGreen, and followwith a protocol
for bisulfite conversion that includes techniques for library prepara-
tion, chip assembly, and chip analysis on the Illumina platform
(Fig. 1). We also present an approach for sample analysis and provide
an overview of current packages for the analysis of methylation data.

2 Materials

2.1 PicoGreen Assay 1. DNA extracted from samples of interest.

2. Quant-iT™ PicoGreen dsDNA Reagent Kit (Thermo Fisher
Scientific; Waltham, MA).

3. Black plate with clear flat bottom.

4. 1� Tris–EDTA (TE) buffer.

5. Spectrofluorometer.

Fig. 1 Schematic representation of workflow to identify gene methylation in
conjunction with Illumina Infinium HumanMethylation450 BeadChip Kit assay
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2.2 Bisulfite

Conversion

1. 500 ng of extracted DNA.

2. EZ DNA Methylation™ Kit (Zymo Research; Irvine, CA).

3. DNA/RNase/PCR inhibitor-free plates and tubes.

4. Thermocycler.

2.3 Methylation

Array

1. Infinium HumanMethylation450 BeadChip Kit (Illumina; San
Diego, CA).

2. 96-well 0.2 mL skirted microplate.

3. 960 well 0.8 mL microplate (MIDI).

4. 150-mL reservoirs.

5. Heat sealing foil sheets.

6. 0.1 N NaOH.

7. 100% ethanol.

8. 100% 2-propanol.

9. 95% formamide/1 mM EDTA.

10. Wash rack.

11. Infinium standard glass back plates and spacer (Illumina; San
Diego, CA).

12. Illumina Hybridization Oven (Illumina; San Diego, CA).

13. Hyb chamber, gasket, and insert (Illumina; San Diego, CA).

14. Tecan.

15. iScan or HiScan (Illumina; San Diego, CA).

3 Methods

3.1 PicoGreen Assay 1. Prepare a 2 μg/mL working solution of the lambda DNA
standard, by diluting the 100 μg/mL sample provided in the
Quant-iT™ PicoGreen dsDNA Reagent Kit in TE buffer. For a
five-point standard curve ranging from 1 ng/mL to 1 μg/mL,
proceed to step 3. For a low-range standard curve ranging
from 25 pg/mL to 25 ng/mL, prepare a 40-fold dilution of
the 2 μg/mL DNA solution to yield a 50 ng/mL DNA stock
solution and proceed to step 6.

2. Prepare an aqueous working solution of the Quant-iT Pico-
Green reagent by making a 200-fold dilution of the concen-
trated DMSO solution in TE (see Note 1).

3. For the high-range standard curve, dilute the 2 μg/mL DNA
stock solution with TE buffer as shown in Table 1 and add
1.0 mL of aqueous solution of Quant-iT PicoGreen reagent to
each cuvette. Mix well and incubate for 2–5 min at room
temperature, protected from light.
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4. Measure the sample fluorescence using a spectrofluorometer or
fluorescence microplate reader and standard fluorescein wave-
lengths (excitation ~480 nm, emission ~520 nm) (seeNote 2).

5. Subtract the fluorescence value of the reagent blank from read-
ings for all of the samples.

6. For the low-range standard curve, dilute the 50 ng/mL DNA
stock solution with TE buffer in disposable cuvettes, as shown
in Table 2. Add 1.0 mL of the aqueous working solution of the
Quant-iT PicoGreen reagent to each cuvette. Mix well and
incubate for 2–5 min at room temperature, protected from
light. Continue with steps 2 and 3. Adjust the fluorometer
gain to accommodate the lower fluorescence signals.

3.1.1 Sample Analysis 1. Dilute the experimental DNA solution in TE to a final volume
of 1.0 mL in disposable cuvettes or test tubes (see Note 3).

2. Add 1.0 mL of the aqueous working solution of the Quant-iT
PicoGreen reagent to each sample. Incubate for 2–5 min at
room temperature, protected from light.

Table 1
Protocol for preparing a high-range standard curve

TE (μL) DNA stock (μL)a
Diluted PicoGreen
reagent (μL)

Final DNA
concentration

0 1000 1000 1 μg/mL

900 100 1000 100 ng/mL

990 10 1000 10 ng/mL

999 1 1000 1 ng/mL

1000 0 1000 Blank

a2 μg/mL

Table 2
Protocol for preparing a low-range standard curve

TE (μL) DNA stock (μL)a
Diluted PicoGreen
reagent (μL)

Final DNA
concentration

0 1000 1000 25 ng/mL

900 100 1000 2.5 ng/mL

990 10 1000 250 pg/mL

999 1 1000 25 pg/mL

1000 0 1000 Blank

a50 ng/mL
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3. Measure the fluorescence of the sample using the instrument
parameters that correspond to those used when generating
your standard curve (see Note 4).

4. Subtract the fluorescence value of the reagent blank from those
of all the samples. Determine the DNA concentration of the
sample from the standard curve generated in DNA standard
curve.

3.2 Bisulfite

Conversion Using

the EZ DNA

Methylation™ Kit

1. Prepare the CT Conversion Reagent by combining 750 μL
water and 210 μL M-Dilution Buffer to a tube of CT Conver-
sion Reagent. Mix at room temperature with frequent vortex-
ing or shaking for 10 min (see Note 5).

2. Prepare the M-Wash Buffer by adding 24 mL of 100% ethanol
to the 6 mL M-Wash Buffer concentrate (D5001) or 96 mL of
100% ethanol to the 24 mL M-Wash Buffer concentrate
(D5002).

3. Add 5 μL of M-Dilution Buffer to the DNA sample and adjust
the total volume to 50 μL with water. Mix by flicking or
pipetting up and down.

4. Incubate the sample at 37 �C for 15 min.

5. Add 100 μL of the CT Conversion Reagent to each sample
and mix.

6. Incubate in the dark at 50 �C for 12–16 h.

7. Incubate at 0–4 �C for 10 min.

8. Add 400 μL ofM-Binding Buffer to a Zymo-Spin IC™ column
and place the column into the collection tube provided in
the kit.

9. Load the Sample from step 7 into the Zymo-Spin IC Column
containing the M-Binding Buffer. Close the cap and mix by
inverting the column several times.

10. Centrifuge at full speed (�10,000 � g) for 30 s. Discard flow-
through.

11. Add 100 μL of M-Wash Buffer to the column. Centrifuge at
full speed for 30 s.

12. Add 200 μL of M-Desulfonation Buffer to the column and let
stand at room temperature (20–30 �C) for 15–20 min. Follow-
ing incubation, centrifuge at full speed for 30 s.

13. Add 200 μL of M-Wash Buffer to the column. Centrifuge at
full speed for 30 s. Repeat this step.

14. Place the columns in a 1.5 mL microcentrifuge tube. Add
10 μL of M-Elution Buffer directly to the column matrix.
Centrifuge at full speed to elute the DNA.
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At this point, the DNA can be analyzed or stored at tempera-
tures � � 20 �C. For long-term storage (e.g., over a year), store
DNA at temperatures �70 �C (see Note 6).

3.3 Methylation

Array

3.3.1 The Following

Steps Describe

the Transfer of Bisulfite-

Converted DNA to a MSA4

Plate, the Denaturation

and Neutralization

of Samples,

and the Preparation

of Samples

for Amplification

1. Preheat the Ilumina Hybridization Oven to 37 �C in a post-
PCR area.

2. Thaw the MA1, RPM, and MSM reagents to room
temperature.

3. Apply a MSA4 barcode label to a new 96-well 0.8 mL micro-
plate (MIDI) (see Note 7).

4. Select “MSA4 Tasks” at the robot PC and select the WG#-
BCD plate type (midi or TCY), making sure that the “Use
Barcodes” checkbox is cleared, and enter the number of
DNA samples (48 or 96) in the “Basic Parameters” field.

5. Remove caps from the MA1, RPM, and MSM tubes, and then
place them in the robot standoff tube rack according to the
bed map.

6. Vortex the sealed plate at 1600 rpm for 1 min, and centrifuge at
280 � g for 1 min.

7. Add 15mL 0.1 NNaOH to the quarter reservoir, and place the
reservoir on the robot bed according to the bed map.

8. Place the WG#-BCD and MSA4 plates on the robot bed
according to the bed map, and click “Run” on the robot
PC. Then, select the batch you want to run, and click “OK”.
Click “OK” again to confirm the required DNAs.

9. After the robot adds the 0.1 N NaOH to the DNA in the
MSA4 plate, follow the instructions at the prompt.

10. Seal the plate with a cap mat, vortex at 1600 rpm for 1 min, and
centrifuge at 280 � g at 22 �C for 1 min (see Note 8).

11. Place the MSA4 plate back to the robot bed, and click “OK”.

12. When the process is done, seal the MSA4 plate with a cap mat,
invert it at least ten times to mix contents, and centrifuge at
280 � g for 1 min.

13. Select “Infinium HD Methylation | Incubate MSA4” in the
Illumina LIMS left pane.

14. Scan the barcode of the MSA4 plate, click “Verify”, and then
“Save”.

15. Incubate in the Illumina Hybridization Oven for 20–24 h at
37 �C.
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3.3.2 The Following

Steps Describe

the Enzymatic

Fragmentation

of the Amplified DNA

Samples

1. Preheat the heat block with the midi plate insert to 37 �C.

2. Thaw FMS tubes to room temperature and gently invert at
least ten times to mix contents.

3. If you plan to resuspend the MSA4 plate, remove the RA1
reagent from the freezer to thaw.

4. Pulse-centrifuge the MSA4 plate at 280 � g, remove the cap,
and place it on the robot bed according to the bed map. At the
robot PC, select “MSA4 Tasks|Fragment MSA4”. Make sure
that the “Use Barcodes” checkbox is cleared, and in the “Basic
Parameters” pane, change the value for number of MSA4 plates
and number of DNA samples per plate to incubate to corre-
spond with the number of samples (see Note 9).

5. Place the MSA4 plate on the robot bed according to the
bed map.

6. Place FMS tubes in the according bed map, remove the cap,
and click “Run”. Click “OK” when finished, remove the plate,
and seal it with a cap mat.

7. Vortex at 1600 rpm for 1 min, pulse-centrifuge at 280� g, and
place on the 37 �C heat block for 1 h.

At this point the plate can be left in the 37 �C heat block until
ready to proceed, or sealed and stored at �25 �C to �15 �C for
more than 24 h.

3.3.3 PM1 and 2-

Propanol Are Added

to the MSA4 Plate

to Precipitate the DNA

Samples

1. Preheat the block to 37 �C, thaw the MSA4 plate to room
temperature, and then pulse-centrifuge at 280 � g.

2. Thaw the PM1 reagent to room temperature and gently invert
to mix at least ten times.

3. Select “MSA4 Tasks|Precip MSA4” at the robot PC, and make
sure the “Use Barcodes” checkbox is cleared.

4. Place the plate in the appropriate robot bed.

5. Place a half reservoir in the reservoir frame, and add 1 tube
PM1 for 48 samples, or two tubes for 96 samples. Also, place a
full reservoir in the reservoir frame, and add 20 mL 2-propanol
for 48 samples, or 40 mL for 96 samples, and then click “Run”.
Make sure the “Use Barcodes” checkbox is selected.

6. When prompted, remove the plate from the robot bed, seal it
with the same cap mat that was removed earlier, vortex at
1600 rpm for 1 min, incubate at 37 �C for 5 min and pulse-
centrifuge at 280 � g (see Note 10).

7. Remove and discard the cap mat, place the plate back in the
robot bed, and click “OK”.

8. When prompted, seal the plate with a new, dry cap mat. Invert
the plate ten times to mix, incubate at 4 �C for 30 min,
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centrifuge at 3000 � g at 4 �C for 20 min, and immediately
remove the MSA4 plate from the centrifuge. Remove and
discard the cap mat.

9. Quickly invert the MSA4 plate and drain the liquid onto an
absorbent pad, then smack the plate down on a dry area of the
pad, avoiding the liquid that was drained onto the pad.

10. Leave the plate uncovered and inverted on the tube rack for 1 h
at room temperature to dry the pellet.

At this point the DNA can be resuspended as described below
sealed and stored at �25 �C to �15 �C for no more than 24 h.

3.3.4 The Following

Steps Describe

the Resuspension

of Precipitated DNA

Samples

1. Before proceeding, preheat the Illumina Hybridization Oven
to 48 �C and the heat sealer for 20 min.

2. Thaw the RA1 reagent in a 20–25 �Cwater bath. Gently mix to
dissolve any crystals that might be present.

3. At the robot PC, select “MSA4|Resuspend MSA4”, and in the
Basic Run Parameters change the value of number of MSA4
plates and number of DNA samples per plate to correspond
with the number of samples being processed.

4. After placing the MSA4 plate on the robot bed, place a quarter
reservoir in the reservoir frame, and add 4.5 mL of RA1 for
48 samples, or 9 mL for 96 samples.

5. Make sure the “Use Barcodes” checkbox is selected and then
click “Run”.

6. Click “OK” in the message box, remove the MSA4 plate, and
apply a foil seal by firmly holding the heat sealer block down for
3 s.

7. Immediately remove the plate from the heat sealer and force-
fully roll the rubber plate sealer over the plate until 96 indenta-
tions become visible.

8. Place the sealed MSA4 plate in the Illumina Hybridization
Oven to incubate for 1 h at 48 �C.

9. Vortex the plate at 1800 rpm for 1 min and pulse centrifuge at
280 � g.

At this point, the samples can be hybridized to the BeadChip,
where it is safe to leave the RA1 at room temperature, or stored as
the MSA4 plate at �25 �C to �15 �C for no more than 24 h. The
plate can also be stored at �80 �C for longer than 24 h.
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3.3.5 The Following

Steps Describe

the Dispensation

of the Fragmented,

Resuspended DNA

Samples onto BeadChips

and Incubation

of BeadChips

in the Illumina

Hybridization Oven

for Sample Hybridization

1. Preheat the heat block to 95 �C and the Illumina Hybridization
Oven to 48 �C. Set the rocker speed to 5.

2. Make sure you have the correct Robot Tip Alignment Guide
for the Infinium assay you are running. The barcode says
Guide-B for the 12 � 1 HD BeadChip or Guide-E for the
8 � 1 HD Beadchip. Also, wash and dry the entire one-piece
Robot Tip Alignment Guide.

3. Denature the samples in the MSA4 plate on the heat block at
95 �C for 20 min.

4. Remove the BeadChips from 2 to 8 �C storage, but leaving
them in the original packaging until ready to use. During the
20-min incubation, prepare the Hyb Chambers.

5. Place the BeadChip Hyb Chamber gaskets into the BeadChip
Hyb Chambers.

6. Dispense 400 μL PB2 reagent into the humidifying buffer
reservoirs in the Hyb Chambers, and then immediately place
the lid on the Hyb Chamber to prevent evaporation. At this
point, the lid does not need to be locked.

7. Leave the closed Hyb Chambers on the bench at room tem-
perature until the BeadChips are loaded with DNA sample.
Load BeadChips into the Hyb Chamber within 1 h (see Note
11).

8. After the 20-min incubation, remove the MSA4 plate from the
heat block and let sit at room temperature for 30 min.

9. Remove all BeadChips from packaging (see Note 12).

10. Place BeadChips into the Robot BeadChip Alignment Fixtures
with the barcode end aligned to the ridges on the fixture.

11. Select “MSA4 Tasks | Hyb-Multi BC2” at the robot PC.

12. In the Basic Run Parameters pane, change the value for num-
ber of MSA4 plates and number of DNA samples per plate to
correspond with the number of samples being processed.

13. Place the Robot BeadChip Alignment Fixtures onto the robot
bed according to the bed map.

14. Pulse-centrifuge the plate to 280 � g and place it onto the
robot bed. Remove the foil seal, make sure that the “Use
Barcodes” checkbox is checked, and click “Run”.

15. Place the Robot Tip Alignment Guide on top of the Robot
BeadChip Alignment Fixture with the Guide-B barcode upside
down and facing away. Push both the Robot Tip Alignment
Guide and Robot BeadChip Alignment Fixture to the upper
left corner in its section of the robot bed.

16. At the robot PC, click “OK” to confirm that the Robot Tip
Alignment Guide has been placed on top of the Robot
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BeadChip alignment fixture. The robot scans the barcode on
the Robot Tip Alignment Guide to confirm that the correct tip
guide is being used. The robot dispenses sample to the
BeadChips.

17. Click “OK” in the message box.

18. Carefully remove the Robot BeadChip alignment fixtures from
the robot bed and visually inspect all sections of the BeadChips.
Make sure that DNA sample covers all the sections of each bead
stripe. Record any sections that are not completely covered.

19. Make sure that the Illumina Hybridization Oven is set to
48 �C.

20. Carefully remove each BeadChip from the Robot BeadChip
alignment fixtures when the robot finishes (see Note 13).

21. Carefully place each BeadChip in a Hyb Chamber insert,
orienting the barcode end so that it matches the barcode
symbol on the insert.

22. Load the Hyb Chamber inserts containing loaded BeadChips
inside the Illumina Hyb Chamber. Position the barcode over
the ridges indicated on the Hyb Chamber.

23. In the Illumina LIMS left pane click “InfiniumHDMethylaton
| Infinium Prepare Hyb Chamber”.

24. Scan the barcodes of the PB2 tubes and scan the BeadChip
barcodes. Click “Verify” and “Save”.

25. Position the lid onto the Hyb Chamber by applying the back-
side of the lid first, and then slowly bringing down the front
end to avoid dislodging the Hyb Chamber inserts.

26. Close the clamps on both sides of the Hyb Chamber so that the
lid is secure and even on the base and there are no gaps (see
Note 14).

27. Place the Hyb Chamber in the 48 �C Illumina Hybridization
Oven with the clamps on the left and right sides of the oven
and the Illumina logo facing front.

28. Incubate at 48 �C for at least 16 h, but no more than 24 h.

3.3.6 Proceed to Wash

BeadChips (Post-Amp)

After the Overnight

Incubation

1. Add 330 mL 100% EtOH to the XC4 bottle, for a final volume
of 350 mL. Each XC4 bottle has enough solution to process up
to 24 BeadChips.

2. Shake the XC4 bottle vigorously to ensure complete resuspen-
sion. After it is resuspended, use XC4 at room temperature.
The solution can be stored at 2 �C–8 �C for 2 weeks.

3. For optimal performance, wash and dry the Robot Tip Align-
ment Guides after every run.
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4. Soak the tip guide inserts for 5 min in a 1% aqueous Alconox
solution (1 part Alconox to 99 parts water) using a 400 mL
Pyrex beaker (see Note 15).

5. After the soak in the 1% Alconox solution, thoroughly rinse the
tip guides with DiH2O at least three times to remove any
residual detergent.

6. Dry the Robot Tip Alignment Guide using a Kimwipe or lint-
free paper towels. Use a laboratory air gun to dry. Be sure to
inspect the tip guide channels, including the top and bottom.
Tip guides must be dry and free of any residual contaminates
before next use.

3.3.7 Prepare

the BeadChips

for the Staining Process

1. Remove each Hyb Chamber from the Illumina Hybridization
Oven and let cool for 30 min before opening.

2. Fill two wash dishes with PB1 (200 mL per dish) and fill the
Multi-Sample BeadChip Alignment Fixture with 150 mL PB1.

3. Attach the wire handle to the rack and submerge the wash rack
in the wash dish containing 200 mL PB1.

4. Remove the Hyb Chamber inserts from the Hyb Chambers,
the BeadChip from the Hyb Chamber insert and finally,
remove the cover seal from each BeadChip (see Note 16).

5. Using powder-free gloved hands, hold the BeadChip securely
by the edges in one hand. Avoid contact with the sample inlets.
Make sure that the barcode is facing up and closest to you, and
that the top side of the BeadChip is angled slightly away from
you. Remove the entire seal in a single, continuous motion.
Start with a corner on the barcode end and pull with a contin-
uous upward motion away from you and toward the opposite
corner on the topside of the BeadChip. Do not touch the
exposed arrays.

6. Immediately and carefully slide each BeadChip into the wash
rack, making sure that the BeadChip is submerged in the PB1.

7. Repeat until all BeadChips (a maximum of eight) are trans-
ferred to the submerged wash rack.

8. After all BeadChips are in the wash rack, move the wash rack up
and down for 1 min, breaking the surface of the PB1 with
gentle, slow agitation.

9. Move the wash rack to the other wash dish containing clean
PB1 and repeat step 8.

10. When you remove the BeadChips from the wash rack, inspect
them for remaining residue.
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11. For each additional set of eight BeadChips, assemble the flow-
through chambers for the first eight BeadChips and repeat the
wash steps (see Note 17).

12. If you plan to process more than four BeadChips, the 150 mL
of PB1 used to fill the BeadChip alignment fixture can be
reused for an additional set of four BeadChips (see Note 18).

13. For each BeadChip to be processed, place a black frame into
the BeadChip alignment fixture prefilled with PB1.

14. Place each BeadChip to be processed into a black frame, align-
ing its barcode with the ridges stamped onto the alignment
fixture (see Note 19).

15. Place a clear spacer onto the top of each BeadChip. Use the
alignment fixture grooves to guide the spacers into proper
position (see Note 20).

16. Place the alignment bar onto the alignment fixture. The groove
in the alignment bar fits over the tab on the alignment fixture.

17. Place a clean glass back plate on top of the clear spacer covering
each BeadChip. The plate reservoir is at the barcode end of the
BeadChip, facing inward to create a reservoir against the Bead-
Chip surface.

18. Attach the metal clamps to the flow-through chambers as
follows: gently push the glass back plate against the alignment
bar with one finger. Place the first metal clamp around the
flow-through chamber so that the clamp is approximately
5 mm from the top edge. Place the second metal clamp around
the flow-through chamber at the barcode end, approximately
5 mm from the reagent reservoir.

19. Using scissors, trim the ends of the clear plastic spacers from
the flow-through chamber assembly. Slip scissors up over the
barcode to trim the other end.

20. Immediately wash the Hyb Chamber reservoirs with DiH2O
and scrub them with a small cleaning brush, ensuring that no
PB2 remains in the Hyb Chamber reservoir.

If you are using Illumina LIMS, in the Illumina LIMS left pane,
click “Infinium HD Methylation|Wash BeadChip”. Scan the
reagent barcodes and the BeadChip barcodes, click “Verify”, and
then click “Save”. Illumina LIMS records the data and queues the
BeadChips for the next step (see Note 21).
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3.3.8 The Following

Steps Describe

the Washing

of Unhybridized

and Nonspecifically

Hybridized DNA Sample

from the BeadChips,

Addition of Nucleotides

to Extend the Primers

to the DNA, Staining

of the Primers,

Disassembly of the Flow-

through Chambers,

and Coating of Beadchips

for Protection

1. Thaw the RA1 reagent in a 20–25 �Cwater bath. Gently mix to
dissolve any crystals that might be present.

2. Place all tubes (RA1, XC1, XC2, TEM, XC3, STM, ATM, PB1,
XC4, Alconox Powder Detergent, 95% formamide/1 mM
EDTA) in a rack in the order in which they will be used. If
frozen, allow them to thaw to room temperature, and then
gently invert the reagent tubes at least ten times to mix
contents.

3. Ensure the water circulator is filled to the appropriate level.
Turn on the water circulator and set it to 44 �C using the
Circulator Manager in the automation control software.

4. Remove bubbles trapped in the Chamber Rack.

5. Test several locations on the Chamber Rack, using the Illumina
Temperature Probe. All locations should be at 44 �C � 0.5 �C.
If the temperature on the probe is not within �0.5 �C, contact
Illumina Technical Support.

3.3.9 The Remaining

Steps must Be Performed

without Interruption

1. Slide the chamber rack into column 36 on the robot bed. Make
sure that it is seated properly.

2. Select “XStain Tasks|XStain HD BeadChip” at the robot
PC. In the Basic Run Parameters pane, enter the number of
BeadChips.

3. If you plan on imaging the BeadChips immediately after the
staining process, turn on the iScan or HiScan now to allow the
lasers to stabilize.

4. Place a quarter reservoir in the reservoir frame, according to
the robot bed, and add 15 mL of 95% formamide/1 mM
EDTA to process 8 BeadChips, 17 mL to process 16 Bead-
Chips, or 25 mL to process 24 BeadChips.

5. Place a half reservoir in the reservoir frame, according to the
robot bed, and add 50 mL of CX3 to process 8 BeadChips,
100 mL to process 16 BeadChips, or 150 mL to process
24 BeadChips.

6. Place each reagent tube (XC1, XC2, TEM, STM, ATM) in the
robot tube rack according to the bed map, and remove
their caps.

7. When prompted, enter the stain temperature indicated on the
STM tube. Do not load the BeadChips yet.

8. When the chamber rack reaches 44 �C, quickly place each flow-
through chamber assembly into the first row of the chamber
rack. Refer to the robot bed map for the correct layout.

9. Click “OK” at the robot PC. When the robot finishes, imme-
diately remove the flow-through chambers from the chamber
rack. Place horizontally on the lab bench at room temperature.
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10. Pour 310 mL PB1 per 8 BeadChips into a wash dish.

11. Place the staining rack inside the wash dish.

12. For each BeadChip, use the dismantling tool to remove the
twometal clamps from the flow-through chamber. Remove the
glass back plate, the spacer, and then the BeadChip. Immedi-
ately place each BeadChip into the staining rack that is in the
wash dish with the barcode facing away from you. Make sure all
BeadChips are submerged.

13. Slowly move the staining rack up and down ten times, breaking
the surface of the reagent.

14. Allow the BeadChips to soak for an additional 5 min.

15. Shake the XC4 bottle vigorously to ensure complete resuspen-
sion. If necessary, vortex until dissolved.

16. Pour 310 mL CX4 into a wash dish (see Note 22).

17. Move the BeadChip staining rack into the XC4 dish.

18. Slowly move the staining rack up and down ten times, breaking
the surface of the reagent.

19. Allow the BeadChips to soak for an additional 5 min.

20. Lift the staining rack out of the solution and place it on a tube
rack with the staining rack and BeadChips horizontal, barcodes
facing up.

21. Remove the BeadChips from the staining rack with locking
tweezers, working from top to bottom. Place each BeadChip
on a tube rack to dry. Remove the rack handle if it facilitates
removal of the BeadChips.

22. Dry the BeadChips in the vacuum desiccator for 50–55 min at
675 mm Hg (0.9 bar).

23. Make sure that the XC4 coating is dry before proceeding to the
next step.

24. Clean the underside of each BeadChip with a ProStat EtOH
wipe or Kimwipe soaked in EtOH (see Note 23).

25. Clean and store the glass back plates and Hyb Chamber
components.

26. If you are using Illumina LIMS, in the Illumina LIMS left pane
click “Infinium HDMethylation|Coat BC2”. Scan the reagent
barcodes and BeadChip barcodes, and then click “Save”. Illu-
mina LIMS records the data and queues the BeadChips for the
next step.

At this point, you can either proceed to Image BeadChip (Post-
Amp), or store the BeadChips in the Illumina BeadChip Slide
Storage Box inside a vacuum desiccator at room temperature. Be
sure to image the BeadChips within 72 h.
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3.3.10 Image BeadChip

(Post-Amp)

1. Follow the instructions in the iScan System User Guide or
HiScan System User Guide to scan your BeadChips.

2. Use the Methylation NXT scan setting for your BeadChip.

3. Follow the instructions in the Decode File Client User Guide
(11337856) available on the Illumina support website to
download your DMAPs.

4. Use the GenomeStudio Methylation Module v1.8 Guide
(11319130) to analyze your data. Use the Infinium > > Infi-
nium HD setting to create a GenomeStudio project for your
BeadChip. Analysis requires a sample sheet that describes the
location of each sample.

3.4 Analysis

of Illumina

HumanMethylation450

BeadChip

3.4.1 Preprocessing

Raw IDAT files can be imported using the minfi package [18],
followed by comprehensive evaluation of bisulfite conversion and
subsequent array hybridization success rate. Filtering out problem-
atic probes that failed to hybridize and are not represented by a
minimum of three beads on the array is recommended before
performing any downstream analysis. In practice, this step typically
entails filtering out probes displaying a high detection p-value (e.g.,
>0.05). The number of nonspecific (cross-reactive) Infinium
HumanMethylation450 probes ranges between 8.6 and 25%
depending on the criteria used [19, 20]. This is particularly prob-
lematic, since methylation measurements from a nonspecific probe
could represent signal from several genomic sites, alluding to false
differential expression in further analyses. Therefore, it is of interest
to remove probes that cross-hybridize to multiple genomic regions
or are located on the sex chromosomes [21]. Finally, DNA methyl-
ation measurements can be confounded by the actual DNA
sequence, particularly in independent case-control studies, and
single nucleotide polymorphisms (SNPs) can be present within
the remainder of the probe, although some studies suggest that
DNA methylation measurements are not significantly affected by
these [19].

3.4.2 Within-Array

Normalization

The comprehensive nature of the 450k array is due to the use of two
different types of chemical assays (~30% Infinium I and 70% Infi-
nium II). However, the two probe types display a different dynamic
range potentially leading to type II bias during analysis [22]. Com-
plete Infinium HumanMethylation450 within-array normalization
thus encompasses Infinium I/II-type bias correction, dye bias
adjustment, and background correction. The two-assay design has
led to the development of a plethora of within-array normalization
algorithms. The R package wateRmelon [23] takes advantage of
known methylation patterns that have been previously associated
with genomic imprinting, X chromosome inactivation, and
65 SNPs present on the array to test methods of correction and
normalization, while also providing access to 15 different
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normalization methods. A noncomprehensive list of popular meth-
ods includes peak-based correction (PBC), Subset Quantile Nor-
malization, Subset quantile for Within Array Normalization
(SWAN) and Beta Mixture Quantile normalization (BMIQ)
among others [22–26]. Color bias adjustment methods based on
smooth quantile and shift-and-scaling normalization and Genome
Studio are implemented in lumi and methylumi R packages
[27]. Finally, some of the freely available background correction
methods include simple background subtraction, mixture models
that model signal intensity and background noise separately
(ENmix), and convolution models implemented in methylumi
(normal-exponential convolution using out-of-band probes) [28].

3.4.3 Between-Array

Normalization and Batch

Effects

Between-array normalization is essential to remove sources of non-
biological variation related to external parameters, including
reagent concentrations and temperature, unequal quantities of
starting material, and detection efficiencies. Simple, yet effective
options, derived from processing methods initially developed for
gene expression arrays, are the different versions of the quantile
normalization. Other between-array methods recently developed
include shift and scaling normalization of the lumi package, local
regression-based approaches [29], and unsupervised functional
normalization [30]. Batch and side effects can generate artifacts
on methylation measurements at the global level that could be
partially alleviated due to between-array normalization. However,
global between-array methods may be inefficient in settings where
batch effects affect only a subset of probes. Popular methods for
batch effect correction are the supervised methods ComBat [31],
independent surrogate variable analysis (ISVA) [32], and surrogate
variable analysis (SVA) [33] implemented in the RnBeads package.

3.4.4 Differential

Methylation Analysis

After the preprocessing and normalization steps, the calculation of
differentially methylated positions (DMPs) can be performed. In
epigenome-wide association studies, one might want to consider
correction for cell heterogeneity first [34]. The β-value is defined as
the ratio of the methylated signal over the total signal used to
express the degree of methylation obtained with Infinium array.
The more heteroscedasticity resistant statistic, the M-value, is the
log-transformed ratio of the methylated over the unmethylated
signal. Statistical tests for simple, independent two-sample designs
consisting of t-test or Mann-Whitney test perform best on
M-values. In addition to single CpG analysis, one might also want
to identify differentially methylated regions (DMRs). The intuition
behind measurement of DMRs derives from the idea that probes
lying within the promoter of the same gene, or in a window of a
given size, should exhibit the same methylation patterns. Depend-
ing on the genomic region, the minfi package implements two
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different functions for estimating DMRs [18]: bumphunter focuses
on short range (1–2 kb) methylation changes (around gene pro-
moters), while cpgCollapse overs long-range changes as represented
by the 170,000 open sea probes on the 450k array. Another freely
available DMR method includes champ.lasso function, implemen-
ted in Chip Analysis Methylation Pipeline (ChAMP), which uses a
dynamic window based on genomic features to capture DMRs
[35]. Other recently developed DMR calling methods include
DMRcate, FastDMA, and COHCAP that identifies CpG islands
showing consistent methylation pattern among CpG sites. The
COHCAP package also allows for gene expression and DNAmeth-
ylation data integration for identification of CpG islands that
potentially regulate downstream gene expression [36].

4 Notes

1. We recommend that this solution be prepared in a plastic
container, as the reagent may absorb to glass surfaces. The
working solution should also be protected from light, as the
Quant-iT PicoGreen reagent is photodegradable. For best
results, prepare this solution within a few hours of using.

2. To ensure that sample readings remain in the detection range of
the fluorometer, the instrument’s gain should be set so that the
sample containing the highest DNA concentration yields a
fluorescence intensity near the instrument’s maximum range.

3. A higher dilution of the experimental sample may diminish the
interfering effect of certain contaminants, but extremely small
sample volumes should be avoided because they are difficult to
pipet accurately.

4. To minimize photobleaching effects, keep the time for fluores-
cence measurement constant for all samples.

5. Minimize the exposure to light of the CT Conversion Reagent,
as it is light-sensitive. For best results, the CT Conversion
Reagent should be used immediately following preparation.
The prepared reagent can be stored overnight at room temper-
ature, 1 week at 4 �C, or up to 1 month at �20 �C. Stored CT
Conversion Reagent must be warmed to 37 �C and vortexed
prior to use.

6. 1–4 μL of eluted DNA is recommended for each PCR. The
elution volume can be more than 10 μL, but small elution
volumes are preferred for more concentrated DNA.

7. If you do not already have a WG#-BCD plate, add the bisulfite-
converted DNA to either a Midi plate: 20 μL to each WG#-
BCD plate well or to a TCY plate: 10 μL to each WG#-BCD
plate well. Apply a barcode label to the new WG#-BCD plate.

250 Fatjon Leti et al.



8. When you remove a cap mat, set it aside, upside down, in a safe
location for use later in the protocol. When you place the cap
mat back on the plate, be sure to match it to its original plate
and in the correct orientation.

9. If you are using Illumina LIMS, you cannot change the number
of DNA samples on this screen. However, it will process the
correct number of samples.

10. Set the centrifuge to 4 �C in preparation for the next
centrifuge step.

11. You can also prepare the Hyb Chambers later, during the
30-min cool down.

12. When handling the BeadChip, avoid touching the beadstripe
area and sample inlets.

13. For optimal performance, take care to keep the Hyb Chamber
inserts containing BeadChips steady and level when lifting or
moving. Avoid shaking and always keep parallel to the lab
bench. Do not hold by the sides near the sample inlets.

14. Keep the Hyb Chamber steady and level when moving it or
transferring it to the Illumina Hybridization Oven.

15. Do not use bleach or ethanol to clean the tip guide inserts.

16. Remove the cover seal over an absorbent cloth or paper towels,
preferably in the hood to make sure that no solution splatters
on you.

17. Confirm that you are using the correct Infinium standard glass
back plates and spacers before assembling the flow-through
chambers. Refer to Fig. 2 for the correct flow-through cham-
ber components.

18. Use 150 mL of PB1 for every additional set of eight
BeadChips.

19. Inspect the surface of each BeadChip for residue left by the
seal. Use a pipette tip to remove any residue under buffer and
be careful not to scratch the bead area.

20. Be sure to use the clear plastic spacers, not the white ones.

21. Place all assembled flow-through chambers on the lab bench in
a horizontal position while you perform the preparation steps
for the XStain BeadChip. Do not place the flow-through
chambers in the chamber rack until the preparation is
complete.

22. Do not let the XC4 sit for longer than 10 min.

23. Do not touch the stripes with the wipe or allow EtOH to drip
onto the stripes.
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Chapter 14

miRNA Quantification Method Using Quantitative
Polymerase Chain Reaction in Conjunction with Cq Method

Fatjon Leti and Johanna K. DiStefano

Abstract

MicroRNAs are small noncoding RNAs that function to regulate gene expression. In general, miRNAs are
posttranscriptional regulators that imperfectly bind to the 30untranslated region (30UTR) of target mRNAs
bearing complementary sequences, and target more than half of all protein-coding genes in the human
genome. The dysregulation of miRNA expression and activity has been linked with numerous diseases,
including cancer, cardiovascular diseases, neurodegenerative disorders, and diabetes. To better understand
the relationship between miRNAs and human disease, a variety of techniques have been used to measure
and validate miRNA expression in many cells, tissues, body fluids, and organs. For many years, quantitative
polymerase chain reaction (qPCR) has been the gold standard for measuring relative gene expression, and is
now also widely used to assess miRNA abundance. In this chapter, we describe a quick protocol for miRNA
extraction, reverse transcription, qPCR, and data analysis.

Key words miRNA, Reverse transcription, RT-PCR, qRT-PCR, qPCR, Cq method, Delta-delta Cq

1 Introduction

MicroRNAs (miRNAs) are single-stranded RNAs (approximately
20–24 nucleotides in length), endogenously expressed in most
eukaryotic cells. Dysregulation of miRNAs has been associated
with many types of cancers, viral infections, cardiovascular diseases,
neurodegenerative disorders, and diabetes [1]. In animals, miRNAs
function to suppress translation or initiate degradation of target
mRNAs by binding to the complementary sequence in the 30

untranslated region [2]. Imperfect binding between a given
miRNA and complementary sequences allows a single miRNA to
target a multitude or different genes. Computational analyses reveal
that 60% of mRNAs are potential miRNA targets [3]. There are
many free publically available databases that predict potential
mRNA targets for a miRNA of interest [4–7]. Although such plat-
forms are very helpful, they often yield many false positives; thus,
experimental validation and quantification of a particular miRNA is
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necessary to confirm predicted miRNA-mRNA interactions. Typi-
cal validation and quantification strategies involve luciferase
reporter gene assay, fluorescence-based quantitative real-time
PCR (qPCR), and less commonly, northern blotting. In this chap-
ter, we focus on the qPCR assay, which is recognized as the gold
standard for expression analysis because it provides the widest
dynamic range, the lowest quantification limits, and the least biased
results compared to next generation sequencing and microarrays
[8–10].

qPCR is very similar to traditional PCR, the only difference
being that the product is measured after each round in real time,
rather than at the endpoint of amplification. This allows quantifica-
tion of transcript abundance between controlled and experimental
conditions. Analysis of qPCR results can use absolute or relative
values. In absolute quantitation, the unknown quantity is com-
pared to a standard curve comprised of known values, while the
relative quantification compares miRNA levels between two differ-
ent conditions. Here, we present the ΔΔCq method [11], which
requires a reference control to normalize the miRNA target, as an
approach to measure relative quantification. Selecting a constant
reference control is a very important consideration in the experi-
mental design as it is an indicator of RNA extraction batch effect, as
well as reverse transcription [11].

In this chapter, we describe a protocol for miRNA extraction,
cDNA template synthesis via reverse transcription, and qPCR
amplification, in conjunction with a light cycler (Fig. 1). We also
show a sample calculation using a miRNA (miR-182) that we found
to be differentially expressed between normal and fibrotic liver
samples in individuals with nonalcoholic fatty liver disease [12].

2 Materials

2.1 miRNA Extraction 1. Cell culture (see Note 1).

2. miRVana miRNA Isolation Kit (Thermo Fisher Scientific;
Waltham, MA).

3. Acid-phenol–chloroform.

4. RNase-Free 1.5 polypropylene microfuge tubes.

5. Molecular grade 100% ethanol.

6. 1� PBS.

7. Cell scrapers.

8. NanoDrop™ Spectrophotometer (Thermo Fisher Scientific).

9. RNaseZap.
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Fig. 1 Schematic representation of workflow to measure relative miRNA
expression using the Cq method
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2.2 Reverse

Transcription

1. TaqMan® MicroRNA Reverse Transcription Kit (Thermo
Fisher Scientific).

2. RNase- and DNase-free 0.2 mL PCR tubes or plates.

2.3 Quantitative PCR 1. TaqMan® MicroRNA assays (Thermo Fisher Scientific) (see
Note 2).

2. 2� TaqMan® Universal PCR Master Mix, no AmpErase®
UNG (Thermo Fisher Scientific) (see Note 3).

2.4 Data Analysis 1. Microsoft Excel or comparable program with basic statistical
functions.

3 Methods

3.1 miRNA Extraction 1. Wipe work surface and pipettes using RNaseZap.

2. Add 21 mL of 100% ethanol to Wash Solution 1, provided with
the miRVana miRNA Isolation kit. Mix well.

3. Add 40 mL of 100% ethanol to Wash Solution 2/3 and
mix well.

4. For adherent cells aspirate and discard culture medium.

5. Wash cells with PBS and place plate on ice.

6. Aspirate PBS from the cells.

7. Add RNAlater if cells will be stored prior to RNA extraction;
otherwise, proceed to step 8.

8. Lyse cells directly on the plate culture by adding 300–600 μL
of Lysis/Binding Solution (see Note 2).

9. Collect the cells with a cell scraper and transfer the lysate to a
fresh tube.

10. Vortex vigorously until a homogeneous lysate is obtained.

11. Add 1/10 volume of miRNAHomogenate Additive to the cell
lysate and vortex well (see Note 3).

12. Incubate the tube on ice for 10 min.

13. Add acid-phenol–chloroform mixture in a volume equivalent
to that of the lysate n step 8 (see Note 4).

14. Mix well by vortexing the tube for 30–60 s.

15. Centrifuge the mixture for 5 min at 10,000� g, to separate the
aqueous and organic phases. If the interphase is not compact,
repeat step 15 (see Note 5).

16. Transfer the upper aqueous phase to a fresh tube (do not
disturb the lower phase), and measure the volume recovered.

260 Fatjon Leti and Johanna K. DiStefano



17. Add 1/3 volume of 100% ethanol to the aqueous phase
retrieved from step 16. Mix samples by vortexing or inverting
the tube (see Note 6).

18. Place one filter cartridge from the kit into a collection tube for
each sample.

19. Pipette up to 700 μL of the lysate/ethanol mixture.

20. Centrifuge for ~15 s at 10,000 � g, and collect the filtrate.

21. If the volume of lysate/ethanol mixture is greater than 700 μL,
repeat steps 19 and 20, and combine filtrates of each sample.
The filter cartridge contains an RNA fraction that is depleted of
small RNAs. See Note 7 for steps on how to recover this
fraction.

22. Add 2/3 volume of room temperature 100% ethanol to the
filtrate from step 21, and mix well (see Note 8).

23. Transfer 700 μL of filtrate/ethanol mix to a new filter
cartridge.

24. Centrifuge for ~15 s at 10,000 � g, and discard the eluate.

25. Repeat until all of the filtrate/ethanol mixture is run through
the filter.

26. Add 700 μL of miRNA Wash Solution 1 to the filter cartridge
and centrifuge at 10,000 � g for 10 s. Discard eluate.

27. Apply 500 μLWash Solution 2/3 and centrifuge at 10,000� g
for 10 s. Discard eluate.

28. Repeat step 27.

29. Place filter cartridge in a new collection tube, and spin for
1 min at 10,000 � g to remove residual fluid.

30. Transfer filter cartridge to a new collection tube, and add
100 μL of preheated 95 �C nuclease-free water to the center
of the filter.

31. Spin for 30 s at ~16,000 � g to recover RNA.

32. Proceed with the RNA quantitation and quality assessment
using the NanoDrop Spectrophotometer (see Note 9).

33. Freeze samples at �80 �C or continue with reverse
transcription.

3.2 Reverse

Transcription

1. Thaw the components of the TaqMan® MicroRNA Reverse
Transcription Kit on ice.

2. Dilute primers to 5� using 0.1� TE buffer. Keep tubes on ice.

3. Prepare the Master Mix in a 0.2 mL PCR tube or 96-well plate
following the volumes listed in Table 1. Prepare 15% excess
volume to account for volume loss during pipetting.
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4. Mix gently by pipetting up and down a few times, and then
centrifuge to bring the solution to the bottom of the plate.
Keep plate on ice.

5. To the 7 μL of Master Mix, add 5 μL of RNA (1–10 ng per
reaction) extracted from cells, and 3 μL of primer from each
assay.

6. Seal the plate and mix by inverting. Centrifuge to bring the
solution to the bottom of the plate. Keep plate on ice until
ready to load the thermocycler.

7. Use the parameters listed in Table 2 to program the
thermocycler.

8. Load the plate on to the thermocycler, and start the RT
program.

9. Once the run is completed, continue with the qPCR amplifica-
tion or store the RT reactions at �15 to �25 �C.

Table 1
Reaction volumes for reverse transcription

Component Vol/ 15 μL Vol/15 μL þ 15%

100 mM dNTPs (with dTTP) 0.15 0.17

MultiScribe reverse transcriptase, 50 U/μL 1.00 1.15

10� Reverse transcription buffer 1.50 1.73

5� RT primer 3.00 3.45

RNA sample (1–10 ng) 5.00 5.75

RNase inhibitor, 20 U/μL 0.19 0.22

Nuclease-free water 4.16 4.78

Total volume 15.00 17.25

Table 2
Thermocycler parameters for RT

Step Time (min) Temperature (�C)

Hold 30 16

Hold 30 42

Hold 5 85

Hold 1 4
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3.3 qPCR

Amplification

1. On ice, thaw TaqMan Assay (20�) and cDNA samples
prepared above.

2. Resuspend by vortexing, followed by a brief centrifugation.

3. Gently swirl TaqMan 2� Universal PCR Master Mix, no
AmpErase UNG.

4. Calculate the number of reactions, including the miRNA(s) of
interest, endogenous control assay(s), and a no-template con-
trol (NTC) for each assay on the plate.

5. In a 1.5 mL sterile microcentrifuge tube, combine the reagents
listed in Table 3. Prepare 15% excess volume (see Note 10).

6. Mix by inverting the tube several times, and centrifuge briefly.

7. Pipette 20 μL into each of the three wells on a 96- or 384-well
plate.

8. Seal plate with an optically clear cover, and centrifuge briefly.

9. Load plate on to real-time instrument (see Note 11).

10. Start run using the parameters listed in Table 4.

3.4 Data Analysis 1. The QuantStudio 7 Flex Real-Time PCR System automatically
determines and calculates baseline and threshold levels (see
Note 11).

2. Import Cq values into Microsoft Excel.

Table 3
Volumes per 15 μL single reaction used for qPCR amplification

Component Vol/15 μL (μL) Vol/15 μL þ 15% (μL)

TaqMan small RNA assay (20�) 1.00 1.15

Product from RT reaction* 1.33 1.53

TaqMan 2� universal PCR master mix, no AmpErase UNG 10.00 11.50

Nuclease-free water 7.67 8.82

Total volume 20.00 23.00

Table 4
Sample calculations for relative quantification

Phenotype miRNA Cq1 Cq2 Cq3 Average Cq ΔCq ΔΔCq 2�ΔΔCq

Control miR-182 27.3 27.2 27.1 27.2 � 0.1 6.8 0 1 � 0.01

Control U6 20.3 20.3 20.5 20.4 � 0.1

Case miR-182 26.1 25.9 25.9 26.0 � 0.1 5.7 �1.1 2.1 � 0.02

Case U6 20.2 20.1 20.4 20.2 � 0.2
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3. If the difference among triplicates for each sample is greater
than 0.5 Cq, discard these values. Differences should be <0.5
Cq.

4. Average triplicates of each conditions, and calculate ΔCq ¼
[Cq miRNA of interest � Cq reference miRNA]

5. Calculate ΔΔCq where ΔΔCq ¼ [Cq miRNA sample A � Cq miRNA

sample B].

6. Calculate relative fold-change using 2�ΔΔCq.

7. Refer to Table 4 for sample calculation.

4 Notes

1. This protocol applies only to adherent cells. Refer to the man-
ufacturer’s protocol for extraction of small RNAs from cells
grown in suspension, fresh and frozen tissue samples, and yeast
or bacterial cultures.

2. 300 μL of the Lysis/Binding Solution is recommended for
small cell numbers (up to hundreds), while 600 μL is recom-
mended for larger numbers of cells.

3. If the lysate volume is 300 μL, add 30 μL of miRNA Homoge-
nate Additive.

4. If the lysate volume is 300 μL, add 300 μLof acid-phenol–chloro-
form mixture.

5. If the interphase is not compact after the second spin, adjust
the speed to 16,000 � g for 10 min.

6. If the aqueous phase was 300 μL, add 100 μL 100% ethanol.

7. See steps 26–31 in Subheading 3.1. RNA Extraction.

8. If the filtrate volume recovered is 400 μL, add 266 μL of 100%
ethanol.

9. The simplest method for quantitating RNA to measure absor-
bance using the NanoDrop Spectrophotometer, for example.
Good quality RNA has a A260/A280 ratio of 1.8–2.1. The
Quant-iT RiboGreen RNAReagent and Kit is another available
assay widely used to quantitate RNA.

10. The recommended reaction volume by the manufacturer is
20 μL. We have successfully quantified miRNAs by adjusting
the volume reaction to 10 μL.

11. Please refer to your qPCR system for instructions on how to
configure the experiment/plate document and run the
PCR-plates.
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Chapter 15

Primary Airway Epithelial Cell Gene Editing
Using CRISPR-Cas9

Jamie L. Everman, Cydney Rios, and Max A. Seibold

Abstract

The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR
associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene
editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells
knocked out (KO) for a specific gene. While standard transfection techniques can be used for the
introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not
efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient
delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9
system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery
and increasing editing rates. In parallel, advancements have been made in the culture, expansion, selection,
and differentiation of AECs, which allow the robust generation of a bulk edited AEC population from
transduced cells. Applying these methods, we detail here our latest protocol to generate mucociliary
epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway
epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a
specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select
for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits,
and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC
knockouts generated using this protocol provide an excellent primary cell model system with which to
characterize the function of genes involved in airway dysfunction and disease.

Key words CRISPR, Gene editing, Lentivirus, Airway epithelial cells, Primary cells, Gene knockout

1 Introduction

Research into the etiology of airway and other complex lung dis-
eases has been greatly aided by agnostic, genome-wide genetic and
genomic studies. These studies have generated lists of candidate
genes likely involved in disease pathogenesis. However, many of the
identified genes are novel with no known function or apparent
mechanism for how their perturbation could contribute to devel-
opment or exacerbation of human disease. Gene loss-of-function
studies provide a powerful, causal experimental design that can be
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employed to determine how a biological system responds to
absence of a particular gene. Gene knockout studies of model
organisms, such as mice, have been used for over 25 years to
understand gene function at a whole organism level. Although
these model organism studies are informative, the many differences
between mice and humans in anatomy, physiology, and genetics do
not obviate the need to examine the normal function and dysfunc-
tion of these genes in primary human cell types.

Gene knockouts in human cells have been difficult to generate
due to poor rates of genome modification or editing using homol-
ogous recombination techniques employed in other organisms.
Instead gene loss-of-function studies in human cells have focused
on degradation of gene mRNA products through RNA interfer-
ence (RNAi) [1, 2]. Such techniques utilize short interfering RNAs
(siRNA) to bind to complementary mRNA transcripts, which are
then recognized and cleaved by the Dicer endonuclease and
degraded by the RNA-Induced Silencing Complex (RISC)
[3, 4]. These experiments result in knockdown of protein expres-
sion for the targeted mRNA transcript, while maintaining the
genetic code from which the mRNA was transcribed. The pitfalls
of RNAi include the transient and incomplete nature of the RNA
interference, and the extensive optimization necessary to determine
both the initiation and duration of the knockdown at both the
mRNA and protein levels [5].

Molecular gene editing techniques have since been developed
that greatly enhance the efficiency of DNA level gene knockout
generation in human cells, without the need for homologous
recombination. Improved gene editing was first accomplished
through advances in the design and construction of DNA site-
specific binding proteins. Specifically, modifications of naturally
occurring zinc finger (ZF) and transcription activator-like effector
(TALE) protein domains were arrayed to construct recombinant
proteins capable of recognizing and binding to specific DNA
sequences [6, 7]. These DNA target site-specific binding proteins
were fused to nuclease domains, allowing the generation of a site-
specific double-stranded break (DSB) in the targeted DNA
sequence. Specifically, the fusion of ZF and TALE proteins to
nucleases (N) forms the basis for various ZFN and TALEN gene
editing systems, respectively [8, 9]. Repair of these DSBs can occur
by one of two different cellular mechanisms and allows for editing
of the gene sequence. The homology-directed repair mechanism
can occur if a DNA fragment homologous to the cut site is provided
to the cells. Alternatively, if no homologous template is present, the
cell can repair the break by ligating the two DNA ends together
using nonhomologous end joining (NHEJ). This process is error-
prone and results in the generation of random insertions and dele-
tions (indels) at the break site with a high frequency. When the
programmed nuclease is targeted to a gene coding exon the
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resultant indels are likely to produce a codon frameshift and perma-
nent loss of functional protein expression.

Although both ZFN and TALEN gene editing systems have
been and continue to be successfully applied to a variety of cell
types, they do have a significant limitation. Namely, since the DNA
site specificity lies in the protein sequence, they require the difficult
generation (in both a design and molecular construction sense) of a
different recombinant protein for each targeted DNA site. This
limitation was resolved by the development of the Clustered Regu-
larly Interspaced Short Palindromic Repeats/CRISPR-associated
protein 9 (CRISPR-Cas9) gene editing system, which is guided to a
DNA target sequence by a small complementary RNA sequence
rather than peptide sequences. The CRISPR-Cas9 system is derived
from components of a prokaryotic type II adaptive immune
response to phages [10, 11]. In bacteria, CRISPR genes encode
RNA arrays that can be processed to RNA fragments which bind
Cas nuclease enzymes. These RNA fragments help guide the Cas
nuclease to DNA sequences that are complementary to the Cas
bound RNA. The CRISPR-Cas9 gene editing system employed in
this protocol was developed by the Feng Zhang laboratory [12]. It
is composed of the Cas9 nuclease and a chimeric RNA complex
composed of three fused RNA sequences [13]: (1) the guide-RNA
(gRNA) that is the user-determined sequence that targets a specific
DNA sequence of interest, (2) a trans-activating crRNA
(tracrRNA) required to form a complex with the Cas9 nuclease
enzyme [14, 15], and (3) a CRISPR-RNA (crRNA) sequence that
links the gRNA and tracrRNA [13, 16]. Through selection of a
gRNA sequence specific to an early coding exon of a gene of
interest, this system has been used to generate site-specific indels
resulting in gene-specific knockouts.

The CRISPR-Cas9 plasmids developed by the Zhang lab con-
tain the expression cassettes for both the Cas9 and CRISPR RNA
complex [12]. A simple cloning step is required to insert a set of
annealed short DNA oligonucleotides into this plasmid, encoding
for the desired gRNA sequence, and specifying the gene targeting
of the CRISPR-Cas9 enzyme [17]. Transfection and expression of
this plasmid in cells initiates the gene editing experiment.

Although the system described above is efficient for many cell
types, primary cells are less amenable to standard transfection pro-
tocols, especially without losing the primary characteristics of the
cells. Primary human airway epithelial cells (AECs) are among such
poorly transfectable cell types. To avoid this limitation the Zhang
lab has cloned a modification of their CRISPR-Cas9 system into a
lentiviral vector, allowing the delivery, stable integration, and
expression of their system into a much wider range of primary cell
types [18, 19]. This system also contains a puromycin resistance
expression cassette to allow for selection of integrated cells, increas-
ing the likelihood of editing and thus knockout within a transduced
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cell population. This lentiviral-mediated CRISPR-Cas9 gene-
editing system has recently been used for a genome-wide functional
screen, as well as gene knockout studies in several human cell types
with great success [18–22].

Since airway epithelial cells are amenable to lentiviral transduc-
tion, we tested the Zhang lentiviral CRISPR-Cas9 system as a
potential method for gene editing of airway epithelial cells. Our
application of this system to airway epithelial cells requires a brief
delineation of the cell types and their characteristics that compose
the airway epithelium. Airway epithelial cells include ciliated, secre-
tory, and basal cell types. Basal airway epithelial cells serve as the
stem cell of the airway. Consequently, they are the only AEC cell
type capable of expansion in culture, are amenable to transduction,
and can then be differentiated into a mucociliary epithelium using
air–liquid interface (ALI) culture methods. Therefore, gene-editing
of basal epithelial cells produces an expandable population of airway
epithelial cells that can be cryopreserved for later expansion and
generation of mucociliary cultures to be used in functional studies
of a specific disease gene. We used the Zhang lab lentiviral CRISPR-
Cas9 system, in combination with recently developed culture tech-
niques [20, 23], to successfully knockout basal airway epithelial
cells for the MUC18 gene [20]. We then generated mucociliary
epithelial cultures from these cells and characterized the functional
significance ofMUC18 to various epithelial stimulations [20]. Since
then, we have continued to improve the application of this lentiviral
CRISPR-Cas9 gene-editing system to primary airway epithelial
cells by refining our culture protocols in knocking out several
other disease genes. Herein we describe these methods in detail in
an effort to make this method accessible to all airway and lung
disease researchers.

2 Materials

2.1 Cloning of a

gRNA Sequence into

the Lentiviral CRISPR

Plasmid

2.1.1 Gene Target gRNA

Selection and

Oligonucleotide Design

1. Oligonucleotide sequences for gene target of interest (see
Subheading 3.1.1).

2. Scrambled control oligonucleotide sequences (see
Subheading 3.1.1).

2.1.2 gRNA Annealing

and Golden Gate Cloning

into LentiCRISPR Vector

[24]

1. LentiCRISPR v2 backbone plasmid [19] (Addgene; Cambridge,
MA; plasmid #52961).

2. Target DNA oligonucleotides.
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3. Scrambled DNA oligonucleotides.

4. 10� T4 ligase buffer.

5. T4 polynucleotide kinase (PNK) enzyme (10,000 U/mL).

6. BsmBI endonuclease restriction enzyme (10,000 U/mL).

7. 2� rapid ligase buffer.

8. Bovine serum albumin (BSA) (10 mg/mL).

9. Quick T4 ligase.

10. Molecular grade water.

11. Sterile 0.2 mL PCR tubes

12. Thermal cycler.

13. Electrocompetent E. coli cells.

14. Luria–Bertani (LB) agar plates and broth supplemented with
ampicillin (100 μg/mL).

15. Bacterial incubator at 37 �C.

16. Endotoxin-free Plasmid Miniprep Kit.

17. LKO.1 50 lentiCRISPR v2 plasmid sequencing primer.

(a) Sequence 50-GACTATCATATGCTTACCGT-30

2.2 Lentiviral

Propagation

2.2.1 Generation of

LentiCRISPR Lentivirus

Using Lenti-X 293T Cells

1. Lenti-X 293T cells (Takara Bio USA).

2. Lenti-X 293T growth media: DMEM with 4.5 g/L glucose,
L-glutamine, and sodium pyruvate, 10% heat-inactivated fetal
bovine serum, 5.5 mL penicillin (10,000 IU)/streptomycin
(10,000 μg/mL) solution, 5.5 mL L-glutamine (200 mM).

3. Lipofectamine 2000 transfection reagent.

4. OptiMEM reduced serum media.

5. pCMV-VSV-G pseudotyping plasmid [25] (Addgene; plasmid
#8454).

6. psPAX2 lentiviral packaging plasmid (Addgene; plasmid
#12260).

7. BEGM Bronchial Epithelial Cell Growth Media.

8. 100 mm tissue culture dishes.

9. Humidified tissue culture incubator at 37 �C with 5% CO2.

2.2.2 Determination of

Lentivirus Titer

1. Lenti-X qRT-PCR Titration Kit (Takara Bio, USA).

2. Sterile 96- or 384-well qPCR plates.

3. Thermal cycler.

4. Quantitative real-time PCR thermal cycler.
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2.3 Transduction and

Selection of Primary

Basal Airway Epithelial

Cells

2.3.1 Transduction of

Basal Airway Epithelial

Cells

1. Primary basal airway epithelial cells.

2. Rat tail collagen I (3 mg/mL).

3. Phosphate buffered saline (PBS) without calcium/magnesium.

4. BEGM Bronchial Epithelial Cell Growth Media.

5. Y-27632 dihydrochloride (10 mM stock solution).

6. HyClone HEPES (1 M) Buffer Solution.

7. Polybrene Infection/Transfection Reagent.

8. Lentivirus made with the lentiCRISPR-target-specific gRNA
sequence of interest.

9. Lentivirus made with the lentiCRISPR-scramble gRNA
sequence.

10. 100 mm tissue culture dishes.

11. Humidified tissue culture incubator at 37 �C with 5% CO2.

12. Parafilm.

2.3.2 Selection and

Harvest of Lentiviral-

Transduced AECs

1. Puromycin dihydrochloride antibiotic stock solution (50 μg/
mL in water; 0.2 μm filter-sterilized).

2. BEGM Bronchial Epithelial Cell Growth Media.

3. Y-27632 dihydrochloride (10 mM stock solution).

4. Phosphate buffered saline (PBS) without calcium/magnesium.

5. 0.25% trypsin–2.21 mM EDTA in HBSS.

6. Heat-inactivated fetal bovine serum (FBS).

7. Cryopreservation medium: 60% F-media (see Subheading
2.5.2), 30% heat-inactivated fetal bovine serum, 10% dimethyl
sulfoxide, and Y-27632 dihydrochloride (10 μM).

2.4 Verification of

CRISPR-Cas9 DNA

Cutting by HRM

Analysis

Use primer design software to generate PCR primer sequences to
amplify a genomic DNA region covering the gene target gRNA cut
site. Per our HRM reagents and instrument we typically attempt to
design PCR products of 75–150 bp in length. Note that the
expected cut site is 3–5 bp upstream of the PAM sequence (see
Notes 16 and 17).

1. Genomic DNA Extraction Kit.

2. Screening primers.

3. MeltDoctor™ HRM Master Mix (Thermo Fisher Scientific).

4. QuantStudio™ 6 Flex Real-Time PCR System (Life Technol-
ogies) or equivalent.
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2.5 Continued

Selection and Harvest

of Gene-Edited AECs

2.5.1 Preparation of

Irradiated Fibroblast Feeder

Layer

1. Puromycin resistant NIH/3T3 mouse embryonic fibroblasts
(ATCC CRL-1658).

2. Fibroblast media: 500 mL DMEM containing glucose (4.5 g/
L), L-glutamine, and sodium pyruvate, 50 mL heat-inactivated
fetal bovine serum, 5.5 mL penicillin (10,000 IU)/streptomy-
cin (10,000 μg/mL) solution, 5.5 mL L-glutamine (200 mM),
1 μg/mL puromycin dihydrochloride.

3. Phosphate buffered saline (PBS) without calcium/magnesium.

4. 0.25% trypsin–2.21 mM EDTA in HBSS.

5. Heat-inactivated fetal bovine serum (FBS).

6. Gamma Irradiator (Cesium-137 source).

7. 100 mm tissue culture treated dishes.

2.5.2 Continued

Selection of Gene-

Edited AECs

1. Cryopreserved CRISPR-transduced cells.

2. 37 �C water bath.

3. Complete DMEM Medium: 500 mL Dulbecco’s Modified
Eagle’s Medium containing glucose (4.5 g/L), L-glutamine
and without sodium pyruvate, 50 mL heat-inactivated fetal
bovine serum, 5.5 mL penicillin (10,000 IU)/streptomycin
(10,000 μg/mL) solution, 5.5 mL L-glutamine (200 mM).

4. Hydrocortisone/human Epidermal Growth Factor
(HC/EGF) stock solution (1000�): Dissolve 2.5 μg of
human Epidermal Growth Factor (Gibco) into 19 mL of
DMEM containing glucose (4.5 g/L), L-glutamine and with-
out sodium pyruvate. Prepare a 0.5 mg/mL solution of hydro-
cortisone in 100% molecular grade ethanol. Mix 1 mL of the
hydrocortisone solution with 19 mL of the epidermal growth
factor solution, filter-sterilize using a 0.2 μm filter, and store
single use aliquots at �20 �C.

5. Cholera toxin stock solution: Prepare a 1 mg/mL solution of
cholera toxin (Sigma-Aldrich) in molecular grade water, filter-
sterilize using a 0.2 μm filter, and store aliquots at �20 �C.

6. Adenine stock solution: Prepare a 1.5 mg/mL solution in
complete DMEMmedium, and store 8 mL aliquots at�20 �C.

7. Insulin solution (Sigma-Aldrich #I9278).

8. Ham’s F-12 Nutrient Mix medium.

9. F-media for basal cell growth and expansion: 365 mL complete
DMEM medium, 125 mL Ham’s F-12 Nutrient Mix, 8 mL
adenine stock solution, 500 μL hydrocortisone/human epider-
mal growth factor (HC/EGF) stock solution, 500 μL insulin
solution, 4.3 μL cholera toxin stock solution, filter-sterilize
using a 500 mL 0.2 μm filter unit and store media at 4 �C for
up to 1 month.
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10. Puromycin dihydrochloride antibiotic stock solution: 50 μg/
mL in water; 0.2 μm filter-sterilized.

11. Y-27632 dihydrochloride (10 mM stock solution).

12. Humidified tissue culture incubator at 37 �C with 5% CO2.

2.5.3 Double

Trypsinization Harvest of

Cultured Airway Epithelial

Cells

1. Phosphate buffered saline (PBS) without calcium/magnesium.

2. 0.25% trypsin–2.21 mM EDTA in HBSS.

3. Heat-inactivated fetal bovine serum (FBS).

4. Cryopreservation medium: 60% F-media (see Subhead-
ing 2.5.2), 30% heat-inactivated fetal bovine serum, 10%
dimethyl sulfoxide, and Y-27632 dihydrochloride (10 μM).

5. Humidified tissue culture incubator at 37 �C with 5% CO2.

6. Sterile 50 mL conical tubes.

7. Hemocytometer.

8. Trypan Blue solution: 0.4% Trypan Blue in PBS.

2.6 Final Harvest of

Cells for Sequencing

Analysis and Protein

Knockout Validation

2.6.1 Sequence Analysis

of Indels by Ion Torrent

Next-Generation

Sequencing

If sequence of the generated indels and indel frequency determina-
tion is desired, a massively parallel sequencing library can be gen-
erated for Ion Torrent sequencing using custom primers for two
rounds of PCR. In the primary PCR reaction, adapters can be
appended onto the gene-specific PCR primers (generated in Sub-
heading 2.4) as described below.

1. Sequencing Library Generation—Primary PCR Primers

(a) Forward Primer: The universal adaptor sequence is
appended onto the 50 end of the gene-specific forward
primer as follows:

l 50 CTGCTGTACGCAGCGT (Gene-specific Fwd
primer sequence) 30.

(b) Reverse primer: The trP1 sequencing adaptor for Ion
Torrent sequencing is appended onto the 50 end of the
gene-specific reverse primer as follows:

l 50 CCTCTCTATGGGCAGTCGGTGAT (Gene-
specific Rev. primer sequence) 30.

Please note these primers will have to be generated for each
specific cut site to be sequenced. However, these primers can be
used for all cell sample PCR reactions for that cut site, since the
barcoding will be introduced in the second PCR reaction.

2. Sequencing Library Generation—Secondary PCR Primers

(a) Forward primer: The Ion Torrent A-sequencing adapter
followed by an Ion Torrent barcode, and then the univer-
sal adapter sequence:

l 50 CCATCTCATCCCTGCGTGTCTCCGACTCAG-
(Ion Torrent Barcode)-CTGCTGTACGCAGCGT 30.
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(b) Reverse primer: the trP1 sequencing adaptor sequence.

l 50 CCTCTCTATGGGCAGTCGGTGAT 30.

Please note these secondary PCR primers are not cut site
specific and thus can be used to amplify any PCR products
generated from the primary PCR reaction, using a different
barcode per cell sample.

3. Ion Torrent Personal Genome Machine (PGM) Sequencer.

4. PyroMark PCR Kit (Qiagen).

5. Purified genomic DNA.

6. Molecular grade water.

7. Sterile 0.2 mL PCR tubes.

8. Thermal cycler.

9. DNA electrophoresis tank.

10. 5� Tris–Borate–EDTA Buffer (TBE): 54 g Tris base, 27.5 g
boric acid, and 20 mL of 0.5 M EDTA pH 8.0, bring to 1 L in
deionized water and adjust solution to a final pH of 8.3.

11. Molecular biology agarose.

12. Phusion High-Fidelity DNA Polymerase (New England
BioLabs).

13. DNA agarose gel extraction/purification kit.

14. Ion PGM Hi-Q View OT2 Kit (Thermo Fisher Scientific).

15. Ion PGM Hi-Q Sequencing Kit (Thermo Fisher Scientific).

3 Methods

3.1 Cloning of gRNA

Sequence into the

Lentiviral CRISPR

Plasmid

3.1.1 Gene Target gRNA

Selection and

Oligonucleotide Design

To direct the CRISPR-Cas9 gene editing system to the gene tar-
geted for knockout, a gRNA complementary to the DNA sequence
for that gene must be designed. We suggest that the gRNA selec-
tion is performed with the Zhang lab CRISPR designer tool as
recommended, to achieve efficient gene editing and knockout (see
Note 1). The target region for gRNA design should be located in a
coding exon of the studied gene. We typically submit the first three
exons of a gene to the CRISPR design tool for selection of gRNA
sequences. We note that gRNA sequences resulting from this sys-
tem have the following characteristics:

1. The gRNA sequence is 20 bp in length.

2. A Protospacer Adjacent Motif (PAM) sequence of NGG is
present at the 30-end of the chosen target sequence [26].

3. A gRNA sequence with a “G” nucleotide located at the 50-end
is preferred (see Note 2).
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Additionally, we randomly scramble the selected gene target
gRNA sequence to generate a control gRNA sequence for our
experiments (see Note 3). The gRNA sequences are incorporated
into the lentiCRISPR vector through generation of gRNA
sequence oligonucleotides complementary to one another. These
oligonucleotides are annealed and then cloned into the lenti-
CRISPR vector as detailed below per the Zhang lab protocol.

Cloning of the annealed gRNA oligonucleotides requires
attention to the following design details (see Fig. 1):

1. The oligonucleotide gRNA sequences shouldNOT contain the
PAM (NGG) sequence.

2. The first gRNA oligonucleotide designed is the chosen target
sequence (shown 50!30 and designated “Forward Oligo”) and
should have the nucleotide adaptor sequence CACC added to
the 50-end for ligation into the BsmBI-digested lentiCRISPR
plasmid.

3. The second oligonucleotide should be the reverse complemen-
tary sequence to the 20 bp target sequence (shown 30! 50 and
designated “Reverse Oligo”). The sequence AAAC should be
added to the 50-end of this sequence as the adaptor for ligation
into the BsmBI-digested lentiCRISPR plasmid (see Note 4).

3.1.2 gRNA Annealing

and Golden Gate Cloning in

to LentiCRISPR Vector [24]

1. Assemble the reaction as indicated in Table 1 in 0.2 mL PCR
tubes on ice to phosphorylate and anneal oligonucleotide
sequences for each target or scrambled control of interest.

2. For 50 phosphorylation, incubate reaction mixture in a thermal
cycler at 37 �C for 30 min followed by 95 �C for 5 min. Anneal

5’ -----ACGGCGTGTGTCTACACAGTGTATCNGGCCTGT -----3’

3’ -----TGCCGCACACAGATGTGTCACATAGNCCGGACA ---- 5’

Target Sequence          5’ --- GTGTGTCTACACAGTGTATCNGG ---3’ 

Forward Oligo 5’- CACCGTGTGTCTACACAGTGTATC-3’ 
Reverse Oligo 3’- CACACAGATGTGTCACATAGCAAA- 5’ 

Genomic DNA
Sequence

A:

B:

Fig. 1 Selection of the gRNA sequences and design of oligonucleotides based on these gRNAs for cloning into
the lentiCRISPR plasmid. (a) The gene target gRNA sequence should be 20 bp in length directly upstream of a
30-PAM NGG trinucleotide motif. If the gene target gRNA sequence does not begin with a “G” nucleotide, then
it can be added to the oligonucleotide sequence to be synthesized (see Notes 2 and 4). (b) The oligonucleo-
tides to be ordered for the gene target gRNA cloning. The NGG PAM sequence should not be included in the
final oligonucleotide to be synthesized. For proper cloning into the lentiCRISPR backbone, the ligation adaptor
sequence “CACC” should be added to the 50-end of the forward oligonucleotide, while the ligation adaptor
sequence “AAAC” should be added to the 50-end of the reverse complement of the forward sequence which
serves as the reverse oligonucleotide
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phosphorylated oligonucleotides by ramping down the
thermal cycler block temperature to 25 �C at 5 �C/min (see
Note 5).

3. Dilute each set of annealed oligonucleotides 1:10 by adding
90 μL of molecular grade water to each reaction tube.

4. Assemble the Golden Gate cloning reaction on ice by mixing
each set of annealed oligonucleotides with the following com-
ponents in the order listed in Table 2.

5. Incubate the Golden Gate cloning reaction in a thermal cycler
using the following cycling conditions: 5 min at 37 �C (diges-
tion) and 5 min at 20 �C (ligation), repeated for 15 cycles.

6. Add 2 μL of the Golden Gate cloning reaction to electrocom-
petent E. coli cells and perform heat-shock transformation as
per manufacturer’s instructions (see Note 6).

7. Plate transformed cultures onto LB/Ampicillin (100 μg/mL)
agar plates for vector selection. Culture 2–3 individual colonies

Table 1
Oligonucleotide phosphorylation and annealing reaction assembly

Reagent Volume (μL)

Forward oligo (100 μM) 1

Reverse oligo (100 μM) 1

10� T4 ligase buffer 1

T4 PNK enzyme (10,000 U/mL) 0.5

Molecular grade H2O 6.5

Total reaction volume 10

Table 2
Golden gate cloning reaction assembly

Reagent Volume (μL)

2� rapid ligase buffer 12.5

BSA (10 mg/mL) 0.25

BsmBI endonuclease (10,000 U/mL) 1

Quick T4 ligase 0.125

Diluted annealed oligos (1:10) 1

lentiCRISPR v2 backbone vector (25 ng/uL) 1

Molecular grade H2O 9.125

Total reaction volume 25
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from selection plates into LB/Ampicillin (100 μg/mL) broth
for 16–20 h in a 37 �C shaking incubator and isolate the
plasmid using an endotoxin-free plasmid miniprep kit (see
Note 7).

8. Verify insertion of the oligonucleotide guide sequence of each
plasmid clone by sequencing using the LKO.1 50 sequencing
primer.

3.2 Lentiviral

Propagation (See

Note 8)

Once the sequence verified gene specific and scrambled lenti-
CRISPR vectors are constructed we generate lentivirus as detailed
below. We generate lentivirus by using Lipofectamine 2000 and a
modified version of the transfection protocol for Lenti-X 293T cells
as described by Takara Bio USA.

3.2.1 Generation of

LentiCRISPR Lentivirus

Using Lenti-X 293T Cells

1. Seed Lenti-X 293T cells at 5.5 � 104 cells/cm2 in Lenti-X
293T growth media and incubate cells at 37 �C in 5% CO2

for 24 h.

2. Assemble transfection reaction A and reaction B in separate
tubes as shown in Table 3.

3. Mix transfection reaction A and B together and incubate for
20 min at room temperature. Add the total volume dropwise to
the existing growth media in Lenti-X 293T cell culture dishes,
gently rotating the dish forward and back, to ensure even
mixing. Incubate cells in a humidified tissue culture incubator
at 37 �C with 5% CO2 (see Note 9).

4. After 24 h, replace Lenti-X 293T growth media from cells with
complete BEGM growth media and return to tissue culture
incubator.

Table 3
Lenti-X 293T transfection reaction assembly

Reagent Amount

Reaction A

Verified lentiCRISPR plasmid 7000 ng

psPAX2 packaging plasmid 9000 ng

pCMV-VSV-G pseudotyping plasmid 900 ng

OptiMEM reduced serum media To 850 μL

Reaction B

Lipofectamine 2000 transfection reagent 25 μL

OptiMEM reduced serum media To 850 μL
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5. Incubate for an additional 48 h and harvest viral-containing cell
culture media. Remove any intact cells and cell debris by cen-
trifugation at 225 � g for 5 min at 4 �C.

6. Aliquot supernatant containing lentiviral-media and store at
�80 �C until use.

3.2.2 Determination of

Lentivirus Titer

1. Thaw an aliquot of lentiviral-media on ice.

2. Extract viral RNA, set up the lentiviral titration reaction, and
calculate the lentiviral titer (lentiviral copies/mL) using the
Lenti-X™ qRT-PCR Titration Kit as per manufacturer’s
instructions (see Note 10).

3.3 Transduction and

Selection of Primary

Basal Airway Epithelial

Cells

3.3.1 Transduction of

Basal Airway Epithelial

Cells

Once high titer CRISPR-Cas9 lentivirus guided by the gene target
gRNA and the scrambled control gRNA are generated, transduc-
tion of basal airway epithelial cells is performed as detailed below.
We suggest that passage 1 or passage 2 basal airway epithelial cells
be used for viral transduction. We also suggest the use of donor
cells that have been previously verified to robustly proliferate in
submerged BEGM culture and differentiate well using air–liquid
interface culture.

1. First, prepare collagen coated 100 mm tissue culture dishes for
seeding of basal airway epithelial cells to be transduced by each
gene target gRNA and scramble control gRNA guided
CRISPR-Cas9 lentivirus. Mix 42.5 μL rat tail collagen I with
5 mL of PBS by vortexing for 10 s, and then add to the culture
vessel. After a 45 min incubation at room temperature, gently
wash the dish 2 times with PBS and allow the collagen coating
to air-dry prior to plating cells.

2. Seed basal airway epithelial cells on collagen coated plates at a
density of 5.5 � 103 cells/cm2 in complete BEGM growth
media supplemented with Y-27632 (10 μM), and incubate for
48 h until cells are 30–40% confluent (see Notes 11 and 12).
Each experiment requires one plate of seeded basal airway
epithelial cells for transduction with the scrambled control
gRNA guided CRISPR-Cas9 lentivirus and one plate per
gene target gRNA guided CRISPR-Cas9 lentivirus being
tested.

3. For lentiviral transduction, combine 15 μL Polybrene, 200 μL
1 M HEPES, 3 � 108 copies of lentivirus (from lentiviral
titration in Subheading 3.2.2), and add complete BEGM
growth media for a total transduction reaction volume of
10 mL.

4. Remove cell culture media from plated basal airway epithelial
cells and carefully add the lentiviral transduction mix to the cell
culture dish of epithelial cells (see Note 9).
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5. Centrifuge tissue culture dishes at 920 � g for 1 h at room
temperature to increase the transduction efficiency (see Note
13).

6. Remove and discard the transduction media and replace with
BEGM growth media supplemented with Y-27632 (10 μM)
(see Note 9).

7. Return the lentiviral-transduced basal airway epithelial cells to a
humidified tissue culture incubator at 37 �C with 5% CO2.

3.3.2 Selection and

Harvest of Lentiviral-

Transduced AECs

At this point in the protocol we harvest the transduced cells to
evaluate cutting efficiency mediated by the tested gRNAs. The
harvested cells are partitioned for both genomic DNA extraction
(used in HRM assays) and for cryopreservation.

1. At 24 h post-lentiviral transduction, add puromycin (final con-
centration of 1 μg/mL) to the existing growth media to initiate
selection of lentiviral-integrated cells (see Note 14). Change
BEGM growth media supplemented with Y-27632 (10 μM)
and puromycin (1 μg/mL) every other day until cells reach 90%
confluence.

2. To harvest transduced epithelial cells, remove cell culture
media and wash adhered cells with PBS; discard PBS wash.

3. Add 5 mL of prewarmed 37 �C trypsin to the cell monolayer,
and incubate in a tissue culture incubator for 5 min until cells
detach from the dish.

4. Collect cells and neutralize trypsin by the addition of 1 mL of
FBS. Wash dish with 10 mL of PBS to ensure complete harvest
of all the cells, and pool with the previously collected sample.

5. Pellet at 225� g for 5 min at 4 �C; resuspend cell pellet in 1 mL
of PBS and determine cell count.

6. From harvested cells, process each harvested cell population as
follows:

(a) Add desired number of cells to genomic DNA lysis buffer.
Process immediately or store at�80 �C until extraction of
DNA. This DNA will be used as the template for high
resolution melt curve (HRM) analysis as described in
Subheading 3.4 (see Note 15).

(b) Prepare cells at a concentration between 5 � 105 and
1 � 106 cells per vial in cryopreservation media for long-
term storage in liquid nitrogen and later continued selec-
tion as described in Subheading 3.5.

The simplest way to evaluate whether the tested gRNAs mediate
efficient DNA cutting is to perform High Resolution Melt curve
(HRM) analysis of a PCR product generated (from the genomic
DNA of each CRISPR edited cell sample) across the gRNA cut site.
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3.4 Verification of

CRISPR-Cas9 DNA

Cutting by HRM

Analysis

If the particular gRNA guided Cas9 enzyme is cutting the DNA at
the designed site, indels will be created and thus multiple species of
PCR products will be generated. In contrast, the PCR product
generated from the scrambled control gRNA cells will contain
only one species of PCR product (the unedited species). The melt-
ing profile of the PCR products generated from the gene target
gRNA and scramble control gRNA cells will then differ by HRM
analysis.

1. Extract DNA from DNA lysates using a genomic DNA extrac-
tion kit as per manufacturer’s instructions.

2. Assemble the HRM qPCR reaction on ice as described in
Table 4 (see Notes 16 and 17). PCR primers should be
designed as detailed in Subheading 2.4.

3. TheHRM analysis program should be run on a QuantStudio™
6 Flex Real-Time PCR System or equivalent using the cycling
conditions listed in Table 5.

4. HRM analysis interpretation: By comparing the melt curves of
PCR products amplified over the cut site of DNA from the

Table 4
HRM analysis reaction assembly

Reagent Amount

MeltDoctor™ HRM master mix (2�) 2.5 μL

Forward screening primer (5 μM) 0.3 μL

Reverse screening primer (5 μM) 0.3 μL

Genomic DNA 5 ng

Molecular grade H2O To 5 μL total volume

Table 5
PCR and HRM melt curve analysis cycling conditions

Stage Step Temp (�C) Time
Ramp rate
(�C/s)

Holding Enzyme activation 95 10 min 1.6

Cycling
(40 cycles)

Denature 95 15 s 1.6
Anneal/extend 60 1 min 1.6

High resolution
melt curve

Denature 95 10 s 1.6
Anneal 60 1 min 1.6
High resolution
melt

95 15 s 0.025

Anneal 60 15 s 1.6
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scrambled gRNA control and gene target gRNA cell popula-
tions, it can be determined whether DNA cutting has occurred
in the targeted gene cut site (see Fig. 2). A leftward shift in the
melt curve of the gene target gRNA cells compared to the
scrambled control gRNA cells indicates the presence of indels
within the targeted DNA region. The size of the shift is indica-
tive of the proportion of cells that underwent DSB and NHEJ,
resulting in the insertion/deletion of nucleotides at the
cut site.

3.5 Continued

Selection and Harvest

of Gene-Edited AECs

Following HRM analysis to verify the DNA cutting efficiency of
each gRNA used to target the gene of interest, it is suggested to
select the most efficient gRNA to proceed with downstream experi-
ments. The gene target gRNA that results in the most significant
shift from the scramble control gRNA in HRM curve analysis is
likely to contain the most cells with bi-allelic gene knockout.
Therefore, we select these gRNA treated cells for further selection.
We have observed that continued selection of this population of
cells using a modified Schlegel culture method for two additional
passages generates the maximum level of gene knockout for this
bulk-selected population [20, 23]. The method described here
involves growth and selection of the edited basal airway epithelial
cells using a modified Schlegel culture method [20, 23, 27,
28]. Briefly, this method involves epithelial cell culture on an irra-
diated fibroblast feeder layer using specialized growth media sup-
plemented with Y-27632.
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Fig. 2 High resolution melt curve analysis of PCR products amplified over the cut site, generated from DNA
isolated from scrambled control gRNA and gene target gRNA cells. The shift left of the gene target gRNA cells
indicates the presence of multiple PCR products resultant from multiple indels at the cut site, that in sum have
a different melt profile from the scrambled control gRNA cells
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3.5.1 Preparation of

Irradiated Fibroblast Feeder

Layer

Since the edited basal airway epithelial cells will continue to be
cultured with puromycin for continued selection, puromycin resis-
tant fibroblasts must be used to generate the feeder layer for cul-
ture. The generation of puromycin resistant fibroblast feeder cells
can be done by transducing NIH/3T3 mouse embryonic fibro-
blasts with an empty lentiCRISPR vector backbone as described
previously [20]. Irradiation and seeding of puromycin resistant
fibroblasts can be completed as described below.

1. Culture puromycin resistant NIH/3T3 mouse embryonic
fibroblasts in prewarmed Fibroblast media until cells are ~80%
confluent.

2. To harvest fibroblasts, remove cell culture media and wash
adhered cells with PBS; discard PBS wash.

3. Add 5 mL of prewarmed 37 �C trypsin to the cell monolayer,
and incubate in a tissue culture incubator for 3–5 min or until
cells detach from the dish.

4. Collect cells and neutralize trypsin by the addition of 1 mL of
FBS. Wash dish with 10 mL of PBS to ensure complete harvest
of all the cells, and pool with the previously collected sample.

5. Pellet at 225� g for 5 min at 4 �C; resuspend cell pellet in 1 mL
of PBS and determine cell count.

6. Subculture between 1.3 � 103 and 6.6 � 103 cells/cm2 in a
tissue culture dish in Fibroblast media for continued culture
and expansion.

7. Irradiate the remaining cells by exposure to 5000 rads of
gamma radiation using a Cesium-137 radiation source.

8. Seed irradiated puromycin resistant fibroblasts at
2.7 � 104 cells/cm2 into a 100 mm tissue culture dish in
Fibroblast media, and incubate in a tissue culture incubator at
37 �C with 5% CO2 for 24 h.

(a) Irradiated cell monolayers should be ~90% confluent at
24 h post-seeding and should be used within 24–72 h after
plating for the optimal seeding and expansion of seeded
basal airway epithelial cells.

3.5.2 Continued

Selection of Gene-

Edited AECs

1. Quick thaw the gene-edited AECs removed from liquid nitro-
gen storage in a 37 �C water bath just until all ice crystals have
melted.

2. Wash cells by adding total volume of thawed cells to 9 mL of
prewarmed 37 �C F-media. Pellet cells at 225 � g for 5 min at
4 �C; discard supernatant, taking care to not dislodge cell
pellet.
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3. Resuspend pellet in 10 mL of prewarmed 37 �C F-media
supplemented Y-27632 (10 μM) and puromycin (1 μg/mL)
for culture and AEC selection.

4. Using a 100 mm dish seeded with irradiated puromycin resis-
tant NIH/3T3 mouse embryonic fibroblasts (<3 days since
seeding), remove culture media. Gently add the basal airway
epithelial cell suspension to the side of the dish and return
seeded cells to a tissue culture incubator at 37 �C with 5%
CO2 (see Note 9).

5. Culture cells for up to, but no more than, 12 days checking for
the development of epithelial cell colonies and conducting
media changes every 48 h with F-media supplemented with
Y-27632 (10 μM) and puromycin (1 μg/mL) until cell harvest
(see Note 18).

3.5.3 Double

Trypsinization Harvest of

Cultured Airway Epithelial

Cells

1. Aspirate culture media and wash cell monolayer with 10 mL of
PBS; discard wash.

2. To first remove the irradiated fibroblast feeder layer, add 5 mL
of prewarmed 37 �C trypsin to the dish. Incubate dish in tissue
culture incubator for exactly 1 min (see Note 19).

3. To wash away fibroblasts while leaving the epithelial cells
attached, immediately remove trypsin and wash epithelial
monolayer with 10 mL of room temperature PBS and discard
wash. Repeat wash for a second time, discard PBS wash, and
microscopically observe culture to ensure that >90% of the
irradiated fibroblast cells have been removed.

4. To harvest basal epithelial cell colonies, add 5 mL of
prewarmed 37 �C trypsin to the dish and incubate in a
tissue culture incubator at 37 �C with 5% CO2 for 5 min (see
Note 20).

5. To collect cells, add 5 mL of PBS to the existing trypsin in the
dish and wash the cells from the dish surface by resuspending
the 10 mL trypsin/cell/PBS mixture 2–5 times. Add the cell
suspension to a 50 mL conical tube.

6. Neutralize trypsin by immediately adding 1 mL of heat-
inactivated fetal bovine serum; mix well.

7. Wash the dish with 10 mL of PBS to ensure all epithelial cells
have been dislodged and collected; pool wash with neutralized
cell suspension.

8. Pellet cells at 225 � g for 5 min at 4 �C; discard supernatant,
taking care to not dislodge cell pellet.

9. Suspend pellet in 1 mL of F-media supplemented Y-27632
(10 μM). Prepare a 1:10 dilution of the cell suspension in
Trypan Blue solution and determine cell counts on a
hemocytometer.
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10. From expanded and harvested cells, process each cell line as
follows:

(a) Subculture 5 � 105 cells one more passage by following
Subheading 3.5.2, steps 3–5.

(b) Prepare cell lines at a concentration between 5 � 105 and
1 � 106 cells per vial in cryopreservation media for long-
term storage in liquid nitrogen.

3.6 Final Harvest of

Cells for Sequencing

Analysis and Protein

Knockout Validation

At this stage in the protocol, following two rounds of selection on
an irradiated fibroblast feeder layer, we believe the transduced and
selected basal airway epithelial cells are both fully selected and have
had ample time to allow CRISPR-Cas9 cutting and subsequent
indel formation to occur. DNA harvested at this stage from the
scrambled control gRNA and gene target gRNA-transduced basal
airway epithelial cells may be analyzed by next-generation sequenc-
ing to determine the frequency of indels at the cut site, as described
below in Subheading 3.6.1.

Depending on the objectives of the experiment, basal cells
harvested here can also be immediately analyzed or further
expanded for additional experiments. If the gene of interest is
expressed in basal airway epithelial cells, these expanded cells may
be used for validation of gene knockout by a variety of methods
including Western Blot analysis, immunofluorescence staining, and
flow cytometry. Moreover, these cells can be used in experiments to
determine the function of the gene that has been disrupted. To
determine the function of this gene in a mucociliary epithelium or if
the studied gene is only expressed in the mucociliary epithelium,
air–liquid interface cultures will need to be generated from these
gene-edited basal cells. The ALI culture protocol we suggest is the
one we describe in Reynolds et al. [23] with the following adapta-
tions. First, due to the high level of selection and passage with
which the gene-edited cells have undergone up to this point, we
suggest seeding selected basal cells at a higher density of
3.0 � 105 cells/cm2 onto transwell inserts. Secondly, once these
seeded cells have expanded and reached confluence on the transwell
inserts (using the Reynolds protocol), we recommend switching to
PneumaCult-ALI Medium (StemCell Technologies) for air–liquid
interface differentiation of the cultures. We suggest allowing
PneumaCult-ALI differentiation to proceed for 21 days to ensure
the cells are well differentiated before starting experimentation.

3.6.1 Sequence Analysis

of Indels by Ion Torrent

Next-Generation

Sequencing

Although HRM analysis provides evidence that the genomic DNA
isolated from the treated and selected cells is cut and contains indels
at the designed cut site, it does not reveal the percentage of DNA
alleles and thus cells that have indels or the particular indel
sequences. We determine this by performing massively parallel
sequencing of the same PCR product amplified over the cut site
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that is used in the HRM analysis. Specifically, we use Ion Torrent
sequencing on the Personal Genome Machine (PGM). The PGM
sequence generation scale, price, and time make this instrument
perfect for indel sequence analysis. We have developed a custom
protocol to generate barcoded sequencing libraries for each edited
cell population generated. These barcoded libraries can be com-
bined and run on PGM sequencing chips. Our library generation
protocol involves two rounds of PCR amplification amplifying the
cut site with specially designed primers to generate barcoded library
molecules as detailed below.

1. Assemble the primary PCR reaction on ice for each DNA
sample (e.g., DNA isolated from each scrambled control
gRNA and each gene target gRNA cell sample) as indicated
in Table 6. Primers should be designed as detailed in Subhead-
ing 2.6.1. Please note that only one set of PCR primers is
needed per cut site amplified, regardless of the number of
samples to combine on a sequencing run, due to the universal
adapter sequence contained in the forward primer that allows
barcoding in the second PCR step.

2. For PCR amplification, incubate the reaction in a thermal
cycler using the following cycling conditions: 15 min at
95 �C, 35 cycles of 94 �C for 30 s, 60 �C for 30 s, 72 �C for
30 s, followed by 10 min at 72 �C, and hold at 4 �C

3. To confirm the size and specificity of the primary PCR ampli-
con, prepare a 1.8% agarose gel in 1� TBE buffer, and load
and run 2 μL of each PCR product by gel electrophoresis
(see Note 21).

4. To add the A-sequencing adaptor and to add individual
sequencing barcodes to each sample, assemble the second
PCR reaction on ice using the primary PCR product from
each DNA sample in the order listed as indicated in Table 7.

Table 6
Primary PCR reaction assembly for sequence analysis

Reagent Volume (μL)

PyroMark master mix (2�) 5

Coral load (10�) 1

Forward primer (12.5 μM) 0.16

Reverse primer (12.5 μM) 0.16

Genomic DNA (10 ng/μL) 2

Molecular grade water 1.68

Total reaction volume 10
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A single reverse primer can be used for all cell samples, for each
cut site examined. However, a different forward PCR primer is
needed for each cell sample, each with a different barcode, if
you intend to combine all libraries in a single sequencing run.

5. For PCR amplification of the second PCR reaction, incubate
the reaction in a thermal cycler using the following cycling
conditions: 2 min at 98 �C, 35 cycles of 98 �C for 10 s, 60 �C
for 20 s, 72 �C 30 s, followed by 5 min at 72 �C, and hold at
4 �C.

6. To verify amplification and desired amplicon size of the second
PCR product, prepare a 2% agarose gel in 1� TBE buffer, and
load and run 5 μL of each PCR product by gel electrophoresis.

7. Extract and gel purify the correct size band from each lane and
quantify each sample.

8. Pool equal molar amounts of each purified barcoded sample
(ensuring that each sample has a different barcode sequence)
for the library for PGM sequencing.

9. Prepare sequencing templating reaction as per manufacturer’s
protocol (Thermo Fisher Scientific manual MAN0014579)
and perform setup and sequencing of the sample library pool
on the Ion Torrent Personal Genome Machine (PGM) as per
manufacturer’s instructions (Thermo Fisher Scientific manual
MAN0009816)

10. Bioinformatic analysis of sequencing data for the percentage of
gene-edited reads and sequence of indels can be completed as
described by Chu et al. [20].

Table 7
Secondary PCR reaction assembly for sequence analysis

Reagent Volume (μL)

5� High Fidelity buffer 2

dNTPs (10 mM) 0.2

Forward primer (A-seq/barcode X) (5 uM) 0.5

Reverse primer (trP1 adaptor) (5 uM) 0.5

Phusion polymerase 0.1

PCR product (diluted 1:10 in water) 1

Water 5.7

Total reaction volume 10
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4 Notes

1. The Zhang lab CRISPR gRNA sequence design tool is offered
at (http://crispr.mit.edu/). The design tool requires the nucle-
otide sequence of the gene target site (up to 500 bp). The
program identifies gRNA sequences, provides quality scores for
each identified gRNA, and lists each candidate’s potential
genome-wide off-targets. It is suggested to select and clone at
least three different gRNA sequences for the target gene, as
some gRNAs result in better editing efficiencies than others.

2. The U6 promoter responsible for the transcription of the
CRISPR RNA cassette is more efficient with a 50 “G” nucleo-
tide at the transcription start site. If the selected 20 bp gRNA
sequence does not have a “G” nucleotide at the 50-end, an
additional “G” nucleotide should be added to the 50-end of
the gRNA sequence resulting in a 21 bp gRNA sequence.

3. We recommend that the selected gene target gRNA sequence
be scrambled and this scrambled gRNA tested in parallel to the
target gene gRNAs. The experimental results of the gene KO
cells can then be compared to scrambled gRNA cells, which
serve as an appropriate control for the full experimental cycle
used to generate the gene KO cells. The oligonucleotide design
required for cloning this scrambled control gRNA sequence
into the lentiCRISPR vector should be followed as described
for the gene target gRNA sequence in Subheading 3.1.2.

4. If an additional “G” nucleotide is added to the target sequence
as instructed in see Note 2, ensure that a “C” nucleotide is
added to the 30-end of the reverse oligonucleotide sequence to
maintain complementarity of the two oligonucleotide
sequences.

5. If ramp down temperature option is not available on the ther-
mal cycler, similar annealing results will occur if the sample is
placed on the bench and allowed to slowly cool to room
temperature.

6. It is not necessary to include a negative control in the Golden
Gate assembly reaction and transformation, as the empty lenti-
CRISPR backbone will religate with itself and result in empty
vector-containing bacterial colonies under selection.

7. Alternative kits for plasmid isolation may be used, however
endotoxin-free plasmid preparation is recommended as down-
stream use of isolated constructs will be used for mammalian
cell transfection experiments.

8. The methods and propagation of virus described here use a 2nd
generation lentiviral vector system that depends on a three-
plasmid approach to produce a replication incompetent
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lentivirus, barring recombination events. We use BSL-2 pre-
cautions in all steps involving virus generation and use of virus.
Users of this protocol should first develop an appropriate bio-
safety plan and obtain approval from their institutional bio-
safety and other relevant committees. Part of these biosafety
precautions should be the use of appropriate personal protec-
tive equipment (PPE) at all times.

9. Lenti-X 293T cells, airway epithelial cells, and irradiated
NIH/3T3 mouse embryonic fibroblasts are easily detached
from the bottom of tissue culture vessels during media changes
and the addition of reagents. Take care to add reagents carefully
to the edge of the dish, as disturbing the cell monolayer will
adversely affect the titer of virus produced by the cells, the
outcome of lentiviral transduction of epithelial cells, and the
growth of sub-cultured airway epithelial cells, respectively.

10. Lentiviral titer qPCR assays can be completed in either 96-well
or 384-well plates, as long as the reaction volumes and viral
titer calculations are properly scaled using the calculation for-
mula provided with the Lenti-X™ qRT-PCR Titration Kit.

11. The seeding density and incubation times for lentiviral trans-
duction have been validated for nasal-, tracheal-, and
bronchial-derived basal airway epithelial cells ([20], unpub-
lished data). The protocol for cells derived from other sources
may need to be validated for optimal transduction and gene-
editing results.

12. Cells should not be grown past 30–40% confluency during this
step. Overconfluent cultures will affect the lentivirus-to-cell
ratio, negatively affecting the transduction efficiency and anti-
biotic selection of lentiviral integrated cells.

13. For biosafety purposes, lentiviral-containing tissue culture
dishes must be properly handled and secured to prevent con-
tamination of equipment. Prior to centrifugation, carefully
wrap each tissue culture dish in Parafilm to seal the edges of
each dish. Ensure that the dishes are placed in the appropriate
vessel or rotor bucket and properly secured before starting the
centrifuge.

14. The use of puromycin antibiotic at a concentration of 1 μg/mL
was empirically determined and optimized for selection of
nasal-, tracheal-, and bronchial-derived epithelial cells ([20],
unpublished data). The use of other selection antibiotics or
cells derived from alternative sources will require optimization
of the selection protocol and concentration of the selection
agent prior to use.

15. A minimum of 5 � 104 cells should be collected for genomic
DNA extraction, although the number of cells can vary based
on the extraction kit and type of cells used. Cell stocks should
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be cryopreserved in liquid nitrogen according to standard
laboratory protocols for later expansion.

16. High resolution melt curve analysis compares the melt curves
of PCR products generated over the cut site between the
scrambled control gRNA cells versus the gene target gRNA
cells. Reactions must be set up using: (1) DNA from the
scrambled control gRNA cells, and (2) DNA from the gene
target gRNA cells, to interpret HRM analysis as described in
this protocol. Samples should be run in duplicate.

17. High Resolution Melt analysis primers must be sequence spe-
cific. If melt curve analysis identifies multiple amplicon pro-
ducts, primer sets should be redesigned to yield a single
amplicon during PCR amplification for accurate analysis.

18. The confluence of airway epithelial cells on the irradiated fibro-
blast feeder layer will vary based on a number of factors includ-
ing: (1) the number of cells seeded, (2) the level of selection the
initial transduced cell population underwent, (3) and the effi-
ciency of lentiviral integration. It is imperative the cells should
be allowed to grow for no more than 12 days as the irradiated
fibroblast feeder layer will begin to deteriorate and affect the
growth of the basal airway epithelial cell colonies. Likewise,
epithelial colonies should not be allowed to grow to more than
~80% total confluence on the plate and special care should be
taken to not let each individual colony get too large as to risk
undue stress and replication cycles on the continuously
expanding cell population.

19. It is important that this first trypsinization step be kept to
exactly 1 min of duration in the 37 �C tissue culture incubator.
Upon microscopic inspection, this 1 min step will allow for the
release of the loosely bound irradiated fibroblasts, while main-
taining the adherence of the basal airway epithelial cell colo-
nies. Incubation longer than 1 min will have an adverse effect
on the harvested number of basal epithelial cells as they will
begin to lose their adherence and be removed with subsequent
wash steps.

20. Epithelial cell trypsinization time can vary based on the cell
number, density, and length of previous wash steps. This sec-
ond trypsinization step should not be allowed to progress more
than 7 min as longer incubation begins to have a negative effect
on the viability and subsequent culture of the basal airway
epithelial cells.

21. For downstream sequencing analysis, it is important that a
single correctly sized PCR amplicon is produced from this
primary PCR reaction. Moving forward into the second PCR
with a multibanded product may result in poor PCR and
sequencing results. Larger bands may be indicative of
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nonspecific amplification, in which case different amplification
primers may need to be designed. A bright <100 bp band is
indicative of primer dimers that were formed during the reac-
tion. In the case of larger (nonspecific) or smaller (primer
dimer) products, the correct sized DNA product must be gel
excised and purified prior to setup of the second PCR reaction.
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Chapter 16

RNA Interference to Knock Down Gene Expression

Haiyong Han

Abstract

RNA interference (RNAi) is a biological process by which double-stranded RNA (dsRNA) induces
sequence-specific gene silencing by targeting mRNA for degradation. As a tool for knocking down the
expression of individual genes posttranscriptionally, RNAi has been widely used to study the cellular
function of genes. In this chapter, I describe procedures for using gene-specific, synthetic, short interfering
RNA (siRNA) to induce gene silencing in mammalian cells. Protocols for using lipid-based transfection
reagents and electroporation techniques are provided. Potential challenges and problems associated with
the siRNA technology are also discussed.

Key words RNA interference, RNAi, siRNA, Gene silencing, Transfection, Electroporation

1 Introduction

Specific inhibition or knockdown of gene expression in cultured
cells has been widely used to study the effects of loss-of-function
mutation in individual genes. Gene-specific degradation of mRNA
is one way to silence individual gene expression post-
transcriptionally. One of the most widely used technologies for
induction of such gene-specific RNA degradation is the use of
RNA interference (RNAi) technology. RNAi was first discovered
in the nematode C. elegans as a response to small double-stranded
RNA (dsRNA), which resulted in sequence-specific gene
silencing [1].

RNAi is a multistep process. When dsRNA is introduced into
cells, it is first recognized and processed into 21–23 base-pair small
interfering RNAs (siRNA) by Dicer, a RNase III family ribonucle-
ase. These short interfering RNAs are then incorporated into and
direct the RNA-induced silencing complex (RISC) to the target
RNA. RISC is a nuclease complex that is responsible for the ulti-
mate destruction of the target RNA and gene silencing [2]. In
2001, Tuschl and colleagues [3] observed that transfection of
synthetic 21 base-pair siRNA duplexes into mammalian cells
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effectively silences endogenous gene expression in a sequence-
specific manner. This finding heralded the use of siRNA for gene
silencing in mammalian systems.

siRNA oligonucleotides (21–22 base pairs) can be generated by
chemical synthesis [4] or by in vitro transcription using T7 RNA
polymerase [5]. Alternatively, siRNAs can be endogenously
expressed in the form of short hairpin RNA (shRNA), delivered
to cells via plasmids or viral/bacterial vectors [6]. Chemically
synthesized siRNAs are relatively simple and quick to generate. In
recent years, a number of commercial manufacturers have started to
offer siRNA oligonucleotide synthesis, which has greatly facilitated
the use of synthetic siRNAs in research. In this chapter, I will focus
on procedures that utilize commercially synthesized siRNAs to
knockdown gene expression in mammalian cells.

2 Materials

2.1 siRNA

Oligonucleotides

1. Gene-specific siRNA oligonucleotides (see Note 1): siRNA
sequences can be designed using freely available online tools
and then custom-synthesized by commercial vendors (e.g.,
Integrated DNA Technologies or Thermo Fisher Scientific
Inc.). Alternatively, predesigned or validated siRNA oligonu-
cleotides for specific genes can be purchased from manufac-
turers (e.g., GE Healthcare Dharmacon Inc., QIAGEN, or
Thermo Fisher Scientific Inc.).

2. Negative control (scrambled or non-targeting) siRNA
oligonucleotides

Non-targeting siRNA oligonucleotides (see Note 2) are siR-
NAs that lack complementary RNA sequences in the targeting
genome. These siRNAs serve as negative controls. They can be
purchased from siRNA oligonucleotide manufacturers (e.g.,
GE Healthcare Dharmacon Inc., QIAGEN, or Thermo Fisher
Scientific).

3. Positive control siRNA oligonucleotides
Positive control siRNA oligonucleotides (see Note 3) are siR-
NAs known to downregulate the expression of a specific gene.

2.2 Cell Culture

Reagents

1. Mammalian cells.

Cells to be used to perform siRNA knockdown (see Note 4).
Here, the pancreatic cancer cell line MIA PaCa-2 is used as an
example.

2. Cell culture medium appropriate for the cells being cultured.

For MIA PaCa-2, we use RPMI-1640 supplemented with 10%
heat-inactivated fetal bovine serum (FBS) (see Note 5).
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3. Phosphate Buffered Saline (PBS), pH 7.4.

4. Gibco® Trypsin–EDTA solution.

This is a ready-to-use trypsin solution containing 0.025% tryp-
sin and 0.01% EDTA in PBS.

2.3 Transfection

Reagents

1. siLenFect™ Lipid Reagent (Bio-Rad Laboratories Inc) (see
Note 6).

2. Amaxa Nucleofector™Kit V (Lonza Cologne AG) (seeNote 7).

2.4 Other Reagents/

Equipment

1. RNase-free water.

2. RNA Oligonucleotide Annealing Buffer (5�) (see Note 8).

Potassium Acetate: 100 mM.
HEPES–KOH: 30 mM, pH 7.4.
Magnesium Acetate: 2 mM

3. Nucleofector™ Device (Lonza Cologne AG).

3 Methods

3.1 Design of Gene-

Specific siRNA

Sequences

1. Designing a highly effective and specific siRNA sequence is the
first step for successful knockdown of a target gene. Various
groups have developed specific guidelines for designing siRNAs
[7–9] and a number of online design tools are freely available
(e.g., http://sirna.wi.mit.edu; https://rnaidesigner.
thermofisher.com/rnaiexpress; and http://dharmacon.
gelifesciences.com/design-center).

2. Several siRNA manufacturers such as Thermo Fisher Scientific,
QIAGEN, and GE Dharmacon have predesigned (and some-
times validated) siRNA sequences for most known genes in the
human genome. Researchers only need to enter the gene name
or ID online to order siRNA oligonucleotides specifically
designed to target the gene of interest (see Note 9).

3.2 Preparation of

siRNA Solution

1. siRNA oligonucleotides purchased from commercial vendors
(e.g., QIAGEN and Thermo Fisher Scientific) are usually
ready-to-use duplex RNAs and do not need to be desalted or
annealed. Simply resuspend the lyophilized siRNA duplex
powder in RNase-free water to a final concentration of
20 μM. However, if the RNA oligonucleotides come as
single-stranded RNA, then an annealing step is needed.

2. To anneal single-stranded RNA, resuspend the lyophilized
siRNA powder received from the vendor in RNase-free water
at a final concentration of 100 μM. Mix the solution well by
pipetting up and down a few times. Aliquot the solution into
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new tubes in small volumes (e.g., 20 μL) and store at�20 �C, if
not to be used immediately. Combine 20 μL of each comple-
mentary single-stranded siRNA oligonucleotides, 20 μL of 5�
Annealing Buffer, and 40 μL RNase-free water. Mix the solu-
tion by pipetting up and down a few times. Incubate the
solution at 90 �C for 2 min, and then slowly cool to room
temperature by placing the tube in a large beaker containing
room temperature water for about 1 h. Briefly centrifuge the
tube to bring down all droplets from the sides and lid of the
tube. The final concentration of the annealed siRNA duplex is
20 μM.

3. Aliquot the resuspended/annealed siRNA into new tubes and
store at�20 �C.Do not freeze-thaw siRNA solutionmore than
five times.

3.3 Delivery of siRNA

into the Cells

Two methods have been widely used to deliver chemically synthe-
sized oligonucleotides into mammalian cells: transfection and elec-
troporation. Transfection uses a lipid carrier to facilitate the cellular
uptake of siRNA. Electroporation uses powerful electric pulses to
generate transient hydrophilic pores on the cell membrane and by
doing so, allows the uptake of macromolecules, such as siRNA
oligonucleotides. Here I describe the general procedures for
performing these two methods (see Note 10).

3.3.1 Transfection Using

siLenFect™
A number of lipid carriers (transfection reagents) specifically devel-
oped for siRNA oligonucleotides are commercially available. They
often have different delivery efficiency in different cell types.
Choosing the optimal transfection reagents for the cell type of
interest may necessitate comparing reagents from different vendors.
Transfection protocols vary from reagent to reagent and often
require optimization for different cell types (and sometimes even
different cell lines of the same type). In general, the manufacturer’s
recommended procedures should be used as a starting point for
optimization. Here, I describe the procedures for siLenFect™ from
BioRad Laboratory as a guide. The procedures are based on the
instruction manual provided by the manufacturer with some
modifications.

1. Grow MIA PaCa-2 cells in a T75 cell culture flask to 70–90%
confluency. Wash the cells with 5 mL PBS twice. Add 1 mL of
trypsin solution to the cells and incubate in a humidified CO2

incubator for 5 min. Stop trypsinization by adding 10 mL of
cell growth medium (RPMI-1640) containing 10% FBS.
Transfer the cells and the media into a 15 mL conical tube
and centrifuge the tube at 200 � g for 5 min to pellet the cells.
Wash cell pellets twice with 5 mL PBS, and then resuspend cells
in 10 mL serum-containing growth media. Count cells in a cell
counter (e.g., the Cellometer by Nexcelom Bioscience).
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2. Seed 0.5 to 1 � 106 cells / flask (see Note 11) in 5 mL growth
media containing 10% FBS in T25 cell culture flasks (see Note
12). Allow cells to grow overnight at 37 �C in a humidified 5%
CO2 incubator.

3. On the second day, 15–60 min before transfection, aspirate
medium from the flask and add 2.5 mL fresh serum-containing
growth medium to the cells.

4. For each T25 flask to be transfected, prepare 250 μL of trans-
fection reagent solution in a 1.5 mL Eppendorf tube by adding
7.5 μL of siLenFect™ to 242.5 μL of serum-free medium (see
Note 13).

5. For each T25 flask to be transfected, prepare 120 nM siRNA
solution in 250 μL serum-free medium in a 1.5 mL Eppendorf
tube (seeNote 14). This can be done by first diluting the stock
siRNA from 20 to 1 μM using serum-free medium (e.g., 5 μL
of 20 μM siRNA plus 95 μL medium), and then further dilut-
ing it to 120 nM by taking 30 μL of the diluted siRNA (1 μM)
and adding to 200 μL of cell-free medium (see Note 15).

6. Add the siRNA solution to the diluted siLenFect™ solution
(see Note 16). Mix by tapping the tube or pipetting up and
down. Incubate the mixed solution for 20 min at room
temperature.

7. Add 500 μL of the siRNA/siLenfect™ complexes to the cells.
Mix by rocking the flasks back and forth several times. Incubate
the cells at 37 �C in a humidified 5% CO2 incubator.

8. Twenty-four to seventy-two hours following transfection, har-
vest cells by trypsinization as described above (see Note 17) to
assess knockdown efficiency or examine functional effects of
gene knockdown.

3.3.2 siRNA Delivery

Using Electroporation

Lipid-based transfection methods work efficiently for many cell
lines. However, for some cell lines and cell types, particularly pri-
mary cells and suspension cells, these methods yield low efficiency.
For those hard-to-transfect cells, electroporation-based methods
are often used to deliver nucleic acids. However, electroporation
can induce high cell mortality, and often requires careful optimiza-
tion of electroporation parameters (voltage, electric pulse length,
and pulse number) to achieve high efficiency and low cell mortality.
Amaxa’s Nucleofector™ (Lonza Cologne AG) technology is an
advanced electroporation technology that has been widely used
for delivery of siRNA and other nucleic acids to hard-to-transfect
cells. The company has developed an extensive database of cell type-
specific electroporation programs and solutions, which has mini-
mized the optimization process for end users. Here I describe the
general protocol for using the Amaxa Nucleofector™ device and kit
to deliver siRNA, using MIA PaCa-2 cells as an example. This
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protocol is modified from the manual provided by the kit and
device manufacturer (Lonza Cologne AG).

1. GrowthMIA PaCa-2 cells in T75 cell culture flasks as described
above.

2. On the day of transfection, preincubate 6-well plates contain-
ing 1.5 mL/well of serum-containing media at 37 �C in a
humidified CO2 incubator.

3. Harvest cells by trypsinization and count cells as described
above.

4. Transfer cells to 15 mL conical tubes (1 � 106 cells per tube)
and centrifuge at 100 � g for 10 min at room temperature.
Remove media by aspiration.

5. Resuspend the cells carefully in 100 μL room temperature
Nucleofector® Solution V per sample. Do not leave the cells
in the Nucleofector® Solution longer than 15 min (see Note
18).

6. Add 1.5 μL of siRNA (20 μM) to the cell suspension (for a final
siRNA concentration of 300 nM) (seeNote 19). Mix by pipet-
ting up and down.

7. Transfer cell/siRNA mixture into a certified cuvette (included
in the Nucleofector™ kit). Make sure the solution covers the
bottom of the cuvette. Close the cuvette with the cap.

8. Insert the cuvette containing the cell/siRNA solution into the
Nucleofector® Cuvette Holder. Select the Nucleofector® Pro-
gram T-020 (see Note 20) and apply the program.

9. Remove the cuvette from the holder once the program is
finished. Add 500 μL of the preequilibrated culture media to
the cuvette. Gently mix and transfer the solution to the pre-
incubated 6-well plate. Use the pipettes supplied by the kit and
avoid repeated aspiration of the solutions.

10. Incubate the cells at 37 �C in a humidified 5% CO2 incubator.

11. Assess knockdown efficiency or examine functional effects of
the knockdown 24–72 h following electroporation.

3.4 Assessment of

Gene Knockdown

Using Reverse

Transcription

Polymerase Chain

Reaction (RT-PCR) and

Western Blotting

Because siRNA oligonucleotides target mRNA for degradation,
RT-PCR can be used to measure effects on gene expression using
negative control siRNA-treated cells and gene-specific, siRNA-trea-
ted cells. Readers are referred to other literature for RT-PCR pro-
tocols [10–12].

Although reduction in transcript expression usually results in
decreased protein abundance, mRNA levels do not always correlate
with protein levels. For example, mRNA measurement can overes-
timate knockdown of genes whose protein products have long half-
lives. Therefore, it is necessary to assess protein levels to ensure
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efficient knockdown of gene expression and to determine the opti-
mal time point for assessing cellular effects of siRNA knockdown.
Western blotting is the most widely used technique for detecting
proteins (see Note 21). Protocols for Western blotting can be
readily found in the literature; for example, “Western Blotting: A
guide to current methods” (edited by Hicklin T, 2015), found in a
supplement to Science magazine.

3.5 Examination of

the Functional Effects

of siRNA Knockdown

Once knockdown of the siRNA-targeted gene is confirmed, assays
can then be carried out to investigate resulting functional effects.
Depending on the known or predicted functions of the target gene,
a variety of assays (cell growth and survival, migration, apoptosis,
effects on downstream signaling, etc.) can be used.

4 Notes

1. siRNA oligonucleotides designed to target different regions of
a gene can have different knockdown efficiencies
[13]. Although the current siRNA design algorithms are get-
ting better at selecting efficient siRNA sequences, only about
one in four siRNAs produces a knockdown efficiency of >80%.
Therefore, it is imperative that multiple (usually 2–4) siRNA
sequences for each target gene are obtained and optimized
individually. Alternatively, multiple siRNAs can be pooled and
used in a single transfection (e.g., GE Dharmacon offers pre-
designed/pooled siRNA for human and other species).

2. A negative control siRNA is included in the experiment to
distinguish sequence (or gene)-specific effects from
non-sequence specific effects in the siRNA-treated cells. The
negative control siRNAs can be siRNA sequences that have the
same nucleotide composition as the gene-specific siRNA, but
lack significant sequence homology to the human genome or
siRNAs that have been designed to have no known homology
to the human genome (often called non-targeting siRNA).
Non-targeting siRNAs are commercially available from a vari-
ety of vendors (e.g., QIAGEN or GE Dharmacon).

3. Positive control siRNAs are used to monitor the efficiency of
siRNA delivery to cells. These are siRNA sequences known to
induce reproducible knockdown of a gene in vitro. If the gene
targeted by the positive control siRNA is essential for cell
survival then knockdown of that particular gene will result in
rapid cell death, and the efficiency of siRNA delivery can be
evaluated under a microscope. We have found that siRNAs
targeting the Ubiquitin B (UBB) gene or the AllStars Cell
Death Control siRNA from QIAGEN are good positive con-
trols that produce rapid cell death.
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4. Cells should be evaluated for the expression level of the gene of
interest. To optimize siRNA knockdown conditions, a cell line
expressing relatively high levels of the target gene should
be used.

5. The antibiotics penicillin and streptomycin are often added to
culture medium to prevent bacterial contamination. However,
because transfection reagents increase cell permeability, the
delivery of antibiotics may also be increased, which could result
in increased cytotoxicity. Therefore, adding antibiotics to the
transfection medium is not recommended.

6. A number of lipid-based transfection reagents are commercially
available. Their delivery efficiency varies and can be cell line-
dependent. It is advisable to first consult the literature to
determine if any other groups have reported siRNA transfec-
tion in the same cell lines/types, and then start with the same
transfection reagents and conditions.

7. Lonza has developed five different Nucleofector™ Solutions
designed to work for different cell lines/types. The manufac-
turer has also developed optimized protocols for a number of
cell lines and primary cell types. Kits containing the optimized
Nucleofector™ Solution recommended by the manufacturer
should be purchased. If the cell line or type is not on the list
with an optimized protocol, then an optimization kit should be
obtained.

8. Other annealing buffers have also been reported in the litera-
ture, e.g., 50 mM Tris, pH 7.5–8.0, 100 mMNaCl, and 5 mM
EDTA (5�).

9. Two to four siRNA sequences that target different regions of a
gene of interested should be tested (see Note 1).

10. The two delivery methods have their own advantages and
disadvantages [14]. The transfection method is simple and
requires no specialized equipment, but it does not work well
with primary cells and suspension cells. The electroporation
method can achieve very high delivery efficiency, even in hard-
to-transfect cells, although it often causes high cell death. It
also requires specialized equipment (i.e., an electroporator).
Selecting the right method will depend on the experimental
conditions, such as the cells being used and the assays to be run
after transfection.

11. The exact cell number to seed must be optimized for different
cell lines. The goal is to achieve 50–70% confluency on the
following day.

12. Depending on the assays to be run after transfection, other
culture vessels can be used. Depending on the surface area of
the vessel, the amount of reagents may need to be scaled up or
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down. Refer to the manufacturer’s manual for recommended
medium volumes and the amount of reagents for different
culture vessels.

13. The amount of siLenfect™ may need to be optimized using a
range of volumes from 2.5 to 20 μL.

14. The concentration of siRNA needed for efficient knockdown
may vary depending on cell lines used and the gene target itself.
It is advisable to optimize the concentration of siRNA by
carrying out transfections using different siRNA concentra-
tions ranging from 5 to 20 nM (final concentration).

15. Master mix can be prepared if replicates of the same siRNA
concentrations are being carried out.

16. It is recommended that a mock transfection with only siLen-
fect™ (no siRNA added) be included as a control.

17. Gene knockdown can be detected as early as 4 h and could last
up to 5 days, and even 7 days in some cases [15]. However, in
general, 24–96 h is the ideal time periods for accessing gene
knockdown and investigating functional effects of the siRNA
knockdown in cell culture. Cells can be retransfected with the
siRNA to extend the duration of gene knockdown.

18. Do not leave cells in the Nucleofector® Solution for longer
than 15 min, as longer exposure may lead to reduced transfec-
tion efficiency and cell viability.

19. The optimal siRNA concentration may vary from cell line to
cell line. A range (30–300 nM) of concentrations should be
used if an optimal concentration is not known.

20. The manufacturer has optimized programs for a number of cell
lines. Please refer to the manufacturer’s website for details
(http://www.lonza.com/research/).

21. In addition to Western blotting, other methods such as immu-
nofluorescence staining and ELISA (enzyme-linked immuno-
sorbent assay) can be used to monitor the knockdown of gene
expression by siRNA.
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Chapter 17

Using Luciferase Reporter Assays to Identify Functional
Variants at Disease-Associated Loci

Anup K. Nair and Leslie J. Baier

Abstract

The genomic era, highlighted by large scale, genome-wide association studies (GWAS) for both common
and rare diseases, have identified hundreds of disease-associated variants. However, most of these variants
are not disease causing, but instead only provide information about a potential proximal functional variant
through linkage disequilibrium. It is critical that these functional variants be identified, so that their role in
disease risk can be ascertained. Luciferase assays are an invaluable tool for identifying and characterizing
functional variants, allowing investigations of gene expression, intracellular signaling, transcription factors,
receptor activity, and protein folding. In this chapter, we provide an overview of the different ways that
luciferase assays can be used to validate functionality of a variant.

Key words Dual-luciferase assay, Functional variant, GWAS, Firefly luciferase, Renilla luciferase

1 Introduction

The GWAS study design has been extremely successful in identifying
genetic variants associated with both common and rare diseases
[1, 2]. The main advantage of GWAS is that not all variants in the
genome need to be directly genotyped due to linkage disequilibrium
(LD) among nearby variants. Because of LD with a causal variant, a
marker variant would show association with the disease of interest
[1, 2]. While LD provides a way to genotype a small number of
markers to capture the effect of many variants, it obscures which
variant is the actual functional basis of the observed association.
While many studies are moving away from GWAS due to decreasing
costs of massively parallel, whole genome or exome sequencing
[3–5], LD still remains a problem with these approaches. Also, it is
possible that a single variant may regulate multiple genes at the same
locus through a cis-acting effect or at a different locus via a trans-
acting effect [6–8]. Historically, it was assumed that functional var-
iants would lie within coding regions, and therefore, affect the
structure or function of the protein product. However, the vast
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majority of disease-associated variants map to intronic or intergenic
regions [9]. Given the observations from large studies like Encyclo-
pedia of DNA Elements (ENCODE) and the National Institutes of
Health Roadmap Epigenomics projects, which suggest that a major
part of the human genome is functional [10, 11], it can be inferred
that many common diseases result from abnormal gene regulation,
as opposed to structural or functional abnormalities in the protein
product. Identifying the causal mutation from numerous proximal
variants all showing association with the disease phenotype due to
LD must be accomplished by functional characterization in an
in vitro system. To date, very few large scale and massively parallel
in vitro assays have been undertaken to functionally characterize the
large amount of data obtained from GWAS, WGS, and WES, to
achieve clinically meaningful observations. Here, we describe the
various ways by which luciferase assays can be used to identify
disease-associated loci.

1.1 Luciferase Assay A luciferase assay is a type of reporter gene assay used to study
intracellular signaling, gene expression, receptor activity, transcrip-
tion factors, mRNA processing, and protein folding. In its simplest
form, a regulatory element, for example, a promoter region, is
cloned upstream of a reporter gene, such as luciferase, in an expres-
sion vector, which is a plasmid that will express the reporter. This
construct (i.e., expression vector + reporter gene + regulatory
element) is transfected into an appropriate cell line. Once inside
the cell, the regulatory element utilizes the transcriptional machin-
ery of the cell to express the reporter. The cells are then assayed for
the presence of the reporter itself, or the enzymatic activity of the
reporter, which directly correlates with the activity of the regulatory
element (Fig. 1). The regulatory element used in the assay can be
manipulated to contain either the reference allele or an alternate
allele of the variant of interest. A difference in activity between the
two forms of the regulatory element is an indicator of the func-
tional impact of the variant. A good reporter is easily identified and
measured quantitatively when expressed inside the cells. One of the
most commonly used reporters is the luciferase gene, which pro-
duces the luciferase enzyme and can be quantitatively measured by a
bioluminescence assay with high sensitivity [12].

Bioluminescence-based assays are ideal in many respects. They
can be measured instantaneously, are highly sensitive, and have a
wide dynamic range; yet do not have endogenous activity, which
would interfere with quantification in cells. The bioluminescence
assays used to quantify luciferase enzyme activity utilize its interac-
tion with a bioluminescent substrate (luciferin) to produce light.
The emitted light can be measured with a luminometer. Although
different luciferase reporter genes are available, the two most com-
monly used ones are from firefly (Photinus pyralis) and Renilla
(Renilla reniformis). The luciferases from firefly and Renilla have
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different enzyme structures and utilize different substrates, due to
distinct evolutionary origins [13]. Neither firefly (61 kDa), nor
Renilla (36 kDa) luciferase require post-translational processing
for enzyme activity, and can therefore act as genetic reporters
immediately upon translation [14, 15]. The chemistry involved in
the assay is shown in Fig. 2.

1.2 Dual-Luciferase

Assay

Due to the inherent nature of biological experiments, many unin-
tended variables (e.g., pipetting inaccuracy, differences in transfec-
tion efficiency, variation in cell density, etc.) may be introduced

Regulatory region of 
interest

luciferase

Reporter Construct

Transfection

Collect Post-
Transfection 
Cell Lysate

Luciferase Assay

Appropriate Cell Line

Luciferase
TF

+Luciferin 

LIGHT

Amp’

11 ori
Cytoplasm

Nucleus

Fig. 1 General overview of the luciferase assay. Transient transfection of a Luciferase promoter–reporter
construct results in production of Luciferase enzyme. The post-transfection cell lysate containing the
Luciferase enzyme is collected and assayed. The light produced by the luciferase assay can be measured
using a luminometer, and is proportional to the activity of the promoter. TF ¼ transcription factor

Beetle Luciferin + ATP + O2
Firefly Luciferase

Oxyluceferin + AMP + CO2 + Light

Coelenterazine + O2
Renilla Luciferase

Coelenteramide + CO2 + Light

Fig. 2 Chemistry involved in luciferase assay. Beetle Luciferin acts as the substrate for firefly luciferase and
coelanterazine is the substrate for Renilla luciferase. Both reactions result in the production of light that can be
measured using a luminometer
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during a luciferase assay, which may confound results. Like real-
time PCR, where normalization with an endogenous control is
necessary to obtain trustworthy results, here also normalization
with an internal control will provide greater confidence in the
observed results. The different chemistry and substrate utilized by
firefly luciferase and Renilla luciferase provide an ideal system to
use the two luciferase reporter genes in a single assay, which are
referred to as dual-luciferase assays (DLR assay). While the lumi-
nescent signals provided by both luciferases have similar sensitiv-
ities, the firefly luciferase chemistry produces a flash of light that
decays rapidly after mixing of substrate and enzyme. In contrast,
the Renilla luciferase reaction provides a signal that decays slowly
over the course of the measurement [16]. In a DLR assay, either the
firefly luciferase or Renilla luciferase can be used as the experimen-
tal reporter gene, while the other serves as the control reporter. The
luminescent signal produced by the control reporter, which should
be similar, theoretically, in all experiments, is then used to normal-
ize the signal from the experimental reporter. In most cases, the
firefly luciferase is used as the experimental reporter and Renilla
luciferase is used as the control reporter. The dual-luciferase assay
kit from Promega, for example, provides a fast and convenient
option for performing DLR assays (see Note 1).

A drawback to using the Renilla luciferase is the low-level
autoluminescence emitted by Coelentrazine, the substrate of
Renilla luciferase, which is exacerbated in the presence of nonionic
detergents (e.g., Triton X-100) used for cell lysis. However, the
DLR assay system from Promega offers a proprietary chemistry that
reduces autoluminescence to undetectable levels with most lumin-
ometers. Likewise, there is a potential for trans-effects between
promoters on cotransfected plasmids in the DLR assay. These
trans-effects can affect reporter gene expression independent of
the experimental conditions, thereby, confounding results. In
most cases, these effects are seen when the experimental, the con-
trol, or both reporters contain strong promoter/enhancer ele-
ments. A trans-effect can be avoided by using very low amounts
of the control reporter vector, just enough to maintain a low
constitutive expression of the control luciferase. Additionally,
many different factors have been identified that influence the
expression of Renilla luciferase, and these need to be taken into
consideration when designing an experiment [17].

1.3 Luciferase Assay

to Identify Disease-

Associated Locus

As noted, large association studies have identified hundreds of
variants associated with common diseases. However, in most
cases, the true functional variant remains unknown. Also, because
the majority of associated variants are either intronic or intergenic,
and not in LD with a coding variant, it is likely that potential
functional variants lead to disease via regulatory effects on gene
expression. Luciferase assays are useful for identifying potential
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functional variants. In the following section, we briefly outline how
luciferase assays can be used to identify functional variants that
affect gene expression and to study the functionality of coding
variations.

1.4 Cloning Strategy Depending on the genomic location of the variants, different clon-
ing strategies can be utilized for luciferase assays. The following
section describes some of the strategies.

1.4.1 Assessment of

Noncoding Variants

1. Selecting a gene whose promoter will be assayed (see Note 2)
While the majority of variants associated with common disease

are noncoding, and in some cases, it is not even apparent which
gene is contributing to disease susceptibility, knowledge of the
potential target gene is helpful in the design of luciferase assays.
Having a gene in hand allows the effect of the variant to be tested
on its minimal promoter and provides a strong rationale for the
selection of the appropriate cell type (e.g., one containing the
required “transcriptional machinery”) for the luciferase assay.

There are several databases that can aid in physiologically or
mechanistically connecting a variant to a specific gene. For example,
some variants are known to function as cis-acting expression quan-
titative trait loci (eQTLs) for specific genes. The Genotype-Tissue
Expression (GTEx) project consortium has produced publicly avail-
able expression data in different tissue types that can be can be used
to assess whether the disease-associated variant is a known cis-eQTL
for a gene [18]. Additionally, epigenetic data can be used to verify
whether a disease-associated variant is located within a region with
promoter or enhancer activity, or if the variant has possible regu-
latory effects using available computational web tools like Hap-
loReg and RegulomeDb [19, 20]. Finally, literature searches can
be performed for all nearby genes to assess whether one of these
genes has been implicated in the pathogenesis of the disease of
interest. A list of computational tools for identifying target genes
or prioritizing variants for functional studies can be found
elsewhere [7].

2. Cloning of the selected promoter and regulatory element
Once a potential target gene is identified, the minimal pro-

moter of that gene can be cloned in the multiple cloning site
[MCS], upstream of the luciferase gene in a promoter-less luciferase
vector (i.e., pGL3 basic vector or pGL4.10[luc2]). The restriction
enzymes used for cloning should allow for additional restriction
sites upstream of the inserted minimal promoter to facilitate further
application. This minimal promoter–reporter construct can be used
to standardize transfection and luciferase assay conditions in a cell
type in which the promoter is known to be active. If the promoter is
active in the chosen cell type, it will lead to the production of
luciferase enzyme, which can be assayed using a luciferase assay
(Fig. 3).
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The cloning of the regulatory element can be done in multiple
ways, depending on the number and proximity of all associated
variants, due to LD structure in that region. The most simplistic,
albeit rare, scenario is an associated variant positioned in a known
promoter region as a singleton (i.e., not in LD with other variants).
In this case, the promoter fragment harboring the variant can be
cloned upstream of the luciferase gene in the pGL3 basic vector or
pGL4.10[luc2] vector. Two constructs must be made, one with the
reference allele of the variant, and the other containing the alternate
allele. These constructs can then be assayed individually to analyze
the functionality of the variant. If there is more than one variant of
interest in the promoter, site-directed mutagenesis can be used to
make the following constructs, with the reference allele at all the
variants of interest and alternate alleles at individual variants. It is
preferable to assay all constructs in the same experimental setup.

The more common situation, however, is the presence of mul-
tiple variants in a region not known to have promoter activity,
which all associate with the disease phenotype. In this scenario, if
the associated variants are located close to each other, then a

1 2

Amp’ Amp’

11 ori 11 ori

3 4 5 6 7 8 9

Gene X

Gene X minimal
promoter 

luciferase

Gene X minimal
promoter 

luciferase

upstream 
fragments

downstream 
fragments

Identify Fragment 
Harboring the Functional 
Variant

Verify minimal promoter 
activity in appropriate cell 
line

Fig. 3 Cloning strategy to identify noncoding functional variants. The disease-associated variant in this
example is upstream of a gene with a priori physiologic relevance to this disease (Gene X, see the “selecting
a gene whose promoter will be assayed” section). The variant is in LD with variants both upstream and
downstream of the target gene. The region is divided into fragments and cloned upstream or downstream of
the minimal promoter–reporter construct. Each fragment contains SNPs in LD with the variant. The fragments
are assayed for differences in luciferase activity between constructs containing the reference and alternate
alleles. The fragment with differences in activity is further studied to identify the functional variant
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fragment containing all the variants can be assayed by cloning it
either upstream of the minimal promoter using the available restric-
tion sites in MCS of the minimal promoter–reporter construct, or
downstream of the luciferase gene using the restriction sites for the
BamHI and SalI enzymes. Site-directed mutagenesis can then be
used to create constructs containing individual SNPs for additional
assays to identify the functional variant. If the number of associated
variants spans a large region, then variants can be prioritized for
assays based on computational assessment of regions with potential
regulatory activity in disease-relevant cell type. If all associated
variants in the region are to be assayed, then the region can be
divided into multiple fragments of approximately equal size. Each
fragment should contain either the reference allele or the alternate
allele of all associated variants. These fragments can then be cloned
either upstream of the minimal promoter–reporter construct, or
downstream of the luciferase gene, depending on the actual geno-
mic organization (Fig. 3). Doing so will minimize the number of
potential functional variants to be individually assayed. Then, the
construct showing the largest difference in activity can be used as a
template for site-directed mutagenesis to create additional con-
structs differing at only one variant. These constructs can subse-
quently be assayed to assess the functionality of each individual
variant.

1.4.2 Cloning Strategy:

Assessment of Coding

Variants

Different cloning strategies can be used to functionally assess a
coding variant using luciferase assay, depending on the function
of the protein. Two examples of the utility of luciferase assays to
assay coding variants that either directly or indirectly affect tran-
scription factors are provided below. However, for coding variants
within genes whose protein products are not involved in regulating
transcription, a different assay should be used to assess
functionality.

For a coding variant in a gene encoding a transcription factor
(TF), the promoter of a known target gene that has the binding
sites for the TF, or a synthetic construct with multiple sites for the
same TF upstream of the minimal promoter of a responsive gene,
can be cloned into the MCS of the pGL3 basic or pGL4.10[luc2]
vector. This vector serves as the promoter–reporter construct. The
gene (cDNA) coding for the TF can then be cloned in-frame into a
mammalian expression vector (e.g., pCDNA3.1 or pCMV6-AC).
Alternatively, a full-length cDNA clone or a full-length open
reading frame clone in a mammalian expression vector can be
obtained from commercial sources (e.g., Origene). Site-directed
mutagenesis can be used to create the desired mutation. This serves
as the experimental construct: one with the reference allele of the
coding variant and one with the alternate allele. The promoter–re-
porter construct and the experimental construct is then
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cotransfected into a suitable cell line, along with aRenilla luciferase
vector to serve as the internal control for normalizing transfection
efficiency, and assayed by the dual-luciferase assay (Fig. 4a).

For a coding variant that affects a signal transduction pathway, a
promoter containing multiple sites responsive to the end effector
TF of that pathway can be used for the assay. For example, to study
a mutation in the insulin receptor protein, the FOXO/insulin
signal transduction pathway can be used. Signaling through the
insulin receptor is known to inhibit transcription mediated by
FOXO TFs. A mutation in the insulin receptor can be studied
using a FOXO responsive promoter (insulin responsive element)
as the insert in the promoter–reporter construct. The

Fig. 4 Cloning strategy to functionally study coding variation using a luciferase assay. (a). Mutations in
transcription factors. An expression vector containing the full-length ORF of the TF (either with the reference or
alternate allele of the mutation of interest) is cotransfected with a luciferase vector containing the response
element for the TF upstream of the luciferase gene. (b) Mutation in the insulin receptor gene. An expression
vector containing the full-length ORF of the insulin receptor (either with the reference or alternate allele of the
mutation of interest) is cotransfected with a luciferase vector containing the FOXO response element (Insulin
response element) upstream of the luciferase gene in an appropriate cell line. One day post-transfection, the
cells are stimulated with insulin to activate the insulin signal transduction pathway, which is followed by a
luciferase assay to measure activity. If the cell line used expresses the insulin receptor endogenously,
consistent change in luciferase activity should be observed after stimulation with insulin, when overexpressing
the insulin receptor along with the response element compared to overexpression of the response element
alone. The assay can also be done using different concentrations of insulin, and then analyzing the ability of
the insulin receptor (mutant vs. WT) to inhibit FOXO-mediated transcription in a dose-dependent (insulin)
manner. TF ¼ transcription factor, T—transfection, D1–3—days 1, 2, and 3
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promoter–reporter construct can then be cotransfected with the
insulin receptor expression construct containing either the refer-
ence or variant allele (experimental construct). Following transfec-
tion, the cells can be stimulated by insulin and inhibition of FOXO
activity can be measured as a function of decrease in luciferase
activity (Fig. 4b).

1.4.3 Cloning Strategy:

Assessment of Variants in a

30-UTR

A 30-UTR is the region of mRNA immediately following the trans-
lational termination codon. This region often contains elements
that post-transcriptionally regulate gene expression through
mechanisms including polyadenylation, translation efficiency, local-
ization, or stability. The 30-UTR can also harbor binding sites for
micro-RNAs (miRNAs) and regulatory proteins. miRNAs bind the
30-UTR and downregulate gene expression by translational inhibi-
tion or transcript degradation [21]. Likewise, regulatory proteins
bind to the 30-UTR and in most cases, repress transcript expression.
Variants that create or destroy miRNA or regulatory protein bind-
ing sites can therefore modulate gene expression and potentially
affect disease conditions. Disease-associated variants affecting
miRNA binding have been described [22].

To analyze the function of these variants, the region of interest
(containing either reference or alternate allele) is cloned down-
stream of the luciferase gene. The pmirGLO vector, which has a
MCS immediately after the translation termination codon of the
luc2 gene, is recommended for this assay. Upon transfection, the
cloned insert will serve as the 30 UTR of the luciferase gene.
Theoretically, when transfected into an appropriate cell line, the
30-UTR will regulate the luciferase gene in a manner similar to the
target gene. A variant in the 30 UTR that affects its function can be
then assayed by a luciferase assay by comparing the effects of the
reference and alternate alleles on luciferase expression. Other vec-
tors like psiCHECK™-1 and psiCHECK™-2, which have different
features, can also be used to assay 30-UTR variants.

2 Materials

Perform all tissue culture and transfection procedures aseptically
under a cell culture hood. Store all reagents according to the
manufacturer’s instructions. Minimize experimental variation by
preparing working stocks of all reagents and avoiding repeated
freeze-thaws of stocks. If possible, use tissue culture serum from
the same lot, as serum is a complex, undefined mixture whose
variability among lots can affect experimental reproducibility. For
optimal transfection efficiency, select cells that have undergone few
passages.
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2.1 Cloning

2.1.1 Vectors

1. pGL3 basic (Promega).

2. pGL4.10[luc2] (Promega).

3. pRL-TK (Promega).

4. pGL4.74[hRluc/TK] (Promega).

5. pmirGLO vector (Promega).

6. psiCHECK™-1 and psiCHECK™-2 (Promega).

7. pCMV6-AC (Origene).

8. pCMV6-EV (Origene).

2.1.2 cDNA Clones Full-length mouse or human cDNA clones, or full-length ORF
clones in a mammalian expression vector, can be obtained
from Origene or similar vendors. A commonly used construct is a
full-length ORF clone in pCMV5 or pCMV6 vectors.

2.1.3 Enzymes 1. DNA Polymerase—High fidelity polymerase should be used to
amplify the region of interest.

2. Restriction enzymes—Select the appropriate restriction
enzyme to cleave within the multiple cloning sites (MCS) of
the vectors.

3. Alkaline Phosphatase—Calf Intestinal Alkaline Phosphatase
(CIP) or Shrimp Alkaline Phosphatase.

4. T4 DNA Ligase.

2.1.4 Kits 1. PCR purification kit.

2. Gel extraction kit.

3. Plasmid isolation kit.

4. Site-directed mutagenesis Kit.

2.1.5 Competent Cells 1. NEB® 5-alpha Competent E. coli (High Efficiency).

2.2 Cell Culture 1. Cell line—A cell line should be selected that expresses the
transcription factors affecting the regulatory region being
tested (see Note 3). Most cell lines can be obtained from
American Type Culture Collection (ATCC).

2. Trypsin–EDTA.

3. 5% CO2 incubator.

4. 1� sterile Phosphate Buffered Saline (PBS).

5. Tissue culture grade culture wares.

6. 15 and 50 mL centrifuge tubes and centrifuge.

7. Cell counter of choice.
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2.3 Transfection 1. Lipofectamine (Lipofectamine® LTX with Plus™ or Lipofecta-
mine 3000 reagent) is commonly used for transfection. Lipo-
fectamine 3000 provides good efficiency for transfecting most
cell lines.

2. Opti-MEM® I Reduced Serum Medium.

2.4 Cell Harvesting 1. 1 � PBS.

2. 1 � Passive Lysis Buffer (PLB). Dilute 5� PLB from Dual-
Luciferase Assay Kit by adding 4 volumes of water to 1 volume
of 5 � PLB.

2.5 Luciferase Assay

(Dual-Luciferase®

Reporter Assay

System)

Luciferase Assay Substrate—Resuspend the lyophilized luciferase
assay substrate using the luciferase assay buffer II provided in the
Dual-Luciferase® Reporter Assay kit. Divide into aliquots and store
aliquots at �70 �C. Avoid repeated freeze-thaws. Thaw aliquots in
room temperature water bath.

1� Stop and Glo Reagent—Add 1 volume of 50� Stop and
Glo substrate to 50 volumes of Stop and Glo buffer from the
Dual-Luciferase® Reporter Assay kit. This serves as a quencher for
firefly luciferase and a substrate for the Renilla luciferase. 1� Stop
and Glo reagent should be freshly prepared for each assay.

3 Methods

3.1 Cloning 1. To create experimental constructs, amplify the region harbor-
ing the associated variant using human genomic DNA as a
template and High Fidelity DNA Polymerase according to
the manufacturer’s protocol (see Note 4). If available, two
templates should be chosen, one from an individual homozy-
gous for the reference allele and one from an individual homo-
zygous for the variant allele. If a template for the variant allele is
not available, site-directed mutagenesis can be used to create
one. The oligonucleotides used for amplifying should be
designed in such a way that they have the appropriate restric-
tion enzyme sites at their 50 end (see Note 5).

2. Use a small amount (i.e., 5 μL) of the amplicon for agarose gel
electrophoresis to verify size.

3. Follow the instructions in the PCR purification kit to purify the
remaining amplicon.

4. Use 1 μg of the selected vector and purified amplicon to set up
two separate double-digestion reactions. Set up the double-
digestion in a total volume of 30 μL. Use the double-digest
finder web tool from NEB to select the reaction conditions
according to restriction enzyme combination.
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5. Incubate the double-digestion reaction for 6–8 h. After 6 h,
add 1 μL of Calf Intestinal Alkaline Phosphatase to the vector
double-digest only, mix well, and incubate at 37 �C for 1 h (see
Note 6).

6. Heat-inactivate the double-digest mix depending on the selec-
tion of the restriction enzyme.

7. Pipette the entire volume of the double-digest reaction onto an
agarose gel for separation by electrophoresis.

8. Extract the double-digested amplicon and vector from the
agarose gel using a gel-extraction kit according to the manu-
facturer’s protocol.

9. Quantify the eluted products by agarose gel electrophoresis.

10. Set up the ligation reaction with T4 DNA ligase using a molar
vector: insert ratio of 1:3 for sticky-end ligation and 1:6 for
blunt-end ligation. Incubate for 16 h at 16 �C, followed by
heat inactivation for 20 min at 65 �C (see Note 7).

11. Use the ligation mixture for transformation of high efficiency
competent cells following the manufacturer’s protocol. Incu-
bate transformation plates for 12–14 h.

12. Screen colonies to select positive clones by PCR.

13. Inoculate positive colonies for each construct in 3 mL LB
broth and incubate at 37 �C in a shaker incubator at
220 RPM for 8–10 h.

14. Isolate clones using a plasmid isolation mini kit following the
manufacturer’s protocol. Quantify isolated clones.

3.2 Cell Culture and

Transfection (See

Note 3)

1. The type of cell culture ware should be determined based on
the number of constructs. It is recommended that each con-
struct be assayed in duplicate.

2. Cells should be cultured based on the conditions recom-
mended by the vendor. Antibiotics can be used for cell culture,
but not during transfection.

3. Cells for transfections should be seeded in such a way that they
will be 60–90% confluent on the day of transfection (seeNote 8).

4. On the day of transfection, mix the experimental construct and
the control vector (expressing Renilla luciferase) in a ratio of
10:1. For a 12-well plate, use 900 ng of the experimental
construct and 100 ng of the Renilla luciferase vector. The
ratio differs based on assay conditions and should be deter-
mined empirically. Use equal amounts of each experimental
construct to be analyzed.
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5. Depending on the cell line, either Lipofectamine 3000 or
Lipofectamine LTX and Plus can be used for transfection.
Transfections are performed per the manufacturer’s protocol
(see Notes 9–14).

3.3 Cell Harvesting 1. Cells can be harvested 48 h after transfection.

2. For harvesting, remove the spent media from the wells and
wash cells with 1� PBS. Make sure to completely remove PBS.

3. Add enough 1� PLB to cover the cell surface; usually 250 μL/
well for a 12-well plate is sufficient (see Note 15).

4. Incubate at room temperature in an orbital shaker for 15 min.

5. Collect the lysate including any debris in a 1.5 mL centrifuge
tube. The lysate can be stored at �70 �C.

3.4 Dual-Luciferase

Assay (See Notes

16–18)

1. Bring all reagents to room temperature prior to starting the
assay.

2. Thaw the cell lysate, which is stored at �70 �C, to room
temperature. Thoroughly vortex samples before the assay.

3. Aliquot 100 μL of LARII reagent from the dual-luciferase assay
kit into luminometer glass tubes. Aliquot extra tubes as some-
times one sample may need to be measured more than once.

4. Prepare 1� Stop and Glo reagent, enough to use 100 μL per
sample. Prepare extra in case of additional measurements.

5. Transfer 20 μL of cell lysate to 100 μL of LARII tube and mix
well by pipetting. Immediately measure luminescence using a
luminometer. Record the reading.

6. Add 100 μL of 1� Stop and Glo reagent and mix by vortexing.
Immediately measure luminescence using a luminometer.
Record the reading.

7. Repeat steps 5 and 6 once more for each sample.

3.5 Data Analysis

(See Notes 19 and 20)

1. Average luminescence readings from firefly luciferase and
Renilla luciferase for each sample.

2. Calculate the relative firefly luciferase/Renilla luciferase activ-
ity for each sample using the average readings. This is the
relative luciferase activity.

3. To calculate the fold-enrichment in relative luciferase activity of
the experimental construct over the vector alone control,
divide the relative luciferase reading of the experimental con-
struct by the relative luciferase reading of the vector alone
control.

4. Each experiment should include at least two experimental
replicates for each construct and the experiment should be
repeated at least 6–8 times.
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5. Mean fold-enrichment in luciferase activity of each construct is
calculated for each experiment by averaging the fold-
enrichment obtained in experimental replicates.

6. An unpaired t-test can be used to calculate whether the relative
luciferase activity or fold-enrichment in luciferase activity is
significantly different between two experimental constructs.

In conclusion, this chapter provides an outline of several
ways in which luciferase assays can be used to identify func-
tional variants in the genome. Although general approaches to
study promoter, intronic, intergenic, 30 UTR, and coding var-
iants are described, it should be noted that the genome is
highly enriched for additional regulatory elements such as
long noncoding RNAs, which are not discussed here. As fur-
ther knowledge of the genome becomes available, it is likely
that more variation may be assessed for functionality using
luciferase assays.

4 Notes

1. While this chapter describes a protocol using the dual-luciferase
reporter assay system provided by Promega, other luciferase
reporter systems are commercially available (e.g., Pierce
Renilla-Firefly dual assay from Thermo-Fisher or luciferase
assay systems from Switchgear Genomics). Many vendors also
provide precloned promoter, 5’UTR, and 3’UTR reporter
constructs that can be used depending on the region of
interest.

2. A pGL3-promoter vector can be used for variants that are in
genomic regions with no clear candidate genes and where a
minimal promoter cannot be identified for the promoter–re-
porter construct. These vectors have a known promoter ele-
ment (e.g., SV40 promoter) upstream of the MCS. Promega
offers luciferase reporter vectors with different promoters
upstream of the MCS, which can be used depending on the
assay and cell type of interest.

3. It is highly recommended that the cell line used for the assay
express the gene of interest (i.e., one in which the regulatory
region harboring the variants being tested is functional and the
minimal promoter used in the promoter–reporter construct is
active). When assaying coding variants in TFs, it is possible to
use a cell line that does not express the TF, provided that the
TF by itself is capable of activating the promoter of the pro-
moter–reporter construct. This is actually preferable, as the
high background activity of an endogenously expressed TF
will not interfere with the results. HEK 293 cells are widely
used for such assays. However, most TFs work as complexes
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and additional constructs that express the essential factors that
form the complexes need to be cotransfected. Alternatively, a
cell line in which both the TF and the promoter are active can
be used for the assay. Note that when studying coding variants
based on signal transduction pathways, a cell line in which that
pathway is known to exist is preferable.

4. Use of high fidelity polymerase is highly recommended for
amplifying the region of interest. Following purification of
the cloned constructs, accuracy of the insert sequence must
be confirmed by direct sequencing. Use of high fidelity restric-
tion enzymes from NEB is recommended. Most of these
enzymes have 100% efficiency in cut-smart buffer offered by
NEB and will be helpful for double digestion.

5. The 50 end of the primers used for amplifying the region of
interest must contain the selected restriction enzyme sites. It is
recommended to include at least four bases 50 of the restriction
site on the primers to facilitate digestion. Prior to selecting the
restriction enzyme, ensure that the region of interest does not
also harbor sites for that enzyme.

6. Treating the double-digested vector with alkaline phosphatase
will prevent religation of the linearized vector.

7. The T4 DNA ligase buffer should be vortexed thoroughly
before use. This buffer contains ATP, which tends to
precipitate.

8. The number of cells to be plated in each well for transfection
should be optimized so that they are 60–90% confluent at the
time of transfection. Care should be taken to plate equal num-
ber of cells in each well, which can be achieved by making a
master mix of cells in media and inverting the tube several times
and immediately plating the cells into wells. Gently rock the
plate back and forth several times to ensure an even spread of
the cells.

9. The transfection reagent and constructs should be brought to
room temperature before transfection. Mix the transfection
reagent by gentle vortexing before making the transfection
complex. Transfection complex should be prepared in a
serum-free media and transfection should be done under
antibiotic-free conditions.

10. The Lipofectamine: DNA ratio needs to be optimized for each
cell line and should be determined empirically. In most cases,
3.75 μL of lipofectamine per 1 μg of DNA works well when
using Lipofectamine 3000.

11. The diluted DNA in the serum-free media should be added
into the diluted lipofectamine, and not vice versa. Once the
complex is prepared the entire volume should be added
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dropwise to the well. Add drops to the media surface and
gently rock the plate to ensure even distribution of the trans-
fection complex.

12. Always include a vector-only control and the minimal promo-
ter–reporter construct in the assays. At least two experimental
replicates should be included in each plate for each construct.
Care should be taken to add equal amounts of each experimen-
tal construct to be assayed. The concentration should be deter-
mined by repeated measurements.

13. One well containing cells without any treatment should be
included to serve as the basal measurement. Equal amounts
of the control reporter construct (usually Renilla luciferase)
should be included in the transfection complex for all wells,
except the basal control.

14. It is not necessary to change media after transfection. Cells can
be harvested 48 h post-transfection. Before harvesting, look at
the cells for any abnormal regions of cell death due to experi-
mental treatment. It is recommended that such wells be omit-
ted from the experiment. While harvesting, ensure complete
lysis of the cells.

15. Make 1� PLB in excess to cover all the wells. Freshly prepared
1� PLB is recommended. Use of other lysis buffer for DLR
assay is not recommended.

16. Prepare LAR II and Stop and Glo reagent in excess. Some
samples may need to be assayed multiple times.

17. Vortex all the samples thoroughly before the DLR assay. The
length of time of vortexing should be similar for each sample.
Clear lysate should be used for the assay. Avoid introducing any
cell debris or air bubbles in the LAR II, as these may produce
erroneous readings.

18. Mix by pipetting after adding the lysate into LAR II. Do not
vortex. The number of times the lysate is mixed by pipetting
should be consistent across samples.

19. Experimental conditions must be consistent for all samples,
and an equal amount of control reporter must be included in
each well. Theoretically, the luciferase activity of the control
reporter should be similar for each sample. Large variability in
the luciferase activity of the control reporter may indicate
decreased transfection efficiency in that well or reduced cell-
viability. Such wells should be omitted from the analysis. Any
increase or decrease in relative luciferase activity in a sample
should be a result of the luciferase activity of the experimental
construct, and not a vast drop or increase in luciferase activity
of the control reporter. Experimental and biological replicates
of that sample should also show a similar effect.
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20. Background luminescence can be corrected by measuring the
activity of the basal samples. However, most cells have very low
background luminescence.
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Chapter 18

Physiologic Interpretation of GWAS Signals
for Type 2 Diabetes

Richard M. Watanabe

Abstract

This chapter reviews both statistical and physiologic issues related to the pathophysiologic effects of genetic
variation in the context of type 2 diabetes. The goal is to review current methodologies used to analyze
disease-related quantitative traits for those who do not have extensive quantitative and physiologic back-
ground, as an attempt to bridge that gap. We leverage mathematical modeling to illustrate the strengths and
weaknesses of different approaches and attempt to reinforce with real data analysis. Topics reviewed include
phenotype selection, phenotype specificity, multiple variant analysis via the genetic risk score, and consider-
ation of multiple disease-related phenotypes. Type 2 diabetes is used as the example, not only because of the
extensive existing knowledge at the genetic, physiologic, clinical, and epidemiologic levels, but also because
type 2 diabetes has been at the forefront of complex disease genetics, with many examples to draw from.

Key words Quantitative traits, Genome-wide association, Mathematical modeling, Genetic risk score,
Statistics, Regression analysis, Phenotyping

1 Introduction

Novo Nordisk began an advertising campaign in 2009 built around
the phrase “There may be 2 types of diabetes, but there’s more than
2 types of patients with diabetes.” This very simple message high-
lighted the challenge faced by clinicians struggling to treat and
prevent diabetes, as each individual patient presents with different
challenges in dealing with their diabetes or trajectory toward dia-
betes. Although categorized into two broad groups, in reality,
diabetes is a group of diseases that manifest in fasting hyperglyce-
mia. In particular, type 2 diabetes involves a complex interplay of
genetic risk, lifestyle, and socioeconomic factors that have been
literally investigated for centuries. It is easy to forget that the first
description of diabetes as a medical condition was as early as
1500 B.C [1] and research on diabetes has stretched across
hundreds of years. Sugar in the urine of patients with diabetes had
been suspected for many years, but it was not until 1674 that
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Charles Willis actually noted the urine of his patients with diabetes
had a sweet taste [1]. Additional milestones in diabetes research
include contributions of individuals like Claude Bernard
(1813–1878), who identified the liver as an integral organ involved
in diabetes, Paul Langerhans (1847–1888), who described the
structure of the pancreatic islets that bear his name, Oskar Min-
kowski (1858–1931) and Josef von Mering (1849–1908), who
discovered the critical importance of the pancreas in diabetes, Sir
Frederick Banting (1891–1941) and Charles Best (1899–1978),
who discovered insulin, Frederick Sanger (1918–2013), who deter-
mined the amino acid sequence of insulin, Rosalyn Yalow
(1921–2011) and Solomon Berson (1918–1972), who developed
the radioimmunoassay to measure insulin, and countless other
individuals who contributed to our current knowledge of the path-
ophysiology of diabetes.

Much of the knowledge gained regarding type 2 diabetes has
been translated to relatively effective treatments for the disease, but
success has not been uniform. Physicians grapple with countless
patients who are difficult to treat using recommended protocols.
Furthermore, much of the knowledge has not translated to effec-
tive disease prevention, which is exemplified by the continuing rise
in incidence and prevalence of the disease [2, 3]. Numerous studies
under highly controlled conditions have shown that lifestyle and
pharmacologic interventions can be effective in significantly reduc-
ing risk for future diabetes in at-risk individuals [4–8]; however, for
a variety of reasons many of these approaches have been difficult to
translate into clinical practice and even less so into the community.

In 1962, Dr. James Neel proposed the “thrifty gene hypothe-
sis” to explain the prevalence, heterogeneity, and severity of diabe-
tes [9]. Neel would eventually call diabetes “the geneticist’s
nightmare” a phrase that captured the complex nature of the dis-
ease: polygenic with low genetic effects and complex interactions
with environment [10]. The field of human genetics has changed
considerably since the coining of that phrase. The successful appli-
cation of linkage analysis to identify genetic loci contributing to risk
for monogenic disease led to its application to complex diseases,
albeit with relatively little success. The lack of success was partly
explained by Risch and Merikangas, who formally showed genetic
association was statistically more powerful than linkage analysis
[11]. However, technical limitations and significant knowledge
gaps regarding the human genome made implementation of
genome-wide association (GWA) more of a dream than a possibil-
ity. But rapid improvements in genotyping and computing technol-
ogy, increased knowledge about the human genome through the
Human Genome [12, 13] and HapMap Projects [14] plus other
advances made GWA a reality, leading to a “golden age” for com-
plex disease genetics. Numerous GWA studies have identified
thousands of genetic variants across the genome showing strong
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evidence of contributing to risk for disease or variation in disease-
related quantitative phenotypes. The rapid growth in the number
of such loci led to the establishment of the GWAS Catalog (http://
www.ebi.ac.uk/gwas/), a repository of results from published
GWA studies.

In many ways, the study of the genetics of type 2 diabetes was at
the forefront of this genetic revolution. As of this writing, nearly
100 loci have been identified as contributing to risk for type 2 dia-
betes [15–26] and hundreds of loci have been identified as con-
tributing to variation type 2 diabetes related quantitative
phenotypes [27–48]. The genomic chips created for GWA analysis
were designed to capture common variation, typically minor allele
frequency (MAF) greater than 5%, which is a limitation of GWA
studies. This led to the phenomenon of “missing heritability” [49];
the identified genetic variation does not account for all of the
heritable variation. It was thought that next generation sequencing
of whole human exomes and genomes would identify low fre-
quency variants with larger genetic effect size that would account
for this “missing heritability”, but initial results from these studies
indicate the effects of rare variants may not be substantially greater
than that of higher frequency variants [50]. Regardless, the GWA
and next generation sequencing studies have not just illuminated
new biologic pathways contributing to the pathogenesis of diabe-
tes, but have also reinforced and provided additional insights into
previously known pathways and revealed new potential pharmaco-
logic targets.

There are many paths to take once a variant is shown to be
associated with type 2 diabetes or type 2 diabetes-related pheno-
types. One approach is to examine the role of these variants in the
pathophysiology of the disease, which is the focus of this chapter. In
particular, we review approaches to understanding how genetic
variation might alter human physiology to contribute to the patho-
genesis of type 2 diabetes. The complex relationship between
genetic variation and physiology, so-called genotype–phenotype
relationships, is critical in the determination of how genetic varia-
tion may be leveraged to improve interventional strategies, both
pharmacologic and lifestyle, and reduce diabetes-attributable mor-
bidity and mortality.

2 Methods

We will focus on three general issues in the assessment of the role of
genetic variation in the pathogenesis of type 2 diabetes: (1) consid-
eration of phenotypes, (2) phenotype specificity, and (3) the utili-
zation of the genotype risk score. Specific issues surrounding each
will be discussed with a mathematical model used for illustrative
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purposes. The results from computer simulations performed using
the mathematical model are further reinforced by practical exam-
ples derived from analysis of data from the BetaGene Study [51].

2.1 The BetaGene

Study

BetaGene is a study of Mexican American families of probands with
and without a prior diagnosis of gestational diabetes mellitus
(GDM). The broad sampling design for this study was based on
the fact that Mexican American women with prior GDM have a
55% five-year post-partum risk of developing type 2 diabetes [52]
with similar levels of elevated risk observed in other populations
[53]. BetaGene provides a unique opportunity to study the rela-
tionship between genetic variation and type 2 diabetes-related
phenotypes in the context of elevated disease risk. The framework
of sampling based on previous GDM status ensured representation
of individuals with and without elevated risk for development of
type 2 diabetes, i.e., a wide spectrum of glucose tolerance would be
observed. It should be noted that the BetaGene sample specifically
excludes individuals with type 1 or type 2 diabetes and families in
which individuals presented as being GAD antibody positive.

Another unique characteristic of the BetaGene Study was the
performance of detailed phenotyping, which provides quantitative
measures of type 2 diabetes-related phenotypes not found in most
human genetic studies. These include body composition by dual-
energy X-ray absorptiometry (DXA), oral glucose tolerance test
(OGTT) with blood samples obtained every 30-min post-ingestion
for 2 h, and frequently sampled intravenous glucose tolerance tests
(FSIGT) analyzed by the Minimal Model [54] to obtain quantita-
tive measures of glucose effectiveness, insulin sensitivity, insulin
secretion, and pancreatic beta-cell function. These provide direct
quantitative measures of key phenotypes known to contribute to
the pathogenesis of type 2 diabetes, in addition to traditional
clinical phenotypes.

2.2 Leveraging

Mathematical

Modeling

We provide additional illustration of issues related to physiologic
analysis of genetic variation by leveraging mathematical modeling.
We previously introduced a model describing the gluco-regulatory
system [55]. The model links existing validated models of glucose
and insulin kinetics to create a single unified model that accurately
reflects the closed-loop feedback relationship between glucose and
insulin (Fig. 1). Because each parameter in the model has direct
physiologic interpretation and an underlying population distribu-
tion, we can model the effect of genetic variation by defining a
genotype-specific parameter distribution underlying the overall
population distribution. The magnitude of the genetic effect for a
given variant can be modeled as a function of the differences in the
genotypic means.

This modeling framework allows us to do two things. First, the
model is designed to allow simulation of any clinical phenotyping
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protocol used in modern type 2 diabetes research. This includes
clinical protocols such as the OGTT, FSIGT, or euglycemic glucose
clamp. Second, because the characteristics of the population distri-
bution for each model parameter is known and the genotype-
specific distributions underlying the population can be created, it
is possible to draw genotype-specific samples from the distribution.

Fig. 1 Model of Gluco-regulation. Structure of the model along with the system of differential equations is
shown. Compartment G represents the concentration of glucose in plasma and tissues that rapidly equilibrate
with plasma (mg/dL, insulin insensitive), while G2 represents the mass of glucose in tissues that slowly
equilibrate with plasma (mg, insulin sensitive). VG is the volume of the extracellular space (glucose
distribution volume). Abs(t) is the rate of absorption of glucose from the gastrointestinal tract and HGO(t) is
the endogenous glucose production rate. K parameters are fractional transfer coefficients (min�1). FX
represents the fraction of the effect of interstitial insulin that acts to suppress endogenous glucose output,
while (1�FX) is the remaining fraction which accelerates glucose disposal from the peripheral compartment.
The rate of endogenous glucose production is limited by plasma glucose (G(t)) and interstitial insulin (X(t)).
HGO0 is the endogenous glucose output in the absence of effects of interstitial insulin and/or plasma glucose
to restrain glucose production. S(t) is the moment-by-moment secretion rate of insulin from the pancreatic
islets; FI is the fractional clearance rate of secreted insulin by the liver. VI is the distribution volume of insulin in
the body. Ib is the basal (fasting) insulin concentration. The effect of insulin on glucose kinetics was modeled
as a remote insulin effect, and partitioned into two components (FX and 1�FX). Pre-hepatic insulin secretion is
a known input to this model. The insulin secretion rate changes in proportion to the ambient glucose
concentration, with Kβ representing β-cell sensitivity to glucose. The term (1�FI) describes the fraction of
insulin secretion that survives hepatic transit, with FI representing fractional hepatic insulin extraction. The
plasma insulin concentration above basal determined by this model is used to determine the effect of
interstitial insulin, X(t)
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These characteristics allow us to draw samples from the population
that have known characteristics and allow us to “phenotype” these
samples under highly controlled conditions. The simulation frame-
work allows us to assess various aspects of the contribution of
genetic variation to the pathophysiology of type 2 diabetes and
assess the complexities underlying genotype–phenotype
relationships.

3 Results

3.1 Lack of Overlap

in Genetic Loci

One of the strengths of studying the genetics of type 2 diabetes is
the long history of clinical and epidemiologic studies performed to
date and the extensive array of type 2 diabetes-related quantitative
phenotypes that have been measured. Furthermore, it is well estab-
lished that in most populations, type 2 diabetes is characterized by
relative obesity, insulin resistance, and pancreatic β-cell dysfunction.
Thus, measures of these phenotypes, including more traditional
clinical phenotypes, provide opportunities to leverage quantitative
trait analysis to better understand the genetics of the disease. In
fact, the first type 2 diabetes risk locus to be identified by primary
analysis of a diabetes-related phenotype was melatonin receptor-1B
(MTNR1B), which was initially shown to be associated with fasting
glucose levels, and later with risk for type 2 diabetes [37, 40]. This
demonstrated that type 2 diabetes risk loci could be identified by
analyzing type 2 diabetes-related phenotypes, with the added
bonus of being able to make improved physiologic inference,
given the knowledge that the locus was associated with both disease
and a specific disease-related trait.

However, not all disease-related quantitative trait loci contrib-
ute to diabetes risk and not all diabetes risk loci contribute to
variation in known type 2 diabetes-related quantitative traits. The
former is not surprising, since one would expect that a GWA study
of a diabetes-related quantitative trait might identify loci that only
contributed to the variation in that trait and not necessarily con-
tribute to disease risk. However, the latter is a bit more puzzling, as
one might assume that a diabetes risk locus should also be asso-
ciated with a known type 2 diabetes-related quantitative trait.
However, GWA of disease is an agnostic approach that makes no a
priori assumption regarding the underlying biology other than the
presence or absence of disease, and therefore could identify loci
underlying phenotypes not yet examined in the context of type
2 diabetes. In fact, when one compares diabetes risk loci with
diabetes-related quantitative trait loci, there is surprisingly little
overlap. Grarup and colleagues examined the overlap in identified
loci across type 2 diabetes, BMI, waist circumference, waist-to-hip
ratio, fasting glucose, and fasting insulin [56] and found very little
overlap in loci. Among the 45 loci associated with variation in
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fasting glucose, only 18 also contributed to risk for type 2 diabetes.
Likewise, although obesity is a significant risk factor for type 2 dia-
betes, only 4 of 40 loci associated with this trait also contributed to
risk for type 2 diabetes.

One explanation for this lack of overlap is that the disease risk
locus may be associated with a phenotype that is not among the
traditional clinical phenotypes measured in the majority of studies
of diabetes. This is actually one of the weaknesses of genetic studies
of disease, in that decisions regarding phenotypic measurements are
typically driven by clinical knowledge and thus, clinically relevant
phenotypes tend to be measured. Alternatively, we might leverage
archival samples and therefore be constrained by the protocols
employed and the samples archived. Furthermore, a locus may be
revealed in stimulated states, as opposed to the fasting state. In
which case, unless the appropriate clinical protocol has been
employed, the investigator will again be constrained.

3.2 Modeling the

Effect of Peroxisome

Proliferator-Activated

Receptor-γ (PPARG)

We turn to computer simulation to illustrate how a nontraditional
phenotype might be optimal for assessing association with a disease
risk locus. The Pro12Ala variant (rs1801282) in PPARGwas one of
the first type 2 diabetes risk loci to be identified [57, 58]. However,
for many years, evidence for its association with diabetes-related
phenotypes was equivocal. While this was partly attributed to the
lack of statistical power stemming from relatively small sample sizes,
the lack of assessing appropriate phenotypes may have also contrib-
uted to the inconsistent results. We illustrate this by simulating the
effect of PPARG Pro12Ala using our computer model. We assume
a genetic variant underlying parameter p3, which is involved in
insulin sensitivity, with 15% MAF, and a genetic effect of 30% of
the maximum difference between homozygous genotypes.
Genotype-based p3 values were randomly selected from the popu-
lation distribution of p3 and OGTTs were simulated employing the
selected variant. The process was repeated multiple times to simu-
late a sample drawn from a population. Three thousand replicates of
1000 OGTTs were simulated and the power to detect association
between individual OGTT glucose values and the simulated genetic
variant was assessed. All other model parameters were fixed at their
population averages to ensure the only source of genetic variation
was from the simulated PPARG variant and random Gaussian noise
was added to the simulated glucose data to simulate assay variation.
The simulated glucose data was tested for association with the
simulated genetic variant by linear regression and statistical power
to detect association was assessed.

The standard clinical protocol for the OGTT calls for samples
to be taken at fasting and 2 h post-load. Thus, most studies have
glucose, and sometimes insulin, measured at these two time points.
However, computer simulation allows us to simulate glucose values
for any desired time-point during a 2-h OGTT. Thus, we
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specifically compare the power to detect association between the
simulated 1- and 2-h glucose values, the former rarely measured in
most studies. The simulation results show that the 1-h glucose
value had greater statistical power to detect association with the
simulated genetic variant compared to the 2-h glucose value (0.83
vs. 0.74). This power analysis suggests that if one were to select a
phenotype optimized for detecting association with PPARG
rs1801282, one would have been best served by collecting 1-h
glucose samples from the OGTTs.

We next attempted to replicate the simulation findings by
analyzing data from the BetaGene study. Blood samples were col-
lected every 30 min post-load in the OGTTs performed in the
BetaGene study, unlike most studies that only perform the
2-point OGTT. Fig. 2 shows the average glucose profile on the
left (mean � SD) and the corresponding p-value for the test of
association between the different glucose time points and
rs1801282. The test for association was performed adjusting for
age, sex, and percentage body fat. Despite the relatively small
sample size (n ¼ 1630), the analysis of BetaGene data clearly
shows the 1-hour glucose level having the strongest evidence for
association with rs1801282 ( p ¼ 0.036) compared to the 2-h
(p ¼ 0.394) or other glucose values. In fact, even the 90-min
glucose value showed better evidence for association ( p ¼ 0.055)
compared to the fasting or 2-h values. This simple example shows
that atypical phenotypes may be associated with type 2 diabetes risk
loci and may partly explain the lack of overlap with GWA studies of
type 2 diabetes-related phenotypes. It also suggests that careful
consideration must be made in phenotype selection when studying
genetics. The standard set of clinically based phenotypes may not be
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sufficient to untangle the contribution of genetic variation to the
pathogenesis of type 2 diabetes and identify the optimal targets of
interventional development.

3.3 Phenotype

Specificity

The issue of analyses being limited to clinically relevant phenotypes
raises important questions regarding appropriate and specific phe-
notypes. As noted, insulin resistance and beta-cell dysfunction are
hallmarks of type 2 diabetes. However, accurately assessing these
phenotypes requires clinical protocols beyond simple fasting blood
draws or OGTTs. For example, the euglycemic glucose clamp is the
gold standard method for quantifying insulin resistance. However,
the cost and complexity of this protocol makes it less favorable for
large-scale human studies. This has led many to use indirect mea-
sures of these phenotypes, as exemplified in reports from the
MAGIC consortium [59, 60]. However, the utility of these indirect
measures is controversial [55, 61–63], and even if highly correlated
with direct measures of these phenotypes, there are issues as to
whether they capture the same genetic information [64, 65]. The
use of indirect phenotypes can lead to issues in physiologic
interpretation.

We present two examples of how indirect phenotypes can lead
to difficulties in physiologic interpretation. If a genetic variant has
implications for a given phenotype, say insulin resistance, then one
would expect that variant to show association with any phenotype
that directly reflects insulin resistance. The MAGIC consortium
examined the association between 37 type 2 diabetes risk loci and
multiple type 2 diabetes-related phenotypes to assess the physio-
logic implications of genetic variation contributing to type 2 diabe-
tes risk [60]. Insulin resistance was a trait of primary interest, but
direct measures of insulin resistance/sensitivity were only available
in a small subset of participating studies and among those, the
methods of measurement varied and included FSIGT with Minimal
Model [54, 66], islet suppression test [67], and euglycemic glucose
clamp [68]. Five indirect measures of insulin resistance were com-
puted across all studies based on fasting and/or OGTT data;
HOMA-IR [69], the Stumvoll Index [70], the Belfiore Index
[71], the Matsuda Index [72], and the Gutt Index [73] to maxi-
mize statistical power for analysis of insulin resistance as a pheno-
type. The three direct measures were examined as a single group,
thus there were six different “measures” of insulin resistance/sen-
sitivity examined. Marker rs7578326 in IRS1 was the only locus
that showed evidence for association with all six measures of insulin
resistance [60]. Other loci, such as rs13081389 in PPARG, showed
evidence for association with only a subset of these traits. The
heterogeneity in outcomes for a given SNP raises an important
question. If all six measures are supposed to reflect insulin resis-
tance, why are the association results not consistent? In the case of
the indirect measures, statistical power is not likely to explain the
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heterogeneity, because the sample sizes were large (>10,000 sam-
ples) and relatively similar across phenotypes. If any single pheno-
type were to be inconsistent, it would have been the combined
direct measure group, since the sample size was approximately 40%
of that for the indirect measures and therefore would have suffered
from significantly low statistical power. One reason could be con-
founding effects from other phenotypes, such as insulin secretion,
which we previously showed was a significant confounder for many
of these indirect measures [55]. Alternatively, these indirect mea-
sures, while phenotypically correlated with direct measures of insu-
lin resistance, may not capture the same genetic information. For
example, two studies have examined the phenotypic, genetic, and
environmental correlation between HOMA-IR and the euglycemic
glucose clamp [64] and the FSIGT with Minimal Model analysis
[65]. In both cases, the phenotypic correlation between HOMA-
IR and the direct measure was high, but the genetic correlation was
significantly lower [65, 64]. This suggests that while HOMA-IR
may be phenotypically correlated with the euglycemic clamp or
Minimal Model-based SI and useful as an overall alternative mea-
sure of insulin resistance, it may not capture the same genetic
information and therefore may not be as useful in genetic studies.

The second example takes advantage of our mathematical
model to illustrate how the confounding effects of other pheno-
types, such as insulin secretion [55], can confound the interpreta-
tion of SNP association results when examining insulin resistance.
We simulated the effect of two different SNPs on the gluco-
regulatory system; one that affects insulin sensitivity and another
that affects pancreatic beta-cell function. We simulated the effect of
PPARG rs1801282, as described above, as a variant affecting insu-
lin sensitivity. We simultaneously simulated the effect of
rs10830963 in MTNR1B on pancreatic beta-cell function via
parameter KG (cf. Fig. 1). We assumed a 20% MAF and a genetic
effect 50% of the maximum for the simulated MTNR1B variant.
Paired OGTTs and FSIGTs were simulated based on randomly
drawn pairs of p3 and KG for the two simulated SNPs. As before,
all other model parameters were kept constant and glucose and
insulin data were simulated for the two clinical tests. Random
Gaussian error was added to the simulated glucose and insulin
data to simulate assay variation. The Stumvoll Index of insulin
sensitivity was computed from the simulated OGTT data [70]
and the simulated FSIGT data were analyzed using the Bergman
Minimal Model [54, 66] to estimate SI. The simulated SNP geno-
type data were then tested for association with the two different
insulin sensitivity indices. One hundred replicates of 1000 or 2500
OGTT/FSIGT pairs were examined to assess power to detect
association.

The median correlation between the Stumvoll index computed
from the simulated OGTT and SI computed from the simulated
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FSIGT was 0.70 (range: 0.61–0.76), which is similar to values
reported in the literature. Results based on the 1000 replicates
were similar to those obtained for 2500 replicates, so only results
based on the 2500 replicates are described. Power to detect associ-
ation between the simulated PPARG rs1801282 was 37% for the
Stumvoll Index and 47% for SI. The moderately higher statistical
power with SI likely reflects the fact that SI is a direct measure of
insulin sensitivity. Because both the Stumvoll Index and SI are
measures of insulin sensitivity, one would expect both indices to
show weak power to detect association with genetic variants whose
primary effect is on phenotypes unrelated to insulin sensitivity.
However, when examining the association between the simulated
MTNR1B rs10830963 and the two indices, the Stumvoll Index
had substantially greater power to detect association compared to
SI (43% vs. 21%). In fact, power to detect association with the
simulated beta-cell variant (MTNR1B) was similar to, if not slightly
greater than, the power to detect association with the insulin
sensitivity variant (PPARG; 43% vs. 37%). In contrast, SI from the
Minimal Model had substantially lower power to detect association
with the simulated beta-cell variant compared to the insulin sensi-
tivity variant (47% vs. 21%), which is better aligned with what one
might expect from a phenotype reflecting insulin sensitivity.

We compared our simulation results with results from the
BetaGene study. We tested association between PPARG
rs1801282 and MTNR1B rs10830963 with the Stumvoll Index
and Minimal Model SI in 1093 BetaGene participants with com-
plete data. The test for association included adjustment for age, sex,
and percentage body fat. The correlation between the Stumvoll
Index and SI in BetaGene was 0.58, somewhat lower than what
was observed in the simulation study. The observed MAF for
PPARG rs1801282 was 0.11 and for MTNR1B rs10830963 was
0.22. The Stumvoll Index and SI showed no evidence for associa-
tion with PPARG rs1801282 (p¼ 0.16 and p¼ 0.66, respectively).
This outcome is not surprising, given the relatively small sample
size and the presumed low genetic effect size of PPARG. However,
both indices are consistent in outcome and consistent with our
simulation results. However, the Stumvoll Index showed evidence
for association with MTNR1B rs10830963 (p ¼ 0.043), while SI
did not ( p ¼ 0.86). This result is consistent with our simulation
results, which suggested the Stumvoll Index had near-equivalent
power to detect association with genetic variants affecting insulin
sensitivity or pancreatic beta-cell function.

The simulation and real data analysis emphasize the importance
of phenotype specificity, especially with respect to interpretation of
the results. In the case of BetaGene, had one only performed
analyses using the Stumvoll Index, one might draw the conclusion
that MTNR1B rs108309063 is involved in regulation of insulin
sensitivity, when there is sufficient evidence suggesting otherwise
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[39, 74–77]. Specificity in phenotypes is critical in dissecting the
physiologic implication of genetic variation. Thus, additional inves-
tigation is necessary to understand the genetic relationship between
indirect and direct measures of various disease-related phenotypes.
A simple overall phenotypic correlation is likely insufficient and
more detailed genetic correlation must be assessed to utilize certain
phenotypes with confidence.

3.4 The Genotype

Risk Score

The discovery of multiple variants associated with risk for type
2 diabetes has resulted in a need for simple approaches to assessing
the association between phenotypes and the net effect of genetic
variation. The genotype risk score (GRS) has become a widely used
approach to assess the contribution of known genetic risk loci in
genetic association studies. The concept and assumptions behind
the GRS are simple. Each risk allele at a specific locus makes an
additive contribution to the overall genetic risk. Therefore, count-
ing the total number of risk alleles across all risk loci should provide
an estimate of the overall genetic burden carried by a given individ-
ual. The GRS can be unweighted, simply summed up, or weighted,
weighting the number of alleles by an estimate of their effect sizes.
While the latter is the most accurate approach to use, many times
independent estimates of individual locus effect sizes are not avail-
able, leading to the wide-spread use of the unweighted GRS.

While the GRS is a simple and effective tool to assess overall
genetic effects when examining type 2 diabetes, many investigators
have used the same GRS to test for association with type 2 diabetes-
related phenotypes. This can be problematic, as there is no guaran-
tee the summed effect of risk loci will be associated with a given
disease-related phenotype. This is partly exemplified by the lack of
overlap in loci between disease and disease-related traits. Addition-
ally, while the direction of effect is consistent with respect to disease
risk when constructing a GRS based on type 2 diabetes risk loci; all
loci increase risk for type 2 diabetes, there is no guarantee the
direction of effect will be consistent when examining type 2 -
diabetes-related traits. Thus, instead of enhancing power, one
could be creating undue heterogeneity that might significantly
reduce power.

We demonstrate these issues by computing an unweighted
GRS using 56 type 2 diabetes risk loci identified from the literature
and genotyped in the BetaGene study. The GRS was tested for
association with type 2 diabetes-related phenotypes adjusting for
age and sex. We also performed stepwise regression analysis using
forward-backward selection to identify a parsimonious model that
included the “best” subset of SNPs accounting for variation in a
given type 2 diabetes-related phenotype. This contrast can be
broadly viewed as a comparison between a regression model that
includes all 56 SNPs versus the parsimonious model that includes
only the “best” subset of SNPs.
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Table 1 summarizes the results of the analysis and clearly reveals
the GRS does not show evidence for association with most type
2 diabetes-related phenotypes, except for fasting glucose, 2-h glu-
cose, 30-min insulin, glucose effectiveness, acute insulin response,
disposition index, and systolic blood pressure. Broadly, the GRS
accounted for a relatively small proportion of trait variation
(0.02–3%), with the GRS maximally accounting for 3% of the
variation in acute insulin response. If one were to attempt a physio-
logic interpretation of the GRS-based association results, one
might conclude that type 2 diabetes loci affect insulin secretion
and pancreatic beta-cell function, which in turn alters glucose
levels. The systolic blood pressure association is harder to include
in a broader physiologic picture. This interpretation is not without

Table 1
Comparison of quantitative trait association results based on GRS vs. Stepwise regression

GRSa Stepwise regression

Trait % variationb p-value # Of SNPsc % variationb p-value

Body mass index 0.16% 0.219 12 4.4% 1.4 � 10�5

Body fat percent 0.12% 0.141 13 2.8% 2.3 � 10�6

Waist hip ratio 0.01% 0.686 10 3.2% 2.5 � 10�5

Fasting glucose 0.87% 0.004 11 5.1% 8.0 � 10�7

2-Hr. glucose 0.42% 0.039 9 4.2% 1.4 � 10�6

Fasting insulin 0.03% 0.605 15 8.2% 5.1 � 10�11

30-Minute insulin 1.7% 6.0 � 10�5 17 10.0% 1.8 � 10�14

2-Hr. insulin 0.03% 0.622 17 6.5% 9.7 � 10�8

Glucose effectiveness 1.00% 0.002 16 6.4% 6.9 � 10�8

Insulin sensitivity 0.03% 0.585 11 5.0% 9.9 � 10�7

Acute insulin response 3.0% 5.4 � 10�8 17 12.8% <1 � 10�16

Disposition index 2.9% 6.7 � 10�8 15 9.6% 5.6 � 10�15

Cholesterol 0.06% 0.438 11 5.2% 7.9 � 10�8

HDL cholesterol 0.00% 0.949 13 5.9% 2.1 � 10�8

LDL cholesterol 0.17% 0.189 11 4.5% 2.1 � 10�6

Triglycerides 0.02% 0.667 8 3.1% 3.1 � 10�5

Systolic blood pressure 0.47% 0.022 11 4.1% 1.5 � 10�6

Diastolic blood pressure 0.09% 0.325 15 4.8% 3.5 � 10�6

a GRS based on 56 known type 2 diabetes risk loci
b Proportion of the total trait variation explained
c The total number of SNPs in the final regression model
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merit, since the majority of type 2 diabetes risk loci map to the
pancreatic beta-cell [78, 79]. However, clinical and epidemiologic
studies clearly show a significant contribution of obesity and insulin
resistance to the pathogenesis of type 2 diabetes. Yet, the GRS
shows no evidence for association with those traits in our analysis.

Stepwise regression analysis paints a different picture. The indi-
vidual stepwise regression models identifying the “best” subset of
SNPs associated with individual diabetes-related traits include
models with 8–17 of the 56 SNPs accounting for 2.8–12.8% of
the trait variation (Table 1). The increase in the proportion of
variation explained is partly due to the fact that stepwise regression
is designed to identify the subset of SNPs that maximizes this
proportion. However, these results also highlight that a significant
proportion of the variation in individual type 2 diabetes-related
traits can be accounted for given the right set of SNPs.

Also in contrast to the GRS approach, stepwise regression
results for each individual trait showed overall evidence for associa-
tion, with p-values significantly smaller than those observed for the
GRS. We now start to see associations with obesity, insulin resis-
tance, and other type 2 diabete-related phenotypes with stepwise
regression. Physiologic interpretation of these results is much more
complex, since different sets of SNPs show evidence for association
with different type 2 diabetes-related phenotypes. In fact, different
sets of SNPs appear to be associated with what may appear to be
physiologically similar phenotypes. Fig. 3 shows an example where
the list of SNPs in the final regression model for fasting insulin,
OGTT 30-min insulin, OGTT 2-h insulin, and acute insulin
response from the FSGIT are compared. The a priori expectation
might be that there should be considerable overlap among SNPs
across the various models, since all four traits are insulin-based and
three are from the insulin response from the same clinical test, the
OGTT. However, only one SNP, rs7754840 in CDKAL1, appears
in all four models. Similarly, there is only one SNP that overlaps
between 30-min OGTT insulin and 2-h OGTT insulin
(rs12454712 in BCL2). Similar comparisons can be made across
different sets of traits with similar results. The stepwise regression
analysis reveals that type 2 diabetes risk variants underlie a variety of
different type 2 diabetes-related phenotypes and that the propor-
tion of variability in these traits accounted for by these SNPs can be
substantial.

Another important observation from the stepwise regression
analysis is that only 53 of the 56 SNPs were included in a final
model of any of the traits; rs1084299 in SLC16A12, rs391300 in
SRR, and rs791595 in LOC105375494 showed no evidence of
association with any of the traits examined. This suggests these
three SNPs may be associated with phenotypes not examined in
this analysis. Also, while the majority of SNPs were included in final
models for multiple traits, three SNPs stand out as being included
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in final models for >10 of the 18 traits examined; rs10830963 in
MTNR1B was associated with 11 traits, rs11708067 in ADCY5
was associated with 11 traits, and rs243021 upstream of BCL11A
was associated with 12 traits. This suggests these variants may have
broad physiologic effects and may be primary targets for interven-
tional development.

4 Final Thoughts

Type 2 diabetes was known to be difficult to clinically manage and
even harder to prevent even in the absence of genetic knowledge.
The recent gain in genetic knowledge promises to bring us closer to
the concept of personalized medicine. While individualizing medi-
cal care might be a stretch, the idea of personalizing treatment and
prevention to subgroups within the population is an achievable
goal. Improvements in the diagnosis and treatment of rare forms
of diabetes, such as neonatal diabetes [80, 81], have laid the foun-
dations for application of genomics to the treatment and preven-
tion of type 2 diabetes.

The road forward will be challenging. Despite the long history
of studying type 2 diabetes and the recent gains in genetic knowl-
edge, the disease still remains the geneticist’s nightmare. The

2-hr. Insulin

Fasting Insulin

30-minute Insulin

Acute Insulin
Response

Fig. 3 Venn Diagram showing the overlap in SNPs selected by stepwise regression for traits involving insulin.
Final stepwise regression models for four different insulin traits, fasting insulin, 30-min OGTT insulin, 2-h
OGTT insulin, and acute insulin response, were compared. Overlap is minimal across all four traits and only
rs7754840 in CDKAL1 appeared in regression models for all four traits
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traditional reductionist approach to fine-mapping loci identified by
recent GWA and whole genome sequencing studies, followed by
functional characterization of associated variants, continues to be
an important and necessary component to understanding the con-
tribution of genetic variation to disease risk. However, understand-
ing the broader physiologic implications of genetic variation
remains equally important. It is easy to forget that complex diseases
such as type 2 diabetes involve multiple systems working in complex
ways to tightly regulate glucose, and that small changes in one part
of the system can easily be compensated for by changes in other
parts of the system. Thus, understanding the complex interplay
among these systems and how genetic variation alters them, will
be paramount to identifying successful treatment or prevention
regimens. In other words, continued study of in vivo physiology
in human subjects will continue to be a critical component of the
research portfolio moving forward.

We have shown that the overlap of genetic loci among related
phenotypes is not large, allowing us to draw several conclusions.
First, there are clearly important phenotypes that have not been
identified that could provide important insights into the disease.
We showed by both computer simulation and real data analysis that
examining nontraditional phenotypes can provide important
insights into the underlying physiology of disease. Of course, partly
paraphrasing former Secretary of Defense Donald Rumsfeld, these
phenotypes form part of the “unknown unknowns—the ones we
don’t know we don’t know” and identifying these new biomarkers
will be one of the great challenges of ongoing diabetes research.

Second, part of our inability to advance our knowledge of the
genetic underpinnings of physiology is the persistent use of inferior
phenotypes that can mislead our interpretation of results. Again, we
used computer simulation and real data analysis to illustrate this
problem and we hope that we have convinced the reader of the
need to carefully consider the quality of the phenotype being used
and how any association result fits into the larger puzzle. As an
additional example of the importance of phenotypes, we noted
above that type 2 diabetes risk alleles inMTNR1B were first identi-
fied through the analysis of fasting glucose [37, 40]. These associa-
tions were identified through the analysis of tens of thousands of
samples [37, 40], and subsequent studies resulted in the conclusion
that MTNR1B variants exert their effects at the level of the pancre-
atic beta-cell [39]. Thus, it is currently believed that MTNR1B
variants alter insulin secretion or pancreatic beta-cell function,
which subsequently alters glycemic levels, leading to hyperglyce-
mia. However, a subsequent GWA study examining the acute insu-
lin response as a phenotype was able to convincingly show evidence
for association between variation in MTNR1B and acute insulin
response and disposition index with approximately 2500 samples
[82]. This study demonstrates the utility of refined and specific
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phenotypes for genetic studies, i.e., greater bang for the buck.
Thus, we need to carefully consider phenotyping in future studies,
if we are to fully dissect the pathophysiology of type 2 diabetes.

Additional studies will be required to better understand how
these various loci fit into the larger puzzle of the pathophysiology
of the disease. We showed that simplistic methods, such as the GRS,
are not likely to be helpful in quantitative trait analysis, which is
where we need to concentrate if we are to elucidate the role of
genetic variation. It should be noted that it is appropriate if a GRS is
created using quantitative trait loci and used to analyze quantitative
traits, but creation of a GRS based on disease risk loci for the
purpose of analyzing disease-related quantitative traits is problem-
atic, as shown here. We contrasted GRS with stepwise regression,
which is a classically useful approach to identify key predictors of
specific phenotypes. The stepwise analysis revealed an additional
level of complexity in that there is little overlap in loci affecting
multiple phenotypes. We showed that among the loci examined,
three appear to be important to multiple phenotypes, suggesting
these loci may be critical nodes in a wider network of interactions
among loci to alter the trajectory to disease. Additional analyses will
be needed to advance this framework.

The last point brings forth two topics that were not touched
upon in this chapter, but are important approaches to consider:
gene–gene and gene–environment interactions. These interactions
cannot be ignored, given the tremendous body of evidence
showing the complex interplay among genes and environment in
the pathophysiology of type 2 diabetes. Our group demonstrated
how examination of such interactions could advance our knowl-
edge of the underlying physiology of disease [51, 74,
83–86]. Indeed, the interaction between genes and environment
may be one of the factors that will allow us to develop more
personalized approaches to disease prevention. We already have
evidence that genetic variation can affect drug response [87–91],
and assessing interaction with environmental factors could help to
narrow the focus to a smaller subset of individuals that might
benefit from specifically tailored therapy.

The genetics of type 2 diabetes has seen a golden age of
discovery that not only reinforced our knowledge of known bio-
logic pathways, but also highlighted new biology underlying the
disease. We are now entering a new age where this genetic knowl-
edge must be translated to physiology and leveraged at the clinical
level to improve management of the disease and reduce diabetes
incidence worldwide. Genetics-based prevention could be the
greatest contribution to disease research in decades. However, to
achieve that goal, we need to better understand how genetic varia-
tion alters the underlying physiology that thrusts an individual onto
the trajectory toward disease.
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Orho-Melander M, Råstam L, Speliotes EK,
Taskinen MR, Tuomi T, Guiducci C,
Berglund A, Carlson J, Gianniny L,
Hackett R, Hall L, Holmkvist J, Laurila E,
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Chapter 19

Identification of Genes for Hereditary Hemochromatosis

Glenn S. Gerhard, Barbara V. Paynton, and Johanna K. DiStefano

Abstract

Hereditary hemochromatosis (HH) is one of the most common genetically transmitted conditions in
individuals of Northern European ancestry. The disease is characterized by excessive intestinal absorption
of dietary iron, resulting in pathologically high iron storage in tissues and organs. If left untreated, HH can
damage joints and organs, and eventually lead to death. There are four main classes of HH, as well as five
individual molecular subtypes, caused by mutations in five genes, and the approaches implemented in the
discovery of each HH type have specific histories and unique aspects. In this chapter, we review the genetics
of the different HH types, including the strategies used to detect the causal variants in each case and the
manner in which genetic variants were found to affect iron metabolism.

Key words Hemochromatosis, Linkage mapping, Iron absorption, Iron overload, HFE,Hemojuvelin
(HJV), Hepcidin (HAMP), Transferrin receptor 2 (TFR2), Ferroportin 1 (SLC40A1)

1 The Importance of Iron Metabolism

Iron plays a central role in biology. It is required by almost all living
organisms, and its wide range of reduction–oxidation states, from
�2 to þ6, which enables electron transfer reactions, allows iron to
serve as the key oxygen carrier in eukaryotes. The elemental form of
iron functions as a cofactor for a variety of proteins, such as the
iron–sulfur cluster proteins, while the heme form of iron provides a
prosthetic group for a variety of proteins involved in critical
biological processes, such as oxygen transport, electron transfer,
and metabolism of xenobiotics. Iron must be obtained from the
environment for most species, including humans, who derive it
exclusively from the diet under normal circumstances.

Dietary iron is absorbed by the intestinal enterocyte as either
nonheme (inorganic) iron or heme (protoheme IX) iron [1]. Die-
tary heme iron is taken up as an intact metalloporphyrin molecule
and has much greater bioavailability than inorganic iron [2]. Rela-
tive to nonheme iron [3], the molecular pathways involved in the
intestinal uptake of heme iron are still not well defined [4–6].
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Abnormalities in iron metabolism are significant medical pro-
blems. Iron deficiency is estimated to affect more than 30% of the
global population, or about two billion people [7]. Iron deficiency
commonly occurs in women during pregnancy because of the need
for iron by the developing fetus, and is associated with poor mater-
nal and fetal outcomes. In Africa and Asia, approximately 50% of
children <5 years of age manifest iron deficiency anemia [8]. In the
United States, the prevalence of iron storage deficiencies, at levels
sufficient to cause anemia, in infants and toddlers has been esti-
mated at�1–2%, and ~3–4% in children from lower income families
[9]. These data are consistent with the reduced incidence of iron
deficiency in countries whose populations eat meat, whereas iron
deficiency is prevalent in geographic areas where equivalent
amounts of dietary iron are found in grains and vegetables
[10]. Epidemiological studies indicate that dietary iron bioavail-
ability influences body iron stores over time, with heme iron being a
more important factor than nonheme iron [11]. Approximately
two-thirds of body iron in Western populations is derived from
heme iron, although heme iron constitutes only about one third
of dietary iron [12].

In an evolutionary context, the dramatically reduced dietary
availability of iron that accompanied the transition from a hunting/
gathering-based to an agriculture-based society corresponded with
an increased risk of iron deficiency, and likely led to the selection of
genetic forms of iron overload [13], i.e., hereditary
hemochromatosis [14].

2 HH as a Genetic Disease

In 1865, the French physician, Armand Trousseau, provided the
first report of a syndrome with findings of cirrhosis, diabetes, and
cutaneous hyperpigmentation [15], which was followed by a dem-
onstration of iron pigment-staining of tissues in 1871 [16]. Hanot
suggested the term “diabète bronze” and the liver “cirrhose pig-
mentaire diabetique” in 1886, while 3 years later, the disorder was
referred to as “h€amochromatose,” indicating that the iron-
containing pigment in tissues came from the blood [17].

In 1935, Sheldon published an analysis of previous reports of
HH and concluded that “the fact of an occasional familial incidence
must obviously be taken into account in any theory regarding the
origin of the disease” [18, 19]. But it was not until 1975 that a
major breakthrough occurred, when Marcel Simon published that
“(1) the association of the disease with hemochromatosis allele
maps closer to locus A than to locus B; (2) B antigens B7 and B
14 are not independent markers of the hemochromatosis allele;
(3) the HLA marking of the hemochromatosis allele is haplotypic;
(4) the present geographic distribution pattern of this marking
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could have resulted from a unique mutation followed by chromo-
some recombinations and population migrations; however, (5) no
formal proof of this probable hypothesis can be given.” [20]. The
last point, likely a spurious demand of a reviewer, has since been
borne out of whole genome sequencing of DNA obtained from
ancient humans that found HH to be the first Mendelian disease
variant identified in prehistory [21].

3 Hereditary Hemochromatosis (HH)

HH is characterized by excessive intestinal absorption of dietary
iron, leading to a pathological increase of iron stores in tissues and
organs. If left untreated, HH can produce substantial damage to
the liver, pancreas, heart, and joints. This damage eventually leads
to severe complications, including cirrhosis and liver cancer, diabe-
tes, heart disease, arthritis, neurodegeneration, and when left
untreated, hemochromatosis can be fatal.

The etiology of HH is genetic and follows different modes of
inheritance, as discussed fully in the following sections. Caucasians
of Northern European ancestry are at the highest risk for develop-
ing type 1HH; one in every 200 individuals is estimated to have the
disease [22]. However, other genetic variants lead to hemochroma-
tosis, independent of ethnicity. In the USA, approximately 7% of
Caucasians and 4% of African Americans have dysregulated iron
metabolism, and are at risk for developing complications related
to iron overload [23].

Because the regulation of iron metabolism is still not well
defined (4–6), the mechanisms by which hemochromatosis devel-
ops are not clearly understood. Our understanding of the patho-
physiology of the disease became clearer through the identification
of the HFE gene (discussed below), where a genetic mutation was
found to dramatically increase levels of iron absorption. Under
normal conditions, HFE facilitates the binding of transferrin, the
primary carrier protein of iron in the blood. When iron levels
become depleted, transferrin concentrations rise, and when trans-
ferrin levels are high, HFE increases the rate of intestinal iron
release. Thus, when the ability of HFE to bind transferrin becomes
compromised, as occurs in type 1 HH, levels of transferrin increase,
and the intestines release iron as if the body were iron-deficient.
Eventually, the excess iron leads to overload storage in the tissues,
leading to symptoms of hemochromatosis. However, because HH
patients with HFE mutations have variable manifestations of the
disease, there are clearly multiple factors that regulate iron metabo-
lism and storage.
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4 Genetic Characterization of HH Types

HH can be classified as type 1 or HFE-related, with several molec-
ular subtypes, and non-HFE-related HH types 2, 3, and
4 (Table 1). The approaches used to identify the genes for each of
the types of HH have their own history and unique aspects. In the
following section, we describe the genetic basis of the different
types of HH and the manner in which the dysfunction of the
genes affect iron metabolism to cause iron overload.

5 Types of HH

5.1 HH Type 1 The key observation for the initial mapping of the locus responsible
for HH type 1 was the association of the disease with HLA-A3 of
the major histocompatibility region on chromosome 6p.
Subsequent work localized the gene to within 1–2 centimorgans
(cM) of HLA-A [24]. Linkage disequilibrium studies were consis-
tent with a strong founder effect, initially suggested by the
HLA-A3 association. Narrowing the locus, however, proved to be
challenging due to contradictory findings. For example, some
studies of pedigrees with recombinant chromosomes were consis-
tent with a chromosomal location centromeric to HLA-F, while
others suggested a telomeric position. Additional linkage disequi-
librium data refined the region to within a megabase or more
telomeric to the MHC. However, most of the data supporting
this localization suffered from a number of drawbacks, including
low marker density, lack of informative recombinant individuals in
pedigrees, and extended regions of linkage disequilibrium within
the MHC, all of which hampered accurate locus refinement. Given
these issues, Mercator Genetics, a private biotech company, joined

Table 1
Classification of hereditary hemochromatosis

Type Gene/genotype

1a HFE Cys282Tyr homozygosity

1b HFE Cys282Tyr/His63Asp compound heterozygosity

1c Other HFE genotypes, Ser65Cys, etc.

2a Hemojuvelin (HJV)

2b Hepcidin (HAMP)

3 Transferrin receptor 2 (TFR2)

4 Ferroportin 1 (SLC40A1)
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the international search for the gene. They used results from several
groups to focus on a region telomeric to the MHC that ultimately
resulted in the identification of the HH gene [25].

The initial strategy used by Mercator Genetics was to assemble
an overlapping set of yeast artificial chromosome (YACs) from the
HLA-A gene to a marker located more than 8 Mb away. They
constructed a map of sequence tagged sites, which are unique
DNA sequences easily detected by PCR, of the overlapping YAC
contigs spanning the region. Using these resources, a set of short
tandem repeat polymorphic markers and single base-pair substitu-
tion markers was generated and used to genotype 101 patients with
a proven diagnosis of HH and 64 unaffected individuals. At each
marker, the allele that was found at a higher frequency in the HH
patients relative to controls was considered to be part of an ances-
tral haplotype. A measure of linkage disequilibrium was calculated
for each marker to define a region of approximately 600 kb showing
the strongest evidence of linkage. An estimate of excess homozy-
gotes was also performed to support the linkage data.

A multistage haplotype analysis of 46 HH chromosomes (chro-
mosome 6) that had been isolated in somatic cell hybrids was
performed to perform unambiguous phasing. With this approach,
a region of about 400 kb was identified as an ancestral region. In a
second stage, additional chromosomes were aligned, further nar-
rowing the candidate region shared by affected individuals to about
250 kb.

Within this region, candidate genes were identified using sev-
eral approaches. One was direct cDNA selection, in which a library
of cDNAs was hybridized to immobilized genomic clones from the
critical region, which were then eluted, amplified, and cloned
[26]. A second approach utilized exon trapping, where genomic
DNA fragments were inserted into an intron of the HIV-1 tat gene
and transcribed from a vector containing the SV40 early promoter
following transfection into COS cells [27]. If an exon with intronic
flanking sequences was present, it would be retained in the mature
polyAþ RNA. The third approach employed de novo sequencing,
which identified three novel genes in the critical region
[25]. Subsequent sequencing of the entire 250 kb region, consid-
ered a monumental task at the time, resulted in the identification of
15 genes within the critical region.

In this study, the sequences of two patients homozygous for
the ancestral haplotype were compared with those from two unaf-
fected controls. Two of the 15 genes contained sequences with
variants that predicted amino acid changes. The only consistent
ancestral variant was a C-> A at nucleotide 845 of a HLA- gene,
predicted to result in a cysteine to tyrosine substitution at position
282 (C282Y) of the protein. The substitution was postulated to
abrogate a disulfide bond in the α3 domain. An oligonucleotide-
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ligation assay was used to analyze DNA from 178 HH patients, in
whom 148 were homozygous for the C282Y variant. Further
sequencing was performed in nine patients heterozygous for
C282Y, identifying a C->G variant in exon 2 that predicted a
histidine to aspartic acid mutation at position 63 (H63D). The
HH gene was designated HLA-H due to its homology to HLA
class I genes, although the name had been published previously,
designating a likely pseudogene [28]. The WHO Nomenclature
Committee for Factors of the HLA System and the HuGO
Genome Nomenclature Committee approved the designation
HFE for High FE (iron) [24].

HFE variants identified since the identification of C282Y and
H63D include a 56,097 bp deletion of the entire HFE gene and
3 histone-encoding genes, a 32,744 bp deletion of the entire HFE
gene, a c.-20G&gt;A variant in the 50UTR that creates a new ATG
start codon, p.Gly43Asp, p.Leu46Trp, a 22 bp deletion resulting in
p.Leu50Cysfs*31, p.Ser65Cys, p.Arg66Cys, p.Arg67Cys, p.Val68-
Glyfs*20, p.Arg71*, p.Gly93Arg, a single bp deletion resulting in
p.Trp94Glyfs*117, p.Ile105Thr, p.Glu114Lys, p.Tyr138*, a sin-
gle bp deletion resulting in p.Ala158Glnfs*53, a single bp deletion
resulting in p.Arg161Glyfs*50, p.Glu168Gln, p.Glu168*, p.
Trp169*, p.Leu183Pro, c.616þ1G&gt;T intronic splicing variant
causing skipping of exon 3, p.Arg224Gln, p.Tyr230Phe, a 3 bp
deletion resulting in p.Tyr231del, p.Gln233*, p.Val256Ile, a single
base duplication in p.Trp267Leufs*80, p.Cys282Ser, p.Gln283*,
p.Gln283Pro, p.Val295Glu, p.Arg330Met, c.1006þ1G&gt;A
intronic splicing variant causing skipping of exon 5, and a 13 bp
deletion resulting in p.His341Leufs*119 [29].

5.2 HH Type 2a “Juvenile” or Type 2 hemochromatosis is clinically and phenotypi-
cally more severe than Type 1 HFE hemochromatosis [30]. In
contrast to HFE HH, which disproportionately affects males, HH
Type 2a has equal distribution between the sexes. The phenotype
presents with liver enlargement and pain in childhood, hypogona-
dotropism and joint problems during the teenage years, and cirrho-
sis, cardiac arrhythmias, and heart failure by the third decade of life.

The approach used to identify the Type 2a “Juvenile” hemo-
chromatosis gene was similar to that used to associate HFE with the
HLA locus [31]. First, mapping studies were used to locate a
chromosomal region segregating with disease. A linkage analysis
of 375 microsatellite markers in 12 patients and 27 unaffected
family members yielded a map with a resolution of ~10 cM. Radia-
tion hybrid mapping was then performed with selected microsatel-
lite markers or sequence-tagged sites using a commercial hybrid
panel. The genome assembly at the time of analysis (April 2003,
build 33) was incomplete with duplicated regions and multiple
gaps. Despite this handicap, the investigators were able to define
the boundary of linkage with available recombinants.
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The strongest evidence for linkage (logarithm of the odds
[LOD] score >5.0) was found with markers on chromosome
1. The same group of investigators leveraged this finding to con-
duct a larger study of 12 unrelated families affected by juvenile
hemochromatosis from Canada, France, and Greece [32]. The
hepcidin gene was sequenced in all 12 families to exclude their
classification as HH Type 2b. Verification of linkage with chromo-
some 1q using the same initial marker set was performed along with
additional microsatellite markers. The Greek families were particu-
larly informative with 9/10 showing a large tract of extended
homozygosity in the region of the linkage peak on chromosome
1q. A total of five different haplotypes in the linked region were
found to segregate with disease in the Greek families.

This effort paved the way for positional cloning to identify
candidate genes in the linkage region. A total of 21 annotated
genes were identified in the critical region. The predicted coding
regions for all 21 genes were sequenced, and six rare variants were
identified in a previously uncharacterized predicted transcript,
LOC148738. One variant was predicted to cause a premature
termination codon, one a frameshift mutation, and four were mis-
sense variants at evolutionarily conserved residues. The mutations
segregated with the individuals affected with juvenile hemochro-
matosis in a recessive inheritance pattern with complete penetrance.
One missense variant, a G320V substitution, was present in over a
third of the families. Initially designated HJV, due its lack of
homology to HFE, the gene was later named HFE2 [33].

Subsequent studies identified additional HH-causing variants
in HFE2, including a single base intronic duplication resulting in
c.–89–4dupT that may affect splicing, p.Gln6His, p.Thr19Ala, a
single base deletion resulting in p.Leu28Serfs*24, p.Arg54*, p.
Gly66*, a three base insertion resulting in p.Gly69dup, p.
Arg70Trp, a single base deletion resulting in p.Val74Trpfs*40, p.
Cys80Arg, p.Cys80Tyr, p.Ser85Pro, p.Cys89Arg, p.Gly99Val, p.
Gly99Arg, p.Leu101Pro, a single base deletion resulting in p.
Phe103Serfs*11, p.Ser105Leu, p.Gln116*, p.Cys119Phe, a
12 base deletion resulting in p.Arg131Phefs*111, p.Leu135Arg,
a single base deletion resulting in p.Asp149Thrfs*97, p.Leu165*,
p.Ala168Asp, p.Phe170Ser, p.Asp172Glu, p.Arg176Cys, p.
Trp191Cys, p.Pro192Leu, p.Leu194Pro, p.Asn196Lys, p.Ser205-
Arg, p.Ile222Asn, a three base deletion resulting in p.Lys234del, p.
Asp249His, p.Gly250Val, p.Ser264Leu, a single base insertion
resulting in p.Asn269Lysfs*43, p.Ile281Thr, p.Arg288Trp, p.
Glu302Lys, p.Ala310Gly, p.Gln312*, a single base insertion result-
ing in p.Cys321Valfs*21, p.Gly320Val, p.Cys321Trp, a two base
deletion-insertion mutation resulting in p.Cys321*, p.Arg326*, a
4 base deletion resulting in p.Ser328Aspfs*10, p.Arg335Gln, a
single base deletion resulting in p.Ala343Profs*24, a single base
deletion resulting in p.Cys361Valfs*6, p.Asn372Asp, and
p.Arg385* [29].
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5.3 HH Type 2b The identification of the second juvenile HH locus using estab-
lished diagnostic criteria [34] did not rely on linkage analysis, likely
because of an insufficient number of families. Instead, two pedi-
grees in which the disease did not segregate with the juvenile HH
chromosome 1q locus were used to interrogate the hepcidin locus
as a candidate gene. Hepcidin antimicrobial peptide (HAMP) had
been implicated in iron metabolism in animal models [35] and was
selected as a candidate gene. However, rather than directly
sequencing the gene, microsatellite markers were first used to
identify a shared span of homozygosity corresponding to a
2.7 cM region on chromosome 19q13 in two probands from one
family. Sequencing of the hepcidin exon–intron boundaries, coding
exons, and 50 and 30 untranslated regions of affected individuals of
the two families identified two mutations.

One mutation was a homozygous frameshift variant, resulting
from a single base deletion in exon 2 at position 93 (93delG) and
absent in 50 unaffected controls. The other mutation produced a
cytosine to thymidine substitution at position 166 in exon 3, creat-
ing a stop codon (R56X). Restriction fragment length polymor-
phism analysis was used to demonstrate segregation within the
affected family and its absence in 50 unaffected individuals.

Other HAMP variants associated with HH type 2b include
c. -153C>T and c. -72C>T promoter variants, a c. -25G>A single
base change in the 50 UTR that creates a new ATG, a single base
deletion resulting in p.Gly32Aspfs*88, a 2 base deletion resulting
in p.Arg42Serfs*78, a 4 base deletion that results in p.Met50fs,
p.Arg56*, p.Arg59Gly, p.Cys70Arg, p.Gly71Asp, p.Arg75*,
p.Cys78Tyr, and p.Lys83Arg [29].

5.4 HH Type 3 An approach similar to that used for the identification of the Type
2bHH gene was used to identify the Type 3 gene. Six patients from
two families with HH and lacking HFE mutations were studied
[36]. The patients were members of two unrelated Sicilian families,
including a large, inbred family [37]. The consanguinity in this
kindred was exploited to map regions of homozygosity using poly-
morphic markers genotyped in all affected individuals. Pairwise
linkage analysis identified a region on chromosome 7q with the
highest lod score 4.09. This interval was then confirmed in the
second family and further refined to a region <1 cM. A plausible
candidate gene, transferrin receptor 2 (TFR2), which has about
2/3 shared sequence identity with TFR1, had recently been loca-
lized to chromosome 7q22 using radiation hybrid mapping
[38]. Two polymorphic repeats located within the TFR2 locus
were identified through analysis of extant sequence data, and used
to determine that the TFR2 gene locus was also homozygous in the
affected individuals.

The coding region and intron/exon boundaries of the TFR2
gene were subsequently sequenced to identify potential mutations.
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A stop-gain variant (C->G), in which a TAC codon for tyrosine was
replaced with a TAG stop codon at position 750 in exon 6 of the
cDNA (Y250X), was identified. A PCR RFLP assay, based on the
generation of a MaeI site by the mutation, was then used to
determine segregation in one of the families. The Y250X variant
was found to be homozygous in all affected members and hetero-
zygous in all obligate carriers. The mutation was not observed in
50 unaffected controls or in a dozen HH patients lacking HFE
mutations.

Interestingly, to scan other patients for the Y250Xmutation, an
alternative assay was designed because MaeI and MaeI isoschizo-
mers are relatively unstable and present several practical difficulties
for higher volume assays [39]. The alternative assay created a
restriction site for RsaI by modifying a forward PCR primer to
introduce three of the four bases coding the RsaI recognition site
at the 30 end of the primer. The Y250X mutation is located at the
first base 30 from the forward primer that completes the RsaI site,
whereas the wild-type sequence disrupts the site, and prevents
cleavage. Using this assay, no Y250X mutations were detected in
63 French HH patients [39]. Subsequent studies have identified
additional HH variants in TFR2 including p.Val22Ile, a single base
duplication resulting in p.Arg30Profs*31, p.His33Asn, a 41 bp
deletion that results in p.Leu85_Ala96delinsPro and deletes a splice
site and part of an intron, p.Leu99Val, p.Arg105*, p.Met172Lys,
c.614þ4A&gt;G intronic splicing variant resulting in skipping of
exon 4, c.727-9T&gt;A intronic variant that may affect splicing, p.
Tyr250*, p.Val277Leu, p.Phe280Leu, p.Gln306*, p.Gln317*, p.
Gly373Asp, p.Ala376Asp, p.Arg396*, p.Asp402Lys, a 2 bp dele-
tion resulting in p.Asn412del, p.Asn412Ile, p.Arg420His, p.
Gly430Arg, p.Ala444Thr, p.Ile449Val, p.Arg455Gln, p.
Arg468His, p.Leu490Arg, a single base variant resulting in p.
Glu491Glu that may affect splicing, p.Tyr504Cys, c.1538-
2A&gt;G intronic splicing variant, p.Ile529Asn, a 4 bp deletion
and 13 bp insertion resulting in p.Ser531Glnfs*6, c.1606-8A&gt;
G intronic splicing variant, a single bp insertion resulting in p.
Ser556Alafs*6, p.Val583Ile, a single base duplication resulting in
p.Leu615Profs*177, an 11 bp deletion resulting in p.
Ala621_Gln624del, p.Gln672*, p.Arg678Pro, p.Gln690Pro, a sin-
gle bp duplication resulting in p.Met705Hisfs*87, c.2137-1G&gt;
A intronic splicing variant, p.Arg730Cys, p.Gly735Ser, p.
Thr740Met, p.Ala743Val, p.Arg752His, p.Trp781*, and p.
Gly792Arg [29].

5.5 HH Type 4 HH is not always transmitted as an autosomal recessive disorder;
some families exhibit dominant inheritance [40, 41]. Two papers
published in the same month used similar approaches to identify
the gene for Type 4 HH. In one, a genome-wide scan was con-
ducted using 400 short tandem repeat polymorphic Genethon
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markers with an average spacing of 10 cM in 96members of a single
family from the Netherlands in whom HH segregated as a domi-
nant trait [42]. However, the HH phenotype was modeled to
account for ambiguities in affectation status, including age- and
sex-related differences in penetrance. Individuals who were consid-
ered as possibly affected were classified as unknown disease status.
Linkage analysis using an autosomal dominant model with a fre-
quency of 0.001 yielded positive lod scores for several markers on
the long arm of chromosome 2 with the highest lod score of 3.01,
very close to the simulated estimate for the large pedigree of a
maximum lod score of 3.24. Additional markers from the impli-
cated region were genotyped to construct haplotypes to identify
regions of shared identity. In addition, recombination events were
used to define a critical region of about 9 cM.

With the critical region on chromosome 2q defined, a number
of candidate genes were selected based upon information found in
public databases and published reports. One gene, SLC11A3, pre-
viously designated as FPN1, IREG1, and MTP1 [43] but now
named solute carrier family 40 member 1 (SLC40A1), was selected
for further investigation based on its role in mediating iron trans-
port from the basolateral surface of intestinal enterocytes to the
blood and the presence of an iron-responsive element (IRE) in its 50

untranslated region [44]. Mutation analysis was performed by PCR
amplification of exons, >50 bp of flanking intron sequences, and
the 50 and 30 UTRs that contained the IRE, followed by direct
Sanger sequencing of both strands of the PCR products. A hetero-
zygous A->C missense mutation at position 734 in exon 5, result-
ing in an aspartic acid-histidine (N144H) substitution, was found
in all affected individuals and absent in 200 unaffected family
members and healthy Dutch individuals drawn from the same
geographical region. Aspartate at the designated position was con-
served among vertebrate species and present in a region of shared
homology with other divalent metal ion transport proteins.

The second group also studied a family, a large Italian kindred
manifesting autosomal dominant HH [45]. They used a panel of
375 polymorphic markers with average spacing of 10 cM and
identified a region of linkage on chromosome 2q32. Recombinants
enabled localization to a 5 cM region that was then scanned for
potential candidate genes. SLC11A3 (now SLC40A1), located in
this region, was selected based on its known involvement in iron
metabolism. All SLC11A3 exons were amplified and sequenced.
Patients with iron overload were found to be heterozygous for a
C->A substitution that replaced a highly conserved alanine at
amino acid 77 with aspartic acid. The A77D mutation was not
found in 25 unaffected family members or in 100 apparently
healthy blood Italian donors.

Further characterization of SLC40A1HH related variants include
c.-188A>G 50 UTR variant, a 14 bp 50 UTR deletion
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c.-59_-45del, p.Ala45Glu, p.Tyr64His, p.Ala69Thr, p.Ala69Val, p.
Ser71Phe, p.Val72Phe, p.Ala77Asp, p.Gly80Ser, p.Gly80Val,
p.Arg88Gly, p.Arg88Thr, p.Leu129Pro, p.Asn144His,
p.Asn144Asp, p.Asn144Thr, p.Ile152Phe, p.Asp157Asn,
p.Asp157Ala, p.Asp157Gly, p.Asp157Tyr, p.Trp158Leu,
p.Trp158Cys, a 2 bp deletion resulting in p.Val162del,
p.Asn174Ile, p.Arg178Gln, p.Ile180Thr, p.Asp181Val,
p.Gln182His, p.Asn185Asp, p.Asn185Thr, p.Gly204Ser,
p.Thr230Asn, p.Ala232Asp, p.Leu233Pro, p.Lys240Glu,
p.Gln248His, p.Met266Thr, p.Gly267Asp, p.Asp270Val,
p.Gly323Val, p.Cys326Ser, p.Cys326Tyr, p.Cys326Phe, p.Ser338-
Arg, p.Leu345Phe, p.Ile351Val, p.Arg371Trp, p.Arg371Gln,
p.Pro443Leu, p.Gly468Ser, p.Arg489Lys, p.Arg489Ser,
p.Gly490Ser, p.Gly490Asp, p.Tyr501Cys, p.Asp504Asn,
p.His507Arg, and p.Arg561Gly [29].

6 Conclusions

Despite the pleiotropy and complexity of the phenotypic manifes-
tations resulting from iron overload, HH is caused by pathogenic
variants in just five genes. The discovery of the two major variants
underlying Type I HH in the HFE gene, C282Y and H63D, using
linkage and sequencing, presaged the relatively rapid identification
of the other four genes related to HH. Identification of the Juvenile
HH Type 2a HJV gene and the HH Type 4 SLC40A1 genes used
similar approaches while the Juvenile HH Type 2 HAMP gene was
identified using a Bayesian candidate gene analysis, as was the HH
Type 3 TFR2 gene. All of the genes were found years prior to the
modern era of next generation sequencing and relied on relatively
few, but informative, pedigrees and careful phenotypic characteri-
zation. Despite the increased power of current genetic methods,
the successful elucidation of the HH genes using robust phenotyp-
ing of related individuals may be a historical lesson in the key
strategy for successful gene identification. The willingness of fund-
ing bodies and peer reviewers to authorize projects in which more
resources can be devoted to cohorts with in-depth and accurate
phenotypic data may yield similar results in the hunt for genes for
other disorders such as diabetes, obesity, and neurodegeneration.
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Chapter 20

Identification of Driver Mutations in Rare Cancers: The Role
of SMARCA4 in Small Cell Carcinoma of the Ovary,
Hypercalcemic Type (SCCOHT)

Jessica D. Lang and William P.D. Hendricks

Abstract

Cancer is a complex genetic disease that can arise through the stepwise accumulation of mutations in
oncogenes and tumor suppressor genes in a variety of different tissues. While the varied landscapes of
mutations driving common cancer types such as lung, breast, and colorectal cancer have been comprehen-
sively charted, the genetic underpinnings of many rare cancers remain poorly defined. Study of rare cancers
faces unique methodological challenges, but collaborative enterprises that incorporate next generation
sequencing, reach across disciplines (i.e., pathology, genetic epidemiology, genomics, functional biology,
and preclinical modeling), engage advocacy groups, tumor registries, and clinical specialists are adding
increasing resolution to the genomic landscapes of rare cancers. Here we describe the approaches and
methods used to identify SMARCA4 mutations, which drive development of the rare ovarian cancer, small
cell carcinoma of the ovary, hypercalcemic type (SCCOHT), and point to the broader relevance of this
paradigm for future research in rare cancers.

Key words Cancer genetics, Cancer genomics, Genetic epidemiology, Rare cancers, Small cell carci-
noma of the ovary, hypercalcemic type (SCCOHT), SMARCA4, Brg1, SMARCA2, Brm

1 Introduction

Rare cancers affect <15 out of 100,000 individuals per year
[1, 2]. Despite this rarity, such cases comprise the fourth leading
cause of death in the United States, and collectively account for
22–27% of cancer burden and 25% of cancer deaths [1–4]. Patient
outcomes in rare cancers also lag behind those of common cancers.
Five-year overall survival is 47% for rare cancers versus 65% for
common cancers, and survival rates have improved more slowly in
rare cancers [1, 3]. Many factors likely contribute to poorer out-
comes for these patients, including diagnostic and prognostic chal-
lenges, lack of effective standardized treatments, limited clinical
expertise, and insufficient preclinical or clinical research funding.
Clearly, a significant unmet need exists for improved clinical
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management of rare cancers built on the foundation of comprehen-
sive molecular characterization. Mapping the genomic basis of rare
cancers also has value for a broader understanding of cancer genet-
ics and biology. Rare cancer studies have repeatedly yielded funda-
mental insights into common cancers. For example, discovery of
one of the first tumor suppressor genes, RB1, and formulation of
the “two-hit hypothesis” of tumor suppressor inactivation both
derived from studies of retinoblastoma (diagnosed in 0.35–1.18
per 100,000 individuals per year) [5–8].

Unlike other genetic disorders, cancer can arise from any cell or
tissue in the body through mutation of a diverse array of genes
governing cell growth and death. The stepwise accumulation of
cancer-driving mutations is required for malignant transformation.
To this end, cancer gene hunting necessitates integration of family
history, clinical and pathologic annotation, and, since the advent of
next generation sequencing (NGS), both germline and somatic
tumor genomic sequencing in large patient cohorts. However, in
the absence of hundreds or even dozens of cases for rare cancers, an
even deeper integration of approaches and disciplines is necessary.
This chapter highlights how the general challenges presented by
studying rare cancers were overcome within the context of the
recent identification of the genetic underpinnings of small cell
carcinoma of the ovary, hypercalcemic type (SCCOHT) as a case
study. While the genetic profile and epidemiology of any given rare
cancer will undoubtedly present unique problems, many of the
themes described here are conceptually universal.

SCCOHT is a rare form of ovarian cancer affecting young
women (mean age at diagnosis: 24 years). Accurate estimates of
prevalence and incidence of this disease do not exist due to
SCCOHT’s extreme rarity, but around 300 cases have been
reported in the literature since its first description in 1979
[9, 10]. Until recently, these tumors were challenging to diagnose.
Treatment is aggressive and nonspecific, consisting of high-
dose, multi-agent chemotherapy and radiation. Thus, SCCOHT
patients face a poor prognosis with a 5-year survival rate of 16%
[10]. Prior to the discovery of SMARCA4 (also known as Brg1)
mutations in SCCOHT, its molecular basis was unclear, although it
was thought to bear a diploid genome and lack mutations in cancer
genes including BRAF, BRCA1/2, KRAS, and TP53
[11–13]. Remarkably, in a period of time spanning 2013 and
2014, four independent collaborative teams reported inactivating
mutation of the SWItch/Sucrose Non-Fermentable (SWI/SNF)
complex member and tumor suppressor SMARCA4 in nearly all
SCCOHTs [14–18]. These research teams arrived at a common
conclusion using different approaches to identify cancer driver
mutations, including targeted Sanger sequencing and NGS
(whole genome, exome, and targeted panels) within both affected
families and sporadic cases. Subsequent studies concluded that
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SMARCA4mutation and protein loss, concomitant with the loss of
the alternative ATPase SMARCA2 (also known as Brm) protein
through epigenetic silencing, is pathognomonic for SCCOHT
[19, 20]. Here, we discuss the key steps leading to the identification
of this driving genetic alteration and we outline the general
approach to dissecting the genetic basis of rare cancers (Fig. 1).

2 Methods

2.1 Study Design and

Research Consortia

The most obvious challenge facing identification and validation of
driver mutations (i.e., those that play a causal role in tumorigenesis)
in rare cancers is sample scarcity. Most cancer subtypes are geneti-
cally heterogeneous and predominantly sporadic. Large cohorts are
required to reach sufficient power to discriminate driver genes from
a background of passenger mutations and nonpathogenic normal
variation in the general population. However, many rare histologic
subtypes of cancer are far more genetically uniform compared to
common cancers. For example, pathognomonic mutations in RB1,
FOXL2, or BRAF have been discovered in retinoblastoma, granu-
losa cell tumors, and hairy cell leukemias, respectively [6, 21,
22]. These mutations often occur amidst an otherwise low somatic
mutation burden. In these cases, analysis of only a few tumors may
lead to discovery of characteristic mutations. Yet, cohort collection
remains a challenge both because pathognomonic mutations do
not exist in some rare cancer subtypes (e.g., chordomas) [23] and
also because even when pathognomonic drivers are discovered,
validation studies require additional samples and model systems.

Although study of rare cancers has historically been limited to
a small number of academic centers or specialty clinics, cohort
collection challenges are now being addressed by advances in
global research communication and collaboration. Far-reaching
SCCOHT collaborations have relied upon clinical and scientific
expertise in genetics, pathology, gynecologic oncology, and epide-
miology, in addition to engagement of patients and their families.
Research access to high quality, clinically annotated tissue samples
requires active clinical partnerships and engagement with specialty
clinics to maximize cohort size. Cancer registries such as the Inter-
national Ovarian and Testicular Stromal Tumor Registry (www.
otstregistry.org) are also critical tools for collating rare cancer data
and samples utilizing clinician- or patient-driven information col-
lection. Finally, patients with rare cancers are often underserved by
traditional funding and public interest in their cancers and thus,
tend to be highly motivated to participate in and advocate for
research. For example, the Small Cell Ovarian Cancer Foundation
(www.smallcellovarian.org) provides advocacy and support ser-
vices, in addition to managing an SCCOHT registry in partnership
with Patient Crossroads.
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Fig. 1 Generalized approach to cancer gene identification and validation. A flowchart depicts the general
process underlying discovery of cancer-driving mutations in rare cancers. This process often begins simply
with an unmet need for characterization of a previously understudied histologic tumor subtype, but may also
begin with clinical observations of rare cancers that segregate in families. Broad consortia then enable cohort
collection and candidate gene (i.e., a gene bearing putative cancer-driving mutations) discovery through
genetic epidemiology and next generation sequencing (NGS) of families as well as NGS in sporadic tumors. A
causal role for these genes must then be established through validation studies in extended cohorts and
prospective functional experiments in cell lines and animal models. A confirmed association of the gene with
the disease can then enable diagnostic and therapeutic innovation. PDX Patient-derived xenograft
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Using analysis of only a few dozen patient tumors and
germlines, SCCOHT has been definitively established as a mono-
genic disorder. Nonetheless, multiple academic, clinical, and advo-
cacy collaborations were critical for rapidly cementing this
discovery. As noted, the four groups that identified SMARCA4
mutations in SCCOHT tumorigenesis combined unique
IRB-approved research study designs with clinical pathology,
DNA sequencing, and immunohistochemistry (IHC). These land-
mark studies, whose cohort characteristics are outlined below,
together with subsequent follow-up work and case reports, have
now identified a total of 96 distinct and predominantly inactivating
(coinciding with loss of SMARCA4 protein by IHC) SMARCA4
mutations in 89 patients [10]:

1. Kupryjańczyk et al. performed SMARCA4 Sanger sequencing
on two SCCOHT patient tumors from the Department
of Pathology at the Institute of Oncology in Warsaw,
Poland [14].

2. Witkowski et al. performed whole exome tumor and/or germ-
line sequencing in four SCCOHT families and 23 nonfamilial
cases or cases with unknown family history from McGill Uni-
versity, Montreal, Quebec, Canada and the Children’s Oncol-
ogy Group, Monrovia, California, USA [18].

3. Jelinic et al. performed targeted NGS of 279 cancer-related
genes in 12 tumors and germlines from SCCOHT patients
with unknown family history collected at the Memorial
Sloan-Kettering Cancer Center, New York, New York, USA,
in coordination with other academic centers and patient
support groups [15].

4. Ramos et al. performed whole genome, whole exome, or
SMARCA4 Sanger sequencing of 24 predominantly nonfamil-
ial SCCOHT patient tumors and/or germlines collected at
multiple institutes [16, 17]. Collections included a research
study with a web-based enrollment process at the Translational
Genomics Research Institute (TGen) in Phoenix, Arizona, as
well as IRB-approved protocols at the Ovarian Cancer Research
Program (OvCaRe) tissue bank in Vancouver, British Colum-
bia, and the University of Toronto in Toronto, Ontario,
Canada; the Children’s Oncology Group at Nationwide Chil-
dren’s Hospital in Columbus, Ohio, USA; and the Hospital de
la Santa Creu i Sant Pau at the Autonomous University of
Barcelona in Barcelona, Spain.

2.2 Genetic

Epidemiology

Familial transmission of cancer can be a particularly powerful
setting in which to dissect the genetic basis of a tumor, particularly
in the absence of large nonfamilial patient cohorts. Aggregation
and segregation studies can elucidate genetic causes and inheritance
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patterns that can be further dissected through linkage and associa-
tion studies. While many common cancers have a complex genetic
and environmental etiology (e.g., multiple causative factors in
breast cancer including BRCA mutations, parity and hormone
exposure, and obesity), rare cancers are often driven by more
uniform causes (e.g., asbestos in mesothelioma or RB1 mutations
in retinoblastoma). In the case of rare cancers showing patterns of
autosomal dominant transmission, a known characteristic of
SCCOHT for over two decades, application of NGS using only a
few families may be sufficiently powered to detect candidate cancer-
driving mutations that may also be common in nonfamilial cases
[11, 24–28, 29]. In SCCOHT, 9% (29/312) of total known cases
arose from 14 families, clearly indicating a heritable component
that, in combination with SCCOHT family pedigrees showing
autosomal dominant transmission, was consistent with simple
Mendelian patterns of inheritance [10, 11, 18, 24–28, 29]. Finally,
cancers with an early onset suggest a genetic basis due to the
presence of predisposing germline mutations in a tumor suppressor
gene. In contrast to most ovarian cancers, SCCOHT occurs at a
median age of 24, often arising in women and girls, with the
youngest case diagnosed at 14 months old. Thus, the autosomal
dominant transmission of SCCOHT in families strongly supported
the hypothesis that this was a monogenic disorder whose basis
could be elucidated through NGS in familial and nonfamilial cases.

2.3 Next Generation

Sequencing

Next generation sequencing technology has transformed cancer
genomics by enabling rapid, cost-effective, and comprehensive
evaluation of germline and somatic mutations in large patient
cohorts. However, the ability to identify driver mutations depends
both on technical features of genomics platforms (e.g., breadth and
depth of sequencing), and also on inherent features of the cancer
subtype under study (e.g., subtype heterogeneity or heritable frac-
tion). Despite the rarity of the cancer, the existence of affected
families along with the assembly of patient cohorts through
multi-institutional consortia and the monogenic nature of the dis-
ease all contributed to our ability to rapidly identify SMARCA4
as the central tumor suppressor in SCCOHT. It is also important to
note that each of these studies was enabled by sequencing
approaches using archival formalin-fixed, paraffin-embedded tissue
(FFPE), without which, these cohorts could not have been assem-
bled due to a dearth of fresh frozen tissue. This section outlines the
approach and platforms used by the four teams that discovered the
genetic basis of SCCOHT:

1. Kupryjańczyk et al. were the first to describe SMARCA4muta-
tions in SCCOHT [14]. This group examined SMARCA4
because histopathology suggested similarity to rhabdoid
tumors (RTs), another rare pediatric cancer subtype. Given
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that RTs are characterized by mutation and inactivation of the
SWI/SNF complex member SMARCB1, with reports of occa-
sional SMARCA4 mutation and loss [30, 31], Kupryjańczyk
et al. assessed two SCCOHT tumors for both SMARCB1 and
SMARCA4 by IHC. They found that both tumors retained
SMARCB1, but lost expression of SMARCA4. They next per-
formed Sanger sequencing of the coding regions of SMARCA4
on DNA from FFPE and confirmed SMARCA4 mutations in
both cases. The first tumor carried a nonsense mutation result-
ing in a premature stop codon in addition to loss of heterozy-
gosity, while the second tumor bore both frameshift and
nonsense mutations. Based on the anatomical site of
SCCOHT, the connection to RTs would have been surprising
if not considering their similar pathology. Yet this observation
ultimately allowed this group to use a targeted sequencing
approach to identify a driver mutation. However, in the
absence of familial studies, comprehensive sequencing, or func-
tional biology, it was not clear from this report whether loss of
SMARCA4 was the principle driver of SCCOHT.

2. Witkowski et al. performed whole exome sequencing (WES)
using DNA from blood or FFPE tumors of SCCOHT families,
with additional sequencing in nonfamilial cases and cases with
an unknown family history [18]. WES is an attractive gene
discovery platform that balances breadth of sequencing with a
focus on functionally annotated genomic regions that are most
likely to be clinically relevant. Based on observations of autoso-
mal dominant transmission of SCCOHT, they first sequenced
tumor and normal DNA from six affected individuals from
three families. In the initial WES of these SCCOHT families,
they identified genes containing variants in at least two of the
three affected families, narrowing the list to 19 candidates. This
list was based on standard filtering that included selection of
nonsynonymous and splicing mutations, coding insertion-
deletions (indels), and untranslated region mutations, while
excluding common variants found in the general population
(using 1000 Genomes Project data). Using this approach,
SMARCA4 was the only candidate mutated in all three
families. Importantly, sequencing of tumors with matched
germlines in the affected cases not only provided increased
sensitivity and specificity for calling somatic mutations, but
also enabled observation of tumor suppressor behavior. In all
three families, germline SMARCA4 mutations were shared in
the germlines of mother and daughter and coupled with a
second somatic hit in each tumor—either loss of heterozygosity
or mutation of the second allele. This team next used Sanger
sequencing to evaluate SMARCA4 in one additional familial
set, as well as 23 individual cases, confirming the presence of
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germline mutations in the familial cases and six additional cases,
possibly due to de novo germline mutations, undocumented
family history, or incomplete penetrance. Finally, loss of
SMARCA4 protein expression was confirmed by IHC analysis
in SCCOHT tumors, further supporting the role of
SMARCA4 as a tumor suppressor gene in these cancers.

3. Jelinic et al. performed matched tumor/germline sequencing
in 12 SCCOHT cases with undocumented family history using
a targeted panel of 279 cancer genes [15]. The custom hybrid-
capture-based IMPACT (Integrated Mutation Profiling of
Actionable Cancer Targets) panel developed at Memorial
Sloan Kettering Cancer Center [32] comprises an approach
focused more narrowly on the coding regions and introns of
genes with a clear link to cancer and, in many cases, with
putative links to targeted therapy. Biallelic SMARCA4 muta-
tions were present in all 12 tumors, and included nonsense,
frameshift, and splice-site mutations. Jelinic et al. [15] found
only four additional nonrecurrent somatic mutations in cancer
genes in these samples, highlighting the low coding mutation
burden in SCCOHT and the role of SMARCA4 as the sole
driver in this cancer. They further highlighted the minute
probability of identifying by chance the universal mutation of
a single gene on this panel through comparative analysis with
4,784 nonhypermutated tumors from The Cancer Genome
Atlas dataset, which bore an average of 4.3 somatic mutations
in IMPACT panel genes. Finally, SMARCA4 loss was also
confirmed at the protein level in most cases byWestern blotting
and IHC.

4. Ramos et al. utilized WES, whole genome sequencing, and
Sanger sequencing using one SCCOHT cell line and fresh
frozen tissue from 12 patients, including nine SCCOHT
tumors, and seven germline samples [16]. Based on standard
filtering such as that used by Witkowski et al. [18], as well as
subtraction of germline variants from matched tumor/
germline samples, SMARCA4 was the only recurrently
mutated gene in this dataset, with mutations occurring in six
out of nine tumors. Again, these mutations appeared to be
largely biallelic and inactivating, and included nonsense, frame-
shift, and splice-site alterations. IHC was then performed to
confirm loss of SMARCA4 in the corresponding tumors and in
an additional nine cases, confirming loss of SMARCA4 in 82%
of SCCOHT tumors. Interestingly, one tumor did not display
SMARCA4mutations, but instead showed loss of SMARCB1.
In a follow-up study, Ramos et al. reported on an additional
12 tumors and second cell line, of which, all but one bore
mutations in SMARCA4 [17].
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In a recent collaborative meta-analysis incorporating data from
all four studies in addition to several new cases, a total of
96 unique, predominantly inactivating (coinciding with loss of
SMARCA4 protein by IHC), SMARCA4 mutations were catalo-
gued from 89 patients [10]. Twenty-six patients bore germline
mutations (29%), 34 had only somatic mutations (38%), and
germline status was unknown in the remaining 29 patients. Nota-
bly, most of the germline carriers had no reported family history
and were diagnosed at a slightly younger median age of 21.5 years
versus 25.5 years for noncarriers.

2.4 Diagnostic

Pathology

While disease gene discovery efforts are often stimulated by clinical
observations, research discoveries can also directly impact diagnos-
tic and therapeutic practice. Prior to identification of SMARCA4 in
the development of SCCOHT, the differential diagnosis of the
cancer was based on age of onset, co-occurrence of hypercalcemia,
and relatively nonspecific pathology observations in the absence of
definitive immunohistochemical markers. SCCOHT is character-
ized by nests and cords of diffuse proliferation of small undifferen-
tiated cells containing occasional pseudofollicles and, in about one
third of cases, rhabdoid-like cells with abundant eosinophilic cyto-
plasm [33]. This histologic similarity to RTs led to the first
sequencing of SMARCA4 and discovery of its loss in these tumors
[14]. Subsequent sequencing studies have now confirmed that
SMARCA4 protein loss accompanies mutation in virtually all
SCCOHT cases. Further, we have now shown through IHC ana-
lyses that SCCOHTs also universally lack expression of the alterna-
tive SWI/SNF ATPase, SMARCA2, which is epigenetically silenced
in these tumors [20]. We also assessed over 3,000 primary gyneco-
logical tumors for SMARCA4 and SMARCA2, and found that
SMARCA4 loss is relatively unique to SCCOHT among gyneco-
logical tumors, whereas dual loss of both SWI/SNF ATPases is
completely specific for SCCOHT, findings also confirmed by others
[19]. Following the accumulation of evidence in favor of
SMARCA4 mutation as an SCCOHT driver, and the concomitant
loss of protein in these tumors by IHC, dual loss of SMARCA4 and
SMARCA2 are now definitively diagnostic for SCCOHT and have
immediate relevance for prognosis and treatment considerations.

2.5 Model Systems Validation of putative cancer-driving mutations requires use of
model systems to establish transformational causality and charac-
terize downstream biology. Furthermore, preclinical models are
critical for discovery of new effective treatments. However, model
systems for rare cancers are themselves just as rare. Although more
than 1,000 immortalized cancer cell lines exist, few of these cell
lines are derived from rare cancer subtypes. For example, only two
published SCCOHT cell lines exist and, while both lines bear
SMARCA4 mutations and SMARCA2 protein loss, they differ
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significantly in morphology, growth characteristics, and drug
response [34–36]. Meanwhile, establishment of new cell lines can
be challenging with a high failure rate for particular cancer types
that is compounded by the scarcity of sufficient fresh tumor mate-
rial from rare cancers. Many variables must be considered in gen-
erating new cell lines, and include method of tissue preparation or
cell isolation, cell culture media used, and validation against
expected disease phenotypes (see “Guidelines for the use of cell
lines in biomedical research” for a complete summary [37]). Phe-
notypic validation includes examination of known tumor markers,
morphological characteristics, and histology and growth character-
istics when tumors are xenografted into mice. Finally, in the case of
cancers for which the cell of origin remains unknown such as
SCCOHT, lines are limited to those derived directly from patient
tumors, rather than immortalized or engineered lines derived from
normal precursor cells. In lieu of subtype-specific models, alterna-
tives may be used to mimic the genetic context of the disease either
through engineering oncogenic mutations (e.g., utilizing recent
advances in CRISPR/Cas9 genome editing to create precise
genetic alterations in isogenic pairs) into simplified models such as
HEK293 cells or immortalized fibroblasts. These models are not
ideal, however, as many genetic alterations bear cell context-specific
functions. Other options include examining cell line databases for
lines bearing mutations similar to the candidate cancer-driving
mutations identified in the cancer of interest. The Cancer Cell
Line Encyclopedia (Broad Institute), for example, contains geno-
mic (multi-platform DNA and RNA) and pharmacological
profiling data on ~1,000 cancer cell lines, as well as visualization
and analysis tools for identifying cell lines with similar genetic and
drug response profiles [38]. In the case of SCCOHT, both
SCCOHT cell lines and substitutes (such as SMARCA4/
SMARCA2-null non-small cell lung cancer cell lines) have been
utilized for functional and therapeutic studies [15, 20, 35, 36].

Mouse models allow complex modeling of cancer physiology,
disease course, and treatment response in living systems with phar-
macokinetic and pharmacodynamic constraints. For rare cancers,
however, such models may not exist or histologies and genotypes
may not be recognized in existing models. Mouse models can be
derived by xenografting established cell lines, establishing patient-
derived xenografts (PDXs) directly from fresh surgical tissue, or
utilizing reverse genetics in syngeneic systems. Xenograft models
(whether cell line xenografts or PDXs) can be very useful for study
of rare diseases given their relative flexibility and scalability in
addition to easily measured and rapidly achieved study endpoints.
However, grafted tumors typically lack genetic and cellular hetero-
geneity, as well as interactions with vasculature and normal stroma
that are present in naturally occurring tumors, even when
implanted orthotopically. PDXs may better recapitulate tumor
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heterogeneity, host interactions, and drug response compared to
cell line xenografts, but they also tend to be more difficult to
establish and maintain. Finally, syngeneic mouse models can be
created through reverse genetics approaches when a candidate
gene is known. For many candidate cancer genes, prior knowledge
exists about the viability and phenotype of the associated transgenic
mouse. If the alteration is embryonic lethal, conditional expression
of the mutant gene may be performed in a tissue-specific manner
through use of temporally controlled Cre-mediated excision or
drug-dependent promoter expression (e.g., tetracycline or tamoxi-
fen inducible systems). In the case of SCCOHT, transgenic mouse
models have thus far been of limited utility because homozygous
Smarca4 knockouts are embryonic lethal. Heterozygous Smarca4
knockouts are also of limited utility in understanding SCCOHT
because, although 10% of heterozygous knockouts develop tumors
within 1 year, these tumors are mammary carcinomas resulting
from haploinsufficiency and genomic instability that bear little
resemblance to SCCOHT [39, 40]. Nonetheless, two cell line
xenograft and three PDX models have been described [17, 19,
34] that demonstrate similar pathology and growth characteristics
as SCCOHT. These models currently power ongoing functional
and treatment studies in SCCOHT.

3 Conclusions

As shown by the studies describing the discovery of SMARCA4
mutations in the development of SCCOHT, charting the genetic
underpinnings of rare cancers in the post-genomic era is best served
by multi-institutional research consortia that employ integration of
clinical and research partners, genetic epidemiology, NGS, pathol-
ogy, and validation in cell and animal models. By determining the
genetic basis of rare cancers, we can better diagnose and improve
outcomes for these patients, for whom treatment outcomes lag
behind those of common cancers.
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Chapter 21

The Rise and Fall and Rise of Linkage Analysis
as a Technique for Finding and Characterizing
Inherited Influences on Disease Expression

Ettie M. Lipner and David A. Greenberg

Abstract

For many years, family-based studies using linkage analysis represented the primary approach for identifying
disease genes. This strategy is responsible for the identification of the greatest number of genes proven to
cause human disease. However, technical advancements in next generation sequencing and high through-
put genotyping, coupled with the apparent simplicity of association testing, led to the rejection of family-
based studies and of linkage analysis. At present, genetic association methods, using case–control compar-
isons, have become the exclusive approach for detecting disease-related genes, particularly those under-
lying common, complex diseases. In this chapter, we present a historical overview of linkage analysis,
including a description of how the approach works, as well as its strengths and weaknesses. We discuss
how the transition from family-based studies to population comparison association studies led to a critical
loss of information with respect to genetic etiology and inheritance, and we present historical and
contemporary examples of linkage analysis “success stories” in identifying genes contributing to the
development of human disease. Currently, linkage analysis is re-emerging as a useful approach for
identifying disease genes, determining genetic parameters, and resolving genetic heterogeneity. We
posit that the combination of linkage analysis, association testing, and high throughput sequencing
provides a powerful approach for identifying disease-causing genes.

Key words Linkage analysis, Association analysis, GWAS, Recombination fraction, Genetic heteroge-
neity, Common disease, Phenotype, BRCA1, Crohn’s disease, Epilepsy

1 An Historical Overview of Linkage Analysis

At one time, linkage analysis was the primary statistical genetic
approach for identifying loci underlying Mendelian and complex
diseases. Despite dramatic improvements in next generation
sequencing and high throughput genotyping techniques, linkage
analysis has successfully identified the greatest number of genes
proven to cause human disease compared to any other method.

With the completion of the human genome project, techniques
such as genome-wide association studies (GWAS), which identify
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associations between markers (typically, single nucleotide poly-
morphisms or SNPs) and disease, quickly eclipsed linkage analysis
in popularity. There are several reasons for the widespread embrace
of GWAS, including the ease of data collection (cases and controls,
rather than families), simplicity of analytic methods (e.g.,
chi-squared 2 � 2 tables), and the belief that alleles contributing
to disease must be detectable given large enough sample sizes and
enough markers. Subsequently, whole exome (WES) and whole
genome sequencing (WGS) became feasible approaches, and are
becoming increasingly popular, because of the (theoretical) power
to identify disease-related mutations.

Many investigators believed that comparing allele frequency
differences between cases and controls using GWAS or WES/WGS
would lead to the identification of important disease genes. How-
ever, problems inherent in studying common, complex diseases
have left many findings of genetic association unreplicated. These
problems include heterogeneity, misdiagnosis, and misclassification
of phenotypes. While GWAS have yielded highly significant p-values
with very large sample sizes, the corresponding odds ratios have
been mostly <1.5. Thus, when GWAS successfully identified
disease-associated alleles, the actual impact of the variants on dis-
ease risk was very low. These loci are defined as “susceptibility
genes,” or genes that increase risk, as opposed to genes that,
when mutated, actually cause disease [1].

In contrast, linkage analysis has a record of accurately and
definitively identifying loci with major effects on disease etiology.
Linkage assesses co-segregation of disease with marker alleles
within families and yields information not only about disease gene
location, but also about disease inheritance, penetrance, hetero-
geneity, gene–gene interactions, movement of genomic regions
across generations, and the manner in which those regions are
related to the presence of disease. All of these attributes of linkage
lie beyond the reach of population-based association analysis. Con-
trary to popular belief, linkage analysis is indeed useful for identify-
ing genes underlying common diseases, although the efficiency and
apparent transparency of the (perhaps, simplistic) statistical tests
used for genetic association analysis quickly made association analy-
sis the preferred approach. Consequently, the ability to derive infor-
mation about the genetic inheritance of a disease was sacrificed [2].

2 How Linkage Analysis Works

Linkage analysis identifies genomic regions that contain disease-
predisposing genes by quantifying the cosegregation of a pheno-
type (i.e., a disease) with alleles at a marker locus. Linkage deter-
mines whether marker alleles within a family are inherited together
with a disease through generations. Linkage relies on the
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phenomenon of recombination, that is, if loci are close together on
the same chromosome, alleles at those neighboring loci will segre-
gate together in families more often than expected by chance. The
farther apart two loci are on the same chromosome, the more likely
that a recombination event during meiosis will cause the alleles at
these loci to end up on different chromosomal strands, and will not
be found together in subsequent generations. Likewise, alleles at
loci located on different chromosomes segregate independently of
one another.

2.1 LOD Scores Linkage analysis compares the likelihood that an allele at a marker
locus segregates with the disease (or phenotype) with the likelihood
that alleles at the marker locus and the disease segregate indepen-
dently. The statistical measure for determining if two loci are linked
is reported as a logarithm of the odds for linkage (or LOD score),
which is a function of the recombination fraction. The accepted
cut-off value for statistically significant evidence of linkage is a LOD
score over 3 [3], which is interpreted as the data showing 1000
times more support for the existence of linkage than for non-
linkage (that is, marker and disease segregate independently).
LOD scores <�2 are evidence against linkage, implying that non-
linkage is 100 times more likely than linkage.

2.2 Phenotyping and

Heterogeneity

The success and utility of any genetic study are dependent on
precise phenotyping. For example, the majority of common and
complex diseases comprise many clinically similar disease subtypes
that are caused by different etiological factors, both genetic and
non-genetic. Diabetes is a prime example of the complexities
involved in phenotyping. Aside from distinguishing type 1 diabetes
(T1D) from type 2 diabetes (T2D), etiologically separate forms of
diabetes can be further distinguished by even narrower phenotype
definitions, such as latent autoimmune diabetes in adults (LADA),
maturity onset diabetes of the young (MODY), gestational diabe-
tes, neonatal diabetes mellitus (NDM), and mitochondrial diabetes
mellitus [4]. Similarly, in epilepsy, the phenotypic syndromes that
fall under the classification of idiopathic generalized epilepsy (IGE)
(now often referred to as Genetic Generalized Epilepy) include
childhood-onset absence, juvenile-onset absence, juvenile myo-
clonic epilepsy (JME), epilepsy with generalized tonic–clonic sei-
zures, and awakening grand mal [5]. Before the genetic
contributions to disease pathogenesis can be understood, diagnoses
must be based on clinical presentation, rather than on the genetic
etiologies of these conditions. However, to make genetic studies
meaningful, the diagnoses must be as narrowly drawn as possible.
Including too many etiologically different forms of disease in the
data leads to a state of heterogeneity, in which multiple loci inde-
pendently cause similar phenotypes that are lumped together as one
disease. As a result, any evidence of the effect of any one of those
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genes would be obscured. By narrowing the phenotype definition,
it may be possible to gain insight into the genetic etiologies and
correctly redefine some of these complex diseases, as the examples
below will show. Most GWAS attempt to overcome this problem
with extremely large study samples, and, in fact, it may be possible
to detect statistically significant evidence for association with a large
enough data set. However, without the detailed clinical informa-
tion that would allow one to follow up on carriers of the risk allele,
compared with affected non-carriers, further analysis of the GWAS
findings are problematic.

Unlike association analysis, linkage analysis can identify the
existence of genetic heterogeneity and be used to classify who is
affected with which form of disease.

2.3 Possible

Confounders in

Linkage Analysis

2.3.1 Heterogeneity

Genetic heterogeneity is problematic for any genetic study, but
there are two types of genetic heterogeneity that influence results
of genetic studies.

The first type is allelic heterogeneity, in which different alleles at
a locus cause the same or similar disease (e.g., Duchenne’s and
Becker muscular dystrophy). Linkage analysis is robust to allelic
heterogeneity because the identity of the marker alleles is irrelevant;
the only requirement is that the marker alleles are inherited
together with the disease in a family. Put another way, linkage is
based on identifying, not alleles, but loci. In contrast, allelic hetero-
geneity is a major confounder in association analysis, which tests
whether specific alleles are more frequent in one population than in
another. Many different alleles at the marker locus may be in the
population. If so, even if several different marker alleles are “close”
to (i.e., in linkage disequilibrium with [see below]) the disease-
causing variant, it may not be possible to detect population allele
frequency differences with any one of them [6]. There is no tech-
nique that can compensate for this problem in association analysis.

The second type of heterogeneity is locus heterogeneity, which
arises when disease phenotypes result from different genetic etiol-
ogies, yet are clinically indistinguishable. Because linkage assesses
co-segregation of marker alleles and disease, a disease locus (i.e.,
locus A) for which there has been no recombination between the
marker loci and the disease locus (within families) will show
co-segregation of the disease with alleles near the marker locus. If
family structures are introduced into the data set where one locus
exists (i.e., locus B) that produces a disease that is phenotypically
identical to another produced by locus A, but with a different
genetic etiology, the result is the creation of recombinations
between the “disease” and the markers surrounding locus A,
because locus A is not causing the disease in those heterogeneous
families. The recombinations then “dilute” the evidence for linkage
at locus A because simple LOD scores assume homogeneity in the
data set. Locus heterogeneity is also a problem for association
analysis for reasons similar to those for linkage. Heterogeneity
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dilutes the signal at the true disease locus by introducing alleles not
in linkage disequilibrium (LD) with the disease locus, as some
subjects have a disease caused by a genetically distant locus, not
associated with the allele being tested.

While association analysis has no way to account for locus
heterogeneity, linkage methods include a heterogeneity LOD
score (i.e., hetlod or HLOD). The HLOD calculates the likelihood
of a mixture of two distributions of LOD scores, one centered on a
positive LOD score value and another on a negative one. In calcu-
lating the HLOD, one estimates the value of α (the proportion of
linked families), while also estimating the recombination fraction
(θ) [7]. Thus, loci cannot only be detected in the presence of
heterogeneity, but the percentage of families in the data set that
are linked compared to those that are not linked can be estimated,
and these linked families can be identified.

2.3.2 Penetrance Penetrance is the probability of manifesting the trait (or disease)
phenotype, given the presence of the trait genotype. For complex
traits, penetrance is usually incomplete, meaning that not everyone
who has the disease-causing variant manifests the disease. Pene-
trance can depend on many factors, such as age and sex. For
example, Huntington’s disease is an inherited autosomal dominant
disorder caused by the expansion of a CAG trinucleotide within the
HTT gene on chromosome 4. At birth, there is zero penetrance of
the disease, but, in later life, complete penetrance (i.e., everyone
who has the CAG repeat has the disease) develops [8]. Reduced
penetrance lowers the informativeness of families for linkage, but it
will not undermine the ability to detect linkage; it will only increase
the size of the data set needed. This is different from the effect of
locus heterogeneity, which can hide a linkage signal and may not be
resolved simply by increasing the sample size.

Reduced penetrance can be caused by environmental (e.g.,
exposure to a chemical or allergen) or genetic factors. Penetrance
modified by genetic factors can occur when two loci are required
for disease expression, that is, when at least one other disease locus
interacts with the first locus, such that the probability of disease
expression is dependent on the presence of disease alleles at both
loci. Individuals carrying the disease allele at only one locus will
appear to be nonpenetrant. However, linkage can identify both loci
and assess the interaction between them [9, 10]. Linkage analysis
can also be used to estimate the penetrance, whatever the cause
[11, 12]. Genetic association analysis cannot control for penetrance
levels.

2.3.3 Mode of

Inheritance

To perform linkage analysis, a mode of inheritance (MOI), or the
structure of how the disease is inherited, must be specified. When
the MOI is not known, or if it is misspecified, the power to detect
linkage can be reduced. To get around this problem, nonparametric
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linkage techniques, such as the affected sibling-pair (ASP) and
affected-only methods, were developed. These methods do not
require specifying a mode of inheritance. Many researchers prefer
to use these nonparametric methods when the MOI is not known,
even though LOD-score analysis has greater power to detect link-
age [13]. However, parametric linkage analysis can be used to
obtain a useful estimate of the MOI at the detected locus, deter-
mining whether the locus is dominantly, recessively, or additively
inherited. It can also estimate the penetrance at the locus, whether
due to environmental or genetic factors. With nonparametric link-
age analysis, however, an HLOD cannot be calculated and pene-
trance cannot be estimated. The belief is still widespread that
nonparametric analyses are superior because no MOI is assumed.
However, Whittemore [14] showed that all nonparametric tests
correspond to some unknown, and likely unknowable, assumed
MOI. As a result, there are advantages to assuming first a dominant,
then a recessive mode of inheritance, and choosing the higher of
the two values as the best estimate for the mechanism of inheritance
[15]. Nonetheless, sophisticated nonparametric methods are both
common and reliable. In contrast, mode of inheritance is generally
not taken into account in genetic association analyses.

2.3.4 Sporadic Cases Sporadic disease has a clinical presentation similar to a genetic form
of disease, but lacks a heritable component. Nongenetic forms of
disease can confound linkage results by reducing the signal derived
from affected families. While linkage analysis is relatively robust to
even notable frequencies of sporadic disease as long as families with
more than one affected member are selected [16]. Association
analysis, on the other hand, cannot account for confounding by
nongenetic cases.

2.3.5 Gene–Gene

Interaction

In common, complex diseases, detecting gene–gene interaction is
not only a challenge, but also is a major priority for human genetics
studies. To identify interactions, most approaches start with
marker-disease associations identified in GWAS, but many believe
that testing for simultaneous multiple associations is an unproduc-
tive approach to identifying interaction-based genetic effects
[9]. These association-based interaction tests are extremely weak
because they rely only on allele frequency differences, use data only
at the population level, and do not utilize inheritance information
available from family data. As a result, finding gene–gene interac-
tions with GWAS data is problematic, especially where so many
other confounders can obscure a single gene association or linkage
signal. There are several methods aiming to identify statistical inter-
actions between loci from genetic association studies [17–19], but
there are disadvantages to these approaches. If allelic heterogeneity
is present, the power to detect association when using the single-
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locus testing approach is dramatically reduced. Testing for allelic
interactions at multiple loci is even more difficult and reduces
power further. Interaction testing requires enormous sample sizes
due to the required multiple testing correction. Lastly, in the case of
statistically significant evidence supporting an interaction between
two alleles that show non-significant associations with disease on
their own, the biological significance of this scenario is unclear
[9]. In contrast, there are some novel approaches that can be used
to detect gene–gene interaction that take advantage of family data
with affected individuals [9, 10] and which have proven successful
with real data [20].

3 How Association Analysis Works

The goal of genetic association studies is to detect a difference in
allele frequencies between two populations, cases and controls, at a
specific locus (or thousands to millions of SNP loci). Statistically
significant differences between the frequencies of a marker allele in
cases compared to controls suggests that the gene in which the SNP
is found, or a nearby gene with variants in linkage disequilibrium
with that SNP, affects the expression of the disease [21].

3.1 True Association When alleles are found together on the same DNA strand in the
population (as opposed to members of a family), they are said to be
in linkage disequilibrium (LD). An association between two loci
can be detected because of LD between alleles at two loci. LD can
be quantified using various measures. In complete LD, two alleles
are always found together in the population, while in the absence of
LD, the frequency of the two alleles being found together reflects
their population frequencies [22, 23]. Association studies are based
on the idea that the marker allele is situated on the same DNA
strand as the disease allele and that the two loci (disease andmarker)
are close enough to each other that few recombination events have
occurred between them since the mutations that created those
alleles occurred (Fig. 1). With the passage of generations, recombi-
nation events can eliminate LD between markers [24]. This means
that a specific marker allele may eventually cease to be found on the
same DNA strand with the disease allele with greater frequency
than any other marker allele. A statistically significant difference in
the marker allele frequency found in cases compared with that
found in controls provides evidence for association, assuming no
methodological issues are influencing the results. A statistically
significant association can be due to a direct association, in which
the marker alleles are indeed disease causing, or may simply reflect
LD between marker and causal alleles.
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3.2 Association due

to Population

Stratification

There is another way that one can detect association independent of
disease. If cases and controls come from two different populations,
that is, if the allele frequencies of the marker alleles are different just
by virtue of different evolutionary histories, then associations that
have nothing to do with the disease will be detected. This is called
“population stratification” [25, 26]. It is a critical issue in associa-
tion studies, especially for large data sets comprised of individuals
recruited from geographically different locations, or when cases
and controls derive from different ethnic backgrounds. The only
way to reliably test for an association is when cases and controls are
drawn from the same underlying population, specifically, one of
shared ancestry. Knowledge of these population differences is the
basis for Ancestry Informative Markers (AIMs), which are used to
assess the origins of an individual or group using population-
specific markers. There are techniques for compensating for popu-
lation stratification, but it remains a possible confounder because
there can be subtle differences in populations that may only be
detected with very large sample sizes, the kind of sample sizes
currently favored in GWAS to ensure highly significant p-values.

Fig. 1 Principle of linkage disequilibrium (LD). When a new mutation occurs in a
gene, the disease allele that results is flanked by a specific combination of
marker alleles. Many generations later, in the absence of recombination, the
mutation will remain surrounded by the same marker alleles (assuming none
have mutated), and all the alleles on this stretch of DNA (i.e., the haplotype) will
be in LD. However, in the presence of recombination, the sequence flanking the
disease allele will be shuffled so that the mutation is then found with a different
combination of markers relative to the disease-related allele
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3.3 Association

Analysis Versus

Linkage Analysis

One of the strengths of association studies is the ability to detect
genes with modest effects. However, if a sample size is large
enough, variants can be detected that are neither necessary, nor
sufficient, for disease expression [1]. The disease-affecting geno-
types found through association studies generally have low odds
ratios (OR), and thus, exert only minor effects on the disease
prevalence. Weaknesses inherent in association studies have made
it difficult to obtain statistically significant positive findings and
hinder replication. Population stratification can lead to increased
false positives (type I error) and false negatives (type II error). False
negative results can arise when the sample size is relatively small,
and there is insufficient power to detect association.

While association analysis can detect alleles that increase disease
susceptibility, those alleles may not be necessary for disease expres-
sion and do not consistently cotransmit with the disease within
families. Unless a large degree of the disease risk is conferred by
an allele, linkage will be unable to detect such loci. On the other
hand, if a gene locus has a major effect on disease expression and
segregates with disease in families, then linkage analysis will be able
to identify the chromosomal region on which it is located [1]. The
disease gene locations identified by linkage analysis can be large,
extending over much longer genomic regions compared to the
short distances in which LD is in effect. Linkage studies are there-
fore able to detect disease-related genes in much larger regions than
association methods, genomic sections ranging from approximately
2000–20,000 kb. In association studies, frequency differences can
be detected in approximately 0–100 kb regions, that is, the most
likely range for LD to be in effect [27]. Linkage methods are
seldom precise enough to identify a particular gene; rather a linkage
finding implicates a wide region that is linked to disease. Thus,
association studies in a critical region identified through linkage is
generally the next step in identifying a disease-causing gene.

4 Examples of Linkage Success in Common Disease

Although linkage analysis has acquired the unjustified reputation of
being unable to detect genes for common, complex diseases, there
are actually many examples of its success in identifying disease loci.
In this section, we present two common, complex diseases where
linkage analysis was successful in identifying disease genes.

4.1 Crohn’s Disease Crohn’s disease (CD) is a common, heritable chronic inflammatory
disease of the gastrointestinal tract. Many twin studies demon-
strated familial clustering of the disease [28–31], and early genetic
epidemiology studies showed that inherited factors likely contrib-
ute to CD susceptibility [32–35]. The first linkage analysis for CD
was performed prior to the sequencing of the human genome, and
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utilized widely spaced microsatellite markers [36]. The maximum
two-point LOD score (LOD ¼ 2.04) was detected at marker
D16S409 on chromosome 16. Additional markers were genotyped
in pooled family panels in the 40 cM region flanking D16S409,
most of which showed linkage to the locus (named IBD1).

Subsequent linkage studies were performed, but with inconsis-
tent findings [37–42]. In 2001, datasets from 12 centers spanning
three continents were combined to achieve greater statistical power
[43]. The combined sample size consisted of 613 Caucasian nuclear
families, containing two or more offspring with IBD. Family mem-
bers were diagnosed with CD, ulcerative colitis (UC), or both.
Linkage analysis using this study sample identified a peak LOD
score of 4.96 near IBD1. However, linkage analysis restricted to
families with a CD diagnosis yielded a LOD ¼ 5.79, while no
evidence for linkage was observed in this region in families with a
UC diagnosis, indicating that IBD1 was, very likely, a locus unique
to CD, despite the similar clinical presentations shared between CD
and UC.

The strength of these linkage studies is their success in replicat-
ing the IBD1 locus and demonstrating the specificity of that gene
to CD. The results also illustrate many of the general problems of
genetic studies, especially the potential for heterogeneity and
imprecise phenotyping that confound results and lead to lack of
replication. In the combined analysis, careful phenotyping was
crucial in identifying the IBD1 locus. When families with only
UC or mixed UC and CD families were analyzed separately, there
was no evidence for linkage. While CD and UC are both common,
complex genetic disorders affecting the gut, and present with over-
lapping phenotypes, their pathologies and genetic etiologies are
distinct. Linkage analysis was able to genetically distinguish
between the two conditions.

4.2 Breast Cancer Linkage analysis in breast cancer was particularly effective in iden-
tifying genes of even modest effect sizes and yielded results that
have subsequently had a major impact on public health.

In a landmark study, Hall et al. used linkage analysis to localize a
breast cancer gene to chromosome 17q21 [44]. The authors used
23 extended families with 146 cases of breast cancer, corresponding
to 329 Caucasian relatives. Patients in these families were charac-
terized by a relatively young age at diagnosis, frequent bilateral
disease, and occurrence of disease in males, all of which are charac-
teristic of familial, but not sporadic, breast cancer. A strict pheno-
typing definition was used in which all histologic types of invasive
breast cancer were designated as affected. Multiple approaches to
evaluating linkage were used, including single and multipoint LOD
score methods, and affected sib-pair nonparametric linkage
analysis.
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The authors found a maximum two-point LOD score of
3.28 at locus D17S74, but only 40% of families contributed to
the evidence for linkage, indicating the presence of heterogeneity.
Examination of factors such as age at first pregnancy, number of
children, prevalence of fertility problems, use of oral contraceptives,
and age at menopause, showed that the only difference between
linked and unlinked families was age at breast cancer diagnosis.
When seven families with a mean age of diagnosis �45 years were
examined, the LOD score at D17S74 increased to 5.98. In con-
trast, an analysis including only families with late-onset breast
cancer demonstrated evidence against linkage. Thus, heterogeneity
was resolved using age of disease onset as a phenotypic criterion,
showing that a gene for susceptibility to early-onset breast cancer
was located in this chromosomal region.

Findings of linkage for both early-onset breast cancer and
ovarian cancer to the same chromosomal region were subsequently
confirmed in three large pedigrees [45]. In this study, the maxi-
mum two-point LOD score for linkage of breast and ovarian cancer
families to locus D17S74 was 2.20. Combined results from this
study and the initial one thus strongly implicated the chromosome
17q12-q23 region in early-onset breast cancer and ovarian cancer.
These findings were later confirmed in a large-scale study of nearly
300 families ascertained for breast or breast–ovarian cancer from
13 international research groups [46]. This locus was officially
designated “BRCA1” [47].

Thus, using family data, these studies demonstrated the locali-
zation of a breast cancer susceptibility gene using linkage analysis,
work subsequently confirmed using large pedigree data, and fur-
ther solidified through a large collaborative study. The work also
showed that BRCA1 may account for the majority of early-onset
breast cancer and ovarian cancer, but the existence of heterogeneity
indicated that other genes likely predispose to the disease. Similarly,
while BRCA1 accounted for a large proportion of early-onset
breast and ovarian cancer, the locus conferred only modest effects
for later age-of-onset familial disease. The ability of these studies to
replicate and confirm findings is partly due to consistent and strict
phenotyping definitions. Also, while evidence for a gene from any
genetic study may be diluted due to the presence of genetic hetero-
geneity, linkage analysis has the ability to parse linked and unlinked
families. Again, while allelic heterogeneity does not influence link-
age results, both locus and allelic heterogeneity can severely nega-
tively affect genetic association results.

4.3 Lessons from the

CD and BRCA1 Stories

The linkage examples described in this chapter were in large part
successful because the disease genes involved are necessary for
disease expression (though perhaps not sufficient), not merely sus-
ceptibility genes. Although the initial sample size in the CD study
was small, the IBD1 locus was strongly linked to disease. Genetic
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heterogeneity played a crucial role in showing the specificity of
IBD1 for CD, but not UC. By observing the proportion of linked
and unlinked families, and having comprehensive phenotype infor-
mation, it was possible to identify those CD families showing
linkage to the IBD1 locus. In the breast cancer example, the genetic
effect of BRCA1 was strong enough that linkage was detected using
even a small sample of families, suggesting that the locus is a major
contributor to disease expression, despite the presence of genetic
heterogeneity. By using linkage analysis and rich phenotypic infor-
mation, the authors were able to stratify families based on age of
onset to localize the gene underlying breast cancer. When this
disease was analyzed using a much larger sample size, linkage was
strongest, again, for early age of onset and for breast and ovarian
cancer families. For some of the breast cancer-only families, other,
unknown loci appear to predispose to the disease.

5 The “Fall” of Linkage and the Rise of Genetic Association Analysis

Despite the success of linkage analysis in identifying disease loci, its
popularity has been eclipsed by association methods. There were a
number of reasons for the ready adoption of association analysis,
chief among them being the idea that common diseases were
caused by common variants, a phenomenon known as the “com-
mon disease-common variant” hypothesis. Association analyses
were expected to be more powerful than linkage approaches
based on the assumption that identification of causative alleles
through LD would be easy, because one or more of those SNP
markers covering the genome would be in LD with disease alleles
[48]. However, genotyping>105–106 SNPmarkers over the entire
genome exacts a large multiple testing correction to compensate for
type 1 error. Consequently, GWAS requires large sample sizes to
detect a statistically significant effect.

SNPs identified by GWAS appear, in general, to act as modest
risk alleles, implying that they interact with other genetic or envi-
ronmental factors to cause disease. Additionally, most of these
SNPs are located outside of exons, creating speculation about the
functionality of these variants. For example, of the 20 risk loci
identified by GWAS for Alzheimer’s disease, none of the most
strongly associated SNPs are located in coding regions
[49]. GWAS of T2D have identified 76 susceptibility loci, with
effect sizes so small, they only explain ~6% of disease risk and
10–20% of disease heritability [50]. Likewise, while GWAS has
identified more than 180 loci associated with obesity traits, herita-
bility remains unaccounted for [50].

Association analysis would probably have not been able to
identify the IBD1 and BRCA1 loci. Both allelic and locus hetero-
geneity confound true associations between markers and disease,
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but the biggest limitations of association analysis are its inability to
use family data and its general lack of consideration of family clinical
information. In the BRCA1 story, the observations that all affected
family members had early-onset disease and that ovarian cancer was
also a familial phenotype were crucial for identifying the locus. If
this study had been undertaken using a GWAS approach, neither
family data, nor phenotypic details, would have been collected, if
for no other reason than the numbers of subjects involved, a
number often in the tens of thousands, preclude obtaining detailed
clinical information or family histories. Typically, a diagnosis of
“breast cancer” or “schizophrenia” or “fever” is considered enough
of a phenotype with which to identify genetic etiology in GWAS.
There is a belief that electronic medical records (EMR) will make
detailed phenotype information available for GWAS; however, our
experience is that EMR tends to be less detailed than older written
records. The main concern of the medical establishment, after all, is
treatment, and without a treatment-oriented impetus, the detailed
records needed as a basis for research on large samples of patients
are unlikely to become part of normal recordkeeping.

In sum, association analysis can be a powerful tool when used in
the correct context. Once a disease locus is identified by linkage,
allelic association analysis represents a logical next step for locating
the specific gene. The next section illustrates how combining care-
ful phenotyping, family data, linkage analysis, association testing,
and sequencing can identify of causal gene for a common disease.

6 Recent Successes of Linkage Analysis

An example of the power of combined linkage and association
analysis can be found in the genetic characterization of a common
childhood epilepsy syndrome known as rolandic epilepsy (RE). This
disease affects approximately 1 in 2500 children, presenting with
onset of seizures between 4 and 12 years of age [51, 52]. RE is not
only considered one of the most common idiopathic epilepsies of
childhood, but is also most impacted by inherited factors
[53, 54]. The symptoms of RE overlap with those for severe
epilepsy syndromes (i.e., atypical benign partial epilepsy, benign
occipital epilepsy, and Landau–Kleffner syndrome), emphasizing
the need for careful phenotyping. All patients share the defining
electroencephalographic (EEG) abnormality of centrotemporal
sharp waves (CTS). CTS is an EEG characteristic that is also
observed in children with developmental disorders [55–57]. This
suggests that CTS may be a marker for widespread neurodevelop-
mental abnormalities, rather than a condition specific to
RE. Strong clustering of developmental disorders in RE families
has been observed [53], and CTS in RE appears to be inherited as
an autosomal dominant trait [54].
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Genome-wide linkage analysis for RE in carefully diagnosed
families identified the highest multipoint LOD score (4.30) at
marker D11S914 [58]. No evidence of heterogeneity was observed
in the region of linkage, which spanned over 13 cM. Forty-four
SNPs across this region were genotyped and three of these, located
in the ELP4 gene, were associated with RE. Joint analysis using the
discovery sample and a replication panel provided strong evidence
that ELP4 variants, rs964112 and rs986527, were associated with
CTS in RE families. Subsequent sequencing of the promoter,
exons, and flanking regions of the ELP4 gene, found no enrich-
ment of coding polymorphisms, indicating that the causative muta-
tion may exist in noncoding regions. An independent analysis using
a larger study sample and a higher resolution genotyping array
found evidence for association with rs662702 in the 30 untranslated
region of the PAX6 gene [59]. The variant allele was present in 14%
of CTS patients and 7.6% of controls, and after adjusting for sex and
population structure, homozygosity of this allele conferred 12-fold
greater odds of CTS.

Linkage analysis was also used to tie the ELP4-PAX6 gene to a
wider phenotype. Verbal dyspraxia [60] has been observed in
families of RE patients, even those unaffected with RE or CTS.
When these subjects were classified “affected” for the linkage anal-
ysis, the evidence for linkage to the RE locus rose from 3.2 to 7.5. It
is important to emphasize that, as with the breast cancer findings,
being able to define which phenotypes will help differentiate differ-
ent etiologies and thus, resolve heterogeneity, is one of the most
clinically important advantages of linkage analysis because the infor-
mation directly impacts diagnosis and treatment.

These studies of RE demonstrate a successful paradigm for how
gene identification using family studies in common, complex dis-
eases should work. First, a well-described phenotype was necessary,
supplemented with detailed family medical histories. Second, a
genome-wide linkage analysis identified a genomic region that
was significantly linked to a subclinical phenotypic marker (CTS)
that was assessed in members of families identified through an RE
patient. Subsequently, specific alleles were found to be associated
with CTS. Then, by sequencing the linked region, a specific allele in
a nonexonic region was implicated in disease pathogenesis. This
sequence of steps utilized the strengths of each methodology to
narrow in on the gene and allele influencing disease expression.

7 Conclusions

Linkage analysis and family studies are re-emerging as important
and useful approaches for identifying genes underlying common,
complex diseases. Linkage analysis using family data can yield
important information about inheritance and is able to account
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for important confounders that can obscure findings in any genetic
study, namely, genetic heterogeneity, penetrance, mode of inheri-
tance, sporadic cases, and gene–gene interaction. The ability to
account for these confounders creates an important advantage
over genetic association analysis, WES, and WGS but, thus far,
the genetic research community has failed to take advantage of
the enormous wealth of information inherent in family data.
Rather, over the past decades, efforts have been focused on collect-
ing population-level data that may have little to do with disease
inheritance, and which use analysis approaches that are unable to
take into account important confounders inherent in all genetic
studies.

Implicit in our title is the belief that the eclipse of family studies
and linkage studies by association analyses will eventually come to
an end. By coupling linkage analysis with the depth of coverage that
genetic sequencing offers, we may be able to identify, with greater
certainty and rapidity, genetic mutations that cause complex human
diseases.
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