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PREFACE TO THE FIRST EDITION 

It was some 30 years ago that I first started to write an essay on Boole 
which I hoped would be ready by 1947, the 100-th anniversary year of 
the publication of his Mathematical Analysis of Logic. The many diffi- 
culties I ran into in trying to understand exactly what Boole had done 
took me by surprise and, not making the date I had set for myself, 
put the work aside. With the approach of 1954, the centenary of Boole’s 
Laws of Tliought, my interest was renewed and I tried again, but with 
no better result. However shortly thereafter 1 became acquainted with 
the newly developed subject of linear programming and recognizing in 
it, ready made, a tool which I had needed, used it to explain some of 
Boole’s work in probability. The success encouraged me to persist and 
so, what started out 30 years ago to be an article, now ends up as a small 
monograph whose length, I hope, is more closely proportioned to the 
value of its subject. 

Over the years I have had information and advice from various people. 
I am reluctant to mention names. Some of it was given so long ago that 
the donors proba’bly have forgotten that they ever spoke to me, and some 
of it relates to blind-alley approaches which I have had to abandon. 
With regard to acknowledgements of such help, suffice it to say that we 
are all members of that confraternity of researchers and scholars who 
gladly assist each other like members of a close-knit family. I would, 
however, like to mention by name Professor A. E. Pitcher, my friend, 
colleague, and department chairman, whose enthusiastic encouragement, 
at times taking the material form of obtaining for me released time from 
teaching duties, is warmly appreciated. 



VIII PREFACE TO THE FIRST EDITION 

I was delighted to find that I had a Boolean predecessor at  Lehigh 
University. In 1879 Alexander Macfarlane, a Scottish mathematical 
physicist, published his Algebra of Logic which had as its aim “to correct 
Boole’s principles, and place them on a clear rational basis”. He later 
came to Lehigh as a lecturer in electrical engineering and mathematical 
physics, and was there from 1895 to 1908. Over a period of time he gave 
a series of addresses on 25 British mathematical scientists. The talks 
were given to an audience composed of students, instructors, and towns- 
people; and there was one, delivered April 19, 1901, devoted to George 
Boole. I wonder if any of that audience could have envisioned that 
three-quarters of a century later there would be in the catalogue an 
electrical engineering course offering : 

241. Switching Theory and Logic Design (3) 
Boolean algebra and its application to networks with 
bivalued signals. Function simplification [. . . etc.]. 

Bethlehem, Pennsylvania 
Th. Hailperin 



PREFACE TO THE SECOND EDITION 

Since the first edition there has been a notable increase of interest in the 
development of logic-witness, for example, the several conferences on 
the history of logic which have taken place and the founding, in 1980, of 
a journal devoted to the history and philosophy of logic. This increased 
activity, and the accumulation of new results -a chief one being that 
Boole’s work in probability is best viewed not as a new foundational 
approach but rather as a probability logic-were among circumstances 
conducive to a new edition. 

Chapter 1 has been considerably enlarged to  better render Boole’s 
ideas on a mathematical treatment of logic, beginning with their 
emergence in his early 1847 work on through to his immediate 
successors. Chapter 2 includes additional discussion of the 
“uninterpretable” notion. Chapter 3 now includes a revival of Boole’s 
abandoned propositional logic; and, also, discussion of his hitherto 
unnoticed brush with ancient formal logic. In Chapter 5 we have a 
revamped explanation of why Boole’s probability method works. 
Chapter 6 is entirely new. All in all, the changes have brought about a 
three-fold increase in the Bibliography. 

Special appreciation is due John Corcoran, historian of logic, who 
made available to  me his list of corrections, comments, queries and 
criticisms written while reading the first edition. An extensive 
correspondence with him on these matters resulted in insights and ideas, 
as well as help on historical items. 

Theodore Hailperin 
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INTRODUCTION 

A self-taught mathematician of uncommon power and originality, 
honored in his lifetime for various mathematical contributions, Boole is 
today largely remembered for his successful creation of an algebra of 
logic. Although, unknown to Boole, Leibniz had much earlier conceived 
of the idea of a mathematical treatment of logic and although, some 
decades later than Boole but with no awareness of Boole’s work, Cottlob 
Frege had constructed a much deeper and more extensive mathematical 
logic, it is Boole’s algebra of class terms in the revised and simplified 
Jevons-Peirce-Schriider form that is popularly associated with mathe- 
matical logic. This particular accomplishment of Boole’s, the applica- 
tion of algebra to logic, though limited to the simple class calculus and 
propositional aspects, had a marked stimulating effect on the develop- 
ment of modern logic. 

Also of importance, but not as well-known or as easy to evaluate, 
was the effect that Boole’s introduction of a non-quantitative type of 
algebra had on the inception of modern abstract algebra. Boole himself 
was hardly aware that he was creating a new algebra, as the idea of an 
algebra had not yet emerged. In keeping with the notions of Symbolical 
Algebra then current he thought he was giving another interpretation 
to the general symbols of algebra, which symbols already had various 
interpretations-numerical, geometrical, or physical. But this new inter- 
pretation, Boole emphasized, was different in that it was the first not 
having to do  with “magnitude”. Accordingly, Boole allowed himself to 
use all the usual operations of ordinary algebra adding, however, the 
special requirement that symbols which are to stand for class terms must 
satisfy the law x2 = x .  This new condition, satisfled as an arithmetical 

1 



2 INTRODUCTION 

law only by the numbers 0 and 1,  enabled him to single out with re- 
markable ingenuity, if not complete clarity, those features of the full 
numerical algebra useable for logic. Boole’s methods also included the 
use of expressions, such as and 4-, to which n o  meaning can be given 
in ordinary algebra let alone in logic. The elimination by later logicians 
of what was not fully understandable or not strictly relevant to the logic 
of class terms resulted in a calculus whose abstract formulation is now 
known as the theory of Boolean algebras or, in an equivalent form, the 
theory of Boolean rings. 

Boole was a thorough and careful worker and the mathematical system 
which he elaborated for doing logic was not shown to be wrong by the 
historical simplification to Boolean algebra but merely replaced by it. 
Of logicians of note subsequent to Boole only Venn was an adherent 
of the strict Boolean system for doing logic (see 0 1.11). In modern times 
(that is, after the ascendency of Boolean algebra) a number of expository 
studies of the original Boolean system have been published. The earliest 
of these is the extensive review in Mind by C. D. Broad occasioned by 
the appearance of the Open Court edition of Boole’s Collected Works, 
Volume I1 (BROAD 1917). In C .  I. Lewis’ Survey of Symbolic Logic 
(LEWIS 1918) we have a clear and sympathetic account of Boole’s 
system in the context of a history of the development of logic, and a 
recognition of the desirability of a rigorous justification for it. Using 
ideas of M. H. Stone, E. Hoff-Hansen, and Th. Skolem, BETH 1959, 
Q 25, has a brief explanation for the success of Boole’s methods, and in 
HOOLEY 1966 there is a proof that Boole’s method for solving Boolean 
equations does give correct results, but no explanation why. There is 
also an essay at an explanation of the “secret” of Boole’s method 
in STYAZHKIN 1969 (original Russian, 1964) which devotes a half- 
dozen pages to it. 

In addition to the logico-algebraic phase of Boole’s work there is 
another which we shall be interested in, that concerned with the logical 
foundations of probability. However, in contrast to the logic, this aspect 
of Boole’s work has left no historical residue. Outside of perhaps a 
simple inequality that bears his name there is no mention of Boole in 
current probability literature, and the latest work that considers Boole’s 
ideas on the subject is KEYNES 1921 that is, one published more than 
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a half-century ago. In his treatise Keynes devotes a substantial amount 
of space to solving various logico-probability problems of the kind pro- 
pounded by Boole, contrasting the simplicity of his own methods with 
those of Boole’s whose methods, moreover, he declares to be constantly 
erroneous. According to Keynes, Boole’s central error is his use of two 
incompatible conceptions of independence of events. Mentioning that 
Boole’s writings are full of originality and genius, Keynes nevertheless 
gives no detailed discussion of this work. 

While the object of our scrutiny-Boole’s work dating from the 1850’s 
-is historical, our investigation is not historical in the more conven- 
tional sense. We include practically no biographical data, nor do we 
trace the origins, the development, and the subsequent influences of 
the ideas. What we shall be occupied with is an intensive and extended 
study of Boole’s mathematical theories which he used for doing logic 
and probability, explicating these never clearly understood theories on 
the basis of new contemporary notions. A brief summary of our results 
now follows. 

Ostensibly Boole’s logical system is about classes. He uses the symbols 
x,y, z, ... to stand for classes and combines them with the familiar 
algebraic symbols x , +, -, +, 0, 1 to form other expressions. But these 
expressions may not represent classes-a product of the form xy always 
does, but a sum x + y does only if the classes represented by x and y 
have no members in common. Expressions which do not represent 
classes are called b) Boole “uninterpretable”, and are formally recog- 
nizable as those which do not satisfy the law 2 = x. Characteristic of 
Boole’s method is that while expressions may be uninterpretable, equa- 
tions always are when suitably interpreted by his rules. Boole states his 
algebraic laws in terms of class variables-commutivity, for example, is 
written xy = yx-yet he uses this and other laws without regard to 
whether the expressions involved are interpretable or not. In 0 1.4 we 
collect together all the laws regarding +, -, x , 0, 1 which Boole 
actually uses and, viewing them as a set of axioms for a mathematical 
theory, find that correct interpretations or models are obtained if we 
consider, not classes, but multisets as the entities over which the variables 
range. By a multiset we mean a collection in which more than one 
example of an object can occur (indistinguishable balls of various kinds 
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in an urn, roots of an equation with multiplicities counted, etc.). And, 
just as the desire to escape the limited subtraction of natural numbers 
leads to their extension to the signed integers, so to reproduce Boole’s 
unrestricted subtraction we are led to introduce the idea of a signed 
multiset. The algebra of signed multisets ($2.2) gives us all the features of 
Boole’s system for doing logic except for division. The set of elements x 

of an algebra of signed multisets which satisfy x2 = x constitute a 
Boolean algebra. Variables restricted to range over this Boolean algebra 
we. call Boolean variables. We show that every algebraic multiset 
equation involving only Boolean variables is equivalent to a purely 
Boolean algebra equation in these variables-- a result the formal 
substance of which Boole often used. 

To solve a logical equation for an unknown Boole makes use of 
“division”, expressing the unknown as a quotient of Boolean poly- 
nomials. The aIgebraic properties required by him for this operation 
are quite rudimentary as compared with, say, division in the algebra of 
rationals. Of greater moment is Boole’s application of his process of 
development (or expansion) to the resulting quotient so as to convert it 
to interpretable form. Here the assignment of values 0 and 1 to the Boolean 
variables produces values +, f ,  $, for the quotient, which values Boole 
uses to separate the corresponding basic products on the variables into 
four types instead of the two as for an ordinary Boolean polynomial. 
From such a development Boole obtains his interpretation in ordinary 
class terms. Clever as they were, the reasons Boole gives for his rules of 
interpretation convinced no one. In $2.7 we show not only how to 

justify Boole’s procedure here but to make sense of it in all repects. We 
do this by going over to rings of quotients of Boolean elements, elements 
not from the original Boolean algebra but from a certain factor algebra. 

In Chapter 3 we present and discuss both of Boole’s versions of 
propositional logic- the one from Mathematical Analysis of Logic based 
on “cases, or conjunctures of circumstances” and the other from Laws 
of Thought based on “instants of time for which a proposition is true”. 
In both versions Boole considered that he had reduced the theory to an 
application of his algebra [of classes]. By clarifying the notions and 
developing appropriate mathematical background we show how to 
make both versions into acceptable, if overly complicated, ways of doing 
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propositional logic. Two of the selections from philosphical literature 
which Boole uses to  illustrate his propositional logic-one being from 
Cicero and the other from Plato-come in for discussion as having 
relevance to the history of ancient logic. 

Boole’s ideas on probability can perhaps be best outlined through a 
discussion of his general probability problem. This problem is: for any 
set of logical conditions involving events (propositions) whose respective 
probabilities are given, determine the probability of any other event in 
terms of these probabilities. On the basis of his unusual logical and 
probability theories Boole gives a solution to this problem, the gist of 
which is as follows. 

Since he takes logical sum disjunctively Boole can use for the probability 
of a logical function whose arguments are events the exact same al- 
gebraic function of the probabilities of these events-provided these 
events are stochastically independent (so that the probability of a pro- 
duct is the product of the probabilities). And, by a principle which he 
enunciates, events must be treated as independent if nothing is known or 
can be inferred respecting their connection. To solve the general problem 
Boole takes the event whose probability is sought (the objective event) 
and the events whose probabilities are given, all of these being known 
logical functions of “simple” events, as themselves simple events. Call 
these new simple events, respectively, w (for the objective event) and 
s, t ,  u, ... (for the given events). The system of equations relating these 
new simple events to their corresponding functions (of simple events) 
which they represent, together with any logical relations given in the 
data, are taken as a system of logical equations. Applying his logical 
methods Boole eliminates from this system all but w, s, t ,  u, . . . and 
expresses w solely in terms of s, t ,  u, . . . , say by an equation w = 

F(s, t, u, . . .). Boole’s methods also supply the information as to which 
combinations of the simple events s, t ,  u, . . . are possible on the data, 
that is, which combinations are not excluded from happening. Call 
the universe of the possible events V. Since the logical equations imply 
that the universe of possibilities is V Boole claims, by another principle 
which he enunciates, that the corresponding probability relationship 
holding between w and s, t ,  u, ... holds not as ordinary probabilities 
but as conditional probabilities on condition V.  The sought for proba- 
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bility is then the conditional probability of F(s, I ,  u, ...) given V, which 
probability can be determined once the (unconditional) probabilities 
3f s, r ,  11, ... are known. These unconditional probabilities of s, t ,  u, ... 
are determined from a system of algebraic equations which Boole ob- 
tains by equating the conditional probabilities of s, t ,  u, . . . on condition 
V to the probability values of the originally given events they correspond 
to. The general solution of this system of algebraic equations in the pro- 
babilities of s, t ,  u, . . . occasioned Boole considerable difficulty. He 
finally succeeded- -so he believed-in showing that the system has a 
unique solution with values in the probability range 0 to 1 if and only if 
a set of consistency conditions, called by Boole “conditions of possible 
experience” is satisfied. With this existence theorem Boole considered 
that the solution of the general probability problem had been effected. 
We doubt that anyone has gone through his long and complicated proof 
and checked it out carefully. (For example, the edited reprint of his 
paper containing the proof, BOOLE 1952 XVII, has all the mathematical 
errors of a typographical nature occuring in the original printing.) We 
carry out this checking chore in 6 5.6. 

In explaining Boole’s ideas on probability we first introduce the pre- 
liminary notion of a simple probability algebra that is, a finitely generated 
free Boolean algebra with a probability measure whose algebraically 
independent generators are stochastically independent. The generators 
are what correspond to Boole’s simple events about which nothing is 
known. In terms of a simple probability algebra we then define a con- 
ditioned events probability space. In such a space we bring out the idea 
of a conditioned event-an idea which was immanent but not explicit 
in Boole’s work. The probability of a conditioned event is taken as a 
conditional probability (of events in a simple probability algebra). Using 
this as a background theory we interpret Boole’s method of solving the 
general probability problem as a kind of embedding of the problem into 
a conditioned events probability space. There are several stages to the 
process and there may not be a unique outcome. One obtains Boole’s 
solution if special assumptions, corresponding to what he believed were 
new principles of probability, are made. Viewing the matter quite 
differently we give our solution using modern linear programming 
techniques. 
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In our concluding chapter we examine the applications which Boole 
made of his methods to  various problems on causes (inverse 
probability), probability of judgements and combinations of 
testimonies. Finally, we present a probability logic--a logic justifying 
inferences from probable premises to probable conclusions  to which 
the study of Boole's work has led us. 

In keeping with our intentions to make this a narrowly focused study 
we include no general appraisal of, or historical background for, Boole's 
contributions to logic. For writings of this nature which have appeared in 
the last couple of decades we may cite: BRODY 1967, VAN EVRA 1977 and 
1984, LAITA 1977, 1979 and 1980, and DUDMAN 1976. There are also 
general histories of logic which contain substantial material on Boole: 
LEWIS 1918, J ~ R G E N S E N  1931, KNEALE and KNEALE 1962, and 
STYAZHKIN 1969. For interesting sidelights on Boole's personal life there 
is an (obituary) article HARLEY 1866 (reprinted as Appendix A in BOOLE 
1952), and one by the distinguished scientist and grandson of Boole, 
TAYLOR 1956. A full length biography of Boole, MaCHALE 1985, has just 
appeared. 
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CHAPTER 0 

REQUISITES FROM ALGEBRA, 
LOGIC AND PROBABILITY 

The mathematical and logical material gathered together here in this 
Chapter 0 includes background notions and results needed for the 
understanding of the main body of the monograph. As my readers may 
be from many diverse fields I have included some elementary definitions 
and topics, as well as the more specialized and recondite results which will 
be referred to in later chapters. Even for those to whom much of the 
material of this chapter is familiar, it can serve the mundane purpose of 
fixing notation and terminology. However, for all except the very hardy, 
the mental malaise which an almost unbroken sequence of definitions 
and theorems can induce is to be avoided for this chapter by following 
the physicians’s medicinal recommendation : “Take as needed”. 

0 0.1. Preliminaries 

We proceed from the working mathematicians point of view that the 
notion of set is clear. Ordered n-tuples of entities are denoted by 
(x,, . . . , x,,), but ordered pairs normally by (x, y) .  A (binary) relation 
on (or over) a set A is a set of ordered pairs of elements of A .  A function 
(or a mapping) ffrom a set A to a set B (notation, f :  A + B) is a set of 
ordered pairs ( x ,  y) where xE A ,  yE B and such that for each xEvl there 
is a unique y E B such that (x, y )  Ef: The set A is called the dohain of 
the function and B is its range. Iffis  a function and (x,y)Efthen, as is 
customary, one writes y = f ( x ) ,  (or, also, x -+ y )  and refers to y as the 
(f-)va/ue of x, or the image of x under the mappingf: We shall occasio- 
nally lapse into the common practice of referring tof(x), an ambiguous 

9 
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value of a function, as a function. A function is injectiiv (or one-to-one) 
if distinct members of the domain have distinct images; it is surjectiw 
(or onto) if each member of the range is the image of some member of the 
domain; it is bijectiw (or a one-to-one corre.~pondence) if it is both in- 
jective and surjective. 

A (binary) operation on a set A is a function from the set of ordered 
pairs of elements of A to A .  In general an n-ary operation is one for which 
the domain of the function consists of ordered n-tuples of members 
of A. On occasion one may wish to consider operations for which the 
range is not limited to the set A-in such cases we say that the operation 
is riot closed in A,  or that A is not closed under the operation. 

For two sets R and S, we take the Cartesian product R x S to be the 
set of all ordered pairs ( r ,  s) where r E R and s E S.  This notion, with R 
and S being the same set, was just used in the definition of a binary 
operation. We wish to define the more general notion of the Cartesian 
product of a family (= set) of sets. A function from a set 1 to a family 
of sets A is called an indexed set ( A  is indexed by  I ) .  A common notation 
is { A i  1 i E  I ) ,  where for each i c  1, A ,€  A .  Now by the Cartesian product 
of the family A ,  X{A,  iE I ) ,  is meant the set of functions f on I for 
which,f(i)E Ai, for all i E  1. 

A relation R on a class A is said to be an equivalence relation on A if 
i t  is reflexive ( R ( x ,  x )  holds for all xE A ) ,  symmetric (R(x ,  y )  implies 
R(y ,  x)) and transitive ( R ( x .  y) and R(p, z )  imply R(.u, z)) .  By putting 
together all elements of A which are R-related to each other into one 
and the same class, one effects a separation of A into mutually exclusive 
subclasses-the R-equivalence classes of A .  

5 0.2. Algebraic structures 

Modern abstract algebra-to whose origins Boole in no small measure 
contributed-has singled out and studied in great depth a varied host 
of algebraic structures. In this monograph we shall be concerned with 
a number of well-known structures, which are briefly mentioned in this 
section, as well as some new ones especially introduced by us in Chapter 2 
to give meaning to, and to make rigorous, Boole’s logical system. 
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0.2.1. An (algebraic) .structure, or (mathematical) system, or an algebra, 
consists of a non-empty set A together with a finite number of operations 
0,, . . . , On, on A where for each i ( I  5 i 4 m) Oi is an ni-ary operation 
(11 ,  2 0). Such a structure we denote by the ordered (m + 1)-tuple 
, (A,  0,, . . . , O,,,). The set A is referred to as the universe of the structure. 
Any other (m + 1)-tuple ( B ,  O;, . .., Oi,? in which 0; is also an ni-ary 
operation (on B )  will be said to be njtlie same type as ( A ,  0,, ..., On,>. 
How the operations for a structure are to be given is not specified-it 
can be done explicitly, but mostly this will be done “axiomatically”, 
i.e. by stipulating certain conditions that the operations are to satisfy. 
The relationship between structures and axioms will be discussed in 
5 0.3. 

In this monograph we shall generally though not exclusively be dealing 
with structures that involve at most two binary operations, conven- 
tionally denoted by + (addition) and - (multiplication), and two con- 
stants or nullary operations 0 (zero) and 1 (one, unit). The term triuial 
will be used for structures that have merely a singleton set for a universe. 

EXAMPLE 1. A structure ( A ,  .> is a semigroup if the indicated binary 
operation is associative. 

One can have an addirirv semigroup-this simply means using + as 
the symbol for the binary operation. 

EXAMPLE 2. A structure ( A ,  +, is a srmimodule if 
(i) (A,  +) is an additive semigroup, 

(ii) a + b = b + a for all a, b E A ,  and 
(iii) a + x = b has, for any a, bE A ,  at most one solution for x 

A prime example of a semimodule is the structure of the natural 
(in A). 

numbers under addition. 

EXAMPLE 3. A structure (G, ., 1) is a group if 
(i) (G,  .) is a semigroup, 

(ii) 1 . a = a .  1 = a for all a €  G, and 
(iii) a - x = x . CI = 1 has, for any a €  G, a solution for x (in G). 
A structure with multiplication in which there is an element 1 such that 
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1 . a = a .  1 = a for anv a of the structure, is said to possess or have a 
one (or mi/). I t  is easily shown that a structure can only have one unit. 
A group is referred to as being an additive group if the operations are 
written + and 0 instead o f .  and 1 .  

EXAMPLE 4. A structure ( M ,  + ,0) is a module if it is an additive group 
and + is commutative over M. 

A prime instance of a module is the structure of the integers under 
addition. There is also the more general notion of an R-module-a 
module whose elements can be suitably multiplied by elements from 
some ring R.  

EXAMPLE 5. A structure ( S ,  +, .) is a semiring if 
(i) ( S ,  +) is a semimodule, 

(ii) ( S ,  .> is a semigroup, and 
(iii) multiplication is distributive over addition. 

EXAMPLE 6. A structure (R, +, ., 0) is a ring if 
(i) ( R ,  +, 0) is a module, 

(ii) < R ,  .> is a semigroup, and 
(iii) multiplication is distributive over addition. 

REMARK I ,  In all the structures to be considered in this monograph both 
+ and . will be commutative and associative; hence we shall tacitly 
assume that sums and products may be arbitrarily parenthesized and 
rearranged. Moreover, as is customary, an shall mean a . a . . . . . a for n 
factors and nu shall mean a + a + ... + a for n terms. For positive 
integers m and n we clearly have 

am . an = am+n , 

ma + nu = (m + n) a, 

( p ) n  = a m n ,  

n(ma) = (nm)a. 

0.2.2. Let BI = ( A ,  0,, .. ., On,) and 93 = ( B ,  O;, . .., 0;) be structures 
of the same type. As is customary in abstract algebra we shall use the 
same symbol, sayf;, for both Oi and 0;. (Confusion is usually avoided 
by noting, in context, whether the arguments off, come from A or from 
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B.) A mapping tp : A --t B having the property that for any i (1 2 i I in) 
and all a, ,  . . . , uni E A 

is said to be a homomorphism of 91 into %. If additionally the mapping 
is one-to-one it is called a monomorphism or an embedding of % into B 
(or, 91 is isomorphically embeddable in B); if the mapping is one-to-one 
and onto, we say that it is an isomorphism, or ill and B are isomorphic. 

A structure ill = ( A , f , ,  . -. , f , , )  is a substructure of B = (B,f,, . . . , f , )  
if A is a (nonempty) subset of B and the operationsf, (for %), with argu- 
ments restricted to A ,  are closed in A.  

Operations of a structure % not explicitly listed in a structure B may, 
if convenient, be thought of as being present “vacuously”, i.e. as being 
operations with an empty set of values. 

EXAMPLE 7. If 91 = ( N ,  +, .) is the semiring of the natural numbers and 
8 = ( I ,  +, ., 0) the ring of the integers, then the mapping q : N - +  I, 
where tp(n) = +/I ,  is an embedding of % into 8; that is, the substructure 
of 3 whose universe is the positive integers is an isomorphic image of 
the semiring of the natural numbers. Other examples: the integers are 
(isomorphically) embeddable in the rationals via n -+ n/ l ,  and the reals 
in the complex numbers via a --f a + Oi. 

Given an indexed set {ai I i €  I ]  of algebraic structures of the same 
type we can define a new structure ‘$ = n<\ui I iE I )  of the same type, 
called their direct product (or in some cases, as for modules and rings, 
their direct sum.) The universe of ‘$ is the Cartesian product P = 
X(Ai  I i c  I )  of the universes of the ‘$Ii. If a E P we denote its i-th com- 
ponent by (a)i. The v-th operationf, for P is defined by 

that is, the n-ary operation f, for P is defined “componentwise”. 

EXAMPLE 8. If CU and 23 are two structures of the same type as that 
for rings, then their direct sum would have operation + and - defined by 
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The zero for the direct sum would be (0,O). 

0.2.3. We shall later be referring to certain substructures of direct sums 
called “subdirect sums”. Let G,, . . . , Gi, . . . be an indexed set of structures 
of the same type (e.g. rings) and 6 their direct sum. A substructure b 
of E is a subdirect sum of G,, ..., Si, ... if its universe H is such that, 
for any i, the set of i-th components of the elements of H include Si, 
i.e. each element of the universe of Ei occurs at  least once as the i-th 
component of some element of H .  

0.2.4. A function 0 :  A +- A is a cotigruence relation on an algebraic 
structure ?L = ( A , f , ,  . . . ,A , , )  if it is an equivalence relation on A which 
is preserved under the operations of A ;  that is, using a = b(0) to denote 
that the relation of equivalence holds between a and b, if 

,f&7,, . . ., uni) f;.(b,, . . * ,  b,,? ( 0 ) -  

whenever aj = bj(0), j = 1 ,  . . . , t i i .  Such a congruence relation induces 
a new algebra, the quotient (or factor) algebra ?[/so, whose universe is 
the set of equivalence classes, A / - o ,  and whose operations f i  (we use 
the same symbols as for ?[) are given by 

with [aledenoting the equivalence class determined by a. It can be readily 
shown that these& are well-defined, i.e. do not depend on the particular 
representatives of the equivalence classes shown. Also one can show that 
the mapping 

h e :  A + A / - -  0, h ~ ( a )  = [ U ] O  

is a homomorphism of ?L onto %/I=~ .  
A congruence relation on ?L is naturally induced by any homomor- 

phism p : Y l +  9-l from ?L onto a structure 23, namely by having elements 
a, and a, equivalent if they have the same image under q. If we denote 
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this equivalence relation by flV then we have the well-known and basic 
result: 

THEOREM 0.21 (Homomorphism theorem). If q~ : PL + 23 is a homo- 
morphism from ‘% onto % and flp is the induced congruence relation on PI, 
then is isomorphic to 93 under the mapping [a],,  --f r ( a ) .  

0 0.3. First order theories, models, extensions 

0.3.1. As mentioned in the preceding section, a structure, or kinds of 
structures, can be singled out by stating conditions (“axioms”) which 
the operations of the structure are to satisfy. Independently of any struc- 
ture, a set of such conditions in a precisely formulated language, in 
which only the logical symbols have specific meaning, is called a formal 
axiomatic theory. The symbols of the language are of two kinds: 

A. Logical symbols 
(i) connectives: A (and), V (or), -? (not), 

--f ( i f . .  ., then), t) (if and only if); 

(ii) variables: x, y ,  z ,  . . . ; 
(iii) quantifiers: V x  (for all x) ,  1 - v  (for some x); 
(iv) = (identity, equality). 

B. Non-logical symbols 
(i) n-ary predicate symbols; 

(ii) n-ary function symbols. 

The logical symbols of the language have a fixed interpretation-as 
indicated above in A. by the parenthetical English phrases; the non- 
logical symbols are open to interpretation : the variables are thought of as 
ranging over some non-empty set called the domain (of individuals), 
the predicate symbols are interpreted as relations over the domain, and 
the function symbols as operations on the domain. In what follows 
predicate symbols will not be mentioned, except perhaps incidentally, 
since the theories we are concerned with in this monograph can be stated 
using only function symbols. 
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A (formal) term is defined by generalized induction as follows : 
(i) a variable is a term, 

(ii) if t , ,  ..., t ,  are terms and f is an n-ary function symbol, then 

Similarly we define formula by: 
f ( t , ,  . . . , I,) is a term. (Constants are here included, under n = 0.) 

(i) If P is an n-ary predicate symbol (or the 2-ary symbol = )  and 
t l ,  ..., t ,  are terms, then P ( t ,  ,..., t , )  (or t l  = t 2 )  is a formula. 

(ii) If A and B are formulas, then so are -4, ( A  A B), ( A  V B),  
( A  --f B)  and ( A t )  B).  

(iii) If A is a formula and v a variable, then V v  A and 3v A are for- 
mulas. 

The kind of formulas specified in (i) are referred to as atomic; formulas 
of the form (ii) are called, respectively, a negation, conjunction, disjunc- 
tion, implication (or conditional), and equivalence (or, biconditional). 

Formal axiomatic theories expressible in  the language just described 
are called j r s t  order theories (also elementary); the epithet “first order” 
is used to indicate that the quantifiers apply only to individual variables 
and not to function or predicate variables. We have made no mention 
of logical axioms or of deducibility, implicitly taking such matters for 
granted as is customary in all branches of mathematics except founda- 
tions studies. However we shall have occasion to refer to a simple form 
of the “deduction theorem”. Let kTcp denote that cp is deducible in T 
(i.e. from the axioms of T), and p kTcp that cp is deducible in T from the 
premise p (holding free variables fixed). Then : 

DEDUCTION THEOREM. I f  t+b FTcp, then t-T+ 4 cp. 

In Chapter 2 we are going to present certain axiomatically formulated 
theories whose models, we believe, are what Boole’s “system” is about. 
The notion of a model has a precise meaning: a given structure is a 
model for a given first order theory if, when the formal function symbols 
of the theory are interpreted as operations on the universe of the struc- 
ture, the axioms become true sentences about the structure. Thus what 
are traditionally called “groups” are structures which are models of the 
group axioms. A set of such axioms is given in Example 3 of 9: 0.2, 
taking the - and 1 as formal symbols. 
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0.3.2. A fundamental result about first order axiomatic theories is the 
following. 

GODEL COMPLETENESS THEOREM. A formula of a j r s t  order theory is 
provable from the axioms (i.e. is a theorem) if and only if it is true of (or 
in) each model of the theory. 

An equivalent statement is the following: a first order theory is con- 
sistent (i.e. no contradiction can be derived from the axioms) if and only 
if the theory has a model. 

0.3.3. Model theory investigates the relationship between axioms and 
models. This has been done in great depth and there are many significant 
results. The following happens to be a somewhat minor result, but one 
which we shall have occasion to refer to later. 

A formula of a first order language is a McKinsey formula' if i t  is a 
disjunction of formulas which are either atomic or the negation of an 
atomic formula and at  most one of which is atomic. A first order theory 
is a McKinsey theory if it is equivalent to a theory all of whose axioms 
are McKinsey formulas. Relating to such theories there is the following 
result (SHOENFIELD 1967, p. 94, Problem 7(f)) : 

THEOREM 0.31. A theory T is  a McKinsey theory if and only if every 
substructure of a model of T is  a model of T and every direct product of 
models of T is a model of T. 

0.3.4. We shall later be referring to certain theories as being decidable 
or undecidable. An axiomatic theory is decidable if there is a general 
mechanical procedure for determining whether or not any arbitrarily 
given formula of the theory is a theorem. In the contrary case the theory 
is undecidable. Before stating the next result of interest to us a brief 
explanation is needed. 

So named in SHOENFIELD 1967, p. 94. Despite Horn's explicit mention 
(Journal ofSymbolic Logic, Vol. 16 (1951), p. 14) of their first use by McKinsey, 
they are now called "Horn" formulas. 
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Although our work is exclusively with axiomatic theories, it is possible 
to specify theories by other means than by giving a set of axioms. For 
example, if 3 = ( A ,  f, .) is a given structure with operations + and - 
over A ,  then we may define the theory of% as the set of formulas in 
two binary function symbols (corresponding to + and a )  which are 
true of 3. Thus we may define the theory of integers, J, as the set of 
formulas (with two binary function symbols corresponding to + and a) 

which are true of the structure 8 = (Z, +, -) where Zis the set of integers 
and + and.  have their usual significance as operations on I.  A theory T, 
is a subtheory of a theory T, if each sentence which is valid in T, (true 
of all models of T,) is also valid in T,. Concerning the theory J there 
is the following result ( T A R ~ K ~ - M ~ ~ T ~ w ~ K ~ - R ~ B ~ N S O N  1953, p. 68) : 

THEOREM 0.32. The theory of’ integers J, and any of its subtheories with 
the same symbols, is undecidable. 

0.3.5. We wish to make a few observations about solving algebraic 
problems by going over to an extension structure. 

Suppose we are faced with the task of finding an integer no such that 
rp(n,) is true. A commonly used tactic is to view it as a problem in some 
structure which is an “extension” of the integers, for example the rationals, 
use theorems true about all fields (the rationals being one) and, with the 
wider techniques such as unrestricted division available, derive conse- 
quences. If in this manner we should find a rational integer no/l satis- 
fying p(x) then we claim p(no) is the case. To what extent is this proce- 
dure justifiable? 

Before answering this question let us make it precise. Consider two 
mathematical structures 3 = (Z, 0, I ,  +, .) and El = (Q, 0/1, 1 / 1 ,  +, .) 
where Z is the set of integers, Q the set of rationals and the other symbols 
have their usual significance in such contexts. By virtue of the customary 
mapping of the integers into the rationals, / I  : Z + Q, where 

n 
h(n) = - 

1 

h(n + m) = h(n) + hfm),  

h(nm) = h(n) . h(m) ,  
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we have that h is an isomorphism between ;j and the substructure of Q 
whose universe is h(Z), the set of images of Z under I7 (i.e. ,3 is embedded 
in SZ by h). Since the two structures are of the same type we can use the 
same first-order language for both-which language would have as its 
non-logical symbols 0, 1, +, -. The condition ~ ( x )  we now take to be a 
formula in this language (and for simplicity let us suppose that ~ ( x )  has 
only the one free variable x present). Now we rephrase our question as 
follows : 

Under what conditions is the formulaq(x), when interpreted as a for- 
mula about Z, true of the integer n if ~ ( x ) ,  interpreted as a formula about 
Q, is true of the rational integer n/l  ? 

We assume it is clear to the reader what is meant by the phrase “ ~ ( x ) ,  
interpreted as about the structure 9I, is true of a (an element of the uni- 
verse of 91)”; we abbreviate this phrase by 

91 I= q4al. 

(Tarski’s formal semantics gives this notion a precise meaning.) With 
this notation our question can now be succinctly and precisely stated: 

Does OI= ~1 [T] imply ;3 ,t=y[n]? 

It can be quite readily seen, by virtue of the isomorphism properties 
of It, that the answer to the question is “yes” if ~ ( x )  is a purely algebraic 
equation built up from the non-logical symbols 0, 1, +, and the variable 
x, and is still “yes” if ~(x) is any propositional compound of such equa- 
tions. However, if quantifiers are present in ~ ( x )  the answer can be ‘?Io”- 
for example let q(x)  be 

3Y (xu = 11, 

a formula expressing the idea that x has a multiplicative inverse. Here, 
since there is no multiplicative inverse for the integer 1 + 1, 

is true, but 

Sl=F47[1 + 11 

is false. On the basis of the foregoing discussion of a specific case we 
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can omit the readily supplied details and simply state the corresponding 
general result : 

Let 3 be a structure and 23 a structure of the same type as % in which 
'%I is embedded by a mapping 12. If ~ ( x )  is any quantifier-free formula in 
the language for ?I, then 

?I I= ~ [ a ]  if and only if 'H L= v[ / i (a) ] .  

We want to point out that what we have here is a (quite modest) 
model-theoretic result and as such is not dependent in how, or whether, 
we formalize the theory of the structure a, or 23. Of course there is no 
objection to using an axiomatized theory that has $3 as a realization 
(e.g. the theory o f j e l d s  in our example) to derive consequences about 
%-such a theory can be much stronger than the theory for 3 (in our 
example, the theory of integral domains). Still, no matter how we establish 
23 != y[[h(a)], we can assert 3 != y([a])  if the conditions of the above- 
stated result apply. 

5 0.4. Semirings. Commutative rings with unit 

0.4.1. An additive structure, that is a structure with a binary operation 
written '+' and called 'addition', has a zero if there is an element, 0, 
such that for all a in the universe, 0 + a = a + 0 = a. For a semiring 
one can show that such an element is uniquely defined by this property 
and, moreover, is such that 0 . a = a .  0 = 0. 

An element a of a multiplicative structure with zero is a nilpotent if, 
for some n, a" = 0. Thus a structure has no nonzero nilpotents if, for 
all a and all n,  a" = 0 + a = 0. For this property (i.e. no nonzero nil- 
potents) the following theorem asserts that in a semiring one need only 
examine the case n = 2:  

THEOREM 0.41. In a semiring with 0, 

f o r  aN a, a2 = O +  a = 0 

for all a, a" = 0 - t  a = 0 .  
implies 

The proof is by induction on n, separating out the even and odd cases. 
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One can also speak of additive nilpotents, that is elements such that 
for some n, nu = 0. A structure having additive nilpotents is to be dis- 
tinguished from one having characteristic n-in this latter case one has, 
for a fixed n,  na = 0 for every a in the universe of the structure. If there 
is no such n,  the structure is said to be of characteristic 0. A structure 
with no nonzero additive nilpotents must be of characteristic 0, unless 
it is a trivial structure and has only the element 0. 

0.4.2. The following theorem summarizes well-known elementary results 
about rings. We shall tacitly use standard conventions, e.g. ab = a . by 
a - b = a + ( -b) ,  -ab = -(ab), etc. 

THEOREM 0.42. In a non-trivial commutative ring with unit, the following 
hold: 

1 f 0 ,  l a = a l  = a ,  

u + b = b -+ a, u + (b + C) = (U + b) + C ,  

a + 0 = a, a + x = 0 has a unique solution x = -a ,  

ab = bay u(bc) = (ab) c, 

a .  0 = 0 .  a = 0, a(-b) = ( -a )  b = -(ab) = -ab, 

u(b + c) = ab + ac, 

a m .  an = a m i n ,  

a(b - c) = ab - ac .  

(arn)” = amn, 

ma + na = (m + n)a, n(ma) = (nm)a, 

for all integers m and n. 

0.4.3. Certain substructures of rings called “ideals” are of considerable 
interest. If 3 = (R, +, ., 0) is a ring and A a nonempty subset of R, 
we say (A, f, -, 0) is an ideal of 8 if 

(i) (A, +, 0) is a submodule of 8, and 
(ii) A is closed under multiplication by elements of R (ar E A if a E A 

It is easy to show that an ideal of a ring is a subring (which, however, 
and r E R). 
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may be trivial and contain only the 0). Equivalently, one can say (A, +, 
., 0) is an ideal of '8 if A is closed under subtraction (a  - b E A if a, b E A )  
and under multiplication by elements of R. 

In what follows we shall adopt the customary informal practice of 
referring to an ideal as being a set, metonymously using the universe of 
the structure for the structure itself. 

As we shall later see, principal ideals will play an important role in 
our work:-if a €  R, % a ring, then the set of elements 

{at 1 f E %} 

is an ideal of ?h' called the principal ideal (generated by a) ;  it is denoted 
by (a). As % has a unity we know that a €  (a). Also, it is readily shown 
that (a) is included in any ideal of 83 having a as a member. Hence (a)  
is the smallest ideal of % having a as a member. 

With respect to an ideal N of a ring 3, one can divide the elements 
of R into mutually exclusive classes, the residue classes (modulo N ) :  
any two elements of R are in the same class if their difference is an 
element of N. A given residue class is representable in the form a + N ,  
where a + N = fa + n 1 n € N ) ,  in place of a one can have any member 
of the given class since a + N = a' + N if a and a' are in the same residue 
class. Using the residue classes as elements, defining operations + and . 
on these classes by 

(a  + N )  + ( b  + N )  = (a  + b) + N ,  

(a  + N )  . (b  + N )  = (ab) + N ,  

and with zero as 0 + N = N, one readily shows that the structure so 
obtained is a ring, the residue class ring (also quotient or factor ring), 
denoted by %IN. It can be readily established that the correspondence 
a -+ a + N is structure-preserving: 

THEOREM 0.425. The mapping a + a + N,  from a ring !?I to its residue 
class ring %IN is a homomorphism of rings. 

0.4.4. If in a multiplicative structure with zero there is an element b # 0 
such that ab = 0 for a # 0, then a is said to be a (nonzero) divisor of 
zero. A commutative ring without divisors of zero is an integral domain, 
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the preeminent example of such a structure being the integers under the 
usual niultiplication and addition. A non-trivial commutative ring in 
which the nonzero elements form a multiplicative group is a field; with 
the customary operations, the set of rationals, the set of reals, and the set 
of complex numbers are all fields. 

In abstract algebra a so-called “structure theorem” is a theorem 
establishing a significant structural relationship between a type of struc- 
ture and other, generally simpler, types of structures. Of interest to us 
later will be the following structure theorem of McCoy 1948, p. 123: 

THEOREM 0.43. In a commutative ring 9l with unity the following condi- 
tions are equivalent: 

(i) 9l is a subdirect sum of integral domains; 
(ii) !N has no nonzero nilpotents; 
(iii) % is a subring of a direct sum ofjields. 

REMARK 0.44. A ring 9? which is a direct sum of rings is without additive 
nilpotents if and only if each component ring likewise is without additive 
nilpotents. 

By way of justification for this remark we note that if any component 
ring has an additive nilpotent a,  say, then a #  0 and nu = 0. But 
then the element of R having a as its p-th component and 0 elsewhere is 
an additive nilpotent of R. Conversely, if A # 0 and nA = 0 for some 
A E R,  then na, = 0 for each component a, of A .  But since not all com- 
ponents of A can be 0, at  least one a, # 0. 

8 0.5. Boolean algebras and Boolean rings. Propositional logic 

The algebraic structures to be described in this section are named after 
the man whose work in logic and probability is the subject of this 
monograph. The theory of these structures is universally regarded as 
the outcome of a systematization and simplification of Boole’s unclear 
ideas. It is our contention, however, that the path leading from Boole’s 
ideas to Boolean algebra is not the only way to systematize Boole’s 
conceptions and, in Chapter 2. we shall show how this can be done using 
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other structures which are essentially different from Boolean algebras. Not 
unexpectedly, however, Boolean algebras and Boolean rings will play 
a large role in our work and we here summarize various results which we 
shall he referring to later on. 

0.5.1. A Boolean algebra ‘8 -= ( B, +. -, ’, 0, 1) is a structure with two 
binary operations - t- and ., a unary operation ‘, and two constants (nullary 
operations) 0 and I ,  satisfying the following axioms: 

(i) ab = ba, a + b = b + a ,  
(ii) (ab) c = a(bc), 

(iii) 1 . a = a, O + a = a ,  
(iv) aa’ = 0, a + a ’ =  1 ,  
(v) a(b + c) = ab + ac, 

(vi) aa = a, a + a = a .  

(a + b) + c = a + ( b  + c) ,  

a + bc = ( a  + b) (a  + c ) ,  

(This is not an independent set of axioms-for example, the second 
equation in (v) is derivable from the others.) 

The properties of Boolean algebras we have just written down are 
expressed by means of the symbols +, ., ’, 0, 1, =, and variables. If we 
consider these as formal symbols of a first-order language (§0.3), we 
then have a first-order axiomatic formulation of the theory of Booleati 
algebras, BA. Any Boolean algebra, by definition, satisfies these axioms, 
i.e. the axioms are true of any Boolean algebra, and any stafement 
deducible from the axioms is true of (valid in) all Boolean algebras. 
Conversely, by virtue of the Completeness Theorem (9 0.3), any formula 
expressed in the first-order language which is true of all Boolean algebras 
is deducible from the axioms. However, as the following theorem indicates, 
special preeminence should be accorded to validity in a two-element 
Boolean algebra. 

THEOREM 0.51. Any Boolean polynomial equation of the form f (a , ,  . . . , a,,) 
= 1, if true in a two element Boolean algebra (whose universe would then 
be the set (0, I}), is true in all Boolean algebras, and hence is deducible 
from the axioms. 

Many assertions in the language of Boolean algebra can be reduced to 
the particular form f ( a , ,  . . . , an) = 1 just mentioned in Theorem 0.51. 
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We have the following theorem, in which the notion of inclusion occurs 
and is defined by 

a <  b if and only if ab = a .  

THEOREM 0.52. Any Boolean polynomial equation f (a , ,  . . . , a,,) = 

g (a,,. . . , a,,), any Boolean polynomial inclusion f (a , ,  . . . , a,,) g(a,, . . . , a,,), 
and any conjunction of either or both of such relaiions, is equivalent to an 
equation of the form h(a,, . . ., a,,) = 1. 

THEOREM 0.53. If the polynomial equation f (a , ,  . . . , al,) = I is added as 
an axiom to the axioms for  BA and i f  g(a,, . . . , a,,) = 1 is deducible from 
this enlarged set, then the inclusion f (a , ,  . . . , al,) 2 g(a,, . . . a,,) is deducible 
from the axioms of BA alone. 

This result (Theorem 0.53) follows readily from the fact that “ I f  
f = 1 then g = 1” and ‘yfc g” are equivalent in  the two-element Boolean 
algebra (0, I]. For if g = 1 follows from f = I in BA then ‘tf= 1 
implies g = I”  is a theorem, and thus valid in a two-element Boolean 
algebra. But by the just mentioned result f C g is also valid there and so, 
by Theorems 0.51 and 0.52, provable in BA. 

As a simple consequence of Theorems 0.51 and 0.52 we have the well- 
known 

THEOREM 0.535 (Law of Development). 

f ( a l ,  az, ..., a,,) =f(l, a2, ..., 0,) + f @ ,  a,, .. ., a,,) a; 

Theorem 0.51 provides the basis for connecting Boolean algebra with 
propositional calculus. The connection of Boolean algebra with the 
algebra of sets is provided for by Stone’s representation theorem. In the 
statement of this theorem afield of sets is a collection of subsets of a set 
which contains this set and the empty set, and is closed with respect to 
union, intersection, and complementation relative to the set. 

THEOREM 0.539 (Representation Theorem). Ei,erji Booleun algebra is 
isomorphic to afield of sets. 

0.5.2. A Boolean ring is a commutative ring with unit which, in addi- 
tion, satisfies the idempotency condition: 2 = aa = a. 
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Although the definitions of Boolean algebra and Boolean ring look 
different it is well-known and easily shown that the theories of Boolean 
algebra, BA, and Boolean rings, BR, are equivalent in that there is a 
translation of any sentence of the one theory into a sentence of the other, 
such that the one sentence holds for Boolean algebras if and only if the 
other holds for Boolean rings. To state this properly we need to distin- 
guish between the operations of BA and BR. We do this by using a 
subscript “B” on the operations of BA (except for ’) and a subscript 
‘‘A” on the operations of BR. The translation from BA to BR is effected 
via 

U + , b  = U + A b  + A U ’ A b ,  

a *, b = a ‘ A  6, 

a’ = 1 + d a ,  

and the translation from BR to BA via 

a + A b = a  .Bb‘ + B a ’  .Bb,  

a . A b  = a . B b ,  
with 0, = 0, in both cases. 

It can be verified that if one deletes from the twelve axioms (i)-(vi) the 
(redundant) a + bc = (a + b)(a + c )  then except for the last, namely 
a + a  = a, the equations hold also for Boolean rings when the 
operations are interpreted as those of a Boolean ring (with a’ = 1 + a ) ;  

and if the exception a + a = a is replaced by a + a  = 0, then the 
resulting set of equations becomes a set of axioms for Boolean rings. One 
can formulate the theory of Boolean algebra in many ways--the 
particular set of axioms we have chosen brings to the fore the numerical 
analogy (which can be further enhanced by thinking of a’ as 1 - a). 

One can readily show (or check by a Venn diagram) the following: 

THEOREM 0.54. In the theory BA the statements 
(i) 3v(w  = c1 + vc), 

(ii) a < w 2 c1 + c, 
(iii) w = a + wc, 

are all equivalent. The same theorem is true of BR if the + is that of BR, 
provided that one adds the hypothesis ac = 0. 
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THEOREM 0.55. In BA or BR, 

a'b = 0 c, 3x(ab = b )  
and 

f (  1) f(0) = 0 - 3x(f(x) = 0).  

In both BA and BR a set otelements is mutually exclusive if the product 
of any two of them is 0, and is exhaustive if the sum of all is 1. 

THEOREM 0.56. In BA or BR, ifa, b, c, and d are mutually exclusive and 
exhaustive then 

( a  + b) w = a + d 

w = a + wc and d = 0. 
if and only if 

0.5.3. Since a Boolean algebra is also a ring, our gO.4 discussion of 
ideals in rings carries over to Boolean algebras with as the addition. 
We can also express the definition of an ideal in a Boolean algebra using 

as follows: a subset I of a Boolean algebra 23 is an ideal of b if its 
elements satisfy the condition 

a + B b € I  ifandonlyif a E I  and b E l  

Principal ideals will be of special interest to us. It is easy to show that 
the principal ideal generated by an element a consists of all elements b 
such that b < a, i.e. all the subelements of a. Since this set is also {ab I b€ B)  
it is convenient to introduce the notation a% for this ideal. The elements 
of the ideal a d  form a Boolean algebra under the + and of b restricted 
to a%, with a and 0 as the 1 and 0 of the algebra, and with relative 
complementation, i.e. ae', as the complement of an element e. We denote 
this Boolean algebra by b I a. We have the following simple result. 

THEOREM 0.57. The mapping h : B + B I a, defined by 

h(b) = ab, 

is a homomorphism whose kernel (set of elements going into 0 )  is  a'% and 
which is injective (one-to-one) over the subset a% of B. 

An ideal I in a Boolean algebra, as in a ring, separates the elements of 
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the algebra into mutually exclusive equivalence classes, the residue 
classes, via the condition: two elements a, b E B are in the same residue 
class if their symmetric difference a +., b is in the ideal. We use [b] 
(= b+,I) to denote the residue class which is determined by the element 6 .  
The residue classes form a Boolean algebra, %/I,  with operations speci- 
fied by 

[a1 + [bl = [a + A  b l ,  

[a1 [bl = [ably 

[a]’ = [a’] 

and with [O] and [l]  as the 0 and I of the algebra. In the present context 
Theorem 0.425 says that the mapping h : B + B/Z, k(b) = [b] ,  is a homo- 
morphism. The following related result is peculiar to Boolean algebras 
(SIKORSKI 1964, p. 3 1 ) :  

THEOREM 0.58. Under the ntapping h(b) = [b] the algebras 8 1 a’ and 
%/(a) are isomorphic. 

What Theorem 0.58 tells us, in other words, is that the Boolean algebra 
of subelements of a’ is the same as the algebra obtained by identifying 
elements of B whose symmetric difference is contained in a. 

Dual to the notion of an ideal of a Boolean algebra is that of a filter: 
a non-empty subset F of a Boolean algebra is a$lter if the elements of F 
satisfy the condition 

abE F if and only if a €  F and b €  F .  

The principal filter generated by an element a of a Boolean algebra 23 
consists of all the superelements of a, i.e. the set of elements b such that 
a <  b or, equivalently, the set {a  + B  b I bE B}. Hence we shall use the 
notation a + B  b) (also a + B  B )  for the principal filter generated by a. 

0.5.4. In what follows we are contemplating Boolean algebras with 
finite universes since that is all we shall be concerned with in our discus- 
sion of Boole’s probability theory. However most of what is said here is 
readily extended to arbitrary Boolean algebras. 

A basic product (or constituent) on n Boolean elements a,,  . . . , a,, is a 
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product of the form A , A ,  A ,  in which each Ai is either ai or a:. The 
set of elements {a,, . . . , a,} is said to be (algebraically) independent if each 
of the 2” products of the form A , A ,  ... A ,  is different from 0. A set of 
elements (gl , .  . . , g,} of a Boolean algebra B is said to be a set of generators 
for % if each element of B, other than 0, is equal to a sum of basic pro- 
ducts on g,, . . . , g,. A set of generators G for a Boolean algebra B is said 
to bepee  if every mapping 91 of elements of G into the universe B’ of 
an arbitrary Boolean algebra %‘ can be extended to a homomorphism 
v’ of B into B’. Intuitively, the idea is that the elements of G are so free 
of entangling relationships (other than those required of any  set of 
Boolean elements) that they can be “identified” (via the homomorphism 
p’) with elements of any Boolean algebra without engendering a contra- 
diction. A Boolean algebra that has a set of n free generators is said to  
be p e e  (with n free generators). We state (in somewhat weaker form) a 
well-known result (SIKORSKI 1964, p. 43) : 

THEOREM 0.59. A Boolean algebra is free (with n free generators) i f  and 
only if it is generated by an independent set of n free generators. 

One can show that a Boolean algebra with n free generators has 2‘“ 
elements, where n 2 0. In particular then a free Boolean algebra has to  
have at  least two elements. 

0.5.5. Propositional logic. Using (proposirional) variables 

x, Y ,  z, XI ,  X,, . . . 

and logical connectives 

(not), A (and), V (or), + (if ..., then), 

one constructs a formal language for use as a propositional calculus PC. 
A formula of PC is defined recursively by stipulating: 

( I )  any variable is a formula, 
( 2 )  if pl and p are formulas, so are 

7% (FAY), (91VYh and (9-f Y)-  

In well-known fashion there is associated with any formula of PC 
a truth-table; those formulas whose associated truth-table comes out with 
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all T's are the ralid formulas of PC. The valid formulas of PC can be 
axiomatized (in many ways), i.e. one can give a recursive initial list of 
valid formulas of PC and a set of rules (of inference) by which, from the 
initial list, all valid formulas are derivable. If p is derivable we say it is a 
theorem of PC and denote this by writing t-p. 

By a trivial modification of PC we can obtain a quantiferfree monadic 
predicate calcirlus (or, a general term calculus), namely by replacing the 
propositional variables by monadic predicates X ( t ) ,  Y(t) ,  Z(t ) .  . . . re- 
presenting propositional functions of one individual variable (the same 
variable throughout). 

The connection of Boolean algebras with PC is established by con- 
structing its Lindenbautn algebra. Two formulas p and y of PC are logi- 
cally equivalent, written p = y, if 

t - ( (F+Y)A(Y-tp?)) .  

In terms of the truth-table notion, p and ly are logically equivalent if, 
when entered from their union set of variables (using vacuously occurring 
ones if necessary), their truth-tables are the same. It is straightforward 
to show that logical equivalence is an equivalence relation on the set F of 
formulas of PC and hence divides this set into mutually exclusive and 
exhaustive equivalence classes. The unique equivalence class determined 
by a formula q is denoted by Ip 1, and the set of equivalence classes by 
F/r .  This set has at  least two members since there are two non-equi- 
valent formulas, e.g. X A  lX and X V  lX. We make FIE into an 
algebra 2 = ( F / = ,  Ig, ., 0, 1) by defining operations on it via 

Id' = Ild, 
I91 IYI = I9 A VI,  

191 f B l y /  = Ipvlyl, 

0 = IXA -+I, 
1 = IXV 7x1. 

Concerning this Lindenbaum algebra 2 we have : 

THEOREM 0.595. Under the indicated operations, 2 is a Boolean algebra 
with 0 # 1 .  
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From this theorem and Theorems0.51, 0.52 one can obtain the 
important relationship between Boolean identities and theorems of PC: 

THEOREM 0.560. If f ( x , ,  . . . , x,,) is a Boolean polynomial then 

is true in all Boolean algebras f ( x l ,  . . . , s,,) = I 

if and only if 
t-F(Xi, . . . , 

where F ( X , ,  , . . , X,,) is the formula of PC obtained by replacing in 
f(xr, . . . , s,,) each xi  by Xi ,  replacing the operations +*, ., respectively 
bjs V, A, 1, and replacing 0 by X A -,X and 1 by X V -+. Similar/j* 

implies g(xl, . ..,x,,) = 1 f ( x l , .  . .,x,) = 1 

if and only if 

tF(Xx,,..-yXn)+G(X1, ..*,xn)- 

0.5.6. There are Boolean polynomials which, although different, do not 
lead, as far as many kinds of problems are concerned, to essentially 
different solutions. Thus a Boolean identity remains one under applica- 
tion of the operations: (i) interchange of two variables, and (ii) replacement 
of a variable by its negation (complement). Two Boolean polynomials so 
related that one can be obtained from the other by a succession of appli- 
cations of the operations (i) and (ii) will be said to be of the same sym- 
metry type. 

0 0.6. Rings of quotients. Boolean quotients 

0.6.1. Division of integers is, of course, not a closed operation in the 
set of integers-only if the dividend is a multiple of the divisor is the 
result an integer. However by suitably extending the structure of the 
integers to a larger structure, i.e. the rationals, a structure in which the 
integers are embeddable, one obtains closure of division. More precisely, 
and in greater detail, this is done as follows. 

Effect a separation of all ordered pairs of integers of the form (m, n) 
with n# 0, into classes by stipulating that two such ordered pairs, 
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( m , ,  n,) and (m2, n2), are in the same class if and only if the relation 
m,n2 = m2nl holds. One readily shows that this relation is an equivalence 
relation and that any ordered pair of a given class uniquely determines 
the class. Denote by m/n the equivalence class determined by (m, n),  and 
take these equivalence classes as elements of a structure with operations 
+ and . defined by 

( 1 )  
m ~ / n ~  + n72/n2 = (mIn2 + n ~ m d / ( n ~ n J ,  

( m , / n , )  . cn;.;/n2) = (m,m,)/(n,fl2),  

and in which O/l and 1 / 1  are the zero and unity. One can then show that 
the resulting structure is a field in which the integers are embeddable by 
the injection n + n / l ,  and that the inverse of mln (m # 0)  is n/m. 

The above method of producing an extension of the integers carries 
over with essentially no change from the particuIar structure of the inte- 
gers to any ring which is an integral domain. Not so apparent is the 
generalization of this construction to a ring which is not an integral 
domain, i.e. one containing divisors of zero. 

One way to accomplish a generalization is to exclude, or preclude, 
from being a denominator elements which are divisors of zero, for other- 
wise the relation m,n2 = m2n, would lose its significance in that it would 
not be an equivalence relation : transitivity could fail-take for example 
the integers modulo 6 .  In this structure the “fractions” 3/4 and 3/3 are 
both “equal”, via the proposed equivalence relation, to 012 but not to 
each other. Note that in this example 2, 3 and 4 are divisors of zero and 
that a product of non-zero denominators could result in zero. It turns 
out that if the set of denominator elements is a multiplicative1y.closed set 
not containing 0, then the resulting structure of quotients is indeed an 
extension ring (but not necessarily a field) and one in which the mapping 
m -+ m/l is an injection. However, practically all the elements in the 
rings we shall be dealing with in this monograph are divisors of zero, and 
to  exclude them from being denominators would leave us with little of 
interest. Fortunately one can generalize the construction of a ring of 
quotients without having to exclude divisors of zero. This was shown 
initially by Chevalley for rings of a certain kind and then in the general 
case of any commutative ring with unit in UZKOV 1948. UZKOV’S quite 
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simple idea was to suitably modify the definition of the basic equivalence 
relation as follows. 

Let 93 = (R, +, ., 0) be a commutative ring with unity and S a 
multiplicatively closed subset of R containing 1 (hence non-empty). For 
ordered pairs ( r l ,  s,) and (r2, s2) in the set of all ordered couples R x S, 
we define a relation to hold between (rlr sr) and (r2,  s2) if and only if 

( 2 )  For some sE S, s(r2sI - ris2) = 0. 

One readily shows that for R and S as specified, this relation is an 
equivalence relation and hence divides the set R x  S into mutually ex- 
clusive equivalence classes. As is customary we use r / s  to denote the 
equivalence class determined by a couple ( r ,  s). With the operations -i- 
and . defined by 

and with 0/1 an1 1/1 as the zero and unit, one readily shows that 1 i e  
resulting structure is a commutative ring with unit which we call the 
ring of quotients of '$3 by S and denote it by '$3S-'. The mapping from R 
to  RS-' determined by r +  r/l is a homomorphism of rings but one 
which need not be an injection. Nevertheless, as we shall see, such rings 
of quotients will be of service to us. 

Note that cancellation of a common factor is available if the factor is 
a member of S ;  for if s E S then by the definition s/s = l / l  and 

r1sIy2s = ( M 2 )  (s/s) = Y l / Y 2 .  

Oddly enough one need not exclude 0 from the denominator set-but 
a t  a price. If 0 E S then all ordered pairs in R x S are equivalent and the 
ring '$3S-' is the trivial ring with one element. 

0.6.2. Since a Boolean algebra is a ring with unit one can, provided a 
suitable denominator set is specified, define for it a ring of quotients-the 
elements of this ring we call Boolean quotients. Concerning Boolean 
quotients we have the following two theorems which are key results for 
us. 
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THEOREM 0.61. For any element e of a Boolean algebra % the filter 
e f R  B is a denominator set for the ring of quotients B(e + B  B)-’. The 
mapping y : B +- B(e + B  B)-’, p(b) = b/l , whose kernel is e’B and which 
establishes a homomorphism f iom B to ‘%(e + B  B ) - ’ ,  is injective over 
the set eB. 

PROOF. That e + B  B is a denominator set is clear since any filter has 1 
as an element and is closed under multiplication. To show that p is 
injective over eB consider p ,  q E eB, so that p and q are included in e. 
Hence, if 

then by the fundamental equivalence relation 

P / 1  = 4/19 

(e  t - B  b) p L- ( e  + B  b)  q for some b E B ,  

which implies, since p and q are included in e, that 

P = 9 .  

The “canonical” mapping p of the preceding theorem induces a 
natural equivalence relation on B by virtue of which two elements of B 
are equivalent if their images in B(e + B  B)-’ are the same. It is easy 
to show that the equivalence classes determined by this equivalence rela- 
tion are just the residue classes modulo the principal ideal (e’). For if 
p ,  q E B are such that 

PI1 = 4/1 

which is to say, by (2), that for some b e  B 

(e  -kBb) (lp - 14) = 0, 

then p - q is included in e’ and hencep and q are in the same residue class 
modulo (e’). The converse is equally as easy to see, that is if p and 4 are 
in the same residue class then p/1 = q/1 , by virtue of 

p - q 4 e ‘ - t ( e + B O ) ( l p -  l q )=O.  

The mapping y ,  moreover, is onto B(e + B  B)-’ since, as is easy to 
check 

(3) -- _ - -  _ - -  eb _ -  forany b E B ,  b 
e f B a  e 1 1 
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and hence each element of B(e f B  B)- ’  is the p-image of some element 
of B. Thus by the Homomorphism Theorem 0.31 we can conclude 

 THEOREM^.^^. For any element e of a Boolean algebra % the quotient 
ring %/(el) and the ring of quotients B(e +s B)-*  are isomorphic. 

It should be noted here that if e = 0 then all these isomorphic algebras 
are trivial, i.e. have a universe with a single element, namely 0. 

To avoid a complicated notation we have used in the preceding dis- 
cussion a deficient notation for Boolean quotients. A fully adequate 
notation should show that one has an equivalence class of fractions 
determined by the displayed numerator and denominator, and should also 
indicate the denominator set-in our case a principal filter. For a princi- 
pal filter all one needs as an indication is the element generating it. A 
fully adequate notation for a Boolean quotient is then something like 
(using here e + ae’ in place of e + B  a) 

In this notation line (3) would read 

in which notation the quotient [eb/l 1, is no longer deceptively symmetric 
in e and b, and the quotient [ b / l ] ,  explicitly displays its dependence on e. 
The mapping 

h : B/(e’) + B(e + B  B)-*  

which establishes the isomorphism referred to in Theorem 0.62 is given 

by 

h(b + (e’)) = h(eb + (e’)) = [ 371, = [+I,. 
The following theorem. codifies, for future reference, some properties 

already noted during the course of discussion. 
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THEOREM 0.63. If 23 is  a Boolean algebra, b, e E B, and f E e + B B ,  then 

(ii) 

(iii) 

[:Ie = [II"]. 

As the last item indicates, a Boolean quotient is independent of the 
particular member of the denominator set which is used as a 
denominator in the fraction. Accordingly, one would not expect as great 
a future for this notion as has been the case for numerical quotients, i.e. 
rationals-and Theorem 0.62 shows that residue classes, or elements of a 
cutdown algebra (Theorem 0.58), would do just as well. 

0 0.7. Fourier elimination. Solvability of linear systems 

All the structures we have discussed so far have had operations, but no 
relations, defined over the universe of the structure. Here in this section 
we are considering ordered fields, that is fields ( Q  0.4) over which a 
binary relation, <, is defined having the following properties : 

+a < a) (irreflexive) , 

(a < b A 6 < c)+ a < c (transitive) , 
a < b V a = b V b < a  (connected) , 

a < b+ (a + c < b + c) 

(a < b A 0 < c) + ac < bc 

(additively monotone) , 
(multiplicatively monotone). 

From these properties together with those for a field one can deduce 
all the usual rules of elementary algebra for addition, subtraction, multi- 
plication, division, and the handling of inequalities in connection with 
these operations. Ordered fields also have the denseness property, that 
is between any two elements there is a third, i.e. if x < y ,  then there is 
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a z, e.g. z = ( x  + y)/(l + l), such that x < z < y .  One can readily 
show that every ordered field has an ordered subfield isomorphic to the 
rationals. 

The results which we wish to describe in this section require only that 
the elements belong to an ordered field. As the real numbers are an 
ordered field one can, if one chooses to, think of the elements we shall 
deal with as being real numbers. However, by pointing out that it is 
only ordered field properties which we are using we spare ourselves from 
being distracted by other additional properties of the reals which are not 
needed. 

Fourier elimination is a generalization to systems of linear inequations 
of the well-known elimination method for solving systems of linear 
equations. To make this relationship apparent we shall first describe the 
usual elimination process for equations, but in a little different way. 

Suppose we have a system (S) of nz linear equations in  n unknowns 
xl, . . . , x, which we may write in the form 

a l lX1  -1- alZX2 + . . . + a1,,x, = 4 ,  
~12x1 + ~22x2 + . . . + U~,.Y, = d2, 

(S) 

amlxl + am2x2 + ... + a n r , l ~ ,  = dfl1. 

From this system we produce another system ( S ’ )  in n - I unknowns as 
follows. For each equation of ( S )  for which the coefficient of x, is different 
from 0 solve that equation for x,,; e.g. if a, # 0, then the i-th equation 
yields 

By pairing the first of these rn or fewer equations that are solved for x,, 
with each of the subsequent equations and equating the respective right 
hand sides, one obtains a set of linear equations in the unknowns 
x l ,  ..., x,~-~. If now to these equations we adjoin the equations of (S) 
in which q,, = 0, one obtains a system ( S ’ )  which is the result of elimina- 
ting x,  from ( S ) .  It is readily seen that if an n-tuple of elements ( x l ,  . . . , x,) 
satisfies (S) then the (n  - 1)-tuple ( x l ,  . . . , x f l P l )  satisfies (S’), and for 
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each ( n  - 1)-tuple ( x l ,  . .., x , , - ~ )  which satisfies ( S ’ )  there is a uniquex,? 
(obtainable from x l ,  . . . , xn- ,  and any one of the equations (i)) such that 
( x l ,  . . . , xn)  satisfies (S) .  

This elimination process can be made the basis for a method-not 
necessarily the most efficient-for solving systems of linear equations. 

Turning now to systems of linear inequations of the type 

a l l X 1  + ~ 1 2 x 2  + + alnxn 2 d13 

~ ~ I X I  + Qm2X2 + * * *  + ~ m n ~ n  2 dm, 

we describe an elimination process for it. To each a, # 0 we now have 
two possible types of solution for x n :  

depending upon whether a, > 0 or a, < 0. If m, of the inequations in 
(S) have a, = 0, there will be m - m, inequations of type (i) or (i’). 
Suppose the right hand sides of type (i) are R,, . . . , R, and the left hand 
sides of type (i’) are L,, . . . , L,. Now write down the rl inequations assert- 
ing that each one of the L, ( I  < i < I )  is less or equal to every R,. 
(1 I j 5 r ) ;  and to these inequations adjoin the m, inequations of (S) ,  
having a, = 0. (If rl = 0, none are adjoined to the m, inequations.) 
Call this resulting system of linear inequations ( S ’ ) .  Again we see that if 
an n-tuple ( x l ,  ..., x,,) satisfies (S) ,  then the (n - 1)-tuple ( X ~ , . . , X ~ - ~ )  
satifies (S), and for any (n - 1)-tuple ( x l r . . , x n -  1)  which satisfies (S)  
there is an x, such that, ( x l , . . , x n )  satisfies @)-for if (S’) is true with 
the given values of x1 , . . ,xn-  then 

max (L1, .. ., L,)  I min ( R l , .  . ., Rr) ,  

and for any xn for which 

max (Ll ,  ..., L,) I x,, I min ( R I ,  ..., R,) 

the n-tuple (xI ,. . . , xn) satisfies (S) .  
As with systems of linear equations this Fourier elimination procedure 
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can be made the basis for a method of solving systems of linear inequa- 
tions of the type (S). The method is easily extended to the case of a 
system containing also linear equations as well as strict inequations. Here 
we omit strict inequations from consideration as they do  not enter into 
our particular application to Boole's work. However equations are easily 
encompassed in the treatment of non-strict inequations, for any equa- 
tion of the form L = 0 is equivalent to the pair of inequations L 2 0, 
-L 2 0. 

Based on the preceding discussion we may now state a consistency 
theorem for linear (inequational) systems in a form sufficiently general 
for our purposes. A more general form may be found, e.g., in STOER- 
WITZCALL 1970, g 1.1. 

THEOREM 0.71. A linear system 

is .solruble if und only i f  the procedure of Fourier elimination applied 
successively to the variables x,, . . ., x,, results in a sequence of linear 
systems (So) [= (S)], ( S , ) ,  . . . , (S,)  such that each relation in (S,,) is true. 

Observe that the necessary and sufficient condition of this theorem is 
ejectire, i.e. can be decided mechanically in finitely many steps. Also, 
that the values of the constants d,, . . . , d, enter linearly in the relations 
of (Sn) *  

0 0.8. Linear programming 

The problem of finding a solution of a linear system (of equations and/or 
inequations) which minimizes (or maximizes) a given linear function is 
called a linear programming problem. A particular type of linear program, 
of the kind we shall be interested in, is the following: 
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111 

minimize C cjxj,  
j = 1  

f l l  

subject to a..x. JJ J = dj,  i = I ,  ..., t i ,  

j = I ,  ..., tn, 

j =  1 

xj 2 0, 
where the cj,  ajj, dj are given constants and the xi are variables. Use of 
matrix notation enables are to express this succinctly as 

minimize cx 3 

subject to Ax = d ,  

x 2 0 ,  

where c =- [c,  ... c,,,] is a row vector (1 x m  matrix), where 

X =  [ I  = [s, ... sf]]]= 

xn, 

is a column vector, where d = [d, ... dnIT, and where A is the n x m 
matrix 

The superscript T indicates matrix transpose. The function cx is 
called the objectire function. Vectors x satisfying the constraints, i.e. 
in  this case 

A x =  d and x 2 0 ,  

are called feasible solutions. Feasible solutions which minimize (or maxi- 
mize) the objective function are called oprimal solutions. In linear pro- 
grams which are of interest it is generally the case that the number of 
unknowns exceeds the number of equations (nz > n), and we assume that 
there are no redundant equations in the system Ax = d (so that rank 
A = n). A set of n independent column vectors of the matrix A is called 
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a basis for the system (and the linear program); the variables xi associated 
with these columns are called basic variables (the remaining variables are 
non-basic). A basic feasible solution is a feasible solution in which the va- 
lues of the non-basic variables are 0, and an optimal basic solution is a 
basic feasible solution which optimizes cx. 

The understanding of linear programming is enhanced if relations and 
properties are visualized geometrically in m-dimensional vector space. 
Since common 3-dimensional geometrical notions (line, plane, convex 
set) generalize readily, we shall not trouble to state definitions of these. 
lnequations ax 2 d or ax 2 ci specify half-spaces. The intersection of 
finitely many half-spaces is a convex polytope (polyhedron, if bounded). 
A supporting halfplane to a convex set S is a hyperplane containing a 
point of S and having all of S on one side of the hyperplane. 

In terms of this geometric language some of the fundamental facts of 
linear programming can now be stated as follows. 

The set of points corresponding to the feasible solutions of a linear 
program is a convex polytope, P. A basic feasible solution corresponds 
to an extreme (or “corner”) point of P. lf there are any optimal solutions 
then there are optimal extremal solutions. If non-empty, the set of optimal 
solutions (also a convex polytope) is the intersection of the polytope P 
with a supporting hyperplane whose equation is of the form cx = qo, 
where cx is the objective function (so that the supporting hyperplane 
is a member of the family of parallel planes cx = q, q a parameter) and 
qo is the optimal value. 

There is an important result in the theory which relates the so-called 
primal and dual forms of a linear program. For the types which will be 
of particular interest to us, namely 

( i )  minimize CX, (ii) maximize cx, 

subject to Ax = d ,  subject to Ax = d ,  

$ 2  0, $2 0, 

we define, their respective duals to be 

(i)  maximize dTu, ( i i )  minimize dTu, 

subject to ATu I cT, subject to ATu 2 cT, 

u arbitrary, u arbitrary. 
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We now state the result (DANTZIG 1963, p. 125, STOER-WITZGALL 1970, 
p. 28): 

THEOREM 0.8 1 (Duality Theorem of Linear Programming). For dual pairs 
of linear programs the following hold: 

(a) The value of the objective function at a feasible solution in a mini- 
mization program is greater or equal to the value of the objective function 
for any of the feasible solutions of the maximization program. 

(b) If both primal and dual forms have feasible solutions then both 
have optimal solutions, and the respective objective functions are equal 
for these optimal solutions; and 

(c) I f  one of the programs has an optimal solution, then so does the 
other (and by (b) their objective functions are equal at these optimal 
solutions). 

Fourier (also called Fourier-Motzkin) elimination can be made the 
basis for a direct solution of a linear programming problem. But since at 
each stage the number of inequations added to the system is of the form 
rl (see preceding g), it is generally not a practical method for solving 
problems, as uncontrollably large numbers of inequations could arise. 
However we shall find it useful when parameters are involved in the 
coefficients of the constraint equations. The method is quite simple to 
describe : 

Add the equation z = cx, where cx is the objective function, to the 
system of constraints and eliminate all variables but z .  If the resulting 
sets of inequations are 

(1) 
L , I z , L , I z  ,..., L , I z  

z I R , ,  z S sL, ..., z I R ,  

then 

(2  ) max { L ,  ,..., L,} 5 z I min { R , ,  ..., R,} 

provides the least and greatest value for z subject to the constraints 
(DANTZIG 1963 9 4-4). Elimination of z produces 

(3 ) max {L , ,  ..., L,} I min { R , ,  ..., R,}, 

which then provides the consistency conditions, i.e. the necessary 
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conditions for the existence of a solution. If the Li and R,  involve 
parameters, and hence have no fixed numerical values, then condition 
(3) converts to a set of conditions on these parameters, namely that each 
Li ( i  = 1 , . . . , I )  shall be less than or equal to every R ,  ( j  = 1, ..., I ) .  

Fractional linear programming. This is a generalization of linear 
programming in which the objective function is a linear fractional form 

cx + d 
a x + b '  

which is to be optimized subject, as in the ordinary case, to linear 
constraints. CHARNES 1962 shows that such a problem can be reduced to  
solving a related ordinary linear. programming problem with one more 
variable. In our particular case which we shall be looking at (4) reduces 
to 

cx 

ax 

with ax never negative. For this situation Charnes' result can be stated 
as follows. 

THEOREM 0.82. The linear fractional programming problem : 

cx 
ax 

optimize ~ (ax 2 0 )  

subject to the constraints 

A x = b  

x 10, 

is equivalent t o  the linear programming problem 

optimize cy 

subjects to the constraints 

A y  = tb 

Qy = 1 

t ,  y 2 0. 
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0 0.9. Probability theory 

For the purposes of this monograph we shall be needing only the simplest 
and most elementary aspects of the theory say, for example, that which 
would be required to handle finite stochastic situations. Accordingly 
our presentation is trimmed down to this level of sophistication. 

Typically, contemporary expositions of probability take the basic 
notion of “event” to be a subset of a set Q, the set of possible outcomes 
of an experiment or trial (the sample space). These subsets are assumed 
to form a field or algebra of subsets, i.e. a collection which includes 
and is closed under the operations of union and of complement with 
respect to Q. Probability is taken as a normed, additive (or, more speci- 
fically, o-additive) measure on this algebra of sets. If Q is finite then an 
assignment of probabilities to the singleton subsets of Q suffices to endow 
every subset of 

Here we proceed from the point of view, somewhat more convenient 
for us, that probability is a numerical-valued function on a Boolean 
algebra, rather than on an algebra of sets (see e.g. KAPPOS 1960, 1969). 
Precisely put: an ordered pair (9L, P )  is a probability algebra if ?l is a 
Boolean algebra and P a real-valued function (a probability function) 
defined on elements of the universe of 91 which is 

with a probability value. 

(i) strictly positive, i.e. for any x E A 

P(x) 2 0, 
P(x) = 0 if and only if x = 0. 

(ii) normed, i.e. 

P(1) = 1 .  

P(X V y )  = P ( x )  + P(y), if xy = 0. 

(iii) additive, i.e. for any x ,  y E  A 

From this definition one can readily show (using x for the complement 
of x ) :  

THEOREM 0.91. In any probability algebra 

( 4  P(x) + P(2) = 1 ,  
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Two probability algebras (%, P )  and (93, Q )  are isometric if there i s  
an isomorphism 9 : A --f B which preserves probability, i.e. such that 
P(x )  = Q(p(x)) for all x E  A .  With respect to mathematical properties 
isometric probability algebras are indistinguishable. The elements of the 
Boolean algebra will be referred to as events (of the probability algebra). 

Two events x , y  of a probability algebra are independent if P(xy) = 

P ( x )  P(y). A set of n events x,, . . . , x, in a probability algebra is a mutually 
independent set (or, the events are mutually independent) if the probability 
of any logical product of two or more events selected out of the n events 
is equal to the product of the respective probabilities. Since there are 
2" - (7) - (3 such selections this definition of mutual independence 
involves 2" - n - 1 equations. There is an equivalent condition in 
terms of the probabilities of the basic products (constituents) on the n 
events, which condition involves 2n equations (see, e.g. RENYI 1970, 
p. 110): 

THEOREM 0.91 5. The system of 2" equations, asserting the equality between 
the probability of each constituent on n events x I ,  , , . , x, with the product 
of the respective probabilities of the factors of the constituent, is a system 
equivalent to the 2" - n - 1 equations in the de$nition of the mutual 
independence of x,, .. . , x,. 

By virtue of this theorem the probability of a Boolean function of 
mutually independent events can be given a particularly simple form, a 
form which is extensively used by Boole: 

THEOREM 0.92. Let V be a Boolean function of x,, . . ., xn expressed in 
disjunctive normal form, i.e. as a logical sum of constituents on x l ,  . . . , x,,, 
If the events x,, . . . , x,, are mutually independent then P ( V )  = [ V ] ,  where 
[V] stands for  the result obtained from V be replacing xi by P(.xi), xi  by 
P(ki) (i = 1, . . . , n) and taking logical sum and product as, respectively, 
numerical sum and product. 

We now present a result concerning circumstances under which two 
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Boolean functions of arbitrary mutually independent events are them- 
selves independent. (For example, supposing x1 and x2 to be independent, 
the pair of functions 2, and F2 are independent, but the pair x, and xI.y2 

are not.) 

REMARK 1. The mutual independence of a set of events is unaffected by 
the addition or removal from the set of either the event 0 or the event 1. 

REMARK 2. If x,, ..., x, are mutually independent events and p is a 
Boolean function of xl, ..., x P l ,  xi , . l ,  ..., x, (i.e. of the variables 
.xlr ..., x, minus the variable xi), then 

REMARK 3. If for arbitrary mutually independent events xl, . . . , x, 

P(p(xl, . . ., x,)) = P(y (x l ,  . . ., x,)) then p = y .  

Justification for these remarks is readily given: for Remark I one merely 
notes the definition of mutual independence (which is easily extended to 
refer also to singleton sets of events) and that P(0) = 0, P(1) = 1. The 
assertion of Remark 2 becomes evident if one replaces 9 by its disjunctive 
normal form on the variables xl, ..., x i - l ,  xi+l, ..., xnr then distributes 
xi over this logical sum, distributes P over the mutually exclusive terms 
of the sum, and then over the mutually independent events in the logical 
products (Theorem 0.915). Similarly, for Remark 3, one distributes P 
over the disjunctive normal forms of ~ ( x , ,  ..., x,) and y(q, .. ., x,); 
then the equality of the probabilities for any set of mutually independent 
events (which could be any one of the 2" selection of 0's and 1's) implies 
the identity of the two polynomials in the products on P(xi) and P(Xi), 
and hence that the corresponding coefficients (either 0 or 1) of the dis- 
junctive normal forms of ~ ( x , ,  .. ., x,,) and y(x,,  . . ., x,) are the same. 

Let rp(O/xi) stand for the result of replacing xi by 0 in g~. Similarly for 
rp(l/xi). We say that the Boolean function 9 depends inessentially on xi 
if cp(O/xi) = q?(l/xi), and otherwise that it depends essentially on xi. If 
cp depends inessentially on xi then by the Law of Development (Theo- 
rem 0.535) 
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v = ~ ( 1  / X i )  xi + v(O/xi )  X i  

= p(l/xi) (x i  + Xr) = p(O/xi) (xi + Fi) 

= p ( l / x j )  =z ~ ( O / X , ) .  

In particular, then, such a cp admits of a disjunctive normal form in 
which xi is absent. Now for our theorem. 

THEOREM 0.93. Let p and y be Boolean functions of n arguments. Then 
for any probability algebra the following two conditions are equivalent: 

(i) For arbitrary mutually independent events, x,, . . . , x,, p = ~ ( x , ,  . . . , x,) 
and y = y (xI ,  . . . , x,) are independent events. 

(ii) The sets of variables on which y and p depend essentially are dis- 
joint. 

PROOF. Assume (ii), i.e. that p depends essentially on x i ] ,  ..., xik, that 

y depends essentially on x j l ,  . .. , xj, and that the sets of variables 

{xi,, ..., xik} and {x j l ,  ..., xjJ are disjoint. Since p(x, ,  ..., x,) depends 

essentially only on x i I ,  . . . , xik, we have that 

when the index r ranges from 1 to 2k and the superscript (p) on the logical 
sum symbol indicates that in this sum not all basic products Kr(x i I ,  . . . , xi$ 
appear but only those which “imply” p-that is which are included in the 
event 9. Similarly, 

y = y(x1, . . . , x,) = c (w) L,(Xj,, . . . , Xi[). 

Noting that the variables of any Kr and any L, are disjoint, so that no 
product KrL, vanishes, and that any two distinct products KrL, are mu- 
tually exclusive, we have for mutually independent x I ,  . . . , x,, 
(3) P ( P ~ )  = P(Z(~)K~Z(~)L,)  

= P(2?q)2(v)Kr L,) 

= L’(*)2?Y)P( Kr L,) 

= Z(q)Z@‘)P(Kr) P(&) 

(the 2”s are now numerical) 

(by the mutual independence) 

= P ) P ( K r )  Z@)P(L,) 

= P(P) P ( y ) .  
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Now assume (i), i.e. for any mutually independent xlr . . . , x, 

P(+, , . . . , x,) y(x19 . * * , x,)) = 

= P(y(x1, . * * 9 x,)) P(Y(X1, . . . > 47)). 
(4) 

If we take xi to be 0, and I ,  then (by Remark 1 the mutual indepen- 
dence still holding) 

( 5 )  

(6) 

P(q(O/xi) v(O/xj)) == P(V(O/xi)) P(y(0lxi)) 9 

P(q( l  /*vi) Y ( I  /x i ) )  = P(v(l /xi)) P ( Y ( ~  /xi)). 

It will be convenient to introduce the abbreviations Q1 for P(q(l/xi)) 
and Oo for P(q(O/xi)), and similarly !PI and Yo for p. Then by the Law of 
Development and Remark 2, 

(7) 

and, by use of ( 5 )  and (6), 

(8) P(FY) = @lYlP(xi) + @oy6P(j;.i)* 

With a little bit of algebra we obtain from (7) and (8) 

P(w) - P(P) WYJ) = (@I - @o) (YI - YO) P(xi)  W i ) .  

By assumption the left hand side is 0, hence either = Q0 or Y, = !Po, 
i.e., by virtue of Remark3, either v depends inessentially on x i  or y 
depends inessentially on xi ,  in other words, no xi  is such that both q 
and y depend essentially on it. 

For later use we shall be needing the following result, for which we 
shall assume that for each (finite) m there is a Boolean algebra B,n 
which is generated by m algebraically independent generators (see 6. in 
4 0.5). 

THEOREM 0.94. Let IL1 ,  . , , , I.2nz be a set of non-negative real numbers 
whose sum is 1 .  Then there is a probability algebra (23, P> and events 
E,, ..., Em (elements of B)  such that P(Ci) = li (i = 1 ,  . .., 2"'), where 
the Ci are the constituents (basic products) on E l ,  . . . , En,. 
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PROOF. Case 1. No 3.; is 0. Let be a Boolean algebra generated by 117 

independent generators E,,  . . . , E,,,. We define the probability function 
P over the elements of %,,, by setting 

P(C,) = I., ( i  = I ,  ...) 2") 

and then extending P to all other elements additively, i.e. since each 
element of %,,, is the logical sum of a set of constituents o n  E, ,  . . . , El,,, 
we take the P-value of the element to be the sum of the corresponding 2's. 
It is routine to check that this P is a probability function over B,,, so 
that (B,, P) is the desired probability algebra. 

Case 2. Some 3L; is 0. Again select a Boolean algebra %,,I with inde- 
pendent generators, say G,, . . . , G,,,, and associate each constituent Hi 
on the G , ,  . . . , G,,, with a I,,. ( i  = 1, . . . ,2"). Let D be logical sum of those 
Hi associated with A's which are 0 and put V = 5. We go over to the 
reduced algebra B,,* I Vwhich identifies elements of BnI if they differ only 
outside of V, and let its elements be denoted by X I V, XE B,. By Theo- 
rem 0.57 the mapping X - t  X I  V is a homomorphism of B,,, onto 
Bm I V ;  hence if X = Hi, 3. ... + Hjk then 

X 1 V = H;,  I V + ... + Hik I V .  

We define a P for %,?, I V by putting P(Hi I V )  = Li and extending P 
to the remaining elements of %,,, I V additively i.e. by putting 

P ( X  1 V )  = P(Hi, 1 V )  + ... + P(H;k 1 V )  

= ili, + . . . + 1,. 
Again it is routine to check that this P is a probability function for 
%,,,I V. (Note that P(XI  V ) = O + X /  V = O l  V since X I  V - 0 1  V 
for any X included in D.) As for the elements E;, we take these to be the 
Gil V and Ci we take to be Hi[ V ,  where 

with a gj  being either G j  or Cj depending on the particular Hi. 
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Based on the conventional definition of conditional probability, 

the following theorem presents well-known properties. 

T H E O R E M  0.95. In any probability algebra (assuming that the conditional 
probabilities are defined) : 

(i 1 P(XY) = P(XlY)P(Y) 

(ii) 

(iii) W Y l Z )  = P(XlYZ)P(YlZ) 

P(x + y l z )  = P(X1Z) + P(yfz),  i f x y  = 0 

= P(XlY)P(YIZ), i f y z  = y 

Proof of the following is straightforward 

THEOREM 0.96. Let (23, P> be a probability algebra and let b ,  V E B with 
P( V )  # 0. If’ a function P* is defined on elements bl V of BI V by setting 

then the pair (231 V ,  P*)  constitutes a probability algebra. 

Since, as we shall later see, Boole’s treatment of probability has 
propositions as events it will be useful to have a formulation in which 
this aspect is featured. We introduce h e  idea of a probability calculus. 

Let S be a set of formulas of the propositional calculus closed with 
respect to formation of formulas using connectives l, A ,  v and 
propositional variables XI, X z ,  . . .  . We say ( S ,  P )  is a probability 
calculus if P is real valued function on formulas from S into the interval 
[0, 13 such that for arbitrary cp, p E S. 

P1. (i) P(Cp A l c p )  = 0 

P(cp A 1(1) 5 P(ll/) (ii) 
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P2. P(1Cp) = 1 -P(Cp) 

P3. p(p v II/) = P(V)  -t P ( q )  - P(Cp A q). 

From P1 (ii) it readily follows that the probabilities of logically 
equivalent formulas are equal. Reducing S modulo logical equivalence, 
i.e. “identifying” logically equivalent formulas, we obtain as set B of 
equivalence classes, each having associated with it a “natural” P-value, 
namely that of any of its members. Defining Boolean operations in the 
“natural” way we form the Lindenbaum algebra b ( S )  of S (80.5). The 
pair (b(S), P) constitutes a probability algebra. 

A probability calculus model is an assignment of propositions 
(sentences of a formal language) A l ,  A 2 , .  . . to the variables X I ,  X 2 , .  . . 
such that all instances (and logical consequences) of Pl-P3 hold with 
the Ai replacing the Xi. Note that what probability relations hold among 
the Ai in such a model is independent of any logical structure which the 
Ai may have. If we were to introduce the notion of an atomic 
proposition (of a fixed formal language L )  then, considering Pl-P3 to be 
collections of asserted probability relations (i.e. as cp, q range over the 
formulas of L),  a probability calculus model is the same as a probability 
calculus with atomic propositions A, ,  A Z ,  . . . replacing propositional 
variables. 

Clearly, if S = S(Xl , .  . ., X,) is a set of formulas built up only using 
X1,..,Xn, then ( S ( X , , . . , X , ) ,  P) is defined as a probability calculus 
when the values of P are given for the 2” constituents on X I , .  . ., X , .  

8 0.10. Miscellaneous 

0.10.1. Boole’s theorem on symmetric determinants of linear homo- 
geneous forms. The theorem under consideration here, described by 
Muir in his monumental history of determinants (MUIR 1920, Vol. 3, 
pp. 99) as “rather notable”, plays an important role in proving a central 
result for Boole’s probability method. The proof we give here is essen- 
tially Boole’s (appearing in BOOLE 1862, pp. 235-238 = BOOLE 1952, 
pp. 400-406) but rephrased in terms of our present-day mathematical 
dialect. Although Muir complains “The proof is disappointingly lengthy, 
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occupying very nearly three pages”, in  working the proof over we haven’t 
succeeded in improving on Boole. Incidentally, Muir’s description of 
this theorem omits a portion of the conclusion which Boole obtained- 
that in the end result the variables appear with power no higher than the 
first. 

We consider linear homogeneous forms on variables x I ,  . . . , xp i.e. 
algebraic expressions 

clxl + ” ’  $- CkXk + ’.’ + cpxp, 

in which the coefficients ck designate elements of an ordered field (e.g. 
the reais). Let L(x,,  . . . , x,), or for short L, be the set of all such forms and 
let L+ be the subset of L for which the coefficients are all non-negative. 
An n x n determinant whose entries are elements of L is said to have the 
coefficient proportionality property if for each k the following holds: let 
the coefficients of x k  taken in order in  any row be aI, . . . , a, and let the 
corresponding coefficients of xk in any other row be pl, . . . , p,; then the 
vector of coefficients (a,, . . . , a,) is proportional to the vector of coeffi- 
cients (p,, . . . , p,), i.e. there are constants a and b such that api = bai 
for i = I ,  . . . , n. (Alternatively: either ai = 0 for all i or there i s  a 1 
such that pi = Lai for all i.) 

 THEOREM^.^^^ (Boole, 1862). Let D be an n x n  determinant whose 
entries are elements of L and suck that 

(i) it is symmetric, 
(ii) all its elements on the principal diagonal are from L+ , and 

(iii) it has the coefficient proportionality property. 
Then D is equal to a linear combination with positive coefficients of 

products of xl, . . . , xp each appearing, if at all, with exponent 1. If the 
columns of D are independent then there is at least one term in the linear 
combination (which, otherwise, might be empty and D be identically 0). 

The last sentence in our statement of this theorem remedies a neglect in 
Boole’s version. Before beginning the proof we state a few definitions 
and some observations. 

The elements of an arbitrary determinant are denoted by uij ( i , j  = 
1 . . . n). A ( A ;  i,j)-row operation consists of subtracting from each ele- 
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ment of the j-th row A times the corresponding element of the i-th row. 
Similarly for a ( A ;  i ,  j)-column operation. The elements on the horizontal 
and vertical lines through the aii position will be referred to as an i- 
system. Define a ( A ;  i,j)-system operation as the application of a ( A ;  i,j)- 
row operation followed by a ( A ;  i,j)-column operation using the same A, 
i andj .  Since both the row and column operations leave the value of a 
determinant unchanged so does the system operation. Also, after a 
system operation the entries in the determinant are still in  L if the original 
entries were. 

PROOF. Assume the hypothesis of Theorem 0.101. 

LEMMA 1. The result of a (A ;  i, j)-system operation on a determinant 
having properties (i)-(iii) is a determinant which still has these properties. 

That (i) still holds is clear since only elements of thej-th row and j-th 
column have been altered, and that symmetrically. To show that (ii) 
and (iii) still hold consider a variable .rk and let its coefficients in any two 
rows, excluding the j-th, be 

After the system operation these become 

and thus all row coefficients, except possibly for the,j-th, are proportional. 
Suppose now that (1) represents the coefficients of x k  in the i-th and j-th 
rows. After the (A; i,j)-system operation these become 

Pan 7 pa1 * a *  pai ... ci ... 

(v - Ap) (v - Ap) ai .. . Cj -. . (v - Ap) an, 
where 

Ci = paj - Apai = p(a, - hi), 

cj = vaj - Apaj- A(vai - Apa,). 
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Using the fact that, by (i), paj = mi we have 

(3) cj = vxj - l V J i  - A(p3 J ' - Ap3,) 

= v(4, - 13;) - lp(aj - h i )  

= (v - 1p) ( X i  - A%;). 

Thus Ci and Cj are in the same proportion (namely p : v -- 1p) as the 
remaining pairs of coefficients and hence the vectors of coefficients are 
proportional. Since the i-th row coefficients are proportionai to all the 
other rows, so is the j-th. To show that the coefficients in the ajj position 
are non-negative, we note that if ,u = 0 then the (I.;  i,j)-system operation 
doesn't alter the coefficient of xA in ajj. So suppose p # 0. Now by ( i )  

Whence substituting in (3) we have 

p(aj L la,) = pxj - &ai = V A ;  - ?Lp..; = (v - 1p) a;. 

and since by hypothesis px; is non-negative so also is Cj. 

LEMMA 2. The variable x, occurs in ajj (i.e. has a non-zero coefficient) if 
and only if it occurs in aii and in ajj.  

By (i), xk occurs in aij if and only if it occurs in aji. Suppose m, I, n 
and m are the respective coefficients of x, in aij, aji, ajj and aji. If xk 
occurs in aij then by (iii) and (i) there is a 1 such that 

m = i n  and I = ?.it; 

whence, since m # 0, we have that 1, n and 1 are # 0. In the other direc- 
tion, if I f  0 then by (iii) and (i) there is a 1 such that 

n = Am and tit = i l l ,  

and hence, if in addition n # 0, then m # 0. 

LEMMA 3. I f  x, occurs in aij, then it may be removedfrom the,j-system by 
a sititable ( A ;  i ,  j)-system operation. 

Since by (iii) the vector of coefficients of xk in thej-th row is proportio- 
nal to the vector of coefficients of xk in the i-th row, then by a suitable 
choice of 1 the result of a ( A :  i, j)-row operation produces a j-th row in 
which the coefficients of the .I-, are all zero. By virtue of (iii) and (i) the 



MISCELLANEOUS 55 

(4) BCV) = 

V V ,  V, ... v, 
v1 v1 V12 ... VI, 

v, V,l v, . . . VZn 

Vn Vn1 Vnz ... Vn 

subsequent ( A ;  i, j)-column operation removes all non-zero coefficients 
of xk in the j-th column. 

To complete the proof of Boole's theorem we observe that, by Lem- 
mas 2 and 3, D can be converted by system operations to an equal deter- 
minant in which any particular variable, xk say, occurs at  most in one 
entry, and on the diagonal. If this is the aij position and a is its positive 
coefficient (Lemma 1) then on expanding the determinant by minors of 
the i-th row we have that x k  occurs only in terms coming from the part 

(- I)"' & X k M i i ,  

where Mii is the minor on element aii. By Lemma 1 Mii has again 
properties (i)-(iii), but no occurrences of xk. By an n-fold iteration of the 
argument until the minor becomes a single entry determinant, whose 
value is this entry, we see that x, cannot occur with power higher than 
the first nor in a term with negative coefficient. Finally, if there are no 
non-zero terms in this expansion then D vanishes identically and hence 
has dependent columns. 

The above theorem was developed by Boole for application to the 
following situation. Let V be a rational integral function of n variables 
x,, . . ., x,, in which no variable appears with exponent greater than 1 
and such that all coefficients are positive. If Vi designates the sum of the 
terms of V having xi present and V;, the sum of the terms of V having 
the product xixi present, then the determinant 
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If we think of the products of the xis  in such a V as the variables of 
the preceding theorem and if the coefficients of the terms are positive, 
then one can readily verify that the determinant in (4) satisfies the hypo- 
thesis of Theorem 0.101. This is immediate for items (i) (symmetry) and 
(ii) (positive terms on the diagonal); as for (iii) consider any particular 
term of V (product of xis) and let c y I ,  . . . , a, be the list of coefficients 
for this product of xis in the first row of the determinant. Since the term 
occurs in V this list can't be all 0's. In any subsequent row the coefficients 
on this product will be lal, . . . , da, where 2. = 1 or d = 0-for the re- 
striction represented by the subscripts on the v's will either leave this 
term throughout the given row (in the columns for which a i#  0) or 
else remove it entirely. Hence property (iii) holds and thus the expansion 
of such a determinant cannot have negative terms, though it could be 
identically 0. 

There is one case however for which we are sure that D ( V )  is not 
identically 0, namely when V (on n variables) has all 2" terms present. 
For looking at  the expansion of the determinant as a polynomial in the 
n! products of elements one from each column and not in the same row, 
the term with product u n ( x , x 2 . .  . x,)" occurs only once, coming from the 
product of the principal diagonal elements. As it cannot occur in any 
other way it must remain in the final value. 

Another simple observation concerning such determinants : if the 
value of D ( V )  is # 0 for any particular set of non-negative values of 
x,, . .., x,, then D ( V )  > 0 for all positive values of xl, . . . , x,. This is 
clear since the non-vanishing of D( V )  for a single set of values precludes 
it from being identically 0. 

Finally, the product x I x ;  ... x, is a factor of D( V ) ,  for x1 is a factor of 
the 2-nd column of the determinant, x2 a factor of the 3-rd column, and 
so on. 

0.10.2. Implicit function theorem. For convenience of reference we state 
here a basic theorem in analysis concerning the circumstances under 
which a set of equations 

F,(xl ,  . . ., xn, ~ 1 7  * .  . T  Y m )  = 0 ,  
FAXI, - - * 9 xm Y I ,  . - * t ~ m )  = 0 ,  

Fmfxl, - - *, xn, Y I ,  * * * 7 Y m )  = 0 
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has a solution for the y’s as functions of the s’s. We go over to vector 
notation, writing the system of equations as 

F ( X , Y )  = 0, 
where 

F = ( F , ,  . . a  7 F,,,), 

X = (x,, . . . , -Y,,), y = ( Y , ,  . . . , J.,>,). 

We shall need the Jacobian 

defined as the determinant 

and we use R, for the set of all n-tuples of reals. 

IMPLICIT FUNCTION THEOREM. Let F(x,  y )  be a function from R,  x R,, to 
R,, defined on some domain D and continuousl-c. differentiable there 
(i.e. of class C) .  Suppose that F(a, b) = 0 for some point (a, b)  E D and 
that J(F, y ;  x) # 0 at (a, b). Then there is a neighborhood of a and a 
unique vector function f ( x )  from R, to R,, defined over the neighborhood 
and of class C having the properties that 

f(a) = b and F ( x , f ( s ) )  = 0 .  

We shall have occasion later to refer to matters of functional depend- 
ence (in § 5 .5 ) .  Neat and simple necessary and sufficient conditions 
are apparently unavailable. The following two theorems taken from 
OSTROWSKI 1951, pp. 262-263, give sufficient conditions, one for in- 
dependence and one for dependence, which together will be sufficient for 
our purposes. 
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Sufficient Condition for Functional Independence. Let F,, . . . , F, be a 
set of n functions each from R, to R, defined and with continuous 
first partial derivatives over some region D in R,. Let F(D) be the range 
of ( F , ,  ..., F,), i.e. the set of points in R, over which (F l ,  ..., F,) ranges 
as (x,, ..., x,) ranges over D .  Suppose further that the Jacobian of the 
functions with respect to x,, . . . , x,, 

E ( F i ,  ..., F,) 
? ( X I ,  . . . , x,) 
~- 

is not identically 0 over D. Then excepting functions that are identically 
0 in a subregion of a region including F(D), there is no continuous func- 
tion p such that p(Fl ,  . . . , F,) = 0 throughout D. 

Suficient Condition for Functional Dependence. Suppose that the n 
functions 

FI(x-I, * .  * 9 -yni), F2(~1r . . *  9 xn,), . . ., F,(Xl, . . ., xm) 

together with their first partials are continuous throughout some region 
D and suppose that the matrices 

and 

are, at  each point of D, of the same rank i'. Then each of the functions 
F,, 1 ,  . . . , F, are expressible in terms of F,, . . . , F,, i.e. there are continuous 
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and continuously differentiable functions yI,  . . . , yn- r  such that 

F,+i = y i ( F l , .  .., F,) ( i  = I ,  ..., 11 - r )  

throughout D. 

conclusion of this theorem, say 

then the function 

We point out that if there is even one such relation as expressed in the 

Fr+, = YI(FI ,  . . . I  Fr), 

r~(F1, . . . , F n ) = ~ l ( F l ,  . . . ? F r ) - F r + ,  

is continuous and vanishes identically over D. Hence by the preceding 
theorem (since yI(yI, . . . , y,) - y r f l  is not identically zero) the Jacobian 

W I ,  . . * , F,) 
%I, . . . , xn) 

is identically 0 over D. 
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PARTI. LOGIC 

. . . he shrouded the simplest logical processes in the mysterious 
operations of a mathematical calculus. The intricate trains of 
symbolic transformations, by which many of the examples in the 
Laws of Thought are solved, can be followed only by highly 
accomplished mathematical minds; and even a mathematician 
would fail to find any demonstrative force in a calculus which 
fearlessly employs unmeaning and incomprehensible symbols, 
and attributes a signification to them by a subsequent process of 
interpretation. 

W. Stanley Jevons, 1870 

It would be a pretty piece of research to take Boole’s algebra, 
find independent postulates for it (his laws are entirely insufficient 
as a basis for the operations he uses), complete it, and systematic- 
ally investigate its interpretations. 

C. I .  Lewis, 19 18 
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CHAPTER 1 

BOOLE’S LOGIC OF CLASS TERMS 

0 1.0. Symbolical Algebra 

Boole wrote his Laws of Thought before the notion of an abstract formal 
system, expressed within a precise language, was fully developed. And, at 
that time, still far in the future was the contemporary view which makes 
a clear distinction between a formal system and its realization or models. 
Boole’s work contributed to bringing these ideas to fruition. He was-in 
the 1840’s along with W. R. Hamilton and H. Grassmann-one of the 
very first to originate a variant algebra, and among the earliest to use a 
formal algebraic system (as best as it was understood then) with more 
than one interpretation. But the change, from Boole’s time to the present, 
in the conception of what constitutes Algebra has been so marked that 
a proper understanding of Boole’s central contribution -the successful 
application of algebraic methods to logic-requires a recreation of the 
setting within which he worked. Accordingly we present a brief 
description of the ‘‘science of algebra”, as it was then referred to, and in 
particular the so-called symbolical algebra. As representative works of 
the period on which to base our account we choose PEACOCK 1833 and 
GREGORY 1840. Although Boole seems never to have mentioned him, 
Peacock wrote extensively on the topic. Gregory was an early 
mathematical mentor of Boole and editor of the journal which published 
Boole’s fledgeling works. 

According to Peacock there are two sciences of algebra, arithmetical 
and symbolical. In the former the genera1 symbols and the signs of 
operations refer to  the numbers and operations of “common arithmetic”, 
whose meaning required in many cases restrictions on the performability 

63 
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of the operations. For example, in arithmetical algebra one couldn’t 
subtract a larger from a smaller number and hence the Jorm a-b 
involving the general symbols a, b could be meaningless if so interpreted. 
Symbolical algebra, although “suggested by” arithmetical algebra, needs 
to be based on “independent and ultimate” principles and “thus becomes 
essentially a science of symbols and their combinations, constructed 
upon its own rules, which may be applied to arithmetic and all other 
sciences by interpretation : by this means interprctation will follow, and 
not precede, the operations of algebra and their results ; “Symbolical 
algebra arises from arithmetical by supposing that the “symbols are 
perfectly general and unlimited both in value and in representation, 
and that the operations to which they are subject are equally general 
likewise.” The “laws” of symbolical algebra are obtained from those of 
arithmetical algebra by principles Peacock laid down : 

( i )  whatever forms in general symbols are equivalent in arithmetical 
algebra, are also equivalent in symbolical algebra ; 

(ii) whatever forms are equivalent in arithmetical algebra where the 
symbols are general in form, though specific in their value, will continue 
to be equivalent when the symbols are general in their nature as well as 
in their form. 

Thus although u(6 - c) = ab - ac is true in arithmetical algebra only 
if 6 is not less than c, this restriction is removed in symbolical algebra 
and the equation is considered to be true. Likewise, from the 
arithmetical result that urn x N” = urn+” for m and n whole numbers, it is 
inferred by (ii) that the equation is true in symbolic algebra when m and 
n are “any quantities”. In addition Peacock included a restrictive 
principle to the effect that 

(iii) the laws of combinations of symbols are to be such as to reduce 
to those of arithmetical algebra “when the symbols are arithmetical 
quantities and the [homonymous] operation symbols are taken to be 
those of arithmetical algebra.” As we shall see, this principle was 
dropped by Gregory. 

Considering himself to be dealing with the laws of combinations of 
symbols Peacock had no need to prove the existence of entities with 
prescribed properties but assumed the existence of appropriate “signs” 
(akin to + and - for positive and negative). E.g. “ ... the operation of 
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extracting the square root of such a quantity as a - b is impossible, unless 
a is greater than b. To remove the limitation in such cases, (an essential 
condition in symbolical algebra) we assume the existence of such a sign 
as 0;. . .” And from this assumption Peacock then establishes that 

One should contrast this point of view of the nature of complex 
numbers with that contained in HAMILTON 1837 which appeared four 
years after the report of Peacock’s under discussion. Hamilton defines 
complex numbers as ordered pairs of numbers and, on the basis of 
definitions of the operations of addition and multiplication for such 
pairs, derives their algebraic properties, i.e. the laws they satisfy. Thus 
Hamilton presents a specific mathematical structure. Peacock’s 
conception, obscure and ill-formed as it is, bears more of a resemblance 
to our present day idea of an abstract formal system admitting of 
interpretations ; as he says “. . . interpretation will follow, and not 
precede, the operations of algebra and their results, . . .” 

In Gregory’s paper [1840] we find an advance in generality over 
Peacock. He defines symbolical algebra as “the science which treats of 
the combination of operations defined not by their nature, that is, by 
what they are or what they do, but by the laws of combination to which 
they are subject.” However he considers operations in general and not 
simply those arising in arithmetical algebra-without comment 
Peacock’s restriction, that common arithmetic be necessarily one of the 
interpretations, is dropped. Also, numerical quantities are treated as 
operations; e.g. a letter a being prefixed to  a subject means a times it. 
Not only operations which are commutative and distributive but also 
those with other general properties are studied and interpretations 
sought for them. 

Gregory believed that the general principles which he enunciates in his 
paper justified the practice of “separation of symbols”, in which the 
symbols of operation are treated algebraically. For example a linear 
differential equation with constant coefficients 

Ja-b = J-1Jb-a. 

would be written 
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and the differential operator working on y “factored”, yielding 

from which the solution for y is obtained by successively operating on 
both sides of the equation with inverse operators (d/dx - ui)-’, 
i = 1,. . ., n. An early paper of Boole’s [1841 J presents an innovation to 
this technique. He “divides” by the operator .f(d/dx) and resolves the 
symbolic fraction l/f(d/dx) by the method of partial fractions into a 
sum of reciprocals of linear differential operators with numerical 
coefficients, and thence obtains the solution by having the sum work 
on F(x). We bring this mathematical item up for attention as we believe 
it bears a resemblance to Boole’s technique which he devised for solving 
a logical equation for an unknown by division, development, and 
interpretation ($5 1.6, 1.7). 

0 1.1. Boole’s first essay 

One might contrast the title “The Mathematical Analysis of Logic” of 
Boole’s small pamphlet of 1847 with that of his major work, “The Laws 
of Thought”, appearing 7 years later. While it is the judgement of history 
that the earlier title more accurately portrays what Boole had 
accomplished, it is in the Laws of Thought that we have Boole’s mature 
and systematically worked out ideas and which, accordingly, we shall be 
using as the basis of our detailed exposition of Boole’s work. 
Nevertheless it is worthwhile to first have a brief summary of his initial 
ideas, for when we later on come to examine certain topics our 
understanding of these will be furthered by a comparison with the 
corresponding earlier treatment. Moreover we shall be able to see the 
suggestive role the calculus of operations, which Boole used in his 
mathematical work, had in the genesis of his calculus of logic, a role 
which came to be submerged in the Laws of Thought. 
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The Introduction to The Mathematical Analysis of Logic opens with 
a statement of the tenet of Symbolical Algebra: “ ... that the validity of 
[mathematical] analysis does not depend upon the interpretation of the 
symbols which are employed, but solely on the laws of their 
combination.” Heretofore all uses of this “true principle of the Algebra of 
Symbols” have been in situations in which the elements represents 
magnitudes and the operations are on magnitudes. Now Boole wishes to 
present one, a Calculus of Logic, which is not of this type. By a calculus 
he means “a method resting upon the employment of Symbols, whose 
laws of combination are known and general, and whose results admit of 
a consistent interpretation.” 

The symbol 1 is used to represent “the universe”, which is to 
comprehend “every conceivable class of objects, whether existing or not, 
. . .”. Capital letters A’, Y ,  Z are to represent (also be names for) members 
of classes, and corresponding symbols x, y ,  z are used as operators; e.g. x 
standing before “a subject [operand] comprehending individuals or 
classes” selects from the subject all the X’s which it contains. When no 
subject is indicated he will understand it to be 1, that is 

x = x(1) 

“the meaning of either term being the selection from the Universe of all 
the X’s which it contains, and the result of the operation being, in 
common language, the class X ,  i.e. the class of which each member is an 
X.” 

Note that Boole’s 1 here is an absolute universe of discourse, a 
divergence from De Morgan who in 1846 had introduced the 
changeable, limited universe into logic [DE MORGAN 1966, p. 21. (In 
Laws of’ Thought Boole adopts the De Morgan conception of a 
universe.) Note also that the result of the operator x on 1 is the class X ,  
using this symbol also as a name (“applying to each member of a class”) 
as well as for the class itself. We note also the absence of a symbol for a 
universal selector-comparable to the use of a lower case letter x for 
selecting X’s-which would select everything from the universe. 

Since Boole is using his “elective” symbols x, y ,  z as operators he takes 
it for granted that an indicated product or juxtaposition, as xy ,  has a 
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meaning, namely as successive selection, first of the Y’s and then of the 
X‘s, so that the result is a class whose members are both X’s and Y’s. 
Declaring it unnecessary to enter into analysis of “that mental operation 
which we have represented by the elective symbol”, he enumerates the 
“laws of combination and succession” which govern it. The first of these 
is that “the result of an act of election is independent of the grouping or 
classification of the subject,” which he writes mathematically as 

x(u  + u )  = xu + xu, 

in which u + u  represents “the undivided subject, and u and u the 
component parts of it.” The second law is that the order of succession of 
the act of election is immaterial, and the third is that the repeated 
election of the same class results in nothing new. Concerning these laws, 

x ( u  + u )  = xu + x u  

x y  = yx 

x” = x 

Boole asserts that they 

. . . are sufficient for the basis of a Calculus. From the first of 
these, it appears that elective symbols are distributive, from the 
second that they are commutative; properties which they posess in 
common with symbols of quantity, and in virtue of which all the 
direct processes of common algebra are applicable to the present 
system. The one and sufficient axiom in this application is that 
equivalent operations performed on equivalent subjects produce 
equivalent results. [BOOLE 1847, p. 181. 

It is an interesting commentary on the lack of sophistication in 
algebraic axiomatics, as evidenced in this quotation, that Boole believed 
that these laws plus the “axiom” cited were sutlicient justification for the 
application of the “processes of algebra”. In addition to commutativity 
and distributivity it was also usual to include the exponential law 
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aman = urn+“, but clearly this would have no relevance here in view of 
Boole’s index law x” = x. Incidentally, in Laws ofThought Boole always 
writes this law as x2 = x and never with the general n. 

The symbol ‘1 - Y’ is introduced in its unanalyzed entirety as an 
operation which selects from a subject all the not-X’s and it is assumed, 
without justification, that the minus sign between the [operator?] 
symbols I and x acts as an algebraic inverse to the + previously 
introduced between the results of an operation, i.e. between classes. (It is 
surprising that Boole doesn’t mention the logical law of double negation 
in the form 1 - (1 - x) = x.) 

The symbol 0 first comes in (unannounced) in connection with 
discussion of “All X’s are Y’s” which is symbolized 

xy = x 

and then, without explanation, converted to 

x(l  - y)  = 0, 

presumably by “common algebra” which he believes applies to his 
symbols. 

After presenting this algebraic apparatus-in view of its fragmentary 
nature one can hardly call it a system-Boole turns to its use in doing 
term logic, which is conceived by him pretty much in the traditional 
postscholastic form. However we shall not continue with an exposition 
of this early version as the material receives fuller and more cogent 
treatment in Laws of’ Thought to which, as the main business of this 
Chapter, we are about to turn. 

We conclude this section with Boole’s own estimate of his earlier work 
as contrasted with a very general result which he announces he has 
obtained and which he claims can be used to solve general problems in 
the theory of probability. The paper from which it comes, BOOLE 1851a, 
was written four years after Mathematical Analysis of Logic and three 
years before the appearance of Laws of Thought : 

1. In a hasty and (for this reason) regretted publication entitled 
“The Mathematical Analysis of Logic”, an in a paper published in 
the Cambridge Mathematical Journal, entitled, “The Calculus of 
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Logic”, I have stated certain general laws of thought, 
mathematical in their expression, and constituting, as I believe, the 
true basis of formal logic. The actual development of those laws in 
the works referred to is far to imperfect to meet the requirements 
of the case now under our consideration. But that imperfection 
does not apply to the laws themselves. The results of subsequent 
investigations authorise me to say that there exists a general 
method, enabling us not only to educe any of the consequences of 
a system of propositions, but also to express in a scientific form 
and order the connexion which any proposed proposition bears to 
any other proposition, or system of propositions. [BOOLE 1952, 
VIII, p. 2521 

8 1.2. The basic principle 

As the title “Laws of Thought” indicates Boole’s conception of logic was 
not, as now viewed, namely as a discipline based on semantic ideas and 
concerned with truth-preserving transformations of sentences but, 
rather, as one having a psychological basis, concerned with mental 
operations and their normative expression in mathematical form. As our 
chief interest is in the formal and mathematical aspects of Boole’s ideas 
we can, once our exposition is underway, ignore his psychological 
framework since, as we shall see, it plays no essential role. Boole of 
course thought otherwise and so we devote some space to his views. 

The unquestioned opinion, that logic concerned thinking and 
,operations of the mind, pervaded the contemporary English writings on 
logic which Boole was familiar with. Typical are the two works 
recommended to the reader by him in his Preface to Laws of Thought as 
sources for the technical terms of (traditional) logic : Whately’s EIements 
of Logic [1852] and Thomson’s Outline of the Laws of Thought [1853]. 
Both of these works appeared in many editions-those cited here are 
editions Boole could have had before him when writing his Laws of 
Thought. Both of these recommended books include discussions of the 
“higher mental faculties”. 

Whately has a chapter entitled “Of Operations of the Mind and 
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Terms” dealing with apprehension, judgement, and reasoning ; similarly 
Thomson has among his main divisions “Part I.  Conceptions,” “Part 11. 
Judgements,” and “Part 111. Syllogism. Reasoning.” However with 
regard to the role of Language in connection with thought the two 
authors took opposite sides-Whately declaring that language is 
essential, Thomson that it is not. Boole, in opening his development 
(Chapter 11. Signs and their Laws) dedares that the question as to 
whether language is essential for reasoning to be “beside the design of 
this treatise”, since ”whether we regard signs as the representative of 
the conceptions and operations of the human intellect, i R  studying the 
laws of signs, we are in effect studying the manifest laws of reasoning.” 
(p. 24) ’. 

And now Boole takes the step, unprecedented as far as was generally 
known, of viewing the various combination of concepts as having an 
algebraic character. He claims (p. 27) : 

PROPOSITION I 

All the operations of Language, as an instrument of reasoning 
may be conducted by a system of signs composed of the followirig 
elements, viz : 

1-st. Literal symbols, as x, y, etc., representing things as subjects 
of our conceptions. 

2-nd. Signs of operations, as +, -, x , standing for those 
operations of the mind by which the conceptions of things are 
combined or resolved so as to form new conceptions involving the 
same elements. 

3-rd. The sign of identity, =. 
And these symbols of Logic are in their use subject to definite 

laws, partly agreeing with and partly differing from the laws of 
the corresponding symbols in the science of Algebra. 

’ Unless the context indicates otherwise, page number references without an 
accompanying source will be to Boole’s Laws of Thought, i.e. to the item BOOLE 
1854 (or the Dover reprint BOOLE 1951) in our Bibliography. The pagination of 
the Open Court edition, BOOLE 1916, is different, but does include in the text the 
original page numbers. 
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Let us first note, for future reference, (i) the sweeping generality of the 
claim that all uses of language as an instrument of reasoning can be 
carried out by his system of signs, (ii) the absence of the sign of division, 
and (iii) the only sign of relation referred to is that of identity. 

Although in the 1st item Boole states that the literal symbols x, y ,  etc. 
are to represent things as subjects of our conceptions subsequent 
discussion shows him to be using these to stand either for classes or for 
general terms and, moreover, not maintaining a distinction between the 
two. Thus on p. 28 we find the statements: 

Let us agree to represent the class of individuals to which a 
particular name or description is applicable, by a single letter, as x. 

If the name is “men,” for instance, let x represent “all men,” or 
the class “men.” 

Let it be further agreed, that by the combination x y  shall be 
represented that class of things to which the names x and y are 
simultaneously applicable. 

In the first of these statements x stands for a class determined by a 
name or description (i.e. by a general term); in the second he refers to 
“men” both as a name and as a class. In the third, x and y are names, but 
the combination x y  is a class. Compounding the confusion is his 
referring, in the 2nd item of Proposition I, to the signs of operation +, 
-, x as standing for operations of the mind, not as operators on names 
or classes. 

But Boole’s lack of clarity on these matters was no hindrance to his 
developing a workable calculus since (a) he believed that the laws of 
signs are the laws of reasoning, whether one takes the signs introduced 
as representing [classes ofl things and their relations, or as representing 
conceptions and operations of the mind, and (b) it is the case that the 
logic of general terms is formally indistinguishable from a calculus of 
classes. (See CARNAP 1958, 9: 28c, or QUINE 1972, 9: 20.) By virtue of (a) 
Boole can replace subjective psychological explanation by objective talk 
about classes or terms, and by (b) he can use linguistic practice in the use 
of general terms to guide him to logical laws. We thus find him, on the 
basis of a variety of arguments involving conceptions of the mind, 



THE BASIC PRINCIPLE 13 

linguistic practice with nouns and adjectives, and the extensions of terms 
(i.e. classes), concluding : 

We are permitted, therefore, to employ the symbols x ,  y ,  z ,  etc., 
in the place of substantives, adjectives, and descriptive phrases 
subject to the rule of interpretation, that any expression in which 
several of these symbols are written together shall represent all the 
objects or individuals to which their several meanings are together 
applicable, and to the law that the order in which the symbols 
succeed each other is indifferent. [pp. 29, 301 

Boole expresses the formal property of this juxtaposition operation by 
writing an algebraic equation 

and .stating that the expressions 

( 2 )  zxy ,  zyx ,  xyz ,  etc. 

all represent the same class. He says the law expressed by (1) “may be 
characterized by saying that the literal symbols x ,  y, z are commutative, 
like the symbols of Algebra,” (note the attribution of the property to the 
operands rather than the operation) but makes no mention of 
associativity, apparently not realizing its formal necessity to  connect the 
binary operation of (1) with the ternary operation of (2). By considering 
x and y as representing the same name or quality he concludes that x y  
and x have the same signification. Hence x x  = x ,  or 

(3) x2 = s, 

which is “the expression of a second law of those symbols by which 
names, qualities, or descriptions are symbolically represented”. By 
referring to ( 3 )  as the second law ( ( 1 )  being the first) Boole confirms our 
surmise that he is not cognizant of the need for associativity. 

Next Boole considers “Signs of those mental operations whereby we 
collect parts into a whole, or separate a whole into its parts.” The 
collecting of parts into a whole is indicated in language by the use of 
“and” or “or” between general terms (“men and women,” “barren 
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mountains, or fertile vales”). Though later on admitting that common 
usage favors the nonexclusive meaning he maintains : “In strictness, the 
words “and,” “or,” interposed between the terms descriptive of two or 
more classes of objects, imply that these classes are quite distinct, so that 
no member of one is found in another. In this and in all other respects 
the words “and” and “or” are analogous with the sign + in algebra, and 
their laws are identical.” Symbolizing this aggregation of classes by the 
algebraic symbol he then has the properties 

(4) x + y = y + x  

( 5 )  

which, he says, “govern the use of the sign +.” Again, as for 
multiplication, there is no mention of associativity. 

It is not clear why Boole considers his restricted notion of aggregating 
classes-restricted to have meaning only for disjoint classes -and that 
of arithmetical addition, to behave analogously in all respects and to 
have idential laws since performability of arithmetical addition is 
unrestricted. It is of course true that the number of elements in the union 
of two (finite) classes is the sum of the number in the respective classes if 
and only if the two classes are disjoint, but this is a property of the union 
of classes, not of addition. Note moreover that (4) and ( 5 ) ,  as statements 
of arithmetic laws, hold without restriction, i.e. s, y.  and z can be the 
same or different numbers. Likewise, as we shall see, Boole will also be 
using them unrestrictedly in his system, i.e. without first establishing that 
the summands are disjoint. 

As an operation in logic inverse to his x + y Boole has a substraction, 
x - y ,  which is expressed in “common language” by the use of the word 
except (e.g. “All men, except Asiatics”). Here, as with his addition, 
subtraction is restricted, its use implying that the “things excepted form 
a part of the things from which they are excepted.” On the basis of 
linguistic example (“excepting Asiatics, men”) Boole concludes that 

( 6 )  x - y =  - y + x  

without explaining what meaning ‘-y’ could have so as to be capable of 
being added to the class x ,  nor of providing justification for interpreting 

z(x  + y )  = zx + z y ,  
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the comma in his example (men, excepting Asiatics) as logical addition. 
Also, on the basis of linguistic example, he concludes that in logic 

(7 1 z(x - y )  = zx - zy. 

Boole next turns to the question of formation of propositions and 
argues that the only relation sign needed is the sign =. By way of 
illustration he converts the proposition “Caesar conquered the Gauls” to 
“Caesar is one who conquered the Gauls”, that is an equation between 
an individual term and a definite description-a somewhat 
inappropriate example, as the latter form is not a relation between 
classes unless one identifies an individual with its unit class. Boole, of 
course, is not fully aware of the many meanings of the word “is” which 
have subsequently been distinguished and clarified in logic : identity 
between individuals, equality of classes, logical equivalence of general 
terms, inclusion of classes, subsumption of terms, and membership of an 
individual in a class. 

Viewing the sign = as standing for ‘equals’ Boole affirms the axiom 
that equals may be added or subtracted from equals yielding results that 
are equal. He believes that this suffices to justify transposition of terms in 
an equation. For a contemporary mathematician what is additionally 
needed is existence of an additive inverse and of a zero with the laws 

(8 1 A + ( - A )  = 0, 

(9 ) B+O = B, 

as well as associativity of +. (Our use of capital letters is explained in 
6 1.4 below.) 

Boole observes that in logic both sides of an equation can be 
multiplied by the same factor, but that from zx = zy we cannot deduce 
x = y. There he says the analogy with “common algebra” breaks down, 
but contents himself with the fact that this law, i.e. 

zx = zy implies x = y ,  

does not have the full generality of the laws heretofore discussed in that 
it does not hold unless “it is known that z is not equal to 0 .  But, it 
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should be noted, even the correctly stated algebraic law for numbers, 

z # 0 and zx = z y  imply x = y, 

still fails for class logic, i.e. is not a general truth. Ignoring or not 
realizing that there are such exceptions he observes that all the laws 
examined hold for numerical algebra, and that the special law xz = x 
does if x is confined to the values 0 and 1, and hence concludes that it 
is not with “Number generally” that the “symbols of Logic” should be 
compared but with “symbols of quantity” admitting only the values 0 
and 1. A basic principle of the work is then stated: 

Let us conceive, then, of an Algebra in which the symbols x, y ,  z ,  
etc. admit indifferently of the values 0 and 1, and of these values 
alone. The laws, the axioms, and the processes of such an algebra 
will be identical in their whole extent with the laws, the axioms, 
and the processes of an Algebra of Logic. Difference of 
interpretation will alone divide them. Upon this principle the 
method of the following work is established. [pp. 37-38]. 

Of interest here is Boole’s first use, without comment, of the terms “an 
algebra” and “an Algebra of Logic” where heretofore he had used “a 
calculus” and “a Calculus of Logic”. It signifies, we believe, a realization 
that what he had created was not simply another (mathematical) 
calculus as with operators (see 8 1.0) but a formal structure, similar to 
but different from common algebra, with two distinct interpretations. 
That these interpretations are distinct is (or should have been) clear 
since the one interpretation has only two entities 0 and 1, and an 
adequate Algebra of Logic can’t do with only two classes. He speaks of 
the two interpretations as having the same (formal) laws, axioms, and 
processes, but neither in Chapter I1 (Signs and Their Laws) nor in 
Chapter I11 (Derivation of the Laws) do we find these laws spelled out. 
However in Chapter I (Nature and Design of this Work) he asserts they 
are “ ... identical in form with the laws of the general symbols of 
Algebra, with this single addition, viz., that the symbols of Logic are 
further subject to  a special law [i.e. xz = x] (Chap. 11), to which the 
symbols of quantity, as such, are not subject.” (p. 6) .  Exactly what these 
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laws of the general symbols of Algebra are we are not sure of since 
neither Boole nor any of the Symbolical Algebraists have enumerated or 
described them in full. As we have already observed, some which should 
have been listed, e.g. associativity of + and x, and existence of an 
additive inverse, were not. Moreover, it isn’t clear whether something 
like 

(10) If x y  = x z ,  then either x = 0 or y = z 

(implying non-existence of divisors of zero) should, or should not, count 
as one of the laws of general symbols of Algebra-it is not a statement of 
“equivalent forms” in Peacock’s sense, yet it is a truth of arithmetic 
stated in general symbols. Is it a truth of Symbolical Algebra? (Property 
(10) is, of course, not a law for classes.) 

We should also note that although Boole’s statement of general 
algebraic laws (e.g. communativity, distributivity) is in terms of his literal 
symbols x ,  y, z ,  etc., it is clear from what follows that he intends these 
laws (xz = x excepted), as general laws of symbols, to be taken in full 
generality, i.e. allowing substitution of any algebraic expressions for 
these letters, whether or not the expressions are restricted to those 
having logical meaning. We resume discussion of this topic in 5 1.4. 

0 1.3. Symbols of Logic and “operations of the mind”. 
The fundamental law 

In contrast to Mathematical Analysis of Logic where he decides not to 
enter into an analysis of the mental operations corresponding to his 
elective symbols, in Luws ofThought Boole does devote a portion of his 
Chapter 111 (Derivation of the Laws) to showing that the laws of the 
symbols of logic can be derived from those of the operations of the mind. 

First he disavows any particular theory of the mind, arguing that if 
one succeeds in obtaining by observation the laws of thought then they 
have a real existence as laws of the mind independently of any 
“metaphysical” theory of the mind. However he will use the “language of 
common discourse” and talk about “ideas, or conceptions”, which he 
assumes are communicated by words. He will also talk about the mind 
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as having “powers or faculties” such as Attention, Conception or 
Imagination, etc., which he refers to as Operations of the mind, without 
thereby implying the “real existence” of such activity. An objective of his 
Chapter 111 is stated as Proposition I :  

To deduce the laws of the symbols of Logic from a 
consideration of those operations of the mind which are implied in 
the strict usage of language as an instrument of reasoning. [p. 421 

The argument for the Proposition is prefaced by a discussion of the 
notion of a universe of discourse, here taken not in an absolute sense as 
in Mathematical Analysis of Logic, but as one which may be limited in 
extent and may change with the context. This is the notion introduced 
by De Morgan in 1846 [DE MORGAN 1966, p. 21, though Boole makes no 
mention of it. Boole apparently finds it quite natural to take language 
usage as an indicator of what goes on in the mind. The connection 
between mind and language is established when he claims that the use of 
a word, e.g. men, “. . . directs us to select mentally from the Universe [in 
this example the “actual” one] all the beings to which the term ‘men’ is 
applicable ; so the adjective ‘good’, in the combination ‘good men’ directs 
us still further to select mentally from the class men all those who posess 
the further quality ‘good’. . . .” He finds it “perfectly apparent” that if the 
mental selection is performed in either order the result is the same. 
Hence one has a law of the mind corresponding to the law of literal 
symbols x y  = y x .  The law x 2  = x is discussed in similar fashion. We 
note here the reappearance from Mathematical Analysis of Logic of the 
selection operation idea, only now on the mental level and not 
symbolized-the x, y ,  z ,  are not “elective” symbols but names, or class 
symbols, which “direct the mind” to select the appropriate individuals 
from the universe. 

The remainder of Chapter 111 is devoted to matters relating to the 
fundamental law x2 = x, which for Boole characterizes the difference 
between the logical and quantitative use of symbols; the first of these 
concerns the meaning of symbols 0 and 1. 

Since, as numbers, 0 and 1 satisfy the algebraic equation x 2  = x it is 
natural to inquire whether these symbols can be given an interpretation 
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in Logic. Boole explains that the grounds for the interpretation of 
particular symbols (i.e. symbols for constants) depends on the laws 
which they are “subject to” in a given system, that this interpretation is 
to be in conformity with the adopted interpretation of the given system, 
and that “there may be both propriety and advantage in employing the 
same symbols in different systems of thought, provided that such 
interpretations can be assigned to them as shall render their formal laws 
identical, and their use consistent.” (p. 46) From the arithmetical 
formulas 

(1) o y  = 0 

(2 ) 1Y = Y 

Boole infers that in logic 0 must represent Nothing and 1 the Universe, 
these being the only interpretations consistent with logical 
multiplication. Also, from his meaning assigned to subtraction, 1 - x 
then represents the complementary class not-x. It is of interest to note 
that even before determining meanings for 0 and 1 in logic, Boole is 
assuming (p. 47, last line) that (1) and (2) are valid in logic. This accords 
with Peacock’s Symbolical Algebra view that “interpretation will follow,, 
and not precede the operations of [symbolical] algebra, and their 
results.” 

In connection with 1 - x  it is surprising that Boole never comments 
on the logical law of double negation which would be expressed by 
1 - (1 -x)  = x. The first logical theorem he does derive is 

x ( l  - x )  = 0, 

which comes from x2 = x by transposing xz, replacing x by x l  and 
factoring. Boole is evidently quite pleased at having derived “that 
‘principle of contradiction’ which Aristotle has described as the 
fundamental axiom of all philosophy” from his fundamental law of 
thought xz = x. Discussing this law leads Boole to an observation 
which, in view of the development of many-valued logic, some 70 years 
later, is surprisingly prophetic : 

. . . I desire to direct attention also to the circumstance that the 
equation (1) [i.e. x(1 - x )  = 01 in which the fundamental law of 
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thought is expressed is an equation of the second degree.* 
[Footnote below]. Without speculating at all in this Chapter upon 
the question, whether that the circumstance is necessary in its own 
nature, we may venture to assert that if it had not existed, the whole 
procedure of the understanding would have been different from 
what it is. Thus it is a consequence of the fact that the fundamental 
equation of thought is of the second degree, that we perform the 
operation of analysis and classification, by division into pairs of 
opposites, or, as it is technically said, by dichotomy. Now if the 
equation had been of the third degree, still admitting of 
interpretation as such, the mental division must have been three- 
fold in character, and we must have proceeded by a species of 
trichotomy, the real nature of which it is impossible for us, with 
our existing faculties, adequately to conceive, but the laws of 
which we might still investigate as  an object of inteltectual 
speculation. 

In a lengthy footnote to the remark that the fundamental law of logic 
is of the second degree we find Boole mentioning for the first time a 
feature of his approach to logic which gave rise to serious objections, 
namely the use of algebraic expressions having no meaning in logic. We 
state this footnote (omitting its last paragraph) and discuss it in detail. 

*[Boole’s footnote] Should it here be said that the existence of 
the equation x2 = x necessitates also the existence of the equation 
x3 = x, which is of the third degree, and then inquired whether the 
equation does not indicate a process of trichotomy; the .answer is, 
that the equation x3 = x is not interpretable in the system of logic. 
For writing it in either of the forms 

x ( l  - x ) ( l  + x )  = 0, 

x ( l  -x) ( -  1 - x )  = 0, 

we see that its interpretation, if possible at all, must involve that of 
the factor 1 +x ,  or of the factor - 1 - x .  The former is hot 
interpretabk, because we cannot conceive of the addition of any 
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class x to the universe 1 ; the latter is not interpretable, because the 
symbol - 1 is not subject to the law x(l  - x) = 0, to which all 
class symbols are subject. Hence the equation x3 = x admits of no 
interpretation analogous to that of the equation x’ = x. Were the 
former equation, however, true independently of the latter, i.e. 
were that act of the mind which is denoted by the symbol s, such 
that its second repetition should reproduce the result of a single 
operation, but not its first or mere repetition, it is presumable that 
we should be able to interpret one of the forms ( 2 ) ,  (3), which 
under the actual conditions of thought we cannot do. There exist 
operations, known to the mathematician, the law of which may be 
adequately expressed by the equation x3 = x. But they are of a 
nature altogether foreign to the province of general reasoning. 

As his factorizations of x - x 3  and x3 - x show, Boole’s use of 
common algebra leads him to expressions, namely 1 + x and - 1, which 
have no logical meaning. The reasons he gives for them not being 
interpretable is different in the two cases : in the case of 1 + x the reason 
given is interpretive (‘‘we cannot conceive of the addition of any class x 
to the universe”) and in the case of - 1 the reason is formal (“ - 1 is not 
subject to the law x ( l  - x )  = 0 [x’ = x?], to which all class symbols are 
subject to”) It has been pointed out by John Corcoran (letter to the 
author of 2 May 1981) that Boole’s reason for rejecting x3 = x as having 
an interpretation in logic could equally well be applied to  his x‘ = x. 
For by writing it in the form x’-x = 0 and factoring, it converts 
algebraically to 

(3 1 x(x - 1) = 0. 

Since this form involves the factor x - 1, which for Boole would have no 
meaning in logic, we could then declare (3) and so x’ = x as not 
interpretable in logic. We don’t know what Boole would have replied to 
this, but we do note that he had examined both of the factorizations, 
that of x - x3 and x3 - x, and in each case does obtain an objectionable 
factor. However, in the case of x’ = x there is at least one form in which 
all factors have logical meaning. It is possible that considerations such as 
those occurring in his footnote, and not the appealing philosophical 
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notion of dichotomy, are what may have led Boole to consistently write 
his fundamental law as x2 = s or s( 1 - s) = 0 in Laws qf Thought, 
shunning the algebraically equivalent x” = x which he used in 
Mathematical Analysis of Logic. We shall resume discussion of the topic 
of interpretability in 5 1.7 and in $2.4 below. 

Whether or not Boole had explored the consequences of assuming 
that - 1 and 1 + x did satisfy the fundamental law we don’t know, but if 
he had he would have found that 

(-1)2 = - 1  + 1 = - 1  

+ l f l  = o  
-+ x + x = 0, for any x 

and 

( 1 + x ) 2 = 1 + x - - , 1 + x + x + x 2 = 1 + x  

- + l + x + x + x = l + x  

- + x + x = o ,  

with both sets of implications reversible. Thus having - 1 and 1 + x 
satisfying x2 = x is equivalent to having x + x = 0. With his fixed idea 
of + having to stand for the aggregation of disjoint classes Boole would 
certainly have found having x + x = 0 equally as inconceivable as adding 
a class x to the universe. From our present day vantage point it is easy 
for us to see that if Boole had only thought of representing symmetric 
difference of classes by addition-for which it is true that x + x = 0 and 
for which all the usual elementary properties of addition, including 
having an inverse, hold-he would have had an algebra which is a 
Boolean ring with unit, a structure equivalent to Boolean algebra in 
which all problems of class logic can be handled without encountering 
“uninterpretables”. But one can hardly fault him for this since it wasn’t 
until the 20th century that the equivalence of the two kinds of algebras 
was noticed (For a proof see STONE 1936). 

Although Boole did not explicitly consider the matter, it is clear that 
he would have rejected 1 + 1 = 0 as it implies ( -  1)2 = - 1, which he 
did reject. Likewise he would have certainly rejected 1 + 1 = 1 since by 
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subtraction of 1 it yields 1 = 0. Thus for Boole addition was not a closed 
operation in the set (0, 1). 

0 1.4. Boole’s algebra of +, -, x , 0, 1 

Before continuing with our exposition of Boole’s system for doing logic 
we wish to formally codify the algebraic laws which he had so far 
committed himself to, some explicitly, others implicitly. 

Boole uses the literal symbols x, y, z ,  etc. in a two-fold capacity which 
are not clearly distinguished by him, namely as symbols standing for 
(arbitrary) classes with their special properties and, also, as algebraic 
variables in terms of which general algebraic properties for all “symbols” 
(e.g. commutativity, distributivity) are expressed. With these literals, and 
the two constants 0 and 1, algebraic expressions are constructed using 
the operations +, -, x . However, only some of these expressions (e.g. 
xy,  1 - x )  are taken to represent classes while others either do not (e.g. 
- 1, 1 + 1) or else might not (e.g. x + y, x - y). This distinction is of 
course important since only classes are subject to the law x2 = x. When 
Boole says “Let us conceive, then, of an Algebra in which the symbols x, 
y, z,  etc. admit indifferently of the values 0 and 1, and of these values 
alone” he does not thereby imply that 0 and 1 are the only values which 
can result since, as we have seen, having 1 + 1 as 0 or as I is 
excluded. Thus there are legitimately constructed expressions (e.g. 1 + 1) 
which x, y, z do not admit as substitutable values. In order then to state 
the laws which do hold in general we need to introduce a new set of 
variables since x, y, z ,  ... are (informally) restricted in what may be 
substituted for them. For such general variables we use capital letters A,  
B, C, . . ., adopting the customary algebraic principle that properly 
constructed expressions are freely substitutable for these general 
variables in algebraic theorems. The substitutable expressions here are, 
of course, those built up from Boole’s literal symbols x, y, z,  ..., the 
constants 0 and 1, and the operations +, -, x .  

In terms of these new variables we can state the general algebraic 
principles. From an examination of Boole’s practice in Laws of Thought 
it is readily seen that they include, in the first instance, properties we 
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nowadays ascribe to a commutative ring with unit ( 5  0.4). These include 
0 # 1, which Boole never states but clearly intends. Also we find him 
cancelling “definite” numerical factors, as in going from 2xy = 0 to 
xy = 0. To formalize this one needs to add the law A + A = 0 -+ A = 0. 
We believe this is now a complete list. For convenience we spell the list 
out : 

BOOLE’S ALGEBRA OF + , -, x , 0, 1 

A + B = B + A  A B  = BA 

( A  + B) + C = A + (B + C )  

A + O = A  A . 1  = A  

(AB)C = A(BC)  

A + ( - A )  = 0 

A ( B  + C )  = A B  + AC 

x2 = x 

O f 1  

A + A = O + A = O  

In the case of the fundamental law x2 = x it is assumed that any other 
literal” y, z, . . . may replace x. No special mention of 0 and 1 is needed 

here since from the ring properties one can derive O2 = 0 and l 2  = 1. 
With the exception of the last two-which Boole never explicitly 
recognized-all the laws are in the form of equations, accounting 
perhaps for Boole’s belief that the only relation he needed was =. 

“ . 

0 1.5. Primary propositions and class terms 

We now describe how Boole rendered propositions of ordinary language 
into his symbolism. 

Chapter IV (Division of Propositions) begins by classifying all 
propositions as primary or secondary, primary propositions being those 
which “express a relation among things” while secondary are those 
which “express a relation among propositions”. This division of Boole’s 
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corresponds to the traditional one into categorical and hypothetical but, 
in keeping with his broadened view of logic, is more generally conceived. 
From the modern point of view Boole’s doctrine of primary and 
secondary propositions has serious conceptual flaws but these need not 
detain us as there were no deleterious consequences. (Propositional logic 
is discussed in Chapter 3.) In this section our interest is in the logical 
form in which he casts primary propositions. 

For Boole primary propositions have the general form of an equation 
between terms whose construction, unlike the subject and predicate of 
traditional logic, is more fully prescribed. Though not explicitly saying 
so he seems to believe that classes are defined in only two ways, namely 
by giving either (i) “the names or qualities common to all individuals 
which it contains” or (ii) “the different portions . . . defined by different 
properties, names or attributes.. . .” In the first case the symbolic 
expression is a concatenation of the names or qualities, e.g. xyz, 
xy(1 - z), etc., and in the second case there is a + sign connecting such 
expressions (or, in the case of exclusion from a class, a subtraction sign). 
Boole refers to expressions of the first kind as “class terms”, in evident 
analogy with the mathematical use of “algebraic terms”. In symbolizing 
disjunctively given classes Boole requires that the expressions explicitly 
indicate that the portions are disjoint. Hence ‘x’s or y’s is to be rendered 
either as ‘x(1 - y) + y(1 - x)’ or as ‘x + (1 - x)y’ according as ‘or’ is 
taken in the exclusive or inclusive sense. He remarks that each of these 
expressions he describes (i.e. xyz, xy(  1 - x), x( 1 - y )  + y(  1 - x), 
x + y(l - x)) satisfies the fundamental law xz = x, and that this is 
characteristic of expressions representing classes, though without giving 
a general proof. It is convenient to have a name for any such 
expression-the designation (logical) class term seems to us particularly 
appropriate and, since Boole doesn’t make much use of his so-named 
narrower notion (i.e. for a monomial term), we shall henceforth adopt it 
in this wider sense, that is for any polynomial expression P in his 
symbolism satisfying the law P 2  = P. When necessary we shall refer to 
Boole’s monomial term as an algebraic class term. 

Boole’s contention is that primary propositions are of three kinds, 
each of the form of an equation between (logical) class terms. He accepts 
and uses the traditional terminology of categorical propositions, but 
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deftly modifies the analysis of such propositions to his ends. An 
affirmative proposition is always of the form subject-copula-predicate, 
with the subject and predicate terms “understood to be universal or 
particular, i.e. whether we speak of the whole of that collection of objects 
to which a term refers, or indefinitely of the whole or of a part of it, the 
usual signification of the prefix ‘some’.” 

The first of the three kinds of primary propositions is that in which the 
subject and predicate are both universal. To render this type into 
symbols Boole’s rule is: form the separate expressions for the subject 
and predicate and connect them by the sign =. As an illustration he uses 
the definition of Wealth (due to the economist N.W. Senior): “Wealth 
consists of things transferable, limited in supply, and either productive of 
pleasure or preventative of pain.:’ Setting 

w = wealth 

t = things transferable 

s = limited in supply 

p = productive of pleasure 

r = preventative of pain 

he then has the equation 

w = s t { p + r ( l  - p ) }  

or 

w = st(p(1 - r ) + r ( l  - p ) }  

depending on whether one intends the ‘or’ of the definition to be taken in 
the non-exclusive or exclusive sense. Boole asks the question what if [in 
disregard of the requirement that + connect disjoint terms] one writes 
the definition as 

w = s t ( p  + r) .  

His answer is that it would be equivalent to the second of the above 
equations for w with the added implication that stp and str are disjoint. 
Foreshadowing later development contained in his Chapter VI he says : 
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“How the full import of any equation may be determined will be 
explained hereafter”. By an ‘equation’ he means to include even those 
constructed without the restrictions on + (or on - )  needed for 
interpretability. 

The second type of categorical proposition is the affirmative one in 
which the predicate is particular, as in ‘all men are mortal’ which Boole 
expands to ‘All men are some mortal beings’. To render this Boole 
introduces a special symbol u, “a class indefinite in every respect but this, 
Viz., that some of its members are mortal beings, and let x stand for 
‘mortal beings’, then will ux represent ‘some mortal beings’. Hence if y 
represent men, the equation sought will be 

y = ux.” 

Concerning the symbol v Boole says : “It is obvious that v is a symbol of 
the same kind as x, y, etc., and that it is subject to the general law 

u2 = u, or v ( 1  - v )  = 0.” 

The symbol v is also used by him to express a proposition with a 
particular subject (the third type) such as ‘Some men are not wise’. With 
y standing for ‘men’ and x for ‘wise beings’ he writes the proposition as 

uy = u(1 - x )  

“introducing u as the symbol of a class indefinite in all respects but this; 
that it contains some individuals of the class to whose expression it is 
prefixed,. . .” 

This device of Boole’s for expressing particularity (i.e. some) by use of 
his special symbol u was adversely criticized by later writers. We 
postpone a discussion of the topic until our 0 1.10. 

In sum, if X and Y symbolize the terms of a primary proposition, then 
such a proposition will be of one of the three forms 

x =vY 
X = Y  

vx = VY, 

with v as described above. Boole remarks that the terms X and Y “if 
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founded upon a sufficiently careful analysis of the meanings of the ‘terms’ 
of the proposition will satisfy the fundamental law of duality which 
requires that we have 

x2 = x or ~ ( 1  -x) = o ,  
Y2 = Y or  Y(1- Y )  = 0.” 

By a “sufficiently careful analysis” we take it that Boole means 
expressing terms so that + occurs only between disjoint class terms. 
One can formally prove this on the basis of the algebraic properties 
listed in tj 1.4: 

THEOREM. If T is a term (of a proposition) constructed from literals x, y ,  z ,  
. . ., the operation of subtraction from 1, multiplication, and addition, and 
such that the sign + stands only between disjoint class terms then T is a 
class term. 

PROOF. By induction on the structure of T using as a basis for the 
induction that literals are class terms, and then the following three 
results about class terms X and Y: 

(1)  (l-x)~=1-x-x+x2=1-x-x+x =1-x. 

(2 ) 

(3) 

( X U ) *  = X2Y2 = XY. 

(X + Y)2 = x + Y -x2 +XY+XY + Y2 = x + Y 
H X Y + X Y  = o  
-XY = 0. 

One readily sees that 

XY = o+x + Y = X(1- Y)+.Y(l -X) = X+(1 -X)Y, 

showing that for disjoint operands Boole’s addition is equivalent to 
either symmetric difference or union. Also easily established is the fact 
that X - Y is a class term if and only if XY = Y. Thus the above 
theorem can be taken so as to include subtraction if the subtrahend class 
is contained in the minuend class. 
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§ 1.6. Principles of symbolical reasoning. Development 

If his rules are followed Boole’s class terms and the primary propositions 
containing them are always logically interpretable. Nevertheless 
believing that he has to have the same laws as, and the same algorithmic 
freedom of, numerical algebra in order to conduct inferences from such 
propositions, Boole is compelled to consider the problem of what to do  
about expressions that arise and procedures carried on to which no 
logical significance can be given. Chapters V and V1 of Luios of’ Thought 
are largely devoted to this problem. 

In the opening paragraphs of Chapter V he acknowledges that the 
laws for addition were determined from the study of examples in which 
the summands were mutually exclusive. Even so he maintains that one 
need not restrict oneself, in the application of these laws, to these 
circumstances under which the knowledge of the laws was obtained-“If 
such restriction is necessary, it is manifest that no such thing as a general 
method in Logic is possible.” However the problem is not one peculiar 
to logic but “to every developed form of human reasoning which is based 
upon the employment of symbolical language.” According to Boole, as 
long as the symbols have a fixed interpretation, the laws of which have 
been correctly determined, and if the formal processes of solution and 
demonstration have been carried out in ”obedience’. of these laws, and if 
the end results are interpretable, then there can be no question as to the 
validity of the conclusion, even though in some of the intermediate steps 
there may be uninterpretable expressions or processes. This principle, he 
contends, rests on a general law of the mind by which the general 
principle is clearly manifested in the particular ~ instance. He cites the 
example of the use of the imaginary ti- 1 in the “intermediary 
processes” of trigonometry and firmly asserts that no explanation (i.e. of 
the use of J-17 in trigonometry) can be given which does not “correctly 
assume the very principle in question”. Boole could also have cited the 
example of solving an algebraic problem for an unknown natural 
number, the condition for which involves only natural numbers, and to 
which one applies the full algorithmic power of algebra without regard 
to whether the operations are meaningful (in terms of natural numbers), 
and in the course of which proper fractions or roots may appear; i f  the 
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end result gives the unknown as a natural number, then one is satisfied 
that the solution is correct. 

To a modern mathematician, however, the correctness of the 
procedure cited by Boole is justified by an appeal, not to a principle of 
the mind, but to the embeddability of the natural numbers in the reals 
or, in the trigonometric example, of the reals in the complex numbers 
(see $0.3). And, in all such cases, one deals with specific structures 
(natural numbers, reals, complex numbers) and not with abstract 
axiomatic formalizations. In Boole’s case, however, he is starting out 
with what roughly corresponds to a formal system (though never 
explicitly formulated) and then comes out with a “partial” 
interpretation. We intend to show in our Chapter 2 that Boole’s 
procedures can be justified by contemporary standards, namely by 
having, for a formal system which codifies his algebraic usage, suitable 
structures or models in which there are entities for all terms (hence no 
uninterpretable expressions) and in which ordinary class calculus is 
embedded. But for the moment we consider only his presentation. 

Having argued that the laws governing his logical symbols x, y, z ,  . . . 
and the operations on them are, when interpretation is possible, “subject 
to laws identical in form with the laws of a system of quantitative 
symbols, susceptible only of the values 0 and 1 . . .”, Boole concludes that 
one can ignore questions of interpretation and operate with algebraic 
freedom : 

We may in fact lay aside the logical interpretation of the 
symbols in the given equation; convert them into quantitative 
symbols susceptible only of the values 0 and 1; perform upon 
them as such all the requisite processes of solution; and finally 
restore them to their logical interpretation. [p. 701 

When Boole says here “all the requisite processes of so1ution”he is 
including division, an operation not mentioned so far in Laws of 
Thought. 

However, unlike for the mathematical examples we have cited in 
which, when there is a solution, the end result is in interpretable form, 
the algebraic processes which Boole uses do not always lead to 
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interpretable results in the original sense but only after the introduction 
of a special transformation involving the notion of the “development” 
(or “expansion”) of a function, and which cannot be fully justified by 
present day standards because of, among other things, the occurrence of 
fractions with 0 denominator. 

Boole uses the word ‘function’ not in its contemporary sense but 
rather to denote an algebraic expression, and, from examples, we see that 
what he has in mind is a rational fractional form (indicated quotient of 
two polynomials) in which, since he will only be concerned with “logical 
functions”, the variables will appear therein at most to the first power. In 
the examples he gives of functions, e.g. x, 1 - x, (1 + x)/(l - x) for f ( x )  
and x + y, x - 2y, (x + y)/(x - 2y) for f ( x ,  y), we encounter algebraic 
fractions for the first time in Laws o j  Thought. 

A function f(x) in which x is a logical symbol is said by Boole to be 
developed “when it is reduced to the form ax + b(1 -x), a and b 
[independent of x and] determined so as to make the result equivalent 
to the function from which it was derived.” Boole does not say what he 
means by a function being “equivalent to” another, but we shall 
understand it to imply that the functions are equal for all possible 
assignments of 0’s and 1’s to the logical symbols. To show that any 
function f ( x )  can be developed he assumes 

(1 1 f ( x )  = ax+b(l  - x )  

and determines, by substituting x = 1 and x = 0, that a = f ( l )  and 
b = f ( O ) ,  where f(1)  and f ( 0 )  are the expressions resulting from f ( x )  
when x is replaced by 1 and 0. But as the equation 

(2 1 f ( x )  = f(1)x +J ’ (O) ( l  - x) 

is true for the only two values with x admits, Boole conclude that the 
right-hand member “adequately represents the function f ’ (x)”  and that 
the assumption of ( I )  is thereby justified. 

Boole’s argument here lacks cogency for a number of reasons. Since 
the notion of development is important to his method we discuss the 
argument in some detail. 

Firstly, in concluding that the laws governing class symbols are 
identical in form with those of quantitative symbols limited to the values 
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0 and 1, he did so without examining any laws involving fractions. 
Possibly Boole thought this unnecessary on the basis that all 
[equational] statements about division could be expressed as statements 
about multiplication, division being inverse to multiplication. But before 
one can legitimately operate with division the existence of a 
multiplicative inverse has to be established, either by postulate or from 
other properties. But clearly if x is a class (other than the universe) there 
is no class y such that xy = 1. If multiplicative inverses were available 
one could prove 

if xy = xz, then x = 0 or y = z, 

which, as observed earlier, is not true for classes. 
Secondly, the expressions f( 1) and f(0) could involve 0 denominators 

which, to a modern mathematician, renders the expression meaningless 
in “quantitative” algebra. 

Finally, Boole’s argument is faulty in that he has given no adequate 
justification for assumption (1). Thus all he has shown is that if ( l ) ,  then 
(2). 

One should contrast Boole’s “proof” with that of the corresponding 
result for standard Boolean algebra (40.5) where one first proves that 
any f(x) can be converted by identities of the algebra to  the form 
ax + b(1- x), and then determines a and b by substituting 1 and 0 for x. 

As the expansion for f(x,y) with respect to x and y Boole gives 

and similarly for any number of logical symbols x, y,  z, etc. That portion 
of the product in each term involving only the variables is called a 
constituent of the expansion (e.g. here xy, (1 -x)y, (1 -y)x, 
(1 - x)(l  - y ]  in the example). Boole readily shows (Props. I11 and IV. 
pp. 78-79 that, for any given expansion, the sum of any number of 
[distinct] constituents satisfies the fundamental law of logic, that the 
product of any two distinct constituents is 0, and that the sum of all is 1. 
Among the examples of expansions which Boole give are these: 
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___- - 3 x + ( I - x )  1 + x  
1 +2x 

From the first one we have by “cross-multiplication” 

1 + x  = (1 +2X) (#X+  1 -x ) ,  

and if the right-hand side is multiplied out, simplified by “common” 
algebra, and xz replaced by x, the equation becomes an identity. 
However an attempt at a similar treatment for the second one of the 
examples results in nothing sensible. In general the connection between 
multiplication and division of ordinary algebra doesn’t carry over for 
expansions, and Boole carefully avoids using it. Likewise the coefficients 
8 and 6 are never used by him in an arithmetic sense but only for his 
special purposes to be presently explained. 

Nevertheless, Boole asserts that the expansion theorem (e.g. as in (3)) 
is “perfectly true and intelligible” when x and y are limited to being 
quantitative symbols 0 and 1 [and the operations taken arithmetically] 
and hence may be “intelligibly employed in any stage of the process of 
analysis intermediate between the change of interpretation of the 
symbols from the logical to the quantitative system referred to and the 
final restoration of the logical interpretation [not as yet explained].” On 
the other hand, he remarks, if f(x y)  is such as to represent a class or 
collection of.things then the right-hand side of (3) is always logically 
interpretable. Hence if the theorem is used for non-interpretable 
functions “it must be understood that x and y are quantitative and of the 
particular species referred to, . . .” Although expansions are not 
necessarily interpretable it will, he claims, lead us to interpretable results. 
His Chapter VI is devoted to  showing this. 

0 1.7. Interpretation 

The terms ‘logical equation’ and logical function’ are used by Boole to 
denote any equation or function arising either in expressing premises by 
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equations or in the process of (algebraically) deriving other equations, 
irrespective of whether the symbols x, y ,  z ,  etc. are taken as logical or as 
“quantitative”. Boole devotes considerable attention to the task of 
logical interpretation of fuilctions and equations. Since he never raises 
the question, he is apparently taking it for granted that the results of 
algebraic transformations or derivations preserve logical content. 

Proposition I in Chapter VI (Of Interpretation) establishes that the 
constituents of any logical function are always interpretable and 
represent a mutually exclusive and exhaustive classification of the 
universe of discourse “formed by predication and denial in every 
possible way of the qualities denoted by x, y ,  z ,  etc.” The problem of the 
interpretation of logical equations is then taken up. It is asserted that, 
while functions may not be interpretable, equations always are. A key 
feature of such interpretation is the manner in which coefficients in an 
expansion modify the interpretation of constituents which they affect. 

First equations of the form V = 0 are considered, and for the special 
case of a V involving the symbols x, y, z,  etc. “in combinations which are 
not fractional”. If, for simplicity, it is assumed that x and y are the only 
symbols present, then the development of the equation V = 0 will be of 
the form 

(1) a ~ y + b x ( l - y ) + ~ ( l - ~ ) y + d ( l - ~ ) ( l - y )  = O ,  

where a, b, c and d are “definite numerical constants”. (Note the tacit 
inference from ‘I/ = 0’ to ‘expansion of V = 0’). Now if in (1) any 
coefficient, say a,  is not 0 then by multiplying the equation through by 
x y  and making use of the fact that the product of distinct constituents is 
0. one obtains 

a x y  = 0 

so that, “as a does not vanish’, 

x y  = 0. 

And if “a does vanish, the term xy does not appear . . . and, therefore, the 
equation xy  = 0 cannot thence be deduced.” Boole then states the 
general rule that [for V’s of the special kind under consideration] the 
interpretation of I/ = 0 consists of the collective assertion of the 
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equations ti = 0 for all constitutents ti in the development of V whose 
coefficient is not 0. Boole’s conclusion, i.e. that the ti = 0, can be justified 
by having the general property 

nA = 0 -, A = 0, n a natural number, 

or, simply 

A + ’4 = 0 + A = 0, 

since for Vs under consideration (no fractional forms) only integer 
coefficients could arise. 

After a brief discussion of the similar special case of I/ = 1, V again 
not containing x, y, z ,  etc. in fractional forms, Boole turns to the really 
important case of w = V ,  where w is a logical symbol and V is no longer 
restricted but may involve fractional forms. As a simple illustration of 
how such an equation and the need for interpretation arises, he takes the 
“definition of ‘clean beasts’ as laid down in the Jewish law, viz., ‘clean 
beasts are those which both divide the hoof and chew the cud”’, written 
in symbols as 

(2 1 x = y z  

(x = clean beasts, y = beast dividing the hoof, z = beasts chewing the 
cud) and the question is posed of determining “the relation in which 
‘beasts chewing the cud’ stand to ‘clean beasts’ and ‘beasts dividing the 
hoof’. This requires determining z as an interpretable function of x and 
y .  Treating (2) as if it were an equation in ordinary algebra and solving 
for z yields 

(3) 
X 

z = -  
Y 

an equation which is not in interpretable form. Boole claims : “If we can 
reduce it to such a form it will furnish the relation required.” He does 
this by replacing (3) by its “developed form” 

(4) 2 = x y + ~ x ( l - y ) + 0 ( 1 - x ) y + ~ ( 1 - x ) ( l - y )  

which, he will show, has the interpretation 

Beasts which chew the cud [ z ]  consists of all clean beasts (which 
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also divide the hoof) [xy] together with an indefinite remainder 
(some, none, or all) [indicated by 81 of unclean beasts which do 
not divide the hoof [(l - x)( 1 - y)]. 

It is also implied by (4) [presence of $1 that clean beasts which do not 

This example illustrates a particular case of what Boole calls a 
divide the hoof [x(l -y)] do not exist. 

“problem of the utmost generality in Logic.” which he formulates as: 

Given any logical equation connecting the symbols x, y, z ,  
[etc.], w, required an interpretable expression for the relation of 
the class represented by w to the classes represented by the other 
symbols x, y, z ,  etc. [p. 871. 

In outline his solution runs as follows. 
Since the logical equation under consideration is always of the first 

degree in w, it can be solved for w in terms of the other symbols; or, 
more generally, by development with respect to w the equation can be 
put in the form 

EW + E’(1 - W )  = 0, 

where E and E do not involve w; whence, by solving for w, 

E‘ 
E‘ - E 

w = -, 

Boole cautions against cancelling common factors of the numerator 
and denominator “unless they are mere numerical constants [ # 01”. The 
next step in his procedure is to replace E‘/ (E’  - E) by its development 
with respect to x, y ,  z ,  etc. and to give the resulting equation an 
interpretation. Boole does this dividing the coefficients appearing in the 
development into the four categories (i) 1, (ii) 0, (iii) $, and (iv) all others 
(including 6). The appearance of the coefficient 1 in the development 
means to take all of the class of which it is the coefficient, 0 take none of 
it, 8 take an “indefinite portion of the class, i.e. some, none, or all”, and, 
for those of the fourth class, the constituents having such coefficients are 
separately set equal to 0. Boole’s reasons for so interpreting the 
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developed equation, though ingenious, are far from adequate. For 
example, to justify the treatment for the fourth class he proves the 
theorem (p. 90) that if a coefficient, a, does not satisfy the law a2 = a, 

then its corresponding constituent is to be set equal to 0. The proof 
comes from considering the equation in the form 

w = a l t l  + a 2 t 2 + . . . + a i t i , . . . ,  

where the a,’s are the coefficients and the ti’s the constituents, then 
squaring to obtain 

w 2  = a:t, + a i t 2 + - . . ,  

so that by subtraction 

O =  ( a ~ - ~ ~ ) t , + ( ~ ~ - ~ ~ ) t , + ~ ~ ~ .  

If now a coeficient, aj say, does not satisfy the fundamental law, then 
by multiplying the last of these equations through by t j  one obtains 

(uf -a j ) t j  = 0; whence t j  = 0. 

This argument of Boole’s assumes (i) that functions are equal to their 
developments, (ii) that various algebraic processes (e.g. squaring) can be 
validly applied to developments, and (iii) that af - aj is not a divisor of 
0. Do the coefficients 8 and & which arise and play an important role 
satisfy the fundamental law? Boole circumspectly avoids stating the 
question arithmetically (i.e. are the equations ($)2 = 8 and = i$ 
true?) In the case of & he gives an oblique answer : “This is the algebraic 
symbol of infinity. Now the nearer any number approaches to infinity 
(allowing such an expression), the more it does depart from the condition 
of satisfying the fundamental law above referred to.” And this is all he 
says-apparently leaving it up to the reader to make the inference that & 
doesn’t satisfy the law. 

He also has trouble with 8: 

The symbol 8, whose interpretation was previously discussed, 
does not necessarily disobey the law we are here considering, for it 
admits of the numerical values 0 and 1 indifferently. Its actual 
interpretation, however, as an indefinite class symbol, cannot, I 
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conceive, except upon the ground of analogy, be deduced from its 
arithmetical properties, but must be established experimentally 
[pp. 91-92]. 

The experimental grounds referred to consists of the examination of 
specific instances such as the equation 

( 5 )  Y X  = Y 

(y = men, x = mortal beings) from which information about x in 
relation to y is desired. Boole says division cannot be performed in the 
case of logical symbols-he means that the y in ( 5 )  cannot be cancelled, 
or divided out. “Our resource, then, is to express the operation and 
develop the result.. .’’ Thus 

x 2  
Y 

= y + Q ( l  -y). 

Hence, in terms of the meanings for x and y, asking what needs to be 
added to “men” (y) to produce “mortal beings” (x) leads him to 
conclude that the prefixed 8 indicates taking an indefinite remainder 
(some, none, or all) of “not-men”. 

Resuming the discussion of the general case we see that Boole’s 
method leads from the given equation to a solution for w which is of the 
form (using 6 as typical of the fourth kind of coefficient) 

(6) w = l A + O B + $ C + & D ,  

where A, B, C and D are the sums of the constituents having the 
indicated coefficient, and this equation is then given the interpretation 

(7) w = A + u C ,  

(8) D = 0, 

where u is an “indefinite class symbol”. Of this Boole says: 

The interpretation of (7) [i.e., w = A + uC] shows what 
elements enter, or may enter, into the composition of w ,  the class 
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of things whose definition is required ; and the interpretation of (8) 
[i.e. D = 01 shows what relations exist among the elements of the 
original problem in perfect independent of w. 

We shall be discussing this result in our Chapter 2. 
As a corollary to this.result Boole establishes that if a logical function 

V is “independently interpretable” then it will satisfy V(l - V) = 0. 

By an independently interpretable logical function, I mean one 
which is interpretable, without presupposing any relation among 
the things represented by the symbols which it involves. Thus 
x(l - y) is independently interpretable, but x - y is not so. The 
latter function presupposes, as a condition of its interpretation, 
that the class represented by y is wholly contained in the class 
represented by x; the former function does not imply any such 
requirement. 

The corollary then follows by noting that in the expansion of V there 
will be no constituents in the fourth category, so that all of its 
coefficients, and hence the entire sum, will satisfy the fundamental law. 
The theorem and the remarks at the end of 0 1.5 show that the corollary 
can be directly established without appeal to the result of interpreting an 
expansion. 

It should be noted that Boole gives logical interpretation to equations 
when algebraically transformable to the specific forms I/ = 0 and V = 1, 
V not containing division, and to V = w, V a quotient of polynomials 

and w a class symbol. Since equations of the latter kind, i.e. P / Q  = w,  
can be written P- w Q  = 0, the question of the consistency of the 
two kinds of interpretation arises. Boole never considered this nor, for 
that matter, does he show that the interpreting equations ( i )  and (8) 
imply (algebraically) the original equation from which they were 
obtained. 

0 1.8. Elimination. Reduction 

In order to complete his method so as to have an effective calculus for 
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reasoning on classes (and propositions) Boole requires two additional 
results. The first of these is a technique for eliminating unwanted logical 
symbols, that is symbols that are not to appear in the conclusion-for 
example the middle term of a syllogism, assuming that the traditional 
argument is expressed in class calculus terms. Boole will also be using 
this technique to eliminate his indefinite class symbol v.  The second of 
the needed results is a way of reducing a system of equations to a single 
equation, which can then be “interpreted” as described in our preceeding 
section. 

Boole considers it a remarkable fact that in logical algebra, in contrast 
to the “common” algebra, any number of class symbols can be 
eliminated independently of the number of equations. He shows (in three 
different ways!) that the results of eliminating x from f ( x )  = 0 is given 
by f(l)f(O) = 0. 

(1) 

the first and third involve division. The second does not, but appeals to 
an elimination result from ordinary algebra. A fourth, a simpler and 
more natural derivation, can be obtained by multiplying (1) through first 
by f ( O ) x ,  then by f(l)(  1 - x ) ,  deleting terms having x (  1 - x )  as a factor, 
replacing xz by x ,  (1 - x ) ~  by (1 - x) and adding the two equations to 
obtain 

Of the three proofs, all of which begin by replacing f ( x )  = 0 by 

f ( 1 ) x  +f(O)( l  - x )  = 0, 

/(l)f(O)(x + (1 - X I )  = 0, 

and thence f( l ) f (O) = 0. 
Boole refers to J( l ) f (O) = 0 as  “the complete result of the elimination 

of x” from the equation f ( x )  = 0. It isn’t clear what he means by 
“complete”. He has only shown that f f l ) f ( O )  = 0 is an algebraic 
consequence of f ( x )  = 0, x being a logical symbol. The comment is 
made that just as in common algebra on carrying out an elimination one 
might obtain the identity 0 = 0, indicating no independent relation 
connecting the remaining symbols. But nothing is said about the 
possibility of arriving at 1 = 0 (or a = 0 for some a not 0) which would 
indicate that there is no x such that f ( x )  = 0. In standard Boolean 
algebra f ( l ) f ( O )  = 0 is the necessary and sufficient condition that there 
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be an x such that f ( x )  = 0. (Theorem 0.55). We see no way that Boole 
could prove the sufficiency of the condition f (  l ) f ( O )  = 0 without 
assuming that f (x) satisfied the fundamental law. 

Boole gives many examples illustrating the use of elimination, the first 
being of special interest as it involves eliminating the indefinite symbol u, 
used by him to express inclusion and particularity (“some”). As we have 
seen Boole writes “All men are (some) mortal beings” as  

(2) y = L’X 

where u is “a class indefinite in every respect but this, viz., that some of 
its members are mortal beings,. . .” (p. 61). We read this as implying that 
Boole is taking the universal affirmative proposition as having 
existential import ; for if the class x (= mortal beings) is non-empty then 
so necessarily is ux,  i.e. y, since it is being supposed that some of v’s 
members are mortal beings. Rewriting ( 2 )  as y - ux = 0, and eliminating 
v by rule, gives 

Y ( Y  - x )  = 0 

which, on multiplying out and replacing y 2  by y, yields 

(3 1 y(l - x )  = 0. 

Are (2) and (3) equivalent? Boole apparently thinks so: “It will 
generally be the most convenient course, in treatment of propositions, to  
eliminate first the indefinite class symbol u, wherever it occurs in the 
corresponding equations. This would only modify their form, without 
impairing their significance” (p. 105). We shall return to this topic in 

The remaining examples in Boole’s Chapter VII, which are devoted to  
illustrating elimination, are based on the equation w = s t { p  + r(1 - p ) ]  
(Senior’s definition of Wealth) and are more or less routine. However in 
connection of one of these examples Boole remarks: 

0 1.10. 

17. In the last example of elimination, we have eliminated the 
compound symbol st from the given equation, by treating it as a 
single symbol. The same method is applicable to any combination 
of symbols which satisfies the fundamental law of individual 
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symbols. Thus the expression p + r - pr will, on being multiplied 
by itself, reproduce itself, so that if we represent p + r - pr  by a 
single symbol as y ,  we shall have the fundamental law obeyed, the 
equation 

y = y 2 ,  or y(l - y )  = 0,  

being Satisfied. For the rule of elimination . . . [p. 112). 

What is noteworthy here is Boole’s explicit recognition that the 
compound p + r - pr (expressing the nonexclusive ‘‘p or r”)  satisfied his 
fundamental law and hence is independently interpretable. Unlike 
Jevons and Peirce (see § 1.1 l),  Boole apparently never realized that this 
notion could be used to develop a calculus of logic. 

We turn now to the second of the two techniques which Boole needs 
to complete his method, namely that of reducing a system of logical 
equations to one equation so that the methods developed for a single 
equation can then be applied. 

First he shows that if the equations are V, = 0, V, = 0, etc., and if in 
the developments of V,, V,, etc., there are only positive coefficients, then 
the single equation 

V, + v, +... = 0 

has the same logical content as the system of equations, since they both 
furnish the same set of constituents with positive coefficients-this 
argument appeals to his earlier result that the logical interpretation of 
such an equation is given by the collective assertion that each such 
constituent is 0. If an equation V = 0 has an expansion with both 
positive and negative coefficients then its interpretation also consists of 
setting each constituent having such a coefficient equal to 0. However 
adding the left-hand side of expansions in a system V, = 0, V2 = 0, etc., 
may cause constituents to drop out through cancellation of like positive 
and negative terms. To prevent this Boole goes over to the square of the 
V‘s and shows (Prop. 111, p. 121) that the single equation 

v:+ v:+... = o  
has the same interpretation as the system V, = 0, V2 = 0, etc. The proof 
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he gives depends on comparing the expansion of a V = 0, namely 

a l t l  +azt2 +... = 0,  

where the t,’s are the constituents and the a;s are “numerical” 
coefficients, with that of V z  = 0, namely 

aft: +air: +..‘ = 0, 

and observing that the non-vanishing coefficients are the same for both. 
The argument assumes that (at)2 = azt2 for “numerical” a, and that 
a2 = O - a  =o .  

Equations reduced to the form I/ = 0 in which V z  = I/ are clearly 
advantageous since no preliminary squaring is needed. Moreover 
equations derived from them by elimination of symbols likewise have the 
property and can be combined by addition (Prop. IV, p. 122). 
Accordingly Boole shows how to reduce each of his three general types 
of propositions to such a form. In the case of X = O Y  (recall that such X 
and Y are assumed to satisfy the fundamental law) he eliminates v 
to obtain 

X(1-  Y)  = 0. 

For X = Y he transposes and squares obtaining 

x - 2XY + Y = 0 

i.e. 

X(1- Y )  + Y(l-  X)  = 0. 

In the case of OX = OY he says “but u is not quite arbitrary, and 
therefore must not be eliminated. For o is the representative of some, 
which, though it may include in its meaning all, does not include none. 
We must therefore transpose the second member to the first side, and 
square the resulting equation according to the rule”. This gives 

uX(1- Y )  + u Y ( 1 -  X)  = 0. 

Note that Boole is treating the u occurring in uX = OY differently 
from the u in X = uY where he does allow its elimination, thus implying 
that the universal affirmative is then taken without existential import, 
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contrary to what he seems to be saying when he first describes it ( #  1.5 
above). 

A brief comment is made that if one doesn’t attend to its “real 
meaning” a proposition could be represented by an equation in which 
terms may not satisfy the fundamental law-for example rendering 
Senior’s definition of wealth by 

w = s r ( p + r ) ,  

in which + is used for ‘or’. “Such equations, however, as it has been 
seen, have a meaning. Should it, for curiosity, or any other motive, be 
determined to employ them, it  will be best to reduce them by the Rule 
(VJ.5) [reduce to the form I/ = 0 and equate each constituent having a 
non-zero coefficient to 01.’’ Thus, significantly, though expressions may 
have no logical interpretation, equations always do. With regard to 
interpretations for equations Boole neglects to consider the special case 
of equations for which, when reduced to the form V = 0, there are no 
non-zero coefficients in the expansion. This happens, e.g., in the case of 
the fundamental law x = x2, which becomes x - x 2  = 0 and has the 
cxpansion 

0 .  x + 0 .  ( 1  - x)  = 0. 

In such cases it would be appropriate to say that the equation has an 
onpty  interpretation, rather than no interpretation. 

0 1.9. Abbreviation. Perfection of method 

In  view of the complexity of Boole’s machinery it is not surprising that, 
when solving class calculus problems is the sole object, considerable 
simplification or, as Boole terms it, abbreviation can be introduced. 
Limiting himself to algebraic operations on polynomials with (algebraic) 
class terms having positive coefficients he shows that an equation V = 0 
has the same logical interpretation as one obtained from it by deleting 
any term having another as a factor- i.e. by replacing a part s + s E  by 
x-and that in such equations any positive coeffent can be replaced by 
1 ; also in simplifying algebraic operations the product (x + P ) ( x  + Q) 
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can be replaced by x + P Q and ( 1  + P ) Q  can be replaced by Q. Hence in 
such contexts Boole has in effect the simplifying equations 

x + x P = x  

(X + P ) ( x  + Q )  = x + PQ 

( 1  + P)Q = Q 
just as if his + were class union. 

Boole also has a theorem whose use can simplify the calculation of 
resultants, i.e. equations obtained as a result of eliminating one or more 
class symbols. His statement and proof (Prop. 111, p. 133) are somewhat 
obscure and we shall paraphrase the proposition as follows: 

( 1 )  

whose expansion with respect to t is 

Consider an equation 

@(x, y, 2,. . ., s, t )  = 0 

@(x,y,z ,..., s, I)t  + @(x,y,z ,..., s,O)(1 - t )  = 0. 

Let 

@(x ,y ,z  ,...,. s, 1 )  = 0 have the resultant E = 0 

and 

@ ( x , y ,  z ,  ..., s,O) = 0 have the resultant E’ = 0, 

both with respect to the same subset of the variables x , y , z ,  ..., s. Then 
the resultant of ( 1 )  with respect to the same subset of x ,y ,z ,  . . . , .s is 
equivalent to the equation 

E t  + E’(1 - t )  = 0. 

By this theorem the calculation of a resultant function (to be equated to 
0) can be replaced by that of the calculation of two resultant functions 
for equations obtained from the original one by replacing therein any 
one of the variables not being eliminated first by 1, and then by 0. 
Judicious choice of the variable can reduce computation. 

The example in which Boole uses this result (Ex. 2, p. 138) is of 
interest for another, and more important, idea : Given Senior’s definition 
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of wealth, i.e. 

( 2 )  w = s t { p + r ( l  - P I } ,  
Boole asks what is the relation of things transferable and productive of 
pleasure (i.e. lp)  to the remaining elements it’, s, r of the definition‘? Boole 
considers this to be a problem “which cannot be fully answered, except 
in connection with the theory of systems of equations”. His procedure is 
to introduce a new symbol y ,  write in place of (2) the system of equations 

(3) 
w = s t ( p  + r( 1 - p ) )  
I’ = rp 

eliminate from these t and p ,  and solve the resulting equation for y in 
terms of w, s, and r .  Development and interpretation then complete the 
solution. 

By considering not (2) but any equation @(x, y,. . . , z ,  w,. . .) = 0 and 
any class expression q ( x ,  y ,  . . .) involving some of the symbols of the 
equation Boole then formulates (p. 140) the 

GENERAL PROBLEM 

Given any equation [ @ ( x , y , .  . .. z ,  w,. ..) = 01 connecting the 
symbols x, y , .  . ., w, 2 , .  . . 

Required to determine the logical expression of any class 
[+(x, y , .  . .)I expressed in any way by the symbols x, y , .  . . in terms 
of the remaining symbols w, z ,  etc. 

We shall not bother stating Boole’s Rule (p, 142) for obtaining the 
answer to the general problem, as the idea is easily apprehended from 
the special example just discussed. Nor shall we present the several 
examples, all rather contrived, by which the Rule is illustrated. However 
we point out that being able to solve this type of problem is an 
important component in Boole’s treatment of probability, which we 
shall be discussing in our Chapter 4. 

Concerning the method of solution, Boole says (p. 146): “In none of 
the above examples has it been my object to exhibit in any special 
manner the power of the method. That, I conceive, can only be fully 
displayed in connection with the mathematical theory of probabilities.” 
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However he doesn’t forego displaying some of the capability of his system 
and, as final example of his chapter on Methods of Abbreviation, poses a 
problem whose statement involves 5 class symbols and three premises, 
each of which involves all 5 of them, and produces various conclusions 
from these premises (Ex. 5, pp. 146-149). 

While evidently pleased with the power and generality of his methods 
one gets the impression that Boole would be happier of they were more 
direct. He devotes Chapter X (Of the Conditions of a Perfect Method) to 
describing what he considers “perfection of method”, and how to attain 
it from equations (premises) not meeting the criteria, by reformulation of 
such premises. Foremost for Boole is the requisite that expressions 
should satisfy the fundamental law x( l  - x)  = 0. His Proposition I of 
Chapter X provides a rule for “reducing” any equation between 
polynomials on class terms to one of the form V = 0 with V satisfying 
the fundamental law: transpose all terms to the left-hand side of the 
equation, develop the expression so obtained with respect to the class 
symbols present, and replace all non-zero coefficients by 1. The result will 
be a sum of constituents equated to 0 and hence of the reqpisite form. 

Boole remarks that fully developing expressions leads to expressions 
of “great length” and offers practical advice on circumventing the need 
for doing so. Thus for the “three great forms”, 

X = r Y  

X = Y  

PX = EY, 

he has already noted that if X and Y satisfy the fundamental law then so 
do the left-hand sides of his equivalent forms, 

X(1-  Y )  = 0 

X(1- Y ) +  Y ( 1 - X )  = 0 

v ( X ( 1  - Y )  + Y ( l  - X ) }  = 0, 

and hence there would be not need for “reducing” such equations. 
However adding equations to obtain a simple equivalent one can lose 
the property; e.g. the equations x = 0, y = 0 when added give x + y = 0. 
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In general if L’ = 0, u‘ = 0, 11‘‘ = 0,. . . are the equations with v, P I ,  v”, .  . . 
satisfying the fundamental law then Boole recommends not 

(4 ) 

but rather 

( 5 )  

which, in effect, is forming the class union of the expressions t‘, ti ‘ ,  P”, . . . 
rather than aggregating them with his +. Boole’s trouble here is, of 
course, the possible occurrence of a common constituent in the different 
equations, but which occasions no difficulty when class union is the 
combining operation. 

Equations V = 0 with V ( l  - V)  = 0 have a special property. Boole 
notes (Prop. 11, p. 155) that if from such an equation a logical symbol is 
solved and the expression developed, then the only coefficients that can 
appear are 1, 0, 8, and 4; i.e. the only fourth type of coefficient being &. 
The result is evident since in the solution for the symbol the indicated 
quotient is, effectively, a quotient of constituents. Hence when 0 and 1 
are substituted for the logical symbols only 0 and 1 can results as values. 
As a consequence we find Boole almost always writing a fourth type 
coefficient as 4 even if the actual algebra results in some other value. 

L’ + 1’’ + 1’’’ + . . . = 0 

u + (1 - u)u’ + (1 - v ) ( l  - d)c” + ... = 0, 

0 1-10. Treatment of “some”. Aristotelian logic 

In keeping with his algebraic-equational conceptions of logic Boole 
believed that all primary propositions, that is propositions expressing 
relationships among things, are representable in the form of equations 
between class terms. Included among the primary propositions are the 
four categorical forms of the traditional logic. Here Boole is confronted 
with the notion of particularly, i.e. the use of “some”, and his treatment 
of this notion was justifiably criticized by Iater logicians. (E.g. PEIRCE 
1870 = 1933 111, pp. 90-91, and VENN 1894, Chapter VII) 

No doubt influenced by the then current interest in quantification of 
the predicate Boole renders the universal affirmative, e.g. “All men are 
mortal,” as “All men are some mortal beings” and symbolizes it as 
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(1) 4’ = Z‘X, 

with ‘PX’ representing ‘some mortal beings’ hence implying non- 
emptyness of the subject, i.e. taking the proposition as having existential 
import. However, as we have seen in 9; 1.8, he considers the result of 
eliminating the indefinite class symbol I > ,  namely 

(2 ) y( l  - x )  = 0, 

to have the same significance as that of the form with v. If we try to 
recover ( 1 )  from (2) (using Boole’s techniques) we find we don’t quite 
make it. Solving equation (2) for y and developing the result gives 

0 y = -  
1 - x  

= 0 . ( 1  - x ) + i x ,  

which by Boole’s rule is written 

y = “X. 

But this is not the same as ( 1 )  since here 1’ is replacing $, which means 
“take some, none, or all” and hence this occurrence of v no longer carries 
existential import. Although staring universal affirmatives in the form ( 1 )  
Boole’s practice is to always eliminate the 1’ and to work with form (2). 
Thus he effectively treats “all y’s are x’s” in contemporary fashion as 
being without existential import. 

As one might imagine, Boole’s ideas on existential import are 
somewhat off the track. As we have seen in $1.7, for Boole the logical 
interpretation of an equation V = 0 consists in the system of equations 
ti = 0, where the ti are those constituents of V‘s expansion having 
nonvanishing coefficients. Hence (p. 84) : “Every primary proposition 
can be resolved into a series of denials of the existence of certain defined 
classes of things, and may from that system of denials, be reconstructed.” 
Continuing, he says, 

It might here be asked, how it is possible to make an assertative 
proposition out of a series of denials or negations? From what 
source is the positive element derived? I answer, that the mind 
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assumes the existence of a universe not a priori as a fact 
independent of experience, but either a posteriori as a deduction 
from experience, or hypothetically as a foundation of the 
possibility of assertive reasoning. Thus from the Proposition, 
“There are no men who are not fallible,” which is a negation or 
denial of the existence of “infallible men,” it may be inferred either 
hypothetically, “All men (if men exist) are fallible,” or absolutely, 
(experience having assured us of the existence of the race), “All 
men are fallible.” 

Thus by relegating the presence or absence of the premise “men exist” to 
the mind Boole can have his universal affirmative both with and without 
existential import. Boole is driven to this non-formal maneuver by the 
failure of his system to include any formal means of expressing existence 
(or denial of non-existence). 

By, so to speak; backing into treating the universal categorical 
proposition as not having existential import Boole avoids trouble with 
the indefinite class symbol v. But in the case of the particular categorical 
there is no easy way out. As we have seen, Boole writes for “Some x‘s are 
y’s” 

ux = r:y, 

“introducing v as the symbol of a class indefinite in all respects but this, 
that it contains some individuals of the class to whose expression it is 
prefixed.” Does this character attributed to the symbol u persist during 
algebraic manipulations? Is the following a correct derivation : 

ZIX = z’y 

v - v x  = v - v y  

v ( l  - x)  = o(1 - y)? 

If so we then have the invalid inference of “Some not-x’s are not-y’s” 
from “Some x’s are y’s”. Although Boole allows-ven requires-the 
elimination of u from y = vx, here in the case of ux = uy he says : “. . . v is 
not quite arbitrary, and therefore must not be eliminated for u is the 
representative of some, which, though it may include in its meaning all, 
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does not include none.” To eliminate v from equation ux = vy would 
result in the contentless conclusion 0 = 0. So we find Boole treating the 
Y in y = ox differently from that in ux = vy, writing these respectively 
as 

x ( l  -y)  = 0 

and 

v (x (1  - y )  + y (  I - x,) = 0, 

with the ad hoc proviso that v not be eliminated in the latter. 
It is only natural that Boole should want to compare his system with 

the traditional logic. This he does in Chapter XV, The Aristotelian Logic 
And Its Modern Extensions, Examined By The Method Of This 
Treatise. What the “modern extensions” amount to is essentially the 
introduction (due to De Morgan) of negative terms on an equal footing 
with positive terms in the categorical forms, resulting in an expansion of 
the four A ,  E ,  I ,  0 forms to eight. 

Boole expresses these as 

1. All Y’s are X’s,  y = ux, 

1 .  No Y’s are X’s,  y = u(1  - x )  

3. Some Y’s are X’s,  vy = ux,  

4. Some Y’s are not X’s uy = u(1  - x) 

with 5.-8. the same as 1.-4. but having 1 - y in place of y-all these 
coming under Boole’s great primary forms. Boole shows how readily the 
traditional conversion rules follow. As would be expected, he is not 
consistent with regard to the existential content of v. Thus he goes from 
y = v x  to y(l  - x) = 0 and then by this method to 

0 l - x = -  
Y 

= a 1  - Y ) ,  

thus justifying “negative conversion” or contraposition. In this last 
equation the Q is allowed to include in its meaning “none.” Hence the use 
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of v in y = ux should not entail existential import, otherwise 
1 - x = $(1 - y )  would not be a proper contrapositive. Yet from y = ox 
he also infers, by multiplication with u, that ux = uy (p. 229). So here the 
conclusion “Some x’s are y’s” does require the u to carry existential 
import. 

Syllogistic inference is, for Boole, a special instance of his general 
method of reduction of systems of equations. Rather than treating cases 
individually Boole investigates, in characteristically mathematical 
fashion, the question of syllogistic rules by considering the several forms 

ux = v‘y 

wz = w‘y, 

LlX = u’y r wz = w’(1 - y ) ,  

with four parameters u, v’, w ,  w’ and, after eliminating the middle term y ,  
solving by his method for x, for 1 - x ,  and for ux. For each of these he 
obtains the general solution in terms of z, 1 - z ,  and the parameters v, u’, 
w, w’. Imposing the conditions that not both z and 1 - z should appear 
and that not both v and 1’‘ (or w and w ’ )  should be 1 ,  he obtains the 
various syllogistic rules by appropriate specification of the parameters. 
Boole does not neglect to point out how much more general his methods 
are and that not all inference need be syllogistic. 

It is of interest to note that from the systems (1) Boole only solves for 
x, 1 -x, and L’X, but not r( l  - x). He says (p. 233): “The form r(1 - x) is 
excluded, inasmuch as we cannot from the interpretation L’X = Some 
X’s,  given in the premises, interpret u ( l  - x )  as Some not-X’s. The 
symbol u, when used in the sense of “some,” applies to that term only 
with which it is connected in the premises.” In other words the meaning 
of u, depending as it does on the context, has to be kept in mind. Thus in 
this regard Boole’s system abrogates accepted canons for being a formal 
system. 

Boole does not neglect to point out, in opposition to such weighty 
authorities as Archbishop Whately, J. S. Mill and Kant, the insufficiency 
of syllogistic in comparison with his general methods. Ironically. his 
system, lacking for one thing quantifiers, likewise falls short of 
sufficiency. 
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0 1.11. De Morgan. Jevons, Peirce, Macfarlane, Venn 

Appreciation of Boole’s innovations in logic can be enhanced by a 
comparison with those of his most notable contemporary in the field, 
Augustus De Morgan. Like Boole De Morgan was a mathematician but, 
unlike Boole, especially interested in the foundations of algebra. His 
series of articles on this topic in the Transactions of the Cambridge 
Philosophical Society (1841-1847) counts as  an important contribution 
to the beginnings of modern abstract algebra. He was in the forefront of 
those envisioning new algebras. 

Clearly the idea of a mathematical treatment of logic was “in the air”. 
We have but to note the title of Boole’s pamphlet, The Mathematical 
Analysis of Logic, Being an Essay towards a Calculus of Deductive 
Reasoning, and that of De Morgan’s book Formal Logic: or, The 
Calculus of Inference, Necessary and Probable, both appearing, 
according to De Morgan (see BOOLE 1952, p. 167n), on the same day in 
the fall of 1847. The two works are remarkably different. With Boole the 
algebraic character of logical combinations is primary, and the logic of 
the syllogism ancillary; with De Morgan the traditional logic, while 
considerably clarified, modified and generalized, is still the central core. 
From De Morgan’s voluminous (and often discursive) writings on logic 
we select a number of items to describe, arranging these chronologically 
so as to see what interaction there was (if any) between him and Boole. 

We begin with “On the Syllogism I” [DE MORGAN 1846 = 1966, pp. 1- 
213 which appeared a year before his Formal Logic. In it he uses letters 
X ,  Y ,  Z ,  etc. to stand for arbitrary general terms or names “which it is 
lawful to apply to any one of a collection of objects of thought : and in 
the language of Aristotle, that name may be predicated of each of these 
objects.” Thus although the idea of a collection or class is in the 
background, De Morgan’s X ,  Y ,  Z ,  etc. actually correspond to our 
present day conception of a (one-place) predicate rather than to the 
classes determined by them. He introduces an entirely new notion into 
logic, that of the “universe of a proposition, or of a name,” which he says 
need not be taken as all possible conceptions, but “may be limited in any 
manner expressed or understood.” Relative to the universe of a 
proposition, and differing with Aristotle, De Morgan allows formation 
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of a “contrary” (=  negative) of any name: if X is a name then x 
denotes its contrary, but neither is the positive or negative term except 
correlatively-as with a and - a  in algebra. For the traditional 
categorical forms A, 0, E,  I De Morgan uses the notation X ) Y ,  X : X 
X.Y ,  X Y .  The symbols are borrowed from algebra but are neither 
analogous nor suggestive, except that the dot and juxtaposition are used 
for the convertible forms E and I ,  his reason being that the 
corresponding algebraic notions are convertible (i.e. commutative). 
Allowing the use of capital and small letters as terms in the four 
traditional fundamental forms plus the two converted forms Y ) X  and 
Y : X ,  increases their number to twenty-four but, being equivalent in 
threes, only eight distinct forms. The various resulting syllogisms, their 
transformations, and their structural interrelations are investigated in 
detail and minutely tabulated. He uses surprisingly inappropriate 
algebraic notation to designated inferences ; e.g. for the universal 
affirmative syllogism he writes 

(1) X ) Y  + Y)Z = X ) Z  

or, when the weaker particular affirmative conclusion is taken, 

X ) Y  + Y ) Z  > x z .  
This notation is criticized by De Morgan himself in a later work 
[l850 = 1966, p. 871. 

The question of existential import, though not named, comes up for 
discussion. He argues that for the syllogism (1) to be valid the middle 
term Y must exist. “The terms of the conclusion may be conditional : but 
inference requires that the middle term should be unconditional. Every 
X (if ever X existed) is Y ; every Y is Z (if ever Z existed): therefore every 
X (if ever X existed) is Z (if ever Z existed). This is a good syllogism but 
Y here is absolute.” In converting (1) to contrapositive form one needs 
the same absolute existence for y as for Y .  The possibility of empty terms 
is mentioned in one sentence: “There is an extreme case; y may not exist, 
that is Y may contain the universe; but then [referring to (l)] Y and 2 
are identical, and the conclusion X ) Z  is identical with X ) Y  and z)x 
contains nothing [has no content?].” 

This first paper of De Morgan’s is also of interest for its introduction 
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of the idea of definite (numerical) quantity associated with terms of 
categorical propositions, generalizing an aspect of the quantifiers “some” 
and “all”. An addition to the paper, dated 27 February 1847, states that 
he has found that “the whole theory of the syllogism might be deduced 
from the consideration of propositions in a form in which definite 
quantity of assertion is given both to the subject and the predicate of a 
proposition.” In the Addition he also alludes to the possibility that he 
has been anticipated in this by Sir William Hamilton of Edinburgh 
though, as it later turned out, this was based on a minsunderstanding. 
Nevertheless, the subsequent acrimonious priority dispute which erupted 
stimulated Boole to resume his “almost-forgotten thread of former 
inquiries,” resulting in his writing Mathematical Analysis of Logic within 
a few weeks. According to his wife Boole had thought of a mathematical 
treatment of logic when he was 17 (i.e. in 1832). 

In Mathematical Analysis of Logic, although there is mention of De 
Morgan’s paper, Boole attributes nothing to De Morgan except for 
a minor syllogistic matter (BOOLE 1847, p. 82). His use of 1 for a fixed 
universe of all conceivable objects contrasts with De Morgan’s 
changeable, not necessarily unlimited, but unsymbolized, universe of a 
proposition. However by 1854, in Laws of Thought, Boole has switched 
over to a changeable, possibly limited, universe of discourse, again 
designated by the symbol 1, but with no mention of De Morgan. Having 
a symbol for the universe is, of course, a matter of no small import. For 
example with De Morgan that the contrary of the contrary of x is x has 
to be understood from the assigned meanings, whereas for Boole 
1 - (1 - x) = x follows algebraically. Neither in Mathematical Analysis 
of Logic nor in Laws of Thought do we find Boole aware of problems 
associated with empty terms in the traditional categorical forms, even 
though an essential part of his method involves substituting 1 and 0 in 
for logical symbols. 

De Morgan’s Formal Logic [1847] includes the material of the paper 
we have just summarized, and considerably more. In it we find, for 
example, what turned into De Morgan’s finest contribution to logic, i.e. 
logical relation theory, being foreshadowed by his abstract treatment of 
the copula, “conceived as obeying only these conditions necessary to 
inference”, and by his contention that the inference “man is animal, 
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therefore the head of a man is the head of an animal” is not justifiable 
syllogistically. A large part of the book is nonetheless devoted to a 
highly elaborate and intricate theory of the (more or less) traditional 
syllogism, of which we here consider but two aspects of interest to our 
study: the treatment of empty and universal names, and of compound 
names. 

De Morgan stipulates that [in general] no name shall ‘‘till the 
universe” or, by implication, be empty though “Nothing is more easy 
than to treat the supposition of a name being the universe as  an extreme 
case.” He asserts (p. 11 1) that if X exists and Y does not then ‘All X is Y’ 
is false and that ‘All X is y’ is true. But “If neither X nor Y exist, I will 
not so far imitate some of the questions of the schools as to attempt to 
settle what nonexisting things agree or disagree.” Further, if Y exists but 
not X then ‘all y is x’ is true but not ‘All X is Y’, “for when x is, as here, 
the whole universe, the proof of y)x = X ) Y  fails to present intelligible 
ideas, that is, fails to be a proof.” Thus for De Morgan contraposition 
(or negative conversion) fails for “extreme” terms. 

Turning to his discussion of compound names we find him using, 
where P, Q ,  and R are names, the juxtaposition ‘PQR’ as a name for 
“everything which is all three”, and for what is either (one or more of 
them) the list of the three separated by commas: ‘P, Q ,  R’. Thus De 
Morgan takes ‘or’ in the non-exclusive sense. Then to symbolize ‘ P  and 
Q ,  or R’ he writes ‘PQ,R’.  The contrary of P Q R  is p , q , r  and that of 
P,  Q ,  R is pqr (the so-called ”De Morgan laws”). With these notions De 
Morgan deduces,e.g., that X ) P  and Y ) Q  give X Y ) P Q ,  as follows (p. 118): 

X Y ) X  + X ) P  = X Y ) P  

X Y ) Y  + Y ) Q  = X Y ) Q ,  

whence by the conjunctive postulate [i.e. X ) P  + X ) Q  = X ) P Q ]  he has 
X Y ) P Q .  We observe that the additional premises X Y ) X  and X Y ) X  are 
used by him without formal justification. By contrast Boole would 
consider the inference a case of reducing a system of equations 

x = up 

y = v’q 
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(expressing the premises) to a single equation giving x y  in terms of p and 
q. In this particular case the result comes easily by “multiplying” the 
equations so as to yield 

x y  = vv’pq. 

Applying here the general rules of Laws of Thought to carry out the 
inference is quite tedious and involves ( i )  adjoining the additional 
equation z = x y ,  (ii) converting all three equations to the form V = 0, V 
satisfying the fundamental law, (iii) adding the equations, eliminating all 
but z ,  p ,  and q, and simplyfying, so as to obtain 

z(1 - p +  1 - 4 )  = 0. 

Finally (iv) solving for z and expanding: 

whence z ( =  x y )  = vpq. 
The idea of attaching a definite numerical quantity to terms of a 

proposition which De Morgan mentions in his addition to [1846] is 
elaborated in Formal Logic into a Chapter VIII, On the Numerically 
definite Syllogism. Briefly, the scheme assumes that there are fixed 
(finite) numbers of X’s, Y’s, and 2 s  in the universe as well as a total for 
the universe. The categorical forms may now have numerical quantities 
assigned to these terms; e.g. he writes m X Y  to denote that mX’s (or 
more) are among the Y’s, the quantifier ‘m (or more)’ generalizing 
‘some,’ which is one or more. Similarly mX :nY denotes that no 
one of the X’s are among any of n Y s .  De Morgan makes a detailed 
case by case study of valid syllogistic forms, i.e. inferences involving three 
terms X ,  Y ,  Z having, respectively (, q, individuals which they “name” 
in a universe of v individuals. Results of the following nature are 
obtained: from premises m X Y  and n Y Z  no inference is possible if 
m + n I q, but if m + n > q then one can infer (m + n - q ) X Z .  As we 
shall see in 9 1.12 Boole picks up this idea of definite numerical quantity 
attached to terms, frees it from De Morgan’s syllogistic setting and 
elaborates a general treatment appropriate to his more general form of 
term logic. 
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In his English Encyclopedia article of 1860 on Logic De Morgan 
[1966, p. 2561 praises Boole’s “generalization of the forms of logic . . . by 
far the boldest and most original of those which we have to treat.” He 
illustrates Boole’s ideas by showing how (1 - A ) (  1 - B )  = 0 ( ‘ lo  be both 
not-A and not-B is impossible”) is converted by common algebra to 
A + B - A B  = 1 (“everything is either A or B or both”). Interestingly, he 
does not give Boole’s partially defined meaning for + but says “Let 
A + B represent a class containing both A and B, with all the common 
parts, if any, counted twice,” (This item was pointed out to me by 
John Corcoran.) 

De Morgan was the only contemporary of Boole who, by virtue of 
common interests in symbolical algebra and logic, could have had 
substantial interaction with Boole. Despite their being correspondent 
friends there is little evidence of such interaction except, perhaps, for the 
paper which Boole wrote on propositions numerically definite-one 
which he never published and apparently had lost track of. (See S; 1.12). 

In the remainder of this section we present summaries of the work of 
several logicians who came after Boole but whose ideas had some 
immediate historical connection. 

W. S. JEVONS 

Jevons, who had been a student of De Morgan’s, published the first 
substantial criticism and revision of Boole’s system. Appearing 10 years 
after the publication of the Laws of Thought, Jevon’s Pure Logic or the 
Logic of Quality apart from Quantity [1864] contains a system of (term) 
logic which its author describes as “founded on that of Professor Boole”, 
but, in marked contrast, uses only “processes of self-evident meaning and 
force”. Explicit critical comments on Boole appear in a concluding 
chapter but the body of the work, in which it was shown that logical 
inferences of the kind Boole concerned himself with can be carried out 
without appeal to “dark and symbolic processes”, in itself constituted a 
strong and eventually decisive argument against this aspect of Boole’s 
system-by the end of the century, of all the leading logicians, only Venn 
was an adherent of the Boolean method. 

Before explaining its principal features and summarizing its criticisms 
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of Boole we should mention that Jevon’s work was not without its share 
of misconceptions. For example, he believed that for simplicity and 
generality logic needed to be founded intensionally, i.e. on qualities or 
attributes rather than extensionally as classes. A proposition had to 
express sameness or equivalence of meaning, otherwise it was 
“imperfect”. (Hence, as with Boole, his system is an equational one.) 
Negative propositions can only arise by changing a term, on one side 
only, to its contrary. (He follows De Morgan’s practice of indicating a 
term and its contrary by using the same letter, capital and small.) The 
inference from A B  = AC to A B  not = Ac, which is invalid for empty 
class A ,  is allowed since A is (informally) excluded from being 
contradictory. (“Any term not known to be contradictory must be taken 
as not contradictory.”) The symbol 0 combined with (attached to ?) any 
term is to denote “that this term is contradictory, and thus excluded 
from thought”. He then writes Aa = A a . 0 ,  and abbreviates this to  
Aa = 0. Although 0 is not a term he writes expressions such as ‘0 + 0’ 
and ‘0 + A’. All in all, compared with Boole there is a marked regression 
in standards of formality. 

We turn to the positive aspects of Jevon’s work. Like Boole he 
symbolizes the combination of terms by multiplication, this operation 
having its customary logical properties (i.e. AB = BA, A A  = A,  etc.). 
Negative or contrary terms, symbolized by the corresponding lower case 
letters, are however introduced per se and not, as with Boole, ‘by 
subtraction from 1 -neither subtraction nor 1 appearing in Jevon’s 
system. But most conspicuous of all is the change from Boole’s x + y 
with its conditional meaning (i.e. having meaning only if x and y are 
disjoint) to Jevons’ A + B in which the ‘ +’ has the meaning of non- 
exclusive ‘or’, so that A + B is meaningful under all circumstances. This 
results in laws like 

A + A = A  and A = A + A B ,  

which are not present in Boole’s system. With these two changes, i.e. 
the introduction of negative, i.e. complementary, terms and the non- 
exclusive ‘or’, Jevons can express with his notation any “independently 
interpretable” class expression of Boole’s system. Moreover Jevons 
shows that logical inference on terms can be carried out so that at  no 
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stage does any expression appear which transcends the bounds of his 
notation- hence all expressions remain interpretable. For example, to 
determine a class expression for a given term involved in a set of 
premises (= Boole’s problem of solving a set of logical equations for a 
given variable) Jevons expands the given term (by the Law of Develop- 
ment) into a sum of all possible combinations on the set of terms and 
their contraries involved in the premises (i.e. the sum of all possible 
constituents) and deletes from this sum those combinations implied to 
be contradictory by the premisses-e.g. if A = B is a premiss then aB 
can be deleted since when A = B is multiplied through by a the 
equation becomes aA = aB, with aA contradictory, and hence aB = 0. 
In place of Boole’s algebraic-algorithmic solution of equations using 
subtraction, division and expansion into the form 1A + OB + QC + iD, 
Jevons has a set of rules for operating with his equations. While the 
rules are not algebraic in the common sense they are evidently 
algorithmic, requiring no insight or understanding-a fact which is 
clearly borne out by Jevon’s later construction of a mechanical 
contrivance for performing the operations (JEVONS 1870). 

The objections to Boole’s logical system were grouped under four 
headings. In the first Jevons contends that Boole’s symbols were not the 
“names of symbols of common discourse”. In particular Jevons disputed 
Boole’s claim that ‘or’ could not be interposed between terms (classes) 
unless they were disjoint. (He cites examples from Aristotle, 
Shakespeare, Milton, Tennyson, Darwin, and Boole himself !) Jevon’s 
second objection is that there are no such operations as addition and 
subtraction in logic-meaning operations with the same properties as in 
numerical algebra-these operations only being possible on sums of 
mutually exclusive alternatives. Thirdly, Boole’s system is “inconsistent 
with the self-evident law of thought, the Law of Unity ( A  + A  = A)”. 
Finally, he argues “that the symbols t, $, f. 6 establish for themselves no 
logical meaning, and only have meaning derived from some method of 
reasoning not contained in the symbolic system”. 

Although Boole died the year in which Jevons’ [ 18641 appeared, we 
nevertheless have a pretty good idea of what he thought of Jevon’s 
innovations from an exchange of letters between them in the latter half 
of 1863, extensive excerpts of which are contained in JOURDAIN 1913. A 
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letter to Boole from Jevons with his criticism of Boole’s system elicited a 
reply from Boole who said that with suitable added restrictions it was 
possible to work out logical problems such that all intermediate results 
would be interpretable: “I have somewhere laid by a paper on this 
subject which I wrote about two years ago. I cannot at this moment put 
my hand upon it, but I remember that it involved the application of such 
restrictions as should make the elementary operations always 
interpretable in ordinary language. Thus x - uy = 0 would become 
x - xy = 0, and so on. But I did this, not because I had any doubt of the 
validity of the processes of my work, which are unrestricted by any such 
conditions, but in order to determine for my then satisfaction and 
prospectively with a view to publication, how far my system could be 
made intelligible to those who knew nothing of mathematics.” 

Under direct questioning from Jevons Boole flatly asserted that 
x + x = x was not true in logic, that Jevons was in error in trying to 
interpret expressions, rather than equations : “Thus the equation 
x + x = 0 is equivalent to the equation x = 0; but the expression x + x 
is not equivalent to the expression x. Your principle of unity is not 
applicable to expressions. Apparently it didn’t occur to either of them 
that they were talking about different notions symbolized by the same 
symbol. Both of them were certainly aware that the non-exclusive ‘or’ 
was expressible in Boole’s calculus and, as we have pointed out in our 
0 1.1, Boole did know that x + y - xy satisfied his fundamental law (i.e. 
was independently interpretable) but it never occurred to him that, 
considered as an operation on classes x and y it could be identified with 
Jevons’ + . 

C .  S. PEIRCE 

During the approximately half-century during which Peirce worked 
on logic his ideas underwent considerable evolvement, going far beyond 
Boole-and most other logicians-in extent and depth. We confine our 
attention here only to parts of his early writings that bear directly on our 
subject. 

Appearing a few years after JEVONS 1864, though independent of it, 
Peirce’s “On an Improvement in Boole’s Calculus of Logic” [ 18671, 
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likewise replaces Boole’s addition by non-exclusive logical addition. 
However, unlike Jevons, Peirce retains (in this article) many of the 
questionable features of Boole’s calculus such as uninterpretables and 
indeterminates. His symbols include +, x , -, +, =, which are used 
with class symbols both in an arithmetic and a logical sense, the latter 
use being indicated by a comma under the symbol. Both meanings can 
appear in the same expression. He writes, for example, 

1. I f N o a i s b  a j - b T a + b  

but with no prior explanation of the arithmetic + (without the comma) 
occurring between class symbols. In contrast to Jevons, who says very 
little about the algebraic characteristics of logical operations, Peirce 
explicitly notes that logical addition and multiplication are 
“commutative and associative”, and that these operations are “doubly 
[i.e. reciprocally] distributive”. Logical subtraction is introduced simply 
by the stipulation 

(10) If b t x T i a  x ~ u T ~  

and it is noted that x is not completely determinate but may vary from a 
to a with b taken away. This latter minimum values is denoted by a - b. 
However, “if the sphere of b reaches at all beyond a, the expression a b 
is uninterpretable”. Following Boole he uses u for a “wholly 
indeterminate class” but differs from him in not using a single symbol for 
uninterpretability but a special symbol in each case; e.g., in the case of 
subtraction, “if we allow [0 13 t0 be a wholly uninterpretable symbol, 
we have 

(1 1) u b 7 U, a, b + a, 6+ [0 T 11, a, b” 
(the bar over a symbol indicates the “contradictory negative”) with no 
justification whatever for his use of the symbol [0 11 in this algebraic 
context. The treatment of logical division, the inverse operation to 
logical multiplication, is in a similar vein. His treatment of the general 
expansion theorem for a logical functional f ( x )  is no more cogent than 
Boole’s, and less convincing intuitively. He cites three advantages of his 
logical addition and subtraction (as opposed to Boole’s): that is gives 
unity to the system, abbreviates the labor of working with it, and enables 
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him to express particular propositions, which Boole’s systetr “cannot 
properly express”. But this version of “some a”, namely 

a (i, a)  

where i is ”a class only determined to be such that only some one 
individual of the class a comes under it”, is likewise faulty as Peirce 
tacitly recognized since he never again refers to it and replaces it by other 
treatments in later works. 

This 1867 paper of Peirce’s also contains a discussion of probability 
from Boole’s point of view. We postpone a presentation of it to our 4 4.8. 

The short paper [1867a], containing a summary of the non- 
probability part of [ 18671 has additional comment on arithmetic 
addition and multiplication of classes. Concerning the arithmetic a + b, 
he says it is the same as a t b if a, b 7 0 but “if a and b are classes which 
have any extent in common, it is not a class” but no further specification 
as to what it is in this case. His notion of arithmetical multiplication is 
best discussed in context with his probability notions ( g  4.8). 

The monograph length paper [1870], extraordinarily rich in new 
ideas, marks a distinct change in Peirce’s logical conceptions. Here the 
notion of a relative term is basic and that of a class, or “absolute” term, 
subsidiary. He presents an algebra of relatives which still maintains the 
distinction between arithmetic and logical operations though the use of 
both 7 and = is no longer retained, = now being used for the stronger 
notion of identity and, correspondingly he introduces an operation, [t], 
giving the number of elements o f t  when t is a class, but when a relative 
term it is the average number of things so related to an individual. 
Uninterpretables are no longer mentioned. Having introduced the 
notion of inclusion in both non-strict (- < j and strict ( <) forms he can 
express particularity (e.g. “Some a is b” is rendered “a, b > 0 ) .  Peirce’s 
very complicated treatment of the hypothetical proposition by use of 
relatives of a special kind is later (in his [ 18801 j replaced by a more 
usual treatment using - < which, however, had for him a highly 
generalized sense including that of inference, inclusion, and implication. 
(See DIPERT 1981) 
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ALEXANDER MACFARLANE 

As with Jevons, Macfarlane’s aim was to “correct Boole’s principles 
and place them on a clear rational basis.” However his eccentric 
Principlies of the Algebra of Logic [1879] in which he expounds his system 
seems not to have had any noticeable effect on other logicians. Yet it is 
worthy of some attention here in that it, like the early work of Peirce, 
attempts a generalized arithmetico-algebra system along Boole’s line of 
thought so as to handle both logic and probability. Our sketch of his 
ideas ignores most of his misconceptions and some inchoate features. 

The symbol U is used to signify “a definite collection of individuals of 
a given type” and, as in Boole’s [1847], may be understood, i.e. left 
unexpressed. It has an arithmetic value which is an integer-presumably 
the number of such individuals-though Macfarlane doesn’t explicitly 
say this ; this value may be 0 as when U is “imaginary” and may also be 
infinite. Attributes, qualities, or characters (the latter being his preferred 
term) are denoted by symbols x ,  y ,  z ,  etc. which, like the operators in 
Boole’s [1847] select from the universe U the individuals which posess 
the character or quality. But, unlike Boole who had no universal or 
empty selector, Macfarlane uses for this purpose the symbol 1, denoting 
‘all’ or ‘the whole’ and 0, denoting ‘none’, and taken as operating 
symbols of the same kind as x, y ,  z ,  etc. He writes ‘U (x = y) ’ ,  
abbreviated to ‘x = y’, to mean that the U’s which have the character x 
are identical with the U’s having the character y ; also ‘ V { x  + y} ’  means 
‘U’s which are x together with U‘s which are y’ but with no restrictions 
such as Boole’s mutually exclusive requirement for meaningfulness, and 
‘ U { x  - y} ’  means ‘U’s which are x minus U’s which are y’ where “x and 
y destroy one another, so far as they coincide ; and the result in general 
consists of a positive and a negative part.” But no explanation is given as 
to what he means by ‘positive’ and ‘negative’ parts. ‘ V { x y > ’  means ‘U’s 
which are both x and y’ and, as with + and -, it is assumed or, 
rather, taken for granted that there is an operation +, inverse to x , 
whose meaning he explores by converting equation containing 4 to one 
with x . He also has a second kind of multiplication of characters used 
in connection with probability which we shall discuss in our 44.8. 

Of particular interest, and in contrast to Boole, Macfarlane gives 
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meaning to x + y when x and y are not mutually exclusive, namely as 
not necessarily denoting a “single” character but a “summation” of two 
characters. His definition of ‘single’ is: “A symbol is said to be single 
when it does not select any member of the universe more than once, and 
always with the same sign.” We are not told explicitly, but presumably 
x + x would select the x’s from a U twice. 

With regard to fractional expressions Macfarlane pretty much follows 
Boole. He examines the meaning of m/n when m and n are integral and 
finds that “m/n is impossible unless m divides n.” Although ‘’i is 
impossible, . . .*x will be possible when x = 2y. For then we have $y ; 
which is = y.” In general he believes that his Algebra of Quality is a 
generalized form of the Algebra of Quantity (neither of which are spelled 
out in detail, only vaguely hinted at)  and hence that “every theorem of 
the latter is true in the former, provided that any special conditions 
which have been introduced are removed.” 

A part of his book (Section XI)  is devoted to examining conditions for 
a character to be single. He finds that, for x single and positive, x2 = x 
and, if x is single and negative, x2 = -x.  (In the proof of this latter he 
uses - l2 = 1 without comment.) Thus Boole’s fundamental law x2 = x 
is replaced by x2 = f x .  

Macfarlane introduces inequalities : x > y denoting that x - y is 
“positive and positive only”. As a “corollary”( ?) to this definition he has 
that if x and y are each single and positive then x > y means “that the x 
includes the y”. Marcfarlane apparently doesn’t appreciate the logical 
importance of the notion of inclusion (as did Peirce) but uses it only in 
connection with finding upper and lower limits on the numerical value of 
a logical expression in terms of assigned numerical values to the 
argument. The treatment is quite different from De Morgan’s or Boole’s 
(see our next 8) in that negative values are allowed as limits. 

Among Macfarlane’s logical eccentricities was his insistence that every 
general proposition referred to a definite universe--e.g. ‘All men are 
mortal’ and ‘No men are perfect’ both refer to a universe of men. With U 
standing for ‘men’ these he renders respectively as 

U {  1 = mortal} 

U{O = perfect}. 
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He argues against Boole’s considering All men are mortal’ as being the 
same judgement as ‘All men are mortal beings’ on the grounds that they 
apply to different universes of objects. This ability of Macfarlane’s to be 
able to bring in the universe into formal statements will be referred to in 
connection with his treatment of probability discussed below in our 
4 4.8. 

JOHN VENN 

Unlike Boole and the other writers mentioned in this section Venn 
was well aware of the work in symbolic logic which preceded Boole, 
especially that of Leibniz and Lambert and their associates. He was also 
au courant with the latest in logical literature and was a correspondent of 
Peirce and Schroder. His treatise Symbolic Logic [1881,1894] includes 
substantial discussions of the central logical problems of the time such as 
that of (existential) import and that of hypothetical propositions. 
Nevertheless, despite some departures from its main conceptions, he was 
an adherent-the last one of any logical stature-of Boole’s general 
approach. 

More or less in agreement with DE MORGAN 1860 (= 1966, p. 255, 
256) PEIRCE 1867, and MACFARLANE 1879, Venn includes among the 
various notions of aggregating classes one which counts any common 
part twice. However, he considers it to be “Applied Logic” and, since he 
is treating only “Pure Logic”, omits it from consideration. Differing from 
Jevons, who thought that there was only one correct way to render ‘or’ 
in logic, Venn stressed that a choice could be made between the exclusive 
and non-exclusive senses on the basis of “symbolic propriety or 
convenience”. Among the changes which Venn made between the first 
(188 1 )  and second (1894) editions of Symbolic Logic was a change in the 
use of the symbol + from Boole’s sense to the non-exclusive sense of ‘or’, 
yielding in this change to the popular trend. But he makes no mention of 
any possible ensuing changes in the algebraic rules-indeed one looks in 
vain for an explicit statement of such rules-except in one place where 
he remarks that the solution of z = x + y for y should be written 
y = z - xy,  rather than y = z - x if x and y overlap. He notes however : 
“The power of free subtraction without the need of any such correction 
is one of the conveniences of the Boolian plan of notation”. 
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Venn followed Boole in using the indefinite class symbol u (or its 
equivalent 8) to represent ‘some’ but in the extended sense which admits 
the possibility of ‘none’. He emphasized the incapacity of the Boolean 
equational calculus to represent non-emptyness and introduced the 
formula xy  > 0, replacing Boole’s v x  = vy, to express ‘some x is y’. 
While removing one of Boole’s confusions was a step forward, Venn did 
nothing further with the idea: he was content to use > only in the 
context A > 0 (or A < 1) where it meant the denial of A = 0 (or A = 1). 
He cites no algebraic properties of > nor does he try to give a meaning 
in logic to the more general A > B. 

Very much like Jevons, Venn wished to give a meaningful logical 
explanation of the “Boolian” logic which would be “independent of the 
mathematical calculus”. The results in the two cases were quite different. 
In Venn’s opinion ([1894], p. xxviii): 

Jevon’s individual reforms in the direction of our Logic seem to 
me to consist mainly in excising from Boole’s procedure 
everything which he finds an “obscure form”, “anomalous”, 
“mysterious”, or “dark and symbolic” (Pure Logic, pp. 74, 75, 86). 
This he has done most effectually, the result being to my thinking 
that nearly everything which is most characteristic and attractive 
in the system is thrown away. Thus every fractional form 
disappears, so does the important indeterminate factor 8, and all 
the general functional expressions such as f ( x )  and its derivatives. 

In examining Venn’s claim to have given an explanation of every 
logical expression in purely logical terms we find him, as with Boole, 
admitting partial or conditionally defined and non-single valued 
operations. There is a slight improvement over Boole in that Venn has 
addition as well as multiplication as a single-valued and closed 
operation on classes. However with regard to subtraction he says: “In 
using this symbol we must remember the condition necessarily implied 
in the performance of the operation which it represents. As we remarked, 
we cannot ‘except’ anything from that in which it was not included; so 
that x - y certainly implies that y is a part of x.” 

This is no different from Boole. With regard to a meaning for logical 
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division of classes, something which Boole shied away from, Venn has 
“. . . the expression x/y stands for a class, viz. for the most general class 
which will, on imposition of the restriction denoted by y, just curtail 
itself to x. But to  this expression we must remember to attach the 
condition, that this presupposes that ‘all x is y’, as otherwise no such 
class as that which it is desired to determine could exist.” 

From its definition Venn finds this class to be x + vxy, u the indefinite 
class symbol, inasmuch as (x + uXj)y = xy = x with the presupposition 
that x is contained in y. With this meaning for division Venn can now 
explain why $ is the same as u ;  for a class which, on restriction by 0 
yields 0, can be any class whatever. 

With regard to the use of Boole’s expansion theorem on expressions 
which have no direct interpretation as a class Venn argues [1894, pp. 
266-2671 that one needs it only for fractional forms for which he has 
given a logical meaning as a class. Hence 

We shall therefore apply our formula to x / y  .with no more 
hesitation than, for example, to x+Zy. When we do so, 
developing in accordance with the rule . . . we obtain 

X 
-- = txy + txy + T2y + {xy. 
Y 

The result obtained by purely logical considerations in the third 
chapter, it will be remembered, was 

X 
-- = xy + u .  xy, with the attendant condition x = xy . . . . (2) 
Y 

A comparison will show the complete identity of these two 
results.. . . 

Venn’s argument for their “complete identity” involves identifying txy 
with xy, deleting 92y, identifying the indefinite symbol u standing for ‘a 
perfectly uncertain portion, some, all or none’ with 8, since “this is 
exactly the well-known meaning of 8 in mathematics” and omitting the 
term bxj. As a reason for the last he gives: “Now the meaning of in 
mathematics is inJinity. What then is meant by offering us, in a simple 
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class expression, a term multiplied by infinity? Surely that there is no 
such class in existence, for this is the only way of escaping the 
consequent absurdity.” 

Although aware of FREGE 1879 and PElRcE 1880, Venn’s ideas on 
propositional logic seems not to have been significantly influenced by 
them since his treatment bears close resemblance to Boole’s, discussed 
below in Chapter 3. 

0 1.12. Propositions numerically definite 

The topic to be discussed here was treated by Boole at  two different 
times. One version appears in Laws of Thought Chapter XIX, Of 
Statistical Conditions, where it is made the basis for a method of 
obtaining bounds on probabilities. The second appeared as a paper, 
BOOLE 1868 (= BOOLE 1952 IV), published posthumously by De 
Morgan and described by the editor of BOOLE 1952 (on p.5) as 
“probably written about 1850,” i.e. about four years prior to Laws of 
Thought. This is probably the “lost” manuscript referred to by Boole in 
Laws of Thought, p. 310 footnote (See 84.1 below). It is this earlier, 
though posthumously published, paper we describe in this section. 

It is interesting to contrast De Morgan’s and Boole’s conception of the 
topic. For De Morgan numerically definite propositions were 
generalizations of the Aristotelian categorical forms, e.g. ‘mX Y’ (m or 
more X’s are Y’s), replacing ‘XY’ (some X’s are Y’s); the principal 
objective was the determination of the valid numerically define 
syllogistic forms involving three terms X, Y, Z. Boole’s quite different 
approach was to introduce an operator N on class terms (but then 
extended to other expressions) whose values are the numbers of 
individuals in the classes. For him the central problem was : 

Given any system of propositions, any of the terms of which, 
simple or compound, are made in numerically definite form, 
required the numerical limits within which the number of 
individuals contained in any proposed class will be ; whether that 
class be defined by the presence or the absence of any single 
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attribute, or by the presence of any collection of attributes and the 
absence of any other collection of attributes, or whether it consist 
of distinct groups and parcels of individuals each of which is thus 
defined. [BOOLE 1952, pp. 168-1691 

Boole uses the notation N x  for the number of individuals in the class 
x ,  N x y  for the number in “the class whose members are X’s  and Y’s,” 
and N ( x  + y )  for “the number contained in the aggregate class whose 
divisions are x and y.  This implies that the classes x and y are mutually 
exclusive.” He then goes on to extend without any special comment the 
meaning of N ( x  + y )  to the case of x and y not being mutually exclusive. 
He does this in his Proposition I which asserts that 

N P k N Q k N R . . -  = N ( P k Q f R . . . ) ,  

P ,  Q, R ,  ... being “class functions” and “provided that we develope 
P k Q k R . .  . into constituents, apply N to each term of the result, and 
interpret any term Nat in which t is a constituent and a a numerical 
coefficient, by aNt.” Thus, since the development of x + y  is 
xj + Zy + 2xy, N ( x  + y )  is to be interpreted as N x j  + NZy + 2Nxy.  
Hence in this context it would seem natural to suppose that x + y be 
considered as some kind of an aggregate in which individuals common 
to x and y are counted twice, and similarly x - y as an entity in which 
individuals in yX are counted negatively. But throughout his writings 
Boole steadfastly resists making the inference and refers to such 
expressions as “uninterpretable”. 

After presenting the more general proposition, 

a N P  f bNQ f c N R . * .  = N ( a P  f bQ f c R . * * ) ,  

a, b, c, ... being numerical quantities, Boole shows how readily his 
algebraico-logical methods lead to results about class terms by taking 
linear combinations. Thus 

N x +  N y -  N ( 1 )  = N ( x  + y  - 1) 

= N ( X J J  - ( 1  - x ) ( l  - y ) )  

= NXY - N X j  
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so that 

(1) N X Y =  N x + N y - N ( l ) + N X j .  

The simple result ( 1 )  for N x y  is generalized by Boole to N x ,  . . . x , .  
Starting with 

x ,  ... x ,  = ( 1  - ( I  -x1))(1 -(1 - x , ) ) . . . ( l - ( l  - x , ) )  

= x , + x , + ~ . ~ + x , - ( n - l ) + R  

he finds, by developing x 1  . . . X, - ( x ,  + x 2  + .. . + x ,  - (n - I)), an 
expression for R which is a linear combination (with numerical 
coefficients) of constituents on x l . . . , x ,  having 2 or more of the xi 
negated. Thus he has 

(2 ) N x ,  . . . X ,  = N x ,  +... + N x ,  - (n - 1 ) N ( 1 )  + N R ,  

with R having a given form. The part 

N x ,  +...+ N x , - ( n -  l ) N ( l ) ,  

which equals N x ,  . . . x ,  when N R  = 0, is called the prime value of 
N x ,  . . ,x,, and N R  the remainder. From its structure, Boole notes, N R  
cannot be negative, but fails to mention that it could be larger than N ( 1 ) .  
The prime value, clearly a lower bound for N x ,  . . .x,, is described as “the 
least number of individuals which can exist in the class x ,  . . . x,,”. Since 
prime values can be negative Boole should have qualified this with “if 
the prime value is positive, otherwise the least number is 0”. While the 
assertion, that the prime value is the least number of individuals that 
could be in x, . . . x, (if qualified), is correct (see e.g. HAILPERIN 1965), 
Boole’s argument isn’t fully cogent; for he hasn’t shown that one can 
have N R  = 0 by suitable arrangement of the classes xl, ..., X ,  while 
maintaining N x , ,  ..., N x , ,  N ( l )  fixed. 

Boole proves a number of interesting theorems on prime values and 
shows how to obtain [a set of3 prime values for P, P being a sum of 
constituents. These are lower bounds on N P  which are of the same form 
as the prime value of a constituent of P‘s development but with possibly 
fewer variables; e.g. N x ,  + N x ,  - l . N ( l )  is a prime value for 
P = ~ 1 ~ 2 x 3  + x I x ~ X ~  + xIXzX3. He takes it for granted (erroneously as 
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we shall see in $4.7) that “the highest of the prime values obtained 
will be the least number of individuals which can enter into the 
proposed class [i.e. PI”. 

Boole’s paper goes on to present his solution of the general problem of 
numerical limits for a class. However we shall interrupt our exposition 
here as the substance of it is contained in his Laws of Thought version 
which we pick up in our $4.7. 

Q 1.13. Notes to Chapter 1 

(for $ 1.0) 

For more details on Symbolical Algebra and the origins of abstract 
algebra see KOPPELMAN 1971, KNOBLOCH 1981, and PYCIOR 1981. 

(for 9 1.1.) 

NOTE 1. There is a study of the influence of Boole’s mathematical 
work on his creation of an algebra of logic, mainly with reference to 
BOOLE 1847, in LAITA 1977. 

NOTE 2. See our $3.1 for a modern formalization of Boole’s operator 
calculus, which is then used in $ 3.2 to develop a form of propositional 
logic. 

NOTE 3. For a very different perspective from ours on BOOLE 1847 see 
CORCORAN-WOOD 1980. 

NOTE 4. The manuscript notes by Boole in possession of the Royal 
Society referred to  by the editor of BOOLE 1952, p. 119, are now available 
as : 

Manuscript Additions to ‘Mathematical Analysis of Logic’ B. Boole. 
Edited with an introduction by G. C. Smith. History of Mathematics 
Paper #18, Department of Mathematics, Monash University, Clayton, 
Victoria, Australia. 

(for 9 1.2) 

NOTE 1. Recent discussions of logical psychologism, with reference to 
Boole, are in MUSGRAVE 1972 and RICHARDS 1980. 
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NOTE 2. The surprising fact that there are no semantic notions 
(validity, invalidity, logical consequences, etc.) in Boole’s work is 
brought out and discussed in the Corcoran-Wood paper mentioned 
above in Note 3 for 6 1 . 1 .  Presumably Boole thought that by virtue of 
his basic principle (“The laws, axioms, and the processes of such an 
algebra will be identical in their whole extent with the laws, the axioms 
and the processes of an Algebra of Logic.”) correct algebraic derivations 
in such an algebra would correspond to correct logical inferences. 

(for 5 1.3) 

It is curious that Boole’s discussion of the possibility of having a 
trichotomous division in logic makes no mention of De Morgan who, in 
a letter to Boole of 3 April 1849 said: 

I have considered a little the problem of-not name and 
contrary-X and x-but any number of names-a proposition 
which the alternatives are more than X and not-X. I looked at it 
enough to see the possibility of wider classes of numerically 
definite distributions and logical syllogisms arising 
therefrom-but I never had the curiosity to investigate more than 
some simple cases of three alternatives-I hope you will go on 
with it. [Excerpt from Letter 16 in SMITH 19821 

(for 3 1.4) 

The absence of any mention of associativity, of either multiplication or 
addition, in both BOOLE 1847 and BOOLE 1854 is very puzzling. Without 
parentheses ‘xyz’ is ambiguous as between a ternary operation on x, y, 
and z ,  and either of the two composite binary forms ‘x(yz)’ and ‘(xy)~’, 
none of which are formally identifiable with the others in the absence of 
a postulate. Associativity of a binary operation was implicitly recognized 
in HAMILTON 1837 and explicitly in HAMILTON 1844. It also occurs in DE 
MORGAN 1844 (as was pointed out to me by John Corcoran). 
Concerning this latter paper, in a letter written in 1845 to De Morgan, 
Boole says that he read De Morgan’s memoir on Triple Algebra “with 
great interest”. (SMITH 1982, p. 15) At the very beginning of this memoir 
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De Morgan discusses the question of associativity in connection with 
his algebraic triples which he devised in analogy with W. R. Hamilton’s 
quaternions. 

(for 6 1.10) 

According to Alonzo Church (The History of the Question of 
Existential Import of Categorical Propositions, Proceedings of the 1964 
International Congress jur Logic, Methodology and Philosophy of’ 

Science, North-Holland Publishing Co. 1968), the earliest (implicit) 
appearance of the modern doctrine of existential import (i.e. that 
universal propositions are true and particular are false if the subject 
term is empty) is in CAYLEY 1871. 

Cayley describes his result as a “more concise and compendious 
form” of the theory of the Syllogism in Boole’s “The Calculus of Logic,” 
Camb. and Dubl. Math.  Jour., t. 111 (1848), pp. 183-198 [= Essay I1 in 
BOOLE 19521. Cayley circumvents Boole’s use of the indefinite u by 
introducing the relation “not = @”. 

(for $ 1.11) 

The original, and the edited collections PEIRCE 1933 and PEIRCE 1982, 
all have “a i, a” for the rendition of “some a”. But neither (a i), a nor 
a (i, a )  could be intended, the former being uninterpretable if i had 
some a’s and the latter being all a’s but the one in i. Thus a bar over the 
latter, indicating complementation, is called for in order to render 
Peirce’s intention. 



CHAPTER 2 

FORMALIZATION OF BOOLE’S LOGIC 

p 2.1. The calculus of multisets. Axioms for multiset algebra 

There can be no question that by modern standards Boole’s logical 
system falls far short of being a satisfactory theory. To his 
contemporaries and immediate successors much of it was obscure and, 
in a comparatively short time, it was supplanted by the Boole-Jevons- 
Peirce-Schroder calculus. But Boole does have a formal system if one is 
indulgent enough in what one understands by this. The trouble is that 
we don’t know of what it is a formalization. Starting off with mostly 
intuitively clear ideas he ends up with algebraic notions without logical 
sense which then need special treatment to get back to understandable 
notions. One could follow the historic route and simplify it down to a 
theory of Boolean algebras (or Boolean rings) and all class calculus 
problems could be satisfactorily solved. Yet by so doing this we would 
lose the distinctive character of Boole’s system and, of course, the 
possibility of understanding what is going on behind it all. We intend to 
show in this chapter that, other than the simplification to a Boolean 
algebra or Boolean ring, there is another way to make sense of Boole’s 
system. 

Customarily in theory building one has an intuitive meaningful idea of 
a mathematical structure and then proceeds to formalize it as an 
abstract system. So from the idea of a group we go to the theory of 
groups, axiomatized in some fashion, or from the algebra of subsets of a 
set to Boolean algebra. Here, however, our problem is the reverse of this. 
We have a formal system, admittedly badly formulated, and we wish to 
find out what kind of mathematico-logical structure it formalizes. Once 
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we do, and have a clearly described (type of) structure in mind, we can 
then in the reverse direction use it to straighten out Boole’s poorly 
formulated system. Inklings of how this may be accomplished can be 
found in the remark of De Morgan’s about Boole’s ‘+’ implying double 
counting and in Peirce’s and Macfarlane’s attempts at revising Boole’s 
system with classes having both logical and numerical meaning attached 
to them (see !j 1.11). 

Our basic contention is: To obtain a meaningful interpretation of 
Boole’s system we have to use not the notion of a class (class = set)  but 
that of a multiset. 

By a multiset we mean a collection of objects as a whole in 
which more than one example of an object may occur-for example, 
the collection of 5 indistinguishable red balls and 3 indistinguishable 
black balls in an urn, or the set of roots of a polynomial equation in 
which multiplicities are counted. The objects will be referred to as members 
or elements of the multiset. In the example of the urn just mentioned 
there are 8 elements. If we wish to disregard multiplicities we shall refer 
to distinct kinds of elements. As a generalization of the “roster” method 
of representing sets, i.e. {al, ..., a,,}, for the set whose elements are the 
objects a , , .  . ., a,, we write { h l ) a l ,  (hz)az , .  . ., (h,)a,} to represent the 
multiset having h l  of the objects a t ,  hz of the objects a t , .  . ., h, of the 
objects a,. One can, if one chooses, define (mathematically) multisets in 
terms of ordinary sets, and in a number of different ways. For example, 
as functions on sets into the natural numbers, i.e. as collections of 
ordered pairs (ai, h i ) ;  or, as the set of all permutations of the ordered 
m-tuple 

h ,  hi h.  

+ - 
(a1 , .  . ., a , ,  . . .) a i , .  . ., ai , .  ..,anr. . ., a, ) ,  

where m = h,  + h2 + + h,. Since an m-tuple is expressible as a set, 
this set of sets adequately represents the notion we are representing by 
{(hl)al, (hz)a2,. . , (h,)a,};  for, by taking the set of all permutations we 
abstract from the order and, from any one of the m-tuples, we can 
recover the distinct kinds of elements. But equally well the other way 
around, the notidn of set is obtainable from that of multiset by special- 
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izing to those multisets for which the multiplicities hi are 0 or 1. For 
our purpose here we wish to think of the notion of multiset as primary. 

Two multisets 

A = {(hi)~i,...,(hi)~i .... }, B = ( ( k , ) h ,  ,..., ( k , ) h  ,,... j 

are equal if and only if, for each i ,  a, and bi are the same and hi = k i .  
As in the calculus of classes we shall have a “universe” which we 

designate by 1. This is to be some fixed non-empty set of elements 
without repetitions ; from these elements, replication permitted, all other 
multisets are constructed. Absence of members of 1 from a multiset can 
be indicated by allowing the notion of zero multiplicity; the totally 
empty multiset { (O)a,, . . ., (0)ai, . . .} we designate by 0. 

We turn now to defining operations on multisets. The intuitive idea 
of dumping the contents of two urns together will be represented 
by the algebraic operation of adding two multisets. Thus if 
A = {(hl)al ,..., (hi)ai ,... } and B = {(kl)al ,..., (ki)ai  ,... }, then 

A + B = {(l l)al  ,..., ( l i )u i , . .  .}, where l, = hi + k i .  

From this we readily see that, for any multisets A, B, C, 

A + B  = B +  A ,  ( A  + B ) +  C = A + ( B +  C), A + O  = A .  

(The danger of confusing multiset operations and constants with the 
homonymous arithmetic operations and constants is so slight that we 
shall not trouble to use different notation.) Clearly 1 is not the “largest” 
multiset in the same way as the universal class is in the calculus of 
classes, for 1 + A is “larger” than 1 for any A # 0. 

Next we consider the operation of multiset multiplication. For arbi- 
trary multisets A = { ( h l ) u  ,,.., (ki)ui  ....; and B = ( ( k , ) a  ,,.., (ki)ai  ,... 1 
we write 

A B  = {(ll)al ,..., (li)ai ,... }, where l i  = hik,.  

so that, in the product AB, the multiplicities of corresponding elements 
are multiplied. Clearly we have AB = BA, A(BC)  = (AB)C, A1 = A. But 
note, as in a Boolean algebra, we can have divisors of zero, i.e. one can 
have AB = 0 even if A and B are non-zero, this occurring when A 
and B, although non-empty, have no element in common. Since 
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hi(ki + l i )  = hiki + hi / ,  we see that distributively holds for multisets. 
Moreover, since for n > 0, nhi = 0 if and only if hi = 0 and likewise 
hl = 0 if and only if hi = 0, we see that n A  = 0 if and only if A = 0 
and A" = 0 if and only if A = 0. (By n A  we of course mean 
A +.  . . + A for n terms, likewise, A" is A . A * . . . . A for n factors.) 

We formalize these observations by stating that a calculus of multisets 
is an example of an algebraic system with the following properties : there 
are two binary operations + and . and two distinct elements 1 and 0 
such that with respect to these the system is a commutative semi-ring 
with unit and zero; and the system has no nilpotents, either additive or 
multiplicative. It is convenient to have all this spelled out : 

AXIOMS FOR MULTISET ALGEBRAS 

A + B = B + A .  A B  = BA. 

A + ( B  + C )  = ( A  + B )  + C, 

A + O = A .  A . 1  = A ,  

A + 1  # A ,  A . 0  = 0. 

A ( B C )  = ( A B ) C ,  

A ( B  + C )  = AB + A C ,  

1 # O ,  

n A  = 0 only if A = 0, A" = 0 only if A = 0. 

By virtue of Theorem 0.41 the axiom 

A" = 0 only if A = 0 

can be replaced by 

A' = 0 only if A = 0 ;  

however we leave the redundancy in for the sake of symmetry. Similarly, 
for aesthetic reasons, we have included both A + 1 # A and 1 # 0 
as axioms although in the presence of the remaining axioms each is 
derivable from the other. The axiom 

A + l # A  
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can be written 

A + l = A + O - , l = O ,  

in which form it represents a remnant of cancellation that is left to the 
semi-ring (as opposed to full additive cancellation for a ring). 

These axioms have many models-the natural numbers for instance, 
as well as any algbra of multisets for any choice of the “universe” 1. As 
the axioms are all McKinsey formulas we know, by Theorem 0.31, that 
any substructure of a model of the axioms is also a model, and the direct 
product of models is a model. Thus as a fairly general model to keep in 
mind for the axioms one can think of a system which is a direct product 
of an arbitrary number of copies of the natural number system. 

0 2.2. Boole’s Algebra (SM algebras) 

An algebraic structure of the kind we have just discussed in Q 2.1, while 
capable of giving meaning to Boole’s “uninterpretable” x + x, still does 
not adequately represent Boole’s system, for the notion of subtraction, 
forming the inverse to addition, is absent. We can, disregarding meanings, 
formally obtain this operation by adding to the axioms the assumption 
that each element of the system has an additive inverse, i.e. by converting 
the semi-ring to a ring. But then the structure of multisets we have had 
in mind is no longer a model for these axioms. However, a consideration 
of the relationship of the semi-ring of natural numbers to that of the ring 
of integers readily suggests how to obtain a suitable model, namely by 
introducing the notion of a signed multiset. If one goes back to the 
discussion on multisets and allows the coefficients hi in 
{(hl)a,, . . ., (hi)ai . . .} to be any integers-positive, negative, or zero-one 
readily sees that the resulting structure is a model for the so extended 
axiom system. While the notion of a signed multiset is not as intuitively 
simple as that of an unsigned multiset, a brief reflection on the history of 
the difficulties which were experienced until negative numbers were in 
good standing, should help one overcome resistance to the acceptance of 
signed multisets as a meaningful notion. Accordingly, as a codification of 
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the algebraic properties actually required by Boole we present : 

AXIOMS FOR BOOLE’S ALGEBRA (SM ALGEBRAS) 

B1. A + B = B + A ,  

B.2. 

B3. A + O = A ,  

B4. 

BS. A B =  BA, 

B6. A(BC)  = (AB)C,  

B7. A1 = A ,  

B8. 

B9. 1 # 0, 

B10. A’ = 0 only if A = 0, 

B11,. nA = 0 only if A = 0 (n = 1,2,3 ,... ). 

‘Boole’s Algebra’ is, of course, to be distinguished from ‘Boolean 
Algebra’. 

The above axiom set has been obtained from that for (unsigned) 
Multiset Algebras given in the preceding section, by adding the postulate 
B4 guaranteeing an additive inverse, and then deleting A + 1 # A and 
A * 0 = 0, both of which become derivable. In the language of modern 
algebra these are axioms for the theory of commutative rings with unit 
and with no non-zero nilpotents, either multiplicative or additive. For 
brevity’s sake we refer to this as the theory SM, or the theory of SM 
algebras, not thereby implying that algebras of signed multisets are the 
only type of model (an algebra of signed multisets is a special kind of SM 
algebra). Rings which satisfy these axioms must be of characteristic 0 
since from B9 and B11, we have 1 # 0, 1 + 1 # 0 ,..., 
1 + 1 + ... + 1 # 0,. . . . Here are a few general properties of the theory 
SM. 

Unlike the (elementary) theory of Boolean algebras, the theory of SM 

A + ( B  + C )  = ( A  + B )  + C ,  

A + X = 0 has a (unique) solution for X, 

A ( B  + C )  = A B  + AC,  
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algebras (as well as that for unsigned Multiset Algebras of 52.1) is 
undecidable. This follows immediately from a result of Tarski, 
Mostowski and Robinson (Theorem 0.32) since SM is a subtheory of the 
theory J (of integers) having the same symbols as J. Interestingly 
enough, there is a decision procedure for a subclass of sentences of this 
theory, namely the subsystem consisting of the universal sentences. 
(SIMMONS 1970, THEOREM 1, p. 549). As a consequence of this we need 
not, for formulas which are quantifierfree (e.g. equations), distinguish 
between ‘true in all SM algebras’ and ‘provable from the axioms for SM 
algebras’. 

There is also an algebraic structure theorem which can be given for 
the theory SM. According to the result of McCoy (Theorem 0.43), any 
commutative ring without nonzero nilpotents is isomorphic to a 
subdirect product of integral domains. Moreover, if the ring has the 
property that nA = 0 only if A = 0, then (by Remark 0.44) so does each 
component in the subdirect product. Thus: every SM algebra is 
isomorphic to a subdirect product of integral domains each of which is  
without additive nilpotents. We note that each of these component 
integral domains has embedded within it a structure like the integers; for 
if 0 and 1 are the zero and unit of such an integral domain, then 0, k 1, 
f ( 1  + I), ... are all distinct and present in the domain and have the 
algebraic properties of the integers. It is enlightening to compare this 
structure theorem with that for Boolean algebras (SIKORSKI 1969, S; 16): 
Every Boolean algebra is isomorphic to a subdirect product of two-element 
Boolean algebras. . 

$2.3. Idempotents. Boolean multiset terms 

As our interests from now on will be exclusively with signed multisets 
(and their algebraic codification), we can shorten terminology by 
dropping the qualifying adjective ‘signed’. 

From our conception of multiplication in a multiset algebra we have 
that A’ = {h:)a,  ,..., (h?)ai ,...) so that A’ = A if an only if for each i ,  
h? = hi. But the equation h? = hi holds if and only if hi = 0 or hi = 1. 
Thus for such an algebra the idempotency condition A’ = A is equivalent 



142 FORMALIZATION OF BOOLE’S LOGIC 

to the condition that A have no negative or repeated element. This 
idempotency condition was referred to by Boole as the “condition of 
interpretability” and terms not satisfying it were “not interpretable” or 
interpretable only under special conditions on the variables in the terms. 
We discuss this in detail in our next section. Here we explore the 
general algebraic properties of idempotents in SM algebras. 

We consider an abstract SM algebra 9Jl = ( M ,  +;,O, l ) ,  i.e. an 
arbitrary model of the axicms for Boole’s Algebra and investigate 
properties of the subset B of M containing all its idempotents. Clearly 
B includes 0 and 1 as members. Following Boole’s example we shall use 
lower case Latin letters at the end of the alphabet as variables ranging 
over B, referring to them as Boolean variables. From simple ring 
properties (50.4) and the idempotency of x and y one readily 
establishes : 

THEOREM 2.31. In 49JI (i.e. as theorems about the theory S M )  the jbllowing 

x 2  = x and x(1 - x )  = 0. 
(1 - x)2 = 1 - x .  

(xy)2 = xy. 

( x  + y - xy)2 = ( x  + (1 - x)y)2 

( x  + y)’ = x + y if and only if x y  = 0. 

= x + ( l - x ) y  

= x + y - x y .  

( x+y-2xy )2  = [x ( l  - y ) + y ( l  -.)I2 

= x ( l  - y ) + y ( l  - x )  

= x + y - 2xy. 

[ ( x  - y ) 2 ] 2  = ( x  + y - 2xy)2 

= x + y - - x y  

= ( x  -y)Z. 

x = y if and only if x ( l  - y ) + y ( l  - x )  = 0. 
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These results show that the set B of idempotents is closed under the 
operations of subtraction-from-1 and multiplication, but not under 
addition (since 1 . 1 # 0, we have by (d), (1 + # 1 + 1). The sum is, 
however, idempotent if the summands are mutually exclusive (i.e. if their 
product is 0). Hence (as (e) and (f) show) the operations represented by 
x + y - x y  [ = x + y ( l - x ) ]  and x + y - 2 x y  [ = ( x - Y ) ~  = 
x(1  - y )  + y(1 - x ) ]  are closed in B ;  (f‘) is an alternative version of (f). 
Let us put 

x + ,y for x + y - x y  (Boolean sum), 

x + A y  for x + y - 2xy  (Symmetric difference), 

and note that x + , y  = x + , y  = x + y  if x y  = 0. 
One easily shows the following ( 8  0.5) : 

THEOREM 2.32. The structure (€3 ,  + A ,  ., 0, l )  is a Boolean commutative 
ring with unit ( + A  being the ring addition). The structure 
( B ,  + ,, ., , 0, l), where A is 1 - A ,  i s  a Boolean algebra. These two 
structures are equivalent via the equations 

- 

1 - x  = 1 + A x ,  

x + B y  = x +Ay + A x Y ,  

X+Ay = x ( l - y ) + , y ( l - x ) .  

The Boolean algebra in Theorem 2.32 will be referred to as !ITS 
Boolean algebra. 

If we were to limit ourselves to idempotents and to the operations of 
either of the two systems in Theorem 2.32, then we would arrive at the 
historical simplification of Boole’s ideas to modern Boolean algebra. But 
in so doing we would nor be using Boole’s method. While he did limit 
himself only to variables ranging over idempotents he also used, in effect, 
addition in M which, as we have noted, is not closed in B. We therefore, 
since we do wish to follow Boole’s course, turn to obtaining results 
about SM algebras in which the explicit variables used range only over 
idempotents, but with no restriction on the operations. 

By a Boolean (signed) rnulfiset term (i.e. a Boolean SM term) we shall 
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mean any finite composition of constants and/or Boolean variables with 
the operation of SM addition, multiplication, and subtraction. When not 
needed for clarity we shall omit the qualifying adjectives ‘Boolean 
multiset’. 

We first establish that Boole’s Law of Development holds for any 
Boolean multiset term. Our proof is different from Boole’s since we can’t 
use his assumption that an equation is established if it holds for all 
assignments of 0 and 1 to the variables-in fact, contrariwise, we shall 
prove this is so by using the Law of Development (second paragraph 
following the PROOF). 

THEOREM 2.33 (Law of Development). Z f f ( x )  is any term and x a Boolean 
variable, then 

f ( x )  = f ( 1 ) x  + f ( O ) ( l  - x ) ,  

where f(1) is the term obtained from f ( x )  b y  replacing x throughout by  1 
and, similarly, f (0) is obtained b y  replacing x b y  0. 

PROOF: Clearly f(1) and f ( 0 )  are terms. From the idempotency of x and 
simple ring properties one sees that f ( x )  (which may have other variables 
present) is equal to a linear form, i.e. f ( x )  = Ax + B where A and B do 
not involve x,  and thus f(1)  = A + B and f ( 0 )  = B. The result is now 
immediate since Ax + B = ( A  + B)x + B(l - x ) .  

On the basis of this theorem one readily establishes Boole’s result that 
a term is expandable in constituents on any set of Boolean variables. It is 
clear that, on a given set of Boolean variables, the product of distinct 
constituents is 0, that the sum of distinct constituents is an idempotent 
(Boole’s + can be taken as either + B  or and that the sum of all 
constituents is 1. 

One can also justify, as far as equations are concerned, Boole’s 
conception of his algebra as an algebra of 0 and 1. It is easy to show that 
an equation between Boolean multiset terms, e.g. f ( x , ,  . . ., x, )  = 

g ( x l , .  . ., x,)-in which all the Boolean variables xl,. . ., x ,  need not be 
present on both sides-is provable if and only if it becomes an identity 
for each of the 2” possible assignments of the values 0 , l  to the variables; 
this is readily seen by replacing f ( x l ,  . . ., x,) and g ( x , ,  . . ., x , )  by their 
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respective expansions in terms of the constituents on the variables 
xl, ..., x, and noting that each assignment makes one and only one 
constituent have the value 1 and all the rest 0. 

It is easy to formally prove that any Boolean multiset term is equal to 
a sum of constituents on its variables with coefficients that are integers, 
i.e. are of the form ‘0’ or ‘ k 1’ or ‘ k (1 + 1 +. * .  + 1 )’. Accordingly, when 
its variables represent sets in a multiset algebra, a term represents a 
multiset built up in obvious fashion from sets represented by the 
constituents. Thus 

x + x  = 2.X+O.X, 

and hence, for a set x, x + x represents a multiset which has two copies 
of each element of x (and none of 2 ) ;  and from 

x - y = 1. xy + 0.  (xy + Xj) + (-  1).  xy, 

we see that, as a multiset, x - y would have the elements of x j  singly 
together with negative copies of Xy (and none of xy or Rj). 

Boole’s important elimination theorem ($1.8) can be proved for 
Boolean multiset terms. We include more detail in the proof than is our 
usual custom since we wish to use this type of proof as an example later 
on (52.5). Our present-day conception of algebraic elimination as a 
species of existential quantifier elimination was, naturally, not clearly 
understood in Boole’s time. 

THEOREM 2.34. Zff(x) is a Boolean multiset term then 

f(l)f(O) = 0 ++ 3x(f(x) = 0). 

PROOF. (a) Suppose 3x(f(x) = 0). 
Let x be such that f(x) = 0. Then by Theorem 2.33 

f(1)x + f ( O ) X  = 0. 

Multiplying through by f(0)x and simplifying gives 

f( l ) f(O)x = 0. 
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Similarly using f ( t ) f  gives 

f(l)f(O)Z = 0. 

Whence, by addition, f ( l ) f ( O )  = 0. 
(b) Suppose f ( l ) f ( O )  = 0. 
Let t i  ( i  = 1,. . ., 2”)  be the set of  constituents on a set of variables 

which includes those present in f ( l ) f ( O ) .  Let f(1) = C a i t i  and 
f ( 0 )  = C b i t i ,  where the a,  and bi are purely numerical, i.e. integers. By 
the hypothesis (b), 

( C a i t i ) ( C b i t i )  = C(a ib i ) t i  = 0, 

so that 

aibi = 0 ( i  = 1, ..., 2”). 

Define 

1 i f a i = O  
ci = {0 if ai # 0 (and hence b,  = 0) 

and set x o  = Cciti. Then by Theorem 2.33, 

f ( x 0 )  = [ f ( l )  -.f(O)Ixo + f ( O )  

= [ C a i t i  - C b i t i ] C c , t i  + C b i t i  

= C ( a i  - bi)citi + Chit, 

= C [ ( a i  - bi)ci + bi]t ,  

= 0. 

As was known to RooIe (Chapter X, Prop. I, p. 151) any equation 
“among logical symbols” can be reduced “to the form V = 0, in which V 
satisfies the law of duality, V ( l  - V )  = 0.” For us this becomes 

THEOREM 2.35. Every Boolean multiset equation (i.e. an equation between 
Boolean multiset terms) is equivalent to a uniquely determined Boolean 
equation V = 0 in the same variables. 

PROOF. By algebraic (ring) operations any Boolean multiset equation 
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can be reduced to  the form U = 0. Let &ai ( i  = 1,. . ., m) be the non-zero 
coefficients in U’s complete expansion-if there is no such ai we are 
done, merely take V as xXy y . . .  for as many variables as are in U .  
Writing U = 0 equivalently as 

C +airi = o 
and multiplying the equation through by Tti (i = 1, ..., m )  gives 

airi = 0 

so that, by Bll“ ,  t i  = 0 ( i  = 1,. . ., m). 
Then V = zr= t i  = 0 is the desired Boolean equation-Boolean 

because addition of distinct constituents (on the same set of variables) is 
the same as Boolean sum. Each of the described steps is reversible, so 
that the asserted equation is then established. As Boole notes, one gets V 
from U’s complete expansion by replacing each non-zero coefficient by 
1. 

One should not conclude from this theorem that Boole’s Algebra is 
without interest when only Boolean variables are involved. For example 
the fact that (x  + x ) y  = 0 is equivalent to the purely Boolean equation 
x y  = 0 results in significant information when applied to classes, namely 
that duplicating the elements of a class x does not affect its exclusiveness 
or non-exclusiveness with another class. However Boole never used his 
algebra other than as a means of getting from premises to conclusion, 
and expressions not satisfying his “law of duality” ( A 2  = A )  occurred 
only in intermediate stages (and were considered to be 
“uninterpretable” ). 

When starting with a purely Boolean equation we can, by means of 
operations of Boole’s Algebra, arrive at equations involving non- 
idempotents. A natural question arises : Is Boole’s Algebra conservative 
with respect to deductions in Boolean algebra or could there be 
deductions carried out by the full algebra but which could not be carried 
out in Boolean algebra? That is, if + is derivable from 6 with free 
variables held fixed (both formulas in purely Boolean terms) by use of 
Boole’s Algebra is there a purely Boolean derivation of I,// from 6? 
Symbolically, does 8 FSMq imply 8 F B A ~ ?  By use of the deduction 
theorem (0.3.1) this question becomes: 
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Does kSMe + II/ imply I- BAe + II/? 

An affirmative response is immediate from Theorem 2.37, for which 
the following is a lemma. 

THEOREM 2.36. Any Boolean algebra 23 is isomorphically embeddable in 
the (algebra of) idempotents of an S M  algebra. 

PROOF. (Informal, ignoring foundational questions of set theory). Let 23’ 
be an algebra of sets isomorphic to 23 (Theorem 0.539), and let M = Bs 
be the union of all sets of B, i.e. the set consisting of elements which are 
in any set of Bs. Assuming the axiom of choice, let M be well-ordered 
and let a< be its t th  element. We define the universe M *  of the SM 
algebra to be the set of all sets ordinally similar to M and whose (th 
element is the ordered pair ( n ,  at), where n is an integer (allowed to be 
different for different elements of M ) .  For any two elements A and B of 
M * ,  whose t th  entries are (n ,  a,) and (m,  at) respectively, define A + B 
to have ( n  + m, a,) as its 5th entry, and A * B to have (nm, at) as its t th  
entry. With obvious definitions for its 0 and 1, the structure is seen to be 
an SM algebra. Any b E B corresponds uniquely to a set b2 E BS which in 
turn corresponds to an idempotent of M* whose 5th entry is (O,a,) if 
a&bS and is ( l ,at)  if a t € b S .  This correspondence sets up the 
isomorphism. 

THEOREM 2.37. Let cp be a quantifier-jiiee formula in the language of 
Boolean algebras. I f  t- SMcp, then t- B A q .  

PROOF. Suppose t- SMcp but not t- BAcp. Then by the Godel completeness 
theorem (0.3.2) there is a Boolean algebra. 23 say, in which cp is false, that 
is 23 F 7cp[a, b, c , .  . .] where a, b, c, . . . are elements of B replacing free 
variables of cp (see 0.3.5 for notation). Let 9Jl* be an SM algebra in 
whose set of idempotents 23 is isomorphically embeddable (Theorem 
2.36). Then by 0.3.5, 

%R* I= --p[a*, b*,c*, . . .], 
a*, b*, c*, ... being the isomorphs of a, b, c, .... But this cotltradicts 
FSMcp, since provability of cp implies its truth in all models. 
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0 2.4. Boole’s notion of “uninterpretable” 

Considering that Boole, an adherent of the Symbolical Algebra school of 
thought, was content with an uninterpreted or partially interpreted 
calculus and that he had no idea of logical semantics, it is 
understandable that there would be unclarity in his use of such semantic 
terms as ‘uninterpretable’ and ‘interpretation’ which he uses in 
connection with both equations and terms. We show here that 
substantially all of it-with exception of his ‘interpreting’ the expression 
w = A + OB + 8C + @, which requires special treatment -can be made 
clear in the context of SM algebras. 

We return to Boole’s footnote discussion (see our Q 1.3) as to whether 
x3 = x indicates a process of logical trichotomy. His answer is that 
x3 = x is “not interpretable in the system of logic” since either factored 
form of the equation, 

x(l  -x) ( l  +x)  = 0 

x ( l  -x)(- 1 - x )  = 0, 

involves “uninterpretable” factors : 1 + x is not interpretable “because we 
cannot conceive of the addition of any [non-empty] class x to the 
universe 1”, and - 1 - x is uninterpretable “because the symbol - 1 is 
not subject to the law x( l  - x )  = 0, to which all class symbols are 
subject .” 

The topic of interpreting equations comes up again in Boole’s Chapter 
VI (Of Interpretation) and, in apparent conflict with the above remarks 
on x3 - x = 0, he gives a method of interpreting in logic any equation, 
U = 0, U containing logical symbols x, y, z, etc. “in combinations not 
fractional”. This interpretation does not rely on the interpretation of U’s 
terms but consists of the conjoint assertion of equations ti = 0 for those 
constituents ti in U‘s complete expansion which have a non-zero 
coefficient. (Equivalently, of the assertion of the one equation Iti = 0). 
Boole says nothing about the special case of U having no non-zero 
coefficients-precisely the case of x3 - x and x2 - x, both of which have 
the expansion 0 x + 0 X. If we consider the theory of SM algebras as 
codifying Boole’s system, then the basis for this Chapter VI method, in 
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more precise form, is contained in Theorem 2.35 which establishes that 
the equivalence, 

is true in all SM algebras, and hence in any model the two equations 
would have interpretations (in our contemporary sense) which are 
equivalent. Thus when x, y, z, etc. represent classes of some universe the 
(purely Boolean) equation V = 0 has its usual class calculus meaning 
and U = 0, an assertion (in general) about multisets, is true of the classes 
x, y, z, etc. precisely for the same values as V = 0, even though U may 
involve terms not interpretable as classes. This is analogous to the 
situation in ordinary mathematics with regard to, e.g., the equations 
3fix - 9 f i  = 0 and 3x - 9 = 0 with x restricted to range over 
integers. The first of these equations contains terms not “interpretable” 
in integer arithmetic; nevertheless they both are satisfied by the same 
integer(s) (i.e. 3). If we use Theorem 2.35 to extend Boole’s method of 
interpreting equations, U = 0, to the case which he does not mention 
(all 0 coefficients in U’s expansion)? this would give the same 
(Boolean) interpretation for x3 - x  = 0 and x2  - x  = 0, namely that 
of x l  = 0. Presumably it is not this kind of interpretation of equations 
which Boole has in mind in his trichotomy discussion but rather that 
with regard to terms. We turn to a discussion of this notion. 

As noted earlier Boole gives two distinct kinds of reasons for a 
(constant) term being uninterpretable : a formal or syntactic one (“ - 1 is 
not subject to the law x ( l  - x )  = 0”) and an informal or semantic one 
(“we cannot conceive of the addition of a class x to the universe 1”). For 
terms containing variables he has the more general notion of 
“independently interpretable”, which he defines as “interpretable without 
supposing any relationship among the classes represented by the class 
symbols”. (E.g. x(l  - y) is independently interpretable, but x + y is not 
since it needs the supposition that x and y are disjoint; and similarly 
x - y needs the supposition that x includes y.) As a corollary to his rule 
for writing the interpretation for an equation w = V ,  V fractional in 
form (see our Q 1.7), Boole “shows” that if a function V is independently 
interpretable then it satisfies the law V ( 1 -  V )  = 0. Boole’s ideas and 
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arguments are quite informal. To make them precise we again resort to 
SM algebras. 

Let L = {0,1, +;} be a (first-order) language for the theory of SM 
algebras and %Jl = (M, OM, 1 M, + ,,,. M) an SM algebra, i.e. a model for 
the theory. Let 23, be the Boolean algebra of 93. It will be convenient to 
think of formal terms of L as being built up using Boolean as well as 
unrestricted variables. We say aM is a valuation of terms of L (we are 
here on purpose avoiding the customary model-theoretic word 
‘interpretation’ for this notion) if it is an assignment of members of M to 
variables of L, with members of BY assigned to Boolean variables, such 
that 

DEFINITION. A Boolean multiset term T is interpretable with respect to a 
valuation aM if a Y ( T )  E B,. 

This corresponds to Boole’s idea of a term representing a class, i.e. 
being interpretable when the class symbols represent classes. 

We now give a semantic definition of ‘independently interpretable’ 
and show its equivalence with Boole’s syntactic conception, i.e. idem- 
potency. 

DEFINITION. A Boolean multiset term T is independently interpetable if, 
for each SM algebra 9JI and any evaluation of terms aM, T is interpretable 
with respect to aM. 

THEOREM 2.41. For any Boolean multiset term T ,  the necessary and 
sufficient condition that T be independently interpretable is that T 2  = T 
be a theorem, i.e. be provable from the axioms of SM algebras. 
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PROOF (sketch). For arbitrary ID1 and uM, 

(1 )  a,(T) E B M  a d T ) .  = ~ M ( T )  

* a,(TZ) = uM(T) 

Hence if T is independently interpretable then T 2  = T is true in all SM 
algebras and so provable (see the italicized remark near end of $2.2). 
And if T 2  = T is provable then it is true in all SM algebras and hence, 
by (l) ,  T is independently interpretable. In what follows we shall shorten 
‘independently interpretable’ to ‘interpretable’, and also use it 
interchangeably with ‘(provably) idempotent’. 

To sum up, we agree with Boole that the equation x3 = x does not 
represent a process of trichotomy, though for a somewhat different 
reason. Speaking in terms of SM algebras-which is what we are using 
to give meaning to Boole’s + symbol-we agree that 

(2) x( l  -x ) ( l  + x )  

is not interpretable in [the] logic [of classes] since (assuming x # 0) 
1 + x does not represent a class, i.e. is not idempotent. However (2) does 
have meaning in an algebra of multisets and does represent a threefold 
separation, though not a mutually exclusive one since 1 + x  overlaps 
with (in fact includes) x and 1 - x. (We have not given formal definitions 
of ‘overlaps’ or ‘includes’, but the intuitive meaning for multisets is clear.) 
Finally, all three equations 

(3 1 x - x 3  = 0, x ( l  -x ) ( l  + x )  = 0, x - x z  = 0, 

are equivalent-being theorems of SM algebradespite the fact that the 
second one has a term which is not ‘interpretable’ (in our .  technical 
sense). They are all satisfied by the same values of x, namely all, x being 
restricted to idempotents. 

5 2.5. The indefinite class symbol u 

As we noted in !j 1.10, Boole’s use of the indefinite class symbol u does 
entail some confusion with respect to existential import and yet, for the 
most part, intelligible results do come out. Exactly what is going on? 
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Our explanation is that Boole is using, without being fully cognizant of 
it, one of the techniques of “natural deduction”, in which one drops 
quantifiers so as to carry out deduction on the propositional level. 

Consider a sentence of the form 3uF(u).  If, from the assumption F ( u ) ,  
one can deduce a result P which does not involve u, then one validly 
concludes that P is a logical consequence of 3uF(c) .  An example of this 
occurs in our proof (the (a) part) of Theorem 2.34. Arguments of this 
type are often embodied in so-called natural deduction formulations of 
the predicate calculus or sometimes, in other formulations, they may be 
established as derived rules. Clearly, when the quantifier 3 1  is dropped, 
the 1’ in F ( u )  is not a free variable subject to generalization by a universal 
quantifier but a “quasi-constant” subject to special safeguarding 
regulations. We shall not bother to spell out these regulations-the 
interested reader may consult MENDELSON 1979, Chapter 2, Section 7, or 
QUINE 1972, discussion of Ef, p. 162. Boole’s actual use of this technique 
is quite rudimentary and involves no other quantifiers, which is where 
the difficulties come in. 

Let us look at his treatment of the universal affirmative, “All v’s are 
x’s”, taken without existential import. Introducing quantification over 
class variables, this is expressible as 3u(y = u x ) ,  so that when Boole 
writes instead y = ux he is in effect dropping the existential quantifier. 
However, as we have remarked, if one deduces, subject to appropriate 
safeguard conditions, a result not containing the variable v ,  then this 
result is indeed a logical consequence of the existentially quantified 
sentence. We have seen that the first thing Boole usually does with a 
sentence involving u is to eliminate i t 4 . g .  he goes from y = ux 
immediately to y(1 - x) = 0; anything following from this involves no v 
and hence correctly follows from 3v(y  = ux).  Thus Boole’s treatment of 
the universal affirmative (without existential import) is correct and 
justifiable provided that the special nature of the indefinite symbol t’ is 
recognized, which Boole informally does. However not having any 
means of expressing ‘some’ or ‘non-empty’ in his formalism the 
treatment of the particular affirmative doesn’t fare as well. 

As we know ( 9  1.10) Boole thought that ux = uy, u an indefinite class 
symbol, expressed “Some x’s are y’s”. With this symbolic rendition some 
traditional logical principles do come out correctly, e.g. simple 
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conversion (“Some x’s are y’s” implies “Some y’s are x’s”) and 
conversion by limitation (“All y’s are x’s” implies “Some x’s are y’s”), 
which Boole establishes by the derivation (p. 229) 

y = ux 

uy = UDX = vx 

vx = uy .  

But as Peirce has pointed out [1870, 1933 111, p. 911, one could argue 
similarly from “Some x’s are not y’s” to the invalid conclusion “Some y’s 
are not x’s” in the following manner: 

UX = Ll( 1 - y)  

(1 - Y )  = uy z‘ - {‘X = 1’ - L’ 

L’y = v (  1 - x). 

To see where, or how, Boole was misled we express “Some x’s are y’s” 
not by the customary xy # 0 but by the equivalent 

3r(vx = r y  and vx # 0) 

in which now the clause ux # 0 carries the necessary existential import. 
But when Boole writes instead, 

ux = v y ,  

not only is he, in effect, dropping the existential quantifier but also the 
side condition ux # 0, which however is not dispensable. If in the Peirce 
example the side condition ux # 0 were made explicit and carried 
through one would see that the conclusion is not the purported ‘Some 
y’s are not x’s’. 

In summary, then, if the Aristotelian particular sentence forms are 
ignored, Boole’s use of the indefinite class symbol u is justifiable and 
sound, merely amounting to an understood existentially quantified 
variable. For example, when applying his general method so as to obtain 
a solution which he writes as 

w = A + vC, 
D = 0,  
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we shall here understand by w = A + t7C the sentence ~ P ( W  = A + vC) .  
That the z *  here could be taken to be interpretable was taken for granted 
by Boole. He could have shown that, in all cases of interest, it indeed is 
idempotent : 

THEOREM 2.50. I f  AC = 0 and w = A + QC, with A and C idempotent, 
then there is an idempotent ii such that w = A + 1-C. 

PROOF. I f  w = A + QC, C idempotent, then w = A + (QC)C. The proof 
is completed by showing that QC is idempotent : 

0 = w 2  - w = ( A  + QC)’ - ( A  + QC) 

= A + (QC)’ - ( A  + Q C )  

= (Qc)’- (Qc). 

9 2.6. The solution of Boolean multiset equations for an unknown 

In contrast to contemporary Boolean algebra a prominent feature of 
Boole’s logical sytem is the occurrence of division in the process of 
solution of Boolean multiset equations. But a close inspection of Boole’s 
technique indicates that division is rather incidental and serves mainly to 
separate constituents into four types according as one or the other of the 
“numerical” coefficients 1, 0, $, or & is obtained in the development of a 
fractional expression. Indeed, we shall show in this section that all the 
results of Boole’s method of solving class calculus problems can be 
obtained within his system without recourse to division. Our result here 
will also show that, for class calculus problems expressible in the form of 
a Boolean equation for an unknown, Boole’s method always gives the 
correct solution, as the large number of worked examples in the Laws of 
Thought bear witness. 

We recall that Boole’s method is to first reduce the equation (or 
system of equations) in an unknown Boolean w to the form 

Ew = F, 

where E and F are multiset terms not involving w, then solve for w to 

(1) 
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obtain w = F / E ;  next develop FIE with respect to the Boolean variables 
appearing in E or F, so as to obtain 

(2) = A + o B + ; c + ~ D ,  

and then writing for this equation the interpretation 

(3) 
w = A + u C  
D = 0. 

By virtue of our discussion in 0 2.5 we take Boole's w = A + tlC to be 
3v(w = A + uC) and, making use of Theorem 0.54, we have then that 
Boole's solution is equivalent to any one of the three forms 

(i) 
{ 3v(w = A + VC), 

D = 0 ;  

(4) (ii) { w  = A + w c ,  
D = 0 ;  

A c w s A + C ,  
D = 0, 

(iii) 

all these being expressed in purely Boolean terms (the +'s can be taken 
as either + B  or Boole believed that the argument via his 
interpretation of (2) correctly established the result that (4) expressed the 
solution of Ew = F. To prove the result directly in SM we use as an 
intermediary the equation, 

( 5 )  ( A  + B)w = A + D ,  

which by Theorem 0.56 is equivalent to (4) in BA, and hence also in SM : 

(6 )  F S M ( A + B ) W =  A + D - ( w =  A + w C ) ( D = O ) .  

For Boole, ( 5 )  would obviously be equivalent to Ew = F since solving it 
for w gives ( A  + D ) / ( A  + B),  whose expansion is A + OB + $C + 60. This 
is exactly the same as that for FIE except that all the coefficients of the 
fourth type are 6, whereas for FIE there may be others of this type ; but 
either expansion receives the same interpretation. The following 
furnishes a direct proof of their equivalence without resort to  expansions 
of fractional forms. 
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THEOREM 2.6 1. 

(7) FSMEW = F * ( A + B ) w  = A + D ,  

where E and F are Boolean multiset terms not containing w and where A ,  
B und D are, respectiilely, the sums of constituents which appear with 
coejicienr 1, 0 and 8 (or any other fourth type coeflcient) in Boole's 
complete deuelopment of FIE. If E and F are Boolean then A + B and 
A + D are their respective expansions. 

PROOF. Although in the statement of this theorem we mention FIE, the 
definition of A,  E ,  D depends only on the ordered pair of terms E and F 
and there is no actual division. Let the equation Ew = F involve, other 
than w, n Boolean variables and let t i  (i = 1, ..., 2") be the constituents 
on these variables. Let x e i t i  and be the respective expansions of E 
and F, the x understood to run from i = 1 to i = 2", and e, and 1; are 
numerical coefficients (integers) which may be either positive, negative 
or zero. We then have 

c* A (eiw -1;. = 0),  

where the last expression denotes the conjunction of 2" equations. Now 
define 

1 
0 otherwise; 

1 
0 otherwise; 

if ei = 1;: and ei,l;: # 0, 
ai = { 
bi = { if ei + 0 and fi = 0, 

1 
0 otherwise; 

if e,  = 1; = 0, 
ci = { 

1 
0 otherwise. 

if J # 0 and ei # h, di = { 
It is relatively easy to show that, for all i, 

(9 ) eiw - J;: = 0 c* (ai + bi)w - (ai + d i )  = 0. 
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For instance, if ei = j ;  = r , r  # 0, so that ai = 1, bi = di  = 0, then 

eiw - 1,: = 0 e, rw - r = 0 

c t r ( w -  1) = 0 

C, w - 1 = 0, since r # 0 

H ( ~ j  + bi)W - ( ~ i  + di )  = 0 ; 

or, if ei = r,  ji = s, s # 0, r # s, so that ai = bi = 0, di = 1, then 

e iw- , f ; .  = 0 + r w - s  = 0 

- + r w = s  

= (rw)w = s, 

-+ (s)w = s 

+ w = 1, since s # 0 

since w = wz 

-+ 0 .  w - 1 = 0, since r # s. 

As the converse implication is trivially true and 

0 * w - 1 = 0 e* (ai + bi)W - ( ~ i  + di )  = 0, 

we have (9) for this case. 
From (8) and (9) we obtain 

(10) EW = F -  (xairi + x b i r i ) w  - (xu i i i  + x d i r i )  = 0 

and since, as is easy to check, Cairi  = A, xb i t i  = B and C d i t i  = D, we 
have our result. The last sentence in the statement of the theorem is also 
readily checked. 

We now show that Boole’s method always gives the correct result for 
Boolean algebra problems. 

Let l7 (“premises”) be a conjunction of quantifier-free formulas in the 
language of BA, and suppose 

k SMIZ -+ EW = F 
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then by (6) and (7) 

t-sMn --t ( W  = A + W C ) ~  = 0). 

But as the displayed formula is quantifier-free and in the language of BA 
we have, by Theorem 2.37, 

k B A n  --t (W = A + WC)(D = 0). 

We close this section with a number of items connected with Boole’s 
solution, 

w = A + PC 
D = 0, 

for E w  = F. 
The first of the equations in (1 1) is described by him (p. 92) as showing 

“what elements [i.e. classes x, y ,  z, etc.] enter, or may enter, into the 
composition of w,  the class of things whose definition is required ; and the 
second equation “shows what relations exist among the elements of the 
original problem in perfect independence of w.” This last assertion of 
Boole’s is equivalent to saying that D = 0 is the result of eliminating w 
from E w  = F. To show this we go over to the equivalent equation 
(A + B)w = A + D ;  by Theorem 2.34 the result of eliminating w is 

[ ( A  + B )  - ( A  + D)][ - (A + D)] = 0, 

which reduces to D = 0. 
Boole doesn’t consider the particular case of D coming out to be 1 (the 

sum of all constituents). This can only happen if the original equation is 
of the form 0. w = c, c a constant other than 0; in which case 1 = 0 is, 
appropriately, the “solution”. 

Finally, we show that Boole’s solution for E w  = F gives (i) the best 
possible Boolean bounds on w,  and (ii) the strongest condition not 
involving w which follows from E w  = F. The proof is as follows: 

(i) Since the equation E w  = F is equivalent to the combined 
conditions 

A E  W E  A + C  
D = 0, 



160 FORMALIZATION OF BOOLE’S LOGIC 

if Ew = F has a solution then D = 0. In that case Ew = F is equivalent 
to ( A  + B)w = A,  which is satisfied by w = A and by w = A + C .  Hence 
if there were Boolean terms P and Q (not containing w )  such that for 
every solution w 

A G  P G  w C Q  G A + C ,  

then by taking first w = A we find that P = A,  and by taking w = A + C 
that Q = A + C .  Hence A and A + C are the narrowest Boolean bounds 
obtainable which include between them any w satisfying Ew = F. 

(ii) We have 

I ~ ( E ~ = F ) H ~ w ( A G w G A + C A  D = O )  

t - + D = O .  

If now for some D‘ not involving w, 

( E W  = F + D’ = 0) A (D’ = 0 + D = O ) ,  

then 

(3w(Ew = F )  + D’ = 0) A (D’ = 0 + D = 0). 

But as 3w(Ew = F ) - D  = 0, we have 

D’ = 0 - D  = 0. 

Thus D = 0 is the strongest condition not involving w which follows 
from Ew = F. We can then speak of D = 0 as being the necessary 
condition relating the elements other than w in Ew = F. 

A similar argument shows that the result of eliminating x, y, . . ., z from 
f ( x ,  y,. . ., z ,  u, 0,. . ., w )  = 0 gives the strongest conclusion implied by this 
equation relating u, u , .  .. , w.  

0 2.7. Boolean equations and division 

In the preceding section we have shown how to  obtain the solution of a 
Boolean multiset equation for a Boolean unknown without appealing to 
the notion of division (or of a quotient). We now wish to  explicate 
Boole’s quite different procedure which seemingly does involve division, 
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though to a limited extent and with restrictions on the operation not 
clearly justified. 

Recall that his procedure for solving an equation, e.g. ax = b, for x 
involves the following stages : 

(1)  ax = b 

b 
(2) x = - 

a 
(solving (1) for x by division) 

b 
(3) - = l-ab+O.u6+$.a6+;-iib 

a 

(4) x = l - a b + O . a 6 + 8 . 6 6 + A . u b  (combining ( 2 )  and (3)) 

( 5 )  { x  = a b + d  
6b = 0 

(interpreting (4)) 

We shall show how to get from (1) to ( 5 )  by steps which closely resemble 
Boole’s and which are mathematically justifiable. 

Assume that ( 1 )  is an equation in a Boolean algebra (or Boolean ring) 
23. There are two impediments in the way of making the solution of (1) 
look as if one were solving an equation in ordiary algebra so as to get (2). 
In the first place, whereas in ordinary algebra (1) always has a solution 
(save for a = 0, b # 0) ,  in Boolean algebra this need not be the case: a 
necessary and sufficient condition for a solution being that b be contained 
in a, i.e. that db = 0 (Theorem 0.55). Secondly, even if there were a 
solution it need not be unique--any element of B differing from a 
solution of (1) by a Boolean multiple of (i.e. a part of) 26 is also a 
solution, since ax = b -, a(x + v66) = b. The difliculty with regard to 
non-uniqueness can be obviated by going over to a homomorphic 
structure in which the differences are “factored out” (as one does, for 
example, in a problem concerning days of the week by going over to 
arithmetic modulo 7). 

To say that two solutions of (1) differ by a (Boolean) multiple of &is 
to say that the solution set is a residue class in the factor ring 23/(66), 
where (66) is the principal ideal generated by a6( = set of classes which 
are included in 66). (Note that we are considering 23 to be a ring.) 
Let us introduce the abbreviated notation [r] for the residue class 
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r + (66) determined by the element r of B. (We are using ‘ +’ for the 
ring addition.) Then the mapping r + [ r ]  is a homomorphism of 
rings (Theorem 0.425) and hence (1) implies that 

holds in the (Boolean) ring 8 / (~6 ) .  Conversely (6) implies (1) ;  for by (6),  

ax - b = iG6. 

On multiplying this equation through by a + , b  (i.e. by ab + 66 + a6) 
and using simple Boolean identities one arrives at (1). Thus the problem 
of solving (1) for x is equivalent to solving (6) for u. Since - any -. two 
solutions of (6) for [ X I  differ by a multiple of F ] [ b ] ,  and [ a ] [ b ]  = 
[&I = [ O ] ,  i.e. the zero of the ring B/(G6), we see that the solution of 
(6),  if any exist, is unique. To bring out the relation of what we are 
doing with Boole’s procedure we alter the customary notation for a 
principal ideal in a ring and write :i6 in place of (ah). We then sum 
up the preceding discussion as follows: 

THEOREM 2.70. The equation ax = b in a Boolean ring B is equivalent to 
the equation [ a ] [ x ]  = [b ]  in the factor ring 8/3%; the latter equation 
having at most one solution. If the solution for [ X I  is given by 

[ X I  = [ p ]  = p + $56 
then in 8 

x = p + v &  O E B  

and the set of all such x as v ranges ouer the elements of B is the solution 
set for the equation ax = b. 

In order to reproduce the part of Boole’s technique which uses 
division we employ the notion of a ring of quotients for a Boolean 
algebra ( 9  0.6), and using not 23 but %* = 8&6 so that we can use (6) 
rather than (1). Accordingly let 

Q = S * ( [ a ]  

be the ring of quotients of B* by [a]  +,B*, and suppose we do have an 
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[ X I  such that 

(7) [a][.] = [b]  in B*. 

Then, since [a ]  is in the denominator set for D, we have 

By cancellation (Theorem 0.63(i)), 

Using Theorem 0.63 (ii), and the fact that r + [ r ]  is a homomorphism 
to replace [a ] [h ]  by [ab],  we obtain from (9) 

- 

We now go over to the ring B * / ( [ a ] )  which, by Theorem 0.62 is isomorphic 
to U. But first note that [.3 = [a] ,  and that [ L 7 ]  = [Gb] sipce ii and iib 
differ by ii6and thus determine the same residue class modulo U6. Hence 
the ideal ([.I) is the same as ([Gb]). We change the usual notation and 
represent this ideal by &ab. (Note that &Eb is an ideal in 8*, whereas ga6 
is an ideal in 23.) Using 'z'  to indicate the relation of isomorphism 
between elements of Q and !B*,/(M) we have, from Theorem 0.62, 

=: [ab] + hiib 

or, in fuller notation, 

( =: 1 ab + 0. a6 + @6 + &ab 

which is what for us corresponds to Boole's equating bla to its expansion. 
(Note that in (1 1) the three plus signs have different meanings.) Since 
Boole has x = b/a he can then write 
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whereas we can only equate the isomorphic images of the two sides of 
(10) to obtain 

(13) [x] + &ib = 1 .  ab + 0 .  a6+ $ah+ hiib. 

(Recall that Boole never used the equality in (12) as such.) The next step 
in Boole's procedure was the (inadequately justified) interpretation of 
(12) in terms of classes. For us the corresponding thing is the 
restatement of (13) in terms of 8. If b = ax then iib = iiax = 0, so that 

.&ib = (Cab]) = ( [ O ] )  

is the zero ideal of 8*. Thus from (13) 

[XI = [ab] = l . ab+O.aS+$& 

so that by Theorem 2.70, 

x = ab + ua6 

Consequently ax = b implies 

x = a b + u i 6  U E B  
db = 0 

(One readily shows that (14) implies ax = b). 
Thus Boole's (1)-(5) for us translates to 

(4*) [x]+&cib = 1.ab+O.a6+&+&cib 

x =ab+vi i6  U E B  
db = 0 ( 5 * )  { 

with each step meaningful and 'mathematically justifiable. 
Boole's actual argument is conducted in terms of solving an equation 
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E w  = F for the class term w, and E and F are (effectively) Boolean class 
terms. For this our (13) would give 

[ w ]  + &EF = 1 . E F  + 0 .  EF + gEF + &EF 

= I . A + O . B + $ C + & D  

using Boole’s designations A,  B, C,  D for the sums of constituents in the 
respective expansions of EF,  E F ,  EF, EF.  It is clear that, when 0’s and 1’s 
are assigned to the class symbols present in E and F, then those 
assignments corresponding to  constituents present in A are assignments 
that produce f for FIE,  those in B produce y, those in C, 8 and those in 
D, &. Hence, as with Boole, we can write 

w = A + VC L’ “indefinite” 
{ D = O  

as the solution for E w  = F. 
Of the various forms a Boolean quotient can take, such as 

all of which are equal, it is the last which is closest in appearance to 
Boole’s fractional FIE from which he gets his expansion 
A + OB + 8C + AD. Accordingly we shall take this to be the “standard” 
form for a Boolean quotient. In the reverse direction, one gets this form 
from an expansion A + OB + $C + &D by constructing the fraction 

A + D  
A + B  

or, in official language, 

with the square brackets referring to the ideal $C.  
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5 2.8. Additional remarks on 8 and & 

Throughout Laws of Thought Boole carefully refrains from using 
division or the symbols 8 and 6 in any way but in the prescribed manner 
we have discussed, namely in connection with solving an equation 
Ew = F for w, expanding F I E  into the form l . A + O . B + $ . C + 6 . D ,  
where A, B, C,  D are mutually exclusive sums of constituents on the 
Boolean variables in F and E ,  and then giving his interpretation. Any 
algebraic operations are done before using division, which is only used 
once; there are no algebraic operations involving either fractions as such 
or the constants Q and 6. (But see our endnote to 92.8.) 

In VENN 1894 we have, however, a few instances of these notions being 
considered outside of Boole’s specifically limited context. At the end of 
his Chapter XI (Logical Statements and Equations) Venn sums up the 
use of indefinite terms in the table [1894, p. 3021: 

(i) x = z leads to XZ = 0, Xz = 0 

(ii) x = z + gw leads to xZw = 0, Xz = 0 

(iii) x + $y = z + $w leads to xFW = 0, Xyz = 0 

(It is not clear from the text whether he is claiming the conditions on the 
right to be necessary, or necessary and sufficient, for those on the left.) 
The first of these is of course unproblematic. As for the second, 
x = z + 8w is given no meaning in Boole’s official procedure since z + $w 
(with the variables ‘z’ and ‘w’)  could never arise in an expansion. By 
interpreting 8 as standing for some indefinite class between 0 and 1 (so 
that z + $w stands for an indefinite class between z and z + w )  Venn 
concludes that there can be no z outside of x (hence 2z = 0) and [there 
being no x outside of z + B w ]  that xZw = 0. By using the (quantifier 
elimination) Theorem 2.34 we can formally justify the equivalence of the 
conditions in (ii) (on the right) with 

(1) 3o(x = z + ow). 

Thus to avoid the unformalized notion of an “indefinite” term we would 
take ‘ x  = z + $w’ to be ‘x E z + gw’, that is treating z + 8w as a residue 
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class, as in our preceding section. Interpreted in this manner Venn’s (ii) 
is then correct. 

In the case of (iii) the equation 

( 2 )  x + Q y  = z + Q w  

likewise presents difficulties as to its meaning. Of it Venn says: 
“Adopting the same explanations as before [in connection with (ii)], all 
we can say now is that there can be no x outside of z + w,  and no z 
outside of x + y”. This leads to his “xZW = 0, Xjz  = 0 .  We can come out 
with this conclusion if we take (2) to mean 

(3) 3tt,3v,(x + Ply = z + P Z W )  

and eliminate the quantifiers. However, one could also view (2) as an 
equality between residue classes, so that instead of (3) we have 

(3‘) V U ( 3 P , ( U  = x + 014’) - 3 t l * ( U  = z + z‘zw)), 

which leads to the stronger conditions 

(4) 
xz = 0, yzw = 0 
xz = 0, X j w  = 0. I 

Without a more specific context one has no way of choosing between 
these two possible meanings for (2). 

Similar difficulties occur in connection with the logical meaning of the 
equation a/b = c/d which Venn [1894, p. 3431 explores in a discussion of 
the question : 

a c  
If ad = bc, is it correct to conclude that - = - ? 

b d  

an inference form Venn says was used by Lambert [1782] more than 
once. Venn answers the question in the negative by comparing the class 
denials involved in ad = bc (i.e. those classes which must be set equal to 
0) with the class denials coming from a/b = c/d. These he obtains by 
considering the “developed form” of a/b = c/d, which he writes 

(5) ad+$ad = bc+#bc 

(for which there is no precedent in Boole) and obtaining the denials by 
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use of his (iii). To these denials he adds a& = 0, c z  = 0 (coming from the 
$J terms in the expansions of a/b and c /d) .  Since the latter set of denials is 
more than that for ad = bc he concludes to the invalidity of the inference. 

Schr6der [l891, p. 5333 also discusses this question and likewise comes 
to a negative conclusion, though for different reasons. For Schroder 
a /b  and a/d are conditionally defined solutions of the respective equations 
ax = 6 and cx = d,  under the respective conditions a h =  0 and 
c z  = 0. Thus since such solutions, when they exist, need not be unique 
there are manifold possibilities for interpreting a/b = c/d,  whether as 
an equation between arbitrary solutions, or sets of solutions. In all cases 
Schroder comes out with a negative conclusion to the inference. 

From our point of view a quotient is only defined with reference to a 
denominator set, and equality of quotients. is defined only for quotients 
in the same ring of quotients. Thus a /b  = c/d has no meaning unless b 
and d are in a common denominator set. We can give the equation a 
meaning by assuming we are dealing with the ring of quotients 
determined by taking the filter bd +J3 (where a, b, c, d E B )  as a 
denominator set. Then ad = bc does imply 

inasmuch as from the hypothesis bd(ad - bc) = 0. 

8 2.9. The partial algebra of Boolean quotients 

Corresponding to each element a of a Boolean algebra 2I there is an 
algebra of Boolean quotients %(a + BA)- ’. For differing a’s these 
various algebras have an autonymous existence and are not interrelated. 
However, in connection with our discussion of Boole’s ideas on 
probability we would like to consider the collection of all possible 
Boolean quotients (for a given %) as forming a kind of structure. The 
notion that does this for us is a “partial algebra”. 

An operation on a set which need not be defined for all argument 
values is a partial operation. By allowing the operations referred to in 
the definition of an algebraic structure ($0.2) to be partial operations, 
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we obtain a partial algebra. (A treatment of partial algebras from the 
viewpoint of universal algebra is given in Chapter 2 of GRATZER 1968.) 

Let 23 be a Boolean algebra. We define BQ(%), the partial ulyebru of 
Boolean quotients (for 23) as follows. The universe of BQ(23) is to be the 
union of the universes of the rings of quotients 23*([F] + ,$*)-I ,  where 
23* = 23/@F, and E and F range over B. The operations of BQ(23) are 
to be those of the rings of quotients. Thus there are as many operations 
(of each kind) as there rings of quotients. 

Of particular interest to us in Chapter 5 will be elements [ E ] / [ F ]  of a 
BQ(!B) for which EF = 0. The development of such a quotient lacks the 
$ part. In such cases there is no point in maintaining a distinction 
between G E B  and [G]EB* since [GI = G +# = G + (0). Conse- 
quently in such cases we drop the use of the square brackets; for 
example, since ( F +  E F ) F  = 0, we will write 

[ F +  E F ]  

[FI . 
+ EF instead of 
F 

Elements of BQ(23) of the kind just described fall naturally into 
(Boolean) subalgebras : 

THEOREM 2.90. l f  b and P are elements of a Boolean algebra 23, with 
V # 0, then the set of’fractions of the form 

1 M [ - V + b  - V b + O V & + g O + i P  
V V 

constitutes, as b ranges over B, a Boolean algebra isomorphic to 231 V .  

PROOF. From the standard form of the quotient, 

we can drop the square brackets since here they refer to the zero ideal $0. 
As it is easily verified (00.61) that 

(y)v = (i) V + , b ‘  v for any b’EB 
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we see that as h ranges over B we have the set of all elements of 

which by Theorem 0.62 is isomorphic to 231 V 

52.10. Notes to Chapter 2 

(for Q 2.1) 

In the first edition of this book, not realizing that another name for 
the notion was current, I used in place of ‘multiset’ the term ‘heap’. 
According to Donald E. Knuth (letter of August, 1977): “The word 
‘multiset’ is due to N. G. deBruijn who suggested it to me in private 
correspondence some years ago. I used the term in my book 
Seminumericnl A!qorithms in 1969 (see especially p. 551) and more 
extensively in my book Sorting und Searching [Vol. 2 of The Art  qf’ 
Computer Programming, Addison-Wesly, Reading, Mass.] in 1973 (see 
the index to that book). The word is used by hundreds of 
mathematicians and is the most popular word for the concept.” 

(for 5 2.2) 

NOTE 1. We are, to be sure, not attributing the idea of a calculus of 
multisets to Boole, only using it to explain his partially interpreted 
system. So far as I know the first recognition that multisets admits of 
mathematical treatment occurs in WHITNEY 1933. In Part I of his paper 
Whitney shows how to reproduce operations with (ordinary) sets in a 
more typically algebraic form by using characteristic functions, i.e. 
numerical-valued functions cA on elements of a “universe” with cA 
having the value 1 when x E A and 0 if x g! A .  Being numerical-valued 
functions, ordinary algebraic operations of addition and multiplication 
then apply to characteristic functions. In Part I1 of the above paper 
Whitney considers the idea of a function associating to each element any 
integer, and not just 1 or 0. Such a function will not be the 
“characteristic” function of a “real” set “but we may consider it as the 
characteristic function of a generalized set where each element is counted 
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any number [positive, negative, or zero] times.” However, instead of 
operating with generalized sets per se Whitney deals only with their 
associated characteristic functions. 

NOTE 2. Multisets (defined as functions from objects into the set of 
cardinals, and having an appropriate inverse) are introduced as a 
fundamental tool in an intensive study of families of sets in RADO 1975. 
This reference was called to our attention by I. Grattan-Guinness. 

(for 42.3) 

NOTE 1 .  That the set of idempotents of a commutative ring with unit 
forms a Boolean algebra (under the operations of ring multiplication. 
Boolean sum and complement) was shown in FOSTER 1945. 

NOTE 2. A pseudo-Booleun function is a mapping F: B; -+ 2 from n- 
tuples of elements of B2 = {O,  1 )  to the integers 2. (See, e.g., P. L. 
Hammer (Ivanescu) and S. Rudeanu, Boolean Methods in Operations 
Research. Springer-Verlag 1968). If  the variables of a multiset term are 
restricted to range of the set { 1,O) then the multiset term represents a 
pseudo-Boolean function, and every pseudo-Boolean function is 
representable by such a term. This is clear since for any term 
@(x,, . . ., x,) we have 

2” 

q x , ,  . ... x,) = c ziti, 
i =  1 

where the Ci are the constituents on xl , .  . ., x, and the zi are integers, and 
for any pseudo-Boolean function F we can construct such a term with 
the zi being the F values for each of the 2” possible assignments of 0 and 
1 to its arguments and the Ci the constituents corresponding to such 
assignments. 

(for $2.4) 

We are indebted to John Corcoran who, in the course of a 
correspondence with us in 1981, pointedly brought out the need for 
semantic clarification of the notions of ‘interpretable’ and 
‘uninterpretable’ used by Boole in connection with equations and terms. 
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(for $2.5) 

Difficulties with regard to Boole's use of the indefinite term v (and 
division as well) were noted immediately on the publication of 
Mathematical Analysis of Logic by De Morgan and discussed by him in 
a draft of a letter to Boole which, however, was never sent. See SMITH 
1982, p. 26. 

(for 5 2.8) 

A rare exception to the assertion of the first paragraph of # 2.8 occurs 
on p. 322 of BOOLE 1854 where he goes from 

- xy 

X j  
w=- 

to 
= + -  xy+xv x 

XY XY 

In general, if 

then 

F - E  
F 

1 - w = ~ = B + OA +$c ++D, 

leading to the Boole interpretations 

A s  w s  A + C  B G  l - w E B + C  
and 

D = O  D = O  9 

which are equivalent. Thus this particular algebraic operation on a 
fraction (i.e. subtraction from 1) is valid, that is, preserves logical 
sense. 



CHAPTER 3 

BOOLES’S PROPOSITIONAL LOGIC 

$3.0. The two theories 

The preceding chapters of Part I of this monograph dealt with the first 
of the two main divisions of logic which are described in Laws of’ 
Thou.9ht (LT)’ ,  namely the part having to do with primary 
propositions, i.e. with propositions which, as Boole phrased it, “relate 
to things”. The other main division-is that of secondary propositions 
which “concern, or relate to, other propositions regarded as true or 
false”. Not only is the topic of interest here for its obvious logical 
importance but also for the use which Boole makes of it in his theory 
of probability which he grounds not on classes but on propositions. 

The subject of propositional logic was also treated earlier by Boole 
in his Mathematical Analysis of’ Logic ( M A L ) ’  under the heading 
“hypothetical propositions”, but there it is based on quite a different 
theory from that which he adopted in LT. Concerning the change 
Boole merely says (LT, p. 176): 

In a former treatise on this subject (Mathematical Analysis of’ 
Logic, p. 49), following the theory of Wallis respecting the 
Reduction of Hypothetical Propositions, I was led to interpret 
the symbol 1 in secondary propositions as the universe of “cases” 
or “conjunctures of circumstances”; and it is certain, that whatever 

’ Since there will be freque,nt reference in this chapter to both of Boole’s logic 
books, we shall :.when necessary use the acronyms “LT” and “MAL” to 
distinguish between them. 

173 
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is involved in the term beyond the notion of time is alien to the 
objects, and restrictive of the processes, of formal Logic. 

We intend to show, first of all, that Boole need not have given up 
the earlier approach, for when suitable clarifications and corrections 
are made, still remaining within the ambit of his ideas, a viable logic of 
propositions results. Indeed we shall see that, precisely contrary to 
what Boole says, it is the notion of time which is “alien to the objects, 
and restrictive of the processes, of formal logic” and that, correctly 
conceived “cases” have nothing to do with time. That Boole had a 
promising approach in M A L  has already been noted in the literature, 
e.g. by KNEALE and KNEALE [1962, p. 4141, and there is a fairly 
extensive appraisal in PRIOR [1948, pp. 176-1821. Many of the points 
we make were made by Prior, but here the ideas are firmed up by the 
construction, in accordance with modern standards, of a formal system 
for Boole’s calculus of elective symbols. This formal system, presented 
in 93.1,  is implicit in what he did, namely applying general algebraic 
principles and processes to his particular type of operators but. as we 
have noted in 9 1 . 1 ,  these algebraic principles were not clearly or fully 
stated, and much that is needed for mathematical cogency is absent. 
Our presentation remedies this deficiency. We then go on to show, in 
93.2, how one could come to a propositional calculus along Boole’s 
M A L  lines of thought. 

In $3.3  we take up the LT approach, i.e. the one based on the 
notion of portions of time and, in 43.4, explain why it “works” even 
though there is some semantic confusion. In 9 3.5, discussion of Boole’s 
illustrative material for his met hods relating to propositional logic 
affords us the opportunity of bringing out a number of items we 
consider to be of some interest. 

0 3.1. The calculus of elective symbols (operators) 

Boole habitually uses a linguistic mode of expressing himself, e.g. 
referring to elective “symbols” and elective “functions”, the latter being 
for him expressions built up from elective symbols. These expressions 
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denote operators (of a certain kind). Rather than following Boole we 
shall instead use the more usual material mode of speech, speaking 
directly of operators and not of the symbols which designate them. 

We consider as given a class I/ which is to be simply any class and 
not, as with Boole, a “class of all conceivable objects”. With this class 
there is to be associated a set of (elective) operators, among which is 
one designated by “1”. The operators take as operands subclasses of U ,  
the result of the operation being again a subclass (i.e. we have closure 
in P(U) ,  the power set of U ) .  We shall use boldface letters x ,  y, z , .  .. as 
free variables standing for arbitrary elective operators, and the letters u, 
v,. . . for arbitrary subclasses of U .  With regard to these operators the 
following is assumed : 

01. l u  = u 

02 .  x ( u  + v )  = xu  + x u  

0 3 .  X ( W )  = UXZ’ 

04. ~ x ( x U  = u) .  

We have a few words to say about each of these assumptions. In 
virtue of 0 1 ,  1 is an “identity” operator. The plus sign in 0 2  we are 
taking to be a notion of class aggregation which is commutative and 
associative ; it is also, by our general assumption concerning operators, 
closed in P ( U ) .  (In this latter respect we are “modernizing” 
Boole-recall that for him x+x,  need not be a class.) The property 
expressed by 02 ,  i.e. distribution of an operator over logical sum, 
appears in M A L  on on p. 17, but for u and u disjoint. In 0 3 ,  which 
does not appear in M A L ,  juxtaposition of class expressions (i.e. of “u” 
and “D”, and “u” and “xv”) stands for class intersection. From 0 3 ,  by 
replacing u by U and then uU by u, one obtains 

xu  = u x u ,  

a result which accords with Boole’s conception of the elective symbol x 
“operating upon any subject [here u ]  ..., shall be supposed to select 
from that subject all the X s  [here X U ]  which it contains”. Finally, 
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assumption 0 4  guarantees that to any subclass of U there corresponds 
a selector. 

The following definitions Dl-D3 introduce three binary 
combinations of operators-multiplication, addition, and subtraction. 
For these we shall use customary algebraic notation, .as we are able to 
distinguish them from like-symbolized operations by virtue of the 
boldface letters. 

D1. ( x y ) ~  = X ( Y U )  

D2. ( X  + Y ) U  = X U  + YU 

D3. ( X  - Y ) U  = X U  - YU. 

While not present in M A L ,  definition D1 is implicit in Boole’s 
algebraic manipulating two juxtaposed operator symbols as if the 
combination were a single symbol for an operator, and assuming that it 
means the same as their successive application. In D3 we are assuming 
that the minus sign on the right is an operation inverse to the + of 
class aggregation (in 02) ,  and hence that our class aggregation is the 
“symmetric difference” which (in contrast to class union) does have an 
inverse. 

Next we introduce a relation, =, between elective operators by 
stipulating that, for any well-formed operator-algebra expressions @ 

and @, 

“@ = q” means “ q u  = @u, for arbitrary u E P(U)”  

From 0 1  and D1 one readily has 

El .  l x  = xl  = X. 

Thus 1 is a unit for the multiplication of elective operators. By 
introducing the constant operator 1, and distinguishing it from the 
universe U ,  we eliminate a source of confusion in M A L ,  where Boole 
uses only one symbol for both. 

From D2 and the properties of class aggregation it follows that: 

E 2 . x + y = y + x  

E3. x + ( y + z )  = ( x + y ) + z  
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Now from DI and 0 3  we have 

xy(ur?) = x(y (u t> ) )  = x(uyt3) = x ( ( y r ) u )  = yrxu  = xuyr,  

and hence 

0 5 .  (xy)(uzl)  = X U ~ Z ’ .  

It is now straightforward to show these additional algebraic 
properties of elective operator-algebra : 

E4. x(y + z) = xy + xz 

E5. X’ = xx = x (MAL,p. 17) 

E6. xy = yx ( M A L ,  p. 17) 

E7. x(yz) = (xy)z 

The absence of associativity, i.e. E3 or E7, from M A L  (and also LT)  
should be noted. While distributivity of operators, i.e. E4 (not to be 
confused with 0 2 ) ,  likewise is not in M A L  it does appear in BOOLE 
1848 (see BOOLE 1952, p. 127) where (without comment) it replaces 
(what corresponds to) 0 2  in M A L  in a listing of “laws” of elective 
symbols. 

0 6 .  (x - x ) u  = xu - xu = $3 = ( y  - y)u,  ($3 the empty class) 

one can introduce a constant operator 0 and show that it has the 
properties : 

E8. O + x = x  

By virtue of 

E9. Ox = 0. 

Formal and explicit statement of these properties is missing in M A L .  
It& clear that, for 0, #, and q being any expressions of the operator 

algebra, 
8 =  # implies 8 + +  = tp++ 

o* = #* 

and, in general, if 0 = cp then 0 and # are intersubstitutable in any 
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operator-algebra expression. Hence, as anticipated by our choice of 
symbol for it, the relation = is an equality (or identity) relation for the 
algebra of elective operators. Now 

xu = yu + u ( x U )  = u ( y U )  

+ x ( u U )  = ~ ( u U )  by 0 3  

+ x = y ,  

so that 

0 7 .  X U  = YU + x = y. 

As a consequence of 0 7  and 0 4  we have that for any u E P ( U )  there 
is a unique operator x such that X U  = u. Let E ( U )  be the set of 
elective operators so associated with elements of P ( U ) .  Then, as 0 and 
1 are in E ( U ) ,  and multiplication and addition of elective operators is 
closed in E ( U ) ,  we have that 

( E ( U ) ,  +, x ,  0, 1) 

is a mathematical system (an algebra), and one of the same type as the 
Boolean algebra (more exactly, Boolean ring) 

( P ( U ) ,  +, x,#, U ) .  

Moreover, since 

x y u  = xuyu 

(x + y ) U  = xu + y u  

111 = u, 
ou = @. 

we have that these two algebras are, under the mapping x + XU, 
isomorphic, i.e. are mathematically identical. 

What we have just shown, that an algebra of elective operators 
which selects classes from U can be constructed so as to be the same as 
an algebra of subclasses of U ,  is hardly surprising, if not obvious. But 
the reason why this is so is that we are familiar with Boolean algebra. 
When Boole was trying to find (or construct) an algebra for doing 
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logic Boolean algebra was not yet in existence, so he used what was 
familiar to him, namely operator calculus and designed for it operators 
which would reproduce intuitive class operations. Subsequently, and 
before he came to write L7; he must have realized that the symbols and 
operations of his algebra could just as well directly represent classes 
and operations on classes. Yet, interestingly, we still find him in LT 
retaining the idea of selection, only now the selection operations are 
operations of the “human mind”, and the laws of his algebra are then 
“laws of thought”. 

One could compare our elective operator algebra with what Boole 
has (and has not) in MAL to see how poorly the concept of an 
algebraic system was understood at the time. However, our primary 
interest here is in the use of such an algebra for developing a 
propositional logic, and to this we now turn. 

0 3.2. The logic of hypotheticals 

Opening this discussion of hypotheticals in MAL with a quotation 
(from Whately’s Elements of’ Logic) to the effect that a hypothetical 
proposition is “two or more categoricals united by a copula”, Boole 
nevertheless recognizes that the validity of the hypothetical syllogism 
does not depend on the categorical structures of the component 
propositions involved in the syllogism but only on their truth or falsity. 
Accordingly he introduces symbols X ,  X Z ,  etc. “expressive” of the 
elementary (i.e. unanalyzed) propositions involved in the inference. He 
claims that one can use his calculus of elective symbols to (formally) 
carry out such inferences. This is how he begins: 

To the symbols X, Y,  Z representative of Propositions, we may 
appropriate the elective symbols s, y ,  z ,  in the following sense. 

The hypothetical Universe, 1, shall comprehend all conceivable 
cases and conjunctures of circumstances. 

The elective symbol .\T attached to any subject expressive of 
such cases shall select those cases in which the Proposition X is 
true, and similarly for Y and 2. 

If we confine ourselves to the contemplation of a given proposi- 
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tion X, and hold in abeyance every other consideration, then two 
cases only are conceivable, viz. first that the given Proposition 
is true, and secondly that it is false. As these cases together make 
up the Universe of the Proposition, and as the former is deter- 
mined by the elective symbol s, the latter is determined by the 
symbol 1 -x. [ M A L ,  491. 

Boole doesn’t explain what he means by “all conceivable cases and 
conjunctures of circumstances” and, as our earlier quotation indicates, 
he must have had trouble, or at  least dissatisfaction, with the idea. As a 
first clarification of Boole’s ideas we take “the hypothetical Universe” 
not as absolute but relative to a given context. To see why note that in 
his discussion just quoted he is allowing X to be true or false, in effect 
taking X to be a two-valued propositional variable, and the Universe 
then has two cases. Similarly when he has three propositions under 
discussion there are 8 cases in the Universe. In general, for XI,.  . .,X, 
(taken as propositional variables) we define the hypothetical universe 
(relative to XI, .  . .,X,,) to be the class consisting of 2” cases, namely the 
2“ assignments o f t  o r f t o  the n letters (the 2“ ‘‘lines’’ in a conventional 
truth-table). We symbolize this notion by U(Xl,.  . . ,X,,) ,  or by U(XI, .  ..), 
or by U if no misunderstanding would ensue. The elements of 
U(Xl,  ..., X, , )  are ordered n-tuples of t’s and/or f’s and there can be 
fewer than 2“ such elements if any of the Xi’s are constant, i.e. are 
propositions. (Boole’s logical notation made no provision for 
distinguishing a letter used as a variable from one used as a constant.) 
Thus if X I  and X 2  are propositional variables then the class 
U(Xl, X 2 ) ,  given by 

has four elements, but if XI is a constant, say a true proposition, then 
U ( X 1 ,  X 2 )  has only the two elements (t, t), (t, f). As with Boole we take 
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the symbols x lr  x2, x3, ... to be elective symbols (operators) on U (but 
now our U is U(X,, X2, X3,. . .)), or any subclass of U ,  such that xi (for 
example) selects those cases in which Xi has been assigned the value t ,  
i.e. those cases whose ith component is t .  Note that here xl, x2, x3,. . . 
are associated with particular subsets of U(X1, X2, X 3 , .  . .) and are not, 
as in the preceding section, free variables standing for arbitrary 
operators selecting subclasses of U .  Nevertheless we still can apply to 
them the laws of our elective operator algebra, since these laws are 
general and apply to any U and any selection operators. By virtue of 
the properties of elective symbols 1 - x then selects those cases for 
which X has the value 1: If we confine our attention to just X (as 
Boole does in the quotation) then the “Universe of the Proposition” is 
U(X) and indeed, when X is a variable, has two cases. Note that for us 
“1” in “1-x” designates an elective operation and not the Universe. 
This is important since we are taking the universe to be 
U(Xl, .  . ., X,)-which depends on the Xi-whereas 1 does not. 

Continuing, Boole wants to express that a given proposition X is 
true and argues ( M A L ,  51):  

The symbol 1-x selects those cases in which the Proposition 
X is false. But if the Proposition is true, there are no such cases 
in its hypothetical Universe, therefore 

1 - x = o  

or 
x = 1. 

Boole has no explanation of what he means by “its [i.e. X’s]  
hypothetical universe” but clearly what it is depends on whether X is 
true or false, since he says “But if the Proposition is true, there are no 
such cases in its hypothetical universe,. . .”. However, if the universe can 
change, one no longer can follow Boole’s practice of understanding (i.e. 
omitting) it. The “understood” subject in the equations of the 
preceding quotation cannot be U(X, . . .) with variable X as defined 
above since there are then cases in which X is both t a n d 5  We can 
make Boole’s argument come out right if, when X is true, we take its 
hypothetical universe to be the subclass of U(X, ...) for which X has 
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only t values. Let us designate this by U(f, ...) or, for short, by U1.  
Then BooIe’s quoted equations become 

(1-x)U,  = OU, 

XU, = l U , ,  
and 

which are true statements. Likewise if U o  is the subclass of U(X,. . .) for 
which X has only f values, then if X is false so is wUo = l U o  (x 
selecting nothing from Uo,  1 selecting all of Uo) .  We then have that, for 
propositional variable X, the equation 

(1) 

does represent, or express, X ;  .for when X is true ( 1 )  becomes 
XU, = l U 1  (which is true), and when X is false ( 1 )  becomes 
XU, = l U o  (which is false). (We are assuming that “x” in (l),  as an 
operator, refers to the X-position of the cases in U ( X , .  . .), and that that 
doesn’t change with X (the proposition) being true of false.) 

Following Boole we now correlate to each compound proposition 
form an equation in the operator algebra: 

xU(X,. ..) = lU(X, . .  .) 

X represented by x = 1 

lX represented by 1 - x  = 1 

X A Y represented by xy = 1 

X --t Y represented by 1 - x(1 - y) = 1 

etc., 

where the understood subject for the operators is U(X, X ...). If we 
consider a propositional language using variables X, X . .  ., and 
connectives 1 and A ,  then it is easy to see that for any formula 
O(X,  Y,. . .) of the language there is a unique polynomial 8 ( x ,  y,. . .) built 
up from x , y ,  ... and the operations of subtraction from 1 and 
multiplication, such that O(X,  x.. .) is represented by 8(x, y,. . .) = 1 in 
the sense that the equation, considered as an operator equation on 
U(X, Y,. . . ) ,  is true for those and only those values assigned to X, x... 
making O(X, K. ..) true. Thus as a simple example let O(X,  Y) be 
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1 X  A -,Y. Then the correlated operator equation is 

(1 - x)(l - y) = 1, 

which, on supplying the omitted U ( X ,  Y), is 

(2) (1 - x)( 1 - y ) U ( X ,  Y )  = 1 U ( X .  Y). 

Considering all possible truth-values for X and Y we have 

(1 - x)(l - y ) { ( t ,  t ) }  = 1 { ( t ,  t ) } ,  or 8 = { ( t ,  t ) ]  

(1 -x)(l  - Y ) W ) J  = lf(f,S)), or @ = {(f,f)} 

(1 -x)( l  - Y N u ;  0 )  = l{(f,f))? or 8 = {u; t ) }  

(1 - x)(l - Y ) { ( L f ) }  = 1{u;f)l, or Iu;f)} = {U;f)L 
showing that (2) is true if and only if -,X A lY is true. 

One can show that O ( X ,  X . . . )  is a propositional tautology if and 
only if 9(x, y,. . .) = 1 is an algebraic identity true for all 0, l  values 
assigned to x, y,. . .; and that the propositional calculus rules of 
substitution and modus ponens take obviously valid forms in the 
algebraic symbolism. We shall not go through the exercise of showing 
that the algebraic equation format is an adequate surrogate for doing 
propositional logic. 

Why did Boole change his mind and switch from the “universe of 
cases” idea to that of “time for which the proposition is true” on which 
to base his propositional logic? It could be, as the quote in our first 
section seems to indicate, that he thought the notion of time more 
fundamental. On the other hand, our work here shows that getting his 
“cases” idea to work would have required of him a considerable 
emendatory effort : we had to use, not an absolute universe U ,  but one 
which depended on the context, and had to clearly distinguish between 
its arguments being variables or constant and, moreover, distinguish it 
from the identify operator 1; we had to develop an algebra of 
operators; and, finally, a definition of “cases” was provided. It would 
hardly have been easy for Boole at that stage in the development of 
logic to steer his way through to a clear understanding of the matter. 
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0 3.3. Secondary propositions and “time” 

The semantic basis for propositional logic which Boole advocates in 
Chapter XI of Laws of Thought is quite different from the earlier one in 
Mathematical Analysis of Logic. Our present section is devoted to a 
description of this later, supposedly more carefully considered, theory. 
Here too, as in much else of his work, we shall find that Boole is close 
enough to being correct that he is able to develop useable techniques. 

We have already noted his separation of propositions into primary 
and secondary. While the core of the idea is sound-amounting to 
classifying propositions with regard to whether they do (secondary), or 
do not (primary), involve an analysis in terms of propositional 
connectives-the actual description Boole gives entails some semantic 
confusion. For instance he believes that secondary propositions express 
judgements concerning the truth or falsity of propositions, citing as an 
example. 

But he also considers as a secondary proposition. 

on the grounds that it expresses the dependence of the truth of ”The 
day will be fair” on that of “The sun will shine”. Contemporary semantic 
theory however would relegate example (i) to a meta-language and 
indeed, with Boole, as an assertion about the truth of a proposition; 
on the other hand example (ii) would be in the language proper and 
not an assertion &out propositions of the language. And yet while 
not entirely clear Boole is nevertheless aware of a distinction, for he 
qualifies his characterization of secondary propositions by saying that 
they may “relate to” propositions considered as true or false, as well 
as being outright assertions of truth or falsity. 

Effectively, Boole doesn’t make a “semantic ascent” to a meta- 
language but works with and analyzes the propositions themselves. But 
this analysis, unlike our present-day analysis in terms of truth- 
functions, is based on the idea of time: 

( i )  It is true that the sun shines. 

(ii) If the sun shines the day will be fair, 

... Let us take, as an instance for examination, the conditional 
proposition, “If the proposition X is true, the proposition Y is 
true”. An undoubted meaning of this proposition is, that the time 
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in which the proposition X is true, is time in which proposition 
Y is true. This indeed is only a relation of coexistence, and may 
or may not exhaust the meaning of the proposition, but it is a 
relation really involved in the statement of the proposition, and 
further, it suffices for all the purposes of logical inference. [p. 
1631. 

( In  this quote we see Boole expressing the form of a conditional 
metalinguistically using the predicate "is true", but in his actual 
examples it is always correctly of the form "If X ,  then Y") Thus while 
not admitting it, Boole is interpreting the conditional as a categorical 
(i.e. primary) proposition whose subject is "time in which the 
proposition X is true" and whose predicate is "time in which the 
proposition Y is true"; he writes the sentence symbolically as 

.Y = r*J: 

where "x denotes the time for which the proposition .\ I \  tr tx ' '  [and 
similarly for ~ ' 3 .  This is Boole's opwrt iw tiieaniiig lor the 41' rnhols 
s, y. z,. . ., i.e. representing portions of time, although "officially" they 
represent mental constructs which he uses, as in the case of primary 
propositions to find the "laws" which they obey. We quote from LT 
(pp. 164-165): 

PROPOSITION 11 

7 .  To establish a system of notution j i w  the espression qj' Sec-onrlar~~ 
Propositions, and to show thut the sj~mhols which it inrolres tire 
subject to the same laws of comhintrtion ( is  the corresponding 
symbols employed in the expression qf Primary Propositions. 

Let us employ the capital letters X .  K Z to denote the 
elementary propositions concerning which we desire to make 
some assertion touching their truth or falsehood, or among 
which we seek to express some relation in the form of a 
secondary proposition. And let us employ the corresponding 
small letters x ,  y ,  z, considered as expressive of mental 
operations, in the following sense, viz.: Let .Y represent an act of 
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the mind by which we fix our regard upon that portion of time 
for which the proposition X is true; and let this meaning be 
understood when it is asserted that x denotes the time for which 
the proposition X is true. Let us further employ the connecting 
signs +, -, =, etc., in the following sense, viz.: Let x + y denote 
the aggregate of those portions of time for which the 
propositions X and Y are respectively true, those times being 
entirely separated from each other. Similarly let x - y denote the 
remainder of time which is left when we take away from the 
portion of time for which X is true, that (by supposition) 
included portion for which Y is true. Also, let x = y denote that 
the time for which the proposition X is true, is identical with the 
time for which the proposition Y is true. We shall term .Y the 
representative symbol of the proposition X ,  etc. 

On the basis of this mentalistic conception Boole determines, very 
much as he did for primary propositions, the “laws of combinations” 
which these representative symbols obey, and finds these laws to be 
identical with those for primary propositions. (We omit Boole’s 
extensive philosophical remarks on this, to him, quite remarkable 
circumstance.) While the laws and the “mathematical processes 
founded on them” are unchanged, new interpreting rules are 
introduced: the symbol 0 represents notlting “in respect to the element 
of time”, and the symbol 1 the uniilerse, i.e. the ”whole of time, to 
which the discourse is supposed in any manner to relate.” To  express 
“ X  is true” (Boole puts i t :  “To express the Proposition ‘The 
Proposition X is true”’) he writes 

x = l  

i.e. identifying the time for which X is true with the (whole) universe 
(of time under consideration.) Although Boole is clearly assuming that 
the truth-value of X may depend on time, nevertheless x, the portion of 
time for which X is true, is fixed. Thus “x = 1” expresses that X has 
the fixed truth-value “true” during the entire time under consideration ; 
likewise “x = 0 expresses that X is true at no time or, in Boole’s 
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words “The Proposition X is false.” Significantly, Boole doesn’t 
consider expressing “ X  is sometimes true.” 

As we have already noted, the conditional is expressed by y = r x ,  
where r is “regarded as a symbol of time indefinite” or, on elimination 
of I . ,  also by the equation yX = 0. As in the case of primary 
propositions, v is allowed to be empty. 

The verbal form of the disjunctive proposition which Boole gives is : 
“Either the proposition X is true or the proposition Y is true”, which 
by his rule should be “x = 1 or y = 1.” However the symbolic form he 
does give is 

x(1 - y )  + y(1 - x )  = 1 ,  

in other words actually expression “Either X or Y is true” or, even 
better, “Either X or Y” (Boole is, of course, taking “or” in the exclusive 
sense.) A similar semantic fault is also corrected (unintentionally) by 
Boole when he symbolically expresses the form of a conditional in 
which the antecedent or consequent may be a disjunction. Thus “If 
either X is true or Y is true, then 2 is true” is rendered symbolically as 

x ( 1 - y ) + y ( l - x ) = v z  

In the case of the class calculus interpretation for his formal system 
Boole only casually notes (L7: pp. 112-113) that an equation of the 
form w = A +t.C expresses (may be interpreted as) a two-sided 
inclusion of the class w. In the case of his propositional version he 
elevates this to the statement of a PRINCIPLE (p. 173), to the effect that 
w = A + vC interprets as a pair of conditionals: ( i )  A implying w and 
(ii) w implying A + C. 

Boole’s introduction of the notion of time to develop propositional 
logic was later criticized, e.g. by Macfarlane [1879, pp. 9-10] and Venn 
[1894, Chapter XVIII]. Boole himself recognized that, once the 
calculus was developed, the notion of time played no role: “We may 
here call attention to the remark, that although the idea of time 
appears to be an essential element in the theory of the interpretation of 
secondary propositions, it may practically be neglected as soon as the 
laws of expression and of interpretation are definitely established.” 

In anticipation of its later use in connection with the theory of 
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probabilities Boole observes (p. 167) : “Instead of appropriating the 
symbols x, y, 2, to the representation of the truths of propositions, we 
might with equal propriety apply them to represent the occurrence of 
events. In fact, the occurrence of an event both implies, and is implied 
by, the truth of a proposition, viz., of the proposition which asserts the 
occurrence of the event.” It should be noted that Boole’s term “event” 
is not that of contemporary probability theory where an event is a set 
of outcomes of an experiment (see, e.g., RENYI 1970, 1.1) and hence 
corresponds to a class of Boole’s events. In modern probability the 
calculus of events is indeed a calculus of classes, not a calculus of 
propositions. 

Boole concludes his Chapter XI with some general philosophical 
remarks on the analogy between the theory of Primary and Secondary 
Propositions and their relation to Space and Time, contending that the 
notion of time is essential for secondary propositions but that space is 
not for the primary-his principal reason being : 

. . .Dismissing, however, these speculations as possibly not 
altogether free from presumption, let it be affirmed that the real 
ground upon which the symbol 1 represents in primary 
propositions the universe of things, and not the space they 
occupy, is, that the sign of identity = connecting the members of 
the corresponding equations, implies that the things which they 
represent are identical, not simply that they are found in the 
same portion of space. Let it in like manner be affirmed, that the 
reason why the symbol 1 in secondary propositions represents, 
not the universe of events, but the eternity in whose successive 
moments and periods they are evolved, is, that the sign of 
identity connecting the logical members of the corresponding 
equations implies, not that the events which those members 
represent are identical, but that the times of their occurrence are 
the same. These reasons appear to me to be decisive of the 
immediate question of interpretation. [p. 1761 

The argument here involves a number of confusions. In the first 
place even if, in the case of primary propositions, 1 were a universe of 
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things, the symbols x, y, z ,  as Boole uses them stand for (nearly 
enough) subclasses of 1 and hence, as classes, are 
abstractions -discussion concerning the space they occupy is 
meaningless. Secondly, since in the case of primary propositions it is 
classes of things which are related by =, the parallel which Boole 
draws between identity of things and identity of events is faulty-the 
corresponding relationship in the case of secondary propositions, if 1 is 
the universe of events, would be identity of classes of events. Thus there 
is no objection to having 1 being the universe of events provided one 
uses an appropriate meaning for “=” to go with it, but then one 
doesn’t obtain propositional logic but, rather, a calculus of events (in 
the contemporary sense of this word.) Boole mistakenly thought that 
= had to be the relation of identity for elements of the universe of 
propositions and baulked at the idea of so strong a relation for 
propositional logic. In a (roughly) similar situation Frege did accept 
the consequences of identifying, for the purposes of propositional logic, 
all true propositions and all false propositions, but allowed for 
diversity by his distinction between sense (Sinn) and denotation 
(Bedeutung)-according to this view there are only two distinct 
denotations (or referents) for propositions, the truth-values True and 
False, whereas propositions with the same truth-values may have many 
distinct senses. Boole’s difficulty with =, when taken as identity of 
propositions as being too strong a relation, was resolved by his going 
over to a universe of classes-his “portions of time” functioning exactly 
as classes, although Boole never brought himself to say that they 
actually were classes. Propositions, then, though different could be 
equivalent if the portions of time during which they were true are the 
same. 

0 3.4. Boole’s illustrative examples 

Following the presentation (in Chapter XI) of his theory of secondary 
propositions Boole has three additional chapters relating to this topic. 
In the first of these he codifies the methods to be used, illustrating 
these methods with two simple examples of arguments, one taken from 
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Cicero’s De Fur0 and the other from Plato’s Republic. The second of 
these chapters contains an analysis, by his symbolic methods, of 
various arguments from Samuel Clarke’s Demonstrations of the Being 
und Attributes of God, and also discussion of a portion of Spinoza’s 
Ethicu Ordine Geonzetrico Dernonstruta. In the last of these three 
chapters he illustrates the method of converting a set of equations to a 
single equation of the form V = 0 in which V satisfies the condition 
V ( l  - V )  = 0, using as an example a set of equations arising in 
connection with the symbolization of one of Clarke’s arguments. While 
the strictly logical matters in these chapters are all rather minor, 
discussion of. this material will enable us to bring out a number of 
items which are of some interest. 

1 .  At the beginning of Chapter XI1 (Methods in Secondary 
Propositions) Boole states, in the form of a RULE, his procedures for 
carrying out inferences involving secondary propositions. These are 
pretty much as expected: (i) the indefinite symbol L’ is to be removed 
(by elimination, 9; 1.8) from any equation in which it appears ( i i )  next 
eliminate those (propositional) symbols which are not to appear in the 
“final solution”, but first reducing (9; 1.8) to a single equation those 
equations containing any such symbols and (iii) combining all such 
resulting equations into a single equation of the form V = 0. In 
connection with propositional logic Boole’s elimination is a form of 
(partial) truth-value analysis ; for replacing 

f ( x ,  y ,  z,. . .) = 0 

by 

f l l ,  y ,  z,. . . ) f (O,  y, 2,. . .) = 0 

and algebraically simplifying (Boole tacitly assumes this) amounts to 
replacing a propositional formula 

S(P, 4,  r , . .  .) 

by 

(f(T 4, r,. . .)f(F, 4, r,. . .)) 
(T  and F truth-values) and “resolving” (QUINE 1972, § 5 ) ,  the result 
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being the strongest logical consequence obtainable which does not 
contain p .  In  connection with his RULES Boole’s last prescription ”to 
ascertain whether a particular elementary proposition s [involved in a 
set of premises] is true or false [i.e. whether X, or not-X, is a 
consequence]” contains an omission : he states what, on eliminating all 
symbols but x,  each of the outcomes s = I ,  .K = 0, and 0 = 0 would 
indicate, but makes no mention of the possible outcome 1 = 0 which, 
of course, would indicate inconsistent premises. 

2. We consider Boole’ first illustrative example (p. 179): 

4. Ex. 1.--The following prediction is made the subject of a 
curious discussion in Cicero’s fragmentary treatise, De Fato :--“Si 
quis (Fabius) natus est oriente Canicula, is in mari non morietur.” 
I shall apply to it the method of this chapter. Let y represent the 
proposition, “Fabius will die in the sea.” In saying that x represents 
the proposition, “Fabius, and Co,” it is only meant that .x is a 
symbol so appropriated (XI. 7 )  to the above proposition, that the 
equation x = 1 declares, and the equation Y = 0 denies, the truth 
of that proposition. The equation we have to discuss will be 

( 1 )  

Fabius is converted to 

y = z - (  1 - x )  

The symbolic .version ( 1 )  of the conditional sentence about 

(2) yx = 0 

Boole then says (pp. 179-180): 

The interpretation of this result is :-“It is not true that Fabius 
was born at the rising of the dogstar, and will die in the sea.” 
Cicero terms this form of proposition, “Conjunctio ex 
repugnantibus? and he remarks that Chrysippus thought in this 
way to evade the difficulty which he imagined to exist in 
contingent assertions respecting the future: “Hoc loco 
Chrysippus.. .”. 

Boole’s quotation (from De Fato) which follows records Cicero’s 
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mocking scorn of Chrysippus’ views, but Boole gives us nothing of 
Cicero’s reasons or the background discussion. In this discussion, 
which involves ideas such as free-will, fate, divination, necessity and the 
like, Cicero uses as an example the rule (“percepta”, Greek 
“theoremata”) of astrologers: “If anyone is born at the rising of the 
dogstar, he will not die at sea.” From this he proceeds to refute 
Chrysippus by drawing a conclusion agreeing with Diodorus. 
(“Careful, Chrysippus, that in the big dispute you have with the mighty 
logician Diodorus, you do not leave your position undefended.”) We 
translate a portion of Cicero: 

... If indeed what is so connected [i.e. the conditional]. “If  
anyone is born at the rising of the dogstar, he will not die in the 
sea” is true, so also is “If Fabius is born at the rising of the 
dogstar, Fabius will not die at sea.” Therefore it is incompatible 
(Pugnant igitur huec inter se, ...) for Fabius to be born at the 
rising of the dogstar and to die in the sea; and since of Fabius 
one is sure that he was born at the rising of the dogstar, it is also 
an incompatibility for Fabius to exist and to die in the sea. 
Hence the conjunction “Fabius exists and will die in the sea” is 
an incompatibility (Ergo haec quoque coniunctis est ex 
repugnuntibus,. . .), which as a subject of discourse (propositum) is 
impossible (est lie jieri quidam potest). Therefore “Fabius will die 
in the sea” is of the kind that is impossible. Consequently every 
false statement about the future is impossible. [De Fato, VI 121 

We see here that Cicero’s main premise is not the conditional 
statement about Fabius (as Boole assumes by his inserting “(Fabius)” 
after Cicero’s “quis”) but the generalized form (“if anyone.. .”) from 
which Cicero then infers the instance about Fabius. This is not 
inconsequential for, in the first place, Cicero is especially interested in 
generalized (law-like) conditionals and, secondly, it brings out an 
inadequacy in Boole’s logical theory, namely its inability to handle 
singular inference. So we find Boole tacitly avoiding the problem by 
adopting Cicero’s second step as the initial premise. Further, we see 
that Boole has mistakenly referred to his rendition of x y  = 0-“It is 
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not true that Fabius was born at the rising of the dogstar, and will die 
in the sea”-as Cicero’s “Conjunctio ex repugnantibus” whereas what 
Cicero so refers to is “Fabius exists [was born] and will die in the sea.” 
Again this is not inconsequential, for Chrysippus’ rebuttal (as given by 
Cicero) is that one should state [law-like] conditionals in the form of a 
denial of a conjunction. We translate from Cicero : 

At this point Chrysippus in anger (aestuans) hopes that the 
Chaldeans and other diviners are wrong, and for pronouncement 
of their observations (percepta) will not use “If anyone was born 
at the rising of the dogstar, he will not die in the sea” but rather 
“There is no one who is both born at the rising of the dogstar 
and who will die in the sea.” (Non et natus est quis oriente 
Canicula et is in mari morietur) 0 joking license! to avoid a run 
in with Diodorus he instructs the Chaldeans how they should 
present their observations. [De Fato, VIII 151 

Cicero goes on to show the ridiculousness (in his opinion) of 
Chrysippus’ version of the conditional by translating examples from 
medicine and geometry into that form. These examples, and other 
scattered remarks, leave no doubt that for Cicero the conditional form 
implies some necessary connection in nature. 

It is remarkable that in selecting material from De Fato as his first 
illustrative example in propositional logic Boole happened to choose 
an important early source of information on Stoic logic, of which so 
little is extant. The historical value could hardly have been appreciated 
by Boole since it wasn’t until the present century that an adequate 
historical understanding of Stoic logic as a propositional logic was 
achieved (MATES, 1953, 1961). Nevertheless Boole clearly saw that what 
was involved was propositional logic, not term (or class) logic. On the 
other hand, it does appear that the significant point in the discussion 
from which Boole took his example, namely that the dispute described 
by Cicero hinged on rival versions of the conditional, was missed by 
Boole; for by writing “If Y, then not-X” as y = v( l  - X I ,  with his 
meaning of this equation, he automatically precludes there being any 
possible logical difference with x y  = 0. 
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3. The second of Boole’s examples used to illustrate his methods in 
propositional logic is taken from Book I1 of Plato’s Republic (380, 
381). Boole praises it as a “very fine example of the careful induction 
from familiar instances, and of the clear and connected logic by which 
he deduces from them the particular inferences which it is object to 
establish.” [p. 181. Our emphasis]. An analysis of the dialogue leads 
Boole to his list of Plato’s premises (Plato, arguing demonstratively, 
takes these to be true): 

1. If the Deity suffers change, He is changed either by himself 

2. If He is in the best state, He is not changed by another. 
3. The Deity is in the best state. 
4. If the Deity is changed by himself, He is changed to a worse 

5. If he acts willingly, He is not changed to a worse state. 
6. The Deity acts willingly. 

or by another. 

state. 

Here too, as in the preceding illustrative example, Boole circumvents 
inferences from a general to a singular proposition by adopting the 
singular proposition as the premise. Introducing the symbols 

x for the Deity suffers change 

y for He is changed by himself 

z for He is changed by another 

s for He is in the best state 

t for He is changed to a worse 

w for He acts willingly. 

Boole then expresses the premises symbolically and, after eliminating 
the indefinite symbol u from the conditionals, has : 

(1) 

(2) sz = 0 

x y z + x ( l  - y ) ( l  - z )  = 0 
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(4) y(l  - t )  = 0 

( 5 )  wt = 0 

( 6 )  w = 1 

195 

Boole then successively eliminates (see 0 1.8) z, s, y and t and obtains 
Plato’s result x = 0. 

It is instructive to compare Boole’s algebraic elimination procedure 
of arriving at  the conclusion with the “clear and connected logic”-as 
Boole himself styles it-that Plato uses. We extract from the dialogue 
(using Boole’s “translation” to facilitate comparison) the relevant steps 
and alongside a corresponding symbolic version in modern 
notation-in our symbolic version all general propositions have been 
instantiated so as to apply to “God”. We use the symbol “ v ”  - for 
exclusive “or”. 

Must not that which departs from its proper form be changed 
either by itself or by another thing? Necessarily so 

x -b (Y v z )  

In this way, then, God should least of all bear many forms [be 
changed by another]? Least indeed of all 

1 Z  

And whatever is in a right state, ..., admits of the smallest 
change [least liable to] from any other thing. So it seems 

S + T Z  

But God and things divine are in every sense in the best state. 
Assuredly 

S 

. . should He transform and change Himself? Manifestly He 
must do so, if He change at  all 

X + Y  
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Changes He then Himself to what is more good and fair, or to 
that which is worse or baser? Necessarily to the worse, if He be 
changed 

J ’ + t  

... seems it to you ... that God [or man] willingly makes 
Himself in any sense worse? Impossible said he 

1 W )  
[God acts willingly] (Premise supplied) w 

Impossible, then, it is, said I, that a god should wish to change 
himself: but ever being fairest and best, each of them ever 
remains absolutely in the same form 

1 X  

The logical structure of Plato’s argument can be brought out by 
displaying it in tree form : 

(b) 
(c 1 

s + lZ, s w. 1 ( w t )  

y + t ,  l t  

(c ) 

-____ (a 1 
(d ) _____ 

1 Y  

x -+ (Y  z ) ,  1 Z  

x + y, 

7 x  

Here the formulas occuring without a line above them are premises, 
and each pair of formulas above a line has as immediate logical 
consequence the formula below it. There are four different kinds of 
such immediate inferences, (a)-(d). Apparently Plato’s audience needed 
no convincing as to the validity of such immediate inferences. The 
contrast of this intuitively “clear and connected logic” with Boole’s 
laborious algebraicequational technique is marked. Yet, one should 
not hold it against Boole for not being able to see that logical 
deduction could be carried out formally in this fashion, i.e. by general 
inferential, rather than (mostly) transformational rules, since it wasn’t 
until well into the 20th century that “natural deduction” formulations 
of logic were introduced [JASKOWSKI 1934, GENTZEN 1934-5). 
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4. In addition to its introduction of algebraic symbols and 
techniques another novel feature of Boole’s work in logic was the 
generality with which problems were conceived and methods, both 
theoretical and practical, were devised for their solution. A typical 
example is that of obtaining from any given set of premises those of its 
logical consequences which refer only to a selected set of components 
(symbolically, letters) of the premises. (We are using the term “logical 
consequences” uncritically-Boole had no semantic basis for his logic 
and simply took it for granted that the common algebraic operations 
on a set of equations representing logical statements led one correctly 
to its logical consequences.) The method given involves two steps: (i) 
consolidating the premise equations into a single equation and (ii) 
eliminating from this equation all letters but those which it is desired 
to retain. In specific cases Boole, of course, avails himself of shortcuts. 
E.g. if x = 1 is one of the equations then the elimination of x is 
accomplished before consolidation by dropping this equation and 
replacing x throughout by 1. Likewise elimination can be carried out 
first in any subset of the equations if the letters to be eliminated do not 
occur in the complementary set of equations. The techniques are 
illustrated by examples obtained by analyzing portions of Samuel 
Clarke’s “Demonstration of the Being and Attributes of God”. Analysis 
of Clarke’s proof of “Something has existed from eternity” leads Boole 
to extract the premises 

x = l  X 

x = Zi{ y ( l  - z )  + z(l - y ) }  

(1) x = u { P ( l - q ) + q ( l - P ) l  x + p v q  

x + y _v z 

P = V Y  P + Y  

q = u ( l  - z )  q + l Z  

Boole then shows how to obtain all (independent) conclusions 
respecting one or more of the five symbols x, y ,  z,  p ,  q which are 
implied by (1); these are, in addition to x = 1, y = 1, z = 0 and 
p(1 - q ) +  q ( l  - p )  = 1. Another of his examples (set of premises for 
“Some one unchangeable and independent Being has existed from 
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eternity”) is 

1 - x = o  X 

p = o  

q = o  

-P 

7 4  

A third example is of interest in two respects : firstly Boole resorts to 
the theory of primary propositions and, secondly, he uses a singular 
term as if it were a class term. The proposition is that the 
unchangeable and independent Being (whose existence was 
“established” by the preceding argument) must be self-existent 
(Proposition 111, p. 207). One of Boole’s extracted premises is 

3. The unchangeable and independent Being has not been 
produced by an external cause. 

which is rendered symbolically by 

w = U j ,  

with w as the singular term “The unchangeable and independent 
Being”, and y the class term “Beings which have been produced by an 
external cause”. The simplest way of putting things right here is by 
taking w to be the class whose only member is the singular term. 

Although Boole devotes a great many pages (all of Chapter XIII) to 
his analyses of the metaphysico-theological arguments of Clarke and 
Spinoza, we shall not follow suit-to us of the 20th century it is clear 
that any such logical analysis, using only at most propositional and 
class term logic, is almost sure to be superficial; and, of the two, even 
more so for Spinoza, whose arguments, as Boole concludes after an 
exa.mination of them, are “largely a play on terms defined to be 
equivalent”. As regards the demonstrativeness of the arguments, Boole 
approvingly cites, in the case of Clarke, Bishop Butler’s objection to a 
central premise, and in the case of Spinoza, Boole refers to “. . .fallacies, 
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dependent chiefly on the ambiguous use of words.. .”. Boole concludes 
his chapter with a peroration on “the futility of all endeavors to 
establish, entirely u priori, the existence of an Infinite Being, His 
attributes, and His relation to the universe”. 

4. The final related set of examples in propositional logic which 
Boole discusses-constituting his Chapter XIV-illustrates various of 
his techniques, e.g. for converting a set of premises into a single 
equation of the form V = 0, with V satisfying the hndamental law 
V ( l  - V )  = 0; from this Boolean form he derives various conclusions 
respecting any symbol (proposition), or any logical combination of 
symbols in terms of any preselected set of them. In  these examples we 
see how Boole circumvents the awkwardness associated with his + 
leading outside of class terms (or the analogue for propositions) while 
avoiding excessive build-up of additional terms. 

The set of premises he uses as a basis for his example is 

x y t  + x y t  = 0 

(3) 

which arises from an analysis of Clarke’s argument for the proposition 
“Matter is not a necessary being”, and deleting the premise “Motion 
exists”. (In (3) the letter “r” is not the indefinite class symbol.) A simple 
and direct way of converting (3) to a single equation of the desired 
(Boolean) kind would be to replace each term by an equivalent sum of 
constituents on all six letters appearing in (3), adding the resulting 
equations and then deleting repeated constituents. But, in general, this 
would result in an equation with a large and unwieldy number of 
terms. Instead Boole proceeds by first adding the equations as they 
stand (no preliminary squaring being needed here since all terms are 
“positive”-see 4 1.9) so as to obtain 
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One could now apply his theorem (see $ 1.9) that 

( 5  1 

is replaceable by (“reducible to”) 

L‘, + 1’2 + “3 + . . . = 0 

so as to obtain an equation with an equivalent logical content 
satisfying V ( l  - V )  = 0. (Note that the left-hand sides of (5) and (6 )  
are not, in general, equal.) Instead of applying the reduction process to 
the full equation (4), Boole applies one of his “abbreviative” techniques. 
A subset of these letters is selected (in this case x, y )  and (4) is 
developed with respect to them : 

(7 ) 

and reduction (replacing L’, +ii2 + c 3  +” ’  by c, + F , r 2  + F , F 2 r > 3  + . . . ) i s  
applied to each of the coefticients of the constituents of ( 7 )  so as to 
obtain 

(t + t; + 11 + z + r zwjxy  t (t+ t’ + Z +  t z w f x y  

+ ( F +  tzw)%y + t z w i j  = 0, 

1 . x y  + (r+ tl’ + tl‘z + ti;zW)xy 

+ (F + tzwr.).uy + CZM’XJ = 0 

(For a justification of this technique see our endnote in $3.7.)  
Although reduction is applied four times instead of once, there is a net 
gain in simplicity. Boole now uses this form of the premises (3)  to 
illustrate how one obtains “the whole relation connecting any 
particular set of symbols”, i.e. what necessary relation is implied by the 
equation independently of the remaining symbols. Since (8) is of the 
form I/ = 0 with V(l  - V )  = 0, he can apply his Proposition 111, 
Chapter X (see $1.9), namely to develop the left-hand side of the 
equation with respect to the particular set of symbols (here x and y) ,  
and to equate to 0 the sum of the constituents on these symbols whose 
coefficients in the development are 1. Hence the result here x y  = 0. The 
correctness of the procedure is intuitively clear, for only those terms 
whose coefficient in the development is 1 cannot be made to drop out 
by an appropriate choice of 0 or 1 values for the other symbols. (Note 
that this argument assumes that V is Boolean.) 
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Boole has a Rule enabling him to obtain such a “whole relation” 
without the necessity of first converting the equation to  Boolean form 
as in the just discussed example. We recall ( 5  1.9) that Boole’s 
statement of the GENERAL PROBLEM of logic was that of determining, 
from any given equation involving symbols x, y,. . ., w, z ,  . . . “the logical 
expression of any class expressed in any way by the symbols x, y, . . . in 
terms of the remaining symbols w, z, . .. &c.” That is, given an 
equation, e.g. I/ = 0, and a class (or proposition) t = q ( x ,  y ,... ), to 
determine what is implied by V = 0 with respect only to  t and w, 2,. . .. 
The practical rule (here stated for class terms) he gives is: 

Rule.-Expand the given equation [ V  = 01 with reference to the 
symbols x, y ,  [...I. Then form the equation 

Et  + E‘(1 - r )  = 0 

in which E is the product of the Coefficients of all those 
constituents in the above development, whose coefficients in the 
expression of the given class [ q ( x ,  y ,  . . .), when developed with 
respect to x, y,. . .] are 1, and E‘ the product of the coefficients in 
the expression of the given class are 0. The value of t deduced 
from the above equation by solution and interpretation will be 
the expression required. [p. 1421 

Boole demonstrates this rule by adjoining to the given equation 
(assumed to have only posifive terms) the equation t = q ( x ,  y,. . .), 
forming a single equation for the system, and eliminating x, y, .... We 
shall forgo discussion of the demonstration. As an illustration of the 
Rule here in Chapter XIV Boole uses the equation 

(9 ) xw + xwy + XMIjZ = 0, 

which comes from (8) on elimination of t and u, and determines the 
relation connecting u[  = w s ] ,  x, and y. The Rule gives 

x u + x y u  = 0 

so that, by “solution and interpretation”, 
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and hence 

0 1  
0 0  

ff = o x j +  -x+ - x y  

§ 3.5. Justification of the logic of secondary propositions 

Our  objective here is an explanation of why Boole’s approach to 
propositional logic was, speaking generally, successful. Hence we need 
not adhere stringently to his system in all details ; in particular we shall 
ignore the non-, or partially, defined Boolean notions. 

As we have seen, Boole refers to “time in which the proposition X is 
true”. While it could be that Boole had in mind something like our 
present-day notion of a propositional function -so that an actual 
expression for X would contain an occurrence of a variable t ranging 
over time values-it seems more likely that he thought of X as 
unchanging, i.e. not depending on a variable, but that with 
circumstances (in the world) changing there could be times at which X 
would be true and times at which it would be false. To render this 
conception we introduce a two-place (material) predicate T such that 
T ( X , t )  expresses that X is true at time t .  I t  is easy to see that having 
an order structure on the set of time values is irrelevant to the use 
which Boole is putting it to. Hence we take his “portion of time for 
which X is true” to be simply the set of t values i t :  T ( X ,  t )}  using “1” 
to designate the set of all t values (under consideration), we can 
indicate the essential features of Boole’s symbolization of secondary 
propositions by a table : 

Linguistic 

,form 

X 

not X 

Semuntics A lgebruic 
jorm 

Vt T ( X ,  t )  
or { t  : T ( X ,  t ) )  = 1 

x = l  

x = o  
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X andY 

X or Y (similarly) x + x y  = 1 

If X .  then Y xy = 0 

X iff Y {t:T(X,t)} LJ{t:T(Y,t)} x = y  

{ t :  T ( X ,  r ) ]  E { t :  T(Y, t ) >  

{t : T ( X ,  t ) )  u { t  : T (  Y, t)) 

c { t :  T ( Z , t ) ]  

If X or X then Z 

(x + Xy)Z = 0 

in which the last item embodies the assumption about T (tacit with 
Boole) that 

( t :  T ( X  or Y. t ) )  = ( t :  T ( X ,  t ) )  LJ { t  : T (  Y,t)}. 

Equations of the form J (x, y,. . .) = 0 are, of course, replaceable by 
1 - f(x,y ,.._) = 1, and J ( x ,  ,...) = g(x, y ,...) by J ( x , y  ,... )g(x,y ,... ) +  
f ( x ,  ):. . .)g(x, y,. . .) = 1. Thus when Boole analyzes a secondary 
proposition and expresses the result as an algebraic equation, we may 
take this equation to be of the form 

( 1 )  f(X1,. . .) x,) = 1. 

where f(xl , .  . ., x,) is a Boolean algebra expression (in Boole’s symbols), 
and to which one may uniquely associate a formula F ( X I , .  . ., X,)  of 
PC ($0.5), obtainable from f ( x l ,  ..., xn) by replacing x, by X ,  and the 
symbols for addition (these occur only between exclusive terms), 
multiplication and subtraction from 1 by the symbols v , A ,  l. Boole 
uses his class calculus methods to derive consequences from (1). Since 
the result is always an interpretable equation (or a pair of such 
equations, replaceable by an equivalent single equation-see 3 1.8) we 
can take it to be of the form 

(2 1 SfXl,...,X,) = 1, 

with + signs occurring only between exclusive terms, so that 
g(xl, ... x,) is a Boolean algebra expression. Using the table in the 
reverse direction provides a PC formula G(X1,.  . ., X,) associated with 
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,y(xl ,..., x,). (If 1 or 0 should occur in .9(x1 ,..., x,) then, in obtaining 
G(x,, . . ., x,) we need to replace these, respectively, by X I  v 7 X 1  and 
X ,  A T X , . )  Since Boole’s class calculus methods are sound ( 3  2.6) we 
have that f (x l  ,... x,) = 1 implies g(xl ,..., x,) = 1, i.e. that 

(3 1 k B A i ( X 1 , . . . r X n )  = 1 j g ( X l r . . . , X n )  = 1. 

Boole’s method of doing propositional logic would then be sound and 
complete provided that 

pcF(X 1 9  . . ., X n )  -+ G ( X  1 9  . .( Xn) 

is equivalent to (3)-but this is the assertion of Theorem 0.560. 
Boole’s awkward and indirect way of doing propositional logic was, 

of course, the result of his not realizing that one could construct, on 
the basis of truth-value semantics, a formal system for propositional 
logic independently of his algebraic-equational class logic. Even so, 
granted that one were to use Boole’s idea, one can accomplish the 
needed correlation of propositional forms with class calculus equations 
with a far simpler meaning for T ( X ,  t )  than that of “time for which a 
proposition is true”. The same result can be accomplished by letting i, 
the universe over which t ranges, be the singleton set whose only 
member is the truth-value “true”, and taking T ( X ,  t )  now to mean ”the 
truth-value of X is t”, so that { t :  T ( X , t ) }  = i says that X has the 
truth-value “true”. Thus the equation { t  : T ( X ,  t ) >  = i or, in Boole’s 
notation x = 1, does represent X ,  since it is true if X is true and false if 
X is false. 

5 3.6. A two- to four-valued connective 

In the preceding section, to avoid unnecessary distraction, we 
deliberately omitted aspects of Boole’s propositional logic which would 
involve explicit use of uninterpretable expressions. This was easy to do 
since we were only considering Boole’s use of his calculus for 
conducting logical inference on the propositional level. We may note, 
with reference to  our discussion there, that in going from 
f (xl  ,..., x,) = 1 to g(x, ,..., x,) = 1 there was no need, as Boole 
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strongly emphasized, to interpret intermediate steps ; and if at each 
stage one were to replace the intermediate equations by equivalent 
ones having present only independently interpretable expressions 
(which we know can be done), then there would seem to be little 
interest in a propositional interpretation of Boole’s non-interpretable 
forms. However Boole does make explicit use of such 
forms-specifically expansions of Boolean quotients-in connection 
with this theory of probability, and as we shall be presently looking at  
this theory it behooves us to discuss this aspect of Boole’s 
propositional logic. (We are using the term “propositional logic” in a 
somewhat loose sense, our interest here being primarily in the 
introduction of certain new connectives and not with valid inference 
and its systematic organization.) Boole didn’t have our modern concept 
of a semantic basis for logical notations and we shall have to ferret out, 
as best we can from what he does, what such a semantics might be. 

In place of the complete disjunctive normal form of a formula on a 
given set of propositional variables we have Boole’s development 

1A + OB, 

or, as an asserted proposition, 

(2) lA+OB = 1, 

where between them the sums represented by A and B include all 
possible 2“ constituents on the n given variables. Thus Boole’s 
development (1) corresponds to the usual truth-table representation of 
a propositional formula, since it depicts both those constituents 
corresponding to truth-possibilities which the formula agrees with (the 
A part) as well as those which it disagrees with (the B part). But Boole 
also uses developments of the form 

1A f 0 B  + $C + &D, 

in which there is a separation of the constituents into four, rather than 
two, categories. Can we give propositional significance to expressions, 
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such as xly for example, whose expansion is 

As far as the truth-table idea is concerned one can formally extend 
the notion to correspond to expressions such as (3) by allowing 
assignments of values 1 and 0 (whatever they may mean) to the 
Boolean arguments and have values 1, 0, O/O, 1/0 (whatever they may 
mean) for the (so-prefixed) compounds. Mathematically such tables are 
functions from the set { 1,0} into the set { 1,0,0/0, l/O}. Associated with 
(4) for example would be the table 

X Y X l Y  

1 1 1 
1 0 1 /o 
0 1 0 
0 0 010 

The set of such 2- to 4-valued functions differs from the set of truth- 
functions of 2-valued logic in a major respect, namely in not being 
closed under functional composition-only those functional 
expressions whose values are limited to 1 or 0 can be substituted in for 
the (Boolean) argument variables. However, absence of the property of 
compositional closure (in full generality) need not be a hindrance to 
the use of such functions in logic if one is willing to accept a more 
complicated syntax, e.g. that “x /y”  cannot replace a Boolean variable 
in a formula. (Another alternative-generalizing connectives so as to 
be representable by functions on { 1, O,O/O, 1/0}-we shall not pursue.) 

Suggestive ideas as to how to give meaning to the values 1,0,0/0,1/0 
can be obtained from Boole’s use of Boolean quotient expansions in 
connection with his probability theory (in which context one talks 
about events happening or not happening rather than of propositions 
being true or false). Boole treats the question of a propositional 
interpretation for Boolean quotients, whose expansions have the full 
complement of four types of constituents, not in his chapters on 
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secondary propositions but later on in the Laws of Thought in the 
second chapter on probability, and there it isn’t really separated from 
the probability ideas, Only in a subsequent publication (BOOLE 
1854 = BOOLE 1952 XV) do  we find a clear propositional inter- 
pretation for the equation 

where A,  B, C ,  D are sums of constituents on variables x, y ,  z, ... 
Concerning ( 6 )  Boole says: 

1. A represents those combinations of [constituents on] events x, 
y, z ,  ... which must happen if w happen. 
2. B represents those combinations which cannot happen if w 
happen, but may otherwise happen. 
3. C those combinations which may or may not happen if w 
happen, and 
4. D those combinations which cannot happen at all. 

Note that Boole is here explicating the meaning of ( 6 )  as a whole 
and not giving separate meaning to the right-hand side. In order for us 
to do so recall that the proposition X is represented by the equation 
x = 1. If in ( 6 )  we replace w by 1 and assume that “1 happens” is true 
(and hence can be dropped as the antecedent of a conditional) then 

(7 ) 1 = l A + O B + Q C + & D ,  

which corresponds to the assertion of the “proposition” 1A + OB + 
QC + &D (with small letters turned into capitals) has the meaning 

1. A represents those combinations of events, x, y ,  z, ... 
[propositions X ,  I: Z ,  ...I which must happen [are “true”] 
2. B represents those combinations which cannot happen [are 
“false”] but which may otherwise happen [i.e. under other 
circumstances] 
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3. C represents those combinations which may or may not 
happen [may be “true” or may be “false”], and 
4. D represents those combinations which cannot happen at all 
[under any circumstance, i.e. are impossible]. 

What kind of events are these type 4. events which “cannot happen 
at all”, and how do we recognize them in ordinary discourse? Such 
events, we believe, are involved whenever there is a restriction or 
limitation of the universe of events by some presupposition or 
condition. For example, consider the “loaded” question “Have you 
stopped beating your wife?’ Here the interrogator is denying the 
possibility of there being nonwife-beating cases, i.e. the question 
presupposes that there are only wife-beating cases. As another example, 
in a stochastic setting, suppose we consider a universe of events 
consisting of the outcomes of two successive tosses of a coin (i.e. the 
elementary outcomes H 1 H 2 ,  H , H 2 ,  HlR2,  17,R2) together with all 
possible (Boolean) logical combinations of them. If we know for a fact 
that Heads has come up on the first toss then any event inconsistent 
with this, e.g. R1H2, is an event which cannot happen. Departing from 
factual matters, if we introduce the condition that HI, then on this 
condition the event R1H2 cannot happen, i.e. the “event” 

RlH2,  on condition H ,  

is an event of the 1/0 kind. 
Appropriating language from conditional probability, where one 

refers to the condition determining the events that can happen as 
“given”, we can express the newly envisioned connective X / Y ,  whose 
‘‘truth‘‘-table is 

1 1 1 

1 0 1/0 
0 1 0 
0 0 010 
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in words as:  

X Y  at least, X Y  + 8 7  at most, given X Y  + X Y  + r7F 

Note that ( Y  + X ) / Y ,  whose associated table is 

has its A (and A + C) part equivalent to  X and its A + B + C part 
equivalent to Y, and thus has the reading “ X ,  given I? It will be 
convenient to denote this connective by “XI Y”. 

We shall recur to this topic in 4 5.1. 

$3.7. Notes to Chapter 3 

The material in $ 4  3.1-3.2 was presented to a conference “The Birth of 
Mathematical Logic : Nineteenth Century Logic from Boole to  
Schroder” held at the State University of New York, College at  
Fredonia, March 16-18, 1983. It subsequently appeared as an article 
“Boole’s Abandoned Propositional Logic” in History and Philosophy of 
Logic, vol. 5 (1984), pp. 39-48. 

(for 43.1) 
As far as I know the first explicit symbolization and discussion of an 

identity operator occurs in CAYLEY 1854: “...the symbol 1 will 
naturally denote an operation which (either generally or in regard to a 
particular operant) leaves the operand unaltered,. . .”. Note that 
Cayley’s paper appeared in the same year as LT 

(for 43.3) 
It is interesting to note that Schroder, who did so much by way of 
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eliminating many of Boole’s notions which are now considered as 
irrelevant to logic, nevertheless went along with him in retaining the 
notion of time as something needed to establish propositional logic. 
See SCHRODER 1891, $28. There is a fairly extensive historical 
discussion, in the context of a wider topic, in PRIOR 1957, pp. 108-1 11. 

(for 4 3.4) 
Interpretive scholarly treatments of the De Futo material occuring in 

Josiah B. Gould. The Philosophy of Chrysippus. State University of 

Michael Frede. Die Stoische Logic. Van Den Hoeck & Ruprecht, 

Boole’s example can be found in:  

New York Press 1970. 

1974. 

(for 43.4) 
Boole’s technique of applying reduction to coefficients of an 

expansion can be justified as follows. For terms ol, u 2 ,  113 , .  . . let 

where a term is a product consisting only of letters and negated letters. 
The operator Red has the properties: 

( 1 )  for any terms t , ,  t , ,  

Red(t, + t 2 )  = t l  +F l tz  = t ,  v t ,  

(2) for mutually exclusive terms t l ,  t ,  

Red (tl  + t , )  = t l  + t ,  

(3) if each term ui of a sum x u i  is mutually exclusive with every 
term bj of a sum C b j ,  then 

Red ( x u i  + x b j )  = Red (Cai) + Red ( C b j )  
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(4) for terms of the form uiC 

Red ( x u $ )  = a,C v azC v a3C... 

= (a, v a2 v a3...)C 

= (Red (1 ai))C 

Thus when C,, Cz, C3,.  . . are distinct constituents on a given set of 
letters and x u i ,  Chi, x c i , .  . . are sums of terms not containing any of 
these letters, 
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PART 11. PROBABILITY 

I regard this work of Boole’s on probability as being of the 
utmost brilliance and importance. I am not aware that the general 
problem which he solves has been solved before or since. So far 
as I can judge Boole’s solution is essentially sound, . . . 

C. D. Broad, 1917 

... he takes a general indeterminate problem, applies to it 
particular assumptions not definitely stated in his book, ... and 
with these assumptions solves it; that is to say, he solves a parti- 
cular determinate case of an indeterminate problem, while his 
book may mislead the reader by making him suppose it is the 
general problem which is being treated of. 

Henry Wilbraham, 1854 
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CHAPTER 4 

PROBABILITY FROM BOOLE’S VIEWPOINT 

The basic relationship between Boolean algebra and the calculus of 
events, now commonplace in treatises on probability, was fully 
understood and exploited by Boole. There is no mention of probability 
in his The Mathematical Analysis of Logic of 1847 but by 1854, in the 
Laws of Thought, we have an extensive development. Here Boole not 
only uses this basic relationship but also presents a distinctively new 
approach to conditional probability making essential use of his peculiar 
logical system. As an indication of the importance which Boole attached 
to this application of his logical system it may be noted that fully one- 
third of the Laws of Thought is devoted to probability and associated 
matters. Subsequent to the publication of the Laws of Thought he wrote 
a number of articles on probability which are of significance to our study 
as they contain fuller and more cogent statements of his ideas, and also 
an important technical result needed to justify his procedures. 
Consequently our exposition of Boole’s work, which is the task of this 
chapter, while mainly based on the Laws of Thought, will take these later 
developments into consideration. Never clearly understood, and 
considered anyhow to be wrong, Boole’s ideas on probability were 
simply by-passed by the history of the subject, which developed along 
other lines. 

54.1. Critique of the standard theory 

In the main Boole accepts the prevailing views on the nature and 
principles of probability-Laplace and Poisson, for example, are cited as 
authorities. His contention isn’t that the received theory is wrong but 

215 
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that the principles normally adopted are insufficient to develop a general 
theory. Associated with Boole’s more general standpoint are a number 
of distinctive ideas of which, for the present, we mention just two. 

Instead of speaking of the probability of an event one can, as Boole 
remarks, equivalently speak of the probability r‘of the truth”] of the 
proposition asserting the occurence of the event. This possibility of 
replacing ‘event’ by ‘proposition’ had been noted earlier in the history of 
the subject by Ancillon in 1794 (see KEYNES 1921, p. 5 footnote 2) but 
only with Boole’s construction of a logical calculus of prqpositions did 
such a replacement have any material consequence-as he puts it “its 
adoption [‘proposition’ for ‘event’] will be attended with a practical 
advantage drawn from the circumstance that we have already discussed 
the theory of propositions, have defined their principle varieties, and 
established methods for determining, in every case, the amount and 
character of their mutual dependence” (p. 248). (Following Boole’s 
practice we shall use ‘event’ interchangeably with ‘proposition’.) This 
assertion of Boole’s is stronger than it appears to be. For, as we shall 
presently see, he believed that a conditional probability was the same as 
the probability of a conditional proposition, so that all probabilities, 
whether unconditional or conditional, were probabilities of 
combinations that could be encompassed by his logical system. 
Additionally, probabilities of events obtained from observations of 
frequencies were, in his opinion, ultimately expressible as probabilities of 
combinations of, and hence logically expressible in terms of, simple 
events. Accordingly, he views the general object of a theory of 
probabilities as : “Given the probabilities of any events, of whatever 
kind, to find the probability of some other event connected with them.” 

To compare this projected general goal with what is attainable from 
the “received” theory Boole gives a list (“chiefly taken from Laplace”) of 
the principles which have been applied to questions of probability 
(p. 249): 

PRINCIPLE 1st. If p be the probability of the occurence of any 

2nd. The probability of the concurrence of two independent 
event, 1 - p will be the probability of its non-occurence. 

events is the product of the probabilities of those events. 
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3rd. The probability of the concurrence of two dependent 
events is equal to the product of the probability of one of them 
by the probability that if that event occur, the other will happen 
also. 

4th. The probability that if an event, E ,  take place, an event, F ,  
will also take place, is equal to the probability of the occurrence of 
events E and F ,  divided by the probability of the occurence of E .  

5th. The probability of the occurrence of one or the other of two 
events which cannot concur is equal to the sum of their separate 
probabilities. 

6th. If an observed event can only result from some one of n 
different causes which are a priori equally probable, the probability 
of any one of the causes is a fraction whose numerator is the 
probability of the event, on the hypothesis of the existence of that 
cause, and whose denominator is the sum of the similar prob- 
abilities relative to all the causes. 

7th. The probability of a future event is the sum of the products 
formed by multiplying the probability of each cause by the 
probability that if that cause exists, the said future event will take 
place. 

Roole remarks that these principles [in fact only the lstk5thl suffice to 
determine the probability of any “compound” event in terms of those of 
the “simple” events of which it is composed, provided that these latter 
are all independent events. This tacitly assumes that all such events are 
expressible as compounds of the independent simple events by means 
only of negation, conjunction and disjunction. Taking the 6th and 7th 
into consideration, Boole asserts that the most general problem 
formulable from all these principles is the following (p. 250): 

DATA 

1st. The probabilities of the ii conditional propositions : 
If the cause A ,  exist, the event E will follow; 

A2 E 3, 

,, A ,  E 1, 

................................................... 
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2nd. The condition that the antecedents of those propositions are 
mutually conflicting. 

REQUIREMENTS 

The probability of the truth of the proposition which declares 
the occurrence of the event E ;  also, when that proposition is 
known to be true, the probabilities of truth of the several 
propositions which affirm the respective occurrences of the causes 
A , ,  A , .  . . A,,. 

He then goes on to remark on its lack of generality: 

Here it is seen, that the data are the probabilities of a series of 
compound events, expressed by conditionul propositions. But the 
system is obviously a very limited and particular one. For the 
antecedents of the propositions are subject to the condition of 
being mutually exclusive, and there is but one consequent, the 
event E ,  in the whole system. I t  does not follow, from our ability to 
discuss such a system as the above, that we are able to resolve 
problems whose data are the probabilities of utiy sj..strm of’ 
proposirions \vhutewr. And, viewing the subject in its material 
rather than its formal aspect, it is evident, that the hypothesis of 
exclusire causation is one which is not often realized in the actual 
world, the phaenomena of which seem to be, usually, the products 
of complex causes, the amount and character of whose co- 
operation is unknown. 

Some comment is in order. 
The contemporary understanding is that the notion involved i n  the 

inverse probability principle (i.e. Boole’s 6th) is not something involving 
“cause” but a two-argument notion of conditional probability usually 
defined as a quotient of probabilities, P ( A B ) / P ( B ) ,  referred to as the 
conditional probability of A,  given B, and representing the chances of A 
also being the case if B is the case. In  the preceding quotation we see 
Boole referring to  this as the probability of a “conditional 
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proposition”. This would be incorrect if one takes this to be the 
ordinary conditional equivalent to “not both A and not-B”. However, 
save in one instance (to be discussed below in $4.6), Boole always 
assigns to such “conditional propositions” the value of a quotient of 
probabilities. Boole never makes clear the logical status of these 
“conditional propositions”. 

As a further comment to the above quotation we point out that Boole 
gives no real justification for his assertion that the most general 
formulable problem by the known theory is as he states it, nor that it 
could not handle, in some fashion or other, the more general type of 
problem he envisions. Of course. this could be settled by an actual 
instance of a problem solvable by the one but not by the other. Indeed, 
in BOOLE 1851c, we find him proposing a problem “as a test of the 
sufficiency of the received methods”. We discuss this problem below in 
$4.7 and again in 4 6.2. 

8 4.2. An additional principle 

Although Boole gives the impression that he is merely adding a new 
probability principle to the accepted ones he is, in fact, additionally 
introducing new concepts, some of which involve a special 
understanding of those already in use. e.g. independence. We discuss 
these matters in some detail. 

For the probability of the conjunction of two events Boole “deduces” 
from the definition of probability as a ratio of numbers of equally likely 
cases the principle (p. 235) : 

11. The probability of the concurrence of two events is the 
product of either of these events by the probability that if that 
event occur, the other will occur also. 

From this the usual product rule for the conjunction of independent 
events (90.9) is derived on the basis of this definition : 

DEFINITION.-TWO events are said to be independent when the 
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probability of the happening of either of them is unaffected by our 
expectation of the occurrence or failure of the other. 

But contrast this DEFINITION with what would be a modern definition 
of independence if it would be stated in Boole’s kind of language: 

Two events are independent if the probability of the happening of 
either of these events is the same as the (conditional) probability that if 
the other occur, that one will occur also. 

Note that Boole’s Principle I1 refers to the “occurrence” of events 
whereas in his DEFINITION he speaks of “our expectation of the 
occurrence”. Despite the discrepancy the two are combined to obtain the 
product rule for independent events. While Boole’s product rule is the 
same as that of standard theory he does argue for the independence of 
certain kinds of events -“simple unconditional events” -which would 
not be accepted as independent on the basis of today’s understanding of 
this notion. We first consider Boole’s classification of events as simple or 
compound. 

Although he doesn’t give precise definitions it is clear from examples 
that compound events are those whose syntactic expression in a 
language is composed out of those for simple events by means of the 
logical connectives and thus, as Boole carefully points out, what are 
simple events depends upon the choice of language (p. 14): 

By a compound event is meant one of which the expression in 
language, or the conception in thought, depends upon the 
expression or the conception of other events which, in relation to 
it, may be regarded as simple events. To say “it rains”, or to say “it 
thunders”, is to express the occurrence of a simple event; but to 
say “it rains and thunders”, or to say “it either rains or thunders”, 
is to express that of a compound event. For the expression of that 
event depends upon the elementary expressions, “it rains”, “it 
thunders”. The criterion of simple events is not, therefore, any 
supposed simplicity in their nature. It is found solely on the mode 
of their expression in language or conception in thought. 

Boole goes on to maintain that if the set of data of a problem does not 
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imply a connection or dependence of events then these events are 
stochastically independent (p. 256)  : 

4. Now if this distinction of events, as simple or compound, is 
not founded in their real nature, but rests upon the accidents of 
language, it cannot affect the question of their mutual dependence 
or independence. If my knowledge of two simple events is confined 
to this particular fact, viz., that the probability of the occurrence of 
one of them is p ,  and that of the other is q : then I regard the events 
as independent, and thereupon affirm that the probability of their 
joint occurrence is p q .  But the ground of this affirmation is not 
that the events are simple ones, but that the data afford no 
information whatever concerning any connexion or dependence 
between them. When the probabilities of events are giuen, but ull 
information respecting their dependence withheld, the mind regards 
them as independent. [Italics supplied] And this mode of thought is 
equally correct whether the events, judged according to actual 
expression, are simple or compound, i.e., whether each of them is 
expressed by a single verb or by a combination of verbs. 

In contrast to Boole, the contemporary view is that positive 
information, or an hypothesis to that effect, is necessary for the assertion 
of stochastic independence and, indeed, as we shall see in $4.3. in the 
face of a specific problem with material content Boole appears to back 
down from his position. It is clear that one can’t prove Boole wrong 
formally, for if a set of premises includes x and y as unanalyzed events, 
and if nowhere is there any compound of them present (to indicate 
connexion), then one can adjoin to the premises the equation 
P ( x y )  = P ( x ) P ( y ) ,  i.e. a statement of their stochastic independence, 
without engendering inconsistency. 

We have earlier mentioned Boole’s not distinguishing between the 
probability of a conditional proposition and conditional probability. 
Although neither the notion of conditional probability per se nor, of 

Since Boole uses “dependence” in more than one sense, we shall often insert 
this adjective for clarity or emphasis. 
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course, a symbol for it appears in Boole’s writings, his treatment of 
situations requiring the notion are essentially correct. When he speaks of 
“the probability that if the event I/ occurs, an event V’ will also occur”, 
he refers to the event V’ as being conditioned by the event V ,  and he takes 
this probability to be the quotient of the probability of VV’ by the 
probability of V ,  i.e. as the conditional probability of V’ given V.  Simple 
unconditioned events are given a special status (p. 258): 

The simple events x, y, z will be said to be “conditioned” when 
they are not free to occur in every possible combination ; in other 
words, when some compound event depending upon them is 
precluded from occurring. Thus the events denoted by the 
propositions, “It rains,” “It thunders,” are “conditioned” if the 
event denoted by the proposition, “It thunders, but does not rain,” 
is excluded from happening, so that the range of possible is less 
than the range of conceivable combination. Simple unconditioned 
ecents are by definition independent. [Italics supplied] 

Thus Boole believes that only by virtue of some conditioning can events 
fail to be independent. Further discussion of Boole’s ideas on 
independence of simple events will be found in a chapter endnote to this 
section. 

And now for the statement of Boole’s new principle (pp. 250-257): 

VI. The events whose probabilities are given are to be regarded 
as independent of any connexion but such as is either expressed, or 
necessarily implied, in the data; and the mode in which our 
knowledge is to be employed is independent of the nature of the 
source from which such knowledge has been derived. 

While seemingly innocuous, by virtue of Boole’s taking, for simple 
events, absence of knowledge of any connexion to imply that events are 
unconditioned and hence stochastically independent, the consequences 
of using this principle are nontrivial. Exactly what Boole intends by this 
principle will emerge as we examine its use in establishing his general 
method. 
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84.3. A general method 

The demonstration of Boole’s general method for solving “any” problem 
in probability is presented by means of a series of Propositions in 
Chapter XVII of Laws of Thoughr. It also appears with greater clarity, 
though more succinctly, in two later papers, BOOLE 1854e and 1857. We 
shall make the fuller Luws of Thought version the basis of our initial 
exposition. 

First he takes up (Proposition I ,  p.258) the uncomplicated case of 
simple unconditioned events (by “definition” independent) and the 
determination of the probability of a compound event depending on 
them. Noting that for such events x, y, with respective probabilities p ,  q, 
the conjunctive combinations x y ,  x( 1 - y ) ,  (1  - x)( 1 - y ) ,  and the 
disjunctive combination x( 1 - y )  + y (  I - x), have probabilities which are 
the “same functions of p and q as the former is of x and y” Boole 
concludes in general “If p, q, r are the respective probabilities of any 
unconditioned simple events, the probability of any compound event V 
will be [ V], this function [ V ]  being, formed by changing, in the function 
V,  the symbols s, J’. 2 [, etc.] into p ,  q, r ,  etc.” By this result Boole then 
can immediately pass from the logical expression for a compound event 
to an algebraic expression giving its probability in terms of the 
unconditioned simple events of which it is composed. In this same 
proposition he also includes the following result on finding the 
conditional probability of V’ given V :  “. . . Under the same circumstance 
[p,  4, r respective probabilities of unconditioned simple events x, y, z ] ,  
the probability that if the event V occur any other event V’ will also 
occur, will be [ V V ’ ] / [ V ] ,  wherein [ V V ’ ]  denotes the result obtained by 
multiplying together the logical functions V and V‘, and changing in the 
result x, y ,  z ,  etc. into p, q, r,  etc.” Clearly this result gives, correctly, the 
value of the conditional probability of V’ given V and not for the 
conditional event “If V ,  then V”’. But the fact that he includes it in his 
Proposition I along with genuine compound events, although in a 
separate category, reinforces our aforementioned belief that Boole does 
not realize that they are quite distinct notions. It should also be noted 
that although Boole states these results of Proposition I for 
“uncondition simple events x, y, z” they hold equally well if x, y, z are 
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compound events so long as they are mutually independent (Theorem 
0.92). None of the results of Proposition I depend on Boole’s new 
principle. 

Next Boole considers the case of simple events wh,ich are conditioned. 
We quote his proposition and the accompanying discussion in full 
(p. 261): 

PROPOSITION I1 

10. It is known that the probabilities of certain simple events 
x, y, z, . . . are p, q, r ,  . . . respectively when a certain condition V is 
satisfied; V being in expression a function of x ,  y ,  z, . . . Required 
the absolute probabilities of the events x, y, z, . . . , that is, the 
probabilities of their respective occurrence independently of the 
condition V. 

Let p‘, q’, r‘, etc., be the probabilities required, i.e. the proba- 
bilities of the events x, y, z, . . . , regarded not only as simple, but 
as independent events. Then by Prop. I, the probabilities that 
these events will occur when the condition V, represented by the 
logical equation V = 1, is satisfied, are 

in which [ x V ]  denotes the result obtained by multiplying V by x ,  
according to the rules of the Calculus of Logic, and changing in 
the result x ,  y ,  z, into p’, q’, r’, etc. But the above conditioned pro- 
babilities are by hypothesis equal to p, q, r, . . . respectively. Hence 
we have, 

from which system of equations equal in number to the quantities 
p’ ,  q‘, r’, . . . , the values of those quantities may be determined. 

Now X V  consists simply of those constituents in V of which x 
is a factor. Let this sum be represented by V,, and in like manner let 
y V  be represented by V,, etc. Our equations then assume the 
form 
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where [V,] denotes the results obtained by c..anging in V, the 
symbols x, y, z,  etc., into p’, q’, r‘, etc. 

Evidently Boole is here considering p, q, r to be conditional probabili- 
ties of x ,  y, z given Vand then wishes to find in terms of these values the 
unconditional (or prior) probabilities of x, y ,  z. Although in the statement 
of the proposition he refers to x ,  y ,  z as “simple” events, by virtue of 
the fact that he uses the results of Proposition I to write the probability 
of V as [ V ]  (and similarly [xV]  for that of xV, etc.) indicates that the 
prior events are taken to be simple unconditioned, ie., by “definition”, 
independent events. We also point out that the system of equations, 

which relate the given p ,  q, r,  etc. with the unknowns p‘, q’, r‘, etc. are 
indeed equal in number to them, but they are not necessarily linear 
equations and their treatment, as Boole later realized, entails 
considerable difficulties regarding the existence and uniqueness of 
solutions and, in addition, the existence of solutions in the range 0 to 1 
necessary for probability values. 

As an illustration of his Proposition I1 Boole gives the following 
example (p. 262): 

Suppose that in the drawing of balls from an urn attention had 
only been paid to those cases in which the balls drawn were either 
of a particular colour, “white“, or of a particular composition, 
“marble”, or were marked by both these characters, no record 
having been kept of those cases in which a ball that was neither 
white nor of marble had been drawn. Let it then have been found, 

L that whenever the supposed condition was satisfied, there was a 
probability p that a white ball would be drawn, and a probability 
q that a marble ball would be drawn: and from these data alone 
let it be required to find the probability that in the next drawing, 
without reference a t  all to the condition above mentioned, a 
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white ball will be drawn; also the probability that a marble ball 
will be drawn. 

Here if x represent the drawing of a white ball, y that of a 
marble ball, the condition V will be represented by the logical 
function 

X.!J f X( 1 - Jj) f ( 1  - x) J’. 

Hence we have 

v, = xy + X(l - J’) = X, yv = SJ’ + ( I  - X ) J ’  = J’; 

whence 
[V,1 = P’, LV.1 = q‘; 

and the final equations of the problem are 

P’ 

q’ 
P’q’ + P’(1 - q’) + q’( 1 - P’) 

p’q’ + p’(  1 - 4’) + q’( 1 - p ’ )  = py 

= 4;  

from which we find 

p‘ = P f 9 - - 1  , q = - - .  I p + 4 - - 1  
9 P 

Boole is apparently uneasy about this solution for he then goes on to 
say : 

To meet a possible objection, I here remark, that the above 
reasoning does not require that the drawings of a white and a 
marble ball should be independent, in virtue of the physical 
constitution of the balls. The assumption of their independence is 
indeed involved in the solution, but it does not rest upon any 
prior assumption as to the nature of the balls, and their relations, 
or freedom from relations, of form, colour, structure, etc. It is 
founded upon our total ignorance of all these things. Probability 
always has reference to the state of our actual knowledge, and its 
numerical value varies with varying information. 

What is overlooked here, however, is that although the drawings of 



A GENERAL METHOD 221 

the white and of the marble balls are not required to be independent “in 
virtue of the physical constitution of the balls”, taking them to be inde- 
pendent, which is what Boole in effect does by writing [ V ]  for the prob- 
ability of V, necessarily implies a physical restriction on the contents of 
the urn-for not every urn has the property that the drawing of a white 
and of a marble ball from it are stochastically independent events. Boole 
must have realized his error but too late for correction in the text, for we 
find a NOTE printed at the beginning of the Laws of Thought’ following 
the table of contents which acknowledges the inappropriateness of this 
example as an illustration of Proposition I1 and stating that the correct 
solution of the urn problem as given should be 

p ’  = cp, q’ = cy, 

“in which c is the arbitrary probability of the condition that the ball 
should be either white, or of marble, or both at once”. Boole gives no 
further explanation other than referring the reader to Case 2 of Proposi- 
tion IV, where one has events x, y ,  z ,  . . . which are “conditioned”-pre- 
sumedly, in the example, by the unknown constitution of the urn; hence 
one cannot take the probability of V to be [ V ]  as in the case of x and y 
being unconditioned simple events. Thus, as BooIe’s error and his cor- 
rection of it indicates it may not be always evident when, in a specific 
application, events are or are not to be taken as simple unconditioned 
events. But this is really a question of how the theory is to be correctly 
applied-a topic to which Boole devotes little attention-rather than one 
of whether the theory is correct. 

Preparatory to giving his solution of what he considered to be the 
general problem in probability theory, Boole needs to show how to 
determine an arbitrary event (whose probability is sought) as a function 
of other events (whose probabilities are given). This preliminary logical 
problem is stated as Proposition 111 and we quote the argument which 
follows (pp. 263-264): 

Let S, T, etc., represent any compound events whose probabili- 

The Note appears in the 1951 Dover reprint but is omitted from the 1916 
Open Court edition. The substance of the Note also appears in a letter from 
Bode to De Morgan of 15 February 1854. (SMITH 1982, pp. 63-64). 
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ties are given, S and T being in expression known functions of 
the symbols x, y ,  z ,  etc., representing simple events. Similarly let 
W represent any event whose probability is sought, W being also 
a known function of x, y ,  z, etc. As S, T, . .. W must satisfy the 
fundamental law ‘of duality, we are permitted to replace them by 
single logical symbols, s, t ,  . . ., w. Assume then 

s = S , t  = T, w = W .  

These, by the definition of S, T, . . . , W will be a series of logical 
equations connecting the symbols s, t ,  ..., w, with the symbols 
x, Y ,  z ,  f f * 

By the method of the Calculus of Logic we can eliminate from 
the above system any of the symbols x, y ,  z, . . . , representing events 
whose probabilities are not given, and determine w as a developed 
function of s, t ,  etc., and of such of the symbols x, y ,  z, etc., if any 
such there be, as correspond to events whose probabilities are 
given. The result will be of the form 

w = A + OB + ; c + + D ,  

where A ,  B, C,  and D comprise among them all the possible 
constituents which can be formed from the symbols s, t ,  etc., i.e. 
from all the symbols representing events whose probabilities are 
given. 

The above will evidently be the complete expression of the 
relation sought. For it fully determines the event W ,  represented 
by the single symbol w, as a function or combination of the events 
similarly denoted by the symbols s, t ,  etc., and it assigns by the 
laws of the Calculus of Logic the condition 

D = 0, 

as connecting the events s, t ,  etc., among themselves. We may, 
therefore, by Principle VI, regard s, t ,  etc., as simple events, of 
which the combination w, and the condition with which it is 
associated D, are definitely determined. 

We consider first Boole’s assertion that the event W is “fully 
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determined“ by the equation w = A + OB + $C + 80 with w representing 
W, s representing S, etc. If this were so then we should be able to obtain, 
under the necessary condition expressed by D = 0, a Boolean expression 
for W in terms of S, T,. . . , One could try using Boole’s interpretation for 
the equation, namely 

w = A(s,t ,... ) + t C ( s , t  )...) 

D(s ,  t ,  . . .) = 0, 

and obtain such an expression by substituting in it W for w, S for s, T 
for t, etc. But what of L)? It too depends on s, t , .  . . and, moreover, in 
general in no explicitly (Boolean) determinable manner. However, if we 
use not (1)  but 

A ( s , t ,  ...) E w G A(s ,  t , .  ..) + C(s,t, ...) 

D(s, t ,  . . .) = 0 

we have, on making the substitution W for w,  S for s, T for t , .  . . that 

A(S, T, ...) G w G A(& r, .. * )  + C(S, r,. ..) 
D(S ,  T, . . .) = 0 

thus obtaining only Boolean inclusion bounds on W in terms of 
S, T, . .  .-subject of course to the condition that D ( S ,  T. . . )  = 0. As 
explained in 6 2.6, these Boolean bounds are “best possible”. It is only in 
this sense that we can agree with Boole that w = A + OB +$C + &D 
determines W as a combination of S, T . . . . 

We next consider the assertion in the last sentence of the above 
quotation. Having introduced s, t, , . . as “single logical symbols”, Boole 
appeals to his Principle VI to justify considering w as a combination of 
the simple events s, t,. . ., these events being conditioned by D = 0 so that 
only those combinations contained in A + B + C are possible. It is hard 
to see how this is justified by Principle VI since it refers to “The events 
whose probabilities are given”, whereas s, t ,  . . . are newly introduced. But 
more than this : he takes s, t ,  . . . as simple unconditioned events, i.e. as 
independent events, which, when “conditioned” by D = 0, have the same 
probabilities as the given events S, T,.... To see this we turn to the 
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statement of Boole’s Proposition IV, embodying the nub of his 
probability method (p. 25): 

PROPOSITION IV 

14. Given the probabilities of any system of events; to  determine 
b y  a general method the consequent or deriued probability of any 
other event. 

As in the last Proposition, let S, T, etc., be the events whose 
probabilities are given, W the event whose probability is sought, 
these being known functions of x, y ,  z ,  etc. Let us represent the 
data as follows: 

Probability of S = p ;  

(1) Probability of T = q :  

and so on, p ,  q, etc., being known numerical values. If we then 
represent the compound event S by s, T by t, and W by w, 
we find by the last proposition, 

M ’ =  A +OB+:C+$D; (2 1 
A ,  B, C, and D being functions of s, t, etc. Moreover the data (1) 
are transformed into 

Prob. s = p ,  Prob. t = q, etc. (3) 

Now the equation (2) is resolvable into the system 

w = A + qc, 

D = 0 ,  
(4) 

q being an indefinite class symbol (VI. 12). But since by the proper- 
ties of constituents (V. Prop. 111), we have 

A + B + C + D = I ,  

the second equation of the above system may be expressed in the 
form 

A + B +  C =  1. 
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If we represent the function A + B + C by V, the system (4) 
becomes 

w = A + q C ,  (5 )  

v =  1. (6 )  

Let us for a moment consider this result. Since V is the sum of 
a series of constituents of s, r ,  etc., it represents the compound 
event i n  which the simple events involved are those denoted by 
s, t ,  etc. Hence (6) shows that the events denoted by s, t ,  etc., and 
whose probabilities are p ,  q, etc., have such probabilities not as 
independent events, but as events subject to a certain condition V. 
Equation ( 5 )  expresses w as a similarly conditioned combination 
of the same events. 

That p ,  q etc. are conditional probabilities of s, t ,  etc. on condition I/ 
makes some sense since s, t ,  etc. have these probabilities given that s = S ,  
t = T, etc., and I/ is the logical content of these equations in respect to s, 
r, etc. We examine this later in 9: 5.4. To continue: 

Now by Principle VI, the mode in which this knowledge of the 
connexion of events has been obtained does not influence the 
mode in which, when obtained, it is to be employed. We must 
reason upon it as if experience had presented to us the events 
s, t ,  etc., as simple events, free to enter into every combination, 
but possessing, when actually subject to the condition V, the 
probabilities p ,  q, etc., respectively. 

Boole goes on now to apply his Propositions I and I1 which, as we 
have noted, requires the a priori s, r ,  . . . to be simple unconditioned, i.e. 
independent, events: 

Let then p’ ,  q’, . . , , be the corresponding probabilities of such 
events, when the restriction V is removed. Then by Prop. I1 of 
the present chapter, these quantities will be determined by the 
system of equations, 
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and by Prop. I. the probability of the event w under the same con- 
dition V will be 

[ A  + C C I  . 
[VI ’ 

Prob. w = -- 

wherein V, denotes the sum of those constituents in V of which s 
is a factor, and [V,] what that sum bzcomes when s, f ,  ..., are 
changed into p‘, q‘, . . . , respectively. The constant c represents 
the probability of the indefinite event q ;  it is, therefore, arbitrary, 
and admits of any value from 0 to 1. 

There are minor lapses in Boole’s argument here. First of all (8) should 
be written : 

where ‘q’ is Boole’s indefinite class symbol, since the square brackets are 
applied only to logical expressions and A + CC is not one if c is a prob- 
ability, Secondly, the application of Prop. I to get (8) requires that the 
events involved be simple events; while we know (granted Boole’s argu- 
ment) that this is the case for s, t, etc., we have no explicit justification 
for this in the case of the indefinite event q. Perhaps Boole thought it 
self-evident that q is a simple unconditioned event on a par with s, f ,  . . . 

Boole’s sentence about the constant c should then be postponed and 
placed after his equation (10) (see our next quotation). 

We continue with his discussion of Proposition IV : 

Now it will be observed, that the values of p’, q’, etc., are deter- 
mined from (7) only in order that they may be substituted in (8), 
so as to render Prob. w a function of known quantities, y ,  q, etc. 
It is obvious, therefore, that instead of the letter p ’ ,  q’ etc., we 
might employ any others as s, r, etc., in the same quantitative 
acceptations. This particular step would simply involve a change 
of meaning of the symbols s, t, etc.-their ceasing to be logical, 
and becoming quantitative. The systems (7) and (8) would then 
become 
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A + cC 
Prob. w = - 

V ’  

In employing these, it is only necessary to determine from (9) 
s, t ,  etc., regarded as quantitative symbols, in terms of p .  q, etc., 
and substitute the resulting values in (10). It is,evident, that s, t ,  
etc., inasmuch as they represent probabilities, will be positive 
proper fractions. 

15. It remains to interpret the constant c assumed to represent 
the probability of the indefinite event q. Now the logical equation 

HI = A + qC, 

interpreted in the reverse order, implies that if either the event A 
takes place, or the event C in connexion with the event q, the event 
w will take place, and not otherwise. Hence q represents that con- 
dition under which, if the event C take place, the event w will take 
place. But the probability of q is c. Hence, therefore, c = probabi- 
lity that if the event C take place the event w will take place. 
Wherefore by Principle 11., 

Probability of concurrence of C and w 
Probability of C 

c =  

Boole’s argument isn’t quite clear, but that what he gives for c is 
correct can be seen by noting that w = A + qC gives 

and that P(q lC)  = P(wlC) ,  since C implies that w and q are equivalent. 
Boole now summarizes the above discussion and states his method as a 
General Rule which he divides up into two cases-the first when the 
given probabilities p ,  4,. . . are probabilities of unconditioned events x, 
y, . . . and a second case as follows : 

Case 11.-When some of the events are conditioned. 
If there be given the probability p that if the event X occur, the 

event Y will occur, and if the probability of the antecedent X 
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be not given, resolve the proposition into the two following, viz: 

Probability of X = c, 

Probability of X Y  = cp. 

If the quaesitum be the probability that if the event W occur, 
the event Z will occur, determine separately, by the previous case, 
the terms of the fraction 

Prob. W Z  
Prob. W ’ 

and the fraction itself will express the probability sought. 
It is understood in this case that X ,  X W ,  Z may be any 

compound events whatsoever. The expressions X Y and W Z  
represent the products of the symbolical expressions of X and Y 
and W and 2, formed according to the rule of the Calculus of 
Logic. 

It thus appears that when conditioned events are part of the data then 
new parameters, e.g. the c = Probability of X in Case I1 just quoted, can 
enter. But then Boole’s general method isn’t quite what one may have 
understood it to be! For when he says in Proposition IV “Giren the 
probabilities of any system of events ; to determine b y  u general method the 
consequent or derired probubility of any other erent” one would naturally 
suppose it to mean that the derived probability would be in terms of the 
given probabilities. Now we see that, when conditioned events are part 
of the data, we are to understand this as meaning “in terms of the given 
probabilities plus possibly parameters representing unknown 
probabilities.” 

After presenting his general method for the solution of problems in 
probability Boole brings his Chapter XVII to a close with three short 
sections of philosophical argument, concluding that one may either start 
with the “ordinary numerical definition of the measure of probability” 
(i.e. as a ratio of cases) and derive the formal identity between the logical 
expression of events and the algebraic expression of their values or, 
conversely, by starting with the assumption that the measure of 
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probability has such values so as to bring about this formal identity, one 
can obtain the ordinary numerical definition. 

In  view of the extensive exegetical comments with which we have 
interspersed our presentation of Boole’s method it will be helpful, before 
going on to the next section, to recapitulate its main features as given in 
his Propositions I-IV of Chapter XVII. 

In Proposition I we have the result that the probability of a Boolean 
polynomial V of simple unconditioned events (with + being used dis- 
junctively) is the homonymous arithmetic function [ V] of the respective 
probabilities; and for the conditioned event V’ given V, the probability 
is given by the quotient [VV’]/[V].  

In Proposition I1 it is required to find the absolute probabilities of 
events s, y ,  z ,  . . . if one is given that, on condition V, their respective 
probabilities are p ,  9,  r ,  . . . As Boole explains in the emendatory NOTE 
printed at the front of the Laws of Thought, “In Prop. 11, p. 261, by the 
‘absolute probabilities’ of the events x, y ,  2, . . . is meant simply what the 
probabilities of those events ought to be, in order that, regarding them 
as independent [sic], and their probabilities as our only data, the calcu- 
lated probabilities of the same events under the condition V should be 
p ,  q,  I-, . . .”. By virtue of this meaning for “absolute probabilities” Boole 
is then justified in replacing the equations 

expressing that p ,  q etc., are conditional probabilities, by the equations 

which involve only the absolute probabilities of x, y , .  . . 
In Proposition 111 Boole determines “in any question of probabilities” 

the connection of the event W(x, y ,  . . .) whose probability is sought as a 
logical function of events S(x, y, ...), T(x, y ,  ...), ... whose probabilities 
are given. As we have shown above there is a sense in which one can give 
this connection explicitly in terms of S, T, . .., but Boole does this 
through the intermediary of simple events s, t ,  . . . , w and by means of the 
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equation 

(3) 

obtained from the system of equations 

U’ = A + OB + f c + f D ,  

(4) s = S ,  t = T  ,..., w = W  

by eliminating events whose probabilities are not given, and then solving 
by his Calculus of Logic for w. The interpreted form for (3) is given by 
the pair of equations 

( 5 )  w = A + qC, 

(6 )  V =  1, where V = A + B + C .  

If the data should include logical relationships among the x, y,  z ,  . . . 
then these relationships expressed in equational form, are to be included 
along with the system (4). 

I n  Proposition IV Boole argues, on the basis of his new principle in 
probability (called Principle VI above), that the equation (6)  shows that 
the events s, t, . . . whose probabilities are the given p, q, . . . have these 
probabilities not as independent events but as events conditioned by V, 
and that ( 5 )  similarly expresses w as a combination of these conditioned 
events. Accordingly, by use of Propositions I f  and I, Boole can write 
this result as 

(7) 

where, employing Boole’s convention, the letters ‘s’, ‘t’, . . . in these equa- 
tions now stand for their respective (absolute) probabilities. The [uni- 
que?] numerical values of s, t ,  . . . determined by [are they?] equations (7) 
are to be found [how ?] and substituted in (8) to determine the probability 
sought. (It is to be regretted that Boole had no special symbol for con- 
ditional probability-nor for that matter for probability itself other than 
the rudimentary ,,Prob.”-as his discussion would improve in clarity 
by a visual distinction between P(s), P(r), . . . and P(s I V ) ,  P(t  I V ) ,  . . .). 
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0 4.4. The problem of “absolute” probabilities I 

We here undertake a preliminary investigation of Boole’s Proposition I1 
(Laws of Thought, p. 261) and his assertion that the absolute (i.e. un- 
conditioned) probabilities of x, y ,  z ,  . . . “may be determined” from the 
equations 

which are “equal in number” to the number of unknowns. Since the 
solution for the probability of the sought for event in his general prob- 
ability problem is expressed in terms of these absolute probabilities, the 
question as to whether there are such values is of no small moment to 
his method. Initially Boole says nothing concerning possible difficulties 
attendant upon the solution of such a system of equations-difficulties 
relating to necessary conditions on the parameters p ,  q, r ,  . . . , to depen- 
dence or independence of the equations, and to the handling of what in 
general is a non-linear system of equations. In the Laws of Thought 
Boole treats these matters on an ad hoc basis for the particular illustrative 
problems he studies, and only in a series of papers published subsequently 
to the Laws of Thought does he tackle the general situation. In this 
section, in preparation for the later general treatment, we shall look a t  
some very simple cases so as to gain an appreciation of these difficulties. 

Before continuing let us rephrase Boole’s Proposition I1 in contem- 
porary terms. 

PROBLEM ON ABSOLUTE PROBABILITIES. Given real numbers p ,  q, r ,  . . . 
in the range 0 to 1, and a Boolean function V of mutually independent 
events x ,  y ,  z , . . . with P( V )  # 0, determine whether there are values of 
P(x),  P(y), P(z), . . . (necessarily in the range from 0 to 1) satisfying 

and, if so, find all such values. 

In our discussion of this problem we shall adopt Boole’s convention 
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of using letters x, y ,  z, . . . both for events and for their respective prob- 
abilities; although by this convention the logical and arithmetical sym- 
bols 0, 1, +, - are indistinguishable, one can readily tell by the context 
which is meant. For example, if p is a number then in (xj + Xy) p = xj, 
the numerical interpretation for x, y ,  2, is clearly intended. It will also 
be convenient to use Vfor [ V], i.e. the result of replacing events x, y, z,  . . . 
by their respective probabilities, and Vx for [XU; we avoid using ‘xv’ 
in the numerical sense since it would be ambiguous as to whether [XI [ V ]  
or [xV]  is meant. The assumption of the mutual independence of the 
events x, y ,  z ,  ... enables one to replace P(V)  by [V], P(xV) by [xv], 
etc. 

One readily sees that in investigating the problem at hand it suffices to 
consider only one function from a given symmetry type (see 0.5.6 in 
40.5); for example the solution of the problem for 

v = x y - t x y ,  p = - - ,  VX q=v’ VY 
V 

is equivalent to that for 

since replacing y by in (2) gives (3) by virtue of 

(4) 

Consider an arbitrary Boolean function V of two variables. Since we 
are requiring P( V )  # 0, we can rule out V = 0. In addition, the case of 
V = 1 = xy + x j  + Xy + ?j is trivial, the solution being clearly x = p ,  
y = q. We then restrict our attention to functions Vhaving 1, 2 or 3 con- 
stituents and of these select the following as representatives of each of 
the four possible symmetry types : 

(9 X Y ,  

(ii) xj + Xv, 
(iii) xy + xj (= x), 
(iv) xy + Xy + x j  (= x V y) .  

,Case i. V = xy. 
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In this case the system of equations (1) becomes 

XY 
X Y  XY 

, q = - 1  
p = -  *Y 

and we see that there is a solution only if p = q = 1 ; and, if this is the 
case, then two equations become identical and any pair of values (x, y) 
with x and y in the half-closed interval (0, 11 constitutes a solution. 

Case ii. V = xy + i y .  
In this case equations (1) are 

f Y  
1 q = 7  

XY p = _- 
x y  + x y  x y + x y ’  

which upon addition gives p + q = 1 and hence there is a solution only 
if p and q satisfy this condition. If the condition is satisfied then there is 
only one independent equation which we may write, on introducing 
xl =: x/x, .y2 = y/y ,  as 

- - 

indicating a “half-line” of solutions in the (x,, x2)-plane. 
Case iii. V = x.  
Here equations (1) are 

and a solution exists only if p = 1. In this case x can have any value in 
the range (0, 11 and y must be 4. 

Case iv. V = xy  + Xy + x)?. 
Here the equations (1) are 

(7) 
xy  + xF 

xy  + Ty + x), 
xy  + z y  

xy + Ey + xl.‘ p ”  7 q =  

By addition of these equations we find 

X Y  

V p + q - - l = - ,  
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and thus a solution only if 

(9) O l p S q - 1 .  

Subcase iv,. p + q - 1 = 0. 
By (8) this implies x y  = 0, so that either x = 0 or y = 0. In the first 

case we have by ( 7 ) p  = 0, q = y / y  so that the solutions are x = 0, y any 
value in (0, 1 1 ;  in the second case (7)  tells us that p = x/x, q = 0 so that 
the solutions are x any value in (0, 1 1  and y = 0. 

Subcase iv,. 0 < p + q - 1 .  
By (8)  we have that xy # 0. Hence equations (7) can be written 

where as before x ,  = x/x, x2 = Fly. On rearranging (10) into the form 

(1 1) PX, - px2 = P,  +XI + qx2 = s 
we see that we have a pair of simultaneous linear equations in x1 and x,. 
Such a system has a unique solution if and only if the determinant of 
the coefficients, namely 

is different from 0. Since in this case we do have p + q - 1 # 0, there is 
a unique solution. One readily finds 

- 
4 x, = P XI = ~- 

p + q -  1 ’  p + q - - I  

p + q - - 1  
and then 

p + q -  1 
9 Y =  

9 P 
x = ~- , 

and that the values for x and y are in the appropriate probability range 
since p + q - 1 which, by hypothesis, is greater than 0 is also less or 
equal to q or p .  

On the basis of these simple cases we can make some observations which 
will serve to illustrate points coming up later in our general discussion 
of this topic (in 4 5.6). 
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It is not sufficient, for the existence of solutions to (l), that p and q be 
merely in the probability range 0 to 1-equations (1) imply in general 
more stringent necessary conditions than this. If the implied necessary 
condition is an equation, then the system ( 1 )  is not independent, and we 
are prepared for families (subspaces) of solutions. In the one case for 
which there is a unique solution, namely for V = x V y (or any of its 
fellow symmetry-type mates) the necessary condition relating p and q is a 
linear inequation. Although in this case the equations (1) come out to be 
linear (in the variables$x and y / y )  it is easy to see that, for V’s with more 
than two variables, such a circumstance cannot in general prevail. 

0 4.5. Boole’s method without the mutual independence 

Although the simple events introduced in his general method were, from 
Boole’s standpoint, always mutually independent, there are particular 
problems of the kind treated by Boole which can be solved without the 
need to assume that these simple events are mutually independent. We 
devote a few paragraphs to this topic. 

Recall that, in the uncomplicated case of Boole’s general method, one 
is given 

W ( X ,  4 ’ 3  . * .I) = p ,  

P W x ,  y ,  . . .)) = q, etc. 

and is asked to find P( W(x, y ,  . . .)) where S, T, . . . , Ware known Boolean 
functions of x, y ,  . . . Boole puts s = S(s, y ,  . ..), t = T(x, y, . . .), . .., 
w = W(x, y ,  ...) and expresses w in terms of s, t, ... The result is then 
converted into developed form 

w = A + OB $. I C + D, 

where A ,  B, C,  D are sums of constituents on s, t, ... Boole argues-a 
contention we examine in our next chapter-that P( W )  is the conditional 
probability 

[ A  + qC1 
[ VI 

(1) 
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and its value is to be determined by solving the equations 

for the probabilities of s, t ,  . . . appearing therein which are then substi- 
tuted into (1). In using the square brackets Boole is in effect (see our 
preceding section) assuming that the events s, t ,  ... are mutually inde- 
pendent, but without this assumption he still could have argued that 
(using present day notation) 

(3) 

with, similarly, 

(4) 

(In comparison with (2) we here have an additional equation 1 = P( V ) /  
P (V) ,  which, although trivially true, will be needed.) From (3) and (4) 
one can still determine P (  W )  in terms of the given p ,  q, . . ., 1 i f P ( A  + q C )  
could be expressed as a linear combination of P(sV) ,  P (tv), . . ., P ( V )  for, 
since by (4) these quantities are respectively equal to p P ( V ) ,  
9 P ( V ) ,  . . ., 1. P( V ) ,  by substituting this linear combination in (3) for 
P ( A  + qC) the P( V )  in numerator and denominator cancels, leaving as a 
value for P ( W )  this same linear combination of p, q, . . ., 1. Conditions on 
V, A ,  and C so that P ( A  + qC)  is so expressible are determined as follows. 

Note that any two distinct constituents (on the same variables) are 
mutually exclusive so that the probability operator distributes over sums 
of such constituents. Call any one such term a constituent probability. 
Now since A and C are mutually exclusive, 

P ( A  + qC) = P ( 4  + P(9C)  

= P ( A )  + P(q j C )  P ( C )  

= f Y A )  + CP(C), 

where, in the last equation, we have put c for P(q I C) .  If possible we 
would like to have values for a , ,  .... a,,, so that (assuming that the 
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variables s, t ,  . . . are / I  in number) 

( 5 )  P ( A )  4- cP(C) = a , P ( s V )  + a , f ( t V )  -t ... + a , + l P ( V )  

is an identity. I f  now in ( 5 )  we replace P( A ) ,  P(C), P(sV) ,  . . . , P( V )  by 
the respective sums of constituent probabilities which are equal to them 
and equate the total coefficients of like constituent probabilities of the 
two sides of the equation, we would obtain IYI (linear) equations in the 
n + 1 unknowns a, ,  ..., a,,+,, where nz (1 5 nz 2 2“) is the number of 
constituents in V. It is evident that in these nz equations the coefficients 
of the a,. can be only 0 or 1, and the constant term in each equation can 
be only 0, 1, or c. From the theory of linear equations we know that a 
system of linear equations is consistent (has a solution) if and only if the 
rank of the augmented matrix is equal to that of the matrix of coefficients. 
If P ( W )  can be found in this manner, i.e. if the m linear equations in 
the ai have a solution, we will say that we are applying the Mefhod of 
Linear Composition. In the next section we shall see examples of this me- 
thod. It should be pointed out that the “chances” of this method being 
applicable in an arbitrary situation are small since (in the case of a V 
on n variables) there can be up to 2“ equations involving only n + 1 un- 
knowns-and, statistically speaking, the more equation there are the 
“harder” is it for the system to be consistent. On the other hand, if the 
Method of Linear Composition is applicable then one is spared having to 
solve the system of equations (2) for the probabilities of the simple events 
(see $4.2). The possibility of this was not mentioned in the Laws of 
Thought but occurs later in’ BOOLE 1854c (see BOOLE 1952, p. 285). 

0 4.6. Elementary illustrations of Boole’s method 

After the exposition of his “general method” for the solution of problems 
in probability Boole next has a chapter devoted to illustrations of the 
method, using simple examples for which, as he says, the results are 
“readily verified”. As might be expected, these examples involve logical 
relationships to a much more significant extent then had heretofore been 
the case in published works on the subject of probability. It will be worth- 
while to go through these in some detail so as to familiarize ourselves 
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with the method and so as to be able to contrast Boole’s method with 
current practice. 

We quote his first example (pp. 276-277) in full: 

Ex. I. The probability that it thunders upon a given day is p, 
the probability- that it both thunders and hails is q, but of the 
connexion of the two phenomena of thunder and hail, nothing 
further is supposed to be known. Required the probability that 
it hails on the proposed day. 

Let x represent the event-It thunders. 
Let y represent the event-It hails. 

Then xy will represent the event-It thunders and hails; and the 
data of the problem are 

Prob. x = p ,  Prob. x y  = q .  

There being here but one compound event xy involved, assume, 
according to the rule, 

xy = U .  ( 1 )  

Prob. x = p ,  Prob. u = q ;  (2) 

Our data then become 

and it is required to find Prob. y. Now (1) gives 

U 0 
- u x + + u ( l  - x ) + O ( l  - u ) x + z ( l  - u ) ( l  - x ) .  

y = x -  

Hence (XVII. 17) we find 

V = u x + ( l - U ) x + ( 1 - U ) ( 1  - x ) ,  

v, = ux + (1 - u )  x = x, v, = ux;  

and the equations of the General RuIe, viz., 

- _  v x  - 5 = v, 
P 4  

A + CC 
Prob. y = - 

V 
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become, on substitution, and observing that A = ux, C = 
(1 - u )  (1 - x), and that V reduces to x + (1 - u) (1 - x), 

x ux _ -  --- - x + ( I  - 24) (1 - x ) ,  
P 4  

ux + c(1 - u )  ( 1  - x) 
x + ( I - u ) ( l  - x )  ' Prob. y = (4) 

from which we readily deduce, by elimination of x and u, 

Prob. y = q + c(1 - p). ( 5 )  

In this result c represents the unknown probability that if the event 
(1 - u )  (1 - x) happen, the event y will happen. Now 
(1 - u)  (1 - x) = (1 - xy) (1 - x) = 1 - x, on actual multi- 
plication. Hence c is the unknown probability that if it does not 
thunder, it will hail. 

The general solution ( 5 )  may therefore be interpreted as follows : 
The probability that it hails is equal to the probability that it 
thunders and hails, q, together with the probability that it does 
not thunder, 1 - p, multiplied by the probability c, that if it 
does not thunder it will hail. And common reasoning verifies this 
result. 

Boole does not say how he eliminated x and u from equations (3) and 
(4). The logical function V in this problem is ux + i x  + UX (i.e. x V i), 
which is of the symmetry type for which the Problem on Absolute Prob- 
abilities ( Q  4.4) has a unique solution and equations (3) can be solved as 
a linear system so as to obtain x and u. But the Method of Linear 
Composition is also available since A + CC (= ux + cUX) is expressible 
linearly in terms of x V (  = ux) ,  uV(  = ux) ,  and V (  = ux + iix + EX); for, 
using the constituents ux,  i ix,  ii2 to stand also for their respective 
probabilities, the condition 

(8) 

leads, on equating coefficients of the constituent probabilities of the two 

ux + cix = Ul(UX + Cx) + uz(ux) + u&x + i x  + iq 
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sides, to the consistent system of equations, 

(9) 

a1 + a2 4- a3 = 1 ,  

a1 + a3 = 0, 

a3 = c ,  

which has (-c, 1, c)  as its solution. Thus the conditional probability 
(A + cC)/V is the linear combination of p, q, 1 gotten by using these 
values as coefficients, namely -c  . p + 1 . p + c . 1, which is q + c( 1 - p). 
(We point out that all this, being in terms of the probabilities of the 
constituents ux, ux, k?, doesn’t require the events u and x to be independ- 
ent.) 

A present-day solution of the problem would run as follows : From the 
logical identity 

y = xy + xy 
it results that 

which coincides with Boole’s answer. 
While the solution just given is certainly much simpler than Boole’s 

nevertheless it does require one to think of writing y in terms of xy and 
xy. While how to do this here is quite evident, conceivably in other prob- 
lems a corresponding needed relationship among the given elements may 
not be so readily ascertainable-a noteworthy claim of Boole’s method 
is that it includes an algorithm for obtaining such a relationship in all 
circumstances. 

Boole’s next example (Ex. 2, p. 278) poses the problem of finding 
P ( x j + X y )  if one is given that P ( x  v y) = p and P(X v j) = q. (All 
this is stated verbally by Boole-he makes no use of either the probability 
symbol, except occasionally for the rudimentary “Prob.”, or of the symbol 
V.) By his logical methods he expresses w = xy + Xy in terms of 
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s = xy + ky + xy and t = x j  + Xy + i4 ,  obtaining 

w = st + 0 .  s t +  0 .  st + ;. st. 

Here, as in the preceding example, the logical function V (  = st + sr + s t )  
is of the type yielding a linear solution for the unknown absolute prob- 
abilities; but the Method of Linear Composition also works and requires 
no assumption of independence of s and t. It is easy to verify by standard 
techniques that the answer Boole gives, namely p + q - 1, is correct: 
from the logical identity 

xy + xy = ( x  v 1’) (2 v y ,  

and the general addition law we have 

P ( x j  + xy) = P(x  v y) + P(X v 7)  - P(x v y v s v F) 
= p + q - 1 .  

In Ex. 3, p. 279, Boole has a problem on the combination of testimonies 
of witnesses-a type of problem much discussed by early writers in 
probability. KEYNES [1921, p. 1801 argues that all these writers (Boole 
included) fallaciously assume that the probability of two independent 
witnesses speaking the truth is the product of the probabilities that they 
separately speak the truth. Ignoring the question as to whether or not 
Boole has correctly expressed the material conditions of the problem he 
poses, we look at the one actually formulated, which may be stated as 
follows : 

Given 

P(x)  = P, P(Y) = q, P(xY + Xy) = r ,  

find the conditional probability 

or, since the denominator P(xy + .j) = 1 - P(Xy + x!) = 1 - r, one 
merely needs to find P(xy).  

We will not trouble ourselves to go through the details of Boole’s 
solution. Suffice it to say that the V encountered is 

x y s + x y s + x y s + 2 y s  (s = x j + X y )  
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and is not of the type which leads to a linear system of equations for the 
absolute probabilities. However, the Method of Linear Composition 
does work and one can easily obtain here the A + c C ( =  xy;) as a 
combination of p V, qV and rV. Presumedly this is how Boole solves the 
algebraic part of the problem for he says of it only “we readily deduce”. 
Again Boole’s answer, here that P(xy)  = $(p  + q - r), is easily obtained 
from standard principles if one starts out with the right connections-in 
this case the value of P(xy)  is immediately forthcoming from the pair of 
equations 

(0 P(XY) = P(x)  + P(Y) - P(x V Y )  

= p  + 4 - P ( x V y ) ,  

(ii) P(x V y )  = P(xy) + P ( x j  + Zy) 
= P(xy) + r 

by elimination of P(x V y). 
Boole’s next illustration (Ex. 4, p. 281) is stated in story form as a 

kind of public health problem concerning the incidence of “fever”, 
“cholera” and “defective sanitary condition” and, when symbolically 
formulated, results in the following: 

Given 

P(x) = P, P(y) = q, Wi3 = r ,  
find P(z). 

obtaining 
Boole puts w = (1 - x) ( I  - y )  (1 - z), solves algebraically for z 

(1  - x)(1 - - y )  - w 

(1 - x )  (1 - Y )  
z =  

--- 
= xyw + 0 .  xyw + ; . (xyW + XVW + Fyiq 

+ +. (xyw + xyw + xyii) .  

The V is thus xyG + x i w  + i y w  + Xjw + Fiw, i.e. w + i j w .  The 
algebraic equations for the absolute probabilities is then found to be 
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Here for this problem the Method of Linear Composition fails-it 
can be verified that the A + CC is not linearly expressible in terms of p V,  
qV, t V  and V. However it is the case that equations (10) have a unique 
solution: using Xjw/r = V to replace Xjw in W + w X j  = V on finds that 
W = TV; using this to substitute for W in the first two equations (i.e. the 
equations obtained by equating xw/p  and y W / q  respectively to V )  one 
obtains x = p / r ,  y = q / r ;  substituting these values for x and y back into 
W = TV = F(W + w X j )  gives w. Using the values of the absolute 
probabilities thus obtained one gets Boole’s result 

(11) Prob. z = 1 - r  - r  

where c is interpreted to be the probability of z, given (x  or y). A bit 
of algebra applied to the first term of the right-hand member enables one 
to write (11) as 

P4 
r ( 1 2 )  Prob. z = 7 - ( p  + 4) + =) + c ( p  + q - ”) r , 

This solution Boole “verifies” only for the particular case of c = 1. 

result : beginning with 
The application of standard techniques does not reproduce Boole’s 

1 - r = 1 - P(3ijt) 

= P ( x  v y v z )  

= P ( x  v y )  + P(z )  - P((x  v Y )  z )  

= P(x v y )  + P(z )  - P(z  I x v y )  P ( x  v y )  

and the replacing P(x \’ y )  by p + q - P(xy)  gives 

(13) P(Z> = (F - (P + 4 )  + W Y ) )  + P(Z I x v y )  (P + q - P ( x y ) ) ,  

which is like Boole’s solution except for having P(xy)  where his has 
pq/J. Comparing (12) and (1  3) we see that when Boole verifies his solution 
in the special case of c = 1, he is taking precisely the value for which 
there is no difference in the two answers; and since P(xy) may vary within 
the constraints of the given data whilepql; is fixed, it appears that Boole’s 
result is in error. But not badly so! For as x and y vary, the value of Prob. 
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z in (12) could vary (since c is the probability of z,  given x or y ) ,  but the 
set of such values is contained in the set of values of P(z) in (13) since 
pq/F lies between the minimum and maximum values of P(xy ) .  (For a 
proof of this see our Note 3 for $4.6.) 4 last remark in connection with 
this problem before going on. It is here, for the first time in the I,aws of 
Thought, that Boole mentions that the given probabilities may not be 
just any numbers between 0 and 1 but are subject to restrictions. In this 
particular instance he says simply that the constants p ,  q, Y are subject to 
the conditions 

p f r l I ,  q S r i l ,  

but says nothing further. As we shall later see, the topic comes to play a 
significant role under the rubric “Conditions of Possible Experience”. 

Boole’s next illustration, Ex. 5, p. 284, asks for the probabilities of the 
conclusion of a hypothetical syllogism given the probabilities of its 
premisses : 

Let the syllogism in its naked form be as follows: 
Major premiss: If the proposition Y is true X is true. 
Minor premiss: If the proposition Z is true Y is true. 

Conclusion: If the proposition Z is true, X is true. Suppose the 
probability of the major premiss to be p ,  that of the minor pre- 
miss q. 

The data then are as follows, representing the proposition X 
by x, etc., and assuming c and c’ as arbitrary constants: 

Prob. y = c, 

Prob. z = c‘, 

Prob. xy = c p ;  

Prob. yz  = c’q; 

from which we are to determine, 

Prob. xz Prob. xz 
or 

Prob. z c‘ . 

Note that Boole is here writing the probabilities of the premisses and 
the conclusion as conditional probabilities, thus confusing the probability 
of a conditional statement, If Y .then X, with the conditional probability 
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of X ,  given Y. Since we are primarily interested in how Boole’s method 
functions let us look at the actual problem, in terms of the conditional 
probabilities, which he solves namely (in modern notation): 

Given that 

P(x  I y )  = p and P ( y  I z )  = q ,  
find 

P ( x  I 2). 

P(x 12) = P4 + 4 1  - q) ,  

Boole’s method gives the answer 

where “the arbitrary constant a is the probability that if the proposition 
Z is true and Y false, X is true”. Immediately after this Boole adds: 

This investigation might have been greatly simplified by assum- 
ing the proposition 2 to be true, and then seeking the probability 
of X .  The data would have been simply 

Prob. v = q, Prob. xy p q ;  

whence we should have found Prob. x = p q  + a(1 - q).  It is 
evident that under the circumstances this mode of procedure 
would have been allowable, but I have preferred to deduce the 
solution by the direct and unconditioned application of the meth- 
od. The result is one which ordinary reasoning verifies, and which 
it does not indeed require a calculus to obtain. General methods 
are apt to appear most cumbrous when applied to cases in which 
their aid is the least required. 

That the argument here is sound is moot. When Boole writes that under 
the assumption of z the data of the problem is 

(14) Prob. y = q and Prob. xy = p q ,  

he is in effect assuming that P(y I z)  = q and P(xy 1 z)  = p q .  But the 
original data gives P(x 1 y )  P ( y  I z )  = p q .  Now by the general multipli- 
cation law P(,ry I z )  = P(x  1 yz)  P(y 1 z). Thus when Boole takes (14) 
to be the data of the problem he is really adding 

P ( x  I r> = m 1 rz)  
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as an additional assumption. Granted this tacit assumption we can come 
out with Boole’s answer by current rules: 

P(xJ2) = P ( . q  + xy 12) 

P(sy  I 2 )  + (xJ  I z) 

= P ( s  I J’Z) P ( y  I 2 )  + P ( x  1 j z )  ( J  I z )  

= P(.Y ! yz) q + aq 

= p q  + a i  i f  P(u jyz) = P(x  I y ) .  

Without the additional assumption we would have to stop at the 
fourth line with P(x1z) = bp +aq, where b is P(xlyz) and, like a, is 
“arbitrary” (thought not independent of a). 

It is a little surprising that Boole did not realize that there was a 
difference between the probability of a conditional and conditional 
probability, for there is a pre-laws of Thought article on probability, 
1851a (=  1952, VIII), in which he explains that one cannot 
“contrapose” a conditional probability-that the probability of x, given 
y ,  is not equal to the probability of not-y, given not-x. Boole handles the 
counter-intuitive situation resulting from his confusion by arguing that 
logically equivalent propositions need not have equal probabilities 
(p. 286) : 

8. One remarkable circumstance which presents itself in such 
applications deserves to be specially noticed. It is, that propositions 
which, when true, are equivalent, are not necessarily equivalent 
when regarded only as probable. This principle will be illustrated 
in the following example. 

Ex. 6. Given the probability p of the disjunctive proposition 
“Either the proposition Y is true, or both the propositions X 
and Yare false”, required the probability of the conditional pro- 
position, “If proposition X is true, Y is true”. 

Boole finds (by treating the desideratum as a conditional probability) 
that the probability of “If X ,  then Y” is 
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where c is the conditional probability of y + JX, given x. That this value 
is different from p (except, as he notes, when p = 0 or p = 1) is for Boole 
a “remarkable circumstance” rather than an indication that something 
is amiss. (One can readily check that (15) is correct for P ( y  1 x) if 

We now come to Ex. 7, the last of the elementary illustrations of 
Boole’s Chapter XVIII. This is a three part problem with successively 
additional hypotheses. The problem, stated in symbols, is to find P(x)  
given either (i), or (i) and (ii), or (i), (ii) and (iii), where these three condi- 
tions are: 

P ( y  v X) = p . )  

(i) P(x  + i y z )  = p ,  

(ii) P ( y  + Yxz) = q ,  
(iii) P(z + Zxy) = r .  

In customary fashion Boole introduces s = x + Xyz, f = y + rxz, 
u =: z + Zxy and, for each case, eliminates unwanted terms, solves for 
x, and writes the algebraic conditions which determines P(x).  We 
summarize the results: 

First case 

so that x = g s  + Oz, and thence 
Here it is supposed that only (i) is given. Boole easily deduces xi  = 0 

Prob. x = cp ,  

where c is P(x I x + Xyz). This answer is clearly correct by virtue of the 
general multiplication law of probability. 

Second Case 

We are given (i) and (ii). Here Boole deduces Sx + 3;; = 0 and so 

(16) 

from which Boole gets 

(17) Prob. x = p4  + cpq, 

where c = P(x I s t )  = P(x 1 xy + x j z  + S1.y~). To see if Boole’s result 

x = s t +  O ( 3  + .T) + $sr, 
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can be obtained by ordinary rules we need a suitable logical relationship 
among x, y and z. For this relationship we don’t need to fumble around 
but use Boole’s (16), and the results of 0 2.6, to write 

(18) x = s r +  xst, 

P(X) = ~ ( s l )  + p(xsr) 

where s = x + 2y.z and t = y + yxz. From (18) we have 

= P(s7) + P(x 1 st )  P(st)  

which differs from Boole’s result given in (17) except when s and r are 
independent, for then P(st) = P(s) P ( t )  and P(st) = P(s) PG). Could we 
perhaps, by assuming that x, y and z are mutually independent, conclude 
that the events s = x + Xyz and r = y + Lxz are independent and so 
have Boole’s result? Theorem 0.93 tells us “no”, so even that won’t do 
it and we conclude that Boole’s method does not correctly giveP(x)- 
except for the special case of s and t being stochastically independent, i.e. 
only by adding an additional assumption. 

Third case 

in terms of s, t and u gives (with some effort) 
We are supposing (i)-(iii). Boole’s logical algorithm for expressing x 

x = siii + O(ZU + stii + :ti;) 
+ ;stu + +(sL + stu + stu) 

from which one obtains the algebraic equations for the absolute prob- 
abilities of s, t, u needed to express the solution for P(x). Here for the 
first time Boole has to face the full complexity of the system of equations 
for the absolute probabilities. He succeeds in expressing the absolute - 
probabilities in terms of a single numerical parameter A, equal to V/% 
which is determined by the condition that it is a root of the cubic equa- 
tion 

(19) (a1 - 1) (bA - 1)  (CA - 1) = 4(dA + l ) ,  
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where a, b, c, d are certain linear combinations of p ,  q, r which we need 
not write down. Concerning this equation Boole says (p. 293): 

10. Now a difficulty, the bringing of which prominently before 
the reader has been one object of this investigation, here arises. 
How shall it be determined, which root of the above equation 
ought to taken for the value of A. To this difficulty some reference 
was made in the opening of the present chapter, and it was inti- 
mated that its fuller consideration was reserved for the next one; 
from which the following results are taken. 

In order that the data of the problem may be derived from a 
possible experience, the quantities p ,  q, and r must be subject to 
the following conditions : 

l + p - q - r ? O ,  

l + q - p - r ? O ,  

i + r - p - q > o .  

Moreover, the value of A to be employed in the general solution 
must satisfy the following conditions: 

1 
l + q - p - r ’  

, 12 
1 

1 1  
l + p - y - r  

1 2 2 -_____ 
l + r - p - q *  

(15)  

Now these two sets of conditions suffice for the limitation of 
the general solution. It may be shown, that the central equation 
(13) [our (19)] furnishes but one value of A, which does satisfy 
these conditions, and that value of A is the one required. 

Since equation (19) contains parameters (i.e. p ,  q, r)  Boole cannot give 
an explicit expression for the unique root which he proves to exist under 
the “conditions of possible experience”, nor of course does he give one 
for the P(x)  expressed in terms of this root. We make no attempt to 
check Boole’s result in this case as we shail, in our Chapter 5, be under- 
taking a general consideration of this method. 
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On the basis of our examination of these elementary illustrations we 
must admit that Boole’s method cannot be entirely correct-in some of 
the illustrations he comes out with the correct answer, but in others 
there are either near misses or else one needs special additional assump- 
tions to get his answer. Nevertheless we persist in our presentation of 
Boole’s theory which, at this point, requires giving an account of his 
determination of the “conditions of possible experience”. 

8 4.7. Conditions of possible experience. Bounds on the probability 
of events 

In the preceding section we have noted that a t  the conclusion of his 
illustrative Ex. 4 Boole mentions that the literal quantitiesp, q,  r entering 
into this problem are subject to conditions, namely that these quantities 
must satisfies the inequations 

p + r < l ,  q + r < l .  

That is to say, not all values of the parameters p ,  q, r (between 0 and 1) 
are consistent with the data relating them and so could not furnish a 
solution unless the conditions were satisfied. As a simple example, 
P(A)  = p ,  P(AB) = q would not be a possible set of data unless q 5 p. 
How does one determine, for an arbitrary problem, what these conditions 
are? Answering this question is one aspect of a general investigation to 
which Boole devotes his Chapter XIX, Of Statistical Conditions. Boole’s 
use of the adjective “statistical” comes from his view that typically 
probability values are obtained from statistical observations and hence 
statistical conditions are “those conditions which must connect the 
numerical data of a problem in order that those data may be consistent 
with each other, and therefore such as statistical observations might 
actually have furnished”. In later works he used the more appropriate 
term “conditions of possible experience” rather than “statistical condi- 
tions”. 

Another related aspect of this general investigation of Boole’s is the 
developing of a method for finding bounds or, as he calls them, limits 
within which a probability value must lie. He specifically needs this result, 
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as illustrated by him in his Ex. 7 Case 111, (discussed in our 5 4.6) so as to 
be able to determine which root of a higher degree equation to select as 
the answer to his probability problem. 4part from this particular 
application Boole is quite aware of the importance of having such a 
general method for finding bounds on probabilities. 

Accordingly, to the matters under investigation in his Chapter XIX 
Boole devoted a good deal of attention. We find him occupied with it 
not only in the Laws of Thought but also, in connection with another 
matter, in an earlier paper “Of Propositions Numerically Definite”, 
written about 1850, and published posthumously by De Morgan (see 
our 5 1.12) and after the Laws of Thought, in BOOLE 1854c (= BWLE 
1952, XIII). In the first part of Chapter XIX he expounds a method for 
finding “ ... to an extent sufficient at least for the requirements of this 
work”, the conditions of possible experience and, at  the same time, 
determining bounds on the probability of the event sought. At the end of 
the presentation, admitting that the method may not always give the 
“narrowest” bounds, he states “a purely algebraic” method for finding 
the narrowest bounds. He gives no proof but refers to a lost manuscript 
(very likely BOOLE 1868) written some four years ago. However in BOOLE 
1854c (= BOOLE 1952, XIII) an entirely new “easy and general method 
is presented for finding the conditions of possible experience, and it is 
this method which is then used exclusively by him. The topic gains even 
more in significance for, in BOOLE 1854e (= BOOLE 1952, XV), it is 
asserted that the Problem of Absolute Probabilities (as we call it in 4 4.4) 
has a unique solution if and only if the conditions of possible experience 
are satisfied. However complete justification for this assertion eluded 
Boole for many years and finally appeared in BOOLE 1862 (= BOOLE 
1952, XVII). 

We shall first present the topic in the less general form as given in the 
Laws of Thought. There, as well as in the posthumous paper referred to 
above, Boole’s investigation is couched not in terms of probability but 
rather in terms of the numerical operator n, where n ( x )  is the number of 
individuals in a class x selected from some universe 1, the number of 
whose individuals in n(1). Transition is made to probability via the 
frequency interpretation as thus explained (pp. 296-297) : 
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In like manner if, as will generally be supposed in this chapter, 
x represents an event of a particular kind observed, n(x)  will 
represent the number of occurrences of that event, n(1) the number 
of observed events (equally probable) of all kinds, and n(x)/n(l), 
or its limit, the probability of the occurrence of the event x. 

Hence it is clear that any conclusions which may be deduced 
respecting the ratios of the quantities n(x), n(y), n(l), etc. may be 
converted into conclusions respecting the probabilities of the 
events represented by x, y, etc. Thus, if we should find such a 
relation as the following, viz., 

n(x)  + n(y) < 3 

expressing that the number of times in which the event x occurs and 
the number of times in which the event y occurs, are together less 
than the number of possible occurrences n(l), we might thence 
deduce the relation, 

or 
Prob. x + Prob. y < 1. 

And generally any such statistical relations as the above will be 
converted into relations connecting the probabilities of the events 
concerned, by changing n(1) into 1, and any other symbol n(x) 
into Prob. x. 

In justification of the laws of operation of the symbol 'n' within his 
calculus of logic Boole devotes only one short paragraph (p. 297): 

It is evident that the symbol n is distributive in its operation. 
Thus we have 

n{xy + (1 - x) (1 - 1.3) = nxy + n(l  - x) (1 - y ) ,  

nx(1 - y )  = nx - nxy,  

and so on. The number of things contained in any class resolvable 
into distinct groups or portions is equal to the sum of the numbers 
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of things found in those separate portions. I t  is evident, further, 
that any expression formed of the logical symbols x, y ,  etc. may 
be developed or expanded in any way consistent with the laws 
of the symbols, and the symbol n applied to each term of the 
result, provided that any constant multiplier which may appear, 
be placed outside the symbol n ;  without affecting the value of the 
result. The expression n(l), should it appear, will of course 
represent the number of individuals contained in the universe. 
Thus, 

n(l  - x)  (1 - y )  = n(1 - x - y + xy) 

= n(l) - n(x) - n(y) + n(xv) .  

n{xy + (1 - x) (1 - y)}  = n(1 - x - y + 2xy) 

Again, 

= n(1) - nx - ny + 2nxy. 

In the last member the term 2nxy indicates twice the number of 
individuals contained in the class xy. 

If one were to use the operator n distributively over any expression 
then, as the example n(x + x) = 24x)  shows, one would have to think 
of -t as heap addition. However, it will be noted, Boole does not accept 
or, rather, ignores this full generality for n and restricts its application 
to any class “resolvable into distinct groups or portions”. Throughout his 
Chapter the symbol n is applied only to sums of constituents, which are 
of course mutually exclusive and thus any distinction between heap 
addition and exclusive addition which might have been brought out, is 
thereby lost. 

On the basis of these two principles: 

1 st. If all the members of a given class possess a certain property 
x, the total number of individuals in the class x will be a superior 
limit of the number of individuals contained in the given class. 

2nd. A minor limit of the number of individuals in any class y 
will be found by subtractinga major numerical limit of the contrary 
class, 1 - y, from the number of individuals contained in the 
universe. 
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Boole readily determines 

Major limit of n(xy) = least of the values n(x) and n(y). 
Minor limit of n(xy) = n(x) + n(y) - n(1). 

For the minor limit Boole should really have: greatest of 0 and n(x) + 
n(y) - n( l ) ,  since the latter value might be negative, but Boole chooses 
to omit, or understand, the 0 for “. . . 0 is necessarily a minor limit of any 
class . . .” 

This result on the limits of a logical product of two classes Boole 
immediately extends to any constituent: 

1st. The major numerical limit of the class represented by any 
constituent will be found by prefixing n separately to each factor 
of the constituent, and taking the least of the resulting values. 

2nd. The minor limit will be found by adding all the values above 
mentioned together, and subtracting from the result as many, less 
one, times the value of n(1). 

Boole now turns to the important problem of finding the major 
numerical limit of a class which is the sum of a series of constituents on 
x, y ,  z ,  etc. these limits to be expressed as a function of n(x) ,  n(y) ,  n(z),  
etc. and n(l) ,  and for this he gives the following 

RULE.  Take one factor from each constituent, and prefix to 
it the symbol n, add the several terms or results thus formed to- 
gether, rejecting all repetitions of the same term; the sum thus 
obtained will be a major limit of the expression, and the least of 
all such sums will be the major limit to be employed. 

It is easy to see that this Rule does give an upper bound to the numerical 
value of the sum of the constituents but, as we shall see in 5 5.7, the rule 
does not give the best upper bound expressible in terms of n(x) ,  n(y) ,  etc. 
The fact that Boole ends his description of the major limit with the 
qualifying phrase “to be employed” seems to indicate that he was aware 
of the fact that the rule did not necessarily give the best possible bound. 
It is strange that he cites no reason, as examples to this effect are not 
immediately obvious. 
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After giving the corresponding result for the minor numerical limit 
of a class given as a sum of constituents Boole then proceeds to the most 
general form of the problem: given the number of individuals in any 
classes s, t ,  etc. which are “logically defined” to determine the numerical 
limits of any other class w also “logically defined”. By “logically defined” 
Boole means expressible as Boolean functions of some set of variables 
(classes). He first gives a system of major and minor limits (i.e. upper 
bounds and lower bounds) which, he says, are sufficient for the purposes 
of his book, and then later in  the chapter will discuss the problem of 
finding narrowest limits. 

C + 6 D be the complete development of w in 
terms of s, f ,  etc. Since some, none, or all of the constituents in the 
portion may be included in w,  Boole has then that a system of major 
limits of w is given by those of A + C. To find a system of minor limits 
he notes that (i) minor limits are given by n(1) - major limit of the com- 
plement, (ii) 1 - w has for its development B + OA + $ C + 6 D, and 
(iii) n( 1)  - n ( B  + C )  = n ( A  + D). 

Additionally to these limits on nfw), Boole has the significant result : 

Finally, as the concluding term of the development of w indicates 
the equation D = 0, it is evident that n(D) = 0. Hence [since 
minor limit of n(D) 5 n(D) = 01 we have 

Let A + OB + 

Minor limit of n(D) I 0, 

and this equation, treated by Prop. 111, gives the requisite 
conditions among the numerical elements n(s) ,  n( t ) ,  etc., in order 
that the problem may be real, and may embody in its data the 
results of a possible experience. 

Thus, interestingly enough, from his development w = A + OB + 
C + $D Boole derives both limits on the probability of w and also 

conditions of possible experience. 
Boole then summarizes these results in the statement of a Rule (p. 306), 

observing that to apply it to probability problems “it is only necessary 
to replace in each of the formulae n(x) by Prob. x, n(y) by Prob. y ,  etc., 
and, finally, n( 1) by 1 .” The method is illustrated by application to Ex. 7. 
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Case 111, which we have discussed in our preceding section. But Boole has 
this to say: 

13. It is to be observed, that the method developed above does 
not always assign the narrowest limits which it is possible to deter- 
mine. But in all cases, I believe, sufficiently limits the solutions of 
questions in the theory of probabilities. 

However nowhere does Boole give an example to show that the method 
does not give the narrowest limits. He then goes on to state a method 
which he asserts does (pp. 310-311): 

The problem of the determination of the narrowest limits of 
numerical extension of a class is, however, always reducible to a 
purely algebraical form *. Thus, resuming the equation 

0 I 
w = A + OB + T C  + O D, 

let the highest inferior numerical limit of w be represented by the 
formula an(s) + bn(r) . . . + dn( I), wherein a, b, c, . . . , d are nu- 
merical constants to be determined, and s, t ,  etc., the logical 
symbols of which A ,  B, C, D are constituents. Then 

an(s) + bn(t) . . + dn(1) = minor limit of A subject 

to the condition 

Hence if we develop the function 

D = 0 .  

as + bt ... + d ,  

reject from the result all constituents which are found in D, the 
coefficients of those constituents which remain, and are found also 
in A ,  ought not individually to exceed unity in value, and the 
coefficients of those constituents which remain, and which are not 
found in A ,  should individually not exceed 0 in value. Hence we 
shall have a series of inequalities of the form f 2 1, and another 
series of the form g 2 0, f and g being linear functions of a, b, c, 
etc. Then those values of a, b, ..., d, which while satisfying the 
above conditions, give to the function 

an(s) + bn(r) . . dn( 1 ) , 
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its highest value must be determined, and the highest value in 
question will be the highest minor limit of w. To the above we 
may add the relations similarly formed for the determination of 
the relations among the given constants n(s), n( t ) ,  . . . , n( 1). 

* [Boole’s footnote] The author regrets the loss of a manu- 
script, written about four years ago, in which this method, he be- 
lieves, was developed at  considerable length. His recollecticri of 
the contents is almost entirely confined to the impression that the 
principle of the method was the same as above described, and 
that its sufficiency was proved. The prior methods of this chapter 
are, it is almost needless to say, easier, though certainly less 
general. 

Although he makes no use of this method for finding narrowest 
bounds it is nevertheless of particular historical interest, for what Boole 
has here, clearly formulated, is a linear programming problem ( Q  0.8 ). 
We shall return to a discussion of it in our $5.7. 

Continuing here with our exposition we turn to the “easy and general” 
method of BOOLE 1854e. “This object”, he says, “was attempted in 
Chapter XIX of my treatise on the Laws of Thought. But the method 
there developed is somewhat difficult of application, and I am not sure 
that it is equally general with the one which I am now about to explain.” 
After the introductory remarks Boole enunciates the following : 

Proposition. To eliminate any symbol of quantity x from any 
system of inequations in the expression of which it is involved. 

Althoughnot explicitly mentioned, his demonstration of this proposition 
(by an illustrative example) shows that Boole is thinking of linear in- 
equations. Linear equations are admitted along with inequations in the 
systems he is contemplating. The method which he gives now known as 
Fourier elimination ( Q  0.7) and;since he makes no mention of Fourier, 
we may suppose that Boole’s was an independent development of this 
idea. 

The central problem is now stated (BOOLE [1952], p. 282): 

General proposition. The probabilities of any events whose 
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logical expression is known being represented byp, y, r ,  . . . respec- 
tively, required the conditions to which those quantities are sub- 
ject. 

Using a special case (for two unknowns) of his Challenge Problem’ as 
an illustrative example, Boole explains his method of obtaining these 
conditions as follows, where the illustrative problem (using simplifying 
notation in place of Boole’s) is: 

Given 

P(x) = CI, 

P(y) = c2, 

P(xz) = c3. 

P(yz)  = c4, 

P(Xjz) = 0, 

find w, where w = P(z). 

of constituents on a common set of variables i.e., for the example, 
First expand each of the events in the statement of the problem as sums 

x = xyz + xyz + xyz + x j z ,  

xz = xyz + xyz,  

and similarly for y ,  yz ,  and z .  Assign a letter (i.e. an unknown) to the 
probability of each such constituent except those impossible on the data 
(e.g. Xjz here), viz. 

P(xyz) = 1, P(xy,?) = p, P(xjz )  = v, 

P(xJe) = @, P(Xyz) = 0, P(Xy?) = t, 

P(Xje) = v 

(it will be convenient for us to call these constituent probabilities) and 
for each of the events whose probability is involved in the statement of 
the problem, express it as a sum of constituent probabilities, thus: 

We shall be discussing it below in § 6.2. Our interest here is only in Boole’s 
technique for finding conditions of possible experience for the problem, i.e. the 
problem as Boole interprets it. 
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1 + p + v + @ = c , ,  

1 + p + 0 + t = C2. 

?. + v - c3, 

I t 0  - c4, 

I + Y + U  =H'. 

- 

- 

Note here that c,, c2, c3, c4 are given and w is to be found, except that 
what Boole is doing here is not solving for w but finding bounds on its 
value, Additionally, each constituent probability A, p, . . . is set 1 0 and 
the sum of all, excepting those impossible on the data, is set 5 1 .  The 
resulting combined system of equations and inequations is then treated 
as follows. The equations are first used to eliminate as many of the con- 
stituent probabilities as possible, then Fourier elimination (§ 0.7) is 
used to eliminate as many of the remainder as possible. For any given 
quantity remaining in the system (which may have far more inequations 
than in the original system) one can solve each of the linear inequations 
for the given quantity, resulting in a set of upper and lower bounds for 
the quantity. In the example at hand elimination of all the unknowns except 
for w gives Boole the inequations 

w -  c3 2 0  w - c4 2 0  c3 + c4 + w 2-0, 
w 5 l - c 2 + c 4 ,  w S I - c 1 + c 2 ,  

and hence lower bounds of 

(7) c3 and c4 

and upper bounds of 

(8) c3 + c4, 1 - c, + c4, 1 - CI + c2 

for w. Concerning these Boole says 

These are the conditions assigned in my treatise on the Laws of 
Thought, p. 325. They show that if it is our object to determine 
Prob. z or w,  the solution, to be a correct one, must lead us to a 
value of that quantity which shalI exceed each of the values 
assigned in (7), and fall short of those assigned in (8). They show 
also that the data of the problem will only represent a possible 
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experience when each of the values in (7) shall fall short of, or not 
exceed each of those in (8). 

As we have earlier observed, Boole is not sure of the relative strengths 
of the two methods for finding bounds, the one just outline and that of 
the Laws of Thought. In specific examples he works out by both methods 
the results are the same. We shall return to this in our $5.7 where we 
shall see that the two methods are alternative ways of solving a linear 
programming problem. 

We should perhaps emphasize that the discussion of this section, being 
in terms of constituent probabilities, is independent of whether or not 
the simple events involved are dependent or independent. 

0 4.8. Wilbraham’s and Peirce’s criticisms 

In view of the unusual and complex features of Boole’s method of solving 
probability problems one would think that it would have taken some time 
for it to be analyzed and understood. But the Laws of Thought had hardly 
appeared when its “doctrine of chances” was subject to acute criticism 
in WILBRAHAM 1854 (=  BOOLE 1952, Appendix B). Wilbraham claimed 
to show: 

(i) that Boole’s method tacitly introduced additional assumptions 
concerning the events in the data of the problems considered, thereby 
converting a generally indeterminate problem into a determinate one, 

(ii)  that with these assumptions brought out one could solve Boole’s 
problems by common methods, and finally, 

(iii) that the type of problem solved with the additional assumptions 
was not one of much practical value. 

Boole’s reply, appearing the next issue of the same journal (BOOLE 
1854b = BOOLE 1952, XII) did not address itself to the specifics of 
Wilbraham’s comments; instead Boole contended that he had, in his 
book, explicitly stated the principles upon which his method depended, 
had equally explicitly derived from these the algebraic equations which 
gave the solutions, that if particular assumptions had to be introduced 
it should be shown where his principles were insufficient, and even if 
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the method does bring in additional equations “there can be no 
objection so long as the equations in question are consequences of the 
laws of thought and expectation as applied to the actual data”. We 
undertake in this section an examination of this adverse appraisal of 
Boole’s work in probability. 

The first point Wilbraham makes is that when no conditions (i.e. no 
relationships) among the events of the data are given but only their 
“absolute chances”, then the reasoning in Boole’s Chapter XVlI shows 
that the simple events, in terms of which the data are expressed, are 
assumed to be independent; and that when this independence is expressed 
in terms of the “ultimate possibilities” (i.e. the constituent probabilities) 
there results, in the case of n simple events, 2” - n - 1 algebraically 
independent equations (see Theorem 0.91 5) ,  which equations are, in 
such cases, a tacit concomitant of Boole’s data. 

Wilbraham is certainly correct in this assertion, but in fairness to Boole 
it should be noted that these independence conditions are not surrepti- 
tiously or unwittingly introduced by Boole but come rather from his 
stated general principle : 

“VI. The events whose probabilities are given are to be regarded as 
independent of any connexion but such as expressed, or necessarily 
implied in the data, . . .” together with his identifying absence of logical 
dependence with stochastic independence. (That lack of knowledge of 
any connection should imply stochastic independence is, as we have noted 
in $4.2, not normally a tenet of probability theory, though one could 
consider it as a working hypothesis for testing purposes.) So, at  least on 
his part, Boole is justified in contending that the procedure of his 
method is consequent as to principle (his, that is). The issue between 
them would have been more clearly joined if Wilbraham had attacked 
this principle of Boole’s. In these cases then, with no given conditions 
among the events, the assumed (to Wilbraham), or implied (to Boole), 
independence conditions on the simple events supply enough additional 
equations so as to determine all constituent probabilities and therewith 
the probability of any Boolean compound event on these simple events. 

Next Wilbraham considers the cases “when certain conditions among 
the chances of the several events are given”. He is here thinking of the 
circumstances in which, in Boole’s treatment, there are “absolute” 
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logical relations among the events as evidenced by the presence of 
terms. If  in such a case there are only two simple events involved then 
the number of “assumed” independence condition is 2* - 2 - I, 
i.e. 1, and hence when an additional condition is “given”, then the 
“assumed” independence condition is replaceable by the new given con- 
dition and there still will be sufficiently many algebraic conditions for a 
solution. But suppose that there are more than two simple events and 
only one additional given condition. Wilbraham says: 

This new condition does certainly to some extent supersede 
those previously assumed [i.e. the 2” - n - I independence con- 
ditions]; and it appears to me that Professor Boole’s reasoning 
would lead one to suppose that the former assumptions are 
entirely banished from the problem, and no others except the 
said newly given condition assumed in their stead. The fact, 
however, is that in this case certain additional assumptions are 
made, otherwise the problem would be indeterminate. The nature 
of these assumptions, which are different from the assumptions 
made when no condition besides the absolute chances of the simple 
events is given, will perhaps, be better seen from the following 
discussion of an example than from any general reasoning. 

The example (essentially PROBLEM V, Laws of Thought, p. 335) and 
solution that now follow is interesting for a number of reasons and we 
shall comment on it after its presentation. We quote in extenso from 
WILBRAHAM 1854 = BOOLE 1952, pp. 475-479. 

The chances of three events, A ,  B, and C, are a, b, c, respectively, 
and the chance of all three happening together is m ;  what is the 
chance of A occurring without B? 

Wilbraham now shows how to obtain Boole’s type of solution for this 
problem “without the aid of his logical equations”. 

Suppose A ,  B, and C, and a further event S, to be four simple 
events mutually independent, the absolute chances of which are 
respectively x, y ,  z, and s. We suppose for the present no connexion 
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to exist between the original simple events A,  B, and C, and the 
subsidiary event S. There will be altogether sixteen possible mu- 
tually exclusive compound events, the chances of which (since 
the simple events are independent) are as follows: 

Now a condition is imposed on these new events 

Let us now make an assumption with respect to the subsidiary 
event S, viz. that it is never observed except in conjunction with 
the three other events, and is always observed to happen if they 
concur. Consequently, those of the above sixteen compound 
events which represent S occurring while any one or more of the 
other three events do not occur, and which represent A, By C, all 
to occur without S occurring, must be considered as beyond the 
range of our observation. This does not contradict the former 
assumption of the mutual independence of the four simple events; 
for we do not by this ‘last supposition say that such a compound 
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events are impossible, nor do we make any new assumption as to 
the probability of their occurrence, but only that, as they are 
beyond the limits of our observation, we have nothing to do with 
them. The events therefore, which come within our circle of 
observation are those marked respectively 6, v, e, t, v, v, x, w ;  
and the absolute chance that any event which may occur is an 
event within the range of our observation is 

xyzs + (1 - x )  yz(1 - s) + x(1 - y) z(1 - s) 

+ xy(l - 2 )  ( 1  - s) 
+ x(l - y )  (1 - -  2 )  ( 1  - s) + ( 1  - x)y(l -- z) ( 1  - s) 

+ ( 1  - XI ( 1  - y )  

+ ( 1  - x )  ( 1  - Y )  ( 1  - 2 )  (1 - s>, 
- 3 )  

which is similar to the quantity called V in Professor Boole’s 
book. 

A connection is now established between the originally given events 
A ,  B, C, ABC and the newly introduced ones, namely by equating the 
probabilities of the latter, on condition V, with the originally given prob- 
abilities : 

I must here observe that x, y ,  and z are not the same as the given 
quantities a,  b, and c ;  for the latter represent the chances of A ,  
B, and C respectively occurring, provided that the event is one 
which comes within our range of observation, whereas x, y ,  and z 
represent the absolute chances of the same events whether the 
event be or be not within that range. 

Of the eight events 6, Y, e, t, v, p, x, LL), which compose V, four, 
viz. 6, e, t, and w, imply the occurrence of A .  Consequently, the 
chance that if the event be within our range of observation A 
will occur, is the sum of the chances of these last four events 
divided by the sum of the chances of the eight. This will be equal 
to the given chance a. Hence 

= a. xyzs+((l - y ) z + y ( l  - - ) + ( I  -u)(1 -z>)x(I - s )  
V 
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So also 

xy\-Y;s+{(I - . u ) z + x ( l  - - ) $ - ( I  - x ) ( I  - z ) } y ( I  -s) 
- h ,  - 

V 

XYZS + {( 1 - J’) Z + J ’ ( I  - Z) (1 - 4’) ( I  - 2 ) )  Z(l - S) 
= c .  

V 

Also as the event S always in cases within our range of observation 
occurs conjointly with A ,  B, and C,  the chance of S occurring 
and that of A ,  B, and C all occurring are the same, and equal to m. 
Therefore 

xyzs 
V 
- = H I .  

And now for the probability of the desideratum “ A ,  but not B”:  

Out of the events represented by V there are two, I, and 21, which 
imply that A occurs but not B ;  consequently, the chance of A 
occurring but not B, which is the required chance and may be 
called u = x(l - y)(l - s)/K From these five equations x, y, z ,  s, 
may be eliminated, and there remains an equation which gives u. 
Or the values of x, y, z ,  and s may be found from the first four 
equations, and thence the value of any function of them is known. 

Wilbraham states that this method of solution is almost identical with 
that of Boole’s and that in introducing the four mutually independent 
simple events A ,  B, C, S one is tacitly adding 11 (= 24 - 4 - 1) equations, 
namely the equations expressing their mutual independence. Not all 
of these 11 equations, however, are necessary to the solution but only 
those referring to constituents present in V. 

It will be found that three only out of the eleven give such rela- 
tions [i.e. relations involving only the 8 constituents present in V ] ;  
and upon the assumptions comprised in these last three equations 
rests the truth of the solution. The three equations are v/w = 

ZIP, = e/x, and p7/o = v/x. The other eight equations, though 
not contradictory to the data, are not essential to the solution, and 
need not have been assumed. If these three conditions had been 
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inserted in the data of the problem, it might have been solved 
by a simple algebraical process without introducing the subsidiary 
event S. 

Some comments are in order. 
By systematically resolving events into sums of constituents Wilbra- 

ham indeed manages entirely without Boole’s “logical equations” and 
its associated obscurities. That this could be done is not surprising to 
us now, but we wonder if this apercu of Wilbraham’s, that logical prob- 
lems concerning events could be so handled, was sufficiently appreciated 
at  that time. Although not abandoning his logical methods, Boole’s 
work subsequent to Wilbraham’s paper shows a decided shift towards 
an emphasis on constituent probabilities. 

It cannot be denied that the solution (answer) to Wilbraham’s 
illustrative example is “indeterminate”-a simple Euler-Venn diagram, 
in which the areas are made proportional to the probabilities of the 
events, will show that the areas of A, B, C,  and ABC can be maintained 
at a, b, c, and m, respectively, and yet the area of A B  can still vary. 
Moreover, Wilbraham has also shown how to obtain Boole’s solution by 
replacing the problem-to-be-solved by another which entails additional 
conditions (“assumptions”) resulting from the mutual independence of 
the introduced events. Boole’s reply to Wilbraham’s cirticism was that 
the additional equations do  not represent “hypotheses”, but that “they 
are legitimate deductions from the general principles upon which that 
method is founded, and it is to those principles that attention ought to 
be directed.” 

Another criticism of Wilbraham’s concerns the example which Boole 
used to illustrate his Prop. 11, p. 261, discussed by us above in 9: 4.3. After 
noting that x, y, ... in Prop. I1 are assumed to be independent 
Wilbraham remarks (BOOLE 1952, p. 480): 

How this can be reconciled with Professor Boole’s statement with 
regard to a particular example of the proposition that his 
reasoning “does not require that the drawings of a white and 
marble ball should be independent in virtue of the physical 
constitution of the balls; that the assumption of their 
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independence is indeed involved in the solution, but does not rest 
upon any prior assumption as to the nature of the balls, and their 
relations or freedom from relations, or form, colour, structure, 
&c.” (page 262), I am at a loss to understand. 

In his letter to the Philosophical Magazine responding to Wilbraham 
Boole says nothing about this-it is, however, addressed in the NOTE 
appearing at the beginning of Laws of Thought in which the example is 
withdrawn as an illustration of Prop. 11. Either Wilbraham missed 
seeing the NOTE or, quite possibly, Boole had it tipped in by his 
publisher after an initial run. (This might account for the NOTE being 
absent in the 1916 Open Court reprint, and present in the 1951 Dover 
reprint,) In the reply at hand Boole attributes Wilbraham’s “erroneous 
judgements” to his [i.e. W’s] believing that the events “which in the 
language of the data appear as simple events, are the ultimate 
[independent] elements of consideration in the problem. These are the 
elements in terms of which he expresses his equation, overlooking the 
fact that i t  is by mere convention that such elements are presented as 
simple, and that the problem might have been expressed quite 
otherwise”. 

Another criticism relates to Boole’s use of his V to condition the 
simple independent events. Wilbraham says (BOOLE 1952, pp. 480-481) : 

The independence of the events x, y ,... s, t ,... is, as before, 
assumed in the assumption of the results of Prop. I. Nevertheless, 
Professor Boole says (page 264) that the events denoted by s, t,&c. 
whose probabilities are given, have such probabilities not as 
independent events, but as events subject to a certain condition I/. 
He seems throughout to consider V as a condition that does 
always obtain, and consequently that the chance of any event 
inconsistent with it is 0, and therefore he ignores the previously 
assumed independence of the simple events which is inconsistent 
with such a supposition, instead of considering V as a condition 
which, if it obtain, the chances of x, y, . . . are as given in the data of 
the problem. 

Boole’s letter contains no direct reply to this. We shall have something 
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to say about it when we undertake a critical examination of Boole’s 
method in 45.4. 

Peirce’s cirticism of Boole’s probability theory (contained in PEIRCE 
1867) shows no awareness of the Wilbraham paper which appeared 
some 7 years earlier. Whereas Wilbraham’s objections are substantial 
and go to the heart of Boole’s enterprise of applying his logical system 
to probability, Peirce’s are of the nature of “improvements” (in his view) 
or corrections. 

Peirce begins by assuming that every expression for a class has “a 
second meaning, which is its meaning in an equation. Namely, let it 
denote the proportion of individuals of that class to be found among all 
individuals in the long run.” Thus from the logical identity a 7 b (for 
Peirce’s notation see our tj 1.1 1 )  a and b classes, he infers the arithmetical 
equation a = b, a and b frequencies. But he also states [1867, 
p. 255 = 1933, Vol. 111, p. 91 : 

(28.) a + b = (a t b )  + (a, b )  

without any specifications as to how numerical values accrue to complex 
logical expressions ; e.g. since he uses + both logically and arithmetically 
the expression on the right hand side in (28.) is ambiguous as between 
P(a t b )  + P(a, b )  and P((a  t b )  + (a, b)).  For the notionfrequency ofthe 
b’s among the a’s he writes ‘b,’, supplying a notation for conditional 
probability which, as we have remarked, is sorely needed in Boole’s 
theory. But he also considers it to have meaning as a class, thereby 
introducing a confusion similar to that of fraction and rational : a 
fraction denotes, i.e. determines, a rational, but a rational does not 
determine a fraction. With Peirce a pair of classes determines a 
frequency, but a frequency can’t determine a pair of classes, let alone a 
class. Among the “obvious and fundamental properties of the function 
b,” such as ab, = a, b and ab, = bab he includes: 

cp(b,.and c,) = (cp(b and c)), 

(Peirce uses the verbal ‘and’ in place of the usual comma separating the 
arguments of a two-place function since he is using the comma for 
logical product). It is not clear what Peirce means by this. E.g. if q(x  and 
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y) is x j- y then (3.1) becomes (??) 

b, t C, = (b  + c),. 
A correct formula with the right-hand side would be 

b, + C, - (b, c), = (b  t c),, 

in which case the ‘9’ on the left-hand side of (31.) would not be the same 
as on the right-hand side. 

Peirce compares his treatment of probability with that of Boole via 
discussion of several examples. We say a few words about this. 

For the-problem of finding the probability of the conjunction r of two 
events with respective probabilities p and q Peirce gives 

r 7 P14 = P4p = 4Pq 

(the symbols ‘p’ and ‘q’ being used both for the event and its probability) 
and then concludes that the answer is an unknown fraction of the least 
of p and q. Boole, of course, could have arrived at the same result by 
writing 

Prob.xy Prob. xy 
= Pr0b.y.  

Prob . x Prob. y 
Prob. xy = Prob . x . 

However it is significant to note that Boole’s general method applied to 
this problem would give the answer 

Prob. xp = p q  

i.e. the product of the two probabilities as if the events were independent, 
since the data indicate no connexion between them and hence by his rule 
they are simple unconditioned events. 

Next Peirce goes on to say that the value for r just given would also be 
the probability of the conclusion of a hypothetical syllogism whose 
major premise had probability p and whose minor premise had 
probability q. He says Boole’s answer, namely 

r = pq + a( 1 - q), a arbitrary 

is wrong since it implies that if the major premise is false and the minor 
premise true then the conclusion is (necessarily) false, and he then 
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comments on Boole’s “absurd” conclusion (see our discussion in $ 4.6) 
that the propositions which are equivalent when true are not necessarily 
equivalent when regarded as probable. Boole is then further chided: 
“Boole, in fact, puts the problem into equations wrongly (an error which 
it is the chief purpose of a calculus of logic to prevent), and proceeds as if 
the problem were as follows:-“. Peirce then goes on to restate it with 
conditional probabilities in place of probabilities of conditionals (as in 
$4.6). But, amusingly, Peirce’s own formulation of the problem of the 
hypothetical syllogism is itself incorrect, and on two accounts! In the 
first place the conclusion is only implied by, not equivalent to, the 
conjunction of the two premises and, secondly, Peirce’s data does not 
include the fact that the premises are logically connected. (For our 
solution see $6.6) As for the other version in terms of conditional 
probabilities, Peirce gives an answer involving 7 parameters. We discuss 
this version below in $6.7, where we give our solution (Example 6.72). 

Peirce lists three differences between Boole’s system and his 
modification (PEIRCE 1867. pp. 259-260 = 1933, $3.18). The first of 
these, threefold in character and relating to the logic, we have mentioned 
in $ 1.11. The other two concern probability: 

Second. Boole uses the ordinary sign of multiplication for 
logical multiplication. This debars him from converting every 
logical identity into an equality of probabilities. Before the 
transformation can be made the equation has to be brought into a 
particular form, and much labor is wasted in bringing it to that 
form. 

Third. Boole has no such function as ab. This involves him in 
two difficulties. When the probability of such a function is 
required, he can only obtain it by a departure from the strictness 
of his system. And on account of the absence of that symbol, he is 
led to declare that, without adopting the principle that simple, 
unconditioned events whose probabilities are given are 
independent, a calculus of logic applicable to probabilities would 
be impossible. 

But the ability of Peirce’s system to convert “every logical identity into 
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an equality of probabilities” is based on his function b, {for which 
a, b = ab,) and, as we have argued, Peirce is mistaken, or at  least has 
given no justification for believing that it has a logical as well as 
numerical meaning. With regard to the independence of simple 
unconditioned events, it is a question as to what is meant by such events. 
Peirce is certainly justified in objecting to calling events independent on 
the basis of no information. As he says: “But there can be no question 
that an insurance company, for example, which assumed that events 
were independent without any reason to think that they really were so, 
would be subject to great hazard.” Our interpretation of ‘simple 
unconditioned event’ is given in 0 5.1. 

Continuing from 5 1.1 1 our discussion of MACFARLANE 1879, we add a 
few remarks about his attempt to include conditional probability into 
his formalism. 

Macfarlane assumes that any universe U has an “arithmetical value” 
which is an integer (“generally plural, but may be singular or infinite”) 
and that any character (attribute) x, “when considered as an operation 
on U”, has an arithmetical value X [not to be confused with Boole’s 
notation for complement.] Presumably, since he quotes Venn, he is 
thinking in terms of frequency, but all that he says I s :  “if x denotes a 
single positive attribute its value [i.e. 23 is a fraction lying between 0 and 
1 ; but if it is negative, its value lies between 0 and - 1.” He uses ‘ U x y ’  to 
denote ‘U’s which are both x and y’ and in practice drops the 
‘U’-leaving himself open to confusion when more than one universe is 
involved, as in conditional probability. He seems to have two notions of 
independence-real having to do with frequencies and formal having to 
do with syntactic structure. Real independence corresponds to stochastic 
independence for it gives, in his notation, Xy = Xj. Concerning formal 
independence he has (1879, p. 21): 

When the symbols x and y are independent-that is when each 
refers to U simply-the compound x y  has for any given U a 
definite arithmetical oalue. This value, however, is not 
determinable from those of x and y ;  but they give limits to the 
value [which are, for lower, 0 or X + j - i-, and for upper, x or y ] .  
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This seems to correspond to Boole’s “simple unconditioned events” 
but without his “by definition independent”. Continuing the quote : 

But one character may in its statement [italics added] involve 
another character, so as to be formally dependent on the latter. 
Let U denote the universe of its objects, a any character x a 
character which is formally dependent on a. Then UA, denotes U’s 
which are a and of these such as are x ; or U’s which have a which 
have x. 

The symbol x operates on U a  not on U .  Hence 

a, = ax. 

Note that Macfarlane introduces here a new notation, a,, for a 
conjunctive compound when the components are “formally dependent”. 
If his multiplication rule is to make sense then the arithmetical value a, 
should stand for the frequency of the ax’s, and a that of the a’s, both 
among the U’s, while X should that of the x’s among the a’s (of U ) .  While 
Peirce’s symbolization of the multiplication rule (i.e. a, b = ab,) has its 
drawbacks, Macfarlane’s is defective in that one has to keep in mind that 
for the multiplication rule a and G, refer to the same universe, but 2 to 
the subuniverse which consists of the a’s. What a,  means in other 
contexts isn’t clear, although Macfarlane, as Peirce with his ‘b,’, attempts 
to associate a logical (class) notion with his ‘a,’. With no apparent 
justification he asserts (p. 23): “Since a, is equivalent to an independent 
character of arithmetical value aX, the laws of independent characters 
apply to a, as a whole”, from which he obtains results such as 

= a, + a,,. But even if 5% were to determine the arithmetical value 
of a character (which is dubious), it still needn’t be something uniquely 
determined by a and x. Consider, for example, the analogous situations 
in ordinary arithmetic where lab1 = la1 Ib(, but knowing la1 Ibl doesn’t 
give us an unambiguous ab. 

In 0 5.1 below we shall be arguing that the kind of logical notion that 
Peirce, and Macfarlane in a confused way, were attempting was, in 
essence, already present in Boole’s work. 
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$4.9. Notes to Chapter 4 

(for 44.1) 

NOTE 1. The list of probability principles Boole gives is apparently 
from LAPLACE 1820. The form of the inverse principle (Boole’s 6th) is 
what Laplace initially lists, but then he follows it with the more general 
form in which the antecedent causes are not necessarily all equal in 
probability. Although stating only the restricted form, Boole does have 
in mind in his discussion the more general one. This form still assumes 
that the causes are mutually exclusive and also are sufficient, i.e. that 
the event follows from some one of them. Boole forgets to include this 
latter requirement in his DATA as a third condition. 

NOTE 2. Boole, as we have noted, had no clear distinction between 
the probability of a conditional and conditional probability. Peirce did, 
but thought that conditional probability carried with it a logical notion 
which, however, he never made precise. (See our 64.8) In recent times 
a number of logicians have explored the idea of a (non-truthfunctional) 
conditional “If A, B” whose probability would be the conditional 
probability of B, given A. We cite a few references: 

R. Stalnaker. A Theory of Conditionals. Studies in Logical Theory, N. 
Rescher (ed.)(APQ Supplementary Volume). Blackwell 1968. 

David Lewis. Probabilities of Conditionals and Conditional 
Probabilities. The Philosophical Review, LXXXV (1976), 297-3 15. 

Bas C. Van Fraassen. Probabilities of Conditionals. Foundations of 
Probability Theory, Statistical Inference, and Statistical Theories of 
Science. Vol. I. W .  L. Harper and C. A. Hooker, editors. D. Reidel 1976. 

(for 04.2) 

NOTE 1. As an indication of the progression of Boole’s ideas relative 
to simple events and their independence, we note that in an early 
manuscript contained in two of his notebooks, written possibly before 
1851 (editor’s footnote, p. 141 BOOLE 1952, Essay HI), his view is that 
simple events are [stochastically] independent when they are obtained 
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by independent observations (1952, p. 155): 

It is obviously supposed in the above case that the probabilities 
of the simple events x, y, z, ... are given by independent 
observations. This is, I apprehend, what is really meant by events 
being spoken of as independent. For if the events are not 
independent (according to the ordinary acceptation of that term), 
the knowledge that they are not so can only be derived from 
experiences in which they are mutually involved, not from 
observations upon them as simple and unconnected. And hence if 
our knowledge is derived from experience, the independence of 
events is only another name for the independence of our 
observations of them. 

This is before Laws of Thought. In Laws of Thought events are 
independent if “all information respecting their dependence is withheld,” 
in as much as “the mind regard them as independent”; additionally, 
simple unconditioned events, i.e. those which are free to occur in every 
possible combination, are “by definition” independent. Subsequently to 
Laws of Thoughf, in BOOLE 1854e, he argues, on the basis of the 
definition of probability as a ratio of numbers of equally likely cases, 
that events for which no connexion is known are (stochastically) 
independent (pp. 433-434): 

Let us, in further illustration of this principle, r t h a t  probability 
is always relative to our actual state of information and varies with 
that state of information”] consider the following problem. The 
probability of an event x is measured by the fraction a/m, that of 
an event y by the fraction b/n, but of the connexion of the events x 
and y absolutely nothing is known. Required the probability of 
the event xy,  i.e. of the conjunction of the events x and y. 

There are (see definition) a cases in which x happens, to  m cases 
in which it happens or fails; and concerning these cases the mind 
is in a state of perfect indecision. To no one of them is it entitled 
to give any preference over any other. There are, in like manner, 
b cases in which y happens, to n cases in which it happens or fails; 
and these cases are in the same sense equally balanced. Now the 
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event xy can only happen through the combination of some one 
of the a cases in which x happens, with some one of the b cases 
in which y happens, while nothing prevents us from supposing 
any one of the ni cases in which x happens or fails from combining 
with any one of the n cases in which y happens or fails. [Italics 
supplied] There are thus ab cases in which the event xy happens, 
to mn cases which are either favourable or unfavourable to its 
occurrence. Nor have we any reason to assign a preference to 
any one of those cases over any other. 

Wherefore the probability of the event xy is ablmn. Or if we 
represent the probability of the event x by p ,  that of the event y 
by q, the probability of the combination xy is pq. 

It cannot be disputed that the above is a rigorous consequence 
of the definition adopted. 

Despite Boole’s contention, one can dispute that the above is a rigorous 
consequence of the definition of probability. Referring to the italicized 
portion, we point out that just because nothing prevents us from supposing 
that any of the m cases may be combined with any of the n cases, does 
not mean that we have to suppose this. We may suppose any connection, 
or absence of connection, which is not inconsistent with the data (in 
this case the data is simply that the probability of x is p and that of y is 
q). And just because nothing is known of any connection between x and y 
does not mean that there can be none. Absence of knowledge of any 
connection between x and y cannot imply positive knowledge that x 
and y are stochastically independent. We continue our quote: 

That new information might alter the value of Prob. x y  is only 
in accordance with the principle (already exemplified from 
Laplace) of the relative character of probability. It is only so far 
forth as they are known, that the connexions, causal or otherwise, 
of events can affect expectation. Let it be added, that the particular 
result to which we have been led is perfectly consistent with the 
well-known theorem, that if x and y are known to be independent 
events, the probability of the event x y  is pq. The difference between 
the two cases consists not in the numerical value of Prob. xy ,  but 
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in this case, that if we are sure that the events x and y are 
independent, then are we sure that there exists between them no 
hidden connexion, the knowledge of which would affect the value 
of Prob. x y ;  whereas if we are not sure of their independence, we 
are sensible that such connexions may exist. 

Anent of the last sentence, we could turn Boole’s own words against 
him and say that if, as he is supposing, nothing is known of a connection 
between x and y then certainly we are not sure of their independence, 
and hence “we are sensible that such connexions may exist”; but then 
taking x and y to be stochastically independent is opting for a particular 
one of many possibilities that may exist. 

(for $4.3) 

An early version of Boole’s general method in probability is in the 
manuscript notebooks published as Essay I11 in BOOLE 1952. 

(for 44.6) 

NOTE 1. The answer Boole gives for his Ex. 1 was first stated by him 
in his 1851b (= 1952, IX), and he there contrasts his solution with the 
only published solution he is acquainted with, a solution which 
assumes that the two events are independent. 

NOTE 2. Peirce, in his 1867 (= PEIRCE 1933, I = PEIRCE 1984, 2) gives 
a solution to Boole’s Ex. 3 which is essentially the one we give. 

NOTE 3. Boole’s Ex. 4 is mentioned by him in his 1851a (= 1952, 
VIII) as a type of problem which his general method could handle. He 
gives the answer-the same as appears in Laws of Thought-but 
without the method of solution. 

We show that the quantity pq/F, equal to P ( x ) P ( y ) / P ( x  v y v  z ) ,  
appearing in Ex. 4 lies between the minimum and maximum values 
obtainable from P ( x y )  when x and y are allowed to vary, subject only 
to the constraint that P ( x )  = p ,  P ( y )  = q. 

For when x and y are independent, P ( x y )  = P ( x ) P ( y ) ,  and since 
P ( x  v y v z )  I 1, we then have 
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P(X)P(Y)  
P ( x  v y v z ) '  

min P ( x y )  5 P ( x ) P ( y )  I 

M orever, 

P ( x ) P ( y )  I P ( x ) P ( x  v L' v 2 )  

so that 

Similarly, 

Consequently, 

One readily sees that Boole's solution is correct if the hypothesis of the 
mutual independence of x ,  y ,  and X j Z  is adjoined. For then 

(c ) P ( X ) P ( Y )  = P ( X Y )  

and 

P ( x ) P ( X j F )  = P(xXj2) = 0 

so that either 

(d ) P ( x )  = 0 or P ( x  v y v z )  = 1, 

and in either case we have, from (c) and (d), the equality of Boole's pq/? 
with P ( x y ) .  

NOTE 4. The problem on the hypothetical syllogism (Boole's Ex. 5) 
makes its first appearance in his 1852b (= 1952, IX). Again only the 
answer is given, and he contrasts it with the only other solution known 
to him, namely one in which the answer for the probability of the 
conclusion is the product of the probabilities of the two premises ("... 
a result which manifestly involves the hypothesis that the conclusion 
cannot be true on any other grounds than are supplied by the 



284 PROBABILITY FROM BOOLE’S VIEWPOINT 

premises”). We note further that the form Boole considers here has as 
premises categoricals (“all Ys are Xs”)  whereas in Laws of Thought 
they are conditionals (“If the proposition Y is true X is true”). 

PEIRCE 1867 (=  1933, I = 1984, 2) shows that Boole’s solution to Ex. 
5, i.e. P ( x l z )  = p q  + a( l  - q),  can’t be correct by giving an example 
( x  = a certain man is a negro, y = he was born in Massachusetts, 
z = he is a white man) for which p4  > 0 and yet P ( x l z )  = 0. The 
solution Peirce gives, involving seven introduced parameters, is 
incomprehensible to us. 

(for $4.8) 

Although Wilbraham’s place in the history of mathematics can hardly 
compare with that of Boole’s-one would look in vain for his name in 
any book on the subject-it appears that he was no inconsiderable 
mathematician. He was, in fact, the discoverer of the Gibbs phenomenon 
for Fourier series in 1848, a half-century before Gibbs. (See H.S. 
Carslaw, Fourier Series and Integrals, 3rd edition, Dover Publications, 
p. 294.) It is of some interest to note that Wilbraham’s paper reporting 
the (Gibbs) phenomenon appears in an issue of volume 3 of The 
Cambridge and Dublin Mathematical Journal immediately following an 
article of Boole’s in which Boole expounds his newly discovered calculus 
of logic. 



CHAPTER 5 

BOOLE’S PROBABILITY MADE RIGOROUS 

In this chapter we present a formal theory of probability which provides 
a basis for understanding Boole’s general method in probability. By a 
formal theory we mean a mathematical structure, or framework, which 
can model, in this case, stochastic situations. We do not define 
probability but only provide, axiomatically, relationships from which the 
probabilities of some events are obtained when others are specified. The 
question of the initial determination of probabilities is, in our view, an 
epistemological one and is not considered. As it covers only finite 
stochastic situations the theory is a limited one, but this is all that is 
needed to show what is involved in Boole’s ideas and to compare them 
with current conceptions of the subject. Here too, as with his logical 
system, we shall find that despite erroneous ideas and unnecessarily 
complicated methods there is much of interest and value to be gleaned. 

In $5.3 we analyze in detail Boole’s method of solving the “general 
problem” in probability and determine for the method the circumstances 
and extent of its validity. In succeeding sections we give contemporary 
treatments of (i) his method for finding conditions of possible experience 
and (ii) of his solution of the problem of absolute probabilities-in 
neither of these two topics does our treatment depend on the 
peculiarities of Boole’s probability theory, although they both are 
essential features of it. Our discussion of the problem of absolute 
probabilities is long and tedious, but we felt it worthy of attention as it is 
a key feature of Boole’s method, a proof of which (in the general case) 
bamed him a long time. Involved is a rare example of a mathematical 
theorem which gives necessary and sufficient conditions for a rather 
general system of algebraic equations to have a unique solution. Finally, 

285 
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using our meaning of a solution, we solve Boole’s general probability 
problem by modern linear programming methods. 

5 5.1. Simple and Boole probability algebras, calculi, models 

Basic to Boole’s probability theory was the tenet that (compound) 
events could be treated as simple events which may be unconditioned, 
and by definition independent, or may be conditioned by logically 
expressed (or implied) conditions. Boole never made these ideas really 
clear-justification for his views being based on a combination of 
linguistic and psychological notions (see 9 4.2) and, while there were not 
direct criticisms, there were telling indirect ones ( 4  4.8). As a key step in 
explicating Boole’s ideas we introduce in this section the notion of a 
Boole probability model and we illustrate its use as a valid, though 
complicated, way of handling finite stochastic situations. 

A probability algebra (23, P )  ($0.9) is a simple probability algebra if 23 
is a Boolean algebra with n algebraically free generators x l ,  ..., x ,  
(40.5.4), and such that for these generators’ one has 0 < P ( x i )  -= 1 for 
i = 1,. . ., n. If, in addition, with respect to the probability function P the 
set of generators is a (stochastically) independent set, then we say we 
have a Boole probability algebra. 

In any probability algebra (23,P) the function P assigns to each 
element of 23 a real number in the interval [0,1] ; in a Boole probability 
algebra this number is, moreover, explicitly obtainable in terms of the 
probabilities of the generators when an explicit expression for the 
element in terms of the generators is known. This corresponds to Boole’s 
procedure of going from P ( V )  to [ V ]  (Boole also uses ‘V’, with 
numerical significance, in place of [ V ] )  when I/ is expressed in terms of 
simple unconditioned events (see $90.9, 4.3). If we think of V in 
disjunctive normal form we readily see, since for no generator x i  is 
P(x i )  = 0 or P(Xi) = 0, that [ V ]  = 0 if and only if V = 0. 

We are using the letters “x:’ to accord with Boole’s notation. They are, of 
course, not to be thought of as variables which can be assigned any element of 
the Boolean algebra. 
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Corresponding to a simple probability algebra we define a simple 
probability calculus as a probability calculus ( S ,  P )  (50.9) in which the 
formulas of S are those obtainable by application of the propositional 
connectives to the finite set of propositional variables X , ,  . . ., X, , ,  and 
such that for no Xi is P ( X , )  = 0 or P ( X i )  = 1. A Book probability 
calculus is then a simple probability calculus in which to P1- P3 (of 
4 0.9) are adjoined the 2“ - n - 1 equations expressing that { X I , .  . ., X,) 
is a mutually independent set (with respect to P ) .  If ( S ( X , ,  . . ., X,,), P )  is 
a simple (respectively Boole) probability calculus then the probability 
model ( S ( A , ,  , , ., A,,), P )  will be called a simple (respectively B o d e )  
probability model, and the atomic sentences A , ,  . . ., A,, its generators, We 
identify Boole’s “simple unconditioned events which are by definition 
independent:’ with the generators of a Boole probability model. 

It will be convenient for us to think of S ( A , ,  . . . ,A , , )  as a Boolean 
algebra. We do this by going over to its Lindenbaum algebra 
(equivalence classes under logical equivalence), and then identifying each 
equivalence class with one of its members, e.g. the one in complete 
disjunctive normal form. Thus (changing from Roman to German font) 
G ( A , ,  A , )  is the Boolean algebra with the 16 elements 

O ( =  A l A , ) ,  A1A2,  A I A 2  v A I A 2 ,  ..., 

For such an algebra the Boolean operations, while syntactically 
complicated, are semantically 0bvious-e.g. the complement of A A ,  
would first be thought of as A, v A,, then converted to normal form as 
A1A2 v A,A2 v A1A2.  As a consequence of this, in what follows we 
need only refer to algebras, but can nevertheless, with Boole, think of 
events as propositions. 

If one’s interest were only in mutually independent events and their 
logical combinations-such as, for example, the two events H and A ,  
where H is Heads comes up (on the toss of a coin) and A is An ace i s  
drawn (from a deck of cards)-then one could take these events as 
generators of a Boole probability model and, with probabilities assigned 
(from experimental or other considerations) to the generators the 
situation would be adequately modeled. However, such a theory can 
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have but limited application. Even as trivial a stochastic experiment as a 
coin-toss needs more than this since the events Heads comes up and Tails 
comes u p  (referring to the same coin) are not independent and, although 
Boole would refer to them as simple events (i.e. not explicitly 
compounded of others), they couldn’t be simple unconditioned events. 
What is needed is a way of bringing into the situation that if Heads 
comes up Tails does not, and if Tails comes up Heads does not, and that 
these are the only possibilities. Contemporary probability theory does 
this be modeling the experiment with a four-element Boolean algebra {0, 
{ H } ,  { T } ,  { H ,  T } } ,  representing all the possible events, with the set 
1 = { H ,  T }  containing the two distinct possible outcomes of the toss. 
But we can also accomplish the same result by making use of Boole’s 
idea of a conditioned event--a (compound) event being for him 
conditioned when some possibilities are excluded from happening. For 
the example at hand we would assume’ simple unconditoned events H 
and T (i.e. H and T are free generators of a Boolean algebra G(H, T ) )  
which are then conditioned by the exclusion of the possibilities HT and 
HT. To use such conditioned events, which are clearly not elements of 
G(H, T ) ,  requires a means of formal representation. 

Boole had probability assignments for what we are referring to as 
conditioned events, but no explicit notation for them. Yet a suitable 
notation is readily extractable from his technique for solving problems in 
probability where he treats constituents in the $ part of an expansion as 
events which are excluded from happening. This suggests taking 
conditioned events as Boolean quotients namely, returning to our 
example, as quotients whose expansions are 

H T  +&(HT + R T )  

Recall Boole’s Principle VI (in Laws of Thought, p. 256), or its later version 
in BOOLE 18% (= BOOLE 1952, p. 296): ‘‘Principle 11.-Any events which 
suffice simply, or by combination, for the expression of the data may be 
assumed as simple [unconditioned] events and symbolized accordingly, 
provided that we explicitly determine the whole of the relations which implicitly 
connect them.” 
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with the readings “Heads (but not Tails), given that HT and HT cannot 
happen” and “Tails (but not heads), given that HT and RT cannot 
happen”. By virtue of the isomorphisms expressed in Theorem 0.62 these 
conditioned events can be thought of not only as Boolean quotients, but 
equally well as residue classes (as written in (l)) ,  or as elements of an 
algebra of subelements. In general, for a fixed element D(#  1 )  of a 
Boolean algebra 8, the residue classes of the form 

AD +@, 

as A ranges over 8, consitute (with the operation appropriately defined) 
a Boolean algebra isomorphic to the algebra of subelements of 6. In our 
example, with d = V = HT+ RT, this algebra would be the four- 
element algebra G(H, T)I V with universe {0, HT, RT, V } .  Thus as far as 
having the requisite set of outcomes representing chance events is 
concerned, an algebra of quotients with i part H I ‘ +  HT can adequately 
model the coin-toss experiment. But what of the probabilities for the 
elements of this algebra? 

Before addressing ourselves to this question let us introduce a 
notation for the special kind of Boolean quotient representing a 
conditioned event, namely 

Note that the residue class isomorphic to E I F  is E F + $ F ,  and hence 
that there would be no 8 constituents in the expansion of such a quotient 
(expansion, that is, with respect to the generators of the Boolean algebra 
of which E and F are elements). In terms of this notation the two 
outcomes of the coin-toss would be represented by HIV and T J V ,  V 
being HT + RT. Now for the question asked at the end of the preceding 
paragraph. 

Boole took the probability of a conditioned event as a conditional 
probability, that is, using our introduced notation, for him 



290 BOOLE'S PROBABILITY MADE RIGOROUS 

For the example at hand, 

(since it is H1V and TIV that represent outcomes of an experiment it 
would be to these events that probabilities, p and q, would be given, 
assigned or determined). But (2) presumes that one can meaningfully 
talk about the probabilities present on the right-hand sides, namely 
P ( H V ) ,  P ( T V )  and P ( V ) ;  that is, that we have P-values for elements of 
8 ( H ,  T).' For this latter condition it suffices that ( G ( H ,  T ) ,  P )  be a 
probability algebra-but not any probability algebra will do  for, p and q 
being given, we need to have P-values for H T ,  RT, H T  and RT such 
that (2) holds. Designating these four P-values by Al, A 2 ,  ,I3, A,, we see 
that the conditions for (2) holding are that 

A , + A 2 + A 3 + A 4 = 1 ,  AjZo,  

A 2  

A2 + A3 

-- - P  (3) 

A.3 

2 2  + 1 3  

-- - 4  

This system can be satisfied only if p + q = 1. Assuming this to be the 
case there are then only two independent equations (plus the inequalities 
Ai L 0) for this system, and infinitely many solution sets for the A;s, any 
one of which defines a probability function P (see 60.9). With any such 
P the probability model ( G ( H ,  T ) ,  P )  then serves to specify an 

' There is an abuse of notation here. Since we are talking about the (in 
general) non-isomorphic algebras G(H, r )  and G(H, T )  1 V there should be, when 
considering probability models, different symbols used for their associated 
probability functions. However we shall here in (2) use the same symbol P and 
informally recognize the difference by the kinds of expressions used in 
designating the arguments. 
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appropriate (G(H, T)I V ,  P ) ,  the P here being defined via (1) .  Note that 
although there are many allowable P functions for ( G ( H ,  T ) ,  P ) ,  all 
meeting conditions (3), that for ( G ( H ,  T)I V ,  P )  is unique, i.e. is the same 
no matter which (S(H,  T ) ,  P )  is selected. For equations (3)  only specify 
the ratio A 2 / A 3  and since 

1 
P ( H /  V )  = , P ( T (  V )  = 

1 + 1 f A 2 1 1 3  

the P-values in (G(H, T)I V ,  P )  are the same for all such solutions. 
Exactly how Boole would have viewed the coin-toss experiment in 

terms of his basic ideas isn’t known, but very likely the H and T ,  the 
“prior” or “absolute” events before the exclusion of HT and AT,  would 
be for him simple unconditioned, and by definition, independent events. ’ 
Translated into our formulation this means assuming that ( G ( H ,  T) ,  P )  
is a Boole probability algebra (model). Such an assumption is stronger 
than necessary since, as just seen, an ordinary probability algebra 
suffices. And Boole’s stronger assumption still does not impose enough 
conditions to specify a unique (S(H,  T ) ,  P ) :  from our discussion of 
Case (i i )  on 44.4 we know that equations (2). which for a Boole 
probability algebra are now, 

(4 ) C V ~  = = m i -  - P  
[ H V ]  -- h t  h/K - 

have infinitely many solution sets (h, l ) ,  0 < h, t ,  < l, any one of which 
will define a Boole probability algebra ( S ( H ,  T ) , P )  providing a 
(unique) (G(H, T)I V ,  P ) .  

Our discussion of the coin tossing problem is generalizable to the case 
of n events E ,,..., En of which one and only one can 
occur-corresponding to the two events HT and n T  we have the n 

’ ”If, . . ., any events s, 1 &c so enter as that nothing is known or can be 
inferred respecting their connection, they must be treated (Principle 1) as if they 
were independent, . . .” BOOLE 1 8 5 4 ,  p. 440. 
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outcomes 

and, with V as their logical sum, the algebra G(El, ..., &)IV then 
corresponds to the algebra of subsets of the n-point sample (or event) 
space of the usual approach now current. If probabilities pi (i = 1,. . ., n )  
are assigned to the conditioned events of G(E,, . . ., E,)I V which 
correspond to (S) ,  then it can be readily seen that the problem of 
determining a (G(E ,  ,..., E , ) , P )  so as to have a ( G ( E ,  ,..., E,)IV,  P )  
with the assigned probabilities has a solution so long as Boole’s 
“conditions of possible experience”, namely 

p1 + . . . + p n  = 1, p i  L 0 (i = 1, ..., n )  

are met. (Normally for ( 5 )  one would have 0 < pi < 1, i = 1,.  . ., n. We 
omit discussion of the special case of some of the pi being 0 or 1.) 

What do the “prior” events H and T in the coin-toss discussion stand 
for if HI V and TI Vrepresent the outcomes of the toss? Intuition is no 
help since we never think of Heads and Tails apart from their being 
opposite faces of a coin. In view of the infinitely many probability values 
which can be used for H and T in (G(H,  T) ,  P )  it can hardly be that 
they stand for anything well-determined. Evidently we have a feature of 
the formal apparatus being used to which nothing in the experiment 
corresponds. Accordingly we may use an arbitrary freely generated 
Boolean algebra B(s,t) in place of G(H, T )  and, with P appropriately 
defined on B(s, t ) ,  use (B(s, t ) l s t +  St, P )  to model the coin-toss 
experiment by associating ~ 1 s t ~ :  i t  with Heads and tlsF+ ft  with Tails. 
In his last paper on probability [1862] Boole seems to express a similar 
opinion in the context of his solution of the General Problem in 
Probabilities. We bring this up again in 5 5.4. 

Clearly, for the handling of stochastic situations the probability theory 
based on Boole’s ideas which we have presented is unnecessarily 
comp1icated-e.g. any four element Boolean algebra suffices to model 
the coin-toss-but its introduction will be of service in helping us 
understand Boole’s procedure for solving the General Problem in 
Probability (in 5 5.4). 
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0 5.2. Conditionedsvents probability realm 

In the preceding section we associated probability values with Boolean 
quotients whose expansions were free of 8 terms. But Boole’s scheme of 
things involves a more general association of probability with any 
quotient (more exactly, any expansion), and we wish to do the 
same-but from our point of view and precisely formulated. 

In our discussion of EIF we wrote its expansion as EF + &F rather 
than the fuller EF + $0 + i$F, i.e. in the notation of 4 2.7, rather than 
[EF] + &[n. Here the brackets indicate a residue class modulo the 0 
ideal, and hence can be omitted since there is no need to distinguish 
between X and X + (0). But in the general case of a Boolean expansion 
A + OB + $C + &D which, by virtue of 3 2.7, we take to be 

[A]+&[P], ( V  = D , A + B + C + D  = 1) 

the brackets now indicating a residue class modulo the ideal (C) (=  $C),  
so that 

[A] = A + $C = set of elements A + vC, v E 23. 

Thus the natural probability notion to associate with A + OB + $C + & D  
would seem to be the set of probability values P ( ( A  + vC)I V )  as ti ranges 
over 23. 

We bring together the informal discussion on probability values for 
Boolean quotients of this and the preceding section and define a 
conditioned-events probability realm (for a free Boolean algebra), a 
concept which we believe provides a formal framework for Boole’s use of 
probability in connection with (expansions of) quotients. It will be 
noticed that what the definition does, in essence, is to assign the notion 
of probability to successively wider classes of Boolean quotients : first it 
is attributed to elements whose developments have neither 8 nor 
constituents, next to those having & but no 8 constituents and finally to 
those having both 8 and & constituents. (We talk about constituents here 
as we are thinking of the elements of the free Boolean algebra as sums of 
constituents on the free generators-each element being uniquely 
representable as such a sum, and each quotient having a unique 
development in terms of constituents on the free generators.) 
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Consider BQ(23,), the partial algebra of Boolean quotients of a free 
Boolean algebra 23, (with n free generators). For any two elements E and 
F of 23, we define, as in the preceding section, the conditioned-event EIF 
to be the Boolean quotient 

___ F+E( F + , E  F + E F  
F F F 

- - 

As has already been noted, the expansion of a conditioned event has no 8 
constituents. Note also that for any E, 

O + E  0-1 
- 110. 

0 
El0 = ~ - 

0 

For fixed V # 0, the set of all quotients of the form bl V ,  b E B,, forms 
(with appropriate operations) a Boolean algebra Bn( V + BBn)- (see end 
of (j 2.7), and this algebra is isomorphic to 23,l V .  At the risk of some 
confusion we now change notation and use '23, I V' likewise to designate 
the isomorphic B,( V + , B , ) -  '-not only is the notation '23,l V' 
shorter, but by virtue of a widespread convention it looks like it ought 
to be the set of all b(  V, b E B,. For the special case of V being 1 we have 
the algebra %,I 1, all of whose elements have neither 8 nor 6 consituents; 
it is isomorphic to B,, and we shall at times not distinguish between 
them. Now for the definition. 

A conditoned-events probability realm is an ordered pair (BQ(23,), P ) ,  
where BQ(B3,) is the partial algebra of Boolean quotients for a free 
Boolean algebra 23, (with n free generators) and P is a real-valued 
function defined on all elements of BQ(B,), except for 110, such that the 
following properties hold : 

(CP1) 

(CP2) 

(CP3) 

(23.1 1, P) is an Boole probability algebra. 

For any E and F, F # 0, of B, 
P(EIF)P(FIl) = P(EFI1). 

For any ~ E B Q ( B , ) ,  except w = 110, whose expansion in 
terms of constituents on the generators of 23, is 
A + OB + 8c + 60, 

(V = d # 0). 

P(w)  E { p : 3~ E B,, p = P ( ( A  + V C ) ~  V ) }  
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By virtue of (CP1) elements of BQ(V.3,) whose developed form lacks 8 
and 6 constituents are accorded a P value. Further, since 

( V  = D # 0 )  

we have that any element (other than 110) whose development lacks 8 
constituents has its P value determined by (CP2) since 

(Recall that in a Boole probability algebra P (  V )  = 0 if and only if V = 0.) 
Hence P(V(1) # 0 since d = V # 0.) Finally, (CP3) determines the P 
value of an element with 8 constituents only to the extent of its being a 
member of a specified set of P values. 

The progressive enlargements of the probability notion given by 
(CP1)-(CP3) is a consistent one, for in (CP2) when F = 1 the result is 
an identity, and in (CP3) when C = 0 we have 

Pfw) = P(Al  V ) ,  

also an identity, since if a 's  expansion is A +AD we have 

D + A  
A l d  = A I V .  

Allowing ourselves the use of an indefinite term we can express the 
membership relation of (CP3) in the form of an equation: 

(3 ) 

Further, as A and uC are mutually exclusive, we have (Theorem 0.95 (ii)) 

P(w) = P ( ( A  + V C ) ~  V ) ,  for some 1, E B,. 

(4) P ( ( A  + uC)( V )  = P ( A  I V )  + P(VCI V )  

and hence 

Pfw) = P ( A  I V )  + P ( K I  V ) .  

We also have (Theorem 0.95 (i)) 

P(VC1 V )  = P(,IC)P(CI V ) ,  
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so that 

( 5 )  P(w) = P ( A  1 V )  + P(u  I C)P(C I V ) ,  for some UEB,.  

Dropping the distinction between %,I 1 and %,,, we thep have 

where 
P(uC) 

P ( C )  
c=- for some u E B,. 

Up to this point no essential use has been made of the assumption (in 
(CP1)) that %,,I1 was a Boole probability algebra. Employment of this 
assumption enables us to follow Boole and write (6) in the form 

(7) 
A C  
C V  

P(w)  = - + c -  

where A, C, V are now numerical expressions obtained from the 
correspondingly symbolized logical expressions by considering xi 
(= x i ( l )  as standing for the probability it has when representing an 
element of 23,( = 23,,11), and the logical symbols as symbolizing the like- 
name arithmetical operations. 

5.3. Reprise of Boole’s General Problem in Probability 

Having formulated in terms of the notion of conditioned event a 
comprehendable account of Boole’s association of probability with 
expansions involving the four types of constituents, we now return to his 
method, described in. 0 4.3, for solving “any” problem in probability. As 
compared with that in the Laws of Thought a later statement of the 
method (in BOOLE 1854e) shows an improvement in clarity and 
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moreover is “completed” with an additional rule. Here Boole formulates 
the problem in the following manner (Book’s General Problem). 

The events whose probabilities are given and the event whose probabil- 
ity is sought are supposed to be expressed as [Boolean] functions of a 
common set of simple events x ,  y ,  z, . , . Additionally, these events may be 
subject to purely logical conditions expressed by a set of equations 
(which can be combined into a single logical equation). Using his 
rudimentary symbolism Boole writes this as 

Probabilities given : 

Prob. cp(x,y,z ...) = p, Prob. q ( x , y ,  z . . . )  = q, etc. 

Annexed absolute conditions : 

(1) 

6(x ,  y, z . .  .) = 0, etc. (2) 

Quaesitum, or probability sought : 

Prob. F ( x , y , z .  ..). (3) 

Now Boole wishes to express the event whose probability is sought in 
terms of the events whose probabilities are given. He contends, by virtue 
of what he calls Principle I1 in his paper, that one may assume that all 
these events (i.e. the one whose probability is given and the one whose 
probability is sought) are simple events provided one “explicitly 
determines the whole of the relations which implicitly connect them”. 
Accordingly he introduces new logical symbols w, s, t ,  etc. standing for 
simple events and puts 

cp(x,y,z.. .) = s, J / ( x , y ,  z .  ..) = t ,  . . . etc. 

F(x ,y , z  ...) = w. (4 ) 

Combining all the logical equations of (2) and (4) into a single system, 
Boole eliminates by his method x, y, z, . . . and obtains a single equation 
in w,  s, t ,  . . . of the form Ew = G, E and G containing no occurrence of w. 
The solution for w is expressed in the form 

w = A + O B + $ C + h D  ( 5 )  

where A ,  B, C ,  D are the sums of constituents on the simple events s, t ,  , . . 
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obtained by expanding the quotient G / E .  For these four sums Boole give 
the following interpretation in terms of the occurrence and non- 
occurrence of events : 

1st. A represents those combinations of the events s, t ,  etc. 
which must happen if w happen. 

2nd. B those combinations which cannot happen if w happen, 
but may otherwise happen. 

3rd. C those combinations which may or may not happen if w 
happen. 

4th. D those combinations which cannot happen at  all. 
And the above representing all possible combinations, we have 

A + B + C + D =  1. ( 6 )  

Under the simplifying assumption that constituents of type C are 
absent Boole then has that 

. . . The event w, then, consists solely of that combination of the 
simple events s, t ,  etc. which is denoted by A ,  and the sole 
condition to which these events are subject is 

D = O ,  or A + B = l ;  (7) 

these logical equations being, by virtue of the necessary equation 
(6), strictly equivalent when C does not make its appearance in the 
development. 

The problem may now be briefly stated as follows: the events s, 
t, etc. are subject to condition (7) [i.e. they are conditioned events] 
and at the same time their respective [conditioned by (7)] 
probabilities are 

Prob. s = p ,  Prob. t = q, etc. 

Required the value of Prob. A [conditioned by (7)]. 

At this stage we see that by eliminating the original simple events x, y ,  
z ,  . . . Boole has converted the problem over to one solely in terms of the 
introduced simple [unconditioned] events s, t ,  ... For the problem as 
thus reformulated Boole gives a concrete illustration in terms of the 
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“fidmiliar notion of an urn containing balls”. The urn is to initially contain 
balls of the kind s, t ,  etc. so that if a ball with an s-quality is selected out 
then the event s has happened, and if a ball selected has both s- ant t -  
qualities then the event st has happened. If nothing is known about the 
connection of the events s, t ,  . . . then Boole maintains (by what he calls 
Principle I in his paper) that the events must be taken as independent. 
But if the events are subject to a condition e.g. D = 0, then this is 
introduced into the situation by supposing that balls of type D are 
somehow attached by strings to the urn so that none of this kind are 
ever extracted. 

The general problem may therefore be represented as follows : 
An urn contains balls whose species are expressed by means of 

the qualities s, t ,  etc. and their opposites, concerning the 
connexion of which qualities nothing is known. Suddenly all balls 
of the species D are attached by threads to the walls of the urn, 
and this being done, there is a probability p that any ball drawn is 
of the species s, a probability q that it is of the species t ,  and so on. 
What is the probability that it is of the species A, supposing that A 
and I) denote mutually exclusive species of balls, each defined by 
means of the properties s, t ,  and their opposites? 

Having taken the prior unconditioned events (i.e. s, t ,  . . . before the 
nexus) to be independent Boole then establishes that these prior 
probabilities are subject to 

i.e. have, when conditioned by D = 0, the probabilities of the events to 
which s, t, ... have been equated as in (4), and that the probability 
sought is given by 

A 
Prob. w = - 

V 

where now the symbols K, v, V ,  A ,  etc. are taken in their numerical 
significance as algebraic expressions in the probabilities of the events. 
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Boole states without proof (“It will hereafter be shown,”) that the system 
(9) furnishes one and only one solution when the problem is a real one; 
it is this assertion which Boole wishes to have included as an additional 
rule to his method as originally stated in the Laws of Thought. The 
values of the prior probabilities s, t ,  ... determined from (9) are then 
substituted into (10) to obtain that of w. 

In the general case, i.e. when consituents of the 8 type are present, 
Boole has in place of (10) 

A + c C  A C 
V v v  Prob. w = ~ - - - + c - - ,  

with c being interpreted as a conditional probability, namely 

Prob. Cw 
Prob. C ’ 

c =  

which for Boole indicates “the new experience requisite to complete the 
solution of the problem” (i.e. to have an answer not containing an 
indefinite term). As in the special case of Q terms absent, equations (9) 
are to be solved for the prior probabilities s, t ,  ... and the results 
substituted into (11) so as to obtain a value for Prob. w 
[ = Prob. F ( x ,  y, z . . .)] in terms of the given values p .  q ,  . . . 

A number of questions arise: 
(i) Exactly what is the status of the introduced events w, s, t ,  ... ? 
(ii) Supposing that the logical relations among the events in the data 

do imply Ew = G,  what justification is there for equating Prob. w with 
the conditional probability value associated with the expansion of G / E  
as in the preceding section (where we codified Boole’s ideas, not justified 
them)? 

(iii) Is Boole’s reformulation of the probability problem in terms of 
the w, s, t ,  . . . equivalent to the original one in terms ojx,  y ,  z ,  . . . or even 
if not equivalent, does it yet imply the correct probability value for the 
“quaesitum” ? 

(iv) Is Boole correct in claiming that the problem is a real one if and 
only if the system (9) has a unique solution for the prior probabilities? 

Indirect responses to (i)-(iii) will come out of our results in the next 
section where we show that Boole’s solution to the General Problem is 



JUSTIFICATION FOR BOOLE’S SOLUTION 30 1 

in a certain, though not his, sense correct. Discussion of (iv) is postponed 
to the end of $5.6. 

0 5.4. Justification for Boole’s solution of the General Problem 

Our analysis of Boole’s solution of the General Problem is carried out 
within the framework of the precisely defined notions of $5.1, none of 
which depend on the peculiarities of Boole’s logical or probability ideas. 

We assume that there is a Boolean algebra ’u having x, y ,  z ,  . . . (and 
hence c p k  Y ,  z ,  . . .), rl/(x, Y,  z ,  . . .), . . . x(x, Y ,  z ,  . . .I, W, Y ,  z ,  . . .)) as 
elements. Now when Boole’s problem posits probabilities (P-values) for 
cp, I//, . . ., it may or may not be the case that there exists a probability 
algebra (a, P )  in which cp, I+, . . ., have the posited values. This question, 
examined by Boole under the topic “conditions of possible experience”, 
is connected with the fourth of the questions raised in the preceding 
section, for a by a “real problem” Boole means one for which the 
conditions of possible experience are met-that is that the assignment of 
probabilities is a possible one. As we are postponing our discussion of 
this to the next section, we continue under the assumption (for deductive 
purposes) that there is a probability algebra ( % , P )  in which the P- 
values of cp, I+, ..., x are the stated probabilities in the General 
Problem, and also for which the “absolute” conditions O(x, y, z ,  . . .) = 0 
hold. 

Note that the data, even if the conditions of possible experience are 
met, do not necessarily fully determine ( % , P )  for all we have is the 
information that x, y, z, . . . are elements of %‘and that there are assigned 
P-values for cp, I+, . . ., x and this may or may not determine the P-values 
of all the elements of %-in particular that of F ( x ,  y ,  z ,  . . .). Accordingly 
we reformulate the problem as follows: for any (a, P) meeting the 
conditions described at the end of the last paragraph what, to the extent 
to which they are determined, are the possible P-values for F ( x ,  y, z ,  . . .)? 
Here in this section we give an answer hewing closely to Boole’s ideas, 
which will turn out to be only a partial solution. In $ 5.7 we give another 
type of answer. 

We first distinguish two uses to which Boole (without consciously 
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realizing it) puts the equations 

(1) s = q(x,y, z, ...), t = *(x,y,z, ...), ...) u = x(x,y,z, .. .), 

w = F(x,y,z, .. .). 

In the one he uses these equations to establish the relation obtaining 
among s, t ,  . . ., u, w, considering them as elements of %(x, y, z,. . .) which 
are related to x, y, z, ... as specified by these equations. But he also 
invokes his Principle I1 to justify treating s, t ,  ..., u, w as simple 
[unconditioned] events. We interpret this latter use to mean that what is 
being considered is a mapping h from a free Boolean algebra B(s ,  t ,  . . ., u)  
with free generators s, t ,  . . ., u into a Boolean algebra %(x,y, z, . . .), that is 
that equations (1) (without w = F )  now means 

(2) h ( s )  = d x ,  Y, z ,  * * .), h ( t )  = +(x, Y, z , .  . . I , .  . ., h(u )  = x(x, y, z,. . .). 

(Differing from Boole, we are here dropping mention of w as it will be 
expressed in terms of s, t ,  . . ., u.) Although (2) specifies the value of h only 
for the free generators of B(s, t ,  . . ., u )  any such mapping can be extended, 
uniquely to a homomorphism of B(s, t ,  ..., u )  into %(x, y, z, ...) (See 
SIKORSKI 1969, 12.2). Assume that h stands for that homomorphism. 

We now explore implications of each of the two uses. 
Adjoin to (1)-with s, t ,  . . ., u, w considered to be variables taking as 

values elements of "(x, y, z,. . .)-the equation Qx, y, z,. . .) = 0 (if 
present in the data). From this conjoined set of equations, i.e. 

(3 ) s = c p , t = q  ,..., u = x ,  w = ~ , ~ = e ,  
eliminate x, y, z ,  . . . and let the resulting equation be written as 

(4) EW = G ,  

with E and G free of w. This represents the necessary condition relating s, 
t ,  . . ., u, w implied by (3) (see end of 4 2.6). Let A + OB + gC + &D be the 
complete expansion of the quotient GIE with respect to s, t ,  . . ., u. By 
Q 2.6, (4) is equivalent to 

w = A(s ,  t ,  . . ., u )  + uC(s, t ,  . . ., u) ,  for some u E % 
D(s, t ,  . . . , u )  = 0 
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and hence (3)  implies (5). In this implication replace w, s, ..., u, 

respectively, by (the formulas in (1) abbreviated to) F ,  cp, p, . . ., x. Then 
supposing Qx, y ,  z, . . .) = 0 we have from equations (5) 

F ( x ,  y,  2,. . .) = A(q,  p, . . ., x) + vC(q,  p, . . . , x) for some u E CU 
Wcp, P, . . ., x) = 0 

( 6 )  { 
For any probability algebra ( % , P ) ,  ‘u being the Boolean algebra 

under consideration, the first equation of (6) and the mutual 
exclusiveness of A and C imply 

(7) W ( x ,  Y ,  z ,  . ..)I = P M q ,  p, . . ., x)) + P(UC(cp, p, . . .) x)) 
(8 ) = P(A(q ,  p,. . ., x)) + cP(C(Cp, p9.. .7 1)) 

where 

(assuming, for the form with c, that P ( C )  # 0). 
We next consider what we are taking as Boole’s other use of s, t ,  . . ., u, 

namely as simple events (generators) of a free Boolean algebra 
2 3 ( s , t ,  ..., u )  and that this Boolean algebra is mapped by h (the h 
determined by (2)) homomorphically into the %(x, y ,  z ,  . . .) under 
consideration. We determine the kernel (set of elements mapped into 0) 
of h. 

Reproducing the above deduction of (5) from (3), but with ‘h(s)’, 
‘h(t)’, . . ., ‘h(u)’ replacing ‘s’, ‘t, . . ., ‘u’ we have for the second equation of 

( 5 )  

(9 ) D(h(s) ,  W), * * *, &)) = 0, 

this being the necessary condition relating h(s),  h ( t ) ,  . . ., h(u)  (see end of 
52.6). Since h is a homomorphism (9) gives 

h(D(s,  t ,  . . ., u ) )  = 0 

and V X ( X  c D(s,  t ,  .. ., U )  + h ( X )  = 0). 

Since (9) is the strongest condition obtainable relating h(s), h(t), . . . , h(u), 
(see end of 9 2.6), no element except one contained in D(s, t ,  . . ., u) gets 
mapped into 0. Thus h’s kernel is the set (X : X G D(s, t ,  . . ., u ) ) .  
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We are now ready to begin a derivation of what corresponds to 
Boole’s solution of the General Problem. 

Let ’u* be the subalgebra of ’2I whose universe is the set of images of 
elements of %(s, t ,  ..., u )  under h. 

By the Homomorphism Theorem 0.21 ’u* is isomorphic to 23/ -0 , ,  
where Oh is the induced congruence relatiop on 23 which “identifies” 
(puts into the same equivalence class) elements of ‘23 whose images under 
h are the same. For b,,  h2 E 23, we have 

h(b , )  = h(b2) H h ( b , )  +.h(b2) = 0 ( 

(h  is a homomorphism) 

(h‘s kernel is {X : X 5 DJ ) 

( V  = D) 

is sym. difference) 

H h ( b l  + A b Z )  = 0 

H b ,  + ~ b 2  G D 

++ ( b ,  +Ab2)V = 0 

- b 1 V  = bzV. 

Thus we have the isomorphisms : 

a* rz (Theorem 0.2 1 ) 

z 23/(D) [ = 23/40] 

% [ V  (the cut-down algebra) 

‘v %I V [ = d(V +BB)-l] (Theorem 0.62) 

In particular the isomorphic images of cp, @, . . ., x are, respectively, sI V ,  
t I V ,  . . ., U I  V since (using ‘ z ’  to indicate the relation of isomorphism) 

cp z [s] = s + (D) 2 S I  V 

II/ z [ t ]  = t +(D) z t l V  

x zz [u ]  = u + ( D )  2 u ( V  

Boole’s conception of the General Problem involves no specified 
Boolean algebra and simply considers probability values p ,  4 ,  . . ., r for cp, 
tp, . . . , I  and asks for that of F .  To pursue his argument as we are 
formulating it we need to have defined on %(x, y ,  z, . . .), assumed to be a 
Boolean algebra having cp, @, . . ., x. F as elements, a probability function. 
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As the method of obtaining this function requires a number of successive 
steps it might be helpful to outline the procedure in advance: First we 
specify a probability function Po on B(s, t ,  . . ., u), which then results in 
having a probability function P* defined on 231 V .  Next P* is transferred 
to %(V’S  isomorph ?I*, a subalgebra of a, and finally this function is 
transferred from %* to some of a. 

Let (23(s , t  ,..., u ) , P O )  be a Boole probability algebra (s, t, ..., u 
stochastically as well as algebraically independent) such that 

P O ( S  V )  PO(t V )  - PO(UV) 

PO(V) - p1 P O ( V )  PO(V) - r1 

- q, ...,- - -- 

where V = D, D(# 1) being the 6 part in the expansion of G / E  of 
equation (4). Conditions as to when a probability algebra meeting these 
requirements exists are discussed in 5 5.6. Making use of the stochastic 
independence of s, t ,  . . ., u we obtain from (10) (using Boole’s notations) 

these equations being expressed solely in terms of the “prior” 
probabilities Po@),  Po@),  . . ., Po(u). 

In terms of Po we define a probability function P* on 23 I V ,  namely as 
a conditional probability with respect to V by setting, for each b E 23, 

Po(bV)  
P*(bl V )  = ~ 

PO(V)  . 

By Theorem 0.96, (231 V ,  P*) is a probability algebra. Attributing to an 
element of %* (defined above) the same P* value which its isomorphic 
image in 231 V has, we obtain a probability algebra (%*, P * )  isomorphic 
to (231 V ,  P*). Note that cp, t#, . . ., x, being elements of %*, have P* values 
which, by (lo), are the same as their hypothesized P values. Replacing 
‘P‘ by ‘P*’ in the right in (8), and assuming the formulas refer to 
(A* ,  P*)’, we have 

Thus, in effect, specifying additional properties of P besides the given values 
on rp, @, . . . , x ;  for it is not true that for any P such that P ( q )  = P*(cp), 
P ( q )  = P*(q) ,  ..., is it the case that P(A(cp, q, ..., x ) )  = P*(A((p, p, ..., 1)). A 
sufficient condition is that cp, 1(1, . . ., x be mutually independent (with respect 
to P and P*).  
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where 

(Note the absence of the asterisk on the P in the numerator-though we 
have CE%*, the product vC need not be in a*.) Making use of the 
isometry of (B I V ,  P * )  and (a*, P * )  we can, on replacing cp, p, . . ., by 
their isomorphic images, rewrite (1 3) as 

(14) P ( F ( x ,  y ,  z , .  ..)) = P*(A(sl  V ,  tI v,. . ., UI V ) )  

+ cP*(C(sJ V,rl V ,  .. .) UI V ) ) .  

By virtue of the fact that the mapping b -, bl V is a homomorphism (14) 
can be converted to 

P ( F ( x ,  y, z , .  . .)) = P*(A(s ,  t , .  . .) u ) l  V )  + cP*(C(s,  t , .  . ., u)l V ) .  

Using the definition of P* as a conditioned probability and also that 
AV = A ,  CV = C, we obtain from this 

PO(A(s, t , .  ..) u ) V )  
PO( V )  

PO(C(S, t ,  ..., u ) V )  

P O ( V )  
+ C  P ( F ( x ,  y, z ,  . . .)) = 

PO(A(s, t ,  ..., u ) )  

PO(U 
P"(C(s, t, ...( u ) )  

P O ( V )  
+ C  - - 

Since (B(s, t ,  . . ., u), Po)  is a Bode probability algebra, we may convert 
(15) to 

or in Boole's notation 

A C  
v v  P ( F ( x , y , z  ,... ) ) = - + c - .  

Note that on the right hand side of (16), apart from c, the only 
probabilities appearing are Po(s) ,  Po(t) ,  . . ., Po(u). If now equations (11) 
are solvable for the PO(s) ,  Po(t) ,  , . ., Po@-this question will be 
examined in 4 5.6-the results could be substituted into (16) to obtain 
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the sought for solution of the General Problem. This is essentially 
Boole’s answer to the General Problem. 

One notes the astonishing feature of this solution, namely that the 
only occurrence of ‘P‘ on the right-hand side of (16) is in the term c. If, 
with Boole, we take c as un undetermined [conditional] probability, 
then the result for P(F(x , y , z ,  ...)) implied by (16) and (10) does not 
depend on any knowledge of P except for the given values on cp, 9,. . ., 1. 

With this result we believe we have established the rationale for 
Boole’s solution to the General Problem-as a partial answer. We differ 
with him in his belief that the expression he gives for P ( F ( x ,  y, z ,  . . .)) in 
terms of p ,  q, . . ., r (when equations (1 1) can be explicitly solved) is the 
only one meeting the conditions of the problem. Note that in the course 
of the demonstration it was premised, or tacitly assumed, that (a*, P*)  = 

(a*, P ) .  This corresponds to Boole’s adoption of his Principle I1 
(so called in his [1854e]), or Principle VI in Laws of Thought 
(p. 256), against which as a necessary principle of probability we 
have argued in 44.9, Note 1 for 54.2. It will be noted that in Boole’s 
examples Ex. 1 and Ex. 2 (discussed above in 44.5), stochastic 
independence of what corresponds to s, t ,  . . ., u plays no role, and Boole’s 
solution agrees with the correct one. However in his Ex. 4 one obtains 
his solution from the correct (full) one only by adding the assumption 
that s( = x), t (  = y), and u( = 2JZ) are independent (see 9: 4.9, Note 3 for 
4 4.6). Wilbraham’s criticism ( 9  4.8) did bring out that in particular cases 
Boole’s “determinate” solution can be obtained by “common” methods 
provided additional independence assumptions are adjoined to the data. 
He did not, however, analyse Boole’s method sufficiently so as to show 
exactly how and why these came in. 

We return to the questions asked at the end of the preceding section, 
couching our responses in terms of the analysis of this section. 

With regard to (i) concerning the status or nature of the events 
s, t ,  . . ., u, one notes that Boole’s views underwent some change. E.g. in 
1857 he says: 

10. 1 postulate that when the data are not the probabilities of 
simple events, we must, in order to apply them to the calculation 
of probability, regard them not as primary, but as derived from 
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some anterior hypothesis, which presents the probabilities of 
simple events as its system of data, and exhibits our actual data as 
flowing out of that system, i’n accordance with those principles 
which have already been shown to be involved in the very 
definition of probability. [1952, p. 3151 

But then later in 1862 [his last paper on his probability method] he 
writes : 

I have but one further observation on Principle 11. to make. It is 
that in the general problem we are not called upon to interpret the 
ideal events. The whole procedure is, like every other procedure of 
abstract thought, formal. We do not say that the ideal events exist, 
but that the events in the translated form of the actual problem are 
to be considered to have such relations with respect to happening 
or not happening as a certain system of ideal events would have if 
conceived first as free, and then subjected, without their freedom 
being otherwise affected, to relations formally agreeing with those 
to which the events in the translated problem are subject. [1952, p. 
3911 

Our analysis has brought out that a dual usage is involved-on the 
one hand ‘s’, ‘t’, .. ., ‘u’ symbolize the given events of the data, i.e. 
elements of a(x,  y ,  . . ., z ) ,  and on the other they stand for stochastically 
independent events of the introduced auxiliary algebra (B(s, t, . . ., u), P); 
in this latter use they are the “ideal” elements of Boole’s later conception, 
whose employment was justified (in his view) by the adoption of a new 
principle. 

Question (ii) concerns Boole’s attribution of the conditional 
probability A / V  + c C / V  to “Prob. w”, where w is given by Ew = G, E 
and G functions of s, t ,  . . ., u. We know ( 4  2.6) that the equation for w is 
equivalent to 

A E W E  A + C  
D = O  ( V = l )  

However, there is no way of assigning probabilities to stochastically 
independent s, t ,  ..-, u (in ( S ( s , t ,  ..., u), P ) )  so as to accord with (17) 
(save if D is the empty sum of constituents on s, c, . . ., u). What Boole 
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does is to consider s, t ,  . . ., u as events conditioned by D = 0, in effect 
going over to (81 V ,  P ) ,  and assigns probabilities to the [conditioned] 
events s, t ,  . . ., u to accord with the data. Boole never really made it clear 
why P ( s l V )  should equal P(cp(x,y, ..., z ) )  when it is s that is equal to 
cp(x, y ,  . . ., 2). Our analysis shows this by using the homomorphism 
h(s) = cp(x, y , .  . ., z )  from b(s, t , .  . ., u )  into %(x, y ,  . . ., z) and (ignoring the 
distinction between P and P * )  the isometry of (231 V ,  P )  and (a*, P ) .  
Assuming that one has a (%(s, t , .  . . , u) ,  P )  we obtain from (17) 

i.e., in (231 V ,  P )  

P(WlV) = P ( A I V ) + c P ( C J V )  C E [ O ,  11 

so that, as in 0 5.2, 

A C  
v v  P ( W l V )  = - + c -  

with A ,  C ,  I/ now having numerical significance and s, t ,  ... ,U 
representing (unconditioned) probabilities of (d(s, t ,  . . ., u), P ) .  

Re (iii). Wilbraham’s example, discussed in 9 4.8, implicitly shows that 
Boole’s reformulation of the General Problem in terms of the ideal 
events can’t be in general an equivalent one. (A simpler example is 
present in our discussion, in $4.6 plus NOTE 3, of Boole’s Ex. 4.) The 
core of Boole’s error in thinking that it was general is his belief that (to 
put it in terms of our version) the representation of the data in the 
probability algebra (8 I I/, P )  necessarily captures all the probability 
relationship that exists connecting the probabilities of cp, Ic/, . . ., x and F .  
It so happens that under appropriate circumstances one can find a 
unique Boole probability algebra (b(s, t ,  . . ., u), P )  for which (231 V ,  P )  is 
isometric to (a*, P) ,  but Boole never showed that there couldn’t be any 
other probability algebra in which one could represent the data, e.g. one 
having perhaps more generators and not necessarily stochastically 
independent. As our correct (full) solution of Boole’s Ex. 4 shows, there 
can be a range of values for P ( F ( x ,  y ,  . . ., z ) )  meeting the conditions of the 
problem not all of which are included in Boole’s form even with the 
indefinite c ranging from 0 to 1. 
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The next sections are devoted to an examination of argument that the 
equations (1 1) for the “prior” or “absolute” probabilities of s, t ,  . . ., u 
have a unique solution if and only if the problem is a “real” one. In the 
first of these sections we interpret this notion and give a necessary and 
sufficient condition for a problem to be, in Boole’s sense, a real one. 

0 5.5. Conditions of possible experience-a consistency 
(solvability problem) 

We continue our discussion of this topic from g4.7. Boole’s most 
thoroughgoing exposition of this topic-already referred to in 6 4.7-is 
in his paper “On the Conditions by which the Solutions of Questions in 
the Theory of Probabilities are Limited” [1854c = 1952, XIII] where the 
problem is expressed as follows: 

The probabilities of any event whose logical expression is 
known being represented by p ,  q, r ,  . . . respectively, required the 
conditions to which these quantities are subject. 

Our first task is to rephrase this in precise terms. We do this first for 
the simplest situation and then later indicate extensions. 

Problem on Conditions of Possible Experience (Simple Case) 
Given n Boolean functions cpl, ..., cp,, on m arguments x l ,  ..., x,,,, 

determine conditions in terms of the parameters p l , .  . ., p,, so that the 
system of equations 

shall be consistent in the sense of having a solution for the x l , .  . ., xm in 
some probability algebra (‘ill, P ) .  

The conditions on pl,  . . . , p , ,  for which consistency holds are the 
conditions of possible experience for the problem. Boole considers a 
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problem to be a “real” one only if the data, assumed to be of the form 
( l ) ,  meet the conditions of possible experience. 

Following Boole’s example we convert this conditions-of-possible- 
experience problem over to a problem on the consistency (solvability) of 
a linear system. Let C1,. . ., CZm be a listing of the 2“‘ consituents on 
letters xl,. . ., x, and let ci j  = 1 if the j-th one of the constituents is 
present in the expansion of the Boolean function qi and otherwise let 
ci j  = 0. In terms of 2”’ variables 11, ..., 1 2 m  we write a linear system 

where the first n equations correspond to the n equations of (1) and the 
last two conditions are obvious normative conditions. It is readily seen 
that the consistency of (2) is a necessary condition for that of (1)-for if 
there is a solution for xl,. . ., x, in some probability algebra (CU,  P )  then 
to have 2 s  satisfying (2) we merely take ij = P(Cj).  Does the converse 
condition hold, i.e. is consistency of (2) a sufficient condition for that of 
(l)? Boole says nothing explicit about this. 

For us, that the consistency of (2) is a sufficient condition for that of 
(1) follows from our Theorem 0.94. By that theorem if A1, .  . ., A2m are any 
set of numbers between 0 and 1 which add up to 1, then there is a 
probability algebra (CU,  P )  and 2” events which are the constituents on 
events El , .  . ., Em in CU whose probabilities are respectively the 1;s. Thus, 
if in addition the 1;s satisfy 

~ i i A 1  + . * . + ~ i 2 m A y  = pi ( i  = 1, ..., n) 

it readily follows that 

P(Pi(E1,  ...) E m ) )  = pi ( i  = 1, ..., n). 

By using the short-hand ‘3(2l, P)’ for ‘There is a probability algebra 
( C U ,  P )  and events xl,. . ., x, in CU such that’ and ‘L( l ,  p)’ as short for the 
conjunction of conditions listed in (2), the equivalence just discussed can 
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be written : 

3(‘2&P) Al=l[P(~pi(xl,...,x,)) = pi] ~ 3 ~ l ~ . . ~ , ~ & ( J ~ ~ ) ,  

Having established that the Problem on Conditions of Possible 
Experience is equivalent to one on solvability of a linear system, we turn 
our attention to this equivalent formulation. The question of solvability 
of such systems has been discussed in our 90.7-we can apply Fourier 
elimination to such a linear system, as Boole does, and obtain necessary 
and sufficient conditions that the linear system have a solution. The 
procedure of the demonstration of Theorem 0.71 applied 40 the system 
(2) with parameters pl,...,pn would result in a series of linear 
inequalities (or equalities) relating these parameters ; and the relations so 
obtained are exactly Boole’s “conditions of possible experience”. 

The conditions of possible experience were also used by Boole to 
obtain bounds on probabilities. In such a system of inequalities-whose 
parameters we now wish to call pl ,  . . ., p , ,  w-any one of the parameters, 
say w, can be treated as an unknown and be solved for in each linear 
relation of the system. In general the solutions for w will be of the form 

Ri(pI ,..., p , )  I w ( i  = 1 ,..., r )  

and 

w I S j ( P ,  ,..., p.)  ( j  = 1 )..., s) 

which may be combined into the equivalent form 

max (Ri) I w I min ( S j ) ,  
i j 

giving, as with Boole, possible bounds on the value of w. 

to conditional probabilities, e.g. P(cplq) = p .  If this were treated as 
Some of Boole’s examples (e.g. Ex. 5 in our $4.6) have data referring 

and the probabilities of the constituents in numerator and denominator 
were replaced by A’s (as above), then a nonlinear expression in the 2 s  
results. Or, if written in the form 
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( 5  1 

then the parameter p appears in the coefficient(s) of the i ‘s  and not in the 
constant term position. Boole makes no mention of this, circumspectly 
avoids either alternative, and introduces a new parameter, e.g. c, and 
replaces a datum (4) by a pair of equations 

P ( W )  - P p ( q )  = 0, 

which fundamentally alters the nature of the datum from a one- 
parameter to a two-parameter one. 

Of more significance is Boole’s treatment of conditional probabilities 
in connection with his solution of the General Problem. For data in the 
form (1) we have seen that the conditions of possible experience is a 
system of inequalities linear in p l , .  . ., p,. In his solution of the General 
Problem Boole has a translated form for the data which he asserts leads 
to the saMe system. Recall that Boole introduces new variables sl,. . ., s, 
(as we shall call them here), setting 

s1 = cpl(x,, ..., X,),S2 = (p2(Xl, ..., X A  ..., s, = (Pn(X1, ..., x,) 

and in terms of the new symbols the data are expressed (as in (10) of 

9: 5.4) by 

It is Boole’s contention that an instance of the General Problem is a 
real one if and only if the conditions of experience for (7) are satisfied, 
and he observes that these conditions are the same as for the original 
data (as given e.g. in (1)) [1952, p. 380, and also p. 3981. But what he 
means by the conditions of experience here is not (expressing it in our 
formulation) with reference to a probability algebra (%(s,, . . . , sn), P )  
but to a conditioned-events probability algebra ( % I  V ,  P) .  For he 
expresses the left-hand sides of the equations in (7) not in terms of the 
probabilities of constituents on sl,...,s, but on the ratios of these 
probabilities to tbat of V-each left-hand side of the equations then 
becoming a sum of the form C v j ,  where the vj are the described 
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quotients of probabilities (conditional probabilities). The resulting 
equations are linear in the v’s. Adjoining the usual normative conditions 
and eliminating the v’s results in a set of inequations linear in p l , .  . ., p n .  
That these conditions of experience are the same as for the original data 
was ‘‘a priori evident” to Boole, though he does illustrate the result with 
an example which shows the relationship between the v’s and the A’s. We 
present a brief general argument using notions of the preceding section. 

Referring to (7), let v l ,  ..., v, (e  I 2,) be all the quotients of the 
described kind corresponding to constituents appearing anywhere in 
E l , .  . ., Vsn. Rewriting (7) as 

(8) P(.YllV) = P l , P ( S Z I V )  = p z  ,..., P(s,IV) = p n  

and with 

P(sij V )  = C(i’vj  (i = 1,. . ., n )  

we see that we have a system of equations in (23 lV ,P)  of the same 
nature as (1) is for (rU,P). Our earlier argument now leads to the 
equivalence 

where N ( v , p )  is the linear system for the v’s corresponding to (2) [but 
with C;, vj I 1 in place of cj= A j  = 11. We also have the equivalents : 2” 

the first of these by virtue of the isometry of a (231 V ,  P )  and its related 
(a*, P )  as described in the preceding section, while the second becomes 
apparent if one thinks of q l , .  . ., cp. as fundamental regions in a Venn 
diagram (for a*) which are then subdivided so as to be q l ( x I , .  . ., x,), 
. . ., q n ( x 1 , .  . ., x,) (for rU) with xl, .  . ., x, as the fundamental regions. 
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We conclude this section with a remark on the narrowness of Boole’s 
view of what a probability problem could be. In his formulation of the 
General Problem it is assumed that the data are given in terms of 
equations (as in (1)). We see no reason why a datum couldn’t be of the 
form 

where p is any one of the order relations 

(equality can be omitted since a statement of the form a = b is 
expressible as a conjunction u 5 6 and b I LI), or even more generally as 

( 1  1) 

(qi abbreviating q ~ ~ ( x ~ , . . . , x ~ ) )  for an n-ary function J’. In the case of 
functions .f which are linear in their arguments we can readily show that 
Fourier elimination can be applied to  a system of relations of the form 
(11) in terms of the 2 s  (probabilities of constituents on xlr...,xrn), 
resulting in a system of order relations between linear combinations of 
the parameters p l , ,  . ., p n ,  thus considerably generalizing Boole’s concept 
of conditions of possible experience. 

f(P(cpl)* P(cp2h . . .* P(cp”))PP 

0 5.6. The problem of absolute probabilities I1 

Our initial presentation ofthis topic in 5 4.3 adhered closely to the original 
one given in the Laws of Thought and we there in 9: 4.3 deliberately dis- 
regarded much of Boole’s later ideas on the subject. It is clear that in 
the Laws of Thought he had not yet foreseen the difficulties involved, for 
in Chapter XVII, when he first comes out with the equations for deter- 
mining the absolute probabilities, he merely states: “from which equa- 
tions equal in number to the quantities p’ ,  q’, r’, . . . [i.e. the absolute 
probabilities sought] the values of these quantities may be determined”. 
Throughout the book the equations are solved on an ad hoc basis for 
each individual problem. Subsequently Boole realized the need for a 
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general proof of the existence and uniqueness of solutions for these 
equations so as to justify the general applicability of his method. 

In an article appearing in The  Philosophical Magazine (BOOLE 1854e 
= BOOLE 1952, XV) he announces that the rules for his probability 
method given in the Laws of Thought are in need of an addition, namely by 
a necessary and sufficient condition which he states as follows : 

If the problem be a real one, the system (I.) [the equations for 
the absolute probabilities] will furnish one set, and only one set, 
of positive fractional values of s, t ,  etc., which substituted in 
(11.) [i.e. the equation Prob. w = ( A  + cC)/Y] will determine 
Prob. w. 

If the system (I.) does not furnish a single system of positive 
fractional values of s, t ,  etc., the problem is not a real one, and 
does not in its statement represent a possible experience. 

At the end of this paper he says: “The verification of these results will 
be considered in my next paper”. The topic is resumed in BOOLE 1855 
in which the core of the mathematical difficulties is brought out, but no 
successful resolution. There is further discussion in the appendix of his 
Keith Prize memoir (BOOLE 1857 = BOOLE 1952, XVI). Finally in 
BOOLE 1862 ( =  BOOLE 1952, XVII)  he claims to have overcome the 
“analytic difficulties” which impeded him and we have the promised 
general demonstration. The present section is devoted to  a detailed 
examination of Boole’s proof. 

Recall that for Boole’s general problem in probability, when trans- 
formed so as to be in terms of the “ideal” events, s, t ,  ..., one needs 
to determine the solution of a system of algebraic equations 

- 
where V is a rational integral form in products of s, t ,  . . .  5, t ,  . . .  (i.e. 
algebraic products homonymous with the constituents of the logical 
V ) ,  and where V,  is the sum of those terms of V having s as a factor, 
r/; those having t as a factor, etc. Boole converts these equations to a 
standard form by dividing, on the left sides, numerator and denominator 
by the product i<. . ., which doesn’t appear in any of the numerators, 
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replacing s/i by xl, tlf by x 2 ,  ... and renaming p , q ,  r ,  ... to 
p l ,  p 2 ,  p 3 , .  . . so that the equations appear as 

(1) 

where now V is a rational integral form in the variables x I ,  . . . , x,, no 
variable appearing with exponent other than 1,  and where Vi ( i  = 1, . . . , n) 
is the sum of the terms in V having xi  present. As originating from a logi- 
cal problem the coefficients of any term present in V is 1, but in what 
follows, for the purposes of his proof, Boole allows these coefficients 
to have any positive value. Since the original variables s, t, . . . range from 
0 to 1, the xi  will then range from 0 to oa. 

Boole's paper then continues with a purely algebraic result to the 
effect that a determinant of a certain specified kind can have in its ex- 
pansion [if non-empty] only positive terms. A statement and proof of 
this result we have placed in our Q 0.10 (Theorem 0.101). As an immediate 
particular application of this result Boole has 

PROPOSITION I1 

If V be any rational entire function of the n variables xl, x,, . . . , 
. . . , x,,, but involving no powers of those variables above the first, 
and if, further, all the different terms of V have positive signs, then 
the determinant 

v V ,  V, ... v n  

'1 J'I V I , . . .  Vln 
v, V,, V, ... Vzn 
........................... 
Vn J'n1 Vn2 *.. Vn 

in which Vi denotes the sum of the terms in V which contain xi, 
and Vij the sum of the terms in V which contain xi ,  xj ,  will, when 
developed as a rational and entire function of x,, x,, ..., xn, 
consist wholly of terms with positive coefficients. 

As we have already remarked in Q 0.10 it is a simple matter to verify 
that, under the hypotheses of this Proposition, the conditions (i)-(iii) of 
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axy + bx + cy + d uxy + cy 
axy + bx axy + bx axy 

axy + CY axY acy + CY 

axy + b s  

; 

V =  axyz + byz + cxz + dxy + ex + f y  + gz + 11, 

the developed determinant will consist of fifty eight positive terms. 
Its calculated value will be found in the Memoir on Testimonies 
and Judgements. 

While it is true that these two computed examples of Boole’s show that 
the determinant of Proposition I1 is not identically 0 for a V complete 
in form, Boole gives no proof for general n and tacitly assumes that it is 
true for such V’s (as well as for others). However, in 9 0.10 we have al- 
ready seen that this is indeed the case: 

REMARK (to Proposition 11). If V is  complete in form then the deter- 
minant is not identically zero and is positive for  positive values of xl, 
x2,. , ,, x,. 

Boole first turns his attention to establishing his principal result for 
the case of a V complete in form: 

Theorem 0.101 hold and hence the displayed determinant can’t have nega- 
tive terms in its expansion (as a ratidnal integral function of x,, . . . , x,J. 
However Boole overlooks that it could very well be 0, as for example 
in the case of V = x1x2, V, = V2 = V12 = = x1x2. When V is 
“complete in form” (having all possible 2” terms present), Boole finds 
the determinant impressive : 

The rapidity with which the complexity of the determinant 
increases as the number of variables increases, is remarkable. For 
example, if n = 2 and V = axy + bx + cy + d, the determinant 
is 
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PROPOSITION 111 

The functions V, Vl, V2, ..., V, being defined as above, if I/ 
be complete in form, i.e. if it consist of all the terms which accord- 
ing to definition it can contain, each with a positive coefficient, 
then the system of equations 

will, when p , ,  p z ,  . . . , p ,  are [positive] proper fractions, admit of 
one solution, and only one, in positive values of xl, xz, . . ., x,,. 

The proof, by induction on n, is quite ingenious. We follow Boole’s 
demonstration, supplementing or emending it where needed to accord 
with present-day standards of rigor. 

For n = 1 we have V = ax, + b with a > 0 and b > 0, and the single 
equation 

axl VI - 
v ax1 + b = p ’  

bP1 . 
4 1  - P1) ’ 

-- 

has the unique positive solution 

x, = 

and here x1 > 0 since 0 -= p1 < 1. (Boole isn’t always clear about whether 
he is taking 0 to be a positive number or not. We shall exclude it, i.e. 
“positive” shall mean strictly greater than 0. Note that p1 = 1 is excluded, 
otherwise x1 would be undefined.) Assuming as hypothesis of induction 
that the proposition holds for Vs with n - 1 variables, Boole proposes 
to establish it for a V with n variables by showing that as x1 varies 
from 0 to co, with the values of 

x 2  [= xz(xd1, a*., X” [= x*(xdI, 

being determined by hypothesis of induction as unique positive values 
satisfying the last n - 1 equations of (l.), the value of 

Vl 7 [= W l ,  XZ(XI), . . * 3 X,(Xl))l 
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varies continuously and monotonically from 0 to 1 and hence takes on 
the value p ,  exactly once in the course of its variation. We take a close 
look at the details of this part of the proof. 

It is a noteworthy fact, and a circumstance which Boole takes advantage 
of, that for any x, 2 0 the last n - 1 equations of (1.) are again of the 
form (1 .) for a V with n - 1 variables and with the hypotheses of the 
proposition holding. Hence, by the inductive hypothesis, there is for 
each such value of x, a unique set of positive values for x,, . . . , x, which 
satisfy the last n - 1 equations of (1.). To indicate the dependence of 
the thus defined functions on x1 we denote them by 

XZ(Xl), . . -1 &(XI 1- 

When these are substituted for x2,. . ., x, into the left-hand side of the 
first equation in (1.) we obtain for Vl/V the function 

A (x 2 (x 1 ), . . ., x,(x 1 ))x 1 [= 1. A(xz(x,), . .., x,(x1))x1 + B(XZ(XI ), ...) Xn(x1)) Ax1 + B (2  1 

From the positiveness of x2(x1), . . ., x,(xl) and the nature of V, and V 
we see that A is non-negative and B is positive (even for x1 = 0). 
Abbreviating the expression in (2) by 

F(x1, Xz(X1)3.. .? X”(X1)) 

or, even briefer, by @(xl), we see that for x1 > 0 the value of @(xi) 
lies between 0 and 1 and that on substituting 0 for xl, we obtain 

F(0,  x2(0), . . ., X ” ( 0 ) )  = @(O) = 0, 

except if x2(0) = x3(0) = ... = x,(O) = 0, for then (2) reduces to 0/0 and 
determines no value for xl. This could happen if p 2  = p 3  = . . . = p ,  = 0. 
Validation of this step in the proof requires interpreting, in Proposition 
111, “positive” as meaning greater than 0 and “proper fraction” as 
excluding 0 and 1. Boole now repeats the argument for x1 = 00 and 
concludes that @(a) = 1. For a 20-th century mathematician for whom 
the last II - 1 equations are meaningless when “xl = CO” the argument 
lacks cogency. Actually all one needs to have is 

lim @(xl) = 1 
x, + al 
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and this does follow-looking at (2) we know from the form of V that 
term for term B(x ,,...,x,) is algebraically of the same degree as 
A(xZ , .  . ., x,) and each corresponding term with the same variables, 
differing only in the coefficients, hence the values of the fraction 

B - B(x,(x, 1 3 . .  .. x,(xt 1) 
A (x2 (x 1 h . . .? xn(x  1 1) 

- - 

A 

remains bounded as xI -, m, so that the quotient 

X I  

XI + ( B / A )  
____- - Ax 1 

A X ,  + B 

has limit 1. 
Boole next asserts: “It is manifest too, that it [i.e. Vl/V with x2, . . . , x,, 

determined by the last IZ - 1 equations for xI 2 01 varies continuously”. 
This may be manifest to Boole, but we think it should have more justi- 
fication than this. What is manifest is that for values of xl, . . . , x, in the 
positive range F(x,, x,, . . . , x,,) is continuous in the indicated arguments 
and hence if in addition the positive functions x2(xI), . . . , x,(x,) are con- 
tinuous then so is @(xl) = F(x , ,  x,(x,), . . . , xn(xl ) ) .  Justification for the 
continuity of x,(x,), . . . , x,(xl) comes by virtue of the implicit function 
theorem (Q  0.10) and requires that the system have a non-vanishing 
Jacobian. Calculation of the Jacobian is simplified by introducing an 
auxiliary variable t and adding the equation Y - e-‘ = 0, SO that our 
system becomes 

v - e-‘ = 0 

V2 - p2e-‘ = 0 

(3) 

implicitly defining x,, . . . , x,, t as functions of x, by the inductive hypo- 
thesis (which, while it gives us the functions, does not give us the con- 
tinuity of these functions). Now the functions on the left-hand side of the 
equations in (3) are certainly of class C‘ (continuous derivative) so that 
if the Jacobian is # 0 for x, > 0 we can conclude by the implicit 
function theorem that x2(xI), . . ., xn(xl), f(xl) are continuous (indeed of 
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1 
S 2 X 3  . * *  .Y,, 

( 5 )  

class C').  Making use of the fact that 

v v2 r', . * .  vn 
V2 V2 V23 0 . .  VZ, 

v n  Vn2 * . *  V,l 
1 

8Vj vji PVj - vj iiv vi 
%Xi -Yj ' i.xi .Yj ' i 9 - i  xi ' 

_ -  _ -  --- - - _ -  (4) 

we find the Jacobian to be 

I .  i 

is assured; moreover, from the implicit function theorem it also follows 
that V, /  V has a continuous derivative. Returning to Boole's demonstra- 
tion : 

If then it [i.e. V J V ]  vary by continuous increase, it will once, 
and only once in its change, become equal to p , ,  and the whole 
system of equations thus be satisfied together. I shall show that 
it does vary by continuous increase. 

If it vary continuously from 0 to 1 and not by continuous 
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increase, it must in the course of its variation, assume once a 
maximum or minimum value. 

Boole then goes on to determine if the derivative of V,/V could be 0. 
This tacitly assumes that the existence of an extremum implies the 
existence of a zero derivative value-which it does here since, as just 
mentioned, V l /  V has a continuous derivative. 

By adjoining the equation 

to the n equations obtained by differentiating with respect to x1 each of 
the equations 

e'V- I = 0, e'V2 - p 2  = 0, ..., erVn - pn = 0, 

and then making use of (4), one obtains the system of equations 

v-+--+--+. . .+- -=()  df V1 dxl V2d~2 Vn dxn 
dxl X I  dx, ~2 dxl Xn dxl 

constituting a necessary condition for an extremum. But by Proposition 
11. above the determinant of the coefficients, namely 

Vn 

V n  

is # 0. Hence if VJV were to have an extremum then the system ( 6 )  
would have only the trivial solution-but this is impossible since dxJdx, 
can't be 0. Thus V , / V  does not have an extremum and herewith Boole's 
Pro position 111. is established. 
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Having disposed of this case Boole then considers V’s which are in- 
complete in form (less than 2“ terms). Here the “conditions of possible 
experience” play an important role-in this context they are necessary 
conditions (on p l ,  . . . , p,) which are implied by equations (1 .) and which 
are obtained as follows (Proposition IV. in Boole’s paper). 

For each distinct term appearing in any of Vl, ..., V, let Ai ( i  = 

I ,  . . . , I) be the ratio of that term to V.  Then we have either 

or 

according as the distinct terms in Y , ,  . . . , Vn make up all of V or not; 
to this condition adjoin the n equations 

(7) 

corresponding respectively to the n equations of (1  .) (the values of the 
indices k , ,  . . ., krci, being such as to select the appropriate A’s for the 
terms in the i-th equation V,/V = pi); and finally to all of these add the 
inequalities 

To this combined system of equations and inequations Boole now applies 
his technique of eliminating the A’s (Fourier elimination, § 0.7) so ob- 
taining a system of linear inequations in p l ,  . . . , pn of the form 

Akl + A,, + ... $- = pi ( i  = 1, . . . , n) 

2 0, A, 2 0, . . . , 2, 2 0. 

ally1 + ~ 1 2 ~ 2  + ... + a l n P n  + bl 2 0 

a21 PI i- a22L-2 + ’ .  ‘ + e 2 , P n  + bz 2 0 

antlp, + a m Z ~ 2  4- ... + a , n n P n  + b m  2 0. 

(8) 

These are the conditions of possible experience (or “inequations of 
condition”) associated with equations ( I  .), constituting a necessary con- 
dition for the existence of a solution to these equations. 

Boole observes that in the elimination process equations “present 
themselves” only if the equations (1.) are not independent. Indeed, if an 
equation, 

(9) alp1 + azy2 + * . ’  + QnPn + b = 0, 
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is deducible then it must have come from (7) by having 

in which case, from (9) and (lo), 

so that for any ui# 0, if the equations of (1.) other than the i-th are 
satisfied then so is the i-th. 

Equation (10) can be written 

(1 1 )  

in which form it expresses the linear dependence of the functions 
V l ,  V2, ..., V,, V. As we shall presently see, for his principal theorem 
Boole will assume that the equations (1  .) are “independent with respect 
to x l ,  . . . , x,” and, as a consequence of this, the linear dependence cannot 
happen if the hypotheses are satisfied. Likewise, all of the inequations 
in (8) would, if holding, have to be strict. 

As described in 6 0.7 one can obtain from (8) upper and lower bounds 
for any one of the pi’s in terms of the others. Thus for each inequation 
of (8) for which a,, # 0 one can obtain an upper bound 

a lVl  + a2V2 + ‘.. + a,V, + bV = 0, 

or a lower bound 

according as ail is negative or positive and hence, calling minl(p2, . . . , p,) 
the smallest of the upper bounds and max,(pz, . . . , p,)  the largest of the 
lower bounds, we have 

(1 3) maxl(p2, . . , P,) 5 p1 I mini (PZ, . . . , P,). 
Boole notes that the conditions of possible experience are independent 

of the particular values of the coefficients of the terms of V-so long as 
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they are positive-since these do  not enter into the equations or  inequations 
for the A’s. 

Having introduced the conditions of possible experience which he 
will need Boole is now ready to tackle the case of V’s incomplete in 
form‘. 

PROPOSITION V 

Let V be incomplete in form; then provided that the equations 

are independent with respect to the quantities xI, x2, ..., xn and 
that the inequations of condition deducible by the last proposi- 
tion are satisfied, the equations will admit of one solution, and 
only one, in positive finite values of xl, xgr . . ., x,. 

Here in this statement of his result Boole includes an hypothesis not 
mentioned in earlier versions, namely that the equations (1.) “are 
independent with respect to the quantities xl, x2, . . . , x,”-this restriction 
has the important implication of narrowing down the class of V’s for 
which the system (1.) has a unique solution, and thus reducing Boole’s 
earlier unspoken, but implied, claims of general applicability of his 
probability method no matter what V may arise. As to what “independent 
with respect to the quantities xI, x,, . . . , xn” means is not explained by 
Boole, but what he explicitly uses this hypothesis for is to assure that 
no variable cancels out from numerator and denominator of all the 
VJV in ( I . ) ,  so reducing the system to one of n equations in n - 1 un- 
knowns, and that there does not exist a linear relationship holding iden- 
tically among the vl,/ V. We interpret Boole’s independence assumption 
to mean that the equations (1.) are not degenerate, i.e. that the n 

In the remainder of this section we shall be running two systems of number- 
ings of formulas-those which appear on the right hand side of the page are 
part of the quotations from Boole’s paper and are distin$uished in the text 
from our numbering of formulas by having a period after the numeral (as was 
originally printed in Boole’s paper). 



THE PROBLEM OF ABSOLUTE PROBABILITIES I1 321 

functions an the n variables are essential. Referring to the Sufficient 
Condition for Functional Independence in 80.10 we see that if the 
Jacobian of { V J V , .  . ., V, /V}  with respect to x,, . . ., x, is not identically 0 
(over a given region) then no continuous, a fbrtiori no linear, relation- 
ship can exist among the y /V-  pi (alternatively, among V, ,  . . ., V,,, V ) ;  
moreover, if a variable were absent from all the functions then the 
column in the Jacobian having the derivatives of the v / V  with respect 
to this variable would be a column of all Us, making the Jacobian 
identically 0. Thus the Jacobian not identically 0 is sufficient for Boole’s 
stated requirements. Additionally, although Boole didn’t realize it one 
also needs such a condition to insure the continuity (which he had 
tacitly assumed) of the solution of the last n - 1 equations as functions 
of x, occuring in the course of the proof. In the analogous situation in 
the proof of Proposition 111, just examined, this assumption (Jacobian 
not identically 0) was not needed as it is automatically fulfilled for a V 
complete in form. However, as noted earlier, for a V incomplete in form 
the Jacobian could be identically 0. Accordingly, we shall adopt the non- 
vanishing of the Jacobian as an explication of Boole’s requirement that 
the equations be “independent with respect to the quantities x,, . . ., xn.” 

Instead of directly obtaining the Jacobian of these functions we can, 
as before, simplify the calculations by introducing an auxiliary variable t 
and adding the equation V - e-‘ = 0 to (1.). For this equivalent system 
the Jacobian is 

I 

where, but for the independence requirement, this Jacobian could be 
identically 0, unlike for the case of V complete in form. 

In broad outline Boole’s proof of Proposition V. is similar to that of 
Proposition 111. (in which I/ is complete in form). He claims to show that 
when x1 is assigned a value between 0 and co the x2,. . ., xn are determined 
as finite positive values satisfying the last n - 1 equations; that [as a func- 
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tion of xl] F-l/V will be between max,(p,, . . . , p,,) and min,(p,, . . . , p,,); 
that when x, is 0 or 00 the values of x2, , . . , x, (which may be 0 or 00 

i n  this circumstance) determined by the last 17 - 1 equations give to 
Vl /V the extreme values max,(p,, ..., p,J and minl(p2, ..., p,);  and 
finally that as x, varies from 0 to 00 the function VJV varies “by con- 
tinuous increase” between the extreme values. Since the inequations 
of condition, assumed to hold by hypothesis, imply that p1 is between 
these values, the function V l / V  will take on this value once and only once 
at the same time the last n - 1  equations are satisfied, and all this for 
finite positive values of xI, . . . , x,. We proceed to the details’. 

We suppose that the system (1.) satisfies the “independence” hypothe- 
sis, which we have taken to mean that the Jacobian (14) is not identi- 
cally 0, and also that the “conditions of inequation” hold. Further, as 
hypothesis of induction we are supposing that the Proposition is true for 
systems with n - 1 equations. 

In the system (1.) let xi receive any finite positive value, and let 
V by the substitution of this value become U ;  the last n - 1 
equations of (1.) will thus assume the form 

in which the quantities pz,  p3, . . . , p, satisfy the conditions [of 
inequation] to which the direct application of Proposition IV. to 
this reduced system of equations would lead. 

The assertion here is readily verified for, as Boole notes, the change 
from V to U, resulting from assigning a value to XI,  entails the coalescing 
of some pairs of terms which have the same variables present except that 
one of the pair has x1 and the other domn’t. Thus the 1 system for U 
(call the variables here “p”) may be obtained from that for V by omitting 
the equation for V,/V = p I  and in the remaining equations or inequations 
replacing, where appropriate, sums of two 1’s corresponding to coalesced 
terms by a single p, e.g. Ai + Aj by pk, and replacing the pair of inequations 
Ai 2 0, A,> 0 by pk 2 0. Thus any relationship concerning p2, . . . , p, 
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derivable from the p system which is true independently of the p’s can 
equally as well be derived from the A system by replacing in the derivation 
each ,u by the corresponding A, or sum of two A’s, according as the ratio 
designated by p corresponds to an uncoalesced or a coalesced term of V 
and, in  the case of a coalescing, the condition pk 2 O.by Ai 2 0, which 
implies it. This replacement results in a subsystem of the A system- 
hence the inequations of condition for ( 2 . )  hold if that for ( I . )  does. 

Boole now concludes, by hypothesis of induction, that the system ( 2 . )  
for the U’s is satisfied by a unique set of finite positive values for x2, x3, . . ., 
. . . , x,, for the assigned positive value to xI .  Although Boole has verified 
one of the two hypotheses in Proposition V. for application to the case 
of 11 - 1 equations, he says nothing about the other, the independence 
condition. What needs to be shown is that if the Jacobian for 
{ V, /V , .  . ., V,/V). with respect to xl , .  . ., x, is not identically 0, then neither 
is that for { U , / U  ,..., U , / U i  with respect to x2 ,..., x,. A proof is not 
immediately obvious. We supply one in an endnote to this section. 

As in  the case of Proposition 111. one has that the positive functions 
x2(x,), . . . , x,,(xI) which satisfy the last n - 1 equations of (1 .) are con- 
tinuously differentiable and, when substituted for x2, . . . , x,, in the 
function V, /V ,  results in a function of xlr call it also 

@(sl), or F ( s , ,  x2 ( x I )  . . . , x,,(xl)), 

which is defined for all x1 > 0, which is continuously differentiable, and 
monotonic. What remains to be shown now is that p I  lies within the 
extremes of the range of values of @(x,). But at s, = 0 and xI = 00. 

where @(xl) has its extreme values, the equations (1.) need no longer 
retain the appropriate from for the application of the theorem and to 
handle this situation Boole introduces, to use his own words ,“a remark- 
able transformation”. (Boole speaks of the “value” of VI/Vat 0 and at 00 

but it is only lim,v,+o V l / V  and limx,+m VJVthat we need and which 
we shall concern ourselves with.) In what follows we continue to follow 
Boole’s ideas, though a t  times we go our own way in adherence to current 
mathematical standards, or  for the sake of clarity. 

Since 
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the objective, t o  show that p ,  lies within the extremes of the values of 
@(xl), would be attained if one could show that 

lim F ( s , ,  .v2(xl), . . . , 
x 1-0 

and 

Direct evaluation of these limits (as for the case of V complete in 
form) is not easy to  come by and Boole uses his remarkable transforma- 
tion for this purpose. 

Equations (1.) are  first replaced by a n  equivalent system in the follow- 
ing manner. Let 

be one of the inequations of condition for the V a t  hand. Then from this 
and (1 .) we have that the sum 

(also 2 0 )  when viewed as a rational integral form in xl,. . ., x, consists 
solely of positive terms'. Any term  AX,^^,.,. . . xr, present in V has as 
its coefficient in (4). 

UIr1 A + UIr,A + . . . + U i r , A  + bIA 

To see this let Bx,x, . . . be any one of the terms in (4.) and divide the entire 
expression through by the product x,x, . . . , so converting this term to B. Any 
variable appearing in  some numerator cannot also appear in a denominator. 
For if a term originally had xi as a factor it would either be cancelled or be 
left as it was, and if x i  were absent it still would be absent or else be present in 
the denominator. Since the terms of (4.) are distinct the only constant term 
appearing after the division is B. Let each xi with numerator occurrence ap- 
proach 0 and each xi with denominator occurrence approach 00. Then, as (4.) 
is non-negative, its limit after the division, namely B,  is also non-negative and 
hence, being different from 0, is positive. 
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and hence, as A is positive by hypothesis on V, we have that either 

( 1 7 4  air, i ajr2 + ... + a;, 4 6j > 0. 
0 '  

or 

depending on whether 

Axrlx,.,  . . . x,. 

is present or absent in (4.). Now effect a separation of the terms of V 
into two classes, placing a term in one or the other of the classes according 
as (17a) or (17b) is the case for the term, and let Hand K be the respective 
sums of the terms in these two classes. Then 

V = H + K  

and 

H = a;,V1 + ai.v. 4- . * .  4- U i t 2 V ,  f biV. 

We observe that K cannot be an empty sum (ie. H cannot be V )  since 
the second of these equations would then imply that the functions 
V,, V,, , . . , V,, Vare linearly dependent, in violation of the independence 

hypothesis. For the same reason H cannot be an empty sum. The follow- 
ing linear combination of the equations of ( I  .), namely 

i.e. 

is an equation which, in the presence of the other equations, can equi- 
valently replace any one of the equations of (I.). Boole replaces the first 
equation and writes the system as 
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where Hi+ K ,  (i = 2 , . . . , t 1 )  is the separation of into terms of the H 
and K types corresponding to that of V .  

Up to now we have been supposing that (3.) was any one of the in- 
equations of condition. Now we select the (or an) i which gives the maxi- 
mum lower bound on pI, i.e. an i for which 

-in particular this implies that ail > 0 (see $0.7). If we abbreviate 
max,(p2, . . ., p,) by pT then we may rewrite this condition as 

(18) 

The systems (1.) and (6.) are still equivalent if we replace pI in both 
by pT. Call the resulting systems (l .)* and (6.)* and note that, by 
virtue of (18), the first equation of (6.)* is 

ail pT + ui2pz + ' ' ' + UinPn + b, = 0. 

= 0. 
H 

H + K  

Since the last n - 1 equations of both systems as well as that of ( I . )  
are the same and, by the inductive hypothesis are satisfied by the functions 
x2(xI)  ,..., x,(x,), the substitution of these functions for x2, .  .., x, in the 
systems reduces them respectively to the single equations 

& I ,  X2(X1), . - .  9 X,(XI)) = p :  

W l ,  XdX,), . . . , ,Yny,(X1)) = 0, 
and 

where 
H 

H t- K '  
G ( x ~ ,  xZ, . . . , x,) = - 
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Since the two systems are equivalent the question as to whether 

lim F ( x l ,  x2 (x l ) ,  . . ., ~ , ~ ( x ~ ) )  = p: 
x,+o 

is equivalent to the question as to whether 

(19) l im G(x,, x2(xI), ..., xn(x1 ) )  = 0. 
J 1 -0 

Now we bring Boole's transformation into play, introducing new 

o , h ,  1 

variables yl(= I), y,, . . . , y,, by stipulating that 

xi = x 1  yj ( j  = I ,  ...,n). 

where i is the above chosen index. 

becomes 
Under this transformation a term of V of the form Axr l  xr2 . . .  xrQ 

(qrl +-. +qrp I 
Ax1 J'rIJ'r2 . ' . J ' rc .  

If  we make this transformation throughout (6.)" and multiply numerator 
and denominator on the left sides of the equations by xlbi"il, then the 
net effect is to replace each term like Axrl  xr2 src by 

By our choice of i above a,, > 0, and so by (17a, b) and (21) each term 
in H (and in H,, . . . , H,,) has xI as a factor with positive exponent and 
each term in K (and in K,, . . . , K,,) has xl  with exponent 0, i.e. xI  is not 
present. Furthermore, if x,(x,) ,  . , , . . , x,,(xI) are the positive functions 
(defined for xI > 0) satisfying the last n - 1 equations of (1.) then the 
functions jz(x1), . . . , y j ( x l ) ,  . . . , yn(x l )  defined by 

x j (x l )  = x,W'ilyi(xl) ( j  = 2 ,  . . . , 17)  

for xI > 0, will satisfy the last n - 1 equations of (6.)* expressed in 
terms of the variables y,, . . ., y,. Then in terms of the functions yj(xl) 
condition (19) becomes 

lim G ( x l ,  x1ui2~uily2(x1), . . . , x l e i n ~ a i ~ y n ( ~ l ) )  = 0. 
X l - t o  

(22) 

Boole establishes (22)-according to his lights-by showing that the 
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last n - 1 equations of (6.)* expressed in terms of y,, . . . , y ,  have, when 
x I  = 0, a unique solution, say y!, . . . , y t ,  in positive values. For if this 
is the case then when these values along with 0 for x1 are substituted in 
for y,, ..., y,, one obtains H = 0 and Kf 0 so that the equation 
H/(H + K )  = 0 is satisfied at  the same time as the last n - 1 equations. 
In order to justify this we need to verify that 

(i) for xI = 0 the last n - 1 equations of (6.)*, which for this value take 
the form 

in variables p2 , .  . ., y,) have indeed a unique positive solution, 
Y,,. . ., y:, and 

(ii) the solution y2(x,), . . . , y,(x,) of the last n - 1 equations of (6.)  *, 
which are continuously differentiable for x1 > 0 are also continuous at  
x1 = 0, so that 

0 

Then, as G (= H/(H + K ) )  is continuous for non-zero values of the 
denominator, the limit in (22) is indeed equal to  H/(H + K )  with x I  = 0 
and yj = y,?. 

Item (i) would follow by the inductive hypothesis if one could show 
that the hypotheses of the theorem (Prop. V.) hold for (23). Observe 
that the inequations of condition for (1.) still hold if p 1  is replaced by pT 
since the only necessary condition on p, is 

and this still holds true if p1 is replaced by p:  = max,(p,, . . . , p J .  Hence 
we may take the inequations of condition for (1.) with p1 replaced by 
p :  as inequations of condition for (l.)* or, since (l.)* is equivalent 
(6.)*, as inequations of condition for (6.)*. Now the first equation 
(6.)* namely, 

to 
of 
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implies that all those 2’s in the A system for (6.)*, which correspond to 
terms of I/ present in H ,  are to be made equal to 0. If these 2 s  are put 
equal to 0 in the remaining equations of the 2 system for (6.)*, the 
resulting system will be the same as that for ( 2 3 ) .  I t  is then evident that 
the inequations of conditions for ( 2 3 )  hold since those for (6.)* do. As 
for the independence requirement for ( 2 3 )  again Boole says nothing. 
Attempts on our part to prove, under the inductive hypothesis, that 
equations (23) do satisfy the independence condition were unsuccessful. 
We also examined all possible types of 3-variable V‘s and turned up no 
counter-example to the theorem. Thus there is a gap here in Boole’s 
proof that we were unable to close or to show that it was unclosable. 

Turning next to item (ii), the continuity of the solution y,(xl), . . . ,yn( xl) 
of the last n - 1 equations of (6.)* can be extended to x1 = 0 if the 
Jacobian of the system is # 0 at x 1  = 0 and y j  = yy  ( j  = 2 , .  . ., n). This 
would be the case if ( 2 3 )  satisfied the independence conditions, i.e. if the 
Jacobian for ( 2 3 )  were not identically 0. For by Proposition I1 it is 
equal to a sum of positive terms in the variables y,, . . ., y, and hence its 
values # 0 for the positive values y j  = yj”. Thus item (ii) as well as (i) 
makes use of ( 2 3 )  satisfying the independence conditions. 

We may briefly dispose of the other desideratum, the establishing of 

lim F(xl, xz(x l ) ,  . . . , xn(xl)) = minl (P,, . . . , p , ) ,  
xl+m 

by noting that the coefficient a,, in the inequation producing min,(p,, . . . ,pn) 
is negative, so that the role played by x1 in the case of the max,(p,, . . . , p,) 
discussion is now played by l/xl, and the established result for x1 + 0 
is paralleled by that for x, +oo. (A general result about logical vari- 
ables still holds if these are replaced by their negations, i.e. 2 can stand 
for any arbitrary value just as x. In the present context this would cor- 
respond to replacing the numerical quotient of probabilities xl = x/x by 
its reciprocal X/x.) 

Boole concludes his demonstration of Prop. V. with: 

The above reasoning established rigorously that if the proposi- 
tion is true for n - 1 variables, it is true for n variables. It remains 
then to consider the limiting case of n = 1. 
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Here, however, only the complete form of V, viz. V = ax + b, 
leads to a definite value of x, and this, as has been seen, is finite 
and positive. If we give to V the particular form as, the equation 
V,/ V = p becomes 

which determinesp, but leaves x indefinite. If we employ the other 
particular form V = b, we obtain no equation whatever, and here 
again x is indefinite. But as the reducing transformations are all 
definite, the above indefinite forms cannot present themselves in 
the last stage of the problem when the original equations are 
independent and admit of definite solution. 

The proposition is therefore established. 

We would establish the n = 1 case as follows. Having u # 0, b = 0 
is precluded since then 

VI _ _  llxl - 1, - .- v ax, 

and the hypothesis of the theorem on pl,  . . . , p, (carried over from Prop. 
111.) is that 0 < pi < 1 for each i. Similarly b f 0, a = 0 is precluded as 
then V , / V  = 0. So V = ux, + b with both a, b f 0 is the only possi- 
bility and, as we have seen in Prop. I I I . ,  the equation V l / V = p l  has, 
for this V,  a unique positive solution for xl. 

DISCUSSION. The extraordinary effort which Boole obviously must 
have expended to find a proof of his Proposition V betokens the 
importance which he attached to it. As here shown, we were able to 
verify on contemporary standards of rigor all of the steps in the proof 
save one; if the theorem is wrong it can only be shown to be so by a 
counter-example with a V of at least four variables since we (the author) 
have verified it for all 2- and 3-variable Vs. Supposing for the sake of 
discussion that the theorem is correct, is it as important to the theory as 
Boole considered it to be? 

Before replying to  this question we should answer to (iv) left over from 
3 5.3 : Is a probability problem a real one if and only if there is a unique 
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solution in positive values for the equations (1) [(9) in $ 5.31 for it? If we 
take “problem” here in Boole’s sense as described in $ 5.3 and “real” as 
defined in $5.5 then a problem is a real one if 

(24) 3(’13l v,P> Ai [P(SiI v )  = p i ] ,  

and this is equivalent to the conditions of possible experience. Clearly if 
equations (1) have a solution as described in Proposition V then there is 
a Boole probability algebra (!B(sl,. . ., s,), P )  in which the equations 

are satisfied and hence there is a (‘13) I/, P )  as stated in (24). In the other 
direction (24), being equivalent to the conditions of possible experience, 
does imply, by virtue of Proposition V, that there is a unique positive set 
of values satisfying (1) if, in addition, the independence requirements are 
satisfied. If we enlarge the meaning of a “real problem” to include this 
condition then the answer to (iv), on the basis of Proposition V is “yes”, 
and apparently Boole then has succeeded in establishing that his method 
is general, providing the answer to any problem in probability. Being 
able to “embed” the problem into a Boole probability algebra via 
Proposition V so as to obtain probabilities for the ideal events sl,. . ., s, 
is basic to the method. Hence Boole’s concern to prove Proposition V. 

To us the achievement, ingenious as it is, does not have the 
fundamental character Boole thought it did. One can certainly envision 
a far wider class of problems than specified in Boole’s General 
Problem-even retaining the general feature of his conditions of posxible 
experience as a set of linear inequalities (see Q 5.5). But of more serious 
import is the failure of the method to give a full solution set to the 
question of finding the sought for probability, even in some cases when 
the method gives a one-parameter family of solutions. And, as 
Wilbraham in essence pointed out ($  4.8), though the method does give a 
correct value (or class of values) the utility of it is limited, since when 
made explicit, the additional conditions required to produce Boole’s 
particular solution are not “natural” ones connected with the problem 
but with Boole’s technical device. 



338 BOOLE’S PROBABILITY MADE RIGOROUS 

$j 5.7. Boole’s General Problem linearly programmed 

In connection with his general probability problem Boole considered it 
essential that the events whose probabilities were given and the event 
whose probability was sought (the objectioe erlent as we shall call it) 
could be treated as simple events conditioned by the logical relations 
implicit or explicit in the data of the problem, and that as events so 
conditioned their probabilities were the given ones of the original 
formulation. Without this assumption-principle, to Boole-the 
problem was deemed unsolvable, or to have no “determinate” solution. 
As we have seen in this chapter, on the basis of this principle Boole did 
attain his determinate solution goal. 

In this section we are going to show that Boole’s general problem can 
be solved without additional assumptions, solved not in his sense but 
in the sense of giving best possible upper and lower bounds on the prob- 
ability of the objective event, these bounds being determined by the given 
data. Conceivably such a solution could have been presented by Boole 
for, as mentioned in $4.7, the idea of finding bounds on the probability 
of an event originated with Boole, as well as the idea of obtaining, in his 
phrase, “the narrowest limits”. Applying this technique of finding 
narrowest limits for the probability of the objective event would then be 
solving the general problem as we view it. But as Boole never conceived 
of this as a solution to the general problem it is left for us to present it 
this way. We are, of course, bound to current standards of rigor but, on 
the other hand, we shall be able to take advantage of the 20-th century 
development of linear programming theory. 

We consider a slightly simplified version of the general problem in 
which there are no given explicit logical relations-briefly put the problem 
then is: Given 

(1 1 P ( q i ( A 1 , .  .., A,) )  = pi (i = 1, ..., n )  

find P ( ( p ( A , ,  ..., A,) ) .  

By way of clarifying the notion of a best possible bound as we here 
use it, let y, y , ,  . . , ,y, be rn-ary Boolean functions (more exactly-Boolean 
polynomial expressions with nz variables, hence interpretable in any 
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Boolean algebra.) We say that the real-valued function 

B U B , ( ~ I , . . . , ~ , , ; ~ I ,  ...,-vn), 

(abbreviated to  BUB,(x,, . . . , x,)) whose arguments x, range over the 
unit interval [0, 11, is a beJt posJiblr upper bound for the probabilitj, of 
e relative to tp,, . . . , y, if 

(i) for any probability algebra (?(, P), any events A , ,  ..., A,,, in SL, 
and any real numbers p , ,  . . . , p,, in [O: I ]  such that P ( ~ J , ( A , ,  . . . , A,,,))  = p ,  
( i =  I , . . . , ) ? )  wehave 

P(~(AI ,  . . ., An,)) I BUBptp,, ..., p,) 

and 
(ii) under the same hypothesis as (i) i f f  is a function for which 

~ ( ~ ~ A l , . . . , ~ , ~ ) ) ~ f ~ p l , . . . , P , ~ ) ~  BUB&l, ..., P,,) 
then f = BUB,. 

We define the best lower bound BLB, similarly, the sense of the in- 
equality being reversed throughout. The two kinds of bounds are connected 
through the relation 

BLB,(.yl, . . ., x,) = 1 - BUB,(xl, . . ., x,). 

It should be noted that BUBp(pl, . . . , p,)  need not be defined for all 
sets of values of pl, ...,p,,- as it would not be, for example, if 

P(YI(A1)) = W,) = PI, 

f Y W 2 ( A I ) )  = = p2 

and p1 + p 2  # 1. We can now say that our way of solving Boole’s general 
problem is to give explicit expressions for the functions BLB, and BUB, 
and a specification of their range of definition. To this we now turn. 

The constituents on Boolean elements A , ,  . . . , A ,  will be denoted by 
% ( A , ,  ..., A n Z )  (. j= 1, ..., 2”’). We assume that these 2, constituents 
are always arranged in a fixed order, say by stipulating that thej-th one, 
Kj(A1, . . . , A,,), is the one in which the variables A m P i f l  (i = 1, . . . , ni) 
appear negated or unnegated according as the binary expansion of the 
integer 2” - j has a 0 or 1 as the coefficient of 2i-1.  For example if 
m = 3 then this stipulation gives the arrangement 
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1 1 1  

1 1 0  

1 0 1  

1 0 0  

0 1 1  

0 1 0  

0 0 1  

0 0 0  

corresponding to the oft-encountered standard truth-table arrangement. 

For an wary  Boolean function y we shall say “Kj implies 9” if 
&(A,,  . . . , A,,,) is a constituent present in  the complete expansion of 
y‘(A1, . . . , A,,,), and otherwise that “Kj  implies @”. From the fact that 
constituents (on a given set of variables) are mutually exclusive we may 
write the probability of any compound event v(A,, . . . , A,,,) as the sum 
of the probabilities of constituents present in p’s expansion and then, 
using matrix notation, as a product of a row vector with a column vector, 
thus : 

(2) 

where 

,111 

P(p(A1,  . . . )  A,,!)) =z 2 dj (P)p)k. ,)(dk, 
j = l  

kj == P(Kj(A1,  ..., Am)) ,  

\ I  if Kj implies y ,  

\o if Ki implies c/?,  ”) 

and 
nc.) = [d?) . . . 0 3 ,  

k = [ k ,  . . . k p ] T  = [; ] 
k2m . 

Note that the vector d“) is independent of the events Ai, depending 
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only on the nature of the function ~ 1 ,  not on its arguments. Now, under 
the hypotheses of the general problem, the probabilities kj are subject 
to constraints coming from the conditions P(yi(Al, . . . , A,n)) = p i .  We 
express these conditions in terms of the kj by substituting for each 
y j (A1,  ..., A,,,) its expansion in terms of the K , ( A , ,  . .., A,) and, by 
distributing the probability operator P over the exclusive disjuncts, 
obtain 

I if Kj implies ?pi, 
0 if K j  implies yUi, 

2111 

j =  1 
(3 I )-( 3,) C aijki = I),, where aij = 

i ranging from 1 to n. 
To these we must further add 

( 5 ,  )-(W k j > 0  ( j =  1,  ..., Y). 

Conditions (31)-(3n) and (4) can be combined and expressed as a matrix 
equation 

A(v)k = p' , (6) 

where p +  is the (n + 1)-component column vector [pI . . . p, I]', where 
k is the above introduced column vector of constituent probabilities, 
and where A(vJ is the (n + 1)x 2" matrix. 

consisting of the n x 2" matrix [a,] with an additional (n $. 1)-st row 
of all 1 's. The matrix A@') is determined solely by the functions yl, . . . , yn. 
Conditions (5,)-(5,") can be expressed by the simple matrix inequality 

(7) k 2 O .  
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The notion of a probability algebra occurs in our definition of a best 
possible bound. But as the definition entails a universal quantification 
over all probability algebras it isn't surprising that there is an equivalent 
formulation not using this notion-as we now show. 

Given 9, y,, . . . , v,, p,. . . . , p,  define 01(p,, . . . , p,) to be the set of num- 
bers P(p(A, ,  ..., A,)) obtained by using any events A , ,  ..., A,,, in any 
probability algebra (a [ ,  P) for which P(yi(A1, . . . , A,,,)) = pi (i = 

1, ..., n), that is let cu(p,, ..., p , )  be 

(4: There is a (a, P )  and events A , ,  . . ., A,,, for which 

P(yi(A,, . . . , A,)) = pi (i = I ,  . . ., n) and q = P(y(A, ,  . . ., A, , , ) ) ] .  

We show that BLB, and BUB,are, respectively, the greatest lower bound 
(infimum) and least upper bound (supremum) of 01. 

LEMMA 5.61. I f a ( p , ,  . .., p,)  is non-empty, then 

supa(p1, ...,P,) = BUB,(pl, ...,~n), 

inf " ( P I ,  . . . , Pn) = BLB,h ,  . . . , P,). 

PROOF. Suppose a@,, . . . ,p,J is non-empty. Then since it is a bounded set 
its sup exists. Clearly for any ('$1, P) and any events A ,, . . . , A,, for which 
P(yi(A1,  . . , , A,)) = pi we have 

P(V(A1, . - . , A , )  I SUP4P1, * . - 9 p J ;  

and iffwere a function for which 

P(y(A1, A,)) I f ( P 1 ,  ..., P,) I S U P 4 P , ,  ..., P,) 
but 

then supa(p,, . . . ,pn)  would not be the least upper bound. A similar 
argument establishes the result for inf. 

Let /?(p+)  be the set of numbers ~ 5 %  for any k satisfying conditions 
(6) and (7), that is let b(p+)  be 

f(p1, * * - 9 P n )  < S U P ~ P I , - . * , P ~ ) ,  

( q :  There is a k 2 0 such that A@')k = p +  and q = d@')k). 

LEMMA 5.62. a(pl, . . . , p,) = /?(p+). 
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PROOF. Suppose q E a(p , ,  . . . , p,,). Then by the discussion connected with 
(2)-(7) there is a k 2 0 such that A(W)k = p' and q = 8%, i.e. q E B(p+). 
Now suppose q E B(p+), i.e. there is a vector k 2 0 such that A(v)k = p c  
and q = dccP)k. Since each component kj of k is 2 0 and the sum of all 
is := 1 (by the last equation in A(V')k = pf) we have then by Theorem 0.94 
that there is a probability algebra with events A,, ..., A, such that the 
constituents %(A,, . . . , A,J have probabilities kj ( j  = 1, . . ., 2'7. For 
this probability algebra the first n equations of A(% = p f  tells us that 
P(.(y,(A,, . .., A,,,)) = pi, and q = 8'cP"k tells us that q = P(cp(A,, . . ., A,)). 

Thus 4 E ("(PI, . . * ,  P,). 

THEOREM 5.63. / f B ( p + )  is non-empty, then 

SUP 0 1 ,  . . . , p,)  = sup B(P+) = max B ( P + ) ,  
inf x ( p , ,  . . . , p,) = inf P(p+) = minP(p+). 

PROOF. By Lemma 5.62 we need only establish the equality for B(p+). 
Suppose B(p+) is non-empty. The set of points k in E2" (Euclidean 2"- 
space) satisfying the conditions k 2 0 and A(% = p +  consists of points 
lying in the unit hypercube 0 5 k I 1 and on the (closed) intersection 
of the n + 1 hyperplanes A'% = p +  and hence is a bounded and closed 
set. Since q = if(% is a continuous function of k the corresponding set 
of values of q, as a continuous image of a compact set, is also closed. 
Thus sup B(p+) is in B(p+) and is its maximum. 

On the basis of this theorem we see that finding BLB,(p,, . . , , p,) and 
BUB,(p,, . . . , p,) is equivalent to finding the minimum and maximum of 
the linear form d@)k subject to linear constraints, that is to the following 
Linear Programming Problem : 

Find 
(i) minimum of q = 8")k, 

(ii) maximum of q = P k ,  
subject to 

(8) A(v)k = p + ,  k 2 0. 

Since f o r k s  satisfying the constraints (8) the values of 8% are bound- 



344 BOOLE’S PROBABILITY MADE RIGOROUS 

ed, the linear programming problem has a solution if and only if the set 
of such values (the set of feasible solutions) is non-empty. But what the 
set is depends upon the values of the parameters pI, . . . , p,. Thus it is of 
particular interest to us to know under what conditions, i.e. for what 
values of p , ,  . . . , p ,  we have at least one feasible solution-these condi- 
tions being precisely Boole’s conditions of possible experience for the 
probability problem. To obtain these conditions we follow one of Boole’s 
methods. By Theorem 0.71 a necessary and sufficient condition for the 
linear system (8) to have a solution is that the set of relations obtained by 
Fourier-eliminating the k j  be satisfied (i.e. be true). As we have observed 
in 0 0.7, with the p , .  . . . , p ,  as parameters the set of relations resulting 
after the elimination of the kj  comes out to be a linear system (equations 
and/or inequations) in the pi. So it is these relations which determine 
under what conditions we have values for BLB,(p,, . . . , p,) and 

Given that the conditions of experience are satisfied, how does one 
obtain the optimal values of @k? We discuss various possibilities. 

In case one has specific numerical values for p l ,  . . ., p ,  the efficiency 
of the simplex method (DANTZIG 1963) for finding optimal values of 
the objective function is hard to better, proceeding as one does from one 
basic solution (extremal point of the convex polytope) to another in 
highly directive fashion until optimality is found. However, if we were to 
retain p , ,  . . . , p ,  as parameters in order to obtain explicit expressians for 
the functions BLB, and BUB,, then the outstanding advantage of the 
simplex method is unavailable since when found the coordinates of the 
basic solutions would be (linear) functions of the parameters and one 
couldn’t tell if the value of d@)k were optimal or not. Even worse, the 
character of the convex polytope, i.e. what its extremal points are, 
depends on p l ,  . . . , pn (via p’ in A(% = p + )  and this character could 
change from one set of values of p l ,  . . . , p ,  to another. We have to look 
for other means. 

It turns out that the Fourier-Motzkin elimination method ( 5  0.8) 
can be used to solve our parameter form of a linear programming 
problem. Here this simply amounts to adding the equation q = &‘)k 
to the system (8) and applying Fourier elimination to remove the 
k;s. This results in a set of linear inequations for q in terms of the 

BUBJP,,  + + * ,  Pn) .  
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pi which falls into two classes of the form 

and 

By setting 

we then have the sought for explicit expressions. This is essentially 
Boole’s “easy and general” method, described in our $4.7, and illustrated 
by Boole with his Challenge Problem. 

The foregoing procedure for finding BLB, and BUB,, while theoretic- 
ally unobjectionable, is not without some practical disadvantages. As one 
procedes with the Fourier elimination the number of inequations grows 
very rapidly; also, since one has to work symbolically, i.e. non-numeric- 
ally, because of the presence of the parameters, it is not easy to program 
computers to do the job. Happily, help in this respect comes by going 
over to the dual form of the linear program-from this form, as we now 
see, the functions BLB, and BUB, can be found by a purely numerical 
process. 

By Theorem 0.81 we know that our linear programming problem has 
the two equivalent forms 

Primal: 

A(Y’)k = p +  

(i) minimize q = d@)k, 

(ii) maximize q = d(,)k. 

Dual : 

(i) A(w)Ty 5 (J(,)T, 

y unrestricted; 

maximize z = ( P + ) ~  y ,  

(ii) A ( v ’ ) ~ ~  2 d(c)T, 

x unrestricted; 

minimize w = ( p  +)T x , 
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Here we observe that in the dual form the constraints specifying the 
region of feasibility are independent of the parameters (which appear only 
in the objective function), so that basic feasible solutions can be found 
purely numerically. Supposing these basic solutions to be denoted by 
y(*), . . . , y(') and d'), . . . , so) then 

BJ-BJP,, . . ., P,) = max [cp+)= Y('),, . f ., (P+)TY")l, 

BUB,(pl ,  . . . , p,) = min [ ( p + ) T  dl), . . . , ( p + ) T  &)I 

are the explicit expressions for the best lower and upper bound functions 
for the probability of cp relative to q l ,  . . ., qn. The following example, 
a slight generalization of the one arising from Boole's Challenge Problem, 
illustrates this method. 

Given 

P V l )  = c1 

P ( A 2 )  = c2 

P ( A I A 3 )  = c3 

P ( A 2  A 3 )  = c4 

P ( A ~ A ~ A ~ )  = c S ,  

find the best possible upper bound for P ( A 3 ) .  
This differs from the Challenge Problem by having as the value for 

P ( A i A 2 A 3 )  a parameter c s  instead of 0. For this problem the matrix 
equation Ak = c +  is: 

A2 
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(on the left are the Boolean functions which generate the corresponding 
rows of ones and zeros of the coefficient matrix). Going over to the 
equivalent dual problem, we wish to 

minimize c,x, + c2x2 + c3x3 + c4x4 + csxs + x6 

subject to 

(9) 

- 
1 1 1 1 0 1  

1 1 0 0 0 1  

1 0 1 0 0 1  

1 0 0 0 0 1  

0 1 0 1 0 1  

0 1 0 0 0 1  

0 0 0 0 1 1  

0 0 0 0 0 1  - - 
where the column on the right side of the inequality sign is the 8 9 )  

corresponding to the function cp(A 1, A 2 ,  A 3 )  = A3. The basic feasible 
solutions (corner points of the polyhedron) specified by (9) are 

@,O, 1, 1, 1.0) 

(-LO, 1,0,0,1) 

(0, - 1,0,1,0, 1) 

giving a best upper bound for P ( A 3 )  of 

min[c3 + c4 + cs, cl + c3, c2 + c4]. 

(We obtain Boole’s result for the Challenge Problem by setting c 5  = 0.) 
Elsewhere (HAILPERIN 1965) we have reported on the resufts of 

using a computer to systematically obtain best possible bounds on the 
probability of Boolean functions with respect to their argument variables 
(the type of problem which Boole largely concerned himself with in his 
Chapter XIX). To cite a specific example of one of these, we found best 
bounds on the probability of 
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Here we have (5'" = [0 1 1 0 1 0 0 01, since the three constituents of 
q 's  expansion are the second, third, and fifth in the standard arrangement 
(1). The matrix A'b") is 

1 1 1 1 0 0 0 0  
1 1 0 0 1 1 0 0  I: ; ;  ; ;  ; ;  PJ 

in which the first three lines correspond in an obvious way with the 
expansions of A , ,  A,, and A ,  in terms of constituents. Written out ex- 
plicitly the primal form of the linear programming problem for the best 
upper bound is : 

maximize b(%! = k2 + k3 + k6 

subject to the constraints 

The dual form for this problem would be: 

minimize ( P + ) ~ x  = p l x ,  + p 2 x 2  + p 3 x 3  + x 4 ,  
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subject to the constraints 

XI + Xz + x3 + x4 2 0, 

XI + XZ + x 4 2  1, 

XI + + x3 + x 4 2  1, 

-y1 + x4 2 0, 

x z f x - 3  + x 4 2  1, 

x2 + x4 2 0, 

x3 + x4 2 0, 

+ x4 2 0. 

It is this dual form which corresponds to Boole’s “purely algebraic 
form” which he mentions in Chapter XIX as giving the narrowest 
limits, though without justifying his assertion. The example here is of 
particular interest in that the computed result, namely 

BUB,(Pl, PZ? P 3 )  

shows that Boole’s Rule for obtaining an upper bound (by taking one 
factor from each constituent, rejecting any duplicate) would not give 
the narrowest limit in that it omits the possibility off ( p l  + p 2  + p3) .  

As we have mentioned earlier, Boole recognized that this simple rule 
for finding bounds on the probability of a logical function did not always 
give the narrowest bounds. That he formulated the problem of finding 
such narrowest bounds as a linear programming problem, in both dual 
and primal forms and used Fourier elimination to find the bounds in 
the latter case, should be counted among his interesting and noteworthy 
achievements. True, he lacked the insight of the duality theorem of 
linear programming to connect up the two formulations, but that 
theorem did not appear until some 100 years later. 

In concluding this section we mention a natural extension of the result 
described in this section which again shows that Boole’s General 
Problem does not include “any” problem in probability as he claims. 
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Instead of having a set of data for the problem in the form of 
equations, as in ( l ) ,  one could have two-sided inequalities, e.g. 

ai 5 P(l l / i (A*,  . . ., A , ) )  5 bi 

where the ai, bi are given numbers in the interval [0, 11. The method 
outlined in this section is readily adapted to this more general situation 
(see HAILPERIN 1965, section 6). This extended result has been used in 
connection with development of a probability logic in HAILPERIN 1984 
(see 46.6 below). 

55.8. Notes to Chapter 5 

(for 5 5.1) 

We believe that the notion of a Boole probability algebra provides a 
suitable mathematical basis for investigations of fault analysis in digital 
circuits in which one inquires concerning the probability of a signal at an 
output f ( X l ,  ..., X,)  (f Boolean) on random assignment of signals to 
inputs X 1 ,  ... ,Xn .  For the reader interested in pursuing the matter 
further we offer the following starting references : 

K. P. Parker and E. J. McCluskey. Analysis of Logic with Faults 
Using Input Signal Probabilities. ZEEE Trunsactions on Computers, Vol. 
(2-24, May 1975, 573-578. 

Probabilistic Treatment of General Combinational Networks. 
ibid., June 1975, 668-670. 
- . 

In these papers the authors supply two algorithms for computing the 
probability of a signal at  an output for given probabilities of a signal at 
the inputs. To their two algorithms we add another employing 
techniques which Boole might conceivably have used : 

0. Start with the function in the form C1 v C2 v C3 v ..a, with 

1. Replace it by C1 + CICz + ClC2C3 +-.. (The + signs are used to 
each Ci a product of literals. 
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indicate mutual exclusiveness of the terms, over which terms the 
probability operator distributes.) 

2.  (a) For each term C1C2 ... CrCr+I replace each Ci by a 
disjunction (use ‘ v ’) of literals, deleting any whose opposite is a factor of 
C r + l .  Multiply out and delete any repeated factor or term. 

(b) If there are any v’s, repeat 1 .  and 2.(a) to disjunctions until only 
s’s remain. 

3. Replace each Xi by xi (its probability) and each Xi by 1 - x i .  

Example 

The algebraic operations involved are easily automated. 

(for Q 5.6) 

NOTE 1. In addition to the objective evidence of Boole’s 
preoccupation with the matter of this section, we have the following 
personal statement in a letter to De Morgan: 

... but the correspondence [with Cayley on Boole’s Challenge 
Problem] has led me to resume the analytical discussion of my 
method which I had vainly attempted to complete before-this 
time with success. I have proved that in all cases the conditions of 
analytical validity of the method are simply the conditions of 
consistency in the data-what I have elsewhere termed the 
conditions of possible experience. 

I do not think I have ever engaged in as difficult a mathematical 
investigation. The most important part of it consists in proving 
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that a certain functional determinant is always positive whatever 
the number of the variables n. [SMITH 1982, p. 1011 

NOTE 2.  We prove that if the Jacobian of (VJV,  ..., V, /V}  with 
respect to xl, ..., x, is not identically zero, then neither is that of 
{ U 2 / U , .  . ., U , / U }  with respect to x2 , .  . ., x,. 

Suppose that the determinant in (14) is not identically zero (in the 
positive range of the variables). Then by Proposition I1 its value for a 
fixed positive value of x1 will be positive for all positive values of 
~ 2 ,  . . ., x,. Thus 

which arises from (14) by fixing x1 as some positive value, is positive 
for all positive values of x2, ..., x,. By interchanging the first two rows 
and then the first two columns we convert (15) to the equal determinant 

in which A l l ,  the minor of the a l l  element, is the Jacobian for 
(U2/U,.  . ., U , / U } .  We show that if this determinant (i.e. A l  were 
identically 0, then one obtains a contradiction with the assumption that 
the value of (15) is positive for all values in the positive range of the 
variables. For if A l l  were identically 0 then the value of (16) is un- 
changed if the element in the al l  position is replaced by any value 
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M whatever. (Think of the determinant as being expanded by minors 
of the first row or column.) We shall specify M presently. By elementary 
operations (16) with the a l l  element replaced by M may be converted 
to upper-right triangular form resulting in a determinant of the form 

M - Q  O . . . . .  0 

dl O . . O  

d2  . 0 

dn 

in which Q represents the sum of the quantities subtracted from M in 
producing all 0's in the upper triangle, M - Q,  d , ,  . . ., d,  are the elements 
along the main diagonal, and the remaining elements are irrelevant, since 
the value of the determinant is the product 

and is independent of M .  By choosing M to be first Q - 1, then Q + 1, 
we see that this product must be 0, otherwise it would change in sign. 
But having the value 0 is in contradiction with its being positive. Thus 
A l  1, the Jacobian for { U 2 / U , .  . ., U,/U}, is not identically 0. 

(for $5.7) 

The linear programming approach to finding probability bounds has 
also been developed (apparently independently of HAILPERIN 1965) in 

S. Kounias and J. Marin. Best Linear Bonferroni Bounds. SZAM 
Journal of Applied Mathematics, Vol. 30 (1976), 307-323. 

Another, and less general, approach is presented in 5 2.6 of 

Alfred Renyi. Foundations of Probability. Holden-Day, Inc. 1970. 
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CHAPTER 6 

APPLICATIONS. PROBABILITY LOGIC 

In the applications portion of this chapter we shall be including 
consideration of material not only from Luws of’ Thought but also from 
various papers which Boole published prior and subsequent to it. 
Throughout this material there are, in connection with conditional 
probability, frequent references to events as “causes” or “effects”. This 
language was in common use at the time and Boole followed the 
practice, though he was aware that the relationship of “cause” to “effect” 
in these contexts was not identical with that of physical causation. 
Generally, a “cause” is the, or a, conditioning event, and an “effect” the, 
or a, event conditioned. For example, in P ( A I B )  A is referred to as 
“effect” and B as “cause”. 

The notion of a probability logic is not found in Boole, although there 
are many instances of probabilistic inferences. The logic we present in 
$5 6.6, 6.7 is such a natural outgrowth of his ideas that we feel obliged to 
include it in this treatise. 

0 6.1. Michell’s argument and inverse probability 

Our topic for this section has its origin in a Philosophical Transactions 
paper “An Inquiry into the Probable Parallax and Magnitude of the 
Fixed Stars from the Quantity of Light which they afford us, and the 
Particular Circumstance of their Situation” (MICHELL 1767). Among 
other items in the paper, Michell has an argument for there being a 
compelling reason, “either by the original act of the Creator, or in 
consequence of some general law, such perhaps as gravity” accounting 

355 
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for the stars being in groups, on the basis of “the greatness of the odds 
against things having been in the present situation, if it was not owing to 
some such cause.” On the assumption of a random distribution of the 
stars over the celestial sphere [with equal probability of a star being in 
any of the 13,131 subregions of 2” diameter], he computes the odds that, 
of the 230 stars comparable in brightness to  the double star fl 
Capricorni, two should fall within that angular distance and finds it to 
be 80 to 1. When more stars are taken into account, e.g. the six brightest 
stars of the Pleiades, the odds against such a close grouping amount to 
500,000 to 1. Since there are a very large number of such groupings the 
conclusion is that it is “next to a certainty” that there is a cause for these 
groupings and that it is not a matter of chance. To outline Michell’s 
argument, let S = present situation of the stars, L = existence of a 
general law. Then 

P(S1L) 2 0 -+ P(SIL) 2 1 

-+ P(L1S) z I, 

and since P(SIL) 2 0 ( f l  Capricorni, Pleiades, etc.), then P(LIS) 2 1. 
Note the tacit use of P(SIL) = P(LIS). 

Michell’s argument was widely accepted. Not until some 80 years later 
was it (the argument, that is, not the conclusion) vehemently objected to 
by J. D. Forbes [1850]. His paper analyzes Michell’s argument at great 
length, describing fallacies he finds and, incidentally, some errors in the 
probability calculations (e.g. that the Capricorni odds should, on 
Michell’s assumptions, be 160 to 1). We shall simply state Forbes’ two 
principal objections: (i) Michell takes the high improbability of an 
event’s happening, when it is one of a great many possibilities as that of 
the event where it is already the case. (“The improbability, for instance, 
of a given deal producing a given hand at whist is so immense, that were 
we to assume Mitchell’s principle, we should be compelled to assign to 
it as the result of an active cause with far more probability then even 

’ Forbes, and Boole likewise, spell the name with a “ t” .  The two papers of 
Michell’s I have seen, and the Dictionary of National Biography, spell it without 
a “ t” .  
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found by him for the physical connexion of the six stars of the Pleiades.”) 
(ii) Michell’s assumption of a uniform probability distribution (to use a 
present-day term) for any star and any of the subregions of the celestial 
sphere “leads to conclusions obviously at variance with the idea of 
random or lawless distribution, and is therefore not the expression of 
that Idea.” Forbes likens it to assuming that any face of a die has an 
equal chance of coming up before one knows whether the die is loaded 
or not. 

Forbes’ paper stimulated the writing of BOOLE 1851a. Although i t  is 
Boole’s first published paper on probability he says in it that the subject 
of Forbes’ discussion “is closely related to a class of speculations in the 
pursuit of which I have been long engaged ...” and hints at having had a 
general method for a “considerable period.” In contrast to Forbes’ 
prolixity Boole, in a couple of paragraphs, using a different explanation, 
exposes the core of Michell’s fallacious argument (BOOLE 1851a = 1952, 
pp. 249-250) : 

The proper statement of Mr. Mitchell’s problem, as relates to p 
Capricorni, would therefore, be the following :- 

1. Upon the hypothesis that a given number of stars have been 
distributed over the heavens according to a law or manner whose 
consequences we should be altogether unable to foretell, what is 
the probability that such a star as j? Capricorni would nowhere be 
found? 

2. Such a star as p Capricorni having been found, what is the 
probability that the law or manner of distribution was not one 
whose consequences we should be altogether unable to foretell? 

The first of the above questions certainly admits of a perfectly 
definite numerical answer. [Forbes denied that this was possible 
unless one had a specific probability distribution. Michell, in effect, 
does assume one.] Let the value of the probability in question be 
p .  It has then generally been maintained that the answer to the 
second question is also p ,  and against this view Prof, Forbes 
justly contends. [Forbes, who is not explicit on this point, is being 
given more credit than is warranted.] 

Boole then goes over to an abstract formulation : 
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Let us state Mr. Mitchell’s problem, as we may now do, in the 
following manner :-There is a calculated probability p in favour 
of the truth in a particular instance of the proposition. If a 
condition A has prevailed, a consequence B has not occurred. 
Required the similar probability for the proposition, if a 
consequence B has occurred, the condition A has not prevailed. 

Now, the two propositions are logically connected. The one is 
the “negative conversion” of the other; and hence, if either is true 
universally, the other is so. It seems hence to have been inferred, 
that if there is a probability p in a special instance in favour of the 
former, there is the same probability p in favour of the latter. But 
this inference would be quite erroneous. It would be an error of 
the same kind as to assert that whatever probability there is that a 
stone arbitrarily selected is a mineral, there is the same probability 
that a non-mineral arbitrarily selected is a non-stone. But that 
these probabilities are different will be evident from their 
fractional expressions, which are- 

1. 
Number of stones which are minerals 

Number of stones 

Number of non-minerals which are not stones 
Number of non-minerals 

2. 

It is true that if either of these fractions rises to 1, the other does 
also; but otherwise, they will, in general, differ in value. 

As already noted and discussed in $9 4.1,4.6, Boole is here mistakenly 
taking a conditional probability as the probability of a conditional 
proposition. However the upshot of his objection is sound since he 
correctly treats the probability of his “conditional” as a conditional 
probability. He then goes on to state his answer to the problem of 
finding the probability P of “the Proposition, if the event B does happen, 
the condition A has not been satisfied,” given “the probability (p) of the 
truth of the proposition, If the condition A is satisfied, the event B will 
not happen”, namely 

c(1 - a )  

c(1 -a) + af l  - p ) ’  
P =  
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“where c and a are arbitrary constants, whose interpretation is a follows: 
viz. a is the probability of the fulfilment of the condition A ,  c the 
probability that the event B would happen if the condition A were not 
satisfied.” What Boole has derived by his special methods (details were 
given later in Luws of’ Thought, p. 366) is a simple case of what is now 
dubbed “Bayes’ Rule”; in modern notation (1)  is 

(2 1 

and is a 
definition 
the value 

P(B 1 A)P( A) 
P ( B ] A ) P ( A )  + P(BIA1P(A) 

P ( A  B )  = 

straightforward consequence of the multiplication rule (or 
of conditional probability). Boole stresses the indefiniteness of 
which the formula (1) gives if there is no further information 

concerning c and a.  He also discusses results obtained by taking various 
specific values for c and a here, and also in a follow-up letter [1851b]. In 
this follow-up letter he mentions arguments of a reviewer in the 
Edinburgh Review, Laplace, and De Morgan as having the same 
erroneous notion as that of Michell, but tempers his criticism in the 
cases of Laplace and De Morgan by saying that the reasoning is not in 
error, as they are tacitly assuming values for c and a. These remarks of 
Boole’s are later repeated, with some elaboration, in Chapter X X  of 
Laws of Thought. 

0 6.2. Boole’s Challenge Problem 

Boole’s letter to the Philosophical Magazine on Michell’s Problem has a 
follow-up one [1851b = 1952 1x1 in which, among other comments, he 
mentions the inquiry of a “correspondent” (= W. F. Donkin) as to 
whether the general method which he had alluded to in his discussion of 
Michell’s Problem ‘‘involves any fundamentally different idea of 
probability from that which is commonly accepted.” Boole doesn’t 
address himself directly to this question, but shortly thereafter there 
appeared in T h e  Cambridge and Dublin Mathematical Journal 
1 1 8 5 1 ~  = 1952 X] a problem proposed by him “as a test of the 
sufficiency of received methods.” 
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The question is the following:-If an event C can only happen 
as a consequence of some one or more of certain causes A l ,  
A 2 , .  . ,, A,, and if generally ci represent the probability of the cause 
Ai,  and p i  the probability that if the cause Ai exist the event E will 
exist, then the series of values cl, c2 ,..., c,,, pl,  p 2  ,..., pn, being 
given, required the probability of the event E .  

It is to be noted that in this question the quantity ci represents 
the total probability of the existence of the cause Ai, not the 
probability of its exclusive existence ; and pi the total probability of 
the existence of the event E when Ai is known to exist, not the 
probability of E’s existing as a consequence of Ai. By the cause Ai is 
indeed meant the event A i  with which in a proportion p i  of the 
cases of its occurrence the event E has been associated. 

Some two years later there is a note by Cayley [1853] presenting a 
solution for the case of n = 2, which he states as: 

Given the probability u that a cause A will act, and the 
probability p that A acting the effect will happen; also the 
probability p that a cause B will act, and the probability q that B 
acting the effect will happen ; required the total probability of the 
effect. 

After illustrating the problem with an example he simply asserts : 

The sense of the terms being clearly understood, the problem 
presents of course no difficulty. Let 1 be the probability that the 
cause A acting will act efficaciously; p the probability that the 
cause B acting will act efficaciously; then 

p = l + ( l  -A)&? 

4 = P + (1 - P W ,  

which determine 1, p ;  and the total probability p of the effect is 
given by 

p = Au + &I- 1pap. 
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Exactly what Cayley means by “acting efficaciously” isn’t stated, but 
from the example given it appears that, letting E be the event of the effect 
taking place, A, that A acts efficaciously, Be that B acts efficaciously, he 
is assuming 

E = A ,  v A,B,, A ,  + A ,  Be + B.  

The introduced quantities 1 and p are the 

1 = P(AeIA) ,  P = P(BeIB), 

and his equations relating 1 and p to p [  = P ( E I A ) ] ,  q [ =  P(EIB)], 

which doesn’t coincide with the first equation in (1) except if 

P(B,IA,A) = P(BeIB)P(B) [ = P(B,B)  = P(B,)], 

i.e. except if Be and A,A are independent. Similarly, to obtain the second 
of Cayley’s equations requires A, and EeB to be independent. Moreover, 
the formula he gives to obtain P ( E )  from I and p, namely 

p = Aa+pf l - Ipaf l  

holds good only if A, and Be are independent ; and although A ,  and Be 
independent implies A, and Be independent, it does not imply that .&A 
and Be are independent. Thus three additional assumptions are needed 
to justify Cayley’s solution as an answer to the Challenge Problem. 

Boole in [1854a = 1952 XI] contends that Cayley’s solution can’t be 
valid since it doesn’t check out when p = P ( E ( A )  = 1 and 
q = P(EIB)  = 0. For these values the quadratic equation for P ( E )  which 
results when I and p are eliminated from Cayley’s three equations yields 
roots 1 or a(l - f l ) ,  neither of which, Boole says, can be correct since the 
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answer ought to be a. He presents the quadratic formula which he says 
his solution leads to and that his “investigation” of the problem is in “a 
treatise now on the eve of publication” [i.e. Laws of’ Thought ] .  

Dedekind [lSSS, written July 18541, accepting Cayley’s analysis of the 
problem, defends it against Boole’s charge by pointing out the obvious 
error in Boole’s counter-example, namely that for p = .1, q = 0, Cayley’s 
equations for A and p imply that a = 0. Thus a(l - p )  is then the correct 
value. Dedekind goes on to stress the necessity of specifying the ranges of 
values for parameters for which the problem is meaningful and shows, in 
the case at hand, that having the differences p - p q  and q - a p  non- 
negative is a necessary and sufficient condition ; and that, geometrically 
measured, only 4 the possible values for the parameters p ,  q, a, p provide 
meaningful values for the problem. 

The question, for the case n = 2, appears as PROBLEM I in Chapter XX 
(Problems Relating to the Connexion of Causes and Effects) of Laws of 
Thought.  The solution Boole gives uses the full panoply of his 
probability method and is quite long. We describe the highlights. 

Using x, y, z to represent, respectively, the events of the causes A l ,  A2 
and the effect E happening, Boole then has the given numerical data 

P(x) = c1, 

W Y )  = ClPl,  

P(Y) = c2 

P(YZ) = C2P2 

together with the logical condition 

zxg = 0, 

expressing that E happens only if A l  or A2 happen. Setting s = xz, 
t = yz and combining these two equations with the given logical 
condition, results in a logical equation whose solution for z is 

s + t  z = -  
s + t - (xs+ sx + y t +  t y  + xy)‘ 

Development of the right-hand side results in a 
V = stxy + stxg + m y  + 56 and provides the equation for the absolute 
probabilities of theindependent events x, y, x, t (represented by x, y ,  s, t 
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taken in the numerical sense): 

c,[  = P(xl  V)] = (stxy + stxy + SFx)/V 

c,p,[ = P(sl V ) ]  = (stxy + StXj) /V 

c2[  = P(yl V)] = (stxy +Sttxy + SFy)/V 

c2p, [  = P(tl V )  = (stxy + StXy)/T/ 

and the equation for the sought-for probability 

u [  = P(zl V)] = (stxy + s t x j  + St:txy)/v. 

Boole adroitly eliminates the quantities x ,  y, s, t ,  I/ from these five 
algebraic equations to obtain his equation for u, 

(u  - C l P I  - C 2 P 2 )  - (1 - C l P l  - u ) ( l  - c 2 P 2  - u )  - 
C l P l  + C2P2 - 1 - u  

(1  1 

which he had cited in his note [1854a = 1952 XI] disputing Cayley’s 
solution. The question of which root should be taken is next considered. 

Boole had already shown (in Chapter XIX) that the conditions of 
possible experience for this problem are : 

lower limits: c , p , ,  c2p2 

upper limits: 1 - c l ( l  - p l ) ,  I -c2(1 - p 2 ) ,  c lpl  +c2p2 

(see our discussion in 04.7). He then shows that the equation for u has 
one and only one root between the smaller of the upper limits and the 
larger of the lower limits. This is, of course, establishing in a particular 
instance the result whose general case we discussed in 0 5.6. 

Wilbraham’s paper [l854] (discussed in part in 04.8) contains a 
critical analysis of Boole’s solution of the Challenge Problem. He 
expresses the given conditions and also that for P ( E )  as  linear equations 
in the probabilities of constituents and points out that there are only six 
equations and seven unknowns that have to be eliminated, so that the 
problem cannot (in general) have a determinate solution. He notes that 
of the independence relations introduced by Boole in his use of x ,  y, s, t 

as independent events only two, namely 
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are relevant in this particular instance. He compares this with the results 
of a similar analysis of Cayley’s solution which likewise involves 
(somewhat different) independence conditions. 

The substance of Boole’s reply [1854b = 1952 XI1 and part of 
1854d = 1952 XIV] to Wilbraham’s criticism centers on the Challenge 
Problem solutions. He asserts that there is no doubt that Cayley’s is 
“erroneous”, repeating his error we have already referred to. In his 
counter-example to Cayley’s result he mistakenly attributes the same 
conditions of possible experience as for his solution. (That these 
conditions would not be the same is apparent from Dedekind’s note, 
written in the same month as Boole’s reply to Wilbraham, but 
Dedekind’s note did not appear in print until the next year.) In contrast 
to the (asserted) erroneousness of Cayley’s solution Boole says : “On the 
other hand, there are no cases whatever in which the problem is solvable 
by other methods, which do not furnish a verification of the solution I 
have given.” Surprisingly, a candidate for proving Boole’s solution to be 
wrong doesn’t appear until MacCoLL 1880. We shall discuss it presently. 

Some six years later Cayley returns to the question. His 
communication [ 18621 contains full expositions of his solution (taking 
into consideration Dedekind’s contribution) and also of Boole’s. These 
are followed by comments by Boole (quoted from a letter), a response 
from Cayley, and then a further reply by Boole. 

Cayley begins by recognizing the difference between his interpretation 
of the Challenge Problem which the calls the Causation form and Boole’s 
which he denominates the Concomitance form. Before presenting Boole’s 
solution Cayley says [1862, 2551: 

Although given as a solution of the causation statement of the 
question, as already remarked, it seems to be (and I think Prof. 
Boole would say that it is) a solution of the concomitance 
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statement of the question. It is certainly a most remarkable and 
suggestive one ; I am strongly inclined to believe that it is correct ; 
which of course does not interfere with the correctness of my 
solution, if the two really belong to distinct questions. 

I reproduce Prof. Boole’s solution, without attempting to 
explain (indeed I do not understand to my own satisfaction) the 
logical principles upon which it is based. It is conducted by means 
of auxiliary quantities x, y, s, t, which are quantities replacing 
logical symbols originally represented by the same letters. 

Boole, as quoted by Cayley, no longer considers Cayley’s solution 
erroneous [1862, p. 3611: 

1st. ‘‘I think that your solution is correct under conditions 
partly expressed and partly implied. The one to which you direct 
attention is the assumed independence of the causes denoted by A 
and B. Now I am not sure that I can state precisely what the 
others are; but one at least appears to me to be the assumed 
independence of the events of which the probabilities according to 
your hypothesis are al, p p .  Assuming the independence of the 
causes as to happening, I do not think that you are entitled on that 
ground to assume their independence as to acting ; . . . ” 

and concerning Cayley’s difficulties in understanding the “ideal events” 
Boole remarks [p. 3631: 

6thly. The x, s, &c., about the interpretation of which you 
inquire, are the probabilities of ideal events in an ideal problem 
connected by a formal relation with.the real one. I should fully 
concede that the auxiliary probabilities which are employed in my 
method always refer to an ideal problem ; but it is one, the form of 
which, as given by the calculus of logic, is not arbitrary. Nor does 
its connextion with the real problem appear to me arbitrary. It 
involves an extension, but as it seems to me a perfectly scientific 
extension, of the principles of the ordinary theory of 
probabilities.. . .” 
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To this point Cayley replies [p. 3641: 

6thly. I do not in anywise assert, or even suppose, that the ideal 
problem is arbitrary, or that its connexion with the real problem is 
arbitrary. I simply do not know what the ideal problem is; I do 
not know the point of view, or the assumed mental state of 
knowledge or ignorance according to which x, y, s, c are the 
probabilities of A,  8, AE,  BE. It is to be borne in mind that x ,  y, s, 
t are, in Prof. Boole’s solution, determined as numerical quantities 
included between the limits 0 and 1, i.e. as quantities which are or 
may be actual probabilities. What I desiderate is, that Prof. Boole 
should give for his auxiliary quantities x ,  y ,  s, t such an 
explanation of the meaning as I have given for my auxiliary 
quantities A, p. I do not find any such explanation in the memoir 
referred to. 

And in an addendum to his communication [pp. 364-3651 : 

Prof. Boole, in his reply, dated April 2, writes, “No such 
explanation as you desiderate of the interpretation of the auxiliary 
quantities in my method of solution is possible ; because they are 
not of the nature of additional data, and their introduction does 
not limit the problem as any hypotheses which are of that nature 
do. I do not see any difficulty whatever in the conception of the 
ideal problem.” 

We join issue as follows: Prof. Boole says that there is no 
difficulty in understanding, I say that I do not understand the 
rationale of his solution. 

We believe that our 45.4 provides the rationale that Cayley was 
asking for. 

Hugh MacColl’s The Calculus of Equioalent Statements (Fourth 
Paper) [1880] is noteworthy for its introduction of the notation ‘ x i  for 
“the chance that the statement x is true on the assumption that the 
statement a is true”. (Confer Peirce’s ‘ba’ of his [1867] described in our 
$4.8.) In this pager MacColl solves Boole’s Challenge Problem as 
follows (we use modern notation): 



BOOLE’S CHALLENGE PROBLEM 367 

P ( E )  = P ( A 1 E  + A 2 E )  ( E  + A1 v A2)  

= P ( A ] E )  + P ( A 2 E )  - P(A1A2E)  

= P(Al)P(EIA,)+ P(A,)P(EIA,)- P(AlA2)P(EI’41A2) 

= C l P l  + C 2 P 2  - P(AlA2)P(EIAIA2).  

He then goes on to specialize to the case of A l  and A 2  being 
independent and the event E more probable when both causes exist than 
when only one of them does. Then P(A1A2) = clc2 and, P ( E I A 1 A 2 )  
being greater than p1 or  p 2 ,  one has c lp l  + c ~ p 2  -clc2p1 and 
clpl + c2p2 - clc2p2 as upper limits and clp,  + c2p2 - clc2 as a lower 
limit. Taking numerical values of c1 = .l, c2 = .2, pr = .6, and p 2  = .7 
MacColl computes limits of .18 and .186 between which P ( E )  lies. But 
using these values to compute the exact value for P ( E )  which Boole’s 
solution gives results in the value .19069, which lies outside the interval, 
and thus his conclusion that Boole’s solution is wrong. 

While Boole didn’t live to  see this example of MacColl’s, it is easy to 
surmise the kind of rejoinder he would have made if he had. Namely, 
that in effect MacColl is changing the problem by having additional 
conditions which should be included in the data. Thus one should add 

P(&42)[= P(AI)P(A2)] = C l C 2  

P [ A 1 A 2 E ]  L P i C I C 2 ,  ( i  = 4 2 )  

the latter coming from P(EIAIA2) L P(EIAi).  Given these additional 
conditions Boole’s technique for finding limits within which his solution 
would be then gives: 

upper limits : 

lower limits : 

c,pl + c2p2 - clc2p, (as with MacColl) 

c , p ,  + c2p2 - c1c2p2 (as with MacColl) 

ClPl + (1 - C 1 b 2  

C2P2 + (1 - C Z k l  

c lp l  + c 2 p ,  - cIc2 (as with MacCoU) 

C l P l  

C 2 P 2 9  
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so that the computed value for Boole’s solution of this problem would 
indeed lie within MacColl’s limits. 

A similar misunderstanding of Boole’s method occurs in KEYNES 1921, 
p. 187. After citing Boole’s equation (1) for determining u [ =  P ( E ) ] ,  and 
the upper and lower limits for obtaining the proper root, Keynes says: 

This solution can easily be seen to be wrong. For in the case 
where A ,  and A ,  cannot both occur, the solution is c t p l  + c 2 p 2 ;  
whereas Boole’s equations do not reduce to this simplified form. 

But Boole’s method would require adjoining A I A ,  = 0 to the data. If 
one does this then the answer does come out to be u = clpl + c2p2.  (The 
easiest way to see this is to. take Boole’s derivation, pp. 322-323, and 
delete the constituents containing the product xy.) The discrepancy 
between Boole’s and Keynes’ result can be explained by noting that the 
concomitant (tacitly assumed in Wilbraham’s view) independence 
conditions of Boole’s method are not the same when one alters the data. 

5 6.3. Further problems on causes 

The problems discussed in the preceding sections of this chapter are but 
two of ten treated by Boole in his Chapter XX (Problems Relating to the 
Connexion of Causes and Effects), The first of the ten is the n = 2 case of 
the Challenge Problem, to which we have just devoted the preceding 
section. However, since certain aspects of the discussion are in other 
places we here collect everything together in a brief summary. 

PROBLEM 1.-The probabilities of two causes A l  and A ,  are c1 
and c, respectively. The probability that if the cause A l  present 
itself, an event E will accompany it (whether as a consequence of 
the cause A ,  or not) is p , ,  and the probability that if the cause A ,  
present itself, that event E will accompany it, whether as a 
consequence of it or not, is p z .  Moreover, the event E cannot 
appear in the absence of both causes A l  and A,.* [Footnote 
omitted] Required the probability of the event E .  [p. 3211 
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That Boole’s interpretation of the notion of cause is, in Cayley’s 
phrase, that of Concomitance and not Causation is here apparent from 
the parenthetical phrase, and also from the example in Boole’s footnote 
(flooding of a field by upper sources of the River Lee, or tides from the 
ocean). The footnote example shows him to be considering probability 
as idealized frequency and conditional probability as simply 
subfrequency of the “given” event. Although the statement of the 
problem refers to conditional probabilities, i.e. P(EJAl) and P(EIA2), by 
virtue of having the probabilities of the causes given one can express the 
problem solely in terms of absolute probabilities, namely i 

given: P ( A , )  = c l r  P(.42)  = c2, 

P(A1E) = C l P , ,  P ( A 2 E )  = C 2 P 2 ,  

EA1A2 = 0, 

find: P(E).  

As we have noted in the preceding section, Boole’s adopted principles 
enable him to deduce that the value of P ( E )  satisfies a quadratic 
equation (obtained from the data and his principles) and that only one 
of the roots meets the conditions of the possible experience (conditions 
of limitation) for the problem, i.e. lies between the 

lower limits: clp, ,  c2p2  

upper limits: 1 - c,(l - p , ) ,  1 - c2(l  - p 2 ) ,  clp, + c 2 p 2 .  

and the 

Moreover, these conditions of limitation give consistency conditions for 
the parameters ; these are that each lower limit shall not exceed any 
upper limit (0 as a lower limit and 1 as an upper limit are assumed, but 
not explicitly stated, by Boole). 

Wilbraham’s formulation of the problem “without Boole’s 
assumptions” [1854 = BOOLE 1952, p.4811 leads to a set of linear 
equations in 7 quantities (probabilities of constituents) and gives for 
P ( E )  

c , p i  + ~ 2 ~ 2  - P ( E A l A 2 ) .  
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He says: “We can get no further in the solution without further 
assumptions or data, having only six equations from which to eliminate 
seven unknown quantities. Without such the question is indeterminate.” 

However recognizing (in agreement with Wilbraham) that a value of 
P ( E )  need not be determined, but looking at the problem as one of 
finding, subject to the given conditions on A , ,  A z ,  and E ,  best possible 
upper and lower bounds for P ( E )  good in all probability algebras, we 
found (a  5.7) that these bounds coincided with the minimum of Boole’s 
upper limits and the maximum of his lower limits. This, then, is our 
solution to Boole’s Challenge Problem. 

PROBLEM I1 (p. 326) differs in no essential respects from PROBLEM I, 
merely having the side condition A1A2 = 0 in place of EA,A2 = 0. 
Likewise PROBLEM 111 (p. 327) amounts to nothing much different. It 
drops the side condition, has just 

W,) = c1, 

W A 1 )  = C l P l ,  

W Z )  = cz 

W A Z )  = C Z P 2  

as given data, and asks for the conditional probability P(A1 ( A 2 )  [or of 
P(A21 A , ) ] .  But since 

the question reduces to one of finding an absolute probability, i.e. 
P ( A  1 A2 ). 

PROBLEM IV, continuing in the same vein as 111, adjoins the 
probability of E as a datum. 

In PROBLEM V, given .are the probabilities of three events and also of 
their conjunction and asked for is the probability of the conjunction of 
two of them: 

given: P ( A , )  = p ,  P ( A , )  = q, PCA,) = r ,  P ( A , A , A , )  = m 

find: P(A1A2) 

Wilbraham’s paper [1854] discusses this problem in detail 
(inessentially modified in asking for P(A1zZ) in place of P ( A I A z ) )  to 
illustrate what he contends is going on in Boole’s method. (See our 
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$4.8.) Boole’s stated solution is 

where H = p@ + ( p  + q)F. Details of the computation are not given, nor 
the conditions of limitation on the parameters. One can readily show (or 
see from a Venn diagram) that P ( A 1 A 2 )  is not fully determined and that, 
under the given constraints, rn and p + q - 1 are lower limits and p ,  q, 
1 + r + m are upper limits and that in any probability algebra 

max{rn,p+q-1) I P ( A , A 2 ) 5  min{p,q, l - r+rn) ,  

with appropriate consistency conditions on the constants (e.g. 
0 I rn I r, q I 1, etc.). 

PROBLEM VI is the Challenge Problem for general n. Here, unlike for 
the case of n = 2, no explicit expression for the value which Boole’s 
method leads to can be given since it is a root of an n-th degree algebraic 
equation. With ci = P ( A , )  and p i  = P(EIAi) ,  the limits he obtains are 

lower limits : clpl,  c2p2, .  . . , cnpn 

upper limits : PI + c lpl ,  C2 + c z p 2 , .  . . , F, + cnpn, 

C l P l  + C 2 P 2  +.* .+ C f l P ” .  

By introducing n - 1 additional constants di, 

di = P ( E A l  . . . Ai - IAi),  

Keynes [1921, pp. 189-1901 derives a formula for P ( E ) :  
n n 

P ( E )  = 1 cipj - c dj .  
i =  1 i = 2  

(For a shorter proof than Keynes’ see our endnote 1 for $6.3.) 
PROBLEM VII brings in a new aspect. We have the same data as for the 

Challenge Problem, namely the probabilities P ( A i )  = ci of the causes 
and the conditional probabilities P(EIAi) = p i ,  but required now is “the 
probability, that if any definite and given combination of the causes A l ,  
A 2 ,  ... , A,  presents itself, the event E will be realized.” If ..., A, )  
represents the combination, then what is being sought is the conditional 
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probability P(EIcp(A1, .  . . , A,,)), i.e. the quotient 

~‘(EP(AIT...A~)) 
P(cp(A1,. . * A,) )  . 

Boole’s approach to this problem is to use his method to determine, 
separately, the value of the numerator and of the denominator. But this 
procedure can’t be generally valid. For example, if cp(Al, A , )  = A I A z  
then 

and a Venn type diagram with area representing probability suffices to 
show that the area representing the probabilities of A , ,  A,, EA1, EA2 
can be held fixed but those for EAIA,  and A1A2 can be made to vary 
independently (though not completely, since one has to have 
P(EA1A2)  I P(A1A2)) .  This particular case of PROBLEM VII with 
cp(Al, A , )  = A I A z  comes up in Boole’s Keith Prize Memoir and is 
discussed in our next section. We shall see that the special methods of 
$6.7 enable us to obtain best possible upper and lower bounds on 
P(EJA1A2)  (Example 6.74 in $6.7). 

PROBLEM VIII likewise asks for P ( E )  given the probabilities of the 
causes ( P ( A , )  = c i )  and of the conditional events ( P ( E I A i )  = pi) but 
additionally has the general side conditions 

- 
A , A 2 . .  ., A ,  = 0, q ( A 1 , .  . . , A,) = 1 

for arbitrary cp. He gives his typical implicitly expressed result but shows 
that it reduces to the standard P ( E )  = clpl  + ... + c,,p,, when the Ai  are 
exclusive (cp(Al,. . ., A,,) = A , A , .  .. A,, .+... + A,A, ... A,)  as well as 
exhaustive (A,A,. . . A,, = 0). 

PROBLEM IX considers what would result if, in each of the preceding 
problems, the desideratum were the a posteriori P ( A r ( E )  in place of P(E). 
Since he believes that in each of these problems the data imply a 
“determinate” value for P(E) ,  the result would then be the quotient of 
P(EA,)  by P ( E ) ,  i.e., crPr/P(E)* 

Boole’s final problem in Chapter XX looks superficially like the Law 
of Succession problem (to be presently discussed) but differs significantly 



FURHTER PROBLEMS ON CAUSES 373 

from it by assuming known the probability of the occurrence of the 
recurring event and also that of a “permanent” cause of the event 
(p. 358) : 

The following problem is of a much easier description than the 
previous ones. 

PROBLEM X.-The probability of the occurrence of a certain 
natural phenomenon under given circumstances is p .  Observation 
has also recorded a probability a of the existence of a permanent 
cause of that phenomenon, i.e. of a cause which would always 
produce the event under the circumstances supposed. What is the 
probability that if the phenomenon is observed to occur n times in 
succession under the given circumstances, it will occur ihe n + l th 
time? What also is the probability, after such observation, of the 
existence of the permanent cause referred to? 

If we let C represent Boole’s “permanent cause” and A l , .  . . , A,, A,+ 
the successive occurrences of the phenomenon then we may write his 
interpretation of this problem as : 

given: (i) P ( C )  = a, P ( A , )  = P ( A 2 )  = ... = P ( A , + , )  = p 

(ii) C -+ Ai ( i  = 1, ..., n + 1) 

find: (I) P ( A n + l J A l A 2 . . . A n ) ,  and 

(11) P(CIA IA2 . .  . An). 

To solve (I) Boole applies his method to the separate probabilities 
and ( P ( A 1 A 2 . .  . A,) and then forms their quotient, P ( A 1 A 2 . .  . A,A,+ 

obtaining 

and then the solution for (11) is 

P ( C )  - a - P(A1A2 ... A,C) - 
P(AlA2 . .  . A,)  

- 

a + ( p  - a )  (E) n -  
P(A1A2.. . A,) 



314 APPLICATIONS. PROBABILITY LOGIC 

Keynes [1921, pp. 192-1931 shows that these results which Boole has 
for (I)  and (11) can be obtained by ordinary techniques if one adjoins to 
Boole’s data the independence conditions 

P(AilAIA*...Ai-IC) = P(AiIC),  

i.e., the conditions that if C does not hold, then preceding occurrences of 
the phenomenon are irrelevant to the next occurrence. Our endnote 2 for 
4 6.3 presents an easier to read version of Keynes’ derivation. 

Boole comments on the circumstance that none of the ten problems 
on causes which he has so far considered involve any “arbitrary 
element”-meaning that the solution of the logical equation for the 
unknown doesn’t have 8 terms in its expansion-and thus furnishes a 
“determinate” probability. (We have seen, however, that even in such 
cases it is only by virtue of his special approach that definite values come 
out.) He then goes on to consider examples in which this is not the case, 
in particular Michell’s problem on the distribution of stars and Laplace’s 
on the inclination of the planetary orbits. These we have already 
discussed in 8 6.1. 

The chapter continues with a trenchant criticism of the “most usual 
mode of endeavoring to evade the necessary arbitrariness of the solution 
of problems in the theory of probabilities which rest upon insufficient 
data,. . .”, which is to assume that the unknown probability is-to use 
present-day language-a random variable uniformly distributed over 
[0,1], an idea going back to the model used in Bayes’ memoir (see 
MAISTROV 1974, p. 100). As an example of the use of this assumption, 
Boole derives the well-known (Laplace) Rule of Succession: If an event 
(of unknown probability) has occurred m times in succession, the 
probability of its occurring an (m+ 1)st time is the conditional 
probability 

ri 

(The argument has a lot that’s wrong with it-see KEYNES 1921, pp. 372- 
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378 for a history and critique.) In addition to thus calling attention to 
the assigning of “all possible degrees of probability” assumption, Boole 
remarks that there are other ways of looking at the problem, e.g. as a 
black-and-white-balls-in-an-urn situation and cites TERROT 1953. (For a 
modern treatment of the Rule of Succession via balls-in-an-urn see 
FELLER 1965, p. 113.) Boole points out that in this latter approach one 
assumes equal probabilities for all possible ratios of black to white balls, 
but that one could also, on the basis of “equal distribution of knowledge 
or ignorance”, assume that “all possible constitutions of the system of balls 
are equally probable.” For an urn having p distinguishable balls which 
can be either black or white there are 2” different constirutions possible, 
but only p i- 1 different ratios of black to white.) On the basis of equally 
probable constitutions Boole gives an intuitive argument for the 
probability of the (m + 1)st occurrence of drawing a white ball being *, 
independently of m-that is, that past information has no relevance to 
the outcome. He then follows it with a mathematical proof which is 
lengthy and complicated because of the need to evaluate (as p -+ 00) 

a certain limit. It so happen that this limit is now recognizable as an 
immediate consequence of the well-known proof of the Weierstrass 
Approximation Theorem using Bernstein polynomials. (See our endnote 
3 for 56.3.) 

Boole’s chapter on causes concludes with the comment (p. 375): 

26. These results [on the Rule of Succession] only illustrate the 
fact, that when the defect of data is supplied by hypothesis [on the 
kind of distribution involved], the solutions will, in general, vary 
with the nature of the hypotheses assumed: so that the question 
still remains, only more definite in form, whether the principles of 
the theory of probabilities serve to guide us in the election of such 
hypotheses. I have already expressed my conviction that they do 
not-a conviction strengthened by other reasons than those above 
stated. 

’ As pointed out to me by my colleague, Bennett Eisenberg. 



376 APPLICATIONS. PROBABILITY LOGIC 

He goes on to mention an interesting attempt : 

Thus, a definite solution of a problem having been found by the 
method of this work, an equally definite solution is sometimes 
attainable by the same method when one of the data, suppose 
Prob. x = p,  is omitted. But I have not been able to discover any 
mode of deducing the second solution from the first by integration, 
with respect to p supposed variable within limits determined by 
Chap. XIX. This deduction would, however, I conceive, be 
possible, were the principle adverted to in Art. 23 [uniform 
distribution over [0,1] for an unknown probability] valid. 

and ends on an autobiographical note: 

Still it is with diffidence that I express my dissent on these points 
from mathematicians generally, and more especially from one 
who, of English writers, has most fully entered into the spirit and 
the methods of Laplace ; and I venture to hope, that a question, 
second to none other in the Theory of Probabilities in importance, 
will receive the careful attention which it deserves. 

0 6.4. Probability of judgements 

Even in Boole’s time the subject of probability of judgements (relating to 
decisions of judges, juries, assemblies, etc.), though developed by such 
able mathematicians as Condorcet, Laplace and Poisson, was no longer 
considered a viable theory, having been severely criticized in the 1830’s 
and 1840’s-severely because of the sensitive political and sociological 
(“moral sciences”) implications of its use (DASTON 1981 ). Boole’s chapter 
on the subject in Laws of Thought (Chapter XXI, Particular Application 
of the Previous General Method to  the Question of the Probability of 
Judgements) constitutes a relatively sympathetic critique which adopts 
the (to us, dubious) fundamental notions and general approach of the 
subject, extends its methodology, yet is pessimistic about useful results 
but only for want of data to determine certain key parameters. We 
summarize Boole’s presentation. 
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Assuming that it is meaningful to speak of the probability that a 
member of a jury, Ai, will form a correct opinion on the case (= x i )  and 
of the probability that the accused party is guilty (= k) ,  then for the 
probability of condemnation by Ai, one has 

kxi + ( 1  - k ) ( l  - xi), 

since either the accused .is guilty and At judges correctly, or the accused 
is innocent and Ai judges incorrectly. 

In like manner, if there be n jurymen whose separate probabili- 
ties of correct judgement are x l ,  x 2  . . . x, ,  the probability of an 
unanimous verdict of condemnation will be 

X = k x , x Z  ... ~ , + ( 1 - ~ , ) ( 1 - ~ 2 )  . . . (  l - x X , ) .  

Whence, if the several probabilities x l ,  x 2  . . . x ,  are equal, and are 
each represented by x ,  we have 

X = kx" + (1 - k ) ( l  - x)".  (2) 

The [conditional] probability in the latter case, that the accused 
person is guilty [if condemned], will be 

kn" 
kx" + (1 - k ) ( l  - x)" ' 

All these results assume, that the events whose probabilities 
are denoted by k,  x l ,  x 2  &c, are independent, an assumption 
which however so far as we are concerned is involved in the fact 
that those events are the only ones of which the probabilities are 
given. (pp. 377-378) 

Note here that Boole justifies the independence of the events involved 
not by assumption but by an appeal to  his principle which accords 
independence to simple unconditioned events. 

In similar fashion one has for the probability, Xi, that i out of n of the 
jurymen declare for condemnation. 

xi = (1) (kx'(1 - xy-' + (1 - k)x"-'(l - x>i> (3) 



378 APPLICATIONS. PROBABILITY LOGIC 

In Boole’s view: 

It is apparent that the whole inquiry is of a very speculative 
character. The values of x and k cannot be determined by direct 
observation. We can only presume that they must both in general 
exceed the value of 4; that the former, x, must increase with the 
progress of public intelligence; while the latter, k ,  must depend 
much upon those preliminary steps in the administration of the 
law by which persons suspected of crime are brought before the 
tribunal of their country. It has been remarked by Poisson, that in 
periods of revolution, as during the Reign of Terror in France, the 
value of k may fall, if account be taken of political offences, far 
below the limit i. [pp. 379-3801 

Examining Laplace’s assumption that all values of x between 4 and 1 
be considered equally probable [and exhaustive] he concludes : “This 
hypothesis is entirely arbitrary, and it would be unavailing here to 
examine its consequences.” He then goes on to describe Poisson’s 
method of deducing values of x and k from court records. 

Using one set of records (for 1825-1830) Poisson found (with Xi as in 
(3)) 

X 7  + X 8  +... + X I 2  = .4782 

and for the year 1831, there having been a change of rule requiring a 
majority of four, 

On the assumption that x and k were the same for both. The two 
equations then yield pairs of values for x and for k, the sum of the values 
in each pair being 1. (It is clear that there would have to be these mirror- 
image solutions since the Xi are invariant under the interchange of x and 
1 - x, and of k and 1 - k. Ambiguity in the deduced values for x and k 
can only be resolved by a presumption as described by Boole. 

Boole comments on the poor quality of the statistical data Poisson 
had available to him. More significantly, he notes that one could, if 
appropriate records were kept, have many more equations involving x 
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and k than just those resulting from the two kinds of majority votes, and 
briefly discusses the question of handling such a “supernumerary system 
of data”. The contribution which Boole’s general method makes to the 
subject then follows in a series of propositions. (In these the ‘k’ is omitted 
as the questions now considered concern only the correctness of 
judgment of members of a body and not guiltgf an accused.) 

PROPOSITION I 

From the mere records of the decisions of a court or deliberative 
assembly, it is not possible to deduce any definite conclusion 
respecting the correctness of’ the individual judgments of its 
members, 

Though this Proposition may appear to express but the 
conviction of unassisted good sense, it will not be without interest 
to show that it admits of rigorous demonstration. [p. 3821 

The question here is formulated as that of finding P(xi), for i = 1,. . . , n, 
where x i  is the event of a member Ai  uttering a correct opinion, and 
given as data is the set of equations. 

P ( X j )  = a j  ( j  = 1,. . ., m )  

where X j  is a [Boolean, not numerical, as in the preceding usage] 
function of the events xl, ..., x,,. The X j  are taken to be of the special 
kind which is invariant under interchange of xi and Xi ; Boole’s reason is 
that the cobrt or assembly does not presume to know whether the 
decision or opinion was correct, and hence can provide only relative 
opinions of correctness, e.g. the frequency [probability] of unanimous 
votes (here X = xIx 2...x, +X,X,...X,) or the frequency with which A l  
differed from all other members (here X = x , x 2 . .  . x, + X,x2.. . x,,), etc. 
To continue, Boole’s general method starts with the equations 

(1) x, = t l ,  x, = t2, ..., x, = t ,  

and on elimination of, say, x2 ,..., x,, obtains 

(2) Ex1 + S ( l  - X I )  = 0 
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leading to 

E E  x1  =--- - 
E l - E  0’ 

the latter by virtue of E’ = E,  coming from the special form of the Xj. 
Thus x1 (and likewise any other xi) can have no specific probability 

value determined. We can verify this result of Boole’s by noting that the 
elimination result (2) is equivalent to ( 9  2.3) 

(3) 1x2 ... X,(x, = t i  A x2 = t 2  A ..‘ A x, = t,,,), 

which may be written in the form 

(4 ) 

so that 

@(tl , .  . ., t,, X i )  = 0 

@(tl , . .  . , t,, l)x, + @(tl , . .  ., t , ,O)2,  = 0. 

But as an X j  with x1 replaced by 1 is equal to that X j  with x1 replaced 
by 0, we have 

and hence (3) is independent of x,. 

Boole next considers what ensues with regard to a compound X of 
xl,, , . , x, if, in addition to the probabilities of the Xi [assumed distinct 
and mutually exclusive], one also has those of the xi given. Note that 
here (as well as in Proposition I)  the xi, although simple, are not 
unconditioned events, being conditioned by the data involving the Xj : 

PROPOSITION 11. 

8. Given the probabilities of n simple events xl, x2, .  . ., x,, viz. :- 
(1) 

also the probabilities of the m- 1 compound events X , ,  X 2 , . . . ,  
X m - , ,  viz.:- 

(2) 
the latter events X1 . . . X , -  , being distinct and mutually exclusive; 

Prob. x1  = c , ,  Prob. x2 = c2 ,..., Prob. x, = c,; 

Prob. X1 = a,, Prob. X 2  = a2 ,..., Prob. X,-l = urn-,  ; 
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required the probability of any other compound event X. [pp. 
386-3871 

Despite the generality of the conditions in this Proposition Boole 
succeeds in showing (on the assumptions of his method) that the 
solution for P(X) is given by the set of equations 

where 

x,=  l - x l - x  2 - . . . -  Xm- 1 

a, = 1 -a1 -a2 -...- um- l  

and (XXj) indicates the intersection (common constituents) of X and X,, 
with the resulting expression in x l . .  . . , x, taken in the numerical <ense; 
and similarly for (xiXj). The values of sl , .  . . , x, are found from the last n 
equations (Boole glosses over difficulties with regard to the solution of a 
non-linear algebraic system) and then substituted into the first to give 
P ( X )  in terms of the parameters cl,. .  . .c , ,  u1 ,..., ( I , -  1.  

For use with the next proposition the solution system (5) is converted 
to a symmetric form: (i) the index enumerating the given functions is 
reduced by one so as to have X l r . . . r X m - 2  (ii) X is then included as 
X,- (iii) P(X,- 1), formerly P(X), is now a,- and (iv) X, and urn are 
defined as before. After some algebraic manipulations the system ( 5 )  
then takes the form 

Xm-1 Xm 
am- I a m  

- 

Although Boole's Proposition I rules out the possibility of obtaining, 
solely on the basis of records of decisions, the probabilities P ( x i )  of 
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correct judgement of members of an assembly, he now claims that, by 
use of an hypothesis less restricted that Laplace’s and Poisson’s 
assumption of independence of the xi, one can come out with a value for 
the “mean probability of correct judgement”, this being the common 
value for P(xj), assuming these to be all equal. 

PROPOSITION I11 

10. Given any system of probabilities drawn from recorded 
instances of unanimity, or of assigned numerical majority in the 
decisions of a deliberative assembly; required, upon a certain 
determinate hypothesis, the mean probability of correct judgment 
for a member of the assembly. [p. 3921 

Boole’s argument for this proposition, if not cogent, is at least quite 
ingenious. He divides the “immediate data of experience” into two 
groups 

(7) (i) P(X,) = a,, P(X2) = a 2 , .  . ., P(X,-,) = am-2 

(ii) P(X,-,) = 

where, as before, the Xj are logical functions of xl,. . . , x, and it is now 
assumed that 

(8 1 P(x1) = P(x*) =*. .= P(x,) = c, 

for some “intermediate” value c. Boole takes it that the Xj are mutually 
exclusive (“from the very nature of the case”) and applies Proposition I1 
to (7), whose solution would then be given by equations (6) in which the 
last n of them collapse into a single equation by virtue of (8) producing 

But now instead of c being given and a,,,-l an unknown to be 
determined, Boole takes a,- , to be the value given by the datum (7) (ii), 
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and c the quantity determined by equations (9). As to which of the m - 1 
data equations is to be thus sequestered and used as the 
P ( X , - , )  = am-l ,  Boole says: “As to the principle of selection, I 
apprehend that the equation (2) [(7)(ii)] reserved for final comparison 
should be that which, from the magnitude of its numerical element a,- 
is esteemed the most important of the primary series furnished by 
experience.” Clearly Boole’s notion of the mean probability of correct 
judgement of members of an assembly is much less precise than, say, the 
notion of the mean height of members of an assembly. 

After extending his results of Proposition I11 to a similar treatment 
which includes considerations of guilt ( k )  as well as correctness of 
judgement, Boole concludes his chapter with a summary and some 
general reflections. After Boole nothing further seems to have been 
written about the subject. 

5 6.5. Combination of testimonies 

Although at one time actively pursued, the combination of testimonies 
(or of evidence) is now no longer a standard item in the repertoire of 
probability applications. There is a brief history of the topic and a 
critique in KEYNES 1921, pp. 180-185. Our interest here is primarily, 
though not exclusively, in the conditional probability problems which 
Boole formulated as a result of his analysis of these questions. 

Boole takes the notion of testimony in a broad sense. For example, in 
Problem I of his Keith Prize memoir [1857 = 1952 XVI] the event of an 
astronomical observation being made is considered to be a testimony. In 
this memoir there is an analysis of the question of combining the several 
measurements of a quantity so as to obtain a single (“most probable”) 
value. The treatment is markedly different from that now current, which 
is based on statistical theory. We devote some discussion to Boole’s 
ideas on combining of measurements, beginning with his statement of 
the problem. 

PROBLEM I 

Two simultaneous observations of a physical magnitude, as the 
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elevation of a star, assign to it the respective values, p1 and p 2 .  The 
probability, when the first observation has been made that it is 
correct, is cl, the corresponding probability for the second 
observation is c2. Required the most probable value of the 
physical magnitude hence resulting. [1952, p. 3331 

Boole’s first step is to consider a measurement p ,  e.g. the elevation of a 
star, as a probability, namely as the probability “that a pointer, directed 
at random to that quadrant of elevation in which the star, regarded as a 
physical point, is situated, will point below the star [assuming the 
measures in an entire quadrant range from 0 to 11.” In modern parlance : 
if X is a random variable uniformly distributed over [0, 11, then 
P(0 5 X I p) = p. Such a random variable can always be introduced by 
normalizing measures to the interval [0,1]. To express the problem 
formally Boole introduces the following events : 

The event which consists in the first observation, such as it is, 

The event which consists in the second observation, such as it 

The event which consists in the first observation being correct, 

The event which consists in the second observation being correct, 

The event which consists in a pointer, directed at random to the 
quadrant in which the star is situated, pointing below that star, 

being made = x. 

is, being made = y. 

= w. 

= t’. 

= 2. 

It isn’t exactly clear what Boole means by his desideratum, “the most 
probable value of the physical magnitude hence resulting”; but what he 
takes it to be in this context is the conditional probability P ( z ( x y ) .  In 
terms of the above introduced random variable X this would be 

P ( 0  I x I s10 I x L p 1 , o  5 x L p 2 ) .  

Here 0 5 X I s, s being the elevation of the star, expresses the event z 
and 0 5 X I pl ,  0 I X 5 p 2  express the event: x and y. The conditions 
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in the data concerning the correctness of the observations are taken to 
be conditional probabilities : 

(7) C] = P ( w ( x ) ,  c2 = P(uly)  

(If x and y were testimonies of witnesses then cI  and c2 would be their 
credibilities. See KEYNES 1921, p. 181.) As usual, Boole believes he has to 
have his data in terms of absolute (non-conditional) probabilities, and 
hence is forced to introduce two additional parameters a,, a2 to express 
(7), which then becomes : 

(8 ) 
P ( x )  = a, 
P ( w x )  = U ] C ]  

P(Y)  = a2 

P ( v y )  = azc2. 

He adjoins the reasonable conditions that w implies x (if the observation 
is correct, then it has been made), and that u implies y, but inexplicably, 
also requires wu = 0 (not both observations can be correct), which 
implies that if p1 = p 2  then the observations must be incorrect. Finally 
the condition that the observations result in p1 and p 2  is taken as 

(9 1 P ( z l w )  = PI,  m l u )  = p 2 .  

Applying his general method to the problem as so formulated he comes 
out (after extensive calculation) with a result which one can write as (the 
bar indicating complementation with respect to 1): 

(alcl/cl)clpl + (a,c,/c2)c2!72 + c(alc1 + a2c2) 

1 + (al/cl)cl + (a2/c2k2 

P(ZlXY) = _ _  _ -  

The presence of the arbitrary constant c in the result indicates to Boole 
that “those principles of probability which relate to the combination of 
event do not alone suffice to enable us to combine into a definite result 
the conflicting measures of an astronomical observation.” 

This is Boole’s First Solution to the above-cited Problem I. Naturally 
one doesn’t expect a treatment with the sophistication of contemporary 
statistical estimation theory, where one looks for an estimator (function 
of the observations) for an unknown parameter (e.g. the mean) of a 
population (with a given type of probability distribution). Even so, his 
analysis of the problem seems shallow-the formal representation shows 
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no (internal) connection between x and y, which are events depicting 
measurements of the same physical entity. Similarly for w and x which 
are only related by the requirement that w --* x .  Introduction of the two 
additional parameters al and a2 is forced, and the requirement implying 
p1 # p 2  seems needlessly restrictive. With regard to these 
animadversions Boole’s Second Solution offers no improvement. There is, 
however, an ingenious idea introduced which merits mention. The idea is 
embodied in the following definition : 

De$nition. The mean strength of any probabilities of an event 
which are founded upon different judgements or observations is to 
be measured by that supposed probability of the event a priori 
which those judgements or observations following thereupon 
would not tend to alter. [1952, p. 3391 

Recall that Boole is substituting a probability value in place of a 
measurement. Thus his definition is specifying a single value to represent 
a combination of measurements, and corresponds to what current 
statistical theory would call an estimator-but without a specification of 
what parameter of the population is being estimated. For the problem at 
hand (Problem I)  this amounts to finding a value for P ( z )  in terms of the 
parameters such that 

P(Z IXY)  = P ( z )  

Boole accomplishes this by adjoining P ( z )  = r to the data, applying his 
method to find P ( z ( x y )  (now in terms of r also) and equates this to r. 
Solution for r results in 

_ _  _ _  

which, he notes, is of the form of a weighted average, 

r = WlPl + W2P2 

of p1 and pz. He also observes that when a, = a2 (uniform prior 
probability of each measurement) and c1 = c2 (equal “credibilities”) 
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then (10) reduces to the ordinary average 

We shall not present an (upper and lower bound) solution for Boole’s 
Problem I (i.e. given (8) and (9), find P(z1xy)  as we shall be presently 
doing it for the similar but less complicated Problem 11. 

The next general problem taken up in the Keith Prize memoir is that 
of determining “the combined force of two testimonies or judgements in 
support of a fact, the strength of each testimony being given.’’ Boole 
formulates this verbally as : 

PROBLEM I1 

34. Required the probability of an event z, when two 
circumstances x and y are known to  be present-the probability of 
the event z ,  when we only know of the existence of the 
circumstance x being p,-and its probability when we only know 
of the existence of y being q. [1952, p. 3551 

Here, too, believing he has to express the problem in terms of absolute 
probabilities Boole introduces two additional parameters for the 
respective probabilities of x and y. We then have the following formal 
statement : 

given: P ( x )  = cl, P ( y )  = c2 

P(z lx)  = P1 [ P ( x z )  = C l P , ]  

W l Y )  = P2 [P(YZ) = C2P,] 

find: P(z1xy) 

Writing the required conditional probability P ( z  Ixy), namely 
P ( x y z ) / P ( x y ) ,  in the form 

P(XYZ) 
P ( x y z )  + P(xyZ)’ 

the separate values for P ( x y z )  [= u] and P(xyZ) [= t] are then 
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determined (but only implicitly) by the general method and the quotient 
u/(u + t )  taken to be the answer. (We have earlier, in $6.3, commented 
on the illegitimacy of this procedure.) There is a detailed discussion of 
the (implicitly given) solution for various specializations of the 
parameters. 

Methods we shall develop in 4 6.7, extending those of $ 5.7, will enable 
us to obtain best possible bounds on conditional probabilities subject to 
linearly expressible constraints. Viewing Boole’s Problem I1 in this light, 
i.e. as that of finding best possible upper and lower bounds on P(z1xy)  
subject to P ( x )  = c l ,  P ( y )  = c 2 ,  P(z lx)  = p , ,  P(z l y )  = p 2 ,  we shall there 
find (Example 6.74): 

Cose 1. C] + C 2  I 1 

upper bound: 1 

lower bound: 0 

Case 2. c1 + c 2  > 1 

C l P I  C 2 P 2  upper bound : 
c1 + c 2  - 1’ c1 +c*  - 1 ’  

c1 + c z p 2  - 1 
c1 + c ,  - 1 ’ 

c2 + c , p ,  - 1 
C ]  + c 2  - 1 

lower bound : 

(Even without the general theory of $6.7 one can by relatively easy 
algebra show directly, in Case 1, that P(z1xy)  can take on any value 
between 0 and 1, thus contravening Boole’s “determinate” solution. See 
our endnote in $6.8.) 

We can also give a solution to Boole’s Problem I1 as literally stated, 
that is without the introduction of the two parameters (for P ( x )  and 
P(y) ) .  Applying the methods of $6.7 to the problem 

find: P(z1xy) 
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one finds (Example 6 .75) :  

upper bounds: 1 

lower bounds : p l ,  p 2  

so that P(z lxy)  is capable of taking on any value between max ( p , ,  p 2 )  
and 1. 

Q 6.6. Probability logic 

Although the idea of having probability inferences included as part of 
logic was then not unknown-for example, in his Formal Logic De 
Morgan has, subsequent to a preliminary chapter on Probability, an 
entire chapter devoted to Probable Inference-Boole, surprisingly, 
makes little of the idea. The conception which he had of his general 
method was that of a problem-solving algorithm which produces the 
probability of an event (to the extent it is determined), given the 
probabilities of other events. The few clear instances of probable 
inference that occur in his work are only incidental examples, not part of 
a coherent development. Yet viewed from a modern semantic 
standpoint, his development of probability theory in close connection 
with propositional logic is suggestive of a logic of probability (values) 
extending the logic of truth (values). There is, first of all, the replacement 
of the physical notion of event by the logical proposition. Further, 
probability values accrue (more or less) to propositional compounds 
from values of their atomic propositions. Additionally, the solution of a 
problem by Boole’s general method, when expressed in the form 

(gioen) implies (required, assumed found) 

is in effect a general inference form since no specific probability values 
are involved, nor is there any reference to the material content of the 
propositions, only their logical form. 

On the other hand there are difficulties. Only in the case of a 
compound build up from (stochastically) independent propositions do 
we obtain a uniquely corresponding value-computing function (akin to a 
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truth-function in two-valued logic) which then gives the value of the 
compound. This inadequacy is, of course, not a peculiarity of Boole’s 
system-there is no way of expressing, for example, P ( x  v y) solely in 
terms of P ( x )  and P(y) for arbitrary x and y. Moreover, the seeming 
inference form associated with Boole’s general method furnishes, in what 
would be the conclusion, either only one out of a possible set of 
values-and that one under special (independence) conditions-or else a 
range of values implicitly given by an expression containing an 
undetermined constant. 

The logic we shall now present, a new type of propositional logic, 
circumvents the difficulties indicated in the preceding paragraph by 
making use of two changes in the usual conception of a logic, in addition 
to enlarging the set of assignable values to propositions. The first is to 
have constituents (basic conjunctions), rather than simple (atomic) 
propositions, as the fundamental components determining the 
(probability) value of a compound; and the second is to have the 
(probability) value of a formula in the conclusion of a general inference 
form be determined only to within an interval of values 

PROBABILITY LOGIC 

Syntax. The definition offormula will be the same as that in ordinary 
two-valued logic, i.e. we have 

(i) propositional variables A l , .  . ., A,,,. . . 
(ii) logical connectives: 1, A ,  v 
(iii) parentheses : ( , ) 

from which formulas are constructed in customary fashion. Conventions 
and abbreviations in general use will be assumed. 

Semantics: Here we have new definitions of model and logical 
consequence. 

Let k j ( j  = 1,. . ., 2”) be real numbers such that for each j ,  k j  E [0,1], 
and such that the sum of all is 1. A probability model M (adequate for a 
set of formulas xl,. . . , xN) is an assignment of the numbers k j  to the basic 
conjunctions (constituents) K j  on variables A l ,  . . . , A,, where this list of 
variables is long enough to include all those occuring in xl,. . . , xN. 

We write PM(K, )  for the value assignment by M to K j  (i.e., 
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P,(K,)  = k j )  and extend P ,  to all formulas on A l ,  ..., A, by setting 
PM(cp) = C ( q ) k j ,  where the summation is over all j for which K j  implies 
cp or, lacking such, we set P,(cp) = 0. By ‘ K j  implies cp’ we mean with 
K j  and v, taken as formulas in the ordinary two-valued sense. Thus 
we are including two-valued logic as a part of our  semantic apparatus. 
The so-defined function PM satisfies the following general properties of 
probability : 

PI. ( i )  P ( q )  = 0, if v, implies A ,  A 1 A l  
(ii) P(cp) I P(p), if implies I) 

P2. 
P3. P(cp v q )  = P ( q )  + P(+), if cp A p implies A ,  A 1 A , .  

P ( 7  cp) = 1 - P(cp) 

Note that if in a probability model M some kjo = 1 (and hence all 
other kj’s are 0) then for i = 1,. . . , n, the formula Ai has P M  value 0, or 1, 
according as Ai appears negated, or unnegated, in Kj , .  Such models 
then coincide with two valued models. 

We define the notion of logical consequence in terms of probability 
models. Although our interest will be in subintervals of [0, 11, the 
definition we now give is formulable just as well with arbitrary subsets of 
[0, 11 and we so state it. Note that we allow ranges of values for 
formulas in the antecedent as well as in the consequent. 

Let a l ,  ..., a,,,, 8 be subsets of [0,1]. The (probability) logical 
consequence relation, denoted by 

(1 1 P(p1 1 ~ ~ 1 3 . .  ., P(cPrn) E a m  I= P ( q )  E B ,  
holds if and only if 

(2) For all probability models M (adequate for q,,. . . , cp,,,, q ) :  if 

PdCPi) E ai , .  . . , Phf(cpm) E antr then P d q )  E 8. 

The intuitive picture here is that of a “truth”-table entered from basic 
conjunctions K1 ,..., K2” with additional columns headed q,,. , ., cp,,,, *. 
The K,,.. ., K 2 .  are assigned all possible sets of 2” real numbers from 
[0,1], the sum of such numbers in each set being 1. Each assignment 
(row) determines a probability model and corresponding values for 
ql,. . . , v,,,,, q. The premise conditions in (1) select out of the 2% rows of 
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the table those in which the probabilities of the cpi are, respectively, in 
the sets xi, the relation ( 1  ) then holding if for each of these rows t,h has a 
probability in p. 

As is well-known, two-valued propositional logic can be developed 
either syntactically (via formal deducibility) or semantically (via models, 
or truth-tables), the latter being generally recognized as the primary 
mode. For our probability logic we shall adhere to the semantic 
approach, using logical consequence (I= ) as the fundamental notion. 
Note that the symbol 'I" in the definition has been given a meaning only 
in connection with 'I='. 

When a subset a of [0, 13 is a singleton, say, a = { a } ,  then we shall 
write P ( q )  = a in place of P ( c p ) ~ a .  

THEOREM 6.51. t= P(cp) = 1 irf cp is a (two-ualued) tautology. 

PROOF (a) If q is a tautology then, for any M, Py(cp) = 1.  (b) If q is not a 
tautology then its expansion as an alternation of basic conjunctions (we 
assume it has at least on, otherwise it is equivalent to A l  A 7 A l  and 
hence P,(cp) = 0) is missing at least one conjunction, say K j , .  There are 
models in which kj ,  # 0 :in any such PM(cp) # 1. 

Since properties Pl-P3 hold for any Py we can list any of the simple 
identities derivable from these properties as probability consequence 
relations. For example, P(cp v t,h) = P(cp) + P(p) - P(cp A I&) can be 
rephrased as 

P(cp) = a, P ( p )  = b, P(cp A p) = c t='P(cp v p) = a + b - C. 

However, for more substantial results, including an effective procedure 
for deciding relations of logical consequence, we need some general 
theorems on probability algebras. These are results on best possible 
upper and lower bounds (from HAILPERIN 1965) which we have already 
referred to in 0 5.7. They happen to be couched in terms of probability 
algebras, whereas what we have been using in this section are probability 
measures on sets of formulas built up from A l , . . . , A n  and the 
connectives 7, A ,  v . However the transition is easily made. Since by 
P1 (ii), logically equivalent formulas have the same probability value, we 
can simplify the structure carrying the probability measure by 
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“identifying” equivalent formulas, i.e., by going over to the Lindenbaum 
algebra ( 0  0.5). Supposing this to be done, we shall not bother to change 
notation, using 1, A ,  v in place of corresponding Boolean operations, 
and having a formula stand for the equivalence class of which it is a 
member. 

GENERAL THEOREM (on upper and lower probability bounds). Let 
a,,. . . , a,,, (ai = [ai, b i ] )  be probability intervals (subinteruals of[O, 11). Let. 
q,,. . , , qm, Ji be Boolean polynomiuls in variables A , ,  . . . , A,. Then : 

(i) there are 2m-ary numerical-valued functions L!$)(a,, . . :,a,,,, b , ,  . . . ,b,,,) 
[ = Z!$) for short] and U y )  (a, ,  . . .,urn, b,, .  . . ,b,,,) [ = U$“] depending only 
on the Boolean structures of ql , .  . . , q,,,, Ji, such that the two-sided 
inontinlit I !  

holds in any probability algebra for which 

(4 ) P ( q i )  E ai 

(ii) the bounds given in ( 3 )  are best possible, and 
(iii) there is a linear programming problem specified by (4) and the 

structure of J/ such that carrying out its solution effectively determines 
whether or not (4) is consistent and, i f  it is, then the explicit forms for I!$’) 
and U p )  are provided by the solution. 

( i  = 1,. . . , m) 

Examples of upper and lower bounds as described in the General 
Theorem have been given in 5 5.7. If one examines the proof one sees that 
the full generality of “all probability algebras” is not needed-all that is 
used is all possible assignments of real numbers k j  (j  = 1, ..., 2”) to 
constituents on A l , .  . . , A,, with k j  E [0,1] and xF= Ikj = 1 ; in other 
words, just probability models adequate for ql,. . . , qm, Ji. This enables 
one to rephrase the General Theorem on bounds as a probability logical 
consequence result. Namely, introducing the interval-valued function 

Pfp)(al,.. . , a,) = [d$), U p ) ] ,  

and making use of the fact that [I!$), U$“] is best possible, we have the 
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GENERAL THEOREM (on probability logical consequence). Let al, . . . , u, 
he prohuhility intervals and ( p i , .  . , (P,, @ propositional formulas on 
mriables A 1 ,  . . . , A,,. Then 

P(cpl)Eal,...,P(cp,)Ea, I= P(ICI)EB 

.for any fl such that Pf$P)(al,. . . , u,) E f l .  Consistency conditions on the 
premises (antecedent of i= ) and the explicit form of P f b')are effectively 
determinuble in terms of ql, .  . . , (p,, @ and al,. . . , a,. 

We illustrate the General Theorem with a number of examples, in all 
of which the strongest possible conclusions will be given, i.e. one with 
fl = Pf$P). In what follows we shall tacitly assume that parameters 
designating probabilities lie between 0 and 1. 

Exumple 6.61. (Generalizing modus ponens) 

P(Ai)= P ,  P(Ai + A 2 ) = q  I= P ( A ~ ) E [ P + ~ - ~ , ~ I .  

Consistency condition : p + q 2 1. 

We work this simple example out in some detail so as to illustrate the 
ideas. Let kl, k2, k3, k4 be the values associated with the probabilities of 
the basic conjuctions on Al, A2. On expressing the conditions in the 
antecedent in terms of the k's, and adjoining the probability 
requirements on the k's, one obtains 

k i  + k 2  = P  

From the three equations in (5) one has p + q - 1 = k l ,  and hence 
p + q  2 1. (For a general technique of determining consistency, i.e. 
solvability, of a system of inequations see Theorem 0.71.) The interval 
for P ( A , )  in the consequent may be found in either of two ways (see 
9: 5.7) : 

(a) (Polytope corners). The best upper bound for P(A2) = k l  + k3 
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subject to conditions ( 5 )  is given by maximizing k, + k3, subject to 

1 1 0 0 1  

1 1 1 1  "'1 i], and 

1 

2 0. 

The dual form of this linear programming problem is to minimize 
p x ,  + qx2 + .x3 subject to 

1 1  

1 0  

0 1  

0 1  

1 

1 _I [:I :c 3 

L 

A corner point of the polytope specified by (7) is found by converting 
three out of the four inequations into equations, solving, and testing to 
see if the solution satisfies the other inequality. For (7) we find only one 
corner point (0,1,0). Hence p . 0  + 4 '  1 + O[ = q ]  is the minimum value. 
The best lower bound is obtained by complementary techniques, and 
gives the result stated. 

(b) (Fourier elimination). Here we adjoin to the system (5) the 
equation 

w = k1 + k ,  [= P ( A , ) ]  

and eliminate all variables but w. This results in the relations 

p + q - l l w ,  w l q  

O l q l l ,  O l p l l ,  l < p + q ,  

which gives the bounds on w and the consistency conditions. 

the results. 
In the following examples we shall omit the calculations and just state 

A slightly more general form of probabilistic modus ponens occurs in 
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SUPPES 1966, formula (7)  p. 53: 

P ( A )  L r + p -  1 

For us this becomes 

Example 6.62. (More general modus ponens) 

P ( A ,  -+ A 2 ) E  [P. 11, P ( A l ) E [ %  11 F P ( A 2 ) E  [P + 4  - 1 , 1 3  
Consistency condition : p + q 3 1 .  

Example 6.63. (Generalized hypothetical syllogism) 

P(AI + A 2 )  = p. P ( A 2  + A 3 )  = q F P(A1  -+ A ~ ) E  [ p  + C l -  1. I ]  
Consistency condition : 1 I p + q. 

The next example illustrates the effect of additional information. In 
Example 6.61 the premises show no relationship between A l  and A?. If 
we replace A ,  by A ,  v A2 the result is still true but a sharper result can 
be given, namely (replacing the formula A ,  v A 2  -+ ,4z hy the equivalent 
A ,  -+ A2): 

Example 6.64. 

P(A1 v A 2 ) = p . P ( A 1 - + A 2 ) = q F P ( A z ) = p + q - 1  

with consistency conditions as in 6.61. 

In the preceding three examples the formula involved in the 
conclusion was a necessary consequence (in the two-valued sense) of the 
formulas in the premises. Here is an example where this is not the case: 

Exumple 6.65. 

P ( A ,  -+ A 2 )  = p F  P(A2 + A , ) € [ l  - p ,  13. 

Although P ( A I  v A2)cannot be expressed as a function only of P ( A l )  
and P ( A 2 )  it is the case that the probability interval can be so expressed : 

Example 6.66. 

f ( A l )  = p, f ( A , )  = q t= f ( A 1  v A,)E[max(p.q), min( l .p+q)] .  
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The following is the logical consequence form of Boole’s Ex. 1 (Q 4.6) : 

Example 6.67. 

P ( A , ) =  P , P ( A , A z ) = q F  P(A2)E[q,q+l -PI. 

Consistency condition: q I p. 

On comparing this with Boole’s solution of Ex. l., 

P (4) = q + c(l  - p), c = P(AZIA1 1, 
one notes that in one respect Example 6.67 gives less information about 
P ( A , ) ,  but on the other hand it isn’t known from Boole’s solution that c 
could range between 0 and 1. 

Example 6.68. 

P ( A ,  v A 2 )  = p. P(A1 v 1 2 )  = qt= P ( A , A ,  v A2AI)  = p + q -  1. 

This is Boole’s Ex. 2 (Q 4.6). It results from Example 6.64 on replacing 
A2 by A 1 A 2  v A1A2 and simplifying 

A l  v (A1A2 v A1A2)  to A ,  v A2 

and A ,  -+ ( A 1 A 2  v A 1 A 2 )  to A, v A,. 

Hoole’s Ex. 4 (Q 4.6) takes the form 

Example 6.69. 
- - -  

f ( A l )  = p .  P ( A 2 )  = q, P(A1A2A2)  = r t P ( A 3 ) €  [ L  V], 

where 

L=max{O, f -p -q}and  U = m i n { f , 2 f - p , 2 f - q , 3 f - p - q } .  

Consistency conditions: p + r I 1, q + r L 1. 

Boole’s Ex. 5 ($4.6) is the probabilistic form of the hypothetical 
syllogism, which he there formulates as though the problem were about 
conditional probabilities. Our Example 6.63 gives the solution when the 
conditionals are taken in the usual sense (i.e. ‘If A l  then At’ is taken as 
‘Al v A2’). For our solution of the problem as Boole formulates it see 
Example 6.72 below. 
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We conclude our section on probability logic with an oftencountered 
problem in probable inference: Given the probabilities of two or more 
arguments for a conclusion what probability should be assigned to the 
conclusion? Here is De Morgan’s version of this problem: 

Problem 3. Arguments being supposed logically good, and the 
probabilities of their conclusions (that is, of all their premises 
being true) being called their validities, let there be a conclusion 
for which a number of arguments are presented, of validities a, b, c, 
&c. Required the probability that the conclusion is proved [1854, 
p. 2011 

De Morgan’s language we interpret as follows : 

‘A is an argument for C’ means ‘A + C’ 
‘A is logically good (for C)’ means ‘A + C is valid’ 

‘A proves C means ‘A A (A + C)’ 
‘the validity of A’ is ‘P(A)’  

Note that, in accordance with this, the validity of A is equal to 
the probability that A proves C if the argument A is logically good. 
The problem considered then is : given arguments A ,, . . ., A, (for C), 
all being logically good, and with respective validities a,, . . ., a,, 
what is the probability that the conclusion is proved? 
Since (A, -, C) A ... A (A, -, C) is logically equivalent to 
(A, v ... v A,) + C the question is equivalent to asking for 
P ( A ,  v ... v A,) given that P ( A , )  = a, (i = 1, ..., n). De Morgan gives 
the result 

1 - ( 1  -a l ) ( l  -a2)...(1 --a,,), 
which is correct if 

P ( ~ A I ~ A z * * * ~ A , )  = P ( ~ A , ) P ( ~ A Z ) *  * . P ( l A n ) y  

i.e., if the A l ,  . . . , A, are stochastically independent. Without this 
assumption we have 

Example 6.610. 

P ( A , )  = a,, ...., P ( A ” )  = a, k P ( A ,  v A2 v * * *  v A,) 

E [max { a ,  , . . ., a,), min { 1, al  + a2 + . . - + a,)] .  



AN EXTENSION OF PROBABILITY LOGIC 399 

56.7. An extension of probability logic 

Many of the problems invoiving conditional probabilities which Boole 
dealt with can also be viewed as inferential, i.e. logical, in nature. The 
theory of the preceding section does not directly cover the situation, but 
a slight extension of it does. However, before turning to this we would 
like to outline the discussion of a particular probabilistic inference 
question at issue between Bishop Terrot and Archbishop Whately, to 
which Boole contributed an important clarification. 

Terrot begins his paper [1857] with the following excerpt from 
Whately : 

“As in the case of two probable premises, the conclusion is not 
established except upon the supposition of their being both true, so 
in the case of two (and the like holds good for any number) distinct 
and independent indications of the truth of some proposition, 
unless both of them fail, the proposition must be true : we therefore 
multiply together the fractions indicating the probability of the 
failure of each-the chances against it-and the result being the 
total chances against the establishment of the conclusion by these 
arguments, this fraction being deducted from unity, the remainder 
gives the probabilityfor it. “E.g. A certain book is conjectured to 
be such an author, partly, lst, from its resemblance in style to his 
known works; partly, 2nd, from its being attributed to him by 
someone likely to be pretty well informed. Let the probability of 
the conclusion, as deduced from these arguments by itself, be 
supposed f ,  and in the other case 4; then the opposite probabilities 
will be respectively 3 and 4, which multiplied together give as 
the probability against the conclusion; i.e. the chance that the 
work may not be his, notwithstanding the teasons for believing 
that it is; and, consequently, the probability in favour of the 
conclusion will be 3, or nearly $ “(Whately’s Logic, 8th Ed., 
p. 21 1). 

By applying Whately’s rule to the negative of the conclusion in the 
example give, Terrot comes out with a probability against the 
conclusion which isn’t 1 minus that which Whately has obtained for the 
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conclusion. This incompatibility, he claims, shows that “the principle 
and method must be erroneous.” He goes on to discuss the only other 
attempt at a solution which he is acquainted with (DE MORGAN 1837, 
section 15) and declares, since the rule there given is the same as that of 
Whately, that it too is wrong. (Terrot’s criticism of De Morgan’s strange 
derivation is justified,‘ but apparently he was unaware that it was 
replaced by a different one in DE MORGAN 1854.) Terrot then goes on 
to present his attempt at  a solution, leading him to a doubly infinite 
series of terms of which he says: “This infinite series of infinite series I 
cannot sum. If they can be summed, then their sum divided by the 
infinite of the second order n2, is the probability required.” 

Boole’s contribution to the “controversy” (a defense of Whately had 
appeared in the United Church Journal) is in an Appendix to the Keith 
Prize memoir [1857]. 

Boole first notes that the result he has given as the solution of his 
Problem I1 (see Q 6.5)-which he believes contains a rule for “computing 
the joint force of two probabilities in favour of a conclusion”-is not the 
same as Whately’s. After presenting Whately’s argument (that quoted 
above) he makes the point : 

A confusion may here be noted between the probability that a 
conclusion is proved, and the probability in favour of a conclusion 
furnished by evidence which does not prove it. In the proof and 
statement of his rule, Archbishop Whately adopts the former view 
of the nature of the probabilities concerned in the data. In the 
exemplification of it, he adopts the latter. He thus applies the rule 
to a case for which it was not intended, and to which it is, in fact, 
inapplicable. [ 1952, p. 3831 

Boole then remarks that the rule and “the conditions for its just 
application” are to be found in De Morgan’s Formal Logic, p. 201. This 
we have discussed at  the end of our preceding section. Interpreted in this 
manner Whately’s rule is then 

(1) 

and is correct if A l  and A2 are stochastically independent. (Whately 

A1 + c, A2 + c, P ( A , )  = U l ,  P ( A 2 )  = u2 

P((A,A2)C) = P(A,A,) = 1 - 4a2 
’ 
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states this independence condition, but De Morgan neglected to do so.) 
But, as Boole notes, the exemplification Whately has involves conditional 
probabilities and the premises are not as in (1 )  but should be 

P ( C I A , )  = a , ,P (CIA, )  = a,. 

Thus the formula 1 -GIGz is inappropriate as the value of P ( C I A l A 2 ) ,  
and accounts for me incompatibility when Terrot computes P ( C I A , A , )  
and P ( C I A I A , )  by its use. Boole believes his solution to Problem I1 
(9  6.5) gives the answer, i.e. the value of P(CIA,A,). Our solution, which 
is different, is given below in Example 6.75. 

PROBABILITY LOGIC (extended) 

The definition of the logical consequence relation 

(2 1 P(cP,  1x1 ) E . . v  P ( P m  I x m )  E a m k  P ( +  IP) E P 
will be formally the same as that for absolute probabilities. However two 
important differences arise from the introduction of conditional 
probabilities. 

(i)  Since a premise of the form P(cplx) E a, a = [a, b],  is equivalent to 

i.e. to a pair of inequalities 

u P ( x )  5 P(cpx) 

QCPx) 5 hP(x), 

the premises in (2) still translate as a system of linear inequalities in 
constituent probabilities (the k’s); but the parameters (a and b in the 
example) will no longer be isolated in the constant terms of the 
inequalities but would appear also in the coefficients of the k‘s. Thus 
although we still have a system of linear constraints which specifies the 
region of feasible solutions, it is no longer possible to have a purely 
numerically defined region of feasible solutions by going over to the dual 
form (as we did in 45.7); for in the dual form the coeficients will still 
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contain occurrences of the parameters. This is only a practical obstacle, 
not a theoretical one, as the corner points of the polytope could still be 
found (in terms of the parameters). It will turn out, however, that 
Fourier-Motzkin elimination will be the method of choice in most of the 
examples we look at. 

(ii) As in probability logic with absolute probabilities, determining 
whether a conclusion follows from the premises resolves into the 
determination of best possible upper and lower bounds. However now it 
is not of a linear form in the k ' s  but rather of a linear fractional form 
since a conditional probability, as a quotient of absolute probabilities 
will, in terms of the k's,  be of the form 

The logical question then reduces to an algebraic one of optimizing a 
linear fractional form subject to linear contraints. A theory for this has 
been developed and a principal result, in a form sufficient for our 
purposes, is stated in 5 0.8 (Theorem 0.82). 

As a simple example illustrating the ideas and methods involved, 
consider the problem (as Boole would have formulated it): given the 
probabilities of two events, determine the probability of their 
conjunction if it is known that one or the other (or both) has happened. 
1.e. 

given: P ( A , )  = p l ,  P ( A 2 )  = pz 

find: P(AIA21A1 v A 2 ) .  

As a logical inference problem this would be: 

Find L and U such that 

P ( A 1 )  =p1 ,P(A2)  = pzt= P(AlAZIA1 v A z ) E B .  

if and only if [I ,  U ]  c_ p. 

' I am indebted to my colleague Murray Schechter for calling my attention to 
linear fractional programming, which then enabled me to develop an extension 
of probability logic which includes conditional probabilities. 
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In terms of constituent probabilities the question is that of 

subject to the conditions 

By Theorem 0.82 this is equivalent to 

optimizing y ,  

subject to 

4'1 + Y Z  = API 

!'I + +4'3 = 4 7 ,  

4'1 + y2 + 4'3 + 4'4 = i. 

Y l  + 4'2 + !)3 

A 2 0, Y l , Y 2 , Y 3 , Y 4  2 0 

(2) 

= 1  

The simplest way to solve this linear programming problem is to 
eliminate ($0.7) 1, y4, y3, y,, so obtaining inequalities on y l  implied by 
(2). One readily finds 

0 I y , ,  p1 + p 2  - 1 5 1'1 

PI P2 
P2  PI 

y 1 5 - ,  y , I - - .  

Thus we have 

Example 6.71. For pIp2  # 0, 
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where 

L = max (0, p l  + p 2  - l} and U = min { P J P ~ ,  p 2 / p 1 } .  

As another example we consider Boole’s interpretation of the 
probabilistic hypothetical syllogism with conditional probabilities, but 
without the introduction of extra parameters, so that the conditional 
probabilities are essential. Here, it turns out, the conclusion being 
“empty”, the consequence relation is of little interest : 

Exlrmple 6.12. 

P ( A I I A ~ ) = P , P ( A ~ I A ~ ) = ~ ~ P ( A I I A ~ ) € [ O ,  13. 

For verification of this see our endnote in 8 6.8 where we show that for 
any p ,  q in the open interval (0,l) there are probability models satisfying 
the premises and in which P ( A I I A 3 )  = 0, and also there are some in 
which P(Al I A 3 )  = 1.  Thus no interval short of [0,1] can include all 
possible values of P(  A I A3 ). 

An example of a probabilistic inference scheme which involves a 
conditional probability occurs in SUPPES 1966, p. 50, 

P ( A 1 B )  = r 

P ( B )  = P 

:. P ( A )  2 rp ,  

Using our linear programming approach we come up, automatically, 
with the stronger conclusion : 

Example 6.13. 

P ( A l I A * )  = P , P ( A 2 )  = q P P ( A * ) + ? ,  1 -ml 
The following two results have already been referred to in  $6.5 in 

connection with Boole’s Problem 11. 

Example 6.14. 

P ( A i )  = c i . P ( A 2 )  = cz. P(A31Ai )  = P I .  P(A3IA2) = P 2  

I= P ( A 3 1 A 1 A 2 ) ~ [ 0 ,  I], 

t= P ( A 3 / A 1 A 2 ) ~ [ L ,  U ] ,  

if el + c 2  I 1 

if c1 + c 2  > 1 
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where 

c1 + czpz  - 1 c2 + c , p ,  - 1 
c , + c , - l  ’ c , + c z - l  

U = min 

E..runiple 6.75. 

96.8. Notes to Chapter 6 

(for 46.1) 

NOTE 1. Discussion of Michell’s Problem in connection with Boole’s 
ideas may be found in KEYNES 1921, pp.294-296, and also in FISCHER 
1973, pp. 40-42. 

NOTE 2. With regard to Boole’s observation that one cannot 
“contrapose” a conditional probability, the following result may be of 
interest. Suppose p ,  0 < p < 1, is some fixed value and q any arbitrarily 
selected value in [0,1]. Then there is a probability algebra and events A 
and B such that P (A IB) = p and P(BIA)  = q. Thus having just the value 
of P ( A  I B )  determined imposes no restriction whatever on P (BI A). 

To see this let k , ,  k 2 ,  k 3 .  k4 be, respectively, the probabilities of AB, 
AB, AB and An. Then 

Subject to these conditions we investigate the value of 

k4 q = P(BIA) = -. 
k2 + k4 

Eliminating k ,  between the two equations of ( l ) ,  solving for k 2  and 
substituting the value in (2) yields 
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k4 
P ( 1  - k3) + Pk4' 

q = -  

This function of two variables is continuous at all points (k3, k4) except 
(1,O). In the (k3, k4)-plane (with k3, k4 E [0,1]) the valuc; of q on the line 
k3  + k4 = 1 is 1, and on the k3-axis its value is 0. Hence on any line 
connecting the two the value of q ranges continuously from 0 to 1. 

(for $6 .3 )  

NOTE I .  Keynes' solution for the Challenge Problem can be derived as 
follows. Since E + A l  v v A,, we have 

(1) 

and P ( E )  is then the sum of the probabilities of the separate terms. 

E = E A ]  + E A I A 2 + E A l A 2 A 3  + a * . +  EAIA 2...,2"n-1An, 

Now 

and letting, for i 2 2, 

di = P ( E A ,  . . . Ai- 1 Ai), 

we have for each term on the right in (1)  after the first, 

Hence 

NOTE 2. The following is a somewhat clearer derivation of the results 

We have P ( C )  = a, [a  # 11 and for i = 1 ,..., n, P ( A i )  = p ,  C + Ai,  
of pp. 192-193 in KEYNES 1921. 

and P ( A i l A I A z . . . A i - I C )  = P ( A i ( C ) .  Then 
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and 

so that 

(b) P ( A  A 2 . .  . A, I c) = P(A 1 1 c ) P ( A 2  I A I c) . . . P ( A ,  I A A 2 . .  . A,- c) 

Thus 

P(A,A2 ... A,) = P(AlA2 ... Arc) + P ( A * A  2... Arc) 
= P ( C ) P ( A  1A2.. . A, I C )  + P ( C ) P ( A  1 A2..  . A,[ C) 

and hence 

and also 

Note that, since 0 I p - a  I 1 - a, as n --t 00 the value of 

P ( C I A I A  2 . . . A , ) + 1  ( = 1  if p = a ) .  

NOTE 3. The following is a brief derivation, using 20th century 
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mathematics, of the limit which Boole works out in Laws of’ Thought, 

For any continuous real-valued function j’ on [0,1] the sequence of 
pp. 373-374. 

Bernstein polynomials 

(n = 1,2, ...) 
k = O  

has f(x) as its uniform limit (Weierstrass Approximation Theorem). By 
taking 

I(;) = ($(1 -;y, 
passing to the limit and setting x = 4, one has Boole’s result 

NOTE 4. Peirce [ 1883, pp. 171-1731 describes the Rule of Succession 
and, approvingly, Boole’s critism of it centering on his introduction of 
the alternative hypothesis of equally probable constitutions instead of 
equally probable ratios. Peirce makes the amusing observation that, 
contrary to Boole’s tolerating either assumption, it would be “far better” 
to assume equally probable constitutions, for if the Rule resulting from 
this assumption were applied to more than one unknown event no 
inconsistency could arise, as would be the case if the Rule were based on 
the assumption of equally probable ratios. 

(for $6.5) 

NOTE 1. When translated into probabilities of constituents 
(6 5.7) Boole’s Problem I1 (as he formulates it) is that of finding values 
of k , / ( k ,  + k 2 )  subject to the conditions 

k1 + k2 + k3 + k4 + k5 + k6 I 1 

= CI 
(*) k l  + k 2  + k 5 + k 6  = ~2 

k l  + k2 + k 3  + k4 

k l  + k 3  = C I P ,  

k l  + k5 = ~ 2 ~ 2 ,  ki 2 0. 
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We show that, for. cl ,cz ,p, ,p2 E [0,1], if c1 + c2 5 1, then subject to 

Set 
the constraints (*) one can have k , / ( k ,  + k 2 )  = r for any r,  0 < r c 1. 

k 2  = k l  (F) 

and choose k l  so that 

O I k , I Q  

where 

Then one can readily show: 
(i) each ki  2 0 
(ii) each of the equations in (*) is satisfied, and 

(iii) the inequality in (*) reduces to c1 + c 2  5 1 + k , r ,  which is 

Thus Boole's P(z I x y )  of Problem I1 (his version) can take on any value 
satisfied since we have by assumption, c1 + c 2  I 1. 

between 0 and 1. 

(for $6 .6 )  

NOTE 1 .  For some historical background material on probabilistic 
inference, and for more details on the probability logic here presented, 
see HAILPERIN 1984b. 

NOTE 2. For the conditional probability form of the hypothetical 
syllogism (Example 6.62) the linear programming problem is than of 
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subject to the conditions 

We shall show (for p, q > 0 )  that there are solutions of (*) in which 
k ,  = k7 = 0 (and thus for which P ( A ,  [ A 3 )  = 1). When k ,  = k7 = 0 the 
system (*) becomes 

k1 + k2 = p(k1 + k2 + k 6 )  

k l  = q(k1 + k 2 )  
(** 1 

k , + k , + k 3 + k , S  1 ( k i 2 0 )  

Solving for k 3  and k ,  and substituting into the inequality results in an 
equivalent system 

Since the coefficients on k ,  and k 2  are both greater than 1 there are 
clearly arbitrarily small positive values satisfying the inequalities and the 
entire system. 

A similar argument (with p , q  c 1) shows that there are solutions for 
(*) in which k l  = k3  = 0, so that there are probability models in which 
P(AIIA3)  = 0. 
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