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Türker Bıyıkoğlu · Josef Leydold
Peter F. Stadler

Laplacian Eigenvectors
of Graphs

Perron-Frobenius and Faber-Krahn
Type Theorems

ABC



Authors

Türker Bıyıkoğlu
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Preface

Eigenvectors of graph Laplacians are a rather esoteric topic for a book. In
fact, we are not aware of even a single review or survey article dedicated to
this topic. We have, however, two excuses: (1) There are fascinating subtle
differences between the properties of solutions of Schrödinger equations on
manifolds on the one hand, and their discrete analogs on graphs. (2) “Geo-
metric” properties of (cost) functions defined on the vertex sets of graphs
are of practical interest for heuristic optimization algorithms. Lov Grover’s
observation that the cost functions of quite a few of the well-studied combi-
natorial optimization problems are eigenvector of associated graph Laplacians
prompted us to investigate such eigenvectors more systematically.

The book in essence covers two topics: Nodal domain theorems which give
bounds on the number of connected subgraphs on which an eigenvector does
not change sign, and Faber-Krahn-type inequalities which are concerned with
the shape of domains (i.e., graphs in our setting) with fixed volume that
minimize the first Dirichlet eigenvalue. The connecting theme between these
two topics is focus on local and global properties of the eigenvectors (rather
than eigenvalues) and convenience of the Rayleigh quotient in the proofs.

The mindful reader will find that more often than not a simple star graph
already provides a counterexample for “obvious” conjectures. In fact, we used
the Petersen graph just because it seems against tradition to write about
graph theory without using the Petersen graph as a counterexample at least
once. The simplicity of the counterexamples highlights how little we know
about the universe of graph Laplacian eigenvectors (and fitness landscapes in
general), and how misguided an intuition trained on well-behaved manifolds
can be in this realm: even small moves frequently causes a broken nose caused
by some unexpected wall.

The history of this monograph goes back more than a decade and has its
roots in the interdisciplinary research environment at the Department of The-
oretical Chemistry at the University of Vienna, Austria. A collaboration with
Brian Davies during his stay at the Erwin Schrödinger Institute in Vienna
in 1995 stimulated our interest in Laplacian eigenvectors and eventually
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resulted in a research grant from the Austrian Fonds zur Förderung der Wis-
senschaftlichen Forschung (project no. 14094-MAT) to investigate this topic in
a more systematic way. Over the years, many colleagues contributed through
helpful discussions, among them Wim Hordijk, Jürgen Jost, Bojan Mohar,
Tomaž Pisanski, Dan Rockmore, and Gerhard Wöginger. We also thank the
Max Planck Institute for Mathematics in the Sciences in Leipzig for their
hospitality and for providing a fruitful scientific working for one of us (TB).

Leipzig, Türker Bıyıkoğlu
Wien, Josef Leydold
May 2006 Peter F. Stadler
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1

Introduction

The foundations of spectral graph theory were laid in the fifties and sixties
of the 20th century. The eigenvalues of graphs, most often defined as the
eigenvalues of the adjacency matrix, have since then received much attention
as a means of characterizing classes of graphs and for obtaining bounds on
properties such as the diameter, girth, chromatic number, connectivity [14,
17, 45, 46, 83, 85]. The interest has since then shifted somewhat from the
adjacency spectrum to the spectrum of the closely related graph Laplacian
[14, 35, 41, 85, 88, 137, 139]. In particular, Laplacian graph spectra are being
investigated as a means of characterizing large “small world networks” and
random graphs, see e.g. [33, 34, 119] for a few examples. For the most part,
the theory is still concerned with the eigenvalues.

The eigenvectors of graphs, on the other hand, have received only sporadic
attention on their own, e.g. [134]. Even the book Eigenspaces of Graphs by
Cvetković et al. [47] contains only a few pages on the geometric properties of
the eigenvectors which are mostly used as a convenient proof technique.

In this book we will focus on mostly geometric properties of the eigenvec-
tors themselves. The motivation for this topic is twofold. As we shall see in this
first introductory chapter, these objects arise in very diverse applications, from
mathematical biology to combinatorial optimization. The Laplacian eigenvec-
tors are used as tools in heuristics to solve combinatorial problems on given
graphs, usually without a thorough understanding why they work so well.
From a more formal point of view, Laplacian eigenvectors are the natural
discretization of eigenfunctions of Laplace-Beltrami operators on manifolds.
Surprisingly, some of their properties in the discrete case are reminiscent of
corresponding results in the continuous setting, but often there are subtle
differences which we found interesting enough to explore in some detail.

We should, at this point, warn the reader: this book collects a number
of interesting facets of our topic, enough as we hope to stimulate further
research, but it cannot provide a coherent theoretical framework or a powerful
machinery to tackle the properties of Laplacian eigenfunctions in generality.



2 1 Introduction

1.1 Matrix Representations of a Graph

There are two obvious ways of specifying a simple1 graph G(V,E) with vertex
set V = {1, . . . , n} and edge set E by means of a matrix: the adjacency matrix
and the incidence matrix. The adjacency matrix A has entries Axy = 1 if
xy ∈ E and Axy = 0 otherwise: In order to specify the incidence matrix ∇
we need an arbitrary but fixed orientation (direction) for each edge e = xy.
Then ∇ is a (|E| × |V |) matrix and has entries ∇ex = −1 if x is the initial
vertex of edge e, ∇ex = 1 if x is the terminal vertex of edge e, and ∇ex = 0
otherwise, i.e., if x is not in e.

Let us now consider a real-valued function f over V , f : V → R. This is
simply a vector indexed by the vertices of G. In this book we prefer to use a
“functional” notation that emphasizes the similarities between the situation of
graphs and manifolds. Obviously the set of such functions forms a vector space
which is isomorphic to R

n (and thus we will — by abuse of notation — simply
denote this vector space by R

n). Similarly there exists a set of real-valued
functions over E. The map f �→ ∇f is known as the co-boundary mapping of
the graph G. Its value (∇f)(e) at a given edge e is the difference of the values
of f at the two end-points of the edge e (considering orientation). Therefore
the incidence matrix ∇ is a kind of difference or “discrete differential” operator
on G.

Let us now consider an Eulerian graph G. Recall that G is Eulerian if
and only if G is connected and all vertices have even degree. Let C be an
(arbitrary) Eulerian cycle in G (i.e., a closed walk that traverses each edge
exactly once) and fix an orientation of G such that C is properly oriented in
the sense that all edge point “forward” along C. The cycle C may pass through
each vertex x multiple times; the incoming edge of the i-th pass is e′i = (y′i, x),
the outgoing edge is e′′i = (x, y′′i ). We can now define “2nd derivatives” along
C:

(∂2
C;if)(x) : = (∇f)(e′′)− (∇f)(e′)

= [f(y′′i )− f(x)]− [f(x)− f(y′i)]
= f(y′i) + f(y′′i )− 2f(x) .

Note that (∂2
C;if)(x) is independent of the orientation on G. Interpreting each

pass of C through x as a different “dimension” it seems natural to consider
the sum over these “2nd derivatives” as a “Laplace-Beltrami operator”

(∆f)(x) =
∑

passes i of C through x

(∂2
C;if)(x)

=
d(x)/2∑

i=1

[f(y′i) + f(y′′i )− 2f(x)] =
∑

y∼x

[f(y)− f(x)]

1 For basic definitions and results the reader is referred to Appendix A.
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which is independent of the choice of the Eulerian cycle C and the orientation
on G. Naturally, one generalizes this definition of ∆ to arbitrary graphs.

In the graph theory literature, however, it is customary to define the Lapla-
cian operator (map) L : R

|V | → R
|V | with the opposite sign:

(Lf)(x) = (−∆f)(x) =
∑

y∼x

[f(x)− f(y)] . (1.1)

From an algebraic point of view it appears more natural to define

L = ∇T∇ (1.2)

which is known as the Laplacian (matrix) of G. We have

Lxy =
∑

e∈E

∇ex∇ey =

⎧
⎪⎨

⎪⎩

−1 if xy ∈ E,
d(x) if x = y,

0 otherwise,
(1.3)

where d(x) = |{e ∈ E|x ∈ e}| is the degree of the vertex x. It is important to
note that Lxy in (1.3) is independent of the orientation of the edges. Clearly,
we have the identity (Lf)(x) = (Lf)(x).

Defining the diagonal matrix D with entries Dxx = d(x), called the de-
gree matrix , we obtain a simple connection between the Laplacian and the
adjacency matrix of a graph,

L = D−A . (1.4)

The Laplacian L therefore uniquely determines its graph through its off-
diagonal entries.

The close relation between ∇ and L on the one hand, and their differential
operator counterparts on the other hand, is exemplified by the following dis-
crete version of Green’s formula, which is easily verified by direct computation
[159]:

Proposition 1.1. Let f : V → R and g : V → R be two arbitrary functions.
Then

∑

x∈V

f(x) (Lg)(x) =
∑

x∈V

g(x) (Lf)(x) =
∑

e∈E

(∇f)(e) (∇g)(e) .

Using angular brackets 〈·, ·〉 to denote the usual scalar product of two vectors
in R

n and the symbol −∆ for L we can formulate Green’s formula in a more
familiar form as

−〈f,∆g〉 = −〈∆f, g〉 = 〈∇f,∇g〉 .

The Laplacian L can thus be viewed as a proper discretization of the usual
Laplace-Beltrami differential operator.
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1.2 Finite Differences

Partial elliptic differential equations play an important rôle in mathematical
physics. Examples are the Poisson equation

∆u = f on Ω

with given domain Ω ⊆ R
s and f ∈ C0(Ω), the eigenvalue problem

−∆u = λu on Ω

or Schrödinger’s equation. Here∆ denotes the classical Laplace operator given
as ∆u =

∑s
i=1 uxixi .

Computing solutions of such differential equations is a challenging task
in numerical mathematics. An old and popular method is based on finite
differences : A grid or mesh is used to divide R

s into small hyper-rectangles or
simplices. At the nodes of the grid the Laplace operator ∆ is approximated
by a difference operator. For Ω ⊆ R

2 and a square mesh of width h we get
the so called Five-Point Formula

∆hu(x, y) = [u(x+h, y)+u(x, y+h)+u(x−h, y)+u(x, y−h)−4 u(x, y)]/h2 .

From a graph theoretical point of view the square mesh is the Cartesian
product of two paths of proper lengths, Pk1�Pk2 ⊂ Z

2, and ∆h is the graph
Laplacian L(Pk1�Pk2) times the constant −1/h2. Thus the graph Laplacian
arises in a quite natural way. For details about finite differences (and other
methods for solving elliptic partial differential equations) the interested reader
is referred to [92], or to [120] for the special case of Laplacian eigenvalues.

1.3 Landscapes on Graphs

Maybe the most direct interest in the structure of the eigenfunctions of graph
Laplacians comes from the theory of fitness landscapes , see [149] for a review.
Evolution theory has as its cornerstone the concept of fitness. Fitness is tradi-
tionally defined as the relative reproductive success of a genotype as measured
by survival, fecundity or other life history parameters [27, 96, 165]. The key
principle of Darwinian evolutionary theory is that natural selection acts so as
to (locally) maximize the fitness of a species or population. The concept of a
fitness landscape originated in the 1930s in theoretical biology [177, 178] as
a means of visualizing this kind evolutionary adaptation: A fitness landscape
is a kind of “potential function” on which a population moves uphill due to
the combined effects of mutation and selection. Thus, natural selection can be
viewed as a type of “hill climbing” on the topography implied by the fitness
function.

Models of disordered systems, in particular spin glasses, naturally led to
the notion of landscapes [18, 135]: Each spin configuration is assigned an
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energy by virtue of the Hamiltonian that specifies the model. In the simplest
case so-called Ising spins are considered, which can only take two values: up
(σ = +1) and down (σ = −1). The Hamiltonian of the system typically
considers the interactions between neighboring spins, in the simplest case

f(σ) =
∑

neighbors i, j

σiσj .

There is also a close conceptual similarity of the landscapes in biology and spin
glass physics with the potential energy surfaces (PES) of theoretical chemistry
[95, 136].

In combinatorial optimization the fitness function f is usually referred to as
the cost function on a search space X [80]. The Traveling Salesman Problem
(TSP) is probably the most frequently studied combinatorial optimization
problem. The ingredients of the TSP are simple enough: The configurations
are the n! permutations of the n locations, usually called a “tour”. We write
π = (π(1), . . . , π(n)) for the order in which they are visited. Given the travel
distance (or cost) Ckl from city l to city k we can write down the cost function
in the form

f(π) =
n−1∑

i=1

Cπ(i+1),π(i) + Cπ(1),π(n) ,

where the last term describes returning to the point of origin.
In formal terms, a landscape is a triple (X,X , f) consisting of:

1. A set X of configurations,
2. a notion X of neighborhood, nearness, distance, or accessibility on X , and
3. a fitness function f : X → R.

The set X together with the “structure” X forms the configuration space. In
the simplest case, X describes which configurations can be obtained from a
given one by means of basic “moves” or transformations. Examples of such
moves are the flipping of a single spin, the exchange of a single letter by
another one in a genetic sequence, or the transposition of two cities along the
salesman’s tour. Usually the move-set is constructed in a symmetric way, so
that the configuration space (X,X ) becomes an undirected finite graph G.
More general classes of configuration spaces are discussed e.g. in [156].

Let us consider the function f̃ given by f̃(x) = f(x) − f̄ , where f̄ =
1

|X|
∑

x∈X f(x) is the average cost of an arbitrary configuration. Grover and

others [37, 90, 157] observed that f̃ is in many cases an eigenfunction of the
Laplacian L of the graph representing the configuration space (X,X ). These
landscapes have been termed elementary in [157]. Some examples are collected
in Table 1.1.

Lov Grover [90] showed that, if f is an elementary landscape, then

f(x̂min) ≤ f̄ ≤ f(x̂max)
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Table 1.1. Examples of Elementary Landscapes

Problem Graph degree λ Order Reference

p-spin glass Qn
2 n 2p p definition

NAES Qn
2 n 4 2 [90]

Weight Partitioning Qn
2 n 4 2 [90, 157]

GBP (constrained) Qn
2 n 4 2 [2]

Max Cut Qn
2 n 4 2 [2]

Graph α-Coloring Qn
α (α − 1)n 2α 2 [157]

XY-spin glass Qn
α (α − 1)n 2α 2 [79]

for α > 2: Cn
α 2 8 sin2(π/α) 2 [79]

Linear Assignment Γ (Sn, T ) n 1 [151]
TSP symmetric Γ (Sn, T ) n(n − 1)/2 2(n − 1) 2 [37, 90]

Γ (Sn,J ) n(n − 1)/2 n 2 [37, 90]
antisymmetric Γ (Sn, T ) n(n − 1)/2 2n 3 [11, 157]

Γ (Sn,J ) n(n − 1)/2 n(n + 1)/2 O(n) [11, 157]

Graph Matching Γ (Sn, T ) n(n − 1)/2 2(n − 1) 2 [157]

Graph Bipartitioning J(n, n/2) n2/4 2(n − 1) 2 [90, 161, 162]

Here Qn
α is a Hamming graphs, i.e., the n-fold Cartesian product of the complete

graph Kα, Γ (A, Ω) is the Cayley graph of the group A with generating set Ω, where
Sn and An denotes the symmetric and alternating groups, resp., T , J , and C3 are
the transpositions, reversals, and permutations defined by a cycle of length 3, resp.
J(p, q) is a Johnson graph. The order of eigenvalue λ is its position in the spectrum
of L without counting multiplicities and defining the order of λ = 0 as 0.

where x̂min and x̂max are arbitrary local minima and maxima, respectively.
This maximum principle shows that elementary landscapes are well-behaved:
There are no local optima with worse than average fitness f̄ .

Many of the examples in Table 1.1 belong to the first few eigenvalues of
L. A simple relationship between λ and the autocorrelation function of f of
(X,X ), see e.g. [157], suggests furthermore that the “ruggedness” [72, 173]
of an elementary landscape, and hence its difficulty for evolutionary adapta-
tion, should be related to its corresponding eigenvalue λ of L. Furthermore,
a Fourier-decomposition-like formalism was developed that decomposes arbi-
trary landscapes into their elementary components [98, 151, 174]:

f = a0 +
n−1∑

k>0

akfk (1.5)

where the fk form an orthonormal system of eigenfunction of the graph Lapla-
cian, Lfk = λkfk, and a0 = f̄ is the average value of the function f . Let us
denote the distinct eigenvalues of L by λ̄p, sorted in increasing order starting
with λ̄0 = λ0 = 0. We call p the order of the eigenvalue λ̄p. The amplitude
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spectrum of f : V → R is defined by

Bp =
∑

k : λk=λ̄p

|ak|2
/∑

k>0

|ak|2 . (1.6)

By definition, Bp ≥ 0 and
∑

pBp = 1. The amplitudes measures the relative
contribution of the eigenspace of the eigenvalue with order p to the function
f . Of course, a landscape is elementary if and only if Bp = 1 for a single order
and 0 for all others.

1.4 Related Matrices

Let us briefly mention a few matrices that are closely related to L. Sometimes
a normalized version L∗ representing the average difference between x and its
neighbors is used:

(L∗f)(x) =
1

d(x)

∑

y∼x

[f(x) − f(y)] .

This definition is quite similar to (1.1). In fact for graphs without isolated
vertices we have

L∗ = D−1L = I−D−1A .

This version is used e.g. by Grover [90] and Barnes and coworkers [12, 155].
The first nontrivial eigenvalue of L∗ plays an important role for synchroniza-
tion in coupled map lattices [5, 105].

Chung [35] defined a general and normalized form of the Laplacian matrix,
which is consistent with the eigenvalues in spectral geometry and in stochastic
processes:

L̃xy =

⎧
⎪⎨

⎪⎩

1 if x = y and d(x) > 0,
−1/
√
d(x)d(y) if xy ∈ E,

0 otherwise.

In matrix form we have L̃ = D−1/2LD−1/2 for graphs without isolated
vertices. L̃ and L∗ are similar for graphs without isolated vertices: L∗ =
D−1/2L̃D1/2.

Another associated matrix is the transition operator T = AD−1 of an
unbiased random walk on G2. We have therefore

L∗ = I−TT and hence (L∗)T = I−T

as the associated “Laplacian”. This version is used e.g. in [164]. The matrices
L∗ and T are – in contrast to Chung’s Laplacian L̃ – not symmetric unless
2 Contrary to the convention in the Markov chain literature we treat the distribu-

tions as column vectors here, i.e., a step of the Markov chains reads p′ = Tp.
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the graph G is regular; hence they do not belong to the class of operators that
we will be concerned with in this book.

As an example for the application of the transition operator we briefly
continue our discussion of fitness landscapes of the previous section. Let G
be a D-regular graph and let f : V → R be an arbitrary fitness function.
Weinberger [173] suggested to characterize a fitness landscape by means of
the autocorrelation function r of the values f(x) sampled along a random
walk on G. One easily verifies the following relation between r(s) and the
Laplacian spectrum [157]:

r(s) =
E[f(xt+s)f(xt)]− E[f(xt+s)]E[f(xt)]

E[f(xt)2]− E[f(xt)]2

= 〈f̃ ,Tsf̃〉
/
〈f̃ , f̃〉

=
∑

p>0

Bp (1− λp/D)s
(1.7)

Here, the expectation E[ . ] is taken over all random walks with transition
matrix T, all times t, and all initial conditions x0 ∈ V . The autocorrelation
function r(s) is therefore a superposition of exponential functions. It decays
more rapidly, when the amplitudes Bp with large Laplacian eigenvalues λp

increase. A landscape is therefore elementary if and only if its autocorrelation
function decays exponentially. The correlation length

� :=
∞∑

s=0

r(s) = D
∑

p>0

Bp/λp (1.8)

also reflects the fact that the “smoothness” or ruggedness of a fitness landscape
is directly related to the amplitude spectrum. The correlation length of an
elementary landscape is therefore determined by the order p of the associated
Laplacian eigenvalue.

1.5 Graphs with a Boundary: The Discrete Dirichlet
Problem

In 1966 Kac [106] asked whether it is possible to hear the shape of a drum.
A mathematical drum is a domain D with a boundary ∂D in some R

n (or
more generally in some manifold M). If small vibrations are induced in the
membrane, it is not unreasonable to expect a point on its surface to move
only vertically. In the absence of damping the motion of the point is given by
the wave equation

∆u+ λu = 0

with the constraint that u(x) = 0 for all x ∈ ∂D (the so-called Dirichlet
boundary condition). Here ∆ denotes the Laplace-Beltrami operator. The so-
lution of a Dirichlet problem involves a countable sequence of eigenvalues (in
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this case the frequencies of the tones produced by the membrane). Kac’s ques-
tion thus can be rephrased in a more formal way: Can nonisometric drums D
afford the same set of eigenvalues? The answer was given in 1992: We cannot
hear the shape of a drum, i.e., there are nonisometric domains D that yield
the same spectrum [86].

Fisher [70] considered the discrete analog to Kac’s problem. In his model
the membrane consists of a set of atoms which in the equilibrium state lie on
the vertices of a regular lattice graph embedded in a plane. Each atom acts on
its neighboring atoms by elastic forces. The discretization of the vibration of
a membrane is the Laplacian matrix L of the graph G. The eigenvalues of L
again correspond to the frequencies of the membrane. We also can’t hear the
discrete shape of a drum, because the eigenvalues of a graph do not determine
the graph uniquely; see e.g. [45]. Nevertheless, in practice it is often possible
to obtain at least good approximations of a graph (in terms of the cardinality
of the symmetric difference between the true graph and its reconstruction)
from its spectrum [103].

We need a notion of a graph with boundary for defining discrete analogs
of Dirichlet boundary conditions. Of course, graphs do not have boundaries
by themselves. Starting from a graph G(V,E) we may, however, consider the
induced subgraph G[V ◦] on a subset V ◦⊂ V , considering V \V ◦ as the bound-
ary of G[V ◦] on which the constraint u(x) = 0 is enforced. We denote this
boundary by ∂V . Formally we can define a graph with boundary as a graph
G(V ◦∪ ∂V,E◦∪ ∂E) where V ◦ denotes the set of interior vertices and ∂V
the set of boundary vertices. The set of edges between interior vertices are
called interior edges and denoted by E◦; edges between V ◦ and ∂V are called
boundary edges and denoted by ∂E. Edges between boundary vertices do not
make sense in our setting and are thus deleted. It must be noted here that a
graph with boundary is called connected if the graph induced by its interior
vertices, G[V ◦], is connected. The partition into interior and boundary vertices
might be to some extend “arbitrary”. In the case of drums, however, we might
also choose to use a nail and fix the position of the membrane at an arbitrary
point, thereby adding an additional point to the boundary of the domain of
the corresponding Dirichlet problem. A more thorough discussion of Dirichlet
problems on graphs will be given in Chap. 6.

An interesting application of the first Dirichlet eigenvalue arises from a
combinatorial game called chip firing [23]: Every vertex of a connected graph
contains an integral number of chips. In each step of the game a vertex is
selected that has at least as many chips as its degree and one chip is moved
to each of its neighbors. The game can continue as long as there is a vertex
with sufficiently many chips on it. The game terminates when no vertex can
be selected. Chung and Ellis [32] considered a variant of this game, in which
chips are removed from the game when they are moved across a boundary
and gave an upper bound that depends on the first Dirichlet eigenvalue for
the number of steps until such a game terminates.
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If we restrict ourselves to solutions f of the Dirichlet problem on a graph
G(V ◦∪ ∂V,E◦∪ ∂E) with boundary we have to look for a function f which
vanishes on all boundary vertices, i.e. f(x) = 0 for x ∈ ∂V , and which satisfies
for all interior vertices x ∈ V ◦

(Lf)(x) =
∑

y∼x

[f(x) − f(y)] =
∑

y∈V

Lxyf(y) =
∑

y∈V ◦
Lxyf(y) = λf(x)

for some eigenvalue λ. Thus the Dirichlet problem can be reduced to a matrix
eigenspace problem for G[V ◦]. The corresponding Dirichlet matrix L◦(G) can
be derived from the graph Laplacian L(G) simply by deleting all rows and
columns that correspond to boundary vertices, i.e., by using the principal
submatrix corresponding to interior vertices. Compared to the “free” graph
Laplacian L(G[V ◦]) on the graph induced by its interior vertices, G[V ◦], the
Dirichlet matrix differs just by an additional “potential” p(x) in the diagonal
elements:

L◦(G) = L(G[V ◦]) + P (1.9)

where P is a diagonal matrix whose entries are Pxx = p(x) = |{y : yx ∈ ∂E}|.
For a more “natural” motivation of this definition we refer the interested
reader to [75] or Sect. 2.4.

1.6 Generalized Graph Laplacians

The Dirichlet operator and Chung’s Normalized Laplacian motivate the defi-
nition of a more general class of matrices associated with a graph G(V,E). We
call a symmetric matrix M a generalized Laplacian or discrete Schrödinger
operator of G if Mxy < 0 whenever xy is an edge of G and Mxy = 0 whenever
x and y are distinct and not adjacent. There are no constraints on the diagonal
entries of M. Fiedler [67] and Roth [152] call such matrices “essentially non-
positive”. The ordinary Laplacian L as well as the negative adjacency matrix
−A are of course generalized Laplacians.

Such generalized graph Laplacians can be interpreted in two ways. First
the off-diagonal entries can be seen as coefficient of a discrete analog of an
elliptic operator which are used in mathematical physics to describe oscillation
in nonhomogeneous matter. On the other hand it could be seen as “ordinary”
Laplacian on a weighted graph. Then the weights wxy on an edge xy has to
taken into consideration. Thus we have a Hamiltonian operator H of the form

(Hf)(x) =
∑

y∼x

wxy [f(x)− f(y)] + p(x) f(x) .

The first part of the right hand side then represents the kinetic part while
p(x) represents some potential. This is the analogous expression to (1.1) of
some generalized Laplacian.
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Another graph Laplacian comes from quantum chemistry. The properties
of micro-objects (electrons, atoms, molecules) in a stationary state are de-
scribed by wave functions Ψ , representing solutions of Schrödinger’s equation
ĤΨ = EΨ , in which Ĥ is the energy operator and E is the energy of the object
under consideration. For a certain class of organic compounds, which includes
the conjugated hydrocarbons, one can approximate Schrödinger’s equation in
the following form

Hψ = Eψ

where the off-diagonal entries of the matrix H are the so-called “resonance
integrals” describing the interactions between orbitals at different atoms, while
the diagonal terms incorporate the so-called “Coulomb integrals”. The off-
diagonal elements vanish unless the corresponding atoms are connected by
bonds, i.e., adjacent in the graph representation of the molecule. The entries
of H are tabulated for different atom and bond types. These approximations
form the basis of the so-called Hückel theory [101]. The matrix H is therefore
called the Hückel matrix of the molecule. Properties of the molecule can now
be derived from the eigenvalues and eigenfunctions of H. In particular, the
electron density within a given molecular orbital at an atom x is given by
|ψ(x)|2. Recently, a Hückel-theory like approach was used to implement a very
general artificial chemistry for the purpose of simulating large-scale chemical
networks [16]. We refer to [6, 24, 168] for comprehensive presentations of
chemical graph theory.

1.7 Colin de Verdière Matrices

A special class of generalized graph Laplacians has been of particular interest
because of its close relationship with embeddability properties of the asso-
ciated graphs. While not directly related to the structure of the Laplacian
eigenfunctions, we briefly mention this topic for its importance in algebraic
graph theory.

For a given graph G consider the class of matrices with the following
properties, see e.g. [97]:

1. M is a generalized Laplacian of G.
2. The only symmetric matrix X with entries Xij = 0 whenever i = j or i

and j are adjacent in G that satisfies MX = O is the zero-matrix X = O.
This property is known as the Strong Arnold Property.

3. M has exactly one negative eigenvalue, which is simple.

Yves Colin de Verdière [38, 40] introduced the parameter µ(G) as the maximal
dimension of the null-space of a matrix satisfying these three properties. This
parameter, which is minor-monotone, determines embeddability properties of
the graph G [40, 129, 170]:
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µ(G) ≤ 1 ⇔ G is disjoint union of paths
µ(G) ≤ 2 ⇔ G is outerplanar
µ(G) ≤ 3 ⇔ G is planar
µ(G) ≤ 4 ⇔ G is linklessly embeddable

Related results and similar, embedding-related, graph parameters are dis-
cussed e.g. in [10, 130, 169].

1.8 Practical Applications of Laplacians Eigenvectors

There are many applications and results on graph Laplacian eigenvalues and
their relations to numerous graph invariants, including connectivity, expand-
ing properties, genus, diameter, mean distance, and chromatic number, as well
as to partition problems (graph bisection, connectivity and separation, isoperi-
metric numbers, maximum cut, clustering, graph partition), and approxima-
tions for optimization problems on graphs (cutwidth, bandwidth, min-p-sum
problems, ranking, scaling, quadratic assignment problem). For an overview
of such results we refer to Mohar’s surveys, e.g. [138], or the monographs by
Colin de Verdière [41] and Chung [35].

So far we have given examples where eigenfunctions arise in a natural
albeit sometimes surprising manner. In this section we collect a few practical
applications of eigenfunctions where the appearance of a graph Laplacians is
not obvious.

Eigenfunctions corresponding to the second smallest eigenvalue of a Lapla-
cian can be used for graph bipartitioning. In one variant of graph bipartition-
ing one attempts to find a vertex separator S of the given graph G such
that S has few vertices and disconnects G − S into two parts A and B with
nearly equal numbers of vertices. Pothen et al. [146] give the following heuris-
tic method for the bipartition: Compute the eigenfunction f2 of the second
smallest eigenvalue of the Laplacian. Assign each vertex the value of f2. Com-
pute the median of all these values. Bipartition the vertices as follows: the
vertices whose values are less than or equal to the median form one part;
the rest of the vertices form the other part. The quality of this heuristic is
investigated by Guattery and Miller [91]. Alpert et al. [1] describe a multiple
eigenfunction extension of this approach.

Eigenfunctions can also be used to obtain colorings of a graph. For a
given collection F of eigenfunctions, the vertices u and v belong to the same
color class (partition) if and only if u and v have the same sign for each
fk ∈ F . Aspvall and Gilbert [4] describe a procedure in which, starting from
the eigenfunctions to the largest eigenvalues of L, additional eigenfunctions
are added to F until one obtains a valid coloring.

A related application is “spectral clustering” [15, 57], which is based on the
observation that nodal domains (see Sect. 3.1) of the first eigenvectors of the
graph Laplacian can be used as indicators for suitably size-balanced minimum
cuts, see e.g. [154]: Consider an undirected edge-weighted graph with weight
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function w(x, y) > 0 if {x, y} is an edge in G. The weight of a cut A,X \ A
and the within-group association in A are defined as

c(A) =
∑

x∈A,y∈X\A

w(x, y) and a(A) =
∑

x∈A,y∈V

w(x, y),

respectively and set d(x) =
∑

y∈X w(x, y). A convenient normalized cut-
weight is ν(A) = c(A)/a(A) + c(A)/a(X \ A). Instead of using the vertex
sets A and X \ A we can use a sign-vector f to describe the cut by setting
f(x) = 1 if x ∈ A and f(x) = −1 if x ∈ X \ A. Then a short computation in
[154] shows that

min
f
ν(f) = min

g

〈g, (D−W)g〉
〈g,Dg〉

with the constraint gD1 = 0. It follows that the eigenvector of the 2nd-
smallest eigenvalue of the symmetric matrix L̃ = D−1/2(D − W)D−1/2 is
the appropriate real-valued approximation to the discrete optimization prob-
lem for the sign-vector f . In practice, one often proceeds by computing the
nodal domains of g and then re-iterating the procedure for the corresponding
subgraphs.

A different field of applications for spectral methods is graph drawing. An
embedding of a graph in R

k is a map from vertices of a graph into R
k, in other

words an embedding consists of the positions of the vertices in a k-dimensional
drawing of a graph. Eigenfunctions of the second, third, and fourth (some-
times fifth) smallest eigenvalues of a Laplacian can be used for an embedding
of a graph in R

3. For a better embedding of fullerenes, the eigenfunctions
of the adjacency matrix are also used (see [74, 87, 121, 122]). Pisanski and
Shawe-Taylor [144] give a method for drawing a graph in any number of di-
mensions: Compute an orthonormal basis of eigenfunctions f1, . . . , fn of the
Laplacian matrix of a graph with n vertices. The eigenfunctions f2, . . . , fk+1

yields the columns of the embedding in R
k with minimum energy (energy is

defined as the sum of the square of the Euclidean distance of two adjacent ver-
tices). Pisanski and Žitnik [145] in their short survey on graph representations
call this method the Laplace method and remark that there is a connection
between the number of nodal domains of the eigenfunctions (see Chap. 3) and
the quality of the corresponding graphical representation. In bioinformatics,
the program SpectralNet [73], which is based on these principles, is used
for analyzing and visualizing these biological and chemical networks. Related
work is reported by Koren [117]. Lovász and Schrijver [130] gave some results
on embeddings of path, 2-connected outerplanar graphs and 3-connected pla-
nar graphs based on Colin de Verdière’s [38] new graph invariant µ which
is related to generalized graph Laplacians. In their proof they used results
related to the nodal domain theorem (Thm. 3.1).

Another application of graph eigenfunctions is used in economics. Maslov
[131] gives a simple measure of the level of financial globalization of a given
country based on the analysis of cross-correlations between stock market in-
dices in different countries and regions of the world. He studies the empirical



14 1 Introduction

correlation matrix (this matrix is symmetric, nonnegative definite but in gen-
eral it is not a graph Laplacian) of index price fluctuations in a large number
of individual countries. The three largest eigenvalues and the corresponding
eigenfunctions are used for the observation of the influence of world index
dynamics.



2

Graph Laplacians

In this chapter we recall the definition of (generalized) graph Laplacians and
present the basic properties of their eigenfunctions. Moreover, we establish the
main tools that will be used throughout the book. For a thorough overview
of other properties of graph Laplacians not required for our investigations of
eigenfunctions we refer the interested reader to the survey by Merris [133].

2.1 Basic Properties of Graph Laplacians

Let G(V,E) be a simple graph with vertex set V and edge set E. We use the
convention that |V | = n and |E| = m, i.e., G is a graph with n vertices and
m edges. The Laplacian of G is the matrix

L(G) = D(G)−A(G) (2.1)

where D(G) is the diagonal matrix whose entries are the degrees of the vertices
of G, i.e. Dvv = d(v), and A(G) denotes the adjacency matrix of G. For the
function Lf we find

(Lf)(x) =
∑

y∼x

[f(x)− f(y)] = d(x) f(x) −
∑

y∼x

f(y) . (2.2)

We denote the eigenvalues of L by λi enumerated in increasing order, i.e.,

0 = λ1 ≤ λ2 ≤ · · · ≤ λn . (2.3)

The quadratic form of the graph Laplacian can be computed via Green’s
formula as

〈f,Lf〉 =
∑

x,y∈V

Lxyf(x)f(y) =
∑

xy∈E

(f(x)− f(y))2 . (2.4)

This equality immediately shows that the graph Laplacian is a nonnegative
operator, i.e., all eigenvalues are greater than or equal to 0.
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A symmetric matrix M(G) is called a generalized Laplacian (or discrete
Schrödinger operator) of G if it has nonpositive off-diagonal entries and for
x = y, Mxy < 0 if and only if the vertices x and y are adjacent. On the other
hand, for each symmetric matrix with nonpositive off-diagonal entries there
exists a graph where two distinct vertices x and y are adjacent if and only if
Mxy < 0. Similarly to (2.2) we have

(Mf)(x) =
∑

y∼x

(−Mxy)[f(x) − f(y)] + p(x) f(x) , (2.5)

where p(x) = Mxx +
∑

y∼x Mxy. The last part p(x) can be viewed as some
potential on vertex x. Defining a matrix W consisting of Wxy = Mxy for
x = y and Wxx = −

∑
y �=xMxy and a diagonal matrix P with the potentials

p(x) as its entries we can decompose every generalized Laplacian as

M = W + P .

W can be seen as discrete elliptic operator . The quadratic form of the gener-
alized Laplacian can then be computed as

〈f,Mf〉 =
∑

xy∈E

(−Mxy)(f(x) − f(y))2 +
∑

x∈V

p(x) f(x)2 ; (2.6)

an alternative presentation is

〈f,Mf〉 =
∑

x∈V

Mxxf(x)2 + 2
∑

xy∈E

Mxyf(x)f(y) . (2.7)

The following remarkable result for the eigenvalues of a generalized Laplacian
can be easily derived.

Theorem 2.1 ([22]). Let λ be an eigenvalue of a generalized Laplacian M =
W + P with eigenfunction f . Then either

∑
v∈V f(v) =

∑
v∈V p(v) f(v) = 0,

or

λ =
∑

v∈V p(v) f(v)∑
v∈V f(v)

.

Proof. Let 1 = (1, . . . , 1)T. Then a straightforward computation gives

〈1,Mf〉 =
∑

v∈V (
∑

w∼v(−Mvw)(f(v)− f(w)) + p(v) f(v))
=
∑

v,w∈V (−Mvw)(f(v)− f(w)) +
∑

v∈V p(v) f(v)

=
∑

v,w∈V Mvwf(w)−
∑

v,w∈V Mvwf(v) +
∑

v∈V p(v) f(v)

=
∑

v∈V p(v) f(v) .

Since f is an eigenfunction we find 〈1,Mf〉 = λ
∑

v∈V f(v), and thus the
proposition follows. ��
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Remark 2.2. The case
∑

v∈V f(v) = 0 happens, for example, for all eigenfunc-
tions corresponding to an eigenvalue λ > λ1 when the eigenfunction f1 of λ1

is constant. This is the case if and and only if p(v) is constant for all v ∈ V .

The spectrum of the (generalized) Laplacian provides quite detailed in-
formation on the structure of the underlying graph. We refer the interested
reader to classical books and surveys, e.g. [17, 35, 41, 46, 85, 133, 137].

One of these basic results is related to the multiplicity of the first eigen-
value and the connectivity of the graph. Notice, that all eigenvalues of a
discrete elliptic matrix W are nonnegative as an immediate consequence of
(2.6). Moreover, its smallest eigenvalue is λ1 = 0.

Theorem 2.3. Let W(G) be a generalized Laplacian without potential (i.e.
P = 0). Then the multiplicity of the smallest eigenvalue λ1 of W(G) is equal
to the number of components of G. In particular, λ1 is simple if and only if
G is connected.

Proof. Assume G is the disjoint sum of connected components H1, . . . , Hk.
Denote by fi the characteristic function of V (Hi), i.e. f(v) = 1 if v ∈ V (Hi)
and 0 otherwise. Obviously, M(G)fi = 0. Since f1, . . . , fk are linearly inde-
pendent, the multiplicity of eigenvalue 0 is at least k.

Conversely, if f is an eigenfunction of eigenvalue 0, then by (2.6) f must
be constant on each edge of G and hence on each component Hi. Therefore f
is a linear combination of the characteristic functions fi. ��

We assume throughout this book that all graphs are connected unless stated
otherwise explicitly.

2.2 Weighted Graphs

We have introduced Laplacian and generalized Laplacian matrices on simple
unweighted graphs. However, it is straightforward to generalize these concepts
to weighted graphs . Let wxy > 0 denote the weight for edge xy; we set wxy = 0
if x and y are not adjacent. Then we can define the Laplacian Lw as

(Lwf)(x) =
∑

y∼x

wxy(f(x)− f(y)) . (2.8)

Obviously this is a special case of (2.5) with −Mxy = wxy and p(x) = 0. Thus
Lw can be seen as a generalized Laplacian on the corresponding unweighted
graph (where two vertices x and y are adjacent if and only if wxy > 0). Thus
without loss of generality we will restrict our interest to generalized Laplacian
on unweighted graphs.
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2.3 The Rayleigh Quotient

The Rayleigh quotient RM(f) of a function f : V → R with respect to a
generalized Laplacian M is defined as the fraction

RM(f) =
〈f,Mf〉
〈f, f〉 . (2.9)

For the graph Laplacian L this can equivalently be written as

RL(f) =

∑
xy∈E(f(x) − f(y))2
∑

x∈V f(x)2
.

The Rayleigh quotient plays a crucial rôle in our investigations. Its impor-
tance is based on the following fundamental theorem from spectral theory
for symmetric matrices (which we restate here for graph Laplacians), see e.g.
[100].

Proposition 2.4 (Spectral Decomposition). For a generalized Laplacian
M for a graph G there exists an orthonormal basis of the R

n that consists of
eigenfunctions f1, . . . , fn corresponding to the eigenvalues λ1, . . . , λn. More-
over, for every function g : V → R we find

Mg =
n∑

i=1

λi〈g, fi〉 fi

and for the quadratic form,

〈g,Mg〉 =
n∑

i=1

λi〈g, fi〉2 .

As an immediate consequence we have the following corollary.

Corollary 2.5. Let f1, . . . , fn denote orthogonal eigenfunctions correspond-
ing to the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of a generalized Laplacian M. Let
Fi = {f1, . . . , fi} be the set of the first i eigenfunctions and F⊥

i its orthogonal
complement. Then

λk = min
g∈F⊥

k−1

RM(g) = min
g∈F⊥

k−1

〈g,Mg〉
〈g, g〉 .

Moreover, RM(g) = λk for some g ∈ F⊥
k−1 if and only if g is an eigenfunction

corresponding to λk.

Proof. Every function g ∈ F⊥
k−1 can be written as g =

∑n
i=k ai fi. Hence

RM(g) =
∑n

i=k λi a
2
i /
∑n

i=k a
2
i ≥

∑n
i=k λk a

2
i /
∑n

i=k a
2
i = λk and equality

holds if and only if all terms with eigenvalues λi > λk vanish. Thus the result
follows. ��
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Corollary 2.6 (Minimax-Theorem). Let Wk and W⊥
k denote the sets of

subspaces of R
n of dimension at least k and of codimension at most k, respec-

tively. Then

λk = min
W∈Wk

max
0�=g∈W

〈g,Mg〉
〈g, g〉 = max

W∈W⊥
k−1

min
0�=g∈W

〈g,Mg〉
〈g, g〉

Proof. Every function g can be written as g =
∑n

i=1 aifi for some ai where
{f1, . . . , fn} is the orthonormal basis of eigenfunctions from Prop. 2.4. Hence
RM(g) = 〈g,Mg〉

〈g,g〉 =
∑n

i=1 a
2
i λi/

∑n
i=1 a

2
i . Then for every W ∈ Wk we can

find some g ∈ W where a1 = . . . ak−1 = 0 and thus supg∈W RM(g) ≥
supg∈W,a1=...=ak−1=0

∑n
i=k a

2
iλi/

∑n
i=k a

2
i ≥ λk. Consequently,

inf
W∈Wk

sup
g∈W
RM(g) ≥ λk .

Equality holds if W is the subspace that is spanned by the first k eigenfunc-
tions. Thus the first equality follows. The second equality is shown analo-
gously. ��

2.4 Calculus on Graphs

Friedman and Tillich [76, 77] developed a Calculus on Graphs where ideas for
motivating the discrete Dirichlet matrix [75] are extended to a more general
setting; see Sect. 1.5 for a more detailed description.

The geometric realization of a graph G(V,E) is the metric space G consist-
ing of V and arcs of length 1 glued between u and v for every edge e = uv ∈ E.
For weighted graphs these arcs have length 1/wuv. This definition of the arc
lengths needs some explanation. Setting the length of such arcs to the recip-
rocal of weights of the corresponding edge is motivated by the application of
graphs in physical models (see e.g. Hückel theory in Sect. 1.6) or in numer-
ical approximations of the continuous operators (see e.g. Sect. 1.2). Shorter
distances between the nodes (i.e., smaller arc lengths) result in stronger cou-
pling in these systems and hence are modeled by higher weights for these
connections.

We define two measures on G (and G). A vertex measure, µV , is supported
on the vertex set V with µV (v) > 0 for all v ∈ V ; and an edge measure
µE , supported on the union of arcs of G, with µE(v) = 0 for all v ∈ V
and whose restriction to any open subinterval of an edge (arc) e ∈ E is its
Lebesgue measure times a constant ae > 0. In our setup we have the measures
µV (v) = 1 and ae = 1 (which are called traditional in [76]). Hence for any
graph G, µV (G) = |V | and µE(G) = |E| (or

∑
e∈E 1/we in case of a weighted

graph).
Let S denote the set of all continuous functions on G which are differen-

tiable on G \V . Then we introduce a Laplacian operator L(G) by the Rayleigh
quotient for functions f ∈ S given as
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RL(f) =

∫
G |∇f |

2dµE∫
G |f |2dµV

.

The operator L(G) can be seen as the continuous version of the corresponding
graph Laplacian L(G). On G we can avoid the problems that arise from the
discreteness of our situation. Many concepts in analysis translate almost im-
mediately to this setting. For example, nodal domains (Sect. 3.1) of an (eigen-)
function f are separated by points in G where f vanishes; in opposition to the
traditional setting where such points need not exist as f is supported on V
only (see Sect. 3.1).

These two concepts, L(G) and L(G), coincide [75, 76]. The Rayleigh quo-
tient RL(f) is minimized if and only if f ∈ S is an edgewise linear function,
i.e. a function whose restriction to an edge is linear. The eigenvalues and
eigenfunctions of L(G) exist and are those of L(G), i.e. the restrictions of the
L(G)-eigenfunctions to V are the graph Laplacian eigenfunctions.

In this setting the motivation for the Dirichlet operator, introduced in
Sect. 1.5, is obvious: Restrict S to {f ∈ S : f(v) = 0 for all v ∈ ∂V }. We then
have the following analog to eigenfunctions of the classical Laplace-Beltrami
operator. If G1 and G2 are graphs with boundary, then we say that G2 is
an extension of G1, written G1 ⊆ G2, if there exists an isometric embedding
of the realization of G1 into G2 which preserves the degree of each interior
vertex. If G1 and G2 are connected graphs and the above embedding is not
onto, we say that G2 is a strict extension, G1 ⊂ G2.

Proposition 2.7 ([75]). Let λ◦(G) denote the first Dirichlet eigenvalue.
Then the following holds:

(1) λ◦(G) is continuous as a function of G in the metric
ρ(G,G′) = µE(G−G′) + µE(G′ −G).

(2) λ◦(G) is monotone in G, i.e., if G ⊂ G′ then λ◦(G) > λ◦(G′).

2.5 Basic Properties of Eigenfunctions

As we have already seen the graph Laplacian is a nonnegative operator. If G is
a connected graph with n vertices then the constant function 1 : x �→ 1 is the
unique eigenfunction with eigenvalue 0, L1 = 0 (for a proof see Cor. 2.23).
Each eigenfunction of an eigenvalue greater than 0 is orthogonal to 1 by
Prop. 2.4. Thus there are at least two vertices with values of opposite sign,
and of course

∑
x∈V f(x) = 0. For vertices where an eigenfunction vanishes

we have the following important property which holds for every generalized
Laplacian.

Lemma 2.8. Let f be an eigenfunction of M(G) with a zero vertex z, i.e.,
a vertex where f vanishes, f(z) = 0. Then

∑
y∼z Myzf(y) = 0. Moreover,

either all neighbors of the zero vertex z are zero vertices themselves, or z is
adjacent to vertices of both strict signs.
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Proof. 0 = f(z) =
∑

y∈V

Myzf(y) =
∑

y∼z

Myzf(y) +Mzzf(z) =
∑

y∼z

Myzf(y).

��

The next property can be interpreted as a discrete analog of the maximum
principle for the Laplace operator. We say that x is a local maximum of a
function f if f(x) ≥ f(y) for all y ∼ x and f(x) > f(z) for at least one z ∼ x.
A local minimum is defined analogously.

Theorem 2.9 ([81, 90]). An eigenfunction f of a graph Laplacian L(G)
cannot have a nonnegative local minimum or a nonpositive local maximum.

Proof. Suppose x is a local minimum of f with f(x) ≥ 0. Then
∑

y∼x[f(x)−
f(y)] < 0 and thus by (2.2), 0 ≤ λf(x) = (Lf)(x) =

∑
y∼x[f(x)− f(y)] < 0,

a contradiction. ��

Remark 2.10. This theorem analogously holds for generalized Laplacians with-
out a potential p(x) in (2.5). However, if p(x) = 0 for some vertices then it
might fail. For example, consider a simple path P3, with generalized Laplacian

M =

⎛

⎝
3 −1 −1
−1 1 0
−1 0 1

⎞

⎠ .

Then λ1 = 2 −
√

3 has an eigenfunction with a positive minimum on the
second vertex.

Merris [134] considers several “eigenfunction principles” for the graph
Laplacian. In the following we review some of them.

Theorem 2.11 ([134]). Let G be a graph with n vertices. If 0 = λ < n is an
eigenvalue of L(G), then any eigenfunction affording λ takes the value 0 on
every vertex of degree n− 1.

Proof. Let v be a vertex of degree n−1. (Lf)(v) = (n−1) f(v)−
∑

x �=v f(x) =
λ f(v), hence n f(v) = λ f(v) and f(v) = 0. ��

Theorem 2.12 ([134]). Let λ be an eigenvalue of L(G) afforded by eigen-
function f . If f(u) = f(v), then λ is an eigenvalue of L(G′) afforded by f ,
where G′ is the graph obtained from G by deleting or adding the edge e = uv
depending on whether or not e = uv is an edge of G.

The reduced graph G{W} is obtained from G by deleting all vertices in
V \W that are not adjacent to a vertex of W and subsequent deletion of any
remaining edges that are not incident with a vertex of W .

Theorem 2.13 ([134]). For a graph G(V,E) fix a nonempty subset W of V .
Suppose f is an eigenfunction of the reduced graph G{W} that affords λ and is
supported by W in the sense that if f(u) = 0, then u ∈ W . Then the extension
f ′ with f ′(v) = f(v) for v ∈ W and f ′(v) = 0 otherwise is an eigenfunction
of G affording λ.
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Theorem 2.14 ([134]). Let f be an eigenfunction affording λ of a graph G
with n vertices. Let Nv be the set of neighbors of v. Suppose f(u) = f(v) = 0,
where Nu∩Nv = ∅. Let G′ be the graph on n−1 vertices obtained by coalescing
u and v into a single vertex, which is adjacent in G′ precisely to those vertices
that are adjacent in G to u or to v. The function f ′ obtained by restricting f
to V (G) \ {u} is an eigenfunction of G′ affording λ.

If G is a regular graph, then the eigenvalues of the Laplacian are deter-
mined by the eigenvalues of the adjacency matrix.

Proposition 2.15. Let G be a k-regular graph. If the adjacency matrix
A(G) has eigenvalues λ1, . . . , λn, then the Laplacian L(G) has eigenvalues
k − λ1, . . . , k − λn.

Proof. If G is k-regular, then L(G) = D(G) −A(G) = kI −A. Thus every
eigenfunction of A with eigenvalue λ is an eigenfunction of L(G) with eigen-
value k − λ. ��

The next well-known result describes the relation between the Laplacian
spectrum of G and the Laplacian spectrum of its complement Gc. The matrix
J is the n× n matrix each of whose entries are 1.

Theorem 2.16. If G is a graph with n vertices and f is an eigenfunction
of L(G) with eigenvalue λ = 0, then f is an eigenfunction of L(Gc) with
eigenvalue n− λ.

Proof. We start observing that L(G) + L(Gc) = nI − J and Jf = 0 as f is
orthogonal to the constant function 1. Then,

nf = (nI− J)f = L(G)f + L(Gc)f = λf + L(Gc)f .

Therefore, L(Gc)f = (n− λ)f . ��

2.6 Graph Automorphisms and Eigenfunctions

It is sometimes possible to infer directly from the graph structure at which ver-
tices some or all eigenfunctions of L(G) vanish. Theorem 2.11 is an example.
Symmetry properties of G are particularly useful for this purpose.

An automorphism of a graph G is a permutation of its vertex set V (G)
that maps edges onto edges and nonedges onto nonedges. The set of all au-
tomorphisms of G forms a group. We denote this automorphism group of G
by Aut(G). For an X ∈ Aut(G) and a given eigenfunction f we define the
function Xf by

Xf(v) = f(X(v)) .

Moreover
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VX = {v ∈ V : X(v) = v} and OX(v) = {Xk(v) : k ∈ Z}

denote the set of vertices that are fixed under the action of X and the orbit
of the vertex v under the action of X , respectively.

Lemma 2.17. Let X ∈ Aut(G) for some graph G. If f is an eigenfunction of
L(G) corresponding to eigenvalue λ, then Xf is also an eigenfunction of λ.

Proof. L(Xf)(v) =
∑

w∼v(Xf(v)−Xf(w)) =
∑

w∼v(f(X(v))− f(X(w))) =∑
w∼X(v)(f(X(v))− f(w)) = Lf(X(v)) = λf(X(v)) = λXf(v). ��

Theorem 2.18. For an eigenfunction f and an automorphism X ∈ Aut(G)
one of the following three cases holds:

(1) Xf = f . In particular, f is constant on every orbit OX(v).
(2) Xf = −f , and f vanishes on all orbits of odd size. In particular, f van-

ishes on the fixed points VX . Moreover, there must be an orbit of even
size.

(3) Xf and f are linearly independent, and consequently λ is an eigenvalue
of multiplicity greater than one.

Proof. Let s denote the size of the orbit OX(v) of vertex v (s = 1 if v ∈ VX),
i.e., Xsv = v. Assume Xf = αf for some α ∈ R. Then we find f(v) =
f(Xsv) = Xf(Xs−1v) = αf(Xs−1v) = · · · = αsf(v). Thus f(v) = 0 and
f vanishes on the orbit of v, or αs = 1 and hence α = 1 (case (1)), or
α = −1 (case (2)). Obviously if f(v) = Xsf(v) = (−1)sf(v) then f vanishes
on all orbits of odd size s and there must be an orbit of even size since
otherwise f would be identical to zero. Another immediate consequence of
these considerations is that when neither (1) nor (2) holds, then Xf and f
are linearly independent (case (3)). ��

Theorem 2.19. Let X ∈ Aut(G) and let f1 and f2 be Laplacian eigenfunc-
tions of G with properties (1) and (2) of Thm. 2.18, respectively. Then f1 and
f2 are orthogonal, i.e., 〈f1, f2〉 = 0.

Proof. Since X is a permutation operator on V , we have XtX = I. Thus we
find 〈f1, f2〉 = 〈XtXf1, f2〉 = 〈Xf1, Xf2〉 = 〈f1,−f2〉 = −〈f1, f2〉 and the
proposition follows. ��

2.7 Quasi-Abelian Cayley Graphs

In highly symmetric graphs one can expect a close connection between eigen-
functions of the graph Laplacian and group-theoretic properties. We exploit
this connection here to derive explicit expressions for the eigenfunctions of
the graph Laplacian of a class of highly symmetric graphs.

Let G be a finite group and let S be a symmetric set of generators of G,
i.e., 〈S〉 = G, S = S−1, and ı /∈ S, where ı is the identity of G. A graph
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Γ (G, S) with vertex set G and edges {s, t} if and only if t−1s ∈ S is called a
Cayley graph. A Cayley graph Γ (G, S) is called quasi-Abelian if S is the union
of some conjugacy classes of G.

Cayley graphs are vertex transitive and hence regular. The characteristic
function of S will be denoted by Θ : G→ {0, 1}. Clearly, a Cayley graph on a
commutative group is quasi-Abelian, because in this case each group element
forms its own conjugacy class. Some interesting properties of quasi-Abelian
Cayley graphs are discussed in [172, 179].

In the case of Cayley graphs we have to distinguish between the “Fourier
series expansion” (1.5) with respect to the Laplacian matrix of the graph
Γ (G, S), and the representation theoretical Fourier transformation on the
group G itself. It should not come as a surprise that there is an intimate
connection between these two. In fact, the connection between the algebraic
properties of Γ (G, S) and the representation theory of the underlying group
G derives from the following simple facts: The regular representation ρreg of
G is defined by

ρreg(s)f(t) = f(s−1t)

for any f : G −→ C. Substituting Θ for f we find ρreg(s)Θ(t) = Θ(s−1t) = 1 if
{t, s} is an edge of Γ (G, S) and 0 otherwise. Thus we may write the adjacency
matrix A(G, S) of Γ (G, S) in the form

A(G, S) =
∑

s∈S

ρreg(s) .

For any function f : G→ C and any matrix representation � = {ρ(s)}s∈G

of G we call the matrix sum

f̂(�) =
∑

x∈G

f(x)ρ(x)

the (group theoretic) Fourier Transform of f at �. Consider a complete set
{�1, . . . , �h} of inequivalent irreducible matrix representations of G. Let dk

denote the dimension of �k. Then

f(s) =
1
|G|

h∑

k=1

dk tr(ρk(s−1)) f̂(�k)

inverts the Fourier transform.
Following e.g. [55, Sect. 8A] we assume that the irreducible representations

�k are unitary, i.e., that ρk(t)∗ = ρk(t−1) and introduce

ρ̃k
ij(s) :=

√
dkρk

ji(s
−1) .

These functions are orthonormal w.r.t. the scalar product

〈ϕ, ψ〉 =
1
|G|
∑

s∈|G|
ϕ(s)ψ∗(s)
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and form a new basis for the vector space of functions of G. Now we are in
the position to state the main result of this section.

Theorem 2.20 ([151]). Let Γ (G, S) be a quasi-Abelian Cayley graph with a
finite group G.

(i) The function εk
ij : G→ C defined as

εk
ij(u) =

1√
|G|

ρ̃k
ij(u) =

√
dk

|G|ρ
k
ij(u

−1)

is a normalized eigenfunction of L(Γ ) with eigenvalue

λk = |S| − 1
dk

∑

s∈S

χk(s)

where χk(s) = tr(ρk(s)) is the character of �k at s.
(ii) All quasi-Abelian Cayley graphs on G have a common basis of eigenfunc-

tions and hence their Laplacian matrices commute.

Proof. (i) We verify by explicit computation that ρ̃k
ij is an eigenfunction of

the adjacency matrix:
∑

u∈G

Avuρ̃
k
ij(u) =

∑

u∈G

Θ(vu−1)ρ̃k
ij(u)

=
∑

u∈G

{
1
|G|
∑

r,s,t

√
drΘ̂ts(ρr)ρ̃r

st(uv
−1)

}
ρ̃k

ij(u)

=
∑

u∈G

1
|G|
∑

r,s,t

Θ̂ts(�r)
∑

y

ρ̃r∗
ys(u)ρ̃r

yt(v)ρ̃
k
ij(u)

=
∑

r,s,t

Θ̂ts(�r)
∑

y

ρ̃r
yt(v)

1
|G|
∑

u∈G

ρ̃k
ij(u)ρ̃r∗

ys(u)

=
∑

r,s,t

Θ̂ts(�r)
∑

y

ρ̃r
yt(v)δkrδiyδjs =

∑

t

Θ̂tj(�k)ρ̃k
it(v) .

Here we have used that ρk(st−1) = ρk(s)ρk(t−1) = ρk(s)ρk∗(t) translates to

√
drρ̃

r
st(vu

−1) =
h∑

y=1

ρ̃r∗
ys(u)ρ̃r

yt(v) .

Next we use the fact that Θ is a class function. Hence its Fourier transform
is diagonal

Θ̂(ρk) =
1
dk

∑

s∈S

χk(s) Idk
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where χk(s) = tr(ρk(s)) is the character of the representation �k at s. We
have therefore

∑

u∈G

Avuρ̃
k
ij(u) =

∑

t

1
dk

∑

s∈S

χk(s)δtj ρ̃k
it(v) =

1
dk

∑

s∈S

χk(s)× ρ̃k
ij(v) .

Changing the normalizations back to the standard scalar product of C and
using L = |S|I−A leads to claim (i) of the theorem.

(ii) We have just shown that {ρ̃ij} is an orthonormal basis of eigenfunctions
of L whenever S is the union of conjugacy classes of G. Thus the Laplacian
matrices of all quasi-Abelian Cayley graphs of the group G share a common
orthonormal basis of eigenfunctions. Since the graph Laplacians are symmetric
matrices, they commute under these circumstances. ��

Theorem 2.20 generalizes the following well known result for Abelian
Cayley graphs which is discussed e.g. by Lovász [128]:

Corollary 2.21. Let G be a commutative group, and let S be a symmetric set
of generators of G. Then the irreducible characters χk of G are eigenfunctions
of A(G, S) with corresponding eigenvalue Λk =

∑
s∈S χk(s).

2.8 The Perron-Frobenius Theorem

Let A be an n × n real symmetric matrix. Analogously to the generalized
Laplacians we can associate a graph G such that two vertices u and v are
connected by an edge if and only if Auv = 0. Then A is called irreducible if
its underlying graph is connected1.

Theorem 2.22 (Perron-Frobenius Theorem). Let A and B be real sym-
metric irreducible nonnegative n× n matrices. Then

(i) the spectral radius ρ(A) is a simple eigenvalue of A. If x is an eigen-
function for ρ(A), then no entries of x are zero, and all have the same
sign.

(ii) If moreover A−B is nonnegative, then ρ(B) ≤ ρ(A), with equality if and
only if B = A.

For a proof see, e.g., [100].
We can apply this theorem to get a statement about the smallest eigenvalue

λ1 and its eigenfunctions of a generalized Laplacian of G.

Corollary 2.23. Let G be a connected graph with a generalized Laplacian
M. Then the smallest eigenvalue λ1 of M is simple and the corresponding
eigenfunction can be taken to have all entries positive.
1 A nonsymmetric matrix is called irreducible if the corresponding graph is strongly

connected, i.e., if, for all u, v ∈ V , there is a directed path from u to v. The Perron-
Frobenius Theorem then holds as well.
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Proof. We use an argument of Godsil and Royle [85]. If M is a generalized
Laplacian of G, then for any c, the matrix M− cI is a generalized Laplacian
of G with the same eigenfunctions as M. We choose a constant c such that all
diagonal entries of M − cI are nonpositive. As a consequence of the Perron-
Frobenius Theorem, the largest eigenvalue of −M + cI is simple and the
associated eigenfunction may be taken to have only positive entries. ��

A positive eigenfunction to the smallest eigenvalue λ1 of M of a connected
graph is called a Perron vector of G.
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Eigenfunctions and Nodal Domains
(From Perron Frobenius to Courant’s Nodal
Domain Theorem)

In the previous chapter we have seen that (due to the Perron-Frobenius The-
orem) the eigenfunctions of the first eigenvalue λ1 have all entries positive
(or negative) for a generalized Laplacian matrix M of a connected graph G.
Fiedler [67] has shown that for eigenfunctions of the smallest nonzero eigen-
value of a graph the subgraph induced by nonpositive vertices (i.e., vertices
with nonpositive function values) and the subgraph induced by nonnegative
vertices are both connected. In other words, an eigenfunction of the second
eigenvalue has exactly two weak nodal domains (also called weak sign graphs).

These two observations remind us on Courant’s celebrated Nodal Domain
Theorem for elliptic operators on manifolds. Courant [44, Chap. 6, §6] stated a
general theorem about the “nodes” of an eigenfunction: Given the self-adjoint
second order differential equation L[u]+λρu = 0 (ρ > 0) for a domain G with
arbitrary homogeneous boundary conditions; if its eigenfunctions are ordered
according to increasing eigenvalues, then the nodes of the n-th eigenfunction
un divide the domain into no more than n subdomains. No assumptions are
made about the number of independent variables. Courant’s “subdomains”
have since then become known as nodal domains , see e.g. [29, 31]. In this
chapter we see that the eigenfunctions of discrete Laplace operators have
similar properties.

3.1 Courant’s Nodal Domain Theorem

In the context of manifolds, “nodes” are points where the eigenfunction u
vanishes, i.e., the nodal set of u is {x|u(x) = 0}. The nodal sets themselves
are known to be of zero Lebesgue measure and of codimension 1, [31, 104]. The
term “nodal domain” refers to the connected components of the complement
of the nodal set, i.e., to the components of {x : u(x) = 0}, which are bounded
by nodal sets. This terminology is now well-established in the PDE literature.
Of course, it is not well suited for graphs: A discrete eigenfunction of a graph
Laplacian is defined only on the vertex set V of a graph G and thus, contrary
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to the situation on a manifold, it may change from positive to negative sign
without passing through a zero.

The discrete analog of a “nodal domain” is thus a maximal connected
induced subgraph consisting entirely of positive and negative vertices, which
would more appropriately be called a sign graph. Nevertheless, we will use the
traditional notion of nodal domains in this book to emphasize the analogy of
many of the results with the case of PDEs on manifolds.

The examples in Figs. 3.1 and 3.2 show, however, that we cannot adopt the
original continuous version without modification. In the star graph in Fig. 3.1
we count 4 connected components in which the eigenfunction of the second
eigenvalue is strictly positive or strictly negative, respectively. The eigenfunc-
tions of the Petersen graph serve as a second counterexample (Fig. 3.2). This
important rôle of zero vertices was already observed by Powers [147] who ex-
tended some of Fiedler’s results (see Cor. 3.3 below) for the adjacency matrix.
We are forced to distinguish between two versions of nodal domains.

0

+

+

−

−

Fig. 3.1. Sign pattern of a particular eigenfunction f of the second eigenvalue of
the Laplacian of a star G: S(f) = 4 > 2 and W(f) = 2. The numerical values of the
eigenfunctions can be found in Appendix B.

A positive (negative) strong nodal domain of a function f on V (G) is a
maximal connected induced subgraph of G on vertices v ∈ V with f(v) > 0
(f(v) < 0). In contrast, a positive (negative) weak nodal domain of a function f
on V (G) is a maximal connected induced subgraph of G on vertices v ∈ V with
f(v) ≥ 0 (f(v) ≤ 0) that contains at least one nonzero vertex. In the following
we will be interested in the number of strong and weak nodal domains of
a function f which we denote by S(f) and W(f), respectively. Obviously,
W(f) ≤ S(f). Figures 3.1 and 3.2 show two examples.

The obvious difference between the definitions of strong and weak nodal
domains is the rôle of zero vertices , i.e. vertices where the function f vanishes.
While such vertices separate positive (or negative) strong nodal domains, they
join weak nodal domains. In fact, each zero vertex simultaneously belongs to
exactly one weak positive nodal domain and exactly one weak negative nodal
domain. If two different weak nodal domains D1 and D2 overlap, then they
must have opposite signs except on zero vertices. In the following we will only
consider nodal domains of an eigenfunction of a generalized Laplacian.
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Fig. 3.2. Sign pattern of a particular eigenfunction f of the second eigenvalue of
the Laplacian of the Petersen graph: S(f) = 3 > 2 and W(f) = 2.

We focus our attention on the k-th eigenvalue λk with multiplicity r of
a generalized Laplacian M. We assume throughout this and the following
chapters that the eigenvalues are labeled in ascending order starting with 1,
so that

λ1 ≤ · · · ≤ λk−1 < λk = λk+1 = · · · = λk+r−1 < λk+r ≤ · · · ≤ λn.

We are now in the position to formulate discrete versions of Courant’s Nodal
Domain Theorem.

Theorem 3.1 (Discrete Nodal Domain Theorem, [49]). Let M be a
generalized Laplacian of a connected graph with n vertices. Then any eigen-
function fk corresponding to the k-th eigenvalue λk with multiplicity r has at
most k weak nodal domains and k + r − 1 strong nodal domains:

W(fk) ≤ k and S(fk) ≤ k + r − 1 . (3.1)

Various versions of the nodal domain theorem for graphs and partial proofs
were obtained independently by different authors [39, 59, 75, 147, 169], begin-
ning with the work of Fiedler who proved the following two results that are
corollaries of the nodal domain theorem.

Corollary 3.2 ([67]). The eigenfunction f affording to the smallest nonzero
eigenvalue of any connected graph has W(f) = 2 weak nodal domains.

Corollary 3.3 ([67]). The eigenfunction fk affording λk has at most k − 1
positive weak nodal domains for k > 1. Consequently, W(f) ≤ 2(k − 1).
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Powers [147] already stated and proved the nodal domain theorem for the
special case of the adjacency matrix of a graph.

The assumption that G is connected is essential for the weak version of
Thm. 3.1, i.e., W(fk) ≤ k does not hold in general for disconnected graph. A
counterexample is shown in Fig. 3.3. It is possible to formulate the discrete
nodal domain theorem also for not necessarily connected graphs.

Corollary 3.4. Let M be a generalized Laplacian of a graph G with c con-
nected components. Then an eigenfunction fk corresponding to eigenvalue λk

with multiplicity r satisfies

W(fk) ≤ k + c− 1 and S(fk) ≤ k + r − 1 .

Notice that the number of strong nodal domains does not depend on c.

−

+

+

−

Fig. 3.3. Sign pattern of an eigenfunction f3 of eigenvalue λ3 = 2 (of multiplicity
2) of the disjoint union of two K2: W(f3) = 4 > 3.

Proof. Let f (i)
k denote the restriction of fk to the connected component Gi

of G. Either f (i)
k vanishes on Gi or M(i)f

(i)
k = λ

(i)
ki
f

(i)
k , i.e., f (i)

k is an eigen-
function of the Laplacian M(i) of the component Gi with multiplicity ri.
Furthermore all these nonvanishing eigenfunctions f (i)

k are linearly indepen-
dent. Of course λ(i)

ki
= λk, and we choose the index ki to be the smallest one

for which this equality holds, i.e., λki−1 < λk or (in the trivial case) ki = 1.
The position k of λk in the spectrum of M therefore satisfies

k >
∑

(ki − 1) =
∑

ki − q

where the summation runs over the q components of G on which fk does not
vanish.

Courant’s nodal domain theorem holds for each component Gi. The num-
ber of strong nodal domains of fk therefore satisfies

S(fk) =
∑

S(f (i)
ki

) ≤
∑

(ki + ri − 1) =
∑

(ki − 1) +
∑

ri < k + r

and hence S(fk) ≤ k + r − 1. Similarly we have

W(fk) =
∑

W(f (i)
ki

) ≤
∑

ki =
∑

(ki − 1) + q < k + q ≤ k + c

and thus W(fk) ≤ k + c− 1. ��
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3.2 Proof of the Nodal Domain Theorem

The proofs in this section closely follow the preprint [48] which was later
published as ref. [49] in a matrix-theoretic language.

We say two different weak (strong) nodal domains D1 and D2 of a function
are adjacent if there exist vertices v1 ∈ D1 and v2 ∈ D2 such that v1 ∼ v2.
By the definition, if two different weak (strong) nodal domains are adjacent,
then they have opposite signs.

We first prove the strong nodal domain theorem. Suppose that there are
m strong nodal domains, which we denote by D1, D2, . . . , Dm and (using
Courant’s idea) define

gi(x) :=

{
fk(x) if x ∈ Di,

0 otherwise,
(3.2)

for i = 1, . . . ,m. None of these functions gi is identically zero. Since they have
disjoint support, their linear span has dimension m. It follows that there exist
constants ai ∈ R such that g :=

∑m
i=1 ai gi is nonzero and satisfies 〈g, fj〉 = 0

for j = 1, . . . ,m − 1. Without loss of generality we can assume 〈g, g〉 = 1.
Cor. 2.5 implies 〈g,Mg〉 ≥ λm.

Let us now introduce a function a : V → R defined by a(x) = ai if x ∈ Di

and fk(x) = 0, and a(x) = 0 otherwise. By construction, g(x) = a(x)fk(x) for
all x ∈ V . Starting from (2.5) we compute

g(x)(Mg)(x) = a2(x)fk(x)
[∑

y∼x(−Mxy)(fk(x) − fk(y)) + p(x)fk(x)
]

+ a(x)fk(x)
(∑

y∼x(−Mxy)(a(x) − a(y))fk(y)
)
.

Using (2.5) again we observe that the term in the square brackets is (Mfk)(x)
which is equal to λkfk(x). Summing over x and symmetrizing the second term
we therefore obtain

〈g,Mg〉 = λk〈g, g〉+
∑

x∈V

∑

y∼x

(−Mxy)fk(x)fk(y)a(x)(a(x) − a(y))

= λk + 1
2

∑

xy∈E

(−Mxy)fk(x)fk(y)(a(x) − a(y))2 .
(3.3)

A term in the sum vanishes if fk(x) = 0 or fk(y) = 0. If fk(x)fk(y) > 0
and x ∼ y, i.e. Mxy < 0, then x and y lie in the same nodal domain and
thus a(x) = a(y), i.e., the corresponding contribution to the sum vanishes
as well. The only remaining terms are those for which fk(x)fk(y) < 0 (and
Mxy < 0). Thus the sum cannot be positive and we have 〈g,Mg〉 ≤ λk.
Recalling λm ≤ 〈g,Mg〉 from the previous paragraph we conclude λm ≤ λk.
Since λk < λk+r we have λm < λk+r , and m < k + r, i.e., S(fk) ≤ k + r − 1.

In order to prove the weak nodal domain theorem we assume that there
are m weak nodal domains, which we again denote by D1, D2, . . . , Dm. As
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above, we define functions gi(x), g(x) =
∑m

i=1 ai gi(x) and a(x), and show
λm ≤ 〈g,Mg〉 ≤ λk. Now suppose that m > k. Then λk ≤ λm, hence λm ≤
〈g,Mg〉 ≤ λk ≤ λm and consequently λm = λk. Thus by Cor. 2.5, g must be
an eigenfunction of eigenvalue λk. To finish the proof we need a continuation
result for the coefficients ai, which could be seen as a discrete analog of the
unique continuation principle for eigenfunctions of PDEs.

Lemma 3.5. Suppose m ≥ k, and two of the weak nodal domains Di and Dj

of fk are adjacent (and thus have different sign). If ai = 0 then ai = aj.

Proof. Let x ∈ Di and y ∈ Dj \Di be two adjacent vertices. If fk(x) = 0 then
fk(y) = 0 since otherwise y ∈ Di∩Dj . Thus fk(x)fk(y) < 0 and from λm = λk

it follows that the sum in (3.3) must be 0 and we conclude a(x) = a(y).
Therefore ai = a(x) = a(y) = aj .
Now assume fk(x) = 0 and define h(v) = fk(v) − 1

ai
g(v). Both fk and g are

eigenfunctions of λk and both vanish on x. Using (2.5) we find

0 = λkh(x) = (Mh)(x) =
∑

v∼x

(−Mxv)(h(x) − h(v)) + p(x)h(x)

=
∑

v∈B

Mxvh(v) = (1− aj

ai
)
∑

v∈B

Mxvfk(v) ,

where B = {v ∼ x : v ∈ Di} is the set of all neighbors of x that belong to
weak nodal domains different from Di, i.e., fk(v) has the same strict sign on
B. Since B ∩Dj contains at least the vertex y we see that the last sum above
cannot vanish. Thus the prefactor 1− aj/ai must vanish, i.e. ai = aj . ��

Since g is an eigenfunction of M at least one coefficient, say a1 must be
nonzero. By the above lemma the coefficients ai for all weak nodal domains
that are adjacent to D1 must be equal to a1. Since G is connected we can
conclude by repeating this argument that ai = a1 for i = 1, . . . ,m and hence,
g = a1

∑m
i=1 gi = a1 fk. But g is orthogonal to fj for j = 1, . . . ,m − 1 by

construction; if m > k, g is therefore orthogonal to fk, a contradicting to
g = a1 fk. Thus m ≤ k, which implies W(fk) ≤ k. ��

Remark 3.6. The published literature contains a number of incomplete or even
incorrect statements and proofs of nodal domain theorems. A reasons for this
peculiar history appears to be – at least in part – the “intuitively obvious”
but false conjecture that S(fk) should be at most k.

Colin de Verdière [39] stated that any eigenfunction corresponding to λk

has at most k weak nodal domains; his proof however relies on assertions
that are stated without proof. In a later survey Colin de Verdière [41] did
not mention the theorem. Friedman’s [75] proof of the weak nodal domain
theorem is also incomplete.

There are several attempts to improve the bound of the strong nodal do-
main theorem for special cases (see e.g. Sect. 3.6). However, not all are correct.
Theorem 2.4 in [75] and Thm. 4.4 in [169] can be rephrased in the following
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way: If an eigenfunction fk corresponding to λk has more than k strong sign
graphs, then there is no pair of adjacent vertices u and v that join strong nodal
domains. Figure 3.4 shows a counterexample to this claim: the eigenfunction
shown has 6 > k = 5 strong nodal domains.

0

−

+

+

−
+

−

Fig. 3.4. Sign pattern of a particular eigenfunction f corresponding to λ5 (multi-
plicity r = 2) of the Laplacian of G with S(f) = 6 > k = 5.

Duval and Reiner [59] attempted to show that an eigenfunction corre-
sponding to λk has no more than k strong sign graphs, despite the earlier
counterexample given in [75], see Fig. 3.1. Li and Guan [127] claimed that a
generalization of (3.3) on which other (valid) theorems in [59] are based is in-
correct and give an alternative proof. However, these authors also claim that
their method can be used to prove the incorrect upper bound k for strong
nodal domains.

Friedman and Tillich [76] conjecture that many concepts in analysis trans-
late almost immediately to their setting (see Sect. 2.4). The necessity to dis-
tinguish between strong and weak nodal domains hints at subtle differences in
the results, however. A more spectacular example for the differences between
the continuous and the discrete world will be discussed in detail in Chap. 6.

3.3 Algebraic Connectivity, Fiedler Vectors and Perron
Branches

Theorem 2.3 implies that the second smallest eigenvalue λ2(G) of the Lapla-
cian L(G) of a graph G is 0 if and only if G is disconnected. Thus Fiedler
[65] called eigenvalue λ2(G) the algebraic connectivity of G. He showed that
λ2(G) is closely related to v(G) and e(G), the vertex and edge connectivities
of G, respectively.

Lemma 3.7 ([65]). Let G be a graph, let Gk arise from G by removing k
vertices from G and all incident edges, then

λ2(Gk) ≥ λ2(G) − k .



36 3 Eigenfunctions and Nodal Domains

Proof. First let k = 1 and remove vertex v. Define the graph Ĝ by inserting
intoG edges from v to all other vertices. By Cor. 2.5, λ2(Ĝ) ≥ λ2(G). Moreover

L(Ĝ) =
(
L(G1) + I −1
−1T n− 1

)

where 1 = (1, . . . , 1)T with n− 1 ones. If f is an eigenfunction of λ2(G1) then

L(Ĝ)f̂ = (λ2(G1) + 1)f̂

for f̂ =
(
f
0

)
, i.e., λ2(G1) + 1 is a strictly positive eigenvalue of L(Ĝ). Thus

we find
λ2(G) ≤ λ2(Ĝ) ≤ λ2(G1) + 1

so that the inequality is fulfilled for k = 1. The general case now follows by
induction with respect to k. ��

Theorem 3.8 ([65]). Let G be a graph that is not complete. Then

λ2(G) ≤ v(G) ≤ e(G) .

Proof. Let V1 be a vertex cut of graph G(V,E) with v(G) vertices. Since
G is not complete, the graph G1 obtained from G by removing the vertices
from V1 and all incident edges is nonvoid and not connected. By Lemma 3.7
0 = λ2(G1) ≥ λ2(G)−v(G), and thus the first inequality follows. The second
inequality follows from a deeper result of Whitney [176]: For any pair w, w′ of
vertices of G there exist v(G) paths between w and w′ in G, no two of them
having any vertices in common (except their endpoints). ��

Remark 3.9. Notice that λ2(Kn) = n for the complete graph Kn with n ver-
tices. However, for convenience Fiedler [65] has set v(Kn) = n− 1.

Remark 3.10. The bound in Thm. 3.8 can be improved. Kirkland gives a sharp
upper bound for the algebraic connectivity in terms of the number n of vertices
and the number of cutpoints of the graph, see [112, 116].

There is also a lower bound for the algebraic connectivity. The proof uses a
result for symmetric doubly stochastic matrices, see [64].

Theorem 3.11 ([65]). For any graph G with n vertices

λ2(G) ≥ 2
(
1− cos

π

n

)
e(G) .

Equality holds if and only if G is a path.
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Theorems 3.8 and 3.11 can be generalized for Laplacians on weighted graphs,
see [68].

An eigenfunction affording the second smallest eigenvalue of a graph Lapla-
cian is called a Fiedler vector of G. As mentioned in the introduction, Fiedler
vectors have many applications in various fields of application, where they
form the basis of heuristic approaches to solve hard combinatorial optimiza-
tion problems including graph bi-partitioning [146] and spectral clustering
[15]. Therefore they have been extensively investigated.

Fiedler [67] has called eigenfunctions f2 corresponding to λ2 the charac-
teristic valuations of G. If G is connected then there is exactly one positive
and one negative nodal domain (Cor. 3.2) which are separated by charac-
teristic vertices u where the eigenfunction f2 vanishes, i.e., f2(u) = 0 and
characteristic edges uv where f2 changes sign, i.e., f2(u)f2(v) < 0.

Theorem 3.12 ([67, Thm. (3,14)] and [114, Thm. 6]). Let G be a tree
and f one of its Fiedler vectors. Then two cases can occurs:

(1) If f(v) = 0 for all v ∈ V then there exists exactly one edge uv (the charac-
teristic edge) such that f(u) > 0 and f(v) < 0. Moreover, f is increasing
and concave on every path that starts in u and does not contain v, and
decreases and convex on every path starting in v and not containing u.

(2) Otherwise, let V0 = {v ∈ V : f(v) = 0}. Then the graph induced by V0

is connected and there is exactly one vertex u ∈ V0 (the characteristic
vertex) that is adjacent to a vertex that does not belong to V0. Moreover,
f is either increasing and concave, decreasing and convex, or identically
zero on any path starting from u.

That is, a tree possesses only one characteristic element which is either a
vertex or an edge.

Merris [132] showed that the occurrence of case (1) or (2) does not depend on
the Fiedler vector. He classified trees that contain a characteristic vertex as
Type I , and those that contain a characteristic edge as Type II.

Algebraic connectivity, Fiedler vectors and the set of characteristic ver-
tices and edges has been investigated by various authors, see e.g. [7–9, 113–
115, 132, 140]. Merris [132] has described the characteristic set of trees. For
example he showed that if v is a characteristic vertex of some Fiedler vector
f of a tree G then it is a characteristic vertex of every Fiedler vector of this
tree; see Sect. 4.1.1 for an extension of this result for arbitrary eigenvalues
of G. Bapat and Pati [8] have given a more general result and showed that a
statement similar to Thm. 3.12 holds for the special case of unicyclic graphs
(i.e., connected graphs that have exactly one cycle).

It is remarkable that the cardinality of the characteristic set can be sharply
bounded by means of the cyclomatic number of the graph (i.e., the dimension
of the cycle space, see [30]) that is given by |E| − |V |+1. The bound is sharp
for arbitrarily large numbers of vertices.
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Theorem 3.13 ([8]). Let C be the characteristic set of a Fiedler vector of a
connected graph G. Then 1 ≤ |C| ≤ |E| − |V |+ 2. In particular if G is a tree
then |C| = 1.

The main concept for investigating the structure of Fiedler vectors is the
notion of Perron components first introduced by Kirkland et al. [114] for trees
(Perron branches).

We first describe the closely related notion of geometric nodal domains
that is based on the concept of calculus on graphs (Sect. 2.4). Let W be the
characteristic set of some Fiedler vector on a graph G that entirely consists of
vertices. Then each component D0 of G \W is a strong sign graph (nodal do-
main) of f . The principal submatrix of L(G) corresponding to this component
is simply the Dirichlet matrix L◦(D) of D, see Sect. 1.5, where D is the graph
with boundary that consists of D0 (interior vertices and edges) and adjacent
vertices from W as its boundary vertices and the corresponding edges as its
boundary edges. If W contains a characteristic edge of a Fiedler vector f we
proceed as follows. Let G be the geometric realization of graph G. Eigenfunc-
tion f can be extended to an eigenfunction f̄ of the “continuous Laplacian”
L(G) by a linear interpolation of f on each edge, see Sect. 2.4. A geometric
nodal domain D ⊆ G is then the closure of a component of G \ {x : f̄(x) = 0}.
Furthermore, there exists a graph D with boundary whose geometric real-
ization is exactly D and whose boundary vertices are the points on which f̄
vanishes. In abuse of language we call the graph D a geometric nodal domain
of f . Notice that there is a natural homomorphism from D into G where
boundary edges are mapped to characteristic edges or edges that are incident
to characteristic vertices. A boundary edge of a geometric nodal domain may
have weights. Let vu the corresponding characteristic edge in G with v ∈ D0

and u /∈ D0 then the boundary edge vu′ in D has length f(v)/(f(v) − f(u))
and thus weight wvu′ = (f(v)−f(u))/f(v). It is obvious that geometric nodal
domains can be defined analogously for arbitrary eigenfunctions.

Lemma 3.14. If f is an eigenfunction corresponding to some eigenvalue λ
of L(G), and let D be a geometric nodal domain of f . Then λ◦(D) = λ with
f restricted to the interior vertices of D as its eigenfunction, where λ◦(D)
denotes the first (Dirichlet) eigenvalue of L◦(D).

Proof. Let V0 ∪ ∂V be the set of interior and boundary vertices of D and
E0 ∪ ∂E the set of interior and boundary edges. The Dirichlet matrix L◦ on
D is the principal submatrix corresponding to V0 of the Laplacian Lw on the
weighted graph D. By (2.8) for every v ∈ V0,

(Lwf)(v) =
∑

u∼v

wvu(f(v)− f(u)) =
∑

V0�u∼v

(f(v)− f(u)) +
∑

∂V �u′∼v

wvu′f(v)

=
∑

u∼v

(f(v)− f(u)) = (Lf)(v) = λ2(G) f(v) .

Thus f restricted to D is an eigenfunction of L◦(D) for eigenvalue λ2(G). Since
f does not change sign, λ2(G) must be the lowest eigenvalue of L◦(D). ��
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An immediate corollary of this lemma (together with Prop. 2.7) is that
the lowest eigenvalue of a principal submatrix that corresponds to a particu-
lar strong sign graph S is equal or greater than the corresponding eigenvalue
λ of L(G). Equality holds if and only if the characteristic set entirely consists
of vertices. If there are some characteristic edges incident to S then this in-
equality is strict. Moreover, when we add all characteristic edges (and its end
vertices) that are incident to S, the lowest eigenvalue of the corresponding
principal submatrix is strictly smaller than λ. For the algebraic connectivity
of a graph a converse result also holds.

Proposition 3.15 ([8]). Let W be any set of vertices of a graph G such that
G \W is non-empty and not connected. Let G1 and G2 be two components of
G \W and L1 and L2 be the principal submatrices of L(G) corresponding to
G1 and G2, respectively. Suppose λ1(L1) ≤ λ1(L2) then the following holds:
Either λ1(L2) > λ2(G) or λ1(L1) = λ1(L2) = λ2(G). Moreover, if W consists
of characteristic vertices only, then the latter condition is always satisfied.

Following Bapat and Pati [8] we call a component of G\W of a proper subset
W ⊂ G a Perron component if the lowest eigenvalue of its corresponding
principle submatrix of L(G) does not exceed λ2(G).

Obviously every graph has at least two Perron components by Cor. 3.2.
In addition to Thm 3.1 if a graph G has t (≥ 2) Perron components then the
multiplicity of λ2(G) is at least t− 1, see Bapat et al. [7]. However, the cycle
C4 of length 4 shows that this bound is not sharp. If the characteristic set
contains only vertices then one can obtain t− 1 linearly independent Fiedler
vectors by means of f2 restricted to each of the components [7].

Theorem 3.16 ([9, Thm. 10]). Let G be a connected graph and f2 a Fielder
vector with characteristic set W consisting of vertices only. Suppose there are
t Perron components of G at W . Then the following is equivalent:

(i) The multiplicity of λ2(G) is t− 1.
(ii) For each Fiedler vector the characteristic set is W .
(iii) For each Fiedler vector the characteristic set consists of vertices only.

It is easy to construct an arbitrary type I tree. Take two (or more) copies
of a tree with root v0 and identify the roots in each copy. The resulting tree
has a Fiedler vector with v0 as characteristic vertex and the Perron branches
are all isomorphic. Kirkland [111] showed how type I trees can be constructed
with non-isomorphic Perron branches.

Finally, we notice that many of the above results hold analogously for
generalized Laplacians.

3.4 Some Results for Multiple Eigenvalues

We have seen in Sect. 3.1 that the upper bound S(fk) ≤ k+r−1 in Thm. 3.1
cannot be improved in general. However, there always exists an eigenfunction
fk with at most k strong nodal domains.
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Lemma 3.17. M(G) has an eigenfunction fk corresponding to eigenvalue λk

with S(fk) ≤ k for all k.

Proof. Suppose fk has S(fk) = m > k. Following Sect. 3.2 we can construct a
nonzero function g(x) =

∑k
i=1 ai gi(x) satisfying 〈g, fj〉 = 0 for j = 1, . . . , k−1

and 〈g, g〉 = 1, where the functions gi are as defined in (3.2). By construction
we have S(g) ≤ k. By the same argument we see 〈g,Mg〉 = λk and thus
Cor. 2.5 implies that g is an eigenfunction of M(G) to λk. ��

Gladwell and Zhu [81] proved stronger results.

Theorem 3.18 ([81]). There exist orthogonal eigenfunctions fk of M(G)
such that S(fk) ≤ k for k = 1, . . . , n.

Proof. By Thm. 3.1 we only have to deal with multiple eigenvalues. We
proceed by induction. Assume that we have eigenfunctions fk, . . . , fk+j−1,
1 ≤ j < r, with the desired property. Then there is some eigenfunction
hk+j of λk which is orthogonal to fk, . . . , fk+j−1. If S(hk+j) ≤ k + j we
set fk+j = hk+j . Otherwise we construct such an eigenfunction fk+j as in the
proof of Lemma 3.17. ��
Theorem 3.19 ([81]). Suppose that λk is eigenvalue with multiplicity r and
eigenspace Ek. Then there exists a basis {fk, . . . , fk+r−1} of Ek such that
S(fj) ≤ k for all j = k, . . . , k + r − 1.

Proof. We proceed as in Thm. 3.18. Again we have an eigenfunction hk+j of
λk which is now linearly independent of fk, . . . , fk+j−1. If S(hk+j) ≤ k we
set fk+j = hk+j . Otherwise, S(hk+j) = m > k and we define the functions
gi as hk+j restricted to the i-th strong nodal domain of hk+j . We construct
the set of all linear combinations g =

∑m
i=1 ai gi which satisfy 〈g, fs〉 = 0 for

all s = 1, . . . , k − 1. As these are k − 1 constraints this set can be spanned
by linear combinations where at most k coefficients ai are nonzero and thus
each of these has at most k strong nodal domains. Moreover, at least one of
these functions must be linearly independent from fk, . . . , fk+j−1, as this set
contains hk+j . ��

When examine the proof of the nodal domain theorem in Sect. 3.2 then it
follows from (3.3) that a(x) = a(y) whenever x and y are adjacent and belong
to different strong nodal domains. Thus we have the following result.

Theorem 3.20 ([81]). If an eigenfunction fk affording eigenvalue λk has
k + s strong nodal domains, where s ≥ 1, then G \ {v : fk(v) = 0} consists of
at least s+ 1 connected components.

Proof. Following Sect. 3.2 we can construct a nonzero eigenfunction g af-
fording λk which vanishes on (at least) s of the strong nodal domains of
fk. We can choose each of these nodal domains in different components of
G \ {v : fk(v) = 0}. By the above argument g must vanish on each of these
components. Thus there must be at least s+ 1 such components since other-
wise g would be identically zero. ��
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This theorem has some interesting implications.

Corollary 3.21. Let fk be an eigenfunction of M(G) with eigenvalue λk.

(i) If G is connected and fk does not vanish on any vertex, then S(fk) ≤ k.
(ii) Each of the connected components of G \ {v : fk(v) = 0} has at most k

strong nodal domains.
(iii) If one of these components has k strong nodal domains, then S(fk) ≥

k + 2.

3.5 The Courant-Herrmann Conjecture

A footnote on p. 454 in [44] claims that the nodal domain theorem for mani-
folds (p. 29) can be generalized in the following way: Any linear combination
of the first n eigenfunctions divides the domain, by means of its nodes, into
no more than n subdomains. For a proof the reader is referred to Herrmann’s
1932 dissertation in Göttingen. We will refer to this statement as the Courant-
Herrmann conjecture (CHC). Gladwell and Zhu [82] reported, however, that
neither in this work nor in any of Herrmann’s subsequent publications such a
result is stated, let alone proved. Indeed, they showed that the statement is
false in general, and gave a simple counterexample.

For graphs we naturally have two versions of the CHC. Let f =
∑k

i=1 ai fi

be some linear combination of the eigenfunctions f1, . . . , fk of a (generalized)
Laplacian, and r the multiplicity of λk. Then

• weak CHC : W(f) ≤ k ,
• strong CHC : S(f) ≤ k + r − 1 .

Both statements do not hold in general. For example, let G be the star with
n ≥ 5 vertices of Fig. 3.1. Then f1 = 1 is an eigenfunction corresponding to
eigenvalue λ1 = 0 of the Laplacian L(G) and there exists an eigenfunction
f2 affording eigenvalue λ2 with one positive vertex, n − 2 negative vertices,
and the zero vertex in the center of G. Obviously f = εf1 + f2 for sufficiently
small ε > 0 has one weak positive nodal domain and n − 2 weak negative
nodal domains, i.e., W(f) = S(f) = n − 1 > k = 2, a contradiction to the
weak CHC.

Gladwell and Zhu [82] give an example with a particular generalized Lapla-
cian for the star graph which does not have multiple eigenvalues. Their ex-
ample also yields W(f) = S(f) = n− 1 > k + r − 1 = 2.

Problem 3.22. For which graphs does the (weak or strong) Courant-
Herrmann conjecture hold?
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3.6 Improvements for Special Cases

Neither the weak nor the strong version of the nodal domain theorem can
be strengthened without additional assumptions, because the discrete nodal
domain theorem is sharp for paths.

Theorem 3.23 (Gantmacher and Krein [78]). The eigenvalues of a gen-
eralized Laplacian M of a path are all simple, and the eigenfunction fk cor-
responding to eigenvalue λk has exactly k (strong and weak) nodal domains,
i.e., W(fk) = S(fk) = k.

An example where fk has more than k strong nodal domain is e.g. given
by Friedman [75]: a star on n vertices has a second eigenfunction with n− 1
strong nodal domain, which is exactly the upper bound k+ r−1; see Fig. 3.1.

However, as for manifolds, the nodal domain theorem for graphs does not
provide a sharp inequality for all graphs. For manifolds equality for every
eigenvalue holds only in dimension one, i.e. for a string. For spheres with the
standard metric a sharp lower bound on the number of nodal domains exists
[123] but so far no sharp upper bounds are available, see e.g. [3, 107, 108, 124].
For graphs the situation is similar. Improved general upper bounds for W(fk)
and S(fk) for trees, cographs, and hypercubes will be discussed in the next
chapter. In the remainder of this section we consider a few results for the
eigenfunctions of particular eigenvalues.

Let us first consider the largest eigenvalue of a connected bipartite graph
G.

Theorem 3.24 (Roth [152]). Let G(V1 ∪ V2, E) be a connected bipartite
graph with n = |V1 ∪ V2| vertices and let M be a generalized Laplacian of G.
Then there is an eigenfunction f corresponding to the largest eigenvalue of
M, such that f is positive on V1 and negative on V2 or vice versa and hence
satisfies W(x) = S(x) = n.

Proof. The largest eigenvalue λn of M is determined by the maximum of
the Rayleigh quotient RM(f). We may assume that f is normalized so that
〈f, f〉 = 1; thus by (2.7) we have

RM(f) =
∑

x∈V

Mxxf(x)2 + 2
∑

xy∈E

Mxyf(x)f(y) .

Let fn be an eigenfunction affording λn and define g(x) = |fn(x)| if x ∈ V1

and g(x) = −|fn(x)| if x ∈ V2. We have RM(g) ≥ RM(fn); this inequality is
strict if and only if there is an edge xy ∈ E such that fn(x)fn(y) > 0. Since
fn maximizes RM we have fn(x)fn(y) ≤ 0 for all xy ∈ E. Therefore g is an
eigenfunction of λn.
Now suppose g(x) = 0 for some x ∈ V1. Then

∑
y∼xMxyg(y) = λng(x) = 0.

Since all neighbors of x are contained in V2 this implies g(y) = 0 for all y ∼ x.
Repeating the argument shows that g must vanish. Thus g(x) > 0 and hence
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Fig. 3.5. Sign pattern of an eigenfunction corresponding to the largest eigenvalue
of the disconnected bipartite graph C4 ∪ K2: S(f6) = 4.

either fn = g or fn = −g. Since any two neighboring vertices have opposite
strict signs we see that each vertex x ∈ V is a strong nodal domain, and the
theorem follows. ��
The discrete nodal domain theorem implies the following

Corollary 3.25. The largest eigenvalue of a generalized Laplacian of a con-
nected bipartite graph is simple.

Proof. By Thm. 3.1 any eigenfunction corresponding to eigenvalue λn−1 has
at most n−1 weak nodal domains. If the largest eigenvalue is not simple, i.e.,
λn−1 = λn, then the eigenfunction of Thm. 3.24 would also be an eigenfunction
corresponding to λn−1, a contradiction. ��
Remark 3.26. Again we stress the importance of connectedness here.
Theorem 3.24 does not hold if the graph G is disconnected, see Fig. 3.5 for
a counterexample. Moreover, suppose G has at least 2 connected components
and there exists such an eigenfunction f with n (strong) nodal domains. Then
we can restrict f to each of the connected components. Obviously these are
linearly independent and each of these is an eigenfunction. Thus the largest
eigenvalue cannot be simple.

It is quite obvious that a graph G cannot have n nodal domains if it is not
bipartite. It fact one easily finds the following results.

Theorem 3.27 ([22]). Let G(V,E) be a connected graph and H be an in-
duced bipartite subgraph of G with maximum number of vertices. Then for
any eigenfunction f of a generalized Laplacian M(G), S(f) ≤ |V (H)|.
Proof. We delete all zero vertices and for each strong nodal domain we delete
all but one vertex. The subgraph induced by the remaining vertices is bipartite
and the result follows, since H is a bipartite induced subgraph with maximum
number of vertices. ��

Unfortunately, to find such an induced bipartite graph ofG is a well known
NP-complete problem (see, e.g., [80]). In general the upper bound of Thm. 3.27
is not sharp for the graph Laplacian L, see Fig. 3.6 for a counterexample.
However, we can show that it is sharp for the generalized Laplacians of every
given graph.
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− + − − + −

0 0u v

Fig. 3.6. Sign pattern of an eigenfunction with maximal number of strong nodal
domains: S(f) = 5 < 6 = |V (H)|. One easily checks that for all simple eigenvalues
there are at most 4 strong nodal domains. For the only multiple eigenvalue λ5 = 4
(multiplicity r = 2) we have f(u) = f(v). If both are nonzero S(f) ≤ 4; otherwise
we have 5 strong nodal domains.

Theorem 3.28 ([22]). Let G be a connected graph and H be a maximal in-
duced bipartite subgraph of G, then there exists a generalized Laplacian M(G)
such that M(G) has an eigenfunction f with |V (H)| strong nodal domains.

Proof. Let H be a maximum induced bipartite subgraph of G with com-
ponents C1, . . . , Ck and let R be the set of remaining vertices of G. Let
M1, . . . ,Mk be generalized Laplacians of C1, . . . , Ck such that diagonal el-
ements of Mi are positive. By Theorem 3.24 the largest eigenvalue µi of Mi

has an eigenfunction fi with S(fi) = |V (Ci)|. The eigenvalues µi are positive,
since tr(Mi) > 0. Thus we can assume without loss of generality that µi = 1
(otherwise replace Mi by 1

µi
Mi). We now define a generalized Laplacian for

G by

M =

⎛

⎜⎜⎜⎜⎜⎝

M1 0 · · · 0 BT
1

0 M2 · · · 0 BT
2

...
...

. . .
...

...
0 0 · · · Mk BT

k

B1 B2 · · · Bk MR

⎞

⎟⎟⎟⎟⎟⎠
(3.4)

where MR is some generalized Laplacian on the graph induced by R, and
the Bi matrices with nonpositive entries. Notice that each vertex v ∈ R
has (at least) two neighbors w1 and w2 in some Cj such that fj(w1) and
fj(w2) have opposite (strict) sign, since otherwise we could construct a new
bipartite graph with more vertices then H . Thus we can choose B1, . . . ,Bk

such that B1 f1(v)+ · · ·+Bkfk(v) = 0. Now construct a function f by f(v) =
fi(v) if v ∈ Ci and f(v) = 0 if v ∈ R. Then a straightforward computation
gives (Mf)(v) = fi(v) = f(v) if v ∈ Ci and (Mf)(v) = (B1 f1 + · · · +
Bkfk)(v) = 0 = f(v) if v ∈ R. Hence Mf = f and f is an eigenfunction with∑k

i=1 |V (Ci)| = |V (H)| nodal domains. ��

Similarly to Thm. 3.27 there exists an upper bound for the number of
weak nodal domains of an arbitrary function.

Theorem 3.29 ([22]). Let G(V,E) be a connected graph and G∗ = (V ∗, E∗)
be a bipartite minor with a maximum number of vertices of G such that edges
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+ −

0

− +

Fig. 3.7. Counterexample: the number of vertices of the maximum bipartite minor
is not an upper bound for the number of strong nodal domains of an eigenfunction
of a Laplacian; the eigenfunction f has 4 strong nodal domains but |V ∗| = 3.

− + − + − +

0

Fig. 3.8. Sign pattern of an eigenfunction g with maximal number of strong nodal
domains for a minor H = G/uv of graph G from Fig. 3.6: S(g) = 6 > 5 = S(f).

are only contracted in G and multiple edges and loops are deleted in the re-
sulting graph, if necessary. Then for any eigenfunction f of a generalized
Laplacian M(G), W(f) ≤ |V ∗|.

Proof. We get a bipartite minor of G by contracting all edges uv for which
f(u), f(v) ≥ 0 and all edges uv with f(u), f(v) < 0. Thus every weak positive
nodal domain and every strong negative nodal domain of f collapses into a
single vertex. This minor is bipartite and the result follows, since G∗ is a
bipartite minor with maximum number of vertices. ��

H. Müller [141] has remarked that finding maximal bipartite minors is also
an NP-complete problem. The upper bound based on a maximal bipartite
minor does not hold for strong nodal domains. For the graph in Fig. 3.7 there
exists an eigenfunction of the graph Laplacian with values (1,−1, 0, 1,−1).
Thus it has four strong nodal domains while a maximum bipartite minor
obtained by edge contractions has at most three vertices. Figure 3.8 shows an
example where the maximal number of strong domains is not even monotone
for minors: There exists an eigenfunction of the Laplacian of the minor G/uv
with 6 strong nodal domains whereas eigenfunctions of the Laplacian of the
original graph G in Fig. 3.6 have at most 5 strong nodal domains.

Analogously to Thm. 3.27 one could ask whether the upper bound in
Thm. 3.29 is sharp. Again the graph in Fig. 3.6 serves as a counterexample
for the graph Laplacian L, as every eigenfunction has at most 5 weak nodal
domains but there exists a bipartite minor G∗ with 6 vertices. However, it is
an open question whether this bound is sharp for generalized Laplacians.
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Problem 3.30. LetG∗ be a maximum bipartite minor of a graphG as defined
in Thm. 3.29. Is there a generalized Laplacian matrix M(G) such that an
eigenfunction of M(G) has |V (G∗)| weak nodal domains?

3.7 Faria Vectors and Minimum Number of Nodal
Domains

The number of nodal domains can be much smaller than the bound obtained
from the discrete nodal domain theorem. A function f is called a Faria vector
[62], if f is nonzero on only two vertices u and v with f(u) = −f(v) = 1.
Obviously, Faria vectors have only two (weak or strong) nodal domains.

Two vertices u and v are called twins if every vertex w /∈ {u, v} is either
adjacent to both u and v or to neither one of them.

Theorem 3.31. A Faria vector f is an eigenfunction of the Laplacian L of a
graph G if and only if u and v are twins in G. The corresponding eigenvalue
is λ = d(u) + 1 = d(v) + 1 if uv ∈ E(G) and λ = d(u) = d(v) if uv ∈ E(G).

Proof. It is easy to see that a Faria vector is an eigenvalue for such a graph.
On the other hand if u and v are not twins in G, then there exists a zero vertex
x with is adjacent to exactly one nonzero vertex (u or v), a contradiction to
Lemma 2.8. ��

There exist arbitrarily large graphs that admit Faria vectors. As an ex-
ample consider graphs that have at least two vertices of degree 1 that have a
common neighbor.

A type of graphs with only a small number of weak nodal domains can be
immediately derived from Thm. 2.11.

Theorem 3.32. If a graph G with n vertices has a vertex v with degree n−1,
then each eigenfunction of an eigenvalue 0 = λ < n of Laplacian has exactly
two weak nodal domains.

Obviously there is a trivial lower bound for the number of (strong or weak)
nodal domains. The following result follows immediately from Lemma 2.8.

Theorem 3.33. If f is an eigenfunction of a generalized Laplacian to an
eigenvalue λ > λ1 then S(f) ≥W(f) ≥ 2.

Faria vectors show that this lower bound cannot be improved without
further assumptions.
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3.8 Sign Pattern and Nodal Domains

So far we have considered nodal domains of eigenfunctions of a given (gener-
alized) Laplacian of a graph G. We could also take the opposite point of view
and prescribe a sign {+,−, 0} at each vertex of G. Clearly, such a sign pattern
also induces nodal domains. One can then ask whether there is an eigenfunc-
tion of some (generalized) Laplacian M(G) with the same sign pattern. This
is an eigenvalue problem of sign-solvable linear systems which are discussed
in detail by Brualdi and Shader [26].



4

Nodal Domain Theorems for Special Graph
Classes

In Sect. 3.6 we have seen that the upper bound for the number of (strong
or weak) nodal domains that is given by the discrete nodal domain theorem
cannot be improved without further restrictions. On the other hand, we have
seen that there exist graphs where this bound is not sharp. In general it
is unknown, whether this upper bound is sharp for an arbitrary graph. The
situation is similar for the (trivial) lower bound in Thm. 3.33. Furthermore, no
general method is known to construct an eigenfunction of a given eigenvalue λk

that maximizes or minimizes the number of (strong or weak) nodal domains.
In this chapter we take a closer look to the situation for trees, cographs, and
product graphs (in particular to the Boolean hypercube), where it is possible
to derive improved upper and lower bounds.

4.1 Trees

Research on the sign properties of eigenfunctions started already with the
investigation of eigenfunctions of tridiagonal matrices with negative off-
diagonals in the first half of the last century, see e.g. [78]. In fact, such matrices
are the generalized graph Laplacians of paths and it has been shown that an
eigenfunction corresponding to the k-th eigenvalue λk has exactly k (weak or
strong) nodal domains, see Thm. 3.23.

Pati [143] considers the third smallest eigenvalue of a special generalized
Laplacian matrix.

Theorem 4.1 ([143]). Let M be a generalized Laplacian matrix of a tree T ,
where Mvv =

∑
u∼v Mvu. If the second smallest eigenvalue is simple, then

each eigenfunction belonging to the third smallest eigenvalue λ3 has at most
four weak nodal domains.

In this section we characterize the maximum number of strong nodal do-
mains of an eigenfunction corresponding to the k-th eigenvalue λk for a tree,
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and present an O(n2) time algorithm to find an eigenfunction with this max-
imum number of the strong nodal domains. In contrast, finding an eigenfunc-
tion with the minimum number of nodal domains is NP-complete.

4.1.1 The Maximum Number of Nodal Domains

Fiedler has shown two useful results on eigenfunctions of matrices that are
related to trees1.

Lemma 4.2 ([66]). Let M be a generalized Laplacian of a tree. If f is an
eigenfunction corresponding to eigenvalue λk which does not vanish on any
vertex, then λk is simple and there are exactly n − k edges xy for which
Mxy f(x) f(y) < 0.

Proof. We sketch the main ideas from [66] that we need to prove the result.
The following two statements are usually called Sylvester’s law of inertia:
(1) For a symmetric matrix B and a nonsingular matrix F, B and FTBF have
the same number of positive (or negative) eigenvalues, see e.g. [100]. (2) For
a given real symmetric matrix B let C be a similar matrix with quadratic
form that consists of squared terms only. Then the number of positive (or
negative) eigenvalues of B is equal to the number of positive (and negative)
squared terms in the quadratic form of C, see e.g. [78].

Now let F be the diagonal matrix with Fvv = f(v), v ∈ V (T ), and let
B = F(M − λkI)F. It is straightforward to see that B1 = 0. Therefore
the quadratic form of B can be computed similarly to (2.6) as 〈g,Bg〉 =∑

xy∈E(T )(−Bxy)(g(x) − g(y))2 =
∑

xy∈E(T )(−Mxy)f(x)f(y) (g(x) − g(y))2.
Fiedler [66] showed that this quadratic form is irreducible. Hence by Sylvester’s
second law of inertia B has n − 1 nonzero eigenvalues and by the first
law λk is simple. By both laws there are exactly n − k edges such that
−Mxyf(x)f(y) > 0. ��

As a direct consequence of the above lemma we have

Lemma 4.3 ([66]). Each eigenfunction corresponding to a multiple eigen-
value of a generalized Laplacian M of a tree vanishes on at least one vertex.

These two lemmata play an important rôle in deriving the main results of
this section. We start with a special simple case where the eigenfunction does
not vanish on any vertex.

Theorem 4.4 ([19]). Let M be a generalized Laplacian of a tree T on n
vertices and let f be an eigenfunction of M with eigenvalue λk which does not
vanish on any vertex. Then λk is simple and f has exactly S(f) = k strong
nodal domains.
1 We remark that Fiedler [66] proved the results of Lemmata 4.2 and 4.3 for a more

general matrix of a tree.
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Proof. We divide V (T ) into three disjoint sets P , S, and C, where P and
S denote the sets of all vertices where f is positive and negative, resp., and
which are incident to some edge where f does not change sign. C is the set of
the remaining vertices. The induced subgraphs G[P ] and G[S] are forests and
consist exactly of those edges where f does not change sign. Let p and s be the
number of components of G[P ] and G[S], respectively. Then G[P ] and G[S]
have |P | − p and |S| − s edges, respectively. By Lemma 4.2, λk is simple and
there are exactly n− k edges xy, for which f(x) and f(y) have the same sign,
asMxy ≤ 0. Since {P, S,C} is a partition of V we have |P |−p+|S|−s = n−k.

By definition f must change sign on each edge between a vertex in C
and a vertex in P or S. Moreover, if f(u) and f(v) have the same sign for
u, v ∈ C, then u and v are not adjacent. Consequently the number of strong
nodal domains of f is equal to |C|+ p+ s. Thus

S(f) = |C|+ p+ s = (n− |P | − |S|) + (|P |+ |S| − n+ k) = k

as proposed. ��

Next we consider eigenfunctions of trees which vanish on some vertices.

Theorem 4.5 ([19]). Let M be a generalized Laplacian of a tree T on n
vertices and let λ be an eigenvalue of M with eigenfunction f that vanishes
on some vertices. Then there exists an ordering of the vertices such that M
has the form

M =

⎛

⎜⎜⎜⎜⎜⎝

M1 0 · · · 0 BT
1

0 M2 · · · 0 BT
2

...
...

. . .
...

...
0 0 · · · Mm BT

m

B1 B2 · · · Bm MZ

⎞

⎟⎟⎟⎟⎟⎠
(4.1)

and the following statements hold:

(i) λ is a simple eigenvalue of all block matrices M1, . . . ,Mm and each matrix
Mj has an eigenfunction of λ that does not vanish on any vertex.

(ii) Let k1, . . . , km be the positions of λ in the spectra of M1, . . . ,Mm, resp.,
in nondecreasing order. Then the number of strong nodal domains of an
eigenfunction f of M with eigenvalue λ is at most k1 + · · ·+ km.

(iii) There exists an eigenfunction f of M with eigenvalue λ with k1 + · · ·+km

strong nodal domains. Such an eigenfunction can be found in O(n2) time.

Proof. Let Z be the set of all vertices where every eigenfunction with eigen-
value λ vanishes. If λ is simple then Z is obviously well defined and nonempty
by the assumption of the theorem.

Now suppose that the multiplicity of the eigenvalue λ is r ≥ 2. Then each
eigenfunction f with eigenvalue λ can be expressed as a linear combination
of a basis g1, . . . , gr of the eigenspace Eλ. By Lemma 4.3 each of these linear
combinations must vanish on some vertex v. The set Hv of linear combinations
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of g1, . . . , gr that vanish on a particular vertex v is either a hyperplane (i.e.,
a subspace with codimension 1) in the eigenspace Eλ or equals Eλ itself (see
also Sect. 5.1). The union of all these subspaces Hv is then the set of all linear
combinations that vanish on at least one vertex. By Lemma 4.3 this union
equals the eigenspace Eλ and thus Eλ = Hw for at least one vertex w. Thus
w ∈ Z, i.e., Z is not empty. We observe that Z is unique defined and does not
depend on the particular choice of g1, . . . , gr.

The graph G−Z is a forest with components T1, . . . , Tm. Let M1, . . . ,Mm

be the generalized Laplacians restricted to T1, . . . , Tm. Since there are no edges
between two vertices vi and vj that lie in different subtrees Ti and Tj, i = j,
there exists an ordering of the vertices such that M has the form (4.1).

(i) Let f be some eigenfunction of M corresponding to eigenvalue λ.
For each vertex v ∈ Tj we have λf(v) = (Mf)(v) =

∑
u∈V (G)Mvuf(u) =∑

u∈V (Tj)
Mvuf(u) =

∑
u∈V (Tj)(Mj)vuf(u) because Mvu = 0 for all u ∈

V (Tj) ∪ Z and f(u) = 0 for all u ∈ Z. Therefore λ is an eigenvalue of the
matrices Mj with f restricted to Tj as eigenfunction.

Above we have chosen f from Eλ without further restrictions. We can in
particular select an eigenfunction f that is nonzero on every vertex in Tj.
Otherwise, by Lemma 4.3 and the same argument as above there would be a
vertex w in Tj where all f vanish. Thus w ∈ Z contradicting the assumption
that Tj is a component of G−Z. Hence there is an eigenfunction of eigenvalue
λ which is nonzero on every vertex of G − Z and thus by Thm. 4.4, λ is a
simple eigenvalue of Mj .

(ii) From these considerations it follows that all eigenfunctions f restricted
to a component Tj are linearly dependent (as λ is a simple eigenvalue on Tj)
and must be nonzero on every vertex in Tj (as otherwise a zero vertex belongs
to Z). By Thm. 4.4, the restriction of an eigenfunction f of M(G) to Tj has
exactly kj strong nodal domains. Therefore, S(f) ≤ k1 + · · ·+ km.

(iii) By the above the set of all eigenfunctions of eigenvalue λ restricted
to a component Tj is a vector space of dimension 1 that is spanned by some
nonzero function bj. Then every eigenfunction f with eigenvalue λ can be
written as f(v) =

∑m
j=1 βj bj(v). There must exist an eigenfunction where no

βj is zero, since by the same arguments as above Z would contain vertices
from some component Tj, a contradiction. If λ is not a simple eigenvalue then
such a combination can be found by the following algorithm:

compute basis g1, . . . , gr for eigenspace Eλ;
f := g1;
for i = 2, . . . , r do

f := f + αi gi, choose αi s.t.
αi = 0 and αi /∈

{
− f(x)

gi(x) : gi(x) = 0, x ∈ V (G)
}

.

For the resulting function f we have S(f) = S(b1) + · · · + S(bm) =
k1 + · · ·+ km, as claimed. It is easy to see that we need O(n2) operations to
find this eigenfunction f from an arbitrary eigensystem of M. ��
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We remark that it is an open problem to find the maximum (or minimum)
number of weak nodal domains of an eigenfunction for a given eigenvalue of
a generalized Laplacian of a tree.

4.1.2 The Minimum Number of Nodal Domains

In Sect. 4.1.1 we have seen, that it is not to difficult to compute an eigen-
function of an eigenvalue λ of a given generalized Laplacian M of a tree that
has the maximum possible number of strong nodal domains. Finding the min-
imum number of strong nodal domain is much more difficult; in fact we have
to solve the following problem which turns out to be NP-complete.

Problem 4.6 (MINIMUM NUMBER OF NODAL DOMAINS).
Instance: A generalized Laplacian matrix M of a tree, an eigenvalue λ of M
with multiplicity r ≥ 2.
Question: Find an eigenfunction f of λ such that the number S(f) of strong
nodal domains of is minimal.

Let M be a generalized Laplacian of a tree with an eigenvalue λ of mul-
tiplicity r ≥ 2. In the proof of Thm. 4.5 we have seen that there exists a
nonempty set Z of vertices where all eigenfunctions f of λ vanish. Further-
more, every such eigenfunction can be decomposed as f =

∑m
j=1 βj bj where

the functions bj have nonzero vertices in the component Tj of G − Z and
vanish outside Tj . In particular this holds for each function g1, . . . , gr of a
basis of the eigenspace Eλ and we have gi =

∑m
j=1 βji bj , for i = 1, . . . , r.

Now let B = (βji), j = 1, . . . ,m, i = 1, . . . , r. Then every eigenfunction f
can be computed as f =

∑r
i=1 ai gi =

∑m
j=1 (

∑r
i=1 aiβji) bi =

∑m
j=1(Ba)i bi.

for some coefficients a = (a1, . . . , ar). We introduce a new function ci(a) by
ci(a) = 1 if (Ba)i = 0, and ci(a) = 0 otherwise. Hence the number of nodal
domains of f is given by S(f) = k1 c1(a) + · · ·+ km cm(a), where k1, . . . , km

is defined as in Thm. 4.5. Consequently, we have to solve the minimization
problem k1c1(a) + · · · + kmcm(a) for nonzero vectors a. Therefore, the deci-
sion problem of MINIMUM NUMBER OF NODAL DOMAINS is the following
problem.

Problem 4.7 (MIN(S)).
Instance: An (m× r) matrix B with real entries, positive integers k1, . . . , km,
and a positive integer s.
Question: Is there a nonzero rational vector x = (x1, . . . , xr), such that
k1c1(x) + · · ·+ kmcm(x) ≤ s?

The matrix B of this decision problem can be arbitrary large. As an ex-
amples take a binary tree with n = 2q+1−1 vertices and k = 2q leaves (nodes
of degree 1). Then by a result of Faria [62] this tree has eigenvalue λ = 1 with
multiplicity r ≥ 2q − 2q−1 = 2q−1 ≥ n

4 . Obviously m is at least the number of
leaves and thus m ≥ n

2 .
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We have to reduce a known NP-complete problem to MIN(S) to show that
the latter problem is also NP-complete. For this task we use the MINIMUM
SUPPORT problem for the reduction.

Problem 4.8 (MINIMUM SUPPORT).
Instance: An (m× r) matrix B with rational entries, a positive integer s.
Question: Is there a nonzero rational vector x = (x1, . . . , xr) such that the
number of nonzero elements of Bx is at most s, i.e., support(Bx) ≤ s?

MINIMUM SUPPORT is NP-complete, see e.g. [19]. By a straightforward
computation we can reduce MINIMUM SUPPORT to MIN(S). Thus we have
the following result.

Theorem 4.9 ([19]). The decision problem MIN(S) is NP-complete.

4.2 Cographs and Threshold Graphs

In the previous section we have seen that it is not always easy to find the
maximum or minimum number of nodal domains for a particular graph class.
In this section we see that this problem is easy for cographs.

G is a complement-reducible graph (cograph) if the complement of every
nontrivial connected subgraph of G is disconnected. Cographs arise in many
disparate areas of mathematics and computer science and have several char-
acterizations, see e.g. [42] for a short survey. For instance, G is a cograph
if and only if it has no induced subgraph P4 (a path with 4 vertices). For
our purpose the following characterization in terms of join and disjoint union
operations will be particularly useful:

LetG1(V1, E1) andG2(V2, E2) be graphs on disjoint sets of r and s vertices,
respectively. Their disjoint union G1+G2 is the graphG1+G2 = (V1∪V2, E1∪
E2), and their join G1 ∗G2 is the graph on n = r + s vertices obtained from
G1 +G2 by inserting new edges from each vertex of G1 to each vertex of G2.

Proposition 4.10 ([43]). To each cograph G(V,E) one can associate a
unique rooted tree T , called the cotree of G. Each leaf node of T corresponds
to a (unique) vertex of V . Each internal node is labeled with either a ‘∗’ or a
‘+’. Children of nodes labeled with ‘+’ are labeled with ‘∗’, and vice versa. It
is possible to associate a cograph with each node of the cotree T . Leaf nodes
correspond to the cograph with the one vertex they represent. Internal nodes
labeled with ‘∗’ ( ‘+’) correspond to the join (disjoint union) of the cographs,
corresponding to the children of the node (see Fig. 4.1). G equals the cograph
corresponding with the root of T . Cographs can be recognized in O(|V |+ |E|)
time, and in the same time the corresponding cotree can be built.

This proposition states that each cograph G either is the disjoint union of two
disjoint cographs G1 and G2, G = G1 + G2, or G is the join of two disjoint
cographs G1 and G2, G = G1 ∗G2.
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Fig. 4.1. Cograph (l.h.s.) and its cotree (r.h.s.)

The following lemma can be used to investigate the nodal domains of
cographs.

Proposition 4.11 ([134]). Let G1 and G2 be graphs on disjoint sets of r and
s vertices, respectively. If µ1 ≤ · · · ≤ µr and ν1 ≤ · · · ≤ νs are eigenvalues
of the graph Laplacian of G1 and G2, respectively. Then the eigenvalues of
G1 ∗G2 are n = r + s; µ2 + s, . . . , µr + s; ν2 + r, . . . , νs + r; and 0.

Suppose f is an eigenfunction of G1 that is orthogonal to 1. Extend f to
G1 ∗ G2 by defining it to be zero on V (G2). If f affords the eigenvalue µ,
the extension of f is an eigenfunction of G1 ∗ G2 affording µ + s. Similarly
an eigenfunction of G2 affording ν extends to an eigenfunction of G1 ∗ G2

affording ν+r. The eigenvalue λ = r+s corresponds to an eigenfunction whose
value is −s on each of the r vertices of G1 and r on each of the s vertices of
G2. Finally, the trivial eigenvalue is afforded by the constant function 1 on
V1 ∪ V2.

Obviously, the eigenvalues of the Laplacian L(G1 + G2) are the union
of eigenvalues of L(G1) and L(G2) (respecting multiplicity). It follows from
Props. 4.10 and 4.11 that the Laplacian eigenvalues of a cograph are integers.
Moreover, we can directly compute the number of weak nodal domains of a
cograph.

Corollary 4.12. Let G be a connected cograph with n vertices. G has the
form G = G1 ∗G2. Let c1 ≤ c2 be the number of components of G1 and G2,
respectively.

(i) Every eigenfunction f affording the eigenvalue 0 < λ < n of the Laplacian
L(G) has W(f) = 2 weak nodal domains.

(ii) If c1 ≥ 2, then the largest eigenvalue λ = n is simple and its eigenfunction
has two weak (strong) nodal domains. If c1 = 1, then every eigenfunction
f of λ = n has either two weak (strong) nodal domains or S(f) = W(f) =
c2 + 1.
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Theorem 4.13. For each eigenvalue of the Laplacian of a cograph G(V,E)
we can find an eigenfunction with maximum or minimum number of strong
nodal domains in O(|V |+ |E|) time.

Proof. For a rooted tree T and a vertex v ∈ V (T ) the subtree at v is the
induced tree by v and all descendants of v. Similarly, a subtree of v is the
subtree at one of the children of v. In the following we denote by Smax(Gi, λ)
and Smin(Gi, λ) the maximum and minimum number of strong nodal domains
of an eigenfunction corresponding to eigenvalue λ in a graph Gi, respectively.

Now by Prop. 4.10 a cograph G has a unique cotree T . Let v be some
node of the cotree T with subtrees T1, . . . , Tk, and let G1, . . . , Gk be the
corresponding cographs to these cotrees. Let Gv be the cograph corresponding
with v as root. We show that the number of strong nodal domains of Gv can
be expressed in terms of the number of strong nodal domains of G1, . . . , Gk.
For a function fi on a subgraph Gi we use the symbol f̂i for the function
extended to Gv with f̂i(x) = fi(x) for all x ∈ Gi and f̂i(x) = 0 otherwise.

Suppose v has label ‘+’ (disjoint union), then the eigenvalues of Gv are
the union of eigenvalues of G1, . . . , Gk. Let f1, . . . , fk be eigenfunctions of
an eigenvalue λ with maximum number of strong nodal domains, i.e. S(fi) =
Smax(Gi, λ). Then f =

∑k
i=1 f̂i is an eigenfunction of λ of the cograph Gv

with maximum number of strong nodal domains and Smax(Gv, λ) = S(f) =∑k
i=1 S(fi) =

∑k
i=1 Smax(Gi, λ). Similarly let g1, . . . , gk be eigenfunctions of

λ with minimum number of nodal domains. Then each ĝi is an eigenfunction
of λ in Gv and thus Smin(Gv, λ) = mini=1,...,k Smin(Gi, λ).

Now assume v has label ‘∗’ (join operation), then an easy induction
gives that the eigenvalues of Gv are |V (Gv)| and λGi +

∑
j �=i |V (Gj)|, for

i = 1, . . . , k, where λGi > 0 is an eigenvalue of Gi. By Prop. 4.11 the extension
f̂i of an eigenfunction fi of λGi is an eigenfunction of µ = λGi +

∑
j �=i |V (Gj)|.

The extended eigenfunctions f̂i1 , . . . , f̂ip that afford the same eigenvalue
µ = |V (Gv)| span the eigenspace of µ; all of them have at least two vertices
with opposite sign, since µ cannot be the first (smallest) eigenvalue. By the
join operation all linear combinations of at least two of these functions have
two strong nodal domains. Therefore Smax(Gv, µ) = maxi=1,...,k Smax(Gi, µ)
and Smin(Gv, µ) = 2 if the eigenspace to eigenvalue µ has multiplicity p ≥ 2;
and Smin(Gv, µ) = Smin(Gi1 , µ) if p = 1.

For the eigenvalue µ = |V (Gv)| the children of the node v are labeled
with ‘+’ by Prop. 4.10. Therefore each of the graphs G1, . . . , Gk is either
disconnected or a single vertex. Let c1, . . . , ck be the number of connected
components of G1, . . . , Gk. By Prop. 4.11 it is easy to see that the maximum
number of nodal domains for eigenvalue µ is given by max{c1, . . . , ck} + 1
when the node v has more than two children and given by c1 + c2 when v has
two children.

We have shown that it is enough to build the cotree of a cograph to find the
maximum and minimum number of strong nodal domains. Proposition 4.10
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guarantees that we can build the cotree of a cograph G(V,E) in O(|V |+ |E|)
time. ��

Corollary 4.14. The Laplacian eigenvalues of a complete k-partite graph
Kn1,...,nk

with n1 ≥ · · · ≥ nk are 0; n = n1 + · · · + nk; and n − ni, for
i = 1, . . . , k. The maximum number of strong nodal domains of eigenvalues n
and n−ni are equal to n1 +n2 and ni, respectively. The minimum number of
nodal domains of all eigenvalues equals two.

For an important subclass of cographs, namely threshold graphs, we can
directly compute the number of nodal domains without using Thm. 4.13. A
graph G(V,E) is called as a threshold graph, if G does not contain one of
the three forbidden induced subgraphs: K2 + K2, C4, or P4. Another useful
characterization of threshold graph is given by the following result.

Proposition 4.15 ([36]). A graph G is a connected threshold graph if and
only if G = (K,U), where K is a complete graph with a partition of nonempty
cliques K1, . . . ,Ks and U is an independent set of vertices with a partition of
nonempty independent sets U1, . . . , Us. All vertices of Ki are adjacent to all
vertices of Uh, for i = 1, . . . , s and 1 ≤ h ≤ i, see Fig. 4.2.

...
...

U1

Us−2

Us−1

Us

K1

Ks−2

Ks−1

Ks

Fig. 4.2. The typical structure of a threshold graph. A line between cells Ki and
Uj indicates that each vertex in Ki is adjacent to each vertex of Uj .

The Laplacian eigenvalues of a threshold graph are obtained easily by
induction using Props. 4.11 and 4.15, see also [93].

Theorem 4.16. Let G = (K,U) be a connected threshold graph with the par-
titions Ki and Ui, for i = 1, . . . , s. The eigenvalues of the Laplacian L(G) are
0;
∑h

i=1 |Ui| +
∑s

j=1 |Kj | for h = 1, . . . , s;
∑s

j=h |Kj| for h = 2, . . . , s; and∑s
j=1 |Kj | when |U1| ≥ 2. The bounds for the number of strong nodal domains

are given as follows.
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(i) If λ =
∑h

i=1 |Ui|+
∑s

j=1 |Kj|, then
(a) 2 ≤ S(f) ≤ |Uh|+ 2 when h ≥ 2,
(b) 2 ≤ S(f) ≤ |U1|+ 1 when h = 1.

(ii) If λ =
∑s

j=h |Kj |, then
(a) 2 ≤ S(f) ≤ |Uh|+ 1 when h ≥ 2,
(b) S(f) ≤ |U1| when h = 1 and |U1| ≥ 2.

These bounds on S(f) are sharp.

4.3 Product Graphs and the Boolean Hypercube

In this section we study nodal domains of Boolean hypercubes. These are
special cases of graph products. Given two nonempty graphs G(V,E) and
H(W,F ). Then the Cartesian product G�H is a graph with vertex set V ×W
and (x1, x2)(y1, y2) is an edge in E(G�H) if and only if either x2 = y2 and
x1y1 ∈ E(G) or if x1 = y1 and x2y2 ∈ E(H). One may view G�H as the
graph obtained from G by replacing each of its vertices with a copy of H and
each of its edges with |V (H)| edges joining corresponding vertices of H in the
two copies. The graph product is a commutative, associative binary operation
on graphs, see e.g. [102].

The Kronecker product , also known as tensor product or direct product ,
of two matrices A and B of respective sizes m × n and s × t is the ms × nt
partitioned matrix

A⊗B =

⎛

⎜⎜⎜⎝

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

⎞

⎟⎟⎟⎠ .

Let G and H be graphs with n and s vertices, respectively. The Laplacian
matrix of the Cartesian product is then given by

L(G�H) = L(G)⊗ Is + In ⊗ L(H) .

If f is an eigenfunction of L(G) affording the eigenvalue λ and g an eigen-
function of L(H) affording the eigenvalue µ, then f ⊗ g is an eigenfunction of
L(G�H) affording the eigenvalue λ + µ, where (f ⊗ g)(x, y) = f(x) g(y) for
(x, y) ∈ V ×W . Therefore the eigenvalues of L(G�H) is the set of sums of
the eigenvalues of L(G) and L(H), see e.g. [134]. By the definitions of G�H
and the Kronecker product,

S(f ⊗ g) ≤ S(f)S(g) and W(f ⊗ g) ≤W(f)W(g) .

Notice, however, that it is not possible to derive an upper or lower bound
on the number of nodal domains for eigenfunctions on the L(G�H) from the
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corresponding bounds of G and H , as the following example shows. The graph
G in Fig. 4.3 has the eigenvalues λ3(G) = 1 (of multiplicity 2) and λ5(G) = 3
(simple). The respective eigenfunctions do not have more than 3 and 2 strong
nodal domains. However, there exists an eigenfunction of G�K2 to eigenvalue
λ7(G�K2) = 3 + 0 = 1 + 2 with 8 strong nodal domains (Fig. 4.3, r.h.s.),
whereas we only get 3×2 = 6 and 2×1 = 2 nodal domains for eigenfunctions
that are products of corresponding eigenfunctions of G and K2, respectively.

0

0

0

0

+

−

−

+

−

0

0

0

0

0

+

−

0

0

+

−

−

+

−

0

0

−
+

+

Fig. 4.3. Graph G (l.h.s.) and product graph G �K2 (r.h.s.). The sign patterns of
eigenfunctions with maximal number of nodal domains are shown for eigenvalues
λ3(G) = 1, λ5(G) = 3 and λ7(G�K2) = 3, respectively. Notice, that S(f7) �≤
S(f3) S(f5).

Similar counterexamples for the number of weak nodal domains exist but
are more complicated. Nevertheless, we have found such examples by numer-
ical experiments, see results for the hypercube in Table 5.1 on p. 73.

4.3.1 The Boolean Hypercube

The hypercube KN
2 is the graph with vertex set V = {(v1, v2, . . . , vN )|vi = ±1}

and edges connecting two vertices that differ in a single coordinate, i.e., uv ∈ E
if and only if ui = vi for all but one index j for which we then have uj = −vj.
The number N of coordinates is usually called the dimension of KN

2 . The
graph KN

2 has |V | = 2N vertices and |E| = N 2N−1 edges. It is not hard to
verify that the hypercube is a bipartite graph and it is equivalently defined
as N -fold Cartesian product of K2, the graph consisting of a single edge and
its two end vertices. The Walsh functions [69, 171]

ϕI(v) =
∏

k∈I

vk (4.2)

where I ⊆ {1, 2, . . . , N} form a complete set of eigenfunctions of the Laplacian
of the hypercube. A short direct computation verifies that these functions
satisfy the eigenvalue equation
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LϕI = 2|I|ϕI

and the orthogonality relation

〈ϕI , ϕJ 〉 =
∑

v∈V

ϕI(v)ϕJ (v) = δI,J |V |

where the δI,J = 1 if I = J and 0 otherwise. Thus there are
(

N
|I|
)

eigen-
functions with eigenvalue 2|I|. It is customary to call p = |I| the order of
the Walsh function ϕI . As a consequence we can write every eigenfunction f
corresponding to eigenvalue λ = 2p as

f(v) =
∑

I : |I|=p

aI ϕI(v) (4.3)

where aI ∈ R. The Walsh functions satisfy the following important recursion
w.r.t. the number N of coordinates:

ϕ′
I(v; vN+1) = ϕI(v) and ϕ′

I∪{N+1}(v; vN+1) = vN+1 ϕI(v) . (4.4)

It is sometime more convenient to write (4.4) as a tensor product:

ϕ′
I =
(

1
1

)
⊗ ϕI and ϕ′

I∪{N+1} =
(

1
−1

)
⊗ ϕI .

Clearly, ϕ′
I∪{N+1} is an eigenfunction of KN+1

2 with eigenvalues 2(|I| + 1).
It follows that all Walsh functions can be obtained recursively in this way.
Alternatively we may view the Boolean hypercube as Cayley graph over the
Abelian group ({0, 1},⊕)N ; as discussed in section 2.7, the Walsh functions
therefore are essentially the irreducible representations of this group. More
details and further applications of the group theoretical perspective are dis-
cussed in [45, 58].

Equation (4.4) of course holds for any eigenfunction f of KN
2 with eigen-

value 2p:

f+ =
(

1
1

)
⊗ f and f− =

(
1
−1

)
⊗ f (4.5)

are eigenfunctions of KN+1
2 with eigenvalues 2p and 2(p+ 1), respectively.

4.3.2 The Number of Nodal Domains

It follows immediately from Thm. 3.1 that an eigenfunction f with eigenvalue
2p has at most

S(f) ≤ sN,p =
p∑

j=0

(
N

j

)
and W(f) ≤ wN,p = 1 +

p−1∑

j=0

(
N

j

)
(4.6)
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Table 4.1. Upper bounds on the number of strong and weak nodal domains as
function of N and p = |I | as given in (4.6) and (4.7), respectively.

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N sN,p

2 1 3 4
3 1 4 7 8
4 1 5 11 15 16
5 1 6 16 26 31 32
6 1 7 22 42 57 63 64
7 1 8 29 64 99 120 127 128
8 1 9 37 93 163 219 247 255 256
9 1 10 46 130 256 382 466 502 511 512

10 1 11 56 176 386 638 848 968 1013 1023 1024
11 1 12 67 232 562 1024 1486 1816 1981 2036 2047 2048
12 1 13 79 299 794 1586 2510 3302 3797 4017 4083 4095 4096
13 1 14 92 378 1093 2380 4096 5812 7099 7814 8100 8178 8191 8192
14 1 15 106 470 1471 3473 6476 9908 12911 14913 15914 16278 16369 16383 16384

N wN,p

2 1 2 4
3 1 2 5 8
4 1 2 6 12 16
5 1 2 7 17 27 32
6 1 2 8 23 43 58 64
7 1 2 9 30 65 100 121 128
8 1 2 10 38 94 164 220 248 256
9 1 2 11 47 131 257 383 467 503 512

10 1 2 12 57 177 387 639 849 969 1014 1024
11 1 2 13 68 233 563 1025 1487 1817 1982 2037 2048
12 1 2 14 80 300 795 1587 2511 3303 3798 4018 4084 4096
13 1 2 15 93 379 1094 2381 4097 5813 7100 7815 8101 8179 8192
14 1 2 16 107 471 1472 3474 6477 9909 12912 14914 15915 16279 16370 16384

N w∗
N,p

2 1 2 4
3 1 2 4 8
4 1 2 4 10 16
5 1 2 4 12 24 32
6 1 2 4 14 34 54 64
7 1 2 4 16 46 86 116 128
8 1 2 4 18 60 130 200 242 256
9 1 2 4 20 76 188 328 440 496 512

10 1 2 4 22 94 262 514 766 934 1006 1024
11 1 2 4 24 114 384 774 1278 1698 1938 2028 2048
12 1 2 4 26 136 466 1126 2050 2974 3634 3964 4074 4096
13 1 2 4 28 160 600 1590 3174 5022 6606 7596 8036 8168 8192
14 1 2 4 30 186 758 2188 4762 8194 11626 14200 15630 16202 16358 16384
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strong and weak nodal domains, respectively. Numerical values are listed in
Table 4.1.

These upper bounds are not sharp and despite the “simplicity” of both
the graph class and the basis of the eigenspace it is not trivial to compute the
possible number of nodal domains (see Chap. 5). Indeed, we only present a
few partial results as many problems remain open.

For the Walsh functions (4.2) one easily can show that S(ϕI) = W(ϕI) =
2|I|. Thus from representation (4.3) we immediately have the following result.

Theorem 4.17. The eigenvalue 2p has an associated eigenfunction f with at
least 2p nodal domains, S(f) ≥W(f) ≥ 2p, for all 0 ≤ p ≤ N .

On the other hand we can use some symmetry relations to improve the
nodal domain theorem for Boolean hypercubes. For a vertex v we denote its
antipodal vertex by −v which is the uniquely determined vertex with max-
imal distance N from v and which is obtained from v by multiplying all
its coordinates by −1. Then by (4.2) we have ϕI(−v) = (−1)|I|ϕI(v) and
thus by (4.3) every eigenfunction f corresponding to eigenvalue 2p is either
symmetric or skewsymmetric, f(−v) = (−1)p f(v). Notice that the scalar
product of a symmetric function g and a skewsymmetric function h on a
hypercube is always 0, i.e., 〈g, h〉 = 0: To see this, consider V + = {v ∈
V : v1 = +1} and V − = {v ∈ V : v1 = −1} be a partition of V . Then
V + contains all antipodal vertices to V − and vice versa. Therefore 〈g, h〉 =∑

v∈V g(v)h(v) =
∑

v∈V + g(v)h(v) +
∑

v∈V − g(v)h(v) =
∑

v∈V + g(v)h(v) +∑
v∈V + g(−v)h(−v) =

∑
v∈V + g(v)h(v) −

∑
v∈V + g(v)h(v) = 0.

Theorem 4.18. An eigenfunction f with eigenvalue 2p has at most

W(f) ≤ w∗
N,p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p+ 1 if p = 0 or p = 1,

2

⎛

⎝1 +
p/2−1∑

k=0

(
N

2k

)⎞

⎠ if p is even,

2

⎛

⎝1 +
p/2�−1∑

k=0

(
N

2k + 1

)⎞

⎠ if p is odd

(4.7)

weak nodal domains.

Proof. We are given eigenfunctions f1, . . . , fn of the eigenvalues λ1 < λ2 ≤
· · · ≤ λn of the hypercube. Assume first that fk is a symmetric eigenfunction
of the k-th eigenvalue. For the proof of this inequality we proceed analogously
to Sect. 3.2. However, now we define the subsets D1, . . . , Dm such that each
Di consists of the union of one weak nodal domain and the nodal domain
that consists of the respective antipodal vertices. First we show that each Di

consists of either one or two nodal domains. Let D be a nodal domain with
two adjacent vertices u and v. Then u and v differ in exactly one coordinate
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and fk(u)fk(v) ≥ 0. Moreover,−u and −v also differ in exactly one coordinate
and as fk(−v) = (−1)p fk(v) we have fk(−u) · fk(−v) ≥ 0, i.e., the antipodal
vertices −u and −v belong to the same nodal domain. Therefore the set −D
of all vertices that are antipodal to vertices in D induce a connected subgraph.
Hence D ∪ (−D) cannot have more than two components. Now define

gi(x) :=

{
fk(x) if x ∈ Di,

0 otherwise,

as in (3.2). Notice that all gi are symmetric as we have assumed that fk is
symmetric. Thus each gi is orthogonal to every skewsymmetric eigenfunction
fj. Now we can construct a new nonzero function g :=

∑m
i=1 ai gi that is

orthogonal to all symmetric eigenfunctions fj , 1 ≤ j ≤ k − 1. Let ks be the
position of λk in the subset of eigenvalues with symmetric eigenfunctions.
Using the same arguments as in Sect. 3.2 we find that m cannot exceed ks.
As every Di might consist of two nodal domains we have W(fk) ≤ 2 ks.
The analogous result holds when fk is a skewsymmetric eigenfunction. Thus
similarly to (4.6) the proposed inequality follows. ��

Inequality (4.7) improves Courant’s bound (4.6), see Table 4.1. It seems
not to be sharp in general but it gives a sharp bound for eigenvalue λ = 4
(p = 2): S(f) ≤ 4. Notice that this idea cannot be used to improve the upper
bound for the number of strong nodal domains.

For the problem of finding the minimum number of nodal domains we will
use recursion (4.4) to obtain better bounds. The following technical result will
be used.

Lemma 4.19 ([21]). Let f be any function on KN
2 and let f+ and f− be

functions as defined in (4.5). Then W(f+) = W(f), S(f+) = S(f), W(f−) ≤
2 W(f), and S(f−) = 2 S(f).

Theorem 4.20 ([21]). For all 1 ≤ p ≤ N − 1 there is an eigenfunction f of
the Boolean hypercube with eigenvalue λ = 2p such that W(f) = 2.

Proof. We will proceed by induction using the above technical lemma. The
hypercube K2

2 is a cycle with four vertices and has eigenfunction f (2)
1 = ϕ{1}+

ϕ{2} of eigenvalue λ = 2p = 2 which has one positive, one negative and two
zero vertices. Thus W(f (2)

1 ) = 2. Moreover, both the positive and the negative
weak nodal domain contains all vertices where f (2)

1 vanishes. Now for N ≥ 3
we construct eigenfunctions of KN

2 recursively,

f
(N+1)
p =

(
1
1

)
⊗ f (N)

p =
(
f

(N)
p

)+

for p ≤ N − 1,

f
(N+1)
N =

(
1
−1

)
⊗ f (N)

N−1 =
(
f

(N)
N−1

)−
for p = N,

where we use the notation of (4.5). Recall that f (N+1)
p is an eigenfunction

of KN+1
2 with eigenvalue 2p. Thus by Lemma 4.19 we find for p ≤ N − 1,
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Fig. 4.4. Sign pattern of an eigenfunction f on K4
2 with S(f) = 2. (Figure is taken

from [21], c© Elsevier 2004)

W(f (N+1)
p ) = W(f (N)

p ) = 2, where the second equality holds by assumption
of induction.

Now consider f (N)
N−1. By induction we can assume that W(f (N)

N−1) = 2 and

hence by Lemma 4.19, W(f (N+1)
N ) ≤ 4. Moreover, by construction both the

positive and the negative weak nodal domain contains all vertices where f (N)
N−1

vanishes. The set Z of these vertices induce a subgraph G[Z] that consists of
two connected components. It is easy to see that the product G[Z]�K2 also
consists of two connected components and that both of these are contained
in all positive and all negative weak nodal domains. Thus there are only two
weak nodal domains, i.e., W(f (N+1)

N ) = 2, as proposed. ��

For the minimum number of strong nodal domains of eigenfunctions for
other eigenvalues the situation is different. Here we only have partial results.

Theorem 4.21 ([21]). For all 1 ≤ p ≤ �N/2� there is an eigenfunction f of
the Boolean hypercube with eigenvalue λ = 2p such that S(f) = 2.

Remark 4.22. When we can find a partition (A,B) of the vertex set ofKN
2 with

|A| = |B| such that the induced subgraphs G[A] and G[B] are connected and
k-regular, then we can construct an eigenfunction f of eigenvalue λ = 2(N−k)
with S(f) = 2 by setting f(x) = 1 for all x ∈ A and f(y) = −1 for all y ∈ B.
Figure 4.4 shows such an eigenfunction for K4

2 and k = 2. We can find such
a partition for k = �N/2�, see [21, Thm. 4]. Whether such a partition exists
for 2 ≤ k < �N/2� is an open problem. The special case k = 2 is of interest
in itself: If such a construction exists, there are two disjoint snakes (induced
cycles) with length N/2.

Numerical experiments described in Table 5.1 in the next chapter (p. 73)
show that it should be possible to improve Thm. 4.21:

Conjecture 4.23. For all 1 ≤ p ≤ N − 2 there is an eigenfunction f of the
Boolean hypercube with eigenvalue λ = 2p such that S(f) = 2.
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The eigenfunction corresponding to the highest eigenvalue (which is simple)
always has |V | (weak or strong) nodal domains by Thm. 4.17, i.e., for the
eigenfunction f of the highest eigenvalue we have S(f) = 2N . For the sec-
ond largest eigenvalue there exists a lower bound, which is not sharp (see
Table 5.1).

Theorem 4.24 ([21]). For every eigenfunction f of the Boolean hypercube
KN

2 , N ≥ 3, with eigenvalue λ = 2(N − 1) we have S(f) ≥ N .

Proof. Each such eigenfunction f can be expressed as f(v) =
∑N

j=1 aj φj(v),
where φj = ϕ{1,...,N}\{j}, see (4.3). Assume that all coefficients aj ≥ 0. Define
a new function f̄ by f̄(v) = f(v)

∏N
i=1 vi, where vj denotes the j-th coordinate

of vertex v, which is either 1 or −1. Then a straightforward computation shows
that f̄(v) =

∑N
j=1 aj vj . Thus f̄ is monotonically decreasing on every path of

length N from vertex 1 = (1, . . . , 1) to its antipodal −1 and hence f̄ changes
sign exactly once either on an edge (between two vertices) or on a vertex
where f vanishes. (It moreover can be shown that f̄ is an eigenfunction of
eigenvalue 2.)

Consequently f changes sign exactly (N −1) times on each path from 1 to
−1. Since every such path is isometric in KN

2 , vertices of the same sign that
are not adjacent in this path cannot belong to the same nodal domain. Thus
such a path intersects exactly N (different) nodal domains and the proposition
follows. If some aj are less than 0 then 1 has to be replaced by the vertex
with coordinates (sign(a1), . . . , sign(aN )). ��
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Computational Experiments

It is relatively easy to compute the number of nodal domains for a given
eigenfunction1. Thus it is no problem to compute the possible number of
nodal domains when all eigenvalues are simple. The situation changes com-
pletely in the case of degenerate eigenvalues because then the number of nodal
domains may vary considerably depending on which eigenfunction from the
r-dimensional eigenspace of λk is chosen. Hence, given a fixed graph G(V,E)
and an eigenvalue λk of multiplicity r three questions immediately arise:

− What is the minimal number of nodal domains of f?
− What is the maximal number of nodal domains of f?
− What is the “typical” number of nodal domains of a corresponding eigen-

function f?

In this chapter we deal with the problem of computing possible values for
the number of nodal domains of an eigenfunction f for a degenerate eigenvalue
and show some results for the class of Boolean hypercubes (see Sect. 4.3.1).
Despite the “simplicity” of this class our results are far from being exhausting.
The presentation of this chapter mainly follows [21].

5.1 Nodal Domains and Hyperplane Arrangements

The eigenspace of an eigenvalue λ of multiplicity r can be spanned by a set
of orthonormal functions u1, . . . , ur. Every eigenfunction f corresponding to
eigenvalue λ is then given by
1 We assume here that we have algorithms available that compute eigenvectors

of symmetric matrices with sufficient accuracy. Of course, round-off errors and
deletion of significant digits in floating point arithmetic cause serious problems;
especially when an eigenvector (almost) vanishes on one or more components such
errors can change its sign pattern. However, this is not topic of this book and we
do not discuss this problem in this chapter.
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f(v) =
r∑

j=1

aj uj(v) = 〈a,u(v)〉

where a = (a1, . . . , ar), and u(v) = (u1(v), . . . , ur(v)) is the vector that con-
tains the values of the basis at the vertex v. The convex hull of the vectors
u(v), for v ∈ V , forms a polytope in R

r, which is called the eigenpolytope of
the graph, see e.g. [28, 84].

It is obvious that the number of (strong or weak) nodal domains only
depends on the signs of the eigenfunction on each vertex. There is a one-
to-one relation between the eigenfunction f and its “coordinate vector” a.
The sign at vertex v is given by the sign of 〈a,u(v)〉 and thus the set of
eigenfunctions that vanish on vertex v corresponds to the set

Hv = {a ∈ R
r : 〈a,u(v)〉 = 0}

which is either a hyperplane through the origin in R
r or, if u(v) = 0, Hv = R

r.
The set of all proper hyperplanes forms a hyperplane arrangement

H = {Hv : v ∈ V }

in R
r, see e.g. [60, 180]. The union of all these hyperplanes creates a cellular

complex in R
r or (if we look at normalized eigenfunctions) in the sphere

S
r−1. A cellular complex consists of disjoint cells, where each cell is either

homeomorphic to an open disc Dd = {x ∈ R
d : ||x||2 < 1} or a single point.

In the former case we say that the cell has dimension d and the cell is called
a d-cell. In the latter case we have a 0-cell. Additionally, a cellular complex
satisfies the following properties: (i) the union of all cells is the entire space
R

r (or S
r−1); (ii) the boundary of a d-cell consists of the union of cells of

dimension less than d.
Each of the hyperplanes Hv splits the R

r into three pieces: the hyper-
plane Hv itself and the two open half-spaces {a ∈ R

r : 〈a,u(v)〉 > 0} and
{a ∈ R

r : 〈a,u(v)〉 < 0}. Hence, for each vector a ∈ R
r we may introduce

the covector or position vector ca which has sign〈a,u(v)〉 as its components.
(Using our notion then the covector ca is a function on V .) Obviously the
covector ca is constant in each cell of the cellular complex and it uniquely
determines each cell. Moreover, it corresponds to the sign pattern of the asso-
ciated eigenfunction. Consequently, finding all possible values for the number
of nodal domains is equivalent to finding all cells of this complex. However,
the number of cells explodes with the number of vertices and the multiplicity
r of the eigenvalue. Using a general upper bound for hyperplane arrangements
[60] we have the asymptotic behavior

number of d-cells ∼ |V (G)|r. (5.1)

An exact and sharp upper bound is given, e.g., in [60].
The following observations will simplify our task. Assume that we go along

a path within a cell towards its boundary. As long as we stay inside the cell
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Fig. 5.1. Hyperplane arrangement (l.h.s.) and the corresponding cells on the sphere
(r.h.s.) of eigenvalue 4 for the hypercube K3

2 . We have r = 3 and |V (G)| = 8. The
vectors u(v) are given by the eight vectors (±1,±1,±1). Due to symmetry we only
have the following cells

dim shape S(f) W(f)
2 rectangle 4 4
2 triangle 3 3
1 edge 4 3
0 point 3 2

on the sphere S
2. This is easily checked using Mathematica. (Figure is taken from

[21], c© Elsevier 2004)

nothing happens and the number of nodal domains remains unchanged. But
if we reach the boundary the eigenfunction vanishes on some (but at least
one) of the nonzero vertices whereas all other remain unchanged. This has
two consequences:

The number of weak nodal domains is either decreasing or remains con-
stant, since zero vertices do not separate weak nodal domains. So we have to
look at 0-cells if we want to minimize W(f) and to cells of highest dimension
if we want to maximize W(f), for the eigenfunction f of λ.

The situation is much more complicated at strong nodal domains, because
then zeros separate nodal domains, and S(f) may increase. However, if the
eigenfunction vanishes on too many vertices when we reach the boundary,
it might happen that nodal domains disappear which decreases S(f). This
happens for example with some eigenfunctions of the second eigenvalue of
stars (connected graphs where all but one vertex have degree 1), or more
generally with some eigenfunctions corresponding to eigenvalues where Faria
vectors exist. Figure 5.1 illustrates the situation.

5.2 A Hillclimbing Algorithm

Because of (5.1) it is in practice impossible to calculate all cells of a hyperplane
arrangement for any reasonably sized graph. We have therefore devised a hill-
climbing algorithm to search for the minimum (or maximum) number of strong
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(or weak) nodal domains. This algorithm is based on the above observations,
moving from a cell to neighboring cells in search of an improved number of
nodal domains.

Briefly, the algorithm works as follows. Starting from some random point
a in the hyperplane arrangement with corresponding eigenfunction f(v) =
〈a,u(v)〉. Pick a second random point a′ and move into the direction of this
second point until a boundary in the cellular complex is crossed, i.e., at least
one of the coordinates of the position vector has changed sign and a neigh-
boring cell is entered. To this end we define δ(v) = 〈a,u(v)〉/〈a′,u(v)〉, and
find the vertices v1 and v2 such that δ(v1) is smallest with δ(v) > 0 and δ(v2)
is smallest with δ(v) > δ(v1). Then set δ = (δ(v1) + δ(v2))/2 and move from
a to a∗ = a− δ a′, with corresponding eigenfunction f ′(v) = 〈a∗,u(v)〉. If the
number of (strong) nodal domains of this new cell is less than or equal to that
of the cell that was moved from, accept this move, i.e., make the new point
the current one. Otherwise, return to the original point, i.e., do not update
the current point. (If we want to find the maximum number of nodal domains
we proceed when the number of (strong) nodal domains of this new cell is
greater than or equal to that of the cell that was moved from.) Now repeat
this sequence of picking a random second point, moving towards it from the
current point until a cellular boundary is crossed, and determining whether
the move is accepted or not, until some stopping criterion is reached.

Notice that the algorithm also accepts neutral moves, i.e., moves to neigh-
boring cells that have an equal number of nodal domains. This way, getting
stuck in the middle of some plateau is avoided. Since it is not obvious with
this “random move” algorithm when a local optimum is reached, we termi-
nate the search when the number R of moves without improvement exceeds
a user-defined upper bound.

It must be noted here that this algorithm only deals with coordinate vec-
tors in cells of highest dimension correctly, i.e., the corresponding eigenfunc-
tions have no vanishing vertices (except those vertices where all eigenfunctions
of the given eigenvalue vanish). It can be adopted such that it also includes
searching on cells of lower dimension. However, there are some difficult numer-
ical problems that require sophisticated methods from computational geome-
try.

5.3 Numerical Experiments for the Boolean Hypercube

In the following we apply the above method to get an idea of possible num-
bers of nodal domains for eigenfunctions of the Laplacian of the Boolean
hypercube. We start with an investigation of the “typical number of nodal
domains”. For this task we first must be precise about the meaning of this
term. We have seen in Sect. 4.3.1, Eq. (4.3), that every eigenfunction in the
eigenspace Eλ = {f : Lf = λf} of eigenvalue λ = 2p can be represented as
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Fig. 5.2. Distribution of S(f) with Walsh coefficients aI , |I | = p, drawn indepen-
dently from a Gaussian distribution. (Results from [21])

f(v) =
∑

I : |I|=p

aI ϕI(v) . (5.2)

Thus the set of the Walsh functions ϕI with |I| = p which forms an orthonor-
mal basis of E2p. Consequently, in order to define more precisely what we mean
by the “typical number of nodal domains” we have to specify a distribution
of the coefficients aI .

From a physics point of view it is most natural to assume that the aI are
independent identically distributed Gaussian random variables. In this case
(5.2) defines Derrida’s p-spin models [51, 52] that form an important and well-
studied class of spin glasses which also play an important rôle in the theory
of fitness landscapes [160].

If we use the hyperplane arrangement described above we might be inter-
ested in the volume of the cells that correspond to a given number of nodal
domains. This volume is very hard to compute, but it can be done approxi-
mately using Monte Carlo integration (see e.g. [71]). For this purpose the co-
efficient vectors are sampled from a uniform distribution on the corresponding
sphere.

Fortunately these two pictures are equivalent. Normalizing random vec-
tors that follow a multivariate Gaussian law (as in the first approach) gives
uniformly distributed points on the sphere (see e.g. [54, 99]). The empirical
distribution of the number of strong nodal domains S(f) for K8

2 and K10
2
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Fig. 5.3. Average number of strong nodal domains for the eigenfunctions of the
hypercubes with N = 2 to 15 as a function of p. The l.h.s. panel gives an overview
of the numerical survey. Black squares denote (N, p)-pairs for which all of the 1000
randomly generated instances had exactly 2 nodal domains, � denotes the 2N nodal
domains for p = N , and the gray boxes denote average numbers of strong nodal
domains in the ranges 2–3, 4–10, and greater than 10.
The r.h.s. panel displays the average number of strong nodal domains of the k-th
largest eigenfunctions as a function of N (here we do not count multiplicities). Note
that the largest eigenvalue is unique and has the maximally possible number of
|V | = 2N strong nodal domains. (Results from [21])

and some eigenvalues obtained by such a Monte Carlo integration is shown
in Fig. 5.2. Figure 5.3 displays the average numbers of nodal domains for all
pairs (N, p) of dimensions N (up to N = 15) and eigenvalues 2p.

For the maximum number of weak nodal domains and the minimum
number of strong nodal domains the hill-climbing algorithm as described in
Sect. 5.1 gives some results – shown in Table 5.1 – that let us conjecture that
the bounds from Sect. 4.3.1 are not sharp in general.

We suspect that the bounds in Table 5.1 for the minimum number of strong
nodal domains for the 2nd largest eigenvalue are sharp at least for N ≤ 10.
However, the sequence 2, 3, 4, 8, 14, 24, 44, 84, 160, . . . does not appear to
be a known integer sequence.

Remark 5.1. For reasons that we do not fully understand maximizing the num-
ber of nodal domains on a given eigenspace seems to be much harder than
minimizing. This difference in difficulty between minimizing and maximizing
the number of nodal domains deserves an explanation. One explanation could
be that the hill-climbing algorithm often runs into local minima which are
also global minima; whereas for maximization there are many local but not
global maxima where the algorithm gets stuck.

Remark 5.2. A direct computational approach for the maximum number of
strong nodal domains fails because we would have to compute all cells of
dimension 0; this is not only numerically difficult but the number of 0-cells is
also too large. A completely different approach is therefore required.
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Table 5.1. Upper and lower bounds on the number of nodal domains as functions
of N and p found by numerical experiments using a hill-climbing algorithm. (Results
from [21])

p = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N Upper Bounds on Minimal Number of Strong Nodal Domain

2 2 4
3 2 3 8
4 2 2 4 16
5 2 2 2 8 32
6 2 2 2 2 14 64
7 2 2 2 2 2 24 128
8 2 2 2 2 2 2 44 256
9 2 2 2 2 2 2 2 84 512

10 2 2 2 2 2 2 2 2 160 1024
11 2 2 2 2 2 2 2 2 2 314 2048
12 2 2 2 2 2 2 2 2 2 2 620 4096
13 2 1280 8192
14 2 2446 16384

N Lower Bounds on Maximal Number of Weak Nodal Domain†

2 2 4
3 2 4 8
4 2 4 8 16
5 2 4 10 16 32
6 2 4 8 18 32 64
7 2 4 4 15 34 64 128
8 2 2 12 57 128 256
9 2 72 261 512

† Numbers in bold are bounds that are better then Thm. 4.17. Moreover,
they (again) show that one cannot deduce an upper bound for the number
of weak or strong nodal domains of a product graph when only bounds of
each of its factors are known. Entries in italics are numerical value that are
known to be underestimates because of Lemma 4.19.

5.4 Local Optima

The number of nodal domains of a function f reflects its “ruggedness”. In the
introduction (Sect. 1.4) we briefly discussed correlation measures of rugged-
ness. Another characterization of ruggedness is the number nloc.opt. of local
optima [142], or more precisely the number

η = lnnloc.opt./ lnn . (5.3)

Very little is known analytically about the number and distribution of local
optima. Numerical data are available for a few combinatorial optimization
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problems obtained from sampling random elements x ∈ V and checking
whether they are local optima [79, 162, 163]. Methods from statistical me-
chanics can be used to obtain the asymptotic behavior of η for a family of
landscapes on graphs of increasing size [25, 50, 53, 63, 89, 150, 166, 167].
These approaches do not make use of the fact that f is an eigenfunction of
a Laplacian but rather they are based upon a representation of f as a lin-
ear combination and knowledge on the distribution of the coefficients of this
expansion.

On the Boolean hypercube we observe that eigenfunctions with eigenvalue
λ2 = 2, which are of the form f(x) =

∑N
i=1 a{i}ϕ{i}(x), generically have

a single local minimum define by xi = −sign ai for all i. This is not true,
however, on all graphs. At present, it is an open problem whether there is
close connection between local optima of a function f on a graph and spectral
properties.

Fig. 5.4. Asymptotic density η of local minima in typical p-spin landscapes, i.e.,
eigenfunction of the eigenvalue to the eigenvalue λ = 2p with coefficients aI ran-
domly chosen on the sphere. Full line: statistical mechanics solution based on the
so-called TAP equations [89], open circles: estimates from the correlation length
conjecture. Data are from [158].

We mention a nonrigorous result here, because it approximates η surpris-
ingly well in “typical” elementary landscapes landscapes, namely those which
are of the form f =

∑
j ajfj where the fj form an orthonormal basis of an

eigenspace Eλ of the graph Laplacian and the coefficients aj are independent,
identically distributed Gaussian random variables. Such models are termed
isotropic in [160]. We remark that these models maximize entropy given the
autocorrelation function r(s) [158]. In [163] it has been suggests that the
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number of local optima of such a “typical” landscape can be estimated from
its correlation length �, Eq. (1.8). More precisely, one expects only a small
number of local optima within a ball B in G with a radius R = R(�) that
is given by the expected distance between two vertices separated by random
walk of length � on G. This simple idea yields very good estimates for η for
a wide variety of models [79, 162]. Figure 5.4 shows the typical eigenfunction
of the Boolean hypercube as an example.
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Faber-Krahn Type Inequalities

The celebrated Faber-Krahn Theorem gives an important isoperimetric in-
equality concerning Dirichlet eigenvalues. It states that the ball has lowest
first Dirichlet eigenvalue amongst all bounded domains of the same volume
in R

s (with the standard Euclidean metric). It has been first conjectured by
Rayleigh and proved independently by Faber [61] and Krahn [118] for the R

2;
a proof of the generalized version can be found for example in [29]. The Faber-
Krahn theorem can also be rephrased in the following way: for all drums with
the same area and same tension the circular-shaped has the lowest tone.

Discrete Faber-Krahn theorems are of course concerned primarily with
the geometry of domains rather then eigenfunctions. They naturally fit into
the framework of this monograph because their proofs heavily rely on explicit
constructions for the eigenfunction of the first Dirichlet eigenvalue. In addition
we discuss some properties of Dirichlet eigenfunctions in general.

In Section 1.5 we have introduced the notion of graphs with boundaries and
discrete Dirichlet operators and thus we should be able to formulate similar
inequalities. We additionally have to introduce the notion of the volume of a
graph. However, it is not immediately clear how to transform the continuous
result to the discrete setting of graphs. We derive two approaches. The first
one is due to Friedman [75] who imitates the situation of the continuous case:
Take the R

2 (an “infinitely large skin”), take a pair of scissors and cut out a
piece for the drum. In the discrete setting we look at the geometric realization
of an infinite regular tree and cut out a subtree. Wherever we cut an arc we
insert a boundary vertex and fix the “membrane” (see Fig. 6.4 on p. 84). For
the volume we used the total length of the edges of these subtrees (Sect. 6.4).
For the second approach we look at more general classes of (not necessarily
regular) trees where the volume is the number of (interior) vertices (Sect. 6.3).
The main ideas of the proofs are given in Sects. 6.5 and 6.6.
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6.1 Basic Properties of Dirichlet Operators

In Section 1.5 we have defined the discrete Dirichlet operator . In Friedman’s
setting this definition has to be extended to weighted graphs as it has been
done in Sect. 2.2 for the graph Laplacian. Although this is completely anal-
ogous we repeat the necessary definitions for the sake of a more compact
presentation.

Let G(V ◦∪ ∂V,E◦∪ ∂E) be a (weighted) connected graph with boundary
and Lw the (weighted) graph Laplacian (see Sect. 2.2). Remind that there
are no edges between boundary vertices. Unweighted graphs can be seen as
special case of graphs with weights wxy = 1 if x and y are adjacent and
wxy = 0 otherwise. A solution f to the Dirichlet problem must satisfy
Lwf(v) = λf(v) for all interior vertices v ∈ V ◦ and f(z) = 0 for all boundary
vertices z ∈ ∂V . Equivalently, we can compute the eigenvalues and eigenfunc-
tions of the corresponding discrete Dirichlet operator L◦w(G) which is derived
from the graph Laplacian Lw(G) simply by deleting all rows and columns that
correspond to boundary vertices. We call the eigenvalues of this operator the
Dirichlet eigenvalues of the graph with boundary. We are interested in the
first Dirichlet eigenvalue which we denote by λ◦(G). It can be computed by

λ◦(G) = min
f∈F0

RLw(f) = min
f∈F0

∑
xy∈E wxy(f(x) − f(y))2

∑
x∈V f(x)2

(6.1)

where F0 denotes the set of real-valued functions on V with the constraint
f |∂V = 0 (Corollary 2.5). Moreover, every function f ∈ F0 that minimizes the
Rayleigh quotient is an eigenfunction to the first Dirichlet eigenvalue λ◦(G).
The first Dirichlet eigenvalue has the following basic properties that follow
immediately from (6.1) and the Perron-Frobenius Theorem (Thm. 2.22 and
Cor. 2.23).

Lemma 6.1 ([75]). Let G(V ◦∪∂V,E◦∪∂E) be a connected graph with bound-
ary. Then

(1) L◦w(G) is a positive operator, i.e. λ◦(G) > 0.
(2) An eigenfunction f corresponding to eigenvalue λ◦(G) is either positive

or negative on all interior vertices of G.
Thus we assume without loss of generality f(v) > 0 for all v ∈ V ◦.

(3) λ◦(G) is a simple eigenvalue.

Dirichlet eigenvalues can be viewed as weighted averages of the number of
boundary vertices to which interior vertices are connected:

Theorem 6.2 ([20]). Let G(V ◦∪ ∂V,E◦∪ ∂E) be a connected graph with
boundary and f an eigenfunction corresponding to some eigenvalue λ of
the Dirichlet operator. Let b(v) =

∑
u∈∂V wvu. (For unweighted graphs b(v)

just denotes the number of boundary vertices adjacent to v.) Then either∑
v∈V f(v) =

∑
v∈V b(v) f(v) = 0, or
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λ =
∑

v∈V b(v) f(v)∑
v∈V f(v)

.

Proof. Let 1 = (1, . . . , 1)T, i(v) =
∑

u∈V ◦wvu, and δ(v) =
∑

u∈V wvu. (For
unweighted graphs i(v) denotes the number of interior vertices adjacent to v
and δ(v) = d(v).) Thus b(v) + i(v) = δ(v). A straightforward computation
gives

〈1,L◦wf〉 =
∑

v∈V ◦
∑

u∈V wvu (f(v)− f(u))
=
∑

v∈V ◦ δ(v) f(v)−
∑

v∈V ◦
∑

u∈V wvu f(u)
=
∑

v∈V ◦ δ(v) f(v)−
∑

u∈V f(u)
∑

v∈V ◦wvu

=
∑

v∈V ◦ δ(v) f(v)−
∑

u∈V ◦ i(u) f(u)
=
∑

v∈V0
b(v) f(v) .

Since f is an eigenfunction we find 〈1,L◦wf〉 = λ
∑

v∈V0
f(v). Since f(v) = 0

for all boundary vertices v ∈ ∂V the result follows. ��

This result is similar to Thm. 2.1. Indeed we can view b(v) as the nonneg-
ative potential p(v) in (2.5). On the other hand we can replace any positive
potential by adding a new boundary edge of weight p(v) to each vertex v of
the graph. Then the discrete Dirichlet operator of the new graph coincides
with the Laplacian of the original graph. As an immediate consequence the
considerations of Remark 2.2 also holds for Thm. 6.2: The case

∑
v∈V f(v) = 0

happens, for example, for all eigenfunctions of an eigenvalue λ > λ1 when b(v)
is constant for all v ∈ V ◦.

6.2 The Faber-Krahn Property

We say that a graph with boundary has the Faber-Krahn property if it has
lowest first Dirichlet eigenvalue among all graphs with the same “volume” in
a particular graph class. This definition raises two questions:

(1) What is an appropriate graph class, and
(2) What is the “volume” of a graph?

Making the graph class too large leads to quite simple (noninteresting)
graphs. For example, if we look at the set of all connected graphs with a given
number of edges as the “volume” of the graph and nonempty set of boundary
edges, then graphs with the Faber-Krahn property are paths. To be precise
the following theorem holds.

Theorem 6.3 ([110]). Let G(V ◦∪ ∂V,E◦∪ ∂E) be a connected graph with
(nonempty) boundary where every interior vertex has degree at least 2. If
m = |E◦∪ ∂E| denotes the number of its edges, then

λ◦(G) ≥ λ◦(L′
m)
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where L′
m is a path with a terminating triangle and a terminating boundary

vertex and m edges as shown in Fig. 6.1(i).
If additionally the “nonseparation property” holds, i.e., each component of

G−v contains a boundary vertex, then λ◦(G) ≥ λ◦(L′′
m) where L′′

m is the path
with m− 1 interior vertices and two boundary vertices (and thus m edges) as
shown in Fig. 6.1(ii).

Equality holds if and only if G equals the respective graph L′
m or L′′

m.

(i) L′
m

(ii) L′′
m

Fig. 6.1. The graphs L′
m (i) and L′′

m (ii) with m = 7 edges.
(• . . . interior vertices, ◦ . . . boundary vertices)

If we drop the restriction that interior vertices have smallest degree at least
2, then the resulting graph is a simple path with only one boundary vertex
[109]. If we use the number n of vertices as a measure for the volume of a
graph than we have a similar result (this follows from Thm. 6.9(i) below and
the fact that the Rayleigh quotient of a graph cannot be smaller than the
Rayleigh quotient of any of its spanning trees).

At the time of writing this book more detailed results are known for trees
only. While their structure is simple enough to formulate (and prove) Faber-
Krahn-type theorems the results are quite surprising for such simple graphs.
The partitioning of a graph into boundary and interior vertices is arbitrary as
we have seen on p. 9. In the case of trees, however, it seems natural to define
the leaves as boundary, i.e., a vertex is a boundary vertex if and only if it has
degree 1.

Recall that the geometric realization G of a graph G is the metric space
consisting of V and arcs of length 1/wuv glued between u and v for every edge
e = uv ∈ E (see Sect. 2.4).

Motivated by the results for R
s we would expect that a “ball” will minimize

the first Dirichlet eigenvalue. A ball B(c, r) is a graph G with boundary with a
center c ∈ G, not necessarily a vertex, and a radius r > 0, such that dist(c, v) ≤
r for all points v ∈ B(c, r), where equality holds if and only if v ∈ ∂V . dist(u, v)
denotes the geodesic distance between u, v ∈ G.

In the next two sections we state the Faber-Krahn type theorem. From here
on we will drop the subscript w in L◦w(G) and Lw(G) for weighted graphs G
since there is no risk of confusion.
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6.3 Unweighted Trees

We first consider the case of unweighted trees (where all edges have length
1). It will be convenient to root the trees at a vertex v0. The height h(v)
of a vertex v in a tree G with root v0 is defined as the geodesic distance of
v from the root: h(v) = dist(v, v0). For two adjacent vertices v and w with
h(w) = h(v) + 1 we call v the parent of w, and w a child of v. Notice that
every vertex v = v0 has exactly one parent, and every interior vertex w has
at least one child vertex.

If we only fix the total number of vertices and use the number of vertices
as measure of the volume of G, then the tree that minimizes the first Dirichlet
eigenvalue is a path [110]. Hence we will consider more restricted classes of
graphs with boundaries in the following. We define

T (n,k) = {G is a tree, with |V | = n and |V ◦| = k} ,

T (n,k)
d = {G ∈ T (n,k) : d(v) ≥ d for all v ∈ V ◦} .

As it is clear that we always look at a particular class T (n,k) or T (n,k)
d we will

write T and Td for short; n and k have then to be selected accordingly. We
always assume that 1 ≤ k ≤ n− 1.

Another interesting class is based on so called degree sequences. A sequence
π = (d0, . . . , dn−1) of nonnegative integers is called degree sequence if there
exists a graph G with n vertices for which d0, . . . , dn−1 are the degrees of its
vertices. For trees the following characterization exists.

Proposition 6.4 ([94]). A degree sequence π = (d0, . . . , dn−1) is a tree se-
quence (i.e. a degree sequence of some tree) if and only if every di > 0 and∑n−1

i=0 di = 2 (n− 1).

Using this notion we can introduce the class

Tπ = {G is a tree with boundary with degree sequence π} .

Notice that for a particular degree sequence π we have

Tπ ⊆ Tdπ ⊆ T2 = T

where dπ is the minimal degree for interior vertices of the degree sequence π.
For the class T of all trees we again find only a simple structure for graphs

with the Faber-Krahn property.

Theorem 6.5 (Klobüršteltheorem1, [20]). A tree G has the Faber-Krahn
property in the class T if and only if G is a star with a long tail, i.e. a comet,
see Fig. 6.2. G is then uniquely determined up to isomorphism.

1 Klobürštel is the Viennese term for a comet-shaped cleaning device commonly
referred as a toilet brush. The slightly nonstandard spelling stems from the fact
that the result was conceived at a meeting in Slovenia.
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Fig. 6.2. A comet has the Faber-Krahn property in class T . It consists of a star
with diameter 2 and a path attached to it.
(• . . . interior vertices, ◦ . . . boundary vertices)

Graphs with the Faber-Krahn property in Td or Tπ have a richer struc-
ture. The main notion for describing trees in Td or Tπ with the Faber-Krahn
property is spiral-like ordering of its vertices introduced by Pruss [148]. We
give a slightly modified and extended definition.

A well-ordering ≺ of the vertices is called spiral-like (SLO-ordering for
short) if the following holds for all vertices v, v1, v2, w, w1, w2 ∈ V :

(S1) v ≺ w implies h(v) ≤ h(w), where h(v) denotes the height of v;
(S2) if v1 ≺ v2 then for all children w1 of v1 and all children w2 of v2, w1 ≺ w2;
(S3) if v ≺ w and v ∈ ∂V , then w ∈ ∂V .

It is called spiral-like with increasing degrees (SLO∗-ordering for short) if
additionally the following holds

(S4) if v ≺ w for interior vertices v, w ∈ V ◦, then d(v) ≤ d(w).

We call trees that have a SLO- or SLO∗-ordering of its vertices SLO-trees and
SLO∗-trees , respectively.

Notice that SLO-trees are almost balls, i.e., there exists a vertex c and a
radius r such that B(c, r) ⊆ G ⊂ B(c, r + 1), see Fig. 6.3 for an example.

Theorem 6.6 ([20]). A graph G has the Faber-Krahn property in a class Td

if and only if it is a SLO∗-tree where at most one interior vertex has degree
d◦ exceeding d and all other interior vertices have degree d. G is then uniquely
determined up to isomorphism.

Theorem 6.7 ([20]). A graph G with degree sequence π has the Faber-Krahn
property in the class Tπ if and only if it is a SLO∗-tree. G is then uniquely
determined up to isomorphism.

The main ideas of the proofs of Thms. 6.6 and 6.7 are outlined in Sects. 6.5
and 6.6. As an immediate corollary we get a result of Pruss [148].

Corollary 6.8 ([148, Thm. 6.2]). In the class of d-regular unweighted trees
a graph G has the Faber-Krahn property if and only if it is a SLO∗-tree. G is
then uniquely determined up to isomorphism.
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Fig. 6.3. A SLO∗-tree with 8 interior and 18 boundary vertices. The SLO∗-ordering
≺ is indicated by numbers. Degree sequence π = (3, 3, 3, 4, 4, 4, 5, 6, 1, 1, . . . , 1).

One might ask what happens when the conditions defining T (n,k) and
T (n,k)

d are relaxed. It seems natural to consider the classes

T (n,·) = {G is a tree, with |V | = n}

T (n,·)
d and = {G ∈ T (n,·) : dv ≥ d for all v ∈ V ◦} ,

where we keep the total number of vertices fixed, and

T (·,k) = {G is a tree, with |V ◦| = k} and

T (·,k)
d = {G ∈ T (·,k) : dv ≥ d for all v ∈ V ◦} ,

where we keep the number of interior vertices fixed. Using the same ideas as
in the proofs of Thms. 6.6 and 6.7 we find the following characterizations for
graphs with the Faber-Krahn property:

Theorem 6.9 ([20]). A tree G with boundary has the Faber-Krahn property

(i) in T (n,·) if and only if it is a path with n vertices.
(ii) in T (n,·)

d if and only if it is a SLO∗-tree where exactly one interior vertex
has degree d◦ with d ≤ d◦ < 2 d and all other interior vertices have degree
d. (This is the SLO∗-tree in T (n,·)

d with the greatest number of interior
vertices.)

(iii) in T (·,k) if and only if it is a path with k + 2 vertices.
(iv) in T (·,k)

d if and only if it is a SLO∗-tree where all interior vertices have
degree d.

G is then uniquely determined up to isomorphism.
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6.4 Semiregular Trees

Friedman [75] considers the class of trees that consist of (connected) subsets of
the geometric realization of the d-regular infinite tree. These graphs are trees
where all interior vertices have degree d, all interior edges have length (weight)
1 and all boundary edges have length at most 1, see Fig. 6.4. The volume is
then the total length of all edges, i.e., the measure µE defined in Sect. 2.4.
Notice that this is equivalent to the number of vertices for unweighted trees.
We call such trees d-semiregular trees .

Fig. 6.4. The class of trees considered by Friedman [75] can be obtained by cutting
connected subsets out of the geometric realization of an infinite d-regular tree.
(• . . . interior vertices, ◦ . . . boundary vertices)

Notice that trees are discrete analogs of hyperbolic manifolds. (Grids are
examples of graphs which correspond to Euclidean manifolds.) For that reason
there exists a nontrivial lower bound for the first Dirichlet eigenvalue.

Lemma 6.10 ([75]). For a d-semiregular tree G with boundary we have

λ◦(G) > d− 2
√
d− 1 .

Friedman [75] conjectured that such trees with the Faber-Krahn property
are balls centered at a vertex. Amazingly, this conjecture is false: such graphs
have a more complex structure. Balls centered at a vertex do not minimize
the first Dirichlet eigenvalue unless all boundary edges have length 1 [125].
Nevertheless, every tree with the Faber-Krahn-property closely resembles a
ball. It looks a little bit like a “sloppily peeled onion”, see Fig. 6.6. We need
some definitions to describe such trees more precisely.
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A branch Br(w, v) at vertex w is the maximal subgraph induced by w, v
and all children u ∈ V of v (i.e. the geodesic path (w, . . . , u) contains v, see
Fig. 6.5). The length �(Br(w, v)) is the maximal distance dist(w, z), z ∈ ∂V ,
in Br(w, v). The branch is called balanced if h(z) is the same for all boundary
vertices z ∈ ∂V ∩ Br(w, v), see Fig. 6.5.

w v

u1

u2

Fig. 6.5. A balanced branch Br(w, v) of length 2.7.

We say a d-semiregular tree with boundary G(V ◦∪ ∂V,E◦∪ ∂E) is onion-
shaped if there exists a root m ∈ V ◦ of the tree such that the following
conditions are satisfied (see Fig. 6.6):

(O1) G is connected.
(O2) B(m, r) ⊆ G ⊆ B(m, r+ 1) for an r ∈ Z0 (if |V ◦| = 1 then r = 0). Thus

|h(v0)− h(u0)| ≤ 1 for all boundary vertices u0, v0 ∈ ∂V .
(O3) All boundary edges have length 1 or length c, where c ∈ (0, 1) is the

same for all boundary edges of length < 1.
(O4) If two branches Br(w1, v1) and Br(w2, v2), for h(w1) ≥ h(w2), are not

balanced, then Br(w1, v1) ⊆ Br(w2, v2).

Notice that onion-shaped trees are SLO-trees. On the other hand every a SLO-
tree satisfies (O1) and (O2), but not necessarily (O3) and (O4). These hold
for unweighted SLO-trees where all interior vertices have the same degree.

Using the notion of onion-shaped trees we are able to give a full charac-
terization of trees with the Faber-Krahn property.

Theorem 6.11 ([126]). A d-semiregular tree with boundary G, d ≥ 3, has
the Faber-Krahn property if and only if G is onion-shaped and one of the
following conditions is satisfied:

(F0) There is only one interior vertex, i.e. |V ◦| = 1.
(F1) All branches of length � ∈ (1, 2] are balanced (this just follows from (O3)),

there is at most one balanced branch of length � ∈ (1, 2), B(m, 1) ⊆ G,
and

d ≥ 5, or
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m

Fig. 6.6. Onion shaped 4-semiregular tree of volume 38.5 with Faber-Krahn prop-
erty. (• . . . interior vertices, ◦ . . . boundary vertices, m . . . root)

d = 4 and G ⊆ B(z, 4.5), or
d = 3 and G ⊆ B(z, 2.5).

Here and in the following conditions z is the midpoint of some line in G.
(F2) All branches of length � ∈ (2, 3] are balanced, there is at most one bal-

anced branch of length � ∈ (2, 3), and
d = 4 and B(z, 4.5) ⊆ G, or
d = 3 and B(z, 2.5) ⊆ G ⊆ B(z, 9.5).

(F3) All branches of length � ∈ (3, 4] are balanced, there is at most one bal-
anced branch of length � ∈ (3, 4), and

d = 3 and B(z, 9.5) ⊆ G.

G is uniquely defined for a given volume up to isomorphism.

Figure 6.7 shows the 3-semiregular ball B(z, 2.5), where z is the midpoint
of some edge. Figure 6.8 shows some regular trees of degree 3 of increasing
volume with the Faber-Krahn property.

6.5 Rearrangements and Dirichlet Operators

The proofs of the Faber-Krahn type theorems 6.5, 6.6, 6.7, and 6.11 are lengthy
and tedious. As in the continuous version of these theorems, rearrangements
of the domain and the associated eigenfunction are the main tool. In the
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+
z

Fig. 6.7. The 3-semiregular ball B(z, 2.5) with center z.
(• . . . interior vertices, ◦ . . . boundary vertices)

m m m m

Fig. 6.8. Semiregular trees of degree 3 with the Faber-Krahn property.
(• . . . interior vertices, ◦ . . . boundary vertices)

continuous case the coarea formula is used to derive the inequalities for the
Rayleigh quotients (see, e.g., [29]). A powerful discrete analog of the coarea
formula is not know, however, so that more elementary inequalities must be
used. In the following we will therefore only present the main ideas of the
proofs. The full details of the many explicit calculations can be found in [20]
and [126], respectively. The basic types of rearrangement steps are switching
and shifting. Related operations were used in [153].

Lemma 6.12 (Switching). Let G(V,E) be a tree with boundary in some
class Tπ. Let (v1, u1), (v2, u2) ∈ E be edges such that u2 is in the geodesic path
from v1 to v2, but u1 is not, see Fig. 6.9. Then by replacing edges (v1, u1) and
(v2, u2) by the edges (v1, v2) and (u1, u2) we get a new tree G′(V,E′) which
is also contained in Tπ with the same set of boundary vertices. Moreover, we
find for a function f ∈ F0

RG′(f) ≤ RG(f) (6.2)

whenever f(v1) ≥ f(u2) and f(v2) ≥ f(u1). Inequality (6.2) is strict if both
inequalities are strict.
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u1 v1 u2 v2

Fig. 6.9. Switching: edges (v1, u1) and (v2, u2) are replaced by edges (v1, v2) and
(u1, u2).

Proof. Since by assumption u2 is in the geodesic path from v1 to v2 and
u1 is not, G′(V,E′) again is a tree. The set of vertices does not change by
construction. Moreover, since this switching does not change the degrees of
the vertices, the degree sequence remains unchanged. To verify (6.2) we have
to compute the effects of removing and inserting edges and get

〈L(G′)f, f〉 − 〈L(G)f, f〉 =
[
(f(v1)− f(v2))2 + (f(u1)− f(u2))2

]

−
[
(f(v1)− f(u1))2 + (f(v2)− f(u2))2

]

= 2 (f(u1)− f(v2)) · (f(v1)− f(u2))
≤ 0 ,

where the last inequality is strict if both inequalities f(v1) ≥ f(u2) and
f(v2) ≥ f(u1) are strict. Thus the proposition follows. ��

Remark 6.13. If f is an eigenfunction of λ◦(G) in Lemma 6.12 then (6.2) is
strict if at least one of the inequalities, f(v1) ≥ f(u2) or f(v2) ≥ f(u1) is
strict [20, Lemma 6].

Analogously we define shifting.

Lemma 6.14 (Shifting). Let G(V,E) be a tree with boundary in some graph
class T . Let (u, v1) ∈ E be an edge and v2 ∈ V some vertex such that u is
not in the geodesic path from v1 to v2, see Fig. 6.10. Then by replacing edge
(u, v1) by the edge (u, v2) we get a new tree G′(V,E′). If v2 ∈ V ◦ is an interior
vertex and dv1 ≥ 3 then the number of boundary vertices remains unchanged.
Moreover, we find for a nonnegative function f ∈ F0

RG′(f) ≤ RG(f) (6.3)

if f(v1) ≥ f(v2) ≥ f(u). The inequality is strict if f(v1) > f(v2).

Now let n = |V | and k = |V ◦| denote the number of vertices and of
interior vertices of G, respectively, and let f be a nonnegative eigenfunction
of the first Dirichlet eigenvalue of G. The degree sequence of G is given by
π = (d0, d1, . . . , dk−1, dk, . . . , dn−1) such that the degrees di are nondecreasing
for 0 ≤ i < k, and dj = 1 for j ≥ k (i.e., correspond to boundary vertices).
We assume that the vertices of G, V = {v0, v1, . . . , vk−1, vk, . . . , vn−1}, are
numbered such that f(vi) ≥ f(vj) if i < j, i.e., they are sorted with respect
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v1 v2

u

Fig. 6.10. Shifting: edge (u, v1) is replaced by edge (u, v2).

to f(v) in nonincreasing order. We define a well-ordering ≺ on V by vi ≺ vj

if and only if i < j. By applying a series of switchings and shiftings

G = G0 → G1 → G2 → . . .→ Gs = G∗

one can transform G(V,E) ∈ Tπ into a graph G∗(V,E∗) ∈ Tπ in which ≺ is a
SLO∗-ordering and where the Rayleigh quotient is nonincreasing

λ◦(G) = RG0(f) ≥ RG1(f) ≥ . . . ≥ RGs(f) ≥ λ◦(G∗) .

This procedure can be compiled as

Algorithm Rearrange
Input: Tree G(V,E) ∈ Tπ.
Output: Tree G∗(V,E∗) ∈ Tπ with SLO-ordering ≺ and λ(G∗) ≤ λ(G).
1: Define a well-ordering ≺ : vi ≺ vj if and only if i < j.
2: Set s← 0.
3: for r = 0, . . . , k − 1 do
4: for i = 1, . . . , dr − 1 do [ i = 1, . . . , d0 if r = 0 ]

5: Set s← s+ 1 (increment s).
6: if vs is not adjacent to vr then
7: Select an edge (vr , wr) such that vs ≺ wr.
8: Select an edge (vs, ws) such that vs ≺ ws and ws is in the geodesic

path from vr to vs if and only if wr is not.
9: Apply switching such that the new graph Gs has edges (vr, vs) and

(wr , ws).
10: for all (v, vr) ∈ E with vs ≺ v do
11: Apply shifting such that edge (v, vr) is replaced by edge (v, vr+1).
12: Return G∗ = Gs.

The difficult part for the proof of Thm. 6.7 is to show that at least one of
the above inequalities is strict unless G is already a SLO∗-tree. For this task
we need two properties of an eigenfunction f of the first Dirichlet eigenvalue:
every interior vertex has a child where f is strictly decreasing; and subtrees at
two vertices v and w are isomorphic if f(v) = f(w). The details of this proof
is rather tedious and thus omitted. The interested reader is therefore referred
to the original paper [20]. The proof of Thm. 6.6 (and thus Thm. 6.5) is quite
similar.
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6.6 Perturbations and Branches

When boundary edges may have weights (as in Thm. 6.11) and hence edge
lengths can be smaller than 1, we have to investigate the normal derivative
of the eigenfunction f of the first Dirichlet eigenvalue λ◦(G) on boundary
edges. For a boundary edge vz, v ∈ V ◦ and z ∈ ∂V , of length cvz = 1/wvz

the normal derivative is given by f(v)/cvz . The “average” normal derivate of
all boundary edges is given by

∑
wz∈∂E f(w)/

∑
wz∈∂E cwz. If we replace all

boundary edges vz of length cvz of a semiregular tree G by edges of length

c̄vz = f(v)
∑

wz∈∂E cwz∑
wz∈∂E f(w)

we obtain a new semiregular tree G′ with the same volume, µE(G′) = µE(G),
where the normal derivative is the same for all these boundary edges. More-
over, a straightforward computation shows that the Rayleigh quotient is not
increased, i.e., λ◦(G) = RG(f) ≥ RG′(f) ≥ λ◦(G′) where equality only holds
if G and G′ coincide. However, some of the boundary edges in G′ might be-
come longer than 1. Then we replace all the edges vz by edges vz(ε) of length
cvz(ε) = (1 − ε) cvz + ε c̄vz, where ε ∈ (0, 1] is the same for all edges. When
we make ε as large as possible, i.e. (either) one edge vzε has length cvz(ε) = 1
or ε = 1, we get a new semiregular tree which we denote by G(ε).

Lemma 6.15 (Perturbation of edges, [125]). For the semiregular tree
G(ε) with boundary as constructed above we have µE(G(ε)) = µE(G) and
λ◦(G(ε)) ≤ λ◦(GE). Equality holds if and only if G(ε) and G are isomorph.

This lemma allows us to construct a graph with smaller first Dirichlet
eigenvalue. Furthermore, we have the following immediate corollary.

Corollary 6.16. If a semiregular tree has the Faber-Krahn property then the
normal derivative is the same at all boundary edges of length less than 1.

Remark 6.17. This corollary can alternatively be derived from analytic per-
turbation theory [13] for linear operators, see [75].

Notice that for all balanced branches of a d-semiregular treeG with bound-
ary the eigenfunction f of λ◦(G) is “symmetric”, i.e., f(v) does not change
for any automorphism that acts on the vertices of such a branch. This is a
consequence of the simplicity of eigenvalue λ◦(G). We can use this fact to
compute the eigenfunction on such a branch by means of a recursion based
on (2.2).

Lemma 6.18. Let (v0, v1, v2, . . . , vr−1, vr) be a geodesic path in G with v0 ∈
∂V , vi ∈ V ◦, and h(vi) = h(vi−1 + 1), for i = 1, . . . , r. Let c denote the length
of the boundary edge (v0, v1). If Br(vr , vr−1) is a balanced branch then

f(v2) = ((d − 1) + (1− λ◦(G)) c) f(v1)/c
f(vj) = (d− λ◦(G)) f(vj−1)− (d− 1)f(vj−2), j = 3, . . . , r .
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Remark 6.19. A symmetric eigenfunction f of a ball of radius r ∈ Z addi-
tionally must satisfy d (f(vr) − f(vr−1)) = λ◦ f(vr). Setting f(v1) = c in
Lemma 6.18 we arrive at a polynomial of degree r − 1 for λ◦. The first
Dirichlet eigenvalue of such a ball is then the smallest root of this
polynomial.

If we set f(v1) = c, i.e., if f has normal derivative 1 on all boundary edges,
then we can express f(vj) by

f(vj) = αj(d, λ◦(G)) + βj(d, λ◦(G)) c .

The coefficients αj and βj are polynomials in d and λ◦(G) and are determined
by the recursion

α1 = 0, α2 = d− 1 and αi = (d− λ◦)αi−1 − (d− 1)αj−2 ,
β1 = 1, β2 = 1− λ◦ and βi = (d− λ◦)βi−1 − (d− 1)βi−2 .

These coefficients have some nice properties, e.g., for fixed d the roots of βk

and βk+1 as polynomials in λ◦ are interlaced (see [126] for details). Now it
can be shown (in the tedious part of the proof in [126]) that the existence of
balanced and unbalanced branches of noninteger length � < k of a semiregular
tree with the Faber-Krahn property is related to the smallest root of βk. If
this root is less than λ◦(G) then no such branches can exist. However, by
Lemma 6.10, λ◦(G) is nontrivially bounded from below while the smallest root
of βk tends to 0 for increasing k. This surprising coincidence is the reason for
the conditions (F1)–(F3) in Thm. 6.11. The balls listed there have the property
that their first Dirichlet eigenvalues λ◦(B) are exactly the smallest roots of
β2 and β3, respectively. The details of the proof of Thm. 6.11 are omitted and
the interested reader is referred to the original paper [126].
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Basic Notations

In this section we recall some notions from graph theory, linear algebra and
complexity of algorithms that are used in this monograph.

Graphs

We briefly give the terminology in graph theory needed in this monography.
For standard graph theoretical terms not defined here we refer to [56, 175].

A graph G(V,E) consists of a nonempty finite set V called the vertex set
and an edge set E, where an edge is an unordered pair of distinct vertices;
hence we can write x ∈ e to mean that vertex x is incident with the edge e.
For simplicity we write xy (instead of {u, v}) for an edge with end-vertices x
and y.

We use V (G) and E(G) to denote the vertex set and edge set of G, re-
spectively. We have tried to use n = |V | and m = |E| consistently for the
respective numbers of vertices and edges (|S| denotes the cardinality of a set
S). Graphs as we have defined them are also referred to as simple graphs ,
since they do not have multiple edges or loops.

An edge e = uv connects the vertices u and v, and we say that u and
v are adjacent or u is a neighbor of v (and vice versa). We write v ∼ u to
express more explicitly that v is adjacent to u (and vice versa). In particular
we use

∑
uv∈E if we sum over all edges of a graph and

∑
v∼u if we sum over

all vertices v that are adjacent to some vertex u. The number of neighbors of
v is called the degree of v and denoted by d(v). If all the vertices of a graph
G have the same degree k, then G is k-regular, or simply regular .

The complement Gc of a graph G has the same vertex set as G and two
vertices u and v are adjacent in Gc if and only if they are not adjacent in G.

A graph is called complete if every pair of vertices are adjacent. We denote
the complete graph with n vertices by Kn.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A
subgraph H of G is an induced subgraph if two vertices of V (H) are adjacent
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if and only if they are adjacent in G. If U ⊆ V (G), then G[U ] denotes the
induced subgraph of G with vertex set U . If U is some set of vertices of G,
we write G − U for G[V \ U ]. We write G − v rather than G − {v} and say
deletion of vertex v. For a subset F of E(G) we write G− F = G(V,E \ F ).
Instead of G − {e} for an edge e we write G− e and say deleting edge e. By
G/e we denote the graph obtained from G by contracting the edge e = uv
into a new vertex ve which becomes adjacent to all the former neighbors of
both u and of v. We delete any multiple edges or loops.

A graph H that can be obtained from G by a series of deletions and
contractions of edges and deletions of isolated vertices is called a minor of G.

A clique is a subgraph that is complete. A set of vertices is independent if
no two of its elements are adjacent.

A path with k vertices from u to v in a graph is a sequence of k distinct
vertices starting with u and ending with v such that consecutive vertices are
adjacent. We denote a path with k vertices by Pk. If there is a path between
any two vertices of a graph G, then G is connected , otherwise disconnected .
A maximal connected induced subgraph of G is called (connected) component
of G.

A cycle is a connected graph where every vertex has exactly two neighbors.
A graph containing no cycles is called a forest . A connected forest is called a
tree.

A graph G(V,E) is called k-partite if V admits a partition into k classes
such that vertices in the same partition class must not be adjacent. Instead
of 2-partite one usually says bipartite. An k-partite graph in which every two
vertices from different partition classes are adjacent is called complete and is
denoted by Kn1,...,nk

.

Linear Algebra

We recall the main results of the linear algebra of symmetric matrices over the
real numbers. For further details we refer the reader to the relevant literature,
e.g. [100]. However, as most of the results are inspired by the close analogy
between the continuous Laplace-Beltrami operator on Riemannian manifolds
and the graph Laplacian, we will often use a different notion and terminology
as we will say function (over a subset of N) instead of vector and write f(i)
(or x(i)) instead of xi for the i-th component of the functions/vectors f and
x, respectively.

In fact we can interpret a vector x with components indexed by the vertices
V of a given Graph G(V,E) as a real-valued function f on V , i.e. f : V → R.
Furthermore, the set of all such functions obviously forms a vector space that
is isomorphic to R

n and thus we can denote this vector space in abuse of
language simple by R

n. We also have the scalar product for such functions f
and g given by 〈f, g〉 =

∑
v∈V f(x) g(x) and hence the space of our function

forms a Hilbert space.
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Let A = (Aij) be a real n× n matrix. An eigenvalue of A is a number λ
satisfying Ax = λx for a nonzero vector x. Any such vector x is called an
eigenvector of the matrix A belonging (affording) to the eigenvalue λ. Due
to our convention we will say eigenfunction instead of eigenvector. The space
of all eigenfunctions of A belonging to λ together with the null function,
is called the eigenspace Eλ of λ. The dimension of the eigenspace is called
the geometric multiplicity of λ. The eigenvalues of A are the roots of the
characteristic polynomial det(A− λI) of A.

For a symmetric real n × n matrix A all eigenvalues are real and the
geometric multiplicity is equal to the algebraic multiplicity of λ, i.e., the mul-
tiplicity of λ as root of the characteristic polynomial. Furthermore there exists
an orthogonal basis of the R

n consisting of eigenfunctions of A.
The spectrum of a matrix is the list of its eigenvalues together with their

multiplicities. The spectral radius ρ(A) of a matrix is the maximum of the
absolute values of its eigenvalues.

The trace of a square matrix A is the sum of the diagonal entries and is
denoted by tr(A). The trace of a square matrix is also equal to the sum of its
eigenvalues, i.e., tr(A) =

∑n
i=1 aii =

∑n
i=1 λi.

A matrix B is called a principal submatrix of a symmetric matrix A if it
is obtained by removing corresponding rows and columns from A.

Algorithms and Their Complexity

In the analysis of an algorithm first of all we are interested in its complexity,
which is measured by the number of elementary operations that it requires.
The complexity of an algorithm depends on the size of its input. An algorithm
is said to be an O(g(N)) algorithm of its input size N for some function g(·)
if the running time never exceeds c g(N) for some positive constant c. An
algorithm is a polynomial algorithm if g(N) is a polynomial in N .

There are many interesting algorithmic problems concerning graphs for
which no polynomial algorithm are known. Many of those problems belong to
the class of NP-complete problems. For a detailed introduction to the class of
NP-complete problems, see [80].

A problem is a decision problem if it requires the answer “yes” or “no”.
A problem is understood as a family of instances. For example, we consider
the Hamilton cycle problem: given a graph, decide whether or not it has a
Hamilton cycle. Every graph provides an instance of this problem.

A decision problem S belongs to the complexity class P if and only if there
exists a polynomial algorithm which, given any instance of S, produces answer
“yes” or “no” such that the answer of the algorithm on input x is “yes” if and
only if x is a “yes” instance for S.

A decision problem belongs to the complexity class NP if, for every “yes”
instance of the problem, there exists a short “proof”, called a certificate, of
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polynomial size such that, using the certificate, one can verify in polynomial
time that the instance is indeed a “yes” instance.

Given a pair of decision problems S and T , we say that S is polynomially
reducible to T if there is a polynomial algorithmA that transforms an instance
x of S into an instance A(x) of T such that the second instance has the same
answer as the first one. That is, x is a “yes” instance of S if and only if A(x)
is a “yes” instance of T .

A decision problem is NP-hard if all problems in NP can be polynomially
reduced this problem. If the problem is NP-hard and also belongs to NP then
it is NP-complete. Polynomial transformations are transitive. Hence, in order
to prove that a problem W is NP-hard, it is sufficient to prove that there is
some NP-complete problem which is polynomial reducible to W .
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Fig. 3.2. Laplacian L, λ2 = 2
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rounded to 3 digits).
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List of Symbols

R set of real numbers
R

n real vector space of dimension n
S

n−1 unit sphere in R
n

|S| cardinality of set S
S⊥ orthogonal complement of set S ⊂ R

〈x,y〉 scalar product of vectors x and y
G(V,E) graph with vertex set V and edge set E
V (G) vertex set of G
n number of vertices (n = |V |)
V ◦, ∂V set of interior and boundary vertices of graph G with boundary
E(G) edge set of graph G
m number of vertices (m = |E|)
E◦, ∂E set of interior and boundary edges of graph G with boundary
d(v) degree of vertex v
uv edge with incident vertices u and v
y ∼ x y is adjacent to x (and vice versa)
G geometric realization of graph G
dist(u, v) geodesic distance between u, v ∈ G
h(v) height of a vertex v in rooted tree
Br(w, v) branch of a tree spanned by edge wv
B(x, r) ball in G with center x a radius r
Aut(G) automorphism group of graph G
G[U ] induced subgraph of G with vertex set U
Gc complement of graph G
G− e deletion of edge e
G− v deletion of vertex v
G/e contraction of edge e
G{W} reduced graph
G�H Cartesian product of two graphs G and H
G+H disjoint union of two graphs G and H
G ∗H join of two graphs G and H
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Kn complete graph with n vertices
Kn1,...,nk

complete k-partite graph
Kd

2 d-dimensional hypercube
Pk path with k vertices
∇ incidence matrix of a graph of dimension |E| × |V |
A(G) adjacency matrix of graph G
D(G) degree matrix of graph G
L(G) Laplacian of graph G
Lw(G) Laplacian of a weighted graph G with weights w
L◦(G) Dirichlet matrix of graph G with boundary
M(G) generalized Laplacian of graph G
A, L, M respective shorthand for adjacency matrix, graph Laplacian, and

generalized graph Laplacian, when graph is clear from context
λi i-th eigenvalue of (generalized) graph Laplacian L (or M)
Eλ eigenspace of eigenvalue λ
λ◦(G) lowest Dirichlet eigenvalue of graph G
S(f) number of strong nodal domains of function f
W(f) number of weak nodal domains of function f
A⊗B Kronecker product of two matrices A and B
I identity matrix
J matrix of all ones
ρ(A) spectral radius of matrix A
ϕI(v) Walsh function
O(·) Landau symbol
F0 set of all functions f on vertex set V = V ◦∪ ∂V with f |∂V = 0
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de planarité. J. Comb. Theory, Ser. B, 50:11–21, 1990.

[39] Y. Colin de Verdière. Multiplicités des valeurs propres Laplaciens dis-
crets et laplaciens continus. Rendiconti di Matematica, 13:433–460,
1993. (French).

[40] Y. Colin de Verdière. On a new graph invariant and a criterion for
planarity. In Graph Structure Theory, volume 147 of Contemporary
Mathematics, pages 137–147. Amercian Mathematical Society, 1993.

[41] Y. Colin de Verdière. Spectres de Graphes. Number 4 in Cours
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[45] D. M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs – Theory
and Applications, volume New York. Academic Press, 1980.
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[87] A. Graovac, D. Plavšić, M. Kaufman, T. Pisanski, and E. C. Kirby.
Application of the adjacency matrix eigenvectors method to geometry
determination of toroidal carbon molecules. J. Chem. Phys., 113:1925–
1931, 2000.

[88] R. Grone, R. Merris, and V. Sunder. The Laplacian spectrum of a graph.
SIAM J. Matrix Anal. Appl., 11:218–238, 1990.
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