
http://www.cambridge.org/9780521816694


This page intentionally left blank



CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS 78

EDITORIAL BOARD
B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN,
P. SARNAK

Completely Bounded Maps and Operator Algebras

In this book the reader is provided with a tour of the principal results and
ideas in the theories of completely positive maps, completely bounded maps,
dilation theory, operator spaces, and operator algebras, together with some of
their main applications.

The author assumes only that the reader has a basic background in functional
analysis and C∗-algebras, and the presentation is self-contained and paced
appropriately for graduate students new to the subject. The book could be
used as a text for a course or for independent reading; with this in mind, many
exercises are included. Experts will also want this book for their library, since
the author presents new and simpler proofs of some of the major results in the
area, and many applications are also included.

This will be an indispensable introduction to the theory of operator spaces
for all who want to know more.



Already published

2 K. Petersen Ergodic theory
3 P.T. Johnstone Stone spaces
5 J.-P. Kahane Some random series of functions, 2nd edition
7 J. Lambek & P.J. Scott Introduction to higher-order categorical logic
8 H. Matsumura Commutative ring theory
9 C.B. Thomas Characteristic classes and the cohomology of finite groups
10 M. Aschbacher Finite group theory
11 J.L. Alperin Local representation theory
12 P. Koosis The logarithmic integral I
14 S.J. Patterson An introduction to the theory of the Riemann zeta-function
15 H.J. Baues Algebraic homotopy
16 V.S. Varadarajan Introduction to harmonic analysis on semisimple Lie groups
17 W. Dicks & M. Dunwoody Groups acting on graphs
18 L.J. Corwin & F.P. Greenleaf Representations of nilpotent Lie groups and their applications
19 R. Fritsch & R. Piccinini Cellular structures in topology
20 H. Klingen Introductory lectures on Siegel modular forms
21 P. Koosis The logarithmic integral II
22 M.J. Collins Representations and characters of finite groups
24 H. Kunita Stochastic flows and stochastic differential equations
25 P. Wojtaszczyk Banach spaces for analysts
26 J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in harmonic analysis
27 A. Frohlich & M.J. Taylor Algebraic number theory
28 K. Goebel & W.A. Kirk Topics in metric fixed point theory
29 J.F. Humphreys Reflection groups and Coxeter groups
30 D.J. Benson Representations and cohomology I
31 D.J. Benson Representations and cohomology II
32 C. Allday & V. Puppe Cohomological methods in transformation groups
33 C. Soule et al. Lectures on Arakelov geometry
34 A. Ambrosetti & G. Prodi A primer of nonlinear analysis
35 J. Palis & F. Takens Hyperbolicity, stability and chaos at homoclinic bifurcations
37 Y. Meyer Wavelets and operators 1
38 C. Weibel An introduction to homological algebra
39 W. Bruns & J. Herzog Cohen-Macaulay rings
40 V. Snaith Explicit Brauer induction
41 G. Laumon Cohomology of Drinfeld modular varieties I
42 E.B. Davies Spectral theory and differential operators
43 J. Diestel, H. Jarchow, & A. Tonge Absolutely summing operators
44 P. Mattila Geometry of sets and measures in Euclidean spaces
45 R. Pinsky Positive harmonic functions and diffusion
46 G. Tenenbaum Introduction to analytic and probabilistic number theory
47 C. Peskine An algebraic introduction to complex projective geometry
48 Y. Meyer & R. Coifman Wavelets
49 R. Stanley Enumerative combinatorics I
50 I. Porteous Clifford algebras and the classical groups
51 M. Audin Spinning tops
52 V. Jurdjevic Geometric control theory
53 H. Volklein Groups as Galois groups
54 J. Le Potier Lectures on vector bundles
55 D. Bump Automorphic forms and representations
56 G. Laumon Cohomology of Drinfeld modular varieties II
57 D. M. Clark & B. A. Davey Natural dualities for the working algebraist
58 J. McCleary A user’s guide to spectral sequences II
59 P. Taylor Practical foundations of mathematics
60 M.P. Brodmann & R.Y. Sharp Local cohomology
61 J.D. Dixon et al. Analytic pro-P groups
62 R. Stanley Enumerative combinatorics II
63 R. M. Dudley Uniform central limit theorems
64 J. Jost & X. Li-Jost Calculus of variations
65 A.J. Berrick & M.E. Keating An introduction to rings and modules
66 S. Morosawa Holomorphic dynamics
67 A.J. Berrick & M.E. Keating Categories and modules with K-theory in view
68 K. Sato Levy processes and infinitely divisible distributions
69 H. Hida Modular forms and Galois cohomology
70 R. Iorio & V. Iorio Fourier analysis and partial differential equations
71 R. Blei Analysis in integer and fractional dimensions
72 F. Borceaux & G. Janelidze Galois theories
73 B. Bollobas Random graphs



COMPLETELY BOUNDED MAPS
AND OPERATOR ALGEBRAS

VERN PAULSEN
University of Houston



  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , United Kingdom

First published in print format 

isbn-13   978-0-521-81669-4  hardback

isbn-13   978-0-511-06103-5 eBook (NetLibrary)

© Vern Paulsen 2002

2003

Information on this title: www.cambridge.org/9780521816694

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10   0-511-06103-X eBook (NetLibrary)

isbn-10   0-521-81669-6  hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

-

-

-

-









http://www.cambridge.org
http://www.cambridge.org/9780521816694


To John, Ival, Effie, Susan, Stephen and Lisa.
My past, present and future.





Contents

Preface page ix
1 Introduction 1
2 Positive Maps 9
3 Completely Positive Maps 26
4 Dilation Theorems 43
5 Commuting Contractions on Hilbert Space 58
6 Completely Positive Maps into Mn 73
7 Arveson’s Extension Theorems 84
8 Completely Bounded Maps 97
9 Completely Bounded Homomorphisms 120
10 Polynomially Bounded and Power-Bounded Operators 135
11 Applications to K -Spectral Sets 150
12 Tensor Products and Joint Spectral Sets 159
13 Abstract Characterizations of Operator Systems

and Operator Spaces 175
14 An Operator Space Bestiary 186
15 Injective Envelopes 206
16 Abstract Operator Algebras 225
17 Completely Bounded Multilinear Maps and the Haagerup

Tensor Norm 239
18 Universal Operator Algebras and Factorization 260
19 Similarity and Factorization 273

Bibliography 285
Index 297

vii





Preface

This book is intended to give the reader an introduction to the principal results
and ideas in the theories of completely positive maps, completely bounded
maps, dilation theory, operator spaces, and operator algebras, together with
someof theirmain applications. It is intended to be self-contained and accessible
to any reader who has had a first course in functional analysis that included an
introduction to C∗-algebras. It could be used as a text for a course or for inde-
pendent reading. With this in mind, we have included plenty of exercises.
We have made no attempt at giving a full state-of-the-art exposition of any

of these fields. Instead, we have tried to give the reader an introduction to many
of the important techniques and results of these fields, together with a feel for
their connections and some of the important applications of the ideas. However,
we present new proofs and approaches to some of the well-known results in
this area, which should make this book of interest to the expert in this area as
well as to the beginner.
The quickest route to a result is often not themost illuminating. Consequently,

we occasionally present more than one proof of some results. For example,
scattered throughout the text and exercises are five different proofs of a key
inequality of von Neumann. We feel that such redundancy can lead to a deeper
understanding of the material.
In an effort to establish a common core of knowledge that we can assume

the reader is familiar with, we have adopted R.G. Douglas’s Banach Algebra
Techniques in Operator Theory as a basic text. Results that appear in that text
we have assumed are known, and we have attempted to give a full accounting of
all other facts by either presenting them, leaving them as an exercise, or giving
a reference. Consequently, parts of the text may seem unnecessarily elementary
to some readers. For example, readers with a background in Banach spaces or
C∗-algebras may find our discussions of the tensor theory a bit naı̈ve.

We now turn our attention to a description of the contents of this book.

ix



x Preface

The first seven chapters develop the theory of positive and completely pos-
itive maps together with their connections with dilation theory. Dilations are
a technique for studying operators on a Hilbert space by representing a given
operator as the restriction of a (hopefully) better-understood operator, acting on
a larger Hilbert space, to the original space. The operator on the larger space is
referred to as a dilation of the original operator. Thus, dilation theory involves
essentially geometric constructions. We shall see that many of the classic theo-
rems that characterize which sequences of complex numbers are the moments
of a measure are really dilation theorems.
One of the better-known dilation theorems is due to Sz.-Nagy and asserts that

every contraction operator can be dilated to a unitary operator. Thus to prove
some results about contraction operators it is enough to show that they are true
for unitary operators. The most famous application of this idea is Sz.-Nagy’s
elegant proof of an inequality of von Neumann to the effect that the norm of a
polynomial in a contraction operator is at most the supremum of the absolute
value of the polynomial over the unit disk.
Ando generalized Sz.-Nagy’s and von Neumann’s results to pairs of com-

muting contractions, but various analogues of these theorems are known to fail
for three or more commuting contractions. Work of Sarason and of Sz.-Nagy
and Foias showed that many classical results about analytic functions, including
the Nevanlinna–Pick theory, Nehari’s theorem, and Caratheodory’s completion
theorem are consequences of these results about contraction operators. Thus,
one finds that there is an operator-theoretic obstruction to generalizing many of
these classic results. These results are the focus of Chapter 5.
W.F. Stinespring introduced the theory of completely positive maps as a

means of giving abstract necessary and sufficient conditions for the existence
of dilations. In many ways completely positive maps play the same role as posi-
tive measures when commutativeC∗-algebras are replaced by noncommutative
C∗-algebras. The connections between completely positive maps and dilation
theory were broadened further by Arveson, who developed a deep structure
theory for these maps, including an operator-valued Hahn–Banach extension
theorem.
Completely positivemaps also play a central role in the theory of tensor prod-

ucts of C∗-algebras. Characterizations of nuclear C∗-algebras and injectivity
are given in terms of these maps. In noncommutative harmonic analysis they
arise in the guise of positive definite operator-valued functions on groups.
In spite of the broad range of applications of completely positive maps, this

text is one of the few placeswhere one can find a full introduction to their theory.
In the early 1980s, motivated largely by the work ofWittstock and Haagerup,

researchers began extending much of the theory of completely positive maps to
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the family of completely bounded maps. To the extent that completely positive
maps are the analogue of positive measures, completely bounded maps are the
analogue of bounded measures.
This newer family of maps also allows for the development of a theory that

ties together many questions about the existence or nonexistence of similarities
or what are sometimes referred to as skew dilations. Two famous problems of
this type are Kadison’s andHalmos’s similarity conjectures. The theory of com-
pletely boundedmaps has had an enormous impact on both of these conjectures.
Kadison conjectured that every bounded homomorphism of a C∗-algebra into
the algebra of operators on a Hilbert space is similar to a ∗-homomorphism.
Halmos conjectured that every polynomially bounded operator is similar to a
contraction.
In Chapters 8 and 9, we develop the basic theory of completely bounded

maps and their connections with similarity questions.
In Chapter 10 we study polynomially bounded operators and present Pisier’s

counterexample to the Halmos conjecture. TheKadison conjecture still remains
unresolved at the time of this writing, but in Chapter 19 we present Pisier’s
theory of similarity and factorization degrees, which we believe is the most
hopeful route towards a solution of the Kadison conjecture.
Attempts to generalize vonNeumann’s results and the theory of polynomially

bounded operators to domains other than the unit disk led to the concepts
of spectral and K -spectral sets. We study the applications of the theory of
completely bounded maps to these ideas in Chapter 11.
In Chapter 12 we get our first introduction to tensor theory in order to further

develop some of the multivariable analogues of von Neumann’s inequality.
In order to discuss completely positive or completely boundedmaps between

two spaces, the domains and ranges of thesemaps need to bewhat is known as an
operator system or operator space, respectively. Such spaces arise naturally as
subspaces of the space of bounded operators on a Hilbert space, and this is how
operator systems and operator spaces were originally defined. However, results
of Choi and Effros and of Ruan gave abstract characterizations of operator
systems and operator spaces that enabled researchers to treat their theory and the
corresponding theories of completely positive and completely bounded maps
in a way that was free of dependence on this underlying Hilbert space.
These abstract characterizations have had an impact on this field similar to

the impact that the Gelfand–Naimark–Segal theorem has had on the study of
C∗-algebras. These characterizations have also allowed for the development of
many parallels with ideas from the theory of Banach spaces and bounded linear
maps, which have in turn led to a deeper understanding of many results in the
theory of C∗-algebras and von Neumann algebras.
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Wepresent these characterizations inChapter 13 andgive aquick introduction
to the rapidly growing field of operator spaces in Chapter 14, wherewe carefully
examine some of the more important examples of operator spaces.
The abstract characterization of operator spaces led to the Blecher–Ruan–

Sinclair abstract characterization of operator algebras. The last chapters of this
book are devoted to a development of this theory and some of its applications.
We give two separate developments of the Blecher–Ruan–Sinclair theory.

First, we present a new proof based on Hamana’s theory of injective envelopes,
which we develop in Chapters 15 and 16. We then develop the theory of the
Haagerup tensor product and the representation theorems for multilinear maps
that are completely bounded in the sense of Christensen and Sinclair, and give
a proof of the Blecher–Ruan–Sinclair theorem based on this theory. Our de-
velopment of the Haagerup tensor theory also uses the theory of the injective
envelope in a novel fashion.
The remaining two chapters of the book develop some applications of the

Blecher–Ruan–Sinclair theorem. First, we develop the theory of the universal
operator algebra of a unital algebra and its applications, including new proofs
of Nevanlinna’s factorization theorem for analytic functions on the disk and
Agler’s generalization of Nevanlinna’s theorem to analytic functions on the
bidisk. Finally, in the last chapter, we present Pisier’s theory of the universal
operator algebra of an operator space, his results on similarity and factorization
degree, and their applications to Kadison’s similarity conjecture.
This book grew out of my earlier lecture notes on completely positive and

completely bounded maps [161], that have been out-of-print for over a decade.
I would like to acknowledge all the friends and colleagues who have helped

to make this book possible. David Blecher, Ken Davidson, Gilles Pisier,
and Roger Smith have been tremendous sources of information and ideas.
The reader should be grateful to Aristides Katavolos, whose proofreading
of selected chapters led to a further polishing of the entire manuscript. Ron
Douglas has been a constant source of support throughout my academic career
and provided the original impetus to write this book. The author would also
like to thank the Mathematics Department at Rice University where portions
of this book were written, Roger Astley of Cambridge University Press for
his support and advice, the proofreaders at TechBooks for making many of
my thoughts flow smoother without altering their mathematical content, and
Robin Campbell who typed nearly the entire manuscript and contributed much
to its overall look. Finally, without my family’s patience and endurance this
project would have not been possible.
Whilewriting this book Iwas partially supported by a grant from theNational

Science Foundation.



Chapter 1
Introduction

It is assumed throughout this book that the reader is familiar with operator
theory and the basic properties of C∗-algebras (see for example [76] and
[8, Chapter 1]). We concentrate primarily on giving a self-contained exposition
of the theory of completely positive and completely bounded maps between
C∗-algebras and the applications of these maps to the study of operator alge-
bras, similarity questions, and dilation theory. In particular, we assume that the
reader is familiar with the material necessary for the Gelfand–Naimark–Segal
theorem, which states that every C∗-algebra has a one-to-one, ∗-preserving,
norm-preserving representation as a norm-closed, ∗-closed algebra of opera-
tors on a Hilbert space.
In this chapter we introduce some of the key concepts that will be studied in

this book.
As well as having a norm, a C∗-algebra also has an order structure, induced

by the cone of positive elements. Recall that an element of a C∗-algebra is
positive if and only if it is self-adjoint and its spectrum is contained in the
nonnegative reals, or equivalently, if it is of the form a∗a for some element a.
Since the property of being positive is preserved by ∗-isomorphism, if a C∗-
algebra is represented as an algebra of operators on a Hilbert space, then the
positive elements of theC∗-algebra coincide with the positive operators that are
contained in the representation of the algebra. An equivalent characterization
of positivity for an operator on a Hilbert space is that A is a positive operator
provided that the inner product 〈Ax, x〉 is nonnegative for every vector x in the
space. We shall write a ≥ 0 to denote that a is positive.
The positive elements in a C∗-algebra A are a norm-closed, convex cone in

the C∗-algebra, denoted by A+. If h is a self-adjoint element, then it is easy to
see, via the functional calculus, that h is the difference of two positive elements.

1
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Indeed, if we let

f +(x) =
{
x, x ≥ 0,
0, x < 0,

f −(x) =
{

0, x ≥ 0,
−x, x < 0,

then using the functional calculuswe have that h = f +(h)− f −(h), with f +(h)
and f −(h) both positive. In particular, we see that the real linear span of the
positive elements is the set of self-adjoint elements, which is also norm-closed.
Using the Cartesian decomposition of an arbitrary element a of A, namely,

a = h + ik with h = h∗, k = k∗, we see that

a = (p1 − p2)+ i(p3 − p4),

with pi positive, i = 1, 2, 3, 4. Thus, the complex linear span of A+ is A.
In addition to having its own norm and order structure, a C∗-algebra is also

equipped with a whole sequence of norms and order structures on a set of
C∗-algebras naturally associated with the original algebra, and this additional
structure will play a central role in this book.
To see how to obtain this additional structure, let A be our C∗-algebra, let

Mn denote the n × n complex matrices, and let Mn(A) denote the set of n × n
matrices with entries fromA.We’ll denote a typical element ofMn(A) by (ai, j ).
There is a natural way to make Mn(A) into a ∗-algebra. Namely, for (ai, j )

and (bi, j ) in Mn(A), set

(ai, j ) · (bi, j ) =
(

n∑
k=1

ai,kbk, j

)

and

(ai, j )
∗ = (a∗

j,i ).

What is not so obvious is that there is a unique way to introduce a norm such
that Mn(A) becomes a C∗-algebra.
To see how this is done, we begin with the most basic of all C∗-algebras,

B(H), the bounded linear operators on a Hilbert spaceH.
If we let H(n) denote the direct sum of n copies ofH, then there is a natural

norm and inner product onH(n) that makes it into a Hilbert space. Namely,

∥∥∥∥∥∥∥



h1
...
hn




∥∥∥∥∥∥∥
2

= ‖h1‖2 + · · · + ‖hn‖2
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and 〈


h1
...
hn


,




k1,
...
kn




〉
H(n)

= 〈h1, k1〉H + · · · + 〈hn, kn〉H,

where 


h1
...
hn


 and




k1
...
kn




are inH(n). This Hilbert space is also often denoted �2n(H). We prefer to regard
elements of H(n) as column vectors, for reasons that will become apparent
shortly.
There is a natural way to regard an element of Mn(B(H)) as a linear map on

H(n), by using the ordinary rules for matrix products. That is, we set

(Ti j )




h1
...
hn


 =




n∑
j=1

T1 j h j

...
n∑

j=1
Tnj h j


 ,

for (Ti j ) in Mn(B(H)) and
(

h1...
hn

)
in H(n). It is easily checked (Exercise 1.1)

that every element of Mn(B(H)) defines a bounded linear operator onH(n) and
that this correspondence yields a one-to-one ∗-isomorphism of Mn(B(H)) onto
B(H(n)) (Exercise 1.2). Thus, the identification Mn(B(H)) = B(H(n)) gives us
a norm that makes Mn(B(H)) a C∗-algebra.
Now, given any C∗-algebra A, one way that Mn(A) can be viewed as a C∗-

algebra is to first choose a one-to-one ∗-representation of A on some Hilbert
space H so that A can be identified as a C∗-subalgebra of B(H). This allows
us to identify Mn(A) as a ∗-subalgebra of Mn(B(H)). It is straightforward to
verify that the image of Mn(A) under this representation is closed and hence a
C∗-algebra.
Thus, by using a one-to-one *-representation of A, we have a way to turn

Mn(A) into a C∗-algebra. But since the norm is unique on a C∗-algebra, we see
that the norm on Mn(A) defined in this fashion is independent of the particular
representation of A that we chose. Since positive elements remain positive
under ∗-isomorphisms, we see that the positive elements of Mn(A) are also
uniquely determined.
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So we see that in addition to having a norm and an order, every C∗-algebra
A carries along this extra “baggage” of canonically defined norms and orders
on each Mn(A). Remarkably, keeping track of how this extra structure behaves
yields far more information than one might expect. The study of these matrix
norms and matrix orders will be a central topic of this book.
For some examples of this structure, we first consider Mk . We can regard

this as a C∗-algebra by identifying Mk with the linear transformations on k-
dimensional (complex) Hilbert space, C

k . There is a natural way to identify
Mn(Mk) with Mnk , namely, forget the additional parentheses. It is easy to see
that, with this identification, the multiplication and ∗-operation on Mn(Mk) be-
come the usual multiplication and ∗-operation on Mnk , that is, the identification
defines a ∗-isomorphism. Hence, the unique norm on Mn(Mk) is just the norm
obtained by this identification withMnk . An element ofMn(Mk) will be positive
if and only if the corresponding matrix in Mnk is positive.
For a second example, let X be a compact Hausdorff space, and let C(X )

denote the continuous complex-valued functions on X . Setting f ∗(x) = f (x),
we have

‖ f ‖ = sup{| f (x)|: x ∈ X},
and defining the algebra operations pointwise makes C(X ) into a C∗-algebra.
An element F = ( fi, j ) of Mn(C(X )) can be thought of as a continuous Mn-
valued function. Note that addition, multiplication, and the ∗-operation in
Mn(C(X )) are just the pointwise addition, pointwise multiplication, and point-
wise conjugate-transpose operations of these matrix-valued functions. If we
set

‖F‖ = sup{‖F(x)‖: x ∈ X},
where by ‖F(x)‖wemean the norm inMn , then it is easily seen that this defines
a C∗-norm on Mn(C(X )), and thus is the unique norm in which Mn(C(X )) is a
C∗-algebra. Note that the positive elements of Mn(C(X )) are those F for which
F(x) is a positive matrix for all x .
Now, given two C∗-algebras A and B and a map φ: A → B, we also obtain

maps φn: Mn(A) → Mn(B) via the formula
φn((ai, j )) = (φ(ai, j )).

In general the adverb completely means that all of the maps {φn} enjoy some
property.
For example, the map φ is called positive if it maps positive elements of A

to positive elements of B, and φ is called completely positive if every φn is a
positive map.
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In a similar fashion, if φ is a bounded map, then each φn will be bounded,
and when ‖φ‖cb = supn‖φn‖ is finite, we call φ a completely bounded map.
One’s initial hope is perhaps that C∗-algebras are sufficiently nice that every

positive map is completely positive and every bounded map is completely
bounded. Indeed, onemight expect that ‖φ‖ = ‖φn‖ for all n. For these reasons,
we begin with an example of a fairly nice map where those norms are different.
Let {Ei, j }2i, j=1 denote the system of matrix units for M2 [that is, Ei, j is 1 in

the (i, j)th entry and 0 elsewhere], and let φ: M2 → M2 be the transpose map,
so that φ(Ei, j ) = E j,i . It is easy to verify (Exercise 1.9) that the transpose of
a positive matrix is positive and that the norm of the transpose of a matrix is
the same as the norm of the matrix, so φ is positive and ‖φ‖ = 1. Now let’s
consider φ2: M2(M2) → M2(M2).
Note that the matrix of matrix units,

[
E11 E12
E21 E22

]
=



1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


,

is positive, but that

φ2

[[
E11 E12
E21 E22

]]
=

[
φ(E11) φ(E12)

φ(E21) φ(E22)

]
=



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




is not positive. Thus, φ is a positivemap but not completely positive. In a similar
fashion, we have that ∥∥∥∥∥

[
E11 E21
E12 E22

]∥∥∥∥∥ = 1,

while the norm of its image under φ2 has norm 2. Thus, ‖φ2‖ ≥ 2, so ‖φ2‖ �=
‖φ‖. It turns out that φ is completely bounded, in fact, supn‖φn‖ = 2, as we
shall see later in this book.
To obtain an example of a map that’s not completely bounded, we need to

repeat the above example but on an infinite-dimensional space. So let H be
a separable, infinite-dimensional Hilbert space with a countable, orthonormal
basis, {en}∞n=1. Every bounded, linear operator T on H can be thought of as
an infinite matrix whose (i, j)th entry is the inner product 〈T e j , ei 〉. One then
defines amapφ from theC∗-algebra of bounded linear operators onH, B(H), to
B(H) by the transpose. Again φ will be positive and an isometry (Exercise 1.9),
but ‖φn‖ ≥ n. To see this last claim, let {Ei, j }∞i, j=1 be matrix units on H, and
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for fixed n, let A = (E j,i ), that is, A is the element of Mn(B(H)) whose (i, j)th
entry is E j,i . We leave it to the reader to verify that ‖A‖ = 1 (in fact, A is a
partial isometry), but ‖φn(A)‖ = n (Exercise 1.8).
There is an alternative approach to the above constructions, via tensor prod-

ucts. A reader familiar with tensor products has perhaps realized that the algebra
Mn(A) that we’ve defined is readily identified with the tensor product algebra
Mn ⊗ A. Recall that one makes the tensor product of two algebras into an al-
gebra by defining (a1 ⊗ b1) · (a2 ⊗ b2) = (a1a2)⊗ (b1b2) and then extending
linearly. If {Ei, j }ni, j=1 denotes the canonical basis for Mn , then an element (ai, j )
in Mn(A) can be identified with

∑n
i, j=1 ai, j ⊗ Ei, j in Mn ⊗ A. We leave it

to the reader to verify (Exercise 1.10) that with this identification of Mn(A)
and Mn ⊗ A, the multiplication defined on Mn(A) becomes the tensor product
multiplication on Mn ⊗ A. Thus, this identification is an isomorphism of these
algebras.
We shall on occasion return to this tensor product notation to simplify

concepts.
Now that the reader has been introduced to the concepts of completely posi-

tive and completely bounded maps, we turn to the topic of dilations.
In general, the key idea behind a dilation is to realize an operator or amapping

into a space of operators as “part” of something simpler on a larger space.
The simplest case is the unitary dilation of an isometry. Let V be an isometry

on H, and let P = IH − VV ∗ be the projection onto the orthocomplement of
the range of V . If we define U onH ⊕ H = K via

U =
(
V P

0 V ∗

)
,

then it is easily checked that U ∗U = UU ∗ = IK, so that U is a unitary on K.
Moreover, if we identifyH withH ⊕ 0, then

V n = PHUn|H for all n ≥ 0.

Thus, any isometry V can be realized as the restriction of some unitary to one
of its subspaces in a manner that also respects the powers of both operators.
In a similar fashion, one can construct an isometric dilation of a contraction.

Let T be an operator on H, ‖T ‖ ≤ 1, and let DT = (I − T ∗T )1/2. Note that
‖Th‖2 + ‖DT h‖2 = 〈T ∗Th, h〉 + 〈D2

T h, h〉 = ‖h‖2.
We set

�2(H) =
{
(h1, h2, . . . ): hn ∈ H for all n,

∞∑
n=1

‖hn‖2 < +∞
}

.
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This is a Hilbert space with ‖(h1, h2, . . . )‖2 = ∑∞
n=1‖hn‖2, and inner product

〈(h1, h2, . . . ), (k1, k2, . . . )〉 = ∑∞
n=1〈hn, kn〉.

We define V : �2(H) → �2(H) via V ((h1, h2, . . . )) = (Th1, DT h1, h2, . . . ).
Since ‖V ((h1, h2, . . . ))‖2 = ‖Th1‖2 + ‖DT h1‖2 + ‖h2‖2 + · · · = ‖(h1, h2,
. . . )‖2, V is an isometry on �2(H). If we identify H with H ⊕ 0⊕ · · · , then it
is clear that T n = PHV n|H for all n ≥ 0.
Combining these two constructions yields the unitary dilation of a contrac-

tion.

Theorem 1.1 (Sz.-Nagy’s dilation theorem). Let T be a contraction operator
on a Hilbert space H. Then there is a Hilbert space K containing H as a
subspace and a unitary operator U on K such that

T n = PHUn|H.

Proof. Let K = �2(H)⊕ �2(H), and identify H with (H ⊕ 0⊕ · · · )⊕ 0. Let
V be the isometric dilation of T on �2(H), and letU be the unitary dilation of V
on �2(H)⊕ �2(H). SinceH ⊆ �2(H)⊕ 0, we have that PHUn|H = PHV n|H =
T n for all n ≥ 0. �

Whenever Y is an operator on a Hilbert space K,H is a subspace of K, and
X = PHY |H, then we call X a compression of Y .
There is a certain sense in which a “minimal” unitary dilation can be chosen,

and this dilation is in some sense unique. We shall not need these facts now, but
shall return to them in Chapter 4.
To see the power of this simple geometric construction, we now give

Sz.-Nagy’s proof of an inequality due to von Neumann.

Corollary 1.2 (von Neumann’s inequality). Let T be a contraction on a
Hilbert space. Then for any polynomial p,

‖p(T )‖ ≤ sup{|p(z)|: |z| ≤ 1}.

Proof. Let U be a unitary dilation of T . Since T n = PHUn|H for all n ≥ 0,
it follows, by taking linear combinations, that p(T ) = PH p(U )|H, and
hence ‖p(T )‖ ≤ ‖p(U )‖. Since unitaries are normal operators, we have that
‖p(U )‖ = sup{|p(λ)|: λ ∈ σ (U )}, where σ (U ) denotes the spectrum of U .
Finally, since U is unitary, σ (U ) is contained in the unit circle and the result
follows. �
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In Chapter 2, we will give another proof of von Neumann’s inequality, using
some facts about positivemaps, and then in Chapter 4wewill obtain Sz.-Nagy’s
dilation theorem as a consequence of von Neumann’s inequality.

Exercises

1.1 Let (Ti j ) be in Mn(B(H)). Verify that the linear transformation it defines
onH(n) is bounded and that, in fact, ‖(Ti j )‖ ≤ (

∑n
i, j=1 ‖Ti j‖2)1/2.

1.2 Let π : Mn(B(H)) → B(H(n)) be the identification given in the text.
(i) Verify that π is a one-to-one ∗-homomorphism.
(ii) Let E j :H → H(n) be the map defined by setting E j (h) equal to the

vector that has h for its j th component and is 0 elsewhere. Show
that E∗

j : H(n) → H is the map that sends a vector in H(n) to its j th
component.

(iii) Given T ∈ B(H(n)), set Ti j = E∗
i T E j . Show that π ((Ti j )) = T and

that consequently π is onto.
1.3 Let (Ti j ) be in Mn(B(H)). Prove that (Ti j ) is a contraction if and only if

for every choice of 2n unit vectors x1, . . . , xn, y1, . . . , yn inH, the scalar
matrix (〈Ti j x j , yi 〉) is a contraction.

1.4 Let (Ti j ) be in Mn(B(H)). Prove that (Ti j ) is positive if and only if for
every choice of n vectors x1, . . . , xn in H the scalar matrix (〈Ti j x j , xi 〉)
is positive.

1.5 LetA andB be unitalC∗-algebras, and letπ :A → B be a ∗-homomorph-
ism with π (1) = 1. Show that π is completely positive and completely
bounded and that ‖π‖ = ‖πn‖ = ‖π‖cb = 1.

1.6 Let A,B, and C be C∗-algebras, and let φ: A → B and ψ : B → C be
(completely) positive maps. Show that ψ ◦ φ is (completely) positive.

1.7 Let {Ei, j }ni, j=1 be matrix units for Mn , let A = (E j,i )ni, j=1, and let B =
(Ei, j )ni, j=1 be in Mn(Mn). Show that A is unitary and that 1n B is a rank one
projection.

1.8 Let {Ei, j }∞i, j=1 be a system of matrix units for B(H), let A = (E j,i )ni, j=1,
and let B = (Ei, j )ni, j=1 be in Mn(B(H)). Show that A is a partial isometry,
and that 1n B is a projection. Show that φn(A) = B and ‖φn(A)‖ = n.

1.9 Let A be in Mn , and let At denote the transpose of A. Prove that A is
positive if and only if At is positive, and that ‖A‖ = ‖At‖. Prove that
these same results hold for operators on a separable, infinite-dimensional
Hilbert space, when we fix an orthonormal basis, regard operators as
infinite matrices, and use this to define a transpose map.

1.10 Prove that the map π : Mn(A) → Mn ⊗ A defined by π ((ai, j )) =∑n
i, j=1 ai, j ⊗ Ei, j is an algebra isomorphism.



Chapter 2
Positive Maps

Before turning our attention to the completely positive or completely bounded
maps,we beginwith some results on positivemaps thatwe shall need repeatedly.
These results also serve to illustrate how many simplifications arise when one
passes to the smaller class of completely positive maps.
If S is a subset of a C∗-algebra A, then we set

S∗ = {a: a∗ ∈ S},
and we call S self-adjoint when S = S∗. If A has a unit 1 and S is a self-
adjoint subspace of A containing 1, then we call S an operator system. If S
is an operator system and h is a self-adjoint element of S, then even though
f +(h) and f −(h) need not belong to S (since these only belong to the norm-
closed algebra generated by h), we can still write h as the difference of two
positive elements in S. Indeed,

h = 1

2
(‖h‖ · 1 + h) − 1

2
(‖h‖ · 1 − h).

If S is an operator system, B is a C∗-algebra, and φ: S → B is a linear map,
then φ is called a positive map provided that it maps positive elements of S to
positive elements of B. In this chapter, we develop some of the properties of
positive maps. In particular, we shall be concerned with how the assumption of
positivity is related to the norm of the map, and conversely, when assumptions
about the norm of amap guarantee that it is positive.We give a fairly elementary
proof of von Neumann’s inequality (Corollary 2.7), which only uses these ob-
servations about positive maps and an elementary result from complex analysis
due to Fejer and Riesz.
If φ is a positive, linear functional on an operator system S, then it is easy

to show that ‖φ‖ = φ(1) (Exercise 2.3). When the range is a C∗-algebra the
situation is quite different.

9
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Proposition 2.1. Let S be an operator system, and let B be a C∗-algebra. If
φ: S → B is a positive map, then φ is bounded and

‖φ‖ ≤ 2‖φ(1)‖.

Proof. First note that if p is positive, then 0 ≤ p ≤ ‖p‖ · 1 and so 0 ≤ φ(p) ≤
‖p‖ · φ(1), from which it follows that ‖φ(p)‖ ≤ ‖p‖ · ‖φ(1)‖ when p ≥ 0.

Next note that if p1 and p2 are positive, then ‖p1 − p2‖ ≤ max{‖p1‖, ‖p2‖}.
If h is self-adjoint in S, then using the above decomposition of h, we have

φ(h) = 1

2
φ(‖h‖ · 1 + h) − 1

2
φ(‖h‖ · 1 − h),

which expresses φ(h) as a difference of two positive elements of B. Thus,

‖φ(h)‖ ≤ 1

2
max{‖φ(‖h‖ · 1 + h)‖, ‖φ(‖h‖ · 1 − h)‖} ≤ ‖h‖ · ‖φ(1)‖.

Finally, if a is an arbitrary element of S, then a = h + ik with ‖h‖, ‖k‖ ≤
‖a‖, h = h∗, k = k∗, and so

‖φ(a)‖ ≤ ‖φ(h)‖ + ‖φ(k)‖ ≤ 2‖a‖ · ‖φ(1)‖. �

Let us reproduce an example of Arveson, which shows that 2 is the best
constant in Proposition 2.1.

Example 2.2. Let T denote the unit circle in the complex plane, C(T) the con-
tinuous functions on T, z the coordinate function, and S ⊆ C(T) the subspace
spanned by 1, z, and z̄.
We define φ: S → M2 by

φ(a + bz + cz̄) =
[

a 2b
2c a

]
.

We leave it to the reader to verify that an element a1 + bz + cz̄ of S is
positive if and only if c = b̄ and a ≥ 2|b|. It is fairly standard that a self-adjoint
element of M2 is positive if and only if its diagonal entries and its determinant
are nonnegative real numbers. Combining these two facts, it is clear that φ is a
positive map. However,

2‖φ(1)‖ = 2 = ‖φ(z)‖ ≤ ‖φ‖,
so that ‖φ‖ = 2‖φ(1)‖.

The existence of unital, positive maps that are not contractive can be roughly
attributed to two factors. One is the noncommutativity of the range, the other
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is the lack of sufficiently many positive elements in the domain. This first
principle is illustrated in the exercises, and we concentrate here on properties
of the domain that ensure that unital, positive maps are contractive.

Lemma 2.3. Let A be a C∗-algebra with unit, and let pi , i = 1, . . . , n, be
positive elements of A such that

n∑
i=1

pi ≤ 1.

If λi , i = 1, . . . , n, are scalars with |λi | ≤ 1, then∥∥∥∥∥
n∑

i=1

λi pi

∥∥∥∥∥ ≤ 1.

Proof. Note that




∑n
i=1 λi pi 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 =




p1/21 . . . p1/2n

0 . . . 0
...

...
0 . . . 0




×




λ1 0 . . . 0

0
. . .

. . .
......

. . .
. . . 0

0 . . . 0 λn


 ·




p1/21 0 . . . 0
...

...
...

p1/2n 0 . . . 0


 .

The norm of the matrix on the left is ‖ ∑n
i=1 λi pi‖, while each of the three

matrices on the right can be easily seen to have norm less than 1, by using the
fact that ‖a∗a‖ = ‖aa∗‖ = ‖a‖2. �

Theorem 2.4. Let B be a C∗-algebra with unit, let X be a compact Hausdorff
space, with C(X ) the continuous functions on X, and let φ: C(X ) → B be a
positive map. Then ‖φ‖ = ‖φ(1)‖.

Proof. By scaling, we may assume that φ(1) ≤ 1. Let f ∈ C(X ), ‖ f ‖ ≤ 1,
and let ε > 0 be given. First, we note that, by a standard partition-of-unity
argument, f may be approximated to within ε by a sum of the form given in
Lemma 2.3. To see this, first choose a finite open covering {Ui }ni=1 of X such that
| f (x) − f (xi )| < ε for x in Ui , and let {pi } be a partition of unity subordinate
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to the covering. That is, {pi } are nonnegative continuous functions satisfying∑n
i=1 pi = 1 and pi (x) = 0 for x /∈ Ui , i = 1, . . . , n. Set λi = f (xi ), and note

that if pi (x) �= 0 for some i , then x ∈ Ui and so | f (x) − λi | < ε. Hence, for
any x ,∣∣∣ f (x) −

∑
λi pi (x)

∣∣∣ =
∣∣∣∑( f (x) − λi )pi (x)

∣∣∣
≤

∑
| f (x) − λi |pi (x) <

∑
ε · pi (x) = ε.

Finally, by Lemma 2.3,
∥∥∑

λiφ(pi )
∥∥ ≤ 1, so that

‖φ( f )‖ ≤
∥∥∥φ

(
f −

∑
λi pi

)∥∥∥ +
∥∥∥∑

λiφ(pi )
∥∥∥ < 1 + ε · ‖φ‖,

and since ε was arbitrary, ‖φ‖ ≤ 1. �

As an application of Theorem 2.4, we now prove an inequality due to von
Neumann, which will be central to many later results. First we need a prelimi-
nary lemma.

Lemma 2.5 (Fejer–Riesz). Let τ (eiθ ) = ∑+N
n=−N aneinθ be a strictly positive

function on the unit circle T. Then there is a polynomial p(z) = ∑N
n=0 pnzn

such that

τ (eiθ ) = |p(eiθ )|2.

Proof. First note that since τ is real-valued, a−n = ān and a0 is real. We may
assume a−N �= 0. Set g(z) = ∑+N

n=−N anzn+N , so that g is a polynomial of de-
gree 2N with g(0) �= 0. We have g(eiθ ) = τ (eiθ ) · eiNθ �= 0. Notice that the
antisymmetry of the coefficients of g implies

g(1/z̄) = z−2N g(z).

This means that the 2N zeros of g may be written as z1, . . . , zN , 1/z̄1, . . . ,
1/z̄N .
We set q(z) = (z − z1) · · · (z − zN ), h(z) = (z − 1/z̄1) · · · (z − 1/z̄N ), and

have that

g(z) = aNq(z)h(z),

with

h(z) = (−1)N z̄Nq(1/z̄)

z1 · · · zN
.
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Thus,

τ (eiθ ) = e−i Nθg(eiθ ) = |g(eiθ )| = |aN | · |q(eiθ )| · |h(eiθ )|

=
∣∣∣∣ aN

z1 · · · zN

∣∣∣∣ · |q(eiθ )|2,

so that τ (eiθ ) = |p(eiθ )|2, where p(z) = | aN
z1···zN

|1/2q(z). �

Writing p(z) = α0 + · · · + αN zN , we see that τ (eiθ ) = ∑N
�,k=0 α�ᾱkei(�−k)θ ,

so that the coefficients of every strictly positive trigonometric polynomial have
this special form.
The above results can be shown to hold for positive trigonometric polynomi-

als as well as strictly positive trigonometric polynomials. To do this, one must
carefully examine the roots of the polynomial g that lie on the circle.

Theorem 2.6. Let T be an operator on a Hilbert space H with ‖T ‖ ≤ 1, and
let S ⊆ C(T) be the operator system defined by

S = {p(eiθ ) + q(eiθ ): p, q are polynomials}.
Then the map φ: S → B(H) defined by φ(p + q̄) = p(T ) + q(T )∗ is positive.

Proof. First, note that it is enough to prove thatφ(τ ) is positive for every strictly
positive τ . Indeed, if τ is only positive, then τ + ε1 is strictly positive for every
ε > 0, and hence we have φ(τ ) + ε I = φ(τ + ε1) ≥ 0 for every ε > 0, and
it follows that φ(τ ) ≥ 0. Let τ (eiθ ) be strictly positive in S, so that τ (eiθ ) =∑+n

�,k=0 α�ᾱkei(�−k)θ . We must prove that

φ(τ ) =
+n∑

�,k=0

α�ᾱkT (� − k)

is a positive operator, where we define

T ( j) =
{
T j , j ≥ 0,
T ∗− j , j < 0.

To this end, fix a vector x in our Hilbert spaceH and note that

〈φ(τ )x, x〉 =
〈


I T ∗ . . . T ∗n

T
. . .

. . .
...

...
. . .

. . . T ∗

T n . . . T I







ᾱ1x
...

ᾱnx







ᾱ1x
...

ᾱnx




〉
, (∗)
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where the matrix operator on the right is acting on the direct sum of n copies
of the Hilbert spaceH(n).

Thus, if we can show that the matrix operator is positive, we shall be done.
To this end, set

R =




0 . . . . . . . . . 0

T
. . .

...
0

. . .
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 T 0


 ,

and note that Rn+1 = 0, ‖R‖ ≤ 1.
Using I to also denote the identity operator on H(n), we see that the matrix

operator in (∗) can be written as

I + R + R2 + · · · + Rn + R∗ + · · · + R∗n = (I − R)−1 + (I − R∗)−1 − I.

To see that this latter operator is positive, fix h inH(n), and let h = (I − R)y
for y in H(n). One obtains

〈((I − R)−1 + (I − R∗)−1 − I )h, h〉
= 〈y, (I − R)y〉 + 〈(I − R)y, y〉 − 〈(I − R)y, (I − R)y〉
= ‖y‖2 − ‖Ry‖2 ≥ 0,

since R is a contraction. �

We can now give our second proof of von Neumann’s inequality.

Corollary 2.7 (vonNeumann’s Inequality). Let T be an operator on aHilbert
space with ‖T ‖ ≤ 1. Then for any polynomial p,

‖p(T )‖ ≤ ‖p‖,

where ‖p‖ = sup
θ

|p(eiθ )|.

Proof. Note that the operator system S defined in Theorem 2.6 is actually a
∗-algebra and separates points. Hence, by the Stone–Weierstrass theorem, S is
dense in C(T). By Proposition 2.1, the map φ is bounded and hence extends
to C(T). By Exercise 2.2, the extension will also be positive. Hence, φ is
contractive by Theorem 2.4, from which the result follows. �
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Excercises 2.15 and 2.16 present two other proofs of von Neumann’s in-
equality.
We let A(D) denote the functions that are analytic onD and continuous onD

−.

By themaximummodulus principle the supremumof such a function overD
− is

attained onT. Thus, we may regard A(D) as a closed subalgebra ofC(T). Since
the polynomials are dense in A(D), the above inequality guarantees that the
homomorphism p → p(T ) extends to a homomorphism of A(D), andwe denote
the image of an element f simply by f (T ), so that one has ‖ f (T )‖ ≤ ‖ f ‖ for
all f in A(D).
Another consequence of Theorem 2.6 that we shall frequently use is that if

a is an element of some unital C∗-algebra A, ‖a‖ ≤ 1, then there is a unital,
positive map φ: C(T) → A with φ(p) = p(a). This observation is used in the
following two results.

Corollary 2.8. Let B, C be C∗-algebras with unit, let A be a subalgebra
of B, 1 ∈ A, and let S = A + A∗. If φ: S → C is positive, then ‖φ(a)‖ ≤
‖φ(1)‖·‖a‖ for all a in A.

Proof. Let a be in A, ‖a‖ ≤ 1. By Proposition 2.1 and Exercise 2.2, we may
extend φ to a positive map on the closure S− of S. As remarked above, there
is a positive map ψ : C(T) → B with ψ(p) = p(a). Since A is an algebra, the
range of ψ is actually contained in S−.
Clearly, the composition of positive maps is positive, so by Theorem 2.4,

‖φ(a)‖ = ‖φ ◦ ψ(eiθ )‖ ≤ ‖φ ◦ ψ(1)‖·‖eiθ‖ = ‖φ(1)‖. �

If φ(1) = 1 in the above, then φ is a contraction on A. It is somewhat sur-
prising that φ need not be a contraction on all of S. We shall see an example of
this phenomenon in Chapter 5.

Corollary 2.9 (Russo–Dye). Let A and B be C∗-algebras with unit, and let
φ: A → B be a positive map. Then ‖φ‖ = ‖φ(1)‖.

Proof. Apply Corollary 2.8. �

So farwe have concentrated on positivemapswithout indicating howpositive
maps arise. We close this discussion with two such results.
Unlike our previous results, we shall see (Exercise 2.9) that the hypothesis

that our map is unital is crucial to the next three results.
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Lemma 2.10. LetA be a C∗-algebra, S ⊆ A an operator system, and f : S →
C a linear functional with f (1) = 1, ‖ f ‖ = 1. If a is a normal element of A
and a ∈ S, then f (a) will lie in the closed convex hull of the spectrum of a.

Proof. Suppose not. Note that the convex hull of a compact set is the intersec-
tion of all closed disks containing the set. Thus, there will exist a λ and r > 0
such that | f (a) − λ| > r , while the spectrum σ (a) of a satisfies

σ (a) ⊆ {z: |z − λ| ≤ r}.
But then σ (a − λ · 1) ⊆ {z: |z| ≤ r}, and since norm and spectral radius agree
for normal elements, ‖a − λ1‖ ≤ r , while | f (a − λ · 1)| > r . This contradic-
tion completes the proof. �

Since the convex hull of the spectrum of a positive operator is contained in
the nonnegative reals, we see that Lemma 2.10 implies that such an f must be
positive.

Proposition 2.11. Let S be an operator system, B a unital C∗-algebra, and
φ: S → B a unital contraction. Then φ is positive.

Proof. Since B can be represented on a Hilbert space, we may, without loss
of generality, assume that B = B(H) for some Hilbert space H. Fix x in
H, ‖x‖ = 1. Setting f (a) = 〈φ(a)x, x〉, we have that f (a) = 1, ‖ f ‖ ≤ ‖φ‖.
By Lemma 2.10, if a is positive, then f (a) is positive, and consequently, since
x was arbitrary, φ(a) is positive. �

Proposition 2.12. LetA be a unital C∗-algebra, and letM be a subspace ofA
containing 1. IfB is a unital C∗-algebra and φ:M → B is a unital contraction,
then the map φ̃:M + M∗ → B given by

φ̃(a + b∗) = φ(a) + φ(b)∗,

is well defined and is the unique positive extension of φ to M + M∗.

Proof. If φ does extend to a positive map φ̃, then by the self-adjointness of
positive maps (Exercise 2.1), φ̃ necessarily satisfies the above equation. So we
must prove that this formula yields a well-defined, positive map.
Note that to prove that φ̃ is well defined, it is enough to prove that if a and

a∗ belong to M, then φ(a∗) = φ(a)∗. For this, set

S1 = {a: a ∈ M and a∗ ∈ M};
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thenS1 is an operator system, and φ is a unital, contractivemap onS1 and hence
positive by Proposition 2.11. Consequently by Exercise 2.1, φ is self-adjoint
on S1 and so φ(a∗) = φ(a)∗ for a in S1. Thus, φ̃ is well defined.
To see that φ̃ is positive, it is sufficient to assume that B = B(H), fix x

in H with ‖x‖ = 1, set ρ̃(a) = 〈φ̃(a)x, x〉, and prove that ρ̃ is positive. Let
ρ: M → C be defined by ρ(a) = 〈φ(a)x, x〉; then ‖ρ‖ = 1 and so, by the
Hahn–Banach theorem, ρ extends to

ρ1: M + M∗ → C with ‖ρ1‖ = 1.

But by Proposition 2.11, ρ1 is positive, and so ρ1(a + b∗) = ρ(a) + ρ(b) =
ρ̃(a + b∗). Hence, ρ̃ is positive. �

Note that the above result also shows that there is a unique, norm-preserving
Hahn–Banach extension of ρ toM + M∗.

Example 2.13. A positive map need not have a positive extension unless the
range is C (Exercise 2.10). Indeed, if the positive map of Example 2.2 had a
positive extension to C(T), then by Corollary 2.9, this extension would be a
contraction.

If S is an operator system, contained in a C∗-algebra A, and φ is a linear
functional on S with φ(1) = 1, then by Exercise 2.3 and Proposition 2.11, we
see that φ is contractive if and only if φ is positive. These maps are called states
on S.

Spectral Sets

There is a natural way that positive maps on operator systems arise in operator
theory, and that is in the study of spectral sets for operators.

Let X be a compact set in the complex plane, and letR(X ) be the subalgebra
of C(X ) consisting of quotients p/q of polynomials, where the zeros of q lie
off X . Note that two quotients of polynomials can be equal as functions on X
even though they may be distinct as elements of the formal algebra of quotients.
Indeed, in the extreme case where X is a singleton, X = {λ}, then z − λ = 0
as a function on X .

If T is in B(H), with the spectrum σ (T ) of T , contained in X , then for any
quotient p/q as abovewehave an operator p(T )q(T )−1. Thus,we can attempt to
define a homomorphism ρ: R(X ) → B(H) by setting ρ(p/q) = p(T )q(T )−1.
In the extreme case that X = {λ}, this homomorphism will be well defined if
and only if T = λ · I.
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If ρ is well defined and ‖ρ‖ ≤ 1, then X is called a spectral set for T . When
ρ is well defined and only bounded with ‖ρ‖ ≤ K , then X is called aK-spectral
set for T .
Wemay also regardR(X ) as a subalgebra ofC(∂X ), the continuous functions

on the boundary of X . By the maximum modulus theorem, this endows R(X )
with the same norm as if we regarded it as a subalgebra of C(X ).
We let S = R(X ) + R(X ) regarded as a subset of C(∂X ). Thus, f1 + g1 =

f2 + g2 if and only if they are equal as functions on ∂X , and are positive if and
only if they are positive on ∂X .

The concept of spectral sets is partially motivated by von Neumann’s in-
equality, which can be interpreted as saying that an operator T is a contraction
if and only if the closed unit disk is a spectral set for T .
By Proposition 2.12, if X is a spectral set for T , then there is a well-defined,

positive map ρ̃: S → B(H) given by ρ̃( f + ḡ) = f (T ) + g(T )∗. Conversely,
if the above map ρ̃ is well defined and positive, then by Corollary 2.8, X is a
spectral set for T .

Nonunital C∗C∗C∗-Algebras

LetA be a nonunital C∗-algebra. We wish to make some comments on positive
maps in this case. Let B be a C∗-algebra, and let φ: A → B be a positive
map. We claim that φ is automatically bounded. To see this, note that it is
enough to prove that φ is bounded on A+. To this end, suppose that φ is not
bounded; then there exists a sequence pn inA+, ‖pn‖ ≤ 1, with ‖φ(pn)‖ ≥ n3.
Let p = ∑

n n−2 pn; then we have that n−2 pn ≤ p and so

n ≤ ‖φ(n−2 pn)‖ ≤ ‖φ(p)‖

for all n, an obvious contradiction. Thus, φ is bounded.
The second observation is that every nonunital C∗-algebra A embeds into a

unital C∗-algebra, A1 [73]. Furthermore, positive maps from A to B extend to
positive maps from A1 to B1.

To see this second statement, first note that A is a closed, two-sided ideal in
A1, and so the map a + λ1 → λ, for a in A, is a ∗-homomorphism. Thus, if
a + λ · 1 is positive, then λ ≥ 0. Now, let φ:A → B be positive; then since φ is
bounded, φ(p) ≤ ‖φ‖ · 1 for all positive p with ‖p‖ ≤ 1. Define φ1:A1 → B1

by φ1(a + λ1) = φ(a) + λq where q = ‖φ‖ · 1. This map is positive, since if
a + λ1 ≥ 0, then −λ−1a ≤ 1, so that φ(−λ−1a) ≤ q or 0 ≤ φ(a) + λq .

Note that if we let A = B denote the compact operators on an infinite-
dimensional Hilbert space, then there is no extension of the identity map to
a positive map from A1 to B.
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Toeplitz Matrices and Trigonometric Moments

We close this chapter with another application of the Fejer–Riesz lemma. A
sequence of numbers {ak}+∞

k=−∞ is called a trigonometric moment sequence
provided there exists a positive Borel measure µ on the circle (equivalently, on
[0, 2π ]) such that

ak =
∫ 2π

0
eikθ dµ(θ )

for all k in Z. Note that in this case a−k = āk and a0 = µ([0, 2π ]) ≥ 0. Hence,
µ is automatically bounded.We callµ a representingmeasure for {ak}+∞

k=−∞. By
the Riesz representation theorem, there is a one-to-one correspondence between
positive, bounded Borel measures µ on the circle and positive linear maps
φ: C(T) → C given by φ( f ) = ∫

f dµ. Thus, {ak}+∞
k=−∞ is a trigonometric

moment sequence precisely when setting φ(zk) = ak, k ∈ Z, extends to give a
positive linear functional on C(T).
We shall call an infinite matrix (bi, j )∞i, j=0 formally positive if each of the

finite matrices BN = (bi, j )Ni, j=0 is positive. (Recall that in this book positive
means positive semidefinite.) Note that we are making no requirements about
boundedness of B.

Theorem 2.14. The sequence {ak}+∞
k=−∞ is a trigonometric moment sequence

if and only if the Toeplitz matrix (ai− j )∞i, j=0 is formally positive.

Proof. If {ak}+∞
k=−∞ is a moment sequence with measureµ, and p0, . . . , pN are

scalars, then
N∑

i, j=0

ai− j p̄ j pi =
∫

|p(z)|2 dµ ≥ 0,

where p(z) = p0 + · · · + pN zN . Hence (ai− j )∞i, j=0 is formally positive.
Conversely, assume that (ai− j )∞i, j=0 is formally positive. LetS ⊆ C(T) be the

span of zk, k ∈ Z, which is a dense operator system in C(T). Define φ: S → C

by φ(zk) = ak . We wish to prove that φ is a positive linear functional on S. As
in the proof of Theorem 2.6, it will be enough to assume that τ ∈ S is strictly
positive and prove that φ(τ ) ≥ 0.
By the Fejer–Riesz lemma, τ (z) = ∑N

i, j=0 pi p̄ j z(i− j) for some scalars,
p0, . . . , pN . Hence φ(τ ) = ∑N

i, j=0 pi p̄ j ai− j ≥ 0 by the positivity of the matrix
(ai− j )Ni, j=0.
Now by Exercise 2.2, the positive map φ extends by continuity to a positive

map on S− = C(T), and hence by the Riesz representation theorem we have a
bounded, positive Borel measure with ak = φ(zk) = ∫

zk dµ for all k in Z.
�
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There is another characterization of trigonometric moment sequences that is
often useful. If {ak}+∞

k=−∞ is a trigonometricmoment sequencewith representing
measureµ, then it is easily seen that |ak | ≤ µ([0, 2π ]) = a0 andhence thepower
series f (z) = a0/2 + ∑∞

k=1 akzk converges to give an analytic function on the
unit disk D. For |z| < 1 the Poisson kernel

P(z, θ ) = 1

1 − eiθ z
+ 1

1 − e−iθ z
− 1

defines a positive function on the circle, and hence

f (z) + f (z) =
∫

P(z, θ ) dµ(θ ) ≥ 0.

Thus, we have shown that if {ak}+∞
k=−∞ is a trigonometric moment sequence

then f (z) is analytic on the disk and maps the disk into the right half plane.
The converse of this result holds as well, and we sketch the proof. If

f , as above, is analytic on D and has nonnegative real part, then gr (eiθ ) =
f (reiθ ) + f (reiθ ), r < 1, is continuous on T and nonnegative. Hence the oper-
ator of multiplication by gr on L2(T) is a positive operator. But the matrix
of this operator with respect to the standard orthonormal basis {eikθ }+∞

k=−∞
is (ai− j r |i |+| j |)+∞

i, j=−∞. Letting r tend to 1 yields the formal positivity of the
Toeplitz matrix (ai− j )

+∞
i, j=0.

Notes

For a survey of the theory of positive maps, see [222].
The idea of using von Neumann’s inequality to prove the Russo–Dye result

seems to have originated with Choi. The usual proof involves another important
result of Russo and Dye, namely, that the extreme points of the unit ball of a
unital C∗-algebra are the unitary elements [206] (see [173] for an elegant proof
of this result).
Lemma 2.10 is a minor adaptation of [8].
Von Neumann’s original proof of his inequality [152] first showed that the

inequality wasmet for theMöbius transformations of the disk, and then reduced
verifying the inequality for a general analytic function to this special case. A
later proof by Heinz [114] is based on the classical Cauchy–Poisson formula.
Most other presentations rely on Sz.-Nagy’s dilation theorem (Theorem 1.1).
The Fejer–Riesz lemma can be found in [89].
Foias [99] has shown how particular von Neumann’s inequality is to the

theory of Hilbert spaces. He proves that if a Banach space has the property
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that every contraction operator on the Banach space satisfies von Neumann’s
inequality, then that space is necessarily a Hilbert space.
A result of Ando [5] implies that von Neumann’s inequality holds for pairs

of commuting contractions, that is,

‖p(T1, T2)‖ ≤ sup{|p(z1, z2)|: |zi | ≤ 1, i = 1, 2},
where T1 and T2 are commuting contractions and p is an arbitrary polynomial
in two variables. Thus, by Proposition 2.12, there is a positive map

φ(p + q̄) = p(T1, T2) + q(T1, T2)
∗.

It would be interesting to know if a proof of this latter fact could be given
along the lines of Theorem 2.6. Such a proof could perhaps shed some addi-
tional light on the rather paradoxical results of Crabbe and Davies [69] and of
Varopoulos [236], that for three or more commuting contractions, the analogue
of von Neumann’s inequality fails. We shall examine these ideas in detail in
Chapter 5.

Exercises

2.1 Let S be an operator system, B be a C∗-algebra, and φ: S → B a positive
map. Prove that φ is self-adjoint, i.e., that φ(x∗) = φ(x)∗.

2.2 Let S be an operator system, B be a C∗-algebra, and φ: S → B be a
positive map. Prove that φ extends to a positive map on the norm closure
of S.

2.3 Let S be an operator system, and let φ: S → C be positive. Prove that
‖φ‖ ≤ φ(1). [Hint: Givena, chosenλ, |λ| = 1, such that |φ(a)| = φ(λa).]

2.4 Let S be an operator system, and let φ: S → C(X ), where C(X ) denotes
the continuous functions on a compact Hausdorff space X . Prove that if
φ is positive, then ‖φ‖ ≤ ‖φ(1)‖.

2.5 (Schwarz inequality) Let A be a C∗-algebra, and let φ: A → C be a
positive linear functional. Prove that |φ(x∗y)|2 ≤ φ(x∗x)φ(y∗y).

2.6 Let T be an operator on a Hilbert space H. The numerical radius of
T is defined by w(T ) = sup{|〈T x, x〉|: x ∈ H, ‖x‖ = 1}. Prove that if
φ: S → B(H) is positive and φ(1) = 1, then w(φ(a)) ≤ ‖a‖.

2.7 Let T be an operator on a Hilbert space. Prove that w(T ) ≤ 1 if and only
if 2 + (λT ) + (λT )∗ ≥ 0 for all complex numbers λ with |λ| = 1.

2.8 Prove that w(T ) defines a norm on B(H), with w(T ) ≤ ‖T ‖ ≤ 2w(T ).
Show that both inequalities are sharp.

2.9 Let S be an operator system, B a C∗-algebra, and φ: S → B a linear
map such that φ(1) is positive, ‖φ(1)‖ = ‖φ‖. Give an example to show
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that φ need not be positive. In a similar vein, show that if M is as in
Proposition 2.12, and φ(1) is positive with ‖φ(1)‖ = ‖φ‖, then φ̃ need
not be well defined.

2.10 (Krein) Let S be an operator system contained in the C∗-algebra A, and
let φ: S → C be positive. Prove that φ can be extended to a positive map
on A.

2.11 Prove that for the following element of Mn+1,∥∥∥∥∥∥∥∥∥



a0 0 . . . 0

a1 a0
. . .

...
...

. . .
. . . 0

an . . . a1 a0




∥∥∥∥∥∥∥∥∥
≤ inf

r (z)
{‖a0 + a1z + · · · + anz

n + r (z)‖},

where r (z) is a polynomial whose lowest-degree term is strictly greater
than n, and the latter norm is the supremum norm over the unit disk.

2.12 (Jorgensen) Show that C = {p2(t): p is a polynomial with real coef-
ficients} is dense in C([0, 1])+. Let S = {p + q̄: p, q are polynomials},
and set φ(p + q̄) = p(2) + q(2). Show that φ is positive on C and well
defined on the dense subset S of C([0, 1]), but still does not extend to a
positivemap onC([0, 1]). Comparewith Proposition 2.1 and Exercise 2.2.

2.13 Let X be a compact subset of C. Prove that if X is a finite set, then X is a
spectral set for T if and only if T is a normal operator with σ (T ) contained
in X . Prove that if X is a subset of R, then X is a spectral set for T if and
only if T = T ∗ and σ (T ) is contained in X . Prove that if X is contained
in the unit circle, then X is a spectral set for T if and only if T is a unitary
with σ (T ) contained in X .

2.14 (von Neumann) Let X be a compact subset of C, with R(X ) dense in
C(∂X ). Prove that X is a spectral set for T if and only if T is normal and
σ (T ) is contained in ∂X .

2.15 In this exercise we give an alternative proof of von Neumann’s inequal-
ity. We assume that the reader has some familiarity with integration of
operator-valued functions. Let T ∈ B(H) with ‖T ‖ < 1, and let p and q
denote arbitrary polynomials.
(i) Let P(t ; T ) = (1 − e−i t T )−1 + (1 − eit T ∗)−1 − 1, and show that

P(t ; T ) ≥ 0 for all t ,
(ii) Show that p(T ) + q(T )∗ = 1

2π

∫ 2π
0 (p(eit ) + q(eit ))P(t ; T ) dt ,

(iii) Deduce von Neumann’s inequality.
2.16 (Wermer) In this exercise we give an alternative proof of von Neumann’s

inequality that is only valid for matrices. We assume that the reader
is familiar with the singular-value decomposition of a matrix. Let
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T ∈ Mn with ‖T ‖ ≤ 1, and write T = USV with U, V unitary and
S = diag(s1, . . . , sn) a positive diagonalmatrix, 0 ≤ si ≤ 1, i = 1, . . . , n.
Define an analytic matrix-valued function T (z1, . . . , zn) = UZV where
Z = diag(z1, . . . , zn), |zi | ≤ 1, i = 1, . . . , n. Fix a polynomial p.
(i) Let x, y ∈ C

n , and let f (z1, . . . , zn) = 〈p(T (z1, . . . , zn))x, y〉. De-
duce that f achieves its maximum modulus at a point where |z1| =
· · · = |zn| = 1. Note that at such a point T (z1, . . . , zn) is unitary.

(ii) Deduce that sup|zi |≤1 ‖p(T (z1, . . . , zn))‖ occurs at a point where
T (z1, . . . , zn) is unitary.

(iii) Deduce that ‖p(T )‖ ≤ sup ‖p(W )‖ over W ∈ Mn , unitary.
(iv) Show that for W unitary, ‖p(W )‖ ≤ ‖p‖∞.
(v) Deduce von Neumann’s inequality for T ∈ Mn .

2.17 Let T = ( a c
0 b ) ∈ M2, a �= b.

(i) Show that for any polynomial p,

p(T ) =
(

p(a) c(p(a) − p(b))/(a − b)

0 p(b)

)
.

(ii) Show that if |a| ≤ 1, |b| ≤ 1, f ∈ A(D), and pn is a sequence of
polynomials with ‖ f − pn‖∞ → 0, then

pn(T ) →
(

f (a) c( f (a) − f (b))/(a − b)

0 f (b)

)

entrywise and hence in norm.
(iii) Assume |a|, |b| < 1. Let ϕ(z) = (z − b)/(1 − b̄z). Show that ‖T ‖ ≤

1 if and only if

|ϕ(a)|2(|a − b|2 + |c|2) ≤ |a − b|2.
(iv) What can you say when |a|, |b| ≤ 1?

2.18 Let T = ( a c
0 a ) ∈ M2.

(i) Show that for any polynomial p,

p(T ) =
(

p(a) cp′(a)
0 p(a)

)
.

(ii) Show that if |a| < 1, f ∈ A(D), and pn is a sequence of polynomials
with ‖ f − pn‖∞ → 0, then

pn(T ) →
(

f (a) c f ′(a)
0 f (a)

)

entrywise and hence in norm.
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(iii) Let |a| < 1 and ϕ(z) = (z − a)/(1 − āz). Show that ‖T ‖ ≤ 1 if and
only if |c| ≤ 1 − |a|2.

(iv) What can you say when |a| = 1?
(v) Let |a| < 1, set c = 1 − |a|2, and use von Neumann’s inequality to

deduce that if ‖ f ‖ ≤ 1, then | f ′(a)| ≤ (1 − | f (a)|2)/(1 − |a|2).
2.19 Let

T =
( a b c
0 a b
0 0 a

)
∈ M3.

Obtain necessary and sufficient conditions for ‖T ‖ ≤ 1.
2.20 (Korovkin) Let f ∈ C([0, 1]) and let gx (t) = (t − x)2

(i) Given ε > 0, show that there exists a constant c > 0 depending only
on ε and f such that

| f (t) − f (x)| ≤ ε + cgx (t) for all 0 ≤ t, x ≤ 1.

[Hint: There is a δ > 0 such that | f (t) − f (x)| ≤ ε for all |t − x | <

δ.]
(ii) Let φ:C([0, 1]) → C([0, 1]) be a positive map with φ(1) = 1. Show

that

−ε − cφ(gx )(x) ≤ φ( f )(x) − f (x) ≤ ε + cφ(gx )(x),

and deduce that ‖φ( f ) − f ‖ ≤ ε + c supx |φ(gx )(x)|.
(iii) Let φn: C([0, 1]) → C([0, 1]) be a sequence of positive maps. Prove

that if ‖φn( fi ) − fi‖ → 0 as n → ∞ for fi (t) = t i , i = 0, 1, and 2,
then ‖φn( f ) − f ‖ → 0 as n → ∞ for all f ∈ C([0, 1]).

2.21 The Bernstein maps φn: C([0, 1]) → C([0, 1]) are defined by

φn( f )(t) =
n∑

k=0

(
n

k

)
f

(
k

n

)
t k(1 − t)n−k .

(i) Verify that the Bernstein maps are positive maps with φn(1) = 1,
φn(t) = t, φn(t2) = t2 + t−t2

n . [Hint: Use ( n
k
) k
n = ( n−1

k−1
).]

(ii) Deduce that ‖φn( f ) − f ‖∞ → 0 for all f ∈ C([0, 1])
(iii) Deduce the Weierstrass theorem, i.e., prove that the polynomials are

dense in C([0, 1]).
2.22 A sequence {an}∞n=0 of complex numbers is called a Hausdorff moment

sequence if there exists a positive (finite) Borel measure µ on [0,1] such
that an = ∫ 1

0 tn dµ(t) for all n. Set bn,m = ∑n
k=0(

n
k
)(−1)kak+m , for all

n,m ≥ 0.
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(i) Assuming the existence of such a measure µ, show that bn,m =∫ 1
0 tm(t − 1)n dµ(t), and deduce that necessarily bn,m ≥ 0 for all

n,m ≥ 0.
(ii) Let P ⊆ C([0, 1]) denote the span of the polynomials, and define

φ: P → C by setting φ(tn) = an . Show that if bn,m ≥ 0 for all
n,m ≥ 0 then φ is a positive map. (Caution: You do not know φ is
continuous! You must use Exercises 2.20 and 2.21.)

(iii) Prove that {an}∞n=0 is a Hausdorff moment sequence if and only if
bn,m ≥ 0 for all n,m ≥ 0.



Chapter 3
Completely Positive Maps

Let A be a C∗-algebra, and let M be a subspace. Then we shall call M an
operator space. Clearly, Mn(M) can be regarded as a subspace of Mn(A),
and we let Mn(M) have the norm structure that it inherits from the (unique)
norm structure on the C∗-algebra Mn(A). We make no attempt at this time to
define a norm structure on Mn(M) without reference to A. Thus, one thing
that distinguishesM from an ordinary normed space is that it comes naturally
equipped with norms on Mn(M) for all n ≥ 1. Later in this book we shall give
a more axiomatic definition of operator spaces, at which time we shall begin
to refer to subspaces of C∗-algebras as concrete operator spaces. For now we
simply stress that by an operator space M we mean a concrete subspace of a
C∗-algebra, together with this extra “baggage” of a well-defined sequence of
norms on Mn(M). Similarly, if S ⊆A is an operator system, then we endow
Mn(S) with the norm and order structure that it inherits as a subspace of Mn(A).
As before, if B is a C∗-algebra and φ: S →B is a linear map, then we define

φn: Mn(S)→ Mn(B) by φn((ai, j )) = (φ(ai, j )). We call φ n-positive if φn is
positive, and we call φ completely positive if φ is n-positive for all n. We call
φ completely bounded if supn‖φn‖ is finite, and we set

‖φ‖cb = sup
n

‖φn‖.

Note that ‖·‖cb is a norm on the space of completely bounded maps. We use the
terms completely isometric and completely contractive to indicate that each φn

is isometric and that ‖φ‖cb ≤ 1, respectively. We note that if φ is n-positive,
then φ is k-positive for k ≤ n. Also, ‖φk‖ ≤ ‖φn‖ for k ≤ n (Exercise 3.1).
In this chapter we investigate some of the elementary properties of these

classes of maps and prove some theorems about when positive maps are auto-
matically completely positive. We begin by relating some of the results of the
previous chapter to these concepts.

26
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Lemma 3.1. Let A be a C∗-algebra with unit, and let a and b belong to A.
Then:

(i) ‖a‖ ≤ 1 if and only if [
1 a
a∗ 1

]

is positive in M2(A).
(ii) [ 1 a

a∗ b ] is positive in M2(A) if and only if a∗a ≤ b.

Proof. We represent A on a Hilbert space H via π : A→B(H) and set A =
π (a).
If ‖A‖ ≤ 1, then for any vectors x, y inH,〈[

I A
A∗ I

] [
x
y

]
,

[
x
y

]〉
= 〈x, x〉 + 〈Ay, x〉 + 〈x, Ay〉 + 〈y, y〉

≥ ‖x‖2 − 2‖A‖‖y‖‖x‖ + ‖y‖2 ≥ 0.

Conversely, if ‖A‖ > 1, then there exist unit vectors x and y such that
〈Ay, x〉 < −1 and the above inner product will be negative.
The proof of (ii) is similar and is left as an exercise [Exercise 3.2(ii)]. �

Proposition 3.2. Let S be an operator system, B a C∗-algebra with unit, and
φ: S →B a unital, 2-positive map. Then φ is contractive.

Proof. Let a ∈ S, ‖a‖ ≤ 1. Then

φ2

[
1 a
a∗ 1

]
=

[
1 φ(a)

φ(a)∗ 1

]

is positive and hence ‖φ(a)‖ ≤ 1. �

Proposition 3.3 (Schwarz inequality for 2-positive maps). Let A,B be
unital C∗-algebras, and let φ: A→B be a unital 2-positive map. Then
φ(a)∗φ(a) ≤ φ(a∗a) for all a in A.

Proof. We have that [ 1 a
0 0 ]

∗[ 1 a
0 0 ] = [ 1 a

a∗ a∗a ] ≥ 0 and hence[
1 φ(a)

φ(a)∗ φ(a∗a)

]
≥ 0.

By Lemma 3.1(ii), we have the result. �
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Proposition 3.4. Let A and B be C∗-algebras with unit, let M be a subspace
of A, 1∈M, and let S = M + M∗. If φ:M→B is unital and 2-contractive
(i.e., ‖φ2‖ ≤ 1), then the map φ̃: S →B given by φ̃(a + b∗) = φ(a) + φ(b)∗ is
2-positive and contractive.

Proof. Since φ is contractive, φ̃ is well defined by Proposition 2.12. Note that
M2(S) = M2(M) + M2(M)∗ and that (φ̃)2 = (φ̃2). Since φ2 is contractive, we
have again by Proposition 2.12, that φ̃2 is positive and so φ̃ is contractive by
Proposition 3.2. �

Proposition 3.5. Let A and B be C∗-algebras with unit, let M be a subspace
of A, 1∈M, and let S = M + M∗. If φ: M→B is unital and completely
contractive, then φ̃: S →B is completely positive and completely contractive.

Proof. We have that φ̃n is positive, since φn is unital and contractive, and φ̃n

is contractive, since φ̃2n = (φ̃n)2 is positive. �

We’ve glossed over one point in the above proof. Namely, we’ve identified
M2n(S) with M2(Mn(S)). It’s obvious how to do this: one simply “erases”
the additional brackets in an element of M2(Mn(S)). One must check, how-
ever, that the norms one defines are the same in each instance. One has that
M2(Mn(S)) inherits its norm from M2(Mn(A)), while M2n(S) inherits its norm
from M2n(A). However, this “erasure” operation defines a ∗-isomorphism be-
tween M2(Mn(A)) and M2n(A); thus the norms are indeed the same.
Now that we’ve seen some of the advantages of considering maps in these

two classes, let’s begin by describing some maps that belong to them. Let A
and B be C∗-algebras. First, note that if π : A→B is a ∗-homomorphism,
then π is completely positive and completely contractive, since each map,
πn: Mn(A)→ Mn(B), is a ∗-homomorphism, and ∗-homomorphisms are both
positive and contractive. For a second class of maps, fix x and y inA and define
φ: A→A by φ(a) = xay. Note that if (ai, j ) is in Mn(A), then

‖φn((ai, j ))‖ = ‖(xai, j y)‖

=

∥∥∥∥∥∥∥∥∥




x 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 x




a11 . . . a1n

...
...

an1 . . . ann






y 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 y



∥∥∥∥∥∥∥∥∥

≤ ‖x‖ · ‖(ai, j )‖ · ‖y‖.
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Thus, φ is completely bounded, and ‖φ‖cb ≤ ‖x‖ · ‖y‖. A similar calculation
shows that if x = y∗, then φ is completely positive.
Combining these two examples,we obtain the prototypical example of a com-

pletely boundedmap.Namely, letH1 andH2 beHilbert spaces, letvi :H1→H2,

i = 1, 2, be bounded operators, and let π :A→B(H2) be a ∗-homomorphism.
Define a map φ: A→B(H1) via φ(a) = v∗

2π (a)v1. Then φ is completely
bounded with ‖φ‖cb ≤ ‖v1‖ · ‖v2‖, and if v1 = v2, then φ is completely posi-
tive. We shall prove in Chapter 8 that all completely bounded maps have this
form.
In each of the above examples, we see that the completely positive maps are

all completely bounded. This is always the case.

Proposition 3.6. Let S ⊆A be an operator system, let B be a C∗-algebra,
and let φ: S →B be completely positive. Then φ is completely bounded and
‖φ(1)‖ = ‖φ‖ = ‖φ‖cb.

Proof. Clearly, we have that ‖φ(1)‖ ≤ ‖φ‖ ≤ ‖φ‖cb, so it is sufficient to show
‖φ‖cb ≤ ‖φ(1)‖. To this end, let A = (ai, j ) be in Mn(S) with ‖A‖ ≤ 1, and let
In be the unit of Mn(A), i.e., the diagonal matrix with 1’s on the diagonal. Since[

In A

A∗ In

]

is positive, we have that

φ2n

[[
In A

A∗ In

]]
=

[[
φn(In) φn(A)

φn(A)∗ φn(In)

]]

is positive. Thus, by Exercise 3.2(iii), ‖φn(A)‖ ≤ ‖φn(In)‖ = ‖φ(1)‖, which
completes the proof. �

Schur Products and Tensor Products

As an application of the above result, we study the Schur product of matrices.
If A = (ai, j ), B = (bi, j ) are elements of Mn , then we define the Schur product
by

A ∗ B = (ai, j · bi, j ).

For fixed A, this gives rise to a linear map,

SA: Mn → Mn, via SA(B) = A ∗ B.
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In order to study this map, we need to recall a few facts about tensor products
of matrices. Let A be in Mn and B be in Mm , so that A and B can be thought of
as linear transformations on C

n and C
m , respectively. Then A ⊗ B is the linear

transformation on C
n ⊗ C

m � C
nm , which is defined by setting A ⊗ B(x ⊗

y) = Ax ⊗ By and extending linearly. Writing A ⊗ B = (A ⊗ I )(I ⊗ B), it is
easy to see that ‖A ⊗ B‖ = ‖A‖ · ‖B‖.

Let {e1, . . . , en} and { f1, . . . , fm} be the canonical orthonormal bases for
C

n and C
m , respectively. If we order our basis for C

nm by e1 ⊗ f1, e1 ⊗
f2, . . . , e1 ⊗ fm, e2 ⊗ f1, . . . , en ⊗ fm , then the matrix for A ⊗ B with respect
to this ordered basis is given in block form by


a11B . . . a1n B
...

...
an1B . . . ann B


 .

This last matrix is often referred to as the Kronecker product of A and B.
On the other hand, if we order our basis for C

nm by e1 ⊗ f1, e2 ⊗
f1, . . . , en ⊗ f1, e1 ⊗ f2, e2 ⊗ f2, . . . , en ⊗ fm , then the matrix for A ⊗ B with
respect to this ordered basis is given in block form by


b11A . . . b1m A
...

...
bm1A . . . bmmA


 ,

which is the Kronecker product of B and A.
Since the two block matrices given above represent the same linear trans-

formation, they are unitarily equivalent. The unitary matrix that implements
this unitary equivalence is simply the permutation matrix corresponding to the
given reordering of the basis vectors.
Note that one obtained the (i, j)th block of the secondmatrix, bi j A, by taking

the (i, j) entry of the (k, �)th block, ak,�B, of the first matrix.We shall encounter
this rearrangement of matrix entries repeatedly in this book. We’ll refer to it as
the canonical shuffle.
Now let A and B be in Mn , and define an isometry V : C

n → C
n ⊗ C

n by
V (ei ) = ei ⊗ ei . A simple calculation shows that

V ∗(A ⊗ B)V = A ∗ B.

To see this, note that

〈V ∗(A ⊗ B)Ve j , ei 〉 = 〈A ⊗ B(e j ⊗ e j ), (ei ⊗ ei )〉
= 〈Ae j , ei 〉 · 〈Be j , ei 〉 = ai, j · bi, j = 〈A ∗ Be j , ei 〉.
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Thus, ‖SA(B)‖ = ‖V ∗(A ⊗ B)V ‖ ≤ ‖A‖ · ‖B‖ and so ‖SA‖ ≤ ‖A‖.
Similarly, if (Bi, j ) is in Mk(Mn), then

(SA)k((Bi, j )) = (V ∗(A ⊗ Bi, j )V )

=




V ∗ 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 V ∗


 A ⊗




B11 . . . B1n
...

...
Bn1 . . . Bnn






V 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 V




and so, ‖(SA)k‖ ≤ ‖A‖ also. Thus, ‖SA‖cb ≤ ‖A‖.
This estimate is not very good in general. For example, the identity map is

the Schur product against the matrix of all 1’s, and this matrix has norm n.
If A is positive, then we shall prove below that SA is completely positive.

Hence, for positivematriceswe can obtain ‖SA‖cb explicitly, by invokingPropo-
sition 3.5. Namely,

‖SA‖ = ‖SA(I )‖ = ‖SA‖cb = max{ai,i : i = 1, . . . , n}.
It is more difficult to calculate ‖SA‖cb when A is not positive. We return to

this topic inChapter 8. Clearly, if one decomposes A = (P1 − P2) + i(P3 − P4)
with Pi positive, then SA = (SP1 − SP2 )+ i(SP3 − SP4 ). Thus, ‖SA‖cb ≤
‖SP1‖cb + ‖SP2‖cb + ‖SP3‖cb + ‖SP4‖cb, and each of the right hand terms is
given by the maximum diagonal entry of the corresponding matrix. However,
we shall see in Chapter 8 that this estimate can be far from ‖SA‖cb.
The following characterizes when a Schur product map is completely

positive.

Theorem 3.7. Let A = (ai j ) be in Mn. Then the following are equivalent:

(i) A is positive,
(ii) SA: Mn → Mn is positive,
(iii) SA: Mn → Mn is completely positive.

Proof. Clearly (iii) implies (ii). Note that the matrix J , all of whose entries are
1, is positive, and that SA(J ) = A. Hence, (ii) implies (i). It remains to prove
that (i) implies (iii).
First note that if A and B are positive then A ⊗ B is positive. To see this,

note that A ⊗ B = (A1/2 ⊗ B1/2)2. Now if B ∈ Mn is positive, then

SA(B) = V ∗(A ⊗ B)V = [(
A1/2 ⊗ B1/2

)
V
]∗[(

A1/2 ⊗ B1/2
)
V
]

is positive. Hence, (i) implies (ii). To see that (i) implies (iii), let B = (Bi j ) ∈
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Mk(Mn) be positive, write B = (Xi j )∗(Xi j ), and observe that

(SA)k(B) = (V ∗(A ⊗ Bi j )V ) = Y ∗Y,

where Y = ((A1/2 ⊗ Xi j )V ). �

There is an analogous theory of Schur product maps on B(�2) where we re-
gard bounded operators as infinite matrices. If we demand that A be a bounded
positive operator, then the arguments above can be used to show that SA is
completely positive. However, the requirement that A be bounded is very re-
strictive. For example, the identity map on B(�2) is the Schur product against
the infinite matrix of all 1’s, and this is not the matrix of a bounded operator.
We shall leave these more delicate questions until we return to Schur product
maps in Chapter 8.
We now return to results about general completely positive maps. The next

result shows that for linear functionals, the adverb “completely” introduces
nothing new.

Proposition 3.8. Let S be an operator space, and let f : S → C be a bounded
linear functional. Then ‖ f ‖cb = ‖ f ‖. Furthermore, if S is an operator system
and f is positive, then f is completely positive.

Proof. Let (ai, j ) be in Mn(S), and let x = (x1, . . . , xn), y = (y1, . . . , yn) be
unit vectors in C

n . We have that

|〈 fn((ai, j ))x, y〉| =
∣∣∣∣∣
∑
i, j

f (ai, j )x j ȳi

∣∣∣∣∣ =
∣∣∣∣∣ f

(∑
i, j

ai, j x j ȳi

)∣∣∣∣∣
≤ ‖ f ‖ ·

∥∥∥∥∥
∑
i, j

ai, j x j ȳi

∥∥∥∥∥ .

Thus, we must show that this latter element has norm less than ‖(ai, j )‖. To see
this, note that the above sum is the (1,1) entry of the product


ȳ1 · 1 . . . ȳn · 1
0 . . . 0
...

...
0 . . . 0




a11 . . . a1n

...
...

an1 . . . ann






x1 · 1 0 . . . 0
...

...
...

xn · 1 0 . . . 0


 ,

and that the outer two factors each have norm equal to one, since x and y were
chosen to be unit vectors.
To prove that f is completely positive whenever f is positive reduces to

showing that 〈 fn((ai, j ))x, x〉 = f (
∑

i, j ai, j x j x̄i ) is positive whenever (ai, j ) is
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positive. But using the above product with x = y, we see that the summation
that f is being evaluated at is the (1,1) entry of a positive matrix and hence is
positive. �

Let X be a compact Hausdorff space, and let C(X ) be the C∗-algebra of
continuous functions on X . Note that every element F = ( fi, j ) of Mn(C(X ))
can be thought of as a continuousmatrix-valued function and thatmultiplication
and the ∗-operation in Mn(C(X )) are just the pointwise multiplication and ∗-
operation of the matrix-valued functions. Thus, one way to make Mn(C(X ))
into a C∗-algebra is to set ‖F‖ = sup{‖F(x)‖: x ∈ X}, and by the uniqueness
of C∗-norms, this is the only way. With these observations, the following is a
direct consequence of Proposition 3.8.

Theorem 3.9. Let S be an operator space, and let φ: S →C(X ) be a bounded
linear map. Then ‖φ‖cb = ‖φ‖. Furthermore, if S is an operator system and φ

is positive, then φ is completely positive.

Proof. Let x ∈ X , and define φx : S → C by φx (a) = φ(a)(x). By the above
observations,

‖φn‖ = sup
{∥∥φx

n

∥∥: x ∈ X
} = sup{‖φx‖: x ∈ X} = ‖φ‖.

Similarly, φn((ai, j )) is positive if and only if φx
n ((ai, j )) is positive for all x ∈ X ,

from which the second statement follows. �

Thus, when the range C∗-algebra is commutative, the concepts of bounded
and completely bounded coincide, as do positive and completely positive. A
commutative domain is also enough to ensure that positive maps are completely
positive, as we shall prove shortly. However, we show in Chapter 14 that it is not
enough to guarantee that bounded maps are completely bounded.

Lemma 3.10. Let (pi, j ) be a positive scalar matrix, and let q be a positive
element of some C∗-algebra B. Then (q · pi, j ) is positive in Mn(B).

Proof. Straightforward. �

Theorem 3.11 (Stinespring). Let B be a C∗-algebra, and let φ: C(X )→B
be positive. Then φ is completely positive.

Proof. Let P(x) be positive in Mn(C(X )).Wemust prove thatφn(P) is positive.
Given ε > 0 and arguing as in Theorem2.4,we obtain a partition of unity {u�(x)}
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and positive matrices P� = (p�
i, j ) such that∥∥∥∥∥P(x) −

∑
�

u�(x)P�

∥∥∥∥∥< ε.

But φn(u� · P�) = φn((u� · p�
i, j )) = (φ(u�) · p�

i, j ), which is positive by Lemma
3.10. Thus, φn(P), to within ε‖φn‖‖P‖, is a sum of positive elements. Since
Mn(B)+ is a closed set, we have that φn(P) is positive. �

The original proof of Theorem 3.11 [221] is quite different.
As an immediate application of Theorem 3.11 we have the following matrix-

valued version of von Neumann’s inequality.

Corollary 3.12. Let T be an operator on a Hilbert spaceH with ‖T ‖ ≤ 1, and
let (pi, j ) be an n × n matrix of polynomials. Then

‖(pi, j (T ))‖B(H(n)) ≤ sup{‖(pi j (z))‖Mn : |z| = 1}.

Proof. The map given by φ(p + q̄) = p(T ) + q(T )∗ extends to a positive map
φ: C(T)→ B(H). By Theorem 3.11 this map is completely positive, and so by
Proposition 3.6, ‖φ‖cb = ‖φ(1)‖ = 1. Hence,

‖(pi j (T ))‖B(H(n)) = ‖φn((pi j ))‖ ≤ ‖(pi j )‖Mn (C(T)),

and the result follows. �

We’ve seen that for a commutative domain or range, positivity implies com-
plete positivity. We shall see that if the domain or range isn’t too badly non-
commutative, then slightly stronger hypotheses than positivity will be enough
to imply complete positivity. For now we restrict the domain.

Lemma 3.13. Let A be a C∗-algebra. Then every positive element of Mn(A)
is a sum of n positive elements of the form (a∗

i a j ) for some {a1, . . . , an} ⊆ A.

Proof. We remark that if we let R be the element of Mn(A) whose kth row is
a1, . . . , an andwhose other entries are 0, then R∗R = (a∗

i a j ), so such an element
is positive. Now let P be positive, so P = B∗B, and write B = R1 + · · · + Rn ,
where Rk is the kth row of B and 0 elsewhere.
We have that P = B∗B = R∗

1 R1 + · · · + R∗
n Rn , since R∗

i R j = 0 when
i �= j . �
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We note that by the above lemma, to verify that φ: A→B is n-positive it is
sufficient to check that (φ(a∗

i a j )) is positive for all {a1, . . . , an} in A.

Theorem 3.14 (Choi). Let B be a C∗-algebra, let φ: Mn →B, and let
{Ei, j }ni, j=1 denote the standard matrix units for Mn. The following are equiva-
lent:

(i) φ is completely positive.
(ii) φ is n-positive.
(iii) (φ(Ei, j ))ni, j=1 is positive in Mn(B).

Proof. Clearly, (i) implies (ii), and since (Ei, j )ni, j=1 is positive, (ii) implies (iii).
Thus, we shall prove that (iii) implies (i).
For this it is sufficient to assume that B = B(H). Fix k, and let x1, . . . , xk

belong toH and B1, . . . , Bk belong to Mn . By the above lemma, it is sufficient
to prove that

∑
i, j 〈φ(B∗

i B j )x j , xi 〉 is positive.
Write B� = ∑n

r,s=1 br,s,�Er,s so that

B∗
i B j =

n∑
r,s,t=1

b̄r,s,i br,t, j Es,t .

Set yt,r = ∑k
j=1 br,t, j x j ; then

∑
i, j

〈φ(B∗
i B j )x j , xi 〉 =

n∑
r=1

n∑
s,t=1

〈
φ(Es,t )

(∑
i, j

b̄r,s,i br,t, j x j

)
, xi

〉

=
n∑

r=1

∑
s,t

〈φ(Es,t )yt,r , ys,r 〉.

But for each r , this last sum is positive, since (φ(Es,t ))ns,t=1 is positive. Thus,
we’ve expressed our original sum as the sum of n positive quantities. This
completes the proof. �

By combining the results of this chapter with the technique used in the proof
ofTheorem2.6, some fairly deep operator theory results can be readily obtained.
Recall that if T is in B(H), then we define the numerical radius of T by

w(T ) = sup{|〈T x, x〉|: ‖x‖ ≤ 1, x ∈ H}.
The following result is essentially due to Berger [15].

Theorem 3.15. Let T be in B(H), and let S ⊆C(T) be the operator system
defined by S = {p + q̄: p, q polynomials}. The following are equivalent:
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(i) w(T ) ≤ 1.
(ii) The map φ: S → B(H) defined by

φ(p + q̄) = p(T ) + q(T )∗ + (p(0) + q(0))I

is positive.

Proof. We first show that (i) implies (ii). Let Rn be the n × n operator matrix
whose subdiagonal entries are T and whose remaining entries are 0. It is not
difficult to show that w(Rn) ≤ w(T ) (Exercise 3.13).
Mimicking the first part of the proof of Theorem 2.6, we see that the above

map φ is positive, provided that the operator matrices




2 T ∗ . . . T ∗n

T
. . .

. . .
...

...
. . .

. . . T ∗

T n . . . T 2


 (∗)

are positive for all n.
Note that as in Theorem 2.6, Rn+1

n = 0 and so the matrix (∗) can be written
as (I − Rn)−1 + (I − R∗

n )
−1. Fix a vector x = (I − Rn)y, and compute

〈((I − Rn)
−1 + (I − R∗

n )
−1)x, x〉 = 2‖y‖2 − 2Re〈Rn y, y〉.

Thus, (∗) is positive if and only if w(Rn) ≤ 1 (Exercise 3.13 (iv)).
If w(T ) ≤ 1, then w(Rn) ≤ 1 and so (∗) is positive, which implies that φ is

positive.
Conversely, if φ is positive, then, since S is dense in C(T), φ will be com-

pletely positive by Theorem 3.11. Note that the matrix



1 z̄ . . . z̄n

z 1
. . .

...
...

. . .
. . . z̄

zn . . . z 1


 =



1 0 . . . 0

0 z
. . .

...
...

. . .
. . . 0

0 . . . 0 zn


 (∗∗)

×


1 . . . 1
...

...
1 . . . 1





1 0 . . . 0

0 z̄
. . .

...
...

. . .
. . . 0

0 . . . 0 z̄n




is positive in Mn(C(T)), and so its image underφn will be positive. But the image
of (∗∗) under φn is (∗). Thus, (∗) is positive for all n, and hence w(Rn) ≤ 1.
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Let x ∈ H, ‖x‖ = 1, and let y = (x ⊕ · · · ⊕ x)/
√

n be a unit vector in the
direct sum of n copies ofH. We have that

1 ≥ |〈Rn y, y〉| = n − 1

n
|〈T x, x〉|,

from which it follows that w(T ) ≤ n
n−1 for all n.

Thus, w(T ) ≤ 1, which completes the proof of the theorem. �

Note that if w(T ) ≤ 1 and φ is as above, then since φ is positive, ‖φ‖ =
‖φ(1)‖ = 2. Thus, if p is a polynomial, then ‖p(T )‖ = ‖φ(p) − p(0)I‖ ≤
3‖p‖. In particular, if w(T ) ≤ 1, then the functional calculus can be extended
from polynomials to the disk algebra A(D).

Corollary 3.16 (Berger–Kato–Stampfli). Let T be in B(H) with w(T ) ≤ 1,
and let f be in A(D) with f (0) = 0. Then w( f (T )) ≤ ‖ f ‖.

Proof. It is sufficient to assume that f is a polynomial and that ‖ f ‖ ≤ 1. Let
φ be the map of Theorem 3.14 for T . We must show that the map ψ(p + q̄) =
p( f (T )) + q( f (T ))∗ + (p(0) + q(0))I is positive. But if p + q̄ is positive, then
p ◦ f + q ◦ f is positive, and thus,

ψ(p + q̄) = p( f (T )) + q( f (T ))∗ + (p(0) + q(0))I = φ(p ◦ f + q ◦ f )

is positive. �

Corollary 3.17 (Berger). Let T be in B(H). Then w(T n) ≤ w(T )n.

Proof. We may assume w(T ) = 1, but then applying Corollary 3.16, with
f (z) = zn , yields the result. �

Actually, the proof of Theorem 3.15 yields a matrix-valued generalization of
the Berger–Kato–Stampfli theorem. Ifw(T ) ≤ 1 and F = ( fi j ) is in Mn(A(D))
with F(0) = 0, then w(F(T )) ≤ ‖F‖.

Module Mappings and Multiplicative Domains

In later chapters an increasingly important role will be played by module ac-
tions and module mappings. Several key facts about module mappings are
consequences of the Schwarz inequality, and so we present them here.
LetA be a unitalC∗-algebra, and assume that C is a subalgebrawith 1C = 1A.

Then we can regard A as a left C-module with module action c ◦ a = ca.
Similarly, we can regardA as a right C-module or a C-bimodule. If B is another
C∗-algebra containing C as such a subalgebra and φ: A→B is linear, then we



38 Chapter 3. Completely Positive Maps

call φ a left C-module map provided φ(ca) = cφ(a) for every a ∈ A and c ∈ C.
We define right C-module maps and C-bimodule maps analogously.
One of our main interests is in finding conditions that guarantee a map φ is

a module map.

Theorem 3.18. Let A and B be unital C∗-algebras, and let φ: A→B be
completely positive with φ(1) = 1. We have the following:

(i) {a ∈ A: φ(a)∗φ(a) = φ(a∗a)} = {a ∈ A: φ(ba) = φ(b)φ(a) for all b ∈
A} is a subalgebra of A, and φ is a homomorphism when restricted to this
set.

(ii) {a ∈ A: φ(a)φ(a)∗ = φ(aa∗)} = {a ∈ A: φ(ab) = φ(a)φ(b) for all b ∈
A} is a subalgebra of A, and φ is a homomorphism when restricted to this
set.

(iii) {a ∈ A: φ(a)∗φ(a) = φ(a∗a) and φ(a)φ(a)∗ = φ(aa∗)} = {a ∈ A:
φ(ab) = φ(a)φ(b) and φ(ba) = φ(b)φ(a) for all b ∈A} is a C∗-
subalgebra of A, and φ is a ∗-homomorphism when restricted to this
set.

Proof. We prove (i). The proofs of (ii) and (iii) are similar.
First, ifa belongs to the set on the right, then choosingb = a∗ yieldsφ(a∗a) =

φ(a∗)φ(a) = φ(a)∗φ(a), since φ is self-adjoint. Thus, a belongs to the set on
the left.
So assumeφ(a)∗φ(a) = φ(a∗a), and apply the Schwarz inequality to themap

φ(2) and the matrix [ a b∗
0 0 ]. We obtain[

φ(a) φ(b∗)
0 0

]∗ [
φ(a) φ(b∗)
0 0

]
≤ φ(2)

((
a∗a a∗b∗

ba bb∗

))

and so [
φ(a∗a) − φ(a)∗φ(a) φ(a∗b∗) − φ(a)∗φ(b∗)
φ(b)φ(a) − φ(ba) φ(b)φ(b∗) − φ(bb∗)

]
≥ 0.

Since the (1,1) entry of this matrix is 0, it follows that the (2,1) entry must be
0 as well. Thus, φ(b)φ(a) = φ(ba), and we have that the two sets are equal.
The remaining claims are trivial. �

Corollary 3.19. Let A,B, and C be unital C∗-algebras, and assume that C is a
C∗-subalgebra of bothA andB with 1C = 1A = 1B. If φ : A→B is completely
positive and φ(c) = c for every c ∈ C, then φ is a C-bimodule map.

We call the set given in Theorem 3.18(i) the right multiplicative domain of
φ and denote it by R. Note that if we define a rightR-module action on B via
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b ◦ a = bφ(a) for b ∈B, a ∈R, then φ is a rightR-module map. Similarly, we
call the set in Theorem 3.18(ii) the left multiplicative domain of φ, denoting it
by L, and the set in Theorem 3.18(iii) the multiplicative domain of φ, denoting
it by C. We have thatL = R∗ and C = R ∩ R∗ and that φ is a C-bimodule map.
It is perhaps worth remarking that the above proof only used 4-positivity of

the map φ.

Notes

Lemma 3.1 is an observation used in the work of Choi and Effros [48].
Proposition 3.5 appears in Arveson [6], which is the source for many of the

applications of complete positivity to operator theory.
Theorem 3.11 is due to Stinespring [221], where the term “completely posi-

tive” is introduced and used. Stinespring’s proof was measure-theoretic.
Theorem 3.14 can be found in Arveson [9] and Choi [41, 43].
Theorem 3.15, Corollary 3.16, and Corollary 3.17 can be found in Berger

[15], Kato [130], and Berger and Stampfli [17]. For some related work see
[16], [118], and [239]. These ideas were further generalized by the theory of
Cp operators in Sz.-Nagy and Foias [231] (see Exercises 4.16 and 8.10). For an
elementary proof of Corollary 3.16, see [172]. Further results in the direction
of Exercise 3.10 can be found in Tomiyama’s survey article [235].

Exercise 3.6(iii) appears in Choi [43] with a different proof. Exercise 3.9(v)
is Walter’s 3 × 3 matrix trick [240], which yields a simple proof of 3.9(vi).
Exercise 3.11 is an unpublished result of Smith [215].
Theorem 3.18 and Corollary 3.19 are due to Choi [42].

Exercises

3.1 Prove that ‖φn‖ ≤ ‖φk‖ for n ≤ k and that if φk is positive, then φn is
positive.

3.2 Let P, Q, A be operators on someHilbert spaceHwith P and Q positive.
(i) Show that [ P A

A∗ Q ] ≥ 0 if and only if |〈Ax, y〉|2 ≤ 〈Py, y〉 · 〈Qx, x〉
for all x, y inH.

(ii) Prove Lemma 3.1(ii).
(iii) Show that if [ P A

A∗ Q ] ≥ 0, then for any x inH we have that

0 ≤ 〈(P + A + A∗ + Q)x, x〉 ≤ (
√

〈Px, x〉 +
√

〈Qx, x〉)2

and hence ‖P + AA∗ + Q‖ ≤ (‖P‖1/2 + ‖Q‖1/2)2.
(iv) Show that if [ P A

A∗ P ] ≥ 0, then A∗ A ≤ ‖P‖ · P and in particular
‖A‖ ≤ ‖P‖.

3.3 Prove a nonunital version of Proposition 3.2.
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3.4 (Modified Schwarz inequality for 2-positive maps) Let A and B be C∗-
algebras, andφ:A→B 2-positive. Prove thatφ(a)∗φ(a) ≤ ‖φ(1)‖φ(a∗a)
and that ‖φ(a∗b)‖2 ≤ ‖φ(a∗a)‖ · ‖φ(b∗b)‖. (Hint: Consider [ 1 a

0 0 ] and
[ a b
0 0 ].)

3.5 Let A be a C∗-algebra with unit. Show that the maps Tr, σ : Mn(A)→A
defined by Tr((ai, j )) = ∑

i ai,i and σ ((ai, j )) = ∑
i, j ai, j are completely

positive maps. Deduce that if ‖(ai, j )‖ ≤ 1, then ‖∑
i, j ai, j‖ ≤ n.

3.6 (Choi) Let A be a C∗-algebra, let λ be a complex number with |λ| = 1,
let Uλ be the unitary element of Mn(A) that is diagonal with ui,i = λi ,
and let Diag: Mn(A)→ Mn(A) be defined by Diag((ai, j )) = (bi, j ), where
bi, j = 0, for i �= j and bi,i = ai,i .
(i) Show that U ∗

λ (ai, j )Uλ = (λ j−i ai, j ).
(ii) By considering the nontrivial nth roots of unity, show the map �:

Mn(A)→ Mn(A) defined by �(A) = n Diag(A) − A is completely
positive.

(iii) Show that the map �: Mn → Mn defined by �(A) = (n −
1) Diag(A) − A is not completely positive.

3.7 LetA and B be C∗-algebras with unit, and let φ1, φ2:A→B be bounded
linear maps with φ1 ± φ2 completely positive. Prove that ‖φ2‖cb ≤
‖φ1(1)‖. [Hint: Use Lemma 3.1 applied to a and−a and Exercise 3.2(iv).]

3.8 Let A be a C∗-algebra with unit. Define T1, T2: Mn(A)→ Mn(A) by
T1((ai, j )) = (bi, j ) where bi,i = ∑

� a�,�, bi, j = 0, i �= j , and T2((ai, j )) =
(ci, j ) where ci, j = a j,i . Fix k and �, k �= �, and define U±

k,� to be 1 in the
(k, �) entry and ±1 in the (�, k) entry and 0 elsewhere.
(i) Show that

T1(A) − T2(A) = 1

2

∑
k �=�

U−∗
k,� AU−

k,�.

(ii) Show that

T1(A) + T2(A) = 1

2

∑
k �=�

U+∗
k,� AU+

k,� + Diag(A).

(iii) Deduce that T1 ± T2 are completely positive and that ‖T2‖cb ≤ n.
(iv) By considering A = C, show that ‖T2‖cb = n.

3.9 Let A be a C∗-algebra, and let Aop denote the set A with the same norm
and ∗-operation, but with a multiplication defined by a ◦ b = ba.
(i) Prove that Aop is a C∗-algebra.
(ii) Prove that M2 and Mop

2 are ∗-isomorphic via the transpose map.
(iii) Show that the identity map from A to Aop is always positive.



Exercises 41

(iv) Prove that the identity map from M2 to Mop
2 is not 2-positive.

(v) (Walter) LetU, V, and X be elements ofAwithU, V unitary. Prove
that 

 I U X
U ∗ I V
X∗ V ∗ I


 ≥ 0 if and only if X = UV .

(vi) Prove that the identity map from A to Aop is completely positive if
and only if A is commutative.

3.10 (Tomiyama) LetA andB be unitalC∗-algebras, and let (ai, j ) be in Mn(A).

(i) Prove that ‖(ai, j )‖ ≤ ‖(‖ai, j‖)‖ ≤
(∑

i, j ‖ai, j‖2
)1/2

≤ n‖(ai, j )‖,
and give examples to show that all of these inequalities are sharp.

(ii) Let M be an operator space in A, and let φ: M→B be bounded.
Prove that ‖φn‖ ≤ n‖φ‖.

3.11 (Smith) Let M be an operator space, and let φ: M→ Mn be bounded.
Prove that ‖φ‖cb ≤ n‖φ‖. [Hint: Write

φ(a) =
n∑

i, j=1

φi, j (a) ⊗ Ei, j ,

where φi, j : M→ C.]
3.12 Let X be a compact subset of C, and let R(X ) be the quotients of polyno-

mials with poles off X . We may regard R(X ) as a subalgebra of C(∂X )
or of C(X ). Prove that with respect to these two embeddings, the identity
map from R(X ) to R(X ) is completely isometric. Use this result to deduce
that the real part of a function in R(X ) is positive on X if and only if it is
positive on ∂X .

3.13 Let Sn denote the cyclic forward shift on C
n . That is, Sne j = e j+1 (mod

n), where e0, . . . , en−1 is the canonical basis for C
n .

(i) Show that Sn is unitarily equivalent to a diagonalmatrixwhose entries
are the nth roots of unity.

(ii) Let T be in B(H). Show that w(T ) = w(T ⊗ Sn).
(iii) Let Rn be the n × n operator matrix whose subdiagonal entries are

T and that is 0 elsewhere. Show that w(Rn) ≤ w(T ⊗ Sn). (Hint:
Consider xλ = λx1 ⊕ · · · ⊕ λnxn with |λ| = 1.)

(iv) Show that Re〈Rn y, y〉 ≤ 1 for all ‖y‖ = 1 if and only if w(Rn) ≤ 1.
3.14 In this exercise we outline an alternative proof of Theorem 3.14. Let

T ∈ B(H) with w(T )< 1, and let p and q be arbitrary polynomials.
(i) Show directly that σ (T ) is contained in the open unit disk. (Hint:

Recall Exercise 2.7.)
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(ii) Let

Q(t ; T ) = (1 − e−i t T )−1 + (1 − eit T ∗)−1,

and show that Q(t ; T ) ≥ 0 for all t .
(iii) Show that

p(T )+ q(T )∗+ (p(0)+ q(0))I = 1
2π

∫ 2π
0 (p(eit )+ q(eit ))Q(t ; T ) dt.

(iv) Deduce Theorem 3.14.
3.15 Let {An}+∞

n=−∞ be a sequence in B(H). Prove that φ(zn) = An extends
linearly to a completely positive map φ: C(T)→ B(H) if and only if the
n × n Toeplitz matrix (Ai− j ) is positive for all n. A sequence {An}+∞

n=−∞
satisfying these conditions is called an operator-valued trigonometric
moment sequence.

3.16 Prove that the equivalent conditions of Exercise 3.15 are also equivalent to
the operator-valued power series F(z)= A0/2 + ∑∞

k=1 Akzk converging
on D and satisfying F(z) + F(z)∗ ≥ 0 for |z| < 1.

3.17 Let {An}∞n=0 be a sequence in B(H). Prove thatφ(tn) = An extends linearly
to a completely positive map φ: C([0, 1])→ B(H) if and only if Bn,m =∑n

k=0(
n
k
)(−1)k Am+k ≥ 0 for all n, m ≥ 0. We call such a sequence an

operator-valued Hausdorff moment sequence.
3.18 Let A be a unital C∗-algebra, and let (bi j ) be in Mn(A). Prove that (bi j )

is positive if and only if for every n-tuple (a1, . . . , an) of elements of A,
we have that

∑n
i, j=1 aibi j a∗

j is a positive element of A.



Chapter 4
Dilation Theorems

We saw our first example of a dilation theorem in Chapter 1. Sz.-Nagy’s dilation
theorem (Theorem 1.1) showed that every contraction operator on a Hilbert
space H was the compression of a unitary operator on a Hilbert space K that
contains H. In this chapter we focus on dilation theorems that characterize
various classes of maps into B(H) as compressions to H of “nicer” maps into
B(K), whereK is a Hilbert space containingH. One of the most general dilation
theorems of this type is Stinespring’s theorem, which characterizes completely
positive maps from C∗-algebras into B(H) in terms of ∗-homomorphisms into
B(K) for some other Hilbert space K.

Theorem4.1 (Stinespring’s dilation theorem). LetA be a unital C∗-algebra,
and let φ: A→B(H) be a completely positive map. Then there exists a Hilbert
space K, a unital ∗-homomorphism π : A→ B(K), and a bounded operator
V : H→K with ‖φ(1)‖ = ‖V ‖2 such that

φ(a) = V ∗π (a)V .

Proof. Consider the algebraic tensor product A ⊗ H, and define a symmetric
bilinear function 〈, 〉 on this space by setting

〈a ⊗ x, b ⊗ y〉 = 〈φ(b∗a)x, y〉H
and extending linearly, where 〈, 〉H is the inner product on H.

The fact that φ is completely positive ensures that 〈, 〉 is positive semidefinite,
since 〈

n∑
j=1

a j ⊗ x j ,

n∑
i=1

ai ⊗ xi

〉
=

〈
φn((a

∗
i a j ))


x1

...
xn


 ,


x1

...
xn


〉

H(n)

≥ 0,

43
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where 〈, 〉H(n) denotes the inner product on the direct sum H(n) of n copies of
H, given by

〈
x1

...
xn


 ,


y1

...
yn




〉
H(n)

= 〈x1, y1〉H + · · · + 〈xn, yn〉H.

Positive semidefinite bilinear forms satisfy the Cauchy–Schwarz inequality,

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉.
Thus, we have that

{u ∈ A ⊗ H | 〈u, u〉 = 0} = {u ∈ A ⊗ H | 〈u, v〉 = 0 for all v ∈ A ⊗ H}
is a subspace, N , of A ⊗ H. The induced bilinear form on the quotient space
A ⊗ H/N defined by

〈u + N , v + N 〉 = 〈u, v〉
will be an inner product.We letK denote theHilbert space that is the completion
of the inner product space A ⊗ H/N .

If a ∈ A, define a linear map π (a): A ⊗ H→A ⊗ H by

π (a)
(∑

ai ⊗ xi

)
=

∑
(aai ) ⊗ xi .

A matrix factorization shows that the following inequality in Mn(A)+ is
satisfied:

(a∗
i a∗aa j ) ≤ ‖a∗a‖ · (a∗

i a j ),

and consequently,〈
π (a)

(∑
a j ⊗ x j

)
, π (a)

(∑
ai ⊗ xi

)〉
=

∑
i, j

〈φ(a∗
i a∗aa j )x j , xi 〉H ≤ ‖a∗a‖ ·

∑
i, j

〈φ(a∗
i a j )x j , xi 〉H

= ‖a‖2 ·
〈∑

a j ⊗ x j ,
∑

ai ⊗ xi

〉
.

Thus, π (a) leaves N invariant and consequently induces a quotient linear
transformation on A ⊗ H/N , which we still denote by π (a). The above in-
equality also shows that π (a) is bounded with ‖π (a)‖ ≤ ‖a‖. Thus, π (a) ex-
tends to a bounded linear operator on K, which we still denote by π (a).

It is straightforward to verify that the map π : A→ B(K) is a unital
∗-homomorphism.
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Now define V : H→K via

V (x) = 1 ⊗ x + N .

Then V is bounded, since

‖V x‖2 = 〈1 ⊗ x, 1 ⊗ x〉 = 〈φ(1)x, x〉H ≤ ‖φ(1)‖ · ‖x‖2.

Indeed, it is clear that ‖V ‖2 = sup{〈φ(1)x, x〉H: ‖x‖ ≤ 1} = ‖φ(1)‖.
To complete the proof, we only need observe that

〈V ∗π (a)V x, y〉H = 〈π (a)1 ⊗ x, 1 ⊗ y〉K = 〈φ(a)x, y〉H
for all x and y, and so V ∗π (a)V = φ(a). �

There are several remarks to be made. First, any map of the form φ(a) =
V ∗π (a)V is easily seen to be completely positive. Thus, Stinespring’s dilation
theorem characterizes the completely positive maps from any C∗-algebra into
the algebra of bounded operators on any Hilbert space.

Second, note that if φ is unital, then V is an isometry. In this case we may
identify H with the subspace VH of K. With this identification, V ∗ becomes
the projection of K onto H, PH. Thus, we see that

φ(a) = PHπ (a)|H.

If T is in B(K), then the operator PHT |H in B(H) is called the compression of
T to H. If we decompose K = H ⊕ H⊥ and, using this decomposition, regard
T as a 2 × 2 operator matrix, then the compression of T to H is just the (1,1)
entry of this operator matrix for T . Thus, when φ(1) = 1, Stinespring’s theorem
shows that every completely positive map into B(H) is the compression to H
of a *-homomorphism into a Hilbert space that contains H.

The third point to be made is that Stinespring’s theorem is really the nat-
ural generalization of the Gelfand–Naimark–Segal (GNS) representation of
states. Indeed, if H = C is one-dimensional so that B(C) = C, then an isome-
try V : C →K is determined by V 1 = x and we have

φ(a) = φ(a)1 · 1 = V ∗π (a)V 1 · 1 = 〈π (a)V 1, V 1〉K = 〈π (a)x, x〉.
In fact, rereading the above proof with H = C and A ⊗ C = A, the reader will
find a proof of the GNS representation of states.

Finally, we note that if H and A are separable, then the space K constructed
above will be separable as well. Similarly, if H and A are finite-dimensional,
then K is finite-dimensional.

We now turn our attention to considering the uniqueness of the Stinespring
representation. We shall call a triple (π, V,K) as obtained in Stinespring’s
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theorem a Stinespring representation for φ. Given a Stinespring representation
(π, V,K), let K1 be the closed linear span of π (A)VH. It is easily verified that
K1 reduces π (A) so that the restriction of π to K1 defines a ∗-homomorphism,
π1: A→ B(K1).

Clearly, VH ⊆ K1, so we have that φ(a) = V ∗π1(a)V , i.e., that (π1, V,K1)
is also a Stinespring representation. It enjoys one additional property, namely,
thatK1 is the closed linear span of π1(A)VH. Whenever the space of the repre-
sentation enjoys this additional property, we call the triple a minimal Stinespring
representation. The following result summarizes the importance of this mini-
mality condition.

Proposition 4.2. Let A be a C∗-algebra, let φ: A→ B(H) be completely pos-
itive, and let

(πi , Vi ,Ki ), i = 1, 2,

be two minimal Stinespring representations for φ. Then there exists a unitary
U : K1 →K2 satisfying U V1 = V2 and Uπ1U ∗ = π2.

Proof. If U exists, then necessarily,

U

(∑
i

π1(ai )V1hi

)
=

∑
i

π2(ai )V2hi .

Thus, it will be sufficient to verify that the above formula yields a well-defined
isometry from K1 to K2, since by the minimality condition, U will have dense
range and hence be onto.

To this end, note that∥∥∥∥∥
∑

i

π1(ai )V1hi

∥∥∥∥∥
2

=
∑
i, j

〈V ∗
1 π1(a

∗
i a j )V1h j , hi 〉

=
∑
i, j

〈φ(a∗
i a j )h j , hi 〉 =

∥∥∥∥∥
∑

i

π2(ai )V2hi

∥∥∥∥∥
2

,

so U is isometric and consequently well defined, which is all that we needed to
show. �

We now show how some other dilation theorems can be deduced from
Stinespring’s result.

The following is a slightly refined version of Theorem 1.1. It is interesting
to compare the proofs.
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Theorem 4.3 (Sz.-Nagy’s dilation theorem). Let T ∈ B(H) with ‖T ‖ ≤ 1.
Then there exists a Hilbert space K containing H as a subspace and a unitary
U on K with the property that K is the smallest closed reducing subspace for
U containing H such that

T n = PHUn|H for all nonnegative integers n.

Moreover, if (U ′,K′) is another pair with the above properties, then there is
a unitary V : K→K′ such that V h = h for h ∈ H and VU V ∗ = U ′.

Proof. By Theorem 2.6 and Exercise 2.2, the map φ(p + q̄) = p(T ) + q(T )∗,
where p and q are polynomials, extends to a positive map of C(T) into B(H).
This map is completely positive by Theorem 3.11.

Let (π, V,K) be a minimal Stinespring representation of φ, and recall that
since φ(1) = 1, we may identify VH with H. Setting π (z) = U , where z is the
coordinate function, we have that U is unitary and that

T n = φ(zn) = PHπ (zn)|H = PHUn|H.

The minimality condition on (π, V,K) is equivalent to requiring that the span
of

{UnH: n = 0, ±1, ±2, . . . }
be dense in K, which is equivalent to the requirement that there be no closed
reducing subspace for U containing H other than K itself.

The final statement of the theorem is a consequence of the uniqueness of a
minimal Stinespring representation up to unitary equivalence, Proposition 4.2.

�

The techniques used to prove Theorem 4.3 can be used to prove a far more
general result. Let X ⊆ C be a compact set, and let R(X ) be the algebra of
rational functions on X . An operator T is said to have a normal ∂ X-dilation if
there is a Hilbert space K containing H as a subspace and a normal operator N
on K with σ (N ) ⊆ ∂ X such that

r (T ) = PHr (N )|H
for all r inR(X ). We shall call N a minimal normal ∂ X-dilation of T , provided
that K is the smallest reducing subspace for N that contains H.

Clearly, when T has a normal ∂ X dilation N ,

‖r (T )‖ ≤ ‖r (N )‖ ≤ sup{|r (z)|: z ∈ ∂ X},
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and so a necessary condition for T to have a normal ∂ X -dilation is that X is a
spectral set for T . It is a long-standing problem to determine if this condition is
also sufficient [231]. That is, if X is a spectral set for T , then does it necessarily
follow that T has a normal ∂ X -dilation?

No compact subsets of C are known where this fails to be true. Yet the col-
lection of sets X for which this statement is known to always hold is somewhat
limited. It has been verified that this condition is sufficient for X an annulus [1],
but the answer to this question is still unknown even when X is a nice region
with two holes and T is a finite matrix. On the other hand, if T is restricted to
be a 2 × 2 matrix, then this statement is known to be true [63] for every set X .

If S = R(X ) + R(X ) is dense in C(∂ X ), then R(X ) is called a Dirichlet
algebra on ∂ X . For example, if C/X has only finitely many components and
the interior of X is simply connected, then R(X ) is a Dirichlet algebra on ∂ X .
See [68] for this and further topological conditions on X that ensure that R(X )
is a Dirichlet algebra on ∂ X .

Theorem 4.4 (Berger–Foias–Lebow). Let R(X ) be a Dirichlet algebra on
∂ X. If X is a spectral set for T , then T has a minimal normal ∂ X-dilation.
Moreover, any two minimal normal ∂ X-dilations for T are unitarily equivalent,
via a unitary which leaves H invariant.

Proof. Let ρ:R(X ) → B(H) be the unital contraction defined by ρ(r ) = r (T ),
so that ρ̃: S → B(H) is positive, where S = R(X ) + R(X ). Since S is dense
in C(∂ X ) and positive maps are bounded, ρ̃ extends to a positive map φ on
C(∂ X ). But by Theorem 3.11, φ is completely positive. The remainder of the
proof proceeds as in Theorem 4.3. �

When R(X ) is not a Dirichlet algebra, minimal normal ∂ X -dilations of an
operator need not be unitarily equivalent [165].

To state the next dilation theorem, we need to introduce some notation. Let
X be a compact Hausdorff space, and let B be the σ -algebra of Borel sets on X .
A B(H)-valued measure on X is a map E : B→ B(H) that is weakly countably
additive, that is, if {Bi } is a countable collection of disjoint Borel sets with union
B, then

〈E(B)x, y〉 =
∑

i

〈E(Bi )x, y〉

for all x, y in H. The measure is bounded provided that

sup{‖E(B)‖: B ∈ B} < ∞,
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and we let ‖E‖ denote this supremum. The measure is regular provided that
for all x, y in H, the complex measure given by

µx,y(B) = 〈E(B)x, y〉 (∗)

is regular.
Given a regular bounded B(H)-valued measure E , one obtains a bounded,

linear map

φE : C(X ) → B(H)

via

〈φE ( f )x, y〉 =
∫

f dµx,y . (∗∗)

Conversely, given a bounded, linear map φ: C(X ) → B(H), if one defines reg-
ular Borel measures {µx,y} for each x and y in H by the above formula (∗∗),
then for each Borel set B, there exists a unique, bounded operator E(B), de-
fined by the formula (∗), and the map B → E(B) defines a bounded, regular
B(H)-valued measure. Thus, we see that there is a one-to-one correspondence
between the bounded, linear maps of C(X ) into B(H) and the regular bounded
B(H)-valued measures. Such measures are called

(i) spectral if E(M ∩ N ) = E(M) · E(N ),
(ii) positive if E(M) ≥ 0,
(iii) self-adjoint if E(M)∗ = E(M),

for all Borel sets M and N .
Note that if E is spectral and self-adjoint, then E(M) must be an orthogonal

projection and hence E is also positive.
The following proposition, whose proof we leave to the reader (Exercise

4.10), summarizes the relationships between the above properties of measures
and the properties of their corresponding linear maps.

Proposition 4.5. Let E be a regular bounded B(H)-valued measure, and let
φ: C(X ) →B(H) be the corresponding linear map. Then:

(i) φ is a homomorphism if and only if E is spectral;
(ii) φ is positive if and only if E is positive;

(iii) φ is self-adjoint if and only if E is self-adjoint;
(iv) φ is a ∗-homomorphism if and only if E is self-adjoint and spectral.

The correspondence between these measures and linear maps leads to a
dilation result for these measures.
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Theorem 4.6 (Naimark). Let E be a regular, positive, B(H)-valued measure
on X. Then there exists a Hilbert spaceK, a bounded linear operator V :H→K,
and a regular, self-adjoint, spectral, B(K)-valued measure F on X, such that

E(B) = V ∗F(B)V .

Proof. Let φ: C(X ) → B(H) be the positive, linear map corresponding to E .
Then φ is completely positive by Theorem 3.11, and so we may apply Stine-
spring’s theorem to obtain a∗-homomorphismπ :C(X ) → B(K) and a bounded,
linear operator V : H→K such that φ( f ) = V ∗π ( f )V for all f in C(X ). If we
let F be the B(K)-valued measure corresponding to π , then it is easy to verify
that F has the desired properties. �

As another application of Stinespring’s theorem, we shall give a characteriza-
tion of the completely positive maps between two matrix algebras. In contrast,
there is an entire panoply of classes of positive maps between matrix alge-
bras and much that is not known about the relationships between these various
classes (see, for example [46] and [244]).

We begin by remarking that if π : Mn → B(K) is a ∗-homomorphism, then
up to unitary equivalence, K decomposes as an orthogonal, direct sum of n-
dimensional subspaces such that π is the identity representation on each of the
subspaces (Exercise 4.11).

Now let φ: Mn → Mk = B(Ck), and let (π, V,K) be a minimal Stinespring
representation for φ. By the construction of the space K given in Theorem 4.1,
we see that dim(K) ≤ dim(Mn ⊗ C

k) = n2k.
Thus, up to unitary equivalence, we may decomposeK into the direct sum of

fewer than nk subspaces, each of dimension n, such that π : Mn → B(K) is the
identity representation on each one. So let us write K = ∑�

i=1 ⊕ Cn
i , � ≤ nk,

and let Pi denote the projection of K onto C
n
i . We have that for any A in Mn ,

Piπ (A)|Cn
i
= A.

Now, if we let Vi : C
k → C

n
i be defined by Vi = Pi V , then

φ(A) = V ∗π (A)V =
�∑

i, j=1

V ∗
i π (A)Vj =

�∑
i=1

V ∗
i AVi ,

after identifying each C
n
i with C

n .
We summarize these calculations in the following:

Proposition 4.7 (Choi). Let φ: Mn → Mk be completely positive. Then there
exist fewer than nk linear maps, Vi : C

k → C
n, such that φ(A) = ∑

i V ∗
i AVi for

all A in Mn.
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There is another dilation theorem due to Naimark whose proof is closely
related to the proof of Stinespring’s theorem. Let G be a group and let φ: G →
B(H). We call φ completely positive definite if for every finite set of elements
g1, . . . , gn of G, the operator matrix (φ(g−1

i g j )) is positive.
If G is a topological group, then we call a map φ: G → B(H) weakly con-

tinuous provided 〈φ(gλ)x, y〉 → 〈φ(g)x, y〉 for every pair of vectors x, y in H,
and every net {gλ} in G converging to g. Similarly, φ is called strongly con-
tinuous provided ‖φ(gλ)x − φ(g)x‖ → 0, and ∗-strongly continuous provided
‖φ(gλ)x − φ(g)x‖ → 0 and ‖φ(gλ)∗x − φ(g)x‖ → 0.

Theorem 4.8 (Naimark). Let G be a topological group, and let φ: G → B(H)
be weakly continuous and completely positive definite. Then there exists a
Hilbert space K, a bounded operator V : H→K, and a ∗-strongly continu-
ous unitary representation ρ: G → B(H) such that

φ(g) = V ∗ρ(g)V .

Consequently, φ is automatically ∗-strongly continuous.

Proof. Consider the vector spaceC0(G,H) of finitely supported functions from
G to H and define a bilinear function on this space by

〈 f1, f2〉 =
∑
g,g′

〈φ(g−1g′) f1(g
′), f2(g)〉H.

As in the proof of Stinespring’s theorem, we have that 〈 f, f 〉 ≥ 0 and that the
set N = { f |〈 f, f 〉 = 0} is a subspace of C0(G,H). We let K be the completion
of C0(G,H)/N with respect to the induced inner product.

For h in H, define V h by

(V h)(g) =
{

h if g = e,

0 if g �= e,

where e denotes the identity of G, and let ρ: G → B(K) be left translation, that
is,

(ρ(g) f )(g′) = f (g−1g′).

It is straightforward to check that V is bounded and linear, that ρ is a unitary
representation, and that φ(g) = V ∗ρ(g)V .

Now we show that ρ is weakly continuous. Let {gλ} be a net in G that
converges to g0. Since ρ is a unitary representation, it will suffice to show that
ρ(gλ) converges weakly to ρ(g0) on a dense subspace.
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Let f1, f2 be in C0(G,H). Then

〈ρ(gλ) f1, f2〉 =
∑
g,g′

〈φ(g−1g′) f1
(
g−1

λ g′), f2(g)〉H

=
∑
g,g′′

〈φ(g−1gλg′′) f1(g
′′), f2(g)〉H,

which, since both sums involved are finite, converges to∑
g,g′′

〈φ(g−1g0g′′) f1(g
′′), f2(g)〉H = 〈ρ(g0) f1, f2〉.

Thus, we see that ρ(gλ) converges weakly to ρ(g0).
Now it is easily checked that if a net of unitaries converges in the weak

operator topology to another unitary, then it converges ∗-strongly. Thus, ρ

is ∗-strongly continuous. The ∗-strong continuity of φ now follows from the
representation and the ∗-strong continuity of ρ. �

It is useful to consider the special case of the above theorem when G = Z,
the group of integers. Setting φ(n) = An , we see that φ is completely positive
definite if and only if (Ani −n j )

k
i, j=1 is positive for every choice of finitely many

integers n1, . . . , nk with k arbitrary. Taking ni = i , we see that this implies the
formal positivity of (Ai− j )∞i, j=0 = T . A little careful reflection shows that an
arbitrary choice of n1, . . . , nk is simply restricting T to the entries represented
by the set {n1, . . . , nk} and then permuting these entries.

Thus, a completely positive definite function on Z is just an operator-valued
trigonometric moment sequence (Exercise 3.15). Naimark’s dilation theorem
now tells us that there exists a unitary U = ρ(1) and V such An = V ∗UnV for
all n.

As with Stinespring’s representation, there is a minimality condition that
guarantees the uniqueness of this representation up to unitary equivalence
(Exercise 4.12).

A map φ: G → B(H) will be called positive definite if for every choice of n
elements g1, . . . , gn of G, and scalars, α1, . . . , αn , the operator∑

i, j

ᾱiα jφ
(
g−1

i g j
)

is positive. We remark that this is equivalent to requiring that for every x in
H, the map φx : G → C, given by φx (g) = 〈φ(g)x, x〉, be completely positive
definite.

We caution the reader that our terminology is not standard. What we have
chosen to call completely positive definite is usually called simply positive
definite, and the concept that we have introduced above and called positive
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definite is usually not introduced at all. Our rationale for this slight deviation
in notation will be clear in the section “Group C∗-Algebras” at the end of
this chapter, where we will show a correspondence between the two classes of
maps on G that are defined above and maps on a certain C∗-algebra associated
with G, C∗(G). Not surprisingly, this correspondence will carry (completely)
positive definite maps on G to (completely) positive maps on C∗(G).

We begin by describing this correspondence in one case of particular interest.
Let Z

n be the Cartesian product of n copies of the integers, and let T
n be the

Cartesian product of n copies of the circle. Let J = ( j1, . . . , jn) be in Z
n , and let

z j be the j th coordinate function on T
n . We set z J = z j1

1 · · · z jn
n . Note that there

is a one-to-one correspondence between unitary representations ρ: Z
n → B(H)

and ∗-homomorphisms π : C(Tn) → B(H), given by π (z j ) = ρ(e j ), where e j

is the n-tuple that is 1 in the j th entry and 0 in the remaining entries.

Proposition 4.9. Let φ: Z
n → B(H) be (completely) positive definite. Then

there is a uniquely defined, (completely) positive map ψ : C(Tn) → B(H), given
by ψ(z J ) = φ(J ). Conversely, if the (completely) positive map ψ is given, then
the above formula defines a (completely) positive definite function φ on Z

n.

Proof. First, we consider the case where φ is completely positive definite.
Let (ρ, V,K) be the Naimark dilation of φ, so that φ(J ) = V ∗ρ(J )V , and let
π : C(Tn) → B(H) be the ∗-homomorphism associatedwithρ. If we setψ( f ) =
V ∗π ( f )V , then we obtain a map ψ : C(Tn) → B(H), which is completely pos-
itive. Moreover, ψ satisfies ψ(z J ) = V ∗π (z J )V = V ∗ρ(J )V = φ(J ).

The proof of the converse in the completely positive case is identical.
Now, suppose that φ is only positive definite. If we fix x inH and set φx (J ) =

〈φ(J )x, x〉, thenφx is a completely positive definite function on Z
n . Thus, by the

above there is a positive map ψx : C(Tn) → C with ψx (z J ) = φx (J ). For fixed
f in C(Tn), the function x → ψx ( f ) as x varies over H is a bounded, quadratic
function (see Exercise 4.18), and hence there exists a bounded operator ψ( f )
such that 〈ψ( f )x, x〉 = ψx ( f ). This defines a linear map ψ : C(Tn) → B(H),
which is easily seen to be positive.

The converse in the positive case is similar. �

Corollary 4.10. For Z
n, the sets of positive definite and completely positive

definite operator-valued functions coincide.

Proof. Clearly, every completely positive definite map is positive definite. Now
let φ: Z

n → B(H) be positive definite. Then ψ : C(Tn) → B(H), given ψ(z J ) =
φ(J ) is a positive linear map. By Theorem 3.11, ψ is completely positive and
hence φ is completely positive definite. �
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Again it is useful to understand what this corollary says in the case of Z .
Setting φ(n) = An , we have seen that φ is completely positive definite if and
only if (Ai− j )∞i, j=0 is formally positive. But φ is positive definite if and only if φx

is positive definite for all x , which is if and only if (〈Ai− j x, x〉)∞i, j=0 is formally
positive for all x . Thus, for Toeplitz operator matrices, formal positivity of
(Ai− j ) is equivalent to formal positivity of (〈Ai− j x, x〉) for every vector x .

Corollary 4.10 is a generalization of this observation tomultivariable Toeplitz
operators. We now wish to discuss the analogue for more general groups.

Group C∗C∗C∗-Algebras

The above results are part of a more general duality. Let G be a locally compact
group, and let dg be a (left) Haar measure on G. The space L1(G) of integrable
functions, on G can be made into a ∗-algebra by defining

f1 × f2(g
′) =

∫
f1(g) f2(g

−1g′) dg,

and a ∗-operation by

f ∗(g) = �(g)−1 f (g−1),

where �(·) is the modular function. It is then possible to endow L1(G) with
a norm such that the completion of L1(G) is a C∗-algebra, denoted by C∗(G)
(see [73] or [173]).

There is a one-to-one correspondence between weakly continuous, uni-
tary representations ρ: G → B(H), and ∗-homomorphisms π : C∗(G) → B(H),
given by

π ( f ) =
∫

f (g)ρ(g) dg

when f is in L1(G). See [173] for a development of this theory.
In a similar fashion, there are one-to-one correspondences between the

weakly continuous, (completely) positive definite, operator-valued functions
on G and the (completely) positive maps on C∗(G), given by

ψ( f ) =
∫

f (g)φ(g) dg

for f in L1(G). The proof that the above formula defines a one-to-one corre-
spondence between these two classes of maps is similar to the proof of Propo-
sition 4.9 and is left as an exercise (Exercise 4.16).

Proposition 4.9 follows from the above correspondence and the fact [173]
that C∗(Zn) = C(Tn).
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Paralleling Corollary 4.10, we see that when G is commutative the positive
definite and completely positive definite functions correspond.

Notes

Naimark’s two dilation theorems ([150] and [151]) preceded Stinespring’s
dilation theorem [221]. Stinespring [221] defined completely positive maps
on C∗-algebras, proved that positive maps on C(X ) were completely positive
(Theorem 3.11), and then proved Theorem 4.1 as a generalization of Naimark’s
dilation theorem for positive, operator-valued measures.

Arveson [6] realized the important role that the theory of completely positive
maps can play in the study of normal ∂ X -dilations and gave the proofs of
Theorems 4.3 and 4.4 that are presented here.

Other proofs of Sz.-Nagy’s dilation theorem have used the theory of pos-
itive definite functions on Z or the “geometric” technique that we presented
in Chapter 1, where the unitary and the space that it acts on are explicitly
constructed ([228] and [210]). Two beautiful results of the geometric dilation
techniques are Ando’s dilation theorem for commuting pairs of contractions [5]
and the Sz.-Nagy–Foias commutant lifting theorem [231]. We will present these
topics in Chapter 5.

The correspondence between bounded, regular, operator-valued measures on
a compact Hausdorff space X and bounded, linear maps on C(X ) is discussed
in Hadwin [109].

Proposition 4.7 was proved by Choi [43], who also developed the theory of
multiplicative domains [42] (Exercise 4.2).

See Bunce [37] for more on Korovkin-type theorems (Exercise 4.9).
Exercise 4.16 is from Berger [15].
The material distinguishing positive definite and completely positive definite

functions on groups seems to be new.

Exercises

4.1 Use Stinespring’s representation theorem to prove that ‖V ‖2 = ‖φ‖cb

when φ is completely positive. Also, use the representation theorem to
prove that φ(a)∗φ(a) ≤ ‖φ(1)‖2φ(a∗a).

4.2 (Multiplicative domains) In this exercise, we present an alternative proof
of Theorem3.18. LetA be a C∗-algebrawith unit, and letφ:A→ B(H) be
completely positive, φ(1) = 1, with minimal Stinespring representation
(π, V,K).
(i) Prove that φ(a)∗φ(a) = φ(a∗a) if and only if VH is an invariant

subspace for π (a).
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(ii) Use this to give another proof that {a ∈ A: φ(a)∗φ(a) = φ(a∗a)} =
{a ∈ A: φ(ba) = φ(b)φ(a) for all b ∈ A}. Recall that this set is the
right multiplicative domain of φ.

(iii) Similarly, show that φ(a)∗φ(a) = φ(a∗a) and φ(a)φ(a)∗ = φ(aa∗)
if and only if VH is a reducing subspace for π (a). Deduce that the
set of all such elements is a C∗-subalgebra of A. Recall that this
subalgebra is the multiplicative domain of φ.

4.3 (Bimodule Maps) Let A,B, and C be C∗-algebras with unit, and suppose
that C is contained in both A and B, with 1C = 1A and 1C = 1B. A linear
map φ: A→B is called a C-bimodule map if φ(c1ac2) = c1φ(a)c2 for all
c1, c2 in C. Let φ: A→B be completely positive.
(i) If φ(1) = 1, then prove that φ is a C-bimodule map if and only if

φ(c) = c for all c in C.
(ii) Prove, in general, that φ is a C-bimodule map if and only if φ(c) =

c · φ(1) for all c in C. Moreover, in this case φ(1) commutes with C.
4.4 Let Dn be the C∗-subalgebra of diagonal matrices in Mn . Prove that a

linear map φ: Mn → Mn is a Dn-bimodule map if and only if φ is the
Schur product map ST for some matrix T .

4.5 Let φ: A → A be a completely positive projection with φ(1) = 1.
(i) Show that if φ(a) = a, then φ(ax) = φ(aφ(x)) for every x .

(ii) Show that B = {a: φ(a) = a} is a C∗-algebra, in the product a ◦ b =
φ(ab), but that in general,B is distinct from themultiplicative domain
of φ.

(iii) Show that φ is a (B, ◦)-bimodule map.
4.6 Let φ: G → B(H) be completely positive definite. Prove that φ is weakly

continuous if and only if φ is strongly continuous.
4.7 Let φ: G → Mn be continuous. Prove that φ is completely positive definite

if and only if there exists a Hilbert space H and continuous functions
xi : G →H, i = 1, . . . , n, such that φ(g−1g′) = (〈x j (g′), xi (g)〉).

4.8 A semigroup G with an involution g → g∗ satisfying (g1g2)∗ =
g∗

2g∗
1 , 1

∗ = 1 is called a ∗-semigroup. A function φ: G → B(H) is
called completely positive definite if (φ(g∗

i g j )) is positive for ev-
ery set of finitely many elements g1, . . . , gn of G, and bounded if
(φ(g∗

i g∗gg j )) ≤ Mg(φ(g∗
i g j )) where Mg is a constant depending only on

g. Show that every group is a ∗-semigroup if we set g∗ = g−1. Prove a
version of Naimark’s dilation theorem for ∗-semigroups.

4.9 Let A be a C∗-algebra with unit, and let φn: A→ B(H) be a sequence
of completely positive maps such that φn(1) → 1 in the weak operator
topology.
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(i) Prove that {a: φn(a)∗φn(a) − φn(a∗a) → 0 and φn(a)φn(a)∗ −
φn(aa∗) → 0 in the weak operator topology} is a C∗-subalgebra
of A.

(ii) (Korovkin) Prove that if φn: C([0, 1]) → C([0, 1]) is a sequence of
positive maps such that φn(1), φn(t), and φn(t2) converge in norm to
1, t , and t2, respectively, then φn( f ) converges in norm to f , for all f .

4.10 Prove Proposition 4.5.
4.11 Let π : Mn → B(K) be a unital ∗-homomorphism. Prove that up to uni-

tary equivalence, K = H1 ⊕ · · · ⊕ Hn , with Hi = H, i = 1, . . . , n, such
that π (Ei, j ) is the identity map from H j to Hi . Show that up to unitary
equivalence, π is the direct sum of dim(H) copies of the identity map.

4.12 Give a minimality condition for the Naimark representation of completely
positive definite functions on a group, and prove uniqueness of minimal
representations up to unitary equivalence.

4.13 Let t → A(t), t ≥ 0, be a weakly continuous semigroup of contraction op-
erators, A(0) = I . For t < 0, set A(t) = A(−t)∗. Prove that this extended
map is completely positive definite in R. What does Naimark’s dilation
theorem imply? (Hint: Recall the proof of Theorem 2.6.)

4.14 (Trigonometric moments) Let {An}+∞
n=−∞ be a sequence of bounded linear

operators on a Hilbert spaceH. Prove that {An}+∞
n=−∞ is an operator-valued

trigonometric moment sequence if and only if there exists a Hilbert space
K, a unitary operator U on K, and a bounded linear operator V : H→K
such that An = V ∗UnV for all n.

4.15 (Hausdorff moments) Let {An}+∞
n=0 be a sequence of bounded linear op-

erators on a Hilbert space H. Prove that {An}+∞
n=0 is an operator-valued

Hausdorff moment sequence if and only if there exists a Hilbert space K,
a positive contraction P on K, and a bounded linear operator V : H→K
such that An = V ∗ PnV for all n ≥ 0.

4.16 Verify the claims of the subsection on group C∗-algebras.
4.17 (Berger) Let T be an operator on a Hilbert space H. Prove that w(T ) ≤ 1

if and only if there exists a Hilbert space K containing H and a unitary
operator U on K such that T n = 2PHUn|H for all n ≥ 1.

4.18 Let H be a Hilbert space, and let γ : H→ C be a function. We call γ

quadratic provided that γ (λx) = |λ|2γ (x) and γ (x + y) + γ (x − y) =
2(γ (x) + γ (y)) for all λ in C and for every x and y in H. If, in addition,
there exists a constant M such that |γ (x)| ≤ M‖x‖2 for all x in H, then
we call γ bounded. Prove that γ is a bounded, quadratic function on H if
and only if there exists T in B(H) such that γ (x) = 〈T x, x〉, and that T
is unique.



Chapter 5
Commuting Contractions on Hilbert Space

In this chapter we study families of commuting contractions on Hilbert space.
For pairs of commuting contractions there is an analogue of Sz.-Nagy’s unitary
dilation theorem due to Ando, and consequently a two-variable analogue of
von Neumann’s inequality. Unlike the case of Sz.-Nagy’s and von Neumann’s
theorems, there is really only one proof known of Ando’s dilation theorem, and
this proof is geometric. It is similar in spirit to the proof of Sz.-Nagy’s theorem
given in Chapter 1. Given this fact, it is somewhat surprising that the analogues
of von Neumann’s inequality fail for three or more commuting contractions.
This difference between the cases with two and with three (or more) variables is
still not very well understood and is the source of a number of open questions.

We begin with a dilation theorem for sets of commuting isometries.

Theorem 5.1. Let {V1, . . . , Vn} be a set of commuting isometries on a Hilbert
space H. Then there is a Hilbert space K containing H and a set of commuting
unitaries {U1, . . . , Un} on K such that

V m1
1 · · · V mn

n = PHU m1
1 · · · U mn

n

∣∣
H

for all sets {m1, . . . , mn} of nonnegative integers.

Proof. LetU1 onK1 be the minimal unitary dilation of V1 given by Theorem 4.3.
Recall that the span of {U n

1 H: n ∈ Z} is dense in K1.
For i �= 1 we claim that there is a well-defined isometry Wi : K1 →K1 given

by the formula

Wi

( +N∑
n=−N

U n
1 hn

)
=

+N∑
n=−N

U n
1 Vi hn.

58
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To see this note that∥∥∥∥∥
+N∑

n=−N

U n
1 Vi hn

∥∥∥∥∥
2

=
∑
n≥m

〈
U n−m

1 Vi hn, Vi hm
〉 + ∑

n<m

〈Vi hn, U m−n Vi hm〉

=
∑
n≥m

〈
V n−m

1 Vi hn, Vi hm
〉 + ∑

n<m

〈
Vi hn, V m−n

1 Vi hn
〉

=
∑
n≥m

〈
Vi V

n−m
1 hn, Vi hm

〉 + ∑
n<m

〈
Vi hn, Vi V

m−n
1 hn

〉
=

∑
n≥m

〈
V n−m

1 hn, hm
〉 + ∑

n<m

〈
hn, V m−n

1 hn
〉

=
∑
n≥m

〈
U n−m

1 hn, hm
〉 + ∑

n<m

〈
hn, U m−n

1 hn
〉

=
∥∥∥∥∥

+N∑
n=−N

U n
1 hn

∥∥∥∥∥
2

.

This equality of the norms proves that Wi is well defined and an isometry. Note
that if Vi is unitary, then Wi is onto a dense subspace of K1 and hence is also
unitary.

It is easy to see that {U1, W2, . . . , Wn} commute and that

V m1
1 · · · V mn

n = PHU m1
1 W m2

2 · · · W mn
n

∣∣
H.

Now continue by next taking the unitary dilation of W2 on K2 and extending
U1, W3, . . . , Wn to be isometries on K2. Since U1 is unitary, its extension will
also be a unitary on K2. Thus, after n such dilations and extensions we shall
obtain an n-tuple of unitaries on a space Kn with the desired properties. �

We arrive at the first of several results that rely on the above construction.

Corollary 5.2. Let {V1, . . . , Vn} be a set of commuting isometries on a Hilbert
space H, and let pi j , i , j = 1, . . . , m, be polynomials in n variables. Then

‖(pi, j (V1, . . . , Vn))‖B(H(m))

≤ sup{‖(pi, j (z1, . . . , zn))‖Mm : |zk | ≤ 1, 1 ≤ k ≤ n}.

Proof. For U1, . . . , Un as in Theorem 5.1 we have

pi, j (V1, . . . , Vn) = PH pi j (U1, . . . , Un)|H
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and hence

‖(pi, j (V1, . . . , Vn))‖ ≤ ‖(pi, j (U1, . . . , Un))‖,
and the proof is completed by using the ∗-isomorphism of C∗({U1, . . . , Un})
with C(X ) for some compact subset X of the n-torus T

n . �

Corollary 5.3. Let {V1, . . . , Vn} be a set of commuting isometries on a Hilbert
space H. Then (V ∗

j Vi ) ≥ (Vi V ∗
j ) ≥ 0.

Proof. Let {U1, . . . , Un} be as in Theorem 5.1, and decompose K = H⊕H⊥.
Since each Vi is an isometry, UiH ⊆ H, and hence relative to this decom-
position,

Ui =
(

Vi Xi

0 Yi

)
.

Since U ∗
j Ui = UiU ∗

j , computing the (1, 1) entry of their operator matrix yields
V ∗

j Vi = Vi V ∗
j + Xi X∗

j . Hence,

(V ∗
j Vi ) = (Vi V

∗
j ) + (Xi X∗

j )

= (V ∗
1 , . . . , V ∗

n )∗ · (V ∗
1 , . . . , V ∗

n ) + (X∗
1, . . . , X∗

n)∗ · (X∗
1, . . . , X∗

n),

and both inequalities follow. �

These inequalities allow us to generalize Theorem 5.1 considerably.
Let G be an abelian group. We shall write the group operation as addition.

We call P ⊆ G a spanning cone provided:

(i) 0 ∈P ,
(ii) if g1, g2 ∈P , then g1 + g2 ∈P ,

(iii) if g ∈ G, then there exists g1, g2 ∈P such that g = g1 − g2.

Some key examples of abelian groups with spanning cones are G = Z
n with

P = (Z+)n and any subgroup G ⊆ (R, +) with P = G ∩ R
+.

Note that conditions (i) and (ii) make P a semigroup.
We call ρ: P → B(H) a semigroup homomorphism if ρ(0) = I and

ρ(g1 + g2) = ρ(g1)ρ(g2).

Theorem 5.4. Let G be an abelian group with spanning cone P , and let
ρ: P → B(H) be a semigroup homomorphism such that ρ(g) is an isometry
for every g ∈P . Then there exists a Hilbert space K containing H and a uni-
tary representation π : G → B(K) such that ρ(g) = PHπ (g)|H for every g ∈P .
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Proof. Let g1 − g2 = g3 − g4 with gi ∈P, i = 1, 2, 3, 4. Then

ρ(g2)∗ρ(g1) = ρ(g2)∗ρ(g3)∗ρ(g3)ρ(g1) = ρ(g2 + g3)∗ρ(g1 + g3)

= ρ(g1 + g4)∗ρ(g1 + g3) = ρ(g4)∗ρ(g1)∗ρ(g1)ρ(g3)

= ρ(g4)∗ρ(g3).

This calculation shows that there is a well-defined map φ: G → B(H) given by
setting φ(g) = ρ(g2)∗ρ(g1) where g = g1 − g2 with g1, g2 in P .

We claim that φ is completely positive definite. To see this, choose g1, . . . , gn

in G, and write gi = pi − qi where p1, . . . , pn, q1, . . . , qn are in P . We have
that

(φ(−gi + g j )) = (φ(−pi + qi + p j − q j )) = (ρ(pi + g j )
∗ρ(qi + p j ))

= (ρ(pi )
∗ρ(q j )

∗ρ(qi )ρ(p j )) = D∗(ρ(q j )
∗ρ(qi ))D,

where D is the diagonal matrix whose ( j, j) entry is ρ(p j ). Setting ρ(qi ) =
Vi and applying Corollary 5.3, it is now easily seen that (φ(−gi + g j )) ≥ 0.
Hence φ is completely positive definite. By Naimark’s dilation theorem there
exists a Hilbert space K, an operator V : H→K, and a unitary representation
π : G → B(K) such that φ(g) = V ∗π (g)V . Since I = φ(0) = V ∗V , we have
that V is an isometry, and the proof is completed by identifying H with VH.

�

We now return to arbitrary commuting contractions.

Theorem 5.5 (Ando’s dilation theorem). Let T1 and T2 be commuting con-
tractions on a Hilbert spaceH. Then there exists a Hilbert spaceK that contains
H as a subspace, and commuting unitaries U1, U2 on K, such that

T n
1 T m

2 = PHU n
1 U m

2

∣∣
H

for all nonnegative integers n, m.

Proof. By Theorem 5.1 it will be enough to find a pair of commuting isometries
V1, V2 such that

T n
1 T m

2 = PHV n
1 V m

2

∣∣
H (∗)

The concrete isometric dilations of Chapter 1, Vi : �2(H) → �2(H) via

Vi ((h1, h2, . . . )) = (Ti h1, Di h1, h2, . . . ), Di = (I − T ∗
i Ti )

1/2
, i = 1, 2,
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satisfy (∗), but these isometries need not commute. Indeed, we have

V1V2((h1, h2, . . . )) = (T1T2h1, D1T2h1, D2h1, h2, . . . )

while

V2V1((h1, h2, . . . )) = (T2T1h1, D2T1h1, D1h1, h2, . . . ).

Assume for the moment that there exists a unitary U :H ⊕ H→H ⊕ H such
that U ((D1T2h, D2h)) = (D2T1h, D1h). Let W : �2(H) → �2(H) be the unitary
defined by

W ((h1, h2, . . . )) = (h1, U ((h2, h3)), U ((h4, h5)), . . . ).

Note that W V1, V2W −1 are still isometries satisfying (∗) and that

W V1V2W −1((h1, h2, . . . ))

= W (T1T2h1, D1T2h1, D2h1, U−1((h2, h3)), U−1((h4, h5)), . . . )

= (T1T2h1, U ((D1T2h1, D2h1)), h2, h3, . . . )

= V2V1((h1, h2, . . . ))

= (V2W −1)(W V1)((h1, h2, . . . )),

and so W V1, V2W −1 commute.
To obtain the desired unitary U , we note that

‖D1T2h‖2 + ‖D2h‖2 = 〈[T ∗
2 (I − T ∗

1 T1)T2 + (I − T ∗
2 T2)]h, h〉

= 〈[T ∗
1 (I − T ∗

2 T2)T1 + (I − T ∗
1 T1)]h, h〉

= ‖D2T1h‖2 + ‖D1h‖2.

Thus, setting U ((D1T2h, D2h)) = (D2T1h, D1h) defines an isometric map be-
tween two subspaces ofH ⊕ H. When the codimensions of these two subspaces
agree, then this isometry extends to the desired unitary on H ⊕ H. This is the
case for example when the dimension of H is finite.

When H is infinite-dimensional, however, these two codimensions can be
different, and a more complicated argument is needed.

One begins by redefining the basic isometries, via

Vi ((h1, h2, . . . )) = (Ti h1, Di h1, 0, h2, . . . ).

Comparing V1V2 with V2V1, one now finds that a unitary U : H(4) →H(4) is
needed satisfying

U ((D1T2h, 0, D2h, 0)) = (D2T1h, 0, D1h, 0).
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The extra 0’s guarantee that whenH is infinite-dimensional then both subspaces
are of the same infinite codimension and so the desired U exists. Defining

W ((h1, h2, . . . )) = (h1, U ((h2, h3, h4, h5)), U ((h6, h7, h8, h9)), . . . ),

one finds that W V1 and V2W −1 commute and satisfy (∗). �

Corollary 5.6. Let T1 and T2 be commuting contractions on a Hilbert space
H, and let pi, j , i , j = 1, . . . , m, be polynomials in two variables. Then

‖(pi, j (T1, T2))‖B(H(m)) ≤ sup{‖(pi, j (z1, z2))‖Mm : |z1| ≤ 1, |z2| ≤ 1}.

Proof. The proof is similar to Corollary 5.2. �

We shall refer to the above result as the two-variable von Neumann inequality.
Surprisingly, Ando’s construction cannot be generalized to more than two

commuting contractions. For if it could, then one could prove an n-variable
von Neumann inequality, and the analogue of von Neumann’s inequality fails
for three or more commuting contractions. There are several such counter-
examples in the literature. The following appeared in [236] and is perhaps the
simplest.

Example 5.7 (Kaijser–Varopoulos). Consider the following operators on C
5:

A1 =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 1/
√

3 −1/
√

3 −1/
√

3 0


 ,

A2 =




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

0 −1/
√

3 1/
√

3 −1/
√

3 0


 ,
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and

A3 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

0 −1/
√

3 −1/
√

3 1/
√

3 0


 .

It is easily checked that ‖Ai‖ ≤ 1 and that Ai A j = A j Ai , for 1 ≤ i, j ≤ 3. If
one considers the polynomial

p(z1, z2, z3) = z2
1 + z2

2 + z2
3 − 2z1z2 − 2z1z3 − 2z2z3,

then ‖p‖∞ = sup{|p(z1, z2, z3)|: |zi | ≤ 1} = 5, as a little calculus shows.
However,

p(A1, A2, A3) =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
√

3 0 0 0 0


 ,

and since 3
√

3 > 5, the analogue of von Neumann’s inequality fails.

Of course, once it fails for n = 3, it also fails for all n ≥ 3.
In spite of the many examples of commuting contractions for which

von Neumann’s inequality fails, it is still unknown whether or not it could
hold up to some constant. That is, it is not known if for each n there exists a
finite constant Kn such that for any commuting contractions T1, . . . , Tn and any
polynomial p in n variables one has

‖p(T1, . . . , Tn)‖ ≤ Kn‖p‖∞,

where ‖p‖∞ denotes the supremum of p over |zi | ≤ 1, 1 ≤ i ≤ n. It is generally
believed that there does not exist such a constant.

Some lower bounds on the possible values of Kn are known. For example, it
is known that Kn ≥

√
n

11 [75].
In a similar vein, one can consider the problem for matrices of polynomials,

i.e., seek constants Cn such that for any commuting contractions T1, . . . , Tn ,
one has

‖(pi, j (T1, . . . , Tn))‖ ≤ Cn‖(pi, j )‖∞,
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where ‖(pi, j )‖∞ denotes the supremum of the norm of the matrix over |zi | ≤
1, 1 ≤ i ≤ n, and the sizes of the matrices are arbitrarily large. Clearly, Cn ≥
Kn, and so if there is no finite constant Kn , then it should be easier to prove
that there is no finite constant Cn; but this is also still unknown.

These questions lead naturally to our first abstractly defined operator algebra.
Let Pn denote the algebra of polynomials in n variables. Given a polynomial
p, we set

‖p‖u = sup‖p(T1, . . . , Tn)‖,

where the supremum is taken over the family of all n-tuples of commuting
contractions on all Hilbert spaces.

It is easy to see that ‖p‖u is finite, since it is bounded by the sum of the
absolute values of the coefficients of p, and that this quantity defines a norm
on Pn .

For a fixed polynomial p, there is always an n-tuple of contractions where
this supremum is acheived. To see this, first choose a sequence of n-tuples
(T1,k, . . . , Tn,k) such that ‖p‖u = supk‖p(T1,k, . . . , Tn,k)‖. If we then let Ti =∑

k ⊕ Ti,k, i = 1, . . . , n, be the n-tuple of commuting contractions on the direct
sum of the corresponding Hilbert spaces, then ‖p(T1, . . . , Tn)‖ = ‖p‖u .

Now, if for each polynomial p we choose a commuting n-tuple of contrac-
tions where ‖p‖u is attained and form the direct sum of all such n-tuples, then we
have a single n-tuple of commuting contractions (T1, . . . , Tn) on a Hilbert space
H such that ‖p‖u = ‖p(T1, . . . , Tn)‖ for every polynomial. Consequently, the
map π : Pn → B(H) defined by π (p) = p(T1, . . . , Tn) is an isometric homo-
morphism of (Pn, ‖·‖u) into B(H).

In a similar fashion, if for (pi, j ) in Mk(Pn) we set

‖(pi, j )‖u,k = sup‖(pi, j (T1, . . . , Tn))‖,

then we obtain a sequence of norms on the matrices overPn. We call (Pn, ‖·‖u,k)
the universal operator algebra for n-tuples of commuting contractions.

To justify this terminology, note that, arguing as above, we can choose a single
Hilbert spaceH and a single n-tuple of commuting contractions (T1, . . . , Tn) on
that space such that ‖(pi, j ))‖u,k = ‖(pi, j (T1, . . . , Tn))‖ for every k and every
k × k matrix of polynomials. The corresponding map π, will now be a com-
pletely isometric homomorphism of the matrix-normed algebra Pn into B(H).
Hence, (Pn, ‖·‖u,k) can be realized completely isometrically as a concrete al-
gebra of operators.

We now turn our attention to further applications of Ando’s theorem. We
begin with some re-formulations due to Sz.-Nagy and Foias [231].
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Theorem 5.8 (Commutant lifting theorem). Let T be a contraction on a
Hilbert space, and let (U,K) be the minimal unitary dilation of T . If R commutes
with T , then there exists an operator S commuting with U such that ‖R‖ = ‖S‖
and RT n = PHSU n|H for n ≥ 0.

Proof. By scaling we may assume that ‖R‖ = 1. Hence, by Ando’s theorem
there exists commuting unitaries U1, U2 on a Hilbert space K1 containing H
such that T n Rm = PHU n

1 U m
2 |H. Let K be the closed linear span of vectors

of the form U n
1 h, n ∈ Z, h ∈H. Then K is a reducing subspace for U1, and

U = PKU1|K is the minimal unitary dilation of T .
Relative to K1 = K ⊕ K⊥ we have operator matrices

U1 =
(

U 0
0 V

)
, U2 =

(
S B
C D

)
.

Since U1 and U2 commute, it follows that U and S commute and that
PKU2U n

1 |K = SU n . Thus

PHSU n|H = PHU2U n
1

∣∣
H = RT n.

Finally, 1 ≤ ‖R‖ ≤ ‖S‖ ≤ ‖U2‖ = 1 and so ‖R‖ = ‖S‖. �

The following equivalent re-formulation of Ando’s result is also useful. Given
Ti ∈ B(Hi ), i = 1, 2, and A ∈ B(H1,H2), we say that A intertwines T1 and T2

provided that AT1 = T2 A. Note that this is equivalent to ( 0 0
A 0 ) commuting with

( T1 0
0 T2

).

Corollary 5.9 (Intertwining dilation theorem). Let Ti , i = 1, 2, be contrac-
tion operators on Hilbert spaces Hi with minimal unitary dilations (Ui ,Ki ). If
A intertwines T1 and T2, then there exists R intertwining U1 and U2 such that
‖A‖ = ‖R‖ and

AT n
1 = T n

2 A = PH2 RU n
1

∣∣
H1

= PH2U
n
2 R

∣∣
H1

for all n ≥ 0.

Proof. First note that the minimal unitary dilation of

T̂ =
(

T1 0

0 T2

)

is

Û =
(

U1 0

0 U2

)
acting on K1 ⊕ K2.
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Applying commutant lifting to Â = ( 0 0
A 0 ), we obtain R̂ = ( A B

R D ) satisfying
ÂT̂ n = PH1⊕H2 R̂Û n|H1⊕H2 . Equating the (2,1) entries of these operators yields
AT n = PH2 RU n

1 |H1 for n ≥ 0. The other relations follow from the intertwining
condition.

Finally, ‖A‖ ≤ ‖R‖ ≤ ‖R̂‖ = ‖ Â‖ = ‖A‖ and so ‖A‖ = ‖R‖. �

We now apply these results to characterize the norms of some operator-
valued matrices. First, some formalities are in order. Let’s assume that H is a
separable Hilbert space and that f : T →H is measurable and square integrable.
Defining hn ∈H via hn = (1/2π i)

∫ 2π

0 e−inθ f (eiθ ) dθ yields a formal Fourier
series

∑+∞
n=−∞ einθ hn with

1

2π

∫ 2π

0
‖ f (eiθ )‖2 dθ =

+∞∑
n=−∞

‖hn‖2.

This leads to identifications

L2(T;H) = L2(T) ⊗ H = �2
Z

(H).

If An ∈ B(H) is a norm-bounded sequence of operators and for 0 < r < 1 we
set

Br (eiθ ) =
+∞∑

n=−∞
Anr |n|einθ ,

then the series converges uniformly to define a continuous operator-valued
function Br : T → B(H). For f ∈ L2(T;H) we have that θ → Br (eiθ ) f (eiθ ) ∈
L2(T;H) and that multiplication by Br , MBr , is a bounded operator on L2(T;H)
with

‖MBr ‖ = sup
θ

‖Br (eiθ )‖ ≡ ‖Br‖∞

where Br (eiθ ) ∈ B(H). With respect to the identification L2(T;H) = �2
Z

(H),
the operator MBr becomes the doubly infinite operator-valued Toeplitz matrix
(r |i− j | Ai− j )

+∞
i, j=−∞. It can be verified that

‖(Ai− j )‖ = sup
r<1

∥∥(
r |i− j | Ai− j

)∥∥ = sup
r<1

∥∥MBr

∥∥ = sup
r<1

‖Br‖∞.

Thus, when ‖(Ai− j )‖ is finite, we identify this operator-valued Toeplitz ma-
trix with the operator of multiplication by B(eiθ ) = ∑+∞

n=−∞ Aneinθ and write
‖(Ai− j )‖ = ‖B‖∞, even though the convergence of this latter series can be a
touchy business. Thus, one should always interpret ‖B‖∞ ≡ supr<1 ‖Br‖∞.
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We shall need the following operator-valued version of Nehari’s theorem in
Chapter 10.

Theorem 5.10 (Nehari–Page). Let H be a separable Hilbert space, and let
An ∈ B(H), n ≥ 0, be a sequence of operators. Then the operator-valued
Hankel matrix (Ai+ j )∞i, j=0 is bounded on �2(H) if and only if there exists
An ∈ B(H), n < 0, such that ‖B‖∞ ≡ supr<1 ‖Br‖ < +∞, where B(eiθ ) =∑+∞

n=−∞ Aneinθ . Moreover, in this case there exists a particular choice of
An ∈ B(H), n < 0, such that

‖(Ai+ j )‖ = ‖B‖∞, B(eiθ ) =
+∞∑

n=−∞
Aneinθ .

Proof. We only prove that if H = (Ai+ j ) is bounded on �2(H), then there exists
An ∈ B(H), n < 0, such that ‖H‖ = ‖B‖∞.

To this end let S: �2(H) → �2(H) via S((h0, h1, . . . )) = (0, h0, h1, . . . ) with
adjoint S∗((h0, h1, . . . )) = (h1, h2, . . . ). These operators can be identified with
the operator matrices

S =




0 . . . . . .

I 0 . . .

0 I
. . .

... 0
. . .

...
...

. . .


 , S∗ =


0 I 0 . . . . . .

0 0 I 0 . . .
...

...
. . .

. . .
. . .


 .

We have that S∗ H = (Ai+1+ j ) = H S. It is straightforward to verify that the
minimal unitary dilations of S and S∗ are the forward and backward shifts Ŝ
and Ŝ∗ on �2

Z
(H). By Corollary 5.9 there exists R = (Ri, j ): �2

Z
(H) → �2

Z
(H)

with ‖R‖ = ‖H‖ such that Ŝ∗ R = RŜ. This implies that Ri, j = Ri+ j

for some sequence Rn ∈ B(H), n ∈ Z, with Rn = An for n ≥ 0. Now let
W : �2

Z
(H) → �2

Z
(H) be the unitary defined by

W ((. . . , h−1, h0, h+1, . . . )) = (. . . , h+1, h0, h−1, . . . ).

Then RW = (Ri− j ) and hence

‖H‖ = ‖R‖ = ‖RW‖ =
∥∥∥∥∥

+∞∑
n=−∞

Rneinθ

∥∥∥∥∥
∞

. �

When the sequence {An} is just numbers, then the above theorem has a clearer
interpretation. We have B(eiθ ) = ∑+∞

n=−∞ aneinθ , and ‖B‖∞ is just the norm
of B in L∞(T). Thus, the theorem identifies the sequences {an}n≥0 which can
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be “completed” by choosing {an}n≤−1 to be the Fourier coefficients of an L∞

function as those for which the corresponding Hankel matrix is bounded.
Set

f̂ (n) = 1

2π i

∫ 2π

0
f (eiθ )e−inθ dθ,

and let G = { f ∈ L∞(T): f̂ (n) = 0 for all n ≥ 0}. Then the map Q: L∞(T) →
B(�2), Q( f ) = ( f̂ (i + j))+∞

i, j=0 has kernel G, and by the above theorem Q̇:
L∞(T)/G → B(�2) is an isometric linear isomorphism onto the space of Hankel
matrices.

Alternatively, if we look at the map

P: L∞(T) → B(�2), P( f ) = ( f̂ (−1 − i − j)),

then ker P = { f ∈ L∞: f̂ (n) = 0 for all n ≤ −1} ≡ H∞(T), and by the above
theorem we have that Ṗ: L∞(T)/H∞(T) → B(�2) is an isometric isomorphism
onto the space of Hankel matrices.

This last isomorphism gives rise to an important duality. Recall that the dual
of L1(T) is L∞(T). If we let H 1(T) = { f ∈ L1(T): f̂ (n) = 0 for all n ≤ −1},
then the annihilator of H 1(T) is

{ f ∈ L∞(T): f̂ (n) = 0 for all n ≥ 0} = eiθ · H∞(T).

Consequently we have isometric isomorphisms between the dual of H 1(T)
and L∞(T)/eiθ H∞(T) ∼= L∞(T)/H∞(T), which is in turn isometrically iso-
morphic to the space of Hankel matrices. Explicitly, this dual pairing is given by

〈A, f 〉 =
∞∑

n=0

an f̂ (n)

for A = (ai+ j )∞i, j=0 a bounded Hankel and f ∈ H 1(T).

Notes

The fact that von Neumann’s inequality holds for two commuting contractions
but not three or more is still the source of many surprising results and in-
triguing questions. Many deep results about analytic functions come from this
dichotomy. For example, Agler [3] uses Ando’s theorem to deduce an analogue
of the classical Nevanlinna–Pick interpolation formula for analytic functions on
the bidisk. Because of the failure of a von Neumann inequality for three or more
commuting contractions, the analogous formula for the tridisk is known to be
false, and the problem of finding the correct analogue of the Nevanlinna–Pick
formula for polydisks in three or more variables remains open.
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Many results are now known to be equivalent to Ando’s theorem, but a truly
independent argument for proving any of these results that doesn’t ultimately
rest on dilating a pair of commuting operators has still not been found. For
example, we shall see in Chapter 7 that Ando’s theorem is equivalent to the
two-variable version of von Neumann’s inequality holding for matrices of poly-
nomials. That is, Corollary 5.6 implies Ando’s dilation theorem. In Chapter 18,
we shall see that Ando’s theorem is equivalent to a certain factorization formula
holding for matrices of polynomials in two variables. Cole and Wermer [66]
prove that Ando’s theorem is equivalent to another theorem about factoring
polynomials in two variables. Agler’s two-variable Nevanlinna–Pick result is
also equivalent to Ando’s theorem. Yet direct proofs of any of these results that
do not rely on Ando’s theorem, or one of its close variants, have not been found.

Moreover, because of the failure of the von Neumann inequality for three
or more variables, each of the above-cited results is known to fail for three or
more variables.

This operator-theoretic approach to results in classical function theory, as
represented by Theorem 5.10, Exercise 5.3, and the results cited above, owes
much to Sarason [209] and the book of Sz.-Nagy and Foias [231]. This continues
to be an active area of research with many engineering applications, particularly
to what has come to be known as H∞-control theory. For an introduction to
this area we recommend the text of Foias and Frazho [100].

It is remarkable that we do not know whether or not a constant exists, for each
n, such that von Neumann’s inequality for n commuting contractions is true up to
that constant. This illustrates our lack of understanding of these important topics.

Exercises

5.1 Prove that if (V1,K1) and (V2,K2) are any two minimal isometric dilations
of a contraction operator T on H, then there exists a unitary U : K1 →K2

such that Uh = h for all h ∈ H and U V1U ∗ = V2.
5.2 Let H1,H2 be Hilbert spaces, let An ∈ B(H1,H2) be a sequence of oper-

ators, and let A = (Ai+ j ): �2(H1) → �2(H2) be the corresponding Hankel
operator. Prove the analogue of the Nehari–Page theorem in this setting.

5.3 (Carathéodory’s completion theorem) Let a0, . . . , an be in C. Use com-
mutant lifting to prove that

∥∥∥∥∥∥∥∥∥




a0 0 . . . 0

a1
. . .

. . .
...

...
. . .

. . . 0
an . . . a1 a0




∥∥∥∥∥∥∥∥∥
Mn+1

= inf

∥∥∥∥∥
n∑

j=0

a j z
j +

∞∑
j=n+1

b j z
j

∥∥∥∥∥
∞

,
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where the infimum is over all sequences {b j } such that the resulting power
series is bounded on D and the ∞-norm is the supremum over D. More-
over, there exists a sequence {b j } where the infimum is attained. Thus, a
polynomial can be completed to a power series whose supremum over the
disk is bounded by 1 by adding higher-order terms if and only if the norm
of the corresponding Toeplitz matrix is at most 1. Deduce that the map

f ∈ H∞(T) →




f̂ (0) 0 . . . 0

f̂ (1)
. . .

. . .
...

...
. . .

. . . 0

f̂ (n) . . . f̂ (1) f̂ (0)


 ∈ Mn+1

yields an isometric isomorphism of H∞(T)/ei(n+1)θ H∞(T) into Mn+1.
Generalize to the case where A0, . . . , An are operators on a (separable)
Hilbert space. [Hint: The above finite Toeplitz matrix commutes with

Sn =




0 . . . . . . . . . 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 1 0




.]

5.4 Let {T1, . . . , Tn} be contractions on a Hilbert space H (possibly noncom-
muting). Prove that there exists a Hilbert space K containing H and uni-
taries {U1, . . . , Un} on K such that

T k1
i1

. . . T km
im

= PHU k1
i1

. . . U km
im

∣∣
H

where m, k1, . . . , km are arbitrary nonnegative integers, and 1 ≤ i� ≤ n for
� = 1, . . . , m.

5.5 (Schaffer [209]) Let T be a contraction on a Hilbert space H, and let
�2

Z
(H) = ∑+∞

n=−∞ ⊕H denote the Hilbert space formed as the direct sum
of copies of H indexed by the integers Z. Define an operator matrix
U = (Ui j )

+∞
i, j=−∞ by setting U0,0 = T, U0,1 = (I − T T ∗)1/2, U−1,0 = (I −

T ∗T )1/2, U−1,1 = −T ∗, Un,n+1 = I for n ≥ 1 or n ≤ −2, and Ui, j = 0 for
all other pairs (i, j). Prove that U defines a unitary operator on �2

Z
(H) and

that if we identify H with the 0th copy of H in �2
Z

(H), then T n = PHU n|H
for all nonnegative integers n.

5.6 Fix n ≥ 1, and let Pn denote the algebra of polynomials in n variables.
For each p in Pn we set ‖p‖u = sup{‖p(T1, . . . , Tn)‖}, where for now
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the supremum is only taken over all commuting n-tuples of contractions
{T1, . . . , Tn} on the Hilbert space �2.

(i) Prove that if {T1, . . . , Tn} are commuting contractions on any Hilbert
space, then ‖p(T1, . . . , Tn)‖ ≤ ‖p‖u and consequently this is the same
norm as defined earlier.

(ii) Prove the corresponding result for matrices of polynomials.
(iii) Prove that the universal operator algebra for n-tuples of commuting

contractions (Pn, ‖·‖u,k) can be represented completely isometrically
as an algebra of operators on a separable Hilbert space.

5.7 Prove that ‖·‖u is a norm on Pn and that the completion of Pn in this norm
is a Banach algebra. We denote this Banach algebra by Au(Dn), whereas
we let A(Dn) denote the Banach algebra of functions that are continuous
on the closed polydisk D

n and analytic on D
n, equipped with the supremum

norm, ‖·‖∞. In fact, A(Dn) ⊆ C(Dn−
) is the closure of Pn in the supremum

norm.
5.8 (i) Prove that Au(Dn) ⊆ A(Dn) as sets.

(ii) Prove that Au(Dn) = A(Dn) if and only if there exists a constant Kn

such that ‖p‖u ≤ Kn‖p‖∞ for every p in Pn .
5.9 Let K ⊆ B(�2) denote the ideal of compact operators on �2. Let A(Dn; K)

denote the set of continuous functions from the closure of D
n into K that

are analytic on D
n , and let P(Dn; K) ⊆ A(Dn; K) denote the functions that

are finite sums of the form
∑

z J K J with K J in K. If we identify Mk as the
subspace of operators in K that are supported on the first k × k block, then
we may regard Mk(A(Dn)) ⊆ Mk+1(A(Dn)) ⊆ A(Dn; K).

(i) Prove that A(Dn; K) equipped with the supremum norm and pointwise
product is a Banach algebra.

(ii) Prove that P(Dn; K) is dense in A(Dn; K).
(iii) Prove that the union over k of Mk(A(Dn)) is dense in A(Dn; K).
(iv) Give a definition of Au(Dn; K) and prove the analogues of (i), (ii), and

(iii).
(v) Prove that there exists a constant Cn such that for all matrices of

polynomials, ‖(pi, j )‖u ≤ Cn‖(pi, j )‖∞ if and only if Au(Dn; K) =
A(Dn; K).



Chapter 6
Completely Positive Maps into Mn

In this chapter we characterize completely positive maps into Mn . This char-
acterization allows us to prove an extension theorem for completely positive
maps and lends further insight into the properties of positive maps on operator
systems. These results are all consequences of a duality between maps into Mn

and linear functionals.
LetM be an operator space, and let {e j }nj=1 be the canonical basis for C

n . If
A is in Mn , then let A(i, j) denote the (i, j) entry of A, so that A(i, j) = 〈Ae j , ei 〉.
If φ:M→ Mn is a linear map, then we associate to φ a linear functional sφ on
Mn(M) by the following formula:

sφ((ai, j )) = 1

n

∑
i, j

φ(ai, j )(i, j).

Alternatively, if we let x denote the vector in C
n2 = C

n ⊕ · · · ⊕ C
n given by

x = e1 ⊕ · · · ⊕ en , then

sφ((ai, j )) = 1

n
〈φn((ai, j ))x, x〉,

where the inner product is taken in C
n2 .

We leave it to the reader to verify that φ → sφ defines a linear map from
L(M, Mn), the vector space of linear maps from M into Mn , into the vector
space L(Mn(M), C). IfM contains the unit and φ(1) = 1, then sφ(1) = 1.
Finally, if s: Mn(M)→ C, then we define φs :M→ Mn via

(φs(a))(i, j) = n · s(a ⊗ Ei, j ),

where a ⊗ Ei, j is the element of Mn(M) which has a for its (i, j) entry and is 0
elsewhere. We leave it to the reader to verify that the maps φ → sφ and s → φs

are mutual inverses.
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Theorem 6.1. LetA be a C∗-algebra with unit, let S be an operator system in
A, and let φ: S → Mn. The following are equivalent:

(i) φ is completely positive,
(ii) φ is n-positive,
(iii) sφ is positive.

Proof. Obviously, (i) implies (ii). Also, that (ii) implies (iii) is clear by the
alternative definition of sφ . So assume that sφ is positive, and we shall prove
that φ is completely positive.
By Krein’s theorem (Exercise 2.10), we may extend sφ from Mn(S) to a

positive, linear functional s on Mn(A). Since s extends sφ , the mapψ :A→ Mn

associated with s extends φ. Clearly, if we can prove that ψ is completely
positive, then φ will be completely positive.
To verify that ψ is m-positive by Lemma 3.13, it is sufficient to consider a

positive element of Mm(A) of the form (a∗
i a j ). Since ψm((a∗

i a j )) acts on C
mn ,

to see that it is positive, it is sufficient to take x = x1 ⊕ · · · ⊕ xm , where each
x j = ∑

k λ j,kek is in C
n , and calculate

〈ψm((a
∗
i a j ))x, x〉 =

∑
i, j

〈ψ(a∗
i a j )x j , xi 〉 (∗)

=
∑
i, j,k,�

λ j,k λ̄i,�〈ψ(a∗
i a j )ek, e�〉

=
∑
i, j,k,�

λ j,k λ̄i,�s(a
∗
i a j ⊗ E�,k).

Let Ai be the n × n matrix whose first row is (λi,1, . . . , λi,n) and whose remain-
ing rows are 0. We have that

A∗
i A j =

∑
k,�

λ̄i,�λ j,k E�,k,

and thus (∗) becomes
∑
i, j

s(a∗
i a j ⊗ A∗

i A j ) = s

((∑
i

ai ⊗ Ai

)∗ (∑
j

a j ⊗ A j

))
,

which is positive, since s is positive. Thus, ψ is m-positive for all m. �

Theorem 6.2. LetA be aC∗-algebrawith unit,S an operator system contained
inA, and φ: S → Mn completely positive. Then there exists a completely posit-
ive map ψ : A→ Mn extending φ.
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Proof. Let sφ be the positive, linear functional on Mn(S) associated with φ,
and extend it to a positive, linear functional s on Mn(A) by Krein’s theorem.
By Theorem 6.1, the map ψ associated with s is completely positive. Finally,
since s extends sφ , it is easy to see that ψ extends φ. �

We now restate these results for operator spaces with unit.

Theorem 6.3. Let A be a C∗-algebra with unit, let M be a subspace of A
containing 1, and letφ:M→ Mn withφ(1) = 1. The following are equivalent:

(i) φ is completely contractive,
(ii) φ is n-contractive,
(iii) sφ is contractive.

Proof. Let S = M + M∗. Clearly, (i) implies (ii) and (ii) implies (iii). As-
suming (iii), since sφ is unital and contractive, we may extend it to a positive,
unital map s̃φ on Mn(M)+ Mn(M)∗ = Mn(S). By Theorem 6.1, the linear
functional s̃φ is associated with a completely positive map on S. This map is
readily seen to be φ̃, where φ̃(x + y∗) = φ(x)+ φ(y)∗. Hence, φ̃ is completely
positive, and so φ must be completely contractive. �

Theorem 6.4. Let A be a C∗-algebra with unit, let M be a subspace of A
containing 1, and let φ:M→ Mn be an n-contractive map with φ(1)= 1. Then
φ extends to a completely positive map on A.

Proof. In the proof of Theorem 6.3, we saw that φ̃ is completely positive and
hence extends to a completely positive map on A by Theorem 6.2. �

There is one way in which the above correspondence between linear func-
tionals on Mn(S) and linear maps of S into Mn is not well behaved. Suppose
that s: Mn(S)→ C is positive and unital, so that ‖s‖ = 1. Then s gives rise to a
completely positive map φs : S → Mn , but φs is not necessarily unital. Indeed,
since

φs(1)(i, j) = ns(1⊗ Ei, j ) = ns(Ei, j ),

we have that φs is unital if and only if

s(Ei, j ) =
{
1/n, i = j,
0, i �= j.
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Because of this fact, φs is not necessarily a contraction. In fact, it is not hard to
construct examples of a unital, positive s such that ‖φs‖ = n (Exercise 6.1).
To obtain generalizations of the above results to the casewhereMn is replaced

by B(H) requires some topological preliminaries, which we postpone until the
next chapter. We turn instead to some other applications of this correspondence
between linear functionals and linear maps.
Let S be an operator system and S+ its cone of positive elements. We define

S+ ⊗ M+
n =

{∑
i

pi ⊗ Qi : pi ∈ S+, Qi ∈ M+
n

}
,

where the sum is finite. Note that S+ ⊗ M+
n is a cone contained in the cone

Mn(S)+ of positive elements of Mn(S).
We have seen above that if φ: S → Mn , then φ is completely positive if and

only if its associated linear functional sφ is positive on Mn(S)+. The following
points out the relevance of the set defined above.

Lemma 6.5. Let φ: S → Mn. Then φ is positive if and only if sφ : Mn(S)→
C assumes positive values on S+ ⊗ M+

n .

Proof. Let φ: S → Mn be positive, let p be in S+, and let Q be in M+
n . In order

to prove that sφ assumes positive values on S+ ⊗ M+
n , it will be sufficient to

prove that sφ(p ⊗ Q) is positive. Furthermore, since by Lemma 3.13 Q can be
written as a convex sum of matrices of the form (ᾱiα j ), it will suffice to assume
that Q = (ᾱiα j ). Thus, p ⊗ Q = (ᾱiα j p) and

n · sφ(p ⊗ Q) =
∑
i, j

φ(ᾱiα j p)(i, j)

=
∑
i, j

ᾱiα j 〈φ(p)e j , ei 〉 = 〈φ(p)x, x〉 ≥ 0,

where x = α1e1 + · · · + αnen .
Conversely, assume that sφ is positive on S+ ⊗ M+

n , let p be in S+, and let
x = α1e1 + · · · + αnen be a vector in C

n . We have that

〈φ(p)x, x〉 =
∑
i, j

〈φ(ᾱiα j p)e j , ei 〉 = n · sφ((ᾱiα j p))≥ 0,

since (ᾱiα j p) is in S+ ⊗ M+
n . Thus, φ is positive. �

Theorem 6.6. LetS be an operator system. Then the following are equivalent:

(i) every positive map φ: S → Mn is completely positive,
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(ii) every unital, positive map φ: S → Mn is completely positive,
(iii) S+ ⊗ M+

n is dense in Mn(S)+.

Proof. Clearly, (i) implies (ii). The proof that (ii) implies (i) is left as an exercise
(Exercise 6.2). We prove the equivalence of (i) and (iii).
If S+ ⊗ M+

n is dense in Mn(S)+ and φ: S → Mn is positive, then, by
Lemma 6.5, sφ will be positive on Mn(S)+, and so, by Theorem 6.1, φ is
completely positive.
Conversely, if S+ ⊗ M+

n is not dense in Mn(S)+, then fix p in Mn(S)+,
but not in the closure of S+ ⊗ M+

n . By the Krein–Milman theorem, there will
exist a linear functional s on Mn(S) that is positive on S+ ⊗ M+

n , but such
that s(p)< 0. The linear map φs : S → Mn , induced by s, is then positive by
Lemma 6.5, but not completely positive. �

Corollary 6.7. LetS be an operator system. Then the following are equivalent:

(i) for every C∗-algebra B, every positive φ: S →B is completely positive,
(ii) for every n, every positive φ: S → Mn is completely positive,
(iii) S+ ⊗ M+

n is dense in Mn(S)+ for all n.

Proof. Clearly, (ii) and (iii) are equivalent and (i) implies (ii). To see that (ii)
implies (i), it is sufficient to consider B = B(H). Given (ai, j ) in Mn(S)+, to
check that φn((ai, j )) is positive, it is enough to choose x1, . . . , xn in H and
check that ∑

i, j

〈φ(ai, j )x j , xi 〉 ≥ 0.

LetF be the finite-dimensional subspace spanned by these n vectors, and let
ψ : S → B(F ) be the compression of φ toF . Identifying B(F ) with Mk , where
k = dim(F ), we have that ψ is completely positive by (ii) and hence

0≤
∑
i, j

〈ψ(ai, j )x j , xi 〉 =
∑
i, j

〈φ(ai, j )x j , xi 〉,

as desired. �

As well as being related to complete positivity, the above cone S+ ⊗ M+
n

determines the norm behavior of positive maps. Let S be an operator system,
and let x be in S. We say that S has a partition of unity for x , and say that
x is partitionable with respect to S, provided that for every ε > 0, there exist
positive elements p1, . . . , pn in S with

∑
i pi ≤ 1, and scalars λ1, . . . , λn with
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|λi | ≤ ‖x‖, such that ∥∥∥∥∥x −
∑
i

λi pi

∥∥∥∥∥< ε.

We say that S has a partition of unity for a subsetM of S provided that every
element ofM is partitionable with respect to S.

Lemma 6.8. Let S be an operator system and let x be in S, with ‖x‖ ≤ 1. Then
the following are equivalent:

(i) x is partitionable with respect to S,
(ii) every positive map φ with domain S satisfies ‖φ(x)‖ ≤ ‖φ(1)‖,
(iii) [ 1 x

x∗ 1 ] is in the closure of S+ ⊗ M+
2 .

Proof. The proof that (i) implies (ii) is identical to the proof of Theorem 2.4.
To see that (ii) implies (iii), assume that (iii) is not met. Let s: M2(S)→ C

be a linear functional such that

s

([
1 x
x∗ 1

])
< 0,

while s is positive onS+ ⊗ M+
2 , and letφ:S → M2 be the linearmap associated

with s. By Lemma 6.5, φ is positive. Since

〈 [
φ(1) φ(x)

φ(x)∗ φ(1)

] [
e1
e2

]
,

[
e1
e2

] 〉
= 2s

([
1 x
x∗ 1

])
< 0,

we have that

φ2

([
1 x
x∗ 1

])

is not positive. If we construct a unital, positive map φ′ from φ as prescribed
by Exercise 6.2(i), then by Exercise 6.2(ii) we have that

φ′
2

([
1 x
x∗ 1

])
=

[
1 φ′(x)

φ′(x)∗ 1

]

is not positive. Thus, by Lemma 3.1, ‖φ′(x)‖ > 1 = ‖φ′(1)‖, and so (ii) does
not hold.
Now suppose that (iii) is true, let ε > 0, and let pi in S+ and Qi in M

+
2 , i =

1, . . . , n, be such that ∥∥∥∥∥
[
1 x
x∗ 1

]
−

∑
i

pi ⊗ Qi

∥∥∥∥∥< ε. (∗)
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We have that

Qi =
[
ri λi

λ̄i ti

]
, with ri ≥ 0, ti ≥ 0 for all i.

Weset si = (ri + ti )/2.Note that if si = 0, thenλi = 0.The equation (∗) implies
the following inequalities;

1− ε <
∑
i

ri pi < 1+ ε,

1− ε <
∑
i

ti pi < 1+ ε,

∥∥∥∥∥x −
∑
i

λi pi

∥∥∥∥∥ < ε.

Thus,

1− ε <
∑
i

si pi < 1+ ε.

Setting λi/si = 0 when si = 0, we have∥∥∥∥∥x −
∑
i

(λi/si )si pi

∥∥∥∥∥ < ε,

with |λi/si | ≤ 1. These last two equations are clearly enough to guarantee that
x is partitionable. �

Theorem 6.9. Let S be an operator system, M a subset of S. Then every
positive map on S has norm ‖φ(1)‖ when restricted toM if and only if S has
a partition of unity forM.

Proof. The proof is an immediate application of the above lemma. �

Corollary 6.10. Let B be a C∗-algebra with unit, let A be a subalgebra of B
containing the unit, and let S = A + A∗. Then S has a partition of unity forA.

Proof. By Corollary 2.8, every positive map on S satisfies ‖φ(a)‖ ≤ ‖φ(1)‖ ·
‖a‖ for a in A. Thus, by Theorem 6.9, S has a partition of unity for A. �

We now study two examples to illustrate the use of the above ideas. The sec-
ond arises from the theory of hypo-Dirichlet algebras, which we shall examine
in more detail in Chapter 11. A uniform algebra A on a compact Hausdorff
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space X is called hypo-Dirichlet provided that the closure ofA + Ā is a finite-
codimension subspace of C(X ).
Our first example is just a reexamination of an earlier one. Let S and φ be

the operator system and positive map of Example 2.2. Since φ(1) = 1, while
‖φ(z)‖ = 2 with ‖z‖ = 1, we see that z is not partitionable with respect to S.
It is interesting to attempt to show this directly.
The second example is somewhat longer.

Example 6.11. Let 0< R1 < R2, and let A denote the annulus in C with inner
radius R1 and outer radius R2, i.e.,

A = {z ∈ C: R1 ≤ |z| ≤ R2}.
We let R(A), as before, denote the algebra of rational functions on A, and let
S denote the closure ofR(A)+ R(A) in C(∂A). By a theorem of Walsh [239],
S is a codimension 1 subspace of C(∂A) and hence R(A) is a hypo-Dirichlet
algebra.
We let  j = {z: |z| = R j }, j = 1, 2, denote the two boundary circles of A,

and define positive linear functionals s j , j = 1, 2, on C(∂A) by

s j ( f ) = 1

2π

∫ 2π

0
f (R je

it ) dt.

If f (z) = ∑+n
k=−n akz

k is a finite Laurent polynomial, then

s1( f ) = s2( f ) = a0.

Since the finite Laurent polynomials are dense inR(A) and since s1 and s2 are
self-adjoint functionals, we have that s1( f ) = s2( f ) for all f in S. Since S is
of codimension 1, we have that

S = { f ∈ C(∂A): s1( f ) = s2( f )}.

We claim that S has no partition of unity for S. Before proving this claim,
let us explore some of the consequences of the claim.
Set

p(z) =
{
0, z ∈ 1,

1, z ∈ 2,

so that s1(p) = 0 �= 1 = s2(p). From this, we see that p /∈ S, and so the span
of S and p is all of C(∂A).
We leave it to the reader to verify that the claim thatS has no partition of unity

for S yields a positive, unital map φ: S → M2 with the following properties
(Exercise 6.4):
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(i) φ is not contractive.
(ii) φ is not completely positive.
(iii) φ has no positive extension to C(∂A).
(iv) If L1 = { f ∈ S: f ≤ p},L2 = { f ∈ S: f ≥ p}, then there is no matrix

P in M2 satisfying

φ( f1)≤ P ≤ φ( f2)

for all f1 in L1, f2 in L2.
(v) Ifψ = φ|R(A), thenψ is a unital contraction, but ψ̃ = φ is not contractive.
(vi) ψ has no contractive extension to S, and so none to C(∂A) either.
(vii) ψ is not 2-contractive.

Part (vi), in particular, shows that a direct generalization of the Hahn–Banach
extension theorem to operator-valued mappings fails even when the domain is
commutative.
To verify the claim, it will suffice to construct an element of S that is not

partitionable. Fix a small positive number δ > 0 and set j = 1, 2,

X j = {R je
it : δ ≤ t ≤ π − δ},

Y j = {R je
it : π + δ ≤ t ≤ 2π − δ}.

Define a continuous function f on ∂A by setting f (X1) = 1, f (Y1) = −1,
f (X2) = i, f (Y2) = −i , and extending f linearly on the remaining arcs, so
that ‖ f ‖ = 1. It is easy to check that s1( f ) = s2( f ), so that f is in S.
Suppose that we were given scalars λ1, . . . , λn, |λ j | ≤ 1, j = 1, . . . , n, and

positive functions p1, . . . , pn in S, summing to less than 1, such that f is not
merely approximated by the sum, but in fact

f =
∑
i

λi pi .

Since f (X1) = 1 and |λ j | ≤ 1, we must have that some subset of the λ j ’s is
exactly equal to 1, which, after reordering, we may take to be λ1, . . . , λk . It is
not difficult to see that the above equations imply that

p1(x)+ · · · + pk(x) = 1

for all x in X1. Similarly, after reordering the remaining λ j ’s, we find a set
λk+1, . . . , λm that are all equal to −1, and

pk+1(x)+ · · · + pm(x) = 1,

for all x in Y1. But this implies that

s1(p1 + · · · + pm)≥ 1− 4δ,
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and since s1 and s2 agree on S,

s2(pm+1 + · · · + pn) ≤ 4δ.

We have that Im( f ) = Im(λm+1)pm+1 + · · · + Im(λn)pn , so

1− 4δ ≤ s1(|Im( f )|) ≤ s2(pm+1 + · · · + pn) ≤ 4δ,

a clear contradiction for δ < 1/8.
Thus, we see that no sum of the above form could actually equal f . An

analogous, but somewhat more detailed, argument shows that for the same δ

and ε sufficiently small, no sum of the above form can approximate f to within
ε. We leave it to the reader to verify this claim.

Notes

The correspondence between linear maps from a space into Mn and linear
functionals on the tensor product of that space with Mn is a recurring theme in
this subject (see for example, [46], [47], [134], [223]). Our presentation owes
a great deal to [6] and [218].
The study of S+ ⊗ M+

n is adapted from [46], where it is used to study pos-
itive maps between matrix algebras. In contrast to Proposition 4.7, a num-
ber of unanswered questions and surprising examples arise in the study of
positive maps between matrix algebras ([46], [222], and [244]). For example,
positive maps between Mn and Mk are characterized by linear functionals on
Mn(Mk), which are positive on M+

n ⊗ M+
k . A decent characterization of the

matrices in Mn(Mk) = Mnk that belong to this cone is still not available. See
[46] and [245] for an introduction to this topic. Example 6.11 is adapted from
a similar example in [77]. The partition-of-unity techniques originate there
also.

Exercises

6.1 Let A be any unital C∗-algebra. Give an example of a linear functional
s:Mn(A)→ C such that s is unital and positive, but such that the associated
linearmap,φs :A→ Mn , has norm n. (Hint: First consider the caseA = C.)

6.2 Let φ: S → Mn be positive and set φ(1) = P . Let Q be the projection
onto the range of P , and let R be positive with (I − Q)R = 0, RPR = Q.
Let ψ : S → Mn be any positive, unital map, and set φ′(a) = Rφ(a)R +
(I − Q)ψ(a)(I − Q).
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(i) Show that φ′ is a unital, positive map.
(ii) Show that if (ai, j ) is positive in Mk(S), but φk((ai, j )) is not positive,

then φ′
k((ai, j )) is not positive either.

(iii) Deduce the equivalence of (i) and (ii) in Theorem 6.6.
6.3 Assume that the equivalent conditions of Theorem 6.9 are not met. Show

that then there always exists a unital, positive map φ: S → M2 that is not
contractive.

6.4 Verify the existence of a φ: S → M2 with properties (i)–(vii) of Exam-
ple 6.11.

6.5 Let S be an operator system. Prove that the following are equivalent:
(i) For every C∗-algebra B, every positive φ: S →B is n-positive.
(ii) S+ ⊗ M+

n is dense in Mn(S)+.
6.6 Use Corollary 6.7 to give an alternate proof of the fact that every positive

map with domain C(X ) is completely positive.



Chapter 7
Arveson’s Extension Theorems

In this chapter we extend the results of Chapter 6 from finite-dimensional ranges
Mn to maps with range B(H). We then develop the immediate applications of
the extension theorems to dilation theory. We begin with some observations of
a general functional-analytic nature.

Let X and Y be Banach spaces, let Y ∗ denote the dual of Y , and let B(X, Y ∗)
denote the bounded linear transformations of X into Y ∗. We wish to construct
a Banach space such that B(X, Y ∗) is isometrically isomorphic to its dual. This
will allow us to endow B(X, Y ∗) with a weak∗ topology.

Fix vectors x in X and y in Y , and define a linear functional x ⊗ y on
B(X, Y ∗) by x ⊗ y(L) = L(x)(y). Since |x ⊗ y(L)| ≤ ‖L‖ · ‖x‖ · ‖y‖, we see
that x ⊗ y is in B(X, Y ∗)∗ with ‖x ⊗ y‖ ≤ ‖x‖‖y‖. In fact, ‖x ⊗ y‖ = ‖x‖‖y‖
(Exercise 7.1).

It is not difficult to check that the above definition is bilinear, i.e., x ⊗
(y1 + y2) = x ⊗ y1 + x ⊗ y2, (x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y, and (λx) ⊗
y = x ⊗ (λy) = λ(x ⊗ y) for λ ∈ C. We let Z denote the closed linear span
in B(X, Y ∗)∗ of these elementary tensors. Actually, Z can be identified as the
completion of X ⊗ Y with respect to a cross-norm (Exercise 7.1), but we shall
not need that fact here.

Lemma 7.1. B(X, Y ∗) is isometrically isomorphic to Z∗ with the duality
given by

〈L , x ⊗ y〉 = x ⊗ y(L).

Proof. It is straightforward to verify that the above pairing defines an iso-
metric isomorphism of B(X, Y ∗) into Z∗. To see that it is onto, fix f ∈ Z∗,
and for each x , define a linear map, fx : Y → C, via fx (y) = f (x ⊗ y). Since
| fx (y)| ≤ ‖ f ‖‖x‖‖y‖, we have that fx ∈ Y ∗. It is straightforward to verify

84
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that if we set L(x) = fx , then L: X → Y ∗ is linear, and that L is bounded with
‖L‖ ≤ ‖ f ‖.

Thus, L ∈ B(X, Y ∗), and clearly under our correspondence L → f , which
completes the proof. �

We call the weak∗ topology that is induced on B(X, Y ∗) by this identification
the BW topology (for bounded weak). The following lemma explains the name.

Lemma 7.2. Let {Lλ} be a bounded net in B(X, Y ∗). Then Lλ converges to L
in the BW topology if and only if Lλ(x) converges weakly to L(x) for all x in
X.

Proof. If Lλ converges to L in the BW topology, then

Lλ(x)(y) = 〈Lλ, (x ⊗ y)〉 → 〈L , (x ⊗ y)〉 = L(x)(y)

for all y in Y . Thus, Lλ(x) converges weakly to L(x) for all x .
Conversely, if Lλ(x) converges weakly to L(x) for all x , then 〈Lλ, (x ⊗ y)〉

converges to 〈L , (x ⊗ y)〉 for all x and y and hence on the linear span of the
elementary tensors. But since the net is bounded, this implies that it converges
on the closed linear span. �

IfH is a Hilbert space, then B(H) = B(H,H) is the dual of a Banach space by
Lemma 7.1. This Banach space can also be identified with the space of ultra-
weakly continuous linear functionals or with the trace-class operators (TC)
on H with trace norm, ‖T ‖1 = tr (|T |), where tr (·) denotes the trace [68,
Theorem I.4.5]. We prefer to focus on the duality with the trace class operators.

Under this duality, an operator A∈ B(H) is identified with the linear func-
tional Tr(AT ) for T ∈ TC. If h, k are in H, let Rh,k denote the elementary
rank-one operator on H given by Rh,k(x) = 〈x, k〉h. The linear span of these
operators is dense in TC in the trace norm (Exercise 7.2), and for A ∈ B(H),

Tr(ARh,k) = 〈Ah, k〉.

Proposition 7.3. Let X be a Banach space, and letH be a Hilbert space. Then
a bounded net {Lλ} in B(X, B(H)) converges in the BW topology to L if and
only if 〈Lλ(x)h, k〉 converges to 〈L(x)h, k〉 for all h, k in H and x in X.

Proof. We have that {Lλ} converges in the BW topology to L if and only if
Tr(Lλ(x)T ) → Tr(L(x)T ) for all T ∈ TC and x ∈ X . But again, since the net
is bounded, it is enough to consider T = Rh,k . �
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Let A be a C∗-algebra, S an operator system, M a subspace. We make the
following definitions:

Br (M,H) = {L ∈ B(M, B(H)): ‖L‖ ≤ r},
CBr (M,H) = {L ∈ B(M, B(H)): ‖L‖cb ≤ r},

CPr (S,H) = {L ∈ B(S, B(H)): L is completely positive, ‖L‖ ≤ r},
CP(S,H; P) = {L ∈ B(S, B(H)): L is completely positive, L(1) = P}.

Theorem 7.4. Let A be a C∗-algebra, let S be a closed operator system, and
letM be a closed subspace. Then each of the four above sets is compact in the
BW topology.

Proof. Since the BW topology is a weak∗ topology, the set Br (M,H) is com-
pact by the Banach–Alaoglu theorem. Since the remaining sets are subsets of
this set, it is enough to show that they are closed.

WeargueforCBr (M,H); the rest are similar.Let {Lλ}be a net in CBr (M,H),
and suppose {Lλ} converges to L . If (ai, j ) is in Mn(M), and x = x1 ⊕
· · · ⊕ xn, y = y1 ⊕ · · · ⊕ yn are in H ⊕ · · · ⊕ H, then 〈(L(ai, j ))x, y〉 =
limλ〈(Lλ(ai, j ))x, y〉. Hence, ‖(L(ai, j ))‖ ≤ r · ‖(ai, j )‖ for all n, and so
‖L‖cb ≤ r . �

We’re now in a position to prove the main result of the chapter.

Theorem 7.5 (Arveson’s extension theorem). Let A be a C∗-algebra, S an
operator system contained inA, and φ: S → B(H) a completely positive map.
Then there exists a completely positive map, ψ : A→ B(H), extending φ.

Proof. Let F be a finite-dimensional subspace of H, and let φF : S → B(F ) be
the compression of φ to F , i.e., φF (a) = PFφ(a)|F , where PF is the projection
ontoF . Since B(F ) is isomorphic to Mn for some n, by Theorem 6.2 there exists
a completely positive map ψF : A→ B(F ) extending φF . Let ψ ′

F : A→ B(H)
be defined by setting ψ ′

F (a) equal to ψF (a) on F and extending it to be 0 on
F⊥.

The set of finite-dimensional subspaces of H is a directed set under in-
clusion, and so {ψ ′

F } is a net in CPr (A,H) where r = ‖φ‖. Since this latter
set is compact, we may choose a subnet which converges to some element
ψ ∈ CPr (A,H).

We claim that ψ is the desired extension. Indeed, if a ∈ S and x, y are in H.
Let F be the space spanned by x and y. Then for any F1 ⊇ F, 〈φ(a)x, y〉 =
〈ψ ′

F1
(a)x, y〉, and since the set of such F1 is cofinal, we have that 〈φ(a)x, y〉 =

〈ψ(a)x, y〉.
This completes the proof of the theorem. �
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Corollary 7.6 (Arveson). Let A be a C∗-algebra, M a subspace with
1 ∈M, and φ: M→ B(H) a unital, complete contraction. Then there exists a
completely positive map ψ : A→ B(H ) extending φ.

We’ve seen earlier that positive maps need not have positive extensions
(Example 2.13) and that unital, contractive maps need not have contractive ex-
tensions [Example 6.11(vi)] even when the range is finite-dimensional. These
facts make the above results all the more striking.

A C∗-algebra B is called injective if for every C∗-algebra A and operator
system S contained in A, every completely positive map φ: S →B can be
extended to a completely positive map on all of A. Thus, Theorem 7.5 is the as-
sertion that B(H) is injective. Exercise 7.5 gives an elementary characterization
of injective C∗-algebras.

Corollary 7.6 is the basis for a general dilation theory. Let B be a unital
C∗-algebra, and let A be a subalgebra (not necessarily ∗-closed) with 1 ∈ A.
We shall call A an operator algebra. A unital homomorphism ρ: A→B(H) is
said to have a B-dilation if there exists a Hilbert space K containing H and a
unital ∗-homomorphism π : B→ B(K) such that

ρ(a) = PHπ (a)|H for all a in A.

This definition is motivated in part by the theory of normal ∂X -dilations.
Recall that if T ∈ B(H), then a compact set X is a spectral set for X provided
that the homomorphism ρ: R(X ) → B(H) given by ρ(r ) = r (T ) is contractive.
It is clear that T has a normal ∂X -dilation if and only if ρ has a C(∂X )-dilation.

Corollary 7.7 (Arveson). LetA be an operator algebra contained in the C∗-
algebra B, let ρ: A→ B(H) be a unital homomorphism, and let ρ̃: A + A∗ →
B(H) be the positive extension of ρ. Then the following are equivalent:

(i) ρ has a B-dilation,
(ii) ρ is completely contractive,
(iii) ρ̃ is completely positive.

Moreover, in this case there exists a B-dilation π : B→ B(K) such that
π (B)H is dense in K.

Proof. We have seen the equivalence of (ii) and (iii) in Chapter 3. If ρ has a
B-dilation, then the map φ: B→ B(H) defined by

φ(b) = PHπ (b)|H
is completely positive and extends ρ, so ρ̃ is completely positive.
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Conversely, if ρ̃ is completely positive, then we may extend ρ̃ to a completely
positive map φ: B→B(H). The Stinespring representation of φ gives rise to
the B-dilation of ρ.

A minimal Stinespring representation of φ will have the property that π (B)H
is dense in K. �

A B-dilation with the property that π (B)H is dense in K will be called a
minimal B-dilation of ρ. These need not be unique (Exercise 7.3).

Let T ∈ B(H), and let X be a spectral set for T . If the homomorphism
ρ: R(X ) → B(H) is completely contractive, then we shall call X a complete
spectral set for T .

Corollary 7.8. Let T ∈ B(H), and let X be a spectral set for T . Then the
following are equivalent:

(i) T has a normal ∂X-dilation,
(ii) X is a complete spectral set,
(iii) ρ̃ is completely positive,
(iv) ρ̃ has a positive extension to C(∂X ).

Moreover, in this case there is a normal ∂X-dilation N for T such that the
smallest closed, reducing subspace for N containing H is K.

Proof. The equivalence of (i)–(iii) is just Corollary 7.7. If ρ̃ is completely
positive, then it has a (completely) positive extension to C(∂X ) by Arveson’s
extension theorem. Conversely, if ρ̃ does have a positive extension to C(∂X ),
then that extension is automatically completely positive by Theorem 3.11, and
hence its restriction to S, ρ̃, is completely positive.

If K is the smallest closed, reducing subspace for N containing H, then
the representation π : C(∂X ) → B(K) given by π (z) = N has no closed, re-
ducing subspaces containing H. But this is equivalent to the requirement that
π (C(∂X ))H be dense in K, since this latter space is clearly reducing. �

A normal ∂X -dilation of T with no closed, reducing subspace containing
H is called a minimal normal ∂X -dilation of T . Unlike the case of Sz.-Nagy’s
minimal unitary dilation of a contraction (Theorem 4.3), the minimal normal
∂X -dilation of an operator need not be unique up to unitary equivalence. Exer-
cise 7.3 illustrates the difficulty.

A unital homomorphism of an operator algebra A into B(H) will be called
a representation of A. If A is a C∗-algebra, then every contractive represen-
tation of A is automatically a ∗-representation. Corollary 7.7 gives a useful
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characterization of the completely contractive representations, for it shows that
these representations can be studied via the ∗-representation theory ofB. Conse-
quently, it is important to know when representations are completely contractive.

At present we have no natural source of contractive representations that are
not completely contractive. In general, such examples are hard to construct,
since in some sense they are the pathological cases that are difficult to fit
to a general theory. They can occur, however, even when the algebra is finite-
dimensional and the representation is on a finite-dimensional space. An example
of a subalgebra of M3 and a representation of it on C

3 that is not completely
contractive is given in [6].

An example of considerable importance to the theory of dilations of contrac-
tions was given by Parrott [156].

P .arrott’s Example.LetU and V be contractions in B(H) such thatU is unitary
andU and V don’t commute. We define commuting contractions on B(H ⊕ H)
by setting

T1 =
[

0 0
I 0

]
, T2 =

[
0 0
U 0

]
, T3 =

[
0 0
V 0

]
.

LetP(D3) be the algebra of polynomials in three variables z1, z2, z3, regarded
as a subalgebra of C(T3), where T

3 is the 3-torus. In Chapter 5 we saw an
example of three commuting contractions such that the induced homomorphism
of P(D3) was not contractive. We claim that the homomorphism ρ: P(D3) →
B(H ⊕ H) defined by ρ(zi ) = Ti , i = 1, 2, 3, is contractive but not completely
contractive.

To see that ρ is contractive, let p(z1, z2, z3) be an arbitrary element of P(D3),
and write

p(z1, z2, z3) = a0 + a1z1 + a2z2 + a3z3 + q(z1, z2, z3),

where q(z1, z2, z3) contains all the higher-order terms of p. We have that

ρ(p) =
[

a0 0

a1 I + a2U + a3V a0

]
,

since Ti · Tj = 0 for all i and j .
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Let x = x1 ⊕ x2 and y = y1 ⊕ y2 be arbitrary unit vectors in H ⊕ H, and
calculate

|〈ρ(p)x, y〉| = |a0〈x1, y1〉 + 〈(a1 I + a2U + a3V )x1, y2〉 + a0〈x2, y2〉|
≤ |a0|‖x1‖‖y1‖ + (|a1| + |a2| + |a3|)‖x1‖‖y2‖ + |a0|‖x2‖‖y2‖

=
〈 [ |a0| 0

|a1| + |a2| + |a3| |a0|
] [‖x1‖

‖x2‖
]

,

[‖y1‖
‖y2‖

] 〉
.

Thus, we have that

‖ρ(p)‖ ≤
∥∥∥∥
[ |a0| 0
|a1| + |a2| + |a3| |a0|

]∥∥∥∥ ,

where the latter matrix is an element of M2.
But by Exercise 2.11,∥∥∥∥
[ |a0| 0
|a1| + |a2| + |a3| |a0|

]∥∥∥∥ ≤ inf
r

{‖|a0| + (|a1| + |a2| + |a3|)z + r (z)‖},

where r (z) is an arbitrary polynomial whose lowest-order term is at least of
degree 2, and the latter norm is the supremum norm over the unit circle. Let
λ0, λ1, λ2, λ3 be numbers of modulus 1 such that λ0a0, λ1a1, λ2a2, λ3a3 are
positive; then

‖ρ(p)‖ ≤
∥∥∥∥
[ |a0| 0
|a1| + |a2| + |a3| |a0|

]∥∥∥∥
≤ ‖|a0| + (|a1| + |a2| + |a3|)z + λ0q(λ̄0λ1z, λ̄0λ2z, λ̄0λ3z)‖
= ‖p(λ̄0λ1z, λ̄0λ2z, λ̄0λ3z)‖
≤ ‖p(z1, z2, z3)‖,

where the third and fourth norms are the supremum over T and the last norm is
the supremum over T

3. Thus, ρ is contractive.
Now assume that ρ is completely contractive. Consider an element of

Mn(P(D3)) of the form (ai, j z1 + bi, j z2 + ci, j z3). Its image under ρn is


0 0 · · · 0 0
...

...
a11 I + b11U + c11V 0 · · · a1n I + b1nU + c1nV 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 0
...

...
...

...
an1 I + bn1U + cn1V 0 · · · ann I + bnnU + cnnV 0




,

which is an operator acting on the direct sum of n copies of H ⊕ H.
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Think of this space as (H11 ⊕ H21) ⊕ · · · ⊕ (H1n ⊕ H2n), where eachHi, j =
H. If we reorder the spaces by writing

(H11 ⊕ · · · ⊕ H1n) ⊕ (H21 ⊕ · · · ⊕ H2n),

then the matrix of this same operator will be


0 · · · · · · · · · · · · · · · 0...
......
......
...

0 · · · · · · · · · · · · · · · 0

...............

0 · · · · · · · · · · · · · · · 0...
......
......
...

0 · · · · · · · · · · · · · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a11 I + b11U + c11V . . . a1n I + b1nU + c1nV

...
...

a1n I + bn1U + cn1V . . . ann I + bnnU + cnnV

...............

0 · · · · · · · · · · · · · · · 0...
......
......
...

0 · · · · · · · · · · · · · · · 0




.

Since ρ is assumed to be completely contractive, the operator matrix in the (2,1)
block of the above matrix has norm bounded by

‖ρn((ai, j z1 + bi, j z2 + ci, j z3))‖
≤ sup{‖(ai, j z1 + bi, j z2 + ci, j z3)‖ : |z1| = |z2| = |z3| = 1}.

But this latter supremum is equal to

sup{‖(ai, j + bi, jw1 + ci, jw2)‖: |w1| = |w2| = 1}.
Let M be the subspace of C(T2) spanned by 1, w1, and w2, where w1 and w2

are the coordinate functions.
The above discussion shows that if ρ is completely contractive, then the map

ψ : M→ B(H) defined by ψ(1) = I, ψ(w1) = U , and ψ(w2) = V is com-
pletely contractive. By Arveson’s extension theorem, we may extend ψ to a
completely positive map on C(T2) and then obtain a Stinespring representation
(π, S,K) with S an isometry and π : C(T2) → B(K) a ∗-homomorphism.

Identifying SH and H, we have that

ψ(·) = PHπ (·)|H.

But since π (w1) and U = ψ(w1) are both unitary, this implies that H reduces
π (w1). Finally, since π (w1) and π (w2) commute, and H reduces π (w1), this
implies that ψ(w1) commutes with ψ(w2) – that is, that U commutes with V ,
a contradiction. Therefore, ρ is not completely contractive.

If one chooses U and V to both be unitaries, then it is possible to show that
ρ is not even 4-contractive (Exercise 7.9).
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Another remark to be made is that there exist U and V in M2 satisfying the
above conditions, and hence there are three commuting contractions in M4 for
which ρ is a contraction but not a complete contraction.

Parrott’s example also shows that we must be extremely careful about what
we mean by the expression “operator algebra.” Consider any ∗-isomorphism
π : C(T3) → B(K) and let Ai = π (zi ) ⊕ Ti , i = 1, 2, 3, where the Ti ’s are the
operators given above. For any polynomial p in three variables we have that
p(A1, A2, A3) = π (p) ⊕ p(T1, T2, T3) and hence ‖p(A1, A2, A3)‖ = ‖p‖∞.
Thus, the algebra A ⊆ B(K ⊕ H ⊕ H ) generated by A1, A2, and A3 and the
algebra P(D3) ⊆ C(T3) are isometrically isomorphic via the map γ : P(D3) →
A, γ (p) = p(A1, A2, A3). Hence, we could regard them as the “same” Banach
algebra.

However, we should not regard them as the “same” operator algebra, because,
by the above calculations, we know that γ is not a complete isometry. Thus, the
norms on Mn(A) differ from the norms on Mn(P(D3)). In fact, since ρ is not
4-contractive, we have that γ4: M4(P(D3)) → M4(A) is not an isometry. Thus,
P(D3) and A are distinct operator algebras, since in this book we are concerned
with their matrix norm structures.

This subtlety does not arise with C∗-algebras. The discussion in Chapter 1
shows that if γ : A→B is a ∗-isomorphism between two C∗-algebras, then
γn: Mn(A) → Mn(B) is also a ∗-isomorphism for all n. Hence every isomet-
ric isomorphism between C∗-algebras is automatically a completely isometric
isomorphism.

Now that we’ve seen an example of a commutative operator algebra for which
every contractive representation is not necessarily completely contractive, we
would like to present an example in the opposite extreme. That is, some highly
noncommutative operator algebras for which every contractive representation
is completely contractive. In general, it is hard to test if a homomorphism is
contractive. Thus, the following theorem is quite nice.

Proposition 7.9 (McAsey–Muhly). LetA be the algebra of upper triangular
matrices in Mn, i.e.,

A = {(ai, j ): ai, j = 0 for i > j},
and let {Ei, j } be the standard matrix units for Mn. Then every representation
ρ of A with ‖ρ(Ei j )‖ ≤ 1 for i ≤ j is completely contractive.

Proof. Let ρ: A→B(H) be a representation. We define a map φ: Mn → B(H)
by φ(Ei j ) = ρ(Ei j ), i ≤ j , and φ(Ei j ) = ρ(E ji )∗, i > j . We must prove that φ

is completely positive.
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Since ρ is unital and a homomorphism, {ρ(Ei,i )} will be projections that sum
to the identity. Since ‖ρ(Eii )‖ ≤ 1, they will be orthogonal projections. Let Hi

be the space that ρ(Ei,i ) projects onto, so H = H1 ⊕ · · · ⊕ Hn .
Since ρ(Ei, j ) = ρ(Ei,i )ρ(Ei, j )ρ(E j, j ), there will exist operators Ti, j : H j →

Hi such that the operator matrix ofρ(Ei, j ) relative to the above decomposition of
H is Ti, j in the (i, j)th position and 0 elsewhere. Relative to this decomposition
we have that ρ((ai j )) = (ai j Ti j ). Set Ti = Ti,i+1, and note that for i < j ,

Ti, j = Ti · Ti+1 · · · Tj .

By Theorem 3.14, to prove that φ is completely positive, it is sufficient to
prove that (φ(Ei, j )) is a positive operator on the direct sum of n copies of
H,H1 ⊕ · · · ⊕ Hn . Decomposing each Hi as Hi

1 ⊕ · · · ⊕ Hi
n , we have that

(φ(Ei, j )) is represented as an n2 × n2 operator matrix with each n × n block
having only one nonzero entry.

Reorder the subspaces so thatH1
1,H2

2, . . . ,Hn
n are listed first and the remain-

ing spaces occur in any order. The operator matrix for (φ(Ei, j )) with respect to
this reordering is (Ti, j ) in the first n × n entries and 0 elsewhere.

Thus, it will be sufficient to prove that (Ti, j ) is positive. Set

R =




0 T1 0 . . . 0

0 0 T2
. . .

...
...

. . .
. . . 0

...
. . . Tn−1

0 . . . . . . . . . 0




;

then ‖R‖ ≤ 1, Rn+1 = 0, and (Ti, j ) = (I − R)−1 + (I − R∗)−1 − I . Conse-
quently, as in the proof of Theorem 2.6, (Ti, j ) is positive. �

If we examine the Stinespring representation of ρ, then it can be seen to give
a factorization of the operator (Ti, j ). Indeed, if ρ(A) = V ∗π (A)V for some
∗-homomorphism π : Mn → B(K) and isometry V : H→K, then we know that
up to a unitary equivalence we have that K = L(n) for some Hilbert space L
and π (Ei, j ) is the operator matrix that is IL in the (i, j) entry and 0 elsewhere.
Writing V : H→L(n) as Vh = (V1h, . . . , Vnh) where Vi : H→L, we have that
ρ(Ei, j ) = V ∗

i Vj .
Since so many positive maps on Mn are not completely positive, it is some-

what surprising that every map induced by a representation of A is completely
positive.
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Notes

The BW topology was introduced in [6], where the proofs of the extension
theorems also appear, as well as some material on B-dilations.

Parrott [156] originally proved that the set of operators in his example did not
have a set of commuting unitary dilations, i.e., that ρ(z1, z2, z3) → ρ(T1, T2, T3)
does not have a C(T3) dilation, by examining spatial relations among the uni-
taries. By Corollary 7.7, this is equivalent to the fact that Parrott’s example
yields a contractive homomorphism that is not completely contractive. We’ve
avoided Parrott’s spatial proof in an attempt to cast a different perspective. It
is interesting to note that when V is also unitary, a direct proof of the noncom-
plete contractivity of the homomorphism simplifies (Exercise 7.9), as does the
spatial proof [231]. We do not know if the homomorphism is not 2-contractive
for arbitrary V .

Let us reinterpret the material on commuting contractions in light of Corol-
lary 7.7. Ando’s theorem [5] shows that every pair of commuting contractions
induces a completely contractive homomorphism of the bidisk algebra P(D2).
So, in particular, every contractive homomorphism of that algebra is com-
pletely contractive. Parrott’s example shows that P(D3) differs in this respect;
contractive homomorphisms need not be completely contractive. The internal
properties of the algebra P(D3) that lead to this difference do not seem to be
understood. Neither do the internal properties of the bidisk algebra. For exam-
ple, it is not known if every unital contraction (including nonhomomorphisms)
on P(D2) is completely contractive. This is the case for the disk algebra, since
it is a Dirichlet algebra. We shall see some additional explanation of the dif-
ference between the two- and three-variable situations in Chapter 18, but our
understanding of this situation is still not satisfactory.

The results of Crabbe and Davies [69] and Varopoulos [236] examined in
Chapter 5, that not every set of n ≥ 3 commuting contractions need satisfy
von Neumann’s inequality, reflect a different property of the polydisk algebras
than Parrott’s example. In Chapter 18, we will formalize this difference a bit
more.

Gaspar and Racz [104] have shown that every set of cyclically commuting
contractions has a set of cyclically commuting, unitary dilations. If given a
C∗-algebraic interpretation, their result should add some additional insights.

Choi and Effros [50] prove that for a von Neumann algebra A, semidis-
creteness (Exercise 7.14) is equivalent to the existence of a net of finite-rank,
completely positive maps Rλ: A→A such that Rλ(x) converges to x σ -weakly
for all x . Connes [67] proves that semidiscreteness and injectivity are equivalent
for von Neumann algebras.

Proposition 7.9 is adapted from McAsey and Muhly [143].
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Exercises

7.1 Let X and Y be Banach spaces, and for f ∈ X∗, g ∈ Y ∗ define L f,g ∈
B(X, Y ∗) by L f,g(x) = f (x)g. By considering these operators, prove that
the map j : X ⊗ Y → B(X, Y ∗)∗ defined in this chapter has the following
properties:

(i) j is linear,
(ii) ‖ j(x ⊗ y)‖ = ‖x‖‖y‖,

(iii) j is one-to-one.
Since j is one-to-one, the identification of X ⊗ Y with j(X ⊗ Y ) endows
X ⊗ Y with a norm (rather than just a seminorm). Conclude that Z of
Lemma 7.1 can be identified with the completion of X ⊗ Y with respect
to this norm. A norm on the tensor product of two normed spaces that
satisfies ‖x ⊗ y‖ = ‖x‖‖y‖ is called a cross-norm.

7.2 Let Rh,k be the operator defined by Rh,k(x) = 〈x, k〉h. Show that Rh,k is
trace-class, that Tr(ARh,k) = 〈Ah, k〉, and that the linear span of {Rh,k : h,

k ∈ H} is dense in TC in the trace norm.
7.3 Let A be an operator algebra contained in the C∗-algebra B, let ρ: A→

B(H) be a completely contractive, unital homomorphism, and let πi :B→
B(Ki ), i = 1, 2, define minimal B-dilations of ρ. Define completely pos-
itive maps φi : B→B(H) by φi (b) = PHπi (b)|H, i = 1, 2.

(i) Show that there exists a unitary U : K1 →K2 with Uh = h for h in
H, and U ∗π2(b)U = π1(b) if and only if φ1 = φ2. Such dilations are
called unitarily equivalent.

(ii) Show that there is a one-to-one correspondence between unitarily
equivalent, minimal B-dilations of ρ and completely positive exten-
sions of ρ to B.

(iii) Show that the set of completely positive extensions of ρ is a compact,
convex set in the BW toplogy on CP(B,H).

7.4 (Extension of bimodule maps) Let A, C be C∗-algebras, let S be
an operator system, and suppose that C ⊆ S ⊆ A. If C ⊆ B(H), then
φ: S → B(H) is a C-bimodule map provided φ(c1ac2) = c1φ(a)c2. Prove
that if φ: S → B(H) is a completely positive C-bimodule map, then every
completely positive extension of φ to A is also a C-bimodule map.

7.5 Let B ⊆ B(H) be a unital C∗-algebra. Prove that B is injective if and
only if there exists a completely positive map φ: B(H) →B such that
φ(b) = b for all b in B. Show that φ is necessarily a B-bimodule map. A
map with the above properties is called a completely positive conditional
expectation.

7.6 (Sarason) LetA ⊆ B(K) be an algebra, and letH be a subspace ofK such
that A→ PHA|H is a homomorphism onA. Prove that the subspacesH1 =
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span{Ah: A ∈ A, h ∈ H}− andH2 = H1 ∩ H⊥ ofK both are invariant for
every element of A, and that H1 ⊕ H = H2. Conversely, show that if H1

andH2 are invariant forA andH1 ⊕ H = H2, then compression ontoH is
a homomorphism on A. Such a subspace is said to be semiinvariant for A.

7.7 Let Q = (qi, j ) be the element of Mn given by qi,i+1 = 1, qi, j = 0 for
all other (i, j), and let N ∈ B(H) satisfy ‖N‖ ≤ 1, Nn = 0. Prove that
Q → N defines a completely contractive representation of the algebra
generated by Q.

7.8 Prove that B is injective if and only if Mn(B) is injective for some n.
7.9 In Parrott’s example, show that if U and V are both unitaries that don’t

commute, then ρ is not 4-contractive. (Hint: Consider [ U
∗ V

V ∗ −U ].)
7.10 (Parrott) Prove that there exist three commuting operators, T1, T2, and T3,

with ‖Ti‖ < 1 such that von Neumann’s inequality holds, but that do not
have a commuting unitary dilation.

7.11 Prove that for every n ≥ 3, there exist n commuting operators such that
‖Ti‖ < 1, i = 1, . . . , n, and von Neumann’s inequality holds, but that do
not have commuting unitary dilations.

7.12 Let A ⊆ B(H) be a unital C∗-algebra. If A is closed in the weak opera-
tor topology, then A is called a von Neumann algebra. Prove that every
von Neumann algebra has a predual. The induced weak∗ topology on A
is called the σ -weak topology.

7.13 Let A be a von Neumann algebra. If there exists a net of σ -weakly con-
tinuous, completely positive maps, φλ: A→ Mnλ

, ψλ: Mnλ
→A, with

φλ(1) = 1, ψλ(1) = 1, such that ψλ ◦ φλ(a) → a, σ -weakly for all a in A,
then A is called semidiscrete. Prove that every semidiscrete von Neumann
algebra is injective.



Chapter 8
Completely Bounded Maps

In this chapter, we extendmany of the results obtained in previous chapters con-
cerning completely positive maps to the completely bounded maps. Our main
technique is to realize completely bounded maps as the off-diagonal corners of
completely positive maps.

Let us consider for a moment Mm(Mn(A)). For aC∗-algebraA, a typical ele-
ment of this algebra is of the form A = (Ai, j )mi, j=1, where each Ai, j is in Mn(A).
Thus, Ai, j = (ai, j,k,�)nk,�=1, with ai, j,k,� in A. Setting Bk,� = (ai, j,k,�)mi, j=1, we
obtain an element of Mm(A), and thus B = (Bk,�)nk,�=1 is in Mn(Mm(A)). Now,
Mm(Mn(A)) and Mn(Mm(A)) are both isomorphic to Mnm(A) by just deleting
the extra parentheses. With these identifications, A and B are unitarily equiva-
lent elements of Mnm(A); in fact, the unitary is just a permutation matrix.

To see this, note that if we regard A as an element of Mmn(A), say A =
(cs,t )mn

s,t=1, then cs,t = ai, j,k,�, where s = n(i − 1) + k, t = n( j − 1) + �; while
if we regard B as an element of Mmn(A), say B = (ds,t )mn

s,t=1, then ds,t = ai, j,k,�,
where s = m(k − 1) + i, t = m(� − 1) + j .

Since the above operation for passing from Mm(Mn(A)) to Mn(Mm(A)) is
just a permutation, it is a ∗-isomorphism. We shall refer to this ∗-isomorphism
as the canonical shuffle. It is important to note that since the canonical shuffle
is a ∗-isomorphism, it preserves norm and positivity.

Note that we’ve encountered this permutation earlier in Parrott’s example,
in the proof of Proposition 7.9, and in our discussion of the Kronecker product
in Chapter 3. It is also useful to understand this canonical shuffle in the tensor
notation. Let {Ei, j }mi, j=1 and {Fk,�}nk,�=1 denote the standard matrix units for
Mm and Mn , respectively. Our element A of Mm(Mn(A)) ∼= (A ⊗ Mn) ⊗ Mm

is just A = ∑m
i, j=1 Ai, j ⊗ Ei, j , where each Ai, j is inA ⊗ Mn and has the form

Ai, j = ∑n
k,�=1 ai, j,k,� ⊗ Fk,�. Thus, A = ∑m

i, j=1

∑n
k,�=1 ai, j,k,� ⊗ Fk,� ⊗ Ei, j .

On the other hand, Bk,� = ∑m
i, j=1 ai, j,k,� ⊗ Ei, j , so that B = ∑n

k,�=1 Bk,� ⊗

97
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Fk,� = ∑n
k,�=1

∑m
i, j=1 ai, j,k,� ⊗ Ei, j ⊗ Fk,�, which lies in (A ⊗ Mm) ⊗ Mn

∼=
Mn(Mm(A)).Whenwe regard A and B as elements of Mmn(A), thenwe see that
B is the image of A under the following string of isomorphisms: Mmn(A) ∼=
Mm(Mn(A)) ∼= (A ⊗ Mn) ⊗ Mm

∼= A ⊗ (Mn ⊗ Mm) ∼= A ⊗ (Mm ⊗ Mn) ∼=
(A ⊗ Mm) ⊗ Mn

∼= Mn(Mm(A)) ∼= Mmn(A). Most of these isomorphisms are
so canonical that it is customary to ignore them. Setting A= C, it is interest-
ing to note that when we identify Mmn = Mm(Mn)= Mn ⊗ Mm and Mmn =
Mn(Mm)= Mm ⊗ Mn , then it is only the isomorphism between Mm ⊗ Mn and
Mn ⊗ Mm that leads to the permutation in Mmn .

The following lemma is central to this chapter and introduces the off-diagonal
technique.

Lemma 8.1. Let A, B be C∗-algebras with unit 1, let M be an operator space
in A, and let φ: M → B. Define an operator system SM ⊆ M2(A) by

SM =
{[

λ1 a
b∗ µ1

]
: λ, µ ∈ C, a, b, ∈ M

}
,

and �: SM → M2(B) via

�

[[
λ1 a
b∗ µ1

]]
=
[

λ1 φ(a)
φ(b)∗ µ1

]
.

If φ is completely contractive, then � is completely positive.

Proof. Let (Si, j ) be in Mn(SM), say

Si, j =
[
λi, j ai, j

b∗
i, j µi, j

]
.

Since Mn(SM) is a subspace of Mn(M2(A)), if we perform the canonical shuf-
fle, then (Si, j ) becomes an element of M2(Mn(A)). Indeed, if we set H =
(λi, j ), A = (ai, j ), B = (b j,i ), K = (µi, j ), then the image of (Si, j ) under the
canonical shuffle is [

H A
B∗ K

]
. (8.1)

Similarly, after the canonical shuffle, �n((Si, j )) becomes[
H φn(A)

φn(B)∗ K

]
. (8.2)

Thus, to prove that � is completely positive, it is sufficient to prove that for all
n, if (8.1) is positive, then (8.2) is positive.
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Now, if (8.1) is positive, then A = B and H and K must be positive. Fix
ε > 0, and set Hε = H + ε I, Kε = K + ε I , so that Hε and Kε are positive and
invertible. We have that[

I H−1/2
ε AK−1/2

ε

K−1/2
ε A∗H−1/2

ε I

]
=
[

H−1/2
ε 0

0 K−1/2
ε

]

×
[

Hε A

A∗ Kε

][
H−1/2

ε 0

0 K−1/2
ε

]

is positive, and consequently by Lemma 3.1,∥∥H−1/2
ε AK−1/2

ε

∥∥ ≤ 1.

Also, φn(H
−1/2
ε AK−1/2

ε ) = H−1/2
ε φn(A)K

−1/2
ε (Exercise 8.1), and so[

Hε φn(A)

φn(A)∗ Kε

]
=
[

H 1/2
ε 0

0 K 1/2
ε

]

×
[

I φn
(
H−1/2AK−1/2

)
φn
(
H−1/2AK−1/2

)∗
I

][
H−1/2

ε 0

0 K 1/2
ε

]
.

But, since φ is completely contractive, ‖φn(H−1/2AK−1/2)‖ ≤ 1, and so by
another application of Lemma 3.1, the middle matrix on the right of the above
equation is positive. Thus, the left hand side is positive for all ε, and so (8.1) is
positive.

Consequently, � is completely positive, which completes the proof. �

We can now prove a Hahn–Banach-type extension theorem for completely
bounded maps.

Theorem8.2 (Wittstock’s extension theorem). LetA be a unital C∗-algebra,
M a subspace of A, and let φ: M→ B(H) be completely bounded. Then
there exists a completely bounded map ψ : A→ B(H) that extends φ, with
‖φ‖cb = ‖ψ‖cb.

Proof. We may assume without loss of generality that ‖φ‖cb = 1. Let SM and
� be as in Lemma 8.1. Since � is completely positive, by Arveson’s extension
theorem there exists a completely positive �: M2(A) → M2(B(H)) = B(H ⊕
H) extending �.
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Define ψ via

�

([
0 a
0 0

])
=
[∗ ψ(a)
∗ ∗

]
.

Clearly, ψ is linear, and since � extends �, ψ extends φ. Also, since � is
unital,

‖ψ(a)‖ ≤
∥∥∥∥�

([
0 a
0 0

])∥∥∥∥ ≤ ‖�‖ · ‖a‖ ≤ ‖a‖,

and so ψ is contractive.
To see that ψ is completely contractive, let A = (ai, j ) be in Mn(A); then

�n

([[
0 ai, j

0 0

]]n

i, j=1

)
=
[[∗ ψ(ai, j )

∗ ∗
]]n

i, j=1

.

After performing the canonical shuffle, the right hand side becomes[∗ ψn(A)
∗ ∗

]
,

where the asterisk now indicates an n × n rather than a 1 × 1 entry. Thus, by
the same inequality as above,

‖ψn(A)‖ ≤
∥∥∥∥∥∥
[[

0 ai, j

0 0

]]n

i, j=1

∥∥∥∥∥∥ .

But after a canonical shuffle,[[
0 ai, j

0 0

]]n

i, j=1

becomes

[
0 A
0 0

]
.

Thus, ‖ψn(A)‖ ≤ ‖A‖, which is what we needed to prove. �

IfM is an operator space in the C∗-algebraA,B is another C∗-algebra, and
φ : M → B is a linear map, we setM∗ = {a: a∗ ∈ M} and define a linear map

φ∗: M∗ → B, via φ∗(a) = φ(a∗)∗.

When M = M∗, we set

Re φ = (φ + φ∗)/2, Im φ = (φ − φ∗)/2i,

so that Re φ, Im φ are self-adjoint, linear maps with φ = Re φ + i Im φ. We
note that some care is needed, since, in general, (Re φ)(a) �= Re(φ(a)), but they
are equal when a = a∗.



Chapter 8. Completely Bounded Maps 101

The above lemma also yields the following decomposition theorem for com-
pletely bounded maps.

Theorem 8.3. Let A be a C∗-algebra with unit, and let φ: A→ B(H) be
completely bounded. Then there exist completely positive maps φi :A → B(H)
with‖φi‖cb = ‖φ‖cb, i = 1, 2, such that themap�: M2(A)→ B(H ⊕ H)given
by

�

[[
a b
c d

]]
=
[
φ1(a) φ(b)

φ∗(c) φ2(d)

]

is completely positive. Moreover, if ‖φ‖cb ≤ 1, then we may take φ1(1) =
φ2(1) = IH.

Proof. Clearly, we may assume that ‖φ‖cb = 1. Applying Lemma 8.1 with
M = A, we obtain a completely positive map �: SA → B(H ⊕ H) where
SA ⊆ M2(A).

By Arveson’s extension theorem, � extends to a completely positive map on
all of M2(A), which we still denote by �. Since [ 0 b

c 0 ] is in SA, by the definition
of �,

�

[[
0 b
c 0

]]
=
[

0 φ(b)

φ(c∗)∗ 0

]
=
[

0 φ(b)

φ∗(c) 0

]
.

Now, let p be positive, p ≤ 1; then since[
p 0

0 0

]
≤
[
1 0
0 0

]
,

we have [
0 0
0 0

]
≤ �

[[
p 0
0 0

]]

≤ �

[[
1 0
0 0

]]
=
[
1 0
0 0

]
.

A straightforward calculation shows that these inequalities taken together
imply that

�

[[
p 0
0 0

]]
=
[∗ 0
0 0

]
.
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Since A is the span of its positive elements, there must exist a linear map
φ1: A → B(H) such that

�

[[
a 0
0 0

]]
=
[
φ1(a) 0

0 0

]
.

By an argument similar to the proof in Theorem 8.2, that ψ is completely
contractive, one obtains that φ1 is completely positive.

By analogous arguments, one obtains a completely positive map φ2: A →
B(H) satisfying

�

[[
0 0
0 d

]]
=
[
0 0
0 φ2(d)

]
.

Thus, we see that any completely positive map � obtained via extension
from SA to M2(A) has the desired form,

�

[[
a b
c d

]]
= �

[[
0 b
c 0

]]
+ �

[[
a 0
0 d

]]
=
[
φ1(a) φ(b)

φ∗(c) φ2(d)

]
,

for some φ1 and φ2.
Since φ1(1) = φ2(1) = 1, we have that ‖φ1‖cb = ‖φ2‖cb = ‖φ‖cb. This com-

pletes the proof of the theorem. �

Analternativeway to prove the above theorem is to use the fact that�fixes the
C∗-subalgebra,C ⊕ C, consisting of scalar diagonalmatrices, and consequently
by Corollary 3.19 is necessarily a bimodulemap over this algebra. An extension
of this idea is included in Exercise 8.6.

The above decomposition leads readily to a generalization of Stinespring’s
representation.

Theorem8.4. LetA be a C∗-algebra with unit, and let φ:A → B(H) be a com-
pletely bounded map. Then there exists a Hilbert space K, a ∗-homomorphism
π : A → B(K), and bounded operators Vi : H → K, i = 1, 2, with ‖φ‖cb =
‖V1‖ · ‖V2‖ such that

φ(a) = V ∗
1 π (a)V2

for all a ∈ A. Moreover, if ‖φ‖cb = 1, then V1 and V2 may be taken to be
isometries.

Proof. Clearly, we may assume that ‖φ‖cb = 1. Let φ1, φ2, and � be as in
Theorem 8.3. Let (π1, V,K1) be a minimal Stinespring representation for �,
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and note that since � is unital, V may be taken to be an isometry and π1 to be
unital.

Since M2(A) contains a copy of M2, the Hilbert space K1 may be decom-
posed as K1 =K ⊕ K in such a way that the ∗-homomorphism π1: M2(A)→
B(K⊕K) has the form

π1

[[
a b
c d

]]
=
[
π (a) π (b)
π (c) π (d)

]
,

where π : A → B(K) is a unital ∗-homomorphism (Exercise 8.3).
Thus, we have that V : H ⊕ H → K ⊕ K is an isometry, and[

φ1(a) φ(b)

φ∗(c) φ2(d)

]
= V ∗

[
π (a) π (b)

π (c) π (d)

]
V .

For h in H, [
h
0

]
=
[
φ1(1) 0
0 0

] [
h
0

]
= V ∗

[
π (1) 0
0 0

]
V

[
h
0

]

= V ∗
[
1K 0
0 0

]
V

[
h
0

]
,

and since V is an isometry, we must have that

V

[
h
0

]
=
[∗
0

]
.

Thus, there is a linear map V1: H → K such that

V

[
h
0

]
=
[
V1h

0

]
,

and V1 must also be an isometry. Similarly, there exists V2: H → K such that

V

[
0
h

]
=
[

0
V2h

]
.

Consequently, [
φ1(a) φ(b)

φ∗(c) φ2(d)

]
= V ∗

[
π (a) π (b)

π (c) π (d)

]
V

=
[
V ∗
1 π (a)V1 V ∗

1 π (b)V2

V ∗
2 π (c)V1 V ∗

2 π (d)V2

]
,

which completes the proof of the theorem. �
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Unlike the Stinespring representation of a completely positive map, there are
no extra conditions known to impose on the above representation of a completely
bounded map that will make it unique up to unitary equivalence. Given �, one
can always take its minimal (and hence unique) Stinespring representation,
but unfortunately � is not uniquely determined by φ. Recall that φ uniquely
determines a completely positive map on the operator system

S =
{(

λ a
b∗ µ

)
: λ, µ ∈ C, a, b ∈ A

}
⊆ M2(A)

and that � is obtained by extending this completely positive map from S to
M2(A). Thus, in a certain sense the nonuniqueness of the representation is
parameterized by the set of possible completely positive extensions. It is pos-
sible to impose conditions on the above representation such that it is unique up
to conjugation by a (generally unbounded) closed, densely defined similarity
[171].

Theorem 8.5 (Wittstock’s decomposition theorem). Let A be a C∗-algebra
with unit, and let φ: A → B(H) be completely bounded. Then there exists a
completely positive map ψ : A → B(H) with ‖ψ‖cb ≤ ‖φ‖cb such that ψ ±
Re(φ) and ψ ± Im(φ) are all completely positive. In particular, the completely
bounded maps are the linear span of the completely positive maps.

Proof. Letφ(a)= V ∗
1 π (a)V2 be as in Theorem8.4with ‖V1‖ = ‖V2‖ = ‖φ‖1/2

cb ,
and set ψ(a) = (V ∗

1 π (a)V1 + V ∗
2 π (a)V2)/2, so that ψ is completely positive

and ‖ψ‖cb = ‖ψ(1)‖ ≤ ‖φ‖cb. Notice that φ∗(a) = V ∗
2 π (a)V1, so that

2ψ(a) ± 2 Re φ(a) = (V1 ± V2)
∗π (a)(V1 ± V2),

2ψ(a) ± 2 Im φ(a) = (V1 ∓ iV2)
∗π (a)(V1 ∓ iV2),

and each of these four maps is completely positive.
For the last statement, note that

2φ = ((ψ + Re φ) − (ψ − Re φ)) + i((ψ + Im φ) − (ψ − Im φ))

is a decomposition of φ into the span of four completely positive maps. �

Operator-Valued Measures

Let X be a compact Hausdorff space, let E be a bounded, regular, operator-
valued measure on X , and let φ: C(X ) → B(H) be the bounded, linear map



Operator-Valued Measures 105

associatedwith E by integration as described inChapter 4.Wecall E completely
bounded when φ is completely bounded.

By Wittstock’s decomposition theorem, E is completely bounded if and
only if it can be expressed as a linear combination of positive operator-valued
measures.

WhenH is one-dimensional, that is, when E is a bounded, regular, complex-
valued measure on X , then the associated bounded, linear map φ: C(X ) → C

is automatically completely bounded by Proposition 3.8. Wittstock’s decom-
position becomes the statement that every complex measure is the span of
four positive measures. If we let ψ be defined by integration against the total
variation measure |E | associated with E , then ψ ± Re φ and ψ ± Im φ are
completely positive maps, and ‖ψ‖cb = ‖ψ(1)‖ = |E |(X ) = ‖φ‖ = ‖φ‖cb.

Thus, we see that in some sense, the ψ of Wittstock’s decomposition can be
thought of as a total variation or an “absolute value” of the completely bounded
map φ. This analogy is pursued in [139] and [171].

In a closely related development, Loebl [139] defines a self-adjoint map
φ: C(X ) → B(H) to have finite total variation if

sup
{∑

‖|φ( fi )|‖: fi is a partition of unity
}

is finite, and proves that every such map decomposes as φ = φ1 − φ2 with φ1

and φ2 (completely) positive. In particular, this shows that such maps are com-
pletely bounded. However, Hadwin [109] has shown that there are completely
bounded, self-adjoint maps that are not of finite total variation.

Unfortunately, there is no known analytic characterization of the completely
bounded, operator-valued measures. To illustrate the difficulties, let us suppose
for simplicity that E is self-adjoint and completely bounded.

FromWittstock’s decomposition, we obtain a positive, operator-valued mea-
sure F such that F(B) ± E(B) ≥ 0 for all Borel sets B. If E and F were
scalar-valued, this inequality would imply that F(B) ≥ |E(B)|, but for oper-
ators, this is far from the case. In fact, it is possible for E to be completely
bounded while

sup
{∥∥∥∑ |E(Bi )|

∥∥∥: Bi disjoint, Borel
}

= +∞.

This phenomenon was first described by Hadwin [109], and we reproduce his
example here.

Let X = {xn}∞n=1 be a countable, compact Hausdorff space, and let An, n =
1, 2, . . . , be a sequence of self-adjoint operators on H. If these operators are
summable in the weak operator topology, then setting E({xn}) = An defines a
self-adjoint, operator-valued measure on X .
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Now, let H be a separable Hilbert space with orthonormal basis, e1, e2, . . . ,
and define An via

An f = 1

n
(〈 f, e1〉en + 〈 f, en〉e1),

so that

|An| f = 1

n
(〈 f, e1〉e1 + 〈 f, en〉en).

It is easily checked that the An’s are summable in the weak operator topology,
but that the |An|’s are not, since 〈|An | e1, e1〉 is the harmonic series. Thus,
setting F({xn}) = |An| will not define an operator-valued measure. However,
setting

Bn f = 1

n2
〈 f, e1〉e1 + 〈 f, en〉en

yields a sequence of positive operators that are summable in the weak operator
topology and satisfy

Bn ± An ≥ 0.

Thus, setting F({xn}) = Bn yields a positive operator-valued measure such
that F ± E are positive.

It is easy to see that the linear map φ: C(X )→ B(H) induced by E is com-
pletely bounded, but not of finite total variation.

Note that the decomposition of An = (Bn + An)/2− (Bn − An)/2 into the dif-
ference of twopositivematrices is not the usual decomposition, An = A+

n − A−
n ,

for if it were, then necessarily, we should have Bn = A+
n + A−

n = |An|.
In fact, since {|An|} is not summable, either {A+

n } or {A−
n } must not be

summable. This happens in spite of the fact that we can decompose each An

into a difference of positive operators, namely (Bn ± An)/2, with both of these
sequences of positive operators summable.

Bimodule Maps

At the moment we have many results about completely bounded maps, but
few tools for determining when bounded maps are completely bounded. For
bimodule maps there is a nice theory.

Let C ⊆ B beC∗-algebras.We shall call C matrically norming forB provided
for every (Bi j ) in Mn(B) and every n we have that

‖(Bi j )‖ = sup

{∥∥∥∥∥
n∑

i, j=1

Ci Bi j D j

∥∥∥∥∥ : Ci , Dj ∈ C
}
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with ‖∑n
i=1 CiC∗

i ‖ ≤ 1 and ‖∑n
j=1 D∗

j D j‖ ≤ 1. This condition looks strange
until one realizes that

∑
i, j

Ci Bi j D j = (C1, . . . ,Cn)(Bi j )




D1
...

Dn




and the above inequalities are simply the requirement that the row of C’s and
column of D’s each have norm less than or equal to 1. Thus

∥∥∥∥∥
∑
i, j

Ci Bi j D j

∥∥∥∥∥ ≤ ‖(C1, . . . ,Cn)‖‖(Bi j )‖

∥∥∥∥∥∥∥



D1
...

Dn



∥∥∥∥∥∥∥ ≤ ‖(Bi j )‖,

and C is matrically norming for B precisely when we can achieve ‖(Bi j )‖ as
the supremum of such products. Note that C plays the same role as the complex
numbers play for computing the norms of scalar matrices.

For an easy example of this phenomenon, consider B=C(X ), and let C
be the constant functions, which can be identified with C. By compactness
we have that for ( fi j ) ∈ Mn(C(X )) there exists x0 with ‖( fi j )‖ = ‖( fi j (x0))‖.
One can then choose unit vectors h = (c1, . . . , cn), k = (d1, . . . , dn) such that
‖( fi j (x0))‖ = |∑i, j ci fi j (x0) d j | and hence ‖( fi j )‖ = ‖∑i, j ci fi j d j‖.

Proposition 8.6. Let A,B, and C be C∗-algebras with C a subalgebra of both
A and B. If C is matrically norming for B and φ:A → B is a C-bimodule map,
then ‖φ‖ = ‖φ‖cb.

Proof. For any (Ai j ) in Mn(A) we have that

‖(φ(Ai j ))‖ = sup{
∥∥∥∑Ciφ(Ai j )Dj

∥∥∥: Ci , Dj ∈ C,

∥∥∥∑CiC
∗
i

∥∥∥ ≤ 1

and ‖∑ D∗
j D j‖ ≤ 1}. But∥∥∥∑Ciφ(Ai j )Dj

∥∥∥ =
∥∥∥φ (∑Ci Ai j D j

)∥∥∥ ≤ ‖φ‖ · ‖(Ai j )‖

and the result follows. �

Since every linear map is a C-bimodule map, the above result gives another
proof of the fact that for maps into B = C(X ) the norm and cb norm are the
same.

There is another instance in the theory of completely bounded maps where
the usual decomposition of a self-adjoint operator A into A+ and A− is not the
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“best” decomposition into a difference of positive operators. This occurs in the
theory of Schur products.

Schur Products Revisited

Let A be in Mn , and let SA: Mn → Mn be given by SA(B) = A ∗ B. Note
that if D = diag(di ) is a diagonal matrix, then SA(DB) = (ai j dibi j ) = DSA(B)
and similarly SA(BD) = SA(B)D. Thus, Schur product maps are bimodule
maps over the C∗-algebra Dn of diagonal matrices. In fact, by Exercise 4.4, if
φ: Mn → Mn is a Dn-bimodule map, then φ = SA for some matrix A. Using
the representation theorem for completely bounded maps and Proposition 8.6,
we can now characterize the norm of Schur product maps.

Theorem 8.7. Let A = (ai j ) be in Mn. Then the following are equivalent:

(i) ‖SA‖ ≤ 1,
(ii) ‖SA‖cb ≤ 1,
(iii) there exist 2n vectors x1, . . . , xn, y1, . . . , yn, in the unit ball of some

Hilbert space such that ai j = 〈x j , yi 〉.

Proof. Clearly (ii) implies (i). To see that (i) implies (ii), wewill prove thatDn is
matrically norming for Mn . Suppose that we can prove that for every h1, . . . , hk

inC
n with ‖h1‖2 + · · · + ‖hk‖2 ≤ 1 there exists a unit vector h and D1, . . . , Dk

such that h j = Djh for all j and ‖∑ D∗
j D j‖ ≤ 1. Then given B = (Bi j ) in

Mk(Mn), there will exist h1, . . . , hk, h̃1, . . . , h̃k with ‖h1‖2 + · · · + ‖hk‖2 =
‖h̃1‖2 + · · · + ‖h̃k‖2 = 1 such that

‖B‖ =
∑
i, j

〈Bi j h̃ j , hi 〉.

For these vectors we choose D1, . . . , Dk, D̃1, . . . , D̃k, h, and h̃ as above and
find that ‖B‖ = ∑

i, j 〈Bi j D̃ j h̃, Dih〉. Consequently, ‖B‖ = ‖∑i, j D∗
i Bi j D̃ j‖,

and we will have that Dn is matrically norming for Mn .
To establish the claim, let h1, . . . , hk be as above, and let e denote the

vector all of whose entries are 1’s. Set Hj = diag(h j ), so that h j = Hje and
Tr(H∗

j Hj ) = ‖h j‖2. Let P = ∑
H∗

j Hj ; set h = P1/2e and Dj = Hj P−1/2.
Then

∑
D∗

j D j = P−1/2(
∑

H∗
j Hj )P−1/2 = I, Djh = (Hj P−1/2)(P1/2e) =

h j , and ‖h‖2 = 〈P1/2e, P1/2e〉 = 〈Pe, e〉 = Tr(P) = ∑
j ‖h j‖2 ≤ 1, and we

have shown the claim. Thus, (i) implies (ii), and ‖SA‖ = ‖SA‖cb for every
Schur product map.

To prove that (ii) implies (iii), use Theorem 8.4 to write SA(B) =
V ∗
1 π (B)V2 where Vi : Cn →H, i = 1, 2, are isometries and π : Mn → B(H) is a
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∗-homomorphism. Let e1, . . . , en be the canonical basis for C
n , set E j = E1 j

and define 2n vectors in H via

x j = π (E j )V2e j , j = 1, . . . , n,

yi = π (Ei )V1e1, i = 1, . . . , n.

We have

‖x j‖2 = 〈V ∗
2 π (E∗

j · E j )V2e j , e j 〉
= 〈V ∗

2 π (E j, j )V2e j , e j 〉
≤ 1, j = 1, . . . , n,

and similarly that

‖yi‖2 ≤ 1, i = 1, . . . , n.

Let ai, j denote the (i, j)th entry of A; then

〈x j , yi 〉 = 〈V ∗
1 π (E∗

i E j )V2e j , ei 〉
= 〈V ∗

1 π (Ei, j )V2e j , ei 〉
= 〈SA(Ei, j )e j , ei 〉
= ai, j .

Thus, if ‖SA‖cb ≤ 1, then there is a Hilbert space and 2n vectors in its unit ball
such that

A = (〈x j , yi 〉).
Thus, (ii) implies (iii).

Finally, we prove that (iii) implies (i). Assume that A = (〈x j , yi 〉), where
‖x j‖ ≤ 1 and ‖yi‖ ≤ 1, 1 ≤ i, j ≤ n, are vectors in a Hilbert space H. Given
B ∈ Mn, h = (α1, . . . , αn), and k = (β1, . . . , βn) in C

n , we must prove that
|〈SA(B)h, k〉| ≤ ‖B‖‖h‖‖k‖. We have

|〈SA(B)h, k〉| =
∣∣∣∣∣
∑
i, j

〈x j , yi 〉Hbi, jα j β̄ i

∣∣∣∣∣
=

∣∣∣∣∣∣∣
〈
(bi, j IH)


α1x1

...
αnxn


,


β1y1

...
βn yn


〉

Hn

∣∣∣∣∣∣∣
≤ ‖(bi j IH)‖·

(∑
‖α j x j‖2

)1/2 (∑
‖βi yi‖2

)1/2
≤ ‖B‖ · ‖h‖ · ‖k‖,

since ‖α j x j‖ ≤ |α j | and ‖βi yi‖ ≤ |βi | for all i and j . Thus, ‖SA‖ ≤ 1, and the
proof of the theorem is complete. �
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We are now in a position to characterize completely bounded Schur product
maps on B(�2). We leave the analogous result for completely positive maps to
the exercises.

Corollary 8.8. Let A = (ai j )∞i, j=1 be an infinite matrix. Then the following are
equivalent:

(i) SA: B(�2) → B(�2) is bounded with ‖SA‖ ≤ 1,
(ii) SA: B(�2) → B(�2) is completely bounded with ‖SA‖cb ≤ 1,
(iii) there exists a Hilbert space H and vectors {x j }∞j=1 and {yi }∞i=1 in H with

‖x j‖ ≤ 1 and ‖yi‖ ≤ 1 for all i and j , such that ai j = 〈x j , yi 〉.

Proof. Given B = (bi j )∞i, j=1, let Bn = (bi, j )ni, j=1. It is easily checked that B is
a bounded operator on �2 if and only if supn‖Bn‖ is finite and that in this case
‖B‖ = supn‖Bn‖.

Consequently, SA is bounded if and only if supn ‖SAn‖ is finite and ‖SA‖ =
supn‖SAn‖.

Similarly, one can see that ‖SA‖cb = supn‖SAn‖cb and so ‖SA‖ = ‖SA‖cb, by
applying Theorem 8.7. The proofs that (ii) implies (iii) and (iii) implies (i) are
as in Theorem 8.7. �

From the above two results we see that for Schur product maps,

‖SA‖ = ‖SA‖cb = inf
X,Y

sup
i, j

{‖x j‖‖yi‖},

where the infimum is over all sets of vectors X = {x j }, Y = {yi } satisfying
〈x j , yi 〉 = ai j . Moreover, the infimum is attained.

The following criterion for an infinite matrix to give rise to a bounded Schur
product map is often useful.

Theorem 8.9. Let A = (ai j )∞i, j=1, and set bi j = ai j − ai+1, j − ai, j+1 +
ai+1, j+1. If the limits lim j ai j = si , limi ai j = t j , limi si , lim j t j all exist and {bi j }
is absolutely summable, then SA: B(�2) → B(�2) is completely bounded.

Proof. First note that

∞∑
k= j

∞∑
�=i

b�,k =
∞∑

k= j

ai,k − tk − ai,k+1 + tk+1

= ai, j − si − t j + lim
k

tk,
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while
∞∑
�=i

∞∑
k= j

b�,k = ai j − si − t j + lim
�

s�.

Hence the absolute summability of {bi j } implies that limi si = lim j t j = w.
Choose complex numbers {ci j }, {di j } such that |ci j | = |di j | and ci j d̄ i j = bi j .

Fix aHilbert space and a set of orthonormal vectors {ei j }∞i, j=1 ∪ {e, f, g}. Define

x j = −we + t j f + g +
∞∑

k= j

∞∑
�=1

ck�ek�,

yi = e + f + si g +
∞∑

k=1

∞∑
�=i

dk�ek�.

Then it is easily checked that {x j } and {yi } are norm-bounded sets with

〈x j , yi 〉 = −w + t j + si +
∞∑

k= j

∞∑
�=i

bk� = ai j ,

and the proof is complete. �

It is interesting to see how the decomposition in Theorem 8.3 relates to Schur
product maps. If A = (〈x j , yi 〉) with ‖x j‖ ≤ 1, ‖yi‖ ≤ 1 for all i, j , then let
P1 = (〈x j , xi 〉), P2 = (〈y j , yi 〉), and note that[

P1 A

A P2

]
≥ 0.

By Exercise 8.7, we have that SP1 and SP2 are completely positive and this is
the decomposition of Theorem 8.3 for SA.

It is interesting to see howWittstock’s decomposition of SA for A self-adjoint
relates to the usual decomposition of a self-adjoint matrix as a difference of
positive matrices. Suppose that A = A∗, so that the usual decomposition of A
into a difference of positive matrices is given by A = 1

2 (|A| + A) − 1
2 (|A| −

A) = A+ − A−. From this it follows that S|A| ± SA ≥ 0, that SA = SA+ − SA−

is a decomposition of SA as the difference of two completely positive maps
and that ‖SA‖cb ≤ ‖S|A|‖cb. If equality holds in this last inequality, then S|A|
could play the role of ψ in the Wittstock decomposition theorem for φ = SA.
However, we shall see [Exercise 8.7(vii)] that, in general, ‖SA‖cb < ‖S|A|‖cb.

Thus, the usual decomposition of a self-adjoint matrix into a difference of
positivematrices,whileminimal in some senses, is notminimal for theWittstock
decomposition of SA. This makes it somewhat surprising that when A = A∗,
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then there always is a positive matrix P with P ± A ≥ 0 and ‖SP‖cb = ‖SA‖cb

[Exercise 8.7(v)].
Let M be an operator space, let φ: M → B, and let � and SM be as in

Lemma 8.1. It is easy to see that if ‖φk‖ ≤ 1, then the proof of Lemma 8.1
shows that� is k-positive. Thus, ifφ:M → Mn and ‖φ2n‖ ≤ 1, then�:SM →
M2(Mn) = M2n will be 2n-positive, and consequently completely positive. But,
if � is completely positive, then φ must be completely contractive. Hence,
‖φ2n‖ = ‖φ‖cb for maps into Mn . Because of the special nature of the subspace
SM, it turns out that if � is n-positive, then it is completely positive, and
consequently, ‖φn‖ = ‖φ‖cb. To obtain this more delicate result, we need a
preliminary lemma.

Lemma 8.10. Let A be a C∗-algebra, and let P = (Pi, j )2ni, j=1 be a positive
element in M2n(M2(A)) where

Pi, j =
[
ai, j bi, j

ci, j di, j

]
, i, j = 1, . . . , 2n.

Then [[
ai, j bi, j+n

ci+n, j di+n, j+n

]]n

i, j=1

is positive in Mn(M2(A)).

Proof. Set A = (ai, j ), B = (bi, j ),C = (ci, j ), and D = (di, j ) for i, j = 1, . . . ,
2n. After the canonical shuffle, P becomes [ A B

C D ], and so this latter matrix
is positive. Now partition each of the 2n × 2n matrices into 2 × 2 matrices
consisting of n × n blocks in the natural fashion. That is,

A =
[
A11 A12

A21 A22

]
,

where A11 = (ai, j )ni, j=1, A12 = (ai, j+n)ni, j=1, A21 = (ai+n, j )ni, j=1, and A22 =
(Ai+n, j+n)ni, j=1 with the same definitions for B,C , and D. Thus,

[
A B
C D

]
=




A11 A12 B11 B12

A21 A22 B21 B22

C11 C12 D11 D12

C21 C22 D21 B22




is positive.
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A moment’s reflection shows that if such a matrix is positive, then the four
corners will form a positive matrix, that is,[

A11 B12

C21 D22

]

will be positive.
The result follows by performing the canonical shuffle on this last

matrix. �

Proposition 8.11 (Smith). Let M be an operator space, and let φ:M → Mn

be a linear map. Then ‖φn‖ = ‖φ‖cb.

Proof. It is sufficient to assume that ‖φn‖ = 1 and prove that �: SM → M2n

is completely positive, where � and SM are defined as in Lemma 8.1. By
Theorem 5.1, to prove � is completely positive, it is sufficient to prove that the
associated linear functional S�: M2n(SM) → C is positive.

Thus, let P = (Pi, j )2ni, j=1 be positive in M2n(SM), with

Pi, j =
[
λi, j ai, j

b∗
i, j µi, j

]
,

and calculate

2n · S�(P) =
n∑

i, j=1

�(Pi, j )(i, j) +
n∑

i, j=1

�(Pi, j+n)(i, j+n)

+
n∑

i, j=1

�(Pi+n, j )(i+n, j) +
n∑

i, j=1

�(Pi+n, j+n)(i+n, j+n)

=
n∑

i=1

λi,i +
n∑

i, j=1

φ(ai, j+n)(i, j+n)

+
n∑

i, j=1

φ(bi, j )
∗
(i+n, j) +

n∑
i=1

µi+n,i+n

=
n∑

i, j=1

φ(Ai, j )(i, j),

where

Ai, j =
[

λi, j ai, j+n

b∗
i+n, j µi+n, j+n

]
.

By the above lemma, A = (Ai, j ) is a positive element of Mn(SM), and if we set
x = e1 ⊕ · · · ⊕ en , then the last sum above is easily recognized as 〈�n(A)x, x〉.
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But this last expression is positive, because the assumption that ‖φn‖ = 1 is
enough to guarantee that� is n-positive, as observed in the remarks proceeding
Lemma 8.10. �

The counterpart of Theorem 3.14 for completely bounded maps is not true.
If φ: Mn → B, then, in general, ‖φn‖ �= ‖φ‖cb, and in fact, there does not exist
any integer m = m(n) such that ‖φm‖ = ‖φ‖cb for all φ. This follows from
work of Haagerup [108].

Combining Proposition 8.11 with Exercise 3.10(ii), we see that for maps into
Mn, ‖φ‖cb ≤ n‖φ‖, which gives another proof of Exercise 3.11.

Notes

Wittstock obtained his decomposition theorem for completely bounded maps
in [242] and proved the extension theorem for completely bounded maps in
[243]. His proofs used his theory of matricial sublinear functionals, which is a
generalization of the Hahn–Banach theorem to set-valued mappings into B(H).

Haagerup [107] obtained these same results by exploiting the correspondence
between maps fromM into Mn and linear functionals on Mn(M), as was done
for completely positive maps in Chapter 6. The difficult part of this approach
in the completely bounded case is that the norm of the associated linear func-
tional and the cb norm of the mapping into Mn are not very closely related.
Thus, for example, to obtain an extension of a map from M into Mn to A into
Mn , where M ⊆ A, with the same cb norm, one must extend the associated
linear functional on Mn(M) to Mn(A), but in a very particular fashion. This
technical stumbling block was the main obstruction to the theory of completely
bounded maps developing simultaneously with the theory of completely pos-
itive maps. To overcome this difficulty, Haagerup used a technique that even-
tually led to the definition of the Haagerup tensor norm, which is studied in
Chapter 17.

The proofs that we have presented here using the off-diagonal technique
appeared in [158] and [159].

The generalization of Stinespring’s representation theorem to completely
boundedmaps is referred to as the factorization theorem for completely bounded
maps in some other texts. This result first appeared in [107] and [159]. Although
this result can be deduced from Wittstock’s decomposition and extension the-
orem, it is a bit tricky to get the statement about the equality of the norms via
that approach. Even in the abelian case and with C for the range, it is difficult
to express the norm of a measure in terms of inequalities involving its real and
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imaginary parts. Arguably the only way to achieve this in the noncommutative
case is via the off-diagonal trick.

The results in [107], [159], and [243]were obtained independently andwithin
about a six-month time period. It is certain that Wittstock obtained his proofs
first, and in any case his early work was the inspiration for [107] and [159].

Proposition 8.11 was obtained by Smith [214].
Haagerup [107] was the first to prove that for Schur product maps, ‖SA‖ =

‖SA‖cb. Smith [217] later gave a simpler proof that contained the idea of a
matricially norming subalgebra. This concept has subsequently been devel-
oped further by Pop, Sinclair, and Smith [195] and has many applications to
computing cohomology.

Theorem 8.9 is a slight variation of a result of Bennett [14].
The generalization of the off-diagonalization technique to C-bimodule maps

(Exercise 8.6) is in Suen [225]. Wittstock had proved the decomposition and
extension theorems in this more general setting earlier ([242] and [243]).

Exercise 8.8 is proven in Haagerup [108], where a partial converse of the
Wittstock decomposition theorem is obtained. Namely, if a von Neumann alge-
bra has the property that the span of the completely positive maps from it into
itself is the completely bounded maps, then it is injective. An example is given
by Huruya [125] of a C∗-algebra that is not injective, but is such that every
completely bounded map into it is in the span of the completely positive maps.
However, this decomposition does not meet the norm inequality in the state-
ment of the Wittstock decomposition property. It is known that a C∗-algebra
that has the Wittstock decomposition property, including the norm inequality,
is injective. See [220] and [193] for more on this topic.

Smith [214] proved that the C∗-algebra C([0, 1]) has the property that not
every completely bounded map from it to itself is in the span of the completely
positive maps.

Exercises

8.1 Show that Re(φn) = (Re φ)n , and that (φ∗)n = (φn)∗.
8.2 Let φ: M → B, let H, K be in Mn , and let A be in Mn(M). Prove that

φn(H · A · K ) = H · φn(A) · K . Thus, φn: Mn(M) → Mn(B) is an Mn-
bimodule map.

8.3 Verify the claim of Theorem 8.4.
8.4 Show that if φ is completely bounded, and φ(a)= V ∗

1 π (a)V2 is the
representation of Theorem 8.4 with ‖V1‖ = ‖V2‖, then setting φi (a) =
V ∗

i π (a)Vi yields the map � of Theorem 8.3.
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8.5 Prove that the conclusions of Theorems 8.2, 8.3, and 8.5 still hold when
the range is changed from B(H) to an arbitrary injective C∗-algebra.

8.6 Let A,B, and C be C∗-algebras with unit, with C contained in both A
and B, and 1A = 1C, 1B = 1C . Let M ⊆ A be a subspace such that
c1 ·M · c2 ⊆ M for all c1, c2 in C, and set

S =
{[

c1 a

b∗ c2

]
: a, b ∈ M, c1, c2 ∈ C

}
.

(i) Prove that if φ:M → B is a completely contractive C-bimodule map,
then �: S → M2(B) defined by

�

[[
c1 a

b∗ c2

]]
=
[

c1 φ(a)

φ(b)∗ c2

]

is completely positive.
(ii) Prove that if B is injective, then the conclusions of Theorems 8.2, 8.3,

and 8.5 still hold with the additional requirement that the maps be
C-bimodule maps. (Hint: Use Theorem 3.18.)

8.7 Let A = (ai j )∞i, j=1. Prove that the following are equivalent:
(i) SA: B(�2) → B(�2) is positive,
(ii) SA: B(�2) → B(�2) is completely positive,
(iii) there exists a Hilbert space H and a bounded sequence of vectors

{xi } in H such that ai j = 〈x j , xi 〉.
8.8 Let SA: Mn → Mn be the Schur product map SA(B)= A ∗ B. Let A =

H + i K be the decomposition of A into its real and imaginary parts.
(i) Show that Re(SA) = SH .
(ii) Prove that there exist positive matrices P1 and P2 such that φi =

SPi , i = 1, 2, satisfy the conclusions of Theorem 8.3 for φ = SA.
(Hint: Recall Exercise 4.4.)

(iii) Prove that P1 and P2 are such a pair of positive matrices if and only
if ‖SP1‖cb = ‖SP2‖cb = ‖SA‖cb and [ P1 A

A∗ P2
] is positive.

(iv) Let ‖SA‖cb ≤ 1, and write A = (〈x j , yi 〉) as in Theorem 8.7. Show
that P1 = (〈y j , yi 〉), P2 = (〈x j , xi 〉) are such a pair of positive
matrices.

(v) Let d(B) denote the maximum diagonal element of a matrix.
Conclude that

‖SA‖cb = inf

{
d

[
P1 A

A∗ P2

]
:

[
P1 A

A∗ P2

]
≥ 0

}
.
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(vi) Show that [
|A∗| A

A∗ |A|

]
≥ 0.

(vii) Give an example where ‖SA‖cb < max{d(|A∗|), d(|A|)}, with
A = A∗.

8.9 (Haagerup) Let φ1, φ2, φ: A → B. Prove that �: M2(A) → M2(B), de-
fined by

�

[
a b
c d

]
=
[
φ1(a) φ(b)

φ∗(c) φ2(d)

]
,

is completely positive if and only if �: A → M2(B), defined by

�(a) =
[
φ1(a) φ(a)

φ∗(a) φ2(a)

]
,

is completely positive.
8.10 Let �: M2(Mn) → M2(B) be given by

�

[
a b
c d

]
=
[
φ+(a) φ(b)

φ∗(a) φ−(d)

]
,

and let E = (Ei, j ) be in Mn(Mn), where Ei, j are the canonical matrix
units. Prove that � is completely positive if and only if[

φ+
n (E) φ(E)

φ∗
n (E) φ−

n (E)

]

is positive.
8.11 Let φ: Mn → B, set B = (φ(Ei, j )) in Mn(B), and let |B∗| = (pi, j ), |B| =

(qi, j ). Define linear maps φ1, φ2: Mn → B by φ1(Ei, j ) = pi, j , φ2(Ei, j ) =
qi, j .
(i) Prove that �: M2(Mn) → M2(B), defined by

�

[[
a b
c d

]]
=
[
φ1(a) φ(b)

φ∗(c) φ2(d)

]
,

is completely positive.
(ii) Prove that ‖φ‖2

cb ≤ ‖p11 + · · · + pnn‖2 · ‖q11 + · · · + qnn‖2, and
that this estimate is sharp.
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(iii) Let B∗B = (ci, j ). Prove that ‖c11 + · · · + cnn‖ ≤ n · ‖φ‖2
cb, and that

this estimate is sharp.
8.12 Prove directly that if φ: C(X ) → B(H) has finite total variation, then φ

is completely bounded.
8.13 Let E be a completely bounded, operator-valued measure. Prove that

E has finite total 2-variation, i.e., that sup{∑ ‖|E(Bi )|2‖: Bi disjoint,
Borel} < +∞.

8.14 (Sakai) Let A be a C∗-algebra, and let f : A → C be a bounded, self-
adjoint linear functional with ‖ f ‖ ≤ 1. Show that f = f1 − f2, with f1
and f2 positive linear functionals and ‖ f1 + f2‖ = 1.

8.15 Let A = (ai j )∞i, j=1, and assume that SA is bounded. Prove that if
limi lim j ai j and lim j limi ai j both exist, then they must be equal. (Hint:
Write ai j = 〈x j , yi 〉, and use the weak∗ compactness of the ball in Hilbert
space.)

8.16 Prove that if for every B = (bi j ) on B(�2) the matrix

C = (ci j ) where ci j =
{

0, i > j,
bi j , i ≤ j,

is in B(�2), then SA is bounded, where

A = (ai j ), ai j =
{
0, i > j
1, i ≤ j

.

Use Exercise 8.15 to show that SA is not bounded, and deduce that there
exists B in B(�2) for which C is unbounded.

8.17 Fix a subset P ⊆ {1, . . . , n} × {1, . . . , n}, and define a subspace MP ⊆
Mn via B ∈ MP if and only if B = (bi j )withbi j = 0whenever (i, j) /∈ P .
Show that M ⊆ Mn is a Dn-bimodule if and only if M = MP for
some P .

8.18 Let P,MP be as in Exercise 8.17, and assume we are given complex
numbers (ai j ) for every (i, j) ∈ P . Such a matrix is called partially de-
fined. Show that there is a well-definedDn-bimodule map φ:Mp → Mp

given by φ((bi j )) = (ai j bi j ) and that every Dn-bimodule map arises this
way. Prove that ‖φ‖ = ‖φ‖cb = infX,Y sup(i, j)∈P{‖x j‖‖yi‖}, where the in-
fimum is over every set X = {x j }, Y = {yi } satisfying 〈x j , yi 〉 = ai j for all
(i, j) ∈ P . Given a partially defined matrix A = (ai j ) as above, a choice
of the remaining undefined entries is called a completion of A.

8.19 Show thatMP is an operator system if and only if (i, i) ∈ P for 1 ≤ i ≤ n
and if (i, j) ∈ P then ( j, i) ∈ P . Let MP be an operator system, and let
φ: MP → MP and A = (ai j ) be as in Exercise 8.18. Prove that the
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following are equivalent:
(i) φ is positive,
(ii) φ is completely positive,
(iii) A has a positive completion.

8.20 Say E has finite total p-variation if sup{∑ ‖|E(Bi )|p‖: Bi disjoint,
Borel} < +∞. Does E have finite total 1-variation if and only if its associ-
ated map, φ: C(X ) → B(H), has finite total variation? If E is completely
bounded, must E have finite total p-variation for all p > 1?



Chapter 9
Completely Bounded Homomorphisms

In Chapter 7 we saw that if B is a C∗-algebra with unit, and A is a subalgebra
of B containing 1B, then the unital, completely contractive homomorphisms
of A into B(H) are precisely the homomorphisms with B-dilations. In this
chapter, we prove that the unital homomorphisms of A, which are similar
to homomorphisms with B-dilations, are precisely the completely bounded
homomorphisms.

If A is a C∗-algebra, then every unital, contractive homomorphism is a posi-
tive map and hence a ∗-homomorphism. Thus, for unital maps of C∗-algebras,
the sets of contractive homomorphisms, completely contractive homomor-
phisms, and ∗-homomorphisms coincide. In this case, the above result says
that a unital homomorphism of a C∗-algebra is similar to a ∗-homomorphism
if and only if it is a completely bounded homomorphism.

Let’s begin with a simple observation. Suppose that S is a similarity, ρ is a
homomorphism of some operator algebra A, and π (·) = S−1ρ(·)S is a com-
pletely contractive homomorphism. Letting Sn denote the direct sum of n copies
of S, we have that S−1

n = (S−1)n, ‖Sn‖ = ‖S‖, and ρn(·) = Snπn(·)S−1
n . Thus, ρ

is completely bounded with ‖ρ‖cb ≤ ‖S−1‖ · ‖S‖. So any homomorphism that
is similar to a completely contractive homomorphism is necessarily completely
bounded with

‖ρ‖cb ≤ inf{‖S−1‖ · ‖S‖: S−1ρ(·)S is completely contractive}.

The next result proves that not only is the converse of the above statement true,
but the above infimum is achieved and gives the cb norm of ρ.

Theorem 9.1. LetA be an operator algebra, and let ρ:A → B(H) be a unital,
completely bounded homomorphism. Then there exists an invertible operator
S with ‖S‖ · ‖S−1‖ = ‖ρ‖cb such that S−1ρ(·)S is a completely contractive

120
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homomorphism. Moreover,

‖ρ‖cb = inf{‖R−1‖ · ‖R‖: R−1ρ(·)R is completely contractive}.

Proof. The remarks preceding the statement of the theorem yield the last
equality.

Let A be contained in a C∗-algebra B. By the extension and represen-
tation theorems for completely bounded maps, we know that there exists a
Hilbert spaceK, a ∗-homomorphism π :B→ B(K), and two bounded operators
Vi : H → K, i = 1, 2, with ‖ρ‖cb = ‖V1‖ · ‖V2‖, such that ρ(a) = V ∗

1 π (a)V2

for all a in A.
For h in H, we define

|h| = inf
{∥∥∥∑

π (ai )V2hi
∥∥∥:

∑
ρ(ai )hi = h, ai ∈ A, hi ∈ H

}
,

where the infimum is taken over all finite sums. It is easy to see that |·| defines
a seminorm on H.

If h = ∑
ρ(ai )hi , then ‖h‖ = ‖ ∑

ρ(ai )hi‖ = ‖ ∑
V ∗

1 π (ai )V2hi‖ ≤ ‖V ∗
1 ‖·

‖ ∑
π (ai )V2hi‖, and thus ‖h‖ ≤ ‖V ∗

1 ‖ · |h|. Similarly, the equation ρ(1)h = h
yields |h| ≤ ‖V2‖ · ‖h‖.

Thus, |·| is equivalent to the original norm on H. Hence |·| is also a norm on
H, and (H, |·|) is complete.

We claim that (H, |·|) is also a Hilbert space. By the Jordan–von Neumann
theorem, it is enough to verify that |·| satisfies the parallelogram law

|h + k|2 + |h − k|2 = 2(|h|2 + |k|2)

for all h and k in H.
Let h = ∑

ρ(ai )hi , k = ∑
ρ(bi )ki , then h ± k = ∑

ρ(ai )hi ± ∑
ρ(bi )ki ,

and so

|h + k|2 + |h − k|2 ≤
∥∥∥∑

π (ai )V2hi +
∑

π (bi )V2ki
∥∥∥2

+
∥∥∥∑

π (ai )V2hi −
∑

π (bi )V2ki
∥∥∥2

= 2
∥∥∥∑

π (ai )V2hi
∥∥∥2

+ 2
∥∥∥∑

π (bi )V2ki
∥∥∥2

.

Taking the infimum over all such sums yields

|h + k|2 + |h − k|2 ≤ 2|h|2 + 2|k|2.
The other inequality follows by substituting h + k and h − k for h and k,

respectively. Hence, (H, |·|) is also a Hilbert space.



122 Chapter 9. Completely Bounded Homomorphisms

Let S: (H, |·|) → (H, ‖ · ‖) be the identity map. Then S is bounded and
invertible, ‖S−1‖ · ‖S‖ ≤ ‖V ∗

1 ‖ · ‖V2‖ = ‖ρ‖cb, and S−1ρ(·)S is just the ho-
momorphism ρ, but with respect to the |·|-norm. Thus, to complete the proof
of the theorem, it is sufficient to prove that ρ is completely contractive with
respect to this new norm. (To see this, letU : (H, ‖ · ‖) → (H, | · |) be a unitary,
and set R = US.)

It is not difficult to see that ρ(·) is contractive with respect to the |·|-norm,
for if a ∈ A, h ∈ H, and h = ∑

ρ(ai )hi , then

|ρ(a)h| =
∣∣∣∑ ρ(aai )hi

∣∣∣ ≤
∥∥∥∑

π (aai )V2hi
∥∥∥ ≤ ‖a‖ ·

∥∥∥∑
π (ai )V2hi

∥∥∥,

and so |ρ(a)h| ≤ ‖a‖ · |h|.
To see that ρ(·) is completely contractive in the |·|-norm, fix an integer n, and

let Ĥ = H ⊕ · · · ⊕ H (n copies). Let |·|n denote the Hilbert space norm on Ĥ
induced by |·|, that is,

|ĥ|2n = |h1|2 + · · · + |hn|2

for ĥ = (h1, . . . , hn) in Ĥ. We must prove that if A = (ai, j ) is in Mn(A), then

|ρn(A)ĥ|n ≤ ‖A‖ · |ĥn|.
Consider Ĥ with its old norm,

‖h‖2
n = ‖h1‖2 + · · · + ‖hn‖2.

Since ρ is completely bounded, ρn: Mn(A) → B(Ĥ, ‖ · ‖n) is a completely
bounded homomorphism, and so, by the first part of the proof, we can endow Ĥ
with yet another norm |·|′ such that ρn is contractive in the |·|′-norm. By the first
part of the proof, to define |·|′, we need a Stinespring representation of ρn . To this
end, let K̂ = K ⊕ · · · ⊕ K (n copies), V̂i = Vi ⊕ · · · ⊕ Vi : Ĥ → K̂, i = 1, 2,
and πn: Mn(A) → B(K̂), so that ρn(·) = V̂ ∗

1πn(·)V̂2. If we define

|ĥ|′ = inf
{∥∥∥∑

ρn(Ai )V̂2ĥi
∥∥∥
n
:

∑
ρn(Ai )ĥi = ĥ

}
,

where the infimum is taken over all finite sums, then ρn(·) will be contractive
in |·|′. The proof of the theorem is now completed by showing that |·|′ = |·|n ,
which we leave to the reader (Exercise 7.1). �

Corollary 9.2. (Haagerup). Let A be a C∗-algebra with unit, and let ρ:
A → B(H) be a bounded, unital homomorphism. Then ρ is similar to a
∗-homomorphism if and only if ρ is completely bounded. Moreover, if ρ is
completely bounded, then there exists a similarity S with S−1ρ(·)S a ∗-
homomorphism and ‖S−1‖ · ‖S‖ = ‖ρ‖cb.
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The above result sheds considerable light on a conjecture of Kadison [128].
Kadison’s conjecture is that every bounded homomorphism of aC∗-algebra into
B(H) is similar to a ∗-homomorphism. Haagerup’s result shows that Kadison’s
conjecture is equivalent to determining whether or not bounded homomor-
phisms are necessarily completely bounded. At the present time the similarity
question is still open, although there are a number of deep partial results (see
[12], [35], [55], and [106]). In Chapter 19 we will return to this question and
study the recent contributions of Pisier to this problem.

There are several important cases where bounded homomorphisms of a C∗-
algebra are completely bounded. These are closely tied to the theory of group
representations. Let G be a locally compact, topological group, and let L∞(G)
denote theC∗-algebra of bounded, measurable functions onG. Given g inG, we
define the (right) translation operators Rg: L∞(G) → L∞(G) by (Rg f )(g′) =
f (g′g). A state m: L∞(G)∗ → C is called a (right) invariant mean on G if
m(Rg f ) = m( f ) for all g in G. The group G is called amenable if there exists
an invariant mean on G.

Note that if G is compact, then it is amenable, since we may define

m( f ) =
∫
G
f (g) dg,

where dg denotes Haar measure.
Another important class of groups that are amenable are the commutative

groups. To see this, note that the adjoint maps, R∗
g : L∞(G)∗ → L∞(G)∗ are

weak∗-continuous and map states to states. Since the space of states is weak∗-
compact and convex, and since the maps R∗

g form a commutative group of
continuous maps on this space, by the Markov–Kakutani fixed point theorem
[78] there will exist a fixed point. This fixed point is easily seen to be an invariant
mean.

The importance of the existence of an invariant mean is best illustrated in the
following result.

Theorem 9.3 (Dixmier). Let G be an amenable group, and let ρ: G → B(H)
be a strongly continuous homomorphism with ρ(e) = 1, such that ‖ρ‖ =
sup{‖ρ(g)‖: g ∈ G} is finite. Then there exists an invertible S in B(H) with
‖S‖ · ‖S−1‖ ≤ ‖ρ‖2 such that S−1ρ(g)S is a unitary representation of G.

Proof. Letm denote an invariant mean onG, and note that for each pair of vec-
tors x, y in H, the function fx,y(g) = 〈ρ(g)x, ρ(g)y〉 is a bounded, continuous
function onG. Set 〈x, y〉1 = m( fx,y), and note that since the map (x, y) → fx,y
is sesquilinear, 〈, 〉1 defines a sesquilinear form onH. Also, sincem is a positive
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linear functional, and fx,x is a positive function, this new sesquilinear form is
a semidefinite inner product on H.

We shall show that it is bounded above and below by the original inner prod-
uct. To see this, set M = ‖ρ‖ and note that since ‖ρ(g)‖ ≤ M and ‖ρ(g)−1‖ ≤
M , we have that

1/M2 ≤ ρ(g)∗ρ(g) ≤ M2.

Hence, (1/M2)〈x, x〉 ≤ fx,x (g) ≤ M2〈x, x〉, and applying m to this inequality
yields

1

M2
〈x, x〉 ≤ 〈x, x〉1 ≤ M2〈x, x〉.

Thus, 〈x, y〉1 is an equivalent inner product on H.
If we let (H, |·|1) denote our Hilbert space with the norm induced by this new

inner product, then just as in the proof of Theorem 9.1, the map S: (H, ‖ · ‖) →
(H, |·|1) is bounded and invertible, with ‖S‖ · ‖S−1‖ ≤ M2 = ‖ρ‖2.

Finally, note that with respect to this new inner product,

〈ρ(g)x, ρ(g)y〉1 = m(Rg fx,y) = m( fx,y) = 〈x, y〉1,

and so ρ(g) is a unitary on (H, |·|1). �

Corollary 9.4. (Sz.-Nagy). Let T be an invertible operator on a Hilbert space
such that ‖T n‖ ≤ M for all integers n. Then there exists an invertible operator
S, with ‖S−1‖ · ‖S‖ ≤ M2, such that S−1T S is a unitary operator.

Proof. Let Z denote the group of integers, define ρ(n) = T n , and apply
Theorem 9.3. �

In a number of cases, similarity results for homomorphisms of C∗-algebras
can be obtained from Theorem 9.3 by restricting attention to the group of
unitaries in the C∗-algebra. The following result demonstrates this principle.

Lemma 9.5. Let A be a C∗-algebra. Then every element in A is a linear
combination of at most four unitaries.

Proof. Let h = h∗ be a self-adjoint element of A, with ‖h‖ ≤ 1. Then u =
h + i

√
1 − h2 is easily seen to be unitary, and h = u + u∗. This shows that

every self-adjoint element is in the span of two unitaries. Using the Cartesian
decomposition, we obtain the result. �
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Lemma 9.6. Let A and B be C∗-algebras, and let ρ: A → B be a homomor-
phism with ρ(1) = 1. If ρ maps unitaries to unitaries, then ρ is a ∗-homo-
morphism.

Proof. Let u be unitary in A; then ρ(u∗) = ρ(u)−1 = ρ(u−1) = ρ(u)∗, and so
ρ is self-adjoint on the unitary elements of A. By Lemma 9.5, ρ is self-adjoint
on A. �

Theorem 9.7. LetA be a commutative, unital C∗-algebra. If ρ: A → B(H) is
a bounded homomorphism, then ρ is completely bounded and ‖ρ‖cb ≤ ‖ρ‖2.

Proof. Let G denote the commutative group of unitary elements of A. By
Theorem 9.3, there is a similarity S, with ‖S‖ · ‖S−1‖ ≤ ‖ρ‖2, such that
S−1ρ(u)S is unitary for all u in G. By Lemma 9.6, S−1ρ(·)S is a
∗-homomorphism. �

Corollary 9.8. Let T be an operator on a Hilbert space. Then T is similar to a
self-adjoint operator if and only if for some interval, [a, b], there is a constant
K such that

‖p(T )‖ ≤ K · sup{|p(t)|: t ∈ [a, b]}
for all polynomials p with real coefficients.

By Theorem 9.3 and Lemma 9.6, ifA is aC∗-algebra,G is an amenable group
contained in the group of unitaries of A, and B is the C∗-subalgebra generated
byG, then for any bounded homomorphism ρ:A → B(H) there is an invertible
S, with ‖S‖‖S−1‖ ≤ ‖ρ‖2 such that S−1ρ(·)S is a ∗-homomorphism on B.

An affirmative answer to Kadison’s conjecture for C∗-algebras is known to
imply an affirmative answer to two other questions concerning derivations and
invariant operator ranges. Consequently, these problems have an analogous
status, they have affirmative answers if and only if certain bounded maps are
completely bounded, but at the present time, both questions are still open. We
discuss the derivation question in this chapter. For a discussion of invariant op-
erator ranges and their connections with completely bounded maps, see [158].

LetA be aC∗-algebra and π :A→ B(H) a unital ∗-homomorphism. A linear
map δ:A→ B(H) is called aderivation if δ(AB) = π (A)δ(B) + δ(A)π (B). It is
known that every derivation is automatically bounded [199]. If X ∈ B(H), then
setting δ(A) = π (A)X − Xπ (A) defines a derivation, and such a derivation is
called inner. The derivation question asks whether every derivation into B(H)
is necessarily inner.
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Given a derivation δ, if we define ρ: A → B(H ⊕ H) by

ρ(A) =
[
π (A) δ(A)

0 π (A)

]
,

then ρ will be a homomorphism of A. In fact, it is not difficult to see that ρ is
a homomorphism if and only if δ is a derivation.

Proposition 9.9. The derivation δ is inner if and only if ρ is similar to a
∗-homomorphism.

Proof. First, suppose that δ is inner, so that δ(A) = π (A)X − Xπ (A). Setting

S =
[

1 X
0 1

]
, S−1 =

[
1 −X
0 1

]
,

we have that

Sρ(A)S−1 =
[
π (A) 0

0 π (A)

]
,

which is a ∗-homomorphism.
Conversely, if S is a similarity such that γ (A) = S−1ρ(A)S is a

∗-homomorphism, then set X = SS∗. We have that

ρ(A)X = Sγ (A)S∗ = (Sγ (A∗)S∗)∗ = (ρ(A∗)SS∗)∗ = Xρ(A∗)∗.

Writing

X =
[
X11 X12

X∗
12 X22

]
,

the above equation becomes[
π (A)X11 + δ(A)X∗

12 π (A)X12 + δ(A)X22

π (A)X∗
12 π (A)X22

]

=
[
X11π (A) + X12δ(A∗)∗ X12π (A)

X∗
12π (A) + X22δ(A∗)∗ X22π (A)

]
.

But since X is positive and invertible, X22 must also be positive and invertible.
Equating the (1,2) entries of the above operator matrices yields

δ(A) = δ(A)X22X
−1
22 = (X12π (A) − π (A)X12)X−1

22

= X12X
−1
22 π (A) − π (A)X12X

−1
22 ,

since X22 commutes with A. �
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Corollary 9.10 (Christensen). Let A be a unital C∗-algebra, π : A → B(H)
a unital ∗-homomorphism, and δ: A → B(H) a derivation. Then δ is inner if
and only if δ is completely bounded.

Proof. By using the canonical shuffle, it is easy to see that ρ is completely
bounded if and only if δ is completely bounded. But by Proposition 9.9 and
Corollary 9.2, δ is inner if and only if ρ is completely bounded. �

Thus, for a given C∗-algebra A, we see that if every bounded homomor-
phism of A is similar to a ∗-homomorphism, then every derivation of A is
inner. Kirchberg [132] has proven the converse of this result. Namely, if a
C∗-algebra has the property that every derivation into B(H) is inner, then nec-
essarily every bounded homomorphism is similar to a ∗-homomorphism. Thus,
for C∗-algebras, Kadison’s conjecture and the problem of determining if every
derivation from a C∗-algebra into the bounded operators on some Hilbert space
is inner are equivalent.

Turning our attention to some non-self-adjoint algebras, Theorem 9.1 can be
used to give a characterization of the operators that are similar to a contraction.
Let P(D) denote the algebra of polynomials with the norm it inherits as a
subalgebra of C(T).

Theorem 9.11. Let T ∈ B(H). Then T is similar to a contraction if and only
if the homomorphism ρ: P(D) → B(H) defined by ρ(p) = p(T ) is completely
bounded. Moreover, if this is the case, then

‖ρ‖cb = inf{‖S‖ · ‖S−1‖: ‖S−1T S‖ ≤ 1},
and the infimum is attained.

Proof. If ρ is completely bounded, then there is a similarity S, with ‖S−1‖ ·
‖S‖ = ‖ρ‖cb, such that S−1ρ(·)S is completely contractive. Thus,

‖S−1T S‖ = ‖S−1ρ(z)S‖ ≤ ‖z‖ = 1,

where z is the coordinate function.
Conversely, if R = S−1T S is a contraction, then θ : P(D) → B(H), given

by θ (p) = p(R), is a contractive homomorphism by von Neumann’s in-
equality, and is completely contractive by Sz.-Nagy’s dilation theorem. But
ρ(·) = Sθ (·)S−1, and so ρ is completely bounded with

‖ρ‖cb ≤ ‖S‖ · ‖S−1‖.
The statement about the infimum follows from the corresponding statement

in Theorem 9.1. �
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An operator for which ρ(p) = p(T ) is a bounded homomorphism of P(D),
that is, an operator for which the closed unit disk is a K -spectral set, is called
a polynomially bounded operator. It is quite natural to refer to the operators
for which this ρ is completely bounded as completely polynomially bounded.
Halmos [111] conjectured that every polynomially bounded operator is similar
to a contraction. The above result shows that Halmos’s conjecture is equivalent
to determining whether or not bounded homomorphisms of P(D), or equiv-
alently A(D), are completely bounded. Pisier [191] produced an example, in
fact, a whole family of examples, of a polynomially bounded operator that is
not completely polynomially bounded. Thus proving that Halmos’s conjecture
is not true. We shall present these examples in Chapter 10.

Holbrook [122] gave the first example of a matrix T , which is similar to a
contraction such that

‖ρ‖ < inf{‖S−1‖ · ‖S‖: ‖S−1T S‖ ≤ 1},
where ρ(p) = p(T ) is the induced homomorphism of P(D). The theory of
completely bounded maps at least gives a basis for explaining such phenomena,
since the right-hand side of the above equation is ‖ρ‖cb and, in general, there is
no reason to expect equality of these two norms. Using the theory of completely
bounded maps, there are now quite good estimates on how large the ratio of
‖ρ‖cb to ‖ρ‖ can be when T is an n × n matrix. See for example [193].

The above theory sheds further light on the theory of K -spectral sets. Let X
be a compact set in C, let R(X ) be the algebra of quotients of polynomials, and
let T be in B(H) with σ (T ) contained in X . Recall that if there is a bounded
homomorphism ρ:R(X ) → B(H) defined by ρ(r ) = r (T ) with ‖ρ‖ ≤ K , then
X is called a K -spectral set for T . If ρ is completely bounded with ‖ρ‖cb ≤
K , we shall call X a complete K -spectral set for T . Recall also that X is a
complete spectral set for T if and only if T has a normal ∂X -dilation. Translating
Theorem 9.1 into this language yields the following result.

Corollary 9.12. A set X is a complete K -spectral set for T if and only if T is
similar to an operator for which X is a complete spectral set. Moreover, there
exists such a similarity satisfying ‖S−1‖ · ‖S‖ ≤ K.

In fact, we have that for ρ as above,

‖ρ‖cb = inf{‖S−1‖ · ‖S‖: X is a complete spectral set for S−1T S},
and the infimum is attained.

The full picture of how these concepts are related is still not complete. As
discussed earlier, it is still not known, if a subset X of C is a spectral set for
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an operator, whether or not X must be a complete spectral set for the operator.
However, we saw in Chapter 5 that higher-dimensional analogues of this ques-
tion, when say X is a polydisk, can fail. It is known that if a set is a K -spectral
set for an operator, then it need not be a complete K ′-spectral set for the
operator, for any K ′. Halmos’s conjecture was the special case of this question
where X = D

−, and Pisier’s counterexample shows that the above fails even
on this simple domain. However, there exist sets for which it is the case that
whenever the set is a K -spectral set for an operator, then it is a complete
K ′-spectral set for some K ′. For example, when R(X ) is dense in C(∂X ), then
this is the case. But it is unknown if this is the only situation where this occurs.

Maps which are defined by some type of analytic functional calculus are often
completely bounded. Recall the Riesz functional calculus. If G is an open set
containing σ (T ) and ∂G consists of a finite number of simple, closed, rectifiable
curves, then for any function in R(G), we have that

r (T ) = 1

2π i

∫
∂G
r (z)(z I − T )−1 dz.

This functional calculus can be used to derive what is referred to as the gener-
alized Rota model of an operator.

Theorem 9.13 (Herrero–Voiculescu). Let T be in B(H), and let G be an
open set in the complex plane such that σ (T ) is contained in G and such that
∂G consists of a finite number of simple, closed, rectifiable curves. Then T is
similar to an operator that has a normal ∂G-dilation. Moreover, the similarity
may be chosen to satisfy

‖S−1‖ · ‖S‖ ≤ 1

2π

∫
∂G

‖(z I − T )−1‖|dz|.

Proof. By Corollary 9.12, we need only prove thatG− is a complete K -spectral
set for T with

K = 1

2π

∫
∂G

‖(z I − T )−1‖|dz|.

Let ρ: R(G−) → B(H) be the homomorphism defined by ρ(r ) = r (T ). We
must prove that ‖ρ‖cb ≤ K .

By the Riesz functional calculus,

‖ρ(r )‖ ≤ 1

2π

∫
∂G

‖r (z) · (z I − T )−1‖|dz| ≤ K · ‖r‖,

so ‖ρ‖ ≤ K . Let T̂ denote the direct sum of n copies of T and note that
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‖(z Î − T̂ )−1‖ = ‖(z I − T )−1‖. Thus, for (ri, j ) in Mn(R(G−)), we have that

ρn((ri, j )) = 1

2π i

∫
∂G

(ri, j (z) · (z I − T )−1) dz

= 1

2π i

∫
∂G

(ri, j (z)) · (z Î − T̂ )−1 dz,

and so, by the same inequality as above, ‖ρn‖ ≤ K , which proves that G− is a
complete K -spectral set for T . �

Corollary 9.14. (Rota’s Theorem). Let T be in B(H) with σ (T ) contained in
the open unit disk. Then T is similar to a contraction. Moreover, a similarity
may be chosen satisfying

‖S−1‖ · ‖S‖ ≤ 1

2π

∫
T

‖(z I − T )−1‖|dz|.

Proof. By Corollary 9.12, T is similar to an operator with a unitary dilation,
and that operator is necessarily a contraction. �

The original proof of Rota’s theorem gives much more particular informa-
tion on the unitary dilation and similarity than this proof does. In fact, the
unitary can always be taken to be the bilateral shift, and the invertible S can be
chosen to belong to the C∗-algebra generated by T (see, for example, [97] or
Exercise 9.15). One difference is that the above proof can give quite different
estimates on ‖S−1‖ · ‖S‖.

Recall the spectral radius formula,

sup{|z|: z ∈ σ (T )} = lim
n

‖T n‖1/n.

So if σ (T ) is contained in D, then

(eiθ I − T )−1 = e−iθ ∑
n
(e−iθT )n,

and the latter series converges by the root test. Thus, we see that the integral
estimate on ‖S−1‖ · ‖S‖ obtained in Corollary 9.14 satisfies

1

2π

∫
T

‖(z I − T )−1‖|dz| ≤
∑

n
‖T n‖.

The proof of Rota’s theorem in Exercise 9.15 leads to an upper bound on
‖S‖ · ‖S−1‖ of

∑
n ‖T n‖2.
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Notes

Kadison’s study of homomorphisms ofC∗-algebras [128] was motivated in part
by Dixmier’s study of whether or not bounded representations of groups are
similar to unitary representations [72]. Dixmier’s question is known to have a
negative answer, that is, there exist bounded representations of groups that are
not similar to unitary representations. This result was obtained by Kunze and
Stein [133]. The original proof of Sz.-Nagy’s result characterizing operators
that are similar to unitaries (Corollary 9.8) contains the elements of Dixmier’s
result on amenable groups (Theorem 9.3). This proof is outlined in the exercises
(Exercise 9.7) and can be found in [226].

Hadwin [109] proved that a unital homomorphism of aC∗-algebra into B(H)
is similar to a ∗-homomorphism if and only if the homomorphism is in the span
of the completely positive maps from the algebra to B(H), and conjectured that
the span of the completely positive maps was the completely bounded maps.
At the same time, Wittstock [242] proved his decomposition theorem, which
verifies this conjecture.

Independently, Haagerup [106] proved directly that a unital homomorphism
of a C∗-algebra into B(H) is similar to a ∗-homomorphism if and only if it is
completely bounded, and moreover, that there exists a similarity S such that
‖S−1‖ · ‖S‖ is equal to the cb norm of the homomorphism. It is not clear if
this sharp equality can be obtained by combining the results of Hadwin and
Wittstock. Haagerup applied his result to obtain the analogous characterization
of inner derivations (Corollary 9.10). The result on inner derivations had been
obtained earlier by Christensen [54].

In [159], the extension theorem for completely bounded maps into B(H)
and the generalization of Stinespring’s representation theorem were proven in
order to extend the techniques of Hadwin and Wittstock to operator algebras.
It was proven that a unital homomorphism of an operator algebra into B(H) is
similar to a completely contractive homomorphism if and only if it is completely
bounded. The prime motivation was to prove that an operator is similar to a
contraction if and only if it is completely polynomially bounded (Theorem 9.11),
which had been conjectured by Arveson. The extension theorem had been
obtained earlier by Wittstock [243].

The fact that the similarity could be chosen such that ‖S‖ · ‖S−1‖ is equal to
the cb norm of the homomorphism for a general operator algebra (Theorem 9.1)
was obtained later [160]. The key new technique can be found in a paper of
Holbrook [120].

The problem of characterizing the operators that are similar to contractions
has been considered by Sz.-Nagy. After obtaining his characterization of the
operators that are similar to unitaries, he conjectured that an operator T was
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similar to a contraction if and only if ‖T n‖ was uniformly bounded for all
positive integers n. Such an operator is called power-bounded. Foguel [98] (see
also Halmos [110]) gave an example of a power-bounded operator that is not
similar to a contraction, and Halmos conjectured that the right condition was
polynomially bounded.

Exercises

9.1 Verify the claim of Theorem 9.1, that |·|′ = |·|n .
9.2 Let A be an algebra (not necessarily unital), and let ρ: A → B(H) be a

homomorphism. If ρ(A)H is dense in H, then ρ is called nondegenerate.
Show that if A is unital, then ρ is nondegenerate if and only if ρ(1) = 1.

9.3 Let P be in B(H) such that P2 = P .
(i) Show that relative to some decomposition of H,

P =
[

1 X
0 0

]
.

(ii) Show that if

S =
[

1 X
0 1

]
,

then SPS−1 is an orthogonal projection.
(iii) Define ρ: C ⊕ C → B(H) via ρ(λ1, λ2) = λ1P + λ2(1 − P), and

show that ρ is a completely bounded homomorphism, but that in
general, ‖ρ‖cb < ‖S−1‖ · ‖S‖.

(iv) Compute ‖ρ‖cb.
(v) Can you construct an operator R such that ‖R‖‖R−1‖ = ‖ρ‖cb and

RPR−1 is an orthogonal projection?
9.4 Let B be a C∗-algebra with unit, let A ⊆ B be a subalgebra that does

not contain the identity of B, and let ρ: A → B(H) be a homomor-
phism. Set A1 = {a + λ1: a ∈ A, λ ∈ C}, and define ρ1: A1 → B(H)
by ρ1(a + λ1) = ρ(a) + λ · 1H. Prove that ρ1 is a completely bounded
homomorphism if and only if ρ is a completely bounded homomorphism.

9.5 Let A be a unital operator algebra, and let ρ: A → B(H) be a bounded
homomorphism with ρ(1) = I .
(i) Show that if there exists x and y in H such that ρ(A)x = H and

ρ(A)∗y = H, then ρ is completely bounded.
(ii) Show that if there exists x1, . . . , xn and y1, . . . , ym in H such

that ρ(A)x1 + · · · + ρ(A)xn = H and ρ(A)∗y1 + · · · ρ(A)∗ym = H,

then ρ is completely bounded.
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A subalgebra B of B(H) with a vector x such that Bx = H is called a
strictly cyclic algebra. When there exists a finite set of vectors such that
Bx1 + · · · + Bxn = H, then B is called strictly multicyclic.

9.6 Prove that if T is a n × n matrix and X is a K -spectral set for T , then
X is a complete (nK )-spectral set for T . Characterize those matrices for
which D

− is a K -spectral set for some K in terms of their Jordan form.
9.7 (Sz.-Nagy) This exercise gives a more direct proof of Corollary 9.4. Let

T be an invertible operator on H such that ‖T n‖ ≤ M for all integers n,
and let glim be a Banach generalized limit [34].

(i) Show that 〈x, y〉1 = glim〈T nx, T n y〉 defines a new inner product on
H and that (1/M2)〈x, x〉 ≤ 〈x, x〉1 ≤ M2〈x, x〉.

(ii) Show that T is a unitary transformation on (H, 〈, 〉1).
(iii) Prove that there exists a similarity S on H, with ‖S−1‖ · ‖S‖ ≤ M2,

such that S−1T S is a unitary.
9.8 Prove that a finite direct sum of operators T1 ⊕ · · · ⊕ Tn is similar to a

contraction if and only if each operator in the direct sum is similar to a
contraction. Moreover, prove that

inf{‖S‖ · ‖S−1‖ : ‖S−1(T1 ⊕ · · · ⊕ Tn)S‖ ≤ 1}

is achieved by an operator S that is itself a direct sum.
9.9 Let T1, T2, T3 be the operators of Parrott’s example, and let ρ be the

contractive homomorphism of P(D3) defined by ρ(zi ) = Ti . Prove that ρ

is completely bounded.
9.10 (Sz.-Nagy–Foias) An operator T in B(H) is said to belong to class Cρ if

there exists a Hilbert space K containing H, and a unitary U on K, such
that

T n = ρPHUn
∣∣
H

for all positive integers n. Prove that such a T is completely polynomially
bounded and that there exists an invertible operator S such that S−1T S is
a contraction with ‖S‖ · ‖S−1‖ ≤ 2ρ − 1 when ρ ≥ 1.

9.11 Let X be a compact set in the complex plane such that R(X ) is dense in
C(∂X ). Prove that X is a K -spectral set for some operator T if and only
if T is similar to a normal operator and σ (T ) is contained in ∂X . Show
that the similarity can always be chosen such that ‖S‖ · ‖S−1‖ ≤ K 2.

9.12 Let T be an operator with real spectrum. Prove that T is similar to a
self-adjoint operator if and only if the Cayley transform of T,C = (T +
i)(T − i)−1, has the property that for some constant M, ‖Cn‖ ≤ M for all
integers n.
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9.13 Let P be a family of (not necessarily self-adjoint) commuting projections
on a Hilbert space H satisfying:
(a) If P ∈ P , then (1 − P) ∈ P .
(b) If P, Q ∈ P , then PQ ∈ P .
(c) If P, Q ∈ P, PQ = 0, then P + Q ∈ P .
(d) ‖P‖ .= sup{‖P‖: P ∈ P} is finite.

(i) For P, Q ∈ P , set P � Q = 1 − P − Q + 2PQ, and show that this
is an element of P . We call P � Q the symmetric difference of P
and Q.

(ii) Prove that (P, �) is a commutative group.
(iii) Prove that ρ(P) = 2P − 1 defines a representation of this group and

that ‖ρ‖ ≤ 2‖P‖.
(iv) Prove that there exists a similarity S with ‖S‖ · ‖S−1‖ ≤ 4‖P‖2 such

that S−1PS is a self-adjoint projection for all P in P .
(v) Use (iv) to give an alternative proof of the fact that every homo-

morphism of a commutative, unital C∗-algebra is similar to a ∗-
homomorphism. What estimate can you obtain on ‖S‖ · ‖S−1‖?

9.14 Let A be a finite-dimensional C∗-algebra, and let ρ: A → B(H) be a
homomorphism, ρ(1) = 1. Show that ρ is completely bounded and that
‖ρ‖cb ≤ ‖ρ‖2.

9.15 Let T be in B(H) with σ (T ) contained in the open unit disk. Prove that
P = ∑∞

k=0 T
∗kT k is a norm-convergent series with ‖P1/2T P−1/2‖ ≤ 1.



Chapter 10
Polynomially Bounded and Power-Bounded

Operators

Polynomially bounded and power-bounded operators have played an impor-
tant role in the development of this area, and there are a number of interesting
results, counterexamples, and open questions about these operators. In partic-
ular, we will present Foguel’s example [98] of a power-bounded operator and
Pisier’s example [191] of a polynomially bounded operator that are not similar
to contractions.

Recall that an operator T is power-bounded provided that there is a constant
M such that ‖T n‖ ≤ M for all n ≥ 0. Clearly, if T = S−1CS with C a con-
traction, then T is power-bounded with ‖T n‖ ≤ ‖S−1‖‖S‖.

It is fairly easy to see (Exercise 10.1), by using the Jordan form, that a
matrix T ∈Mn is power-bounded if and only if it is similar to a contraction.
Sz.-Nagy [229] proved that the same characterization holdswhen T is a compact
operator. This led naturally to the conjecture that an arbitrary operator is similar
to a contraction if and only if it is power-bounded. Foguel provided the first
example of a power-bounded operator that is not similar to a contraction.

Recall that an operator is polynomially bounded provided there is a con-
stant K such that ‖p(T )‖ ≤ K‖p‖∞ for every polynomial p, where the ∞-
norm is the supremum norm over the unit disk. By von Neumann’s inequality,
if T = S−1CS with C a contraction, then T is polynomially bounded with
K = ‖S−1‖‖S‖. So it was natural to conjecture that an operator is similar to a
contraction if and only if it is polynomially bounded. Lebow [136] proved
that Foguel’s operator was not polynomially bounded, so that it could not
serve as a counterexample to this stronger conjecture. This conjecture, in fact,
became one of Halmos’s [111] “ten problems” and remained unsolved for about
25 years until Pisier provided a counterexample.

Foguel’s counterexample and Pisier’s counterexample share some common
features, and a number of researchers have studied operators in this general

135
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family, so we shall present some general results about operators of what are
often called “Foguel type.”

We begin with Sz.-Nagy’s result. The reader should also recall Corollary 9.4.

Theorem 10.1 (Sz.-Nagy). Let T be a compact operator on a Hilbert space.
Then T is similar to a contraction if and only if T is power-bounded.

Proof. Clearly every operator similar to a contraction is power bounded. If T
is power bounded, say ‖T n‖ ≤ M , then by the spectral radius formula, we have
that r (T ) = limn ‖T n‖1/2 ≤ limn M1/n = 1. Since T is compact, there can be
at most a finite number of points in the spectrum of T on the unit circle.

If one encloses these by a curve and integrates the resolvent of T about
this curve, then by standard facts from the Riesz functional calculus [68],
one obtains an idempotent E that commutes with T such that σ (ET |E(H)) =
σ (T ) ∩ T, σ ((I − E)T |(I−E)(H)) ⊆ D.

If we choose an invertible S such that S−1ES = P is an orthogonal projec-
tion, then P commutes with S−1T S and hence reduces it. Thus, S−1T S = T1 ⊕
T2, where σ (T1) = σ (T ) ∩ T, σ (T2) ⊆ D, and T1 acts on a finite-dimensional
space. Since S−1T S is power-bounded, T1 is power-bounded and hence by
Exercise 10.1 there exists S1 such that S−1

1 T1S1 is a contraction. By Rota’s
theorem (Corollary 9.14) there exists an invertible S2 such that S−1

2 T2S2 is a
contraction.

Setting R = S(S1 ⊕ S2) we have that R−1T R is a contraction. �

We now focus on the types of operators arising in Foguel’s and Pisier’s
counterexamples. Let SH: �2(H) → �2(H) be the forward shift, so that SH((h0,

h1, . . . )) = (0, h0, h1, . . . ), with adjoint S∗
H((h0, h1, . . . )) = (h1, h2, . . . ).

Let X = (Ai, j ) ∈ B(�2(H)) where Ai j ∈ B(H) for i, j ≥ 0.
We shall call an operator of the form

F =
(
S∗
H X

0 SH

)
on �2(H) ⊕ �2(H)

a Foguel operator over H with symbol X . Of special interest will be when
X = (Ai+ j ) has the Hankel form, and we call these Foguel–Hankel operators
overH with symbol X . To simplify notation we generally write S for SH.

It is easily seen that for n ≥ 2,

Fn =
(
S∗n Xn
0 Sn

)
, where Xn =

n−1∑
j=0

S∗ j X Sn−1− j .

Setting X0 = 0, X1 = X , the formula holds for all n ≥ 0.
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Note that when X has the Hankel form, then S∗X = XS and consequently
Xn = nXSn−1 = n(Ai+ j+n−1).

Since ‖S∗n‖ = ‖Sn‖ = 1 for all n ≥ 0, we see that X is power-bounded if
and only if supn ‖Xn‖ ≤ M for some M .

Let P as usual denote the space of polynomials, and define a linear map
δ: P → B(�2(H)) by setting δ(zn) = Xn and extending linearly. When X has
the Hankel form, we have δ(p) = Xp′(S), where p′ is the derivative of p. We
now have that

p(F) =
(
p(S∗) δ(p)

0 p(Sn)

)
,

and since ‖p(S∗)‖ = ‖p(Sn)‖ = ‖p‖∞, F is polynomially bounded if and only
if δ is a bounded linear map.

Analogously, applying the canonical shuffle, we have that F is comple-
tely polynomially bounded if and only if δ is a completely bounded linear
map.

One final property that is useful is that δ obeys a certain derivation property.
Indeed,(

(p · q)(S∗) δ(pq)

0 (p · q)(S)

)
= (p · q)(F) = p(F)q(F)

=
(
p(S∗) δ(p)

0 p(S)

) (
q(S∗) δ(q)

0 q(S)

)

=
(
p(S∗)q(S∗) p(S∗)δ(q) + δ(p)q(S)

0 p(S)q(S)

)

and we have

δ(pq) = p(S∗)δ(q) + δ(p)q(S)

for any polynomials p and q.
We begin with Pisier’s counterexample. Our presentation follows [71]. We

start with a family of Foguel–Hankel operators that are easy to analyze.
To this end, set H = �2, and let {Ei, j }+∞

i, j=0 denote the usual matrix units
regarded as elements of B(�2). To simplify notation we set Ei = Ei0. Since
E∗
i E j = δi j E0, we see that for any vector h = (c0, c1, . . . ) ∈ �2, the operator
T (h) = ∑∞

i=0 ci Ei is bounded and in fact

‖T (h)‖2 = ‖T (h)∗T (h)‖ =
∥∥∥∑

c̄i c j E
∗
i E j

∥∥∥ =
∥∥∥∑

|ci |2E0

∥∥∥ = ‖h‖2.
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Thus, T : �2 → B(�2) defines an isometric linear map that identifies a vector
with the infinite column matrix.

There is one subtle distinction to be made. For while �2 is a Hilbert space,
T (�2) is an operator space. In particular, given vectors (vi j ) in �2, we have a
well-defined norm for (T (vi j )). To compute its norm one simply substitutes the
corresponding column matrix for each vector. We shall encounter the operator
space T (�2) again in Chapter 14, where it is called column Hilbert space.

Theorem 10.2. Fix a sequence {an}+∞
n=0, and consider the Foguel–Hankel oper-

ator F over �2 with symbol X = (ai+ j Ei+ j ). Then the following are equivalent:

(i) F is similar to a contraction,
(ii) F is polynomially bounded,
(iii) F is power-bounded,
(iv) supn n(

∑∞
k=n−1 |ak |2) is finite.

Proof. Clearly, (i) implies (ii), and (ii) implies (iii). Recall that F is power-
bounded if and only if supn ‖Xn‖ is finite, where

Xn = nXSn−1 = n(ai+ j+n−1Ei+ j+n−1).

We have that

X∗
n Xn = n2

( ∞∑
k=0

āi+k+n−1a j+k+n−1E
∗
i+k+n−1E j+k+n−1

)

= n2

( ∞∑
k=0

āi+k+n−1a j+k+n−1δi j E0

)
.

Thus, X∗
n Xn is a diagonal operator matrix whose diagonal entries are

n2
∞∑
k=0

|ai+k+n−1|2 = n2
∞∑

k=i+n−1

|ak |2.

Thus, ‖X∗
n Xn‖ = n2 ∑∞

k=n−1 |ak |2, from which the equivalence of (iii) and (iv)
follows.

Finally, to prove that (iv) implies (i), we consider the operator matrix Y =
( jai+ j−1Ei+ j−1) where we set E−1 = 0. Assume for the moment that Y is
bounded. We have that

Y S − S∗Y = (
( j + 1)ai+( j+1)−1Ei+( j+1)−1

) − (
ja(i+1)+ j−1E(i+1)+ j−1

)
= (ai+ j Ei+ j ) = X.
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Thus, if we set R = ( I Y0 I ), then R−1 = ( I −Y
0 I ) and we have

R−1FR =
(
I −Y
0 I

) (
S∗ X
0 S

) (
I +Y
0 I

)

=
(
S∗ X − Y S + S∗Y
0 S

)
=

(
S∗ 0
0 S

)
.

Hence, we have that F is similar to a contraction.
It remains to prove that Y is bounded. Computing

Y ∗Y = (i āi+ j−1E
∗
i+ j−1)( jai+ j−1Ei+ j−1)

=
( ∞∑
k=0

i j āi+k−1ak+ j−1E
∗
i+k−1Ek+ j−1

)
,

we see that Y ∗Y is a diagonal operator matrix whose diagonal entries are∑∞
k=0 i

2|ai+k−1|2E0. Thus, ‖Y ∗Y‖ = supn n
2 ∑∞

k=0 |ak+n−1|2, and so (iv)
implies (i). �

Theorem 10.2 shows that the above family of operators could not possibly
provide an example of a polynomially bounded operator that is not similar to
a contraction. However, to obtain Pisier’s counterexample we will swap the
above sequence of operators {Ei } for a different sequence {Wi }. The follow-
ing propositions will allow us to prove that statements (ii), (iii), and (iv) of
Theorem 10.2 are still equivalent for the Foguel–Hankel operators obtained
from this new sequence of operators, but their equivalence to (i) will no longer
hold.

Proposition 10.3. Let H and K be Hilbert spaces, and let �: B(H) → B(K)
be a bounded linear map. If (Ai+ j ) = A is a bounded Hankel operator on
�2(H), then A� = (�(Ai+ j )) is a bounded Hankel operator on �2(K). In fact,
‖A�‖ ≤ ‖�‖‖A‖.

Proof. By the Nehari–Page theorem (Theorem 5.10) there exists a sequence
{An}−1

n=−∞ such that

‖A‖ = sup
r<1

∥∥∥∥∥
+∞∑
n=−∞

r |n|einθ An

∥∥∥∥∥
∞

.
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Hence, supr<1 ‖ ∑+∞
n=−∞ r

|n|einθ�(An)‖∞ ≤ ‖�‖‖A‖. Applying the Nehari–
Page theorem again, we have that

‖A�‖ = inf
B

sup
r<1

∥∥∥∥∥
−1∑

n=−∞
r |n|einθ Bn +

∞∑
n=0

r |n|einθ�(An)

∥∥∥∥∥
∞

,

where the infimum is over all sequences B= {Bn}−1
n=−∞ in B(K). Hence,

‖A�‖ ≤ ‖�‖‖A‖. �

The above result shows that even though � may not be a completely bounded
map, for Hankel matrices it acts completely bounded.

Proposition 10.4. Let H and K be Hilbert spaces, and let �: B(H) → B(K)
be a bounded linear map. Let F be a Foguel–Hankel operator over H with
symbol X = (Ai+ j ), and let F� be the corresponding Foguel–Hankel operator
over K with symbol X� = (�(Ai+ j )). Then:

(i) F power-bounded implies F� power-bounded,
(ii) F polynomially bounded implies F� polynomially bounded.

Proof. We only prove (ii); the proof of (i) is similar. Recall that F is poly-
nomially bounded if and only if the map δ: P → B(�2(H))δ(p) = Xp′(S) is
bounded. For the operator F�, we need to consider the map δ�(p) = X� p′(S).
But Xp′(S) = (Bi+ j ) is a Hankel operator matrix, and X� p′(S) = (�(Bi+ j )).
Hence,

‖δ�(p)‖ ≤ ‖�‖‖(Bi+ j )‖ ≤ ‖�‖‖δ‖‖p‖∞.

Thus, δ� is a boundedmapwith ‖δ�‖ ≤ ‖�‖‖δ‖, and hence F� is polynomially
bounded. �

The analogous conclusion for completely polynomially bounded operators
is false, and that will be the source of our counterexamples.

Our construction uses a particular choice of a sequence of operators related
to the CAR operators. The reader already familiar with sequences of operators
satisfying the CAR and their properties might wish to skip directly to Theo-
rem 10.5 and substitute any CAR sequence for the operators {Wi } occurring in
Theorem 10.5.

A sequence {Cn}∞n=0 of operators on a Hilbert space H is said to satisfy the
canonical anticommutation relations (CAR) provided

(CAR a) CiC j + C jCi = 0
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and

(CAR b) CiC
∗
j + C∗

j Ci = δi j I

for all i and j , where δi j denotes the Kronecker delta.
Given such a sequence and h = (α0, α1, . . . ) in �2, set �(h) = ∑∞

i=0 αiCi .
This defines a bounded operator with ‖�(h)‖2 ≤ ‖h‖2, since

�(h)�(h)∗ + �(h)∗�(h) =
∞∑

i, j=0

αi ᾱ j (C jC
∗
j + C∗

j Ci ) =
∞∑
i=0

|αi |2 · I,

by (CAR b). However, if we let P = �(h)∗�(h), Q = �(h)�(h)∗, then ‖P‖ =
‖Q‖ and PQ = �(h)∗�(h)2�(h)∗ = 0, since �(h)2 = 0 by (CAR a). Hence
‖P‖ = ‖Q‖ = ‖P + Q‖ = ∑∞

i=0 |αi |2, and it follows that ‖�(h)‖ = ‖h‖.
Thus, �: �2 → B(H) is an isometry, and �(�2) is another operator space,
isometrically isomorphic to Hilbert space.

To construct a sequence of operators satisfying the CAR, we first need a finite
sequence of operators on a finite-dimensional space that satisfy them.

To construct these operators we begin with three 2 × 2 matrices,

V =
[
1 0
0 −1

]
, C =

[
0 0
1 0

]
, and I2 =

[
1 0
0 1

]
.

We have that V 2 = I, C2 = 0, C∗C = E11, CC∗ = E22, VC = −C , and
CV =C . For 0 ≤ i ≤ n − 1, we define matrices in M2 ⊗ · · · ⊗ M2

∼= M2n by
setting

Ci = V⊗(i) ⊗ C ⊗ I⊗(n−i−1)
2 ,

where X⊗(k) denotes the tensor product of X with itself k times. Note that

(1) C2
i = (V 2)⊗(i) ⊗ (C2) ⊗ I⊗(n−i−1)

2 = 0,

(2) C∗
i Ci = (V ∗V )⊗(i) ⊗ (C∗C) ⊗ I⊗(n−i−1)

2 = I⊗(i)
2 ⊗ E11 ⊗ I⊗(n−i−1)

i , and

(3) CiC∗
i = I⊗(i)

2 ⊗ E22 ⊗ I⊗(n−i−1)
2 ,

while for 0 ≤ i < j ≤ n − 1, we have

(4) CiC j = I⊗(i)
2 ⊗ C ⊗ V⊗( j−i−1) ⊗ C ⊗ I⊗(n− j−1)

2 = −C jCi ,
(5) CiC∗

j = I
⊗(i)

2 ⊗ C ⊗ V⊗( j−i−1) ⊗ C∗ ⊗ I⊗(n− j−1)
2 = −C∗

j Ci .

Now (1) and (4) are seen to imply (CAR a), while (2), (3), and (5) yield
(CAR b).

Given h = (α0, . . . , αn−1), set �(h) = ∑n−1
i=0 αiCi . From the above relations

we have that � is an isometry from n-dimensional Hilbert space into M2n , and
{Ci } span a Hilbert space.
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Next we show that {Ci ⊗ Ci } nearly span an �1-space, that is, given scalars
a0, . . . , an−1 we will show that

(6) 1
2

∑n−1
i=0 |ai | ≤ ‖ ∑n−1

i=0 aiCi ⊗ Ci‖ ≤ ∑n−1
i=0 |ai |.

Now up to a unitary equivalence, we have that Ci ⊗ Ci ∼= (V ⊗ V )⊗(i) ⊗ (C ⊗
C) ⊗ I⊗(n−i−1)

4 in M4 ⊗ · · · ⊗ M4 = M4n . Let e1, e2 denote the basis for C
2,

and choose wi , 1 ≤ i ≤ n, constants of modulus one such that ai w̄i = |ai |.
Then xi = (e1 ⊗ e1 + wi e2 ⊗ e2)/

√
2 will be a unit vector in C

4, and x =
x1 ⊗ · · · ⊗ xn will be a unit vector in C

4n . Since V ⊗ V (ei ⊗ ei ) = ei ⊗ ei ,C ⊗
C(e1 ⊗ e1) = e2 ⊗ e2, and C ⊗ C(e2 ⊗ e2) = 0, we have that〈

n−1∑
i=0

aiCi ⊗ Ci x, x

〉
= 1

2

n−1∑
i=0

ai w̄i = 1

2

n−1∑
i=0

|ai |.

Thus, ‖ ∑n−1
i=0 aiCi ⊗ Ci‖ ≥ 1

2

∑n−1
i=0 |ai |, and since ‖Ci ⊗ Ci‖ = 1, the other

inequality follows.
So far we have only constructed, for each n, a finite sequenceC0, . . . ,Cn−1 of

finite matrices satisfying the CAR. To obtain an infinite sequence one generally
uses an infinite tensor product of Hilbert spaces.

To avoid discussions of infinite tensor products we use a slightly different
approach. Relabel the 2n × 2n matrices constructed above as C0,n, . . . ,Cn−1,n ,
and for i ≥ n setCi,n = 0. Define bounded operators on

∑∞
n=1 ⊕ C

2n by setting
Wi = ∑∞

n=1 ⊕Ci,n . It is readily verified that

(i) ‖ ∑∞
i=0 αiWi‖2 = ∑∞

i=0 |αi |2 for any (α0, α1, . . . ) in �2,

(ii) 1
2

∑n−1
i=0 |ai | ≤ ‖ ∑n−1

i=0 aiCi,n ⊗Wi‖ ≤ ∑n−1
i=0 |ai | for any (a0, . . . , an−1),

(iii) WiWj +WjWi = 0,

(iv) WiW ∗
j +W ∗

j Wi = δi j (I − Pi ),

where Pi is the finite-rank projection onto
∑i

n=1 ⊕ C
2n . Thus, although {Wi } do

not quite satisfy theCAR, their images in theC∗-algebra obtainedbyquotienting
out the ideal of compact operators do satisfy them.

Theorem 10.5 (Pisier). Fix a sequence {an}∞n=0, and consider the Foguel–
Hankel operator F over H with symbol X = (ai+ jWi+ j ), where {Wi }∞i=0 are
the operators constructed above. Then the following are equivalent:

(i) F is polynomially bounded,
(ii) F is power-bounded,
(iii) supn n (

∑∞
k=n−1 |ak |2) is finite.

However, if
∑∞

k=0(k + 1)2|ak |2 is infinite, then F is not similar to a contraction.
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Proof. Clearly (i) implies (ii). To see that (ii) implies (iii), recall that F is
power-bounded if and only if supn ‖Xn‖ is finite, where Xn = nXSn−1 =
n(ai+ j+n−1Wi+ j+n−1). We have that

X∗
n Xn + XnX

∗
n

= n2
∞∑
k=0

āi+k+n−1a j+k+n−1[W
∗
i+k+n−1Wj+k+n−1 +Wi+k+n−1W

∗
j+k+n−1].

By (iii), the off-diagonal terms are 0, and hence the norm of this operator matrix
is just the largest norm of a diagonal entry. Since each diagonal entry is a sum
of positive operators, the supremum occurs when i = 0. Thus,

‖X∗
n Xn + XnX

∗
n‖ = n2

∥∥∥∥∥
∞∑
k=0

|ak+n−1|2W ∗
k+n−1Wk+n−1 +Wk+n−1W

∗
k+n−1

∥∥∥∥∥
= sup

m
n2

∥∥∥∥∥
∞∑
k=0

|ak+n−1|2(C∗
k+n−1,mCk+n−1,m + Ck+n−1,mC

∗
k+n−1,m)

∥∥∥∥∥
= n2

∞∑
k=0

|ak+n−1|2,

using the fact that C∗
k,mCk,m + Ck,mC∗

k,m = I for k < m. Hence, supn ‖Xn‖
finite implies that supn ‖X∗

n Xn + XnX∗
n‖ = supn n

2 ∑∞
k=0 |ak+n−1|2 is finite.

To prove that (iii) implies (i), we use Proposition 10.4. Define �: B(�2) →
B(H) by �((ai, j )) = ∑∞

i=0 ai,0Wi . Since the norm of a matrix is larger than the
norm of any column, we have that ‖�((ai, j ))‖2 = ∑∞

i=0 |ai,0|2 ≤ ‖(ai j )‖2 and
hence ‖�‖ ≤ 1.

Assuming supn n
∑∞

k=0 |ak+n−1|2 is finite, by Theorem 10.2 we have that
the Foguel–Hankel operator with symbol (ai+ j Ei+ j ) is polynomially bounded,
and hence by Proposition 10.4, the Foguel–Hankel operator with symbol
(ai+ j�(Ei+ j )) = (ai+ jWi+ j ) is polynomially bounded.

Finally, to see that F is not similar to a contractionwhen
∑∞

k=0(k + 1)2|ak |2 is
infinite, it is sufficient to show that the map δ: P → B(�2(H)) is not completely
bounded for this operator. Note that the (0,0) entry of δ(zi+1) is (i + 1)aiWi .
Thus, if we can show that the map δ0:P → B(H), δ0(1) = 0, δ0(zi+1) = (i + 1)
aiWi , is not completely bounded, then δ will fail to be completely bounded,
too.

If we consider the 2n × 2n matrix-valued polynomial P(z) = ∑n
i=0(i + 1)

āiCi,nzi+1, then δ
(2n )
0 (P) = ∑n

i=0(i + 1)2|ai |2Ci,n ⊗Wi . By the definition of
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Wi and (6) for the operators Ci,n we have that

∥∥δ
(2n )
0 (P)

∥∥ ≥
∥∥∥∥∥

n∑
i=0

(i + 1)2|ai |2Ci,n ⊗ Ci,n

∥∥∥∥∥ ≥ 1

2

n∑
i=0

(i + 1)2|ai |2.

Since � is an isometry, we have that ‖P‖∞ = (
∑n

i=0(i + 1)2|ai |2)1/2. Hence,
‖δ0‖cb ≥ 1

2 (
∑n

i=0(i + 1)2|ai |2)1/2, and letting n tend to infinity we have that δ0

is not completely bounded. �

The above result leads us to Pisier’s counterexample to Halmos’s conjecture.

Corollary 10.6. (Pisier). Let a2k−1 = 2−k and ai = 0 otherwise. Then the
Foguel–Hankel operator with symbol (ai+ jWi+ j ), where the W’s are defined
as above, is polynomially bounded, but not similar to a contraction.

Proof. We have that supn (n + 1)
∑∞

k=n−1 |ak |2 = sup j 2
j
∑∞

k= j (2
−k)2 = 4/3,

while
∞∑
k=0

(k + 1)2|ak |2 =
∞∑
j=0

(2 j )2(2− j )2 = +∞,

and so we are done by Theorem 10.5. �

For another example, one can set ak = (k + 1)−3/2. Then

sup
n

(n + 1)

( ∞∑
k=n

|ak |2
)1/2

≤
√

2

but
∞∑
k=1

(k + 1)2|ak |2 = +∞.

The same results as above hold when the sequence {Wn} is replaced by an
actual CAR sequence {Cn}.

Necessary and sufficient conditions on the sequence {an} for the Foguel–
Hankel operator with symbol (ai+ jCi+ j ) to be similar to a contraction were
only recently obtained. In [197], it is shown that

∑∞
k=0(k + 1)2|ak |2 finite is a

necessary and sufficient condition for similarity to a contraction. Earlier [11] it
had been shown that if

∑∞
k=1(k + 1)2[log(log(k + 1))]2+ε |ak |2 is finite for any

ε > 0, then one has similarity to a contraction.
We now turn our attention to the problem of exhibiting a power-bounded op-

erator that is not polynomially bounded. Examples of such operators generally
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rely on some nontrivial results about A(D). The work of Peller [174] shows
that there exist Foguel–Hankel operators with scalar symbol that are power-
bounded but not polynomially bounded. However, partly for historical reasons
and partly to minimize the amount of function theory that is needed, we shall
present Foguel’s operator [98], which was the first known example of an op-
erator that is power-bounded, but not similar to a contraction. Later, Lebow
[136] proved that Foguel’s operator is not even polynomially bounded, and we
reproduce this result in Theorem 10.9.

To understand Foguel’s example, it is best if we start by looking at the Foguel
operator

Fr =
(
S∗ Er,r
0 S

)
,

where Er,r denotes the standard matrix unit. We have that

Fnr =
(
S∗n Xn,r
0 Sn

)
,

where

Xn,r =
n−1∑
k=0

S∗k Er,r Sn−1−k =
n−1∑
k=0

Er−k,r−n+k+1,

and we have adopted the convention that Ei, j denotes the standard matrix units
provided that i, j ≥ 0 and is 0 otherwise.

Note that Xn,r = X∗
n,r is a matrix all of whose entries are 0 or 1 and that

the 1’s occur along part of the antidiagonal where i + j = 2r − n + 1. For
n > 2r + 1, we have Xn,r = 0 and, in general, X2

n,r = ∑2r+1−n
�=r−n E�,�. Thus, we

see that ‖Xn,r‖ ≤ 1 for all n and hence Fr is power-bounded.
Given r and t , compute

Xn,r Xn,t =
n∑

k,�=0

Er−k,r−n+k+1Et−n+�+1,t−�.

We see that each term in this product is 0 unless r + k = t + � ≥ n − 1, r ≥ k,
and t ≥ �. These inequalities imply that 2r ≥ t and 2t ≥ r . Thus, if 2r + 1 < t
or 2t + 1 < r then Xn,r Xn,t = 0.

Theorem 10.7 (Foguel). Let {k�} be a sequence of integers satisfying 2k� +
1< k�+1, and let X = ∑∞

�=1 Ek�,k� . Then the operator F = (S
∗ X
0 S) is power-

bounded.
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Proof. We have that

Fn =
(
S∗n Xn
0 Sn

)
, where Xn =

∞∑
�=1

Xn,k� .

Since either 2k� + 1 < km or 2km + 1 < k� for � �= m, we have that

X∗
n Xn =

∞∑
�=1

X∗
n,k�Xn,k� =

∞∑
�=1

2k�+1−n∑
j=k�−n

E j, j .

Because the intervals {[k� − n, 2k� + 1 − n]}∞�=1 are all disjoint, we have that
X∗
n Xn ≤ 1. �

To prove that the operators of the above type are not polynomially bounded,
we shall need a result from function theory.

Theorem 10.8. Let {k�} be a sequence of integers satisfying 2k� + 1 < k�+1,
and given f (z) = ∑∞

k=0 akz
k in A(D), define �( f ) = (ak1 , ak2 , . . . ). Then

�: A(D) → �2 is contractive and onto.

Proof. Since (
∑∞

k=0 |ak |2)1/2 = ‖ f ‖2 ≤ ‖ f ‖∞, � is contractive. Consider the
matrix B = ( 1 −ā

a 1 ). Note that

B∗B =
(

1 + |a|2 0

0 1 + |a|2
)

and so we have that ‖B‖ =
√

1 + |a|2.
Fix h = (h1, . . . , hn, 0, . . . ), a finitely supported vector in �2 with ‖h‖2 = 1,

and let

B�(e
iθ ) =

(
1 − h̄�e−ik�θ

h�eik�θ 1

)
for 1 ≤ � ≤ n.

Then by the above calculation, we will have that ‖B�‖∞ = sup{‖B�(eiθ )‖: 0 ≤
θ ≤ 2π} =

√
1 + |h�|2. For each m, 1 ≤ m ≤ n, let

Fm(eiθ ) = B1(e
iθ ) · · · Bm(eiθ );

then ‖Fm‖2
∞ ≤ ∏m

�=1(1 + |h�|2) ≤ exp(
∑n

�=1 |h�|2) = e.
By induction (Exercise 10.3) one shows that

Fm(eiθ ) =
(
gm(eiθ ) pm(e−iθ )

fm(eiθ ) qm(e−iθ )

)

where gm, fm, pm, qm are polynomials satisfying
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(1) gm(0) = 1, deg gm ≤ km ,
(2) qm(0) = 1, deg qm ≤ km ,
(3) deg pm ≤ km ,
(4) �( fm) = (h1, . . . , hm, 0, . . . ).

Since ‖ fn‖ ≤ ‖Fn‖∞ ≤ √
e, by the linearity of � we have that for every

finitely supported h ∈ �2 there exists f ∈ A(D) with �( f ) = h and ‖ f ‖ ≤√
e‖h‖.
Given an arbitrary h ∈ �2, one can choose a sequence of vectors {hn} with

finite support such that
∑∞

n=1 ‖hn‖ ≤ 2‖h‖ and
∑∞

n=1 hn = h. For each hn ,
choose fn ∈ A(D) with �( fn) = hn and ‖ fn‖ ≤ √

e‖hn‖. Then f = ∑∞
n=1 fn

converges in A(D), and �( f ) = h. �

Theorem 10.9 (Lebow). Let {k�} be a sequence of integers with 2k� + 1 <

k�+1, and let X = ∑∞
�=1 Ek�,k� . Then the operator F = ( S

∗ X
0 S ) is power-

bounded, but not polynomially bounded.

Proof. Let h = (1, 1/2, 1/3, . . . ), which is in �2. Since 2(2k� + 1) + 1 <

2k�+1 + 1, we see that the sequence {2k� + 1} satisfies the hypotheses of
Theorem 10.8. Hence there exists f (z) = ∑∞

k=0 akz
k in A(D) with a2k�+1 =

1/�.
If F were polynomially bounded, thenY = ∑∞

m=1 am Xm would be a bounded
operator, where Xm = ∑∞

�=1 Xm,k� .
Using the formula for Xn,r we see that

〈Xn,r e0, e0〉 =
{

0 if n �= 2r + 1,

1 if n = 2r + 1.

Hence,

〈Xme0, e0〉 =
{

0 if m �= 2k� + 1 for some �,

1 if m = 2k� + 1, for some �,

and thus 〈Ye0, e0〉 = ∑∞
�=1 a2k�+1 = ∑∞

�=1 1/�, which diverges.
Thus, Y is not a bounded operator, and consequently, F is not polynomially

bounded. �

Notes

Theorem 10.5 with a CAR sequence of operators in place of the sequence {Wn}
follows from Pisier [191]. The proof given here follows that of Davidson and
the author [71] closely.



148 Chapter 10. Polynomially Bounded and Power-Bounded Operators

Some earlier attempts at finding a counterexample focused on how large the
ratio of the complete polynomial bound to the polynomial bound could be for
an n × n matrix, together with obtaining asymptotic estimates of the growth of
this ratio as n tended to infinity. See [184] for details of this work.

There is an extensive literature onFoguel–Hankel operators overCwithmany
deep connections to function theory. See Peller [174] for the earliest published
work on this family of operators, where the question arises of determining pre-
cisely for which sets of symbols these operators are, respectively, polynomially
bounded or similar to contractions. Bourgain [33] proved that such operators
are polynomially bounded if and only if the derivative of the symbol is in BMO.
Later, Aleksandrov and Peller [4] proved that such operators are polynomially
bounded if and only if they are similar to contractions.

This led naturally to the study of Foguel–Hankel operators over general
Hilbert spaces. In a remarkable paper Pisier [191] generalized many of the
function-theoretic results to obtain operator-valued versions, which allowed
him to construct his counterexample to the Halmos’s conjecture.

In an earlier unpublished work, Foias and Williams [101] studied general
Foguel operators and proved that such an operator is similar to a contraction if
and only if it is similar to S ⊕ S∗. This result motivated the simplification of
Pisier’s original proof found by Davidson and the author [71].

The result of Foias and Williams has a homological interpretation as the
vanishing of a certain Ext group for modules over the disk algebra. The study
of this group of extensions was begun by Carlson and Clark [38, 39], and only
later was the connection with this unpublished manuscript realized, resulting in
[40]. Further contributions were made by Ferguson ([90], [91], and [93]). There
are still many open questions about the computation of these Ext groups and
their relations to higher-order Hankel forms. See for example [65]. In particular,
the study of these groups over polydisk algebras is related to questions about
the relationships between the families of “big” and “small” Hankel operators
and generalizations of Nehari’s theorem. See for example [96], [94], and [92].

Exercises

10.1 Let

Jλ =




λ 1 0 · · · 0
...

. . .
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . . 1

0 . . . 0 . . . λ


 ∈ Mk

be an elementary Jordan block.
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(i) Show that the (1, k) entry of Jmλ is the kth derivative of zm evaluated
at λ. Deduce that Jλ is power-bounded if and only if |λ| < 1.

(ii) Prove that if |λ| < 1 then Jλ is similar to a contraction.
(iii) Let T ∈Mn be power-bounded. Prove that T is similar to a contrac-

tion if and only if T is power-bounded.
10.2 Let T be an operator on a Hilbert space such that σ (T ) = C1 ∪ C2 with

C1 and C2 closed, C1 ⊆ D, and C2 finite. Prove that T is similar to a
contraction if and only if T is power-bounded.

10.3 (i) Show that g1, f1, p1, q1, satisfy (1)–(4) in the proof of Theorem 10.8.
(ii) Show that if qm, fm, pm, qm satisfy (1)–(4), then gm+1, fm+1, pm+1,

qm+1 satisfy (1)–(4).
10.4 Let �: A(D) → �2 be the map of Theorem 10.8. Prove that �̇: A(D)/

ker � → �2 is a Banach space isomorphism with ‖�̇‖ ≤ 1, ‖�̇−1‖ ≤ √
e.

10.5 Let C1, . . . ,Cn denote the 2n × 2n CAR matrices, let E11, . . . , En1 be
the standard matrix units in Mn , and let �(λ1E11 + · · · + λn En1) =
λ1C1 + · · · + λnCn , so that � is an isometry. Prove that ‖�‖cb ≥ √

n/2.



Chapter 11
Applications to K-Spectral Sets

In this chapter we apply the results of Chapter 9 to the study of multiply con-
nected K-spectral sets. We show that for a “nice” region X with finitely many
holes it is possible to write down a fairly simple characterization of the family
of operators that, up to similarity, have normal ∂X -dilations. This constitutes a
model theory for these operators. In contrast, if X has two or more holes, then
it is still an open problem to determine whether or not every operator for which
X is a spectral set has a normal ∂X -dilation, i.e., is a complete spectral set. A
further difficulty with the theory of spectral sets is that it is quite difficult to
determine if a given set is a spectral set for an operator. We will illustrate this
difficulty in the case that X is an annulus and T is a 2 × 2 matrix.

Thus, even if it is eventually determined that the properties of being a spectral
set and being a complete spectral set are equivalent, the use of the theory might
be limited by the impossibility of recognizing operators to which it could be
applied.

It is easier to determine when a “nice” set with no holes is a spectral set for
an operator. If a compact subset X of the complex plane is simply connected
with boundary a Jordan curve, then one can define an analytic homeomorphism
f from X to the closed unit disk. In this case it is easily seen that X is a spectral
set for an operator T if and only if f (T ) is a contraction. For this reason, criteria
for operators to have a simply connected set as a spectral set are fairly readily
available.

For many finitely connected sets, there is a simple criterion for the set to be a
K-spectral set for an operator. To develop this criterion, we first need to extend
the definition of spectral sets to include closed, possibly unbounded proper
subsets of the complex plane.

To motivate this extended definition, suppose that S is an invertible operator
and ‖S‖ ≤ R, so that the closed disk of radius R is a spectral set for S. The
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fact that this disk is a spectral set for S only tells us that ‖S‖ ≤ R and loses the
information that S is invertible. The statement that will capture both pieces of
information about S, when appropriately defined, is that the complement of the
open disk of radius R−1 is a spectral set for T = S−1.

Let X be a closed, proper subset of C, and let X̂ denote the closure of X ,
regarded as a subset of the Riemann sphere. That is, X̂ = X when X is compact,
and otherwise X̂ is X together with the point at infinity. We let R(X ) denote
the quotients of polynomials with poles off X̂ , that is, the bounded, rational
functions on X with a limit at infinity. We regard R(X ) as a subalgebra of
C(∂ X̂ ), which defines norms on Mn(R(X )).

If X is a closed, proper subset of C, and T ∈ B(H) with σ (T ) ⊆ X , then we
still seek a functional calculus, i.e., a homomorphism ρ:R(X ) → B(H), given
by ρ(p/q) = p(T )q(T )−1. We say that X is a (completely) K-spectral set for
T , provided that ρ is well defined and ‖ρ‖ ≤ K (respectively, ‖ρ‖cb ≤ K ). We
use the term (complete) spectral when K = 1.

Letψ be a linear fractional transformation regarded as a map from the sphere
to the sphere, let X be a closed, proper subset of C, and suppose that the pole
of ψ lies off X , so that ψ(X̂ ) = ψ(X )− = Y is a compact set in C. If f is in
R(Y ), then f ◦ ψ defines an element ofR(X ), and themapψ∗:R(Y ) → R(X ),
given by ψ∗( f ) = f ◦ ψ , defines a completely isometric algebra isomorphism
between these algebras. The following results are immediate.

Proposition 11.1. Let X be a closed, proper subset of C, and let ψ be a linear
fractional transformation with pole off X. Then X is a (complete) K-spectral
set for some operator T if and only if ψ(X )− is a (complete) K-spectral set for
ψ(T ).

Proposition 11.2. Let T be an operator. Then T is invertible with ‖T−1‖ ≤ R
if and only if {z: |z| ≥ R−1} is a complete spectral set for T .

It is now quite easy to illustrate one of the subtleties involved in the study of
finitely connected spectral sets that is eliminated by the study of K-spectral sets.
Let X = {z: R−1 ≤ |z| ≤ R}, R > 1, be a spectral set for some operator T , so
that necessarily ‖T ‖ ≤ R and ‖T−1‖ ≤ R. This last statement is equivalent to
the statement that X1 = {z: |z| ≤ R} and X2 = {z: |z| ≥ R−1} are both spectral
sets for T . Since X = X1 ∩ X2, it is natural to ask: If X1 and X2 are spectral
sets for T , then is X a spectral set for T ? The answer, as we shall show in a
moment, is no. Thus, ‖T ‖ ≤ R and ‖T−1‖ ≤ R is not enough to guarantee that
X is a spectral set for T .
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On the other hand, if X1 and X2 are, respectively, (complete) K1-spectral
and (complete) K2-spectral sets for T , then we shall show that X is always a
(complete) K-spectral set for T , for some K (Theorem 11.5).

To construct an example where X is not spectral for T , let

T =
[
1 t
0 1

]
, T−1 =

[
1 −t
0 1

]
.

It is not difficult to calculate that, if t = R − R−1, then ‖T ‖ = ‖T−1‖ = R.
Thus, X1 and X2 are both spectral sets for T . However, |z − z−1| ≤ R + R−1

on X , while ‖T − T−1‖ = 2t = 2(R − R−1) > R + R−1 for R >
√
3. Thus,

X is not a spectral set for T when R >
√
3. Computing the largest value of t

such that X is a spectral set for T involves a considerable knowledge of the
function theory of X .

The proof of Theorem 11.5 requires the introduction of the concept of de-
composability.Let X be a closed, proper subset ofC.We call a collection {Xi } of
closed, proper subsets of C a decomposition of X provided that X = ⋂

Xi and
every f ∈ R(X ) can be written as a uniformly convergent series f = ∑

i fi ,
where each fi is inR(Xi ) and

∑
i ‖ fi‖ ≤ K‖ f ‖, where K is independent of f .

The least value of K satisfying the above inequality we call the decomposition
constant, relative to the decomposition {Xi }. If there is a constant K such that
the above inequality holds for all F in Mn(R(X )) and all n, then we say that
{Xi } is a complete decomposition of X and call the least such K the complete
decomposition constant.

Of course every set has a trivial decomposition, namely itself. However, we
shall see that many sets have more interesting decompositions. Before proceed-
ing, we point out the relevance of the above definitions.

Proposition 11.3. Let X be a closed, proper set in C with (complete) decom-
position {Xi } and (complete) decomposition constant K . If T is an operator
such that each Xi is a (complete) Ki -spectral set for T and L = supiKi is finite,
then X is a (complete) K L-spectral set for T .

The algebra R(X ) is called a Dirichlet algebra if R(X ) + R(X ) is dense in
C(∂ X̂ ). We shall call a set X for which R(X ) is a Dirichlet algebra a D-set.
This concept should not be confused with the concept of a Dirichlet set. A set
X is called a Dirichlet set if every continuous function on ∂X has a harmonic
extension to the interior of X . For example, an annulus is a Dirichlet set that is
not a D-set.

Let X be a compact set in C whose boundary consists of n + 1 disjoint,
rectifiable, simple, closed curves (i.e., Jordan curves). Such a set will be called
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a nice n-holed set. If X is a nice n-holed set, let {Ui }ni=0 denote the open
components of C\X , with U0 the unbounded component, and let Xi = C\Ui ,
so that Xi , i = 0, . . . , n, is a closed set with X0 compact. Note that X = X0 ∩
X1 ∩ · · · ∩ Xn . We call {Xi }ni=0 the canonical decomposition of X .

Proposition 11.4. Let X be a nice n-holed set. Then the canonical decompo-
sition of X is a complete decomposition of X.

Proof. Let {X j }nj=0 be the canonical decomposition of X , and let 	 j = ∂X j ,
with 	0 oriented counterclockwise, and 	 j , j = 1, . . . , n, oriented clockwise.
If F ∈ Mk(R(X )), then for z /∈ 	 j , set

Fj (x) = 1

2π i

∫
	 j

F(w)(w − z)−1 dw.

Since F(z) = F0(z) + · · · + Fn(z) for z in the interior of X , it is not difficult
to see that each Fj (z) extends to define a function in Mk(R(X j )), which we still
denote by Fj (z), and that with this extended definition, F(z) = F0(z) + · · · +
Fn(z) for all z ∈ X .

For i �= j , let di, j denote the minimum distance between 	i and 	 j , and let
�i denote the length of 	i times (2π )−1. For i �= j , and z ∈ 	 j , we have that
‖Fi (z)‖ ≤ �i d

−1
i, j ‖F‖. Thus, for z ∈ 	i ,

‖Fi (z)‖ =
∥∥∥∥∥F(z) −

∑
j �=i

Fj (z)

∥∥∥∥∥ ≤ ‖F‖ +
∑
j �=i

� j d
−1
i, j ‖F‖,

and so we have that ‖Fi‖ ≤ ci‖F‖, where ci is a constant independent of k.
Hence,

∑
i ‖Fi‖ ≤ (c0 + · · · + cn)‖F‖, and we have that the canonical de-

composition is a complete decomposition. �

Theorem 11.5. Let X be a nice n-holed set with canonical decomposition
{Xi }ni=0, and let T ∈ B(H). The following are equivalent:

(i) X is a (complete) K-spectral set for T , for some K ,
(ii) each Xi is a (complete) Ki-spectral set for T .

Proof. A straightforward application of Propositions 11.3 and 11.4. �

In Chapter 10 we proved that the hypothesis that X is a K-spectral set for
T does not imply that X is a complete K ′-spectral set for T for some K ′ even
when X is the unit disk.

There is another, more geometric version of Theorem 11.5.
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Corollary 11.6. Let X be a nice n-holed set, with canonical decomposition
{Xi }ni=0, and let T ∈ B(H). Assume that there exist analytic homeomorphisms
fi : X̂ i → D

−, i = 0, . . . , n. The following are equivalent:

(i) there exists an invertible operator S such that S−1T S has a normal ∂X-
dilation,

(ii) there exist invertible operators {Si }ni=0 such that ‖S−1
i fi (T )Si‖ ≤ 1 for

i = 0, . . . , n.

Proof. By Corollary 9.12, statements (i) and (ii) above are equivalent to state-
ments (i) and (ii) of Theorem 11.5, respectively. �

The two results above reduce determining whether or not a nice n-holed
set, with canonical decomposition {Xi }ni=0, is a complete K-spectral set for an
operator T to a finite set of conditions.

As a consequence of these result we have:

Corollary 11.7. Let T be an invertible operator, and assume that there are
invertible operators S1 and S2 satisfying ‖S−1

1 T S1‖ ≤ R, ‖S−1
2 T−1S2‖ ≤ r−1,

with r ≤ R. Then there is an invertible operator S such that ‖S−1T S‖ ≤ R and
‖S−1T−1S‖ ≤ r−1.

Proof. When r < R, this is a direct consequence of Corollary 11.6, by letting
X = {z: r ≤ |z| ≤ R}, f0(z) = z, and f1(z) = z−1.

If r = R, then ‖(T/R)n‖ ≤ ‖S−1
1 ‖ · ‖S1‖, and ‖(T/R)−n‖ ≤ ‖S−1

2 ‖ · ‖S2‖.
Hence, by Corollary 9.4, there exist an invertible operator S such that
S−1(T/R)S is a unitary. Thus, ‖S−1T S‖ ≤ R and ‖S−1T−1S‖ ≤ r−1. �

Theorem 11.8. Let X be a nice n-holed set with canonical decomposition
{Xi }ni=0 and (complete) decomposition constant K . If T ∈ B(H) and each Xi

is a spectral set for T , then X is a (complete) K-spectral set for T .

Proof. Since each Xi is a D-set, the hypothesis that Xi is a spectral set im-
plies that T has a normal ∂Xi -dilation, by Theorem 4.4. That is, Xi is a com-
plete spectral set for T . The remainder of the proof is a direct application of
Propositions 11.3 and 11.4. �

Let X = {z: r ≤ |z| ≤ R}, r < R, be an annulus, so that the canonical de-
composition of X is X0 = {z: |z| ≤ R} and X1 = {z: r ≤ |z|}. We have that X0

is a spectral set for T if and only if ‖T ‖ ≤ R, and X1 is a spectral set for T
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if and only if ‖T−1‖ ≤ r−1. We have seen in an earlier example that ‖T ‖ ≤ R
and ‖T−1‖ ≤ r−1 is not enough, in general, to guarantee that the annulus is a
spectral set for T . However, by the above theorem, the annulus will be a com-
plete K-spectral set for T and so, up to conjugation by a similarity, T will have
a normal ∂X -dilation.

It is not difficult to see from the proof of Proposition 11.4, that 2 + R+r
R−r gives

an upper bound on the complete decomposition constant for the canonical
decomposition of X . It is interesting to contrast this with [211, Proposition 23],
where it is shown that the decomposition constant for this annulus is bounded
by 2 + ( R+r

R−r )
1/2. However, that proof does not appear to generalize to other

sets.
Precise values for the decomposition constant and complete decomposition

constant are not known, even for an annulus. Neither is it known whether these
constants are achieved by operators. That is, for T an operator with ‖T ‖ ≤
R, ‖T−1‖ ≤ r−1, let ρ:R(X ) → B(H) be the homomorphism given by ρ( f ) =
f (T ), where X = {z: r ≤ |z| ≤ R}, and set

K = sup{‖ρ‖: ‖T ‖ ≤ R, ‖T−1‖ ≤ R−1}
and

Kc = sup{‖ρ‖cb: ‖T ‖ ≤ R, ‖T−1‖ ≤ r−1}.
By Proposition 11.3, K and Kc will be less than or equal to the decomposition
constant and the complete decomposition for X , respectively, but it is not known
if these inequalities are strict or are in fact equalities.

There are sets besides nice n-holed sets for which these decomposition tech-
niques are valuable. For example, the sets

X0 =
{
z: |z| ≤ 1 and

∣∣∣∣z − 1

2

∣∣∣∣ ≥ 1

2

}

and

X1 =
{
z:

∣∣∣∣z + 1

2

∣∣∣∣ ≥ 1

4

}

are D-sets [68, VI.11.11], and the proof of Proposition 11.4 can be suitably
modified to show that these sets define a complete decomposition of X = X0 ∩
X1. Consequently, the conclusions of Theorems 11.5 and 11.8 apply to these
sets as well.

Another approach to finitely connected regions involves the concept of a
hypo-Dirichlet algebra. If X is a compact, Hausdorff space, then any subalgebra
A of C(X ) that separates points on X and has the property that the closure of
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A + Ā is of finite codimension n in C(X ) is called a hypo-Dirichlet algebra on
X of codimension n.

Gamelin [103, Theorem IV.8.3] shows that if X is a compact subset of C

whose complement has n bounded components, thenR(X ) is a hypo-Dirichlet
algebra on ∂X of codimension m, with m ≤ n. In fact, if points {z j }nj=1 are
chosen, one from each bounded component of the complement of X , then the
span of the union of R(X ),R(X ), and {ln |z − z j |}nj=1 is dense in C(∂X ).

We shall show that unital, contractive homomorphisms of hypo-Dirichlet
algebras are necessarily completely bounded.

Lemma 11.9. Let A be a unital C∗-algebra, and let S ⊆ A be an opera-
tor system of codimension n. Then for every ε > 0, there exists a completely
positive map φ: A → S and a positive linear functional s on A such that
‖φ‖ ≤ n + 1 + ε, ‖s‖ ≤ n + ε, and φ(x) = x + s(x) · 1 for x ∈ S.

Proof. Let π : A → A/S be the quotient map. It is not difficult to show that
there exist self-adjoint linear functionals �′

1, �
′
2, . . . , �

′
n onA/S and self-adjoint

elements h′
1, h

′
2, . . . , h

′
n in A/S that form a basis, such that ‖�′

i‖ = ‖h′
i‖ = 1

and �i (h′
j ) = δi, j , the Kronecker delta. Let h1, h2, . . . , hn be self-adjoint ele-

ments in A such that π (hi ) = h′
i and ‖hi‖ ≤ 1 + ε/n. Also, let �i = �′

i ◦ π , so
that S = {y ∈ A: �i (y) = 0, i = 1, 2, . . . , n} with ‖�i‖ = 1 and �i (h j ) = δi, j .

By Exercise 7.14, we can write �i = fi − gi , where ‖ fi‖ ≤ 1, ‖gi‖ ≤ 1, and
‖ fi + gi‖ ≤ 1, with fi and gi positive linear functionals on A. If for x in A,
we set

γ (x) = x −
n∑

i=1

�i (x)hi ,

then γ is a projection of A onto S.
Hence the completely positive map φ: A → A defined by

φ(x) = x +
n∑

i=1

gi (x)(‖hi‖ + hi ) +
n∑

i=1

fi (x)(‖hi‖ − hi )

= γ (x) +
n∑

i=1

(gi (x) + fi (x))‖hi‖ · 1

has range in S.

If we set s(x) = ∑n
i=1( fi (x) + gi (x))‖hi‖, then

‖s‖ ≤
n∑

i=1

‖ fi + gi‖‖hi‖ ≤ n + ε,
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and φ(x) = x + s(x) · 1 for x in S. Finally, since φ is completely positive, we
have ‖φ‖ = ‖φ(1)‖ = 1 + s(1) ≤ n + 1 + ε. �

Theorem 11.10. If A ⊆ C(X ) is a hypo-Dirichlet algebra of codimension n,
and ρ: A → B(H) is a unital contraction, then ‖ρ‖cb ≤ 2n + 1.

Proof. Let ε > 0, let S be the closure of A + Ā in C(X ), and let φ: C(X ) →
S and s be as in the previous lemma. If we extend ρ to ρ̃: S → B(H) by
ρ̃( f + ḡ) = ρ( f ) + ρ(g)∗, then ρ̃ will be positive by Proposition 2.12. Thus,
ρ̃ ◦ φ: C(X ) → B(H) is positive and hence completely positive. Finally, for f
in A, we have

ρ( f ) = ρ̃ ◦ φ( f ) − s( f ) · 1H,

so that

‖ρ‖cb ≤ ‖ρ̃ ◦ φ‖cb + ‖s‖cb = ‖ρ̃ ◦ φ(1)‖ + ‖s(1)‖ ≤ 2n + 1 + 2ε,

since ρ̃ ◦ φ and s are completely positive. �

Corollary 11.11. If A ⊆ C(X ) is a hypo-Dirichlet algebra of codimension n,
and ρ: A → B(H) is a unital contractive homomorphism, then ρ is similar to
a homomorphism that dilates to C(X ). Furthermore, the similarity S may be
chosen such that ‖S‖ · ‖S−1‖ ≤ 2n + 1.

Corollary 11.12. Let X be a compact subset of C such that X is a spectral set
for T in B(H). If R(X ) is a hypo-Dirichlet algebra of codimension n on ∂X,
then there exists an invertible operator S in B(H) with ‖S−1‖ · ‖S‖ ≤ 2n + 1
such that S−1T S has a normal ∂X-dilation.

When X is a nice n-holed set, it is interesting to contrast Corollary 11.12
with Theorem 11.8. If X is a spectral set for T , then both theorems allow us to
deduce that X is a complete K-spectral set for T . Corollary 11.12 gives an upper
bound on K of 2n + 1, while the bound on K in Theorem 11.8 comes from the
complete decomposition constant for X relative to the canonical decomposition
of X . The proof of Proposition 11.4 gives a bound on the complete decompo-
sition constant, but the bound one obtains in this manner is always larger than
2n + 1. However, it should be recalled that the hypotheses of Theorem 11.8 are
considerably weaker than those of Corollary 11.12.
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Notes

Most of the results of this chapter were obtained by Douglas and the author in
[77]. Exercise 11.3 is from [241].

Exercises

11.1 Let T be in B(H) and let X = {z: Re(z) ≥ 0}. Prove that the following
are equivalent:
(i) X is a complete spectral set for T .
(ii) X is a spectral set for T .
(iii) C = (T − 1)(T + 1)−1 is a contraction and 1 /∈ σ (C).
(iv) Re(T ) ≥ 0.
(v) (T − 1)∗(T − 1) ≤ (T + 1)∗(T + 1).
Let X be a closed, proper subset of C, T ∈ B(H), and suppose X is a
spectral set for T . We say that T has a normal ∂X-dilation provided
that there exists a Hilbert space K containing H and a bounded normal
operator N in B(K), with σ (N ) ⊆ ∂X, such that f (T ) = PH f (N )|H.

11.2 Let X = {z: Re(z) ≥ 0} be a spectral set for T .
(i) Prove that T has a normal ∂X -dilation if and only if the minimal

unitary dilationU of the contractionC = (T − 1)(T + 1)−1 satisfies
1 /∈ σ (U ).

(ii) Give an example of an operator T such that X is a complete spectral
set for T , but T has no normal ∂X -dilation.

(iii) Let ρ: R(X ) → B(H) be given by ρ( f ) = f (T ). Show that if X is
a complete spectral set for T , then ρ has a C(∂ X̂ )-dilation.

11.3 Let X be a proper, closed subset of C, λ ∈ X̂ , and T ∈ B(H) with σ (T ) ⊆
X . Set Rλ(X ) = { f ∈ R(X ): f (λ) = 0}.
(i) (Williams) Show that if ‖ f (T )‖ ≤ ‖ f ‖ for all f ∈ Rλ(X ), then X

is a spectral set for T .
(ii) Show that if ‖ f (T )‖ ≤ K‖ f ‖ for all f ∈Rλ(X ), then X is a (2K +

1)-spectral set.
(iii) Give an example where ‖ f (T )‖ ≤ K‖ f ‖ for all f ∈R, but X is not

a K-spectral set.
(iv)∗ If ‖ f (T )‖ ≤ ‖ f ‖ for all f ∈ Mn(Rλ(X )) and all n, then is X a

complete spectral set for T ?
11.4 Let Xi , i = 1, . . . , n, be disjoint, compact sets, and let X be their union.

Show that if X is a K-spectral set for T , then T is similar to T1 ⊕ · · · ⊕ Tn
where Xi is Ki-spectral for Ti .



Chapter 12
Tensor Products and Joint Spectral Sets

In this chapter we outline some of the theory of tensor products of C∗-algebras,
operator spaces, and operator systems, and apply this theory to multivariable
dilation theory. An n-tuple of operators (T1, . . . , Tn) is said to doubly commute
provided that Ti Tj = Tj Ti and Ti T ∗

j = T ∗
j Ti for all i �= j . We shall see that,

for doubly commuting operators, a natural setting for generalizing the theory
of spectral sets from a single-variable theory to a multivariable theory is the
theory of tensor products of operator systems.
LetA andB be unitalC∗-algebras. Then their tensor product can bemade into

a ∗-algebra by setting (a ⊗ b)∗ = a∗ ⊗ b∗ and extending linearly. By a cross-
norm, we mean a norm ‖·‖γ on A ⊗ B with the property that ‖a ⊗ b‖γ =
‖a‖‖b‖ for a ∈ A and b ∈ B. By a C∗-cross-norm, we mean a cross-norm
on A ⊗ B that also satisfies the C∗-algebra axioms, ‖xy‖γ ≤ ‖x‖γ ‖y‖γ and
‖x∗x‖γ = ‖x‖2γ = ‖x∗‖γ for x, y ∈ A ⊗ B. The completion of A ⊗ B with
respect to a C∗-cross-norm γ is a C∗-algebra, which we denote by A ⊗γ B.

In general, there are many possible C∗-cross-norms onA ⊗ B, but there are
two that we shall be interested in, the maximal and minimal C∗-cross-norms.
In order to construct the minimal C∗-cross-norm, we recall the theory of

tensor products of Hilbert spaces. Suppose that H and K are Hilbert spaces.
It is well known that if we set 〈h ⊗ k, h′ ⊗ k ′〉 = 〈h, h′〉H〈k, k ′〉K and extend
linearly, then we obtain an inner product onH ⊗ K. The completion ofH ⊗ K
with respect to this inner product is a Hilbert space, which we still denote
by H ⊗ K. If T and S are operators on H and K, respectively, then setting
(T ⊗sp S)(h ⊗ k) = (Th) ⊗ (Sk) extends to define a bounded, linear operator
onH ⊗ K with ‖T ⊗sp S‖ = ‖T ‖‖S‖.
It is fairly easy to check that (T1 ⊗sp S1)(T2 ⊗sp S2) = (T1T2) ⊗sp (S1S2) and

that (T ⊗sp S)∗ = T ∗ ⊗sp S∗.
IfAi ⊆ B(Hi ), i = 1, 2, are two C∗-subalgebras, then we define the spatial

tensor product, A1 ⊗sp A2, to be the subspace of B(H ⊗ K) spanned by the

159
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operators T ⊗sp S with T ∈ A1 and S ∈ A2. It can be shown that the map
from the tensor productA1 ⊗ A2 toA1 ⊗sp A2 is one-to-one and hence setting
‖ ∑

Ti ⊗ Si‖sp = ‖ ∑
Ti ⊗sp Si‖ defines a cross-norm. From this it follows

easily that ‖·‖sp is a C∗-cross-norm. See [233] for proofs of these facts.
Ifπ1: A1 → B(H1) andπ2: A2 → B(H2) are unital ∗-homomorphisms, then

we get a unital, ∗-preserving homomorphism π1 ⊗π2:A1⊗A2→ B(H1 ⊗H2)
by setting π1 ⊗ π2(a ⊗ b) = π1(a) ⊗sp π2(b). Thus, if for x ∈ A1 ⊗ A2 we
set ‖x‖min = sup{‖π1 ⊗ π2(x)‖: πi : Ai → B(Hi ) unital, ∗-homomorphism,
i = 1, 2}, then we obtain a C∗-cross-norm onA1 ⊗ A2. This norm is called the
minimal norm, and the completion ofA1 ⊗ A2 in this norm is denotedA1 ⊗min

A2. Note that it has the property that ifπi :Ai → B(Hi ), i = 1, 2, are any unital
∗-homomorphism, then π1 ⊗ π2: A1 ⊗ A2 → B(H1 ⊗ H2) can be extended,
by continuity, to a unital ∗-homomorphism ofA1 ⊗min A2, denotedπ1 ⊗min π2.

The following result is explains the name of this C∗-cross-norm. For a proof,
see [233, Theorem IV.4.19].

Theorem 12.1 (Takesaki). Let A1 and A2 be unital C∗-algebras. If γ is a
C∗-cross-norm on A1 ⊗ A2, then ‖x‖min ≤ ‖x‖γ for all x ∈ A1 ⊗ A2.

Corollary 12.2. LetA1 andA2 be unital C∗-algebras. If πi :Ai → B(Hi ) are
one-to-one, unital ∗-homomorphisms, then for x ∈ A1 ⊗ A2, ‖x‖min = ‖π1 ⊗
π2(x)‖.

Proof. By definition, ‖x‖min ≥ ‖π1 ⊗ π2(x)‖. But setting ‖x‖γ = ‖π1 ⊗
π2(x)‖ defines a C∗-cross-norm, from which the other inequality follows. �

Thus,whenAi ⊆ B(Hi ) are concreteC∗-subalgebras theminimal and spatial
C∗-cross-norms are equal.

Suppose that Bi , i = 1, 2, are unital C∗-algebras and thatAi ⊆ Bi , i = 1, 2,
are unital C∗-subalgebras. For x ∈ A1 ⊗ A2 ⊆ B1 ⊗ B2, we have two possible
definitions of ‖x‖min, depending on whether we view it as an element of A1 ⊗
A2 or of B1 ⊗ B2. However, if we fix πi : Bi → B(Hi ), i = 1, 2, unital, one-
to-one ∗-homomorphisms, then since their restrictions are also unital, one-to-
one ∗-homomorphisms of Ai , i = 1, 2, by Corollary 12.2 we have ‖x‖min =
‖π1 ⊗ π2(x)‖, independent of whether we regard it as an element of A1 ⊗ A2

or B1 ⊗ B2.

This observation can perhaps best be summarized by saying that the natural
inclusion ofA1 ⊗ A2 into B1 ⊗ B2 extends to a ∗-isomorphism ofA1 ⊗min A2

onto the norm closure of A1 ⊗ A2 in B1 ⊗min B2. Because of this last fact, the
minimal C∗-cross-norm is also often called the injective C∗-cross-norm.
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We use this observation to define a min norm on tensor products of operator
spaces. Suppose thatAi , i = 1, 2, are unital C∗-algebras and that Si ⊆Ai , i =
1, 2, are subspaces.We then define themin norm onS1 ⊗ S2 to be the restriction
of the min norm on A1 ⊗ A2 and let S1 ⊗min S2 denote this operator space.
Note that if S1 and S2 are operator systems, then S1 ⊗min S2 is also an operator
system.
It is important to note that since we are defining S1 ⊗min S2 as a concrete

subspace of the C∗-algebraA1 ⊗min A2, it is endowed with a matrix norm and,
in the case of operator systems, a matrix order.

Theorem 12.3. LetAi andBi be unital C∗-algebras, letSi ⊆ Ai be subspaces,
and let Li :Si → Bi be completely bounded, i = 1, 2. Then the linearmap L1 ⊗
L2: S1 ⊗ S2 → B1 ⊗ B2, given by (L1 ⊗ L2)(a1 ⊗ a2) = L1(a1) ⊗ L2(a2), de-
fines a completely bounded map L1 ⊗min L2: S1 ⊗min S2 → B1 ⊗min B2, with
‖L1 ⊗min L2‖cb = ‖L1‖cb‖L2‖cb. If S1 and S2 are operator systems and L1

and L2 are completely positive, then L1 ⊗min L2 is completely positive.

Proof. Let Bi ⊆ B(Hi ), i = 1, 2. If we can show that L1 ⊗ L2: S1 ⊗ S2 →
B(H1 ⊗ H2) is completely bounded in the min norm with ‖L1 ⊗ L2‖cb =
‖L1‖cb‖L2‖cb, then we shall be done by the injectivity of the min norm.
By the extension theorem for completely bounded maps, we may extend
Li to L̃ i : Ai → B(Hi ) with ‖L̃ i‖cb = ‖Li‖cb, i = 1, 2. Now applying the
generalized Stinespring representation, we obtain unital ∗-homomorphisms
πi : Ai → B(Ki ), and bounded operators Vi : Hi →Ki ,Wi : Hi → Ki with
‖Vi‖‖Wi‖ = ‖Li‖cb, such that

L̃ i (ai ) = V ∗
i πi (a)Wi , ai ∈ Ai , i = 1, 2.

Consider V1 ⊗ V2: H1 ⊗H2 →K1 ⊗K2,W1 ⊗W2: H1 ⊗H2 →K1 ⊗K2,
and π1 ⊗min π2: A1 ⊗min A2 → B(K1 ⊗ K2). We have that (V1 ⊗ V2)∗(π1 ⊗
π2)(a1 ⊗ a2)(W1 ⊗ W2) = L̃1(a1) ⊗ L̃2(a2). Thus, ‖L1 ⊗ L2‖cb ≤ ‖V1 ⊗ V2‖
‖W1 ⊗ W2‖ = ‖L1‖cb‖L2‖cb on S1 ⊗ S2. We leave it to the reader to verify
that ‖L1‖cb‖L2‖cb ≤ ‖L1 ⊗ L2‖cb.
IfS1 andS2 are operator systems and L1 and L2 are completely positive, then

we argue as above, using the extension theorem for completely positive maps.
In this case, we find that Vi = Wi , i = 1, 2, from which the result follows. �

Corollary 12.4. Let S1 and S2 be operator spaces, x ∈ S1 ⊗ S2. Then

‖x‖min = sup{‖L1 ⊗ L2(x)‖: Li : Si → B(Hi ), ‖Li‖cb ≤ 1, i = 1, 2}.
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Furthermore, if S1 and S2 are operator systems, then we may take Li to be
completely positive, i = 1, 2.

The above corollary shows that the min norm on tensor products of operator
spaces is invariant under completely isometric isomorphisms of those operator
spaces.
Let X be a compact, Hausdorff space and let A be a unital C∗-algebra. We

let C(X ;A) denote the continuous functions from X intoA, equipped with the
norm ‖F‖ = sup{‖F(x)‖: x ∈ X} for F ∈ C(X ;A). It is easy to check that if
we definemultiplication, addition, and the ∗-operation pointwise, thenC(X ;A)
is a C∗-algebra.

Now define a ∗-homomorphism from C(X ) ⊗ A into C(X ;A) by

n∑
i=1

fi ⊗ ai → F(x) =
n∑

i=1

fi (x)ai .

It is straightforward that setting ‖ ∑n
i=1 fi ⊗ ai‖γ = ‖F‖ defines a C∗-cross-

norm onC(X ) ⊗ A. Furthermore, a standard partition-of-unity argument shows
that the image of C(X ) ⊗ A is dense in C(X ;A). Thus, the above mapping
extends to a ∗-isomorphism of C(X ) ⊗γ A with C(X ;A).
We can now show that γ is actually the minimal C∗-cross-norm. To see

this, note that for each fixed x ∈ X , the map f → f (x) extends to a contractive,
linear map onC(X ). Thus by Exercise 12.1, themap f ⊗ a → f (x)a extends to
a contractive linear map from C(X ) ⊗min A toA, and so ‖ ∑n

i=1 fi ⊗ ai‖min ≥
‖ ∑n

i=1 fi (x)ai‖. This shows that the min C∗-cross-norm is greater than the
γ C∗-cross-norm, and consequently they must be equal.
We have shown the following:

Proposition 12.5. Let X be a compact, Hausdorff space and let A be a uni-
tal C∗-algebra. Then the map f ⊗ a → f (x)a extends to a ∗-isomorphism
between C(X ) ⊗min A and C(X ; A).

We note that in the particular case whereA = C(Y ) for a compact Hausdorff
space Y , the usual identification of a continuous function on X × Y with a
continuous function from X into C(Y ) is a ∗-isomorphism of C(X ;C(Y )) and
C(X × Y ). Thus, C(X × Y ) is ∗-isomorphic to C(X ) ⊗min C(Y ).

IfSi ⊆ C(Xi ) is a subspace, i = 1, 2, then themin normonS1 ⊗ S2 is just the
norm one obtains by viewing an element of S1 ⊗ S2 as a function on X1 × X2.
Furthermore, ifS1 andS2 are operator systems, then an element ofMn(S1 ⊗ S2)
will be positive if and only if it is a positive matrix-valued function on X1 × X2.
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We now turn our attention to the max norm. Let A and B be unital C∗-
algebras, and let π1: A→ B(H), π2: B → B(H) be unital ∗-homomorphisms
such thatπ1(a)π2(b) = π2(b)π1(a) for all a ∈ A and b ∈ B.Wemay then define
a unital ∗-homomorphism π : A ⊗ B → B(H) via π (x) = ∑n

i=1 π1(ai )π2(bi ),
where x = ∑n

i=1 ai ⊗ bi . Conversely, if we’re given a unital ∗-homomorphism
π : A ⊗ B → B(H) and we define π1(a) = π (a ⊗ 1), π2(b) = π (1 ⊗ b), then
we obtain a pair of unital ∗-homomorphisms of A and B, respectively, with
commuting ranges such that π (a ⊗ b) = π1(a)π2(b).
We define

‖x‖max = sup{‖π (x)‖: π : A ⊗ B → B(H) unital ∗-homomorphisms}.

Thus, if π1: A→ B(H), π2: B→ B(H), are unital ∗-homomorphisms with
commuting ranges, thenwehave aunital∗-homomorphismπ1 ⊗max π2:A ⊗max

B → B(H) satisfying π1 ⊗max π2(a ⊗ b) = π1(a)π2(b).

Proposition 12.6. Let A and B be unital C∗-algebras, let x ∈ A ⊗ B, and let
γ be a C∗-cross-norm on A ⊗ B. Then ‖x‖γ ≤ ‖x‖max.

Proof. By the Gelfand–Naimark–Segal theorem, there is a unital ∗-
homomorphism π : A ⊗γ B→ B(H) with ‖x‖γ = ‖π (x)‖. Since ‖π (x)‖ ≤
‖x‖max by definition, the proof is complete. �

If we have C∗-algebras Ai ⊆ Bi , i = 1, 2, then the natural inclusion A1 ⊗
A2 ⊆ B1 ⊗ B2 ⊆ B1 ⊗max B2 induces aC∗-cross-norm γ onA1 ⊗ A2. TheC∗-
algebra A1 ⊗γ A2 can be identified with the closure of A1 ⊗ A2 in B1 ⊗max

B2. Thus, by Proposition 12.6, we have a ∗-homomorphism A1 ⊗max A2 →
B1 ⊗max B2, which, in general, can be norm-decreasing.
Moreover, if πi : Ai →Bi , i = 1, 2, are onto ∗-homomorphisms, then π1

⊗max π2: A1 ⊗max A2 → B1 ⊗max B2 is onto, but not necessarily one-to-one.
For these reasons, the max norm is often referred to as the projective C∗-cross-
norm.
Unfortunately, the max norm on tensor products is not compatible with com-

pletely bounded maps. Huruya [123] has given an example of a completely
bounded map L: A1 → A2 and a C∗-algebra B such that the map L ⊗ id:
A1 ⊗ B → A2 ⊗ B, defined by L ⊗ id(a ⊗ b) = L(a) ⊗ b, does not even ex-
tend to a bounded map fromA1 ⊗max B intoA2 ⊗max B. However, it is the case
that the tensor product of completely positive maps yields a completely positive
map on the tensor product in the max norm. This fact is a consequence of the
following commutant lifting theorem of Arveson [6].
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For a setS ⊆ B(H), letS ′ = {T ∈ B(H): T S = ST for all S ∈ S} denote the
commutant of S. Note that S ′ is always an algebra and that when S is self-
adjoint, S ′ is a C∗-algebra.

Theorem 12.7 (Arveson). Let H and K be Hilbert spaces, let B ⊆ B(K) be
a C∗-algebra containing 1K, and let V :H → K be a bounded linear transfor-
mation with BVH norm-dense in K. Then for every T ∈ (V ∗BV )′, there exists
a unique T1 ∈ B′ such that V T = T1V . Furthermore, the map T → T1 is a
∗-homomorphism of (V ∗BV )′ onto B′ ∩ {VV ∗}′.

Proof. Let A1, . . . , An be in B, and let h1, . . . , hn be in H. Note that if a T1
with the desired properties exists, then

T1

(
n∑

i=1

AiV hi

)
=

n∑
i=1

AiV T hi . (∗)

Since the vectors appearing in the left-hand side of the above formula are dense
in K, this shows that such a T1, provided that it exists, is necessarily unique.
Thus, we need to prove that the above formula yields a well-defined, bounded

operator. Note that if P and Q are commuting positive operators and x is a
vector, then 〈PQx, x〉 = 〈PQ1/2x, Q1/2x〉 ≤ ‖P‖〈Qx, x〉. We have that∥∥∥∥∥

n∑
i=1

AiV T hi

∥∥∥∥∥
2

=
n∑

i, j=1

〈T ∗V ∗A∗
i A j V T h j , hi 〉

=
n∑

i, j=1

〈T ∗T V ∗A∗
i A j V h j , hi 〉 = 〈PQx, x〉,

where Q = (V ∗A∗
i A j V )ni, j=1, x = h1 ⊕ · · · ⊕ hn , and P is the diagonal n × n

operator, whose entries are T ∗T . Thus, P and Q are positive and commute, and
so ∥∥∥∥∥

n∑
i=1

AiV T hi

∥∥∥∥∥
2

≤ ‖P‖〈Qx, x〉 = ‖T ‖2 ·
∥∥∥∥∥

n∑
i=1

AiV hi

∥∥∥∥∥
2

.

This equation shows that the formula (∗) yields awell-defined, boundedoperator
with ‖T1‖ ≤ ‖T ‖.
From the formula (∗) it is clear that the map π , given by π (T ) = T1, is

a homomorphism into B′. To see that it is a ∗-homomorphism, calculate

〈π (T )A1Vh1, A2Vh2〉 = 〈V ∗A∗
2A1VTh1, h2〉

= 〈T V ∗A∗
2A1Vh1, h2〉 = 〈A1Vh1, A2VT ∗h2〉 = 〈A1Vh1, π (T

∗)A2Vh2〉.
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Since linear combinations of vectors of the above form are dense inK, we have
that π (T )∗ = π (T ∗).
To see that T1 is also in the commutant of VV ∗, observe

T1VV ∗ = V TV ∗ = V (VT ∗)∗ = V (T ∗
1 V )∗ = VV ∗T1.

Finally, to see that π is onto B′ ∩ {VV ∗}′, let X ∈B′ ∩ {VV ∗}′ and let
V ∗ =W ∗P be the polar decomposition of V ∗, so that X commutes with
P = (VV ∗)1/2. Let T = W ∗XW ; then for A ∈ B,

T V ∗AV = W ∗XWW ∗PAPW = W ∗X PAPW = W ∗PAPXW

= V ∗APWW ∗XW = V ∗AVT,

so that T is in the commutant of V ∗BV . Also, VT = PWW ∗XW = PXW =
X PW = XV , so that π (T ) = X . Thus, the ∗-homomorphism π is indeed onto
B′ ∩ {VV ∗}′. �

Note that T is in the kernel of the above ∗-homomorphism π if and only
if VT = 0. Thus, if V has trivial kernel, then π is a ∗-isomorphism. It is also
worthwhile to note that even when the map π has a kernel, the map θ (X ) =
W ∗XW defines a completely positive splitting of π , i.e., π ◦ θ(X ) = X .

Theorem 12.8. Let A1,A2, and B be unital C∗-algebras, and let θi : Ai →
B, i = 1, 2, be completely positive maps with commuting ranges. Then there
exists a completely positive map θ1 ⊗max θ2: A1 ⊗max A2 → B with θ1 ⊗max

θ2(a1 ⊗ a2) = θ1(a1)θ2(a2).

Proof. Clearly, we may assume that B = B(H). Let (π1, V1,K1) be a mini-
mal Stinespring representation of θ1, and let γ1: (V ∗

1 π1(A1)V1)′ → π1(A1)′ ∩
{V1V ∗

1 }′ be the ∗-homomorphismof Theorem12.7.We then have thatπ1:A1 →
B(K1), θ̃2 = γ1 ◦ θ2:A2 → B(K1) are completely positivemapswith commut-
ing ranges.
Let V ∗

1 = W ∗
1 P1 be the polar decomposition of V ∗

1 . By the remarks fol-
lowing Theorem 12.7, θ2(a2) − W ∗

1 θ̃2(a2)W1 is in the kernel of γ1 and conse-
quently, V1(θ2(a2) − W ∗

1 θ̃2(a2)W1) = 0. Thus, V1θ2(a2) = V1W ∗
1 θ̃2(a2)W1 =

P1θ̃2(a2)W1 = θ̃2(a2)P1W1 = θ̃2(a2)V1, since θ̃2(a2) commutes with V1V ∗
1 =

P2
1 and hence with P1. Hence, we have that

V ∗
1 π1(a1)θ̃2(a2)V1 = V ∗

1 π1(a1)V1θ2(a2) = θ1(a1)θ2(a2).

Repeating the above argument, we let (π2,K2, V2) be a minimal Stinespring
representation of θ̃2 and let γ2: (V ∗

2 π2(A2)V2)′ → π2(A2)′ ∩ {V2V ∗
2 }′. Then
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π̃1 = γ2 ◦ π1: A1 → B(K2) is a ∗-homomorphism whose range commutes
with π2(A2). Also V ∗

2 π2(a2)π̃1(a1)V2 = θ̃2(a2)π (a1).
Finally, by the universal property of the max norm, we have a ∗-

homomorphism, π : A1 ⊗max A2 → B(K2) with π (a1 ⊗ a2) = π̃1(a1)π2(a2).
Let V : H → K2 be defined by V = V2V1, so that θ : A1 ⊗max A2 → B(H),
defined by θ (x) = V ∗π (x)V , is completely positive. Finally,

θ (a1 ⊗ a2) = V ∗
1 V

∗
2 π̃1(a1)π2(a2)V2V1 = V ∗

1 π1(a1)θ̃2(a2)V1 = θ1(a1)θ2(a2).

Thus, θ1 ⊗max θ2 = θ is the desired completely positive map. �

Because of the different properties of the max and min norm, it is important
to know when they coincide, that is, when there is a unique C∗-cross-norm
on A ⊗ B. A C∗-algebra A that has the property that the max and min C∗-
cross-norms coincide for every unital C∗-algebra B is called nuclear. There is
a deep and elegant theory characterizing these C∗-algebras. See Lance [135]
for an excellent survey. For our current purposes it will be enough to know
that commutative C∗-algebras are nuclear. It is also valuable to note that Mn is
nuclear (Exercise 12.4), so that the norm we defined on Mn(A) = Mn ⊗ A is
the unique C∗-cross-norm.

Proposition 12.9. Let X be a compact Hausdorff space. Then C(X ) is nuclear.

Proof. Let B be a unital C∗-algebra, and let π1: C(X ) → B(H), π2: B →
B(H), be ∗-homomorphisms with commuting ranges. It will be sufficient to fix∑n

i=1 fi ⊗ bi in C(X ) ⊗ B and show that its max and min norm coincide. By
Proposition 12.5 we have that∥∥∥∥∥

n∑
i=1

fi ⊗ bi

∥∥∥∥∥
min

= sup

{∥∥∥∥∥
n∑

i=1

fi (x)bi

∥∥∥∥∥: x ∈ X

}
.

Let E be the B(H)-valued spectral measure associated with the ∗-
homomorphism π1. If B is a Borel set in X , then the projection E(B) will
commute with π2(B), since π2(B) commutes with π1(C(X )). This implies that∥∥∥∥∥

n∑
i=1

π1( fi )π2(bi )

∥∥∥∥∥ = sup

{∥∥∥∥∥E(B)
(

n∑
i=1

π1( fi )π2(bi )

)∥∥∥∥∥ ,

∥∥∥∥∥(E(X\B)
(

n∑
i=1

π1( fi )π2(bi )

)∥∥∥∥∥
}

.
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Consequently, if {Uλ} is any open cover of X ,∥∥∥∥∥
n∑

i=1

π1( fi )π2(bi )

∥∥∥∥∥ = sup
λ

{∥∥∥∥∥E(Uλ)

(
n∑

i=1

π1( fi )π2(bi )

)∥∥∥∥∥
}

.

Now fix ε > 0, and for each x ∈ X , choose an open neighborhood Ux of
x such that | fi (x) − fi (y)| < ε for y ∈ Ux , i = 1, . . . , n. This implies that
‖E(Ux )π1( fi ) − fi (x)E(Ux )‖ < ε. Thus,∥∥∥∥∥E(Ux )

(
n∑

i=1

(π1( fi ) − fi (x))π2(bi )

)∥∥∥∥∥ < ε(‖bi‖ + · · · + ‖bn‖).

Since the collection {Uλ} forms an open cover, we have∥∥∥∥∥
n∑

i=1

π1( fi )π2(bi )

∥∥∥∥∥ ≤ sup

{∥∥∥∥∥
n∑

i=1

fi (x)π2(bi )

∥∥∥∥∥: x ∈ X

}

+ ε(‖b1‖ + · · · + ‖bn‖)

≤
∥∥∥∥∥

n∑
i=1

fi ⊗ bi

∥∥∥∥∥
min

+ ε(‖b1‖ + · · · + ‖bn‖).

Finally, using the facts that ε was arbitrary and that the max norm is
the supremum over all such π1 and π2, we have ‖ ∑n

i=1 fi ⊗ bi‖max ≤
‖ ∑n

i=1 fi ⊗ bi‖min, which completes the proof. �

We are now in a position to discuss some of the applications of the tensor
theory to operator theory. Recall that a set of operators {Ti } is said to doubly
commute if T ∗

i Tj = Tj T ∗
i and Ti Tj = Tj Ti for i �= j . This is equivalent to

requiring that the C∗-algebras generated by each of these operators commutes
with theC∗-algebra generated by any of the other operators, but does not require
that each of these C∗-algebras be commutative.

Theorem 12.10 (Sz.-Nagy–Foias). Let {Ti }ni=1 be a doubly commuting family
of contractions on a Hilbert spaceH. Then there exists a Hilbert space K con-
taining H as a subspace, and a doubly commuting family of unitary operators
{Ui }ni=1 on K, such that

T1(k1) · · · Tn(kn) = PHU
k1
1 · · ·Ukn

n

∣∣
H, where T (k) =

{
T k, k ≥ 0

T ∗−k, k < 0.

Moreover, ifK is the smallest reducing subspace for the family {Ui }ni=1 contain-
ingH, then {Ui }ni=1 is unique up to unitary equivalence. That is, if {U ′

i }ni=1 and
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K′ are another such set and space, then there is a unitary W : K→K′ leaving
H fixed such that WUiW ∗ = U ′

i , i = 1, . . . , n.

Proof. First, assume that n = 2. Then we have completely positive maps
θi : C(T) → B(H) defined by θi (p + q̄) = p(Ti ) + q(Ti )∗, i = 1, 2. Since the
range of θ1 commutes with the range of θ2, there is a completely positive
map θ1 ⊗max θ2: C(T) ⊗max C(T) → B(H) satisfying θ1 ⊗max θ2( f1 ⊗ f2) =
θ1( f1)θ2( f2).
However, we have that C(T) ⊗max C(T) is ∗-isomorphic to C(T × T).

Thus, we have a completely positive map θ : C(T2) → B(H) with θ (zk11 z
k2
2 ) =

T1(k1)T2(k2), where z1 and z2 are the coordinate functions on T
2. The result

now follows for n = 2 by considering the Stinespring representation of θ .
For n > 2, by using the associativity of the tensor product (Exercise 12.7),

and arguing as above, one obtains a completely positive map θ :C(Tn)→ B(H)
with θ (zk11 · · · zknn ) = T1(k1) · · · Tn(kn). �

The above result, for n = 2, is weaker than Ando’s Dilation Theorem, since
that result does not assume that the operators doubly commute.
For operator systemsSi ⊆ Ai , i = 1, 2,wewish todefine a commutativemax

norm. Because of the projective properties of the max norm, it is not sufficient
to just consider the norm induced by the inclusion S1 ⊗ S2 ⊆ A1 ⊗max A2.
Instead we take Theorem 12.8 as our defining property. If θi : Si → B(H), i =
1, 2, are maps with commuting ranges, we always have a well-defined map
θ1 ⊗ θ2: S1 ⊗ S2 → B(H). For (xi, j ) ∈ Mn(S1 ⊗ S2), we set

‖(xi, j )‖max = sup{‖(θ1 ⊗ θ2(xi, j ))‖: θ�: S� → B(H), � = 1, 2},

where θ1 and θ2 are unital, completely positivemapswith commuting ranges and
H is an arbitrary Hilbert space. By considering the direct sum of sufficiently
many of the maps θ1 ⊗ θ2, we can obtain a unital map γ : S1 ⊗ S2 → B(H)
with the property that ‖(xi, j )‖max = ‖(γ (xi, j ))‖ for all (xi, j ) ∈ Mn(S1 ⊗ S2) and
all n.
We then define S1 ⊗max S2 to be the concrete operator system that is the

image of γ (S1 ⊗ S2).
Note that if S1 and S2 were actually C∗-algebras, then by Theorem 12.8, the

norms on Mn(S1 ⊗ S2) as above would correspond to the original definition.
That is, given twoC∗-algebras, theirmaximal tensor product as operator systems
coincides with their maximal tensor product as C∗-algebras.

We summarize the properties of S1 ⊗max S2 as follows:
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Proposition 12.11. Let S1 and S2 be operator systems, B be a C∗-algebra,
and θi : Si → B, i = 1, 2, be completely positive maps with commuting ranges.
Then:

(i) there exists a completely positive map θ1 ⊗max θ2: S1 ⊗max S2 → B with
θ1 ⊗max θ2(a1 ⊗ a2) = θ1(a1)θ2(a2);

(ii) an element (xi, j ) in Mn(S1 ⊗max S2) is positive if and only if the matrix
(θ1 ⊗max θ2(xi, j )) is positive in Mn(B) for every pair θ1, θ2 of completely
positive maps with commuting ranges and every C∗-algebra B.

Proof. Exercise 12.5. �

As with C∗-algebras, it is important to know when the min and max norms
coincide on operator systems. If A is a nuclear C∗-algebra, then for every
operator system S, the min and max norms onA ⊗ S coincide (Exercise 12.6).
Thus, we define an operator system S to be nuclear if for every operator system
T , the min and max norms coincide on S ⊗ T .
We now have all the necessary concepts to discuss joint spectral sets and joint

dilations. Let Xi ⊆ C be compact, i = 1, . . . , n. We set X = X1 × · · · × Xn

and define ∂d X = ∂X1 × · · · × ∂Xn . We let Rd (X ) denote the subalgebra
of C(∂d X ) spanned by functions of the form r1(z1) · · · rn(zn), ri ∈ R(Xi ),
and let R(X ) denote the subalgebra of C(∂d X ) consisting of the rational
functions, R(X ) = {p(z1, . . . , zn)/q(z1, . . . , zn): p, q are polynomials, q �= 0
on X}.
The algebraRd (X ) is contained inR(X ), is algebraically isomorphic to the

tensor product R(X1) ⊗ · · · ⊗ R(Xn), and, in general, is not dense in R(X ).
Suppose that Ti ∈ B(H), Xi is a Ki -spectral set for Ti , i = 1, . . . , n, the set
{Ti }ni=1 commutes, and we have a well-defined homomorphism, ρ: Rd (X ) →
B(H), given by ρ(r1 · · · rn) = r1(T1) · · · rn(Tn). In this case, we call X a joint K -
spectral set for {Ti }ni=1 provided that ‖ρ‖ ≤ K , and a complete joint K -spectral
set provided that ‖ρ‖cb ≤ K .
If there exists a family of commuting normals {Ni }ni=1 on a Hilbert space

K, containing H with σ (Ni ) ⊆ ∂Xi , then we call {Ni }ni=1 a joint normal ∂d X-
dilation of {Ti }ni=1 provided that r1(T1) · · · rn(Tn) = PHr1(N1) · · · rn(Nn)|H for
all ri ∈ R(Xi ). The following is immediate.

Proposition 12.12. Let {Ti }ni=1 be a family of commuting operators. Then
{Ti }ni=1 has a joint normal ∂d X-dilation if and only if X is a complete joint
spectral set for {Ti }ni=1. There exists an invertible S with ‖S−1‖ · ‖S‖ ≤ K such
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that {S−1Ti S}ni=1 has a joint normal ∂d X-dilation if and only if X is a complete
joint K -spectral set for {Ti }ni=1.

Theorem 12.13. Let {Ti }ni=1 be doubly commuting operators, and let Xi be
a complete spectral set for Ti . If R(Xi ) + R(Xi ) is dense in C(∂Xi ) for i =
1, . . . , n − 1, then {Ti }ni=1 has a joint normal ∂d X-dilation.

Proof. Assume n = 2, and let Si denote the closure of R(Xi ) + R(Xi ) in
C(∂Xi ), so thatS1 =C(∂X1). By hypothesis, we have completely positivemaps
θi :Si → B(H) satisfying θi ( f + ḡ) = f (Ti ) + g(Ti )∗, with commuting ranges.
Thus, we have a completely positivemap θ1 ⊗max θ2:S1 ⊗max S2 → B(H). But
S1 ⊗max S2 = S1 ⊗min S2 and S1 ⊗min S2 is completely isometrically embed-
ded in C(∂X1) ⊗min C(∂X2) = C(∂d X ).

Thus, for ( fi, j ) ∈ Mn(Rd (X )),wehave ‖(ρ( fi, j ))‖ = ‖(θ1 ⊗max θ2( fi, j ))‖ ≤
‖( fi, j )‖max = ‖( fi, j )‖min, where ρ:Rd (X ) → B(H) is the homomorphism de-
fined by ρ(r1(z1)r2(z2)) = r1(T1)r2(T2). But since ‖( fi, j )‖min is just the norm
of ( fi, j ) in Mn(C(∂d X )), we have that X is a complete joint spectral set for
{T1, T2}.
The proof for n > 2 is analogous. �

Lemma 12.14. Let X be a compact Hausdorff space, S ⊆ C(X ) an operator
system of codimension n, and T another operator system. Then for (ai, j ) ∈
Mk(S ⊗ T ), one has ‖(ai, j )‖max ≤ (2n + 1)‖(ai, j )‖min.

Proof. By Lemma 11.9, for any ε > 0 there is a completely positive map
φ: C(X ) → S with the property that for f ∈ S, φ( f ) = f + s( f ) · 1, where
s is a positive linear functional with ‖s‖ ≤ n + ε, ‖φ‖ ≤ n + 1 + ε. Let a =∑k

i=1 fi ⊗ bi ∈ S ⊗ T , and note that we have a completely positive map φ ⊗
id: C(X ) ⊗max T → S ⊗max T with ‖φ ⊗ id‖ = ‖φ ⊗ id(1 ⊗ 1)‖ ≤ n + 1 +
ε. Note that a can also be regarded as an element of C(X ) ⊗ T . But since C(X )
is nuclear and since the min norm is injective, the max and min norms of a in
C(X ) ⊗ T and the min norm of a in S ⊗ T all coincide. Thus, we have that
‖φ ⊗ id(a)‖max ≤ (n + 1 + ε)‖a‖min. But φ ⊗ id(a) = a + ∑k

i=1 s( fi )1 ⊗ bi ,
and so

‖a‖max ≤ ‖φ ⊗ id(a)‖max +
∥∥∥∑

s( fi )bi
∥∥∥≤ (n+1+ ε)‖a‖min + (n + ε)‖a‖min.

The last inequality follows by noting that s ⊗min id: S ⊗min T → T satisfies
‖s ⊗min id‖ = ‖s‖. Thus, ‖a‖max ≤ (2n + 1)‖a‖min, since ε was arbitrary.
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The proof for matrices is similar and uses the complete positivity of all the
maps. �

Theorem 12.15. Let {Ti }n+1
i=1 be doubly commuting operators with Xi a com-

plete spectral set for Ti . If R(Xi ) is a hypo-Dirichlet algebra of codimension
ki on ∂Xi , i = 1, . . . , n, then there exists a similarity S with ‖S‖ · ‖S−1‖ ≤
(2k1 + 1) · · · (2kn + 1) such that {S−1Ti S}n+1

i=1 has a joint, normal ∂d X-dilation.

Proof. First assume that n = 1. Let Si = R(Xi ) + R(Xi ), and let φi : Si →
B(H) be defined by φi ( f + ḡ) = f (Ti ) + g(Ti )∗. Then φ1 and φ2 have com-
muting ranges, and so there is a completely positive map φ1 ⊗max φ2: S1 ⊗max

S2 → B(H) and ‖φ1 ⊗max φ2‖cb = 1. But by the above lemma, the map
θ1 ⊗ θ2: S1 ⊗ S2 → B(H) will extend to be completely bounded in the min
norm, with ‖θ1 ⊗min θ2‖ ≤ 2k1 + 1. Thus, X is a complete, joint (2k1 + 1)-
spectral set for {T1, T2}, from which the result follows.
To argue for an arbitrary n, note that by repeated applications of Proposi-

tion 12.11 and the above lemma, the identity map on S1 ⊗ · · · ⊗ Sn extends to
a completely bounded map from S1 ⊗min · · · ⊗min Sn to S1 ⊗max · · · ⊗max Sn ,
with ‖id ⊗ · · · ⊗ id‖cb ≤ (2k1 + 1) · · · (2kn + 1). The proof is now completed
as in the n = 1 case. �

Theorem 12.16. Let {Ti }ni=1 be doubly commuting operators with Xi a spectral
set for Ti . IfR(Xi ) is a hypo-Dirichlet algebra of codimension ki on ∂Xi , then
there exists a similarity S with ‖S‖ · ‖S−1‖ ≤ (2k1 + 1) · · · (2kn + 1) such that
{S−1Ti S}ni=1 has a joint, normal ∂d X-dilation.

Proof. Fix ε > 0, and let φi :C(∂Xi ) → Si , where Si is the closure ofR(Xi ) +
R(Xi ), and si be as in Lemma 11.9. Since Xi is spectral for Ti , we have positive
maps θi : Si → B(H) with commuting ranges. Hence αi = θi ◦ φi : C(∂Xi ) →
B(H) are completely positive. Set βi = θi ◦ si . Again using the nuclearity of
C(∂Xi ), we may form the min tensor of any combination of the maps αi and
βi and obtain a completely positive map on C(∂d X ). But for fi in Si , θi ( fi ) =
αi ( fi ) − βi ( fi ). Hence on S1 ⊗ · · · ⊗ Sn, θ1 ⊗ · · · ⊗ θn = (α1 − β1) ⊗ · · · ⊗
(αn − βn), which, when the right hand side is expanded, expresses θ1 ⊗ · · · ⊗ θn

as a difference of sums of completely positive maps on C(∂d X ). Computing
the sum of the norms of each of these maps and letting ε tend to 0 yields the
result. �

We close this chapter with one final result. Although the hypotheses of the
theorem look quite restrictive, many operators that arise in operator theory
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have the property that the C∗-algebra that they generate is nuclear. For exam-
ple, Toeplitz operators, subnormal operators, and essentially normal operators
usually generate nuclear C∗-algebras.

Theorem 12.17. Let {Ti }n+1
i=1 be doubly commuting operators with Xi com-

pletely Ki -spectral for Ti . If the C∗-algebra generated by each Ti is nuclear,
i = 1, . . . , n, then there exists a similarity S with ‖S‖ · ‖S−1‖ ≤ K1 · · · Kn+1

such that {S−1Ti S}n+1
i=1 has a joint normal ∂d X-dilation.

Proof. By hypothesis, the map ρi :R(Xi ) → B(H) given by ρi ( f ) = f (Ti ) is
completely bounded. Extend ρi to θi : C(∂Xi ) → B(H) with ‖θi‖cb = ‖ρi‖cb.
We may then form

θ1 ⊗min · · · ⊗min θn = θ : C(∂d X ) → B(H) ⊗min · · · ⊗min B(H),

and we shall have that ‖θ‖cb ≤ ‖ρ1‖cb · · · ‖ρn+1‖cb. However, for f ∈ Rd (X ),
θ ( f ) = ρ1 ⊗ · · · ⊗ ρn+1( f ) is in C∗(T1) ⊗ · · · ⊗ C∗(Tn+1), and the min norm
on this latter algebra is the restriction of the min norm on B(H) ⊗min · · · ⊗min

B(H).
Hence we have that

ρ = ρ1 ⊗ · · · ⊗ ρn+1: Rd (X ) → C∗(T1) ⊗min · · · ⊗min C
∗(Tn+1)

is completely bounded with ‖ρ‖cb ≤ ‖θ‖cb. Now the min and max norms will
agree on this latter tensor product, and the tensor product in the max normmaps
completely contractively to the C∗-algebra generated by T1, . . . , Tn+1. Thus,
we have that the map ρ̃:Rd (X ) → B(H) defined by ρ̃( f1(z1) · · · fn+1(zn+1)) =
f1(T1) · · · fn+1(Tn+1) is completely bounded, from which the result follows. �

There is a parallel theory for the maximal tensor product of operator alge-
bras studied in [169]. Given unital operator algebras Ai , i = 1, 2, and unital
completely contractive homomorphisms πi : Ai → B(H), i = 1, 2, with com-
muting ranges, one defines a homomorphism π : A1 ⊗ A2 → B(H) by set-
ting π (a1 ⊗ a2) = π1(a1)π2(a2). Conversely, given any unital homomorphism
π : A1 ⊗ A2 → B(H), if we set π1(a1) = π (a1 ⊗ 1) and π2(a2) = π (1 ⊗ a2),
thenπ1 andπ2 are unital homomorphisms ofA1 andA2 with commuting ranges.
Consequently we call a unital homomorphism π :A1 ⊗ A2 → B(H) admis-

sible provided that π1 and π2 are completely contractive.
For (xi j ) ∈ Mn(A1 ⊗ A2), we define

‖(xi j )‖max = sup{‖(π (xi j ))‖: πadmissible}
and let A1 ⊗max A2 denote A1 ⊗ A2 endowed with this family of matrix
norms. By considering the direct sum of a sufficiently large set of admissible
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homomorphisms, one obtains a completely isometric unital homomorphism
π : A1 ⊗max A2 → B(H) for some Hilbert space H. Thus A1 ⊗max A2 can be
identified, completely isometrically isomorphically, with the concrete operator
algebra π (A1 ⊗max A2).
The universal operator algebra for n-tuples of commuting contractions

(Pn, ‖·‖u), discussed in Chapter 5, can be identified with the maximal ten-
sor product P(D) ⊗max · · · ⊗max P(D) (n copies), where P(D) is the operator
algebra of polynomials in one variable equipped with the supremum norm over
the unit disk.
In Chapter 16 we will give an abstract characterization of operator algebras,

in analogy with the Gelfand–Naimark–Segal characterization of C∗-algebras.
This characterization will allow us to discuss abstract operator algebras like
A1 ⊗max A2, even in cases where we may not be able to explicitly exhibit a
completely isometric representation as an algebra of operators on a Hilbert
space.

Notes

For a more thorough treatment of tensor products of operator systems, see
Choi and Effros [49]. In particular, they obtain an abstract characterization of
operator systems, which we shall present in Chapter 13.
Lance’s survey article [135] and Takesaki’s text [233] are two excellent

sources for a further introduction to tensor products and nuclearity.
See Dash [70] and Pott [196] for further results on joint spectral sets.
Power and the author [169] prove that for any unital operator algebra A, we

have thatA ⊗min P(D) = A ⊗max P(D) if and only ifA ⊗min Tn = A ⊗max Tn
for all n, where Tn denotes the algebra of n × n upper triangular matrices.

Exercises

12.1 Let Ai , i = 1, 2, be unital C∗-algebras, and let f : A1 → C be a
bounded linear functional. Prove that there exists a completely bounded
map F : A1 ⊗min A2 → A2 with ‖F‖cb = ‖ f ‖ such that F(a1 ⊗ a2) =
f (a1)a2. If f is positive, prove that F is completely positive.

12.2 Let A and B be unital C∗-algebras. Prove that if there exists a constant
c such that ‖x‖max ≤ c‖x‖min for all x ∈A⊗B, then ‖x‖max = ‖x‖min.

12.3 Let A and B be unital C∗-algebras. Verify the following containments:{∑
i, j

ai, j ⊗ bi, j : (ai, j ) ∈ Mn(A)+, (bi, j ) ∈ Mn(B)+
}

⊆ (A ⊗ B) ∩ (A ⊗max B)+ ⊆ (A ⊗ B) ∩ (A ⊗min B)+.
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12.4 Prove that every finite-dimensional C∗-algebra is nuclear.
12.5 Let Si , i = 1, 2, be operator systems, and let B be a unital C∗-algebra.

(i) Prove that if θi : Si → B, i = 1, 2, are unital, completely positive
maps with commuting ranges, then there exists a unital, completely
contractive map θ1 ⊗max θ2: S1 ⊗max S2 → B with θ1 ⊗max θ2(a ⊗
b) = θ1(a)θ2(b).

(ii) Deduce that θ1 ⊗max θ2 is also completely positive.
(iii) Let θi :Si → B(H), i = 1, 2, be completely positivemapswith com-

muting ranges, and let θi (1) = Pi . Prove that there exist unital,
completely positive maps θ̃ i : Si → B(H), i = 1, 2, with commut-
ing ranges such that θi = P1/2

i θ̃ i P
1/2
i , i = 1, 2.

(iv) Prove Proposition 12.11.
12.6 Let A be a C∗-algebra. Prove that if A ⊗max B = A ⊗min B for every

C∗-algebra B, thenA ⊗max S = A ⊗min S for every operator system S.
12.7 Let Si , i = 1, 2, 3, be operator systems, and let γ denote either the min

or max norm.
(i) Prove that S1 ⊗γ (S2 ⊗γ S3) and (S1 ⊗γ S2) ⊗γ S3 are completely

isometrically isomorphic.
(ii) Prove that if S1 and S2 are nuclear, then S1 ⊗max S2 = S1 ⊗min S2

is nuclear.
12.8 (Holbrook–Sz.-Nagy) Let S and T be operators that doubly commute.

(i) Prove that if S ∈ Cρ and T ∈ Cσ , then ST ∈ Cρσ .
(ii) Prove that w(ST ) ≤ ‖S‖w(T ).
(iii) Prove that w(ST ) ≤ 2w(S)w(T ), and give an example to show that

this inequality is sharp.
12.9 Let S1 and S2 be operator systems, let (pi j ) ∈ Mn(S1)+, and let (qk�) ∈

Mm(S2)+. Prove that (pi j ⊗ qk�) ∈ Mnm(S1 ⊗max S2)+.
12.10 Let S1 and S2 be operator systems, and let θi : Si → B(H), i = 1, 2, be

unital complete isometries with commuting ranges. Define θ(S1 ⊗ S2) =
θ1(S1)θ2(S2). Prove that for all n,

Mn(S1 ⊗max S2)
+ ⊆ {(xi j ) ∈ Mn(S1 ⊗ S2): (θ (xi j )) ≥ 0}

⊆ Mn(S1 ⊗min S2)
+.



Chapter 13
Abstract Characterizations of Operator

Systems and Operator Spaces

The Gelfand–Naimark–Segal theorem gives an abstract characterization of the
Banach ∗-algebras that can be represented ∗-isomorphically as C∗-subalgebras
of B(H) for someHilbert spaceH. Thus, theGNS theorem frees us from always
having to regard C∗-algebras as concrete subalgebras of some Hilbert space.
At the same time we may continue to regard them as concrete C∗-subalgebras
when that might aid us in a proof. For example, proving that the quotient of
a concrete C∗-subalgebra of some B(H) by a two-sided ideal can again be
regarded as a C∗-subalgebra of some B(K) would be quite difficult without
the GNS theorem. On the other hand defining the norm on Mn(A) and many
other constructions are made considerably easier by regarding A as a concrete
C∗-subalgebra of some B(H).

In this chapter we shall develop the Choi–Effros [49] abstract characteriza-
tion of operator systems and Ruan’s [203] abstract characterization of operator
spaces. In analogy with the GNS theory, these characterizations will free us
from being forced to regard operator spaces and systems as concrete subspaces
of operators.
We begin with the theory of abstract operator systems. We wish to char-

acterize operator systems up to complete order isomorphism. To this end, let
S be a complex vector space, and assume that there exists a conjugate linear
map s → s∗ on S with (s∗)∗ = s for all s in S. We call such a space a ∗-
vector space. We let Sh = {s ∈ S: s = s∗} and note that every element x in S
can be written x = h + ik with h = (x + x∗)/2 and k = (x − x∗)/2i both in
Sh . For (xi j ) in Mn(S) we set (xi j )∗ = (x∗

j i ), so that Mn(S) is also a ∗-vector
space.
Clearly, if we wish S to be an operator system, then for each n we shall

need a distinguished cone Cn in Mn(S)h that plays the role of the “positive”
operators. Moreover, as n varies, these sets should have certain relationships.
For example, if p1 is “positive” in S, then (p1 0

0 0) should be “positive” in M2(S).

175
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Note that, sinceS is a vector space, there is a natural action of scalarmatrices,
of the appropriate sizes, on matrices over S. Namely, for A = (ai j ) an m × n
matrix and X = (xi j ) an n × k matrix with entries in S, we define an m × k
matrix over S by A · X = (

∑n
�=1 ai�x�j ). We define multiplication on the right

similarly. Thus, for example,

if A = (1, 0), then Ap1A∗ =
(

p1 0

0 0

)
.

These considerations motivate the following definition. Given a ∗-vector
space S, we say that S is matrix ordered provided that:

(i) for each n we are given a cone Cn in Mn(S)h ,
(ii) Cn ∩ (−Cn) = {0} for all n,
(iii) for every n and m and A an n × m matrix, we have that A∗Cn A ⊆ Cm .

We call the collection {Cn} a matrix order on S.
We adopt the same terminology for maps between matrix ordered *-vector

spaces as for operator spaces. Thus, given two matrix-ordered *-vector spaces
S and S ′ with cones Cn and C ′

n , we call a linear map φ: S → S ′ completely
positive provided that (xi j ) ∈ Cn implies that (φ(xi j )) ∈ C ′

n. Similarly, we call
φ a complete order isomorphism provided that φ is invertible with both φ and
φ−1 completely positive.

Finally, we need to axiomatize the role that 1 plays in an operator system.
Let S be a matrix-ordered ∗-vector space. We call e ∈ Sh an order unit for S
provided that for every x ∈ Sh there exists a positive real r such that re + x ∈ C1.
We call an order unit e Archimedean if re + x ∈ C1 for all r > 0 implies that
x ∈ C1. We call e a matrix order unit provided that

In =




e 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 e




is an order unit for Mn(S) for all n, and an Archimedean matrix order unit
provided each In is Archimedean.

We begin with a few trivial observations. Since there exists r > 0 such that
re + e ∈ C1, it follows that e = (r + 1)−1(re + e) is in C1, because C1 is a cone.
Similarly, In ∈ Cn . If re + x ∈ C1, then for any s ≥ r we have se + x = (s −
r )e + (re + x) ∈ C1. Finally, if x ∈ Sh , then there exists r > 0 such that re ±
x ∈ C1 and hence x = (re + x)/2 − (re − x)/2. Thus, Sh = C1 − C1, which is
the condition needed for C1 to be a full cone in S. Similarly, Cn is a full cone in
Mn(S) for all n.
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Our goal is to prove the following:

Theorem 13.1 (Choi–Effros). If S is a matrix-ordered ∗-vector space with
an Archimedean matrix order unit e, then there exists a Hilbert space H, an
operator system S1 ⊆ B(H), and a complete order isomorphism ϕ: S → S1

with ϕ(e) = IH. Conversely, every concrete operator system S is a matrix-
ordered ∗-vector space with an Archimedean matrix order unit e = IH .

Before proving this theorem we need two preliminary results.
Recall the correspondence between linear functionals s: Mn(S) → C and

linear maps φ:S → Mn of Chapter 6.We omit the factor of n used in Chapter 6.
Thus, given φ, we define sφ : Mn(S) → C via

sφ((xi j )) =
n∑

i, j=1

〈φ(xi, j )e j , ei 〉,

where {e1, . . . , en} is the canonical basis forC
n . Conversely, given s: Mn(S) →

C, we define φs : S → Mn via φs(x) = (si j (x)), where si j (x) = s(x ⊗ Ei, j ) and
Ei, j are the canonical matrix units for Mn . These two operations are mutual
inverses, i.e., φ(sφ ) = φ and s(φs ) = s.

Proposition 13.2. LetS be a matrix ordered ∗-vector space, let s: Mn(S) → C,
and let φ: S → Mn with φ = φs . Then the following are equivalent:

(i) s(Cn) ≥ 0,
(ii) φ: S → Mn is n-positive,
(iii) φ: S → Mn is completely positive.

Proof. The proof is similar to the proof of Theorem 6.1. It is routine to verify
that (iii) implies (ii) and that (ii) implies (i).
So we prove that (i) implies (iii). First note that, if h = (β1, . . . , βn) and k =

(α1, . . . , αn), then 〈φ(x)ht , kt 〉 = s((ᾱi xβ j )) = s(k∗xh). Thus, if X = (xi j ) ∈
Cm and vt

1, . . . , vt
m ∈ C

n , then

m∑
i, j=1

〈
φ(xi j )v

t
j , v

t
i

〉 =
m∑

i, j=1

s(v∗
i xi jv j ) = s(A∗X A),

where

A =


v1

...
vm




is m × n. Hence, (φ(xi j )) is positive, and so φ is completely positive. �
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Proposition 13.3. Let S be a matrix-ordered ∗-vector space with Archimedean
matrix order unit e and for X ∈ Mn(S) set

‖X‖n = inf

{
r :

(
r In X
X∗ r In

)
∈ C2n

}
.

Then ‖·‖n is a norm on Mn(S), and Cn is a closed subset of Mn(S) in the
topology induced by this norm.

Proof. We only do the case n = 1.
First we prove that ‖x‖1 ≥ 0. If(

re x
x∗ re

)
∈ C2,

set A = (1 0
0 −1); then(

re −x
−x∗ re

)
= A∗

(
re x
x∗ re

)
A ∈ C2.

Adding these two matrices yields 2r I2 ∈ C2. Now using I2 ∈ C2, C2 a cone, and
C2 ∩ (−C2) = {0} yields r ≥ 0.
Next we show that ‖x‖1 = 0 implies x = 0. If ‖x‖1 = 0, then(

re x
x∗ re

)
∈ C2 for all r > 0.

Hence

(1, λ̄)

(
re x
x∗ re

) (
1
λ

)
= r (1 + |λ|2)e + λx + (λx)∗ ∈ C1

for every complex number λ and any r > 0. By the Archimedean property,
λx + (λx)∗ ∈ C1. Setting λ = ±1 yields x + x∗ = 0, and setting λ = ±i yields
i x + (i x)∗ = 0. Hence, x = 0.

Similar tricks show that ‖λx‖1 = |λ|‖x‖1, ‖x + y‖1 ≤ ‖x‖1 + ‖y‖1, and
‖x∗‖1 = ‖x‖1, so we leave them to the reader (Exercise 13.5).
Finally, we show that C1 is closed. Let xn ∈ C1, x ∈ S with ‖x − xn‖1 → 0.

Since xn = x∗
n , we have x = x∗. Given any r > 0, choose n so that ‖x −

xn‖1 < r . Then (
re x − xn

x − xn re

)
∈ C2,

and picking A = ( 11 ) yields 2re + 2x − 2xn ∈ C1. Hence, re + x ∈ C1, since
xn ∈ C1 and C1 is a cone. Thus, x ∈ C1 by the Archimedean property. �
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We shall refer to the norm given in Proposition 13.3 as the matrix norm
induced by the matrix order. Because of the link between norm and order for
operators on a Hilbert space, viz., ‖T ‖ ≤ 1 if and only if ( I T

T ∗ I ) ≥ 0, we see
that any complete order isomorphism φ onto a concrete operator system with
φ(e) = I must be a complete isometry of this induced matrix norm.

Proof of Theorem 13.1. Assume S is a matrix-ordered ∗-vector space with an
Archimedean matrix order unit e. Let Pn = {φ: S → Mn | φ completely posi-
tive, φ(e) = I }, and define J = ∑∞

n=1

∑
φ∈Pn

⊕ φ: S → ∑∞
n=1

∑
φ∈Pn

⊕ Mφ
n ,

where the latter direct sum is in the �∞ sense.
Since the latter direct sum is a C∗-algebra, to prove that S is completely

order-isomorphic to an operator system, it will be enough to prove that J is
a complete order isomorphism between S and J (S). To prove this we must
show that for (xi j ) ∈ Mn(S), we have (xi j ) ∈ Cn if and only if (J (xi j )) ≥ 0 in
the latter C∗-algebra.
Clearly, by the choice of φ’s, (xi j ) in Cn implies (J (xi j )) ≥ 0. To complete

the proof it will be enough to show that if (xi j ) is not in Cn then there exists k
and φ ∈ Pk with (φ(xi j )) �≥ 0.
Since Cn is closed in the norm topology of Mn(S), by the Krein–Milman the-

orem (for cones) there exists a linear functional s: Mn(S) → C with s(Cn) ≥ 0
but s((xi j )) < 0. Consider φs : S → Mn; then

n∑
i, j=1

〈φs(xi j )e j , ei 〉 = s((xi j )) < 0.

Hence, (φs(xi j )) is not positive.
All that remains is to replace φs with a unital completely positive map.
Let φs(e)= P ∈ M+

n . If P is invertible, we may choose A so that A∗ P A = I .
Setting ψ(x) = A∗φs(x)A, we have that ψ(e) = I ,

n∑
i, j=1

〈(ψ(xi j ))A
−1e j , A−1ei 〉 < 0,

and we are done.
If P is not invertible, let ‖x‖ ≤ 1. Then ( e x

x∗ e) ∈ C2 and hence(
P φs(x)

φs(x)∗ P

)
≥ 0.

From this it follows that if Ph = 0 then φs(x)h = 0.
Let Q be the projection onto ker(P)⊥, so that Qφs(x)Q = φs(x). Let

rank(Q) = k, and choose an n × k matrix A and a k × n matrix B so that
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A∗ P A = Ik, AB = Q. Setting ψ(x) = A∗φs(x)A, we have that ψ : S → Mk

is completely positive with ψ(e) = Ik and

n∑
i, j=1

〈ψ(xi j )Be j , Bei 〉 =
m∑

i, j=1

〈φs(xi j )Qej , Qei 〉 =
n∑

i, j=1

〈φs(xi j )e j , ei 〉 < 0.

Thus, ψ ∈ Pk with (ψ(xi j )) �≥ 0.
We leave the proof of the converse statement to the reader. �

For an illustration of the uses of the abstract characterization of operator
systems, we return to the question examined in Chapter 6 of determining when
an operator system S has the property that every positive map with domain S
is automatically completely positive.
Recall that if T is any other operator system and θ : S → T is a positive map,

then θ is necessarily positive on the subset S+ ⊗ M+
n of Mn(S)+ and hence on

its closure. Let Cn denote the closure of S+ ⊗ M+
n , with C1 = S+.

Clearly, for every n and m, Cn is a cone, Cn ∩ (−Cn) = (0), and given any
m × n matrix B, we have that B∗Cm B ⊂ Cn. Thus, the collection {Cn}n≥1 is a
(possibly new) matrix order on S.
We let SM denote this new matrix-ordered space.
We leave it as an exercise (Exercise 13.4) to show that the Archimedean

matrix order unit e is also an Archimedean matrix order unit for SM . Hence,
SM is an abstract operator system.
Clearly, the identity map from S to SM is a positive map. If the identity

map from S to SM is completely positive, then Cn = Mn(S)+ for all n, and
consequently every positive map with domain S is completely positive. Con-
versely, if every positive map with domain S is completely positive, then we
must have that the identity map from S to SM is completely positive and hence
Cn = Mn(S)+.
Thus,we have obtained a newproof of the equivalence of (i) and (iii) inCorol-

lary 6.7. Note that this new proof avoids the need for a separating-functional
argument. This essentially happens because the separating-functional argument
is built into the proof of the characterization of operator systems.
We now turn our attention to the abstract characterization of operator spaces.

It will be convenient to consider rectangular, as well as square, matrices. Given
a vector space V , we let Mm,n(V ) denote the vector space of m × n matrices
over V .

We call V a matrix normed space provided that we are given norms ‖·‖m,n

on Mm,n(V ) such that whenever A = (ai j ) ∈ Mp,m, X = (xi j ) ∈ Mm,n(V ), and
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B = (bi, j ) ∈ Mn,q , then ‖A · X · B‖p,q ≤ ‖A‖‖X‖m,n‖B‖, where

A · X · B =
(

m∑
k=1

n∑
�=1

aik xk�b�j

)
∈ Mp,q (V )

and ‖A‖, ‖B‖ are the operator norms on Mp,m = B(Cm, C
p) and Mn,q =

B(Cq , C
n), respectively.

The above axioms guarantee, among other things, that if a matrix is en-
larged by adding rows and columns of 0’s, then its normwill remain unchanged
(Exercise 13.1). We abbreviate Mn,n(V ) = Mn(V ) and ‖·‖n,n = ‖·‖n .

Let V be a matrix-normed space, and for X ∈ Mm,n(V ), Y ∈ Mp,q (V ) de-
fine X ⊕ Y = (X 0

0 Y)∈ Mm+p,n+q (V ), where the 0’s indicate matrices of 0’s
of appropriate sizes. We call the matrix norm on V an L∞-matrix norm,
and call V an L∞-matrix-normed space provided that ‖X ⊕ Y‖m+p,n+q =
max{‖X‖m,n, ‖Y‖p,q} for all m, n, p, q, X, and Y .
Note that for any matrix-normed space, max{‖X‖m,n, ‖Y‖p,q} ≤

‖X ⊕ Y‖m+p,n+q , so it suffices to prove the other inequality.

Theorem 13.4 (Ruan’s theorem). Let V be a matrix-normed space. Then there
exists a Hilbert space H and a complete isometry ϕ: V → B(H) if and only if
V is an L∞-matrix-normed space.

Proof. It is easy to see that every concrete subspace of some B(H) is an L∞-
matrix-normed space. Thus, if V is completely isometric to such a subspace, it
must be an L∞-matrix-normed space.
So assume that V is an L∞-matrix-normed space. We shall create an abstract

operator system S, i.e., a matrix-ordered ∗-vector space with an Archimedean
matrix order unit e, that contains V as a vector subspace and such that thematrix
norm induced by the order structure restricts to the matrix norm on V .

By Theorem 13.1, S will be completely order-isomorphic to an operator
system. But this complete order isomorphism will necessarily be a complete
isometry of this induced matrix norm. Thus, if we can create such an “abstract”
operator system S, the representation of S as a “concrete” operator system will
give us the desired complete isometry of V . We now construct S. The idea is to
“abstractly” recreate the operator system SM of Lemma 8.1 that comes from a
concrete operator spaceM.
To this end, let V ∗ denote a complex conjugate copy of the vector space V ,

i..e, V ∗ = {v∗: v ∈ V }with v∗
1 + v∗

2 = (v1 + v2)∗ and λv∗ = ( λ̄v)∗. As a vector
space, S will be C ⊕ C ⊕ V ⊕ V ∗, but it is easiest to understand the matrix
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order if we write

S =
{(

λ v

w∗ µ

)
: λ, µ ∈ C, v ∈ V , w∗ ∈ V ∗

}
.

We make S a ∗-vector space by setting(
λ v

w∗ µ

)∗
=

(
λ̄ w

v∗ µ̄

)

so that

Sh =
{(

r1 v

v∗ r2

)
: r1, r2 ∈ R, v ∈ V

}
.

We set

C1 =
{(

r1 v

v∗ r2

)
: r1, r2 ≥ 0, ‖v‖2 ≤ r1r2

}
.

This definition is motivated by the following fact for SM, whenM is a concrete
operator space: For r1, r2 > 0, ( r1 m

m∗ r2) ≥ 0 if and only if(
r−1/2
1 0

0 r−1/2
2

) (
r1 m

m∗ r2

) (
r−1/2
1 0

0 r−1/2
2

)

=
(

1 r−1/2
1 r−1/2

2 m

r−1/2
1 r−1/2

2 m∗ 1

)
≥ 0,

and this latter occurs if and only if ‖r−1/2
1 r−1/2

2 m‖ ≤ 1.
To define Cn , note that after a canonical shuffle we may write

Mn(S) =
{(

A X
Y ∗ B

)
: A, B ∈ Mn, X ∈ Mn(V ), Y ∗ ∈ Mn(V

∗)
}

and that Mn(S)h consists of the above matrices with A = A∗, B = B∗, and
Y ∗ = X∗ = (x∗

j i ). Thus, we define Cn as the set

{(
P X
X∗ Q

)
: P, Q ≥ 0 and

∥∥(P + ε I )−1/2X (Q + ε I )−1/2
∥∥ ≤ 1

for all real ε > 0

}
.

We now show that S is matrix-ordered and that e = (1 0
0 1) is an Archimedean

matrix order unit.
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To this end, suppose that S = (Si j ) is in Mn(S), that A = (ai j ) ∈ Mm,n , and
that

Si j =
(

λi j xi j

y∗
i j µi j

)
,

with S ∼= ( L X
Y ∗ M) after the canonical shuffle. Then

A · S =
(∑

ai�S�j

) ∼=
(

AL AX
AY ∗ AM

)
.

Thus, if S ∼= ( P X
X∗ Q) is in Cn , we must show that

AS A∗ ∼=
(

AP A∗ AX A∗

AX∗ A∗ AQ A∗

)

is in Cm . We have AX∗ A∗ = (AX A∗)∗, and it remains to show that for ε > 0,∥∥(AP A∗ + ε I )−1/2(AX A∗)(AQ A∗ + ε I )−1/2
∥∥ ≤ 1.

Since

(AP A∗ + ε I )−1/2(AX A∗)(AQ A∗ + ε I )−1/2

= [
(AP A∗ + ε I )−1/2A(P + δ I )+1/2

]
× [

(P + δ I )−1/2X (Q + δ I )−1/2
]

× [
(Q + δ I )1/2 · A∗(AQ A∗ + ε I )−1/2

]
,

it will be enough to show that for δ > 0 suitably chosen, each factor in brackets
has norm less than 1.
By hypothesis ‖(P + δ I )−1/2X (Q + δ I )−1/2‖ ≤ 1 for any δ > 0.
Now ‖(AP A∗ + ε I )−1/2A(P + δ I )1/2‖ ≤ 1 if and only if A(P + δ I )A∗ ≤

AP A∗ + ε I, which holds for any δ ≤ ε/‖A∗ A‖. Similarly, it can be seen that
‖(Q + δ I )1/2A∗(AQ A∗ + ε I )−1/2‖ ≤ 1 for any δ ≤ ε/‖A∗ A‖. Thus, for any
A ∈ Mm,n we have that ACn A∗ ⊆ Cm .
We use this fact to see that Cn is a cone. Clearly, tCn ⊆ Cn for t ≥ 0. If

Si , i = 1, 2, are in Cn , then the L∞ condition implies that S1 ⊕ S2 is in C2n .
Taking A = (In, In) we have that A(S1 ⊕ S2)A∗ = S1 + S2 ∈ Cn , and so Cn is
a cone.
We claim that e = (1 0

0 1) is a matrix order unit. We must show that if ( H X
X∗ K)

is in Mn(S)h , then there exists r ≥ 0 so that

r

(
In 0

0 In

)
+

(
H X
X∗ K

)
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is in Cn . Let r1 = max{‖H‖, ‖K‖}, r2 = ‖X‖; then
(

r1 In + H 0

0 r1 In + K

)
∈ Cn and

(
r2 In X

X∗ r2 In

)
∈ Cn,

and so r = r1 + r2 suffices.
The fact that e is Archimedean is trivial from the use of ε > 0 in the definition

of Cn .
Finally, if we embed V into S via v → (0 v

0 0), then this mapping is easily
seen to be a complete isometry from V into S equipped with the matrix norm
induced by the order.
Thus, we have produced the desired “abstract” operator system S, and the

proof is complete. �

In Chapter 14 we shall take a closer look at abstract operator spaces, focusing
on a few important examples and classes of operator spaces that serve as an
introduction to the field.

Notes

Since the time that Ruan’s theorem first appeared, it has been customary to
identify L∞-matrix-normed spaces and operator spaces as one and the same
thing. In fact, many books start by defining the term “operator space” tomean an
L∞-matrix-normed space and then prove that such objects can be represented
completely isometrically as spaces of operators on some Hilbert space. From
this viewpoint, a theory of operator spaces can be developed that parallels much
of the classical theory of Banach spaces. Two excellent such texts are Pisier’s
[193] An Introduction to the Theory of Operator Spaces (Cambridge University
Press) and Effros and Ruan’s [88] Operator Spaces (Oxford University Press).
In keeping with standard usage, from this point on we shall generally refer to
L∞-matrix-normed spaces simply as operator spaces. Occasionally, we shall
use the terms abstract operator space to emphasize that we are dealing with an
L∞-matrix-normed space, and concrete operator space for an actual subspace
of the space of operators on a Hilbert space.
Similarly, we shall identify matrix-ordered ∗-vector spaces with

Archimedean matrix order units and operator systems, using the terms abstract
operator system and concrete operator system when we wish to emphasize the
difference.
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Exercises

13.1 Let V be a matrix-normed space, let X ∈ Mm,n(V ), and let Y ∈ Mp,q (V )
be a matrix obtained from X by introducing finitely many rows and
columns of 0’s. Prove that ‖X‖m,n = ‖Y‖p,q .

13.2 Let V be a vector space, and assume that we are given a sequence of norms
‖·‖n on Mn(V ) satisfying:
(i) ‖AX B‖n ≤ ‖A‖‖X‖n‖B‖ for X ∈ Mn(V ), A ∈ Mn , and B ∈ Mn;
(ii) for X ∈ Mn(V ), ‖X ⊕ 0‖m+n = ‖X‖n , where 0 denotes an m × m

matrix of 0’s.
For X ∈ Mm,n(V ) set ‖X‖m,n = ‖X̂‖�, where � = max{m, n} and X̂ is
the matrix obtained by adding sufficiently many rows or columns to X to
make it square. Prove that (V, ‖·‖m,n) is a matrix-normed space. These
alternate axioms are often given as the axioms for a matrix-normed space,
and consequently nomention ismade of the norms of rectangularmatrices.

13.3 Let V be an operator space, let W be a closed subspace, and let q: V →
V/W denote the quotient map q(v) = v + W . Prove that if we define
norms on Mn,m(V/W ) by setting

‖(q(vi j ))‖n,m = inf{‖(vi, j + wi, j )‖n,m : wi, j ∈ W },
then V/W is an operator space.

13.4 Prove that SM is an operator system.
13.5 Verify the claims of Proposition 13.3.



Chapter 14
An Operator Space Bestiary

In the last chapter we obtained an abstract characterization of operator spaces
that allows us to define these spaces without a concrete representation. This
result has had a tremendous impact and has led to the development of a general
theory of operator spaces that parallels in some ways the development of the
theory of Banach spaces.
In this chapter we give the reader a brief introduction to some of the basics

of this theory, focusing on some of the more important operator spaces that we
will encounter in later chapters.
We have already encountered one example of the power of this axiomatic

characterization. In Exercise 13.3, it was shown that if V is an operator space
and W ⊆ V a closed subspace, then V/W is an operator space, where the
matrix norm structure on V/W comes from the identification Mm,n(V/W ) =
Mm,n(V )/Mm,n(W ). Yet in most concrete situations it is difficult to actually
exhibit a concrete completely isometric representation of V/W as operators on
a Hilbert space.
The first natural question in the area is as follows: If V is, initially, just a

normed space, then is it always possible to assign norms ‖·‖m,n to Mm,n(V ) for
all m and n in such a fashion that V becomes an operator space? The answer
to this question is yes. Consider the dual space V ∗ of V , and let V ∗

1 denote
its unit ball, equipped with the weak∗ topology. The continuous functions on
this compact, Hausdorff space C(V ∗

1 ) constitute an abelian C∗-algebra, and the
map j : V → C(V ∗

1 ) defined by j(v)( f ) = f (v) for f ∈ V ∗
1 is a linear isometry.

Since subspaces of C∗-algebras are operator spaces, identifying V with j(V )
induces a particular family of norms on Mm,n(V ) that makes V an operator
space. Thus, for (vi j ) in Mm,n(V ) we have that

‖(vi j )‖m,n = ‖( j(vi j ))‖m,n = sup{‖( f (vi j ))‖Mm,n : f ∈ V ∗
1 },

186
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where ‖( f (vi j ))‖Mm,n indicates the norm of the scalar m × n matrix ( f (vi j ))
viewed as a linear transformation from n-dimensional Hilbert space to
m-dimensional Hilbert space.
Clearly, we need a way to distinguish between the ordinary normed space

V and the operator space j(V ). It is standard to let MIN(V ) denote the op-
erator space j(V ) ⊆ C(V ∗

1 ). This operator space is often called the mini-
mal operator space of V , for reasons made apparent below. For an arbitrary
m × n matrix over V , we simply write ‖(vi j )‖MIN(V ) to denote its norm in
Mm,n(MIN(V )).

Theorem14.1. Let V be a normed space,H be a Hilbert space, and let ϕ: V →
B(H) be an isometric map. Then for (vi j ) in Mm,n(V ) we have

(i) ‖(vi j )‖MIN(V ) = sup{‖∑m
i=1

∑n
j=1 αivi jβ j‖V :

∑m
i=1 |αi |2 ≤ 1,∑n

j=1 |β j |2≤ 1}, where the supremum is over all αi , β j in C satisfying the
inequalities;

(ii) ‖(ϕ(vi j ))‖B(H(n),H(m)) ≥ ‖(vi j )‖MIN(V ).

Proof. We have that

‖(vi j )‖MIN(V ) = sup{‖( f (vi j ))‖Mm,n : f ∈ V ∗
1 }

= sup
{∣∣∣∣∣ f

(
m∑

i=1

n∑
j=1

αivi jβ j

)∣∣∣∣∣ : f ∈ V ∗
1 ,

m∑
i=1

|αi |2 ≤ 1,
n∑

j=1
|β j |2 ≤ 1

}

= sup
{∥∥∥∥∥

m∑
i=1

n∑
j=1

αiβ jvi j

∥∥∥∥∥
V

:
m∑

i=1
|αi |2 ≤ 1,

n∑
j=1

|β j |2 ≤ 1
}

,

which proves (i).
To see (ii), note that

‖(ϕ(vi j ))‖B(H(n),H(m))

≥ sup



∣∣∣∣∣∣∣
〈
(ϕ(vi j ))




α1h
...

αmh


 ,




β1k
...

βnk



〉∣∣∣∣∣∣∣ :

h, k ∈ H, ‖h‖ = 1, ‖k‖ = 1,
m∑

i=1
|αi |2 ≤ 1,

n∑
j=1

|β j |2 ≤ 1
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= sup
{∣∣∣∣∣

〈
ϕ

(
m∑

i=1

n∑
j=1

αiβ jvi j

)
h, k

〉∣∣∣∣∣ :
h, k ∈ H, ‖h‖ = 1, ‖k‖ = 1,

m∑
i=1

|αi |2 ≤ 1,
n∑

j=1
|β j |2 ≤ 1

}

= sup


∥∥∥∥∥ϕ

(
m∑

i=1

n∑
j=1

αiβ jvi j

)∥∥∥∥∥
B(H)
:

m∑
i=1

|αi |2 ≤ 1,
n∑

j=1
|β j |2 ≤ 1




= ‖(vi j )‖MIN(V ),

by (i) and the fact that ϕ is an isometry. �

The beauty of (i) is that it gives a formula “internal” to V to computeMIN(V ).
Now thatwe have a “minimal”way to represent a normed space as an operator

space, it is not difficult to create a “maximal” representation. We shall denote
this operator space by MAX(V ).
To define MAX(V ), given (vi j ) in Mm,n(V ), we set

‖(vi j )‖MAX(V ) = sup{‖(ϕ(vi j ))‖B(H(n),H(m)): ϕ: V → B(H) isometric},

where the supremum is taken over all Hilbert spacesH and all linear isometries
ϕ: V → B(H). This operator space is called themaximal operator space of V .
The construction ofMIN(V ) guarantees that the collection of such isometries

is nonempty and hence ‖v‖V = ‖v‖MAX(V ). Since every “abstract” operator
space, can be represented as a “concrete” operator space, any L∞-matrix-norm
structure that we could endow V with must be smaller than MAX(V ). The
following gives a more concrete realization of these matrix norms.

Theorem 14.2. Let V be a normed space and let (vi j ) be in Mm,n(V ).
Then ‖(vi j )‖MAX(V ) = inf{‖A‖‖B‖: A ∈ Mm,k, B ∈ Mk,n, yi ∈ V , ‖yi‖ ≤ 1,
1 ≤ i ≤ k, and (vi j ) = A Diag(y1, . . . , yk)B}, where Diag(y1, . . . , yk) repre-
sents the k × k diagonal matrix with entries y1, . . . , yk, and the infimum is taken
over all ways to represent (vi j ) as such a product.

Proof. Let ‖(vi j )‖m,n denote the infimum appearing on the right hand side
of the above equation. If ϕ: V → B(H ) is any linear map and (vi j ) =
A Diag(y1, . . . , yk)B is any such factorization, then

(ϕ(vi j )) = A Diag(ϕ(y1), . . . , ϕ(yk))B,
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and consequently,

‖(ϕ(vi j ))‖B(H(n),H(m)) ≤ ‖A‖‖B‖·max{‖ϕ(y1)‖, . . . , ‖ϕ(yk)‖}.

Hence, ‖(vi j )‖MAX(V ) ≤ ‖(vi j )‖m,n .
To prove the other inequality, since MAX(V ) is the largest of all possible

L∞-matrix norms, it will suffice to prove that V equipped with {‖·‖m,n} is an
L∞-matrix-normed space.
First, to verify that ‖·‖m,n is a norm on Mm,n(V ), let (vi j ) and (wi j ) in

Mm,n(V ) be given, and fix ε > 0. Then there exist integers k1, k2, elements
‖yi‖ ≤ 1, 1 ≤ i ≤ k1, ‖x j‖ ≤ 1, 1 ≤ j ≤ k2, of V , and matrices A1 ∈ Mm,k1 ,
B1 ∈ Mk1,n, A2 ∈ Mm,k2 , B2 ∈ Mk2,n such that (vi j ) = A1 Diag(y1, . . . , yk1 )B1
and (wi j ) = A2 Diag(x1, . . . , xk2 )B2 with ‖A1‖‖B1‖ ≤ ‖(vi j )‖m,n + ε and
‖A2‖‖B2‖ ≤ ‖(wi j )‖m,n + ε. Replacing A1, B1 by r A1, r−1B1 with r =√‖B1‖/‖A1‖, we may assume that ‖A1‖ = ‖B1‖ and similarly that ‖A2‖ =
‖B2‖. We have that

(vi j )+ (wi j ) = (A1, A2) Diag(y1, . . . , yk1 , x1, . . . , xk2 )

(
B1
B2

)

and hence

‖(vi j )+ (wi j )‖m,n ≤ ‖(A1, A2)‖
∥∥∥∥∥
(

B1
B2

)∥∥∥∥∥
≤ ‖A1A∗

1 + A2A∗
2‖1/2‖B∗

1 B1 + B∗
2 B2‖1/2

≤ (‖A1‖2 + ‖A2‖2)1/2(‖B1‖2 + ‖B2‖2)1/2
≤ ‖(vi j )‖m,n + ‖(wi j )‖m,n + 2ε.

Since ε was arbitrary, the triangle inequality follows. It is clear that
‖λ(vi j )‖m,n = |λ|‖(vi j )‖m,n and hence ‖·‖m,n is a norm.
If (vi j ) = A Diag(y1, . . . , yk)B, and C and D are scalar matrices of appro-

priate sizes, then C(vi j )D = (C A) Diag(y1, . . . , yk)(B D). Thus,

‖C(vi j )D‖ ≤ (‖C‖‖D‖)(‖A‖‖B‖),

and taking the infimum over all such representations of (vi j ) yields
‖C(vi j )D‖ ≤ ‖C‖‖D‖‖(vi j )‖m,n. Hence (V, {‖·‖m,n}) is a matrix norm.
Finally, to see the L∞ condition, let (vi j ) ∈ Mm,n(V ), (wi j ) ∈ Mp,q (V ), and

factor (vi j ) = A1 Diag(y1, . . . , yk1 )B1, (wi j ) = A2 Diag(x1, . . . , xk2 )B2 with
‖A1‖ = ‖B1‖ ≤ √‖(vi j )‖m,n + ε and ‖A2‖ = ‖B2‖ ≤ √‖(wi j )‖p,q + ε. Then
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(vi j )⊕ (wi j ) = (A1 ⊕ A2) Diag(y1, . . . , yk1 , x1, . . . , xk2 )(B1 ⊕ B2) and hence

‖(vi j )⊕ (wi j )‖m+p,n+q ≤ max{‖(vi j )‖m,n + ε, ‖(wi j )‖p,q + ε},
from which the L∞ condition follows.
This completes the proof. �

Note thatwhile the original definition ofMAX(V )was “extrinsic” in the sense
that it required looking at all representations ofV as operators on aHilbert space,
Theorem 14.2 gives an “intrinsic” characterization of this norm. Also, since
the original formula for MAX(V ) involved a supremum while Theorem 14.2
involves an infimum, we have methods for obtaining upper and lower bounds
on norms in MAX(V ).
The main idea of the above proof was to “guess” a factorization formula for

MAX(V ) and then to verify it by showing that it satisfied Ruan’s axioms. Such
factorization formulas will appear frequently in later chapters and are one of
the main tools of this field.
Since every operator space structure on a normed space V lies between

MIN(V ) and MAX(V ), it is natural to wonder to what extent MIN(V ) and
MAX(V ) differ. One way to measure this difference is to regard the identity
map on V as a map i : MIN(V )→ MAX(V ) and attempt to compute its cb
norm. This number is denoted α(V ), that is,

α(V ) = ‖i‖cb = sup
{‖(vi j )‖MAX(V )

‖(vi j )‖MIN(V ) : (vi j ) ∈ Mm,n(V ), m, n arbitrary

}
.

Thus, α(V ) = 1 if and only if the identity map is a complete isometry from
MIN(V ) to MAX(V ), which is equivalent to there existing a unique operator
space structure on V . Currently, there are only two normed spaces known
with α(V ) = 1, namely, �∞

2 and �12, which denote C
2 equipped with the norms

‖(x1, x2)‖∞ = max{|x1|, |x2|} and ‖(x1, x2)‖1 = |x1| + |x2|, respectively. It is
still unknown if there exist any other normed spaces V for which α(V ) = 1,
but if they exist, they must be of dimension 2, since it is known that α(V ) > 1
whenever dim(V ) ≥ 3. See [163] and [193] for these results.
Exact values of α(V ) are still unknown for most important finite-dimensional

normed spaces. While an extensive development of this constant is beyond our
current interests, we do record some of the important facts taken from [163],
[164], and [193]. We adopt the convention that �p

n denotes C
n equipped with

the p-norm.

Theorem 14.3. Let V be a normed space and V ∗ denote its dual space. Then

(i) α(V ) = α(V ∗),
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(ii) if V is n-dimensional, then
√

n/2 ≤ α(V ) ≤ n,
(iii) if V is infinite-dimensional, then α(V ) = +∞,
(iv) for all n, α(�2n) ≤ n/

√
2, while (n + 1)/2 ≤ α(�2n) for n odd and√

n2 + 2n/2 ≤ α(�2n) for n even,
(v) for all n ≥ 2, √

n/2 ≤ α(�1n) ≤
√

n − 1,
(vi) if dim(V ) = dim(W ), then α(V ) ≤ d(V, W )α(W ), where d(V, W ) =
inf{‖T ‖‖T −1‖: T : V → W is invertible}.

Theorem 14.3(iii) implies that if dim(V ) = +∞, then there always exists
a Hilbert space H and a bounded linear map ϕ: MIN(V )→ B(H) that is not
completely bounded. When dim(V ) < +∞ and ϕ: MIN(V )→ B(H), then
(Exercise 14.2) ‖ϕ‖cb ≤ α(V )‖ϕ‖, so that α(V ) gives the best estimate of the
ratio of the cb norm to the norm.
Combining the lower bounds on α(�2n) with the fact that d(�

2
n, V ) ≤ √

n for
every normed space V of dimension n and applying Theorem 14.3(vi) yields
the fact, cited earlier, that α(V ) > 1 for dim(V ) ≥ 3.
Onedifficulty in computingα(V ) is that concrete representations ofMAX(V )

are known for few normed spaces V . For example, no concrete representation
is known for MAX(�2n), which is the main obstruction to computing an exact
value for α(�2n).
One of the rare exceptions is �1n . If Fn denotes the free group on n gener-

ators {u1, . . . , un} and C∗
u (Fn) is the universal C∗-algebra of this group, then

(Exercise 14.3) it can be shown that the map ϕ: MAX(�1n)→ C∗
u (Fn) given by

ϕ((λ1, . . . , λn)) = λ1u1 + · · · + λnun is a complete isometry.
By comparison, ifTn = R

n/Z
n denotes the standard n-torus, so thatC(Tn) is

the abelian C∗-algebra generated by {z1, . . . , zn} – where zk = eitk , 1 ≤ k ≤ n,
is unitary – then the map ψ : MIN(�1n)→ C(Tn) given by ψ((λ1, . . . , λn)) =
λ1z1 + · · · + λnzn is a complete isometry (Exercise 14.4).
Thus, MIN(�1n) is represented by the “universal” n-tuple for commuting uni-

taries, while MAX(�1n) is represented by the “universal” n-tuple for noncom-
muting unitaries.
We shall now take a closer look at MAX(V ) and MIN(V ) for a general

finite-dimensional normed space V .
To this end, let B ⊆ C

n be the closed unit ball of some norm on C
n; equiv-

alently, let B be a bounded, closed, absorbing, absolutely convex set. If we
set

‖x‖ = inf{t : t−1x ∈ B, t > 0},

then ‖·‖ is the norm onC
n and B is the (closed) unit ball of this norm. We shall
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write (Cn, B) when we want to indicate this normed space. Thus, for example

(Cn, D
n−
) = �∞

n and (Cn, B
−
n ) = �2n,

whereBn = {(λ1, . . . , λn): |λ1|2 + · · · + |λn|2 < 1} is the (complex) Euclidean
ball. The polar of B is the set

B∗ = {y ∈ C
n: |y · x | ≤ 1 for all x ∈ B},

where y · x is the usual dot product. The polar of B is easily seen to be the
closed unit ball of the dual of (Cn, B), so that (Cn, B)∗ = (Cn, B∗).
Let {e1, . . . , en} denote the standard basis for C

n . Given (vi j )∈ Mp,q (Cn),
let A� = (vi j · e�), 1 ≤ � ≤ n, denote the scalar p × q matrices obtained by
taking the coefficients of the vectors (vi j ) with respect to the �th basis vector.
With respect to the identification Mp,q (Cn) = Mp,q ⊗ C

n we have that (vi j ) =
A1 ⊗ e1 + · · · + An ⊗ en . In this manner we also identify Mp,q (Cn) with
n-tuples of p × q scalar matrices, and also write (vi j ) = (A1, . . . , An).
Now to specify an operator space structure on (Cn, B) it is enough to define

the unit ball of Mp,q (Cn) for all p and q and then verify that the resulting
families of norms satisfy Ruan’s axioms. Thus for a clearer understanding of
MIN((Cn, B)) and MAX((Cn, B)) we wish to identify the n-tuples of matrices
(A1, . . . , An) that belong to their unit balls.

Theorem 14.4. Let B ⊆ C
n be the unit ball of some norm on C

n, let V =
(Cn, B) and let A1, . . . , An be p × q matrices. We have:

(i) ‖A1 ⊗ e1 + · · · + An ⊗ en‖MIN(V ) ≤ 1 if and only if ‖µ1A1 + · · · +
µn An‖Mp,q ≤ 1 for all (µ1, . . . , µn) ∈ B∗,

(ii) ‖A1 ⊗ e1 + · · · + An ⊗ en‖MAX(V ) ≤ 1 if and only if ‖A1 ⊗ C1 + · · · +
An ⊗ Cn‖Mp,q (B(H)) ≤ 1 for all Hilbert spaces H and n-tuples (C1, . . . , Cn)
of operators on H satisfying ‖λ1C1 + · · · + λnCn‖ ≤ 1 for all
(λ1, . . . , λn) ∈ B.

Proof. We first prove (ii). Note that ϕ: V → B(H) is contractive if and only if
then-tupleCi = ϕ(ei ) satisfies‖λ1C1 + · · · + λnCn‖ ≤ 1 for all (λ1, . . . , λn) ∈
B. Now if (vi j ) = A1 ⊗ e1 + · · · + An ⊗ en , then

(ϕ(vi j )) = A1 ⊗ ϕ(e1)+ · · · + An ⊗ ϕ(en) = A1 ⊗ C1 + · · · + An ⊗ Cn.

Since ‖A1 ⊗ e1 + · · · + An ⊗ en‖MAX(V ) ≤ 1 if and only if ‖A1 ⊗ ϕ(e1)+ · · ·
+ An ⊗ ϕ(en)‖ ≤ 1 for all Hilbert spaces H and ϕ: V → B(H) contractive,
(ii) follows.
To prove (i), recall that MIN(V ) is the operator space structure obtained by

the embedding j : V → C(V ∗
1 ). But the unit ball of V ∗ is just the polar B∗ and
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j(ei )((µ1, . . . , µn)) = µi . Hence,

‖A1 ⊗ e1 + · · · + Anen‖MIN(V )
= ‖A1 ⊗ j(e1)+ · · · + An ⊗ j(en)‖Mp,q (C(B∗))

= sup{‖µ1A1 + · · · + µn An‖Mp,q : (µ1, . . . , µn) ∈ B∗},

and (i) follows. �

As an application of these concepts we consider a generalization of the clas-
sical Schwarz inequality from complex analysis. Recall that the Schwarz in-
equality says that if f : D → D is analytic with f (0) = 0, then | f ′(0)| ≤ 1.
Moreover, by considering functions of the form f (z) = αz we see that the set
of possible values of f ′(0) is exactlyD

−. Suppose now that G ⊆ C
n is the open

unit ball of some norm on C
n . Given F = ( fi j ): G → Mp,q analytic, we let

DF(0) denote the n-tuple of p × q matrices

DF(0) =
((

∂ fi j (0)

∂z1

)
, . . . ,

(
∂ fi j (0)

∂zn

))
.

We are interested in determining the set of all possible n-tuples DF(0) for
F :G → ball(Mp,q ) with F(0)= 0. A description of these n-tuples can be found
in most books on several complex variables; see [205] for example. But those
descriptions should be compared with the following for clarity and the ease
with which it can be recalled.

Proposition 14.5 (Generalized Schwarz lemma). Let G ⊆ C
n be the open

unit ball of some norm; let V = (Cn, G−). There exists F : G → ball(Mp,q )
analytic, F(0) = 0, such that DF(0) = (A1, . . . , An) if and only if
‖A1 ⊗ e1 + · · · + An ⊗ en‖MIN(V ∗) ≤ 1.

Proof. Assume ‖A1 ⊗ e1 + · · · + An ⊗ en‖MIN(V ∗) ≤ 1. Since V ∗ = (Cn, G∗)
and (G∗)∗ = G−, by Theorem 14.4 (i) we have ‖A1λ1 + · · · + Anλn‖ ≤ 1 for
all (λ1, . . . , λn)∈ G−. Define F :G → Mp,q by F((z1, . . . , zn))= A1z1 + · · · +
Anzn . Then F(G) ⊆ ball(Mp,q ), F(0) = 0, and DF(0) = (A1, . . . , An).
Conversely, assume F :G → ball(Mp,q ) is analytic, F(0) = 0, and DF(0) =

(A1, . . . , An). Fix unit vectors h ∈ C
q , k ∈ C

p and a point (λ1, . . . , λn)
∈ G, and define f :D → C via f (z) = 〈F(λ1z, . . . , λnz)h, k〉. Since f (0) = 0
and f (D) ⊆ D, by Schwarz’s lemma we have that | f ′(0)| = |〈(A1λ1 + · · · +
Anλn)h, k〉| ≤ 1. Since h and k are arbitrary unit vectors, we have that
‖A1λ1 + · · · + Anλn‖ ≤ 1 for all (λ1, . . . , λn) ∈ G. Thus, ‖A1 ⊗ e1 + · · · +
An ⊗ en‖MIN(V ∗) ≤ 1 by another application of Theorem 14.4 (i). �
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The following is yet another way, in operator space language, to interpret the
generalized Schwarz lemma. Let H∞(G) denote the space of bounded analytic
functions on G. If for ( fi j ) ∈ Mp,q (H∞(G)) we set

‖( fi j )‖∞ = sup{‖( fi j (z))‖Mp,q : z ∈ G},
then H∞(G) is an operator space. Let H∞

0 (G) = { f ∈ H∞(G): f (0) = 0} and
H∞
00 (G) = { f ∈ H∞(G): f (0) = 0, D f (0) = 0} denote the corresponding op-
erator subspaces. The map D: H∞

0 (G)→ C
n , f → D f (0) has kernel H∞

00 (G)
and so induces a quotient map Ḋ: H∞

0 (G)/H∞
00 (G)→ C

n . It is now easy to
see that Proposition 14.5 is equivalent to the statement that Ḋ is a complete
isometry between the quotient operator space H∞

0 (G)/H∞
00 (G) and MIN(V

∗).
The space H∞

0 (G)/H∞
00 (G) is often called the cotangent space of G at 0.

Thus, the generalized Schwarz lemma is simply one way to describe what the
natural operator space structure is on the cotangent space.
The generalized Schwarz lemma and Theorem 14.4 also make it possible to

generalize the phenomenon in Parrott’s example.

Theorem 14.6. Let G ⊆ C
n be the open unit ball of a norm on C

n, and let
V = (Cn, G−). Then there exists a Hilbert space H and a unital contractive
homomorphism ρ: H∞(G)→ B(H) with ‖ρ‖cb ≥ α(V ).

Proof. Given a Hilbert spaceH and operators A1, . . . , An ∈ B(H), we define
ρ: H∞(G)→ B(H ⊕ H) via

ρ( f ) =
(

f (0)I ∂ f (0)
∂z1

A1 + · · · + ∂ f (0)
∂zn

An

0 f (0)I

)
.

Using the product rule, it is easily checked that ρ is a homomorphism.
We claim that if ‖A1µ1 + · · · + Anµn‖ ≤ 1 for all (µ1, . . . , µn) ∈ G∗, then

‖ρ‖ ≤ 1.
To prove this claim, first consider the case where f (0) = 0, ‖ f ‖∞ < 1.

Then D f (0) = (µ1, . . . , µn) ∈ G∗ by Proposition 14.5, and so ‖ρ( f )‖ =
‖A1µ1 + · · · + Anµn‖ ≤ 1. For arbitrary f ∈ H∞(G), with ‖ f ‖∞ < 1, let
α = f (0) and let ϕα(z) = (z − α)(1− ᾱz)−1. It is easily seen that σ (ρ( f )) =
f (0) = α and that

ϕα(ρ( f )) = (ρ( f )−α I )(I − ᾱρ( f ))−1 = ρ(( f − α1)(1− ᾱ f )) = ρ(ϕα ◦ f ).

Since ϕα ◦ f (0) = 0 and ‖ϕα ◦ f ‖∞ ≤ 1, we have that ‖ϕα(ρ( f ))‖ ≤ 1.
Clearly, ρ( f ) = ϕ−α(ϕα(ρ( f ))), and hence we may apply von Neumann’s in-
equality to deduce that ‖ρ( f )‖ = ‖ϕ−α(ϕα(ρ( f )))‖ ≤ 1.
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Applying Theorem 14.4 (i), we see that
‖A1 ⊗ e1 + · · · + An ⊗ en‖MIN(V )≤ 1 implies ‖ρ‖ ≤ 1.
Given any p × q matrices B1, . . . , Bn such that ‖B1λ1 + · · · + Bnλn‖ ≤ 1,

we have that F((z1, . . . , zn)) = B1z1 + · · · + Bnzn ∈ Mp,q (H∞(G)) and
‖F‖ ≤ 1. Since DF(0) = (B1, . . . , Bn), setting F = ( fi j ), we have

(ρ( fi j )) =
(
0 A1 ⊗ B1 + · · · + An ⊗ Bn

0 0

)
.

Thus, ‖ρ‖cb ≤ ‖A1 ⊗ B1 + · · · + An ⊗ Bn‖. Taking the supremum over all
such (B1, . . . , Bn) and applying Theorem 14.4 (ii), we obtain ‖ρ‖cb ≥ ‖A1 ⊗
e1 + · · · + An ⊗ en‖MAX(V ). Since this holds for any

‖A1 ⊗ e1 + · · · + An ⊗ en‖MIN(V ) ≤ 1,
we may take a sequence of such A’s, with ‖A(k)1 ⊗ e1 + · · · + A(k)n ⊗ en‖MIN(V )
≤ 1 and limk ‖A(k)1 ⊗ e1 + · · · + A(k)n ⊗ en‖MAX(V ) = α(V ). Finally, setting
A� = ∑∞

k=1⊕A(k)� and using these operators to define a homomorphism ρ,
we have that ‖ρ‖ = 1 while ‖ρ‖cb ≥ α(V ). �

Applying this construction to the polydisk G = D
n , we obtain an n-tuple of

commuting contractions that induce a contractive homomorphism ρ of H∞(Dn)
with ‖ρ‖cb ≥ α(�∞

n ) ≥
√

n/2. When n = 3, we find that this construction es-
sentially reduces to the example of Parrott presented in Chapter 7.
As mentioned earlier, α(V ) > 1 whenever dim(V ) ≥ 3. Thus, for every

G ⊆ C
n , n ≥ 3 as above, there exists a unital contractive homomorphism

ρ: H∞(G)→ B(H) with ‖ρ‖cb > 1.
If we let P(G) ⊂ H∞(G) denote the subalgebra generated by the polynomi-

als in the coordinate functions, then it is not hard to see (Exercise 14.10) that
the analogue of Theorem 14.6 holds with P(G) in place of H∞(G). Thus, for
such a set G there always exists an n-tuple of commuting operators such that
G− is a joint spectral set for the n-tuple, but not a complete spectral set.
These considerations show how special Ando’s dilation theorem is, since the

bidisk is one of the very few possible domains for which contractive homomor-
phisms can be completely contractive.
An important feature of normed spaces is that the space B(V, W ) of bounded

linear maps between two normed spaces V andW is again a normed space and
that, in particular, the dualV ∗ = B(V, C) of a normed spaceV is again a normed
space. This feature is shared by operator spaces and completely bounded maps.
That is, if E and F are operator spaces, then there is a natural way to make
CB(E, F), and hence E∗, into operator spaces.
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To see how this is done suppose that (ϕi j ) ∈ Mm,n(CB(E, F)). We identify
(ϕi j ) with a map �: E → Mm,n(F) by setting �(e) = (ϕi j (e)), and define a
norm on Mm,n(CB(E, F)) by setting

‖(ϕi j )‖Mm,n (CB(E,F)) = ‖�‖CB(E,Mm,n (F)).

In short, we identify Mm,n(CB(E, F)) = CB(E, Mm,n(F)). It is not difficult to
see that

‖(ϕi j )‖Mm,n (C B(E,F))

= sup{‖(ϕi j (ek�))‖Mmp,nq (F): (ek�) ∈ Mp,q (E), ‖(ek�)‖ ≤ 1},
where the matrix (ϕi j (ek�)) can be interpreted as the p × q matrix of m × n
matrices 


�(e11) . . . �(e1q )
...

...
�(ep1) . . . �(epq )


 ,

or as the m × n matrix of p × q matrices

(ϕ11(ek�)) . . . (ϕ1n(ek�))
...

...
(ϕm1(ek�)) . . . (ϕmn(ek�))


 ,

since these two matrices differ by a canonical shuffle.

Proposition 14.7 (Ruan). Let E and F be operator spaces, and equip matrices
over CB(E, F) with the norms obtained by the identifications

Mm,n(CB(E, F)) = CB(E, Mm,n(F)).

Then CB(E, F) is an operator space.

Proof. We leave it to the reader (Exercise 14.5) to verify that CB(E, F) satisfies
the axioms of an L∞-matrix-normed space. �

One special case of the above result is when F = C. Recall that for every
linear ϕ: E → C we have ‖ϕ‖ = ‖ϕ‖cb. Thus, E∗ = B(E, C) = CB(E, C),
isometrically. Hence, by the above result there is a natural way to endow the
Banach space dual of an operator space with a matrix-normed structure such
that the dual of an operator space is again an operator space. In short, we identify
Mm,n(E∗) = CB(E, Mm,n). Thus, if (ϕi j ) ∈ Mm,n(E∗), then we identify it with
the map �: E → Mm,n given by �(e) = (ϕi j (e)) and set ‖(ϕi j )‖ = ‖�‖cb.
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In the future we shall refer to the Banach space dual, endowed with this
matrix-normed structure, as the dual operator space. We shall write E∗ for the
dual operator space of E as well as for the Banach space dual of E , and hope
it will be clear from the context which dual we are referring to.

Proposition 14.8. Let E be an operator space, and let j : E → E∗∗ be the
canonical embedding j(e)(ϕ)= ϕ(e) for ϕ ∈ E∗. Then j is a complete isometry.

Proof. If X = (xi j ) ∈ Mm,n(E), then ( j(xi j )) ∈ Mm,n(E∗∗) is identified with
the map X̂ : E∗ → Mm,n defined by X̂ (ϕ) = (ϕ(xi j )). Thus, we must prove
‖X̂‖cb = ‖(xi j )‖. Now if (ϕk,�) ∈ Mpq (E∗), then

‖(X̂ (ϕk,�))‖ = ‖(ϕk�(xi j ))‖ ≤ ‖�‖cb‖(xi j )‖
where �: E → Mpq is given by �(x) = (ϕk�(x)). Since ‖(ϕk�)‖ = ‖�‖cb, we
have that ‖X̂‖cb ≤ ‖(xi j )‖.
Now to prove the other inequality we shall need Ruan’s theorem. So

let γ : E → B(H) be a complete isometry. Pick subspaces Hq ⊆ Hq+1 with
dim(Hq ) = q such that ‖(xi j )‖ = ‖(γ (xi j ))‖ = supq ‖(Pqγ (xi j )Pq )‖, where
Pq :H → Hq denotes the projection. Choosing an orthonormal set {ek}∞k=1 such
that span{e1, . . . , eq} = Hq , we obtain linear functionals γk�(x) = 〈γ (x)e�, ek〉
such that Pqγ (x)Pq

∼= (γk,�(x))
q
k,�=1. Hence (γk,�)

q
k,�=1 ∈ Mq (E∗), ‖(γk,�)‖ ≤

‖γ ‖cb = 1, and
‖X̂‖cb ≥ sup

q
‖(X̂ (γk,�))‖ = sup

q
‖(Pqγ (xi j )Pq )‖ = ‖(xi j )‖. �

Blecher [19] proves the deeper fact that the image of the unit ball of Mm,n(E)
is weak∗-dense in the unit ball of Mm,n(E∗∗) for all m and n.
Not surprisingly, some of the most important operator spaces are those that

as normed spaces are Hilbert spaces. We have already met two ways to make
n-dimensional Hilbert space �2n into an operator space: MIN(�

2
n) and MAX(�

2
n).

By Exercise 14.5, MIN(�2n)
∗ = MAX(�2n) and MAX(�2n)∗ = MIN(�2n), so these

are a dual pair. Another important dual pair are row and column Hilbert space.
Consider the identification of �2n with the operator space Mn,1 of the n × 1

matrices, i.e., column vectors of length n. A p × q matrix of vectors (vi j )
is normed by writing it as a pn × q scalar matrix under the identification
Mp,q (Mn,1) = Mpn,q . When the Hilbert space �2n is equipped with this oper-
ator space structure, we call it column Hilbert space, and it is generally denoted
Cn instead of Mn,1.
Similarly, if we identify �2n with the operator space M1,n , i.e., row vectors of

length n, then a p × q matrix of vectors (vi j ) is normed bywriting it as a p × qn
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scalar matrix under the identification Mp,q (M1,n) = Mp,qn . The Hilbert space
�2n equipped with this operator space structure is called row Hilbert space, and
it is denoted Rn instead of M1,n .
For a quick example of how these two structures differ, let {e1, . . . , en} denote

the canonical basis vectors for �2n , and consider the 1× n matrix of vectors
(e1, . . . , en). We have M1,n(Cn) = Mn,n , and this is identified with the identity
matrix, while M1,n(Rn) = M1,n2 and hence is identified with a row vector of
length n2.
Hence we have ‖(e1, . . . , en)‖M1,n (Cn ) = 1, while ‖(e1, . . . , en)‖M1,n (Rn ) =√
n, and thus the natural isometric identification ofCn with Rn is not a complete
isometry. In fact, if an n × n matrix A is regarded as a linear map from Cn to
Rn , then ‖A‖cb is equal to the Hilbert–Schmidt norm of A. For a proof of this
fact, see [140].
We now wish to examine these two operator space structures from another

viewpoint. Formally,Cn can be thought of as the image of �2n under the isometric
map ϕ: �2n → Cn given by ϕ(ei ) = Ei,1. Given a matrix (vk�) ∈ Mp,q (�2n), let
Ai = (〈vk�, ei 〉), 1 ≤ i ≤ n, denote the scalar p × q matrices obtained by taking
the coefficients of (vk�) with respect to the i th basis vector. The identification
Mp,q (�2n) = Mp,q ⊗ �2n identifies (vk�) =

∑n
i=1 Ai ⊗ ei , and

(ϕ(vk�)) = idMp,q ⊗ ϕ

(
n∑

i=1
Ai ⊗ ei

)
=

n∑
i=1

Ai ⊗ ϕ(ei )

=
n∑

i=1
Ai ⊗ Ei1 in Mp,q ⊗ Mn,1 = Mpn,q .

Thus (ϕ(vk�)) is identified with the pn × q matrix


A1
...

An


 ,

and we have

‖(vk�)‖2Mp,q (Cn ) =
∥∥∥∥∥
(

n∑
i=1

Ai ⊗ Ei1

)∗ (
n∑

j=1
A j ⊗ E ji

)∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1
A∗

i Ai ⊗ E11

∥∥∥∥∥ =
∥∥∥∥∥

n∑
i=1

A∗
i Ai

∥∥∥∥∥ .

A similar analysis for Rn shows that if (vk�) =
∑n

i=1 Ai ⊗ ei is in Mp,q ⊗ �2n ,
then its image in Rn is

∑n
i=1 Ai ⊗ E1i , which can be identified with the p × qn
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matrix (A1, . . . , An), and

‖(vk�)‖2Mp,q (Rn ) =
∥∥∥∥∥
(

n∑
i=1

Ai ⊗ E1i

)(
n∑

j=1
A j ⊗ E1 j

)∗∥∥∥∥∥ =
∥∥∥∥∥

n∑
i=1

Ai A∗
i

∥∥∥∥∥ .

Given v ∈ Rn , define γ (v): Cn → C, via γ (v)(w) = v · w, where v · w de-
notes the matrix product of the row vector v with the column vector w. This
gives a map γ : Rn → C∗

n , which is clearly an isometry.

Proposition 14.9. The map γ : Rn → C∗
n is a complete isometry.

Proof. Let (vi j ) ∈ Mp,q (Rn) = Mp,qn . Then � = (γ (vi j )): Cn → Mp,q is the
map given by �(w) = (vi j · w), and we must prove that ‖φ‖cb = ‖(vi j )‖Mp,qn .
First note that if we form the qn × q matrix

ŵ =




w 0 . . . 0

0 w
. . .

...
...
. . .

. . . 0
0 . . . 0 w


 ,

then ‖ŵ‖ = ‖w‖ and �(w) = (vi j ) · ŵ is the actual matrix product. Thus,
‖�(w)‖Mp,q ≤ ‖(vi j )‖Mp,q (Rn ) · ‖w‖.
Now if (wk,�) ∈ Mr,s(Cn), then

(�(wk,�)) = ((vi j ) · ŵk,�) =



(vi j ) 0

. . .
0 (vi j )


 ·




ŵ11 . . . ŵ1s
...

...
ŵr1 . . . ŵrs


 ,

and hence

‖(�(wk�))‖ ≤ ‖(vi j )‖Mp,q (Rn )‖(ŵk�)‖Mr,s (Mqn,q ).

A moment’s reflection and a canonical shuffle show that ‖(ŵk�)‖Mr,s (Mqn,q ) =
‖(wk�)‖Mr,s (Cn ).
Hence, ‖�‖cb ≤ ‖(vi j )‖Mp,q (Rn ).
To see that ‖�‖cb ≥ ‖(vi j )‖Mp,q (Rn ), consider (E11, . . . , En1) ∈ M1,n(Cn).

Then ‖(E11, . . . , En1)‖ = 1, and so

‖�‖cb ≥ ‖(�(E11), . . . , �(En1))‖Mp,qn = ‖((vi j · E11), . . . , (vi j · En1))‖Mp,qn

= ‖(A1, . . . , An)‖Mp,qn .
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But the scalar matrices A1, . . . , An are easily seen to be the coefficients of
(vi j ) =

∑n
i=1 Ai ⊗ ei , and so this last quantity is ‖(vi j )‖Mp,q (Rn ) by the above

calculation. �

In a similar fashion the matrix product pairing defines a complete isometry
of Cn onto R∗

n .
It is valuable to look at the above pairing from the tensor viewpoint. Keep-

ing the notation as above, if �(w) = (vi j · w) with (vi j ) =
∑n

i=1 Ai ⊗ ei and
(wk�) =

∑n
i=1 Bi ⊗ ei , then (�(wk�)) =

∑n
i=1 Ai ⊗ Bi where Ai ⊗ Bi is the

Kronecker tensor product of matrices discussed in Chapter 3.
One of the most important properties of a Hilbert space is that it is conjugate

linearly isometrically isomorphic to its own dual. Thus, given a Hilbert space
H, one would like an operator space structure onH such that the map fromH
toH∗ is a conjugate linear complete isometry. Pisier [176] proved that such an
operator space structure exists and is unique. The resulting operator space is
called the operator Hilbert space and is denoted OH.
If {e1, . . . , en} denotes the standard basis for �2n and

∑n
i=1 Ai ⊗ ei is in

Mp,q (�2n), then ∥∥∥∥∥
n∑

i=1
Ai ⊗ ei

∥∥∥∥∥
O�2n

=
∥∥∥∥∥

n∑
i=1

Ai ⊗ Āi

∥∥∥∥∥
Mp2 ,q2

,

where Ā denotes the complex conjugate of the matrix A, and A ⊗ Ā is the
p2× q2 Kronecker tensor encountered earlier. That is, A ⊗ Ā is the matrix
whose ((i1, i2), ( j1, j2)) entry isai1, j1 āi2, j2 for 1 ≤ i1, i2 ≤ p and1 ≤ j1, j2 ≤ q .
Pisier’s proof rests on a pretty Cauchy–Schwarz-type inequality for

Kronecker tensors due to Haagerup [108] namely,∥∥∥∥∥
n∑

i=1
Ai ⊗ Bi

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

Ai ⊗ Āi

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
i=1

Bi ⊗ B̄i

∥∥∥∥∥
1/2

.

In addition to the five operator space structures thatwe have already discussed
on Hilbert space, there are many more. Among these the most natural to study
are the homogeneous operator space structures. An operator space X is called
homogeneous provided every bounded linear map T : X → X is completely
bounded and ‖T ‖cb = ‖T ‖.
For example, MIN(X ) and MAX(X ) are homogeneous operator spaces for

every normed space (Exercise 14.1). In addition, row, column, and Pisier’s
operator Hilbert space are homogeneous operator spaces.
There exist many “exotic” homogeneous operator space structures on Hilbert

space. Zhang [248] exhibits, for each integer n, two homogeneous operator
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space structures on �2n , say H1 and H2, such that if T : H1→H2 is linear with
rank(T ) ≤ n − 1, then ‖T ‖cb = ‖T ‖, but ‖I‖cb �= ‖I‖, where I denotes the
identity. In addition, every pair of (n − 1)-dimensional subspaces of H1 and
H2 are completely isometrically isomorphic, yetH1 andH2 are not completely
isometrically isomorphic.
For each symmetrically normed ideal J in the sense of Gohberg and Krein

[105], Mathes and the author [142] exhibit two homogeneous operator space
structures on �2 sayH1 andH2, such that T :H1 → H2 is completely bounded
if and only if T ∈ J and the completely bounded norm of T is equivalent to its
norm in J .

Thus, in particular, for 1 < p < +∞ there exist homogeneous operator space
structures on �2 such that T : H1 → H2 is completely bounded if and only if
it belongs to the Schatten p-ideal Cp with ‖T ‖cb equivalent to (

∑∞
n=1 s p

n )1/p,
where {sn} is the sequence of singular values of T .
A characterization of the set of symmetric norms that one can achieve

exactly as the cb norm between two homogeneous operator spaces is not
known.
It is also not very well understood how nonhomogeneous an operator space

norm can be made. That is, given an operator space X , how small a subset
CB(X, X ) can be of B(X, X ) is not clear. The most definitive result in this
direction is due to Oikhberg [154]. He exhibits an operator space structure on
Hilbert space such that the completely bounded maps from the space back to
itself are just the scalar multiples of the identity plus the compacts. On the other
hand it is quite easy to show that, independent of the operator space structure
on Hilbert space, every map that is the sum of a scalar multiple of the identity
and a trace class operator is necessarily completely bounded. These results are
in sharp contrast to the Banach space setting, where it is still unknown if any
Banach space X exists such that every operator in B(X, X ) is a scalar multiple
of the identity plus a compact.

Hilbert C∗-Modules

We close this chapter by studying some objects that play an important role
in the study of C∗-algebras. To this end, let A be a unital C∗-algebra and
let V be a vector space that is also a left A-module. Thus, in particular,
we assume a1 · (v1 + v2) = a1 · v1 + a1 · v2, (a1 + a2) · v1 = a1 · v1 + a2 · v2,

(a1a2) · v1 = a1 · (a2 · v1), and (λa1) · v1 = λ(a1 · v1), for a1, a2 ∈ A and v1,

v2 ∈ V , and λ ∈ C. We also assume that 1 · v = v for every v in V . Sometimes
modules satisfying this latter condition are called unitary A-modules, but we
find this terminology can be confusing.
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We call V a Hilbert C∗-module provided it is equipped with a map
〈 , 〉: V × V → A satisfying:
(i) 〈v1 + v2, v3〉 = 〈v1, v3〉 + 〈v2, v3〉,
(ii) 〈av1, v2〉 = a〈v1, v2〉,
(iii) 〈v1, av2〉 = 〈v1, v2〉a∗,
(iv) 〈v1, v2〉 = 〈v2, v1〉∗,
(v) 〈v1, v1〉 ≥ 0 and 〈v1, v1〉 = 0 if and only if v1 = 0,
for every v1, v2, v3 ∈ V and a ∈ A. We call such a map an A-valued inner
product.
We note that we have made no attempt to present a minimal set of axioms.

For example, (ii) and (iv) taken together imply (iii).
Thus, a Hilbert C∗-module is like a Hilbert space, where the role of C is

played by A.
Perhaps the simplest example of a Hilbert C∗-module over A is to let

V = {(a1, . . . , an): ai ∈ A} with module action given by a(a1, . . . , an) =
(aa1, . . . , aan) and an A-valued inner product given by

〈(a1, . . . , an), (b1, . . . , bn)〉 = a1b
∗
1 + · · · + anb∗

n .

Note that if we identify V = M1,n(A), then V ∗ = Mn,1(A) and for v1 =
(a1, . . . , an) and v2 = (b1, . . . , bn) in V we have that

〈v1, v2〉 = (a1, . . . , an) ·




b∗
1
...

b∗
n


 = v1v

∗
2 .

Thus, we see that V is identified with an operator space M1,n(A) in such a
way that theA-valued inner product becomes an actual product between V and
V ∗. It is a well-known result in the theory of Hilbert C∗-modules that such a
representation is always possible. Thus, in particular, every Hilbert C∗-module
has a “natural” operator space structure.
Using Ruan’s theorem, it is possible to give an intrinsic description of this

operator space structure on a HilbertC∗-module. Clearly, if we want 〈v1, v2〉 =
v1v

∗
2 , then for any X = (vi j ) ∈ Mp,q (V ) we should have that X X∗ ∈ Mp,p(A)

is the element given by

X X∗ =
(

q∑
�=1

vi�v
∗
j�

)
=

(
q∑

�=1
〈vi�, v j�〉

)
.

Thus, we need that this latter matrix should be a positive element of Mp(A) and
‖X‖2 = ‖(∑q

�=1〈vi�, v j�〉)‖. This hopefully motivates the following theorem.
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Theorem 14.10. Let V be a Hilbert C∗-module over A. Then for every p, q
and X = (vi j ) ∈ Mp,q (V ) the matrix (

∑q
�=1〈vi�, v j�〉) ∈ Mp(A)+. If we define

‖X‖p,q = ‖(∑q
�=1〈vi�, v j�〉)‖1/2, then V endowed with this family of matrix

norms is an operator space.

Proof. To verify that the matrix (
∑q

�=1〈vi�, v j�〉) is a positive element of
Mp(A), by Exercise 3.18 it is sufficient to prove that for every p-tuple
(a1, . . . , ap) of elements of A, we have that

∑p
i, j=1

∑q
�=1 ai 〈vi�, v j�〉a∗

j is a
positive element of A. Setting x� = ∑p

i=1 aivi�, we see that this latter sum is∑p
�=1〈x�, x�〉, which is positive by property (v).
To see that ‖v‖ = ‖〈v, v〉‖1/2 is a norm on V , we note that ‖λv‖ = |λ|‖v‖

is clear and establish the triangle inequality. To this end, let v, w ∈ V and set
X = ( vw ) ∈ M2,1(V ). Since

X X∗ =
(

〈v, v〉 〈v, w〉
〈w, v〉 〈w, w〉

)
∈ M2(A)+,

by Exercise 3.2 (ii) we have that

‖〈v + w, v + w〉‖ = ‖〈v, v〉 + 〈v, w〉 + 〈w, v〉 + 〈w, w〉‖
≤ (‖〈v, v〉‖1/2 + ‖〈w, w〉‖1/2)2

and thus ‖v + w‖ ≤ ‖v‖ + ‖w‖.
To see that the above quantity defines a normonMp,q (V ), simply note that the

“natural” matrix product makes Mp,q (V ) a left Mp(A)-module. For X = (vi j )
and Y = (wi j ) in Mp,q (V ) set 〈X, Y 〉p,q = (∑q

k=1〈vik, w jk〉) ∈ Mp(A). Since,
formally, 〈X, Y 〉p,q = X · Y ∗, it is readily seen that 〈·, ·〉p,q is an Mp(A)-valued
inner product on Mp,q (V ). Thus, by the last paragraph, we know that setting

‖X‖p,q = ‖〈X, X〉p,q‖1/2 =
∥∥∥∥∥
(

q∑
k=1

〈vik, v jk〉
)∥∥∥∥∥
1/2

Mp(A)

defines a norm on Mp,q (A).
The fact that this system of norms satisfies Ruan’s axioms is straightforward.

In particular, notice that the L∞ condition follows from the fact that for X ∈
Mp,q (V ), and Y ∈ Mr,s(V ) we have that

‖X ⊕ Y‖p+r,q+s = ‖〈X ⊕ Y, X ⊕ Y 〉p+r,q+s‖1/2

= ‖〈X, X〉p,q ⊕ 〈Y, Y 〉r,s‖1/2 = max{‖X‖, ‖Y‖}. �
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Notes

The theory of operator spaces is currently a very exciting and rapidly expanding
area. See [88] and [193] for two recent texts in this field.
The constant α was first introduced and studied in [163], where many of the

early estimates of its values were obtained. Some small improvements can be
found in [164], and the key improvement on the lower bound for α(�2n) appears
in [193].
The geometry of finite-dimensional operator spaces now plays an important

role in many questions in the general theory of C∗-algebras. One of the most
exciting breakthroughs was its use by Junge and Pisier [127] to prove that the
maximal and minimal C∗-tensor norms of B(H) with itself are different, thus
settling an old conjecture.

Exercises

14.1 Let V be a normed space, X an operator space, and let ϕ: X → MIN(V ),
ψ : MAX(V )→ X be linear maps. Prove that ‖ϕ‖ = ‖ϕ‖cb and ‖ψ‖ =
‖ψ‖cb. Deduce that MIN(V ) and MAX(V ) are homogeneous.

14.2 Let V be a normed space, X an operator space, and let ϕ: MIN(V )→ X.

Prove that ‖ϕ‖cb ≤ α(V )‖ϕ‖.
14.3 (Zhang) Let Fm denote the free group on m generators{

u(m)1 , . . . , u(m)m

}
.

Prove that the maps ϕ: MAX(�1n)→ C∗
u (Fn) and ψ : MAX(�1n)→

C∗
u (Fn−1) given by ϕ((λ1, . . . , λn)) = λ1un

1 + · · · + λnun
n and

ψ((λ1, . . . , λn)) = λ1u
(n−1)
1 + λ2u

(n−1)
2 + · · · + λn−1u

(n−1)
n−1 + λn I

are complete isometries.
[Hint: Prove that the map sending u(n−1)

i → u(n)
∗

n u(n)i induces a ∗-
isomorphism of C∗

u (Fn−1) into C∗
u (Fn).]

14.4 Prove that the maps ϕ: MIN(�1n)→ C(Tn) and ψ : MIN(�1n)→ C(Tn−1)
given by ϕ((λ1, . . . , λn)) = λ1z1 + · · · + λnzn and ψ((λ1, . . . , λn)) =
λ1z1 + · · · + λn−1zn−1 + λn are complete isometries.

14.5 Prove Proposition 14.7.
14.6 (Blecher) Let V be a normed space. Prove that MIN(V )∗ = MAX(V ∗)

and MAX(V )∗ = MIN(V ∗), completely isometrically. Use these identi-
fications to prove that α(V ) = α(V ∗).

14.7 Recall that for H,K Hilbert spaces, B(H,K) is an operator space. The
map ϕ: B(C,H)→ H via ϕ(T ) = T (1) for T ∈ B(C,H) is an isometry.



Exercises 205

Prove that B(C, �2n) is completely isometrically isomorphic to Cn . Show
similarly, that B(�2n, C) is completely isometrically isomorphic to Rn .We
set Hc = B(C,H) and Hr = B(H, C), and call these operator spaces
Hilbert column space and Hilbert row space, respectively.

14.8 Let γ : Cn → Rn be the map γ (
∑n

i=1 λi Ei1) =
∑n

i=1 λi E1i . Prove that
γ is an isometry and ‖γ ‖cb = ‖γ −1‖cb = √

n.
14.9 Let V be a Hilbert C∗-module over A. Prove the following analogue of

the Cauchy–Schwarz inequality: 〈v, w〉〈w, v〉 ≤ ‖〈w, w〉‖〈v, v〉.
14.10 Prove the analogue of Theorem 14.6 with H∞(G) replaced by P(G).

Prove that the inclusion of P(G) into H∞(G) induces a completely
isometric isomorphism between the quotient spaces P0(G)/P00(G) and
the quotient space H∞

0 (G)/H∞
00 (G).



Chapter 15
Injective Envelopes

In this chapter we take a closer look at injectivity and introduce injective en-
velopes and C∗-envelopes of operator systems, operator algebras, and operator
spaces. Loosely speaking, the injective envelope of an object is a “minimal”
injective object that contains the original object. The C∗-envelope of an opera-
tor algebra is a generalization of the Silov boundary of a uniform algebra. The
C∗-envelope of an operator algebraA is the “smallest”C∗-algebra that contains
A as a subalgebra, up to completely isometric isomorphism. These ideas will
be made precise in this chapter. Many of the ideas of this chapter are derived
from the work of M. Hamana [112].
Injectivity is really a categorical concept. Suppose that we are given some

category C consisting of objects and morphisms. Then an object I is called
injective in C provided that for every pair of objects E ⊆ F and everymorphism
ϕ: E → I , there exists a morphism ψ : F → I that extends ϕ, i.e., such that
ψ(e) = ϕ(e) for every e in E .
Ifwe letSdenote the collectionof operator systems anddefine themorphisms

between operator systems to be the completely positive maps, then since the
composition of completely positive maps is again completely positive, we shall
have a category, which we call the category of operator systems. Arveson’s
extension theorem (Theorem 7.5) for completely positive maps is equivalent to
the statement that B(H) is injective in the categoryS. The earlier definition of
injectivity for C∗-algebras that was given in Chapter 7 was really injectivity in
the category S.

Similarly, we let O denote the category whose objects consist of operator
spaces andwhosemorphisms are the completely boundedmaps.Wittstock’s ex-
tension theorem (Theorem 8.2) for completely bounded maps shows that B(H)
is also injective in the categoryO. However, note that for it to be injective inO,
we only need that every completely bounded map has a completely bounded
extension, but not necessarily of the same cb norm! To capture the full force of

206
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Wittstock’s extension theorem, we need a slightly different category. We letO1

denote the category whose objects are operator spaces and whose morphisms
are the completely contractive maps. Now by a simple scaling argument, it is
easy to see (Exercise 15.1) that I is injective in O1 if and only if every com-
pletely bounded map into I has a completely bounded extension of the same cb
norm. Thus, Wittstock’s extension theorem is equivalent to the statement that
B(H) is injective in O1.
In this chapter we focus on injectivity in O1.
For operator systems it might seem natural to also study injectivity in S

or in the category S1 consisting of operator systems and unital completely
positive maps, but it turns out that for operator systems injectivity in these three
categories is equivalent (Proposition 15.1).
We begin with an elementary characterization of injectivity for operator

systems.

Proposition 15.1. Let S ⊆ B(H) be an operator system. Then the following
are equivalent:

(i) S is injective in O1,
(ii) S is injective in S,
(iii) S is injective in S1,
(iv) there exists a completely positive projection φ: B(H) → S onto S.

Proof. We begin by proving that (i) is equivalent to (iv). Assuming (i), then the
identitymap from S to S extends to a completely contractivemapφ: B(H) → S.
Since φ extends the identity map, φ is a projection onto S. Since φ(1) = 1, φ
must be completely positive.
Conversely, assume (iv), and suppose we are given operator spaces E ⊆ F

and a completely contractive map, γ : E → S. Then γ has a completely con-
tractive extension ψ : F → B(H), and φ ◦ ψ : F → S is the desired completely
contractive extension of γ into S.
The proof of the equivalence of (ii) and (iii) to (iv) is similar. �

Thus, for operator systems we have that injectivity in S, in S1, and in O1

are all equivalent. For this reason we shall continue to simply call such systems
injective. However, it is important to remark that there is an example due to
Huruya [125] of a C∗-algebra that he proves is not injective, but is easily seen
[102] to be injective in O. Currently, there is little that is known about the C∗-
algebras that are injective inO. EveryC∗-algebra that is completely boundedly
linearly isomorphic to a C∗-algebra that is injective inO1 can be easily seen to
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be injective in O, but it is not known if this characterizes the C∗-algebras that
are injective in O.

The following result shows that every injective operator system is in an
appropriate sense a C∗-algebra.

Theorem 15.2 (Choi–Effros). Let S ⊆ B(H) be an injective operator system,
and let φ: B(H) → S be a completely positive projection onto S. Then setting
a ◦ b = φ(a · b) defines a multiplication on S, and S together with this multi-
plication and its usual ∗-operation is a C∗-algebra. Moreover, the identity map
from S to the C∗-algebra (S, ◦) is a unital complete order isomorphism.

Proof. Clearly, for a, b in S, a ◦ b is in S. Distributivity is clear, and clearly
a ◦ 1 = 1 ◦ a = a. To show that ◦ defines a multiplication on S it remains to
show associativity, a ◦ (b ◦ c) = (a ◦ b) ◦ c, i.e., that φ(aφ(bc)) = φ(φ(ab)c).
Weclaim for any x in B(H) anda in S thatφ(φ(x)a) = φ(xa) andφ(aφ(x)) =

φ(ax). Assuming the claim, we have that

φ(aφ(bc)) = φ(abc) = φ(φ(ab)c),

and thus associativity follows.
To prove the claim recall the Schwarz inequality, ψ(y∗y)− ψ(y)∗ψ(y) ≥ 0

for any unital completely positive map ψ . Applying this to ψ = φ(2) and y =
( a

∗ x
0 0 ) yields(

φ(aa∗) φ(ax)

φ(x∗a∗) φ(x∗x)

)
−

(
aa∗ aφ(x)

φ(x)∗a∗ φ(x)∗φ(x)

)
≥ 0.

Applying φ(2) to this inequality yields(
0 φ(ax)− φ(aφ(x))

φ(x∗a∗)− φ(φ(x)∗a∗) φ(x∗x)− φ(φ(x)∗φ(x))

)
≥ 0.

The positivity of this matrix forces φ(ax)− φ(aφ(x)) = 0, and hence, since φ

is self-adjoint, the claim follows.
Next we verify the C∗ condition, ‖a∗ ◦ a‖ = ‖a‖2. Clearly, ‖a∗ ◦ a‖ =

‖φ(a∗a)‖ ≤ ‖a∗a‖ = ‖a‖2. But, again by the Schwarz inequality, φ(a∗a) ≥
φ(a)∗φ(a) = a∗a and hence ‖a∗ ◦ a‖ = ‖φ(a∗a)‖ ≥ ‖a∗a‖ = ‖a‖2, and the
proof that (S, ◦) is a C∗-algebra is complete.
Clearly the identity map from S to (S, ◦) is an isometry. We now argue that

it is a complete isometry. To this end consider Mn(S) ⊆ Mn(B(H)) = B(H(n))
and φ(n): B(H(n)) → Mn(S). By the above, Mn(S) is a C∗-algebra with product
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A ◦n B = φ(n)(A · B), and this C∗-algebra is isometrically isomorphic to the
operator system Mn(S). But for A = (ai j ), B = (bi j ) we have

A ◦n B =φ(n)

(
n∑

k=1
aikbk j

)
=

(
n∑

k=1
φ(aikbk j )

)
=

(
n∑

k=1
aik ◦ bkj

)
.

Thus, (Mn(S), ◦n) is theC∗-algebra tensor product of Mn and (S, ◦), and hence,
by the uniqueness of the C∗-norm on Mn((S, ◦)), the identity map from S to
(S, ◦) is an n-isometry for all n. Since the identity map is a unital complete
isometry, it is a complete order isomorphism as claimed. �

We now turn our attention to operator spaces. Since in this chapter we are
mainly concernedwith injectivity inO1,we shall also simply refer to an operator
space as injective when it is injective in O1. This is also consistent with the
terminology used in most of the operator space literature. Arguing as in the
proof of Proposition 15.1, it is easily seen that an operator space E ⊆ B(H) is
injective if and only if there exists a completely contractive projection of B(H)
onto E (Exercise 15.2).
We wish to construct the injective envelope of an operator space. There are

many equivalent ways to define these objects. We prefer to take a definition
with the fewest hypotheses and deduce the other properties as consequences.
Given an operator space F , we say that (E, κ) is an injective envelope of F

provided that

(i) E is injective in O1,
(ii) κ: F → E is a complete isometry,
(iii) if E1 is injective with κ(F) ⊆ E1 ⊆ E , then E1 = E .

Any (E, κ) satisfying (ii) is called an extension of F. When (E, κ) satisfies
(i) and (ii), then it is called an injective extension of F. Identifying F with κ(F),
we often simply regard E as containing F , with the understanding that now κ is
simply the inclusion of F into E . Thus, an injective envelope of F is, loosely,
a minimal injective containing F .
To prove the existence of such an object, one would like to simply invoke

Zorn’s lemma. But to use this approach it would be necessary to prove that
if {Eλ} is a decreasing chain of injectives with F ⊆ Eλ, then

⋂
λ Eλ is also

injective, and this is not clear. The use of minimal F-seminorms, which we
define below, is a way to finesse this problem.
Assume that F ⊆ B(H).We call amapϕ: B(H) → B(H) an F-map provided

that ϕ is completely contractive and ϕ(x) = x for all x in F . An F-map ϕ

such that ϕ ◦ ϕ = ϕ is called an F-projection. Thus, an F-projection ϕ is a
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completely contractive projection onto E = ϕ(B(H )), with F ⊆ E , but we do
not demand F = E .
We define a partial order on F-projections by setting ψ ≺ ϕ provided that

ψ ◦ ϕ = ψ = ϕ ◦ ψ .
Given an F-map ϕ, we define a F-seminorm pϕ on B(H) by setting pϕ(x) =

‖ϕ(x)‖. There is a natural partial order on seminorms, defined by p ≤ q if and
only if p(x) ≤ q(x) for all x .

Proposition 15.3. Let F ⊆ B(H) be an operator space. Then there exist min-
imal F-seminorms on B(H).

Proof. Let ϕλ: B(H)→ B(H) be F-maps such that pϕλ
is a decreasing chain of

F-seminorms. Recall the BW topology of Chapter 5. Since CB1(B(H), B(H))
is BW-compact, {ϕλ} has a subnet {ϕλµ

} converging to, say, ϕ. Clearly, ϕ is an
F-map, and since |〈ϕ(x)h, k〉| = limµ |〈ϕλµ

(x)h, k〉| ≤ lim infµ ‖ϕλµ
(x)‖‖h‖

‖k‖, it follows that pϕ ≤ pϕλ
for all λ. Thus, every decreasing chain of F-

seminorms has a lower bound, and it follows by Zorn’s lemma that minimal
F-seminorms exist. �

Theorem 15.4. Let F ⊆ B(H) be an operator space. If ϕ: B(H) → B(H) is a
F-map such that pϕ is aminimal F-seminorm, then ϕ is aminimal F-projection
and the range ϕ(B(H)) of ϕ is an injective envelope of F.

Proof. We begin by proving that ϕ is a F-projection. Since ϕ ◦ ϕ is also an
F-map and ‖ϕ(ϕ(x))‖ ≤ ‖ϕ(x)‖, we must have that ‖ϕ ◦ ϕ(x)‖ = ‖ϕ(x)‖
for all x ∈ B(H). Set ϕ(k+1) = ϕ(k) ◦ ϕ, then ‖ϕ(k)(x)‖ = ‖ϕ(x)‖ for all
k ≥ 1. Set ψn(x) = [ϕ(x)+ · · · + ϕ(n)(x)]/n; then ‖ψn(x)‖ ≤ ‖ϕ(x)‖, and so
‖ψn(x)‖ = ‖ϕ(x)‖, too. Hence,
‖ϕ(x)− ϕ ◦ ϕ(x)‖ = ‖ϕ(x − ϕ(x))‖ = ‖ψn(x − ϕ(x))‖

=
∥∥∥∥ϕ(x)+ · · · + ϕ(n)(x)

n
− ϕ(2)(x)+ · · · + ϕ(n+1)(x)

n

∥∥∥∥
≤ 2‖ϕ(x)‖

n
→ 0.

Thus, ‖ϕ(x)− ϕ ◦ ϕ(x)‖ = 0, and it follows that ϕ is an F-projection.
Nowsuppose thatψ is a F-projectionwithψ ≺ϕ, so thatψ ◦ ϕ = ψ = ϕ ◦ ψ .

Since ‖ψ(x)‖ = ‖ψ(ϕ(x))‖ ≤ ‖ϕ(x)‖, we have that ‖ψ(x)‖ = ‖ϕ(x)‖ for
all x . Finally, ‖ϕ(x)− ψ(x)‖ = ‖ϕ(ϕ(x)− ψ(x))‖ = ‖ψ(ϕ(x)− ψ(x))‖ =
‖ψ(x)− ψ(x)‖ = 0, and hence ϕ(x) = ψ(x) for all x . Thus, ϕ is a minimal
F-projection.
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Since B(H) is injective in O1, and ϕ is a completely contractive projec-
tion, it follows readily that ϕ(B(H)) is injective in O1 as well. Now as-
sume that F ⊆ E1 ⊆ ϕ(B(H)) with E1 injective in O1. Then the identity
map from E1 to E1 extends to a completely contractive projection γ from
B(H) to E1. Since γ ◦ ϕ is a F-map and ‖γ (ϕ(x))‖ ≤ ‖ϕ(x)‖, we have that
‖γ ◦ ϕ(x)‖ = ‖ϕ(x)‖ by minimality of the seminorm pϕ . Since γ is an isom-
etry on ϕ(B(H )) and since γ (ϕ(x)− γ ◦ ϕ(x)) = 0, we have ϕ(x) = γ (ϕ(x)),
and it follows that E1 = ϕ(B(H)). Hence, ϕ(B(H)) is an injective envelope
of F . �

Note that we do not assert that if ϕ is a minimal F-projection then pϕ is a
minimal F-seminorm.
Now thatweknow the existence of an injective envelope,we turn our attention

to its uniqueness and further properties.

Lemma 15.5. Let F ⊆ B(H) be an operator space, with ϕ: B(H)→ B(H) a
F-map such that pϕ is a minimal F-seminorm. If γ : ϕ(B(H)) → ϕ(B(H)) is
completely contractive and γ (x) = x for all x in F, then γ (ϕ(x)) = ϕ(x) for
all x in B(H).

Proof. Since ‖γ (ϕ(x))‖ ≤ ‖ϕ(x)‖, we have that ‖γ (ϕ(x))‖ = ‖ϕ(x)‖ by min-
imality of pϕ . Hence γ is an isometry and, in particular, one-to-one. Since
pγ ◦ϕ = pϕ is a minimal F-seminorm, Theorem 15.4 implies that γ ◦ ϕ is a
projection. Hence γ ◦ ϕ = γ ◦ ϕ ◦ γ ◦ ϕ = γ ◦ γ ◦ ϕ, because ϕ is the iden-
tity on the range of γ ◦ ϕ. Thus, γ ◦ (ϕ − γ ◦ ϕ) = 0. But since γ is one-to-one,
ϕ = γ ◦ ϕ and the result follows. �

Theorem 15.6. Let (E1, κ1) and (E2, κ2) be two injective envelopes of the
operator space F. Then the map i : κ1(F) → κ2(F) given by i(κ1(m)) = κ2(m)
extends uniquely to a completely isometric isomorphism of E1 onto E2.

Proof. Let F ⊆ B(H) with ϕ: B(H)→ B(H) a F-map such that pϕ is a min-
imal F-seminorm. If we can prove that the map κ1: F → E1 has a unique
extension to a completely isometric isomorphism γ1: ϕ(B(H )) → E1, then the
result will follow, since γ −1

2 ◦ γ1 will then yield the desired map between E1
and E2.
By injectivity of E1, a completely contractive map γ1: ϕ(B(H))→ E1

extending κ1 exists, and since ϕ(B(H)) is injective, there is a completely
contractive map β: E1 → ϕ(B(H)) with β(κ1(x)) = x for all x in F . Now
β ◦ γ1: ϕ(B(H)) → ϕ(B(H)) is completely contractive and fixes, F so by
Lemma 15.5 it is the identity on ϕ(B(H)).
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Since β and γ1 are both completely contractive, it follows that γ1 must be
a complete isometry. But the range of γ1 will then be an injective operator
subspace of E1, and so, by the minimality of E1, γ1 must be onto. Hence, γ1 is
a completely isometric isomorphism. �

The above result shows that the injective envelope really only depends on the
operator space up to complete isometry. Thus, if F ⊆ B(H), κ: F → B(H1) is
a complete isometry, and ψ : B(H1) → B(H1) is a κ(F)-map such that pψ is
a minimal κ(F)-seminorm, then (ψ(B(H1)), κ) is an injective envelope of F
and so completely isometrically isomorphic to ϕ(B(H)) for any F-map ϕ with
pϕ a minimal F-seminorm.

Corollary 15.7 (Rigidity). Let (E, κ) be an injective envelope of F, and let
ψ : E → E be completely contractive withψ(κ(x)) = κ(x) for all x in F. Then
ψ(e) = e for all e in E.

Proof. ByLemma15.5, this is true forϕ(B(H)), but byTheorem15.6,ϕ(B(H))
and E are completely isometrically isomorphic. Clearly, this property is pre-
served by completely isometric isomorphisms. �

This rigidity property can be used to characterize injective envelopes. Call
an extension (E, κ) of F a rigid extension if whenever ϕ: E → E is completely
contractive and ϕ(κ(x)) = κ(x) for all X in F , then the map ϕ is the identity
on E .
Rigid extensions are related to essential extensions. Let (E, κ) be an extension

of F , letM be any operator space, and let ϕ: E → M be completely contractive.
If ϕ ◦ κ: F → M a complete isometry implies that ϕ is a complete isometry,
then we call (E, κ) an essential extension of F.
Formally, these definitions of rigidity and essentiality both depend on the

category O1, but since we will not be studying these concepts in any other
categories, we have omitted this dependence from the definition.
Finally, we say that (E, κ) is the maximal extension of a space F with some

property, if (E, κ) is an extension of F and whenever (M, β) is an extension of
E and (M, β ◦ κ) has the property, then β(E) = M . Similarly, we call (E, κ)
a minimal extension of a space F with some property, if (E, κ) is an extension
of F and whenever κ(F) ⊂ M ⊂ E and M has the property, then M = E .

Theorem 15.8. Let F be an operator space, and let (E, κ) be an extension of
F. Then the following are equivalent:
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(i) (E, κ) is an injective envelope of F, i.e., a minimal injective extension
of F,

(ii) (E, κ) is a maximal rigid extension of F,
(iii) (E, κ) is a maximal essential extension of F,
(iv) E is injective and (E, κ) is a rigid extension of F,
(v) E is injective and (E, κ) is an essential extension of F.

Proof. Weonly prove the equivalence of (i) and (iii); the remaining implications
are left as Exercise 15.4.
Assuming (i), let (M, β) be an extension of E , and assume that (M, β ◦ κ)

is an essential extension of F. Since E is injective, the inverse of β extends
to a completely contractive projection from M onto E . This map is a com-
plete isometry on β ◦ κ(F) and so must be a complete isometry on M . Hence,
β(E) = M.

Conversely, assume that (E, κ) is a maximal essential extension of F , and let
(M, β) be an injective envelope of F.By the proof that (i) implies (iii), we know
that (M, β) is an essential extension of F. The map β ◦ κ−1 from κ(F) to β(F)
must extend to a completely contractive map γ of E into M . But since E is
an essential extension of F, γ must be a complete isometry on E . Thus (M, γ )
is an extension of E and an essential extension of F . Hence, by maximality,
γ (E) = M , and so (E, κ) is an injective envelope of F. �

We let I (F) denote the (essentially unique) injective envelope in O1 of an
operator space F .
Some comments are now in order on injective envelopes of operator systems.

If S is an operator system, then it is also an operator space. Thus, it makes sense
to seek either a minimal injective inO1, a minimal injective in S1, or a minimal
injective in S. To construct such an object in S, one could take 1∈ S ⊆ B(H)
and consider completely positive S-projections and mimic the proofs of 15.3–
15.7. But since these maps are necessarily unital, they are completely contrac-
tive, and we are back to the situation of an operator space. Thus, we see that
there is nothing to be gained by reproving theorems about injective envelopes
of operator systems in S or S1. We do record one observation.

Proposition 15.9. Let S be an operator system. Then the injective envelope
I (S) of S in O1 is an injective operator system and hence is completely order-
isomorphic to a C∗-algebra.

Proof. Let 1 ∈ S ⊆ B(H). Then I (S) = ϕ(B(H)) for some S-projection ϕ that
is completely contractive and hence completely positive. Thus, ϕ(B(H)) is an
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operator system, and hence I (S) is a C∗-algebra under the product a ◦ b =
ϕ(ab) by Theorem 15.2. �

One consequence of the above result is that if one “forgets” the order struc-
ture on S and only remembers the operator space structure, and embeds S com-
pletely isometrically viaψ : S → B(H) with sayψ(1) �= 1, then I (ψ(S)) is com-
pletely isometric to I (S) and so is still completely isometrically isomorphic to a
C∗-algebra.
The next few results record how injective envelopes respect algebraic and

C∗-structures.

Proposition 15.10. Let 1 ∈ A ⊆ S ⊆ B(H) with S an operator system and A
a subalgebra of B(H). Then the inclusion of A into the C∗-algebra I (S) is a
completely isometric ∗-isomorphism.

Proof. Let ϕ: B(H)→ B(H) be a S-projection such that ϕ(B(H)) is a copy of
I (S). Then the multiplication on I (S) is given by x ◦ y = ϕ(xy). Hence for a, b
in A, a ◦ b = ϕ(a · b) = a · b. �

In the case of a unital C∗-algebra A, if we set S = A, then the above result
implies thatA is a C∗-subalgebra of I (A). The next result explains the case of
nonunital C∗-algebras.

Proposition 15.11. Let A ⊆ B(H) be a nonunital C∗-algebra such that AH
is dense in H, and let A1 denote the algebra obtained by adjoining the unit
to A. If ϕ: B(H) → B(H) is an A-map, then ϕ is an A1-map. Consequently,
the inclusion of A into A1 extends uniquely to define a complete isometry of
I (A) onto I (A1). Thus, I (A) is a unital C∗-algebra in the ◦-product withA1 a
C∗-subalgebra of I (A).

Proof. If every A-map is an A1-map, then any minimal A-seminorm is a
minimal A1-seminorm and the last claim follows from the characterization of
the injective envelope in terms of minimal seminorms. Thus, it is enough to
prove that if ϕ is an A-map, then ϕ(I ) = I .
Let {eα} be a contractive, positive approximate identity for A. Since AH is

dense inH, we have eα → I strongly. Since {enα} is also a contractive approxi-
mate identity for A, we have enα → I strongly for all n.
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By considering the power series for ex , we see that for t real

ϕ(eiteα ) = ϕ(I )+
∞∑
n=1

(i teα)n

n!
→ ϕ(I )+ (eit − 1)I

in the strong operator topology.
Since eiteα is unitary and ϕ is contractive, we have that ‖(ϕ(I )− I )+ eit I‖

≤ 1 for all t . Now it is easy to check that ‖X + eit I‖ ≤ 1 for all t implies that
X = 0. Hence ϕ(I ) = I and the proof is complete. �

Next we examine how the injective envelope respects module actions.
First suppose that 1 ∈ A ⊆ S ⊆ B(H) withA a C∗-subalgebra of B(H) and

S a concrete operator system such that A · S ⊆ S. In this case, we also have
that S · A = S∗ · A∗ = (AS)∗ ⊆ S∗ = S, so that S is anA-bimodule. Clearly,
for any (ai j ) ∈ Mn(A) and (si j ) ∈ Mn(S)+ we have that (ai j ) · (si j ) · (ai j )∗ ∈
Mn(S)+. We wish to characterize such situations abstractly.
Assume we are given an abstract operator system S, with unit denoted by

e, and a unital C∗-algebra A such that S is an A-bimodule. We denote the
bimodule action and multiplication by ·, so that (a1 · a2) · s = a1 · (a2 · s), and
we assume 1 · s = s.
We call such an S an operator A-system provided that, in addition, a · e =

e · a and for all n and for any (ai j ) ∈ Mn(A), (si j ) ∈ Mn(S)+ we have that

(ai j ) · (si j ) · (ai j )∗ =
(

n∑
k,=1

aik · sk · a∗
j

)
∈ Mn(S)+.

Theorem 15.12. Let A be a unital C∗-algebra, let S be an operator A-
system, and let (I (S), ◦) denote the injective envelope of S, with ◦ denot-
ing the multiplication that makes I (S) into a C∗-algebra. Then the map
π : (A, ·) → (I (S), ◦), π (a) = a · e, is a ∗-homomorphism.

Proof. We must show that (a1a2) · e = (a1 · e) ◦ (a2 · e). Because the unitaries
span A, it will be enough to verify the above identity when a1 is unitary.
Fix a unitary u ∈ A, and define �: M2(S) → M2(S) via

�

((
s1 s2
s3 s4

))
=

(
u · s1 · u∗ u · s2
s3 · u∗ s4

)
=

(
u 0
0 1

) (
s1 s2
s3 s4

) (
u∗ 0
0 1

)
.

SinceS is an operatorA-system,� is completely positive. Thus, wemay extend
� to a completely positivemap on I (M2(S)) = M2(I (S)), whichwe still denote
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by �. Since � fixes

C ⊕ C =
{(

λe 0
0 µe

)
: λ, µ ∈ C

}
,

it is a bimodule map over this C∗-algebra by Corollary 3.20. Using the fact that
� is a bimodule map, or arguing as in the proof of Theorem 8.3, one finds that
there exist maps ϕi : I (S)→ I (S), i = 1, 2, 3, 4, such that

�

((
x1 x2
x3 x4

))
=

(
ϕ1(x1) ϕ2(x2)
ϕ3(x3) ϕ4(x4)

)
.

Clearly, ϕ1 and ϕ4 are completely positive.
Since ϕ4(s4) = s4 for all s4 in S, by rigidity, ϕ4 = idI (S). Thus, � fixes

C ⊕ I (S) =
{(

λe 0
0 x

)
: λ ∈ C, x ∈ I (S)

}

and so it is a bimodule map over this C∗-algebra. Hence,(
0 ϕ2(x)
0 0

)
= �

((
0 x
0 0

))
= �

((
0 e
0 0

)
◦

(
0 0
0 x

))

= �

((
0 e
0 0

))
◦

(
0 0
0 x

)
=

(
0 ϕ2(e) ◦ x
0 0

)
.

Setting x = a2 · e, we have that
(u · a2) · e = u · (a2 · e) = ϕ2(a2 · e) = ϕ2(e) ◦ (a2 · e) = (u · e) ◦ (a2 · e),

and the proof is complete. �

Corollary 15.13. Let A be a unital C∗-algebra, and let S be an operator
A-system with unit e. Then there exists a Hilbert space H, a complete order
isomorphism γ : S → B(H) with γ (e) = IH , and a unital ∗-homomorphism
π : A → B(H) such that π (a)γ (s) = γ (a · s).

Proof. Represent theC∗-algebra (I (S), ◦) ∗-isomorphically on aHilbert space,
and apply Theorem 15.12. �

We call (π, γ ) a representation of the operator A-system.
The next representation theorem concerns operator space bimodules. Sup-

pose that A⊆ B(H),B⊆ B(K) are unital C∗-subalgebras and X ⊆ B(K,H)
is a subspace. If A · X · B ⊆ X , then X is an A-B-bimodule. Given (ai j ) ∈
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Mn(A), (xi j ) ∈ Mn(X ), and (bi j ) ∈ Mn(B), we have that
‖(ai j ) · (xi j ) · (bi j )‖ ≤ ‖(ai j )‖‖(xi j )‖‖(bi j )‖,

where

(ai j ) · (xi j ) · (bi j ) =
(

n∑
k,=1

aik xkbj

)
.

Such a module action is called completely contractive. We wish to charac-
terize this situation abstractly.
So let A,B be unital C∗-algebras, and let X be an operator space that is

also anA-B-bimodule. We call X an operatorA-B-bimodule provided that the
module action is completely contractive.

Theorem15.14 (Christensen–Effros–Sinclair representation theorem). Let
A,B be unitalC∗-algebras, and let X be an operatorA-B-bimodule. Then there
exist Hilbert spaces H and K, unital ∗-isomorphisms π : A→ B(H), ρ: B →
B(K), and a complete isometry γ : X → B(K,H) such that γ (a · x · b) =
π (a)γ (x)ρ(b).

Proof. We imitate the proof of Ruan’s theorem with A and B playing the role
of the scalars. To this end let

S =
{(

a x
y∗ b

)
: a ∈ A, b ∈ B, x, y ∈ X

}
.

Setting b · y∗ · a = (a∗ · y · b∗)∗ makes X∗ an operator B-A-bimodule.
We wish to make S into a matrix ordered ∗-vector space with Archimedean

order unit

e =
(
1A 0
0 1B

)
.

Let (
a x
y∗ b

)∗
=

(
a∗ y
x∗ b∗

)
,

and define Cn ⊆ Mn(S)h by saying(
(ai j ) (xi j )
(y∗

i j ) (bi j )

)
∈ Cn

if and only if (y∗
i j ) = (xi j )∗ and∥∥((ai j )+ ε In)

−1/2(xi j )((bi j )+ ε In)
−1/2∥∥ ≤ 1

for all ε > 0.
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If one copies the proof of Ruan’s theorem mutatis mutandis, then one finds
that all the axioms for an abstract operator system are satisfied by S (Exer-
cise 15.11). The identification of A ⊕ B with {( a 0

0 b ): a ∈ A, b ∈ B} makes S
an operator A ⊕ B-system. That is, define

(a1 ⊕ b1) ·
(
a x
y∗ b

)
· (a2 ⊕ b2) =

(
a1aa2 a1xb2
b1y∗a2 b1bb2

)
.

Now take any representation (θ, γ ) of S on a Hilbert space. The ∗-homomor-
phism θ of A ⊕ B decomposes the Hilbert space asH ⊕ K so that

θ (a ⊕ b) =
(

π (a) 0
0 ρ(b)

)
,

where π : A → B(H) and ρ: B → B(K). Since

γ

((
0 x
0 0

))
= γ

((
1 0
0 0

)
·
(
0 x
0 0

)
·
(
0 0
0 1

))

=
(

π (1) 0
0 0

)
γ

((
0 x
0 0

)) (
0 0
0 ρ(1)

)
,

we see that

γ

((
0 x
0 0

))
=

(
0 γ1(x)
0 0

)
where γ1: X → B(K,H).

It is readily checked that since γ is a complete order isomorphism, γ1 is a
complete isometry, and that π (a)γ1(x)ρ(b) = γ1(axb). Note that π and ρ are
one-to-one, since A ⊕ B is a subset of S. �

We call (π, ρ, γ ) a representation of the operator A-B-bimodule X .
We turn our attention now to Hamana’s construction of the C∗-envelope

of an operator algebra. To motivate this material we begin with the example
of the disk algebra, A(D). Clearly, A(D) can be regarded, up to completely
isometric isomorphism, as either the uniformly closed subalgebra of C(D−),
or that of C(T), generated by the coordinate function z. In both cases A(D)
separate the points on the underlying spaces, and so the C∗-algebra gener-
ated by A(D) will be C(D−) in the first case and C(T) in the second case.
Thus, the C∗-algebra generated by an operator algebra can depend on the
representation.
Restricting a function in C(D−) to ∂D

− = T defines a ∗-homomorphism
from C(D−) onto C(T), which is the identity map on A(D). Thus, C(T) is a
“smaller” representation of A(D) in the sense that it is a C∗-quotient of C(D−).
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We shall prove that among all the possible C∗-algebras that completely
isometric representations of an operator algebra can generate, there exists a
“smallest” such C∗-algebra in the sense that it is a universal quotient. To be
more precise, given an operator algebra A, we shall prove that there exists a
completely isometric representation γ : A→ B(H) such that if ρ: A → B(K)
is any other completely isometric representation, then there exists an onto
∗-homomorphism π : C∗(ρ(A))→C∗(γ (A)) with π (ρ(a)) = γ (a).
It is easy to see that if such a representation γ exists, then C∗(γ (A))

is uniquely determined up to ∗-isomorphism. That is, if γ1 and γ2 were
two representations with the above property, then there would exist onto
∗-homomorphisms π1: C∗(γ1(A))→C∗(γ2(A)) with π1(γ1(a)) = γ2(a) and
π2: C∗(γ2(A)) → C∗(γ1(A)) with π2(γ2(a)) = γ1(a), but these two equa-
tions force π2 ◦ π1 = idC∗(γ1(A)) and π1 ◦ π2 = idC∗(γ2(A)), and so π1 and π2

are ∗-isomorphisms.

Proposition 15.15. Let 1 ∈ A ⊆ B(H) be an operator algebra. Then I (A) =
I (A + A∗) is a C∗-algebra, and the inclusion of A into the C∗-algebra I (A)
is a completely isometric isomorphism.

Proof. Since 1 ∈ A, any completely contractive ϕ: B(H) → B(H) that fixes
A is completely positive, and hence for a and b in A

ϕ(a + b∗) = ϕ(a)+ ϕ(b)∗ = a + b∗.

Thus, every A-map is actually an (A + A∗)-map, and so I (A) = I (A + A∗).
The fact that the inclusion is a completely isometric isomorphism follows from
Proposition 15.10. �

It is worth noticing that if ρ: A → B(H) is a completely isometric isomor-
phism, then the operator systems A + A∗ and ρ(A)+ ρ(A)∗ are completely
order-isomorphic via the map a + b∗ → ρ(a)+ ρ(b)∗. Thus, the operator sys-
tem A + A∗ is really well defined independent of the particular representation
ofA. This is not the case for the operator systemA∗A = span{a∗b: a, b ∈ A},
as can be seen by regarding A(D) ⊆ C(T) versus A(D) ⊆ C(D−).
Given an operator algebraA, we letC∗

e (A) denote theC∗-subalgebra of I (A)
generated by A. We call C∗

e (A) the C∗-envelope of A.

Theorem15.16 (Hamana’s theorem). LetA be an operator algebrawith unit,
let ρ:A → B(H) be a completely isometric homomorphism, and let C∗(ρ(A))
denote the C∗-subalgebra of B(H) generated by ρ(A). Then there exists a
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unique onto ∗-homomorphism π : C∗(ρ(A)) → C∗
e (A) with π (ρ(a)) = a for

all a in A.

Proof. Once we show the existence of π , the fact that it is unique and onto
follows from the fact that the C∗-algebras are generated by ρ(A) and A,
respectively.
By injectivity of I (A), there is a unital completely contractive (and hence

completely positive) map ϕ: B(H) → I (A) with ϕ(ρ(a)) = a for a inA. Sim-
ilarly, there is a completely positive map ψ : I (A) → B(H) with ψ(a) = ρ(a)
for a in A. Since ϕ ◦ ψ(a) = a for a in A, by rigidity ϕ ◦ ψ = idI (A).
We claim that ϕ(ρ(a)∗ρ(a)) = a∗a and ϕ(ρ(a)ρ(a)∗) = aa∗. Indeed, by the

Schwarz inequality, ϕ(ρ(a)∗ρ(a)) ≥ ϕ(ρ(a))∗ϕ(ρ(a)) = a∗a, while ψ(a∗a) ≥
ψ(a)∗ψ(a) = ρ(a)∗ρ(a). Applying ϕ to the second inequality yields

a∗a = ϕ ◦ ψ(a∗a) ≥ ϕ(ρ(a)∗ρ(a)) ≥ a∗a

and so ϕ(ρ(a)∗ρ(a)) = a∗a. Similarly, ϕ(ρ(a)ρ(a)∗) = aa∗.
Recalling Theorem 3.18 (iii), on the multiplicative domains of completely

positive maps, these equalities imply that ϕ is a ∗-homomorphism when re-
stricted to C∗(ρ(A)). �

Thus, by the above theorem we see that C∗
e (A) is a universal quotient for the

C∗-algebra generated by any completely isometric representation of A.
Some examples are helpful. We begin by showing how the classic theory of

the Silov boundary of a uniformalgebra follows fromHamana’s theorem.Recall
that if X is a compact Hausdorff space, then a closed subalgebra, A ⊆ C(X )
is called a uniform algebra on X provided that 1 ∈ A and A separates points,
i.e., for every x �= y there exists f ∈ A with f (x) �= f (y).

Corollary 15.17 (Silov). LetA ⊆ C(X ) be a uniform algebra on X. Then there
exists a unique compact subset Y ⊆ X such that:

(i) the restriction homomorphism r : C(X ) → C(Y ), r ( f ) = f |Y is isometric
on A,

(ii) if W ⊆ X is any other set such that (i) holds, then Y ⊆ W.

Moreover, if ρ: A → C(X1) is any isometric isomorphism such that ρ(A) is a
uniform algebra on X1, and Y1 ⊆ X1 is the corresponding set for ρ(A), then
there exists a homeomorphism h: Y1 → Y such that ρ( f )|Y1 = f ◦ h.

Proof. Since the range of ρ is a commutative C∗-algebra, any isometric map
is automatically completely isometric.
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By Hamana’s theorem, there exists a ∗-homomorphism π : C(X ) → C∗
e (A),

onto. Hence, C∗
e (A) ∼= C(Z ) for some compact Hausdorff space Z . By the

characterization of ∗-homomorphisms between commutative C∗-algebras (see
[76]), there exists a one-to-one continuous function h: Z → X such that π (g)
= g ◦ h. Let Y = h(Z ), and we have (i).
Now suppose W satisfies (ii). Regarding A ⊆ C(W ), via the restriction

map, we obtain π1: C(W ) → C(Z ) and h1: Z → W such that π1(g) = g ◦ h1.
Let r : C(X ) → C(W ) denote the restriction map, so that r (g) = g ◦ i , where
i : W → X denotes the inclusion. Since π = π1 ◦ r , it follows that h = i ◦ h1
and so Y = h(Z ) = i(h1(Z )) must be a subset of W .
The remainder of the proof follows similar arguments. �

The set Y , which only depends on A up to homeomorphism, is called the
Silov boundary of A and denoted ∂SA.
It can be easily shown that ∂S A(D) = T (Exercise 15.8).

Corollary 15.18. Let A be a uniform algebra. Then C∗
e (A) = C(∂SA).

By the above result we see that any time we represent a uniform algebra
completely isometrically as an algebra of operators on a Hilbert space, the
C∗-algebra generated by the image has a commutativeC∗-algebra as a quotient.
The following is another case where it is easy to recognize C∗

e (A). Recall
that a C∗-algebra is simple if it contains no nontrivial two-sided ideals.

Proposition 15.19. LetA ⊆ B(H) be an operator algebra. If C∗(A) is simple,
then C∗

e (A) = C∗(A).

Proof. There exists a ∗-homomorphism from C∗(A) onto C∗
e (A), but because

C∗(A) is simple, this map must be one-to-one. �

Thus, for example if A ⊆ Mn is the algebra of upper triangular matrices,
then C∗

e (A) = Mn .
The existence of the C∗-envelope of an operator algebra with the properties

of Hamana’s theorem was conjectured by Arveson [6], and he attempted to
prove its existence by developing the theory of what are called boundary rep-
resentations. Surprisingly, Hamana’s theorem does not guarantee the existence
of boundary representations, and so many questions remain unanswered. We
discuss these issues now.
AssumeA is an operator algebra andB = C∗(A).Any irreducible representa-

tion ofC∗
e (A) on a Hilbert space would give rise to an irreducible representation
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of B. Since to determine the structure of C∗
e (A) it is enough to know all its irre-

ducible representations,wewould like a condition that guarantees an irreducible
representation of B corresponds to an irreducible representation of C∗

e (A). We
call an irreducible representation π :B→ B(H) a boundary representation pro-
vided that if�: B→ B(H) is a completely positive map such that�(a) = π (a)
for all a in A, then π = �.
Assume that π is a boundary representation; then π |A will have a com-

pletely positive extension γ : C∗
e (A)→ B(H). Let ρ: B → C∗

e (A) be the onto
∗-homomorphism, so that γ ◦ ρ: B → B(H) is a completely positive map that
extends π |A. Hence, γ ◦ ρ = π , and it follows that γ must be a homomorphism
and also be unique. Thus, every boundary representation ofB gives rise to an ir-
reducible representation of C∗

e (A) that is also a boundary representation. Thus,
one would hope that there exist enough boundary representations so that if one
took the direct sum over all boundary representations, then that would yield a
faithful, one-to-one representation of C∗

e (A). Whether or not sufficiently many
boundary representations exist is still unknown.
To illustrate the difficulties, we consider the compact Hausdorff space X =

D
− × [0, 1] and the uniform algebra A on X given by

A = { f ∈ C(X ): f (z, 0) ∈ A(D)}.
It can be shown that X = ∂SA, so thatC∗

e (A) = C(X ). SinceC∗
e (A) is commu-

tative, the irreducible representations are all one-dimensional and are given by
πx (g) = g(x) for points x in X . The boundary representations can be shown to
correspond to evaluation at points of the form (z, t), t > 0, and (z, 0), |z| = 1,
but none of the points (z, 0), |z| < 1, correspond to boundary representations.
To see this last fact recall the Poisson kernel for |z| < 1,

Pz(θ ) = 1

1− e−iθ z
+ 1

1− e+iθ z̄
− 1.

We have that Pz(θ ) ≥ 0 and for f ∈ A(D),

f (z) = 1

2π

∫ 2π

0
f (eiθ )Pz(θ ) dθ.

Thus, the map �z : C(X )→ C defined by �z(g) = 1
2π

∫ 2π
0 g(eiθ , 0)Pz(θ) dθ is

a completely positive map such that �z( f ) = πz( f ) = f (z, 0) for f ∈ A, but
�z �= π(z,0). Thus, π(z,0), |z| < 1, is not a boundary representation.
For a general uniform algebraA, Arveson’s boundary representations can be

shown to correspond to evaluations at what are called peak points, and these
points are known to form a dense subset of ∂SA called the Choquet boundary
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(see [103] for definitions and results). Thus, a successful theory of boundary
representations would lead to some noncommutative analogues of the fact that
peak points are dense in the Silov boundary.

Notes

The theory of the injective envelope of an operator system, in the category S,
was developed in the work of M. Hamana [112]. Hamana not only recognized
their importance, but used them to prove the existence of the C∗-envelope. The
analogue of Theorem 15.8 for operator systems also appears in that work. These
ideas were subsequently extended to the setting of operator spaces by Z.J. Ruan
[204]. We will take a deeper look at these topics in Chapter 16.
The original proof of theChristensen–Effros–Sinclair representation theorem

used a representation theorem for multilinear completely bounded maps, which
we will examine in Chapter 17. The proof that we present here seems to be new.
There is still much to be understood about injectivity in the category O.

For an operator space E ⊂ B(H) to be injective in this category it is necessary
and sufficient that there exist a completely bounded projection of B(H) onto E
(comparewith Exercise 15.2). Asmentioned earlier, there existC∗-algebras that
are not injective in the usual sense (i.e., inO1) but are injective inO. However,
it is known that for von Neumann algebras injectivity inO1 and injectivity inO
are equivalent [61, 182]. A natural question that still remains open is whether or
not every C∗-algebra that is injective inO is completely boundedly isomorphic
to a C∗-algebra that is injective in O1. All the known examples of C∗-algebras
that are injective in O have this property.
M. Frank and the author [102] pursue the study of injectivity in the category

whose objects are left operatorA-modules and whose morphisms are the com-
pletely bounded left A-module maps for a fixed C∗-algebra A. In contrast to
the above results, if A ⊂ B(H) and there exists a completely bounded projec-
tion of B(H) onto A that is also a left A-module map, then A is injective in
the usual sense. It is shown that the usual injective envelope, I (A), is still the
injective envelope in this new category. The authors also show that the theory of
multipliers follows from properties of the injective envelope. In particular, if J
is any essential ideal inA, then every multiplier of J is given as multiplication
by a unique element of I (A). See [173] for the definitions of multipliers and
essential ideals.
M. Hamana [113], C. Zhang [247, 249], and D.P. Blecher [23] have deve-

loped the analogue ofHamana’sC∗-envelope of an operator algebra for operator
spaces.
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Exercises

15.1 Verify that an operator space I is injective in O1 if and only if every
completely bounded map into I has a completely bounded extension of
the same completely bounded norm.

15.2 Let E ⊆ B(H) be an operator space. Prove that E is injective if and
only if there exists a completely contractive map ϕ: B(H)→ E such
that ϕ(e) = e for all e ∈ E .

15.3 Let M ⊆ B(H) be an operator space, and let ϕ: B(H)→ B(H) be an
M-projection with pϕ a minimal M-seminorm. Assume that u ∈ B(H)
is a unitary that commutes with M . Prove that if γ (x) = u∗ϕ(x)u, then
pγ is a minimal M-seminorm and γ is a projection onto u∗ϕ(B(H))u.
Prove that if ψ(x) = ϕ(u∗xu), then pψ is a minimal M-seminorm and
ψ is a (possibly different) projection onto ϕ(B(H)).

15.4 Complete the proof of Theorem 15.8.
15.5 Let ϕ: B(H)→ B(H) be a unital completely positive map that fixes the

compacts. Prove that ϕ is necessarily the identity map. [Hint: Let 0 ≤ P ,
and set P = {0 ≤ K ≤ P: K compact}. Prove that if K ≤ Q for all
K ∈ P , then P ≤ Q.]

15.6 Let S ⊆ B(H) be an operator system that contains the compacts. Prove
that I (S) = B(H).

15.7 Let A ⊆ B(2) be the algebra of upper triangular operators. Prove that
C∗
e (A) = B(2).

15.8 Prove that ∂S A(D) = T.
15.9 Prove that if A ⊆ Mn then C∗

e (A) is finite-dimensional.
15.10 LetA andB be unitalC∗-algebras, and letϕ:A → B be a complete order

isomorphism with ϕ(1) = 1. Prove that there exists a ∗-homomorphism
π : C∗(ϕ(A))→A with π (ϕ(a)) = a for all a in A.

15.11 Verify that the set S defined in the proof of Theorem 15.14 is a matrix-
ordered *-vector space with complete Archimedean order unit e.

15.12 Let {u1, . . . , un} denote the unitaries that generate C∗
u (F

n), and let M
denote the (n + 1)-dimensional subspace generated by these unitaries
and the identity I . If A ⊆ M2(C∗

u (F
n)) denotes the (n + 3)-dimensional

operator algebra

A =
{(

λI x
0 µI

)
: λ ∈ C, µ ∈ C, x ∈ M

}
,

then prove that C∗
e (A) = M2(C∗

u (F
n)). Thus, a finite-dimensional oper-

ator algebra can have an infinite-dimensional C∗-envelope.



Chapter 16
Abstract Operator Algebras

In previous chapters we have given abstract characterizations of operator sys-
tems and operator spaces. In this chapter we wish to give an abstract characteri-
zation of operator algebras. That is, given an algebraA and norms on Mm,n(A),
we desire necessary and sufficient conditions for there to exist a Hilbert space
H and a completely isometric isomorphism π : A→ B(H). We present a
theoremofBlecher, Ruan, and Sinclair (BRS) [31] that gives such necessary and
sufficient conditions. Thus, the BRS theorem plays exactly the same role for
operator algebras that the celebrated Gelfand–Naimark–Segal theorem plays
for C∗-algebras.
Moreover, like those in the GNS theorem, the conditions in the BRS theorem

are natural and quite often easy to verify. Briefly, the BRS theorem says that the
matrix norms on A must satisfy Ruan’s axioms for operator spaces (otherwise
there wouldn’t even exist a linear complete isometry) and, for all n, the induced
multiplication on Mn(A) must be contractive. That is, for A = (ai j ), B = (bi j )
in Mn(A) one has ∥∥∥∥∥

(
n∑

k=1

aikbk j

)∥∥∥∥∥
n

≤ ‖A‖n‖B‖n.

This last condition is often summarized by saying that the multiplication on A
is completely contractive.
It is important not to confuse these results with other work on algebras

of operators, where no matrix norms are assumed. In particular, Varopoulos
[237] gives necessary and sufficient conditions for a Banach algebra to have
an isometric representation as an algebra of operators on a Hilbert space. This
result has not been as widely used, perhaps because of the difficulty of verifying
the conditions.

225
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There is still one outstanding problem in the isometric theory of operator
algebras. If a unital Banach algebra B has the property that there exists a
Hilbert space H and a unital isometric isomorphism π : B→ B(H), then by
von Neumann’s inequality, for every b ∈ B with ‖b‖ ≤ 1, and for every poly-
nomial p we have ‖p(b)‖ ≤ ‖p‖∞, where the supremum is over the unit disk.
A Banach algebra with this latter property is said to satisfy von Neumann’s in-
equality. Thus, Banach algebras that are isometrically isomorphic to an algebra
of operators on a Hilbert space must satisfy von Neumann’s inequality. The
problem is whether or not the converse is true. That is, if B is a Banach algebra
that satisfies von Neumann’s inequality, then is B isometrically isomorphic to
an algebra of operators on a Hilbert space? See [74] and [168] for two recent
contributions to this problem.
The key to the proof of the BRS theorem that we present here is a better

understanding of the injective envelope of the “canonical” operator system
associated to an operator space.
Recall that if X ⊆ B(K,H) is a (concrete) operator space, then we may form

the (concrete) operator system, in B(H ⊕ K),

SX =
{(

λIH x
y∗ µIK

)
: λ,µ ∈ C, x, y ∈ X

}
.

Given a complete isometry ϕ: X → B(K1,H1), the operator system

Sϕ(X ) =
{(

λIH1 ϕ(x)

ϕ(y)∗ µIK1

)
: λ,µ ∈ C, x, y ∈ X

}

is completely order-isomorphic to SX via the map �: SX → Sϕ(X ) defined by

�

((
λIH x

y∗ µIK

))
=

(
λIH1 ϕ(x)

ϕ(y)∗ µIK1

)
.

One way to see that � is a complete order isomorphism is to recall that by
Lemma 7.1, since ϕ and ϕ−1 are completely contractive, � and �−1 are com-
pletely positive. Thus, the operator system SX only depends on the operator
space structure of X and not on any particular representation of X . This can
also be seen in the proof of Ruan’s theorem, where for an arbitrary abstract
operator space X we constructed this same operator system, abstractly, with
only reference to the operator space structure of X .
Since

C ⊕ C ∼=
{(

λIH 0

0 µIK

)
: λ,µ ∈ C

}
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is a C∗-subalgebra of SX , by Proposition 15.10 C ⊕ C will still be a C∗-
subalgebra of the C∗-algebra I (SX ), with(

IH 0

0 0

)
and

(
0 0
0 IK

)

corresponding to projections e1 and e2, respectively, in the C∗-algebra I (SX ).
We have that e1 + e2 is equal to the identity and e1 · e2 = 0.
A few words on such a situation are in order. Let A be any unital C∗-

algebra with projections e1 and e2 satisfying e1 + e2 = 1, e1 · e2 = 0, and
let π : A → B(H) be a one-to-one unital ∗-homomorphism. Setting H1 =
π (e1)H,H2 = π (e2)H, we have that H = H1 ⊕ H2, and relative to this de-
composition every T ∈ B(H) has the form T = (Ti j ) where Ti j ∈ B(H j ,Hi ).
In particular, identifying A with π (A), we have that

A =
{(

a11 a12
a21 a22

)
: ai j ∈ Ai j

}
,

whereAi j = eiAe j , withAi i ⊆ B(Hi ) unital C∗-subalgebras andA21 = A∗
12.

The operator spaceA12 ⊆ B(H2,H1) will be referred to as a corner of A. Note
that A11 ·A12 ·A22 ⊆ A12, so that A12 is an A11–A12-bimodule.
Returning to I (SX ), relative to e1 and e2, we wish to identify each of these

four subspaces. Note that X ⊆ e1 I (SX )e2 = I (SX )12.

Theorem 16.1. Let X be an operator space, and SX , I (SX ), e1, and e2 be as
above. Then I (SX )11, I (SX )22 are injective C∗-algebras, and I (SX )12 is the
injective envelope of X.

Proof. Since the maps γi j : I (SX ) → I (SX )i j defined by γi j (a) = eiae j are
completely contractive projections, it follows that I (SX )i j , i, j = 1, 2, are in-
jective operator spaces and so I (SX )11 and I (SX )22 are injective C∗-algebras.
To prove the final claim it will be enough to prove that I (SX )12 is a minimal

injective extension of X .
To this end, letϕ: I (SX )12 → I (SX )12 be completely contractive, and suppose

ϕ(x) = x for all x ∈ X . Let

R =
{(

λ z
w∗ µ

)
: λ, µ ∈ C, z, w ∈ I (SX )12

}
⊆ I (SX ),

and let �:R → R be defined by

�

((
λ z

w∗ µ

))
=

(
λ ϕ(z)

ϕ(w)∗ µ

)
.
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Then � is completely positive and so extends to a completely positive map,
which we still denote by �, from I (SX ) to I (SX ). Since � is the identity on
SX , by rigidity of the injective envelope of SX , � is the identity on I (SX ) and
hence ϕ must be the identity on I (SX )12. If X ⊆ Y ⊆ I (SX )12 with Y injective,
then there would exist a projection ϕ of I (SX )12 onto Y. By the above, ϕ would
be the identity on I (SX )12 and hence Y = I (SX )12. Thus, I (SX )12 is a minimal
injective extension of X , i.e., an injective envelope. �

Using the uniqueness of the injective envelope, we see that if X ⊆ I with
I a minimal injective, then there exists a completely isometric isomorphism
between I and I (SX )12 that, restricted to X , is the identity. Thus, we may
identify I (SX )12 with I (X ), and under this identification, I (X ) is a corner of
the C∗-algebra I (SX ).
We define I11(X ) = I (SX )11 and I22(X ) = I (SX )22. Thus we have the fol-

lowing picture of the C∗-algebra I (SX ):

I (SX ) =
{(

a z
w∗ b

)
: a ∈ I11(X ), b ∈ I22(X ), z, w ∈ I (X )

}

where I11(X ) and I22(X ) are injective C∗-algebras and I (X ) is an operator
I11(X )-I22(X )-bimodule. Moreover, the fact that I (SX ) is a C∗-algebra means
that for z, w ∈ I (X ),(

0 z
w∗ 0

) (
0 z

w∗ 0

)
=

(
zw∗ 0
0 w∗z

)
,

and consequently there are natural products z · w∗ ∈ I11(X ), w∗ · z ∈ I22(X ).
It is interesting to note that setting 〈z, w〉 = zw∗ defines an I11(X )-valued

inner product that makes I (X ) a Hilbert C∗-module over I11(X ), but we shall
not use this additional structure.
This rather complete picture of I (SX ) has some immediate consequences.

Corollary 16.2 (Youngson). An operator space is injective if and only if it is
completely isometrically isomorphic to a corner of an injective C∗-algebra.

Proof. If X is an injective operator space, then X = I (X ), which is a corner of
the injective C∗-algebra I (SX ).
Conversely, every corner of an injective C∗-algebra is the image of a com-

pletely contractive projection and hence is injective. �
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If X is an operator space, then it is clear that all of the spaces Mm,n(X ) are
themselves operator spaces. Technically, thematrix-norm structure on Mm,n(X )
comes from the identification Mp,q (Mm,n(X )) = Mpm,qn(X ). We set Cm(X ) =
Mm,1(X ) and Rn(X ) = M1,n(X ) and call these the column and row operator
spaces of X , respectively. In the following results, we characterize the maps
from X to itself that are given as multiplication by elements of the corners of
I (SX ). All products in the following results are defined by the picture of I (SX )
outlined above.

Lemma 16.3. Let X be an operator space and let a ∈ I11(X ). If a · x = 0 for
all x ∈ X, then a = 0. Similarly, if b ∈ I22(X ) and xb = 0 for all x ∈ X, then
b = 0.

Proof. Without loss of generality we can assume that ‖a‖ ≤ 1. Let p = a∗a so
that 0 ≤ p ≤ 1, where 1 denotes the unit of I11(X ). Define ϕ: I (X ) → I (X ) by
ϕ(z) = (1 − p)z. Since ‖1− p‖ ≤ 1, ϕ is a completely contractive map. But
for x ∈ X we have ϕ(x) = x , and hence by rigidity ϕ(z) = z for all z ∈ I (X ).
Hence, pI (X ) = 0.
Now let K denote the two-sided ideal in I (SX ) generated by

(
p 0
0 0

)
. Since(

p 0

0 0

)
I (SX ) =

(
pI11(X ) 0

0 0

)
and I (SX )

(
p 0

0 0

)
=

(
I11(X )p 0

0 0

)
,

we see that

K =
{(

k 0
0 0

)
: k ∈ K1

}
,

where K1 is the two-sided ideal in I11(X ) generated by p.
For a1 pa2 ∈ K1 and z ∈ I (X ) we have that,

(a1 pa2)z = a1 p(a2z) = 0,

since a2z ∈ I (X ). Thus, K1 �= I11(X ), and the quotient C∗-algebra I (SX )/K is
isomorphic to (

I11(X )/K1 I (X )

I (X )∗ I22(X )

)
.

From this it is clear that the quotient map π : I (SX ) → I (SX )/K is a complete
order isomorphism on SX . Hence, there is a complete isometry γ : π (SX ) →
I (SX ) such that γ ◦ π is the identity on SX .
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By the injectivity of I (SX ) we may extend γ to a completely contractive
map, which we still denote by γ , from I (SX )/K to I (SX ).
However, since γ ◦ π is the identity on SX , by rigidity it must be the iden-

tity on all of I (SX ). But this implies that π is one-to-one and hence K = (0).
Therefore, p = 0 and so a = 0.
The proof for b ∈ I22(X ) is similar. �

Theorem 16.4. Let X be an operator space, let ϕ: X → X be completely
bounded, and define τ : C2(X ) → C2(X ) via

τ

((
x1
x2

))
=

(
ϕ(x1)

‖ϕ‖cbx2

)
.

Then ‖τ‖cb = ‖ϕ‖cb if and only if there exists a unique a ∈ I11(X ), ‖a‖ =
‖ϕ‖cb, such that ϕ(x) = ax for all x ∈ X.

Proof. By scaling it is enough to consider the case ‖ϕ‖cb = 1. If such an
element a exists, then it must be unique by Lemma 16.3. In this case

τ

((
x1
x2

))
=

(
a 0
0 1

) (
x1
x2

)
,

and since ‖( a 0
0 1 )‖ ≤ 1 in M2(I11(X )), it follows easily that τ is completely

contractive.
So assume that τ is completely contractive, and consider

B =




I11(X ) I11(X ) I (X )

I11(X ) I11(X ) I (X )

I (X )∗ I (X )∗ I22(X )


 .

Since

M2(I (SX )) ∼=




I11(X ) I11(X ) I (X ) I (X )

I11(X ) I11(X ) I (X ) I (X )

I (X )∗ I (X )∗ I22(X ) I22(X )

I (X )∗ I (X )∗ I22(X ) I22(X )


 ,

we see that B is the upper 3× 3 corner of this injective C∗-algebra. Hence B is
also an injective C∗-algebra, since it is the image of a completely contractive
projection applied to an injective C∗-algebra .
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Let S ⊆ B be the operator system

S =

 C 0 X

0 C X
X∗ X∗

C


 .

It is also useful to think of S as(
D2 C2(X )

C2(X )∗ C

)
, where D2 = C ⊕ C,

and to regard C2(X ) as a D2-C-bimodule. Here the left action is given by(
λ1 0

0 λ2

) (
x1
x2

)
=

(
λ1 · x1
λ2 · x2

)
,

and the map τ is a D2-C-bimodule map.
If we define �: S → S via

�







λ1 0 x1
0 λ2 x2
y∗
1 y∗

2 λ3





 =




λ1 0 ϕ(x1)

0 λ2 x2
ϕ(y1)∗ y∗

2 λ3


 ,

then since τ is a completely contractive D2-C-bimodule map, � is completely
positive.
By injectivity we may extend � to a completely positive map from B to B,

which we still denote by �. Since � fixes the diagonal C∗-subalgebra D3 =
C ⊕ C ⊕ C of B, � must be a D3-bimodule map. This implies that there exist
maps ϕi, j , i, j = 1, 2, 3, such that�((zi j )) = (ϕi j (zi j )), where the 3× 3 matrix
(zi j ) represents a typical element of B.
In particular, ϕ13: I (X ) → I (X ) is an extension of ϕ: X → X , and ϕ23:

I (X ) → I (X ) is an extension of the identity map on X .
Now the map

(
ϕ22 ϕ23

ϕ32 ϕ33

)
:

(
I11(X ) I (X )

I (X )∗ I22(X )

)
→

(
I11(X ) I (X )

I (X )∗ I22(X )

)

is completely positive and is the identity on ( C X
X∗

C
) = SX . Thus, by rigidity it

must be the identity on (
I11(X ) I (X )

I (X )∗ I22(X )

)
= I (SX ).
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This means that � is the identity on the C∗-subalgebra
C 0 0
0 I11(X ) I (X )

0 I (X )∗ I22(X )




and hence a bimodule map over this C∗-algebra.
Finally, for x ∈ X we have that

0 0 ϕ(x)

0 0 0
0 0 0


 = �





0 1 0
0 0 0
0 0 0





0 0 0
0 0 x
0 0 0







= �





0 1 0
0 0 0
0 0 0








0 0 0
0 0 x
0 0 0




=


0 ϕ12(1) 0

0 0 0
0 0 0





0 0 0
0 0 x
0 0 0




=


0 0 ϕ12(1)x

0 0 0
0 0 0


 ,

and we see that necessarily ϕ is left multiplication by the element a = ϕ12(1) ∈
I11(X ). Since � is unital and completely positive, ‖ϕ12(1)‖ ≤ 1, which com-
pletes the proof. �

Corollary 16.5. Let X be an operator space, let ϕ: X → X be completely
bounded, and define γ : R2(X ) → R2(X ) via

γ ((x1, x2)) = (ϕ(x1), ‖ϕ‖cbx2).
Then ‖γ ‖cb = ‖ϕ‖cb if and only if there exists a unique b ∈ I22(X ), ‖b‖ =
‖ϕ‖cb, such that ϕ(x) = xb for all x ∈ X.

Proof. The proof follows similarly, or by taking adjoints. �

We are now in a position to prove the BRS theorem. If A is an algebra,
then Mn(A) is also an algebra with product given by (ai j )(bi j ) = (

∑
k aikbk j ).

When A is a normed algebra, we call the product contractive provided that
‖ab‖ ≤ ‖a‖‖b‖ for every a and b inA. IfA is an algebra and an operator space,
we call the product completely contractive provided that the product on Mn(A)
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is contractive for every n, and we callA an abstract operator algebra. IfA also
has a unit e and ‖e‖ = 1, then we call A an abstract unital operator algebra.
The following theorem shows that every abstract unital operator algebra is in
fact, a concrete operator algebra.

Theorem 16.6. LetA be an abstract unital operator algebra. Then there exists
a unital completely isometric homomorphism π : A → I11(A).

Proof. Let a ∈ A, and let ϕa :A → A be left multiplication by a, i.e., ϕa(x) =
ax . Since multiplication is completely contractive, ‖ϕ‖cb ≤ ‖a‖, but ‖a‖ =
‖ϕ(e)‖ ≤ ‖ϕ‖cb and so ‖ϕ‖cb = ‖a‖. Consider the map τ : C2(A) → C2(A),

τ

((
x1
x2

))
=

(
ϕa(x1)

‖a‖x2

)
=

(
a 0
0 ‖a‖e

) (
x1
x2

)
.

Since ∥∥∥∥
(

a 0
0 ‖a‖e

)∥∥∥∥ = ‖a‖

and the multiplication on A is completely contractive, it follows that ‖τ‖cb =
‖a‖ = ‖ϕ‖cb. Thus, by Theorem 16.4, there is a unique element π (a) ∈
I11(A), ‖π (a)‖ = ‖a‖, such that ax = π (a) ◦ x , where we let ◦ denote the
action of I11(A) on I (A).
Thus, there is a well-defined map π : A → I11(A) satisfying ‖π (a)‖ = ‖a‖

andπ (a) ◦ x = ax for all x . ByLemma 16.3, it follows thatπ (a + b) = π (a)+
π (b), π (ab) = π (a)π (b), and π (e) = 1, since their differences annihilate A.

Hence π is an isometric homomorphism.
It remains to show thatπ is a complete isometry. To see thatπ isn-contractive,

apply the same reasoning to obtain a contractive map

β: Mn(A) → I11(Mn(A)) = Mn(I11(A))
satisfying β((ai j )) ◦ (xi j ) = (ai j )(xi j ). Then, again by Lemma 16.3, β((ai j )) =
(π (ai j )) and hence π is n-contractive, for all n. On the other hand,

‖(π (ai j ))‖ ≥
∥∥∥∥∥∥(π (ai j )) ◦


e 0

. . .
0 e




∥∥∥∥∥∥ = ‖(ai j )‖,

which shows that π is a complete isometry. �

Corollary 16.7 (Blecher–Ruan–Sinclair Theorem). Let A be an abstract
unital operator algebra. Then there exists a Hilbert space H and a unital
completely isometric homomorphism π : A → B(H).
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Proof. Since I11(A) is a unital C∗-algebra, by the Gelfand–Naimark–Segal
theorem there exists a Hilbert space H and a unital *-isomorphism of I11(A)
into B(H). Since *-isomorphisms are complete isometries, the result follows.

�

We are now in a position to generalize the Christensen–Effros–Sinclair rep-
resentation theorem. Let X be an operator space, and let A and B be unital
operator algebras. We call X an operator A-B-bimodule provided that X is an
A-B-bimodule and

‖(ai j )(xi j )(bi j )‖ ≤ ‖(ai j )‖‖(xi j )‖‖(bi j )‖

for every m, n, p, q , and every (ai j ) ∈ Mm,n(A), (xi j ) ∈ Mnp(X ), and (bi j ) ∈
Mpq (B).
When B = C, we call X a left operator A-module, and when A = C, we

call X a right operator B-module. It is important to recall that, generally, there
is a difference between X being an A-B-bimodule and X being both a left
A-module and a right B-module. The difference is that a bimodule action is
assumed to be associative, i.e., (a ◦ x) ◦ b = a ◦ (x ◦ b), whereas if X is only a
leftA-module and a right B-module, then no associativity is assumed. Thus, to
be an A-B-bimodule is, generally, a stronger condition. However, as we shall
see, in this situation it is all the same.

Theorem 16.8. Let X be an operator space, with A and B unital operator
algebras. If X is a left operator A-module (respectively, right operator B-
module), then there is a unique completely contractive homomorphism π :A →
I11(X )(ρ: B → I22(X )) such that π (a) · x = a ◦ x(x · ρ(b) = x ◦ b), where ◦
denotes the module action and · denotes the product in I (SX ).

Proof. As in the proof of Theorem 16.6, for a ∈ A the map

τ

((
x1
x2

))
=

(
a ◦ x1
‖a‖x2

)
=

(
a 0
0 ‖a‖e

)
◦

(
x1
x2

)

is completely bounded with ‖τ‖cb = ‖a‖ and so is given as multiplication by
a unique element of I11(X ). This defines π : A → I11(X ).
To define ρ one uses similar arguments on γ ((x1, x2)) = (x1 ◦ b, ‖b‖x2) and

invokes Corollary 16.5. �
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One consequence of the above theorem is that the associativity condition for
bimodule actions is automatic.

Corollary 16.9. Let X be an operator space, and letA andB be unital operator
algebras. If X is a left operatorA-module and a right operator B-module, then
X is an operator A-B-bimodule.

Proof. Let π and ρ be as above. Then for any a ∈ A, b ∈ B, and x ∈ X , we
have

a ◦ (x ◦ b) = π (a)(xρ(b)) = (π (a)x)ρ(b) = (a ◦ x) ◦ b. �

The following result generalizes the Christensen–Effros–Sinclair represen-
tation theorem (Theorem 15.14).

Corollary 16.10. Let A and B be unital operator algebras, and let X be an
operator A-B-bimodule. Then there exist Hilbert spaces H and K, unital com-
pletely contractive homomorphismsπ : A → B(H), ρ: B → B(K), and a com-
plete isometry ϕ: X → B(K,H) such that π (a)ϕ(x)ρ(b) = ϕ(axb).

Proof. Represent the C∗-algebra I (SX ) as a C∗-subalgebra of a Hilbert space
L, setH = e1L,K = e2L, and apply Theorem 16.8. �

A representation of an operatorA-B-bimodule of the formgiven byCorollary
16.10 is called a Christensen–Effros–Sinclair representation. Theorem 16.8 is
much stronger than Corollary 16.10; it shows that every A-B-bimodule action
of operator algebras on an operator space X factors through the actions of I11(X )
and I22(X ) on X . To be more precise, let

M�(X ) = {a ∈ I11(X ): aX ⊆ X}
and

Mr (X ) = {b ∈ I22(X ): Xb ⊆ X};
then these sets are easily seen to be unital subalgebras of theC∗-algebras I11(X )
and I22(X ), respectively. We call these operator algebras, respectively, the left
and rightmultiplier algebras of X .Wehave that X is an operatorM�(X )-Mr (X )-
bimodule. By Theorem 16.8, if X is an operatorA-B-bimodule, then there exist
completely contractive homomorphisms π : A → M�(X ) and ρ: B → Mr (X )
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such that a · x · b = π (a)xρ(b). Thus, in this sense, M�(X ) and Mr (X ) are the
“universal” operator algebras that can act on X .
It is also possible to give an “extrinsic” characterization of multipliers. Fol-

lowing Blecher [22], we call a linear map ϕ: X → X a left multiplier provided
that there exists a Hilbert space H an operator T in B(H) and a completely
isometric map ψ : X → B(H) such that ψ(ϕ(x)) = Tψ(x) for every x in X.

When this is the case, we say that (ψ, T ) is an implementing pair for ϕ. Thus,
a map is a left multiplier exactly when, after a suitable representation of the
operator space X , the map is given as multiplication by an operator. If ϕ is a
left multiplier, then we define its multiplier norm ‖ϕ‖m to be the infimum of
‖T ‖ over all such representations. The next result shows that this infimum is
always attained.

Proposition 16.11. Let X be an operator space, and let ϕ be a left multiplier
of X. Then there exists a Hilbert space H, a complete isometry ψ : X → B(H),
and an operator T in B(H) such that (ψ, T ) implements ϕ and ‖ϕ‖m =
‖T ‖.

Proof. Let (ψn, Tn) be a sequence of implementing pairs on Hilbert spacesHn

for ϕ with ‖ϕ‖m = limn ‖Tn‖. Let F be the vector space of bounded sequences
of vectors h = (h1, h2, . . . ) with hn in Hn. Fix a Banach generalized limit
glim, and define a sesquilinear form on F by setting 〈h, k〉 = glimn〈hn, kn〉 for
h = (h1, h2, . . . ) and k = (k1, k2, . . . ) in F . Let H denote the Hilbert space
obtained by forming the quotient of F by the null space of this sesquilinear
form and completing.
If we define ψ : X → B(H) and define T in B(H) by setting 〈Th, k〉 =

glimn〈Tnhn, kn〉 and 〈ψ(x)h, k〉 = glimn〈ψn(x)hn, kn〉, then it is easily checked
that (ψ, T ) is an implementing pair for ϕ with ‖ϕ‖m = ‖T ‖. �

These “extrinsically” defined maps have the following “intrinsic” character-
izations.

Theorem 16.12 (Blecher–Effros–Zarikian Theorem). Let X be an operator
space, and let ϕ: X → X be a linear map. Then ϕ is a left multiplier with
‖ϕ‖m ≤ 1 if and only if the map τ : C2(X ) → C2(X ) defined by

τ

((
x1
x2

))
=

(
ϕ(x1)

x2

)

is a complete contraction.
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Proof. If τ is a complete contraction, then by Theorem 16.4 there exists an
element a ∈ I11(X ) such that ϕ(x) = ax with ‖a‖ = 1. Representing I (SX ) as
operators on a Hilbert space, lettingψ be the induced mapping of X , and letting
T be the image of a yields the desired implementing pair.
Conversely, if ‖ϕ‖m ≤ 1, then by using an implementing pair (ψ, T ) with

‖ϕ‖m = ‖T ‖ it is easy to see that τ is completely contractive. �

Combining Theorem 16.4 with the above result completes the description of
multipliers.

Corollary 16.13. Let X be an operator space, and let ϕ: X → X be a linear
map. Then ϕ is a left multiplier if and only if there exists a unique a ∈ I11(X )
such that ϕ(x) = ax . Moreover, in this case ‖ϕ‖m = ‖a‖.

Thus, we see that “extrinsically” defined left multipliers are exactly the maps
given as left multiplications by the elements of M�(X ).There is a parallel theory
for right multipliers.

Notes

The original proofs of the BRS theorem and the representation theorem for
operator bimodules (i.e., the generalization of the Christensen–Effros–Sinclair
representation theorem) made use of a representation theory for completely
bounded multilinear maps, which we shall study in the next chapter.
In [102] it was shown that the left multiplier algebra of an ideal J of a

C∗-algebra A can be represented as the subalgebra {x ∈ I (A): x J ⊂ J }.
Blecher [23] developed the study of multipliers of operator spaces. Many of

these ideas were developed, independently, by Werner [250]. The techniques
of [102] were then extended to multipliers of operator spaces in [30], where
Theorem 16.8 appeared. But this earlier proof of Theorem 16.8 still used the
representation theory for completely bounded multilinear maps in an essential
way.
Blecher, Effros, and Zarikian [25], in their proof of Theorem 16.12, intro-

duced the use of themap τ . Theorem 16.4 is implied by Theorem 16.12 together
with Theorem 16.8, which both appeared earlier.
The proof of Theorem16.4 given here is new and avoids reliance on the repre-

sentation theory for completely bounded multilinear maps. The key ingredients
are the τ -trick of [25] and the methods from [102].
The important role played by I (SX ) for many results about operator spaces

was recognized earlier in [204], [113], and [249].
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Exercises

16.1 Let Cn denote n-dimensional column Hilbert space. Prove that I (SCn ) ∼=
Mn+1 in such a way that

I11(Cn) = M�(Cn) ∼= Mn

and

I22(Cn) = Mr (Cn) ∼= C.

16.2 Prove, by showing that the BRS axioms are met, that the matrix-normed
algebra (Pn, ‖·‖u,k), introduced in Chapter 5, is a unital operator algebra.

16.3 LetA be a unital operator algebra, and let J be a nontrivial two-sided ideal
inA.Prove that the algebraA/J equippedwith the quotient operator space
structure is an operator algebra.



Chapter 17
Completely Bounded Multilinear Maps

and the Haagerup Tensor Norm

Inmany parts of analysis an important role is played bymultilinearmaps. Recall
that if E, F, and Z are vector spaces, then a map γ : E × F → Z is bilinear
provided that it is linear in each variable, i.e., γ (e1 + e2, f1) = γ (e1, f1) +
γ (e2, f1), γ (e1, f1 + f2) = γ (e1, f1) + γ (e1, f2), and γ (λe1, f1) =
γ (e1, λ f1) = λγ (e1, f1) for any e1 and e2 in E , for any f1 and f2 in F , and for
any λ in C. If one forms the algebraic tensor product E ⊗ F of E and F , then
there is a one-to-one correspondence between linear maps �: E ⊗ F → Z and
bilinear maps γ : E × F → Z given by setting �(e ⊗ f ) = γ (e, f ).

Consequently, if one endows E ⊗ F with a matrix norm, then the completely
bounded linearmaps from E ⊗ F to anothermatrix-normed space Z correspond
to a family of bilinear maps from E × F to Z that one would like to regard as
the “completely bounded” bilinear maps. In this fashion, one often arrives at an
important family of bilinearmaps to study.Conversely, if one startswith a family
of bilinear maps into Z that one chooses to regard as the “completely bounded”
bilinear maps, then often there is a corresponding matrix-normed structure on
E ⊗ F such that these maps are precisely the completely bounded linear maps
from E ⊗ F to Z , and in this fashion one often arrives at an important tensor
norm.

There are several important cases in the literaturewhere operator space norms
on tensor products of operator spaces and the corresponding families of bilinear
maps are examined in detail. Among these are the spatial tensor norm, also
called the operator space injective tensor norm, the operator space projective
tensor norm, and the Haagerup tensor norm. We touched on some of these
tensor norms in Chapter 12.

For the remainder of this book only the Haagerup tensor norm and its cor-
responding family of “completely bounded” bilinear maps play a crucial role.
So we will develop the properties of this norm and the corresponding maps in

239
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some depth. We refer the interested reader to [88] and [193] for a more in-depth
study of the tensor theory of operator spaces.

The original proofs of the Blecher–Ruan–Sinclair characterization of oper-
ator algebras, and the various characterizations of operator bimodules, such
as the Christensen–Effros–Sinclair theorem, used the Haagerup tensor theory.
In particular, these proofs used a Stinespring-like representation theorem for
the corresponding family of bilinear maps, which we shall prove later in this
chapter. The Haagerup tensor theory is also closely connected with the theory
of free products of C∗-algebras.

Consequently, we begin this chapter with an analysis of the Haagerup tensor
norm followed by some discussion of free products. We then present alternate
proofs of several of the results of Chapter 16. In particular, we present proofs
of the BRS characterization theorem of operator algebras (Corollary 16.7) and
of the characterization theorem for operator bimodules (Corollary 16.10) that
use this Stinespring-like representation theorem for the corresponding family
of completely bounded bilinear maps. The Haagerup tensor norm also will play
a central role in Chapter 19.

In a certain sense the Haagerup tensor norm is the “universal norm for prod-
ucts.” To make this clear we introduce a “faux” product operation, denoted
�. Given an element e of E and an element f of F , we do not necessarily
have a way to take their product, but the element e ⊗ f obeys the same bi-
linear relations as a product. Extending this idea, given (ei j ) ∈ Mm,k(E) and
( fi, j ) ∈ Mk,n(F), we define an element (ei j ) � ( fi j ) of Mm,n(E ⊗ F) by setting

(ei j ) � ( fi j ) =
(

k∑
�=1

ei� ⊗ f�j

)
.

For (xi j ) ∈ Mm,n(E ⊗ F) we define the Haagerup norm by setting

‖(xi j )‖h = inf{‖(ei j )‖‖( fi j )‖: (xi j ) = (ei j ) � ( fi j )},

where the infimum is taken over all possible ways to represent (xi j ) = (ei j ) �
( fi j ) with (ei j ) ∈ Mm,k(E), ( fi j ) ∈ Mk,n(F), and k arbitrary. We let E ⊗h F
denote E ⊗ F equipped with this set of norms. It is important to note that
the above infimum is nonempty, that is, given (xi j ), there is always a k, a
(ei j ) ∈ Mmk(E), and a ( fi j ) ∈ Mkn(F) such that (xi j ) = (ei j ) � ( fi j ). To see
this, note that if x = ∑k

�=1 e� ⊗ f� in E ⊗ F then

x = (e1, . . . , ek) �




f1
...
fk


 ,
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while

(
e1 ⊗ f1 e2 ⊗ f2
e3 ⊗ f3 e4 ⊗ f4

)
=

(
e1 e2 0 0

0 0 e3 34

)
�




f1 0

0 f2
f3 0

0 f4


 .

Combining these two tricks allows one to express an arbitrary (xi j ) as (ei j ) �
( fi j ).

We wish to show that the Haagerup norm is indeed a norm on E ⊗ F and
that E ⊗ F is an L∞-matrix-normed space, i.e., an abstract operator space,
when endowed with the family of Haagerup norms. To do this a few lemmas
are useful.

Lemma 17.1. Let (ei j ) ∈ Mm,k(E), ( fi j ) ∈ Mk,n(F), and let A, B, and C be
scalar matrices with A = (ai j ) ∈ Mm1,m, B ∈ Mk,k , and C ∈ Mn,n1 . Then,

(i) A · [(ei j ) � ( fi j )] = [A(ei j )] � ( fi j ),
(ii) (ei j )B � ( fi j ) = (ei j ) � B( fi j ),
(iii) [(ei j ) � ( fi j )] ·C = (ei j ) � [( fi j )C].

Proof. Straightforward. �

We shall call a family of norms on Mm,n(V ) satisfying all the axioms for an
L∞-matrix norm except that ‖x‖ = 0 implies x = 0 for x ∈ V an L∞-matrix
seminorm. If we let W = {x : ‖x‖ = 0}, then these induce an L∞-matrix norm
on V/W and it becomes an abstract operator space (Exercise 17.1).

Proposition 17.2. Let E and F be operator spaces. Then the Haagerup norm
is an L∞-matrix seminorm on E ⊗ F.

Proof. By Lemma 17.1 we have for (xi j ) ∈ Mm,n(E ⊗ F), A ∈ Mm1,m, and
B ∈ Mn,n1 that ‖A(xi j )B‖h ≤ ‖A‖‖(xi j )‖h‖B‖.

Next we show the triangle inequality. Given (xi j ) and (yi j ) in

Mm,n(E ⊗ F),

and ε > 0, choose (ei j ) ∈ Mm,k1 (E), ( fi j ) ∈ Mk1,n(F), (êi j ) ∈ Mm,k2 (E), and
( f̂ i j ) ∈ Mk2,n(F) such that (xi j ) = (ei j ) � ( fi j ), (yi j ) = (êi j ) � ( f̂ i j ), and

‖(ei j )‖‖( fi j )‖ ≤ ‖(xi j )‖h + ε,

‖(êi j )‖‖( f̂ i j )‖ ≤ ‖(yi j )‖h + ε.
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Replacing (ei j ), ( fi j ) by r (ei j ), r−1( fi j ), we may assume that ‖(ei j )‖ = ‖( fi j )‖
and similarly that ‖(êi j )‖ = ‖( f̂ i j )‖. Now consider

e = ((ei j ), (êi j )) ∈ Mm,k1+k2 (E) and f =
(

( fi j )

( f̂ i j )

)
∈ Mk1+k2,n(F).

We have that (xi j ) + (yi j ) = e � f and hence

‖(xi j ) + (yi j )‖h ≤ ‖e‖‖ f ‖ ≤
√

‖(ei j )‖2 + ‖(êi j )‖2 ·
√

‖( fi j )‖2 + ‖( f̂ i j )‖2

≤ ‖(xi j )‖h + ‖(yi j )‖h + 2ε.

To see ‖e‖2 ≤ ‖(ei j )‖2 + ‖(êi j )‖2, it is perhaps useful to represent E as a con-
crete operator space. Since ε was arbitrary, the triangle inequality follows.

Finally, to see the L∞ condition, note that if (xi j ) = (ei j ) � ( fi j ) and (yi j ) =
(êi j ) � ( f̂ i j ), then(

(xi j ) 0

0 (yi j )

)
=

(
(ei j ) 0

0 (êi j )

)
�

(
( fi j ) 0

0 ( f̂ i j )

)
. �

The Haagerup tensor norm has many useful identifications. We introduce one
for future use. Note that if E and F are operator spaces then Cm(E) = Mm,1(E)
is an operator space. Similarly, Rn(E) = M1,n(F) is an operator space. Hence,
there is a Haagerup norm on Cm(F) ⊗ Rn(F).

Proposition 17.3. Let E and F be operator spaces. Then the map

�: Cm(E) ⊗h Rn(F) → Mm,n(E ⊗h F)

given by

�





e1

...
em


⊗ ( f1, . . . , fn)


 = (ei ⊗ f j )

is an isometry of the Haagerup norm on Cm(E) ⊗ Rn(F) with the Haagerup
norm on the m × n matrices over E ⊗ F.

Proof. Onenotes that to compute theHaagerup normof an element ofCm(E) ⊗
Rn(F), one represents it as a row of, say, k columns, which is really an m × k
matrix over E , “times” a column of k rows, which is a k × n matrix over F .

Now one checks that � preserves this identification. �

Before preceding further in our analysis of the Haagerup norm, it is es-
sential to make a few observations about representations of elements of a
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tensor product. First recall that if E and F are vector spaces and ϕ: E → C

is any linear functional, then there is a linear map ϕ ⊗ id: E ⊗ F → F with
(e ⊗ f ) = ϕ(e) f . Now suppose that

x =
n∑

i=1

ei ⊗ fi =
m∑

�=1

ẽ� ⊗ f̃ �

are two ways to express x and that {e1, . . . , en} are linearly independent.
Choosing functionals ϕi such that ϕi (e j ) = δi j we see that fi = ϕi ⊗ id(x) =∑m

�=1 ϕi (ẽ�) f̃ �. Hence, span{ f1, . . . , fn} ⊆ span{ f̃ 1, . . . , f̃ m}. Thus, if all the
sets are linearly independent in both representations, then span{ f1, . . . , fn} =
span{ f̃ 1, . . . , f̃ n}, span{e1, . . . , en} = span{ẽ1, . . . , ẽm}, and n = m.

Also note that one can always write x = ∑n
i=1 ei ⊗ fi with {e1, . . . , en}

and { f1, . . . , fn} linearly independent. For if, say, en = λ1e1 + · · · + λn−1en−1,
then x = ∑n−1

i=1 ei ⊗ ( fi + λi fn) and we proceed inductively. The unique in-
teger n such that x = ∑n

i=1 ei ⊗ fi with both {e1, . . . , en} and { f1, . . . , fn}
linearly independent is called the rank of the tensor x , denoted rank(x).

Thosemore familiarwithBanach space approaches to tensor theory know that
x = ∑n

i=1 ei ⊗ fi in E ⊗ F is often identified with a linear map Tx : E∗ → F
given by Tx (ϕ) = ∑n

i=1 ϕ(ei ) fi and that rank(x) = dim range(Tx ). The fact
that the map Tx is independent of the particular representation of x as a sum of
elementary tensors is essentially equivalent to our observations above.

Theorem17.4. Let E ⊆ E1 and F ⊆ F1 be operator spaces. Then the inclusion
of E ⊗h F into E1 ⊗h F1 is a complete isometry.

Proof. Let x be in E ⊗ F . Write ‖x‖0 for its Haagerup norm as an element
of E ⊗h F , and ‖x‖1 for its Haagerup norm as an element of E1 ⊗h F1. We
wish to prove that ‖x‖0 = ‖x‖1. By the definition of the Haagerup norm as an
infimum, we have that ‖x‖1 ≤ ‖x‖0.

Now let x = ∑n
i=1 ei ⊗ fi with ei ∈ E1 and fi ∈ F1. To prove that ‖x‖0 ≤

‖x‖1, it will be enough to prove that

‖x‖0 ≤ ‖(e1, . . . , en)‖

∥∥∥∥∥∥∥



f1
...
fn




∥∥∥∥∥∥∥ .

Note that the rank of x must be the same whether we regard it as an element
of E ⊗ F or of E1 ⊗ F1. So let rank(x) = m ≤ n, and write x = ∑m

i=1 ẽi ⊗ f̃ i

with {ẽ1, . . . , ẽm} ⊆ E and { f̃ 1, . . . , f̃ m} ⊆ F .
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If {e1, . . . , en} and { f1, . . . , fn} are linearly independent, then necessarily
m = n, {e1, . . . , en} ⊆ E, { f1, . . . , fn} ⊆ F , and hence

‖x‖0 ≤ ‖(e1, . . . , en)‖

∥∥∥∥∥∥∥



f1
...
fn




∥∥∥∥∥∥∥ .

Thus, we can assume that there are some linear dependences. Say {e1, . . . , ek}
is a maximal linearly independent set of {e1, . . . , en}. The linear equations
expressing {e1, . . . , en} as linear combinations of {e1, . . . , ek} can be written as

(e1, . . . , en) = (e1, . . . , ek)B

for some k × n scalar matrix B.
Polar-decompose B = PW with W a k × n partial isometry satisfying

WW ∗ = Ik . We have that

x = (e1, . . . , ek)PW �




f1
...
fn




= (e1, . . . , ek)P � W




f1
...
fn


 = (ê1, . . . , êk) �




f̂ 1
...

f̂ k


 ,

where

(ê1, . . . , êk) = (e1, . . . , ek)P and




f̂ 1
...

f̂ k


 = W




f1
...

fn


 .

Note that ‖(ê1, . . . , êk)‖ = ‖(e1, . . . , en)‖, and that∥∥∥∥∥∥∥



f̂ 1
...

f̂ k




∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥



f1
...
fn




∥∥∥∥∥∥∥ .

Thus, we have that

‖(ê1, . . . , êk)‖

∥∥∥∥∥∥∥



f̂ 1
...

f̂ k




∥∥∥∥∥∥∥ ≤ ‖(e1, . . . , en)‖

∥∥∥∥∥∥∥



f1
...
fn




∥∥∥∥∥∥∥ .

Now repeat this process if necessary on { f̂ 1, . . . , f̂ k} until one achieves a
situationwhere both sets {ê1, . . . , êk} and { f̂ 1, . . . , f̂ k} are linearly independent
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and hence lie in E and F , respectively. Since these elements lie in E and F,

one has

‖x‖0 ≤ ‖(ê1, . . . , êk)‖

∥∥∥∥∥∥∥



f̂ 1
...

f̂ k




∥∥∥∥∥∥∥ ≤ ‖(e1, . . . , en)‖

∥∥∥∥∥∥∥



f1
...
fn




∥∥∥∥∥∥∥
and hence ‖x‖0 ≤ ‖x‖1.

This proves that the inclusion of E ⊗h F into E1 ⊗h F1 is isometric. To prove
that it is a complete isometry, onenotes thatCm(E) ⊆ Cm(E1), Rn(F) ⊆ Rn(F1)
and applies the result just proven to conclude that the inclusion of Cm(E) ⊗h

Rn(F) into Cm(E1) ⊗h Rn(F1) is isometric. Now, applying Proposition 17.3,
we conclude that

Mm,n(E ⊗h F) = Cm(E) ⊗h Rn(F) ⊆ Cm(E1) ⊗h Rn(F1) = Mm,n(E1 ⊗h F1)

isometrically.
Hence the inclusion of E ⊗h F into E1 ⊗h F1 is a complete isometry. �

Corollary 17.5. Let E and F be operator spaces, and let x ∈ E ⊗ F be a rank
k tensor. Then there exists a representation x = ∑k

i=1 ei ⊗ fi such that

‖x‖h = ‖(e1, . . . , ek)‖

∥∥∥∥∥∥∥



f1
...
fk




∥∥∥∥∥∥∥ .

In particular, ‖x‖h �= 0, and so the Haagerup norm is indeed a norm.

Proof. By the proof of Theorem 17.4, the expression in the Haagerup norm is
reduced by making the terms used in the expression of x as a sum of elementary
tensors linearly independent. Thus, if rank(x) = k, then

‖x‖h = inf


‖(e1, . . . , ek)‖

∥∥∥∥∥∥∥



f1
...
fk




∥∥∥∥∥∥∥: x =
k∑

i=1

ei ⊗ fi


 .

But if

x =
k∑

i=1

ei ⊗ fi =
k∑

i=1

ẽi ⊗ f̃ i ,

then span{e1, . . . , ek} = span{ẽ1, . . . , ẽk} = E1 and span{ f1, . . . , fk} =
span{ f̃ 1, . . . , f̃ k} = F1.
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Thus, one can choose sequences of bases for E1, {en
1 , . . . , e

n
k }, and for

F1, { f n
1 , . . . , f n

k }, such that x = ∑k
i=1 en

i ⊗ f n
i and

∥∥(
en
1 , . . . , e

n
k

)∥∥ ≤ ‖x‖1/2
h + 1

n
,

∥∥∥∥∥∥∥



f n
1
...
f n
k




∥∥∥∥∥∥∥ ≤ ‖x‖1/2
h + 1

n
.

Since E1 and F1 are finite-dimensional, these bounded sequences will have a
common convergent subsequence. Letting e1, . . . , ek, f1, . . . , fk denote their
limits, we have that

x =
k∑

i=1

ei ⊗ fi with ‖(e1, . . . , ek)‖

∥∥∥∥∥∥∥



f1
...
fk




∥∥∥∥∥∥∥ = ‖x‖h .

Since rank(x) = k, the sets {e1, . . . , ek} and { f1, . . . , fk} are bases. Thus,
‖ei‖ �= 0, ‖ f j‖ �= 0 for all i and j , and hence

‖x‖h = ‖(e1, . . . , ek)‖

∥∥∥∥∥∥∥



f1
...
fk




∥∥∥∥∥∥∥ �= 0. �

Combining Proposition 17.2 with Corollary 17.5 establishes that the
Haagerup tensor product of two operator spaces is again an operator space. We
now wish to give a more concrete realization of the Haagerup tensor product.
Since operator spaces E and F can be represented as subspaces of C∗-algebras
A and B, and since E ⊗h F ⊆ A ⊗h B completely isometrically, it will be
sufficient to understand A ⊗h B more clearly when A and B are C∗-algebras.

To this end we introduce the free product of algebras. Given two algebras A
and B, their free product [10] is another algebra, denoted A ∗ B, that contains
A and B as subalgebras and satisfies the following universal property: If C is
any algebra, and π : A → C and ρ: B → C are algebra homomorphisms, then
there exists a unique algebra homomorphism γ : A ∗ B → C with γ (a) = π (a)
and γ (b) = ρ(b).

The map γ is denoted π ∗ ρ.
Alternatively, one can regard A ∗ B as consisting of linear combinations of

words in A and B,

A ∗ B = span{a1, b1, a2 ∗ b2, b3 ∗ a3, a4 ∗ b4 ∗ a5, . . . },
where the ai ’s and bi ’s are arbitrary elements of A and B, respectively, subject
to certain relations. Among these relations we would have that the product
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w1w2, for a word w1 ending in a different letter than w2 begins with, is simply
their concatenation, while, for example, the product of w1 = a1 ∗ b1 with w2 =
b2 ∗ a2 is w1w2 = a1 ∗ (b1b2) ∗ a2. Also, these words behave multilinearly in
each variable, e.g., a1 ∗ b1 ∗ a2 + a1 ∗ b2 ∗ a2 = a1 ∗ (b1 + b2) ∗ a2 and a1 ∗
(λb1) ∗ a2 = (λa1) ∗ b1 ∗ a2 = a1 ∗ b1 ∗ (λa2) for any scalar λ.

When A and B both contain a common subalgebra C, then one can also
form the free product amalgamated over C, denoted A ∗C B, which satisfies
the following universal property: If D is any algebra, and π : A → D and
ρ: B → D are algebra homomorphisms with π (c) = ρ(c) for every c in C, then
there exists a unique algebra homomorphism γ : A ∗C B→Dwith γ (a) = π (a)
and γ (b) = ρ(b).

One can also give A ∗C B a definition in terms of words where one allows
elements of C to commute with concatenation – for example, (ac) ∗ b = a ∗
(cb).

Now assume that A and B are unital C∗-algebras (we will consider operator
algebras later) that both contain the algebra C = C · 1. We endow A ∗C B with
a seminorm by setting

‖x‖ = sup‖π ∗ ρ(x)‖,
where the supremum is over all Hilbert spaces H and all unital ∗-homomor-
phisms π : A→ B(H) and ρ: B→ B(H). Clearly, A ∗C B is a ∗-algebra
and ‖x∗x‖ = ‖x‖2. If J = {x : ‖x‖ = 0}, then J is a two-sided ∗-ideal, and
(A ∗C B)/J is a pre-C∗-algebra. We denote its completion by A ∗1 B. It turns
out that J = {0}, but we shall not need this harder fact here. See [10] for a
proof of it and more on representations of A ∗1 B.

This construction allows us to introduce another tensor (semi)norm on op-
erator spaces. If E ⊆ A and F ⊆ B are concrete operator subspaces, then
there is a linear map γ : E ⊗ F →A ∗1 B defined by setting γ (e ⊗ f ) =
e ∗ f and extending linearly. For (xi j ) ∈ Mm,n(E ⊗ F) we define ‖(xi j )‖1 =
‖(γ (xi j ))‖Mm,n (A∗1B) and shall refer to this as the induced amalgamated free
product norm.

Without citing [10], it is only apparent that ‖·‖1 is a seminorm. But we
shall prove that it is equal to the Haagerup norm and, consequently, give an
independent proof that it is a norm. More importantly, this will also prove that
‖·‖1 is independent of the particular representations of E and F as subspaces
of C∗-algebras.

There is a thirdway to define a tensor normonoperator spaces,whichwewish
to prove equals the Haagerup tensor norm. This definition was first introduced
in [170], where it is called the Brown tensor norm, but has since come to be
widely known as the factorization norm.
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Todefine this tensor norm, first suppose thatwe are given threeHilbert spaces,
H1,H2, and H3, and linear maps ϕ: E → B(H2,H3) and ψ : F → B(H1,H2).
Then there is a linear map ϕ · ψ : E ⊗ F → B(H1,H3) defined by setting
ϕ · ψ(e ⊗ f ) = ϕ(e)ψ( f ) and extending linearly. Thus, we may define the
factorization (semi)norm of (xi j ) in

Mm,n(E ⊗ F)

by setting

‖(xi j )‖ f = sup‖(ϕ · ψ(xi j ))‖,
where the supremum is taken over all H1,H2,H3 and all pairs of completely
contractive maps ϕ: E → B(H2,H3), ψ : F → B(H1,H2).

Since the C∗-algebra A ∗1 B can be represented on a Hilbert space and
since the inclusions E ⊆ A and F ⊆ B yield completely contractive inclusions
ϕ: E →A ∗1 B and ψ : F →A ∗1 B, we see that the map γ = ϕ · ψ used to
define the induced amalgamated free product (semi)norm is just one example
of a map ϕ · ψ . Hence, we have that

‖(xi j )‖1 ≤ ‖(xi j )‖ f

for all (xi j ) in Mm,n(E ⊗ f ).
Now assume that ϕ and ψ are as in the definition of the factorization norm

and that (xi j ) ∈ Mm,n(E ⊗ F) is represented as (xi j ) = (ei j ) � ( fi j ) with (ei j ) ∈
Mm,k(E), ( fi j ) ∈ Mk,m(F). Then we have that

(ϕ · ψ(xi j )) =
(

ϕ · ψ
(

k∑
�=1

eik ⊗ fk j

))
=

(
k∑

�=1

ϕ(eik)ψ( fk j )

)

= (ϕ(ei j ))(ψ( fi j )).

Hence, ‖(ϕ · ψ(xi j ))‖ ≤ ‖(ϕ(ei j ))‖‖(ψ( fi j ))‖ ≤ ‖(ei j )‖‖( fi j )‖. Taking the in-
fimum over all factorizations and then the supremum over all ϕ and ψ yields

‖(xi j )‖1 ≤ ‖(xi j )‖ f ≤ ‖(xi j )‖h .

We now wish to prove that ‖(xi j )‖h ≤ ‖(xi j )‖1, so that all of these matrix
norms are equal.

Theorem 17.6 (Christensen–Effros–Sinclair–Pisier). Let A and B be unital
C∗-algebras, and let E ⊆ A, F ⊆ B be subspaces. Then themap γ : E ⊗h F →
A ∗1 B given by γ (e ⊗ f ) = e ∗ f is a complete isometry.
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Proof. By Theorem 17.4, it will be sufficient to prove the case E = A, F = B.
To this end we show that A ⊗h B is an operator A-B-bimodule.

Define an A-B-bimodule action on A ⊗h B by setting a · (c ⊗ d) · b =
(ac) ⊗ (db). We wish to show that this module action is completely contrac-
tive. To see this, note that if (xi j ) ∈ Mm,n(A ⊗ B), (ai j ) ∈ Mm1,m(A), (bi j ) ∈
Mn,n(B), and (xi j ) = (ci j ) � (di j ), then

(ai j ) · (xi j ) · (bi j ) = [(ai j )(ci j )] � [(di j )(bi j )].

Hence,

‖(ai j ) · (xi j ) · (bi j )‖h ≤ inf{‖(ai j )(ci j )‖ · ‖(di j )(bi j )‖: (xi j ) = (ci j ) � (di j )}
≤ ‖(ai j )‖‖(bi j )‖ · ‖(xi j )‖h .

Thus, by the Christensen–Effros–Sinclair representation theorem (Theorem
15.14 or Corollary 16.10), there exist Hilbert spaces H and K, unital
∗-homomorphisms π :A → B(H), ρ: B → B(K), and a linear complete isom-
etry ψ : A ⊗h B → B(K,H) such that ψ(a · x · b) = π (a)ψ(x)ρ(b).

Let T = ψ(1 ⊗ 1). Then ‖T ‖ = 1, and for any x = ∑k
i=1 ai ⊗ bi we have

that

ψ(x) =
k∑

i=1

π (ai )Tρ(bi ).

Now assume that the spaces H and K are large enough so that there exist
unital ∗-homomorphisms

π1: A → B(K), ρ1: B → B(H).

If this is not the case, then one can always replace (π, ρ, ψ) by a representation
such that it is (Exercise 17.2). Let π̃ = π ⊕ π1, ρ̃ = ρ1 ⊕ ρ, and let

U =
(√

1 − T T ∗ T

−T ∗ √
I − T ∗T

)
,

so that U is unitary. We then have that

k∑
i=1

π̃ (ai )U ρ̃(bi ) =
(∗ ψ(x)

∗ ∗
)

.
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Let ρ̂(b) = U ρ̃(b)U ∗, so that

‖x‖h = ‖ψ(x)‖ ≤
∥∥∥∥∥

k∑
i=1

π̃ (ai )U ρ̃(bi )

∥∥∥∥∥ =
∥∥∥∥∥

k∑
i=1

π̃ (ai )ρ̂(bi )

∥∥∥∥∥
=

∥∥∥∥∥π̃ ∗ ρ̂

(
k∑

i=1

ai ∗ bi

)∥∥∥∥∥ ≤ ‖x‖1.

The same calculation applies for a matrix (xi j ), and so we have that γ is a
complete isometry. �

A bilinear map ϕ is called completely bounded if and only if there exists a
constant C such that∥∥∥∥∥

(
k∑

�=1

ϕ(ei�, f�j )

)∥∥∥∥∥ ≤ C‖(ei j )‖‖( fi j )‖

for every n, k, m and every (ei j ) ∈ Mnk(E), ( fi j ) ∈ Mkm(F). The least such
constant C is denoted ‖ϕ‖cb.

Of course, as discussed at the beginning of this chapter, every linear map
ψ on E ⊗ F corresponds to a bilinear map ϕ on E × F by simply setting
ψ(e ⊗ f ) = ϕ(e, f ). It is easily checked (Exercise 17.3) that ψ is completely
bounded on E ⊗h F if and only if ϕ is a completely bounded bilinear map, and
that the norms coincide. Thus, completely bounded bilinear maps are precisely
the family of bilinear maps that correspond to the Haagerup tensor norm in the
sense discussed at the beginning of this chapter.

In texts that focus on additional norms on tensor products of operator spaces,
the completely bounded bilinear maps corresponding to the Haagerup tensor
product are sometimes called the multiplicatively completely bounded maps or
the completely bounded maps in the sense of Christensen and Sinclair, in order
to avoid confusion.

The above theorem leads to a representation theorem for these maps.

Corollary 17.7. Let A,B be unital C∗-algebras, let E ⊆ A, F ⊆ B be sub-
spaces, and let H be a Hilbert space. Then a bilinear map ϕ: E × F → B(H)
is completely bounded if and only if there exists a Hilbert space K, unital ∗-
homomorphismsπ :A → B(K), ρ:B → B(K), and linearmaps V, W :H → K
such that ϕ(e, f ) = V ∗π (e)ρ( f )W. Moreover, such a representation can be
chosen with ‖ϕ‖cb = ‖V ‖‖W‖.

Proof. The linear map ψ : E ⊗h F → B(H) with ψ(e ⊗ f ) = ϕ(e, f ) is com-
pletely boundedwith‖ψ‖cb = ‖ϕ‖cb.Regarding E ⊗h F ⊆ A ∗1 B completely
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isometrically, we may extend ψ to a completely bounded map on A ∗1 B of the
same cb norm.

The result now follows from the generalized Stinespring representation of
completely bounded maps and the fact that π ∗ ρ is a ∗-homomorphism of
A ∗1 B. �

It is often convenient to think of the above result as a “factorization” theorem
for bilinear maps that are completely bounded. The following result makes this
more explicit.

Corollary 17.8. Let E and F be operator spaces, and let H be a Hilbert
space. Then a bilinear map γ : E × F → B(H) is completely contractive if
and only if there exists a Hilbert space K and completely contractive maps
ψ : F → B(H,K)andϕ: E → B(K,H) such thatγ (e, f ) = ϕ(e)ψ( f ) for every
e in E and f in F.

Proof. If γ is completely contractive, then by Corollary 17.7 we may write
γ (e, f ) = V ∗π (e)ρ( f )W with ‖V ‖ ≤ 1 and ‖W‖ ≤ 1. Setting ϕ(e) = V ∗π (e)
and ψ( f ) = ρ( f )W yields the desired factorization.

Conversely, if γ (e, f ) = ϕ(e)ψ( f ) then

∥∥∥∥∥
(∑

k

γ (eik, fk j )

)∥∥∥∥∥ =
∥∥∥∥∥
(∑

k

ϕ(eik)ψ( fk j )

)∥∥∥∥∥
= ‖(ϕ(ei j )) · (ψ( fi j ))‖ ≤ ‖(ei j )‖‖( fi j )‖

for arbitrary matrices (ei j ) in Mmp(E) and ( fi j ) in Mpn(F). �

We are now prepared to present another proof of the abstract characterization
of operator algebras. Firstwe recall the construction of an inverse limit ofHilbert
spaces.

Assume that we are given Hilbert spaces {Mk}k≥1 and contraction operators
Tk : Mk+1 → Mk . We call a sequence (m1, m2, . . . ) with mk in Mk coherent
provided Tk(mk+1) = mk , and bounded provided supk ‖mk‖ is finite. The set
M of bounded, coherent sequences with ‖(m1, m2, . . . )‖ = supk ‖mk‖ is a
Banach space, denoted M = limk (Mk, Tk). Since every Tk is a contraction,
‖mk‖ = ‖Tk(mk+1)‖ ≤ ‖mk+1‖ and so supk ‖mk‖ = limk ‖mk‖. We claim M
is a Hilbert space. To see this one checks that the parallelogram identity holds.
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Indeed, for x = (x1, . . . ) and y = (y1, . . . ) in M,

‖x + y‖2 + ‖x − y‖2 = lim
k

(‖xk + yk‖2 + ‖xk − yk‖2)

= lim
k

(2‖xk‖2 + 2‖yk‖2) = 2‖x‖2 + 2‖y‖2.

The following theorem is a restatement of Corollary 16.7. The proof borrows
from ideas in [137].

Theorem17.9 (Blecher–Ruan–Sinclair Theorem). LetA be a unital algebra
with unit e, andassume thatA is an (abstract) operator space. If‖e‖ = 1and the
bilinear map m:A × A → A given by m(a, b) = ab is completely contractive,
then there exists a Hilbert space M and a unital completely isometric algebra
homomorphism ρ: A → B(M).

Proof. Let α0: A → B(H0,H1) be some linear completely isometric map of
the operator spaceA. ApplyingCorollary 17.8, we have the completely contrac-
tive bilinear map γ (a, b) = α0(ab) = β1(a)α1(b) where α1: A → B(H0,H2)
and β1: A → B(H2,H0) are completely contractive. Since

‖(ai j )‖ = ‖(α0(ai j e))‖ = ‖(β1(ai j )α1(e))‖ ≤ ‖(β1(ai j ))‖

we see that β1, and similarly α1, are complete isometries.
Inductively, we obtain complete isometriesαk :A → B(H0,Hk+1), βk :A →

B(Hk+1,Hk) such that αk−1(ab) = βk(a)αk(b).
Now let Mk ⊆ Hk, k ≥ 1, denote the closed linear span of vectors of the

form αk−1(a)h for a in A and h in H0. Since βk(e)αk(a)h = αk−1(a)h, we
have that βk(e): Mk+1 → Mk . Thus, we may form the Hilbert space M =
limk(Mk, βk(e)).

If (m1, m2, . . . ) is a bounded, coherent sequence, then we claim that for
any a in A, (β1(a)m2, β2(a)m3, . . . ) is another bounded coherent sequence.
Clearly, this sequence is bounded. To see that it is coherent note that if mk+2 =∑

i αk+1(bi )hi , then βk+1(a)mk+2 = ∑
i αk(abi )hi ∈ Mk+1 and so

βk(e)[βk+1mk+2] =
∑

i

βk(e)αk(abi )hi =
∑

i

αk−1(abi )hi

= βk(a)
∑

i

αk(bi )hi = βk(a)βk+1(e)mk+2 = βk(a)mk+1.

Note that we have also shown that βk(e)βk+1(a) = βk(a)βk+1(e) on Mk+2.
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Thus, there is a well-defined map ρ: A → B(M) given by

ρ(b)(m1, m2, . . . ) = (β1(b)m2, β2(b)m3, . . . ).

Note that ρ(e) = IM since βk(e)mk+1 = mk .
To verify ρ(ab) = ρ(a)ρ(b) it is enough to compare the kth entry of any

vector. If m = (m1, m2, . . . ) is in M and mk+2 = ∑
i αk+1(ci )hi , then the kth

entry of ρ(a)ρ(b)m is

βk(a)βk+1(b)mk+2 = βk(a)
∑

i

βk+1(b)αk+1(ci )hi = βk(a)
∑

i

αk(bci )hi

=
∑

i

αk−1(abci )hi =
∑

i

βk(ab)αk(ci )hi = βk(ab)mk+1,

which is the kth entry of ρ(ab)m.
To complete the proof, we must show that ρ is a complete isometry. Note

that to compute ‖(ρ(ai j ))‖ we must apply this matrix to a column of vectors
from M, but the norm of each such vector is obtained by taking its norm in
Mk and taking a limit on k. Moreover these norms are increasing with k. Thus,
if v j = (m1, j , m2, j , . . . ), j = 1, . . . , n, are in M and (ai j ) ∈ Mm,n(A), then∥∥∥∥∥∥(ρ(ai j ))


v1

...
vn




∥∥∥∥∥∥
M(m)

= lim
k

∥∥∥∥∥∥∥(βk(ai j ))


mk+1,1

...
mk+1,n




∥∥∥∥∥∥∥
M(m)

k

≤ lim
k

‖(βk(ai j ))‖

∥∥∥∥∥∥∥

mk+1,1

...
mk+1,n




∥∥∥∥∥∥∥
M(m)

k

= ‖(ai j )‖
∥∥∥∥∥∥

v1

...
vn




∥∥∥∥∥∥ .

Hence, ‖(ρ(ai j ))‖ ≤ ‖(ai j )‖, and ρ is completely contractive.
Finally, since α0 is a complete isometry, given any ε > 0 and (ai j ) ∈

Mm,n(A), there exists h1, . . . , hn in H0, with ‖h1‖2 + · · · + ‖hn‖2 = 1, such
that

‖(ai j )‖ − ε ≤

∥∥∥∥∥∥∥(α0(αi j ))




h1
...

hn




∥∥∥∥∥∥∥ .

Forming the coherent sequences vi = (α0(e)hi , α1(e)hi , . . . ), we have that



254 Chapter 17. Completely Bounded Multilinear Maps

‖vi‖ ≤ ‖hi‖ and

‖(ρ(ai j ))‖ ≥
∥∥∥∥∥∥(ρ(ai j ))


v1

...
vn




∥∥∥∥∥∥ = lim
k

∥∥∥∥∥∥∥(βk(ai j ))




αk(e)h1
...

αk(e)hn




∥∥∥∥∥∥∥

≥

∥∥∥∥∥∥∥(β1(ai j ))




α1(e)h1
...

α1(e)hn




∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥(α0(ai j ))




h1
...

hn




∥∥∥∥∥∥∥ .

Since ε > 0 was arbitrary, ‖(ρ(ai ))‖ ≥ ‖(ai j )‖ and we have that ρ is a complete
isometry. �

Note that by Exercise 17.3 the requirement that the multiplication map
m: A × A → A be completely contractive is just the requirement that
‖(∑k

�=1 ai�b�j )‖ ≤ ‖(ai j )‖‖(bi j )‖ for all (ai j ) ∈ Mm,k(A), all (bi j ) ∈ Mk,n(A),
and all m, k, n. However, by filling matrices with 0’s to make them square it is
easily seen that it is sufficient to consider the cases m = k = n. In these cases,
{Mn(A)}n≥1 are all algebras, and the above condition is just the requirement
that the product in these algebras satisfy ‖(ai j )(bi j )‖ ≤ ‖(ai j )‖‖(bi j )‖. Thus,
Theorem 17.9 is really just a restatement of Corollary 16.7, as claimed earlier.

The Haagerup tensor theory has a multilinear generalization. We discuss the
trilinear case in enough detail that the multilinear cases should be transparent.
Given three operator spaces E, F, G, introduce a “faux” product by setting

(ei j ) � ( fi j ) � (gi j ) =
(∑

k,�

eik ⊗ fk� ⊗ g�j

)

whenever (ei j ) ∈ Mm,n1 (E), ( fi j ) ∈ Mn1,n2 (F), and (gi j ) ∈ Mn2,n(G). Using
this operation, we define for each m, n a norm on Mm,n(E ⊗ F ⊗ G) by setting

‖(xi j )‖h = inf{‖(ei j )‖‖( fi j )‖‖(gi j )‖: (xi j ) = (ei j ) � ( fi j ) � (gi j )},
where the infimum is over all n1, n2 and all such representations of (xi j ). We
let E ⊗h F ⊗h G denote the resulting matrix-normed space.

On the other hand E ⊗h F and F ⊗h G are operator spaces, and so we can
form (E ⊗h F) ⊗h G and E ⊗h (F ⊗h G).

Proposition 17.10. Let E, F, and G be operator spaces. Then the linear iso-
morphisms ϕ: (E ⊗h F) ⊗h G → E ⊗h F ⊗h G and ψ : E ⊗h (F ⊗h G) →
E ⊗h F ⊗h G given by ϕ((e ⊗ f ) ⊗ g) = e ⊗ f ⊗ g = ψ(e ⊗ ( f ⊗ g)) are
complete isometries.
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Proof. Exercise 17.3. �

The above proposition is generally summarized by the statement that the
Haagerup tensor product is associative, and given operator spaces E1, . . . , EN

we write E1 ⊗h · · · ⊗h EN with no further explanation.
In a similar fashion the amalgamated free product is associative. That is, if

A1,A2, and A3 are unital C∗-algebras, then one can define A1 ∗1 A2 ∗1 A3

and

(A1 ∗1 A2) ∗1 A3 = A1 ∗1 A2 ∗1 A3 = A1 ∗1 (A2 ∗1 A3)

∗-isomorphically, via the natural identifications. This C∗-algebra is the univer-
sal C∗-algebra for triples of unital ∗-homomorphisms πi : Ai → B(H). Con-
sequently, if A1, . . . ,AN are unital C∗-algebras, we write A1 ∗1 · · · ∗1 AN ,
unambiguously.

The following results summarize the multilinear theory. We leave the details
of their proofs to the interested reader.

Theorem 17.11 (Christensen–Effros–Sinclair–Pisier). Let E1, . . . , EN be
operator spaces and A1, . . . ,AN unital C∗-algebras, and assume that E1 ⊆
A1, . . . , EN ⊆ AN . Then the linear map ϕ: E1 ⊗h · · · ⊗h EN → A1 ∗1 · · · ∗1

AN given by ϕ(e1 ⊗ · · · ⊗ eN ) = e1 ∗ · · · ∗ eN is a complete isometry.

Theorem 17.12. Let E1, . . . , EN be operator spaces and A1, . . . ,AN unital
C∗-algebras, and assume that E1 ⊆ A1, . . . , EN ⊆ AN . If ϕ: E1 ⊗h . . . ⊗h

EN → B(H) is completely bounded, then there exists a Hilbert space K, unital
∗-homomorphisms πi :Ai → B(K), and operators S:K → H, T :H→K such
that ϕ(e1 ⊗ · · · ⊗ eN ) = Sπ1(e1) · · · πN (eN )T with ‖ϕ‖cb = ‖S‖‖T ‖.

Just as in the bilinear theory, one defines a multilinear map

γ : E1 × · · · × EN → B(H)

to be completely bounded if and only if it extends to give a completely
bounded linear map ϕ: E1 ⊗h · · · ⊗h EN → B(H) with ϕ(e1 ⊗ · · · ⊗ eN ) =
γ (e1, . . . , eN ), and one sets ‖γ ‖cb = ‖ϕ‖cb. As in the bilinear case, the com-
pletely bounded norm of a multilinear map can be characterized by using “faux”
products of matrices. The above theorem is generally referred to as the repre-
sentation or factorization theorem for completely bounded multilinear maps.

We close this chapter with an application of the trilinear theory by prov-
ing a result that is equivalent to the generalized Christensen–Effros–Sinclair
representation theorem (Corollary 16.10).
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Theorem 17.13. Let A and B be (abstract) unital operator algebras, and let
X be an operator space that is also an A-B-bimodule with eA · x · eB = x for
all x in X.

If the bimodule action (a, x, b) → axb is a completely contractive trilin-
ear map, then there exist Hilbert spaces H and K, unital completely isomet-
ric homomorphisms π : A→ B(H), ρ: B→ B(K), and a complete isometry
α: X → B(H,K) such that π (a)α(x)ρ(b) = α(a · x · b).

Proof. Consider the set

C =
{(

a x
0 b

)
: a ∈ A, b ∈ B, x ∈ X

}
.

If we define (
a1 x1

0 b1

)
+

(
a2 x2

0 b2

)
=

(
a1 + a2 x1 + x2

0 b1 + b2

)

and (
a1 x1

0 b1

)
·
(

a2 x2

0 b2

)
=

(
a1a2 a1x2 + x1b2

0 b1b2

)

then C clearly becomes an algebra.
Suppose we can introduce an operator space structure on C such that each of

the inclusions of A,B, and X into C are complete isometries and such that C
satisfies the hypotheses of the BRS theorem. Then it is easily checked that any
completely isometric isomorphism γ : C → B(L) will lead to π, ρ, α as above,
on setting

H = γ

((
eA 0

0 0

))
L, K = γ

((
0 0
0 eB

))
L,

π (a) = PHγ

((
a 0
0 0

)) ∣∣∣
H
, ρ(b) = PKγ

((
0 0
0 b

)) ∣∣∣
K
, and

α(x) = PHγ

((
0 x
0 0

)) ∣∣∣
K
.

Thus, it remains to show that we can endow C with the desired operator alge-
bra structure. To this end we embed A ⊆ C1,B ⊆ C3 as unital subalgebras and
embed X ⊆ C2 as a subspace, where C1, C2, and C3 are unital C∗-algebras. This
allows us to regard A and B as unital subalgebras of C1 ∗1 C2 ∗1 C3 and identify
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A ⊗h X ⊗h B ∼= span{a ∗ x ∗ b: a ∈ A, x ∈ X, b ∈ B}, completely isometri-
cally.

The set

C̃ =
{(

a v

0 b

)
: a ∈ A, v ∈ A ⊗h X ⊗h B, b ∈ B

}
⊆ M2(C1 ∗1 C2 ∗1 C3)

is readily seen to form a subalgebra of this C∗-algebra. Note that the map
ϕ: C̃ → C defined by

ϕ

((
a

∑
ai ∗ xi ∗ bi

0 b

))
=

(
a

∑
ai xibi

0 b

)

is a homomorphism. We endow C with the quotient operator space structure
induced by this map, that is,∥∥∥∥

(
a x
0 b

)∥∥∥∥ = inf

{∥∥∥∥
(

a v

0 b

)∥∥∥∥: ϕ

((
a v

0 b

))
=

(
a x
0 b

)}
.

It is now easily checked that C endowed with this norm satisfies the hypotheses
of the BRS theorem and that each of the inclusions is a complete isometry. �

Note that when A and B are C∗-algebras, the above result reduces to the
Christensen–Effros–Sinclair representation theorem.

Notes

A version of the representation theorem for multilinear completely bounded
maps (Theorem 17.12) was first obtained in the case that E1, . . . , EN are C∗-
algebras by Christensen and Sinclair [58]. Their proof used Wittstock’s set-
valued extension theorem [242]. Later this result was generalized to operator
spaces in [170], and the proof was simplified to the extent that the use of the
set-valued extension theorem was replaced by the ordinary extension theorem
for linear completely bounded maps. This multilinear representation theorem
implied an extension theorem for multilinear completely bounded maps (see
Exercise 17.5), which was in turn equivalent to the injectivity of the Haagerup
tensor norm (Theorem 17.4). One of the more difficult parts of the proof in [170]
was establishing that E1 ⊗h E2 had a representation as a concrete operator space,
since Ruan’s abstract characterization of operator spaces came later. Indeed, in
some ways the proof of that fact in [170] anticipates Ruan’s theorem.

The direct proof of the injectivity of the Haagerup tensor norm presented in
Theorem 17.4 appeared later in [28].
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The connection between the Haagerup tensor product and free products
was first made by Christensen, Effros, and Sinclair [57], who proved that the
Haagerup tensor product embedded into the unamalgamated free product of the
C∗-algebras. Pisier [193]was the first to realize that the embedding of E1 ⊗h E2

into the amalgamated free product is completely isometric (see [162]), which
leads to the cleaner realization of the Haagerup tensor product that appears
here (Theorem 17.6). However, both of these earlier proofs used either the
Christensen–Sinclair representation theorem for completely bounded multilin-
ear maps or its generalization to operator spaces.

The original proof of the Christensen–Effros–Sinclair representation theo-
rem for operator bimodules over C∗-algebras (Theorem 15.14) also used the
Christensen–Sinclair representation theorem for completely bounded bilinear
maps.

The proofs given here are new in that we have used injective envelopes
to directly obtain the Christensen–Effros–Sinclair representation theorem for
operator bimodules and the embedding of A1 ⊗h A2 into A1 ∗1 A2, without
appealing to the Christensen–Sinclair representation theorem for completely
bounded bilinear maps. Using these results, we are then able to deduce the
Christensen–Sinclair representation theorem for bilinear maps and its general-
ization as a consequence of this embedding.

The Haagerup tensor norm first appeared in some uncirculated work of
Haagerup. Effros and Kishimoto [81] recognized its value and adopted the
name. This tensor norm was clearly inspired by Haagerup’s proof [107] of the
Wittstock extension theorem for completely bounded linearmaps and his results
on Schur product maps. Indeed, Wittstock’s extension theorem can be deduced
from the injectivity of the Haagerup tensor norm, and this approach recaptures
the essence of Haagerup’s proof.

We outline how this can be done. One first shows that for an operator space E
there is an isometric identification between CB(E, Mn) and the dual of Rn ⊗h

E ⊗h Cn . Now, let E ⊂ F be operator spaces, so that by the injectivity of
the Haagerup tensor norm, Rn ⊗h E ⊗h Cn ⊂ Rn ⊗h F ⊗h Cn , isometrically.
Thus, by applying the ordinary Hahn–Banach extension theorem for linear
functionals to this latter pair of spaces, one may extend a completely bounded
map from E into Mn to a completely bounded map from F into Mn . The details
of this approach appear in [28]. See also [162, Theorem 3].

Exercise 17.9 is a special case of the results in [85].

Exercises

17.1 Let V be a vector space, and let ‖·‖m,n be a family of norms on Mm,n(V )
that are L∞-matrix seminorms. Let W = {x ∈ V : |x‖ = 0}. Prove that
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for (xi, j ) ∈ Mm,n(V ), we have ‖(xi, j )‖m,n = 0 if and only if (xi, j ) ∈
Mm,n(W ). Conclude that setting ‖(xi, j + W )‖m,n = ‖(xi, j )‖m,n gives a
well-defined L∞-matrix norm on V/W.

17.2 Verify the claim in the proof of Theorem 17.6.
17.3 Verify that a bilinear map ϕ: E × F → Z is completely bounded if and

only if the induced linear map ψ : E ⊗h F → Z is completely bounded
and that ‖ψ‖cb is the least constant C satisfying∥∥∥∥∥

(
k∑

�=1

ϕ(ei�, f�j )

)∥∥∥∥∥ ≤ C‖(ei j )‖‖( fi j )‖

for every n, k, m and every (ei j ) ∈ Mnk(E), ( fi j ) ∈ Mkm(F). Deduce that
if E ⊂ E1 and F ⊂ F1 are operator spaces and ϕ: E × F → B(H) is
a completely bounded bilinear map, then ϕ can be extended to a com-
pletely bounded bilinear map ψ : E1 × F1 → B(H) of the same comple-
tely bounded norm.

17.4 Prove the associativity of theHaagerup tensor product as asserted inPropo-
sition 17.10.

17.5 Extend Exercise 17.3 to the multilinear case, and deduce an extension
theorem for completely bounded multilinear maps into B(H).

17.6 Let A and B be (abstract) unital operator algebras; let X be an operator
space that is also anA-B-bimodule with eA · x · eB = x for all x in X . Use
Exercise 17.5 to show directly that the bimodule action (a, x, b) → axb
is a completely contractive trilinear map if and only if X is an operator
A-B-bimodule.

17.7 Show directly that Cm ⊗h Rn is completely isometrically isomorphic to
Mm,n and that this isomorphism carries the tensor product of the standard
basis vectors ei ⊗ e j to the standard matrix units Ei, j .

17.8 Prove directly that Rm ⊗h Cn is isometrically isomorphic to the dual of
Mm,n.

17.9 (Effros–Ruan) Let E and F be finite-dimensional operator spaces, and
let E∗ and F∗ denote their duals. Prove that (E ⊗h F)∗ is completely
isometrically isomorphic to E∗ ⊗h F∗. Deduce Exercise 17.8 from this
result.



Chapter 18
Universal Operator Algebras and Factorization

In this chapter we examine some consequences of the BRS characterization
of operator algebras. The main theme of this chapter is that by using the
BRS theorem, we are able to give intrinsic formulas, similar to the descrip-
tion of MAX(X ), for certain extrinsically defined universal operator algebra
norms. Among the results that we shall obtain as consequences of the theory
are Nevanlinna’s theorem characterizing the set of analytic functions that map
the disk to the disk in terms of positive definite functions, and Agler’s recent
generalizations of Nevanlinna’s theorem. In addition, we obtain formulas for
the norm in the full C∗-algebra of a group.

We begin with the construction of the full operator algebra of a semigroup.
By a semigroup we shall mean a nonempty set S, together with a product
S × S → S, (s1, s2) → s1 · s2, and a unit element e satisfying e · s = s · e = s
for every s in S. By the semigroup algebraC[S] we mean the vector space of all
finite linear combinations

∑
λi si , λi ∈ C, si ∈ S, equipped with the product

(∑
λi si

) (∑
µ j t j

)
=

∑
(λiµ j )(si t j ).

Note that e is the unit of this algebra. By a representation of S on H we mean
any map π : S→ B(H) satisfying π (e) = IH and π (s1 · s2) = π (s1)π (s2) for
all s1 and s2 in S. Clearly, every representation π induces a unital algebra
homomorphism of C[S] into B(H), which we still denote by π , on setting
π (

∑
λi si ) = ∑

λiπ (si ).
We call π bounded if there is a constant C with ‖π (s)‖ ≤ C for all s ∈ S,

and contractive when C ≤ 1.

If S = Z
+, the nonnegative integers with addition for the product and e = 0

for the unit, then a representation π of Z
+ simply corresponds to an opera-

tor T = π (1), since π (n) = π (1 + · · · + 1) = π (1)n = T n . The representation

260
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is bounded when T is power-bounded, and contractive when ‖T ‖ ≤ 1. The
semigroup algebra C[Z+] can be identified with the algebra P of polynomials
in one variable. The map γ : C[Z+] → P, γ (

∑
λn · n) = ∑

λnzn , is an algebra
isomorphism between C[Z+] and the algebra of polynomials in one variable.

Similarly, if (Z+)N denotes the Cartesian product of N copies of Z
+, then

a contractive representation π : (Z+)N → B(H) is determined by choosing an
N -tuple of commuting contractions {T1, . . . , TN } and setting π ((k1, . . . , kN )) =
T k1

1 · · · T kN
N . The semigroup algebra C[(Z+)N ] is isomorphic to PN , the algebra

of polynomials in N variables, via the isomorphism γ : C[(Z+)N ] →PN defined
by γ ((k1, . . . , kN )) = zk1

1 · · · zkNN .
In this chapter we focus primarily on contractive representations. Note that

every semigroup possesses at least one contractive representation, given by
setting π (s) = IH for all s.

We now wish to endow Mm,n(C[S]) with a seminorm by setting

‖(ai j )‖ = sup‖(π (ai j ))‖,
where the supremum is over all contractive representations π : S→ B(H) and
all Hilbert spaces.

It is easy to see that J = {a ∈ C[S]: ‖a‖ = 0} is a two-sided ideal and that
the above formulas define a matrix norm on C[S]/J that gives C[S]/J the
structure of an abstract operator algebra. We denote this algebra by OA(S).
We call OA(S) the full semigroup operator algebra and let ‖·‖OA(S) denote the
norm on OA(S) induced by the seminorm on C[S]. When S = G is a group,
then every contractive representation is a unitary representation, since π (g) and
π (g)−1 = π (g−1) must both be contractions. So in this case the completion of
OA(G) is the full group C∗-algebra, C∗(G), of the discrete group G.

By the theorems of von Neumann and Ando, we have that OA(Z+) = P
is completely isometrically isomorphic to the space of polynomials equipped
with the supremum norm over the unit disk, and OA((Z+)2) = P2 is com-
pletely isometrically isomorphic to the space of polynomials in two variables
equipped with the supremum norm over the bidisk. However, for N ≥ 3 we
have that OA((Z+)N ) = PN is completely isometrically isomorphic to the al-
gebra of polynomials in N variables equipped with the norm obtained by taking
the supremum over all commuting N -tuples of contractions, and this norm is
strictly larger than the supremum norm over D

N . This is the universal operator
algebra for N commuting contractions, (PN , ‖·‖u), which was first introduced
in Chapter 5.

The definition of the operator algebra structure on OA(S) given above is
extrinsic in the sense that it requires a supremum over all representations into
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another object. We now wish to give an intrinsic characterization of this norm,
which can be achieved internally to OA(S).

Theorem 18.1. Let S be a semigroup and let (ai j ) ∈Mm,n(C[S]). Then
‖(ai j )‖OA(S) = inf{‖C1‖ · · · ‖C�‖}, where the infimum is taken over all ways to
factor (ai j ) = C1D1 · · ·C�−1D�−1C� as a product of arbitrarily many matrices
overC[S] of arbitrary size, with C1, . . . ,C� scalar matrices and D1, . . . , D�−1

diagonal matrices with entries from S.

Proof. Let ‖(ai j )‖ f denote the infimum on the right hand side of the above
equation. Note that the set of such factorizations is nonempty. For example, if
a = ∑n

i=1 λi si is in C[S], then

a = (λ1, . . . , λn)



s1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 sn






1
1
...
1


 ,

and so ‖a‖ f ≤ √
n(|λ1|2 + · · · + |λn|2)1/2.

Given a diagonal matrix

D =

s1

. . .
sn




as above and a contractive representation π , set

π (D) =


π (s1)

. . .
π (sn)




and note that ‖π (D)‖ ≤ 1.
Given a factorization of (ai j ) as in the statement of the theorem and a con-

tractive representation π , observe that

(π (ai j )) = C1π (D1) · · ·C�−1π (D�−1)C�

and hence

‖(π (ai j ))‖ ≤ ‖C1‖ · · · ‖C�‖.
Taking the supremum over all such π and the infimum over all such factoriza-
tions yields ‖(ai j )‖OA(S) ≤ ‖(ai j )‖ f .
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Assume for the moment that we have proven that (C[S], ‖·‖ f ) satisfies the
BRS axioms to be an abstract operator algebra seminorm. Then there must
exist a Hilbert space H and an algebra homomorphism π : C[S] → B(H) with
‖(ai j )‖ f = ‖(π (ai j ))‖ for any m, n and (ai j ) in Mm,n(A). Since ‖s‖ f ≤ 1 for
s ∈ S, we have that π is a contractive representation of S, and hence ‖(π (ai j ))‖ ≤
‖(ai j )‖OA(S). Thus, ‖(ai j )‖ f ≤ ‖(ai j )‖OA(S), and the result follows.

Thus, it remains to check that the axioms of BRS are satisfied by the algebra
(C[S], ‖·‖ f ). Note that if L and M are scalar matrices of appropriate sizes and
(ai j ) = C1D1 · · · D�−1C� is any factorization of the desired type, then

L(ai j )M = (LC1)D1 · · · D�−1(C�M)

and hence ‖L(ai j )M‖ f ≤ ‖L‖‖(ai j )‖ f ‖M‖.
If (ai j ) = C1D1 · · · D�−1C� and (bi j ) = C ′

1D
′
1 · · · D′

�′−1C
′
�′ , then

(ai j )(bi j ) = C1D1 · · · · · D�−1(C�C
′
1)D′

1 · · · D′
�′−1C

′
�′

and hence ‖(ai j )(bi j )‖ f ≤ ‖C1‖ · · · ‖C�‖‖C ′
1‖ · · · ‖C ′

�′ ‖. Taking the infimum
over all such factorizations yields ‖(ai j )(bi j )‖ f ≤ ‖(ai j )‖ f ‖(bi j )‖ f , and so the
multiplication is completely contractive.

Finally, to see that the triangle inequality and L∞ condition are met, note that
a given factorization can always be made to contain more terms by inserting
diagonal matrices of e’s and scalar identity matrices, and the product of the
norms remains the same. Thus, given (ai j ) and (bi j ) and ε > 0, it is enough to
assume that we have factorizations

(ai j ) = C1D1 · · · D�−1C� and (bi j ) = C ′
1D

′
1 · · · D′

�−1C
′
�

with ‖C1‖ · · · ‖C�‖ < ‖(ai j )‖ f + ε, ‖C ′
1‖ · · · ‖C ′

�‖ < ‖(bi j )‖ f + ε. Replacing
Ci by riCi with r1 · · · r� = 1, we may assume that ‖C1‖ = · · · = ‖C�‖ and
‖C ′

1‖ = · · · = ‖C ′
�‖. Hence,

(ai j ) ⊕ (bi j ) = (C1 ⊕ C ′
1)(D1 ⊕ D′

1) · · · (D�−1 ⊕ D′
�−1)(C� ⊕ C ′

�)

and so

‖(ai j ) ⊕ (bi j )‖ f ≤ ‖C1 ⊕ C ′
1‖ · · · ‖C� ⊕ C ′

�‖
≤ (max{‖C1‖, ‖C ′

1‖})� ≤ max{‖(ai j )‖ f , ‖(bi j )‖ f } + ε,

and the L∞ condition follows.
Finally, assuming that (ai j ) and (bi j ) are the same size, to prove the triangle

inequality we scale so that ‖C1‖2 = ‖C�‖2 ≤ ‖(ai j )‖ f + ε, ‖C ′
1‖2 = ‖C ′

�‖2 ≤
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‖(bi j )‖ f + ε, and ‖C2‖ = · · · = ‖C�−1‖ = ‖C ′
2‖ = · · · = ‖C ′

�−1‖ = 1. Then
(ai j ) + (bi j ) = (C1,C ′

1)(D1 ⊕ D′
1)(C2 ⊕ C ′

2) · · · (C�−1 ⊕ C ′
�−1)(D�−1 ⊕ D′

�−1)

(C�

C ′
�

), and hence

‖(ai j ) + (bi j )‖ f ≤ ‖(C1,C
′
1)‖

∥∥∥∥
(
C�

C ′
�

)∥∥∥∥ =
√

‖C1‖2 + ‖C ′
1‖2

√
‖C�‖2 + ‖C ′

�‖2

≤ ‖(ai j )‖ f + ‖(bi j )‖ f + 2ε.

Thus, the triangle inequality follows, and we have shown that (C[S], ‖·‖ f )
satisfies all the axioms of an operator algebra seminorm. �

The above theorem implies some factorization results for polynomials and
for analytic functions.

Corollary 18.2. Let (pi j (z1, . . . , zN )) be a matrix of polynomials in N vari-
ables. Then ‖(pi j (T1, . . . , TN ))‖ < 1 for all commuting N-tuples of contrac-
tions if and only if there exists an integer �, scalar matrices Ci with ‖Ci‖ <

1, 1 ≤ i ≤ �, and diagonal matrices Di , 1 ≤ i ≤ � − 1, of monomials, such
that (pi j (z1, . . . , zN )) = C1D1 · · · D�−1C�.

Proof. The first condition is equivalent to ‖(pi j )‖u < 1 in the operator algebra
(PN , ‖·‖u). But PN = OA((Z+)N ), and the second condition comes from this
identification and Theorem 18.1. �

Corollary 18.3. Let (pi j ) be a matrix of polynomials in N variables, N ≤ 2.
Then sup{‖(pi j (z))‖: z ∈ D

N } < 1 if and only if there exists an integer �, scalar
matrices Ci with ‖Ci‖ < 1, 1 ≤ i ≤ �, and diagonal matrices Di , 1 ≤ i ≤
� − 1, of monomials such that

(pi j ) = C1D1 · · · D�−1C�.

Proof. Apply Corollary 18.2 and the fact that the universal norm and supremum
norm are equal when N ≤ 2. �

Very little is known about constructing such factorizations. It is natural to
wonder if there could exist an integer L such that every polynomial has a
factorization as above with � ≤ L . The existence of a power-bounded operator
that is not polynomially bounded (Theorem 10.9) implies that there cannot exist
such an integer L . A proof of this fact is contained in Exercise 18.1. But we do
not know a direct argument for the nonexistence of such an L .
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The factorization formula in Corollary 18.2 gives an alternative approach
to the questions of Chapter 5, namely, to determining if the operator algebras
(PN , ‖·‖∞) and (PN , ‖·‖u) are boundedly isomorphic. It is also unknown if
these two operator algebras are completely boundedly isomorphic.

The above results allow us to easily obtain results of Nevanlinna and Agler
characterizing polynomials p with ‖p‖u < 1.

To this end we need to introduce the concept of a positive definite function.
Let X be a set, and letH be a Hilbert space. Then a function K : X × X → B(H)
is called positive definite provided that for every finite subset {x1, . . . , xn} of
X , the operator matrix (K (xi , x j )) is positive definite. These functions should
perhaps be called “completely” positive definite, but we stay with the classical
definition.

The following elementary proposition makes it easy to produce examples of
positive definite functions.

Proposition 18.4. Let X be a set, and letH1, . . . ,Hm be Hilbert spaces.

(i) If F : X → B(H1,H2) is any function, then K : X × X → B(H1) given by
K (x, y) = F(x)F(y)∗ is positive definite.

(ii) If Ki : X × X → B(Hi ) are positive definite, then K : X × X →
B(H1 ⊕ · · · ⊕ Hn) given by K (x, y) = K1(x, y) ⊕ · · · ⊕ Kn(x, y) is pos-
itive definite.

(iii) If Ki : X × X → B(H1), i = 1, . . . , n, are positive definite, then K1 + · · ·
+ Kn is positive definite.

(iv) If F : X → B(H2,H1) is any function and K : X × X → B(H2) is
positive definite, then K1: X × X → B(H1) defined by K1(x, y) =
F(x)K (x, y)F(y)∗ is positive definite.

Proof. Exercise 18.2. �

A factorization–representation theorem for positive definite functions implies
that for every positive definite function K : X × X → B(H1) there exists a
Hilbert space H2 and F : X → B(H1,H2) such that K (x, y) = F(x)F(y)∗, but
we shall not need that here.

The scalar-valued version of the following theorem is due to Nevanlinna
[153].

Theorem 18.5 (Nevanlinna). Let F = ( fi j ) be an m × n matrix of analytic
functions on D. Then sup{‖F(z)‖: |z| < 1} ≤ 1 if and only if the function
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K : D × D → Mm given by

K (z, w) = I − F(z)F(w)∗

1 − zw̄

is positive definite.

Proof. If K is positive definite, then 0 ≤ K (z, z), which implies that ‖F(z)‖ ≤
1. So assume that ‖F(z)‖ ≤ 1 for all z. It follows from standard techniques
in complex analysis that such a function F is a pointwise limit of a sequence
of matrices of polynomials {Pn} with sup{‖Pn(z)‖: |z| < 1} < 1. Assume that
we can prove the theorem for such polynomials; then K (z, w) will be the
pointwise limit of the sequence of positive definite functions Kn(z, w) = [I −
Pn(z)Pn(w)∗]/(1 − zw̄) and hence will be positive definite.

Thus, it is enough to assume that F = (pi j ) is a matrix of polynomials with
sup{‖F(z)‖: |z| < 1} < 1. Hence by Corollary 18.3, we may factor F(z) =
C1D1(z) · · · D�−1(z)C�, with ‖C�‖ < 1.

First assume that F(z) is the constant function C1. Then K (z, w) =
[I − F(z)F(w)∗]/(1 − zw̄) = (1 − zw̄)−1P , where P = I − C1C∗

1 ≥ 0. But
(1 − zw̄)−1P = ∑∞

k=0 z
kw̄k P , and each term in this sum is a positive definite

function of the form Gk(z)Gk(w)∗ with Gk(z) = zk P1/2.
Now assume that F(z) = C1D1(z). We have that

(1 − zw̄)−1(I − F(z)F(w)∗)

= (1 − zw̄)−1[I − C1C
∗
1 + C1(I − D1(z)D1(w)∗)C∗

1 ]

= (1 − zw̄)−1(I − C1C
∗
1 ) + C1K (z, w)C∗

1

with K (z, w) = (1 − zw̄)−1(I − D1(z)D1(w)∗).
We have already seen that the first term in this sum is positive definite.

Note that K (z, w) is a diagonal matrix of functions of the form (1 − znw̄n)/
(1 − zw̄) = 1 + zw̄ + z2w̄2 + · · · + zn−1w̄n−1 for various integers n. Each
term in this sum is positive definite by Proposition 18.4(i). Further applica-
tions of Proposition 18.4 yield that K (z, w) is positive definite and also that
C1K (z, w)C∗

1 is positive definite. Thus, (1 − zw̄)−1(I − F(z)F(w)∗) is positive
definite.

The proof now proceeds by induction on �. By using an identity matrix if
necessary we can always write F(z) = C1D1(z) · · ·C�D�(z). Now let F(z) =
C1D1(z)G(z) where G(z) is of length � − 1. Then,

(1 − zw̄)−1(I − F(z)F(w)∗) = (1 − zw̄)−1(I − C1D1(z)D1(w)∗C∗
1 )

+ C1D1(z)[(1 − zw̄)−1(I − G(z)G(w)∗)]D1(w)∗C∗
1 .
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The first term in this sum is positive definite by the above calculation, and the
factor (1 − zw̄)−1(I − G(z)G(w)∗) is positive definite by the inductive hypoth-
esis. Hence, the second term in the sum and, consequently, the sum are positive
definite by Proposition 18.4. Hence, the inductive step follows, and our proof
is complete. �

Theorem18.6 (Agler). Let F = ( fi j ) be anm × n matrix of analytic functions
on D

2. Then sup{‖F(z1, z2)‖: |z1| < 1, |z2| < 1} ≤ 1 if and only if there exist
positive definite functions Pi : D

2 × D
2 → Mm such that

I − F(z1, z2)F(w1, w2)∗ = (1 − z1w̄1)P1(z1, z2, w1, w2)

+ (1 − z2w̄2)P2(z1, z2, w1, w2).

Proof. If such a decomposition exists, then I − F(z1, z2)F(z1, z2)∗ ≥ 0 and
so ‖F(z1, z2)‖ ≤ 1 for all (z1, z2).

To prove the converse, as in the proof of Theorem 18.5, it is enough to
assume that F is a matrix of polynomials and that its supremum is strictly
less than 1. Thus, F can be factored as in the statement of Corollary 18.3. The
only difference between this factorization and the factorization appearing in the
proof of Nevanlinna’s theorem is that the diagonal factors are now monomials
in z1 and z2.

However, note that

1 − zn1
1 z

n2
2 w̄

n2
2 w̄

n1
1 = 1 − zn1

1 w̄
n1
1 + zn1

1

(
1 − zn2

2 w̄
n2
2

)
w̄
n1
1

= (1 − z1w̄1)P1(z1, w1) + (1 − z2w̄2)
[
zn1

1 P2(z2, w2)w̄n1
1

]
,

where P1(z1, w1) = 1 + (z1w̄1) + · · · + (z1w̄1)n1−1 and P2(z2, w2) = 1 +
z2w̄2 + · · · + (z2w̄2)n2−1 are positive definite functions. From this it follows
that for each diagonal factor we have that

I − D(z1, z2)D(w1, w2)∗

= (1 − z1w̄1)Q1(z1, w1) + (1 − z2w̄2)Q2(z1, z2, w1, w2)

with Q1 and Q2 positive definite.
With these observations, the proof can now proceed by induction as in the

proof of Theorem 18.5. �

For functions of N variables, N > 2, we no longer have equality of the supre-
mum norm over D

N and the universal norm for N commuting contractions. For
this reason Agler introduces the algebra H∞

u (DN ). A function is in the unit ball
of Mm,n(H∞

u (DN )) if and only if it is the pointwise limit of a sequence of
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matrices of polynomials whose norms in

Mm,n((PN , ‖·‖u))

are less than or equal to 1. Thus Au(DN ) ⊆ H∞
u (DN ) completely isometrically.

We also have that H∞
u (DN ) ⊆ H∞(DN ), but this containment is not isometric.

However, it is unknown whether or not the containment is strict.
In fact it is easily seen (Exercise 18.2) that H∞

u (DN ) = H∞(DN ) if and
only if Au(DN ) = A(DN ) if and only if there exists a constant KN such that
‖p‖u ≤ KN‖p‖∞ for all polynomials. This is just another formulation of the
open problem raised in Chapter 5: whether or not the N -variable von Neumann
inequality holds up to a constant.

Theorem 18.6 has been extended to H∞
u (DN ). However, the “easy” implica-

tion is no longer as obvious, and so we only record the result.

Theorem 18.7 (Agler). Let F = ( fi j ) be an m × n matrix of functions in
H∞
u (DN ). Then ‖F‖u ≤ 1 if and only if there exist positive definite functions

Pi : D
N × D

N → Mm, 1 ≤ i ≤ N, such that

I − F(z)F(w)∗ = (1 − z1w̄1)P1(z, w) + · · · + (1 − zN w̄N )PN (z, w),

where z = (z1, . . . , zN ) and w = (w1, . . . , wN ).

The proof that ‖F‖u ≤ 1 implies that F has the desired decomposition is
similar to the proof of Theorem 18.6 and is left as Exercise 18.3.

There are currently few criteria known for when two elements of a semigroup
can be separated by a contractive representation. Theorem 18.1 gives us at least
one new criterion.

Theorem 18.8. Let S be a semigroup and let s1, s2 be in S. Then π (s1) = π (s2)
for every contractive representation of S if and only if for every ε > 0 there
exists a factorization s1 − s2 = C1D1 · · · D�−1C� such that ‖C1‖ · · · ‖C�‖ < ε

with Ci scalar matrices and Di diagonal matrices of semigroup elements.

Proof. We have that π (s1) = π (s2) for every contractive representation if and
only if ‖s1 − s2‖OA(S) = 0. By Theorem 18.1, ‖s1 − s2‖OA(S) = 0 is equivalent
to the latter factorization condition. �

We now turn our attention to the analogous problem of determining when a
normed algebra B with an identity of norm 1 can be represented isometrically
as an algebra of operators on a Hilbert space.

To this end let Rep(B) denote the collection of unital contractive homomor-
phisms from B into B(H) for some Hilbert space H. We wish to use Rep(B)
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to define a “maximal” operator algebra structure on B, which we shall denote
MAXA(B), to distinguish it from the maximal operator space structure on the
normed space B. For (bi j ) in Mm,n(B) we set

‖(bi j )‖MAXA(B) = sup{‖(π (bi j ))‖: π ∈ Rep(B)}

when Rep(B) is nonempty, and set it equal to 0 when Rep(B) is empty. Note
that if J = {b: π (b) = 0 for all π ∈ Rep(B)}, then J is a two-sided ideal, with
J = B when Rep(B) is empty, and that ‖·‖MAXA(B) is only a seminorm on B
but a norm on B/J . Moreover, for b in B, ‖b‖MAXA(B) ≤ ‖b+ J‖B/J , where
‖·‖B/J denotes the quotient norm.

Clearly, the vector space B/J equipped with this matrix norm satisfies the
axioms to be an operator algebra. We call this the maximal operator alge-
bra structure on B and denote this operator algebra by MAXA(B). Note that
MAXA(B) = MAXA(B/J ) completely isometrically for J as above.

An example is in order. Let B be the space of power series with summable
coefficients,

B =
{ ∞∑
n=0

anz
n:

∞∑
n=0

|an| < +∞
}

with

∥∥∥∥∥
∞∑
n=0

anz
n

∥∥∥∥∥ =
∞∑
n=0

|an|.

It is well known thatB, equipped with the usual Cauchy product of power series,
is a Banach algebra. In fact, B can be identified with �1(Z+) equipped with the
convolution product. It is easily seen that π ∈ Rep(B) if and only if π (z) is a
contraction. Hence, J = (0) in this case, and by von Neumann’s inequality,∥∥∥∥∥

∞∑
n=0

anz
n

∥∥∥∥∥
MAXA(B)

=
∥∥∥∥∥

∞∑
n=0

anz
n

∥∥∥∥∥
∞

≤
∞∑
n=0

|an|,

where the middle member is the supremum over the disk. Thus, MAXA(B),
in this case, can be identified, completely isometrically, with the norm-dense
subalgebra of A(D) consisting of power series with summable coefficients.

The above definition of MAXA(B) is extrinsic, and we wish to describe it
intrinsically.

Theorem 18.9. Let B be a normed algebra with an identity of norm 1, and let
(bi j ) be in Mm,n(B). Then

‖(bi j )‖MAXA(B) = inf{‖C1‖ · · · ‖C�‖},

where the infimum is taken over all ways to factor

(bi j ) = C1D1 · · ·C�−1D�−1C�
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as a product of arbitrarily many matrices over B of arbitrary size, with
C1, . . . ,C� scalar matrices and D1, . . . , D�−1 diagonal matrices each of whose
diagonal entries is an element of B of norm less than or equal to one.

Proof. The proof is similar to the proof of Theorem 18.1. If we denote the
quantity on the right hand side of the above equation as ‖(bi j )‖ f , then it suffices
to prove that these satisfy the BRS conditions. We leave the details of the proof
as Exercise 18.4. �

Corollary 18.10. Let B be a normed algebra with an identity of norm 1. Then
there exists a unital isometric homomorphism fromB into B(H) for someHilbert
space H if and only if for every b in B, ‖b‖ is given by the infimum appearing
in Theorem 18.9.

Corollary 18.11. Let A be a unital operator algebra and let K ≥ 1. Then the
following are equivalent:

(i) every unital contractive homomorphism ρ fromA into B(H) is completely
bounded with ‖ρ‖cb ≤ K,

(ii) the identity map id: A → MAXA(A) is completely bounded with ‖id‖cb

≤ K,
(iii) for every m, n and (ai j ) in Mm,n(A) with ‖(ai j )‖ < 1, for some � there is a

factorization (ai j ) = C1D1 · · ·C�−1D�−1C� with Ci scalar, ‖C1‖ · · · ‖C�‖
< K, and Di diagonal with entries fromA of norm less than or equal to 1.

Corollary 18.11 gives a new tool for answering questions about when contrac-
tive homomorphisms of operator algebras are completely contractive. Recall
that when X is a compact subset of C, and R(X ) denotes the algebra of rational
functions on X , then it is still unknown whether or not every unital contractive
homomorphism of R(X ) is completely contractive. Even for X a “nice” two-
holed region this is unknown. By Corollary 18.11, this question is equivalent to
deciding whether or not every matrix of functions fromR(X ) has a factorization
as in Corollary 18.11 with K = 1.

Agler [1] has proven that when X is an annulus, then every contractive ho-
momorphism is completely contractive. However, a direct proof of the annulus
case, using Corollary 18.11, is still unavailable. Such a proof might shed new
light on the unknown cases.

In Chapter 11, we proved that if X is a nice n-holed domain, then every
contractive homomorphism ρ is completely bounded with ‖ρ‖cb ≤ 2n + 1, so
applying Corollary 18.11 yields certain factorizations on these domains.
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In Chapter 14, we saw that for G any absorbing, absolutely convex set
in C

n, n ≥ 5, there exist unital contractive homomorphisms of A(G) that
are not completely contractive. Thus, there exist matrices of functions from
A(G) whose factorization norm is larger than their supremum norm. That is,
A(G) �= MAXA(A(G)), completely isometrically.

Parrott’s example shows that MAXA((PN , ‖·‖∞)) �= (PN , ‖·‖∞), com-
pletely isometrically, for N ≥ 3. In addition to it being unknown whether
(PN , ‖·‖∞) and (PN , ‖·‖u) are completely boundedly isomorphic, it is also
unknown if MAXA((PN , ‖·‖∞)) is completely boundedly isomorphic to either
(PN , ‖·‖∞) or (PN , ‖·‖u).

We close this chapter with a factorization theorem that applies to many
situations. Suppose that we are given a unital algebra A together with unital
operator algebras Ai and unital homomorphisms ρi : Ai → A such that the
union of the images,

⋃
i ρi (Ai ), generates A as an algebra. For two examples of

this situation, consider the case where A = A1 ⊗ A2 is the tensor product, with
ρ1(a1) = a1 ⊗ 1 and ρ2(a2) = 1 ⊗ a2, and the case where A = A1 ∗C A2 is the
free product amalgamated over C, with ρ1(a1) = a1 ∗ 1 and ρ2(a2) = 1 ∗ a2.

We wish to endowAwith an operator algebra norm that respects the algebras
Ai . To this end we call a unital homomorphism π : A → B(H) admissible
provided that for every i, π ◦ ρi : Ai → B(H) is completely contractive.

We endow A with a matricial seminorm by defining the norm of a matrix of
elements from A to be the supremum over all admissible representations into
all operator algebras. The set of elements of norm 0 is a two-sided ideal I in A,
and the resulting matricial norm on the quotient A/I makes it into an operator
algebra. We shall call this operator algebra seminorm the maximal operator
algebra seminorm induced by the given family of inclusions.

In the case where A = A1 ⊗ A2 is the tensor product of two operator alge-
bras, the maximal operator algebra seminorm induced by the inclusion of A1

and A2 into A is the maximal tensor norm of [169] discussed in Chapter 12.
When both algebras are C∗-algebras, this is, of course, the maximal C∗-tensor
norm. In the case where A = A1 ∗C A2, the maximal operator algebra semi-
norm induced by the inclusion of A1 and A2 into A is the full free product
amalgamated over C introduced in Chapter 17.

The above definition of this norm is extrinsic, since it needs all representa-
tions into operator algebras. Using the ideas of this chapter, we would like to
characterize this norm intrinsically.

Theorem 18.12. Let A j , j = 1, . . . ,m, be unital operator algebras, let A be
a unital algebra, and let π j : A j → A be unital homomorphisms such that the
union of their images generates A algebraically. If A is in Mn(A) for some n
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and if ‖A‖ denotes the maximal operator algebra seminorm induced by these
algebras, then

‖A‖ = inf{‖A1‖ · · · ‖Am‖: A = πi1 (A1) · · · πim (Am)},
where the infimum is taken over all ways to represent A as a product of images
of matrices of elements from each A j in any order and involving matrices of
arbitrary sizes.

Proof. To prove this theorem one only needs to note that the inf on the right
hand side is larger than the maximal operator algebra seminorm induced by
these algebras, and then check that the right hand side defines a seminorm that
satisfies the BRS axioms of an abstract operator algebra. The inclusion of each
A j into this latter operator algebra will yield an admissible representation of
A. We leave the details of this proof as Exercise 18.6. �

Notes

Theorems 18.1 and 18.8 and Corollaries 18.2 and 18.3 were proven in [29].
Theorems 18.6 and 18.7 were first proven in [2].
Theorem 18.12 first appeared in [166], where it was applied to some questions

in interpolation theory. For further connections between interpolation and the
abstract theory of operator algebras see [167].

Exercises

18.1 Let T be a power-bounded operator, with ‖T n‖ ≤ C for all n. Show that if
p(z) has a factorization of the type given by Corollary 18.3, then ‖p(T )‖ ≤
C�. Deduce that if every polynomial had such a factorization with � ≤ L ,
then T would be polynomially bounded with ‖p(T )‖ ≤ CL‖p‖∞ for all
p. Apply Theorem 10.9 to deduce the nonexistence of such an integer L .

18.2 Prove Proposition 18.4.
18.3 Let F ∈Mm,n(H∞

u (DN )). Prove that if ‖F‖u ≤ 1 then I − F(z)F(w)∗ can
be decomposed as claimed in Theorem 18.7.

18.4 Complete the proof of Theorem 18.9.
18.5 Let A denote the algebra of Laurent polynomials. Fix R > 1, and endow

A with the extrinsic operator algebra norm obtained by taking the supre-
mum over all representations π of the Laurent polynomials determined
by π (z) = T , where T is an invertible operator satisfying ‖T ‖ ≤ R and
‖T−1‖ ≤ R. Use factorization to give an intrinsic formula for this norm.

18.6 Supply the details of the proof of Theorem 18.12.



Chapter 19
Similarity and Factorization

In the last chapter we saw how the abstract characterization of operator algebras
led to a number of factorization formulas for certain universal operator algebras.
However, this theory was an isometric theory. In this chapter we focus on the
isomorphic theory of operator algebras and applications to similarity questions.

We present Pisier’s remarkable work on similarity degree and factorization
degree, and Blecher’s characterization of operator algebras up to cb isomor-
phism.

Pisier’s work shows that for an operator algebraB, every bounded homomor-
phism is completely bounded if and only if the type of factorization occurring
in the study of MAXA(B) can be carried out with uniform control on the num-
ber of factors needed. The least such integer is the factorization degree of the
algebra.

Pisier’s work has a number of deep implications in the study of bounded
representations of groups and in the studyofKadison’s similarity conjecture.We
focus primarily on Kadison’s conjecture, that every bounded homomorphism
of aC∗-algebra into B(H) is similar to a ∗-homomorphism. Thus, we will show
that Kadison’s conjecture is equivalent to the existence of an integer d such that
every C∗-algebra has factorization degree at most d .

A pivotal role in Pisier’s work is played by the universal operator algebra of
an operator space. So we begin this chapter by examining the construction of
the universal algebra of a vector space in some detail.

Given a vector space V , let V⊗n denote the tensor product of V with itself
n times, and set V⊗0 = C. Given an elementary tensor x = v1 ⊗ · · · ⊗ vn ∈
V⊗n, n �= 0, and y = w1 ⊗ · · · ⊗ wm ∈ V⊗m,m �= 0, we set x � y = v1 ⊗
· · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm ∈ V⊗(n+m). If n = 0 and x = λ, we set λ � y =
(λw1) ⊗ · · · ⊗ wm , and ifm = 0 and y = µ, we set x � µ = v1 ⊗ · · · ⊗ (µvn).
This operation extends to give a bilinear pairing from V⊗n × V⊗m into V⊗(n+m),
which we still denote by �.

273
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We letF(V ) = ∑∞
n=0 ⊕V⊗n denote the set of finite direct sums of the tensor

powers of V . For x = ∑ ⊕ xn in F(V ), we call xn the homogeneous term of
degree n of x .

For x = ∑ ⊕ xn and y = ∑ ⊕ yn in F(V ) we extend the definition of our
bilinear pairing by setting x � y = ∑ ⊕zn , where zn = ∑n

k=0 xk � yn−k . This
formula now extends � to a bilinear map, still denoted �, from F(V ) × F(V )
to F(V ).

It is easily seen that F(V ) equipped with its usual vector space structure and
the product � becomes a unital algebra. The algebra F(V ) is called the Fock
algebra of V . It has the following important universal property. IfA is any unital
algebra and ϕ: V →A is any linear map, then there exists a unique extension of
ϕ to a unital homomorphism πϕ : F(V ) → A. Clearly, for x = v1 ⊗ · · · ⊗ vn

an elementary tensor, πϕ(x) = ϕ(v1) · · · ϕ(vn). Note that if (λϕ)(v) = λϕ(v),
then π(λϕ)(

∑ ⊕ xn) = ∑
λnπϕ(xn).

Now if V is an operator space, we wish to endow F(V ) with a family of
operator algebra structures.

For each c > 0 and for (xi j ) ∈ Mm,n(F(V )) we set

‖(xi j )‖c = sup{‖(πϕ(xi j ))‖: ‖ϕ‖cb ≤ c},

where the supremum is taken over all Hilbert spaces H and all ϕ: V → B(H)
satisfying ‖ϕ‖cb ≤ c. We let OAc(V ) denote F(V ) equipped with the above
operator algebra norm ‖·‖c.

Alternatively, we could let Vc denote the operator space V but equipped with
the norm ‖(vi j )‖c = c‖(vi j )‖, so that ϕ: Vc → B(H) satisfies ‖ϕ‖cb ≤ 1 if and
only if ϕ: V → B(H) satisfies ‖ϕ‖cb ≤ c. Then it is easily seen that the identity
map i : V → Vc induces a completely isometric isomorphism πi : OAc(V ) →
OA1(Vc).

The above definition of OAc(V ) is extrinsic, and, following the ideas from
earlier chapters, we wish to give an intrinsic characterization of OAc(V ) via a
factorization formula. By using Vc, as above, it will be enough to study OA1(V ).

To this end, we wish to consider all ways to factor elements ofMm,n(F(V )) as
products, using the operation �, of rectangular block-diagonal matrices where
each block is either a scalar matrix or a matrix over V . For example,

λ ⊕ v1 ⊕ (v2 ⊗ v3 + v4 ⊗ v5)

= (1, 1) �
(

λ 0 0 0
0 v1 v2 v4

)
�




1 0 0
0 1 0
0 0 v3

0 0 v5


 �


1

1
1


 .



Chapter 19. Similarity and Factorization 275

In keeping with the L∞ condition, we wish to define the norm of such a rect-
angular block-diagonal matrix as the maximum of the norm of the matrix over
V and the norm of the scalar matrix.

Theorem 19.1. Let (xi j ) ∈ Mm,n(OA1(V )). Then

‖(xi j )‖1 = inf{‖B1‖ · · · ‖B
‖},

where the infimum is over all 
 and all ways to factor (xi j ) = B1 � · · · � B
 as
a product in F(V ) of rectangular block-diagonal matrices where each block is
either scalar or a matrix over V .

Proof. Let ‖(xi j )‖ f denote the infimum given on the right hand side. Given
such a factorization and a completely contractive map ϕ: V → B(H), it is easy
to see that (πϕ(xi j )) = Bϕ

1 · · · Bϕ


 , where Bϕ

i is obtained by replacing the scalar
part of Bi by scalar multiples of IH and each element v of V by ϕ(v). Since
‖Bϕ

i ‖ ≤ ‖Bi‖, it follows that ‖(xi j )‖1 ≤ ‖(xi j )‖ f .
To complete the proof it suffices to prove thatF(V ) equipped with the family

of matrix norms ‖·‖ f satisfies the BRS axioms. For then we can represent
(F(V ), ‖·‖ f ) completely isometrically as an algebra of operators on B(H) via
ρ: F(V ) → B(H), and let ϕ: V → B(H) be defined by ϕ = ρ|V . Then πϕ = ρ

and ‖(xi j )‖ f = ‖(πϕ(xi j ))‖ ≤ ‖(xi j )‖1.
The proof that (F(V ), ‖·‖ f ) satisfies the BRS axioms is similar to the proofs

in Chapter 18 and is left as an exercise (Exercise 19.1). �

For many applications of OAc(V ) it is useful to have further information
about the norm structure. In particular, for x = ∑ ⊕ xn it is important to know
the relationship between ‖xn‖c and ‖x‖c.

Proposition 19.2. For n ≥ 0, define �n: OAc(V ) → OAc(V ) via

�n

(∑
⊕ x j

)
= xn.

Then �n is a complete contraction.

Proof. Given ϕ: V → B(H), ‖ϕ‖cb ≤ c, let ϕθ (v) = eiθϕ(v). Then for x =∑ ⊕ x j we have πϕ(xn) = 1
2π i

∫ 2π

0 e−inθπϕθ
(x) dθ . Hence, ‖πϕ(xn)‖ ≤ 1

2π∫ 2π

0 ‖πϕθ
(x)‖dθ ≤ ‖x‖c, and it follows that �n is a contraction by taking the

supremum over all such ϕ. The proof that �n is a complete contraction is
similar. �
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Proposition 19.3. Let n ≥ 1. If V⊗n is endowed with the Haagerup tensor
norm, then the inclusion of V⊗n into OA1(V ) is a complete isometry.

Proof. For x ∈ V⊗n the Haagerup tensor norm of x is defined as the infimum
of x over certain ways to represent x using the “faux” product �. Comparing
these factorizations of x with Theorem 19.1, we see that the factorizations used
to define the Haagerup tensor product are precisely the products of the form
used in Theorem 19.1 when no scalar matrices are allowed. Thus, ‖x‖1 ≤ ‖x‖h .

To prove the other inequality, pick unital operator algebras A1, . . . ,An
and complete isometries γi : V →Ai . Let A = Ai ∗C · · · ∗C An; then by
Theorem 17.6, the map γ : V⊗n → A defined by γ (v1 ⊗ · · · ⊗ vn) = γ1(v1) · · ·
γn(vn) is a complete isometry from V⊗n endowed with the Haagerup norm
into A.

Define ϕ: V → Mn+1(A) via

ϕ(v) =




0 γ1(v) 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 γn(v)

0 · · · · · · 0 0




.

Then

πϕ(v1 ⊗ · · · ⊗ vn) = ϕ(v1) · · · ϕ(vn) =




0 · · · 0 γ1(v1) · · · γn(vn)
0 · · · 0 0
...

...
...

0 · · · 0 0


 ,

and hence ‖x‖h = ‖γ (x)‖h = ‖πϕ(x)‖ ≤ ‖x‖1 for x in V⊗n .
Thus,‖x‖h = ‖x‖1 for x ∈ V⊗n . Theproof formatrices overV⊗n is identical.

�

To obtain the analogous result for OAc(V ) one simply needs to use the iden-
tification of OAc(V ) with OA1(Vc). Since the map ϕ(x) = c−1x is a complete
isometry from V to Vc, we see that the inclusion of V⊗n into OAc(V ) satisfies
‖x‖c = cn‖x‖h for x in V⊗n.

The first application of the above result is to a generalization of the BRS
theorem. We wish to extend the theorem to obtain a characterization of operator
algebras up to complete isomorphism, characterizing algebras either lacking a
unit or having a unit of norm larger than one or having a product that is only
completely bounded.
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We claim that all of these cases can be subsumed under a single case, namely,
the case of an algebra with a unit e such that ‖e‖ = 1 but where we only have
that ‖(ai j )(bi j )‖ ≤ M‖(ai j )‖‖(bi j )‖, i.e., that the multiplication is completely
bounded. For example, if ‖e‖ = c−1 and ‖(ai j )(bi j )‖ ≤ M‖(ai j )‖‖(bi j )‖, then
setting ‖a‖c = c‖a‖ yields a completely isomorphic norm such that ‖e‖c = 1
but ‖(ai j )(bi j )‖c ≤ c−1M‖(ai j )‖c‖(bi j )‖c. For further details on the reduction
to this case, see Exercises 19.2 and 19.3. Exercise 19.4 illustrates some of the
further subtleties that arise when dealing with quotients of nonunital algebras.

Theorem 19.4. Let A be an L∞-matrix-normed algebra with unit e, ‖e‖ = 1,
such that for all n and all (ai j ), (bi j ) in Mn(A),

‖(ai j )(bi j )‖ ≤ M‖(ai j )‖‖(bi j )‖.
Then there exists a unital operator algebra B and a unital completely bounded
algebra isomorphism π : B → A such that ‖π‖cb‖π−1‖cb ≤ (

√
M + 1)2.

Proof. Let V = A, fix 0 < c < 1 to be determined later, and let ϕ: V → A be
given by ϕ(v) = cv. By the universal property of F(V ) there exists a homo-
morphism πϕ : F(V ) → A that is onto. We wish to prove that πϕ is completely
bounded as a map from OA1(V ) to A.

To this end, note that if (xi j ) ∈ Mp,q (V⊗n) with ‖(xi j )‖1 = ‖(xi j )‖h < 1, then
(xi j ) factors as (xi j ) = (v1

i j ) � (v2
i j ) � · · · � (vni j ) with ‖(v


i j )‖ < 1 in Mp
,q
 (V )
for some integers p
, q
. Consequently,

(πϕ(xi j )) = (
ϕ
(
v1
i j

))(
ϕ
(
v2
i j

)) · · · (ϕ(
vni j

)) = cn(v1
i j

)(
v2
i j

) · · · (vni j),
where the latter products are in A. Hence,

‖(πϕ(xi j ))‖ ≤ cnMn−1
∥∥(

v1
i j

)∥∥∥∥(
v2
i j

)∥∥ · · · ∥∥(
vni j

)∥∥ < cnMn−1,

and so ‖πϕ‖cb ≤ cnMn when restricted to the subspace of homogeneous
terms of degree n ≥ 1. Note for n = 0, ‖πϕ‖cb = 1. Now, given any (xi j ) in
Mp,q (OA1(V )), we may decompose it as a sum of homogeneous terms of de-
gree n, (xi j ) = ∑

n(x
(n)
i j ), and by Proposition 19.2, ‖(x (n)

i j )‖1 ≤ ‖(xi j )‖1. Thus,

‖(πϕ(xi j ))‖ ≤
∞∑
n=0

∥∥(
πϕ

(
x (n)
i j

))∥∥ =
(

1 +
∞∑
n=1

cnMn−1

)
‖(xi j )‖,

and so ‖πϕ‖cb ≤ (1 − cM + c)/(1 − cM) as a map from OA1(V ) to A. If we
let B = OA1(V )/ ker(πϕ), then B is a unital operator algebra and the induced
map π = π̇ϕ is an algebraic isomorphism with ‖π‖cb = ‖πϕ‖cb.

Finally, given any a ∈A, we have πϕ(c−1a) = a and so ‖π−1‖cb ≤ c−1.
Choosing c = 1

M+√
M

yields the desired result. �
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It is not clearwhat the best constant for ‖π‖cb‖π−1‖cb is in the above theorem.
One can show that necessarily ‖π‖cb‖π−1‖cb ≥ √

M , where M is the least
constant bounding the norm of a product, but we have been unable to achieve
this bound.

Theorem 19.5 (Blecher). Let A be an algebra that is also an L∞-matrix-
normed space. If the product onA is completely bounded, then for every ε > 0
there exists a Hilbert spaceH and a one-to-one completely bounded homomor-
phism π : A → B(H) such that π−1: π (A) → A is also completely bounded
with ‖π‖cb‖π−1‖cb < 1 + ε.

Proof. Let V = A, fix 0 < c < 1 to be determined later, and let ϕ: V →A
be given by ϕ(v) = cv as in the proof of Theorem 19.4. Let F 0(V ) ⊂ F(V )
denote the ideal obtained by deleting the C-summand.

The canonical homomorphism πϕ , restricted to F 0(V ), which we denote by
π0

ϕ , is still onto. We let OA0
1(V ) ⊆ OA1(V ) denote F 0(V ) equipped with the

L∞-matrix norm that it inherits as a subspace.
Computing ‖π0

ϕ‖cb as in the proof of Theorem 19.4, we have that ‖π0
ϕ‖cb ≤∑∞

n=1 c
nMn−1 = c

1−cM , where M is the cb norm of the product map. If we let
J = OA0

1(V )/ ker(π0
ϕ ), then the induced map π = π̇0

ϕ is an algebraic isomor-
phism between A and J with ‖π‖cb ≤ c

1−cM , while ‖π−1‖cb ≤ c−1 as before.
Since ker(π0

ϕ ) is an ideal in OA1(V ), we have that J is an ideal in the unital
operator algebra B = OA1(V )/ ker(π0

ϕ ). The result now follows on choosing
c so that 1

1−cM < 1 + ε and representing B completely isometrically as an
algebra of operators on a Hilbert space. �

In situations where both Theorem 19.4 and Theorem 19.5 apply, the principal
difference is that Theorem 19.5 allows for representations of A such that π (A)
is a subalgebra of B(H) whose unit is an idempotent of norm greater than one.
These more general representations allow for the lack of dependence on M in
‖π‖cb‖π−1‖cb.

This lack of dependence on M implies that π (A) must have a product whose
cb norm is strictly less than 1. To illustrate how this can occur, consider B ⊆
B(H) any unital subalgebra. Then for any t > 0,

Bt =
{(
b tb
0 0

)
: b ∈ B

}
⊆ B(H ⊕ H)

is an algebra with unit ( I t I0 0 ) of norm
√

1 + t2. This algebra has a “super”
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contractive multiplication, since∥∥∥∥
(
b1 tb1

0 0

) (
b2 tb2

0 0

)∥∥∥∥ ≤ 1√
1 + t2

∥∥∥∥
(
b1 tb1

0 0

)∥∥∥∥
∥∥∥∥
(
b2 tb2

0 0

)∥∥∥∥ .

We now wish to turn our attention to Pisier’s theory of factorization and
similarity degree. This theory is a remarkable refinement of Corollary 18.11 to
the study of when bounded homomorphisms are completely bounded.

We say that a unital operator algebraA has factorization pair (d, K ) provided
that for all m, n every (ai j ) ∈ Mm,n(A) with ‖(ai j )‖ < 1 has a factorization

(ai j ) = C1D1C2 · · ·CdDdCd+1

where C1, . . . ,Cd+1 are scalar matrices with ‖C1‖ · · · ‖Cd+1‖ < K and
D1, . . . , Dd are diagonal matrices with entries from the unit ball of A. We
say that A has factorization degree d provided that d is the least integer such
that A has factorization pair (d, K ) for some constant K .

We say thatA has a similarity pair (d, K ) provided that every unital bounded
homomorphism ρ: A → B(H) is completely bounded with ‖ρ‖cb ≤ K‖ρ‖d .
We say that A has similarity degree d provided that d is the least integer such
that A has a similarity pair (d, K ) for some constant K .

One connection between factorization pairs and similarity pairs is immediate.

Proposition 19.6. Let A be a unital operator algebra. If A has factorization
pair (d, K ), then A has similarity pair (d, K ).

Proof. Let ‖(ai j )‖ < 1. Then the factorization of (ai j ) into d + 1 scalar
matrices and d diagonal matrices of norm less than or equal to 1 yields a
factorization of (ρ(ai j )) into the same scalar matrices and d diagonal matrices
each of norm less than or equal to ‖ρ‖. Hence ‖(ρ(ai j ))‖ ≤ K‖ρ‖d . �

We shall prove, conversely, that if A has similarity degree d, then A has
factorization degree d .

The first step in this process is to realize the connection between theHaagerup
tensor product of the operator space MAX(A) with itself and the factorization
degree. To this end, let VN = MAX(A) ⊗h · · · ⊗h MAX(A) denote the tensor
product of N copies ofMAX(A) endowedwith theHaagerup tensor norm.Also,
let γN : VN →A be the completely contractive map induced by the product, so
that γN (a1 ⊗ · · · ⊗ aN ) = a1 · · · aN .

If KN denotes the kernel of γN , then, since γN is onto, VN/KN is linearly
isomorphic to A. We let ‖·‖(N ) denote the operator space structure induced on
A by this identification.
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Thus, for (ai j ) ∈Mm,n(A) we have that ‖(ai j )‖(1) = ‖(ai j )‖MAX(A) and
‖(ai j )‖(N ) < 1 if and only if (ai j ) = (γN (ui j )) for some (ui j ) ∈ Mm,n(VN ) with
‖(ui j )‖VN < 1. The following summarizes the properties of these norms.

Proposition 19.7. Let A be a unital operator algebra, and let
(ai j ) ∈ Mm,n(A).

Then

(i) ‖(ai j )‖(N ) < 1 if and only if (ai j ) can be factored as

(ai j ) = C1D1C2D2 · · ·CN DNCN+1

where C1, . . . ,CN+1 are scalar matrices with ‖Ci‖ < 1 and D1, . . . , DN
are diagonal matrices with entries from the unit ball of A,

(ii) for all N , ‖(ai j )‖(N+1) ≤ ‖(ai j )‖(N ),
(iii) ‖(ai j )‖MAXA(A) = lim

N→∞
‖(ai j )‖(N ).

Proof. To prove (i), write (ai j ) = (γN (ui j )) with ‖(ui j )‖VN < 1. By the defini-
tion of the Haagerup tensor norm,

(ui j ) = (
x1
i j

) � · · · � (
x Ni j

)
,

where ‖(xki j )‖MAX(A) < 1.
By Theorem 14.2, (xki j ) = RkDk Sk , where Rk and Sk are scalar matrices with

‖Rk‖ < 1, ‖Sk‖ < 1, and Dk is a diagonal matrix whose entries are from the
unit ball of A.

Since γN is the map that replaces the faux product � by the actual product
in A, we have that

(ai j ) = R1D1S1R2D2S2 · · · RN DN SN ,

and the proof of (i) is completed by taking C1 = R1,C2 = S1R2, . . . ,CN =
SN−1RN ,CN+1 = SN .

Statement (ii) follows by noting that γN (ui j ) = γN+1(ui j ⊗ e), where e de-
notes the identity of A.

Statement (iii) follows from (i) and Theorem 18.9. �

The following is an immediate application of Proposition 19.7 and illustrates
the importance of these norms.

Proposition 19.8. Let A be a unital operator algebra. Then A has factori-
zation pair (d, K ) if and only if ‖(ai j )‖(d) ≤ K‖(ai j )‖ for all m, n, and
(ai j ) ∈Mm,n(A).
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We are now prepared to examine algebras for which every bounded homo-
morphism is completely bounded. Note that if this is the case, then for every
c> 1 there must exist a constantM = Mc such that if ‖ρ‖ ≤ c then ‖ρ‖cb ≤ M .
For if this were not true, then one could form the direct sum of a sequence of
homomorphisms ρn with ‖ρn‖ ≤ c and ‖ρn‖cb ≥ n to obtain a single homo-
morphism with ‖ρ‖ ≤ c but ‖ρ‖cb = +∞.

Proposition 19.9. Let A be a unital operator algebra, let c> 1, and assume
that for every unital homomorphism ρ: A→ B(H) with ‖ρ‖ ≤ c we have
‖ρ‖cb ≤ M. Then for every m, n and every A = (ai j ) ∈ Mm,n(A) with ‖A‖ <
1
M , there exists an integer 
 and elements Yk ∈ Mm,n(A), 0 ≤ k ≤ 
, such that

(i) A = Y0 + Y1 + · · · + Y
,
(ii) Y0 is a scalar matrix times the identity of A with ‖Y0‖ < 1,
(iii) ‖Yk‖(k) < c−k for 1 ≤ k ≤ 
.

Proof. Let MAX(A)c denote the operator space MAX(A) but with

‖(xi j )‖MAX(A)c = c‖(xi j )‖MAX(A).

The identity map on A induces a completely contractive homomorphism
π : OA1(MAX(A)c) → A. Let J denote the kernel of this homomorphism,
and let OA1(MAX(A)c)/J be the quotient operator algebra, so that

π̇ : OA1(MAX(A)c)/J → A
is one-to-one and onto. Let

ρ = π̇−1: A → OA1(MAX(A)c)/J

be the inverse of this map. Since ‖ρ(a)‖ = ‖a + J‖ ≤ ‖a‖c = c‖a‖, we have
that ‖ρ‖ = c.

Thus, since OA1(MAX(A)c)/J is an abstract unital operator algebra, it must
be the case that ‖ρ‖cb ≤M . Consequently, if ‖(ai j )‖ < 1

M in Mm,n(A), then
there exists an element X = (xi j ) in the open unit ball of OA1(MAX(A)c)
with π (xi j ) = ai j . Decomposing X = X0 + · · · + X
 as a sum of homo-
geneous terms, Xk ∈Mm,n(MAX(A)⊗kc ), we have by Proposition 19.2 that
‖Xk‖OA1(MAX(A)c) ≤ ‖X‖OA1(MAX(A)c) < 1.

Applying Proposition 19.3, we have that the norm of the element Xk in OA1

(MAX(A)c) is the same as the norm of Xk in the k-fold Haagerup tensor
product of MAX(A)c with itself. Since each factor is multiplied by c we see
that ‖Xk‖Vk = c−k‖Xk‖OA1(MAX(A)c) < c

−k . Thus, if we let Yk be the image in
Mm,n(A) of Xk under the product map, then by definition ‖Yk‖(k) < c−k for
1 ≤ k ≤ 
, A = Y0 + Y1 + · · · + Y
, and Y0 is as claimed. �
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We are now in a position to prove Pisier’s main factorization theorem. The
following elementary lemma is useful.

Lemma 19.10. Let V be a vector space with norms ‖·‖ and ‖|·‖|. If there
exists r, 0 < r < 1, such that every v ∈ V decomposes as v = v1 + v2 with
|||v1||| ≤ a‖v‖, ‖v2‖ ≤ r‖v‖, then ‖|v‖| ≤ a

1−r ‖v‖.

Proof. Exercise 19.5. �

Theorem 19.11 (Pisier). Let A be a unital operator algebra and let c > 1. If
every unital homomorphism ρ: A → B(H) with ‖ρ‖ ≤ c satisfies ‖ρ‖cb ≤ M,
then A has factorization pair(

d,
M(cd+1 − 1)

cd+1 − cd − M
)

for any d satisfying M < cd (c − 1).

Proof. Let A ∈ Mm,n(A) with ‖A‖ < 1/M . Write A = Y0 + Y1 + · · · + Y
 as
in Proposition 19.9. Then

‖Y0 + · · · + Yd‖(d) ≤ ‖Y0‖(d) + ‖Y1‖(d) + · · · + ‖Yd‖(d)

≤ ‖Y0‖ + ‖Y1‖(1) + · · · + ‖Yd‖(d)

≤ 1 + c−1 + · · · + c−d ,
while

‖Yd+1 + · · · + Y
‖ ≤ c−(d+1) + · · · + c−
 ≤ c−(d+1)

1 − c−1
= c−d

c − 1

by Proposition 19.7(ii).
Thus the hypotheses of Lemma 19.10 are met for ‖|·‖| = ‖·‖(d) with

a = M(1 + c−1 + · · · + c−d ), r =Mc−d/(c − 1).Hence,‖A‖(d) ≤ K‖A‖with
K = a

1−r , for every m, n, and A ∈ Mm,n(A). Thus, by Proposition 19.8, A has
factorization pair (d, K ). �

Corollary 19.12 (Pisier). Let A be a unital operator algebra. Then A has
factorization degree d if and only if A has similarity degree d.

Proof. We have already seen that if A has factorization pair (d, K ) then A has
similarity pair (d, K ).

So assume that A has similarity pair (d, K ). Then for any c> 1, ‖ρ‖ ≤ c
implies ‖ρ‖cb ≤ Kcd = M . To verify that A has factorization degree d1 we
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need Kcd< cd1 (c − 1); but c is arbitrary, and taking c> K + 1 allows us to
choose d1 = d . �

It is interesting to note that given a similarity pair (d, K ), the value of the
constant K1 that one obtains for the factorization pair (d, K1) using the above
results is K1 = K (cd+1 − 1)/[c − (K + 1)], which is always larger than K . It
is not known if similarity pair (d, K ) implies factorization pair (d, K ).

We now return to the topic of Kadison’s conjecture, mentioned in Chapter 9.
Kadison conjectured that every bounded homomorphism of a C∗-algebra
into the algebra of bounded operators on a Hilbert space is similar to a
∗-homomorphism. By the results in Chapter 9 we see that this is equivalent to
requiring that every bounded homomorphism of a C∗-algebra be completely
bounded.

The above results lead to the following conclusions.

Corollary 19.13 (Pisier). The following are equivalent:

(i) the answer to Kadison’s conjecture is affirmative,
(ii) every bounded homomorphism of a C∗-algebra into an operator algebra
is completely bounded,

(iii) for each c> 1 there exists M > 1 such that if π is a bounded homomor-
phism from a C∗-algebra into an operator algebra with ‖π‖ ≤ c, then
‖π‖cb ≤ M,

(iv) there exists c1 > 1 and M1 > 1 such that if π is a bounded homomorphism
from aC∗-algebra into an operator algebra with ‖π‖ ≤ c1, then ‖π‖cb ≤
M1,

(v) there exists an integer d and constant K such that (d, K ) is a similarity
pair for every C∗-algebra,

(vi) there exists an integer d such that every C∗-algebra has similarity degree
less than or equal to d,

(vii) there exists an integer d and constant K1 such that (d, K1) is a factoriza-
tion pair for every C∗-algebra,

(viii) there exists an integer d such that every C∗-algebra has factorization
degree less than or equal to d.

Proof. We leave the proof as Exercise 19.6. �

Notes

Our presentation of similarity degree and factorization degree follows Pisier’s
([184], [188], and [193]) fairly closely. Equivalent versions of many of our
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propositions can be found there. Although the concepts of similarity pairs and
factorization pairs are not mentioned explicitly, they play a role in many of his
proofs.

Theorem 19.5 is due to Blecher [21], but the proof that we present here is
closer to Pisier’s [193]. Blecher’s original proof introduced and used the concept
of a quantum variable. Theorem 19.4 seems to be new, although its proof is
essentially the same as that of Theorem 19.5.

The factorization appearing in Theorem 19.1 does not seem to have been
noticed before.

Further results on the theory of factorization degree and similarity degree for
operator algebras and groups can be found in [188], [189], [190], and [193].

Exercises

19.1 Prove that (F(V ), ‖·‖ f ) of Theorem 19.1 satisfies the BRS axioms.
19.2 Let A be an L∞-matrix-normed algebra such that ‖(ai j )(bi j )‖ ≤

M‖(ai j )‖‖(bi j )‖. Let A1 =A ⊕ C denote the algebra obtained by ad-
joining a unit e to A. Show that A1 can be given an L∞-matrix-norm
structure such that ‖e‖ = 1 and for (ai j ), (bi j ) in Mn(A1), ‖(ai j )(bi j )‖ ≤
(M + 2)‖(ai j )‖‖(bi j )‖.

19.3 Let A be an L∞-matrix-normed algebra, let B be an operator algebra,
and let ϕ: A → B be a completely bounded algebra isomorphism with
completely bounded inverse. Prove that for (ai j ), (bi j ) in Mn(A), one has
‖(ai j )(bi j )‖ ≤ ‖ϕ−1‖cb‖ϕ‖2

cb‖(ai j )‖‖(bi j )‖.
19.4 Let I0 = { f ∈ A(D): f (0) = 0}, let 0 < r < 1, and let I0,r = { f ∈ A(D):

f (0) = f (r ) = 0}. Prove that I0/I0,r is an L∞-matrix-normed algebra
with a completely contractive multiplication and an identity e = r−1z +
I0,r . Show that ‖e‖ = r−1 and that dim(I0/I0,r ) = 1. (Thus, I0/I0,r is a
one-dimensional algebra only completely isomorphic to C.)

19.5 Prove Lemma 19.10.
19.6 Prove Corollary 19.13.
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