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Preface

Computer software and network protocols are increasingly important in daily
life. At the same time the complexity of software has rocketed, so that its
correctness is at stake. New methodologies and disciplines are being devel-
oped to bring structure to the ever growing jungle of computer technology.
(Semi-)automated manipulation has become an important means in discover-
ing flaws in software and hardware systems. Process algebra is a mathematical
framework in which system behaviour is expressed in the form of algebraic
terms, enhancing the available techniques for manipulation.

Concurrency is omnipresent in system behaviour, and in a large part
responsible for its complexity: even simple behaviours become wildly compli-
cated when they are executed in parallel. In order to study such systems in
detail, it is imperative that they are dissected into their concurrent compo-
nents. Fundamental to process algebra is a parallel operator, to break down
systems into their concurrent components. A set of equations is imposed
to derive whether two terms are behaviourally equivalent. In this framework,
non-trivial properties of systems can be established in an elegant fashion. For
example, it may be possible to equate an implementation to the specification
of its required input/output relation. In recent years a variety of automated
tools have been developed to facilitate the derivation of such properties.

Applications of process algebra exist in diverse fields such as safety criti-
cal systems, network protocols, and biology. In the educational vein, process
algebra has been recognised to teach skills to deal with complex concurrent
systems, by representing and reasoning about such systems in a mathemati-
cally clear and precise manner.

This text developed from an undergraduate course on process algebra at
the computer science department of the University of Wales Swansea during
the autumn of 1997 and of 1998. Chapters 2-7 contain sufficient material
for more than twenty hours of lecturing; a set of slides and further mate-
rial to support such a course are available from my homepage (currently
at http://www.cwi.nl/∼wan). It is recommended to use a tool set based on
process algebra, such as the µCRL tool set, the Concurrency Workbench Ed-
inburgh, or the Labelled Transition System Analyser to enliven the course.
µCRL specifications of the protocols in Chapter 6 can be obtained from the
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author. Appendices A and B provide useful background information; they
are not intended to be included in the course.

I am grateful to John Tucker for his encouragement to further develop a
raw set of lecture notes, and to Judi Romijn for her support. Over the years
I have benefited from discussions with Jan Bergstra, Rob van Glabbeek, Jan
Friso Groote, Frits Vaandrager, Alban Ponse, Chris Verhoef, Jaco van de
Pol, Jos Baeten, Luca Aceto, Jos van Wamel, Steven Klusener, Bas Luttik,
Dennis Dams, and many others.

Amsterdam, November 1999 Wan Fokkink
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1. Introduction

System behaviour generally consists of processes and data. Processes are
the control mechanisms for the manipulation of data. While processes are
dynamic and active, data are static and passive. System behaviour tends
to be composed of several processes that are executed concurrently, where
these processes exchange data in order to influence each other’s behaviour.
The picture below presents a typical architecture for a concurrent system.
Each process Pi sends messages to its neighbouring processes Pi−1 and Pi+1,
giving them information on the state of Pi. The neighbouring processes use
this information in their internal computations, to update their own states.

P1P0P−1 P2 · · ·· · ·

Some examples of concurrent systems are:

• A colony of ants;

Ants behave as separate entities, which influence each other’s behaviour. As
soon as one ant discovers a goody such as a lump of sugar, it radiates a smell
to attract other ants. Tofts [192] was able to explain certain phenomena of
colonies of ants by modelling such colonies as concurrent systems in process
algebra.
• A network protocol, being a high-level description of a data communication

procedure.
As an example we consider the so-called alternating bit protocol [31]. A
Sender and a Receiver are the separate processes, which in concurrency
make up the system;
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ReceiverSender

Data elements d1, d2, d3, . . . are sent from the Sender to the Receiver via
a faulty channel, so that data may be corrupted. In the alternating bit
protocol, the Sender attaches a bit 0 to data elements d2k−1 and a bit 1
to data elements d2k for positive natural numbers k. As soon as the Re-
ceiver receives a datum, it sends the attached bit to the Sender via a faulty
channel, to acknowledge reception. If the Receiver receives a corrupted
message, then it resends the previous acknowledgement. The Sender keeps
on sending out the pair (di, b) until it receives the acknowledgement b.
Then it starts sending out the next pair (di+1, 1 − b) until it receives the
acknowledgement 1− b, et cetera. Alternation of the attached bit enables
the Receiver to determine whether a received datum is really new, and al-
ternation of the acknowledgement enables the Sender to determine whether
a datum reached the Receiver unscathed.

• A pocket calculator;

 7  8  9

C

 0

 4  5  6

 3 2 1

5765

∗+ −

=

The buttons represent the separate actions of this system, which all influ-
ence the state (i.e., the intermediate result of a computation) of the pocket
calculator in a different way. The pocket calculator in combination with a
user make up a concurrent system.

In this text, system behaviour is represented as a labelled transition sys-
tem, which basically consists a set of nodes together with a set of labelled
edges between these nodes. For example, a fraction of the full labelled tran-
sition system of the pocket calculator is depicted in Fig. 1.1. Each node in
this labelled transition system represents a different state of the calculator,
and an edge from one node to the other expresses that the calculator can
change from one state to the other, by pushing a button; the label of an edge
represents the button that has to be pushed in order to realise this state
transition.

In general it is much easier to study a concurrent system such as the
pocket calculator by breaking it up into its concurrent components. Although
its full labelled transition system is enormous, the process behaviour of the
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Fig. 1.1. Labelled transition system of a pocket calculator

pocket calculator is not so difficult. It can be captured by specifying the
behaviour of the separate buttons, and putting them in parallel. For example,
the behaviour of the +-button is displayed in Fig. 1.2, where d1, . . . , dk are
digits and m = n+d1 · · · dk. Execution is started in the state that is pictured
at the top, where the computation has the intermediate value n. Similarly,
the arithmetic operations subtraction and multiplication can be specified on
the data domain of numbers. An extra error element needs to be added to
the data domain, to represent that the result of an arithmetic computation
exceeds the screen size, or that an operation is undefined (such as division
by zero).

C

n

+

n+ ..

d1

...

dk

n+ d1...dk.. 0

mm ∗ ..m− ..
=−

m+ ..
+

∗

Fig. 1.2. Behaviour of the plus button

A process graph is a labelled transition system in which one state is se-
lected to be the root state, i.e., the initial state of the process. If the labelled
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transition system contains an edge s
a→ s′, then the process graph can evolve

from state s into state s′ by the execution of action a. Process graphs are
distinguished modulo some behavioural equivalence. For example, such an
equivalence may relate two process graphs if and only if they can execute
exactly the same strings of actions. This text focuses on bisimulation equiv-
alence, which is the finest of all known process equivalences. Bisimulation
equivalence requires not only that two process graphs can execute the same
strings of actions, but also that they have the same branching structure. Ex-
perience has shown that bisimulation is a suitable equivalence when reasoning
about concurrent processes.

For the purpose of mathematical reasoning it is often convenient to repre-
sent process graphs algebraically in the form of terms. Process algebra focuses
on the specification and manipulation of process terms as induced by a col-
lection of operator symbols. This symbolic notation facilitates manipulation
by a computer. Most process algebras contain basic operators to build finite
processes, communication operators to express concurrency, and some notion
of recursion to capture infinite behaviour. Moreover, it is convenient to in-
troduce two special constants: the deadlock enables us to force actions into
communication, while the silent step allows us to abstract away from internal
computations. Structural operational semantics is used to formally provide
each process term over these operators and constants with its intended pro-
cess graph. The crux of process algebra is that it imposes an equational logic
on process terms, such that two process terms can be equated if and only if
their graphs are behaviourally equivalent. A process algebra can be extended
with fresh operators, to enhance its expressivity or to facilitate the specifica-
tion of system behaviour. Such a fresh operator requires an extension of the
structural operational semantics and of the equational logic.

Process algebra constitutes a framework for formal reasoning about pro-
cesses and data, with the emphasis on processes that are executed concur-
rently. It can be used to detect undesirable properties and to formally derive
desirable properties of a system specification. Notably, process algebra can be
used to verify that a system displays the desired external behaviour, meaning
that for each input the correct output is produced. First, the implementation
of the system is expressed in the form of a process term, using the basic
operators, the communication operators, and recursion. Next, the deadlock
is used to force actions into communication, and the silent step is used to
abstract away from internal computations, so that only the input/output re-
lation of the implementation remains. Finally, the resulting process term is
manipulated by means of equational logic, to prove that its graph conforms
with the desired external behaviour.

The foundations of process algebra were developed, largely independently,
by Milner [152, 153, 154] and Hoare [127, 128]. These foundations are partly
rooted in Petri nets [172], automata theory [183], formal languages [7], and
work by Bekič [33]. Milner devised the process algebra CCS (Calculus of
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Communicating Systems) [158] (see also [65]), while Hoare pioneered CSP
(Communicating Sequential Processes) [129] (see also [181, 185]). The cur-
rent exposition is based on the approach of Bergstra and Klop [41] called
ACP (Algebra of Communicating Processes) [28], which is closely related to
CCS. Interesting early accounts of ACP are [47, 48, 50]. A good overview of
developments in concurrency research is given in [77].

Data and time often play an important role in system behaviour. Similar
to processes, data can be specified algebraically by means of an equational
logic; see [51, 145]. In this text it is usually assumed implicitly that the data
types have been specified beforehand. Furthermore, in an example verifica-
tion, time is modelled using special timer processes, which can pass on timing
information. Alternatively, time could be modelled by adding time stamps to
actions, to fix the moment in time at which such an action can be executed,
and adapting the semantics to take into account such timing information.

Some expositions on process algebra, notably the one by Baeten and Weij-
land [10, 28], start by defining a set of equations, and give semantic models
for which this equational logic is sound and complete, meaning that two pro-
cess terms can be equated if and only if they are equivalent in the model.
Advantages of this approach are that results for several models can be de-
rived simultaneously, and the emphasis that process algebra is relatively in-
dependent of its models. Following for instance Milner [158] and Baeten and
Verhoef [27], the focus in this text is on a single model, based on structural
operational semantics. An advantage of the latter approach is that it allows
us to place the exposition more firmly on an intuitive basis.

This text is set up as follows. Chapter 2 introduces basic process algebra,
which can express finite process graphs; an equational logic is presented that
is sound and complete modulo bisimulation equivalence. Chapter 3 features
merge operators to express processes that are executed in parallel. Chapter
4 defines recursion to describe infinite process behaviour. Chapter 5 explains
how to abstract away from internal computations. Chapter 6 applies the
framework from the previous chapters to verify the correctness of two net-
work protocols. Furthermore, it gives an overview of existing techniques and
automated tools to support such verification efforts. Chapter 7 gives examples
of further operators that can be added to the framework.

Appendices A and B provide background material for the theory devel-
oped in the earlier chapters. Appendix A presents the basics of equational
logic, while Appendix B gives an overview of structural operational seman-
tics. The reader is adviced to use these appendices to become acquainted
with basic notions and definitions when they are encountered in the remain-
ing chapters. Pointers to relevant definitions in the appendices are given when
appropriate.
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2. Basic Process Algebra

This chapter presents a basic framework for process algebra. It introduces
simple operators that enable us to construct finite processes from scratch.

2.1 Basic Process Terms

The signature (see Definition A.1.1) of a basic framework for process algebra
consists of the following operators.

• First of all, we assume a finite, non-empty set A of (atomic) actions, rep-
resenting indivisible behaviour (such as reading a datum, or sending a
datum). Each atomic action a is a constant that can execute itself, after
which it terminates successfully:

a

a

√

The predicate
a→ √ represents successful termination after the execution

of action a.
• Moreover, we assume a binary operator + called alternative composition. If

closed terms t1 and t2 (see Definition A.1.2) represent processes p1 and p2

(see Definitions B.1.1 and B.3.1), respectively, then the closed term t1 + t2
represents the process that executes either p1 or p2. In other words, the
process graph of t1 +t2 is obtained by joining p1 and p2 at their root states:

p1 p2

• Finally, we assume a binary operator · called sequential composition. If
closed terms t1 and t2 represent processes p1 and p2, respectively, then the
closed term t1·t2 represents the process that executes first p1 and then p2.
In other words, the process graph of t1·t2 is obtained by replacing each
successful termination s

a→ √ in p1 by a transition s
a→ s′, where s′ is the

root of p2:
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p1

p2

Example 2.1.1. Let a, b, c, and d be actions. The closed term ((a + b)·c)·d
represents the following process, with the root state presented at the top:

√
d

c

a b

Each finite process (see Definition B.3.1) can be represented by a closed
term that is built from the set A of atomic actions, the +, and the ·. Such
terms are called basic process terms, and the collection of all basic process
terms is called basic process algebra, abbreviated to BPA.

Exercise 2.1.1. Find the basic process terms that belong to the following
two process graphs (with their root states presented at the top):

√√√ √
bb

a

cc

a a

2.2 Transition Rules for BPA

We have provided a syntax for basic process terms, together with some in-
tuition for the process graph that belongs to such a term. This relationship
has to be made formal in order for it to become really meaningful. For this
purpose we apply structural operational semantics, as explained in Appendix
B. This involves giving a collection of transition rules (see Definition B.1.2),

which define transitions t
a→ t′ (see Definition B.1.1) to express that term t

can evolve into term t′ by the execution of action a, and predicates t
a→ √ to

express that term t can terminate successfully by the execution of action a.
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Table 2.1 presents the TSS (see Definition B.1.2) that constitutes the
structural operational semantics of BPA. The variables x, x′, y, and y′ in
the transition rules range over the collection of basic process terms, while v
ranges over the set A of atomic actions.

Table 2.1. Transition rules of BPA

v
v→ √

x
v→ √

x+ y
v→ √

x
v→ x′

x+ y
v→ x′

y
v→ √

x+ y
v→ √

y
v→ y′

x+ y
v→ y′

x
v→ √

x·y v→ y

x
v→ x′

x·y v→ x′·y

The TSS of BPA provides each basic process term with a process graph,
according to the intuition that was presented in the previous section:

• the first transition rule says that each atomic action v can terminate suc-
cessfully by executing itself;

• the next four transition rules express that t+ t′ executes either t or t′;
• the last two transition rules express that t·t′ executes t until successful

termination, after which it proceeds to execute t′.

Example 2.2.1. The transition rules in Table 2.1 provide the basic process
term ((a+ b)·c)·d with the following process graph (cf. Example 2.1.1):

√
d

d

c

c · d

((a+ b) · c) · d

a b

For instance, the transition ((a+ b)·c)·d b→ c·d can be proved (see Defini-
tion B.1.3) from the transition rules in Table 2.1 as follows:
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b
b→ √ (

v
v→ √

, v := b)

————–

a+ b
b→ √ (

y
v→ √

x+ y
v→ √

, v := b, x := a, y := b)

——————

(a+ b)·c b→ c (
x

v→ √

x·y v→ y
, v := b, x := a+ b, y := c)

————————–

((a+ b)·c)·d b→ c·d (
x

v→ x′

x·y v→ x′·y
, v := b, x := (a+ b)·c,
x′ := c, y := d)

At the right-hand side, the transition rules are displayed that are applied
in the consecutive proof steps, together with the closed substitutions (see
Definition A.1.3) that are applied to them.

Exercise 2.2.1. Find the process graph that belongs to the basic process
term ((a+ b)·(a+ c))·d. Give the derivations of the transitions in this process
graph from the transition rules in Table 2.1.

From now on, as binding convention we assume that the · binds stronger
than the +. For example, a·b + a·c represents (a·b) + (a·c). Occurrences of ·
are often omitted from process terms; that is, st denotes s·t.

2.3 Bisimulation Equivalence

In the previous section, each basic process term has been provided with a
process graph using structural operational semantics. Processes have been
studied since the early 60’s, first to settle questions in natural languages,
later on to study the semantics of programming languages. These studies were
in general based on so-called trace equivalence, in which two processes are
said to be equivalent if they can execute exactly the same strings of actions.
However, for system behaviour this equivalence is not always satisfactory,
which is shown by the following example.

Example 2.3.1. Consider the two processes below:

√√ √ √
write2(d)write1(d) write2(d)

read(d) read(d)read(d)

write1(d)
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The first process reads datum d, and then decides whether it writes d on
disc 1 or on disc 2. The second process makes a choice for disc 1 or disc
2 before it reads datum d. Both processes display the same strings of ac-
tions, read(d)write1(d) and read(d)write2(d), so they are trace equivalent.
Still, there is a crucial distinction between the two processes, which becomes
apparent if for instance disc 1 crashes. In this case the first process always
saves datum d on disc 2, while the second process may get into a deadlock
(i.e., may get stuck).

Bisimulation equivalence (see Definition B.3.2) discriminates more pro-
cesses than trace equivalence. Namely, if two processes are bisimilar, then
not only they can execute exactly the same strings of actions, but also they
have the same branching structure. For example, the two processes in Exam-
ple 2.3.1 are not bisimilar. Definition B.3.2 is presented below for the relations
a→ and the predicates

a→ √, for a ∈ A.

Definition 2.3.1 (Bisimulation). A bisimulation relation B is a binary
relation on processes such that:

1. if pB q and p
a→ p′, then q

a→ q′ with p′ B q′;
2. if pB q and q

a→ q′, then p
a→ p′ with p′ B q′;

3. if pB q and p
a→ √, then q

a→ √;

4. if pB q and q
a→ √, then p

a→ √.

Two processes p and q are bisimilar, denoted by p ↔ q, if there is a bisimu-
lation relation B such that pB q.

Example 2.3.2. (a+ a)b↔ ab+ a(b+ b).
A bisimulation relation that relates these two basic process terms is defined
by (a+ a)bB ab+ a(b+ b), bB b, and bB b+ b. This bisimulation relation can
be depicted as follows:

b b+ b

b

a

b

a

(a+ a)b ab+ a(b+ b)

√ √b

a a

bb

Exercise 2.3.1. Say for each of the following pairs of basic process terms
whether they are bisimilar:

- (b+ c)a+ ba+ ca and ba+ ca;
- a(b+ c) + ab+ ac and ab+ ac;
- (a+ a)(bc) + (ab)(c+ c) and (a(b+ b))(c+ c).
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For each pair of bisimilar terms, give a bisimulation relation that relates
them.

Exercise 2.3.2. Show that the basic process terms read(d)·(write1(d) +
write2(d)) and read(d)·write1(d) + read(d)·write2(d) are not bisimilar.

Exercise 2.3.3. Prove that ak 6↔ ak+1 for positive natural numbers k
(where a1 denotes a and ak+1 denotes a(ak)).

Exercise 2.3.4. Prove that p 6↔ ap for basic process terms p.

Exercise 2.3.5. Verify that bisimilarity is an equivalence relation.

2.4 Axioms for BPA

Checking whether the process graphs of two basic process terms are bisimilar
requires hard labour. First these process graphs have to be computed, and
next a bisimulation relation has to be established. This section introduces an
axiomatisation for BPA, to equate bisimilar basic process terms. This avoids
the computation of process graphs and bisimulation relations altogether. The
axioms have the additional advantage that they can be used in automated
reasoning, so that they facilitate a mechanised derivation that two basic pro-
cess terms are bisimilar.

We are after an axiomatisation (see Definition A.2.1) such that the in-
duced equality relation = (see Definition A.2.2) on basic process terms char-
acterises bisimulation equivalence over BPA in the following sense (cf. Defi-
nition A.3.1):

1. the equality relation is sound, meaning that if s = t holds for basic process
terms s and t, then s↔ t;

2. the equality relation is complete, meaning that if s ↔ t holds for basic
process terms s and t, then s = t.

Soundness ensures that if terms can be equated, then they are in the same
bisimulation equivalence class, while completeness ensures that bisimilar
terms can always be equated.

Table 2.2. Axioms for BPA

A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x
A4 (x+ y)·z = x·z + y·z
A5 (x·y)·z = x·(y·z)
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Table 2.2 presents an axiomatisation EBPA for BPA modulo bisimulation
equivalence. The variables x, y, and z in the axioms range over the collection
of basic process terms. The equality relation on basic process terms induced
by the axiomatisation EBPA is obtained by taking the set of closed substitu-
tion instances (see Definition A.1.3) of axioms in EBPA, and closing it under
equivalence and contexts; see Definition A.2.2.

Exercise 2.4.1. Prove that the axioms A1-3 are equivalent to axiom A3
together with

A2′ (x+ y) + z = y + (z + x).

The equality relation that EBPA induces on BPA is closed under contexts.
So in order to conclude that this equality relation is sound and complete
for BPA modulo bisimulation, we need to know that this equivalence is a
congruence (see Definition B.3.3) with respect to BPA. That is, if s↔ s′ and
t↔ t′, then s+ t↔ s′ + t′ and s·t↔ s′·t′.

Theorem 2.4.1. Bisimulation equivalence is a congruence with respect to
BPA.

Proof. The transition rules in Table 2.1 are in panth format (see Definition
B.3.4). So the bisimulation equivalence that they induce is a congruence; see
Theorem B.3.1. 2

Exercise 2.4.2. Verify that the TSS of BPA is in panth format.

Theorem 2.4.2. EBPA is sound for BPA modulo bisimulation equivalence.

Proof. Since bisimulation is both an equivalence and a congruence for BPA,
we only need to check that the first clause in the definition of the relation =
is sound. That is, if s = t is an axiom in EBPA and σ a closed substitution
that maps the variables in s and t to basic process terms, then we need to
check that σ(s)↔ σ(t). We only provide some intuition for soundness of the
axioms in Table 2.2:

• A1 (commutativity of +) says that both s+ t and t+s represent a choice
between s and t;

• A2 (associativity of +) says that both (s + t) + u and s + (t + u)
represent a choice between s, t, and u;

• A3 (idempotency of +) says that a choice between t and t amounts to a
choice for t;

• A4 (right distributivity of ·) says that both (s + t)·u and s·u + t·u
represent a choice between s and t, followed by u;
• A5 (associativity of ·) says that both (s·t)·u and s·(t·u) represent s

followed by t followed by u.
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These intuitions can be made rigorous by means of explicit bisimulation re-
lations between the left- and right-hand sides of closed instantiations of the
axioms in EBPA. Hence, all such instantiations are sound modulo bisimulation
equivalence. 2

Note that left distributivity of sequential composition, i.e., x·(y + z) =
x·y + x·z, is in general not sound modulo bisimulation equivalence; see Ex-
ercise 2.3.2.

Exercise 2.4.3. Prove that s+ t↔ t+ s, (s+ t)u↔ su+ tu, and (st)u↔
s(tu) for all basic process terms s, t, and u.

It remains to prove that EBPA is complete for BPA modulo bisimulation
equivalence, meaning that s ↔ t implies s = t. The following completeness
proof is based on turning the axiomatisation EBPA into a TRS (see Definition
A.4.1), by directing the axioms from left to right.

Theorem 2.4.3. EBPA is complete for BPA modulo bisimulation equiva-
lence.

Proof. We consider basic process terms modulo associativity and commuta-
tivity (AC) of the +, and this equivalence relation is denoted by =AC; see
Section A.4. That is, s =AC t if and only if s and t can be equated by axioms
A1 and A2. A basic process term s then represents the collection of basic
process terms t such that s =AC t. Each equivalence class s modulo AC of
the + can be represented in the form s1 + · · · + sk with each si either an
atomic action or of the form t1·t2; we refer to the subterms s1, . . . , sk as the
summands of s.

The three remaining axioms A3-5 are turned into rewrite rules, by direct-
ing them from left to right:

x+ x→ x
(x+ y)·z → x·z + y·z

(x·y)·z → x·(y·z)

These rewrite rules are applied to basic process terms modulo AC of the +.
For example, none of the three rewrite rules applies to (a+ b) + a, but

(a+ b) + a =AC b+ (a+ a) → b+ a.

The TRS is terminating (see Definition A.4.4) modulo AC of the +. That
is, each reduction of a basic process term ends up in a normal form n (see
Definition A.4.3), meaning that the rewrite rules do not apply to any of the
basic process terms that are equivalent to n modulo AC of the +. This follows
from the weight function (cf. Example A.4.2) on basic process terms that is

defined inductively as follows, where v ranges over A. The symbol
∆
= stands

for “equals by definition”.
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weight(v)
∆
= 2

weight(s+ t)
∆
= weight(s) + weight(t)

weight(s·t) ∆
= weight(s)2·weight(t).

(Here, + and · refer to addition and multiplication on the natural numbers,
respectively.) It is not hard to see that each application of a rewrite rule
strictly decreases the weight of a basic process term, and that moreover basic
process terms that are equivalent modulo AC of the + have the same weight.
Since each sequence of natural numbers k1 > k2 > k3 > · · · is finite, it follows
that the TRS is terminating modulo AC of the +.

Owing to the forms of the left-hand sides of the three rewrite rules, normal
forms are built from distinct summands a and as, with a an atomic action
and s a normal form. We prove for normal forms n and n′ that n↔ n′ implies
n =AC n′. The proof is based on induction with respect to the sizes of n and
n′, meaning the number of function symbols that they contain. Let n↔ n′.

• Consider a summand a of n. Then n
a→ √, so n ↔ n′ implies n′

a→ √,
meaning that n′ also contains the summand a.

• Consider a summand as of n. Then n
a→ s, so n↔ n′ implies n′

a→ t with
s ↔ t, meaning that n′ contains a summand at. Since s and t are normal
forms and have sizes smaller than n and n′, respectively, by induction s↔ t
implies s =AC t.

Hence, each summand of n is also a summand of n′. Vice versa, each summand
of n′ is also a summand of n. In other words, n =AC n′.

Finally, let the basic process terms s and t be bisimilar. The TRS is
terminating modulo AC of the +, so it reduces s and t to normal forms n
and n′, respectively. Since the rewrite rules and equivalence modulo AC of
the + can be derived from the axioms, s = n and t = n′. Soundness of the
axioms then yields s ↔ n and t ↔ n′, so n ↔ s ↔ t ↔ n′. We showed that
n↔ n′ implies n =AC n′. Hence, s = n =AC n′ = t. 2

The proof of Theorem 2.4.3 points out a mechanised way to verify whether
two basic process terms are bisimilar. First, reduce both basic process terms
to a normal form, by means of the rewrite rules. Next, check whether the two
resulting normal forms are equivalent modulo AC of the +. If so, then the
original terms are bisimilar; if not, then the original terms are not bisimilar.

Exercise 2.4.4. Verify for the TRS in the proof of Theorem 2.4.3 that if
s→ t then weight(s) > weight(t), and if s =AC t then weight(s) ≡ weight(t).

Exercise 2.4.5. Suppose the definition of the weight function in the proof of

Theorem 2.4.3 would be adapted by putting weight(s·t) ∆
= weight(s)·weight(t).

Give basic process terms s and t of the same weight such that s→ t.

Example 2.4.1. We equate the bisimilar basic process terms (a+ b) + a and
(b+ a) + b. First, they are reduced to normal form:
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(a+ b) + a =AC b+ (a+ a)
A3→ b+ a,

(b+ a) + b =AC a+ (b+ b)
A3→ a+ b.

Finally, since the two normal forms are equivalent modulo AC of the +,
b+ a =AC a+ b, we conclude that the two original terms are provably equal.

Example 2.4.2. We equate (a + a)(cd) + (bc)(d + d) and ((b + a)(c + c))d.
First, these basic process terms are reduced to normal form. In each step, the
subterm that is reduced is underlined.

(a+ a)(cd) + (bc)(d+ d) ((b+ a)(c+ c))d
A3→ a(cd) + (bc)(d+ d)

A3→ ((b+ a)c)d
A3→ a(cd) + (bc)d

A5→ (b+ a)(cd)
A5→ a(cd) + b(cd)

A4→ b(cd) + a(cd).

Finally, since the two normal forms are equivalent modulo AC of the +, we
conclude that the two original terms are provably equal.

Note that the reductions in the last example are not unique, because in
several cases more than one subterm can be reduced. Therefore, a mechanised
proof calls for a rewriting strategy, to determine which subterm is reduced
by which rewrite rule. In the proof of the completeness theorem for BPA it
was ensured that each of these rewriting strategies produces the same normal
form from a given input term, modulo AC of the +.

Exercise 2.4.6. Derive the following three equations from EBPA:

- ((a+ a)(b+ b))(c+ c) = a(bc);
- (a+ a)(bc) + (ab)(c+ c) = (a(b+ b))(c+ c);
- ((a+ b)c+ ac)d = (b+ a)(cd).

The axiomatisation EBPA is ω-complete (see Definition A.3.2), meaning
that if all closed instantiations of an equation can be derived from this ax-
iomatisation, then the equation itself can be derived from this axiomatisation.

Theorem 2.4.4. The axiomatisation EBPA is ω-complete.

Though Theorem 2.4.4 is independent of bisimulation equivalence, it can
be proved in a similar fashion as completeness of EBPA for BPA modulo
bisimulation equivalence; see the proof of Theorem 2.4.3. The only extra is
that variables need to be supplied with an operational semantics, giving rise
to an extension of bisimulation equivalence to open terms (see Definition
A.1.2). This extension should be such that for all open terms s and t:

(1) if σ(s)↔ σ(t) for all closed substitutions σ, then s↔ t;
(2) if s↔ t, then s = t.
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Namely, by soundness of the axioms, σ(s) = σ(t) implies σ(s)↔ σ(t) for all
closed substitutions σ. According to (1) this yields s ↔ t, so by (2) s = t.
See [2, 103, 159] for examples of this proof technique.

For the ω-completeness proof of EBPA, variables are to be interpreted as
atomic actions, meaning that the transition rule

x
x→√ is added to the TSS of

BPA. Then (2) can be proved along the lines of the proof of Theorem 2.4.3.
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3. Algebra of Communicating Processes

Atomic actions and the operators alternative and sequential composition from
the previous chapter provide relatively primitive tools to construct an LTS. In
general, the size of a basic process term is comparable to the size of the related
process graph. This chapter introduces operators to express parallelism and
concurrency, which enable us to capture a large process graph by means of a
comparatively small process term.

3.1 Parallelism and Communication

In practice, process behaviour is often composed of several processors that are
executed in parallel, where these separate entities may influence each other’s
execution. One could say that the processors are the building blocks that
make up the complete system, cemented together by mutual communication
actions. In order to model such concurrent systems, Milner [154] introduced
the merge, which is a binary operator that executes the two process terms
in its arguments in parallel. That is, s‖t can choose to execute an initial

transition of s (i.e., a transition s
a→ s′ or s

a→ √) or an initial transition of
t. This is formalised by four transition rules for the merge:

x
v→ √

x‖y v→ y

x
v→ x′

x‖y v→ x′‖y

y
v→ √

x‖y v→ x

y
v→ y′

x‖y v→ x‖y′

Moreover, s‖t can choose to execute a communication between initial tran-
sitions of s and t. For this purpose we assume a communication function
γ : A × A → A, which produces for each pair of atomic actions a and b
their communication γ(a, b). This communication function is required to be
commutative and associative; that is, for a, b, c ∈ A,

γ(a, b) ≡ γ(b, a)
γ(γ(a, b), c) ≡ γ(a, γ(b, c)).
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The next four transition rules for the merge express that s‖t can choose to
execute a communication of initial transitions of s and t:

x
v→ √ y

w→ √

x‖y γ(v,w)→ √
x

v→ √ y
w→ y′

x‖y γ(v,w)→ y′

x
v→ x′ y

w→ √

x‖y γ(v,w)→ x′

x
v→ x′ y

w→ y′

x‖y γ(v,w)→ x′‖y′

The variables x, x′, y, and y′ in the eight transition rules for the merge range
over the collection of process terms, while v and w range over the set A of
atomic actions.

Example 3.1.1. Let the communication of two atomic actions from {a, b, c}
always result in c. The process graph of the process term (ab)‖(ba) is depicted
in Fig. 3.1.
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Fig. 3.1. Process graph of (ab)‖(ba)

Example 3.1.1 shows that the merge of two simple process terms produces
a relatively large process graph. This partly explains the strength of a theory
of communicating processes, as this theory makes it possible to draw conclu-
sions about the full system by studying its separate concurrent components.

Exercise 3.1.1. Let the communication of two atomic actions from {a, b, c}
always result in c. Find the process graph that belongs to the process term
((ab)a)‖b. Give the derivations of the transitions in this process graph from
the transition rules of BPA with the merge operator.
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3.2 Left Merge and Communication Merge

Moller [162] proved that there does not exist a sound and complete finite ax-
iomatisation for BPA extended with the merge, modulo bisimulation equiv-
alence. This problem is overcome by defining two extra operators called left
merge and communication merge, which both capture part of the behaviour
of the merge. These operators were introduced by Bergstra and Klop [41], to
answer an open question posed by de Bakker and Zucker [29].

The left merge s t takes its initial transition from the process term s,
and then behaves as the merge ‖. This is expressed by two transition rules
for the left merge, which correspond with the first two transition rules for
the merge:

x
v→ √

x y
v→ y

x
v→ x′

x y
v→ x′‖y

The communication merge s|t executes as initial transition a communication
between initial transitions of the process terms s and t, and then behaves
as the standard merge operator ‖. This is expressed by four transition rules
for the communication merge, which correspond with the last four transition
rules for the merge:

x
v→ √ y

w→ √

x|y γ(v,w)→ √
x

v→ √ y
w→ y′

x|y γ(v,w)→ y′

x
v→ x′ y

w→ √

x|y γ(v,w)→ x′

x
v→ x′ y

w→ y′

x|y γ(v,w)→ x′‖y′

As binding convention we assume that the ‖, , and | bind stronger than
the +. For example, a b + a‖c represents (a b) + (a‖c). We refer to BPA
extended with the three parallel operators ‖, , and | as PAP (for process
algebra with parallelism).

The left and communication merge together cover the behaviour of the
merge, in the sense that s‖t↔ (s t+ t s) + s|t for all process terms s and t
in PAP. Namely, s‖t can execute either an initial transition of s or t, which is
covered by s t or t s, respectively, or a communication of initial transitions
of s and t, which is covered by s|t. This point will be elaborated later on.

Exercise 3.2.1. Prove that the following pairs of process terms are bisimilar,
for process terms s, t, and u in PAP:

- s‖t and (s t+ t s) + s|t;
- s‖t and t‖s;
- s|t and t|s;
- (s‖t)‖u and s‖(t‖u);
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- (s|t)|u and s|(t|u);
- (s t) u and s (t‖u);
- (s t)|u and (s|u) t.

We want the TSS of PAP to be a conservative extension (see Definition
B.5.1) of the TSS of BPA, meaning that the fourteen transition rules for the
three parallel operators do not influence the process graphs of basic process
terms. That is, an initial transition of a basic process term should be derivable
from the TSS of PAP if and only if this transition can be derived from the
TSS of BPA.

Theorem 3.2.1. PAP is a conservative extension of BPA.

Proof. This theorem follows from the following two facts.

1. The transition rules of BPA in Table 2.1 are all source-dependent (see
Definition B.5.2).

2. The sources (see Definition B.1.2) of the fourteen transition rules for the
three parallel operators all contain an occurrence of ‖, , or |.

Since the TSS of BPA is source-dependent, and the transition rules for the
three parallel operators contain a fresh operator (see Definition B.5.3) in their
sources, Theorem B.5.1 says that PAP is a conservative extension of BPA. 2

Exercise 3.2.2. Show that the transition rules of BPA are source-dependent.

PAP can only have a sound and complete axiomatisation modulo bisimu-
lation if this equivalence is a congruence with respect to PAP. In other words,
if s↔ s′ and t↔ t′, then it has to be the case that s+ t↔ s′+ t′, s·t↔ s′·t′,
s‖t↔ s′‖t′, s t↔ s′ t′, and s|t↔ s′|t′.

Theorem 3.2.2. Bisimulation equivalence is a congruence with respect to
PAP.

Proof. The transition rules for the three parallel operators, as well as of BPA,
are all in panth format. So the bisimulation equivalence that they induce is
a congruence; see Theorem B.3.1. 2

Exercise 3.2.3. Verify that the transition rules for the three parallel oper-
ators are in panth format.

3.3 Axioms for PAP

We are after an axiomatisation EPAP such that the induced equality relation
characterises bisimulation equivalence over PAP in the following sense:

1. EPAP is sound, i.e., if s = t can be derived from the axioms in EPAP for
certain process terms s and t in PAP, then s↔ t;
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2. EPAP is complete, i.e., if s↔ t holds for certain process terms s and t in
PAP, then s = t can be derived from the axioms in EPAP.

Table 3.1 presents the axioms for the three parallel operators modulo
bisimulation equivalence. We already noted that the merge can be split into
the left merge and the communication merge, in the sense that s‖t is bisimilar
with (s t+t s)+s|t; this is exploited in axiom M1. Axioms LM2-4 and CM5-
10 enable us to eliminate occurrences of the left merge and the communication
merge from process terms. The variables x, y, and z in the axioms range over
process terms, while v and w range over the set A of atomic actions. The
axiomatisation EPAP consists of EBPA together with the axioms in Table 3.1.

Table 3.1. Axioms for merge, left merge, and communication merge

M1 x‖y = (x y + y x) + x|y

LM2 v y = v·y
LM3 (v·x) y = v·(x‖y)
LM4 (x+ y) z = x z + y z

CM5 v|w = γ(v, w)
CM6 v|(w·y) = γ(v, w)·y
CM7 (v·x)|w = γ(v, w)·x
CM8 (v·x)|(w·y) = γ(v, w)·(x‖y)
CM9 (x+ y)|z = x|z + y|z
CM10 x|(y + z) = x|y + x|z

Theorem 3.3.1. EPAP is sound for PAP modulo bisimulation equivalence.

Proof. Since bisimulation is both an equivalence and a congruence, we only
need to check that the first clause in the definition of the relation = is sound.
That is, if s = t is an axiom in EPAP and σ a closed substitution that maps the
variables in s and t to process terms, then we need to check that σ(s)↔ σ(t).
Soundness of the axioms A1-5 can be checked as in the proof of soundness of
EBPA, in Theorem 2.4.2. Here, we only provide some intuition for soundness
of the axioms in Table 3.1:

• M1 is the defining axiom for the merge, which says that each initial tran-
sition of s‖t stems from s (expressed by the summand s t) or from t (ex-
pressed by the summand t s), or is a communication of initial transitions
from s and t (expressed by the summand s|t);

• LM2,3 are the defining axioms for the left merge, which say that s t takes
its initial transition from s;

• LM4 (right distributivity of ) says that in a term (s + t) u, a
choice for an initial transition from s or t is a choice for s u or t u,
respectively;
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• CM5-8 are the defining axioms for the communication merge, which say
that s|t makes as initial transition a communication of initial transitions
from s and t;

• CM9 (right distributivity of |) says that in a term (s+ t)|u, a choice
for an initial transition from s or t is a choice for s|u or t|u, respectively;

• CM10 (left distributivity of |) says that in a term s|(t+u), a choice
for an initial transition from t or u is a choice for s|t or s|u, respectively.

These intuitions can be made rigorous by means of explicit bisimulation re-
lations between the left- and right-hand sides of closed instantiations of the
axioms in Table 3.1. Hence, all such instantiations are sound modulo bisim-
ulation equivalence. 2

Exercise 3.3.1. Prove soundness of the axioms LM3,4 and CM8,10; that is,
the following four statements are valid for actions a and b and process terms
s, t, and u in PAP:

- (as) t↔ a(s‖t);
- (s+ t) u↔ s u+ t u;
- (as)|(bt)↔ γ(a, b)(s‖t);
- s|(t+ u)↔ s|t+ s|u.

Exercise 3.3.2. Give counter-examples to show that right distributivity of
the merge, (x + y)‖z = x‖z + y‖z, and left distributivity of the left merge,
x (y + z) = x y + x z, are not sound modulo bisimulation equivalence.

Exercise 3.3.3. Let t be a process term in PAP, and let

{t ai→ ti | i ∈ {1, . . . , k}} ∪ {t
bj→ √ | j ∈ {1, . . . , `}}

be the set of initial transitions of t. Prove that the equation

t = a1t1 + · · ·+ aktk + b1 + · · ·+ b`

can be derived from EPAP. (Hint: apply structural induction with respect to
the size of t.)

We proceed to prove that EPAP is complete for PAP modulo bisimulation
equivalence, meaning that s↔ t implies s = t. As before, the proof is based
on a term rewriting analysis, in which the axioms are directed from left to
right.

Theorem 3.3.2. EPAP is complete for PAP modulo bisimulation equiva-
lence.

Proof. The axioms A3-5 in EBPA and the axioms M1, LM2-4, and CM5-
10 are turned into rewrite rules, by directing them from left to right. The
resulting TRS is applied to process terms in PAP modulo AC of the +.
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The TRS is terminating modulo AC of the +. That is, each reduction of a
process term ends up in a normal form, which cannot be reduced any further.
This can be seen by defining inductively an appropriate weight function on
process terms, which extends the weight function in the proof of Theorem
2.4.3 as follows:

weight(s‖t) ∆
= 3·(weight(s)·weight(t))2 + 1

weight(s t)
∆
= (weight(s)·weight(t))2

weight(s|t) ∆
= (weight(s)·weight(t))2.

It is not hard to see that each application of a rewrite rule strictly decreases
the weight of a process term, and that moreover process terms that are equiva-
lent modulo AC of the + have the same weight. Hence, the TRS is terminating
modulo AC of the +.

We prove that normal forms n do not contain occurrences of the three
parallel operators ‖, , and |. The proof is based on induction with respect
to the size of the normal form n.

• If n is an atomic action, then it does not contain any parallel operators.
• Suppose n =AC s + t or n =AC s·t. Then by induction the normal forms
s and t do not contain any parallel operators, so that n does not contain
any parallel operators either.

• n cannot be of the form s‖t, because in that case the directed version of
M1 would apply to it, contradicting the fact that n is a normal form.

• Suppose n =AC s t. By induction, the normal form s does not contain any
parallel operators. We distinguish the possible forms of the normal form s:
- if s ≡ a, then the directed version of LM2 applies to s t;
- if s =AC au, then the directed version of LM3 applies to s t;
- if s =AC u+ u′, then the directed version of LM4 applies to s t.
These three cases, which cover the possible forms of the normal form s,
contradict the fact that n is a normal form. We conclude that n cannot be
of the form s t.

• Suppose n =AC s|t. By induction the normal forms s and t do not contain
any parallel operators. Similar as in the previous case, we can distinguish
the possible forms of s and t, which all lead to the conclusion that one of
the directed versions of CM5-10 can be applied to n. We conclude that n
cannot be of the form s|t. The analysis of the possible forms of s and t is
left to the reader.

Hence, normal forms do not contain occurrences of parallel operators. In
other words, normal forms are basic process terms.

We proceed to prove that the axiomatisation EPAP is complete for PAP
modulo bisimulation equivalence. Let the process terms s and t be bisimilar.
The TRS is terminating modulo AC of the +, so it reduces s and t to normal
forms n and n′, respectively. Since the rewrite rules and equivalence modulo
AC of the + can be derived from EPAP, s = n and t = n′. Soundness of
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the axioms then yields s ↔ n and t ↔ n′, so n ↔ s ↔ t ↔ n′. We showed
that the normal forms n and n′ are basic process terms. Then it follows,
as in the proof of Theorem 2.4.3, that n ↔ n′ implies n =AC n′. Hence,
s = n =AC n′ = t. 2

The proof of Theorem 3.3.2 points out a mechanised way to verify whether
two process terms in PAP are bisimilar. First, reduce both process terms to
a normal form, by means of the rewrite rules. Next, check whether the two
resulting normal forms are equivalent modulo AC of the +. If so, then the
original terms are bisimilar; if not, then the original terms are not bisimilar.

Exercise 3.3.4. Verify for the TRS in the proof of Theorem 3.3.2 that if
s→ t then weight(s) > weight(t).

Example 3.3.1. Let the communication of two actions from {a, b, c} always
result in c. We show how (ab)‖b is reduced to its normal form; in each step,
the subterm that is reduced is underlined.

(ab)‖b
M1→ (ab) b+ b (ab) + (ab)|b

LM3→ a(b‖b) + b (ab) + (ab)|b
LM2→ a(b‖b) + b(ab) + (ab)|b
CM7→ a(b‖b) + b(ab) + cb
M1→ a(b b+ b b+ b|b) + b(ab) + cb
A3→ a(b b+ b|b) + b(ab) + cb

LM2→ a(bb+ b|b) + b(ab) + cb
CM5→ a(bb+ c) + b(ab) + cb.

Exercise 3.3.5. Let the communication of two actions from {a, b, c} always
result in c. Reduce the process term b‖(ab) to its normal form. Derive the
equation (ab)‖b = b‖(ab) from EPAP.

Exercise 3.3.6. Derive a‖((b+ c)d) = ((b+ c)d)‖a from EPAP.

The axiomatisation EPAP is not ω-complete. For instance, s‖t ↔ t‖s for
all process terms s and t in PAP (see the second case of Exercise 3.2.1), so
according to Theorem 3.3.2, all closed substitution instances of the equation
x‖y = y‖x can be derived from EPAP. However, x‖y = y‖x itself cannot be
derived from EPAP, which follows from the fact that only the right-hand side
of A3 applies to (a subterm of) x‖y or y‖x.

Exercise 3.3.7. Derive the equations s|t = t|s and s‖t = t‖s from EPAP for
all process terms s and t in PAP.

Exercise 3.3.8. Give counter-examples to show that commutativity and as-
sociativity of the left merge, x y = y x and (x y) z = x (y z), are not
sound modulo bisimulation equivalence.
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3.4 Deadlock and Encapsulation

If two atomic actions are able to communicate, then often we only want these
actions to occur in communication with each other, and not on their own. For
example, let the action send(d) represent sending a datum d into one end of
a channel, while read(d) represents receiving this datum at the other end of
the channel. Furthermore, let the communication of these two actions result
in transferring the datum d through the channel by the action comm(d). For
the outside world, the actions send(d) and read(d) never appear on their own,
but only in communication in the form comm(d).

In order to enforce communication in such cases, we introduce a special
constant δ called deadlock, which does not display any behaviour. The com-
munication function γ is extended by allowing that the communication of two
atomic actions results in δ, i.e., γ : A×A→ A∪ {δ}. This extension of γ en-
ables us to express that two actions a and b do not communicate, by defining

γ(a, b)
∆
= δ. Furthermore, we introduce unary encapsulation operators ∂H for

sets H of atomic actions, which rename all actions in H into δ. Deadlock and
encapsulation were introduced by Milner [154]; our treatment of these notions
is based on [41]. PAP extended with deadlock and encapsulation operators is
called the algebra of communicating processes (ACP).

Since the deadlock does not display any behaviour, there is no transition
rule for this constant. Furthermore, since the communication of actions can
result in δ, the last four transition rules for the merge and the four transition
rules for the communication merge need to be supplied with the requirement
γ(v, w) 6≡ δ. Finally, the behaviour of the encapsulation operators is captured
by the following transition rules, which express that ∂H(t) can execute all
transitions of t of which the labels are not in H:

x
v→ √

∂H(x)
v→ √

v 6∈ H x
v→ x′

∂H(x)
v→ ∂H(x′)

v 6∈ H

The variables x and x′ range over process terms, while v ranges over A.

Exercise 3.4.1. Verify, using the transition rules for sequential composition,
left merge, and communication merge, that process terms of the form δt, δ t,
δ|t, and t|δ do not display any behaviour. In other words, these process terms
are bisimilar to δ.

Exercise 3.4.2. Derive the process graphs of the following process terms:

- ∂{a}(ac);
- ∂{a}((a+ b)c);
- ∂{c}((a+ b)c);
- ∂{a,b}((ab)‖(ba)) with γ(a, b) = c.

Exercise 3.4.3. Prove that the following pairs of process terms are bisimilar,
for process terms s and t in ACP:
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- (sδ)‖t and (s‖t)δ;
- ∂G(∂H(t)) and ∂G∪H(t);
- ∂A(t) and δ;
- ∂∅(t) and t, where ∅ denotes the empty set.

In Example 3.1.1 we drew the relatively large process graph of the process
term (ab)‖(ba), with all communications between atomic actions resulting to
c. The last case in Exercise 3.4.2 shows that encapsulation can be an effective
means to limit the size of the process graph of such a concurrent system. We
give a further example of the use of encapsulation operators.

Example 3.4.1. Suppose a datum 0 or 1 is sent into a channel, which is
expressed by the process term send(0) + send(1). Let this datum be re-
ceived at the other side of the channel, which is expressed by the process
term read(0) + read(1). The communication of send(d) and read(d) results
in comm(d) for d ∈ {0, 1}, while all other communications between actions
result in δ. The behaviour of the channel is described by the process term

∂{send(0), send(1), read(0), read(1)}((send(0) + send(1))‖(read(0) + read(1)))

The encapsulation operator enforces that the action send(d) can only occur
in communication with the action read(d), for d ∈ {0, 1}.

Exercise 3.4.4. Prove from the transition rules that the process term in Ex-
ample 3.4.1 displays the desired behaviour of the channel; that is, it executes
either comm(0) or comm(1), after which it terminates successfully.

Beware not to confuse a transition of the form t
a→ δ with a transition of

the form t
a→ √; intuitively, the first transition expresses that t gets stuck

after the execution of a, while the second transition expresses that t termi-
nates successfully after the execution of a. A process term t is said to contain
a deadlock if there are transitions t

a1→ t1
a2→ · · · an→ tn such that the process

term tn does not have any initial transitions (i.e., tn ↔ δ). In general it is
undesirable that a process contains a deadlock, because it represents that
the process gets stuck without producing any output. Experience learns that
non-trivial specifications of system behaviour often contain a deadlock. For
example, the third sliding window protocol in [189] contains a deadlock; see
[109, Stelling 7]. It can, however, be very difficult to detect such a deadlock,
even if one has a good insight into such a protocol. Automated tools have
been developed to help with the detection of deadlocks; see Section 6.4.

Exercise 3.4.5. Let γ(a, c)
∆
= δ and γ(b, c)

∆
= a. Say for each of the following

process terms whether it contains a deadlock:

- ∂{b}(ab+ c);
- ∂{b}(a(b+ c));
- ∂{b,c}(a(b+ c));
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- ∂{b}((ab)‖c);
- ∂{b,c}((ab)‖c).

As before, we want ACP to be a conservative extension of PAP. That is,
the transition rules for the encapsulation operators should not influence the
process graphs belonging to process terms in PAP.

Theorem 3.4.1. ACP is a conservative extension of PAP.

Proof. This theorem follows from the following two facts.

1. The transition rules of PAP are all source-dependent.
2. The sources of the transition rules for the encapsulation operators contain

an occurrence of ∂H .

Since the TSS of PAP is source-dependent, and the transition rules for encap-
sulation contain a fresh operator in their sources, Theorem B.5.1 says that
ACP is a conservative extension of PAP. 2

Exercise 3.4.6. Verify that the transition rules for the parallel operators
are source-dependent.

In order to be able to capture bisimulation equivalence over ACP by a
sound and complete axiomatisation, it needs to be a congruence. In other
words, if s ↔ s′ and t ↔ t′, then it has to be the case that s + t ↔ s′ + t′,
s·t↔ s′·t′, s‖t↔ s′‖t′, s t↔ s′ t′, s|t↔ s′|t′, and finally ∂H(s)↔ ∂H(s′)
for all subsets H of A.

Theorem 3.4.2. Bisimulation equivalence is a congruence with respect to
ACP.

Proof. This theorem follows from the fact that the transition rules for the
encapsulation operators, as well as of PAP, are in panth format; see Theorem
B.3.1. 2

Table 3.2 presents axioms A6,7 for the deadlock, axioms D1-5 for encap-
sulation, and axioms LM11 and CM12,13 to deal with the interplay of the
deadlock with left and communication merge. The variables x and y range
over process terms, while v ranges over A. The axioms in Table 3.2 together
with EPAP are denoted by EACP.

Theorem 3.4.3. EACP is sound for ACP modulo bisimulation equivalence.

Proof. Since bisimulation is both an equivalence and a congruence, we only
need to check that the first clause in the definition of the relation = is sound.
That is, if s = t is an axiom in EACP and σ a closed substitution that maps the
variables in s and t to process terms, then we need to check that σ(s)↔ σ(t).
Soundness of the axioms in EPAP can be checked as before. Here, we only
provide some intuition for soundness of the axioms in Table 3.2:
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Table 3.2. Axioms for deadlock and encapsulation

A6 x+ δ = x
A7 δ·x = δ

D1 v 6∈ H ∂H(v) = v
D2 v ∈ H ∂H(v) = δ
D3 ∂H(δ) = δ
D4 ∂H(x+ y) = ∂H(x) + ∂H(y)
D5 ∂H(x·y) = ∂H(x)·∂H(y)

LM11 δ x = δ
CM12 δ|x = δ
CM13 x|δ = δ

• A6 says that the deadlock δ displays no behaviour, so that in a process
term t+ δ the summand δ is redundant;

• A7, LM11, and CM12,13 say that the deadlock δ blocks all behaviour, so
that process terms δt, δ t, δ|t, and t|δ do not display any behaviour (see
Exercise 3.4.1);

• D1-3 are the defining equations for the encapsulation operator ∂H : D2 says
that it renames atomic actions from H into δ, while D1,3 say that it leaves
atomic actions outside H and the deadlock δ unchanged;

• D4,5 say that in ∂H(t), all transitions of t labelled with atomic actions
from H are blocked.

These intuitions can be made rigorous by means of explicit bisimulation re-
lations between the left- and right-hand sides of closed instantiations of the
axioms in Table 3.2. Hence, all such instantiations are sound modulo bisim-
ulation equivalence. 2

Exercise 3.4.7. Give a counter-example to show that the equation ∂H(x‖y)
= ∂H(x)‖∂H(y) is not sound modulo bisimulation equivalence.

Theorem 3.4.4. EACP is complete for ACP modulo bisimulation equiva-
lence.

Proof. The axioms A6,7, D1-5, LM11, and CM12,13 are turned into rewrite
rules, directed from left to right, and added to the thirteen rewrite rules for
PAP in the proof of Theorem 3.3.2. The resulting TRS is terminating modulo
AC of the +, which can be seen by inductively defining an appropriate weight
function on process terms, which extends the weight function in the proof of
Theorem 3.3.2 as follows:

weight(δ)
∆
= 2

weight(∂H(s))
∆
= 2weight(s).
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It is not hard to see that each application of a rewrite rule strictly decreases
the weight of a process term, and that moreover process terms that are equiva-
lent modulo AC of the + have the same weight. Hence, the TRS is terminating
modulo AC of the +.

As in the proof of Theorem 3.3.2, it can be shown that normal forms do
not contain occurrences of the three parallel operators ‖, , and |. We proceed
to show that normal forms are not of the form ∂H(s). This fact is proved by
an analysis of the possible forms of s, where we may assume that s is a normal
form that does not contain occurrences of encapsulation operators:

• if s ≡ a, then the directed version of D1 or D2 applies to ∂H(s);
• if s ≡ δ, then the directed version of D3 applies to ∂H(s);
• if s =AC t+ t′, then the directed version of D4 applies to ∂H(s);
• if s =AC tt′, then the directed version of D5 applies to ∂H(s).

These four cases, which cover the possible forms of the normal form s, all
lead to the conclusion that ∂H(s) is not a normal form. Hence, normal forms
are process terms in BPA extended with the deadlock.

We proceed to prove that the axiomatisation EACP is complete for ACP
modulo bisimulation equivalence. Let the process terms s and t be bisimilar.
The TRS is terminating modulo AC of the +, so it reduces s and t to normal
forms n and n′, respectively. Since the rewrite rules and equivalence modulo
AC of the + can be derived from EACP, s = n and t = n′. Soundness of the
axioms then yields s ↔ n and t ↔ n′, so n ↔ s ↔ t ↔ n′. We showed that
the normal forms n and n′ are basic process terms with possible occurrences
of deadlocks. Then it follows, as in the proof of Theorem 2.4.3, that n↔ n′

implies n =AC n′. Hence, s = n =AC n′ = t. 2

The proof of Theorem 3.4.4 points out a mechanised way to verify whether
two process terms in ACP are bisimilar. First, reduce both process terms to
a normal form, by means of the rewrite rules. Next, check whether the two
resulting normal forms are equivalent modulo AC of the +. If so, then the
original terms are bisimilar; if not, then the original terms are not bisimilar.

Exercise 3.4.8. Prove for the TRS in the proof of Theorem 3.4.4 that if
s→ t then weight(s) > weight(t).

Exercise 3.4.9. Suppose s + t = δ can be derived from EACP for certain
process terms s and t in ACP. Derive s = δ from EACP.

Exercise 3.4.10. Reduce the following process terms to their respective nor-
mal forms;

- δ‖a;
- ∂{a,b}((ab)‖(ba)) with γ(a, b) = c (cf. the fourth case of Exercise 3.4.2);
- ∂{send(0), send(1), read(0), read(1)}((send(0)+send(1))‖(read(0)+read(1))) (cf.

Example 3.4.1).
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Exercise 3.4.11. Suppose action a does not communicate with any action.
Prove that (ta)‖ak ↔ (t‖ak)a for process terms t in ACP, and positive natural
numbers k.

Exercise 3.4.12. Suppose actions in {a, b} do not communicate. Derive the
equation

(b((ba)‖(aa))‖(ba))a = (((ba)‖(ba))a)‖(baa)

from EACP.

Exercise 3.4.13. Let the binary operator alt alternately execute an atomic
action from its first and second argument. That is, the transition rules for alt
are:

x
v→ √

alt(x, y)
v→ y

x
v→ x′

alt(x, y)
v→ alt(y, x′)

Add this operator to ACP, give axioms for the operator alt , and argue why
they are sound modulo bisimulation equivalence.

Explain why it is possible to eliminate all occurrences of alt from process
terms in ACP extended with alt , using your axioms together with EACP. Fi-
nally, show that this axiomatisation is complete for ACP with the alt operator
modulo bisimulation equivalence.



4. Recursion

Up to now we have focussed on finite processes. However, systems can often
exhibit unlimited behaviour. In this chapter it is shown how such infinite
behaviour can be specified using recursive equations. For an exposition on
alternative, iterative operators to express infinite behaviour, see [37].

4.1 Guarded Recursive Specifications

Consider the process that alternately executes actions a and b until infinity,
with the root node presented at the top:

b a

Since ACP can only specify finite behaviour, there does not exist a process
term in ACP with this (or a bisimilar) process graph. Intuitively, the process
above can be captured by means of two recursive equations:

X = aY
Y = bX.

Here, X and Y are recursion variables, which intuitively represent the two
states of the process in which it is going to execute a or b, respectively.

Definition 4.1.1 (Recursive specification). A recursive specification is
a finite set of recursive equations

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn)

where the left-hand sides Xi are recursion variables, and the right-hand sides
ti(X1, . . . , Xn) are process terms in ACP with possible occurrences of the
recursion variables X1, . . . , Xn.
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Definition 4.1.2 (Solution). Processes p1, . . . , pn are a solution for a re-
cursive specification {Xi = ti(X1, . . . , Xn) | i ∈ {1, . . . , n}} (with respect to
bisimulation equivalence) if pi ↔ ti(p1, . . . , pn) for i ∈ {1, . . . , n}.

A recursive specification should represent a unique process, so we want its
solution to be unique, modulo bisimulation equivalence. That is, if p1, . . . , pn
and q1, . . . , qn are two solutions for the same recursive specification, then
pi ↔ qi for i ∈ {1, . . . , n}. However, there exist recursive specifications that
allow more than one solution modulo bisimulation equivalence. We give some
examples.

Example 4.1.1. Let a ∈ A.

1. All processes are a solution for the recursive specification {X=X}.
2. All processes p that can execute an initial transition p

a→ √ are a solution
for the recursive specification {X=a+X}.

3. All processes that cannot terminate successfully are a solution for the
recursive specification {X=Xa}.

Exercise 4.1.1. Give two solutions for the recursive specification {X=a‖X}
that are not bisimilar.

The following example features recursive specifications that do have a
unique solution modulo bisimulation equivalence.

Example 4.1.2. Let a, b ∈ A.

1. The only solution for {X=aY, Y=bX}, modulo bisimulation equivalence,
is X ↔ abab · · · and Y ↔ baba · · · .

2. The only solution for {X=Y, Y=aX}, modulo bisimulation equivalence,
is X ↔ aaa · · · and Y ↔ aaa · · · .

3. The only solution for {X=(a+b) X}, modulo bisimulation equivalence,
is X ↔ (a+ b)(a+ b)(a+ b) · · · .

A recursive specification allows a unique solution modulo bisimulation
equivalence if and only if it is guarded.

Definition 4.1.3 (Guarded recursive specification). A recursive speci-
fication

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn)

is guarded if the right-hand sides of its recursive equations can be adapted to
the form

a1·s1(X1, . . . , Xn) + · · ·+ ak·sk(X1, . . . , Xn) + b1 + · · ·+ b`
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with a1, . . . , ak, b1, . . . , b` ∈ A, by applications of the axioms in EACP and
replacing recursion variables by the right-hand sides of their recursive equa-
tions. The sum above is allowed to be empty (i.e., k and ` can both be zero),
in which case it represents the deadlock δ.

The recursive specifications in Example 4.1.1 are all unguarded; that is,
their right-hand sides cannot be brought into the desired form presented in
Definition 4.1.3.

Exercise 4.1.2. Show that the recursive specifications in Example 4.1.2 are
guarded.

Exercise 4.1.3. Show that {X=Y ‖Z, Y=Z+a, Z=bZ}, with all communi-
cations between actions from {a, b, c} resulting to c, is guarded.

4.2 Transition Rules for Guarded Recursion

If E is a guarded recursive specification, and X a recursion variable in E, then
intuitively 〈X|E〉 denotes the process that has to be substituted for X in the
solution for E. For instance, if E is {X=aY, Y=bX}, then 〈X|E〉 represents
the process abab · · · , while 〈Y |E〉 represents the process baba · · · ; see the first
recursive specification in Example 4.1.2. We extend ACP with the constants
〈X|E〉 for guarded recursive specifications E and recursion variables X in E.

Assume that the guarded recursive specification E is of the form

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn).

The TSS of ACP with guarded recursion is obtained by extending the TSS of
ACP with two transition rules from [100], which express that the behaviour
of the solutions 〈Xi|E〉 for the recursion variables Xi in E, for i ∈ {1, . . . , n},
is exactly the behaviour of their right-hand sides ti(X1, . . . , Xn):

ti(〈X1|E〉, . . . , 〈Xn|E〉) v→ √

〈Xi|E〉 v→ √
ti(〈X1|E〉, . . . , 〈Xn|E〉) v→ y

〈Xi|E〉 v→ y

The variable y ranges over process terms, while v ranges over A.

Example 4.2.1. Let E
∆
= {X=aY, Y=bX}. The process graph of 〈X|E〉 is

〈X|E〉

〈Y |E〉

b a
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The transition 〈X|E〉 a→ 〈Y |E〉 can be derived from the TSS of ACP with
guarded recursion as follows:

a
a→ √ (

v
v→ √

, v := a)

———————–

a〈Y |E〉 a→ 〈Y |E〉 (
x

v→ √

xy
v→ y

, v := a, x := a, y := 〈Y |E〉)
———————–

〈X|E〉 a→ 〈Y |E〉 (
a〈Y |E〉 v→ y

〈X|E〉 v→ y
, v := a, y := 〈Y |E〉)

Exercise 4.2.1. Derive the transition 〈Y |E〉 b→ 〈X|E〉 from the transition
rules, for the guarded recursive specification E in Example 4.2.1.

From now on, for notational convenience, terms are often considered mod-
ulo associativity of sequential composition (i.e., modulo axiom A5).

Exercise 4.2.2. Derive the process graphs that belong to the following four
process terms from the transition rules:

- 〈X |X=ab〉;
- 〈X |X=Y X, Y=bY 〉;
- 〈X |X=aXb〉;
- 〈X |X=aXb+c〉.

Theorem 4.2.1. ACP with guarded recursion is a conservative extension of
ACP.

Proof. This theorem follows from the following two facts.

1. The transition rules of ACP are all source-dependent.
2. The sources of the transition rules for guarded recursion are of the form
〈X|E〉.

Since the TSS of ACP is source-dependent, and the sources of the transition
rules for guarded recursion consist of a fresh constant, Theorem B.5.1 says
that ACP with guarded recursion is a conservative extension of ACP. 2

Theorem 4.2.2. Bisimulation equivalence is a congruence with respect to
ACP with guarded recursion.

Proof. This theorem follows from the fact that the transition rules for
guarded recursion, as well as of ACP, are all in panth format; see Theorem
B.3.1. 2

As an example of the use of guarded recursion we consider the bag process
over the set {0, 1}; this example stems from [42] (see also [28]).
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Example 4.2.2. We specify a process that can put elements 0 and 1 into a bag,
and subsequently collect these elements from the bag in arbitrary order. The
actions in(0) and in(1) represent putting a 0 or 1 into the bag, respectively.
Similarly, the actions out(0) and out(1) represent collecting a 0 or 1 from the
bag, respectively. All communications between actions result in δ. Initially
the bag is empty, so that one can only put an element into the bag. The
process graph in Fig. 4.1 depicts the behaviour of the bag over {0, 1}, with
the root state placed in the leftmost uppermost corner. Note that this bag
process consists of infinitely many non-bisimilar states.
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Fig. 4.1. Process graph of the bag over {0, 1}

The bag over {0, 1} can be specified by a single recursive equation, using
the merge ‖. Namely, let E denote the guarded recursive specification

X = in(0)·(X‖out(0)) + in(1)·(X‖out(1)).

The process graph of 〈X|E〉 is bisimilar with the behaviour of the bag over
{0, 1} as depicted above. Namely, initially 〈X|E〉 can only execute an action
in(d) for d ∈ {0, 1}. The subsequent process term 〈X|E〉‖out(d) can put
elements 0 and 1 in the bag and take them out again (by means of the
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parallel component 〈X|E〉), or it can at any time take the initial element d
out of the bag (by means of the parallel component out(d)).

Exercise 4.2.3. Give a bisimulation relation that relates the root state of
the bag over {0, 1} in Fig. 4.1 and the process term 〈X|E〉 in Example 4.2.2.

Exercise 4.2.4. Suppose it would be allowed to use infinitely many recur-
sion variables. Give a guarded recursive specification of the bag over {0, 1}
that consists of infinitely many recursive equations, without using the three
parallel operators.

4.3 Recursive Definition and Specification Principles

As before, we want to fit guarded recursion into an axiomatic framework.
Table 4.1 contains two axioms for guarded recursion, the recursive definition
principle (RDP) and the recursive specification principle (RSP) from [44,
157]. The guarded recursive specification E in the axioms is assumed to be
of the form

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn).

Intuitively, RDP expresses that 〈X1|E〉, . . . , 〈Xn|E〉 is a solution for E, while
RSP expresses that this is the only solution for E modulo bisimulation equiv-
alence.

Table 4.1. Recursive definition and specification principles

RDP 〈Xi|E〉 = ti(〈X1|E〉, . . . , 〈Xn|E〉) (i ∈ {1, . . . , n})

RSP If yi = ti(y1, . . . , yn) for i ∈ {1, . . . , n}, then

yi = 〈Xi|E〉 (i ∈ {1, . . . , n})

Theorem 4.3.1. EACP+RDP,RSP is sound for ACP with guarded recursion
modulo bisimulation equivalence.

Proof. Since bisimulation is both an equivalence and a congruence, we only
need to check that if s = t is an axiom in EACP + RDP,RSP and σ a closed
substitution that maps the variables in s and t to process terms, then σ(s)↔
σ(t). Soundness of the axioms in EACP can be checked as before. Here, we
only provide some intuition for soundness of RDP and RSP:
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• soundness of RDP follows immediately from the two transition rules for
guarded recursion, which express that 〈Xi|E〉 and ti(〈X1|E〉, . . . , 〈Xn|E〉)
have the same initial transitions for i ∈ {1, . . . , n}.

• soundness of RSP follows from the fact that guarded recursive specifica-
tions have only one solution modulo bisimulation equivalence.

These intuitions can be made rigorous by means of explicit bisimulation rela-
tions between the left- and right-hand sides of RDP and closed instantiations
of RSP. 2

Exercise 4.3.1. Give a counter-example to show that RSP is not sound for
unguarded recursive specifications.

Exercise 4.3.2. Give a counter-example to show that the equation 〈X|E〉 y
= 〈X|E〉 y, for guarded recursive specifications E, is not sound modulo bisim-
ulation equivalence.

Example 4.3.1. The bisimilar process terms 〈X |X=aY, Y=aZ,Z=aX〉 and
〈W |W=aaW 〉 can be equated by means of the axioms. This derivation con-
sists of equating both process terms to the process term 〈V |V=aV 〉.

〈V |V=aV 〉 RDP
= a〈V |V=aV 〉.

Hence, substituting 〈V |V=aV 〉 for the recursion variables X, Y , and Z in
{X=aY, Y=aZ,Z=aX} is a solution for this guarded recursive specification.
So by RSP,

〈V |V=aV 〉 = 〈X |X=aY, Y=aZ,Z=aX〉.

Furthermore,

〈V |V=aV 〉 RDP
= a〈V |V=aV 〉 RDP

= aa〈V |V=aV 〉.

Hence, substituting 〈V |V=aV 〉 for the recursion variable W in {W=aaW}
is a solution for this guarded recursive specification. So by RSP,

〈V |V=aV 〉 = 〈W |W=aaW 〉.

Hence,

〈X |X=aY, Y=aZ,Z=aX〉 = 〈V |V=aV 〉 = 〈W |W=aaW 〉.

Exercise 4.3.3. Derive the following equations from EACP + RDP,RSP:

- 〈X |X=aX+b〉 = 〈Y |Y=aY+b〉;
- 〈X |X=aX〉 = 〈Y1 |Y1=aY2, Y2=aY1〉;
- 〈X |X=aaX〉 = 〈Y |Y=aaaY 〉;
- 〈X |X=aX+b(a+b)X〉 = 〈Y |Y=bY+a(a+b)Y 〉;
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- 〈X |X=aX〉‖〈Y |Y=bY 〉 = 〈Z |Z=(a+b+γ(a, b))Z〉;
- 〈X |X=aX+b〉·〈Y |Y=(a+b)Y 〉 = 〈Z |Z=(a+b)Z〉;
- 〈X |X=aX〉 = 〈X |X=aX〉b;
- 〈X |X=aX〉 = 〈Y |Y=aY b〉.

Exercise 4.3.4. Let t1, t2, and t3 be process terms with t1 = a(t2b + c),
t2 = ct2 + bt3, and t3 = a(t1 + t3)t2. Prove t1, t2, and t3 equal to process
terms of the form 〈X|E〉, for some guarded recursive specification E.

Exercise 4.3.5. Let t1 and t2 be two process terms with t1 = at2 and t2 =
at1. Derive the equation t1 = 〈X |X=aX〉.

In the current framework it is not allowed to apply axioms to right-
hand sides of recursive equations directly, but only indirectly using RDP and
RSP. For example, consider the bisimilar process terms 〈X |X=aX+aX〉 and
〈X |X=aX〉. They can be equated using A3 in conjunction with RDP and
RSP:

〈X |X=aX+aX〉 RDP
= a·〈X |X=aX+aX〉+ a·〈X |X=aX+aX〉
A3
= a·〈X |X=aX+aX〉,

so

〈X |X=aX+aX〉 RSP
= 〈X |X=aX〉.

It is tempting, however, to conclude that these process terms are equal by a
direct application of A3 with respect to the right-hand side of the recursive
equation X = aX + aX in the first process term. Although in principle such
an application would be illegal, the following result purports the soundness
of applications of axioms to right-hand sides of recursive equations. At the
same time, Theorem 4.3.2 justifies the manipulation of right-hand sides of
recursive equations in the definition of guarded recursive specifications; see
Definition 4.1.3.

Theorem 4.3.2. Let E1 and E2 be guarded recursive specifications, where
E2 is obtained from E1 by adapting the right-hand sides of its recursive
equations, using the axioms in EACP and the possibility to replace recur-
sion variables by the right-hand sides of their recursive equations. Then
〈X|E1〉 = 〈X|E2〉 can be derived from EACP + RDP,RSP for all recursion
variables X in E1.

Proof. Let E1 consist of recursive equations Xi = ti(X1, . . . , Xn) for i ∈
{1, . . . , n}. Fix a j ∈ {1, . . . , n}; we distinguish the two possible adaptations
of the right-hand side of Xj = tj(X1, . . . , Xn) in E1.

1. Suppose tj(X1, . . . , Xn) = sj(X1, . . . , Xn) can be derived from EACP.
Let E2 be obtained from E1 by adapting the right-hand side of the j-th
recursive equation in E1 to sj(X1, . . . , Xn).
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〈Xi|E1〉 RDP
= ti(〈X1|E1〉, . . . , 〈Xn|E1〉) for i 6= j

〈Xj |E1〉 RDP
= tj(〈X1|E1〉, . . . , 〈Xn|E1〉)
= sj(〈X1|E1〉, . . . , 〈Xn|E1〉).

So replacing Xi by 〈Xi|E1〉 for i ∈ {1, . . . , n} is a solution for E2. Hence,
by RSP, 〈Xi|E1〉 = 〈Xi|E2〉 for i ∈ {1, . . . , n}.

2. Suppose sj(X1, . . . , Xn) is the result of replacing an occurrence of Xk

in tj(X1, . . . , Xn) by tk(X1, . . . , Xn), for some k ∈ {1, . . . , n}. Let E2 be
obtained from E1 by adapting the right-hand side of the j-th recursive
equation in E1 to sj(X1, . . . , Xn).

〈Xi|E1〉 RDP
= ti(〈X1|E1〉, . . . , 〈Xn|E1〉) for i 6= j

〈Xj |E1〉 RDP
= tj(〈X1|E1〉, . . . , 〈Xn|E1〉)

RDP
= sj(〈X1|E1〉, . . . , 〈Xn|E1〉).

So replacing Xi by 〈Xi|E1〉 for i ∈ {1, . . . , n} is a solution for E2. Hence,
by RSP, 〈Xi|E1〉 = 〈Xi|E2〉 for i ∈ {1, . . . , n}.

Since = is closed under transitivity, the two cases above together yield the
desired result. 2

Exercise 4.3.6. Let t be a process term in ACP with guarded recursion,
and let

{t ai→ ti | i ∈ {1, . . . , k}} ∪ {t
bj→ √ | j ∈ {1, . . . , `}}

be the set of initial transitions of t. Prove that the equation

t = a1t1 + · · ·+ aktk + b1 + · · ·+ b`

can be derived from EACP + RDP.

4.4 Completeness for Regular Processes

ACP with guarded recursion does not allow a straightforward complete ax-
iomatisation modulo bisimulation equivalence. In particular, the axiomatisa-
tion EACP + RDP,RSP is incomplete for ACP with guarded recursion. For
instance, the following two symmetric guarded recursive specifications of the
bag over {0, 1} (see Example 4.2.2) are bisimilar, but cannot be proved equal
by means of EACP + RDP,RSP:

X = in(0)·(X‖out(0)) + in(1)·(X‖out(1))

Y = in(0)·(out(0)‖Y ) + in(1)·(out(1)‖Y ).
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(In this particular case, this could be remedied by adding a commutativity
axiom for the merge.)

In this section it is shown that EACP + RDP,RSP is complete for the
subclass of linear recursive specifications.

Definition 4.4.1 (Linear recursive specification). A recursive specifica-
tion is linear if its recursive equations are of the form

X = a1X1 + · · ·+ akXk + b1 + · · ·+ b`

with a1, . . . , ak, b1, . . . , b` ∈ A. (The empty sum represents δ.)

A regular process, which can reach only finitely many states from its root
state (see Definition B.3.1), can always be described by a linear recursive
specification. Namely, each reachable state s in the regular process can be
represented by a recursion variable Xs. If state s can evolve into state s′ by
the execution of an action a, then this is expressed by a summand aXs′ at
the right-hand side of the recursive equation for Xs. Moreover, if state s can
terminate successfully by the execution of an action a, then this is expressed
by a summand a at the right-hand side of the recursive equation for Xs.
The result is a linear recursive specification E, and 〈Xs|E〉 ↔ s for all states
s in the regular process. Vice versa, a linear recursive specification always
gives rise to a regular process. Note that a linear recursive specification is by
default guarded.

Exercise 4.4.1. Give a linear recursive specification E such that the regular

process graph {s0
a→ s0, s0

b→ s1, s1
c→ s0, s1

a→ s1}, with root state s0, is
bisimilar to 〈X|E〉 for some recursion variable X in E.

Exercise 4.4.2. Prove that each process term in ACP with linear recur-
sion produces a regular process graph. (Hint: apply structural induction with
respect to term size.)

We prove completeness of the axiomatisation EACP + RDP,RSP for ACP
with linear recursive specifications. This completeness result originates from
[42, 157].

Theorem 4.4.1. EACP + RDP,RSP is complete for ACP with linear recur-
sion modulo bisimulation equivalence.

Proof. As a first step we note that each process term t1 in ACP with linear
recursion is provably equal to a process term 〈X1|E〉 with E a linear recursive
specification. Namely, each such process term t1 generates a regular process
graph (see Exercise 4.4.2), with states say t1, . . . , tn. This process graph can
be expressed in the form of equations

ti = ai1ti1 + · · ·+ aikitiki + bi1 + · · ·+ bili



4.4 Completeness for Regular Processes 43

for i ∈ {1, . . . , n} (see Exercise 4.3.6). Let the linear recursive specification
E consist of the recursive equations

Xi = ai1Xi1 + · · ·+ aikiXiki + bi1 + · · ·+ bili

for i ∈ {1, . . . , n}. Since replacing Xi by ti for i ∈ {1, . . . , n} is a solution for
E, RSP yields t1 = 〈X1|E〉.

It remains to prove that if 〈X1|E1〉 ↔ 〈Y1|E2〉 for linear recursive spec-
ifications E1 and E2, then 〈X1|E1〉 = 〈Y1|E2〉. Let E1 and E2 consist of
recursive equations X = tX for X ∈ X and Y = tY for Y ∈ Y, respectively.
The linear recursive specification E is defined to consist of the recursive equa-
tions ZXY = tXY for X ∈ X and Y ∈ Y with 〈X|E1〉 ↔ 〈Y |E2〉, where tXY
consists of the following summands:

1. tXY contains a summand aZX′Y ′ if and only if tX and tY contain the
summands aX ′ and aY ′, respectively, and 〈X ′|E1〉 ↔ 〈Y ′|E2〉;

2. tXY contains a summand b if and only if both tX and tY contain the
summand b.

Let the substitutions σ and ψ from recursion variables to process terms
be defined as follows:

• σ maps recursion variables X in E1 to 〈X|E1〉;
• ψ maps recursion variables ZXY in E to 〈X|E1〉.
We proceed to show that substituting 〈X|E1〉 for recursion variables ZXY in
E is a solution for E; that is, 〈X|E1〉 = ψ(tXY ) for recursion variables ZXY
in E.

Consider a recursion variable ZXY in E. Then 〈X|E1〉 ↔ 〈Y |E2〉, so for
each summand aX ′ of tX there is a summand aY ′ of tY with 〈X ′|E1〉 ↔
〈Y ′|E2〉. Moreover, each summand b of tX is also a summand of tY . Then
the definition of tXY yields that for each summand aX ′ or b of tX there is
a summand aZX′Y ′ or b of tXY . Vice versa, if aZX′Y ′ or b is a summand of
tXY , then according to the definition of tXY , aX ′ or b is a summand of tX .
Since σ(aX ′) ≡ a〈X ′|E1〉 ≡ ψ(aZX′Y ′) and σ(b) ≡ b ≡ ψ(b), it follows that
σ(tX) and ψ(tXY ) consist of the same summands. So we can apply A3 to
derive σ(tX) = ψ(tXY ). Hence,

〈X|E1〉 RDP
= σ(tX) = ψ(tXY ).

We conclude from the derivation above that substituting process terms
〈X|E1〉 for recursion variables ZXY in E is a solution for E. Then RSP
yields 〈X|E1〉 = 〈ZXY |E〉 for recursion variables ZXY in E, so in particular
〈X1|E1〉 = 〈ZX1Y1

|E〉. Likewise we can derive 〈Y1|E2〉 = 〈ZX1Y1
|E〉. Hence,

〈X1|E1〉 = 〈ZX1Y1
|E〉 = 〈Y1|E2〉.

Finally, let s and t be bisimilar process terms in ACP with linear recursion.
At the start of this proof it was shown that s = 〈X1|E1〉 and t = 〈Y1|E2〉
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where E1 and E2 are linear recursive specifications. Soundness of the axioms
yields 〈X1|E1〉 ↔ s ↔ t ↔ 〈Y1|E2〉, which implies 〈X1|E1〉 = 〈Y1|E2〉. So
s = 〈X1|E1〉 = 〈Y1|E2〉 = t. 2

Note that in the proof of Theorem 4.4.1, the procedure to equate bisimilar
process terms is not based entirely on a term rewriting analysis. In general,
automated verification tools (see Section 6.4) can be used to reduce process
terms to normal form using the axiomatisation of ACP. However, applica-
tions of RDP and RSP often require human insight. Therefore, verifications
of protocols in process algebra in practice ask for an interplay between a
verification tool and its user. In this scenario the tool performs routine work,
such as applications of rewrite rules, and the user provides manual input of
tactics that involve RDP and RSP.

4.5 Approximation Induction Principle

At the start of the previous section we mentioned that EACP + RDP,RSP is
not complete for ACP with guarded recursion modulo bisimulation equiva-
lence. In particular, we gave two symmetric guarded recursive specifications
of the bag over {0, 1}, and claimed that they cannot be proved equal by means
of EACP + RDP,RSP. In this section we present an approximation induction
principle (AIP), introduced by Bergstra and Klop [44] (see also [19]), which
can be used to try and equate bisimilar guarded recursive specifications. In-
tuitively, AIP says that if two process terms are bisimilar up to any finite
depth, then they are bisimilar.

Let N denote the collection of natural numbers {0, 1, 2, . . .}. In order to
formalise the notion of “bisimilar up to any finite depth”, we need auxiliary
unary projection operators πn for n ∈ N. The process term πn(t) can execute
all transitions of t up to depth n, which is expressed by the following transition
rules for n ∈ N:

x
v→ √

πn+1(x)
v→ √

x
v→ x′

πn+1(x)
v→ πn(x′)

The subscript n of the projection operator works as a counter, which is de-
creased by one at every transition of the subject term. Note that process
terms π0(t) do not display any behaviour, so that they are bisimilar with δ.

Exercise 4.5.1. Compute the process graphs that belong to the process
terms πn(〈X |X=aY, Y=bX〉), for n ∈ N.

Theorem 4.5.1. ACP with projection operators and guarded recursion is a
conservative extension of ACP with guarded recursion.

Proof. The sources of the transition rules for the projection operators contain
the fresh function symbol πn. Since furthermore the transition rules of ACP
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with guarded recursion are source-dependent, the extension of this algebra
with projection operators is conservative; see Theorem B.5.1. 2

Theorem 4.5.2. Bisimulation equivalence is a congruence with respect to
ACP with projection operators and guarded recursion.

Proof. This theorem follows from the fact that the transition rules for the
projection operators, as well as of ACP with guarded recursion, are all in
panth format; see Theorem B.3.1. 2

Table 4.2 presents axioms for the projection operators, modulo bisimu-
lation equivalence. Furthermore, Table 4.3 presents AIP, stating that two
process terms are equal if all their projections are equal. The variables x and
y in the axioms range over process terms, v ranges over A, and n ranges over
N.

Table 4.2. Axioms for projection operators

PR1 πn(x+ y) = πn(x) + πn(y)
PR2 πn+1(v) = v
PR3 πn+1(v·x) = v·πn(x)
PR4 π0(x) = δ
PR5 πn(δ) = δ

Table 4.3. Approximation induction principle

AIP If πn(x) = πn(y) for n ∈ N, then x = y

Soundness of AIP for ACP with projection operators and guarded re-
cursion modulo bisimulation equivalence was proved by van Glabbeek [100],
using in an essential way the fact that the LTS generated by this algebra is
finitely branching (see Definition B.1.1), meaning that each closed term has
only finitely many initial transitions.

Theorem 4.5.3. EACP + PR1-5 + RDP,RSP,AIP is sound for ACP with
projection operators and guarded recursion modulo bisimulation equivalence.

Proof. Since bisimulation is both an equivalence and a congruence, we only
need to check that if s = t is an axiom in EACP + RDP,RSP,AIP and σ
a closed substitution that maps the variables in s and t to process terms,
then σ(s) ↔ σ(t). Soundness of RDP, RSP, and the axioms in EACP can be
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checked as before. Here, we only provide some intuition for soundness of the
axioms in Table 4.2:

• PR1 says that πn(s+ t) can execute transitions of s and t up to depth n;
• PR2 says that πn+1(a) executes action a to terminate successfully;
• PR3 says that πn+1(at) executes action a, after which it executes transi-

tions of t up to depth n;
• PR4,5 say that π0(t) and πn(δ) do not execute any transitions.

These intuitions can be made rigorous by means of explicit bisimulation re-
lations between the left- and right-hand sides of closed instantiations of the
axioms in Table 4.2.

We proceed with a detailed proof of the soundness of AIP. Let s0 and
t0 be process terms with πn(s0) ↔ πn(t0) for n ∈ N. We want to to find a
bisimulation relation B that relates s0 and t0. We define that sB t if and only
if πn(s) ↔ πn(t) for n ∈ N. Clearly s0 B t0; we proceed to show that B is a
bisimulation relation.

Let sB t and s
a→ √. Then π1(s)

a→ √, so π1(s)↔ π1(t) yields π1(t)
a→ √.

Thus, t
a→ √. Likewise, t

a→ √ implies s
a→ √.

Let sB t and s
a→ s′. We define the following sets of process terms for

n ∈ N:

Sn
∆
= {t′ | t a→ t′ and πn(s′)↔ πn(t′)}.

We make three observations on the sets Sn for n ∈ N.

1. Since πn+1(s) ↔ πn+1(t) and πn+1(s)
a→ πn(s′), there exists a t′ with

t
a→ t′ and πn(s′)↔ πn(t′); hence, Sn is not empty.

2. There are only finitely many process terms t′ such that t
a→ t′ (see Exer-

cise 4.5.2), so Sn is finite.
3. Since πn+1(s′) ↔ πn+1(t′) implies πn(s′) ↔ πn(t′) (see Exercise 4.5.3),

we have Sn ⊇ Sn+1.

These three observations together imply that the sets Sn for n ∈ N have a
non-empty intersection. Select a process term t′ in this intersection. Then
t
a→ t′, and πn(s′) ↔ πn(t′) for all n ∈ N, so by the definition of B we have

s′ B t′. Likewise we can show that sB t and t
a→ t′ implies s

a→ s′ with s′ B t′.
Hence, B is a bisimulation relation, and so s0 ↔ t0. 2

Exercise 4.5.2. Prove that the LTS generated by ACP with projection op-
erators and guarded recursion is finitely branching.

Exercise 4.5.3. Prove that πn+1(s) ↔ πn+1(t) implies πn(s) ↔ πn(t) for
all process terms s and t.

Exercise 4.5.4. Give non-empty (not necessarily finite) sets Sn for n ∈ N
such that S0 ⊇ S1 ⊇ S2 ⊇ · · · and the intersection of all these sets is empty.
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Exercise 4.5.5. Give two non-bisimilar, infinitely branching process graphs
that are bisimilar up to any finite depth.

The following theorem bears witness to the strength of AIP. Note that
RSP is not needed to derive the equations πn(s) = πn(t).

Theorem 4.5.4. For each pair of bisimilar process terms s and t in ACP
with projection operators and guarded recursion, the equations πn(s) = πn(t)
for n ∈ N can be derived from EACP + PR1-5 + RDP.

Proof. Each process term t in ACP with projection operators and guarded
recursion can be equated to a process term of the form

a1t1 + · · ·+ aktk + b1 + · · ·+ b`

by means of EACP + RDP (cf. Exercise 4.3.6).
Let s ↔ t, and fix an n ∈ N. By the observation above, πn(s) and πn(t)

can be equated to process terms s′ and t′, respectively, in BPA extended with
δ. Moreover, since bisimulation equivalence is a congruence, s ↔ t implies
πn(s) ↔ πn(t). So soundness of the axioms yields s′ ↔ πn(s) ↔ πn(t) ↔ t′.
Then, by completeness of the axiomatisation of BPA extended with δ modulo
bisimulation equivalence, s′ = t′. Hence, πn(s) = s′ = t′ = πn(t). 2

Given two bisimilar process terms in ACP with projection operators and
guarded recursion, Theorem 4.5.4 implies that all their projections are prov-
ably equal. So by AIP the two process terms themselves are provably equal.
However, assuming it is unknown that the two process terms are bisimilar,
one cannot derive equality of their projections one by one, as there are in-
finitely many such projections. Hence, some inductive argument is needed to
master these derivations.

Example 4.5.1. We equate the following two symmetric guarded recursive
specifications E and E′ of the bag over {0, 1}:

X = in(0)·(X‖out(0)) + in(1)·(X‖out(1))

Y = in(0)·(out(0)‖Y ) + in(1)·(out(1)‖Y ).

This derivation is based on an application of AIP. First, we prove by induction
on n ∈ N that

πn((· · · ((〈X|E〉‖out(d1))‖out(d2))‖ · · · )‖out(dk))

= πn(out(dk)‖(· · · ‖(out(d2)‖(out(d1)‖〈Y |E′〉)) · · · )) (4.1)

for sequences d1 · · · dk of elements in {0, 1}. The base case n ≡ 0 is trivial,
because then both process terms can be equated to δ by an application of
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PR4. We focus on the inductive case, assuming that (4.1) has already been
proved for n ∈ {1, . . . ,m}. For finite data sets ∆, let

∑
d∈∆ t(d) denote the

alternative composition of process terms t(d) for all elements d in ∆. (For
example, if ∆ is {0, 1}, then it denotes t(0) + t(1).) Using RDP, EACP, and
induction we derive:

πm+1((· · · (〈X|E〉‖out(d1))‖ · · · )‖out(dk))

=
∑
d∈{0,1} in(d)·πm((· · · ((〈X|E〉‖out(d))‖out(d1))‖ · · · )‖out(dk))

+
∑
i∈{1,...,k} out(di)·πm((· · · (〈X|E〉‖ · · · ‖out(di−1))‖out(di+1))‖ · · · )

=
∑
d∈{0,1} in(d)·πm(out(dk)‖(· · · ‖(out(d1)‖(out(d)‖〈Y |E′〉)) · · · ))

+
∑
i∈{1,...,k} out(di)·πm(· · · ‖(out(di+1)‖(out(di−1)‖ · · · ‖〈Y |E′〉) · · · ))

= πm+1(out(dk)‖(· · · ‖(out(d1)‖〈Y |E′〉) · · · )).

This concludes the derivation of (4.1) for n ∈ N. By AIP it follows that

(· · · ((〈X|E〉‖out(d1))‖out(d2))‖ · · · )‖out(dk)

= out(dk)‖(· · · ‖(out(d2)‖(out(d1)‖〈Y |E′〉)) · · · ).

In particular, the case k ≡ 0 yields the desired equation 〈X|E〉 = 〈Y |E ′〉.

Exercise 4.5.6. Derive 〈X |X=aXb+b〉 = 〈Y |Y=aZb+b, Z=aY b+b〉 from
EACP + PR1-5 + RDP,AIP.
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If a customer asks a programmer to implement a product, ideally this cus-
tomer is able to provide the external behaviour of the desired program. That
is, he or she is able to tell what should be the output of the program for each
possible input. The programmer then comes up with an implementation. The
question is, does this implementation really display the desired external be-
haviour? To answer this question, we need to abstract away from the internal
computation steps of the program.

5.1 Rooted Branching Bisimulation Equivalence

In order to abstract away from internal actions, Milner [154] introduced a
special constant τ , called the silent step. Intuitively, a τ -transition represents
a sequence of internal actions that can be eliminated from a process graph. As
any atomic action, the constant τ can execute itself, after which it terminates
successfully. This is expressed by the transition rule

τ
τ→ √

From now on, v and w in the transition rules and the axioms of ACP with
guarded recursion range overA∪{τ}. (So the transition rule for atomic actions
in Table 2.1 yields the transition rule for the silent step τ presented above.)
The domain of the communication function γ is extended with the silent
step, γ : A∪ {τ} ×A∪ {τ} → A∪ {δ}, by defining that each communication
involving τ results in δ.

In the presence of the silent step τ , bisimulation is no longer a satisfactory
process equivalence. Namely, if processes p and q are equivalent, and p can
execute an action τ , then it need not be the case that q can simulate this
τ -transition of p by the execution of an action τ . The intuition for the silent
step, that it represents an internal computation in which we are not really
interested, asks for a new process equivalence. The question that we must
pose ourselves is:

which τ -transitions are truly silent ?
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The obvious answer to this question, “all τ -transitions are truly silent”, turns
out to be incorrect. Namely, this answer would produce an equivalence rela-
tion that is not a congruence.

As an example of an action τ that is not truly silent, consider the process
terms a + τδ and a. If the τ in the first term were truly silent, then these
two terms would be equivalent. However, the process graph of the first term
contains a deadlock, a+ τδ

τ→ δ, while the process graph of the second term
does not. Hence, the τ in the first term is not truly silent. In order to describe
this case more vividly, we give an example.

Example 5.1.1. Consider a protocol that first receives a datum d via channel
1, and then communicates this datum via channel 2 or via channel 3. If the
datum is communicated through channel 2, then it is sent into channel 4.
If the datum is communicated through channel 3, then it gets stuck, as the
subsequent channel 5 is broken. So the system gets into a deadlock if the
datum d is transferred via channel 3. This deadlock should not disappear
if we abstract away from the internal communication actions via channels 2
and 3, because this would cover up an important problem of the protocol.

2

3

4

1

5

Fig. 5.1. Protocol with a malfunctioning channel

The system, which is depicted in Fig. 5.1, is described by the process term

∂{s5(d)}(r1(d)·(c2(d)·s4(d) + c3(d)·s5(d)))
D1,2,4,5

= r1(d)·(c2(d)·s4(d) + c3(d)·δ)

where si(d), ri(d), and ci(d) represent a send, read, and communication action
of the datum d via channel i, respectively. Abstracting away from the internal
actions c2(d) and c3(d) in this process term yields r1(d)·(τ ·s4(d) + τ ·δ). The
second τ in this term cannot be deleted, because then the process would no
longer be able to get into a deadlock. Hence, this τ is not truly silent.

As a further example of a τ -transition that is not truly silent, consider the
process terms a+ τb and a+ b. We argued previously that the process terms
∂{b}(a+ τb) = a+ τδ and ∂{b}(a+ b) = a are not equivalent, because the first
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term contains a deadlock while the second term does not. Hence, a+ τb and
a+ b cannot be equivalent, for else the envisioned equivalence relation would
not be a congruence.

Problems with congruence can be avoided by taking a more restrictive
view on abstracting away from silent steps. A correct answer to the question

which τ -transitions are truly silent ?

turns out to be

those τ -transitions that do not lose possible behaviours !

For example, the process terms a + τ(a + b) and a + b are equivalent,
because the τ in the first process term is truly silent: after execution of this
τ it is still possible to execute a. In general, process terms s + τ(s + t) and
s + t are equivalent for all process terms s and t. By contrast, in a process
term such as a+ τb the τ is not truly silent, since execution of this τ means
losing the option to execute a.

The intuition above is formalised in the notion of branching bisimulation
equivalence (see Definition B.4.1). Let the processes p and q be branching

bisimilar. If p
τ→ p′, then q does not have to simulate this τ -transition if it

is truly silent, meaning that p′ and q are branching bisimilar. Moreover, a
non-silent transition p

a→ p′ need not be simulated by q immediately, but only
after a number of truly silent τ -transitions: q

τ→ · · · τ→ q0
a→ q′, where p and q0

are branching bisimilar (to ensure that the τ -transitions are truly silent) and

p′ and q′ are branching bisimilar (so that p
a→ p′ is simulated by q0

a→ q′). A
special termination predicate ↓ is needed in order to relate branching bisimilar
process terms such as aτ and a. Definition B.4.1 is presented below for the
relations

a→ for a ∈ A and the predicate ↓.

Definition 5.1.1 (Branching bisimulation). Assume a special termina-
tion predicate ↓, and let

√
represent a state with

√ ↓. A branching bisimu-
lation relation B is a binary relation on the collection of processes such that:

1. if pB q and p
a→ p′, then

- either a ≡ τ and p′ B q;
- or there is a sequence of (zero or more) τ -transitions q

τ→ · · · τ→ q0

such that pB q0 and q0
a→ q′ with p′ B q′;

2. if pB q and q
a→ q′, then

- either a ≡ τ and pB q′;
- or there is a sequence of (zero or more) τ -transitions p

τ→ · · · τ→ p0

such that p0 B q and p0
a→ p′ with p′ B q′.

3. if pB q and p ↓, then there is a sequence of (zero or more) τ -transitions

q
τ→ · · · τ→ q0 such that pB q0 and q0 ↓;

4. if pB q and q ↓, then there is a sequence of (zero or more) τ -transitions

p
τ→ · · · τ→ p0 such that p0 B q and p0 ↓.
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Two processes p and q are branching bisimilar, denoted by p ↔b q, if there
is a branching bisimulation relation B such that pB q.

Example 5.1.2. a+ τ(a+ b)↔b τ(a+ b) + b.
A branching bisimulation relation that relates these two process terms is
defined by a+ τ(a+ b)B τ(a+ b) + b, a+ bB τ(a+ b) + b, a+ τ(a+ b)B a+ b,
a+ bB a+ b, and

√B√. This relation can be depicted as follows:

b
a+ b

a+ τ(a+ b)

√ a

b

τ(a+ b) + b

b

a
a+ b

√
a τ τ b

It is left to the reader to verify that this relation satisfies the requirements
of a branching bisimulation.

Exercise 5.1.1. Give branching bisimulation relations to prove that the pro-
cess terms a, aτ , and τa are branching bisimilar.

Exercise 5.1.2. Give a branching bisimulation relation to prove that the
process terms τ(τ(a+ b) + b) + a and a+ b are branching bisimilar.

Exercise 5.1.3. Explain why τa+ τb and a+ b are not branching bisimilar.

Branching bisimilarity is an equivalence relation; see [32]. Branching
bisimulation equivalence, however, is not a congruence with respect to BPA.
For example, τa and a are branching bisimilar (see Exercise 5.1.1), but τa+b
and a + b are not branching bisimilar. Namely, if τa + b executes τ then it
loses the option to execute b, so this τ -transition is not truly silent.

Milner [158] showed that this problem can be overcome by adding a root-
edness condition: initial τ -transitions are never truly silent. In other words,
two processes are considered equivalent if they can simulate each other’s ini-
tial transitions, such that the resulting processes are branching bisimilar.
This leads to the notion of rooted branching bisimulation equivalence; see
Definition B.4.2. This definition is presented below for the relations

a→ √ for
a ∈ A and the predicate ↓.

Definition 5.1.2 (Rooted branching bisimulation). Assume the termi-
nation predicate ↓, and let

√
represent a state with

√ ↓. A rooted branching
bisimulation relation B is a binary relation on processes such that:

1. if pB q and p
a→ p′, then q

a→ q′ with p′ ↔b q
′;

2. if pB q and q
a→ q′, then p

a→ p′ with p′ ↔b q
′;

3. if pB q and p ↓, then q ↓;
4. if pB q and q ↓, then p ↓.
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Two processes p and q are rooted branching bisimilar, denoted by p↔rb q, if
there is a rooted branching bisimulation relation B such that pB q.

Since branching bisimilarity is an equivalence relation, it is not hard to
see that rooted branching bisimilarity is also an equivalence relation. Branch-
ing bisimulation equivalence strictly includes rooted branching bisimulation
equivalence, which in turn strictly includes bisimulation equivalence:

↔⊂↔rb⊂↔b .

In the absence of τ (for example, in ACP), bisimulation and branching bisim-
ulation induce exactly the same equivalence classes. In other words, two pro-
cess terms in ACP are bisimilar if and only if they are branching bisimilar.

Exercise 5.1.4. Say for the following five pairs of process terms whether or
not they are bisimilar, rooted branching bisimilar, or branching bisimilar:

- (a+ b)(c+ d) and ac+ ad+ bc+ bd;
- (a+ b)(c+ d) and (b+ a)(d+ c) + a(c+ d);
- τ(b+ a) + τ(a+ b) and a+ b;
- c(τ(b+ a) + τ(a+ b)) and c(a+ b);
- a(τb+ c) and a(b+ τc).

In each case, give explicit relations, or explain why such relations do not
exist.

Exercise 5.1.5. Prove that a(s‖(τt))↔rb a(s‖t) for process terms s and t.

Exercise 5.1.6. Verify that rooted branching bisimilarity is an equivalence
relation.

5.2 Guarded Linear Recursion Revisited

Assume a recursive specification E that consists of linear recursive equations
Xi = ti(X1, . . . , Xn) for i ∈ {1, . . . , n}. Since from now on we consider pro-
cesses in the setting of rooted branching bisimulation equivalence, processes
p1, . . . , pn are said to be a solution for E (with respect to rooted branch-
ing bisimulation equivalence) if pi ↔rb ti(p1, . . . , pn) for i ∈ {1, . . . , n} (cf.
Definition 4.1.2).

In the setting with the silent step, the notion of guardedness (cf. Definition
4.1.3), which aims to classify those recursive specifications that have a unique
solution modulo the process equivalence under consideration, needs to be
adapted. For example, all process terms τs are solutions for the recursive
specification X = τX, because τs ↔rb ττs holds for all process terms s.
Hence, we consider such a recursive specification to be unguarded. The notion
of guardedness is extended to linear recursive specifications (see Definition
4.4.1) that involve silent steps by requiring the absence of τ -loops.
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Definition 5.2.1 (Guarded linear recursive specification). A recursive
specification is linear if its recursive equations are of the form

X = a1X1 + · · ·+ akXk + b1 + · · ·+ b`

with a1, . . . , ak, b1, . . . , b` ∈ A ∪ {τ}.
A linear recursive specification E is guarded if there does not exist an

infinite sequence of τ -transitions 〈X|E〉 τ→ 〈X ′|E〉 τ→ 〈X ′′|E〉 τ→ · · · .

The guarded linear recursive specifications are exactly the linear recursive
specifications that have a unique solution, modulo rooted branching bisimu-
lation equivalence.

Exercise 5.2.1. Show that {X=aY+τY, Y=bX+τX} is not guarded. Give
two solutions for this linear recursive specification that are not rooted branch-
ing bisimilar.

Theorem 5.2.1. ACP with silent step and guarded linear recursion is a con-
servative extension of ACP with linear recursion.

Proof. This theorem follows from the following three facts.

1. The transition rules of ACP and for linear recursive specifications that
do not include a τ are all source-dependent.

2. The source of the transition rule for the silent step is the fresh constant τ .
The source of a transition rule for a guarded linear recursive specification
E that includes a τ is the fresh constant 〈X|E〉.

3. Each transition rule for alternative composition, sequential composition,
or guarded linear recursion that involves τ -transitions, such as

x
τ→ x′

x+ y
τ→ x′

includes a premise containing the fresh relation symbol
τ→ or predicate

τ→ √, and a left-hand side of which all variables occur in the source of
the transition rule.

Hence, Theorem B.5.1 says that ACP with silent step and guarded linear
recursion is a conservative extension of ACP with linear recursion. 2

Theorem 5.2.2. Rooted branching bisimulation equivalence is a congruence
with respect to ACP with silent step and guarded linear recursion.

Proof. The TSS of ACP with silent step and guarded linear recursion can
be brought into RBB cool format (see Definition B.4.5), by incorporating the
successful termination predicate ↓ from Definition 5.1.1 in the transition rules.
That is, the symbol

√
is added to the signature as a special constant, and
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the transition rule √↓ is added to the TSS. Moreover, transition rules that

contain an occurrence of a predicate symbol
a→ √ are adapted accordingly.

It is left to the reader to verify that the adapted TSS of ACP with silent
step and guarded linear recursion is RBB cool (see Exercise 5.2.2). This fact
implies that the rooted branching bisimulation equivalence that this TSS
induces is a congruence; see Theorem B.4.1. 2

Exercise 5.2.2. Spell out the adapted TSS of ACP with silent step and
guarded linear recursion from the proof of Theorem 5.2.2, and verify that it
is RBB cool.

5.3 Axioms for the Silent Step

Table 5.1 presents the axioms B1,2 for the silent step, modulo rooted branch-
ing bisimulation equivalence. The variables x and y in the axioms range over
process terms, while v ranges over A ∪ {τ}.

Table 5.1. Axioms for the silent step

B1 v·τ = v
B2 v·(τ ·(x+ y) + x) = v·(x+ y)

Theorem 5.3.1. EACP+B1, 2+RDP,RSP is sound for ACP with silent step
and guarded linear recursion, modulo rooted branching bisimulation equiva-
lence.

Proof. Since rooted branching bisimulation is both an equivalence and a
congruence, we only need to check that if s = t is an axiom in EACP +
B1, 2 + RDP,RSP and σ a closed substitution that maps the variables in
s and t to process terms, then σ(s) ↔rb σ(t). Soundness of the axioms in
EACP + RDP,RSP can be checked as before.

The axioms B1,2 say that a non-initial τ -transition that does not lose
any possible behaviour is truly silent. This intuition can be made rigorous by
means of explicit rooted branching bisimulation relations between the left-
and right-hand sides of closed instantiations of B1,2. 2

Exercise 5.3.1. Prove that each process term in ACP with silent step and
guarded linear recursion generates a regular process graph that does not
contain a loop of τ -transitions.

Exercise 5.3.2. Suppose we would allow γ(a, b) ≡ τ . Give an example of two
guarded recursive specifications of which the merge can only be described by
an unguarded recursive specification.
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The following completeness result is due to van Glabbeek [103]. (See [45,
159] for similar completeness results with respect to observation equivalence.)

Theorem 5.3.2. EACP + B1, 2 + RDP,RSP is complete for ACP with silent
step and guarded linear recursion, modulo rooted branching bisimulation
equivalence.

Proof. As a first step we note that each process term t1 in ACP with silent
step and guarded linear recursion is provably equal to a process term 〈X1|E〉
with E a guarded linear recursive specification. Namely, each such process
term t1 generates a regular process graph that does not contain a loop of τ -
transitions (see Exercise 5.3.1), with states say t1, . . . , tn. (This observation
uses in an essential way that communications between atomic actions do not
result in τ ; see Exercise 5.3.2.) This process graph can be expressed in the
form of equations

ti = ai1ti1 + · · ·+ aikitiki + bi1 + · · ·+ bili

for i ∈ {1, . . . , n} (cf. Exercise 4.3.6). Let the guarded linear recursive speci-
fication E consist of the recursive equations

Xi = ai1Xi1 + · · ·+ aikiXiki + bi1 + · · ·+ bili

for i ∈ {1, . . . , n}. Since replacing Xi by ti for i ∈ {1, . . . , n} is a solution for
E, RSP yields t1 = 〈X1|E〉.

It remains to prove that if 〈X1|E1〉 ↔rb 〈Y1|E2〉 for guarded linear re-
cursive specifications E1 and E2, then 〈X1|E1〉 = 〈Y1|E2〉. First, suppose
E1 contains a recursive equation W = τ + · · · + τ with W 6≡ X1. Let E′1
be obtained from E1 by removing the recursive equation for W , and replac-
ing summands aW in right-hand sides of recursive equations of E1 by a.
Using RDP, A3, and B1, it can be derived that substituting process terms
〈X|E1〉 for recursion variables X in E′1 is a solution for E′1. So by RSP we
have 〈X1|E1〉 = 〈X1|E′1〉. Thus, recursive equations W = τ + · · · + τ with
W 6≡ X1 can be eliminated from E1, and likewise such recursive equations
with W 6≡ Y1 can be eliminated from E2.

Let E1 and E2 consist of linear recursive equations X = tX for X ∈ X
and Y = tY for Y ∈ Y, respectively, where the tX for X 6≡ X1 and the tY for
Y 6≡ Y1 are not of the form τ+ · · ·+τ . The recursive specification E is defined
to consist of the linear recursive equations ZXY = tXY for X ∈ X and Y ∈ Y
with 〈X|E1〉 ↔b 〈Y |E2〉, where tXY consists of the following summands:

1. tXY contains a summand aZX′Y ′ if and only if tX and tY contain the
summands aX ′ and aY ′, respectively, and 〈X ′|E1〉 ↔b 〈Y ′|E2〉;

2. tXY contains a summand b if and only if both tX and tY contain the
summand b;

3. tXY contains a summand τZX′Y if and only if XY 6≡ X1Y1, tX contains
the summand τX ′, and 〈X ′|E1〉 ↔b 〈Y |E2〉;
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4. tXY contains a summand τZXY ′ if and only if XY 6≡ X1Y1, tY contains
the summand τY ′, and 〈X|E1〉 ↔b 〈Y ′|E2〉.

Since E1 and E2 are guarded, all chains 〈X|E1〉 τ→ 〈X ′|E1〉 τ→ 〈X ′′|E1〉 τ→ · · ·
and 〈Y |E2〉 τ→ 〈Y ′|E2〉 τ→ 〈Y ′′|E2〉 τ→ · · · are finite (see Definition 5.2.1).

This implies that all chains 〈ZXY |E〉 τ→ 〈ZX′Y ′ |E〉 τ→ 〈ZX′′Y ′′ |E〉 τ→ · · · are
finite, so E is guarded.

For recursion variables ZXY in E, let the process term uXY consist of the
following summands:

1. uXY contains a summand a〈X ′|E1〉 if and only if tX and tY contain
summands aX ′ and aY ′, respectively, with 〈X ′|E1〉 ↔b 〈Y ′|E2〉;

2. uXY contains a summand b if and only if both tX and tY contain the
summand b;

3. uXY contains a summand τ〈X ′|E1〉 if and only if XY 6≡ X1Y1, tX con-
tains the summand τX ′, and 〈X ′|E1〉 ↔b 〈Y |E2〉.

Furthermore, for recursion variables ZXY in E, let the process term sXY be
defined by:

sXY
∆
=




τ〈X|E1〉+ uXY if XY 6≡ X1Y1 and tY contains a summand

τY ′ with 〈X|E1〉 ↔b 〈Y ′|E2〉,
〈X|E1〉 otherwise.

By RDP and A3,

〈X|E1〉 = 〈X|E1〉+ uXY . (5.1)

So for a ∈ A ∪ {τ},

a(τ〈X|E1〉+ uXY )
(5.1)
= a(τ(〈X|E1〉+ uXY ) + uXY )
B2
= a(〈X|E1〉+ uXY )

(5.1)
= a〈X|E1〉.

Hence, for a ∈ A ∪ {τ} and recursion variables ZXY in E, the definition of
sXY yields

asXY = a〈X|E1〉. (5.2)

Let the substitutions σ and ψ from recursion variables to process terms
be defined as follows:

• σ maps recursion variables X in E1 to 〈X|E1〉;
• ψ maps recursion variables ZXY in E to sXY .

We proceed to show that substituting sXY for recursion variables ZXY in E
is a solution for E; that is, sXY = ψ(tXY ) for recursion variables ZXY in E.
We distinguish two cases, depending on whether or not XY ≡ X1Y1.
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1. Let XY ≡ X1Y1.
By assumption, 〈X1|E1〉 ↔rb 〈Y1|E2〉. Furthermore, E1 and E2 do not
contain recursive equations W = τ + · · · + τ for recursion variables W
unequal to X1 and Y1, respectively. These observations together imply
that for each summand aX ′ of tX1

there is a summand aY ′ of tY1
with

〈X ′|E1〉 ↔b 〈Y ′|E2〉. Likewise, each summand b of tX1
is also a summand

of tY1
. Hence, by the definition of tX1Y1

, for each summand aX ′ or b of tX1

there is a summand aZX′Y ′ or b of tX1Y1
. Vice versa, by the definition of

tX1Y1
, for each summand aZX′Y ′ or b of tX1Y1

there is a summand aX ′

or b of tX1
. Hence, each summand a〈X ′|E1〉 or b of σ(tX1

) corresponds to
a summand asX′Y ′ or b of ψ(tX1Y1

), and vice versa. So by equation (5.2)
together with A3, σ(tX1

) = ψ(tX1Y1
). Hence,

sX1Y1
≡ 〈X1|E1〉 RDP

= σ(tX1
) = ψ(tX1Y1

). (5.3)

2. Let XY 6≡ X1Y1.
Once more we distinguish two cases.

2.1. Let tY not contain a summand τY ′ with 〈X|E1〉 ↔b 〈Y ′|E2〉.
ZXY is a recursion variable in E, so 〈X|E1〉 ↔b 〈Y |E2〉. By assumption, tY
does not contain a summand τY ′ with 〈X|E1〉 ↔b 〈Y ′|E2〉. Furthermore,
E1 and E2 do not contain recursive equations W = τ+ · · ·+τ for recursion
variables W unequal to X1 and Y1. These observations together imply
that for each summand aX ′ of tX with a not a truly silent τ (i.e., a 6≡ τ
or 〈X ′|E1〉 6↔b 〈Y |E2〉), there is a summand aY ′ of tY with 〈X ′|E1〉 ↔b

〈Y ′|E2〉. Likewise, each summand b of tX is also a summand of tY . Hence,
the first three clauses in the definition of tXY yield that for each summand
aX ′ or b of tX there is a summand aZX′Y ′ or b of tXY . Since tY does not
contain a summand τY ′ with 〈X|E1〉 ↔b 〈Y ′|E2〉, the fourth clause in the
definition of tXY is vacuous. So vice versa, the first three clauses in the
definition of tXY yield that for each summand aZX′Y ′ or b of tXY there is
a summand aX ′ or b of tX . Hence, each summand a〈X ′|E1〉 or b of σ(tX)
corresponds to a summand asX′Y ′ or b of ψ(tXY ), and vice versa. So by
equation (5.2) together with A3, σ(tX) = ψ(tXY ). Hence,

sXY ≡ 〈X|E1〉 RDP
= σ(tX) = ψ(tXY ). (5.4)

2.2. Let tY contain one or more summands τY ′ with 〈X|E1〉 ↔b 〈Y ′|E2〉.
Then, by the fourth clause in its definition, tXY contains one or more
summands τZXY ′ . Furthermore, by the first three clauses in the definition
of tXY together with the definition of uXY , for each remaining summand
b or aZX′Y ′ (with a 6≡ τ or X ′ 6≡ X) of tXY there is a summand b or
a〈X ′|E1〉 of uXY , and vice versa. Hence, ψ(tXY ) contains one or more
summands τsXY ′ , while each remaining summand b or asX′Y ′ (with a 6≡ τ
or X ′ 6≡ X) of ψ(tXY ) corresponds with a summand b or a〈X ′|E1〉 of uXY ,
and vice versa. So
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sXY ≡ τ〈X|E1〉+ uXY
(5.2),A3

= ψ(tXY ). (5.5)

We conclude from equations (5.3), (5.4), and (5.5) that substituting pro-
cess terms sXY for recursion variables ZXY in E is a solution for E. Then
RSP yields sXY = 〈ZXY |E〉 for recursion variables ZXY in E, so in particular
〈X1|E1〉 = 〈ZX1Y1

|E〉. Likewise we can derive 〈Y1|E2〉 = 〈ZX1Y1
|E〉. So

〈X1|E1〉 = 〈ZX1Y1
|E〉 = 〈Y1|E2〉.

Finally, let s and t be rooted branching bisimilar process terms in ACP
with silent step and guarded linear recursion. At the start of this proof it
was shown that s = 〈X1|E1〉 and t = 〈Y1|E2〉 where E1 and E2 are guarded
linear recursive specifications. Soundness of the axioms yields 〈X1|E1〉 ↔rb

s ↔rb t ↔rb 〈Y1|E2〉, which implies 〈X1|E1〉 = 〈Y1|E2〉. So s = 〈X1|E1〉 =
〈Y1|E2〉 = t. 2

Exercise 5.3.3. Derive the next equations from EACP + B1, 2 + RDP,RSP:

- a(τb+ b) = ab;
- a(τ(b+ c) + b) = a(τ(b+ c) + c);
- a(s‖(τt)) = a(s‖t) for process terms s and t;
- 〈X |X=aY, Y=τX〉 = 〈Z |Z=aZ〉;
- 〈X |X=(a+b)Y, Y=(τ+b)X〉 = 〈Z |Z=(a+b)Z〉.

Exercise 5.3.4. Give a counter-example to show that rooted branching
bisimulation equivalence is not a congruence in the presence of the projec-
tion operators from Section 4.5. Why is it not possible to convert the second
transition rule of the projection operators to RBB cool format?

Exercise 5.3.5. Adapt the transition rules for the projection operators, so
that τ -transitions do not decrease the counter n. Verify that the resulting
transition rules can be brought into RBB cool format, by incorporating the
successful termination predicate ↓. Give axioms for the adapted interpretation
of projection operators.

Exercise 5.3.6. Prove soundness of AIP for ACP with silent step modulo
rooted branching bisimulation equivalence, for the adapted interpretation of
the projection operators from the previous exercise.

5.4 Abstraction Operators

We introduce unary abstraction operators τI , for subsets I of A, which rename
all atomic actions in I into τ . The abstraction operators, which enable us to
abstract away from the internal computation steps of an implementation,
were introduced by Bergstra and Klop [43]. The behaviour of the abstraction
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operators is captured by the following transition rules, which express that in
τI(t) all labels of transitions of t that are in I are renamed into τ :

x
v→ √

τI(x)
v→ √

v 6∈ I x
v→ x′

τI(x)
v→ τI(x

′)
v 6∈ I

x
v→ √

τI(x)
τ→ √

v ∈ I x
v→ x′

τI(x)
τ→ τI(x

′)
v ∈ I

The variables x and x′ range over process terms, while v ranges over A∪{τ}.
ACP extended with silent step and abstraction operators is denoted by ACPτ .

Exercise 5.4.1. Let γ(a, b)
∆
= c. Derive the transition

τ{c}(∂{a,b}((aa)‖(bb))) τ→ τ{c}(∂{a,b}(a‖b))

from the transition rules of ACPτ .

Exercise 5.4.2. Show that the process term τ{a}(〈X |X=aX〉) and the
deadlock δ are branching bisimilar.

Exercise 5.4.3. Prove that for each process term t in ACPτ , the process
term τA(t) is branching bisimilar to τ , τδ, or τ + τδ.

Exercise 5.4.4. Give a counter-example to show that in general the equa-
tion τI(∂H(x)) = ∂H(τI(x)) is not sound modulo rooted branching bisimula-
tion equivalence.

Exercise 5.4.5. Let t1 and t2 be process terms with t1 ↔rb at2 and
t2 ↔rb τt2. Can it be concluded from these two equivalences that t1 is rooted
branching bisimilar with τ{b}(〈X1 |X1=aX2, X2=bX2〉)?

Theorem 5.4.1. ACPτ with guarded linear recursion is a conservative ex-
tension of ACP with silent step and guarded linear recursion.

Proof. This theorem follows from the following two facts.

1. The transition rules of ACP, the silent step, and guarded linear recursion
are all source-dependent.

2. The sources of the transition rules for the abstraction operators contain
an occurrence of τI .

Hence, Theorem B.5.1 says that ACPτ with guarded linear recursion is a
conservative extension of ACP with silent step and guarded linear recursion.
2

Theorem 5.4.2. Rooted branching bisimulation equivalence is a congruence
with respect to ACPτ with guarded linear recursion.
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Proof. As in the proof of Theorem 5.2.2, the transition rules of ACPτ with
guarded linear recursion can be brought into RBB cool format, by incorpo-
rating the successful termination predicate ↓. That is, the symbol

√
is added

to the signature as a special constant, and the transition rule √↓ is added to

the TSS. Moreover, transition rules that contain an occurrence of a predicate
symbol

a→ √ are adapted accordingly.
It is left to the reader to verify that the adapted TSS of ACPτ with

guarded linear recursion is RBB cool. This fact implies that the rooted
branching bisimulation equivalence that this TSS induces is a congruence;
see Theorem B.4.1. 2

Table 5.2 presents axioms for the abstraction operators, modulo rooted
branching bisimulation equivalence. The variables x and y in the axioms
range over process terms, while v ranges over A ∪ {τ}. Let EACPτ denote
EACP extended with B1,2 and TI1-5.

Table 5.2. Axioms for abstraction operators

TI1 v 6∈ I τI(v) = v
TI2 v ∈ I τI(v) = τ
TI3 τI(δ) = δ
TI4 τI(x+ y) = τI(x) + τI(y)
TI5 τI(x·y) = τI(x)·τI(y)

Theorem 5.4.3. EACPτ +RDP,RSP is sound for ACPτ with guarded linear
recursion, modulo rooted branching bisimulation equivalence.

Proof. Since rooted branching bisimulation is both an equivalence and a
congruence, we only need to check that if s = t is an axiom in EACPτ +
RDP,RSP and σ a closed substitution that maps the variables in s and t to
process terms, then σ(s) ↔rb σ(t). Here, we only provide some intuition for
soundness of the axioms in Table 5.2:

• TI1-3 are the defining equations for the abstraction operator τI : TI2 says
that it renames atomic actions from I into τ , while TI1,3 say that it leaves
atomic actions outside I and the deadlock δ unchanged;

• TI4,5 say that in τI(t), all transitions of t labelled with atomic actions from
I are renamed into τ .

These intuitions can be made rigorous by means of explicit rooted branch-
ing bisimulation relations between the left- and right-hand sides of closed
instantiations of TI1-5. 2

Exercise 5.4.6. Derive τ{b}(〈X |X=aY, Y=bX〉) = 〈Z |Z=aZ〉) from the
axiomatisation EACPτ + RDP,RSP.
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5.5 An Example with Buffers

To give an example of the use of abstraction, we consider two buffers of
capacity one that are put in sequence: buffer B1 reads a datum from a channel
1 and sends this datum into channel 3, while buffer B2 reads a datum from a
channel 3 and sends this datum into channel 2. This system can be depicted
as follows:

1 23
Q1 Q2

Action ri(d) represents reading datum d from channel i, while action
si(d) represents sending datum d into channel i. B1 and B2 are defined by
the recursive specifications

B1 =
∑
d∈∆ r1(d)·s3(d)·B1

B2 =
∑
d∈∆ r3(d)·s2(d)·B2.

Here, ∆ denotes a finite set of data elements, and as before
∑
d∈∆ t(d) denotes

the alternative composition of process terms t(d) for all elements d ∈ ∆. In
the remainder of this section, for notational convenience, the process terms
〈B1 |B1=

∑
d∈∆ r1(d)s3(d)B1〉 and 〈B2 |B2=

∑
d∈∆ r3(d)s2(d)B2〉 are abbre-

viated to B1 and B2, respectively.
Action c3(d) denotes communication of datum d through channel 3.

Similar as in Example 3.4.1, the communication function γ is defined by

γ(s3(d), r3(d))
∆
= c3(d), while all other communications between atomic ac-

tions result in δ. The system that consists of buffers B1 and B2 in sequence
is described by the process term

τ{c3(d)|d∈∆}(∂{s3(d),r3(d)|d∈∆}(B2‖B1)).

The encapsulation operator enforces send and read actions over channel 3
into communication, while the abstraction operator makes internal commu-
nication actions over channel 3 invisible.

We show algebraically that the two buffers B1 and B2 of capacity one in
sequence behave as a queue of capacity two, which can read two data elements
from channel 1 before sending them into channel 2 in the same order. The
queue of capacity two over ∆ is described by the linear recursive specification

X =
∑
d∈∆ r1(d)·Y (d)

Y (d) =
∑
d′∈∆ r1(d′)·Z(d, d′) + s2(d)·X

Z(d, d′) = s2(d)·Y (d′).

In state X, the queue of capacity two is empty, so that it can only read
a datum d from channel 1 and proceed to the state Y (d) where the queue
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contains d. In Y (d), the queue can either read a second datum d′ from channel
1 and proceed to the state Z(d, d′) where the queue contains d and d′, or send
datum d into channel 2 and proceed to the state X where the queue is empty.
Finally, in state Z(d, d′) the queue is full, so that it can only send datum d
into channel 2 and proceed to the state Y (d′) where it contains d′.

In order to simplify the presentation, we assume that the data set ∆ con-
sists of the single element 0, and atomic actions are abbreviated by omitting
the suffix (0). We proceed to derive that τ{c3}(∂{s3,r3}(B2‖B1)) is a solution
for X in the recursive specification for the queue of capacity two. First we
expand ∂{s3,r3}(B2‖B1); in each derivation step, the subterms that are re-
duced are underlined. Since γ(r3, r1) ≡ δ, the axioms in EACP together with
RDP yield:

B2‖B1

M1
= B2 B1 +B1 B2 +B2|B1

RDP
= (r3s2B2) B1 + (r1s3B1) B2 + (r3s2B2)|(r1s3B1)

LM3,CM8
= r3((s2B2)‖B1) + r1((s3B1)‖B2) + δ((s2B2)‖(s3B1))
A7
= r3((s2B2)‖B1) + r1((s3B1)‖B2) + δ
A6
= r3((s2B2)‖B1) + r1((s3B1)‖B2).

So the axioms for deadlock and encapsulation yield:

∂{s3,r3}(B2‖B1)

= ∂{s3,r3}(r3((s2B2)‖B1) + r1((s3B1)‖B2))
D4
= ∂{s3,r3}(r3((s2B2)‖B1)) + ∂{s3,r3}(r1((s3B1)‖B2))
D5
= ∂{s3,r3}(r3)∂{s3,r3}((s2B2)‖B1) + ∂{s3,r3}(r1)∂{s3,r3}((s3B1)‖B2)

D1,2
= δ∂{s3,r3}((s2B2)‖B1) + r1∂{s3,r3}((s3B1)‖B2)
A7
= δ + r1∂{s3,r3}((s3B1)‖B2)
A6
= r1∂{s3,r3}((s3B1)‖B2).

Summarising, we have derived

∂{s3,r3}(B2‖B1) = r1∂{s3,r3}((s3B1)‖B2). (5.6)

We proceed to expand ∂{s3,r3}((s3B1)‖B2). As above, it can be derived
from the axioms in EACP together with RDP that

(s3B1)‖B2 = s3(B1‖B2) + r3((s2B2)‖(s3B1)) + c3(B1‖(s2B2)).

Using the equation above, it can be derived from the axioms for deadlock
and encapsulation that

∂{s3,r3}((s3B1)‖B2) = c3∂{s3,r3}(B1‖(s2B2)). (5.7)
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We proceed to expand ∂{s3,r3}(B1‖(s2B2)). By the axioms in EACP to-
gether with RDP,

B1‖(s2B2) = r1((s3B1)‖(s2B2)) + s2(B2‖B1).

So by the axioms for encapsulation,

∂{s3,r3}(B1‖(s2B2))

= r1∂{s3,r3}((s3B1)‖(s2B2)) + s2∂{s3,r3}(B2‖B1). (5.8)

We proceed to expand ∂{s3,r3}((s3B1)‖(s2B2)). By the axioms in EACP

together with RDP,

(s3B1)‖(s2B2) = s3(B1‖(s2B2)) + s2(B2‖(s3B1)).

So by the axioms for deadlock and encapsulation,

∂{s3,r3}((s3B1)‖(s2B2)) = s2∂{s3,r3}(B2‖(s3B1)).

Commutativity of the merge with respect to bisimulation equivalence (cf. the
second case of Exercise 3.2.1) together with completeness of EACP+RDP,RSP
for ACP with linear recursion modulo bisimulation equivalence (see Theorem
4.4.1) yield B2‖(s3B1) = (s3B1)‖B2, so

∂{s3,r3}((s3B1)‖(s2B2)) = s2∂{s3,r3}((s3B1)‖B2). (5.9)

Summarising, we have algebraically derived the following relations:

∂{s3,r3}(Q1‖(s2Q2))

∂{s3,r3}((s3Q1)‖(s2Q2))

∂{s3,r3}(Q2‖Q1)

r1

c3

r1

∂{s3,r3}((s3Q1)‖Q2)s2

s2

Equations (5.6) and (5.7) together with the axioms for silent step and ab-
straction yield:

τ{c3}(∂{s3,r3}(B2‖B1))
(5.6)
= τ{c3}(r1∂{s3,r3}((s3B1)‖B2))

TI1,5
= r1τ{c3}(∂{s3,r3}((s3B1)‖B2))

(5.7)
= r1τ{c3}(c3∂{s3,r3}(B1‖(s2B2)))

TI2,5
= r1ττ{c3}(∂{s3,r3}(B1‖(s2B2)))
B1
= r1τ{c3}(∂{s3,r3}(B1‖(s2B2))).
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Moreover, equation (5.8) together with the axioms for abstraction yield:

τ{c3}(∂{s3,r3}(B1‖(s2B2)))
(5.8)
= τ{c3}(r1∂{s3,r3}((s3B1)‖(s2B2)) + s2∂{s3,r3}(B2‖B1))

TI1,4,5
= r1τ{c3}(∂{s3,r3}((s3B1)‖(s2B2))) + s2τ{c3}(∂{s3,r3}(B2‖B1)).

Finally, equations (5.7) and (5.9) together with the axioms for silent step and
abstraction yield:

τ{c3}(∂{s3,r3}((s3B1)‖(s2B2)))
(5.9)
= τ{c3}(s2∂{s3,r3}((s3B1)‖B2))

TI1,5
= s2τ{c3}(∂{s3,r3}((s3B1)‖B2))

(5.7)
= s2τ{c3}(c3∂{s3,r3}(B1‖(s2B2)))

TI2,5
= s2ττ{c3}(∂{s3,r3}(B1‖(s2B2)))
B1
= s2τ{c3}(∂{s3,r3}(B1‖(s2B2))).

The last three derivations together show that

X := τ{c3}(∂{s3,r3}(B2‖B1))
Y := τ{c3}(∂{s3,r3}(B1‖(s2B2)))
Z := τ{c3}(∂{s3,r3}((s3B1)‖(s2B2)))

is a solution for the linear recursive specification E for the queue of capacity
two over {0}:

X = r1Y
Y = r1Z + s2X
Z = s2Y.

Hence, by RSP, τ{c3}(∂{s3,r3}(B2‖B1)) = 〈X|E〉.
Exercise 5.5.1. Fill in the omitted details of the derivations of equations
(5.7), (5.8), and (5.9).

Exercise 5.5.2. Prove that τ{c3}(∂{s3,r3}(B1‖B2)) behaves as a queue of
capacity two. (Hint: this requires one extra application of commutativity of
the merge.)

Exercise 5.5.3. Prove that two buffers of capacity one over a finite data set
∆ in sequence form a queue of capacity two over ∆.

5.6 Cluster Fair Abstraction Rule

Though τ -loops are prohibited in guarded linear recursive specifications, they
can be constructed using the abstraction operator. For example, the process
term τ{a}(〈X |X=aX〉) can only execute τ ’s until infinity. This observation
motivates the following distinction between specifiable and constructible reg-
ular processes (see [28]):
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• specifiable regular processes are the process graphs belonging to process
terms in ACP with silent step and guarded linear recursion;
• constructible regular processes are the process graphs belonging to process

terms in ACPτ with guarded linear recursion.

τττ · · · is the simplest example of a regular process that is constructible,
being the process graph of τ{a}(〈X |X=aX〉), but not specifiable. In general,
a constructible regular process is specifiable if and only if it is free of τ -loops.
One extra axiom is needed to equate process terms of which the regular
process graphs are constructible but not specifiable. For example,

τ{a}(〈X |X=aX〉)↔rb τ{a,b}(〈Y |Y=aZ,Z=bY 〉)

because both process terms execute τ ’s until infinity. However, these process
terms cannot be equated by means of EACPτ + RDP,RSP, due to the guard-
edness restriction on RSP, which is essential for soundness of this axiom. In
order to get rid of τ -loops, we introduce the notion of fair abstraction. For
example, let E denote a guarded linear recursive specification

X1 = aX2 + s1

...
Xn−1 = aXn + sn−1

Xn = aX1 + sn

for some a ∈ A. The process term τ{a}(〈X1|E〉) executes τ -transitions that
are the result of abstracting away from the occurrences of a in front of the
recursion variablesXi, until it exits this τ -loop by executing one of the process
terms τ{a}(si) for i ∈ {1, . . . , n}. Note that the transitions in the τ -loop are all
truly silent, because they do not lose possible behaviours; after the execution
of such a τ , it is still possible to execute any of the process terms τ{a}(si) for
i ∈ {1, . . . , n}. Fair abstraction says that τ{a}(〈X1|E〉) does not stay in the
τ -loop forever, so that at some time it will start executing a τ{a}(si). Hence,

τ{a}(〈X1|E〉)↔rb τ{a}(s1 + τ(s1 + · · ·+ sn)).

Namely, initially τ{a}(〈X1|E〉) can execute either τ{a}(s1) or τ . In the latter
case, this initial (so non-silent) τ -transition is followed by the execution of a
series of truly silent τ ’s in the τ -loop, until one of the process terms τ{a}(si)
for i ∈ {1, . . . , n} is executed.

Exercise 5.6.1. Show that the following pairs of process terms are rooted
branching bisimilar:

- τ{a}(〈X |X=aX〉) and τδ;
- τ{a}(〈X |X=aX+b〉) and b+ τb;
- τ ·τ{a}(〈X |X=aY+b, Y=aX+c〉) and τ(b+ c).
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We proceed to present an axiom to eliminate a cluster of τ -transitions,
so that only the exits of such a cluster remains. First, a precise definition is
needed of a cluster and its exits.

Definition 5.6.1 (Cluster). Let E be a guarded linear recursive specifi-
cation, and I ⊆ A. Two recursion variables X and Y in E are in the same

cluster for I if and only if there exist sequences of transitions 〈X|E〉 b1→ · · · bm→
〈Y |E〉 and 〈Y |E〉 c1→ · · · cn→ 〈X|E〉 with b1, . . . , bm, c1, . . . , cn ∈ I ∪ {τ}.

a or aX is an exit for the cluster C if and only if:

1. a or aX is a summand at the right-hand side of the recursive equation
for a recursion variable in C; and

2. in the case of aX, either a 6∈ I ∪ {τ} or X 6∈ C.

Exercise 5.6.2. Let E be a guarded linear recursive specification, and I ⊆
A. Verify that being in the same cluster for I defines an equivalence relation
on the recursion variables in E.

Table 5.3 presents an axiom called cluster fair abstraction rule (CFAR)
for guarded linear recursive specifications. CFAR allows us to abstract away
from a cluster of actions that are renamed into τ , after which only the exits
of this cluster remain. CFAR was introduced by Vaandrager [195]; it is a
generalisation of a similar principle by Koomen [19, 44, 138]. In Table 5.3, E is
a guarded linear recursive specification, X,Y1, . . . , Ym are recursion variables
in E, and v, v1, . . . , vm, w1, . . . , wn range over A∪{τ}. Owing to the presence
of the initial action τ at the left- and right-hand side of CFAR, the initial
τ -transitions of τI(〈X|E〉) can be truly silent. If the set of exits is empty,
then as always the empty sum at the right-hand side of CFAR represents δ.

Table 5.3. Cluster fair abstraction rule

CFAR If X is in a cluster for I with exits {v1Y1, . . . , vmYm, w1, . . . , wn}, then

τ ·τI(〈X|E〉) = τ ·τI(v1〈Y1|E〉+ · · ·+ vm〈Ym|E〉+ w1 + · · ·+ wn)

Theorem 5.6.1. The axiom CFAR is sound modulo rooted branching bisim-
ulation equivalence.

Proof. Let X be in a cluster for I with exits {a1Y1, . . . , amYm, b1, . . . , bn}.
Then 〈X|E〉 can execute a string of atomic actions from I ∪ {τ} inside the
cluster of X, followed by an exit ai〈Yi|E〉 (for some i ∈ {1, . . . ,m}) or bj
(for some j ∈ {1, . . . , n}). Hence, τI(〈X|E〉) can execute a string of τ ’s inside
the cluster of X, followed by an exit τI(ai〈Yi|E〉) (for some i ∈ {1, . . . ,m})
or τI(bj) (for some j ∈ {1, . . . , n}). The execution of τ ’s inside the cluster
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does not lose the possibility to execute any of the exits. Moreover, in the
process graph of ττI(〈X|E〉) these τ ’s are non-initial, owing to the initial τ -
transition, so they are truly silent. This means that modulo rooted branching
bisimulation equivalence only the exits of the cluster of X remain, i.e.,

τ ·τI(〈X|E〉) ↔rb τ ·τI(a1〈Y1|E〉+ · · ·+ am〈Ym|E〉+ b1 + · · ·+ bn).

So CFAR is sound modulo rooted branching bisimulation equivalence. 2

Example 5.6.1. Let E denote the guarded linear recursive specification

X = heads·X + tails.

The process term 〈X|E〉 represents tossing a fair coin until the result is tails.
We abstract away from throwing heads, expressed by τ{heads}(〈X|E〉).
{X} is the only cluster for {heads}, and the only exit of this cluster is the

atomic action tails. So

τ ·τ{heads}(〈X|E〉) CFAR
= τ ·τ{heads}(tails)

TI1
= τ ·tails. (5.10)

Hence,

τ{heads}(〈X|E〉) RDP
= τ{heads}(heads·〈X|E〉+ tails)

TI1,2,4,5
= τ ·τ{heads}(〈X|E〉) + tails

(5.10)
= τ ·tails + tails.

In other words, fair abstraction implies that tossing a fair coin infinitely many
times will eventually produce the result tails.

Example 5.6.2. We show how to derive the equation

τ{a}(〈X |X=aX〉) = τ{a,b}(〈Y |Y=aZ,Z=bY 〉).
{X} is the only cluster for {a} in {X=aX}, with no exits, so

τ{a}(〈X |X=aX〉) RDP,TI2,5
= τ ·τ{a}(〈X |X=aX〉)

CFAR
= τ ·τ{a}(δ)

TI3
= τδ. (5.11)

Furthermore, {Y,Z} is the only cluster for {a, b} in {Y=aZ,Z=bY }, with no
exits, so

τ{a,b}(〈Y |Y=aZ,Z=bY 〉) RDP,TI2,5
= τ ·τ{a,b}〈Z |Y=aZ,Z=bY 〉

CFAR
= τ ·τ{a,b}(δ)

TI3
= τδ. (5.12)

Hence,

τ{a}(〈X |X=aX〉) (5.11)
= τδ

(5.12)
= τ{a,b}(〈Y |Y=aZ,Z=bY 〉).
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The following completeness result is due to van Glabbeek [106].

Theorem 5.6.2. EACPτ + RDP,RSP,CFAR is complete for ACPτ with
guarded linear recursion, modulo rooted branching bisimulation equivalence.

Proof. It suffices to prove that each process term t in ACPτ with guarded
linear recursion is provably equal to a process term 〈X|E〉 with E a guarded
linear recursive specification. Namely, then the desired completeness result
follows immediately from the fact that if 〈X1|E1〉 ↔rb 〈Y1|E2〉 for guarded
linear recursive specifications E1 and E2, then 〈X1|E1〉 = 〈Y1|E2〉 can be
derived from EACP + B1, 2 + RDP,RSP; see the proof of Theorem 5.3.2.

We apply structural induction with respect to the size of t. It was shown
at the start of the proof of Theorem 5.3.2 that each process term in ACP
with silent step and guarded linear recursion is provably equal to a process
term 〈X|E〉 with E a guarded linear recursive specification. So the only
case that remains to be covered is when t ≡ τI(s). By induction it may be
assumed that s = 〈X|E〉 with E a guarded linear recursive specification, so
t = τI(〈X|E〉). We divide the collection of recursion variables in E into its
clusters C1, . . . , CN for I. For i ∈ {1, . . . , N}, let

ai1Yi1 + · · ·+ aimiYimi + bi1 + · · ·+ bini

be the alternative composition of exits for the cluster Ci. Furthermore, for
atomic actions a ∈ A ∪ {τ} we define

â =

{
τ if a ∈ I
a otherwise.

Finally, for Z ∈ Ci (i ∈ {1, . . . , N}) we define

sZ
∆
= âi1τI(〈Yi1|E〉) + · · ·+ âimiτI(〈Yimi |E〉) + b̂i1 + · · ·+ b̂ini . (5.13)

For Z ∈ Ci and a ∈ A ∪ {τ},

aτI(〈Z|E〉) CFAR
= aτI(ai1〈Yi1|E〉+ · · ·+ aimi〈Yimi |E〉+ bi1 + · · ·+ bini)

TI1-5
= asZ . (5.14)

Let the linear recursive specification F contain the same recursion vari-
ables as E, where for each Z ∈ Ci the recursive equation in F is

Z = âi1Yi1 + · · ·+ âimiYimi + b̂i1 + · · ·+ b̂ini .

We show that there is no sequence of one or more τ -transitions from 〈Z|F 〉
to itself. Suppose âij ≡ τ for some j ∈ {1, . . . ,mi}. Then the fact that aijYij
is an exit for the cluster Ci ensures that Yij 6∈ Ci, so there cannot exist a

sequence of transitions 〈Yij |E〉 d1→ · · · d`→ 〈Z|E〉 with d1, . . . , d` ∈ I ∪ {τ}.
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Then by the definition of F there cannot exist a sequence of transitions
〈Yij |F 〉 τ→ · · · τ→ 〈Z|F 〉. Hence, F is guarded.

For each recursion variable Z ∈ Ci (i ∈ {1, . . . , N}),

sZ
(5.13),(5.14)

= âi1sYi1 + · · ·+ âimisYimi + b̂i1 + · · ·+ b̂ini .

This means that substituting sZ for recursion variables Z in F is a solution
for F . Hence, by RSP, sZ = 〈Z|F 〉 for recursion variables Z in F . So for
a ∈ A ∪ {τ} and recursion variables Z in F ,

aτI(〈Z|E〉)
(5.14)

= asZ = a〈Z|F 〉. (5.15)

Recall that t = τI(〈X|E〉). Let the linear recursive equation for X in E
be

X = c1Z1 + · · ·+ ckZk + d1 + · · ·+ d`.

Let the linear recursive specification G consist of F extended with a fresh
recursion variable W and the recursive equation

W = ĉ1Z1 + · · ·+ ĉkZk + d̂1 + · · ·+ d̂`.

Since F is guarded, it is clear that G is also guarded.

τI(〈X|E〉) RDP
= τI(c1〈Z1|E〉+ · · ·+ ck〈Zk|E〉+ d1 + · · ·+ d`)

TI1-5
= ĉ1τI(〈Z1|E〉) + · · ·+ ĉkτI(〈Zk|E〉) + d̂1 + · · ·+ d̂`

(5.15)
= ĉ1〈Z1|F 〉+ · · ·+ ĉk〈Zk|F 〉+ d̂1 + · · ·+ d̂`.

Furthermore, for Z ∈ Ci (i ∈ {1, . . . , N}),

〈Z|F 〉 RDP
= âi1〈Yi1|F 〉+ · · ·+ âimi〈Yimi |F 〉+ b̂i1 + · · ·+ b̂ini .

Hence, substituting τI(〈X|E〉) for W and 〈Z|F 〉 for all other recursion vari-
ables Z in G is a solution for G. So RSP yields

τI(〈X|E〉) = 〈W |G〉. 2

Exercise 5.6.3. Derive the following equations from the axioms:

- τ{a}(〈X |X=aX+b〉) = τ{a}(〈Y |Y=aZ+b, Z=aY 〉);
- τ{a}(〈X |X=aY, Y=aX+bX〉) = 〈V |V=τW,W=bV 〉;
- τ{a}(〈X |X=aY+b, Y=aX+c〉) = τ(b+ c) + b;
- τ ·τ{a}(〈X |X=aY+bY, Y=aX+cX〉) = τ ·〈Z |Z=bZ+cZ〉.
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Chapters 2-5 presented a standard framework ACPτ with guarded linear re-
cursion for the specification and manipulation of concurrent processes. Sum-
marising, it consists of basic operators (A, +, ·) to define finite processes,
communication operators (‖, , |) to express parallelism, deadlock and en-
capsulation (δ, ∂H) to force atomic actions into communication, silent step
and abstraction (τ , τI) to make internal computations invisible, and guarded
linear recursion (〈X|E〉) to capture regular processes. These constructs form
a solid basis for the analysis of a wide range of systems.

In particular, the framework is suitable for the specification and verifi-
cation of network protocols. For such a verification, the desired external be-
haviour of the protocol is represented in the form of a process term that
is built from the basic operators of BPA together with linear recursion.
Moreover, the implementation of the protocol is represented in the form of
a process term that involves the basic operators, the three parallel opera-
tors, and linear recursion. Next, the internal send and read actions of the
implementation are forced into communication using an encapsulation op-
erator, and the internal communication actions are made invisible using an
abstraction operator, so that only the input/output relation of the implemen-
tation remains. Finally, if the two resulting process terms can be equated by
EACPτ + RDP,RSP,CFAR, then this proves that the process graphs belong-
ing to the desired external behaviour and to the input/output relation of the
implementation are rooted branching bisimilar.

6.1 Alternating Bit Protocol

Suppose two armies have agreed to attack a city at the same time. The two
armies reside on different hills, while the city lies in between these two hills.
The only way for the armies to communicate with each other is by sending
messengers through the hostile city. This communication is inherently unsafe;
if a messenger is caught inside the city, then the message does not reach its
destination. The paradox is that in such a situation, the two armies are never
able to be 100% sure that they have agreed on a time to attack the city.
Namely, if one army sends the message that it will attack at say 11am, then



72 6. Protocol Verifications

the other army has to acknowledge reception of this message, army one has
to acknowledge the reception of this acknowledgement, et cetera.

The alternating bit protocol (ABP) [31], which was already described
in the introduction, is a method to ensure successful transmission of data
through a corrupted channel (such as messengers through a hostile city).
This success is based on the assumption that data can be resent an unlimited
number of times. The protocol is depicted in Fig. 6.1.

ReceiverSender
A

B
C

D

Fig. 6.1. Alternating bit protocol

Data elements d1, d2, d3, . . . from a finite set ∆ are communicated between
a Sender and a Receiver. If the Sender reads a datum from channel A, then
this datum is communicated through channel B to the Receiver, which sends
the datum into channel C. However, channel B is corrupted, so that a mes-
sage that is communicated through this channel can be turned into an error
message ⊥. Therefore, every time the Receiver receives a message via channel
B, it sends an acknowledgement to the Sender via channel D, which is also
corrupted.

In the ABP, the Sender attaches a bit 0 to data elements d2k−1 and a
bit 1 to data elements d2k, when they are sent into channel B. As soon as
the Receiver reads a datum, it sends back the attached bit via channel D, to
acknowledge reception. If the Receiver receives a corrupted message, then it
sends the previous acknowledgement to the Sender once more. The Sender
keeps on sending a pair (di, b) as long as it receives the acknowledgement 1−b
or ⊥. When the Sender receives the acknowledgement b, it starts sending out
the next datum di+1 with attached bit 1 − b, until it receives the acknowl-
edgement 1−b, et cetera. Alternation of the attached bit enables the Receiver
to determine whether a received datum is really new, and alternation of the
acknowledgement enables the Sender to determine whether it acknowledges
reception of a datum or of an error message.

We give a linear recursive specification of the ABP in process algebra.
Furthermore, we present an algebraic proof that the resulting process term
displays the desired external behaviour; that is, the data elements that are
read from channel A by the Sender are sent into channel C by the Receiver
in the same order, and no data elements are lost. In other words, the process
term is a solution for the recursive specification

X =
∑

d∈∆
rA(d)·sC(d)·X
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where action rA(d) represents “read datum d from channel A”, and action
sC(d) represents “send datum d into channel C”. The verification of the
ABP in this section is based on [44] (see also [28]). In comparison to [44],
the modelling of the protocol in this section has been simplified in the sense
that there are no explicit atomic actions to represent the non-deterministic
behaviour of the communication channels in passing on or corrupting data
(see Exercise 6.1.3). An alternative verification can be found in [142, 158].

First, we specify the Sender in the state that it is going to send out a
datum with the bit b attached to it, represented by the recursion variable Sb
for b ∈ {0, 1}:

Sb =
∑

d∈∆
rA(d)·Tdb

Tdb = (sB(d, b) + sB(⊥))·Udb
Udb = rD(b)·S1−b + (rD(1− b) + rD(⊥))·Tdb

In state Sb, the Sender reads a datum d from channel A. Then it proceeds to
state Tdb, in which it sends datum d into channel B, with the bit b attached
to it. However, the pair (d, b) may be distorted by the channel, so that it
becomes the error message ⊥. Next, the system proceeds to state Udb, in
which it expects to receive the acknowledgement b through channel D, en-
suring that the pair (d, b) has reached the Receiver unscathed. If the correct
acknowledgement b is received, then the system proceeds to state S1−b, in
which it is going to send out a datum with the bit 1− b attached to it. If the
acknowledgement is either the wrong bit 1− b or the error message ⊥, then
the system proceeds to state Tdb, to send the pair (d, b) into channel B once
more.

Next, we specify the Receiver in the state that it is expecting to receive
a datum with the bit b attached to it, represented by the recursion variable
Rb for b ∈ {0, 1}:

Rb =
∑

d′∈∆
{rB(d′, b)·sC(d′)·Qb + rB(d′, 1− b)·Q1−b} + rB(⊥)·Q1−b

Qb = (sD(b) + sD(⊥))·R1−b

In state Rb there are two possibilities.

1. If in Rb the Receiver reads a pair (d′, b) from channel B, then this con-
stitutes new information, so the datum d′ is sent into channel C. Then
the Receiver proceeds to state Qb, in which it sends acknowledgement
b to the Sender via channel D. However, this acknowledgement may be
distorted by the channel, so that it becomes the error message ⊥. Next,
the Receiver proceeds to state R1−b, in which it is expecting to receive a
datum with the bit 1− b attached to it.

2. If in Rb the Receiver reads a pair (d′, 1− b) or an error message ⊥ from
channel B, then this does not constitute new information. So then the
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Receiver proceeds to state Q1−b straight away, to send acknowledgement
1− b to the Sender via channel D. However, this acknowledgement may
be distorted by the channel, so that it becomes the error message ⊥.
Next, the Receiver proceeds to state Rb again.

A send and a read action of the same message ((d, b), b, or ⊥) over the
same internal channel (B or D) communicate with each other:

γ(sB(d, b), rB(d, b))
∆
= cB(d, b)

γ(sB(⊥), rB(⊥))
∆
= cB(⊥)

γ(sD(b), rD(b))
∆
= cD(b)

γ(sD(⊥), rD(⊥))
∆
= cD(⊥)

for d ∈ ∆ and b ∈ {0, 1}. All other communications between atomic actions
result in δ.

The recursive specification E of the ABP, consisting of the recursive equa-
tions for the recursion variables Sb, Tdb, Udb, Rb, and Qb for d ∈ ∆ and
b ∈ {0, 1}, can easily be transformed into linear form by introducing extra
recursion variables to represent sC(d′)·Qb for d′ ∈ ∆ and b ∈ {0, 1}. In the
remainder of this section, for notational convenience, process terms 〈X|E〉
are abbreviated to X. The desired concurrent system is obtained by putting
R0 and S0 in parallel, encapsulating send and read actions over the internal
channels B and D, and abstracting away from communication actions over
these channels. That is, the ABP is expressed by the process term

τI(∂H(R0‖S0))

with

H = {sB(d, b), rB(d, b), sD(b), rD(b) | d ∈ ∆, b ∈ {0, 1}}
∪ {sB(⊥), rB(⊥), sD(⊥), rD(⊥)}

I = {cB(d, b), cD(b) | d ∈ ∆, b ∈ {0, 1}} ∪ {cB(⊥), cD(⊥)}.

Before indulging in the formal proof that the ABP is correct, first we
explain the behaviour of the process term ∂H(R0‖S0) on a more intuitive
level; its process graph is depicted in Fig. 6.2. Initially, in state 1, a datum
d is read from channel A, resulting in state 2. Then an error message ⊥ is
communicated through channel B zero or more times, each time invoking an
incorrect acknowledgement 1 or ⊥. Finally, the pair (d, 0) is communicated
through channel B, resulting in state 4. Then datum d is sent into chan-
nel C, to reach state 5. The corrupted acknowledgement ⊥ is communicated
through channel D zero or more times, each time invoking a renewed attempt
to communicate the pair (d, 0) through channel B. Finally, acknowledgement
0 is communicated through channel D, resulting in state 7. There the same
process is repeated, with the distinction that the bit 1 attached to the da-
tum that is communicated through channel B. Note that states 2-6 and 8-12
depend on the datum d that is read from channel A.
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Fig. 6.2. Transition graph of ∂H(R0‖S0).

We proceed with the formal verification of the ABP. First, we derive from
EACPτ and RDP the six equations I-VI below, which establish the transitions
between states 1-7 in the bottom half of Fig. 6.2.

I : ∂H(R0‖S0) =
∑
d∈∆ rA(d)·∂H(Td0‖R0)

II : ∂H(Td0‖R0) = cB(d, 0)·∂H(Ud0‖(sC(d)Q0))
+ cB(⊥)·∂H(Ud0‖Q1)

III : ∂H(Ud0‖Q1) = (cD(1) + cD(⊥))·∂H(Td0‖R0)

IV : ∂H(Ud0‖(sC(d)Q0)) = sC(d)·∂H(Q0‖Ud0)

V : ∂H(Q0‖Ud0) = cD(0)·∂H(R1‖S1) + cD(⊥)·∂H(R1‖Td0)

VI : ∂H(R1‖Td0) = (cB(d, 0) + cB(⊥))·∂H(Q0‖Ud0)

We start with the derivation of equation I. The process term R0‖S0 can
be expanded as follows. In each step, the subterms that are reduced are
underlined.
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R0‖S0

M1
=
R0 S0 + S0 R0 +R0|S0

RDP
=

(
∑
d′∈∆{rB(d′, 0)sC(d′)Q0 + rB(d′, 1)Q1}+ rB(⊥)Q1) S0

+(
∑
d∈∆ rA(d)Td0) R0

+(
∑
d′∈∆{rB(d′, 0)sC(d′)Q0 + rB(d′, 1)Q1}+ rB(⊥)Q1)|(∑d∈∆ rA(d)Td0)

LM4,CM9,10
=∑

d′∈∆{(rB(d′, 0)sC(d′)Q0) S0 + (rB(d′, 1)Q1) S0}+ (rB(⊥)Q1) S0

+
∑
d∈∆ (rA(d)Td0) R0 +

∑
d′∈∆

∑
d∈∆{(rB(d′, 0)sC(d′)Q0)|(rA(d)Td0)

+(rB(d′, 1)Q1)|(rA(d)Td0)}+
∑
d∈∆ (rB(⊥)Q1)|(rA(d)Td0)

LM3,CM8
=∑
d′∈∆{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}+ rB(⊥)(Q1‖S0)

+
∑
d∈∆ rA(d)(Td0‖R0) +

∑
d′∈∆

∑
d∈∆{δ((sC(d′)Q0)‖Td0) + δ(Q1‖Td0)}

+
∑
d∈∆ δ(Q1‖Td0)

A6,7
=∑
d′∈∆{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}+ rB(⊥)(Q1‖S0)

+
∑
d∈∆ rA(d)(Td0‖R0).

Next, we expand the process term ∂H(R0‖S0).

∂H(R0‖S0)

=
∂H(

∑
d′∈∆{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}

+rB(⊥)(Q1‖S0) +
∑
d∈∆ rA(d)(Td0‖R0))

D4
=∑
d′∈∆{∂H(rB(d′, 0)((sC(d′)Q0)‖S0)) + ∂H(rB(d′, 1)(Q1‖S0))}

+∂H(rB(⊥)(Q1‖S0)) +
∑
d∈∆ ∂H(rA(d)(Td0‖R0))

D1,2,5
=∑
d′∈∆{δ∂H((sC(d′)Q0)‖S0) + δ∂H(Q1‖S0)}+ δ∂H(Q1‖S0)

+
∑
d∈∆ rA(d)∂H(Td0‖R0)

A6,7
=∑
d∈∆ rA(d)∂H(Td0‖R0).

This completes the proof of equation I. Similar to equation I, we can derive
the remaining equations II-VI. These derivations are sketched below.
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Td0‖R0 = (sB(d, 0) + sB(⊥))(Ud0‖R0)
+
∑
d′∈∆{rB(d′, 0)((sC(d′)Q0)‖Td0) + rB(d′, 1)(Q1‖Td0)}

+ rB(⊥)(Q1‖Td0)
+ cB(d, 0)(Ud0‖(sC(d)Q0))
+ cB(⊥)(Ud0‖Q1)

∂H(Td0‖R0) = cB(d, 0)∂H(Ud0‖(sC(d)Q0)) + cB(⊥)∂H(Ud0‖Q1)

Ud0‖Q1 = rD(0)(S1‖Q1)
+ (rD(1) + rD(⊥))(Td0‖Q1)
+ (sD(1) + sD(⊥))(R0‖Ud0)
+ (cD(1) + cD(⊥))(Td0‖R0)

∂H(Ud0‖Q1) = (cD(1) + cD(⊥))∂H(Td0‖R0)

Ud0‖(sC(d)Q0) = rD(0)(S1‖(sC(d)Q0))
+ (rD(1) + rD(⊥))(Td0‖(sC(d)Q0))
+ sC(d)(Q0‖Ud0)

∂H(Ud0‖(sC(d)Q0)) = sC(d)∂H(Q0‖Ud0)

Q0‖Ud0 = (sD(0) + sD(⊥))(R1‖Ud0)
+ rD(0)(S1‖Q0)
+ (rD(1) + rD(⊥))(Td0‖Q0)
+ cD(0)(R1‖S1)
+ cD(⊥)(R1‖Td0)

∂H(Q0‖Ud0) = cD(0)∂H(R1‖S1) + cD(⊥)∂H(R1‖Td0)

R1‖Td0 =
∑

d′∈∆
{rB(d′, 1)((sC(d′)Q1)‖Td0) + rB(d′, 0)(Q0‖Td0)}

+ rB(⊥)(Q0‖Td0)
+ (sB(d, 0) + sB(⊥))(Ud0‖R1)
+ (cB(d, 0) + cB(⊥))(Q0‖Ud0)

∂H(R1‖Td0) = (cB(d, 0) + cB(⊥))∂H(Q0‖Ud0)

Note that the process term ∂H(R1‖S1) in the right-hand side of equation V is
not the left-hand side of an equation I-VI. We proceed to expand ∂H(R1‖S1).
That is, similar to equations I-VI, the following six equations VII-XII can be
derived, which establish the transitions between states 7-12 and 1 in the top
half of Fig. 6.2. The derivations of these equations are left to the reader.
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VII : ∂H(R1‖S1) =
∑
d∈∆ rA(d)·∂H(Td1‖R1)

VIII : ∂H(Td1‖R1) = cB(d, 1)·∂H(Ud1‖(sC(d)Q1))
+ cB(⊥)·∂H(Ud1‖Q0)

IX : ∂H(Ud1‖Q0) = (cD(0) + cD(⊥))·∂H(Td1‖R1)

X : ∂H(Ud1‖(sC(d)Q1)) = sC(d)·∂H(Q1‖Ud1)

XI : ∂H(Q1‖Ud1) = cD(1)·∂H(R0‖S0) + cD(⊥)·∂H(R0‖Td1)

XII : ∂H(R0‖Td1) = (cB(d, 1) + cB(⊥))·∂H(Q1‖Ud1)

Thus, we have derived algebraically the relations depicted in Fig. 6.2.
Owing to equations I-XII, RSP yields

∂H(R0‖S0) = 〈X1|E〉 (6.1)

where E denotes the linear recursive specification

{ X1 =
∑
d′∈∆ rA(d′)·X2d′ , Y1 =

∑
d′∈∆ rA(d′)·Y2d′ ,

X2d = cB(d, 0)·X4d + cB(⊥)·X3d, Y2d = cB(d, 1)·Y4d + cB(⊥)·Y3d,
X3d = (cD(1) + cD(⊥))·X2d, Y3d = (cD(0) + cD(⊥))·Y2d,
X4d = sC(d)·X5d, Y4d = sC(d)·Y5d,
X5d = cD(0)·Y1 + cD(⊥)·X6d, Y5d = cD(1)·X1 + cD(⊥)·Y6d,
X6d = (cB(d, 0) + cB(⊥))·X5d, Y6d = (cB(d, 1) + cB(⊥))·Y5d

| d ∈ ∆ }.

We proceed to prove that the process term τI(〈X1|E〉) exhibits the desired
external behaviour of the ABP. After application of the abstraction operator
τI to the process term 〈X1|E〉, the loops of communication actions in Fig.
6.2 (between states 2-3, states 5-6, states 8-9, and states 11-12) become τ -
loops. These loops can be removed using CFAR. For example, for d ∈ ∆ the
recursion variables X2d and X3d form a cluster for I with exit cB(d, 0)·X4d,
so

rA(d)·τI(〈X2d|E〉) CFAR
= rA(d)·τI(cB(d, 0) 〈X4d|E〉)

TI2,5,B1
= rA(d)·τI(〈X4d|E〉). (6.2)

Similarly, CFAR together with TI2,5 and B1 can be applied to eliminate the
other three loops of communication actions. Thus, we derive the following
equations:

sC(d)·τI(〈X5d|E〉) = sC(d)·τI(〈Y1|E〉) (6.3)

rA(d)·τI(〈Y2d|E〉) = rA(d)·τI(〈Y4d|E〉) (6.4)

sC(d)·τI(〈Y5d|E〉) = sC(d)·τI(〈X1|E〉). (6.5)
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Applying RDP, TI1,4,5, and equations (6.2) and (6.3) we derive

τI(〈X1|E〉) RDP,TI1,4,5
=

∑

d∈∆
rA(d)·τI(〈X2d|E〉)

(6.2)
=

∑

d∈∆
rA(d)·τI(〈X4d|E〉)

RDP,TI1,5
=

∑

d∈∆
rA(d)·sC(d)·τI(〈X5d|E〉)

(6.3)
=

∑

d∈∆
rA(d)·sC(d)·τI(〈Y1|E〉). (6.6)

Likewise, applying RDP, TI1,4,5, and equations (6.4) and (6.5) we can derive

τI(〈Y1|E〉) =
∑

d∈∆
rA(d)·sC(d)·τI(〈X1|E〉). (6.7)

Equations (6.6) and (6.7) together with RSP enable us to derive the fol-
lowing equation (cf. Exercise 4.3.5):

τI(〈X1|E〉) =
∑

d∈∆
rA(d)·sC(d)·τI(〈X1|E〉).

In combination with equation (6.1) this yields

τI(∂H(R0‖S0)) =
∑

d∈∆
rA(d)·sC(d)·τI(∂H(R0‖S0)).

In other words, the ABP exhibits the desired external behaviour. This finishes
the verification of the ABP.

Intuitively, the application of CFAR in the verification excludes the possi-
bility that the channels B and D are completely defective, because a message
can only be distorted a finite number of times.

Exercise 6.1.1. Complete the omitted details of the verification of the ABP.

Exercise 6.1.2. Suppose the recursive specification of the Sender in the
ABP were adapted as follows:

Sb =
∑

d∈∆
rA(d)·Tdb

Tdb = (sB(d, b) + sB(⊥))·Udb
Udb = (rD(b) + rD(⊥))·S1−b + rD(1− b)·Tdb

That is, if the Sender receives an acknowledgement ⊥, then it starts sending
the next datum. Show that in that case τI(∂H(R0‖S0)) would not display the
desired external behaviour.
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Exercise 6.1.3. Let us specify the non-deterministic behaviour of channels
B and D. That is, the Sender sends (uncorrupted) data with attached bits
into channel B1 and reads messages from channel D2, while the Receiver
reads messages from channel B2 and sends (uncorrupted) acknowledgements
into channel D1. The processes K and L, which express that messages may
be corrupted by channels B and D, respectively, are defined by the recursive
equations

K =
∑

d∈∆

∑

b∈{0,1}
rB1(d, b)·(i·sB2(d, b) + i·sB2(⊥))·K

L =
∑

b∈{0,1}
rD1(b)·(i·sD2(b) + i·sD2(⊥))·L

The atomic action i does not communicate with any atomic action and is
added to the set I. Prove that τI(∂H(R0‖S0‖K‖L)) displays the desired ex-
ternal behaviour.

6.2 Bounded Retransmission Protocol

Philips formulated a bounded retransmission protocol BRP for the imple-
mentation of a remote control (RC). Data elements that are sent from the
RC to their destination, say a TV, may get lost. For example, the user may
point the RC in the wrong direction. Therefore, if the TV receives a datum, it
sends back a message to the RC, to acknowledge reception; this acknowledge-
ment may also get lost. The RC attaches an alternating bit to each datum
that it sends to the TV, so that the TV can recognise whether it received a
datum before.

Clearly, there is a strong similarity between the ABP and the BRP. How-
ever, there are some fundamental distinctions between the two protocols,
which are listed below.

1. In general, the data packets that are sent from the RC to the TV are
large, so that they cannot be sent in one go. This means that each data
packet is chopped into little pieces, and the RC sends these pieces one
by one.
The RC attaches a special label to the last element of a data packet, so
that at reception of this datum the TV recognises that this completes
the data packet.

2. In the ABP we took the view that a datum can be resent an unlimited
number of times. Owing to this assumption, fair abstraction could be
applied to conclude that each datum that is sent by the Sender will even-
tually reach the Receiver. However, this assumption is not very practical,
because here it would mean that the RC could get into an infinite loop,
while trying without success to communicate a datum to the TV.
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Therefore, Philips requires that a datum can only be resent a limited
number of times. This means that the correctness criterion cannot be
that each datum that is sent by the RC will eventually reach the TV.
Instead, it is required that either the complete data packet is commu-
nicated between the RC and the TV, or the RC sends an appropriate
message to the outside world to inform its corresponding partner that
this communication has (or may have) failed.

3. In the ABP, data does not get lost, but can only be corrupted. This
assumption ensures that the protocol always progresses: if the Sender
sends a datum to the Receiver, then the Sender will eventually receive
either an acknowledgement or an error message. The Sender responds to
such a message, which secures that the protocol progresses.
However, in the communication between the RC and the TV, data ele-
ments may get lost. In order to ensure that the BRP progresses, we need
to incorporate some notion of time. Namely, if the RC sends a datum to
the TV and does not receive an acknowledgement within a certain period
of time, then it is certain that the datum or its acknowledgement was
lost, so that the datum has to be resent. Furthermore, if the TV does not
receive a next datum within a certain period of time, then it can be sure
that the RC has given up transmission of a data packet.
There are a number of ways to add the factor time to process algebra
(see Section 6.3 for an explicit method based on timed actions). Here we
use two timer processes T1 and T2 that send time-out messages to the
RC and the TV, respectively. If the RC sends a datum to the TV, then
it implicitly sets the timer T1; if the RC receives an acknowledgement,
then it implicitly resets T1. Alternatively, T1 sends a time-out to the RC,
to signal that the acknowledgement has been delayed for too long; in
that case, the RC resends the datum. Likewise, the timer T2 can send a
time-out to the TV, to signal that the next datum has been delayed so
long that the RC must have given up transmission of the data packet.

4. In the ABP, an acknowledgement from the Receiver could have been
prompted by an error message. Therefore, the Sender required two types
of acknowledgements (0 and 1), to distinguish acknowledgements for suc-
cessful transfers from acknowledgements for error messages.
In the BRP, data is never corrupted. Hence, when the RC receives an
acknowledgement, it can be sure that the TV received the datum un-
scathed. Therefore, only one kind of acknowledgement is needed.

The BRP is depicted in Fig. 6.3. Note that the medium between the RC
and the TV is represented by two separate entities K and L, which can pass
on a datum or lose it at random. The dotted lines between these entities and
the timer T1 designate that losing a datum or an acknowledgement triggers T1

to send a time-out to the RC via channel G. Similarly, the dotted line between
the RC and the timer T2 designates that if the RC gives up transmitting a
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Fig. 6.3. Bounded retransmission protocol

data packet, then this is followed by a delay that is sufficiently long for T2 to
send a time-out to the TV via channel H.

Groote and van de Pol [112] specified the BRP in process algebra, and ver-
ified that the protocol exhibits the required external behaviour. First, we give
an informal description of the process algebra specification for the BRP, and
explain its required external behaviour. Next, we present the formal specifica-
tion, and derive algebraically its actual external behaviour. Our specification
is a simplification of the specification in [112], where setting and resetting
the timers is performed by explicit actions, error messages are more sophis-
ticated, and special actions are needed in order to enforce synchronisation of
the RC and the TV.

Suppose the RC receives a data packet (d1, . . . , dN ) via channel A. Then
the RC transmits the data elements d1, . . . , dN separately, where the last
datum dN is supplied with a special label last. Furthermore, each datum is
supplied with an alternating bit 0 or 1: data elements d2k−1 are supplied with
bit 0 while data elements d2k are supplied with bit 1. If the RC sends a pair
(di, b) into channel B for the first time, then it implicitly sets the timer T1,
and moreover it sets a counter at zero to keep track of the number of failed
attempts to send datum di. Now there are two possibilities:

1. The RC receives an acknowledgement ack via channel F. Then it sends
out the next pair (di+1, 1 − b), sets the timer T1, and gives the counter
the value zero.

2. The RC receives a time-out from the timer T1 via channel G. Then it
sends out the pair (di, b) again, sets the timer T1, and increases the value
of the counter by one.

Transmission of the data packet is either completed successfully, if the RC
receives an acknowledgement from the TV that it received the last datum
dN of the packet, or broken off unsuccessfully, if at some point the counter
reaches its preset maximum value max. In the first case, the RC sends the
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message IOK into channel A, to inform the outside world that transmission of
the data packet (d1, . . . , dN ) was concluded successfully. In the second case,
the RC sends the message INOK into channel A, to inform the outside world
that transmission of the data packet failed.

If the TV receives a pair (di, b) via channel C for the first time (which can
be judged from the attached bit), then it sends di into channel D if i > 1, or
the pair (di,first) if i = 1, to inform its corresponding partner in the outside
world that this is the first datum of a new data package. Next, it sends and
acknowledgement ack into channel E. Now there are three possibilities:

1. The TV receives the next pair (di+1, 1− b) via channel C. Then it sends
di+1 into channel D and ack into channel E.

2. The TV receives the pair (di, b) again. Then it only sends ack into channel
E.

3. The TV receives a time-out from the timer T2 via channel H, signalling
that the RC has given up transmission of the data packet.

This procedure is repeated until the TV may receive a message (d, b, last), in
which case it sends the pair (d, last) into channel D, informing its correspond-
ing partner in the outside world that this successfully concludes transmission
of the data packet.

K and L represent the non-deterministic behaviour of the medium be-
tween the RC and the TV. If K reads a message via channel B, then it may
or may not pass on this message to the TV via channel C. In the latter case,
the timer T1 will eventually send a time-out to the RC. Similarly, if L reads
a message via channel E, then it may or may not pass on this message to
the RC via channel F. In the latter case, the timer T1 will eventually send a
time-out to the RC.

This almost finishes the informal description of the BRP. However, there
is one aspect of this protocol that has not yet been discussed, concerning
error messages. This characteristic is explained using the specification of the
required external behaviour, which is depicted in Fig. 6.4. The clockwise
circle in this picture represents successful transfers of data elements (starting
at the leftmost node), while the transitions that digress from this circle are
error messages that are sent into channel A.

There is one special case with respect to the messages that are sent into
channel A, at the end of transmission of a data packet. Suppose the RC
attempted to send the final triple (dN , b, last) to the TV, but that it did not
receive an acknowledgement, even after the maximum number of tries. Then
the RC does not know whether the TV received the datum dN , so it cannot
be certain that transmission of the data packet was concluded successfully.
In this case the RC sends a special error message IDK into channel A.

We proceed to present the recursive equations that formally specify the
BRP in process algebra. In order to simplify the specification, we assume
that the data packets that reach the RC via channel A have length ≥ 2, and
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sD(d1, first)

sA(IDK )

sD(dN−1)sD(dN , last)

(i = 2, . . . , N − 2)
sD(di)sA(INOK )

rA(d1, . . . , dN)
sA(INOK )

sA(INOK )

sA(IOK )
sA(IDK ) sA(INOK )

Fig. 6.4. External behaviour of the BRP

that max ≥ 2. The recursive specification uses the following data parameters
and functions.

- d ranges over a finite data set ∆, and ` ranges over the set Λ of lists of data
of length ≥ 2. head(`) represents the first element of the list `, and tail(`)

represents the remaining list: head(d1, . . . , dN )
∆
= d1 and tail(d1, . . . , dN )

∆
=

(d2, . . . , dN ).
- b ranges over {0, 1}, while n ranges over {0, . . . ,max}, where max is the

maximum number of attempts that the RC is allowed to undertake to
transmit a datum to the TV.

- Finally, we have the acknowledgement ack, the time-out to, the appendices
first and last for the first and last datum of a data packet, and the messages
IOK , INOK , and IDK for the outside world.

We start with the specification of the RC; its initial state is represented
by the recursion variable X:
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X =
∑
`∈Λ rA(`)·Y (`, 0, 0)

Y (`, b, n) = sB(head(`), b)·Z(`, b, n)
Y (d, b, n) = sB(d, b, last)·Z(d, b, n)

(n < max ) Z(`, b, n) = rF(ack)·Y (tail(`), 1− b, 0)
+ rG(to)·Y (`, b, n+ 1)

Z(`, b,max ) = rF(ack)·Y (tail(`), 1− b, 0)
+ rG(to)·sA(INOK )·sH(to)·X

(n < max ) Z(d, b, n) = rF(ack)·sA(IOK )·X
+ rG(to)·Y (d, b, n+ 1)

Z(d, b,max ) = rF(ack)·sA(IOK )·X
+ rG(to)·sA(IDK )·sH(to)·X

The intuition behind these recursive equations is as follows. Let l range over
lists of data of length ≥ 1.

• In state X, the RC waits until it receives a data packet ` via channel A,
after which it proceeds to Y (`, 0, 0). The first zero represents the bit that
is going to be attached to head(`), while the second zero represents the
counter.

• In state Y (l, b, n), the RC attempts to send the head of list l to the TV via
channel B, with bit b attached to it. If l consists of a single datum, then
moreover a label last is attached to this message. The counter n registers
the number of unsuccessful attempts to send the head of l to the TV.

• In state Z(l, b, n), the RC waits for either an acknowledgement via channel
F or a time-out via channel G.
- Suppose the RC receives an acknowledgement from the TV. If l consists

of two or more data elements, then it proceeds to send the head of tail(l)
to the TV, with bit 1− b attached to it and the counter starting at zero.
If l consists of a single datum, then it concludes successful transmission
of the data packet by sending IOK into channel A, and proceeds to state
X.

- Suppose the RC receives a time-out from the timer T1. If n < max ,
then it sends the pair (head(l), b) to the TV again, with the counter
increased by one. If n ≡ max , then it concludes that transmission of the
data packet was unsuccessful (if l consists of two or more elements) or
may have been unsuccessful (if l consists of a single element), by sending
INOK or IDK into channel A, respectively. This message is followed by
a delay, sufficiently long to let the timer T2 send a time-out to the TV
via channel H, after which the RC proceeds to state X.

Next, we specify the TV; its root state is represented by the recursion
variable V :
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V =
∑
d∈∆ rC(d, 0)·sD(d,first)·sE(ack)·W (1)

+
∑
d∈∆(rC(d, 0, last) + rC(d, 1, last))·sE(ack)·V

+ rH(to)·V
W (b) =

∑
d∈∆ rC(d, b)·sD(d)·sE(ack)·W (1− b)

+
∑
d∈∆ rC(d, b, last)·sD(d, last)·sE(ack)·V

+
∑
d∈∆ rC(d, 1− b)·sE(ack)·W (b)

+ rH(to)·V

The intuition behind these recursive equations is as follows.

• In state V , the TV is waiting for the first element of a new data packet,
with the bit 0 attached to it. If it receives such a message, then it sends
the datum into channel D, sends an acknowledgement into channel E, and
proceeds to state W (1).
If the TV receives a message with last attached to it, then it recognises that
it already received this datum before: it is the last datum of the data packet
that it received previously. Hence, the TV only sends an acknowledgement
into channel E, and remains in state V .
Finally, the TV may receive a time-out from the timer T2 via channel H,
which signals that the RC never received an acknowledgement for the last
datum of the previous data packet, or that the RC failed to transfer a
single datum of some new data packet. Then the TV remains in state V .

• In state W (b), the TV has received some but not all data of a packet from
the RC, and is waiting for a datum with the bit b attached to it. If it
receives such a message, then it sends the datum into channel D, sends an
acknowledgement into channel E, and proceeds to state W (1 − b) to wait
for a message with the bit 1−b attached to it. If the TV receives a message
with not only b but also last attached to it, then it concludes that the data
packet has been transferred successfully. In that case it sends both the
datum d and the message IOK into channel D, sends an acknowledgement
into channel E, and proceeds to state V .
If the TV receives a message with the bit 1−b attached to it, then it already
received this datum before. Hence, it only sends an acknowledgement into
channel E, and remains in state W (b).
Finally, the TV may receive a time-out from the timer T2 via channel H,
which signals that the RC has given up transmission of the data packet.
Then the TV sends the error message INOK into channel D and proceeds
to state V .

Finally, we specify the mediums K and L:

K =
∑
d∈∆

∑
b∈{0,1}{rB(d, b)·(sC(d, b) + sG(to))·K

+ rB(d, b, last)·(sC(d, b, last) + sG(to))·K}
L = rE(ack)·(sF(ack) + sG(to))·L

The intuition behind these recursive equations is as follows.



6.2 Bounded Retransmission Protocol 87

• If K receives a message from the RC via channel B, then either it passes
on this message to the TV via channel C, or it loses the message. In the
latter case, the subsequent delay triggers the timer T1 to send a time-out
to the RC via channel G.
• If L receives an acknowledgement from the TV via channel E, then either

it passes on this acknowledgement to the RC via channel F, or it loses
the acknowledgement. In the latter case, the subsequent delay triggers the
timer T1 to send a time-out to the RC via channel G.

Note that the recursive specification E for the BRP is guarded, and that
it generates a regular process. In the remainder of this section, for notational
convenience, process terms 〈Y |E〉 are abbreviated to Y . The BRP is expressed
by the process term

τI(∂H(V ‖X‖K‖L))

where the set H consists of the read and send actions over the internal chan-
nels B, C, E, F, G, and H, while the set I consists of the communication
actions over these internal channels.

The process term τI(∂H(V ‖X‖K‖L)) exhibits the required external be-
haviour (see Fig. 6.4), intertwined with non-silent τ -transitions. We proceed
to sketch an algebraic derivation of this fact. CFAR does not need to be
applied in this derivation, owing to the absence of τ -loops. A detailed verifi-
cation that the BRP exhibits its required external behaviour is given in [112].
Alternative verifications of the BRP can be found in [1, 80, 121].

The following equations can be derived from EACP, commutativity of the
merge, and RDP. For notational convenience, process terms are considered
modulo associativity of the merge, and K ′(d, b), K ′(d, b, last), and L′ abbrevi-
ate (sC(d, b)+sG(to))·K, (sC(d, b, last)+sG(to))·K, and (sF(ack)+sG(to))·L,
respectively. The equation below captures the initial state.

∂H(V ‖X‖K‖L) =
∑
`∈Λ rA(`)·∂H(V ‖Y (`, 0, 0)‖K‖L)

The equation below captures the state in which the RC sends the first datum
of a packet, while the TV did not yet receive a datum of this packet.

∂H(V ‖Y (`, 0, n)‖K‖L) =
cB(head(`), 0)·∂H(V ‖Z(`, 0, n)‖K ′(head(`), 0)‖L)

The equation below captures the state in which the RC sends some, but not
the last, datum of a packet, while the TV already received one or more data
elements of this packet.

∂H(W (b)‖Y (`, b′, n)‖K‖L) =
cB(head(`), b′)·∂H(W (b)‖Z(`, b′, n)‖K ′(head(`), b′)‖L)

The two equations below capture the state in which the RC sends the last
datum of a packet. The first equation deals with the case that the TV did not
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yet receive this datum, while the second equation deals with the case that
the TV already received this datum.

∂H(W (b)‖Y (d, b, n)‖K‖L) =
cB(d, b, last)·∂H(W (b)‖Z(d, b, n)‖K ′(d, b, last)‖L)

∂H(V ‖Y (d, b, n)‖K‖L) =
cB(d, b, last)·∂H(V ‖Z(d, b, n)‖K ′(d, b, last)‖L)

The two equations below capture the state in which medium K either passes
on or loses the first datum of a packet, while the TV did not yet receive a
datum of this packet. The second equation deals with the special case that
the counter has reached its maximum value max.

∂H(V ‖Z(`, 0, n)‖K ′(head(`), 0)‖L) =
cC(head(`), 0)·sD(head(`),first)·cE(ack)·∂H(W (1)‖Z(`, 0, n)‖K‖L′)
+ cG(to)·∂H(V ‖Y (`, 0, n+ 1)‖K‖L) (n < max )

∂H(V ‖Z(`, 0,max )‖K ′(head(`), 0)‖L) =
cC(head(`), 0)·sD(head(`),first)·cE(ack)·∂H(W (1)‖Z(`, 0,max )‖K‖L′)

+ cG(to)·sA(INOK )·cH(to)·∂H(V ‖X‖K‖L)

The four equations below capture the state in which medium K either passes
on or loses a datum of a packet, while the TV already received some data
elements of this packet, but not the datum handled by K. The last two
equations deal with the special case that K handles the last datum of a
packet. Moreover, the second and fourth equation deal with the special case
that the counter has reached its maximum value max.

∂H(W (b)‖Z(`, b, n)‖K ′(head(`), b)‖L) =
cC(head(`), b)·sD(head(`))·cE(ack)·∂H(W (1− b)‖Z(`, b, n)‖K‖L′)
+ cG(to)·∂H(W (b)‖Y (`, b, n+ 1)‖K‖L) (n < max )

∂H(W (b)‖Z(`, b,max )‖K ′(head(`), b)‖L) =
cC(head(`), b)·sD(head(`))·cE(ack)·∂H(W (1− b)‖Z(`, b,max )‖K‖L′)
+ cG(to)·sA(INOK )·cH(to)·∂H(V ‖X‖K‖L)

∂H(W (b)‖Z(d, b, n)‖K ′(d, b, last)‖L) =
cC(d, b, last)·sD(d, last)·cE(ack)·∂H(V ‖Z(d, b, n)‖K‖L′)
+ cG(to)·∂H(W (b)‖Y (`, b, n+ 1)‖K‖L) (n < max )

∂H(W (b)‖Z(d, b,max )‖K ′(d, b, last)‖L) =
cC(d, b, last)·sD(d, last)·cE(ack)·∂H(V ‖Z(d, b,max )‖K‖L′)
+ cG(to)·sA(IDK )·cH(to)·∂H(V ‖X‖K‖L)

The four equations below capture the state in which medium K either passes
on or loses a datum of a packet, while the TV already received the datum
handled by K. The last two equations deal with the special case that K
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handles the last datum of a packet. Moreover, the second and fourth equation
deal with the special case that the counter has reached its maximum value
max.

∂H(W (b)‖Z(`, 1− b, n)‖K ′(head(`), 1− b)‖L) =
cC(head(`), 1− b)·cE(ack)·∂H(W (b)‖Z(`, 1− b, n)‖K‖L′)
+ cG(to)·∂H(W (b)‖Y (`, 1− b, n+ 1)‖K‖L) (n < max )

∂H(W (b)‖Z(`, 1− b,max )‖K ′(head(`), 1− b)‖L) =
cC(head(`), 1− b)·cE(ack)·∂H(W (b)‖Z(`, 1− b,max )‖K‖L′)
+ cG(to)·sA(INOK )·cH(to)·∂H(V ‖X‖K‖L)

∂H(V ‖Z(d, b, n)‖K ′(d, b, last)‖L) =
cC(d, b, last)·cE(ack)·∂H(V ‖Z(d, b, n)‖K‖L′)
+ cG(to)·∂H(V ‖Y (d, b, n+ 1)‖K‖L) (n < max )

∂H(V ‖Z(d, b,max )‖K ′(d, b, last)‖L) =
cC(d, b, last)·cE(ack)·∂H(V ‖Z(d, b,max )‖K‖L′)
+ cG(to)·sA(IDK )·cH(to)·∂H(V ‖X‖K‖L)

The four equations below capture the state in which medium L either passes
on or loses an acknowledgement. The last two equations deal with the spe-
cial case that the acknowledgement concerns the last datum of a packet.
Moreover, the second and fourth equation deal with the special case that the
counter has reached its maximum value max.

∂H(W (b)‖Z(`, 1− b, n)‖K‖L′) =
cF(ack)·∂H(W (b)‖Y (tail(`), b, 0)‖K‖L)
+ cG(to)·∂H(W (b)‖Y (`, 1− b, n+ 1)‖K‖L) (n < max )

∂H(W (b)‖Z(`, 1− b,max )‖K‖L′) =
cF(ack)·∂H(W (b)‖Y (tail(`), b, 0)‖K‖L)
+ cG(to)·sA(INOK )·cH(to)·∂H(V ‖X‖K‖L)

∂H(V ‖Z(d, b, n)‖K‖L′) =
cF(ack)·sA(IOK )·∂H(V ‖X‖K‖L)
+ cG(to)·∂H(V ‖Y (d, b, n+ 1)‖K‖L) (n < max )

∂H(V ‖Z(d, b,max )‖K‖L′) =
cF(ack)·sA(IOK )·∂H(V ‖X‖K‖L)
+ cG(to)·sA(IDK )·cH(to)·∂H(V ‖X‖K‖L)

After application of the abstraction operator τI , communication actions
over the internal channels B, C, E, F, G, and H are renamed into τ , after
which most of these actions can be removed using axiom B1. However, some
of the τ ’s are not truly silent, and the resulting equations capture the external
behaviour in Fig. 6.4 intertwined with these non-silent τ -transitions.
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Exercise 6.2.1. Give a detailed algebraic derivation of the external be-
haviour of τI(∂H(V ‖X‖K‖L)).

6.3 Verification Techniques

Over the last two decades, a large number of specifications and verifications
of network protocols by means of process algebra have appeared in the liter-
ature. Collections of such verifications can be found in [11, 149]. This section
presents a brief overview of standard techniques that are used in these veri-
fications. For verifications in the specification language µCRL [114] that use
one or more of these techniques, see [56, 98, 111, 140, 186]

Expansion. A basic technique in protocol verification is expansion [47] of the
merge operator. That is, in order to compute the initial transitions of a pro-
cess term t1‖ · · · ‖tn, it is sufficient to compute the initial transitions of its
arguments t1, . . . , tn. The verifications of the ABP and of the BRP, which
were discussed in Sections 6.1 and 6.2, mainly consisted of such expansions.
Moreover, applications of expansion in PAP and ACP can be found in Exer-
cises 3.3.3 and 4.3.6, respectively.

Alphabet Axioms. Baeten, Bergstra, and Klop [21] introduced alphabet ax-
ioms, to obtain the set of actions that a process term can perform. These
axioms allow for instance to eliminate redundant encapsulation and abstrac-
tion operators. Namely, if a process term t cannot perform any actions from
a set H, then one can derive ∂H(t) = t. Korver and Sellink [139] formulated
alphabet axioms in the presence of data parameters.

Language Matching. Language matching was introduced by van Wamel [199]
as a method for reducing and labelling traces of actions that are not in a
predefined set of traces, called a language. In general this language is defined
to consist of the expected traces, and if a process term in the argument
of an encapsulation operator behaves as expected, then language matching
in combination with the alphabet axioms makes it possible to weed out all
labelled traces.

Determinacy and Confluence. Milner [158] propagated the notion of deter-
minacy in process algebra, which enhances the predictability of process be-
haviour. Let p ⇒ q abbreviate that there exists a sequence of transitions
p
τ→ · · · τ→ q, and let p

a⇒ q abbreviate that there exists a sequence of transi-
tions p⇒ a→⇒ q. A process p is determinate modulo branching bisimulation
if it satisfies the following two conditions:

1. if p
a⇒ q and p

a⇒ r, then q ↔b r;
2. if p⇒ q and p⇒ r, then q ↔b r.

Milner [158] restricted determinacy to a notion of confluence, because the lat-
ter notion has better congruence properties. A process p is confluent modulo
branching bisimulation if it is determinate and satisfies two extra conditions:
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3. if p
a⇒ q and p

b⇒ r with a 6≡ b, then q
b⇒ q′ and r

a⇒ r′ with q′ ↔b r
′;

4. if p
a⇒ q and p⇒ r, then r

a⇒ r′ with q ↔b r
′.

Confluence often enables one to substantially reduce the LTS under consid-
eration by identifying states that are branching bisimilar. See [115, 158] for
thorough discussions on and examples of the use of confluence in process
algebra verifications.

Invariants. An invariant [55] is a dependency relation on data objects in a
process algebra specification that holds throughout the states of the process
graph that belongs to this specification. This yields a characterisation of the
states that are reachable from the root state. Invariants have been used in
many process algebra verifications in which data play a prominent role, to
facilitate the correctness proof.

Linear Process Operators. The RSP principle (see Section 4.3) can be gener-
alised to a setting with data parameters. The role of guarded linear recursive
specifications (see Definition 5.2.1) is then passed on to so-called linear pro-
cess operators, which are symbolic representations of process graphs with
explicit data parameters. The principle CL-RSP [55] states that each linear
process operator that does not induce infinite sequences of τ -transitions has
no more than one solution.

Cones and Focus Points. A focus point is a state from which there are no
τ -transitions. The cone of a focus point is the set of states that can reach
the focus point by a series of τ -transitions. Barring infinite sequences of τ -
transitions (which may be eliminated by CFAR), each state belongs to a cone.
Groote and Springintveld [116] presented a general verification technique for
linear process operators that do not induce infinite sequences of τ -transitions.
Ideally, this technique enables one to identify the states in a cone with the
focus point of this cone, using the following approach. Assume a process
graph that belongs to a linear process operator, a process graph without τ -
transitions, and a mapping h from states in the first to states in the second
process graph, which maps all the states in a cone to the same state. Groote
and Springintveld [116] formulated straightforward criteria to ensure that
states s and h(s) are branching bisimilar, so that each state s in the first
process graph can be identified with the state h(s) in the second process
graph.

6.4 Tools

As the case-studies that are tackled using process algebra are becoming more
and more complicated, tool support for the analysis of concurrent systems
is becoming increasingly important. In recent years, a wide range of tool
environments have been developed that are based on process algebra, modal
and temporal logics (see Section B.6), and general proof techniques. Such tool
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environments comprise standard features that are familiar from the world of
programming languages, such as a type-checker and a compiler. Furthermore,
they incorporate features that aim specifically at the analysis of process terms
and finite-state process graphs.

1. A graph generator produces the process graph that belongs to a process
term.

2. An equivalence checker verifies whether two states in a process graph are
equivalent with respect to some process equivalence, such as bisimulation
or rooted branching bisimulation.

3. A minimiser reduces the number of states in a process graph. Such a
minimiser can identify states that are equivalent modulo some process
equivalence, or apply so-called partial-order reduction to eliminate re-
dundant states that are the result of interleaving unrelated events.

4. A simulator runs a random trace in a process graph, to test it, for in-
stance, on the presence of deadlocks.

5. A term rewriter reduces process or data terms to normal form, with
respect to some term rewriting system.

6. A model checker verifies whether a state in a process graph satisfies a
requirement formulated in some modal or temporal logic.

7. A theorem prover is geared to automatically derive mathematical theo-
rems from a set of assumptions and previously proven results.

We proceed to present an (admittedly incomplete) overview of existing
specification languages and tool environments that support the verification
of concurrent systems.

• LOTOS (Language of Temporal Ordering Specifications) [60] is a widely
used specification language based on process algebra. It is combined with
ACT ONE, being an algebraic specification language for data types. A
number of tools have been based on LOTOS, some of which are discussed
in some detail below.

• CADP (Cæsar/Aldébaran Development Package) [90] is a French verifi-
cation tool box for LOTOS specifications, which supports the use of data
types specified in ACT ONE. Cæsar generates the process graph belonging
to a LOTOS specification, and supports simulation. Aldébaran performs
equivalence checking and minimisation with respect to such process graphs
modulo a range of process equivalences. XTL offers facilities for model
checking formulas in modal and temporal logics such as HML and ACTL
(see Section B.6).

• XEludo [119] from Canada provides facilities for the simulation of LOTOS
specifications, during which the user is prompted for data input when nec-
essary. It supports model checking of CTL formulas via a stand alone tool
LMC.

• µCRL (Micro Common Representation Language) [114] is a Dutch specifi-
cation language that targets the specification and manipulation of data in
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process verification. Its tool set, which is based on linear process operators,
includes simulation and term rewriting facilities, and the generated process
graphs are suitable as input to the CADP tool box.

• PSF (Process Specification Formalism) [148] is a Dutch tool kit based on
ACP, in which data can be specified using the modular approach propa-
gated in [39]. It supports equivalence checking, simulation, and term rewrit-
ing.

• The Concurrency Workbench Edinburgh [75] is a tool environment for the
analysis of concurrent systems, based on CCS and timed CCS [163]. The
Concurrency Workbench North Carolina [76] has the same ancestor as its
sibling in Edinburgh, but is now under separate development. Several front-
ends allow the analysis of specifications in untimed and timed CCS, CSP,
and LOTOS. These tool environments incorporate equivalence checking
and reduction with respect to a range of process equivalences, simulation,
and model checking formulas in the modal µ-calculus. The Concurrency
Factory [74] can be viewed as a next generation of the latter Concurrency
Workbench. It supports basic data types, and minimises the process graph
under consideration by partial-order reduction.

• Labelled Transition System Analyser [146] is a British verification tool for
concurrent systems, based on the process algebra FSP. It performs compo-
sitional reachability analysis to exhaustively search for violations of desired
properties, and supports minimisation modulo bisimulation and observa-
tion equivalence.

• FC2Tools [61] is a French verification tool kit that can cope with graphical
representations of automata and with CCS and LOTOS expressions. It
supports equivalence checking, minimisation modulo process equivalences,
and on-the-fly model checking. On-the-fly means that a formula is checked
while the process graph is under construction.

• Esterel [52] is a French synchronous reactive programming language, which
supports the algebraic specification of data types, and has been supplied
with a structural operational semantics [53]. Xeve is a tool environment
for the verification of Esterel programs, modelled as process graphs, which
includes minimisation modulo process equivalences, and model checking
LTL formulas.

• FDR (Failures-Divergence Refinement) is a commercial British tool envi-
ronment, based on value-passing CSP. There is a simulator ProBE for CSP
process expressions, it allows model checking, and has extensive debugging
facilities.

• The Australian hardware description and verification language XCircal
is based on the process algebra Circal [151], featuring so-called ‘multi-
point’ communication and a distinction between deterministic and non-
deterministic alternative composition. The Circal System, an implementa-
tion of XCircal that incorporates simulation, equivalence checking, and a
notion of discrete time, is being used in the verification of digital hardware.
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• VERSA (Verification, Execution, and Rewrite System of ACSR) [70] from
the USA is based on the dense-time process algebra ACSR [63] with
resource-specific delays and priority arbitration. The tool set XVERSA
supports simulation, term rewriting, equivalence checking, and model
checking.

• SMV (Symbolic Model Verifier) [150] is an automated model checker for
CTL formulas from the USA. It was one of the first to represent process
graphs by so-called binary decision diagrams [66], which provide a compact
notation for boolean formulas. Owing to this representation, model check-
ing has been performed with respect to process graphs consisting of more
than 1020 states; see [73]. SMV also has a diagnostic facility that produces
a counter-example when a CTL formula is found to be false. NuSMV [69]
is a reimplementation and extension of SMV from Italy.

• Spin [130], developed in the USA, allows simulation and model checking of
LTL formulas. Model checking is performed on-the-fly and using partial-
order reduction. Moreover, model checking can be done in a conventional
exhaustive search through the process graph, or, when this graph is too
large, with an efficient approximation method. Spin supports the specifi-
cation of basic data types.

• XMC [180] is a model checker from the USA for value-passing CCS, to
calculate the validity of formulas in the modal µ-calculus. It has been
implemented in logic programming, using SLD resolution and so-called
tabled resolution.

• Murϕ [85] is a model checker for LTL formulas from the USA, based on
explicit state enumeration. While constructing the process graph under
consideration, multiple construction of the same state is avoided. Symmetry
properties of process graphs are used to further reduce the state space.
Murϕ supports the use of basic data types.

• COSPAN (COordinated SPecification ANalysis), [120] checks on so-called
language containment of ω-automata, to see whether each trace of actions
that can be performed by the implementation can also be performed by
the specification. It uses either explicit state enumeration or an algorithm
based on binary decision diagrams. COSPAN supports some basic data
types and provides an error-tracing facility.
• STeP (Stanford Temporal Prover) [147] combines theorem proving tech-

niques with model checking of LTL formulas with respect to systems that
can be parametrised over infinite data domains.

• UPPAAL (Uppsala Aalborg) [34], named after the two sites where it was
constructed, is a tool suite for the verification of dense-time systems, which
allows one to graphically specify networks of timed automata [5]. UPPAAL
can perform a reachability analysis, and it supports simulation and diag-
nostic error-trace reports.
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• Kronos [81] from France supports minimisation of timed automata modulo
process equivalences, and model-checking formulas in TCTL [4], which is
a dense-time extension of CTL.

• SGM (State Graph Manipulators) [131] from Taiwan targets the reduction
of timed automata, together with model checking of TCTL formulas.

Finally, some popular theorem provers are PVS [166], HOL [108], Isabelle
[171], and Nqthm [62]. For more information and internet links, see [78, 97].
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7. Extensions

Baeten, Bergstra, and Klop [19] proved that every computable process (see
[168]) can be specified by means of a process term in ACPτ with guarded
recursion. Namely, it is possible to specify a Turing machine [194] in this
algebra. In spite of the expressive power of ACPτ with guarded recursion,
it is important to realise that there is no need to restrict to this framework.
Often a protocol can be specified more easily with the help of some auxiliary
operator, to express a particular feature of the protocol in an elegant fashion.
In this case, one must formulate transition rules for the new operator, check
that they are within the formats for conservative extension and congruence,
and come up with a sound axiomatisation, which ideally is also complete.

In the next sections we present examples of auxiliary operators, which do
not increase the expressivity of process algebra, but which have proven to be
useful for the specification of system behaviour.

7.1 Renaming

It can be convenient to rename atomic actions. For example, in some cases it is
efficient to reuse a given specification with different action names, allowing the
definition of generic components that can be used in different configurations.
From a theoretical point of view, such a renaming construct is interesting
because it allows one to derive CFAR from the more elegant (but weaker)
axiom KFAR; see [195].

The unary renaming operator ρf assumes a renaming function f : A→ A.
The process graph of a process term ρf (t) is obtained by renaming all labels
a of transitions in the process graph of t into f(a). This general renaming
concept was introduced by Milner [154]. The transition rules for renaming

operators are as follows, where f is extended to A∪{τ} by defining f(τ)
∆
= τ :

x
v→ √

ρf (x)
f(v)→ √

x
v→ x′

ρf (x)
f(v)→ ρf (x′)

The variables x and x′ range over process terms, while v ranges over A∪{τ}.
Theorem 7.1.1. ACPτ with guarded linear recursion and renaming opera-
tors is a conservative extension of ACPτ with guarded linear recursion.
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Proof. The sources of the transition rules for the renaming operator contain
the fresh function symbol ρf . Since furthermore the transition rules of ACPτ
with guarded linear recursion are source-dependent, the extension of this
algebra with renaming operators is conservative; see Theorem B.5.1. 2

Theorem 7.1.2. Rooted branching bisimulation equivalence is a congruence
with respect to ACPτ with guarded linear recursion and renaming operators.

Proof. As in the proof of Theorem 5.2.2, the transition rules of ACPτ with
guarded linear recursion and the renaming operator can be brought into
RBB cool format, by incorporating the successful termination predicate ↓.
This implies that the rooted branching bisimulation equivalence induced by
this TSS is a congruence; see Theorem B.4.1. 2

Table 7.1 presents axioms for the renaming operators. The variables x
and y range over process terms, while v ranges over A ∪ {τ}.

Table 7.1. Axioms for renaming

RN1 ρf (v) = f(v)
RN2 ρf (δ) = δ
RN3 ρf (x+ y) = ρf (x) + ρf (y)
RN4 ρf (x·y) = ρf (x)·ρf (y)

Theorem 7.1.3. EACPτ + RDP,RSP,CFAR + RN1-4 is sound for ACPτ
with guarded linear recursion and renaming operators, modulo rooted branch-
ing bisimulation equivalence.

Proof. Since rooted branching bisimulation is both an equivalence and a con-
gruence, we only need to check that if s = t is an axiom and σ a closed substi-
tution that maps the variables in s and t to process terms, then σ(s)↔rb σ(t).
Here, we only provide some intuition for soundness of the axioms in Table
7.1:

• RN1,2 are the defining equations for the renaming operator ρf : RN1 says
that it renames atomic actions a into f(a), while RN2 says that it leaves
the deadlock δ unchanged;

• RN3,4 say that in ρf (t), the labels of all transitions of t are renamed by
means of the mapping f .

These intuitions can be made rigorous by means of explicit rooted branch-
ing bisimulation relations between the left- and right-hand sides of closed
instantiations of RN1-4. 2
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Theorem 7.1.4. EACPτ + RDP,RSP,CFAR + RN1-4 is complete for ACPτ
with guarded linear recursion and renaming operators, modulo rooted branch-
ing bisimulation equivalence.

Proof. It suffices to prove that each process term t in ACPτ with guarded
linear recursion and renaming operators is provably equal to a process term
〈X|E〉 with E a guarded linear recursive specification. Namely, then the
desired completeness result follows from the fact that if 〈X1|E1〉 ↔rb 〈Y1|E2〉
for guarded linear recursive specifications E1 and E2, then 〈X1|E1〉 = 〈Y1|E2〉
can be derived from EACP+B1, 2+RDP,RSP; see the proof of Theorem 5.3.2.

We apply structural induction with respect to process term t. In com-
parison to the completeness proof of Theorem 5.6.2, the only new case
(where RN1-4 are needed) is when t ≡ ρf (s). By induction we may as-
sume that s = 〈X1|E〉 with E a guarded linear recursive specification, so
t = ρf (〈X1|E〉). Let E consist of linear recursive equations

Xi = ai1Xi1 + · · ·+ aikiXiki + bi1 + · · ·+ bi`i

for i ∈ {1, . . . , n}. The recursive specification F is defined to consist of the
linear recursive equations

Yi = f(ai1)Yi1 + · · ·+ f(aiki)Yiki + f(bi1) + · · ·+ f(bi`i)

for i ∈ {1, . . . , n}. Since E is guarded, it follows that F is also guarded. (This
observation uses in an essential way that f(a) 6≡ τ for a ∈ A.)

ρf (〈Xi|E〉)
RDP
= ρf (ai1〈Xi1|E〉+ · · ·+ aiki〈Xiki |E〉+ bi1 + · · ·+ bi`i)

RN1-4
= ρf (ai1)·ρf (〈Xi1|E〉) + · · ·+ ρf (aiki)·ρf (〈Xiki |E〉)

+ ρf (bi1) + · · ·+ ρf (bi`i).

Hence, replacing Yi by ρf (〈Xi|E〉) for i ∈ {1, . . . , n} is a solution for F . So
by RSP, ρf (〈X1|E〉) = 〈Y1|F 〉. 2

Exercise 7.1.1. Assume a renaming function f : A→ A with f(a)
∆
= c and

f(b)
∆
= c. Derive ρf (〈X |X=aX+bX〉) = 〈Y |Y=cY 〉 from the axioms.

Exercise 7.1.2. Assume renaming functions f : A → A and g : A → A.
Derive the equation ρg◦f (t) = ρg(ρf (t)) from the axioms for process terms t
in ACPτ with renaming.

7.2 State Operator

In Chapter 4 it was shown that one way to describe a regular process is by
means of a linear recursive specification. Each state in the protocol is assigned
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its own recursion variable, and the linear recursive specification expresses the
transitions between the different states. This section describes an alternative
method to capture the states of a regular process, by means of a so-called
state operator, introduced by Baeten and Bergstra [12, 15].

Let S denote a finite set of states. We assume that the visible behaviour
of an action a depends on the state in which it is executed, and that such an
execution causes the transposition to a new state. This is expressed by two
mappings:

action : S ×A → A
effect : S ×A → S.

Intuitively, action(s, a) represents the visible behaviour of action a in state
s, while effect(s, a) represents the state that results if action a is executed
in state s. The state operator λs(t) denotes process term t in state s. The
transition rules for the state operator are as follows, where action and effect

are extended to A ∪ {τ} by defining action(s, τ)
∆
= τ and effect(s, τ)

∆
= s:

x
v→ √

λs(x)
action(s,v)→ √

x
v→ x′

λs(x)
action(s,v)→ λeffect(s,v)(x

′)

The variables x and x′ range over process terms, while v ranges over A∪{τ}.

Theorem 7.2.1. ACPτ with guarded linear recursion and the state operator
is a conservative extension of ACPτ with guarded linear recursion.

Proof. The sources of the transition rules for the state operator contain the
fresh function symbol λs. Since furthermore the transition rules of ACPτ with
guarded linear recursion are source-dependent, the extension of this algebra
with the state operator is conservative; see Theorem B.5.1. 2

Theorem 7.2.2. Rooted branching bisimulation equivalence is a congruence
with respect to ACPτ with guarded linear recursion and the state operator.

Proof. As in the proof of Theorem 5.2.2, the transition rules of ACPτ with
guarded linear recursion and the state operator can be brought into RBB
cool format, by incorporating the successful termination predicate ↓. This
implies that the rooted branching bisimulation equivalence induced by this
TSS is a congruence; see Theorem B.4.1. 2

Table 7.2 presents axioms for the state operator. The variables x and y
range over process terms, v ranges over A∪ {τ}, and s ranges over the set S
of states.

Theorem 7.2.3. EACPτ + RDP,RSP,CFAR + SO1-4 is sound for ACPτ
with guarded linear recursion and the state operator, modulo rooted branching
bisimulation equivalence.
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Table 7.2. Axioms for the state operator

SO1 λs(v) = action(s, v)
SO2 λs(δ) = δ
SO3 λs(x+ y) = λs(x) + λs(y)
SO4 λs(v·y) = action(s, v)·λeffect(s,v)(y)

Proof. Since rooted branching bisimulation is both an equivalence and a con-
gruence, we only need to check that if s = t is an axiom and σ a closed substi-
tution that maps the variables in s and t to process terms, then σ(s)↔rb σ(t).
Here, we only provide some intuition for soundness of the axioms in Table
7.2:

• SO1,4 say that λs(t) can execute the visible behaviour action(s, a) of an
initial a-transition of t in state s; if the a-transition is a successful termina-
tion, then the action(s, a)-transition is also a successful termination, while
if the a-transition is not a successful termination, then the action(s, a)-
transition results in the state effect(s, a);

• SO2 says that λs(δ) does not exhibit any behaviour;
• SO3 says that in a term λs(t+ u), a choice for an initial transition from t

or u is a choice for λs(t) or λs(u).

These intuitions can be made rigorous by means of explicit rooted branch-
ing bisimulation relations between the left- and right-hand sides of closed
instantiations of SO1-4. 2

Theorem 7.2.4. EACPτ + RDP,RSP,CFAR + SO1-4 is complete for ACPτ
with guarded linear recursion and the state operator, modulo rooted branching
bisimulation equivalence.

Proof. It suffices to prove that each process term t in ACPτ with guarded
linear recursion and the state operator is provably equal to a process term
〈X|E〉 with E a guarded linear recursive specification. Namely, then the
desired completeness result follows from the fact that if 〈X1|E1〉 ↔rb 〈Y1|E2〉
for guarded linear recursive specifications E1 and E2, then 〈X1|E1〉 = 〈Y1|E2〉
can be derived from EACP+B1, 2+RDP,RSP; see the proof of Theorem 5.3.2.

We apply structural induction with respect to the size of t. In comparison
to the completeness proof of Theorem 5.6.2, the only new case (where SO1-4
are needed) is when t ≡ λs0(u). By induction we may assume that u = 〈X1|E〉
with E a guarded linear recursive specification, so t = λs0(〈X1|E〉). Let E
consist of linear recursive equations

Xi = ai1Xi1 + · · ·+ aikiXiki + bi1 + · · ·+ bi`i

for i ∈ {1, . . . , n}. The recursive specification F is defined to consist of the
linear recursive equations
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Yi(s) = action(s, ai1)·Yi1(effect(s, ai1))
+ · · ·+ action(s, aiki)·Yiki(effect(s, aiki))
+ action(s, bi1) + · · ·+ action(s, bi`i)

for i ∈ {1, . . . , n} and s ∈ S. Since E is guarded, F is also guarded. (This
observation uses in an essential way that action(s, a) 6≡ τ for a ∈ A.)

λs(〈Xi|E〉)
RDP
= λs(ai1〈Xi1|E〉+ · · ·+ aiki〈Xiki |E〉+ bi1 + · · ·+ bi`i)

SO1-4
= action(s, ai1)·λeffect(s,ai1)(〈Xi1|E〉)

+ · · ·+ action(s, aiki)·λeffect(s,aiki )
(〈Xiki |E〉)

+ action(s, bi1) + · · ·+ action(s, bi`i).

Hence, replacing Yi(s) by λs(〈Xi|E〉) for i ∈ {1, . . . , n} and s ∈ S is a solution
for F . So by RSP, λs0(〈X1|E〉) = 〈Y1(s0)|F 〉. 2

The following example of the use of the state operator originates from
[12] (see also [28]).

Example 7.2.1. Consider a light that can be switched on and off at two differ-
ent locations, called X and Y . Both switches can be in two different positions
0 and 1, and the set of states is {〈i, j〉 | i, j ∈ {0, 1}}, where 〈i, j〉 represents
the state in which switch X is in position i and switch Y is in position j.
The light is on if X and Y are in the same position 0 or 1, and otherwise the
light is off. Initially, switch X is in position 0 and switch Y is in position 1,
so the light is off. This situation is depicted in Fig. 7.1.

0 0

11
X Y

Fig. 7.1. A light switch

The set of atomic actions consists of a, b, on, and off, where a and b
represent flipping the switches at locations X and Y , respectively, and on
and off represent turning the light on and off. All communications between
atomic actions result in δ. The recursive equations for the two switches are:

X = aX
Y = b Y.

In order to specify the system in Fig. 7.1 using a state operator, we need
to define the mappings action and effect. These definitions are limited to the
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atomic actions a and b; the definitions for on and off are not of interest,
because these atomic actions do not occur in the recursive equations for X
and Y . Let i and j range over {0, 1}:

action(〈i, i〉, a)
∆
= off effect(〈i, j〉, a)

∆
= 〈1− i, j〉

action(〈i, 1− i〉, a)
∆
= on

action(〈i, i〉, b) ∆
= off effect(〈i, j〉, b) ∆

= 〈i, 1− j〉
action(〈i, 1− i〉, b) ∆

= on

The definition of action reflects that in a state 〈i, i〉 the light is on, so that
an action a or b turns the light off; vice versa, in a state 〈i, 1− i〉 the light is
off, so that an action a or b turns the light on. The definition of effect reflects
that in a state 〈i, j〉, action a flips the i, while action b flips the j. The initial
situation of the system in Fig. 7.1 is captured by the process term

λ〈0,1〉(〈X |X=aX〉‖〈Y |Y=bY 〉).

We abbreviate 〈X |X=aX〉‖〈Y |Y=bY 〉 to t, and proceed to show that
λ〈0,1〉(t) displays the expected external behaviour; i.e., λ〈0,1〉(t) = on·off ·λ〈0,1〉(t).
Since γ(a, b) ≡ δ, we can derive from EACP + RDP,RSP the equation
t = at+ bt (cf. the fifth equation in Exercise 4.3.3). Thus,

λ〈0,1〉(t)
= λ〈0,1〉(at+ bt)

SO3
= λ〈0,1〉(at) + λ〈0,1〉(bt)

SO4
= action(〈0, 1〉, a)·λeffect(〈0,1〉,a)(t) + action(〈0, 1〉, b)·λeffect(〈0,1〉,b)(t)
≡ on·λ〈1,1〉(t) + on·λ〈0,0〉(t).

In a similar fashion we can derive three more equations:

λ〈1,0〉(t) = on·λ〈1,1〉(t) + on·λ〈0,0〉(t)
λ〈1,1〉(t) = off ·λ〈0,1〉(t) + off ·λ〈1,0〉(t)
λ〈0,0〉(t) = off ·λ〈0,1〉(t) + off ·λ〈1,0〉(t).

Let the guarded linear recursive specification E be defined by

Z1 = on·Z3 + on·Z4

Z2 = on·Z3 + on·Z4

Z3 = off ·Z1 + off ·Z2

Z4 = off ·Z1 + off ·Z2.

According to the four derivations above, a solution for E is

Z1 := λ〈0,1〉(t)
Z2 := λ〈1,0〉(t)
Z3 := λ〈1,1〉(t)
Z4 := λ〈0,0〉(t).
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So by RSP,

λ〈0,1〉(t) = 〈Z1|E〉. (7.1)

It is easy to see, using RDP and A3, that a second solution for E is

Z1 := 〈W |W=on·off ·W 〉
Z2 := 〈W |W=on·off ·W 〉
Z3 := off ·〈W |W=on·off ·W 〉
Z4 := off ·〈W |W=on·off ·W 〉.

So by RSP,

〈W |W=on·off ·W 〉 = 〈Z1|E〉. (7.2)

Equations (7.1) and (7.2) together yield λ〈0,1〉(t) = 〈W |W=on·off ·W 〉. So
using RDP it follows that

λ〈0,1〉(t) = on·off ·λ〈0,1〉(t).

Exercise 7.2.1. Prove that in Example 7.2.1, λ〈0,0〉(t) = off ·on·λ〈0,0〉(t).

Exercise 7.2.2. Let A
∆
= {push, on, off } and S

∆
= {0, 1}, where intuitively

state 0 represents that some machine is off, and state 1 that this same machine
is on. Use the state operator to specify a button, such that pushing this
button alternately turns the machine on and off. That is, define mappings
action : S ×A→ A and effect : S ×A→ S such that

λ0(〈X |X=push·X〉) = on·off ·λ0(〈X |X=push·X〉).

Derive the equation above from the axioms for the state operator, using your
definitions for the mappings action and state.

Exercise 7.2.3. Let A
∆
= {a, b, c}, and suppose it would be allowed to have

an infinite set of states {sk | k ∈ N}. Give an example of mappings action
and state such that the process graph belonging to λs0(〈X |X=cX〉) is not
regular.

Exercise 7.2.4. Consider a buffer that can be in two states: in state 1 the
buffer is active so that it can read data from a finite, non-empty set ∆, while
in state 0 the buffer is inactive. Initially, the buffer is inactive. The atomic
action switch represents turning the switch of the buffer, on and off represent
turning the buffer on and off, respectively, read(d) for d ∈ ∆ represents that
the buffer receives datum d, and lost represents that the buffer fails to receive
such a datum. All communications between atomic actions result in δ. The
recursive equations for the switch and for the active buffer are:

X = switch·X
Y =

∑

d∈∆
read(d)·Y.
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The mappings action and effect are defined as follows (the atomic actions on
and off are omitted from these definitions, because they are not of interest):

action(0, read(d))
∆
= lost effect(0, read(d))

∆
= 0

action(1, read(d))
∆
= read(d) effect(1, read(d))

∆
= 1

action(0, switch)
∆
= on effect(0, switch)

∆
= 1

action(1, switch)
∆
= off effect(1, switch)

∆
= 0

Let t abbreviate 〈X |X=switch·X〉‖〈Y |Y=
∑
d∈∆ read(d)·Y 〉. Prove that

V := λ0(t) and W := λ1(t) is a solution for the recursive specification

V = lost ·V + on·W
W = off ·V +

∑
d∈∆ read(d)·W.

7.3 Priorities

In system behaviour it is often the case that an action b is more urgent than
some other action a. This means that action a is only executed if it is not
possible to execute action b at the same time. This situation can be modelled
using the unary priority operator Θ, introduced by Baeten, Bergstra, and
Klop [18]. This operator assumes a partial order < on A ∪ {τ}, which is
required to be anti-reflexive (i.e., a < a never holds) and transitive (i.e., if
a < b and b < c, then a < c). Intuitively, the process graph of Θ(t) is obtained

by eliminating all transitions s
a→ s′ from the process graph of t for which

there is a transition s
b→ s′′ with a < b. This is captured by the following

transition rules for the priority operator:

x
v→ √ x

w9 for v < w

Θ(x)
v→ √

x
v→ x′ x

w9 for v < w

Θ(x)
v→ Θ(x′)

In these transition rules, the negative premise x
w9 (see Section B.2) denotes

that there does not exist a transition x
w→ x′′ for any process term x′′, and

that the transition x
w→ √ does not hold either.

Recall that the merge could only be axiomatised completely by the intro-
duction of two auxiliary operators left merge and communication merge; see
Section 3.2. Similarly, in order to completely axiomatise the priority opera-
tor, we use an auxiliary unless operator x/y. Intuitively, the process graph of
s / t is obtained by eliminating all initial transitions s

a→ s′ from the process

graph of s for which there is a transition t
b→ t′ with a < b. This is captured

by the following transition rules for the unless operator:

x
v→ √ y

w9 for v < w

x / y
v→ √

x
v→ x′ y

w9 for v < w

x / y
v→ x′
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The variables x, x′, and y in the transition rules for the priority and unless
operators range over process terms, while v and w range over A ∪ {τ}.

The TSS of ACPτ with guarded linear recursion and the priority and
unless operators is positive after reduction (see Definition B.2.3). This can
be seen by giving a stratification for this TSS (see Definition B.2.4), which
consists of a weight function on transitions such that for each closed substi-
tution instance of a transition rule, the positive premises are smaller or equal
than the conclusion, and the negative premises are strictly smaller than the
conclusion; see Theorem B.2.1. Since the TSS is positive after reduction, its
generated LTS consists of the true transitions in its three-valued stable model
(see Definition B.2.2).

Exercise 7.3.1. Give a stratification for the TSS of ACPτ with guarded
linear recursion and the priority and unless operators.

Theorem 7.3.1. ACPτ with guarded linear recursion and the priority and
unless operators is a conservative extension of ACPτ with guarded linear
recursion.

Proof. The sources of the transition rules for the priority operator contain
the fresh function symbol Θ, and the sources of the transition rules for the
unless operator contain the fresh function symbol /. Since furthermore the
transition rules of ACPτ with guarded linear recursion are source-dependent,
the extension of this algebra with the priority and unless operators is conser-
vative; see Theorem B.5.1. 2

In general, rooted branching bisimulation is not a congruence relation
with respect to ACPτ with guarded linear recursion and the priority and
unless operators. We give an example.

Example 7.3.1. Let A
∆
= {a, b, c}, and let the partial order on A∪{τ} consist

of {b < c}. We have a(τ(b+ c) + b)↔rb a(b+ c), because the τ in the process
term at the left-hand side is truly silent. However, Θ(a(τ(b + c) + b)) ↔rb

a(τc+ b) and Θ(a(b+ c))↔rb ac, so these two process terms are not rooted
branching bisimilar, because the τ in the first process term is not truly silent.

Exercise 7.3.2. Explain why the second transition rule for the priority op-
erator cannot be brought into RBB cool format.

A solution to the problem with congruence, suggested by Vaandrager
[196], is to give τ priority over any atomic action in A. For instance, if in
Example 7.3.1 τ is given priority over any atomic action in A, then

Θ(a(τ(b+ c) + b)) ↔rb aτc ↔rb ac ↔rb Θ(a(b+ c)).

Theorem 7.3.2. Let τ have priority over any atomic action in A. Then
rooted branching bisimulation equivalence is a congruence with respect to
ACPτ with guarded linear recursion and the priority and unless operators.
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The proof of Theorem 7.3.2 is omitted. An alternative solution to the
problem with congruence, suggested by Bergstra and Ponse (see [200]), would
be to adapt branching bisimulation equivalence to so-called ι-equivalence, in
which non-empty sequences of internal computations may be represented by
one silent step: for k ≥ 1, aτkb is ι-equivalent to aτb, but not to ab.

In the remainder of this section, τ has priority over any action in A. Table
7.3 presents axioms for the priority and unless operators. The variables x, y,
and z range over process terms, while v and w range over A ∪ {τ}.

Table 7.3. Axioms for priority and unless

TH1 Θ(v) = v
TH2 Θ(δ) = δ
TH3 Θ(x+ y) = Θ(x) / y +Θ(y) / x
TH4 Θ(x·y) = Θ(x)·Θ(y)

P1 v 6< w v / w = v
P2 v < w v / w = δ
P3 v / δ = v
P4 δ / v = δ
P5 (x+ y) / z = (x / z) + (y / z)
P6 (x·y) / z = (x / z)·y
P7 x / (y + z) = (x / y) / z
P8 x / (y·z) = x / y

Theorem 7.3.3. EACPτ + RDP,RSP,CFAR + TH1-4 + P1-8 is sound for
ACPτ with guarded linear recursion and the priority operator, modulo rooted
branching bisimulation equivalence.

Proof. Since rooted branching bisimulation is both an equivalence and a con-
gruence, we only need to check that if s = t is an axiom and σ a closed substi-
tution that maps the variables in s and t to process terms, then σ(s)↔rb σ(t).
Here, we only provide some intuition for soundness of the axioms in Table
7.3:

• TH1,2 say that the priority operator leaves atomic actions and the deadlock
unchanged, because no behaviour is blocked in these terms;

• TH3 says that in a term Θ(s+ t), initial transitions from Θ(s) are blocked
by initial transitions from t with higher priority, and initial transitions from
Θ(t) are blocked by initial transitions from s with higher priority.

• TH4 says that a term Θ(s·t) first executes s and then t, and that both in
s and in t transitions of a high priority block simultaneous transitions of a
lower priority;

• P1,2 are the defining equations for the unless operator; they say that v /w
can only execute action v if v is not smaller than w;
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• P3 says that the deadlock cannot block any actions, while P4 says that
δ / v does not exhibit any behaviour;

• P5 says that (s+ t) / u can choose between initial transitions of s that are
not blocked by initial transitions of u (i.e., s / u), and initial transitions of
t that are not blocked by initial transitions of u (i.e., t / u);

• P6,8 say that in s / t only initial transitions of s are blocked by initial
transitions of t;

• P7 says that blocking initial transitions of s by initial transitions of t or u
is the same as blocking initial transitions of s by initial transitions of t and
blocking the remaining initial transitions of s by initial transitions of u.

These intuitions can be made rigorous by means of explicit rooted branch-
ing bisimulation relations between the left- and right-hand sides of closed
instantiations of the axioms in Table 7.3. 2

Theorem 7.3.4. EACPτ +RDP,RSP,CFAR + TH1-4 + P1-8 is complete for
ACPτ with guarded linear recursion and the priority and unless operators,
modulo rooted branching bisimulation equivalence.

Proof. It is left to the reader to prove that each process term t is provably
equal to a process term 〈X|E〉 with E a guarded linear recursive specification
(see Exercise 7.3.5). Then the desired completeness result follows from the
fact that if 〈X1|E1〉 ↔rb 〈Y1|E2〉 for guarded linear recursive specifications E1

and E2, then 〈X1|E1〉 = 〈Y1|E2〉 can be derived from EACP+B1, 2+RDP,RSP
(see the proof of Theorem 5.3.2). 2

Exercise 7.3.3. Let b < c, a < τ , b < τ , and c < τ . Derive the equation
Θ(a(τ(b+ c) + b)) = Θ(a(b+ c)) from the axioms.

Exercise 7.3.4. Let γ(a, b)
∆
= c, a < c, and b < c. Derive

∂{a,b}(〈X |X=aX〉‖〈Y |Y=bY 〉) = Θ(〈X |X=aX〉‖〈Y |Y=bY 〉)

from the axioms.

Exercise 7.3.5. Let E be a guarded linear recursive specification and X
a recursion variable in E. Prove that Θ(〈X|E〉) = 〈Y |F 〉 for some guarded
linear recursive specification F .

Exercise 7.3.6. Give alternative axioms for the priority operator (without
the help of any auxiliary operators), to obtain a sound and complete axiom-
atization for ACP with linear recursion and the priority operator.

Exercise 7.3.7. The binary alt operator in Exercise 3.4.13 alternately ex-
ecutes an action from its first and second argument. Assuming that you
answered Exercise 3.4.13, prove that your axioms for the alt operator to-
gether with EACPτ + RDP,RSP,CFAR are complete for ACPτ with guarded
linear recursion and the alt operator, modulo rooted branching bisimulation
equivalence.
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7.4 Further Extensions

This section presents a brief overview of further operators and standard tech-
niques that are used in the specification of system behaviour by means of
process algebras.

Value Passing. The specifications of the ABP and the BRP make use of value
passing, meaning that atomic actions and recursion variables carry parame-
ters to pass on data values. Value passing is a standard method in process
algebra for including data types in protocol specifications. We mention two
examples.

Grid protocols [40] model concurrent systems in a grid-like architecture,
based on the design of synchronous concurrent algorithms [191]. A grid pro-
tocol consists of a number of data processing units with in- and outgoing
ports, via which data is communicated between these units or with the en-
vironment. Each unit has a state variable, the value of which is repeatedly
updated on the basis of incoming data elements. Grid protocols can be used,
among other things, for modelling hardware and for approximating solutions
to differential equations.

The π-calculus [161] extends process algebra with explicit port names.
The so-called mobile processes in the π-calculus are able to communicate
port names via ports, thus allowing dynamic reconfiguration of topologies
of linked ports. Typically, a term x̄y.t sends port name y via port x and
proceeds as t; a term x(y).t reads a port name z via port x and proceeds as
t[z/y], denoting the term t with all occurrences of y replaced by z. An elegant
structural operational semantics for a subset of the full π-calculus was given
in [184]. See [160] for an introduction to the π-calculus.

The fusion calculus [170] is a simplification of the π-calculus, in the sense
that it has a complete symmetry between sending and reading of port names.

Conditions and Signals. Data parameters that are used in value-passing, or
of which the values are determined by the environment, may influence the
execution of processes. This can be modelled using conditions φ (see [13, 113]),
which take as input data parameters, and present as output a boolean value
true or false. The expression φ :→ t represents the behaviour of the process
term t under condition φ, meaning that true :→ t behaves as t and false :→
t behaves as δ. Bergstra et al. [36, 49] showed how to deal with conditions
in process algebra when their output domain is a five-valued logic including
meaningless, divergence, and choice.

Behaviour can often only get into a specific state if certain external condi-
tions are satisfied. For example, a camp-fire can only be lit if it is not raining,
or a train can only traverse a level crossing if its barriers are closed. Such
external conditions can be captured by means of signals [13, 17], which enable
one to eliminate inconsistent states from the process graph that belongs to a
process term.
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Time. Time often plays an important role in system behaviour. One way to
model time in process algebra is by the use of timers, which send time-out
messages at random. An example of the use of such timers in process algebra
was given in the BRP; see Section 6.2.

If one wants to enforce that actions can only communicate if they are
executed at the same moment in time, then time needs to be present as an
explicit quantity. This time model depends on a number of design decisions.
First, we discuss discrete versus dense (or real) time.

1. Discrete time assumes that time evolves in discrete time steps. In between
two time steps, a process behaves as in untimed process algebra. When a
time step is made, the process comes to a halt and the value of the clock
is increased by one, after which the process continues. Though discrete
time does not simulate time as experienced in real life, it does resemble
the timing mechanisms that are used in computers. Baeten and Bergstra
[16] introduced an extension of process algebra with discrete time, in
which time is modelled by a unary operator σrel: the process term σrel(t)
represents the behaviour of t delayed by one time step.

2. Dense time assumes that time progresses continuously. Its practical use
lies for example in modelling biological phenomena. Baeten and Bergstra
[14] (see also [94]) extended process algebra with dense time by supplying
atomic actions with time stamps: the action a with as time stamp the
positive real number r represents the action a that is executed at time r.

Time stamps of timed actions can relate either to an absolute or to a
relative clock. In absolute time, a timed action a(r) executes a at time r. For
example, the process that executes action a at the start of every time unit
can be described by

a(1)·a(2)·a(3)· · · ·

or by 〈X(1)|E〉, where E consists of the following recursive equations, for
k ∈ N:

X(k) = a(k)·X(k + 1).

In relative time, a timed action a[r] executes a exactly r time units after
the previous action was executed. For example, the process that executes
action a at the start of every time unit can be described by

a[1]·a[1]·a[1]· · · ·

or by 〈Y |F 〉, where F consists of the recursive equation

Y = a[1]·Y.

We proceed to discuss the modelling of some special constants in process
algebra with relative dense time. The timed deadlock behaves as follows. The
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expression δ[r] represents a deadlock at relative time r; that is, it can idle for
r time units after the previous action was executed, and then it gets stuck.
For example, the process term a[1] + δ[2] may get into a deadlock at time 2,
if it idles beyond time 1 without executing the action a. On the other hand,
the process term a[2] + δ[1] cannot get into a deadlock, because it can idle
beyond time 1 to execute the action a at time 2.

The introduction of the silent step in time is more complicated. The in-
tuition behind branching bisimulation is that a τ -transition is truly silent if
and only if it does not lose possible behaviours. The same intuition in the
timed case gives rise to quite a different mathematical interpretation than in
the untimed case. We give two examples in relative time.

• In the untimed setting, τ(a+ b) + a↔b a+ b. However,

τ [1]·(a[1] + b[1]) + a[2] 6↔b a[2] + b[2].

Not executing the τ at time 1 in the process term on the left means a
decision that the a, and not the b, will be executed at time 2.
• In the untimed setting, τa+ b 6↔b a+ τb. However,

τ [1]·a[1] + b[2]↔b a[2] + τ [1]·b[1].

In both process terms it is decided at time 1 whether the a or the b will
be executed at time 2.

Timed branching bisimulation equivalence was studied in [91, 135, 136].
In protocols that are studied in the literature, the use of time can be more

complicated than was discussed here. For instance, each separate component
of a concurrent process may have its own local clock, where these local clocks
all refer (either precisely or roughly) to a global clock. Such protocols may
require a more advanced time model.

Probabilities. Probabilities can be of importance in applications of process
algebra, because actions are not alway executed with the same probability.
One can give weights to atomic actions, to express the chance that such an
action is executed. For example, the process term (a, 0.25) + (b, 0.75) has
25% chance of executing action a, and 75% chance of executing action b. In
general, in each state of a process, the probabilities of executing the possible
actions in that state should add up to 1 (that is, to 100%), or in any case
not exceed 1. See [24, 193] for expositions on probabilistic process algebra,
and [143] for a notion of probabilistic bisimulation. A process algebra with
random clocks and stochastic time behaviour is described in [79].
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A. Equational Logic

This appendix presents the basic notions of algebraic specification, in which
the meaning of terms over some signature is captured using equations. A
thorough introduction to the principles of equational logic can be found in
[67]. For an overview of algebraic specification of data, see [38, 145].

A.1 Signatures

We start by defining the syntax, which consists of the terms over some alge-
braic signature.

Definition A.1.1 (Signature). A signature Σ consists of a finite set of
function symbols (or operators) f, g, . . ., where each function symbol f has
an arity ar(f), being its number of arguments.

A function symbol a, b, c, . . . of arity zero is called a constant, a function
symbol of arity one is called unary, and a function symbol of arity two is
called binary.

We assume the presence of a countably infinite set of variables x, y, z, . . .,
disjoint from the signature.

Definition A.1.2 (Term). Let Σ be a signature. The set T(Σ) of (open)
terms s, t, u, . . . over Σ is defined as the least set satisfying:

• each variable is in T(Σ);
• if f ∈ Σ and t1, . . . , tar(f) ∈ T(Σ), then f(t1, . . . , tar(f)) ∈ T(Σ).

A term is closed if it does not contain variables. The set of closed terms is
denoted by T (Σ).

We use o1 ≡ o2 to denote that the objects o1 and o1 are syntactically
the same. For notational convenience, terms a() are abbreviated to a. For
unary function symbols f and natural numbers k, f k denotes k applications
of f : f0(t) ≡ t and fk+1(t) ≡ f(fk(t)). Often, binary function symbols are
represented using infix notation. For example, addition + is a binary function
symbol that gives rise to terms s+ t (denoting +(s, t)).
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Exercise A.1.1. Assume a binary function symbol f , a unary function sym-
bol g, and a constant a. Describe the set of closed terms over this signature.

Definition A.1.3 (Substitution). Let Σ be a signature. A substitution
is a mapping σ from variables to the set T(Σ) of open terms. A substitution
extends to a mapping from open terms to open terms: the term σ(t) is obtained
by replacing occurrences of variables x in t by σ(x). A substitution σ is closed
if σ(x) ∈ T (Σ) for all variables x.

Exercise A.1.2. Let f be a binary function symbol and a and b constants.
Say for the following cases whether there exists a substitution σ such that:

- σ(f(x, y)) ≡ f(a, b);
- σ(f(x, x)) ≡ f(a, b);
- σ(f(x, y)) ≡ f(z, z) and σ(z) ≡ b;
- σ(g(x)) ≡ σ(x).

A.2 Axiomatisations

Definition A.2.1 (Axiomatisation). An axiomatisation over a signature
Σ is a finite set of equations, called axioms, of the form s = t with s, t ∈ T(Σ).

An axiomatisation gives rise to an equality relation = on T(Σ).

Definition A.2.2 (Equality relation). An axiomatisation over a signa-
ture Σ induces a binary equality relation = on T(Σ) as follows.

• (Substitution) If s = t is an axiom and σ a substitution, then σ(s) =
σ(t).

• (Equivalence) The relation = is closed under reflexivity, symmetry, and
transitivity:
- t = t for all terms t;
- if s = t, then t = s;
- if s = t and t = u, then s = u.

• (Context) The relation = is closed under contexts: if t = u and f is a
function symbol with ar(f) > 0, then

f(s1, . . . , si−1, t, si+1, . . . , sar(f)) = f(s1, . . . , si−1, u, si+1, . . . , sar(f)).

Exercise A.2.1. Let a, b, and c be constants, and f a function symbol of
arity three. Consider the axiomatisation

f(x, y, z) = f(z, x, y)
f(x, y, z) = f(y, x, z)
f(x, c, y) = x

Derive the following three equations from the axiomatisation above:

- f(b, c, a) = f(b, c, b);
- f(a, c, b) = b;
- f(c, c, f(c, c, b)) = b.
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A.3 Initial Models

Definition A.3.1 (Model). Assume an axiomatisation E over a signature
Σ, which induces an equality relation =. A model for E consists of a set M
together with a mapping φ : T (Σ)→M.

• (M, φ) is sound for E if s = t implies φ(s) ≡ φ(t) for s, t ∈ T (Σ);
• (M, φ) is complete for E if φ(s) ≡ φ(t) implies s = t for s, t ∈ T (Σ).

Intuitively, the mapping φ establishes the interpretation of each closed term
in the set M.

Exercise A.3.1. Let the signature consist of a constant a and a unary func-
tion symbol f . Say for the following four models whether they are sound
and/or complete for the axiomatisation {f(x) = f(f(x))}:

- M ∆
= {0}, and φ(fk(a))

∆
= 0 for k ∈ N;

- M ∆
= {0, 1}, φ(f2k(a))

∆
= 0, and φ(f2k+1(a))

∆
= 1 for k ∈ N;

- M ∆
= {0, 1}, φ(a)

∆
= 0, and φ(fk+1(a))

∆
= 1 for k ∈ N;

- M ∆
= N, and φ(fk(a))

∆
= k for k ∈ N.

By the second clause in Definition A.2.2, the equality relation induced by
an axiomatisation is by default an equivalence relation. Therefore, it divides
the set of closed terms T (Σ) into equivalence classes, where closed terms s
and t are in the same equivalence class if and only if s = t. The expression
[[t]] denotes the equivalence class that contains the closed term t; that is,
[[s]] and [[t]] denote the same equivalence class if and only if s = t. The set

{[[t]] | t ∈ T (Σ)} together with the mapping φ(t)
∆
= [[t]] for t ∈ T (Σ) is a sound

and complete model for the axiomatisation, called its initial model.

Example A.3.1. As a standard example, we specify the natural numbers with
addition and multiplication. The signature consists of the constant 0, the
unary successor function S, and the binary functions addition + and multi-
plication ·. The equality relation on terms is specified by four axioms:

1. x+ 0 = x
2. x+ S(y) = S(x+ y)
3. x·0 = 0
4. x·S(y) = (x·y) + x

The initial model for this axiomatisation consists of the distinct equivalence
classes [[0]], [[S(0)]], [[S2(0)]], [[S3(0)]],. . . . The first three equivalence classes,
with some typical representatives of each of these classes, are depicted in
Fig. A.1.

Exercise A.3.2. Derive the equation S(S(S(0))) + S(0) = S(S(0))·S(S(0))
(i.e., 3 + 1 = 2·2) from the axiomatisation of the natural numbers.
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(0 + S(0)) · S(0)
...

(S(S(0)) · 0) + S(0)

S(0) + 0

(0 + S(0)) + 0

0 + S(0)

S(0) · S(0)

S(S(0))

· · ·S(S(0)) · S(0)

(S(0) + 0) + S(0)

S(S(0)) + 0
...

S(0) + S(0)

S(0) · S(S(0))

S(0)0

S(0) · (S(0) · S(0))

(S(0) + S(0)) · S(0)

(S(0) · 0) + S(S(0))

0 · S(0)

(S(0) + 0) · 0
...

S(S(0)) · 0
(S(0) · 0) + 0

S(0) · 0
0 + (0 + 0)

0 + 0

Fig. A.1. Initial model for the natural numbers

Exercise A.3.3. Let a and b be constants and f a unary function symbol.
Give the initial models for the following five axiomatisations and signatures:

- {x = f(x)} over {a, b, f};
- {x = f(x)} over {a, f};
- the empty axiomatisation ∅ over {a, f};
- {x = f(f(x))} over {a, f};
- {x = f(f(x))} over {f}.

Assume an axiomatisation over some signature. The function symbols
in the signature are well-defined on the equivalence classes in the initial
model for the axiomatisation. Namely, if si = ti for i ∈ {1, . . . , ar(f)},
then closure of the equality relation under transitivity and contexts en-
sures that f(s1, . . . , sar(f)) = f(t1, . . . , tar(f)). So the equivalence class
[[f(t1, . . . , tar(f))]] is uniquely determined by the equivalence classes [[t1]],. . . ,[[tar(f)]].
Hence, we can define

f([[t1]], . . . , [[tar(f)]])
∆
= [[f(t1, . . . , tar(f))]].

Exercise A.3.4. Show that S([[0]]) + S([[0]]) and [[S(S(0))]] represent the
same object in the initial model for the axiomatisation over the natural num-
bers.

Saying that an axiomatisation is ω-complete means that an equation be-
tween open terms can be derived from the axiomatisation if all its closed
instantiations can be derived from the axiomatisation.

Definition A.3.2 (Omega-completeness). An axiomatisation E over a
signature Σ is ω-complete if an equation s = t with s, t ∈ T(Σ) can be derived
from E if σ(s) = σ(t) can be derived from E for all closed substitutions σ.
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We note that the axiomatisation of the natural numbers in Example A.3.1
is not ω-complete. For instance, the equation x + y = y + x holds under all
closed substitution instances, but this equation cannot be derived from the
four axioms in Example A.3.1. Namely, none of these axioms apply to x+ y
or y + x.

Exercise A.3.5. Say for each of the five axiomatisations in Exercise A.3.3
whether it is ω-complete. For each axiomatisation that is not ω-complete,
present an equation between open terms that cannot be derived from the
axiomatisation, while all its closed instantiations can be derived from the
axiomatisation.

A.4 Term Rewriting

A term rewriting system consists of rewrite rules s → t with s and t open
terms, where s is not a single variable and t does not contain fresh variables.
Intuitively, a rewrite rule is a directed equation s = t that can only be applied
from left to right. An up-to-date overview of term rewriting is given in [8].

Definition A.4.1 (Term rewriting system). Assume a signature Σ. A
rewrite rule is an expression s→ t with s, t ∈ T(Σ), where:

1. the left-hand side s is not a single variable;
2. all variables that occur at the right-hand side t also occur in the left-hand

side s.

A term rewriting system (TRS) is a finite set of rewrite rules.

A TRS induces a binary rewrite relation →∗ on terms, similar to the way
that an axiomatisation induces an equality relation on terms; see Definition
A.2.2. The only distinction is that the rewrite relation is not closed under
symmetry, because rewrite rules are directed from left to right.

Definition A.4.2 (Rewrite relation). A TRS over a signature Σ induces
a one-step rewrite relation → on T(Σ) as follows.

• (Substitution) If s → t is a rewrite rule and σ a substitution, then
σ(s)→ σ(t).

• (Context) The relation → is closed under contexts: if t → u and f is a
function symbol with ar(f) > 0, then

f(s1, . . . , si−1, t, si+1, . . . , sar(f))→ f(s1, . . . , si−1, u, si+1, . . . , sar(f)).

The rewrite relation →∗ is the reflexive transitive closure of the one-step
rewrite relation →:

- if s→ t, then s→∗ t;
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- t→∗ t;
- if s→∗ t and t→∗ u, then s→∗ u.

Example A.4.1. As an example of a TRS, we direct the four equations for
natural numbers (see Example A.3.1) from left to right:

1. x+ 0→ x
2. x+ S(y)→ S(x+ y)
3. x·0→ 0
4. x·S(y)→ (x·y) + x

Using this TRS, we can prove for instance that S(0)·S(S(0)) = S(S(0)), by
the following sequence of rewrite steps. In each rewrite step, the subterm that
is reduced is underlined.

S(0)·S(S(0))
(4)→ (S(0)·S(0)) + S(0)
(4)→ ((S(0)·0) + S(0)) + S(0)
(3)→ (0 + S(0)) + S(0)
(2)→ S(0 + 0) + S(0)
(1)→ S(0) + S(0)
(2)→ S(S(0) + 0)
(1)→ S(S(0)).

Exercise A.4.1. Derive the equation S(0) + S(0) = S(0)·S(S(0)) from the
axiomatisation in Example A.3.1.

Term rewriting can be applied to try and compute whether two terms
can be equated by an axiomatisation. First, we give a direction to each of the
axioms, so that they constitute a TRS. Next, we can try to find a derivation
for an equation s = t as follows. Suppose s and t reduce to the same term u:
s→ s1 → · · · → sk → u and t→ t1 → · · · → t` → u. This yields a derivation
of s = t, owing to the fact that the rewrite rules are directed versions of the
axioms: s = s1 = · · · = sk = u = t` = · · · = t1 = t

Ideally, each reduction of a term by means of a TRS eventually leads to
a normal form, which cannot be reduced any further.

Definition A.4.3 (Normal form). A term is called a normal form for a
TRS if it cannot be reduced by any of the rewrite rules.

Definition A.4.4 (Termination). A TRS is terminating if it does not in-
duce infinite reductions t0 → t1 → t2 → · · · .

Note that the two restrictions on rewrite rules as formulated in Definition
A.4.1, the left-hand side is not a single variable and the right-hand side does
not contain fresh variables, are essential for termination. Preferably a rewrite
relation reduces each term to a unique normal form; that is, if s → t1 and
s→ t2, then both t1 and t2 have the same normal form.
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Definition A.4.5 (Weak confluence). A TRS is weakly confluent if for
each pair of one-step reductions s → t1 and s → t2 there is a term u such
that t1 →∗ u and t2 →∗ u.

s

t1

t2

u

The next lemma from Newman [164] states that termination and weak
confluence together are sufficient to guarantee unique normal forms.

Theorem A.4.1 (Newman’s lemma). If a TRS is terminating and weakly
confluent, then it reduces each term to a unique normal form.

Assuming an axiomatisation, we explained previously that one can try
to derive an equation s = t by giving a direction to each of the axioms, to
obtain a TRS, and attempting to reduce s and t to the same term. If the
resulting TRS is terminating and weakly confluent, then this procedure to
try and equate s and t is guaranteed to return a derivation if s = t. Namely,
s = t means that there exists a derivation s ≡ t1 = t2 = · · · = tk ≡ t in which
each equation is the result of an application of an axiom inside a context.
Then either ti → ti+1 or ti+1 → ti for i ∈ {1, . . . , k − 1}. Since the TRS is
terminating and weakly confluent, Newman’s lemma implies that ti and ti+1

reduce to the same unique normal form for i ∈ {1, . . . , k − 1}. So s ≡ t1 and
t ≡ tk reduce to the same unique normal form.

Example A.4.2. The TRS for the natural numbers in Example A.4.1 is ter-
minating. In order to prove this fact, we give an inductive definition of a
weight function that maps each term to a natural number.

weight(x)
∆
= 1

weight(0)
∆
= 2

weight(S(t))
∆
= weight(t) + 1

weight(s+ t)
∆
= weight(s) + weight(t)2

weight(s·t) ∆
= weight(s)2·weight(t)2.

It is left to the reader to verify that if s → t then weight(s) > weight(t).
Since each sequence of strictly decreasing natural numbers is finite, it follows
that the TRS is terminating.

It is not hard to see that closed terms s+t and s·t are never normal forms,
so closed normal forms are of the form Sk(0) for k ∈ N.

Exercise A.4.2. Prove for the TRS for the natural numbers in Example
A.4.1 and for the weight function in Example A.4.2 that if s → t then
weight(s) > weight(t).
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Exercise A.4.3. Prove that closed terms of the form s + t or s·t are not
normal forms for the TRS for the natural numbers in Example A.4.1.

Exercise A.4.4. Suppose the definition of the weight function in Example

A.4.2 would be adapted by putting weight(0)
∆
= 1. Give closed terms s and t

such that s→ t but s and t have the same weight.

Rewriting Modulo AC. Many axiomatisations from the literature give rise
to non-terminating TRSs, which is often due to the fact that they include
commutativity and associativity axioms.

Definition A.4.6 (Commutativity and associativity). Assume an ax-
iomatisation E. A binary function symbol f is commutative if E contains an
axiom

f(x, y) = f(y, x)

and associative if E contains an axiom

f(f(x, y), z) = f(x, f(y, z)).

If the equations for commutativity and associativity of a binary function
symbol f are turned into rewrite rules, then the resulting TRS is not termi-
nating. For example, if a and b are constants, then the directed version of the
commutativity axiom induces the infinite reduction

f(a, b)→ f(b, a)→ f(a, b)→ · · · .

This complication can be resolved by applying term rewriting modulo equa-
tions (see [174]). That is, we use the equations for commutativity and asso-
ciativity of f to obtain an equivalence relation =AC on terms: two terms are
equivalent modulo AC of f if and only if they can be equated by the asso-
ciativity and commutativity axioms for f . When turning the axiomatisation
into a TRS, by giving a direction to the axioms, we exclude the equations
for commutativity and associativity of f . Finally, the desired rewrite relation
modulo AC of f is obtained by considering terms modulo =AC, so that each
term actually represents an equivalence class of terms modulo AC of f . This
means that s → t if the TRS induces a one-step reduction s′ → t′ where
s =AC s′ and t =AC t′.

Note that it would not be sufficient to work only modulo commutativity
of f , because associativity would still give rise to infinite reductions such as:

f(f(a, b), c)→ f(a, f(b, c)) =C f(f(b, c), a)→ f(b, f(c, a)) =C · · · .

Exercise A.4.5. Let the TRS for the natural numbers in Example A.4.1 be
applied to terms modulo AC of the +. Reduce the term S(0) +S(S(0)) to its
normal form in two rewrite steps.
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Knuth-Bendix Completion. Axiomatisations can give rise to TRSs that are
not weakly confluent. It can be attempted to remedy this imperfection by
applying Knuth-Bendix completion [137], which determines overlaps in left-
hand sides of rewrite rules, and introduces extra rewrite rules to join the
resulting right-hand sides (the so-called critical pairs). A pair of terms s and
t is said to be convergent if there exists a term u such that s→∗ u and t→∗ u.
Knuth-Bendix completion means searching for non-convergent critical pairs,
and adding extra rewrite rules in order to make such critical pairs convergent.

Example A.4.3. Let a and b be constants, and f a unary function symbol.
Consider the TRS that consists of the following two rewrite rules:

a→ b
f(a) → b

The first rewrite rule induces f(a) → f(b), while the second rewrite rule
induces f(a) → b. The critical pair f(b) and b is not convergent. This pair
can be made convergent by adding an extra rewrite rule to the TRS:

f(b)→ b

(Note that the reverse rewrite rule, b → f(b), would produce a non-
terminating TRS.) The resulting TRS is weakly confluent and terminating.

Exercise A.4.6. Let a be a constant, g and h unary function symbols, and
f a binary function symbol. Consider the TRS that consists of the following
two rewrite rules:

g(f(h(x), x)) → h(x)
f(x, a) → x

Determine the non-convergent critical pairs, and apply Knuth-Bendix com-
pletion to obtain a TRS that is weakly confluent and terminating.

See [96] for an application of Knuth-Bendix completion in the realm of
process algebra with iteration operators. The significance of making critical
pairs convergent is expressed by the following theorem, due to Huet [132].

Theorem A.4.2. A TRS is weakly confluent if and only if all its critical
pairs are convergent.
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B. Structural Operational Semantics

This appendix introduces the basics of structural operational semantics [175],
which defines a labelled transition system over a term algebra. An up-to-date
overview of structural operational semantics is given in [3].

B.1 Transition System Specifications

We assume a non-empty set S of states, together with a finite, non-empty
set of transition labels A and a finite set of predicate symbols.

Definition B.1.1 (Labelled transition system). A transition is a triple
(s, a, s′) with a ∈ A, or a pair (s, P ) with P a predicate, where s, s′ ∈ S. A
labelled transition system (LTS) is a (possibly infinite) set of transitions. An
LTS is finitely branching if each of its states has only finitely many outgoing
transitions.

For convenience of notation, a transition (s, a, s′) is usually denoted as s
a→ s′;

it expresses that the state s can evolve into the state s′ by the execution of
action a. Moreover, a transition (s, P ) is usually denoted as sP ; it expresses
that predicate P holds in the state s.

In this text, the states of an LTS are always the closed terms (see Defini-
tion A.1.2) over a signature Σ (see Definition A.1.1). In other words, transi-

tions are expressions t
a→ t′ and tP with t, t′ ∈ T (Σ). In view of the syntactic

structure of closed terms over a signature, such transitions can be derived
by means of inductive proof rules, where the validity of a number of tran-
sitions (the premises) may imply the validity of some other transition (the
conclusion).

Definition B.1.2 (Transition system specification). A transition rule

ρ is an expression of the form H
π , with H a set of expressions t

a→ t′ and
tP with t, t′ ∈ T(Σ), called the (positive) premises of ρ, and π an expression

t
a→ t′ or tP with t, t′ ∈ T(Σ), called the conclusion of ρ. The left-hand side

of π is called the source of ρ. A transition rule is closed if it does not contain
any variables.

A transition system specification (TSS) is a (possibly infinite) set of tran-
sition rules.
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We want to give meaning to TSSs; that is, each TSS is to generate an
LTS. For this purpose we use the notion of a proof of a closed transition rule
from a TSS.

Definition B.1.3 (Proof). A proof from a TSS T of a closed transition
rule H

π consists of an upwardly branching tree in which all upward paths are
finite, where the nodes of the tree are labelled by transitions such that:

• the root has label π;
• if some node has label `, and K is the set of labels of nodes directly above

this node, then
1. either K is the empty set and ` ∈ H,
2. or K

` is a closed substitution instance of a transition rule in T .

Definition B.1.4 (Generated LTS). We define that the LTS generated
by a TSS T consists of the transitions π such that ∅π can be proved from T .

For notational convenience, the premises of a transition rule are not always
presented using proper set notation.

Example B.1.1. Let the signature consist of a constant a and a unary function
symbol f . The TSS

aP

xP

f(x)P

generates the LTS {fk(a)P | k ∈ N}. The proof of
fk(a)P

for k ∈ N is

aP •
↓

f(a)P •
↓
...
↓

fk(a)P •
Exercise B.1.1. Let the signature consist of constants a and b and a unary
function symbol f . Give the LTSs that are generated by the following TSSs:

• xP

f(x)P

•
aP

xP

f(x)P

bQ

bQ

• aP

bQ

bQ

aP

•
aP

aP

bQ

bQ

aP
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B.2 The Meaning of Negative Premises

Sometimes it is useful to allow negative premises of the form t
a9 or t¬P in

transition rules. Intuitively, a closed substitution instance σ of such a negative
premise is valid if σ(t)

a→ t′ does not hold for any closed term t′, or if σ(t)P
does not hold, respectively.

It is not always clear which LTS is generated by a TSS that contains
transition rules with negative premises. For example, the transition rule

a¬P

aP

expresses that aP holds if aP does not hold. On the one hand this excludes
the possibility that aP does not hold, but on the other hand it does not
establish a firm proof for aP . Therefore, on the basis of the transition rule
above it is unknown whether the transition aP holds.

Three-Valued Stable Models. The three-valued stable model, introduced by
Baeten, Bergstra, Klop, and Weijland [23] in term rewriting and by Przy-
musinski [179] in logic programming, can be used to give meaning to TSSs
with negative premises. A three-valued stable model partitions the collection
of transitions into three disjoint sets: the set C of transitions that are true,
the set F of transitions that are false, and the set U of transitions for which it
is unknown whether or not they are true. Such a partitioning is determined
by the pair 〈C, U〉.

We want to extend Definition B.1.3 for a proof of a closed transition rule
from a TSS to the setting with negative premises. Therefore, from now on we
allow the proof tree in Definition B.1.3 to contain expressions t

a9 and t¬P
as labels of its nodes, where t is a closed term.

Definition B.2.1. A set N of expressions t
a9 and t¬P (where t ranges over

closed terms, a over A, and P over predicates) holds for a set S of transitions,
denoted by S |= N , if:

1. for each t
a9 ∈ N we have that t

a→ t′ 6∈ S for all t′ ∈ T (Σ);
2. for each t¬P ∈ N we have that tP 6∈ S.

Definition B.2.2 (Three-valued stable model). A pair 〈C, U〉 of disjoint
sets of transitions is a three-valued stable model for a TSS T if it satisfies
the following two requirements:

1. a transition π is in C if and only if T proves a closed transition rule N
π

where N contains only negative premises and C ∪ U |= N ;
2. a transition π is in C ∪ U if and only if T proves a closed transition rule

N
π where N contains only negative premises and C |= N .
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Example B.2.1. Let the signature consist of constants a and b. The TSS

a¬P

bQ

b¬Q

aP

has the following three-valued stable models:

- 〈∅, {aP, bQ}〉;
- 〈{aP}, ∅〉;
- 〈{bQ}, ∅〉.

Exercise B.2.1. Let the signature consist of constants a and b. Give the
three-valued stable models for the following TSSs:

• a¬P
bQ

• a¬P
aP

•
aP

a¬P
aP

• aP

aP

a¬P
bQ

b¬Q
aP

• x¬P a¬Q
xQ

x¬Q b¬P
xP

Least Three-Valued Stable Models. Each TSS T allows a least three-valued
stable model 〈C, U〉, in the sense that the sets C and F are both minimal and
the set U is maximal. This least three-valued stable model coincides with the
so-called well-founded model [99] (see [179]).

The construction of the least three-valued stable model for a TSS uses
the notion of ordinal numbers α, β, γ, . . ., which are defined as follows. A
set with a total order is called well-ordered if each non-empty subset has a
least element. In other words, the set does not contain an infinite decreasing
sequence of elements. The ordinal numbers are the what are called order types
of the well-ordered sets. The ordinal numbers themselves are well-ordered.
The ordinal numbers up to ωω, with ω the ordinal of the set of natural
numbers, can be defined constructively as follows:

1. 0 is the smallest ordinal number;
2. each ordinal number α has a successor α+ 1;
3. each sequence of ordinal numbers α < α+ 1 < α+ 2 < · · · is capped by

a limit ordinal λ.

A limit ordinal does not have a direct predecessor. The first ordinal numbers
are the natural numbers 0 < 1 < 2 < · · · , which give rise to the limit ordinal
ω. The successors of this limit ordinal give rise to a sequence of ordinal
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numbers ω < ω+1 < ω+2 < · · · , resulting in the limit ordinal 2ω, et cetera.
Similar to standard induction on the natural numbers, one can apply ordinal
induction over the set of ordinal numbers. That is, to prove that a property
Pα holds for all ordinal numbers α, it suffices to prove that if Pβ holds for
all ordinal numbers β < γ, then Pγ holds.

The least three-valued stable model for a TSS T can be constructed as fol-
lows. First we define a sequence 〈Cα, Uα〉 of pairs of disjoint sets of transitions
for ordinal numbers α, using ordinal induction.

• C0 = ∅ and U0 contains all transitions.
• For ordinal numbers α, 〈Cα+1, Uα+1〉 is constructed from 〈Cα, Uα〉 as follows.

A transition π is in Cα+1 if and only if T proves a closed transition rule N
π

where N contains only negative premises and Cα ∪ Uα |= N .
A transition π is in Cα+1 ∪ Uα+1 if and only if T proves a closed transition
rule N

π where N contains only negative premises and Cα |= N .
• For limit ordinals α we define Cα = ∪β<αCβ and Uα = ∩β<αUβ .

The construction of Cα and Uα for ordinal numbers α is such that if α ≤ β
then Cα ⊆ Cβ and Uα ⊇ Uβ . So the Knaster-Tarski fixed point theorem [190]
ensures that there is an ordinal number γ such that Cγ is maximal and Uγ is
minimal; in other words, Cγ+1 and Uγ+1 coincide with Cγ and Uγ , respectively.
From this observation, together with the construction of Cγ and Uγ , it follows
that 〈Cγ , Uγ〉 is a three-valued stable model for T . Furthermore, if 〈C′, U′〉 is
some three-valued stable model for T , then it follows by ordinal induction
that U′ ⊆ Uα for all ordinal numbers α, so in particular U′ ⊆ Uγ . Hence,
〈Cγ , Uγ〉 is the least three-valued stable model for T .

Example B.2.2. For the TSS in Example B.2.1,

a¬P

bQ

b¬Q

aP

we have that Cα is ∅ for α ≥ 0, U0 is {aP, aQ, bP, bQ}, and Uα is {aP, bQ} for
α ≥ 1. So its least three-valued stable model is 〈∅, {aP, bQ}〉.

Exercise B.2.2. For each TSS in Exercise B.2.1, construct the sequence of
pairs 〈Cα, Uα〉 for ordinal numbers α, and conclude from these pairs what is
the least three-valued stable model.

Positive after Reduction. Bol and Groote [59] introduced the notion of a TSS
that is positive after reduction; the definition below stems from [105].

Definition B.2.3 (Positive after reduction). A TSS is positive after re-
duction if its least three-valued stable model does not contain unknown tran-
sitions.
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If a TSS is positive after reduction, then it allows only one three-valued
stable model, which by default is its least one; see [105]. We define that the
LTS generated by a TSS T that is positive after reduction consists of the
transitions that are true in the three-valued stable mode of T . A TSS that
does not contain transition rules with negative premises is always positive
after reduction, and the LTS that such a TSS generates according to Defini-
tion B.1.4 coincides with the set of true transitions in its three-valued stable
model; see [105].

Exercise B.2.3. Say for each of the TSSs in Exercise B.2.1 whether it is
positive after reduction.

Stratifications. A useful tool for showing that a TSS is positive after reduction
is the notion of a stratification [110, 178]. Basically, a TSS is stratified if there
exists a weight function on transitions such that for each closed substitution
and for each transition rule, the substitution instances of the positive premises
are smaller than or equal to the substitution instance of the conclusion, and
the substitution instances of the negative premises are strictly smaller than
the substitution instance of the conclusion.

Definition B.2.4 (Stratification). A stratification for a TSS is a weight
function φ which maps transitions to ordinal numbers, such that for each
transition rule ρ with conclusion π and for each closed substitution σ:

1. for positive premises t
a→ t′ and tP of ρ, φ(σ(t)

a→ σ(t′)) ≤ φ(σ(π)) and
φ(σ(t)P ) ≤ φ(σ(π)), respectively;

2. for negative premises t
a9 and t¬P of ρ, φ(σ(t)

a→ t′) < φ(σ(π)) for all
closed terms t′ and φ(σ(t)P ) < φ(σ(π)), respectively.

The following result stems from [59].

Theorem B.2.1. If a TSS allows a stratification, then it is positive after
reduction.

Exercise B.2.4. Say for each of the TSSs in Exercise B.2.1 whether it allows
a stratification.

Exercise B.2.5. Give a counter-example to show that the reverse of The-
orem B.2.1 does not hold: a TSS that is positive after reduction may not
always allow a stratification.

Exercise B.2.6. Let the signature consist of a constant a and a unary func-
tion symbol f . Moreover, let P and Q be predicates. Give a stratification for
the TSS

x¬P

xQ

x¬P

f(x)P

Give its three-valued stable model.
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B.3 Bisimulation as a Congruence

A process graph, or process for short, is an LTS that starts its execution (i.e.,
evolving from state to state) in a designated root state.

Definition B.3.1 (Process graph). A process (graph) p is an LTS in
which one state s is elected to be the root. If the LTS contains a transi-
tion s

a→ s′, then p
a→ p′ where p′ has root state s′. Moreover, if the LTS

contains a transition sP , then pP .

• A process p0 is finite if there are only finitely many sequences p0
a1→ p1

a2→
· · · ak→ pk.

• A process p0 is regular if there are only finitely many processes pk such
that p0

a1→ p1
a2→ · · · ak→ pk.

Exercise B.3.1. Give processes that satisfy the following requirements, re-
spectively:

- finite and regular;
- neither finite nor regular;
- regular but not finite.

A wide range of semantic equivalences have been developed to distinguish
process graphs. Classic process equivalences are trace equivalence and simula-
tion equivalence. More recently conceived process equivalences include ready
equivalence [46, 165, 182], failure equivalence [64, 46], ready trace equiva-
lence [20, 177], failure trace equivalence [173], ready simulation [58, 143], and
testing equivalences [82, 122]. See [101] for an overview and comparison of
existing process equivalences.

This text focuses on bisimulation equivalence [30, 156, 169], which is finer
than any of the process equivalences mentioned above; that is, if two processes
are equivalent with respect to bisimulation, then they are also equivalent
modulo any of the aforementioned equivalences. Bisimulation equivalence not
only requires that two processes can execute the same strings of transitions,
but also that they have the same branching structure. See Section 2.3 for
an exposition on why bisimulation makes a sensible equivalence relation to
distinguish process behaviour in a setting with concurrency.

Definition B.3.2 (Bisimulation). A bisimulation relation B is a binary
relation on processes such that:

1. if pB q and p
a→ p′, then q

a→ q′ with p′ B q′;
2. if pB q and q

a→ q′, then p
a→ p′ with p′ B q′;

3. if pB q and pP , then qP ;
4. if pB q and qP , then pP .

Two processes p and q are bisimilar, denoted by p ↔ q, if there is a bisimu-
lation relation B such that pB q.
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It is not hard to check that ↔ is an equivalence relation :

• ↔ is reflexive, i.e., p↔ p;
• ↔ is symmetric, i.e., if p↔ q then q ↔ p;
• ↔ is transitive, i.e., if p↔ q and q ↔ r, then p↔ r.

Hence, ↔ divides the collection of processes into equivalence classes.

Example B.3.1. The following two processes, with root states s0 and s4, re-
spectively, are bisimilar:

{s0
a→ s1, s1

b→ s2, s1
b→ s3}

{s4
a→ s5, s4

a→ s6, s5
b→ s7, s6

b→ s7}.

A bisimulation relation between these two processes is defined by: s0 B s4,
s1 B s5, s1 B s6, s2 B s7, and s3 B s7. This bisimulation relation can be depicted
as follows:

s7s3s2

aa
s4s0

bb b b

a

s6s5s1

Exercise B.3.2. Give a bisimulation relation between the processes {s0
a→

s0, s0
b→ s1, s1

b→ s0, s1
a→ s1} and {s a→ s, s

b→ s}, with root states s0 and
s, respectively. Prove that this relation is indeed a bisimulation relation.

Kanellakis and Smolka [134] presented an efficient algorithm to decide
whether two regular processes (see Definition B.3.1) are bisimilar. Paige and
Tarjan [167] presented an alternative algorithm with an even better worst-
case time complexity. In contrast with other process equivalences, bisimula-
tion equivalence is decidable for normed processes, in which from each state
there is a finite sequence of transitions that leads to successful termination;
see [22, 68, 125, 126].

In the remainder of this section we assume a term algebra over some
signature.

Definition B.3.3 (Congruence). Let Σ be a signature. An equivalence re-
lation B on T (Σ) is a congruence if for each f ∈ Σ,

if si B ti for i ∈ {1, . . . , ar(f)}, then f(s1, . . . , sar(f))B f(t1, . . . , tar(f)).
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Congruence is an essential property for bisimulation equivalence over a
term algebra, in order to be able to give an axiomatisation that is sound and
complete modulo bisimulation; i.e., s = t if and only if s ↔ t (cf. Definition
A.3.1). Namely, the equality relation over a term algebra as induced by an
axiomatisation is by default closed under contexts; see Definition A.2.2.

Bisimulation equivalence with respect to the LTS generated by a TSS is
not necessarily a congruence. Groote and Vaandrager [118] introduced a syn-
tactic format for TSSs, which was extended with negative premises [110] and
predicates [26, 198] to obtain the so-called panth format. If a TSS is positive
after reduction and in panth format, then the bisimulation equivalence that
it induces is guaranteed to be a congruence.

Definition B.3.4 (Panth format). A transition rule ρ is in panth format
if it satisfies the following three restrictions:

1. for each positive premise t
a→ t′ of ρ, the right-hand side t′ is a single

variable;
2. the source of ρ contains no more than one function symbol; and
3. there are no multiple occurrences of the same variable at the right-hand

sides of positive premises and in the source of ρ.

A TSS is said to be in panth format if it consists of panth rules only.

Theorem B.3.1. If a TSS is positive after reduction and in panth format,
then the bisimulation equivalence that it induces is a congruence.

Proof. See [59, 93].

We give an example to show that the restriction in Theorem B.3.1 to
TSSs that are positive after reduction is essential. In particular, it cannot
be relaxed to TSSs that have exactly one (not necessarily least) three-valued
stable model that does not contain unknown transitions. The example is
derived from Example 8.12 in [59].

Example B.3.2. Let the signature consist of constants a and b and a unary
function symbol f . Consider the following TSS in panth format:

aP bP

xP f(x)¬Q1 f(a)¬Q2

f(x)Q2

xP f(x)¬Q2 f(b)¬Q1

f(x)Q1

Its least three-valued stable model contains as true transitions aP and bP ,
and as unknown transitions f(a)Q1, f(a)Q2, f(b)Q1, and f(b)Q2 (cf. the
fourth TSS in Exercise B.2.1). So the TSS is not positive after reduction.

The TSS has a second three-valued stable model, in which aP , bP , f(a)Q1,
and f(b)Q2 are the true transitions, and the set of unknown transitions is
empty. We have a↔ b and f(a) 6↔ f(b) with respect to the latter three-valued
stable model. So the induced bisimulation equivalence is not a congruence.
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Exercise B.3.3. Verify that the TSS in Exercise B.2.6 is in panth format.
Show that the bisimulation equivalence induced by this TSS is a congruence.

Exercise B.3.4. Let the signature consist of constants a and b, a unary
function symbol f , and a binary function symbol g. Show that bisimulation
equivalence as induced by each of the TSSs below is not a congruence. Which
syntactic requirements of the panth format do these respective TSSs violate?

•
f(a)P

• x¬P
g(x, x)P

•
x

c→ a

x
c→ y

f(y)P

•
x

c→ x

x
c→ a

f(x)P

•
x

c→ x

x1
c→ y x2

c→ y

g(x1, x2)P

B.4 Branching Bisimulation as a Congruence

In order to abstract away from internal actions, Milner [154] introduced a spe-
cial transition label τ , called the silent step. A number of equivalence notions
have been developed to distinguish processes that incorporate silent steps,
such as delay equivalence [155], η-equivalence [25], and observation equiva-
lence [158]. See [102] for an overview and comparison of process equivalences
in the presence of the silent step.

This text focuses on branching bisimulation equivalence [107], which is
finer than any of the process equivalences mentioned above. Intuitively,
branching bisimulation equivalence allows us to abstract away from a τ -
transition if its execution does not lose any possible behaviour. See Section
5.1 and [104] for expositions on why rooted branching bisimulation makes a
sensible equivalence relation to abstract away from internal computations.

Definition B.4.1 (Branching bisimulation). A branching bisimulation
relation B is a binary relation on the collection of processes such that:

1. if pB q and p
a→ p′, then

- either a ≡ τ and p′ B q;
- or there is a sequence of (zero or more) τ -transitions q

τ→ · · · τ→ q0

such that pB q0 and q0
a→ q′ with p′ B q′;

2. if pB q and q
a→ q′, then

- either a ≡ τ and pB q′;
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- or there is a sequence of (zero or more) τ -transitions p
τ→ · · · τ→ p0

such that p0 B q and p0
a→ p′ with p′ B q′.

3. if pB q and pP , then there is a sequence of (zero or more) τ -transitions

q
τ→ · · · τ→ q0 such that pB q0 and q0P ;

4. if pB q and qP , then there is a sequence of (zero or more) τ -transitions

p
τ→ · · · τ→ p0 such that p0 B q and p0P .

Two processes p and q are branching bisimilar, denoted by p ↔b q, if there
is a branching bisimulation relation B such that pB q.

The relation ↔b is an equivalence on the collection of processes; see
[32]. Groote and Vaandrager [117] presented an efficient algorithm to decide
whether two regular processes are branching bisimilar.

Example B.4.1. The following two processes, with root states s0 and s2, re-
spectively, are branching bisimilar:

{s0
τ→ s0, s0

a→ s1, s0
b→ s1}

{s2
a→ s3, s2

τ→ s4, s4
a→ s5, s4

b→ s5}.

A branching bisimulation relation between these two processes is defined by:
s0 B s2, s0 B s4, s1 B s3, and s1 B s5. This branching bisimulation relation can
be depicted as follows:

s0τ

τ

s2

aba

s1 s3

s5

a b

s4

Exercise B.4.1. Say for each of the following four pairs of processes, with
root states s0 and s2, respectively, whether they are branching bisimilar:

- {s0
τ→ s0, s0P} and {s2P};

- {s0
τ→ s1, s1P, s1Q} and {s2P, s2Q};

- {s0
τ→ s1, s0P, s1Q} and {s2P, s2Q};

- {s0
τ→ s0, s0

a→ s1, s1
τ→ s1} and {s2

τ→ s3, s2
a→ s4, s3

a→ s4}.
In each case, either give a branching bisimulation relation or explain why the
processes are not branching bisimilar.
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A rootedness condition, originating from [158], is imposed on top of
branching bisimulation, in order to make it a congruence with respect to
a fundamental operation, which joins process graphs at their root states (see
Section 5.1).

Definition B.4.2 (Rooted branching bisimulation). A rooted branch-
ing bisimulation relation B is a binary relation on processes such that:

1. if pB q and p
a→ p′, then q

a→ q′ with p′ ↔b q
′;

2. if pB q and q
a→ q′, then p

a→ p′ with p′ ↔b q
′;

3. if pB q and pP , then qP ;
4. if pB q and qP , then pP .

Two processes p and q are rooted branching bisimilar, denoted by p↔rb q, if
there is a rooted branching bisimulation relation B such that pB q.

Since branching bisimilarity is an equivalence relation, it is not hard to
see that rooted branching bisimilarity is also an equivalence relation. Hence,
↔rb divides the collection of processes into equivalence classes.

Exercise B.4.2. Show that the processes {s0
a→ s1, s1

b→ s2, s1
τ→ s3, s3

b→
s4, s3

c→ s2} and {s5
a→ s6, s6

b→ s7, s6
c→ s7}, with root states s0 and s5,

respectively, are rooted branching bisimilar.

Exercise B.4.3. Say for each of the pairs of processes in Exercise B.4.1
whether they are rooted branching bisimilar.

If a TSS is positive after reduction and in RBB cool format [57, 92], then
the rooted branching bisimulation equivalence that it induces is guaranteed to
be a congruence. We proceed to present the RBB cool format, which requires
two auxiliary definitions.

Definition B.4.3 (Lookahead). A transition rule contains lookahead if a
variable occurs at the left-hand side of a premise and at the right-hand side
of a premise of this rule.

Definition B.4.4 (Patience rule). A patience rule for the i-th argument
of a function symbol f is a panth rule of the form

xi
τ→ y

f(x1, . . . , xar(f))
τ→ f(x1, . . . , xi−1, y, xi+1, . . . , xar(f))

Definition B.4.5 (RBB cool format). A TSS T is in RBB cool format
if the following requirements are fulfilled.

1. T consists of panth rules that do not contain lookahead.
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2. Suppose a function symbol f occurs at the right-hand side of the con-
clusion of some transition rule in T . Let ρ ∈ T be a non-patience rule
with source f(x1, . . . , xar(f)). Then for i ∈ {1, . . . , ar(f)}, xi occurs in
no more than one premise of ρ, where this premise is of the form xiP or
xi

a→ y with a 6≡ τ . Moreover, if there is such a premise in ρ, then there
is a patience rule for the i-th argument of f in T .

Theorem B.4.1. If a TSS is positive after reduction and in RBB cool for-
mat, then the rooted branching bisimulation equivalence that it induces is a
congruence.

Proof. See [57, 92].

The following counter-example and exercise show the need for the restric-
tions of the RBB cool format on top of the panth format.

Example B.4.2. Let the signature consist of constants a, b, c, and d, together
with a unary function symbol f . Consider the following TSS in panth format:

a
a→ c b

a→ d c
τ→ d dP

x
a→ y yP

f(x)P

It is not hard to see that a ↔rb b. However, f(a) 6↔rb f(b), because f(b)P
holds while f(a)P does not hold. So the rooted branching bisimulation equiv-
alence induced by the TSS above is not a congruence.

The TSS does not contain negative premises, so by default it is positive
after reduction. Hence, Theorem B.4.1 implies that the TSS cannot be in
RBB cool format. Note that the fifth transition rule violates the RBB cool
restriction that the transition rules must not contain lookahead.

Exercise B.4.4. Let the signature consist of constants a, b, c, d, and e,
together with a unary function symbol f . Show for each of the following
TSSs in panth format that a ↔rb b but f(a) 6↔rb f(b). Which RBB cool
restrictions do these respective TSSs violate?

•
a

a→ c b
a→ d c

τ→ d dP

x
a→ y

f(x)
a→ f(y)

xP

f(x)P

•
a

τ→ c b
τ→ d c

τ→ d dP

x
τ→ y

f(x)
τ→ f(y)

x¬P
f(x)P

•
a

τ→ c b
τ→ d cP c

τ→ e eQ e
τ→ c dP dQ

x
τ→ y

f(x)
τ→ f(y)

xP xQ

f(x)P
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Exercise B.4.5. Suppose the first TSS in Exercise B.4.4 is extended with

the patience rule x
τ→y

f(x)
τ→f(y)

for the argument of f . Prove that the resulting

TSS is in RBB cool format. Verify that f(a)↔rb f(b).

B.5 Conservative Extension

Let a TSS T0 over some signature Σ0 be extended with a TSS T1 over some
signature Σ1. We want the resulting TSS T0⊕T1 over the signature Σ0⊕Σ1

to be a conservative extension of T0, meaning that the transition rules in T1

do not affect the transitions of closed terms over Σ0. In order to be able to
combine T0 and T1, it is assumed in the remainder of this section that the
function symbols in the intersection of their signatures have the same arity
in both signatures.

Definition B.5.1 (Conservative extension). Let T0 and T1 be TSSs over
signatures Σ0 and Σ1, respectively. The TSS T0⊕T1 is a conservative exten-
sion of T0 if the LTSs generated by T0 and T0 ⊕ T1 contain exactly the same
transitions t

a→ t′ and tP with t ∈ T (Σ0).

Exercise B.5.1. Let a and b be constants. Say for each of the following pairs
of TSSs T0 and T1 over the signatures {a} and {a, b}, respectively, whether
T0 ⊕ T1 is a conservative extension of T0. In cases where the extension is not
conservative, give a transition of a that holds with respect to T0⊕T1 but not
with respect to T0.

• ∅ and
aP

•
xP

and
bQ

• xQ

aP
and

bQ

• xQ

xP
and

bQ

•
x

c→ y
and ∅

• ∅ and
bQ

xQ

xP

We proceed to present a syntactic format for TSSs from [95, 118, 197],
which ensures that an extended TSS is conservative over the original TSS.
The following definition is crucial in the formulation of this format.

Definition B.5.2 (Source-dependency). The source-dependent variables
in a transition rule ρ are defined inductively as follows:
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• all variables in the source of ρ are source-dependent;
• if t

a→ t′ is a premise of ρ and all variables in t are source-dependent, then
all variables in t′ are source-dependent.

A transition rule is source-dependent if all its variables are. A TSS is source-
dependent if all its rules are.

Exercise B.5.2. Say for each transition rule in the consecutive TSSs T0 in
Exercise B.5.1 whether it is source-dependent.

Definition B.5.3 (Freshness). Let T0 and T1 be TSSs over signatures Σ0

and Σ1, respectively. A term in T(Σ0⊕Σ1) is said to be fresh if it contains a
function symbol from Σ1\Σ0. Similarly, a transition label or predicate symbol
in T1 is fresh if it does not occur in T0.

Exercise B.5.3. Say for each transition rule in the consecutive TSSs T1 in
Exercise B.5.1 whether its source is fresh.

Theorem B.5.1. Let T0 and T1 be TSSs over signatures Σ0 and Σ1, respec-
tively, where T0 and T0⊕T1 are positive after reduction. Under the following
conditions, T0 ⊕ T1 is a conservative extension of T0.

1. T0 is source-dependent.
2. For each ρ ∈ T1,
• either the source of ρ is fresh,
• or ρ has a premise of the form t

a→ t′ or tP , where
– t ∈ T(Σ0);
– all variables in t occur in the source of ρ; and
– t′, a, or P is fresh.

Proof. See [95].

Exercise B.5.4. Which of the extensions of TSSs in Exercise B.5.1 satisfy
the restrictions of Theorem B.5.1?

Exercise B.5.5. Let the signature consist of a constant a and a unary func-
tion symbol f . Verify that the TSS

a
c→ a

x
c→ y

f(x)
c→ f(y)

is source-dependent. What is the LTS generated by this TSS?
Extend the signature with the constant b, and the TSS with the transition

rule

b
c→ b

(which has the fresh constant b as its source). What is the LTS generated by
the extended TSS? Verify that the extension is conservative.



138 B. Structural Operational Semantics

B.6 Modal Logics

A variety of so-called modal logics (see [133]) have been developed to express
properties of LTSs. Modal logic aims to formulate properties of states, and
to identify states that satisfy the same properties. Typically, one wants to
determine whether a certain predicate holds in state s, or whether there is a
transition s

a→ s′ such that a certain formula holds in state s′. It can moreover
be desirable to express temporal properties, such as that a certain formula will
eventually hold, after zero or more transitions, or that a certain formula will
never hold. Two states can be distinguished by a modal logic if they do not
satisfy the same formulas over this logic. The computation whether a state
in an LTS satisfies a modal formula is referred to as model checking. Efficient
model-checking algorithms have been developed for a range of modal logics.
Section 6.4 mentions several tools that have benefited from this algorithmic
development. We proceed to present brief descriptions of some modal and
temporal logics; see [86, 188] for surveys of these topics.

In the remainder of this section, the unary negation operator ¬ and the
binary conjunction operator ∧ from boolean logic have their usual meanings:
a formula ¬φ is true if and only if φ is false, and a formula φ ∧ φ′ is true if
and only if both φ and φ′ are true. Standard operators such as the binary dis-
junction operator ∨ and the binary implication operator→ can be expressed
using only ¬ and ∧: φ ∨ φ′ is true if and only if ¬(¬φ ∧ ¬φ′) is true, and
φ→ φ′ is true if and only if ¬(φ ∧ ¬φ′) is true.

As before, A denotes a finite set of transition labels, and we assume a
finite set of predicates on states, including a special predicate that holds in
all states.

Hennessy-Milner Logic. Hennessy-Milner logic (HML) [123], extended with
predicates, is a modal logic of which the syntax is defined by the following
BNF grammar [9]:

φ ::= P | ¬φ | φ ∧ φ′ | 〈a〉φ
where a ranges over A and P over the set of predicates. Intuitively, a formula
〈a〉φ expresses that there is an a-transition from the current state to a state
where the formula φ holds.

Assume an LTS. The states s in this LTS that satisfy an HML formula
φ, denoted by s |= φ, are defined inductively as follows:

s |= P if sP
s |= ¬φ if s 6|= φ
s |= φ ∧ φ′ if s |= φ and s |= φ′

s |= 〈a〉φ if there is a state s′ with s
a→ s′ and s′ |= φ

Exercise B.6.1. Let A
∆
= {a, b, c}. Give an HML formula that holds for

state s0 in the LTS {s0
a→ s1, s1

b→ s2, s1
c→ s2, s2P}, but not for state s3

in the LTS {s3
a→ s4, s3

a→ s5, s4
b→ s6, s5

c→ s6, s6P}.
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The following theorem from [123] states that HML distinguishes regular
processes (see Definition B.3.1) up to bisimulation equivalence.

Theorem B.6.1. Two regular processes p and q are bisimilar if and only if
their root states satisfy exactly the same HML formulas.

By adapting the meaning of formulas 〈a〉φ′ and P in HML, one can obtain
a modal logic that distinguishes regular processes up to branching bisimula-
tion equivalence; see [84].

We proceed to discuss some existing temporal logics. The modal µ-
calculus [141] extends HML with least and greatest fixed-point operators
νZ.φ and µZ.φ, to express temporal properties. Hennessy and Stirling [124]
added a relativised past tense operator to HML, to upgrade it to a temporal
logic.

Computation Tree Logic. Computation tree logic (CTL∗) [88] is a temporal
logic to express properties of unlabelled transition systems. ACTL∗ [83] is
an extension of CTL∗ to LTSs; its syntax is defined by the following BNF
grammar:

φ ::= P | ¬φ | φ ∧ φ′ | 〈a〉φ | φ Uφ′ | Eφ

where a ranges over A and P over the set of predicates. Intuitively, φ Uφ′

denotes that there is a sequence of transitions from the current state that
only visits states in which φ holds, until it visits a state in which φ′ holds.
Furthermore, Eφ expresses that there is a sequence of transitions from the
current state, which cannot be extended to a longer sequence, such that the
sequence only visits states in which φ holds.

Assume an LTS. A full path is either an infinite sequence of transitions

s0
a0→ s1

a1→ s2
a2→ · · · , or a finite sequence of transitions s0

a0→ · · · a`−1→ s`

where there is no transition s`
b→ s. The states s0 in this LTS that satisfy an

ACTL∗ formula φ, denoted by s0 |= φ, are defined inductively as follows:

s0 |= P if s0P
s0 |= ¬φ if s0 6|= φ
s0 |= φ ∧ φ′ if s0 |= φ and s0 |= φ′

s0 |= 〈a〉φ if there is a state s1 with s0
a→ s1 and s1 |= φ

s0 |= φ Uφ′ if there is a path s0
a0→ · · · a`−1→ s` with sk |= φ for

k ∈ {0, . . . , `− 1} and s` |= φ′

s0 |= Eφ if there is a full path, starting in s0, such that s |= φ for all
states s on this full path

Model checking of ACTL∗ formulas is PSPACE-complete [89, 187]. In
order to obtain a fragment of ACTL∗ on which model checking is feasible,
we make a distinction between so-called state and path formulas:
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• each predicate P is a state formula;
• if φ and φ′ are state formulas, then φ ∧ φ′ is a state formula;
• if φ is a state or path formula, then ¬φ is a state or path formula, respec-

tively;
• if φ is a state formula, then 〈a〉φ is a path formula;
• if φ and φ′ are state formulas, then φ Uφ′ is a path formula;
• if φ is a path formula, then Eφ is a state formula.

ACTL [71, 83] consists of the set of state formulas that are thus defined.
An efficient model-checking algorithm exists for ACTL [72, 83], which is
linear both in the size of the LTS and in the size of the formula. ACTL is
usually referred to as a branching-time temporal logic, because the operator
Eφ constitutes an explicit quantification over full paths.

Linear Temporal Logic. Linear temporal logic (LTL) [176], here presented
with transition labels, is defined by the following BNF grammar:

φ ::= P | ¬φ | φ ∧ φ′ | 〈a〉φ | φ Uφ′.

The model-checking algorithm for LTL [144] is linear in the size of the LTS,
but exponential in the size of the formula. From a practical point of view this
exponential complexity need not be problematic, because in general the size
of a formula is small with respect to the size of the LTS against which it is
checked. LTL is referred to as a linear-time temporal logic, because formulas
are interpreted over linear sequences of states. See [87] for a comparison of
branching-time and linear-time temporal logics.



Solutions to Selected Exercises

2.1.1 a·(b+ c) and (a·b) + (a·c).
2.2.1 ((a+ b)·(a+ c))·d a→ (a+ c)·d, ((a+ b)·(a+ c))·d b→ (a+ c)·d, (a+ c)·d a→ d,

(a+ c)·d c→ d, and d
d→ √.

2.3.1
- yes: (b+ c)a+ ba+ caB ba+ ca and aB a;
- no;
- yes: (a+a)(bc)+(ab)(c+c)B (a(b+b))(c+c), bcB (b+b)(c+c), b(c+c)B (b+b)(c+c),
cB c+ c, and c+ cB c+ c.

2.3.3 Base case: a
a→ √, while aa cannot terminate successfully by the execution

of an a-transition. Hence, a 6↔ aa.

Inductive case: ak+1 a→ ak is the only transition of ak+1, while ak+2 a→ ak+1 is
the only transition of ak+2. By induction, ak and ak+1 cannot be related by a
bisimulation relation. Hence, ak+1 6↔ ak+2.

2.4.1 The crux of this exercise is to show that A2′ and A3 together prove A1.

x + y
A3
= (x + y) + (x + y)

A2′
= y + ((x + y) + x)

A2′
= y + (y + (x + x))

A2′
=

((x+ x) + y) + y
A2′
= (x+ (y + x)) + y

A2′
= (y + x) + (y + x)

A3
= y + x.

2.4.3 Let s+ tB t+ s and v B v for all basic process terms v. It is easy to see that

s+ t
a→ w or s+ t

a→ √ if and only if t+ s
a→ w or t+ s

a→ √, respectively.
Let (s + t)uB su + tu and v B v for all basic process terms v. It is easy to see

that (s + t)u
a→ w or (s + t)u

a→ √ if and only if su + tu
a→ w or su + tu

a→ √,
respectively.

Let (vt)uB v(tu) and v B v for all basic process terms v. If v
a→ v′, then (vt)u

a→
(v′t)u corresponds to v(tu)

a→ v′(tu); if v
a→ √, then (vt)u

a→ tu corresponds to

v(tu)
a→ tu.

2.4.5 (ab)c→ a(bc), while both (ab)c and a(bc) have weight 8.

2.4.6
- The rewrite rules for BPA reduce ((a+a)(b+ b))(c+ c) to the normal form a(bc).
- The rewrite rules for BPA reduce both (a+a)(bc)+(ab)(c+c) and (a(b+b))(c+c)

to the normal form a(bc).
- The rewrite rules for BPA reduce ((a+b)c+ac)d to the normal form a(cd)+b(cd),

and (b + a)(cd) to the normal form b(cd) + a(cd). These two normal forms are
equivalent modulo AC of the +.

3.3.2 (a+b)‖c↔ (a+b)c+c(a+b)+γ(a, c)+γ(b, c) is not bisimilar with a‖c+b‖c↔
ac+ ca+ γ(a, c) + bc+ cb+ γ(b, c).
a (b+ c)↔ a(b+ c) is not bisimilar with a b+ a c↔ ab+ ac.
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3.3.6 a‖((b+ c)d)
M1
= a ((b+ c)d) + ((b+ c)d) a+ a|((b + c)d)

A4
= a ((b+ c)d) +

((b+ c)d) a+ a|(bd+ cd)
CM10

= a ((b+ c)d) + ((b+ c)d) a+ a|(bd) + a|(cd)
CM6
=

a ((b+ c)d)+((b+ c)d) a+γ(a, b)d+γ(a, c)d
CM7
= a ((b+ c)d)+((b+ c)d) a+

(bd)|a + (cd)|a CM9
= a ((b + c)d) + ((b + c)d) a + (bd + cd)|a A4

= a ((b + c)d) +

((b+ c)d) a+ ((b+ c)d)|a M1
= ((b+ c)d)‖a.

3.3.7 Sketch: First prove that s|t = t|s holds for basic process terms s and t, by
induction with respect to their sizes. Next, observe that each process term in
PAP is provably equal to a basic process term.

s‖t M1
= (s t+ t s) + s|t A1

= (t s+ s t) + s|t = (t s+ s t) + t|s M1
= t‖s.

3.3.8 a b↔ ab is not bisimilar with b a↔ ba.
(a b) c↔ a(bc+ cb+ γ(b, c)) is not bisimilar with a (b c)↔ a(bc).

3.4.2 ∂{a}(ac);

∂{a}((a+ b)c)
b→ ∂{a}(c)

c→ √;

∂{c}((a+ b)c)
a→ ∂{c}(c) and ∂{c}((a+ b)c)

b→ ∂{c}(c);

∂{a,b}((ab)‖(ba))
c→ ∂{a,b}(b‖a)

c→ √.

3.4.5 yes; no; yes; yes; no.

3.4.7 Let γ(a, b)
∆
= c. Then ∂{a,b}(a‖b)↔ c, while ∂{a,b}(a)‖∂{a,b}(b)↔ δ.

3.4.9 δ = s+ t
A3
= (s+ t) + (s+ t)

A1,2
= s+ (s+ (t+ t))

A3
= s+ (s+ t) = s+ δ

A6
= s.

3.4.10

- δ‖a M1
= δ a+ a δ + δ|a LM2,11,CM12

= δa+ aδ + δ
A6,7
= aδ.

-

∂{a,b}((ab)‖(ba))
M1
= ∂{a,b}((ab) (ba) + (ba) (ab) + (ab)|(ba))

LM3,CM8
= ∂{a,b}(a(b‖(ba)) + b(a‖(ab)) + c(b‖a))

D1,2,4,5
= δ∂{a,b}(b‖(ba)) + δ∂{a,b}(a‖(ab)) + c∂{a,b}(b‖a)

A6,7
= c∂{a,b}(b‖a)
M1
= c∂{a,b}(b a+ a b+ b|a)

LM2,CM5
= c∂{a,b}(ba+ ab+ c)

D1,2,4,5
= c(δ∂{a,b}(a) + δ∂{a,b}(b) + c)

A6,7
= cc.

- send(d), read(d), and comm(d) are abbreviated to s(d), r(d), and c(d), respec-
tively, for d ∈ {0, 1}, and H denotes {s(0), s(1), r(0), r(1)}.

(s(0) + s(1))‖(r(0) + r(1))
M1
= (s(0) + s(1)) (r(0) + r(1)) + (r(0) + r(1)) (s(0) + s(1))

+ (s(0) + s(1))|(r(0) + r(1))
LM4,CM9,10

= s(0) (r(0) + r(1)) + s(1) (r(0) + r(1)) + r(0) (s(0) + s(1))
+ r(1) (s(0) + s(1)) + s(0)|r(0) + s(0)|r(1) + s(1)|r(0)
+ s(1)|r(1)

LM2,CM5
= s(0)(r(0) + r(1)) + s(1)(r(0) + r(1)) + r(0)(s(0) + s(1))

+ r(1)(s(0) + s(1)) + c(0) + δ + δ + c(1)
A6
= s(0)(r(0) + r(1)) + s(1)(r(0) + r(1)) + r(0)(s(0) + s(1))

+ r(1)(s(0) + s(1)) + c(0) + c(1).
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Hence,

∂H((s(0) + s(1))‖(r(0) + r(1)))
= ∂H(s(0)(r(0) + r(1)) + s(1)(r(0) + r(1)) + r(0)(s(0) + s(1))

+ r(1)(s(0) + s(1)) + c(0) + c(1))
D1,2,4,5

= δ∂H(r(0) + r(1)) + δ∂H(r(0) + r(1)) + δ∂H(s(0) + s(1))
+ δ∂H(s(0) + s(1)) + c(0) + c(1)

A6,7
= c(0) + c(1).

3.4.13

ALT1 alt(a, x) = a·x
ALT2 alt(δ, x) = δ
ALT3 alt(a·x, y) = a·alt(y, x)
ALT4 alt(x+ y, z) = alt(x, z) + alt(y, z)

The first axiom says that if the left-hand side s of alt(s, t) terminates successfully
by the execution of a, then alt(s, t) executes a after which it results in t.
The second axiom says that if the left-hand side s of alt(s, t) cannot execute any
actions, then alt(s, t) cannot execute any actions.
The third axiom says that if the left-hand side s of alt(s, t) executes a to evolve
into s′, then alt(s, t) executes a to evolve into alt(t, s′).
The fourth axiom says that if the left-hand side s of alt(s, t) can execute actions
ai to evolve into si, then alt(s, t) can execute the ai to evolve into alt(t, si).
Direct the axioms for alt from left to right, and add them to the TRS for ACP. An
appropriate weight function shows that the resulting TRS is terminating modulo
AC of the +. One can show that normal forms do not contain occurrences of alt.
Let the process terms s and t in ACP extended with alt be bisimilar. Then one
can apply the rewrite rules to remove all occurrences of ‖, , |, ∂H , and alt from
s and t, to obtain normal forms n and n′, respectively, in BPA extended with δ.
Since the axioms are sound, n and n′ are bisimilar. This implies n =AC n′, so
s = n =AC n′ = t.

4.1.1 Let γ(a, a)
∆
= δ and γ(a, b)

∆
= δ. Then aaa · · · and (a+ b)(a+ b)(a+ b) · · · are

two non-bisimilar solutions.

4.1.2
- {X=aY, Y=bX} is already in the desired form.
- The right-hand side of Y=aX is already in the desired form. The right-hand side

of X=Y is brought into the desired form by replacing Y by the right-hand side
aX of its recursive equation.

- The right-hand side of X=(a+b) X is brought into the desired form by appli-
cations of axioms LM2,4: (a+b) X = aX+bX.

4.1.3 Z=bZ is already in the desired form.
Y=Z + a is brought into the desired form by replacing Z by the right-hand side
bZ of its recursive equation.
X=Y ‖Z is brought into the desired form by replacing Y and Z by bZ+a and bZ,
respectively, and manipulating the resulting term (bZ + a)‖(bZ) by the axioms:
(bZ+ a)‖(bZ) = (bZ+ a) (bZ) + (bZ) (bZ+ a) + (bZ+ a)|(bZ) = (bZ) (bZ) +
a (bZ) + (bZ) (bZ + a) + (bZ)|(bZ) + a|(bZ) = b(Z‖(bZ)) + a(bZ) + b(Z‖(bZ +
a)) + c(Z‖Z) + cZ.
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4.2.1

b
b→ √ (

v
v→ √

, v := b)

———————–

b〈X|E〉 b→ 〈X|E〉 (
x

v→ √

xy
v→ y

, v := b, x := b, y := 〈X|E〉)
———————–

〈Y |E〉 b→ 〈X|E〉 (
b〈X|E〉 v→ y

〈Y |E〉 v→ y
, v := b, y := 〈X|E〉)

4.2.2

- 〈X |X=ab〉 a→ b
b→ √;

- 〈X |X=Y X, Y=bY 〉 b→ 〈Y |X=Y X, Y=bY 〉〈X |X=Y X, Y=bY 〉,
〈Y |X=Y X, Y=bY 〉〈X |X=Y X, Y=bY 〉 b→

〈Y |X=Y X, Y=bY 〉〈X |X=Y X, Y=bY 〉;
- 〈X |X=aXb〉 bk a→ 〈X |X=aXb〉 bk+1 for k ∈ N;

- 〈X |X=aXb+c〉 bk a→ 〈X |X=aXb+c〉 bk+1 for k ∈ N,

〈X |X=aXb+c〉 c→ √,

〈X |X=aXb+c〉 bk+1 c→ bk+1 for k ∈ N.

4.2.3 Let sk,` represent the state in which there are k zeros and ` ones in the bag
(so the root state is s0,0). Let sk,` B (· · · ((〈X|E〉‖out(d1))‖out(d2)‖ · · · )‖out(dn)
if the sequence d1 · · · dn of elements in {0, 1} contains k zeros and ` ones.

4.2.4 Assume recursion variables Xk,` for k, ` ∈ N. Intuitively, Xk,` represents the
state in which there are k zeros and ` ones in the bag. This is captured by the
following recursive equations, where k and ` range over N:

X0,0 = in(0)X1,0 + in(1)X0,1

X0,`+1 = in(0)X1,`+1 + in(1)X0,`+2 + out(1)X0,`

Xk+1,0 = in(0)Xk+2,0 + in(1)Xk+1,1 + out(0)Xk,0

Xk+1,`+1 = in(0)Xk+2,`+1 + in(1)Xk+1,`+2 + out(0)Xk,`+1 + out(1)Xk+1,`.

4.3.1 Since t = t, RSP yields t = 〈X |X=X〉 for all process terms t.

4.3.2 E
∆
= {X = aX}. 〈X|E〉 b

a→ 〈X|E〉‖b b→ 〈X|E〉, while 〈X|E〉b↔ 〈X|E〉.
4.3.3
- 〈X |X=aX+b〉 RDP

= a〈X |X=aX+b〉+b. So the desired equation follows by RSP.

- 〈X |X=aX〉 RDP
= a〈X |X=aX〉. So the desired equation follows by RSP.

- 〈Z |Z=aZ〉 RDP
= a〈Z |Z=aZ〉 RDP

= aa〈Z |Z=aZ〉. By RSP,

〈Z |Z=aZ〉 = 〈X |X=aaX〉.

〈Z |Z=aZ〉 RDP
= a〈Z |Z=aZ〉 RDP

= aa〈Z |Z=aZ〉 RDP
= aaa〈Z |Z=aZ〉. By RSP,

〈Z |Z=aZ〉 = 〈Y |Y=aaaY 〉.
-

〈Z |Z=(a+b)Z〉 RDP
= (a+ b)〈Z |Z=(a+b)Z〉
A4
= a〈Z |Z=(a+b)Z〉+ b〈Z |Z=(a+b)Z〉

RDP
= a〈Z |Z=(a+b)Z〉+ b(a+ b)〈Z |Z=(a+b)Z〉.
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So by RSP, 〈Z |Z=(a+b)Z〉 = 〈X |X=aX+b(a+b)X〉.
Likewise it can be derived that 〈Z |Z=(a+b)Z〉 = 〈Y |Y=bY+a(a+b)Y 〉.

- By EACP, RDP, and commutativity of the merge,

〈X |X=aX〉‖〈Y |Y=bY 〉 = (a+ b+ γ(a, b))(〈X |X=aX〉‖〈Y |Y=bY 〉).

So by RSP, 〈X |X=aX〉‖〈Y |Y=bY 〉 = 〈Z |Z=(a+b+γ(a, b))Z〉.
- By RDP and A4,

〈X |X=aX+b〉〈Y |Y=(a+b)Y 〉
= a〈X |X=aX+b〉〈Y |Y=(a+b)Y 〉+ b〈Y |Y=(a+b)Y 〉

and by RDP, 〈Y |Y=(a+b)Y 〉 = (a+ b)〈Y |Y=(a+b)Y 〉.
So by RSP, 〈X |X=aX+b〉〈Y |Y=(a+b)Y 〉 = 〈V |V=aV+bW,W=(a+b)W 〉.
Furthermore, by RDP and A4,

〈Z |Z=(a+b)Z〉 = a〈Z |Z=(a+b)Z〉+ b〈Z |Z=(a+b)Z〉,

and by RDP, 〈Z |Z=(a+b)Z〉 = (a+ b)〈Z |Z=(a+b)Z〉.
So by RSP, 〈Z |Z=(a+b)Z〉 = 〈V |V=aV+bW,W=(a+b)W 〉.

- 〈X |X=aX〉 b RDP
= a〈X |X=aX〉 b, so by RSP 〈X |X=aX〉 b = 〈X |X=aX〉.

- By the previous item, 〈X |X=aX〉 = 〈X |X=aX〉 b RDP
= a〈X |X=aX〉 b.

Hence, by RSP, 〈X |X=aX〉 = 〈Y |Y=aY b〉.
4.3.4 Let E consist of the recursive equations X1 = a(X2b+ c), X2 = cX2 + bX3,

and X3 = a(X1 + X3)X2. It is easy to see that E is guarded. So RSP yields
ti = 〈Xi|E〉 for i ∈ {1, 2, 3}.

4.3.5 Since t1 = at2 and t2 = at1, substituting t1 for Y1 and t2 for Y2 is a solution

for E
∆
= {Y1=aY2, Y2=aY1}. So by RSP, t1 = 〈Y1|E〉.

RDP yields 〈X |X=aX〉 = a〈X |X=aX〉, so substituting 〈X |X=aX〉 for Y1 and
Y2 is a solution for {Y1=aY2, Y2=aY1}. Hence, by RSP, 〈X |X=aX〉 = 〈Y1|E〉.

4.4.1 〈X |X=aX+bY, Y=cX + aY 〉.
4.5.3 Apply induction on n. The case n ≡ 0 is trivial; let n > 0.

If πn(s)
a→ √

, then πn+1(s)
a→ √

. Since πn+1(s) ↔ πn+1(t), this implies

πn+1(t)
a→ √. Since n > 0, πn(t)

a→ √. Likewise, πn(t)
a→ √ implies πn(s)

a→ √.

If πn(s)
a→ πn−1(s′), then πn+1(s)

a→ πn(s′). Since πn+1(s) ↔ πn+1(t), this

implies πn+1(t)
a→ πn(t′) with πn(s′) ↔ πn(t′). Then πn(t)

a→ πn−1(t′), and

by induction πn−1(s′) ↔ πn−1(t′). Likewise, πn(t)
a→ πn−1(t′) implies πn(s)

a→
πn−1(s′) with πn−1(t′)↔ πn−1(s′).

4.5.4 Sn
∆
= {n, n+ 1, n+ 2, . . .} for n ∈ N.

4.5.5 Consider the process graphs {s a→ s′, s′
a→ s′} ∪ {s a→ sn, sn+1

a→ sn | n ∈ N}
and {ŝ a→ ŝn, ŝn+1

a→ ŝn | n ∈ N}, with root states s and ŝ, respectively. s and ŝ
are bisimilar up to any finite depth, but s has an infinite trace of a-transitions

(s
a→ s′

a→ s′
a→ · · · ) while ŝ has no such trace. So s and ŝ are not bisimilar.

4.5.6 We derive for k, n ∈ N, by induction on n:

πn(〈X |X=aXb+b〉bk) = πn(〈Y |Y=aZb+b, Z=aY b+b〉bk)
πn(〈X |X=aXb+b〉bk) = πn(〈Z |Y=aZb+b, Z=aY b+b〉bk)

(The desired equality then follows by AIP, taking k ≡ 0.)
The base case n ≡ 0 is trivial. Using induction one can derive:
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πn+1(〈X |X=aXb+b〉bk)
RDP,A4

= πn+1(a〈X |X=aXb+b〉bk+1 + bk+1)
PR1-3

= aπn(〈X |X=aXb+b〉bk+1) + πn+1(bk+1)

= aπn(〈Z |Y=aZb+b, Z=aY b+b〉bk+1) + πn+1(bk+1)
PR1-3

= πn+1(a〈Z |Y=aZb+b, Z=aY b+b〉bk+1 + bk+1)
RDP,A4

= πn+1(〈Y |Y=aZb+b, Z=aY b+b〉bk).

Likewise one can derive

πn+1(〈X |X=aXb+b〉bk) = πn+1(〈Z |Y=aZb+b, Z=aY b+b〉bk).

5.1.1 aB1 aτ ,
√B1 τ , and

√B1
√

proves a↔b aτ ;
aB2 τa, aB2 a, and

√B2
√

proves a↔b τa.
aτ B3 τa, aτ B3 a, τ B3

√
, and

√B3
√

proves aτ ↔b τa.

5.1.2 τ(τ(a+ b) + b) + aB a+ b, τ(a+ b) + bB a+ b, a+ bB a+ b, and
√B√.

5.1.4 not branching bisimilar; bisimilar; branching bisimilar but not rooted branch-
ing bisimilar; rooted branching bisimilar but not bisimilar; not branching bisim-
ilar.

5.2.1

〈X |X=aY+τY, Y=bX+τX〉 τ→ 〈Y |X=aY+τY, Y=bX+τX〉
τ→ 〈X |X=aY+τY, Y=bX+τX〉.

For each c ∈ A, a solution for {X=aY+τY, Y=bX+τX} is to substitute (a +
τ)〈Z |Z=aZ+bZ+cZ〉 for X and (b+ τ)〈Z |Z=aZ+bZ+cZ〉 for Y . For different
atomic actions c, the solutions above are not rooted branching bisimilar.

5.2.2

√ ↓ v
v→ √

x ↓
x+ y ↓

x
v→ x′

x+ y
v→ x′

y ↓
x+ y ↓

y
v→ y′

x+ y
v→ y′

x ↓ y ↓
x·y ↓

x ↓ y
v→ y′

x·y v→ y′
x

v→ x′

x·y v→ x′·y

x ↓ y ↓
x‖y ↓

x
v→ x′

x‖y v→ x′‖y
y

v→ y′

x‖y v→ x‖y′
x

v→ x′ y
w→ y′

x‖y γ(v,w)→ x′‖y′

x
v→ x′

x y
v→ x′‖y

x ↓ y ↓
x|y ↓

x
v→ x′ y

w→ y′

x|y γ(v,w)→ x′‖y′

x ↓
∂H(x) ↓

x
v→ x′

∂H(x)
v→ ∂H(x′)

v 6∈ H

ti(〈X1|E〉, . . . , 〈Xn|E〉) ↓
〈Xi|E〉 ↓

ti(〈X1|E〉, . . . , 〈Xn|E〉) v→ y

〈Xi|E〉 v→ y
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5.3.2 〈X |X=aX〉 and 〈Y |Y=bY 〉.
5.3.3

- a(τb+ b)
A3
= a(τ(b+ b) + b)

B2
= a(b+ b)

A3
= ab.

- a(τ(b+ c) + b)
B2
= a(b+ c)

A1
= a(c+ b)

B2
= a(τ(c+ b) + c)

A1
= a(τ(b+ c) + c).

- Since each process term in ACPτ can be reduced to a normal form in BPA
extended with δ and τ , it may be assumed that s is a normal form

P
i aisi+

P
j bj ,

where the si are normal forms. The desired equation can be proved by structural
induction with respect to the size of the normal form s. By induction we have
ai(si‖(τt)) = ai(si‖t).

a(s‖(τt)) = a((
P
i aisi +

P
j bj)‖(τt))

= a(τ(t‖s) +
P
i ai(si‖(τt)) +

P
j bjτt)

= a(τ(t‖s) +
P
i ai(si‖t) +

P
j bjt)

= a(τ(s t+ t s) + s t)
= a(s t+ t s)
= a(s‖t).

-

〈X |X=aY, Y=τX〉 RDP
= a〈Y |X=aY, Y=τX〉

RDP
= aτ〈X |X=aY, Y=τX〉
B1
= a〈X |X=aY, Y=τX〉.

So by RSP, 〈X |X=aY, Y=τX〉 = 〈Z |Z=aZ〉.
-

〈Z |Z=(a+b)Z〉 RDP
= (a+ b)(a+ b)〈Z |Z=(a+b)Z〉

B2,A4
= (a+ b)(τ(a+ b) + b)〈Z |Z=(a+b)Z〉

RDP,A4
= (a+ b)(τ + b)〈Z |Z=(a+b)Z〉.

Hence, substituting 〈Z |Z=(a+b)Z〉 for X and (τ + b)〈Z |Z=(a+b)Z〉 for Y is a
solution for {X=(a+b)Y, Y=(τ+b)X}. So by RSP,

〈Z |Z=(a+b)Z〉 = 〈X |X=(a+b)Y, Y=(τ+b)X〉.

5.3.4 τ ↔rb ττ , but π1(τ) = τ and π1(ττ) = τδ are not rooted branching bisimilar.
πn+1 occurs at the right-hand side of the conclusion of the transition rule for
πn+2. Furthermore, in the transition rule for πn+1, the argument x of the source
πn+1(x) is the left-hand side of the premise. Since there is no patience rule for
the argument of πn+1, this combination violates the RBB cool format.

5.3.5 Let a range over A (so a 6= τ).

x
a→ √

πn+1(x)
a→ √

x
a→ x′

πn+1(x)
a→ πn(x′)

x
τ→ √

πn(x)
τ→ √

x
τ→ x′

πn(x)
τ→ πn(x′)

PR1 πn(x+ y) = πn(x) + πn(y)
PR2 πn+1(a·x) = a·πn(x)
PR3 π0(a·x) = δ
PR4 πn(δ) = δ
PR5 πn(τ) = τ
PR6 πn(τ ·x) = τ ·πn(x)
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5.4.1 a
a→ √ implies aa

a→ a, and b
b→ √ implies bb

b→ b;

γ(a, b) ≡ c, so (aa)‖(bb) c→ a‖b;
c 6∈ {a, b}, so ∂{a,b}((aa)‖(bb)) c→ ∂{a,b}(a‖b);
c ∈ {c}, so τ{c}(∂{a,b}((aa)‖(bb))) τ→ τ{c}(∂{a,b}(a‖b)).

5.4.2 The process graph of τ{a}(〈X |X=aX〉) consists of the transition

τ{a}(〈X |X=aX〉) τ→ τ{a}(〈X |X=aX〉).
Hence, τ{a}(〈X |X=aX〉)B δ is a branching bisimulation relation.

5.4.4 τ{a}(∂{a}(a))↔rb δ while ∂{a}(τ{a}(a))↔rb τ .

5.4.5 No. A counter-example is t1 ≡ ac and t2 ≡ τc.
5.4.6

τ{b}(〈X |X=aY, Y=bX〉) RDP
= τ{b}(ab〈Y |X=aY, Y=bX〉)

TI1,2,5
= aττ{b}(〈X |X=aY, Y=bX〉)
B1
= aτ{b}(〈X |X=aY, Y=bX〉).

So by RSP, τ{b}(〈X |X=aY, Y=bX〉) = 〈Z |Z=aZ〉.
5.6.1
- τ{a}(〈X |X=aX〉) τ→ τ{a}(〈X |X=aX〉), while τδ

τ→ δ. So it suffices to prove
that τ{a}(〈X |X=aX〉) ↔b δ. This is shown by the following branching bisimu-
lation relation B: τ{a}(〈X |X=aX〉)B δ.

- τ{a}(〈X |X=aX+b〉) τ→ τ{a}(〈X |X=aX+b〉) and τ{a}(〈X |X=aX+b〉) b→ √,

while b+τb
τ→ b and b+τb

b→ √. So it suffices to prove that τ{a}(〈X |X=aX+b〉)
↔b b. This is shown by the following branching bisimulation relation B:
τ{a}(〈X |X=aX+b〉)B b and

√B√.

- ττ{a}(〈X |X=aY+b, Y=aX+c〉) τ→ τ{a}(〈X |X=aX+b, Y=aX+c〉), while τ(b+

c)
τ→ b+ c. So it suffices to prove that τ{a}(〈X |X=aX+b, Y=aX+c〉)↔b b+ c.

This is shown by the following branching bisimulation relation B:
τ{a}(〈X |X=aX+b, Y=aX+c〉)B b + c, τ{a}(〈Y |X=aX+b, Y=aX+c〉)B b + c,
and
√B√.

5.6.3
- {X} is a cluster for {a} in E1

∆
= {X=aX + b}, with exit b, so

τ{a}(〈X|E1〉) RDP,TI1-5
= ττ{a}(〈X|E1〉) + b

CFAR
= ττ{a}(b) + b.

{Y, Z} is a cluster for {a} in E2
∆
= {Y=aZ+b, Z=aY }, with exit b, so

τ{a}(〈Y |E2〉) RDP,TI1-5
= ττ{a}(〈Z|E2〉) + b

CFAR
= ττ{a}(b) + b.

Hence, τ{a}(〈X|E1〉) = ττ{a}(b) + b = τ{a}(〈Y |E2〉).
- {X,Y } is a cluster for {a} in E1

∆
= {X=aY, Y=aX+bX}, with exit bX, so

τ{a}(〈X|E1〉) RDP,TI2,5
= ττ{a}(〈Y |E1〉) CFAR

= ττ{a}(b〈X|E1〉).
Moreover,

τ{a}(b〈X|E1〉) TI1,5
= bτ{a}(〈X|E1〉).

So substituting τ{a}(〈X|E1〉) for V and τ{a}(b〈X|E1〉) for W is a solution for

E2
∆
= {V=τW,W=bV }. Hence, by RSP, τ{a}(〈X|E1〉) = 〈V |E2〉.



Solutions to Selected Exercises 149

- {X,Y } is a cluster for {a} in E
∆
= {X=aY+b, Y=aX+c}, with exits b and c, so

τ{a}(〈X|E〉) RDP,TI1-5
= ττ{a}(〈Y |E〉) + b

CFAR
= τ(b+ c) + b.

- {X,Y } is a cluster for {a} in E
∆
= {X=aY+bY, Y=aX+cX}, with exits bY and

cX, so

ττ{a}(〈X|E〉) CFAR
= ττ{a}(b〈Y |E〉+ c〈X|E〉)

TI1,4,5
= τ(bτ{a}(〈Y |E〉) + cτ{a}(〈X|E〉)).

Applications of CFAR and TI1,5 give

bτ{a}(〈Y |E〉) = b(bτ{a}(〈Y |E〉) + cτ{a}(〈X|E〉))
cτ{a}(〈X|E〉) = c(bτ{a}(〈Y |E〉) + cτ{a}(〈X|E〉)).

So substituting bτ{a}(〈Y |E〉)+cτ{a}(〈X|E〉) for Z is a solution for {Z=bZ+cZ}.
Then RSP yields bτ{a}(〈Y |E〉) + cτ{a}(〈X|E〉) = 〈Z |Z=bZ+cZ〉. Hence,

ττ{a}(〈X|E〉) = τ〈Z |Z=bZ+cZ〉.

6.1.2 R0‖S0
rA(d)→ R0‖Td0 cB(⊥)→ Q1‖Ud0 cD(⊥)→ R0‖S1

rA(d′)→ R0‖Td′1.

So τI(∂H(R0‖S0))
rA(d)→ τ→ τ→rA(d′)→ τI(∂H(R0‖Td′1)).

7.1.1

ρf (〈X |X=aX+bX〉)
RDP
= ρf (a〈X |X=aX+bX〉+ b〈X |X=aX+bX〉)

RN1,3,4
= cρf (〈X |X=aX+bX〉) + cρf (〈X |X=aX+bX〉)
A3
= cρf (〈X |X=aX+bX〉).

So by RSP, ρf (〈X |X=aX+bX〉) = 〈Y |Y=cY 〉.
7.1.2 Sketch: First prove that ρg◦f (t) = ρg(ρf (t)) holds for process terms s and t

in BPA extended with δ and τ , by induction with respect to the size of t. Next,
observe that each process term in ACPτ with renaming is provably equal to a
process term in BPA extended with δ and τ .

7.2.2

action(0, push)
∆
= on effect(0, push)

∆
= 1

action(1, push)
∆
= off effect(1, push)

∆
= 0

(The definitions of action and effect for the on and off are not relevant.)

λ0(〈X |X=push·X〉) RDP
= λ0(push·〈X |X=push·X〉)

SO4
= on·λ1(〈X |X=push·X〉)

RDP
= on·λ1(push·〈X |X=push·X〉)

SO4
= on·off ·λ0(〈X |X=push·X〉).

7.2.3 Let state(sk, c)
∆
= sk+1 for k ∈ N. Moreover, let

action(s0, c) action(s1, c) action(s2, c) . . .

be a non-repetitive sequence of a’s and b’s. Then λs0(〈X |X=cX〉) has a non-
regular process graph.
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7.2.4 t = switch·t+
P
d∈∆ read(d)·t can be derived from EACP,RDP, and commu-

tativity of the merge. So

λ0(t)
SO1-4

= on·λ1(t) +
P
d∈∆ lost ·λ0(t)

A3
= lost ·λ0(t) + on·λ1(t)

λ1(t)
SO1-4

= off ·λ0(t) +
P
d∈∆ read(d)·λ1(t).

7.3.1 The weight of a transition t
a→ t′ or t

a→ √ is the number of occurrences of
priority and unless operators in t.

7.3.2 Θ occurs at the right-hand side of the conclusion of the second transition
rule for the priority operator. Furthermore, in the second transition rule for the
priority operator, the argument x of the source Θ(x) is the left-hand side of the
negative premises. This combination violates the RBB cool format.

7.3.3 Θ(a(b + c))
TH4
= Θ(a)Θ(b + c)

TH1
= aΘ(b + c)

TH3
= a(Θ(b) / c + Θ(c) / b)

TH1
=

a(b / c+ c / b)
P1,2
= a(δ + c)

A6
= ac.

Θ(a(τ(b+ c) + b))
TH4
= Θ(a)Θ(τ(b+ c) + b)

TH1,3
= a(Θ(τ(b+ c)) / b+Θ(b) / (τ(b+

c)))
TH1,4

= a((Θ(τ)Θ(b + c)) / b + b / (τ(b + c)))
TH1,3,P8

= a((τ(Θ(b) / c + Θ(c) /

b)) / b + b / τ)
TH1,P2

= a((τ(b / c + c / b)) / b + δ)
A6,P1,2

= a((τ(δ + c)) / b)
A6,P6

=

a((τ / b)c)
P1
= a(τc)

A4,B1
= ac.

7.3.4

∂{a,b}(〈X |X=aX〉‖〈Y |Y=bY 〉)
= ∂{a,b}(a〈X |X=aX〉‖〈Y |Y=bY 〉+ b〈Y |Y=bY 〉‖〈X |X=aX〉

+ c〈X |X=aX〉‖〈Y |Y=bY 〉)
= c∂{a,b}(〈X |X=aX〉‖〈Y |Y=bY 〉)

θ(〈X |X=aX〉‖〈Y |Y=bY 〉)
= θ(a〈X |X=aX〉‖〈Y |Y=bY 〉+ b〈Y |Y=bY 〉‖〈X |X=aX〉

+ c〈X |X=aX〉‖〈Y |Y=bY 〉)
= cθ(〈X |X=aX〉‖〈Y |Y=bY 〉).

So by RSP,

∂{a,b}(〈X |X=aX〉‖〈Y |Y=bY 〉) = 〈Z |Z=cZ〉
= θ(〈X |X=aX〉‖〈Y |Y=bY 〉).

7.3.5 Let the guarded linear recursive specification E be defined by

Xi = ai1Xi1 + · · ·+ aikiXiki + bi1 + · · ·+ bi`i

for i ∈ {1, . . . , n}. Let Ki and Lj consist of the indices α ∈ {1, . . . , ki} and β ∈
{1, . . . , `i} for which aiα and biβ are maximal in {ai1, . . . , aiki , bi1, . . . , bi`i}, with
respect to the partial order on atomic actions. The linear recursive specification
F is defined to consist of

Yi =
X

α∈Ki

aiαYiα +
X

β∈Li

biβ

for i ∈ {1, . . . , n}. Since E is guarded, it follows that F is also guarded.

Θ(〈Xi|E〉)
RDP
= Θ(ai1〈Xi1|E〉+ · · ·+ aiki〈Xiki |E〉+ bi1 + · · ·+ bi`i)

TH1-4,P1-8
=

P
α∈Ki aiαΘ(〈Xiα|E〉) +

P
β∈Li biβ .



Solutions to Selected Exercises 151

Hence, replacing Yi by Θ(〈Xi|E〉) for i ∈ {1, . . . , n} is a solution for F . So by
RSP, Θ(〈X1|E〉) = 〈Y1|F 〉.

7.3.6 The following axioms originate from [35]:

(1) Θ(v) = v
(2) Θ(δ) = δ
(3) Θ(v·x+ v·y + z) = Θ(v·x+ z) +Θ(v·y + z)
(4) Θ(v·x+ v + z) = Θ(v·x+ z) +Θ(v + z)
(5) Θ(v·x+ w·y + z) = Θ(w·y + z)
(6) Θ(v·x+ w + z) = Θ(w + z)
(7) Θ(v + w·y + z) = Θ(w·y + z)
(8) Θ(v + w + z) = Θ(w + z)
(9) Θ(

Pm
i=1 vi·xi +

Pn
j=1 wj) =

Pm
i=1 vi·Θ(xi) +

Pn
j=1 wj

In axioms (5)-(8), v < w. In axiom (9), v1, . . . , vm, w1, . . . , wn are distinct atomic
actions and pairwise incomparable.

7.3.7 It suffices to prove that each process term t in ACPτ with guarded linear
recursion and the alt operator is provably equal to a process term 〈X|E〉 with E
a guarded linear recursive specification. Namely, then the desired completeness
result follows from the fact that if 〈X1|E1〉 ↔rb 〈Y1|E2〉 for guarded linear re-
cursive specifications E1 and E2, then 〈X1|E1〉 = 〈Y1|E2〉 can be derived from
EACP + B1, 2 + RDP,RSP; see the proof of Theorem 5.3.2.
Apply structural induction with respect to the size of t. In comparison to the
completeness proof of Theorem 5.6.2, the only new case (where the axioms ALT1-
4 for alt from the solution to Exercise 3.4.13 are needed) is when t ≡ alt(s1, s2).
By induction it may be assumed that s1 = 〈X1|E1〉 and s2 = 〈Y1|E2〉 with E1

and E2 guarded linear recursive specifications, so t = alt(〈X1|E1〉, 〈Y1|E2〉). Let
E1 consist of

Xi = ai1Xi1 + · · ·+ aikiXiki + bi1 + · · ·+ bi`i

for i ∈ {1, . . . ,M}, and E2 of

Yj = cj1Yj1 + · · ·+ cjmjYjmj + dj1 + · · ·+ djnj

for j ∈ {1, . . . , N}, where the recursion variables Xi and Yj are all distinct. The
recursive specification F is defined to consist of E1 and E2 together with

V ji = ai1W
i1
j + · · ·+ aikiW

iki
j + bi1Yj + · · ·+ bi`iYj

W i
j = cj1V

j1
i + · · ·+ cjmjV

jmj
i + dj1Xi + · · ·+ djnjXi

for i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Since E1 and E2 are guarded, it follows
that F is also guarded.

alt(〈Xi|E1〉, 〈Yj |E2〉)
RDP
= alt(ai1〈Xi1|E1〉+ · · ·+ aiki〈Xiki |E1〉+ bi1 + · · ·+ bi`i , 〈Yj |E2〉)

ALT1-4
= ai1alt(〈Yj |E2〉, 〈Xi1|E1〉) + · · ·+ aikialt(〈Yj |E2〉, 〈Xiki |E1〉)

+ bi1〈Yj |E2〉+ · · ·+ bi`i〈Yj |E2〉

alt(〈Yj |E2〉, 〈Xi|E1〉)
RDP
= alt(cj1〈Yj1|E2〉+ · · ·+ cjmj 〈Yjmj |E2〉+ dj1 + · · ·+ djnj , 〈Xi|E1〉)

ALT1-4
= cj1alt(〈Xi|E1〉, 〈Yj1|E2〉) + · · ·+ cjmjalt(〈Xi|E1〉, 〈Yjmj |E2〉)

+ dj1〈Xi|E1〉+ · · ·+ djnj 〈Xi|E1〉.
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Hence, replacing V ji by alt(〈Xi|E1〉, 〈Yj |E2〉), W i
j by alt(〈Yj |E2〉, 〈Xi|E1〉), Xi by

〈Xi|E1〉, and Yj by 〈Yj |E2〉 for i ∈ {1, . . . ,M} and j ∈ {1, . . . , N} is a solution
for F . So by RSP, alt(〈X1|E1〉, 〈Y1|E2〉) = 〈V 1

1 |F 〉.
A.1.1 Some typical closed terms: a, f(a, a), g(a), f(f(a, a), f(a, a)), f(f(a, a), g(a)),
f(g(a), f(a, a)), f(g(a), g(a)), g(f(a, a)), g(g(a)), f(g(f(a, a)), g(g(a))), . . .

A.1.2
- σ(x) ≡ a and σ(y) ≡ b;
- no;
- σ(x) ≡ b, σ(y) ≡ b, and σ(z) ≡ b;
- no.

A.2.1
- f(b, c, a) = b = f(b, c, b);
- f(a, c, b) = f(c, a, b) = f(b, c, a) = b;
- f(c, c, f(c, c, b)) = f(c, c, f(b, c, c)) = f(c, c, b) = f(b, c, c) = b.

A.3.1 sound, not complete; neither sound nor complete; sound and complete; com-
plete, not sound.

A.3.2 S(S(S(0))) + S(0) = S(S(S(S(0))) + 0) = S(S(S(S(0)))).
S(S(0))·S(S(0)) = (S(S(0))·S(0))+S(S(0)) = (S(S(0))·0+S(S(0)))+S(S(0)) =
(0 + S(S(0))) + S(S(0)) = S(0 + S(0)) + S(S(0)) = S(S(0 + 0)) + S(S(0)) =
S(S(0)) + S(S(0)) = S(S(S(0)) + S(0)) = S(S(S(S(0)) + 0)) = S(S(S(S(0)))).

A.3.3
- {[[a]], [[b]]};
- {[[a]]};
- {[[fk(a)]] | k ∈ N};
- {[[a]], [[f(a)]]};
- ∅.
A.3.4 S([[0]])+S([[0]]) ≡ [[S(0)]]+[[S(0)]] ≡ [[S(0)+S(0)]] ≡ [[S(S(0)+0)]] ≡ [[S(S(0))]].

A.3.5 yes; no (e.g., x = y); yes; yes; no (e.g., x = y).

A.4.1 S(0) + S(0)
(2)→ S(S(0) + 0)

(1)→ S(S(0)). Now use Example A.4.1.

A.4.2 (Substitution)

weight(s+ 0)
∆
= weight(s) + weight(0)2 > weight(s);

weight(s + S(t))
∆
= weight(s) + weight(S(t))2 = weight(s) + (weight(t) + 1)2 >

weight(s) + weight(t)2 + 1 = weight(s+ t) + 1
∆
= weight(S(s+ t));

weight(s·0)
∆
= weight(s)2·weight(0)2 > weight(0);

weight(s·S(t))
∆
= weight(s)2·weight(S(t))2 = weight(s)2·(weight(t) + 1)2 >

weight(s)2·weight(t)2 + weight(s)2 ∆
= weight((s·t) + s).

(Context)
If weight(t) > weight(t′), then clearly weight(S(t)) > weight(S(t′)), weight(s +
t) > weight(s+ t′), weight(t+ s) > weight(t′+ s), weight(s·t) > weight(s·t′), and
weight(t·s) > weight(t′·s).

A.4.3 Apply structural induction with respect to the size of t. If t is of the form
u + u′ or u·u′, then by induction t is not a normal form, so s + t and s·t are
not normal forms. So it can be assumed that t ≡ Sk(0) for some k ∈ N. Since
s+ 0→ s and s+ S`+1(0)→ S(s+ S`(0)) for ` ∈ N, s+ t is not a normal form.
Moreover, since s·0 → 0 and s·S`+1(0) → (s·S`(0)) + s for ` ∈ N, s·t is not a
normal form.

A.4.4 0·0 (3)→ 0, while both 0·0 and 0 have weight 1.



Solutions to Selected Exercises 153

A.4.5 S(0) + S(S(0)) =AC S(S(0)) + S(0)
(2)→ S(S(S(0)) + 0)

(1)→ S(S(S(0))).

A.4.6 Add the rewrite rule g(h(a))→ h(a).

B.1.1 ∅; {fk(a)P | k ∈ N}; ∅; {aP, bQ}.
B.2.1 〈{bQ}, ∅〉;
〈∅, {aP}〉;
〈{aP}, ∅〉;
〈∅, {aP, bQ}〉, 〈{aP}, ∅〉, and 〈{bQ}, ∅〉;
〈∅, {aP, aQ, bP, bQ}〉 and 〈{aP, bQ}, ∅〉.

B.2.2
- C0 and C1 are ∅, while Cα is {bQ} for α ≥ 2; U0 is {aP, aQ, bP, bQ}, U1 is {bQ},

and Uα is ∅ for α ≥ 2.
The least three-valued stable model is 〈{bQ}, ∅〉.

- Cα is ∅ for α ≥ 0; U0 is {aP, aQ, bP, bQ} and Uα is {aP} for α ≥ 1.
The least three-valued stable model is 〈∅, {aP}〉.

- C0 is ∅ and Cα is {aP} for α ≥ 1; U0 is {aP, aQ, bP, bQ} and Uα is ∅ for α ≥ 1.
The least three-valued stable model is 〈{aP}, ∅〉.

- Cα is ∅ for α ≥ 0; U0 is {aP, aQ, bP, bQ} and Uα is {aP, bQ} for α ≥ 1.
The least three-valued stable model is 〈∅, {aP, bQ}〉.

- Cα is ∅ for α ≥ 0; Uα is {aP, aQ, bP, bQ} for α ≥ 0.
The least three-valued stable model is 〈∅, {aP, aQ, bP, bQ}〉.

B.2.3 yes; no; yes; no; no.

B.2.4 yes; no; no; no; no.

B.2.5 The third TSS in Exercise B.2.1.

B.2.6 For k ∈ N, define the weight of transitions fk(a)P to be k and the weight of
transitions fk(a)Q to be k + 1. This constitutes a stratification.
In the three-valued stable model for the TSS, the true transitions are f 2k+1(a)P
and f2k(a)Q for k ∈ N; there are no unknown transitions.

B.3.1 In all three processes, let s0 represent the root state:
- {s0};
- {sk a→ sk+1 | k ∈ N};
- {s0

a→ s0}.
B.3.2 s0 B s and s1 B s.
B.3.3 fk(a)↔ f `(a) if and only if k − ` is even, for k, ` ∈ N. Hence, s↔ t implies
f(s)↔ f(t).

B.3.4
- a↔ b but f(a) 6↔ f(b): f(a)P holds while f(b)P does not hold.

The transition rule is not panth because its source contains two function symbols.
- a ↔ a and a ↔ b, but g(a, a) 6↔ g(a, b): g(a, a)P holds while g(a, b)P does not

hold.
The transition rule is not panth because its source contains two occurrences of
the variable x.

- a↔ b but f(a) 6↔ f(b): f(a)P holds while f(b)P does not hold.
The second transition rule is not panth because the variable y occurs both in the
source and as the right-hand side of the premise.

- a↔ b but f(a) 6↔ f(b): f(a)P holds while f(b)P does not hold.
The second transition rule is not panth because the right-hand side a of the
premise is not a single variable.
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- a ↔ a and a ↔ b, but g(a, a) 6↔ g(a, b): g(a, a)P holds while g(a, b)P does not
hold.
The second transition rule is not panth because the variable y occurs as the
right-hand side of both premises.

B.4.1
- yes: s0 B s2;
- yes: s0 B s2 and s1 B s2;
- no;
- yes: s0 B s2, s0 B s3, and s1 B s4.

B.4.2 It suffices to show that the two processes with root states s1 and s6, re-
spectively, are branching bisimilar. This follows from the branching bisimulation
relation B defined by s1 B s6, s2 B s7, s3 B s6, and s4 B s7.

B.4.3 no; no; no; yes.

B.4.4
- f(a) 6↔rb f(b) follows from the fact that f(d)P holds while f(c)P does not hold.
f occurs at the right-hand side of the conclusion of the fifth rule. In the sixth
rule, the argument of the source f(x) occurs as the left-hand side of the premise.
Since there is no patience rule for the argument of f , this combination violates
the RBB cool format.

- f(a) 6↔rb f(b) follows from the fact that f(c)P holds while f(d)P does not hold.
f occurs at the right-hand side of the conclusion of the fifth rule. In the sixth
rule the argument of the source f(x) occurs as the left-hand side of the negative
premise. This combination violates the RBB cool format.

- f(a) 6↔rb f(b) follows from the fact that f(d)P holds while f(c)P and f(e)P do
not hold.
f occurs at the right-hand side of the conclusion of the ninth rule. In the tenth
rule the argument of the source f(x) occurs as the left-hand side of the two
premises. This combination violates the RBB cool format.

B.5.1 no (aP ); yes; no (aP ); yes; no (a
c→ b); yes.

B.5.2 ; yes; no; yes; no; .

B.5.3 no; yes; yes; yes; ; yes and no.

B.5.4 no; yes; no; yes; no; yes.

B.5.5 The variables x and y in the second transition rule are both source-dependent:

x occurs in the source, so it is source-dependent; hence, the premise x
c→ y ensures

that y is source-dependent.

The original TSS generates {fk(a)
c→ fk(a) | k ∈ N}.

The extended TSS generates {fk(a)
c→ fk(a) | k ∈ N}∪{fk(b)

c→ fk(b) | k ∈ N}.
B.6.1 〈a〉(〈b〉P ∧ 〈c〉P ).
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33. H. Bekič. Towards a mathematical theory of processes. Report TR 25.125,
IBM Vienna Laboratory, 1971. Also appeared in C.B. Jones, ed., Programming
Languages and their Definition: Selected Papers of H. Bekič, LNCS 177, pp.
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63. P. Brémond-Grégoire, I. Lee, and R. Gerber. ACSR: an algebra of communi-
cating shared resources with dense time and priorities. In [54], pp. 417–431.

64. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31(3):560–599, 1984.

65. G. Bruns. Distributed Systems Analysis with CCS. Prentice Hall, 1997.
66. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.
67. C.C. Chang and H.J. Keisler. Model Theory. Studies in Logic and the Founda-

tions of Mathematics 73. North-Holland, 1990.
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