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Preface

The complexity of integrated circuit (IC) chips has increased tremendously
over the past 10 years. In the 1980s, designing an IC chip with several million
transistors was simply unimaginable. Today, it is common to have several
million transistors on an IC chip. This increase in IC chip complexity is mainly
the result of integration of many functions into a single IC chip. With this fun-
damental change, the conventional method of schematic capture used in IC
design became an obstacle to design engineers. It became extremely difficult
for design engineers to “hand draw” the large amounts of schematics neces-
sary to achieve the required functionality. Furthermore, IC chips are pushed
onto the market at a very fast pace, creating a small time-to-market window.
Designers are under constant pressure to design more complex IC chips at a
faster rate.

Imagine design engineers needing to hand draw millions of transistors in
their schematic! The task was simply impossible. A more efficient and 
productive method was needed to allow designers to create schematics with
large numbers of logic gates within a reasonable timeframe. This lead to the
development of hardware description language (HDL).

This new method allows a designer to code the logic functionality of a
circuit in HDL. The code is then synthesized into logic gates using a synthesis
tool. A common synthesis tool used in the industry is Synopsys’s Design 
Compiler. (To learn how to use Synopsys’s Design Compiler and to write very
high-speed integrated hardware description language [VHDL] code, refer 
to VHDL Coding and Logic Synthesis with Synopsys, by Weng Fook Lee,
Academic Press.)

There are two types of HDL used in the industry: Verilog and VHDL. This
book only addresses Verilog.

This book is written specifically for students and engineers learning to 
write synthesizable Verilog code. Chapter 1 introduces the use of VHDL and
Verilog. Chapter 2 describes application-specific IC (ASIC) design flow. Flow
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charts and descriptions are given to help the reader better understand ASIC
design flow.

Chapter 3 discusses basic concepts of Verilog coding. This chapter shows
the reader how numbers, comments, and Verilog data types and strengths can
be used in Verilog coding. Use of Verilog gate-level primitives and user-defined
primitives are also discussed.

Chapter 4 describes the common practices and coding style used when
coding for synthesis. Naming convention, design partitioning, effects of timing
loops, clock generation, reset usage, and sensitivity list are covered in this
chapter. Verilog concepts of blocking and nonblocking statements are 
discussed in detail. Examples and waveforms are provided throughout to 
help the reader understand these concepts. Chapter 4 also gives examples of
common coding style for Verilog operators. The concepts of latch inference,
coding of memory array, and the state machine are also included. The state
machine design example consists of design specification, state diagrams to
show the functionality of the state machine, synthesizable Verilog code for 
the state machine, and test benches to verify the functionality of the state
machine.

Chapter 5 shows the reader how a design project for a programmable timer
is implemented. This chapter starts with a specification for a programmable
timer. It then proceeds to show the reader how a microarchitecture can be
derived from the specification. Flow charts are shown to help the reader under-
stand the functionality that is required. Verilog code and Verilog test benches
are included to show how the design example can be simulated and verified.
Waveforms of output results are discussed.

Chapter 6 shows the design of a programmable logic block for peripheral
interface (similar to the industry’s 8255 PPI [programmable peripheral inter-
face]). This chapter begins with the specification of the design. Microarchitec-
ture of the design is discussed and flow charts are shown to help the reader
understand the required functionality of the design. Synthesizable Verilog
code for the design is shown with test benches for verification of different func-
tionality of the design. Waveforms for output results are discussed.

This book gives many examples and is written with practicality in mind. It
has 91 examples to help the reader understand the concepts and coding style
that are being discussed. It begins with simple Verilog coding and progresses
to complex real-life design examples. Chapter 4 shows a state machine design
example of an intelligent traffic light system. Chapter 5 shows a design
example of a programmable timer, beginning with product specification,
microarchitecture definition, Verilog coding, and verification. This design
example also shows the reader how Verilog code can be written and verified
but cannot be synthesized into the required circuit.

To help the reader gain a better understanding of how these real-life design
examples are achieved, flow charts, waveforms, and detailed explanations of
simulation results are included.
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CHAPTER ONE

Introduction

Since the early 1980s, when schematic capture was introduced as an efficient
way to design very large-scale integration (VLSI) circuits, it has been the
design method of choice for designers in the world of VLSI design.

However, the use of this method reached its limits in the early 1990s, as
more and more logic functionality and features were integrated onto a single
chip. Today, most application-specific integrated circuit (ASIC) chips consist
of no fewer than one million transistors. Designing circuits this large using the
method of schematic capture is time consuming and is no longer efficient.
Therefore, a more efficient manner of design was required. This new method
had to increase the designers’ efficiency and allow ease of design, even when
dealing with large circuits.

From this requirement arose the wide acceptance of HDL (hardware
description language). HDL allows a designer to describe the functionality of
a required logic circuit in a language that is easy to understand. The descrip-
tion is then simulated using test benches. After the HDL description is veri-
fied for logic functionality, it is synthesized to logic gates by using synthesis
tools.

This method helps a designer to design a circuit in a shorter timeframe. The
savings in design time is achieved because the designer need not be concerned
with the intricate complexities that exist in a particular circuit, but instead is
focused on the functionality that is required. This new method of design has
been widely adopted today in the field of ASIC design. It allows designers to
design large numbers of logic gates to implement logic features and function-
ality that are required on an ASIC chip.
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The most widely used HDLs in the ASIC industry are Verilog and VHDL
(very high-speed integrated circuit hardware description language). Each have
advantages and disadvantages. The coding styles for these languages have
some similarities as well as differences.

2 INTRODUCTION



CHAPTER TWO

ASIC Design Flow

Application-specific integrated circuit (ASIC) design is based on a design 
flow that uses hardware description language (HDL). Most electronic design
automation (EDA) tools used for ASIC flow are compatible with both Verilog
and very high speed integrated circuit hardware description language (VHDL).

In this flow, the design and implementation of a logic circuit are coded in
either Verilog or VHDL. Simulation is performed to check its functionality.
This is followed by synthesis. Synthesis is a process of converting HDL to logic
gates. After synthesis, the next step is APR (auto-place-route). APR is ex-
plained in more detail in Section 2.6.

Figure 2.1 shows a diagram of an ASIC design flow, beginning with specifi-
cation of an ASIC design to register transfer level (RTL) coding and, finally,
to tapeout.

2.1 SPECIFICATION

Figure 2.2 indicates the beginning of the ASIC flow: the specification of a
design. This is Step 1 of an ASIC design flow. The design of an ASIC chip
begins here.

Specification is the most important portion of an ASIC design flow. In this
step, the features and functionalities of an ASIC chip are defined. Chip 
planning is also performed in this step.

During this process, architecture and microarchitecture are derived from
the required features and functionalities. This derivation is especially impor-
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4 ASIC DESIGN FLOW
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FIGURE 2.1. Diagram showing an ASIC design flow. Sections 2.1 to 2.9 explain each
section of the ASIC flow in detail.
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FIGURE 2.2. Diagram indicating Step 1 of an ASIC design flow: specification.



tant, as the architecture of a design plays an important role in determining the
performance capabilities and silicon area utilization.

Figure 2.3 shows the process involved in defining the architecture and
microarchitecture of a design. Specification contains a list of all features and
functionalities required in the design. These include power consumption,
voltage references, timing restrictions, and performance criteria. From this list,
the chip architecture can be drafted. This defined architecture must take into
consideration all required timing, voltage, and speed/performance of the
design. Architectural simulations need to be performed on the drafted archi-
tecture to ensure that it meets the required specification.

During architecture simulations, the architectural definition will have to be
changed if the simulation result shows it cannot meet any requirements in the
specification. When all the requirements are met, this architecture is said to
meet the required specifications. From here, a microarchitecture is drafted and
defined to allow execution of the architecture from a design standpoint.

The microarchitecture is the key point that enables the design phase.
A microarchitecture interfaces the design’s architecture and circuit. It also
allows transformation of an architectural concept into possible design 
implementation.

2.2 RTL CODING

Figure 2.4 shows Step 2 of the ASIC design flow. This is the beginning of the
design phase. The microarchitecture is transformed into a design by convert-
ing it into RTL code.

As shown in Section 2.1 (Step 1 of the ASIC design flow), architecture and
microarchitecture are derived from specification. In Step 2, the micro-
architecture, which is the implementation of the design, is coded in synthe-
sizable RTL.

RTL CODING 5
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FIGURE 2.3. Diagram showing the definition of architecture and microarchitecture.



There are several ways to obtain the RTL code. Some designers use graphi-
cal entry tools like Summit Design’s Visual HDL or Mentor Graphics HDL
Designer. These graphical entry tools allow designers to use bubble diagrams,
flow charts, or truth table to implement the microarchitecture, which subse-
quently generate the RTL code either in Verilog or VHDL. However, some
designers prefer writing the RTL code rather than using a graphical entry tool.
Both approaches end in the same result: synthesizable RTL code that
describes logic functionality of the specification.

2.2.1 Types of Verilog Code: RTL, Behavioral, and Structural

Section 2.2 discusses RTL coding. In Verilog language, there are three 
types of Verilog code. For most cases of synthesis, synthesizable RTL code is
used. Table 2.1 lists the differences and usage of each of the types of Verilog
code.

2.3 TEST BENCH AND SIMULATION

Figure 2.5 shows Step 3 in the ASIC design flow, which involves creation of
test benches. These are used to simulate the RTL code.

A test bench is basically a wraparound environment surrounding a design,
which enables the design to be simulated. It injects a specified set of stimulus

6 ASIC DESIGN FLOW

STEP 2

SpecificationRTL codingTest bench

Simulation

Pass
No

Synthesis
Standard cell 
technology
library

Yes

Timing 
constraints

Pre-layout
timing analysis 
pass?

APR
No Yes

Tapeout

Pre-layout
synthesis
tweaks

Back
annotation

Post-layout
timing analysis 
pass?

Yes

Post-layout
synthesis
tweaks
and synthesis

No

Logic
verification
pass?

Yes

No

FIGURE 2.4. Diagram indicating Step 2 of an ASIC design flow: RTL coding.



TEST BENCH AND SIMULATION 7

TABLE 2.1. The three types of Verilog code

RTL Behavioral Structural

RTL coding, or register Behavioral coding is Structural Verilog coding
transfer level, is most used to describe a “black has a data type structure
commonly used to describe box” design whereby the that defines the
the functionality of a output of the design is different components and
design for synthesis. It specified for a certain their interconnects
is also descriptive in input pattern. Behavioral present in a design. It
nature, similar to code mimics the represents a netlist of a
behavioral Verilog. functionality and design. Structural
However, it only uses a behavior of the “black Verilog is normally used
subset of Verilog syntax, box” design. It is when passing netlist
as not all Verilog syntax normally used for system- information of a design
is synthesizable. RTL level testing. between design tools. For
coding can be viewed as example, upon completion
more descriptive than of synthesis, the netlist
structural Verilog but of a design is passed to
less descriptive compared APR (refer to Section 2.6
with behavioral Verilog. for explanation of APR)

using structural Verilog.

module RTL (inputA, inputB,
inputC, inputD, outputA);

input inputA, inputB, inputC,
inputD;

output outputA;

reg outputA;

always @ (inputA or inputB
or inputC or inputD)
begin

if (inputA & inputB
& ~inputD)
outputA = inputC;

else if (inputA &
inputD & ~inputC)
outputA = inputB;

else
outputA = 0;

end

endmodule

module behavior (inputA,
inputB, inputC, inputD,
outputA);

input inputA, inputB,
inputC, inputD;

output outputA;

reg outputA;

always @ (inputA or inputB
or inputC or inputD)
begin

if (inputA & inputB &
~inputD)
outputA = #5 
inputC;

else if (inputA & 
inputD & ~inputC)
outputA = #3 
inputB;

else if ((inputA == 
1'bx) | (inputB == 
1'bx) | (inputC == 
1'bx) | (inputD == 
1'bz))
outputA = #7 1'bx;

else if ((inputA == 
1'bz) | (inputB == 
1'bZ))
outputA = #7 1'bZ;

else
outputA = #3 0;

end

endmodule

module structural (inputA,
inputB, inputC, inputD,
outputA);

input  inputA, inputB,
inputC, inputD;

output outputA;

wire n30;

AN3 U8 ( .A(inputA),
.B(n30), .C(inputB),
.Z(outputA) );

EO U9 ( .A(inputD),
.B(inputC), .Z(n30) );

endmodule



into the inputs of the design, check/view the output of the design to ensure
the design’s output patterns/waveforms match designer’s expectations.

RTL code and the test bench are simulated using HDL simulators. If the
RTL code is written in Verilog, a Verilog simulator is required. If the RTL code
is written in VHDL, a VHDL simulator is required. Cadence’s Verilog XL,
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Referring to the Verilog code shown, when simulated or synthesized, both the RTL
and structural Verilog will yield the same functionality. Behavioral Verilog, however,
is not synthesizable.
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Synopsys’s VCS, and Mentor Graphic’s Modelsim are among some of the
Verilog simulators used. Cadence’s NCSim and Mentor Graphic’s Modelsim
are capable of simulating both Verilog and VHDL. Synopsys’s Scirocco is an
example of a VHDL simulator. Apart from these simulators, there are many
other VHDL and Verilog simulators. Whichever simulator is used, the end
result is the verification of the RTL code of the design based on the test bench
that is written.

If the designer finds the output patterns/waveforms during simulation do
not match what he or she expects, the design needs to be debugged. A non-
matching design output can be caused by a faulty test bench or a bug in the
RTL code. The designer needs to identify and fix the error by fixing the test
bench (if the test bench is faulty) or making changes to the RTL code (if the
error is caused by a bug in the RTL code).

Upon completion of the change, the designer will rerun the simulation.
This is iterated in a loop until the designer is satisfied with the simulation
results. This means that the RTL code correctly describes the required logical
behavior of the design.

2.4 SYNTHESIS

Figure 2.6 shows Step 4 of the ASIC design flow, which is synthesis. In this
step, the RTL code is synthesized. This is a process whereby the RTL code is
converted into logic gates. The logic gates synthesized will have the same logic
functionality as described in the RTL code.
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In Step 4, a synthesis tool is required to convert the RTL code to logic gates.
More common tools used in the ASIC industry include Synopsys’s Design
Compiler and Cadence’s Ambit.

The synthesis process requires two other input files to make the conversion
from RTL to logic gates. The first input file that the synthesis tool must have
before making the conversion is the “technology library” file. It is a library file
that contains standard cells. During the synthesis process, the logic function-
ality of the RTL code is converted to logic gates using the available standard
cells in the technology library. The second input file, “constraints file,” helps to
determine the optimization of the logic being synthesized. This file normally
consists of information like timing and loading requirements and optimization
algorithms that the synthesis tool needs to optimize the logic, and even pos-
sibly design rule requirements that need to be considered during synthesis.

Step 4 is a very important step in the ASIC design flow. This step ensures
that synthesis tweaks are performed to obtain the most optimal results 
possible, should the design not meet the specified performance or area.

If, upon final optimization, the required performance or area utilization is
still not within acceptable boundaries, the designer must reconsider the
microarchitecture as well as architectural definitions of the design. The
designer must re-evaluate to ensure the specified architecture and microar-
chitecture can meet the required performance and area. If the requirements
cannot be met with the current architecture or microarchitecture, the designer
will have to consider changing the definition of the architecture or microar-
chitecture. This is undesirable, as changing the architecture or microarchitec-
ture can potentially bring the design phase back to the early stages of Step 1
of the ASIC design flow (specification). If by changing the architecture and
microarchitecture definition the design is still unable to provide the kind of
performance or area utilization required, the designer must resort to the 
possibility of changing the specification itself.

2.5 PRE-LAYOUT TIMING ANALYSIS

When synthesis is completed in Step 4, the synthesized database along with
the timing information from Step 4 is used to perform a static timing analysis
(Step 5). In Step 5, timing analysis is pre-layout, because the database is
without any layout information (Fig. 2.7).

A timing model is built and its timing analysis is performed on the design.
Normally, the timing analysis is performed across all corners with different
voltages and temperatures. This is to catch any possible timing violations in
the design when used across specified temperature and voltage range.

Any timing violation caught, for example, setup and hold time violations,
will have to be fixed by the designer. The most common way of fixing these
timing violations is to create synthesis tweaks to fix those paths that are failing
timing.
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A common fix for hold violation is to add delay cells into the path that is
failing hold time check. A common fix for setup violation is to reduce the
overall delay of the path that failed the setup timing check.

These synthesis tweaks are used to resynthesize the design. Another 
pre-layout timing analysis is performed.

Step 5 in the ASIC flow sometimes varies depending on the design project.
Some design projects will proceed to Step 6, although having timing failures
in pre-layout timing analysis. The reason for this is because it is pre-layout
timing analysis. The interconnect parasitics that are used for timing analysis
are estimations and may not be accurate.

A more common method used in Step 5 is to fix timing failures that are
above certain values. The designer can set a value of x nanoseconds allowed
timing violation.The path that fails more than x nanoseconds is fixed.The path
that fails less than x nanoseconds is not fixed. Again, this can be attributed to
the fact that the parasitics used in the timing analysis are not accurate, because
no back annotated information is used during this step (pre-layout timing
analysis).

2.6 APR

Once pre-layout timing analysis of the synthesized database is completed, the
synthesized database together with the timing information from synthesis is
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used for APR (Fig. 2.8). In this step, synthesized logic gates are placed and
routed. The process of this placement and routing has some degree of flexi-
bility whereby the designer can place the logic gates of each submodule
according to a predefined floor plan.

Most designs have critical paths that are tight in terms of timing. These
paths can be specified by the designer as high-priority paths. The APR tool
will route these high-priority paths first before routing other paths to allow
for the most optimal routing.

APR is also the step involved in clock tree synthesis. Most APR tools can
handle routing of clock tree with built-in special algorithms. This is an espe-
cially important portion of the APR flow because it is critical that the clock
tree be “routed” correctly with an acceptable clock skew. Most APR tools
allow a designer to specify a required clock skew and buffers up each branch
on the clock tree to the desired clock skew.

2.7 BACK ANNOTATION

Back annotation is the step in the ASIC design flow where the RC parasitics
in layout is extracted (Fig. 2.9). The path delay is calculated from these RC
parasitics. For deep submicron design, these parasitics can cause a significant
increase in path delay. Long routing lines can significantly increase the inter-
connect delay for a path.This could potentially cause paths that are previously
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(in pre-layout) not critical in timing to be timing critical. It could also cause
paths that are meeting the timing requirements to now become critical paths
that no longer meet the timing requirements.

Back annotation is an important step that bridges the differences between
synthesis and physical layout. During synthesis, design constraints are used 
by the synthesis tool to generate the logic that is required. However, these
design constraints are only an estimation of constraints that apply to each
module. The real physical constraints caused by the RC parasitics may or 
may not reflect the estimated constraints accurately. More likely than not,
the estimations are not accurate. As a result, these will cause differences
between synthesis and physical layout. Back annotation is the step that bridges
them.

2.8 POST-LAYOUT TIMING ANALYSIS

Post-layout timing analysis is an important step in ASIC design flow that
allows real timing violations such as hold and setup, to be caught (Fig. 2.10).
This step is similar to pre-layout timing analysis, but it includes physical layout
information.

In this step, the net interconnect delay information from back annotation
is fed into a timing analysis tool to perform post-layout timing analysis. Any
setup violations need to be fixed by optimizing the paths that fail the setup
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violations to reduce the path delay. Any hold violation is fixed by adding
buffers to the path to increase the path delay.

Post-layout synthesis tweaks are used to make these timing fixes during
resynthesis. This allows logic optimization of those failing paths.

When post-layout synthesis is completed,APR, back annotation, and timing
analysis are performed again. This will occur in a loop until all the timing 
violations are fixed. When there are no longer timing violations in the layout
database, the design is ready for logic verification.

Note: Post-layout timing analysis is the same as pre-layout timing analysis,
except that in post-layout timing analysis, accurate net delay information from
physical layout (net delay information for the design is obtained from the
extracted layout parasitics) is used. In pre-layout timing analysis, net delay infor-
mation is estimated.

2.9 LOGIC VERIFICATION

When post-layout timing analysis is completed, the next step is logic verifica-
tion (Fig. 2.11). This step acts as a final sanity check to ensure the design has
the correct functionality. In this step, the design is resimulated using the exist-
ing test benches used in Step 3 but with additional timing information obtained
from layout.
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Although the design has been verified in Step 3, the design may have fail-
ures in Step 9. The failures may be caused by timing glitches or race condi-
tions due to layout parastics. If there are failures, the designer has to fix these
failures by either moving back to Step 2 (RTL coding) or Step 8 (post-layout
synthesis tweaks).

When the design has finally passed logic verification, it proceeds to tapeout.
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CHAPTER THREE

Verilog Coding

3.1 INTRODUCTION TO BASIC VERILOG CONCEPTS

Verilog is a widely used hardware description language (HDL) for design of
digital circuits. It can also be used for modeling analog circuits. Whichever it
is used for, the basic concept of Verilog remains the same.

When a designer writes Verilog code, it is important to know some of the
basic symbols used in Verilog.

3.1.1 Verilog Syntax

Verilog is a HDL that allows a designer to describe a hardware design.As with
all languages, there is a required syntax when writing Verilog code.

All Verilog syntax begins with a module declaration. A module is essen-
tially a “box” or “unit” containing the design. The module declaration must
include the module’s interface ports:

module design_module_name (interface_port_list);

whereby design_module_name is the name of the module and inter-
face_port_list is a list of all the input, output, and inout ports to the
module. Each port is separated by a comma (,).

The type of interface port is declared. It can be input, output, or inout for
bidirectional ports:
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module DUT (A, B, C, D, E);
input A, B, C;
inout D;
output E;

If a port has more than one bit, the declaration must use symbol “[“ and
“]” to denote the bus width.

module DUT (A, B, C, D, E);
input [3:0] A, B;
input C;
inout [7:0] D;
output E;

3.1.2 Comments

When writing HDL code for a design, it is a good writing habit for the designer
to use comments. It is a good method of indicating to a reader what the code
is being written for. It also serves as a good form of documentation that can
easily be referred to in the future.

Verilog allows single- or multiple-line comments. The single-line comments
use the symbol //, whereas the multiple-line comments begin with the symbol
/* and end with the symbol */. For example,

// this is a single-line comment in Verilog

/* this is a multiple-line comment in Verilog. Notice
that it begins with a certain symbol and ends with 
a certain symbol */

3.1.3 Numbers

Verilog allows a wide range of numbers to be used while coding. A designer
may choose to use real numbers, integer numbers, base numbers, time domain
numbers, signed numbers, and unsigned numbers.

1. Real numbers can be declared in Verilog by using the keyword real. It
allows numbers to be declared in either a decimal or scientific format.
Real numbers can also be declared as negative value.

module real_example();

real a,b,c;

initial
begin
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a = 3.141593;
b = 3141e-3;
c = -1.11;
end

endmodule

2. Integer numbers are declared in Verilog by using the keyword integer. It
can also consist of number that are negative in value.

module example ();

integer i,j,k;

initial
begin

i = 150;
j = -150;
k = -32;

end

endmodule

3. Base numbers are basically integer numbers but declared using a certain
base value. They can be octal, hexadecimal, decimal, or binary. Base
numbers are declared in the following format:

<integer_name> = <bit_size>’<base_namber><value>;

Whereby:
• <integer_name> is the name of the integer.
• <bit_size> is the number of binary bits that are representing the

integer.
• <base_number> is the base number. It can be in o (octal), h (hexa-

decimal), d (decimal), or b (binary) format.
• <value> is the value of the integer.

module example ();

integer i,j,k,l;

initial
begin

i = 5'b10111; // this is a binary number
j = 5'o24; // this is an octal number
k = 8'ha9; // this is a hex number
l = 5'd24; // this is a decimal number

end

endmodule

18 VERILOG CODING
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Integer numbers



4. Time domain numbers. Time in Verilog simulation is declared with the
keyword time.The unit for time is declared using Verilog compiler direc-
tives of timescale. The declaration of timescale must be in the following
format:

timescale <reference_time>/<precision>;

whereby <reference_time> and <precision> must be in integer values of
either 1, 10, or 100. However, time units are allowed to be specified with
these integers to define time in fs (femtosecond), ps (picosecond), ns
(nanosecond), ms (microsecond), ms (millisecond), and s (second).

module example ();

`timescale 100 µs / 1 ns; // this is for 
// reference of 100 µs and 

// precision of 1 ns

time t;

initial
begin
t = $time; // $time is a Verilog system function

// that gets the current simulation time
end

endmodule

3.1.4 Verilog Data Type

Verilog allows two data types, reg and net. Reg (short for register) is a storage
element. It allows values to be stored in data type. These values are kept in
the data type until they are replaced by other values. Reg can only be used in
an always statement or initial statement.

The most common net type used in verilog is wire. It is commonly used to
represent net connection. It is analogous to a physical wire in hardware.There-
fore, the value that is on a wire is continuously updated.

During simulation, if no values are assigned to any identifiers declared
under reg type, the default value of the identifier is an unknown or X. Simi-
larly, if no values are assigned to any identifiers declared under wire type, the
default value of the identifier is a tri-state or Z.

Example 3.1 shows a simple method of using wire while Example 3.2 is
similar to Example 3.1, except that it is a 4-bit bus declaration.

Example 3.1 Verilog Code Using Wire Declaration

module example (inputA, inputB, inputC, outputA);
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input inputA, inputB, inputC;

output outputA;

wire temp;

assign temp = inputB | inputC;

assign outputA = inputA & temp;

endmodule

Example 3.2 Verilog Code Using Wire Declaration for a 4-bit Bus

module example (inputA, inputB, inputC, outputA);

input [3:0] inputA, inputB, inputC;
output [3:0] outputA;

wire [3:0] temp;

assign temp = inputB | inputC;

assign outputA = inputA & temp;

endmodule

Example 3.3 shows a common method of using reg whereas Example 3.4 is
similar to Example 3.3 except that it is an 8-bit bus declaration.

Example 3.3 Verilog Code Using Reg Declaration

module example (inputA, inputB, inputC, outputA);

input inputA, inputB, inputC;
output outputA;

reg outputA, temp;

always @ (inputA or inputB or inputC)
begin

if (inputA)
temp = 1'b0;
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else
begin

if (inputB & inputC)
temp = 1'b1;

else
temp = 1'b0;

end
end

// more source code 

always @ (temp or inputC or inputA)
begin

if (temp)
outputA = inputC;

else
outputA = inputA;

end

endmodule

Example 3.4 Verilog Code Using Reg Declaration for an 8-bit Bus

module example (inputA, inputB, inputC, outputA);

input [7:0] inputA, inputB, inputC;
output [7:0] outputA;

reg [7:0] outputA, temp;

always @ (inputA or inputB or inputC)
begin

if (inputA)
temp = 8'b11110000;

else
begin

if (inputB & inputC)
temp = 8'b10100101;

else
temp = 8'b01011010;

end
end

// more source code 
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always @ (temp or inputC or inputA)
begin

if (temp == 8'b10100101)
outputA = inputC;

else
outputA = inputA;

end

endmodule

Apart from wire and reg, there are 10 other net types that can be used in
Verilog.

1. supply1, as the name implies, is used on nets that are connected to a
VCC supply. It is declared in Verilog using the keyword supply1, supplyl
VCC;

2. supply0, as the name implies, is used on nets that are connected to
ground. It is declared in Verilog using the keyword supply0, supply0
VSS;

3. tri is a net type that is used to declare a net that has more than one
driver driving it. Example 3.5 shows a Verilog code that has a net temp
that is driven by more than one driver.

Example 3.5 Verilog Code Showing a Tri Declaration

module example (inputA, inputB, inputC, outputA);

input inputA, inputB, 
inputC; output outputA;

tri temp;

assign temp = inputA 
& ~inputB;

// Verilog source code

assign temp = inputA 
| ~inputB;

assign outputA = temp 
& inputC;

endmodule

22 VERILOG CODING

Net type tri is
synthesizable. However, it
is not advisable to use
net type tri when writing
synthesizable Verilog. If
a node is to be driven by
multiple drivers, that
node should be driven only
by tristate drivers. The
example shown here using
net type tri on node temp
with multiple assign
statements driving it is
not a good coding method
in synthesis.



4. trior is also used for a net that has more than one driver driving it.
However, it is different from tri as trior is a wired-OR type of net con-
nection. This means that if any of the drivers that drive the trior net
is at a logical 1, the trior net will be at logical 1 as well. trior is not 
synthesizable and cannot be used when coding for synthesis.

5. triand is also used for a net that has more than one driver driving 
it. However, it is different from tri, as triand is a wired-AND type of
net connection. This means that if any of the drivers that drives the
triand net is at a logical 0, the triand net will be at logical 0 as well.
triand is not synthesizable and cannot be used when coding for 
synthesis.

6. trireg is also used for a net that has more than one driver driving it.
However, it is different from tri, as trireg nets are capacitive nets. This
means that trireg nets have the ability to store a value. If the drivers
that drive the trireg nets are at Z state or high impedance state, the
trireg net will maintain its value on the net. trireg is not synthesizable
and cannot be used when coding for synthesis.

7. tri1 is also used for a net that has more than one driver driving it.
However, it is different from tri, as tri1 net is at a logical 1 state if the
drivers that drive the tri1 net is at Z state or high impedance. tri1 is not
synthesizable and cannot be used when coding for synthesis.

8. tri0 is also used for a net that has more than one driver driving 
it. However, it is different from tri, as tri0 net is at a logical 0 state 
if the drivers that drive the tri0 net is at Z state or high impedance.
tri0 is not synthesizable and cannot be used when coding for 
synthesis.

9. wand is used for nets with a wired-AND configuration, whereby if any
of the drivers driving the wand net is at logical 0, the wand net will be
at logical 0. wand net is synthesizable.

10. wor is used for nets with a wired-OR configuration, whereby if any of
the drivers driving the wor net is at logical 1, the wor net will be a logical
1. wor net is synthesizable.

Note: When coding for synthesis, the most commonly used type of declara-
tion for net is wire. Net types tri, wand, and wor are synthesizable but not advis-
able for use in synthesizable Verilog code. Net types trior, triand, trireg, tri1,
and tri0 are not synthesizable.

In Verilog, each net or reg can have one of four values:

1 – represents logical 1
0 – represents logical 0
X – represents don’t care state
Z – represents high impedance
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For nets with conditions of multiple drivers driving them, each driver having
the possibility of driving any one of four values stated, what value would the
net be at?

Assume net C is driven by two drivers,A and B. Both drivers can each drive
any one of the four values of 1, 0, X, or Z, thereby allowing a possible com-
bination of 16 conditions on the drivers. The final value on net C due to the
16 different driving conditions would depend on the net type that has been
declared on net C.

1. tri Referring to Table 3.1, if driver A is driving a value of logic 0 and
driver B is driving a value of logic 1, net C, which is declared as a tri net
type, will have a value of X. Note: Net type wire has the same value as the
net type tri for multiple drivers driving the net.

2. trior Referring to Table 3.2, if driver A or B is driving a value of logic
1, net C, which is declared as a trior net type, will have a value of 1.

3. triand Referring to Table 3.3, if driver A or B is driving a value of logic
0, net C, which is declared as a triand net type, will have a value of 0.

4. trireg Referring to Table 3.4, if drivers A and B are tristated, net C,
which is declared as a trireg net type, will hold its previous value.

5. tri1 Referring to Table 3.5, if drivers A and B are tristated, net C which
is declared as a tri1 net type, will have a value of 1.
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TABLE 3.1. Table indicating value on net C (net type
tri) for different net values on drivers A and B

tri A

1 0 Z X

1 1 X 1 X
0 X 0 0 X

B Z 1 0 Z X
X X X X X

TABLE 3.2. Table indicating value on net C (net type
trior) for different net values on drivers A and B

Trior A

1 0 Z X

1 1 1 1 1
0 1 0 0 X

B Z 1 0 Z X
X 1 X X X
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TABLE 3.3. Table indicating value on net C (net type
triand) for different net values on drivers A and B

Triand A

1 0 Z X

1 1 0 1 X
0 0 0 0 0

B Z 1 0 Z X
X X 0 X X

TABLE 3.4. Table indicating value on net C (net type
trireg) for different net values on drivers A and B

Trireg A

1 0 Z X

1 1 X 1 X
0 X 0 0 X

B Z 1 0 Previous value X
X X X X X

TABLE 3.5. Table indicating value on net C (net type
tri1) for different net values on drivers A and B

Tril A

1 0 Z X

1 1 X 1 X
0 X 0 0 X

B Z 1 0 1 X
X X X X X

6. tri0 Referring to Table 3.6, if drivers A and B are tristated, net C, which
is declared as a tri0 net type, will have a value of 0.

7. wand Referring to Table 3.7, if drivers A or B are driving a value of logic
0, net C, which is declared as a wand net type, will have a value of 0.

8. wor Referring to Table 3.8, if drivers A or B are driving a value of logic
1, net C, which is declared as a wor net type, will have a value of 1.

3.1.5 Signal Strength

Section 3.1.3 has discussed in detail on the different types of net declarations
as well as the usage of reg in Verilog. Each net type or reg can have the value



of 0, 1, X, or Z. The values of a net or reg, although limited to only these four
values, can have eight different strengths (Table 3.9). The level of strength of
a wire or reg is often used to resolve a situation when contention occurs.

Note: When coding for synthesis, strength levels are seldom used. This is
because strength levels are used to resolve contentions within a logic circuit.
However, when coding for synthesis, it is a good coding practice to ensure that
the Verilog code does not have contention. An example of a design that has 
contention is discussed in detail in Chapter 5.

Example 3.6 shows a simple Verilog code that assigns strength values to the
output of a design.
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TABLE 3.6. Table indicating value on net C (net type
tri0) for different net values on drivers A and B

Tri0 A

1 0 Z X

1 1 X 1 X
0 X 0 0 X

B Z 1 0 0 X
X X X X X

TABLE 3.7. Table indicating value on net C (net type
wand) for different net values on drivers A and B

Wand A

1 0 Z X

1 1 0 1 X
0 0 0 0 0

B Z 1 0 Z X
X X 0 X X

TABLE 3.8. Table indicating value on net C (net type
wor) for different net values on drivers A and B

Wor A

1 0 Z X

1 1 1 1 1
0 1 0 0 X

B Z 1 0 Z X
X 1 X X X



Example 3.6 Verilog Code Using Strength Assignment

module example (inputA, inputB, inputC, outputA,
outputB);

input inputA, inputB, inputC;
output outputA, outputB;

wire outputA, outputB;

and (strong1, weak0) and_gate_instance (outputA,
inputA, inputB);
or (weak1, weak0) or_gate_instance (outputB, inputB,
inputC);

endmodule

3.2 VERILOG GATE-LEVEL PRIMITIVES

Verilog allows coding to include gate-level primitives that can be instantiated
in Verilog code. These primitives are built-in as part of Verilog coding and do
not require any special setup.

Some of these primitives are synthesizable, whereas others are not. The fol-
lowing lists the available gate-level primitives that can be used in Verilog
coding:
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TABLE 3.9. Table showing different strength levels

Strength Type Level

Supply Strongest
Strong
Pull
Large
Weak
Medium
Small
High impedance Weakest

During synthesis, synthesis tools would
ignore the strength assignments. This
example would synthesize to an AND gate
and an OR gate.



1. pmos This primitive is used to represent a pmos transistor. It has two
inputs and one output and can be modeled as follows:

pmos pmos_instance (Output_signal, Input_signal,
Gate_signal);

whereby pmos_instance is the name of the instance of the instantiated
pmos transistor, Output_signal is the name of the net that is connected
to the output of the pmos transistor, Input_signal is the name of the
net that is connected to the input of the pmos transistor, and
Gate_signal is the name of the net that is connected to the gate of the
pmos transistor (Table 3.10).

2. nmos This primitive is used to represent an nmos transistor. It has two
inputs and one output and can be modeled as follows:

nmos nmos_instance (Output_signal, Input_signal,
Gate_signal);

whereby nmos_instance is the name of the instance of the instantiated
nmos transistor, Output_signal is the name of the net that is connected
to the output of the nmos transistor, Input_signal is the name of the
net that is connected to the input of the nmos transistor, and
Gate_signal is the name of the net that is connected to the gate of the
nmos transistor (Table 3.11).

3. cmos This primitive is used to represent a cmos passgate. It has three
inputs and one output and can be modeled as follows:

cmos cmos_instance (Output_signal, Input_signal,
NGate_signal, PGate_signal);
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TABLE 3.10. Truth table for pmos transistor primitive

Input_signal Gate_signal Output_signal

0 0 0
0 1 Z
1 0 1
1 1 Z

TABLE 3.11. Truth table for nmos transistor primitive

Input_signal Gate_signal Output_signal

0 0 Z
0 1 0
1 0 Z
1 1 1



whereby cmos_instance is the name of the instance of the instantiated
cmos passgate, Output_signal is the name of the net that is connected
to the output of the cmos passgate, Input_signal is the name of the net
that is connected to the input of the cmos passgate, NGate_signal is the
name of the net that is connected to the N side control gate of the cmos
passgate, and PGate_signal is the name of the net that is connected to
the P side control gate of the cmos passgate (Table 3.12).

4. rpmos This primitive behaves the same as pmos except that rpmos is
more resistive in nature compared with pmos. This would result in the
output of this primitive having a reduction in strength compared with
the output of the pmos primitive.

5. rnmos This primitive behaves the same as the primitive nmos except
that rnmos is more resistive in nature compared with nmos. This would
result in the output of the primitive having a reduction in strength com-
pared with the output of the nmos primitive.

6. rcmos This primitive behaves the same as the primitive cmos except
that rcmos is more resistive in nature compared with cmos. This would
result in the output of the primitive having a reduction in strength com-
pared with the output of the cmos primitive.

7. pullup This primitive, as its name implies, is used to represent a pullup
node. It can be modeled as follows:

pullup pullup_instance (signal_name);

whereby pullup_instance is the name of the instance of the pullup and
signal_name is the name of the signal that is being “pulled up.”

8. pulldown This primitive, as its name implies, is used to represent a
pulldown node. It can be modeled as follows:

pulldown pulldown_instance (signal_name);

whereby pulldown_instance is the name of the instance of the pulldown
and signal_name is the name of the signal that is being “pulled down.”
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TABLE 3.12. Truth table for cmos passgate primitive

Input_signal NGate_signal PGate_signal Output_signal

0 0 0 0
0 0 1 Z
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 Z
1 1 0 1
1 1 1 1



9. tran This primitive is used to represent a bi-directional switch that
allows data to flow both ways between two nets. It can be modeled as
follows:

tran tran_instance (netA, netB);

whereby tran_instance is the name of the instance, and netA and
netB are the names of two nets on which data can flow between 
them.

10. rtran This primitive behaves the same as primitive tran except that
rtran is more resistive in nature compared with tran. This would result
in the output of the primitive having a reduction in strength compared
with the output of the tran primitive.

11. tranif0 This primitive behaves the same as primitive tran except that
tranif0 only allows data flow between two nets if a gate control signal
is at a logic 0. Otherwise, data flow is disabled. The tranif0 primitive
can be modeled as follows:

tranif0 tranif0_instance (netA, netB,
Gate_control);

whereby tranif0_instance is the name of the instance, netA and netB
are the names of the two nets that have the data flow between each of
them, and Gate_control is the name of the signal that will only allow
data flow when it is at logical 0.

12. tranif1 This primitive behaves the same as primitive tran except that
tranif1 only allows data flow between two nets if a gate control signal
is at logic 1. Otherwise, data flow is disabled. The tranif1 primitive can
be modeled as follows:

tranif1 tranif1_instance (netA, netB,
Gate_control);

whereby tranif1_instance is the name of the instance, netA and netB
are the names of the two nets that have data flow between each of them,
and Gate_control is the name of the signal that will only allow data
flow when it is at logical 1.

13. rtranif0 This primitive behaves the same as primitive tranif0 except
that rtranif0 is more resistive in nature compared with tranif0. This
would result in the output of the primitive having a reduction in
strength compared with the output of the tranif0 primitive.

14. rtranif1 This primitive behaves the same as primitive tranif1 except
that rtranif1 is more resistive in nature compared with tranif1. This
would result in the output of the primitive having a reduction in
strength compared with the output of the tranif1 primitive.

15. notif0 This primitive is used to represent a tri-state inverter. It has
two inputs and one output and can be modeled as follows:
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notif0 notif0_instance (Output_signal,
Input_signal, Control_signal);

whereby notif0_instance is the name of the instance of the instantiated
notif0 tri-state inverter, Output_signal is the name of the net that is
connected to the output of the notif0 tri-state inverter, Input_signal is
the name of the net that is connected to the input of the notif0 tri-state
inverter, and Control_signal is the name of the net that is connected
to the select input of the notif0 tri-state inverter (Table 3.13).

16. notif1 This primitive is used to represent a tri-state inverter. It has
two inputs and one output and can be modeled as follows:

notif1 notif1_instance (Output_signal,
Input_signal, Control_signal);

whereby notif1_instance is the name of the instance of the instantiated
notif1 tri-state inverter, Output_signal is the name of the net that is
connected to the output of the notif1 tri-state inverter, Input_signal is
the name of the net that is connected to the input of the notif1 tri-state
inverter, and Control_signal is the name of the net that is connected
to the select input of the notif1 tri-state inverter (Table 3.14).

17. bufif0 This primitive is used to represent a tri-state buffer. It has two
inputs and one output and can be modeled as follows:

bufif0 bufif0_instance (Output_signal, Input_signal,
Control_signal);
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TABLE 3.13. Truth table for notif0 tri-state inverter
primitive

Input_signal Control_signal Output_signal

0 0 1
0 1 Z
1 0 0
1 1 Z

TABLE 3.14. Truth table for notif1 tri-state inverter
primitive

Input_signal Control_signal Output_signal

0 0 Z
0 1 1
1 0 Z
1 1 0



whereby bufif0_instance is the name of the instance of the instantiated
bufif0 tri-state buffer, Output_signal is the name of the net that is con-
nected to the output of the bufif0 tri-state buffer, Input_signal is the
name of the net that is connected to the input of the bufif0 tri-state
buffer, and Control_signal is the name of the net that is connected to
the select input of the bufif0 tri-state buffer (Table 3.15).

18. bufif1 This primitive is used to represent a tri-state buffer. It has two
inputs and one output and can be modeled as follows:

bufif1 bufif1_instance (Output_signal, Input_signal,
Control_signal);

whereby bufif1_instance is the name of the instance of the instantiated
bufif1 tri-state buffer, Output_signal is the name of the net that is con-
nected to the output of the bufif1 tri-state buffer, Input_signal is the
name of the net that is connected to the input of the bufif1 tri-state
buffer, and Control_signal is the name of the net that is connected to
the select input of the bufif1 tri-state buffer (Table 3.16).

19. buf This primitive is used to represent a buffer. It has one input and
one or more outputs and can be modeled as follows:

buf buf_instance (Output_signal, Input_signal);

whereby buf_instance is the name of the instance of the instantiated
buf buffer, Output_signal is the name of the net that is connected to
the output of the buf buffer, and Input_signal is the name of the net
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TABLE 3.15. Truth table for bufif0 tri-state buffer
primitive

Input_signal Control_signal Output_signal

0 0 0
0 1 Z
1 0 1
1 1 Z

TABLE 3.16. Truth table for bufif1 tri-state buffer
primitive

Input_signal Control_signal Output_signal

0 0 Z
0 1 0
1 0 Z
1 1 1



that is connected to the input of the buf buffer. For cases where there
is more than one output, it can be modeled as follows:

buf buf_instance (Output_signal1, Output_signal2,
Output_signal3, Output_signal4, Input_signal);

whereby Output_signal1, Output_signal2, Output_signal3, and
Output_signal4 are all the outputs of the buffer.

20. not This primitive is used to represent an inverter. It has one input
and one or more outputs and can be modeled as follows:

not not_instance (Output_signal, Input_signal);

whereby not_instance is the name of the instance of the instantiated
not inverter, Output_signal is the name of the net that is connected to
the output of the not gate, and Input_signal is the name of the net that
is connected to the input of the not gate. For cases where there is more
than one output, it can be modeled as follows:

not not_instance (Output_signal1, Output_signal2,
Output_signal3, Output_signal4, Input_signal);

whereby Output_signal1, Output_signal2, Output_signal3, and
Output_signal4 are the output of the inverter.

21. and This primitive is used to represent an AND gate. It can have two
or more inputs and one output. It can be modeled as follows:

and and_instance (Output_signal, Input_signal1,
Input_signal2);

whereby and_instance is the name of the instance of the AND gate,
Output_signal is the name of the net connected to the output of the
AND gate, and Input_signal1 and Input_signal2 are the names of the
nets that are connected to the inputs of the AND gate.

22. nand This primitive is used to represent a NAND gate. It can have
two or more inputs and one output. It can be modeled as follows:

nand nand_instance (Output_signal, Input_signal1,
Input_signal2);

whereby nand_instance is the name of the instance of the NAND 
gate, Output_signal is the name of the net connected to the output 
of the NAND gate, and Input_signal1 and Input_signal2 are the 
names of the nets that are connected to the inputs of the NAND 
gate.

23. nor This primitive is used to represent a NOR gate. It can have two
or more inputs and one output. It can be modeled as follows:

nor nor_instance (Output_signal, Input_signal1,
Input_signal2);
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whereby nor_instance is the name of the instance of the NOR gate,
Output_signal is the name of the net connected to the output of the
NOR gate, and Input_signal1 and Input_signal2 are the names of the
nets that are connected to the inputs of the NOR gate.

24. or This primitive is used to represent an OR gate. It can have two or
more inputs and one output. It can be modeled as follows:

or or_instance (Output_signal, Input_signal1,
Input_signal2);

whereby or_instance is the name of the instance of the OR gate,
Output_signal is the name of the net connected to the output of the
OR gate, and Input_signal1 and Input_signal2 are the names of the
nets that are connected to the inputs of the OR gate.

25. xor This primitive is used to represent a XOR gate. It can have two
or more inputs and one output. It can be modeled as follows:

xor xor_instance (Output_signal, Input_signal1,
Input_signal2);

whereby xor_instance is the name of the instance of the XOR gate,
Output_signal is the name of the net connected to the output of the
XOR gate, and Input_signal1 and Input_signal2 are the names of the
nets that are connected to the inputs of the XOR gate.

26. xnor This primitive is used to represent an XNOR gate. It can have
two or more inputs and one output. It can be modeled as follows:

xnor xnor_instance (Output_signal, Input_signal1,
Input_signal2);

whereby xnor_instance is the name of the instance of the XNOR gate,
Output_signal is the name of the net connected to the output of the
XNOR gate, and Input_signal1 and Input_signal2 are the names of
the nets that are connected to the inputs of the XNOR gate.

Note: When coding for synthesis, the designer must be careful about which
primitives are being used. Not all the gate primitives are synthesizable. Gate
primitives that can be used in coding for synthesis are or, and, xor, nor, nand,
xnor, not, buf, bufif0, bufif1, notif0, and notif1.The other gate primitives—tran,
tranif0, tranif1, rtran, rtranif0, rtranif1, pullup, pulldown, pmos, nmos, cmos,
rpmos, rnmos, and rcmos—are not used in writing synthesizable Verilog code.

3.3 USER-DEFINED PRIMITIVES

Section 3.2 discussed the use of gate-level primitives that are built into Verilog
language. Apart from these primitives, a designer can also create their own
primitives, which are referred to as user-defined primitives (UDP).
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In general, a UDP is a module that is defined and described by the user.
This UDP module can be used in Verilog code by instantiating it. There are
two types of UDP that a designer may create, combinational UDP and sequen-
tial UDP.

3.3.1 Combinational UDP

Combinational UDP describes a module that is combinational in nature. This
means that the UDP module consists of combinational logic to create its
output.

Example 3.7 shows the syntax defining a combinational UDP.

Example 3.7 Example Showing Syntax Defining a UDP

primitive <primitive_UDP_name> (<output_port_list>,
<input_port_list>);
output <output_port_list>;
input <input_port_list>;
table
<Truth_table_format_description_of_combinational_UDP_
functionality>;
endtable
endprimitive

whereby:

a. <primitive_UDP_name> is the name of the UDP primitive being
defined.

b. <output_port_list> is the name of the output port for the UDP primi-
tive. Please note that a UDP primitive can only have one output port,
and it can only be one bit wide.

c. <input_port_list> are the names of all the input ports. Each input port
can only be one bit wide.

d. <Truth_table_format_description_of_combinational_UDP_function-
ality> is a truth table format description of the functionality of the 
primitive UDP.

To have an example for a UDP declaration,Table 3.17 is created to describe
the functionality of the UDP module.

Example 3.8 Verilog Example for Defining a UDP Primitive and
Instantiating the Primitive

primitive udp_gate (outputA, inputA, inputB, inputC);
output outputA;
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input inputA, inputB, inputC;

table
//  inputA  inputB  inputC  outputA

0       0      0   :   0;
0       0      1   :   0;
0       1      0   :   1;
0       1      1   :   1;
1       0      0   :   0;
1       0      1   :   0;
1       1      0   :   1;
1       1      1   :   1;

endtable
endprimitive

// to create a module that instantiates the UDP 
// primitive

module example (input1, input2, input3, output1);

input input1, input2, input3;
output output1;

wire output1;

udp_gate udp_gate_inst (output1, input1, input2,
input3);

endmodule
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Declaration of
functionality
of UDP.

Instantiation of UDP.

TABLE 3.17. Table showing functionality of UDP
module UDP_GATE

InputA InputB InputC OutputA

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1



3.3.2 Sequential UDP

Sequential UDP describes a module that is sequential in nature. This means
the UDP module consists of storage elements that can store a value.

The syntax for defining a sequential UDP is the same as that for combina-
tional UDP except that it uses reg declarations.

Table 3.18 shows a truth table for a latch on which a UDP is defined.

Example 3.9 Verilog Example for Defining a Sequential UDP Primitive
and Instantiating the Primitive

primitive udp_latch (Q, data, clock);
output Q;
input data, clock;

reg Q;

initial
Q = 0;

table
//  data   clock     Q(current)    Q(next)

0      0    :     ?      :    -;
0      1    :     ?      :    0;
1      0    :     ?      :    -;
1      1    :     ?      :    1;

endtable
endprimitive

// to create a module that instantiates the sequential
// UDP primitive

module example (qout, indata, inclock);
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TABLE 3.18. Table showing functionality of UDP
module UDP_LATCH

data clock Q

0 0 <previous_value>
0 1 0
1 0 <previous_value>
1 1 1

Initialize the latch
to logic “0.”

The ? represents  “don’t
care” condition while –
represents “no change.”



input indata, inclock;
output qout;

wire qout;

udp_latch udp_latch_inst (qout, indata, inclock);

endmodule

Table 3.18 and Example 3.9 are Verilog examples for a level-sensitive
sequential element (latch). Table 3.19 and Example 3.10 show a Verilog
example for a positive edge-sensitive sequential element (flop).

Example 3.10 Verilog Example for Defining a Positive Edge Sequential
UDP Primitive and Instantiating the Primitive

primitive udp_pos_flop (Q, data, clock);
output Q;
input data, clock;

reg Q;

initial
Q = 0;

table
//  data    clock     Q(current)    Q(next)

0      (01)  :      ?     :    0;
1      (01)  :      ?     :    1;

// no change in output values 
0      (0x)  :      ?     :    -;
1      (0x)  :      ?     :    -;

// no change for negedge
?      (?0)  :      ?     :    -;
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TABLE 3.19. Table showing functionality of UDP
module UDP_POS_FLOP

data clock Q

0 rising edge 0
1 rising edge 1
1 others <previous_value>
0 others <previous_value>

(01) symbolises a transition
from low to high, (0x)
symbolises a transition from 0
to x, (?0) represents a
transition from any value to a
0.



// no change for change in data
(??)     ?    :      ?     :    -;

endtable
endprimitive

// to create a module that instantiates the sequential
// UDP primitive

module example (qout, indata, inclock);

input indata, inclock;
output qout;

wire qout;

udp_pos_flop udp_pos_flop_inst (qout, indata, inclock);

endmodule

Note: It is not common practice to code UDP in synthesizable Verilog code.
Furthermore, most synthesis tools do not support UDP.
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TABLE 3.20. Concurrent and sequential statements

Concurrent Sequential

wire A, B; wire A;
assign A = (input1 | input2) & �input3; always @ (input1 or input2 or input3 or
assign B = (input5 & input6); inputA or input4 or input5 or input6)

begin
if (input1 & �input2) // Statement 1

A = input3;
else if (input1 & inputA) // Statement 2

A = input4 & input5;
else if (input1 & input3) // Statement 3

A = input6;
else // Statement 4

A = 0;
end

Assignment of A and B occurs Statement 1 is evaluated first,
concurrently. followed by 2, 3 and 4. Only upon

completion of statement 1, statement 2
is evaluated. Execution of the
evaluation occurs sequentially.



3.4 CONCURRENT AND SEQUENTIAL STATEMENTS

Concurrent and sequential statements are two types of Verilog statements
widely used in Verilog coding. Concurrent statements are statements that are
executed concurrently. Sequential statements are statements that are executed
one after the other (Table 3.20).
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CHAPTER FOUR

Coding Style: Best-Known
Method for Synthesis

Coding style plays a very important role for an ASIC design flow. “Bad” HDL
(either Verilog or VHDL) code does not allow efficient optimization during
synthesis. Logic that is generated from synthesis tools depends highly on the
code that is written. A badly formed code would generally create bad logic.
As the saying goes, “garbage in, garbage out.”

There are certain general guidelines to follow when it comes to coding style.
By following these guidelines, a constant, good coding style can be attained.
By having a good coding style, synthesis results are optimal.

4.1 NAMING CONVENTION

For a design project, a good naming convention is necessary. Naming con-
vention is normally the most overlooked guideline when coding in HDL.
Having a well-defined naming convention does not seem to sound important,
but not having one can cause a lot of problems in the later stages of design,
especially during the fullchip integration. It would be difficult for the designer
to connect all the signals between modules of a fullchip if the signal names do
not match.

By defining a naming convention, a set of rules is applied when the designer
names the ports of a module. If each module in fullchip is based on the same
set of naming rules, then it becomes much easier to connect these signals
together in the fullchip level.
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Figure 4.1 is a diagram showing the fullchip level consisting of two modules,
Module A and Module B. For this fullchip, let’s assume the following rules for
naming convention:

1. The first three characters of the signal name must be capitalized.
2. The first character must represent the name of the module on which the

signal is an output from.
3. The third character must represent the name of the module on which

the signal is an input to.
4. The second character must be the number 2.
5. The fourth character and beyond for a signal name is the signal name.

It must be in lowercase letters.
6. Signals that propagate to the output at the fullchip level must have the

first four characters “OUT_”. The signal’s name after the first four char-
acters is in lowercase letters.

7. Signals that propagate from the input of the fullchip to a module must
have the first three characters “IN_”. The signal’s name after the first
three characters is in lowercase letters.

8. Any signal that is active low must end with the letter “I”. The character
must be in uppercase.

Based on these naming rules, the names of the signals “IN_enable,”
“IN_data,” and “OUT_data” are input and output signals at the fullchip level.
The names of signals that are interconnects between Module A and Module
B are “A2Ben,” “A2Bdata,” and “B2AshkI.”

The naming rules used here are just an example. A real design project 
may use naming rules that are similar to those shown here or they may be 
different.

Example 4.1 shows the Verilog code for Module A, Module B, and fullchip
interconnect of both these modules.
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FIGURE 4.1. Diagram showing two submodules connected on a fullchip level.



Example 4.1 Verilog Example of Module A, Module B, and 
Fullchip Interconnect

module module_A (IN_enable, IN_data, B2AshkI, A2Ben,
A2Bdata);
input IN_enable, IN_data, B2AshkI;
output A2Ben, A2Bdata;
// your Verilog code for module_A
endmodule

module module_B (A2Ben, A2Bdata, B2AshkI, OUT_data);
input A2Ben, A2Bdata;
output B2AshkI, OUT_data;
// your Verilog code for module_B
endmodule

module fullchip (IN_enable, IN_data, OUT_data);
input IN_enable, IN_data;
output OUT_data;
wire A2Ben, A2Bdata, B2AshkI;
module_A module_A_instance (IN_enable, IN_data,
B2AshkI, A2Ben, A2Bdata);
module_B module_B_instance (A2Ben, A2Bdata, B2AshkI,
OUT_data);
endmodule

4.2 DESIGN PARTITIONING

It is good practice for the designer to partition a design into different modules.
Each module should be partitioned with its own set of functionality or fea-
tures. By having a good partitioning, the designer is able to break a complex
design into smaller modules, thus giving more manageability to those modules.
By following this method, the designer is able to localize the functionality of
each module and write the HDL code for each module individually.

However, the designer needs to be careful when partitioning a design. Each
module cannot be too small or too large. Partitioning modules that are too
small will not be able to yield good synthesis optimization. Modules that are
too large are difficult to be coded as well as synthesized to obtain optimal syn-
thesis results. An acceptable module size that is manageable and allows good
synthesis optimization, from a coding standpoint, would be around 5,000 to
15,000 gates.

Another point to keep in mind during design partitioning is the creation of
additional interblock signaling. By partitioning into many blocks, a situation
may occur whereby a need arises to create more signals for interfacing
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between these blocks. These additional signals may cause congestion in the
layout phase as too many routing tracks are required. Therefore, it is impor-
tant for the designer to fully understand the architecture and microarchitec-
ture of a design before attempting to partition a design. Good partitioning
brings advantages such as ease of manageability on each block. Bad parti-
tioning brings disadvantages such as congestion on routing and increasing the
die-size. Bad partitioning of a design also makes manageability of the design
blocks a lot harder.

4.3 CLOCK

Most ASIC designs consist of at least one clock. Some may have more than
one, some will only have one. Whether a design is a single clock design or
multi-clock design, the designer needs to treat these clocks as global clocks.
Global means that each clock is routed across all modules in the design, with
the clock signal originating from a clock module.

A clock module that generates the global clock (or clocks) is nonsynthe-
sizable. It is designed using conventional schematic capture.Analog blocks are
integrated with the other logic blocks at the fullchip level.

Note: Analog blocks cannot be synthesized. In ASIC design flow, analog
blocks are designed independently and integrated with logic blocks during
fullchip integration. The reader must take note that only logic blocks can be
coded into synthesizable HDL.

Referring to Figure 4.2, module A to module F are synthesizable logic
modules. Each module is coded in HDL, verified using HDL testbench, and
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FIGURE 4.2. Diagram showing a fullchip level of global clock interconnect.



synthesized. During fullchip integration, the analog clock module is connected
to the other logic modules.

When the designer codes logic modules A to F, he/she assumes the clock
input is a global clock input that is able to meet the required clock skew. The
global clock input is also assumed to have the clock period that is specified in
the design specification. With these assumptions in mind, the designer cannot
buffer the clock signal internally in the module. In other words, the clock signal
must be considered as golden.

Treating the clock signal as a golden signal is a good practice when it comes
to good coding style in HDL. By not buffering the clock signal, the designer
is making the assumption that the clock signal is able to meet all the required
specifications, which might not be the case. Clock skew is dependent on place-
ment of cells (that has clock connected to it) and routing of the clock signals.
Therefore, during coding and synthesis, clock should always be treated as
golden, meaning that no buffering of any kind can be done on a clock during
coding and synthesis. Any buffering on the clock signal to fix the clock skew
should only be performed during clock tree synthesis (clock tree synthesis can
be considered as part of APR in ASIC design methodology flow). Further-
more, tweaking of the clock signal to obtain the required clock period and
clock duty cycle affects only the analog clock module, not the logic blocks of
module A to F.

Figure 4.3 shows a diagram of an ideal design condition whereby the clock
signal is directly connected to the clock’s ports of the flip-flops used in the
design without any logic gates or buffering on the clock signal. The designer
should try to achieve this ideal condition in HDL coding whenever possible.
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The main advantage of having such a design is to allow the APR tool to
perform its clock tree synthesis and insert clock buffers into the clock tree if
needed. By doing so, the variable of clock skew can be ignored by the designer
during HDL coding phase.

4.3.1 Internally Generated Clock

An internally generated clock should be used as little as possible. Ideally, syn-
thesized designs should not have clocks that are internally generated.

Having synthesized designs that have flops or latches that are clocked inter-
nally complicates timing analysis. It is difficult to constrain the internal gen-
erated clock signal during synthesis.

Figure 4.4 is a diagram showing the output of a flip-flop being used to clock
another flip-flop. Such a design can complicate the timing constraint process.
Most synthesis and timing analysis tools have difficulties in identifying the type
of internally generated clock design in Figure 4.4. Example 4.2 shows the
Verilog code for the design in Figure 4.4.

Example 4.2 Verilog Code for the Design of Figure 4.4

module internal_clock (input1, input2, clock, output1);
input input1, input2, clock;
output output1;
reg internal,output1;

always @ (posedge clock)
begin

internal <= input1;
end

always @ (posedge internal)
begin

output1 <= input2;
end
endmodule
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4.3.2 Gated Clock

A design that has an enable signal to enable an internal clock, based 
on a global clock is called “gated clock.” The term refers to the fact 
that the global clock is gated with a signal to generate the internal 
clock.

Gated clock designs are normally used when a designer wishes to switch
off the clock signal under certain conditions. This could be for the purpose of
power-saving features. Figure 4.5 shows an example of a design that has a flip-
flop being clocked by a gated clock signal generated from an AND condition
of “enable” and “clock.”

Referring to the example in Figure 4.5, several ways can be used to 
code the design. The most common method is using boolean assignment 
and gate instantiation. Example 4.3 shows the Verilog code using boolean
assignment. Example 4.4 shows the Verilog code using the gate instantiation
method.

Example 4.3 Verilog Code for Gated Clock Design Using 
BOOLEAN Assignment

module gated_clock (input1, enable, clock, output1);
input input1, clock, enable;
output output1;
wire gated;
reg output1;

assign gated = clock & enable;
always @ (posedge gated)
begin

output1 <= input1;
end

endmodule
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Example 4.4 Verilog Code for Gated Clock Design Using 
Gate Instantiation

module gated_clock (input1, enable, clock, output1);
input input1, clock, enable;
output output1;
wire gated;
reg output1;

AND_gate AND_instance (.I1(clock), .I2(enable),
.O(gated));

always @ (posedge gated)
begin

output1 <= input1;
end

endmodule

Note: Example 4.4 assumes of a precompiled AND gate with inputs “I1” and
“I2” and output “O”. Another method to instantiate an AND gate is to use the
built-in Verilog primitive “and” (refer to Section 3.2): and AND_instance (O,
I1, I2).

Of the two methods, gate instantiation is the preferred method to handle
gated clock. This is advisable, as instantiating the gate for the gated clock
would allow the designer more control on the fanout of the signal gated. For
example, let’s assume that the signal gated is to drive the clock of 32 flip-flops
(Figure 4.6).

Referring to Figure 4.6, a fanout of 32 on signal gated is most likely to create
a loading that is too heavy on the AND gate.As a result, the skew on the signal
gated may be too large. Of course the designer can buffer up the signal gated
during synthesis. However, buffering the signal gated is not recommended
because it is a clock signal. Therefore, any buffering on the signal gated should
be done only in APR (auto-place-route).

Therefore, a better approach would be the gate instantiation method. This
method allows the designer to control the loading on the AND gate that drives
the signal gated. Using the same example of Figure 4.6, the designer can break
the signal gated into several signals.And each signal would drive only a limited
amount of flip-flops (refer to Fig. 4.7).

Referring to Figure 4.7, the signal clock and signal enable are used to create
eight separate signals gated, ranging from gated1 to gated8. Each gated signal
only drives four flip-flops. To achieve this, the designer instantiates eight sep-
arate AND gates to create eight different gated signals. This method reduces
the loading on each of the gated signal and allows the designer to achieve the
required clock skew on signal gated. Example 4.5 shows the Verilog code for
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the gate instantiation method that allows a controlled clock skew on the signal
gated (Fig. 4.7).

Example 4.5 Verilog Code for Gated Clock Design Using Gate
Instantiation to Drive 32 Flip-flops

module gated_clock (input1, enable, clock, output1);
input [31:0] input1;
input clock, enable;
output [31:0] output1;
wire gated1, gated2, gated3, gated4, gated5, gated6,
gated7, gated8;
reg [31:0] output1;

AND_gate AND_instance1 (.I1(clock), .I2(enable),
.O(gated1));
AND_gate AND_instance2 (.I1(clock), .I2(enable),
.O(gated2));
AND_gate AND_instance3 (.I1(clock), .I2(enable),
.O(gated3));
AND_gate AND_instance4 (.I1(clock), .I2(enable),
.O(gated4));
AND_gate AND_instance5 (.I1(clock), .I2(enable),
.O(gated5));
AND_gate AND_instance6 (.I1(clock), .I2(enable),
.O(gated6));
AND_gate AND_instance7 (.I1(clock), .I2(enable),
.O(gated7));
AND_gate AND_instance8 (.I1(clock), .I2(enable),
.O(gated8));

always @ (posedge gated1)
begin

output1[3:0] <= input1[3:0];
end

always @ (posedge gated2)
begin

output1[7:4] <= input1[7:4];
end

always @ (posedge gated3)
begin

output1[11:8] <= input1[11:8];
end
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always @ (posedge gated4)
begin

output1[15:12] <= input1[15:12];
end

always @ (posedge gated5)
begin

output1[19:16] <= input1[19:16];
end

always @ (posedge gated6)
begin

output1[23:20] <= input1[23:20];
end

always @ (posedge gated7)
begin

output1[27:24] <= input1[27:24];
end

always @ (posedge gated8)
begin

output1[31:28] <= input1[31:28];
end

endmodule

4.4 RESET

Every design has some form of reset. It is a common requirement to 
allow a design to be “reset” to a certain known state during certain 
conditions.

There are two types of reset: asynchronous reset and synchronous reset.
Both reset a design but their implications are very different.

4.4.1 Asynchronous Reset

Asynchronous reset is a reset that can occur at anytime. There is no reference
of timing on this reset to any other signal. It can occur independent of any
condition or other signal values. Figure 4.8 shows a simple design with a reset
flip-flop. The output value of the flip-flop is a logical zero whenever the reset
of the flip-flop is at a logical one. Example 4.6 is the Verilog code for a design
example of asynchronous reset.
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Example 4.6 Verilog Code for an Asynchronous Reset Design

module asynchronous_reset (input1, reset, clock,
output1);
input input1, reset, clock;
output output1;
reg output1;

always @ (posedge clock or posedge reset)
begin

if (reset)
output1 <= 1’b0;

else
output1 <= input1;

end

endmodule

4.4.2 Synchronous Reset

Synchronous reset is a reset that can only occur at the rising edge of clock for
a positive clock-triggered flip-flop and falling edge of clock for a negative
clock-triggered flip-flop. This means that synchronous reset is only recognized
during rising edge or falling edge of clock. In other words, synchronous reset
is referenced to the clock signal. It cannot occur independent of the clock.
Figure 4.9 shows a simple synchronous reset design. The output value of the
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flip-flop is updated during the rising edge of clock. The output value of the
flip-flop is a logical zero, if during the rising edge of clock, reset is at logical
one. The output value of the flip-flop is the logical value of the input data of
the flip-flop, if reset is at logical zero during rising edge of clock. Example 4.7
shows the Verilog code for a design example of synchronous reset.

Example 4.7 Verilog Code for a Synchronous Reset Design

module synchronous_reset (input1, reset, clock,
output1);
input input1, reset, clock;
output output1;
reg output1;

always @ (posedge clock)
begin

if (reset)
output1 <= 1’b0;

else
output1 <= input1;

end

endmodule

4.5 TIMING LOOP

Timing loops are loops in a design that have an output from combinational
logic being looped back to be part of the input of the combinational logic.

For designs that are synthesized, it is important that they do not have timing
loops. If a design has such loops, timing analysis is made complicated because
the output is being looped back to the input. Figure 4.10 shows an example of
a design having timing loop. Notice how the output of the inverter is being
looped back as an input to the AND gate.
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When a design has timing loops, it is advisable that it be broken by a sequen-
tial element. This ensures that the timing loop, which may cause timing
glitches, is broken into two timing paths: presequential and postsequential
element path.

Note: The Verilog code for the logic circuit in Figure 4.10 uses outputA to be
looped back to generate tempA.

module timingloop (inputA, inputB, outputA);
input inputA, inputB;
output outputA;
wire tempA, tempB;
assign tempA = inputA & outputA;
assign tempB = ~ (inputB | tempA);
assign outputA = ~tempB;
endmodule

It is not advisable for a designer to write Verilog code that uses timing loop.
Logic circuits that have timing loops complicate timing analysis and have poten-
tial for causing timing glitches.

4.6 BLOCKING AND NONBLOCKING STATEMENTS

Blocking and nonblocking are two types of procedural assignments that are
used in Verilog coding. Both of these types are used in sequential statements.
Each of these blocking and nonblocking statements have different character-
istics and behaviors.

Blocking statements are represented by the symbol “=”. When a blocking
statement is used, the statement is executed before the simulator moves
forward to the next statement. In other words, a blocking statement is truly
sequential.

Nonblocking statements are represented by the symbol “<=”. When a non-
blocking statement is used, that statement is scheduled and executed together
with the other nonblocking assignments. What this means is that nonblocking
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allows several assignments to be scheduled and executed together, resulting
in nonblocking statements that do not have dependence on the order in which
the assignments occur (Examples 4.8 to 4.15 explain the difference between
blocking and nonblocking statements in detail).

Do note that blocking and nonblocking statements refer only to Verilog
code. VHDL code does not require concept of blocking and nonblocking.

Example 4.8 shows Verilog code for a simple design using nonblocking
statements. The module “non-blocking” is basically a synchronous reset 
register-based design.

Example 4.8 Verilog Code Showing Use of Nonblocking Statement

module nonblocking (clock, input1, reset, output1,
output2, output3);
input reset, clock;
input [3:0] input1;
output [3:0] output1, output2, output3;

always @ (posedge clock)
begin

if (reset)
begin

output1 <= 4’b0000;
output2 <= 4’b0000;
output3 <= 4’b0000;

end
else

begin
output1 <= input1;
output2 <= output1;
output3 <= output2;

end
end
endmodule

Using the Verilog code of Example 4.8, Example 4.9 and Example 4.10 shows
two other Verilog codes using nonblocking statements. Each Verilog code of
Example 4.8, 4.9, and 4.10 uses a different order to assign values to output1,
output2, and output3.

Example 4.9 Verilog Code for Example 4.8 with the Output 
Assignment Rearranged

module nonblocking (clock, input1, reset, output1,
output2, output3);
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input reset, clock;
input [3:0] input1;
output [3:0] output1, output2, output3;

always @ (posedge clock)
begin

if (reset)
begin

output1 <= 4’b0000;
output2 <= 4’b0000;
output3 <= 4’b0000;

end
else

begin
output1 <= input1;
output3 <= output2;
output2 <= output1;

end
end
endmodule

Example 4.10 Verilog Code for Example 4.9 with the Output 
Assignment Rearranged

module nonblocking (clock, input1, reset, output1,
output2, output3);
input reset, clock;
input [3:0] input1;
output [3:0] output1, output2, output3;

always @ (posedge clock)
begin

if (reset)
begin

output1 <= 4’b0000;
output2 <= 4’b0000;
output3 <= 4’b0000;

end
else

begin
output2 <= output1;
output3 <= output2;
output1 <= input1;

end
end
endmodule
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Notice how the Verilog code of Examples 4.8, 4.9, and 4.10 are basically the
same except for the arrangement of sequence of assignment for output1,
output2, and output3. A simple test bench is written to simulate all three of
these examples. Example 4.11 shows the Verilog code for the test bench.

Example 4.11 Verilog Code for Test Bench for Simulation of Examples
4.8, 4.9, and 4.10

module nonblocking_tb ();

reg [3:0] input1;
reg clock, reset;
wire [3:0] output1, output2, output3;

initial
begin

clock = 0;
input1 = 0;
forever #50 clock = ~clock;

end

initial
begin

#10;
reset = 0;
#10;
reset = 1;
#10;
reset = 0;
#10;
input1 = 1;
#50;
input1 = 2;
#200;
$finish;

end

nonblocking nonblocking_instance (clock, input1, reset,
output1, output2, output3);

endmodule

Using the test bench shown in Example 4.11, the Verilog code for Exam-
ples 4.8, 4.9, and 4.10 is simulated. The simulation results are shown in 
Figures 4.11, 4.12, and 4.13.
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Notice the simulation results shown in Figures 4.11, 4.12, and 4.13 are the
same. Although the sequence of statement assignments of output1, output2,
and output3 are different for the Verilog code of Examples 4.8, 4.9, and 4.10,
the simulation results are the same. Changing the arrangement of the sequence
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FIGURE 4.11. Diagram showing simulation results of Verilog code in Example 4.8.
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FIGURE 4.12. Diagram showing simulation results of Verilog code in Example 4.9.



of statement assignments does not affect simulation because the three exam-
ples uses nonblocking statements. This would mean that the assignment of
“output1 ‹ input1,”“output2 ‹ output1,” and “output3 ‹ output2” are exe-
cuted together. Therefore, when using nonblocking statements, order depen-
dence does not affect simulation results.
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Referring to Figures 4.11, 4.12, and 4.13,

1. The Verilog codes in Examples 4.8, 4.9, and 4.10 use a synchronous reset.
Therefore, when reset is at logical “1”, output1, output2, and output3
are not reset to a value of “0” because a positive edge of clock did not
occur.

2. On the rising edge of the first clock, output1 is assigned the value of
input1, which is decimal 1. Output2 is assigned the value of output1,
which is X. Similarly output3 is assigned the value of output2, which is
also X.

3. On the rising edge of the second clock, output1 is assigned the value of
input1, which is decimal 2. Output2 is assigned the value of output1,
which is decimal 1. And output3 is assigned the value of output2, which
is X.

Examples 4.12, 4.13, and 4.14 are the same pieces of Verilog code as Exam-
ples 4.8, 4.9, and 4.10, but blocking statements are used instead of nonblock-
ing statements.

Example 4.12 Verilog Code Showing Example 4.8 Using a 
Blocking Statement

module blocking (clock, input1, reset, output1,
output2, output3);
input reset, clock;
input [3:0] input1;
output [3:0] output1, output2, output3;

always @ (posedge clock)
begin

if (reset)
begin

output1 = 4’b0000;
output2 = 4’b0000;
output3 = 4’b0000;

end
else

begin
output1 = input1;
output2 = output1;
output3 = output2;

end
end
endmodule
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Example 4.13 Verilog Code Showing Example 4.9 Using a 
Blocking Statement

module blocking (clock, input1, reset, output1,
output2, output3);
input reset, clock;
input [3:0] input1;
output [3:0] output1, output2, output3;

always @ (posedge clock)
begin

if (reset)
begin

output1 = 4’b0000;
output2 = 4’b0000;
output3 = 4’b0000;

end
else

begin
output1 = input1;
output3 = output2;
output2 = output1;

end
end
endmodule

Example 4.14 Verilog Code Showing Example 4.10 Using Blocking
Statement

module blocking (clock, input1, reset, output1,
output2, output3);
input reset, clock;
input [3:0] input1;
output [3:0] output1, output2, output3;

always @ (posedge clock)
begin

if (reset)
begin

output1 = 4’b0000;
output2 = 4’b0000;
output3 = 4’b0000;

end
else

begin
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output2 = output1;
output3 = output2;
output1 = input1;

end
end
endmodule

Notice how the Verilog code of Examples 4.12, 4.13, and 4.14 are basically
the same except for the arrangement of sequence of assignment for output1,
output2, and output3. A testbench is written to simulate all three of these
examples. Example 4.15 shows the Verilog code for the testbench. Also take
note that the stimulus used in the testbench of Example 4.15 is the same set
of stimulus used in the testbench of Example 4.11.

Example 4.15 Verilog Code for Testbench for Simulation of Examples
4.12, 4.13, and 4.14

module blocking_tb ();

reg [3:0] input1;
reg clock, reset;
wire [3:0] output1, output2, output3;

initial
begin

clock = 0;
input1 = 0;
forever #50 clock = ~clock;

end

initial
begin

#10;
reset = 0;
#10;
reset = 1;
#10;
reset = 0;
#10;
input1 = 1;
#50;
input1 = 2;
#200;
$finish;

end
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blocking blocking_instance (clock, input1, reset,
output1, output2, output3);

endmodule

Using the test bench shown in Example 4.15, the Verilog code for Exam-
ples 4.12, 4.13, and 4.14 are simulated. The simulation results are shown in
Figures 4.14, 4.15, and 4.16.

Referring to the simulation waveform in Figure 4.14:

1. The Verilog code in Example 4.12 uses a synchronous reset. Therefore,
when the reset is at logical “1”, output1, output2, and output3 are not
reset to value of “0” because a positive edge of clock did not occur.

2. On the rising edge of the first clock, output1 is assigned the value of
input1, which is decimal 1. Output2 is assigned the value of output1.
Because this is a blocking statement, the assignment of “output2 =
output1” will only occur after the assignment of “output1 = input1” has
completed. Thus, output2 has a value of decimal 1. Similarly, the assign-
ment of “output3 = output2” only occurs after the assignment of
“output2 = output1.” Because output2 has a value of decimal 1, output3
is also assigned a value of decimal 1.

3. On the rising edge of the second clock, output1 is assigned the value of
input1, which is a decimal 2. Output2 is assigned the value of output1.
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Because this is a blocking statement, the assignment of “output2 =
output1” will only occur after the assignment of “output1 = input1” has
completed. Thus, output2 has a value of decimal 2. Similarly, the assign-
ment of “output3 = output2” only occurs after the assignment of
“output2 = output1.” Because output2 has a value of decimal 2, output3
is also assigned a value of decimal 2.

Referring to the simulation waveform in Figure 4.15:

1. The Verilog code in Example 4.13 uses a synchronous reset. Therefore,
when reset is at logical “1,” output1, output2, and output3 are not reset
to value of “0” because a positive edge of clock did not occur.

2. On the rising edge of the first clock, output1 is assigned the value of
input1, which is a decimal 1. Output3 is assigned the value of output2.
Because this is a blocking statement, at the moment when the assign-
ment of “output3 = output2” occurs, output2 is at X. Thus, output3 is
also assigned X. For the assignment of “output2 = output1,” this block-
ing statement occurs after the assignments of “output1 = input1” and
“output3 = output2” have occurred. Because output1 has already been
assigned the value of decimal 1, output2 is also assigned the value of
decimal 1.

3. On the rising edge of the second clock, output1 is assigned the value of
input1, which is a decimal 2. Output3 is assigned the value of output2,
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which is a decimal 1. For the assignment of “output2 = output1,” which
is a blocking statement, this statement assignment only occurs after
“output1 = input1” and “output3 = output2” have occurred. Therefore,
output2 is assigned the value of decimal 1.

Referring to the simulation waveform in Figure 4.16:

1. The Verilog code in Example 4.14 uses a synchronous reset.
Therefore, when reset is at logical “1,” output1, output2, and output3
are not reset to value of “0” because a positive edge of clock did not
occur.

2. On the rising edge of the first clock, output2 is assigned the value of
output1, which is X. Output3 is assigned the value of output2. At the
moment when the assignment of “output3 = output2” occurs, output2 is
at X. Therefore, output3 is also assigned X. For the assignment of
“output1 = input1,” because input1 has a value of decimal 1, output1 is
also assigned the value of decimal 1.

3. On the rising edge of the second clock, output2 is assigned value 
of output1, which is a decimal 1. Output3 is assigned the value of
output2, which is a decimal 1. For the assignment of “output1 = input1,”
because input1 has a value of decimal 2, output1 is assigned the value
of decimal 2.

Referring to simulation waveforms of Examples 4.12, 4.13, and 4.14 (Figs.
4.14, 4.15, and 4.16), it is obvious that use of a blocking statement within an
“always @ (posedge” block gives different simulation results when the order
of statement assignment is changed. In other words, use of a blocking state-
ment is order dependent.

Referring to simulation waveforms of Examples 4.8, 4.9, and 4.10 (Figs. 4.11,
4.12, and 4.13), use of a nonblocking statement within an “always @ (posedge”
block gives the same simulation results when the order of statement assign-
ment is changed. In other words, use of a nonblocking statement is not order
dependent.

From the exercise of Examples 4.8 to 4.15, it is concluded that non-
blocking statements must be used when coding for registers. When 
coding for combinational logic, blocking statements are used. This 
ensures that when a designer is writing code to synthesize registers, the 
order in which the nonblocking statements are written will not affect 
simulation.

Note: When writing Verilog code that involves more than one register 
assignment, always use nonblocking statements. This will ensure that the 
order in which the register assignments is made does not affect the simulation
results.
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4.7 SENSITIVITY LIST

Verilog uses a sensitivity list to determine if a block of sequential statements
needs to be evaluated by the simulator during certain simulation cycles. For
Verilog, a sensitivity list is required for the always statement.

Example 4.16 shows a Verilog code for a design module that has an
“always” block. This block is to be evaluated by the simulator whenever there
is a change in the signals corresponding to the sensitivity list of the “always”
block.

Example 4.16 Verilog Example Showing Sensitivity List for 
“always” Block

module senselist (X, Y, Z, AB);
input X, Y, Z;
output AB;

always @ (X or Y or Z)
begin

// design source code
end
endmodule

Referring to Example 4.16, the sensitivity list consists of three signals, X, Y,
and Z. The block of sequential statements within the “always” block is 
evaluated by the simulator whenever there is a change of values in either
signal X, Y, or Z.

An incomplete signal list in the sensitivity list for an “always” block may
cause simulation results to be inaccurate. It may also cause a mismatch
between the synthesis results of the Verilog code and the simulation results. It
is therefore important to always keep note that signals evaluated in an
“always” block needs to be included in the sensitivity list.

Table 4.1 is an example of the differences in simulation that may occur due
to an incomplete senstivity list.

Notice how the simulation results for the modules differ. The result of
outputA for the module that has incomplete sensitivity list has a logic value
of “1” for all combinations of inputs inputA, inputB, and inputC. The module
that has complete sensitivity list has the results of outputA at logic “0” when
inputs inputA, inputB, and inputC are at a combination of “111.”

Both of the modules, although having different simulation results, when syn-
thesized will generate a NAND gate. In this case, it is clear that that synthe-
sized logic will never match the simulation result of the module with
incomplete sensitivity list. It is therefore very important for a designer to
always use a complete sensitivity list when using an always statement in
Verilog.
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TABLE 4.1. Differences in simulation resulting from an incomplete sensitivity list

Complete Sensitivity List Incomplete Sensitivity List

module sense (inputA, inputB, module sense (inputA, inputB,
inputC, outputA); inputC, outputA);

input inputA, inputB, inputC; input inputA, inputB, inputC;
output outputA; output outputA;

reg outputA; reg outputA;

always @ (inputA or inputB or inputC) begin always @ (inputA or inputB) begin
if (inputA & inputB & inputC) if (inputA & inputB & inputC)

outputA = 0; outputA = 0;
else else

outputA = 1; outputA = 1;
end end

endmodule endmodule

Testbench to Simulate Both the Verilog Code

module sense_tb();

reg reg_inputA, reg_inputB, reg_inputC;
wire wire_outputA;

integer i;

initial
begin

for (i = 0; i < 8; i = i + 1)
begin

{reg_inputA, reg_inputB, reg_inputC} = i;
#100;

end
end

sense sense_inst (.inputA(reg_inputA), .inputB(reg_inputB),
.inputC(reg_inputC), .outputA(wire_outputA));

initial
begin

$monitor (“reg_inputA %b reg_inputB %b reg_inputC %b wire_outputA %b\n”,
reg_inputA, reg_inputB, reg_inputC, wire_outputA);
end

endmodule



4.8 VERILOG OPERATORS

Verilog allows the use of a large number of operators. Operators form the very
basic components when coding for a design. It allows the designer to use these
operators to achieve different functionalities and operations.

All Verilog operators are synthesizable. These operators can be grouped
into different types, with each type having its own set of functionality.

4.8.1 Conditional Operators

Conditional operators are commonly used to model combinational logic
designs that behave as a switching device. A conditional operator consists of
three operands: (a) the input expression; (b) the select control signal that
selects which input expression is to be passed through to the output; (c) the
output expression.

The syntax for a conditional operator is as follows:

assign output_signal = control_signal ? input1 :
input2;

whereby output_signal is the output of the conditional statement,
control_signal is the signal that chooses whether input1 or input2 is passed
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to output_signal (if control_signal is true, input1 is passed to output_signal,
otherwise, input2).

Table 4.2 is a truth table that shows the functionality of a module called
“conditional,” which can be modeled in Verilog using the conditional 
operator.

Example 4.17 shows the Verilog code for module “conditional,” which has
the functionality of Table 4.2.

Example 4.17 Verilog Code for Module “conditional”

module conditional (inputA, inputB, controlC, outputA);

input inputA, inputB, controlC;
output outputA;

wire outputA;

assign outputA = controlC ? inputA : inputB;

endmodule

When Example 4.17 is synthesized, Figure 4.17 is obtained. The logic synthe-
sized from Example 4.17 is a multiplexer. Therefore, when coding for synthe-
sis, a good method to code for multiplexers is to use conditional operators.

4.8.2 Bus Concatenation Operator

Multiple signals can be concatenated to form a bus. This can be achieved by
using the bus concatenation operator. The syntax on using this operator is

assign signal_bus = {signal1, signal2, signal3};
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whereby signal_bus is the name of the three-bit concatenated bus and signal1,
signal2, and signal3 are the signals concatenated together.

Example 4.18 Verilog Example Showing a Three-Bit and Four-Bit 
Bus Concatenation

module concatenate (inputA, inputB, inputC, inputD,
outputA, outputB);

input inputA, inputB, inputC, inputD;
output [2:0] outputA;
output [3:0] outputB;

wire [2:0] outputA;
wire [3:0] outputB;

assign outputA = {inputA, inputB, 
inputC};
assign outputB = {inputA, inputB, 
inputC, inputD};

endmodule
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Example 4.18 shows a Verilog code that concatenates three signals, inputA,
inputB, and inputC, into a three-bit bus outputA and the concatenation of four
signals, inputA, inputB, inputC, and inputD into a four-bit bus outputB.

4.8.3 Shift Operator

Shift operations can be performed in Verilog by using the shift left operator
for shifting a bus to the left or a shift right operator for shifting a bus to the
right.

Example 4.19 shows a Verilog code that uses the shift left operator to shift
the three-bit bus signal tempA by one bit to the left.

Example 4.19 Verilog Code Using the Shift Left Operator

module shift_left (inputA, inputB, outputA);

input [2:0] inputA, inputB;
output [2:0] outputA;

wire [2:0] outputA;

wire [2:0] tempA;

assign tempA = inputA & inputB;

assign outputA = tempA << 1;

endmodule

When the Verilog code of Example 4.19 is synthesized, the logic obtained is
illustrated in Figure 4.18.

Example 4.20 shows the Verilog code for a test bench that can be used to
simulate the Verilog code of module “shift_left” to verify that the logic
obtained is as shown in Figure 4.18.

Example 4.20 Verilog Code for Test Bench to Simulate Module
“shift_left”

module shift_left_tb();

reg [2:0] reg_inputA, reg_inputB;
wire [2:0] wire_outputA;

integer i,j;
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initial
begin

for (i=0; i<8; i=i+1)
begin

// to force input stimulus for inputA
reg_inputA = i;
for (j=0; j<8; j=j+1)

begin
// to force input stimulus for inputB
reg_inputB = j;
#10;

end
end

end

shift_left shift_left_inst (.inputA(reg_inputA),
.inputB(reg_inputB), .outputA(wire_outputA));

initial
begin

$monitor ("inputA %b%b%b inputB %b%b%b tempA
%b%b%b outputA %b%b%b",reg_inputA[2], reg_inputA[1],
reg_inputA[0], reg_inputB[2], reg_inputB[1],
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reg_inputB[0], shift_left_inst.tempA[2],
shift_left_inst.tempA[1], shift_left_inst.tempA[0],
wire_outputA[2], wire_outputA[1], wire_outputA[0]);
end

endmodule

Example 4.21 shows the simulation results of the test bench module
“shift_left_tb”.

Example 4.21 Simulation Results of Test Bench Module “shift_left_tb”

inputA 000 inputB 000 tempA 000 outputA 000
inputA 000 inputB 001 tempA 000 outputA 000
inputA 000 inputB 010 tempA 000 outputA 000
inputA 000 inputB 011 tempA 000 outputA 000
inputA 000 inputB 100 tempA 000 outputA 000
inputA 000 inputB 101 tempA 000 outputA 000
inputA 000 inputB 110 tempA 000 outputA 000
inputA 000 inputB 111 tempA 000 outputA 000
inputA 001 inputB 000 tempA 000 outputA 000
inputA 001 inputB 001 tempA 001 outputA 010
inputA 001 inputB 010 tempA 000 outputA 000
inputA 001 inputB 011 tempA 001 outputA 010
inputA 001 inputB 100 tempA 000 outputA 000
inputA 001 inputB 101 tempA 001 outputA 010
inputA 001 inputB 110 tempA 000 outputA 000
inputA 001 inputB 111 tempA 001 outputA 010
inputA 010 inputB 000 tempA 000 outputA 000
inputA 010 inputB 001 tempA 000 outputA 000
inputA 010 inputB 010 tempA 010 outputA 100
inputA 010 inputB 011 tempA 010 outputA 100
inputA 010 inputB 100 tempA 000 outputA 000
inputA 010 inputB 101 tempA 000 outputA 000
inputA 010 inputB 110 tempA 010 outputA 100
inputA 010 inputB 111 tempA 010 outputA 100
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inputA 011 inputB 000 tempA 000 outputA 000
inputA 011 inputB 001 tempA 001 outputA 010
inputA 011 inputB 010 tempA 010 outputA 100
inputA 011 inputB 011 tempA 011 outputA 110
inputA 011 inputB 100 tempA 000 outputA 000
inputA 011 inputB 101 tempA 001 outputA 010
inputA 011 inputB 110 tempA 010 outputA 100
inputA 011 inputB 111 tempA 011 outputA 110
inputA 100 inputB 000 tempA 000 outputA 000
inputA 100 inputB 001 tempA 000 outputA 000
inputA 100 inputB 010 tempA 000 outputA 000
inputA 100 inputB 011 tempA 000 outputA 000
inputA 100 inputB 100 tempA 100 outputA 000
inputA 100 inputB 101 tempA 100 outputA 000
inputA 100 inputB 110 tempA 100 outputA 000
inputA 100 inputB 111 tempA 100 outputA 000
inputA 101 inputB 000 tempA 000 outputA 000
inputA 101 inputB 001 tempA 001 outputA 010
inputA 101 inputB 010 tempA 000 outputA 000
inputA 101 inputB 011 tempA 001 outputA 010
inputA 101 inputB 100 tempA 100 outputA 000
inputA 101 inputB 101 tempA 101 outputA 010
inputA 101 inputB 110 tempA 100 outputA 000
inputA 101 inputB 111 tempA 101 outputA 010
inputA 110 inputB 000 tempA 000 outputA 000
inputA 110 inputB 001 tempA 000 outputA 000
inputA 110 inputB 010 tempA 010 outputA 100
inputA 110 inputB 011 tempA 010 outputA 100
inputA 110 inputB 100 tempA 100 outputA 000
inputA 110 inputB 101 tempA 100 outputA 000
inputA 110 inputB 110 tempA 110 outputA 100
inputA 110 inputB 111 tempA 110 outputA 100
inputA 111 inputB 000 tempA 000 outputA 000
inputA 111 inputB 001 tempA 001 outputA 010
inputA 111 inputB 010 tempA 010 outputA 100
inputA 111 inputB 011 tempA 011 outputA 110
inputA 111 inputB 100 tempA 100 outputA 000
inputA 111 inputB 101 tempA 101 outputA 010
inputA 111 inputB 110 tempA 110 outputA 100
inputA 111 inputB 111 tempA 111 outputA 110

Note: Notice from the simulation results that the (LSB) is always a zero? This
occurs because, when shifting left, the LSB is always tagged with logic zero.This
causes the synthesized logic for module shift_left to have the outputA(0)
grounded.
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Example 4.22 shows a Verilog code that uses the shift right operator to shift
the three-bit bus signal tempA by one bit to the right.

Example 4.22 Verilog Code Using the Shift Right Operator

module shift_right (inputA, inputB, outputA);

input [2:0] inputA, inputB;
output [2:0] outputA;

wire [2:0] outputA;

wire [2:0] tempA;

assign tempA = inputA & inputB;

assign outputA = tempA >> 1;

endmodule

When the Verilog code of Example 4.22 is synthesized, the logic obtained is
illustrated in Figure 4.19.
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Example 4.23 shows the Verilog code for a test bench that can be used to
simulate the verilog code of module “shift_right” to verify that the logic
obtained is as shown in Figure 4.19.

Example 4.23 Verilog Code for Test Bench to Simulate Module
“shift_right”

module shift_right_tb();

reg [2:0] reg_inputA, reg_inputB;
wire [2:0] wire_outputA;

integer i,j;

initial
begin

for (i=0; i<8; i=i+1)
begin

// to force input stimulus for inputA
reg_inputA = i;
for (j=0; j<8; j=j+1)

begin
// to force input stimulus for inputB
reg_inputB = j;
#10;

end
end

end

shift_right shift_right_inst (.inputA(reg_inputA),
.inputB(reg_inputB), .outputA(wire_outputA));

initial
begin

$monitor ("inputA %b%b%b inputB %b%b%b tempA
%b%b%b outputA %b%b%b",reg_inputA[2], reg_inputA[1],
reg_inputA[0], reg_inputB[2], reg_inputB[1],
reg_inputB[0], shift_right_inst.tempA[2],
shift_right_inst.tempA[1], shift_right_
inst.tempA[0], wire_outputA[2], wire_outputA[1],
wire_outputA[0]);
end

endmodule
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Example 4.24 shows the simulation results of the test bench module
“shift_right_tb.”

Example 4.24 Simulation Results of Verilog Test Bench Module
“shift_right_tb”

inputA 000 inputB 000 tempA 000 outputA 000
inputA 000 inputB 001 tempA 000 outputA 000
inputA 000 inputB 010 tempA 000 outputA 000
inputA 000 inputB 011 tempA 000 outputA 000
inputA 000 inputB 100 tempA 000 outputA 000
inputA 000 inputB 101 tempA 000 outputA 000
inputA 000 inputB 110 tempA 000 outputA 000
inputA 000 inputB 111 tempA 000 outputA 000
inputA 001 inputB 000 tempA 000 outputA 000
inputA 001 inputB 001 tempA 001 outputA 000
inputA 001 inputB 010 tempA 000 outputA 000
inputA 001 inputB 011 tempA 001 outputA 000
inputA 001 inputB 100 tempA 000 outputA 000
inputA 001 inputB 101 tempA 001 outputA 000
inputA 001 inputB 110 tempA 000 outputA 000
inputA 001 inputB 111 tempA 001 outputA 000
inputA 010 inputB 000 tempA 000 outputA 000
inputA 010 inputB 001 tempA 000 outputA 000
inputA 010 inputB 010 tempA 010 outputA 001
inputA 010 inputB 011 tempA 010 outputA 001
inputA 010 inputB 100 tempA 000 outputA 000
inputA 010 inputB 101 tempA 000 outputA 000
inputA 010 inputB 110 tempA 010 outputA 001
inputA 010 inputB 111 tempA 010 outputA 001
inputA 011 inputB 000 tempA 000 outputA 000
inputA 011 inputB 001 tempA 001 outputA 000
inputA 011 inputB 010 tempA 010 outputA 001
inputA 011 inputB 011 tempA 011 outputA 001
inputA 011 inputB 100 tempA 000 outputA 000
inputA 011 inputB 101 tempA 001 outputA 000
inputA 011 inputB 110 tempA 010 outputA 001
inputA 011 inputB 111 tempA 011 outputA 001
inputA 100 inputB 000 tempA 000 outputA 000
inputA 100 inputB 001 tempA 000 outputA 000
inputA 100 inputB 010 tempA 000 outputA 000
inputA 100 inputB 011 tempA 000 outputA 000
inputA 100 inputB 100 tempA 100 outputA 010
inputA 100 inputB 101 tempA 100 outputA 010
inputA 100 inputB 110 tempA 100 outputA 010
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inputA 100 inputB 111 tempA 100 outputA 010
inputA 101 inputB 000 tempA 000 outputA 000
inputA 101 inputB 001 tempA 001 outputA 000
inputA 101 inputB 010 tempA 000 outputA 000
inputA 101 inputB 011 tempA 001 outputA 000
inputA 101 inputB 100 tempA 100 outputA 010
inputA 101 inputB 101 tempA 101 outputA 010
inputA 101 inputB 110 tempA 100 outputA 010
inputA 101 inputB 111 tempA 101 outputA 010
inputA 110 inputB 000 tempA 000 outputA 000
inputA 110 inputB 001 tempA 000 outputA 000
inputA 110 inputB 010 tempA 010 outputA 001
inputA 110 inputB 011 tempA 010 outputA 001
inputA 110 inputB 100 tempA 100 outputA 010
inputA 110 inputB 101 tempA 100 outputA 010
inputA 110 inputB 110 tempA 110 outputA 011
inputA 110 inputB 111 tempA 110 outputA 011
inputA 111 inputB 000 tempA 000 outputA 000
inputA 111 inputB 001 tempA 001 outputA 000
inputA 111 inputB 010 tempA 010 outputA 001
inputA 111 inputB 011 tempA 011 outputA 001
inputA 111 inputB 100 tempA 100 outputA 010
inputA 111 inputB 101 tempA 101 outputA 010
inputA 111 inputB 110 tempA 110 outputA 011
inputA 111 inputB 111 tempA 111 outputA 011

Note: Notice from the simulation results that the (MSB) is always a zero?
This occurs because when shifting right, the MSB is always tagged with logic
zero. This causes the synthesized logic for module shift_right to have the
outputA(2) grounded.

4.8.4 Arithmetic Operator

Verilog allows for five different arithmetic operators that can be used for dif-
ferent operations. They are as follows:

1. addition operator
2. subtraction operator
3. multiplication operator
4. division operator
5. modulus operator

When using these operators, the designer needs to be aware that the logic solu-
tion obtained from synthesis may differ if different design constraints are used.
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4.8.4.1 Addition operator As the name implies, the addition operator
allows an addition operation. It is coded in Verilog by using the symbol “+”.

Example 4.25 Verilog Code Using an Addition Operator

module addition (inputA, inputB, outputA);

input inputA, inputB;
output [1:0] outputA;

wire [1:0] outputA;

assign outputA = inputA + inputB;

endmodule

Figure 4.20 shows a diagram of the synthesized logic module “addition” in
Example 4.25.

Example 4.26 is a Verilog test bench that can be used to simulate the Verilog
code of module “addition.” The simulation results are shown in Example 4.27.

Example 4.26 Verilog Test Bench to Simulate Verilog Code for 
Module “addition”

module addition_tb ();

reg reg_inputA, reg_inputB;
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wire [1:0] wire_outputA;

integer i,j;

initial
begin

for (i=0; i<2; i=i+1)
begin

reg_inputA = i;
for (j=0; j<2; j=j+1)

begin
reg_inputB = j;
#10;

end
end

end

addition addition_inst (.inputA(reg_inputA),
.inputB(reg_inputB), .outputA(wire_outputA));

initial
begin

$monitor ("inputA %b inputB %b outputA %b%b",
reg_inputA, reg_inputB, wire_outputA[1],
wire_outputA[0]);
end

endmodule

Example 4.27 Simulation Results for Verilog Test Bench Module
“addition_tb”

inputA 0 inputB 0 outputA 00
inputA 0 inputB 1 outputA 01
inputA 1 inputB 0 outputA 01
inputA 1 inputB 1 outputA 10

Appendix A.1 shows the Verilog code for a two-bit by two-bit adder design
that uses an addition operator. It also includes a Verilog test bench, simula-
tion results, and the synthesized logic circuit.

4.8.4.2 Subtraction operator As the name implies, the subtraction 
operator allows a subtract operation. It is coded in Verilog by using the 
symbol “-”.
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Example 4.28 Verilog Code Using a Subtraction Operator

module subtraction (inputA, inputB, outputA);

input inputA, inputB;
output [1:0] outputA;

wire [1:0] outputA;

assign outputA = inputA - inputB;

endmodule

Figure 4.21 shows a diagram of the synthesized logic module “subtraction” in
Example 4.28.

Example 4.29 is a Verilog test bench that can be used to simulate the 
Verilog code of module “subtraction.” The simulation results are shown in
Example 4.30.

Example 4.29 Verilog Test Bench to Simulate Verilog Code for 
Module “subtraction”

module subtraction_tb ();

reg reg_inputA, reg_inputB;

wire [1:0] wire_outputA;

integer i,j;
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initial
begin

for (i=0; i<2; i=i+1)
begin

reg_inputA = i;
for (j=0; j<2; j=j+1)

begin
reg_inputB = j;
#10;

end
end

end

subtraction subtraction_inst (.inputA(reg_inputA),
.inputB(reg_inputB), .outputA(wire_outputA));

initial
begin

$monitor ("inputA %b inputB %b outputA %b%b",
reg_inputA, reg_inputB, wire_outputA[1],
wire_outputA[0]);
end

endmodule

Example 4.30 Simulation Results for Verilog Test Bench Module
“subtraction_tb”

inputA 0 inputB 0 outputA 00
inputA 0 inputB 1 outputA 11
inputA 1 inputB 0 outputA 01
inputA 1 inputB 1 outputA 00

Appendix A.2 shows the Verilog code for a two-bit by two-bit subtractor
design that uses a subtraction operator. It also includes a Verilog test bench,
simulation results, and the synthesized logic circuit.

4.8.4.3 Multiplication Operator As the name implies, the multiplication
operator allows a multiplication operation. It is coded in Verilog by using the
symbol “*”.
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Example 4.31 Verilog Code Using a Multiplication Operator

module multiplication (inputA, inputB, outputA);

input [1:0] inputA, inputB;
output [3:0] outputA;

wire [3:0] outputA;

assign outputA = inputA * inputB;

endmodule

Figure 4.22 shows a diagram of the synthesized logic module “multiplication”
in Example 4.31.

Example 4.32 is a Verilog test bench that can be used to simulate the 
Verilog code of module “multiplication.” The simulation results are shown in
Example 4.33.
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Example 4.32 Verilog Test Bench to Simulate Verilog Code for Module
“multiplication”

module multiplication_tb ();

reg [1:0] reg_inputA, reg_inputB;

wire [3:0] wire_outputA;

integer i,j;

initial
begin

for (i=0; i<4; i=i+1)
begin

reg_inputA = i;
for (j=0; j<4; j=j+1)

begin
reg_inputB = j;
#10;

end
end

end

multiplication multiplication_inst
(.inputA(reg_inputA), .inputB(reg_inputB),
.outputA(wire_outputA));

initial
begin

$monitor ("inputA %h inputB %h outputA %h",
reg_inputA, reg_inputB, wire_outputA);
end

endmodule

Example 4.33 Simulation Results for Verilog Test Bench Module
“multiplication_tb”

inputA 0 inputB 0 outputA 0
inputA 0 inputB 1 outputA 0
inputA 0 inputB 2 outputA 0
inputA 0 inputB 3 outputA 0
inputA 1 inputB 0 outputA 0
inputA 1 inputB 1 outputA 1
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inputA 1 inputB 2 outputA 2
inputA 1 inputB 3 outputA 3
inputA 2 inputB 0 outputA 0
inputA 2 inputB 1 outputA 2
inputA 2 inputB 2 outputA 4
inputA 2 inputB 3 outputA 6
inputA 3 inputB 0 outputA 0
inputA 3 inputB 1 outputA 3
inputA 3 inputB 2 outputA 6
inputA 3 inputB 3 outputA 9

Appendix A.3 shows the Verilog code for a four-bit by four-bit multiplier
design that uses a multiplication operator. It also includes a Verilog test bench
and simulation results.

4.8.5 Division Operator

As the name implies, the division operator allows a division operation. It is
coded in Verilog by using the symbol “/”. The designer needs to be careful
when using the division operator in synthesizable Verilog. The division oper-
ator can only be used on constants and not on variables. If the division oper-
ator is being used on a value that is not a constant, the synthesis tool will not
be able to synthesize the logic.

Example 4.34 Verilog Code Using a Division Operator

module division (inputA, inputB, outputA, outputB);

input [3:0] inputA;
input [3:0] inputB;
output [3:0] outputA, outputB;

reg [3:0] outputA, outputB;

always @ (inputA or inputB)
begin

if (inputA == 4'b1010)
outputA = 3/3;

else
outputA = 0;

if (inputB == 4'b0011)
outputB = 8/5;
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else
outputB = 0;

end

endmodule

Figure 4.23 shows a diagram for synthesized logic module “division.”
Example 4.35 is a Verilog test bench that can be used to simulate the Verilog

code of module “division”. The simulation results are shown in Example 4.36.

Example 4.35 Verilog Test Bench to Simulate Verilog Code for 
Module “division”

module division_tb ();

reg [3:0] reg_inputA, reg_inputB;

wire [3:0] wire_outputA, wire_outputB;

integer i,j;

initial
begin
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for (i=1; i<16; i=i+1)
begin

reg_inputA = i;
for (j=1; j<16; j=j+1)

begin
reg_inputB = j;
#10;

end
end

end

division division_inst (.inputA(reg_inputA),
.inputB(reg_inputB), .outputA(wire_outputA),
.outputB(wire_outputB));

initial
begin

$monitor ("inputA %h inputB %h outputA %h outputB
%h", reg_inputA, reg_inputB, wire_outputA,
wire_outputB);
end

endmodule

Example 4.36 Simulation Results for Verilog Test Bench 
Module “division”

inputA 1 inputB 1 outputA 0 outputB 0
inputA 1 inputB 2 outputA 0 outputB 0
inputA 1 inputB 3 outputA 0 outputB 1
inputA 1 inputB 4 outputA 0 outputB 0
inputA 1 inputB 5 outputA 0 outputB 0
inputA 1 inputB 6 outputA 0 outputB 0
inputA 1 inputB 7 outputA 0 outputB 0
inputA 1 inputB 8 outputA 0 outputB 0
inputA 1 inputB 9 outputA 0 outputB 0
inputA 1 inputB a outputA 0 outputB 0
inputA 1 inputB b outputA 0 outputB 0
inputA 1 inputB c outputA 0 outputB 0
inputA 1 inputB d outputA 0 outputB 0
inputA 1 inputB e outputA 0 outputB 0
inputA 1 inputB f outputA 0 outputB 0
inputA 2 inputB 1 outputA 0 outputB 0
inputA 2 inputB 2 outputA 0 outputB 0
inputA 2 inputB 3 outputA 0 outputB 1
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inputA 2 inputB 4 outputA 0 outputB 0
inputA 2 inputB 5 outputA 0 outputB 0
inputA 2 inputB 6 outputA 0 outputB 0
inputA 2 inputB 7 outputA 0 outputB 0
inputA 2 inputB 8 outputA 0 outputB 0
inputA 2 inputB 9 outputA 0 outputB 0
inputA 2 inputB a outputA 0 outputB 0
inputA 2 inputB b outputA 0 outputB 0
inputA 2 inputB c outputA 0 outputB 0
inputA 2 inputB d outputA 0 outputB 0
inputA 2 inputB e outputA 0 outputB 0
inputA 2 inputB f outputA 0 outputB 0
inputA 3 inputB 1 outputA 0 outputB 0
inputA 3 inputB 2 outputA 0 outputB 0
inputA 3 inputB 3 outputA 0 outputB 1
inputA 3 inputB 4 outputA 0 outputB 0
inputA 3 inputB 5 outputA 0 outputB 0
inputA 3 inputB 6 outputA 0 outputB 0
inputA 3 inputB 7 outputA 0 outputB 0
inputA 3 inputB 8 outputA 0 outputB 0
inputA 3 inputB 9 outputA 0 outputB 0
inputA 3 inputB a outputA 0 outputB 0
inputA 3 inputB b outputA 0 outputB 0
inputA 3 inputB c outputA 0 outputB 0
inputA 3 inputB d outputA 0 outputB 0
inputA 3 inputB e outputA 0 outputB 0
inputA 3 inputB f outputA 0 outputB 0
inputA 4 inputB 1 outputA 0 outputB 0
inputA 4 inputB 2 outputA 0 outputB 0
inputA 4 inputB 3 outputA 0 outputB 1
inputA 4 inputB 4 outputA 0 outputB 0
inputA 4 inputB 5 outputA 0 outputB 0
inputA 4 inputB 6 outputA 0 outputB 0
inputA 4 inputB 7 outputA 0 outputB 0
inputA 4 inputB 8 outputA 0 outputB 0
inputA 4 inputB 9 outputA 0 outputB 0
inputA 4 inputB a outputA 0 outputB 0
inputA 4 inputB b outputA 0 outputB 0
inputA 4 inputB c outputA 0 outputB 0
inputA 4 inputB d outputA 0 outputB 0
inputA 4 inputB e outputA 0 outputB 0
inputA 4 inputB f outputA 0 outputB 0
inputA 5 inputB 1 outputA 0 outputB 0
inputA 5 inputB 2 outputA 0 outputB 0
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inputA 5 inputB 3 outputA 0 outputB 1
inputA 5 inputB 4 outputA 0 outputB 0
inputA 5 inputB 5 outputA 0 outputB 0
inputA 5 inputB 6 outputA 0 outputB 0
inputA 5 inputB 7 outputA 0 outputB 0
inputA 5 inputB 8 outputA 0 outputB 0
inputA 5 inputB 9 outputA 0 outputB 0
inputA 5 inputB a outputA 0 outputB 0
inputA 5 inputB b outputA 0 outputB 0
inputA 5 inputB c outputA 0 outputB 0
inputA 5 inputB d outputA 0 outputB 0
inputA 5 inputB e outputA 0 outputB 0
inputA 5 inputB f outputA 0 outputB 0
inputA 6 inputB 1 outputA 0 outputB 0
inputA 6 inputB 2 outputA 0 outputB 0
inputA 6 inputB 3 outputA 0 outputB 1
inputA 6 inputB 4 outputA 0 outputB 0
inputA 6 inputB 5 outputA 0 outputB 0
inputA 6 inputB 6 outputA 0 outputB 0
inputA 6 inputB 7 outputA 0 outputB 0
inputA 6 inputB 8 outputA 0 outputB 0
inputA 6 inputB 9 outputA 0 outputB 0
inputA 6 inputB a outputA 0 outputB 0
inputA 6 inputB b outputA 0 outputB 0
inputA 6 inputB c outputA 0 outputB 0
inputA 6 inputB d outputA 0 outputB 0
inputA 6 inputB e outputA 0 outputB 0
inputA 6 inputB f outputA 0 outputB 0
inputA 7 inputB 1 outputA 0 outputB 0
inputA 7 inputB 2 outputA 0 outputB 0
inputA 7 inputB 3 outputA 0 outputB 1
inputA 7 inputB 4 outputA 0 outputB 0
inputA 7 inputB 5 outputA 0 outputB 0
inputA 7 inputB 6 outputA 0 outputB 0
inputA 7 inputB 7 outputA 0 outputB 0
inputA 7 inputB 8 outputA 0 outputB 0
inputA 7 inputB 9 outputA 0 outputB 0
inputA 7 inputB a outputA 0 outputB 0
inputA 7 inputB b outputA 0 outputB 0
inputA 7 inputB c outputA 0 outputB 0
inputA 7 inputB d outputA 0 outputB 0
inputA 7 inputB e outputA 0 outputB 0
inputA 7 inputB f outputA 0 outputB 0
inputA 8 inputB 1 outputA 0 outputB 0
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inputA 8 inputB 2 outputA 0 outputB 0
inputA 8 inputB 3 outputA 0 outputB 1
inputA 8 inputB 4 outputA 0 outputB 0
inputA 8 inputB 5 outputA 0 outputB 0
inputA 8 inputB 6 outputA 0 outputB 0
inputA 8 inputB 7 outputA 0 outputB 0
inputA 8 inputB 8 outputA 0 outputB 0
inputA 8 inputB 9 outputA 0 outputB 0
inputA 8 inputB a outputA 0 outputB 0
inputA 8 inputB b outputA 0 outputB 0
inputA 8 inputB c outputA 0 outputB 0
inputA 8 inputB d outputA 0 outputB 0
inputA 8 inputB e outputA 0 outputB 0
inputA 8 inputB f outputA 0 outputB 0
inputA 9 inputB 1 outputA 0 outputB 0
inputA 9 inputB 2 outputA 0 outputB 0
inputA 9 inputB 3 outputA 0 outputB 1
inputA 9 inputB 4 outputA 0 outputB 0
inputA 9 inputB 5 outputA 0 outputB 0
inputA 9 inputB 6 outputA 0 outputB 0
inputA 9 inputB 7 outputA 0 outputB 0
inputA 9 inputB 8 outputA 0 outputB 0
inputA 9 inputB 9 outputA 0 outputB 0
inputA 9 inputB a outputA 0 outputB 0
inputA 9 inputB b outputA 0 outputB 0
inputA 9 inputB c outputA 0 outputB 0
inputA 9 inputB d outputA 0 outputB 0
inputA 9 inputB e outputA 0 outputB 0
inputA 9 inputB f outputA 0 outputB 0
inputA a inputB 1 outputA 1 outputB 0
inputA a inputB 2 outputA 1 outputB 0
inputA a inputB 3 outputA 1 outputB 1
inputA a inputB 4 outputA 1 outputB 0
inputA a inputB 5 outputA 1 outputB 0
inputA a inputB 6 outputA 1 outputB 0
inputA a inputB 7 outputA 1 outputB 0
inputA a inputB 8 outputA 1 outputB 0
inputA a inputB 9 outputA 1 outputB 0
inputA a inputB a outputA 1 outputB 0
inputA a inputB b outputA 1 outputB 0
inputA a inputB c outputA 1 outputB 0
inputA a inputB d outputA 1 outputB 0
inputA a inputB e outputA 1 outputB 0
inputA a inputB f outputA 1 outputB 0
inputA b inputB 1 outputA 0 outputB 0
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inputA b inputB 2 outputA 0 outputB 0
inputA b inputB 3 outputA 0 outputB 1
inputA b inputB 4 outputA 0 outputB 0
inputA b inputB 5 outputA 0 outputB 0
inputA b inputB 6 outputA 0 outputB 0
inputA b inputB 7 outputA 0 outputB 0
inputA b inputB 8 outputA 0 outputB 0
inputA b inputB 9 outputA 0 outputB 0
inputA b inputB a outputA 0 outputB 0
inputA b inputB b outputA 0 outputB 0
inputA b inputB c outputA 0 outputB 0
inputA b inputB d outputA 0 outputB 0
inputA b inputB e outputA 0 outputB 0
inputA b inputB f outputA 0 outputB 0
inputA c inputB 1 outputA 0 outputB 0
inputA c inputB 2 outputA 0 outputB 0
inputA c inputB 3 outputA 0 outputB 1
inputA c inputB 4 outputA 0 outputB 0
inputA c inputB 5 outputA 0 outputB 0
inputA c inputB 6 outputA 0 outputB 0
inputA c inputB 7 outputA 0 outputB 0
inputA c inputB 8 outputA 0 outputB 0
inputA c inputB 9 outputA 0 outputB 0
inputA c inputB a outputA 0 outputB 0
inputA c inputB b outputA 0 outputB 0
inputA c inputB c outputA 0 outputB 0
inputA c inputB d outputA 0 outputB 0
inputA c inputB e outputA 0 outputB 0
inputA c inputB f outputA 0 outputB 0
inputA d inputB 1 outputA 0 outputB 0
inputA d inputB 2 outputA 0 outputB 0
inputA d inputB 3 outputA 0 outputB 1
inputA d inputB 4 outputA 0 outputB 0
inputA d inputB 5 outputA 0 outputB 0
inputA d inputB 6 outputA 0 outputB 0
inputA d inputB 7 outputA 0 outputB 0
inputA d inputB 8 outputA 0 outputB 0
inputA d inputB 9 outputA 0 outputB 0
inputA d inputB a outputA 0 outputB 0
inputA d inputB b outputA 0 outputB 0
inputA d inputB c outputA 0 outputB 0
inputA d inputB d outputA 0 outputB 0
inputA d inputB e outputA 0 outputB 0
inputA d inputB f outputA 0 outputB 0
inputA e inputB 1 outputA 0 outputB 0
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inputA e inputB 2 outputA 0 outputB 0
inputA e inputB 3 outputA 0 outputB 1
inputA e inputB 4 outputA 0 outputB 0
inputA e inputB 5 outputA 0 outputB 0
inputA e inputB 6 outputA 0 outputB 0
inputA e inputB 7 outputA 0 outputB 0
inputA e inputB 8 outputA 0 outputB 0
inputA e inputB 9 outputA 0 outputB 0
inputA e inputB a outputA 0 outputB 0
inputA e inputB b outputA 0 outputB 0
inputA e inputB c outputA 0 outputB 0
inputA e inputB d outputA 0 outputB 0
inputA e inputB e outputA 0 outputB 0
inputA e inputB f outputA 0 outputB 0
inputA f inputB 1 outputA 0 outputB 0
inputA f inputB 2 outputA 0 outputB 0
inputA f inputB 3 outputA 0 outputB 1
inputA f inputB 4 outputA 0 outputB 0
inputA f inputB 5 outputA 0 outputB 0
inputA f inputB 6 outputA 0 outputB 0
inputA f inputB 7 outputA 0 outputB 0
inputA f inputB 8 outputA 0 outputB 0
inputA f inputB 9 outputA 0 outputB 0
inputA f inputB a outputA 0 outputB 0
inputA f inputB b outputA 0 outputB 0
inputA f inputB c outputA 0 outputB 0
inputA f inputB d outputA 0 outputB 0
inputA f inputB e outputA 0 outputB 0
inputA f inputB f outputA 0 outputB 0

Note: Only constant values can be used when using the division operator in
synthesizable Verilog code. Values obtained using the division operator are in
integer format and do not have any fractions.

4.8.6 Modulus Operator

Modulus operator allows an arithmetic operation that returns a value of the
remainder of a division (the operator is coded in Verilog by using the symbol
“%”). For example, a modulus operation of “5 % 3” would return a value of
2, which is the remainder of the division operation of “5/3”.

The designer needs to be careful when using the modulus operator in syn-
thesizable Verilog.The operator can only be used on constants and not on vari-
ables. If the modulus operator is being used on a value that is not a constant,
the synthesis tool will not be able to synthesize the logic.
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Example 4.37 Verilog Code Using a Modulus Operator

module modulus (inputA, inputB, outputA, outputB);

input [3:0] inputA;
input [3:0] inputB;
output [3:0] outputA, outputB;

reg [3:0] outputA, outputB;

always @ (inputA or inputB)
begin

if (inputA == 4'b1010)
outputA = 2 % 5;

else
outputA = 0;

if (inputB == 4'b0011)
outputB = 8 % 5;

else
outputB = 0;

end

endmodule

Figure 4.24 shows a diagram of the synthesized logic module “modulus.”
Example 4.38 is a verilog test bench that can be used to simulate the verilog

code of module “modulus”.The simulation results are shown in Example 4.39.

Example 4.38 Verilog Test Bench to Simulate Verilog Code for 
Module “modulus”

module modulus_tb ();

reg [3:0] reg_inputA, reg_inputB;

wire [3:0] wire_outputA, wire_outputB;

integer i,j;

initial
begin

for (i=1; i<16; i=i+1)
begin

reg_inputA = i;
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for (j=1; j<16; j=j+1)
begin

reg_inputB = j;
#10;

end
end

end

modulus modulus_inst (.inputA(reg_inputA),
.inputB(reg_inputB), .outputA(wire_outputA),
.outputB(wire_outputB));

initial
begin

$monitor ("inputA %h inputB %h outputA %h outputB
%h", reg_inputA, reg_inputB, wire_outputA,
wire_outputB);
end

endmodule
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Figure 4.24. Diagram showing synthesized logic for design module “modulus.”



Example 4.39 Simulation Results for Verilog Test Bench 
Module “modulus”

inputA 1 inputB 1 outputA 0 outputB 0
inputA 1 inputB 2 outputA 0 outputB 0
inputA 1 inputB 3 outputA 0 outputB 3
inputA 1 inputB 4 outputA 0 outputB 0
inputA 1 inputB 5 outputA 0 outputB 0
inputA 1 inputB 6 outputA 0 outputB 0
inputA 1 inputB 7 outputA 0 outputB 0
inputA 1 inputB 8 outputA 0 outputB 0
inputA 1 inputB 9 outputA 0 outputB 0
inputA 1 inputB a outputA 0 outputB 0
inputA 1 inputB b outputA 0 outputB 0
inputA 1 inputB c outputA 0 outputB 0
inputA 1 inputB d outputA 0 outputB 0
inputA 1 inputB e outputA 0 outputB 0
inputA 1 inputB f outputA 0 outputB 0
inputA 2 inputB 1 outputA 0 outputB 0
inputA 2 inputB 2 outputA 0 outputB 0
inputA 2 inputB 3 outputA 0 outputB 3
inputA 2 inputB 4 outputA 0 outputB 0
inputA 2 inputB 5 outputA 0 outputB 0
inputA 2 inputB 6 outputA 0 outputB 0
inputA 2 inputB 7 outputA 0 outputB 0
inputA 2 inputB 8 outputA 0 outputB 0
inputA 2 inputB 9 outputA 0 outputB 0
inputA 2 inputB a outputA 0 outputB 0
inputA 2 inputB b outputA 0 outputB 0
inputA 2 inputB c outputA 0 outputB 0
inputA 2 inputB d outputA 0 outputB 0
inputA 2 inputB e outputA 0 outputB 0
inputA 2 inputB f outputA 0 outputB 0
inputA 3 inputB 1 outputA 0 outputB 0
inputA 3 inputB 2 outputA 0 outputB 0
inputA 3 inputB 3 outputA 0 outputB 3
inputA 3 inputB 4 outputA 0 outputB 0
inputA 3 inputB 5 outputA 0 outputB 0
inputA 3 inputB 6 outputA 0 outputB 0
inputA 3 inputB 7 outputA 0 outputB 0
inputA 3 inputB 8 outputA 0 outputB 0
inputA 3 inputB 9 outputA 0 outputB 0
inputA 3 inputB a outputA 0 outputB 0
inputA 3 inputB b outputA 0 outputB 0
inputA 3 inputB c outputA 0 outputB 0
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inputA 3 inputB d outputA 0 outputB 0
inputA 3 inputB e outputA 0 outputB 0
inputA 3 inputB f outputA 0 outputB 0
inputA 4 inputB 1 outputA 0 outputB 0
inputA 4 inputB 2 outputA 0 outputB 0
inputA 4 inputB 3 outputA 0 outputB 3
inputA 4 inputB 4 outputA 0 outputB 0
inputA 4 inputB 5 outputA 0 outputB 0
inputA 4 inputB 6 outputA 0 outputB 0
inputA 4 inputB 7 outputA 0 outputB 0
inputA 4 inputB 8 outputA 0 outputB 0
inputA 4 inputB 9 outputA 0 outputB 0
inputA 4 inputB a outputA 0 outputB 0
inputA 4 inputB b outputA 0 outputB 0
inputA 4 inputB c outputA 0 outputB 0
inputA 4 inputB d outputA 0 outputB 0
inputA 4 inputB e outputA 0 outputB 0
inputA 4 inputB f outputA 0 outputB 0
inputA 5 inputB 1 outputA 0 outputB 0
inputA 5 inputB 2 outputA 0 outputB 0
inputA 5 inputB 3 outputA 0 outputB 3
inputA 5 inputB 4 outputA 0 outputB 0
inputA 5 inputB 5 outputA 0 outputB 0
inputA 5 inputB 6 outputA 0 outputB 0
inputA 5 inputB 7 outputA 0 outputB 0
inputA 5 inputB 8 outputA 0 outputB 0
inputA 5 inputB 9 outputA 0 outputB 0
inputA 5 inputB a outputA 0 outputB 0
inputA 5 inputB b outputA 0 outputB 0
inputA 5 inputB c outputA 0 outputB 0
inputA 5 inputB d outputA 0 outputB 0
inputA 5 inputB e outputA 0 outputB 0
inputA 5 inputB f outputA 0 outputB 0
inputA 6 inputB 1 outputA 0 outputB 0
inputA 6 inputB 2 outputA 0 outputB 0
inputA 6 inputB 3 outputA 0 outputB 3
inputA 6 inputB 4 outputA 0 outputB 0
inputA 6 inputB 5 outputA 0 outputB 0
inputA 6 inputB 6 outputA 0 outputB 0
inputA 6 inputB 7 outputA 0 outputB 0
inputA 6 inputB 8 outputA 0 outputB 0
inputA 6 inputB 9 outputA 0 outputB 0
inputA 6 inputB a outputA 0 outputB 0
inputA 6 inputB b outputA 0 outputB 0
inputA 6 inputB c outputA 0 outputB 0
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inputA 6 inputB d outputA 0 outputB 0
inputA 6 inputB e outputA 0 outputB 0
inputA 6 inputB f outputA 0 outputB 0
inputA 7 inputB 1 outputA 0 outputB 0
inputA 7 inputB 2 outputA 0 outputB 0
inputA 7 inputB 3 outputA 0 outputB 3
inputA 7 inputB 4 outputA 0 outputB 0
inputA 7 inputB 5 outputA 0 outputB 0
inputA 7 inputB 6 outputA 0 outputB 0
inputA 7 inputB 7 outputA 0 outputB 0
inputA 7 inputB 8 outputA 0 outputB 0
inputA 7 inputB 9 outputA 0 outputB 0
inputA 7 inputB a outputA 0 outputB 0
inputA 7 inputB b outputA 0 outputB 0
inputA 7 inputB c outputA 0 outputB 0
inputA 7 inputB d outputA 0 outputB 0
inputA 7 inputB e outputA 0 outputB 0
inputA 7 inputB f outputA 0 outputB 0
inputA 8 inputB 1 outputA 0 outputB 0
inputA 8 inputB 2 outputA 0 outputB 0
inputA 8 inputB 3 outputA 0 outputB 3
inputA 8 inputB 4 outputA 0 outputB 0
inputA 8 inputB 5 outputA 0 outputB 0
inputA 8 inputB 6 outputA 0 outputB 0
inputA 8 inputB 7 outputA 0 outputB 0
inputA 8 inputB 8 outputA 0 outputB 0
inputA 8 inputB 9 outputA 0 outputB 0
inputA 8 inputB a outputA 0 outputB 0
inputA 8 inputB b outputA 0 outputB 0
inputA 8 inputB c outputA 0 outputB 0
inputA 8 inputB d outputA 0 outputB 0
inputA 8 inputB e outputA 0 outputB 0
inputA 8 inputB f outputA 0 outputB 0
inputA 9 inputB 1 outputA 0 outputB 0
inputA 9 inputB 2 outputA 0 outputB 0
inputA 9 inputB 3 outputA 0 outputB 3
inputA 9 inputB 4 outputA 0 outputB 0
inputA 9 inputB 5 outputA 0 outputB 0
inputA 9 inputB 6 outputA 0 outputB 0
inputA 9 inputB 7 outputA 0 outputB 0
inputA 9 inputB 8 outputA 0 outputB 0
inputA 9 inputB 9 outputA 0 outputB 0
inputA 9 inputB a outputA 0 outputB 0
inputA 9 inputB b outputA 0 outputB 0
inputA 9 inputB c outputA 0 outputB 0
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inputA 9 inputB d outputA 0 outputB 0
inputA 9 inputB e outputA 0 outputB 0
inputA 9 inputB f outputA 0 outputB 0
inputA a inputB 1 outputA 2 outputB 0
inputA a inputB 2 outputA 2 outputB 0
inputA a inputB 3 outputA 2 outputB 3
inputA a inputB 4 outputA 2 outputB 0
inputA a inputB 5 outputA 2 outputB 0
inputA a inputB 6 outputA 2 outputB 0
inputA a inputB 7 outputA 2 outputB 0
inputA a inputB 8 outputA 2 outputB 0
inputA a inputB 9 outputA 2 outputB 0
inputA a inputB a outputA 2 outputB 0
inputA a inputB b outputA 2 outputB 0
inputA a inputB c outputA 2 outputB 0
inputA a inputB d outputA 2 outputB 0
inputA a inputB e outputA 2 outputB 0
inputA a inputB f outputA 2 outputB 0
inputA b inputB 1 outputA 0 outputB 0
inputA b inputB 2 outputA 0 outputB 0
inputA b inputB 3 outputA 0 outputB 3
inputA b inputB 4 outputA 0 outputB 0
inputA b inputB 5 outputA 0 outputB 0
inputA b inputB 6 outputA 0 outputB 0
inputA b inputB 7 outputA 0 outputB 0
inputA b inputB 8 outputA 0 outputB 0
inputA b inputB 9 outputA 0 outputB 0
inputA b inputB a outputA 0 outputB 0
inputA b inputB b outputA 0 outputB 0
inputA b inputB c outputA 0 outputB 0
inputA b inputB d outputA 0 outputB 0
inputA b inputB e outputA 0 outputB 0
inputA b inputB f outputA 0 outputB 0
inputA c inputB 1 outputA 0 outputB 0
inputA c inputB 2 outputA 0 outputB 0
inputA c inputB 3 outputA 0 outputB 3
inputA c inputB 4 outputA 0 outputB 0
inputA c inputB 5 outputA 0 outputB 0
inputA c inputB 6 outputA 0 outputB 0
inputA c inputB 7 outputA 0 outputB 0
inputA c inputB 8 outputA 0 outputB 0
inputA c inputB 9 outputA 0 outputB 0
inputA c inputB a outputA 0 outputB 0
inputA c inputB b outputA 0 outputB 0
inputA c inputB c outputA 0 outputB 0
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inputA c inputB d outputA 0 outputB 0
inputA c inputB e outputA 0 outputB 0
inputA c inputB f outputA 0 outputB 0
inputA d inputB 1 outputA 0 outputB 0
inputA d inputB 2 outputA 0 outputB 0
inputA d inputB 3 outputA 0 outputB 3
inputA d inputB 4 outputA 0 outputB 0
inputA d inputB 5 outputA 0 outputB 0
inputA d inputB 6 outputA 0 outputB 0
inputA d inputB 7 outputA 0 outputB 0
inputA d inputB 8 outputA 0 outputB 0
inputA d inputB 9 outputA 0 outputB 0
inputA d inputB a outputA 0 outputB 0
inputA d inputB b outputA 0 outputB 0
inputA d inputB c outputA 0 outputB 0
inputA d inputB d outputA 0 outputB 0
inputA d inputB e outputA 0 outputB 0
inputA d inputB f outputA 0 outputB 0
inputA e inputB 1 outputA 0 outputB 0
inputA e inputB 2 outputA 0 outputB 0
inputA e inputB 3 outputA 0 outputB 3
inputA e inputB 4 outputA 0 outputB 0
inputA e inputB 5 outputA 0 outputB 0
inputA e inputB 6 outputA 0 outputB 0
inputA e inputB 7 outputA 0 outputB 0
inputA e inputB 8 outputA 0 outputB 0
inputA e inputB 9 outputA 0 outputB 0
inputA e inputB a outputA 0 outputB 0
inputA e inputB b outputA 0 outputB 0
inputA e inputB c outputA 0 outputB 0
inputA e inputB d outputA 0 outputB 0
inputA e inputB e outputA 0 outputB 0
inputA e inputB f outputA 0 outputB 0
inputA f inputB 1 outputA 0 outputB 0
inputA f inputB 2 outputA 0 outputB 0
inputA f inputB 3 outputA 0 outputB 3
inputA f inputB 4 outputA 0 outputB 0
inputA f inputB 5 outputA 0 outputB 0
inputA f inputB 6 outputA 0 outputB 0
inputA f inputB 7 outputA 0 outputB 0
inputA f inputB 8 outputA 0 outputB 0
inputA f inputB 9 outputA 0 outputB 0
inputA f inputB a outputA 0 outputB 0
inputA f inputB b outputA 0 outputB 0
inputA f inputB c outputA 0 outputB 0
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inputA f inputB d outputA 0 outputB 0
inputA f inputB e outputA 0 outputB 0
inputA f inputB f outputA 0 outputB 0

4.8.7 Logical Operator

Logical operators operate on a group of operands and return the result of the
operation as a single-bit result of either 1 or 0. The operands can be single bit
or multiple bit, but the result of the operation is always in single bit of 1 (true
condition) or 0 (false condition). There are three different logical operators
that can be used in Verilog:

1. && This is a logical-AND operator. It performs an AND function
on the operands to return a single-bit value.

2. || This is a logical-OR operator. It performs an OR function on the
operands to return a single-bit value.

3. ! This is a logical-NOT operator. It performs an inversion (NOT
function) on the operand to return a single-bit value.

Example 4.40 shows a Verilog code that uses logical operators. The diagram
in Figure 4.25 shows the synthesized logic for the Verilog code of module
“logical” in Example 4.40.
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FIGURE 4.25. Diagram showing synthesized logic for verilog code module “logical.”



Example 4.40 Verilog Code Using Logical Operators

module logical (inputA, inputB, inputC, inputD,
outputA, outputB, outputC, outputD);

input inputA, inputB, inputC;
input [2:0] inputD;

output outputA, outputB, outputC;
output [2:0] outputD;

// for logical AND
assign outputA = inputA && inputB;

// for logical OR
assign outputB = inputA || inputB;

// for logical NOT
assign outputC = !inputC;

// for vector format

assign outputD = {inputA, inputB, inputC} && inputD;

endmodule

Referring to Figure 4.25, notice how the output bus outputD(2:0) has bits
(2:1) grounded whereas bit (0) is connected to logical gates. The outputD(2:1)
is grounded because the logical operator returns a result that is only one bit
wide, which represents either a true (logic 1) or false (logic 0) condition.
Although inputD is a three-bit bus operand,

assign outputD = {inputA, inputB, inputC} && inputD;

concatenation of inputA, inputB, and inputC is also a three-bit bus, the 
result of outputD is only a single bit. The two upper bits of 1 and 2 are
grounded.

Example 4.41 is a Verilog test bench that can be used to simulate the design
module “logical” in Example 4.40. Example 4.42 shows the simulation results
from the test bench.
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Example 4.41 Verilog Test Bench for Simulating Module “logical”

module logical_tb ();

reg inputA, inputB, inputC;
reg [2:0] inputD;

integer i,j;

initial
begin

for (i=0; i<8; i=i+1)
begin

{inputA, inputB, inputC} = i;
for (j=0; j<8; j=j+1)

begin
inputD = j;
#10;

end
end

end

logical logical_inst (.inputA(inputA), .inputB(inputB), 
.inputC(inputC), .inputD(inputD), .outputA(outputA), 
.outputB(outputB), .outputC(outputC),
.outputD(outputD));

initial
begin

$monitor ("inputA %b inputB %b inputC %b inputD
%h outputA %b outputB %b outputC %b outputD
%h",inputA, inputB, inputC, inputD, outputA, outputB,
outputC, outputD);
end

endmodule

Example 4.42 Simulation Results for Verilog Test Bench 
Module “logical_tb”

inputA 0 inputB 0 inputC 0 inputD 0 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 1 outputA 0 outputB
0 outputC 1 outputD 0
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inputA 0 inputB 0 inputC 0 inputD 2 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 3 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 4 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 5 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 6 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 7 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 1 inputD 0 outputA 0 outputB
0 outputC 0 outputD 0
inputA 0 inputB 0 inputC 1 inputD 1 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 2 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 3 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 4 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 5 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 6 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 7 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 1 inputC 0 inputD 0 outputA 0 outputB
1 outputC 1 outputD 0
inputA 0 inputB 1 inputC 0 inputD 1 outputA 0 outputB
1 outputC 1 outputD 1
inputA 0 inputB 1 inputC 0 inputD 2 outputA 0 outputB
1 outputC 1 outputD 1
inputA 0 inputB 1 inputC 0 inputD 3 outputA 0 outputB
1 outputC 1 outputD 1
inputA 0 inputB 1 inputC 0 inputD 4 outputA 0 outputB
1 outputC 1 outputD 1
inputA 0 inputB 1 inputC 0 inputD 5 outputA 0 outputB
1 outputC 1 outputD 1
inputA 0 inputB 1 inputC 0 inputD 6 outputA 0 outputB
1 outputC 1 outputD 1
inputA 0 inputB 1 inputC 0 inputD 7 outputA 0 outputB
1 outputC 1 outputD 1
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inputA 0 inputB 1 inputC 1 inputD 0 outputA 0 outputB
1 outputC 0 outputD 0
inputA 0 inputB 1 inputC 1 inputD 1 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 2 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 3 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 4 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 5 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 6 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 7 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 0 inputD 0 outputA 0 outputB
1 outputC 1 outputD 0
inputA 1 inputB 0 inputC 0 inputD 1 outputA 0 outputB
1 outputC 1 outputD 1
inputA 1 inputB 0 inputC 0 inputD 2 outputA 0 outputB
1 outputC 1 outputD 1
inputA 1 inputB 0 inputC 0 inputD 3 outputA 0 outputB
1 outputC 1 outputD 1
inputA 1 inputB 0 inputC 0 inputD 4 outputA 0 outputB
1 outputC 1 outputD 1
inputA 1 inputB 0 inputC 0 inputD 5 outputA 0 outputB
1 outputC 1 outputD 1
inputA 1 inputB 0 inputC 0 inputD 6 outputA 0 outputB
1 outputC 1 outputD 1
inputA 1 inputB 0 inputC 0 inputD 7 outputA 0 outputB
1 outputC 1 outputD 1
inputA 1 inputB 0 inputC 1 inputD 0 outputA 0 outputB
1 outputC 0 outputD 0
inputA 1 inputB 0 inputC 1 inputD 1 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 1 inputD 2 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 1 inputD 3 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 1 inputD 4 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 1 inputD 5 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 1 inputD 6 outputA 0 outputB
1 outputC 0 outputD 1
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inputA 1 inputB 0 inputC 1 inputD 7 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 0 inputD 0 outputA 1 outputB
1 outputC 1 outputD 0
inputA 1 inputB 1 inputC 0 inputD 1 outputA 1 outputB
1 outputC 1 outputD 1
inputA 1 inputB 1 inputC 0 inputD 2 outputA 1 outputB
1 outputC 1 outputD 1
inputA 1 inputB 1 inputC 0 inputD 3 outputA 1 outputB
1 outputC 1 outputD 1
inputA 1 inputB 1 inputC 0 inputD 4 outputA 1 outputB
1 outputC 1 outputD 1
inputA 1 inputB 1 inputC 0 inputD 5 outputA 1 outputB
1 outputC 1 outputD 1
inputA 1 inputB 1 inputC 0 inputD 6 outputA 1 outputB
1 outputC 1 outputD 1
inputA 1 inputB 1 inputC 0 inputD 7 outputA 1 outputB
1 outputC 1 outputD 1
inputA 1 inputB 1 inputC 1 inputD 0 outputA 1 outputB
1 outputC 0 outputD 0
inputA 1 inputB 1 inputC 1 inputD 1 outputA 1 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 1 inputD 2 outputA 1 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 1 inputD 3 outputA 1 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 1 inputD 4 outputA 1 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 1 inputD 5 outputA 1 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 1 inputD 6 outputA 1 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 1 inputD 7 outputA 1 outputB
1 outputC 0 outputD 1

Referring to the simulation results shown in Example 4.42, note that 
the bus assignment to create outputD (assign outputD = {inputA,
inputB, inputC} && inputD;) has a logical function that has
outputD(0) at a logical 1 when any of inputA, inputB, inputC is a logical 1
AND any of the three bits of inputD is a logical 1.

4.8.8 Bitwise Operator

Bitwise operators are similar to logical operators except that bitwise opera-
tors operate on buses and return the logic result in bus form. For example, if
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a bitwise operator is used on two three-bit operands, the result of the opera-
tion would be a three-bit result. There are four types of bitwise operators:

1. & This is a bitwise-AND operator. It performs an AND function on
the operands to return a value that is equivalent in bus width to the
operands.

2. | This is a bitwise-OR operator. It performs an OR function on 
the operands to return a value that is equivalent in bus width to the
operands.

3. � This is a bitwise-NOT operator. It performs an inversion (NOT
function) on the operand to return a value that is equivalent in bus width
to the operands.

4. Ÿ This is a bitwise-XOR operator. It performs an XOR function on
the operands to return a value that is equivalent in bus width to the
operands.

Example 4.43 shows a Verilog code that uses bitwise operators.The diagram
in Figure 4.26 shows the synthesized logic for the Verilog code of Example
4.43.

Example 4.43 Verilog Code Using Bitwise Operators

module bitwise (inputA, inputB, inputC, inputD,
outputA, outputB, outputC, outputD, outputE);

input inputA, inputB, inputC;
input [2:0] inputD;

output outputA, outputB, outputC, outputE;
output [2:0] outputD;

wire outputA, outputB, outputC, outputE;
wire [2:0] outputD;

// for bitwise AND
assign outputA = inputA & inputB;

// for bitwise OR
assign outputB = inputA | inputB;

// for bitwise NOT
assign outputC = ~inputC;

// for bitwise XOR
assign outputE = inputA ^ inputB;
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// for vector format
assign outputD = {inputA, inputB, inputC} & inputD;

endmodule

Notice how the Verilog code of module “logical” in Example 4.40 that uses
logical operators (&&, ||, and ! operators) are somewhat similar to the Verilog
code of module “bitwise” in Example 4.43 that uses bitwise operators (&, |,
and � operators)? Although both the Verilog codes are identical (except the
operators), both would simulate and synthesize to relatively different results
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for outputD(2:0). The functionality for outputA, outputB, and outputC
remains the same for both Verilog codes in Examples 4.40 and Example 4.43.

Note: Logical operators (Example 4.40) do not have XOR function. Only
bitwise operators (Example 4.43) have XOR function. To obtain the bitwise
operator of XNOR, the symbol �Ÿ or Ÿ� can be used.

Referring to Figure 4.26, outputD(2:1) is not grounded, as is the case of 
the synthesized logic for logical operator shown in Figure 4.25. Therefore,
it is important for the designer to note that use of a bitwise operator 
(assign outputD = {inputA, inputB, inputC} & inputD;)
would create a result that has the same bus width as the operands.

Example 4.44 is a Verilog test bench that can be used to simulate the 
Verilog code of module “bitwise” in Example 4.43. Example 4.45 shows the
simulation results.

Example 4.44 Verilog Test Bench for Simulation of Verilog Code 
Module “bitwise”

module bitwise_tb ();

reg inputA, inputB, inputC;
reg [2:0] inputD;
wire outputA, outputB, outputC;
wire [2:0] outputD;

integer i,j;

initial
begin

for (i=0; i<8; i=i+1)
begin

{inputA, inputB, inputC} = i;
for (j=0; j<8; j=j+1)

begin
inputD = j;
#10;

end
end

end

bitwise bitwise_inst (.inputA(inputA), .inputB(inputB), 
.inputC(inputC), .inputD(inputD), .outputA(outputA), 
.outputB(outputB), .outputC(outputC),
.outputD(outputD));
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initial
begin

$monitor ("inputA %b inputB %b inputC %b inputD
%h outputA %b outputB %b outputC %b outputD
%h",inputA, inputB, inputC, inputD, outputA, outputB,
outputC, outputD);
end

endmodule

Example 4.45 Simulation Results for Verilog Test Bench Modulus
“bitwise_tb”

inputA 0 inputB 0 inputC 0 inputD 0 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 1 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 2 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 3 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 4 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 5 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 6 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 0 inputD 7 outputA 0 outputB
0 outputC 1 outputD 0
inputA 0 inputB 0 inputC 1 inputD 0 outputA 0 outputB
0 outputC 0 outputD 0
inputA 0 inputB 0 inputC 1 inputD 1 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 2 outputA 0 outputB
0 outputC 0 outputD 0
inputA 0 inputB 0 inputC 1 inputD 3 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 4 outputA 0 outputB
0 outputC 0 outputD 0
inputA 0 inputB 0 inputC 1 inputD 5 outputA 0 outputB
0 outputC 0 outputD 1
inputA 0 inputB 0 inputC 1 inputD 6 outputA 0 outputB
0 outputC 0 outputD 0
inputA 0 inputB 0 inputC 1 inputD 7 outputA 0 outputB
0 outputC 0 outputD 1
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inputA 0 inputB 1 inputC 0 inputD 0 outputA 0 outputB
1 outputC 1 outputD 0
inputA 0 inputB 1 inputC 0 inputD 1 outputA 0 outputB
1 outputC 1 outputD 0
inputA 0 inputB 1 inputC 0 inputD 2 outputA 0 outputB
1 outputC 1 outputD 2
inputA 0 inputB 1 inputC 0 inputD 3 outputA 0 outputB
1 outputC 1 outputD 2
inputA 0 inputB 1 inputC 0 inputD 4 outputA 0 outputB
1 outputC 1 outputD 0
inputA 0 inputB 1 inputC 0 inputD 5 outputA 0 outputB
1 outputC 1 outputD 0
inputA 0 inputB 1 inputC 0 inputD 6 outputA 0 outputB
1 outputC 1 outputD 2
inputA 0 inputB 1 inputC 0 inputD 7 outputA 0 outputB
1 outputC 1 outputD 2
inputA 0 inputB 1 inputC 1 inputD 0 outputA 0 outputB
1 outputC 0 outputD 0
inputA 0 inputB 1 inputC 1 inputD 1 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 2 outputA 0 outputB
1 outputC 0 outputD 2
inputA 0 inputB 1 inputC 1 inputD 3 outputA 0 outputB
1 outputC 0 outputD 3
inputA 0 inputB 1 inputC 1 inputD 4 outputA 0 outputB
1 outputC 0 outputD 0
inputA 0 inputB 1 inputC 1 inputD 5 outputA 0 outputB
1 outputC 0 outputD 1
inputA 0 inputB 1 inputC 1 inputD 6 outputA 0 outputB
1 outputC 0 outputD 2
inputA 0 inputB 1 inputC 1 inputD 7 outputA 0 outputB
1 outputC 0 outputD 3
inputA 1 inputB 0 inputC 0 inputD 0 outputA 0 outputB
1 outputC 1 outputD 0
inputA 1 inputB 0 inputC 0 inputD 1 outputA 0 outputB
1 outputC 1 outputD 0
inputA 1 inputB 0 inputC 0 inputD 2 outputA 0 outputB
1 outputC 1 outputD 0
inputA 1 inputB 0 inputC 0 inputD 3 outputA 0 outputB
1 outputC 1 outputD 0
inputA 1 inputB 0 inputC 0 inputD 4 outputA 0 outputB
1 outputC 1 outputD 4
inputA 1 inputB 0 inputC 0 inputD 5 outputA 0 outputB
1 outputC 1 outputD 4
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inputA 1 inputB 0 inputC 0 inputD 6 outputA 0 outputB
1 outputC 1 outputD 4
inputA 1 inputB 0 inputC 0 inputD 7 outputA 0 outputB
1 outputC 1 outputD 4
inputA 1 inputB 0 inputC 1 inputD 0 outputA 0 outputB
1 outputC 0 outputD 0
inputA 1 inputB 0 inputC 1 inputD 1 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 1 inputD 2 outputA 0 outputB
1 outputC 0 outputD 0
inputA 1 inputB 0 inputC 1 inputD 3 outputA 0 outputB
1 outputC 0 outputD 1
inputA 1 inputB 0 inputC 1 inputD 4 outputA 0 outputB
1 outputC 0 outputD 4
inputA 1 inputB 0 inputC 1 inputD 5 outputA 0 outputB
1 outputC 0 outputD 5
inputA 1 inputB 0 inputC 1 inputD 6 outputA 0 outputB
1 outputC 0 outputD 4
inputA 1 inputB 0 inputC 1 inputD 7 outputA 0 outputB
1 outputC 0 outputD 5
inputA 1 inputB 1 inputC 0 inputD 0 outputA 1 outputB
1 outputC 1 outputD 0
inputA 1 inputB 1 inputC 0 inputD 1 outputA 1 outputB
1 outputC 1 outputD 0
inputA 1 inputB 1 inputC 0 inputD 2 outputA 1 outputB
1 outputC 1 outputD 2
inputA 1 inputB 1 inputC 0 inputD 3 outputA 1 outputB
1 outputC 1 outputD 2
inputA 1 inputB 1 inputC 0 inputD 4 outputA 1 outputB
1 outputC 1 outputD 4
inputA 1 inputB 1 inputC 0 inputD 5 outputA 1 outputB
1 outputC 1 outputD 4
inputA 1 inputB 1 inputC 0 inputD 6 outputA 1 outputB
1 outputC 1 outputD 6
inputA 1 inputB 1 inputC 0 inputD 7 outputA 1 outputB
1 outputC 1 outputD 6
inputA 1 inputB 1 inputC 1 inputD 0 outputA 1 outputB
1 outputC 0 outputD 0
inputA 1 inputB 1 inputC 1 inputD 1 outputA 1 outputB
1 outputC 0 outputD 1
inputA 1 inputB 1 inputC 1 inputD 2 outputA 1 outputB
1 outputC 0 outputD 2
inputA 1 inputB 1 inputC 1 inputD 3 outputA 1 outputB
1 outputC 0 outputD 3
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inputA 1 inputB 1 inputC 1 inputD 4 outputA 1 outputB
1 outputC 0 outputD 4
inputA 1 inputB 1 inputC 1 inputD 5 outputA 1 outputB
1 outputC 0 outputD 5
inputA 1 inputB 1 inputC 1 inputD 6 outputA 1 outputB
1 outputC 0 outputD 6
inputA 1 inputB 1 inputC 1 inputD 7 outputA 1 outputB
1 outputC 0 outputD 7

The simulation results in Example 4.45 show that the bitwise operation per-
formed on the operands is done bit-by-bit. Basically, the Verilog code for the
vector format operation:

assign outputD = {inputA, inputB, inputC} & inputD;

is equivalent to:

assign outputD[2] = inputA & inputD [2];
assign outputD[1] = inputB & inputD [1];
assign outputD[0] = inputC & inputD [0];

4.8.9 Equality Operator

The equality operators are used for comparison of operands for equality. In
Verilog, there are two types of equality operators:

1. Logical equality is represented by the symbols “==” for equal and “!=”
for not equal.These symbols are often used in Verilog coding.The logical
equality can produce results that are either 0 (false), 1 (true), or X
(unknown). The result of X may occur when any of the operands used
have either an X (unknown) or Z (tri-state). If an operand A has a four-
bit value of “1001” and another operand B has a four-bit value of “1010,”
an operation of “A == B” would give a result of “0” (false). On the other
hand, an operation of “A != B” would give a result of “1” (true).

2. Case equality is represented by the symbols “===” for equal and “!==”
for not equal. The case equality always produces results that are either
a logic 1 (true) or logic 0 (false). It cannot produce a result that is X
(unknown). Case equality operators treat operands that have X or Z as
values just as it treats 0 and 1. If an operand A has a four-bit value of
“1xz0” and another operand B has a 4 bit value of “1xz0,” an operation
of “A === B” would give a result of “1” (true). On the other hand, an
operation of “A !== B” would give a result of “0” (false). Designers need
to take note that case equality operators are nonsynthesizable, as it
would be impossible to create logic that has the functionality of detect-
ing X (unknown) or Z (tristate) in the operands.
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Example 4.46 is a Verilog code that uses the logic equality operators. Figure
4.27 shows the synthesized logic for the Verilog code in Example 4.46.

Example 4.46 Verilog Code Using Logic Equality Operators

module logicequal (inputA, inputB, inputC, inputD,
outputA, outputB);

input inputA, inputB, inputC, inputD;
output outputA, outputB;

wire outputA, outputB;

assign outputA = (inputA == inputB);
assign outputB = (inputC != inputD);

endmodule

Example 4.47 shows a Verilog test bench that can be used to simulate the
Verilog code module “logicequal” of Example 4.46 that uses logic equality
operators. Example 4.48 shows the simulation results of the Verilog test bench
module “logicequal_tb.”

Example 4.47 Verilog Test Bench to Simulate Module “logicequal”

module logicequal_tb();

reg inputA, inputB, inputC, inputD;
wire outputA, outputB;
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integer i;

initial
begin

for (i=0; i<16; i=i+1)
begin

{inputA, inputB, inputC, inputD} = i;
#10;

end
end

logicequal logicequal_inst (.inputA(inputA),
.inputB(inputB),
.inputC(inputC), .inputD(inputD), .outputA(outputA), 
.outputB(outputB));

initial
begin

$monitor ("inputA %b inputB %b inputC %b inputD
%b outputA %b outputB %b", inputA, inputB, inputC,
inputD, outputA, outputB);
end

endmodule

Example 4.48 Simulation Results of Verilog Test Bench Module
“logicequal_tb”

inputA 0 inputB 0 inputC 0 inputD 0 outputA 1 outputB 0
inputA 0 inputB 0 inputC 0 inputD 1 outputA 1 outputB 1
inputA 0 inputB 0 inputC 1 inputD 0 outputA 1 outputB 1
inputA 0 inputB 0 inputC 1 inputD 1 outputA 1 outputB 0
inputA 0 inputB 1 inputC 0 inputD 0 outputA 0 outputB 0
inputA 0 inputB 1 inputC 0 inputD 1 outputA 0 outputB 1
inputA 0 inputB 1 inputC 1 inputD 0 outputA 0 outputB 1
inputA 0 inputB 1 inputC 1 inputD 1 outputA 0 outputB 0
inputA 1 inputB 0 inputC 0 inputD 0 outputA 0 outputB 0
inputA 1 inputB 0 inputC 0 inputD 1 outputA 0 outputB 1
inputA 1 inputB 0 inputC 1 inputD 0 outputA 0 outputB 1
inputA 1 inputB 0 inputC 1 inputD 1 outputA 0 outputB 0
inputA 1 inputB 1 inputC 0 inputD 0 outputA 1 outputB 0
inputA 1 inputB 1 inputC 0 inputD 1 outputA 1 outputB 1
inputA 1 inputB 1 inputC 1 inputD 0 outputA 1 outputB 1
inputA 1 inputB 1 inputC 1 inputD 1 outputA 1 outputB 0
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4.8.10 Reduction Operator

Reduction operators have the same functionality as that of logical operators
except that reduction operators operate on the bits of the operand itself. The
results obtained from reduction operators are single bit. The different types
of reduction operators allowed in Verilog:

1. & – reduction AND operation
2. | – reduction OR operation
3. Ÿ – reduction XOR operation
4. �& – reduction NAND operation
5. �| – reduction NOR operation
6. �Ÿ – reduction XNOR operation

Example 4.49 is a Verilog code that uses reduction operators. Figure 4.28 shows
the synthesized logic for the Verilog code in Example 4.49.
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Example 4.49 Verilog Code Using Reduction Operators

module reduction (inputA, inputB, inputC, outputA,
outputB, outputC);

input [3:0] inputA, inputB, inputC;
output outputA, outputB, outputC;

wire outputA, outputB, outputC;

// for reduction AND
assign outputA = &inputA;

// for reduction OR
assign outputB = |inputB;

// for reduction XOR
assign outputC = ^inputC;

endmodule

Example 4.50 shows a Verilog test bench that can be used to simulate the
Verilog code module “reduction” of Example 4.49. Example 4.51 shows the
simulation results.

Example 4.50 Verilog Test Bench for Simulating Module “reduction”

module reduction_tb ();

reg [3:0] inputA, inputB, inputC;
wire outputA, outputB, outputC;

integer i;

initial
begin

for (i=0; i<16; i=i+1)
begin

inputA = i;
inputB = i;
inputC = i;
#10;

end
end
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reduction reduction_inst (.inputA(inputA),
.inputB(inputB), .inputC(inputC), .outputA(outputA),
.outputB(outputB), .outputC(outputC));

initial
begin

$monitor ("inputA %h inputB %h inputC %h outputA
%b outputB %b outputC %b", inputA, inputB, inputC,
outputA, outputB, outputC);
end

endmodule

Example 4.51. Simulation Results of Verilog Test Bench Module
“reduction_tb”

inputA 0 inputB 0 inputC 0 outputA 0 outputB 0 outputC 0
inputA 1 inputB 1 inputC 1 outputA 0 outputB 1 outputC 1
inputA 2 inputB 2 inputC 2 outputA 0 outputB 1 outputC 1
inputA 3 inputB 3 inputC 3 outputA 0 outputB 1 outputC 0
inputA 4 inputB 4 inputC 4 outputA 0 outputB 1 outputC 1
inputA 5 inputB 5 inputC 5 outputA 0 outputB 1 outputC 0
inputA 6 inputB 6 inputC 6 outputA 0 outputB 1 outputC 0
inputA 7 inputB 7 inputC 7 outputA 0 outputB 1 outputC 1
inputA 8 inputB 8 inputC 8 outputA 0 outputB 1 outputC 1
inputA 9 inputB 9 inputC 9 outputA 0 outputB 1 outputC 0
inputA a inputB a inputC a outputA 0 outputB 1 outputC 0
inputA b inputB b inputC b outputA 0 outputB 1 outputC 1
inputA c inputB c inputC c outputA 0 outputB 1 outputC 0
inputA d inputB d inputC d outputA 0 outputB 1 outputC 1
inputA e inputB e inputC e outputA 0 outputB 1 outputC 1
inputA f inputB f inputC f outputA 1 outputB 1 outputC 0

4.8.11 Relational Operator

Relational operators are similar to equality operators except that relational
operators return the compared result of relational value of equality. The result
from using a relational operator is one bit. There are four types of relational
operators:

1. Greater than This is represented by the symbol “>”. It returns a
result of value “1” (true) if an operand is conditionally greater in value
than the other. If operand A has a value of 5, the condition “A > 3” would
yield a result of 1, because the operand A is greater than 3.

VERILOG OPERATORS 117



2. Less than This is represented by the symbol “<”. It returns a result
of value “1” (true) if an operand is conditionally lesser in value than the
other. If operand A has a value of 5, the condition “A < 3” would yield
a result of 0, because the operand A is greater than 3.

3. Greater than or equal This is represented by the symbol “>=”. It
returns a result of value “1” (true) if an operand is conditionally greater or
equal in value compared with the other. If operand A has a value of 3, the
condition “A >= 3” would yield a result of 1, because the operand A is 3.

4. Less than or equal This is represented by the symbol “<=”. It returns
a result of value “1” (true) if an operand is conditionally lesser or equal
in value compared with the other. If operand A has a value of 3, the con-
dition “A <= 3” would yield a result of 1, because the operand A is 3.

Example 4.52 is a Verilog code that uses relational operators and Example
4.53 is a Verilog test bench that can be used for simulation.

Example 4.52 Verilog Code Using Relational Operators

module relational (inputA, inputB, inputC, inputD,
outputA, outputB, outputC, outputD, outputE, outputF,
outputG, outputH);

input [1:0] inputA, inputB, inputC, inputD;
output outputA, outputB, outputC, outputD, outputE,
outputF, outputG, outputH;

wire outputA, outputB, outputC, outputD, outputE,
outputF, outputG, outputH;

assign outputA = (inputA > 1);
assign outputB = (inputB < 2);
assign outputC = (inputC >= 1);
assign outputD = (inputD <= 2);

assign outputE = (inputA > inputB);
assign outputF = (inputB < inputC);
assign outputG = (inputC >= inputD);
assign outputH = (inputB <= inputD);

endmodule

Example 4.53 Verilog Test Bench for Simulation of Module “relational”

module relational_tb();
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reg [1:0] inputA, inputB, inputC, inputD;
wire outputA, outputB, outputC, outputD, outputE,
outputF, outputG, outputH;

integer i,j;

initial
begin

for (i=0; i<4; i=i+1)
begin

inputA = i;
inputB = (3-i);
for (j=0; j<4; j=j+1)
begin

inputC = j;
inputD = (3-j);
#10;

end
end

end

relational relational_inst (.inputA(inputA),
.inputB(inputB), .inputC(inputC), .inputD(inputD),
.outputA(outputA), .outputB(outputB),
.outputC(outputC), .outputD(outputD),
.outputE(outputE), .outputF(outputF),
.outputG(outputG), .outputH(outputH));

endmodule

Figure 4.29 shows the waveforms from the Verilog test bench simulation
module “relational_tb.”

Referring to the waveform in Figure 4.29:

1. assign outputA = (inputA > 1); outputA is at logic “1” (clock 9 to
clock 16) when inputA has a value of either “2” or “3”. This means that
outputA is a logic “1” when the values at inputA is greater than “1”,
which is “2” or “3”.

2. assign outputB = (inputB < 2); outputB is at logic “1” (clock 9 to
clock 16) when inputB has a value of either “0” or “1”. This means that
outputB is a logic “1” when the values at inputB is less than “2”, which
is “1” or “0”.

3. assign outputC = (inputC >= 1); outputC is at logic “1” when inputC
has a value of either “1”, “2”, or “3”. This means that outputC is a logic
“1” when the values at inputC is greater than or equal to “1”.
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4. assign outputD = (inputD <= 2); outputD is at logic “1” when
inputD has a value of either “0”, “1”, or “2”. This means that outputD is
a logic “1” when the values at inputD is less then or equal to “2”.

5. assign outputE = (inputA > inputB); outputE is at logic “1” (clock
9 to clock 16) when:
• inputA has a value of “2” and inputB has a value of “1” (clock 9 to

clock 12)
• inputA has a value of “3” and inputB has a value of “0” (clock 13 to

clock 16)
This means that outputE is a logic “1” when inputA is greater than
inputB.

6. assign outputF = (inputB < inputC); outputF is at logic “1” when:
• inputB has a value of “2” and inputC has a value of “3” (clock 8)
• inputB has a value of “1” and inputC has a value of “2” or “3” (clock

11, clock 12)
• inputB has a value of “0” and inputC has a value of “1”, “2”, or “3”

(clock 14, clock 15, clock 16)
This means that outputF is a logic “1” when inputB is less than 
inputC
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7. assign outputG = (inputC >= inputD); outputG is at logic “1” when:
• inputC has a value of “2” and inputD has a value of “1” (clock 3, clock

7, clock 11, clock 15)
• inputC has a value of “3” and inputD has a value of “0” (clock 4, clock

8, clock 12, clock 16)

This means that outputG is a logic “1” when inputC is greater than
inputD. However, the relational symbol used is “>=” (greater than 
or equal), but the Verilog test bench does not have a stimulus vector 
that tests for the condition of inputC = inputD. This is a good example
of an incomplete test bench because the test bench does not have 
stimulus to check for all conditions. It is important for the designer to
note that, when writing Verilog test bench to check for a design, it is
crucial that the designer tests for all the possible conditions that may
occur.

8. assign outputH = (inputB <= inputD); outputH is at logic “1” when:
• inputB has a value of “3” and inputD has a value of “3” (clock 1)
• inputB has a value of “2” and inputD has a value of “3” (clock 5)
• inputB has a value of “2” and inputD has a value of “2” (clock 6)
• inputB has a value of “1” and inputD has a value of “3” (clock 9)
• inputB has a value of “1” and inputD has a value of “2” (clock 10)
• inputB has a value of “1” and inputD has a value of “1” (clock 11)
• inputB has a value of “0” and inputD has a value of “3” (clock 13)
• inputB has a value of “0” and inputD has a value of “2” (clock 14)
• inputB has a value of “0” and inputD has a value of “1” (clock 15)
• inputB has a value of “0” and inputD has a value of “0” (clock 16)

This means that outputH is a logic “1” when inputB is less than or equal to
inputD.

4.9 LATCH INFERENCE

When coding in Verilog, the designer needs to be careful to ensure that
unwanted latches are not inferred. The condition of inferring unwanted 
latches often occurs when the designer uses “if ” or “case” statements that are
incomplete.

Example 4.54 is a Verilog code that uses an “if” statement to create 
combinational logic. However, because not all possible conditions are 
defined in the “if ” statement, the value of outputA is maintained or latched
for these undefined conditions.This is referred to as “inference of an unwanted
latch.”
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Example 4.54 Verilog Code Using “if” Statement Inferring 
Unwanted Latch

module latch_infer (inputA, inputB, inputC, inputD,
outputA);

input inputA, inputB, inputC, inputD;
output outputA;

reg outputA;

always @ (inputA or inputB or inputC or inputD)
begin

if (inputA & inputB)
begin

if (inputC | ~inputD)
outputA = 1'b1;

else
outputA = 1'bZ;

end
end

endmodule

Figure 4.30 shows a diagram for the synthesized logic module “latch_infer”
in Example 4.54. The unwanted latch is inferred because the “if” statement
that was used in Example 4.54, “if (inputA & inputB),” does not specify all
other possible conditions. Therefore, the Verilog code executes the nested “if”
statement when “inputA” and “inputB” are both at logical “1”. But if either
“inputA” or “inputB” is not at logical “1”, there are no Verilog statements to
direct the output signal outputA. This means that the previous output value
at outputA is maintained. In other words, a latch is inferred.
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Example 4.55 shows a Verilog code that is the same as the code for 
module “latch_infer” in Example 4.54 except it has an “else” statement to
direct the output value of outputA if either “inputA” or “inputB” is not at
logical “1”.

Example 4.55 Verilog Code Using “if” Statement That Does Not Infer
Unwanted Latch

module latch_noninfer (inputA, inputB, inputC, inputD,
outputA);

input inputA, inputB, inputC, inputD;
output outputA;

reg outputA;

always @ (inputA or inputB or inputC or inputD)
begin

if (inputA & inputB)
begin

if (inputC | ~inputD)
outputA = 1'b1;

else
outputA = 1'bZ;

end
else

outputA = 1'b0;
end

endmodule

The Verilog code for module “latch_noninfer” does not infer an unwanted
latch, because all the possible conditions are specified. Therefore, the designer
needs to remember that when coding in Verilog for synthesis, all possible con-
ditions need to be specified. Figure 4.31 shows a diagram for the synthesized
logic module “latch_noninfer” in Example 4.55.

Referring to Figures 4.30 and 4.31, notice how both the Verilog codes 
are synthesized to relatively different logic with only an additional “else”
statement.

Apart from “if ” statements, “case” statements may also cause conditions
where unwanted latch is inferred. If a “case” statement is used, but does not
declare all the possible conditions of the case statement, a latch will be
inferred. Example 4.56 shows a Verilog code for module “case_infer,” which
uses the “case” statement but does not define all the possible conditions of the
“case” statement.
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Example 4.56 Verilog Code for Incomplete “case” Statement

module case_infer (inputA, inputB, select, outputA);

input inputA, inputB ;
input [1:0] select;
output outputA;

reg outputA;

always @ (inputA or inputB or select)
begin

case (select)
2'b00: outputA = inputA;
2'b01: outputA = inputB;

endcase
end

endmodule

Figure 4.32 shows a diagram for the synthesized logic module “case_infer.”
Notice how a latch is inferred at outputA.

The inferred latch occurs in module “case_infer” because the Verilog code
of the “case” statement does not specify the output signal value of outputA
when select is a value other than “00” or “01”. This would cause the previous
value of outputA to be kept when select is neither “00” or “01”.

A simple solution to the Verilog code of module “case_infer” would be 
to add a “default” condition in the “case” statement. The “default”
condition would have outputA driven at logic “0” when select is neither “00”
or “01”.
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Example 4.57 Verilog Code Utilizing “default” Condition for 
“case” Statement

module case_uninfer_diff (inputA, inputB, select,
outputA);

input inputA, inputB ;
input [1:0] select;
output outputA;

reg outputA;

always @ (inputA or inputB or select)
begin

case (select)
2'b00: outputA = inputA;
2'b01: outputA = inputB;
default: outputA = 1'b0;

endcase
end

endmodule

Figure 4.33 shows a diagram of the synthesized logic module
“case_uninfer_diff.” Notice that the synthesized logic no longer has a 
latch.
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Apart from using the “default” condition as shown in the Verilog code of
module “case_uninfer_diff,” inference of a latch can also be avoided by specif-
ing all the possible conditions of “select.”

Example 4.58 Verilog Code Using “case” Statement with All 
Conditions Specified

module case_uninfer (inputA, inputB, select, outputA);

input inputA, inputB ;
input [1:0] select;
output outputA;

reg outputA;

always @ (inputA or inputB or select)
begin

case (select)
2'b00: outputA = inputA;
2'b01: outputA = inputB;
2'b10: outputA = 1'b0;
2'b11: outputA = 1'b0;

endcase
end
endmodule

Module “case_uninfer” of Example 4.58 and module “case_uninfer_diff”
of Example 4.57 both synthesizes to the same logic and has the same 
functionality.
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The Verilog code shown in Examples 4.56, 4.57, and 4.58 uses the “case”
statement to obtain multiplexer functionality within an “always” block. The
same functionality can be obtained by using a conditional operator.

Example 4.59 Verilog Code to Obtain Multiplexer Functionality Using
Conditional Operator

module case_uninfer_assign (inputA, inputB, select,
outputA);

input inputA, inputB ;
input [1:0] select;
output outputA;

wire outputA;

assign outputA = select[1] ? 1'b0 : select[0] ? inputB
: inputA;

endmodule

4.10 MEMORY ARRAY

When coding in Verilog for synthesis, sometimes a designer may want to code
a memory array. Coding a memory array is common in behavioral coding and
synthesizable coding, but for synthesis, the memory array may be limited to
only a small array.

In synthesis, when a one-bit memory cell is coded, it is synthesized to a 
multiplexer and a flip-flop. Representation of a one-bit memory cell with a
multiplexer and a flip-flop is definitely a waste of silicon real estate. However,
even though a memory cell is rather large in terms of die area, it is still
common for a designer to code a memory array provided that the array is
small. A good example would be when a designer needs a small set of regis-
ters to store certain values. Or a designer may also code a memory array for
synthesis when designing a microcontroller or microprocessor that may need
a small register file.

Figure 4.34 shows a diagram of a synthesized logic for a one-bit 
memory cell. Synthesizing a large array of memory cells is a waste of 
silicon area. However, synthesizing memory cells is rather simple when 
coding in synthesizable Verilog compared with schematic capturing of the
same array.

Example 4.60 shows a Verilog code for a 1-kilobyte memory module that
is synthesizable. However, the designer can take note that, although the
Verilog code is simple and easy, synthesis of the code may take several minutes
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longer than it does on other simple Verilog code, because this short piece of
code synthesizes to 1 kilobyte of memory.

Example 4.60 Verilog Code for a 1-kilobyte Memory Array

module memory (addr, data_in, data_out, write, read,
clock, reset);

// 1kbyte memory module - 128 address x 8 bits

input [6:0] addr;
input [7:0] data_in;
input write, read, clock, reset;
output [7:0] data_out;

reg [7:0] data_out;
reg [7:0] memory [127:0];

integer i;

// asynchronous reset
always @ (posedge clock or posedge reset)
begin

if (reset)
begin
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data_out = 0;
// to initialize all memory to zero
for (i=0; i<128; i=i+1)

memory[i] <= 0;
end

else
begin

if (read)
data_out <= memory [addr];

else if (write)
begin

data_out <= 0;
memory [addr] <= data_in;

end
end

end

endmodule

Example 4.61 shows a Verilog test bench that can be used to simulate the
memory module shown in Example 4.60.

Example 4.61 Verilog Test Bench Module “memory_tb” to Simulate
Module “memory”

module memory_tb ();

reg [6:0] address, addr;
reg [7:0] data, data_in;
reg write, read, clock, reset;
wire [7:0] data_out;

parameter cycle = 20;

integer i;

initial
begin

addr = 0;
reset = 0;
read = 0;
write = 0;
data_in = 0;
clock = 0;
forever #20 clock = ~clock;

end
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initial
begin

// for reset
reset = 0;
#cycle;
reset = 1;
#cycle;
reset = 50;
#cycle;

for (i=10; i<15; i=i+1)
begin

address = i;
data = i;
memory_write (address, data);
#cycle;

end

for (i=14; i>=10; i=i-1)
begin

address = i;
memory_read (address);
#cycle;

end
$stop;

end

task memory_write;
input [7:0] data;
input [6:0] address;
begin

addr = address;
data_in = data;
write = 0;
#cycle;
write = 1;
read = 0;
repeat (2) #cycle;
write = 0;
#cycle;
$display ("Completed writing data %h at address

%h", data_in, addr);
end
endtask
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task memory_read;
input [6:0] address;
begin

read = 0;
addr = address;
data_in = 0;
#cycle;
read = 1;
repeat (2) #cycle;
read = 0;
#cycle;
$display ("Completed reading memory at address

%h. Data is %h", addr, data_out);
end
endtask

memory memory_inst (addr, data_in, data_out, write,
read, clock, reset);

endmodule

Figure 4.35 is a diagram showing the waveform results of Verilog test bench
module “memory_tb.”

Referring to Figure 4.35:
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1. On rising edge of clock 1, 3, 5, 6, 8, 10, 11, and 13, read and write is at
logical “0”. No reading or writing to memory occurs.

2. On rising edge of clock 2, 4, 7, 9, and 12, write is at a logical “1”. A
memory write occurs at address addr(6:0) with data data_in(7:0).
• On rising edge of clock 2, addr(6:0) = “A”, data_in(7:0) = “A”,

write = ‘1’ Æ memory write at address “A” with data “A”.
• On rising edge of clock 4, addr(6:0) = “B”, data_in(7:0) = “B”,

write = “1” Æ memory write at address “B” with data “B”.
• On rising edge of clock 7, addr(6:0) = “C”, data_in(7:0) = “C”,

write = “1” Æ memory write at address “C” with data “C”.
• On rising edge of clock 9, addr(6:0) = “D”, data_in(7:0) = “D”,

write = “1” Æ memory write at address “D” with data “D”.
• On rising edge of clock 12, addr(6:0) = “E”, data_in(7:0) = “E”,

write = “1” Æ memory write at address “E” with data “E”.
3. On rising edge of clock 15, 16, 18, 20, 21, 23, and 25 read and write is at

logical “0”. No reading or writing to memory occurs.
4. On rising edge of clock 14, 17, 19, 22, and 24, read is at a logical “1”. A

memory read occurs at address addr(6:0) and output data_out(7:0) is
driven with data from the memory module.
• On rising edge of clock 14, addr(6:0) = “E”, read = “1” Æ memory

read at address “E”. Data read is “E” and is shown on data_out(7:0).
• On rising edge of clock 17, addr(6:0) = “D”, read = “1” Æ memory

read at address “D”. Data read is “D” and is shown on data_out(7:0).
• On rising edge of clock 19, addr(6:0) = “C”, read = “1” Æ memory

read at address “C”. Data read is “C” and is shown on data_out(7:0).
• On rising edge of clock 22, addr(6:0) = “B”, read = “1” Æ memory

read at address “B”. Data read is “B” and is shown on data_out(7:0).
• On rising edge of clock 24, addr(6:0) = “A”, read = “1”Æ memory read

at address “A”. Data read is “A” and is shown on data_out(7:0).

4.11 STATE MACHINE DESIGN

A frequent design found in almost all types of digital design is a state machine.
It is easy to design and gives the designer great flexibility when the designer
needs to tweak the design either for speed or area optimization. Most syn-
thesis tools in the market have special options to allow a designer to synthe-
size a state machine design. These options allow the designer to easily choose
the form of state machine implementation, whether a binary encoding, gray
encoding, or one hot encoding.

A state machine is always coded using a “case” statement. This statement
allows for multiple conditions to be made for different decisions.
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Designs that normally consist of a state machine are designs that have a
fixed amount of known states, meaning that there is a fixed amount of states,
with each state having its own functionality to perform.

Note: Most synthesis tools, such as Synopsys’s Design Compiler, have special
built-in algorithms for synthesizing state machine design (Synopsys’s Design
Compiler has a built-in Finite State Machine Compiler that is specially used for
synthesizing and tweaking state machine). These special algorithm allow the
designer to choose different types of encoding as well as different types of opti-
mization to obtain the most optimal synthesis result, either in the form of area
or performance.To have a better understanding of how Synopsys’s Design Com-
piler (or rather Finite State Machine Compiler) can be used for optimizing state
machine-based designs, please refer to VHDL Coding and Logic Synthesis with
Synopsys, by Weng Fook Lee, published by Academic Press.

4.11.1 Intelligent Traffic Control System

A good example of a design that can be coded in state machine format is that
of an intelligent traffic control system.A traffic control system has only certain
fixed conditions to fulfill in order to control the traffic lights that control traffic
flow.

Figure 4.36 shows an interchange junction of four roads. Traffic crossing the
interchange junction needs to be regulated by a traffic light system in order
to enable a smooth and safe interchange crossing for motorized vehicles. Now,
assume that a design is needed to control the traffic light system.
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Referring to Figure 4.36, the interchange junction has four sets of traffic
lights, S1_S3, S2_S4, S1T_S3T, and S2T_S4T. These four sets of traffic lights
allow four different passes on the interchange junction.

Figure 4.37 shows a possible scenario whereby the traffic lights of set S1_S3
are GREEN while all others are RED.

Figure 4.38 shows a possible second scenario whereby the traffic lights of
set S2_S4 are GREEN while all others are RED.

Figure 4.39 shows a possible third scenario whereby the traffic lights of set
S1T_S3T are GREEN while all others are RED.

Figure 4.40 shows a possible fourth scenario whereby the traffic lights of
set S2T_S4T are GREEN while all others are RED.

Figures 4.37 through 4.40 show the possible passes through the interchange
junction. Apart from the four sets of traffic lights of S1_S3, S2_S4, S1T_S3T,
and S2T_S4T, there are present eight sensors, M1S, M1T, M2S, M2T, M3S,
M3T, M4S, and M4T. Each sensor is strategically located in each road to sense
whether there are any cars in queue. For example, if there are cars queuing to
turn from road S2T or road S4T (as shown in Fig. 4.40), the sensor M2T would
sense that cars are queuing at road S2T (or cars are queuing at road S4T,
respectively). Similarly, the same for the other sensors. Sensors M1S would
sense for cars queuing at road S1, M1T would sense for cars queuing at road
S1T, sensor M2S would sense for cars queuing at road S2 and so forth. These
eight sensors together with an external timer would allow for the building
block of an “intelligent” traffic light system.
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Based on the requirements stated, an interface block is created that defines
the input and output signals of the traffic system controller. Figure 4.41 shows
a figure of the input and outputs signals for the traffic light controller. Table
4.3 shows a description of the functions of each interface signal.
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TABLE 4.3. Interface Signal Description for Traffic Light Controller

Signal Name Direction Description

clock Input Clock input to the state machine

reset Input Reset signal to “reset” the state machine to a known state

M1S Input Sensor to sense for cars queuing in road S1

M2S Input Sensor to sense for cars queuing in road S2

M3S Input Sensor to sense for cars queuing in road S3

M4S Input Sensor to sense for cars queuing in road S4

M1T Input Sensor to sense for cars queuing in road S1T

M2T Input Sensor to sense for cars queuing in road S2T

M3T Input Sensor to sense for cars queuing in road S3T

M4T Input Sensor to sense for cars queuing in road S4T

timerGreen Input Input signal from a timer that times out after certain 
period to “inform” the state machine to change from 
GREEN to YELLOW

timerYellow Input Input signal from a timer that times out after certain 
period to “inform” the state machine to change from 
YELLOW to RED

timerRed Input Input signal from a timer that times out after certain 
period to “inform” the state machine to change from 
RED to GREEN (assuming there is traffic)

S1_S3 Output Two-bit bus that controls the traffic lights for road S1
and S3.
“01”—GREEN
“10”—YELLOW
“11”—RED

S2_S4 Output Two-bit bus that controls the traffic lights for road S2
and S4.
“01”—GREEN
“10”—YELLOW
“11”—RED

S1T_S3T Output Two-bit bus that controls the traffic lights for road S1T
and S3T.
“01”—GREEN
“10”—YELLOW
“11”—RED

S2T_S4T Output Two-bit bus that controls the traffic lights for road S2T
and S4T.
“01”—GREEN
“10”—YELLOW
“11”—RED



Note: The inputs timerGreen, timerYellow, and timerRed are assumed to be
generated from an external timer module that allows the traffic light controller
to “know” that the allocated time period for the traffic lights at GREEN,
YELLOW, or RED is exhausted and the traffic lights are to switch colors. It is
also assumed that this timer module takes the inputs from the eight sensors to
allow it to automatically determine if a certain traffic light should be at GREEN,
YELLOW, or RED for a longer or shorter period of time before switching to
another color.

Based on the interface signals as shown in Table 4.3 as well as the different
conditions shown in Figures 4.37 through 4.40, a state diagram is drawn to
reflect all the possible conditions or situations that may happen. The traffic
light state machine controller must be able to handle all of the possible con-
ditions. Figure 4.42 shows the state diagram for the traffic light state machine
controller.

From Figure 4.42, each of the state transitions are represented by the fol-
lowing conditions:

A = timerRed=1 & (M3S=1 | M1S=1)
B = timerRed=1 & M1S=0 & M3S=0 & (M1T=1 | M3T=1)
C = timerRed=1 & M1S=0 & M3S=0 & M1T=0 & M3T=0 &
(M2S=1 | M4S=1)
D = timerRed=1 & M1S=0 & M3S=0 & M1T=0 & M3T=0 &
M2S=0 & M4S=0 & (M2T=1 | M4T=1)
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E = timerRed=1 & (M1T=0 & M3T=0) &(M2S=0 & M4S=0) &
(M2T=1 | M4T=1)
F = timerRed=1 & (M1T=0 & M3T=0 & M2S=0 & M4S=0 &
M2T=0 & M4T=0 & (M1S=1 | M3S=1))
G = timerRed=1 & (M1T=0 & M3T=0) & (M2S=1 |  M4S=1)
H = timerRed=1 & (M1T=1 | M3T=1)
I = timerRed=1 & M2S=0 & M4S=0 & M2T=0 & M4T=0 &
M1S=0 & M3S=0 & (M1T=1 | M3T=1)
J = timerRed=1 & M2S=0 & M4S=0 & M2T=0 & M4T=0 &
(M1S=1 | M3S=1)
K = timerRed=1 & (M2S=1 | M4S=1)
L = timerRed=1 & M2S=0 & M4S=0 & (M2T=1 | M4T=1)
M = timerRed=1 & (M2T=1 | M4T=1)
N = timerRed=1 & M2T=0 & M4T=0 & (M1S=1 | M3S=1)
P = timerRed=1 & M2T=0 & M4T=0 & M1S=0 & M3S=0 &
(M1T=1 | M3T=1)
Q = timerRed=1 & M2T=0 & M4T=0 & M1S=0 & M3S=0 &
M1T=0 & M3T=0 & (M2S=1 | M4S=1)

Referring to Figure 4.42:

1. STATE1, STATE4, STATE7, STATE10 – all traffic lights are RED.
2. In STATE1, there are four possible state transitions:

• State transition A occurs when timerRed is at logic “1” AND either
sensor M1S OR M3S is at logic “1” (timerRed=1 & (M3S=1 |
M1S=1)). This means that state transition A occurs when the allo-
cated period for the traffic lights at RED is exhausted and there are
cars queuing either at road S1 or S3.

• State transition B occurs when timerRed is at logic “1” AND sensor
M1S, M2S is at logical “0” AND either sensor M1T OR M3T is at
logic “1” (timerRed=1 & M1S=0 & M3S=0 & (M1T=1 | M3T=1).
This means that state transition B occurs when the allocated period
for the traffic lights at RED is exhausted and there are cars queuing
either at road S1T or S3T and there are no cars queuing at road S1
and S3.

• State transition C occurs when timerRed is at logic “1” AND sensor
M1S, M3S, M1T, M3T is at logical “0” AND either sensor M2S or
M4S at logic “1” (timerRed=1 & M1S=0 & M3S=0 & M1T=0 &
M3T=0 & (M2S=1 | M4S=1)). This means that state transition C
occurs when the allocated period for the traffic lights at RED is
exhausted and there are cars queuing either at road S2 or S4 and
there are no cars queuing at road S1, S3, S1T, and S3T.

• State transition D occurs when timerRed is at logic “1” AND sensors
M1S, M3S, M1T, M3T, M2S, and M4S are at logic “0” AND either
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sensor M2T OR M4T is at logic “1” (timerRed=1 & M1S=0 & M3S=0
& M1T=0 & M3T=0 & M2S=0 & M4S=0 & (M2T=1 | M4T=1)).
This means that state transition D occurs when the allocated period
for the traffic lights at RED is exhausted and there are cars queuing
either at road S2T or S4T and there are no cars queuing at road S1,
S3, S1T, S3T, S2, and S4.

3. In STATE2, the traffic lights on road S1 and road S3 are GREEN.
STATE2 will transition to STATE3 when timerGreen is at logical “1”
(the allocated period for the traffic lights at GREEN is exhausted).

4. In STATE3, the traffic lights on road S1 and road S3 is YELLOW.
STATE3 will transition to STATE4 when timerYellow is at logical “1”
(the allocated period for the traffic lights at YELLOW is exhausted).

5. In STATE4, there are four possible state transitions.

• State transition E occurs when timerRed is at logic “1” AND sensor
M1T, M3T, M2S, M4S is at logic “0” AND either sensor M2T OR
M4T is at logic “1” (timerRed=1 & (M1T=0 & M3T=0) & (M2S=0
& M4S=0) & (M2T=1 | M4T=1)). This means that state transition E
occurs when the allocated period for the traffic lights at RED is
exhausted and there are cars queuing either at road S2T or road S4T
and there are no cars queuing at road S1T, S3T, S2, and S4.

• State transition F occurs when timerRed is at logic “1” AND sensor
M1T, M3T, M2S, M4S, M2T, and M4T is at logic “0” AND either
sensor M1S OR M3S is at logic “1” (timerRed=1 & (M1T=0 &
M3T=0 & M2S=0 & M4S=0 & M2T=0 & M4T=0 & (M1S=1 |
M3S=1)).This means that state transition F occurs when the allocated
period for the traffic lights at RED is exhausted and there are cars
queuing either at road S1 or road S3 and there are no cars queuing
at road S1T, S3T, S2, S4, S2T, and S4T.

• State transition G occurs when timerRed is at logic “1” AND sensor
M1T and M3T is at logic “0” AND either sensor M2S OR M4S is at
logic “1” (timerRed=1 & (M1T=0 & M3T=0) & (M2S=1 | M4S=1)).
This means that state transition G occurs when the allocated period
for the traffic lights at RED is exhausted and there are cars queuing
either at road S2 or road S4 and there are no cars queuing at road
S1T and S3T.

• State transition H occurs when timerRed is at logic “1” AND either
sensor M1T OR M3T is at logic “1” (timerRed=1 & (M1T=1 |
M3T=1)). This means that state transition H occurs when the allo-
cated period for the traffic lights at RED is exhausted and there are
cars queuing at road S1T or road S3T.

6. In STATE5, the traffic lights on road S1T and road S3T are GREEN.
STATE5 will transition to STATE6 when timerGreen is at logical “1”
(the allocated period for the traffic lights at GREEN is exhausted).
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7. In STATE6, the traffic lights on road S1T and road S3T is YELLOW.
STATE6 will transition to STATE7 when timerYellow is at logical “1”
(the allocated period for the traffic lights at YELLOW is exhausted).

8. In STATE7, there are four possible state transitions.
• State transition I occurs when timerRed is at logic “1” AND sensor

M2S, M4S, M2T, M4T, M1S, and M3S is at logic “0” AND either
sensor M1T OR M3T is at logic “1” (timerRed=1 & M2S=0 & M4S=0
& M2T=0 & M4T=0 & M1S=0 & M3S=0 & (M1T=1 | M3T=1)).
This means that state transition I occurs when the allocated period
for the traffic lights at RED is exhausted and there are cars queuing
at road S1T or road S3T and there are no cars queuing at road S2,
S4, S2T, S4T, S1, and S3.

• State transition J occurs when timerRed is at logic “1” AND sensor
M2S, M4S, M2T and M4T is at logic “0” AND either sensor M1S
OR M2S is at logic “1” (timerRed=1 & M2S=0 & M4S=0 & M2T=0
& M4T=0 & (M1S=1 | M3S=1)). This means that state transition J
occurs when the allocated period for the traffic lights at RED is
exhausted and there are cars queuing at road S1 or road S3 and there
are no cars queuing at road S2, S4, S2T, and S4T.

• State transition K occurs when timerRed is at logic “1” AND either
sensor M2S OR M4S is at logic “1” (timerRed=1 & (M2S=1 |
M4S=1)). This means that state transition K occurs when the allo-
cated period for the traffic lights at RED is exhausted and there are
cars queuing at road S2 or road S4.

• State transition L occurs when timerRed is at logic “1” and sensor
M2S and M4S is at logic “0” AND either sensor M2T OR M4T is at
logic “1” (timerRed=1 & M2S=0 & M4S=0 & (M2T=1 | M4T=1)).
This means that state transition L occurs when the allocated period
for the traffic lights at RED is exhausted and there are cars queuing
at road S2T or road S4T and there are no cars queuing at road S2
and S4.

9. In STATE8, the traffic lights on road S2 and road S4 are GREEN.
STATE8 will transition to STATE9 when timerGreen is at logical “1”
(the allocated period for the traffic lights at GREEN is exhausted).

10. In STATE9, the traffic lights on road S2 and road S4 is YELLOW.
STATE9 will transition to STATE10 when timerYellow is at logical “1”
(the allocated period for the traffic lights at YELLOW is exhausted).

11. In STATE10, there are four possible state transitions:
• State transition M occurs when timerRed is at logic “1” AND either

sensor M2T OR M4T is at logic “1” (timerRed=1 & (M2T=1 |
M4T=1)). This means that state transition M occurs when the allo-
cated period for the traffic lights at RED is exhausted and there are
cars queuing at road S2T or road S4T.
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• State transition N occurs when timerRed is at logic “1” AND sensor
M2T and M4T is at logic “0” AND either sensor M1S OR M3S is at
logic “1” (timerRed=1 & M2T=0 & M4T=0 & (M1S=1 | M3S=1)).
This means that state transition N occurs when the allocated period
for the traffic lights at RED is exhausted and there are cars queuing
at road S1 or road S3 and there are no cars queuing at road S2T and
road S4T.

• State transition P occurs when timerRed is at logic “1” AND sensor
M2T, M4T, M1S, and M3S are at logic “0” AND either sensor M1T
OR M3T is at logic “1” (timerRed=1 & M2T=0 & M4T=0 & M1S=0
& M3S=0 & (M1T=1 | M3T=1)). This measn that state transition P
occurs when the allocated period for the traffic lights at RED is
exhausted and there are cars queuing at road S1T or road S3T and
there are no cars queuing at road S2T, S4T, S1, and S3.

• State transition Q occurs when timerRed is at logic “1” AND sensor
M2T, M4T, M1S, M3S, M1T, and M3T are at logic “0” AND either
sensor M2S or M4S is at logic “1” (timerRed=1 & M2T=0 & M4T=0
& M1S=0 & M3S=0 & M1T=0 & M3T=0 & (M2S=1 | M4S=1)). This
means that state transition Q occurs when the allocated period for
the traffic lights at RED is exhausted and there are cars queuing at
road S2 or road S4 and there are no cars queuing at road S2T, S4T,
S1, S3, S1T, or S3T.

12. In STATE11, the traffic lights on road S2T and road S4T are GREEN.
STATE11 will transition to STATE12 when timerGreen is at logical “1”
(the allocated period for the traffic lights at GREEN is exhausted).

13. In STATE12, the traffic lights on road S2T and road S4T are YELLOW.
STATE12 will transition to STATE1 when timerYellow is at logical “1”
(the allocated period for the traffic lights at YELLOW is exhausted).

Based on the state diagram shown in Figure 4.42 and the interface pins
shown in Figure 4.41 and described in Table 4.3, synthesizable Verilog code is
written. Example 4.62 shows the Verilog code.

Example 4.62 Synthesizable Verilog Code for Traffic Light State 
Machine Controller

module state_machine (timerGreen, timerYellow,
timerRed, M1S, M2S, M3S, M4S, M1T, M2T, M3T, M4T,
clock, reset, S1_S3, S2_S4, S1T_S3T, S2T_S4T);

input timerGreen, timerYellow, timerRed, M1S, M2S,
M3S, M4S; 
input M1T, M2T, M3T, M4T;
input clock, reset;
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parameter [1:0] GREEN = 1,
YELLOW = 2,
RED = 3;

output [1:0] S1_S3, S2_S4, S1T_S3T, S2T_S4T;

parameter [3:0] STATE1 = 1,
STATE2 = 2,
STATE3 = 3,
STATE4 = 4,
STATE5 = 5,
STATE6 = 6,
STATE7 = 7,
STATE8 = 8,
STATE9 = 9,
STATE10 = 10,
STATE11 = 11,
STATE12 = 12;

reg [3:0] present_state, next_state;

always @ (timerGreen or timerYellow or timerRed or M1S
or M2S or M3S or M4S or M1T or M2T or M3T or M4T)
begin

case (present_state)
STATE1:

begin
if (timerRed & (M3S | M1S))

next_state = STATE2;
else if (timerRed & ~M1S & ~M3S & 
(M1T | M3T))

next_state = STATE5;
else if (timerRed & ~M1S & ~M3S & 
~M1T & ~M3T & (M2S | M4S))

next_state = STATE8;
else if (timerRed & ~M1S & ~M3S & 
~M1T & ~M3T & ~M2S & ~M4S & (M2T | 
M4T)) next_state = STATE11;
else

next_state = STATE1;
end

STATE2:
begin

if (timerGreen)
next_state = STATE3;
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else
next_state = STATE2;

end
STATE3:

begin
if (timerYellow) 

next_state = STATE4;
else

next_state = STATE3;
end

STATE4:
begin

if (timerRed & ~M1T & ~M3T & ~M2S 
& ~M4S & (M2T | M4T))

next_state = STATE11;
else if (timerRed & ~M1T & ~M3T & 
~M2S & ~M4S & ~M2T & ~M3T & (M1S | 
M3S)) next_state = STATE2;
else if (timerRed & ~M1T & ~M3T & 
(M2S | M4S))

next_state = STATE8;
else if (timerRed & (M1T | M3T))

next_state = STATE5;
else

next_state = STATE4;
end

STATE5:
begin

if (timerGreen)
next_state = STATE6;

else
next_state = STATE5;

end
STATE6:

begin
if (timerYellow)

next_state = STATE7;
else

next_state = STATE6;
end

STATE7:
begin

if (timerRed & ~M2S & ~M4S & ~M2T 
& ~M4T & ~M1S & ~M3S & (M1T | 
M3T)) next_state = STATE5;
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else if (timerRed & ~M2S & ~M4S & 
~M2T & ~M4T & (M1S | M3S))
next_state = STATE2;

else if (timerRed & (M2S | M4S))
next_state = STATE8;

else if (timerRed & ~M2S & ~M4S & 
(M2T | M4T))
next_state = STATE11;

else
next_state = STATE7;

end
STATE8:

begin
if (timerGreen)

next_state = STATE9;
else

next_state = STATE8;
end

STATE9:
begin

if (timerYellow)
next_state = STATE10;

else
next_state = STATE9;

end
STATE10:

begin
if (timerRed & (M2T | M4T))

next_state = STATE11;
else if (timerRed & ~M2T & ~M4T & 

(M1S | M3S))
next_state = STATE2;

else if (timerRed & ~M2T & ~M4T & 
~M1S & ~M3S & (M1T | M3T))
next_state = STATE5;

else if (timerRed & ~M2T & ~M4T & 
~M1S & ~M3S & ~M1T & ~M3T & 
(M2S | M4S)) next_state = STATE8;
else

next_state = STATE10;
end

STATE11:
begin

if (timerGreen)
next_state = STATE12;
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else
next_state = STATE11;

end
STATE12:

begin
if (timerYellow)

next_state = STATE1;
else

next_state = STATE12;
end

default:
next_state = STATE1;

endcase
end

// creation of state flops

always @ (posedge clock or posedge reset)
begin

if (reset)
present_state <= STATE1;

else
present_state <= next_state;

end

// assignment of output signals

assign S1_S3 = (present_state == STATE2) ? GREEN :
(present_state == STATE3) ? YELLOW : RED;

assign S1T_S3T = (present_state == STATE5) ? GREEN :
(present_state == STATE6) ? YELLOW : RED;

assign S2_S4 = (present_state == STATE8) ? GREEN :
(present_state == STATE9) ? YELLOW : RED;

assign S2T_S4T = (present_state == STATE11) ? GREEN :
(present_state == STATE12) ? YELLOW : RED;

endmodule

With the synthesizable Verilog code as shown in Example 4.62, a Verilog
test bench is written to simulate the design module state_machine.
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Example 4.63 Verilog Test Bench to Simulate Design Module
state_machine

module state_machine_tb ();

parameter [1:0] GREEN = 1,
YELLOW = 2,
RED = 3;

reg timerGreen, timerYellow, timerRed;
reg M1S, M2S, M3S, M4S, M1T, M2T, M3T, M4T;
reg clock, reset;
wire [1:0] S1_S3, S2_S4, S1T_S3T, S2T_S4T;

initial
begin

clock = 0;
forever #10 clock = ~clock;

end

initial
begin

timerGreen = 0;
timerYellow = 0;
timerRed = 0;
M1S = 0;
M2S = 0;
M3S = 0;
M4S = 0;
M1T = 0;
M2T = 0;
M3T = 0;
M4T = 0;
reset = 0;
#100;
reset = 1;
#100;
reset = 0;
#100;

end

initial
begin

#200; // to wait for reset to be over
// car going straight from S1 to S3;
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M1S = 1;
#100;
// car going straight from S4 to S2;
M1S = 0;
M4S = 1;
#200;
// car turning from S1 to S3 and S2 to S4
M4S = 0;
M1T = 1;
M2T = 1;
#180;
// cars from M2T cleared up but M1T still queuing
M2T = 0;
#180;
// car going straight from S2
M1T = 0;
M2S = 1;
#150;
// no more cars
M2S = 0;
#100 $stop;

end

// to force the inputs of timerGreen, timerYellow and
timerRed always @ (reset or S1_S3 or S2_S4 or S1T_S3T
or S2T_S4T)
begin

if (reset)
begin

timerGreen = 0;
timerYellow = 0;
timerRed = 0;

end
else

begin
if ((S1_S3 == GREEN) | (S2_S4 == GREEN) | 

(S1T_S3T == GREEN) | (S2T_S4T == GREEN))
begin

timerRed = 0;
#90;
timerGreen = 1;

end
else if ((S1_S3 == YELLOW) | (S2_S4 == 

YELLOW) | (S1T_S3T == YELLOW) | 
(S2T_S4T == YELLOW))
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begin
timerGreen = 0;
#30;
timerYellow = 1;

end
else if ((S1_S3 == RED) | (S2_S4 == RED) | 

(S1T_S3T == RED) | (S2T_S4T == RED))
begin

timerYellow = 0;
#30;
timerRed = 1;

end
end

end

state_machine state_machine_inst (timerGreen,
timerYellow, timerRed, M1S, M2S, M3S, M4S, M1T, M2T,
M3T, M4T, clock, reset, S1_S3, S2_S4, S1T_S3T,
S2T_S4T);

initial
begin

$monitor ("timerGreen %h timerYellow %h timerRed
%h M1S %b M2S %b M3S %b M4S %b M1T %b M2T %b M3T %b
M4T %b S1_S3 %h S2_S4 %h S1T_S3T %h S2T_S4T
%h",timerGreen, timerYellow, timerRed, M1S, M2S, M3S,
M4S, M1T, M2T, M3T, M4T, S1_S3, S2_S4, S1T_S3T,
S2T_S4T);
end

endmodule

Note: The Verilog test bench is written to show the reader how a test bench
can be written to simulate the design module state_machine. It can always be
written in some other manner that can achieve the same objective.Also take note
that the test bench only simulates a small portion of the conditions of the traffic
light state machine controller.

Figure 4.43 shows the simulation waveform result of the test bench
state_machine_tb.
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CHAPTER FIVE

Design Example of
Programmable Timer

Chapter 3 explained the basic concept of Verilog, and Chapter 4 showed 
some common known coding methods that are used in synthesis. Chapter 5
shows an example of how a real-life practical design can be achieved,
beginning from design specification, architectural definition, coding, and 
verification.

The example discussed in Chapter 5 is a design of a programmable timer.
Timers are common design modules in almost all types of system. The design
of the programmable timer begins with a design specification for its features
and capabilities.

5.1 PROGRAMMABLE TIMER DESIGN SPECIFICATION

The programmable timer is an eight-bit timer that allows  three different
modes, a one-shot timer, a pulse generator, and a 50% duty cycle waveform
generator. For each mode, a certain value can be loaded into the timer before
the timer begins clocking. The timer can determine which mode to operate in
by using an internal register. This internal register is referred to as “control
word register.” The control word register is a three-bit register with the MSB
bit representing “timer enable” and bit 1 and bit 0 represents the mode of
operation.

Referring to Figure 5.1:
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1. Timer enable—this bit if set to a “1” would enable the timer.
2. Mode of operation:

• Mode “00”—one-shot timer. In this mode, the timer is loaded with an
eight-bit binary value. A three-bit value of “100” (timer enable and
operate in mode 0) is written into the control word register of the
timer. The timer then begins to count up through each rising edge of
clock. When the timer reaches a hex value of “FF”, the output of the
timer generates a one-clock-width pulse. The timer would then over-
write its MSB of the control word register to a “0” and the timer would
stop. To  continue the one-shot timer, the MSB of the control word
register would need to be rewritten to a value of “1”.

• Mode “01”—pulse generator. In this pulse generator mode, the timer
is loaded with an eight-bit binary value. A three-bit value of “101”
(timer enable and operation in mode 1) is written into the control word
register of the timer. The timer then begins to count up through each
rising edge of clock. When the timer reaches a hex value of “FF”, the
output of the timer would generate a one-clock-width pulse. The timer
is then automatically reloaded again with the initial value that was
loaded into the timer and the count begins again. Unlike mode 0,
the MSB of the control word register is not overwritten with a “0”.The
timer in this mode does not stop unless the user writes a “0” to the
MSB of the control word register or if ceb is pulled to a logic “1”.

• Mode “10”—50% duty cycle waveform generator. In this waveform
generator mode, the timer is loaded with an eight-bit binary value. A
three-bit value of “110” (timer enable and operation in mode 2) is
written into the control word register of the timer. Unlike mode 0 or
1, the timer would count down and not count up. When the timer
reaches a hex value that is half of the loaded value, the output of the
timer would generate a logic “1”. The timer continues to count down
and when it reaches a hexadecimal value of “00”, the timer would be
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reloaded automatically with the initial loaded value and count down
again. Similar to mode 1, the timer in this mode does not stop unless
the user writes a “0” to the MSB of the control word register or if ceb
is pulled to a logic “1”.
In mode 2 of operation, the output of the timer would oscillate
between 0 and 1 whenever the timer reaches half of the value loaded
into the timer. This would create a waveform generator that has 50%
duty cycle.

• Mode “11”—not used.

Apart from the control word register, the programmable timer has an eight-
bit latch and an eight-bit counter. The eight-bit latch allows a user to latch in
a certain binary value.This value is then loaded into the eight-bit counter when
the programmable timer is enabled.

With these requirements in mind, an interface specification is defined for
the input and output signals.

Table 5.1 shows the signal description for each of the input and output port
for the programmable timer design as shown in Figure 5.2.

5.2 MICROARCHITECTURE DEFINITION FOR PROGRAMMABLE TIMER

Based on the design specification from Section 5.1, a microarchitecture can be
derived for the design. The requirements of a control word register would
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TABLE 5.1. Signal description for programmable timer design

Signal Direction Description

reset input reset pin that allows the programmable timer to be reset
to a known state.

ceb input chip enable pin. When at logic “0” would enable the 
programmable timer.

write input write pin allows data to be written into the control word
register when the pin is at logic “1”. The data at bits 2 to 
0 of data_in(7:0) is written to the three-bit register of 
control word register.

load input load pin allows data at data_in(7:0) to be loaded into 
the programmable timer. The data loaded would be the
starting point of the count up/down when the
programmable timer is enabled.

data_in(7:0) input eight-bit bus that is the input for data for the 
programmable timer.

data_out output a one-bit output pin that is the output from the 
programmable timer.

clk input clock input



point to the need of a three-bit register, with each bit being able to control the
programmable timer. Because the programmable timer is eight bits wide, there
must be an eight-bit counter that is able to count up or count down depend-
ing on the mode of execution. A decoder is also needed to decode the output
of the eight-bit counter (depending on the mode of execution) to generate an
output waveform for the programmable timer. Figure 5.3 shows a microar-
chitectural block diagram of the programmable timer design.

Referring to Figure 5.3, the programmable timer microarchitecture is par-
titioned into four major portions:
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1. latch. This is an eight-bit latch to latch in the value that is loaded into
the counter as the starting point for the counter to count up/down.

2. CWR. This is the control word register, which is a three-bit register that
determines if the counter is enabled and what mode to enable the
counter in.

3. counter. This is an eight-bit counter that counts up/down depending on
which mode the programmable timer is operating in.

4. decoder. This is a decoder that decodes the output of the counter to gen-
erate the output for the programmable timer.

5.3 FLOW DIAGRAM DEFINITION FOR PROGRAMMABLE TIMER

Before synthesizable Verilog code is written for the programmable timer, a
designer should always spend some time drawing a flow diagram to represent
the process flow of the design. Such a diagram can be very useful when the
designer starts to write the Verilog code for the design.

The designer does not need to restrict himself/herself to only using flow dia-
grams. The designer can choose to draw state diagrams, bubble diagrams, or
even pseudocode, depending on which is more suitable.

Figure 5.4 shows a flow diagram that covers the conditions that the user can
use to load binary data into the programmable timer or writing data into the
control word register.

Referring to Figure 5.4:

1. When ceb and load are at logic “0” while write is at logic “1”, the data
from data_in bits 2 to 0 are written into the control word register.
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2. When ceb and write are at logic “0” while load is at logic “1”, the data
from data_in are written into latch_counter. This is an eight-bit register
in the programmable timer that is used to store the value that is loaded
into the counter. The counter in the programmable timer will count up
or down (depending on mode of operation) using this value in the
latch_counter as the starting count. Furthermore, in mode 1 and mode
2 operation of the programmable timer, automatic reload of the counter
is required. Therefore, some form of storage is required for the initial
data.

3. When ceb is at logic “1”, latch_counter and control word register are
reset.

Figure 5.5 shows the flow diagram for resetting the programmable timer
when a rising edge is detected at the reset signal. Notice that during reset, the
variables flag_counter, counter, and flag_half_counter are reset. These vari-
ables are flags used in the design of the programmable timer for different
modes that it is able to operate in. How these variable are used is shown in
the flow diagrams in Figures 5.6, 5.7, and 5.8.

Referring to Figure 5.6:

1. At positive edge of clk, bit 2 of control word register is checked for a
logic value of “1” (logic value “1” on bit 2 indicates the programmable
timer is enabled). If it is, then bit 1 and 0 of control word register is
checked for a value of “00” (bits 1 and 0 indicates the mode of opera-
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tion for the programmable timer). If it is, a flag called flag_counter is
checked for a logic value of “0” (flag_counter is used to indicate that the
value in the latch_counter register is loaded into the counter). If it is, the
value in the latch_counter registers are loaded into the counter and the
flag_counter is set to a logic “1”.

2. If control word register is detected at a value of “100” and flag_counter
is at logic “1”, the counter is checked for a value of “ff”. If it is, then bit
2 of control word register is reset and flag_counter is also reset. If the
counter is at a value other than “ff”, the counter is incremented by 1.

Figure 5.7 shows a flow diagram (continue from flow diagram of Figure 5.6)
for programmable timer at mode 1 execution.

Referring to Figure 5.7:

1. From the connecter for Mode1 from Figure 5.6, bits 1 and 0 of control
word register are checked for logic value of “01” (bits 1 and 0 indicate
the mode of operation for the programmable timer). If the logic value
is “01”, a flag called flag_counter is checked for a logic value of “0”
( flag_counter is used to indicate that the value in the latch_counter reg-
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ister is loaded into the counter). If it is, the value in the latch_counter
registers are loaded into the counter and flag_counter is set to a logic
“1”.

2. If control word register is detected at a value of “101” and flag_counter
is at logic “1”, the counter is checked for a value of “ff”. If it is,
flag_counter is reset. The counter would then be incremented by 1. If the
counter has a value other than “ff”, the counter is incremented by 1.

Figure 5.8 shows a flow diagram (continue from flow diagram of Figure 5.7)
for a programmable timer at mode 2 execution.

Referring to Figure 5.8:
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1. From the connecter for mode 2 from Figure 5.7, bits 1 and 0 of control
word register are checked for a logic value of “10” (bits 1 and 0 indicate
the mode of operation for the programmable timer). If the logic value
is “10”, a flag called flag_counter is checked for a logic value of “0”
(the flag_counter is used to indicate that the value in the latch_counter
register has been loaded into the counter). If it is, the value in the
latch_counter registers is loaded into the counter and flag_counter is set
to logic “1”.

2. If control word register is detected at a value of “110” and flag_counter
is at logic “1”, the counter is checked for a value that is half of the value
stored in latch_counter. If it is, flag_half_counter is set to the inverse of
its previous value. The counter would then be decremented by 1. If the
counter has a value other than half of the value stored in latch_counter,
the counter is then checked for a value of 0. If it is not 0, then the counter
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would be decremented by 1. However if the counter is at a value of 0,
then flag_counter is reset.

The flow diagrams in Figures 5.6, 5.7, and 5.8 show three different flow dia-
grams that allow the programmable timer to execute its three different modes.
Figure 5.9 shows the conditions of decodings of the counter to create the nec-
essary output for the programmable timer.

Referring to Figure 5.9, decoding to obtain the output data_out as a logic
“1” occurs:

a. when the counter reaches a value of “ff” and bits 1 and 0 of control word
register are decoded as “00” and flag_counter is “1”;

b. when the counter reaches a value of “ff” and bits 1 and 0 of control word
register are decoded as “01”;

c. when the control word register is decoded as “10” and flag_half_counter
is decoded as “1”.

Note: Decoding to generate the output data_out uses signal flag_counter only
when the programmable timer is in mode 0 execution. During mode 0 execu-
tion (one-shot mode), the programmable timer only creates one pulse and then
is disabled. For this reason, the data_out is decoded with flag_counter, which 
is reset to logic “0” when the counter reaches a value of “ff”.
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5.4 VERILOG CODE FOR PROGRAMMABLE TIMER

Based on the specifications and flow diagrams shown in Sections 5.1, 5.2 
and 5.3, Verilog code is written for the programmable timer (as shown in
Example 5.1).

Note: The Verilog code shown in Example 5.1 is not entirely synthesizable.
However, the code shown is a simulation that will give the correct results with
reference to the requirements of the programmable timer based on the specifi-
cation in Section 5.1, the microarchitecture definition in Section 5.2, and the flow
diagrams in Section 5.3. What this example is trying to point out is that design-
ers need to be careful when writing Verilog code (or VHDL code) for synthe-
sis. Very often, inexperienced designers write code that would simulate to give
the right simulation results but would synthesize to some garbage circuits or,
even worse, would not synthesize at all. Example 5.1 is one such example. It is
a piece of Verilog code that looks correct and simulates correctly but will not
synthesize.Why Example 5.1 is not synthesizable is discussed in detail in Section
5.5. Can you detect which part of the code in Example 5.1 is causing the code
to be nonsynthesizable? For the time being, let’s assume that the code in
Example 5.1 is synthesizable.

Example 5.1 Verilog Code for Programmable Timer

module prog_counter (
reset, ceb, write, data_in, clk,
load, data_out);

input reset;
input ceb, write, load;
input [7:0] data_in;
input clk;

output data_out;

// to declare the control word 
reg [2:0] control_word_register;

// to declare counter with 8 bits
reg [7:0] counter;
reg [7:0] latch_counter;

// flag for first clk pulse after loading in value of
// counter 
reg flag_counter;
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// flag for half count cycle
reg flag_half_counter;

// to write control word into counter 
// for control_word, bit 2 represent enable, bits 1 
// and 0
// represent counter mode
// this also latches in the counter value

always @ (ceb or write or reset or load or data_in)
begin

if (~ceb & write & ~load & ~reset)
control_word_register = data_in [2:0];

else if (~ceb & ~write & load & ~reset)
latch_counter = data_in;

else if (ceb & ~reset)
begin

// reset the control word counter
control_word_register = 0;
// reset the latch_counter
latch_counter = 0;

end
end

// to count for counter

always @ (posedge clk or posedge reset)
begin

if (reset)
begin

flag_counter <= 0;
counter <= 0;
flag_half_counter <= 0;

end
else
begin

if (control_word_register[2]) // counter is 
// enabled
begin

if (control_word_register[1:0] == 2'b00) 
// this is for one shot mode
begin

if (~flag_counter)
begin
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counter <= latch_counter;
flag_counter <= 1;
end

else
begin
if (counter == 8'hff)

begin
// to stop counter for 
// one shot mode
control_word_register[2] <= 0;
flag_counter <= 0;
end

else
counter <= counter + 1;

end
end
else if (control_word_register[1:0] == 
2'b01) // this is for waveform 
// generator
begin

if (~flag_counter)
begin

counter <= latch_counter;
flag_counter <= 1;

end
else

begin
if (counter == 8’hff)

flag_counter <= 0;
counter <= counter + 1;

end
end
else if (control_word_register[1:0] == 
2'b10) // this is for 50% duty cycle
// waveform generator
begin

if (~flag_counter)
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begin
counter <= latch_counter;
flag_counter <= 1;

end
else

begin
if (counter == {1'b0, 
latch_counter[7:1]})

begin
flag_half_counter <= 
~flag_half_counter;
counter <= counter - 1;

end
else

if (counter == 0)
flag_counter <= 0;

else
counter <= counter - 1;

end
end

end
end

end

assign data_out = (
((counter == 8'hff) & (control_word_
register [1:0] == 2'b00) & 
flag_counter) |
((counter == 8'hff) & (control_word_
register [1:0] == 2'b01)) |
(flag_half_counter & (control_word_ 
register [1:0] == 2'b10))

);

endmodule

Example 5.2 shows a test bench that is used to simulate the Verilog code
of the programmable timer executing in mode 0.

Example 5.2 Verilog Test Bench to Simulate Programmable Timer
Executing in Mode 0

module prog_counter_tb ();

reg reset, ceb, write, clk, load;
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reg [7:0] data_in;
wire data_out;

reg [7:0] data;

parameter cycle = 50;

initial
begin

clk = 0;
forever #cycle clk = ~clk;

end

initial
begin

reset = 0;
ceb = 1;
write = 0;
load = 0;
data_in = 0;
#cycle
// setting for reset to 1
reset = 1;
repeat (3) #cycle;
reset = 0;
#cycle;

// to set ceb to low to enable chip
ceb = 0;
#cycle;

// load values into the counter

data = 8'hf0;
load_counter(data);

// write values into control word register
// to enable counter and to put counter in mode 0
// which is a one shot mode

data = 8'b00000100;
write_cwr(data);

#3000;
$stop;
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end

task write_cwr;
input [7:0] data;
begin

write = 1;
data_in = data;
repeat (2) #cycle;
write = 0;
data_in = 0;
#cycle;

end
endtask

task load_counter;
input [7:0] data;
begin

load = 1;
data_in = data;
repeat (2) #cycle;
load = 0;
data_in = 0;
#cycle;

end
endtask

prog_counter prog_counter_inst (reset, ceb, write,
data_in, clk, load, data_out);

endmodule

Figure 5.10 shows the simulation waveform for the Verilog test bench used
to simulate the programmable timer at mode 0 execution.

Referring to Figure 5.10:

1. In clock 1 and clock 2, reset signal is at logic “1”. This resets the counter,
flag_counter, and flag_half_counter.

2. In clock 3, ceb goes to logic “0” to enable the programmable timer.
3. In clock 4, load signal is at logic “1”. This would load the value “f0” at

the data_in bus to the latch_counter.
4. In clock 5, write signal is at logic “1”. This will write the value “4” at the

data_in bus to the control word register.
5. In clock 6, write and load is at logic “0”, while control word register is

at a value of “100”. Bits 1 and 0 decode the operation of programmable
timer in mode 0. Bit 2 decodes the enabling of the programmable timer.
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Therefore, at clock 6, the value of latch_counter is loaded into the
counter, thereby having the counter at a value of “f0”. During clock 6,
the signal flag_counter is driven to logic “1”.

6. From clock 7 to clock 20, the counter would increment by 1 during every
rising edge of clock.

7. In clock 21, the counter reaches a value of “ff”. This is decoded to create
an output on data_out with a logic “1”.

8. In clock 22, bit 2 of control word register is reset to a logic “0”. This
would disable the programmable timer. At the same time flag_counter
is also reset.

Note: The signal flag_counter is created as a flag to signify that the counter
has already been loaded with the value from the latch_counter. This flag is then
used together with the counter value and control word register bits 1 and 0 to
decode for the output data_out.

Also, note that in mode 0, the programmable timer functions as a one-shot
device. Once the output data_out drives a pulse, it would then stop. The pro-
grammable timer will need to be enabled again by writing a command to the
control word register to enable the programmable timer.

VERILOG CODE FOR PROGRAMMABLE TIMER 167

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

clk

ceb

control
word
register[2:0]

0 4 0

f00
latch_counter

f0 f1 f2 f3 f4 f5 f6 f70

0

counter f8 f9 fa fb fc fd fe ff

f0 0 4 0

flag_counter

flag_half_counter

load
reset

write

data_out

data_in

FIGURE 5.10. Diagram showing simulation results of Verilog test bench for mode 0.



Example 5.3 shows a test bench that is used to simulate the Verilog code
of the programmable timer executing in mode 1.

Example 5.3 Verilog Test Bench to Simulate Programmable Timer
Executing in Mode 1

module prog_counter_tb ();

reg reset, ceb, write, clk, load;
reg [7:0] data_in;
wire data_out;

reg [7:0] data;

parameter cycle = 50;

initial
begin

clk = 0;
forever #cycle clk = ~clk;

end

initial
begin

reset = 0;
ceb = 1;
write = 0;
load = 0;
data_in = 0;
#cycle
// setting for reset to 1
reset = 1;
repeat (3) #cycle;
reset = 0;
#cycle;

// to set ceb to low to enable chip
ceb = 0;
#cycle;

// load values into the counter

data = 8'hfa;
load_counter(data);
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// write values into control word register
// to enable counter and to put counter in mode 1
// which is a pulse waveform generator

data = 8'b00000101;
write_cwr(data);

#3000;
$stop;

end

task write_cwr;
input [7:0] data;
begin

write = 1;
data_in = data;
repeat (2) #cycle;
write = 0;
data_in = 0;
#cycle;

end
endtask

task load_counter;
input [7:0] data;
begin

load = 1;
data_in = data;
repeat (2) #cycle;
load = 0;
data_in = 0;
#cycle;

end
endtask

prog_counter prog_counter_inst (reset, ceb, write,
data_in, clk, load, data_out);

endmodule

Figure 5.11 shows the simulation waveform for the Verilog test bench used
to simulate the programmable timer at mode 1 execution.

Referring to Figure 5.11:

1. In clock 1 and clock 2, reset signal is at logic “1”. This resets the counter,
flag_counter, and flag_half_counter.
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2. In clock 3, ceb goes to logic “0” to enable the programmable timer.
3. In clock 4, load signal is at logic “1”. This would load the value “fa” at

the data_in bus to the latch_counter.
4. In clock 5, write signal is at logic “1”. This will write the value “5” at the

data_in bus to the control word register.
5. In clock 6, write and load is at logic “0”, while control word register is

at a value of “101”. Bits 1 and 0 decode the operation of the program-
mable timer in mode 1. Bit 2 decodes to enabling of programmable
timer. At clock 6, the value of latch_counter is loaded into the counter,
thereby having the counter at a value of “fa”. During clock 6, the signal
flag_counter is driven to logic “1”.

6. From clock 7 to clock 11, the counter would increment by 1 during every
rising edge of clock.

7. At clock 11, the counter reaches the value of “ff”. This counter value is
decoded to create the output data_out to be at logic “1”. During this
clock, the signal flag_counter is reset to 0. However, the flag_counter
does not go to a logic “0” immediately in clock 11, but instead would go
to a logic “0” in clock 12. This occurs because in clock 11, when the
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counter is at the value of “ff”, the flag_counter is assigned the value of
logic “0”. And this assignment will take place on the next clock (the
signal is flopped).

8. Clock 12 have the flag_counter at a logic value of “0”.
9. In clock 13, the counter is automatically reloaded with the value “fa” in

the latch_counter. Signal flag_counter is at logic value of “1” and the
steps from clock 7 is repeated. This will continue until:
a. a reset happens
b. ceb goes back to logic “1”
c. a new value is written into the control word register

Note: For mode 1 of operation, the timer automatically reloads the counter
everytime flag_counter switches from logic “0” to logic “1”. Therefore, the
output waveform at data_out is a pulse generator.

Example 5.4 shows a test bench that is used to simulate the Verilog code
of the programmable timer executing in mode 2.

Example 5.4 Verilog Test Bench to Simulate Programmable Timer
Executing in Mode 2

module prog_counter_tb ();

reg reset, ceb, write, clk, load;
reg [7:0] data_in;
wire data_out;

reg [7:0] data;

parameter cycle = 50;

initial
begin

clk = 0;
forever #cycle clk = ~clk;

end

initial
begin

reset = 0;
ceb = 1;
write = 0;
load = 0;
data_in = 0;
#cycle
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// setting for reset to 1
reset = 1;
repeat (3) #cycle;
reset = 0;
#cycle;

// to set ceb to low to enable chip
ceb = 0;
#cycle;

// load values into the counter

data = 8'h05;
load_counter(data);

// write values into control word register
// to enable counter and to put counter in mode 2
// which is a 50% duty cycle waveform generator

data = 8'b00000110;
write_cwr(data);

#3000;
$stop;

end

task write_cwr;
input [7:0] data;
begin

write = 1;
data_in = data;
repeat (2) #cycle;
write = 0;
data_in = 0;
#cycle;

end
endtask

task load_counter;
input [7:0] data;
begin

load = 1;
data_in = data;
repeat (2) #cycle;
load = 0;
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data_in = 0;
#cycle;

end
endtask

prog_counter prog_counter_inst (reset, ceb, write,
data_in, clk, load, data_out);

endmodule

Figure 5.12 shows the simulation waveform for the Verilog test bench used
to simulate the programmable timer at mode 2 execution.

Referring to Figure 5.12:

1. In clock 1 and clock 2, reset signal is at logic “1”.This resets the counter,
flag_counter, and flag_half_counter.

2. In clock 3, ceb goes to logic “0” to enable the programmable timer.
3. In clock 4, load signal is at logic “1”. This would load the value “5” at

the data_in bus to the latch_counter.
4. In clock 5, write signal is at logic “1”. This will write the value “6” at

the data_in bus to the control word register.
5. In clock 6, write and load is at logic “0”, while control word register

is at a value of “110”. Bits 1 and 0 decode the operation of program-
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mable timer in mode 2. Bit 2 decodes the enabling of the program-
mable timer. At clock 6, the value of latch_counter is loaded into the
counter, thereby having the counter at a value of “5”. During clock 6,
the signal flag_counter is driven to logic “1” to indicate that the values
in the latch_counter have been loaded into the counter.

6. From clock 7 to clock 11, the counter would decrement by 1 during
every rising edge of clock.

7. In clock 9, the counter reaches a value of “2”. Because the counter was
initially loaded with the value 5, half of 5 is 2 (rounded from 2.5).There-
fore in clock 9, the flag_half_counter is assigned to a logic value of “1”.
This assignment value on flag_half_counter is not seen at clock 9 but
only seen at clock 10. The reason for this is again because in clock 9,
when the assignment of logic “1” to flag_half_counter occurs, the rising
edge of clock 9 has already occurred. On the rising edge of clock 9, the
counter is decremented by one to a value of “2”. The decoding of this
value “2” for the counter causes the assignment of logic “1” to
flag_half_counter, but the rising edge of clock 9 has already occurred.
Therefore, flag_half_counter would only have the value of logic “1” on
the rising edge of clock 10.

8. At clock 11, the counter reaches the value of “00”. When this occurs,
flag_counter is reset. Again, similarly as in clock 9, assignment of logic
“0” to flag_counter is not seen until clock 12. This is due to the fact that
when the counter is decremented to a value of “00” (during rising edge
of clock 11), the decoding of this counter value causes the assignment
of logic “0” to flag_counter. However, because it is no longer the rising
edge of clock 11, the assignment of the value would occur on the rising
edge of clock 12.

9. At clock 13, flag_counter reset and the counter is reloaded with the
value from latch_counter and the whole counting process repeats.
However, note that in clock 16, when counter reaches the value of “2”
(half of 5), flag_half_counter goes to logic “0” in clock 17. The design
basically has flag_half_counter toggling between logic “1” and “0” every
time the counter reaches half the value stored in latch_counter.

10. Output data_out follows the waveform of flag_half_counter.

Note: Mode 2 of operation is similar to mode 1 of operation whereby the
counter in the programmable timer is automatically reloaded when the counter
reaches a value of “00”. This would create an output waveform data_out that
is a 50% duty cycle waveform generator.

The synthesizable Verilog code shown in Example 5.1 for the programma-
ble timer has the assignment statements flag_counter and flag_half_counter
within the always statement that detects a rising edge of clock. This method
of coding flops both the signals. As a result, assignment of values to the signal
flag_counter and flag_half_counter always happens one clock later (because

174 DESIGN EXAMPLE OF PROGRAMMABLE TIMER



it is flopped). A designer should always note that when a signal is assigned a
value within an always statement that detects for a rising edge or falling edge,
that signal will be flopped.

5.5 SYNTHESIZABLE VERILOG CODE FOR PROGRAMMABLE TIMER

Based on the simulation waveform results shown in Figures 5.10, 5.11 and 5.12,
the Verilog code of Example 5.1 gives the correct and expected simulation
results. However, when the Verilog code is synthesized, an error will occur. Do
you know where the error is?

Referring to the Verilog code in Example 5.1, there are two always state-
ments. The first always statement is

always @ (ceb or write or reset or load)
begin

if (~ceb & write & ~load & ~reset)
control_word_register = data_in [2:0];

else if (~ceb & ~write & load & ~reset)
latch_counter = data_in;

else if (ceb & ~reset)
begin

// reset the control word counter
control_word_register = 0;
// reset the latch_counter
latch_counter = 0;

end
end

which creates a set of latches for latch_counter and control_word register.This
is the statement that sets the assignments for the signal control_word_regis-
ter as well as latch_counter.

The second always statement is

always @ (posedge clk or posedge reset)
begin

if (reset)
begin

flag_counter <= 0;
counter <= 0;
flag_half_counter <= 0;

end
else
begin
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if (control_word_register[2]) // counter is enabled
begin

if (control_word_register[1:0] == 2'b00) 
// this is 
// for one shot mode
begin

if (~flag_counter)
begin
counter <= latch_counter;
flag_counter <= 1;
end

else
if (counter == 8'hff)

begin
// to stop counter for one shot 
// mode
control_word_register[2] <= 0;
flag_counter <= 0;
end

else
. . .
. . .
. . .

end
end

end

which creates a set of flip-flops triggered by rising edge of clk for signals
flag_counter, flag_half_counter, and counter. However, in this second always
statement, during the execution of the programmable timer at mode 0, assign-
ment of value to the control word register occurs to disable the timer when
the one shot pulse has been generated by the timer:

control_word_register[2] <= 0;

This causes a conflicting problem in the sense that the first always state-
ment drives a value on the control word register while the second always state-
ment also drives a value on the control word register. During synthesis, the
synthesis tool is confused and would not know which circuit to synthesize.
There are multiple drivers on the node and the synthesis tool would not know
which driver is allowed to drive the node (as contention occurs). If the design
is coded in such a way as to create the control word register as a tri-state reg-
ister, it is possible to have different circuits to drive a node. However, in this
case, the control word register is a logic register that cannot have two sepa-
rate circuits driving a node.

176 DESIGN EXAMPLE OF PROGRAMMABLE TIMER



In synthesis, a synthesis tool would need to know the logic that is required
to drive a node before being able to synthesize the necessary circuit to drive
a node.

There are many ways to fix this problem. The Verilog code in Example 5.5
shows one method of coding to resolve this problem.

Example 5.5 Synthesizable Verilog Code for Programmable Timer

module prog_counter1 (
reset, ceb, write, data_in, clk,
load, data_out);

input reset;
input ceb, write, load;
input [7:0] data_in;
input clk;

output data_out;

// to declare the control word 
reg [2:0] control_word_register;
reg disable_CWR;

// to declare counter with 8 bits
reg [7:0] counter;
reg [7:0] latch_counter;

// flag for first clk pulse after loading in value of
// counter
reg flag_counter;
// flag for half count cycle
reg flag_half_counter;

// to write control word into counter 
// for control_word, bit 2 represents enable, bit 1 and 0
// represent counter mode
// this also latches in the counter value

always @ (ceb or write or reset or load or disable_CWR
or data_in)
begin

if (~ceb & write & ~load & ~reset)
control_word_register = data_in [2:0];

else if (~ceb & ~write & load & ~reset)
latch_counter = data_in;
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else if (ceb & ~reset)
begin

// reset the control word counter
control_word_register = 0;
// reset the latch_counter
latch_counter = 0;

end
else if (disable_CWR)

control_word_register[2] = 0;
end

// to count for counter

always @ (posedge clk or posedge reset)
begin

if (reset)
begin

disable_CWR <= 0;
flag_counter <= 0;
counter <= 0;
flag_half_counter <= 0;

end
else
begin

if (control_word_register[2]) // counter is 
// enabled
begin

if (control_word_register[1:0] == 2'b00)
// this is 
// for one shot mode
begin

if (~flag_counter)
begin
counter <= latch_counter;
flag_counter <= 1;
end

else
if (counter == 8'hff)

begin
// to stop counter for one shot 
// mode
disable_CWR <= 1;
flag_counter <= 0;
end

else
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counter <= counter + 1;
end
else if (control_word_register[1:0] == 
2'b01) // this 
// is for waveform generator
begin

if (~flag_counter)
begin

counter <= latch_counter;
flag_counter <= 1;

end
else

begin
if (counter == 8’hff)
flag_counter <= 0;
counter <= counter + 1;

end
end
else if (control_word_register[1:0] == 
2'b10) // this 
// is for 50% duty cycle waveform 
// generator
begin

if (~flag_counter)
begin

counter <= latch_counter;
flag_counter <= 1;

end
else

begin
if (counter == {1'b0, 
latch_counter[7:1]})

begin
flag_half_counter <= 
~flag_half_counter;
counter <= counter 

- 1;
end

else
if (counter == 0)
flag_counter <= 0;
else

counter <= counter 
- 1;

end
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end
end
else

begin
disable_CWR <= 0;
flag_counter <= 0;
flag_half_counter

<= 0;
end

end
end

assign data_out = (
((counter == 8'hff) & (control_word_

register [1:0] == 
2'b00) & flag_counter) |

((counter == 8'hff) & (control_word_
register [1:0] == 2'b01)) |

(flag_half_counter & (control_word_ 
register [1:0] == 2'b10)) );

endmodule

The Verilog code in Example 5.5 is different from Example 5.1 in that a
new signal called disable_CWR is introduced. In Example 5.5, this signal is
used to assign a logic “0” to the most significant bit of control word register.
In other words, the signal disable_CWR acts as a qualifier signal for enabling
or disabling the MSB of control word register. By so doing, the driver for
control word register is limited to only the first always statement. And, there-
fore, there is no longer a situation in which contention may happen.

The Verilog code in Example 5.5 can be simulated using the same test bench
in Example 5.2, 5.3, and 5.4. The simulation results are the same as that for the
simulation of Verilog code for Example 5.1.

This comparison between Verilog code of Example 5.1 and 5.5 shows a very
important difference between writing Verilog code for simulation and for syn-
thesis. A piece of code that simulates correctly does not necessarily mean that
it would synthesize. Therefore, it is important for a designer to understand the
limitations of writing code for synthesizability.
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CHAPTER SIX

Design Example of
Programmable Logic Block for
Peripheral Interface

Chapter 6 shows an example of designing a programmable logic block for
peripheral interface (similar to the industry standard of 8255 PPI), beginning
from design specification, architectural definition, coding, and verification.
However, please note that the example presented here is very similar to the
industry’s widely used 8255 PPI, but not fully compatible. The objective of this
chapter is to show the reader how a logic module can be designed using syn-
thesizable Verilog. It is not the objective of this example to replace the current
industry’s 8255 PPI. This example is referred to as programmable logic block
for peripheral interface or, in short, “PLB”.

A peripheral interface is used widely in electronic systems that require a
communication connection between several devices. For example, 8255 PPI (a
peripheral interface) is used in a computer to allow for a communication con-
nection between the microprocessor (central processing unit, or CPU) and the
peripheral components of the computer.

The design of the PLB begins with a design specification on its features and
capabilities.

Note: There are many ways and different styles to code synthesizable Verilog.
The example of Verilog code shown in Chapter 6 is written specifically to show
different ways that can be used to code certain implementation. Although some
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logic in this example may be similar, the style of coding written to generate this
logic may be different.

6.1 PROGRAMMABLE LOGIC BLOCK FOR PERIPHERAL INTERFACE
DESIGN SPECIFICATION

The PLB is an interconnect device that has 24 I/O pins, separated into three
groups: portA, portB, and portC. Each of these I/O ports are eight bits wide.
PortC can be further separated into two subgroups, portCupper and port-
Clower, each four bits wide. The PLB can also operate in three different
modes: mode 0, mode 1, and mode 2. Each mode of operation allows for dif-
ferent configurations on the I/O ports. Figure 6.1 shows an interface diagram
of the PLB and Table 6.1 shows a description of the interface signals.

Internal to the PLB, there are two registers (CWR and STATUS), which
are both eight bits wide. CWR register is used as a control register to deter-
mine the mode of functionality and direction of each of portA, portB, and
portC. Figure 6.2 shows the function of each bit in the CWR register.

Referring to Figure 6.2, each bit in the CWR register has its functionality.

1. Bit 7—active bit. This bit must be a logic “1” in order for the PLB to
function. A logic “0” on this bit is similar to power down of the chip.

2. Bits 6 and 5—mode of operation.
a. “00”—Mode 0 operation. In this mode, portA, portB, and portC can

either be an input bus or output bus, depending on bit 4 to bit 1 of
CWR register. Table 6.2 shows a description on the functionality of
portA, portB and portC based on the logic values of bits 4 to bits 1
of CWR register.

b. “01”—Mode 1 operation. In this mode, portA and portB can either
be a strobed input or strobed output depending on bit 2 and bit 1.
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wrb

rdb

a(2:0)

data(7:0)

reset

PLB

portA(7:0)

portB(7:0)

portC(7:0)

FIGURE 6.1. Diagram showing interface signals of PLB.
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TABLE 6.1. Table showing a description of PLB’s interface signals

Signal Direction Description

rdb input Active low to indicate a read from either portA, portB, or
portC to data bus.

wrb input Active low to indicate a write to either portA, portB, or 
portC from data bus.

reset input Active high to reset the PLB.

data(7:0) I/O Bidirectional bus for reading of data from portA, portB,
or portC and for writing of data to portA, portB, or 
portC.

a(2:0) input Address signals to identify which port or register the data
is meant for:
“000”—portA
“001”—portB
“010”—portC
“011”—CWR register
“111”—STATUS register

portA(7:0) I/O Bidirectional bus of portA

portB(7:0) I/O Bidirectional bus of portB

portC(7:0) I/O Bidirectional bus of portC

7 6 5 4 3 2 1 0

Active bit

Mode of operation
“00”-mode 0
“01”-mode 1
“10”-mode 2
“11”-not used

Port C upper
1-input
0-output

Port C lower
1-input
0-output

Port B
1-input
0-output

Port A
1-input
0-output

Not used

FIGURE 6.2. Diagram showing functionality of each bit in CWR register.



Table 6.3 shows a description on the functionality of portA and portB
based on the logic values of bits 2 and 1 of CWR register. Note that
in mode 1 operation, portC is used as the control signals for the
strobed input/output function of portA and portB.

c. “10”—Mode 2 operation.In this mode,portA is a strobed I/O port,with
portC being the control signals. PortB operates in mode 0 as either an
input port or output port depending on bit 2 of CWR. If the logic value
of bit 2 of CWR is a “1”, portB operates as an input port. If the logic
value of bit 2 of CWR is a “0”, portB operates as an output port.

3. Bit 0—Not used

Data can be written to the CWR register by pulsing wrb signal low while
having the address (a2, a1, a0) at “011”, and the desired data to be written
into the CWR register at the data pins (data[7:0]).

STATUS register is an eight-bit register that controls output portC when
the PLB is operating in mode 1 or mode 2. Each bit in the STATUS register
controls a separate output bit of portC in mode 1 and mode 2 of operation.
Figure 6.3 shows the function of each bit in the STATUS register.

Data can be written to the STATUS register by pulsing wrb signal low while
having the address (a2, a1, a0) at “111”, and the desired data to be written
into the STATUS register at the data pins (data[7:0]).
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TABLE 6.2. Table showing a description of bits 4 to 1 of CWR register

Bit Logic Value Functionality of Ports in Mode 0 Operation

4 0 PortC[7:4] operates as output bus
1 PortC[7:4] operates as input bus

3 0 PortC[3:0] operates as output bus
1 PortC[3:0] operates as input bus

2 0 PortB operates as output bus
1 PortB operates as input bus

1 0 PortA operates as output bus
1 PortA operates as input bus

TABLE 6.3. Table showing a description of bits 2 and 1 of CWR register

Bit Logic Value Functionality of Ports in Mode 1 Operation

2 0 PortB operates as strobed output bus
1 PortB operates as strobed input bus

1 0 PortA operates as strobed output bus
1 PortA operates as strobed input bus



Section 6.2 details the operation of the PLB based on the logic values of
CWR register and STATUS register.

6.2 MODE OF OPERATION FOR PROGRAMMABLE LOGIC BLOCK FOR
PERIPHERAL INTERFACE

The PLB can operate in three different modes of operation. The logic values
in the CWR register determines which mode of operation the PLB is to
operate in while the STATUS register determines several output values of
portC during mode 1 and mode 2.

Section 6.2.1 details the operation of the PLB in mode 0, Section 6.2.2
details the operation of the PLB in mode 1, and Section 6.2.3 details the oper-
ation of the PLB in mode 2.

6.2.1 Mode 0 Operation

In mode 0 operation, the PLB can be configured using the CWR register to
have portA as either an input or output port, portB as either an input or output
port, portC upper (bits 7 to bits 4) as either an input or output port and, portC
lower (bits 3 to bits 0) as either an input or output port. Table 6.4 shows the
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7 6 5 4 3 2 1 0

Not used

Controls the output portC[3]
when portA is operating as strobed
I/O in mode 2

Controls the output portC[3]
when portA is operating as strobed
output in mode 1

Controls the output portC[3]
when portA is operating as strobed
input in mode 1

Controls the output portC[0]
when portB is operating as strobed
input in mode 1

Controls the output portC[0]
when portB is operating as strobed
output in mode 1

FIGURE 6.3. Diagram showing functionality of each bit in STATUS register.
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TABLE 6.4. Table showing the combinations of functionality of portA, portB, portC
upper, and portC lower in mode 0 operation

CWR Register Values Description

1000000X PortC upper, PortC lower, PortB, and PortA operate as
output ports.

1000001X PortC upper, PortC lower, and PortB operate as output
ports while portA operates as an input port.

1000010X PortC upper, portC lower, and portA operate as output
ports while portB operates as an input port.

1000011X PortC upper and portC lower operate as output ports
while portB and portA operate as input ports.

1000100X PortC upper, portB, and portA operate as output ports
while portC lower operates as an input port.

1000101X PortC upper and portB operate as output ports while
portC lower and portA operate as input ports.

1000110X PortC upper and portA operate as output ports while
portC lower and portB operate as input ports.

1000111X PortC upper operate as output ports while portC lower,
portB, and portA operates as input ports.

1001000X PortC lower, portB, and portA operate as output ports
while portC upper operates as an input port.

1001001X PortC lower and portB operate as output ports while
portC upper and portA operate as input ports.

1001010X PortC lower and portA operate as output ports while
portC upper and portB operate as input ports.

1001011X PortC lower operates as an output port while portC
upper, portB, and portA operate as input ports.

1001100X PortB and portA operate as output ports while portC
upper and portC lower operate as input ports.

1001101X PortB operates as an output port while portC upper,
portC lower, and portA operate as input ports.

1001110X PortA operates as an output port while portB, portC
upper, and portC lower operate as output ports.

1001111X PortA, portB, portC upper, and portC lower operate as
input ports.

combinations of functionality for portA, portB, and portC in mode 0 opera-
tion based on the values of CWR register.

Referring to Table 6.4, bit 7 of CWR register must be a logic “1” and bit 0
of CWR is don’t care.



6.2.2 Mode 1 Operation

In mode 1 operation, the PLB can be configured using the CWR register to
have portA as either a strobed input or strobed output port and portB as either
a strobed input or strobed output port. In mode 1 operation, portC functions
as control ports for portA and portB. Table 6.5 shows the combinations of
functionality for portA and portB in mode 1 operation based on the values of
CWR register.

Figure 6.4 shows the interface signals for PLB in mode 1 operation with
portA and portB as strobed input ports.

Figure 6.5 shows the interface signals for PLB in mode 1 operation with
portA as a strobed input port and portB as a strobed output port.

Figure 6.6 shows the interface signals for PLB in mode 1 operation with
portA as a strobed output port and portB as a strobed input port.

Figure 6.7 shows the interface signals for PLB in mode 1 operation with
portA and portB as strobed output ports.

Referring to Figures 6.4 through 6.7, when portA operates as a strobed
output port, the control signals of portC function as follows:

1. obfab is reset by the rising edge of wrb, set by the falling edge of ackab.
2. intra is reset by the falling edge or wrb, set by the rising edge of ackab.

Similarly when portB operates as a strobed output port, the control signals
of portC functions as follows:

1. obfbb is reset by the rising edge of wrb, set by the falling edge of ackbb.
2. intrb is reset by the falling edge of wrb, set by the rising edge of ackbb.

If portA operates as a strobed input port, the control signals of portC func-
tions as follows:

1. ibfa is set by the falling edge of stbab, reset by the rising edge of rdb.
2. intra is set by the rising edge of stbab, reset by the falling edge of rdb.
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TABLE 6.5. Table showing the combinations of functionality of portA and portB in
mode 1 operation

CWR Register Values Description

101XX00X PortB and PortA operate as strobed output ports.

101XX01X PortB operates as a strobed output port while portA
operates as a strobed input port.

101XX10X PortB operates as a strobed input port while portA
operates as a strobed output port.

101XX11X PortB and portA operate as strobed input ports.



Similarly when portB operates as a strobed input port, the control signals
of portC functions as follows:

1. ibfb is set by the falling edge of stbbb, reset by the rising edge of rdb.
2. intrb is set by the rising edge of stbbb, reset by the falling edge of rdb.

6.2.3 Mode 2 Operation

In mode 2 operation, portA operates as a strobed I/O port while portB can be
configured using the CWR register to be either an input or output port (oper-
ation of portB in mode 2 is the same as operation of portB in mode 0). In
mode 2 operation, portC functions as control ports for portA. Table 6.6 shows
the combinations of functionality of portA and portB in mode 2 operation
based on the values of CWR register.

Figure 6.8 shows the interface signals for PLB in mode 2 operation with
portA as a strobed I/O port and portB as an output port.

Figure 6.9 shows the interface signals for PLB in mode 2 operation with
portA as a strobed I/O port and portB as an input port.
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FIGURE 6.4. Diagram showing interface signals in mode 1 operation with portA and
portB as strobed input port.



6.3 MICRO-ARCHITECTURE DEFINITION FOR PROGRAMMABLE
PERIPHERAL INTERFACE

Based on the design specification from Section 6.2, a microarchitecture can be
derived for the design. The requirements of a CWR register would point to
the need of an eight-bit register, with each bit being able to control the mode
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a1

a0
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PLB
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portB[7:0]

CWR register-101XX01X

FIGURE 6.5. Diagram showing interface signals in mode 1 operation with portA as
strobed input port and portB as strobed output port.

TABLE 6.6. The combinations of functionality of portA and portB in mode 1
operation

CWR Register Values Description

110XX0XX PortB operates as an output port and PortA operates as
a strobed I/O port.

101XX1XX PortB operates as an input port while portA operates as
a strobed I/O port.



of operation as well as the functionality of the PLB ports. Similarly, the
requirement of a STATUS register would also point to the need of another
eight-bit register with its content being able to control certain control ports of
portC during mode 1 and mode 2 of operation of the PLB. Figure 6.10 shows
a block-level diagram of the microarchitecture of the PLB.

Referring to Figure 6.10, a decoder is used to decode the address (a2, a1,
a0) and control pins (wrb, rdb, reset) to determine if the write/read command
being issued refers to the CWR register, STATUS register, portA, portB, or
portC. The decoder also decodes the necessary signals to determine the mode
of operation and the functionality of each port (whether its an input, output,
strobed input, strobed output, or strobed I/O).

Four sets of flops are used to latch in the values of portA, portB, portC,
and data. These flops values from portA, portB, and portC are multiplexed to
the data port, while the flop values from the data port are demultiplexed 
to either portA, portB, or portC. (The synthesized Verilog code shown in
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FIGURE 6.6. Diagram showing interface signals in mode 1 operation with portA as
strobed output port and portB as strobed input port.



Example 6.1 uses two additional sets of flop, one each for portA and portB.
These additional flops are to latch in values at portA and portB for mode 1
and mode 2 operation when portA and portB operates in strobed input,
strobed output, or strobed I/O.)

6.4 FLOW DIAGRAM DEFINITION FOR PROGRAMMABLE 
PERIPHERAL INTERFACE

Before a synthesizable Verilog code is written for the programmable 
peripheral interface, a designer should always spend some time drawing a 
flow diagram to represent the process flow of the design. Such a diagram 
can be very useful when the designer starts to write the Verilog code for the
design.

The designer does not need to restrict himself/herself with only using 
flow diagrams. The designer can choose to draw state diagrams, bubble 
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FIGURE 6.7. Diagram showing interface signals in mode 1 operation with portA and
portB as strobed output port.



diagrams, or even pseudocode, depending on which is more suitable for the
designer.

Figure 6.11 shows a flow diagram that writes data to the CWR register and
STATUS register. It covers the condition that the user can use to write data
into the CWR register or the STATUS register.

Referring to Figure 6.11:

1. If rising edge of reset is detected, the STATUS register is reset to a value
of “00000000” and the CWR register is reset to “10011110” (which
defaults to the PLB to operate in mode 0 with portC, portB and portA
as input ports).

2. If rising edge or wrb is detected, address is checked for “011” or “111”.
If address is “011”, the data at data bus is written into the CWR regis-
ter, and if address is “111”, the data at data bus is written into the
STATUS register.
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FIGURE 6.9. Interface signals in mode 2 operation with portA as strobed I/O and
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FIGURE 6.10. Microarchitectural block diagram of the programmable peripheral
interface design.



Figure 6.12 shows a flow diagram that reads the contents of CWR register
and STATUS register. Referring to Figure 6.12:

1. If int_reset is a logic high, data bus is tri-stated. Signal int_reset is a logic
condition that is derived from the BOOLEAN expression:

int_reset = reset | �CWR[7] | (�wrb & ((address =
‘011’) | (address = “111”)))

This would ensure int_reset is at logic “1” (causing data bus to be tri-
stated) when:
a. a reset occurs,
b. bit 7 of CWR register is at logic “0”. This means that the PLB is 

inactive, or
c. when a write to CWR register or STATUS register occurs.

2. If rdb is detected as a logic low, address is checked for “011” or “111”.
If address is “011”, the contents of CWR register are read to the data
bus. If address is “111”, the contents of STATUS register are read to the
data bus.

Figure 6.13 shows a flow diagram that latches in the data from data bus
onto latch_data bus. Referring to Figure 6.13:
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of reset?

Rising edge 
of wrb?

Address =
“011”?

Address =
“111”?

FIGURE 6.11. Flow diagram for writing data to CWR register and STATUS register.



1. If int_reset is a logic high, latch_data bus is reset to “00000000”.
2. if falling edge of wrb is detected, the data on data bus are latched onto

latch_data bus.

Figure 6.14 shows a flow diagram that latches in the data from portA, portB,
and portC onto different buses. Referring to Figure 6.14:
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| address = “111”))

FIGURE 6.12. Flow diagram for reading contents of CWR register and STATUS
register.

latch_data = “00000000”

START

Y

N

Y

N

latch_data <= data

Rising edge
int_reset ?

falling edge
wrb?

int_reset = reset OR (CWR[7]=0)
OR (wrb=0 AND (address = “011”
| address = “111”))

FIGURE 6.13. Flow diagram for Latching Data from data bus onto latch_data bus.



1. If rising edge of int_reset is detected,

latch_portA_mode0, latch_portB_mode0,
latch_portA_mode1_SI, latch_portB_mode1_SI,
latch_portC

is reset to “00000000”
2. If falling edge of rdb is detected, the data on portA are latched 

onto latch_portA_mode0, the data on portB are latched onto
latch_portB_mode0, the data on portC are latched onto latch_portC.

3. If falling edge of stbab is detected, the data on portA are latched onto
latch_portA_mode1_SI.

4. If falling edge of stbbb is detected, the data on portB are latched onto
latch_portB_mode1_SI.

Note: There are two sets of registers to latch in the values at portA. Register
latch_portA_mode0, as its name implies, is for latching in data from portA
when the PLB is operating in mode 0. Register latch_portA_mode1_SI is for
latching in data from portA when the PLB is operating in mode 1 with portA
as a strobed input port. Similarly for portB, there are also two sets of registers
for latching data. There are, however, only one set of registers for latching in
data from portC because portC can only operate as an input port in mode 0 (in
mode 1 and mode 2, portC operates as control signals).

Figure 6.14 shows the flow diagram for latching in data from portA,
portB, and portC into registers internally in the PLB. The data in these 
registers are read from the PLB during a read condition. Figure 6.15 shows
the flow diagram for reading data from these registers to external devices using
data bus.
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FIGURE 6.14. Flow diagram for Latching Data from portA, portB, and portC.
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Referring to Figure 6.15:

1. If int_reset is at logic “1”, data bus is tri-stated.
2. If rdb is at logic “0” and address is at “011”, the contents of CWR

register are read onto the data bus.
3. If rdb is at logic “0” and address is at “111”, the contents of STATUS

register are read onto the data bus.
4. If rdb is at logic “0”, address is at “000”, PLB is operating in mode 0,

and portA is operating as an input port, the contents of
latch_portA_mode0 register are read onto the data bus.

5. If rdb is at logic “0”, address is at “001”, PLB is operating in mode 0,
and portB is operating as an input port, the contents of
latch_portB_mode0 register are read onto the data bus.

6. If rdb is at logic “0”, address is at “010”, PLB is operating in mode 0,
and portC is operating as input, the contents of latch_portC register
are read onto the data bus.

7. If rdb is at logic “0”, address is at “010”, PLB is operating in mode 0,
and portC upper (portC[7:4]) is operating as input (portC lower is
operating as output), the contents of latch_portC[7:4] register are read
onto the data bus.

8. If rdb is at logic “0”, address is at “010”, PLB is operating in mode 0,
and portC lower (portC[3:0]) is operating as input (portC upper is
operating as output), the contents of latch_portC[3:0] register are read
onto the data bus.

9. If rdb is at logic “0”, address is at “000”, PLB is operating in mode 1,
and portA is operating as strobed input, the contents of
latch_portA_mode1_SI register are read onto the data bus.

10. If rdb is at logic “0”, address is at “001”, PLB is operating in mode 1,
and portB is operating as strobed input, the contents of
latch_portB_mode1_SI register are read onto the data bus.

11. If rdb is at logic “0”, address is at “000”, PLB is operating in mode 2,
and portA is operating as strobed I/O, the contents of
latch_portA_mode1_SI register are read onto the data bus.

12. If rdb is at logic “0”, address is at “001”, PLB is operating in mode 2,
and portB is operating as input (in mode 2, operation of portB is the
same as in mode 0), the contents of latch_portB_mode0 register are
read onto the data bus.

13. If none of the conditions specified in (1) to (12) are met, the data bus
is tri-stated.

Figure 6.16 shows the flow diagram for generating the enable signals that
determine whether portA, portB, and portC are input ports or output ports in
mode 0.
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Referring to Figure 6.16:

1. If int_reset is at logic “1”, portAenable, portBenable, and portCenable
are driven to logic “0”.

2. If PLB is in mode 0 and CWR[4] is at logic “0”, the upper bits of port-
Cenable (bits 7 to 4) are driven to logic “1”.This would enable the upper
bits of portC to be an output port. If CWR[4] is at logic “1”, the upper
bits of portCenable (bits 7 to 4) are driven to logic “0”.This would enable
the upper bits of portC to be an input port.

3. If PLB is in mode 0 and CWR[3] is at logic “0”, the lower bits of port-
Cenable (bits 3 to 0) are driven to logic “1”. This would enable the lower
bits of portC to be an output port. If CWR[3] is at logic “1”, the lower
bits of portCenable (bits 3 to 0) are driven to logic “0”.This would enable
the lower bits of portC to be an input port.

4. If PLB is in mode 0 and CWR[2] is at logic “0”, portBenable is driven
to logic “1”. This would enable portB to be an output port. If CWR[2] is
at logic “1”, portBenable is driven to logic “0”. This would enable portB
to be an input port.
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FIGURE 6.16. Flow diagram for generating the enable signals for portA, portB, and
portC in mode 0.



5. If PLB is in mode 0 and CWR[1] is at logic “0”, portAenable is driven
to logic “1”. This would enable portA to be an output port. If CWR[1]
is at logic “1”, portAenable is driven to logic “0”. This would enable
portA to be an input port.

Referring to Figure 6.16, connector B of the flow diagram connects to the
flow diagram of Figure 6.17, which shows the flow diagram for generation of
enable signals in mode 1 operation.

Referring to Figure 6.17:

1. If PLB is in mode 1 and portB is a strobed output port, portBenable is
driven to logic “1”. This would enable portB to be an output port. If
portB is strobed input, portBenable is driven to logic “0”, meaning that
portB is an input port.

2. If PLB is in mode 1 and portA is a strobed output port, portAenable is
driven to logic “1”. This would enable portA to be an output port. If
portA is strobed input, portAenable is driven to logic “0”, meaning that
portA is an input port.

3. If PLB is in mode 1 and portA and portB are strobed output ports, port-
Cenable is driven to “10001011”. This enables portC bits 7 (obfab), 3
(intra), 1 (obfbb), and 0(intrb) to be an output port, while portC bit
6(ackab), 5 (not used but default to input), 4 (not used but default to
input), and 2 (ackbb) are input ports.

4. If PLB is in mode 1 and portA is a strobed input port and portB is a
strobed output port, portCenable is driven to “00101011”. This enables
portC bits 5 (ibfa), 3 (intra), 1 (obfbb), and 0 (intrb) to be output ports
while portC bit 7 (not used but default to input), 6 (not used but default
to input), 4 (stbab), and 2 (ackbb) are input ports.

5. If PLB is in mode 1 and portA is a strobed output port and portB is a
strobed input port, portCenable is driven to “10001011”. This enables
portC bits 7 (obfab), 3 (intra), 1 (ibfb), and 0 (intrb) to be output ports
while portC bits 6 (ackab), 5 (not used but default to input), 4 (not used
but default to input), and 2 (stbbb) are input ports.

6. If PLB is in mode 1 and portA and portB are strobed input ports,
portCenable is driven to “00101011”. This enables portC bits 5 (ibfa),
3 (intra), 1 (ibfb), and 0 (intrb) to be output ports while portC bits 7
(not used but default to input), 6 (not used but default to input), 4
(stbab), and 2 (stbbb) are input ports.

Referring to Figure 6.17, connector C of the flow diagram connects to the
flow diagram of Figure 6.18, which shows the flow diagram for generating the
enable signals in mode 2 operation.

200 PROGRAMMABLE LOGIC BLOCK FOR PERIPHERAL INTERFACE



FLOW DIAGRAM DEFINITION FOR PROGRAMMABLE PERIPHERAL INTERFACE 201

M
od

e 
1?

N
C

po
rt

B
=

st
ro

be
d 

ou
tp

ut
?

po
rt

B
en

ab
le

=“
1”

Y

po
rt

B
en

ab
le

=“
0”

N

po
rt

B
 is

 s
tr

ob
ed

 in
pu

t

Y

po
rt

A
=

st
ro

be
d 

ou
tp

ut
?

N

po
rt

A
en

ab
le

=“
1”

po
rt

A
en

ab
le

=“
0”

Y

po
rt

A
 A

N
D

 p
or

tB
= 

st
ro

be
d 

ou
tp

ut
?

po
rt

C
en

ab
le

=
“1

00
01

01
1”

po
rt

A
 is

 s
tr

ob
ed

 in
pu

t

Y

po
rt

A
=s

tr
ob

ed
 in

pu
t

A
N

D
 p

or
tB

=s
tr

ob
ed

ou
tp

ut
?

Y

N

B

po
rt

C
en

ab
le

=
“0

01
01

01
1”

po
rt

A
=s

tr
ob

ed
 o

ut
pu

t
A

N
D

 p
or

tB
=

st
ro

be
d 

in
pu

t?

Y

N

po
rt

C
en

ab
le

=“
10

00
10

11
”

Y

po
rt

A
=

st
ro

be
d 

in
pu

t
A

N
D

 p
or

tB
=

st
ro

be
d 

in
pu

t?

N
po

rt
C

en
ab

le
=“

00
10

10
11

”

A
A

FI
G

U
R

E 
6.

17
.

F
lo

w
 d

ia
gr

am
 f

or
 g

en
er

at
in

g 
th

e 
en

ab
le

 s
ig

na
ls

 f
or

 p
or

tA
,p

or
tB

,a
nd

 p
or

tC
in

 m
od

e 
1.



In Figure 6.18:

1. If PLB is in mode 2 and portB is an output port, portBenable is driven
to logic “1”. This would enable portB to be an output port. If portB is
an input port, portBenable is driven to logic “0”, meaning that portB is
an input port.

2. If PLB is in mode 2, portCenable is driven to logic “10101000”. This
enables portC bits 7 (obfab), 5 (ibfa), and 3 (intra) to be output ports
while portC bits 6 (ackab), 4 (stbab), 2 (not used but default to input),
1 (not used but default to input), and 0 (not used but default to input)
are input ports.

Figure 6.19 shows the flow diagram to generate set_obfab and set_obfbb
signals that are used to generate out_obfab and out_obfbb signals. The
out_obfab and out_obfbb signals goes directly to the output portC[7]
(out_obfab) if portA is functioning as a strobed output port in mode 1 or
strobed I/O port in mode 2, and portC[1] (out_obfbb) if portB is functioning
as a strobed output port in mode 1.
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FIGURE 6.18. Flow diagram to generate the enable signals for portA, portB, and portC
in mode 2.



Referring to Figure 6.19:

1. The falling edge of ackab resets set_obfab to logic “0”.
2. The falling edge of ackbb resets set_obfbb to logic “0”.
3. If a rising edge of wrb is detected, the address is checked for a logic value

of “000” or “001”. If the address is at logic value “000”, set_obfab is set to
logic “1”,and if address is at logic value “001”, set_obfbb is set to logic “1”.

Figure 6.20 shows the flow diagram to generate out_obfab and out_obfbb
signals for mode 1 and mode 2 operations. In Figure 6.20:

• For generation of out_obfab:
1. If the PLB is operating in mode 1, portA is an output port, the address

refers to neither CWR nor STATUS registers, and set_obfab is at
logical “1”, out_obfab is driven to logic “0”.

2. If the PLB is operating in mode 2, the address refers to neither CWR
nor STATUS registers, and set_obfab is at logical “1”, out_obfab is
driven to logic “0”.

3. Otherwise, out_obfab is driven to logic “1”.
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FIGURE 6.19. Diagram showing generation of set_obfab and set_obfbb logic.



• For generation of out_obfbb:
1. If the PLB is operating in mode 1, portB is an output port, the address

refers to neither CWR nor STATUS registers, and set_obfbb is at
logical “1”, out_obfbb is driven to logic “0”.

2. Otherwise, out_obfbb is driven to logic “1”. The flow diagram for gen-
eration of out_obfbb does not need to check for the condition of mode
2 because, in mode 2 of operation, portB functions identically as it does
in mode 0 (which means it can only function as an input port or output
port, and not a strobed input or strobed output port).

Figure 6.21 shows the flow diagram to generate ackab and ackbb signals
for mode 1 and mode 2 operations. In Figure 6.21:

• For generation of ackab:
1. If PLB is operating in mode 1 and portA functions as a strobed output

port, ackab is driven by portC[6]. If portC[6] is at logic “1”, ackab is
at logic “1”, and if portC[6] is at logic “0”, ackab is at logic “0”.

2. If PLB is operating in mode 2, ackab is driven by portC[6]. In mode
2, the flow diagram does not check if portA functions as a strobed
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FIGURE 6.20. Diagram showing generation of out_obfab and out_obfbb logic.



output (or strobed input), because in mode 2, portA can only function
as strobed I/O port.

• For generation of ackbb:
1. If PLB is operating in mode 1 and portB functions as a strobed output

port, ackbb is driven by portC[2]. If portC[2] is at logic “1”, ackbb is
at logic “1”, and if portC[2] is at logic “0”, ackbb is at logic “0”.

2. The flow diagram for generation of ackbb does not need to check 
for the condition of mode 2, because in mode 2 of operation, portB
functions identically as it does in mode 0 (which means it can only 
function as an input or output port, and not a strobed input or 
output).

For operation of PLB in mode 1 or mode 2, the signals intra and intrb need
to be generated. These signals are represented by portC[3] (intra) if portA is
operating in mode 1 or in mode 2, and portC[0] (intrb) if portB is operating
in mode 1.

In order to generate the intra signal for operation of PLB in mode 1 or
mode 2 operation, four signals are created internally in the PLB. These four
signals (set_so_intra, wrb_portA, rdb_portA, set_si_intra) capture a specific
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condition for which the out_intra is generated. To generate out_intra in mode
1 and mode 2 operation:

1. set_so_intra. This signal is set only when portA is a strobed output in
mode 1 operation or when portA is a strobed I/O in mode 2 operation.
set_so_intra is reset by the falling edge of wrb_portA and is set by rising
edge ackab.

2. wrb_portA. This signal follows wrb but only when the address is showing
a portA access (address = “000”). This signal is used instead of wrb
because, when a falling edge of wrb is detected, it does not necessary cor-
respond to a portA access. Therefore, wrb_portA is created to ensure
that the falling edge of wrb_portA refers to the falling edge of wrb for
portA access.

3. set_si_intra. This signal is set only when portA is a strobed input in mode
1 operation or when portA is a strobed I/O in mode 2 operation.
set_si_intra is reset by the falling edge of rdb_portA and is set by the
rising edge stbab.

4. rdb_portA. This signal follows rdb but only when the address shows a
portA access (address = “000”).This signal is used instead of rdb because,
when a falling edge of rdb is detected, it does not necessarily correspond
to a portA access. Therefore, rdb_portA is created to ensure that the
falling edge of rdb_portA refers to the falling edge of rdb for portA
access.

Figure 6.22 shows the flow diagram for generating set_so_intra and Figure
6.23 shows the flow diagram for generating set_si_intra.
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Based on the generated signals of set_si_intra and set_so_intra, intra can
be generated. Figure 6.24 shows four 2-to-1 multiplexers for generation of
intra.

Referring to Figure 6.24:

1. If int_reset is at logic “1”, intra is driven to logic “0”.
2. If PLB is operating in mode 1, portA functions as a strobed output and

STATUS bit 2 is at logic “1”, intra is driven by set_so_intra.
3. If PLB is operating in mode 1, portA functions as at strobed input and

STATUS bit 0 is a logic “1”, intra is driven by set_si_intra.
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4. If PLB is operating in mode 2, STATUS bit 4 and bit 5 are at logic “1”,
intra is driven to logic “1” if either set_so_intra or set_si_intra is at logic
“1”.

5. Otherwise, intra is driven to logic “0”.

Note: The circuit shown in Figure 6.24 uses four 2-to-1 multiplexers. A single
4-to-1 multiplexer can also be used.

The logic required to generate intrb is similar to the logic required to gen-
erate intra. Figure 6.25 shows the flow diagram for generation of set_so_intrb
(similar to Figure 6.22 for generation of set_so_intra). Figure 6.26 shows the
flow diagram for generation of set_si_intrb (similar to Figure 6.23 for gener-
ation of set_si_intra).

Based on the generated signals of set_si_intrb and set_so_intrb, intrb can
be generated. Figure 6.27 shows three 2-to-1 multiplexers for generation of
intrb. In Figure 6.27:

1. If int_reset is at logic “1”, intrb is driven to logic “0”.
2. If PLB is operating in mode 1, portB functions as a strobed output and

STATUS bit 3 is at logic “1”, intrb is driven by set_so_intrb.
3. If PLB is operating in mode 1, portB functions as a strobed input, and

STATUS bit 1 is at logic “1”, intrb is driven by set_si_intrb.
4. Otherwise, intrb is driven to logic “0”.
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Note: The circuit shown in Figure 6.27 uses three 2-to-1 multiplexers. A single
4-to-1 multiplexer can also be used.

Figure 6.28 shows a flow diagram for generation of stbab and stbbb. In
Figure 6.28, for generation of stbab:



1. If the PLB is operating in mode 1, portA functions as a strobed input
port, stbab is driven by portC[4].

2. If the PLB is operating in mode 2, stbab is driven by portC[4].
3. Otherwise, stbab is driven to logic “1”.

Referring to Figure 6.28, for generation of stbbb:

1. If the PLB is operating in mode 1, portB functions as a strobed input
port, stbbb is driven by portC[2].

2. Otherwise, stbbb is driven to logic “1”.

For operation of PLB in mode 1 or mode 2 of operation, the signal ibfa and
ibfb needs to be generated. These signals are represented by portC[5] (ibfa)
if portA is operating in mode 1 or in mode 2, and portC[1] (ibfb) if portB is
operating in mode 1.

In order to generate the ibfa signal for operation of PLB in mode 1 or mode
2, two signals are created internally in the PLB. These two signals (reset_ibfa
and set_ibfa) capture a specific condition for which the ibfa is generated. To
generate ibfa in mode 1 and mode 2 operation:

1. reset_ibfa. This signal is set only when a rising edge of rdb is detected
and set_ibfa is at a logic “1”.

2. set_ibfa. This signal is reset when int_reset or reset_ibfa is at a logic “1”.
It is set when PLB is operating in mode 1, portA functions as a strobed
input port, reset_ibfa is at logic “0”, and stbab is at logic “0”. This signal
is also set when PLB is operating in mode 2, reset_ibfa is at logic “0”,
and stbab is at logic “0”.

Figure 6.29 shows the flow diagram for generation of set_ibfa and
reset_ibfa. In Figure 6.29:
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1. If rising edge of rdb is detected, set_ibfa is checked for its logic value. If
set_ibfa is at logic “1”, reset_ibfa is assigned to logic “1”. If set_ibfa is at
logic “0”, reset_ibfa is assigned to logic “0”.

2. If int_reset is at logic “1”, set_ibfa is assigned to logic “0”.
3. If PLB is operating in mode 1, portA functions as a strobed input port,

reset_ibfa is at logic “0” and stbab is at logic “0”, set_ibfa is assigned to
logic “1”.

4. If PLB is operating in mode 2, reset_ibfa is at logic “0” and stbab is at
logic “0”, set_ibfa is assigned to logic “1”.

5. If PLB is neither operating in mode 1 nor mode 2, reset_ibfa is checked
for its logic value. If reset_ibfa is at logic “1”, set_ibfa is assigned to logic
“0”.

The logic to generate set_ibfb and reset_ibfb is similar to the logic that gen-
erates set_ibfa and reset_ibfa. However, the logic for generation of set_ibfb
does not involve mode 2 of operation. Figure 6.30 shows the flow diagram for
generation of set_ibfb and reset_ibfb. In Figure 6.30:
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1. If the rising edge of rdb is detected, set_ibfb is checked for its logic value.
If set_ibfb is at logic “1”, reset_ibfb is assigned to logic “1”. If set_ibfb is
at logic “0”, reset_ibfb is assigned to logic “0”.

2. If int_reset is at logic “1”, set_ibfb is assigned to logic “0”.
3. If PLB is operating in mode 1, portB functions as strobed input,

reset_ibfb is at logic “0” and stbbb is at logic “0”, set_ibfb is assigned to
logic “1”.

4. Otherwise, reset_ibfb is checked for its logic value. If reset_ibfb is at logic
“1”, set_ibfb is assigned to logic “0”.

With the generation of the logic set_ibfa and set_ibfb, these two signals gen-
erate ibfa (portC[5]) and ibfb (portC[1]).

Figures 6.11 to 6.30 show the flow diagrams for the generation of logic to
create the necessary signals for the operation of PLB. With these logics in
place, the final piece of logic required is to multiplex these signals to the portA,
portB, and portC buses. Figure 6.31 shows the multiplexing of signals to portA,
Figure 6.32 shows the multiplexing of signals to portB and Figure 6.33 shows
the multiplexing of signals to portC.
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6.5 SYNTHESIZABLE VERILOG CODE FOR PROGRAMMABLE
PERIPHERAL INTERFACE

Based on the specification and flow diagrams shown in Sections 6.1, 6.2, 6.3,
and 6.4, a Verilog code is written for the programmable peripheral interface
(as shown in Example 6.1).
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Note: There are many ways to build the PLB based on different microar-
chitectural implementation. The Verilog code of Example 6.1 is based on the
microarchitecture explained in Section 6.4. The objective of Example 6.1 is to
show the reader how a real-life practical design can be written in synthesizable
Verilog.
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Example 6.1 Synthesizable Verilog Code for PLB

module ppi (
portA, portB, portC, rdb, wrb, a2, a1, a0,
reset, data);

input rdb, wrb, a2, a1, a0, reset;
inout [7:0] data, portA, portB, portC;

// declaration for control word register
reg [7:0] CWR;

// declaration for status register
reg [7:0] STATUS;

// declaration of internal 3 bit address bus
wire [2:0] address;

assign address = {a2, a1, a0};

// declaration for portA, portB, portC tri-state
// enable signal
reg portAenable, portBenable;
reg [7:0] portCenable;

// declaration for tri-state output bus for data
reg [7:0] out_data;

assign data = out_data;

// declaration for tri-state output bus for portA, 
// portB, portC
reg [7:0] out_portA, out_portB, out_portC;

assign portA = out_portA;
assign portB = out_portB;
assign portC = out_portC;

// declaration of integer i;
integer i;

// declaration of internal latching of data
reg [7:0] latch_data;
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// declaration of int_reset 
// for internal reset
wire int_reset;

assign int_reset = reset | (~CWR[7]) | (~wrb &
((address == 3'b011) | (address == 3'b111)));

// declaration for latching in of portA and portB and
// portC
reg [7:0] latch_portA_mode0, latch_portB_mode0,
latch_portC;
reg [7:0] latch_portA_mode1_SI, latch_portB_mode1_SI;

// declaration of internal signals
wire stbab, stbbb;
wire ackab, ackbb;
wire out_obfab, out_obfbb;
reg set_obfab, set_obfbb;
wire out_intra, out_intrb;
wire out_ibfa, out_ibfb;
reg set_si_intra, set_so_intra;
reg set_si_intrb, set_so_intrb;

reg set_ibfa, reset_ibfa, set_ibfb, reset_ibfb;

// declaration of wrb_portA, wrb_portB;
wire wrb_portA, wrb_portB;

// declaration of rdb_portA, rdb_portB;
wire rdb_portA, rdb_portB;

// for reset and for writing of data into CWR

always @ (posedge reset or posedge wrb)
begin

if (reset)
begin
// during reset, CWR is set with active flag
// as active and in mode 0 with all portA, portB
// and portC as input

CWR <= 8'b10011110; // bit 0 is not used 
// but default to 0

end
else // rising edge wrb
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Declaration of internal
reset to reset PLB.

During reset, CWR
register default to
“9e” hex, with all
ports as inputs and in
mode 0 operation.



begin
if (address == 3'b011)

begin
// write value to CWR
CWR [7:0] <= data [7:0];
end

end
end

// for reset and for writing of data into STATUS

always @ (posedge reset or posedge wrb)
begin

if (reset)
begin

// during reset, STATUS is reset to 
// all zeros
STATUS <= 0;

end
else // rising edge wrb

begin
if (address == 3'b111)

begin
// write value to STATUS
STATUS [7:0] <= data [7:0];
end

end
end

// for latching in of data when wrb is at falling 
// edge for mode 0 port 
// output and also for mode 1 
port as strobed output

always @ (posedge int_reset 
or negedge wrb)
begin

if (int_reset)
latch_data [7:0] <= 8'h00;

else // falling edge wrb
latch_data [7:0] <= data [7:0];

end

// for latching in of data when rdb is at falling 
// edge for mode 0 port 
// input and also for mode 1 port as strobed input
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// latch in portA when falling of rdb when in mode 0
// input
// latch in portA when falling edge stbab when in mode
// 1 strobed input
// latch in portB when falling of rdb when in mode 0
// input
// latch in portB when falling edge stbbb when in mode
// 1 strobed input

always @ (negedge rdb or 
posedge int_reset)

begin
if (int_reset)
begin

latch_portA_mode0 [7:0] <= 8'h00;
latch_portB_mode0 [7:0] <= 8'h00;

end
else // falling edge rdb
begin

latch_portA_mode0 [7:0] 
<= portA [7:0];
latch_portB_mode0 [7:0] 
<= portB [7:0];

end
end

always @ (negedge stbab or posedge int_reset)
begin

if (int_reset)
latch_portA_mode1_SI [7:0] <= 8'h00;

else // falling edge stbab
latch_portA_mode1_SI [7:0] 
<= portA [7:0];

end

always @ (negedge stbbb or 
posedge int_reset)
begin

if (int_reset)
latch_portB_mode1_SI [7:0] 
<= 8'h00;

else // falling edge stbbb
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During internal reset,
internal registers
latch_portA_mode0 and
latch_portB_mode0
default to “00” hex.

If negative edge of
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the data from portA
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latch_portA_mode1_SI
default to “00” hex.
Otherwise, if
falling edge of
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the data from portA
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latch_portA_mode1_SI.



latch_portB_mode1_SI
[7:0] <= portB [7:0];

end

// portC can only be latched 
// in at mode 0 input
// latch in of portC during 
// falling edge of rdb

always @ (posedge int_reset or negedge rdb)
begin

if (int_reset)
latch_portC [7:0] 
<= 8'h00;

else // falling edge rdb
latch_portC [7:0] 
<= portC [7:0];

end

// for driving of out_data which is a tristate bus
// for data inout
// out_data is driven when in read mode for mode 0
// or when reading for strobed input for mode 1
// out_data is driven at ~rdb in mode 0 read
// and mode 1 strobed input

always @ (int_reset or rdb or CWR or portAenable or
address or
latch_portA_mode0 or latch_portB_mode0 or portBenable
or portCenable or
latch_portA_mode1_SI or latch_portB_mode1_SI or
latch_portC)
begin

if (int_reset)
out_data [7:0] = 8'hzz;

else if (~rdb & (address == 3'b011))
out_data [7:0] = CWR[7:0];

else if (~rdb & (address == 3'b111))
out_data [7:0] = STATUS [7:0];

else if (~rdb & (CWR[6:5] == 2'b00) & ~portAenable 
& (address == 3'b000))

out_data = latch_portA_mode0; // portA mode 0 input
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During internal reset,
internal registers
latch_portB_mode1_SI
default to “00” hex.
Otherwise if falling
edge of stbbb is
detected, the data
from portB bus is
latched into
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During internal reset,
internal registers
latch_portC default to
“00” hex. Otherwise if
falling edge of rdb is
detected, the data from
portC bus is latched
into latch_portC.

See Note A after
this Example.



else if (~rdb & (CWR[6:5] == 2'b00) & ~portBenable 
& (address == 3'b001))

out_data = latch_portB_mode0; // portB mode 0 input
else if (~rdb & (CWR[6:5] == 2'b00) & (portCenable 

== 8'h00) & (address == 3'b010))
out_data = latch_portC; // portC mode 0 input

else if (~rdb & (CWR[6:5] == 2'b00) & (portCenable 
== 8'h0f) & (address == 3'b010))

out_data = {latch_portC[7:4], 4'hz}; // portC mode 0 
// Cupper input

else if (~rdb & (CWR[6:5] == 2'b00) & (portCenable 
== 8'hf0) & (address == 3'b010))

out_data = {4'hz, latch_portC[3:0]}; // portC mode 0 
// Clower input

else if (~rdb & (CWR[6:5] == 2'b01) & ~portAenable 
& (address 

== 3'b000))
out_data = latch_portA_mode1_SI; // portA mode 1 

// strobed input
else if (~rdb & (CWR[6:5] == 2'b01) & ~portBenable 

& (address == 3'b001))
out_data = latch_portB_mode1_SI; // portB mode 
// 1 strobed input

else if (~rdb & (CWR[6:5] == 2'b10) & (address 
== 3'b000)) // mode 2 portA is strobed IO

out_data = latch_portA_mode1_SI; // port A mode 2 
// strobed input

else if (~rdb & (CWR[6:5] == 2'b10) & ~portBenable 
& (address == 3'b001))

out_data = latch_portB_mode0; // in mode 2 strobed 
// input for portB, 
// it behaves as 

// mode 0 input
else

out_data = 8'hzz;
end

// for generation of portA, portB, portC enable
// signal to control tri-state buffer

always @ (CWR or int_reset)
begin

if (int_reset)
begin
// after reset, all portA, portB, portC are input
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portAenable = 0;
portBenable = 0;
portCenable = 8'h00;

end
else

begin
if (CWR[6:5] == 2'b00)

begin
// this is mode 0
if (~CWR[4])

portCenable [7:4] = 4'hf; // port C upper 
// is output

else
portCenable [7:4] = 4'h0; // port C upper 

// is input
if (~CWR[3])

portCenable [3:0] = 4'hf; // port C lower 
// is output

else
portCenable [3:0] = 4'h0; // port C lower 

// is input
if (~CWR[2])

portBenable = 1; // port B is output
else

portBenable = 0; // port B is input

if (~CWR[1])
portAenable = 1; // port C is output

else
portAenable = 0; // port C is input

end
else if (CWR[6:5] == 2'b01)
begin

// this is mode 1
if (~CWR[2])

portBenable = 1; // port B is strobed 
// output

else
portBenable = 0; // portB is strobed 

// input
if (~CWR[1])

portAenable = 1; // port A is strobed 
// output

else
portAenable = 0; // port A is strobed input
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if (CWR[2:1] == 2'b00) // portA and B is 
// strobed output

portCenable = 8'b10001011; // this 
// translates

// to portC7 is output, 
// portC6 is input, 
// portC4 and portC5 is
// not used but default 
// to input, portC3 is 
// output, portC2 is 
// input, portC1 is 
// output and portC0 is 
// output

else if (CWR[2:1] == 2'b01) // portA strobed 
// input, portB strobed 
// output

portCenable = 8'b00101011; // this translates 
// to portC7 and portC6 not 
// used but default to 
// input, portC5 is 
// output, portC4 is 
// input, portC3 is 
// output, portC2 is 
// input, portC1 is 
// output, portC0 is 
// output

else if (CWR[2:1] == 2'b10) // portA strobed 
// output, portB strobed 
// input

portCenable = 8'b10001011; // this translates 
// to portC7 is output, 
// portC6 is input, 
// portC5 and portC4 
// is not used but 
// default to input, 
// portC3 is output, 
// portC2 is input, 
// portC1 is output
// and portC0 is output

else // (CWR[2:1] == 2'b11)  - portA strobed 
// input, portB strobed 
// input

portCenable = 8'b00101011; // this translates 
// to portC7 and portC6
// not used but default 
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// to input, portC5 is 
// output, portC4 is 
// input, portC3 is 
// output, portC2 is 
// input, portC1 is 
// output and portC0 
// is output

end
else if (CWR[6:5] == 2'b10)

begin
// this is mode 2
if (~CWR[2])

portBenable = 1; // portB is 
// output in mode 0

else
portBenable = 0; 

// in this mode 2, port A is 
// bidirectional and
// portC is used as handshake signal
portCenable = 8'b10101000; // this 
// translates to 

// portC7 is output, portC6 
// is input, portC5 is 
// output, portC4 is input
// portC3 is output, portC2, 
// portC1 and portC0 is not 
// used but default to 
// input

end
end

end

// generation of output obfab & 
// obfbb

always @ (posedge wrb or negedge ackab)
begin

if (~ackab) // falling edge ackab
set_obfab <= 0;

else if (address == 3'b000)
// posedge wrb

set_obfab <= 1;
end
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always @ (posedge wrb or negedge ackbb)
begin

if (~ackbb) // falling edge ackbb
set_obfbb <= 0;

else if (address == 3'b001) 
// posedge wrb

set_obfbb <= 1;
end

assign out_obfab = ~(set_obfab & 
(((CWR[6:5] == 2'b01) & portAenable) 

| (CWR[6:5] == 2'b10)) & 
(address != 3'b011) 

& (address != 3'b111));

assign out_obfbb = ~(set_obfbb & ((CWR[6:5] == 2'b01)
& portBenable) 

& (address != 3'b011) & (address != 3'b111)) ;

// generation of input ackab
// needed when mode 1 and portA is strobed output or 
// when mode 2

assign ackab = (((CWR[6:5] == 2'b01) & portAenable &
portC[6]) | (CWR[6:5] == 2'b10) & portC[6]);

// generation of input ackbb
// needed when in mode 1 and portB is strobed output

assign ackbb = ((CWR[6:5] == 2'b01) & portBenable &
portC[2]);

// generation of output intra
// needed when in mode 1 or when mode 2

// for portA in mode 1 strobed output, falling edge of
// wrb reset intra

assign wrb_portA = (address == 3'b000) & wrb; // <- 
// wrb_portA is used 

// because for synthesis, synthesis 
// tools cannot match simulation
// if address is used in the 
// edge declaration of always
// statement
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always @ (negedge wrb_portA or posedge ackab)
begin

if (~wrb_portA) // 
// falling edge wrb at 

portA set_so_intra <= 0; 
else // rising edge ackab

set_so_intra <= 1;
end

// for portA in mode 1 strobed input, falling edge rdb
// reset intra

assign rdb_portA = (address == 3'b000) & rdb;

always @ (posedge stbab or negedge rdb_portA)
begin

if (~rdb_portA) // falling 
// edge rdb at portA

set_si_intra <= 0; 
else // rising edge stbab

set_si_intra <= 1;
end

assign out_intra = int_reset ? 
0 : (portAenable &
(CWR[6:5] == 2'b01)
& STATUS[2] ) ?
set_so_intra : 
(~portAenable &
(CWR[6:5] == 2'b01) & 
STATUS[0] ) ?
set_si_intra : ((CWR[6:5] == 2'b10) & 
STATUS[4]
& STATUS[5]) ? (set_so_intra | 
set_si_intra) : 0 ;

// generation of output intrb
// needed in mode 1

// for portB in mode 1 strobed output, falling edge of
// wrb reset intrb

assign wrb_portB = (address == 3'b001) & wrb;
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always @ (negedge wrb_portB or posedge ackbb)
begin

if (~wrb_portB) // 
// falling edge wrb at portB 

set_so_intrb <= 0;
else // rising edge ackbb

set_so_intrb <= 1;
end

// for portB in mode 1 strobed output, falling edge 
// rdb reset intrb

assign rdb_portB = (address == 3'b001) & rdb;

always @ (posedge stbbb or negedge rdb_portB)
begin

if (~rdb_portB) // 
// falling edge rdb at portB

set_si_intrb <= 0; 
else // rising edge stbbb 

set_si_intrb <= 1;
end

assign out_intrb = int_reset ? 0 : (portBenable &
(CWR[6:5] == 2'b01) & STATUS[3]) ?
set_so_intrb : (~portBenable & (CWR[6:5] == 
2'b01) &

STATUS[1]) ?
set_si_intrb : 0;

// generation of input stbab
// needed when in mode 1 and portA is strobed input
// or when in mode 2

assign stbab = (((CWR[6:5] == 2'b01) & ~portAenable) |
(CWR[6:5] == 2'b10)) ? portC[4] : 1'b1; 

// generation of input stbbb
// needed when in mode 1 and portB is strobed input

assign stbbb = ((CWR[6:5] == 2'b01) & ~portBenable) 
? portC[2] : 1'b1;

// generation of output ibfa
// needed when in mode 1 and portA is strobed input 
// or mode 2
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always @ (posedge rdb)
begin

if (set_ibfa)
reset_ibfa <= 1;

else
reset_ibfa <= 0;

end

always @ (CWR or portAenable or reset_ibfa or stbab or
out_ibfa or int_reset)
begin

if (int_reset)
set_ibfa = 0;

else if ((CWR[6:5] == 2'b01) & ~portAenable & 
~reset_ibfa & ~stbab) // portA input mode 1

set_ibfa = 1;
else if ((CWR[6:5] == 2'b10) & ~reset_ibfa 
& ~stbab) // portA mode 2

set_ibfa = 1;
else if (reset_ibfa)

set_ibfa = 0;
end

assign out_ibfa = set_ibfa;

// generation of output ibfb       
// needed when in mode 1 and portB is strobed input
always @ (posedge rdb)
begin

if (set_ibfb)
reset_ibfb <= 1;

else
reset_ibfb <= 0;

end

always @ (CWR or portBenable or reset_ibfb or stbbb or
out_ibfb or int_reset)
begin

if (int_reset)
set_ibfb = 0;

else if ((CWR[6:5] == 2'b01) & ~portBenable & 
~reset_ibfb & ~stbbb) // portB input mode 1

set_ibfb = 1;
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else if (reset_ibfb)
set_ibfb = 0;

end

assign out_ibfb = set_ibfb;

// writing to portA

always @ (int_reset or wrb or address or CWR or
portAenable or latch_data or out_obfab or ackab)
begin

if (int_reset)
out_portA [7:0] = 8'bzzzzzzzz;

else if (~wrb & (address == 3'b000) & (CWR[6:5] == 
2'b00) & portAenable) // mode 0

out_portA [7:0] = latch_data [7:0]; // writing 
// to portA

else if ((~out_obfab | ~ackab) & (address == 
3'b000) & (CWR[6:5] == 2'b01) & portAenable) // 
// mode 1

out_portA [7:0] = latch_data [7:0]; // writing 
// to portA

else if ((~out_obfab | ~ackab) & (address == 
3'b000) & (CWR[6:5] == 2'b10)) // mode 2

out_portA [7:0] = latch_data [7:0]; // writing 
// to portA

else
out_portA [7:0] = 8'bzzzzzzzz;

end

// writing to portB

always @ (int_reset or wrb or 
address or CWR or portBenable or 
latch_data or out_obfbb or ackbb)
begin

if (int_reset)
out_portB [7:0] = 8'bzzzzzzzz;

else if (~wrb & (address == 3'b001) & (CWR[6:5] == 
2'b00) & portBenable) // mode 0

out_portB [7:0] = latch_data [7:0]; // writing 
// to portB

else if ((~out_obfbb | ~ackbb) & (address == 
3'b001) & (CWR[6:5] == 2'b01) & portBenable) // 
// mode 1
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out_portB [7:0] = latch_data [7:0]; // writing 
// to portB 

else if (~wrb & (address == 3'b001) & (CWR[6:5] 
== 2'b10) & portBenable) // mode 2 port B output

out_portB [7:0] = latch_data [7:0];
else

out_portB [7:0] = 8'bzzzzzzzz; 
end

// writing to portC

always @ (int_reset or wrb or 
address or CWR or portCenable or 
latch_data or out_ibfa or out_
intra or out_ibfb or out_intrb 
or out_obfab or out_obfbb or
portAenable or portBenable)
begin

if (int_reset)
out_portC [7:0] = 8'bzzzzzzzz;

else if (~wrb & (address == 3'b010) & 
(CWR[6:5] == 2'b00)) //mode 0

begin
if (portCenable == 8'hff)

out_portC [7:0] = latch_data [7:0];
else if (portCenable == 8'h0f) 

out_portC [7:0] = {4'bzzzz, latch_data 
[3:0]};

else if (portCenable == 8'hf0) 
out_portC [7:0] = {latch_data [7:4], 
4'bzzzz};

else
out_portC [7:0] = 8'bzzzzzzzz;

end
else if (CWR[6:5] == 2'b01) // this is mode 1

begin
// in mode 1, for portA strobed input, 
// portB strobed input
// portC[7] not used
// portC[6] not used
// portC[5] output ibfa
// portC[4] input stbab
// portC[3] output intra
// portC[2] input stbbb
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// portC[1] output ibfb
// portC[0] output intrb 
if (~portAenable & ~portBenable) // this is 
// portA, 

// portB as strobed input
out_portC[7:0] = {2'bzz, out_ibfa, 1'bz, 

out_intra, 1'bz, out_ibfb, 
out_intrb};

// in mode 1, for portA strobed input, portB 
// strobed output
// portC[7] not used
// portC[6] not used
// portC[5] output ibfa
// portC[4] input stbab
// portC[3] output intra
// portC[2] input ackbb
// portC[1] output obfbb
// portC[0] output intrb
else if (~portAenable & portBenable)

out_portC[7:0] = {2'bzz, out_ibfa, 1'bz, 
out_intra, 1'bz, out_obfbb, 
out_intrb};

// in mode 1, for portA strobe output and portB 
// strobed input
// portC[7] output obfab
// portC[6] input ackab
// portC[5] not used
// portC[4] not used
// portC[3] output intra
// portC[2] input stbbb
// portC[1] output ibfb
// portC[0] output intrb
else if (portAenable & ~portBenable)

out_portC[7:0] = {out_obfab, 3'bzzz, 
out_intra, 1'bz, out_ibfb, 
out_intrb};

// in mode 1, for portA strobe output and portB 
// strobed output
// portC[7] output obfab
// portC[6] input ackab
// portC[5] not used
// portC[4] not used
// portC[3] out_intra
// portC[2] input ackbb
// portC[1] output obfbb
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// portC[0] output intrb
else // portAenable and portBenable is high

out_portC[7:0] = {out_obfab, 3'bzzz, 
out_intra, 1'bz, out_obfbb, 
out_intrb};

end
else if (CWR[6:5] == 2'b10) // this is mode 2

// portC[7] output obfab
// portC[6] input ackab
// portC[5] output ibfa
// portC[4] input stbab
// portC[3] output intra
// portC[2] not used
// portC[1] not used
// portC[0] not used

out_portC[7:0] = {out_obfab, 1'bz, out_ibfa, 1'bz, 
out_intra, 3'bzzz}; 

else
out_portC[7:0] = 8'bzzzzzzzz;

end

endmodule

Note A:

a. During internal reset, out_data is tri-stated.
b. If rdb is at logic low and address is pointing to “011” (CWR register),

the contents of CWR register are read onto out_data.
c. If rdb is at logic low and address is pointing to “111” (STATUS

register), the contents of STATUS register are read onto out_data.
d. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “00”

(operation in mode 0), portAenable is at logic low (portA functions as
input port), and address is pointing to “000” (portA), the contents of
internal register latch_portA_mode0 are read onto out_data.

e. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “00”
(operation in mode 0), portBenable is at logic low (portB functions as
input port) and address is pointing to “001” (portB), the contents of
internal register latch_portB_mode0 are read onto out_data.

f . If rdb is at logic low, bits 6 and 5 of CWR register have a value of “00”
(operation in mode 0), portCenable has a value of “00000000” (portC
functions as input port) and address is pointing to “010” (portC), the
contents of internal register latch_portC are read onto out_data.

g. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “00”
(operation in mode 0), portCenable has a value of “00001111” (portC
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upper functions as input port and portC lower functions as output port)
and address is pointing to “010” (portC), the contents of internal 
register latch_portC bits 7 to 4 are read onto out_data bits 7 to 4. The
remaining bits 3 to 0 of out_data are tri-stated.

h. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “00”
(operation in mode 0), portCenable has a value of “11110000” (portC
lower functions as input port and portC upper functions as output port)
and address is pointing to “010” (portC), the contents of internal regis-
ter latch_portC bits 3 to 0 are read onto out_data bits 3 to 0. The
remaining bits 7 to 4 of out_data are tri-stated.

i. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “01”
(operation in mode 1), portAenable is at logic low (portA functions as
strobed input port) and address is pointing to “000” (portA), the con-
tents of internal register latch_portA_mode1_SI are read onto
out_data.

j. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “01”
(operation in mode 1), portBenable is at logic low (portB functions as
strobed input port) and address is pointing to “001” (portB), the con-
tents of internal register latch_portB_mode1_SI are read onto
out_data.

k. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “10”
(operation in mode 2) and address is pointing to “000” (portA), the con-
tents of internal register latch_portA_mode1_SI are read onto
out_data.

l. If rdb is at logic low, bits 6 and 5 of CWR register have a value of “10”
(operation in mode 2), portBenable is at logic low (portB functions as
input port) and address is pointing to “001” (portB), the contents of
internal register latch_portB_mode0 are read onto out_data.

m. If neither of the conditions mentioned are met, out_data is tri-stated.

Note B:

a. Bits 6 and 5 of CWR register are checked for their value. Assume CWR
bits 6 and 5 are both at logic “0” (mode 0 operation)

i. If bit 4 of CWR register is at logic “0”, bits 7 to 4 of portCenable are
driven to logic “1”. If bit 4 of CWR register is at logic “1”, bits 7 to
4 of portCenable are driven to logic “0”.

ii. If bit 3 of CWR register is at logic “0”, bits 3 to 0 of portCenable are
driven to logic “1”. If bit 3 of CWR register is at logic “1”, bits 3 to
0 of portCenable are driven to logic “0”.

iii. If bit 2 of CWR register is at logic “0”, portBenable is driven to logic
“1”. If bit 2 of CWR register is at logic “1”, portBenable is driven to
logic “0”.
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iv. If bit 1 of CWR register is at logic “0”, portAenable is driven to logic
“1”. If bit 1 of CWR register is at logic “1”, portAenable is driven to
logic “0”.

b. Bits 6 and 5 of CWR register are checked for their value. Assume
CWR[6:5] is at logic “01” (mode 1 operation)

i. If bit 2 of CWR register is at logic “0”, portBenable is driven to logic
“1”. If bit 2 of CWR register is at logic “1”, portBenable is driven to
logic “0”.

ii. If bit 1 of CWR register is at logic “0”, portAenable is driven to logic
“1”. If bit 1 of CWR register is at logic “1”, portAenable is driven to
logic “0”.

iii. If CWR[2:1] register is at logic “00” (portA and portB function as
strobed output), portCenable is driven to logic “10001011”. This
translates to portC[7] is output, portC[6:4] is input, portC[3] is
output, portC[2] is input, and portC[1:0] is output.

iv. If CWR[2:1] register is at logic “01” (portA functions as strobed
input and portB functions as strobed output), portCenable is driven
to logic “00101011”. This translates to portC[7:6] is input, portC[5] is
output, portC[4] is input, portC[3] is output, portC[2] is input, and
portC[1:0] is output.

v. If CWR[2:1] register is at logic “10” (portA functions as strobed
output and portB functions as strobed input), portCenable is driven
to logic “10001011”. This translates to portC[7] is output, portC[6:4]
is input, portC[3] is output, portC[2] is input, and portC[1:0] is output.

vi. If CWR[2:1] register is at logic “11” (portA and portB function as
strobed input), portCenable is driven to logic “00101011”. This trans-
lates to portC[7:6] is input, portC[5] is output, portC[4] is input,
portC[3] is output, portC[2] is input, and portC[1:0] is output.

c. Bits 6 and 5 of CWR register are checked for their value. Assume
CWR[6:5] is at logic “10” (mode 2 operation)

i. If bit 2 of CWR register is at logic “0”, portBenable is driven to logic
“1”. If bit 2 of CWR register is at logic “1”, portBenable is driven to
logic “0”.

ii. PortC functions as strobed I/O. PortCenable is driven to logic
“10101000”. This translates to portC[7] is output, portC[6] is input,
portC[5] is output, portC[4] is input, portC[3] is output, and
portC[2:0] is input.

6.6 SIMULATION FOR PROGRAMMABLE PERIPHERAL 
INTERFACE DESIGN

The Verilog code shown in Example 6.1 implements the functionality
explained in Section 6.4. To verify the Verilog code has the correct function-
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ality, the code is simulated. A total of 13 test benches are written to simulate
the different functionalities of the PLB design:

1. mode 0 operation with portA, portB, and portC as input port
2. mode 0 operation with portA, portB, and portC as output port
3. mode 0 operation with portA, portB, portC lower as input port, and

portC upper as output port
4. mode 0 operation with portA, portB, portC upper as input port, and

portC lower as output port
5. writing data to and reading data from STATUS and CWR register
6. mode 1 operation with portA and portB as strobed input
7. mode 1 operation with portA as strobed input and portB as strobed

output
8. mode 1 operation with portA as strobed output and portB as strobed input
9. mode 1 operation with portA and portB as strobed output

10. mode 2 operation with portA as strobed I/O and portB as input
11. mode 2 operation with portA as strobed I/O and portB as output
12. mode 1 operation with portA and portB as strobed input (STATUS

registers at logic “0”)
13. mode 2 operation with portA as strobed I/O and portB as output

(STATUS registers at logic “0”)

Sections 6.6.1 to 6.6.12 show the test bench that can be used to simulate the
PLB design for different functionalities. Waveforms of the simulation results
are shown to explain the functionality of the design.

6.6.1 Simulation for Mode 0 Operation with PortA, PortB, and PortC as
Input and Output

In mode 0 operation, portA and portB can function as either input ports or
output ports. PortC is divided into portC upper and portC lower, each able to
function as input port or output port. For this simulation, all ports are set up
to function as input ports.The ports are then reconfigured to function as output
ports. Example 6.2 shows the Verilog code that can be used to simulate the
PLB design.

Example 6.2 Simulation with PortA, PortB, and PortC as Input and 
Output in Mode 0 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
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wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data, temp_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// testing for mode 0 with all portA, portB, 
// portCU, portCL 
// input

temp_data = 8'b10011110;
CWR_write(temp_data);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
read_port;
drive_portA = 8'hzz;
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// read portB
address = 1;
drive_portB = 8'h35;
read_port;
drive_portB = 8'hzz;

// read portC
address = 2;
drive_portC = 8'h98;
read_port;
drive_portC = 8'hzz;

// change portA to output
temp_data = 8'b10011100;
CWR_write(temp_data);
drive_data = 8'hzz;

// write to portA
address = 0;
drive_data = 8'hbc;
write_port;
drive_data = 8'hzz;

// change portB to output
temp_data = 8'b10011000;
CWR_write(temp_data);
drive_data = 8'hzz;

// write to portB
address = 1;
drive_data = 8'h67;
write_port;
drive_data = 8'hzz;

// change portC to output
temp_data = 8'b10000000;
CWR_write(temp_data);
drive_data = 8'hzz;

// write to portC
address = 2;
drive_data = 8'h32;
write_port;
drive_data = 8'hzz;

end
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task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_write;
input [7:0] temp_data;
begin

tb_reset = 0;
address = 3'b011;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
drive_data = temp_data;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
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#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), 
.wrb(tb_wrb), .a2(tb_a2), .a1(tb_a1), .a0(tb_a0),
.reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.34:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “9e”. This data is written
into CWR register (“9e” in CWR register configures the PLB to func-
tion in mode 0 operation with portA, portB and portC as input ports).

c. In the circle marked 3, rdb pulses low, causing a read from address “000”.
Because the PLB is operating in mode 0 with portA as input, the data
at portA (“a5”) is read to data[7:0] bus.
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d. In the circle marked 4, rdb pulses low, causing a read from address “001”.
Because the PLB is operating in mode 0 with portB as input, the data at
portB (“35”) is read to data[7:0] bus.

e. In the circle marked 5, rdb pulses low, causing a read from address “010”.
Because the PLB is operating in mode 0 with portC as input, the data at
portC (“98”) is read to data[7:0] bus.

f. In the circle marked 6, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “9c”. This data is written
into CWR register (“9c” in CWR register configures the PLB to func-
tion in mode 0 operation with portA as output port and portB, portC as
input ports).

g. In the circle marked 7, wrb pulses low, causing a write to address “000”.
Because the PLB is operating in mode 0 with portA as output, the data
at data[7:0] (“bc”) is written to portA.

h. In the circle marked 8, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “98”. This data is written
into CWR register (“98” in CWR register configures the PLB to func-
tion in mode 0 operation with portA and portB as output port while
portC as input port).

i. In the circle marked 9, wrb pulses low, causing a write to address “001”.
Because the PLB is operating in mode 0 with portB as output, the data
at data[7:0] (“67”) is written to portB.

j. In the circle marked 10, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “80”. This data is written
into CWR register (“80” in CWR register configures the PLB to func-
tion in mode 0 operation with portA, portB and portC as output port).

k. In the circle marked 11, wrb pulses low, causing a write to address “010”.
Because the PLB is operating in mode 0 with portC as output, the data
at data[7:0] (“32”) is written to portC.

6.6.2 Simulation for Mode 0 Operation with PortA, PortB, and PortC
Lower as Input, and PortC Upper as Output

In this simulation, portA, portB, and portC lower is configured as input ports
whereas portC upper as output port. The PLB operates in mode 0. Example
6.3 shows the Verilog code that can be used to simulate the PLB design for
correct functionality.

Example 6.3 Simulation with PortA, PortB, and PortC Lower as Input and
PortC Upper as Output in Mode 0 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
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wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data, temp_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// testing for mode 0 with all portA, portB 
// input, portCU 
// output, portCL input

temp_data = 8'b10001110;
CWR_write(temp_data);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
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read_port;
drive_portA = 8'hzz;

// read portB
address = 1;
drive_portB = 8'h35;
read_port;
drive_portB = 8'hzz;

// read portC
address = 2;
drive_portC = 8'h98;
read_port;
drive_portC = 8'hzz;

// write to portCupper
address = 2;
drive_data = 8'h32;
write_port;
drive_data = 8'hzz;

end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask
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task CWR_write;
input [7:0] temp_data;
begin

tb_reset = 0;
address = 3'b011;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
drive_data = temp_data;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), 
.wrb(tb_wrb), .a2(tb_a2), .a1(tb_a1), .a0(tb_a0),
.reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.35:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “8e”. This data is written
into CWR register (“8e” in CWR register configures the PLB to func-
tion in mode 0 operation with portA, portB, and portC lower as input
ports whereas portC upper is an output port).
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c. In the circle marked 3, rdb pulses low, causing a read from address “000”.
Because the PLB is operating in mode 0 with portA as input, the data
at portA (“a5”) is read to data[7:0] bus.

d. In the circle marked 4, rdb pulses low, causing a read from address “001”.
Because the PLB is operating in mode 0 with portB as input, the data at
portB (“35”) is read to data[7:0] bus.

e. In the circle marked 5, rdb pulses low, causing a read from address “010”.
Because the PLB is operating in mode 0 with portC lower as input and
portC upper as output, the data at portA (“98”) is read to data[7:0] bus
as “z8” (“z” is for tri-state because portC upper is an output port).

f. In the circle marked 6, wrb pulses low, causing a write to address “010”.
Because the PLB is operating in mode 0 with portC lower as input 
and portC upper as output, the data at data[7:0] bus (“32”) is 
written to portC as “3z” (“z” is for tri-state because portC lower is an
input port).
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6.6.3 Simulation for Mode 0 Operation with PortA, PortB, and PortC
Upper as Input and PortC Lower as Output

In this simulation, portA, portB, and portC upper are configured as input ports
whereas portC lower is an output port. The PLB operates in mode 0. Example
6.4 shows the Verilog code that can be used to simulate the PLB design for
correct functionality.

Example 6.4 Simulation with PortA, PortB, and PortC Upper as Input and
PortC Lower as Output in Mode 0 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data, temp_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;
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task_reset;

// testing for mode 0 with all portA, portB 
// input, portCU 
// input, portCL output

temp_data = 8'b10010110;
CWR_write(temp_data);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
read_port;
drive_portA = 8'hzz;

// read portB
address = 1;
drive_portB = 8'h35;
read_port;
drive_portB = 8'hzz;

// read portC
address = 2;
drive_portC = 8'h98;
read_port;
drive_portC = 8'hzz;

// write to portClower
address = 2;
drive_data = 8'h32;
write_port;
drive_data = 8'hzz;

end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask
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task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_write;
input [7:0] temp_data;
begin

tb_reset = 0;
address = 3'b011;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
drive_data = temp_data;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), 
.wrb(tb_wrb), .a2(tb_a2), .a1(tb_a1), .a0(tb_a0),
.reset(tb_reset),
.data(tb_data));

endmodule
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Referring to Figure 6.36:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “96”. This data is written
into CWR register (“96” in CWR register configures the PLB to func-
tion in mode 0 operation with portA, portB, and portC upper as input
ports whereas portC lower is an output port).

c. In the circle marked 3, rdb pulses low, causing a read from address “000”.
Because the PLB is operating in mode 0 with portA as input, the data
at portA (“a5”) is read to data[7:0] bus.

d. In the circle marked 4, rdb pulses low, causing a read from address “001”.
Because the PLB is operating in mode 0 with portB as input, the data at
portB (“35”) is read to data[7:0] bus.
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e. In the circle marked 5, rdb pulses low, causing a read from address “010”.
Because the PLB is operating in mode 0 with portC upper as input and
portC lower as output, the data at portA (“98”) is read to data[7:0] bus
as “9z” (“z” is for tri-state because portC lower is an output port).

f. In the circle marked 6, wrb pulses low, causing a write to address “010”.
Because the PLB is operating in mode 0 with portC lower as output and
portC upper as input, the data at data[7:0] bus (“32”) is written to portC
as “z2” (“z” is for tri-state because portC upper is an input port).

6.6.4 Simulation for Writing and Reading Data from STATUS and 
CWR Register

In this simulation, the functionality of writing and reading data from the CWR
and STATUS registers are verified. Example 6.5 shows the Verilog code that
can be used to simulate the PLB design for this functionality.

Example 6.5 Simulation for Writing and Reading Data from STATUS and
CWR Register

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
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drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 1;

#cycle;

task_reset;

// to write to STATUS
address = 3'b111;
drive_data = 8'b11111111;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// to write to CWR
address = 3'b011;
drive_data = 8'hba;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// read from STATUS reg
address = 7;
read_port;
#cycle;

// read from CWR reg
address = 3;
read_port;
#cycle;

#cycle;
end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
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tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), 
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.wrb(tb_wrb), .a2(tb_a2), .a1(tb_a1), .a0(tb_a0),

.reset(tb_reset),

.data(tb_data));

endmodule

Referring to Figure 6.37:

a. In the circle marked 1, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “ff”.This data is written
into the STATUS register.

b. In the circle marked 2, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “ba”. This data is written
into the CWR register.

c. In the circle marked 3, rdb pulses low, causing a read from address “111”
(STATUS register). The contents of the STATUS register are read onto
data[7:0] bus (“ff”).
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d. In the circle marked 4, rdb pulses low, causing a read from address “011”
(CWR register). The contents of the CWR register are read onto
data[7:0] bus (“ba”).

6.6.5 Simulation for Mode 1 Operation with PortA and PortB as
Strobed Input

In this simulation, portA and portB are configured as strobed input ports in
mode 1 operation. In this mode, portC is used as control signals for the strobed
input ports (portA and portB). Example 6.6 shows the Verilog code that can
be used to simulate the PLB design for correct functionality.

Example 6.6 Simulation with PortA and PortB as Strobed Input in Mode 
1 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
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address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// for mode 1 with portA and portB input

// to write to STATUS
address = 3'b111;
drive_data = 8'b11111111;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b10100110;
// drive portC[4] to default 1
drive_portC[4] = 1;
// drive portC[2] to default 1
drive_portC[2] = 1;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
drive_portB = 8'hba;
drive_portC[4] = 0; // this is to have stbab at low
drive_portC[2] = 1; // this is to have stbbb at high
#cycle;
drive_portC[4] = 1; // this is to have stbab back 
// at high
read_port;
address = 1;
drive_portC[2] = 0; // this is to have stbbb at low
#cycle;
drive_portC[2] = 1; // this is to have stbbb back 
// at high
#cycle;
read_port;
drive_portA = 8'hzz;
drive_portB = 8'hzz;

end
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task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;
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end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), 
.wrb(tb_wrb), .a2(tb_a2), .a1(tb_a1), .a0(tb_a0),
.reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.38:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.
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b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “ff”.This data is written
into the STATUS register.The contents of the STATUS register are used
as a qualifier in generating the control signals portC when the PLB
operates in mode 1 or mode 2 operation.

c. In the circle marked 3, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “a6”. This data is written
into the CWR register. (“a6” in the CWR register configures the PLB
to function in mode 1 operation with portA and portB as strobed input
ports whereas portC acts as the control signals for portA and portB.)

d. In the curved arrow marked 3a, portC[4] (input control signal stbab)
drives logic “0”. This causes portC[5] (output control signal ibfa) to be
at logic “1”.

e. In the curved arrow marked 3b,portC[4] (input control signal stbab) drives
logic “1”.This causes portC[3] (output control signal intra) to be at logic “1”.

f. In the circle marked 4, rdb pulses low. The falling edge of rdb causes
portC[3] (output control signal intra) to be at logic “0”. This is repre-
sented by curved arrow 4a.

g. The rising edge of rdb in the circle marked 4 causes portC[5] (output
control signal ibfa) to be at logic “0”. This is represented by curved
arrow 4b.

h. In the circle marked 4, when rdb pulses low, the data (“a5”) at
portA[7:0] is read onto the data[7:0] bus (“a5”).

i. In the curved arrow marked 4c, portC[2] (input control signal stbbb)
drives logic “0”. This causes portC[1] (output control signal ibfb) to be
at logic “1”.

j. In the curved arrow marked 4d, portC[2] (input control signal stbbb)
drives logic “1”. This causes portC[0] (output control signal intrb) to be
at logic “1”.

k. In the circle marked 5, rdb pulses low. The falling edge of rdb causes
portC[0] (output control signal intrb) to be at logic “0”. This is repre-
sented by curved arrow 5a.

l. The rising edge of rdb in the circle marked 5 causes portC[1] (output
control signal ibfb) to be at logic “0”. This is represented by curved
arrow 5b.

m. In the circle marked 5, when rdb pulses low, the data (“ba”) at
portB[7:0] is read onto the data[7:0] bus (“ba”).

6.6.6 Simulation for Mode 1 Operation with PortA as Strobed Input and
PortB as Strobed Output

In this simulation, portA is configured as a strobed input port and portB as a
strobed output port in mode 1 operation. In this mode, portC is used as control
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signal for strobed input and output ports. Example 6.7 shows the Verilog code
that can be used to simulate the PLB design for correct functionality.

Example 6.7 Simulation with PortA as Strobed Input and PortB as
Strobed Output in Mode 1 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// for mode 1 with portA input and portB output
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// to write to STATUS
address = 3'b111;
drive_data = 8'b11111111;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b10100010;
// drive portC[4] to default 1 - this is stbab
drive_portC[4] = 1;
// drive portC[2] to default 1 - this is ackbb
drive_portC[2] = 1;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
drive_portC[4] = 0; // this is to have stbab at low
#cycle;
drive_portC[4] = 1; // this is to have stbab back at high
read_port;
#cycle;
drive_portA = 8'hzz;
#cycle;

// write to portB
address = 1;
drive_data = 8'hac;
write_port;
#cycle;
drive_portC[2] = 0; // this is to have ackbb at low
#cycle;
drive_portC[2] = 1; // this is to have ackbb at high
#cycle;

#cycle;
end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
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tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), .wrb(tb_wrb),
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.a2(tb_a2), .a1(tb_a1), .a0(tb_a0), .reset(tb_reset),

.data(tb_data));

endmodule

Referring to Figure 6.39:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “ff”.This data is written
into the STATUS register. The contents of the STATUS register are used
as qualifiers in generating the control signals portC when the PLB oper-
ates in mode 1 or mode 2 operation.
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c. In the circle marked 3, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “a2”. This data is written
into CWR register. (“a2” in CWR register configures the PLB to func-
tion in mode 1 operation with portA as a strobed input port and portB
as a strobed output port. PortC acts as the control signals for the portA
and portB.)

d. For the curved arrow marked 3a, portC[4] (input control signal stbab)
drives logic “0”. This causes portC[5] (output control signal ibfa) to be
at logic “1”.

e. For the curved arrow marked 3b, portC[4] (input control signal stbab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”.

f. For the circle marked 4, rdb pulses low. The falling edge of rdb causes
portC[3] (output control signal intra) to logic “0”. This is represented
by curved arrow 4a.

g. The rising edge of rdb in circle marked 4 causes portC[5] (output
control signal ibfa) to logic “0”. This is represented by curved arrow 
4b.

h. In the circle marked 4, when rdb pulses low, the data (“a5”) at portA[7:0]
is read onto the data[7:0] bus (“a5”).

i. In the circle marked 5, wrb pulses low. The falling edge of wrb
causes portC[0] (output control signal intrb) to logic “0”. The rising 
edge of wrb causes portC[1] (output control signal obfbb) to be at logic
“0”.

j. For the curved arrow marked 5c, portC[2] (input control signal ackbb)
drives logic “0”. This causes portC[1] (output control signal obfbb) to be
at logic “1”.

k. For the curved arrow marked 5d, portC[2] (input control signal ackbb)
drives logic “1”. This causes portC[0] (output control signal intrb) to be
at logic “1”.

l. In the circle marked 5, during rising edge of wrb, data (“ac”) at data[7:0]
bus is written onto portB[7:0].

6.6.7 Simulation for Mode 1 Operation with PortA as Strobed Output and
PortB as Strobed Input

In this simulation, portA is configured as a strobed output port and 
portB as a strobed input port in mode 1 operation. PortC is used as 
control signals for the strobed input and output ports. Example 6.8 shows 
the Verilog code that can be used to simulate the PLB design for correct 
functionality.
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Example 6.8 Simulation with PortA as Strobed Output and PortB as
Strobed Input in Mode 1 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 1;

#cycle;

task_reset;

// for mode 1 with portA output and portB input

// to write to STATUS
address = 3'b111;
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drive_data = 8'b11111111;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b10100100;
// drive portC[2] to default 1 - this is stbbb
drive_portC[2] = 1;
// drive portC[6] to default 1 - this is ackab
drive_portC[6] = 1;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// write to portA
address = 0;
drive_data = 8'hac;
write_port;
#cycle;
drive_portC[6] = 0; // this is to have ackab at low
#cycle;
drive_portC[6] = 1; // this is to have ackab at high
#cycle;
drive_data = 8'hzz;

// read from portB
address = 1;
drive_portB = 8'ha5;
#cycle;
drive_portC[2] = 0; // this is to have stbbb at low
#cycle;
drive_portC[2] = 1; // this is to have stbbb back at high
read_port;
#cycle;
drive_portB = 8'hzz;
#cycle;

#cycle;
end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
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tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), .wrb(tb_wrb),
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.a2(tb_a2), .a1(tb_a1), .a0(tb_a0), .reset(tb_reset),

.data(tb_data));

endmodule

Referring to Figure 6.40:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “ff”.This data is written
into the STATUS register. The contents of the STATUS register are used
as a qualifier in generating the control signals portC when the PLB oper-
ates in mode 1 or mode 2 operation.

c. In the circle marked 3, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “a4”. This data is written
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into the CWR register. (“a4” in CWR register configures the PLB to
function in mode 1 operation with portA as a strobed output port and
portB as a strobed input port. PortC acts as the control signals for portA
and portB.)

d. In the circle marked 4, wrb pulses low. The falling edge of wrb causes
portC[3] (output control signal intra) to be at logic “0”. The rising edge
of wrb in the circle marked 4 causes portC[7] (output control signal
obfab) to be at logic “0”.

e. In the circle marked 4, during rising edge of wrb, data (“ac”) at data[7:0]
bus is written onto portA[7:0].

f. For the curved arrow marked 4a, portC[6] (input control signal ackab)
drives logic “0”. This causes portC[7] (output control signal obfab) to be
at logic “1”.

g. For the curved arrow marked 4b, portC[6] (input control signal ackab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”.

h. For the curved arrow marked 4c, portC[2] (input control signal stbbb)
drives logic “0”. This causes portC[1] (output control signal ibfb) to be
at logic “1”.

i. In the circle marked 5, rdb pulses low. The falling edge of rdb causes
portC[0] (output control signal intrb) to be at logic “0”. The rising edge
of rdb in the circle marked 5 causes portC[1] (output control signal ibfb)
to be at logic “0”.

j. In the circle marked 4, when rdb pulses low, the data (“a5”) at portB[7:0]
is read onto data[7:0] bus (“a5”).

6.6.8 Simulation for Mode 1 Operation with PortA and PortB as
Strobed Output

In this simulation, portA and portB are configured as strobed output in mode
1 operation. PortC is used as control signals for the strobed input and output
ports. Example 6.9 shows the Verilog code that can be used to simulate the
PLB design for correct functionality.

Example 6.9 Simulation with PortA and PortB as Strobed Output in 
Mode 1 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;
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reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'bz1z1z1zz;
tb_rdb = 8'hzz;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// for mode 1 with portA and portB output

// to write to STATUS
address = 3'b111;
drive_data = 8'b11111111;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b10100000;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// write to portA
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// drive portC[6] to default 1 - this is ackab
drive_portC[6] = 1;
// drive portC[2] to default 1 - this is ackbb
drive_portC[2] = 1;

address = 0;
drive_data = 8'ha5;
write_port;
#cycle;
drive_portC[6] = 0; // this is to have ackab at low
#cycle;
drive_portC[6] = 1; // this is to have ackab back at high
drive_portA = 8'hzz;
#cycle;

// write to portB
address = 1;
drive_data = 8'hac;
write_port;
#cycle;
drive_portC[2] = 0; // this is to have ackbb at low
#cycle;
drive_portC[2] = 1; // this is to have ackbb at high
drive_portB = 8'hzz;
repeat (2) #cycle;

end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
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tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), .wrb(tb_wrb),
.a2(tb_a2), .a1(tb_a1), .a0(tb_a0), .reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.41:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “ff”.This data is written
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into the STATUS register. The contents of STATUS registers are used as
a qualifier in generating the control signals portC when the PLB oper-
ates in mode 1 or mode 2 operation.

c. In the circle marked 3, wrb pulses low, causing a write to address 
“011” (CWR register). The data on data[7:0] bus is “a0”. This 
data is written into the CWR register. (“a0” in CWR register con-
figures the PLB to function in mode 1 operation with portA and
portB as strobed output. PortC acts as the control signals for portA and
portB.)

d. In the circle marked 4, wrb pulses low. The falling edge of wrb causes
portC[3] (output control signal intra) to logic “0”.The rising edge of wrb
in the circle marked 4 causes portC[7] (output control signal obfab) to
be at logic “0”.

e. In the circle marked 4, during rising edge of wrb, data (“a5”) at data[7:0]
bus is written onto portA[7:0].
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f. For the curved arrow marked 4a, portC[6] (input control signal ackab)
drives logic “0”. This causes portC[7] (output control signal obfab) to be
at logic “1”.

g. For the curved arrow marked 4b, portC[6] (input control signal ackab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”.

h. In the circle marked 5, wrb pulses low. The falling edge of wrb causes
portC[0] (output control signal intrb) to logic “0”.The rising edge of wrb
in the circle marked 5 causes portC[1] (output control signal obfbb) to
logic “0”.

i. In the circle marked 5, during rising edge of wrb, data (“ac”) at data[7:0]
bus is written onto portB[7:0].

j. In the curved arrow marked 5a, portC[2] (input control signal ackbb)
drives logic “0”. This causes portC[1] (output control signal obfbb) to be
at logic “1”.

k. In the curved arrow marked 5b, portC[2] (input control signal ackbb)
drives logic “1”. This causes portC[0] (output control signal intrb) to be
at logic “1”.

6.6.9 Simulation for Mode 2 Operation with PortA as Strobed I/O and
PortB as Input

In this simulation, portA is configured as a strobed I/O port and portB as an
input port in mode 2 operation. PortC is used as control signals for the strobed
I/O and input ports. Example 6.10 shows the Verilog code that can be used to
simulate the PLB design for correct functionality.

Example 6.10 Simulation with PortA as Strobed I/O and PortB as Input in
Mode 2 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
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assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// for mode 2 with portB input

// to write to STATUS
address = 3'b111;
drive_data = 8'b11111111;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b11000110;
// drive portC[4] to default 1
drive_portC[4] = 1;
// drive portC[6] to default 1
drive_portC[6] = 1;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
drive_portC[4] = 0; // this is to have stbab at low
#cycle;
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drive_portC[4] = 1; // this is to have stbab back at high
read_port;
#cycle;
drive_portA = 8'hzz;

// write to portA

drive_data = 8'haa;
write_port;
#cycle;
drive_portC[6] = 0; // this is to have ackab at low
#cycle;
drive_portC[6] = 1; // this is to have ackab back at high
drive_portA = 8'hzz;
#cycle;
drive_data = 8'hzz;
#cycle;

// read from portB
address = 1;
drive_portB = 8'h35;
read_port;
drive_portB = 8'hzz;

#cycle;
end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
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#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), .wrb(tb_wrb),
.a2(tb_a2), .a1(tb_a1), .a0(tb_a0), .reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.42:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “ff”.This data is written
into the STATUS register. The contents of the STATUS register are used
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as a qualifier in generating the control signals portC when the PLB oper-
ates in mode 1 or mode 2 operation.

c. In the circle marked 3, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “c6”. This data is written
into the CWR register. (“c6” in the CWR register configures the PLB to
function in mode 2 operation with portA as a strobed I/O port and portB
as an input port. PortC acts as the control signals for portA.)

d. For the curved arrow marked 3a, portC[4] (input control signal stbab)
drives logic “0”. This causes portC[5] (output control signal ibfa) to be
at logic “1”.

e. For the curved arrow marked 3b, portC[4] (input control signal stbab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”.

f. In the circle marked 4, rdb pulses low. The falling edge of rdb causes
portC[3] (output control signal intra) to logic “0”. This is represented
by curved arrow 4a.

g. The rising edge of rdb in the circle marked 4 causes portC[5]
(output control signal ibfa) to logic “0”. This is represented by curved
arrow 4b.
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h. In the circle marked 4, when rdb pulses low, the data (“a5”) at portA[7:0]
is read onto the data[7:0] bus (“a5”).

i. In the circle marked 5, wrb pulses low. The falling edge of wrb causes
portC[3] (output control signal intra) to be at logic “0”. The rising edge
of wrb in the circle marked 5 causes portC[7] (output control signal
obfab) to be at logic “0”.

j. In the circle marked 5, during rising edge of wrb, data (“aa”) at data[7:0]
bus is written onto portA[7:0].

k. For the curved arrow marked 5c, portC[6] (input control signal ackab)
drives logic “0”. This causes portC[7] (output control signal obfab) to be
at logic “1”.

l. For the curved arrow marked 5d, portC[6] (input control signal ackab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”.

i. In the circle marked 6, rdb pulses low, causing a read from address “001”.
Because the PLB is operating in mode 2 with portB as input, the data at
portB (“35”) is read to data[7:0] bus.

6.6.10 Simulation for Mode 2 Operation with PortA as Strobed I/O and
PortB as Output

In this simulation, portA is configured as a strobed I/O port and portB as an
output port in mode 2 operation. PortC is used as control signals for the
strobed I/O and output ports. Example 6.11 shows the Verilog code that 
can be used to simulate the PLB design for correct functionality.

Example 6.11 Simulation with PortA as Strobed I/O and PortB as Output
in Mode 2 Operation

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
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assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// for mode 2 with portB input

// to write to STATUS
address = 3'b111;
drive_data = 8'b11111111;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b11000010;
// drive portC[4] to default 1
drive_portC[4] = 1;
// drive portC[6] to default 1
drive_portC[6] = 1;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
drive_portC[4] = 0; // this is to have stbab at low
#cycle;
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drive_portC[4] = 1; // this is to have stbab back at high
read_port;
#cycle;
drive_portA = 8'hzz;

// write to portA

drive_data = 8'haa;
write_port;
#cycle;
drive_portC[6] = 0; // this is to have ackab at low
#cycle;
drive_portC[6] = 1; // this is to have ackab back at high
drive_portA = 8'hzz;
#cycle;
drive_data = 8'hzz;
#cycle;

// write to portB
address = 1;
drive_data = 8'h67;
write_port;
drive_data = 8'hzz;
#cycle;

end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
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#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), .wrb(tb_wrb),
.a2(tb_a2), .a1(tb_a1), .a0(tb_a0), .reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.43:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “ff”.This data is written
into the STATUS register.The contents of the STATUS register are used
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as a qualifier in generating the control signals portC when the PLB
operates in mode 1 or mode 2 operation.

c. In the circle marked 3, wrb pulses low, causing a write to address 
“011” (CWR register). The data on data[7:0] bus is “c2”. This data 
is written into the CWR register. (“c2” in the CWR register configures
the PLB to function in mode 2 operation with portA as a strobed I/O
port and portB as an output port. PortC acts as the control signals for
portA.)

d. For the curved arrow marked 3a, portC[4] (input control signal stbab)
drives logic “0”. This causes portC[5] (output control signal ibfa) to be
at logic “1”.

e. For the curved arrow marked 3b, portC[4] (input control signal stbab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”.

f. In the circle marked 4, rdb pulses low. The falling edge of rdb causes
portC[3] (output control signal intra) to logic “0”. This is represented
by curved arrow 4a.

g. The rising edge of rdb in the circle marked 4 causes portC[5] (output
control signal ibfa) to be at logic “0”. This is represented by curved
arrow 4b.
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h. In the circle marked 4, when rdb pulses low, the data (“a5”) at
portA[7:0] is read onto the data[7:0] bus (“a5”).

i. In the circle marked 5, wrb pulses low. The falling edge of wrb causes
portC[3] (output control signal intra) to be at logic “0”. The rising edge
of wrb in the circle marked 5 causes portC[7] (output control signal
obfab) to be at logic “0”.

j. In the circle marked 5, during rising edge of wrb, data (“aa”) at
data[7:0] bus is written onto portA[7:0].

k. For the curved arrow marked 5c, portC[6] (input control signal ackab)
drives logic “0”. This causes portC[7] (output control signal obfab) to
be at logic “1”.

l. For the curved arrow marked 5d, portC[6] (input control signal ackab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”.

m. In the circle marked 6, wrb pulses low, causing a write to address “001”.
Because the PLB is operating in mode 2 with portB as output, the data
at data[7:0] bus (“67”) is written to portB.

6.6.11 Simulation for Mode 1 Operation with PortA and PortB as Strobed
Input and STATUS Register Disabled

In this simulation, portA and portB are configured as strobed input ports in
mode 1 operation with STATUS register disabled (contents of STATUS reg-
ister are “00000000”). In this mode, portC is used as control signals for the
strobed input ports (portA and portB). Example 6.12 shows the Verilog code
that can be used to simulate the PLB design for correct functionality.

Example 6.12 Simulation with PortA and PortB as Strobed Input in Mode
1 Operation with STATUS Register Disabled

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
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assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// for mode 1 with portA and portB input

// to write to STATUS
address = 3'b111;
drive_data = 8'h00;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b10100110;
// drive portC[4] to default 1
drive_portC[4] = 1;
// drive portC[2] to default 1
drive_portC[2] = 1;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
drive_portB = 8'hba;
drive_portC[4] = 0; // this is to have stbab at low
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drive_portC[2] = 1; // this is to have stbbb at high
#cycle;
drive_portC[4] = 1; // this is to have stbab back at high
read_port;
address = 1;
drive_portC[2] = 0; // this is to have stbbb at low
#cycle;
drive_portC[2] = 1; // this is to have stbbb back
#cycle;
read_port;
drive_portA = 8'hzz;
drive_portB = 8'hzz;

end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
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tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), .wrb(tb_wrb),
.a2(tb_a2), .a1(tb_a1), .a0(tb_a0), .reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.44:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “0”.This data is written
into the STATUS register.The contents of the STATUS register are used
as a qualifier in generating the control signals portC when the PLB
operates in mode 1 or mode 2 operation.

c. In the circle marked 3, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “a6”. This data is written
into the CWR register. (“a6” in the CWR register configures the PLB
to function in mode 1 operation with portA and portB as strobed input
ports while portC acts as the control signals for portA and portB.)

d. For the curved arrow marked 3a, portC[4] (input control signal stbab)
drives logic “0”. This causes portC[5] (output control signal ibfa) to be
at logic “1”.
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e. For the curved arrow marked 3b, portC[4] (input control signal stbab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”. However, because the qualifier for portC[3] is STATUS[0]
(content of STATUS[0] is “0”), portC[3] remains at logic “0” instead of
toggling to logic “1”.

f. For the circle marked 4, rdb pulses low. The falling edge of rdb
causes portC[3] (output control signal intra) to logic “0”. This is 
represented by the curved arrow 4a. However, from Figure 6.44,
portC[3] is already at logic “0” because the qualifier STATUS[0] is at
logic “0”.

g. The rising edge of rdb in the circle marked 4 causes portC[5] (output
control signal ibfa) to be at logic “0”. This is represented by curved
arrow 4b.

h. In the circle marked 4, when rdb pulses low, the data (“a5”) at
portA[7:0] is read onto the data[7:0] bus (“a5”).
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i. For the curved arrow marked 4c, portC[2] (input control signal stbbb)
drives logic “0”. This causes portC[1] (output control signal ibfb) to be
at logic “1”.

j. For the curved arrow marked 4d, portC[2] (input control signal stbbb)
drives logic “1”. This causes portC[0] (output control signal intrb) to be
at logic “1”. However, because the qualifier for portC[0] is STATUS[1]
(content of STATUS[1] is “0”), portC[0] remains at logic “0” instead of
toggling to logic “1”.

k. In the circle marked 5, rdb pulses low. The falling edge of rdb causes
portC[0] (output control signal intrb) to be at logic “0”. This is repre-
sented by curved arrow 5a. However from Figure 6.44, portC[0] is
already at logic “0” because the qualifier STATUS[1] is at logic “0”.

l. The rising edge of rdb in the circle marked 5 causes portC[1] (output
control signal ibfb) to be at logic “0”. This is represented by curved
arrow 5b.

m. In the circle marked 5, when rdb pulses low, the data (“ba”) at
portB[7:0] is read onto the data[7:0] bus (“ba”).

6.6.12 Simulation for Mode 2 Operation with PortA as Strobed I/O and
PortB as Output and STATUS Register Disabled

In this simulation, portA is configured as a strobed I/O port and portB as an
output port in mode 2 operation with the STATUS register disabled (contents
of the STATUS register are “00000000”). PortC is used as control signals for
the strobed I/O and output port. Example 6.13 shows the Verilog code that
can be used to simulate the PLB design for correct functionality.

Example 6.13 Simulation with PortA as Strobed I/O and PortB as Output
in Mode 2 Operation with STATUS Register Disabled

module ppi_tb ();

wire [7:0] tb_portA, tb_portB, tb_portC;
reg tb_rdb, tb_wrb, tb_reset;
wire [7:0] tb_data;
wire tb_a2, tb_a1, tb_a0;

reg [7:0] drive_portA, drive_portB, drive_portC,
drive_data;

parameter cycle = 100;

assign tb_portA = drive_portA;
assign tb_portB = drive_portB;
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assign tb_portC = drive_portC;
assign tb_data = drive_data;

reg [2:0] address;
assign tb_a2 = address [2];
assign tb_a1 = address [1];
assign tb_a0 = address [0];

initial
begin

// for reset
drive_portA = 8'hzz;
drive_portB = 8'hzz;
drive_portC = 8'hzz;
tb_rdb = 1;
tb_wrb = 1;
address = 0;
drive_data = 8'hzz;
tb_reset = 0;

#cycle;

task_reset;

// for mode 2 with portB input

// to write to STATUS
address = 3'b111;
drive_data = 8'h00;
CWR_STATUS_write(address);

address = 3'b011;
drive_data = 8'b11000010;
// drive portC[4] to default 1
drive_portC[4] = 1;
// drive portC[6] to default 1
drive_portC[6] = 1;
CWR_STATUS_write(address);
drive_data = 8'hzz;

// read from portA
address = 0;
drive_portA = 8'ha5;
drive_portC[4] = 0; // this is to have stbab at low
#cycle;
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drive_portC[4] = 1; // this is to have stbab back at high
read_port;
#cycle;
drive_portA = 8'hzz;

// write to portA

drive_data = 8'haa;
write_port;
#cycle;
drive_portC[6] = 0; // this is to have ackab at low
#cycle;
drive_portC[6] = 1; // this is to have ackab back 
drive_portA = 8'hzz;
#cycle;
drive_data = 8'hzz;
#cycle;

// write to portB
address = 1;
drive_data = 8'h67;
write_port;
drive_data = 8'hzz;
#cycle;

end

task write_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task read_port;
begin

tb_wrb = 1;
tb_rdb = 1;
#cycle;
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tb_rdb = 0;
#cycle;
tb_rdb = 1;
#cycle;

end
endtask

task CWR_STATUS_write;
input [2:0] address;
begin

tb_reset = 0;
tb_rdb = 1;
tb_wrb = 1;
#cycle;
tb_wrb = 0;
#cycle;
tb_wrb = 1;
#cycle;

end
endtask

task task_reset;
begin

tb_reset = 0;
#cycle;
tb_reset = 1;
#cycle;
tb_reset = 0;
#cycle;

end
endtask

ppi ppi_inst (.portA(tb_portA), .portB(tb_portB),
.portC(tb_portC), .rdb(tb_rdb), .wrb(tb_wrb),
.a2(tb_a2), .a1(tb_a1), .a0(tb_a0), .reset(tb_reset),
.data(tb_data));

endmodule

Referring to Figure 6.45:

a. In the circle marked 1, reset occurs to reset the CWR register to “9e”
and the STATUS register to “0”.

b. In the circle marked 2, wrb pulses low, causing a write to address “111”
(STATUS register).The data on data[7:0] bus is “0”.This data is written
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into the STATUS register.The contents of the STATUS register are used
as a qualifier in generating the control signals portC when the PLB
operates in mode 1 or mode 2 operation.

c. In the circle marked 3, wrb pulses low, causing a write to address “011”
(CWR register). The data on data[7:0] bus is “c2”. This data is written
into the CWR register. (“c2” in the CWR register configures the PLB
to function in mode 2 operation with portA as a strobed I/O port and
portB as an input port. PortC acts as the control signals for portA.)

d. For the curved arrow marked 3a, portC[4] (input control signal stbab)
drives logic “0”. This causes portC[5] (output control signal ibfa) to be
at logic “1”.

e. For the curved arrow marked 3b, portC[4] (input control signal stbab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”. However, because the qualifier for portC[3] is
STATUS[5:4] (the content of STATUS[5:4] is “0”), portC[3] remains
at logic “0” instead of toggling to logic “1”.

f. In the circle marked 4, rdb pulses low. The falling edge of rdb causes
portC[3] (output control signal intra) to be at logic “0”. This is repre-
sented by the curved arrow 4a. However, from Figure 6.45, portC[3] is
already at logic “0” because the qualifier STATUS[5:4] is at logic “0”.
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FIGURE 6.45. Diagram showing simulation results of test bench Example 6.13.



g. The rising edge of rdb in the circle marked 4 causes portC[5] (output
control signal ibfa) to be at logic “0”. This is represented by the curved
arrow 4b.

h. In the circle marked 4, when rdb pulses low, the data (“a5”) at
portA[7:0] is read onto the data[7:0] bus (“a5”).

i. In the circle marked 5, wrb pulses low. The falling edge of wrb causes
portC[3] (output control signal intra) to be at logic “0”. However, from
Figure 6.45, portC[3] is already at logic “0” because the qualifier
STATUS[5:4] is at logic “0”.

j. The rising edge of wrb in the circle marked 5 causes portC[7] (output
control signal obfab) to be at logic “0”.

k. In the circle marked 5, during rising edge of wrb, data (“aa”) at
data[7:0] bus is written onto portA[7:0].

l. In the curved arrow marked 5c, portC[6] (input control signal ackab)
drives logic “0”. This causes portC[7] (output control signal obfab) to
be at logic “1”.

m. In the curved arrow marked 5d, portC[6] (input control signal ackab)
drives logic “1”. This causes portC[3] (output control signal intra) to be
at logic “1”. However, because the qualifier for portC[3] is
STATUS[5:4] (the content of STATUS[5:4] is “0”), portC[3] remains
at logic “0” instead of toggling to logic “1”.

n. In the circle marked 6, wrb pulses low, causing a write to address “001”.
Because the PLB is operating in mode 2 with portB as output, the data
at data[7:0] bus (“67”) is written to portB.
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Appendix

APPENDIX A.1 TWO-BIT BY TWO-BIT ADDER

Verilog code for a two-bit by two-bit adder:

module addition_2bit (inputA, inputB, outputA);

input [1:0] inputA, inputB;
output [2:0] outputA;

wire [2:0] outputA;

assign outputA = inputA + inputB;

endmodule

Verilog test bench to simulate the two-bit by two-bit adder:

module addition_2bit_tb ();

reg [1:0] reg_inputA, reg_inputB;
wire [2:0] wire_outputA;

integer i,j;

initial
begin

for (i=0; i<4; i=i+1)
begin

reg_inputA = i;
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for (j=0; j<4; j=j+1)
begin

reg_inputB = j;
#10;

end
end

end

addition_2bit addition_2bit_inst (.inputA(reg_inputA),
.inputB(reg_inputB), .outputA(wire_outputA));

initial
begin

$monitor ("inputA %b%b inputB %b%b outputA
%b%b%b", reg_inputA[1], reg_inputA[0], reg_inputB[1],
reg_inputB[0],

wire_outputA[2], wire_outputA[1],
wire_outputA[0]);
end

endmodule

Simulation results for simulating the two-bit by two-bit adder:
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FIGURE A.1. Synthesized logic for the two-bit by two-bit adder.



inputA 00 inputB 00 outputA 000
inputA 00 inputB 01 outputA 001
inputA 00 inputB 10 outputA 010
inputA 00 inputB 11 outputA 011
inputA 01 inputB 00 outputA 001
inputA 01 inputB 01 outputA 010
inputA 01 inputB 10 outputA 011
inputA 01 inputB 11 outputA 100
inputA 10 inputB 00 outputA 010
inputA 10 inputB 01 outputA 011
inputA 10 inputB 10 outputA 100
inputA 10 inputB 11 outputA 101
inputA 11 inputB 00 outputA 011
inputA 11 inputB 01 outputA 100
inputA 11 inputB 10 outputA 101
inputA 11 inputB 11 outputA 110

APPENDIX A.2 TWO-BIT BY TWO-BIT SUBTRACTOR

Verilog code for a two-bit by two-bit subtractor:

module subtraction_2bit (inputA, inputB, outputA);

input [1:0] inputA, inputB;
output [2:0] outputA;

wire [2:0] outputA;

assign outputA = inputA - inputB;

endmodule

Verilog test bench to simulate the two-bit by two-bit subtractor:

module subtraction_2bit_tb ();

reg [1:0] reg_inputA, reg_inputB;
wire [2:0] wire_outputA;

integer i,j;

initial
begin

for (i=0; i<4; i=i+1)
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begin
reg_inputA = i;
for (j=0; j<4; j=j+1)

begin
reg_inputB = j;
#10;

end
end

end

subtraction_2bit subtraction_2bit_inst
(.inputA(reg_inputA), .inputB(reg_inputB),
.outputA(wire_outputA));

initial
begin

$monitor ("inputA %h inputB %h outputA %h",
reg_inputA[1:0], reg_inputB[1:0], wire_outputA[2:0]);
end

endmodule

Simulation results for simulating the two-bit by two-bit subtractor:
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FIGURE A.2. Synthesized logic for the two-bit by two-bit subtractor.



inputA 0 inputB 0 outputA 0
inputA 0 inputB 1 outputA 7
inputA 0 inputB 2 outputA 6
inputA 0 inputB 3 outputA 5
inputA 1 inputB 0 outputA 1
inputA 1 inputB 1 outputA 0
inputA 1 inputB 2 outputA 7
inputA 1 inputB 3 outputA 6
inputA 2 inputB 0 outputA 2
inputA 2 inputB 1 outputA 1
inputA 2 inputB 2 outputA 0
inputA 2 inputB 3 outputA 7
inputA 3 inputB 0 outputA 3
inputA 3 inputB 1 outputA 2
inputA 3 inputB 2 outputA 1
inputA 3 inputB 3 outputA 0

APPENDIX A.3 FOUR-BIT BY FOUR-BIT MULTIPLIER

Verilog code for a four-bit by four-bit multiplier:

module multiplication_4bit (inputA, inputB, outputA);

input [3:0] inputA, inputB;
output [7:0] outputA;

wire [7:0] outputA;

assign outputA = inputA * inputB;

endmodule

Verilog test bench to simulate the four-bit by four-bit multiplier:

module multiplication_tb ();

reg [3:0] reg_inputA, reg_inputB;

wire [7:0] wire_outputA;

integer i,j;

initial
begin
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for (i=0; i<16; i=i+1)
begin

reg_inputA = i;
for (j=0; j<16; j=j+1)

begin
reg_inputB = j;
#10;

end
end

end

multiplication_4bit multiplication_4bit_inst
(.inputA(reg_inputA), .inputB(reg_inputB),
.outputA(wire_outputA));

initial
begin

$monitor ("inputA %h inputB %h outputA %h",
reg_inputA, reg_inputB, wire_outputA);
end

endmodule
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Simulation results for simulating the four-bit by four-bit multiplier:

inputA 0 inputB 0 outputA 00
inputA 0 inputB 1 outputA 00
inputA 0 inputB 2 outputA 00
inputA 0 inputB 3 outputA 00
inputA 0 inputB 4 outputA 00
inputA 0 inputB 5 outputA 00
inputA 0 inputB 6 outputA 00
inputA 0 inputB 7 outputA 00
inputA 0 inputB 8 outputA 00
inputA 0 inputB 9 outputA 00
inputA 0 inputB a outputA 00
inputA 0 inputB b outputA 00
inputA 0 inputB c outputA 00
inputA 0 inputB d outputA 00
inputA 0 inputB e outputA 00
inputA 0 inputB f outputA 00
inputA 1 inputB 0 outputA 00
inputA 1 inputB 1 outputA 01
inputA 1 inputB 2 outputA 02
inputA 1 inputB 3 outputA 03
inputA 1 inputB 4 outputA 04
inputA 1 inputB 5 outputA 05
inputA 1 inputB 6 outputA 06
inputA 1 inputB 7 outputA 07
inputA 1 inputB 8 outputA 08
inputA 1 inputB 9 outputA 09
inputA 1 inputB a outputA 0a
inputA 1 inputB b outputA 0b
inputA 1 inputB c outputA 0c
inputA 1 inputB d outputA 0d
inputA 1 inputB e outputA 0e
inputA 1 inputB f outputA 0f
inputA 2 inputB 0 outputA 00
inputA 2 inputB 1 outputA 02
inputA 2 inputB 2 outputA 04
inputA 2 inputB 3 outputA 06
inputA 2 inputB 4 outputA 08
inputA 2 inputB 5 outputA 0a
inputA 2 inputB 6 outputA 0c
inputA 2 inputB 7 outputA 0e
inputA 2 inputB 8 outputA 10
inputA 2 inputB 9 outputA 12
inputA 2 inputB a outputA 14
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inputA 2 inputB b outputA 16
inputA 2 inputB c outputA 18
inputA 2 inputB d outputA 1a
inputA 2 inputB e outputA 1c
inputA 2 inputB f outputA 1e
inputA 3 inputB 0 outputA 00
inputA 3 inputB 1 outputA 03
inputA 3 inputB 2 outputA 06
inputA 3 inputB 3 outputA 09
inputA 3 inputB 4 outputA 0c
inputA 3 inputB 5 outputA 0f
inputA 3 inputB 6 outputA 12
inputA 3 inputB 7 outputA 15
inputA 3 inputB 8 outputA 18
inputA 3 inputB 9 outputA 1b
inputA 3 inputB a outputA 1e
inputA 3 inputB b outputA 21
inputA 3 inputB c outputA 24
inputA 3 inputB d outputA 27
inputA 3 inputB e outputA 2a
inputA 3 inputB f outputA 2d
inputA 4 inputB 0 outputA 00
inputA 4 inputB 1 outputA 04
inputA 4 inputB 2 outputA 08
inputA 4 inputB 3 outputA 0c
inputA 4 inputB 4 outputA 10
inputA 4 inputB 5 outputA 14
inputA 4 inputB 6 outputA 18
inputA 4 inputB 7 outputA 1c
inputA 4 inputB 8 outputA 20
inputA 4 inputB 9 outputA 24
inputA 4 inputB a outputA 28
inputA 4 inputB b outputA 2c
inputA 4 inputB c outputA 30
inputA 4 inputB d outputA 34
inputA 4 inputB e outputA 38
inputA 4 inputB f outputA 3c
inputA 5 inputB 0 outputA 00
inputA 5 inputB 1 outputA 05
inputA 5 inputB 2 outputA 0a
inputA 5 inputB 3 outputA 0f
inputA 5 inputB 4 outputA 14
inputA 5 inputB 5 outputA 19
inputA 5 inputB 6 outputA 1e
inputA 5 inputB 7 outputA 23
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inputA 5 inputB 8 outputA 28
inputA 5 inputB 9 outputA 2d
inputA 5 inputB a outputA 32
inputA 5 inputB b outputA 37
inputA 5 inputB c outputA 3c
inputA 5 inputB d outputA 41
inputA 5 inputB e outputA 46
inputA 5 inputB f outputA 4b
inputA 6 inputB 0 outputA 00
inputA 6 inputB 1 outputA 06
inputA 6 inputB 2 outputA 0c
inputA 6 inputB 3 outputA 12
inputA 6 inputB 4 outputA 18
inputA 6 inputB 5 outputA 1e
inputA 6 inputB 6 outputA 24
inputA 6 inputB 7 outputA 2a
inputA 6 inputB 8 outputA 30
inputA 6 inputB 9 outputA 36
inputA 6 inputB a outputA 3c
inputA 6 inputB b outputA 42
inputA 6 inputB c outputA 48
inputA 6 inputB d outputA 4e
inputA 6 inputB e outputA 54
inputA 6 inputB f outputA 5a
inputA 7 inputB 0 outputA 00
inputA 7 inputB 1 outputA 07
inputA 7 inputB 2 outputA 0e
inputA 7 inputB 3 outputA 15
inputA 7 inputB 4 outputA 1c
inputA 7 inputB 5 outputA 23
inputA 7 inputB 6 outputA 2a
inputA 7 inputB 7 outputA 31
inputA 7 inputB 8 outputA 38
inputA 7 inputB 9 outputA 3f
inputA 7 inputB a outputA 46
inputA 7 inputB b outputA 4d
inputA 7 inputB c outputA 54
inputA 7 inputB d outputA 5b
inputA 7 inputB e outputA 62
inputA 7 inputB f outputA 69
inputA 8 inputB 0 outputA 00
inputA 8 inputB 1 outputA 08
inputA 8 inputB 2 outputA 10
inputA 8 inputB 3 outputA 18
inputA 8 inputB 4 outputA 20
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inputA 8 inputB 5 outputA 28
inputA 8 inputB 6 outputA 30
inputA 8 inputB 7 outputA 38
inputA 8 inputB 8 outputA 40
inputA 8 inputB 9 outputA 48
inputA 8 inputB a outputA 50
inputA 8 inputB b outputA 58
inputA 8 inputB c outputA 60
inputA 8 inputB d outputA 68
inputA 8 inputB e outputA 70
inputA 8 inputB f outputA 78
inputA 9 inputB 0 outputA 00
inputA 9 inputB 1 outputA 09
inputA 9 inputB 2 outputA 12
inputA 9 inputB 3 outputA 1b
inputA 9 inputB 4 outputA 24
inputA 9 inputB 5 outputA 2d
inputA 9 inputB 6 outputA 36
inputA 9 inputB 7 outputA 3f
inputA 9 inputB 8 outputA 48
inputA 9 inputB 9 outputA 51
inputA 9 inputB a outputA 5a
inputA 9 inputB b outputA 63
inputA 9 inputB c outputA 6c
inputA 9 inputB d outputA 75
inputA 9 inputB e outputA 7e
inputA 9 inputB f outputA 87
inputA a inputB 0 outputA 00
inputA a inputB 1 outputA 0a
inputA a inputB 2 outputA 14
inputA a inputB 3 outputA 1e
inputA a inputB 4 outputA 28
inputA a inputB 5 outputA 32
inputA a inputB 6 outputA 3c
inputA a inputB 7 outputA 46
inputA a inputB 8 outputA 50
inputA a inputB 9 outputA 5a
inputA a inputB a outputA 64
inputA a inputB b outputA 6e
inputA a inputB c outputA 78
inputA a inputB d outputA 82
inputA a inputB e outputA 8c
inputA a inputB f outputA 96
inputA b inputB 0 outputA 00
inputA b inputB 1 outputA 0b
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inputA b inputB 2 outputA 16
inputA b inputB 3 outputA 21
inputA b inputB 4 outputA 2c
inputA b inputB 5 outputA 37
inputA b inputB 6 outputA 42
inputA b inputB 7 outputA 4d
inputA b inputB 8 outputA 58
inputA b inputB 9 outputA 63
inputA b inputB a outputA 6e
inputA b inputB b outputA 79
inputA b inputB c outputA 84
inputA b inputB d outputA 8f
inputA b inputB e outputA 9a
inputA b inputB f outputA a5
inputA c inputB 0 outputA 00
inputA c inputB 1 outputA 0c
inputA c inputB 2 outputA 18
inputA c inputB 3 outputA 24
inputA c inputB 4 outputA 30
inputA c inputB 5 outputA 3c
inputA c inputB 6 outputA 48
inputA c inputB 7 outputA 54
inputA c inputB 8 outputA 60
inputA c inputB 9 outputA 6c
inputA c inputB a outputA 78
inputA c inputB b outputA 84
inputA c inputB c outputA 90
inputA c inputB d outputA 9c
inputA c inputB e outputA a8
inputA c inputB f outputA b4
inputA d inputB 0 outputA 00
inputA d inputB 1 outputA 0d
inputA d inputB 2 outputA 1a
inputA d inputB 3 outputA 27
inputA d inputB 4 outputA 34
inputA d inputB 5 outputA 41
inputA d inputB 6 outputA 4e
inputA d inputB 7 outputA 5b
inputA d inputB 8 outputA 68
inputA d inputB 9 outputA 75
inputA d inputB a outputA 82
inputA d inputB b outputA 8f
inputA d inputB c outputA 9c
inputA d inputB d outputA a9
inputA d inputB e outputA b6
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inputA d inputB f outputA c3
inputA e inputB 0 outputA 00
inputA e inputB 1 outputA 0e
inputA e inputB 2 outputA 1c
inputA e inputB 3 outputA 2a
inputA e inputB 4 outputA 38
inputA e inputB 5 outputA 46
inputA e inputB 6 outputA 54
inputA e inputB 7 outputA 62
inputA e inputB 8 outputA 70
inputA e inputB 9 outputA 7e
inputA e inputB a outputA 8c
inputA e inputB b outputA 9a
inputA e inputB c outputA a8
inputA e inputB d outputA b6
inputA e inputB e outputA c4
inputA e inputB f outputA d2
inputA f inputB 0 outputA 00
inputA f inputB 1 outputA 0f
inputA f inputB 2 outputA 1e
inputA f inputB 3 outputA 2d
inputA f inputB 4 outputA 3c
inputA f inputB 5 outputA 4b
inputA f inputB 6 outputA 5a
inputA f inputB 7 outputA 69
inputA f inputB 8 outputA 78
inputA f inputB 9 outputA 87
inputA f inputB a outputA 96
inputA f inputB b outputA a5
inputA f inputB c outputA b4
inputA f inputB d outputA c3
inputA f inputB e outputA d2
inputA f inputB f outputA e1
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Glossary

APR auto place and route.
ASIC application-specific integrated circuit.
Back annotation back annotating physical layout information from layout to

design to enable a more accurate simulation.
Contention more than one signal is driving a node.
Design compiler a synthesis tool from Synopsys.
EDA electronic design automation.
FPGA field programmable gate array.
HDL hardware description language.
Hold time time required for a signal to be held valid with reference to clock

change.
Mentor Graphics an EDA tool company.
Parasitics resistance and capacitance that is caused by layout routing.
RTL register transfer level.
Schematic capture a method of design where circuits are hand drawn.
Sensitivity list a list that contains all the signals that will invoke the corre-

sponding process.
Setup time time required for a signal to be held valid prior to a clock change.
Simulation using a set of input stimulus to verify the functionality of a design.
Summit Design an EDA tool company.
Synopsys an EDA tool company.
Synthesis the process of conversion from HDL to logic gates using a 

synthesis tool.
Synthesizable code HDL code that is coded in a manner that allows it to be

synthesized.
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Test bench a wraparound on a design that injects stimulus into the “design
under test” to verify the functionality of the design.

UDP user-defined primitive.
Verilog an HDL language.
VHDL another HDL language.
VLSI very-large-scale integration.
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