
Applied Mathematical Sciences

Wolfgang Hackbusch

Iterative 
Solution of Large 
Sparse Systems 
of Equations
 Second Edition 



Applied Mathematical Sciences

Volume 95

Editors

S.S. Antman, Institute for Physical Science and Technology, University of Maryland,
College Park, MD, USA

Leslie Greengard, Courant Institute of Mathematical Sciences, New York University,
New York, NY, USA

P.J. Holmes, Department of Mechanical and Aerospace Engineering, Princeton University,
Princeton, NJ, USA

Advisors

J. Bell, Lawrence Berkeley National Lab, Center for Computational Sciences and
Engineering, Berkeley, CA, USA
P. Constantin, Department of Mathematics, Princeton University, Princeton, NJ, USA
R. Durrett, Department of Mathematics, Duke University, Durham North, NC, USA
J. Keller, Department of Mathematics, Stanford University, Stanford, CA, USA
R. Kohn, Courant Institute of Mathematical Sciences, New York University,
New York, USA
R. Pego, Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA, USA
L. Ryzhik, Department of Mathematics, Stanford University, Stanford, CA, USA
A. Singer, Department of Mathematics, Princeton University, Princeton, NJ, USA
A. Stevens, Department of Applied Mathematics, University of Münster, Münster, Germany
A. Stuart, Mathematics Institute, University of Warwick, Coventry, UK
S. Wright, Computer Sciences Department, University of Wisconsin, Madison, WI, USA

Founding Editors

Fritz John, Joseph P. LaSalle and Lawrence Sirovich

More information about this series at http://www.springer.com/series/34



Wolfgang Hackbusch

Iterative Solution of Large
Sparse Systems of Equations
Second Edition

123



Wolfgang Hackbusch
Max Planck Institute for Mathematics
in the Sciences

Leipzig
Germany

ISSN 0066-5452 ISSN 2196-968X (electronic)
Applied Mathematical Sciences
ISBN 978-3-319-28481-1 ISBN 978-3-319-28483-5 (eBook)
DOI 10.1007/978-3-319-28483-5

Library of Congress Control Number: 2016940360

Mathematics Subject Classification (2010): 65F10, 65N22, 65N55

© Springer International Publishing Switzerland 1994, 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

The numerical treatment of partial differential equations splits into two different
parts. The first part are the discretisation methods and their analysis. This led to
the author’s monograph Theory and Numerical Treatment of Elliptic Differential
Equations also published by Springer. The second part is the treatment of the equa-
tions obtained by the discretisation process. The arising system of linear (or even
nonlinear) equations is of large size, only bounded by the available storage of the
computers. Nowadays, systems of several millions of equations and variables must
be solved. Another characteristic of the arising systems is the sparsity of the sys-
tem matrix; i.e., only O(n) entries of the n× n matrix are different from zero. The
classical Gauss elimination requires up to O(n3) operations. Because of the large
size of n, algorithms of this complexity are hopeless. Even methods requiring a
cost of O(n2) take a too long run time. Instead, one needs solution algorithms of
complexity O(n) or O(n log∗ n).

This book grew out of a series of lectures given by the author at the Christian
Albrecht University of Kiel to students of mathematics. The first German edition
was published in 1991 by Teubner, Stuttgart. The second German edition in 1993
mainly corresponds to the first English edition at Springer in 1994. Since that time
new methods have developed. Therefore the present second edition differs signifi-
cantly from the first one.

Although special attention is devoted to the modern effective algorithms (multi-
grid iterations, domain decomposition methods, and the hierarchical LU iteration),
the theory of classical iterative methods should not be neglected. One reason is that
these iterations indirectly re-appear in modern methods.

This volume requires basic mathematical knowledge in analysis and linear alge-
bra. The necessary facts from linear algebra and matrix theory are summarised in
the Appendices A–C of this book in order to provide as complete a presentation as
possible and present a formulation and notation needed here. Similarly, the basics
of finite element discretisation are summarised in Appendix E.

Part I covers the introduction and the classical linear iterations. Part II describes
the semi-iterative methods including the popular conjugate gradient method. The
subjects of these two parts should be understood as two orthogonal methods: a linear

v



vi Preface

iteration is accelerated by a semi-iterative approach. Part III contains more recent
linear iterations.

The new Chapter 5 in Part I is devoted to the algebra in the set of linear iterations.
These operations are important for the generation of new iterations. Part III con-
tains two new chapters. Chapter 13 describes the H-LU iteration which is based on
the technique of hierarchical matrices introduced in Appendix D. In many cases,
this iteration is a very efficient and robust method of black-box type. Finally, in
Chapter 14, tensor-based iterative methods are briefly mentioned.

The discussion of the various methods is illustrated by many numerical examples,
mostly for the Poisson model problem. Since these calculations are taken from
the first edition, the problem sizes are small compared with modern computers.
However, these sizes are completely sufficient to demonstrate the asymptotic
behaviour.

The author also wishes to express his gratitude to the publisher Springer for their
friendly cooperation.

Leipzig and Molfsee, October 2015 Wolfgang Hackbusch



Contents

Part I Linear Iterations

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Historical Remarks Concerning Iterative Methods . . . . . . . . . . . . . . . 3
1.2 Model Problem: Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Index Sets, Vectors, and Matrices . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Star Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 A Single System Versus a Family of Systems . . . . . . . . . . . . . . . . . . . 10
1.5 Amount of Work for the Direct Solution of a Linear System . . . . . . 10
1.6 Examples of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Sparse Matrices Versus Fully Populated Matrices . . . . . . . . . . . . . . . . 15

2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Consistency and Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Convergence and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 Defect Correction as an Example of an Inconsistent Iteration 20

2.2 Linear Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Notation, First Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Consistency and Second Normal Form . . . . . . . . . . . . . . . . . . 22
2.2.3 Third Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Representation of the Iterates xm . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.6 Convergence Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.7 Remarks Concerning the Matrices M , N , and W . . . . . . . . . 28
2.2.8 Three-Term Recursions, Two- and Multi-Step Iterations . . . . 29

2.3 Efficacy of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



viii Contents

2.3.1 Amount of Computational Work . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Order of Linear Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Test of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Consistency Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Convergence Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Test by the Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Classical Linear Iterations in the Positive Definite Case . . . . . . . . . . . . . 35
3.1 Eigenvalue Analysis of the Model Problem . . . . . . . . . . . . . . . . . . . . . 35
3.2 Traditional Linear Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Richardson Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Gauss–Seidel Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 SOR Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Block Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Block Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Block-Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Block-Gauss–Seidel Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Block-SOR Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Computational Work of the Iterations . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Case of General Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Amount of Work in the Model Case . . . . . . . . . . . . . . . . . . . . 46

3.5 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Richardson Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Convergence Criterion for Positive Definite Iterations . . . . . 54
3.5.3 Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.4 Gauss–Seidel and SOR Iterations . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.5 Convergence of the Block Variants . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Convergence Rates in the Case of the Model Problem . . . . . . . . . . . . 62
3.6.1 Richardson and Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Block-Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.3 Numerical Examples for the Jacobi Variants . . . . . . . . . . . . . . 65
3.6.4 SOR and Block-SOR Iteration with Numerical Examples . . . 66

4 Analysis of Classical Iterations Under Special Structural Conditions . 69
4.1 2-Cyclic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Preparatory Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Analysis of the Richardson Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Analysis of the Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Analysis of the Gauss–Seidel Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Analysis of the SOR Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Consistently Ordered Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Theorem of Young . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents ix

4.6.3 Order Improvement by SOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.4 Practical Handling of the SOR Method . . . . . . . . . . . . . . . . . . 85
4.6.5 p-Cyclic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Application to the Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.1 Analysis in the Model Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.2 Gauss–Seidel Iteration: Numerical Examples . . . . . . . . . . . . . 87
4.7.3 SOR Iteration: Numerical Examples . . . . . . . . . . . . . . . . . . . . 88

5 Algebra of Linear Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Adjoint, Symmetric, and Positive Definite Iterations . . . . . . . . . . . . . 90

5.1.1 Adjoint Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2 Symmetric Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.3 Positive Definite Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.4 Positive Spectrum of NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Damping of Linear Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Damped Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.3 Accelerated SOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Addition of Linear Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4 Product Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.2 Constructing Symmetric Iterations . . . . . . . . . . . . . . . . . . . . . . 101
5.4.3 Symmetric Gauss–Seidel and SSOR . . . . . . . . . . . . . . . . . . . . 103

5.5 Combination with Secondary Iterations . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.1 First Example for Secondary Iterations . . . . . . . . . . . . . . . . . . 104
5.5.2 Second Example for Secondary Iterations . . . . . . . . . . . . . . . . 105
5.5.3 Convergence Analysis in the General Case . . . . . . . . . . . . . . . 106
5.5.4 Analysis in the Positive Definite Case . . . . . . . . . . . . . . . . . . . 108
5.5.5 Estimate of the Amount of Work . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6.1 Left Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6.2 Right Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6.3 Kaczmarz Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6.4 Cimmoni Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.5 Two-Sided Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6.6 Similarity Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Analysis of Positive Definite Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1 Different Cases of Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Case 1: Positive Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.2 Case 2: Positive Definite NA . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.3 Case 3: Positive Definite Iteration . . . . . . . . . . . . . . . . . . . . . . 127
6.2.4 Case 4: Positive Definite W+WH or N+NH . . . . . . . . . . . . 128



x Contents

6.2.5 Case 5: Symmetrised Iteration Φ sym . . . . . . . . . . . . . . . . . . . . 129
6.2.6 Case 6: Perturbed Positive Definite Case . . . . . . . . . . . . . . . . . 131

6.3 Symmetric Gauss–Seidel Iteration and SSOR . . . . . . . . . . . . . . . . . . . 132
6.3.1 The Case A > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.2 SSOR in the 2-Cyclic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.3 Modified SOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.4 Unsymmetric SOR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.5 Numerical Results for the SSOR Iteration . . . . . . . . . . . . . . . . 136

7 Generation of Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.1 Product Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Additive Splitting Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.2 Regular Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.4 P-Regular Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3 Incomplete Triangular Decompositions . . . . . . . . . . . . . . . . . . . . . . . . 148
7.3.1 Introduction and ILU Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.3.2 Incomplete Decomposition with Respect to a Star Pattern . . 151
7.3.3 Application to General Five-Point Formulae . . . . . . . . . . . . . . 152
7.3.4 Modified ILU Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3.5 Existence and Stability of the ILU Decomposition . . . . . . . . . 154
7.3.6 Properties of the ILU Decomposition . . . . . . . . . . . . . . . . . . . . 159
7.3.7 ILU Decompositions Corresponding to Other Patterns . . . . . 161
7.3.8 Approximative ILU Decompositions . . . . . . . . . . . . . . . . . . . . 162
7.3.9 Blockwise ILU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.10 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.11 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.1 Idea of Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.4.3 Preconditioning in the Wider Sense . . . . . . . . . . . . . . . . . . . . . 167
7.4.4 Rules for Condition Numbers and Spectral Equivalence . . . . 167
7.4.5 Equivalent Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5 Time-Stepping Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.6 Nested Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Part II Semi-Iterations and Krylov Methods

8 Semi-Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.1 First Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.1.2 Consistency and Asymptotic Convergence Rate . . . . . . . . . . 176
8.1.3 Error Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.1.4 Krylov Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Contents xi

8.2 Second Formulation of a Semi-Iterative Method . . . . . . . . . . . . . . . . 181
8.2.1 General Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.2 Three-Term Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.3 Optimal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.3.1 Minimisation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.3.2 Discussion of the Second Minimisation Problem . . . . . . . . . . 185
8.3.3 Chebyshev Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.3.4 Chebyshev Method (Solution of the Third Minimisation

Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.3.5 Order Improvement by the Chebyshev Method . . . . . . . . . . . 192
8.3.6 Optimisation Over Other Sets . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.3.7 Cyclic Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.3.8 Two- and Multi-Step Iterations . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.3.9 Amount of Work of the Semi-Iterative Method . . . . . . . . . . . 195

8.4 Application to Iterations Discussed Above . . . . . . . . . . . . . . . . . . . . . . 196
8.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.4.2 Semi-Iterative Richardson Method . . . . . . . . . . . . . . . . . . . . . . 197
8.4.3 Semi-Iterative Jacobi and Block-Jacobi Method . . . . . . . . . . . 198
8.4.4 Semi-Iterative SSOR and Block-SSOR Iteration . . . . . . . . . . 198

8.5 Method of Alternating Directions (ADI) . . . . . . . . . . . . . . . . . . . . . . . 201
8.5.1 Application to the Model Problem . . . . . . . . . . . . . . . . . . . . . . 201
8.5.2 General Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.5.3 ADI in the Commutative Case . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.5.4 ADI Method and Semi-Iterative Methods . . . . . . . . . . . . . . . . 208
8.5.5 Amount of Work and Numerical Examples . . . . . . . . . . . . . . . 209

9 Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1 Reformulation as Minimisation Problem . . . . . . . . . . . . . . . . . . . . . . . 211

9.1.1 Minimisation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.2 Search Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.1.3 Other Quadratic Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.1.4 Complex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.2 Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.2 Properties of the Gradient Method . . . . . . . . . . . . . . . . . . . . . . 216
9.2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2.4 Gradient Method Based on Other Basic Iterations . . . . . . . . . 219
9.2.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.3 Method of the Conjugate Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.3.1 Optimality with Respect to a Direction . . . . . . . . . . . . . . . . . . 224
9.3.2 Conjugate Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.4 Minimal Residual Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228



xii Contents

10 Conjugate Gradient Methods and Generalisations . . . . . . . . . . . . . . . . . 229
10.1 Preparatory Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.1.1 Characterisation by Orthogonality . . . . . . . . . . . . . . . . . . . . . . 229
10.1.2 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.1.3 Galerkin and Petrov–Galerkin Methods . . . . . . . . . . . . . . . . . . 231
10.1.4 Minimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.1.5 Error Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10.2 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.2.1 First Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.2.2 CG Method (Applied to Richardson’s Iteration) . . . . . . . . . . 237
10.2.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10.2.4 CG Method Applied to Positive Definite Iterations . . . . . . . . 241
10.2.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.2.6 Amount of Work of the CG Method . . . . . . . . . . . . . . . . . . . . . 245
10.2.7 Suitability for Secondary Iterations . . . . . . . . . . . . . . . . . . . . . 246
10.2.8 Three-Term Recursion for pm . . . . . . . . . . . . . . . . . . . . . . . . . . 247

10.3 Method of Conjugate Residuals (CR) . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.3.2 Application to Hermitian Matrices . . . . . . . . . . . . . . . . . . . . . . 251
10.3.3 Stabilised Method of Conjugate Residuals . . . . . . . . . . . . . . . 252
10.3.4 Convergence Results for Indefinite Matrices . . . . . . . . . . . . . 253
10.3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

10.4 Method of Orthogonal Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
10.5 Solution of Nonsymmetric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

10.5.1 Generalised Minimal Residual Method (GMRES) . . . . . . . . . 258
10.5.2 Full Orthogonalisation Method (FOM) . . . . . . . . . . . . . . . . . . 261
10.5.3 Biconjugate Gradient Method and Variants . . . . . . . . . . . . . . . 262
10.5.4 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Part III Special Iterations

11 Multigrid Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

11.1.1 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.1.2 Hierarchy of Systems of Equations . . . . . . . . . . . . . . . . . . . . . 268
11.1.3 Prolongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
11.1.4 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.1.5 Coarse-Grid Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

11.2 Two-Grid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.2.2 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.2.3 Iteration Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.2.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

11.3 Analysis for a One-Dimensional Example . . . . . . . . . . . . . . . . . . . . . . 276
11.3.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276



Contents xiii

11.3.2 Transformed Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
11.3.3 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

11.4 Multigrid Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11.4.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.4.3 Computational Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
11.4.4 Iteration Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

11.5 Nested Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.5.1 Discretisation Error and Relative Discretisation Error . . . . . . 287
11.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.5.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.5.4 Application to Optimal Iterations . . . . . . . . . . . . . . . . . . . . . . . 290
11.5.5 Amount of Computational Work . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

11.6 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
11.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
11.6.2 Smoothing Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
11.6.3 Approximation Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
11.6.4 Convergence of the Two-Grid Iteration . . . . . . . . . . . . . . . . . . 301
11.6.5 Convergence of the Multigrid Iteration . . . . . . . . . . . . . . . . . . 301
11.6.6 Case of Weaker Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

11.7 Symmetric Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
11.7.1 Symmetric and Positive Definite Multigrid Algorithms . . . . . 304
11.7.2 Two-Grid Convergence for ν1 > 0 , ν2 > 0 . . . . . . . . . . . . . . . 306
11.7.3 Smoothing Property in the Symmetric Case . . . . . . . . . . . . . . 307
11.7.4 Strengthened Two-Grid Convergence Estimates . . . . . . . . . . . 308
11.7.5 V-Cycle Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
11.7.6 Unsymmetric Multigrid Convergence for all ν > 0 . . . . . . . . 311

11.8 Combination of Multigrid Methods with Semi-Iterations . . . . . . . . . 313
11.8.1 Semi-Iterative Smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
11.8.2 Damped Coarse-Grid Corrections . . . . . . . . . . . . . . . . . . . . . . 315
11.8.3 Multigrid as Basic Iteration of the CG Method . . . . . . . . . . . . 315

11.9 Further Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
11.9.1 Multigrid Method of the Second Kind . . . . . . . . . . . . . . . . . . . 316
11.9.2 Robust Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
11.9.3 History of the Multigrid Method . . . . . . . . . . . . . . . . . . . . . . . . 317
11.9.4 Frequency Filtering Decompositions . . . . . . . . . . . . . . . . . . . . 318
11.9.5 Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

12 Domain Decomposition and Subspace Methods . . . . . . . . . . . . . . . . . . . 325
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.2 Overlapping Subdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

12.2.1 Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
12.2.2 Many Subdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329



xiv Contents

12.3 Nonoverlapping Subdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
12.3.1 Dirichlet–Neumann Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
12.3.2 Lagrange Multiplier Based Methods . . . . . . . . . . . . . . . . . . . . 330

12.4 Schur Complement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
12.4.1 Nonoverlapping Domain Decomposition with Interior

Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
12.4.2 Direct Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
12.4.3 Preconditioners of the Schur Complement . . . . . . . . . . . . . . . 334
12.4.4 Multigrid-like Domain Decomposition Methods . . . . . . . . . . 335

12.5 Subspace Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
12.5.1 General Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
12.5.2 The Prolongations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
12.5.3 Multiplicative and Additive Schwarz Iterations . . . . . . . . . . . 338
12.5.4 Interpretation as Gauss–Seidel and Jacobi Iteration . . . . . . . 339
12.5.5 Classical Schwarz Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
12.5.6 Approximate Solution of the Subproblems . . . . . . . . . . . . . . . 340
12.5.7 Strengthened Estimate A ≤ ΓW . . . . . . . . . . . . . . . . . . . . . . . 342

12.6 Properties of the Additive Schwarz Iteration . . . . . . . . . . . . . . . . . . . . 344
12.6.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
12.6.2 Condition Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
12.6.3 Convergence Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

12.7 Analysis of the Multiplicative Schwarz Iteration . . . . . . . . . . . . . . . . 349
12.7.1 Convergence Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
12.7.2 Proofs of the Convergence Theorems . . . . . . . . . . . . . . . . . . . . 352

12.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
12.8.1 Schwarz Method With Proper Domain Decomposition . . . . 357
12.8.2 Additive Schwarz Iteration with Coarse-Grid Correction . . . 358
12.8.3 Formulation in the Case of Galerkin Discretisation . . . . . . . . 358

12.9 Multigrid Iterations as Subspace Decomposition Method . . . . . . . . . 359
12.9.1 Braess’ Analysis without Regularity . . . . . . . . . . . . . . . . . . . . 360
12.9.2 V-Cycle Interpreted as Multiplicative Schwarz Iteration . . . 362
12.9.3 Proof of V-Cycle Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 364
12.9.4 Hierarchical Basis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
12.9.5 Multilevel Schwarz Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 369
12.9.6 Further Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

13 H-LU Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
13.1 Approximate LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

13.1.1 Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
13.1.2 Solution of LUx = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
13.1.3 Matrix-Valued Solutions of LX = Z and XU = Z . . . . . . . 373
13.1.4 Generation of the LU Decomposition . . . . . . . . . . . . . . . . . . . 375
13.1.5 Cost of the H-LU Decomposition . . . . . . . . . . . . . . . . . . . . . . 376

13.2 H-LU Decomposition for Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . 376
13.2.1 Finite Element Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376



Contents xv

13.2.2 Separability of the Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13.2.3 Construction of the Cluster Tree . . . . . . . . . . . . . . . . . . . . . . . . 378
13.2.4 Application to Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
13.2.5 Admissibility Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
13.2.6 LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

13.3 UL Decomposition of the Inverse Matrix . . . . . . . . . . . . . . . . . . . . . . . 381
13.4 H-LU Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

13.4.1 General Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
13.4.2 Algebraic LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 384

13.5 Further Applications of Hierarchical Matrices . . . . . . . . . . . . . . . . . . . 384

14 Tensor-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
14.1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

14.1.1 Introductory Example: Lyapunov Equation . . . . . . . . . . . . . . . 385
14.1.2 Nature of the Underlying Problems . . . . . . . . . . . . . . . . . . . . . 386
14.1.3 Definition of Tensor Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
14.1.4 Case of Grid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
14.1.5 Kronecker Products of Matrices . . . . . . . . . . . . . . . . . . . . . . . . 389
14.1.6 Functions on Cartesian Products . . . . . . . . . . . . . . . . . . . . . . . . 389

14.2 Sparse Tensor Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
14.2.1 r-Term Format (Canonical Format) . . . . . . . . . . . . . . . . . . . . . 390
14.2.2 A Particular Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
14.2.3 Subspace Format (Tucker Format) . . . . . . . . . . . . . . . . . . . . . . 394
14.2.4 Hierarchical Tensor Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

14.3 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
14.3.1 Poisson Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
14.3.2 A Parametrised Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
14.3.3 Solution of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
14.3.4 CG-Type Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
14.3.5 Multigrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
14.3.6 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
14.3.7 Parabolic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

14.4 Variational Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

A Facts from Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
A.1 Notation for Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
A.2 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
A.3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
A.4 Block Vectors and Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
A.5 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

A.5.1 Elementary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
A.5.2 Orthogonal and Unitary Matrices . . . . . . . . . . . . . . . . . . . . . . . 410
A.5.3 Sums of Subspaces and Orthogonal Complements . . . . . . . . . 410

A.6 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
A.6.1 Schur Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411



xvi Contents

A.6.2 Jordan Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
A.6.3 Diagonalisability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
A.6.4 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 416

B Facts from Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
B.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

B.1.1 Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
B.1.2 Equivalence of All Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
B.1.3 Corresponding Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 419
B.1.4 Condition and Spectral Condition Number . . . . . . . . . . . . . . . 421

B.2 Hilbert Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
B.2.1 Elementary Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
B.2.2 Spectral Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

B.3 Correlation Between Norms and Spectral Radius . . . . . . . . . . . . . . . . 424
B.3.1 Spectral Norm and Spectral Radius . . . . . . . . . . . . . . . . . . . . . 424
B.3.2 Matrix Norms Approximating the Spectral Radius . . . . . . . . . 425
B.3.3 Geometrical Sum of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 426
B.3.4 Numerical Radius of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 427

C Facts from Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
C.1 Positive Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

C.1.1 Definition and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
C.1.2 Rules and Criteria for Positive Definite Matrices . . . . . . . . . . 432
C.1.3 Remarks Concerning Positive Definite Matrices . . . . . . . . . . . 433

C.2 Graph of a Matrix and Irreducible Matrices . . . . . . . . . . . . . . . . . . . . 435
C.3 Positive Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

C.3.1 Definition and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
C.3.2 Perron–Frobenius Theory of Positive Matrices . . . . . . . . . . . . 440
C.3.3 Diagonal Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

C.4 M-Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
C.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
C.4.2 M-Matrices and the Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . 446
C.4.3 M-Matrices and Diagonal Dominance . . . . . . . . . . . . . . . . . . . 447
C.4.4 Further Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

C.5 H-Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
C.6 Schur Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

D Hierarchical Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

D.1.1 Fully Populated Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
D.1.2 Rank-r Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
D.1.3 Model Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

D.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
D.2.1 Cluster Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
D.2.2 Block Cluster Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462



Contents xvii

D.2.3 Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
D.2.4 Admissible Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
D.2.5 Use of Bounding Boxes for Xτ . . . . . . . . . . . . . . . . . . . . . . . . 464
D.2.6 Set of Hierarchical Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
D.2.7 H2-Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
D.2.8 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
D.2.9 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

D.3 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
D.3.1 Matrix-Vector Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 469
D.3.2 Truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
D.3.3 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
D.3.4 Agglomeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
D.3.5 Matrix-Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 471
D.3.6 Inversion and LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . 472

E Galerkin Discretisation of Elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 473
E.1 Variational Formulation of Boundary Value Problems . . . . . . . . . . . . 473
E.2 Galerkin Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
E.3 Subdomain Problems and Finite Element Matrix . . . . . . . . . . . . . . . . 477
E.4 Relations Between the Continuous and Discrete Problems . . . . . . . . 478
E.5 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
E.6 Relations Between Two Discrete Problems . . . . . . . . . . . . . . . . . . . . . 482

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501



List of Symbols and Abbreviations

Symbols

1 vector (1, 1, ..., 1)T

AT, AH transposed and Hermitian transposed matrix; cf. §A.1
A−T, A−H inverse of AT, AH; cf. §A.1
W⊥ orthogonal complement of a W ; cf. §A.5
U ⊕ V direct sum of subspaces; cf. §A.5.3
M |b restriction of the matrix to the block b; cf. Notation D.6
M |b extension of the matrix to the block b; cf. §D.3.4
Δ Laplace operator; cf. (1.1a)
〈·, ·〉 (Euclidean) scalar product; cf. (1.1a–c)
〈·, ·〉A energy scalar product; cf. (C.5b)
‖·‖ , ||| · ||| norm (of vectors or matrices)
‖·‖A energy norm; cf. (C.5a)
‖·‖2 Euclidean norm, cf. (B.2); spectral norm, cf. (B.21a)
‖·‖∞ maximum norm, cf. (B.2); row sum norm, cf. (B.8)
‖·‖Y←X norm of a mapping (matrix) from X into Y ; cf. (B.11)
||| · |||T transformed vector or matrix norm; cf. (B.10a,b)
|·| absolute value, in §C.3 applied to matrices and vectors; cf. page 438
<,≤, >,≥ in connection with matrices, the order relation from §C.1.2; only in

§§C.3–C.4 (and §7.3.5) it denotes the order relation of (C.9a,b)
∪̇ disjoint union
⊂ A ⊂ B: A is a subset of B, not necessarily a proper subset
� A � B: A is a proper subset of B
⊗ tensor product; cf. §14.1
� Hadamard product; cf. Lemma 5.60c
⊕r addition of hierarchical matrices with truncation to rank r ; cf. p. 457
�r multiplication of H-matrices with truncation to rank r ; cf. §D.3.4
◦ product Φ ◦ Ψ of iterations or transformation of iterations; cf. §5
#S cardinality of a set S

xix



xx List of Symbols and Abbreviations

Greek Letters

α, β, γ indices of the index set; cf. §1.3
γ in §11: number of secondary multi-grid steps for the coarse-grid

equation; cf. (11.33d2)
γ, Γ lower and upper eigenvalue bounds of W−1A; cf. (9.18a)
δij Kronecker symbol: δij = 1 for i = j, δij = 0 otherwise
Δ Laplace operator; cf. (1.1a)
ζ often contraction number; cf. §2.2.6, (11.30b), (11.48)
η characteristic factor involved in the admissibility condition (D.10)
η(ν) zero sequence for smoothing property; cf. (11.58b)
η0(ν) special function, defined in Lemma 11.23
ϑ,Θ damping factor; cf. §3.2.1 and §5.2
κ(A) spectral condition number (B.13)
λ,Λ eigenvalue bounds of A; cf. Theorem 9.10, Theorem 3.30
λmax(A) maximal eigenvalue of a matrix A if σ(A) ⊂ R
λmin(A) minimal eigenvalue of a matrix A if σ(A) ⊂ R
ν, ν1, ν2 in §11: number of the smoothing steps; cf. (11.21) and (11.22a)
ρ(A) spectral radius of a matrix A; cf. Definition A.17
ρm+k,m convergence factors; cf. (2.23a,b)
σ(A) spectrum of the matrix A; cf. §A.3
τ, σ symbols representing clusters; cf. §D.2.1
Φ(x, b, A) function describing an iteration; cf. (2.3)
Υ [Φ] semi-iterative method with Φ as basic iteration
ΥCheb
a,b Chebyshev method; cf. Notation 8.29
ΥCG, ΥCR, ΥOD, ΥGMRES conjugate gradient methods and variants; cf. §10.2
Υgrad gradient method; cf. §9.2.1 and §9.2.4
ω relaxation parameter; cf. (1.22) and §3.2.4
Ω underlying domain of a boundary value problem; cf. (1.1a), §E.1
Ωh grid; cf. (1.3)

Latin Letters

a(·, ·) bilinear or sesquilinear form; cf. Definition (E.1)
a, b bounds for σ(M); cf. (8.26a)
A,A� matrix of the linear system; cf. (1.5), (11.6a)
Aκλ, Aij block of A; cf. (A.8b,c)
Aαβ , aαβ , Aij , aij entries of the matrix A
b, b� right-hand side of the linear system; cf. (1.5), (11.6a)
blockdiag{. . .} block-diagonal matrix; cf. page 408
blockdiagB{A} block-diagonal part of A with respect to the block structure B;

cf. (4.2′)
blocktridiag{. . .} block-tridiagonal matrix; cf. (A.9)



List of Symbols and Abbreviations xxi

C complex numbers
cond, cond2 condition of a matrix; cf. (B.12)
dm defect Axm − b; cf. (2.17)
D,D′, . . . (block-) diagonal matrix
D(Φ) domain of the iteration Φ; cf. Definition 2.2a
degX(v) degree of a vector v; cf. Definition 8.10
degree(·) degree of a polynomial
depth(T ) depth of the tree T ; cf. (D.7)
det determinant
diag{. . .} diagonal matrix or diagonal part; cf. (A.1)
diam(τ) diameter of a cluster; cf. (D.9a)
dist(τ, σ) distance between clusters; cf. (D.9b)
em error xm − x of the m-th iterate; cf. (2.15)
eα unit vector
E strictly lower triangular matrix; cf. (1.16)
Eff(Φ) effective amount of work; cf. (2.31a)
F strictly upper triangular matrix; cf. (1.16)
F matrices in full format; cf. Definition D.2a
G(A) graph of a matrix A; cf. Definition C.12
h, h� grid size; cf. (1.2)
H2 see §D.2.7
Hp model format; cf. §D.1.3
i, j, k indices of the ordered index set I = {1, . . . , n}
I identity matrix
I index set (not necessarily ordered)
Iκ subset of block indices; cf. (A.7)
Init(Φ,A) cost for initialising the iteration Φ applied to the system Ax = b
It(Φ) cf. (2.30a)
K the field R or C
KI space of the vectors corresponding to the index set I
KI×I space of the matrices corresponding to the index set I
K integral operator; cf. §D.2.9
Km(X, v) Krylov space; cf. Definition 8.7
ker kernel of a mapping or matrix
� level number in the discretisation hierarchy; cf. (3.15a)
L,L′, L̂ lower (block-)triangular matrix
L set of consistent linear iterations; cf. (2.11)
Lpos set of positive definite iterations; cf. Definition 5.8
Lsemi set of positive semidefinite iterations; cf. Definition 5.11
Lsym set of symmetric iterations; cf. Definition 5.3
L> set of directly positive definite iterations; cf. Definition 5.14
L(T ) set of leaves of the tree T ; cf. §D.2.1
level(τ) level-number of a cluster; cf. §D.2.1
log natural logarithm
log2 dual logarithm, logarithm with respect to the basis 2



xxii List of Symbols and Abbreviations

log∗(·) some power of log(·); cf. Footnote 9 on page 15
m iteration number; cf. em, xm

M,Mxyz iteration matrix (of the iteration ‘xyz’); cf. §2.2.1
M [A] iteration matrix for the system Ax = b; cf. Definition 2.9
n, n� dimension of the linear system; cf. §2.3, (11.6b)
nmin minimal size of clusters; cf. §D.2.1
N number of the grid points per row or column; cf. (1.2)
N,Nxyz matrix of the 2nd normal form (of the iteration ‘xyz’); cf. (2.10)
N [A] matrix N for the system Ax = b; cf. Definition 2.9
N natural numbers {1, 2, 3, . . .}
N0 N ∪ {0} = {0, 1, 2, . . .}
Nxyz number of arithmetic operations required for ‘xyz’; cf. pages 455ff
O(·) Landau symbol: f(α) = O(g(α)) if |f(α)| ≤ C |g(α)| for the

underlying limit process α → 0 or α → ∞. The notation f(η) =
1 − O(ητ ) is more special and means that f(η) ≤ 1 − Cητ with
fixed C > 0 for η → 0.

p prolongation; cf. §11.1.3, (12.7)
P partition of a hierarchical matrix; cf. §D.2.3
P+, P− subsets of the partition P ; cf. §D.2.6
Pm space of polynomials; cf. Definition 8.2
Q often unitary matrix
Qmin(·) bounding box; cf. §D.2.1.2
r restriction; cf. §11.1.4, (12.14a)
r representation rank of matrices in Rr; cf. (D.2)
r(A) numerical radius of the matrix A; cf. §B.3.4
R real numbers
range(·) range (image space) of a mapping
Rr rank-r matrices or tensors; cf. Definition D.2b and page 390
root(T ) root of the tree T ; cf. §D.2.1
S� iteration matrix of the smoother S�; cf. Lemma 11.11
S� smoothing iteration; cf. §11.1.1 and §11.2.1
span{. . .} linear space spanned by {. . .}
supp(·) support of a function; Footnote 6 on page 463
T�, Tr left- and right-sided transformation; cf. (5.32), (5.39)
T (I) cluster tree corresponding to the index set I; cf. §D.2.1
T (�)(I) subset of T (I); cf. (D.7)
T (I × J) block cluster tree corresponding to the index set I; cf. §D.2.1
Tr, T R

r , T H
r , T R

r,pairw truncation operator; cf. §D.3.2
tridiag{...} tridiagonal matrix; cf. (A.2)
uij components of the grid function u; cf. (1.6b)
U, U ′, Û upper (block-)triangular matrix
W, WΦ matrix of the third normal form (of the iteration Φ); cf. (2.12)
W [A] matrix W for the system Ax = b ; cf. Definition 2.9
Work(Φ,A) amount of work of the iteration Φ applied to Ax = b; cf. (2.29)
x vector; often solution of the equation Ax = b



List of Symbols and Abbreviations xxiii

x∗ solution of the equation Ax = b if the symbol x is used as a variable
x�, x

∗
� vectors x, x∗ at the level �; cf. (11.6a)

x0 starting value of the iteration
xm m-th iterate
xα, xi block of x corresponding to the index α or i; cf. (A.8a)
xα, xi components of a vector x
x, y spatial variables (x, y) ∈ Ω; cf. (1.1a)
Xτ support of the cluster τ ; cf. §D.2.1.2 and (D.8)
Z set of integers

Abbreviations and Algorithms

ALS alternating least squares method cf. §14.4
AMG algebraic multigrid method
AMLI algebraic multilevel iteration; cf. page 335
AOR accelerated overrelaxation
ART algebraic reconstruction technique
BCG, BiCG biconjugate gradient method; cf. §10.5.3
BEM boundary element method
Bi-CGSTAB biconjugate gradient stabalised method; cf. §10.5.3
BPX additive multigrid iteration; cf. §12.9.6
CG method of congujate gradients; cf. §10.2
CGS conjugate gradient squared method; cf. §10.5.3
CR method of congujate residuals; cf. §10.3
DDM domain decomposition method
FEM finite element method
FFT fast Fourier transform
FOM full orthogonalisation method; cf. §10.5.2
GMRES generalised minimal residual method; cf. §10.5.1
H-matrix hierarchical matrix
H-LU hierarchical LU decomposition
HOSVD higher order singular value decomposition; cf. §14.2.3
MAOR modified accelerated overrelaxation
MINRES minimal residual method
MSOR modified successive overrelaxation
OD method of orthogonal directions; cf. §10.4
ORTHODIR, ORTHOMIN, ORTHORES cf. §10.5.4
SAOR symmetric accelerated overrelaxation
SIRT simultaneous iterative reconstruction technique; cf. page 94
SOR successive overrelaxation; cf. §3.2.4
SVD singular value decomposition; cf. §A.6.4
SYMMLQ symmetric LQ method; cf. page 257
USSOR unsymmetric successive overrelaxation



Part I

Linear Iterations



The core of iterative methods for linear systems are linear iterations. Different
from direct methods, an infinite sequence of iterates is produced. Since, in practice,
only a finite number of iteration steps is performed, the unavoidable iteration error
depends crucially on the speed of convergence.

Chapter 1 starts with historical remarks. It introduces the Poisson model prob-
lem which will be a test example for the iterative methods described later on. Vector
and matrix notations are provided in §1.3. In the case of discretisations of partial
differential equations, it is important to consider the family of systems obtained for
different discretisation parameters (§1.4). A crucial question is whether the conver-
gence speed deteriorates with increasing matrix size. To get a first idea of an iterative
method, the Gauss–Seidel and SOR methods are presented in §1.6 with numeri-
cal results for the model problem. These examples involve sparse matrices (§1.7).
Except for Chapter D, we shall always assume that the underlying matrices are
sparse. This assumption ensures that the cost of one iteration step is proportional to
the matrix size; however, sparsity is not needed for convergence analysis.

Chapter 2 introduces general iterative methods. The concepts of consistency and
convergence are described in §2.1. The class of linear iterations is specified in §2.2.
For its description three normal forms are introduced. A first important result is the
convergence theorem in §2.2.5. The quality of a linear iteration depends on both
cost and convergence speed. The resulting efficacy is discussed in §2.3. Section 2.4
demonstrates how to test iterative methods numerically.

The convergence of a linear iteration depends on the properties of the under-
lying matrix. Chapter 3 investigates classical iterations (Richardson, Jacobi, Gauss–
Seidel, SOR) applied to positive definite matrices. The corresponding analysis of
general linear iterations is presented in Chapter 6.

Chapter 4 considers classical iterations assuming other structural matrix proper-
ties. In particular, §4.6 contains Young’s theorem on SOR for consistently ordered
matrices. It describes the improvement of the convergence order in explicit form.

The set of linear iterations forms an algebra containing various operations as
described in Chapter 5. Section 5.1 introduces the definition of an adjoint itera-
tion. This enables the construction of symmetric or even positive definite iterations.
Damping of linear iterations is discussed in §5.2. Addition of linear iterations is the
subject of §5.3, while the product of linear iterations is investigated in §5.4. Another
combination of iterative methods is the secondary iteration (§5.5). The left, right,
or two-sided transformations are studied in §5.6. Kaczmarz’ iteration (§5.6.3) and
Cimmoni’s iteration (§5.6.4) can be obtained by suitable transformations.

Chapter 6 collects the convergence results for positive definite iterations
(including possible perturbations of the positive definite matrix). In particular,
the symmetric Gauss–Seidel method and symmetric SOR are studied (§6.3).

Chapter 7 is concerned with the generation of linear iterations. A classical
technique is additive splitting of the underlying matrix (§7.2). Incomplete LU de-
composition (ILU, §7.3) is another possibility to generate an iteration by matrix
data only. Preconditioning in §7.4 is a particular case of a transformation aiming at
improving the convergence.

Modern linear iterations will be treated in Part III.



Chapter 1

Introduction

I recommend this [iterative] method to you for imitation. You
will hardly ever again eliminate directly, at least not when you
have more than 2 unknowns. The indirect procedure can be done
while half asleep, or while thinking about other things.

(C.F. Gauss in a letter to Gerling [148], Dec. 1823).

Abstract After some historical comments in Section 1.1, we introduce a model
problem (Section 1.2) serving as a first test example of the various iterative
methods. Deliberately, a simply structured problem is chosen since this allows us to
determine all required quantities explicitly. The role of the ordering of the unknowns
is explained. Often no ordering is needed. Section 1.3 introduces notation for
vectors and matrices. Furthermore, the description of difference schemes by
stencils is explained. Besides the behaviour of an iterative method for a single
system, its behaviour with respect to a whole family of systems is often more inter-
esting (Section 1.4). In Section 1.5, the cost of the direct solution by the Gauss
elimination is determined. This cost can be compared with the cost of the iterative
methods introduced later. In Section 1.6, the Gauss–Seidel and SOR iteration are
presented as first examples of linear iterations. Finally, in Section 1.7, sparsity of
the underlying matrix discussed.

1.1 Historical Remarks Concerning Iterative Methods

Iterative methods are almost 200 years old. The first iterative method for systems
of linear equations is due to Carl Friedrich Gauß (simplified spelling: Gauss). His
method of least squares led him to a system of equations that was too large for
the use of direct Gauss elimination.1 Today the iterative method described in Gauss
[147]2 would be called the blockwise Gauss–Seidel method. The value that Gauss
attributed to his iterative method can be seen in the excerpt from his letter [148]3 at
the top of the page.

1 The Gauss elimination is known since ancient times; the Chinese text Jiu Zhang Suanshu: Nine
Chapters on the Mathematical Art is written about 200 BC.
2 A translation of the neo-Latin title is ‘Supplement to the theory on the combination of observa-
tions subject to minimal errors’.
3 See also the English translation by Forsythe [137].

3© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_1



4 1 Introduction

Carl Gustav Jacobi [227]4 described a very similar method in 1845. In 1874
Phillip Ludwig Seidel, a student of Jacobi, wrote about ‘a method, to solve the
equations arising from the least squares method as well as general linear equations
by successive approximation’ [337].

Since the time that electronic computers became available for solving systems
of equations, the number of equations has increased by many orders of magnitude
and the methods mentioned above have proved to be too slow. After more than
100 years of stagnation in this field, Southwell [346, 347, 348, 349] experimented
with variants of the Gauss–Seidel method5 and, in 1950, David M. Young, Jr. [411]
succeeded in a breakthrough. His modification of the Gauss–Seidel method leads to
an important acceleration of the convergence. This so-called SOR iteration will be
described in §1.6 as an example of an iterative method. Since then, numerous other
methods have been developed. The modern ones will be described in Part III.

Concerning a historical view to the development of iterative techniques, we
recommend, e.g., the articles by Stiefel [353] (1952), Forsythe [138] (1953),
Axelsson [10, §7.1] (1976), and Young [413] (1989).

1.2 Model Problem: Poisson Equation

Fig. 1.1 Grid Ωh with inner grid
points (o) and boundary points (×).

During the time of Gauss, Jacobi and Seidel, the
equations of the least squares method have led to
a larger number of equations (e.g., obtained from
geodesic measurements). Today, in particular the
discretisations of partial differential equations give
rise to systems of a large number of equations.

Since the discretisation error is smaller the larger
the dimension of the system is, one is interested in
systems of millions of unknowns6. In the following
we shall often refer to a model problem representing
the simplest nontrivial example of a boundary value
problem. It is the Poisson equation with Dirichlet
boundary values:

−Δu(x, y) = f(x, y) for (x, y) ∈ Ω, (1.1a)
u(x, y) = ϕ(x, y) on Γ = ∂Ω. (1.1b)

4 The English translation of the title is ‘On a new solution method of linear equations arising from
the least squares method’.
5 Southwell used the term relaxation, since he considered the system of equations as a mechan-
ical arrangement. The solution of the system characterises the equilibrium. Otherwise, forces act
between nodes. One partial step of the Gauss–Seidel method leads to the local equilibrium in one
node, i.e., this node is relaxed.
6 The concrete size is time dependent, since it increases with the available computer capacity.



1.2 Model Problem: Poisson Equation 5

Here Δ = ∂2

∂x2 + ∂2

∂y2 abbreviates the two-dimensional7 Laplace operator. As the
underlying domain Ω, we choose the unit square

Ω = (0, 1) × (0, 1). (1.1c)

In (1.1a,b), the source term f and the boundary values ϕ are given, while the
function u is unknown.

To discretise the differential equation (1.1a–c), the domain Ω is covered with a
grid of step size h (cf. Figure 1.1). Each grid point (x, y) has the representation
x = ih, y = jh (0 < i, j < N), where

h = 1/N. (1.2)

More precisely, the grid is the set of inner grid points:

Ωh := {(x, y) = (ih, jh) : 1 ≤ i, j ≤ N − 1}. (1.3)

We abbreviate the desired values u(x, y)=u(ih, jh) with uij . An approximation
of the differential equation (1.1a) is given by the five-point formula

h−2 [ 4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1] = fij (1.4a)

with fij := f(ih, jh) for 1 ≤ i, j ≤ N − 1. The left-hand side in (1.4a) co-
incides with −Δu(ih, jh) up to a consistency error O(h2) when a sufficiently
smooth solution u of (1.1a,b) is inserted (cf. Hackbusch [193, §4.5]). For grid values
on the boundary, i.e., for i = 0, i = N , j = 0, or j = N , the values uij are known
from the boundary data (1.1b):

uij := ϕ(ih, jh) for i = 0, i = N, j = 0, or j = N. (1.4b)

The number of the unknowns uij is n := (N − 1)2 and corresponds of the
number of the inner grid points. In order to form the system of equations, we have
to eliminate the boundary values (1.4b), which possibly may appear in (1.4a). For
instance, if N ≥ 3, the equation corresponding to the index (i, j) = (1, 1) reads as

h−2[4u11 − u12 − u21] = g11 with g11 := f(h, h) + h−2[ϕ(0, h) + ϕ(h, 0)].

To write the equations in the common matrix formulation

Ax = b (1.5)

with an n × n matrix A and n-dimensional vectors x and b with n = (N − 1)2,
one is forced to represent the doubly indexed unknowns uij by a singly indexed
vector x. This implies that the (inner) grid points must be enumerated in some way.

7 The one-dimensional Laplace equation −u′′ = f leads to a too simple system which is not
suited as a test example. The two-dimensional problem has already the typical properties. The
three-dimensional counterpart would not be better.



6 1 Introduction

21 22 23 24

16 17 18 19 20

1514131211

6 7 8 9 10

54321

25

321

4 5

6 7 8

9 10

11 12 13

14 15

16 17 18

2019

21 22 23

2524

Fig. 1.2 Left: lexicographical ordering of the grid points. Right: chequer-board ordering.

Figure 1.2 (left) shows the lexicographical ordering. The exact definition of the
matrix A and of the right-hand side b can be seen from the following definition of
the matrix A and of the vector b by the lexicographical ordering for the Poisson
model problem with step size h = 1/N :

A := 0; {all entries of A are initialised by zero} (1.6a)
k := 0; {1 ≤ k ≤ n is the index with respect to the lexicographical ordering}
for j := 1 to N − 1 do for i := 1 to N − 1 do

begin k := k + 1; akk := 4 · h2; bk := f(ih, jh);
if i > 1 then ak−1,k := −h2 else bk := bk + h2 · ϕ(0, jh);
if i < N − 1 then ak+1,k := −h2 else bk := bk + h2 · ϕ(1, jh);
if j > 1 then ak,k−(N−1) := −h2 else bk := bk + h2 · ϕ(ih, 0);
if j < N − 1 then ak,k+(N−1) := −h2 else bk := bk + h2 · ϕ(ih, 1)

end;

Vice versa, the solution x of Ax = b has to be interpreted as

xk = uij = u(ih, jh) for
k = i+ (j − 1)(N − 1)

(1 ≤ i, j ≤ N − 1). (1.6b)

When x is interpreted as a grid function, we use the notation uij or u(x, y) with
x = ih, y = jh.

Remark 1.1. The reformulation of the two-dimensionally ordered unknowns into
a one-dimensionally ordered vector is rather unnatural. The reason should not be
sought in the two-dimensional nature of the problem, but rather in the questionable
idea of enumerating the vector components by indices 1 to n. We shall see that the
matrix A will never be required in the full presentation (1.6a).

If, nevertheless, one wants to represent the matrix A as (aij)1≤i,j<N , A should
be written as a block matrix. The vector x decomposes naturally into N−1 blocks



7

xj :=

⎡⎢⎣ xk+1

...
xk+N−1

⎤⎥⎦ =

⎡⎢⎣ u1,j
...

uN−1,j

⎤⎥⎦ with k := (j − 1)(N − 1)
for j = 1, . . . , N − 1,

(1.7)

corresponding to the j-th row in the grid Ωh. Accordingly, A takes the form of a
block-tridiagonal matrix built from (N − 1) × (N − 1) blocks T , which again are
tridiagonal (N − 1) × (N − 1) matrices:

A = h−2

⎡⎢⎢⎢⎢⎢⎣
T −I

−I T −I
. . . . . . . . .

−I T −I
−I T

⎤⎥⎥⎥⎥⎥⎦ , T =

⎡⎢⎢⎢⎢⎢⎣
4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1
−1 4

⎤⎥⎥⎥⎥⎥⎦ . (1.8)

I is the (N − 1)×(N − 1) identity matrix. Unmarked matrix entries or blocks are
zeros or zero blocks, respectively. The representation (1.8) proves the next remark.

Remark 1.2. For the lexicographical ordering of the unknowns, the matrix A has a
block-tridiagonal structure.

The lexicographical ordering is by no means the only ordering one can think of.
Another frequently used approach is the chequer-board ordering (cf. Fig.1.2, right).

In that case, the components uij with an even sum i + j (‘black squares’) are
enumerated first and thereafter those with an odd sum i + j (‘red squares’) are
numbered lexicographically. In the course of the next chapters further orderings
will be mentioned. A broad collection of orderings of practical interest is given by
Duff–Meurant [117].

Exercise 1.3. In the case of the chequer-board ordering, A decomposes into two
blocks corresponding to the ‘red’ and ‘black’ indices. Prove that A has the block
structure (1.9) with a rectangular submatrix B and identity matrices Ir, Ib whose
block sizes are given by the numbers of the red and black grid points:

A =

[
Dr B
BT Db

]
, Dr = 4h−2Ir, Db = 4h−2Ib . (1.9)

1.3 Notation

1.3.1 Index Sets, Vectors, and Matrices

According to Remark 1.1, the indices of the vectors are considered as unordered
(unless we refer explicitly to a particular ordering). The (always finite) index set is
denoted by I . The elements of I are often denoted by Greek letters, e.g., α ∈ I .

1.2 Model Problem: Poisson Equation



8 1 Introduction

In the case of the model problem, the indices α ∈ I are either the pairs α = (i, j)
of the integers 1 ≤ i, j ≤ N − 1 or the grid points (x, y) = (ih, jh). We denote
the cardinality of I, i.e., the number elements of I, by #I .

In general, we use the field C of complex numbers. This includes the standard
case of the real field R. For real matrices, the Hermitian transposed matrix AH may
be replaced by AT. The neutral notation K stands for R or C:

K ∈ {R,C}. (1.10)

A vector b ∈ KI is a mapping b : I → K into the field K. The value of b
at α ∈ I is denoted as vector component bα. In programs, the notation b[α] is
often used. If the index is a pair, e.g., α = (i, j) , we write bi,j = b[i, j]. A vector,
composed of its components bα, is written in the form

b = (bα)α∈I .

If the index set is ordered, we identify the indices with 1, 2, . . . , n := #I . While
the indicesα, β, γ, . . . are used for nonordered indices, we use Latin letters i, j, k, . . .
in the ordered case.

In general, subscripts indicate the components of a vector. Sometimes, a subscript
enumerates vectors; e.g., the first column vector of a matrixAmay be written as a1.
In order to avoid confusion with vector components, indexed vectors will be written
in boldface as in the previous example. If not defined differently, eα abbreviates the
α-unit vector with the components (eα)β = δαβ . Here,

δαβ =
{
1 for α = β
0 for α �= β

}
(α, β ∈ I) (1.11)

is the Kronecker symbol.
Square matrices are mappings of the set I × I of index pairs into K. The set

of these matrices is denoted by KI×I . Matrices are always symbolised by upper-
case letters. The matrix entry of A corresponding to the index pair (α, β) ∈ I × I is
written as aαβ or aα,β , and occasionally as Aαβ . Alternatively, the notation
A[α, β] = a[α, β] is used. In particular, (A + B)αβ , (A−1)αβ , etc. is written for
the components of matrix expressions. The matrix composed of the entries aαβ is
denoted by

A = (aαβ)α,β∈I .

The symbol
I = (δαβ)α,β∈I

abbreviates the identity matrix, since it cannot be confused with the index set I .
In the case of rectangular (sub)matrices, the indices α and β belong to different

sets I and J : A = (aαβ)α∈I,β∈J is an I × J matrix. The set of these matrices is
denoted by KI×J .

For an ordered index set I , e.g., I = {1, . . . , n}, we use the standard index
notation aij or Aij .



1.3 Notation 9

1.3.2 Star Notation

In §1.2 the index set I = Ωh is used. In the following, Ωh can be more general
than in (1.3). It may be an arbitrary subset of the two-dimensional infinite grid
{(x, y) = (ih, jh) : i, j ∈ Z}. The vector x ∈ KI can be interpreted as a grid
function, i.e., of a mapping defined at the grid points. Since the letter x represents
the vector as well as the first component in the point (x, y) ∈ Ωh, we write u instead
of x ∈ KI in accordance with the equations (1.1a,b):

xα = u(x, y) for α = (x, y) ∈ I = Ωh. (1.12)

If it seems to be more favourable, the argument (x, y) = (ih, jh) is replaced with
the indices ‘ij’:

u(ih, jh) = uij for (ih, jh) ∈ Ωh .

The first index component x or i corresponds to the grid row (oriented from left
to right), the second component y or j to the grid column (from the bottom to the
top).

Mappings (matrices) defined in KI with I = Ωh can conveniently be described
by using the star or stencil notation. The nine-point formula⎡⎣a−1,1 a0,1 a1,1

a−1,0 a0,0 a1,0
a−1,−1 a0,−1 a1,−1

⎤⎦ (1.13a)

represents a matrix containing the nine coefficients apq (−1 ≤ p, q ≤ 1) of (1.13a)
in each row. The component of Ax associated with the index (ih, jh) ∈ Ωh is

1∑
p,q=−1

apq ui+p,j+q or
1∑

p,q=−1

aijpq ui+p,j+q , (1.13b)

where u = x according to (1.12). In the left part of (1.13b), the matrix entries are
independent of the grid point (as, e.g., for the Poisson model problem), whereas, in
the right part, they depend on (ih, jh) ∈ Ωh. a00 = aij00 is the diagonal element
A(ij),(ij) corresponding to the index ‘ij’. For example, the element a1,0 in (1.13a)
at the right position in the middle row is the matrix entry A(i,j),(i+1,j) by which the
right neighbour ui+1,j—corresponding to the grid point ((i+ 1)h, jh) ∈ Ωh—has
to be multiplied in (1.13b).

Although (ih, jh) ∈ Ωh, the index (i + p, j + q) appearing in (1.13b)—more
precisely the grid point ((i + p)h, (j + q)h)—may not belong to Ωh. In this case,
the term aijpqui+p,j+q in (1.13b) has to be ignored. The same effect is obtained by
the formal definition ui+p,j+q := 0.

The five-point formula of the Poisson model problem is

h−2

⎡⎣ −1
−1 4 −1

−1

⎤⎦ . (1.14)

Unmarked entries apq (as at the positions p, q = ±1 in (1.14)) are defined by zero.



10 1 Introduction

1.4 A Single System Versus a Family of Systems

Usually, a discretisation matrix A is embedded into a family {Ah}h∈H . Here H
is an infinite set with accumulation point 0 ∈ H . For instance, the Poisson model
problem is defined for all N ∈ N\{1} and the corresponding step sizes h := 1

N →0.
Statements about the convergence speed may be of the form 1 − O(hκ) (i.e.,
≤ 1 − Chκ for some fixed C). Such expressions only make sense if there is a
limit process h → 0.

Given a family {Aη}η∈F of matrices, one is interested in the behaviour of the
convergence rates (or of the computational cost for obtaining a certain accuracy)
with respect to a limit process η → 0 (or η → ∞). If the iteration method leads to
convergence estimates which are uniform with respect to η, we say that the iteration
method is robust with respect to η ∈ F . A standard parameter is the discretisation
size h → 0, but it is not the only one. For instance, increasing anisotropy can be
described byAη := B+ηC for η → 0, whereB andC are discretisations of ∂2/∂x2

and ∂2/∂y2, respectively. Increasing convection is modelled by Aη := ηB + C

(η → 0), where C is a discretisations of a differential operator of first order.

1.5 Amount of Work for the Direct Solution of a Linear System

Methods are called direct if they terminate after finitely many operations with an
exact solution (up to floating-point errors). The best known direct method is the
Gauss elimination. In the case of the model problem in §1.2, one may perform this
method without pivoting (cf. §C.4.4).

Concerning the valuation of the amount of computational work, we do not
distinguish between additions, subtractions, multiplications, or divisions. Each
is counted as one (arithmetic) operation. Traditionally, arithmetic operations for
indices, data transfer, and similar activities are not counted (cf. Björck [48, §1.1.4]).

Remark 1.4. In the general case, the Gauss elimination solving a system Ax=b of
n equations requires 2n3/3 + O(n2) operations. The storage amounts to n2 + n .

Proof. During the i-th elimination step, the i-th row contains n − i nonzero
elements, whose multiples have to be subtracted from n−i−1 matrix rows. Summa-
tion of these 2(n−i)2+O(n) operations over 1 ≤ i ≤ n yields the statement. ��

In the model case, n = (N − 1)2 = h−2 + O(h−1) implies the following.

Conclusion 1.5. A naive application of the Gauss elimination to the model problem
in §1.2 leads to 2N6/3 + O(N5) = 2h−6/3 + O(h−5) operations and requires
storage of N4 + O(N3) = h−4 + O(h−3).



1.5 Amount of Work for the Direct Solution of a Linear System 11

Halving the grid size h, yields the 64-fold computational work. Assuming one
second for the solution of grid size h, the same computation for the quartered grid
size h/4 consumes more than one hour!

However, the amount of work is less if the system matrix A ∈ Rn×n is a band
matrix. Here we assume the ordered index set I = {1, . . . , n}.

Definition 1.6. A is a band matrix of band width w ∈ N0 if aij = 0 holds for all
|i− j| > w.

A band matrix has at maximum 2w nonvanishing off-diagonals besides the main
diagonal. Concerning the properties of band matrices, we refer to Berg [44].

Remark 1.7. The matrix A arising from the model problem with lexicographical
ordering according to (1.7) is a band matrix of band width w = N − 1.

The major part of the amount of work given in Remark 1.4 consists of unneces-
sary multiplications and additions by zeros. During the i-th elimination step the i-th
row contains w + 1 nonzero elements. It is sufficient to eliminate the next w rows.
This leads to 2w2 operations. In total, one obtains the next result.

Remark 1.8. The amount of work for the Gauss elimination without pivoting for
solving a system with an n× n matrix of band width w amounts to

2nw2 + O(nw + w3).

The storage requirement reduces to 2n(w + 1) when only the 2w + 1 diagonals of
A and the right-hand side b are stored.

Conclusion 1.9. In the case of the model problem in §1.2, w is equal to N − 1.
Therefore, the banded Gauss elimination requires 2N4 +O(N3) = h−4 +O(h−3)
operations and storage of 2N3 + O(N2).

In the latter version, 2w + 1 diagonals of A are used, although the matrix A
in (1.8) has only five diagonals: the main diagonal, two side-diagonals at distance
1, and two further ones at distance N − 1. Unfortunately, one cannot exploit this
property for the Gauss elimination.

Remark 1.10. The zeros in the second to (N −2)-th side-diagonals of the matrix A
in (1.8) are completely filled during the elimination process by nonzeros (with the
exception of the first block).

This occurrence is called fill-in and indicates a principal disadvantage of Gauss
elimination when applied to sparse matrices. Here, we call an n× n matrix sparse,
if the number of nonzero entries is by far smaller than n2. Otherwise, the matrix
is called a fully populated or dense matrix. Because of the equivalence of Gauss
elimination to the triangular or LU decomposition (cf. Quarteroni–Sacco–Saleri
[314, §3], Björck [48, §1.2]), the same difficulties holds for the LU decomposition.



12 1 Introduction

Conclusion 1.11. The decomposition A = LU into a lower triangular matrix L
and an upper triangular matrix U for the sparse matrix A in (1.8) yields factors L
and U , which are full band matrices of width w = N − 1. The same holds for
Cholesky decomposition.

There are special direct methods solving the system described in §1.2 with
an amount of work between O(n) = O(N2) and O(n log n) = O(N2 logN).
Examples are the Buneman algorithm and the method of total reduction, both
described in Meis–Marcowitz [281, 282] (see also Bank [25], Bjørstad [49],
Buneman [87], Buzbee et al. [90], Duff–Erisman–Reid [116], Golub [154],
Hockney [223], and Schröder–Trottenberg [333]).

1.6 Examples of Iterative Methods

For the iterative solution of a system, one starts with an arbitrary starting vector x0

and computes a sequence of iterates xm for m = 1, 2, . . . :

x0 �−→ x1 �−→ x2 �−→ . . . �−→ xm �−→ xm+1 �−→ . . .

In the following, xm+1 is only dependent on xm, so that the mapping xm �→ xm+1

determines the iteration method. The choice of the starting value x0 is not part of
the iteration method.

The already mentioned Gauss–Seidel iteration for solving the system Ax = b
reads as follows:

for i := 1 to n do xm+1
i :=

⎛⎝bi −
i−1∑
j=1

aijx
m+1
j −

n∑
j=i+1

aijx
m
j

⎞⎠ /aii. (1.15)

Remark 1.12. (a) The Gauss–Seidel iteration (1.15) can be performed whenever all
diagonal entries satisfy aii �= 0.
(b) During the execution of the iteration, the variable xmi may be overwritten by
the new value xm+1

i .
(c) Different orderings (e.g., lexicographical or chequer-board ordering) yield
different results.

Each matrix A can uniquely be decomposed into the sum

A = D − E − F,

⎧⎨⎩
D diagonal matrix,
E strictly lower triangular matrix,
F strictly upper triangular matrix.

⎫⎬⎭ (1.16)

Here, E is called a lower triangular matrix if Eij = 0 for j > i, and a strictly lower
triangular matrix, if Eij = 0 for j ≥ i. The (strictly) upper triangular matrix is
defined analogously. The system of equations Ax = b is equivalent to



1.6 Examples of Iterative Methods 13

(D − E)x = b+ Fx. (1.17)

Replacing x by xm on the right-hand side and by xm+1 on the left-hand side,
we obtain the iterative description (1.18a) or (1.18b):

(D − E)xm+1 = b+ Fxm, i.e., (1.18a)

xm+1 = (D − E)−1(b+ Fxm). (1.18b)

Exercise 1.13. Prove that (1.18a,b) and (1.15) are equivalent, i.e., (1.18a) and
(1.18b) are the vector representations of the Gauss–Seidel iteration, while (1.15)
is the componentwise representation.

For a sparse matrix, one has to avoid definingA, b by (1.6a) and applying (1.15).
For the model problem (1.4a,b), we should use the original data fij = f [i, j] in
(1.4a) and the boundary data ϕ(ih, jh) = uij = u[i, j], which are stored at the
boundary points of the array u. According to (1.6b), we use the variables u and f
instead of x and b. The lexicographical Gauss–Seidel method for the model problem
then takes the following form:

procedure GaussSeidel(u, f); (1.19)
begin for j := 1 to N − 1 do for i := 1 to N − 1 do

u[i, j] := (h2 · f [i, j] + u[i− 1, j] + u[i+ 1, j] + u[i, j − 1] + u[i, j + 1])/4
end; {lexicographical ordering}

In the double loop of (1.19), the matrix A is explicitly represented by its nonzero
entries. The indexing is based on the ‘natural’ double indices. The lexicographical
ordering of the grid points is a consequence of the arrangement of the loops. For the
chequer-board ordering, the loop in (1.19) can be changed as follows:

w := 2; {red squares} for j := 1 to N − 1 do (1.20)
begin w := 3 − w; for i := w step 2 to N − 1 do

u[i, j] := (h2 · f [i, j] + u[i−1, j] + u[i+1, j] + u[i, j−1] + u[i, j+1])/4
end;
w := 1; {black squares} for j := 1 to N − 1 do . . . {same loop as in lines 2–4}

Since one may immediately store h2 ·f [i, j] instead of f [i, j], the next remark
follows.

Remark 1.14. In the case of the model problem, the Gauss–Seidel method (inde-
pendently of the ordering) requires 5n operations (4n additions and n divisions)
per iteration.

Remark 1.15. In the case of fij = −4 and ϕ(x, y) = x2 + y2, the corresponding
solution is uh(x, y) = x2 + y2, i.e., uij = (i2 + j2)h2. The simplest starting values
are u0ij = 0. In the following, the system (1.18a) with these data will be called the
Poisson model problem. In the course of the next chapters, various iterative methods
will be tested using this example.



14 1 Introduction

Table 1.1 shows the error

εm := max
{ ∣∣umij − (i2 + j2)h2

∣∣ : 1 ≤ i, j ≤ N − 1
}

lexicographical ordering chequer-board ordering
m um16,16 εm εm−1/εm um16,16 εm εm−1/εm
0 0.0 1.877 - 0.0 1.877 -
1 -0.002 1.760 0.93756 -0.001 1.759 0.93704
2 -0.004 1.646 0.93563 -0.003 1.589 0.90323
9 -0.018 1.276 - -0.017 1.202 -
10 -0.019 1.246 0.97637 -0.019 1.165 0.96903
99 +0.1102 0.404 - +0.1353 0.380 -
100 +0.1135 0.400 0.98989 +0.1385 0.376 0.98994
199 +0.3479 0.152 - +0.3585 0.142 -
200 +0.3494 0.151 0.99041 +0.3598 0.140 0.99041
299 +0.4421 0.058 - +0.4461 0.054 -
300 +0.4426 0.057 0.99039 +0.4466 0.053 0.99039

Table 1.1 Results of the Gauss–Seidel iteration for N = 32.

of the m-th iterate for
h = 1

32 and the value
um16,16 at the midpoint
(16h, 16h) = ( 12 ,

1
2 ) of

Ω. The values um16,16
should converge to

u

(
1

2
,
1

2

)
= 0.5.

The listed values in-
dicate the convergence
of the Gauss–Seidel
method, but its slow-
ness is disappointing.
After 100 iterations
the first decimal of um16,16 is still completely wrong! The third column contains
the so-called reduction factor : the ratio εm−1/εm of the successive errors. This
factor indicates how fast the error decreases per iteration. A comparison of the
data in Table 1.1 demonstrates that the ordering influences the results, but not the
convergence speed.

The Gauss–Seidel iteration (1.15) is equivalent to the representation

for i := 1 to n do xm+1
i :=xmi −

⎡⎣i−1∑
j=1

aijx
m+1
j +

n∑
j=i

aijx
m
j − bi

⎤⎦/aii, (1.21)

m um16,16 εm
εm−1

εm
m um16,16 εm

εm−1

εm

0 0.0 1.877 -
1 -0.016 1.777 0.9468 39 0.4805 0.050 -
2 -0.027 1.680 0.9451 40 0.4838 0.043 0.8566
9 -0.065 1.046 - 49 0.4964 0.0055 -
10 -0.068 0.962 0.9197 50 0.4970 0.0049 0.8830
19 0.1111 0.399 - 99 0.4999996 9.0510-7 -
20 0.1486 0.365 0.9155 100 0.4999997 7.2310-7 0.7977
29 0.4198 0.166 - 129 0.5-1.510-9 3.5710-9 -
30 0.4445 0.150 0.9062 130 0.5-1.210-9 2.8110-9 0.7881

Table 1.2 SOR (lexicographical ordering, N = 32, ω = 1.821465).

showing that the
new iterate xm+1

i

is obtained from
xmi by subtracting
a correction. In
contrast to (1.15),
the second sum in
(1.21) starts at j =
i. A seemingly in-
significant modifi-
cation is the mul-
tiplication of this
correction by a factor ω. The obtained method is called the successive over-
relaxation method and abbreviated with SOR. In the general case, it takes the form



15

for i := 1 to n do xm+1
i := xmi − ω

aii

⎡⎣i−1∑
j=1

aijx
m+1
j +

n∑
j=i

aijx
m
j − bi

⎤⎦. (1.22)

In the model case, the only change in (1.19) or (1.20) is the replacement of the
assignment u[i, j] := (. . . )/4 by

u[i, j] :=u[i, j]−ω
4

[
4u[i, j]−u[i−1, j]−u[i+1, j]−u[i, j−1]−u[i, j+1]−h2·f[i, j]

]
.

In §4.6 we shall prove that ω = 2/(1 + sin(πh)) (i.e., ω = 1.821. . . for N = 32)
is a suitable value. Table 1.2 shows the errors εm of the first 150 iterations for the
same example as above. Convergence is evidently much faster than for the Gauss–
Seidel method. Analysis of the above mentioned methods and constructing even
faster iterations are the foci of the next chapters.

1.7 Sparse Matrices Versus Fully Populated Matrices

The matrix of the Poisson model problem is an example of a sparse matrix. Discreti-
sation by finite differences and finite elements (cf. §E.2) generates sparse matrices
with the property that the number of nonzero entries per row is bounded,8 i.e., the
number

s(I) := max
α∈I

#{β ∈ I : aαβ �= 0} (1.23)

is bounded independently of the matrix size n = #I . This property is important
for the storage cost which is O(n). Operations as matrix-vector multiplication and
most of the operations involved by one step of an iteration method also have a
computational cost of O(n).

Formally, the iterative schemes also work for fully populated matrices. In this
case, the storage cost is n2 and basic operations as matrix-vector multiplication cost
O(n2) arithmetic operations. For large-scale matrices, the quadratic order O(n2) is
too large. Fortunately, there are other techniques which allow reducing O(n2) to9

O(n log∗ n) or even O(n). Appendix D will describe such a method.
There is a further reason why in the following we focus to sparse matrices. Fully

populated matrices typically arise from discretising nonlocal operators (integral
operators), e.g., by the boundary element method (cf. Sauter–Schwab [331]). The
corresponding linear systems have other properties than, e.g., the Poisson model
problem, and require other types of iterative methods (see the Picard iteration and
the multigrid iteration of the second kind in §11.9.1).

Assume that A is a sparse matrix satisfying (1.23). In the regular case of a differ-
ence scheme, the data of A are organised by a nine-point star (1.13a) or a five-point
formula (1.14). If the coefficients are constant as in the left-hand side of (1.13a) or

8 For the finite element method, this is a consequence of the shape regularity of the triangulation.
9 The asterix in log∗ n indicates an unspecified power.

1.6 Examples of Iterative Methods



16 1 Introduction

in (1.14), the data size is negligible. Procedure (1.19) shows how easily these data
can be used.

However, the standard case are more general sparse matrices arising from finite
element discretisations. In this case, the sparse matrix format is used for organising
the matrix data. For each i ∈ I, there is a subset

Iα := {β ∈ I : aαβ �= 0}

whose size is bounded by s(I) (cf. (1.23)). The entries aαβ �= 0 (α fixed) form
the vector aα ∈ KIα . Then the matrix data are described by the set

{(Iα,aα) : α ∈ I},

which can be implemented by a list. For instance, the SOR iteration (1.22) reads as

for α ∈ I do u[α] := u[α] − ω

aα[α]

⎡⎣∑
β∈Iα

aα[β] · u[β] − h2 · f [α]

⎤⎦,
where the loop follows the ordering of I .



Chapter 2

Iterative Methods

Abstract In this chapter we consider general properties of iterative methods.
Such properties are consistency, ensuring the connection between the iterative
method and the given system of equations, as well as convergence, guaranteeing
the success of the iteration. The most important result of this chapter is the charac-
terisation of the convergence of linear iterations by the spectral radius of the iteration
matrix (cf. §2.1.4). Since we only consider iterative methods for systems with
regular matrices, iterative methods for singular systems or those with rectangular
matrices will not be studied.1 The quality of a linear iteration depends on both the
cost and the convergence speed. The resulting efficacy is discussed in Section 2.3.
Finally, Section 2.4 explains how to test iterative methods numerically.

2.1 Consistency and Convergence

2.1.1 Notation

We want to solve the system of linear equations

Ax = b (A ∈ KI×I and b ∈ KI given) (2.1)

(cf. (1.10)). To guarantee solvability for all b ∈ KI , we generally assume:

A is regular. (2.2)

An iterative method producing iterates x1, x2, . . . from the starting value x0

can be characterised by a prescription xm+1 := Φ(xm). Φ depends on the data A
and b in (2.1). These parameters are explicitly expressed by the notation

1 Concerning this topic, we refer, e.g., to Björck [47], Marek [275], Kosmol–Zhou [241], Berman–
Plemmons [46], and Remark 5.17.

17© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_2



18 2 Iterative Methods

xm+1 := Φ(xm, b, A) (m ≥ 0, b in (2.1)). (2.3)

Since in most of the cases the matrix A is fixed, we usually write

xm+1 := Φ(xm, b)

instead of Φ(xm, b, A). By Φ(·, ·, A) we express the fact that we consider the
iteration (2.3) exclusively for the matrix A.

Definition 2.1. An iterative method is a (in general nonlinear) mapping

Φ : KI × KI × KI×I → KI .

By xm = xm(x0, b, A) we denote the iterates of the sequence generated by the
prescription (2.3) with a starting value x0 = y ∈ KI :

x0(y, b, A) := y ,

xm+1(y, b, A) := Φ(xm(y, b, A), b, A) for m ≥ 0.
(2.4)

If A is fixed, we write xm(y, b) instead of xm(y, b, A). If all parameters y, b, A
are fixed, we write xm.

If Φ is called an iteration method, we expect that the method is applicable to a
whole class of matrices A. Here ‘applicable’ means that Φ is well defined (includ-
ing the case that the sequence xm diverges).

Definition 2.2. (a) D(Φ) := {A : Φ(·, ·, A) well defined} is the domain of Φ.
(b) An iteration is called algebraic if the definition of Φ(·, ·, A) can be based
exclusively on the data of A ∈ D(Φ).

In the case of the Gauss–Seidel iteration ΦGS in (1.15), the domain is defined by
D(ΦGS) = {A ∈ KI×I : aii �= 0 for all i ∈ I, I finite}. Another extreme case is
D(Φ) = {A }, i.e., the iteration can only be applied to one particular matrix A .

2.1.2 Fixed Points

Definition 2.3. x∗=x∗(b, A) is called a fixed point of the iteration Φ corresponding
to b ∈ KI and A ∈ D(Φ) (or shortly: a fixed point of Φ(·, b, A)) if

x∗ = Φ(x∗, b, A).

If the sequence {xm} of the iterates generated by (2.3) converges, we may form
the limit in (2.3) and obtain the next lemma.

Lemma 2.4. Let the iteration Φ be continuous with respect to the first argument. If

x∗ := lim
m→∞x

m(y, b, A) (cf. (2.4))

exists, x∗ is a fixed point of Φ(·, b, A).



2.1 Consistency and Convergence 19

2.1.3 Consistency

Lemma 2.4 states that possible results of the iteration method have to be sought
in the set of fixed points. Therefore, a minimum condition is that the solution of
system (2.1) with the right-hand side b ∈ KI be a fixed point with respect to b. This
property is the subject of the following definition.

Definition 2.5 (consistency). The iterative method Φ is called consistent to the
system (2.1) with A ∈ D(Φ) if, for all right-hand sides b ∈ KI , any solution
of Ax = b is a fixed point of Φ(·, b, A).

According to Definition 2.5, consistency means: For all b, x ∈ KI and all
matrices A ∈ D(Φ), the implication Ax = b ⇒ x = Φ(x, b, A) holds. The re-
verse implication would yield an alternative (nonequivalent) form of consistency:

Ax = b for all fixed points x of Φ(·, b, A) and for all b ∈ KI, A ∈ D(Φ). (2.5)

Note that both variants of consistency do not require the regularity assumption
(2.2). Even without (2.2), there may be a solution of Ax = b for certain b.
Then Definition 2.5 implies the existence of a fixed point of Φ(·, b). Vice versa,
(2.5) states the existence of a solution of Ax = b as soon as Φ(·, b, A) has a fixed
point. The regularity of A will be discussed in Theorem 2.8.

2.1.4 Convergence

A natural definition of the convergence of an iterative method Φ seems to be

lim
m→∞x

m(y, b, A) exists for all y, b ∈ KI , (2.6)

where xm(y, b, A) are the iterates defined in (2.4) corresponding to the starting
value x0 := y, while A ∈ D(Φ) is a fixed matrix. Since the starting value may
be chosen arbitrarily, it may happen that an iteration satisfying (2.6) converges, but
to different limits depending on the starting value. Therefore, the independence of
the limit has to be incorporated into the definition of convergence. This yields the
following definition, which is stronger than (2.6).

Definition 2.6. Fix A ∈ D(Φ). An iterative method Φ(·, ·, A) is called convergent
if for all b ∈ KI , there is a limit x∗(b, A) of the iterates (2.4) independent of the
starting value x0 = y ∈ KI .

Note that consistency is a property of Φ for all A ∈ D(Φ), whereas convergence
is required for a particular A ∈ D(Φ). Therefore Φ(·, ·, A) may be convergent for
some A, while Φ(·, ·, A′) diverges for another A′.



20 2 Iterative Methods

2.1.5 Convergence and Consistency

Remark 2.7. In the following, we shall often assume that the iterative method Φ is
convergent and consistent. The term ‘convergent and consistent’ refers to a matrix
A ∈ D(Φ) and means precisely: Φ is consistent and, for A ∈ D(Φ), the particular
iteration Φ(·, ·, A) is convergent.

It will turn out that the chosen definitions of the terms ‘convergence’ and
‘consistency’ of Φ are almost equivalent to the combination of the alternative
definitions in (2.5) and (2.6).

Theorem 2.8. Let Φ be continuous in the first argument. Then Φ is consistent and
convergent if and only if A is regular and Φ fulfils the conditions (2.5) and (2.6).

Proof. (i) Assume Φ to be consistent and convergent. (2.6) follows from Defini-
tion 2.6. If A is singular, the equation Ax = 0 would have a nontrivial solution
x∗∗ �= 0 besides x∗ = 0. By consistency, both are fixed points of Φ with
respect to b = 0. Therefore, choosing the starting values x0 = x∗ and x0 = x∗∗,
we obtain the constant sequences xm(x∗, 0) = x∗ and xm(x∗∗, 0) = x∗∗. The
convergence definition states that the limits x∗ and x∗∗ coincide contrary to the
assumption. Hence, A is regular. It remains to prove (2.5). The preceding argument
shows that a convergent iterative method can have only one fixed point with respect
to b. Because of the regularity of A, there is a solution of Ax = b that, thanks to
consistency, is the unique fixed point of Φ with b. Hence, (2.5) is proved.

(ii) Assume Φ(x, b) to be continuous in x and that (2.5) and (2.6) are fulfilled.
Furthermore, let A be regular. Due to Lemma 2.4, x∗ := limxm(y, b) is a fixed
point of Φ with respect to b and therefore, by (2.5), a solution of Ax = b. Because
of the regularity ofA, the solution of the system is unique and hence also the limit of
xm(y, b), which thereby cannot depend on y. Hence, Φ is convergent in the sense of
Definition 2.6. Convergence leads to the uniqueness of the fixed point with respect
to b (cf. part (i)). Since, by (2.5), this fixed point is the uniquely determined solution
of Ax = b, Φ is consistent. ��

2.1.6 Defect Correction as an Example of an Inconsistent Iteration

In this monograph, all iterations will be assumed to be consistent. Usually, incon-
sistent iterations are an involuntary consequence of a bug in the implementation.
However, there are examples where inconsistent iterations are of practical relevance.
Assume that both Ax = b and By = c are discretisations of the same partial dif-
ferential equation. Assume further that Ax = b is simpler to solve than By = c,
but the error of the discretisation by B is smaller than the discretisation error of A.
Then there are combinations of both discretisations so that the overall treatment is
as simple as for A but yielding the accuracy of B.



21

The standard defect correction xm+1 = xm − A−1(Bxm − c) can be stopped
after a few iteration steps since the desired discretisation accuracy is reached (cf.
[194, §14.2.2], [197, §7.5.9.2]). This is even true if the matrixB is singular or almost
singular (this is the case of an unstable but consistent2 discretisation). An extreme
case of solving a problem with an unstable discretisation of high consistency order
is demonstrated in [178].

Another mixing of both discretisation is described in [194, §14.3.3], where parts
of the multigrid iteration for Ax = b use B in the smoothing step. The limit x∗ of
the iterates solves neither Ax∗ = b nor Bx∗ = c.

2.2 Linear Iterative Methods

One would expect iterative methods to be linear in x, b, since they solve linear equa-
tions. In fact, most of the methods described in this book are linear, but there are also
important nonlinear iterations as, e.g., discussed in Part II.

2.2.1 Notation, First Normal Form

Definition 2.9 (linear iteration, iteration matrix). An iterative method Φ is called
linear if Φ(x, b) is linear in (x, b), i.e., if there are matrices M and N such that

Φ(x, b, A) =M [A]x+N [A] b.

In most of the cases, A is fixed and we use the shorter form

Φ(x, b) =Mx+Nb. (2.7)

Here, the matrix M =M [A] is called the iteration matrix of the iteration Φ.

Iteration (2.3) takes the form (2.8), which represents the first normal form of the
iteration Φ :

xm+1 :=Mxm +Nb (m ≥ 0, b in (2.1)). (2.8)

Whenever possible, we shall denote the iteration matrix of a specific iteration
method ‘xyz’ by Mxyz; e.g., MGS belongs to the Gauss-Seidel method. Similarly
for Nxyz . When we refer to the mapping Φ, we write MΦ, NΦ, etc.

Remark 2.10. Assume (2.2). If N = N [A] is singular, there is some x∗ �= 0 with
Nx∗ = 0 and b := Ax∗ �= 0. Starting iteration (2.8) with x0 = 0 yields xm = 0
and hence limxm = 0. In Corollary 2.17b we shall state that, in this case, the
iteration is not convergent.

The iteration Φ(·, ·, A) is algebraic in the sense of Definition 2.2b if and only if
the matrices M and N are explicit functions of A.

2 Concerning the terms ‘consistent’ and ‘consistency order’, we refer to Hackbusch [197, §§6,7].

2.1 Consistency and Convergence



22 2 Iterative Methods

2.2.2 Consistency and Second Normal Form

For a linear and consistent iteration Φ, each solution of Ax = b must be a fixed
point with respect to b: x = Mx + Nb. Each x ∈ KI can be the solution of
Ax = b (namely, for b := Ax). Hence,

x =Mx+Nb =Mx+NAx

holds for all x and leads to the matrix equation

M [A] +N [A]A = I, (2.9)

or in short,
M +NA = I,

establishing a relation between M and N in (2.8). This proves the next theorem.

Theorem 2.11 (consistency). A linear iteration Φ is consistent if and only if the
iteration matrix M can be determined from N by

M [A] = I −N [A]A for all A ∈ D(Φ). (2.9′)

If, in addition, A is regular, N can be represented as a function of M :

N [A] = (I −M [A])A−1. (2.9′′)

Combining formulae (2.8) and (2.9′), we can represent linear and consistent
iterations in their second normal form:

xm+1 := xm −N [A] (Axm − b) (m > 0, A, b in (2.1)). (2.10)

In the sequel, the matrix

N = N [A] = NΦ = NΦ[A]

will be called the ‘matrix of the second normal form of Φ’. Equation (2.10) shows
that xm+1 is obtained from xm by a correction which is the defect Axm − b
of xm multiplied by N . The fact that the defect of xm vanishes if and only if it
is a solution of Ax = b, proves the next remark.

Remark 2.12. The second normal form (2.10) with arbitrary N ∈ KI×I represents
all linear and consistent iterations.

Since consistent linear iterations are the standard case, we introduce the follow-
ing notation for the set of these iterations:

L := {Φ : KI × KI × KI×I → KI consistent linear iteration, #I < ∞}. (2.11)



2.2 Linear Iterative Methods 23

2.2.3 Third Normal Form

The third normal form of a linear iteration reads as follows:

W [A] (xm − xm+1) = Axm − b (m > 0, A, b in (2.1)). (2.12)

W = W [A] = WΦ = WΦ[A] is called the ‘matrix of the third normal form of Φ’.
Equation (2.12) can be understood in the following algorithmic form:

solve Wδ = Axm − b and define xm+1 := xm − δ. (2.12′)

This represents a definition of xm+1 as long asW is regular. Under this assumption,
one can solve for xm+1. A comparison with (2.10) proves the following.

Remark 2.13. If W in (2.12) is regular, iteration (2.12) coincides with the second
normal form (2.10), where N is defined by

N =W−1. (2.13)

Vice versa, the representation (2.10) with regular N can be rewritten as (2.12) with
W = N−1.

We shall see that for the interesting cases, N must be regular (cf. Remark 2.18).
Combining (2.9′) and (2.13) yields

M [A] = I −W [A]−1A. (2.13′)

2.2.4 Representation of the Iterates xm

By the notation xm(x0, b, A) in (2.4) we express the dependency on the starting
value x0 and on the the data b, A of the system (2.1). The explicit representation
of xm in terms of x0 and b is given in (2.14).

Theorem 2.14. The linear iteration (2.7) produces the iterates

xm(x0, b, A) =M [A]mx0 +

m−1∑
k=0

M [A]kN [A] b (2.14)

for m ≥ 0 and A ∈ D(Φ) .

Proof. For the induction start at m = 0, Eq. (2.14) takes the form x0(x0, b) = x0

in accordance with (2.4). Assuming (2.14) for m− 1, we obtain from (2.7) that

xm(x0, b) =Mxm−1 +Nb =M

(
Mm−1x0 +

m−2∑
k=0

MkNb

)
+Nb

=Mmx0 +

m−1∑
k=1

MkNb+Nb =Mmx0 +

m−1∑
k=0

MkNb. ��



24 2 Iterative Methods

In the following, em denotes the (iteration) error of xm:

em := xm − x, where x solves Ax = b. (2.15)

Assuming consistency, we have x = Mx + Nb for the solution x in (2.15).
Forming the difference with (2.8): xm+1=Mxm+Nb, we attain the simple relation

em+1 =Mem (m ≥ 0), e0 = x0 − x, (2.16a)

between two successive errors. Therefore the iteration matrix is the amplification
matrix of the error. A trivial conclusion is

em =Mme0 (m ≥ 0). (2.16b)

The expression Ax− b is called the defect of a vector x. In particular,

dm := Axm − b (2.17)

denotes the defect of the m-th iterate xm.

Exercise 2.15. Prove: (a) The defect d̄ = Ax̄ − b and the error ē = x̄ − x fulfil
the equation A ē = d̄ .
(b) Let Φ ∈ L (cf. (2.11)) and assume that A is regular. Then the defects satisfy

dm+1 = AMA−1dm, d0 := Ax0 − b, dm = (AMA−1)md0.

2.2.5 Convergence

A necessary and sufficient convergence criterion can be formulated by the spectral
radius ρ(M) of the iteration matrix (cf. Definition A.17).

Theorem 2.16 (convergence theorem, convergence rate). A linear iteration (2.7)
with the iteration matrix M =M [A] is convergent if and only if

ρ(M) < 1. (2.18)

ρ(M) is called the convergence rate of the iteration Φ(·, ·, A).

In the sequel, the terms convergence rate, convergence speed, and iteration speed
are used synonymously for ρ(M). Some authors define the convergence rate as the
negative logarithm − log(ρ(M)) (cf. (2.30a) and Varga [375], Young [412]).

Proof. (i) Let iteration (2.7) be convergent. In Definition 2.6 we may choose b := 0
and exploit the representation (2.14): xm = Mmx0. The starting value x0 := 0
yields the limit x∗= 0, which by the convergence definition must hold for any start-
ing value. If ρ(M) ≥ 1, one could choose x0 �= 0 as the eigenvector corresponding
to an eigenvalue λ with |λ| = ρ(M) ≥ 1. The resulting sequence xm = λmx0

cannot converge to x∗ = 0. Hence, inequality (2.18) is necessary for convergence.



2.2 Linear Iterative Methods 25

(ii) Now let (2.18) be valid: ρ(M) < 1. By Lemma B.28, Mmx0 converges
to zero, while Theorem B.29 proves

∑m−1
k=0 M

k → (I − M)−1. Thanks to the
representation (2.14), xm tends to

x∗ := (I −M)−1Nb. (2.19)

Since this limit does not depend on the starting value, the iteration is convergent. ��

The proof already contains the first statement of the following corollary.

Corollary 2.17. (a) If the iterative method (2.7) is convergent, the iterates converge
to (I −M)−1Nb.
(b) If the iteration is convergent, then A and N = N [A] are regular.
(c) If, in addition, the iteration is consistent, the iterates xm converge to the unique
solution x = A−1b.

Proof. (b) If either A or N are singular, the product AN is singular and ANx = 0
holds for some x �= 0. As M = I − NA, x is an eigenvector of M with the
eigenvalue 1. Hence ρ(M) ≥ 1 proves the divergence of the iteration. This proves
part (b).

(c) By consistency and part (b), there is a representation (2.10) with regular N
and A, so that (I −M)−1N = A−1 follows from (2.9). (2.19) proves part (c). ��

Remark 2.18. Since only convergent and consistent iterations are of interest and
since in this case, by Corollary 2.17b,A andN are regular, the representation (2.9′′)
of N and the third normal form (2.4) hold with the matrix W = N−1.

The convergence xm → x is an asymptotic statement for m → ∞ that allows
no conclusion concerning the error em = xm − x for some fixed m. The values
of um16,16 given in Tables 1.1–1.2 even deteriorate during the first steps before they
converge monotonically to the limit 1

2 . Often, one would like to have a statement for
a fixed iteration number m. In this case, the convergence criterion (2.18) has to be
replaced with a norm estimate.

Theorem 2.19. Let ‖·‖ be a corresponding matrix norm. A sufficient condition for
convergence of an iteration is the estimate

‖M‖ < 1 (2.20)

of the iteration matrix M . If the iteration is consistent, the error estimates (2.21)
hold:

‖em+1‖ ≤ ‖M‖ ‖em‖ , ‖em‖ ≤ ‖M‖m ‖e0‖. (2.21)

Proof. (2.20) implies (2.18) (cf. (B.20b)). (2.21) is a consequence of (2.16a,b). ��

‖M‖ is called the contraction number of the iteration (with respect to the norm
‖·‖). In the case of (2.20), the iteration is called monotonically convergent with
respect to the norm ‖·‖, since ‖em+1‖ < ‖em‖. If the norm ‖·‖ fulfils the equality
ρ(M) = ‖M‖, the terms ‘convergence’ and ‘monotone convergence’ coincide.



26 2 Iterative Methods

2.2.6 Convergence Speed

Inequality (2.21), i.e., ‖em+1‖ ≤ ζ ‖em‖ with ζ := ‖M‖ < 1, describes linear
convergence. Faster convergence than linear convergence is only attainable by non-
linear methods (cf. §10.2.3). The contraction number ζ depends on the choice of the
norm. According to (B.20b), the contraction number ζ is always larger or equal to
the convergence rate ρ(M). On the other hand, Lemma B.26 ensures that for a suit-
able choice of the norm, the contraction number ζ approximates the convergence
rate ρ(M) arbitrarily well.

The contraction number as well as the convergence rate determine the quality
of an iterative method. Both quantities can be determined from the errors em as
follows.

Remark 2.20. The contraction number is the maximum of the ratios ‖e1‖/‖e0‖
taken over all starting values x.

Proof. Use (2.16b) for m = 1 and Exercise B.10d. ��

Exercise 2.21. Prove: (a) In general, Remark 2.20 becomes wrong if ‖e1‖/‖e0‖ is
replaced with ‖em+1‖/ ‖em‖ for some m > 0.
(b) The latter quotient takes the maximum

ζm+1 :=

{
max{‖Mx‖ / ‖x‖ : x ∈ range(Mm)\{0}} if Mm �= 0,
0 otherwise,

which can be interpreted as the matrix norm of the mapping x �→ Mx restricted to
the subspace Vm := range(Mm) := {Mmx : x ∈ KI}.
(c) The inclusion Vm+1 ⊂ Vm holds with an equality sign at least for m ≥ #I .
(d) ρ(M) ≤ ζm+1 ≤ ζm ≤ ζ0 = ζ := ‖M‖ holds for m ≥ 0.
(e) For regular M, one has ζm = ζ for all m.

Exercise 2.21 demonstrates that the contraction number is a somewhat too coarse
term: It may happen that the contraction number gives a too pessimistic prediction
of the convergence speed. A more favourable estimate can be obtained by the nu-
merical radius r(·) of the matrix Mm (cf. §B.3.4). The inequalities

‖Mm‖2 ≤ 2 r(Mm) (cf. (B.28d)) (2.22a)

and (2.16b) yield the error estimate

‖em‖2 ≤ 2 r(Mm) ‖e0‖2 (m ≥ 0) (2.22b)

with respect to the Euclidean norm. If ‖·‖C is the norm defined by (C.5a) with a
positive definite matrix C, one analogously proves the inequality

‖em‖C ≤ 2 r(C1/2MmC−1/2)‖e0‖C (m ≥ 0). (2.22c)

For the practical judgment of the convergence speed from ‘experimental data’,
i.e., from a sequence of errors em belonging to a special starting value x0, one
may use the reduction factors



2.2 Linear Iterative Methods 27

ρm+1,m := ‖em+1‖/‖em‖ . (2.23a)

These numbers can, e.g., be found in the last column of Tables 1.1–1.2. More
interesting than a single value ρm+1,m is the geometric mean

ρm+k,m := [ρm+k,m+k−1 · ρm+k−1,m+k−2 · . . . · ρm+1,m]
1/k
,

which due to definition (2.23a) can more easily be represented by

ρm+k,m :=
[
‖em+k‖/‖em‖

]1/k
. (2.23b)

The properties of ρm+k,m are summarised below.

Remark 2.22. (a) Denote the dependence of the magnitude ρm+k,m on the starting
value x0 by ρm+k,m(x0). Then

lim
k→∞

max{ρm+k,m(x0) : x0 ∈ KI} = ρ(M) for all m.

(b) Even without maximisation over all x0 ∈ KI ,

lim
k→∞

ρm+k,m(x0) = ρ(M) for all m (2.23c)

holds, provided that x0 does not lie in the subspace U ⊂ KI of dimension <#I
spanned by all eigenvectors and possibly existing principal vectors of the matrix
M corresponding to eigenvalues λ with |λ| < ρ(M). (2.23c) holds almost always
because a stochastically chosen starting value x0 lying in a fixed lower dimensional
subspace has probability zero.
(c) The reduction factors ρm+1,m(x0) tend to the spectral radius of M :

lim
m→∞ ρm+1,m(x0) = ρ(M) (2.23d)

for all x0 /∈ U with U in part (b) if and only if there is exactly one eigenvalue λ ∈
σ(M) with |λ| = ρ(M), and if, for this eigenvalue, the geometric and algebraic
multiplicities coincide. Sufficient conditions are: (i) λ ∈ σ(M) with |λ| = ρ(M)
is a single eigenvalue, or (ii) M is a positive matrix (cf. (C.11a)).
(d) Choose a norm ‖·‖ = ‖·‖C with C > 0 (cf. (2.22c)) in (2.23a). If C

1
2MC− 1

2

is Hermitian, ρm+1,m(x0) (x0 /∈ U ) converges monotonically increasing to ρ(M).

Proof. (i) Use

ρ(M) ≤ max
x0∈KI

ρm+k,m(x0) ≤ max
x0∈KI

ρk,0(x
0) ≤ ‖Mk‖1/k

and ‖Mk‖1/k → ρ(M) according to Theorem B.27. This proves part (a).
(ii) Let I0 ⊂ I be the nonempty index subset I0 := {i ∈ I : |Jii| = ρ(M)},

where Jii are the diagonal elements of the Jordan normal form M = TJ T−1 (cf.
(A.15a,b)). The subspace U := {x : (T−1x)i = 0 for all i ∈ I0} is the maximal
subspace with the property limm→∞ [ ‖Mmx‖ / ‖x‖ ]1/m < ρ(M). Its dimension
is dim(U) = #I − #I0 < #I .



28 2 Iterative Methods

(iii) Define M̂ = C1/2MC−1/2 and êm := C1/2em. Since the norms are
related by ‖em‖C = ‖êm‖2, we obtain for m ≥ 1 that

‖êm‖22 = ‖M̂mê0‖22 =
〈
M̂mê0, M̂mê0

〉
=
〈
M̂m+1ê0, M̂m−1ê0

〉
=
〈
êm+1, êm−1

〉
≤ ‖êm+1‖2‖êm−1‖2.

Hence it follows that ρm+1,m = ‖em+1‖
‖em‖ = ‖êm+1‖2

‖êm‖2
≥ ‖êm‖2

‖êm−1‖2
= ρm,m−1. ��

Remark 2.22 allows us to view the value ρm+k,m and possibly also ρm+1,m for
sufficiently large m as a good approximation of the spectral radius. This viewpoint
can be reversed.

Remark 2.23. The convergence rate ρ(M) is a suitable measure for judging
(asymptotically) the convergence speed. This holds even if convergence is required
with respect to a specific norm.

Proof. By Theorem B.27, for each ε > 0 there is some m0 such that m ≥ m0

implies that ρ(M) ≤ ‖Mm‖1/m ≤ ρ(M) + ε and ‖em‖ ≤ (ρ(M) + ε)m‖e0‖. ��

2.2.7 Remarks Concerning the Matrices M , N , and W

Considerations in §§2.2.5–2.2.6 show the close connection between the iteration
matrix M and the convergence speed. M directly describes the error reduction or
amplification (cf. (2.16a)). Roughly speaking, the convergence is better the smaller
M is. M = 0 would be optimal. However, then Φ is a direct method, since x1 is
already the exact solution (its error is e1 =Me0 = 0).

The matrix N transforms the defect Axm − b into the correction xm − xm+1.
The optimal case3 M = 0 mentioned above corresponds to N [A] =A−1. There-
fore, one may regard N [A] as an approximate inverse of A.

Concerning implementation, often the matrix W of the third normal form (2.12)
is the important one. By the relation W = N−1 (cf. (2.13)), W = A would be
optimal. However, then computing the correction xm − xm+1 is equivalent to the
direct solution of the original equation. Therefore, one has to find approximations
W of A, so that the solution of the system Wδ = d is sufficiently easy.

In the case of some of the classical iterations discussed in §3, we have explicit
expressions for N or W and may use these matrices for the computation. On the
other hand, there will be iterative methods, for which the algorithm is implemented
differently without reference to the matrices M, N, W (see, e.g., Propositions 3.13
or 5.25).

3 Consistent linear iterations with M = 0 can be called direct solvers. Vice versa, any direct
solver defines a linear iteration with M = 0.



2.2 Linear Iterative Methods 29

2.2.8 Three-Term Recursions, Two- and Multi-Step Iterations

So far we considered one-step iterations, i.e., xm+1 is computed in one step from
xm. Sometimes linear iterations occur, in which computing xm+1 involves xm

and xm−1:

xm+1 =M0 x
m +M1 x

m−1 +N0 b (m ≥ 1). (2.24)

For the starting procedure, one needs two initial values x0 and x1. Such two-step
iterations are also called three-term recursions since they involved the three terms
xm+1, xm, xm−1. Formally, a three-term recursion can be reduced to a standard
one-step iteration acting in the space KI × KI :[

xm+1

xm

]
= M

[
xm

xm−1

]
+

[
N0b
0

]
with M :=

[
M0 M1

I 0

]
. (2.25)

Now the convergence condition

ρ(M) < 1 (2.26a)

ensures that recursion (2.25) has a limit that is also the fixed point. The consistency
condition takes the form

I −M0 −M1 = N0A . (2.26b)

Exercise 2.24. The limit of the iteration (2.25) has the general form
[
ξ
η

]
∈ KI ×KI .

Show that the conditions (2.26a,b) imply ξ = η = A−1b.

Exercise 2.25. Given an iteration xm+1 = Mxm + Nb, define the matrices M0,
M1, N0 in (2.24) by

M0 := ΘM + ϑI,

M1 := (1 −Θ − ϑ) I,

N0 := ΘN

with Θ, ϑ ∈ R. The three-term recursion (2.24) takes the form

xm+1 = Θ
[
(Mx

m
+Nb) − x

m−1
]
+ ϑ(xm − xm−1) + xm−1. (2.27)

Prove that (a) M has the spectrum

σ(M) =

{
1

2
(Θλ+ ϑ) ±

√
1 −Θ − ϑ+

1

4
(Θλ+ ϑ)

2
: λ ∈ σ(M)

}
.

(b) Conclude from ρ(M) < 1 and Θ > 0, ϑ ≥ 0, Θ + ϑ ≤ 1 that ρ(M) < 1.



30 2 Iterative Methods

2.3 Efficacy of Iterative Methods

The convergence rate cannot be the only criterion for the quality of an iterative
method because one has also to take into account the amount of computational
work of Φ.

2.3.1 Amount of Computational Work

The representation (2.12′) suggests that any iteration requires at least computing the
defect Axm−b. For a general n×nmatrix A ∈ KI×I (n=#I), multiplyingAxm

would require 2n2 operations. However, as discussed in §1.7, it is more realistic
to assume that A is sparse; i.e., the number s(n) of the nonzero elements of A
is distinctly smaller than n2. For matrices arising from discretisations of partial
differential equations, one has

s(n) ≤ CAn, (2.28)

where CA is a constant with respect to n, but depends on the matrix A. For the five-
point formula (1.4a) of the model problem, inequality (2.28) holds with CA = 5.
Under assumption (2.28), one can perform matrix-vector multiplication in 2CAn
operations.

After evaluating d := Axm − b, one has still to solve the system Wδ = d
in (2.12′). For any practical iterative method, we should require that this part
consumes only O(n) operations, so that the total amount of work is also of the
order O(n). We relate the constant in O(n) to CA in (2.28) and obtain the
following formulation:

The number of arithmetic operations per iteration
step of the method Φ is Work (Φ,A) ≤ CΦCAn . (2.29)

Here, Work (Φ,A) is the amount of work of the Φ iteration applied toAx = b. Note
that CΦ depends on the iteration Φ but not on A, whereas CAn indicates the degree
of sparsity of A. Therefore, the constant CΦ may be called the cost factor of the
iteration Φ.

So far we only discussed the cost arising by performing one iteration step of Φ.
Depending on the method, some initialisation may be necessary for precomputing
some quantities required by Φ . Let Init(Φ,A) be the corresponding cost.

Remark 2.26. If m iteration steps are performed, the effective cost per iteration is

Work (Φ,A) + Init(Φ,A)/m.

In the standard case, the initialisation uses only the data of A. Therefore it pays if
many systems Axi = bi are solved with different right-hand sides bi but the same
matrix A.



2.3 Efficacy of Iterative Methods 31

2.3.2 Efficacy

An iteration Φ can be called ‘more effective’ than Ψ if for the same amount of
work Φ is faster, or if Φ has the same convergence rate, but consumes less work
than Ψ . To obtain a common measure, we ask for the amount of work that is
necessary to reduce the error by a fixed factor. This factor is chosen as 1/e, since
the natural logarithm is involved. According to Remark 2.23, we use the conver-
gence rate ρ(M) for the (asymptotic) description of the error reduction per iteration
step. After m iteration steps, the asymptotic error reduction is ρ(M)m. In order
to ensure ρ(M)m ≤ 1/e, we have to choose m ≥ −1/ log(ρ(M)), provided that
convergence holds: ρ(M) < 1 ⇔ log(ρ(M)) < 0. Therefore, we define

It(Φ) := −1/ log(ρ(M)). (2.30a)

It(Φ) represents the (asymptotic) number of the iteration steps for an error
reduction by the factor of 1/e. Note that, in general, It(Φ) is not an integer.

Remark 2.27. (a) Convergence of Φ is equivalent to 0 ≤ It(Φ) < ∞. The value
It(Φ) = 0 corresponds to ρ(M) = 0, i.e., to a direct method.
(b) Let Φ ∈ L . To reduce the iteration error (asymptotically) by a factor of ε < 1,
we need the following number of iteration steps:

It(Φ, ε) := −It(Φ) log(ε) (2.30b)

(c) If ρ(M) = ‖M‖ or ρ(M) in (2.30a) is replaced with ‖M‖ < 1, one can
guarantee (not only asymptotically) that

‖em+k‖ ≤ ε ‖em‖ for k ≥ It(Φ, ε). (2.30c)

(d) If r(M) < 1 holds for the numerical radius of M introduced in §B.3.4,
definition (2.30b) can be replaced with It(Φ, ε) := log(ε/2)/ log(r(M)). Then,
inequality (2.30c) holds with respect to the Euclidean norm.

The amount of work corresponding to the error reduction by 1/e is the product
It(Φ)Work(Φ,A) ≤ It(Φ)CΦCAn (cf. (2.29)). As a characteristic quantity we
choose the effective amount of work

Eff(Φ) := It(Φ)CΦ = −CΦ/ log(ρ(M)). (2.31a)

Eff(Φ) measures the amount of work for an error reduction by 1/e in the unit
‘CAn arithmetic operations’. Correspondingly, the effective amount of work for the
error reduction by the factor of 1/e is given by

Eff(Φ, ε) := −It(Φ)CΦ log(ε) = CΦ log(ε)/ log(ρ(M)). (2.31b)

Example 2.28. In the case of the model problem, the cost factor of the Gauss–Seidel
iteration is CΦ = 1 (because of CA = 5, cf. Remark 1.14). The numerical values in
Table 1.1 suggest ρ(M) = 0.99039 for the grid size h = 1/32. Thus, the effective
amount of work equals Eff(Φ) = 103.6. Using ρ(M) = 0.82 for the SOR method
and CΦ = 7/5, we deduce an effective amount of work of Eff(Φ) = 7.05 for the
SOR method with h = 1/32.



32 2 Iterative Methods

2.3.3 Order of Linear Convergence

The convergence rates ρ(M) in Example 2.28 are typically close to one; i.e., the
convergence is rather slow. Therefore, we may use the ansatz

ρ(M) = 1 − η (η small). (2.32a)

The Taylor expansion yields log(1−η) = −η+O(η2) and −1
log(1−η) =

1
η(1+O(η)) =

1/η + O(1), since 1/(1 − ζ) = 1 + ζ + O(ζ2). Assuming (2.32a), we obtain the
following effective amount of work:

Eff(Φ) = CΦ/η + O(1). (2.32b)

For instance, the respective numbers in Example 2.28 yield CΦ/η = 104 for the
Gauss–Seidel iteration and 7.8 for SOR.

For most of the methods we are going to discuss, assumption (2.32a) holds in the
case of the model problem. More precisely, η is related to the grid size h = 1/N =
1/(1 +

√
n ) by (2.32c) with some exponent τ > 0 and a constant Cη :

η = Cηh
τ + O(h2τ ), i.e., ρ(M) = 1 − Cηh

τ + O(h2τ ) with τ > 0 (2.32c)

Inserting this relation into (2.32b), we obtain

Eff(Φ) = Ceffh
−τ + O(1) with Ceff := CΦ/Cη. (2.32d)

Remark 2.29. (a) The exponent τ in (2.32c) is called the order of convergence rate.
If an iteration Φ has a higher order than an iteration Ψ , Φ is more expensive than Ψ
for sufficiently small step size h. The smaller the order, the better the method.
(b) If Φ1 and Φ2 have the same order but different constants Ceff,1 < Ceff,2, then
Φ2 is more expensive by a factor of Ceff,2/Ceff,1.

2.4 Test of Iterative Methods

In later chapters numerous iterative methods will be defined. For the judgement and
presentation of numerical results, one may ask how iterations should be tested.

2.4.1 Consistency Test

Because of a bug in the implementation, it may happen that an iterative method is
nicely converging, but to a wrong solution. The reason is a violation of consistency.
For that reason, one should choose some nontrivial vector x ∈ KI (e.g., defined by
random) and compute b := Ax. In that case, the solution x of Ax = b is known
and one can observe the errors em = xm − x.



2.4 Test of Iterative Methods 33

2.4.2 Convergence Test

The quality of an iteration is (at least asymptotically) determined by the effective
amount of work Eff(Φ). The amount of computational work per iteration is obtained
by counting the operations.4 It remains to determine the convergence speed experi-
mentally. The following trivial remark emphasises the fact that one need not test the
method with different right-hand sides b (and thereby with different solutions x).

Remark 2.30. A linear iteration applied to the two systems Ax = b and Ax′ = b′

results in the same errors xm − x and x′m − x′ if the starting values x0 and x′0

are related by x0 − x = x′0 − x′.

Conclusion 2.31. Without loss of generality, one may always choose x = b = 0,
together with an arbitrary starting value x0 �= 0.

According to Remark 2.30, the test of an iteration can be based on the errors
em = xm − x and the ratio of their norms,

ρm+1,m := ‖em+1‖/ ‖em‖ (cf. (2.23a)),

for one or more starting vectors e0.
Different starting values yield different errors. However, since the geometri-

cal mean ρm+k,m = (‖em+k‖/‖em‖)1/k (cf. (2.23b)) converges to ρ(M) for
k → ∞, the ratios can show remarkable deviations only during the first iteration
steps. However, note the following remark.

Remark 2.32. In the exceptional case that the starting error e0 = x0 − x lies in the
subspace U defined in Remark 2.22b, the numbers ρm+k,m approximate a value
smaller than ρ(M).

In practice, meeting this exceptional case is unlikely, in particular, when the
solution x is unknown. Furthermore, the usual floating-point errors prevent the
iterate xm from staying in the described subspace.

Computing ρm+1,m = ‖em+1‖/‖em‖ requires the knowledge of the exact so-
lution. If we choose b = 0 and x = 0 according to Conclusion 2.31, ρm+1,m =
‖xm+1‖/‖xm‖ holds. If one wishes to estimate the convergence rate during the
iterative computation of an unknown solution x, one may use

ρ̂m+1,m = ‖xm+1 − xm‖/‖xm − xm−1‖

and ρ̂m+k,m := (ρ̂m+k,m+k−1 · . . . · ρ̂m+1,m)1/k instead of ρm+k,m.

Exercise 2.33. Prove: In spite of 1∈σ(M), ρ̂m+k,m →ρ<1≤ρ(M) may happen
for k → ∞. If 1 /∈ σ(M), ρ̂m+k,m → ρ(M) is valid for all starting errors e0 /∈ U
with U defined in Remark 2.22b.

4 Alternatively, the number of iterations may be replaced with the CPU time.



34 2 Iterative Methods

2.4.3 Test by the Model Problem

Deviating from the proposal x = b = 0 but according to the choice in §1.6, we
define the solution x of the Poisson model problem as the grid function with the
components

uij = (ih)2 + (jh)2 (1 ≤ i, j ≤ N − 1) (2.33a)

corresponding to the right-hand side (2.33b) (cf. Remark 1.15):

b defined by (1.6a) with f = −4. (2.33b)

We recall that u and x are different representations of the same quantity (1.6b).
The vector b coincides with f in grid points not neighboured to the boundary;
otherwise boundary data are added in (1.6a).

2.4.4 Stopping Criterion

A comment has to be added concerning the desirable size of the (unavoidable)
iteration error ‖em‖. For an unlimited iterative process, the rounding errors prevent
the iteration error from converging to zero. Instead, the error will oscillate around
const · ‖x‖ ·eps (eps : relative machine precision). For testing an iteration, one may
approach this lower limit; in practice, however, there is almost never a reason for
such high accuracy.

Remark 2.34. The (exact) solution x of the Poisson model problem in §1.2 is only
approximating the true solution of the boundary with a discretisation error, which in
this case has the order O(h2) (cf. Hackbusch [193, §4.5]). Therefore, an additional
iteration error of the same order O(h2) is acceptable.

The algorithm in §11.5 will automatically yield an approximation for which the
discretisation and iteration errors are similar in size.

A more accurate approximation xm is needed if, e.g., xm is the starting point of
an error estimation (cf. Verfürth [379]) or for the extrapolation to the limit h→ 0
(‘Richardson extrapolation’, cf. Richardson–Gaunt [325], [194, §14.1.1]).

Often, the stopping criterion is based on the defect Axm − b (or the residual
b − Axm). Here caution must be exercised: ‖b − Axm‖2 ≤ 10−16 might hold, in
spite of ‖em‖2 ≈ 1.

Remark 2.35. In general, the sizes of ‖b−Axm‖2 and ‖em‖2 are not comparable.
Their ratio depends not only on the condition cond2(A) (cf. §5.6.5.2 and Proposition
B.14) but also on the scaling of the vectors x and b.



Chapter 3

Classical Linear Iterations in the Positive

Definite Case

Abstract The Jacobi and Gauss–Seidel iterations and the SOR method are closely
connected, and therefore they will be analysed simultaneously. The analysis, how-
ever, is essentially different for the case of positive definite matrices A discussed
below and other cases studied in Chapter 4. The introductory Section 3.1 underlines
the fact that the positive definite case is of practical interest. The Poisson model
matrix is an example of a positive definite matrix. Section 3.2 describes the itera-
tions of Richardson, Jacobi, Gauss–Seidel, and the SOR iteration. Block versions
of these iterations are discussed in Section 3.3. The required computational work
is described in 3.4. Qualitative and quantitative convergence results are given in
Section 3.5. The convergence analysis of the Richardson iteration in §3.5.1 leads to
convergence criteria for general positive definite iterations (cf. §3.5.2). The Gauss–
Seidel and SOR iteration is analysed in §3.5.4. In particular the improvement of the
order of convergence by SOR is investigated. The convergence statements for the
Poisson model case are illustrated in Section 3.6 by numerical examples.

3.1 Eigenvalue Analysis of the Model Problem

The eigenvalues of the matrix A in §1.2 (e.g., in the representation (1.8)) can be
described explicitly.

Theorem 3.1. The n × n matrix A of the Poisson model problem in §1.2 with n =
(N − 1)2 has the following n eigenvalues:

λαβ = 4h−2 [ sin2(απh/2) + sin2(βπh/2)] (1 ≤ α, β ≤ N − 1), (3.1a)

not all being different. The multiplicity of λ = λαβ is given by the number of pairs
(α′, β′) ∈ [1, N−1]2 with coinciding values λαβ = λα′β′ . The minimal eigenvalue
is attained for α = β = 1, the maximal for α = β = N − 1 :

35© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_3



36 3 Classical Linear Iterations in the Positive Definite Case

λmin = ‖A−1‖−1
2 = 8h−2 sin2(πh/2), (3.1b)

λmax = ‖A‖2 = 8h−2 cos2(πh/2). (3.1c)

In particular, A is a positive definite matrix.

Proof. (1.8) shows A = AT = AH. The positive definiteness is a consequence
of (3.1a) and Lemma C.3. Equations (3.1b,c) follows from (3.1a). λαβ in (3.1a)
depends monotonically on α, β ∈ {1, . . . , N − 1}; hence,

λmax = λN−1,N−1 = ρ (A) = ‖A‖2 , λmin = λ1,1 = 1/ρ(A−1) = 1/‖A−1‖2 .

The eigenvalues (3.1a) follow from Lemma 3.2. ��

Lemma 3.2. The n linearly independent and even orthonormal eigenvectors of the
matrix A in §1.2 corresponding to the eigenvalues λαβ in (3.1a) are the vectors eαβ

with the components(
eαβ
)
νμ

= 2h sin(αhνπ) sin(βhμπ) (1 ≤ α, β ≤ N − 1). (3.2)

Proof. eαβ can be viewed as the tensor product eα ⊗ eβ of the vectors

ek ∈ RN−1, (ek)ν =
√
2h sin(khνπ) (1 ≤ k, ν ≤ N − 1),

since (eαβ)νμ = (eα)ν(e
β)μ. The scalar product in Rn is〈

eαβ , ek�
〉
=
∑
ν,μ

(
eαβ
)
νμ

(
ek�
)
νμ

=
∑
ν,μ

eαν e
β
μe

k
νe

�
μ =
∑
ν

eαν e
k
ν

∑
μ

eβμe
�
μ

=
〈
eα, ek

〉 〈
eβ , e�

〉
,

where the last two scalar products are those in RN−1. This identity shows that
{eαβ : 1≤α, β≤N−1} is an orthonormal basis, provided that {eα : 1≤α ≤N−1}
is an orthonormal basis of RN−1. The latter statement is the subject of Exercise 3.3.

Exercise 3.3. Assume hN = 1 and 1 ≤ k, � ≤ N − 1. Prove that

N−1∑
ν=1

sin(khνπ) sin(�hνπ) =

{
1/ (2h) for k = �,
0 otherwise.

For the model matrix A, the values of the grid function Aeαβ at the inner grid
points (x, y) = (kh, �h) ∈ Ωh are(
Aeαβ

)
(x, y) = h−2 2h [ 4 sin(αxπ) sin(βyπ) (3.3)

− sin(α(x+ h)π) sin(βyπ) − sin(α(x− h)π) sin(βyπ)

− sin(αxπ) sin(β(y + h)π) − sin(αxπ) sin(β(y − h)π)].



3.1 Eigenvalue Analysis of the Model Problem 37

The sine addition theorem yields

sin (α(x+ h)π) + sin (α(x− h)π) = 2 sin(αxπ) cos(αhπ),

sin (β(y + h)π) + sin (β(y − h)π) = 2 sin(βyπ) cos(βhπ)

and therefore
(
Aeαβ

)
(x, y) = 2

h sin(αxπ) sin(βyπ)[4−2 cos(αhπ)−2 cos(βhπ)].
From the identity

1 − cos ξ = 2 sin2(ξ/2),

we conclude the assertion (3.1a): Aeαβ = λαβe
αβ . Equation (3.3) requires addi-

tional consideration. If all neighbours (x−h, y) and (x, y−h) of the grid point (x, y)
belong again to Ωh, Eq. (3.3) represents directly the component of the vector Aeαβ

corresponding to the point (x, y). If, however, one neighbour, say Q = (x − h, y),
is not an inner grid point because of x = h, the term −h−2eαβ(Q) should not
appear. In this case, eαβ(Q) = 0 holds, and therefore, Eq. (3.3) is still valid. ��

The following exercise discusses two generalisations of the model problem.
The grid in Ω = (0, Lx) × (0, Ly) may use different step sizes hx and hy with
respect to the x and y directions (‘anisotropic discretisation’). The corresponding
numbers of subintervals in each direction are Nx and Ny .

Exercise 3.4. Discretise the model problem in Ω = (0, Lx)× (0, Ly) with the step
sizes hx := Lx/Nx and hy := Ly/Ny. Prove that the discretisation matrix A has
the eigenvalues

λαβ = 4

(
h−2
x sin2

αhxπ

2
+ h−2

y sin2
βhyπ

2

)
for
{
1 ≤ α ≤ Nx − 1,
1 ≤ β ≤ Ny − 1 .

The eigenvectors eαβ are the tensor products eαx ⊗ eβy with

(eαx )ν =
√

2hx sin(αhxνπ) (1 ≤ α, ν ≤ Nx − 1) and

(eβy )ν =
√

2hy sin(βhyμπ) (1 ≤ β, μ ≤ Ny − 1).

3.2 Traditional Linear Iterations

3.2.1 Richardson Iteration

The simplest choice of the matrixN of the second normal form (2.10) is the identity
N = I or a multiple of I . The resulting scheme reads as follows:

xm+1 = xm −Θ(Axm − b) (Θ ∈ C). (3.4)

This iteration method is called the Richardson iteration. It is denoted by ΦRich.
In the original paper of Richardson [324, §3.2], the author describes a variant
of (3.4) with varying constants which is called the semi-iterative or instationary
Richardson iteration (see §8).



38 3 Classical Linear Iterations in the Positive Definite Case

Proposition 3.5. (a) ΦRich
Θ ∈ L is algebraic (cf. Definition 2.2b), and the domain

D(ΦRich
Θ ) is the set of all matrices without any exception.

(b) The iteration matrix of the Richardson iteration is

MRich
Θ := I −ΘA .

The matrices of the second and third normal forms are

NRich
Θ := ΘI, WRich

Θ :=
1

Θ
I .

(c) The Richardson method is independent of the ordering of indices. This fact is
helpful for parallel implementations.

Although Richardson’s iteration seems to be the simplest possible, it will turn
out in Proposition 5.44 that the Richardson iteration with Θ = 1 is the prototype of
any linear iteration Φ ∈ L.

To apply iteration (3.4), we have to choose the parameterΘ. In Theorem 3.23 we
shall discuss for which values we obtain convergence and what the best choice is.
The following remarks holds for all methods involving one or more parameters.

Remark 3.6. Methods requiring the user to choose a suitable parameter may cause
a practical problem. Even if it is known what the optimal parameter is, this value
may depend on data (e.g., spectral data of the matrix) which are not known (or
their computation is more expensive than the original problem). The difficulty is
increased in the presence of two or more parameters to be tuned.

3.2.2 Jacobi Iteration

The iteration described by C. G. Jacobi in 1845 (also called ‘total-step process’,
‘Gesamtschrittverfahren’) results from (7.4) by the choice W := D := diag{A}:

xm+1 = ΦJac(xm, b) = xm −D−1 (Axm − b) . (3.5)

The Jacobi iteration and the iterations discussed below are defined for matrices in

D(ΦJac) = D(ΦGS) = D(ΦSOR
ω ) =

{
A ∈ KI×I : aαα �= 0 for α ∈ I

}
. (3.6)

Proposition 3.7. The matrices associated with ΦJac ∈ L are

xm+1 =MJacxm +NJacb with (3.7a)

MJac = D−1(D −A) = I −D−1A, (3.7b)

NJac = D−1, W Jac = D. (3.7c)

The Jacobi iteration is algebraic and does not depend on the ordering of the indices.

In many cases, e.g., in the case of the Poisson model problem, the diagonal
entries are constant, i.e., D = c · I . Then the following remark applies.



3.2 Traditional Linear Iterations 39

Remark 3.8. If D = c I is a multiple of the identity, the Jacobi iteration coincides
with the Richardson iteration for Θ := 1/c.

In the following algorithmic description of ΦJac, it is important that xm and
xm+1 (named below x and y) are stored separately.1

function ΦJac(x, b: vector): vector; {Jacobi iteration}
var y: vector;
begin for all α ∈ I do y[α] :=

[
b[α] −

∑
β∈I\{α}

a[α, β]x[β]

]
/ a[α, α];

ΦJac := y
end;

(3.8)

Exercise 3.9. Let Δ∈KI×I be any regular diagonal matrix. (a) Scaling the system
Ax = b by Δ yields ΔAx = Δb, i.e., A′x = b′ for A′ = ΔA and b′ = Δb.
Prove that the Jacobi iteration applied to A′ is identical with the Jacobi iteration
applied to A. Hence, the Jacobi iteration is invariant with respect to scaling.
(b) A scaling by A′ = Δ

1
2AΔ

1
2 preserves positive definiteness. The scaled system

takes the form A′x′ = b′ with x′ = Δ− 1
2x. Prove that the Jacobi iterations applied

to Ax = b and A′x′ = b′ with starting values x0 and x′0 = Δ− 1
2x0 produce iterates

related by x′m = Δ− 1
2xm; i.e., they are identical up to the scaling.

3.2.3 Gauss–Seidel Iteration

The Gauss–Seidel iteration is mentioned by Gauss [147] in 1826. In the letter [148]
(translated in [137]), Gauss uses an adaptive version of the Gauss–Seidel iteration
together with a ‘symmetric trick’. The second name originates from the contribu-
tion of Seidel [337]. There are several other names for this method: ‘Liebmann
method’ (cf. Liebmann [263]), the method of successive displacement (see ‘succes-
sive Annäherung’ in the title of Seidel’s paper [337]), relaxation (see Footnote 5 on
page 4), or ‘single-step process’ (Einzelschrittverfahren).

Let the index set I be ordered and identified with {1, . . . , n}. The algorithmic
realisation looks very similar to the Jacobi iteration in (3.8) with the difference that
the vector x is immediately overwritten by the new values:

function ΦGS(x, b: vector): vector; {Gauss–Seidel iteration}
begin for i := 1 to n do x[i] :=

[
b[i] −

∑
j∈I\{i} a[i, j]x[j]

]
/a[i, i];

ΦGS := x
end;

(3.9)

1 The function uses the representation of xm+1 by D−1 [b− (A−D)xm] . The declaration
‘var’ denotes the declaration of the variable type. ‘vector’ indicates the type corresponding to K

I .



40 3 Classical Linear Iterations in the Positive Definite Case

Distinguishing more precisely the iterates xm and xm+1, we obtain

for i := 1 to n do xm+1
i :=

(
bi −

i−1∑
j=1

aij x
m+1
j −

n∑
j=i+1

aij x
m
j

)
/aii; (3.10)

This can be rewritten as

xm+1
i =

[
bi − (Exm)i −

(
Fxm+1

)
i

]
/aii =

(
D−1[Exm − Fxm+1]

)
i
,

where D,E, F are the matrices obtained from the splitting (1.16) of A into

A = D − E − F with (3.11a)
D : diagonal matrix (D := diag{A} is the diagonal part of A), (3.11b)
E : strictly lower triangular matrix, (3.11c)
F : strictly upper triangular matrix. (3.11d)

The previous componentwise equation proves the following representation (3.12).

Proposition 3.10. (a) ΦGS ∈ L is algebraic2 with D(ΦGS) defined in (3.6) and
the additional requirement that I is ordered.
(b) The matrices of the normal forms of the Gauss–Seidel iteration ΦGS(x, b) =
MGSx+NGSb are

MGS = (D − E)−1F, NGS = (D − E)−1, WGS = D − E. (3.12)

(c) Different orderings of I yield different iterations ΦGS.

Because of part (c), a precise description of the Gauss–Seidel method must
characterise the ordering if this is not already fixed by the problem. In the model
case (1.4a), one has, e.g., the lexicographical Gauss–Seidel method ΦGS

lex and the
chequer-board Gauss–Seidel method ΦGS

cb , referring to the corresponding orderings
of the grid points.

The componentwise representation (3.10) shows that the algorithm works sequen-
tially. Although (3.9) seems to be simpler than (3.8), the parallel computation
is hampered by the sequential loop (for the chequer-board variant of the model
problem the parallel treatment of both colours is possible; cf. Niethammer [293]).

Remark 3.11. The chequer-board numbering can be generalised to the case of the
nine-point formula defined in (1.13a) by introducing the four-colour ordering:

Ωh1 := {(x, y) = (ih, jh) ∈ Ωh : i, j even}, (3.13)
Ωh2 := {(x, y) = (ih, jh) ∈ Ωh : i, j odd},
Ωh3 := {(x, y) = (ih, jh) ∈ Ωh : i even, j odd},
Ωh4 := {(x, y) = (ih, jh) ∈ Ωh : i odd, j even}.

2 Here we assume that the matrix data A are given in some ordering defining the ordering of I .



3.2 Traditional Linear Iterations 41

First, the points of Ωh1 are numbered, then those of Ωh2, Ωh3, and finally Ωh4.
SinceΩh1 ∪Ωh2 represents the black squares andΩh3 ∪Ωh4 the red ones and since
for the five-point formula the ordering inside of one colour is irrelevant, the four-
colour numbering defined above coincides with the chequer-board ordering in the
case of a five-point formula.

Exercise 3.12. Prove that the statements of Exercise 3.9 are also valid for the
Gauss–Seidel iteration.

3.2.4 SOR Iteration

The SOR method (successive overrelaxation; cf. Young [411]) has already been
defined in (1.22) by

for i :=1 to n do xm+1
i := xmi − ω

[
i−1∑
j=1

aijx
m+1
j +

n∑
j=i

aijx
m
j − bi

]
/aii. (3.14)

The representation is very similar to (3.10). The essential difference is the intro-
duced relaxation parameter ω. As in (3.9), the vector x can be overwritten by the
newly computed values:

function ΦSOR
ω (x, b); {SOR iteration}

begin for i := 1 to n do x[i] := x[i] − ω

a[i, i]

[ ∑
j∈I

a[i, j]x[j] − b[i]
]
;

ΦSOR
ω := x

end;

Proposition 3.13. (a) For all ω, the iteration ΦSOR
ω ∈ L is algebraic and the

statement of Proposition 3.10a also applies to D(ΦSOR
ω ).

(b) Let A = D − E − F be decomposed according to (3.11a–d). The matrices
associated with the first and second normal forms of ΦSOR

ω (x, b) are

xm+1 =MSOR
ω xm +NSOR

ω b, (3.15a)

MSOR
ω = (I − ωL)−1 {(1 − ω)I + ωU} = (D − ωE)−1 {(1 − ω)D + ωF} ,

(3.15b)

NSOR
ω = ω(I − ωL)−1D−1 = ω(D − ωE)−1, where (3.15c)

L := D−1E, U := D−1F . (3.15d)

The matrix of the third normal form is

W SOR
ω = ω−1(D − ωE) = ω−1D − E. (3.15e)

(c) For ω = 1, SOR coincides with the Gauss–Seidel method: ΦSOR
1 = ΦGS.

For 0 < ω < 1, the precise name of ΦSOR
ω is ‘underrelaxation method’, whereas

the term ‘overrelaxation method’ suits for ω > 1.



42 3 Classical Linear Iterations in the Positive Definite Case

Proof. (i) Part (a) is easily seen from the representation (3.14).
(ii) Multiplication by I − ωL brings (3.15a) into the form

(I − ωL)xm+1 = {(1 − ω)I + ωU}xm + ωD−1b and (3.15f)

xm+1 = xm − ω
[
−Lxm+1 + (I − U)xm −D−1b

]
.

We obtain the expression [−Exm+1 + (D − F )xm − b] according to definition
(3.15d) of L and U by moving D−1 in front of the bracket. The componentwise
interpretation of this equation coincides with (3.14). ��

All comments about the Gauss–Seidel iteration in the lines after Proposition 3.10
also apply to the SOR method. In addition, Remark 3.6 applies to the relaxation
parameter ω.

3.3 Block Versions

3.3.1 Block Structure

The Poisson model problem shows that the systems may have a natural block
structure {Ii : i ∈ B} (cf. §A.4). The representation

A =

⎡⎢⎢⎢⎣
A11

A22

. . .
Aββ

⎤⎥⎥⎥⎦ , Aii ∈ KIi×Ii ,

corresponds to the case of an ordered set B = {1, . . . , β}. The index subsets Ii
need not be ordered. Vectors x ∈ KI are similarly substructured by the vector
blocks xi (i ∈ B).

In the following, D does not denote the diagonal but the block diagonal of A
(with respect to the block structure B):

D := blockdiagB{A} := blockdiag{Aκκ : κ ∈ B}. (3.16)

Remark 3.14. The Poisson model problem in §1.2 offers different possibilities in
defining the blocks.
(a) The columns of the grid (x = ih constant) correspond to the blocks

ui := (ui,1, ui,2, . . . , ui,N−1)
T (1 ≤ i ≤ N − 1).

The block structure is described by the index subsets Ii = {(i, j) : 1≤j≤N − 1}
for all i ∈ B := {1, . . . , N − 1} (cf. §A.4).



3.3 Block Versions 43

(b) The rows of the grid points defined by y = jh lead to the block structure
Ij={(i, j) : 1 ≤ i ≤ N−1} for all j ∈ B := {1, . . . , N−1} (cf. Example A.21).

In the case of the Poisson model problem, according to (1.8), the matrix blocks
are

Aii = Dii = h−2

⎡⎢⎢⎢⎣
4 −1

−1 4 −1
. . . . . . . . .

−1 4

⎤⎥⎥⎥⎦ , Ai,i±1 = −h−2I,
Ai,j = 0 otherwise. (3.17)

Here we use the notation Dii for the diagonal block.3 Concerning the diagonal
blocks, we recall the result of Lemma C.4c.

Lemma 3.15. If A is positive definite, all diagonal blocks Aii are also positive
definite.

Independent of the choice (a) or (b) in Remark 3.14, B can be considered as a
set with or without ordering. If the blocks should be ordered, there are again several
possibilities.

Example 3.16. The elements of B above can be ordered as follows.
(a) The lexicographical ordering is given by 1, 2, . . . , N − 1.
(b) The backward lexicographical ordering is N − 1, N − 2, . . . , 1.
(c) The zebra ordering 1, 3, 5, . . . , 2, 4, 6, . . . is an analogue to the chequer-board
ordering.

3.3.2 Block-Jacobi Iteration

The block-Jacobi iteration ΦJac
block is the iteration (3.5) with the diagonal replaced

with D in (3.16):

for all κ ∈ B do yκ := bκ − (Aκκ)−1
∑

λ∈B\{κ}
Aκλxλ; (3.18)

The block structures defined in Remark 3.14a,b yield the column-block-Jacobi
iteration and the row-block-Jacobi iteration, respectively.

Remark 3.17. (a) Iteration ΦJac
block ∈ L is algebraic, provided that the matrix data

are organised blockwise. It is well-defined if and only if all diagonal blocks are
regular: D(ΦJac

block) = {A∈KI×I : Aκκ regular for κ ∈ B}. Here the statement of
Lemma 3.15 is helpful.
(b) The representations (3.7b,c) remain valid if D is defined by (3.16).

3 The term diagonal block means a block in diagonal position of a block-structured matrix.



44 3 Classical Linear Iterations in the Positive Definite Case

(c) Each step of the loop in (3.18) requires solving a smaller system of the form
Aκκδκ = cκ (κ ∈ B). The exact solution of these systems should not be too
expensive. For instance, Aκκ may be a tridiagonal or at least a band matrix with
a small band width.
(d) The block-Jacobi iteration neither depends on the ordering of the blocks nor on
the ordering of the indices inside of the blocks.

The requirement in Remark 3.17 is satisfied if Aκκ is tridiagonal (cf. (3.17)).
Then one should determine the LU decomposition Aκκ = Lκκ Uκκ. Solving
LU δ = c costs 5#κ arithmetic operations.

Exercise 3.18. Show that Exercise 3.9 remains valid when the regular diagonal
matrix Δ is replaced by a regular block-diagonal matrix.

3.3.3 Block-Gauss–Seidel Iteration

To obtain the block-Gauss–Seidel method, only the definitions (3.11b–d) have to be
changed:

A = D − E − F, (3.19a)
D : block-diagonal matrix blockdiag{A}, (3.19b)
E : strictly lower block-triangular matrix, (3.19c)
F : strictly upper block-triangular matrix. (3.19d)

Using these matrices D, E, F in (3.12), we obtain the normal forms of the block-
Gauss–Seidel method.

The loop in (3.9) becomes

for i := 1 to n do xi := (Dii)−1

⎛⎝xi −
∑

j∈B\{i}
Ai,jxj

⎞⎠ ;

Remark 3.19. (a) The block-Gauss–Seidel method is consistent: ΦGS
block ∈ L.

It is well-defined under the same assumptions as for ΦJac
block ∈ L (cf. Remark 3.17).

(b) The block-Gauss–Seidel method depends on the ordering of the blocks, but not
on the ordering of the indices inside of the blocks.

To distinguish the standard Gauss–Seidel method from the block version, we
shall use the term pointwise Gauss–Seidel method for the iteration in §3.2.3.

Since the block-Gauss–Seidel method depends on the ordering of the blocks,
an iteration called, e.g., the lexicographical row-block-Gauss–Seidel combines the
choice of the block structure in Remark 3.14b with the ordering of Example 3.16a.



45

3.3.4 Block-SOR Iteration

Define the matrices in A = D − E − F by (3.19b–d) and determine L and U
by (3.15d): L = D−1E, U = D−1F. Then the matrices in (3.15a–c) define the
block-SOR method. The blockwise description reads as

for i := 1 to β do xi := xi + ω (Dii)−1

(
bi −
∑
j∈B

Aijxj
)
,

where B = {1, . . . , β} are the block indices.
In the case of the zebra block versions for the model problem (cf. Example

3.16c), parallel computations inside of the same ‘colour’ are possible (‘white’ for
odd indices, ‘black’ for even indices).

Exercise 3.20. Prove that the statement of Exercise 3.18 can be generalised to the
case of the block-SOR method.

3.4 Computational Work of the Iterations

3.4.1 Case of General Sparse Matrices

In the following, let s(n) ≤ CAn be the number of the nonzero entries of A (cf.
(2.28)). Since the diagonal entries vanish, the iteration matrix MJac= D−1(D−A)
of the Jacobi iteration contains s(n) − n ≤ (CA − 1)n nonzero elements. First,
b̂ := NJacb = D−1b is computed and stored instead of b. The multiplication
MJacx requires (CA − 1)n multiplications and (CA − 2)n additions. Hence the
work of xm+1 =MJacxm + b̂ amounts to

Work(ΦJac, A) ≤ 2(CA − 1)n . (3.20a)

Since the Gauss–Seidel method differs from the Jacobi iteration only by the fact that,
in part, components of xm+1 instead of xm are used, we obtain the same amount
of work:

Work(ΦGS, A) ≤ 2(CA − 1)n . (3.20b)

To save as many operations in the SOR method as possible, we move the term
aijx

m
j /aii for j = i out of the bracket and obtain

xm+1
i := (1 − ω)xmi − ω

( i−1∑
j=1

aijx
m+1
j +

n∑
j=i+1

aijx
m
j − bi

)
/aii,

where ω′ := 1 − ω is precomputed. Similarly, aij/aii and bi/aii may be assumed
to be available. This yields

Work(ΦSOR, A) ≤ 2(CA + 1)n {= 2CAn, respectively}. (3.20c)

3.3 Block Versions



46 3 Classical Linear Iterations in the Positive Definite Case

The case {. . .} in brackets refers to a further possibility. Beforehand, one may also
multiply aij/aii and bi/aii by ω. However note that, occasionally, ω can vary
during the iteration (cf. §4.6.4).

For the Richardson method (3.4), one finds

Work(ΦRich, A) ≤ 2CAn {= (2CA + 2)n, respectively}, (3.20d)

if I − ΘA is available in this form. The value in brackets is valid if xm+1 =
xm−Θ(Axm−b) is evaluated via the defect d := Axm−b and xm+1 = xm−Θd.

The cost factors defined in §2.3.1 are

CJac
Φ = CGS

Φ = 2 − 2/CA, CSOR
Φ = 2 + 1/CA {= 2, respectively}.

The amount of work of the block variants depends on the structure of the diagonal
blocks. For further considerations, we assume

there are β blocks of size n/β,
the amount of work for solving Aiiu = z is ≤Cβn/β,

A−D has s1(n) ≤ CADn nonzero elements,

where D = blockdiag{A}. Then the operation count yields

Work(ΦJac
block, A) = Work(ΦGS

block, A) ≤ (CB + 2CAD)n, (3.20e)

Work(ΦSOR
block, A) ≤ (CB+2CAD+3)n, {(CB+2CAD+2)n, resp.}, (3.20f)

where the bracket refers to the case that the damping factor is already combined
with the matrix entries, so that no multiplication by ω or Θ is necessary.

3.4.2 Amount of Work in the Model Case

For the Poisson model problem in §1.2, one needs less operations than described in
(3.20a–f) with

CA = 5, CB = 5, CAD = 2.

The reason is that multiplications by the coefficients −1 can be omitted. Computing
D−1b beforehand corresponds to the replacement of f with h2f . Counting the
operations, we obtain the following:

Work(ΦJac, A) = Work(ΦGS, A) ≤ 5n,

Work(ΦSOR, A) = Work(ΦRich
Θ , A) ≤ 7n,

Work(ΦJac
block, A) = Work(ΦGS

block, A) ≤ 7n,

Work(ΦSOR
block, A) ≤ 9n,

(3.21)

where the number 9n of the last line holds in the case that instead of h2Aii the
matrices h2Aii/ω are decomposed into triangular LU factors.



3.4 Computational Work of the Iterations 47

In the model case, using the numbers in (3.21), the cost factors are equal to

CJac
Φ = CGS

Φ = 1, (3.22a)

CSOR
Φ = CRich

Φ = CblockJac
Φ = CblockGS

Φ = 1.4 , (3.22b)

CblockSOR
Φ = 9/5 = 1.8 . (3.22c)

These numbers do not merit attention before we also know the respective conver-
gence speeds. Then we are able to weigh whether, e.g., the block-Gauss–Seidel
method is preferable to the pointwise Gauss–Seidel iteration in spite of its 1.4–fold
amount of work.

3.5 Convergence Analysis

In the following, the convergence considerations are based on the assumption that
A is positive definite or has weaker but related properties (positive definite
Hermitian part or positive spectrum). In Chapter 4 and §7.2.2, other assumptions
will be posed.

3.5.1 Richardson Iteration

The iteration matrix of the Richardson method is MRich
Θ :

xm+1 = xm −Θ (Axm − b) (Θ ∈ C),

MRich
Θ = I −ΘA.

We may express MRich
Θ = P (A) by the polynomial P (ξ) = 1−Θξ. If λν ∈ σ(A)

are the eigenvalues of A, μν = P (λν) = 1 −Θλν are those of MRich
Θ (cf. Lemma

A.11a). Since the function |1 −Θξ| has no local maxima, we obtain the following
statement.

Lemma 3.21. Assume thatA has only real eigenvalues. Let λmin :=min{λ∈σ(A)}
and λmax denote the extreme eigenvalues of A. Then the spectrum of MRich

Θ is
real for any Θ ∈ R , i.e., σ(MRich

Θ ) ⊂ R . The following characterisation also
holds for complex Θ:

ρ(MRich
Θ ) = max

{
|1 −Θλmin| , |1 −Θλmax|

}
for all Θ ∈ C. (3.23)

A first conclusion from (3.23) is that ρ(MRich
Θ ) improves when Θ is replaced

with �eΘ. Therefore we restrict the following analysis to real values of Θ.
Positive definite matrices have a positive spectrum (cf. Lemma C.3). Below we only
need the latter property.



48 3 Classical Linear Iterations in the Positive Definite Case

Theorem 3.22 (convergence of the Richardson iteration). Assume that A has
only positive eigenvalues with λmax(A) denoting the maximal eigenvalue. For
real Θ, the Richardson method converges if and only if

0 < Θ < 2/λmax(A). (3.24)

The convergence rate is described by (3.23).

Proof. (i) For 0 < Θ < 2/λmax, we have −1 < 1 − Θλmax ≤ 1 − Θλmin < 1.
(3.23) yields ρ(MRich

Θ ) < 1, proving convergence.
(ii) Now assume convergence: ρ(MRich

Θ ) < 1. We conclude from

1 > ρ(MRich
Θ ) ≥(3.23) |1 −Θλmax| ≥ 1 −Θλmax

1

Θ1/λmax Θopt

1−Θλmin Θλmax −1

Fig. 3.1 Optimal Θ.

that Θλmax > 0 and there-
fore Θ>0 since λmax is pos-
itive. Similarly, the inequali-
ties −1 < − ρ(MRich

Θ ) ≤
− |1 −Θλmax| ≤ 1 − Θλmax

show that Θλmax < 2 and
prove that the second inequal-
ity in (3.24) is also necessary.
��

Equation (3.23) allows us
to determine the factor Θ
minimising the rate ρ(MRich

Θ ). The optimal factor Θ results as the intersection
of the lines y(Θ) = Θλmax − 1 and y(Θ) = 1 −Θλmin (see Fig. 3.1).

Theorem 3.23 (optimal Θ). Assume that A has only positive eigenvalues. λmax

and λmin are the respective maximal and minimal eigenvalues of A. The optimal
convergence rate of Richardson’s method is attained for

Θopt =
2

λmax + λmin
, so that ρ(MRich

Θopt
) =

λmax − λmin

λmax + λmin
. (3.25)

Now we pose the stronger assumption that A is positive definite and prove norm
estimates of MRich

Θopt
instead of rates.

Corollary 3.24. Assume that the matrix A is positive definite and Θ is real. Then
the Richardson method converges if and only if

0 < Θ < 2/ ‖A‖2 . (3.26a)

The convergence is monotone with respect to the Euclidean norm ‖·‖2 and to the
energy norm ‖·‖A defined in (C.5a,c) by ‖x‖A = ‖A1/2x‖2 . Furthermore, the
convergence rate and the contraction numbers coincide:

ρ(MRich
Θ ) = ‖MRich

Θ ‖2 = ‖MRich
Θ ‖A. (3.26b)



3.5 Convergence Analysis 49

The optimal convergence rate (3.25) can be expressed as a function of the Euclidean
condition and the condition number κ(A) = cond2(A) := ‖A‖2 ‖A−1‖2 :

ρ(MRich
Θopt

) =
κ(A) − 1

κ(A) + 1
for Θopt =

2‖A−1‖2
κ(A) + 1

. (3.26c)

Proof. (3.26a) follows from λmax = ‖A‖2. Using λmin = 1/‖A−1‖2 (cf. (B.15))
and κ(A) = λmax/λmin, we can transform (3.25) into (3.26c). As A is normal,
M := MRich

Θ is also normal, proving ρ(M) = ‖M‖2 (cf. (B.21b)). The second
equality in (3.26b) follows from ‖M‖A = ‖A 1

2MA− 1
2 ‖2 and the commutativity

A1/2M =MA1/2 (cf. (C.5d) and Remark C.6b). ��

Assuming a real spectrum σ(A), the signs of the eigenvalues must coincide.
In the case of only negative eigenvalues, the previous statements stay valid if the
sign of Θ is reversed.

Exercise 3.25. If A has at least one positive and one negative eigenvalue, the
Richardson method diverges for any choice of Θ ∈ C.

Nevertheless, the assumption of positivity can be weakened.

Exercise 3.26. (a) Let the spectrum σ(A) be contained in a closed circle
around μ ∈ C\{0} with radius r < |μ|. Prove that the choice Θ = 1/μ leads
to convergence of the Richardson method:

ρ(MRich
Θ ) ≤ r/ |μ| < 1.

(b) Let γ be an arbitrary straight line in the complex plane passing through the
origin z = 0. Then C\γ consists of two half planes. If σ(A) lies in one of the
half planes, the Richardson iteration converges for a suitable Θ.

The next theorem offers a necessary and sufficient criterion concerning conver-
gence in the general case; however, in practice it might be hard to apply.

Theorem 3.27. Let σ(A) be the spectrum of a general matrix A. The convex hull
of σ(A) is defined by

Σ(A) :=

{ ∑
λ∈σ(A)

αλλ : αλ ≥ 0 with
∑

λ∈σ(A)

αλ = 1

}
.

Then the Richardson iteration converges for a suitable Θ ∈ C if and only if
0 /∈ Σ(A).

Proof. (i) For Θ = 0, the Richardson iteration diverges since ρ(MRich
0 )=ρ(I)=1.

In the following, we assume that Θ �= 0.



50 3 Classical Linear Iterations in the Positive Definite Case

(ii) The spectrum of MRich
Θ is σ(MRich

Θ ) = 1 − Θσ(A), where the right-
hand side is the set {1 −Θλ : λ ∈ σ(A)}. One easily sees that its convex hull is
Σ(MRich

Θ ) = 1 −ΘΣ(A). Obviously, 0 /∈ Σ(A) is equivalent to 1 /∈ Σ(MRich
Θ ).

(iii) Assume 0 ∈ Σ(A). The conclusion 1 ∈ Σ(MRich
Θ ) implies that there is

some μ ∈ σ(MRich
Θ ) with �eμ ≥ 1. Therefore ρ(MRich

Θ ) ≥ |μ| ≥ 1 proves that
the Richardson iteration for an arbitrary Θ does not converge.

(iv) If 0 /∈ Σ(A) , the condition of Exercise 3.26b implies convergence for a
suitable Θ. ��

In the non-Hermitian case, A can be split into a Hermitian and a skew-Hermitian
part (cf. (B.29)):

A = A0 + iA1 with A0 :=
1

2
(A+AH), A1 :=

1

2i
(A−AH). (3.27)

Together with suitable estimates of the Hermitian matrices A0 and A1, convergence
statements for the Richardson method can be formulated (cf. Theorems 3.28 and
3.30, and (3.33a,b), Samarskii–Nikolaev [330, §6.4]).

Theorem 3.28. For A and A0 in (3.27), constants 0 < λ ≤ Λ are assumed to exist
such that

0 < λI ≤ A0, (3.28a)

AHA ≤ ΛA0. (3.28b)

Then, for Θ satisfying

0 < Θ <
2

Λ
, (3.28c)

Richardson’s iteration converges monotonically with respect to the Euclidean norm:

ρ(MRich
Θ ) ≤ ‖MRich

Θ ‖2 ≤
√

1 −Θλ (2 −ΘΛ) < 1 . (3.29a)

The bound on the right-hand side is minimal for Θ′ := 1/Λ :

ρ(MRich
Θ′ ) ≤ ‖MRich

Θ′ ‖2 ≤
√
1 − λ/Λ . (3.29b)

Proof. (3.28a,b) leads to the estimate

(MRich
Θ )H(MRich

Θ ) = (I −ΘA)H(I −ΘA) = I −Θ(A+AH) +Θ2AHA

≤
(3.28b)

I − 2ΘA0 +Θ
2ΛA0 = I −Θ (2 −ΘΛ)︸ ︷︷ ︸

>0

A0

≤
(3.28a)

I −Θλ(2 −ΘΛ)I,

entailing ‖MRich
Θ ‖22 = ‖(MRich

Θ )H(MRich
Θ )‖2 ≤ 1 − Θλ(2 − ΘΛ) and therefore

(3.29a) (cf. (C.3f)). The inequality 1−Θλ(2−ΘΛ) < 1 follows from (3.28c) and
proves convergence. (3.29b) is easy to verify. ��



3.5 Convergence Analysis 51

Condition (3.28b) can also be written as

〈Ax,Ax〉 ≤ 〈A0x, x〉 for all x ∈ CI .

In the positive definite case, the inequalities (3.28a,b) are satisfied by λ = λmin,
Λ = λmax. However, the optimal parameters Θopt and Θ′ from Theorems 3.23
and 3.28 are different and lead to different bounds in (3.26c) and (3.29b).

Remark 3.29. Theorem 3.28 is a typical example where not the primary quantity
ρ(MRich

Θ ) is optimised, but its bound (here, (3.29a)). Often the optimal parameter
of an auxiliary problem is much easier to obtain than the true optimum. In any case,
this technique also yields a bound for the optimal ρ(MRich

Θ ).

A stronger estimate than (3.29b) is possible if, in addition, an estimate of the
skew-Hermitian part iA1 can be used.

Theorem 3.30. Assume that for A0, A1 in (3.27) there are constants 0 < λ ≤ Λ
and τ ≥ 0 with

λI ≤ A0 ≤ ΛI, (3.30a)
‖A1‖2 ≤ τ. (3.30b)

Then the Richardson method converges for

0 < Θ <
2λ

λΛ+ τ2
(3.31a)

monotonically with respect to the Euclidean norm:

‖MRich
Θ ‖2 ≤ 1

2
Θ (Λ− λ) +

√[
1 − 1

2Θ (Λ+ λ)
]2

+Θ2τ2 < 1 . (3.31b)

Optimising the upper bound yields

‖MRich
Θ′ ‖2 ≤ 1 − ξ

1 + ξ
for Θ′ =

2

Λ+ λ

(
1 − s

1 − ξ

1 + ξ

)
(3.31c)

with s := τ/
√
λΛ+ τ2 and ξ :=

1 − s

1 + s

λ

Λ
.

Proof. Let ϑ ∈ (0, 1) be arbitrary. In analogy to (3.23), the first term in

‖MRich
Θ ‖2 = ‖I −ΘA‖2 = ‖[ϑI −ΘA0] + [(1 − ϑ) I − iΘA1]‖2

≤ ‖ϑI −ΘA0‖2 + ‖(1 − ϑ) I − iΘA1‖2

is bounded by ‖ϑI −ΘA0‖2 ≤ max{|ϑ−Θλ| , |ϑ−ΘΛ|}. Since the matrix
C := (1 − ϑ)I − iΘA1 is normal, ‖C‖2 = ρ(C) holds. From



52 3 Classical Linear Iterations in the Positive Definite Case

σ(C) = {1 − ϑ− ϑΘμ : μ ∈ σ(A1)} and σ(A1) ⊂ [−τ, τ ] (cf. (C.3e)),

we conclude that ρ(C) ≤ [(1 − ϑ)2 +Θ2τ2]1/2. Together, we obtain

‖MRich
Θ ‖2 ≤ max {|ϑ−Θλ| , |ϑ−ΘΛ|} +

[
(1 − ϑ)2 +Θ2τ2

]1/2
.

The optimal choice ϑ = 1
2Θ(Λ + λ) yields (3.31b). Under condition (3.31a), one

verifies that the bound in (3.31b) remains below one. ��

For the Hermitian case (τ = 0), the estimate (3.31c) corresponds exactly to the
convergence rate (3.26c). For τ �= 0, the convergence rate can be estimated even
better than by the ‖MRich

Θ ‖2 bound in (3.31c).

Theorem 3.31. Under the assumption (3.30a,b), the estimate

ρ(MRich
Θ ) ≤ rΘ :=

√
Θ2τ2 +max {|1 −Θλ| , |1 −ΘΛ|}

holds with λ and Λ as in Theorem 3.30. Convergence is ensured in the form rΘ < 1
if

0 < Θ < Θ with Θ :=

{
2Λ/
(
Λ2 + τ2

)
if τ2 < λΛ ,

2λ/
(
Λ2 + τ2

)
if τ2 ≥ λΛ .

(3.32a)

rΘ is minimal for

Θ′ := min
{ λ

λ2 + τ2
,

2

λ+ Λ

}
.

Further, the norm estimate (3.32b) holds:∥∥(MRich
Θ )m

∥∥
2

≤ 2 rmΘ (m ≥ 0). (3.32b)

Proof. (B.33) shows that rΘ is an upper bound of the numerical radius r(MRich
Θ )

of the iteration matrix. Analysing rΘ as a function of Θ yields (3.32a) and the
value Θ′. (3.32b) follows from (B.28d). ��

While (3.30b) represents the inequality −τI ≤ A1 ≤ τI , it is also possible to
require an estimate of A1 in relation to A0 by

A2
1 ≤ τA0 (3.33a)

or even only by

−
√
τ A

1/2
0 ≤ A1 ≤

√
τ A

1/2
0 . (3.33b)

Inequality (3.33a) implies (3.33b). From (3.33b), using (3.30a), we arrive at the
estimate (3.30b) with

√
τΛ instead of τ . An estimate based directly on (3.30a) and

(3.33a) can be found in Samarskii–Nikolaev [330, page 101]. Note that iA1 in the
next corollary is not necessarily the skew-Hermitian part of A.



3.5 Convergence Analysis 53

Corollary 3.32. Assume A = A0 + iA1 with a positive definite A0. Let (3.30a)
and

AH
1A1 ≤ τA0

be valid. Then

r(MRich
Θ ) ≤

{
(1 −Θλ)

2
+Θ2λτ if 0 ≤ Θ ≤ Θ∗,

(1 −ΘΛ)
2
+Θ2Λτ if Θ ≥ Θ∗,

}
holds for the numerical radius, where Θ∗ := 2

λ+Λ+τ . The optimal parameter Θ
minimising the bound is

Θopt := min{1, κ}Θ∗, where κ :=
λ+ Λ+ τ

2(λ+ Λ)
.

This value yields

r(MRich
Θopt

)2 ≤ 1 − 1 − ρ0
1 + ρ0

(
2 − 1

κ

)
min{1, κ}, ρ0 :=

1 − λ/Λ

1 + λ/Λ
.

We conclude with a remark about monotone convergence.

Corollary 3.33. Let K > 0 be any positive definite matrix and ‖·‖K the related
norm (C.5a,c). Monotone convergence of Richardson’s iteration with respect to
‖·‖K can be obtained by replacing the assumption (3.28a,b) in Theorem 3.28 with

AHK +KA ≥ 2λK, AHKA ≤ 1

2
Λ (AHK +KA). (3.34)

These inequalities are equivalent to

�e 〈Ax,Kx〉 ≥ λ 〈Kx, x〉 for all x ∈ CI ,

〈Ax,KAx〉 ≤ Λ�e 〈Ax,Kx〉 for all x ∈ CI .

Under assumption (3.34), the corresponding estimates (3.29a, b) hold with the K-
norm ‖MRich

Θ ‖K instead of ‖MRich
Θ ‖2.

Proof. Let M :=MRich
Θ = I −ΘA. Using (3.34), we conclude from

MHKM = K −Θ(AHK +KA) +Θ2AHKA

≤ K −Θ(1 − 1
2ΘΛ)(A

HK +KA)

≤ K −Θ(2 −ΘΛ)λK

that I − Θλ(2 − ΘΛ)I ≥ K−1/2MHKMK−1/2 = M̂HM̂ holds with M̂ :=
K1/2MK−1/2. This is equivalent to

1 −Θλ(2 −ΘΛ) ≥ ‖M̂‖22 = ‖M‖2K ≥ ρ(M)2 (cf. (C.3f))

and shows that (3.29a) is valid with respect to the ‖·‖K norm. ��



54 3 Classical Linear Iterations in the Positive Definite Case

3.5.2 Convergence Criterion for Positive Definite Iterations

In §6 we shall investigate the set Lpos of positive definite iterations in more detail.
For a system Ax = b, a positive definite iteration is associated with matrices N and
W of the second and third normal forms that are also positive definite if A is so:

A > 0 =⇒ N > 0 and W > 0.

Examples are Richardson’s iteration for Θ > 0 (N = ΘI > 0) and the Jacobi
iteration (W = D).

Theorem 3.34. Let W be the matrix of the third normal form (2.12); i.e., the itera-
tion matrix is M = I −W−1A (cf. (2.13′)).
(a) Under the assumption

2W > A > 0, (3.35a)

the iteration xm+1 = xm −W−1(Axm − b) converges. Furthermore, the conver-
gence is monotone with respect to the energy norm ‖·‖A and the norm ‖·‖W :

ρ(M) = ‖M‖A = ‖M‖W < 1. (3.35b)

(b) For real λ and Λ with 0 < λ ≤ Λ, assume

0 < λW ≤ A ≤ ΛW. (3.35c)

Then the spectrum of M is real and is contained in

σ(M) ⊂ [1 − Λ, 1 − λ]. (3.35d)

The convergence rate is

ρ(M) = ‖M‖A = ‖M‖W ≤ max{1 − λ,Λ− 1}, (3.35e)

where equality holds instead of ‘≤’ if λ and Λ are the optimal bounds in (3.35c).
These optimal bounds can be expressed as

λ = 1/‖W 1/2A−1W 1/2‖2, Λ = ‖W−1/2AW−1/2‖2 . (3.35f)

Convergence is equivalent to 0 < λ ≤ Λ < 2 with λ,Λ in (3.35f).

(c) Assume W > 0 , A = AH, and 0 < λ ≤ Λ. The conditions (3.35c) and
(3.35d) are equivalent. In particular, (3.35a) is equivalent to σ(M) ⊂ (−1, 1),
and the equivalence (3.35g) holds:

W ≥ A > 0 ⇐⇒ σ(M) ⊂ [0, 1) . (3.35g)

The proof will be postponed to §6.2 (cf. Theorem 6.10). The analysis of the
damped iteration can also be found in §6.2.1.



3.5 Convergence Analysis 55

The optimal bounds λ and Λ in (3.35c) are the minimal and maximal eigenvalues
of the generalised eigenvalue problem

Ae = λWe (W > 0, e �= 0).

The next statement generalises Theorem 3.34 by replacing W with its Hermi-
tian part in (3.35a). A further generalisation with W + WH > 1

2 (A + AH) > 0
instead of (3.36) is given in Theorem 7.26. Although the next theorem follows from
Theorem 7.26, a direct proof is given.

Theorem 3.35. Let A be positive definite, while the matrix W of the third normal
form satisfies

W +WH > A > 0 . (3.36)

Then W is regular and the iteration converges monotonically with respect to the
energy norm ‖·‖A:

ρ(M) ≤ ‖M‖A < 1 for M = I −W−1A .

Proof. (a) To prove the regularity of the matrix W , assume that Wx = 0. From
0 = 〈Wx, x〉+ 〈x,Wx〉 =

〈
(W +WH)x, x

〉
> 0, we conclude that x = 0, since

W +WH > 0. Hence, W is regular.
(b) As ρ(M) ≤ ‖M‖A by (B.20b), only ‖M‖A < 1 has to be shown. By (C.5d),
we have ‖M‖A = ‖A1/2MA−1/2‖2 = ‖M̂‖2 for M̂ = I −A1/2W−1A1/2. One
verifies that

M̂HM̂ = (I −A1/2W−HA1/2)(I −A1/2W−1A1/2) (3.37)

= I −A1/2(W−H +W−1)A1/2 +A1/2W−HAW−1A1/2

= I −A1/2W−H(W +WH)W−1A1/2 +A1/2W−HAW−1A1/2

< I −A1/2W−HAW−1A1/2 +A1/2W−HAW−1A1/2 = I .

Hence, by Lemma C.5b, ‖M‖A = ‖M̂‖2 = ρ(M̂HM̂)1/2 < ρ(I)1/2 = 1. ��

3.5.3 Jacobi Iteration

Theorem 3.36. Sufficient for the convergence of the Jacobi iteration (3.7b) are the
conditions (3.38), which also imply σ(MJac) ⊂ (−1, 1):

A and 2D −A are positive definite, i.e., 2D > A > 0. (3.38)

The contraction numbers with respect to the norms ‖·‖A and ‖·‖D coincide with the
convergence rate:

ρ(MJac) = ‖MJac‖A = ‖MJac‖D < 1. (3.39)

Proof. Choose W := D in Theorem 3.34a. ��



56 3 Classical Linear Iterations in the Positive Definite Case

Remark 3.37. (a) The matrices A and 2D − A have identical diagonal entries,
whereas their off-diagonal entries have opposite signs.
(b) The statements A > 0 and 2D − A > 0 are identical for 2 × 2 matrices, but
they may differ for matrices of size n× n with n > 2.
Remark 3.38 (block-Jacobi iteration). None of the proofs makes use of the
diagonal form of the matrix D. We only used the fact that D > 0 follows from
A > 0. Therefore, if D = diag{A} is replaced with D := blockdiag{A}, all
statements above remain valid for the block-Jacobi iteration.

A convergence criterion involving a different kind of positivity is the diagonal
dominance as discussed in Theorem 7.20 and Proposition 7.23.

3.5.4 Gauss–Seidel and SOR Iterations

Theorem 3.39. The Gauss–Seidel iteration converges for positive definite matrices4

A . The convergence is monotone with respect to the energy norm:

ρ(MGS) ≤ ‖MGS‖A < 1. (3.40)

Proof. A > 0 implies D > 0 and EH = F . The matrix W = WGS in (3.12)
satisfies W +WH = D − E + (D − E)H = 2D − E − F = D + A > A. The
matrices D, E, and F are defined in (3.11a–d). Hence, condition (3.36) is satisfied,
and Theorem 3.35 proves (3.40). ��

Since the Gauss–Seidel iteration is the special case ω = 1 of the SOR iteration,
we formulate further convergence statements and quantitative estimates for the SOR
method only.

Lemma 3.40 (Kahan [232]). For any A ∈ D(ΦSOR
ω ) (cf. (3.6)), the following

inequality holds:

ρ(MSOR
ω ) ≥ |ω − 1| for all ω ∈ C. (3.41)

Therefore, |ω − 1| < 1 is necessary for convergence. For real ω , this condition is
equivalent to 0 < ω < 2.

Proof. Let n := # I be the matrix size. Since I − ωL and (1 − ω)I + ωU are
triangular matrices, det(I − ωL) = 1 and det((1 − ω)I + ωU) = (1 − ω)n hold,
the representation MSOR

ω = (I − ωL)−1 {(1 − ω)I + ωU} (cf. (3.15b)) yields

det(MSOR
ω ) =

1

det(I − ωL)
det((1 − ω)I + ωU) = (1 − ω)n.

On the other hand, each determinant is the product of all eigenvalues of the
matrix: det(MSOR

ω ) =
∏n

ν=1 λν (λν are the eigenvalues of MSOR
ω ). Together, we

obtain
∏n

ν=1 λν = (1 − ω)n or
∏

|λν | = |1 − ω|n. Therefore, at least one factor
(eigenvalue) λν must exist with |λν | ≥ |1 − ω|. This eigenvalue proves (3.41). ��

4 For an early mentioning of this result see von Mises–Pollaczek-Geiringer [381, §3] from 1929.



3.5 Convergence Analysis 57

Inequality (3.41) implies that 0 < ω < 2 is a necessary condition. The next
theorem5 shows that 0 < ω < 2 is also sufficient for convergence.

Theorem 3.41 (Ostrowski [302]). Assume that A is positive definite and can be
split into

A = D − E − EH (3.42a)

with the properties (3.42b,c):

E is a strictly lower triangular matrix, (3.42b)
D is the diagonal of A and regular. (3.42c)

Furthermore, assume
0 < ω < 2. (3.42d)

Then the SOR iteration (3.15a–c) converges:

ρ(MSOR
ω ) < 1. (3.42e)

The convergence is monotone with respect to the energy norm:

ρ(MSOR
ω ) ≤ ‖MSOR

ω ‖A < 1. (3.42f)

Instead of this theorem we are going to prove a more general statement. The
splitting (3.42a) does not differ from A = D − E − F in (3.11a–d), since
F = EH holds for any Hermitian matrix A. The assumptions of Theorem 3.41
can be weakened. The iteration defined by (3.42a,b′,c′) is more general than the
standard SOR method.

Corollary 3.42. Let A > 0. The statements (3.42e,f) of Theorem 3.41 remain valid
if instead of (3.42b) and (3.42c), we only assume (3.42a) with

E is arbitrary, ( 3.42b′)
D is an arbitrary positive definite matrix. ( 3.42c′)

Under the conditions (3.42a,c′,d), the matrix D − ωE is always regular.

By Lemma C.4e, the diagonalD in (3.42c) is a positive definite matrix and hence
also satisfies (3.42c′). We remark that the assumption ‘A is positive definite’ in
Theorem 3.41 is not only sufficient but also necessary (cf. Varga [375, p.77]).

Proof. The matrix of the third normal form is W =W SOR
ω = 1

ωD−E (cf. (3.15e)).
Inequality (3.36) of Theorem 3.35 is satisfied:

W +WH =
2

ω
D − E − EH = A+

(
2

ω
− 1

)
D > A > 0 (3.43)

because of (3.42c′) and the equivalence 2
ω − 1 > 0 ⇐⇒ 0 < ω < 2. Concerning

regularity, compare with Theorem 3.35. ��

5 Sometimes the theorem is named after Reich [316].



58 3 Classical Linear Iterations in the Positive Definite Case

Theorem 3.41 does not state which ω is the most favourable one. This question
will be answered in Theorem 4.27 for the spectral radius ρ(MSOR

ω ). Instead, one
can also analyse the contraction number ‖MSOR

ω ‖A or its upper bound as a function
of ω and look for an optimal ω in this sense.

Lemma 3.43. Under the assumptions A > 0 and (3.42a,b’,c’,d), we have

‖MSOR
ω ‖A =

√
1 −
(
2

ω
− 1

)
/ ‖A−1/2W SOR

ω D−1/2‖22. (3.44)

The norm ‖A−1/2W SOR
ω D−1/2‖22 in (3.44) can be estimated by

‖A−1/2W SOR
ω D−1/2‖22 ≤ 1/c (3.45a)

if and only if the equivalent inequalities (3.45b) and (3.45c) are valid:

WD−1WH ≤ 1

c
A (W =W SOR

ω ), (3.45b)

W−HDW−1 ≥ cA−1. (3.45c)

Proof. (i) The equivalence of (3.45b) and (3.45c) follows from (C.3g). The equiva-
lence of (3.45b) and (3.45a) can be concluded from the fact that

1

c
I ≥ A−1/2WD−1WHA−1/2 =

[
A−1/2WD−1/2

] [
A−1/2WD−1/2

]H
(≥ 0)

(cf. (C.3b′)) is equivalent to

1

c
≥
∥∥∥[A−1/2WD−1/2

][
A−1/2WD−1/2

]H∥∥∥
2
= ‖A−1/2WD−1/2‖22 (cf. (C.3f)).

(ii) Define M̂ = A1/2MSOR
ω A−1/2. From inequality (3.37), the representation

(3.43): A−W −WH = (1 − 2
ω )D, and (3.45c), we obtain

M̂HM̂ = I +A1/2W−H
[
A−W −WH

]
W−1A1/2

= I −
(
2

ω
− 1

)
A1/2W−HDW−1A1/2 .

The largest eigenvalue of the product M̂HM̂ is 1 minus the ( 2
ω − 1)-fold of the

smallest eigenvalue of A1/2W−HDW−1A1/2 = X−HX−1 = (XXH)−1, where
X := A−1/2WD−1/2. The latter eigenvalue is equal to 1/ρ(XXH) = 1/ ‖X‖22 .
Equation (3.44) follows from

‖MSOR
ω ‖2A=‖M̂‖2 = ρ(M̂HM̂) = 1 − ( 2

ω −1)/‖A−1/2W SOR
ω D−1/2‖22. ��



3.5 Convergence Analysis 59

Via 2
ω − 1 , the right-hand side in (3.44) depends explicitly on ω. However,

W SOR
ω = 1

ωD − E also contains the parameter ω. The minimisation of the norm
‖MSOR

ω ‖A is the subject of the following theorem (cf. Samarskii–Nikolaev [330]
and Young [412, page 464]).

Theorem 3.44. Let the constants γ, Γ > 0 fulfil

0 < γD ≤ A, (3.46a)

( 12D − E)D−1( 12D − EH) ≤ 1
4ΓA . (3.46b)

Further, assume (3.42a,d). Then, (3.45a–c) holds with the value

c = 1/
[
Ω2

γ +Ω + Γ
4

]
with Ω :=

2 − ω

2ω
∈ (0,∞) . (3.46c)

The SOR contraction number can be estimated by

‖MSOR
ω ‖A ≤

√
1 − 2Ω/

[
Ω2

γ +Ω + Γ
4

]
. (3.47a)

The right-hand side takes the following minimum (cf. Remark 3.29):

‖MSOR
ω′ ‖A ≤

√√
Γ − √

γ√
Γ +

√
γ

for ω′ =
2

1 +
√
γΓ

. (3.47b)

Proof. We rewrite W :=W SOR
ω = 1

ωD − E as

W = ΩD +

(
1

2
D − E

)
with Ω :=

2 − ω

2ω
=

1

ω
− 1

2

and estimate as follows:

WD−1WH =
[
ΩD + ( 12D − E)

]
D−1
[
ΩD + ( 12D − EH)

]
= Ω2D +Ω( 12D − E + 1

2D − EH) + ( 12D − E)D−1( 12D − EH)

=
(3.42a)

Ω2D +ΩA+ ( 12D − E)D−1( 12D − EH)

≤
(3.46a,b)

[
Ω2

γ +Ω + Γ
4

]
A.

Hence, (3.45b) holds with 1
c = Ω2

γ +Ω+ Γ
4 . Inserting inequality (3.45a) into (3.44),

we get (3.47a). The function Ω/[Ω
2

γ +Ω+ Γ
4 ] attains its global maximum in (0,∞)

at Ω = 1
2

√
γΓ corresponding to ω′ in (3.47b). Evaluating this expression yields

the bound in (3.47b). ��

Concerning the constants γ and Γ , we add the following comments.



60 3 Classical Linear Iterations in the Positive Definite Case

Corollary 3.45. Assume (3.42a,b′,c′). (a) Let the Jacobi iteration be defined by D
in (3.42a): MJac :=D−1(E + EH). The optimal bound in (3.46a) is

γ = 1 − ρ(MJac). (3.48a)

(b) Set d := ρ(D−1ED−1EH) = ‖D−1/2ED−1/2‖22 . Then, (3.46b) holds with

Γ = 2 +
4d− 1

γ

(
in particular, Γ ≤ 2 for d ≤ 1

4

)
. (3.48b)

Proof. (a) The best bound in (3.46a) is the smallest eigenvalue of

D−1A = I −D−1(E + EH) = I −MJac.

(b) Forming the products in (3.46b) and using E +EH = D−A and D ≤ 1
γA

yield

1

4
D − 1

2
(E + EH) + ED−1EH ≤ 1

4
D − 1

2
(E + EH) + dD

= 1
4

[
(4d+ 1)D − 2(E + EH)

]
= 1

4

[
(4d− 1)D + 2A

]
≤ 1

4

[
2 +

4d− 1

γ

]
A. ��

The notation MSOR
ω in (3.47a,b) and MJac in (3.48a) are justified only if D is

the diagonal or block diagonal of A. If D in Theorem 3.44 is another matrix, a new
method is defined and the iteration matrix in (3.47a,b) should be named differently.

Conclusion 3.46 (order improvement). Assume (3.42a,b′,c′) and define

d := ρ(D−1ED−1EH) ≤ 1/4.

Let τ be the order of the Jacobi iteration: ρ(MJac) = 1−γ = 1−CJach
τ+O(h2τ ).

In the case of the Gauss–Seidel iteration (ω = 1), the bound (3.47a) has the same
order:

‖MSOR
1 ‖A = ‖MGS‖A ≤

√
1 − 4

Γ+2+
1
γ

≤ 1√
1 + 4γ

= 1 − 2CJach
τ + O(h2τ ).

(3.49)
However, the order is improved (halved) for ω := ω′ in (3.47b):

‖MSOR
ω′ ‖A ≤ 1 −

√
γΓ + O(γ/Γ ) = 1 −

√
C
2 h

τ/2 + O(hτ ).

This estimate even holds (with another constant) if the condition d ≤ 1
4 is replaced

with d ≤ 1/4 + O(hτ ). The size d = O(1) is sufficient for (3.49).

Proof. Insert the values (3.48a,b) into (3.47a,b). ��

The improvement of the order will become clearer and more transparent in
§4.6.3.



3.5 Convergence Analysis 61

The previous estimates are of the form ρ(MSOR
ω ) ≤ 1 − . . . . Concerning the

characterisation of the term ‘. . .’, specific assumptions are required. Next, we cite
a convergence result, which holds for general positive definite matrices. According
to Exercise 3.20, the (block-)SOR iteration is invariant with respect to a scaling by
Δ = D−1. The transformation A → D−1A or A → D−1/2AD−1/2 results in a
new matrix A satisfying

D = diag{A} = I. (3.50)

Following (3.50), we then have L = E and U = F (cf. (3.15d)). The next result
is due to Oswald [305].

Theorem 3.47. Let A ∈ RI×I be a positive definite matrix of size n := #I satis-
fying (3.50). Then for a suitable ω∗ ∈ (0, 2) the estimate

ρ(MSOR
ω∗ ) ≤ 1 − 2

1+
√

1+[(cond2(A)−1) log2(2n−2)]2
= 1 − 2

cond2(A) log2 n + . . .

holds, where the asymptotic statement refers to cond2(A) log2 n → ∞.

A discussion of the optimal choice of ω for generalised SOR methods, in which
L and U possibly deviate from a strictly triangular form, can be found in Hanke–
Neumann–Niethammer [213].

Theorem 3.48 (Niethammer [292]). For a real matrix A, assume A + AT > 0
and (3.50). Then Λ and Λ̃ in

Λ := λmax(
1
2 (L+ LT + U + UT)), Λ̃ := λmax(

1
2 (L+ LT − U − UT)),

σ := ρ( 12 (L− LT + U − UT)), σ̃ := ρ( 12 (L− LT − U + UT))

satisfy 0 ≤ Λ < 1 and Λ̃ ≥ 0. The SOR method converges for ω with

0 < ω < 2/

[
1 + Λ̃+

σσ̃

1 − Λ

]
.

For A > 0 and L = UT, we obtain σ = Λ̃ = 0. Hence the inequalities above
become 0<ω< 2 (cf. Theorem 3.41). If A−I is skew-symmetric, i.e., L=−UT,
one proves the following corollary using Λ = σ̃ = 0 and Λ̃ = ρ(U − L).

Corollary 3.49. Assume that A = I − L + LT (L lower triangular matrix).
Then the SOR iteration converges for ω satisfying 0 < ω < 2/

(
1 + ρ(L+LT)

)
.

If, in addition, L is componentwise nonnegative and ρ(L + LT) < 1, the SOR
iteration diverges for all other real ω.

A similar divergence statement can also be shown for L �= −UT if L − U is
componentwise nonnegative. The optimal parameter ωopt < 1 yields an under-
relaxation method.

Convergence results for complex matrices can be found in Niethammer [291].



62 3 Classical Linear Iterations in the Positive Definite Case

3.5.5 Convergence of the Block Variants

Theorem 3.50. Theorem 3.36 is also valid for the block-Jacobi iteration if D
represents a block diagonal in (3.38) and (3.39).

Proof. Not only the diagonal D = diag{A} but also the block diagonal D =
blockdiag{A} is positive definite (cf. 3.17b); hence, the assertion follows from
Remark 3.38. ��

Remark 3.37b corresponds to the following statement.

Exercise 3.51. LetA be a 2×2 block matrix, i.e., assume #B=2. Prove thatA and
2D−A withD = blockdiag{A} have the same eigenvalues: σ(A) = σ(2D−A).

From Exercise 3.51, one concludes that if A is positive definite, 2D−A is also.
This proves the next corollary.

Corollary 3.52. The block-Jacobi iteration converges for a positive definite 2 × 2
block-matrix A.

In the case of the blockwise Gauss–Seidel and SOR methods, the block diagonal
D of a positive definite matrix A satisfies the conditions (3.42b′,c′). Therefore, the
statement of Ostrowski’s theorem (Theorem 3.41) also holds for the block-SOR
method and covers the case of the block-Gauss–Seidel iteration for ω = 1.

Theorem 3.53. All statements in Theorem 3.39 to Conclusion 3.46 remain valid for
the block-versions of the Gauss–Seidel and SOR iteration.

The matrix

Ij := blockdiag{I, I, . . . , I︸ ︷︷ ︸
j blocks

, 0, . . . , 0︸ ︷︷ ︸
β−j blocks

} for 1 ≤ j ≤ β := #B

is the identity matrix with respect to the first j blocks. The following convergence
statement is proved by Bank–Dupont–Yserentant [30, Theorem 3.4, (3.42), (3.67)].

Theorem 3.54. LetA>0. The block-Gauss–Seidel iteration converges with the rate

ρ(MGS
block) ≤

√√√√1 − 1/

β∑
j=1

‖Ij‖2A.

3.6 Convergence Rates in the Case of the Model Problem

3.6.1 Richardson and Jacobi Iteration

The convergence rate ρ(MRich
Θ ) = max{ |1 −Θλmin| , |1 −Θλmax| } of the

Richardson method only depends on the extreme eigenvalues λmin and λmax of
the matrix (cf. (3.23)). Inserting the values for λmin and λmax given in (3.1b,c)
into (3.23)–(3.25), we obtain the following statement.



3.6 Convergence Rates in the Case of the Model Problem 63

Theorem 3.55. In the model case, the Richardson method has the rate

ρ(MRich
Θ ) = max

{∣∣1 − 8Θ−2 sin2 πh
2

∣∣ , ∣∣1 − 8Θ−2 cos2 πh
2

∣∣} .
Convergence holds for 0 < Θ < h2/ [4 cos2(πh/2)] = h2/4 + O(h4). The
optimal convergence rate is attained for Θ = h2/4 and equals

ρ(MRich
Θ ) = 1 − 2 sin2(πh/2) = cos(πh) for Θ = Θopt = h2/4 . (3.51)

In the Poisson model case, D = 4h−2I holds. Hence, the Jacobi iteration
xm+1 = xm − D−1(Axm − b) coincides with the Richardson iteration xm+1 =
xm −Θ(Axm − b) for Θ = h2/4. Statement (3.51) yields the next theorem.

Theorem 3.56. In the model case, the Jacobi iteration leads to the convergence rate

ρ(MJac) = 1 − 2 sin2(πh/2) = cos(πh). (3.52)

Replacing the square Ω of the model problem by a rectangle with Nx and Ny

subintervals in the x and y direction, we obtain

ρ(MJac)=
1

2

[
cos(π/Nx) + cos(π/Ny)

]
instead of (3.51) and (3.52).

Remark 3.57. The convergence rate (3.52) of the Jacobi iteration has the form
(2.32a): ρ(MJac) = 1 − ηJac with

ηJac = 2 sin2(πh/2) = π2h2/2 + O(h4),

i.e., the convergence is of order τ = 2, and the constant in (2.32c) is equal to

CJac
η = π2/2 . (3.53)

The same constant hold for Richardson’s iteration with the optimal Θopt in (3.51).

3.6.2 Block-Jacobi Iteration

The eigenvector eαβ of A defined in (3.2) is also an eigenvector of the block-
diagonal matrix D of A, where the rows of the grid form the blocks. For symmetry
reasons, we obtain the same results if the blocks are defined by the columns of the
grid.

Lemma 3.58. Let A have a row-block structure and D be the corresponding
block-diagonal matrix. Then eαβ is an eigenvector of D related to the eigenvalue
dαβ:

Deαβ = dαβe
αβ with dαβ = h−2 [ 2 + 4 sin2 αhπ

2 ] for 1 ≤ α, β < N.



64 3 Classical Linear Iterations in the Positive Definite Case

Proof. For each grid point (x, y) = (νh, μh) ∈ Ωh, we have (cf. (3.3))

(Deαβ)(x, y) = h−2 2h [4 sin (αxπ) sin (βyπ)

− sin (α(x+ h)π) sin(βyπ) − sin (α(x− h)π) sin(βyπ)]

= h−2[4 − 2 cos(ihπ)]eαβ(x, y) = h−2[2 + 4 sin2 (ihπ/2)]eαβ(x, y). ��

The eigenvalues of 2D − A are 2dαβ − λαβ = 4h−2[cos2(βhπ2 ) + sin2(αhπ2 )]
with λαβ in (3.1a). Their positivity proves 2D − A > 0. Therefore, the block-
Jacobi method converges (cf. Theorem 3.50). For determining the convergence
speed, we have to study the eigenvalues of the iteration matrix M = I −D−1A :

σ(MJac
block) = {(dαβ − λαβ) /dαβ : 1 ≤ α, β ≤ N − 1} .

Since
∣∣∣dαβ−λαβ

dαβ

∣∣∣ = |1−2 sin2(βhπ/2)|
|1+2 sin2(αhπ/2)| (1 ≤ α, β ≤ N − 1) , we may optimise the

numerator and denominator separately. The numerator is maximal for β = 1,
the denominator takes its minimum for α = 1. This yields

ρ(MJac
block) =

1 − 2 sin2 (hπ/2)

1 + 2 sin2 (hπ/2)
=

cos (hπ)

1 + 2 sin2 (hπ/2)
. (3.54)

In the case of the Poisson model problem, the size of rows and columns is
identical and therefore row- and column-block-Jacobi iterations behave the same.
The situation is different if the discretisation uses different step sizes hx, hy .

Exercise 3.59. Let A be the discretisation matrix of the problem in Exercise 3.4
with step sizes hx, hy. What are the values of ρ(MJac

block) for the row and column
versions? Which iteration converges faster?

The asymptotic expansion of (3.54) in h yields

ρ(MJac
block) = 1 − 4 sin2(hπ/2) + O(h4) = 1 − π2h2 + O(h4) = 1 − ηJacblock

with ηJacblock = π2h2 + O(h4), i.e., the order of convergence is τ = 2, and the
constant in (2.32c) is CblockJac

η = π2.
The block version is more expensive than the pointwise Jacobi iteration. On the

other hand, the blockwise iteration is faster. Using the cost factor CΦ in (3.22a,b)
and the quantities C [block]Jac

η (cf. (3.53)), we determine the coefficients Ceff of the
effective amount of work (cf. (2.32d)):

Eff(ΦJac) =
2

π2
h−2 + O(1), Eff(ΦJac

block) =
7

5π2
h−2 + O(1).

This proves the next remark.

Remark 3.60. For the Poisson model problem in §1.2, the block-Jacobi iteration is
more effective by a factor of 0.7 than the pointwise Jacobi iteration.



3.6 Convergence Rates in the Case of the Model Problem 65

3.6.3 Numerical Examples for the Jacobi Variants

pointwise Jacobi iteration blockwise Jacobi iteration
m u16,16 εm ρm,m−1 m u16,16 εm ρm,m−1

1 -0.0010 1.759 1 -0.0019 1.666
2 -0.0019 1.644 0.93504 2 -0.0039 1.560 0.93621
3 -0.0029 1.588 0.96598 3 -0.0059 1.475 0.94605. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62 -0.0480 0.795 0.99321 37 -0.0449 0.734 0.98597
63 -0.0480 0.789 0.99311 38 -0.0426 0.727 0.98953
64 -0.0480 0.784 0.99313 39 -0.0429 0.715 0.98478. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
100 -0.0230 0.629 0.99468 100 0.14077 0.374 0.98565
101 -0.0217 0.626 0.99462 101 0.14176 0.372 0.99433
102 -0.0205 0.623 0.99464 102 0.14713 0.367 0.98619
103 -0.0192 0.619 0.99458 103 0.14812 0.364 0.99376. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200 0.14011 0.374 0.99497 200 0.36033 0.141 0.99008
201 0.14173 0.372 0.99493 201 0.36077 0.139 0.99077
202 0.14333 0.370 0.99497 202 0.36299 0.138 0.98996
203 0.14493 0.368 0.99493 203 0.36342 0.137 0.99090. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
297 0.27122 0.231 0.99508 297 0.44474 0.055 0.99411
298 0.27231 0.230 0.99512 298 0.44563 0.055 0.98671
299 0.27340 0.229 0.99508 299 0.44580 0.054 0.99414
300 0.27447 0.228 0.99512 300 0.44666 0.053 0.98668

Table 3.1 Jacobi iteration for N = 32 in the model case.

Table 3.1 reports the results
of the pointwise and block-
wise Jacobi iterations. As in
Table 1.1, the numbers refer
to the Poisson model prob-
lem of step size h = 1

32 .
For selected iteration num-
bers m, the table presents
the value um16,16 at the mid-
point. Note that the iterates
um16,16 should converge to

u(
1

2
,
1

2
) = 0.5.

The table also contains the
maximum norm

εm := ‖em‖∞

of em = um −uh and the
reduction factor

ρm,m−1 = εm/εm−1.

We observe that ρm,m−1 converges to different limits for odd and even m. The
explanation is that with r := ρ(MJac

block), −r is also an eigenvalue of the iteration
matrix (cf. Remark 4.9). Hence, the dominating error part has the form

rme1 + (−r)me2 = rm [ e1 + (−1)me2 ]

and oscillates with the period 2. The geometric mean of two successive factors
approximates the spectral radius ρ(MJac

block). The mean values

√
ε300/ε298 =

{
0.995099 for the pointwise method,
0.990401 for the blockwise method,

are in a good agreement with the values ρ(MJac) = cos π
32 = 0.99518 and

ρ(MJac
block) = 0.990416 that result from (3.52) and (3.54) for h = 1/32.

In the case of the Poisson model case, the pointwise Jacobi iteration is identical
to the Richardson iteration (cf. Remark 3.8). Therefore the left part of Table 3.1 also
refers to the Richardson iteration.



66 3 Classical Linear Iterations in the Positive Definite Case

3.6.4 SOR and Block-SOR Iteration with Numerical Examples

For evaluating the SOR bounds in Theorem 3.44, the constants γ and Γ must be
determined.

Lemma 3.61. For the Poisson model problem, the pointwise SOR iteration with
lexicographical ordering satisfies (3.46a,b) with γ = 2 sin2(πh/2) and Γ = 2 .
The optimal ω′ in (3.47b) is

ω′ = 2/ [2 + 2 sin(πh/2)] = 2 − 2πh+ O(h4). (3.55a)

The bounds for ω = 1 and ω = ω′ are

‖MGS‖A ≤
√

1

1 + 8 sin2(πh/2)
= 1 − π2h2 + O(h4), (3.55b)

‖MSOR
ω′ ‖A ≤ cos(πh/2)

1 + sin(πh/2)
= 1 − πh/2 + O(h2). (3.55c)

Proof. (i) γ in (3.46a) is the smallest eigenvalue of D−1A = 1
4h

2A; hence,
γ = 1

4h
2λmin = 2 sin2(πh/2) (cf. (3.1b)).

(ii) For lexicographical ordering, the matrix E contains at most two entries
−h−2 per row and column; hence, ‖E‖∞ ≤ 2h−2 and ‖EH‖∞ ≤ 2h−2 hold
and imply ρ(EEH) ≤ ‖E‖∞ ‖EH‖∞ ≤ 4h−4. The inequality(1

2
D − E

)
D−1
(1
2
D − EH

)
= −1

4
D − 1

2
(E + EH) + ED−1EH

=
1

4
D +

1

2
A+ ED−1EH = −h−2I +

1

2
A+

1

4
h2EEH

≤ −h−2I +
1

2
A+

1

4
h24h−4 =

1

2
A

shows (3.46b) with Γ = 2.
(iii) The statements (3.55a–c) follow by inserting this result into (3.47a,b). ��

The inequalities (3.55b,c) show that the order of convergence improves from
1 − O(h2) to 1 − O(h). However, the bound in the right-hand side of (3.55c) is
distinctly less favourable than the convergence rates ρ(MSOR

ω′ ); i.e., the estimate is
too pessimistic. On the other side, the bound in (3.55b) and the convergence rate
ρ(MGS) coincide up to O(h4). Table 3.2 contrasts the bounds (3.55b,c) with the
spectral radii determined in Theorem 4.27. Since the respective optimal parameters
ω′ in (3.55a) and ωopt in (4.28b) differ slightly, the results for both of the values are
reported.

In the case of the block-SOR method, γ is the smallest eigenvalue of D−1A
with the block diagonal D of A. Similar considerations as in §3.6.2 lead to



3.6 Convergence Rates in the Case of the Model Problem 67

γ =
1 − 2 sin2(πh/2)

1 + 2 sin2(πh/2)
.

h 1/8 1/16 1/32 1/64 1/128
bound (3.55b)
of ‖MGS‖A 0.8756 0.9637 0.9905 0.9975996 0.9993982

ρ(MGS) 0.8536 0.9619 0.9904 0.9975924 0.9993977
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ω′ 1.4387 1.6722 1.8213 1.9064278 1.9520897
ωopt 1.4465 1.6735 1.8215 1.9064547 1.9520932
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bound (3.55c)
of ‖MSOR

ω′ ‖A 0.8207 0.9063 0.9521 0.9757526 0.9878028

ρ(MSOR
ω′ ) 0.5174 0.6991 0.8293 0.9086167 0.9526634

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bound
of ‖MSOR

ωopt
‖A 0.8207 0.9063 0.9521 0.9757527 0.9878028

ρ(MSOR
ωopt

) 0.4465 0.6735 0.8215 0.9064547 0.9520932

Table 3.2 Contraction numbers and convergence rates in the
model case.

Lemma 3.58 shows that
dαβ ≥ 2h−2. This im-
plies the inequalities

D ≥ 2h−2I

and

‖D−1‖2=ρ(D−1)≤ h2

2 .

The matrix E from

A = D − E − EH

contains only one nonzero
entry −h−2 per row and
column; hence, ‖E‖∞ = ‖EH‖∞ = h−2 and ρ(EEH) ≤ ‖EEH‖∞ ≤ h−4 hold.
As above, we conclude Γ = 2 from(

1

2
D − E

)
D−1

(
1

2
D − EH

)
=

1

4
D +

1

2
A+ ED−1EH ≤ 1

2
A

because of ED−1EH ≤ 1
2h

2EEH ≤ 1
2h

−2I ≤ 1
4D. This proves the next lemma.

Lemma 3.62. For the model problem, the block-SOR method with lexicographical
block ordering satisfies (4.32a,b) with

Γ = 2 and γ =
[
1 − 2 sin2(πh/2)

]
/
[
1 + 2 sin2(πh/2)

]
.

The optimal ω′ in (3.47b) is

ω′ = 2/

[
1 +

√
8 sin πh

2 /
√
1 + 2 sin2 πh

2

]
= 2 − 2

√
2πh+ O(h4).

The bounds for the particular cases ω = 1 and ω = ω′ are

‖MGS
block‖A ≤ 1 − 2π2h2 + O(h4),

‖MblockSOR
ω′ ‖A ≤ 1 − πh√

2
+ O(h2).



Chapter 4

Analysis of Classical Iterations Under Special

Structural Conditions

Abstract The central part of this chapter is the theorem of Young about SOR
convergence. It requires ‘consistently ordered matrices’. This is a more involved
structural matrix property. In Section 4.1, we consider the simpler structure of
2-cyclic matrices. Sections 4.3–4.5 investigate the Richardson, Jacobi, and Gauss–
Seidel iteration in this case. Section 4.6 contains the analysis of the SOR iteration.
Finally, Section 4.7 presents numerical results for the model problem.

4.1 2-Cyclic Matrices

First, we define the term ‘weakly 2-cyclic’ for matrices and for matrix pairs (A,D),
where D is the diagonal or block-diagonal part of A.

Definition 4.1. A matrix A ∈ KI×I is called weakly 2-cyclic (or weakly cyclic
of index 2) if a block structure {I1, I2} with nonempty index subsets I1, I2 ⊂ I
exists such that

aαβ = 0 if α, β ∈ I1 or if α, β ∈ I2 . (4.1)

Condition (4.1) states that the diagonal blocks vanish:

A11 = 0, A22 = 0, i.e., A =

[
0 A12

A21 0

]
Often, not A but A−D has the form required in (4.1). In this case, we introduce

the same term for the pair (A,D).

Definition 4.2. The pair (A,D) (A,D ∈ KI×I) is called weakly 2-cyclic if A−D
is weakly 2-cyclic in the sense of Definition 4.1. An equivalent statement is that a
block structure {I1, I2} with nonempty index subsets I1, I2 ⊂ I exists such that

D = blockdiag{A11, A22}. (4.2)

69© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_4



70 4 Analysis of Classical Iterations Under Special Structural Conditions

Let B be the block structure {I1, I2} in Definition 4.1. Denote the block-
diagonal part of a matrix (with respect toB) by blockdiagB{·}. Then A is weakly
2-cyclic if and only if

blockdiagB{A} = 0.

The pair (A,D) is weakly 2-cyclic if and only if

blockdiagB{A} = D. (4.2′)

The additional term ‘weakly’ in front of ‘2-cyclic’ indicates that the ordering of
the indices is irrelevant. This is different in the next definition.

Definition 4.3. A or (A,D) are called 2-cyclic if the index set I is ordered and the
matrixA or respectively the pair (A,D) is weakly 2-cyclic with respect to the blocks
I1 = {1, . . . , n1} and I2 = {n1+1, . . . , n} for a suitable n1 with 1 ≤ n1 ≤ n−1.

The condition 1 ≤ n1 ≤ n − 1 ensures that both I1 and I2 be nonempty.
The property ‘2-cyclic’ is different from the property ‘cyclic of index 2’ as, e.g.,
introduced by Varga [375, page 35]. A 2-cyclic matrix has the form

A =

0 A1 }I1
A2 0 }I2︸︷︷︸ ︸︷︷︸
I1 I2

.

Note that, in general, A1 = A12 ∈ KI1×I2 and A2 = A21 ∈ KI2×I1 are not
square block matrices. The pair (A,D) is 2-cyclic if

A =

[
D1 A1

A2 D2

]
, D =

[
D1 0
0 D2

]
, A−D =

[
0 A1

A2 0

]
. (4.3)

The definitions immediately imply the following remark.

Remark 4.4. (a) The property 2-cyclic for a special ordering of the indices implies
weakly 2-cyclic for any ordering or no ordering of the indices.
(b) The property weakly 2-cyclic is independent of the ordering of the indices,
whereas in the case of the term 2-cyclic the indices may be permuted only inside
of the respective blocks I1 and I2.
(c) Let A or (A,D) be weakly 2-cyclic. If I is not ordered, then there is an ordering
of the indices, so that A or (A,D) are 2-cyclic with respect to this ordering. If
I is already ordered, there is a permutation of the indices with a corresponding
permutation matrix P , so that Â = PAPT or (Â, D̂ = PDPT) are 2-cyclic.

Examples of (weakly) 2-cyclic matrices are given below for the Poisson model
problem.



4.1 2-Cyclic Matrices 71

Example 4.5. Let A be the matrix of the Poisson model problem in §1.2.
(a) If D = diag{aαα : α ∈ I} is the (pointwise) diagonal of A, then (A,D)
is weakly 2-cyclic. If, as in Figure 1.2, the chequer-board ordering is used,
(A,D) is even 2-cyclic. The exact definition of the chequer-board ordering (also
called red-black ordering) reads as follows:

I1 = Iblack = {(x, y) = (ih, jh) ∈ Ωh : i+ j even},
I2 = Ired = {(x, y) = (ih, jh) ∈ Ωh : i+ j odd}.

(b) Let the rows (or columns) of the grid Ωh form the block structure B and
choose D as blockdiag{Aαα : α ∈ B} = blockdiagB{A}. Then (A,D) is
weakly 2-cyclic. If the rows (or columns) are ordered according to the zebra pattern
mentioned in Remark 3.16c, (A,D) is even 2-cyclic. The exact definition of the
zebra-row-block structure is

I1 = Iblack = {(x, y) = (ih, jh) ∈ Ωh : j even}, (4.4a)
I2 = Iwhite = {(x, y) = (ih, jh) ∈ Ωh : j odd}. (4.4b)

In the case of the zebra-column-block structure, one has to replace ‘j even [odd]’ in
(4.4a,b) with ‘i even [odd]’.

Proof. (i) In the case of the chequer-board ordering, A has the block structure
(1.9) with diagonal submatrices 4h−2I ∈ R(N−1)×(N−1) in the diagonal blocks.
Hence the diagonal and block-diagonal parts of A coincide: D = 4h−2I ∈ Rn×n.
Therefore (4.2) holds: (A,D) is also 2-cyclic. For the chequer-board ordering,
we have I1 = {1, . . . , n1} and I2 = {n1 + 1, . . . , n} with n1 := #I1 being the
number of black grid points. For all n > 1 (i.e., h < 1

2 ), n1 ∈ [1, n − 1] holds.
According to Remark 4.4a, A is weakly 2-cyclic for an arbitrary ordering or even
no ordering of the indices.

(ii) In the case of the row-block structure, the diagonal blocks of A are given
by the matrices h−2T in (1.8): T = tridiag{−1, 4,−1}. The block structure
of A illustrated in (1.8) corresponds to the lexicographical ordering of the rows.
The zebra-ordering (4.4a) leads to

A = h−2

T −I
T −I −I

. . . . . . . . .
T −I −I

−I −I T

−I . . . T
. . . −I . . .

−I T

. (4.5)



72 4 Analysis of Classical Iterations Under Special Structural Conditions

Replacing the row-block structure by the coarser zebra-block structure, we obtain
two diagonal blocks Aii = h−2 blockdiag{T, . . . , T} for i = 1, 2, where the
number of the diagonal blocks T is determined by the number of the respective
‘black’ (i = 1) or ‘white’ (i = 2) rows (cf. (4.5)). The block-diagonal parts D of
A with respect to the row-block structure and to the zebra-block structure coincide.
This proves (4.2): (A,D) is 2-cyclic. As in (i), we see that, independently of the
ordering of the indices, (A,D) is weakly 2-cyclic. ��

The model equation (1.4a) is called a five-point formula, since the equation at
the point (ih, jh) contains only the five unknowns uij , ui+1,j , ui−1,j , ui,j+1, and
ui,j−1. For more general problems than the Poisson equation (1.1a), one needs
other formulae, e.g., nine-point formulae. In the latter case, the equation at (ih, jh)
contains the nine unknowns

{uk� : k = i− 1, i, i+ 1, � = j − 1, j, j + 1}.

Since we do not exclude vanishing matrix coefficients, the five-point formulae are a
subset of the nine-point formulae.

Exercise 4.6. Prove: (a) If A represents a nine-point formula, then, in general,
(A,D) with D := diag{A} is not weakly 2-cyclic. In particular, there is no
ordering of the indices for which (A,D) is 2-cyclic.
(b) IfA represents a nine-point formula andD is the row- or column-block diagonal
of A, then (A,D) is weakly 2-cyclic as in Example 4.5b.

Statement (b) of the exercise can be generalised as follows.

Lemma 4.7. Let A be either a tridiagonal matrix with the diagonal D or a
block-tridiagonal matrix with respect to a block structure {I1, I2, . . . , Iβ} with the
block diagonal D. Then (A,D) is weakly 2-cyclic.

Proof. It is sufficient to prove the block case. The sets J1 := I1 ∪ I3 ∪ . . . and
J2 := I2 ∪ I4 ∪ . . . define a coarser block structure. It is easy to see that the
block diagonal of A with respect to the block structure {J1, J2} coincides with
D. Hence, (4.2′) implies the assertion. ��

4.2 Preparatory Lemmata

Here we study the properties of a weakly 2-cyclic matrix B. For a suitable ordering
of the indices, B takes the form

B =

[
0 B1

B2 0

]
. (4.6)

Note that the spectral properties discussed below do not depend on the ordering.



4.2 Preparatory Lemmata 73

Lemma 4.8. The spectrum of a weakly 2-cyclic matrix B with the off-diagonal
blocks B1 = B12 and B2 = B21 is given by

σ(B) = ±
√
σ(B1B2) ∪ ±

√
σ(B2B1). (4.7a)

Here, the notation ±
√
σ(C) :=

{
λ ∈ C : λ2 ∈ σ(C)

}
is used. The spectra

σ(B1B2) and σ(B2B1) coincide up to vanishing eigenvalues:

σ(B1B2)\{0} = σ(B2B1)\{0}. (4.7b)

Proof. (i) Let e =
[
e1

e2

]
be an eigenvector of B corresponding to an eigenvalue

λ ∈ σ(B). Then the following equivalence holds:

Be = λe ⇐⇒
{
B1e

2 = λe1,
B2e

1 = λe2.
(4.8)

Inserting one of the equations on the right-hand side into the other, we get

λ2e1 = B1B2e
1, λ2e2 = B2B1e

2.

By e �= 0, either e1 �= 0 or e2 �= 0 must hold and therefore λ2 ∈ σ(B1B2)
or λ2 ∈ σ(B2B1). In any case, λ ∈ ±

√
σ(B1B2) ∪ ±

√
σ(B2B1) is valid. Since

λ ∈ σ(B) is arbitrary, σ(B) ⊂ ±
√
σ(B1B2) ∪ ±

√
σ(B2B1) is proved.

(ii) Assume that 0 �= λ ∈ ±
√
σ(B1B2), i.e., 0 �= λ2 ∈ σ(B1B2). Let e1 �=0 be

the corresponding eigenvector: λ2e1 = B1B2e
1. Set e2 := 1

λB2e
1. We observe

that
B1e

2 =
1

λ
B1B2e

1 =
1

λ
λ2e1 = λe1.

By definition of e2,B2e
1 = λe2 holds. Hence, e =

[
e1

e2

]
satisfies the equations (4.8),

i.e., λ ∈ σ(B).
(iii) If 0 = λ2 ∈ σ(B1B2) ∪ σ(B2B1), one of the matrices B1, B2 has a

nontrivial kernel. Without loss of generality, this might be B1: B1e
2 = 0

for some e2 �= 0. Since e1 := 0 leads to B2e
1 = 0, e =

[
e1

e2

]
is the eigenvector

corresponding to the eigenvalue 0 = λ ∈ σ(B).
(iv) The parts (ii) and (iii) prove σ(B) ⊃ ±

√
σ(B1B2) ∪ ±

√
σ(B2B1). Together

with (i), we obtain the assertion (4.7a). (4.7b) follows from Theorem A.10. ��

The definition of ±
√
σ(C) leads to the next remark.

Remark 4.9. If λ is an eigenvalue of a weakly 2-cyclic matrix, then −λ is also an
eigenvalue.

Lemma 4.10. Under the assumptions of Lemma 4.8, the following identity holds for
the spectral radii:

ρ(B) =
√
ρ(B1B2) =

√
ρ(B2B1). (4.9)

Proof. By Lemma A.20, ρ(B1B2) = ρ(B2B1) holds. Together with (4.7a), we
arrive at the assertion. ��



74 4 Analysis of Classical Iterations Under Special Structural Conditions

Remark 4.11. In the Hermitian case B = BH, the blocks in Lemma 4.8 satisfy
B1 = BH

2 . By Theorem B.25, ρ(B1B2) = ρ(B2B1) = ρ(BH
1B1) = ρ(BH

2B2)
coincides with ‖B1‖22 = ‖B2‖22 , so that

ρ(B) = ‖B1‖2 = ‖B2‖2 .

Exercise 4.12. For a general matrix of the form (4.6), prove that

‖B‖2 = max {‖B1‖2, ‖B2‖2} .

4.3 Analysis of the Richardson Iteration

First, we study the case of the parameter Θ = 1. Furthermore, we assume that the
block-diagonal part of A is the identity matrix I . For a suitable ordering of the
indices, A takes the form

A =

[
I A1

A2 I

]
. (4.10)

Theorem 4.13. Let (A, I) be weakly 2-cyclic with the off-diagonal blocks

A1 = A12, A2 = A21 (cf. (4.10)).

Then the Richardson iteration xm+1 = xm − Θ(Axm − b) with Θ = 1 has the
convergence rate

ρ(MRich
1 ) =

√
ρ(A1A2) =

√
ρ(A2A1) . (4.11)

Proof. The iteration matrix MRich
1 = I − A coincides with the matrix B in §4.2

if Bi := −Ai. Hence, (4.9) in Lemma 4.10 implies the result (4.11). ��

For Θ �= 1, MRich
Θ = I −ΘA leads to

σ(MRich
Θ ) = {λ = 1 −Θ(1 − μ) : μ ∈ σ(B)} with B = I −A (4.12)

and σ(B) as in (4.7a), where B1 := −A1 and B2 := −A2. For an arbitrary
complex spectrum σ(B), a simple characterisation of the spectral radius MRich

Θ is
not so easy. Therefore, we assume

β := ρ(B) ∈ σ(B) for B = I −A = −
[

0 A1

A2 0

]
. (4.13)

Condition (4.13) states that ρ(B) is not only the absolute value |λ| of some eigen-
value λ ∈ σ(B) but even an eigenvalue of B. Sufficient conditions for (4.13) will
follow after Theorem 4.14.



4.3 Analysis of the Richardson Iteration 75

Theorem 4.14. Let (A, I) be weakly 2-cyclic satisfying (4.13). Then the Richardson
iteration xm+1 = xm −Θ(Axm − b) has the convergence rate

ρ(MRich
Θ ) =

⎧⎪⎨⎪⎩
1 −Θ (1 − ρ(B)) for 0 ≤ Θ ≤ 1,

Θ (1 + ρ(B)) − 1 for Θ ≥ 1,

1 + |Θ| (1 + ρ(B)) for Θ ≤ 0

(4.14)

with ρ(B) =
√
ρ(A1A2) =

√
ρ(A2A1) .

If ρ(B) ≥ 1, the iteration is divergent for all Θ ∈ R. If ρ(B) < 1, the iteration
converges for

0 < Θ <
2

1 + ρ(B)
.

Θ = 1 yields the optimal convergence rate (4.11).

Proof. (i) Let Θ ∈ [0, 1], μ ∈ σ(B), and β := ρ(B). According to (4.12), we
have to estimate λ = 1 −Θ(1 − μ). Since |μ| ≤ β by assumption (4.13),

|λ| = |1 −Θ(1 − μ)|
= |(1 −Θ) +Θμ| ≤ 1 −Θ +Θ |μ|
≤ 1 −Θ +Θβ = 1 −Θ(1 − β) (4.15)

holds. For μ = β ∈ σ(B), the equal sign holds in (4.15), so that 1 − Θ(1 − β) is
the smallest bound for ρ(MRich

Θ ). Hence, the first case in (4.14) is proved.
(ii) The cases Θ ≥ 1 and Θ ≤ 0 in (4.14) are treated analogously.
(iii) The further statements are a direct consequence of (4.14). ��

Condition (4.13) required in Theorem 4.14 is the subject of the following two
criteria.

Criterion 4.15. If B has only real eigenvalues, condition (4.13) is satisfied. In
particular, symmetry of B is sufficient: A1 = AH

2 .

Proof. Let βmin and βmax be the minimal and maximal eigenvalues of B. Since,
by Remark 4.9, the spectrum σ(B) is symmetric,

βmin = −βmax ≤ 0 ≤ βmax

proves ρ(B) = max{|βmin| , |βmax|} = βmax ∈ σ(B). ��

Criterion 4.16. If all matrix entries of A1 and A2 are nonnegative (or all non-
positive), condition (4.13) is satisfied.

Proof. Theorem C.34 shows that β := ρ(−B) ∈ σ(−B). Since σ(−B) = σ(B)
(cf. Remark 4.9), β = ρ(B) ∈ σ(B) is also valid. ��



76 4 Analysis of Classical Iterations Under Special Structural Conditions

4.4 Analysis of the Jacobi Iteration

In the following, D is assumed to be the (pointwise) diagonal or block-diagonal
part of A. Let (A,D) be weakly 2-cyclic with respect to a block structure {I1, I2}
with off-diagonal blocks A1 = A12 and A2 = A21. For a suitable ordering, A and
D take the form

A =

[
D1 A1

A2 D2

]
and D =

[
D1 0
0 D2

]
. (4.16)

The matrix A′ := D−1A has the representation

D−1A =

[
I A′

1

A′
2 I

]
= I −B with B = −

[
0 A′

1

A′
2 0

]
, (4.17)

where A′
1 := D−1

1 A1, A′
2 := D−1

2 A2 .

Depending on whether D is the (pointwise) diagonal or block diagonal of A,
the following theorem describes the pointwise or blockwise Jacobi method.

Theorem 4.17. Let (A,D) be weakly 2-cyclic. Then the Jacobi method xm+1 =
xm −D−1(Axm − b) has the convergence rate

ρ(MJac) = ρ(B) =
√
ρ(A′

1A
′
2) =

√
ρ(D−1

1 A1D
−1
2 A2) . (4.18)

Proof. The Jacobi method is identical to the Richardson iteration applied to

A′x = b′ with A′ := D−1A, b′ := D−1b, and Θ = 1

(cf. Proposition 5.44). Hence, (4.18) follows from Theorem 4.13. ��

To obtain statements about the damped Jacobi method, one has to satisfy condi-
tion (4.13) for B defined in (4.17). Besides Criteria 4.15 and 4.16, the following
one can be applied.

Criterion 4.18. Let (A,D) be weakly 2-cyclic. (a) If D is positive definite and A
is Hermitian, then B =MJac = I −D−1A has only real eigenvalues with

ρ(B) ∈ σ(B). (4.19)

(b) If A is positive definite, ρ(B) < 1 is also valid, i.e., the Jacobi iteration con-
verges.

Proof. (a) Since B̂ = D−1/2(D−A)D−1/2 is Hermitian, it has only real eigenval-
ues. Because B̂ is similar to B = D−1(D −A), σ(B̂) = σ(B) holds. Therefore,
all eigenvalues of B are real and Criterion 4.15 is applicable.

(b) By Corollary 3.52, the Jacobi iteration converges. SinceB=MJac, ρ(B)<1
follows. ��



4.4 Analysis of the Jacobi Iteration 77

Criterion 4.16 yields the following sufficient condition for (4.19). If D−1, A1,
D−1

2 , A2 have only nonnegative matrix entries, (4.19) holds.

Conclusion 4.19. Assume that (A,D) is weakly 2-cyclic and satisfies (4.19). If
ρ(B) ≥ 1, the damped Jacobi method xm+1 = xm − ϑD−1(Axm − b) diverges
for all ϑ ∈ R. If ρ(B) < 1, it converges for

0 < ϑ < 2/(1 + ρ(B));

and the optimal convergence rate is attained for ϑ = 1, i.e., the undamped Jacobi
method is already optimal.

Proof. Apply Theorem 4.14. ��

4.5 Analysis of the Gauss–Seidel Iteration

Let the index set I be ordered and assume that the matrix A has the form:

A =

[
D1 A1

A2 D2

]
(cf. (4.16))

with respect to the block structure {I1, I2}. A allows the splitting A = D −E − F
with

D =

[
D1 0
0 D2

]
, E =

[
0 0

−A2 0

]
, F =

[
0 −A1

0 0

]
(4.20)

(cf. (3.19a–d)). Furthermore, (A,D) is 2-cyclic. The pointwise or blockwise
diagonal D of A leads to the pointwise or blockwise Gauss–Seidel iteration.
The Gauss–Seidel iteration matrix is MGS = (D − E)−1F . By

(D − E)−1 =

[
D1 0
A2 D2

]−1

=

[
D−1

1 0
−D−1

2 A2D
−1
1 D−1

2

]
,

we obtain

MGS = (D − E)−1F =

[
0 −D−1

1 A1

0 D−1
2 A2D

−1
1 A1

]
. (4.21)

Theorem 4.20. The Gauss–Seidel iteration xm+1 = (D−E)−1(Fxm+b) defined
according to (4.20) by the matrices in A = D − E − F has the convergence rate

ρ(MGS) = ρ(D−1
1 A1D

−1
2 A2). (4.22)

Proof. Inspection of (4.21) yields ρ(MGS) = ρ(D−1
2 A2D

−1
1 A1) (cf. (A.10)).

By Lemma A.20, ρ(D−1
2 A2D

−1
1 A1) = ρ(D−1

1 A1D
−1
2 A2) holds. ��



78 4 Analysis of Classical Iterations Under Special Structural Conditions

Conclusion 4.21. Let (A,D) be 2-cyclic. (a) Then the Jacobi method converges if
and only if the Gauss–Seidel method converges.
(b) The convergence of the Gauss–Seidel iteration is exactly twice as fast as that of
the Jacobi iteration:

ρ(MGS) = ρ(MJac)2. (4.23)

(c) MGS has at least an n1-fold eigenvalue λ = 0 where n1 × n1 is the size of the
first block D1 of A.

Proof. A comparison of (4.22) with (4.18) yields Eq. (4.23), proving the parts (a)
and (b). Part (c) follows because of the zero blocks in (4.21). ��

Since the Jacobi and Gauss–Seidel iterations require the same amount of
computational work, we conclude from (4.23) the following remark.

Conclusion 4.22. Let (A,D) be 2-cyclic. For the Jacobi method, the effective
amount of work defined in (2.31a) is twice as large as for the Gauss–Seidel method:

Eff(ΦJac) = 2Eff(ΦGS),

but the order of linear convergence defined in §2.3.3 coincides for both methods.

The results of Conclusions 4.21 and 4.22 will again be confirmed in §4.6 under
somewhat weaker assumptions.

4.6 Analysis of the SOR Iteration

The analysis of SOR has started in §3.5.4 and is continued below for consistently
ordered matrices. The closely related symmetric SOR iteration (SSOR) will be
investigated in §5.4.3 and §6.3.

4.6.1 Consistently Ordered Matrices

In §4.5, (A,D) was assumed to be 2-cyclic. This assumption is close to Young’s
‘property A’ (cf. Young [412]). ‘Property A’ can be generalised by the notion of the
‘consistent ordering’ due to Varga [375].

Definition 4.23. Let the index set I be ordered. Split A into A = D − E − F
according to (3.11a–d) or (3.19a–d). Consequently, the matrices L := D−1E and
U := D−1F are strictly triangular matrices. A is called consistently ordered
if the eigenvalues of the matrix zL+ 1

zU do not depend on z ∈ C \{0}.



4.6 Analysis of the SOR Iteration 79

In the following, we avoid the term ‘consistent ordering of A’ for two reasons.
First, it is somewhat inexact, since L and U depend not only on A but also on D
if matrices D of diagonal as well as block-diagonal form are admitted. Hence, the
consistent ordering is a property of A and the block structure B. Second, contrary
to its name, the addressed property is independent of the ordering of the indices if
we admit other L and U than triangular matrices.

Instead, we require the pair (L,U) to satisfy the following property:

The eigenvalues of zL+
1

z
U do not depend on z ∈ C\{0}. (4.24)

Criterion 4.24. (L,U) satisfies (4.24) and, moreover, A is consistently ordered in
the sense of Definition 4.23 if L and U are strictly lower and upper triangular
matrices, respectively, satisfying one of the following four conditions:

L+ U is 2-cyclic, (4.25a)
L+ U is tridiagonal, (4.25b)
L+ U is block-tridiagonal with vanishing diagonal blocks (4.25c)

L+ U is block-tridiagonal, where the diagonal blocks (L+ U)ii (4.25d)
are tridiagonal and the (possibly rectangular) off-diagonal blocks

(L+ U)i,i±1 are diagonal.

Here, a rectangular matrix A is called diagonal if at most the diagonal entries Aii

are different from zero.

Proof. (i) Set B := L + U . Since L and U are strictly triangular matrices, bii=0
holds for the diagonal entries.

(ii) Using Lemma 4.8, we conclude the assertion from (4.25a). Furthermore,
(4.25a) is a special case of (4.25c).

(iii) Assume (4.25b). Let z ∈ C\{0} and construct the diagonal matrix

Δ := diag{1, z, z2, . . . , zn−1}.

B′ := ΔBΔ−1 has the entries b′ij = bijz
i−j . Since b′ij �= 0 only for |i− j| = 1,

B′ is of the form zL + 1
zU . Because B and B′ are similar, (L,U) satisfies

property (4.24).

(iv) Let {I1, . . . , Ib} be the block structure in the case (4.25c). We define

Δb := blockdiag{I0, zI1, z2I2, . . . , zb−1Ib−1},

where Ik is the identity matrix of the respective block-size Ik ∈ RIk×Ik . The
transformed matrix B′ := ΔbBΔ

−1
b contains the blocks (B′)ij = zi−jBij , so

that the assertion follows as in (iii).



80 4 Analysis of Classical Iterations Under Special Structural Conditions

(v) In the case of (4.25d), apply first the similarity transformation Δb from (iv):
B′ contains the factor z (or 1

z ) in the blocks below (or above) the diagonal; however,
the diagonal blocks (B′)ii = Bii of tridiagonal structure are still unchanged. We
define the diagonal matrix

ΔB := blockdiag{(ΔB)
ii
: i = 1, . . . , b}, (ΔB)

ii
:= diag{1, z, . . . , z#Ii−1}.

The transformation C ′ := ΔBCΔ
−1
B does not change blocks of diagonal shape.

Hence,
B′′ := ΔBB

′Δ−1
B = ΔBΔbBΔ

−1
b Δ−1

B

has the off-diagonal blocks

(B′′)i,i−1 = zBi,i−1 and (B′′)i,i+1 =
1

z
Bi,i+1,

whereas, as in (iii), the diagonal blocks have the entries zbij in the lower and 1
z bij

in the upper triangular part, i.e., B′′ = zL + 1
zU . Since B′′ is similar to B, the

assertion follows. ��

Remark 4.25. The properties (4.25a–d) imply that (A,D) is weakly 2-cyclic if
D is the (pointwise) diagonal as in the cases (4.25b,d) and, otherwise, the block
diagonal of A .

Proof. For (4.25a–c), apply Remark 4.4a or Lemma 4.7a,b, respectively. In the case
of (4.25d), L+U has a five-point structure admitting a chequer-board-like ordering,
for which A−D = −L− U is 2-cyclic. ��

Lemma 4.26. Let (L,U) satisfy condition (4.24). (a) Then

σ(αL+ βU) = σ( ±
√
αβ (L+ U)) for all α, β ∈ C.

(b) In particular, L+ U and −(L+ U) have identical spectra.
(c) If all eigenvalues of L+ U are real, ρ(L+ U) ∈ σ(L+ U) holds.

Proof. (i) For αβ �= 0, choose z := ±
√
α/β . Since zL + 1

zU and L + U have
the same eigenvalues, this is also true for the matrices

αL+ βU = ±
√
αβ (zL+

1

z
U) and ±

√
αβ (L+ U).

(ii) Since α = β = 0 represents a trivial case, assume that α = 0 and β �= 0. Then
the assertion becomes σ(βU)=σ(0(L+U))=σ(0)={0} and is satisfied because
U is a strictly triangular matrix (cf. Exercise A.19b). The case β = 0 is analogous.
(iii) For α = β = 1, the expression ±√αβ also takes the value −1, so that
σ(L+U) = σ(−(L+U)) proves part (b). Part (c) is demonstrated as in Criterion
4.15. ��



4.6 Analysis of the SOR Iteration 81

4.6.2 Theorem of Young

The following theorem, which in its basic form is due to Young [411], describes the
pointwise as well as blockwise SOR iteration (3.15a):

xm+1 =MSOR
ω xm +NSOR

ω b with (4.26a)

A = D − E − F, L := D−1E, U := D−1F, (4.26b)

MSOR = (I − ωL)−1{(1 − ω)I + ωU}, NSOR
ω = ω(I − ωL)−1D−1, (4.26c)

where A = D − E − F is split according to (3.11a–d) or (3.19a–d). The theorem
is valid for any iteration of the form (4.26a–c); i.e., D may be different from the
diagonal part and E, F different from the triangular parts of A . The matrix

MJac := L+ U = I −D−1A

represents the iteration matrix of the (pointwise or blockwise) Jacobi method,
provided that D coincides with the diagonal or block diagonal of A.

Theorem 4.27. For the iteration (4.26a–c) we assume:

0 < ω < 2, (4.27a)

MJac has only real eigenvalues, (4.27b)

β := ρ(MJac) < 1, (4.27c)
D and I − ωL are regular, (L,U) satisfies condition (4.24). (4.27d)

Then the following statements hold: (a) Iteration (4.26a–c) converges.
(b) The convergence rate is equal to

ρ(MSOR
ω ) =

{
1 − ω + 1

2ω
2β2 + ωβ

√
1 − ω + ω2β2

4 if 0 < ω≤ωopt,
ω − 1 if ωopt ≤ω < 2,

(4.28a)

where ωopt :=
2

1 +
√
1 − β2

. (4.28b)

(c) The convergence rate ρ(MSOR
ω ) is minimal for ω = ωopt.

(d) For ω ≤ ωopt , the spectral radius ρ(MSOR
ω ) ∈ σ(MSOR

ω ) is an eigenvalue.

(e) For ω ≥ ωopt , all eigenvalues λ ∈ σ(MSOR
ω ) satisfy |λ| = ω − 1 .

Before proving the theorem, we discuss its assumptions and results.
Concerning (4.27a). The assumption 0 < ω < 2 is necessary for convergence
as we know from Lemma 3.40.
Concerning (4.27b). Because of Criterion 4.18a, MJac has the required real eigen-
values if A is Hermitian and D is positive definite. Criterion 4.18b and
Corollary 3.42 even provide the following sufficient criterion for (4.27b–d).



82 4 Analysis of Classical Iterations Under Special Structural Conditions

Criterion 4.28. Let D be the (block) diagonal of A. If A is positive definite,
conditions (4.27b,c) and the first part of (4.27d) are satisfied.

opt
SORρ(Μ      )ω

GSρ(Μ    )

ωopt
0
0 1 2

1

Fig. 4.1 The convergence rate ρ(MSOR
ω ) as a

function of ω.

Concerning (4.27c). β < 1 is equiv-
alent to the convergence of the Jacobi
method. The condition β < 1 is nec-
essary because of the next statement.

Exercise 4.29. If β ≥ 1, the SOR
iteration diverges for all ω ∈ R.

Concerning (4.27d). If (4.26a–c)
represents a true SOR iteration, L
must be a strictly triangular matrix.
Then the regularity of I − ωL is
trivial.
Concerning (4.28a,b): Except for the
trivial case β = 0 , we have

1 < ωopt < 2,

so that the optimal convergence speed always leads to a true overrelaxation
method. Underrelaxation (0 < ω < 1) is always slower than the Gauss–Seidel
iteration, which is regained for ω = 1. For ω = 1, we again obtain the result (4.23).
Figure 4.1 shows ρ(MSOR

ω ) as a function of ω for β = cos(π/8) = 0.92388 with
ωopt = 2/(1 + sin(π/8)) = 1.44646. The latter value corresponds to the model
problem with h = 1/8.

Proof of Theorem 4.27. (i) Let λ ∈ σ(MSOR
ω ). The corresponding eigenvector e

satisfies {(1 − ω)I + ωU}e = λ(I − ωL)e, i.e.,

(ωU + λωL)e = (λ+ ω − 1)e,

so that λ + ω − 1 ∈ σ(ωU + λωL). Since σ(ωU + λωL) = σ( ±√λω(L + U))
holds by Lemma 4.26a, there is an eigenvalue μ ∈ σ(MJac) = σ(L+ U) with

λ+ ω − 1 =
±√
λωμ, i.e., (4.29a)

(λ+ ω − 1)2 = ω2λμ2. (4.29b)

Since, for any eigenvalue μ of MJac = L + U , −μ is also an eigenvalue (cf.
Lemma 4.26b), the two solutions of (4.29b) belong to σ(MJac). Vice versa, we
conclude that for any μ ∈ σ(MJac) both solutions

λ = 1 − ω +
1

2
ω2μ2 ± ωμ

√
1 − ω +

1

4
ω2μ2 (4.29c)

fulfil Eq. (4.29a) with suitable sign in ±√λ. Since ±√λωμ is an eigenvalue of
±√λω(L + U), it is also an eigenvalue of ωU + λωL; hence, we arrive at
λ ∈ σ(MSOR

ω ) and obtain



4.6 Analysis of the SOR Iteration 83

λ ∈ σ(MSOR
ω ) ⇐⇒ μ ∈ σ(MJac) (λ, μ satisfy (4.29b)). (4.29d)

(ii) Let ωopt ≤ ω < 2. This inequality is equivalent to 1 − ω + 1
4ω

2β2 ≤ 0.
By −β ≤ μ ≤ β , we obtain the inequality

1 − ω +
1

4
ω2μ2 ≤ 0

for all μ ∈ σ(MJac) , implying that Eq. (4.29b) has two complex conjugate roots:

λ = λ�e − iλ�m, λ�e = 1 − ω +
1

2
ω2μ2.

Since the product of the roots of a quadratic equation coincides with the absolute
term of the equation, we obtain

|λ|2 = (ω − 1)2, i.e., |λ| = |ω − 1| .

Hence, MSOR
ω has only eigenvalues λ with an absolute value ω − 1. This proves

the second case in (4.28a), as well as the statements (a) and (e).
(iii) Assume the second case 0 < ω < ωopt. If ω ∈ (1, ωopt), there may be

eigenvalues μ ∈ σ(MJac) with μ2 < 4(ω − 1)/ω2, for which the radicand in
(4.29c) is negative. As before, these μ generate eigenvalues λ ∈ σ(MSOR

ω ) with
|λ| = |ω − 1|. This value, however, is smaller than the right-hand side in (4.28a).
The latter proves to be an eigenvalue of MSOR

ω by choosing μ := β ∈ σ(MJac)
in (4.29d) [concerning β ∈ σ(MJac) compare with Lemma 4.26c]. Since the
discussion can be reduced to the case of the real solutions of (4.29c), it is easy
to see that |λ| attains its maximum at μ = β. ��

Because of ωopt > 1 (cf. (4.28b)), ω = 1 lies in the interval (0, ωopt]. Theorem
4.27 yields the following results for the Gauss–Seidel method which is the special
case of ω = 1.

Conclusion 4.30 (Gauss–Seidel iteration). Under the assumptions (4.27b–d), the
(block-)Gauss–Seidel iteration converges and has exactly the squared convergence
speed of the (block-) Jacobi iteration:

ρ(M [block]GS) = ρ(M
[block]SOR
1 ) = β2 = ρ(M [block]Jac)2,

as already mentioned in (4.23) for the 2-cyclic case. Furthermore, ρ(M [block]GS)
belongs to the spectrum σ(M [block]GS). The statement of Remark 4.22 is still valid.

For the case of complex relaxation parameter ω with |ω − 1|<1, a convergence
result is given by Niethammer–Varga [294, Theorem 12]. Complex parameters ω
make sense if the matrix M [block]Jac is nonsymmetric and has complex eigenvalues.
For this case, we refer to Young–Huang [414].



84 4 Analysis of Classical Iterations Under Special Structural Conditions

4.6.3 Order Improvement by SOR

We recall the term ‘order of an iterative method’ as defined in §2.3.3. Considering a
family of systems corresponding to different step sizes h (and therefore to different
dimensions), the Jacobi iteration has the order τ if

ρ(MJac) = 1 − CJac
η hτ + O(h2τ ) for h → 0. (4.30)

The Poisson model problem in §1.2 leads to the order τ = 2. A comparison of
Jacobi versus Gauss–Seidel using (4.23): ρ(MGS) = ρ(MJac)2, shows that

ρ(MJac)2 = (1 − CJac
η hτ + . . .)2 = 1 − 2CJac

η hτ + . . . = 1 − CGS
η hτ + . . . .

Hence, only the coefficient CGS
η = 2CJac

η is improved, whereas the order remains
unchanged.

In the weakly 2-cyclic case, the variation of the parameter ω of the damped
(extrapolated) Jacobi method (5.9) is without success. By Conclusion 4.19, the
choice ω = 1 and therefore the standard Jacobi method are optimal. The more
notable is the possibility of improving the SOR convergence rate by the proper choice
ω = ωopt. The next theorem shows that in this way the order is improved (halved).

Theorem 4.31. Let τ > 0 be the order of the Jacobi method (cf. (4.30)). Under
the assumptions of Theorem 4.27, the SOR method with ω = ωopt has the order τ

2 :

ρ(MSOR
ωopt

) = 1 − CSOR
η hτ/2 + O(hτ ) with (4.31a)

CSOR
η = 2

√
2CJac

η . (4.31b)

Proof. Following (4.28b), we have

ρ(MSOR
ωopt

) = ωopt − 1 =
2

1 +
√

1 − β2
− 1 =

1 −
√

1 − β2

1 +
√

1 − β2
. (4.31c)

By

1 − β2 = 1 − ρ(MJac)2 = 1 −
[
1 − CJac

η hτ + O(h2τ )
]2

= 2CJac
η hτ + O(h2τ ),

the square root
√
1 − β2 has the expansion

√
2CJac

η hτ/2 + O(hτ ). Inserting this
expression into (4.31c), we obtain

ρ(MSOR
ωopt

) = 1 − 2
√

2CJac
η hτ/2 + O(hτ ),

proving (4.31a,b). ��



4.6 Analysis of the SOR Iteration 85

4.6.4 Practical Handling of the SOR Method

According to Remark 3.6, choosing ω properly causes a practical problem.
In general, the value of β = ρ(MJac) is unknown. Thus, the optimal relaxation
parameter ωopt is also not available. Then, one may proceed as follows (see also
Young [412, §6.6]).

Initially, choose some ω ≤ ωopt, e.g., ω = 1. Perform a few SOR steps with
this parameter ω and determine an approximation λ̃ to ρ(MSOR

ω ) from the ratios
of ‖xm+1 − xm‖2 (see the final part in §2.4). Using λ̃, we can produce β via
Eq. (4.28a) (case ω ≤ ωopt):

β ≈ β̃ := |λ̃+ ω − 1|/
(
ω
√
λ̃
)

(cf. (4.29a)). Using β̃, one determines an approximation ω to ωopt by (4.28b). As
long as ω ≤ ωopt, it is possible to iterate the described approximation of ωopt.
Since the function ρ(MSOR

ω ) has a vertical tangent at ω = ωopt from the left, any
deviation ω = ωopt−ε (ε > 0) to the left deteriorates the convergence considerably.
Therefore, one should better choose ω ≈ ωopt too large: ω > ωopt . A program
following this strategy can be found in Meis–Marcowitz [281, 282, Appendix A.4].
See also Reid [317].

4.6.5 p-Cyclic Matrices

The property ‘weakly 2-cyclic’ can be generalised. A is called weakly p-cyclic
if a p×p block structure exists, so that only the blocks A1,p, A2,1, A3,2, ..., Ap,p−1

are nonvanishing. This case is discussed in detail by Varga [375, §4.2]. Under
suitable further assumptions, the SOR method converges for

0 < ω <
p

p− 1
.

Optimal convergence holds for the unique positive root

ω = ωopt <
p

p− 1

of the polynomial

(p− 1)p−1ρ(MJac)pωp = pp(ω − 1).

The corresponding rate is

ρ(MSOR
ωopt

) = (ωopt − 1)(p− 1) < 1

(cf. Eiermann–Niethammer–Ruttan [118]). Also in this case, the order of linear
convergence is halved (cf. Theorem 4.31).



86 4 Analysis of Classical Iterations Under Special Structural Conditions

4.7 Application to the Model Problem

4.7.1 Analysis in the Model Case

For the five-point formula of the model problem in §1.2, Criterion 4.24 is always
applicable, since one of the following cases applies:

• Pointwise variants (i.e., D is diagonal):
– For the lexicographical ordering of the indices, A has the form (1.8). The sum
L+ U satisfies the condition (4.25d) of Criterion 4.24.

– For chequer-board ordering, A takes the 2-cyclic form (1.9), so that L + U
fulfils condition (4.25a).

• Blockwise variants (i.e., D is block-diagonal):
– Assume that the rows or columns of the grid constitute the block structure. If

these blocks are ordered lexicographically, L+U shows the block-tridiagonal
structure required in (4.25c).

– In the case of the zebra ordering of the blocks as in Example 4.5, L + U has
a 2-cyclic form and satisfies (4.25a).

Besides property (4.24), Criterion 4.24 also proves that (A,D) is weakly 2-cyclic
in all the cases mentioned above.

Theorem 4.32. Assume the Poisson model problem in §1.2 with step size h .
(a) For both the lexicographical and the chequer-board ordering, the pointwise
Gauss–Seidel iteration has the convergence rate

ρ(MGS) = cos2(πh) = 1 − sin2(πh) = 1 − π2h2 + O(h4). (4.32a)

(b) The row- and column-block-Gauss–Seidel iteration with lexicographical or
zebra ordering has the convergence rate

ρ(MblockGS) = 1 − 8 sin2
πh

2
/
(
1 + 2 sin2

πh

2

)
. (4.32b)

(c) For the pointwise SOR methods with lexicographical or chequer-board ordering,
the optimal relaxation parameter is ωopt = 2/(1 + sin(πh)) = 2 − 2πh+ O(h2),
leading to the convergence rate

ρ(MSOR
ωopt

) = ωopt − 1 = 1 − 2 sin(πh)

1 + sin(πh)
=

1 − sin(πh)

1 + sin(πh)
. (4.33)

(d) For the block-SOR versions corresponding to case (b), the following values
apply: ωopt = 2/

[
1 + 2

√
2 sin(πh/2)/ cos(πh)

]
and

ρ(MblockSOR
ωopt

) = ωopt − 1 = 1 − 4
√
2 sin(πh/2)

cos(πh) + 2
√
2 sin(πh/2)

. (4.34)

Proof. By Conclusion 4.30, ρ(M [block]GS) is the square of ρ(M [block]Jac), de-
scribed in (3.52) and (3.54) for the model problem. Parts (c) and (d) result from
(4.28b,a). ��



4.7 Application to the Model Problem 87

Remark 4.33. The point- and blockwise Gauss–Seidel and SOR iterations de-
scribed in Theorem 4.32 require the following effective amount of work:

Eff(ΦGS) = π−2h−2 + O(1) = 0.101h−2 + O(1),

Eff(ΦblockGS) = 0.7π−2h−2 + O(1) = 0.0709h−2 + O(1),

Eff(ΦSOR) = 0.7π−1h−1 + O(1) = 0.2228h−1 + O(1),

Eff(ΦblockSOR) = 0.9h−1/(
√
2π) + O(1) = 0.2026h−1 + O(1).

(4.35)

Proof. The cost factors CΦ are already represented in (3.22a–c): CGS
Φ = 1,

CblockGS
Φ = CSOR

Φ = 7/5, CblockSOR
Φ = 9/5. The convergence rates (4.32a,b),

(4.33), and (4.34) have the form 1 − Cηh
−τ with the constants

CGS
Φ = π2, CblockGS

Φ = 2π2, τ [block]GS = 2,

CSOR
Φ = π2, CblockSOR

Φ = 2π2, τ [block]SOR = 1

(cf. also (4.31b)). The assertion follows from the representation (2.32d). ��

The numbers in (4.35) indicate, e.g., that the block variants are more effective
than the corresponding pointwise iterations. Although the SOR method is somewhat
more expensive than the Gauss–Seidel iteration, the SOR method is already more
effective than the Gauss–Seidel method if h ≤ 0.7/π ≈ 1/5.

4.7.2 Gauss–Seidel Iteration: Numerical Examples

Table 1.1 contains the results of the lexicographical and chequer-board Gauss–
Seidel method. After showing more favourable values in the beginning, the error
reduction factors εm−1/εm converge for both orderings to ρ(MGS) = cos2( π

32 ) =
0.99039264 (cf. (4.32a)).

lexicographical ordering zebra ordering of the blocks
m u16,16 εm ρm,m−1 u16,16 εm ρm,m−1

5 -0.01926 1.23834 0.939842 -0.01950 1.17160 0.958731
10 -0.03592 1.01501 0.965208 -0.03752 0.95064 0.968133
20 -0.04928 0.76180 0.974912 -0.04015 0.71340 0.976522

100 0.34781 0.15219 0.980968 0.36033 0.14097 0.980690
200 0.47781 0.02229 0.980934 0.47964 0.02046 0.980690
300 0.49677 0.00325 0.980924 0.49703 0.00298 0.980623

Table 4.1 Results of the block-Gauss–Seidel method for N=32.

The next test is con-
cerned with the column-
block structure. Table 4.1
contains the value of the
iterates at the midpoint,
the maximum norm εm =
‖um − uh‖∞, and the
reduction factors ρm,m−1

= εm−1/εm, which in the
examples approximate (almost monotonically increasing) the limit

ρ(MblockGS) = 1 − 8 sin2( π
64 )/
(
1 + 2 sin2( π

64 )
)2

= 0.980923.

Although the lexicographical and zebra orderings yield different iterates xm,
they lead to the same convergence rate.



88 4 Analysis of Classical Iterations Under Special Structural Conditions

4.7.3 SOR Iteration: Numerical Examples

Table 1.2 contains the results of the SOR iteration for the relaxation parameter
ωopt = 2/(1 + sinπh) = 1.821465 which is optimal for the grid size h = 1/32.
The reduction factor that should converge to ωopt − 1 = 0.821465 behaves
very irregularly. In particular, one observes the tendency that in the beginning,
the reduction factors are distinctly worse than the asymptotic convergence rate.
The same observation holds for the block variants reported in Table 4.2 using
the optimal relaxation parameter ωopt = 1.7572848. Because of the irregular be-
haviour of the factors ρm−1,m = εm−1/εm, an additional column with the factors

ρ̄m := (εm−10/εm)
1/10

= (ρm · ρm−1 · ρm−2 · . . . · ρm−9)
1/10

lexicographic ordering zebra ordering of the blocks
m εm ρm−1,m ρ̄m εm ρm−1,m ρ̄m
10 0.6217327 0.9109 0.8954 0.2978516 0.7280 0.8318
20 0.2146420 0.8841 0.7142 0.0279097 0.7847 0.7892
30 0.0146717 0.4890 0.7647 0.0023936 0.7675 0.7822
40 0.0017416 0.8516 0.8081 0.0002034 0.7723 0.7815
50 0.0001095 0.7375 0.7583 0.0000144 0.8078 0.7672
60 0.0000119 0.7585 0.8007 9.6527

10
-7 0.7777 0.7632

70 6.4684
10

-7 0.7814 0.7477 6.8937
10

-8 0.7684 0.7680
80 5.6020

10
-8 0.8006 0.7830 4.8121

10
-9 0.7545 0.7663

90 3.5398
10

-9 0.7565 0.7587 3.092
10

-10 0.7407 0.7600
100 2.269

10
-10 0.7139 0.7598 4.184

10
-11

Table 4.2 Results of the block-SOR iteration for N = 32 with
ω = ωopt.

averaged over 10 values
is presented in Table 4.2.

Since, initially, the con-
vergence speed of the
SOR method is slower, it
is no contradiction when,
as recommended in Meis–
Marcowitz [281, 282] and
verified by examples, ω
is chosen somewhat larger
than ωopt in order to reach
a given error bound as
soon as possible.



Chapter 5

Algebra of Linear Iterations

Abstract Most of the interesting iterative schemes are built from simpler units.
The background is the fact that the set L of consistent linear iterations form an
algebra, i.e., there are several operations defined on L. In this chapter we define
the following operations: Transposition of a linear iteration Φ produces the adjoint
iteration Φ∗. This gives rise to the definition of symmetric and positive definite
iterations in Section 5.1. Damping of a linear iteration Φ by a scalar factor is often
used to enforce convergence (cf. Section 5.2). Addition Φ + Ψ of two linear
iterations is defined in §5.3. Multiplication of two linear iterations leads to the
important construction of the product iteration: Φ, Ψ �→ Φ ◦ Ψ (cf. Section 5.4).
For instance, iterations can be symmetrised (cf. §5.4.2). Secondary iterations are
needed for the solution of auxiliary problems (cf. Section 5.5). Multiplication of
Φ by a left, right, or two-sided transformation is described in Section 5.6. Using
these operations, we can construct new linear iterations.

The following links refer to all interactions of the indicated operations with
other operations.

Adjoint iteration Φ∗. (5.2a–c): iteration matrix and Φ∗∗, Remark 5.19b: damping,
Remark 5.22: addition, Lemma 5.28: product, (5.48b): transformation.

Damping ϑ · Φ. Remark 5.19: adjoint iteration, Remark 5.22: addition, (5.48a):
transformation.

Addition Φ + Ψ . Remark 5.22: adjoint iteration and damping, Exercise 5.27c:
product, (5.48c): transformation.

Multiplication Φ ◦ Ψ . Exercise 5.27: addition, Lemma 5.28: adjoint iteration,
(5.48d): transformation.

Transformations Φ ◦ T , T ◦ Φ. (5.38a–g), (5.43a–g), and (5.47a–g): domain,
normal forms, etc., (5.48a–d): damping, adjoint iteration, addition, product.

89© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_5



90 5 Algebra of Linear Iterations

5.1 Adjoint, Symmetric, and Positive Definite Iterations

In the following, it will be important to express dependence of the matrices M =
MΦ, N = NΦ, W = WΦ on the underlying matrix A ∈ D(Φ) of the system.
Therefore we use the explicit notation MΦ[A], NΦ[A], WΦ[A] introduced in
§2.2.2.

5.1.1 Adjoint Iteration

5.1.1.1 Definition

Let Φ ∈ L be any linear and consistent iteration with the domain D(Φ) ⊂ KI×I :

Φ(x, b, A) = x−NΦ[A](Ax− b)

(note that the mapping A �→ N [A] is defined for all matrices A ∈ D(Φ)). The
adjoint iteration Φ∗ ∈ L is defined on

D(Φ∗) :=
{
A ∈ KI×I : AH ∈ D(Φ)

}
by

Φ∗(x, b, A) := x− (NΦ[A
H])H (Ax− b) . (5.1a)

Obviously, the matrix of the second normal form of Φ∗ is

NΦ∗ [A] = (NΦ[A
H])H. (5.1b)

The iteration matrix is

MΦ∗ [A] = I −NΦ∗ [A]A =
(
I −AHNΦ[A

H]
)H
.

If NΦ∗ [A] is regular, the corresponding matrix of the third normal form is

WΦ∗ [A] = (WΦ[A
H])H.

The definition of Φ∗ implies the following more or less trivial statements:

Φ∗∗ = Φ, (5.2a)

MΦ∗ [A] = A−1(MΦ[A
H])HA for regular A, (5.2b)

ρ(MΦ∗ [A]) = ρ(MΦ[A
H]) . (5.2c)

Because of (5.2c), the convergence of Φ∗(·, ·, A) need not be analysed again
if the convergence behaviour of Φ(·, ·, AH) is known.



5.1 Adjoint, Symmetric, and Positive Definite Iterations 91

5.1.1.2 Application to the Gauss–Seidel and SOR Iterations

We recall the splitting A = D − E − F explained in (1.17) and (3.11a–d). To
express dependence on the matrix A, we write

A = D[A] − E[A] − F [A].

The matrix AH has a corresponding splitting

AH = D[AH] − E[AH] − F [AH].

The comparison with the diagonal, strictly upper and strictly lower triangular parts
of

AH = (D[A] − E[A] − F [A])
H
= D[A]H − E[A]H − F [A]H

proves that

D[AH] = D[A]H, E[AH] = F [A]H, F [AH] = E[A]H.

Provided that the diagonal part D[A] is real, the adjoint Gauss–Seidel iteration is

(ΦGS)∗(x, b, A) = x− (D[AH] − E[AH])−H(Ax− b)

= x− (D[A] − F [A])−1(Ax− b);

i.e., instead of NGS = (D−E)−1 involving the lower triangular matrix, the upper
triangular matrix is used in NGS∗

= (D − F )−1. The iteration matrix is

MGS∗
[A] = I − (D − F )−1A = (D − F )−1E.

On the other hand, (ΦGS)∗ can be generated differently. The Gauss–Seidel
iteration requires some ordering of the indices in I. Using the reverse ordering,
the roles of E and F are interchanged. This proves the following result.

Proposition 5.1. Let ΦGS correspond to a certain ordering of the index set I .
The reverse ordering defines the backward Gauss–Seidel iteration ΦGS

backw .
If D = diag(A) ∈ RI×I , the iterations are related by

(ΦGS)∗ = ΦGS
backw. (5.3)

The algorithmic description of ΦGS
backw uses (3.9) with the second line replaced

with

for i := n downto 1 do x[i] :=

(
b[i] −

∑
j∈I\{i} a[i, j]x[j]

)
/a[i, i];

Remark 5.2. A statement analogous to (5.3) holds for the block-Gauss–Seidel
iteration and the point- and blockwise SOR iterations. In particular, the iteration
matrix of (ΦSOR

ω )∗ is MSOR∗
ω = (D − ωF )−1 {(1 − ω)D + ωE}.



92 5 Algebra of Linear Iterations

5.1.2 Symmetric Iterations

Definition 5.3 (Lsym). Φ ∈ L is called symmetric if

Φ = Φ∗.

The corresponding set of symmetric iterations is denoted by Lsym.

Using the definition of Φ∗, we obtain the characterisation

Φ ∈ Lsym ⇐⇒ N [A] = N [AH]H for all A ∈ D(Φ).

Conclusion 5.4. If Φ∈ Lsym and A∈D(Φ) , then N [A] is Hermitian if A is so:

A = AH =⇒ N [A] = N [A]H. (5.4)

Since a consistent linear iteration satisfiesM = I−NA,we obtain the following
criterion.

Criterion 5.5. Assume that D(Φ) contains only regular matrices; otherwise
redefine D(Φ) by {A∈D(Φ) : A regular}. Φ ∈ Lsym holds if and only if

(M [A]A−1)H =M [AH]A−H.

A particular consequence is

A = AH =⇒ M [A]A−1 = (M [A]A−1)H.

Examples of symmetric iterations are the Richardson iteration with real Θ,
since NRich[A] = ΘI , and the (block-)Jacobi iteration, since

NJac[A] = diag{A}.

The Gauss–Seidel iteration is not symmetric.

Lemma 5.6. If Φ ∈ Lsym and A > 0 (i.e., A positive definite), then N > 0 is a
necessary condition for convergence.

Proof. M = I−NA is similar to I− Â with Â := A1/2NA1/2. If N = NH does
not satisfy N > 0 , Â has a nonpositive eigenvalue so that ρ(M) ≥ 1. ��

Exercise 5.7. Let A > 0 . Φ ∈ Lsym implies that M is A-selfadjoint; i.e.,
〈Mx, y〉A=〈x,My〉A for all x, y, where 〈·, ·〉A is the A-scalar product (C.5b).

The construction of symmetric iterations will be discussed in §5.4.2.



5.1 Adjoint, Symmetric, and Positive Definite Iterations 93

5.1.3 Positive Definite Iterations

The positive definiteness of a linear iteration strengthens the symmetry in (5.4).

Definition 5.8 (Lpos). Φ ∈ L is called positive definite if it is symmetric and
satisfies the implication

A > 0 =⇒ N [A] > 0 for all A ∈ D(Φ).

The positive definite iterations form the set Lpos ⊂ Lsym.

Since N > 0 implies W = N−1 > 0 for the matrix of the third normal form,
the characterisation above is equivalent to

A > 0 =⇒ W [A] > 0 for all A ∈ D(Φ).

The examples of symmetric iterations above can be repeated.

Example 5.9. (a) The Richardson iteration with Θ > 0 is positive definite.
(b) The (block-)Jacobi iteration is positive definite.

Lemma 5.6 yields a simple criterion for the positive definiteness of a symmetric
iteration.

Criterion 5.10. If Φ∈ Lsym converges for all positive definite matrices A∈D(Φ),
it belongs to Lpos .

Convergence properties in the case of A > 0 and N > 0 are already discussed
in §3.5.2. Theorem 6.11 will state that after suitable damping, convergence can be
guaranteed.

There will be cases requiring semidefiniteness as defined below.

Definition 5.11 (Lsemi). Φ ∈ Lsym is called positive semidefinite if it satisfies the
implication

A ≥ 0 ⇒ N [A] ≥ 0 for A ∈ D(Φ).

The set of positive semidefinite iterations is denoted by Lsemi.

Note that Lpos ⊂ Lsemi ⊂ Lsym ⊂ L. Examples of positive semidefinite
iterations are A-orthogonal projections. The term of an (orthogonal) projection
(cf. Definition A.29) is generalised to linear iterations.

Definition 5.12. (a) Φ ∈ L is called a projection if Φ = Φ ◦ Φ, using the product
defined in §5.4.
(b) If, in addition, Φ ∈ Lsym, Φ is called an A-orthogonal projection.



94 5 Algebra of Linear Iterations

Exercise 5.13. Prove: (a) Φ ∈ L is a projection if and only if MN = 0 or,
equivalently, NAN = N hold.
(b) The iteration matrix M of a projection Φ has a spectrum contained in {0, 1}.
σ(M)={1} holds for the A-orthogonal projection Φ=Z defined in Remark 5.22.
σ(M)={0} holds for the direct solution Φ(x, b, A)=A−1b. All other projections
Φ satisfy σ(M) = σ(N) = {0, 1}.
(c) Let A > 0. If Φ ∈ L is an A-orthogonal projection, the matrices A1/2MA−1/2

and A1/2NA1/2 are orthogonal projections.

Finally, we mention another case that also leads to a positive definite matrix.

Definition 5.14 (L>0). Φ(·, ·, A) for A ∈ D(Φ) is called directly positive definite
if

A regular ⇒ N [A]A > 0 . (5.5)

We denote the set of directly positive definite iterations by L>0.

Remark 5.15. (a) Let Φ ∈ Lpos and A > 0 . Then N [A]A > 0 holds if the
matrices N [A] and A commute.
(b) Examples of directly positive definite iterations are the Richardson iteration for
Θ > 0 and A > 0 , and the Jacobi iteration if D and A commute (even the
block-Jacobi iteration satisfies the latter condition for the Poisson model problem).

Φ(·, ·, A) may be directly positive definite for general regular matrices A as the
next example shows.

Example 5.16. An example of an iteration satisfying (5.5) is the choice N [A] :=
AH, i.e., the iteration

Φ(x, b, A) := x−AH(Ax− b) for A ∈ D(Φ) := {A regular} . (5.6)

Regularity of A implies that NA = AHA is positive definite.

Remark 5.17. The damped version of iteration (5.6) is called the Landweber
iteration (cf. Landweber [256]).1 It can be viewed as the Richardson iteration
applied to the system AHAx = AHb. The solution to the minimisation problem
(least squares problem)

min
x

‖Ax− b‖2 (A ∈ KJ×I , x ∈ KI , b ∈ KJ , #J ≥ #I),

is determined by the normal equations AHAx = AHb , provided that the matrix A
has maximal rank (cf. Björck [47]).

Concerning convergence see Remark 5.46.

1 In tomography applications, this iteration is called the simultaneous iterative reconstruction
technique (SIRT).



95

5.1.4 Positive Spectrum of NA

Assume that the matrix A of the system Ax = b and the corresponding matrix
N = N [A] of the second normal form satisfy

σ(NA) ⊂ R+ = {x > 0 : x ∈ R} . (5.7)

Lemma 5.18. Each of the following conditions is sufficient for property (5.7):
(a) Φ(·, ·, A) is directly positive definite, i.e., NA > 0 (cf. (5.5)).
(b) A > 0 and N > 0 (cf. Remark C.7).
(c) Φ is a positive definite iteration applied to A > 0 .

Convergence results based on (5.7) will follow in §6.2.1.

5.2 Damping of Linear Iterations

5.2.1 Definition

Here we discuss the operation

(ϑ, Φ) ∈ K × L �→ Φϑ = ϑ · Φ ∈ L.

The second normal form of Φ ∈ L is

xm+1 = xm −N(Axm − b).

Multiplying N by ϑ ∈ K , we obtain the corresponding damped iteration

xm+1 = xm − ϑN(Axm − b) (ϑ ∈ K). (5.8)

Its usual notation is Φϑ. More explicitly, the matrices Mϑ = I − ϑNA, Nϑ = ϑN ,
Wϑ = 1

ϑW of the normal forms are denoted by

MΦϑ
[A] = I − ϑNΦ[A]A, NΦϑ

[A] = ϑNΦ[A], WΦϑ
[A] = 1

ϑWΦ[A].

The term ‘damped’ holds in a proper sense only for 0 < ϑ < 1. For ϑ = 1, we
regain the original method, whereas for ϑ > 1 the iteration Φϑ is the ‘extrapolated’
version. For simplicity, we use the term ‘damped’ for all ϑ.

Remark 5.19. (a) Damping is associative: ϑ1 ·(ϑ2 ·Φ)=(ϑ1ϑ2)·Φ for ϑ1, ϑ2 ∈ K.
(b) (ϑ · Φ)∗ = ϑ · Φ∗ holds for all ϑ ∈ K.
(c) Symmetry of Φ implies symmetry of ϑ · Φ if and only if ϑ ∈ R.
(d) If Φ ∈ Lpos and ϑ > 0, then ϑ · Φ ∈ Lpos.
(e) If Φ ∈ Lsemi and ϑ ≥ 0, then ϑ · Φ ∈ Lsemi.

5.1 Adjoint, Symmetric, and Positive Definite Iterations



96 5 Algebra of Linear Iterations

The damped iteration can be implemented in two ways.
(i) If the correction xm �→ δ := N(Axm − b) is available (cf. (2.12′)), the standard
iteration xm �→ xm − δ can be replaced with xm �→ xm − ϑ · δ.
(ii) If only the implementation of the complete map x �→ Φ(x, b) is available, the
result of the damped iteration can be obtained from

Φϑ(x, b) := x+ ϑ
[
Φ(x, b) − x

]
= (1 − ϑ)x+ ϑΦ(x, b).

A natural question concerns the optimal damping parameter. Here optimality
might be connected
- with the spectral radius: ϑopt is the minimiser of ρ(Mϑ),
- with a certain norm: ϑopt is the minimiser of ‖Mϑ‖.
- If we have some bound ϕ(ϑ) of these quantities, ϑopt may also be the minimiser
of ϕ(ϑ).

An answer will be given in Theorem 6.7.

5.2.2 Damped Jacobi Iteration

In the case of the Jacobi iteration with NJac=D−1 (cf. (3.7b)), the damped Jacobi
iteration is

xm+1 = xm − ϑD−1(Axm − b) (ϑ ∈ K). (5.9)

Here W [A] = D := diag{A} (pointwise Jacobi) or W [A] = D := blockdiag{A}
(blockwise Jacobi) hold.

The assumption 2D−A > 0 required in Theorem 3.36 can be omitted, provided
that a suitable damping is used. Theorem 6.11 will state that the damped Jacobi
iteration ΦJac

ϑ has the rate

ρ(Mϑ) = ‖Mϑ‖A = ‖Mϑ‖W = max{|1 − ϑλmin| , |1 − ϑλmax|},

and that the choice 0 < ϑ < 2/λmax(D
−1A) ensures convergence, while the

optimal parameter ϑopt = 2
Λ+λ yields ρ(Mϑ) =

Λ−λ
Λ+λ , where λ := λmin(D

−1A)

and Λ := λmax(D
−1A) (cf. Theorem 6.7).

Exercise 5.20. Prove that λmin(D
−1A) ≥ 1

κ(A) =
1

cond2(A) . Hint: ‖D‖2 ≤ ‖A‖2 .
Theorems 6.23 and 6.24 will involve a real matrix

A = A0 + iA1 ∈ RI×I (A0 > 0, AH
1 = A1).

In this context, we remark that

D := diag{A} = diag{A0} > 0

holds since the skew-Hermitian part iA1 of a real matrix has vanishing diagonal
entries.



5.2 Damping of Linear Iterations 97

In the case of the model problem, damping does not improve convergence.
The values λmin and λmax defined in (3.1b,c) lead to λmin(D

−1A) = 4h2λmin

and λmax(D
−1A) = 4h2λmax . Since λmin(D

−1A) + λmax(D
−1A) = 2 , the

optimal ϑopt of Theorem 6.7 is ϑopt = 1; i.e., the undamped Jacobi iteration
is optimal. The fundamental reason is given by Conclusion 4.19: in the weakly
2-cyclic case, ϑ = 1 is optimal.

The damped Jacobi iteration will become important in the context of multigrid
methods (cf. Example 11.32b).

5.2.3 Accelerated SOR

One has tried to dampen (extrapolate) the SOR iteration. The resulting method
ϑ · ΦSOR

ω is called the accelerated overrelaxation (AOR).
Analogously, the modifications SSOR and MSOR defined later in §5.4.3 and

§6.3.3 yield accelerated versions SAOR and MAOR.
Concerning the questionability of iterations with multiple parameters, we recall

Remark 3.6. For more details, we refer to Hadjidimos [211, §5].

5.3 Addition of Linear Iterations

Addition of linear iterations will play an important role for additive Schwarz and
additive multigrid methods (cf. §12.5.3)

Definition 5.21. The sum of Φ, Ψ ∈ L with corresponding matrices NΦ and NΨ

of the second normal form is defined by

(Φ+ Ψ) (x, b) := x− (NΦ +NΨ ) (Ax− b).

Note that (Φ+ Ψ)(x, b) �= Φ(x, b) + Ψ(x, b), but

(Φ+ Ψ) (x, b) = Φ(x, b) + Ψ(x, b) − x.

The underlying idea is that the corrections NΦ(Ax − b) and NΨ (Ax − b) may
have different but complementary properties so that the (weighted) sum of the
corrections is better than each single term.

Remark 5.22. Addition and damping of linear iterations satisfy the distributive
properties

(ϑ1 · Φ) + (ϑ2 · Φ) = (ϑ1 + ϑ2) · Φ ,
ϑ · (Φ+ Ψ) = (ϑ · Φ) + (ϑ · Ψ) .



98 5 Algebra of Linear Iterations

The adjoint operation yields

(Φ+ Ψ)
∗
= Φ∗ + Ψ∗.

The zero element of the addition is the identical iteration Z(x, b, A) := x corre-
sponding to NZ = 0.

Convergence of Φ and Ψ is neither sufficient nor necessary for convergence
of Φ+ Ψ . The sum

(ϑ · Φ) + (ϑ · Φ) = 2ϑ · Φ

of convergent iterations can become divergent, since the scaling parameter leaves
the interval of convergence (see, e.g., (6.5)). On the other hand, sums of diver-
gent iterations may be convergent. We recall that Φi(x, b) := x − Ni(Ax − b) is
divergent if the kernel of Ni is nontrivial (e.g., if Ni is only positive semidefinite).
The next proposition shows that certain sums are convergent.

Proposition 5.23. Let A > 0 and Ni ≥ 0 for 1 ≤ i ≤ k with Γi := ρ(NiA).
For ωi ∈ (0, 2/Γi), define the weighted sum

Φ :=
1

k

k∑
i=1

ωi · Φi,

i.e.,

Φ(x, b) = x− 1

k

k∑
i=1

ωiNi (Ax− b) .

The iteration Φ is convergent if and only if 2

k⋂
i=1

ker(NΦi) = {0}. (5.10)

Proof. Ni ≥ 0 and the definition of Γi imply that 0 ≤ Ni ≤ ΓiA
−1. Summation

yields

0 ≤ NΦ =
1

k

k∑
i=1

ωiNi ≤
(
1

k

k∑
i=1

ωiΓi

)
A−1 < 2A−1.

Convergence holds if and only if 0 ≤ NΦ can be replaced by 0 < NΦ. If (5.10)
is not valid, there is some x �= 0 with x ∈ ker(NΦi) for all 1 ≤ i ≤ k. The
definition of NΦ shows that NΦx = 0; hence Φ is divergent. If (5.10) holds, for
any x �= 0 there exist an index ix with Nixx �= 0 and we obtain

〈NΦx, x〉 = 1

k

k∑
i=1

ωi 〈Nix, x〉︸ ︷︷ ︸
≥0

≥ ωix
k

〈Nixx, x〉 > 0 .

NΦ > 0 proves convergence of Φ. ��

2 ker(A) = {x : Ax = 0} is the kernel of the matrix A .



5.4 Product Iterations 99

5.4 Product Iterations

The following product is the sequential application of two mappings. It is not related
to the product of NΦ and NΨ , but leads to the product of the iteration matrices.

5.4.1 Definition and Properties

Definition 5.24. For Φ, Ψ ∈ L, the product iteration Φ ◦ Ψ is defined by

xm+1 = (Φ ◦ Ψ)(xm, b) := Φ(Ψ(xm, b), b). (5.11)

Special product iterations will be studied, e.g., in §6.

Proposition 5.25. (a) If Φ and Ψ are consistent, then Φ ◦ Ψ is also.3

(b) The iteration matrices of Φ, Ψ, and Φ ◦ Ψ are related by

MΦ◦Ψ =MΦMΨ . (5.12a)

The convergence rates of Φ ◦ Ψ and Ψ ◦ Φ are identical.

(c) Let NΦ, NΨ , and NΦ◦Ψ be the respective matrices of the second normal form
of Φ, Ψ, Φ ◦ Ψ . Then Φ ◦ Ψ is characterised by (5.12b), where the last expression
requires consistency of Φ:

NΦ◦Ψ =MΦNΨ +NΦ = NΦ +NΨ −NΦANΨ . (5.12b)

(d) Let WΦ, WΨ and WΦ◦Ψ be the respective matrices of the third normal form of
Φ, Ψ, Φ ◦Ψ . Assume that NΦ and NΨ are regular. If WΦ −WΨ −A is singular,
Φ ◦ Ψ diverges. Otherwise,

WΦ◦Ψ =WΨ (WΦ +WΨ −A)−1WΦ. (5.12c)

Proof. (a) Inserting the solution xm := x∗ := A−1b into (5.11), we obtain that
(Φ ◦ Ψ)(x∗, b) := Φ(Ψ(x∗, b), b) = Φ(x∗, b) = x∗.

(b) Use Φ(Ψ(x, b), b) = Φ(MΨx + NΨ b, b) = MΦ(MΨx + NΨ b) + NΦb =
MΦMΨx+(MΦNΨ +NΦ)b. The equality ρ(MΦMΨ ) = ρ(MΨMΦ) follows from
Lemma A.20.

(c) The previous part (b) proves that NΦ◦Ψ =MΦNΨ +NΦ. Consistency yields
MΦ = I −NΦA (cf. Theorem 2.11). This proves the last statement in (5.12b).

(d) Regularity of NΦ and NΨ ensures the existence of WΦ = N−1
Φ and WΨ =

N−1
Ψ . From (5.12b), we conclude that NΦ◦Ψ = W−1

Φ +W−1
Ψ − W−1

Φ AW−1
Ψ =

3 The background of this statement is the fact that definition (5.11) also applies to inconsistent
iterations. The definition of L includes the consistency.



100 5 Algebra of Linear Iterations

W−1
Φ (WΦ +WΨ −A)W−1

Ψ . Singularity of WΦ−WΨ −A implies the singularity
of NΦ◦Ψ . According to Corollary 2.17b, Φ ◦ Ψ cannot be convergent. Otherwise
the inversion of NΦ◦Ψ =W−1

Φ (WΦ +WΨ −A)W−1
Ψ yields (5.12c). ��

Remark 5.26. (a) Convergence of the factors Φ and Ψ is neither sufficient nor
necessary for the convergence of Φ ◦ Ψ .
(b) However, a sufficient condition for convergence of Φ ◦ Ψ is that both Φ and Ψ
satisfy the condition (2.20) of Theorem 2.19 with respect to the same norm:

‖MΦ‖ < 1 and ‖MΨ‖ < 1,

where one of the strict inequalities ‘< 1 ’ may be replaced with ‘ ≤ 1 ’.

The last statement is trivial because ‖MΦMΨ‖ ≤ ‖MΦ‖ ‖MΨ‖. Part (a) is
illustrated by two examples.

The first example shows that Φ ◦ Ψ may diverge, although Φ and Ψ converge.

Let A =

[
1 1
1 0

]
. The first iteration Φ is defined via WΦ =

[
1 2
0 −2

]
. The iteration

matrix is MΦ = I − W−1
Φ A =

[
−1/2 −1
1/2 1

]
. Since its eigenvalues are 0 and 1

2 ,

ρ(MΦ) = 1
2 implies convergence. The second iteration Ψ uses WΨ =

[
−2 4
0 1

]
.

The iteration matrix is MΨ =

[
−1/2 1/2

−1 1

]
. Since MΨ =MT

Φ , also ρ(MΨ ) =
1
2

holds; i.e., both Φ and Ψ are convergent. The product iteration Φ ◦ Ψ has the

iteration matrix MΦMΨ = 5
4

[
1 −1

−1 1

]
with the eigenvalues 0 and 5

2 . Hence the

product iteration is divergent.

On the other hand, products of divergent methods may converge. For instance,
the Kaczmarz iteration in §5.6.3 is convergent, although it is the product of divergent
projections.

The algebraic properties of the product operation are the subject of the next
exercise. The adjoint (Φ ◦ Ψ)∗ is investigated in Lemma 5.28. The interaction with
the damping of an iteration will be discussed in §5.4.2.2.

Exercise 5.27. Prove: (a) The unit element of the product operation is the identical
iteration Z defined in Remark 5.22: Φ = Φ ◦ Z = Z ◦ Φ .
(b) The product is associative:

(Φ ◦ Ψ) ◦Ω = Φ ◦ (Ψ ◦Ω) for Φ, Ψ,Ω ∈ L .

(c) The interaction with addition is not distributive. Instead we have

(Φ′ + Φ′′) ◦ Ψ = (Φ′ ◦ Ψ) + (Φ′′ ◦ Ψ) − Ψ ,

Φ ◦ (Ψ ′ + Ψ ′′) = (Φ ◦ Ψ ′) + (Φ ◦ Ψ ′′) − Φ .



5.4 Product Iterations 101

5.4.2 Constructing Symmetric Iterations

5.4.2.1 Definition of Φsym

We shall see that symmetric and, in particular, positive definite iterations offer
computational advantages. On the other hand, important iterations as the Gauss–
Seidel iteration are not symmetric. The product operation ◦ enables a simple
construction of a related symmetric iteration. We recall that the matrices related
to Φ applied to the system Ax = b are denoted by MΦ[A], NΦ[A], and WΦ[A].

A first combination of the mapping Φ �→ Φ∗ and ◦ is the subject of the next
lemma.

Lemma 5.28. The product iteration Φ ◦ Ψ satisfies (Φ ◦ Ψ)∗ = Ψ∗ ◦ Φ∗.

Proof. Let A be any underlying matrix. Definition (5.1a,b) states that (Φ ◦ Ψ)∗ is
characterised by

N(Φ◦Ψ)∗ [A] = (NΦ◦Ψ [AH])H.

The definition of NΦ ◦Ψ [A] in (5.12b) shows that(
NΦ◦Ψ [AH]

)H
=
(
NΦ[A

H] +NΨ [A
H] −NΦ[A

H]AHNΨ [A
H]
)H

= (NΦ[A
H])H + (NΨ [A

H])H −NΨ [A
H]HA(NΦ[A

H])H.

Using again (5.1a,b) and (5.12b), we can continue with(
NΦ◦Ψ [AH]

)H
= (NΦ∗ [A]) + (NΨ∗ [A]) −NΨ∗ [A]ANΦ∗ [A] = NΨ∗◦Φ∗ [A],

and the equations above yield the identity N(Φ◦Ψ)∗ [A] = NΨ∗◦Φ∗ [A] implying
(Φ ◦ Ψ)∗ = Ψ∗ ◦ Φ∗. ��

For each iteration Φ ∈ L, we define the corresponding symmetrised iteration

Φ sym := Φ∗ ◦ Φ . (5.13)

Theorem 5.29. (a) Φsym is a symmetric iteration: Φsym ∈ Lsym.

(b) Let Φ ∈ L be associated with N [A] and W [A]. We use the abbreviations

N = N [A], N ′ := (N [AH])H, and W =W [A], W ′ := (W [AH])H.

Then the matrices associated with Φsym read as follows, provided that the inverses
W = N−1, W ′ = N ′−1, and (W +W ′ −A)−1 exist:

M sym = (I −N ′A)(I −NA) = I −N symA,

N sym = N +N ′ −N ′AN,

W sym =W (W +W ′ −A)−1W ′.



102 5 Algebra of Linear Iterations

(c) If A = AH, then

N ′ = NH, W ′ =WH, N sym = (N sym)H, W sym = (W sym)H,

while
AM sym = (M sym)HA.

Proof. According to Lemma 5.28, (Φsym)∗ = (Φ∗ ◦ Φ)∗ = Φ∗ ◦ Φ∗∗. Property
(5.2a) yields Φ∗ ◦ Φ∗∗ = Φ∗ ◦ Φ = Φsym. The equality (Φsym)∗ = Φsym states
that Φsym is symmetric (cf. Definition 5.3). The parts (b) and (c) are elementary. ��

The same proof applies to the following statement.

Corollary 5.30. Let Ψ ∈ Lsym, while Φ ∈ L is arbitrary. Then also

Φ∗ ◦ Ψ ◦ Φ ∈ Lsym.

5.4.2.2 Combination with Damping

There are three possibilities to use damping in connection with the product iteration.

• We may construct Φsym as above and afterward apply damping to Φsym. The
result is denoted by (Φsym)ϑ := ϑ · Φsym .

• Instead to Φ∗◦Φ, we apply the product to the damped iteration Φϑ. The product
is denoted by (Φϑ)

sym := Φ∗
ϑ ◦ Φϑ .

• We may even combine both approaches by damping the second product resulting
in (Φϑ1

)symϑ2
= ϑ2 · (ϑ1 · Φ)sym.

Note that in general (Φsym)ϑ �= (Φϑ)
sym. In the case of A = AH (cf. Theorem

5.29c), the corresponding matrices of the second and third normal forms are

(N sym)ϑ = ϑ
(
N+NH−NHAN

)
, (W sym)ϑ = 1

ϑW
(
W+WH−A

)−1
WH,

(Nϑ)
sym = ϑ

(
N+NH−ϑNHAN

)
, (Wϑ)

sym = 1
ϑW
(
W+WH−ϑA

)−1
WH.

Here, N and W = N−1 refer to Φ without damping.

Remark 5.31. Let A > 0 and W+WH > 0 be valid. If W+WH>A (cf. (6.10))
does not hold, one can choose a positive factor ϑ bounded by

ϑ < ‖A−1/2(W +WH)A−1/2‖2.

Then W+WH > ϑA holds and implies that (Wϑ)
sym > 0. Hence, (Φϑ)

sym is a
positive definite iteration.



103

5.4.2.3 Practical Implementation

The description of N sym does not mean that the iteration Φsym should be imple-
mented via xm+1 = xm +N sym(Axm − b). In general, it is cheaper to follow the
definition of the product:

xm �→ xm+1/2 := Φ(xm, b) �→ xm+1 := Φ∗(xm+1/2, b). (5.14)

Nevertheless, there may be more efficient implementations of xm �→ xm+1 in
special cases (cf. Remark 6.27).

In particular, it makes no sense to apply the symmetrisation to symmetric
iterations. In these cases Φsym = Φ ◦ Φ =: Φ2 is the twofold application of
Φ. Using (5.14), the only difference is that we ignore every second iterate. The
convergence rate squares, ρ(MΦ2) = ρ(M2

Φ) = ρ(MΦ)
2, while the cost doubles.

The effective work is invariant: Eff(Φ2) = Eff(Φ) (cf. (2.31a)).

5.4.3 Symmetric Gauss–Seidel and SSOR

Since the Gauss–Seidel and SOR are nonsymmetric iterations, their symmetric
versions are of interest:

ΦsymGS := ΦGS
backw ◦ ΦGS, ΦSSOR

ω := ΦbackwSOR
ω ◦ ΦSOR

ω ∈ Lsym. (5.15)

In these definitions we use that ΦGS
backw = (ΦGS)∗ and ΦbackwSOR

ω = (ΦSOR
ω )∗

(cf. Proposition 5.1 and Remark 5.2). The extension of (5.15) to block versions
is obvious, but note that (5.15) holds only for A with D[A] = D[AH] ; i.e., the
diagonal blocks of A must be Hermitian.

The symmetric SOR method defined in (5.15) is abbreviated as SSOR.4 Note that
the SSOR method again depends on the parameter ω .

Convergence statements on the symmetric Gauss–Seidel and SOR iterations will
be given in §6.3.

5.5 Combination with Secondary Iterations

Writing the matrix N of the second normal form as W−1, we see that possibly an
auxiliary problem Wδ = d has to be solved. In the example of §3, the solution is
trivial since either W is diagonal (Jacobi) or a triangular matrix (Gauss–Seidel).
But in the case of the blockwise Jacobi iteration, one has already to solve smaller
systems of the form Aiiδi = d i, where Aii = Dii are the diagonal blocks of A.
In the Poisson model case, Dii is tridiagonal and the exact solution via LU decom-
position is easy, but below we will discuss a more involved problem.

4 In the Soviet literature, the term alternate-triangular method is used (cf. Samarskii–Nikolaev
[330, Chapter 10]).

5.4 Product Iterations



104 5 Algebra of Linear Iterations

5.5.1 First Example for Secondary Iterations

The differential equation

−Δu+ uxy + aux = f in Ω (5.16a)

with the boundary condition (1.1b): u = 0 on Γ = ∂Ω can be discretised, e.g., by
the seven-point formula

1

2
h−2

⎡⎣ −1 −1 0
1 + ah 6 1 − ah

0 −1 −1

⎤⎦u = f (5.16b)

abbreviating the equations

1

2
h−2
[
6u(x, y) − u(x− h, y + h) − u(x, y + h) − u(x, y − h)

− u(x+h, y−h) − (1+ah)u(x−h, y) − (1−ah)u(x+h, y)
]
= f

for (x, y) ∈ Ωh (cf. §1.3.2 and [193, §5.1.4]). As long as |ah| ≤ 1, the matrix A
is an M-matrix. However, note that A is not symmetric, unless a = 0.

Assume that we have already a good solver for the simpler Poisson model
problem related to the five-point formula B = h−2

[
−1

−1
4−1

−1

]
. Using B, we

define the iteration Φ by

xm+1 = xm −B−1(Axm − b). (5.17)

The associated matrices are M = I −B−1A, N = B−1, W = B.
We shall prove in Proposition 7.60 that the iteration Φ converges perfectly (at

least together with an appropriate damping). The rate of convergence as well as the
contraction numbers with respect to ‖·‖A do not deteriorate for h → 0. However,
the good convergence properties are offset by the difficulty in performing the map-
ping d �−→ B−1d required for solving the system Bδ = d. In the given case, this
would in principle be possible since there are direct solvers for the Poisson model
problem (see the last paragraph in §1.5). These solvers, however, do not work for
domains different from rectangles.

One remedy is the approximate solution of the mapping d �−→ B−1d (i.e., of
the equation Bδ = d) by some iterative technique. The iteration Φsec for solving
the auxiliary problem Bδ = d is called the secondary iteration and leads to the
following composed iteration:

composed iteration Φk(·, ·, A): (5.18)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xm �−→ d := Axm − b; (5.18a)
secondary iteration for solving Bδ = d : (5.18b)

set the starting iterate δ0 := 0; (5.18b1)
perform k iteration steps δi−1 �→ δi = Φsec(δi−1, d;B); (5.18b2)

xm+1 := xm − δk. (5.18c)

The iteration Φsec in (5.18b2) may be replaced with semi-iterations (cf. §8).



5.5 Combination with Secondary Iterations 105

The number k of inner iteration steps may depend on m or be constant. The
larger k is, the better the sequences xm from (5.17) and (5.18a–c) coincide. On
the other hand, one would like to choose k as small as possible, since the amount
of work for one (outer) iteration step Φk increases with k. This leads us to the
natural question about the optimal choice of k.

5.5.2 Second Example for Secondary Iterations

Above both iterations Φ and Φsec belong to the same space KI . The next example
uses more than one Φsec

i belonging to smaller vector spaces KIi with Ii � I .
In the case of the block variants of the Jacobi, Gauss–Seidel, or SOR methods,

we have to solve systems for each block. Since in the model case the blocks have
tridiagonal structure, the exact solution is easily and cheaply computable. This is
different for three-dimensional boundary value problems; e.g., for the Poisson
equation −uxx − uyy − uzz = f in the cube Ω = (0, 1)3.

In the two-dimensional case, the rows and columns are the natural block struc-
tures. In the three-dimensional case, we have several possibilities. We may gather
all variables belonging to the varying x- or y- or z-value, while the other coordi-
nates are fixed. Then we obtain (N − 1)

2 one-dimensional blocks of size N −1,
where h = 1/N . Instead, the blocks can be formed plane-wise: all variables corre-
sponding to the point set Ii := {(ih, jh, kh) : 1 ≤ j, k ≤ N−1} form one block.
This yields N − 1 blocks of size (N−1)

2 and defines the yz-plane block struc-
ture. Alternatively, we can use the xy- or xz-planes. Since larger blocks yield better
convergence properties (cf. Theorem 7.13), we may be interested in the plane-block-
SOR variant. Then we have to solve the auxiliary systems Diiδi = d i, where the
matrix Dii corresponding to the diagonal block is a five-point formula. Again we
need a secondary iteration for solving these subsystems.

At first glance, the secondary iteration seems to be expensive, but the submatrices
Dii have an advantageous property. Exercise 5.32 shows that the blocks are strongly
diagonally dominant and have an h-independent condition.
Exercise 5.32. Prove: (a) Discretisation of the three-dimensional Poisson problem,
corresponding to the five-point formula (1.4a) in two dimensions, reads as

h−2 [ 6u(x, y, z) − u(x− h, y, z) − u(x+ h, y, z) − u(x, y − h, z)

− u(x, y + h, z) − u(x, y, z − h) − u(x, y, z + h)] = f(x, y, z).

The plane-wise block structure is defined by blocks of those grid points (x, y, z)
with constant z. The diagonal blocks correspond to the five-point formula

D = h−2

⎡⎣ −1
−1 6 −1

−1

⎤⎦ .
(b) σ(D) ⊂ [2h−2, 10h−2 ], ‖D‖∞ ≤ 10h−2,

∥∥D−1
∥∥
∞ ≤ 1

2h
2, cond∞(D) ≤ 5.

(c) Apply Proposition 7.23 to prove the h-independent rate 2/3 of the Jacobi
iteration applied to the matrix D.



106 5 Algebra of Linear Iterations

5.5.3 Convergence Analysis in the General Case

In the following, we denote the matrix of the third normal form of Φ = ΦA by B
(cf. (5.17)) instead of W . The iteration matrix of ΦA(x, b) = x−B−1(Ax− b) is

MA = I −B−1A. (5.19)

For solving the auxiliary equation Bδ = d, we apply the secondary iteration5 ΦB :

δm+1 = δm − C−1(Bδm − d) =MBδ
m +NBd (5.20)

with the iteration matrix MB = I − C−1B.
In the following, we always apply the secondary iteration in (5.18b) with a

constant value k (otherwise we have to prescribe a suitable stopping criterion).

Lemma 5.33. Let ΦA ∈ L be the iteration for solving Ax = b by (5.17), while
ΦB ∈ L belongs to Bδ = d . The composed iteration Φk defined for fixed k > 0
by (5.18) is a linear and consistent iteration for solving Ax = b. Its iteration
matrix is

Mk = I −
k−1∑
μ=0

Mμ
BNBA (MB , NB in (5.20)). (5.21a)

Consistency of ΦB yields

Mk =MA +Mk
BB

−1A (MA in (5.19)). (5.21b)

The matrix of the second normal form is

Nk = (I −Mk
B)B

−1. (5.21c)

If MB has an eigenvalue λ with λk = 1, the iteration Φk diverges; otherwise,
the matrix of the third normal form (2.12) can be written as

Wk = B(I −Mk
B)

−1. (5.21d)

Proof. According to Theorem 2.14, the iterate δk in (5.18b2) has the representation
δk =
∑k−1

μ=0M
μ
BNBd (note that δ0 =0 and d=Axm−b). This proves (5.21a). The

consistency of ΦB implies that NB = (I −MB)B
−1 (cf. (2.9′′)). The statements

(5.21b–c) can be concluded from
∑k−1

μ=0M
μ
B (I −MB) = I − Mk

B and (5.19).
Wk = N−1

k holds for invertible Nk and proves (5.21d). ��

The representation (5.21b) permits an interpretation of the iteration matrix Mk

as a perturbation of the iteration matrix MA. The contraction number of Φk can be
estimated as follows.

5 For simplicity assume D(ΦA) = {A} and D(ΦB) = {B}.



5.5 Combination with Secondary Iterations 107

Lemma 5.34. Let ΦA, ΦB ∈ L be the iterations in Lemma 5.33. The contraction
numbers of Φk with respect to the spectral norm and, if B or A are also positive
definite, with respect to the norms ‖x‖B = ‖B1/2x‖2 and ‖x‖A = ‖A1/2x‖2 are

‖Mk‖2 ≤ ‖MA‖2 + ‖MB‖k2 ‖B−1A‖2, (5.22a)

‖Mk‖B ≤ ‖MA‖B + ‖MB‖kB ‖B−1/2AB−1/2‖2 (if B > 0), (5.22b)

‖Mk‖A ≤ ‖MA‖A + ‖MB‖kA ‖A1/2B−1A1/2‖2 (if A > 0). (5.22c)

Knowing the spectral radius ρ(MB) is not sufficient for analysing the secondary
iteration because the spectral radius only describes the asymptotic convergence,
whereas here we need precise upper bounds after a fixed number of k iteration steps.
As a remedy, the contraction number of ΦB may be replaced by the numerical radius
r(MB).

Exercise 5.35. Prove: (a) Let ΦA and ΦB be linear and consistent. Then

r(Mk) ≤ r(MA) + 2r(MB)
k‖B−1A‖2 . (5.22d)

(b) The factor ‖B−1A‖2 in (5.22a,d) is bounded by

1 − ‖MA‖2 ≤ ‖B−1A‖2 ≤ 1 + ‖MA‖2 . (5.22e)

The conclusions that we can draw from (5.22a–d) are the subject of the next
statement.

Conclusion 5.36. (a) Let one of the quantities ‖MA‖2 , ‖MA‖B , ‖MA‖A , r(MA)
and the corresponding quantities ‖MB‖2 , ‖MB‖B , ‖MB‖A , r(MB) be smaller
than 1. Then the composed iteration Φk converges for sufficiently large k.
(b) One should choose k sufficiently large, so that the right-hand side of (5.22a) is
of a size comparable with ‖MA‖2, e.g., 1

2 (1 + ‖MA‖2) (similarly for (5.22b–d)).
If ‖MA‖2 ≤ ζ < 1 (ζ independent of h) and ‖MB‖2 = 1 − O(hβ) (β > 0),
the inequality ‖Mk‖2 ≤ (1 + ζ)/2 can be achieved with k = O(h−β). In this
case, the effective amount of work for Φk is also of the order Eff(Φk) = O(h−β).
If, however, ‖MA‖2 = 1 − O(hα) (α > 0), inequality (5.22a) admits only the
unfavourable estimate Eff(Φk) = O(h−α−β).

In particular, (5.22a–d) yields no statement6 ensuring the convergence of Φk for
small k. Since, according to (5.22e), the factor ‖B−1A‖2 attains at best the value
≈1, one needs at least k = O(h−β) iterations to make the right-hand side of (5.22a)
smaller than 1.

Since Φk is again a linear and consistent iteration, Φk may be used as the ba-
sic iteration of a semi-iteration (cf. §8). Another situation arises if k is not fixed
but determined by some stopping criterion, or if a semi-iteration is applied as a
secondary process. In these cases, Φk is nonlinear; hence, the suitability of Φk as
the basic iteration of a semi-iterative method is questionable. For a discussion of
this problem, we refer to Golub–Overton [156] and Axelsson–Vassilevski [18, 19].

6 Under additional conditions (properties similar to M- or H-matrices) Frommer–Szyld [143]
prove convergence for all k as in the symmetric case discussed in §5.5.4.



108 5 Algebra of Linear Iterations

5.5.4 Analysis in the Positive Definite Case

In the following, let ΦA and ΦB be positive definite iterations. Assume that the
matrices in (5.19) and (5.20) satisfy

A > 0, B > 0, C > 0. (5.23a)

Lemma 5.37. Assume (5.23a). The iteration ΦB converges if and only if

0 < B < 2C. (5.23b)

Under this assumption, the composed iteration Φk defined in (5.18) is also positive
definite for all k ∈ N.

Proof. According to (5.21c), Φk has the first normal form

xm+1 =Mkx
m +Nkb with Nk = (I −Mk

B)B
−1.

We have to show Wk > 0 for the matrix of the third normal form of Φk:

Wk(x
m − xm+1) = Axm − b. (5.24a)

By Remark 3.34a, (5.23b) is equivalent to the convergence of ΦB . ρ(MB) < 1

implies that I − Mk
B is regular; hence, the matrix Wk = N−1

k = B(I − Mk
B)

−1

exists. The representation

MB = I − C−1B = B−1/2(I −B1/2C−1B1/2)B1/2

proves the symmetry of

Wk = B1/2 [I − (I −B1/2C−1B1/2)k]−1B1/2 =WH
k . (5.24b)

Since ρ(MB) < 1 implies −I < I − B1/2C−1B1/2 < 1, this inequality, together
with [I−(I−B1/2C−1B1/2)k] > 0 (because of k > 0), yields positive definiteness
of Wk,

Wk > 0

and of Φk. ��

It is not true that convergence of ΦA and ΦB implies convergence of Φk, but
convergence can always be achieved by a suitable damping. In the following, we
assume the inequalities

γB ≤ A ≤ ΓB with 0 < γ ≤ Γ, (5.25a)
δC ≤ B ≤ ΔC with 0 < δ ≤ Δ (5.25b)

The spectrum of B1/2C−1B1/2 lies in [δ,Δ] (cf. (C.3b,e)), and therefore we obtain
σ(I−B1/2C−1B1/2) ⊂ [1−Δ, 1− δ]. The spectrum of I− (I−B1/2C−1B1/2)k



5.5 Combination with Secondary Iterations 109

is contained in the interval [β, β̄] with

β :=

{
1 − (1 − δ)

k for odd k,
1 − max{(1 −Δ)

k
, (1 − δ)

k} for even k,

β̄ :=

{
1 − (1 −Δ)

k for odd k or Δ < 1,
1 for even k or Δ ≥ 1.

(5.25c)

Equation (5.24b) proves that

βWk ≤ B ≤ β̄ Wk.

By (5.25a) we obtain the following lemma.

Lemma 5.38. The inclusions (5.25a,b) imply (5.26) for Wk in (5.24a):

γkWk ≤ A ≤ ΓkWk with γk := γβ, Γk := Γ β̄. (5.26)

Let δ, Δ, γ, Γ be the optimal bounds in (5.25a,b). Then (5.27) holds:

κ
(
W−1

k A
)
=
Γk
γk

=
Γ

γ

β̄

β
=
β̄

β
κ
(
B−1A

)
. (5.27)

Analysing the iteration ΦB separately, we obtain the optimal damping parameter

ΘB = 2/(δ +Δ) (cf. (3.25)). (5.28)

The matrix of the third normal form of the damped iteration ΦB,ΘB
is

Θ−1
B C instead of C and leads to the bounds δΘB and ΔΘB instead of δ and Δ.

This scaling changes the ratio β̄/β. The next exercise discusses the factor ΘB

minimising the spectral condition number (5.27).

Exercise 5.39. Prove that (a) for even k, the parameter ΘB in (5.28) yields the
optimal spectral condition number (5.27). For odd k, however, the minimum of
κ(W−1

k A) is attained at a value of ΘB in the open interval

1/Δ < ΘB < 2/(δ +Δ).

(b) For k = 1, κ(W−1
1 A) = κ(B−1A)κ(C−1B) holds independently of ΘB .

(c) For k = 3, the optimal value is

ΘB = 3/[ δ +Δ+
√
Δ (Δ− δ) + δ2 ].

Since, in the case of an odd k �= 3, the optimal ΘB is not explicitly described,
in the following we always use (5.28).

An analysis of multiple secondary iterations similar to the example in §5.5.2 will
be given in Remark 12.27.



110 5 Algebra of Linear Iterations

5.5.5 Estimate of the Amount of Work

An important question concerns the number k of secondary iterations: for which k
is the effective amount of work of Φk as favourable as possible. A trivial statement
is given next.

Remark 5.40. The effective amount of work Eff(Φk) is minimal for some finite k
because Eff(Φk) = O(k) for k → ∞.

Proof. 2CA + 1 operations are needed for (5.18a) and (5.18c) (concerning CA, see
§2.3.1). Let CB be the amount of work for one secondary iteration step. Then the
cost factor for Φk is

Ck = C ′ + kC ′′ with C ′ := 2 + 1/CA, C ′′ := CB/CA. (5.29)

Ck increases for k → ∞ as O(k), while at best the convergence rate of Φk tends
to that of ΦA. ��

We assume that κ := κ(C−1B) = Δ/δ � 1 holds for the spectral condi-
tion number corresponding to the method ΦB (i.e., ΦB is not a very fast iteration).
Furthermore, let ΦB be already optimally damped, i.e., ΘB = 2/(δ +Δ) = 1 (cf.
(5.28)). Then

−(1 −Δ) = 1 − δ =
κ− 1

κ+ 1
= 1 − 1

κ
+ O(κ−2)

proves that

(1 − δ)k = 1 − k
κ + O

((
k
κ

)2)
, (1 −Δ)k = (−1)k(1 − δ)k.

From (5.25c) we obtain the following expansion for k ≤ κ:

β̄

β
=

{
κ/k + O(1) for odd k,
κ/ (2k) + O(1) for even k.

(5.30a)

First, we consider the case in which Φk serves as a (stationary) iterative method.
Then the convergence rate

ρ(Φk) =
κ(W−1

k A) − 1

κ(W−1
k A) + 1

≈ 1 − 2

κ(W−1
k A)

= 1 − 2
γβ

Γ β̄
≈ 1 − 2αk (5.30b)

holds for optimal damping (cf. (5.28)) with α= γ
kΓ for odd and α= 2γ

kΓ for even k.
From − log ρ(Φk) ≈ 2αk and (5.29), we obtain

Eff(Φk) ≈ C ′ + kC ′′

2αk
=

1
kC

′ + C ′′

2α
.



5.5 Combination with Secondary Iterations 111

Conclusion 5.41. Initially, the effective amount of work of the iterative method Φk

decreases with k until, for k ≈ κ, the asymptotic representations (5.30a,b) lose
their validity. Because of the better value β̄/β one should prefer even numbers k .

A different situation arises when the (positive definite) iteration Φk is used as the
basic iteration of the Chebyshev method (see §8.3.4), since then the asymptotic rate
is given by (8.32a) instead of (5.30b). According to (8.36), the expansion

Effsemi-it(Φk) ≈
[
1
2 (C

′ + kC ′′) + 3
CA

]√
Γ
γ

β̄
β ≈

1
2 (C

′ + kC ′′) + 3
CA√

αk
(5.30c)

holds with the same α as in (5.30b).

Conclusion 5.42. The semi-iterative effective amount of work (5.30c) becomes
minimal for the even number k next to the value k0 in (5.30d):

k0 =

(
C ′

2
+

3

CA

)
/
C ′′

2
=

(
C ′ +

6

CA

)
/C ′′ =

(
2 +

7

CA

)
/C ′′. (5.30d)

Since k0 < 3 is realistic, k = 2 is the optimum.

5.5.6 Numerical Examples

m ‖xm − x‖2 ρm,m−1

1 3.0610-2 4.09310-2
2 3.7910-3 1.23910-1
3 9.8010-4 2.58210-1
4 3.4010-4 3.47310-1
5 1.3310-4 3.92710-1
6 5.9010-5 4.41510-1
7 2.6110-5 4.42710-1
8 1.1910-5 4.55710-1
9 5.5310-6 4.64010-1
10 2.5610-6 4.64010-1

m ‖xm − x‖2 ρm,m−1

1 2.7810-2 3.62810-2
2 4.3610-3 1.56510-1
3 1.5710-4 3.61110-1
4 6.6810-4 4.24310-1
5 2.9010-4 4.34010-1
6 1.3210-5 4.57610-1
7 5.9910-5 4.51210-1
8 2.7310-5 4.56810-1
9 1.2510-6 4.56610-1
10 5.7310-6 4.58110-1

Table 5.1 Φ4 for h = 1/32 (left) and h = 1/64 (right).

We solve the introductory exam-
ple (5.16b) for a = 1 by choos-
ing B as the matrix of the Pois-
son model problem. The solution
of the auxiliary equationBδ = d
is approximated by the ADI
method (see §8.5) with the cycle
length 4 = 2p (p = 2), where
k=4 is also chosen in (5.18b2).
Note that the ADI method is not
directly applicable to the original
problem sinceA is not a five-point matrix and not symmetric. The composed method
Φ4 is performed without damping for h = 1/32 and 1/64. The exact solution is
again

u = x2 + y2 for f = 2x− 4 in (5.16a).

The results for the different step widths show a rate of ≈ 0.46. Note, however,
that one Φ4 step consists of k = 4 ADI steps. Therefore, 0.461/4 = 0.82 gives
a better idea of the rate. The reader may determine the effective amount of work.
Table 5.1 contains the Euclidean norm of the errors ‖xm − x‖2 (m: number of
outer iterations Φk for k = 4) and their ratios

ρm,m−1 = ‖xm − x‖2/‖xm−1 − x‖2 .



112 5 Algebra of Linear Iterations

5.6 Transformations

A general method producing linear iterations are transformations. In particular,
any consistent linear iteration can be obtained by a suitable transformation applied
to the Richardson iteration. More precisely, the left-transformation, the right-
transformation, and the both-sided transformation can be distinguished.

Transformations are also called preconditioners when they improve the iteration.

5.6.1 Left Transformation

5.6.1.1 Definitions

The system of equations
Ax = b (5.31)

can be transferred by multiplying from the left by a regular matrix T� into the
equivalent system

T�Ax = T� b. (5.32)

We may regard (5.32) as a new system of equations:

Âx = b̂ with Â := T�A, b̂ := T� b,

to which we now apply iterative methods. Here, two approaches are imaginable.
The naive approach computes Â and b̂ by T�A and T�b and uses these quanti-

ties instead of A and b. If T� is a diagonal matrix, the transition to (5.32) means
that the equations in (5.31) are suitably scaled. Otherwise, this approach may be
unfavourable compared with the next approach.

Again, dependence on the system matrix A is denoted explicitly by

Φ(x, b, A), N [A], W [A], etc.

Applying the iteration

xm+1 = Φ(xm, b, A) = xm −N [A](Axm − b) = xm −W [A]−1(Axm − b)

to (Â, b̂) instead of (A, b), we obtain

xm+1 = xm −N [Â](Âxm − b̂) = xm −W [Â]−1(Âxm − b̂). (5.33)

The definition of Â and b̂ yields the representation Âxm − b̂ = T� (Ax
m − b).

Hence, (5.33) can be rewritten as

xm+1 = Φ̂(xm, b, A) = xm −N [T�A]T� (Ax
m − b) (5.34)

and defines a new iteration Φ̂ ∈ L .



5.6 Transformations 113

Remark 5.43. To perform the iteration (5.34), one needs
(i) computing the defect d := Ax− b (using the original quantities A, b),
(ii) multiplying T� by a vector,
(iii) a method for solving W [T�A]δ = d or the explicit multiplication by N [T�A].

Note that we do not need the matrix Â = T�A when we proceed according
to Remark 5.43. Â appears only indirectly in W [T�A]. If, for instance, the Jacobi
method is the underlying iteration Φ, one has only to evaluate the diagonal entries
of Â = T�A since W [T�A] = diag{T�A}.

Defining

N̂ [A] := N [T�A]T� , Ŵ [A] := T−1
� W [T�A] , (5.35)

we generate a new iterative method Φ̂ by A �→ N̂ [A] which is identical to (5.34):

xm+1 = xm − N̂ [A] (Axm − b).

This shows that the left transformation T� by (5.35) is able to generate a new itera-
tion Φ̂ from Φ, which we denote by

Φ̂ = Φ ◦ T� (5.36)

to express that we apply the iteration Φ after transforming the system by T�.

5.6.1.2 Examples

Proposition 5.44. Any Φ ∈ L can be regarded as the Richardson iteration with
Θ = 1 applied to the transformed system

Âx = b̂ with Â := NA, b̂ := Nb,

where N = NΦ[A] is the matrix of the second normal form of Φ(·, ·, A). With the
notation introduced above, this statement can be reformulated as

Φ = ΦRich
1 ◦NΦ .

One advantage of generating iterations Φ̂ by transformations is that no new
convergence analysis is necessary, provided that the convergence of Φ(·, ·, T�A)
is known.

Remark 5.45. Let Φ̂ = Φ ◦ T�. The convergence properties of Φ̂ (applied to the
matrix A) are identical to those of Φ applied to T�A. Care is only advisable for the
interpretation of convergence statements with respect to a norm depending on A
(e.g., the energy norm7).

7 A positive definite matrix A becomes T�A after the transformation. If T�A is not positive
definite, ‖·‖T�A

is meaningless and does not define a norm.



114 5 Algebra of Linear Iterations

For the purpose of illustration, we choose the left transformation by T� = AH.
Then, (5.34) becomes

xm+1 = xm −N [AHA]AH(Axm − b). (5.37a)

Since AHA is positive definite for regular A, almost all methods mentioned above
can be applied to AHA. The Richardson iteration is characterised byNRich

Θ [AHA] =
ΘI . Choosing the Richardson iteration with the optimal damping factor

Θopt =
2

λmax + λmin
with

{
λmax := λmax(A

HA) = ‖A‖22 ,
λmin := λmin(A

HA) = ‖A−1‖−2
2 ,

we obtain the Landweber iteration (cf. Remark 5.17):

xm+1 = xm −ΘoptA
H(Axm − b). (5.37b)

For the new method (5.37b), we draw the following conclusion from the conver-
gence properties of the Richardson method (cf. §3.5.1).

Remark 5.46. The Landweber iteration ΦLandw
Θopt

= ΦRich
Θopt

◦ AH defined by (5.37b)
converges for all regular matrices A with the rate

ρ(I −ΘoptA
HA) =

λmax − λmin

λmax + λmin
=

cond2(A)
2 − 1

cond2(A)2 + 1
.

5.6.1.3 Rules for the Left Transformation

The following statements are easy to check or already stated. The standard assump-
tion is that T� be regular. Nevertheless, most of the statements remain valid for
singular T�. Then the resulting matrix NΦ◦T�

is also singular so that the inverse
WΦ◦T�

= N−1
Φ◦T�

does not exist. Therefore all statements involving WΦ◦T�
have to

be omitted for singular T�.

Proposition 5.47. If Φ ∈ L, also Φ ◦ T� ∈ L. The left transformation satisfies the
following rules:

D(Φ ◦ T�) =
{
A ∈ KI×I : T�A ∈ D(Φ)

}
, (5.38a)

NΦ◦T�
[A] = NΦ[T�A]T� , (5.38b)

WΦ◦T�
[A] = T−1

� WΦ[T�A] , (5.38c)
MΦ◦T�

[A] = I −NΦ◦T�
[A]A =MΦ[T�A] , (5.38d)

ρ(MΦ◦T�
[A]) = ρ(MΦ[T�A]) , (5.38e)

(Φ ◦ T1) ◦ T2 = Φ ◦ (T1T2) , (5.38f)

Ψ = Φ ◦ T� ⇐⇒ Φ = Ψ ◦ T−1
� . (5.38g)

The neutral element is the identity matrix: T� = I .



5.6 Transformations 115

5.6.2 Right Transformation

5.6.2.1 Definitions

The unknown vector x ∈ KI in Ax = b can be substituted by

x = Tr x̂ , (5.39)

where Tr is a regular matrix. Inserting (5.39) into Ax = b, we obtain the right-
sided transformed equation

ATr x̂ = b.

First, we discuss the naive approach: compute the matrix Â in

Â x̂ = b with Â := ATr (5.40)

in a preliminary phase and then apply a linear iteration directly to (5.40). Finally,
we obtain x = Tr x̂ from the (approximation of the) solution x̂ by (5.39).

Applying Φ ∈ L to the system (5.40), we can rewrite the iteration Φ(·, ·, Â) as

x̂m+1 = x̂m −NΦ[ATr] (ATrx̂
m − b).

Introducing

xm := Tr x̂
m,

we obtain the iteration

xm+1 = xm − TrNΦ[ATr] (Ax
m − b). (5.41)

This is a newly generated iteration Φ̂ for solving the original equation Ax = b with
the following matrices of the second and third normal forms:

N̂ [A] := TrN [ATr], Ŵ [A] :=W [ATr]T
−1
r .

In analogy to (5.36), Φ̂ is denoted by

Φ̂ = Tr ◦ Φ.

5.6.2.2 Examples

Remark 5.48. The convergence rate of Φ̂ = Tr ◦ Φ applied to the matrix A is
identical to the convergence rate of Φ applied to ATr . Convergence properties of
Φ referring to a norm of em = xm − x carry over to the corresponding properties
of Φ̂ with respect to the norm of T−1

r em = T−1
r (xm − x).



116 5 Algebra of Linear Iterations

The analogue to (5.37a) is the right transformation Tr = AH, leading to

xm+1 = xm −AHN [AAH](Axm − b) (5.42)

Choosing the Richardson method Φ = ΦRich so that NRich
Θ [AAH] = ΘI , the

product Φ̂ = AH ◦ Φ generates again the method (5.37b).8

More generally, (5.42) proves the following statement.

Remark 5.49. Let the matrix A be regular, choose Tr = AH and set Φ̂ = Tr ◦ Φ.
If Φ ∈ Lsym, then MΦ̂ =MH

Φ̂
. If Φ ∈ Lpos, then Φ̂ ∈ L>0 holds, i.e., NΦ̂A > 0.

5.6.2.3 Rules for the Right Transformation

The analogue of Proposition 5.47 reads as follows.

Proposition 5.50. If Φ ∈ L, also Tr ◦ Φ ∈ L. The right transformation satisfies
the following rules:

D(Tr ◦ Φ) =
{
A ∈ KI×I : ATr ∈ D(Φ)

}
, (5.43a)

NTr◦Φ[A] = TrNΦ[ATr] , (5.43b)

WTr◦Φ[A] =WΦ[ATr]T
−1
r , (5.43c)

MTr◦Φ[A] = I −NTr◦Φ[A]A = TrMΦ[ATr]T
−1
r , (5.43d)

ρ(MTr◦Φ[A]) = ρ(MΦ[ATr]) , (5.43e)
T2 ◦ (T1 ◦ Φ) = (T2 T1) ◦ Φ , (5.43f)

Ψ = Tr ◦ Φ ⇐⇒ Φ = T−1
r ◦ Ψ . (5.43g)

Note that (5.43d) is a bit different from (5.38d), but the similarity transformation
by Tr does not change the statement (5.43e).

5.6.3 Kaczmarz Iteration

In 1937, Kaczmarz [230]9 described an iteration for which he could prove conver-
gence for all regular matrices A .

5.6.3.1 Original Formulation

In the original formulation, the projections

8 The optimal value of Θopt in NRich
Θ [AAH] depends on the extreme eigenvalues of AAH (cf.

Theorem 3.23). Because of σ(AAH) = σ(AHA) according to Theorem A.10, the same Θopt

holds for NRich
Θ [AHA].

9 An English translation of the original German paper can be found in [231].



5.6 Transformations 117

x �−→ Pi(x, b) := x− ai 〈Ax− b, ei〉 / 〈ai,ai〉 (1 ≤ i ≤ n) (5.44)

onto the hyperplanes {x ∈ KI : 〈Ax− b, ei〉 = 0} are used, where ei is the
i-th unit vector and ai = AHei the transposed i-th row of the matrix A. Using
〈Aai, ei〉 =

〈
ai, A

Hei
〉
= 〈ai,ai〉, one learns that x′ = Pi(x, b) lies in the plane

〈Ax− b, ei〉 = 0. On the other hand, Pi describes a linear iteration, which is a
projection in the sense of Definition 5.12. The complete iteration is the product of
all projections in the succession i = 1, .., n:

ΦKacz := Pn ◦ Pn−1 ◦ . . . ◦ P1.

We note that Kaczmarz’ method admits interesting applications to overdeter-
mined systems of equations (cf. Tanabe [361]). The Kaczmarz method is also
applied to problems from tomography and is then termed the algebraic recon-
struction technique and abbreviated as ART (cf. Natterer [287, §V.3–4]). However,
note that in the latter application one is not at all interested in the solution of the
(normal) equation since the underlying problems are ill-posed.10 Few iteration steps
of the method are used as a kind of filter.

5.6.3.2 Interpretation as Gauss–Seidel Iteration

The right transformation Tr = AH generates the system

AAHx̂ = b (5.45)

for x̂ with x = AHx̂. Using the x̂ variables, we can rewrite the projection (5.44)
as x̂ = A−Hx �−→ P̂i(x̂, b) with

P̂i(x̂, b) := A−HPi(A
Hx̂, b) = x̂− ei

〈
AAHx̂− b, ei

〉
/ 〈ai,ai〉 ,

sinceA−Hai = A−HAHei = ei. P̂i is the projection onto
〈
AAHx̂− b, ei

〉
= 0, i.e.,

x̂ �→ x̂′ := P̂i(x̂, b) yields the solution of the scalar equation (AAHx̂)i = bi with re-
spect to x̂i. Therefore, performing x̂ �→ P̂i(x̂, b) for i = 1, ..., n executes the Gauss–
Seidel method for the system (5.45). The denominators 〈ai,ai〉 =

〈
AAHei, ei

〉
represent the diagonal entries of AAH. Hence, the following lemma is proved.

Lemma 5.51. The Kaczmarz iteration for solving Ax = b coincides with the
Gauss–Seidel iteration for AAHx̂ = b:

ΦKacz = AH ◦ ΦGS ∈ L>0.

10 This fact implies that here the theory of iterative methods (concerning converge and convergence
speed) does not matter. Instead, xm has to satisfy a certain ‘smoothness property’. Therefore one
is looking for some xm with still enough smoothness and not too large residual error Axm − b.



118 5 Algebra of Linear Iterations

SinceAAH is positive definite for regularA, the theorem of Ostrowski (Theorem
3.41) yields convergence.

Theorem 5.52. The Kaczmarz method converges for all regular A.

To obtain a quantitative statement, one has to determine and estimate the con-
stants γ and Γ in (3.46a,b) for the decomposition AAH = D − E − F .

Exercise 5.53. Instead of the right transformation, one may also choose a left one by
T�=A

H. Prove that one step of the Gauss–Seidel iteration applied to AHAx=AHb
has the form

for i := 1 to n do x := x− ei 〈Ax− b,ai〉 / 〈ai,ai〉 ,

m ‖em‖2 ρm,m−1 m ‖em‖2 ρm,m−1

10 0.465 0.984542 10 0.624 0.993655
30 0.371 0.990501 30 0.575 0.996921
50 0.309 0.991074 50 0.546 0.997806
70 0.258 0.990876 70 0.525 0.998272
80 0.235 0.990790 80 0.517 0.998434
90 0.214 0.990728 90 0.509 0.998564
100 0.195 0.990687 100 0.502 0.998671

Table 5.2 Results of the Kaczmarz iteration for
the Poisson model case for h = 1/8 (left) and
h = 1/16 (right).

where, different from (5.44), ai repre-
sents the i-th column of A: ai := Aei.

5.6.3.3 Numerical Examples

The convergence rates for the Poisson
model case are given in Table 5.2. The
ratios ρm,m−1 behave as 1− (αh)4 with
2.5 ≤ α ≤ 3. The convergence order
τ = 4 makes the Kaczmarz method
very unattractive.

5.6.4 Cimmoni Iteration

In 1938, Cimmoni [97] described the following iteration (see also Benzi [41]):

Φ(x, b, A) := x− ϑAHD−1 (Ax− b) with

D := diag{(AAH)ii/μi : i ∈ I}, ϑ := 2 /
∑
i∈I

μi,

where μi > 0 are some weights. For simplicity, we set μi := 1 and obtain the
damping factor ϑ = 2/#I in

Φ(x, b, A) := x− ϑAHD−1 (Ax− b) with D := diag{AAH}.

Remark 5.54. Cimmoni’s iteration is closely related to the damped Jacobi
iteration applied to AAH. In fact, ΦCimm

ϑ = AH ◦ ΦJac
ϑ ∈ L>0 holds. The iter-

ation matrix MCimm
ϑ [A] = I − ϑAHD−1A is similar to

A−HMCimm
ϑ [A]AH = I − ϑD−1AAH =MJac

ϑ [AAH].



5.6 Transformations 119

Proposition 5.55. Cimmoni’s iteration converges for the original choice of ϑ= 2
#I .

Proof. Let ai be the i-th row of A (column of AH). ThenD = diag{‖ai‖22 : i ∈ I}
can be written as D = Λ2 with Λ = diag{‖ai‖2}. Note that AHD−1A = BHB
with B = Λ−1A. The rows of B are bi = ai/ ‖ai‖2 so that ‖bi‖2 = 1.

Let x ∈ KI be normed: ‖x‖2 = 1, and set y := Bx. The components of y are
the Euclidean scalar products yi = 〈bi, x〉 so that |yi| ≤ ‖bi‖2 ‖x‖2 = 1. Hence
‖y‖22 ≤ #I follows. Since x with ‖x‖2 = 1 is arbitrary, ‖B‖2 ≤

√
#I is proved.

Assume that there is some x with ‖Bx‖2 =
√
#I and ‖x‖2 = 1. The previous

proof shows that |yi| = 1 must hold for all i ∈ I. However, the Schwarz inequality
only holds with an equal sign if all bi are multiples of x. This is a contradiction to
the regularity of A and B. Hence, ‖B‖2 <

√
#I is proved.

λmax(D
−1AHA) = λmax(A

HD−1A) = ‖BHB‖2 ≤ ‖B‖22 < #I implies that
ϑ = 2/#I satisfies the convergence condition (6.9): 0 < ϑ < 2/λmax for the
damped Jacobi iteration. ��

5.6.5 Two-Sided Transformation

5.6.5.1 Definition and Properties

Applying transformations by T� from the left and Tr from the right, we obtain the
two-sided transformed iteration Φ̂ = Tr ◦ Φ ◦ T� generated by

N̂ [A] := TrN [T�ATr]T�, (5.46)

xm+1 = xm − TrN [T�ATr]T� (Ax
m − b).

Exercise 5.56. Prove that (Tr ◦ Φ) ◦ T� = Tr ◦ (Φ ◦ T�).

Concerning convergence properties of Tr ◦ Φ ◦ T�, the same statements apply
as for Tr ◦ Φ in Remark 5.48.

One-sided transformations often destroy the symmetry of the underlying itera-
tion Φ. Choosing two-sided transformations satisfying Tr = TH

� , we can save this
property.

Proposition 5.57. (a) If Φ ∈ Lsym, then also TH ◦ Φ ◦ T ∈ Lsym.

(b) Let Φ ∈ Lpos and T be regular. Then TH ◦ Φ ◦ T ∈ Lpos also holds.

Proof. The matrix of the second normal form of Φ̂ := TH ◦ Φ ◦ T is

N̂ [A] = THN [TATH]T.

Concerning the symmetry for Φ̂ we have to show that N̂ [A] = N̂ [AH]H. Note that



120 5 Algebra of Linear Iterations

N̂ [AH]H =
(
THN [TAHTH]T

)H
= THN [TAHTH]H T = THN

[
(TATH)H

]H
T.

Symmetry of Φ implies that N [(TATH)H]H = N [TATH]; hence(
THN [TAHTH]T

)H
= THN [

(
TATH

)
]T = N̂ [A]

proves the symmetry of Φ̂.
Assume A > 0. Since the transformation T� is regular, TATH > 0 also holds

(cf. (C.3a)). Positive definiteness of Φ implies N [
(
TATH

)
] > 0. Applying (C.3a)

again, we obtain N̂ [A] > 0, i.e., Φ̂ is positive definite. ��

For completeness, we list the properties of the two-sided transformation corre-
sponding to Propositions 5.47 and 5.50 including the new results of Proposition
5.57.

Proposition 5.58. If Φ ∈ L , also Φ̂ := Tr ◦ Φ ◦ T� ∈ L . The two-sided trans-
formation satisfies the following rules:

D(Tr ◦ Φ ◦ T�) =
{
A ∈ KI×I : T�ATr ∈ D(Φ)

}
, (5.47a)

NΦ̂[A] = TrNΦ[T�ATr]T� , (5.47b)

WΦ̂[A] = T−1
� WΦ[T�ATr]T

−1
r , (5.47c)

MΦ̂[A] = I −NΦ̂[A]A = TrMΦ[T�ATr]T
−1
r , (5.47d)

ρ(MΦ̂[A]) = ρ(MΦ[T�ATr]), (5.47e)
T ′
2 ◦ (T ′

1 ◦ Φ ◦ T ′′
1 ) ◦ T ′′

2 = (T ′
2 T

′
1) ◦ Φ ◦ (T ′′

1 T
′′
2 ) , (5.47f)

Ψ = Tr ◦ Φ ◦ T� ⇐⇒ Φ = T−1
r ◦ Ψ ◦ T−1

� . (5.47g)

The combination with the other algebraic operations are listed below:

ϑ · (Tr ◦ Φ ◦ T�) = Tr ◦ (ϑ · Φ) ◦ T�, (5.48a)

(Tr ◦ Φ ◦ T�)∗ = TH
� ◦ Φ∗ ◦ TH

r , (5.48b)
Tr ◦ (Φ+ Ψ) ◦ T� = (Tr ◦ Φ ◦ T�) + (Tr ◦ Ψ ◦ T�) , (5.48c)
Tr ◦ (Φ ◦ Ψ) ◦ T� = (Tr ◦ Φ ◦ T�) ◦ (Tr ◦ Ψ ◦ T�) . (5.48d)

5.6.5.2 Invariance of Iterations

Definition 5.59. (a) Φ ∈ L is called invariant with respect to a left transformation
T� if

Φ ◦ T� = Φ.

Analogously, Φ is invariant with respect to a right transformation Tr if Tr ◦Φ=Φ.
(b) Φ ∈ L is called diagonally left-invariant if Φ ◦ T� = Φ holds for all diagonal
matrices T� . The diagonally right-invariant iterations are defined analogously.



5.6 Transformations 121

The diagonal (left- or right-) invariance is of practical importance. Several prop-
erties of the matrix A depend on a suitable scaling of A. If the vectors x and b
of the system contain physical quantities of different nature, their values depend
on the choice of physical units. Replacing millimetre by kilometre, we change
the scaling of a part of x or b by a factor of 106. Such a scaling changes the
condition of the matrix. As the simplest example consider the matrix A = I with
cond(I) = 1. Scaling of A = I by a diagonal matrix D = diag{di : i ∈ I}
yieldsD with cond(D) = maxi{di}/min{di} which can become arbitrarily large.
In several cases, an unfavourable scaling may have a very negative effect.

A suitable scaling is already a problem for the Gauss elimination since for a
wrong scaling the column pivot choice may fail. A possible remedy might be an
equilibration, i.e., the matrix is rescaled such that the entries are similar in size (cf.
van der Sluis [369] and Skeel [342]).

Such difficulties do not occur if the linear iteration is diagonally invariant. In the
case of a diagonal left-invariance, the results xm do not change when Ax = b is
replaced by DAx = Db for some diagonal matrix D. If the iteration is diagonally
right-invariant, a scaling A �→ AD does not influence the iterates.

Next, we need the Hadamard product A � B of two matrices which is defined
by the entries (A�B)ij = AijBij (i, j ∈ I).

Lemma 5.60. (a) Φ is invariant with respect to a left transformation T� if and only
if

WΦ[T�A] = T�WΦ[A] .

(b) Φ is invariant with respect to a right transformation Tr if and only if

WΦ[ATr] =WΦ[A]Tr .

(c) Assume that WΦ[A] = X �A for some X ∈ KI×I . Then Φ is diagonally left-
and right-invariant.

(d) Let both Φ and Ψ be invariant with respect to a left transformation T�. Then
ϑ ·Φ, Φ+Ψ and Φ ◦Ψ also have this property. The analogous statement holds for
the right transformation.

(e) If Φ is invariant with respect to a left transformation T, then Φ∗ is invariant with
respect to a right transformation TH. Vice versa, if Φ is invariant with respect to a
right transformation T, then Φ∗ is invariant with respect to a left transformation TH.

(f) If Φ is diagonally left- and right-invariant, then Φ∗ is also.

Proof. The parts (a) and (b) follow from (5.47c). Concerning (c), note that
X � (D′AD′′) = D′ (X �A)D′′ holds for diagonal matrices D′, D′′. Part (d)
is trivial. The definition of WΦ∗ proves part (e). Part (f) follows from part (e). ��

Typically, the matrix X in Lemma 5.60c has entries being either 1 or 0.
If, e.g., Xij = 1 holds only for the diagonal entries i = j, then X�A = diag{A}
defines W Jac[A]. In the case of Gauss–Seidel, Xij = 1 holds only for j ≥ i.



122 5 Algebra of Linear Iterations

Conclusion 5.61. The Jacobi, Gauss–Seidel, SOR, the symmetric Gauss–Seidel,
and the SSOR iterations are diagonally left- and right-invariant.

Proof. Concerning the Jacobi, Gauss–Seidel, SOR iterations, use Lemma 5.60c.
The adjoint versions (backward Gauss–Seidel and SOR) share the same property
because of Lemma 5.60f. The symmetric counterparts inherit the invariance because
of Lemma 5.60d. ��

Exercise 5.62. Generalise the diagonal invariance to the case of block-diagonal
matrices and show that Conclusion 5.61 can be generalised to the respective block
versions of the iterations.

5.6.6 Similarity Transformation

In many cases, A and N = N [A] are positive definite, but not the product NA.
As a consequence, NA and the iteration matrix M = I − NA are not even
symmetric. At least for theoretical considerations it would be advantageous to apply
a similarity transformation M �→ ST (M) := TMT−1 with either T = A1/2 or
T =W 1/2 = N−1/2. If A,N > 0, the latter transformations yield ST (M) > 0.

M̌ := ST (M) is the iteration matrix of the linear iteration

x̌m+1 = M̌ x̌m + Ňb = x̌m − Ň(Ǎx̌m − b) (5.49)

= x̌m − W̌−1(Ǎx̌m − b) with

M̌ = TMT−1, Ň = TN, W̌ =WT−1, Ǎ = AT−1.

T = A1/2 yields ŇǍ = A1/2NA1/2 > 0, while T = N−1/2 produces ŇǍ =
N1/2AN1/2 > 0. Indirectly the iterates x̌m define the sequence {xm} with

xm = T−1x̌m.

In contrast to the previous transformation, the iteration (5.49) does not produce the
solution x of Ax = b but—in the case of convergence—the solution x̌ of Ǎx̌ = b.

As emphasised above, the iteration (5.49) is used for theoretical purpose for an
intermediate formulation (as, e.g., in §5.6.2.1). If one really wants to perform (5.49)
with a transformation as T = W 1/2 in order to obtain a positive definite matrix
ŇǍ = W 1/2NAW−1/2 = W−1/2AW−1/2, one should generalise the definition
of a square root.

Exercise 5.63. Any factorisation of W > 0 into W = V HV induces the transfor-
mation by T = V . Prove that VNAV −1 is positive definite. A particular exam-
ple of W = V HV is Cholesky decomposition (cf. Quarteroni–Sacco–Saleri [314,
§3.4.2]).



Chapter 6

Analysis of Positive Definite Iterations

Abstract This chapter gathers convergence statements about iterations satisfying
suitable requirements connected with positive definiteness. Section 6.1 enumerates
six cases which are analysed in Section 6.2. In several cases, convergence holds
for a suitably damped version of the iteration. Of particular interest are symmetric
and positive definite iterations constructed in the previous chapter. In Section 6.3
we analyse traditional symmetric iterative methods: the symmetric Gauss–Seidel
iteration and the symmetric SOR method, abbreviated by SSOR. The conver-
gence properties of SSOR are investigated in §§6.3.1–6.3.2, while modifications are
described in §§6.3.3–6.3.4. Finally, in §6.3.5, numerical examples illustrate the
convergence behaviour.

6.1 Different Cases of Positivity

We distinguish six cases of positivity. Consider any Φ ∈ L and denote the corre-
sponding matrices by

M =M [A], N = N [A], W =W [A].

• Case 1: positive spectrum of NA.

The weakest condition considered in this chapter is a positive spectrum of NA :

σ(NA) ⊂ (0,∞). (6.1a)

• Case 2: directly positive definite iterations Φ ∈ L>0.

Positive definiteness appears in two versions. For directly positive definite itera-
tions (cf. Definition 5.14) we have

NA > 0 . (6.1b)

Note that in this case no conditions on A are required except for regularity.

123© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_6



124 6 Analysis of Positive Definite Iterations

• Case 3: positive definite iterations Φ ∈ Lpos.

The standard situation is the case of an positive definite iteration (cf. Definition
5.8). Application to a positive definite matrix A yields

A > 0, N > 0, W > 0. (6.1c)

Simple conclusions concerning the iteration matrix M are gathered in the next
remark.

Remark 6.1. (a) Each condition in (6.1a–c) implies that σ(M) ⊂ (−∞, 1).
(b) In the case of (6.1b), M is Hermitian and satisfies M < I .

The positive definite matrices in (6.1b,c) induce the corresponding vector and
matrix norms ‖·‖X for X ∈ {NA,A,N,W} as defined in (C.5a,d).

Remark 6.2. Assume that convergence holds. (a) Then each of the conditions
(6.1a–c) implies σ(M) ⊂ (−1, 1).
(b) In the case of (6.1b), the convergence is monotone with respect to the Euclidean
norm ‖·‖ and the norms ‖·‖NA and ‖·‖(NA)−1 . The identities σ(M) = ‖M‖ =

‖M‖NA = ‖M‖(NA)−1 hold.
(c) In the case of (6.1c), the convergence is monotone with respect to the norms
‖·‖A and ‖·‖W , and σ(M) = ‖M‖A = ‖M‖W holds.

Exercise 6.3. Assume (6.1c). The energy scalar product 〈·, ·〉A is defined in (C.5b).
Prove that M is symmetric with respect to 〈·, ·〉A, i.e., 〈Mx, y〉A = 〈x,My〉A, and
that this statement is equivalent to M = A−1MHA.

Let A > 0. The symmetry with respect to 〈·, ·〉A can be transferred to the usual
symmetry by the following similarity transformation: M̂ = M̂H holds for

M̂ := A1/2MA−1/2 = I −A1/2NA1/2 = I −A1/2 W−1A1/2. (6.2a)

Similarly, W > 0 induces the similarity transformation

M̌ :=W 1/2MW−1/2 = I −W−1/2AW−1/2 = I −N1/2AN1/2. (6.2b)

The statement of Remark 6.2c can be expressed by

ρ(M) = ρ(M̂) = ‖M̂‖2 = ‖M‖A , (6.2c)

ρ(M) = ρ(M̌) = ‖M̌‖2 = ‖M‖W . (6.2d)

The proof follows from (A.6c) and (B.21b).



6.1 Different Cases of Positivity 125

• Case 4: positive definite W +WH.

The positive definiteness of W can be generalised to

W +WH > A > 0.

The weaker condition
W +WH > 0

will also be discussed, i.e., the Hermitian part of W is positive definite. An equiva-
lent condition is

N +NH > 0.

• Case 5: symmetrised iteration Φ sym ∈ Lsym.

We recall the construction of a symmetric iteration Φ sym = Φ∗ ◦Φ described in
§5.4.2. Theorem 5.29 states that A = AH leads to the matrices

M sym = (I −NHA)(I −NA) = I −N symA,

N sym = N +NH −NHAN, (6.3)

W sym =W (W +WH −A)−1WH

with N and W belonging to Φ, while the Hermitian matrices M sym, N sym, and
W sym are associated with Φ sym.

• Case 6: perturbed positive definite A.

A non-Hermitian matrixA may be split intoA = A0+iA1 with positive definite
A0 := 1

2 (A+AH) (cf. (3.27)). If A1 is small in a suitable sense, A can be regarded
as a perturbation of the positive definite matrix A0.

6.2 Convergence Analysis

6.2.1 Case 1: Positive Spectrum

We assume (6.1a): σ(NA) ⊂ (0,∞). Sufficient conditions for (6.1a) are given in
Lemma 5.18.

In §3.5.1, convergence of the Richardson iteration is investigated under the
condition σ(A) ⊂ (0,∞). Using Proposition 5.44, we can transfer the results in
§3.5.1 to NA. The quantities Θ and A in Lemma 3.21 and in Theorems 3.22, 3.23
have to be replaced with ϑ and NA. The matrices corresponding to the damped
iteration Φϑ are denoted by Mϑ = I − ϑNA, Nϑ = ϑN , and Wϑ = N−1

ϑ .

Lemma 6.4. Assume that σ(NA) ⊂ R and denote the extreme eigenvalues of NA
by λmin and λmax. Then the spectrum of the iteration matrix Mϑ is real for any
ϑ ∈ R, i.e., σ(Mϑ) ⊂ R . The spectral radius is characterised by

ρ(Mϑ) = max{|1 − ϑλmin| , |1 − ϑλmax|} for all ϑ ∈ R. (6.4)



126 6 Analysis of Positive Definite Iterations

Exercise 6.5. Characterise ρ(Mϑ) under the above assumptions for complex ϑ.

Theorem 6.6. Assume that condition (6.1a) holds and let λmax(NA) be the
maximal eigenvalue of NA. Then, for real ϑ, the damped iteration Φϑ converges
if and only if

0 < ϑ < 2/λmax(NA). (6.5)

The convergence rate is described by (6.4).

Theorem 6.7 (optimal ϑ). Under the assumptions of Theorem 6.6, the optimal
convergence rate of Φϑ is attained for

ϑopt =
2

λmax + λmin
with ρ(Mϑopt) =

λmax − λmin

λmax + λmin
=
κ(NA) − 1

κ(NA) + 1
. (6.6a)

κ(NA) = λmax/λmin is the spectral condition number of NA (cf. (B.13)). For
large κ(NA) � 1, the asymptotic behaviour is

κ(NA) − 1

κ(NA) + 1
= 1 − 2

κ(NA)
+ O
(
κ(NA)−2

)
. (6.6b)

The expression 1−2/κ has to be compared with the rate 1 − 1/κ for iterations
with σ(M) ⊂ [0, 1).

Remark 6.8. Assume (6.1a) and σ(M) ⊂ [0,∞). The optimal scaling factor ϑ
satisfying σ(Mϑ) ⊂ [ 0, 1) is ϑ+ = 1/λmax. The corresponding rate is ρ(Mϑ+) =
1 − 1

κ(NA) .

For a complex spectrum ofNA, compare with Exercise 3.26 and Theorem 3.27.

6.2.2 Case 2: Positive Definite NA

Theorem 6.9. Assume NA > 0 and ϑ ∈ R . Then iteration (5.8) converges if and
only if

0 < ϑ < 2/ ‖NA‖2 .

The convergence is monotone with respect to the Euclidean norm ‖·‖2 and the
energy norm ‖·‖NA. Furthermore, the convergence rate and the contraction number
coincide:

ρ(Mϑ) = ‖Mϑ‖2 = ‖Mϑ‖NA.

The optimal convergence rate (6.6a) can be expressed as a function of the condition
number κ(NA) = cond2(NA):

ρ(Mϑopt
) =

κ(NA) − 1

κ(NA) + 1
for ϑopt =

2

λmax(NA) + λmin(NA)
. (6.7)

Proof. Use the results in §6.2.1, λmax(NA) = ‖NA‖2 , and Remark 6.2b. ��



6.2 Convergence Analysis 127

6.2.3 Case 3: Positive Definite Iteration

Now we assume (6.1c). This case is already treated by Theorem 3.34. Since the
proof is still missing, we repeat the statements in short. Note that (6.8a) describes a
sufficient and necessary condition for convergence.

Theorem 6.10. Let (6.1c) be valid. Then, for 0 ≤ λ ≤ Λ , the following equivalence
relations hold:

2W > A > 0 ⇐⇒ ρ(M) < 1, (6.8a)
0 < λW ≤ A ≤ ΛW ⇐⇒ σ(M) ⊂ [1 − Λ, 1 − λ ], (6.8b)
0 ≤ λW < A < ΛW ⇐⇒ σ(M) ⊂ (1 − Λ, 1 − λ), (6.8c)

W ≥ A > 0 ⇐⇒ σ(M) ⊂ [0, 1). (6.8d)

Proof. Using the matrix M̂ in (6.2a), σ(M) = σ(M̂) allows us to reformulate
σ(M̂) ⊂ [1 − Λ, 1 − λ] as

(1 − Λ) I ≤ M̂ = I −A1/2NA1/2 ≤ (1 − λ) I

(cf. (C.3e)). Applying (C.3b′) with C := A−1/2, we get the equivalent inequalities

(1 − Λ)A−1 ≤ A−1 −N ≤ (1 − λ)A−1.

The left inequality yields −ΛA−1 ≤ −N ⇔ ΛA−1 ≥ N . Applying (C.3g), we
arrive at 1

ΛA ≤ N−1 = W, i.e., A ≤ ΛW. The proof of λW ≤ A is analogous.
This proves (6.8b). Replacing ‘ ≤ ’ with ‘< ’, we obtain (6.8c). The implications
(6.8a,d) follow for special values of λ and Λ. ��

Denote the iteration defined by the matrices (6.1c) by Φ. Below we discuss the
damped iteration Φϑ. Theorems 6.6 and 6.7 and (6.2c,d) yield the following result.

Theorem 6.11. Assume (6.1c). The damped iteration Φϑ defined by (5.8) converges
if and only if ϑ satisfies

0 < ϑ < 2/λmax with

λmax := ‖N1/2AN1/2‖2 = ‖A1/2NA1/2‖2 = ρ(NA).
(6.9)

An equivalent formulation of condition (6.9) using W = N−1 is

0 < ϑA < 2W.

The convergence rate (even for general ϑ ∈ C) is

ρ(Mϑ) = ‖Mϑ‖A = ‖Mϑ‖W = max{|1 − ϑλmin| , |1 − ϑλmax|},

where λmin is the minimal eigenvalue of NA . The optimal value of ϑ minimising
ρ(Mϑ) is ϑopt in (6.7).

Corollary 6.12. (a) If A > 0 and N < 0 (⇔ W < 0), then Φϑ converges if and
only if 0 > ϑ > 2/ρ(NA).
(b) If A>0, N=NH, and neither N>0 nor N<0 , Φϑ diverges for all ϑ ∈ C.



128 6 Analysis of Positive Definite Iterations

6.2.4 Case 4: Positive Definite W+W H or N+NH

First, we assume
W +WH > A > 0. (6.10)

The first part of the next theorem coincides with Theorem 3.35.

Theorem 6.13. Under condition (6.10), the iteration converges monotonically with
respect to the energy norm:

ρ(M) ≤ ‖M‖A < 1 for M = I −W−1A.

W+WH > A is also necessary for ‖M‖A < 1 (but even without condition (6.10),
ρ(M) < 1 is possible).

Proof. Assume that W+WH − A has a nonpositive eigenvalue. Then, by (3.37),
M̂HM̂ = I − A1/2WH(W + WH − A)WA1/2 has an eigenvalue ≥ 1 implying
‖M‖A ≥ 1. ��

Next, we assume

W +WH > 0 and A > 0.

To regain inequality (6.10), we have to apply a suitable damping, since Φϑ is
associated with Wϑ = 1

ϑW. For instance, the choice

ϑ <
λmin(W +WH)

λmax(A)
(6.11)

ensures that Wϑ +WH
ϑ > A > 0.

Exercise 6.14. The sharper estimate ϑ < λmin

(
A−1/2

(
W +WH

)
A−1/2

)
also

implies Wϑ +WH
ϑ > A > 0.

Remark 6.15. Theorem 6.13 proves that Φϑ with ϑ in (6.11) is convergent. The
convergence is monotone with respect to the energy norm: ‖Mϑ‖A = ‖M̂ϑ‖2 =

ρ(M̂H
ϑ M̂ϑ)

1/2 (M̂ϑ as in (6.2a)).

Optimising the damping factor ϑ leads us to the quadratic inequality

ϑ
(
W +WH

)
≥ ϑ2A+ αWHAW, α = α(ϑ) > 0. (6.12)

For each sufficiently small ϑ > 0, there is a maximal α(ϑ) satisfying (6.12). ϑopt
is the maximiser of α(ϑ).

Theorem 6.16. Let Φϑ satisfy (6.12). Then Φϑ converges with the contraction
number

‖Mϑ‖A =
√
1 − α .

Proof. Repeat the estimate of M̂H
ϑ M̂ϑ in (3.37) and use (6.12). ��



6.2 Convergence Analysis 129

The assumption N + NH > 0 does not yield new results because of the next
lemma, but in concrete cases the matrix N + NH may be easier to analyse than
W +WH.

Lemma 6.17. N +NH > 0 and W +WH > 0 are equivalent.

Proof. N +NH > 0 ⇔ WH
(
N +NH

)
W =W +WH > 0 by (C.3a). ��

Remark 6.18. Assume N +NH > 0 . With a suitable scaling, Nϑ satisfies

Nϑ +NH
ϑ > N

H
ϑANϑ

which is equivalent to Wϑ+W
H
ϑ > A > 0 and allows applying Theorem 6.13.

The estimate
Nϑ +NH

ϑ −NH
ϑANϑ ≥ αA

is equivalent to (6.12).

6.2.5 Case 5: Symmetrised Iteration Φ sym

Below we use the notation defined in (6.3). In particular, M sym and M are the
respective iteration matrices of Φ sym = Φ∗◦ Φ and Φ.

Remark 6.19. Assume A > 0. Then

σ(M sym) = ‖M̂ sym‖2 = ‖M sym‖A ⊂ [0,∞)

holds, where M̂ sym = A1/2M symA−1/2 > 0. The connection to the iteration Φ
is given by

σ(M sym) = ‖M‖2A = ‖M̂‖22 (M̂ := A1/2MA−1/2). (6.13)

If Φ sym converges, the convergence is monotone with respect to the energy norm
‖ · ‖A, and σ(M sym) ⊂ [0, 1) holds.

Proof. Use M̂ sym = M̂HM̂ ≥ 0 with M̂ = A1/2MA−1/2 and the similarity of
M sym and M̂ sym. ��

Equation (6.13) yields the following important conclusion. In general, the
condition ‖M‖A < 1 (monotone convergence with respect to the energy norm)
is only sufficient for convergence. Because of the next statement this is even a
necessary condition for Φ sym. Therefore estimates of ‖M‖A become important.

Conclusion 6.20. Φ sym = Φ∗ ◦ Φ converges if and only if Φ is monotonically
converging with respect to the energy norm, i.e., ‖MΦ‖A < 1.



130 6 Analysis of Positive Definite Iterations

The construction of Φ sym = Φ∗ ◦ Φ in §5.4.2 ensures that A > 0 im-
plies N sym = (N sym)H. N sym is Hermitian, but not necessarily positive definite.
By Corollary 6.12b, convergence of the damped version of Φ sym requires either
N sym > 0 or N sym < 0. The second case is completely nonstandard. Since
N sym = N +NH −NHAN (cf. (6.3)), the condition N sym > 0 is equivalent to
the identical conditions N + NH > NHAN and W+WH > A > 0 in Remark
6.18. As stated in Remark 6.18, these inequalities can be guaranteed by a suitable
scaling if N +NH > 0 or equivalently W +WH > 0 .

Next, we investigate the properties of (Φϑ)
sym = Φ∗

ϑ ◦ Φϑ. For a proof, use
Remark 6.19.

Proposition 6.21. Assume A>0. Let M, N, W and Mϑ, Nϑ, Wϑ be the matrices
associated with Φ and the damped iteration Φϑ, while Mϑ,sym, Nϑ,sym, Wϑ,sym

are those of (Φϑ)
sym = Φ∗

ϑ ◦ Φϑ.

(a) Positive definite case N + NH > 0 : For a suitable scaling factor ϑ > 0 ,
Wϑ+W

H
ϑ >A holds and (Φϑ)

sym converges. SinceNϑ,sym=Nϑ+N
H
ϑ −NH

ϑANϑ,
the statements of Remark 6.18 apply. In the convergent case, the transformed
iteration matrix M̂ϑ,sym := A1/2Mϑ,symA−1/2 satisfies

0 ≤ M̂ϑ,sym < I ,

and (Φϑ)
sym is a positive definite iteration.

(b) Negative definite case N +NH < 0 : A negative ϑ leads us back to case (a).

(c) Otherwise, (Φϑ)
sym diverges for any choice of ϑ.

Let ϑ be a suitable scaling of Φ so that Wϑ +WH
ϑ > A holds. Rename Φϑ,

Mϑ, Nϑ,Wϑ, (Φϑ)
sym by Φ,MΦ, NΦ,WΦ, Φsym. The statements of Remark 6.19,

together with the convergence criterion WΦ +WH
Φ > A > 0, yield the next result.

Theorem 6.22. Assume that

WΦ +WH
Φ > A > 0.

Then the symmetrised iteration Φsym := Φ∗ ◦ Φ converges monotonically:

ρ(MΦsym) = ‖MΦ‖2A < 1. (6.14)

Moreover the spectrum is nonnegative:

σ(MΦsym) ⊂ [0, ρ(MΦsym)] ⊂ [0, 1).

Proof. For the last equality combine (6.13) in the form σ(MΦsym)⊂ [0, ρ(MΦsym)]
with (6.14). ��

Since σ(MΦsym) ⊂ [0, 1) holds, Remark 6.8 shows that the convergence rate
can be improved by damping (extrapolation).



6.2 Convergence Analysis 131

Concerning the contraction number with respect to the energy norm, Φ and
Φsym behave the same: Φsym consists of two iteration steps and yields the same
bound ‖MΦ‖2A as two steps of Φ. However, concerning the convergence rate, the
symmetric iteration performs worse. While ρ(MΦ) may be strictly smaller than
‖MΦ‖A (cf. Remark 6.15), ρ(MΦsym) is equal to ‖MΦ‖2A ; i.e., the inequality

ρ(MΦsym) ≥ ρ(MΦ)
2

holds and may possibly be a strict inequality.
When assessing Φsym and Φ only with regard to convergence speed, Φ should

be preferred. The advantage of Φsym will be seen in connection with Krylov
methods. Another advantage is the possibility to perform Φsym with less cost than
two steps of Φ (cf. Remark 6.27).

6.2.6 Case 6: Perturbed Positive Definite Case

The next generalisation splits A into A0 + iA1 according to (3.27). The condition
A > 0 is weakened by A0 > 0.

Theorem 6.23. Assume that A = A0 + iA1 according to (3.27) satisfies A0 > 0 .
Let W = N [A]−1 > 0 hold for the matrix of the third normal form of Φ(·, ·, A).
The optimal constants 0 < λ ≤ Λ and τ ≥ 0 in

λW ≤ A0 ≤ ΛW, −τW ≤ A1 ≤ τW (6.15)

are λ = λmin(NA0), Λ = λmax(NA0), and τ := ρ(NA1). Then the damped
iteration (5.8) converges for

0 < ϑ <
2λ

λΛ+ τ2

monotonically with respect to the norm ‖·‖W :

ρ(Mϑ) ≤ ‖Mϑ‖W ≤ 1

2
ϑ(Λ− λ) +

√[
1 − 1

2Θ (Λ+ λ)
]2

+Θ2τ2 < 1.

The optimal ϑ can be determined as in (3.31c).

Proof. Mϑ is similar to M := N−1/2MϑN
1/2 = I − ϑN1/2AN1/2. M can

be regarded as the iteration matrix of the Richardson method for Θ := ϑ and
A′ := N1/2AN1/2 instead of A. The splitting A = A0 + iA1 induces the
splitting A′ = A′

0 + iA′
1 with the Hermitian matrices

A′
0 = N1/2A0N

1/2, A′
1 = N1/2A1N

1/2.

The inequalities (3.30a,b) applied to A′ are equivalent to (6.15). The estimate
(3.31b) following from Theorem 3.30 refers to the iteration matrix M and reads
as ‖M‖2 = ‖W 1/2MϑW

−1/2‖2 = ‖Mϑ‖W . ��



132 6 Analysis of Positive Definite Iterations

The counterpart of Theorem 3.31 reads as follows.
Theorem 6.24. Under the assumption (3.30a,b), the estimate

ρ(Mϑ) ≤ rϑ :=
√
ϑ2τ2 +max {|1 − ϑλ| , |1 − ϑΛ|}

holds for the damped iteration (5.8) with λ and Λ as in Theorem 6.23. The
convergence is ensured in the form rϑ < 1 if

0 < ϑ < ϑ with ϑ :=

{
2Λ/
(
Λ2 + τ2

)
if τ2 < λΛ ,

2λ /
(
Λ2 + τ2

)
if τ2 ≥ λΛ .

rϑ is minimal for ϑ′ := min{ λ
λ2+τ2 ,

2
λ+Λ}. Moreover, the norm estimate (6.16)

holds:
‖(Mϑ)

m‖W ≤ 2rmϑ (m ≥ 0). (6.16)

Exercise 6.25. Reformulate Corollary 3.32 for the damped iteration (5.8).

In the case of a matrix NA = C0 + iC1 decomposed into a Hermitian part
C0 := (NA+ AHNH)/2 and a skew-Hermitian part C1 := (NA− AHNH)/(2i),
we can apply the counterparts of Theorems 3.28, 3.30, 3.31 and Corollaries 3.32,
3.33 to get similar results as above.

6.3 Symmetric Gauss–Seidel Iteration and SSOR

The symmetric Gauss–Seidel method ΦsymGS = ΦGS
backw ◦ ΦGS ∈ Lsym and the

symmetric SOR method (SSOR) ΦSSOR
ω = ΦbackwSOR

ω ◦ ΦSOR
ω ∈ Lsym are

defined in §5.4.3. In 1955, the SSOR method is first described by Sheldon [339].
Since ΦSOR

1 = ΦGS (cf. Proposition 3.13c), the symmetric Gauss–Seidel
iteration also satisfies ΦsymGS = ΦSSOR

1 . Therefore the symmetric Gauss–Seidel
method does not require a separate analysis.

6.3.1 The Case A > 0

Theorem 6.26. Let A be positive definite. The symmetric SOR method ΦSSOR
ω

converges for 0 < ω < 2 with

ρ(MSSOR
ω ) = ‖MSOR

ω ‖2A < 1, where MSSOR
ω =MbackwSOR

ω MSOR
ω

(cf. Remark 5.2 and (3.15b)). The spectrum σ(MSSOR
ω ) is contained in [0, 1).

ΦSSOR
ω diverges for all real ω /∈ (0, 2) . The same statements hold for the block-

SSOR version.

Proof. Combine the result of Theorem 3.41 (Ostrowski) with Theorem 6.22.
Concerning ω /∈ (0, 2) use ρ(MSSOR

ω ) = ‖MSOR
ω ‖2A ≥ ρ(MSOR

ω )2 and (3.41). ��



6.3 Symmetric Gauss–Seidel Iteration and SSOR 133

The amount of work required by the symmetric SOR iteration seems to be twice
as large as that for the original SOR method, since one SSOR step consists of two
SOR steps (cf. (5.14)). However, this disadvantage can be overcome.

Remark 6.27 (Niethammer [292, 293]). The SSOR iteration requires essentially
the same amount of work as the SOR method if one tolerates additional storage
needed for an auxiliary vector. The cost factor (cf. §2.3) amounts to

CSSOR
Φ = CSOR

Φ + 5/CA = 2 + 6/CA

for an optimal implementation instead of 2CSOR
Φ = 4 + 2/CA for the naive

implementation (5.14).

Proof. The first SSOR half-step xm �−→ xm+1/2 can be rewritten as

xm+1/2 = xm + ω
(
Lxm+1/2 − xm + Uxm +D−1b

)
(6.17a)

(cf. (3.15f)). The second backward SOR step

xm+1 = xm+1/2 + ω
(
Uxm+1 − xm+1/2 + Lxm+1/2 +D−1b

)
(6.17b)

contains the term Lxm+1/2 which is already evaluated in (6.17a). Analogously,
the term Uxm+1 computed in (6.17b) can be used in the following half-step:

xm+3/2 = xm+1 + ω
(
Lxm+3/2 − xm+1 + Uxm+1 +D−1b

)
.

On the average, one SSOR step requires one evaluation of Lx and Ux . ��

The statements of Theorem 3.44 can be translated into the following statement
about the SSOR method.

Theorem 6.28. Let A = D−E−EH > 0 and 0 < ω < 2 . Furthermore, assume
that there are constants γ > 0 and Γ with (6.18a,b) (cf. (3.46a,b)):

0 < γD ≤ A , (6.18a)(
1

2
D − E

)
D−1

(
1

2
D − EH

)
≤ 1

4
ΓA . (6.18b)

Then the following estimate holds:

ρ(MSSOR
ω ) = ‖MSSOR

ω ‖A ≤ 1 − 2Ω
Ω2

γ +Ω + Γ
4

with Ω :=
2 − ω

2ω
. (6.18c)

For ω′ = 2/(1 +
√
γΓ ) , the bound in (6.18c) becomes a minimum:

ρ(MSSOR
ω ) ≤

√
Γ − √

γ√
Γ +

√
γ
=

1 −
√
γ/Γ

1 +
√
γ/Γ

.

Proof. Combine (6.14) with Theorem 3.44. ��



134 6 Analysis of Positive Definite Iterations

The following statement is analogous to Conclusion 3.46.

Conclusion 6.29 (order improvement). In the case of ρ(D−1ED−1EH) ≤ 1/4
(or ≤ 1/4 + O(1−ρ(MJac))), the choice ω = ω′ enables an order improvement.
If τ is the order of the Jacobi (and of the symmetric Gauss–Seidel) method, then
τ/2 is the order of the SSOR method with ω = ω′.

The condition ρ(D−1ED−1EH) ≤ 1/4 is essential. This inequality does not
hold for the model problem with chequer-board ordering. Then, as we shall see in
§6.3.4, no order improvement is possible.

For completeness, we repeat the properties of the symmetric Gauss–Seidel
iteration.

Proposition 6.30. (a) The iteration matrix of the symmetric Gauss–Seidel iteration
and the matrices of the second and third normal forms are

M symGS = (D − F )−1E(D − E)−1F,

N symGS = (D − F )−1D(D − E)−1,

W symGS = (D − E)D−1(D − F ) = A+ ED−1F.

(b) The symmetric Gauss–Seidel iteration is a symmetric iteration in the sense of
Definition 5.3, provided that D ∈ RI×I .

(c) If A > 0, the matrix W symGS of the third normal form is also positive definite,
so that the symmetric Gauss–Seidel iteration is a positive definite iteration.

(d) The symmetric Gauss–Seidel iteration converges and the spectrum of the
iteration matrix is nonnegative:

σ(M symGS) ⊂ [0, 1) .

6.3.2 SSOR in the 2-Cyclic Case

In the 2-cyclic case, we can rewrite the backward SOR iteration as ΦbackwSOR
ω =

Φ
(1)
ω ◦Φ(2)

ω with the partial steps defined in (6.19a,b). Therefore, the symmetric SOR
iteration takes the form

ΦSSOR
ω = Φ(1)

ω ◦ Φ(2)
ω ◦ Φ(2)

ω ◦ Φ(1)
ω ∈ Lsym.

Exercise 6.31. Prove: (a) The SSOR iteration matrixMSSOR
ω =M

(1)
ω M

(2)
ω M

(2)
ω M

(1)
ω

leads to the rate

ρ(M (1)
ω M (2)

ω M (2)
ω M (1)

ω ) = ρ(M (2)
ω M (2)

ω M (1)
ω M (1)

ω ).

(b) M (1)
ω M

(1)
ω =M

(1)
ω′ and M (2)

ω M
(2)
ω =M

(2)
ω′ hold with ω′ := ω(2 − ω).

(c) 0 < ω < 2 implies 0 < ω′ ≤ 1. ω′ = 1 is only achieved for ω = 1.



6.3 Symmetric Gauss–Seidel Iteration and SSOR 135

Exercise 6.31 entails the following negative conclusion.

Conclusion 6.32. In the 2-cyclic case, ρ(MSSOR
ω ) = ρ(MSOR

ω′ ) holds with ω′ :=
ω(2 − ω) ≤ 1 for all 0 < ω < 2. According to Theorem 4.27, underrelaxation
(ω′<1) is always slower than the Gauss–Seidel iteration (ω′=1). Hence, ω=1 is
the optimal parameter and SSOR simplifies to the symmetric Gauss–Seidel iteration
(cf. Alefeld [2]).

The reason for the missing order improvement is that, differently from the
situation discussed in Remark 6.29, the condition ρ(D−1ED−1EH) ≤ 1

4 is not
satisfied. In the 2-cyclic case, we have ρ(D−1ED−1EH) = ρ(D−1

1 A1D
−1
2 A2) =

ρ(MGS) ≈ 1 (cf. Theorem 4.20).

Exercise 6.33. Let (A,D) be 2-cyclic. Prove that

M symGS =

[
0 −D−1

1 A1D
−1
2 A2D

−1
1 A1

0 D−1
2 A2D

−1
1 A1

]
is the iteration matrix of the symmetric Gauss–Seidel method and that

ρ(M symGS) = ρ(MGS).

6.3.3 Modified SOR

In the 2-cyclic case, we can regard the SOR method as a product iteration ΦSOR
ω =

Φ
(2)
ω ◦ Φ(1)

ω (cf. §5.4), where Φ(1)
ω involves only the first block of the vector and

Φ
(2)
ω only the second one:

Φ(1)
ω (x, b) =

(
x1 − ω

[
x1 −D−1

1

(
A1x

2 − b1
)]

x2

)
(6.19a)

Φ(2)
ω (x, b) =

(
x1

x2 − ω
[
x2 −D−1

2

(
A2x

1 − b2
)]) (6.19b)

where x =
[
x1

x2

]
, b =

[
b1

b2

]
, and A is split as in (4.3). The corresponding iteration

matrices are

M (1)
ω =

[
(1 − ω) I ωD−1

1 A1

0 I

]
, M (2)

ω =

[
I 0
ωD−1

2 A2 (1 − ω) I

]
.

Thus we have MSOR
ω = M

(2)
ω M

(1)
ω . The modified SOR iteration (MSOR)

makes use of different relaxation parameters ω and ω′ in both of the half-steps:

ΦmodSOR
ω,ω′ = Φ

(2)
ω′ ◦ Φ(1)

ω .

Again the comment in Remark 3.6 about multiple parameters applies. Concerning
convergence analysis and optimal parameters, we refer to Young [412, §8] and
Hadjidimos [211, §3].



136 6 Analysis of Positive Definite Iterations

6.3.4 Unsymmetric SOR Method

The only reason for mentioning the unsymmetric SOR method is that it is con-
structed in analogy to the modified Gauss–Seidel method in §6.3.3. The SSOR
method ΦSSOR

ω = ΦbackwSOR
ω ◦ ΦSOR

ω (cf. (5.15)) can be modified by choosing
different parameters ω, ω′ in both factors. Accordingly, the unsymmetric SOR
iteration reads

ΦunsymSOR
ω,ω′ := ΦbackwSOR

ω′ ◦ ΦSOR
ω .

Again, this method is not notably better than the SSOR method. For more details
and further references, see Hadjidimos [211, §4.1].

6.3.5 Numerical Results for the SSOR Iteration

For methods with an iteration matrix satisfying 0 < A1/2MA−1/2 < ρ(M)I ,
Remark 2.22d is applicable: the quotients ‖em‖A/‖em−1‖A converge monoton-
ically to ρ(M). Since M = MSSOR

ω satisfies this assumption, we observe
this monotone behaviour for the SSOR iteration and the symmetric Gauss–Seidel
method (ω = 1). Table 6.1 (left) contains the results of the SSOR method with
lexicographical ordering. For the Poisson model problem with step size h = 1/32,
we obtain the convergence rate 0.98092. According to Table 3.2, ω = ω′ = 1.8213
is the optimal value for the bound (3.55c), which becomes ‖MSSOR

ω ‖A ≤ 0.9065.
Table 6.1 shows the convergence rates for different ω. Obviously, ρ(MSSOR

ω )
attains its minimum not at ω = ω′ but for ωopt ∈ [1.845, 1.846]. The values
of Table 6.1 demonstrate that, differently from the SOR method (cf. Fig. 4.1),
the convergence rate has a flat minimum. Small errors in the choice of ω = ωopt
deteriorate the convergence rate only insignificantly. In this respect, the choice
ω = ω′ is sufficiently good.

symmetric Gauss–Seidel iteration SSOR with ω=1.8213

m ‖em‖∞‖em‖A ‖em‖∞
‖em−1‖∞

‖em‖A

‖em−1‖A
‖em‖A ‖em‖A

‖em−1‖A

1 1.48 202 0.79011 0.579572 2.310+02 0.67588
2 1.35 159 0.91627 0.790646 1.610+02 0.71534
3 1.27 137 0.94025 0.858495 1.210+02 0.72622
4 1.20 122 0.94528 0.891046 9.010+01 0.73679
5 1.14 111 0.94734 0.910237 6.710+01 0.74876

94 0.158 11.2 0.98074 0.980884 3.410–04 0.87961
95 0.155 11.0 0.98075 0.980891 2.810–04 0.87961
96 0.152 10.8 0.98075 0.980897 2.510–04 0.87961
97 0.149 10.6 0.98076 0.980903 2.210–04 0.87961
98 0.146 10.4 0.98076 0.980909 1.910–04 0.87961
99 0.144 10.2 0.98077 0.980914 1.710–04 0.87961

100 0.141 10.0 0.98077 0.980919 1.510–04 0.87961

ω ρ(MSSOR
ω )

1 0.98092
1.8 0.88376
1.81 0.88163
1.8213 0.87962
1.83 0.87845
1.84 0.87765
1.8450 0.877529
1.8455 0.877528
1.8460 0.877528
1.847 0.877528
1.85 0.87762
1.86 0.87855
1.87 0.88066

Table 6.1 Left: Symmetric Gauss–Seidel iteration and SSOR for h = 1/32. Right: Convergence
rates of the SSOR method for h = 1/32 and different ω.



Chapter 7

Generation of Iterations

Abstract The algebraic operations described in Chapter 5 are tools for generat-
ing linear iterations. In this chapter we discuss how these tools can be used to
build new iterative methods. The product of iterations is recalled in Section 7.1 and
refers to later applications in Part III. Many traditional iterations are constructed
by the additive splitting technique of Section 7.2. The regular splitting and weakly
regular splitting defined in §7.2.2 yield sufficient convergence criteria. Another kind
of splitting is the P-regular splitting defined in §7.2.4. A special kind of additive
splitting is the incomplete triangular decomposition (ILU) discussed in Section 7.3.
The transformations introduced in §5.6 will reappear in Section 7.4 under the name
preconditioning.

7.1 Product Iterations

We recall that new iterations can be constructed by the product of simpler ones:

Π := Φ ◦ Ψ for Φ, Ψ ∈ L.

Of particular interest are symmetric iterations. If Φ is not symmetric, it can be
symmetrised: Φsym := Φ∗ ◦ Φ (also Φ ◦ Φ∗ would be possible). The Krylov
methods of Part II are best to combine with positive definite iterations, for which
A > 0 implies N [A] > 0.

Symmetric products of three factors will also appear (see, e.g., Lemma 11.44).
Corollary 5.30 states that Φ∗ ◦ Ψ ◦ Φ is symmetric if Ψ is so. The correspond-
ing statement about positive definiteness follows. Note that Criterion 5.10 yields a
criterion for Φ∗◦ Φ to be positive definite.

Lemma 7.1. If Φ∗◦ Φ ∈ Lpos and Ψ ∈ Lsemi, then the product satisfies

Φ∗◦ Ψ ◦ Φ ∈ Lpos.

137© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_7



138 7 Generation of Iterations

Proof. Let A > 0. One verifies that

NΦ∗◦Ψ◦Φ =MΦ∗NΨM
H
Φ∗ +NΦ∗◦Φ .

Positive semidefiniteness of Ψ yields NΨ ≥ 0 and MΦ∗NΨM
H
Φ∗ ≥ 0, while

NΦ∗◦Φ > 0 follows since Φ∗◦ Φ is positive definite. ��

In §12 we shall produce iterations from A-orthogonal projections.

Definition 7.2. Φ ∈ L is called an A-orthogonal projection if D(Φ) � A > 0
implies that the matrix A1/2N[A]A1/2 is an orthogonal projection.

An orthogonal projection has a spectrum contained in {0, 1}. For our purpose,
the following generalisation is sufficient:

Φ ∈ Lsym with σ(N[A]A) ⊂ [0, 2). (7.1)

Definition 7.3. The iteration Φ(·, ·, A) ∈ L is called nonexpansive (with respect to
an associated norm ‖·‖) if

‖MΦ[A]‖ ≤ 1.

Exercise 7.4. A > 0 and (7.1) imply that Φ is nonexpansive with respect to ‖·‖A .

Lemma 7.5. Assume that A > 0 . Let Φi ∈ L satisfy (7.1) for 1 ≤ i ≤ k. Then
the product iteration

Π(·, · , A) := Φk(·, · , A) ◦ . . . ◦ Φ2(·, · , A) ◦ Φ1(·, · , A)

converges if and only if (5.10) holds (cf. Proposition 5.23).

Proof. (i) Let x ∈
⋂k

i=1 ker(NΦi
). For an indirect proof, assume x �= 0 and set

y := A−1x �= 0. Since x ∈ ker(NΦ1), y = MΦ1y holds for the iteration matrix
MΦ1 = I − NΦ1A. By y = MΦ2y, etc., we obtain y = (MΠ)y for the iteration
matrix MΠ =

∏k
i=1MΦi of Π(·, ·, A). The eigenvalue 1 of MΠ proves diver-

gence of Π. Hence, convergence implies (5.10).
(ii) Assume that (5.10) holds and define

M̂i := A1/2MΦ1A
−1/2 = I −A1/2NΦ1A

1/2 and M̂Π :=

k∏
i=1

M̂i.

The product iteration Π converges monotonically with respect to the energy norm
if ‖M̂Π‖2 < 1. By (7.1), σ(M̂i) ⊂ (−1, 1] and ‖M̂ix‖2 ≤ ‖x‖2 hold for all
x ∈ KI . In addition, ‖M̂ix‖2 = ‖x‖2 is equivalent to A−1/2x ∈ ker(NΦi

).
As a consequence ‖M̂Πx‖2 ≤ ‖x‖2 holds for all x ∈ KI and ‖M̂Πx‖2 = ‖x‖2
implies A−1/2 x ∈

⋂k
i=1 ker(NΦi

[A]). The assumption (5.10) yields x = 0 .

Hence ‖MΠ‖A = ‖M̂Π‖2 < 1 follows. ��



7.2 Additive Splitting Technique 139

7.2 Additive Splitting Technique

7.2.1 Definition and Examples

Most of the classical iterations are constructed by an additive1 splitting as explained
below. Given the system of equations

Ax = b (A ∈ KI×I , b ∈ KI), (7.2)

we split A into the difference

A =W −R (W regular). (7.3)

The system (7.2) is equivalent to

Wx = Rx+ b.

This suggests the iterative method

Wxm+1 = Rxm + b (7.4)

which is well defined since W is required to be regular.

Lemma 7.6. (a) Assume (7.3). Then the iterative method (7.4) is consistent. The
matrices of the first normal form (2.8) are

M =W−1R, N =W−1.

The notation ‘W ’ for the matrix in (7.3) is chosen because the third normal form
(2.12),

W (xm − xm+1) = Axm − b,

is valid with the same matrix W .
(b) Vice versa, any iteration Φ ∈ L with regular N can be obtained from an
additive splitting (7.3).

Proof. (a) A comparison of the representation

xm+1=W−1Rxm +W−1b

derived from (7.4) with (2.8) shows that M =W−1R and W = N−1.
(b) Choose W :=NΦ[A]

−1 and R :=W −A in (7.3). ��

Because of Lemma 7.6b, the additive splitting technique does not produce a
special class of iterations but all linear iterations. This is a similar situation as the
combination of the Richardson iteration ΦRich

1 with a right transformation T� = N

1 The term ‘additive’ distinguishes this technique from the multiplicative factorisation in §7.3.



140 7 Generation of Iterations

(cf. Proposition 5.44). In the case of the additive splitting, W = N−1 is the primary
quantity, whereas in the latter case, N determines the transformation.

Remark 7.7. The fact that the additive splitting can generate any linear iteration
leads to the question: what are the data on which the choice of W can be based?
The following cases can be distinguished:

(i) The choice is only based on the data of the matrix A. This means that there
is an explicitly available mapping A �→ W [A] or A �→ N [A]. In this case,
the iteration is algebraic (cf. Definition 2.2b).

(ii) The matrix A may be the result of a discretised partial differential equation.
Correspondingly, additional data of the partial differential equation not contained
in the matrix data (e.g., geometric data, coarser discretisations, etc.) can be used
for constructing W .

(iii) An intermediate situation between (i) and (ii) is the following one. The
element matrices B = {B(ν) : ν ∈ J} introduced in §E.3 contain more data
than A. Therefore a mapping B �→ W [B] may be well defined, but cannot be
obtained from A (cf. Remark E.8b).

In §7.4.5 we shall give an example for case (ii). There the proposed matrix W
cannot be derived from the matrix A.

A typical example of cases (ii) or (iii) are domain decomposition iterations
involving submatrices discretising Neumann boundary problems in subdomains
(cf. §12.3). These subproblems lead to matrices A1 and A2 such that A = A1+A2.
Obviously, A is a result of A1 and A2 , but these matrices cannot be determined
from A.

All splittings discussed in this section and in §7.3 correspond to the case (i) of
Remark 7.7.

Example 7.8. (a) A natural choice of W is some part of the matrix A. The splitting
A = D − (A−D) with the diagonal W =D of A yields the Jacobi iteration.
(b) Starting from the splitting A = D−E−F in (1.16), we choose W = D−E and
R = F . The resulting iteration (7.4) is the Gauss–Seidel iteration. Alternatively,
the choice W = D − F and R = E yields the backward Gauss–Seidel method
(cf. Proposition 5.1).
(c) Using the blockwise version of A = Dblock − Eblock − Fblock in (3.19a–d),
the respective splitting yields the block-Jacobi and block-Gauss–Seidel iterations.

Note that in the previous examples the matrices D, D − E, Dblock − Eblock

contain increasing parts of the matrix A. In Theorem 7.13 and §7.2.3 we shall see
that this fact may improve the convergence. On the other hand, W must still be
(easily) invertible, since we have to solve the system (2.12′).

The additive splitting can be combined with the summation introduced in §5.3
and yields the multi-splitting method (cf. O’Leary–White [296]).



7.2 Additive Splitting Technique 141

7.2.2 Regular Splittings

In this section we shall make use of M-matrices (cf. §C.3). Accordingly, we use the
notation

A < B, A ≤ B, x < y, x ≤ y, . . .

for matrices and vectors in the sense of componentwise inequalities. In particular,
A > 0 denotes a positive matrix, not a positive definite one.

The following definition of a ‘regular splitting’ is due to Varga [375]. It allows
not only qualitative convergence statements but also a comparison of different
iterative methods.

Definition 7.9 (regular splitting). The real matrix W ∈ RI×I describes a regular
splitting of A ∈ RI×I if

W regular, W−1 ≥ 0, W ≥ A (i.e., R :=W −A ≥ 0). (7.5)

Condition (7.5) may be compared with (3.35g) in the positive definite case.
The iteration matrix of the iteration (7.4) is

M =W−1R with R :=W −A

(cf. Lemma 7.6a). Condition (7.5) implies that

M ≥ 0 for regular splittings (7.6)

because of R ≥ 0. Using (7.6), we can weaken Definition 7.9 (cf. Ortega [298]).

Definition 7.10 (weakly regular splitting). The splitting (7.3) is weakly regular if

W regular, W−1 ≥ 0, M =W−1R ≥ 0. (7.7)

Theorem 7.11 (convergence). Let A be inverse positive: A−1 > 0 (a sufficient
condition is that A be an M-matrix). Assume that W describes a weakly regular
splitting of A. Then the induced iteration (7.4) converges:

ρ(M) = ρ(W−1R) =
ρ(A−1R)

1 + ρ(A−1R)
< 1. (7.8)

Proof. (i) Obviously, it is sufficient to show ρ(W−1R) = ρ(C)/(1 + ρ(C)) for
C := A−1R . The weak regularity (7.7) implies that

0 ≤ M =W−1R = [A−1W ]−1A−1R

= [A−1(A+R)]−1A−1R = [I + C]−1C.



142 7 Generation of Iterations

By Theorem C.34 and M ≥ 0 , there is an eigenvector x � 0 belonging to the
eigenvalue λ = ρ(M) ∈ σ(M). Rewriting λx =Mx = (I +C)−1Cx, we obtain

λx+ λCx = Cx (7.9a)

The value λ = 1 is excluded, since (7.9a) would yield x = 0. Hence,

Cx = λ
1−λx (7.9b)

follows. In part (iii) we shall show that C ≥ 0. Equation (7.9b), together with
x � 0 and Cx ≥ 0, ensures the inequality λ

1−λ ≥ 0 , i.e., 0 ≤ λ = ρ(M) < 1.

(ii) (7.9b) proves that λ is an eigenvalue of M if and only if μ = λ
1−λ is an

eigenvalue of C. The inequality 0 ≤ λ < 1 shows that μ ≥ 0. Since μ = λ
1−λ

increases monotonically in λ, |μ| = μ is maximal for λ = ρ(M) ∈ σ(M).
By Theorem C.34, μ = ρ(C) ∈ σ(C) is the maximal eigenvalue of C; therefore
we have ρ(C) = ρ(M)/[1 − ρ(M)]. Solving this equation for ρ(M), we arrive
at assertion (7.8): ρ(M) = ρ(C)/[1 + ρ(C)].

(iii) From

0 ≤
[
m−1∑
ν=0

Mν

]
W−1, W−1 = (I −M)A−1, and

m−1∑
ν=0

Mν(I −M) = I −Mm,

we conclude that

0 ≤ (I −Mm)A−1 ≤ A−1 and 0 ≤ MmA−1 ≤ A−1.

Therefore, Mm is bounded. This fact proves that κ = ρ(M) < 1. Since λ = 1 is
already excluded, ρ(M) < 1 holds and implies

C = A−1R = [W (I −M)]−1R = (I −M)−1W−1R =

[ ∞∑
ν=0

Mν

]
M ≥ 0. ��

It might be expected that the iteration converges faster the closer W is to A,
i.e., the smaller the remainder R =W−A is. This property is stated more precisely
in the following comparison theorem.

Theorem 7.12. Let A be inverse positive: A−1 ≥ 0. Let W1 and W2 define two
regular splittings. If W1 and W2 are comparable in the sense of

A ≤ W1 ≤ W2 , (7.10a)

then the convergence rates satisfy the corresponding inequalities

0 ≤ ρ(M1) ≤ ρ(M2) < 1, where Mi :=W−1
i Ri, Ri :=Wi −A. (7.10b)



7.2 Additive Splitting Technique 143

Proof. The matrices B := A−1R1 and C := A−1R2 satisfy 0 ≤ B ≤ C and
therefore 0 ≤ ρ(B) ≤ ρ(C) (cf. (C.15)). From representation (7.8) we obtain

0 ≤ ρ(M1) = ρ(B)/[1+ρ(B)] ≤ ρ(C)/[1+ρ(C)] = ρ(M2) < 1. ��

The comparisons in (7.10a,b) can be strengthened into strict inequalities.

Theorem 7.13. From A−1 > 0 and

A �W1 � W2, W1,W2 : regular splittings, (7.11a)

the strict inequalities

0 < ρ(M1) < ρ(M2) < 1 with Mi :=W−1
i Ri , Ri :=Wi −A (7.11b)

follows.

Proof. Define B and C as in the previous proof. Since B = A−1R1 may be
reducible, Theorem C.25 is not directly applicable. R1 ≥ 0 holds since the splitting
is regular. Define

I+ := {β ∈ I : R1,αβ > 0 for some α ∈ I} and I0 := I\I+.

Any column s = (R1,αβ)α∈I of R1 corresponding to an index β ∈ I+ satisfies
s � 0 and therefore A−1s > 0 by Exercise C.20b. Hence, B has the form

B =

[
B1 0
B2 0

]
with positive blocks B1 > 0 and B2 > 0

corresponding to the block structure {I+, I0}. In particular,

ρ(B) = ρ(B1) > 0 (7.11c)

holds (cf. (C.11a)). Because of R2 − R1 = W2 − W1 � 0, there is a pair (α, β)
with (R2 − R1)αβ > 0. Hence, the column of C − B = A−1(R2 − R1) for the
index β is positive. Assume β ∈ I+. In this case, C1 � B1 and C2 � B2 hold

for the blocks in C =

[
C1 C3

C2 C4

]
. Lemma C.30 and (C.11c) yield the inequality

ρ(C) ≥ ρ(C1) > ρ(B1).

In the remaining case of β ∈ I0, we conclude that

C3 � B3 = 0, C4 � B4 = 0,

and
ρ(C) > ρ(C1) ≥ ρ(B1)

(cf. Lemma C.30). In any case, using (7.11c), we arrive at the strict inequality
ρ(C) > ρ(B) > 0, which via (7.8) leads us to the assertion. ��



144 7 Generation of Iterations

7.2.3 Applications

Theorem 7.14. Let A be an M-matrix. Then the point- and blockwise Jacobi
iterations converge. Moreover, the blockwise iteration is faster:

ρ(MblockJac) ≤ ρ(MJac) < 1. (7.12a)

Let D be the pointwise diagonal Dptw or the block diagonal Dblock of A. Then

D describes a regular splitting. (7.12b)

Assuming explicitly (7.12b), we may replace the assumption ‘A is an M-matrix’ by
the inverse positivity: A−1 ≥ 0. The strict inequality

0 < ρ(MblockJac) < ρ(MJac) < 1

holds instead of (7.12a) if A−1 > 0 and Dptw �= Dblock �= A .

Proof. For an M-matrix A, the diagonals D = Dptw and D = Dblock satisfy the
inequality D > A and the sign condition (C.18b). By Theorem C.53, D is again
an M-matrix, so that D−1 ≥ 0 and (7.12b) follow. Because of Dptw ≥ Dblock,
Theorem 7.12 proves inequality (7.12a). Concerning the strict inequality, compare
with Theorem 7.13. ��

Theorem 7.15. Split A = D − E − F according to (3.11a–d) or (3.19a–d).
The statements of Theorem 7.14 carry over to analogous ones for the pointwise
and blockwise Gauss–Seidel iteration, where the statements (7.12a,b) become

ρ(MblockGS) ≤ ρ(MGS) < 1, D − E describes a regular splitting.

We omit the proof, since it is completely analogous to the previous one. The
comparison between the Jacobi and Gauss–Seidel iteration is more interesting. The
quantitative relation ρ(MGS) = ρ(MJac)2, which according to Conclusion 4.30
holds for consistent orderings, can no longer be shown for the general case.
However, a corresponding qualitative statement derived from D−E ≤ D is valid.

Theorem 7.16. For an M-matrix A, the following inequalities hold:

ρ(MGS) ≤ ρ(MJac) < 1, ρ(MblockGS) ≤ ρ(MblockJac) < 1.

This statement can be generalised to other than M-matrices.

Theorem 7.17 (Stein–Rosenberg [352]). Exactly one of the following four alter-
natives holds for the pointwise Jacobi and Gauss–Seidel iterations if A fulfils the
sign condition (C.18b), aαβ ≤ 0 for α �= β:

0 = ρ(MGS) = ρ(MJac),

0 < ρ(MGS) < ρ(MJac) < 1,

ρ(MGS) = ρ(MJac) = 1,

ρ(MGS) > ρ(MJac) > 1.



7.2 Additive Splitting Technique 145

In particular, both methods converge or diverge simultaneously. The statement
of the theorem remains valid if MJac and MGS are replaced by L + U and
(I − L)−1U with L ≥ 0 being an arbitrary, strictly lower triangular matrix and
U ≥ 0 a strictly upper one.

The proof can be found in Varga [375, §3.3] or in the original paper [352].
For generalisations, see Buoni–Varga [88, 89].

In the case of overrelaxation (i.e., for ω > 1), the SOR iteration does not
lead to a regular splitting. To ensure regularity of the splitting, we have to restrict
the parameter ω to 0 < ω < 1 (underrelaxation).

Exercise 7.18. Prove that the SOR iteration arises from a splitting (7.3) with
W = ω−1D − E. Let A be an M-matrix and D its diagonal. For 0 < ω ≤ 1,
the matrix W describes a regular splitting. What conclusion can be drawn from
ω−1D − E ≥ D − E ?

In the case of a regular splitting, the property (7.7) (i.e., M ≥ 0) allows an
enclosure of the solution x = A−1b, provided that we find suitable starting iterates.

Theorem 7.19. Let M ≥ 0 be the iteration matrix of a convergent iteration.
Starting with initial iterates x0 and y0 satisfying

x0 ≤ x1, x0 ≤ y0, y1 ≤ y0,

we obtain iterates xm and ym with the enclosure property

x0 ≤ x1 ≤ . . . ≤ xm ≤ . . . ≤ x=A−1b ≤ . . . ≤ ym ≤ . . . ≤ y1 ≤ y0.

Proof. It follows from the estimates xm+1 − xm = Mm(x1 − x0) ≥ 0 , and
ym − ym+1 =Mm(y0 − y1) ≥ 0, ym − xm =Mm(y0 − x0) ≥ 0 (cf. (2.16b)).��

We recall the generalisation of the M-matrices by the H-matrices in Definition
C.60 and the definition of diagonal dominance in §C.3.3.

Theorem 7.20. Each of the following conditions (7.13a,b) is sufficient for the
convergence of the pointwise Jacobi and Gauss–Seidel iterations:

A is an H-matrix, (7.13a)
A is strictly, irreducibly, or essentially diagonally dominant. (7.13b)

Exercise 7.21. Prove that (7.13b) implies (7.13a) and ‖MJac‖∞ ≤1, ‖MGS‖∞ ≤1.

Proof. (i) The case (7.13b) is reduced to (7.13a) because of Exercise 7.21.
(ii) Define B := |D| − |A−D| as in Definition C.60 and denote the iteration

matrix of the Jacobi iteration for B by MJac
B := |D|−1 |A−D|. Theorem 7.16

yields ρ(MJac
B ) < 1. By |MJac

B | =MJac
B , the convergence ρ(MJac) < 1 follows

from the next lemma, which remains to be proved.



146 7 Generation of Iterations

Lemma 7.22. ρ(A) ≤ ρ(|A|) for all A ∈ CI×I .

(iii) Split A = D − E − F according to (3.11a–d) and define L := D−1E,
U := D−1F . Since B = |D| − |E| − |F | = |D|(I − |L| − |U |), the iteration
matrices belonging to A and B are:

MGS = (I − L)−1U =

∞∑
ν=0

LνU, MGS
B = (I − |L|)−1 |U | =

∞∑
ν=0

|L|ν |U |

(cf. Lemma A.13). Hence, |MGS| = |
∑∞

ν=0 L
νU | ≤

∑∞
ν=0 |L|ν |U | = MGS

B .
From Lemma 7.22 and Theorem 7.15, we conclude that ρ(MGS)≤ρ(MGS

B )<1. ��

Proof of Lemma 7.22. By ‖Aν‖∞ = ‖ |Aν | ‖∞ ≤ ‖ |A|ν ‖∞, Theorem B.27
yields

ρ(A) = lim
ν→∞ ‖Aν‖1/ν∞ ≤ lim

ν→∞ ‖ |A|ν ‖1/ν∞ = ρ(|A|). ��

The diagonal dominance in (7.13b) is often used as a convergence criterion since
the proof becomes very simple. Strict diagonal dominance is historically the first
convergence criterion for the Jacobi iteration (see the paper of R. von Mises and
H. Pollaczek-Geiringer [381, Satz 2] from 1929).

Proposition 7.23. If the strict diagonal dominance (C.16) can be quantified by a
number q > 1 such that

|aαα| ≥ q
∑

β∈I\{α}
|aαβ | for all α ∈ I, (7.14a)

then the Jacobi and Gauss–Seidel iterations converge monotonically with respect to
the maximum norm with the contraction numbers

‖MJac‖∞, ‖MGS‖∞ ≤ 1/q < 1. (7.14b)

Proof. Using (7.14a), the estimate of MJac = D−1(A−D) by ‖MJac‖∞ ≤ 1/q
follows immediately from (B.8).

In the Gauss–Seidel case, we use the description of the iteration by (1.15). The
components of the error em = xm − x satisfy

em+1
i = −

⎛⎝ i−1∑
j=1

aije
m+1
j +

n∑
j=i+1

aije
m
j

⎞⎠ /aii.
Induction on i yields ‖em+1‖∞ ≤ ‖em‖∞/q. Since em+1 = MGSem, the in-
equality (7.14b) follows. ��

Concerning the convergence of the SSOR iteration for H-matrices, we refer to
Alefeld–Varga [3] and Neumaier–Varga [289].



7.2 Additive Splitting Technique 147

7.2.4 P-Regular Splitting

The P-regular splitting defined below is of different nature. In particular, it is based
on the order relation of positive definite matrices (cf. §C.1). The term ‘P-regular’ is
introduced by Ortega [298], but the following convergence statement goes back to
Weissinger [392] in 1953 (see also Weissinger [391]).

Lemma 7.24. LetX be any general matrix, while Z is positive definite; i.e., Z > 0.
Then Z −XHZX > 0 implies that

ρ(X) < 1 and ‖Z1/2XZ−1/2‖2 < 1.

Proof. Set Y := Z1/2XZ−1/2. Multiplying Z − XHZX > 0 by Z−1/2 from
both sides yields I − Y HY > 0 or Y HY < I (cf. (C.3a′)). Hence ‖Y ‖22 =
ρ(Y HY )<ρ(I)=1 proves the last statement. Since X and Y are similar matrices,
ρ(X) = ρ(Y ) ≤ ‖Y ‖2 proves ρ(X) < 1. ��

Definition 7.25. The splitting A = W −R is called P-regular if W is regular
and the Hermitian part 1

2 (C + CH) of C :=W +R is positive definite.

The last condition can be written as 0 < 1
2 (C+CH) = 1

2 (W+WH+R+RH) =
W +WH − 1

2 (A+AH), i.e.,

W +WH >
1

2
(A+AH) =: Â. (7.15)

Theorem 7.26 (Weissinger [392]). Assume A+AH > 0 and consider a P-regular
splitting A = W − R. The corresponding iteration (7.4) converges monotonically
with respect to the norm ‖·‖Â with Â defined in (7.15):

ρ(M) ≤ ‖M‖Â < 1 for M = I −W−1A. (7.16)

Proof. The splitting A = W − R yields the iteration matrix M = W−1R . Note
that

A−MHAM = A− (I −W−1A)HA(I −W−1A)

= (W−1A)HA+AW−1A− (W−1A)HA(W−1A)

= (W−1A)H(W +WH −A)(W−1A) =: B.

Forming the expression 1
2 (B +BH) and using Â in (7.15), we arrive at

Â−MHÂM = (W−1A)H(W +WH − Â)(W−1A) > 0

because of (7.15). Lemma 7.24 with Z := Â yields (7.16). ��



148 7 Generation of Iterations

7.3 Incomplete Triangular Decompositions

One learns from Theorem 7.13 that the convergence speed of Jacobi and Gauss–
Seidel iterations could be improved if even larger parts of the matrix A were con-
tained in W . The practical obstacle is that we must be able to solve the system
Wδ = d efficiently. In particular, this requirement seems to exclude splittings
with W containing larger portions of A than the lower and upper triangular parts.
However, if we are able to decompose W into triangular factors2

W = LU (L lower triangular, U upper triangular matrix),

the solution of LUδ = d can easily be performed using the forward and backward
substitution (cf. Quarteroni–Sacco–Saleri [314, §3.2]).

Therefore, we are looking for a suitable matrix W = LU . In general, W = A
is not a good candidate since its LU decomposition leads to a fill-in, i.e., to larger
nonzero parts of the matrix. In the case of sparse factors L, U with A �=W = LU,
this factorisation is called an incomplete LU decomposition of A and abbreviated as
ILU.

Besides the use of ILU as a linear iteration (possibly accelerated by techniques
of Part II), ILU is also of interest as smoothing iteration of the multigrid method
(cf. §11.9.2).

7.3.1 Introduction and ILU Iteration

In the following, the index set I is ordered. Here the standard choice in the model
case is the lexicographical ordering. By Conclusion 1.11, the LU decomposition
A = LU has proved to be inappropriate for sparse matrices, since the factors L
and U contain many more nonzero entries than the original matrix A. Computing
the LU decomposition is completely identical to Gauss elimination: U is the upper
triangular matrix remaining after eliminating the entries below the diagonal,
whereas L contains the elimination factors Lji=a

(i)
ji /a

(i)
ii (j ≥ i) (cf. Quarteroni–

Sacco–Saleri [314, §3.3]). Instead of computing L and U by Gauss elimination,
we may determine the n2 + n unknown entries Lji, Uij (j ≥ i) directly from the
n normalisation conditions

Lii = 1 (1 ≤ i ≤ n) (7.17a)

and the n2 equations involved in A = LU :

n∑
j=1

LijUjk = Aik (1 ≤ i, k ≤ n). (7.17b)

2 In this section, L and U are general (nonstrict) triangular matrices and do not coincide with the
matrices L, U defined in (3.15d).



7.3 Incomplete Triangular Decompositions 149

The incomplete LU decomposition is based on the idea of not eliminating all
matrix entries of A to avoid the fill-in of the matrix during the elimination process.
Since, after an incomplete elimination, entries remain in the lower triangular part, an
exact solution of the system is not possible. Instead, the previous equality A = LU
holds up to remainder R :

A = LU −R. (7.18)

For the exact description of the ILU process, we choose a subset E ⊂ I × I
of the product of the ordered index set I = {1, 2, . . . , n}. The elimination is
restricted to the pairs (i, j) ∈ E. Concerning E, we always require

(i, i) ∈ E for all i ∈ I. (7.19a)

In general, one should choose E large enough, so that the graph G(A) of A is
contained in E (cf. Definition C.12):

G(A) ⊂ E. (7.19b)

E is called the (elimination) pattern of the ILU decomposition. Examples of E
will be given in §7.3.2. Through the definition of the triangular matrices,we have

Lij = Uji = 0 for 1 ≤ i < j ≤ n. (7.20a)

To construct sparse matrices L and U , nonzero entries are allowed only at posi-
tions of the pattern E; otherwise, we require

Lij = Uij = 0 for (i, j) /∈ E. (7.20b)

Exercise 7.27. Prove that there are #E matrix entries of L and U which are not
directly determined by (7.17a), (7.20a), and (7.20b).

In analogy to (7.17b), we pose #E equations for the same number of unknowns:

n∑
j=1

LijUjk = Aik for all (i, k) ∈ E. (7.20c)

The remainder R = LU −A is obtained from (7.20d,e):

Rik = 0 for all (i, k) ∈ E, (7.20d)

Rik =

n∑
j=1

LijUjk −Aik for all (i, k) /∈ E. (7.20e)

Under assumption (7.19b), the termAik in 7.20e may be omitted because ofAik=0.



150 7 Generation of Iterations

The ILU factors satisfying (7.17a) and (7.20a–c) can, e.g., be constructed by the
following algorithm:

L := 0; U := 0;
for i := 1 to n do

begin Lii := 1;
for k := 1 to i− 1 do if (i, k) ∈ E then Lik :=

Aik−
∑′

LijUjk

Ukk
; (7.21a)

for k := 1 to i do if (k, i) ∈ E then Uki := Aki −
∑′′

LkjUji (7.21b)
end;

The sums
∑′ and

∑′′ are taken over all j with j �= k. Since all indices referring
to vanishing terms can be omitted, we may write:

Σ′ =
∑

j∈I with j<k, (i,j)∈E, (j,k)∈E

, Σ′′ =
∑

j∈I with j<k, (k,j)∈E, (j,i)∈E

.

The definition of Lik in (7.21a) is obtained from (7.20c). To prove (7.21b), inter-
change i and k in (7.20c). One verifies that only those components of L and U are
involved in the right-hand sides of (7.21a,b) that are already computed. Remark 7.28
will enable a simplification of the algorithm.

Remark 7.28. The definitions D := diag{U}, U ′ := U − D, L′ := (L − I)D
lead to a strictly lower triangular matrix L′ and a strictly upper triangular matrix
U ′. Equation (7.18) rewritten with the new quantities becomes

A = (D + L′)D−1(D + U ′) −R . (7.22)

The quantities D, L′, and U ′ are the result of the following algorithm:

D := 0 ; L′ := 0 ; U ′ := 0 ;
for i := 1 to n do

begin

for k := 1 to i−1 do if (i, k)∈E then L′
ik := Aik−

∑′
L′
ijD

−1
jj U

′
jk ; (7.23a)

for k := 1 to i−1 do if (k, i)∈E then U ′
ki := Aki−

∑′′
L′
kjD

−1
jj U

′
ji ; (7.23b)

Dii := Aii −
∑′′

L′
ijD

−1
jj U

′
ji (7.23c)

end;

Hence, ILU iteration based on L′, D, U ′ is algebraic.

Remark 7.29. (a) If A is Hermitian, (7.23a–c) immediately implies the symmetries
L′ = U ′H and D = DH.
(b) The incomplete Cholesky decomposition A = L′′L′′H −R for positive definite
matrices A follows from (7.22) with L′′ := (D + L′)D−1/2.

Tacitly, we assume that the quantities Ukk (pivot entries) in (7.21a) and Djj in
(7.23a) do not vanish and that, in the case of Remark 7.29b, even Djj > 0 holds.
Concerning these assumptions, we refer to the analysis in §7.3.5.



7.3 Incomplete Triangular Decompositions 151

Exercise 7.30. Complete LU decompositions are characterised by R = 0 in (7.18).
Prove: (a) R = 0 holds for cases (i) E = I×I or (ii) E = {(i, j) : |i− j| ≤ w}
for band matrices of band width w ≥ 0 .
(b) D = diag{A} and L′ = U ′ = 0 hold for the diagonal elimination pattern
E = { (i, i) : i ∈ I}, which is the minimal pattern satisfying (7.19a).

The additive splitting A = W − R of A given by (7.18) or (7.22) defines the
corresponding ILU iteration:

W (xm − xm+1) = Axm − b with (7.24a)

W = LU or W = (D + L′)D−1(D + U ′), respectively. (7.24b)

The matrices of the first and second normal forms are

M=NR with N=U−1L−1 or N=(D + U ′)−1D (D + L′)−1.

Remark 7.31. In addition to the factors L, U (or D, L′, U ′, respectively), we can
either store A and use (7.24a) or store R and apply the representation (7.25):

Wxm+1 = b+Rxm. (7.25)

Concerning the computational work, we recall §2.3.1: the decomposition (7.23a–c)
defines the initialisation cost denoted by Init(ΦILU, A), while Work(ΦILU, A) is
the cost required by (7.25).

7.3.2 Incomplete Decomposition with Respect to a Star Pattern

For the description of the pattern E, we should not use the ordered indices 1, . . . , n.
In the case of the model problem, the pairs (i, j) for 1 ≤ i, j ≤ N − 1 are
taken as indices of I. The edges of the graph G(A) are described by the pairs
((i, j) , (i± 1, j)) (horizontal neighbours) and ((i, j) , (i, j ± 1)) (vertical neigh-
bours). For the case of a regular grid, the star notation was already used in §1.3.2
as short-hand notation of the matrices. In the following, we use the so-called star
patterns. The entries ‘ ∗ ’ in the examples⎡⎣ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

⎤⎦ ,
⎡⎣ ∗ ∗

∗ ∗ ∗
∗ ∗

⎤⎦ ,
⎡⎣ · · · ∗

· · ·
∗ · · ·

⎤⎦
refer to elements in the set E. If, for instance, ‘ ∗ ’ is the right neighbour of the mid-
point, this means that for all α ∈ I having a right neighbour β ∈ I , the pair (α, β)
belongs to E. Unmarked positions or the sign ‘ · ’ signify that the corresponding
pairs (α, β) do not belong to E.

Remark 7.32. The 1×1 star [∗] characterises the minimal set E = {(i, i) : i ∈ I} of
Exercise 7.30b. The corresponding ILU iteration coincides with the Jacobi iteration.



152 7 Generation of Iterations

7.3.3 Application to General Five-Point Formulae

Algorithm (7.23a,b) should be regarded more as a definition than a method for
practically computing the matrices D, L′, U ′. For the example of a general
five-point formula A, we demonstrate how to derive a cheaper computation. For
the sake of convenience, we assume that the coefficients are constant:

A =

⎡⎣ −e
−a d −b

−c

⎤⎦ (cf. (1.13a)). (7.26)

To ensure that A be an M-matrix, we requite that

a, b, c, e ≥ 0, d ≥ a+ b+ c+ e .

The smallest pattern satisfying (7.19b) is

E = G(A), i.e., E =

⎡⎣ ∗
∗ ∗ ∗

∗

⎤⎦ ( five-point pattern). (7.27a)

Using lexicographical ordering, the strictly triangular matrix L′ has the pattern⎡⎣ ·
∗ · ·

∗

⎤⎦ ,
since the ∗-marked positions are the only matrix entries corresponding to the pattern
E and located below the diagonal. Correspondingly, U ′ has the pattern⎡⎣ ∗

· · ∗
·

⎤⎦ .
In (7.23a,b), we replace the indices i, j, k ∈ {1, . . . , n} by α, β, γ ∈ I =

Ωh and, subsequently, we identify α = (x, y) = (kαh, lαh) ∈ Ωh with the pair
(kα, �α), where now 1 < kα, �α < N − 1 holds (cf. (1.3)). First, one has to discuss
the sum Σ′ in (7.23a). L′

αγ �= 0 can only be true for γ = (kγ , �γ) = (kα − 1, �α)
or γ=(kα, �α −1), whereas U ′

γβ �=0 leads to β=(kγ +1, �γ) or β=(kγ , �γ +1).
Hence,

L′
αγD

−1
γγ U

′
γβ �= 0

requires β = α or β = (kα+1, �α−1). Both possibilities contradict the inequality
α �= β—in (7.23a) written as k ≤ i − 1—and (α, β) ∈ E. Therefore, Σ′ is an
empty sum and (7.23a) reduces to L′

αβ = Aαβ for α > β and (α, β) ∈ E.
Hence, L′ is the constant two-point star



7.3 Incomplete Triangular Decompositions 153

L′ =

⎡⎣ 0
−a 0 0

−c

⎤⎦ . (7.27b)

Similarly, we obtain

U ′ =

⎡⎣ −e
0 0 −b

0

⎤⎦ . (7.27c)

Only for α = β, is the sum Σ′′ in (7.23c) not empty and does contain the two
indices γ = (iα − 1, jα) and γ = (iα, jα − 1). We abbreviate the diagonal entry
Dαα by dα = diα,jα . Because of Aαα = d and the already known values in
(7.27b,c), definition (7.23c) can be rewritten as

di,j = d− ab

di−1,j
− ce

di,j−1
(1 ≤ i, j ≤ N − 1), (7.27d)

where the terms with j − 1 = 0 or i − 1 = 0 have to be ignored. In particular,
we obtain d11 = d for the first grid point. For the five-point formula (7.26),
the double loop in (7.23a–c) is reduced to a simple loop over all (i, j) ∈ I = Ωh.

It is also possible to determine the remainder matrix R. Equations (7.20d,e)
become

Rαβ = 0 for (α, β) ∈ E,
Rαβ = (L′D−1U ′)αβ for (α, β) /∈ E. (7.27e)

One verifies that R has two (variable) coefficients per row:

R =

⎡⎣ rij · ·
· · ·
· · sij

⎤⎦ with rij =
ae

di−1,j
, sij =

cb

di,j−1
, (7.27f)

where rij = 0 holds for i = 1 and sij = 0 for j = 1.

Remark 7.33. The ILU decomposition of a five-point formula with constant or
variable coefficients requires 6n operations for computing the dij values in (7.27d).
The solution of

Wδ = (D + L′)D−1(D + U ′)δ = d

takes 10n operations; hence because of the additional 10n operations for comput-
ing d = Axm − b, one ILU iteration step (7.24a) requires, in total, 21n operations.
Note that the dij values in (7.27d) have to be determined only once. An alterna-
tive is determining R by additional 4n operations. Afterwards, the iteration (7.25)
requires only 14n operations. Together with CA = 5, the following cost factors
result:

CILU = 4.2 or CILU = 2.8 respectively for E in (7.27a).



154 7 Generation of Iterations

7.3.4 Modified ILU Decompositions

So far we ignored matrix entries aij for (i, j) /∈ E completely. One may pose
the question of whether or not this is a good strategy. The following approach will
indirectly use all aij .

We recall the Gauss–Seidel iteration, where the matrix W = D−E is changed
into W = 1

ωD − E for the SOR method. Hence, overrelaxation, which in general
leads to improved convergence, corresponds to diminishing the diagonal in W .
Following Wittum [403], we introduce a modification which also leads to a
diminishing or enlargement of the diagonal depending on the choice of ω.

Let 1 be the vector (1)α∈I consisting of the entries 1α = 1. Gustafsson [172]
proposes replacing the equation Rii = 0 (i.e., (7.20d) for i = k) by

A1 =W1, i.e., R1 = 0. (7.28)

One may view 1 as a test vector. By condition (7.28), W is gauged in such a
way that A and W coincide with respect to their application to 1. We generalise
the condition R1 = 0 by

Rii = ω
∑
j �=i

Rij (ω ∈ R) (7.29)

and denote the corresponding decomposition as ILUω decomposition (its existence
is not yet claimed). The corresponding ILUω iteration is denoted by ΦILU

ω .

Remark 7.34. (a) For ω = 0, Eq. (7.29) coincides with (7.20d) for i = k: Rii = 0.
Hence, the unmodified ILU decomposition is the ILU0 decomposition.
(b) For ω = −1, the conditions (7.28) and (7.29) are identical, i.e., the ILU−1

decomposition describes the modification by Gustafsson [172].

In the case of the five-point formula (7.26) and the five-point pattern (7.27a),
L′ and U ′ are still obtainable from (7.27b,c), whereas recursion (7.27d) for the
entries dij of D becomes

dij := d+
(ωe− b)a

di−1,j
+

(ωb− e)c

di,j−1
(7.30)

(terms with i− 1 = 0 and j − 1 = 0 are again to be ignored).

7.3.5 Existence and Stability of the ILU Decomposition

In this section, the inequalities A ≤ B have to be understood in the sense of
elementwise inequalities Aαβ ≤ Bαβ (α, β ∈ I) as in §C.3.

It is well known that the (complete) LU decomposition exists if and only if all
principal submatrices (aij)1≤i,j≤k are regular for 1 ≤ k ≤ n. However, even if
the decomposition A = LU exists, it can be useless since the solution process of



7.3 Incomplete Triangular Decompositions 155

the equations Ly = b and Ux = y may be unstable. Choose, e.g., A = LU
with U = L� and L = tridiag{α, 1, 0} for α < 1, and investigate the error
propagation (cf. Elman [121]). The criterion involving the principal submatrices is
satisfied for positive definite matrices. However, there are positive definite matrices
for which the ILU decomposition fails because of Ukk = 0 in (7.21a). The first
part of the following criterion is stated by Meijerink–van der Vorst [280], while the
second part is due to Manteuffel [273].

Theorem 7.35. Let E ⊂ I × I satisfy (7.19a). (a) M-matrices A permits an ILU
decomposition A = W − R with W in (7.24b), which, in addition, represents a
splitting (7.4) in the sense of Definition 7.9.

(b) If an H-matrix A has a positive diagonal D, the ILU decomposition

A = (D + L′)D−1(D + U ′)

exists. Â := D − |A−D| (cf. Definition C.60) has also an ILU decomposition
(D̂ + L̂′)D̂−1(D̂ + Û ′). Then the following inequalities hold:

0 ≤ D̂ ≤ D, L̂′D̂−1 ≤ −
∣∣L′D−1

∣∣ ≤ 0, D̂−1Û ′ ≤ −
∣∣D−1U ′∣∣ ≤ 0.

Meijerink–van der Vorst [280] prove part (a) by interpreting the ILU decomposi-
tion as a sequence of Gauss elimination steps which conserve the M-matrix property
(cf. Lemma C.59). We give another proof directly referring to the defining equations
(7.20c) and requiring weaker assumptions.
XE denotes the restriction of a matrix X to the index subset E:

(XE)αβ :=

{
Xαβ if (α, β) ∈ E,
0 otherwise.

The matrices denoted in the following by the letters D, L, and U with different
indices should always be of diagonal structure or strictly lower or upper triangu-
lar structure, respectively. Note that the triple (D,L,U) is uniquely defined by the
sum X = D + L + U . To express the single components of this triple, we write
X = diag{X} + L(X) + U(X).

In the following, it is not necessarily assumed that Aαβ ≤ 0 holds for α �= β,
as it is necessary for M-matrices. We define

(A−)αβ :=

{
Aαβ if α = β or Aαβ ≤ 0,
0 otherwise.

The matrix A is assumed to fulfil the following conditions:

Aαβ ≤
(
L(A−)E ·diag{A}−1 · U(A−)E

)
αβ

for all
{
α �= β,
(α, β) ∈ E, (7.31a)

A has a complete LU decomposition

A = (D + L)D−1(D + U) = D + L+ U + LD−1U

with D ≥ 0 , L ≤ 0 , U ≤ 0 .

(7.31b)



156 7 Generation of Iterations

Remark 7.36. All M-matrices A satisfy the assumptions (7.31a,b). (7.31b) implies
the inverse positivity of A, i.e., A−1 ≥ 0. Condition (7.31a) is always satisfied
if A fulfils the sign condition Aαβ ≤ 0 (α �= β) for all (α, β) ∈ E.

Proof. Since the Gauss elimination yields the complete LU decomposition, the
inequalities in (7.31b) follow from Lemma C.59. Vice versa, the inequalities in
(7.31b) imply (D + L)−1 ≥ 0, D−1 ≥ 0, (D + U)−1 ≥ 0, from which A−1 ≥ 0
can be concluded. If A is an M-matrix and therefore Aαβ ≤ 0 for α �= β,
(A−)αβ ≤ 0 ≤ (L(A−)E diag{A}−1U(A−)E)αβ follows. ��

Theorem 7.37. Assume that E ⊂ I × I satisfies (7.19a) and that the matrix A
fulfils (7.31a,b). Then A permits an ILU decomposition A = W − R with W
in (7.24b). A = W − R is a regular splitting if Aαβ ≤ 0 for (α, β) /∈ E
(the minimal condition (7.19b) is sufficient). The enclosure (7.32) holds with D ,
L , U from (7.31b):

(D + L+ U)E ≤ D + L′ + U ′ ≤ (A−)E . (7.32)

Proof. The conditions (7.20d) can be written as RE = 0. Inserting the remainder
R=D+L′+U ′+L′D−1U ′−A, we obtain (D+L′+U ′+L′D−1U ′−A)E = 0, i.e.,

(D + L′ + U ′)E = (A− L′D−1U ′)E . (7.33)

Using the mapping

X �→ Φ(X) :=
(
A− L(X) · diag{X}−1 · U(X)

)
E
, (7.34a)

we may write the defining equation (7.33) as a fixed-point equation

D + L′ + U ′ = Φ(D + L′ + U ′). (7.33′)

Assume the monotonicity properties

C1 ≤ C2, diag{C1} ≥ 0,

L(C2) + U(C2) ≤ 0

}
=⇒ Φ(C1) ≤ Φ(C2). (7.34b)

Equation (7.31b) states that A = D + L+ U + LD−1U . We set

A0 := D + L+ U and A0 := (A−)E . (7.34c)

LD−1U ≥ 0 yields

A0 = (A0)− ≤ ((A0)−)E ≤ ((A0 + LD
−1U)−)E = (A−)E = A0,

i.e.,
A0 ≤ A0. (7.34d)

Next, we show that



7.3 Incomplete Triangular Decompositions 157

A0 ≤ Φ(A0) and Φ(A0) ≤ A0. (7.34e)

Φ(A0) = (A − LD−1 U)E = (D + L + U)E = (A0)E ≥ A0 holds because of
L , U ≤ 0. The second inequality in (7.34e) is identical to (7.31a). Φ defines the
following fixed-point iterations:

Am+1 := Φ(Am), Am+1 := Φ(Am). (7.34f)

The monotonicity (7.34b) and the inequalities (7.34d,e) lead to

A0 ≤ A1 ≤ . . . ≤ Am ≤ . . . ≤ Am ≤ . . . ≤ A1 ≤ A0 (7.34g)

(cf. Theorem 7.19). Hence, both sequences must converge to a unique limit
C = D + L′ + U ′ satisfying the fixed-point equation (7.33′). (7.32) follows from
(7.34c) and A0 ≤ D + L′ + U ′ ≤ A0. W−1 = (D + U ′)−1D(D + L′)−1 ≥ 0
is a consequence of the inequalities D ≥ 0 and L′, U ′ ≤ 0. Remainder R
vanishes on E: RE = 0; otherwise, Rαβ = (L′D−1U ′ − A)αβ holds. The
inequality Aαβ ≤ 0 for indices (α, β) /∈ E implies Rαβ ≥ (L′D−1U ′)αβ ≥ 0.
Hence, the splitting A =W −R is regular. ��

The stability3 of the ILU decomposition is expressed in (7.32) by the estimate of
the diagonal D from below by D.

To generalise Theorem 7.37 to the ILUω decomposition with ω �= 0, we may
write the equations Rij = 0 for i �= j, (i, j) ∈ E, and (7.29) as

RE − ω diag{RE′1} = 0 with R = D + L+ U + LD−1U −A,

Here, E′ := (I × I)\E is the complement. For a vector v = (v1, . . . , vn)
T,

diag{v} denotes the diagonal matrix diag{v1, . . . , vn}. Carrying over the proof
technique, we are led to the fixed-point equation C = Φω(C) with

Φω(C) := Φ(C) − ω diag{(A− L(C) · diag{C}−1 · U(C))E′1} (7.35)

and Φ defined in (7.34a). In general, however, Φω does not have the desired
properties. The monotonicity corresponding to (7.34b) may be violated for ω > 0,
whereas for ω < 0, it may happen that no A0 exists with Φω(A0) ≥ A0 (and
hence, no solution exists).

For a precise discussion, we study the five-point formula (7.26) with the five-
point pattern (7.27a). Since L′, U ′ are already uniquely determined (cf. (7.27b,c)),
the fixed-point equation simplifies to a scalar equation for D :

D = Φω(D) := diag{A− L′D−1U ′} − ω diag{(A− L′D−1U ′)E′1}
= diag {d+ (ωa− c)e/Di−1,j + (ωc− a)b/Di,j−1} (7.36a)

3 Concerning the problem that the solution of the systems (D + L)x = b or (D + U)x = b
may lead to instabilities, we refer to Elman [121], where ILU decompositions for nonsymmetric
matrices are discussed.



158 7 Generation of Iterations

(cf. (7.30)). For analysing this equation, we investigate the one-dimensional fixed-
point equation

d = ϕω(d) := d+ [(ωe− b)a+ (vb− e)c] /d. (7.36b)

A discussion of the function ϕω , which is left to the reader, shows the following.
(i) The fixed-point equation (7.36b) is solvable if and only if

4γ < d2 for γ := ce+ ab− ω(ae+ cb). (7.36c)

(ii) If (7.36c) is satisfied, the solutions of (7.36b) are

δ± =
1

2

(
d±
√
d2 − 4γ

)
. (7.36d)

(iii) δ+ is the stable fixed point because (7.36e) leads to (7.36f):

ϕω(δ) < δ for δ > δ+, ϕω(δ) > δ for δ− < δ < δ+, (7.36e)
lim δm = δ+ for δ0 > δ−, δm+1 := ϕω(δm). (7.36f)

(iv) On the other hand, starting values δ0<δ− generate sequences {δm} which
contain at least one element δm ≤ 0.

Exercise 7.38. Let A in (7.26) be diagonally dominant and symmetric:

a = b ≥ 0, c = e ≥ 0, s := a+ c > 0, d = 2σ + ε with ε ≥ 0. (7.37a)

Prove that for ω = −1, the value δ+ is obtained from (7.36d) with γ = σ2. For
small ε, this value has the expansion

δ+ = σ +
√
εσ + O(ε). (7.37b)

Assuming (7.37a), we obtain for ω = 0 that

δ+ = a+ c+
√
2ac+ O(

√
ε).

Theorem 7.39. Let ω ∈ [−1, ω∗] , where ω∗ := min{ c
a ,

a
c }. Assume that the

matrix A in (7.26) satisfies (7.37a). Then the ILUω decomposition exists, and the
entries dij of the diagonal D are enclosed by

δ+ =
d+
√
d2 − 4 (c2 + a2 − 2ωac)

2
< dij ≤ d for (i, j) ∈ I. (7.38)

The fixed-point iteration (7.36a) with the starting iterate D0 := diag{d1} con-
verges from above to D.

Proof. (7.36c) is satisfied for ω > −1, while Φω is monotone for ω ≤ ω∗.
One verifies that D0 ≤ Φω(D0) and Φω(D

0) ≤ D0 hold for D0 := diag{δ+1}
and D0 := diag{d1}. Hence, we can draw the same conclusions as in the proof of
Theorem 7.37. ��



7.3 Incomplete Triangular Decompositions 159

7.3.6 Properties of the ILU Decomposition

An immediate consequence of Theorem 7.11 is the following convergence state-
ment.

Theorem 7.40. If A is an M-matrix or, if according to Theorem 7.37, A = W −R
describes a regular splitting, the ILU iteration (7.24a,b) converges with the
convergence rate ρ(A−1R)/(1 + ρ(A−1R)).

In the standard case, one may assume ‖R‖ = O(‖A‖), so that ρ(A−1R) ≤
‖A−1‖ ‖R‖ ≤ C‖A−1‖ ‖A‖ = C cond(A) � 1 leads to the convergence rate
(1+1/ρ(A−1R))−1 ≈ 1− O(1/ cond(A)). Hence, the ILU decomposition has the
same order as the Jacobi or Gauss–Seidel iteration. A better result can be derived for
the modified ILU−1 decomposition (cf. (7.28) or (7.29) with ω = −1). We prepare
its analysis with the following lemma (cf. Wittum [402]).

Lemma 7.41. Assume (7.39a), where A, DA , and D are positive definite:

A = DA − L− LH, W = (D + L′)D−1(D + L′H). (7.39a)

The spectrum σ(W−1A) is contained in [0, Γ ] if

(2 − 1
Γ )D −DA + L+ LH + L′ + L′H is positive semidefinite. (7.39b)

Proof. We write D + L′ as 1
ΓD + C with C := (1 − 1

Γ )D + L′. From

ΓW −A = ( 1
ΓD + C)( 1

ΓD)−1( 1
ΓD + C)H −A ≥ 1

ΓD + C + CH −A

= (2 − 1
Γ )D −DA + L+ LH + L′ + L′H ≥ 0

with ‘ ≥ ’ in the sense of semidefiniteness, it follows that σ(W−1A) ∈ [0, Γ ]. ��

Theorem 7.42. Let −1 ≤ ω ≤ ω∗ (cf. Theorem 7.39). The five-point formula (7.26)
and the five-point pattern (7.27a) are assumed to satisfy (7.37a). Then the inequality

γW ≤ A ≤ ΓW with
{
γ = 1/[1 + (1 + ω) 2ac

δ+λmin
],

Γ = δ+/ [2δ+ − d] ,
(7.40)

holds with ‘ ≤ ’ in the sense of semidefiniteness, where δ+ is defined in (7.38) and
λmin = ε+ 4(a+ c) sin2 πh

2 is the smallest eigenvalue of A. In particular, (7.41)
holds:

γ = 1, Γ =
1

2

√
σ

ε
− 1

4
+ O
(√

ε

σ

)
for ω = −1. (7.41)

Proof. (i) (7.39b) becomes (2 − 1
Γ )D − DA ≥ 0, since by (7.27b,c), L = −L′

holds in Lemma 7.41. Thanks to DA = dI and δ+I ≤ D (cf. (7.38)), Γ with
(2− 1

Γ )δ+=d is sufficient for (7.39b). Solving for Γ, we obtain Γ =δ+/(2δ+−d).



160 7 Generation of Iterations

(ii) The entries rij , sij of R (cf. (7.27f)) are bounded from above by 2ac/δ+.
According to (7.29), the diagonal entries of R are equal to ω(rij +sij). The eigen-
values of R lie in the Gershgorin circles around ω(rij + sij) with the radius
rij + sij (cf. Hackbusch [193, Criterion 4.3.4], Varga [376]) and, hence, they are
bounded by (1+ω)(rij+sij) ≤ 2 (1+ω) ac/δ+, implying R ≤ [ 2 (1+ω) ac/δ+] I .
From λminI ≤ A, we deduce R ≤ ρA with ρ := 2(1 + ω)ac/(δ+λmin).
A = W − R ≥ W − ρA yields W ≤ (1 + ρ)A. Hence, γ = 1/(1 + ρ) leads to
the representation of γ.

(iii) For ω = −1, insert the representation (7.37b) into (7.40). ��

Conclusion 7.43. (a) Replacing the Poisson equation −Δu=f with the Helmholtz
equation −Δu+ εu = f with ε > 0 , we obtain the coefficients a = b = c = e =
−h−2, d = 4h−2 + ε in (7.37a). Equation (7.41) yields the bound and condition
number Γ = Γ/γ = h−1/

√
2ε+ O(1) indicating the order improvement.

(b) Let ω = −1. The (modified) ILU−1 iteration damped by ϑopt = 2/(γ + Γ ) =
2
√
2εh+ O(h2) has the convergence speed

ρ(M ILU
ϑopt

) ≤ (Γ − 1)/(Γ + 1) ≈ 1 − 2/Γ ≈ 1 − 2
√
2ε h.

Hence, similar to the SSOR method with an optimal relaxation parameter ωSSOR ,
it is of first order as long as ε > 0 .

Proof. Use Theorem 6.7. ��

The applicability of the ILU−1 decomposition is not at all restricted to strict
diagonal dominance in Theorem 7.42 and Remark 7.43b, as shown by the following
remark.

Remark 7.44 (enlargement of the diagonal). Let A = Aε be a matrix satisfying
(7.37a) with ε > −4(a + c) sin2 πh

2 (i.e., λmin(A) > 0) instead of ε > 0.
Then the ILU−1 decomposition Aη = Wη − Rη has to be applied to the matrix
Aη := A + (η − ε)I with η > 0 in order to re-establish diagonal dominance
d > 2σ. Wη can be viewed as the ILU decomposition of A=Aε with remainder
R = Wη − A = Rη − (η − ε)I . Conclusion 7.43 yields the spectral condition
number κ(W−1

η Aη). Let λ = λmin(A) and Λ = λmax(A) be the extreme eigen-
values of A . Because of

κ(A−1
η A) = κ(A−1

η Aε) =
Λ (λ+ η − ε)

λ (Λ+ η − ε)
≈ 1 +

η − ε

λmin(A)
,

Lemma 7.55 shows that

κ(W−1
η Aε) � h−1

(
1 +

η − ε

λmin(A)

)
/
√
2η . (7.42)

Exercise 7.45. Prove that the right-hand side of (7.42) becomes minimal for
η = 4(a+ c) sin2 πh

2 .



7.3 Incomplete Triangular Decompositions 161

Exercise 7.46. Prove that the ILU decomposition coincides with the exact LU

decomposition if A has the tridiagonal pattern
[

·
∗ ∗ ∗

·

]
or
[

∗· ∗ ·
∗

]
. Then the

ILU iteration solves Ax = b directly.

7.3.7 ILU Decompositions Corresponding to Other Patterns

Strengthening (7.19b) by E � G(A) is the minimal requirement to construct new
methods. When choosing a pattern E larger than G(A), we should add those
positions where R = 0 is violated: According to (7.27f), these are the positions[
∗ · ·· · ·· · ∗

]
. Adding

[
∗ · ·· · ·· · ∗

]
to the five-point pattern, we obtain

E =

⎡⎣ ∗ ∗
∗ ∗ ∗

∗ ∗

⎤⎦ (‘seven-point pattern’). (7.43)

Now the lower triangular matrix L′ and upper triangular matrix U ′ have the form

L′ = −

⎡⎣ 0 0
aij 0 0

c fij

⎤⎦ , U ′ = −

⎡⎣ gij e0 0 bij
0 0

⎤⎦ ,
whose coefficients result from the recursions

dij = d− ec/di,j−1 + aij(ωgi−1,j − bi−1,j)/di−1,j

+ fij(ωbi+1,j−1 − gi+1,j−1)/di+1,j−1,

aij = a+ gi,j−1c/di,j−1, bij = b+ efij/di+1,j−1, (7.44)
fij = bi,j−1c/di,j−1, gij = aije/di−1,j

for 1 ≤ i, j ≤ N − 1, where all terms with indices i − 1 = 0, j − 1 = 0, or
i+ 1 = N have to be ignored. This seven-point ILU decomposition has properties
similar to those of the five-point version in Theorem 7.42 (cf. Gustafsson [172],
Axelsson–Barker [13, §7]).

Exercise 7.47. Prove: (a) For −1 ≤ ω ≤ 0, the fixed-point iteration (7.35)
converges for the starting iterate C = A to values satisfying the inequalities
aij ≤ α := a/Δ, bij ≤ β := b/Δ, fij ≤ βc/γ, gij ≤ αe/δ, dij ≥ δ with
Δ := 1 − ec/δ2, where d is the maximal solution of the fixed-point equation

δ = ϕ(δ) := d−
[
ec+

ab

Δ2
(1 +

ec

δ2
) − ω

δ
(α2e+ β2c)

]
/δ.

(b) For the next considerations, assume the symmetry a = b, c = e as well as the
diagonal dominance d = 2(a + c) + ε with ε ≥ 0. Furthermore, choose ω = −1



162 7 Generation of Iterations

(i.e., the modified ILU). Prove that the equation δ = ϕ(δ) can be brought into the
form 2a+ ε = a(ξ + ξ−1) with ξ := aδ/(δ − c)2. Hence, the solution is

δ = c+ a/(2ξ) +
√
ac/ξ + a2/(4ξ2)

with ξ = 1 + ε/(2a) +
√
ε/a+ ε2/(4a2) .

(c) For ε ≥ 0, a solution δ = δ0 + C
√
ε+ O(ε) exists.

(d) δ solves the equation (δ − γ − e− β)2 = εδ.
(e) The weak diagonal dominance, which is sufficient for (7.39b), leads to the
condition 2ϕ+ 2 |a− α| ≤ (2 − 1

Γ )δ − d . Show that Γ = δ/
(
2
√
εδ − ε

)
.

(f) As in (7.41), the estimate γW ≤ A ≤ ΓW holds with γ = 1.

Concerning ILU decompositions with a general k-point pattern, note that the
amount of computational work increases more than linearly with the number k of
pattern entries.

7.3.8 Approximative ILU Decompositions

The ILU decompositions, as defined in (7.27d) or (7.30), are strictly sequential
algorithms. The same statement holds for solving the systems (D + L)x = b
and (D + U)x = b arising during the solution of Wδ = d. This is a disad-
vantage for a parallel treatment. The parallel treatment of the systems is discussed
by van der Vorst [371] (cf. also Ortega [298, §3.4]). Here we discuss the compu-
tation of the ILU decomposition. Note that the fixed-point iteration (7.34f) in the
proof of Theorem 7.37 is suited to numerical computations. The upper starting
iterate A0 = (A−)E (in general, A0 = A) is available (in contrast to A0), so
that the iterates Am+1 = Φ(Am) are computable.

Remark 7.48. The evaluation of the function Φ in (7.34a) can be performed in
parallel for all coefficients Φ(X)αβ , (α, β) ∈ E.

The equations (7.33′): X = Φ(X) or, more precisely, the recursions (7.30) and
(7.44) represent simple systems of equations for the unknowns dij (and possibly
aij , bij , fij , gij), which can be solved by backward substitutions. Independently
of the starting iterate, the values for (i, j) with max{i, j} ≤ m are exact after
m iteration steps. If A and therefore also the starting iterate A0 (cf. (7.34c)) have
constant coefficients, them-th iterate Am has identical constant coefficients for all
positions4 (i, j) with min{i, j} ≥ m . Since the coefficients of Am coincide for
min{i, j} ≥ m, one need not calculate all of them. This consideration leads us to
the truncated ILU version introduced by Wittum [400] for constant coefficients:

4 At positions with min{i, j} < m other values are possible, since in (7.30) or (7.44) some terms
may be absent because of i− 1 = 0 or j − 1 = 0.



7.3 Incomplete Triangular Decompositions 163

Compute dij (and possibly aij , bij , fij , gij) from (7.30)
or, respectively, (7.44) for all i, j with max{i, j} = k for
k = 1, 2, . . . ,m and continue these values constantly by
means of dij := dmin{i,m},min{j,m} for max{i, j} > m

(7.45)

(analogously for aij , bij , fij , gij). The amount of computational work is O(m2)
independent of dimension n of the matrix. The same statement holds for the storage
requirement. The truncated ILU decomposition is a good substitute for the
standard ILU decomposition and has favourable stability properties (cf. Wittum–
Liebau [406]).

7.3.9 Blockwise ILU Decomposition

Choosing the row or column variables as blocks, A has a block structure with
tridiagonal matrix blocks in diagonal position as shown in (3.17). In the decom-
position ansatz (7.22):

A = (D + L′)D−1(D + U ′) −R = D + L′ + U ′ + L′D−1U ′ −R ,

we may also require that D be a block-diagonal matrix with blocks of tridiagonal
structure and that L′ and U ′ be strictly (lower/upper) block-triangular matrices.
The algorithm is similar to (7.23a,b) (cf. (11.95a–c)). With the increased amount
of computational work, one gains, in general, more robust convergence properties.
Block-ILU decompositions were introduced in the early 1980s (cf. §7.3.11).

7.3.10 Numerical Examples

version ω ϑ ‖x20 − x‖2 ‖x20−x‖2

‖x19−x‖2

ILU 5 0 1.66 1.61710-1 0.9455
ILU 5 -1 0.25 1.62810-3 0.7666
ILU 5 1 1.9 2.34910-1 0.9617
ILU 7 0 1 8.90410-2 0.9185
ILU 7 0 1.66 2.69010-2 0.8646
ILU 7 -1 0.4 4.72210-5 0.6254

Table 7.1 Results of the ILU iteration for the
Poisson model case.

Table 7.1 shows the errors ‖xm − x‖2
after m = 20 iterations and the conver-
gence factors for different ILU variants.
ILU 5 refers to the five-point ILU defined
by (7.27a), while ILU 7 refers to (7.43).
The step size of the Poisson model prob-
lem is h = 1/32. For ω = 0 and ω = 1,
the ILU iteration is applied to the original
matrix, whereas for the modified method
with ω = −1 an enlargement of the diag-
onal by Aη := A+5I is chosen according to Remark 7.44. ϑ is the damping factor
in (5.8).

Exercise 7.49. Count the arithmetic operations (separately for the decompositions
and the solution phase) and compare ILU 5 and ILU 7 with regard to the effective
amount of work.



164 7 Generation of Iterations

7.3.11 Remarks

ILU decompositions are first mentioned in 1960 by Varga [374, §6] and Buleev
[84]. The first precise analysis is due to Meijerink–van der Vorst [280]. Here, we
also mention Jennings–Malik [228]. ILU methods have proved to be very robust.
This means that good convergence properties are not restricted to the Poisson
model problem, but hold for a large class of problems. Since the existence of
an ILU decomposition is not always ensured, there are many stabilising variants.
Concerning literature about the ILU method, we refer to Axelsson–Barker [13],
Axelsson [12, §7], and Beauwens [37].

Because of the improved condition number Γ/γ in (7.41), the modified version
(ω = −1) of Gustafsson [172] is the preferred basis for applications of the con-
jugate gradient technique (cf. §10) to ILU iterations. Because of the consistency
condition R1=0, this version is also called an ILU iteration of first order. A special
decomposition for the Poisson model problem of second order is described by Stone
[356]; however, because of other disadvantages, first-order variants are preferred.

The first publication of a blockwise ILU method in 1981 is due to Kettler [235],
who refers to a ‘publication in preparation’ by Meijerink which appeared in [279]
two years later. Additional early papers are those by Axelsson–Brinkkemper–Il’in
[14] (1984 with a preprint in 1983) and Concus–Golub–Meurant [99] (1985 with a
preprint in 1982).

In the literature, the distinction between SSOR and ILU methods is not very
sharp. The SSOR method for A = D+L′+U ′ corresponds to an ILU decomposi-
tion W = (D+L′)D−1(D+U ′) with remainder R =W −A = L′D−1U ′. This
R does not satisfy condition (7.20d); however, this condition is already weakened
by (7.29) and addition of a diagonal part (cf. Remark 7.44). Vice versa, generalised
SSOR methods have been introduced in which D = diag{A} is replaced by an-
other diagonal (cf. Axelsson–Barker [13]). The ILU iteration based on a five-point
pattern also falls into this category.

In the literature, one finds a lot of abbreviations for different ILU variants.
‘IC’ refers to the ‘incomplete Cholesky’ variant of the ILU decomposition.
Additional numbers like ‘(5)’ or ‘(7)’ denote the respective five- or seven-point
pattern. In other papers, ‘(0)’ indicates the pattern E = G(A), whereas ‘(1)’ means
the pattern which is enlarged by one level, etc. The supplement ‘Tr’ characterises
the truncated version (7.45). The letter ‘M’ stands for the modified method with
ω = −1, whereas ‘B’ may indicate a block variant. If the block corresponds to a
grid line (row or column), sometimes the symbol ‘L’ is used.

In particular concerning the ILU(p) variant, we refer to Saad [328, §§10.3].
The thresholding technique ILUT can also be found in [328, §§10.4]. See also
Björck [48, §§4.4.3f]. Another kind of factorisation is proposed by Benzi–Tůma
[42].

While ILU methods are less attractive as linear iterations, their combination
with multigrid methods is successful (see §11.6.2 and Hackbusch–Wittum [208]).



7.4 Preconditioning 165

7.4 Preconditioning

The term ‘preconditioning’ is rather ambiguous. In §7.4.1 we describe the precon-
ditioning in the narrower sense. When it is used in the wider sense it is losing its
original meaning and, in the extreme case, may mean any transformation in the
sense of §5.6 (cf. §7.4.3).

7.4.1 Idea of Preconditioning

We recall the spectral condition number κ(A) := ρ(A)ρ(A−1) of a regular5

matrix defined in (B.13). In the case of A > 0, the spectral condition number κ(A)
simplifies to the ratio κ(A) = λmax(A)

λmin(A) of the extreme eigenvalues. Alternatively,
for a given matrix norm we can define the condition cond(A) := ‖A‖ ‖A−1‖.
If A is normal, the Euclidean condition cond2(A) with respect to the spectral
norm coincides with κ(A). This holds in particular under the assumption A > 0.
Furthermore, we consider the simplest linear iteration: the Richardson iteration
defined in §3.2.1. The convergence analysis in §3.5.1 shows that, for the optimal
parameter Θopt, the convergence rate and contraction number coincide with

ρ(MRich
Θopt

) =
κ(A) − 1

κ(A) + 1
=

1 − 1
κ(A)

1 + 1
κ(A)

(cf. (3.26c)). The essential observation is that ρ (MRich
Θopt

) depends only on the
spectral number κ(A) (cf. (B.13)).

If κ(A) is very close to 1, we have very fast convergence. If κ(A) is of
moderate size, a moderate convergence speed results. If, however, κ(A) is large,
the asymptotic approximation ρ(MRich

Θopt
) = 1 − 2/κ(A) + O(κ(A)−2) shows that

the convergence is rather slow.
Hence, one can try to choose a left transformation with T� = N =W−1 so that

Â := T�A =W−1A has a positive spectrum, (7.46a)

κ
(
W−1A

)
is as small as possible. (7.46b)

Note that under condition (7.46a) Theorem 6.7 implies that the optimally damped
iteration

ΦW (x, b) := x− ϑoptW
−1(Ax− b) (7.46c)

has the convergence rate

ρ(Mϑopt
) =

κ(W−1A) − 1

κ(W−1A) + 1
.

Often, the matrix W is called the preconditioning matrix, preconditioning,
or preconditioner. Sometimes these names also refer to the matrix N = W−1

5 We may set κ(A) = ∞ for singular A. For certain purposes it makes sense to extend the spectral
condition to singular matrices A �= 0 by κ0(A) := maxλ∈σ(A) |λ| /minλ∈σ(A)\{0} |λ| .



166 7 Generation of Iterations

of the second normal form. The mapping

ΦRich
Θ �→ ΦW = ΦRich

Θ ◦W−1

is also called ‘preconditioning’. Note that this term expresses the intention to im-
prove the condition, but it is not a concrete description of the mapping A �→ W [A].
Besides the size of the condition (and therefore the convergence speed) one must
have in mind the related cost (cf. §2.3.2).

The condition numbers will also appear in Part II in connection with the semi-
iterative method applied to the basic iteration ΦW . Instead of a real spectrum con-
tained in [λmin(A), λmax(A)], we may replace the interval by an ellipse (cf. §8.3.6).

The construction of the iteration (7.46c) is not restricted to the left transformation
ΦW = ΦRich ◦W−1. The right transformation Tr = W−1 applied to the Richard-
son method leads to the same iteration (5.41): ΦW (x, b) = x − W−1(Ax − b).
The two-sided transformation ΦW = W−1/2 ◦ ΦRich ◦ W−1/2 by (5.46) also
leads to the same ‘preconditioned’ iteration.

7.4.2 Examples

As examples of preconditioning the positive definite matrix A = D − E − F (cf.
(1.16)) we recall the matrices W of the already described symmetric iterations:

W = D = diag{A} (Jacobi),

W = (D − E)D−1(D − F ) (SSOR).

Here, the methods can be understood pointwise or blockwise.
Since the choice of ‘W = diagonal matrix’ is especially simple and also com-

putable in parallel, one might ask whether the Jacobi method with D := diag{A}
represents the optimal diagonal preconditioning. The answer in given by Theorems
7.50 and 7.51: D := diag{A} is optimal in the 2-cyclic case, whereas D is close
to the optimum in the general case (see also Higham [221, Theorem 7.5]).

Theorem 7.50 (Forsythe–Strauss [139]). Assume that A is positive definite with
D := diag{A} and A − D is weakly 2-cyclic. Then D := diag{A} is the best
diagonal preconditioner; i.e., κ(D−1A) ≤ κ(Δ−1A) for all diagonal matrices Δ .

Theorem 7.51 (van der Sluis [368]). Let the matrix A be positive definite with
D :=diag{A} and assume that each row of A contains at most CA nonzero entries
(cf. (2.28)). Then κ(D−1A) ≤ CAκ(Δ

−1A) holds for all diagonal matrices Δ .

Bank–Scott [32] describe a related result about the condition of finite element
matrices in the presence of local refinements.

Let Γ be the constant in (8.39c). The SSOR preconditioning improves the con-
dition number from κ(A) to 1

2

(
1 +
√
Γκ(A)

)
. The transition from κ(A) to

O
(√
κ(A)

)
corresponds to the improvement of the order (cf. Conclusion 6.29).



7.4 Preconditioning 167

7.4.3 Preconditioning in the Wider Sense

Let A = Q diag{λi : 1 ≤ i ≤ n}QH (Q is unitary) be any normal matrix with
0 < λ1 ≤ λ2 ≤ · · · ≤ λn. Obviously κ(A) = cond2(A) = λn/λ1 is the con-
dition. Now we replace λ1 with −λ1. Â = Q diag{−λ1, λ2, . . . , λn}QH is an
indefinite matrix also satisfying κ(Â) = cond2(Â) = κ(A). Although the condi-
tion is unchanged, the Richardson iteration has a problem because of Exercise 3.25.
Obviously, it is not the condition which must be improved, but the indefinite matrix
must be turned into a positive definite one. Again a transformation by W−1 = Â
helps: the resulting squared Richardson iteration Â2 is positive definite. However,
the condition κ(A) is replaced with the larger condition κ(Â2) = κ(A)2. Calling
W−1 = Â a preconditioner, the original meaning of improving the condition is
perverted. Nevertheless, we can try to precondition Â2 in the narrower sense. One
learns from this example that beside the condition other structural properties are
important which may be improved by a transformation for which the name ’precon-
ditioning’ is not quite adequate.

Another systematic approach to indefinite Hermitian matrices A (cf. Remark
8.31) is the left transformation by a polynomial in A. Such ‘preconditioners’ are
described, e.g., by Ashby–Manteuffel–Saylor [7]. Here the polynomial T� = p(A)
should be close to the minimiser of min{ρ(p(A)A) : degree(p) = d} for a fixed
degree d ≥ 1.

In the case of non-Hermitian matrices A, even the convergence of the Richard-
son iteration cannot be described by κ(A) or cond2(A). Hence the term ’precon-
ditioning’ loses its meaning. On the other hand, a large condition number is not
necessarily a disadvantage (see the multigrid iteration in §11.4). For the extreme
example of a diagonal matrix A, the system is exactly solvable independently of the
condition.

7.4.4 Rules for Condition Numbers and Spectral Equivalence

The Euclidean condition cond2(·) and the spectral condition number κ(·) satisfy
the following equations and inequalities (cf. (B.12), (B.13)).

Exercise 7.52. Let the matrices A, B, C be regular. Prove the following:

κ(A) = κ(A−1), cond2(A) = cond2(A
−1), (7.47a)

κ(A) = κ(λA), cond2(A) = cond2(λA) for λ ∈ C\{0}, (7.47b)
κ(A) = cond2(A) for normal matrices A, (7.47c)

cond2(AB) ≤ cond2(A) cond2(B), (7.47d)

cond2(C
−1A) ≤ cond2(C

−1B) cond2(B
−1A), (7.47e)

κ(B−1A) = cond2(B
−1/2AB−1/2) for A,B > 0, (7.47f)

κ(AB) = κ(BA). (7.47g)



168 7 Generation of Iterations

Following considerations are restricted to positive definite matrices. The next
lemma shows that the spectral number can be formulated by matrix inequalities.

Lemma 7.53. Let A and B be positive definite. Then κ(B−1A) can be repre-
sented as

κ(B−1A) = ᾱ/α (7.48a)

where ᾱ and α are the best bounds in the inequality

αB ≤ A ≤ ᾱB with α > 0. (7.48b)

Vice versa, (7.48b) implies
κ(B−1A) ≤ ᾱ/α. (7.48c)

Proof. The best bounds in (7.48b) are the extreme eigenvalues of B−1A. Hence,
(7.48a) follows from (B.14). ��

Exercise 7.54. Prove that (7.48b) is equivalent to either of the following inequali-
ties:

1
αA ≤ B ≤ 1

ᾱA with α > 0, (7.48d)

αA−1 ≤ B−1 ≤ ᾱA−1 with α > 0, (7.48e)

α 〈Bx, x〉 ≤ 〈Ax, x〉 ≤ ᾱ 〈Bx, x〉 for all x ∈ KI . (7.48f)

The inequalities (7.47e,f) yield the next lemma.

Lemma 7.55. Let A, B, C be positive definite. Then

κ(C−1A) ≤ κ(C−1B)κ(B−1A). (7.49)

Interpreting (7.47e) and (7.49) in the sense of preconditioning yields the follow-
ing statement. If B is a good preconditioner for A and C is a good preconditioner
for B, then C also represents a good preconditioning for A.

The following definition of spectral equivalence does not make sense for a single
matrix. Instead we need two infinite families

A = (Aν)ν∈F , B = (Bν)ν∈F (#F = ∞)

of matrices (cf. §1.4). Usually, ν ∈ F = N is related to a discretisation grid size
hν with the property hν → 0. In this case, we prefer the notation A = (Ah)h∈H .
Then the size of the matrices is increasing with ν → ∞. Another case may be a
matrix depending on a parameter ν varying in an interval F .

Definition 7.56 (spectral equivalence). Let A = (Aν)ν∈F and B = (Bν)ν∈F be
two families of positive semidefinite matrices. Then A and B are called spectrally
equivalent if there is a constant c > 0 so that

1
cAν ≤ Bν ≤ cAν for all ν ∈ F. (7.50)



7.4 Preconditioning 169

The explicit notation of the equivalence relation is

A ∼ B.
Often, the less precise notation Aν ∼ Bν is used.

The characteristic properties of an equivalence relation are obviously satisfied:
the symmetry A ∼ B ⇔ B ∼ A and the transitivity A ∼ B ∼ C ⇒ A ∼ C.
Gunn [171] used similar arguments in 1964 without mentioning the term spectral
equivalence. This term is introduced by D’Yakonov [110] in 1966.

A more general definition of an equivalence relation can be based on cond(·).6

Remark 7.57. (a) Assume that Aν ≥ 0 but not Aν > 0. Then Aν ∼ Bν implies
that Bν is also semidefinite and that both matrices have coinciding kernels.
(b) If Aν > 0 and Bν > 0, then (7.50) is equivalent to supν∈F κ(A

−1
ν Bν) < ∞.

Proof. Rewriting (7.50) using (7.48f), part (a) is obvious. For part (b), use Lemma
7.53. ��

Proposition 7.58. Let the matrices Aν , Bν , Cν , Dν be positive semidefinite.
The spectral equivalence relation satisfies the following rules:

Aν ∼ Bν and λ ≥ 0 ⇒ λAν ∼ λBν , (7.51a)
Aν ∼ Bν and Cν ∼ Dν ⇒ Aν + Cν ∼ Bν +Dν , (7.51b)

Aν ∼ Bν ⇒ A−1
ν ∼ B−1

ν if Aν > 0, (7.51c)

Aν ∼ Bν and Cν ∈ KJ×I ⇒ CνAνC
H
ν ∼ CνBνC

H
ν , (7.51d)

Aν ∼ Bν ⇒ A−1/2
ν BνA

−1/2
ν ∼ I if Aν > 0. (7.51e)

In the cases (7.51a,b,d), the constant c in (7.50) is identical on both sides. The
matrix Cν in (7.51d) may be any rectangular matrix.

Proof. The implications (7.51a,b,d) are an immediate consequence of (7.48f).
For (7.51c), use (7.48d,e). Statement (7.51d) implies (7.51e). ��

We recall that the iteration Φ(x, b) = x−ϑW−1(Ax− b) with optimal damping
has the convergence rate ρ(Mϑopt

) = κ−1
κ+1 with κ = κ(W−1A).

Conclusion 7.59. (a) Assume A,W,W ′ > 0 and W ≤ c′W ′,W ′ ≤ cW. Then the
linear iterations Φ(x, b) = x−ϑW−1(Ax−b) and Φ′(x, b) = x−ϑW ′−1(Ax−b)
with optimal damping have comparable convergence rates determined by

κ = κ(W−1A), κ′ = κ(W ′−1A) with
1

c′
κ′ ≤ κ ≤ cκ′.

6 Consider families of regular matrices. Let cond(A) = ‖A‖‖A−1‖ be defined with respect to
some submultiplicative matrix norm. Analogously to Remark 7.57b, we define

A ∼cond B :⇔ sup
ν∈F

cond(A−1
ν Bν) < ∞.

Also in this case, the properties (7.47a,e) prove that ∼cond is an equivalence relation.



170 7 Generation of Iterations

(b) If the family A = (Ah)h∈H is indexed by the step size and κ(W−1
h Ah) =

O(h−τ ) holds with τ > 0 , the convergence of Φϑopt
is of the order τ . All linear

iterations Φ′
h(x, b) = x − ϑW ′−1

h (Ahx − b) with W ′
h ∼ Wh have the same

convergence order τ . Hence the convergence order is a property of the equivalence
class.

The optimal convergence order is τ = 0 characterised by ρ(Mh) ≤ c < 1.
In the case of linear iterations Φ(x, b) = x − ϑW−1(Ax − b) with A,W > 0,
the latter inequality can be ensured by the next statement.

Proposition 7.60. The family of linear iterations Φh(x, b) = x−ϑoptW−1
h (Ahx−b)

with Ah,Wh > 0 satisfies

ρ(Mh) ≤ c < 1 for all h ∈ H

if and only if
Ah ∼ Wh .

Proof. Ah ∼ Wh implies that κh = κ(W−1
h Ah) = O(1). Hence ρ(Mϑopt

) =
κh−1
κh+1 ≤ c < 1 holds with c := sup{2/(1 + κh) : h ∈ H}. ��

This result shows a way how to obtain optimal convergence, provided that
W−1

h (Ahx − b) is easy to evaluate. As in Remark 7.7 we have to ask on what
data the choice of Wh could be based. Using only the data of Ah , the traditional
techniques do not lead to Ah ∼ Wh in general. In §13.4 we shall propose a new
technique which is able to satisfy Ah ∼ Wh .

7.4.5 Equivalent Bilinear Forms

We recall the Definition E.2 of coercive forms.

Definition 7.61. Two symmetric and coercive sesquilinear forms a, b : V ×V → C
are called equivalent (notation: a ∼ b) if there is some c > 0 with

1

c
a(u, u) ≤ b(u, u) ≤ c a(u, u) for all u ∈ V . (7.52)

For simplicity, we use the term bilinear which suits for K = R. For K = C,
the form must be sesquilinear (cf. Definition E.1).

The Galerkin matrix Ah corresponding to the bilinear form a(·, ·) satisfies

〈Ahx, y〉 = a(Phx, Phy) for all x, y ∈ KI ,

where 〈·, ·〉 is the Euclidean scalar product (cf. Exercise E.5). The mapping
Ph : KI → Vn ⊂ V is defined in (E.6).



171

Applying (7.52) to u = Phx, we obtain

1

c
〈Ahx, x〉 ≤ 〈Bhx, x〉 ≤ c 〈Ahx, x〉 for all x ∈ KI , (7.53a)

where Bh is the Galerkin matrix corresponding to the bilinear form b(·, ·). The
symmetry of a and b implies that Ah and Bh are also Hermitian (cf. Exercise E.6a).
Therefore the property (7.53a) is equivalent to the inequalities

1

c
Ah ≤ Bh ≤ cAh (7.53b)

in the sense of §C.1.1.
Note that the constants in (7.52) and (7.53b) coincide. Therefore they hold for

all discretisation parameters h ∈ H which form the families A = (Ah)h∈H and
B = (Bh)h∈H . Using the notion of equivalence, we obtain the following statement.

Proposition 7.62. Equivalent forms a ∼ b produce equivalent Galerkin matrix
families A ∼ B.

A potential practical strategy is the following. Let a and A correspond to the
problem to be solved. If there is a simpler but equivalent form b, it may be that the
corresponding matricesBh are easier to handle. EitherW−1

h δ = d can be solved for
Wh = Bh or for another choice Wh ∼ Bh. By Proposition 7.62, Ah ∼ Wh holds
as required in Proposition 7.60.

Conclusion 7.63. Let the symmetric and coercive form a(·, ·) correspond to a
boundary value problem for u ∈ V := H1

0 (Ω). Use the same finite element dis-
cretisation for a(·, ·) and the standard Poisson problem. Then both discretisation
matrices are spectrally equivalent.

7.5 Time-Stepping Methods

The term of a time-stepping method is used, in particular, in the engineering
community. The function x(t), 0 ≤ t < ∞, is introduced as a solution of the
system of ordinary differential equations

d

dt
x(t) = b−Ax with the initial value x(0) = x0. (7.54)

If A is positive definite (or if �e(λ) > 0 holds for all eigenvalues λ ∈ σ(A)),
then x(t) converges for t → ∞ to the solution x∗ := A−1b, which is now
interpreted as the stationary solution of (7.54). The time-stepping method tries to
discretise the differential equation by a grid

0 = t0 < t1 < . . .

7.4 Preconditioning



172 7 Generation of Iterations

and to approximate x(t) for a large t = tm. One explicit Euler step with the time
step �t := tm+1 − tm reads as

x(tm+1) ≈ xm+1 = xm − �t (Axm − b) (7.55)

(cf. Quarteroni–Sacco–Saleri [314, §11.2]). For a fixed (or variable) step size �t,
recursion (7.55) describes the stationary (or instationary) Richardson method.

Often Runge–Kutta-like methods are proposed. For example, the Heun method
becomes

x′ := xm −α�t (Axm − b), x(tm+1) ≈ xm+1 = xm − β�t (Ax′ − b) (7.56)

with α = 1
2 and β = 1 (cf. Heun [220]; in the true Runge–Kutta case, there are

four coefficients; cf. Runge [327] and Kutta [250]).
While the original discretisation methods try to achieve small discretisation

errors ‖xm − x(tm)‖ for all grid points tm, the coefficients α, β are now chosen
such that the convergence xm → x∗ is improved. The produced methods
(as, e.g., (7.56)) are the semi-iterative variants of the Richardson iteration which
will be described in §8.3.7.

In the language of ordinary differential equations, one explains the unfavourably
slow convergence of the Richardson variants by the stiffness of the system. When
preconditioning is introduced to speed up the convergence:

xm+1 = xm − �tW−1(Axm − b),

this is called a quasi-time stepping method, which however does no longer approxi-
mate the equation (7.54) but only the same stationary solution x∗.

In essence, the interpretation by a time-stepping method is misleading (e.g., since
the high consistency order of a Runge–Kutta method is given up for purposes which
are not connected with this method). In particular, this concept is of no help for
analysing the iteration or for constructing efficient iterations.

7.6 Nested Iteration

Three families of linear iterations, the multigrid iteration, the domain decomposition
methods, and the hierarchical LU iteration will be described in Part III. The multi-
grid method is usually combined with the nested iteration. As shown in §11.5, the
nested iteration technique can be combined with any linear or nonlinear iteration.
It does not change the iteration, but yields advantageous starting values.



Part II

Semi-Iterations and Krylov Methods



While Part I is dedicated to linear iterations, we now consider nonlinear
approaches. These nonlinear methods are not completely new algorithms, but reuse
linear iterations. They may be considered as ‘acceleration methods’ which try to
speed up linear iterations. We denote the set of nonlinear algorithms by N . Any
method Υ ∈ N requires a linear iteration Φ ∈ L as an argument. Then Υ [Φ] is a
nonlinear mapping of a starting value y0 into a sequence y1, y2, . . . . In contrast to
linear iterations, it may happen that the sequence {ym} is not infinite, but terminates
either since the exact solution is obtained or since the method breaks down.

Often the nonlinear method Υ is identified with Υ [ΦRich
1 ], i.e., with its applica-

tion to the Richardson iteration. In that case, Υ [Φ] for other Φ ∈ L is called the
‘preconditioned version’ of Υ (preconditioned by NΦ).

We do not fix the domain and range of Υ [Φ] since these sets depend on the
method. In the simplest case, ym+1 = Υ [Φ](ym) holds as for the linear case (an
example is the gradient method). Alternatively, Υ [Φ] may be a three-term recursion
of the form ym+1 = Υ [Φ](ym, ym−1) with a first iterate y1 = Υ [Φ](y0) (see,
e.g., the Chebyshev method). In the standard cases, the iterates ym are enriched by
further auxiliary variables that are updated in each step.

The connection of Υ [Φ] with Φ can be seen from the fact that the nonlinear iterate
ym belongs to the affine space x0 + span

{
xμ − x0 : 1 ≤ μ ≤ m

}
, where xμ are

the iterates of Φ with the initial value x0 = y0. Since the corresponding space is
called the Krylov space, the nonlinear methods are also called Krylov methods.

The most general approach is the semi-iterative method defined and analysed in
Chapter 8. Roughly speaking, a semi-iterative method (shortly ‘semi-iteration’) is
produced by a linear iteration Φ ∈ L with varying damping factors. The discussion
leads to the question of optimal polynomials. Using a simplification of the optimi-
sation task, the optimal polynomial turns out to be the (transformed) Chebyshev
polynomial. The related nonlinear method is the Chebyshev method ΥCheb ∈ N
described in §§8.3.4–8.3.5.

Besides the practical relevance of semi-iterative methods, this technique is of
fundamental theoretical interest since all other methods can be interpreted as certain
semi-iterations, so that semi-iterative error estimates can be applied.

In §8.5 we insert the description of the ADI method which is not really of the
form described above, but it might be seen as a generalisation of semi-iterations (re-
placing scalar parameters by matrix-valued ones). Under conditions, which are not
so easy to fulfil in practice, the method has very favourable convergence properties.

Chapter 9 is devoted to the gradient method. An optimisation of greedy type de-
termines the damping factors of the underlying iteration Φ ∈ L. It turns out that the
gradient method converges as fast as the optimally damped version Φϑopt

of Φ, but
the method can be applied without knowing the spectral values that determine ϑopt.
In §9.3 we discuss the drawback of the gradient directions and introduce the conju-
gate directions as a transition from the gradient to the conjugate gradient method.

The conjugate gradient method ΥCG ∈ N introduced in Chapter 10 is the most
popular acceleration method. It applies to Φ ∈ Lpos with system matrices A > 0
and to Φ ∈ L>0. Sections 10.3–10.5 are devoted to CG variants that apply to a
larger class of problems.



Chapter 8

Semi-Iterative Methods

Abstract The semi-iteration comes in three formulations. The first one in Section
8.1 is the most general and associates each semi-iterate with a polynomial. Using
the notion of Krylov spaces, we only require that the errors of the semi-iterates ym

be elements of the Krylov space x0 +NKm(AN, r0). In the second formulation of
Section 8.2, the polynomials pm associated with ym are related either by a two-term
or by a three-term recursion. Section 8.3 tries to determine the optimal polynomials.
Here the result depends on what quantity we want to minimise. Three minimisation
problems are discussed. The last formulation is practically solvable and leads to
(transformed) Chebyshev polynomials. The corresponding semi-iteration is called
the Chebyshev method (cf. §8.3.4). The Chebyshev method improves the order of
convergence. Its convergence speed corresponds to the square root of the spectral
condition number (cf. §8.3.5). In Section 8.4 the Chebyshev method is applied to
the iterations discussed in Part I. In Section 8.5 we describe the ADI method which
is not really of the form discussed above, but it might be seen as a generalisation of
semi-iterations (replacing scalar parameters by matrix-valued ones).

8.1 First Formulation

8.1.1 Notation

Let Φ ∈ L be a linear and consistent (not necessarily convergent) iteration with
an iteration matrix M . In the following Φ is also called the basic iteration. Assume
that for a starting iterate x0, the iterates

xm+1 =Mxm +Nb = Φ(xm, b)

are computed. Up to now, the last computed iterate xm is regarded as the result of
the iterative process. The previously calculated xj (0 ≤ j ≤ m− 1) are ‘forgotten’.
The semi-iterative method is based on a different view. Now, the result of m steps

175© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_8



176 8 Semi-Iterative Methods

of the basic iteration Φ is the complete sequence

Xm := (x0, x1, . . . , xm) ∈ (KI)m+1. (8.1)

We shall investigate whether a better result than xm can be constructed from Xm.
A semi-iterative method is a mapping

Σ :

∞⋃
m=0

(KI)m+1 → KI .

The results
ym := Σ(Xm) (m = 0, 1, 2, . . .)

yield a new sequence: the semi-iterative sequence. We shall see that in many cases
{ym} converges faster than {xm}.

Remark 8.1. The simple example ym = Σ(x0, x1, . . . , xm) := xm shows that an
optimally chosen semi-iterative method cannot be worse than the basic iteration.

To simplify the notation of polynomials, we introduce the following definition.

Definition 8.2. For m ∈ N0, Pm is the linear space of polynomials of degree ≤m
with the underlying field K. P−1 := {0} contains the zero polynomial.

8.1.2 Consistency and Asymptotic Convergence Rate

Similar as in Definition 2.5, a semi-iterative method Σ is called consistent if
equation (8.2) holds for all solutions of Ax = b :

x = Σ( x, x, . . . , x︸ ︷︷ ︸
m+1 arguments

) (m = 0, 1, 2, . . .). (8.2)

The convergence rate ρ=ρ(M) can be characterised as the minimal ρ satisfying

lim
m→∞(‖xm − x‖/‖x0 − x‖)1/m ≤ ρ for all x0 �= x (cf. Remark 2.22b).

This characterisation can be transferred to the semi-iterative case.

Definition 8.3. The semi-iterative method has the asymptotic convergence rate ρ,
if ρ is the smallest number with

lim
m→∞

(
‖ym − x‖/‖y0 − x‖

)1/m ≤ ρ
(
x = A−1b

)
for all semi-iterative sequences {ym} corresponding to arbitrary starting iterates
y0 = x0.



8.1 First Formulation 177

In the following, we restrict our considerations to linear semi-iterations. Σ is
called linear if ym = Σ(Xm) is a linear combination

ym =

m∑
j=0

αmj x
j (8.3)

with coefficients αmj ∈ K (m ∈ N0, 1 ≤ j ≤ m). Obviously, a linear semi-
iterative method is consistent if and only if

m∑
j=0

αmj = 1 for all m = 0, 1, 2, . . . . (8.4)

Applying condition (8.4) to m = 0, we find that a consistent semi-iterative method
satisfies the initial condition

y0 = x0. (8.5)

8.1.3 Error Representation

Theorem 8.4. Let x be a solution of Ax=b , while M denotes the iteration matrix
of the basic iteration Φ ∈ L . Then the error

ηm := ym − x (x = A−1b) (8.6a)

admits the representation

ηm = pm(M) e0 with e0 := x0 − x, (8.6b)

where y0 = x0 (cf. (8.5)) is the starting iterate and pm is the polynomial

pm(ζ) =

m∑
j=0

αmj ζ
j ∈ Pm (8.6c)

with the coefficients αmj in (8.4).

Proof. Let ej = xj − x be the iteration errors of the basic iteration. Subtracting
x =

∑m
j=0 αmjx from ym =

∑m
j=0 αmjx

j (cf. (8.2) and (8.4)), we obtain the
semi-iterative error

ηm := ym − x =

m∑
j=0

αmj(x
j − x) =

m∑
j=0

αmje
j .

Inserting the representation ej = xj − x =M je0 (cf. (2.16b)), we arrive at



178 8 Semi-Iterative Methods

ηm =

m∑
j=0

αmj

(
M je0

)
=
( m∑

j=0

αmjM
j
)
e0 = pm(M)e0. ��

Theorem 8.4 associates the linear semi-iteration Σ with a family of polynomials

{pm ∈ Pm : m = 0, 1, . . .}.

Vice versa, any sequence {pm ∈ Pm} of polynomials defines a semi-iterative
method by means of its coefficients αmj .

Remark 8.5. (a) A linear semi-iterative method Σ is uniquely described by the
family of associated polynomial sequence {pm ∈ Pm}. Σ is consistent if and
only if

pm(1) = 1 for m = 0, 1, . . . . (8.6d)

(b) Let the basic iteration with iteration matrix M be consistent. Then the semi-
iterates ym have the representation1

ym =Mmx
0 +Nmb with Mm := pm(M), Nm := (I −Mm)A−1. (8.7)

(c) The asymptotic convergence rate is equal to

lim
m→∞ ρ(pm(M))1/m.

If M is diagonalisable, the quantity above coincides with lim ‖pm(M)‖1/m.
The equality

lim ρ(pm(M))1/m = lim ‖pm(M)‖1/m

is not valid in general, but holds for many important polynomial sequences pm
(cf. Eiermann–Niethammer–Varga [120]).

From (8.6d), we derive an alternative characterisation of pm.

Remark 8.6. (a) Any polynomial pm ∈ Pm satisfying the consistency condition
(8.6d) is uniquely associated with a polynomial qm ∈ Pm−1 so that

pm(ζ) = 1 − (1 − ζ) qm(1 − ζ) . (8.8)

(b) M = I −NA (cf. (2.9′)) yields

pm(M) = I −NAqm(NA).

1 The expression I −Mm has the form XmA so that (I −Mm)A−1 = Xm is well defined
also for singular A.



8.1 First Formulation 179

8.1.4 Krylov Space

Definition 8.7. The Krylov space associated with a matrix X ∈ KI×I and with a
vector v ∈ KI is defined by

Km(X, v) := span{v,Xv, . . . , Xm−1v} for m ∈ N,

while K0(X, v) := {0} (cf. Aleksey Nikolaevich Krylov [249]).

Exercise 8.8. Let U = span{u1, . . . , um} be a subspace of KI .
(a) Prove that span{U , x} = span{U , y} for any x, y with x− y ∈ U .
(b) Let A ∈ KI×I be any matrix. AU abbreviates the subspace {Ax : x ∈ U}.
Prove that AU = span{Au1, . . . , Aum}.

Since the monomials {1, x, . . . , xm−1} span the space Pm−1 of polynomials of
degree ≤ m − 1, we obtain the first statement of the next remark. There we use
the notation v + U := {v + u : u ∈ U} for the affine subspace with a subspace
U ⊂ KI and a vector v ∈ KI . The residual of an approximation x̃ is defined by
r := b−Ax̃ and is the negative defect (2.17).

Proposition 8.9. (a) The connection with matrix polynomials is given by

Km(X, v) = {p(X)v : p ∈ Pm−1} .

(b) Assume that the iteration Φ with the iteration matrix M = I − NA yields
the iterates xm with the errors em = xm − x and the residuals rm := b− Axm.
They satisfy

xm ∈ x0 +NKm(AN, r0) = x0 +NAKm(NA, e0) ⊂ x+ Km+1(NA, e
0),

em ∈ e0 +NKm(AN, r0) = e0 +NAKm(NA, e0) ⊂ Km+1(NA, e
0),

rm ∈ r0 +ANKm(AN, r0) ⊂ Km+1(AN, r
0),

and

span{e0, . . . , em−1} = Km(M, e0) = Km(NA, e0),

span{r0, . . . , rm−1} = Km(M, r0) = Km(NA, r0).

(c) The following identity holds for regular T :

TKm(X, v) = Km(TXT−1, T v).

(d) For m ∈ N0, we have

XKm(X, v) ⊂ v+XKm(X, v) ⊂ span{v}+XKm(X, v) = Km+1(X, v). (8.9)



180 8 Semi-Iterative Methods

Proof. The statements in part (b) follow by induction. Note that Km(M, v) =
Km(NA, v) holds for all v since a polynomial in M = I − NA can be written
as a polynomial of same degree in NA. The inclusions use part (d).

Part (c) is a consequence of Exercise A.16a. ��

Definition 8.10. The degree of a vector v∈KI (with respect to a matrixX∈KI×I )
is defined by

degX(v) := min {m ∈ N0 : p(X)v = 0 for p ∈ Pm with degree(p) = m} .

Exercise 8.11. For m ∈ N, prove: (a) dim(Km(X, v)) = min{m, degX(v)} ≤
m.
(b) If dim(Km+1(X, v)) = dim(Km(X, v)), then Km+1(X, v) = Km(X, v).
If, in addition, X is regular, XKm(X, v) = Km(X, v) also holds.
(c) degX(v) = 0 holds if and only if v = 0, while degX(v) = 1 characterises all
eigenvectors of X .
(d) degX(v) ≤ degree(μX) ≤ #I , where μX is the minimum function (A.16c).
(e) Any w∈ Km(X, v) is characterised by a polynomial p∈ Pm−1 via w=p(X)v.
If dim(Km(X, v)) = m, this polynomial is unique.

Lemma 8.12. For any v ∈ KI and any regular matrix X, the polynomial p with
p(X)v = 0 and degree(p) = degX(v) satisfies p(0) �= 0.

Proof. If p(0) = 0, there is a polynomial q ∈ PdegX(v)−1 with p(ξ) = ξ q(ξ).
Hence 0 = p(X)v = Xq(X)v implies that q(X)v = 0 in contradiction to the
minimality of degX(v). ��

Combining Proposition 8.9a with Theorem 8.4 and repeating the arguments of
Proposition 8.9, we obtain the next statement.

Conclusion 8.13. (a) The first formulation of a semi-iteration is equivalent to

ym ∈ x0 +NKm(AN, r0) ⊂ x+ Km+1(NA, e
0),

where x := A−1b . The polynomial (8.6c) coincides with the polynomial associated
with the error ηm = ym − x ∈ Km+1(NA, e

0) in (8.6a) by Exercise 8.11e.
(b) If the polynomials in (8.6c) satisfy degree(pμ) = μ , the errors ηm span

Km(M, e0) = span{η0, η1, . . . , ηm−1}.

(c) The residuals rm = −Aηm = b − Aym of the semi-iterates span the space
A span{η0, . . . , ηm−1} . Under the conditions of part (b), Proposition 8.9c yields

span{r0, r1, . . . , rm−1} = AKm(M, e0) = Km(AN, r0).



8.2 Second Formulation of a Semi-Iterative Method 181

8.2 Second Formulation of a Semi-Iterative Method

8.2.1 General Representation

The representation used in §8.1 requires storing all iterates (x0, x1, . . . , xm), which
is not desirable in the case of largem and high-dimensional systems. Since, in §8.1,
the definition of ym = Σ(Xm) is completely independent of the previous iterates
yj = Σ(Xj) (0≤ j≤m−1), it is in general not possible to use the semi-iterative
results y0, . . . , ym−1 for computing ym.

This situation changes in the second formulation. Let Φ ∈ L be the basic
iteration. After starting with

y0 = x0 (cf. (8.5)), (8.10a)

we compute the iterates recursively by

ym = ϑm Φ(y
m−1, b) + (1 − ϑm)ym−1 (m ≥ 1) (8.10b)

with extrapolation factors ϑm ∈ K (m ∈ N) that may be chosen arbitrarily.
Exploiting the normal forms Φ(x, b) = Mx +Nb = x −N(Ax − b), equation

(8.10b) can be written in the form (8.10b′) or (8.10b′′”):

ym = ϑm (Mym−1 +Nb) + (1 − ϑm) ym−1, (8.10b′)

ym = ym−1 − ϑmN(Aym−1 − b) = Φϑm
(ym−1, b). (8.10b′′”)

Formulae (8.10b′,b′′) represent one step of the damped version Φϑm
of the basic

iteration (cf. §5.2.2), however with a parameter ϑm depending on m.
Below we state that recursion (8.10a,b) yields a semi-iterative method.

Theorem 8.14. For arbitrary factors ϑm ∈ K (m ∈ N) , algorithm (8.10a,b)
defines a linear and consistent semi-iteration Σ. The polynomials {pm ∈ Pm}
describing Σ are recursively defined by

p0(ζ) = 1, pm(ζ) = (ϑmζ + 1 − ϑm) pm−1(ζ) (m ∈ N). (8.11)

Proof. (i) One shows by induction that the polynomials pm in (8.11) satisfy the
consistency condition (8.6d): pm(1) = 1. Also degree (pm) ≤ m is obvious.

(ii) The basic iteration Φ is assumed to be consistent. By construction (8.10b′),
the first matrix Mm in the representation ym = Mmx

0 + Nmb has the form
Mm = ϑmMMm−1 + (1 − ϑm)Mm−1, where M0 = I . According to (8.7),
the polynomials in (8.11) lead to the same matrix Mm = pm(M). Since these
matrices uniquely determine ym because of Nm := (I − Mm)A−1 (using the
consistency of Φ), the method (8.10a,b) coincides with the semi-iteration defined
by the polynomials (8.11). The case of an inconsistent basic iteration is left to the
reader (proof by induction). ��

The case ϑm=0 is uninteresting because of ym=ym−1. Therefore, we assume
that ϑm �= 0. The set of all methods representable by (8.10a,b) is characterised next.



182 8 Semi-Iterative Methods

Lemma 8.15. Let Φ∈L be the basic iteration and assume ϑm �= 0 in (8.10b). Then
the second formulation (8.10a,b) represents exactly those linear and consistent
semi-iterations for which the associated polynomials pm satisfy (8.6d) and

degree(pm) = m, pm−1 is a divisor of pm for all m ≥ 1. (8.12a)

Given polynomials {pm} with (8.6d) and (8.12a), the extrapolation factors ϑm
of the equivalent representation (8.10a,b) are determined by

pm(ζ)

pm−1(ζ)
= 1 + ϑm(ζ − 1). (8.12b)

Proof. In the case of ϑm �= 0, the method (8.10a,b) leads to polynomials (8.11)
satisfying degree(pm) = m; hence, (8.12a) is satisfied. Vice versa, under the
assumption (8.12a), pm/pm−1 must be a polynomial of the form (8.12b). ��

The example of recursion (8.10a,b) shows that the mappingXm �→ym=Σ(Xm)
does not need the iterates ofXm explicitly. SinceXm is uniquely determined by x0,
there is a mapping Ξ : x0 �→ ym for ym =Σ(Xm). Recursion (8.10a,b) describes
such a mapping Ξ .

By Lemma 8.15, the semi-iterate ym for a fixed m can be produced as follows.

Remark 8.16. ym is connected with a polynomial pm. Let

pm(ζ) = cm
∏m

ν=1
(ζ − ζν) with cm = 1/

∏m

ν=1
(1 − ζν) (8.13a)

be a factorisation into linear factors (possibly with complex ζν) and define auxiliary
polynomials p̂μ for 0 ≤ μ ≤ m by

p̂μ(ζ) =
∏μ

ν=1

ζ − ζν
1 − ζν

. (8.13b)

Set ϑμ := 1
1−ζμ

for 0 < μ ≤ m. Then all polynomials p̂μ satisfy (8.12a,b) and
p̂m = pm. The corresponding semi-iteration

ŷμ=Φϑμ(ŷ
μ−1, b) (1 ≤ μ ≤ m; cf. (8.10a,b))

is as easy to perform and yields ŷm = ym (only for μ = m, not for μ < m).
However, this approach has severe disadvantages.

1. To compute the next ym+1, we have to perform (8.10a,b) again from μ = 0 to
μ = m+ 1, since then other auxiliary polynomials p̂μ are needed.

2. The second formulation (8.10a,b) may be unstable. For relative small m, the
rounding error influence of the iteration errors ym − x can already predominate.
It is possible to avoid instability by a suitable renumbering of the ϑν . Concern-
ing the stability analysis and the choice of an appropriate ordering, we refer to
Lebedev–Finogenov [261, 262] (cf. also Samarskii–Nikolaev [330, §6.2.4]).

It will turn out that the three-term recursion described next is the best represen-
tation of the polynomials.



8.2 Second Formulation of a Semi-Iterative Method 183

8.2.2 Three-Term Recursion

Algorithm (8.10b) determines ym from ym−1. Alternatively, a three-term recursion
connects ym with ym−1 and ym−2 (cf. §2.2.8):

y0 = x0, (8.14a)

y1 = (1 − 1
2ϑ1)x

1 + 1
2ϑ1x

0 = (1 − 1
2ϑ1)Φ(x

0, b) + 1
2ϑ1x

0, (8.14b)

ym = Θm

[
Φ(ym−1, b) − ym−2

]
+ ϑm (ym−1 − ym−2) + ym−2. (8.14c)

From Φ(x, b) =Mx+Nb = x−N(Ax− b), we obtain the representations

y1 = (1 − 1
2ϑ1)(Mx

0 +Nb) + 1
2ϑ1x

0

= x0 − (1 − 1
2ϑ1)N(Ax0 − b),

ym = Θm

(
Mym−1 +Nb− ym−2

)
+ ϑm(ym−1 − ym−2) + ym−2

= (1 + ϑm +Θm)ym−2 + (ϑm +Θm)(ym−1−ym−2) −ΘmN(Aym−1−b).

Analogous to Theorem 8.14, one proves the next theorem.

Theorem 8.17. For arbitrary factors Θm and ϑm , algorithm (8.14a–c) defines a
linear and consistent semi-iteration Σ . The polynomials {pm} describing Σ are
recursively defined by

p0(ζ) = 1, p1(ζ) =
(
1 − 1

2ϑ1
)
ζ + 1

2ϑ1, (8.15a)

pm(ζ) =
(
Θmζ + ϑm

)
pm−1(ζ) +

(
1 −Θm − ϑm

)
pm−2(ζ). (8.15b)

For the particular choice ϑm = 0 , the recursion becomes

p0(ζ) = 1, p1(ζ) = ζ, (8.15c)

pm(ζ) = Θm

[
ζ pm−1(ζ) − pm−2(ζ)

]
+ pm−2(ζ). (8.15d)

We remark that all orthogonal polynomials can be generated by recursion of the
form (8.15a,b) (cf. Quarteroni–Sacco–Saleri [314, §10.1]).

Exercise 8.18. Prove that the polynomials qm in (8.8) associated with pm and
defined either in (8.15a,b) or (8.15c,d) can be determined by the recursion

q0(ξ) = 0, q1(ξ) = 1 − 1
2ϑ1,

qm(ξ) = Θm + (1 −Θm − ϑm) qm−2(ξ) + (Θm (1 − ξ) + ϑm) qm−1(ξ)

or, respectively,

q0(ξ) = 0, q1(ξ) = 1,

qm(ξ) = Θm + (1 −Θm) qm−2(ξ) +Θm (1 − ξ) qm−1(ξ).



184 8 Semi-Iterative Methods

8.3 Optimal Polynomials

Since the semi-iterates are completely determined by polynomials, we can ask for
the best polynomials in the sense that the corresponding semi-iteration is as fast as
possible. The quantity to be minimised is still to be specified. It might be a certain
norm of the error (cf. Problem 8.19) or the convergence rate (cf. Problem 8.21) or
an upper bound of the error (cf. Problem 8.20).

8.3.1 Minimisation Problem

Let Σ be a linear and consistent semi-iteration. By Theorem 8.4, the semi-iteration
error ηm = ym − x has the representation (8.6b):

ηm = pm(M)e0.

Therefore, it seems reasonable to pose the following problem.

Problem 8.19 (first minimisation problem). Given m ∈ N , determine a polyno-
mial pm ∈ Pm satisfying (8.6d), i.e.,

pm(1) = 1, (8.16)

such that
‖pm(M)e0‖2 !

= min, (8.17)

i.e., ‖pm(M)e0‖2 ≤ ‖qm(M)e0‖2 for all admissible polynomials.

The solution of (8.17) seems hopeless, since the unknown error e0 = x0 − x
is involved in the problem (if e0 were known, x = x0 − e0 already represents the
solution). Nevertheless, we shall solve this problem with respect to the energy norm
instead of ‖·‖2 in §9.3 (cf. Remark 10.12).

Even if e0 is unknown, ‖pm(M)e0‖2 can be estimated by

‖pm(M)e0‖2 ≤ ‖pm(M)‖2 ‖e0‖2

and the factor ‖pm(M)‖2 can be minimised separately.

Problem 8.20 (second minimisation problem). Given m ∈ N, determine a poly-
nomial pm ∈ Pm with (8.16) such that

‖pm(M)‖2
!
= min . (8.18)



8.3 Optimal Polynomials 185

8.3.2 Discussion of the Second Minimisation Problem

A partial answer to the minimisation problems follows in Theorem A.37 (Cayley–
Hamilton). Assume that M has no eigenvalue λ = 1 (ρ(M) < 1 is sufficient).
For all m ≥ n := #I , the choice pm(λ) = χ(λ) := det(λI −M)/ det(I −M)
leads to a polynomial with the properties (8.16) and degree(pm) ≤ m solving
problems (8.17) and (8.18). In particular, (8.19) holds:

pm(M) = 0 and ‖pm(M)‖ = 0. (8.19)

The minimum function pm(λ) = μ(λ) of M (cf. (A.16c)) already satisfies (8.19)
for m ≥ mμ := degree(μ).

The solution given in (8.19) is unsatisfactory for two reasons. First, the char-
acteristic polynomial χ (more precisely, its coefficients) is not easy to compute;
second, the case m ≥ n is rather uninteresting.

Intermediately, we require that

M be normal, (8.20)

i.e., MMH =MHM (M being Hermitian would be sufficient). Since then pm(M)
is also normal, Theorem B.25 implies that

‖pm(M)‖2 = ρ(pm(M)) = max{|pm(λ)| : λ ∈ σ(M)}.

Therefore, minimising (8.18) is equivalent to determining a polynomial whose ab-
solute value is minimal on the set σ(M). Even if the normality (8.20) does not hold,
minimisation of max{|pm(λ)| : λ ∈ σ(M)} makes sense. The new minimisation
problem is

ρ(pm(M)) = max{|pm(λ)| : λ ∈ σ(M)} !
= min, (8.21a)

i.e., the spectral radius is minimised over all admissible polynomial in Pm instead
of the spectral norm ‖pm(M)‖2.

For the next interpretation, we assume that M = T−1DT (D diagonal matrix)
is diagonalisable. This leads to pm(M) = pm(T−1DT ) = T−1pm(D)T . Using
the norm ||| · |||T defined in Exercise B.13c, we obtain

||| pm(M) |||T = ‖T pm(M)T−1‖2 = ‖pm(D)‖2 = ρ(pm(D))

= ρ(pm(M)) = max{|pm(λ)| : λ ∈ σ(M)}. (8.21b)

Alternatively, we may estimate by

‖pm(M)‖2 ≤ cond2(T )‖pm(D)‖ = cond2(T ) ρ(pm(M)). (8.21c)

Hence minimising the spectral radius ρ(pm(M)) in (8.21a) minimises the upper
bound cond2(T )‖pm(D)‖ in (8.21c).



186 8 Semi-Iterative Methods

According to §5.1.2, symmetric iterations have the property that A > 0 im-
plies that A1/2MA−1/2 is also Hermitian. Then the energy norm of pm(M) is well
defined and equal to

‖pm(M)‖A = max{|pm(λ)| : λ ∈ σ(M)} = ρ(pm(M)). (8.21d)

The minimisation of max{|pm(λ)| : λ ∈ σ(M)} can only be solved with the
knowledge of the spectrum σ(M). Computing the complete spectrum, however,
would be by far more expensive than the solution of the system.

As a remedy, we assume that there is an a priori known superset

σM ⊃ σ(M)

containing the spectrum. Then σ(M) can be replaced with σM . An example for
the larger set σM is the complex circle

σM = {λ ∈ C : |λ| ≤ ρ̄} with ρ̄ ≥ ρ(M).

Unfortunately, this circle is inappropriate for our purposes as we shall see in
Theorem 8.32. If, however, M has only real eigenvalues, the interval

σM = [−ρ̄, ρ̄ ] with ρ̄ ≥ ρ(M) (8.22a)

is a candidate. In some cases, it is known that M has only nonnegative eigenvalues
(cf. Theorem 3.34c). Then one may choose

σM = [ 0, ρ̄ ] with ρ̄ ≥ ρ(M). (8.22b)

In all cases, it is sufficient to know an upper bound ρ̄ of ρ(M), where ρ̄ = ρ(M)
would be optimal and ρ̄ < 1 must hold. For instance, we may choose ρ̄ as ρm+k,k

in (2.23b) for suitable m and k (cf. Remark 2.32).

Accordingly, the minimisation of ‖pm(M)‖2 in Problem 8.20 is replaced with
the following minimisation.

Problem 8.21 (third minimisation problem). Given m ∈ N and σM , determine
a polynomial pm ∈ Pm with (8.16) such that

max{|pm(λ)| : λ ∈ σM} !
= min . (8.23)

Finally, we briefly discuss the choice of alternative norms in (8.17) and (8.18).
A non-Hilbert norm (as, e.g., the maximum or row-sum norm ‖·‖∞) leads to a
considerably more complicated minimisation problem. It would be possible to
replace the Euclidean norm ‖·‖2 by ||| x |||T = ‖Tx‖2 or ‖x‖K = ‖K1/2x‖2
(K positive definite) as already done in (8.21b,d). Examples for K would be A and
the matrix W of the third normal form (cf. (3.35e) and (8.21d)).



8.3 Optimal Polynomials 187

8.3.3 Chebyshev Polynomials

As a preparation for the next section we discuss the Chebyshev polynomials.

Definition 8.22. The Chebyshev polynomials Tm are defined by

Tm(x) := cos(m arccosx) for m ∈ N0, −1 ≤ x ≤ 1. (8.24)

Part (a) of the following theorem summarising all properties needed later shows
that the functions Tm are in fact polynomials of degree m.

Lemma 8.23. (a) The functions Tm in (8.24) fulfil the recursion

T0(x) = 1, T1(x) = x, Tm+1(x) = 2xTm(x) − Tm−1(x). (8.25a)

(b) For x ≥ 1, the polynomials Tm have the representation

Tm(x) = cosh(m arcoshx) for m ∈ N0, x > 1, (8.25b)

where cosh(x) = ex+e−x

2 is the hyperbolic cosine, while arcosh (area-hyperbolic
cosine) is its inverse function.
(c) For all x ∈ C , the representation (8.25c) holds:

Tm(x) =
1

2

[(
x+
√
x2 − 1

)m
+
(
x+
√
x2 − 1

)−m
]
. (8.25c)

Proof. Eqs. (8.25a) follows from the cosine addition theorem. For (8.25b), it is
sufficient to prove that the functions defined there also satisfy recursion (8.25a).
Substituting x = cos ζ, we see that (8.25c) coincides with cos(mζ) = Tm(x). ��

{Tm} are orthogonal polynomials with respect to the weight function 1√
1−x2 , i.e.,∫ 1

−1
Tm(x)Tn(x)√

1−x2 dx = 0 for n �= m (cf. Quarteroni–Sacco–Saleri [314, §10.1.1]).

8.3.4 Chebyshev Method (Solution of the Third Minimisation
Problem)

As in the examples (8.22a,b), we assume that σM is a real interval. The solution to
the third minimisation problem (8.23) is given below.

Notation 8.24. In the following, the real numbers a, b with −∞ < a ≤ b < 1
define an interval with the property

σM = [a, b ] ⊃ σ(M). (8.26a)



188 8 Semi-Iterative Methods

Because M = I −NA = I −W−1A (cf. (2.9)), inclusion (8.26a) is equivalent to

[γ, Γ ] ⊃ σ(NA) = σ(W−1A) (8.26b)

with
γ = 1 − b, Γ = 1 − a. (8.26c)

Note that 0 < γ ≤ Γ < ∞ . Often, the use of γ and Γ leads to simpler formulae.
In particular, the ratio

κ = Γ/γ (8.26d)

is of interest. If the inclusion (8.26a) is strict, i.e., a, b ∈ σ(M), [γ, Γ ] ⊃ σ(NA)
is also strict and κ = κ(NA) is the spectral number defined in (B.13).

Lemma 8.25. Let [a, b ] be an interval with −∞ < a ≤ b < 1. The problem

minimise max{|pm(λ)| : a ≤ λ ≤ b}
with respect to all polynomials pm ∈ Pm and pm(1) = 1

has the unique solution

pm(ζ) = Tm
(
2ζ−a−b

b−a

)
/Cm with Cm := Tm

(
2−a−b
b−a

)
= Tm

(
Γ+γ
Γ−γ

)
. (8.27a)

Here, γ, Γ are as in (8.26c) and Tm is the Chebyshev polynomial defined in (8.24).
The minimising polynomial pm has the degree m and leads to the minimum

max{|pm(λ)| : a ≤ λ ≤ b} = 1/Cm for pm in (8.27a). (8.27b)

Proof. (i) The constant Cm does not vanish, since the argument 2−a−b
b−a lies outside

of [−1, 1] and the representation (8.25b) applies. By construction, pm(1) = 1 and
degree(pm) =m hold. For a ≤ ζ ≤ b, the argument 2ζ−a−b

b−a belongs to [−1, 1].
Definition (8.24) shows that |Tm| ≤ 1 in [−1, 1]. Since Tm attains the bounds ±1,
the statement (8.27b) follows.

(ii) It remains to show that for any other polynomial the maximum in (8.27b)
is larger than 1/Cm. Let qm ∈ Pm be a polynomial with qm(1) = 1 and
max{|qm(λ)| : γ ≤ λ ≤ Γ} ≤ 1/Cm. The Chebyshev polynomial Tm(x) =
cos(m arccosx) meets the values ±1 in alternating ordering at x = cos nπ

m for
n = −m, 1 − m, . . . , 0. The function pm obtained from Tm by transforming
x �→ ζ = 1

2 [a+ b+ x(b−a)] is pm( 12 [a+ b+ x(b−a)]) := Tm(x) and has the
values

pm(ζν) = (−1)ν/Cm (−m ≤ ν ≤ 0)

at ζν = 1
2

[
a+ b+ (b− a) cos νπ

m

]
. From |qm(ζν)| ≤ 1/Cm = |pm(ζν)| , we

conclude that the difference r := pm − qm satisfies

r(ζν) ≥ 0 for even ν, r(ζν) ≤ 0 for odd ν.

By the intermediate value theorem, there exists at least one zero of r in each sub-
interval [ζν−1, ζν ] (1 − m ≤ ν ≤ 0). If the zeros in [ζν−1, ζν ] and [ζν , ζν+1]



8.3 Optimal Polynomials 189

coincide at the common point ζν , this is a double zero. Hence, counted with
respect to multiplicity, r has at least m zeros in [a, b]. By pm(1) = qm(1) = 1,
the value 1 /∈ [a, b] represents the (m+1)-th zero of r. Hence, r= 0 follows from
degree(r) ≤ m, proving that pm = qm is unique. ��

Exercise 8.26. (a) Prove by means of (8.25a) that the polynomials pm in (8.27a)
can be obtained by the recursion

p0(ζ) = 1, p1(ζ) =
2ζ − a− b

2 − a− b
, (8.28a)

Cm+1 pm+1(ζ) = 2
2ζ − a− b

2 − a− b
Cm pm(ζ) − Cm−1 pm−1(ζ). (8.28b)

(b) Let ϑopt = 2
Γ+γ (cf. (6.6a)). Prove that

pm(I −NA) =
1

Cm
Tm
(
Γ+γ
Γ−γ I +

2
Γ−γ NA

)
=

1

Cm
Tm
(
Γ+γ
Γ−γ

[
I + ϑoptNA

])
.

To investigate the minimum 1/Cm = 1/Tm( 2−a−b
b−a ) reached in (8.27b), we

have to evaluate (8.25c) at

x0 :=
2 − a− b

b− a
=
Γ + γ

Γ − γ

with γ and Γ defined in (8.26c). We use that x20 − 1 = 4γΓ/(Γ − γ)2 > 0 and
x0 +

√
x20 − 1 =

(√
Γ +

√
γ
)2
/(Γ − γ). The representation (8.25c) shows that

Cm =
1

2

{(
(
√
Γ +

√
γ )2

Γ − γ

)m
+

(
(
√
Γ +

√
γ )2

Γ − γ

)−m
}
.

The bracket (
√
Γ+

√
γ )2

Γ−γ can be rewritten as Γ
Γ−γ

(
1 +
√

γ
Γ

)2
. To simplify the

expression, we introduce

κ :=
Γ

γ
and c :=

(
1 − 1√

κ

)
/

(
1 +

1√
κ

)
(cf. (8.26d)).

Since Γ−γ
Γ = 1 − 1

κ = (1 − 1√
κ
)(1 + 1√

κ
) and 1 +

√
γ
Γ = 1 + 1√

κ
, we arrive at

(
√
Γ +

√
γ )2

Γ − γ
=

1 + 1√
κ

1 − 1√
κ

=
1

c
.

Hence, the expression for 1/Cm reduces to

1

Cm
=

2cm

1 + c2m
with c =

1 − 1/
√
κ

1 + 1/
√
κ
=

√
κ− 1√
κ+ 1

, κ =
Γ

γ
. (8.28c)

For the interpretation of κ as a spectral condition number, compare with Nota-
tion 8.24.



190 8 Semi-Iterative Methods

Conclusion 8.27. (a) For the case (8.22a), i.e., σM = [−ρ̄, ρ̄ ] with 0 < ρ̄ < 1,
the solution to the third minimisation problem (8.23) is:

pm(ζ) = Tm(ζ/ρ̄) /Cm with Cm := Tm(1/ρ̄) . (8.29a)

(b) For the case (8.22b): σM = [ 0, ρ̄ ] with 0 < ρ̄ < 1, the respective solution
becomes

pm(ζ) = Tm

(
2ζ − ρ̄

ρ̄

)
/Cm with Cm := Tm

(
2 − ρ̄

ρ̄

)
. (8.29b)

(c) The respective attained minima are

1

Cm
=

2cm

1 + c2m
with c =

⎧⎨⎩
2ρ̄

(
√
1+ρ̄+

√
1−ρ̄)

2 for (8.29a),
ρ̄

(1+
√
1−ρ̄)

2 for (8.29b).

(d) If NA is diagonalisable by a transformation T (cf. (8.21c)), the semi-iterates
ym satisfy the error estimate

‖ym − x‖2 ≤ ηm cond2(T )‖x0 − x‖2 with (8.29c)

ηm = 2
(
1 − 1

κ

)m
/
[ (

1 + 1√
κ

)2m
+
(
1 − 1√

κ

)2m ]
,

where κ is defined by (8.28c). In the case of a symmetric iteration applied to A > 0
(cf. §3.5.2), an estimate analogous to (8.29c) holds with respect to the energy norm:

‖ym − x‖A ≤ ηm‖x0 − x‖A.

Proof of (d). Use c = (1 − 1/κ) / (1 + 1/
√
κ)

2. ��
For the implementation of the Chebyshev method, one could in principle apply

Remark 8.16 and use the second formulation. The Chebyshev polynomial Tm has
the zeros

xν = cos
(
[ν + 1

2 ]π/m
)

(1 ≤ ν ≤ m).

Hence, the transformed polynomial pm in (8.27a) admits the factorisation (8.13a)
with ζν = 1

2 [a + b + (b − a)xν ]. The auxiliary polynomials pμ in (8.13b) lead to
the damping factors ϑμ :=1/(1−ζμ) in (8.10b) and (8.12b). However, this approach
suffers from numerical instabilities (cf. Lebedev–Finogenov [261, 262]).

The only elegant and practical implementation is the use of the three-term
recursion (8.14a–c), since recursion (8.28a,b) is a particular case of (8.15a,b). The
coefficients Θm and ϑm required in (8.14a–c) are provided by the next exercise.

Exercise 8.28. Prove: (a) For the case of σM = [a, b] with a < b < 1, recursion
(8.15a,b) for pm in (8.28a,b) uses the factors

Θm = 4Cm−1/[(b− a)Cm], (8.30a)
ϑm = −2(a+ b)Cm−1/[(b− a)Cm]. (8.30b)



8.3 Optimal Polynomials 191

(b) In the case of σM = [−ρ, ρ ] with ρ > 0, (8.28b) leads to recursion (8.15c,d)
with

Θm = 2Cm−1/(ρCm) = 1 + Cm−2/Cm.

(c) Which coefficients correspond to the case of σM = [ 0, ρ ]?
(d) Use Eq. (8.28b) at ζ = 1:Cm+1 = ACm−Cm−1 withA := 2(2−a−b)/(b−a)
and prove for the general case of σM = [a, b ] that

Θm =
16

8 (2 − a− b) − (b− a)2Θm−1
, Θ1 =

4

2 − a− b
, (8.30c)

ϑm = −1

2
(a+ b)Θm . (8.30d)

(e) The coefficients converge monotonically to

limΘm =
4c

b− a
and limϑm =

−2c (a+ b)

b− a

with c in (8.28c).
(f) The assumptions a < b in (a) and ρ > 0 in (b) avoid the division by zero.
Show that a = b or ρ = 0 lead to a direct solution: the semi-iterate y1 is already
the exact solution.

Hint for (a): For m > 2, compare the coefficients in (8.15b) and (8.28b). For
m = 1, compare (8.15a) with (8.28a), taking notice of C0 = 1 and C1 =

2−a−b
b−a

according to (8.28c). Part (e): Insert (8.28c) into (8.30a,b).

Instead of Θm and ϑm, one can also compute the sum σm := Θm + ϑm
recursively from

σ1 = 2, σm = 4 /

{
4 −
(
1 − 1/κ

1 + 1/κ

)2
σm−1

}
(derived from (8.30c,d) with κ in (8.26d)). Equation (8.30d) yields the values

Θm = 2σm/(2 − a− b), ϑm = −(a+ b)σm/(2 − a− b).

The coefficients σm can also be used directly for the three-term recursion.
Given the matrix N of the second normal form of Φ, the formulae (8.14a–c)
with the coefficients (8.30a,b) are equivalent to

y0 = x0, y1 = y0 − 2

2 − a− b
N
(
Ay0 − b

)
,

ym = σm

{
ym−1 − 2

2 − a− b
N(Aym−1 − b)

}
+ (1 − σm)ym−2.

(8.31)

The factor 2
2−a−b may also be written as 2

γ+Γ (cf. (8.26c)).



192 8 Semi-Iterative Methods

We recall the set N of nonlinear acceleration methods mentioned on page 173.
The Chebyshev method is a first example.

Notation 8.29. We denote the Chebyshev method based on σM = [a, b] by

ΥCheb
a,b ∈ N .

In principle, the Chebyshev method is well defined for all iterations Φ ∈ L. How-
ever, the convergence statements only refer to algorithm ΥCheb

a,b [Φ] and matrices A
such that σ(M) ⊂ [a, b] holds for the iteration matrix M =MΦ[A] of Φ.

8.3.5 Order Improvement by the Chebyshev Method

Theorem 8.30. (a) Assume that σ(M) ⊂ σM = [a, b] holds with a < b < 1. The

Chebyshev method has the asymptotic convergence rate c = limm→∞ m

√
1

Cm
with

c =
b− a

2 − a− b+ 2
√

(1 − a) (1 − b)
=

Γ − γ

(
√
Γ +

√
γ )2

=

√
κ− 1√
κ+ 1

, (8.32a)

where κ = Γ/γ (cf. (8.26c)). Particular cases are

lim
m→∞

m

√
1

Cm
=

ρ

1 +
√

1 − ρ2
for σM = [−ρ, ρ], ρ < 1, (8.32b)

lim
m→∞

m

√
1

Cm
=

ρ(
1 +

√
1 − ρ

)2 for σM = [0, ρ], ρ < 1. (8.32c)

(b) Let τ be the order of the basic iteration: ρ(M) = 1 − Chτ + O(h2τ ). Then
the Chebyshev method is of order τ/2 . The asymptotic convergence rate equals

1 − 2
√

C
1−γ h

τ/2 + O(hτ ) for (8.32a) with Γ = ρ(M),

1 −
√
2C hτ/2 + O(hτ ) for σM = [−ρ(M), ρ(M)],

1 − 2
√
C hτ/2 + O(hτ ) for σM = [ 0, ρ(M)].

Proof. Since 0 ≤ c ≤ 1, (8.28c) shows that m

√
1

Cm
= c m
√
2/ (1 + c2m) → c . ��

Therefore, the Chebyshev method achieves a halving of the order similar to the
SOR iteration. Concerning the connection of both methods, we refer to §8.4.3 and
Varga [375, §5.2].



8.3 Optimal Polynomials 193

8.3.6 Optimisation Over Other Sets

Up to now, we considered an interval [a, b] with a < b < 1. If, for instance, no
eigenvalue of M lies in (a′, b′) ⊂ [ a, b ], we may replace σM by the smaller set

σM = [ a, a′ ] ∪ [ b′, b ] (a ≤ a′ < b′ ≤ b). (8.33)

Obviously, the minimum of {maxζ∈σM
|pm(ζ)| : pm ∈ Pm} can only become

smaller. In the case of a′ −a = b−b′, it is easy to describe the optimal polyno-
mial (cf. Axelsson–Barker [13, p. 26f]). Concerning the determination of optimal
polynomials, we refer to de Boor–Rice [102] and Fischer [133, §3.3]. In particular,
the case σM = [a, a′] ∪ [b′, b] for a ≤ a′ < 1 < b′ ≤ b is interesting. The latter
situation occurs for indefinite matrices.

Remark 8.31. Consider discretisation of Helmholtz’ equation −Δu− cu = f with
positive c, which leads to A = AΔ − cI , where AΔ is the matrix of the Poisson
model problem. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of AΔ. Assume
for a suitable k that λk < c< λk+1. Then the spectrum of A = AH is contained in

σA = [−β−,−α−] ∪ [α+, β+] with − β− ≤ −α− < 0 < α+ < β+ ,

where β− := c−λ1, α− := c−λk, α+ := λk+1−c, β+ := λn−c. The Richardson
iteration with 0 < Θ < 1/β+ leads to the iteration matrix M = MRich

Θ whose
spectrum is contained in the set σM described in (8.33), where

a = 1 −Θβ+ < a
′ = 1 −Θα+ < 1 < b′ = 1 +Θα− ≤ b = 1 +Θβ− .

If one extreme eigenvalue b of M is known and the others are enclosed by
[a, b′], we arrive at

σM = [ a, b′ ] ∪ {b} with b′ < b, b′ < 1, b �= 1.

Let qm−1 ∈ Pm−1 with qm−1(1) = 1 be optimal for [a, b′ ]. A simple but not
optimal proposal for a polynomial pm suited to σM is

pm(ζ) := qm−1(ζ)(ζ − b)/(1 − b).

Concerning the construction of asymptotically optimal polynomials for arbitrary
compact sets σM with 1 /∈σM , we refer to Niethammer–Varga [294] and Eiermann–
Niethammer–Varga [119]. The simplest set σM that is more general than the interval
[a, b] is the ellipse (cf. Fischer–Freund [134, 135], Niethammer–Varga [294], and
Manteuffel [272]). Since, in general, a suitable ellipse enclosing the eigenvalues
of M is not known a priori, one has to improve its parameters adaptively (cf.
Manteuffel [272]). The fact that the ellipse lies in the complex plane does not
imply that the optimal polynomial has also complex parameters. As long as σ(M)
is symmetric with respect to the real axis (i.e., all complex eigenvalues belong to
conjugate pairs), one can find an optimal polynomial with real coefficients (cf.
Opfer–Schober [297]).



194 8 Semi-Iterative Methods

In any case, the spectrum σ(M) is enclosed by the complex circle

σM = {z = x+ iy ∈ C : x2 + y2 ≤ ρ(M)2}.
Unfortunately, this choice does not lead to an interesting solution (cf. [297]).

Theorem 8.32. Let σM be a circle around z0 ∈ C\{1} with radius r < |1 − z0|.
The optimal polynomial for σM is pm(ζ) = [(ζ − z0)/(1 − z0)]

m. In particular,
for z0 = 0, the corresponding semi-iteration coincides with the basic iteration
Φ. In the general case, the semi-iteration corresponds to the damped iteration Φϑ

with ϑ := 1/ |1 − z0|.

Proof. The absolute value of the polynomial pm defined above takes its maximum

ρ := max{|pm(ζ)| : ζ ∈ σM} = r/ |1 − z0|
at all boundary points ζ ∈ ∂σM . If pm is not optimal, there is some polynomial
qm ∈ Pm with qm(1)=1 and max{|qm(ζ)| : ζ ∈ σM} < ρ . qm(ζ) < ρ = pm(ζ)
holds for all boundary values ζ∈∂σM , so that the theorem of Rouché is applicable;
i.e., the holomorphic functions pm and pm − qm have the same number of zeros in
σM . Since pm has an m-fold zero at z0, pm − qm has also m zeros in σM . Since
(pm − qm)(1) = pm(1)− qm(1) = 1− 1 = 0, the polynomial pm − qm ∈ Pm has
even m+ 1 zeros, implying pm = qm. Hence, pm is already optimal. ��

8.3.7 Cyclic Iteration

Following Conclusion 8.27, it has been mentioned that in principle it would be pos-
sible to apply the second formulation (8.10b) with the factors ϑν := 1/(1 − ζν),
ζν = cos([ν + 1

2 ]π/m) for ν = 1, . . . ,m. The result ym (only for this fixed m)
is the desired Chebyshev semi-iterate. However, by this approach the Chebyshev
method cannot be continued. To obtain an infinite iterative process, we may repeat
the extrapolation factors m-periodically:

ϑ1, ϑ2, . . . , ϑm given,
ϑi := ϑi−m for i > m.

A semi-iterative method (8.10a,b) with these parameters is called a cyclic iteration.
The restriction to the iterates y0, ym, y2m, y3m, . . . produces a proper linear itera-
tion. The related iteration matrix is pm(M) with pm generated by {ϑi : 1 ≤ i ≤ m}.
The convergence rate of the cyclic iteration is not described by ρ(pm(M))
but by ρ(pm(M))1/m, since one cycle y0 �−→ ym is thought to consist of m and
not of one step. The cyclic iteration also runs the risk of numerical instabilities as
already discussed after Conclusion 8.27.

Exercise 8.33. Prove: Viewing the cyclic iteration as a semi-iteration {y0, y1, . . .}
of all iterates, the asymptotic convergence rate in Definition 8.3 also coincides with
m
√
ρ(pm(M)).



8.3 Optimal Polynomials 195

8.3.8 Two- and Multi-Step Iterations

Exercise 8.28e yields the limits Θ = limΘm and ϑ = limϑm. Hence, the three-
term recursion (8.14c) converges to the (stationary) two-step iteration (2.27):

ym = Θ
[
Φ(ym−1, b) − ym−2

]
+ ϑ(ym−1 − ym−2) + ym−2. (8.35)

As described in §2.2.8, the convergence of iteration (2.27) can be reduced to the
convergence of a one-step iteration with the iteration matrix

M =

[
μ0M+μ1I μ2I
I 0

]
, μ0=

4c

b− a
, μ1=−2 c

a+ b

b− a
, μ2=1 − μ0 − μ1

(c defined in (8.28c)). From these coefficients, assuming that σ(M) ⊂ σM and using
Exercise 2.25, we obtain the value ρ(M) = c , i.e., the (stationary) two-step itera-
tion (8.35) achieves the same convergence rate as the semi-iterative method. Hence,
the two-step iteration (8.35) also yield an improvement of the order of convergence.

More generally, one can consider the k-step iteration

xm = μ0 Φ(x
m, b) +

k∑
i=1

μix
m−i with

k∑
i=1

μi = 1.

The connection between k-step iterations and semi-iterative methods is described
by Niethammer–Varga [294].

8.3.9 Amount of Work of the Semi-Iterative Method

We consider the realisation of the Chebyshev method by (8.31). There the call
of the basic iteration Φ(x, b) = x − W−1(Ax − b) is replaced by the call of
W−1(b − Ay) = Φ(x, b) − x. Besides the call of the basic iteration Φ, the
implementation (8.31) (for m ≥ 2) requires six operations per grid point:

semi-iterative Work(Φ) ≤ Work(Φ) + 6n

(cf. §2.3 and §3.4). Hence, the cost factor amounts to

CΦ,semi = CΦ + 6
CA
,

where CAn is defined in §2.3 as the number of nonzero elements of A.
Replacing in (2.31a) the convergence rate by the asymptotic value c in (8.32a),

we obtain the effective amount of work

Effsemi(Φ) = −(CΦ + 6
CA

)/ log c .

If γ/Γ ! 1 holds as in the examples discussed in §8.4, we can exploit the asymp-
totic behaviour log c = −2

√
γ/Γ + O(γ/Γ ):

Effsemi(Φ) ≈
(
CΦ

2
+

3

CA

)√
Γ

γ
. (8.36)



196 8 Semi-Iterative Methods

Exercise 8.34. Assume that the iteration matrix of Φ fulfils σ(M) ⊂ [a, b] with
b = 1 − O(h−τ ) and τ > 0. Prove the following comparison of Effsemi and Eff:

Effsemi(Φ) ≈
(
CΦ + 6

CA

)√
Eff(Φ)/ [(1 − a)CΦ] .

8.4 Application to Iterations Discussed Above

8.4.1 Preliminaries

The essential condition for the applicability2 of the Chebyshev method is that the
spectrum σ(M) be real. This excludes the SOR method. Semi-iterative variants
based on other supersets σM ⊃ σ(M) are also not successful for the SOR method
with ω ≥ ωopt (cf. §8.3.6)). The reason for this is statement (e) of Theorem 4.27.
For ω ≥ ωopt, all eigenvalues λ ∈ σ(MSOR

ω ) are situated on the boundary of the
complex circle |ζ| = ω − 1, for which no convergence acceleration is possible, as
stated in Theorem 8.32.

If A is positive definite, the following already mentioned iterations lead to a real
spectrum: the Richardson, (block-)Jacobi, and (block-)SSOR methods. Numerical
results for these choices of basic iterations will be presented for the Poisson model
problem in the following sections.

Besides the iterations mentioned above, in §5.2 we constructed their damped
variants. However, for a discussion of semi-iterative methods the damped variants
are without any interest as stated next.

Lemma 8.35. Let the iteration Φ have a real spectrum σ(M). Then Φ and the
corresponding damped iterations Φϑ with ϑ �= 0 generate identical semi-iterative
results ym.

Proof. By (8.6a,b), the semi-iterate ym generated by Φ has the representation
ym = x0 + pm(M)(x0 − x). The damped iteration has the iteration matrix

Mϑ = I − ϑNA = I −NϑA with Nϑ := ϑN.

For Nϑ, inclusion (8.26b) can be written as σ(NϑA) ⊂ [γ′, Γ ′] with γ′ := ϑγ

and Γ ′ := ϑΓ (possibly a complex interval). pm(M) = Tm
(
Γ+γ
Γ−γ I +

2
Γ−γ NA

)
(cf. Exercise 8.26b) is invariant with respect to the replacement of γ, Γ, N by
γ′, Γ ′, Nϑ. Hence pm,ϑ(Mϑ)=pm(M), where pm,ϑ is the polynomial adapted to
the interval [ γ′, Γ ′ ] ⊃ σ(NϑA). The iterates ymϑ = x0 + pm,ϑ(Mϑ)(x

0 − x) of
Φϑ coincide with those of Φ. ��

2 Here ‘applicability of the Chebyshev method’ means that also the assumptions of the convergence
statements hold. Otherwise, the Chebyshev method can be applied to any A ∈ D(Φ).



8.4 Application to Iterations Discussed Above 197

8.4.2 Semi-Iterative Richardson Method

According to Lemma 8.35, we may fix the factor of Richardson’s method (3.4) by
Θ = 1, i.e., xm+1 = xm−(Ax−b). Then the matrix N = I of the second normal
form is as simple as possible and condition (8.26b) becomes σ(A) ⊂ [γ, Γ ].

Remark 8.36. (a) The Chebyshev method is applicable if A has only positive
eigenvalues. For the estimation of γ and Γ in (8.26b), one has to use the respective
bounds for the extreme eigenvalues of A.
(b) In particular, the assumptions are satisfied if A is positive definite. In this case,
one has to choose γ = 1/‖A−1‖2 and Γ = ‖A‖2 (optimal choice) or at least
γ ≤ 1/‖A−1‖2 and Γ ≥ ‖A‖2 .

For the Poisson model problem, we obtain

γ = λmin = 8h−2 sin2(πh/2), Γ = λmax = 8h−2 cos2(πh/2)

according to (3.1b,c). Inserting these values into the asymptotic convergence rate
(8.32a), we arrive at

lim
m→∞

m

√
1

Cm
= c = cos(πh)/(1 + sin(πh)) = 1 − πh+ O(h2).

For h = 1/16 and h = 1/32, we obtain c = 0.82 and c = 0.906. The numerical
results in Table 8.1 show that the reduction factor approximates the convergence
rate only for sufficiently large m. The ratios

ρm := ‖ym − x‖2/‖ym−1 − x‖2, ρ̂m := (‖ym − x‖2/‖y0 − x‖2)1/m

tend to c from above.

m ‖ym − x‖2 ρm ρ̂m
1 6.4410-1 9.0910-1 9.0910-1
10 2.4410-1 8.9110-1 8.9910-1
20 6.3510-2 8.5910-1 8.8610-1
30 1.2910-2 8.4810-1 8.7510-1
40 2.3610-3 8.4110-1 8.6710-1
50 4.0710-4 8.3610-1 8.6110-1
60 6.7510-5 8.3410-1 8.5710-1
70 1.0810-5 8.3210-1 8.5310-1
80 1.7210-6 8.3110-1 8.5010-1
90 2.6710-7 8.2910-1 8.4810-1
100 4.1110-8 8.2810-1 8.4610-1

m ‖ym − x‖2 ρm ρ̂m
1 7.1410-1 9.5410-1 9.5410-1
10 4.4710-1 9.4810-1 9.4910-1
30 1.4010-1 9.3610-1 9.4510-1
50 3.2110-2 9.2410-1 9.3810-1
70 6.2610-3 9.1910-1 9.3310-1
80 2.6610-3 9.1710-1 9.3110-1
100 4.6510-4 9.1510-1 9.2810-1
120 7.8010-5 9.1310-1 9.2610-1
130 3.1510-5 9.1310-1 9.2510-1
140 1.2710-5 9.1210-1 9.2410-1
150 5.0910-6 9.1210-1 9.2310-1

Table 8.1 Semi-iterative Richardson method for h = 1/16 (left) und h = 1/32 (right).



198 8 Semi-Iterative Methods

8.4.3 Semi-Iterative Jacobi and Block-Jacobi Method

Numerical examples are unnecessary, since in the Poisson model case, the Jacobi
method coincides with the damped Richardson method and, according to Lemma
8.35, reproduces the results in Table 8.1.

Concerning the lower bound a of the spectrum σ(MJac), Lemma 4.8 proves that
a = −b holds for a particular case.

Lemma 8.37. If (A,D) is weakly 2-cyclic (cf. Definition 4.2) , the Jacobi iteration
matrix MJac has a symmetric spectrum: σ(MJac) = −σ(MJac) . The smallest
enclosing interval is [ a, b ] = [−ρ(MJac), ρ(MJac)] .

A comparison of the semi-iterative Jacobi iteration with the SOR method is
possible. In the weakly 2-cyclic case, (8.32b) is applicable because of Lemma 8.37
and yields the asymptotic semi-iterative convergence rate

β/[1 +
√

1 − β2 ] with β := ρ(MJac).

This quantity coincides with the square root of the optimal SOR convergence rate
ωopt−1; hence, the semi-iterative Jacobi iteration is half as fast as the SOR method.
The order improvement by an optimal choice ωopt in the SOR case and the order
improvement by the Chebyshev method (cf. Theorem 8.30b) lead to very similar
results.

m ‖ym − x‖2 ρm ρ̂m
1 6.0910-1 8.6010-1 8.6010-1
20 1.6210-2 7.9510-1 8.2710-1
40 1.1910-4 7.7510-1 8.0410-1
60 6.6810-7 7.6910-1 7.9310-1
80 3.3310-9 7.6510-1 7.8610-1
90 2.110-10 7.5510-1 7.8410-1

m ‖ym − x‖2 ρm ρ̂m
1 6.9410-1 9.2810-1 9.2810-1
20 1.5310-1 9.1210-1 9.2310-1
40 1.8410-2 8.9210-1 9.1110-1
60 1.7010-3 8.8510-1 9.0310-1
80 1.4010-4 8.8110-1 8.9810-1
100 1.0810-5 8.7810-1 8.9410-1

Table 8.2 Semi-iterative column-block-Jacobi iteration for h = 1/16 (left) and h = 1/32 (right).

The block variants of the Jacobi iteration converge faster than the pointwise
version. Correspondingly, the results of the semi-iterative column-block-Jacobi
method in Table 8.2 are better than those in Table 8.1. The factors should tend to the
asymptotic value 0.7565 for h = 1/16 and to 0.8702 for h = 1/32.

8.4.4 Semi-Iterative SSOR and Block-SSOR Iteration

As already mentioned in §8.4.1, the Gauss–Seidel and SOR methods are not suited
for semi-iterative purposes, since, in general, the spectrum is not real. A remedy
is offered by the symmetric Gauss–Seidel and SSOR iteration. Theorem 6.26
states that the spectrum of the SSOR method is real for Hermitian matrices A.



8.4 Application to Iterations Discussed Above 199

Theorem 6.28 gives an upper bound for the spectral radius ρ(MSSOR
ω ). Hence,

under conditions (6.18a,b), the spectrum can be enclosed by the interval [a, b ] with

a = 0, b = 1−2Ω/
[Ω2

γ
+Ω+

Γ

4

]
, where Ω :=

2 − ω

2ω
, 0 < ω < 2. (8.37)

Here, Γ is defined by (6.18b). Corollary 3.45 helps to determine Γ . For the
Poisson model problem, Lemma 3.62 yields the value Γ = 2. Inequality (6.18a)
states that γ coincides with λ in (3.35c) applied to the (block-)Jacobi method.
In the Poisson model case, γ = 2 sin2(πh/2) holds.

Theorem 8.38. Let A = D − E − EH > 0 and γ, Γ satisfy the assumptions
(6.18a,b). Assume, in addition, that 0 < ω ≤ 2/(Γ + 1). Then

a =

(
1 − ξ

1 + ξ

)2

with ξ :=
2 − ω

Γ ω
(8.38)

is a lower bound of the spectrum σ(MSSOR
ω ).

Proof. Using the parameter Ω in (3.46c), we can rewrite

W SSOR
ω =

(
1

ω
D − E

)[( 2
ω

− 1
)
D

]−1(
1

ω
D − E

)H

as

W SSOR
ω = [ΩD +Δ](2ΩD)−1[ΩD +Δ]H with Δ :=

1

2
D − E.

Defining X := ΩD + (1 − α)Δ for some real α, we have [ΩD +Δ] = X + αΔ.
The expansion of [X + αΔ](2ΩD)−1[X + αΔ]H yields

W SSOR
ω =

1

2Ω
XD−1XH +

α

2
A+

1

2Ω
(2α− α2)ΔD−1ΔH.

because of Δ+ΔH = A . The factor (2α− α2) is negative for α > 2 . Hence,

W SSOR
ω ≥ g(α)A with g(α) :=

α

2

(
1 +

Γ

4

2 − α

Ω

)
for α ≥ 2.

The assumption ω ≤ 2/(Γ + 1) implies α0 := 1 + 2Ω/Γ ≥ 2. Theorem 3.34a
with 1 − a = 1/g(α0) yields the value (8.38). ��

The statement is less interesting, since (because of Γ = 2 for the Poisson model
case) Theorem 8.38 only applies to strong underrelaxation: ω ≤ 2/3.



200 8 Semi-Iterative Methods

There are two possibilities in improving (halving) the convergence order. First,
this can be achieved by the optimal choice of ω in the SOR or SSOR method
(cf. Conclusions 3.46 and 6.29). Second, the semi-iterative method leads to
halving of the order compared with the basic iteration. In the case of SSOR as
the basic iteration, both techniques can be applied simultaneously. First, the opti-
mal SSOR relaxation parameter ω′ is chosen as described in (3.47b). The hereby
defined iteration ΦSSOR

ω′ is chosen as the basic iteration of the Chebyshev method.
Together, we succeed in quartering the order. In the Poisson model case, we obtain
the asymptotic convergence rate 1 − O(h1/2).

The bound b in (8.37) becomes minimal for

ω′ = 2/
(
1 +
√
γΓ
)
.

The corresponding value is

b =

√
Γ − √

γ√
Γ +

√
γ
=

1 −
√
γ/Γ

1 +
√
γ/Γ

.

. (8.39a)

Inserting this value into (8.32c) yields the asymptotic convergence rate

lim
m→∞

m

√
1

Cm
= c =

1 −
√
1 − b

1 +
√
1 − b

with b in (8.39a). (8.39b)

The spectral condition number κ = κ((W SSOR)−1A) is equal to 1
2 (1 +

√
γ/Γ ) .

Using the inequality γ ≥ 1/κ(A) in Exercise 5.20, we end up with the result

κ((W SSOR)−1A) ≤ 1

2

(
1 +
√
Γ κ(A)

)
. (8.39c)

m ‖ym − x‖2 ρm ρ̂m
1 4.67310-1 6.2410-1 6.2410-1
2 2.76110-1 5.9010-1 6.0710-1
3 1.35910-1 4.9210-1 5.6610-1
4 7.68110-2 5.6510-1 5.6610-1
5 3.80110-2 4.9410-1 5.5110-1

20 2.08010-6 5.0810-1 5.2710-1
21 1.00710-6 4.8410-1 5.2510-1
22 5.19510-7 5.1510-1 5.2410-1
23 2.54110-7 4.8910-1 5.2310-1

29 3.39510-9 4.8210-1 5.1510-1
30 1.62810-9 4.7910-1 5.1410-1

N ω′ c
2 0.8284 0.0470
4 1.1329 0.1467
8 1.4386 0.2727

16 1.6721 0.4059
32 1.8212 0.5315
64 1.9064 0.6408

128 1.9520 0.7305
256 1.9757 0.8010
512 1.9878 0.8549

1028 1.9939 0.8953

5000 1.9987 0.9511
10000 1.9993 0.9651

Table 8.3 Left: semi-iterative lexicographical SSOR for the parameters in (8.40); concerning ρm
and ρ̂m see Table 8.1. Right: optimal ω′ and asymptotic rate c for h = 1/N .

For the values γ and Γ in Lemma 3.62 (Poisson model case), the convergence
rate (8.39b) is asymptotically equal to the value



201

c = 1 − Ch1/2 + O(h) with C = 2
√
π.

The results in Table 8.3 refer to the parameters

h = 1/32, ω = 1.8455, a = 0, b=0.878. (8.40)

In §6.3.5 the value ω is proved to be optimal (note that ω′ is optimal only for the
bound in (6.18c)). We learn from Table 6.1 that b = 0.878 is an upper bound of the
convergence rate. From (8.39b) with b = 0.878, one calculates the rate c = 0.482,
which is numerically well confirmed (cf. Table 8.3). From CSSOR

Φ =2+6/CA=3.2
(according to Remark 6.27 and because of CA = 5 for five-point formulae), we
obtain the effective amount of work

Effsemi(Φ
SSOR) = −3.2/ log c = 4.38 (8.41)

for the semi-iterative SSOR method with h = 1/32, which can be compared, e.g.,
with Eff(ΦSOR) = 7.05 in Example 2.28.

If we use the values ω′ in (3.47b), Eq. (8.39b) yields the asymptotic convergence
rates c reported in Table 8.3. These values give an impression of the asymptotic
value c = 1 − O(h1/2).

8.5 Method of Alternating Directions (ADI)

The alternating-direction-implicit iteration or shortly ADI method was first
described in 1955 by Peaceman–Rachford [308] in connection with parabolic
differential equations. ADI is not a semi-iterative method in the sense of the pre-
vious sections, but it can be considered as a generalisation using rational functions
instead of polynomials (see also §8.5.4).

Further material can be found in Marchuk [274] and Wachspress [383].

8.5.1 Application to the Model Problem

For the model problem in §1.2, the matrix A can be split into

A = B + C, where (8.42a)

(Bu)(x, y) = h−2 [−u(x− h, y) + 2u(x, y) − u(x+ h, y)], (8.42b)

(Cu)(x, y) = h−2 [−u(x, y − h) + 2u(x, y) − u(x, y + h)] (8.42c)

for (x, y) ∈ Ωh are the second differences of u with respect to the x and y direc-
tion. If we choose the rows (x direction) of Ωh as blocks, B + 2h−2I represents
the block diagonal of A. Similarly, C + 2h−2I is the block diagonal of A if the
columns (y direction) are chosen as blocks.

8.4 Application to Iterations Discussed Above



202 8 Semi-Iterative Methods

Remark 8.39. For A, B, and C in (8.42a–c), the statements (8.43a,b) hold:

B > 0 and C > 0 , (8.43a)
A,B,C are pairwise commutative. (8.43b)

The last statement is equivalent to

A, B, C can simultaneously be transformed to diagonal form. (8.43b′)

Proof. Lemma 3.58 analyses the block diagonal ofA (with respect to the row-block
structure). Because of the x–y symmetry, the same result holds for the column-block
structure. Therefore, the spectrum of B + 2h−2I and C + 2h−2I is equal to{

h−2
[
2 + 4 sin2

jhπ

2

]
: 1 ≤ j ≤ N − 1

}
,

i.e., 4h−2 sin2 jhπ
2 are the eigenvalues of B and C. Since these values are positive,

(8.43a) is proved. By Lemma 3.58 the eigenvectors eij of A (cf. Lemma 3.2)
are also the eigenvectors of B + 2h−2I , C + 2h−2I and hence of B and C.
This proves (8.43b′) and (8.43b). ��

The first half-step of the ADI method corresponds to the additive splitting

A =W −R with W = ωI +B and R = ωI − C (8.44a)

and reads

xm+1/2 := ΦB
ω (x

m, b) := (ωI +B)−1(b+ ωxm − Cxm), (8.45a)

where ω is a (real) parameter. Interchanging the roles of B and C, i.e., alternating
the directions, we generate the splitting (8.44b) of the second half-step (8.45b):

A =W −R with W = ωI + C, R = ωI −B, (8.44b)

xm+1 := ΦC
ω (x

m+ 1
2 , b) := (ωI + C)−1(b+ ωxm+ 1

2 −Bxm+ 1
2 ). (8.45b)

Remark 8.40. Each single half-step (8.45a,b) resembles a block-Jacobi method. For
ω = 2h−2, iteration (8.45a) represents the row- and (8.45b) the column-block-
Jacobi iteration. Because of (8.43a), the matrices ωI+B and ωI+C with ω ≥ 0 are
positive definite and therefore regular; hence, the steps (8.45a,b) are well defined.
Since, furthermore, ωI + B and ωI + C are tridiagonal matrices, the solution of
(ωI +B)z = c or (ωI + C)z = c required in (8.45a,b) is easy to perform.

The complete ADI step xm �−→ xm+1 is the product iteration

ΦADI
ω := ΦC

ω ◦ ΦB
ω . (8.45c)



8.5 Method of Alternating Directions (ADI) 203

8.5.2 General Representation

In the general case, we start from a splitting (8.42a):A = B+C and assume (8.43a)
in a weakened form. One of the matrices B or C may be only positive semidefinite.
Without loss of generality, this might be C:

B > 0 , C ≥ 0 . (8.46a)

Therefore, for
ω > 0 , (8.46b)

the matrices ωI + B and ωI + C are positive definite and, in particular, regular.
Hence, ADI iteration (8.45c) can be defined by (8.45a,b). To ensure practicability,
we assume (8.46c):

equations with ωI +B or ωI + C are easy to solve. (8.46c)

Theorem 8.41 (convergence). (a) The iteration matrix of the ADI method is

MADI
ω = (ωI + C)−1(ωI −B)(ωI +B)−1(ωI − C). (8.47a)

(b) If (8.46a,b) holds, the ADI iteration converges.

Proof. MADI
ω is the product of the iteration matrices (ωI + C)−1(ωI − B)

and (ωI + B)−1(ωI − C) of the respective half-steps ΦC
ω and ΦB

ω (cf. §5.4).
Lemma A.20 allows a cyclic permutation of the factors in the argument of the
spectral radius:

ρ(MADI
ω ) = ρ((ωI −B)(ωI +B)−1(ωI − C)(ωI + C)−1) (8.47b)

≤
∥∥(ωI −B)(ωI +B)−1(ωI − C)(ωI + C)−1

∥∥
2

≤
∥∥(ωI −B)(ωI +B)−1

∥∥
2

∥∥(ωI − C)(ωI + C)−1
∥∥
2
.

As B is Hermitian, Bω := (ωI − B)(ωI + B)−1 is also. In particular, it is a
normal matrix, implying that ρ(Bω) = ‖Bω‖2 (cf. Theorem B.25). Therefore,
(8.47b) becomes

ρ(MADI
ω ) ≤ ρ(Bω) ρ(Cω) (8.47c)

since analogous considerations also apply to Cω := (ωI − C)(ωI + C)−1. By
Remark A.15b, the spectrum of Bω is equal to

σ(Bω) =

{
ω − β

ω + β
: β ∈ σ(B)

}
, ρ(Bω) = max

β∈σ(B)

∣∣∣∣ω − β

ω + β

∣∣∣∣ . (8.47d)

By assumption (8.46a), β is positive. This fact implies that |ω − β| < |ω + β|
for all ω > 0. This proves ρ(Bω) < 1. Since C is only positive semidefinite,
a similar argument leads to ρ(Cω) ≤ 1. (8.47c) proves ρ(MADI

ω ) < 1. ��



204 8 Semi-Iterative Methods

Exercise 8.42. Formulate a convergence statement in the case of normal matrices
B and C under the condition that the splittings (8.44a,b) are regular. For which ω
are (8.44a,b) regular splittings in the model case?

Next, we want to determine the optimal value ωopt of the ADI method. Here,
we restrict ourselves to the minimisation of ρ(Bω). If, as for the model problem,
ρ(Cω) = ρ(Bω) holds, minimisation of ρ(Bω) is equivalent to the minimisation
of the bound ρ(Bω)ρ(Cω) in (8.47c).

The extreme eigenvalues of B (or their bounds) are assumed to be

0 < βmin ≤ βmax with σ(B) ⊂ [βmin, βmax]. (8.48a)

In the model case, as seen in the proof of Remark 8.39, the eigenvalues of B are
4h−2 sin2(jhπ/2) for 1 ≤ j ≤ N − 1. This implies that

βmin = 4h−2 sin2(hπ/2), βmax = 4h−2 cos2(hπ/2).

For any β ∈ [βmin, βmax] and therefore for any β ∈ σ(B), we have∣∣∣∣ω − β

ω + β

∣∣∣∣ ≤ max

{∣∣∣∣ω − βmin

ω + βmin

∣∣∣∣ , ∣∣∣∣ω − βmax

ω + βmax

∣∣∣∣} (ω > 0) (8.48b)

since |ω − β| / |ω + β| as a function of β is decreasing in [0, ω] and increasing in
[ω,∞). To minimise the right-hand side in (8.48b), one has to determine ω from∣∣∣ω−βmin

ω+βmin

∣∣∣ = ∣∣∣ω−βmax

ω+βmax

∣∣∣. The result is given by

ωopt =
√
βminβmax . (8.48c)

Inserting this value into (8.47d), we obtain

ρ(Bωopt) =
(√

βmax −
√
βmin

)
/
(√

βmax +
√
βmin

)
.

Exercise 8.43. Prove for the Poisson model problem: (a) The following holds:

ωopt = 2h−2 sinhπ,

ρ(Bωopt
) =
[
cos

πh

2
− sin

πh

2

]
/
[
cos

πh

2
+ sin

πh

2

]
,

ρ(MADI
ωopt

) = [1 − sin(πh)] / [1 + sin(πh)] .

(b) The convergence speed ρ(MADI
ωopt

) coincides exactly with the optimal conver-
gence rate (4.33) of the SOR iteration.

If we replace the definiteness in assumption (8.46a) by the M-matrix property,
the convergence proof becomes much more difficult. A general convergence result
of this kind (also for instationary ADI methods) is due to Alefeld [1]. Here, we
call the method stationary if ω is constant during the iteration and instationary if it
varies (as, e.g., it is assumed throughout the following section).



8.5 Method of Alternating Directions (ADI) 205

8.5.3 ADI in the Commutative Case

In addition to the assumptions (8.46a–c), we require that

BC = CB. (8.49a)

Commutativity is equivalent to the simultaneous diagonalisability:

QHBQ = DB = diag{βα : α ∈ I},
QHCQ = DC = diag{γα : α ∈ I}

(8.49b)

(cf. Theorem A.43), which here can be achieved by a unitary transformation Q,
since B and C are Hermitian. Assumption (8.49b) implies that Bω, Cω , and the
iteration matrix MADI

ω built from these matrices can also be transformed by Q to
diagonal form (cf. (8.47a)):

QHMADI
ω Q = diag

{
ω − γα
ω + γα

ω − βα
ω + βα

: α ∈ I
}
. (8.49c)

In the following, we apply the ADI method with varying parameters ω = ωm:

ym+1 = ΦADI
ωm

(ym, b) (m ∈ N).

Exercise 8.44. Let x be the solution of Ax = b. Prove that the error ηm = ym − x
has the representation

ηm =MADI
ωm

· . . . ·MADI
ω1

η0.

We would like to choose the parameters ω1, ω2, . . . , ωm ≥ 0 such that the
spectral norm of the matrix MADI

ωm
· . . . ·MADI

ω1
becomes as small as possible:

‖MADI
ωm

· . . . ·MADI
ω1

‖2 !
= min . (8.50a)

Multiplications by unitary matrices do not change the spectral norm:

‖QHMADI
ωm

· . . . ·MADI
ω1

Q‖2 = ‖QHMADI
ωm

Q · . . . ·QHMADI
ω1

Q‖2

=

∥∥∥∥∥
m∏
i=1

diag

{
ωi − γα
ωi + γα

ωi − βα
ωi + βα

: α ∈ I
}∥∥∥∥∥

2

.

Together with (8.49c), we obtain∥∥∥∥∥diagα∈I

{
m∏
i=1

ωi − γα
ωi + γα

ωi − βα
ωi + βα

}∥∥∥∥∥
2

= max
α∈I

∣∣∣∣∣
m∏
i=1

ωi − γα
ωi + γα

ωi − βα
ωi + βα

∣∣∣∣∣ .



206 8 Semi-Iterative Methods

Hence, the minimisation problem (8.50a) is equivalent to

max
α∈I

∣∣∣∣∣
m∏
i=1

ωi − γα
ωi + γα

ωi − βα
ωi + βα

∣∣∣∣∣ !
= min . (8.50b)

Remark 8.45. For m ≥ n := #I , as in §8.3.2, one finds parameters ωi bringing
the left-hand side in (8.50b) to the minimum 0. For this purpose, the values ωi must
be an enumeration of the eigenvalues {γα : α ∈ I} ∪ {βα : α ∈ I}.

Since, in general, γα or βα are not known, we optimise over a larger set [a, b]
containing the spectra of B and C, as we did in the third minimisation problem
(8.23):

0 < a ≤ γα, βα ≤ b for all α ∈ I.

Then, the minimisation problem takes the following form. Let

rm(ζ) :=
m∏
i=1

ωi − ζ

ωi + ζ

be a rational function with a numerator and denominator of degree m replacing
the previous polynomials. Substituting the discrete eigenvalues in (8.50b) by the
interval [a, b], we arrive at the problem

determine parameters {ωi : 1 ≤ i ≤ m} so that
max{|rm(β)rm(γ)| : a ≤ β, γ ≤ b} = min . (8.51a)

Because of maxβ,γ{|rm(β)rm(γ)|} = maxβ{|rm(β)|}maxγ{|rm(γ)|}, we may
optimise each factor separately. Hence, problem (8.51a) simplifies to

determine parameters {ωi : 1 ≤ i ≤ m} so that
max{|rm(ζ)| : a ≤ ζ ≤ b} = min . (8.51b)

The following results are due to Wachspress [382] (see also Wachspress–Habetler
[384] from 1960). We omit these proofs, since the derivation of Eqs. (8.52a–c) is
presented in detail in the book of Varga [375, S. 224f].

Theorem 8.46 (optimal ADI parameters). (a) For any m ∈ N, the problem
(8.51b) has a unique solution {ω1, . . . , ωm}. The parameters ωi are disjoint
numbers in (a, b).

(b) The increasingly ordered parameters ω1 < ω2 < . . . < ωm satisfy

ωm+1−i = ab/ωi for 1 ≤ i ≤ m. (8.52a)



8.5 Method of Alternating Directions (ADI) 207

(c) Denote the parameters ω1 < ω2 < . . . < ωm belonging to m ∈ N and the
interval [a, b] with 0 < a < b by ωi(a, b,m) (1 ≤ i ≤ m) . Then we have

ω2m+1−i(a, b, 2m) = ωi

(√
ab, a+b

2 ,m
)
+

√
ωi

(√
ab, a+b

2 ,m
)2

− ab (8.52b)

for i = 1, . . . ,m.

(d) The minimised quantities δm := max{|rm(ζ)| : a ≤ ζ ≤ b} for m = 2p are

δm =
(√

bp − √
ap

)
/
(√

bp +
√
ap

)
, (8.52c)

where a0 = a, b0 = b, ai+1 =
√
aibi , bi+1 = 1

2 (ai + bi) for 0 ≤ i ≤ p− 1.

Determining the ADI parameters ωi is very easy for binary powersm = 2p. For
p = 0 (i.e., m = 1), we conclude from (8.52a) that

ω1(a, b, 1) =
√
ab , (8.52d)

repeating the result in (8.48c). As soon as the parameters for m = 2p−1 are known,
those for 2m = 2p can be obtained from formula (8.52b) for the indices 2m+1−i ∈
[m+ 1, . . . , 2m]. The parameters ωi for 1 ≤ i ≤ m result from (8.48a).

Evidently, one may apply the calculated parameters ωi in a cyclic manner:
ωi+km := ωi (1 ≤ i ≤ m, k ∈ N). Different from the case in §8.3.7, the cyclic
ADI process does not lead to stability problems.
δm in (8.52c) is the bound for rm(Bω) and rm(Cω). Therefore, the asymptotic

rate is bounded by ρm := δ
2/m
m . One recognises from (8.52c) that ρm depends

only on the ratio a/b, which in the model case has the size O(h2). The recursions
ai+1 =

√
aibi and bi+1 = 1

2 (ai + bi) prove the following remark.

Remark 8.47. Let a/b = O(hτ ) and assume (8.49a). For the optimal choice of the
parameters, the cyclic ADI method with m parameters has the order τ/m :

ρm = 1 − O(hτ/2m) = 1 − Cmh
τ/2m + O(hτ/m).

Hence, the instationary ADI method permits not only halving of the order (for
the case m = 1, compare also with Exercise 8.43b), but any arbitrarily small (and
hence very favourable) order can be reached for sufficiently large m. However, we
will see in §8.5.5 that the obvious conclusion of choosing a rather large number m
leads to practical difficulties.

The construction of the parameters ωi in Theorem 8.46d is restricted tom = 2p.
For other m, the description of ωi requires elliptic integrals (cf. Wachspress [383],
Samarskii–Nikolaev [330, page 276]). Lebedev [260] was the first suggesting that
the solution to the approximation problem (8.51b) could be reformulated into
another one for rational functions that is already solved in 1877 by Zolotarev.
In this connection, we refer to the review paper of Todd [363] concerning the



208 8 Semi-Iterative Methods

‘legacy of Zolotarev’ (see also Todd [364]). Approximation problems appearing
here also play an important role in the iterative solution of the Sylvester matrix
equation AX − XB = C (A, B, C given, X unknown; cf. Starke [350] and
Wachspress [383, §5]). Concerning the determination of the parameters in the case
of nonsymmetric matrices, we refer to Starke–Niethammer [351].

Although the asymptotic convergence rates ρm in Remark 8.47 and the following
Table 8.4 look quite favourable, the effective amount of work is less favourable
because of the relatively expensive iteration (8.45a,b) (cf. Remark 8.49). Moreover,
the assumption of commutativity (8.49a) is rarely satisfied in practice. As soon as it
is violated, one is not able to achieve good convergence acceleration.

8.5.4 ADI Method and Semi-Iterative Methods

After choosing the Richardson method as the basic iteration, the half-steps (8.45a,b)
have the representation (8.10b):

ym+ 1
2 = Θm+ 1

2
(MRich

1 ym +NRich
1 b) + (1 −Θm+ 1

2
) ym,

ym+1 = Θm+1 (M
Rich
1 ym+ 1

2 +NRich
1 b) + (1 −Θm+1) y

m+ 1
2

with MRich
1 = I −A and NRich

1 = I , if we allow the matrix-valued factors

Θm+ 1
2
= (ωI +B)

−1
, Θm+1 = (ωI + C)

−1
.

These equations correspond to the second formulation in §8.2. If, as in the case
of §8.5.3, B and C commute with A, we obtain the first formulation (8.3):
ym =

∑
αmj x

j , where xj are the Richardson iterates and αmj are matrices
commuting with A. In this sense, one might view the ADI method as a semi-
iteration with matrix-valued coefficients.

On the other hand, the ADI method can function as a basic iteration of the
Chebyshev method, as shown in the next exercise.

Exercise 8.48. Assume that B, C, and ω satisfy (8.46a,b) and (8.49a). Prove:
(a) The matrix of the third normal form of ΦADI

ω is

Wω = 1
2ω (ωI + C)(ωI +B) (hint: (5.12c)).

(b) ΦADI
ω is a positive definite iteration.

(c) Products Φ := ΦADI
ω1

◦ ΦADI
ω2

◦ . . . ◦ ΦADI
ωm

with ωj > 0 form a positive definite
iteration. Hint: DetermineNΦ in Φ(x, b) = x−NΦ(Ax− b) and show that NΦ>0.
(d) In the stationary case, choose ω according to (8.52d). Determine the bounds
in γW ≤ A ≤ ΓW . What is the optimal damping factor ϑopt for ΦADI

ω (cf.
Theorem 6.7)?



8.5 Method of Alternating Directions (ADI) 209

8.5.5 Amount of Work and Numerical Examples

m h = 1/32 1/64 1/128

1 0.8215 0.9065 0.9521
2 0.5231 0.6373 0.7291
4 0.3735 0.4607 0.5365
8 0.3141 0.3874 0.4513

16 0.2880 0.3553 0.4139

Table 8.4 Asymptotic convergence
rates ρm for ADI-cycle length m.

The ADI method was already applied in §5.5.6
as a secondary iteration. In the following, we
consider a general five-point formula (CA = 5).
The amount of work for solving the equations with
the tridiagonal matrices ωI + C, ωI +B amounts
to 5n operations. Evaluating b + ωx − Cx and
b+ωx−Bx requires 6n operations each. Because
of CA= 5, this leads to

CADI
Φ = 4.4

and, in the Poisson model case, even to CADI
Φ =4.

The asymptotic rates ρm = δ
1/m
m attainable by (8.52c) are reported in Table 8.4.

We observe that for small step sizes, good rates are achieved. The concrete results
for h = 1

128 with m = 4 different parameters from Table 8.5 confirm that the
factor 0.5365 in Table 8.4 is reached. The convergence behaves regularly modulo
m. Each second ratio ‖ek‖2/‖ek−1‖2 is ≈ 1. However, since one cannot achieve
the accuracy of ‖ek‖2 ≈ δkm‖e0‖2 with fewer than m iteration steps, the following
dilemma arises:

(i) To exploit the good (asymptotic) convergence rate δm for large m, one must
perform at least m iterations.

k value in
the middle ‖ek‖2 ‖ek‖2

‖ek−1‖2

m

√
‖ek‖2

‖e0‖2

1 -0.0320913257 5.0210-1 0.6446 0.6446
2 -0.0342861024 4.6210-1 0.9106 0.7699
3 0.3534506991 5.9810-2 0.1295 0.4250
4 0.3538351873 5.4910-2 0.9187 0.5154
5 0.4031600829 3.8710-2 0.7055 0.5488
6 0.4063222547 3.6810-2 0.9487 0.6012
7 0.4976831847 4.4710-3 0.1215 0.4784
8 0.4976688610 4.26

10
-3 0.9536 0.5215

9 0.4961625617 3.1010-3 0.7284 0.5412
10 0.4961175712 2.9710-3 0.9568 0.5729
11 0.4990489164 3.5010-4 0.1179 0.4962
12 0.4990525844 3.3710-4 0.9625 0.5244
13 0.4993912351 2.5110-4 0.7454 0.5388
14 0.4994041549 2.4110-4 0.9612 0.5615
15 0.4999776724 2.7910-5 0.1154 0.5053
16 0.4999776614 2.6910-5 0.9671 0.5262

Table 8.5 ADI results (Poisson model problem,
four parameters ωi, h = 1/128).

(ii) On the other hand, one would
like to stop the iteration as soon as,
e.g., the error becomes ‖ek‖2 ≈
1/1000 (cf. Remark 2.34). The better
the convergence rate, the fewer itera-
tions one is willing to perform.

In the example of Table 8.5, about
eight steps would be sufficient. Hence,
one could still enlarge the cycle length
from 4 to 8 (the corresponding result is
‖e8‖2 = 1.0510-3); a further increase
to 16 or more parameters would not
help. The last two columns in Table 8.5
correspond to ρk,k−1 and ρk,0.

Remark 8.49. Good convergence rates
are combined with a relatively high
cost factor CADI

Φ = 4 in the Poisson
model case. For the example in Table 8.5, the effective amount of work is equal to
Eff(ΦADI) = −4

log 0.5365 = 6.42. For h = 1/32 and four parameters, we obtain
Eff(ΦADI) = 4.06 (for comparison: Eff(ΦSOR) = 7.05 in Example 2.28 and
Eff(ΦSSOR

semi ) = 4.38 in (8.41)).



Chapter 9

Gradient Method

Abstract The gradient method is an optimisation method of greedy type. For this
purpose, the system of equations has to be rewritten as a minimisation problem
(see Section 9.1). The gradient method Υgrad[Φ] derived in Section 9.2 determines
the damping factors of the underlying iteration Φ ∈ L. It turns out that the conver-
gence is not faster than the optimally damped version Φϑopt

of Φ, but the method
can be applied without knowing the spectral values determining ϑopt. In Section
9.3 we discuss the drawback of the gradient directions and introduce the conjugate
directions in preparation for the conjugate gradient method in the next chapter. The
final Section 9.4 mentions a variant of the gradient method: the minimal residual
iteration which can be applied to any regular matrix A.

9.1 Reformulation as Minimisation Problem

9.1.1 Minimisation Problem

In the following, A ∈ RI×I and b ∈ RI are real. We consider a system

Ax = b

and assume that
A is positive definite. (9.1)

System Ax = b is associated with the function

F (x) :=
1

2
〈Ax, x〉 − 〈b, x〉 . (9.2)

The derivative (gradient) of F is F ′(x) = 1
2 (A + AT)x − b. Since A = AT by

assumption1 (9.1), the derivative is equal to

1 Under the weaker assumption (C.2), the function F can also be minimised, but the minimiser
would not be the solution of Ax = b; i.e., the method would be inconsistent.

211© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_9



212 9 Gradient Method

F ′(x) = gradF (x) = Ax− b.

A necessary condition for a minimum of F is the vanishing of the gradient: Ax=b.
Since the Hessian matrix F ′′(x) = (Fxixj

)i,j∈I = A is positive definite, the
solution of Ax = b (in the following denoted by x∗) in fact leads to a minimum.
This proves the next lemma.

Lemma 9.1. Let A ∈ RI×I be positive definite. The solution of the system Ax = b
is equivalent to the solution to the minimisation problem

F (x)
!
= min .

A second proof of Lemma 9.1 results from the representation

F (x) = F (x∗) +
1

2

〈
A(x− x∗), x− x∗

〉
with x∗ := A−1b. (9.3)

This equation proves F (x) > F (x∗) for x �= x∗, i.e., x∗ = A−1b is the unique
minimiser of F . The representation (9.3) is a particular case of the following
Taylor expansion of F around an arbitrary value x̃ ∈ RI :

F (x) = F (x̃) +
〈
Ax̃− b, x− x̃

〉
+

1

2

〈
A(x− x̃), x− x̃

〉
. (9.4)

9.1.2 Search Directions

In the following, the minimisation of F with respect to a particular direction
p ∈ RI\{0} plays a central role. Optimisation over all x ∈ RI is replaced by
the one-dimensional minimisation problem (9.5a,b):

f(λ)
!
= min for the function (9.5a)

f(λ) := F (x+ λp) (x, p ∈ RI fixed, λ ∈ R). (9.5b)

Replacing the variables x and x̃ in (9.4) by x+ λp and x, we obtain that

f(λ) = F (x) + λ
〈
Ax− b, p

〉
+
λ2

2

〈
Ap, p

〉
. (9.5c)

p �= 0 implies that 〈Ap, p〉 > 0 (cf. (9.1)); hence, the minimum of the parabola f
can be determined from f ′(λ) = 0.

Lemma 9.2. Assume p �= 0 and (9.1): A > 0 . The unique minimum of problem
(9.5a,b) is attained at

λ = λopt(r, p, A) :=
〈r, p〉

〈Ap, p〉 , (9.6a)

where
r := b−Ax .



9.1 Reformulation as Minimisation Problem 213

In the following, the letter r always denotes the residual (residue) b−Ax of the
actual x. It is the negative defectAx−b and also the negative gradient F ′ = Ax−b.

The optimal search direction is evidently p = x∗−x (or a nonvanishing multiple)
because f(λopt) = F (x∗) yields the global minimum. However, since p = x∗ − x
requires knowledge of the solution, another proposal is needed. Let p be normalised
by ‖p‖2 = 1. The directional derivative f ′(0) = − 〈r, p〉 = 〈grad F (x), p〉 at
λ = 0 is maximal for the gradient direction p = −r/ ‖r‖2 and minimal for the
reverse direction p = r/ ‖r‖2. The vector grad F (x) = −r is the direction of
the steepest ascent, while the residual r is the direction of the steepest descent.
This consideration shows the optimality of p = r from a local point of view.
For p = r, the expression (9.6a) becomes

λ = λopt(r, r, A) =
‖r‖22

〈Ar, r〉 for r := b−Ax �= 0. (9.6b)

The definition
λopt(r, 0, A) := 0 (9.6c)

is added for formal reasons only: now λopt(·, ·, A) is defined for all arguments.
As soon as r = 0 occurs, x is already the exact solution x∗.

9.1.3 Other Quadratic Functionals

The function F in (9.2) is not the only quadratic function having x∗ :=A−1b as the
minimiser.

Lemma 9.3. (a) Any quadratic form with a unique minimum at x∗=A−1b has the
form

F (x) = 1
2

〈
HA(x−x∗), A(x−x∗)

〉
+ c = 1

2

〈
H(Ax−b), Ax−b

〉
+ c (9.7a)

with an arbitrary constant c and

H > 0. (9.7b)

Here, in contrast to (9.1), A may be any regular matrix.
(b) To ensure that the calculation of grad F (x) = AHHA(x − x∗) = −AHHr
from the residual r = Ax − b be practical, the matrix H must be such that the
matrix-vector multiplication r �→ AHHr is feasible.
(c) Under assumption (9.1), H := A−1 and c := 1

2 〈b, x∗〉 may be chosen. Then F
in (9.7a) coincides with F in (9.2).

Proof of (c). By (9.1), H = A−1 satisfies (9.7b) (cf. Lemma C.4b). A comparison
of (9.7a) and (9.3) shows that c=F (x∗)= 1

2 〈Ax∗, x∗〉 − 〈b, x∗〉=− 1
2 〈b, x∗〉. ��



214 9 Gradient Method

Conclusion 9.4. Let A be positive definite. The (energy) scalar product 〈·, ·〉A and
(energy) norm ‖·‖A are defined by (9.8a):

〈x, y〉A := 〈Ax, y〉 , ‖x‖A := ‖A1/2x‖2 =
√

〈x, x〉A . (9.8a)

The minimisation of F in (9.2) is equivalent to the minimisation problem

‖x− x∗‖A !
= min with x∗ := A−1b . (9.8b)

Proof. Problem (9.8b) may be replaced with ‖x− x∗‖2A
!
= min. The identity

‖x− x∗‖2A = 2 [F (x) − F (x∗)] (cf. (9.3)) (9.8c)

completes the proof. ��

Remark 9.5. (a) For the choice H = I and c = 0, equation (9.7a) becomes
F (x) = 1

2 ‖Ax− b‖22 and describes the least-squares minimisation.

(b) For H = A−HA−1 > 0 and c = 0, the identity F (x) = 1
2‖x− x∗‖22 holds.

(c) For a positive definite K, the minimisation of the norm

‖x− x∗‖2K = ‖K1/2(x− x∗)‖22

corresponds to problem (9.7a) with

H =
1

2
A−HKA−1, c = 0 .

According to Lemma 9.3b, multiplying by KA−1 must be feasible.

Remark 9.6. Any iteration converging (weakly) monotonically with respect to the
norm ‖·‖A leads to a descent sequence

F (x0) ≥ F (x1) ≥ . . . .

9.1.4 Complex Case

In the complex case of A ∈ CI×I and b ∈ CI , the function F can again be
defined by (9.7a,b), provided that c in (9.7a) is real. Definition (9.2) cannot be
generalised without change, since only real functions F can be minimised and,
in general, F is not real because of the term 〈b, x〉. One has to replace F in (9.2) by

F (x) :=
1

2
〈Ax, x〉 − �e 〈b, x〉 for x ∈ CI . (9.9a)



215

Exercise 9.7. Assume (9.1) and let F be defined by (9.9a). Prove the following:
(a) F is real, and �e〈b, x∗〉 = 〈b, x∗〉 holds for x∗ = A−1b .
(b) Equations (9.9b,c) hold for x, y ∈ KI :

F (x) = 1
2 [ 〈A(x− x∗), x− x∗〉 − 〈b, x∗〉 ] , (9.9b)

F (x) = F (y) + �e 〈Ay − b, x− y〉 + 1
2 〈A(x− y), x− y〉 . (9.9c)

(c) The minimum of f(λ) = F (x + λp) over λ ∈ C with F in (9.9a) is attained
for the value λopt(r, p, A) in (9.6a), which in general is complex.

9.2 Gradient Method

Another name for the gradient method is the method of steepest descent.

9.2.1 Construction

In general, the gradient method is an algorithm for solving a minimisation problem
F (x) = min with a differentiable function F : RI → R (cf., e.g., Kosmol [240, §4],
Quarteroni–Sacco–Saleri [314, §7.2.2]). We apply the gradient method only to the
quadratic function F in (9.2) or (9.7a).

The gradient method minimises F iteratively in the direction of the steepest
descent :

x0 ∈ RI : arbitrary starting iterate, (9.10a)

iteration m = 0, 1, . . . :
rm := b−Axm, (9.10b)

xm+1 := xm + λopt(r
m, rm, A)rm. (9.10c)

The representation

rm+1 = b−Axm+1 = b−A(xm + λoptr
m) = rm − λoptAr

m

allows the following update of the residual:

start: x0: arbitrary, r0 := b−Ax0, (9.11a)
iteration m = 0, 1, . . . : xm+1 := xm + λopt(r

m, rm, A)rm, (9.11b)
rm+1 := rm − λopt(r

m, rm, A)Arm (9.11c)

with λopt(rm, rm, A) in (9.6b,c). The advantage of (9.11c) over (9.10b) is the fact
that the product Arm is already calculated in (9.6b) when λopt is determined.

The gradient method (9.11a–c) is denoted by Υgrad[ΦRich
1 ] (cf. §9.2.4).

9.1 Reformulation as Minimisation Problem



216 9 Gradient Method

9.2.2 Properties of the Gradient Method

Remark 9.8. Assume (9.1). (a) In contrast to the previous methods, the iteration
xm �→ Φ(xm, b) defined in (9.11a–c) is not linear.
(b) Φ(·, ·) is continuous with respect to both of its arguments.
(c) The gradient method is consistent and convergent.

Proof. (a) λopt(rm, rm) = λopt(b − Axm, b − Axm) is a nonconstant function of
xm and b . Hence, Φ(x, b) = x+ λopt(b−Ax, b−Ax,A)(b−Ax) is not linear.

(c) Convergence will be proved in Theorem 9.10. If x∗ is a solution of Ax= b,
the residual r vanishes. Together with (9.6c), we conclude that Φ(x∗, b) = x∗,
i.e., F is consistent. ��

Although the gradient method is not linear, it can be interpreted as a semi-
iterative method applied to a linear basic iteration.

Remark 9.9. The sequence {xm} of the gradient method (9.11a–c) is identical to
the sequence {ym} of the semi-iterative Richardson method

ym+1 = ym −Θm+1 (Ay
m − b) = ΦRich

Θm+1
(ym, b) (9.12)

(cf. (8.10b)), if one chooses y0 = x0 and fixes the factors Θm+1 by

Θm+1 := λopt(r
m, rm, A) with rm := b−Axm.

Theorem 9.10 (convergence). Let A be positive definite and denote the extreme
eigenvalues of A by λ = λmin(A) and Λ = λmax(A) . Let F be defined by (9.2).
Then, for any starting iterate x0, the sequence {xm} of the gradient method
converges to the solution x∗ = A−1b and satisfies the error estimates

F (xm) − F (x∗) ≤
(
Λ− λ

Λ+ λ

)2m [
F (x0) − F (x∗)

]
, (9.13a)

‖xm − x∗‖A ≤
(
Λ− λ

Λ+ λ

)m

‖x0 − x∗‖A . (9.13b)

Proof. (i) By (9.8c), the estimates (9.13a) and (9.13b) are equivalent.
(ii) For proving (9.13b), it is sufficient to consider the casem = 1. The Richard-

son iteration

x1Rich = x0 −ΘRich

(
Ax0 − b

)
with ΘRich = 2/(Λ+ λ)

yields the error e1Rich = Me0. The iteration matrix M = MRich
ΘRich

= I − ΘRichA
has the norm ‖M‖2 ≤ η , where

η =
Λ− λ

Λ+ λ
(9.13c)



9.2 Gradient Method 217

(cf. Theorem 3.23). Since M commutes with A and A1/2, we have

ẽ1Rich =M ẽ0 for ẽ1Rich := A1/2e1Rich, ẽ0 := A1/2e0.

By ‖ẽ0‖2 = ‖e0‖A and ‖ẽ1Rich‖2 = ‖e1Rich‖A, we can estimate e1Rich by

‖e1Rich‖A = ‖ẽ1Rich‖2 ≤ ‖M‖2 ‖ẽ0‖2 ≤ η ‖e0‖A.

Both x1Rich and x1 are of the form x0 +Θr0. Since the iterate x1 of the gradient
method minimises the error ‖x1 −x∗‖A (cf. Conclusion 9.4), the assertion follows
for m = 1: ‖x1 − x∗‖A ≤ ‖e1Rich‖A ≤ η ‖e0‖A. ��

Corollary 9.11. (a) The factor η in (9.13c) is the minimal one in (9.13a,b).
(b) The asymptotic convergence rate of the gradient method is η.
(c) η depends only on the condition κ(A) = cond2(A) = Λ/λ :

η =
κ− 1

κ+ 1
with κ = κ(A). (9.14)

Proof. Let v1 and v2 with ‖v1‖2 = Λ and ‖v2‖2 = λ be the eigenvectors cor-
responding to Λ and λ. For x0 := x∗ + e0 with e0 := v1 ± v2, one obtains
e1 = η(v1 ∓ v2) and e2 = η2(v1 ± v2) = η2e0. ‖e2‖A/‖e0‖A = η2 proves
part (a). Analogously, e2k = η2ke0 shows part (b). ��

Usually, the values λ = λmin(A) and Λ = λmax(A) are not known. Their
numerical approximation is discussed below.

Remark 9.12 (approximation of λ and Λ ). (a) Let
〈
e0, vi

〉
�= 0 hold for the

eigenvectors v1 and v2 of A corresponding to Λ and λ . Then

ρm+1,m := ‖xm+1 − x∗‖A/‖xm − x∗‖A (xm defined by (9.11a–c))

converges to η = (κ− 1)/(κ+ 1) in (9.14).
(b) Using ρ(MRich

Θ ) = 1 − Θλ (e.g., for Θ = 1/ ‖A‖∞), we can approximate λ
from the convergence behaviour of the Richardson method. The approximation of
η yields an approximation of κ = (1 + η)/(1 − η) which allows us to determine
the other extreme eigenvalue Λ by Λ/λ = κ.

Finally, we describe the relation of the gradient method with the Krylov space
(cf. §8.1.4).

Proposition 9.13. The errors em = xm − x∗ of the gradient method satisfy

Km(A, e0) = span{e0, e1, . . . , em−1}

for all m ∈ N. The residuals rμ = −Aeμ (0 ≤ μ ≤ m − 1) span the space
Km(A, r0) = AKm(A, e0).



218 9 Gradient Method

Proof. As long as rm �= 0, the equivalent semi-iteration corresponds to polyno-
mials pm of degree m, so that Conclusion 8.13b applies. Otherwise, there is a first
m′ with rm

′
= −Aem′

= 0. Since em
′
= pm′(A)e0, degA(e

0) ≤ m′ follows
(cf. Definition 8.10). Exercise 8.11a states that Km(A, e0) = Km′(A, e0) for all
m ≥ m′. Therefore, the statement also holds in the degenerate case of rm

′
= 0. ��

9.2.3 Numerical Examples

At first view, the gradient method seems to surpass the semi-iterative method be-
cause, in the latter case, the parameters Θk have to be chosen a priori (cf. (9.12)),
whereas the gradient method determines these values a posteriori in an optimal
way. However, the opposite is the case. While the Chebyshev method leads to
an improvement of the order, Corollary 9.11a yields the convergence rate η in
(9.13c), which is as slow as the stationary Richardson method with Θ = Θopt (cf.
Theorem 3.23).

In the model case, λ and Λ in (3.1b,c) are known and lead to

η =
cos2 (πh/2) − sin2 (πh/2)

cos2 (πh/2) + sin2 (πh/2)
= cos (πh) = 1 − π2h2

2
+ O(h4).

The low convergence speed of the gradient method is confirmed by the following
numerical example (Poisson model problem (2.33a,b)). Table 9.1 contains the
results for the step size h = 1/32 and the starting iterate x0 = 0. The ratios
‖xm+1 − x∗‖A/‖xm − x∗‖A in the last column of Table 9.1 clearly approxi-
mate the asymptotic convergence rate h = cos π

32 = 0.9951847. Even after 300
iterations, the value u16,16 at the midpoint is wrong by 50%: 0.2778 instead of
0.5. The error measured in the scaled energy norm h2‖xm − x∗‖A deviates very
little from the maximum norm ‖em‖∞. However, the error with respect to the
energy norm ‖·‖A decreases uniformly, whereas the ratios of ‖em‖∞ oscillate.
Because η = ρ(MJac), the results in Table 9.1 and Table 3.1 prove to be very
similar.

m value in the middle ‖em‖A

‖em−1‖A
m value in the middle ‖em‖A

‖em−1‖A

1 -1.8656010-3 100 -1.8977110-2 0.993444
2 -3.5229310-3 0.844824 110 -5.1352010-3 0.993749
3 -4.8403410-3 0.907804 120 1.0180510-2 0.993990
4 -5.9761110-3 0.935293 200 1.4514610-1 0.994852
5 -7.1019810-3 0.946906 250 2.1830110-1 0.995024
6 -8.1629510-3 0.953838 296 2.7354810-1 0.995102
7 -9.2399810-3 0.958895 297 2.7571010-1 0.995103
8 -1.0269910-2 0.962711 298 2.7570210-1 0.995104
9 -1.1323010-2 0.965778 299 2.7784410-1 0.995105
10 -1.2336010-2 0.968271 300 2.7783610-1 0.995106

Table 9.1 Result of the gradient method Υgrad[ΦRich
1 ] for h=1/32 (Poisson model problem).



9.2 Gradient Method 219

9.2.4 Gradient Method Based on Other Basic Iterations

Let Υgrad ∈ N be the notation of the gradient method. Above we applied the
gradient method to the Richardson iteration ΦRich

1 resulting in the nonlinear
iteration Υgrad[ΦRich

1 ]. Now we discuss Υgrad[Φ] for other iterations.

9.2.4.1 Standard Version

By Remark 9.9, the gradient method is a particular semi-iterative method with
Richardson’s iteration as the basic iteration. From the analysis of semi-iterative
methods, we know that other basic iterations Φ may better suit because of a smaller
spectral condition number κ(NA) with the matrix N = NΦ[A] of the second
normal form. This suggests replacing Richardson’s iteration by another one (e.g.,
the SSOR iteration; cf. §8.4.4). For this purpose, the matrix A has to be replaced
formally with Â := NA, because the Richardson method applied to the left-
transformed (preconditioned) system Âx = b̂ := Nb is equivalent to Φ applied to
A (cf. Proposition 5.44).

Let A and N be positive definite. Since, in general, the matrix Â = NA is no
longer symmetric, Â does not satisfy the assumption (9.1), which is necessary for
the applicability of the gradient method. A remedy is offered in §5.6.6: the iteration
Φ̌ defined by

x̌m+1 = x̌m −N1/2(AN1/2x̌m − b) = x̌m − (Ǎx̌m − b̌), (9.15a)

Ǎ := N1/2AN1/2, b̌ := N1/2b , (9.15b)

is equivalent to the basic iteration Φ(xm, b) = xm − N(Axm − b) via the trans-
formation

x̌m = N−1/2xm

(multiplying by N±1/2 is of course not practically feasible2) and represents the
Richardson iteration for the system Ǎx̌ = b̌ with the positive definite matrix Ǎ.
Therefore, the gradient method has to be applied not to F in (9.2) but to

F̌ (x̌) :=
1

2

〈
Ǎx̌, x̌

〉
−
〈
b̌, x̌
〉
. (9.15c)

Its negative gradient is the new residual

ř := b̌− Ǎx̌ = N1/2r (r = b−Ax).

The gradient method (9.11b,c) associated with Ǎ yields the iterates

Υgrad[Φ̌] :
x̌m+1 := x̌m + λ̌opt ř

m,

řm+1 := řm − λ̌opt Ǎ ř
m

}
with λ̌opt :=

‖řm‖22〈
Ǎřm, řm

〉 .
2 In principle, we may replace the factorisation N = N

1

2 ·N 1

2 with the Cholesky decomposition
N = V V H and introduce Ǎ = V HAV (cf. Exercise 5.63).



220 9 Gradient Method

Inserting Ǎ = N1/2AN1/2, x̌m = N−1/2xm, řm = N1/2rm, and solving the
defining equations for xm+1 and rm+1, we obtain the following algorithm for the
iterates {xm}:

xm+1 := xm + λ̌optNr
m with N = NΦ[A], (9.16a)

Υgrad[Φ] : rm+1 := rm − λ̌optANr
m with (9.16b)

λ̌opt := λopt(r
m, Nrm, A) =

〈Nrm, rm〉
〈ANrm, Nrm〉 . (9.16c)

The quantities N± 1
2 do no longer appear, so that Υgrad[Φ] defined by (9.16a–c)

is a practical algorithm. We call Υgrad[Φ] defined in (9.16a–c) the gradient method
applied to the basic iteration Φ(·, ·, A). The term ‘preconditioned gradient method’
is also used. Note that not the method but the gradient is ‘preconditioned’. While
the method (9.11a–c) takes the (negative) gradient rm as search direction, this is
replaced in (9.17a–e) with the ‘preconditioned’ gradient q = Nr.

The derivation of (9.16a–c) requires N > 0. Nevertheless, Υgrad[Φ] is well de-
fined as long as A > 0 and N is regular since this guarantees 〈ANrm, Nrm〉 > 0
for rm �= 0 (rm = 0 is a ‘lucky breakdown’ since the exact solution x = xm is
found). However, the convergence statements are restricted to the case A > 0 and
N > 0 . Since A > 0 implies N > 0 for Φ ∈ Lsym, symmetric iterations Φ are
the natural basic iterations of the gradient method.

In analogy to Remark 9.9, equation (9.16a) proves the next remark.

Remark 9.14. The sequence {xm} of the gradient method (9.16a–c) applied to the
positive definite iteration Φ is identical to the sequence {ym} of the semi-iterative
method

ym+1 = ym −Θm+1N(Aym − b) = Θm+1Φ(y
m, b, A) + (1 −Θm+1)y

m

with Φ as the basic iteration when the factors Θm+1 are defined by λ̌opt in (9.16c).

The amount of work needed by the algorithm (9.16a–c) can be reduced by
introducing qm := Nrm and am := Aqm. Note that qm and am need not be
saved for the next iteration step.

start: x0 arbitrary; r0 := b−Ax0; (9.17a)
iteration m = 0, 1, . . . : qm := Nrm; am := Aqm; (9.17b)

λopt := λopt(r
m, qm, A) = 〈qm,rm〉

〈am,qm〉 ; (9.17c)
xm+1 := xm + λoptq

m; (9.17d)
rm+1 := rm − λopta

m; (9.17e)

Remark 9.15. The representation (9.17a–e) shows that for each iteration step only
one multiplication by N and one by A are necessary. For N = I, we regain the
algorithm (9.11a–c).



9.2 Gradient Method 221

The convergence of the method (9.17a–e) follows by applying the convergence
statement of Theorem 9.10 to the transformed problem (9.15c): Φ̌(x̌) = min.
First, we obtain an error estimate for x̌m with respect to the corresponding energy
norm ‖·‖Ǎ. Because of

‖x̌m − x̌∗‖2
Ǎ
=
〈
Ǎ(x̌m − x̌∗), x̌m − x̌∗

〉
= 〈A(xm − x∗), xm − x∗〉
= ‖xm − x∗‖2A ( x̌∗ = N−1/2x∗ )

the Ǎ-estimates of x̌m − x̌∗ carry over to the A-norm of the error xm − x∗.

Theorem 9.16 (convergence). Let A and N =W−1 be positive definite. If

γW ≤ A ≤ ΓW, (9.18a)

the iterates in (9.17a–e) satisfy the error estimate

‖xm − x∗‖A ≤
(
Γ − γ

Γ + γ

)m
‖x0 − x∗‖A . (9.18b)

Remark 9.17. Under an assumption analogous to that in Remark 9.12a, we con-
clude for algorithm (9.17a–e) that the convergence factors converge to η = κ−1

κ+1
with κ := κ (NA) = Γ / γ (here, γ and Γ are the optimal bounds in (9.18a)).
Therefore, the gradient method (9.17a–e) can be used to determine the spectral
condition number Γ/γ.

We regard the gradient method as a general technique that can be applied to all
positive definite iterations Φ and problems with A > 0. This is the same situation
as the Chebyshev method which also requires specifying the basic iteration.

Theorem 9.18. Let Φ be a positive definite iteration and assume that A > 0 . The
gradient method applied to Φ converges as fast as the optimally damped iteration
Φϑopt

for ϑopt = 2
Γ+γ . However, the explicit knowledge of the optimal bounds

γ and Γ in (9.18a) is not necessary.

Proof. Compare the results of Theorem 6.7 and (9.18b), and use γ = λmin(NA)
and Γ = λmax(NA). ��

Now the statement of Proposition 9.13 reads as follows.

Remark 9.19. The errors em = xm − x∗ of the gradient method (9.17a–e) satisfy

Km(NA, e0) = span{e0, e1, . . . , em−1}

for all m ∈ N. The residuals rμ = −Aeμ (0 ≤ μ ≤ m − 1) span the space
AKm(NA, e0) = Km(AN, r0).



222 9 Gradient Method

9.2.4.2 Residual Oriented Version

In (9.15a) we interpreted the iteration Φ as Richardson’s iteration applied to the
positive definite matrix Ǎ. This is not the only possibility. Φ is also equivalent to
ΦRich
1 applied to Ā:

x̄m+1 := x̄m − (Āx̄m − b̄) with

Ā := A1/2NA1/2 > 0, b̄ := A1/2Nb, x̄m := A1/2xm. (9.19)

Exercise 9.20. Prove the following: (a) The application of the gradient method to
the minimisation of F̄ (x̄) := 1

2

〈
Āx̄, x̄

〉
−
〈
b̄, x̄
〉

yields (9.20a–c)—denoted by
Υ res
grad[Φ]—after a reformulation using the x-quantities:

start: x0 arbitrary, q0 := N(b−Ax0), (9.20a)

xm+1 := xm + λopt q
m (9.20b)

with λopt := λopt(q
m, Aqm, N) = 〈qm,Aqm〉

〈NAqm,Aqm〉 ,

qm+1 := qm − λoptNAq
m. (9.20c)

(b) The methods Υgrad[Φ] in (9.17a–e) and Υ res
grad[Φ] in (9.20a–c) are different.

Choosing N = I, we do not regain the gradient method (9.11a–c).
(c) Let γ and Γ be the bounds in (9.18a). Then the error estimate (9.20d) holds:

‖N1/2A(xm − x∗)‖2 ≤
(
Γ − γ

Γ + γ

)m
‖N1/2A(x0 − x∗)‖2. (9.20d)

Note that both versions (9.17a–e) and (9.20a–c) lead to the same convergence
rate, but the involved norms are different. If W ∼ A, the norms ‖ · ‖A and ‖ · ‖ANA

are equivalent. On the other hand, for N = I the residual A(xm − x∗) = rm

is the subject of minimisation and for N ∼ I the norms ‖N1/2rm‖2 and ‖rm‖2
are equivalent.

Remark 9.21. The statements of Remark 9.19 also hold for the errors em=xm−x∗
of the gradient method (9.20a–c) as well as for the results of the following variant
(9.21a–c).

9.2.4.3 Directly Positive Definite Case

Assume Φ ∈ L>0, i.e., the iteration Φ(·, ·, A) is directly positive definite:

N [A]A > 0 (cf. Definition 5.14).

Then the original method (9.10a–c) can be applied with A replaced with the matrix
N [A]A. Note that in this case the matrix A ∈ D(Φ) is only required to be regular.



9.2 Gradient Method 223

The quadratic function

F (x) :=
1

2
〈NAx, x〉 − 〈Nb, x〉

replaces F in (9.2). The corresponding gradient method reads as follows:

start: x0 arbitrary, q0 := N(b−Ax0), (9.21a)

xm+1 := xm + λ̊ qm with λ̊ :=
‖qm‖22

〈NAqm, qm〉 , (9.21b)

qm+1 := qm − λ̊ NA qm. (9.21c)

Theorem 9.22. Let NA be positive definite with

γ := λmin(NA) and Γ := λmax(NA).

The iterates in (9.21a–c) satisfy the error estimate

‖xm − x∗‖NA ≤
(
Γ − γ

Γ + γ

)m
‖x0 − x∗‖NA .

9.2.5 Numerical Examples

m value in the middle ‖em‖A

‖em−1‖A

1 0.2851075107 0.4576
2 0.9245177570 0.5192
3 0.1780816984 0.5886
4 0.2274720552 0.6454
5 0.2956906889 0.6858

10 0.4381492069 0.7577
20 0.4954559469 0.7672
30 0.4996724015 0.7682
40 0.4999764630 0.7685
50 0.4999983084 0.7687
60 0.4999998782 0.7688
70 0.4999999912 0.7689

Table 9.2 Gradient method Υgrad[ΦSSOR
ω=1.82]

applied to the SSOR iteration for h = 1/32.

The SSOR iteration is used as a basic
iteration of the gradient method for the
Poisson model case. As in Table 6.1, we
choose the relaxation parameter

ω = 1.82126912

for the step size h = 1/32. The results
given in Table 9.2 suggest the conver-
gence rate η ≈ 0.769. From (9.14), we
conclude the spectral condition number

Γ/γ = κ = (1 + η)/(1 − η) = 7.66.

According to Table 6.1, the convergence
rate of the SSOR iteration equals 0.8796.
From ρ(MSSOR) = 1 − λ, we deduce
λ = 0.1204, implying Γ = 7.66 and γ = 0.922. Hence,

ϑopt = 2/(Γ + γ) ≈ 1.92

is the optimal damping or (more precisely) extrapolation factor for ΦSSOR
ω=1.82 in the

Poisson model case with h = 1/32.



224 9 Gradient Method

9.3 Method of the Conjugate Directions

9.3.1 Optimality with Respect to a Direction

The slowness of the gradient method is demonstrated in Theorem 9.10 by the
two-dimensional subspace spanned by the two extreme eigenvectors. Therefore, a
system of two equations is able illustrate this situation. The matrix

A = diag{λ1, λ2} with 0 < λ1 ≤ λ2

has the condition cond2(A) = λ2/λ1. The corresponding function F in (9.2) leads
to ellipses as level curves

Nc := {x ∈ R2 : Φ(x) = c}, where c ∈ R.

In the two-dimensional case, the gradient method can be illustrated graphically as
follows: The point xm [xm+1] lies on the ellipse E(m) := Nc with c = F (xm)
[or E(m+1) := Nc with c = F (xm+1), respectively]. The straight line xmxm+1

is vertical to E(m) and tangential to E(m+1). Therefore, succeeding straight lines
(i.e., the corrections xm+1 −xm) form right angles. Figure 9.1 shows the case of an
elongated ellipse, where the iteration path forms a zigzag line. This illustrates that
the approximation to the centre requires many iteration steps. Note that the ellipses
are more elongated the larger the condition is. In the case of a circle (λ1 = λ2),
the first correction would already yield the exact solution x∗.

x0

x1

2x

3x
x*

Fig. 9.1 The iterates xm and the corresponding level lines of the function F .

From the fact that the corrections xm+3−xm+2 and xm+1−xm are parallel, one
understands that the iterate xm+2 must be corrected in exactly the same direction
in which xm has been corrected previously. Hence, xm+2 has lost the property of
xm+1 being optimal with respect to the direction xm+1 − xm. We define:

x is optimal with respect to a direction p �= 0, if
F (x) ≤ F (x+ λp) for all λ ∈ K .



9.3 Method of the Conjugate Directions 225

Lemma 9.23. The optimality of x with respect to p is equivalent to

p⊥ r := b−Ax.

Proof. A necessary condition for f(λ) = F (x + λp) in (9.5c) to be minimal for
λ = 0 is 〈Ax− b, p〉 = − 〈r, p〉 = 0. As (9.5c) is restricted to the field R, use
(9.9c) for the complex case. ��

Exercise 9.24. x is called optimal with respect to a subspace U if F (x)≤F (x+ ξ)
for all ξ ∈ U . Prove that x is optimal with respect to U if and only if

r = b−Ax ⊥ U .

Remark 9.25. The iterates xm of the gradient method satisfy (9.22a,b):

xm+1 is optimal with respect to rm = b−Axm, (m ≥ 0) (9.22a)

rm+1 ⊥ rm. (9.22b)

Proof. By Lemma 9.23, (9.22a) and (9.22b) are equivalent. rm ⊥ rm+1 =
rm − λopt(r

m, rm)Arm follows from the definition (9.6b,c) of λopt. ��

The principal deficit of the gradient method can be stated as follows.
The relation rm+1 ⊥ rm is not transitive, i.e., rm⊥ rm+1 and rm+1 ⊥ rm+2 do
not imply rm ⊥ rm+2. Therefore, in general, xm+2 has lost its optimality with
respect to rm.

9.3.2 Conjugate Directions

The change of x into x′ := x + q (q �=0) transforms the residual r = b− Ax of
x into the residual

r′ = b−Ax′ = b−A(x+ q) = b−Ax−Aq = r −Aq

of x′. Let x be optimal with respect to the direction p :

r⊥ p .

The new value x′ remains optimal with respect to p if and only if r′⊥ p, i.e.,Aq⊥ p,
because the latter property is equivalent to

− 〈Aq, p〉 = 〈r −Aq, p〉 = 〈r′, p〉 = 0 .



226 9 Gradient Method

This proves the next statement.

Lemma 9.26. The optimality of x with respect to p �= 0 implies the optimality of
x′ = x+ q with respect to the same p �= 0 if and only if

Aq⊥ p . (9.23)

Vectors p , q with the property (9.23) are called conjugate. The term ‘conjugate’
can also be replaced with ‘A-orthogonal’, abbreviated as

q ⊥A p ,

where ⊥A denotes orthogonality with respect to the scalar product 〈·, ·〉A in (9.8a).
Note that the latter definitions only make sense if A > 0.

Condition (9.23) leads us to the following method of conjugate directions.

method of conjugate directions (9.24)

start: x0 arbitrary, r0 := b−Ax0;
loop: for m = 0, 1, . . . , n− 1: (n := #I)

choose a direction pm �= 0 which is conjugate to all (9.24a)
preceding directions p� (� < m);

xm+1 := xm + λopt(r
m, pm, A), A pm with (9.24b)

λopt(r
m, pm, A) := 〈rm, pm〉 / 〈Apm, pm〉 ; (9.24c)

rm+1 := rm − λopt(r
m, pm, A)Apm; (9.24d)

The lines (9.24b,c) show that xm+1 is optimal with respect to the direction pm:
F (xm+1) = min{F (xm + λpm) : λ ∈ K} or equivalently

rm+1 ⊥ pm. (9.24e)

Definition (9.24d) is equivalent to rm+1 := b−Axm+1.

The properties of this method are collected below.

Theorem 9.27. (a) The directions {pm : 0 ≤ m ≤ n− 1} form a basis of pairwise
conjugate vectors, i.e., an A-orthogonal basis.

(b) The algorithm terminates at m = n−1 with the exact solution xm+1=xn=x∗.

(c) The iterate xm is optimal with respect to all directions p0, . . . , pm−1, i.e., it is
optimal with respect to the subspace Um := span{p0, p1, . . . , pm−1}. The residuals
rm satisfy

rm ⊥ p� (0 ≤ � ≤ m− 1), (9.25a)
rm ⊥ U� (1 ≤ � ≤ m). (9.25b)



9.3 Method of the Conjugate Directions 227

(d) The error em = xm − x∗ fulfils the conditions

em ⊥A p� (0 ≤ � ≤ m− 1). (9.25c)

(e) xm solves the minimisation problem

F (xm) = min
λ�∈K

{
F (ξ) : ξ = x0 +

m−1∑
�=0

λ� p
�

}
= min

ξ−x0∈Um

F (ξ), (9.25d)

where the minimum in (9.25d) is taken at λ� = λopt(r
�, p�, A).

Proof. (a) First, we note that the division by 〈Apm, pm〉 in (9.24c) is well defined
because of pm �= 0, as long as an additional conjugate direction exists, i.e., as long
as m < n. As soon as m = n − 1, the vectors p0, . . . , pn−1 span the whole space
KI and the process cannot be continued.

(c) The statement (9.25a) is true for m = 0 since {� : 0 ≤ � ≤ m − 1} is the
empty set. Suppose that (9.25a) holds for m. By Lemma 9.23, xm is optimal with
respect to all directions p� (0≤�≤m−1). According to Lemma 9.26, this property
is inherited by xm+1 because of pm⊥A p

� (0≤�≤m− 1); hence rm+1⊥ p� holds
for all 0 ≤ � ≤ m− 1. The missing condition rm+1⊥ pm follows from (9.24e).

(d) (9.25c) follows from (9.25a), as Aem = A(xm − x∗) = Axm − b = −rm.
(b) (9.25b) proves that rn⊥ Un. Since Un = KI (cf. part (a)), rn = 0 follows,

i.e., xn = x∗.
(e) Inserting Eqs. (9.24b) one into another, we obtain

xm = x0 +

m−1∑
�=0

a� p
� with a� = λopt(r

�, p�, A).

From (9.9c) with x̃ := xm, x := ξ , and from rm⊥ Um, we deduce that

F (ξ) − F (xm) = �e

〈
rm,

m−1∑
�=0

(λ� − a�) p
�

〉
+

1

2
〈A(ξ − xm), ξ − xm〉

=
1

2
‖ξ − xm‖2A ≥ 0

with an equal sign only for ξ = xm, i.e., for λ� = a�. This proves (9.25d). ��

The method of conjugate directions is not interesting in practice, unless the
directions pm in (9.24) are suitably selected. If, for instance, one chooses a fixed
conjugate system {p0, . . . , pn−1}, the starting value x0 := x∗ − pn−1 with the
residual r0 = Apn−1 leads to a sequence x0 = x1 = . . . = xn−1 which only in
the last step changes to the exact solution xn = x∗. This explains why, in general,
no convergence estimate as in (9.13b) can be given.



228 9 Gradient Method

9.4 Minimal Residual Iteration

For general matrices A, the function (9.7a) with H = I can be minimised, i.e.,
the residual r = b − Ax is minimised: F (x) := ‖A(x− x∗)‖22 = ‖r‖22 = min.
Choosing the gradient of F as search direction, we would regain the gradient
method in §9.2 applied to the equation AHAx − AHb. Instead of this gradient,
one can use the residual r = b − Ax of the original system as search direction.
This yields the minimal residual iteration

xm+1 = xm − �e〈Arm, rm〉
〈Arm, Arm〉 r

m, rm = b−Axm.

For general matrices A, the method cannot converge since r0 �= 0 may lead to〈
Ar0, r0

〉
= 0 so that xm = x0 �= A−1b for all m. To avoid this problem, we

need the following assumptions.

Theorem 9.28. AssumeA+AH > 0 . Then the minimal residual iteration converges
with the rate

c :=

√
λmin(A+AH)

2 ‖A‖2
. (9.26)

The convergence is uniform with respect to the residual: ‖rm+1‖2 ≤ c ‖rm‖2 .

Proof. See Saad [328, Theorem 5.10]. ��



Chapter 10

Conjugate Gradient Methods and

Generalisations

Abstract The conjugate gradient method is the best-known semi-iteration. Con-
suming only a small computational overhead, it is able to accelerate the underlying
iteration. However, its use is restricted to positive definite matrices and positive
definite iterations. There are several generalisations to the Hermitian and to the
general case. In Section 10.1 we introduce the general concept of the required
orthogonality conditions and the possible connection to minimisation principles.
The standard conjugate gradient method is discussed in Section 10.2. The method
of conjugate residuals introduced in Section 10.3 applies to Hermitian but possibly
indefinite matrices. The method of orthogonal directions described in Section 10.4
also applies to general Hermitian matrices. General nonsymmetric problems are
treated in Section 10.5. The generalised minimal residual method (GMRES;
cf. §10.5.1), the full orthogonalisation method (cf. §10.5.2), and the biconjugate
gradient method and its variants (cf. §10.5.3) are discussed.

10.1 Preparatory Considerations

In the following x∗ := A−1b denotes the exact solution, while x ∈ KI may be
used as a variable. The iterate xm is associated with the error em = xm − x∗ and
the residual rm = b−Axm = −Aem.

10.1.1 Characterisation by Orthogonality

As seen in Conclusion 8.13a, the semi-iterates (8.3) belong to the affine space
x0 + NKm(AN, r0) = x0 + Km(NA,Nr0). In the following, we replace the
Krylov space Km(NA,Nr0) by a general subspace

Um ⊂ KI with dim(Um) = m. (10.1a)

229© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_10



230 10 Conjugate Gradient Methods and Generalisations

The reason for using Um is that the following arguments are independent of the
special nature of the Krylov space. We are looking for candidates

xm ∈ x0 + Um. (10.1b)

The second space
Vm ⊂ KI with dim(Vm) = m

may coincide with Um.
For the practical implementation, we use bases

Um = span{u1, . . . , um}, Vm = span{v1, . . . , vm}. (10.1c)

Remark 10.1. (a) The spaces are nested if

U1 ⊂ . . . ⊂ Um ⊂ Um+1 ⊂ . . . . (10.2)

In this case, it is advantageous if the basis vectors u1, . . . , um of Um coincide with
the first m basis vectors of Um+1.
(b) For stability reasons, orthonormal bases are a good choice. In the case of
Um ⊂ Um+1, u

m+1 ∈ Um+1 is the normalised vector with um+1 ⊥ Um.

The following methods are directly or indirectly characterised by the condition
that the m-th iterate xm fulfils an orthogonality condition:

xm satisfies (10.1b) and rm := b−Axm ⊥ Vm. (10.3)

The questions that arise are:

1. Is (10.3) uniquely solvable?
2. Can we derive estimates for the error em in some norm?
3. How costly is the solution of (10.3)?

The first question will be answered in §10.1.2 and the second in §10.1.5. The
cost is discussed later for the concrete choice of spaces.

Remark 10.2. Condition (10.3) is equivalent to〈
rm, vi

〉
= 0 for all 1 ≤ i ≤ m (10.4)

(cf. (10.1c)). A generalisation of (10.3) could be
〈
rm, vi

〉
X

= 0 using another
scalar product 〈u, v〉X := 〈Xu, v〉 for some X > 0 (cf. Remark C.10). However,
this approach is identical to (10.3) with Vm replaced with XVm.



10.1 Preparatory Considerations 231

10.1.2 Solvability

As required in (2.2), we always assume that the underlying matrix A of the system
Ax = b is regular.

The basis (10.1c) of Um allows us to make the ansatz xm = x0 +
∑m

j=1 aju
j .

This implies that rm= r0−
∑m

j=1 ajAu
j . The conditions in (10.4) yield the system

Za = z with Zij :=
〈
Auj , vi

〉
, zi :=

〈
r0, vi

〉
. (10.5)

In general, there is no guarantee that Z is regular. If m ≤ #I/2, the orthogonal
situation AUm ⊥ Vm is possible and yields the extreme case of Z = 0.

Remark 10.3. The regularity of Z is equivalent to either of the conditions

(AUm)⊥ ∩ Vm = U⊥
m ∩AHVm = AUm ∩ V⊥

m = Um ∩AHV⊥
m = {0}.

It remains to formulate sufficient conditions ensuring the regularity of Z.

Criterion 10.4. (a) Let Um = Vm and assume A+AH > 0 . Then Z is regular .
(b) If K = C , the previous condition may be replaced with i (AH −A) > 0.
(c) Um = Vm and A > 0 are sufficient.
(d) For N > 0 and a general regular matrix A, the choice of Vm = NAUm

ensures regularity of Z.

Proof. (a) If Z is singular, there is some 0 �= a ∈ Km with Za = 0, i.e., Au⊥ Vm

for u :=
∑m

j=1 aju
j �= 0. This is a contradiction to 0 <

〈
(A+AH)u, u

〉
=

2�e〈Au, u〉, since u ∈ Vm.
(b) 1

i (A−AH) > 0 implies that 0 < 2%m〈Au, u〉. Part (c) is trivial.
(d) Without loss of generality, the basis of Vm can be defined by vi = NAui.

Then Zij =
〈
Auj , vi

〉
=
〈
AHNAuj , vi

〉
corresponds to case (c) with A replaced

by AHNA > 0 . ��

10.1.3 Galerkin and Petrov–Galerkin Methods

Appendix E describes the discretisation of boundary value problems by the
Galerkin method. This method can also be applied to finite-dimensional problems.
The system Ax = b (x, b ∈ KI ) can be rewritten as the variation problem

〈Ax, v〉 = 〈b, v〉 for all v ∈ KI .

Using the initial value x0, we write x = x0 + u so that

〈Au, v〉 =
〈
r0, v
〉

for all v ∈ KI with r0 = b−Ax0.



232 10 Conjugate Gradient Methods and Generalisations

The Galerkin method replaces this problem by a system of lower dimension m.
Let Um be the subspace in (10.1a). Then the Galerkin solution xm ∈ x0 + Um is
defined by xm = x0 + u with

u ∈ Um satisfying 〈Au, v〉 =
〈
r0, v
〉

for all v ∈ Um.

Obviously this problem is equivalent to rm⊥ Um and therefore to the condition
(10.3) with Vm = Um.

The coercivity formulated in (E.3) requires A + AH ≥ 1
C I for some C > 0.

In the finite-dimensional case, this is equivalent toA+AH>0 as in Criterion 10.4a.

The more general Petrov–Galerkin method in Definition E.7 yields the problem

find xm ∈ x0 + u, u ∈ Um with 〈Au, v〉 =
〈
r0, v
〉

for all v ∈ Vm,

where now Vm may be different from Um. This yields the general condition (10.3).

10.1.4 Minimisation

The orthogonality condition (10.3) may be a consequence of another formulation.
IfA > 0, the Galerkin formulation is the first variation of the minimisation problem
(9.2): F (x) = 1

2 〈Ax, x〉 − 〈b, x〉 = min.
The most general quadratic form whose minimum is the solution of Ax = b,

is described in Lemma 9.3: F (x) = 1
2‖H1/2r‖22 + c with r = b−Ax and H > 0.

Its first variation leads us to the case (d) in Criterion 10.4 with N = H .

10.1.5 Error Statements

Even if the auxiliary system in (10.5) is solvable, there is no guarantee that the
quality of xm improves with increasingm. Nevertheless, if the method makes sense
for all m ≤ #I , we reach the exact solution, provided that the arithmetic is exact.

Remark 10.5. Let n := #I . (a) The iterate xn is the exact solution: xn = A−1b.
(b) If rm ∈ Vm for some m ≤ n, then xm is the exact solution.

Proof. By definition, rm ⊥ Vm holds. Combining this statement with rm ∈ Vm

yields rm = 0, i.e., xm = A−1b. This proves part (b). Since Vn = KI because
of dim(Vn) = n, part (b) applies. ��

Error estimates can be based on an underlying minimisation problem, provided
that condition (10.3) is the result of an optimisation problem. The formulation of
the optimisation problem also defines the norm for measuring the error.



10.1 Preparatory Considerations 233

10.1.5.1 Energy Norm

Assume a positive definite matrix A > 0 so that the energy norm ‖·‖A can be
defined (cf. (C.5a)). The Galerkin formulation in a subspace Um = Vm determines
the minimiser of F (x) = 1

2 〈Ax, x〉 − 〈b, x〉 in x0 + Um, i.e.,

‖xm − x∗‖A = min
{

‖x− x∗‖A : x ∈ x0 + Um

}
. (10.6)

If the spaces are nested (cf. (10.2)), the norm ‖xm − x∗‖A decreases weakly with
increasing m. This statement also holds for minimisation later on.

In the case of Φ(·, ·, A) ∈ L>0, i.e., NA > 0, the minimisation in (10.6) uses
the norm ‖·‖NA instead of ‖·‖A.

The classical CG method in §10.2 will lead us to (10.6) with Um= Km(A, r0).

10.1.5.2 Residual Norm

The norm |||xm − x∗|||A coincides with ‖A(xm − x∗)‖2 = ‖rm‖2 . The minimisa-
tion of the residual

‖rm‖2 = min
{

‖A(x− x∗)‖2 : x ∈ x0 + Um

}
(10.7)

implies the orthogonality
rm⊥AUm =: Vm. (10.8)

The latter statement can also be written as AHrm⊥ Um. For general matrices, the
use of Krylov subspaces leads us to the GMRES method in §10.5.1.

The minimisation of F (x) = 1
2‖N1/2r‖22 + c for some N > 0 (cf. §10.1.4)

generalises (10.7) to∥∥N1/2rm
∥∥
2
= min

{∥∥N1/2A(x− x∗)
∥∥
2
: x ∈ x0 + Um

}
.

In the case of Hermitian matrices A, the realisation with Krylov spaces is given in
§10.3.

One must be aware of the fact that a small residual ‖rm‖2 does not necessarily
imply that the error ‖xm − x∗‖2 is small (cf. Remark 2.35).

10.1.5.3 Euclidean Norm

The first idea may be to approximate the solution x of Ax = b by the best
approximation x∗ in x0 + Um :

‖xm − x∗‖2 = min
{

‖x− x∗‖2 : x ∈ x0 + Um

}
.



234 10 Conjugate Gradient Methods and Generalisations

The first variation yields the orthogonality condition em ⊥ Um. In terms of the
condition (10.3), this can be written as

rm ⊥A−H Um . (10.9)

However, in general, this problem is not feasible. The cost for computing xm

is at least as high as solving the system Ax = b. For instance, x1 = x0 + αu
(u normalised vector with U1 = span{u}) is the minimiser if α = −

〈
e0, u
〉
.

However, e0 = x0 − x∗ is not available unless the exact solution x∗ is known.
Therefore, evaluating the scalar product

〈
e0, u
〉

causes a problem.
Nevertheless, the problem becomes solvable if the subspace Um can be written

as Um = AHVm and a basis {v1, . . . , vm} of Vm is known. Then the basis of Um

can be chosen as {u1, . . . , um} with uj := AHvj . In this case, condition (10.9)
becomes rm ⊥ Vm.

For A = AH and Krylov spaces Vm, this approach is realised by the method of
orthogonal directions in §10.4.

10.2 Conjugate Gradient Method

Concerning books on Krylov methods we refer, e.g., to Greenbaum [167, Part I],
Liesen–Strakos [265], Meurant [283], Saad [328], Stoer [355], and van der Vorst
[373, §§5–12]. The history is described by Golub–O’Leary [155].

10.2.1 First Formulation

In the following, the gradient method and the conjugate directions in §§9.2–9.3 will
be combined. In order not to lose optimality with respect to the previous search
directions, we only permit conjugate directions. The residuals (negative gradients)
are used to determine the search direction pm in (9.24). As for the gradient method
we assume

A > 0 and F (x) =
1

2
〈Ax, x〉 − 〈b, x〉 .

After constructing (linearly independent) p0, p1, . . . , pm−1, we can orthogo-
nalise rm with respect to the energy scalar product 〈·, ·〉A (cf. Remark A.26a):

pm := rm −
m−1∑
�=0

〈
Arm, p�

〉
〈Ap�, p�〉 p

�, (10.10a)

p0 := r0. (10.10b)

Note that for m = 0 the empty sum in (10.10a) implies (10.10b).



10.2 Conjugate Gradient Method 235

Remark 10.6. (a) pm in (10.10a) is conjugate to all p� with 0 ≤ � ≤ m− 1.
(b) The directions p� span the Krylov subspace

Km(A, r0) = span{p0, . . . , pm−1} = span{r0, . . . , rm−1}. (10.11a)

(c) Having constructed xm and its residual rm by the method of conjugate
directions, the vectors rm and pm can only vanish simultaneously. This means
that either xm = x∗ is the exact solution or pm �= 0 holds.
(d) The residual is orthogonal to the preceding subspaces:

rm ⊥ K�(A, r
0) for all � ≤ m. (10.11b)

Proof. (a) By construction (10.10a),
〈
Apm, pj

〉
= 0 holds for j < m.

(b) Equation (10.11a) holds for m = 1. Let (10.11a) be valid for m. Defini-
tion (10.10a) implies the identity span{Km(A, r0), pm} = span{Km(A, r0), rm}
because of Exercise 8.8a and yields assertion (10.11a) for m+ 1.

(d) Repeat (9.25b) stated in Theorem 9.27.
(c) By (10.10a), pm = 0 follows from rm = 0. Assume the case of pm = 0.

(10.10a) shows that rm ∈ Km(A, r0). On the other hand, rm ⊥ Km(A, r0) holds
(cf. (10.11b)). Both statements together imply that rm = 0. ��

A first provisional representation of the conjugate gradient method reads as
follows:

start: x0 arbitrary; r0 := b−Ax0; (10.12a)

Loop over m = 0, 1, . . . , n− 1: (n := #I)

stop if rm = 0, otherwise
compute pm from rm according to (10.10a,b) (10.12b)

xm+1 := xm + λopt(r
m, pm, A) pm with λopt in (9.24c); (10.12c)

rm+1 := rm − λopt(r
m, pm, A)Apm; (10.12d)

The properties of this method are summarised below.

Theorem 10.7. (a) Let m0 be the value when the loop (10.12b–d) terminates with
rm0 = 0 and xm0 = x∗. Assuming exact arithmetic,m0 = degA(e

0) = degA(r
0)

holds. Since m0 ≤ n := #I, the loop terminates latest after n steps.

(b) The iterates xm (0 ≤ m ≤ m0) can be characterised by each of the following
minimisation problems:

F (xm) = min

{
F
(
x0 +

m−1∑
�=0

λ� p
�
)
: λ0, . . . , λm−1 ∈ K

}
, (10.13a)



236 10 Conjugate Gradient Methods and Generalisations

F (xm) = min

{
F
(
x0 +

m−1∑
�=0

μ� r
�
)
: μ0, . . . , μm−1 ∈ K

}
, (10.13b)

F (xm) = min
{
F
(
x0 + pm−1(A) r

0
)
: pm−1 ∈ Pm−1

}
. (10.13c)

(c) The minima (10.13a–c) can also be expressed by the energy norm ‖·‖A:

‖em‖A = min
λ0,...,λm−1∈K

∥∥∥∥e0 + m−1∑
�=0

λ� p
�

∥∥∥∥
A

= min
μ0,...,μm−1∈K

∥∥∥∥e0 + m−1∑
�=0

μ� r
�

∥∥∥∥
A

= min
pm−1∈Pm−1

‖e0 + pm−1(A) r
0‖A = min

ξ∈Km(A,r0)
‖e0 + ξ‖A. (10.13d)

Proof. (b) Because of (10.11a), all minimisation problems (10.13a–c) are of the
form

F (xm) = min{F (x0 + ξ) : ξ ∈ Km(A, r0)}.

This statement coincides with (10.11b) in Remark 10.6d.
(c) The equivalence of the statements in the parts (b) and (c) follows from (9.3):

F (x) = ‖x−A−1b‖2A + const.
(a) For m∗ = degA(e

0), there is a polynomial p = pm∗ of degree m∗ with
p(A)e0 = 0. The scaling can be chosen so that p(0) = 1 (cf. Lemma 8.12). Define
q∈Pm∗−1 by p(ξ)=1 − q(ξ)ξ. Since 0=p(A)e0=e0 − q(A)Ae0=e0 + q(A)r0,
the minimum in (10.13d) yields em

∗
= 0. This proves that the first m = m0 with

em0 = 0 satisfies m0 ≤ m∗. On the other hand, em0 = 0 and (10.13d) prove
that there is some polynomial p(ξ) = 1 − q(ξ)ξ of degree m0 with p(A)e0 = 0.
Hence m0 ≥ m∗=degA(e

0). ��

The proposed algorithm (10.12a–d) can significantly be simplified in step
(10.12b). Computing most of the scalar products

〈
Arm, p�

〉
in (10.10a) can be

avoided.

Lemma 10.8.
〈
Arm, p�

〉
= 0 holds for all 0 ≤ � ≤ m− 2, m ≤ m0.

Proof. We have
〈
Arm, p�

〉
=
〈
rm, Ap�

〉
. Equation (10.11a) and inclusion (8.9)

show that Ap� ∈ AK�+1(A, r
0) ⊂ K�+2(A, r

0) ⊂ Km(A, r0). Therefore, the
assertion follows from (10.11b): rm⊥ Km(A, r0). ��

Only the term for � = m− 1 does remain in the sum (10.10a):

pm := rm −
〈
Arm, pm−1

〉
〈Apm−1, pm−1〉 p

m−1 = rm −
〈
rm, Apm−1

〉
〈Apm−1, pm−1〉 p

m−1. (10.14)

The second representation in (10.14) has the advantage that only the productApm−1

is needed which already appears in the denominator, in λopt, and in (10.12d).



10.2 Conjugate Gradient Method 237

10.2.2 CG Method (Applied to Richardson’s Iteration)

Using (10.14), we present the CG method (10.12a–d) in the following form (‘CG’
abbreviates ‘conjugate gradient’).

ΥCG[Φ
Rich
1 ] CG method (applied to Richardson’s iteration) (10.15)

start: x0 arbitrary; r0 := b−Ax0; p0 := r0; (10.15a)

Loop over m = 0, 1, . . . , n− 1: stop if rm = 0, otherwise:

xm+1 := xm + λopt p
m with (10.15b)

λopt := λopt(r
m, pm, A) = 〈rm, pm〉 / 〈Apm, pm〉 ; (10.15c)

rm+1 := rm − λoptAp
m; (10.15d)

pm+1 := rm+1 − 〈rm+1,Apm〉
〈Apm,pm〉 pm; (10.15e)

Exercise 10.9. The following alternatives are equivalent to (10.15c,e):

λopt(r
m, pm, A) = ‖rm‖22 / 〈Apm, pm〉 , (10.15c′)

pm+1 = rm+1 +
‖rm+1‖22
‖rm‖22

pm. (10.15e′)

Remark 10.10. One CG step xm �→ xm+1 requires one multiplication Apm and,
in addition, only simple vector operations and scalar products. On the other hand,
the storage requirement is higher. Besides xm, also rm and pm are needed.

The CG method was first presented in 1952 by Stiefel [353] in a paper still worth
reading. Independently, the method was described in the same year by Hestenes
(cf. Hestenes [218], Hestenes–Stiefel [219]).

The CG method can be interpreted in two completely different ways:

• as a direct method,
• as an iterative method.

Formally, the CG algorithm is a direct method because it produces the exact
solution x∗ after finitely many operations (see m0 in Theorem 10.7a). For the
practical performance, this is not true. Since the later and smaller residuals rm

arise from linear combinations of larger quantities, cancellation leads to an error
amplification, so that the vectors {p0, . . . , pn−1} no longer form a conjugate system.
After losing the orthogonality, two cases may appear:

• stagnation: the errors em fluctuate about the reached level of accuracy,
• instability: the errors start to grow again.



238 10 Conjugate Gradient Methods and Generalisations

The first case is harmless, provided that the reached error level is sufficient.
The second case will happen for many Krylov methods discussed later. This is the
reason that there are many equivalent algorithms, i.e., algorithms producing iden-
tical results under exact arithmetic, but behaving differently under floating-point
perturbation. In the best case, there are ‘stabilised’ versions which do not become
unstable. There is a further, still more severe problem. Division by 〈Apm, pm〉
already appears in (10.15c). A division by zero leads to a breakdown of the al-
gorithm. A lucky breakdown happens if a vanishing divisor only appears if xm

is already the exact solution (so that the algorithm need not to be continued).
In the ‘unlucky’ cases, the ‘stabilised’ versions should overcome this difficulty
(cf. §10.3.3). In any case, one can state that the Krylov methods cannot be used
as a practical method for the direct solution of large linear systems.

It was Reid [319] how emphasised the use of the CG method as an iterative
method. Although the limit process m → ∞ does not make sense,1 the decrease
of the error em in a range 0 ≤ m ≤ m0 with m0 ! n = #I is all we need for
practical applications, provided that at least em0 is small enough.

The problem caused by floating-point perturbations suggests a modification to-
wards an infinite CG iteration.2 Assume that perturbations get out of control after
(more than) k steps. Then, after every k steps (i.e., for m = 0, k, 2k, . . .), we start
again with the last descent direction pk := rk, etc. This method is usually called the
restarted CG method:

start: x0 arbitrary starting iterate, (10.16)
iteration m = 1, 2, . . . xm: as in (10.15b,d),

rm, pm: as in (10.15c–e), if m is not a multiple of k;
rm := pm := b−Axm, if m = 0, k, 2k, . . .

10.2.3 Convergence Analysis

The convergence analysis is based on the following observation corresponding to
Remark 9.9 in the case of the gradient method. Property (10.17d) stated below
coincides with the characterisation in §10.1.5.1.

Proposition 10.11. Let x0, . . . , xm0 be the sequence of the CG iterates.
(a) The CG results can be regarded as the results of the semi-iterative Richardson
iteration ΦRich

1 . The related polynomials pk ∈ Pk in (8.6c) with pk(1) = 1 yield
the error representation

ek = xk − x∗ = pk(M
Rich
1 )e0 = pk(I −A)e0 (MRich

1 = I −A). (10.17a)

1 The terms ‘convergence’ and ‘asymptotic convergence rate’ lose their meaning since no limit can
be formed.
2 This is still a nonlinear iteration. If xm = A−1b , the lucky breakdown stops the iteration.



10.2 Conjugate Gradient Method 239

(b) pk and qk−1(ξ) := [pk(1 − ξ) − 1]/ξ are the optimal polynomials solving the
respective minimisation problems

‖ek‖A = ‖pk(MRich
1 )e0‖A ≤ ‖p̃k(MRich

1 )e0‖A (10.17b)
for all polynomials p̃k ∈ Pk with p̃k(1) = 1,

‖ek‖A = ‖e0 + qk−1(A)r
0‖A ≤ ‖e0 + q̃k−1(A)r

0‖A (10.17c)
for all polynomials q̃k−1 ∈ Pk−1,

‖ek‖A = min
{

‖x− x∗‖A : x ∈ x0 + Kk(A)r
0
}
. (10.17d)

Proof. (a) (10.15b) shows that xk = x0 +
∑k−1

ν=0 βνp
ν with βν := λopt(r

ν , pν , A),
i.e.,

xk − x0 = ek − e0 ∈ span{p0, . . . , pk−1} = Kk(A, r
0) (cf. (10.11a)).

Hence, there is a polynomial qk−1 ∈ Pk−1 with ek = e0 − qk−1(A)r
0. Since

r0 =−Ae0, ek = p̂k(A)e0 holds for the polynomial p̂k(ξ) := 1 + ξqk−1(ξ) ∈ Pk.
The related polynomial pk(ξ) := p̂k(1 − ξ) satisfies the consistency condition
pk(1) = p̂k(0) = 1. The identity pk(MRich

1 )e0 = pk(I − A)e0 = p̂k(A)e
0 = ek

proves that pk ∈ Pk is the polynomial in (10.17a).
(b) Since the CG results satisfy (10.13d), the polynomial qk−1 is the minimiser

in (10.17c). Problem (10.17b) is equivalent to (10.17c) and (10.17d). ��

Remark 10.12. The CG iterates xm are not the solutions of the minimisation
problem posed in §8.3.1 because there the minimisation is required with respect to
the Euclidean norm ‖·‖2. However, if ‖·‖2 is replaced by ‖·‖A, the CG method offers
the possibility of solving the modified minimisation problem ‖pm(M)e0‖A = min
without knowledge of the initial error e0 and the spectrum of MRich

1 = I − A
(equivalently, of the spectrum of A).

Remark 10.13. For any polynomial Pm ∈ Pm satisfying Pm(1) = 1, the errors
em = xm − x∗ of the CG iterates satisfy the error estimate

‖em‖A ≤ max {|Pm(1 − λ)| : λ ∈ σ(A)} ‖e0‖A. (10.18)

Proof. (10.17b) shows that ‖em‖A ≤ ‖Pm(I−A)‖A‖e0‖A. The matrix norm ‖·‖A
has the representation ‖X‖A = ‖A1/2XA−1/2‖2 (cf. (C.5d)).A1/2 commutes with
polynomials in A : A1/2Pm(I − A)A−1/2 = Pm(I − A). The assertion (10.18)
follows from ‖Pm(I −A)‖2 = max{|Pm(1 − λ)| : λ ∈ σ(A)}. ��

The following theorem shows that—as in the case of the Chebyshev method—an
order improvement can be achieved.

Theorem 10.14. Let A be positive definite with λ := λmin(A), Λ := λmax(A) and
abbreviate the spectral condition number by κ = κ(A) = Λ/λ. The errors em of
the CG iterates xm satisfy the estimate



240 10 Conjugate Gradient Methods and Generalisations

‖em‖A ≤
2
(
1 − 1

κ

)m(
1 + 1√

κ

)2m
+
(
1 − 1√

κ

)2m ‖e0‖A =
2cm

1 + c2m
‖e0‖A (10.19)

with c :=

√
κ− 1√
κ+ 1

=

√
Λ−

√
λ√

Λ+
√
λ

.

Proof. Let Pm be the transformed Chebyshev polynomial (8.27a) belonging to
σM := [a, b] ⊃ σ(MRich) = σ(I − A) with a = 1 − Λ and b = 1 − λ.
(10.18) and (8.27b) yield ‖em‖A ≤ ‖e0‖A/Cm . (8.28c) proves (10.19). ��

The error estimate (10.19) uses an upper bound that may be too pessimistic.
It is based on the Chebyshev polynomial Pm which is the optimal choice for
minimising max{|Pm(ξ)| : ξ ∈ σM = [a, b]}, but not necessarily for minimising
max{|Pm(ξ)| : ξ ∈ σ(MRich) = σ(I − A)} = max{|Pm(1 − λ)| : λ ∈ σ(A)}.
This leads to the following statement.

Remark 10.15. Although the asymptotic convergence rate of the gradient method
depends exclusively on the spectral condition number κ(A) and therefore the
extreme eigenvalues, the convergence of the CG method is influenced by the whole
spectrum.

The following simple example will illustrate this fact. Assume that the inclusion
σ(MRich) ⊂ [a, b] with a = 1 − Λ, b = 1 − λ can be strengthened to σ(MRich) ⊂
σM := [a, a′] ∪ [b′, b] with a ≤ a′ < b′ ≤ b. Then one may find a polynomial
Pm for which max{|Pm(1 − λ)| : λ ∈ σ(A)} is smaller than for the Chebyshev
polynomial (cf. §8.3.6). Hence, Pm yields a better estimate than (10.19). Generally
speaking, if the eigenvalues of A are not distributed uniformly over [λ,Λ]
(e.g., if they accumulate in smaller subintervals), the CG method converges better
than estimated by (10.19).

Exercise 10.16. If the spectrum σ(MRich) = {λ,Λ} contains only the extreme
eigenvalues λ and Λ, the cg method yields xm0 = x∗ for m0 ≤ 2.

Even if the eigenvalue distribution permits no better polynomial than the Cheby-
shev polynomial, the ratios ‖em+1‖A/‖em‖A improve with increasing iteration
number m and become smaller than c ≈ 1 − 2/

√
κ in (10.19). The reason is

as follows. In the case of the gradient method (9.11a–c), the error em converges
to the subspace V := span{v1, v2} spanned by the eigenvectors belonging to
λ := λmin(A) and Λ := λmax(A) (see the proof of Corollary 9.11). For the CG
case, this behaviour cannot occur. If the CG error em lies exactly in the subspace V ,
2 = dimV steps of the CG methods would be sufficient to obtain em+2 = 0. It
can be proved that the CG error moves towards V ⊥. Restricting the matrix A to
V ⊥, we obtain the spectrum σ(A)\{λ,Λ} and the condition is Λ2/λ2, where λ2
is the second smallest and Λ2 the second largest eigenvalue. Hence, after a certain
number of steps, the error ratios behave more like c ≈ 1 − 2/

√
Λ2/λ2 < c . A

precise analysis of this superconvergence phenomenon is given by van der Sluis–
van der Vorst [370]. See also Strakos [357].



10.2 Conjugate Gradient Method 241

10.2.4 CG Method Applied to Positive Definite Iterations

10.2.4.1 Standard Version

As the gradient method, the method of conjugate gradients can be applied to other
positive definite iterations than the Richardson method. This yields the so-called
preconditioned CG method (but notice that the gradients are preconditioned not the
CG method). Assume Φ ∈ Lpos . Hence, the standard assumption A > 0 implies
N > 0 for the matrix N = N [Φ] in

xm+1 = xm −N(Axm − b) with A,N positive definite. (10.20a)

As in (9.15b), we introduce Ǎ := N
1
2AN

1
2 and b̌ := N

1
2 b . Algorithm (10.20a)

is equivalent to the Richardson iteration (10.20b) for solving Ǎx̌ = b̌ :

x̌m+1 = x̌m − (Ǎx̌m − b̌). (10.20b)

Applying the CG algorithm (10.15a–e) to Ǎx̌ = b̌, we obtain:

start: x̌0 := N−1/2x0; ř0 := b̌− Ǎx̌0; p̌0 := ř0; (10.21a)
for m = 0, 1, 2, . . . (while řm �= 0) :

x̌m+1 := x̌m + λopt p̌
m with (10.21b)

λopt := λopt(ř
m, p̌m, A) = 〈řm, p̌m〉 /

〈
Ǎp̌m, p̌m

〉
; (10.21c)

řm+1 := řm − λopt Ǎ p̌
m (= b̌− Ǎx̌m+1); (10.21d)

p̌m+1 := řm+1 −
〈
řm+1, Ǎp̌m

〉
/
〈
Ǎp̌m, p̌m

〉
p̌m; (10.21e)

Insert Ǎ = N1/2AN1/2 and b̌ = N1/2b, define xm and pm by

x̌m = N−1/2xm, p̌m = N−1/2pm (10.21f)

and use N1/2rm = N1/2(b−Axm) = b̌− Ǎx̌m = řm. (10.21a–e) becomes

start: x0 arbitrary; r0 := b−Ax0; p0 := Nr0; (10.22a)
iteration: for m = 0, 1, 2, . . . (while rm �= 0) :

xm+1 := xm + λopt p
m with (10.22b)

λopt := λopt(r
m, pm, A) = 〈rm, pm〉 / 〈Apm, pm〉; (10.22c)

rm+1 := rm − λoptAp
m; (10.22d)

pm+1 := Nrm+1 − 〈Nrm+1,Apm〉
〈Apm,pm〉 pm; (10.22e)

The expression (10.22c) coincides with the original definition (9.6a) of λopt.
(10.22e) shows that the search directions pm are produced from the ‘preconditioned’



242 10 Conjugate Gradient Methods and Generalisations

gradient Nrm by an A-orthogonalisation. Exploiting the equivalent formulations
(10.15c′,e′), we end up with

λopt := 〈Nrm, rm〉 / 〈Apm, pm〉 ;

pm+1 := Nrm+1 +

〈
Nrm+1, rm+1

〉
〈Nrm, rm〉 pm.

If one carries along the variables xm, pm, rm, and ρm := 〈Nrm, rm〉 during
the iteration, the CG algorithm ΥCG[Φ] takes the form (10.23a–f):

start: x0 arbitrary; (10.23)
r0 := b−Ax0; p0 := Nr0; ρ0 :=

〈
p0, r0

〉
; (10.23a)

iteration: for m = 0, 1, 2, . . . (while m < n := #I and rm �= 0):
am := Apm; λopt := ρm/ 〈am, pm〉; (10.23b)
xm+1 := xm + λopt p

m; (10.23c)
rm+1 := rm − λopt a

m; (10.23d)
qm+1 := Nrm+1; ρm+1 :=

〈
qm+1, rm+1

〉
; (10.23e)

pm+1 := qm+1 − ρm+1

ρm
pm; (10.23f)

The error estimate for em = xm − x∗ follows as in §9.2.4, since the inequality
(10.19) for ěm = x̌m − x̌∗ = N−1/2em can be transferred to em: ‖ěm‖Ǎ=‖em‖A.
Notice that κ=κ(Ǎ)=κ(N1/2AN1/2)=κ(NA)=Γ/γ with Γ and γ in (10.24a).

Theorem 10.17 (error estimate). Assume Φ ∈ Lpos and A > 0 . The matrix
W = N−1 of the third normal form is assumed to satisfy

γW ≤ A ≤ ΓW (γ > 0 , cf. (9.18a)). (10.24a)

Then the iterates xm of the CG method ΥCG[Φ] in (10.23a–f) are the minimisers
of min

{
‖x− x∗‖A : x = x0 + Km(NA)Nr0

}
and fulfil the energy norm estimate

‖em‖A ≤ 2cm

1 + c2m
‖e0‖A with c =

√
κ− 1√
κ+ 1

=

√
Γ − √

γ√
Γ +

√
γ
, κ =

Γ

γ
. (10.24b)

Lemma 10.18. (a) m0 = degǍ(ě
0) = degNA(e

0) = degAN (r0) ≤ n = #I is the
first index m0 with rm0 = 0 and xm0 = x∗.
(b) The search directions generated by (10.23a–f) are conjugate with respect to the
original matrix A: 〈

pk, p�
〉
A
= 0 for k �= �. (10.25)

(c) The statements in (10.11a,b) become

rm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1}
= span{Nr0, . . . , Nrm−1}.



10.2 Conjugate Gradient Method 243

(d) The iterate xm is the minimiser of the expressions

F (xm) = min
λ0,...,λm−1∈K

F

(
x0+

m−1∑
�=0

λ� p
�

)
= min

μ0,...,μm−1∈K

F

(
x0+N

m−1∑
�=0

μ� r
�

)
= min

pm−1∈Pm−1

F
(
x0 + pm−1(NA)Nr

0
)
= min

ξ∈Km(NA,Nr0)
F
(
x0 + ξ

)
.

Proof. Part (a) is identical to Theorem 10.7a. Part (b) follows from (10.21f),〈
p̌k, p̌�

〉
Ǎ
=
〈
Ǎp̌k, p̌�

〉
=
〈
N1/2AN1/2N−1/2pk, N−1/2p�

〉
=
〈
Apk, p�

〉
=
〈
pk, p�

〉
A

and the Ǎ-orthogonality of the search directions p̌k. Parts (c) and (d) are con-
sequences of (10.13a–c) applied to the ∨-quantities in (10.21f). ��

The alternative reformulation x̄m+1 := x̄m − (Āx̄m − b̄) used in §9.2.4.2 will
be discussed in §10.3.

10.2.4.2 Directly Positive Definite Case

Assume Φ∈L>0, i.e., the iterationΦ(·, ·, A) is directly positive definite:N [A]A>0

(cf. Definition 5.14). Now we substitute A, x, b by Â := NA, x̂ = x, b̂ = Nb
in the CG algorithm (10.21a–e). Reformulation the algorithm in terms of the
quantities A, x, b yields

start: x0 arbitrary; r0 := b−Ax0; p0 := Nr0; m := 0;

iteration: xm+1 := xm + λopt p
m with

λopt := λopt(Nr
m, pm, NA) = 〈Nrm, pm〉 / 〈NApm, pm〉;

rm+1 := rm − λoptAp
m;

pm+1 := Nrm+1 − 〈Nrm+1,NApm〉
〈NApm,pm〉 pm;

Proposition 10.19. (a) The final iteration number is m0 = degNA(e
0).

(b) The directions pm are NA-orthogonal.
(c) The transformed residuals are orthogonal:

Nrm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1} = span{Nr0, . . . , Nrm−1}.

(d) ‖em‖NA ≤ 2cm

1 + c2m
‖e0‖NA holds with c =

√
Γ − √

γ√
Γ +

√
γ

, where γ and Γ are

the minimal and maximal eigenvalues of NA.



244 10 Conjugate Gradient Methods and Generalisations

10.2.5 Numerical Examples

m value in the middle ‖em‖A

‖em−1‖A

1 -0.00186560978 0.670874
2 -0.00460087980 0.791286
3 -0.00739241614 0.860663
4 -0.01111605755 0.865691
10 -0.04408187826 0.917138
20 -0.11796241337 0.939358
30 0.40673579950 0.918423
40 0.49137792828 0.843496
50 0.50013929834 0.832459
60 0.50010381735 0.738779
70 0.50001053720 0.761377
80 0.50000013936 0.708295
90 0.50000000342 0.661969
100 0.50000000001

Table 10.1 Results of ΥCG[ΦRich
1 ]

applied to the Poisson model prob-
lem with h = 1/32.

We choose the Poisson model problem for
h = 1/32. Applying the CG method to the
Richardson iteration (i.e., algorithm ΥCG[Φ

Rich
1 ]

in (10.15a–e)) yields the results given in Table
10.1. Due to inequality (10.19), the convergence
factors ‖em‖A/‖em−1‖A measured with respect
to the energy norm ‖·‖A should become smaller
than c = (

√
Λ−

√
λ )/(

√
Λ+

√
λ ). Inserting the

eigenvalues λ and Λ in (3.1b,c) for h = 1/32,
we obtain c = 0.9063471. In fact, the conver-
gence factor decreases from 0.9 to 0.66 when
m = 30 increases to m = 90. This ‘superlinear’
convergence behaviour illustrates the improve-
ment of the effective condition during the iteration
as discussed in the last paragraph of §10.2.3.

Table 10.2 reports the CG results for h = 1
32

with the SSOR and ILU iteration as basic iterations. The optimal SSOR parameter is
the same as for Table 9.2. The ILU iteration is the modified five-point version ILU5

with ω=−1 and enlargement of the diagonal by 5 (cf. §7.3.10). The condition of the
SSOR method determined in §9.2.5 is κ≈7.66. This yields the value c ≈ 0.47 for c
in (10.24b). In the SSOR case, the averaged convergence factors (‖em‖A/‖e0‖A)

1
m

5-point ILU with ω = −1 SSOR with ω=1.8212691200

m u16,16
‖em‖A

‖em−1‖A
u16,16

‖em‖A

‖em−1‖A

1 0.2262513522 0.156365 0.0285107511 0.457624
2 0.5320480495 0.446360 0.1146321025 0.307093
3 0.4582969109 0.465620 0.2093879771 0.599140
4 0.4818928890 0.459572 0.3500438579 0.530214
5 0.4827955876 0.490598 0.4301535841 0.491911
10 0.4999129317 0.380570 0.4992951874 0.464830
11 0.5000044282 0.358332 0.4998541213 0.465082
12 0.4999850353 0.429905 0.4999456258 0.394760
20 0.5000000033 0.342381 0.5000000087 0.320139
21 0.5000000026 0.388711 0.5000000020 0.487606
22 0.5000000008 0.405064 0.5000000055 0.405755
23 0.5000000002 0.313452 0.5000000041 0.408013
24 0.5000000000 0.355741 0.5000000000 0.332715
25 0.5000000000 0.451311 0.5000000005 0.432772
26 0.5000000000 0.557156 0.5000000001 0.334264
27 0.5000000000 0.517255 0.5000000001 0.366209
28 0.5000000000 0.802069 0.5000000000 0.365471
29 0.5000000000 0.969482 0.5000000000 0.487797
30 0.5000000000 1.00102 0.5000000000 0.776690

Table 10.2 The CG method (10.21a–e) applied to the ILU and SSOR iterations.



10.2 Conjugate Gradient Method 245

are around 0.47 until m= 11. Afterwards they decrease to 0.42 for m ≈ 30. The
values u16,16 (‘value in the middle’) given in Table 10.2 show that for m≥ 27 the
rounding errors acquire the upper hand. Nevertheless, the CG algorithm is stable.

The superlinear convergence behaviour mentioned in connection with Table 10.1
should not be overrated. Its advantage can be exploited only if m becomes
sufficiently large. In the case of Table 10.1, ‘sufficiently large’ means m ≥ 30;
in the SSOR case of Table 10.2, it is m ≥ 17. Inspecting the values in these tables
illustrates the following dilemma:

• Either the iteration is fast (as in Table 10.2). Then one would like to stop the
iteration before reaching the critical value of m indicating the appearance of
superconvergence.

• Or the iteration is slow (as in Table 10.1). Then one would prefer to replace the
iteration Φ with a better one.

10.2.6 Amount of Work of the CG Method

One iteration step (10.23b–f) requires one evaluation of p �→ Ap and r �→ Nr,
three vector additions, three multiplications of a vector by a scalar number, and
two scalar products. This adds up to

CG-Work(Φ) = C(A) + C(N) + 8n

arithmetic operations for ΥCG[Φ], where

C(A): work for p �→ Ap, C(N): work for r �→ Nr.

Performing the Φ-iteration step in the form Φ(x, b) = x − N(Ax − b), we need
C(A) + C(N) + 2n operations, so that

CG-Work(Φ) = Work(Φ) + 6n.

Hence, as in the semi-iterative case (cf. §8.3.9), the cost factor is equal to

CΦ,cg = CΦ + 6/CA.

According to the analysis of convergence behaviour discussed above, we choose
c = (

√
Λ−

√
λ )/(

√
Λ+

√
λ ) in (10.24b) as the asymptotic rate on which we base

the effective amount of work:

Effcg(Φ) = −
(
CΦ +

6

CA

)
log

(√
Λ−

√
λ√

Λ+
√
λ

)
.



246 10 Conjugate Gradient Methods and Generalisations

Remark 10.20. Even if these numbers coincide exactly with those obtained in
§8.3.9 for the Chebyshev method, one has to emphasise one important advantage
of the CG method: The eigenvalue bounds γ and Γ may be unknown to the user.
Vice versa, the efficacy of the Chebyshev method deteriorates if too pessimistic
bounds γ, Γ are inserted.

10.2.7 Suitability for Secondary Iterations

Section 5.5 describes composed iterations arising from x �→ x − B−1(Ax − b)
by replacing the exact solution of Bδ = d with the approximation by a secondary
iteration. Now we can start with δ0 = 0 and perform m steps of the CG algo-
rithm. Positive and negative comments concerning this approach are given in the
next lemma.

Lemma 10.21. Let A and B be positive definite matrices.

ΦA(x, b) = x−B−1(Ax− b)

is the primary iteration. For solving Bδ = d, the CG method ΥCG[ΦB ] based on
the iteration

ΦB(δ, d) = δ − C−1(Bδ − d)

with a starting iterate δ0 = 0 is inserted as a secondary solver. The number k of
CG steps is chosen such that 2ck ≤ ε holds with

c = (
√
Λ−

√
λ )/(

√
Λ+

√
λ ), 0 < δC ≤ B ≤ ΔC.

The composed iteration Φk is no longer linear, but it still can be written in the form

Φk(x, b) =Mk(Ax− b)x+Nk(Ax− b)b (10.26a)

with matrices Mk(d), Nk(d) depending on the defect d = Ax − b. They have the
contraction number (10.26b) with respect to the energy norm:

‖Mk(Ax− b)‖A ≤ ‖MA‖A + ε‖A 1
2B−1A

1
2 ‖2 (MA = I −B−1A). (10.26b)

Before proving the lemma, we comment on (10.26b). If, as in §5.5.1, B is a
preconditioner with κ(B−1A) = ‖A1/2B−1A1/2‖2 = O(1), the right-hand side in
(10.26b) is bounded by ‖MA‖A + Cε. For example, one should choose ε such that

‖MA‖A + Cε ≤ 1

2
(1 + ‖MA‖A) < 1.

Proof of Lemma 10.21. The right-hand side d in Bδ=d is the defect d=Axm−b
(cf. (5.18a)). Because of δ0 = 0, the error estimate (10.24b) yields the B-energy
norm ‖δk − δ‖B ≤ ε‖δ0 − δ‖B = ε‖δ‖B , δ := B−1d . From



10.2 Conjugate Gradient Method 247

‖δ‖B = ‖B1/2δ‖2 = ‖B−1/2A(xm − x∗)‖2 ≤ ‖B−1/2AB−1/2‖2‖xm − x∗‖B ,

we deduce

‖xm+1 − x∗‖B = ‖xm − δk − x∗‖B ≤ ‖xm − δ − x∗‖B + ‖δk − δ‖B
= ‖ΦA(xm, b) − x∗‖B + ‖δk − δ‖B
≤ ‖MA‖B ‖xm − x∗‖B + ε‖δ‖B
≤
[
‖MA‖B + ε‖B−1/2AB−1/2‖2

]
‖xm − x∗‖B .

The identity ‖B−1/2AB−1/2‖2 = ‖A1/2B−1/2‖22 = ‖A1/2B−1A
1/2
2 ‖ (cf. (B.21a))

proves the contraction number (10.26b). The definition of Mk(Ax − b) and
Nk(Ax − b) in (10.26a) is obvious. Since the CG method is nonlinear (analogous
to Remark 9.8a), Φk is also. ��

Remark 10.22. The composed iteration Φk defined in Lemma 10.21 is not well
suited to be the basic iteration for the Chebyshev or CG method because the matrix
Wk(δ) = A(I − Mk(δ)), δ = Ax − b, of the third normal form of Φk depends
on the value of the iterates xm. Concerning this problem, see Golub–Overton [156]
and Axelsson–Vassilevski [17].

10.2.8 Three-Term Recursion for pm

Finally, we describe another formulation of the CG method. The three-term formu-
lation is less important for the CG method itself, but is required as a stabilisation of,
e.g., the CR algorithm in §10.3.3.

Inserting definition (10.23b,d): rm+1 := rm−λApm into (10.23f), one obtains
pm+1 :=Nrm − λNApm + const·pm. Since the scaling of the search direction is
irrelevant, we may replace pm+1 by −pm+1/λ. Because Nrm ∈ Km+1(NA,Nr

0)
and pm ∈ Km+1(NA,Nr

0), the following ansatz is justified:

pm+1 := NApm −
m∑

μ=0

αμ,m+1 p
m−μ. (10.27)

Condition (10.25) states that
〈
Apm+1, pm

〉
= 0 and determines the coefficients

α0,m+1 = 〈ANApm, pm〉 / 〈Apm, pm〉 ,

since 〈Apm−μ, pm〉 = 0 for μ > 0. Similarly we obtain

a1,m+1 =
〈
ANApm, pm−1

〉
/
〈
Apm−1, pm−1

〉
.

Lemma 10.23. Assume (AN)H = NA . Then the coefficients in (10.27) satisfy
αμ,m+1 = 0 for μ ≥ 2.



248 10 Conjugate Gradient Methods and Generalisations

Proof. The condition
〈
Apm+1, pm−μ

〉
= 0 yields the equation〈

ANApm, pm−μ
〉
= αμ,m

〈
Apm−μ, pm−μ

〉
.

The assertion follows from〈
ANApm, pm−μ

〉
=
〈
Apm, NApm−μ

〉
=

(10.27)

〈
Apm, pm+1−μ +

m−μ∑
ν=0

αμ,m+1−μ p
m−μ−ν

〉
= 0 . ��

Thanks to Lemma 10.23, pm+1 can be calculated from the three-term recursion

pm+1 = NApm − α0 p
m − α1 p

m−1

with α0 =
〈ANApm, pm〉

〈Apm, pm〉 , α1 =

〈
ANApm, pm−1

〉
〈Apm−1, pm−1〉 ,

where the last term is absent for m = 0 (formally, we may set α1 = 0, p−1 = 0).
The CG algorithm (10.23a–f) is equivalent to (10.28a–e):

start: x0 arbitrary; r0 := b−Ax0; p−1 := 0; p0 := Nr0; (10.28a)

iteration: for m = 0, 1, 2, . . . while 〈Apm, pm〉 �= 0:
xm+1 := xm + λoptp

m; rm+1 := rm − λoptAp
m with (10.28b)

λopt := 〈rm, pm〉 / 〈Apm, pm〉; (10.28c)
pm+1 := NApm − α0 p

m − α1 p
m−1 with (10.28d)

α0 := 〈ANApm,pm〉
〈Apm,pm〉 ; α1 =

〈ANApm,pm−1〉
〈Apm−1,pm−1〉 ; (10.28e)

where again α1 := 0 is chosen for m = 0.

The next theorem is based on the very weak assumption (AN)H = NA which
follows from A > 0, N > 0 or from A = AH, N = NH.

Theorem 10.24. Assume (AN)H = NA. Let m0 be the maximal index such that
the directions generated in (10.28d) satisfy 〈Apm, pm〉 �= 0 for all 0 ≤ m ≤ m0.

(a) The quantities xm, rm, pm (0≤m≤m0) in (10.28a–e) satisfy rm = b − Axm

and 〈
Apm, p�

〉
=
〈
rm, Nr�

〉
=
〈
rm, p�

〉
= 0 for 0 ≤ � < m,

span{p0, . . . , pm} = Km+1(NA,Nr
0) ⊃ span{Nr0, . . . , Nrm}

for 0 ≤ m ≤ m0 . More precisely, we have

Nrm ∈ span{pm, pm−1} for 0 ≤ m ≤ m0 . (10.29)



10.2 Conjugate Gradient Method 249

(b) As long as algorithm (10.22a–e) does not terminate, (10.22a–e) and (10.28a–e)
produce the same iterates xm, whereas the search directions pm may differ by a
nonvanishing factor.
(c) Assume, in addition, that N + NH > 0. If the iteration (10.28a–e) terminates
because of pm = 0, the iterate xm is already the exact solution.

Proof. The assertion is proved by induction. The start m = 0 is trivial. Let the
statements hold for 0, 1, . . . ,m− 1. We abbreviate Km(NA,Nr0) by Km.

(i) For the proof of
〈
Apm, p�

〉
= 0, we use (10.28d):

Apm = ANApm−1 − α0Ap
m−1 − α1Ap

m−2.

For � ∈ {m− 2,m− 1}, the definitions of α0 and α1 prove
〈
Apm, p�

〉
= 0.

Let � ≤ m − 3. The assumption (AN)H = NA yields
〈
ANApm−1, p�

〉
=〈

Apm−1, NAp�
〉

. From p� ∈ span{p0, . . . , p�} = K�+1, we conclude that

NAp� ∈ K�+2 ⊂ Km−1 = span{p0, . . . , pm−2} ⊥Apm−1.

Since Apm−1 and Apm−2 are also perpendicular to p�,
〈
Apm, p�

〉
= 0 follows.

(ii) By induction Km = span{p0, . . . , pm−1} holds. We use again (10.28d):
pm = NApm−1−α0 p

m−1−α1 p
m−2 ∈ NAKm+span{p0, . . . , pm−1} ⊂ Km+1.

This proves span{p0, . . . , pm} ⊂ Km+1. On the other hand, we have

Km+1 ⊂ Km +NAKm = span{p0, . . . , pm−1}+NA span{p0, . . . , pm−1} � pm

because of (10.28d). This proves the reverse inclusion Km+1 ⊂ span{p0, . . . , pm}.

(iii) 0 =
〈
rm, p�

〉
=
〈
rm−1, p�

〉
−λopt

〈
Apm, p�

〉
= 0 holds for � < m− 1 by

induction and follows for � = m− 1 by definition of λopt. This proves rm⊥ Km.

(iv) Now we prove (10.29). The definition of rm in (10.28b) shows that Nrm =
Nrm−1 − λNApm−1. By induction Nrm−1 ∈ span{pm−2, pm−1} holds, while
(10.28d) yields NApm−1 = pm+α0 p

m−1+α1 p
m−2 ∈ span{pm−2, pm−1, pm}.

Hence ANrm has the representation

ANrm = b0Ap
m + b1Ap

m−1 + b2Ap
m−2.

The scalar product with pm−2 yields the value b2 =
〈ANrm,pm−2〉
〈Apm−2,pm−2〉 . By assump-

tion (AN)H = NA,
〈
ANrm, pm−2

〉
=
〈
rm, NApm−2

〉
holds. Since NApm−2 ∈

NAKm−1 ⊂ Km, part (iii) proves b2 = 0 and Nrm ∈ span{pm−1, pm} follows.

(v)
〈
rm, Nr�

〉
= 0 for � < m is a consequence of (10.29) and rm ⊥ Km.

(vi) Part (b) holds, since another scaling of pm does not change xm.

(vii) If pm=0, (10.29) implies Nrm ∈ span{p0, . . . , pm−1}. Since
〈
rm, p�

〉
=0

for � < m, we conclude that 〈rm, Nrm〉 = 0 and the assumption N + NH > 0
implies that rm = 0. ��



250 10 Conjugate Gradient Methods and Generalisations

10.3 Method of Conjugate Residuals (CR)

10.3.1 Algorithm

In the case of the gradient method, a residual oriented transformation is discussed in
§9.2.4.2. Under the assumption A > 0, the iteration Φ ∈ Lpos with N > 0 is
transformed to x̄m+1 := x̄m − (Āx̄m − b̄) with Ā := A1/2NA1/2 > 0,
b̄ := A1/2Nb, x̄m := A1/2xm, p̄m = A1/2pm, r̄m = A1/2Nrm (cf. (9.19)).
As in (10.21a–e), we can formulate the CG algorithm (10.21a–e) with A, x, b, p, r
replaced by Ā, x̄, b̄, p̄, r̄. Then we substitute these quantities by the original ones
and obtain the following algorithm ΥCR[Φ]:

start: x0 arbitrary; r0 := b−Ax0; p0 := Nr0; m = 0;

iteration: xm+1 := xm + λopt p
m with

λopt := λopt(r
m, NApm, N) = 〈Nrm,Apm〉

〈NApm,Apm〉 ;

rm+1 := rm − λoptAp
m;

pm+1 := Nrm+1 − 〈ANrm+1,NApm〉
〈NApm,Apm〉 pm;

(10.30)

ForN = I, this method is equivalent to the method of the conjugate residuals (CR)
of Stiefel [354].

The following statements follow from the properties of the CG method applied
to Ā, x̄, b̄, p̄, r̄ after a reformulation by A, x, b, p, r.

Proposition 10.25. (a) The number m0 = degĀ(ē
0) = degNA(e

0) = degAN (r0)
is the same as in Lemma 10.18a.

(b) The directions pm are ANA-orthogonal.

(c) The statements in (10.11a,b) become

ANrm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1} = span{Nr0, . . . , Nrm−1}.

(d) The convergence rate c is the same c as in Theorem 10.17. Note that the involved
norms are different. Here the residuals are the minimisers of

min
{

‖N1/2A(x− x∗)‖2 : x = x0 + Km(NA,Nr0)
}

and are bounded by

‖N1/2rm‖2 ≤ 2cm

1 + c2m
‖N1/2r0‖2.

In the case of N=I , the CR method corresponds to the formulation in §10.1.5.2
with the Krylov spaces Um=Km(A, r0) and Vm=AKm(A, r0) (note thatA=AH).



10.3 Method of Conjugate Residuals (CR) 251

10.3.2 Application to Hermitian Matrices

In the following we assume

A = AH regular and N > 0.

Since AHNA > 0, the denominator 〈NApm, Apm〉 in (10.30) vanishes if and only
if pm = 0. Hence, the algorithm (10.30) is applicable as long as pm �= 0. In the in-
definite case, however, there is a severe difference to the conjugate gradient method.
The CG method for A > 0 terminates with rm = 0, i.e., xm = A−1b (‘lucky
breakdown’), whereas for an indefinite matrix A an unlucky breakdown may occur.

Remark 10.26. Assume that A = AH has positive and negative eigenvalues. Then
there are initial values x0 �= A−1b so that λopt(r0, NAp0, N) = 0. Then p1 = 0
leads to a breakdown, while x1 = x0 is still different from the true solution.

Proof. λopt(r0, NAp0, N) = 0 follows from
〈
Ap0, p0

〉
=
〈
NANp0, p0

〉
= 0

which holds for certain p0 �= 0. Since p1⊥NAN p0 and p1 ∈ span{p0} because of
λopt = 0, p1 = 0 follows. ��

Lemma 10.27. Let A = AH and N > 0. Assume that the algorithm (10.30) for
a fixed x0 is applicable for all 0 ≤ m ≤ m0. Then, as in Proposition 10.25b–c,
the search directions pm are ANA-orthogonal and

ANrm ⊥ Km(NA,Nr0) = span{p0, . . . , pm−1} = span{Nr0, . . . , Nrm−1}

holds. The iterate xm in (10.30) minimises the norm

‖N1/2rm‖2 = min
{

‖N1/2A(x− x∗)‖2 : x ∈ x0 + Km(NA,Nr0)
}
. (10.31)

Proof. (i) Concerning the first two statements, the previous proof by induction can
be repeated without change.

(ii) Note that xm − x0 ∈ Km := span{p0, . . . , pm−1} = Km(NA,Nr0)}.
Because of ANA > 0, {〈A(x− x∗), NA(x− x∗)〉 : x − x0 ∈ Km} attains its
minimum at x = xm if and only if the gradient ANA(xm − x∗) = −ANrm is
orthogonal to Km. This, however, is the second statement of the lemma. ��

The reason for the breakdown mentioned in Remark 10.26 is that the spaces
span{Nr0, Nr1} = span{Nr0} and span{Nr0, NANr0} differ. This fact
suggests that the subspace Km(NA,Nr0) = span{Nr0, . . . , (NA)m−1Nr0} is
better suited than span{Nr0, . . . , Nrm−1}.

Even if 〈ANrm, Nrm〉 = 0 does not occur during the calculations, it may
happen that Nrm is ‘almost’ contained in Km(NA,Nr0), leading to a numerical
instability of the algorithm. One remedy is constructing the search directions pm by
the three-term recursion explained in §10.2.8.



252 10 Conjugate Gradient Methods and Generalisations

10.3.3 Stabilised Method of Conjugate Residuals

Using the three-term recursion in algorithm (10.30), we obtain the following algo-
rithm Υ stab

CR [Φ]:

Υ stab
CR [Φ] stabilised method of the conjugate residuals (10.32)

start: x0 arbitrary; r0 := b−Ax0; p−1 := 0; p0 := Nr0; (10.32a)

iteration: for m = 0, 1, 2, . . . while 〈Apm, NApm〉 �= 0:

xm+1 := xm + λpm; rm+1 := rm − λApm with (10.32b)

λ := 〈rm, NApm〉 / 〈Apm, NApm〉; (10.32c)

pm+1 := NApm − α0p
m − α1p

m−1 with (10.32d)

α0 := 〈ANApm,NApm〉
〈Apm,NApm〉 ; α1 =

〈ANApm,NApm−1〉
〈Apm−1,NApm−1〉 ; (10.32e)

Exercise 10.28. By ANApm appearing in (10.32e), algorithm (10.32a–e) seems
to cost two multiplications by the matrix A per iteration step. Rewrite algorithm
(10.32a–e) with an additional recursion for am := Apm so that only one multipli-
cation by A is needed.

Theorem 10.29. Assume (AN)H=NA. Let m0 be the maximal index such that the
directions generated in (10.28d) satisfy 〈Apm, NApm〉 �= 0 for all 0 ≤ m ≤ m0 .

(a) The quantities xm, rm, pm (0≤m≤m0) in (10.28a–e) satisfy rm = b − Axm

and 〈
Apm, NAp�

〉
=
〈
rm, NANr�

〉
=
〈
rm, NAp�

〉
= 0 for 0 ≤ � < m,

span{p0, . . . , pm} = Km+1(NA,Nr
0) ⊃ span{Nr0, . . . , Nrm}

for 0 ≤ m ≤ m0 . More precisely, we have

Nrm ∈ span{pm, pm−1} for 0 ≤ m ≤ m0. (10.33)

(b) As long as algorithm (10.30) does not terminate, (10.30) and (10.32a–e) produce
the same iterates xm, whereas the search directions may differ by a nonvanishing
factor.

(c) Assume in addition that N + NH > 0. If the iteration (10.32a–e) terminates
because of pm = 0, the iterate xm is already the exact solution.

Proof. The assertion is proved by induction. The start m = 0 is trivial. Let the
statements hold for 0, 1, . . . ,m− 1. We abbreviate Km(NA,Nr0) by Km.

(i) For the proof of
〈
Apm, NAp�

〉
= 0, we use (10.32d):

Apm = ANApm−1 − α0Ap
m−1 − α1Ap

m−2.



10.3 Method of Conjugate Residuals (CR) 253

For � ∈ {m− 2,m− 1}, the definitions of α0 and α1 prove
〈
Apm, NAp�

〉
= 0.

Let � ≤ m − 3. The assumption (AN)H = NA yields
〈
ANApm−1, NAp�

〉
=〈

Apm−1, (NA)2p�
〉
. From p� ∈ span{p0, . . . , p�} = K�+1, we conclude that

NAp� ∈ K�+2 ⊂ Km−1 = span{p0, . . . , pm−2} and NAKm−1 ⊥Apm−1. Since
Apm−1 and Apm−2 are also perpendicular to NAp�,

〈
Apm, NAp�

〉
= 0 follows.

(ii) By induction, Km = span{p0, . . . , pm−1} holds. We again use (10.32d):
pm = NApm−1 −α0 p

m−1 −α1 p
m−2 ∈ NAKm+span{pm−2, pm−1} ⊂ Km+1.

This proves span{p0, . . . , pm} ⊂ Km+1. On the other hand, the inclusion

Km+1 ⊂ Km +NAKm = span{p0, . . . , pm−1}+NA span{p0, . . . , pm−1} � pm

follows from (10.32d) proving the reverse inclusion Km+1 ⊂ span{p0, . . . , pm}.
(iii) 0 =

〈
rm, NAp�

〉
=
〈
rm−1, NAp�

〉
− λopt

〈
Apm, NAp�

〉
= 0 holds for

� < m − 1 by induction and follows for � = m − 1 by definition of λopt. This
proves rm ⊥NAKm.

(iv) For the proof of (10.33), use the definition of rm in (10.32b): Nrm =
Nrm−1 − λNApm−1. By induction Nrm−1 ∈ span{pm−2, pm−1} holds, while
(10.32d) yields NApm−1= pm +α0 p

m−1 +α1 p
m−2 ∈ span{pm−2, pm−1, pm}.

Hence Nrm has the representation

Nrm = b0 p
m + b1 p

m−1 + b2 p
m−2.

Using part (i), we obtain b2 =
〈ANrm,NApm−2〉
〈Apm−2,NApm−2〉 by taking the scalar product

of ANrm with NApm−2. (AN)H = NA implies that
〈
ANrm, NApm−2

〉
=〈

rm, (NA)2pm−2
〉

holds. Since NApm−2 ∈ NAKm−1 ⊂ Km, part (iii) proves
b2 = 0 , and Nrm ∈ span{pm−1, pm} follows.

(v)
〈
rm, NANr�

〉
=0 for �<m is a consequence of (10.29) and rm⊥NAKm.

(vi) Statement (b) follows as in Theorem 10.24. For Part (c), use that pm = 0
implies Nrm = cpm−1 for some c ∈ K. Obviously, c = 0 and rm = 0 follow
from 0 =

〈
ANrm, NApm−1

〉
=
〈
rm, (NA)2pm−1

〉
. This equation holds since

pm = 0 implies Km = Km+1 and therefore
〈
rm, (NA)2pm−1

〉
= 0 because of

rm ⊥NAKm = NAKm+1 = (NA)2Km. ��

10.3.4 Convergence Results for Indefinite Matrices

Lemma 10.27 carries over to algorithm (10.32) since it produces the same iter-
ates xm. The error estimate in Proposition 10.25d cannot be transferred directly to
indefinite matrices because the spectrum of NA no longer lies in the positive part.
In the general case, the resulting convergence speed is definitely slower than in
the positive definite case. Note that the quantity c below is defined in terms of κ,
whereas c in Proposition 10.25d is derived from

√
κ. Hence, in general, the typical

acceleration by the conjugate gradient technique does not take place, but notice
Theorem 10.31.



254 10 Conjugate Gradient Methods and Generalisations

Theorem 10.30. Assume N > 0 , A = AH regular, and κ = κ(NA) . Then the
iterates xm of algorithm (10.32) satisfy the error estimate

‖N1/2A(xm − x∗)‖2 ≤ 2cμ

1 + c2μ
‖N1/2A(x0 − x∗)‖2 (10.34)

with c := (κ − 1)/(κ + 1) and m
2 − 1 < μ ≤ m

2 , where μ ∈ N0. Hence, the
asymptotic convergence rate amounts to

√
c = 1 − 1/κ+ O(κ−2).

Proof. For odd m, we exploit the monotone convergence ‖N1/2Aem+1‖2 ≤
‖N1/2Aem‖2 following from (10.31). Therefore, consider an even m = 2μ.
Analogously to Remark 10.13,

‖N1/2Aem‖2 ≤
(

max
λ∈σ(NA)

|Pm(1 − λ)|
)

‖N1/2Ae0‖2 (10.35)

holds for any polynomial Pm ∈ Pm with Pm(1) = 1 . Let pμ be a polynomial
of degree ≤ μ = m

2 with pμ(1) = 1. Pm(ξ) := pμ(ξ(2− ξ)) is of degree ≤ m
and satisfies Pm(1) = 1. Evidently, Pm(1 − λ) = pμ(1 − λ2) holds, from which

‖N1/2Aem‖2 ≤ max
{∣∣pμ(1 − λ2)

∣∣ : λ ∈ σ(NA)
}

‖N1/2Ae0‖2.

follows. If λ ∈ σ(NA), we have |λ| ∈ [γ, Γ ] and λ2 ∈ [γ2, Γ 2], where

γ := 1/ρ(A−1N−1) = min{|λ| : λ ∈ σ(NA)}, Γ := ρ(NA).

Since [γ2, Γ 2] lies in the positive half-axis, the Chebyshev polynomial (8.27a)
yields the following estimate with c = (Γ − γ)/(Γ + γ) = (κ− 1)/(κ+ 1):

max
{∣∣pμ(1 − λ2)

∣∣ : λ ∈ σ(NA)
}

≤ max
γ2≤ξ≤Γ 2

|pμ(1 − ξ)| ≤ 2cμ

1 + c2μ
. ��

Estimate (10.34) may be too pessimistic. Often a milder form of indefiniteness
occurs. If, for instance, the Helmholtz equation −Δu − cu = f with c > 0 is
discretised, A has eigenvalues λhμ (1 ≤ μ ≤ n = nh), where

λhμ = λhμ,0 − c, 0 < λhμ,0 : eigenvalues of the Poisson model case (3.1a).

For h → 0, the discrete eigenvalues λhμ tend to the Laplace eigenvalues λμ which
cannot accumulate (cf. [193, §11]). Therefore the following properties are satisfied:

The number k of negative eigenvalues is bounded for h → 0 . (10.36a)

For all h > 0, the nonpositive eigenvalues
belong to [−c1,−c0] with 0 < c0 ≤ c1 .

(10.36b)

The positive eigenvalues are in [γ, Γ ] with 0 < γ ≤ Γ . (10.36c)

Let k = kh be the number of negative eigenvalues λhμ, 1 ≤ μ ≤ k. Define



10.3 Method of Conjugate Residuals (CR) 255

πh(1 − ξ) =

k∏
μ=1

(1 − ξ/λhμ).

Let pμ be the Chebyshev polynomial (8.27a) of degree μ := m−k for a = 1−Γ
and b=1 − γ. The product Pm(ξ) :=πh(ξ)pμ(ξ) is of degree m with Pm(1)=1.
Since Pm(1 − λ) = 0 holds for the negative eigenvalues λ ∈ σ(NA), the factor on
the right-hand side in (10.35) reduces to

max
{

|Pm(1 − λ)| : λ ∈ [γ, Γ ]
}

≤ max
{

|πh(1 − λ)| : λ ∈ [γ, Γ ]
} 2cμ

1 + c2μ

with c :=
√
Γ−√

γ√
Γ+

√
γ

(cf. (10.36c)). |πh(1 − λ)| can be estimated by (1 + Γ/c0)
k

(cf. (10.36b)). The m-th root of the bound (1 + Γ/c0)
k 2cμ

1+c2μ tends to c. Hence,
the asymptotic convergence rate is not influenced by the negative eigenvalues. This
proves the next theorem.

Theorem 10.31. Assume A = AH, N > 0, and let the eigenvalues of NA satisfy
(10.36a–c). Replace the spectral condition number κ(NA) by the possibly smaller
number κ := Γ/γ (γ, Γ in (10.36c)). Then the error estimate for the algorithm
(10.32) of the conjugate residuals reads

‖N1/2A(xm − x∗)‖2 ≤ 2

(
1 + Γ/c0

c

)k
‖N1/2A(x0 − x∗)‖2

with the asymptotic convergence rate c :=
√
κ−1√
κ+1

=
√
Γ−√

γ√
Γ+

√
γ

and c0 in (10.36a).

m value in the middle ‖em‖A

‖em−1‖A

1 0.2222124445 0.157356
2 0.4269164370 0.537790
3 0.4510237348 0.439627
4 0.4759275765 0.438732

10 0.4998558015 0.384330
20 0.5000000047 0.338399
21 0.5000000029 0.389211
22 0.5000000012 0.407384
23 0.5000000003 0.317164
24 0.5000000002 0.442606
25 0.5000000000 0.691876
26 0.5000000000 0.768926
27 0.5000000000 0.955932
28 0.5000000000 1.02596
29 0.5000000000 1.03161
30 0.5000000000 1.03076

Table 10.3 Υ stab
CR [ΦILU]: CR

method for the Poisson model
problem applied to the 5-point-ILU
iteration (ω = −1, h = 1/32).

An alternative to the method (10.32) of con-
jugate residuals is the application of the standard
CG method to the Kaczmarz iteration (cf. §5.6.3).
Then the convergence speed is as slow as in
Theorem 10.30. In the situation of (10.36a–c), the
convergence rate would not improve.

10.3.5 Numerical Examples

For reasons of comparison, we first test the posi-
tive definite Poisson model problem with h = 1

32 .
We apply the CR method to the ILU iteration
(five-point pattern) with the same parameters as
in Table 10.2. The results given in Table 10.3 are
similar to those of the standard CG method in
Table 10.2.

Next, we choose the discrete Helmholtz equa-
tion −Δu − 50u = f as an indefinite example. Here the matrix A is the Poisson
model matrix minus 50 I . It has three negative eigenvalues λ1 = −30.277,



256 10 Conjugate Gradient Methods and Generalisations

λ2 = λ3 = −0.7866, while λ4 = 28.7 is the smallest positive eigenvalue. For
the modified ILU decomposition, the diagonal must be enlarged by 55 (cf. Remark
7.44). The results of Table 10.4 show that the reduction factor moves toward the
asymptotic convergence rate and is of a size similar to the positive definite case of
Table 10.3. The stagnation for m ≥ 33 is due to rounding. In both examples the
algorithm behaves stable.

m value in the middle ‖em‖A

‖em−1‖A

1 -1.129805206 1.36998
2 0.5616735534 0.41788
3 0.9170148791 0.77945
4 0.7375934000 0.78685
5 0.6675855715 0.88467
6 0.5834957931 0.95835
7 0.5440078825 0.99228
8 0.5222771713 1.00338
9 0.5099064832 1.00768
10 0.5053055088 1.00956
11 0.5029466483 1.01213
12 0.5020970259 1.01621
13 0.5015223028 1.01159
14 0.5015388760 1.00335

m value in the middle ‖em‖A

‖em−1‖A

15 0.5017304154 0.97466
16 0.5019212154 0.86920
17 0.5018558645 0.56086
18 0.5017568935 0.32511
19 0.5008067252 0.27287
20 0.5003741869 0.19130
21 0.5003841894 0.35875
30 0.4999998664 0.30740
31 0.4999999994 0.40910
32 0.4999999838 0.69469
33 0.4999999962 0.90769
34 0.4999999984 0.97862
35 0.4999999986 0.98121
36 0.4999999994 0.99385

Table 10.4 CR method Υ stab
CR [ΦILU] for an indefinite problem based on the 5-point-ILU iteration.

10.4 Method of Orthogonal Directions

The CG method (10.15a–e) minimises the error ‖em‖A = ‖A1/2em‖2 with re-
spect to the energy norm over the Krylov space Km(A, r0). The method of con-
jugate residuals (with N = I) minimises the residual ‖rm‖2 = ‖Aem‖2 over the
same space. A more natural norm would be ‖em‖2. Then the search directions pm

should be orthogonal in the usual sense. This can be achieved by replacing the
Krylov space Km(A, r0) by AKm(A, r0) = Km(A,Ar0). The corresponding
algorithm (10.37) is described by Fridman [140] (1963) and called the method of
orthogonal directions (OD) since the search directions form an orthogonal system
if N=I . The application of OD to an iteration Φ with the matrix N [Φ] > 0 takes
the form

ΥOD[Φ] method of orthogonal directions (10.37)
start: x0 arbitrary; r0 := b−Ax0; q−1 := r0; q0 := ANq−1; (10.37a)
iteration: for m = 0, 1, 2, . . . while qm �= 0:

xm+1 := xm + λpm; rm+1 := rm − λApm with (10.37b)

pm := Nqm; ρm := 〈qm, pm〉 ; λ :=
〈rm,pm−1〉

ρm
; (10.37c)

qm+1 := Apm − α0q
m − α1q

m−1 with (10.37d)
α0 := 〈Apm, pm〉 /ρm; α1 :=

〈
Apm, pm−1

〉
/ρm; (10.37e)



10.4 Method of Orthogonal Directions 257

where α1 := 0 is set form = 0. The method (10.37) is unstable as we observe from
the results in Tables 10.5 and 10.6. A stabilisation is given by Stoer [355, (3.16)].
On the other hand, we can do without it if only a few iteration steps are required.

m value in the middle ‖em‖2 ‖em‖2

‖em−1‖2

m

√
‖em‖2

‖e0‖2

1 -4.5749285910-2 2.9395610-1 3.9283610-1 3.9283610-1
10 4.98970848010-1 5.1680710-4 3.7421610-1 4.8297610-1
11 5.00247552410-1 1.9113810-4 3.6984410-1 4.7139910-1
15 5.00001586310-1 5.8027410-6 4.6785610-1 4.5635610-1
16 5.00008595810-1 2.7680010-6 4.7701610-1 4.5762110-1
17 4.99986739510-1 4.9816010-6 1.7997110+0 4.9600710-1
18 4.99992355210-1 1.3578110-5 2.7256710+0 5.4525310-1
19 4.99964566110-1 3.7786310-5 2.7828710+0 5.9409510-1
20 4.99866783510-1 1.0592010-4 2.8031510+0 6.4201610-1
27 5.29037314110-1 7.1015910-2 3.2046510+0 9.1647710-1
30 2.37902094210+0 1.3383610+0 1.7762510+0 1.0195710+0

Table 10.5 OD method ΥOD[ΦILU] applied to the same problem as in Table 10.3.

m value in the middle ‖em‖2 ‖em‖2

‖em−1‖2

m

√
‖em‖2

‖e0‖2

1 1.28802556310+0 4.5826810-1 6.1241910-1 6.1241910-1
10 5.10796451110-1 2.0868110-1 9.9382110-1 8.8011910-1
20 5.08414905110-1 1.0052310-2 4.8148510-1 8.0613910-1
30 5.00007269710-1 5.1041610-6 4.2853710-1 6.7265910-1
35 4.99912454310-1 2.0970010-4 2.2868210+0 7.9159110-1
40 4.17891551110-1 5.6400910-2 6.5354010+0 9.3741210-1

Table 10.6 OD method ΥOD[ΦILU] for the indefinite problem in Table 10.4.

The proof of the following theorem is left to the reader.

Theorem 10.32. Assume thatN > 0 and A = AH. Letm0 be the largest index with
qm �= 0 . qm0+1=0 implies xm0+1=x∗. For all 0 ≤ m ≤ m0 , (10.38a–c) hold:〈

Nqk, q�
〉
= 0 for 0 ≤ k �= � ≤ m0,〈

Nqk, qk
〉

�= 0 for 0 ≤ k ≤ m0,
(10.38a)

rm ⊥NKm(AN, r0), (10.38b)

span{q0, . . . , qm−1} = ANKm(AN, r0) = Km(AN,ANr0). (10.38c)

xm is the minimiser min{‖N−1/2(x− x∗)‖ : x ∈ x0 +NKm(AN, r0)}.

This case corresponds to the choice of the spaces in §10.1.5.3. The connec-
tion with the Lanczos method is described by Paige–Saunders [307]. The method
SYMMLQ defined there is a further stabilisation of the method (10.37).

A review of the algorithms discussed above and of additional variants is given by
Stoer [355].



258 10 Conjugate Gradient Methods and Generalisations

10.5 Solution of Nonsymmetric Systems

Some of the methods described above do not require the assumption (9.1) of positive
definiteness of A and are also applicable to indefinite but still symmetric matrices.
The nonsymmetric situation is more difficult.

10.5.1 Generalised Minimal Residual Method (GMRES)

The following method generalises the minimal residual iteration described in §9.4
and corresponds to the approach in §10.1.5.2.

10.5.1.1 General Setting and Convergence

The ‘generalised minimal residual method’ described by Saad–Schultz [329] (see
also Walker [388]) determines the vector in the affine space x0 + Km(A, r0)
minimising the residual:

xm = argmin
{

‖b−Ax‖2 : x ∈ x0 + Km(A, r0)
}
. (10.39)

We recall that the control of the residual might be questionable (cf. Remark 2.35).
As the CG method, GMRES (with exact arithmetic) yields the true solution after

at least #I steps.

Proposition 10.33. For regular A and m0 := degA(e
0) = degA(r

0) ≤ #I, the
iterate xm0 is the exact solution x∗.

Proof. For regularA, the statements pm0
(A)e0 = 0 and pm0

(A)r0 = −Apm0
(A)e0

= 0 are equivalent. Let pm0 ∈ Pm0 be the polynomial with pm0(A)e
0 = 0. Note

that pm0(0) �= 0 by Lemma 8.12. After a suitable scaling, pm0(0) = 1 holds so that
pm0

(ξ) = 1 − ξqm0−1(ξ). The correction qm0−1(A)r
0 ∈ Km0

(A, r0) yields

xm0 −A−1b = e0 + qm0−1(A)r
0 = (I −Aqm0−1(A))e

0 = pm0(A)e
0 = 0,

i.e., xm0 is the exact solution. ��

In the case of a general matrixA, one cannot expect other convergence statements
than xm0 = A−1b, as the following example shows.

Example 10.34. Define A ∈ Rn×n by the entries Aij =

{
1 j − i = 1 mod n
0 otherwise

}
(e.g., A =

[
0 1 0
0 0 1
1 0 0

]
for n = 3). Then there are initial values x0 so that the equality

‖rm‖2 = ‖r0‖2 holds for all residuals rm = b−Axm with m < n.



10.5 Solution of Nonsymmetric Systems 259

Proof. Choose x0 such that r0 = [1 0 . . . 0]T is the first unit vector. The solution
xm of (10.39) is of the form xm = x0 + qm−1(A)r

0. The corresponding residual is
rm = r0 −qm−1(A)Ar

0 = pm(A)r0 with the polynomial pm(ξ) := 1−ξqm−1(ξ),
i.e., pm(ξ) =

∑m
ν=0 aνξ

ν with a0 = 1. Note that the optimal polynomial pm
minimises ‖rm‖2. One checks that the product Aνr0 is the μ-th unit vector with
μ = n + 1 − ν mod n. Hence rm = pm(A)r0 = [a0 an−1 . . . a2 a1]

T

yields the squared norm ‖rm‖22 =
∑m

ν=0 |aν |2. The minimum is achieved for
a1 = a2 = . . . = an−1 = 0 resulting in ‖rm‖2 = 1 = ‖r0‖2. ��

Better results can be obtained if A is Hermitian: A = AH. However, in this case,
the cheaper method of conjugate residuals can be applied, which yields the same
iterates (set N = I in Lemma 10.27).

In the case of A+AH > 0, the convergence can be derived from the convergence
of the minimal residual iteration (cf. §9.4).

Proposition 10.35. Assume A + AH > 0. Then the residuals of GMRES satisfy
‖rm‖2 ≤ cm‖r0‖2 with c in (9.26).

Proof. By construction, rm = pm(A) r0 holds with a polynomial pm ∈ Pm

with pm(0) = 1. The minimal residual iteration yields the sequence (x̂k) with
residuals r̂k. Assume r̂0 = r0. There are polynomials qk ∈ P1 with qk(0) = 1
and r̂k = qk(A)r̂

k−1. The product p̂m(ξ) :=
∏m

k=1 qk(ξ) satisfies r̂m =
p̂m(A)r0, p̂m ∈ Pm, and p̂m(0) = 1. The optimality of the GMRES algorithm
yields ‖rm‖2=min{‖ρm(A)r0‖2 : ρm ∈Pm, ρm(0)=1} ≤ ‖r̂m‖2 ≤cm‖r0‖2 . ��

10.5.1.2 Arnoldi Basis

Let {v1, . . . , vm} be any basis of Km(A, r0) (this is possible if and only if
m ≤ degA(r

0)). According to (10.8), the minimiser xm and its residual rm are
characterised by rm ⊥AKm(A, r0). The ansatz xm = x0 +

∑m
ν=1 ανv

ν yields

rm = b−Axm = r0 −
m∑

ν=1

ανAv
ν ,

and rm⊥AKm(A, r0) produces the m equations

0 = 〈rm, Avμ〉 =
〈
r0, Avμ

〉
−

m∑
ν=1

αν 〈Avν , Avμ〉 (1 ≤ μ ≤ m) (10.40)

for the m unknown factors αν .

Lemma 10.36. For regular A ∈ KI×I , the matrix Gm := (〈Avν , Avμ〉)1≤ν,μ≤m

is regular for all m ≤ degA(r
0) so that the system (10.40) is uniquely solvable.

Proof. Since A is regular, {Av1, . . . , Avm} is also a basis of AKm(A, r0). Hence,
the Gram matrix Gm is regular. ��



260 10 Conjugate Gradient Methods and Generalisations

For the actual computation, the basis should be suitably chosen. One strategy
is to arrange the vectors vk such that Km(A, r0) = span{v1, . . . , vm} for all
m ≤ degA(r

0); i.e., Km+1(A, r
0) = span{Km(A, r0), vm}. For the purpose of

stability, the basis should be orthonormal. Finally, the basis should be such that the
involved computational work is as small as possible.

Instead of the orthonormalisation procedure in Remark A.26a, we use the
Arnoldi algorithm:

w0 := r0; h0,−1 := ‖r0‖2; m := 0;
while hm,m−1 �= 0 do

begin vm := wm/hm,m−1;
for i := 1 to m do him :=

〈
Avm, vi

〉
;

wm+1 := Avm −
∑m

i=1 himv
i; hm+1,m := ‖wm‖2;

m := m+ 1
end;

One easily checks that
〈
vm, vi

〉
= δmi; i.e., (vi)1≤i≤m is an orthonormal basis

of Km(A, r0). The construction implies the property

Avm =

m+1∑
i=1

himv
i. (10.41)

Therefore,
〈
Avk, vi

〉
= hik holds, where we define hik := 0 for i > k + 1. We

form the matrices

Vm = [v1 v2 . . . vm] ∈ KI×m, Hm = (hik)1≤i,k≤m ∈ Km×m,

Ĥm+1 = (hik)1≤i≤m+1,1≤k≤m ∈ K(m+1)×m.

Note that Hm and Ĥm+1 are Hessenberg matrices, i.e., hik = 0 for i > k + 1.
From (10.41), we derive

V H
mAVm = Hm, V H

m+1AVm = Ĥm+1.

The ansatz xm ∈ x0 + Km(A, r0) becomes xm = x0 + Vmz
m for a vector

zm ∈ Km to be determined. The residual is rm = r0 − AVmz
m. Note that

r0 = ‖r0‖2 v1 = ‖r0‖2 Vm+1 e
1 (e1 is the first unit vector). Since Vm+1 is an

orthogonal matrix, Vm+1V
H
m+1 is the orthogonal projection onto Km+1(A, r

0).
Therefore, range(AVm) ⊂ Km+1(A, r

0) implies that

AVm = (Vm+1V
H
m+1)(AVm) = Vm+1Ĥm+1.

Together we obtain

rm = Vm+1

[
‖r0‖2 e1 + Ĥm+1 z

m
]
.



10.5 Solution of Nonsymmetric Systems 261

Exploiting again the orthogonality of Vm+1 , we conclude that

‖rm‖2 =
∥∥[ ‖r0‖2 e1 + Ĥm+1z

m
] ∥∥

2

has to be minimised over all zm ∈ Km (cf. Exercise B.22). This is a least-squares
problem as considered in Remark B.23: apply the QR decomposition: Ĥm+1 = QR
and solve Rzm = −‖r0‖2QHe1. Because of the Hessenberg form of Ĥm+1, the
QR decomposition is rather cheap (m Givens rotations have to be applied).

Remark 10.37 (cost). The cost of the m-th GMRES step is O(m#I), so that m
steps yield a total amount of O(m2 #I) operations. The storage cost is O(m#I).

The reason is that the involved matrix Ĥm+1 has Hessenberg structure instead of
a tridiagonal one. The existence of short recursions as in the classical CG method is
connected with the B-normality of A as discussed in Liesen–Saylor [264].

In the case of a Hermitian matrix A = AH, the Hessenberg structure becomes a
tridiagonal one and short recursions can be applied. The resulting method is called
MINRES (cf. van der Vorst [373, §6.4]).

10.5.1.3 GMRES(m)

The increasing cost mentioned above is the reason for introducing a restart after
a fixed number of m steps. After reaching the GMRES iterate xm, this value is
used as the new starting value for the next m GMRES steps. The size of m may be
determined by the maximal available storage Smax: O(m#I) ≤ Smax.

Since already for GMRES no convergence statement form < degA(e
0) could be

given in the general case, the situation is even worse for GMRES(m). In this case,
not even xm = A−1b for m = n can be expected. An alternative approach is to
restrict the orthogonalisation to the last m directions.

10.5.2 Full Orthogonalisation Method (FOM)

The full orthogonalisation method or Arnoldi method tries to determine xm ∈
x0 + Km(A, r0) such that

rm ⊥ Km(A, r0)

(we recall that rm ⊥AKm(A, r0) holds for GMRES).
In the general case, the method can break down without obtaining the exact

solution. For instance, r0 �= 0 with
〈
Ar0, r0

〉
= 0 yields a breakdown since

x1 = x0 + αr0 leads to a zero division in α = ‖r0‖22 /
〈
Ar0, r0

〉
.

If the method can be performed successfully, xm0 = A−1b holds for the index
m0 = degA(r

0) . For a proof, use that rm0 ∈ Km0+1(A, r
0) = Km0(A, r

0) can
be perpendicular to Km0(A, r

0) only if rm0 = 0.



262 10 Conjugate Gradient Methods and Generalisations

10.5.3 Biconjugate Gradient Method and Variants

The biconjugate gradient method (abbreviated as BCG or BiCG) uses two
different Krylov subspaces Km(A, r0) and Km(AH, r0∗). Here r0∗ is any vector
with

〈
r0, r0∗

〉
�= 0. As the original conjugate gradient method, it uses a short

recursion for the search directions pm ∈ Km+1(A, r
0) and pm∗ ∈ Km+1(A

H, r0∗).
As a result the residuals are biconjugate: 〈ri, rj∗〉 = 0 for i �= j,while 〈Api, pj∗〉 = 0
for i �= j. The formulation of the method goes back to Lanczos [255] and Fletcher
[136]. This method does not aim at the minimisation of the error in some norm.

The use of AH in the algorithm may lead to problems since sometimes only a
subroutine for x �→ Ax is available. On the other hand, all vectors v ∈ Km(AH, r0∗)
have the representation pm(AH) r0∗ with some polynomial pm ∈ Pm . The arising
scalar products 〈v, x〉 with x = qm(A)r0 ∈ Km(A, r0) can be rewritten as
〈pm(AH)r0∗, x〉= 〈r0∗, pm(A)qm(A)r0〉. Fortunately, the products pmqm are of the
form p2m(ξ) or ξp2m(ξ). This gives rise to the conjugate gradient squared method
CGS by Sonneveld [344] (see also Sonneveld–Wesseling–de Zeeuw [345]).

A stabilised version of CGS called Bi-CGSTAB is developed by van der Vorst
[372]. For details, see the original papers or van der Vorst [373, §7], Kanzow [233,
§7], Saad [328, §§7.3–7.4], Gutknecht [173, 174, 175], and Bank–Chan [26].

10.5.4 Further Remarks

Since matrices that are not positive definite require more or less involved CG vari-
ants, another remedy is worth being considered. As in §5.5, an indefinite or non-
symmetric problem can be preconditioned by a positive definite matrix B, so that
for solvingBδ = d the standard CG method can be applied as a secondary iteration.

Concus–Golub [98] and Widlund [396] describe an interesting method for
general matrices A that are split into their symmetric and skew-symmetric parts:
A=A0 + A1, A0 =

1
2 (A + AH). For many applications, A0 proves to be positive

definite. A two-sided transformation by A−1/2 yields the matrix A′ := I − S
with the skew-symmetric term S := A−1/2A1A

−1/2. The eigenvalues of A′ lie in
a complex interval instead of a real one (cf. Hageman–Young [212, p. 336]. For the
respective CG version, one finds an error estimate with respect to the A0-energy
norm, depending on Λ := ‖A−1

0 A1‖2 and leading to the asymptotic convergence
rate 1− O(1/Λ). In the cases of systems arising from partial differential equa-
tions, Λ is usually h-independent, leading to a convergence rate independent of the
discretisation parameter h. For each step of the algorithm, one system A0δ = d
must be solved. This fact limits practicability. Under similar assumptions, the
multigrid iteration of the second kind even achieves a convergence rate O(hτ ) with
positive (!) exponent τ (cf. §11.9.1).

Young calls NA symmetrisable if there is a similarity transformation such that
WNAW−1 > 0. Then there exist a matrix Z with ZNA > 0. The methods
called ORTHODIR, ORTHOMIN, and ORTHORES are based on this assumption
(cf. Hageman–Young [212, pp. 340–346]).



Part III

Special Iterations



Beside classical iterations there are modern iterative techniques, which are the
subject of the third part.

The multigrid methods of Chapter 11 are the first iterations achieving linear
complexity for a large class of problems. In particular, they apply to discretisa-
tions of elliptic boundary value problems. The multigrid method is a recursive
algorithm using a product iteration built from a smoothing iteration and a coarse-
grid correction. Due to the close connection to the discretisation of elliptic problems,
the convergence analysis uses similar tools as the error analysis of finite element
methods.

The multigrid method also applies to discretisations of integral equations. This
variant is called the multigrid method of the second kind and is historically the first
example of a multigrid approach. In this case, the fully populated matrix should be
treated by the hierarchical matrix technique mentioned in Appendix D.

Since the present computer architecture is characterised by parallel processors,
there is strong interest in distributing the computational effort. This leads to the
concept of domain decomposition methods. Various versions of these iterations are
discussed in Chapter 12. Although this technique starts from the geometric decom-
position of the underlying domain, there are generalisations to an algebraic decom-
position leading to the class of subspace iteration methods (cf. §12.5). As described
in §12.9, the concept of subspace iterations also applies to multigrid iterations.

An important aspect of the quality of iterative methods is robustness. It is a
considerable disadvantage if an iterative technique has to be adapted to any new
application case. Then the computer time is minimised at the cost of human work-
ing time. A method is called robust if the adaptation to the actual problem is
minimal. The hierarchical LU iteration in Chapter 13 is such a robust method.
Using the technique of hierarchical matrices, we determine a rather accurate
LU decomposition of the underlying matrix and use the forward and backward
substitution by LU as preconditioner. This guarantees fast convergence, while the
hierarchical matrix computation is of almost linear complexity. The algebraic
version in §13.4.2 underlines the robustness of this approach.

In the case of partial differential equations in many variable or in the presence
of many parameters, the solution x of the linear systems Ax = b may require a
storage far beyond the computer capacity. Since such problem are often tensor-
structured, tensor-based methods may be applied for approximating the solution.
In Chapter 14 we introduce into the techniques suited for such problems.



Chapter 11

Multigrid Iterations

Abstract Multigrid methods belong to the class of fastest linear iterations, since
their convergence rate is bounded independently of the step size h. Furthermore,
their applicability does not require symmetry or positive definiteness. Books de-
voted to multigrid are Hackbusch [183], Wesseling [395], Trottenberg–Oosterlee–
Schuller [367], Shaidurov [338], and Vassilevski [378]; see also [205, pp. 1–312].
The ‘smoothing step’ and the ‘coarse-grid correction’ together with the involved
restrictions and prolongations are typical ingredients of the multigrid iteration.
They are introduced in Section 11.1 for the Poisson model problem. The two-grid
iteration explained in Section 11.2 is the first step towards the multigrid method.
The iteration matrix is provided in §11.2.3. First numerical examples are presented
in §11.2.4.
Before a more general proof of convergence is presented, Section 11.3 investigates
the one-dimensional model problem. The proof demonstrates the complementary
roles of the smoothing part and the coarse-grid correction. Moreover, the depen-
dence of the convergence rate on the number of smoothing steps is determined.
The multigrid iteration is defined in Section 11.4. Its computational work is dis-
cussed and numerical examples are presented. The iteration matrix is described in
§11.4.4.
The nested iteration presented in Section 11.5 is a typical technique combined with
the multigrid iteration. In principle, it can be combined with any iteration, provided
that a hierarchy of discretisations is given. Besides a reduction of the computational
work, the nested iteration technique allows us to adjust the iteration error to the
discretisation error.
A general convergence analysis of the W-cycle is presented in Section 11.6. Stronger
statements are possible in the positive definite case which is studied in Section 11.7.
Here, also the V-cycle convergence is proved. As long as lower order terms are
responsible for the nonsymmetric structure, the symmetric convergence results
can be transferred as shown in §11.7.6. This includes the case of the V-cycle.
Possible combinations with semi-iterative methods are discussed in Section 11.8.
Concluding comments are given in Section 11.9.

265© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_11



266 11 Multigrid Iterations

11.1 Introduction

Multigrid iterations consist of two complementary parts: the smoothing step and
the coarse-grid correction. Below we explain both steps in the case of the Poisson
model problem.

11.1.1 Smoothing

Let A be the matrix of the Poisson model problem with step size h. As the simplest
example we choose Richardson’s iteration:

xm+1 = ΦRich
Θ (xm, b) = xm −Θ(Axm − b) with (11.1a)

Θ = 1
8h

2 ≈ 1/λmax(A) = 1/ρ(A) (cf. (3.1c)). (11.1b)

ρ(A) = λmax(A) is the eigenvalue corresponding to the eigenfunction

eαβ(x, y) = 2h sin(απx) sin(βπy) (1 ≤ α, β ≤ N − 1, (x, y) ∈ Ωh) (11.2a)

of the highest frequency α = β = N − 1 (cf. (3.2)). The convergence rate
ρ(MRich

Θ ) = 1 −Θλmin ≈ 1 − λmin/λmax ≤ 1 − O(h2) is attained by the lowest
frequency α = β = 1, i.e., when the error em = xm − x is a multiple of the
eigenfunction e1,1.

All x ∈ X := RI can be represented by the orthonormal eigenvector basis
(11.2a):

x =

N−1∑
α,β=1

ξαβ e
αβ with ξαβ :=

〈
x, eαβ

〉
. (11.2b)

Since high frequencies α, β correspond to strong oscillations of the sine functions
(11.2a), we define

Xosc := span
{
eαβ : 1 ≤ α, β ≤ N − 1, max{α, β} > N

2

}
(11.2c)

as a subspace of the oscillatory components. Note that at least one of the indices
α, β lies in the high-frequency part (N/2, N) of the frequency interval [1, N−1]. If
we are able to generate an approximation x0, whose error lies in the subspaceXosc,

e0 := x0 − x ∈ Xosc (e0 is the error, not an eigenvector!), (11.2d)

the simple Richardson iteration yields fast convergence.

Lemma 11.1. Assume the Poisson model case with (11.2d). Then all succeeding
errors em also belong to Xosc and satisfy the error estimate

‖em‖2 ≤ 3
4‖em+1‖2, (11.3)

i.e., restricted to Xosc, the convergence rate is h-independent.



11.1 Introduction 267

Proof. Since the vectors (11.2a) are orthonormal (cf. Lemma 3.2), we have

‖x‖22 =

N−1∑
α,β=1

|ξαβ |2 for x in (11.2b).

Because of Meαβ = (1−Θλαβ) eαβ , applying the iteration matrix M = I−ΘA
to the error em with coefficients ξαβ yields em+1 satisfying

‖em+1‖22 ≤
∑

|1 −Θλαβ |2 |ξαβ |2 ≤ max |1 −Θλαβ |2
∑

|ξαβ |2

= max |1 −Θλαβ |2 ‖em‖22 ,

with λαβ = 4h−2
[
sin2(απh/2) + sin2(βπh/2)

]
(cf. (3.1a)). The maximum has

to be taken over all α, β appearing in (11.2c). By symmetry, we may restrict the
frequencies to 0 < α < N and N/2 < β < N . For these α, β,

2h−2 = 4h−2 sin2(π/4) < λαβ ≤ λN−1,N−1 < 8h−2

holds; hence, |1 −Θλαβ | = |1 − h2

8 λαβ | < 1 − h2

8 2h−2 = 3
4 proves the desired

inequality (11.3). ��

The statement of the lemma is not of direct practical use because the assumption
(11.2d) cannot be established in practice (at least not with less work than for solving
Ax = b exactly). However, we can conclude the following estimate involving the
smooth subspace Xsm := X⊥

osc = span{eαβ : 1 ≤ α, β ≤ N/2}.

Conclusion 11.2. Split the starting error e0 into

e0 = e0osc + e
0
sm, e0osc ∈ Xosc, e0sm ∈ Xsm := X⊥

osc.

Then, after m steps of Richardson’s iteration (11.1a,b), we have

em = emosc + e
m
sm with

emosc =Mme0osc ∈ Xosc, emsm =Mme0sm ∈ Xsm,

‖emosc‖2 ≤
(
3
4

)m ‖e0osc‖2,

while emsm converges only very slowly to 0. Since emosc decreases faster than emsm ,
the smooth part of em has increased, and one may regard em as ‘smoother’ than e0.
The smoothness of em can be measured by the ratio ‖emsm‖2/‖emosc‖2.

For illustration purposes, we present the numerical results for the system

Ax = b with A = h−2 tridiag{−1, 2,−1} (11.4a)

of n = N − 1 = 1
h − 1 equations corresponding to the one-dimensional Poisson

boundary value problem

−u′′(x) = f(x) for 0 < x < 1, u(0) = u0, u(1) = u1. (11.4b)



268 11 Multigrid Iterations

e0

e1

e2

e3

Fig. 11.1 Errors em ∈ Xosc of example (11.4a).

Figure 11.1 shows the (piecewise
linearly connected) initial values e0i
(0 ≤ i ≤ N = 8) and the errors
em of the first three Richardson iter-
ates. The errors em are insignificantly
smaller than e0 but clearly smoother.

We call iterative methods such
as the Richardson iteration (11.1a,b)
smoothing iterations and use the
symbol S instead of Φ.

Exercise 11.3. The choice of Θ in (11.1b) is not the optimal value. Determine Θ
such that the bound in (11.3) becomes minimal.

In the following, an iteration Ψ with a complementary property is desired: Ψ
should effectively reduce the smooth components in

Xsm = X⊥
osc = span

{
eαβ : 1 ≤ α, β ≤ N/2

}
.

Ψ is not required to have good convergence with respect to the subspace Xosc.
Then the product method Ψ ◦ S would have the property that for both subspaces
Xosc and Xsm one of the factors in Ψ ◦ S yields fast convergence.

Unfortunately, none of the methods mentioned so far has this property. To
construct such an iteration Ψ , we adhere to the concept that smooth grid func-
tions can be well approximated by using a coarser grid. After introducing coarser
grids in §§11.1.2–11.1.4, we shall return to the construction of the coarse-grid
correction Ψ in §11.1.5.

11.1.2 Hierarchy of Systems of Equations

For the following considerations, we have to embed the problem Ax = b into
a family of systems. In the model case, for all step sizes h = 1/N , we obtain a
system Ax = b depending on N or h, respectively. Let

h0 > h1 > . . . > h�−1 > h� > . . . with lim
�→∞

h� = 0

be a sequence of step sizes, which may be generated, e.g., by

h� := h0/2
� (� ≥ 0). (11.5a)

The index � is the level-number. � = 0 corresponds to the coarsest grid. In the
model case, for which the grid Ω� := Ωh�

is contained in the unit square, the step
size

h0 = 1/2 (11.5b)

is the coarsest one. Then Ω0 = Ωh0 contains only one interior grid point.



11.1 Introduction 269

Each step size h� (i.e., each level �) corresponds to a system

A�x� = b� (� = 0, 1, 2, . . .) (11.6a)

of order n�, which in the model case amounts to

n� = (N� − 1)2 = (1/h� − 1)2. (11.6b)

The family of systems (11.6a) for � = 0, 1, 2, . . . represents the hierarchy of systems
of equations. The actual problem Ax = b to be solved corresponds to a particular
level � = �max. For solving A�x� = b� at � = �max, we shall use all lower levels
� < �max.

Remark 11.4. Concerning the construction of the family {A�, b�}�=0,1,... of
discretisations, we mention two quite different approaches:
(A) A maximal level �max and the corresponding system A�max

x�max
= b�max

are
given. Then auxiliary problems A�x� = b� for � < �max are created in some way.
(B) The discretisation starts with A0x0 = b0. Local (or global) grid refinement
is used to construct A�x� = b� for � = 1, 2, . . . until the discretisation error is
sufficiently small.

11.1.3 Prolongation

The vectors x� and b� in (11.6a) are elements of the vector space

X� = Rn� . (11.7)

To connect different levels � = 0, 1, 2, . . . , �max , we introduce the prolongation

p : X�−1 → X� (� ≥ 1), (11.8)

which is assumed to be a linear and injective mapping (more precisely; a family of
mappings1 for all � ≥ 1) from the coarse grid into the fine one.

In the one-dimensional case (11.4a), the vector x� can be regarded as a grid
function defined on Ω� = {μh� : 0 < μ < N� = 1/h�}. The vector x� is rewritten
as u� if it is understood as a grid function on Ω� with values

u�(μh�) = x�,μ (1 ≤ μ ≤ N� − 1),

i.e., for all step sizes the arguments of u� belong to the interval Ω = (0, 1) and are
restricted to the nodal points in Ω�. For ease of notation, we include the boundary
values

u�(0) = u�(1) = 0. (11.9)

1 A more precise notation would be p�,�−1 indicating the involved levels. However, the context
will uniquely determine the levels.



270 11 Multigrid Iterations

An obvious proposal for the prolongation p is piecewise linear interpolation
between the grid points of Ω�−1:

(pu�−1)(ξ) := u�−1(ξ) for ξ ∈ Ω�−1 ⊂ Ω�, (11.10a)

(pu�−1)(ξ) :=
1

2
[u�−1(ξ + h�) + u�−1(ξ − h�)] for ξ ∈ Ω�\Ω�−1, (11.10b)

where definition (11.9) is used at ξ = h� and ξ = 1−h�. A shorter characterisation
of the prolongation p is the symbol (11.10c):

p =
[
1
2 1 1

2

]
. (11.10c)

The stencil in (11.10c) indicates that the unit vector x�−1 = (. . . , 0, 1, 0, . . .)T is
mapped into x� = px�−1 = (. . . , 0, 12 , 1,

1
2 , 0, . . .)

T.
For the two-dimensional Poisson equation, the vector x� is represented by the

grid function u�:

u�(ξ, η) = x�,ij for 1 ≤ i, j ≤ N� − 1, (ξ, η) = (ih�, jh�) ∈ Ω�,

where the boundary values are defined by

u�(ξ, η) := 0 for ξ = 0 or ξ = 1 or η = 0 or η = 1.

The two-dimensional generalisation of the piecewise linear interpolation (11.10a,b)
(bilinear interpolation) reads as follows:

(pu�−1)(ξ, η) := u�−1(ξ, η) for ( ξ, η) ∈ Ω�−1 ⊂ Ω�,

(pu�−1)(ξ, η) :=
1

2
[u�−1(ξ + h�, η) + u�−1(ξ − h�, η)]

for ξ/h� odd, η/h� even,

(pu�−1)(ξ, η) :=
1

2
[u�−1(ξ, η + h�) + u�−1(ξ, η − h�)]

for ξ/h� even, η/h� odd,

(pu�−1)(ξ, η) :=
1

4

[
u�−1(x+ h�, h+ h�) + u�−1(x− h�, h− h�)

+u�−1(x− h�, h+ h�) + u�−1(x+ h�, h− h�)

]
for ξ/h� and η/h� odd.

The abbreviation of p defined above is the star

p =

⎡⎣ 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

⎤⎦ (nine-point prolongation), (11.11)

since the application of p to a unit vector yields the values indicated in (11.11)
extended by zero is the remaining grid.



11.1 Introduction 271

In general, the stencil

p =

⎡⎣ π−1,1 π0,1 π1,1
π−1,0 π0,0 π1,0
π−1,−1 π0,−1 π1,−1

⎤⎦ (11.12)

describes the following mapping, where the summation is taken over all i, j with
(ξ − ih�, η − jh�) ∈ Ω�−1:

(pu�−1)(ξ, η) :=
∑
i,j

πiju�−1(ξ − ih�, η − jh�) for (ξ, η) ∈ Ω�.

Other linear interpolations as well as prolongations of higher order are discussed
by Hackbusch [183, §3.4]. A so-called matrix-dependent prolongation is defined by
(11.12) with the coefficients

π00 := 1, π±1,0 := −
∑

j α∓1,j∑
j α0,j

, π0,±1 := −
∑

i αi,∓1∑
i αi,0

, (11.13a)

(A� p u�−1)(ξ, η) = 0 for ξ/h� and η/h� odd, (11.13b)

where αi,j are the coefficients of A� according to (1.13a,b). Condition (11.13b)
determines π±1,±1 (cf. Hackbusch [183, §10.3] and de Zeeuw [104]).

11.1.4 Restriction

The restriction r is a linear and surjective mapping

r : X� → X�−1 (� ≥ 1) ,

which maps fine-grid functions into coarse-grid functions. If Ω�−1 ⊂ Ω� holds as
in the model case, the simplest choice is the trivial restriction

(rtrivu�)(ξ, η) = u�(ξ, η) for (ξ, η) ∈ Ω�−1 .

However, because of certain disadvantages, we advise against its use (cf. Hackbusch
[183, §3.5]). Instead, we define (r u�)(ξ, η) as the weighted mean of the neighbour-
ing values. The stencil

r =

⎡⎣ ρ−1,1 ρ0,1 ρ1,1
ρ−1,0 ρ0,0 ρ1,0
ρ−1,−1 ρ0,−1 ρ1,−1

⎤⎦ (11.14)

characterises the restriction

(ru�)(ξ, η) =

1∑
i,j=−1

ρij u�(ξ + ih�, η + jh�) for (ξ, η) ∈ Ω�−1.



272 11 Multigrid Iterations

The nine-point prolongation (11.11) corresponds to the nine-point restriction

r =
1

4

⎡⎣ 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

⎤⎦ , (11.15)

which can be considered as the adjoint to (11.11), where the definition of adjoint
mappings is based on the scalar products

〈·, ·〉 = 〈·, ·〉� with 〈u�, v�〉� = hd�
∑

α∈I
u�,α v�,α (11.16)

forX� . d is the dimension of the grid Ω� ⊂ Rd. The adjoint mapping is denoted by
p∗. Since p can also considered as a matrix, the transposed matrix pT is defined.
Because of the different weighting factors hd� in (11.16), p∗ and pT differ by a
factor as stated in the next exercise.

Exercise 11.5. Assume the two-dimensional case d = 2 and prove that the mapping
adjoint to p defined in (11.12) is r in (11.14) with ρij = πij/4. Prove for general
d that p∗ = 2−dpT.

Having fixed the prolongation, we can always choose the adjoint mapping

r := p∗ (11.17)

as a restriction. For example, we can define a matrix-dependent restriction by
(11.13a,b) and (11.17).

11.1.5 Coarse-Grid Correction

Let x̄� be the result of a few steps of the smoothing iteration (11.1a,b). The corre-
sponding error ē� := x̄� − x� is the exact correction; i.e., the solution can be
obtained by

x� = x̄� − ē� .

Since A�ē� = A�(x̄� − x�) = A�x̄� −A�x� = A�x̄� − b�, the correction ē� satisfies
the equation

A� ē� = d� with the defect d� := A�x̄� − b� . (11.18a)

According to considerations in §11.1.1, ē� is smooth. Therefore, it should be
possible to approximate ē� by using the coarse grid: ē� ≈ pe�−1. As ansatz for
e�−1, we take the coarse-grid equation corresponding to (11.18a):

A�−1e�−1 = d�−1 with d�−1 := rd�. (11.18b)

Assume that we are able to solve the coarse-grid equation (11.18b) exactly:



11.1 Introduction 273

e�−1 = A−1
�−1d�−1 . (11.18c)

Its image pe�−1 under the prolongation p should approximate the solution ē� of
(11.18a), so that the coarse-grid correction is completed by

xnew� := x̄� − p e�−1. (11.18d)

In compact form, the coarse-grid correction (11.18a–d) reads as follows:

x̄� �−→ xnew� := x̄� − pA−1
�−1r(A�x̄� − b�).

Renaming x̄� and xnew� by xm� and xm+1
� , the mapping above defines an iterative

method which we call the coarse-grid correction:

ΦCGC
� (x�, b�) := x� − pA−1

�−1r(A�x� − b�). (11.19)

Remark 11.6. The iteration matrix MCGC
� and the matrix NCGC

� of the second
normal form of the coarse-grid correction are

MCGC
� = I − pA−1

�−1rA� , NCGC
� = pA−1

�−1r .

ΦCGC
� (as such without smoothing) is not an interesting iteration as stated next.

Remark 11.7. The coarse-grid correction ΦCGC
� is consistent, but not convergent.

Proof. The consistency is a consequence of the second normal form. n� > n�−1

implies dimX� > dimX�−1; hence, the kernel of the restriction r is nontrivial.
Let 0 �= x ∈ ker(r). Since MCGC

� η = η for η := A−1
� x, the matrix MCGC

� has
an eigenvalue λ = 1, so that ρ(MCGC

� ) ≥ 1 indicates divergence. ��

For systems obtained from Galerkin discretisation (cf. Proposition E.16 and
Hackbusch [183, Note 3.6.6]), the so-called Galerkin product representation of
A�−1 is valid:

A�−1 = r A� p. (11.20)

Remark 11.8. Given A = A�max , one can use (11.20) as a recursive definition
of the coarse-grid matrices A� for � = �max − 1, . . . , 0, provided that suitable
mappings r and p are available (see case (A) in Remark 11.4). If one uses the
definition (11.17) of r, only the prolongations p have to be defined.

Lemma 11.9. Assume (11.20). Then ΦCGC
� (x̂�, b�) = x̂� holds for all vectors x̂�

with ê� = x̂� − x� ∈ range(p); i.e., ΦCGC
� is a projection (cf. Definition 5.12).

Proof. Use MCGC
� p = p− pA−1

�−1rA�p = p− pA−1
�−1A�−1 = p− p = 0. ��

The next exercise shows that the coarse-grid equation (11.18b) is a reasonable
ansatz for e�−1.

Exercise 11.10. LetA� be positive definite. The best approximation of ē� ∈X� with
respect to the A� norm ‖x�‖A := 〈A�x�, x�〉1/2� is pe�−1, where p = r∗ according
to (11.17) and e�−1 is the solution of (11.18b) with the Galerkin matrix (11.20).



274 11 Multigrid Iterations

11.2 Two-Grid Method

11.2.1 Algorithm

The smoothing iteration S� is defined in §11.1.1 and the coarse-grid correction
ΦCGC
� is constructed in §11.1.5. The two-grid iteration is the product iteration

ΦTGM
� := ΦCGC

� ◦ Sν
� (� ≥ 1, ν ≥ 1)

(cf. §5.4), where ν is the number of smoothing steps. In algorithmic notation, the
iteration ΦTGM

� takes the form

function ΦTGM
� (x�, b�); (11.21)

begin for i := 1 to ν do x� := S�(x�, b�); (11.21a)
d�−1 := r(A�x� − b�); (11.21b)
e�−1 := A−1

�−1d�−1; (11.21c)
x� := x� − pe�−1; (11.21d)
ΦTGM
� := x� (11.21e)

end;

11.2.2 Modifications

As stated in Proposition 5.25b, ΦCGC
� ◦ Sν

� has the same convergence behaviour as

Φ
TGM(ν1,ν2)
� := Sν2

� ◦ ΦCGC
� ◦ Sν1

� with ν = ν1 + ν2. (11.22a)

In this case, ν1 pre- and ν2 post-smoothing steps are applied. Algorithm (11.21) is
the special case of iteration (11.22a) with ν1 = ν and ν2 = 0. In the sequel, we use
the more general version (11.22a).

One may also use different iterations S� and Ŝ� as pre- and post-smoothers:

Ŝν2

� ◦ ΦCGC
� ◦ Sν1

� . (11.22b)

A semi-iterative smoothing instead of (11.21a) will be discussed in §11.8.1.

11.2.3 Iteration Matrix

Lemma 11.11. Let S� be a consistent iteration with iteration matrix S�. Then
Φ
TGM(ν1,ν2)
� is a consistent iteration with the iteration matrix

M
TGM(ν1,ν2)
� = Sν2

� (I − pA−1
�−1rA�)S

ν1

� . (11.23)

Proof. According to Proposition 5.25b, MTGM
� is the product of the iteration

matrices of Ŝν2

� , ΦCGC
� , Sν1

� . Equation (11.23) follows from Remark 11.6. ��



11.2 Two-Grid Method 275

Since S� is consistent, the matrix NTGM(ν1,ν2)
� of the second normal form is

implicitly determined by

M
TGM(ν1,ν2)
� = I −N

TGM(ν1,ν2)
� A� .

As known from (5.12b), the second normal form matrices do not have a simple
representation for product iterations. The same statement holds for WTGM(ν1,ν2)

� .

11.2.4 Numerical Examples

m ‖xm
� − x�‖2

0 2.93510-02
1 1.21010-03
2 6.20610-05
3 3.37810-06
4 1.93910-07
5 1.15210-08
6 7.05810-10
7 4.43210-11
8 7.18810-12

Table 11.1 Iteration
errors for h5=

1
64

.

As an example we choose the two-dimensional Poisson model
problem with the step sizes h� in (11.5a,b). A�max

and the aux-
iliary matrices A� (� < �max) are defined by the five-point
discretisation (1.4a). The two-grid parameters are ν1 = 2,
ν2 = 0. The smoothing iteration is the chequer-board variant
of the Gauss–Seidel iteration (cf. (1.20)). The error norms
‖em� ‖2 = ‖xm� − x�‖2 at level � = 5 with h5 = 1/64 are
shown in Table 11.1. Table 11.2 contains the reduction factors
‖xm� − x�‖2/‖xm−1

� − x�‖2. The last row in Table 11.2 shows
the averaged convergence factors ρ� := (‖e8�‖2/‖e0�‖2)1/8. In
contrast to the foregoing iterative methods, the convergence
factors hardly depend on the step size. Furthermore, the convergence rate of about
0.06 is very favourable.

m h� =
1
4

1
8

1
16

1
32

1
64

1
128

1 0.10391 0.10420 0.07778 0.05465 0.03807 0.02661
2 0.06210 0.05549 0.04730 0.04336 0.04121 0.04009
3 0.06248 0.05738 0.05409 0.05238 0.05132 0.05077
4 0.06250 0.05851 0.05804 0.05565 0.05445 0.05375
5 0.06250 0.05963 0.06191 0.05866 0.05741 0.05665
6 0.06250 0.06061 0.06512 0.06089 0.05937 0.05835
7 0.06250 0.06143 0.06768 0.06292 0.06124 0.05996
8 0.06250 0.06208 0.06954 0.06463 0.06285 0.06132
ρ� 0.06654 0.06360 0.06203 0.05626 0.05248 0.04939

Table 11.2 Error ratios ‖xm − x�‖2/‖xm−1 − x�‖2 and aver-
aged convergence factors ρ� for the two-grid method with ν1 = 2
and ν2 = 0.

Since the two-grid
method depends on the
parameters ν1 and ν2,
their influence on the
convergence is be inves-
tigated. As mentioned in
§11.2.2, the convergence
rate depends only on
ν = ν1 + ν2. Therefore,
we may choose ν1 = ν
and ν2 = 0 without loss
of generality. The con-
vergence factors ρ� for
h3 = 1/16 determined

ν 1 2 3 4 5 6 10
ρ3(ν) 0.222 0.062 0.04 0.03 0.023 0.0196 0.0133
0.135

0.135+ν 0.119 0.063 0.043 0.033 0.026 0.022 0.0133

Table 11.3 Convergence factors for different smoothing numbers ν.

as above are shown in
Table 11.3. As expected,
convergence improves
with increasing ν. In
the last row, ρ3(ν) is
compared with the function C/(C + ν) for C = 0.135. It suggests the asymp-
totic behaviour ρ�(ν) ≈ O(1/ν).



276 11 Multigrid Iterations

11.3 Analysis for a One-Dimensional Example

In principle, one can analyse the two-grid convergence for the two-dimensional
Poisson model problem (cf. Hackbusch [183, §8.1.1]); however, it is not sufficiently
transparent for an introductory consideration. Therefore, we consider the tridiagonal
equation (11.4a):

Ax = b with A = h−2

⎡⎢⎢⎢⎢⎣
2 −1

−1 2
. . .

. . . . . . −1
−1 2

⎤⎥⎥⎥⎥⎦ (11.24)

discretising the one-dimensional Poisson equation (11.4b). It should be emphasised
that tridiagonal matrices are easy to solve directly. Analysis of iterative methods for
these tridiagonal equations is of interest only because of the fact that the conver-
gence properties also carry over to the general case of two or more spatial dimen-
sions. Furthermore, this chapter serves as a demonstration of how model problems
can be investigated by the help of Fourier analysis.

11.3.1 Fourier Analysis

We abbreviate the quantities at levels � and �− 1 by

N = N�, N ′ = N�−1, h = h� = 1/N, h′ = h�−1 = 2h.

The vector x = (xk)1≤k≤N−1 is formally extended by the components

x0 = xN = 0. (11.25a)

The vectors (grid functions) eα with the components

eαk =
√
2h sin(αkπh) (0 ≤ k ≤ N) (11.25b)

satisfy condition (11.25a) for all frequencies α ∈ Z. According to Exercise 3.3,
{eα : 1 ≤ α ≤ N − 1} forms an orthonormal basis. Therefore, the matrix Q built
by eα as columns is unitary: QHQ = I (cf. Definition A.27):

Q :=
[
e1, eN−1, e2, eN−2, . . . , eα, eN−α, . . . , e

N
2 −1, e

N
2 +1, e

N
2

]
. (11.25c)

The reason for the special ordering of the columns will be seen next. M :=MTGM
�

denotes the iteration matrix of the two-grid method. Since multiplying by Q or



11.3 Analysis for a One-Dimensional Example 277

QH = Q−1 does not change the spectral norm and spectral radius (cf. Lemma
B.18), we conclude that

‖M̂‖2 = ‖M‖2 , ρ(M̂) = ρ(M) for M̂ := Q−1MQ. (11.25d)

M̂ is the Fourier-transformed iteration matrix. We shall show in §11.3.2 that M̂
has a block-diagonal structure:

M̂ = blockdiag {M1,M2, . . . ,MN ′−1,MN ′} with
Mα : 2 × 2 matrices for 1 ≤ α ≤ N ′ − 1, MN ′ : 1 × 1 matrix.

(11.25e)

Applying (A.10) to M̂ and M̂HM̂ , we obtain the next statement.

Lemma 11.12. Matrices of the form (11.25e) satisfy

‖M̂‖2 = max
1≤α≤N ′

‖Mα‖2 , ρ(M̂) = max
1≤α≤N ′

ρ(Mα).

We choose the Richardson iteration with Θ = h2

4 ≈ 1
ρ(A�)

as the smoothing
iteration. For proving the block structure (11.25e), we transform the iteration matrix

M = (I − pA−1
�−1rA�)S

ν
� with S� = I −ΘA�, Θ = h2/4 .

The Fourier transform applied to the matrices A�, S� yields

Â� := Q−1A�Q, Ŝ� := Q−1S�Q . (11.26a)

Next, we need a Fourier map Q′ : X�−1 → X�−1 defined in the coarse grid space.
It is defined by

Q′ =
[
e′ 1, e′ 2, . . . , e′N

′−1
]

with the orthonormal columns

e′αk =
√
4h sin(2αkπh) (0 ≤ k ≤ N ′). (11.26b)

The vectors e′α ∈ X�−1 are obtained from eα in (11.25b) by replacing h = h�
with h′ = h�−1. Now p, A�−1, and r can be transformed into

p̂ = Q−1pQ′, Â�−1 := Q′−1A�−1Q
′, r̂ := Q′−1 r Q.

One verifies that M̂ in (11.25d) takes the form

M̂ = (I − p̂Â−1
�−1r̂Â�) Ŝ

ν
�

(check that p̂Â−1
�−1r̂Â� = Q−1pA−1

�−1rA�Q).



278 11 Multigrid Iterations

11.3.2 Transformed Quantities

Now we prove that all factors p̂, Â−1
�−1, r̂, Â�, Ŝ

ν
� are block-diagonal as stated in

(11.25e). According to §3.1, A�e
α = λαe

α holds with λα = 4h−2 sin2(απh/2).
We introduce

s2α = sin2(απh/2), c2α = cos2(απh/2).

Noting that λN−α = s2N−α = c2α, we obtain

Â� := Q−1A�Q = blockdiag{A1, . . . , AN ′} with the blocks (11.27a)

Aα = 4h−2

[
s2α 0
0 c2α

]
for 1≤α≤N ′−1, AN ′ = 2h−2. (11.27b)

Since S� = I − 1
4h

2A� and s2α + c2α = 1, equations (11.27a,b) yield the result

Ŝ� = Q−1S�Q = blockdiag{S1, . . . , SN ′} with the blocks (11.27c)

Sα =

[
c2α 0
0 s2α

]
for 1 ≤ α ≤ N ′−1, SN ′ =

1

2
. (11.27d)

Because of A�−1e
′α = λ′αe

′ α with λ′α = 4h′−2 sin2(απh′/2) = h−2 sin2(απh)
and using sin2(απh) = 4s2αc

2
α , we obtain the diagonal matrix

Â�−1 := Q′−1A�−1Q
′ = diag{A′

1, . . . , A
′
N ′} with A′

α =
4

h2
s2αc

2
α . (11.27e)

Next, we transform p and r. Let p be defined by (11.10a–c). For r, we choose
the adjoint mapping r = p∗:

r = 1
2

[
1
2 1 1

2

]
, i.e., (ru�)(ξ) = 1

4u�(ξ − h) + 1
2u�(ξ) +

1
4u�(ξ + h). (11.27f)

r and r̂ are matrices of the format (N ′ − 1) × (N − 1) = (N ′ − 1) × (2N ′ − 1).
The representation

r̂ := [ blockdiag{r1, . . . , rN ′−1}, 0 ] with rα =
√

1
2

[
c2α,−s2α

]
(11.27g)

means that the last column of r̂ := Q′−1r Q vanishes (this follows from reN
′
= 0)

and that the remaining part of the format (N ′ − 1)×(2N ′ − 1) consists of N ′−1
blocks rα of size 1 × 2. For the proof of (11.27g), it must be shown that

reα = c2αe
′α/

√
2, reN−α = −s2αe′α/

√
2 for 1 ≤ α ≤ N ′ − 1 .

The restriction (11.27f) yields

r sin(αxπ) = [sin(α(x− h)π) + 2 sin(αxπ) + sin(α(x+ h)π)] /4

= [1 + cos(αhπ)] sin(αxπ)/2 = cos(αhπ/2)2 sin(αxπ) = c2α sin(αxπ)



11.3 Analysis for a One-Dimensional Example 279

for all frequencies α. The different scaling of the vectors eα, e′α explains the
additional factor in reα = c2αe

′α/
√
2. Since this identity holds for all α ∈ Z ,

we may replace α by N − α: reN−α = c2N−αe
′N−α/

√
2. For 0 ≤ k ≤ N ′,

the equality sin(2αkπh) = − sin(2(N − α)kπh) leads to e′N−α = −e′α (cf.
definition (11.26b)). Finally, c2N−α = s2α proves reN−α = −s2αe′α/

√
2.

p in (11.10a–c) and r in (11.27f) are connected by r = p∗. From p∗ = 1
2 p

T,
we derives the representation

p̂ = Q−1pQ′ = Q−1(2r)TQ′ = QT(2r)TQ′ = 2
[
Q′TrQ

]T
= 2 r̂T.

Therefore, the result (11.27g) for r̂ proves

p̂ = Q−1pQ′ =
[
blockdiag {p1, . . . , pN ′−1}

0

]
(11.27h)

with pα =
√
2

[
c2α

−s2α

]
.

11.3.3 Convergence Results

Since all factors in (11.26a) have a block-diagonal structure, this carries over to M̂
and proves the structure (11.25e). For the 2 × 2 blocks Mα (1 ≤ α ≤ N ′ − 1)
and the 1 × 1 block MN ′ , the statements (11.27b, d, e, g, h) yield

Mα = (I − pαA
′−1
α rαAα)S

ν
α (1≤α≤N ′ − 1), MN ′ = 2−ν .

Inserting the representations of pα, A′
α, rα, Aα, Sν

α, we obtain

Mα =

([
1 0
0 1

]
−
[
c2α

−s2α

]
h2

4s2αc
2
α

[
c2α −s2α

]
4h−2

[
s2α 0
0 c2α

])[
c2α 0
0 s2α

]ν
(11.28)

=

([
1 0
0 1

]
−
[
c2α −c2α

−s2α s2α

])[
c2α 0
0 s2α

]ν
=

[
s2α c

2
α

s2α c
2
α

] [
c2α 0
0 s2α

]ν
.

The block Mα describes the application of M to the two functions eα, eN−α

(the respective columns of the matrix Q, cf. (11.25c)). Since α < N ′ < N − α,
eα corresponds to a smooth grid function and eN−α to an oscillatory one.
Obviously, the inequalities 0 < α < N ′ < N − α < N lead to

0 < s2α <
1

2
< c2α < 1. (11.29)

The two 2 × 2 matrices in (11.28) characterise the coarse-grid correction and the
smoothing iteration, respectively. Let the error have a representation

∑N−1
α=1 ξαe

α

as in (11.2b). The entries c2α > s
2
α express the fact that the smooth eα-components



280 11 Multigrid Iterations

converge more slowly than the nonsmooth eN−α-components. The first matrix
reflects the complementary behaviour of the coarse-grid correction: The smooth
components (s2α in the first column) are better reduced than the oscillatory ones
(c2α in the second column).

Exercise 11.13. Prove that ρ(Mα)=ρν(s
2
α) and ‖Mα‖2=ζν(s2α) with

ρν(ξ) := ξ(1 − ξ)ν + (1 − ξ)ξν , (11.30a)

ζν(ξ) :=

√
2
[
ξ2 (1 − ξ)

2ν
+ (1 − ξ)

2
ξ2ν
]
. (11.30b)

Combining (11.25d), Lemma 11.12, and Exercise 11.13 yields

ρ(M) = max{ρν(s2α) : 1 ≤ α ≤ N ′}, ‖Mα‖2 = max{ζν(s2α) : 1 ≤ α ≤ N ′}.

Since the values of s2α for 1 ≤ α ≤ N ′ are between 0 and 1
2 (cf. (11.29)), the

following estimates are valid:

ρ(M) ≤ ρν := max{ρν(ξ) : 0 ≤ ξ ≤ 1/2}, (11.31a)
‖M‖2 ≤ ζν := max{ζν(ξ) : 0 ≤ ξ ≤ 1/2}. (11.31b)

ν ρν ζν
1 1/2 1/2
2 1/4 1/4
3 1/8 0.150
4 0.0832 0.1159
5 0.0671 0.0947

10 0.0350 0.0496

Table 11.4 ρν and ζν .

The bounds ρν and ζν of the convergence rate and con-
traction numbers depend on the smoothing number ν ;
however, they do not depend on the step size h. Since
ρν and ζν decrease monotonically with increasing ν and
ρ1 = ζ1 = 1

2 < 1, the convergence of the two-grid
method for the one-dimensional model problem (11.24) is
proved. A more detailed discussion of the functions ρν(ξ)
and ζν(ξ) and their maxima in [0, 12 ] yields the following.

Theorem 11.14. Let the two-grid method for solving the system (11.24) be charac-
terised by Richardson’s iteration with Θ = h2/4 (identical to the Jacobi iteration
damped by 1

2 ) as smoother, by the piecewise linear prolongation p, and the ad-
joint restriction (11.27f). Then the two-grid method with ν ≥ 1 smoothing steps
converges with the rate ρν in (11.31a), which is h-independent. The contraction
number (with respect to the Euclidean norm) is bounded by ζν in (11.31b).
For increasing ν, these bounds have the asymptotic behaviour

ρν =
1

e ν
+ O
(
ν−2
)
, ζν =

√
2

e ν
+ O
(
ν−2
)
.

Some values of ρν , ζν are listed in Table 11.4. Obviously, the quantities ρ(M),
‖M‖2 converge with a decreasing step size parameter to their bounds ρν and ζν ;
hence, the given estimates are strict. In §11.6 we will derive a convergence rate for
general problems that also behaves like O(1/ν). Theorem 11.14 demonstrates that
such results about the asymptotic behaviour for large ν are not too pessimistic.



11.4 Multigrid Iteration 281

11.4 Multigrid Iteration

11.4.1 Algorithm

The two-grid method is not yet suited for practical applications because one still has
to solve one system per iteration at level �−1. The problem to be solved in (11.21c)
has the form

A�−1 e�−1 = d�−1; (11.32)

hence it is of the same structure as the original problem A�x� = b�. Instead of
solving the system (11.32) exactly, one may approximate the solution iteratively.
The iteration of choice is again the two-grid method, now applied to levels � − 1
and �− 2 instead of � and �− 1. Then new auxiliary problems A�−2e�−2 = d�−2

arise, for which again the two-grid method (now at level �− 2) can be applied until
equationsA0e0 = d0 arise at the coarsest grid. The corresponding recursive method
is the multigrid iteration ΦMGM(ν1,ν2)

� , which has the following algorithmic form:

procedure Φ
MGM(ν1,ν2)
� (x�, b�); (11.33)

if � = 0 then Φ
MGM(ν1,ν2)
� := A−1

0 b0 else (11.33a)
begin for i := 1 to ν1 do x� := S�(x�, b�); (11.33b)

d�−1 := r(A�x� − b�); (11.33c)
e
(0)
�−1 := 0; (11.33d1)

for i := 1 to γ do e
(i)
�−1 := Φ

MGM(ν1,ν2)
�−1 (e

(i−1)
�−1 , d�−1); (11.33d2)

x� := x� − pe
(γ)
�−1; (11.33e)

for i := 1 to ν2 do x� := Ŝ�(x�, b�); (11.33f)
Φ
MGM(ν1,ν2)
� := x� (11.33g)

end;

The pre- and post-smoothing steps are the same as in (11.22b). Obviously, the
recursive calls terminate after � steps when level � = 0 is reached. Hence, the
algorithm is well-defined.
ν1 and ν2 denote again the number of pre- and post-smoothing steps. A natural

assumption is ν := ν1 + ν2 > 0 . For the iterative solution of the coarse-grid
equation (11.32), γ steps of the iteration ΦMGM(ν1,ν2)

�−1 are applied to the starting
value (11.33d1). We shall see that γ = 2 is sufficient. Therefore, only the cases
γ = 1 and γ = 2 are of practical interest. The multigrid iteration with γ = 1
has the name ‘V-cycle’, whereas the iteration with γ = 2 is called the ‘W-cycle’
(concerning the reason for these names, see Hackbusch [183, §2.5]).

The exact solution of linear equations is not completely avoided in the multigrid
algorithm (11.33). In (11.33a), the system A0x0 = b0 corresponding to the coarsest
grid has to be solved. Since the coarsest grid has the smallest number of grid points,
the solution should not lead to practical difficulties. In the model case, according to
(11.5b), h0 = 1

2 would be a possible choice of the coarsest grid size. In this case,
A0x0 = b0 represents a single scalar equation.



282 11 Multigrid Iterations

Formally, the multigrid method is the product of the smoothing iteration and
coarse-grid correction, where the latter almost corresponds to a composed method
with a secondary iteration as described in §5.5. But different from §5.5, the auxiliary
problem, which has to be approximated by the secondary iteration, does not belong
to the same space X� but to the lower-dimensional space X�−1.

11.4.2 Numerical Examples

The model problem with the step size h = h5 = 1/64 is taken as an example.
Table 11.5 shows the Euclidean norm ‖em‖2 of the errors and the reduction factors
ρm+1,m = ‖em‖2/‖em−1‖2 . The parameters are ν1 = 2, ν2 = 0, h0 = 1

2 .
All matrices A� are defined by the five-point discretisation, p is the nine-point
prolongation, and r the nine-point restriction. We choose the chequer-board
Gauss–Seidel method as the smoothing iteration. The comparison of the results
for γ = 1 (V-cycle) and γ = 2 (W-cycle) in Table 11.5 with the two-grid results
(corresponding formally to γ = ∞; the values are copied from Table 11.2) show
that γ = 2 yields almost the same fast convergence as the two-grid method, whereas
the V-cycle results are less favourable.

γ = 1 (V-cycle) γ = 2 (W-cycle) γ = ∞
(two−grid algorithm)

m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m ρm+1,m

1 1.327410-1 0.1727 2.998410-02 0.03902 0.03807
2 2.222310-2 0.1674 1.321910-03 0.04408 0.04121
3 3.765610-3 0.1694 6.905010-05 0.05223 0.05132
4 6.411010-4 0.1702 3.782410-06 0.05477 0.05445
5 1.094110-4 0.1706 2.158410-07 0.05706 0.05741
6 1.870110-5 0.1709 1.268910-08 0.05879 0.05937
7 3.199610-6 0.1710 7.678810-10 0.06051 0.06124

Table 11.5 Multigrid iteration for the Poisson model problem with step size h = 1/64.

m ρm+1,m

1 0.03025
2 0.04722
3 0.05308
4 0.05510
5 0.05694
6 0.05835
7 0.05970
8 0.06092
9 0.06206
10 0.06312

pointwise Gauss–Seidel row Gauss–Seidel
m γ = 1 γ = 2 γ = 1
1 0.1584 0.0275 0.0465
2 0.2602 0.0955 0.0999
3 0.3351 0.2734 0.0952
4 0.3479 0.3003 0.1319
5 0.3360 0.2945 0.1267
6 0.3142 0.3062 0.1471
7 0.2920 0.3200 0.1304
8 0.2720 0.3348 0.1487
9 0.2553 0.3257 0.1328

Table 11.6 Multigrid convergence rates ρm+1,m for Eq. (11.34) with c = 4 (left) and c = 100
(right), h = 1/64 and Gauss–Seidel smoothing.



11.4 Multigrid Iteration 283

In order to demonstrate that the multigrid iteration not only works well for
positive definite problems, the next example is the nonsymmetric differential
equation (convection-diffusion equation):

−Δu+ cux = f

in Ω = (0, 1) × (0, 1) with Dirichlet boundary values (1.1b), discretised by

A� = h−2
�

⎡⎣ −1
−1 4 −1

−1

⎤⎦+
1

2
ch−1

�

⎡⎣ 0
−1 0 1

0

⎤⎦ . (11.34)

First, we choose c = 4 (for this value, all A� are M-matrices). f = u = 0 are
taken as the right-hand side and exact solution, while x(1 − x + y) serves as the
starting value. The other parameters are the same as in Table 11.5. The W-cycle
(γ = 2) shows a convergence rate of ≈ 0.06 (cf. Tab. 11.6) and hardly differs from
the corresponding rate of the Poisson model case.

As soon as the coefficient c becomes substantially larger, e.g., c=100, a stability
problem arises. Discretisation (11.34) yields an M-matrix for h5 = 1/64, but not
for larger h. A remedy is the matrix-dependent prolongation (11.13a,b) and the
corresponding restriction, together with the Galerkin product (11.20) for � < 5
(cf. Hackbusch [183, §10.4]). Table 11.6 shows the convergence rates ρm+1,m for
γ=1 and γ=2. Different from the model case, the results for γ = 2 are hardly better
than those for γ=1. Furthermore, the rate ≈0.3 is not so favourable. The rate can be
improved to ≈ 0.14 by row-wise Gauss–Seidel smoothing instead of the chequer-
board Gauss–Seidel iteration (Table 11.6, right column).

In §§10.3.5–10.4 (cf. Tables 10.4, 10.6) the indefinite problem with the matrix

A� := h−2
�

⎡⎣ −1
−1 4 −1

−1

⎤⎦−

⎡⎣ 0
0 50 0

0

⎤⎦ (11.35)

m ‖em‖2 ρm+1,m

1 1.30110-1 0.169309
2 5.60710-2 0.430985
3 2.48010-2 0.442381
4 1.09710-2 0.442503
5 4.85710-3 0.442505

Table 11.7 Results for the
indefinite problem (11.35).

is solved. As we shall see in §11.6.2, for indefinite
problems the choice of the coarsest step size is restricted.
Here h0 = 1

2 is too coarse, but h = 1
4 is possible.

However, better results can be obtained with h = 1
8 as

the coarsest step size. Table 11.7 shows the results for
h5 = 1

64 , h0 = 1
8 , γ = 2, nine-point prolongation,

and nine-point restriction. ν1 = 2 chequer-board Gauss–
Seidel steps are applied (ν2 = 0) as smoothing. The con-
vergence rate (here 0.442) improves with decreasing grid
size. Vice versa, the worse rate 0.613 results for h=1/16.

It is not necessary to choose h0 sufficiently small if one uses the Kaczmarz
iteration for smoothing (cf. §5.6.3), which is also convergent for the indefinite
matrix (11.35). However, for the parameters h0 = 1

2 , ν1 = 2, ν2 = 0, γ = 2, one
obtains the rather unfavourable convergence rate 0.833 (for h = 1

16 even 0.917 ) .



284 11 Multigrid Iterations

11.4.3 Computational Work

To judge the convergence rates in §11.4.2, we have to take into account the amount
of work per iteration (cf. §2.3). Because of the recursive structure, the amount of
work is not quite obvious. The operations appearing in (11.33) are S� in (11.33b,f),
r(A�x� − b�) in (11.33c), and x� − pe�−1 in (11.33e). We denote the corresponding
work by

CS n� operations for x� �−→ S�(x�, b�) or Ŝ�(x�, b�), (11.36a)
CD n� operations for x� �−→ r(A�x� − b�), (11.36b)
CC n� operations for x� �−→ x� − pe�−1 . (11.36c)

Proportionality to dimension n� is a consequence of the sparsity of the matrix A�

(cf. (2.28)). For standard approaches to fully populated matrices, n� would have to
be replaced by n2� in (11.36a,b) (but see §D or Hackbusch [198, §10]).

The dimensions n� should increase with increasing level-number � at least by
a fixed factor Ch:

n�−1 ≤ n�/Ch for � ≥ 1 . (11.37)

Otherwise, the difficulty would arise that the auxiliary problems A�−1e�−1 = d�−1

are of a similar dimension as A�x� = b�.

Remark 11.15. For the standard choice h� = h�−1/2 and the spatial dimension
d: Ω⊂Rd, inequality (11.37) holds with Ch=2d. In the model case, d=2 is valid.

Theorem 11.16. Assume (11.36a–c) and (11.37). Let γ in (11.33d2) satisfy

γ < Ch . (11.38)

Then the work of the multigrid iteration is proportional to n� :

Work(Φ
MGM(ν1,ν2)
� ) ≤ C(ν1 + ν2) · n� with

C(ν) =
νCS + CD + CC

1 − γ/Ch
+ O
(
(γ/Ch)

�
)
. (11.39)

Proof. Let C� n� be the work for one ΦMGM(ν1,ν2)
� step. From the representation

(11.33), we conclude that C�n� ≤ (νCS + CD + CC)n� + γC�−1n�−1. Inequality
(11.37) yields C� ≤ (νCS + CD + CC) + ϑC�−1 with ϑ := γ/Ch and results in
the geometrical sum

C� ≤ (νCS + CD + CC)(1 + ϑ+ . . .+ ϑ�−1) + γC0/n� ,

where C0 denotes the work for (11.33a) (independent of h�). Since γ�/n� ≤ϑ�/n1,
(11.39) follows. ��

Remark 11.17. In the two-dimensional case d = 2, (11.38) is satisfied for the
interesting values γ = 1, 2 because of Ch = 4 (cf. Remark 11.15). The following
constants are obtained for (11.39):



11.4 Multigrid Iteration 285

CV (ν) =
4

3
(νCS + CD + CC) + O

(
(γ/Ch)

�
)

for γ = 1, (11.40a)

CW (ν) = 2 (νCS + CD + CC) + O
(
(γ/Ch)

�
)

for γ = 2. (11.40b)

Since γ/Ch < 1 (cf. (11.38)), formulae (11.39) and (11.40a,b) show that for
increasing � the work for solvingA0x0=b0 in (11.33a) requires a vanishing portion
of the total work.

Exercise 11.18. Although the one-dimensional case (11.24) is not of practical
interest, one may apply the multigrid algorithm. Then (11.38) is not satisfied be-
cause Ch = 2 holds for the W-cycle (γ = 2). Prove that the work is equal to
O(� n�) = O(n� log n�).

For the standard multigrid parameters as used before, the work amounts to

CS = 2(CA − 1) for the Gauss–Seidel iteration, cf. (3.20b), (11.41a)
CD = 2CA + 11/4 for r = nine-point restriction (11.15), (11.41b)
CC = 3/2 for p = nine-point prolongation (11.11). (11.41c)

The constants CS and CD improve for the Poisson model case (CA = 5, since
multiplications by coefficients 1 can be omitted):

CS = 5 for the Gauss–Seidel iteration, cf. (3.21), (11.41a′)
CD = 5 + 10/4 for r = nine-point restriction (11.15), (11.41b′)

If the chequer-board Gauss–Seidel method is used, some operations can be saved
when applying r and p (cf. Hackbusch [183, Note 4.3.4]). Inserting formulae
(11.41a–11.41b′), the numbers (11.40a,b) become

CV (ν) =
8

3
(ν + 1)CA +

17 − 8ν

3
+ O(1/4�) for γ = 1, (11.41d)

CV (ν) = 12 +
20

3
ν + O(1/4�) (Poisson model case, γ = 1), (11.41d′)

CW (ν) = 4(ν + 1)CA +
17 − 8ν

3
+ O(1/2�) for γ = 2, (11.41e)

CW (ν) = 18 + 10ν + O(1/2�) (Poisson model case, γ = 2). (11.41e′)

The corresponding effective work of the V- and W-cycle for the Poisson model
problem with ν = 2 is CV [W ](2)/ |CA log(ρ)|. Using the convergence rates ρ
in Table 11.5, we obtain

Eff(Φ
MGM(2,0)
� ) = −CV (2)/ [5 log(0.171)] ≈ 2.89 for γ = 1,

Eff(Φ
MGM(2,0)
� ) = −CW (2)/ [5 log(0.06)] ≈ 2.7 for γ = 2.

Together with the convergence rate, the effective work is also h-independent.
One should compare the numbers Eff(Φ

MGM(2,0)
� ) with the competing values in



286 11 Multigrid Iterations

Remark 8.49 (for h = 1/32). The numbers (11.41d′,e′) can also be interpreted as
follows. One V-cycle step costs as much as ≈ 5 Gauss–Seidel iteration steps, one
W-cycle step corresponds to 7.6 Gauss–Seidel steps.

Finally, we address the question how many smoothing steps should be
performed. The numerical results in §11.4.2 have shown good agreement with
the two-grid results. According to Table 11.3, these rates behave as
≈Cρ/(1+ν), where ν = ν1+ν2. For simplification, assume that CC+CD =CS .
Then the multigrid work behaves like Work(Φ

MGM(ν1,ν2)
� ) ≈ (1 + ν)C. With an

increasing number ν of smoothing steps, the convergence improves, however, the
work also increases. We have to minimise the effective work

− (1 + ν)C/CA

log (Cρ/(1 + ν))
= C ′ 1 + ν

log(1 + ν) − log (Cρ)
.

The minimum is taken for ν∗= Cρe− 1 and has the value eCρC/CA. This shows
at least asymptotically that the faster the multigrid iteration (i.e., the smaller Cρ),
the smaller the number of smoothing steps should be. If, vice versa, it turns out that
many smoothing steps are necessary, the multigrid method is not favourable and one
should look for a better suited smoothing iteration.

11.4.4 Iteration Matrix

Since the iteration is defined recursively, the multigrid iteration matrix is also deter-
mined recursively.

Theorem 11.19. Let S�, Ŝ� be the iteration matrices of the respective consistent
pre- and post-smoothing iterations S� and Ŝ�. Then the multigrid iteration
Φ
MGM(ν1,ν2)
� is also consistent. Its iteration matrix MMGM

� = M
MGM(ν1,ν2)
� is

defined by

MMGM
0 = 0, MMGM

1 =M
TGM(ν1,ν2)
� , (11.42a)

MMGM
� =M

TGM(ν1,ν2)
� + Ŝν2

� p
(
MMGM

�−1

)γ
A−1

�−1rA�S
ν1

� for � ≥ 1. (11.42b)

Proof. Obviously, the coarse-grid correction (11.33c–e) is consistent. Hence,
Proposition 5.25a shows that ΦMGM

� is consistent. For � = 0, ΦMGM
0 describes

the exact solution, i.e., MMGM
0 = 0. For � = 1, the multi- and two-grid methods

coincide. This proves (11.42a). The iteration matrix of the coarse-grid correction
(11.33c–e) is

MCGC
� = I − p

[
I −
(
MMGM

�−1

)γ]
A−1

�−1rA�,

because we have e(γ)�−1 = I − p
[
I −
(
MMGM

�−1

)γ]
A−1

�−1rA�e� in (11.33e), as can
be shown similarly as in the proof of (5.21b). (5.12a) and (11.23) prove (11.42b).��



11.5 Nested Iteration 287

11.5 Nested Iteration

Contrary to the name ‘nested iteration’, the following scheme is not an iteration,
but a finite technique which can be applied to any iterative method, provided that
there is a hierarchy of problems

A� x� = b� (� = 0, 1, 2, . . .).

The latter requirement is the same as for constructing the multigrid method.
Therefore, it is natural to combine the multigrid iteration with the nested iteration.
This will be done in §11.5.4. First, we discuss the nested iteration independently
of the multigrid method. Concerning the construction of discretisations we refer
to Remark 11.4. The concept of the nested iteration is of particular help for non-
linear problems, for which the choice of sufficiently close starting values is essential
(cf. §11.9.5).

11.5.1 Discretisation Error and Relative Discretisation Error

We recall Remark 2.34. As long as x� is only considered as an approximation
to a continuous solution of a differential equation, it makes no sense to compute
x� more precisely than indicated by the discretisation error. The nested iteration
provides a convenient way to obtain this goal.

For standard discretisations, the consistency order κ is known; i.e., the depen-
dence on the step size is given by

discretisation error: δ� ≤ Cde h
κ
� ,

but the constant Cde is usually unknown (in principle, it may be described by the
derivatives of the solution, but these are unknown). One may use error estimators,
to bound δ� (cf. Verfürth [380]) and to stop the iteration as soon as the iteration
error is below δ�. Since δ� is the difference2 between the exact solution and x�,
the triangle inequality yields an estimate O(hκ� + hκ�−1) of the difference of x�
and x�−1 by δ� + δ�+1. Provided that h�/h�−1 is uniformly bounded, the previous
estimate yields the following bound of the relative discretisation error :

‖x� − p̃x�−1‖ ≤ C1h
κ
� (κ > 0, x�, x�−1 solutions to (11.6a)). (11.43)

Here, p̃ : X�−1 → X� is a suitable prolongation, which may not necessarily
coincide with p in §11.1.3 and (11.33e). In the following, only the exponent κ
in (11.43) must be known, not the constant C1.

2 The precise notation of the difference might be x − Px� or Rx − x� (x and x� belong to
different spaces; P and R are prolongations and restrictions between these spaces).



288 11 Multigrid Iterations

11.5.2 Algorithm

Obviously, the result xm� of an iteration is more desirable, the better the starting
iterate x0� is. So far, we did not study the choice of a starting iterate.3 Inequality
(11.43) suggests using approximations to x�−1 as the starting iterate of the iteration
at level �. The algorithm as proposed by Kronsjø–Dahlquist [248] reads as follows:

x̃0 := suitable approximation of the solution of A0x0 = b0;
for � := 1 to �max do

begin x̃� := p̃ x̃�−1;
for i := 1 to m� do x̃� := Φ�(x̃�, b�)

end;

(11.44)

Here, Φ� is any convergent and consistent linear iteration.4 The number m� of
iterations is still to be determined. Theorem 11.20 will propose an appropriate
choice.

Note that (11.44) is not an iteration in the proper sense, but a finite process.
Furthermore, it produces approximate solutions x̃� for all levels 1 ≤ � ≤ �max.

11.5.3 Error Analysis

First, we analyse the case of non-optimal linear iterations; i.e., the contraction
number behave as

‖MΦ
� ‖ ≤ 1 − cΦ� h

τ
� with τ > 0 for all � ≥ 1 (11.45a)

(cf. (2.32c)). Here, MΦ
� is the iteration matrix of Φ�. An inequality opposite to

condition (11.37), n�−1 ≤n�/Ch, is

n� ≤ Ch n�−1.

By n�/n�−1 ≈ (h�−1/h�)
d, the latter inequality also gives an estimate of h�−1/h�

appearing above. Together with the norm of p̃ , we obtain an estimate of the form

‖p̃‖(h�−1/h�)
κ ≤ C2 ( p̃ : X�−1 → X� ) (11.45b)

with κ as in (11.43). The inequalities (11.43) and (11.45a,b) must use the same
family of norms in X� .

3 If one has to solve A
(ν)
� x

(ν)
� = b

(ν)
� (ν = 1, 2) for similar data (A

(ν)
� , b

(ν)
� ), one may take the

solution of A(1)
� x

(1)
� = b

(1)
� as starting value for solving A

(2)
� x

(2)
� = b

(2)
� .

4 The m�-fold application of Φ� may be replaced by a semi-iteration, or acceleration methods
may be used (cf. §10).



11.5 Nested Iteration 289

Theorem 11.20. Assume (11.43) and (11.45a,b). Fix some constant K > 0 and
choose

m� ≥ 1 + log(C2 + 1/K)

cΦ�
h−τ
� .

Then the nested iteration (11.44) with (11.49) produces results x̃� for all levels
0 ≤ � ≤ �max satisfying the error estimates

‖x̃� − x�‖ ≤ KC1h
κ
� (11.46)

provided that the starting iterate x̃0 satisfies inequality (11.46) for � = 0.

Proof. By assumption, (11.46) holds for � = 0. Assume (11.46) for all level
numbers ≤ � − 1. The starting iterate x0� := p̃ x̃�−1 has an error that can be
bounded by

‖x0� − x�‖ ≤ ‖p̃ x�−1 − x�‖ + ‖p̃ (x̃�−1 − x�−1)‖
≤ ‖p̃ x�−1 − x�‖ + ‖p̃ ‖ ‖x̃�−1 − x�−1‖
≤ C1h

κ
� + ‖p̃ ‖KC1h

κ
�−1

≤ C1h
κ
� [1 + ‖p̃ ‖(h�−1/h�)

κK]

≤ C1h
κ
� [1 + C2K)] .

m� iteration steps reduce the error to ‖xm�

� − x�‖ ≤
(
1 − cΦ� h

τ
�

)m� ‖x0� − x�‖.
The general inequality 1 + ξ ≤ exp(ξ) for all ξ ∈ R yields

(
1 − cΦ� h

τ
�

)m� ≤ exp(1 −m�c
Φ
� h

τ
� ) ≤ exp

(
1 −
(
1 + log(C2 +

1

K
)
))

= 1/
(
C2 +

1

K

)
=

K

1 + C2K
.

By the previous estimate of ‖x0� − x�‖, (11.46) holds for �. ��

Choose K somewhat smaller than one. Since C1h
κ
� is the relative discretisation

error, we obtain approximations x̃� with an iteration error similar in size:

‖x̃� − x�‖ ≤ K × relative discretisation error. (11.47)

Note that this statement holds, although the size of C1 involved in the relative
discretisation error C1h

κ
� does not enter the algorithm.

The cost of the nested iteration is dominated by the work O(n�h
−τ
� ) at the

maximal level � = �max. However, the standard approach using the starting value
x0�max

= 0 requires O(n�maxh
−τ
�max

κ log(1/h�max)) operations (cf. (2.31b)).

The analysis of the cascade algorithm in Bornemann–Deuflhard [56] demon-
strates that the choice of the norm ‖ · ‖ is essential.



290 11 Multigrid Iterations

11.5.4 Application to Optimal Iterations

Now we assume that the iteration (as, e.g., the multigrid method; cf. Kronsjø [247])
has an h-independent contraction number:

‖MΦ
� ‖ ≤ ζ < 1 for all � ≥ 1, MΦ

� : iteration matrix of Φ� . (11.48)

Here the numbers m� in (11.44) can be chosen independently of � :

m� = m (� ≥ 1) . (11.49)

In Remark 11.22 we shall see that even the smallest possible number m = 1 is of
practical interest.

Theorem 11.21. Assume (11.43), (11.48), and (11.45b). The iteration number
m� = m (cf. (11.49)) should be sufficiently large so that

C2 ζ
m < 1. (11.50)

Then the nested iteration (11.44) with (11.49) produces results x̃� for all levels
0 ≤ � ≤ �max satisfying the error estimates

‖x̃� − x�‖ ≤ C3(ζ
m)C1h

κ
� with C3(ζ

m) := ζm/(1 − C2ζ
m), (11.51)

provided that the starting iterate x̃0 satisfies inequality (11.51) for � = 0.

Proof. We repeat the induction proof of Theorem 11.20. Assume (11.51) for levels
≤ �− 1. The starting iterate x0� := p̃ x̃�−1 has an error that can be bounded by

‖x0� − x�‖ ≤ ‖p̃ x�−1 − x�‖ + ‖p̃ (x̃�−1 − x�−1)‖
≤ ‖p̃ x�−1 − x�‖ + ‖p̃ ‖ ‖x̃�−1 − x�−1‖
≤ C1h

κ
� + ‖p̃ ‖C3(ζ

m)C1h
κ
�−1

≤ C1h
κ
� [1 + ‖p̃ ‖(h�−1/h�)

κC3(ζ
m)]

≤ C1h
κ
� [1 + C2C3(ζ

m)] .

After m iteration steps, the error is reduced to ‖xm� − x�‖ ≤ ζm‖x0� − x�‖ ≤
C1 h

κ
� {ζm [ 1 + C2 C3 (ζ

m)]} because of (11.48). Definition of C3(·) in (11.51)
shows that {. . .} = C3(ζ

m) and proves (11.51) for �. ��

Again the iteration error ‖x̃� − x�‖ coincides up to a factor C3(ζ
m) with the

relative discretisation error C1h
κ
� , i.e., (11.47) holds with K := C3(ζ

m).

Remark 11.22. The standard choice h� = h�−1/2 and the inequality ‖p̃ ‖ ≤ 1,
which is valid for standard interpolations, yield the constant C2 = 2κ in (11.45b).
The consistency order of the model case is κ = 2, from which C2 = 4. Therefore,
the factor C3(ζ

m) is equal to

C3(ζ
m) = ζm/ (1 − 4ζm) .

For multigrid methods with convergence rates ≤ζ=0.2 (see the results in §11.4.2),
condition (11.50) is satisfied for only one iteration step (i.e., m = 1) and produces
the value C3(0.2) = 1.



11.5 Nested Iteration 291

11.5.5 Amount of Computational Work

Let Cn� be the work required by one step of the iteration Φ� at level � and assume
(11.37): n�−1 ≤ n�/Ch. The work for x̃�−1 �→ p̃x̃�−1 is considered negligible. The
total work amounting to Cnestedn� ≤ mC(n1 + n2 + . . . + n�) can be estimated,
using the geometrical sum n1 + . . .+ n� ≤ n�

∑
k C

−k
h ≤ Chn�/(Ch − 1), by

Cnested ≤ mC Ch / (Ch − 1).

For the standard case Ch = 2d = 4 (cf. Remark 11.15), we obtain the result

Work(11.44) ≤ 4m

3
Work(Φ�max). (11.52)

If we try to achieve an accuracy of ε = Chκ at level � = �max with the starting
iterate x̃� := 0 by iterating with Φ�, the work would be proportional to O(|log ε|) =
O(|log h�|) (cf. (2.31b)). According to Remark 11.22, m = 1 is a realistic choice.
Inequality (11.52) shows that sufficient accuracy for all levels 0 ≤ � ≤ �max can be
attained with the 4/3-fold work of a single Φ�max step.

Together with the numbers in (11.41d′, e′) and Table 11.5 (with ν1 = 2, ν2 = 0,
m = 1), we obtain the following results:

the V-cycle (γ = 1) requires 34n�max
operations to produce

‖x̃� − x�‖ ≤ 0.53C1h
κ
� for 0 ≤ � ≤ �max ,

(11.53a)

the W-cycle (γ = 2) requires 51n�max
operations to produce

‖x̃� − x�‖ ≤ 0.08C1h
κ
� for 0 ≤ � ≤ �max .

(11.53b)

The work given in (11.53b) corresponds to about 10 steps of the Gauss–Seidel
iteration at level �max.

Since the nested iteration (11.44) is a finite process and not an iteration, con-
siderations in §2.3 are not applicable. How many operations are necessary, depends
on the desired accuracy.

11.5.6 Numerical Examples

First, the nested iteration is applied to the differential equation

−Δu=f :=−Δ(ex+y2

) (11.54a)

with boundary values ϕ = ex+y2

. The negative Laplacian −Δ is discretised at
all levels by the standard five-point star. p̃ is cubic interpolation. Let x∗� be
the restriction of the exact solution ex+y2

of (11.54a) to the grid Ω�. Note that
x∗� does not coincide with the discrete solution x� of the system A�x� = b�



292 11 Multigrid Iterations

corresponding to (11.54a). In Table 11.8, the results x̃� of the nested iteration are
compared with x∗� because this is the error most interesting in practice. The maxi-
mum norm ‖x̃� − x�‖∞ of these errors is given for cases m = 1 and m = 2 (m in
(11.49)). For comparison, the last column shows the discretisation error ‖x�−x∗�‖∞,

� h� m = 1 m = 2 m = ∞
0 1/2 7.994465810-2 7.994465810-2 7.994465810-2
1 1/4 3.990875610-2 2.921560510-2 2.896948810-2
2 1/8 1.578872110-2 8.102313610-3 8.030778910-3
3 1/16 3.291934610-3 2.076839110-3 2.072985510-3
4 1/32 5.759154910-4 5.225375810-4 5.224739910-4
5 1/64 1.329168910-4 1.309394610-4 1.309395610-4

Table 11.8 Errors ‖x̃� − x∗
�‖∞ of the nested iteration

for (11.54a).

which formally corresponds to
m = ∞. The multigrid iteration
used for solving (11.44) has the
same parameters as the W-cycle
(γ = 2) in Table 11.5. The data
in Table 11.8 demonstrate that the
choice m=1 is sufficient. m=2
doubles the work but cannot im-
prove the total error ‖x̃� − x∗�‖∞
substantially.

Analogous data are given in Table 11.9 for the differential equation

−Δu = f := −Δ(y sin(10x)) (11.54b)

� h� m = 1 m = 2 m = ∞
0 1/2 2.824909910-0 2.824909910-0 2.824909910-0
1 1/4 5.087621210-1 4.612430210-1 4.788003310-1
2 1/8 9.588134110-2 1.033094810-1 1.030877010-1
3 1/16 2.764897910-2 2.663671010-2 2.668921310-2
4 1/32 6.879857010-3 6.648636810-3 6.650699310-3
5 1/64 1.699836510-3 1.671606910-3 1.671401410-3

Table 11.9 Errors ‖x̃� − x∗
�‖∞ of the nested iteration

for (11.54b).

with a solution y sin(10x) which
is oscillatory in the x direction.
By the nonsmooth behaviour of
the solution, the discretisation
error (last column) for problem
(11.54b) is nearly one digit worse
than for (11.54a). Therefore, the
additional error O(h2�) of linear
interpolation p̃, which is used in-
stead of the cubic one, is of minor consequence. Also for this example, it does not
pay to perform m = 2 iterations per level.

11.5.7 Comments

Additional variants for the nested iteration (e.g., combinations with extrapolation
techniques) are discussed in Hackbusch [183, §5.4, §9.3.4, §16.4] and [191, §5.6.5].

Although nonlinear systems are not the subject of this book, we remark that the
nested iteration is of even greater importance for nonlinear systems of equations.
In the linear case, it helps to save computer time. For nonlinear iterations, however,
the availability of sufficiently good starting iterates often decides on convergence
(to the desired solution) or divergence. The nested iteration with its starting value
x̃� := p̃ x̃�−1 is a suitable technique for generating such starting iterates.

A description and analysis of the nonlinear multigrid method and the correspond-
ing nested iteration can be found in §11.9.5.



11.6 Convergence Analysis 293

11.6 Convergence Analysis

11.6.1 Summary

The convergence proof of multigrid methods differs from the convergence proofs
of other iterations because here the relationship between the equations A� x� = b�
and A�−1x�−1 = b�−1 plays an important role.

As sufficient criteria, we introduce and discuss two conditions in §§11.6.2–
11.6.3: the smoothing and approximation property. The smoothing property is of
algebraic nature, whereas the proof of the approximation property involves the
continuous problem, whose discretisation is described by A�x� = b� . Together,
the smoothing and approximation properties yield the convergence statement for
the two-grid iteration (§11.6.4). For γ ≥ 2, multigrid convergence can be concluded
directly from the two-grid convergence (§11.6.5).

For positive definite matrices A�, the multigrid method can be designed as a
positive definite iteration. In this case, we shall achieve even better convergence
results, including the V-cycle (γ = 1; see §11.7). These results are generalised in
Theorem 11.61 to the nonsymmetric case.

The analysis represented below is strongly simplified compared with that of
Hackbusch [194], since presently we base our considerations mostly on the
Euclidean and spectral norm. Other norms are mentioned in §11.6.6 and §11.7.2.

In contrast to what has been said above, there are multigrid methods for which
convergence proofs can be performed by purely algebraic considerations. These
variants will be discussed in §12.9.

11.6.2 Smoothing Property

In §11.1.1 we called a grid function x� =
∑
ξαβ e

αβ (cf. (11.2b)) smooth if the
coefficients ξαβ of high frequencies α, β (corresponding to the large eigenval-
ues λαβ in (3.1a)) are small. Quantitatively, one may measure the smoothness
by ‖A�x�‖2 = (

∑
λαβξαβ |2)1/2. If the smoothing step (11.21a) really leads

to a smoothing of the errors e� = x0� − x�, the error Sν
� e� produced by the

smoothing step must have a better smoothing measure ‖A�S
ν
� e�‖2 than e�. There-

fore, the smoothing ability is characterised by the spectral norm ‖A�S
ν
� ‖2. Before

defining the smoothing property, we analyse ‖A�S
ν
� ‖2 for Richardson’s iteration

with positive definite A� :

S�(x�, b�) := x� −Θ(A�x� − b�) (11.55a)
with Θ = Θ� = 1/ρ(A�) = 1/‖A�‖2 . (11.55b)

We have ‖A�S
ν
� ‖2 = ‖A�(I − ΘA�)

ν‖2 = ‖X(I − X)ν‖2/Θ with X := ΘA�.
The following lemma applies to the matrix polynomial X(I −X)ν .



294 11 Multigrid Iterations

Lemma 11.23. (a) For all matrices X with 0 ≤ X ≤ I , the inequality

‖X(I −X)ν‖2 ≤ η 0(ν) (ν ≥ 0)

holds, where the function η 0(ν) is defined by

η 0(ν) := νν/ (ν + 1)ν+1. (11.56)

(b) The asymptotic behaviour of η 0(ν) for ν → ∞ is

η 0(ν) =
1

e ν
+ O(ν−2).

Proof. Set f(ξ) := ξ(1 − ξ)ν . According to Lemma A.11a, we have

‖X(I −X)ν‖2 = ρ(X(I −X)ν) = max{|f(ξ)| : ξ ∈ σ(X)}.

By f(ξ) ≤ f(1/(ν + 1)) = η 0(ν) for all ξ ∈ [0, 1] ⊃ σ(X), part (a) is proved.
The discussion of the function η 0(ν) yields statement (b). ��

Remark 11.24. For A� > 0, Richardson’s method (11.55a,b) leads to

‖A�S
ν
� ‖2 ≤ η 0(ν) ‖A�‖2 for all ν ≥ 0, � ≥ 0. (11.57)

Note that the factor η 0(ν) is independent of h� and �. The smoothing property,
which we are going to define, is an estimate with a form similar to (11.57). Instead
of η 0(ν), we may take an arbitrary zero sequence η(ν) → 0 . Furthermore, it is
neither necessary nor desirable to require an inequality as (11.57) for all ν ≥ 0.

Definition 11.25 (smoothing property). An iteration S� (� ≥ 0) with iteration
matrix S� satisfies the smoothing property if there are functions η(ν) and ν̄(h)
independent of � with

‖A�S
ν
� ‖2 ≤ η(ν)‖A�‖2 for all 0 ≤ ν < ν̄(h�), � ≥ 1, (11.58a)

lim
ν→∞ η(ν) = 0, (11.58b)

lim
h→0

ν̄(h) = ∞ or ν̄(h) = ∞. (11.58c)

The equality ν̄(h) = ∞ in (11.58c) expresses the fact that (11.58a) holds for
all ν. This happens only for convergent iterations S�, as shown below.

Remark 11.26. The conditions (11.58a,b) together with ν̄(h) = ∞ imply conver-
gence of S�.

Proof. ρ(Sν
� ) ≤ ‖Sν

� ‖2 ≤ ‖A−1
� ‖2‖A�S

ν
� ‖2 ≤ η(ν) cond2(A�) < 1 for suffi-

ciently large ν follows from η(ν) → 0 and implies ρ(S�) < 1. ��

From Remark 11.24, we conclude the next theorem.

Theorem 11.27. For A� > 0, the Richardson iteration (11.55a,b) satisfies the
smoothing property (11.58a–c) with η(ν) := η 0(ν) and ν̄(h) = ∞.



11.6 Convergence Analysis 295

The reason for the more general condition (11.58c) instead of ν̄(h) = ∞ is
that the smoothing property can also be formulated for non-convergent iterations.
Examples of divergent iterations are the Gauss–Seidel iteration for the
indefinite problem (11.35), as well as Richardson’s iteration in the next remark.

Remark 11.28. Assume that the indefinite matrix A� = AH
� has the spectrum

σ(A�) ⊂ [−α�, β�] with 0 ≤ α� ≤ β� and lim�→∞ α�/β� = 0. Although the
Richardson iteration with Θ=1/β� is divergent, it satisfies the smoothing property.

Proof. The damping factor is Θ = 1/β�. As in the proof for Lemma 11.23, we
have ‖A�(I − ΘA�)

ν‖2 ≤ max {η0(ν), (α�/β�)(1 + α�/β�)
ν} ‖A�‖2. Define

ν̄(h�) by ν̄(h�) := β�/α� → ∞. For ν < ν̄ := ν̄(h�), the inequalities

(α�/β�)(1 + α�/β�)
ν ≤ (α�/β�) exp{να�/β�} = 1

ν

(
ν
ν̄ exp ν

ν̄

)
≤ e

ν

follow. Hence, (11.58a–c) is satisfied by η(ν) := max{η0(ν), e/ν} = e/ν. ��

The assumptions of Remark 11.28 are fulfilled for discretisation of the Helmholtz
equation −Δu− cu = f (c > 0), because O(α�/β�) = O(h2�).

The following theorem can be considered as a perturbation lemma. It shows that
the smoothing property remains valid under the perturbation of the matrix A′

� into
A� = A′

� +A
′′
� , where A� may be indefinite and nonsymmetric.

Theorem 11.29. Let A� = A′
� + A

′′
� and S� = S�(·, ·, A�) and S ′

� = S ′
�(·, ·, A′

�)
be the smoothing iterations corresponding to A� and A′

� , respectively. Their
iteration matrices are denoted by S� and S′

� with S′′
� := S� − S′

� . Assume that

A′
� and S′

� satisfy the smoothing property with η′(ν), ν̄′(h), (11.59a)
‖S′

�‖2 ≤ C ′
S for all � ≥ 1, (11.59b)

lim
�→∞

‖S′′
� ‖2 = 0, (11.59c)

lim
�→∞

‖A′′
� ‖2/‖A′

�‖2 = 0. (11.59d)

Then the iteration S� = S�(·, ·, A�) for A� also satisfies the smoothing property.
The corresponding bound η(ν) can be chosen, e.g., as η(ν) := 2η′(ν).

Proof. CS := C ′
S + max{‖S′′

� ‖2 : � ≥ 1} satisfies ‖S�‖2 ≤ CS for all � ≥ 1.
Without loss of generality, we may suppose that CS ≥ 1. Sν

� can be split into
S′ν
� + S

′′(ν)
� with

‖S′′(ν)
� ‖2 = ‖Sν

� − S′ν
� ‖2

=

∥∥∥∥ ν−1∑
μ=0

Sμ
� (S� − S′

�)S
′ν−1−μ
�

∥∥∥∥
2

=

∥∥∥∥ ν−1∑
μ=0

Sμ
� S

′′
� S

′ν−1−μ
�

∥∥∥∥
2

≤
( ν−1∑

μ=0

Cμ
SC

′ν−1−μ
S

)
‖S′′

� ‖2 ≤ νCν−1
S ‖S′′

� ‖2 →
(11.59c)

0 (11.59e)



296 11 Multigrid Iterations

for � → ∞. For 1 ≤ ν ≤ ν̄′(h�), we have

‖A�S
ν
� ‖2 ≤ ‖A′

�S
′ν
� ‖2 + ‖A′′

� ‖2‖Sν
� ‖2 + ‖A′

�‖2‖S′′(ν)
� ‖2 (11.59f)

≤ η′(ν)‖A′
�‖2 + Cν

S‖A′′
� ‖2 + νCν−1

S ‖S′′
� ‖2‖A′

�‖2

= η′(ν)‖A�‖2
{

‖A′
�‖2

‖A�‖2
+Cν

S

‖A′′
� ‖2

‖A�‖2
+ νCν−1

S

‖A′
�‖2

‖A�‖2
‖S′′

� ‖2
}
.

By ‖A′′
� ‖2/‖A′

�‖2 → 0, ‖S′′
� ‖2 → 0, ‖A′

�‖2/‖A�‖2 → 1, ‖A′′
� ‖2/‖A�‖2 → 0,

the expression {. . .} converges to 1 for � → ∞ (i.e., for h = h� → 0) while ν is
fixed. This proves that ν̄′′(h) → ∞ (h → 0) for

ν̄′′(h) := sup

{
ν>0 :

‖A′
�‖2

‖A�‖2
(
1+νCν−1

S ‖S′′
� ‖2
)
+Cν

S

‖A′′
� ‖2

‖A�‖2
≤ 2 for h� ≤ h

}
.

We define η(ν) := 2η′(ν) and ν̄(η) := min{ν̄′(h), ν̄′′(h)}. For ν ≤ ν̄(h),
inequality (11.59f) proves the smoothing property ‖A�S

ν
� ‖2 ≤ η(ν)‖A�‖2. ��

Usually, discretisations of elliptic differential equations satisfy the following
conditions:

There is an h-independent constant c0 such that
A′

� :=
1
2 (A� +A

H
� ) + c0I is positive definite, (11.60a)

Ch−2m
� ≤ ‖A′

�‖2 ≤ C̄h−2m
� (2m: order of the differential eq.), (11.60b)

‖A′′
� ‖2 ≤ Ch1−2m

� for A′′
� := A� −A′

� =
1

2
(A� −AH

� ) − c0I (11.60c)

(cf. Hackbusch [183, 201]). To apply Theorem 11.29, one proves the smoothing
property for the positive definite matrix A′

� and transfers this property to A� by
Theorem 11.29. Condition (11.59d) follows from (11.60b,c) by ‖A′′

� ‖2/‖A′
�‖2 ≤

O(h�) → 0. Since S′′
� = −ΘA′′

� = −A′′
� /‖A′

�‖2 in the case of the Richardson
iteration, (11.59d) also implies (11.59c). (11.59b) is always satisfied by CS = 2,
because S′

� = I −A′
�/‖A′

�‖2 (even CS = 1 if A′
� ≥ 0).

The smoothing property can be proved not only for the Richardson method but
also for the damped (block-)Jacobi iteration, the 2-cyclic Gauss–Seidel iteration (in
particular, the chequer-board Gauss–Seidel method for five-point formulae), and the
Kaczmarz iteration. Furthermore, symmetric iterations like the symmetric Gauss–
Seidel method, SSOR, and the ILU iteration (cf. deZeeuw[105]) belong to this class.
The symmetric case will be considered in §11.7.3. The smoothing property does not
hold, e.g., for the undamped Jacobi method or the SOR method with ω ≥ ωopt.
For the smoothing analysis of the iterations mentioned above, see Hackbusch [183,
§6.2].

The proof of Lemma 11.23 is based on the properties of the spectral norm for
normal matrices. Correspondingly, statements for general matrices are proved via
perturbation arguments. Nevertheless, it is possible to obtain the smoothing property



11.6 Convergence Analysis 297

for general matrices directly. Even other norms than the spectral norm are possible.
The following result by Reusken appeared in a report of 1991 and later in [323, 322].

Theorem 11.30. Let ‖·‖ be a matrix norm corresponding to a vector norm. Let
S� = I − W−1

� A� be the iteration matrix of the smoothing iteration and assume
that

‖I − 2W−1
� A�‖ ≤ 1 , (11.61a)
‖W�‖ ≤ C ‖A�‖ (11.61b)

with a constant C independent of �. Then the smoothing property (11.61c) holds:

‖A�S
ν
� ‖ ≤ C

√
2/(πν) ‖A�‖ for all ν ≥ 1. (11.61c)

The matrix in (11.61a) is the iteration matrix of Sϑ=2,�, the extrapolated version
of S� with ϑ = 2. Inequality (11.61a) does not imply convergence of Sϑ=2,�,
but characterises the weak contractivity or nonexpansivity (cf. Definition 7.3).
The proof of the theorem is based on the following lemma.

Lemma 11.31. Let the matrix B satisfy ‖B‖ ≤ 1 with respect to a matrix norm
corresponding to a vector norm. Then5

‖(I −B)(I +B)ν‖ ≤ 2

(
ν

&ν/2'

)
≤ 2ν+1

√
2/(πν).

Proof. Note that
(I −B)(I +B)ν = (I −B)

ν∑
μ=0

(
ν
μ

)
Bμ = I +

ν∑
μ=1

(
ν
μ

)
Bμ−

ν−1∑
μ=0

(
ν
μ

)
Bμ+1−Bν+1

=
(
I −Bν+1

)
+

ν∑
μ=1

[(
ν
μ

)
−
(

ν
μ−1

)]
Bμ.

By ‖Bμ‖ ≤ 1 ,
(

ν
μ−α

)
=
(
ν
α

)
and
(
ν
μ

)
≥
(

ν
μ−1

)
for μ ≤ &ν/2' we obtain

‖(I −B)(I +B)ν‖ ≤ 2 + 2

�ν/2�∑
μ=1

∣∣∣∣(νμ
)

−
(

ν

μ− 1

)∣∣∣∣
= 2 + 2

�ν/2�∑
μ=1

{(
ν

μ

)
−
(

ν

μ− 1

)}
= 2 + 2

(
ν

&ν/2'

)
− 2

(
ν

0

)
= 2

(
ν

&ν/2'

)
.

The sequence ak :=
(
2k
k

)√
k / 22k is monotonically increasing and tends to

lim ak = 1√
π

. The identity
(

ν
�ν/2�
)
= aν/2 2

ν/
√
ν/2 for even powers ν leads

to the desired estimate ak ≤ 1/
√
π . For odd ν use

(
ν

�ν/2�
)
= 1

2

(
ν+1

(ν+1)/2

)
. ��

Proof of Theorem 11.30. (I − B)(I + B)ν = 2ν+1W−1
� A� S

ν
� holds with

B := I − 2W−1
� A� ; hence,

‖A�S
ν
� ‖ = 2−ν−1‖W�(I −B)(I +B)ν‖ ≤ 2−ν−1‖W�‖‖(I −B)(I +B)ν‖.

Assumption (11.61b) and Lemma 11.31 yield the statement. ��

5 �x	 = max{n ∈ Z : n ≤ x} is the rounding down to the next integer.



298 11 Multigrid Iterations

Example 11.32. (a) Let Ci > 0 (1 ≤ i ≤ 4) be positive constants independent
of � with

C1I ≤ 1
2 (A� +A

H
� ) ≤ C2h

−2
� I,

‖ 1
2 (A� −AH

� )‖2 ≤ C3h
−1
� I,

‖A�‖2 ≥ C4h
−2
� I.

Set Θ = Θ� := h2�C1/(C1C2 +C
2
3 ) and C := (C1C2 + vC

2
3 )/(C1C4). Then

the Richardson iteration damped by Θ� satisfies the smoothing property (11.61c)
with the constant C above.
(b) Let S� be the Jacobi or Gauss–Seidel iteration damped by ϑ = 1

2 . Furthermore,
A� is assumed to be weakly diagonally dominant. Then the smoothing property
(11.61c) holds with C = 2 with respect to the row-sum norm ‖·‖∞.

Proof. (i) Theorem 3.30 proves (11.61a). (11.61b) follows with C = 1/Θ.
(ii) Since ϑ = 1/2, inequality (11.61a) is the estimation of the nondamped

Jacobi or Gauss–Seidel iterations. Weak diagonal dominance implies (11.61a).
From ‖D�‖∞ ≤ ‖D� − E�‖∞ ≤ ‖A�‖∞ for A = D − E − F (cf. (3.11a–d)),
we conclude (11.61b) with C = 1/ϑ. ��

11.6.3 Approximation Property

11.6.3.1 Formulation

For the coarse-grid correction, the fine-grid solution e� of A�e� = d� is replaced
by p e�−1 obtained from A�−1e�−1 = d�−1 := rd�. Therefore, p e�−1 ≈ e�, i.e.,
pA−1

�−1rd� ≈ A−1
� d� should be valid. We quantify this requirement by

‖pA−1
�−1rd� −A−1

� d�‖2 ≤ CA‖d�‖2/‖A�‖2 for � ≥ 1, d� ∈ X�.

This inequality can be rewritten by the matrix norm (spectral norm) as the approxi-
mation property

‖A−1
� − pA−1

�−1r‖2 ≤ CA/‖A�‖2 for all � ≥ 1. (11.63)

In general, proofs of the approximation property (11.63) are not of algebraic
nature but use (at least indirectly) properties of the underlying boundary value
problem. One possible route to the proof is as follows. Assume that A�−1 = rA� p
holds according to (11.20). For an arbitrary restriction r′ : X� → X�−1, the
following factorisation holds:

A−1
� − pA−1

�−1r = (I − pA−1
�−1rA�)A

−1
� = (I − pA−1

�−1rA�)(I − p r′)A−1
� .



11.6 Convergence Analysis 299

Under suitable conditions,6 the solution v� := A−1
� f� is sufficiently smooth, so

that the interpolation error

d� = (I − pr′)v� = v� − pr′v�

can be estimated by ‖d�‖2 ≤ C‖f�‖2/‖A�‖2. The same tools can be used to show
that ‖I − pA−1

�−1rA�‖ ≤ const. Together, one obtains the approximation property
(11.63). In case A�−1 is not the Galerkin product, see Hackbusch [183, Criteria
6.3.35 and 6.3.38].

The easiest proof of the approximation property can be given for Galerkin
discretisations. The discretisation, together with the prolongations and restrictions,
is defined in §§11.6.3.2–11.6.3.3. The crucial part of the proof of the approximation
property is given in §11.6.3.4.

11.6.3.2 Galerkin Discretisation

The boundary value problem is described in the variational form (E.5). Instead of a
single finite-dimensional subspace Vn ⊂ V we consider a hierarchy of subspaces

V0 ⊂ V1 ⊂ . . . ⊂ V�−1 ⊂ V� ⊂ . . . ⊂ V,

where V� replaces the notation Vn�
(n� = dim(V�)) used in §E.2. Similarly, all

mappings Pn = Pn�
, . . . used in §§E.2–E.6 are now denoted by P� : V� → V, . . .

11.6.3.3 Canonical Prolongation and Restriction

Section E.6 discusses the relation of Galerkin discretisations using two subspaces
Vn′ ⊂ Vn, now denoted by V�−1 ⊂ V� . According to Proposition E.15, there are
mappings p : X�−1 → X� and r : X� → X�−1 with

P� p = P�−1, r = p∗, rR� = R�−1. (11.64)

Since p and r are the natural choice (see the diagram in (E.19)), they are called the
canonical prolongation and the canonical restriction.

Remark 11.33. (a) Using the representation p = R̂�P�−1 in (E.18) and the bounds
in (E.10a,b) and (E.11c), we get the uniform estimates

‖p‖X�←X�−1
= ‖r‖X�−1←X�

≤ CP C̄P for all � ≥ 1.

(b) The matrices A� and A�−1 are connected by (11.20):

A�−1 = r A� p for all � ≥ 1.

6 In the case of difference schemes, the theory of discrete regularity can be used; cf. Hackbusch
[180, 181], [183, §6.3.2.1], [201, §9.2], and Jovanovič–Süli [229].



300 11 Multigrid Iterations

11.6.3.4 Proof of the Approximation Property

Based on the 2m-regularity (E.13b), the error estimate (E.14) is proved in §E.5:

‖E�‖U←U ≤ CEh
m
� for all � ≥ 1, (11.65a)

where E� := A−1 − P�A
−1
� R�. 2m is the order of the differential operator. The

inverse estimate, together with the boundedness of the bilinear form, yields (E.12c):

‖A�‖2 ≤ CKh
−2m
� for all � ≥ 1. (11.65b)

The inequality
‖R̂�‖X�←U = ‖P̂�‖U←X�

≤ CP (11.65c)

is mentioned in (E.11c). A last condition for the approximation property is almost
identical to the inequality n� ≤ Ch n�−1 used in §11.5.3:

h�−1 ≤ Chh� for all � ≥ 1. (11.65d)

Usually, (11.65d) holds with Ch = 2.

Theorem 11.34. Let A� be the matrices (E.7b) of the Galerkin discretisation.
Choose the canonical p and r . Assume (11.65a–d). Then the approximation
property (11.63) holds.

Proof. Use inequality (11.65a) for � and �− 1:

‖P�A
−1
� R� − P�−1A

−1
�−1R�−1‖U←U

= ‖E�−1 − E�‖U←U ≤ CE

(
h2m� + h2m�−1

)
.

(11.65d) implies h2m�−1 ≤ C2m
h h2m� . From

h2m� ≤ CK/ ‖A�‖2 (cf. (11.65b)) and P� = P�−1p, R� = rR−1
� (cf. (11.64)),

we conclude that

‖P�(A
−1
� − pA−1

�−1r)R�‖U←U ≤ C ′/ ‖A�‖2

with C ′ := CECK(1 + C2m
h ). Multiplying P�(A

−1
� − pA−1

�−1r)R� by R̂� from
the left and by P̂� from the right and using (E.11b,c), we obtain

‖A−1
� − pA−1

�−1r‖2 ≤ ‖R̂�‖X�←U‖P�(A
−1
� − pA−1

�−1r)R�‖U←U‖P̂�‖U←X�

≤ C ′C2
P / ‖A�‖2 ,

which is the approximation property with CA := C ′C2
P . ��



11.6 Convergence Analysis 301

11.6.4 Convergence of the Two-Grid Iteration

As mentioned in §11.2.2, ρ(MTGM(ν1,ν2)
� )=ρ(M

TGM(ν,0)
� ) holds for ν = ν1+ν2,

so that we may restrict our considerations to ν = ν1 > 0 , ν2 = 0. This choice
is optimal for statements concerning the contraction number ‖MTGM(ν,0)

� ‖2 with
respect to the spectral norm. The following Theorems 11.35 and 11.36 correspond
to the cases ν̄(h) = ∞ and ν̄(h) < ∞ , respectively.

Theorem 11.35. Assume the smoothing and approximation properties (11.58a–c),
(11.63) with ν̄(h) = ∞ . For given 0 < ζ < 1, there exists a lower bound ν such
that

‖MTGM(ν,0)
� ‖2 ≤ CAη(ν) ≤ ζ for all ν ≥ ν , � ≥ 1. (11.66)

Here, CA and η(ν) are the quantities in (11.63) and (11.58a,b). By ζ < 1, in-
equality (11.66) implies convergence of the two-grid iteration. Note that the con-
traction bound CA η(ν) is independent of h�.

Proof. The two-grid iteration matrix can be factorised as follows:

M
TGM(ν,0)
� = (I − pA−1

�−1rA�)S
ν
� =
[
A−1

� − pA−1
�−1r
]
[A�S

ν
� ]

(cf. Lemma 11.11). Estimating both factors by (11.58a) and (11.63), we obtain the
inequality (11.66). ��

Theorem 11.36. Assume the smoothing and approximation properties (11.58a–c),
(11.63), including the case ν̄(h) < ∞ . For all 0 < ζ < 1 , there exist bounds
h̄ > 0 and ν such that (11.66) holds for all ν∈ [ ν, ν̄(h)) and all h� with h� ≤ h̄,
where the interval [ ν, ν̄(h)) is not empty (i.e., ν < ν̄(h)).

Proof. Choose ν as in Theorem 11.35. Because of ν̄(h) → ∞ (h → 0), h̄ can
be chosen such that ν̄(h�) > ν for all h� ≤ h̄ . ��

11.6.5 Convergence of the Multigrid Iteration

In Theorem 11.19, the representation MMGM(ν,0)
� =M

TGM(ν,0)
� − . . . of the multi-

grid iteration matrix is shown. We are exploiting the fact that the perturbation ‘. . .’
is sufficiently small; hence, two-grid convergence implies multigrid convergence.
Besides the smoothing and approximation properties, we require additional condi-
tions, which are easy to satisfy. The first one is

‖Sν
� ‖2 ≤ CS for all � ≥ 1, 0 < ν < ν̄ := min

�≥1
ν̄(h�) (11.67a)

with ν̄(h�) defined in (11.58c).



302 11 Multigrid Iterations

Exercise 11.37. Assume S� := S′
� + S′′

� . Let (11.67a) hold for S′ν
� and assume

(11.59c): lim�→∞ ‖S′′
� ‖2 = 0 . Prove (11.67a) for S� (similar to Theorem 11.29).

Exercise 11.38. Prove the inequalities

C−1
p ‖x�−1‖2 ≤ ‖px�−1‖2 ≤ C̄p ‖x�−1‖2 (x�−1 ∈ X�−1, � ≥ 1) (11.67b)

for the canonical choice (11.64) by using (E.9) with Cp = C̄p := CP C̄P .

The identity pA−1
�−1rA�S

ν
� = Sν

� −
[
A−1

� − pA−1
�−1r
]
A�S

ν
� = Sν

� −MTGM(ν,0)
�

implies the next statement.

Lemma 11.39. Let (11.67a,b) be valid. Then

‖A−1
�−1rA�S

ν
� ‖2 ≤ Cp(CS + ‖MTGM(ν,0)

� ‖2). (11.67c)

Let ν = ν1 > 0 and ν2 = 0 be the numbers of smoothing steps as in §11.6.4.
Using (11.67b, c), we can estimate the multigrid iteration matrix in (11.42a,b) by

‖MMGM(ν,0)
� ‖2 ≤ ‖MTGM(ν,0)

� ‖2 + C∗‖MMGM(ν,0)
�−1 ‖γ2 for � ≥ 1 (11.68a)

with C∗ := CpC̄p(CS + 1).

Here, ν is assumed to be chosen large enough so that ‖MTGM(ν,0)
� ‖2 ≤1 according

to Theorem 11.35 or 11.36. Together with MMGM
0 = 0 (cf. (11.42a)), inequality

(11.68a) leads to the recursive inequalities (11.68c) for the quantities ζ� :

ζ� := ‖MMGM(ν,0)
� ‖2 (� ≥ 0), (11.68b)

ζ0 := 0, ζ� ≤ ζ + C∗(ζ�−1)
γ for � ≥ 1. (11.68c)

ζ is the �-independent bound for the two-grid convergence, whose existence is
stated by Theorem 11.35 or 11.36:

‖MTGM(ν,0)
� ‖2 ≤ ζ . (11.68d)

Analysing the fixed-point equation x = ζ + C∗xγ , we obtain the next result.

Lemma 11.40. Assume γ ≥ 2 , C∗γ > 1, and ζ ≤ γ−1
γ / γ−1

√
C∗γ. Then all

solutions of the inequalities (11.68c) are bounded by

ζ� ≤ ζ∗ ≤ γ

γ − 1
ζ < 1 for all � ≥ 0. (11.69)

Exercise 11.41. For the most interesting case of γ = 2, prove that

ζ∗ = 2 ζ /
(
1 −
√

1 − 4C∗ζ
)

for ζ∗ in (11.69).

Since, by (11.68b), ζ� are the contraction number bounds, we obtain the desired
convergence result.



11.6 Convergence Analysis 303

Theorem 11.42 (multigrid convergence). Assume the smoothing and the approxi-
mation properties (11.58a–c) and (11.63), the conditions (11.67a,b), and,
in addition, γ ≥ 2 . As in Theorems 11.35 and 11.36, for every 0 < ζ ′ < 1 there
are ν and h̄ > 0 such that

‖MMGM(ν,0)
� ‖2 ≤ ζ ′ < 1 for ν ≤ ν < ν̄ := min

�≥1
ν̄(h�),

provided that h1 ≤ h̄. Here, ν < ν̄ holds. In the case of ν̄(h) = ∞, one may set
h̄ := ∞ (i.e., the choice of the grid size is not restricted).

Proof. Choose ζ := γ−1
γ ζ ′ small enough, so that ζ fulfils the assumptions of

Lemma 11.40. According to Theorem 11.36, ν and h̄ have to be chosen in such
a way that (11.68d) holds: ‖MTGM(ν,0)

� ‖2 ≤ ζ for ν ≤ ν < ν̄. Lemmata 11.39
and 11.40 give ζ� = ‖MMGM(ν,0)

� ‖2 ≤ γ
γ−1ζ ≤ ζ ′. ��

11.6.6 Case of Weaker Regularity

The proof of the approximation property uses the 2m-regularity (cf. (E.13b)) which,
in the case of the Poisson equation, is A−1 = −Δ−1 : U = L2(Ω) = H0(Ω) →
H2(Ω) ∩ H1

0 (Ω). This assumption is true for the unit square Ω = (0, 1) × (0, 1)
as for any convex domain, but it does not hold, e.g., for domains with re-entrant
corners. In the general case, one obtains only statements of the form

A−1 : H−σm(Ω) → H(2−σ)m(Ω) ∩Hm
0 (Ω) for some σ ∈ (0, 1)

(cf. Hackbusch [193, §9.1]). A similar statement may be assumed for A∗. If σ<1,
the approximation property (11.63) cannot be proved but has to be formulated by
the help of other norms.

Let |·|t for −1 ≤ t ≤ 1 be a discrete analogue of the Sobolev norm Htm(Ω).
We define U� := (X�, |·|σ) and F� := (X�, |·|−σ). Then

‖A−1
� − pA−1

�−1r‖U�←F�
≤ (CA/ ‖A�‖2)1−σ (11.70)

can be shown (cf. Hackbusch [183, §6.3.1.3]; cf. (E.15)). For the notation of the
norm on the left-hand side, compare with (B.11). For A� > 0, the norms can be
defined by

‖x�‖U�
= |x�|σ := ‖Aσ/2

� x�‖2, ‖f�‖F�
= |f�|−σ := ‖A−σ/2

� f�‖2. (11.71)

In the general case, replace the matrix A� in (11.71) by the positive definite part
A′

� :=
1
2 (A� +A

H
� ) + c0I (cf. (11.60a)).

Part (11.58a) of the smoothing property (11.58a–c) has to be adapted to the new
norms. Inequality (11.58a) becomes

‖A�S
ν
� ‖F�←U�

≤ η(ν) ‖A�‖1−σ
2 for 0 ≤ ν ≤ ν̄(h�). (11.72)



304 11 Multigrid Iterations

Exercise 11.43. Let S� be the Richardson iteration (11.55a,b) and assume A� > 0.
Using the norms in (11.71), prove for all ν ≥ 0 that

‖A�S
ν
� ‖F�←U�

= ‖A1−σ
� (I −ΘA�)

ν‖2 ≤
[
η0(

ν
1−σ ) ‖A�‖2

]1−σ

. (11.73)

The two-grid contraction number with respect to ‖·‖U�
can be concluded from

the product of (11.70) and (11.72):

‖MTGM(ν,0)
� ‖U�←U�

≤ η(ν)C 1−σ
A . (11.74)

Similar to §11.6.5, we obtain a corresponding convergence result for the multigrid
iteration.

Consider the bound η(ν) =
[
η0(

ν
1−σ )CA

]1−σ
in (11.73). For the standard

case discussed in §§11.6.2–11.6.5, we had σ = 0 and the bound η(ν) in (11.74)
behaved as O( 1ν ). For 0<σ<1, the contraction number behaves as O(1/ν1−σ).
The value σ = 1 is not sufficient because η(ν) fails to fulfil (11.58b).

11.7 Symmetric Multigrid Methods

The multigrid analysis above addresses the general (nonsymmetric) case in order
to emphasise that multigrid iterations are not restricted to symmetric or even only
positive definite problems. However, the symmetric case admits some stronger
statements that are covered in this chapter.

11.7.1 Symmetric and Positive Definite Multigrid Algorithms

We consider the two-grid algorithm (11.22b) and the multigrid iteration (11.33).
The required symmetry conditions are

r = p∗, ν1 = ν2 =
ν

2
, Ŝ� = S∗

� for all � ≥ 0 (11.75a)

(cf. (11.17)). The second condition requires the post-smoothing Ŝ� to be adjoint to
the pre-smoothing S�. Occasionally, we need the Galerkin product property:

A�−1 = r A� p . (11.75b)

The Galerkin product (11.75b), together with r = p∗, ensures that A�max
= AH

�max

implies A� = AH
� for all 0 ≤ � < �max. Otherwise, this property must be required

explicitly:

A�max = AH
�max

=⇒ A� = AH
� for all 0 ≤ � < �max, (11.75c)



11.7 Symmetric Multigrid Methods 305

Lemma 11.44. Let (11.75a,c) be valid. Then the two- and multigrid iterations
Φ
TGM( ν

2 ,
ν
2 )

� and ΦMGM( ν
2 ,

ν
2 )

� are symmetric: ΦTGM( ν
2 ,

ν
2 )

� , Φ
MGM( ν

2 ,
ν
2 )

� ∈ Lsym.

Proof. (i) We have to prove that the Hermitian symmetry of A=A�max implies the
symmetry of the matrix N�max =N

MGM( ν
2 ,

ν
2 )

�max
of the second normal form (cf. (5.4)).

(ii) Assume A�max
= AH

�max
and by (11.75c) that A� = AH

� holds for all

levels. First, we prove ΦTGM(ν/2,ν/2)
� ∈ Lsym. Note that ΦCGC

� ∈ Lsym, since
NCGC

� = pA−1
�−1r in Remark 11.6 is symmetric. By Corollary 5.30, the two-grid

iteration ΦTGM( ν
2 ,

ν
2 )

� =(S∗
� )

ν◦ΦCGC
� ◦Sν

� = (Sν
� )

∗ ◦ΦCGC
� ◦Sν

� is also symmetric.
(iii) Next, we use the definition (11.42a,b) for an induction on �. Assume that

Φ
MGM( ν

2 ,
ν
2 )

�−1 ∈ Lsym. Then
(
Φ
MGM( ν

2 ,
ν
2 )

�−1

)γ
is also symmetric and, by Criterion 5.5,

the matrix MMGM( ν
2 ,

ν
2 )

�−1 A−1
�−1 is symmetric. The steps (11.33c–e) define an coarse-

grid correction Φ̂CGC
� with the iteration matrix MCGC

� := p
(
MMGM

�−1

)γ
A−1

�−1rA�.

Obviously, MCGC
� A−1

� = p
[(
MMGM

�−1

)γ
A−1

�−1

]
r ∈ Lsym holds, and Criterion 5.5

proves the symmetry of Φ̂CGC
� . As in part (ii), the symmetry of ΦMGM(ν/2,ν/2)

�

follows from the representation ΦMGM(ν/2,ν/2)
� = (Sν

� )
∗ ◦ Φ̂CGC

� ◦ Sν
� . ��

The positive definiteness of ΦTGM( ν
2 ,

ν
2 )

� and ΦMGM( ν
2 ,

ν
2 )

� is considered next.

Lemma 11.45. Assume (11.75a) and A� > 0. Set M� := M
MGM(ν/2,ν/2)
� and

W� :=W
MGM(ν/2,ν/2)
� . The following statements also hold for the two-grid case.

(a) Assume that the iteration ΦMGM( ν
2 ,

ν
2 )

� converges. Then it is positive definite,
i.e., ΦMGM( ν

2 ,
ν
2 )

� ∈ L pos , and converges monotonically with respect the energy
norm ‖·‖A�

. The transformed iteration matrices A1/2
� M�A

−1/2
� are Hermitian. The

matrix W� of the third normal form is positive definite and fulfils

(1 − ρ�)W� ≤ A� ≤ (1 + ρ�)W� with ρ� = ρ(M�) = ‖A
1
2

� M�A
− 1

2

� ‖2. (11.76a)

If, according to Theorems 11.35 or 11.42, ρ� ≤ ρ < 1 is h�-independent, then the
condition (11.76b) is also h�-independent:

κ(W−1
� A�) ≤ 1 + ρ�

1 − ρ�
≤ 1 + ρ

1 − ρ
. (11.76b)

(b) In the case of (11.75b), the inequalities (11.76a,b) can be improved:

(1 − ρ�)W� ≤ A� ≤ W�, κ(W−1
� A�) ≤ 1/(1 − ρ�) ≤ 1/(1 − ρ).

Proof. The representations (11.23) and (11.42a,b) show that A�M�A
−1
� = MH

� ,
because A� Ŝ�A

−1
� = SH

� according to (5.2b). This proves part (a). Part (b) is
obtained from Theorem 3.34c. Part (c) is based on the property A1/2

� M�A
−1/2
� ≥ 0,

which will be proved in (11.87b). ��



306 11 Multigrid Iterations

11.7.2 Two-Grid Convergence for ν1 > 0 , ν2 > 0

The case ν1 = ν > 0 and ν2 = 0 is treated in §11.6. The technique used there can
also be applied to the general case ν1 ≥ 0, ν2 ≥ 0, ν := ν1+ν2 > 0, and especially
to ν1 = ν2 = ν/2.

Exercise 11.46. Assume (11.75a) without the condition ν1 = ν2. Prove

Φ
TGM(ν1,ν2)
� =

(
Φ
TGM(ν2,ν1)
�

)∗
, (11.77a)

Φ
TGM(ν1,ν2)
� = Φ

TGM(0,ν2)
� ◦ ΦTGM(ν1,0)

� in the case of (11.75b). (11.77b)

Under assumption (11.75b), the statements (11.77c,d) for the two-grid iteration
matrices M�(ν1, ν2) :=M

TGM(ν1,ν2)
� follow from (11.77a,b):

M�(ν1, ν2) =M�(0, ν2)M�(ν1, 0) = A−1
� M�(ν2, 0)

HA�M�(ν1, 0), (11.77c)

A
1
2

� M�(ν1, ν2)A
− 1

2

� =
(
A

1
2

� M�(ν2, 0)A
− 1

2

�

)H(
A

1
2

� M�(ν1, 0)A
− 1

2

�

)
. (11.77d)

For estimating A
1/2
� M�(ν, 0)A

−1/2
� , we may use the approximation property

(11.78a) and the smoothing property (11.78b):

‖A1/2
� (A−1

� − pA−1
�−1r)‖2 ≤

√
CA/ ‖A�‖2 , (11.78a)

‖A�S
ν
�A

−1/2
� ‖2 ≤

√
η(2ν) ‖A�‖2 , (11.78b)

which correspond to (11.70) and (11.72) for the energy norm ‖·‖U�
= ‖·‖A�

and
the Euclidean norm ‖·‖F�

= ‖·‖2. Under assumption (11.75b), inequality (11.78a)
is equivalent to the approximation property (11.63). In the case of Richardson’s
iteration (11.55a,b), inequality (11.78b) holds because of

‖A�S
ν
�A

−1/2
� ‖2 = ‖A1/2

� Sν
� ‖22 = ‖A�S

2ν
� ‖2 ≤ η0(2ν)‖A�‖2

with η(2ν) = η0(2ν) (η0 in (11.56)). The inequalities (11.78a,b) yield the estimate

‖MTGM(ν,0)
� ‖A�

= ‖A1/2
� M

TGM(ν,0)
� A

−1/2
� ‖2 ≤

√
η(2ν)CA.

Using (11.77d), we finally prove the following convergence theorem.

Theorem 11.47. Assume (11.75a,b) without ν1 = ν2. The smoothing and approxi-
mation properties (11.78a,b) imply

‖MTGM(ν1,ν2)
� ‖A�

≤ CA

√
η(2ν1)η(2ν2),

‖MTGM(ν/2,ν/2)
� ‖A�

≤ CA η(ν).

Two-grid convergence follows as in Theorems 11.35–11.36.

As in §11.6.5, multigrid convergence can be concluded from the two-grid
convergence. However, it has to be emphasised that the proof technique in §11.6.5
requires γ ≥ 2 and therefore excludes the V-cycle (γ = 1).



11.7 Symmetric Multigrid Methods 307

11.7.3 Smoothing Property in the Symmetric Case

In particular, condition (11.75b): Ŝ� = S∗
� is satisfied if Ŝ� = S� is a symmetric

smoothing iteration. For symmetric iterations, the proof of the smoothing property
is rather easy.

Lemma 11.48. Let S� = I − W−1
� A� be the iteration matrix of a positive definite

iteration S� and assume that γW� ≤A� ≤ ΓW� for all �≥ 0 with 0 ≤ γ ≤ Γ < 2.
Then

‖A�S
ν
� ‖2 ≤ ‖W�‖2 max{η 0(ν), Γ |1 − Γ |ν}

implies the smoothing property (11.58a–c) with ν̄(h) = ∞ if there is some CW with

‖W�‖2 ≤ CW ‖A�‖2 for all � > 0. (11.79)

Proof. Define Y :=W
−1/2
� R�W

−1/2
� with R� in A� =W� −R� and note that

‖A�S
ν
� ‖2 = ‖W 1/2

� (I − Y )Y νW
1/2
� ‖2 ≤ ‖W 1/2

� ‖22 ‖(I − Y )Y ν‖2.

The first factor is equal to ‖W�‖2, the second can be estimated as in Lemma 11.23
by max{η0(ν), Γ |1 − Γ |ν} because of (1 − Γ )I ≤ Y ≤ (1 − γ)I . ��

The following variant of the estimate is due to Wittum [403]. The estimate is
helpful if good bounds for ‖R�‖2 are known.

Lemma 11.49. In addition to the assumptions of Lemma 11.48, assume ν ≥ 2.
Define R� :=W� −A� . Then

‖A�S
ν
� ‖2 ≤ ‖S�‖2 ‖R�‖2 max{η0(ν − 2), Γ |1 − Γ |ν−2}.

Proof. Define Y as above, estimate ‖A�S
ν
� ‖2 by ‖W 1/2

� Y ‖22‖(I − Y )Y ν−2‖2
and use ‖W

1
2

� Y ‖22 = ‖W− 1
2

� R2
� W

− 1
2

� ‖2 = ρ(W
− 1

2

� R2
� W

− 1
2

� ) = ρ(W−1
� R2

� ) ≤
‖W−1

� R�‖2‖R�‖2 = ‖S�‖2‖R�‖2 . ��

Exercise 11.50. Prove under the same assumption as in Lemma 11.48 that

‖A�S
ν
�A

−1
� ‖2 ≤

√
‖W�‖2 max{η0(2ν), Γ |1 − Γ |2ν}. (11.80)

Inequality (11.80) can be regarded as a modification of (11.78b).
The condition Γ < 2 in 0 < γW� ≤ A� ≤ ΓW� coincides with the conver-

gence condition in Theorem 3.34b. However, γ = 0 is sufficient for the smoothing
property, although the convergence rate ρ(S�) becomes worse the smaller γ is.
Since damping corresponds to the replacement of W� by ϑ−1W�, we obtain the
following.

Remark 11.51. After a possibly necessary damping, all positive definite iterations
satisfy the assumption γW� ≤ A� ≤ ΓW� with 0 ≤ γ ≤ Γ < 2.



308 11 Multigrid Iterations

11.7.4 Strengthened Two-Grid Convergence Estimates

To simplify the following considerations, the smoothing iteration S� is assumed to
satisfy the inequality γW� ≤ A� ≤ ΓW� with 0 ≤ γ ≤ Γ ≤ 1. As mentioned
in Remark 11.51, this assumption can always be achieved by suitable damping.
However, the following statements also hold in a somewhat modified form for
0 ≤ γ ≤ Γ < 2 . The assumptions are

Ŝ� = S�, Ŝ� = S� = I −W−1
� A�, 0 < A� ≤ W�. (11.81)

The approximation property is required in the form (11.70) with ‖·‖U�
:= ‖·‖W�

,
‖·‖F�

:= ‖·‖W−1
�

(see the following Remark 11.57):

‖W 1/2
� (A−1

� − pA−1
�−1r)W

1/2
� ‖2 ≤ CA for all � ≥ 1. (11.82)

Lemma 11.52. Assume (11.75a,b). The approximation property (11.82) is equiva-
lent to the following inequality:

0 ≤ A−1
� − pA−1

�−1r ≤ CAW
−1
� for all � ≥ 1. (11.83)

Proof. (C.3f) yields −CAI ≤ W
1
2

� (A−1
� − pA−1

�−1r)W
1
2

� ≤ CAI . Multiplying by

W
− 1

2

� from both sides yields the bounds ±CAW
−1
� for A−1

� − pA−1
�−1r. The lower

bound −CAI can be replaced by 0, as can be concluded from Lemma 11.53. ��

We postpone the proof of the modified approximation property (11.82) until Re-
mark 11.57. Now we transform all quantities into a form better suited to symmetry:

p̌ := A
1/2
� pA

−1/2
�−1 , ř := p̌∗ = A

−1/2
�−1 rA

1/2
� , Q� := I − p̌ ř,

X� := A
1/2
� W−1

� A
1/2
� , Š� := A

1/2
� S�A

−1/2
� = I −X�.

Since (11.75b) can be rewritten as řp̌ = I , the following lemma can be concluded.

Lemma 11.53. Under the assumption (11.75a,b), Q� = I − p̌ ř is an orthogonal
projection: Q� = QH

� . As any orthogonal projection, it fulfils

0 ≤ Q� ≤ I for all � ≥ 1. (11.84a)

Q� ≥ 0 also implies 0 ≤ A
−1/2
� Q�A

−1/2
� = A−1

� − pA−1
�−1r, so that the proof

of the first inequality in (11.83) is completed. Multiplying (11.83) by A
1/2
� from

both sides yields the next lemma.

Lemma 11.54. Assume (11.75a,b). The statements (11.82) or (11.83) are equivalent
to

0 ≤ Q� ≤ CAX� for all � ≥ 1. (11.84b)

According to (11.23), the transformed two-grid iteration matrix is



11.7 Symmetric Multigrid Methods 309

M̌�(ν1, ν2) := A
1/2
� M

TGM(ν1,ν2)
� A

−1/2
� = Šν2

� Q�Š
ν1

� . (11.85)

In contrast to Theorems 11.35 to 11.55, it is now possible to prove convergence for
all ν > 0.

Theorem 11.55 (two-grid convergence). Assume (11.75a,b), (11.81), and the ap-
proximation property (11.82). Then the two-grid iteration converges monotonically
with respect to the energy norm ‖·‖A�

:

ρ(M
TGM(ν/2,ν/2)
� ) = ‖MTGM(ν/2,ν/2)

� ‖A�
(11.86)

=
∥∥∥M̌�

(ν
2
,
ν

2

)∥∥∥
2

≤
{
CAη0(ν) if CA ≤ 1 + ν
(1 − 1/CA)

ν if CA > 1 + ν

}
< 1.

Proof. It remains to show the inequality ‘≤’ in (11.86). The inequality (11.87a)
following from (11.84a,b) can be inserted into (11.85) and yields (11.87b):

0 ≤ Q� ≤ αCAX� + (1 − α)I for all 0 ≤ α ≤ 1, (11.87a)

0 ≤ M̌� ≤ Š
ν/2
� [αCAX� + (1 − α)I] Š

ν/2
� for all 0 ≤ α ≤ 1. (11.87b)

Since Š� = I −X�, the right-hand side of (11.87b) is a polynomial f(X�;α) with

f(ξ;α) := (1 − ξ)ν(1 − α+ αCA ξ). (11.87c)

For all 0 ≤ α ≤ 1, inequality 0 ≤ X� ≤ I (cf. (11.81)) implies the estimate

‖M̌�‖2 ≤ ‖f(X�;α)‖2 ≤ m(α) := max{f(ξ;α) : 0 ≤ ξ ≤ 1}.

In particular, for α = 1, we obtain the bound CAη0(ν). If 1 + ν < CA, the value
α∗ := ν

CA−1 belongs to [0, 1] and yields the better bound m(α∗) = (1 − 1
CA

)ν . ��

Exercise 11.56. Prove the statements of Lemmata 11.52, 11.54 and Theorem 11.55
under the assumption rA� p ≤ A�−1 instead of (11.75b).

It remains to discuss the approximation property (11.82).

Remark 11.57. Assume the approximation property in the original form (11.63):
‖A−1

� − pA−1
�−1r‖2 ≤ C ′

A/ ‖A�‖2. Furthermore, let (11.79) be valid: ‖W�‖2 ≤
CW ‖A�‖2. Then (11.82) is satisfied by CA := C ′

ACW .

Exercise 11.58. Assume (11.75a,b) without ν1 = ν2, as well as (11.81) and ν =

ν1 + ν2 > 0. Prove that the two-grid iteration ΦTGM(ν1,ν2)
� converges monotoni-

cally with respect to the energy norm ‖·‖A�
. What is the h�-independent contraction

number? Hint: First, use (11.77d) to estimate ‖M̌�(
ν
2 , 0)‖2 and thereafter apply

(11.77d) to ‖M̌�(ν1, ν2)‖2.

In the proof of Theorem 11.55, the smoothing property is also used indirectly;
however, now it is formulated by the polynomial (11.87c) for arbitrary 0 ≤ α ≤ 1
instead of α = 1.



310 11 Multigrid Iterations

11.7.5 V-Cycle Convergence

We apply the technique of §11.7.4 to the multigrid method. Since Theorem 11.42
excludes the V-cycle (γ = 1), we concentrate on this case. For another proof, see
Braess–Hackbusch [65].

Theorem 11.59. Under the same assumptions (11.75a,b), (11.81), (11.82) as in
Theorem 11.55, the V-cycle (γ = 1) converges monotonically with respect to the
energy norm ‖·‖A�

with the rate

ρ
(
MV

� (
ν
2 ,

ν
2 )
)
=
∥∥MV

� (
ν
2 ,

ν
2 )
∥∥
A�

≤ CA

CA + ν

Proof. For γ = 1, abbreviate MMGM
� by MV

� . The recursive equations (11.42a,b)
become

MV
0 (ν1, ν2)=0, MV

� (ν1, ν2) =M
TGM(ν1,ν2)
� + Sν

� pM
V
�−1(ν1, ν2)A

−1
�−1rA�S

ν
� .

Transformation into the symmetric form yields

M̌V
� := A

1/2
� MV

� (ν1, ν2)A
−1/2
� = M̌

TGM(ν1,ν2)
� + Šν2

� p̌M̌
V
�−1řŠ

ν1

� (11.88)

(11.85)= Šν2

�

{
I − p̌

[
I − M̌V

�−1

]
ř
}
Šν1

� for � ≥ 1, M̌V
0 = 0.

In the following, choose M̌V
� := M̌V

� (
ν
2 ,

ν
2 ), i.e., ν1 = ν2 = ν

2 . Using (11.88),
we obtain

M̌V
� ≥ 0

by induction: M̌V
0 = 0 and I − p̌

[
I − M̌V

�−1

]
ř ≥ I − p̌ ř = Q� ≥ 0. Hence, the

statements (11.89a) and (11.89b) are equivalent:

‖MV
� ( ν2 ,

ν
2 )‖A�

= ‖M̌V
� ‖2 ≤ ζ� (M̌V

� := M̌V
� (

ν
2 ,

ν
2 )), (11.89a)

0 ≤ M̌V
� ≤ ζ�I . (11.89b)

The induction hypothesis is 0 ≤ M̌V
�−1 ≤ ζ�−1I with ζ�−1 := CA

CA+ν . Inserting
this inequality into (11.88), we arrive at

0 ≤ M̌V
� ≤ Š

ν/2
� {I − (1 − ζ�−1)p̌ ř} Šν/2

� = Š
ν/2
� {(1 − ζ�−1)Q� + ζ�−1I} Šν/2

�

≤
(11.87a)

Š
ν/2
�

{
(1 − ζ�−1) [αCAX� + (1 − α)I] + ζ�−1I

}
Š
ν/2
�

for all 0 ≤ α ≤ 1. For α ∈ [0, 1], the variable β := (1− ζ�−1)(1−α)+ ζ�−1 varies
in [ζ�−1, 1]. Substitution of α by β yields

0 ≤ M̌V
� ≤ Š

ν/2
� {(1 − β)CAX� + βI} Šν/2

� for all ζ�−1 ≤ β ≤ 1.

The right-hand side is the polynomial f(ξ;β) := (1 − ξ)ν [β + (1 − β)CAξ] for
ξ = X� and can be estimated by

‖f(X�;β)‖2 ≤ m(β) := max{|f(ξ;β)| : 0 ≤ ξ ≤ 1} (cf. (11.87c,d)).



11.7 Symmetric Multigrid Methods 311

For β = ζ�−1 = CA/(CA + ν), one finds m(β) = f(0;β) = β = CA/(CA + ν).
Hence, (11.89b) holds with ζ� = CA/(CA + ν). ��

Exercise 11.60. (a) Under the same assumptions, prove

M̌V
� (0, ν2) M̌

V
� (ν1, 0) = M̌V

� (ν1, ν2)

and discuss convergence for ν = ν1 + ν2 > 0.
(b) Prove the statement of Theorem 11.59 under the weaker condition rA� p ≤A�−1

instead of (11.75b).

The condition A� ≤ W� in (11.81) can be generalised to A� ≤
√
2 W� (cf.

Wittum [402, Proposition 4.2.4]).
Obviously, monotone and h�-independent convergence can also be shown

for the W-cycle (more generally, for γ ≥ 2). For this case (assuming CA ≥ 1),
one finds, e.g., the estimate∥∥MW

� (ν/2, ν/2)
∥∥
A�

≤
√
CA /

(√
CA + ν

)
.

In the case of weaker regularity (cf. §11.6.6) and for γ = 2 (W-cycle), one can
still prove ‖MW

� (ν/2, ν/2)‖A�
≤ O(ν σ−1) < 1 for all ν > 0.

V-cycle convergence without full regularity assumptions is proved by Brenner
[79]. See also §12.9.3.

11.7.6 Unsymmetric Multigrid Convergence for all ν > 0

The analysis in §11.6 shows multigrid convergence for sufficiently large ν ≥ ν.
In the symmetric case, §11.7.5 ensures convergence for all ν > 0 and arbitrarily
coarse h0. In the general case, we still obtain convergence for all ν = ν1 + ν2 > 0;
however, h0 must be sufficiently small: h0 ≤ h̄. The proof technique is the same
as for Theorem 11.29.

Theorem 11.61. Let the matrices A� (� ≥ 0) be split into A� = A′
� + A

′′
� such that

A′
� > 0. Let S� and S′

� be the iteration matrices of the corresponding smoothing
iterations S� and S ′

�. For A′′
� and S′′

� := S� − S′
�, assume

‖A′−1/2
� A′′

�A
′−1/2
� ‖2 ≤ C1h

κ
� , ‖A′1/2

� S′′
� A

′−1/2
� ‖2 ≤ C2h

κ
� (11.90a)

with κ > 0. Assume that the following norms are bounded by 1:

‖A′1/2
� S′

�A
′−1/2
� ‖2, ‖A′1/2

� pA
′−1/2
�−1 ‖2, ‖A′−1/2

�−1 rA
′1/2
� ‖2 ≤ 1 (11.90b)

for all � ≥ 1 and that the two- or multigrid method for A′
� (with fixed parameters

γ, ν1, ν2) converges monotonically with respect to the energy norm ‖·‖A′
�

with the



312 11 Multigrid Iterations

contraction number ζ ′. Further, let

sup{h�/h�−1 : � ≥ 1} < 1 and ε ∈ (0, 1 − ζ ′)

be valid. Then the two- and multigrid iterations for A� also converge monotonically
with respect to the energy norm ‖·‖A′

�
with the contraction number ζ = ζ ′ + ε < 1,

provided that h0 ≤ h̄ holds with sufficiently small h̄.

Proof. First, the two-grid case is considered. The transformed iteration matrix
A

′1/2
� M ′

�A
′−1/2
� (of the iteration for A′

�x
′
� = b′�) is the product[

A
′1/2
� S′

�A
′−1/2
�

]ν2

×
[
A

′1/2
� (A′−1

� − pA′−1
�−1r)A

′1/2
�

]
×
[
A

′−1/2
� A′

�A
′−1/2
�

]
×
[
A

′1/2
� S′

�A
′−1/2
�

]ν1

.

Because of (11.90a), perturbations of S′
� and A′

� in the 1st, 3rd, and 4th factor by S′′
�

and A′′
� , respectively, enlarge the spectral norm only by O(hκ� ). A similar statement

holds for the second factor because[
A

′1/2
� (A−1

� − pA−1
�−1r)A

′1/2
�

]
−
[
A

′1/2
� (A′−1

� − pA′−1
�−1r)A

′1/2
�

]
= A

′−1/2
� A′′

�A
−1
� A

′1/2
� +A

′1/2
� pA−1

�−1A
′′
�−1A

′−1
�−1rA

′1/2
� .

LetM� be the two-grid iteration matrix associated with the matrixA�. The assertion
follows from

∣∣∣‖M�‖A′
�

− ‖M ′
�‖A′

�

∣∣∣ ≤ Chκ� ≤ Ch̄κ for the choice h̄ := (ε/C)1/κ.
In the multigrid case, the following recursive estimate holds:∣∣∣‖M�‖A′

�
− ‖M ′

�‖A′
�

∣∣∣ ≤ C0h
κ
� +
∣∣∣‖M�−1‖A′

�−1
−
∥∥M ′

�−1

∥∥
A′

�−1

∣∣∣ ,
which by h�/h�−1 ≤Ch<1 leads to

∣∣∣‖M�‖A′
�
−‖M ′

�‖A′
�

∣∣∣ ≤ Chκ0 ≤ Ch̄κ ≤ ε. ��

Remark 11.62. The conditions in (11.90b) are satisfied if

S′
� = I −W ′−1

� A′
� with 2W ′

� ≥ A′
�, r = p∗, rA′

� p ≤ A′
�−1

(cf. (11.81), Exercises 11.56, and 11.60b). (11.75b) is sufficient for rA′
� p ≤ A′

�−1.

The statement of Theorem 11.61 is not yet uniform with respect to ν = ν1 + ν2.
In particular, h̄ might depend on ν. A ν-independent h̄ can be obtained as follows:
Theorem 11.42 (modified according to §11.7.2 to the energy norm ‖·‖A′

�
) shows

convergence for ν ≥ ν as long as h0 ≤ h̄0. For the finitely many ν = 1, . . . , ν − 1,
we conclude convergence for h0 ≤ h̄ν from Theorem 11.61 with suitable h̄ν .
For h0 ≤ h̄ := min{h̄ν : 0 ≤ ν ≤ ν − 1}, we obtain convergence for all ν > 0.

For related results, see Mandel [269] and Bramble–Pasciak–Xu [75].



11.8 Combination of Multigrid Methods with Semi-Iterations 313

11.8 Combination of Multigrid Methods with Semi-Iterations

11.8.1 Semi-Iterative Smoothers

So far, only the ν-fold application of a smoothing iteration S� has been considered
as a smoothing step (11.33b,f). An alternative is a semi-iterative smoothing, where
Sν
� is replaced by a polynomial Pν(S�) of degree ν with Pν(1) = 1. However,

one should not choose the polynomials that were found to be optimal in §8 because
those minimise ρ(Pν(S�)). Using S� for smoothing, we do not primarily want to
make the error small but smooth. The smoothing property (11.58a) leads us to the
following optimisation problem:

minimise ‖A� Pν(S�)‖2 over Pν ∈ Pν with Pν(1) = 1. (11.91)

The semi-iterative Richardson method with A� > 0 and σM := [ 0, ‖A�‖2 ] yields
the optimisation problem

min
Pν∈Pν , Pν(1)=1

max
0≤ξ≤‖A�‖2

∣∣∣∣ξ Pν

(
1 − ξ

‖A�‖2

)∣∣∣∣ (11.92)

(analogous to (8.23)). The solution reads as follows.

Theorem 11.63. Let A� > 0 . The minimiser of (11.92) is a polynomial Pν derived
from the Chebyshev polynomial Tν+1 (cf. Lemma 8.23) by

τ Pν(1 − τ) = η(ν) Tν+1

(
τ − (1 − τ) cos π

2ν+2

)
(11.93)

with η(ν) =
1

ν + 1

sin (π/ (2ν + 2))

1 + cos (π/ (2ν + 2))
≤

2
(√

2 − 1
)

(ν + 1)
2 (ν ≥ 1).

Pν is the product Pν(1 − τ) =
∏ν

μ=1 (1 − ωμτ) with

ωμ =

(
1 + cos

π

2ν + 2

)
/

(
cos

π

2ν + 2
− cos

(2μ+ 1)π

2ν + 2

)
.

The expression (11.92) to be minimised takes the value

‖A�Pν(I −A�/ ‖A�‖2)‖2 ≤ η(ν) ‖A�‖2 .

Proof. (i) Evaluation of Tν+1(. . .) at τ = 0 yields Tν+1(− cos π
2ν+2 ). Note that

− cos π
2ν+2 = cos(π − π

2ν+2 ) = cos( 2ν+1
2ν+2π) and therefore

Tν+1(− cos π
2ν+2 ) = cos

(
(ν + 1) 2ν+1

2ν+2π
)
= cos

(
(ν + 1

2 )π
)
= 0.

This justifies the factor τ on the left-hand side of (11.93).
(ii) The factor η(ν) is chosen such that Pν(1) = d

dτ τ Pν(1 − τ)|τ=0 = 1
ensures the side condition.



314 11 Multigrid Iterations

(iii) Since the right-hand side in (11.93) takes the equi-oscillating values ±η(ν)
in [0, 1], it is the minimiser of (11.92). ��

We add some comments to the results of Theorem 11.63.

(i) The semi-iterative smoothing achieves an order improvement. While the
smoothing factor η(ν) of the stationary Richardson method behaves like O( 1

ν+1 ),
the order becomes O(1/(ν + 1)2) in the semi-iterative case.

(ii) The application of the Chebyshev method requires knowledge of the interval
σM = [a, b] containing the spectrum of S�. Especially, the estimation of b =
1 − λ�/ ‖A�‖2 with λ� = λmin(A�) is of decisive importance. An overestimation
of the upper bound Λ� = ‖A�‖2 in λ�I ≤ A� ≤ Λ�I is less sensitive (since Λ�/λ�
is the essential quantity). A different situation arises in Theorem 11.63, where we
estimate the spectrum of A� simply by 0 ≤ A� ≤ Λ�I , Λ� = ‖A�‖2, i.e., the lower
bound λ� is trivially chosen as a := 0. The replacement of 0 ≤ A� by λ�I ≤ A�

with λ� = λmin(A�) would yield only an imperceptible improvement.
(iii) The statements from (ii) clarify the fact that the spectral condition number

κ(W−1
� A�) is not the essential quantity for smoothing.

(iv) The product representation
∏
(1 − ωμτ) seems to disregard the warnings

in §8.3.4 concerning instabilities. The contradiction is solved by the fact that the
number ν of smoothing steps should be relatively small according to the discussion
in §11.4.3. Choosing, e.g., ν ≤ 4, stability problems cannot arise.

For a general positive definite smoothing iteration with S� = I − W−1
� A�,

we obtain analogous results for minimising ‖W−1/2
� A� Pν(S�)W

−1/2
� ‖2 , where

the norms are chosen as for the approximation property (11.82). Corresponding to
the smoothing property (11.78b), the minimisation of

‖W−1/2
� A� Pν(S�)A

1/2
� ‖2 = ‖Y 1/2Pν(I − Y )‖2 with Y := A

1/2
� W−1

� A
1/2
�

is also of interest. The corresponding optimal polynomial can be found in Hack-
busch [183, Proposition 6.2.35]. The bound O(1/

√
ν ) in (11.78b) improves to

O(1/(2ν + 1)). The ADI parameters (cf. §8.5.3 and Hackbusch [183, §3.3.4 and
Lemma 6.2.36]) have also to be chosen differently for optimising the smoothing
effect.

The conjugate gradient method is only conditionally applicable. The standard
CG method minimises ‖Pν(S�)e�‖A�

= ‖A1/2
� Pν(S�)e�‖2, where e� is the error

before smoothing and Pν the corresponding optimal polynomial (cf. Proposition
10.11). However, since not the energy norm but the residual ‖A�Pν(S�)e�‖2 has
to be minimised, the method of the conjugate residuals (cf. §10.3) or the conju-
gate gradient method for the ‘squared’ equation AH

�A�x� = AH
� b� is better suited.

These remarks apply to the pre-smoothing part only. The conjugate gradient
methods do not seem to make much sense for the post-smoother. In any case, an
nonsymmetric multigrid iteration results. See also Bank–Douglas [27].

The smoothing property of conjugate gradient methods has also been mentioned
by Il’in [226].



11.8 Combination of Multigrid Methods with Semi-Iterations 315

11.8.2 Damped Coarse-Grid Corrections

The treatment of nonlinear equations suggests damping the coarse-grid correction as
known from gradient methods, in order to obtain a descent method (cf. Hackbusch–
Reusken [204]). It turns out that in the linear case, it is also possible to improve
convergence. In particular, the V-cycle convergence can be accelerated (cf. Reusken
[321], Braess [62]). The optimally damped coarse-grid correction step reads

xnew� := x� − λp� with λ :=
〈d�, p�〉�

〈d�, A�p�〉�
,

{
d� := A�x� − b�,
p� := p ẽ�−1,

(11.94)

where ẽ�−1 is the approximation of the solution of the coarse-grid equation
A�−1e�−1 = d�−1 := rd�.

Exercise 11.64. Let A� > 0 and ẽ�−1 as above. Prove that
(a) λ = 1 is optimal for the two-grid method.
(b) If r = p∗ and A�−1 = rA�p, λ in (11.94) can be written in the form

λ = 〈d�−1, ẽ�−1〉�−1 / 〈A�−1ẽ�−1, ẽ�−1〉�−1 .

Another possibility is the damping of the complete multigrid iteration. In the
symmetric case, M̌MGM

� ≥ 0 holds (cf. (11.89b)) and implies that σ(MMGM
� ) ⊂

[ 0, ρ(MMGM
� ) ]. Extrapolation with Θ := 2/(2− ρ (MMGM

� )) ≈ 1 + 1
2ρ (M

MGM
� )

leads to the nearly halved convergence rate ρ(MMGM
� )/(2 − ρ(MMGM

� )) .

11.8.3 Multigrid as Basic Iteration of the CG Method

As shown in §11.7.1, the multigrid method for a positive definite matrix A� can be
designed as a positive definite iteration. The convergence statement σ(MMGM

� ) ⊂
[ 0, ρ� ] with ρ� := ρ(MMGM

� ) < 1 corresponds to the inequalities

γWMGM
� ≤ A� ≤ WMGM

� with γ := 1 − ρ�

for the matrix WMGM
� of the third normal form of the multigrid iteration (cf. Theo-

rem 6.10). Applying the CG method to ΦMGM
� , afterm steps we obtain an improve-

ment by 2 [(
√
κ− 1)/(

√
κ+ 1)]

m, where κ is the condition κ = Γ
γ = 1/(1 − ρ�).

A simple rewriting yields

2

(√
κ− 1√
κ+ 1

)m

= 2ρm� /
(
1 +
√

1 − ρ�

)2m
≈ 2
(ρ�
4

+ O
(
(ρ�)

2
))m

.

Since ρ� may be assumed to be small (cf. §11.4.2), the convergence rate ρ� of the
multigrid method can be accelerated by using the conjugate gradient method to
ρ�/4 (cf. Braess [61], Kettler [235]).



316 11 Multigrid Iterations

However, the use of the conjugate gradient method is of practical interest only
if the multigrid convergence rate is relatively unfavourable (e.g., ρ� > 0.4). The
reason for this are considerations in §11.5.4. In the case of a good convergence rate,
the nested iteration (11.44) requires only very few multigrid steps per level. For
fast multigrid methods, the iteration number m = 1 has proved in §11.5.6 to be
sufficient. For this value, the gradient and conjugate gradient methods still coincide.
Only for m ≥ 2 does the conjugate gradient method deserve attention.

11.9 Further Comments

11.9.1 Multigrid Method of the Second Kind

Discretisation of Fredholm’s integral equations of the second kind leads to fixed-
point equations of the form x� = K� x� + b�, i.e.,

A�x� = b� with A� = I −K�.

Here, K� does not characterise a difference operator as in the case of discre-
tised differential equations, but the discrete counterpart of an integral operator
(Ku)(x) =

∫
D
k(x, y)dy. Therefore, the Picard iteration xm+1

� := K� x
m
� +b� has

a substantially better smoothing property. This implies that the multigrid method
(with γ = 2) has a convergence rate ρ� = O(hκ� ) with a positive exponent κ.
Hence, different from the situation considered before, convergence is better the
larger the dimension of the problems is. Since the absolute value of ρ� may be of
the size of 10−3 to 10−6, the multigrid method is close to a direct solver. The work
of the method is still proportional to the work of one Picard iteration.

The application is not restricted to discrete integral equations. In the example
in §5.5.1, the equation Ax = b was preconditioned by B, where B as well as
A were discretisations of the differential equation. If both differential equations
share the same principal part (i.e., if the terms of the highest order of differen-
tiation coincide), the equation A′x = b′ := B−1b with A′ := B−1A leads to
the fast multigrid convergence mentioned above. The application of the multigrid
method of the second kind to A′x = b′ requires performing the Picard iteration
xm+1 = Kxm + b′ = xm − B−1(Ax − b). For example, B could be the five-
point formula of the Poisson model problem, whereas A discretises the equation
−Δu+ c1ux + c2uy + cu = f .

An exact description and analysis of the multigrid method of the second kind as
well as many examples of application can be found in Hackbusch [183, §16], [191],
[184], [177], [179], [188].

Since the discrete integral operator K� is a fully populated matrix, the naive use
of the Picard iteration leads to squared complexity. To obtain almost linear com-
plexity the technique of hierarchical matrices can be applied (cf. Appendix D).



11.9 Further Comments 317

11.9.2 Robust Methods

To make our presentation brief, other smoothers than Richardson and chequer-board
Gauss–Seidel are mentioned only marginally. In applications to more complicated
systems, the problem of robustness arises. Are the convergence rates known for the
Poisson model problem uniformly valid in a larger class of problems? The simplest
case is an equation A(ε)x = b depending on one parameter ε ∈ (0,∞). If the
convergence rates not only are of the form ρ(ε) ≤ 1 − C(ε)hτ but hold with a
constant C(ε) = C uniformly in ε ∈ (0,∞)): ρ(ε) ≤ 1−Chτ , then this iteration is
called robust with respect to the class of problems. Robust multigrid methods have
to satisfy ρ(ε) ≤ ζ < 1 (ζ h�- and ε-independent; cf. Hackbusch [183, §10]).

Good experiences concerning robustness—at least for two spatial dimensions—
are observed for ILU smoothers as introduced by Wesseling [394], [393]
(cf. Kettler [235], Wittum [401]). Robustness holds for CG methods applied to the
modified ILU iteration (ω = −1), as well as for multigrid methods using point- or
blockwise ILU iterations as smoother (then with ω = 0 or even ω = 1; cf. Wittum
[403], Kettler [235], Oertel–Stüben [295]).

Another approach is the frequency decomposition multigrid method (cf. Hack-
busch [186, 190]) which uses not only one but several coarse-grid corrections with
different coarse-grid equations. The prolongations from the different coarse grids
into the fine grid are constructed in such a way that the corrections cover different
frequency intervals.

Constructing the coarse-grid equation at level �−1 requires more data than given
by the system A�x� = b� for � = �max. This fact may lead to difficulties when the
multigrid iteration is wanted as a black-box solver. Therefore, it is remarkable that
there are variants, the so-called algebraic multigrid methods, in which the coarse-
grid matrix A�−1 is only constructed by the entries of the matrix A� (cf. Stüben
[359, 360], MacLachlan–Oosterlee [268], Xu–Zikatonov [410]).

11.9.3 History of the Multigrid Method

The first two-grid method was described by Brakhage [69] in 1960. More precisely,
it was a two-grid method of the second kind because it was applied to problems
mentioned in §11.9.1. In 1961, Fedorenko [131] described a two- and in 1964 a
multigrid method for the Poisson model problem (cf. Fedorenko [132]). In 1966,
Bakhvalov [23] proved the typical convergence properties for a more complicated
situation. Additional early publications were due to Astrachancev [8] (1971), Hack-
busch [176] (1976), Bank–Dupont (a report from 1977 was split into [28, 29]),
Brandt [77] (1977), and Nicolaides [290] (1977). Further details concerning these
and other papers by Frederickson, Wesseling, Hemker, and Braess are mentioned
in Hackbusch [183, §2.6.5]. An extensive multigrid bibliography up to 1987 can be
found in the proceedings [278].



318 11 Multigrid Iterations

The progress of multigrid algorithms and theory can be traced in the proceedings
of the European Multigrid Conferences: [205, Cologne 1981], [206, Cologne 1985],
[207, Bonn 1990], [216, Amsterdam 1993], [210, Stuttgart 1996], [108, Gent 1999].
The proceedings of the later EMG conferences in Hohenwart (2002), Scheveningen
(2005), Bad Herrenalb (2008), Ischia (2010), Schwetzingen (2012), and Leuven
(2014) can be found in special issues, e.g., of the journal Comput. Vis. Sci.
Further proceedings in this field are [68, 182, 185, 209, 306].

11.9.4 Frequency Filtering Decompositions

An essential characteristic of the multigrid method, besides the use of a coarser grid,
is the product form ΦCGC

� ◦ Sν
� of two iterations which are active in different fre-

quency intervals. Although many methods can be used for smoothing, the question
remains as to whether there exists an alternative to ΦCGC

� ◦Sν
� . It would be desirable

to have a method filtering out the coarse frequencies and needing no hierarchy of
grids. Such a method is proposed by Wittum [404, 405] and is based on a sequence
of partial steps Φν reducing certain frequency intervals.

First, we describe the standard blockwise ILU decomposition. Suppose that A
has the block-tridiagonal structure

A = AH = blocktridiag{Li, Di, L
H
i : i = 1, . . . , N − 1} (11.95a)

(cf. (1.8), (A.9)), which, e.g., holds for five- or nine-point formulae. As in (1.2),
N − 1 = h−1 − 1 is the number of inner grid points per row. The exact LU
decomposition is A = LD−1LH with

L := blocktridiag{Li, Ti, 0}, D := blockdiag{Ti}, (11.95b)

T1 := D1, Ti := Di − LiT
−1
i−1L

H
i (2 ≤ i ≤ N − 1). (11.95c)

Even if the blocks Di are tridiagonal (cf. (1.8)), the matrices Ti are not sparse.
The usual block-ILU decomposition is obtained from (11.95c) by replacing the full
inverse of T−1

i with the tridiagonal part tridiag{T−1
i−1} of the exact inverse.

Another approach goes back to Axelsson–Polman [15]. Let t(1) and t(2) be two
test vectors. The matrices Ti are defined in the next lemma.

Lemma 11.65. Assume that t(1), t(2) ∈ RN−1 satisfy

det
(
(t

(k)
i+j)

k=1,2
j=0,1

)
�= 0 for all 1 ≤ i ≤ N − 2.

The vectors c(1), c(2) ∈ RN−1 may be arbitrary. Then there is a unique symmetric
tridiagonal matrix T satisfying the equations Tt(k) = c(k) for k = 1, 2.

Hence, we can uniquely define symmetric tridiagonal matrices Ti by

T1 := D1, Ti t
(k) = (Di − LiT

−1
i−1L

H
i ) t

(k) (k = 1, 2) (11.96)

for i = 2, . . . , N−1. The matrices Ti inserted into (11.95b) yield a new incomplete
blockwise triangular decomposition A = LD−1LH −C. Definition (11.96) means



11.9 Further Comments 319

that T is exact with respect to the test subspace span{t(1), t(2)}. The correspond-
ing iteration is

Φ(x, b; t(1), t(2)) := x− L−HDL−1(Ax− b)

with L, D defined in (11.95b) and (11.96).
Wittum [404, 405] proposes taking the sine functions eν in (11.25b) with

different frequencies ν as test vectors:

Φν := Φ(·, · ; eν , eν+1) with ν ∈ [1, N − 2].

Choosing a factor α > 1, which, e.g., may be chosen as α = 2, a geometrical
sequence of frequencies is selected (for &. . .' see Footnote 5 on page 297):

ν1 := 1, νi+1 := max{νi + 2, &ανi'} as long as νi+1 ≤ N − 2, (11.97)

Let k be the number of frequencies selected in (11.97). Obviously, this number is
equal to k = O(logN) = O(|log h|) = O(log n). The iteration of the frequency
filtering decomposition is defined by the product:

Φffd
α := Φνk

◦ . . . ◦ Φν2 ◦ Φν1 (α > 1 with νi in (11.97)).

The work of one iteration Φffd
α amounts to O(n log n). The numerical results

(cf. Wittum [404, 405]) demonstrate the very fast convergence of this iteration. Its
efficacy can even exceed that of the standard multigrid methods.

The convergence is analysed for the case of a nine-point formula A > 0
with constant coefficients Di = Di+1, Li = Li+1 = LH

i (cf. Wittum [405]). The
first step of the proof concerns the monotone convergence of Φν with respect
to the energy norm for all ν. However, the more characteristic step is a neigh-
bourhood property. According to its definition, Φν eliminates error components
in span{eν , eν+1}. It is essential that Φν yields a uniform and h-independent
contraction number for all frequencies in the interval ν ≤ μ ≤ αν, i.e., that Φν

also acts efficiently in a certain neighbourhood of the gauge frequency ν.
The idea of frequency filtering decompositions can also be generalised to

nonsymmetric or even nonlinear problems (cf. Wittum [405], Wagner [385, 386]).
See also Weiler–Wittum [390], Wagner–Wittum [387], and Buzdin–Wittum [91].

Table 11.10 shows the iteration error ‖em‖2 = ‖xm − x‖2 of the frequency
filtering decomposition method Φffd

α for α = 2 applied to the Poisson model
problem. The number k of partial steps ranges from 3 to 6. After 2 to 3 steps,
machine precision is reached. One observes that with decreasing h, the convergence
speed is bounded from above and therefore h-independently bounded.

h = 1/8, k = 3 h = 1/16, k = 4 h = 1/32, k = 5 h = 1/64, k = 6
m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m ‖em‖2 ρm+1,m

0 6.310-01 7.010-01 7.410-01 7.610-01
1 2.610-07 4.110-7 1.810-06 2.610-6 1.410-05 1.910-5 5.610-05 7.310-5
2 1.010-12 3.910-6 2.810-06 1.510-5 1.510-09 1.010-5 2.210-08 3.910-4
3 4.110-13 (4.010-1) 6.710-13 (2.310-2) 1.210-12 8.210-4 9.310-12 4.110-4

Table 11.10 Iteration of the frequency filtering decomposition for the Poisson model problem.



320 11 Multigrid Iterations

11.9.5 Nonlinear Systems

Although this monograph is devoted to systems of linear equations, the solution
of nonlinear systems is of great importance. There are two principle approaches.
In §11.9.5.1 we consider the Newton method, while in §11.9.5.2 proper nonlinear
iterations are described.

The nonlinear system is of the form7

A(x) = 0, (11.98)

where the function A : KI → KI is assumed to be continuously differentiable.
We denote the derivative by

A(x) :=
d

du
A(x) ∈ KI×I .

Let x∗ ∈ KI be the solution of (11.98) and define

A := A(x∗). (11.99)

We require A to be regular. Then x∗ is the unique solution in a neighbourhood
X of x∗ and A(x) is regular for all x ∈ X . If the problem (11.98) is derived
by discretising a nonlinear partial differential equation, we expect the same sparse
structure of the matrices A(x) as usual.

11.9.5.1 Newton’s Method

The Newton method is the standard technique to transfer the solution of a nonlinear
system into a sequence of linear problems. Starting with x0 ∈ X , the exact Newton
method yields the sequence

xm+1 := xm −A(xm)−1A(xm). (11.100)

If the neighbourhood X is small enough, the described sequence converges
quadratically to x∗ (cf. Quarteroni–Sacco–Saleri [314, §7.1]). Having in mind
large-scale problems, the linear system

A(xm) δ = A(xm)

for the correction δ = xm − xm+1 should not be computed directly. Instead any of
the linear iterations described in this book can be applied to solve for δ.

Here the following comments apply:

• The derivative A(xm) has to be computed either analytically or by numerical
differentiation. Since this may be costly, often A(xm) is replaced with an

7 In the nonlinear case, without loss of generality, the right-hand side can be defined by zero.



11.9 Further Comments 321

approximation. For instance, only A(x0) is computed and the later A(xm) are
replaced by A(x0).

• If the iteration for the linear problem requires a larger amount of work for
initialisation, this cost is required for each step of the Newton method. This is
another reason for replacing A(xm) by a fixed matrix Ã.

• If, as above, A(xm) is replaced by some Ã, quadratic convergence is lost and
the convergence of

xm+1 := xm − Ã−1A(xm)

depends on A(xm) − Ã.
• In the case of the true matrix A(xm), the stopping criterion for the iteration

applied to A(xm) δ = A(xm) should produce approximations for δm for δ
such that the error δm − δ is comparable with the error of xm+1 − x∗. A
too accurate solution of δ in the beginning does not pay, whereas a too rough
approximation for later m prevents quadratic convergence.

• Since A(x) is continuous and regular for x ∈ X , the matrices of the family

{A(xm) : m ∈ N0}

are spectrally equivalent. Therefore, in principle, the same preconditioner can be
used for all linear systems that arise.

The usual convergence behaviour of (11.100) shows two phases. In a pre-
asymptotic first phase only linear convergence is observed (say for 0 ≤m<m0).
Later, for m ≥ m0, proper quadratic convergence occurs and only a few
additional steps are needed. Above, the neighbourhood X is chosen so that
iteration (11.100) converges. Proper quadratic behaviour requires iterates in an
even smaller neighbourhood Xquad. It would be desirable to find a starting value
in Xquad instead of X .

A good strategy for this purpose is the (nonlinear) nested iteration. This requires
defining nonlinear systems at all discretisation levels � = 0, . . . , �max, where the
system at level �max coincides with the original system (11.98):

A�(x�) = b� (0 ≤ � ≤ �max) , (11.101)

where b�max
= 0. The nonlinear nested iteration takes the following form:

x̃0 := somehow computed approximation of A0(x
∗
0) = 0;

for � := 1 to �max do

begin x̃� := p̃ x̃�−1; b̃�−1 := A�−1(x̃�−1);
apply an iterative solver starting with x̃� delivering a new value x̃�

end;

(11.102)

The data b̃� (0 ≤ � ≤ �max − 1) will be used later. Although x̃� is only an
approximation, it is the exact solution of A�(x̃�) = b̃�.



322 11 Multigrid Iterations

11.9.5.2 Nonlinear Iterations

Φ in Definition 2.1 can be generalised to the nonlinear problem (11.98) by a non-
linear mapping

xm+1 = Φ(xm,A).

For instance, the nonlinear analogue of the Richardson iteration (3.4) is

xm+1 = ΦRich
nonl (x

m,A) := xm −ΘA(xm).

Rewriting xm by x∗ + em and assuming a small error em, we obtain the Taylor
expansion

A(xm) = A(x∗) +Aem + o(em) = Aem + o(em)

with A in (11.99) and therefore

xm+1 = xm −ΘAem + o(em) ≈ xm −Θ (Axm − b) = ΦRich(xm, b, A)

with b := Ax∗. This proves that

ΦRich
nonl (x,A) → ΦRich(x, b, A) as x → x∗.

The nonlinear analogue of the Gauss–Seidel method replaces each step in (3.9)
by solving the i-th equation in the system A(x) = 0 with respect to the x[i]. The
scalar nonlinear equations that arise can be solved, e.g., by Newton’s method. In the
same way, the nonlinear Jacobi iteration and the nonlinear SOR can be performed
(cf. Törnig [365, §§8.2–8.4]).

More involved algebraic linear iterations as the ILU iteration are hard to transfer
into a nonlinear counterpart since it requires the (incomplete) decomposition of the
derivative A.

The linear iteration Φlin(x, b, A) = x − N (Ax− b) has the obvious nonlinear
counterpart Φnonl(x,A) := x − NA(x). In all these cases, the asymptotic con-
vergence speed of the nonlinear iteration Φnonl coincides with the convergence
speed of the linear iteration Φlin applied to the linearised system Ax − b with A
in (11.99).

11.9.5.3 Nonlinear Two- and Multigrid Iteration

The multigrid iteration has a very natural generalisation to nonlinear systems. The
underlying reason is that the method requires not the derivative A(x) = dA(x)/du
but only a directional derivative.

Instead of (11.98), we consider the family (11.101) of systems at all levels �.We
start with the two-grid iteration involving the levels � and � − 1. We assume that
the nested iteration is already used for levels below �, so that a good starting value
for x�, the approximate solution x̃�−1 at level � − 1 and its defect b̃�−1 are known.



11.9 Further Comments 323

The real number s used in lines 3 and 5 will be explained below.

function ΦNTGM
� (x�, b�); {solution of A�(x�) = b� desired}

begin x� := Sν1

� (x�, b�); {pre-smoothing}
d�−1 := r (A�(x�) − b�) ; d�−1 := b̃�−1 + s · d�−1;
ξ�−1 := A−1

�−1(d�−1); {coarse-grid solve}
x� := x� − p (ξ�−1 − x̃�−1) /s; {coarse-grid correction}
ΦNTGM
� := Sν2

� (x�, b�); {post-smoothing}
end;

The pre- and post-smoothing iterations S� may, e.g., be the nonlinear Richardson or
Jacobi iteration. Sν

� denotes the ν-fold application.
Let x∗� be the solution of A�(x

∗
� ) = 0. We recall the neighbourhood X� of x∗� ,

in which x∗� is the unique solution. Hence, the function A� : X� → Y� := A�(X�)
is bijective. This allows us to define the inverse function A−1

� on Y�. The function
ΦNTGM
� uses A−1

�−1 for solving a coarse-grid equation A�−1ξ�−1 = d�−1. This re-
quires that d�−1 ∈ Y�−1. Since Y�−1 is a neighbourhood of zero, d�−1 must be small
enough. Since, by definition, x̃�−1 is a good approximation of x∗�−1, the defect b̃�−1

is small enough. Choosing the number s small enough, d�−1= b̃�−1 − s · d�−1 also
belongs to Y�−1.

To understand the correction x� := x�+p (ξ�−1 − x̃�−1) /s, rewrite the bracket
as

ξ�−1 − x̃�−1 = A−1
�−1(d�−1) − A−1

�−1(b̃�−1) ≈
(

d
dyA−1

�−1

)(
d�−1 − b̃�−1

)
.

The derivative of the inverse function A−1
�−1(y) is(

d
dxA�−1(x)

)−1
= A−1

�−1 for x = A−1
�−1(y).

Together with d�−1−b̃�−1 = s·d�−1, we obtain ξ�−1−x̃�−1 = sA−1
�−1d�−1 and the

correction step yields asymptotically x� − p (ξ�−1 − x̃�−1) /s ≈ x� − pA−1
�−1d�−1

with the restricted defect d�−1 = r (A�(x�) − b�) . This is the same expression as
in (11.21b–d) and proves that the nonlinear two-grid iteration has an asymptotic
convergence speed which coincides with the convergence speed of the linear two-
grid iteration applied to the linearised system.

The recursive application of ΦNTGM
� yields the nonlinear multigrid iteration.

Note that the application of ΦNTGM
� is interwoven with the nonlinear nested itera-

tion (11.102) in which the solver is the m-fold application of ΦNTGM
� . This implies

that, when ΦNTGM
� is called, the quantities x̃k and b̃k are known for all lower levels

k < �. In addition, we need a nonlinear function Φ̃0(x0, b0) returning a good
approximation of A−1

0 (b0). This may be a Newton method. The number γ has the
same meaning as in the linear case: γ = 1 is the V-cycle, γ = 2 is the W-cycle.
The numbers s = s(d�−1) play the same role as in the two-grid iteration. It can be
chosen such that s · d�−1 is of the same size as b̃�−1.



324 11 Multigrid Iterations

function ΦNMGM
� (x�, b�); {solution of A�(x�) = b� desired}

begin x� := Sν1

� (x�, b�); {pre-smoothing}
d�−1 := r (A�(x�) − b�) ; d�−1 := b̃�−1 + s · d�−1;
ξ�−1 := x̃�−1; for i := 1 to γ do ξ�−1 := ΦNMGM

�−1 (ξ�−1, d�−1);
x� := x� − p (ξ�−1 − x̃�−1) /s; {coarse-grid correction}
ΦNMGM
� := Sν2

� (x�, b�); {post-smoothing}
end;

Again the nonlinear multigrid iteration has an asymptotic convergence speed which
coincides with the convergence speed of the linear multigrid iteration applied to the
linearised system. Details about the convergence proof can be found in [194, §9.5].

If one applies ΦNMGM
� to the linear problem A�(x�) = A�x� − b�, the auxiliary

data (x̃�−1, b̃�−1) can be chosen as (0, 0) and the algorithm coincides with the linear
multigrid iteration.

There are different nonlinear multigrid versions using other reference data
(x̃�−1, b̃�−1) and other factors s. A comparison with numerical examples is given in
Hackbusch [189].



Chapter 12

Domain Decomposition and Subspace Methods

Abstract Domain decomposition is an umbrella term collecting various methods
for solving discretised boundary value problems in a domain Ω by means of a de-
composition of Ω. Often this approach is chosen to support parallel computing.
After general remarks in Section 12.1, the algorithm using overlapping subdomains
is described in Section 12.2. In the case of nonoverlapping subdomains, one needs
more involved methods (cf. Section 12.3). In particular the so-called FETI method
described in §12.3.2 is very popular. The Schur complement method in Section 12.4
gives rise to many variants of iterations. The more abstract view of domain decom-
position methods replaces the subdomain by a subspace. Section 12.5 formulates
the setting of subspace iterations. Here we distinguish between the additive and
multiplicative subspace iteration as explained in the corresponding Sections 12.6
and 12.7. Illustrations follow in Section 12.8. Interestingly, multigrid iterations can
also be considered as subspace iterations as analysed in Section 12.9.

12.1 Introduction

Ω

Ω

Ω

1

2

3
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������

��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������

Ω1
2Ω

Ω3

Fig. 12.1 Disjoint (left) and over-
lapping (right) subdomains.

Various iterative methods can be classified as sub-
space methods. If the subspaces correspond to
discretisations of boundary value problems, these
methods are called domain decomposition methods
(DDM). Another name is Schwarz iteration since
a prototype of this iteration is due to Hermann A.
Schwarz [336] (1870). It took about hundred years
that this class of algorithms attracted the interest of
numerical analysts (cf. Babuška [21]).

In principle, the method can be applied to nonsymmetric or indefinite and even
nonlinear problems, but the convergence analysis is usually restricted to the positive
definite case.1

1 For a more general analysis see Cai–Widlund [92], Xu [408], and Dryja–Hackbusch [113].

325© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_12



326 12 Domain Decomposition and Subspace Methods

Let the system of equations Ax = b represent discretisation of a boundary value
problem in the domainΩ (cf. §1.2). The naming characteristic of the domain decom-
position method is a decomposition of the complete problem into smaller systems
of equations corresponding to boundary value problems in subdomains Ων ⊂ Ω.

The choice of subdomains can be caused by different motivations.

1. The decomposition of a complicated domain may lead to subdomains of simpler
type. In the past when fast methods as, e.g., the multigrid iteration had not yet
been (sufficiently) known and only fast direct solvers for Poisson problems on
rectangular domains were available (cf. Buneman [87]), one tried to decompose
complex domains into disjoint rectangles (cf. left part of Fig.12.1) or overlapping
rectangles (cf. Fig. 12.1, right).

2. A second reason for a domain decomposition might be that the original prob-
lem is a composed problem coupling2 subproblems of different physical nature.
For instance, the coefficient σ in the differential operator L = − div(σ grad)
is often a material constant. A combination of different materials lead to a dis-
continuous and piecewise constant σ. Choosing the subdomains corresponding
to identical materials, we obtain subproblems with constant coefficients σ, i.e.,
L = −σΔ. This shows that the subproblems may behave more regular than the
overall problem. Note that this argument only holds for nonoverlapping domain
decompositions.

3. A third argument for a decomposition is the use of parallel computers3 (cf.
Smith–Bjørstad–Gropp [343, §3.6.3]). Decomposing the entire problem into
many separate subproblems, we obtain a number of subtasks which can be solved
in parallel. In this case, the subproblems should be similar in size because of the
load-balancing of processors.

It must be emphasised that the solution of subproblems can never solve the
complete problem, but only represents a partial step. The algorithm has also to
establish the correct coupling of subproblems. If parallelisation is the main argu-
ment, the major part of computational work should be consumed by the solution
of subproblems. The characteristic feature of the multigrid method, the coarse-grid
correction, will reappear in the domain decomposition method (cf. §12.8.2).

The capacitance matrix method and the method of fictitious domains also belong
to the class of domain decomposition methods (cf. page 334).

In the course of the development of the domain decomposition method, the term
‘subdomain’ has been generalised to ‘subspace’, in particular, to a subspace of the
Galerkin method. If the subspace is spanned by those finite element functions that

2 In general we assume that a discretisation of the global problem is given, which may be
subdivided into part for defining the domain decomposition method. However, even the global
(undiscretised) problem may be divided into subproblems which are discretely coupled in very
weak form (see, e.g., the mortar method in [100, §7] or Quarteroni–Valli [315, §2.5.1]).
3 The use of parallel computers and the construction of the iterative method are in principle
independent. For instance, there are parallel implementations of the multigrid method (cf. Reiter
et al. [320]).



12.1 Introduction 327

differ from zero only in a subdomainΩ′ ⊂ Ω, the terms ‘subdomain’ and ‘subspace’
coincide. Other subspaces, however, can also be constructed and deserve practical
interest.

The progress in domain decomposition methods is documented in the proceed-
ings of the regular DDM conferences: [150, Paris 1987], [93, Los Angeles 1988],
[94, Houston 1989], [151, Moscow 1990], [236, Norfolk 1991], [313, Como 1992],
[237, Penn State 1993], [153, Beijing 1995], [50, Bergen 1996], [271, Boulder
1997], [254, Greenwich 1998], [95, Chiba 1999], [106, Lyon 2000], [217, Cocoyoc
2002], [239, Berlin 2003], [399, New York 2005], [258, St. Wolfgang/Strobl 2006],
[43, Jerusalem 2008], [225, Zhanjiajie 2009], [31, San Diego 2011], [122, Rennes
2012], [109, Lugano 2013].

Monographs on domain decomposition are by Mathew [276], Quarteroni–Valli
[315], Smith–Bjørstad–Gropp [343], and Toselli–Widlund [366].

12.2 Overlapping Subdomains

The ideal domain decomposition method is characterised by the exact solution of
the subproblems. The following techniques will be of this kind. For instance, we
may assume that all matrices corresponding to the subproblems are LU factorised
(or use a Cholesky decomposition in the symmetric case).

The practical application, however, will often involve an iterative solution of the
subdomains. This leads to a composed iteration (cf. §5.5).

12.2.1 Introductory Example

The overlapping domain decomposition corresponds to the original approach of
Schwarz [336] and can be illustrated by a one-dimensional example:

−u′′ = f in Ω = (0, 1), u(0) = u(1) = 0. (12.1)

Ω1 Ω2

1/2 (1+H)/2(1−H)/2 10
Ω

For simplicity, we
apply the approach
to the undiscretised
problem. The do-
main Ω is decomposed into the depicted subdomains (subintervals):

Ω1 = (0, 1+H
2 ) and Ω2 = ( 1−H

2 , 1) for some 0 < H < 1.

The overlap Ω1 ∩Ω2 has the length H .



328 12 Domain Decomposition and Subspace Methods

The following iteration determines functions uΩν
defined on Ων (ν =1, 2). Let

u0Ων
be the starting value (in fact only u0Ω2

is needed). The first partial step solves
the boundary value problem in Ω1 with the Dirichlet value at 1+H

2 taken from u0Ω2
:

u1Ω1
solution of − u′′ = f in Ω1 with u(0) = 0, u( 1+H

2 ) = u0Ω2
( 1+H

2 ).

The second partial step solves for u1Ω2
with the left Dirichlet boundary value taken

from u1Ω1
:

u1Ω2
solution of − u′′ = f in Ω2 with u( 1−H

2 ) = u0Ω2
( 1−H

2 ), u(1) = 0.

The iterates umΩν
should converge to u∗|Ων

which is the restriction of the solution
u∗ of (12.1) to the subdomainΩν . To study the convergence behaviour, we consider
problem (12.1) with f = 0. The solutions of −u′′ = 0 are affine functions. The
Dirichlet values in (12.1) yield the solution u∗ = 0. We start with the initial value
u0Ω2

(x) = 1 − x. Since u0Ω2
( 1+H

2 ) = 1−H
2 , the next iterate is

u1Ω1
(x) = 1−H

1+H x.

Its value at 1−H
2 determines

u1Ω2
(x) =

(
1−H
1+H

)2
(1 − x) .

Obviously, the general solution is

umΩ1
(x) =

(
1−H
1+H

)2m−1

x and umΩ2
(x) =

(
1−H
1+H

)2m
(1 − x) .

Note that the iterate umΩν
is also the error because of u∗= 0. Hence, the convergence

rate is
η =
(
1−H
1+H

)2
< 1.

Figure 12.2 illustrates the iteration.

1/2 (1+H)/2

u
Ω2
0

uΩ1
1 uΩ2

1

(1−H)/2 10

Fig. 12.2 Overlapping DDM.

The same approach can be applied to
the discretised boundary value problem and
yields the same convergence rate η. Note that
η =
(
1−H
1+H

)2
< 1 is independent of the step

size h. However, this holds only for a fixed
value of H.

The minimal overlap is one step size h. In
this case, the rate

η =
(
1−h
1+h

)2
= 1 − 4h+ O(h2)

deteriorates with increasing dimension.



12.2 Overlapping Subdomains 329

12.2.2 Many Subdomains

This approach can be generalised to many subdomains. Let K be the number of
subdomains, set δ := 1/K and choose some overlap size 0 < H < δ. Define

Ων =
(
(ν − 1)δ −H, νδ +H

)
∩ (0, 1) for ν = 1, . . . ,K.

Then Ων and Ων+1 overlap in (νδ −H, νδ +H). If we want to solve the sub-
domains problems exactly, the subdomains should be sufficiently small, which im-
plies that there must be many subdomains; i.e., K should be large.

However, the convergence cannot be independent of the number K of sub-
domains since K → ∞ implies H → 0 and therefore a deteriorating rate η → 1.

A two-dimensional example of an overlapping domain decomposition follows in
§12.8.1.

12.3 Nonoverlapping Subdomains

12.3.1 Dirichlet–Neumann Method

Consider the decomposition of Ω = (0, 1) into Ω1 = (0, 12 ) and Ω2 = [ 12 , 1).
Now it is not enough to require identical Dirichlet values uΩ1

( 12 ) = u2(
1
2 ) for the

respective solutions of (12.1) in Ω1 and Ω2. In addition, we have to ensure that the
Neumann data coincide:

∂uΩ1

∂nΩ1

(
1

2

)
= −∂uΩ2

∂nΩ2

(
1

2

)
(the opposite signs of the normal derivatives correspond to the fact that the normal
directions with respect to Ω1 and Ω2 satisfy nΩ1 = −nΩ2 ).

A possible iteration is the following with a constant ϑ ∈ (0, 1):

• um+1
Ω1

: solution of (12.1) with u(0) = 0 and u( 12 ) = ϑumΩ2
( 12 )+(1−ϑ)umΩ1

( 12 ),

• um+1
Ω2

: solution of (12.1) with u(1) = 0 and ∂
∂nΩ2

u( 12 ) = − ∂
∂nΩ1

um+1
Ω1

( 12 ).

In this special case, the convergence analysis is easy since the solutions umΩν
are

characterised by only one parameter:

umΩ1
(x) = αmx, umΩ2

(x) = βm(1 − x).

One verifies that αm+1 = 1
2 (ϑβm + (1 − ϑ)αm) and βm+1 = −αm+1, i.e.,[

αm+1

βm+1

]
=

1

2

[
1 − ϑ ϑ

−1 + ϑ −ϑ

] [
αm

βm

]
.



330 12 Domain Decomposition and Subspace Methods

Since the matrix has the eigenvalues 0 and 1 − 2ϑ ∈ (−1, 1) , the iteration con-
verges to the exact solution u∗ = 0 with the rate η = |1 − 2ϑ|. For ϑ = 1/2, the
iterates for m = 2 are already exact.

Discretisation of (12.1) yields the matrix A = h−2

⎡⎢⎢⎣
2 −1

−1 2 −1
−1 2

. . .. . .

. . . −1
−1 2

⎤⎥⎥⎦ ∈

K{1,...,n}×{1,...,n}. Assume that n is odd. The index q := (n + 1)/2 corresponds
to the nodal point x = 1/2. We write uI,m ∈ K{1,...,q} instead of um+1

Ω1
, and

uII,m ∈ K{q,...,n} for um+1
Ω2

.
The discrete problem for uI,m+1 is the system AIuI,m+1 = bI with

AI =

[
A|{1,...,q−1}×{1,...,q}
0 . . . 0 1

]
∈ K{1,...,q}×{1,...,q},

bI =
(
ϑuII,mq + (1 − ϑ)uI,mq

)
eq,

where eq is the q-th unit vector. The second vector uII,m+1 is the solution of
AIIuII,m+1 = bII using the restriction A|{q,...,n}×{q,...,n} modified in the first row:

AII = h−2

⎡⎢⎣ 1 −1
−1 2

. . .
. . .

. . . −1
−1 2

⎤⎥⎦. The right-hand side is bII = h−2
(
uI,mq − uI,mq−1

)
eq .

We recall Remark E.8b: the matrix AII cannot be obtained from A without
knowledge of the underlying partial differential problem. Therefore the correspond-
ing method is not algebraic.

Because of the combination of a Dirichlet problem for um+1
Ω1

and a Neumann
problem for um+1

Ω2
, the iteration is called the Dirichlet–Neumann method.

12.3.2 Lagrange Multiplier Based Methods

The following approach is related to methods like in §12.3. It does not yield alge-
braic iterations since it requires the finite element formulation for the subdomains
(cf. Remark E.8b).

Ω
I

Ω
II

Γ

Fig. 12.3 Two subdomains
and two copies of Γ .

For illustration, we assume that a domain Ω ⊂ Rd is
split into two nonoverlapping domains Ω1 and Ω2; i.e.,
Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = ∅. Let the boundary value
problem be defined by a symmetric and coercive bilinear
form a(u, v) =

∫
Ω
. . . dx : V → V with V = H1

0 (Ω).
Restricting the integrals to Ω1 and Ω2, we obtain the bi-
linear forms a1(u, v) =

∫
Ω1
. . . dx : V1 × V1 → K

and a2 : V2 × V2 → K (cf. §E.3). The spaces are de-
fined by Vi =

{
v ∈ H1(Ωi) : v|∂Ω∩∂Ωi = 0

}
. Hence

the functions in V1 and V2 can take arbitrary values on



12.3 Nonoverlapping Subdomains 331

the interior boundary Γ := ∂Ω1 ∩ ∂Ω2. We recall that the minimisation of
Ji(ui) := 1

2ai(ui, ui) − fi(ui) (i = 1, 2) yields the solutions of the differential
equations Lui = fi in Ωi with Dirichlet data ui = 0 on ∂Ω∩∂Ωi and Neumann
data ∂

∂nui = 0 on Γ (cf. Remark E.3). The minimisation of

J0(u1, u2) := J1(u1) + J2(u2)

over u1 ∈ V1 and u2 ∈ V2 is identical to minimising each ai(ui, ui) − f(ui)
separately. In general, the Dirichlet values ui|Γ are different. Using u1|Γ = u2|Γ
as a side condition, we obtain the minimisation problem

min {J0(u1, u2) : ui ∈ Vi subject to u1|Γ = u2|Γ } ,

which is equivalent to the original problem min{ 1
2a(u, u) − f(u) : u ∈ V }. The

reason is that u1|Γ = u2|Γ implies that there is a function u ∈ V with ui = u|Ωi
.

The side condition will be coupled by a Lagrange parameter (function on Γ ).
The discrete problem in Ω1 is described by the minimisation of J1(u1) over

all u1 ∈ V 1
h , where V 1

h ⊂ V1 is a finite element subspace containing functions
u1 =

∑
α∈I1 xαφα (cf. (E.6)). The components xα of x1 ∈ KI1

correspond to
nodal points in Ω1 ∪ Γ . We distinguish α ∈ I1Ω with nodal points in Ω1 from
α ∈ I1Γ with nodal points on Γ . Correspondingly, the vector x1 ∈ V 1

h can be

decomposed into x1 =

[
x1Ω
x1Γ

]
with x1Ω ∈ KI1

Ω and x1Γ ∈ KI1
Γ .

The solution of min J1(u1) over V 1
h is equivalent to the system

A1x1 = b1, or in block form:
[
A1

ΩΩ A
1
ΩΓ

A1
ΓΩ A1

ΓΓ

] [
x1Ω
x1Γ

]
=

[
b1Ω
b1Γ

]
.

An analogous statement holds for the second domain. Since u1|Γ and u2|Γ are
treated independently, x1Γ and x2Γ contain different values at the Γ -nodal points

(see the two copies of Γ in Fig. 12.3). We form the vectors x :=

[
x1

x2

]
, b :=

[
b1

b2

]
,

and the matrix A =

[
A1 0
0 A2

]
.

The side condition x1Γ = x2Γ can be written as Mx = 0, involving the
matrix M =

[
0 I 0 −I

]
. The Lagrange parameter λ ∈ KIΓ is used to couple the

minimisation of J0(u1, u2) with the side condition Mx = 0. The first variation
yields the system [

A MT

M 0

] [
x
λ

]
=

[
b
0

]
.

The iterative solution of this (indefinite) system is the basis of the so-called FETI
method (cf. Farhat–Roux [127], Brenner [78], Mathew [276, §4], and Toselli–
Widlund [366, §6]). The interpretation of this method within the framework of the
subspace method is discussed by Brenner [80].



332 12 Domain Decomposition and Subspace Methods

12.4 Schur Complement Method

12.4.1 Nonoverlapping Domain Decomposition with Interior
Boundary

Ω ΩΓ
1 2

Fig. 12.4 Subdomains and interior boundaryΓ .

Consider the two-dimensional Poisson
model problem with the grid Ωh ⊂
(0, 1)2 (cf. (1.3)). On the left-hand side
of Figure 12.4 the domain is now de-
composed into three parts: two proper
subdomains Ω1

h := Ωh ∩ (0, 12 ) × (0, 1)
andΩ2

h := Ωh∩( 12 , 1)×(0, 1) and the in-
terior boundary Γ := Ωh ∩ { 1

2} × (0, 1).
In the right part of Figure 12.4 we have
four proper subdomains Ω1

h, . . . , Ω
4
h and the interior boundary Γ which now con-

tains a so-called cross-point at (1/2, 1/2).
In the following the indices 1 to k−1 are associated with the subdomains while k

belongs to Γ . The matrix A ∈ KΩh×Ωh can be decomposed into A�� := A|Ω�
h×Ω�

h
,

Akk := A|Γ×Γ , A�k := A|Ω�
h×Γ , and Ak� := A|Γ×Ω�

h
for 1 ≤ � ≤ k − 1. The

interior boundary is chosen such that there is no interaction between Ω�
h and Ωk

h

for � �= k; i.e., Aij = 0 holds for all i ∈ Ω�
h and j ∈ Ωk

h. Hence, A has the
block structure

A =

⎡⎢⎢⎢⎣
A11 O A1,k

. . .
...

O Ak−1,k−1 Ak−1,k

AH
1,k . . . A

H
k−1,k Ak,k

⎤⎥⎥⎥⎦ . (12.2a)

We define the index sets II := ∪k−1
�=1Ω

�
h (interior indices) and IB := Γ (boundary

indices) and obtain the 2 × 2 block matrix

A =

[
AII AIB

ABI Ak,k

]
,

{
AII = blockdiag{A�� : 1 ≤ � ≤ k − 1},
ABI :=

[
AH

1,k, . . . , A
H
k−1,k

]
= AH

IB .
(12.2b)

12.4.2 Direct Solution

The Schur complement related to (12.2b) is described in §C.6. A reformulation in
terms of the blocks in (12.2a) shows that the system Ax = b is equivalent to⎡⎢⎢⎢⎣

A11 O A1,k

. . .
...

O Ak−1,k−1 Ak−1,k

0 . . . 0 S

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1

...
xk−1

xk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b1

...
bk−1

b̂k

⎤⎥⎥⎥⎦ ,



12.4 Schur Complement Method 333

where the Schur complement4 S is

S := Akk −
k−1∑
�=1

AH
�,kA

−1
�� A�,k, b̂k := bk −

k−1∑
�=1

AH
�,kA

−1
�� b

�. (12.3)

Obviously, the system is decoupled. As soon as Sxk = b̂k is solved (or approxi-
mated), all subproblems A�� x

� = b� − A�kx
k (1 ≤ � ≤ k − 1) can be treated in

parallel.
The size of the matrix S is nk ×nk, where nk = O(h1−dk1/d) is a typical size.

Here, d is the spatial dimension of the domain Ω ⊂ Rd.
The solution of Sxk = b̂k is rather uncomfortable since S and S−1 are fully

populated matrices.

Remark 12.1. (a) Computing S explicitly by (12.3) requires the availability of
the inverse matrices A−1

�� in order to perform matrix-matrix multiplications in
(12.3). In the exact form, this approach is rather costly. Since S is fully populated,
Cholesky decomposition is again costly. Using approximations, the hierarchical
matrix technique (cf. Appendix D) can be applied successfully (cf. §D.3 and [192]).
(b) A possible approach toA−1

�� is the recursive application of the Schur complement
method to the subdomainsΩ�. This leads to the nested dissection method of George
[149].
(c) If only a subroutine for the exact or approximate realisation of z� �→ A−1

�� z
� is

available, one can perform the map z �→ Sz, but the inversion of Sxk = b̂k is still
a problem. Since the entries of S are not available, algebraic linear iterations (e.g.,
the Gauss–Seidel iteration) cannot be applied.
(d) Since A > 0 implies S > 0 (cf. Proposition C.64), the CG method can be
applied for solving Sxk = b̂k.

(e) Formulating the Schur complement problem requires nothing other than the
matrix data. Hence algebraic iterations solving the Schur complement problem yield
again algebraic methods for solving the original problem.

A consequence of Remark C.63b is the next statement.

Remark 12.2. In principle, the equation Sz = c can be solved by setting b :=
[
0
c

]
and solving Ax = b. Then x =

[∗
z

]
contains the desired solution z as the second

block in x.

In the present case, this remark does not make sense since we are looking for
methods solving Ax = b.

According to Remark 12.1d, we may use the CG method. In this case, the spectral
condition number κ(S) is of interest. In the case of the Poisson model problem,
κ(S) = O(h−1) can be shown.5 Hence, the CG method (applied to the Richardson

4 The Schur complement S is also known under the name capacitance matrix.
5 The matrix S can be regarded as the discretisation of a certain boundary integral equation, whose
operator is spectrally equivalent to (−Δ)1/2 .



334 12 Domain Decomposition and Subspace Methods

iteration) yields the still unfavourable convergence rate 1− O(h1/2). One can try to
find a suitable preconditioning for the matrix S. In the case of an interior boundary
Γ without cross-points (as on the left in Fig. 12.4), Dryja [111] proposes the square
root of the second differences on the grid line Γ , which is computable by using the
fast Fourier transform6 (cf. also Mróz [286]).

A variant of the capacitance matrix method termed the ‘method of fictitious
domains’ is based on the embedding of domain Ω into a larger domain Ω′. For
example, one may choose Ω′ as a rectangle in order to obtain an easily solv-
able discretisation of the differential equation in Ω′. For this subject, we refer the
reader to Proskurowski–Widlund [312], Astrachancev [9], Börgers–Widlund [53],
and Quarteroni–Valli [315, §1.6].

12.4.3 Preconditioners of the Schur Complement

Instead of looking directly for a preconditioner for S, one may try to precondi-
tion S by the Schur complement of a related problem. The first approach is the
Neumann–Dirichlet method (cf. Widlund [397] and Bjørstad–Widlund [52]; therein
references to earlier literature). Let the domain Ω be decomposed into disjoint
subdomains Ω�, as depicted on the left in Figure 12.1. The interior grid points
(nodal points) are the sets denoted by I� for 1 ≤ � ≤ k − 1.

For the sake of simplicity, we assume k = 3 (i.e., two subdomains; see left
example in Figure 12.4). The preconditioning of the Schur complement S can be
constructed using Galerkin discretisation in Ω1:

find v ∈ V h with aΩ1(v, w) = (f, w)U for all w ∈ V h (12.4)

(cf. §E.3). (12.4) yields the (discrete) solution of the differential equation on Ω1

with the natural boundary condition on ∂Ω1 ∩ ∂Ω2. Problem (12.4) involves only
the index sets I1 and I3. The system of equations has the block structure[

A11 A13

AH
13 A

′
33

] [
x1

x3

]
=

[
c1

c3

]
(12.5)

with a different matrix A′
33 �= A33. The corresponding Schur complement

S′ := A′
33 −AH

13A
−1
11 A13 (12.6)

is used as a preconditioning matrix for S. The proof of κ(S′−1S) = O(1) requires
tools from functional analysis (continuation theorems; cf. Widlund [397]). The
solution of a system with the matrix

A′ :=

⎡⎣A11 0 A13

0 A22 A23

AH
13 A

H
23 A

′
33

⎤⎦
6 The fast Fourier transform is first described by Gauss [146] in 1805 (cf. Heideman et al. [215]).



12.4 Schur Complement Method 335

starts with the subproblem corresponding to blocks x1, x3 using the matrix of
(12.5) and is completed by solving for x2. If S′ is a good preconditioner for S, then
A′ is also a good preconditioner for A as stated below (see also Mandel [270]).

Exercise 12.3. (a) Show that S′ < S for S and S′ in (12.3) and (12.6).
(b) Let γ≤1≤Γ . Prove the equivalence of γS′ ≤ S ≤ ΓS′ and γA′ ≤ A ≤ ΓA′.

The solution of A′x = c can be obtained from the exact solution of the
subproblems (12.5) and A22 x

2 = c2. The exact solution can be approximated
by replacing A′ by A′′. According to Lemma 7.55, we estimate κ(A′′−1A) by
κ(A′′−1A′)κ(A′−1A) = κ(A′′−1A′)κ(S′−1S) ≤ constκ(A′′−1A′).

The second approach uses the fact that under certain conditions concerning
S = S′ + S′′ the matrices S−1 and

S′−1 + S′′−1

are spectrally close. Here, S′ is defined as above, while S′′ := A′
33 −AH

23A
−1
22 A23

is the Schur complement of the second subdomain problem with aΩ2
in (12.4). Now

Remark 12.2 can be used to perform z′ �→S′−1z′ and z′′ �→S′′−1z′′ . This approach
is called the Neumann–Neumann method (cf. Smith–Bjørstad–Gropp [343, §4.2.2]).

12.4.4 Multigrid-like Domain Decomposition Methods

Domain decomposition can be performed in the following recursive manner: First,
the index set I is decomposed into disjoint sets: I = I� ∪ I ′�, then we decompose
I ′� = I�−1 ∪ I ′�−1, I ′�−1 = I�−2 ∪ I ′�−2,. . . and end up with the disjoint splitting
I = I� ∪ I�−1 ∪ . . . ∪ I1 ∪ I0. For instance, the indices Iμ may correspond to the
grid-point set Ωμ\Ωμ−1 (Ω−1 := ∅), where Ω0 ⊂ Ω0 ⊂ . . . ⊂ Ω� is a grid hierar-
chy associated with the step size sequence hμ = 2−μh0. The index decomposition
I = I� ∪ I ′� corresponds to a partitioning of the matrix A = A(�). This block matrix
can be written as the product

A(�) =

[
A

(�)
11 A

(�)
12

A
(�)H
12 A

(�)
22

]
= L(�)

[
A

(�)
11 0
0 S(�)

]
L(�)H, L(�) =

[
I 0

A
(�)H
12 A

(�)−1
11 I

]
,

where S(�) denotes again the Schur complement. Following Exercise 12.3, precon-
ditioning A needs a good preconditioner of S(�) by S′(�). Since S(�) corresponds
to a coarse-grid correction, S′(�) can be defined recursively on �. Such approaches
can be found in Axelsson [11], Axelsson–Vassilevski [16, 17], Vassilevski [377],
Kuznetsov [251, 252, 253]. They lead to methods that are similar to the hierarchical
basis multigrid method described in §12.9.4. Occasionally, these methods are termed
algebraic multilevel iteration (AMLI) although is it not an algebraic iteration in the
sense of Definition 2.2b.



336 12 Domain Decomposition and Subspace Methods

12.5 Subspace Iteration

12.5.1 General Construction

Let X = KI be the linear space containing the solution x of Ax = b. The sub-
problems, which we index by κ ∈ J , correspond to lower-dimensional problems
represented by vectors xκ ∈ Xκ = KIκ . The solution x of the system Ax = b
is composed of the partial solutions xκ. For that purpose, we choose linear and
injective mappings, which may be called prolongations:

pκ : Xκ → X (κ ∈ J). (12.7)

The true solution x = A−1b should be expressed in the form

x =
∑
κ∈J

pκx
κ. (12.8)

This is possible in general if and only if∑
κ∈J

range(pκ) = X (12.9)

holds. Here, range(pκ) = {pκxκ : xκ ∈ Xκ} denotes the image space of pκ;
furthermore, the sum of subspaces Vκ ⊂ X denotes the space∑

κ∈J

Vκ = span{Vκ : κ ∈ J} = {x ∈ X : x =
∑
κ∈J

vκ : vκ ∈ Vκ}.

pκ in (12.7) is represented by a rectangular matrix. Its Hermitian transposed
matrix pHκ describes a mapping from X onto Xκ :

rκ := pHκ : X → Xκ (restriction). (12.10)

For each κ ∈ J, we define the matrices (Galerkin products)

Aκ := rκApκ (κ ∈ J). (12.11)

Their size is nκ × nκ, where

nκ := dimXκ . (12.12)

The lower-dimensional subproblems are equations of the form

Aκ y
κ = cκ (κ ∈ J, yκ, cκ ∈ Xκ). (12.13)

For the present, we assume that problems of the form (12.13) can be solved exactly.
The regularity of Aκ is not guaranteed without additional conditions on A.
A sufficient condition is given below.



12.5 Subspace Iteration 337

Exercise 12.4. Assume that A > 0 and pκ is injective for all κ ∈ J . Prove Aκ > 0.

We associate the prolongations pκ with the restrictions rκ in (12.10) and the
projections

Pκ := pκA
−1
κ rκA = pκA

−1
κ rκA : X → X. (12.14a)

Exercise 12.5. Prove that (a) Pκ are projections onto range(pκ) for κ ∈ J .
(b) Let A > 0. Pκ is an A-orthogonal projection, i.e., Pκ is selfadjoint with respect
to the A-scalar product (9.8a):

〈Pκx, y〉A = 〈x, Pκy〉A for all x, y ∈ X. (12.14b)

12.5.2 The Prolongations

Let nκ in (12.12) be the partial dimension and n = dim(X) the entire one. A first
classification is given by the alternatives (12.15a) and (12.15b):∑

κ∈J

nκ = n (‘disjoint subdomains’), (12.15a)

∑
κ∈J

nκ > n (‘overlapping subdomains’). (12.15b)

Note that
∑
nκ < n is excluded because of (12.9).

Remark 12.6. In case (12.15a), each x ∈ X allows a unique decomposition (12.8);
in case (12.15b), more than one representation (12.8) is possible.

A particularly simple situation of the form (12.15a) arises from the block repre-
sentation of x. Let {Iκ : κ ∈ J} describe the block structure (A.7): I = ∪̇κ∈JIκ.
We choose

Xκ = KIκ , (pκ)αβ = δαβ for α ∈ I, β ∈ Iκ (12.16a)

(cf. (1.11)). Therefore,
∑

κ∈J pκx
κ is only another notation of the vector x =

(xκ)κ∈J composed of the blocks xκ. In the case of ordered indices, the matrix pκ
takes the form

pκ =

⎡⎢⎢⎢⎢⎢⎢⎣

0...
0

I

0...
0

⎤⎥⎥⎥⎥⎥⎥⎦} block of index κ, rκ = [ 0, . . . , 0, I, 0, . . . , 0 ] . (12.16b)

Remark 12.7. If pκ is defined according to (12.16a,b), the matrices Aκ in (12.11)
coincide with the diagonal block Aκκ of the matrix A (cf. §A.4).



338 12 Domain Decomposition and Subspace Methods

In the case of (12.15b), pκ can still be defined by (12.16a), but the subsets Iκ ⊂I
are no longer disjoint and therefore do not describe a block decomposition.
A property still remaining is mentioned next.

Remark 12.8. If the index set I is decomposed into I = ∪κ∈JIκ (possibly not
disjointly) and the prolongations pκ are defined by (12.16a), the matrices Aκ in
(12.11) represent the principal submatrices of the matrix A belonging to the index
subset Iκ.

12.5.3 Multiplicative and Additive Schwarz Iterations

Here, the subspace iterations are called Schwarz iteration (see historical remarks
in §12.1). The projections Pκ in (12.14a) are associated with the (partial) linear
iterations

Φκ(x, b) := x− pκA
−1
κ rκ(Ax− b) (κ ∈ J). (12.17)

Note the similarity to the coarse-grid correction in (11.19).
According to Definition 5.12 and Exercise 12.5, the iteration Φκ is an A-

orthogonal projection, provided that A > 0.

Exercise 12.9. Prove that the iteration matrix belonging to (12.17) is Mκ=I −Pκ.
Like Pκ, the iteration matrix Mκ is a projection. In the case of A > 0, Mκ is
A-selfadjoint (cf. Exercise 12.5). Φk is a positive definite iteration: Φk ∈ Lpos.

Let the index set J = {1, . . . , k} be ordered. The multiplicative Schwarz itera-
tion is the k-fold product

ΦmultSI := Φk ◦ Φk−1 ◦ . . . ◦ Φ2 ◦ Φ1 (Φj in (12.17)).

In contrast, the additive Schwarz iteration (with a damping factor Θ ) is defined by

ΦaddSI
Θ := Θ ·

∑
κ∈J

Φκ, i.e.,

ΦaddSI
Θ (x, b) = x−Θ

∑
κ∈J

pκA
−1
κ rκ(Ax− b),

where the index set J need not be ordered. We recall the algebra of linear iterations
discussed in §5 with the product in §5.4 and the summation in §5.3.

Lemma 12.10. (a) The iteration matrices of ΦmultSI and ΦaddSI
Θ are

MmultSI = (I − Pκ)(I − Pκ−1) . . . (I − P1),

MaddSI
Θ = I −Θ

(∑
κ∈J

pκA
−1
κ rκ

)
A = I −Θ

∑
κ∈J

Pκ.



12.5 Subspace Iteration 339

(b) Let A > 0 . The matrix of the second normal form of ΦaddSI
Θ is

NaddSI
Θ = ΘNaddSI with NaddSI =

∑
κ∈J

pκA
−1
κ rκ. (12.18a)

Under assumption (12.9), NaddSI is regular, so that the matrix of the third normal
form W addSI

Θ = Θ−1W addSI with W addSI = (NaddSI)−1 exists. It satisfies

A ≤ kW addSI (k := #J = number of ‘subdomains’). (12.18b)

Proof. (i) To prove part (b) set N := NaddSI. Nx = 0 implies rκx = 0 because
of 〈x,Nx〉 =

〈
A−1

κ rκx, rκx
〉
. Since ker(rκ) = range(pκ)

⊥, the orthogonality
x⊥ range(pκ) follows for all κ ∈ J . From (12.9), we conclude x = 0.

(ii) A1/2pκA
−1
κ rκA

1/2 is ≤ I , since it is an orthogonal projection. Summation
yields A1/2NA1/2 ≤ kI . According to (C.3g), inequality (12.18b) follows from
N ≤ kA−1. ��

Exercise 12.11. Let A > 0 . Prove the following: (a) The iteration adjoint to
ΦmultSI is Φ1 ◦ . . . ◦ Φk . The corresponding symmetric iteration (cf. (5.13)) is

ΦsymmultSI := Φ1 ◦ . . . ◦ Φk−1 ◦ Φk ◦ Φk−1 ◦ . . . ◦ Φ1.

(b) ΦaddSI
Θ ∈ Lpos, provided that Θ > 0.

A first (nonquantitive) convergence statement follows from Lemma 7.5. The
iterations Φκ are nonexpansive. Hence convergence holds if and only if (5.10) is
satisfied. Since ker(N

κ
) = ker(r

κ
) follows from the injectivity of p

κ
, convergence

is equivalent to (5.10):

(5.10) ⇔
⋂

κ

ker(r
κ
) = {0} ⇔

(⋂
κ

ker(r
κ
)
)⊥

= {0}⊥.

Conclusion A.33 yields the identity
(⋂

κ
ker(r

κ
)
)⊥

=
∑

κ
ker(r

κ
)⊥. Together with

the complements ker(rκ)
⊥ = range(pκ) and {0}⊥

= X,we obtain the equivalence
with
∑

κ
range(p

κ
) = X which is (12.9). The second part of the next proposition

follows from Proposition 5.23.

Proposition 12.12. Condition (12.9) implies convergence of ΦmultSI. For suitable
Θ, the additive version ΦaddSI

Θ converges under the same condition.

12.5.4 Interpretation as Gauss–Seidel and Jacobi Iteration

Assume the case (12.15a) (‘disjoint subdomains’). Moreover, let pκ be given
by (12.16a). Then Φk in (12.17) describes the solution of equation Ax = b with
respect to the block of index κ ∈ J . This proves part (a) of the next lemma.



340 12 Domain Decomposition and Subspace Methods

Lemma 12.13. (a) Under the assumptions (12.15a) and (12.16a), the multiplica-
tive Schwarz iteration coincides with the block-Gauss–Seidel iteration, whereas the
additive Schwarz iteration coincides with the damped block-Jacobi iteration.

(b) Let A > 0 . The multiplicative Schwarz iteration converges. The additive
Schwarz iteration converges for sufficiently small Θ > 0 (0 < Θ < 2k is always
sufficient).

Proof. For part (b), use (12.18b) and Theorems 3.36, 3.39, and 3.50. ��

12.5.5 Classical Schwarz Iteration

A situation not comparable with the Gauss–Seidel or Jacobi iteration arises in
case (12.15b). We consider the classical Schwarz iteration described in §12.2.1.
The differential equation (12.1) is replaced by the standard difference scheme
A = h−2tridiag{−1, 2,−1} ∈ KI×I with the step size h = 1

n+1 and the index
set I = {1, . . . , n} . The integers n1 and n2 are defined by 1+H

2 = (n1 + 1)h and
1−H
2 = (n2 − 1)h. Then the iteration in §12.2.1 corresponds to the choice

J = {1, 2}, pκ in (12.16a),
I1 = {1, . . . , n1}, I2 = {n2, . . . , n}.

The projection property of the iterations Φκ (κ = 1, 2) implies that

rκAΦκ(x, b) = rκb, i.e., (Φκ(x, b))ν = bν for all ν ∈ Iκ,

while (Φκ(x, b))ν = xν for ν /∈ Iκ. Hence, for κ = 1, the difference equations are
exactly solved for 1 ≤ ν ≤ n1 using the value xn1+1 at ξ = 1+H

2 as boundary
value.

12.5.6 Approximate Solution of the Subproblems

In the case of blockwise Jacobi methods, one chooses the block structure (and thus
the block diagonal D = blockdiag{Dκ : κ ∈ J}) such that equations of the form
Dκy

κ = cκ are easy to solve. Even if the additive Schwarz iteration can partially
be interpreted as a block-Jacobi method, this does not mean that the subproblems
(12.13): Aκy

κ = cκ are also easily solved. The reason is that, in general, (12.13)
also discretises the same differential equation (in a subdomain).

If no direct solver for the system Aκy
κ = cκ in (12.13) is available, this sub-

problem must be solved again by some iteration Φ(κ). Then a composed iteration
arises, which differs from the one studied in §5.5 only by the fact that k subproblems
are iteratively approximated during each outer iteration step. Denote the matrix of



12.5 Subspace Iteration 341

the third normal form of Φ(κ) by Wκ. We only consider symmetric iterations with

δκWκ ≤ Aκ := rκApκ ≤ ΔκWκ (κ ∈ J, 0 < δκ ≤ Δκ). (12.19)

Often, Δκ < 2 is required, i.e., Φ(κ) be convergent (cf. Theorem 3.34a).
As in §5.5, we can construct the iteration Φ(m) for solving Ax = b by the addi-

tive or multiplicative Schwarz iteration, where the exact solution of the subproblems
(12.13), Aκy

κ = cκ, is replaced by m > 0 applications7 of Φ(κ). Let W (m)
κ be

the matrix of the third normal form of them-fold iteration (Φ(κ))m. For simplicity,
we write Wκ :=W

(m)
κ . Then the projection Pκ = pκA

−1
κ rκA in (12.14a) becomes

Πκ = pκW
−1
κ rκA (κ ∈ J). (12.20a)

I −Πκ is the iteration matrix of the iteration Φκ replacing (12.17):

Φκ(x, b) := x− pκW
−1
κ rκ(Ax− b) (κ ∈ J). (12.20b)

Note that Πκ is no longer a projection. Some of its properties are gathered below.

Remark 12.14. (a) The mapping Πκ is A-adjoint, i.e., ΠH
κ = AΠκA

−1 and
〈Πκx, y〉A = 〈x,Πκy〉A hold (cf. (12.14b)).
(b) σ(Πκ) ⊂ σ(W−1

κ Aκ) ∪ {0}, where the equality sign ‘=’ holds instead of ‘⊂’,
if nκ = dimXκ < n = dimX .
(c) ρ(Πκ) ≤ Δκ is equivalent to the last inequality in (12.19):

Aκ ≤ ΔκWκ (κ ∈ J) (12.21)

and gives rise to the estimate (12.23) instead of (12.18b).

The iteration matrices of the multiplicative and additive Schwarz iteration with
approximate subspace solvers (12.20b) are

MmultSI = (I −Πk)(I −Πk−1) . . . ..(I −Π1), (12.22a)

MaddSI
Θ = I −Θ

(∑
κ∈J

pκW
−1
κ rκ

)
A = I −Θ

∑
κ∈J

Πκ . (12.22b)

In the following, we always assume that approximate subspace solvers are ap-
plied. The case of exact subspace solutions considered in §12.5.3 can be regarded
as the special choice Wκ = Aκ leading to δκ = Δκ = 1 in (12.19).

Exercise 12.15. Assume (12.19) and prove the following.
(a) The additive Schwarz iteration based on (12.20b) is a positive definite iteration.
(b) Define NaddSI =

∑
κ∈J pκW

−1
κ rκ and W addSI := (NaddSI)−1 according to

(12.18a). The estimate (12.18b) now becomes

A ≤ k max
κ

{Δκ}W addSI (k := #J). (12.23)

7 The numbers m = mκ may also depend on κ.



342 12 Domain Decomposition and Subspace Methods

12.5.7 Strengthened Estimate A ≤ ΓW

We say that two indices κ, λ ∈ J (or the respective subdomains) are connected if〈
Apκx

κ, pλy
λ
〉

�= 0 for suitable xκ ∈ Xκ, y
λ ∈ X�. (12.24)

Exercise 12.16. Prove that if there are subsets Iκ, Iλ ⊂ I such that pκ and pλ
satisfy (12.16a), then (12.24) holds if and only if the graph G(A) contains an edge
between some vertices α ∈ Iκ and β ∈ Iλ .

In Figure 12.1, the subdomains indexed by 1 and 3 are not connected because
of the sparsity of A . If, as in the block-tridiagonal case, the block-index i is only
connected to i±1, the set J = {1, 2, . . . , k} can be split into J1 = {1, 3, . . .} and
J2 = {2, 4, . . .} satisfying the assumptions of the following lemma with K = 2.

Lemma 12.17. Let A > 0 and assume that J can be decomposed into K subsets
J1, . . . , JK , so that property (12.24) only applies to indices κ �= λ from different
sets Ji, Jj (i �= j). Then (12.23) holds in the strengthened form

A ≤ K max
κ

{Δκ}W addSI. (12.25)

Proof. Write N := NaddSI in (12.18a) as a sum N1 + . . .+NK with

Ni :=
∑
κ∈Ji

pκW
−1
κ rκ ≤ ΔN ′

i , where N ′
i :=

∑
κ∈Ji

pκA
−1
κ rκ

and Δ := maxκ{Δκ}. By definition, (12.24) does not hold for indices κ, λ ∈ Ji
with κ �= λ; hence, range(pκ)⊥A range(pλ). This proves that N ′

i is an A-
orthogonal projection and therefore, as in the proof of Lemma 12.10, satisfies
N ′

i ≤ A−1. Summation of Ni ≤ ΔN ′
i ≤ ΔA−1 yields N ≤ KΔA−1, implying

(12.25). ��

Another bound Γ in A ≤ Γ W addSI can be derived from the symmetric matrix

E = (εκλ)k,λ∈J ∈ RJ×J , (12.26a)

whose entries are the smallest bounds in∣∣〈pκxκ, pλyλ〉A∣∣ ≤ εκλ ‖xκ‖W
∥∥yλ∥∥

W
(xκ ∈ Xκ, y

λ ∈ Xλ) . (12.26b)

where ‖·‖W denotes the following norms on Xκ :

‖xκ‖W := ‖W 1/2
κ xκ‖2 =

√
〈Wκxκ, xκ〉 for xκ ∈ Xκ . (12.26c)



12.5 Subspace Iteration 343

Lemma 12.18. (a) In the case of Wκ=Aκ (exact subspace solution), theW -norm
coincides with the energy norm: ‖xκ‖W = ‖pκxκ‖A .
(b) Under assumption (12.21), ‖pκxκ‖A ≤

√
Δκ ‖xκ‖W holds.

Proof. For part (a), use ‖xκ‖2W = 〈Wκx
κ, xκ〉= 〈Aκx

κ, xκ〉 =
〈
pHκApκx

κ, xκ
〉
=

〈Apκxκ, pκxκ〉= 〈pκxκ, pκxκ〉A = ‖pκxκ‖2A. ��

The standard Cauchy–Schwarz inequality is
∣∣〈pκxκ, pλyλ〉A∣∣ ≤ ‖xκ‖W ‖yλ‖W

with Wκ = Aκ . A strict inequality εκλ < 1 describes a strengthened Cauchy–
Schwarz inequality. It determines the minimal angle between the subspaces pκXκ

and pλXλ
. In particular, εκκ = 1 holds for all κ ∈ J .

Remark 12.19. The Cauchy–Schwarz inequality implies 0 ≤ εκλ ≤
√
ΔκΔλ.

The number εκλ vanishes if and only if the respective ranges pκXκ and pλXλ
are

A-orthogonal. By definition, this holds if the indices κ and λ are not connected.

Abbreviate N := NaddSI and estimate NAx by

‖NAx‖2A =
〈∑

κ
pκW

−1
κ rκAx,

∑
λ
pλW

−1
λ rλAx

〉
A

≤
∑

κ,λ

∣∣〈pκW−1
κ rκAx, pλW

−1
λ rλAx

〉
A

∣∣
(12.26c) ≤

∑
κ,λ
εκλ‖W−1

κ rκAx‖W ‖W−1
λ rλAx‖W

≤ ρ(E)
∑

κ
‖W−1

κ rκAx‖2W

using the symmetry of E = (εκλ)κ,λ . The inequality∑
κ

‖W−1
κ rκAx‖2W =

∑
κ

〈
rκAx,W

−1
κ rκAx

〉
=
∑
κ

〈
Ax, pκW

−1
κ rκAx

〉
= 〈Ax,NAx〉 = 〈x,NAx〉A
≤ ‖x‖A ‖NAx‖A

yields ‖NAx‖2A ≤ ρ(E) ‖x‖A ‖NAx‖A and hence ‖NAx‖A ≤ ρ(E) ‖x‖A . This
inequality is equivalent to

‖A1/2NA1/2‖2 ≤ ρ(E) ⇔ A1/2NA1/2 ≤ ρ(E)I ⇔ N ≤ ρ(E)A−1,

and finally to A ≤ ρ(E)W addSI. This proves the next theorem.

Theorem 12.20. A ≤ ΓW addSI holds with Γ = ρ(E) and E in (12.26a,b):

A ≤ ρ(E)W addSI. (12.27)

The trivial estimate εκλ ≤
√
ΔκΔλ in Remark 12.19 for connected κ, λ, to-

gether with ρ(E) ≤ ‖E‖∞ ≤ maxκ{Δκ}K, leads us back to (12.23).



344 12 Domain Decomposition and Subspace Methods

12.6 Properties of the Additive Schwarz Iteration

12.6.1 Parallelism

Actual interest in the additive Schwarz iteration is due to its parallelism, which
makes the method well-suited for parallel computing. Therefore, we consider the
single steps of the algorithm in detail.

1. After computing the partitioned defect dκ := pHκ(Ax
m − b) for all κ ∈ J , the

steps

dκ �→ A−1
κ dκ = A−1

κ rκ(Ax
m − b) �→ δxκ := pκA

−1
κ dκ = pκA

−1
κ rκ(Ax

m − b)

are completely independent of each other and can be computed by different
processors without any communication.

2. Even the correction step

xm+1 := xm −Θ
∑

κ∈J
δxκ (δxκ as defined above)

can be executed in parallel if (12.15a) and (12.16a) hold. In this case, one uses
the processors of index κ ∈ J for storing the block of index κ ∈ J . Then the
correction simplifies to (xm+1)κ = (xm)κ − Θ(δxκ)κ, and therefore requires
only local quantities. In the overlapping case (12.15b), an additional communi-
cation is necessary.

3. If according to (ii), the blocks {(xm)κ : κ ∈ J} are distributed over the
processors, computing dκ := pHκ(Ax

m − b) requires communication with all
processors of indices λ ∈ J that are connected to κ (definition in (12.24)).

12.6.2 Condition Estimates

A general assumption for following considerations is A > 0. Let the matrix W =
W addSI = ΘW addSI

Θ be defined as in Lemma 12.10b. We recall (B.14): the spectral
condition number κ(W−1A) is the ratio Γ/γ of the optimal bounds in

γW addSI ≤ A ≤ ΓW addSI. (12.28)

Note that the spectral condition number is independent of the choice of Θ. In
(12.23), (12.25), and (12.27) we found Γ = kmaxκ{Δκ}, Kmaxκ{Δκ}, and
ρ(E), respectively, as upper bounds. The following theorem enables us to arrive at
an explicit description of a lower bound γ.



12.6 Properties of the Additive Schwarz Iteration 345

Theorem 12.21. Assume that A > 0 and Wκ = Aκ . Let C be a constant such
that for each x ∈ X , a representation x =

∑
κ∈J pκx

κ (xκ ∈ Xκ) exists with∑
κ∈J

〈Apκxκ, pκxκ〉 ≤ C 〈Ax, x〉 . (12.29)

Then the first inequality γW addSI ≤ A in (12.28) holds with γ = 1/C.

This statement is first mentioned in 1986 by Nepomnyashich [288]. Nevertheless,
this theorem is often called the ‘Lemma of P. Lions’ since the later publication
[266] contains this statement indirectly. In the explicit form one finds the theorem
in Widlund [398].

In the case of (12.15a) (‘disjoint subdomains’), the decomposition of the vec-
tor x into x =

∑
κ∈J pκx

κ is unique (cf. Remark 12.6); in the opposite case
(12.15b) (‘overlapping subdomains’), one can choose an appropriate representation
x =
∑

κ∈J pκx
κ for (12.29) from infinitely many possibilities.

The proof of Theorem 12.21 can be omitted, since it is the special case Wκ=Aκ

of Theorem 12.24 (cf. Lemma 12.18a).
The estimate stated in Theorem 12.21 is sharp, as shown by the following result

of Xu [407].

Corollary 12.22. If C is the smallest possible constant in (12.29), then γ = 1/C
is the largest constant in γW addSI ≤ A.

Proof. Given x, define y := A−1W addSIx. We may choose the decomposition
xκ := A−1

κ rκAy ∈ Xκ , because
∑
pκx

κ =
∑
pκA

−1
κ rκAy = NaddSIAy = x.

Now∑
κ∈J

〈Apκxκ, pκxκ〉 =
(12.14a)

∑
κ∈J

〈APκy, Pκy〉 =
(12.14b)

∑
κ∈J

〈
AP 2

κy, y
〉

=
∑

κ∈J
〈APκy, y〉 =

〈
ANaddSIAy, y

〉
=
〈
NaddSIAy,Ay

〉
=
〈
x,W addSIx

〉
≤

A≥γW

1

γ
〈x,Ax〉

proves (12.29) with C = 1/γ. ��

A corresponding result of Bjørstad–Mandel [51] exists for the reverse direction.

Remark 12.23. Let A>0 and Wκ=Aκ. If for all x∈X and all decompositions
x =

∑
κ∈J pκx

κ (xκ ∈ Xκ), the inequality
∑

κ∈J〈Apκxκ, pκxκ〉 ≥ C 〈Ax, x〉
holds with C > 0, then (12.28) is satisfied by Γ = 1

C .

Inequality (12.29) can also be written as
∑

κ ‖pκxκ‖2A ≤ C ‖x‖2A. Replacing
the energy norm ‖·‖A with the W -norm introduced in (12.26c), we obtain a
generalisation of Theorem 12.21 to Wκ �= Aκ.



346 12 Domain Decomposition and Subspace Methods

Theorem 12.24. Assume A > 0 , Wκ > 0 (κ ∈ J) . Let C ′ be a constant so that
for any x ∈ X a decomposition x =

∑
κ∈J x

κ (xκ ∈ Xκ) exists with∑
κ∈J

‖xκ‖2W ≤ C ′ ‖x‖2A . (12.30)

Then the first inequality γW addSI ≤ A in (12.28) holds with γ = 1/C ′.

Proof. Squaring the inequality

‖x‖2A = 〈x, x〉A =
〈
x,
∑

pκx
κ
〉
A
=
∑

〈Ax, pκxκ〉

=
∑

〈rκAx, xκ〉 =
∑〈

W−1/2
κ rκAx,W

1/2
κ xκ

〉
≤
∑

‖W−1/2
κ rκAx‖2‖W 1/2

κ xκ‖2

≤
√∑

‖W−1/2
κ rκAx‖22

√∑
‖W 1/2

κ xκ‖22

=
√∑

‖W−1/2
κ rκAx‖22

√∑
‖xκ‖2W ≤(12.30)

≤
√∑

‖W−1/2
κ rκAx‖22

√
C ′ ‖x‖2A

and cancelling the factor ‖x‖2A yields 〈Ax, x〉 ≤ C ′∑ ‖W−1/2
κ rκAx‖22 . Since

‖W−1/2
κ rκAx‖22 =

∑〈
A(pκW

−1
κ rκ)Ax, x

〉
= 〈ANAx, x〉, we arrive at the in-

equality

A ≤ C ′ANA (N = NaddSI),

which is equivalent to A−1 ≤ C ′N = C ′(W addSI)−1 and A ≥ 1
C′W

addSI. ��

If inequality (12.29) can be verified more easily than (12.30), the use of Theorem
12.24 can be avoided as shown next.

Exercise 12.25. Assume that (12.29) is valid with the constant C. Prove that
(12.30) holds with C ′ := C/δ, where δ := min{δκ} involves the lower bounds
in (12.19): δκWκ ≤ Aκ.

It would be desirable if the bounds γ and Γ in (12.28) were h-independent.
Even if the number k of subdomains is independent of h, k might be a large
number (depending on the number of available parallel processors), so that the k-
independence of γ and Γ also seems to be desirable. Therefore, the bound Γ = k
in (12.18b) is not optimal. However, Lemma 12.17 already yields a criterion for
Γ = K, where K does not depend on the number k of the subdomains, but only
on the degree of their mutual connectivity. Moreover, Theorem 12.20 may help,
if ρ(E) is independent of the parameters. An h- or k-independent lower bound γ
can be obtained from Theorem 12.21 or Theorem 12.24 if the respective constant
C or C ′ used there is h- or k-independent.



12.6 Properties of the Additive Schwarz Iteration 347

12.6.3 Convergence Statements

The additive Schwarz iteration ΦaddSI
Θ yields a convergent iteration, provided that

suitable damping is applied. According to (3.25), the optimal damping factor is
Θ := 2/(γ+Γ ) with γ and Γ in (12.28). This leads us to the contraction number

ρ(MaddSI
Θ ) = ‖MaddSI

Θ ‖A ≤ (Γ − γ)/(Γ + γ).

The same rate holds for the gradient method with ΦaddSI
Θ as the basic iteration. The

best convergence rate (
√
Γ −√

γ )/(
√
Γ +

√
γ ) is given by the CG method applied

to ΦaddSI
Θ . In any case, a small ratio Γ/γ is favourable. In the latter cases, the

value of Θ does not matter. The choice Θ = 1 leads to W addSI
Θ = W addSI and

NaddSI
Θ = NaddSI.
A simply analysed situation is the case of two disjoint subdomains (the 2-cyclic

case).

Theorem 12.26. Assume A > 0 and (12.15a) with k = 2 (i.e., two disjoint
domains).
(a) Then the optimal bounds γ and Γ in (12.28) have the form

γ = 1 − δ, Γ = 1 + δ with

δ := ‖A−1/2pH1Ap2A
−1/2‖2 < 1 (Aκ in (12.11)). (12.31a)

(b)Θ = 1 is the optimal damping factor of the additive Schwarz iteration and yields
the convergence rate ρ(MaddSI

1 ) = ‖MaddSI
1 ‖A = δ. The CG method applied to

ΦaddSI
Θ has the asymptotic rate δ/(1 +

√
1 − δ2).

(c) The number δ in (12.31a) is also the best bound in the strengthened Cauchy–
Schwarz inequality

|〈x, y〉A| ≤ δ ‖x‖A ‖y‖A for all x ∈ range(p1), y ∈ range(p2). (12.31b)

Proof. (i) Inserting x=p1x1 and y=p2x2 in (12.31b) with xκ ∈Xκ and exploiting

‖pκxκ‖A =
√

〈Apκxκ, pκxκ〉 =
√

〈Aκxκ, xκ〉 = ‖A1/2
κ xκ‖2,

we prove that the optimal δ in (12.31b) coincides with the norm in (12.31a).
(ii) The coincidence of the additive Schwarz iteration with the block-Jacobi

iteration leads to the equivalence of inequality (12.28) to γD ≤ A ≤ ΓD with
D :=blockdiag{A1, A2}. Also

(γ − 1)D ≤ A−D ≤ (Γ − 1)D

is an equivalent inequality. Lemma 4.8 applied toB :=D−1/2(A−D)D−1/2 yields
λmax(B) = δ and λmin(B)=−δ. The remaining statements follow from γ−1=−δ
and Γ − 1 = δ. ��

The constant δ in (12.31b) coincides with ε12 in (12.26a,b).



348 12 Domain Decomposition and Subspace Methods

A corresponding analysis for two overlapping subdomains is given by Bjørstad–
Mandel [51]. Different from the nonoverlapping case in Theorem 12.26, Γ = 2
cannot be improved. For the proof, choose 0 �= x ∈ range(p1) ∩ range(p2), which
is possible because of (12.15b). Hence there are xκ ∈ range(pκ) with x = pκx

κ.
The identity

pκA
−1
κ rκAx = pκA

−1
κ (rκApκ)x

κ = pκx
κ = x

for k = 1, 2 leads to NAx = 2x or Ax = 2Wx and implies Γ ≥ 2. On the
other hand, (12.18b) ensures that Γ ≤ k = 2. A multiple eigenvalue Γ = 2 hardly
troubles the CG method, but it influences ΦaddSI as well as the gradient method
based on ΦaddSI.

Let Φ(m) be the additive Schwarz iteration combined with anm-fold application
of the solver Φ(κ) for the subproblem Aκy

κ = cκ. Above we analysed the case
m = 1. The case m > 1 is discussed below in detail. Note that now the matrixWκ

belongs to the third normal form of Φ(κ) (and not of (Φ(κ))m).

Remark 12.27. Assume A > 0 and Φ(κ) ∈ Lsym for κ ∈ J. Let Φ(m) be the
composed iteration defined above.
(a) Then Φ(m) ∈ Lsym holds for any m ∈ N and the corresponding matrixN(m) of
the second normal form has the representation

N(m) =
∑
κ∈J

pκ

[
I − (I −W−1

κ Aκ)
m
]
A−1

κ pHκ .

We rewrite (12.19) in the form

γκWκ ≤ Aκ ≤ ΓκWκ (γκ > 0, κ ∈ J). (12.32)

This implies that Φ(κ) ∈ Lpos. If m is odd or Γκ ≤ 2, then Φ(m) ∈ Lsemi (cf.
Definition 5.11). Φ(m) ∈ Lpos is ensured if m is odd or Γκ < 2.

(c) Assume that γW addSI ≤A≤ ΓW addSI holds in the case of the exact solution
of the subproblems (i.e., Aκ =Wκ), and that either m is odd or γκ ≥ 0. Then the
matrix W(m) of the third normal form of Φ(m) satisfies

γmin
κ

{1 − (1 − γκ)
m
, 1 − (1 − Γκ)

m}W(m) ≤ A ≤ ΓW(m).

Proof. We rewrite N(m) of part (a) as

N(m) =
∑
κ∈J

pκA
−1/2
κ

[
I − (I −Xκ)

m
]
A−1/2

κ pHκ with Xκ := A1/2
κ W−1

κ A1/2
κ .

Φ(κ) ∈ Lsym implies Xκ = XH
κ and N(m) = NH

(m), so that Φ(m) ∈ Lsym. Since
Aκ ≤ ΓκWκ in (12.32) together with Γκ ≥ γκ > 0 implies Wκ > 0, Φ(κ) ∈ Lpos

follows.
Inequality (12.32) can be written as σ(Xκ) ⊂ [γκ, Γκ] and yields the enclosure

σ(I − (I − Xκ)
m) ⊂ [am,κ, bm,κ]. Define f(x) := 1 − (1 − x)

m
. The values of



349

am,κ, bm,κ depend on the parity of m. For odd m, we have

[am,κ, bm,κ] := [f(γκ), f(Γκ)],

whereas for odd m

[am,κ, bm,κ] :=

⎧⎨⎩
[f(γκ), f(Γκ)] if Γκ ≤ 1,
[min{f(γκ), f(Γκ)}, 1] if γκ ≤ 1 ≤ Γκ,
[f(Γκ), f(γκ)] if γκ ≥ 1

⎫⎬⎭ ⊂ [am,κ, 1].

The first requirements in the part (b) imply am,κ ≥ 0 and therefore Φ(m) ∈ Lsemi,
while the stronger assumption ensures am,κ > 0 and therefore Φ(m) ∈ Lpos.

The matrix N(m) satisfies aN ≤ N(m) ≤ bN with N =
∑

κ∈J pκA
−1
κ pHκ

and a = minκ{am,κ}, b = maxκ{bm,κ}. The latter inequality is equivalent to
aW(m) ≤ W ≤ bW(m) involving the inverse matrices W = W addSI , and so on.
The combination with γW addSI ≤ A ≤ ΓW addSI yields

γaW(m) ≤ A ≤ ΓbW(m) .

Under the conditions of part (c), we get the desired estimate. ��

Instead of the iterative solution of Aκy
κ = cκ, one should also take a semi-

iterative treatment into consideration. If the convergence rates of Φ(κ) are clearly
different, one should use different iteration numbers mκ such that all bm,κ are
similar in size.

12.7 Analysis of the Multiplicative Schwarz Iteration

12.7.1 Convergence Statements

The case of k = 2 nonoverlapping domains is very easy to analyse.

Exercise 12.28. Prove that under the assumptions of Theorem 12.26, the multi-
plicative Schwarz iteration has the convergence rate δ2. Hint: use Remark 4.21.

The following general analysis for k > 1 is based on the presentation of Xu
[409] (details in Xu–Zikatonov [410]; see also Bramble–Pasciak–Wang–Xu [74],
Griebel–Oswald [170], Oswald [304]) and private communications with
H. Yserentant. From the beginning we consider the case that the subproblems
are solved approximately using Wi (i ∈ J) (cf. §12.5.6). The choice Ai = Wi

corresponds to the exact solution.
The convergence will be based on two inequalities similar to (12.30) and (12.26b).

As discussed in Remark 12.19, the constants εκλ in (12.26b) are smaller the smaller
the subspaces Xκ are. Therefore, we introduce the set {Yj : 1 ≤ j ≤ k} of sub-
spaces with the following properties:

Yj ⊂ Xj ,
∑k

j=1
pjYj = X,

12.6 Properties of the Additive Schwarz Iteration



350 12 Domain Decomposition and Subspace Methods

where pjYj is the range of pj restricted to Yj . The second property ensures that
every x ∈ X has a representation x =

∑
pjy

j with yj ∈ Yj . In the overlapping
case (12.15b), one may, e.g., choose Yj such that {Yj}1≤j≤k is nonoverlapping.

Inequality (12.30) is now required in the following form. There is a bound C1

such that for each x ∈ X we have
k∑

j=1

‖yj‖2W ≤ C1 ‖x‖2A
for a suitable decomposition
x =
∑
pjy

j with yj ∈ Yj . (12.33)

If Yj = Xj , (12.33) and condition (12.30) in Theorem 12.24 are identical;
otherwise, condition (12.33) is stronger, since there may be fewer decompositions
x =
∑
pjy

j with yj ∈ Yj than x =
∑
pjx

j with xj ∈ Xj as in (12.30).
Besides (12.33), we need estimates similar to strengthened Cauchy inequalities.

Let εXY
ij be the smallest numbers with∣∣〈pixi, pjyj〉A∣∣ ≤ εXY

ij ‖xi‖W ‖yj‖W
for all xi ∈ Xi, y

j ∈ Yj , and i < j .
(12.34a)

For i ≥ j, we define εXY
ij := 0. If Xj = Yj and i < j, (12.34a) is identical with

(12.26b), i.e., εXY
ij = εij ; otherwise, εXY

ij ≤ εij may become a strict inequality.
We form the strictly upper triangular matrix

EXY := (εXY
ij )i,j=1,...,k (12.34b)

and denote its spectral norm by

C2 := ‖EXY ‖2. (12.34c)

An estimate of this k × k matrix is the subject of the next exercise.

Exercise 12.29. Prove that εXY
ij ≤ Δ with Δ := maxκΔκ in (12.21) for all

i < j and that C2 ≤ Δ
√
k(k − 1)/2 < kΔ . Hint: ‖EXY ‖22 ≤ ‖ET

XY EXY ‖∞.

The following theorem which will be proved in §12.7.2 yields the first conver-
gence result.

Theorem 12.30. Assume (12.21): Aj ≤ ΔWj with Δ < 2. Let C1 and C2 be the
numbers defined in (12.33) and (12.34c). Then the multiplicative Schwarz iteration
converges monotonically with respect to the energy norm. The contraction number
can be estimated by

‖MmultSI‖A ≤
√
1 − 2 −Δ

C1 (1 + C2)
2 (12.35)

Inserting the bound in Exercise 12.29, we obtain the k-dependent rate
‖MmultSI‖A ≤ 1 − O(k−2). If, however, the bounds C1, C2 are k-independent,
the convergence is also. If the subspace problems are solved exactly (Aj = Wj),
the factor 2 −Δ in (12.35) becomes 1.



12.7 Analysis of the Multiplicative Schwarz Iteration 351

The second convergence statement replaces the estimates (12.34a) by

‖x‖2A ≤ C3

k∑
j=2

‖yj‖2W
j − 1

for any x =
k∑

j=2

pjy
j with yj ∈ Yj . (12.36)

The relation to (12.34a–c) can be seen from the sufficient condition stated below.

Lemma 12.31. Let δij (1 ≤ i, j ≤ k) be the smallest numbers satisfying〈
piy

i, pjy
j
〉
A

≤ δij
∥∥yi∥∥

W

∥∥yj∥∥
W

for all yi ∈ Yi, yj ∈ Yj . (12.37a)

Define the symmetric k × k matrix EY Y by

EY Y :=
(√
i− 1

√
j − 1 δij

)
i,j=1,...,k

. (12.37b)

Then estimate (12.36) follows with C3 := ρ(EY Y ) .

Proof. The norm of x =
∑k

j=2 pjy
j can be estimated by

‖x‖2A =
∑k

i,j=2

〈
piy

i, pjy
j
〉
A

≤
(12.37a)

∑k

i,j=2
δij
∥∥yi∥∥

W

∥∥yj∥∥
W

(12.37b) =
∑k

i,j=2
(EY Y )ij

[
(i− 1)−1/2‖yi‖W

] [
(j − 1)−1/2‖yj‖W

]
≤ ρ(EY Y )

[∑k

j=2
(j − 1)−1‖yi‖2W

]
.

Note that δij ≤ εXY
ij with εXY

ij in (12.34a) for i < j and Wi = Ai, since both
arguments yi and yj belong to possibly smaller subspaces. The weights

√
i− 1

in (12.37b) demonstrate that the ordering of the substeps in the multiplicative
approach is essential. Unfortunately, C3 is not k-independent as demonstrated in
part (b) of the next exercise.

Exercise 12.32. (a) Prove that (12.37a) is always true for the choice δij = Δ
(Δ := maxκΔκ in (12.21)), which leads to C3 = Δk(k − 1)/2. Furthermore,
one may use the estimate C3 ≤ (k − 1)ρ

(
(δij)i,j=1,...,k

)
.

(b) For Wi = Ai, prove C3 ≥ k − 1.

The convergence result involving inequality (12.36) is the following.

Theorem 12.33. Assume (12.21): Aj ≤ ΔWj with Δ < 2. Let C1 and C3 be the
numbers defined in (12.33) and (12.36). Then the multiplicative Schwarz iteration
converges monotonically with respect to the energy norm. The contraction number
can be estimated by

‖MmultSI‖A ≤
√
1 − 2 −Δ

C1

(
1 +

√
ΔC3

)2 < 1. (12.38)



352 12 Domain Decomposition and Subspace Methods

It may happen that C2 in (12.34c) is larger than O(1) because of the first k0
rows in the matrix EXY . Then

C2,k0
:= ρ(EXY,k0

), EXY,k0
:= (εXY

ij )i,j=k0+1,...,k (12.39)

might be smaller than C2 = C2,0. The following result is due to Dryja–Widlund
[114] (proof in §12.7.2).

Corollary 12.34. Assume (12.21): Aκ ≤ ΔWκ with Δ < 2. Let C1 be defined
by (12.33) and C2,k0 by (12.39) for some k0 ∈{1, . . . , k}. Then

‖MmultSI‖A ≤
√√√√√1 − 2 −Δ

C1

[
1 +

√
C2

2,k0
+Δk0

(
1 + 1

C1

)(
1 + Δ(k0+1)

2

)]2 .

12.7.2 Proofs of the Convergence Theorems

The products

Mi := (I −Πi)(I −Πi−1) · . . . · (I −Π1) (1 ≤ i ≤ k)

with Πi = piW
−1
i riA in (12.20a) are the iteration matrices corresponding to the

products Φi ◦ . . . ◦ Φ1 of the first i substeps. As usual, the empty product is

M0 = I.

According to (12.22a), we have MmultSI =Mk. Summing the identities

Mi−1 −Mi = ΠiMi−1 (1 ≤ i ≤ k), (12.40a)

we obtain

I −Mi =

i∑
j=1

ΠjMj−1 (1 ≤ i ≤ k). (12.40b)

Lemma 12.35. Let Δj be defined by (12.21).
(a) ‖Πjx‖2A ≤ Δj 〈Πjx, x〉A holds for all x ∈ X and j ∈ J .
(b) ‖pjyj‖A ≤

√
Δj‖yj‖W for all yj ∈ Yj .

Proof. (a) Since Aj ≤ ΔjWj , we have

‖Πjx‖2A =
〈
ApjW

−1
j rjAx, pjW

−1
j rjAx

〉
=
〈
ApjW

−1
j rjApjW

−1
j rjAx, x

〉
=
〈
ApjW

−1
j AjW

−1
j rjAx, x

〉
≤
〈
ApjW

−1
j rjAx, x

〉
proving ‖Πjx‖2A ≤ Δj 〈Πjx, x〉A.

(b) Use ‖pjyj‖2A =
〈
Apjy

j , pjy
j
〉
=
〈
rjApjy

j , yj
〉

=
(12.11)

〈
Ajy

j , yj
〉

≤
(12.21)

Δj

〈
Wjy

j , yj
〉

=
(12.26c)

Δj‖yj‖2W . ��



12.7 Analysis of the Multiplicative Schwarz Iteration 353

Lemma 12.36. Let Δ := maxj Δj . For all x ∈ X, we have

‖x‖2A − ‖MmultSIx‖2A ≥ (2 −Δ)

k∑
i=1

〈ΠiMi−1x,Mi−1x〉A . (12.41)

Proof. (12.40a) and Lemma 12.35b show that

‖Mi−1x‖2A − ‖Mix‖2A = ‖Mi−1x‖2A − ‖(Mi−1 −ΠiMi−1)x‖2A
= 2 〈ΠiMi−1x,Mi−1x〉A − ‖ΠiMi−1x‖2A ≥ (2 −Δj) 〈ΠiMi−1x,Mi−1x〉A .

Summation over i yields (12.41), since M0 = I and Mk =MmultSI. ��

Lemma 12.37. Let C1 be the bound in (12.33). Then, for all x, xj ∈ X , the de-
composition x =

∑
pjy

j in (12.33) with yj ∈ Yj is such that

k∑
j=1

〈
pjy

j , xj
〉
A

≤
√
C1 ‖x‖A

√∑k

j=1
〈Πjxj , xj〉A. (12.42)

Proof. Choose the decomposition according to (12.33). Summation of〈
pjy

j , xj
〉
A
=
〈
yj , rjAxj

〉
=
〈
W

1
2
j y

j ,W
− 1

2
j rjAxj

〉
≤ ‖yj‖W ‖W− 1

2
j rjAxj‖2 ,

together with ‖W−1/2
j rjAxj‖22 =

〈
ApjW

−1
j rjAxj , xj

〉
= 〈Πjxj , xj〉A , yields

∑〈
pjy

j , xj
〉
A

≤
∑

‖yj‖W
√

〈Πjxj , xj〉A ≤
√∑

‖yj‖2W
√∑

〈Πjxj , xj〉A.

Applying (12.33) to the first square root, we arrive at (12.42). ��

Proof of Theorem 12.30. For a given vector x ∈ X, we choose a decomposition
x =
∑
pjy

j with yj ∈ Yj satisfying the estimate (12.33). We write ‖x‖2A as

‖x‖2A =
∑

j

〈
x, pjy

j
〉
A
=
∑

j

〈
Mj−1x, pjy

j
〉
A
+
∑

j

〈
(I −Mj−1)x, pjy

j
〉
A
.

(12.43a)
To estimate the first term on the right-hand side, apply Lemma 12.37 with xj :=
Mj−1x:

∑
j

〈
Mj−1x, pjy

j
〉
A

≤
√
C1 ‖x‖A

√√√√ k∑
j=1

〈ΠjMj−1x,Mj−1x〉A. (12.43b)

For the second term in (12.43a), use (12.40b):

〈
(I −Mj−1)x, pjy

j
〉
A
=

j−1∑
i=1

〈
ΠiMi−1x, pjy

j
〉
A
.



354 12 Domain Decomposition and Subspace Methods

Since ΠiMi−1x = piW
−1
i riAMi−1x ∈ piXi, (12.34a) can be applied and yields

k∑
j=1

〈
(I −Mj−1)x, pjy

j
〉
A

≤
∑

1≤i<j≤k

〈
ΠiMi−1x, pjy

j
〉
A

(12.43c)

≤
∑

1≤i<j≤k

εXY
ij ‖W−1

i riAMi−1x‖W ‖yj‖W = 〈EXY α, β〉 ,

where the vectors α, β ∈ Rk have the components αi = ‖W−1
i riAMi−1x‖W

and βj = ‖yj‖W . From 〈EXY α, β〉 ≤ ‖EXY ‖2 ‖α‖2 ‖β‖2 ≤ C2 ‖α‖2 ‖β‖2 and

‖α‖22 =
∑

i
‖W−1

i riAMi−1x‖2W =
∑

i

〈
riAMi−1x,W

−1
i riAMi−1x

〉
=
∑

i

〈
ApiW

−1
i riAMi−1x,Mi−1x

〉
=
∑

i
〈ΠiMi−1x,Mi−1x〉A ,

we conclude that

k∑
j=1

〈
(I −Mj−1)x, pjy

j
〉
A

≤ C2

√∑
j

‖yj‖2W
√∑

i
〈ΠiMi−1x,Mi−1x〉A .

Inequality (12.33) proves that

k∑
j=1

〈
(I −Mj−1)x, pjy

j
〉
A

≤ C2

√
C1 ‖x‖A

√∑
i
〈ΠiMi−1x,Mi−1x〉A .

(12.43d)

Together, (12.43a, b, d) yield

‖x‖2A ≤
√
C1(1 + C2) ‖x‖A

√∑
i
〈ΠiMi−1x,Mi−1x〉A. (12.43e)

Therefore,
∑

i 〈ΠiMi−1x,Mi−1x〉A is bounded from below by∑
i
〈ΠiMi−1x,Mi−1x〉A ≥ ‖x‖2A /

[
C1(1 + C2)

2
]
.

This estimate and Lemma 12.36 show that

‖MmultSIx‖2A ≤ ‖x‖2A − (2 −Δ)
∑

i
〈ΠiMi−1x,Mi−1x〉A

≤ ‖x‖2A − (2 −Δ) ‖x‖2A /
[
C1(1 + C2)

2
]
. (12.43f)

Since x ∈ X is arbitrary, the last inequality implies the estimate (12.35) and ends
the proof of Theorem 12.30. ��

Proof of Theorem 12.33. The proof differs only with respect to the estimation of the
left-hand side in (12.43c). Using (12.40b), we conclude as follows:



12.7 Analysis of the Multiplicative Schwarz Iteration 355

k∑
j=1

〈
(I −Mj−1)x, pjy

j
〉
A
=
∑

1≤i<j≤k

〈
ΠiMi−1x, pjy

j
〉
A

=

k−1∑
i=1

k∑
j=i+1

〈
ΠiMi−1x, pjy

j
〉
A
=

k−1∑
i=1

〈
ΠiMi−1x,

∑k

j=i+1
pjy

j

〉
A

≤
k−1∑
i=1

‖ΠiMi−1x‖A ‖
∑k

j=i+1
pjy

j‖A

≤
√∑k−1

i=1
‖ΠiMi−1x‖2A

√∑k−1

i=1

∥∥∑k

j=i+1
pjyj
∥∥2
A
. (12.43g)

Applying (12.36) to x =
∑k

j=i+1 pjy
j (i.e., y2= . . .=yi=0), we conclude that

k−1∑
i=1

∥∥∥ k∑
j=i+1

pjy
j
∥∥∥2
A

≤
k−1∑
i=1

C3

k∑
j=i+1

1

j − 1
‖yj‖2W

= C3

k∑
j=2

j−1∑
i=1

1

j − 1
‖yj‖2W = C3

k∑
j=2

‖yj‖2W .

Lemma 12.35b shows that ‖ΠiMi−1x‖2A ≤ Δi 〈ΠiMi−1x,Mi−1x〉A. Together,
we obtain

k∑
j=1

〈
(I−Mj−1)x, pjy

j
〉
A

≤
√
ΔC3

√√√√ k∑
j=2

‖yj‖2W

√√√√k−1∑
i=1

〈ΠiMi−1x,Mi−1x〉A

≤
(12.33)

√
ΔC1C3 ‖x‖A

√√√√k−1∑
i=1

〈ΠiMi−1x,Mi−1x〉A

for Δ = maxiΔi . A comparison with (12.43d) shows that C2 in (12.43d) is
replaced by

√
ΔC3 . Substituting C2 in (12.35) by

√
ΔC3 , we prove (12.38). ��

Proof of Corollary 12.34. The sum in (12.43c) over 1 ≤ i < j ≤ k can be split
into a first part ΣI with i ≤ k0 and a second part ΣII with k0 < i < j ≤ k.
The estimate of ΣII is obtained by replacing the lower index bound 1 by k0 + 1:

k∑
j=k0+1

〈
(I −Mi−1)x, pjy

j
〉
A

≤ C2,k0

√
C1 ‖x‖A

√√√√ k∑
i=k0+1

〈ΠiMi−1x,Mi−1x〉A .

The first sum with i ≤ k0 reads

ΣI :=

k∑
j=1

min{j−1,k0}∑
i=1

〈
ΠiMi−1x, pjy

j
〉
A



356 12 Domain Decomposition and Subspace Methods

=

k0∑
i=1

〈
ΠiMi−1x,

k∑
j=i+1

pjy
j

〉
A

=

k0∑
i=1

〈
ΠiMi−1x, x−

i∑
j=1

pjy
j

〉
A

.

Applying the Cauchy–Schwarz inequality, we arrive at

Σ2
I ≤
[∑k0

i=1
〈ΠiMi−1x,ΠiMi−1x〉A

]
×
[∑k0

i=1
‖x−

∑i

j=1
pjy

j‖2A
]
.

The first factor can be estimated by Δi

∑k0

i=1 〈ΠiMi−1x,Mi−1x〉A (cf. Lemma
12.35a). Using ‖pjyj‖2A ≤

√
Δj‖yj‖2W (cf. Lemma 12.35b) and Cauchy–Schwarz,

we obtain that

‖x−
i∑

j=1

pjy
j‖2A ≤

(
‖x‖A +

i∑
j=1

‖pjyj‖A
)2

≤
(

‖x‖A +
√
Δ

i∑
j=1

‖yj‖W
)2

≤ (1 + iΔ)

[
‖x‖2A +

i∑
j=1

‖yj‖2W
]

≤
(12.33)

(1 + iΔ) (1 + C1) ‖x‖2A .

Since
∑k0

i=1 (1 + iΔ) = k0 +Δk0 (k0 + 1) /2, the summation
∑k0

i=1 yields

k0∑
i=1

‖x−
∑i

j=1
pjy

j‖2A ≤ k0 (1 + C1)
(
1 + Δ

2 (k0 + 1)
)

‖x‖2A .

Therefore, the final result for Σ2
I is

Σ2
I ≤ Δk0 (1 + C1)

(
1 +

Δ

2
(k0 + 1)

)
‖x‖2A

∑k0

i=1
〈ΠiMi−1x,Mi−1x〉A .

ΣI and ΣII are of the form ΣI = cI ωI and ΣII = cII ωII with

c2I = C2
2,k0

C1, ω2
I = ‖x‖2A

k∑
i=k0+1

〈ΠiMi−1x,Mi−1x〉A ,

c2II = Δk0(1 + C1)
[
1 + Δ

2 (k0 + 1)
]
, ω2

II = ‖x‖2A
k0∑
i=1

〈ΠiMi−1x,Mi−1x〉A .

Hence ΣI + ΣII ≤
√
c2I + c

2
II

√
ω2
I + ω

2
II , where the second root coincides with

‖x‖A
√∑k

i=1 〈ΠiMi−1x,Mi−1x〉A . The product in (12.43d) contains this factor

and C2

√
C1. Replacing C2

√
C1 by

√
c2I + c

2
II , we obtain

‖x‖2A ≤
(√

C1 +
√
c2I + c

2
II

)
‖x‖A

√∑k

i=1
〈ΠiMi−1x,Mi−1x〉A

instead of (12.43e). The statement of Corollary 12.34 follows as in (12.43f). ��



12.8 Examples 357

12.8 Examples

12.8.1 Schwarz Method With Proper Domain Decomposition

h

H
Ω

Ωλ

κ’

Fig. 12.5 h, H, Ωκ, Ω′
κ.

Let the square Ω ⊂ (0, 1) × (0, 1) be partitioned as in
Figure 12.5 into disjoint smaller squares Ωκ (κ ∈ J)
of the side length H , so that Ω = ∪κ∈JΩκ. In order
to obtain overlapping subdomains, which are typical for
the Schwarz iteration, we enlarge Ωκ to the square Ω′

κ by
elongating the sides in the left and upper direction by the
factor αH (cf. Fig. 12.5). Close to the boundary,Ω′

κ has to
be restricted toΩ. The gridΩh of the Poisson model prob-
lem with step size h has to be compatible with the domain
decomposition, i.e., H/h and αH/h must be integers.

The entire index set is I = Ωh. The subsets Iκ are Iκ := I ∩ Ω′
κ. Vectors

xκ ∈ Xκ can be regarded as grid functions on Ω′
κ. For pκ, we make the trivial

choice (12.16a). The matrices Aκ = rκApκ are again the matrices of the Poisson
model case (but on a small square).

The corresponding multiplicative variant of the Schwarz iteration is the classical
Schwarz method; however the number of subdomains Ω′

κ generalises from 2 to
H−2. For the convergence analysis of the additive variant, one has to determine the
quantities γ, Γ in (12.28). Lemma 12.17 can be applied as follows. Decompose the
set of squares Ω′

κ analogously to the four-colour numbering (3.13) into four classes
J1, . . . , J4. Two squares Ω′

κ, Ω
′
λ with κ �= λ, κ ∈ Ji, λ ∈ Jj , i �= j have distance

(1 − α)H > h, provided that α < 1 −H/h. Therefore, κ and λ are not connected
(cf. (12.24)); hence, Lemma 12.17 proves Γ = 4.

Fig. 12.6 Overlapping
functions with sum 1.

The bound γ does prove to be h- but not H-independent:
γ = O(H2) (cf. Widlund [397]). The reason can be
understood by Theorem 12.21. A smooth grid function as
the constant function y = 1 cannot be decomposed into
x =
∑
pκx

κ with similarly smooth subgrid functions pκxκ.
Figure 12.6 shows that the functions x1 and x2 have a
gradient of size 1/H in the overlap region of length H . However, for smooth
x and nonsmooth pκx

κ, the product 〈Ax, x〉 would be small compared with
〈Apκxκ, pκxκ〉, so that C = 1/γ in (12.29) becomes large.

The deterioration of condition Γ/γ for decreasing H can be recognised as un-
avoidable by taking the limit H = h. Then the (open) square Ω′

κ contains exactly
one grid point. Therefore, the additive Schwarz iteration is the classical pointwise
(possibly damped) Jacobi iteration, for which Γ/γ = O(h−2) = O(H−2) holds.
The same convergence order holds for the multiplicative variant (proper Schwarz
iteration), which coincides with the classical pointwise Gauss–Seidel iteration.



358 12 Domain Decomposition and Subspace Methods

12.8.2 Additive Schwarz Iteration with Coarse-Grid Correction

To overcome the unfavourable convergence results in §12.8.1, a coarse-grid cor-
rection can be added (cf. Dryja [112] and Dryja–Widlund [114, 115]). The set
J = {1, . . . , H−2} introduced in §12.8.1 associated with the subsquares Ω′

κ

(κ ∈ J) is enlarged by the index 0. The new index set I0 = ΩH consists of all
(interior) grid points corresponding to the coarser step size H . The prolongation
p0 : X0 = RI0 → X = RI belonging to 0 ∈ J is defined differently from (12.16a).
It is sufficient to explain the application of p0 to unit vectors. Let eξ,η ∈ X0 be
the vector with the value 1 at the grid point (ξ, η) ∈ ΩH = I0 and 0 elsewhere.
A first approach to p0 is piecewise bilinear interpolation in I = Ωh:

(p0eξ,η)(x, y) = (1 − |ξ − x| /H)(1 − |η − y| /H)

for (x, y) ∈ Ωh with |ξ − x| , |η − y| < H,
(p0eξ,η)(x, y) = 0 otherwise.

By adding 0 ∈ J , according to Lemma 12.17, the previous bound Γ = 4 can
increase at most to Γ = 5. However, concerning γ, now better estimates can be
expected, since instead of the grid function x, only the remainder x − p0x

0 of
interpolation [we choose x0(ξ, η) := x(ξ, η) for (ξ, η) ∈ ΩH ] has to be represented
by
∑
pκx

κ. The spectral condition number Γ/γ proves to be O(1 + log(H/h)).
It becomes h- and H-independent if p0 describes the orthogonal projection (with
respect to the Euclidean norm) (cf. Dryja–Widlund [114, 115], Dryja [112]).

A similar idea with nonoverlapping subdomains Ωκ = Ω′
κ is also the basis of

the method of Bramble–Pasciak–Schatz [70, 71, 72, 73].

12.8.3 Formulation in the Case of Galerkin Discretisation

Let the boundary value problem be described in the variational form (E.2) and
discretised by (E.5). The subspace Vn ⊂ V is now denoted by Vh. The bijective
relation vh = Phx =

∑
α∈I xαφα (φα: basis functions of Vh; cf. (E.6)) connects

the functions vh ∈ Vh and the coefficient vectors x ∈ X .
The subdomain Ωκ ⊂ Ω corresponds to the subspace

Vh,κ := {vh ∈ Vh : vh(ξ) = 0 for x ∈ Ω\Ωκ},

i.e., vh ∈ Vh,κ has its support in Ωκ. For usual finite elements, each component
xα of x ∈ X corresponds to the function value of vh in a corresponding nodal
point xα ∈ Ω (cf. Hackbusch [193]). Choose Iκ := {α ∈ I : xα ∈ Ωκ}. For a
suitable choice of the subdomain Ωκ, this definition coincides with the index set
Iκ := {α ∈ I : supp(φα) ⊂ Ωκ}. Then we have

Vh,κ = {Phx : x ∈ range(pκ)} = {Phpκx
κ : xκ ∈ Xκ}, Xκ := RIκ .

Since the matrix A is defined by 〈Ax, y〉 = a(Phx, Phy) (x, y ∈ X), the



359

following representations are equivalent:〈
Apκx

κ, pλx
λ
〉
= a(Phpκx

κ, Phpλx
λ) with xκ ∈ Xκ

= a(Phx
(κ), Phpλx

(λ)) with x(κ) := pκx
κ ∈ range(pκ)

= a(v
(κ)
h , v

(λ)
h ) with v(κ)h := Phx

(κ) ∈ Vh,κ. (12.44)

Phpκ : Xκ → Vh,κ is the bijective mapping that allows us to transfer formulations
in the vector spaces Xκ into those in the Galerkin subspaces Vh,κ and vice versa.
Relation (12.44) allows us, e.g., to formulate the strengthened Cauchy–Schwarz
inequality (12.31b) in the following equivalent form:

|a(vh, wh)| ≤ δ
√
a(vh, vh)a(wh, wh) for all

{
vh ∈ Vh,κ ,
wh ∈ Vh,λ .

(12.45)

In general, a(v, w) is an integral
∫
Ω
. . . dx over the domain Ω (cf. §11.6.3.2;

occasionally, additional boundary integrals may also be involved). Let aτ (v, w) =∫
τ
. . . dx be the respective integral over τ ⊂ Ω. For a disjoint decomposition of

Ω = ∪ τi into subsets τi, the following identity is obvious:∑
i
aτi(v, w) = a(v, w) for all v, w ∈ V.

The following simple lemma is an important tool for many proofs, since it only re-
quires proving (12.45) over the subsets τi (e.g., over the triangles of a finite element
triangulation).

Lemma 12.38. If for all i, inequality (12.45) holds with aτi(·, ·) instead of a(·, ·),
then (12.45) is also satisfied for a(·, ·) with the same constant δ.

Proof. The Cauchy–Schwarz inequality yields

|a(vh, wh)| =
∣∣∣∑

i
aτi(vh, wh)

∣∣∣ ≤
∑

i
|aτi(vh, wh)|

≤ δ
∑√

aτi(vh, vh)aτi(wh, wh)

≤ δ
[∑

i
aτi(vh, vh)

] 1
2
[∑

i
aτi(wh, wh)

] 1
2

= δ
√
a(vh, vh)a(wh, wh). ��

12.9 Multigrid Iterations as Subspace Decomposition Method

The coarse-grid correction is a common feature of the multigrid methods and the
domain decomposition variant in §12.8.2. On the other hand, multigrid iterations
can be described and analysed with respect to convergence in such a way that they
can immediately be interpreted as a multiplicative Schwarz iteration.

A related statement is that the multigrid iteration can be regarded as a Gauss–
Seidel method applied to a semidefinite matrix corresponding to the representation
of the finite element matrix by the standard finite element basis replaced with a
generating system (frame) (cf. Griebel [169, 168]).

12.8 Examples



360 12 Domain Decomposition and Subspace Methods

12.9.1 Braess’ Analysis without Regularity

hl

hl−1

}

Fig. 12.7 Fine and coarse grids.

The first proof of monotone two-grid convergence
‖MTGM

� ‖A ≤ ζ < 1 without need of regularity as-
sumptions is due to Braess [58] (cf. §E.5, §11.6.6).
Approaches to this proof can be found in [28]. Differ-
ent from the previous choice, we define the coarse grid
of the Poisson model problem as a grid rotated by 45◦

with step size h�−1 =
√
2h�. Figure 12.7 shows the

grid for a more general domain than the unit square.
View the grid Ω� as a triangular grid. It is well-known
that finite-element discretisation with linear triangular
elements leads again to the five-point star (1.4a). The
coarse-grid equation is the finite-element discretisation corresponding to the thick-
lined triangles in Figure 12.7. The canonical prolongation p of the multigrid method
is linear interpolation along the hypotenuses of the coarse triangles.

As smoothing we choose the chequer-board Gauss–Seidel iteration S�. The
‘red’ points in Ωh coincide with the coarse-grid points: Ωr

� = Ω�−1, while
Ωb

� = Ω�\Ω�−1 contains the ‘black’ points. Correspondingly, S� is the product
Sb
� ◦ Sr

� of one Gauss–Seidel half-step on the red points followed by a half-step on
the black ones. For following considerations, it is sufficient to reduce the smooth-
ing step to the half Gauss–Seidel iteration Sb

� . The two-grid method then reads as
ΦTGM
� := ΦCGC

� ◦ Sb
� , where ΦCGC

� denotes the coarse-grid correction.
For analysis, we need the subspaces

V�,1 := {v ∈ V� : v�(ξ, η) = 0 for all (ξ, η) ∈ Ωs
� = Ω�−1},

V�,2 := V�−1,

where V� is the (finite-element) space of the continuous functions being linear over
all triangles of the grids Ω�. Analogously, functions from V�−1 ⊂ V� are linear on
the larger triangles of Ω�−1. All v ∈ V� satisfy v(ξ, η) = 0 for boundary points
(ξ, η) ∈ ∂Ω .

Decompose the complete index set I = Ω� into

I1 := Ω�\Ω�−1, I2 := Ω�−1.

The vector spaces
X�,1 := KI1 , X�,2 := KI2

correspond to I1 and I2. The second one coincides with the vector space denoted
in (11.7) by X�−1. The prolongations (in the sense of the domain decomposition
method) are chosen as

p1 : X�,1 → X� according to (12.16a),
p2 = p : X�,2 = X�−1 → X� is the canonical prolongation (11.64).

(12.46)



12.9 Multigrid Iterations as Subspace Decomposition Method 361

Exercise 12.39. (a) Prove for P = P� in (E.6) that

V�,k = range(Ppκ) for k = 1, 2 .

(b) Let A = A� be an arbitrary five-point formula. Prove that the chequer-board
Gauss–Seidel half-steps Sb

� and Sr
� are projections. If A > 0, Sb

� and Sr
� are

symmetric iterations (cf. (6.19a,b)).

Lemma 12.40. Let A > 0 . ΦCGC
� and Sb

� are A-orthogonal projections onto
range(pκ) ⊂ X . In addition, (12.9) holds: range(p1) + range(p2) = X� and
(12.15a): n1+n2=n with dimensions nκ :=dim(range(pκ))=#Iκ, n :=dimX� .

Proof. Sb
� and ΦCGC

� are projections, as can be concluded from Exercise 12.39b
and Lemma 11.9 (the assumption (11.20) is satisfied for Galerkin discretisations
by Proposition E.16). By Exercise 12.39b and Lemma 11.45 with ν = 0, Sb

� and
ΦCGC
� are symmetric. From Exercise 12.5c, we conclude that Sb

� and ΦCGC
� are

A-orthogonal projections. ��

The results of Lemma 12.40 and the identity ΦTGM
� = ΦCGC

� ◦ Sb
� prove the

following.

Remark 12.41. The two-grid method ΦTGM
� described above is the multiplicative

Schwarz iteration characterised by the prolongations (12.46). It corresponds to the
case (12.15a) of two disjoint domains.

For convergence analysis, Theorem 12.26 is applicable. The quantity δ of the
strengthened Cauchy–Schwarz inequality (12.31b) can be determined by Lemma
12.38. For this purpose, the triangles of the grid Ω�−1 are used as subsets τi.
v ∈ V�,1 is a linear function on τi, whereas w ∈ V�,2 is piecewise linear on the
smaller triangles of the grid Ω� and vanishes at all corners of τi. The estimation of
the bilinear form aτi(v, w) =

∫
τi

〈v, w〉 dx yields the bound δ
√
aτi(v, v)aτi(w,w)

with the constant δ = 1/
√
2. Lemma 12.38 proves the next theorem.

Theorem 12.42. The two-grid method ΦTGM
� described above converges monoton-

ically with respect to the energy norm with the contraction number

‖MTGM
� ‖A ≤ 1

2
.

The given two-grid convergence proof requires no regularity assumption. Often,
it is viewed as an advantage when convergence can be shown for multigrid-like
methods without regularity requirements. On the other hand, one sacrifices a possi-
ble increase of efficiency that can be achieved by applying more smoothing steps.
As explained in Braess [59] an improved form of the Cauchy–Schwarz inequality
(12.45) (thanks to an implicit regularity assumption!) leads to quantitative conver-
gence statements for ΦCGC

� ◦ (Sb
� ◦Sr

� )
ν , demonstrating that the half smoothing step

Sb
� is not optimal with respect to efficiency.



362 12 Domain Decomposition and Subspace Methods

12.9.2 V-Cycle Interpreted as Multiplicative Schwarz Iteration

Let � = �max be the maximal level, for which A = A� and X = X� are iden-
tified. In the following, we study the V-cycle ΦV

� (ν, 0) with ν pre- and no post-
smoothing (cf. §11.7.5). The spaces Xi (0 ≤ i ≤ �) of dimension ni introduced
in (11.7) for the multigrid method are also taken as subspaces for the domain
decomposition. The index set J = J� is J = {0, 1, . . . , �} so that k = � + 1
is the number of subspaces.

Let p : Xi−1 → Xi be the multigrid prolongation (11.8). To indicate the
involved levels, we call this mapping pi,i−1. Their products define

pi,j := pi,i−1 · . . . · pj+1,j for 0 ≤ j < i ≤ �,

pi,i = I for i = j.
(12.47a)

The prolongations needed for domain decomposition are defined as

pi := p�,i : Xi → X = X� (0 ≤ i ≤ �). (12.47b)

In contrast to the previous examples, the ranges of pi are not disjoint or partially
overlapping, but monotonically increasing:

range(p0) ⊂ range(p1) ⊂ . . . ⊂ range(pλ) = X.

Let the coarse-grid matrices be defined by the Galerkin product (11.20).
Multiple application of the identity (11.20) yields

Ai = pHi A� pi (0 ≤ i ≤ � ; A = A�) (12.48)

according to (12.11).
We introduce the auxiliary iteration Ψi on X = X� that corresponds to the

solution of the i-th subproblem by one V-cycle step:

Ψi(x, b) = x− piNi p
H
i (Ax− b).

Here, the matrix Ni corresponds to the V-cycle ΦV
i (ν, 0). Using MV

i = I−NiAi,
we obtain the representation

Ψi(x, b) = x− pi(I −MV
i )A−1

i pHi (A�x− b). (12.49a)

For i = �, we regain the V-cycle at level � because of pi = I:

Ψ� = ΦV
� (ν, 0). (12.49b)

The following presentation simplifies if we do not solve exactly at level i = 0
but apply the ν-fold pre-smoothing: MV

0 = Sν
0 . This lead us to

Ψ0(x, b) = x− p0(I − Sν
0 )A

−1
0 pH0 (A�x− b). (12.49c)



12.9 Multigrid Iterations as Subspace Decomposition Method 363

The following lemma is essential for interpreting the V-cycle as a multiplicative
Schwarz iteration.

Lemma 12.43. Assume (12.47a,b), (12.48), and MV
0 = Sν

0 . Then

ΦV
� (ν, 0) = Φ̃0 ◦ Φ̃1 ◦ . . . ◦ Φ̃�, where

Φ̃i(x, b) := x− pi(I − Sν
i )A

−1
i pHi (A�x− b)

is the V-cycle iteration for the i-th subproblem Aix
i = ci := pHi (A�x − b) using ν

smoothing steps.

Proof. Because of (12.49b,c), it is sufficient to prove

Ψi = Ψi−1 ◦ Φ̃i (1 ≤ i ≤ �). (12.50)

The iteration matrix of Ψi is equal to

MΨ,i = I − pi(I −MV
i )A−1

i pHi A� = I − piA
−1
i pHi A� + piM

V
i A

−1
i pHi A�.

In recursion formula (11.42b):

MV
i =

[
I − p(I −MV

i−1)A
−1
i−1rAi

]
Sν
i ,

we now have to use p = pi,i−1 and r = pHi,i−1. Its insertion into MV
Ψ,i yields

MΨ,i = I − piA
−1
i pHi A� + pi

[
I − p(I −MV

i−1)A
−1
i−1rAi

]
Sν
i A

−1
i pHi A� .

Noting pip = p�,ipi,i−1 = pi−1 and

rAi = pHi,i−1Ai = pHi,i−1p
H
i A� pi = pHi−1A� pi,

we may write the last term as[
I − pi−1(I −MV

i−1)A
−1
i−1p

H
i−1A�

]
piS

ν
i A

−1
i pHi A� =MΨ,i−1piS

ν
i A

−1
i pHi A� .

The projection I−Pi = I−piA−1
i pHi A� (cf. (12.14a)) satisfies pHi−1A�(I−Pi) = 0,

so that I − Pi =MΨ,i−1(I − Pi). This enables us to formulate the representation

MV
Ψ,i = I − Pi +MΨ,i−1piS

ν
i A

−1
i pHi A�

=MΨ,i−1(I − Pi + piS
ν
i A

−1
i pHi A�)

=MΨ,i−1(I − piA
−1
i pHi A� + piS

ν
i A

−1
i pHi A�)

=MΨ,i−1

[
I − pi(I − Sν

i )A
−1
i pHi A�

]
=MΨ,i−1MΦ̃,i,

where MΦ̃,i = I − pi(I − Sν
i )A

−1
i pHi A� is the iteration matrix of Φ̃i. Hence, the

product form (12.50) is proved. ��



364 12 Domain Decomposition and Subspace Methods

12.9.3 Proof of V-Cycle Convergence

The interpretation of the V-cycle as a Schwarz iteration is less interesting for the
purpose of algorithmic performance than for convergence analysis. We are investi-
gating convergence by using Theorem 12.30. First, we discuss estimates of Wi .

In the case of the model problem, we know that ‖Ai‖2 ≤ Ch−2
i holds for a

uniform grid size hi at level i. Assuming the coarsest mesh to be fixed, we have

‖Ai‖2 ≤ C ′4i provided that hi = h0/2
i (cf. (11.5a)).

The same bound holds for a general finite element discretisation provided that in the
refinement process from level i−1 to i the element size is halved at most. Without
loss of generality, we may assume that only one step of the smoothing procedure
is performed (otherwise, redefine Sν

i by Si); however, Si must be positive definite
and convergent. The latter property implies (12.21): Ai ≤ ΔWi with Δ < 2 for the
matrix Wi of the third normal form of the smoothing iteration. The upper bound of
Wi should be of the same order as the upper bound of Ai discussed above:

Wi ≤ 4i CW pHi pi. (12.51)

To obtain the constants C1 and C2 in (4.2) and (4.3c), one has to select a suitable
decomposition x =

∑
pix

i with xi ∈ Yi for appropriate subspaces Yi ⊂ Xi. The
orthogonal projection (with respect to the Euclidean scalar product) onto range(pi)
is

Qi := pi(p
H
i pi)

−1pHi (0 ≤ i ≤ �).

Since p� = I , we also have Q� = I . Following Bramble–Pasciak–Xu [75] we
decompose x into

x = Q�x = (Q� −Q�−1)x+ (Q�−1 −Q�−2)x+ . . .+ (Q1 −Q0)x+Q0x.

Note that (Qi −Qi−1)x ∈ range(pi). Introducing Q−1 := 0, we write

x =
�∑

i=0

pix
i with pixi := (Qi −Qi−1)x,

i.e., xi = (pHi pi)
−1pHi (Qi −Qi−1)x. These xi belong to the subspaces

Yi := range{(pHi pi)−1pHi (Qi −Qi−1)} = {xi ∈ Xi : Qi−1pix
i = 0}.

Oswald [303] proves that the energy norm ‖·‖A is equivalent to the norm defined
by

||| x |||2 := ‖Q0x‖2A +
�∑

i=0

4i ‖(Qi −Qi−1)x‖22



12.9 Multigrid Iterations as Subspace Decomposition Method 365

(see also Dahmen–Kunoth [101]). A compact proof can be found in Bornemann–
Yserentant [57]. Applying this statement in particular to x = pix

i with xi ∈ Yi,
we obtain

4i
∥∥pixi∥∥22 ≤ CE ‖x‖2A = CE

∥∥xi∥∥2
A

(x = pix
i, xi ∈ Yi), (12.52)

where CE is the equivalence constant: |||x|||2 ≤ CE ‖x‖2A. Let x =
∑
pix

i with
xi ∈ Yi. Then, inequality (12.51) implies that∑

‖xi‖2W =
∑〈

Wix
i, xi
〉

≤ CW

∑
4i‖pixi‖22 ≤ CW |||x|||2 ≤ CECW ‖xi‖2A.

Hence, condition (12.33) holds with C1 = CECW .

As in Bornemann–Yserentant [57, Lemma 3.3], one can prove the strengthened
Cauchy–Schwarz inequality∣∣〈xi, xj〉

A

∣∣ ≤ C2
i−j
2 ‖xi‖A2j‖pjxj‖2 for j > i, xi ∈ Xi, x

j ∈ Xj

with respect to the subspaces Xi and Xj . Thanks to (12.52), we conclude that∣∣〈xi, yj〉A∣∣ ≤ C ′2(i−j)/2‖xi‖A‖yj‖A for j>i, xi ∈ Xi, y
j ∈ Xj (12.53)

with C ′ := CC
1/2
E . Since ‖·‖2A ≤ Δ ‖·‖2W (cf. (12.21)), the estimates (12.34a)

hold with εXY
ij ≤ 2(i−j)/2 for j > i. Therefore, the matrix EXY in (12.31a) has

the row-sum norm ‖EXY ‖∞ ≤
∑∞

ν=1 2
− ν

2 = 2 +
√
2. Since the same estimate

holds for ET
XY , the constant in (12.31b) is bounded by

C2 ≤ C ′(2 +
√
2) with C ′ in (12.53)

(cf. Exercise B.21a). Both constants, C1 and C2 are independent of the dimension
and the number of levels. Hence, Theorem 4.3 proves h-independent convergence
of the V-cycle.

The V-cycle ΦV
� (ν, 0) (ν > 0) is nonsymmetric. Positive definiteness, however,

holds for ΦV
� (ν, ν) (cf. Lemma 11.45). By Exercise 11.60a, this iteration can be

interpreted as the product

ΦV
� (ν, ν) = ΦV

� (0, ν) ◦ ΦV
� (ν, 0).

Since ΦV
� (0, ν) is the adjoint of ΦV

� (ν, 0) (cf. (11.77a)), we arrive at the product
representation

ΦV
� (ν, ν) = Φ̃� ◦ . . . ◦ Φ̃1 ◦ Φ̃0 ◦ Φ̃0 ◦ Φ̃1 ◦ . . . ◦ Φ̃�,

(here the symmetry properties (11.75a) are assumed). Hence, the symmetric V-cycle
ΦV
� (ν, ν) can also be interpreted within the framework of multiplicative Schwarz

iterations.



366 12 Domain Decomposition and Subspace Methods

12.9.4 Hierarchical Basis Method

Fig. 12.8 Grid with step widths 4h, 2h, h.

In §12.9.2 we use subspaces which
completely overlap with those of
lower level: p�V� ⊃ p�−1V�−1. The
method of hierarchical bases adds
only those basis functions which are
are linearly independent of the lower
level functions.

Figure 12.8 shows a sequence of refining triangulations for Galerkin discretisa-
tion with piecewise linear functions. Let V h be the space of the piecewise linear
functions on the grid Ωh (right picture in Fig. 12.8). Similarly, V 2h corresponds
to Ω2h and V 4h to Ω4h. The inclusions V 4h ⊂ V 2h ⊂ V h holds. The Galerkin
subspace V h can be written as the direct sum of V 2h and

V2 := {v ∈ V h : v = 0 at all nodal points of Ω2h};

hence, V h = V2 ⊕ V 2h (the direct sum is defined in §A.5.3). The prescribed zeros
of v ∈ V2 are marked in Figure 12.8 by ‘o’. Correspondingly, V 2h = V1 ⊕ V 4h

holds with

V1 := {v ∈ V 2h : v = 0 at all nodal points of Ω4h}.

With the notation V0 := V 4h, we obtain the decomposition

V h = V0 ⊕ V1 ⊕ V2. (12.54a)

The decomposition (12.54a) is nonoverlapping because (12.54a) is a direct sum.

1/8 17/83/43/81/40 1/2 5/8

2

1φ

1

1

2

2

0

1

2

3

1

2
2

4

φ

φ

φ

φ

φ

φ

Fig. 12.9 Basis functions on Ω = (0, 1) of the levels 0, 1, 2.

In all spaces Vj (0 ≤
j ≤ 2) we may choose
the usual (nodal) basis func-
tions corresponding to the
grid size hj . According
to (12.54a), the union of
these bases yields a ba-
sis of V h, the hierarchical
basis (cf. Yserentant [415]).
Of course, more general
(e.g., irregular) triangula-
tions than in Figure 12.8 and a larger number of grid levels may be used. The largest
grid level is denoted by �. In the latter case, (12.54a) becomes V h = V0 ⊕ . . .⊕ V�
with h = h�. We write for short V i := V hi :

V i = V0 ⊕ V1 ⊕ . . .⊕ Vi for 0 ≤ i ≤ � . (12.54b)



12.9 Multigrid Iterations as Subspace Decomposition Method 367

The dimension of Vi is the number of nodal points in Ii := Ωi\Ωi−1, where
Ωi := Ωhi

and Ω−1 := ∅. These nodal points also serve as indices of the vector
xi ∈ Xi = KIi . The coefficient vector xi represents the finite element function
u ∈ Vi ⊂ V i defined by

u =
∑
Q∈Ii

xiQφ
i
Q ,

where φiQ ∈ Vi ⊂ V i is the basic function of level i characterised by φiQ(R) = δQR

for all R ∈ Ωi. Therefore, the coefficients of xi are the nodal values of u in the
subset Ii: xiQ = u(Q) for Q ∈ Ii. Figure 12.9 shows the piecewise linear basis
functions of the levels 0 to 2 in the one-dimension case. Here the dimensions are
#I0 = 1, #I1 = 2, and #I3 = 4.

We have to distinguish between the representation of functions u ∈ V i and their
coefficients.

(a) The finite element space V i can be written as the direct sum of the subspaces
Vj (0 ≤ j ≤ i, cf. (12.54b)). Accordingly, u ∈ V i has a unique decomposition

u =

i∑
j=0

u(j) ∈ V i with u(j) ∈ Vj . (12.55)

(b) Using the decomposition u =
∑�

j=0 u
(j), we represent each function

u(j) =
∑

Q∈Ij
xjQφ

j
Q ∈ Vj by the coefficient vector xj = (xjQ)Q∈Ij ∈ Xj

with xjQ = u(j)(Q). Hence, the function is represented by the coefficient vector
x = (x0, . . . , x�) ∈ X := X0 ×X1 × . . .×X�.

The prolongation pi : Xi → X is defined by

(pix
i)Q :=

∑
R∈Ii

xiRφ
i
R(Q) for all Q ∈ Ii .

The isomorphism Ph : X� → V h = V � in §12.8.3 is given by

Phx =
∑
Q∈Ω�

x�Qφ
�
Q ,

where b�Q ∈ V � is the standard (piecewise linear) basic function of level �
characterised by φ�Q(R) = δQR for all grid points R ∈ Ω�. Interpolation of
u = Phx with x =

∑
pjx

j (xj ∈ Xj) at the points of Ωi is the partial sum
ui =

∑i
j=0 u

(j) = Ph

∑i
j=0 pjx

j ∈ V i (cf. (12.55)).

An important estimate of this interpolant is proved in Yserentant [416]:∥∥∥∥∥
i∑

j=0

pjx
j

∥∥∥∥∥
2

A

≤ CY (�− i+ 1) ‖x‖2A

{
for all x =

∑�
j=0 pjx

j ,

xj ∈ Xj , 0 ≤ i ≤ �.
(12.56)



368 12 Domain Decomposition and Subspace Methods

Let si :=
∑i

j=0 pjx
j be the partial sum. Inequality (12.56) implies

‖pjxj‖2A = ‖si − si−1‖2A ≤ 2‖si‖2A + 2‖si−1‖2A ≤ 2CY (2�− 2i+ 3) ‖x‖2A

for i > 0, whereas ‖p0x0‖2A ≤ CY (� + 1) ‖x‖2A is identical to (12.56) for i = 0.
Summing up all inequalities, we obtain

�∑
j=0

‖pjxj‖2A ≤ C ′
Y �

2 ‖x‖2A with C ′
Y := 5CY .

Hence, in the case of an exact solution of the subproblems (12.13), we have proved
the inequality (12.29) with C = C ′

Y �
2. The exact solution of Aiy

i = ci will be
maintained only at level i = 0 (this corresponds to the exact solution on the coarsest
grid in (11.33a)). For i > 0, we apply the Jacobi iteration: Wi := Di := diag{Ai}.
The matrices Ai and Di turn out to be spectrally equivalent independently of hi.
In particular, Wi ≤ const ·Ai holds. Hence, (12.29) also implies inequality (12.30)
withC = O(�2) and proves γ = O(�−2) in (12.28) for the additive Schwarz variant.
Concerning the estimate above, we can determine Γ in (12.28) by Theorem 12.20.
The technique described in Lemma 12.38 leads us to〈

pix
i, pjx

j
〉
A

≤ εij‖pixi‖A‖pjxj‖A with εij ≤ CE2
−|i−j|/2.

Hence, ρ(E) ≤ ‖E‖∞ is bounded by a constant and (12.27) proves Γ = O(1).
In the end, we obtain convergence of the additive Schwarz iteration with the rate
1 − O(1/�2).

The additive iteration (cf. Yserentant [416]) described above can be viewed
as the blockwise Jacobi iteration for the system associated with the hierarchical
basis, where the block diagonal isD = blockdiag{A0, D1, . . . , D�}. The respective
multiplicative variant corresponds to the Gauss–Seidel method for the hierarchical
basis system. The multiplicative Schwarz iteration (cf. Bank–Dupont–Yserentant
[30]) also converges with the rate 1 − O(1/�2), as one easily derives from (12.35)
with C1 = O(�2) and C2 = O(1) using Yj = Xj .

Concerning algorithmic implementation, in particular, of the fast transformation
between the hierarchical basis representation (x0, x1, . . . , x�) ∈ X0×X1×. . .×X�

and the nodal basis representation x =
∑
pix

i ∈ X , we refer the interested reader
to Yserentant [416].

Remark 12.44. The multiplicative Schwarz iteration defined by the hierarchical
bases can be viewed as a special multigrid method (V-cycle). The solution of the i-th
subproblem Aiy

i = ci by a secondary iteration step with Wi := Di := diag{Ai}
describes smoothing at level i by a (pointwise) Jacobi step. However, there is
a remarkable difference. The smoothing is not performed at all fine grid points of
Ωi, but only at points (x, y) ∈ Ωi\Ωi−1 which do not belong to the coarser grid.

The amount of work per iteration step equals O(n) even when condition (11.37),
ni−1 ≤ ni/Ch, is violated. This allows local refinements inserting only a few
additional fine-grid points Ωi\Ωi−1.



12.9 Multigrid Iterations as Subspace Decomposition Method 369

The presented convergence results are restricted to the boundary value problem
in less than three spatial variables. Otherwise, interpolation has to be replaced by
the L2(Ω)-orthogonal projection projections onto V i. The latter method is due to
Bramble–Pasciak–Xu [76]. The relation of both methods is discussed by Yserentant
[417] (see also Dryja–Widlund [115]).

12.9.5 Multilevel Schwarz Iteration

A characteristic of the Schwarz iteration in §12.8.2 is the coarse-grid correction
connected to I0 = ΩH . The two-grid situation {h,H} can be generalised to the
multigrid case {h = h� < h�−1 < . . . < h0 = H}. For this purpose, we rewrite
the previous decomposition as {I0,�, I1,�, . . . , Ik�,�}, where Iκ,� (1 ≤ κ ≤ �)
corresponds to the overlapping subdomains Ω′

κ and I0,� is related to the coarse
grid Ωh�−1

. The analogous domain decomposition can be repeated for solving
the coarse-grid equation: I0,� is replaced by {I0,�−1, I1,�−1, . . . , Ik�−1,�−1}, where
Iκ,�−1 (1 ≤ κ ≤ k�−1) represents the overlapping subdomains in the coarse grid
and I0,�−1 = Ωh�−2

is related to the next coarser grid. Recursive replacement of
I0,�−1, . . . , I0,1 leads to {I0,0, Iκ,λ : 1 ≤ κ ≤ kλ, 1 ≤ λ ≤ �} with corresponding
prolongations pκ,λ.

In contrast to usual multigrid methods, the multilevel additive Schwarz iteration
works in parallel at all levels. For this variant, Dryja–Widlund [115, Theorem 3.2])
prove the spectral condition number Γ/γ = O(�2). Since usually � = log(h�),
this deterioration is rather weak.

12.9.6 Further Approaches

Above the theory of subspace iterations is used to prove convergence of the multi-
grid iteration (at least in the positive definite case). Since this theory yields
convergence results not only for the multiplicative but also for the additive sub-
space iteration, one can define an additive multigrid version. It is usually termed
BPX method according to Bramble–Pasciak–Xu [75]. In the symmetric positive
case, it has better properties for locally refined grids, but it behaves worse with
respect to smoothing. Increasing the number of smoothing steps hardly improves
the convergence speed in contrast to the multiplicative version (cf. Theorem 11.14
and Bastian–Hackbusch–Wittum [34]).

Thus far, subspaces (subdomains) have been constructed as proper domain
decompositions or decompositions with respect to different grid sizes. A further
possibility is the decomposition of a function space by using symmetries (cf.
Allgower–Böhmer–Zhen [4]). The prolongations appearing in the frequency
decomposition variant of the multigrid method (cf. Hackbusch [186, 190]) can also
be used directly as prolongations (12.7) of a domain decomposition method.



370 12 Domain Decomposition and Subspace Methods

Domain decomposition methods for more general (i.e., not positive definite)
problems are discussed by Cai–Widlund [92]. A very simple but elegant approach
is due to Xu [408]. He uses a product iteration, where the first factor is a coarse-
grid correction (11.19) corresponding to the coarsest grid (� = 0), while the second
factor has the iteration matrix M = I − W−1A, where W is taken from a (fast)
iteration applied to A0x = b0, where A0 > 0 is the positive definite part of A.

Instead of constructing multigrid methods on the basis of domain decomposi-
tions, one can adapt the multigrid iteration to a given decomposition of the domain
Ω into overlapping subdomains. The method described in Hackbusch [183, §15.3.3]
uses an in parallel executable smoothing procedure, which can be regarded as an
approximation of the additive version of the classical Schwarz method. The
slowness of the convergence of the Schwarz method presented in §12.7.1 is
harmless, since it corresponds to the smooth error components. For a combination
of the Schwarz iteration concept with multigrid methods of the second kind, see
Hackbusch [177].



Chapter 13

H-LU Iteration

Abstract The H-LU iteration is a fast iteration for discretisations of boundary
value problems. It even applies to fully populated matrices obtained by the boundary
element method. The H-LU iteration has an almost optimal order of convergence.
Section 13.1 describes computing the general LU decomposition by using hierarchi-
cal matrices. In the case of sparse matrices, in particular, finite element matrices, the
cluster tree can be modified (cf. Section 13.2) so that the corresponding LU decom-
position partially preserves sparsity. The H-LU decomposition is not exact, but the
error can be rather small. Correspondingly, the H-LU iteration described in Section
13.4 is very fast. The variant discussed in §13.4.2 is purely algebraic, i.e., the data
needed for the iteration are only based on the underlying matrix. Concerning details
about the technique of hierarchical matrices, we refer to Appendix D.

13.1 Approximate LU Decomposition

The LU decomposition based on the technique of hierarchical matrices (cf. Ap-
pendix D) yields an approximation of the exact LU factors in A = LU and is
called H-LU decomposition (cf. Hackbusch [198, §7.6 and §7.8] and Grasedyck–
Kriemann–Le Borne [165, 166]). The accuracy can be controlled by an appropriate
local rank. Therefore the H-LU factorisation is quite different from the incomplete
(ILU) decomposition described in §7.3.

In the positive definite case, LU decomposition can be replaced by Cholesky de-
compositionA = LLT. For symmetric but not necessarily positive definite matrices
A, we may use the LDL decomposition A = LDLT. In the following we restrict
ourselves to the general LU case. In this section we make no assumption about
sparsity of the matrix. The algorithms explained below can also be applied to fully
populated matrices, e.g., arising from discretising an integral equation.

In Section 13.2 we shall assume that A is a sparse finite element matrix. Then it
is largely possible to preserve sparsity, i.e., the computed factors L and U contain
many vanishing matrix blocks.

371© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_13



372 13 H-LU Iteration

13.1.1 Triangular Matrices

Triangular matrices can only be defined with respect to a prescribed ordering.
The appropriate ordering of the index set I is described in §D.2.1.3. The ordering
is consistent with T (I) since each cluster τ ∈ T (I) contains consecutive indices:

τ = {iα(τ), iα(τ)+1, . . . , iβ(τ)}. (13.1)

Correspondingly, disjoint clusters τ, σ are ordered: τ < σ holds if i < j for all
i ∈ τ and j ∈ σ. Let M ∈ H(r, P ) be a hierarchical matrix (cf. Definition
D.12). All blocks b = τ × σ ∈ P with τ �= σ are lying completely in the strictly
upper (U) or lower triangular part (L). Diagonal blocks τ × τ ∈ P belong to P−

and the corresponding matrix blocks M |τ×τ are represented as full matrices.
The definition of the format of the hierarchical triangular matrices L and U of

the LU decomposition is that they be triangular and hierarchical:

L,U ∈ H(r, P ),

⎧⎨⎩
Liαiβ = 0 for α < β,
Liαiα = 1 for 1 ≤ α ≤ #I,
Uiαiβ = 0 for α > β.

(13.2)

Solvability of a system LUx = b requires that Uiαiα �= 0 for all iα.
The triangular matrices can also be replaced by block-triangular matrices:

off-diagonal blocks: L|τ×σ = O for τ < σ and U |τ×σ = O for τ > σ,
diagonal blocks: L|τ×τ = I and U |τ×τ ∈ F(τ × τ) for τ × τ ∈ P.

Concerning the restriction ·|b to a block b see (A.8b) or Notation D.6. Note that
U |τ×τ is no longer triangular. The block-triangle decomposition has the advantage
that it may be well defined even if the standard LU decomposition does not exist.

13.1.2 Solution of LUx = b

Given a factorisation A = LU, the system Ax = b is solved in two stages: the
equation Ly = b is treated by the procedure Forward Substitution and Ux = y
by Backward Substitution. These steps can easily be formulated for hierarchical
matrices and performed exactly. The procedure Forward Substitution(L, τ, y, b)
yields the (exact) solution y|τ of L|τ×τy|τ = b|τ . To solve Ly = b, one has to
call Forward Substitution(L, I, y, b) with τ = I (the input vector b is overwritten).

procedure Forward Substitution(L, τ, y, b);
if τ × τ ∈ P then for j := α(τ) to β(τ) do (cf. (13.1))

begin yj := bj ; for i := j+1 to β(τ) do bi := bi−Lijyj end

else for j := 1 to #S(τ) do

begin Forward Substitution(L, τ [j], y, b);
for i := j + 1 to #S(τ) do b|τ [i] := b|τ [i] − L|τ [i]×τ [j] · y|τ [j]

end;



13.1 Approximate LU Decomposition 373

The requirements for the parameters are: τ ∈ T (I×I, P ), y, b ∈ KI , andL satisfies
(13.2) with P ⊂ T (I × I). In line 6, τ [1], . . . , τ [#S(τ)] is an enumeration of the
sons of τ .

The procedure Backward Substitution for solving Ux = y is quite similar.
U , τ , y are input parameters, while x is the output. The vector y is overwritten.

procedure Backward Substitution(U, τ, x, y);
if τ × τ ∈ P then for j := β(τ) downto α(τ) do

begin xj := yj/Ujj ;
for i := α(τ) to j − 1 do yi := yi − Uijxj

end

else for j := #S(τ) downto 1 do

begin Backward Substitution(U, τ [j], x, y);
for i := 1 to j − 1 do y|τ [i] := y|τ [i] − U |τ [i]×τ [j] · x|τ [j]

end;

The complete solution of LUx = b uses

procedure Solve LU(L,U, I, x, b); {L,U, I, b input; x output}
begin x := b ;

Forward Substitution(L, I, x, x);
Backward Substitution(U, I, x, x)

end;

Formulating the block version is left to the reader as an exercise. Since then
the diagonal matrix blocks U |τ×τ (τ × τ ∈ P ) must be inverted during the solution
of Ux= y, the best approach is to invert U |τ×τ immediately after constructing U.
Then the backward substitution procedure can multiply by the precomputed inverse
stored in U |τ×τ .

Finally, we need an algorithm for solving xTU = yT. This equation is identical
to Lx = y with L := UT; however, in this case, the lower triangular matrix L is
not normed. The corresponding procedure is left to the reader:

procedure Forward SubstitutionT(U, τ, x, y); {solving xTU = yT}.

13.1.3 Matrix-Valued Solutions of LX = Z and XU = Z

The matrix L ∈ H(r, P ) with P ⊂ T (I×I) is a lower triangular matrix (cf. (13.2)).
Let X,Z ∈ H(r, P ′) be rectangular hierarchical matrices corresponding to a
partition P ′ ⊂ T (I × J). The index set I is the same as for L ∈ KI×I . We want to
solve the matrix equation

LX = Z



374 13 H-LU Iteration

in KI×J , which represents #J simultaneous equations of the form Lx = z.
The following procedure Forward M solves L|τ×τX|τ×σ =Z|τ×σ for the blocks
τ × τ ∈ T (I×I, P ) and τ×σ ∈ T (I×J, P ′). The complete system LX = Z
in I × J is solved by Forward M(L,X,Z, I, J). By Xτ,j we denote the j-th
columns of X ∈ Kτ×σ, i.e., Xτ,j = (Xij)i∈τ .

procedure Forward M(L,X,Z, τ, σ) ;
if τ × σ ∈ P− then {column-wise forward substitution}

for all j ∈ σ do Forward Substitution(L, τ,Xτ,j , Zτ,j)
else if τ × σ ∈ P+ then

begin {let Z|τ×σ = ABT according to (D.1) with A ∈ Kτ×{1,...,r}}
for j = 1 to r do Forward Substitution(L, τ, A′

τ,j , Aτ,j);
X|τ×σ := rank-r representation by A′BT

end else

for i = 1 to #S(τ) do for σ′ ∈ S(σ) do

begin Forward M(L,X,Z, τ [i], σ′) ;
for j = i+ 1 to #S(τ) do {),�: operations with truncation}
Z|τ [j]×σ′ := Z|τ [j]×σ′ ) L|τ [j]×τ [i] �X|τ [i]×σ′

end;

In the standard case of #S(σ) = 2, the problem

L|τ×τX|τ×σ = Z|τ×σ

has the block structure[
L11 0
L21 L22

] [
X11 X12

X21 X22

]
=

[
Z11 Z12

Z21 Z22

]
with

Lij = L|τ [i]×τ [j], Xij = X|τ [i]×σ[j], Zij = Z|τ [i]×σ[j].

The equations L11X11 = Z11 and L11X12 = Z12 of the first block row are solved
for i = 1 by the call of Forward M in line 10, whereas the remaining equations
L21X11 + L22X21 = Z21 of the first block row and L21X12 + L22X22 = Z22 of
the second one are reformulated as

L22X21 = Z ′
21 := Z21−L21X11, L22X22 = Z ′

22 := Z22−L21X12

in line 12 and are solved for i = 2 in line 10 with respect to X21, X22.

For solving the equation XU = Z with an upper triangular hierarchical matrix
U and an unknown matrix X left of U , we use a similar procedure involving the
procedure Forward SubstitutionT defined above:

procedure ForwardT M (U,X,Z, τ, σ) ; (13.3)

(details in [198, (7.33b)]).



13.1 Approximate LU Decomposition 375

13.1.4 Generation of the LU Decomposition

It remains to describe the generation of the hierarchical LU factors in

A = LU ∈ KI×I .

To simplify the explanation we assume that #S(I) = 2. Then the matrices in
A = LU have the structure[

A11 A12

A21 A22

]
=

[
L11 O
L21 L22

] [
U11 U12

O U22

]
. (13.4)

This leads to the four subtasks

(i) compute L11 and U11 as factors of the LU decomposition of A11,
(ii) compute U12 from L11U12 = A12,
(iii) compute L21 from L21U11 = A21,
(iv) compute L22 and U22 as LU decomposition of L22U22 = A22 − L21U12.

Problem (ii) is solved by the procedure Forward M(L11, U12, A12, τ1, τ2), whereas
for problem (iii) we use the procedure ForwardT M in (13.3). The right-hand side
in

L22U22 = A22 − L21U12

can be computed by the usual formatted multiplication.
We still have to determine the LU factors of L11U11 = . . . and L22U22 = . . . .

This defines a recursion, which at the leaves is defined by the usual LU decomposi-
tion of full matrices.

The call of LU Decomposition(L,U,A, I) yields the desired LU factors of A.
More generally, the procedure LU Decomposition(L,U,A, τ) solves the problem
L|τ×τU |τ×τ = A|τ×τ for τ ∈ T (I × I, P ).

procedure LU Decomposition(L,U,A, τ) ;
if τ × τ ∈ P then compute L|τ×τ and U |τ×τ as LU factors of A|τ×τ

else for i = 1 to #S(τ) do

begin LU Decomposition(L,U,A, τ [i]) ;
for j = i+ 1 to #S(τ) do

begin ForwardT M (U,L,A,τ [j],τ [i]);
Forward M(L,U,A,τ [i],τ [j]);
for r = i+ 1 to #S(τ) do

A|τ [j]×τ [r] := A|τ [j]×τ [r] ) L|τ [j]×τ [i] � U |τ [i]×τ [r]

end end;

(13.5)

The sons of S(τ) are denoted by τ [1], . . . , τ [#S(τ)].



376 13 H-LU Iteration

13.1.5 Cost of the H-LU Decomposition

Because of the triangular structure, the two matrices L and U need not more storage
than a usual hierarchical matrix:

SLU(r, P ) = SH(r, P ),

where SH(r, P ) is given in Lemma D.17.
As in Lemma D.18, one verifies that the cost of Forward Substitution(L, I, y, b)

can be estimated by the double storage cost of L. An analogous result holds for
Backward Substitution(U, τ, x, y). Together we obtain

NLU(r, P ) ≤ 2SH(r, P ).

Comparing the costs for solving both systems LX = Z and XU = Z with a
standard multiplication of hierarchical matrices, we obtain

NForward M(r, P ) +NForwardT M(r, P ) ≤ NMM(P, r, r)

with NMM(P, r, r) in (D.15). Generating the LU decomposition by the procedure
in (13.5) also does not require more operations than matrix-matrix multiplication:

NLU decomposition(r, P ) ≤ NMM(P, r, r).

13.2 H-LU Decomposition for Sparse Matrices

13.2.1 Finite Element Matrices

Finite element matrices are sparse in the classical sense. They can exactly be
transferred into the H(r, P ) format. This transfer is required if we want to apply
hierarchical matrix operations other than matrix-vector multiplication.

Lemma 13.1. Let H(r, P ) ⊂ KI×I be an arbitrary hierarchical format, and P an
admissible partition. Let dist(τ, σ) be defined by (D.8) and (D.9b). Then any finite
element matrix belongs to H(r, P ) for all r ∈ N0.

Proof. For an admissible block b = τ×σ ∈ P+, the indices i ∈ τ and j ∈ σ belong
to basis functions with disjoint supportsXi andXj . Hence the finite element matrix
restricted to b is a zero block and, therefore, belongs to Rr(b). ��

Modern direct solvers for sparse systems apply sophisticated algorithms to
minimise the fill-in during the LU decomposition. Formally, this means finding
a permutation P , so that the LU decomposition of PAPT (without pivoting)
is sparser than for A. For instance, one may try to minimise the band width
since fill-in of the LU factors occurs only within the band (cf. [314, §3.9.1]).
Similarly, we may try to optimise the H-LU decomposition for sparse matrices.



13.2 H-LU Decomposition for Sparse Matrices 377

The precise conditions concerning the sparsity pattern will be discussed in §13.2.2.
Let I be the index set in A ∈ KI×I . The ordering of the index set, determining
the LU decomposition, is derived from the cluster tree T (I) (cf. (13.1)). There-
fore, alternative permutations require alternative cluster trees. Such a cluster tree
will be introduced in §13.2.3. The following LU variants are based on the articles
Le Borne–Grasedyck–Kriemann [259] and Grasedyck–Kriemann–Le Borne [166].

The inverse of a sparse finite element matrix is a fully populated matrix. It is
shown in Bebendorf–Hackbusch [39], Faustmann–Melenk–Praetorius [129], and
Faustmann [128] that the inverse matrix can be well approximated by the format
H(r, P ). The involved truncation error decreases exponentially with r. These
results can be transferred to the LU decomposition; i.e., the factors L and U
are also well approximated by hierarchical triangular matrices in H(r, P ) (cf. [198,
§9.2.8] or Grasedyck–Kriemann–Le Borne [166], Faustmann [128, §6]). A similar
result holds for the inverse and the LU factors of matrices arising from the boundary
element method (cf. Faustmann–Melenk–Praetorius [130]).

13.2.2 Separability of the Matrix

Sparsity alone is not sufficient for our purpose. In addition, we need the following
condition. The index set I can be decomposed disjointly:

I = I1 ∪̇ I2 ∪̇ Is with #I1 ≈ #I2, #Is ! #I, (13.6a)

so that the matrix A, which we want to partition, has the following block structure:

A =
11A

22A

1sA

ssA
2sA

s1A s2A
Is

Is

I1

I1 I2

I2

O

O
{

{

{

{

{

{

. (13.6b)

The index set Is is called the separator since A|(I\Is)×(I\Is) is decomposed into
the matrix blocks A11 and A22; the off-diagonal blocks A12 and A21 contain only
zero entries.

sΙ

Ι Ι1 2

Fig. 13.1 Matrix graph
separated by Is.

Condition #I1 ≈ #I2 in (13.6a) ensures that (i) A11

and A22 be similar in size, (ii) the zero blocks are large.
Condition #Is ! #I requires the separator to be com-

parably small. More quantitative statements will follow.
The requirements (13.6a,b) can easily be formulated

by the matrix graph G(A) (cf. §C.2). I is the vertex set.
There must be a (small) subset Is so that the graph without
the Is-vertices and corresponding edges disaggregates into
two unconnected subgraphs with the vertex sets I1 and I2
(cf. Fig. 13.1).



378 13 H-LU Iteration

γ

1i 2i

Fig. 13.2 Domain decompo-
sition by γ.

The last formulation yields a sufficient condition
for (13.6a,b). If G(A) is a planar graph, a linear sub-
graph—as in Figure 13.1—is a sufficient choice of the
separator. Planar graphs are, e.g., obtained by discre-
tising two-dimensional boundary value problems by
a standard difference method or by piecewise linear
finite elements. If n = #I is the problem size, one
expects a separator of the cardinality #Is = O(

√
n),

while #I1,#I2 ≈ n/2. In the case of finite elements in a domain Ω ⊂ R2,
one determines a curve γ ⊂ Ω with endpoints on Γ = ∂Ω, consisting of edges
belonging to the finite element triangulation (cf. Fig. 13.2). The indices i ∈ Is are
associated with the nodal points in γ. The vertices left or right of γ form the respec-
tive sets I1 or I2. If i1 ∈ I1 and i2 ∈ I2, supports of the basis functions φi1 and φi2
lie on different sides of γ and can overlap at most by their boundaries. This implies
that Ai1i2 =0, as required in (13.6b).

The example of a boundary value problem in Ω shows that the method can be
iterated: γ dividesΩ into subdomainsΩ1 andΩ2, and the submatrices A11 and A22

in (13.6b) belong to boundary value problems in these subdomains; hence, they are
of the same kind as the original matrix.

The latter observation leads to the final assumption:

The submatrices Aii := A|Ii×Ii (i = 1, 2) must again
satisfy (13.6a–c) or be sufficiently small. (13.6c)

0

0 0
0

0
0

Fig. 13.3 Twofold
decomposition.

This requirement ensures that the partition can be continued recur-
sively (Fig. 13.3 shows the result after two partitions). Obviously,
the condition #Is ! #I is vague. In particular, the symbol ! is
meaningless if #I is not large. In this case, the recursion termi-
nates since ‘sufficiently small’ submatrices occur (cf. (13.6c)).

The partition (13.6a,b) is well known as the dissection method
introduced by George [149]. It also corresponds to the (iterated
form of the) domain decomposition method.

13.2.3 Construction of the Cluster Tree

The partition of the index set I into the three subsets in (13.6a) can easily be per-
formed. A variant of the partition in §D.2.1.2 works as follows. Assume that the
indices i ∈ I are again associated with nodal points ξi ∈ Kd. Let the partition
of the cuboid (minimal box) yield the binary decomposition of I into Î1 and Î2.
The first set I1 := Î1 remains unchanged, while the second is split again:

Is := {i ∈ Î2 : there are Aij �= 0 or Aji �= 0 for some j ∈ I1}, I2 := Î2\Is.

Obviously, the partition into I1, I2, Is satisfies condition (13.6a).



13.2 H-LU Decomposition for Sparse Matrices 379

In principle, this decomposition algorithm could be continued recursively.
The result would be a ternary tree T (I). However, this procedure is not optimal.
The reason are the different characters of the three subsets I1, I2, and Is. For an
illustration, assume the two-dimensional case Ω ⊂ R2. The first two sets I1 and
I2 correspond to the (two-dimensional) subdomains Ω1 and Ω2 (cf. Fig. 13.2),
whereas the indices of Is are vertices of the (one-dimensional) curve γ. We recall
the bisection of the bounding box in §D.2.1.2. d bisection steps of a d-dimensional
cuboid lead to 2d subcuboids of half the size. This means that the diameter of
an index set belonging to subdomains of Ω is reduced by about 1/

√
2, whereas the

diameter of an index set belonging to the (one-dimensional) separator γ is reduced
by 1/2. Therefore, with increasing level �, the subset T (�)(I) defined in (D.7) con-
tains index sets exhibiting increasingly different sizes. Therefore the block cluster
tree contains rather flat blocks σ × τ .

The following modification (here explained and illustrated for d = 2) avoids a
systematic distortion of the cluster sizes in T (�)(I). The cluster set T (I) is divided
into ‘two-dimensional’ clusters Td(I) and ‘one-dimensional’ clusters Td−1(I).
Their definition is given by

(a) I ∈ Td(I),
(b) if τ ∈ Td(I), the sons τ1, τ2 belong to Td(I), whereas τs belongs to Td−1(I),

(c) all successors of τ ∈ Td−1(I) belong to Td−1(I).

In Figure 13.4, the rectangles with dashed sides correspond to clusters in Td−1(I),
the other rectangles correspond to Td−1(I).

The decomposition rules are as follows:

(a) A cluster τ ∈ Td(I) is always decomposed into three parts. Since, in the
case of an LU decomposition, an ordering of the sons of τ is required, we
define the order as follows: First, the sons τ1, τ2 ∈ S(τ)∩ Td(I) are arranged
in arbitrary order (edges depicted by solid lines in Fig. 13.4), then the son
τs ∈ S(τ) ∩ Td−1(I) follows (dashed line).

(b) The treatment of a cluster τ ∈ Td−1(I) depends on its graph distance to
the next Td(I)-predecessor. For this purpose, we introduce

κ(τ) := min{level(τ) − level(τ ′) : τ ′ ∈ Td(I) predecessor of τ}.

(ba) If κ(τ) is odd, τ remains unchanged (dotted edge in Fig. 13.4).
(bb) If κ(τ) is even, τ is decomposed in a binary1 way according to

§D.2.1.2 (broken-dotted edges in Fig. 13.4).

These rules guarantee that all clusters in T (�)(I) have successors at level �+ 2
with a diameter of about half the size. For d = 3, one has to modify these rules
suitably.

1 Here a ternary splitting does not make sense.



380 13 H-LU Iteration

I 1 I 2

I 11 I 12 I 1s I 21 I 22 I 2s I s

I s

I

Fig. 13.4 Cluster tree T (I).

The corresponding block cluster tree T (I × I) is obtained as in Definition D.8.
A block partition of depth L = 2 is shown in Figure 13.3.

13.2.4 Application to Inversion

The inversion algorithm in §D.3.6 has an intrinsic disadvantage concerning its
parallel treatment. The inversion of M |τ×τ has to wait until the inversions in the
blocks τ ′ × τ ′ (τ ′ ∈S(τ)) are performed. This requires a sequential computing2.
Also in the case of partition (13.6b), one has first to invert the diagonal blocks A11

and A22 before the Schur complement in Is × Is can be formed and inverted, but (i)
the inverses of A11 and A22 can be computed in parallel and (ii) the computations
in Is × Is are significantly cheaper than the inversions of A11 and A22 because of
#Is ! #I .

The algorithm is still sequential in the level-number: The inversion of M |τ×τ

can take place as soon as the inversions in τ ′ × τ ′ (τ ′ ∈S(τ)) are performed.
More details about this method can be found in Hackbusch [192] and Hackbusch–

Khoromskij–Kriemann [202]. Parallel H-matrix implementations are discussed by
Kriemann [245].

2 Of course, the arising matrix-matrix multiplications and additions can be parallelised.



381

13.2.5 Admissibility Condition

The zero blocks in (13.6b) are characterised by

τ ′ × τ ′′ with τ ′ �= τ ′′ and τ ′, τ ′′ ∈ S(τ) ∩ Td(I) for some τ ∈ Td(I). (13.7)

The blocks b = τ ′ × τ ′′ are not admissible in the sense of Definition D.11,
since the support sets Xτ ′ and Xτ ′′ touch at the separating line γ, and therefore
dist(τ ′, τ ′′) vanishes. Nevertheless, it does not make sense to decompose b again.
Therefore the admissibility condition adm∗ in (D.11) is modified as follows:

adm∗∗(τ ′ × τ ′′) :=
[
adm∗(τ ′ × τ ′′) or τ ′ × τ ′′ satisfies (13.7)

]
.

The minimal admissible partition P ⊂ T (I × I) is now defined in (D.12)
with adm∗ replaced by adm∗∗. So far, we divided P into the near- and far-field:
P = P− ∪̇P+. Now a ternary partition is appropriate: P = P 0 ∪̇P− ∪̇P+ with
P 0 := {b ∈ P satisfies (13.7)}, while P\P 0 is split into P−∪̇P+ as before.

13.2.6 LU Decomposition

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

15 15
10 10

15 15
10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

15 15
10 10

15 15
10 10

15
10 10

15 15
10 10 16

4 4 6

15 15 9

10 10

10 7

15 15
10 10 16

15 15 6

15 15 9 17

15
10 10

11
15

15 15
8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

10 10

15 15

10 10

15 15

10

10 15
8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

8

8
4 4 4

8

8
4 4 4

10 10 10

15 10

10 10

15 15 10

10 10

15
10 10

10 10

15 15

10 10

15 15

10

10 15
10 10

15 15 16
4 4 6

15 15 9

10 10

7 10

10 10

15 15 16
15 15 6

15 15 9 17

10

10 15

11
15

15 15

15 10

10 10 25 16
4 4 10

15 15 10 25 13 10 36
15 10

15 15 10 25 16
8 4

8 4 10

4

8 4

8 4 10 25 13 10

13 10 8

8 30

15 15 10

10 10 25 16

30 25 17

16 8

8 20
15 10

15 10 25 16
8 4

8 4 10

8 4

8 4 10 25 17

17 8

8 21

15
10 10

11
15

15 15

11 7

7 13

15

15 15

14

9

9 9

9 7

6 9

9

9 9

Fig. 13.5 Factor U ;
white blocks are zero.

The algorithm in §13.1 can be applied without changes. The
advantage of the new cluster tree T (I) can be seen from the
following statement.
Remark 13.2. Let the matrix A ∈ H(r, P ) satisfy A|b = 0
for all b ∈ P 0. Then the approximate LU decomposition
according to (13.5) yields factors L, U ∈ H(r, P ) satisfying
again L|b = U |b = 0 for b ∈ P 0 (cf. Fig. 13.5).

Detailed numerical results and comparisons with other
algorithms can be found in Grasedyck–Hackbusch–Kriemann [164].

13.3 UL Decomposition of the Inverse Matrix

If a regular matrix A possesses an LU decomposition A = LU , A−1 can also be
decomposed into U ′L′ with L′ := L−1 and U ′ := U−1 and vice versa. Here we
use that the inverse of a (normed) triangular matrix is again (normed) triangular.
Note the different ordering of the factors in A−1 = U ′L′: the first matrix is the
upper triangular, while the second one is the normed lower matrix.

Remark 13.3. The standard forward and backward substitution in x �→ U−1L−1x
avoids inversion, but is mainly sequential. In contrast to this, matrix-vector multi-
plications in x �→ U ′L′x can be parallelised much better (see Kriemann–Le Borne
[246, Tables 3 and 4]).

Similar to the discussion of (13.4), the factors in A−1 = U ′L′ can be determined
from L′AU ′ = I (cf. [198, §7.6.5] and Kriemann–Le Borne [246]).

13.2 H-LU Decomposition for Sparse Matrices



382 13 H-LU Iteration

13.4 H-LU Iteration

13.4.1 General Construction

The H-matrix technique may be considered as a direct method with the difference
that the error is not characterised by the machine precision, but by the accuracy of
the H-matrix computation. Note that the H-matrix accuracy can be adjusted to the
discretisation error.

In fact, there is a smooth transition from a direct method to an iterative one.
We recall that even the Gauss elimination becomes an iteration when it is re-iterated
(cf. Skeel [341], Björck [48, §1.4.6]).

The H-LU decomposition A ≈ LU induces the iteration ΦH-LU :

xm+1 = xm −W−1 (Axm − b) with W = LU. (13.8)

The properties of the method are collected in the next remark.

Remark 13.4. (a) Since an LU decomposition does not exist for any regular
matrix, the existence of the H-LU decomposition is not guaranteed in general.
If the hierarchical LU decomposition is successful, the involved rank controls the
error I −W−1A.

(b) The inversion of W = LU uses the procedures in §13.1.2, which are very fast.
(c) The data required to determine W are the matrix A including the geometric
information about the nodal points ξi ( i ∈ I). In the case of a sparse matrix, the
geometric data can be replaced by the graph G(A). In that case, the method is
algebraic (cf. Definition 2.2b).
(d) If A > 0, also W > 0 is expected (here Cholesky decomposition should be
used). There are strategies to ensure W > 0 in spite of truncation errors (cf. [198,
§6.8.2]). Then the iteration is positive definite: ΦH-LU ∈ Lpos.

The statements W ≈ A or N = W−1 ≈ A−1 can be made more precise by the
error estimate

‖I −NA‖2 ≤ ε < 1. (13.9a)

Inequality (13.9a) implies the corresponding estimate with respect to the spectral
radius:

ρ(I −NA) ≤ ε < 1. (13.9b)

If, e.g., ε = 1
10 in (13.9a), each step of the iteration (13.8) improves the result by

one decimal. ε = 1
10 is already considered as fast convergence, whereas N with

ε = 1
10 in (13.9a) may be still regarded as a rough approximation of the inverse.

An alternative to (13.9a) is

‖I −NA‖A = ‖I −A1/2NA1/2‖2 ≤ ε < 1 (13.9c)



13.4 H-LU Iteration 383

for positive definite A. (13.9c) also implies (13.9b). The contraction properties
(13.9a) or (13.9c) are very important if only a few iteration steps are performed.

For determining the approximate inverse N = W−1, we have to weight up the
following properties.

• Relatively rough approximation (moderate ε < 1): In this case, a smaller local
rank of the H-matrix representation is sufficient; hence, the storage cost and
computational cost is reduced. As a consequence, we have to perform several
steps of the iterative method (13.8). However, the latter fact is of lesser impor-
tance since the matrix-vector multiplications Axm and Nd for d := Axm − b
are significantly faster than inversion or LU decomposition required for N .

• Relatively accurate approximation (small ε! 1): The local rank of the H-matrix
representation will increase logarithmically with 1/ε. On the other hand, the
iterative method requires only one or two steps.

The effective amount of work is

Eff(ΦH-LU) = O(rα logβ n) (n = #I)

with α, β > 0 (cf. (2.31a)). Therefore smaller local ranks r may be preferred.
Usually, the maximal r is O(log∗ n), since then the discretisation error is reached.
Hence the effective amount of work is always bounded by O(log∗ n) ; i.e., the
H-LU iteration is almost optimal.

Let A and W be a positive definite matrix. We recall the spectral equivalence
of A and W defined by

1

c
〈Ax, x〉 ≤ 〈Wx, x〉 ≤ c 〈Ax, x〉 for all x ∈ KI (13.10)

with a constant c > 0 (cf. Definition 7.56). According to (7.51e), (13.10) is equi-
valent to 1

c I ≤ A−1/2WA−1/2 ≤ cI . Inversion yields 1
c I ≤ A1/2NA1/2 ≤ cI .

Applying (13.9c) yields the next statement.

Remark 13.5. Inequality (13.9c) implies the spectral equivalence (13.10) with

c :=
1

1 − ε
≈ 1 + ε.

The spectral equivalence may come into play by other means. The solution of
nonlinear problems or parabolic differential equations can lead to the situation3

that many systems A(ν)x(ν) = b(ν) are to be solved, involving different matrices
A(ν) which are still spectrally equivalent. Then it is sufficient to approximate the
inverse N = (A(0))−1 of the first matrix and to use this approximation as precon-
ditioner for all A(1), A(2), . . . (cf. page 321).

3 For instance, in the nonlinear case the Newton method leads to different linearisations A(ν),
where ν is the index of the Newton iteration. In the parabolic case, the matrices A(t) depend on
the time t. The time steps t = 0, Δt, 2Δt, . . . yield A(ν) = A(νΔt).



384 13 H-LU Iteration

13.4.2 Algebraic LU Decomposition

The LU decomposition described in §13.1 is still dependent on geometric data (co-
ordinates of the nodal points). The following construction removes this dependence
and uses only data contained in the matrix A, provided that A is a sparse matrix.

Given A, we obtain the graph G(A) (cf. §C.2). More precisely, we use the un-
directed graph G := Gsym(A) =G(A) ∪ G(AT). We assume that G is connected,
since otherwise the system decomposes into at least two separated systems. For a
connected graph, any two α, β ∈ I are connected by at least one path. The path
length is defined by the number of edges between α and β. The minimal length of
all paths between α and β defines the distance δ(α, β).

The distance δ yields the necessary topology. It allows defining the diameter of
a cluster and the distance of two clusters. Therefore, admissibility condition (D.10)
can be formulated.

The construction of the cluster tree T (I) and, in particular, of the special cluster
tree corresponding to §13.2.3 is explained in [198, §9.2] and Grasedyck–Kriemann–
Le Borne [165]. The latter paper contains numerical examples which show that this
approach is rather robust.

13.5 Further Applications of Hierarchical Matrices

The ‘commonly used matrix formulation’ Ax = b in (1.5) is not the only represen-
tation. The linear equation may take the form of a matrix equation. For this purpose,
let A,C ∈ Kn×n be given matrices, while X ∈ Kn×n is an unknown matrix. Then

AX +XAH = C (13.11)

represents the Lyapunov equation. This is a system of linear equations for all entries
of X . In principle, we can form vectors x, c ∈ Kn2

and a matrix A ∈ Kn2×n2

such
that (13.11) is equivalent to Ax = c. However, if A is a large-scale matrix, the size
of x is equal to n2 which may be too large for practical computations. The remedy
is to use a format for the matrix X which involves only O(n) or O(n log∗ n) data.
Hierarchical matrices are a possible choice. Possibly, even global low-rank matrices
can be used. As shown by Penzl [310], rank(C) = r implies that the singular values
of X decrease exponentially. This property ensures approximability by global low-
rank matrices.

A slight generalisation is the Sylvester equation AX + XB = C with given
matrices A, B, and C. Corresponding statements and approximations by global
low-rank and hierarchical matrices are discussed by Grasedyck [159], Baur [35],
Baur–Benner [36]), and Benner–Breiten [40].

Even the (nonlinear) Riccati equation AX +XAH −XBX = C can be solved
(cf. Hackbusch [198, §15.2] and Grasedyck–Hackbusch–Khoromskij [163]).



Chapter 14

Tensor-based Methods

Abstract There are situations in which the size of the system Ax = b is so large
that it is impossible to store the vectors x, b in full format. The data size may
take values like 10001000. Instead one needs sparse representations for all quantities
A, x, b. The numerical tensor calculus offers very efficient tools for this purpose.
In Section 14.1 we introduce tensor spaces and show typical examples. The key
for the efficient numerical treatment is a suitable sparse tensor representation. In
Section 14.2 we briefly define the r-term format, the subspace format as well as
the hierarchical format. The inverse matrix approximated in §14.2.2.3 will play an
important role as preconditioner. In Section 14.3 two different types of huge linear
systems are described together with the definition of the truncated iteration for their
solution. Finally, in Section 14.4, the variational approach and the alternating least
squares method are mentioned.

14.1 Tensors

14.1.1 Introductory Example: Lyapunov Equation

In the standard case, we assume that the size of the linear systems Ax = b is
such that the vectors x, b ∈ Kn can be treated directly, whereas the regular matrix
A ∈ Kn×n needs special care (e.g., sparse matrix format or hierarchical matrix
format). The situation changes if n becomes much larger. An example is the
Lyapunov matrix equation AX + XAH = C mentioned in (13.11) and related
matrix equations (cf. Benner–Breiten [40]). We can rewrite the Lyapunov equation
(13.11) as a traditional system

Ax = b with x,b ∈ Kn2

, A ∈ Kn2×n2

of n2 linear equations for n2 unknowns. The matrix A can be defined by using the
tensor product:

A = I ⊗A+A⊗ I .

385© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5_14



386 14 Tensor-based Methods

Vectors x,b ∈ Kn2

are also viewed as elements of the tensor space Kn ⊗ Kn.
If A is a sparse n × n matrix, the representation A = I ⊗ A + A ⊗ I shows

that the n2 × n2 matrix A can be represented by O(n) data. However, the solution
x ∈ Kn2

is not sparse. Here, we need new concepts to avoid the data size O(n2).
This is in particular necessary when we replace n2 by nd with d > 2.

One origin of Lyapunov equations are control problems for partial differential
equations. For instance, A may be the discretisation of the Laplace equation, say in
three spatial dimensions x = (x1, x2, x3). Then the matrix A of the Lyapunov
equation is an discretisation of the six-dimensional partial differential equation
Δxu(x, y) +Δyu(x, y) = . . .

14.1.2 Nature of the Underlying Problems

In §1.5 we started with

(P1) direct methods for solving Ax = b.

Ignoring floating-point effects, we are able to obtain the exact solution, whenever
the matrix A is regular. However, the exactness of the solution is illusory because of

(P2) discretisation errors.

Usually, the origin of the large-scale systems Ax = b is the discretisation of a
partial differential equation, e.g., by finite elements. Hence, the true interest is in the
solution of an infinite-dimensional linear problem Lu = f. The solution of Ax = b
may define a finite element function un :=

∑
α xαφα (cf. (E.6)) approximating the

true solution u. Computing x more accurately than u − uh is wasted effort. In this
book, we do not discuss the discretisation error since this is the subject of other
monographs (e.g., [193, 201]). Nevertheless, some statements about the Galerkin
discretisation error are given in §E since the multigrid convergence proof in §11.6.3
is based on these properties.

The central theme of this book is the

(P3) iterative solution of Ax = b.

Since we perform only a finite number of iteration steps, we have to accept an
inexact solution xm. According to (P2), this is a reasonable approach, provided
that the iteration error is below the discretisation error. A minor modification is the

(P4) iterative solution of Ãx = b̃ with a perturbed matrix Ã ≈ A and a perturbed
right-hand side b̃ ≈ b.

For instance, the true finite element discretisation Ax = b may require the evalu-
ation of integrals of the type

∫
Ω
a(x)(∇ϕi)

T(∇ϕj)dx with a variable coefficient
a(·). Since the exact evaluation may be cumbersome, such integrals are approxi-
mated by numerical quadrature leading to Ã ≈ A. Similarly, b̃ may involve quadra-
ture errors. Although this approach is called a ‘variational crime’, the additional



14.1 Tensors 387

quadrature error is integrated into the overall finite element error. Its influence is
analysed by Strang’s first lemma (cf. Strang [358]).

A similar situation happens in the case of hierarchical matrices. If A is a fully
populated matrix, e.g., the discretisation of an integral operator, A is replaced with
a hierarchical matrix Ã. In this case, the difference A − Ã is called the truncation
error. Under suitable conditions, error estimates of A− Ã can be provided.

In the case of tensor-structured problems, the linear systems Ax = b becomes

(P5) Ãx̃ ≈ b̃ with Ã ≈ A, b̃ ≈ b, and x̃ ≈ x.

Because of the huge data size, the true matrix A and vectors x, b cannot be used.
They have to be approximated by Ã, x̃, b̃, which belong to certain tensor formats.
Note that, in general, the exact solution x of Ãx = b̃ also has a too large data size.
Therefore it is necessary to look for x̃ of a feasible data size and approximating x.

Whether A, b and the true solution x = A−1b can be well approximated by
Ã, b̃, x̃ is a difficult question and will not be discussed here (see Hackbusch [195]
for more details). The discussion of the discretisation error in (P2) is mainly based
on the smoothness of the coefficients of the partial differential equation. In the tensor
case, smoothness is helpful for estimating approximation errors, but also nonsmooth
data may allow a good approximation.

In the following discussion, we treat matrices and vectors in the same way.
Matrices are considered as elements (vectors) of the vector space KI×I . The basic
assumption is that the huge-sized vector spaces are organised as tensor spaces. As
in the case of hierarchical matrices, we consider subsets of low-rank tensors using
different versions of ranks. These low-rank tensors define the ‘tensor formats’
discussed in §§14.2.1, 14.2.3, 14.2.4.

14.1.3 Definition of Tensor Spaces

Given d vector spaces Vj , 1 ≤ j ≤ d, one can define the algebraic tensor space

V :=

d⊗
j=1

Vj .

V is a vector space of the dimension dim(V) =
∏d

j=1 dim(Vj). Starting from

bases {b(j)i : i ∈ Ij} of Vj with #Ij = dim(Vj), the tensor products {
⊗d

j=1 b
(j)
ij

:

ij ∈ Ij , 1 ≤ j ≤ d} form a basis in V. This also holds in the infinite dimensional
case. The tensor product is multilinear, i.e.,(

k−1⊗
j=1

v(j)

)
⊗
(
αv(k) + w(k)

)
⊗

d⊗
j=k+1

v(j)



388 14 Tensor-based Methods

= α

d⊗
j=1

v(j) +

(
k−1⊗
j=1

v(j)

)
⊗ w(k) ⊗

d⊗
j=k+1

v(j)

holds for all v(j) ∈ Vj , w
(k) ∈ Vk for k ∈ {1, . . . , d}, and α ∈ K. The products⊗d

j=1 v
(j) are called elementary tensors. The algebraic tensor space is spanned by

all elementary tensors. For more details see Hackbusch [195, 196].

14.1.4 Case of Grid Functions

Choosing the vector spaces Vj = KIj with Ij = {1, . . . , nj}, nj ∈ N, we obtain
the tensor space V = KI with the index set

I = I1 × I2 × . . .× Id.

To avoid secondary indices, we write the components of v(j) ∈ KIj as v(j)[i]
with i ∈ v(j). The elementary tensor v =

⊗d
j=1 v

(j) is indexed by the tuple
i = (i1, i2, . . . , id) ∈ I :

v[i] =

d∏
j=1

v(j)[ij ]. (14.1)

The tensor v can be interpreted as a d-dimensional grid function. The underlying
grid is

Ωh =
d×

j=1

{h, . . . , njh}

corresponding to the inner grid points xi = ih = (i1h, . . . , idh) of the cuboid
[0, a1] × . . . × [0, ad] with aj = (nj + 1)h (the boundary grid points with ij = 0
and ij = nj + 1 may correspond to given Dirichlet boundary values; see Figure 1.1
for d = 2). Denote the value of a grid function at the grid point xi by v[i]. Then this
grid function belongs to the tensor space V = KI.

The spatial dimension d may be large, e.g., d = 1000. However, even for d = 3
an n × n × n grid with n = 106 points per direction causes severe problems. The
general assumption of this chapter is that #I is beyond the storage capacity of the
computer.

Remark 14.1. Concerning discretisation of elliptic boundary value problems, the
usual strategy is to reach a certain discretisation error with as few as possible
degrees of freedom. The tools may be a local finite element refinement and the
hp discretisation. The underlying hypothesis is that the work for solving the linear
system is proportional to the size of the system. This idea is completely misleading
in cases where the problem can be discretised in a tensor-structured way.

The discretisation by a regular three-dimensional grid with n grid points per
direction yields a system of sizeN = n3. However, if the methods discussed below
work, the overall cost is O(n). Under optimal conditions even O(log(n)) may be
possible (cf. [195, §14]).



14.1 Tensors 389

14.1.5 Kronecker Products of Matrices

Now we consider the vector spaces Vj = KIj×Jj of Ij × Jj matrices. Aj ∈ Vj can
be viewed as a linear map Aj : Xj → Yj with Xj = KIj and Yj = KJj . We form
the tensor spaces

X = X1 ⊗X2 ⊗ . . .⊗Xd and Y = Y1 ⊗ Y2 ⊗ . . .⊗ Yd.

Then the tensor product

A = A1 ⊗A2 ⊗ . . .⊗Ad

can be interpreted as the linear map A : X → Y defined by

A :

d⊗
j=1

v(j) �→
d⊗

j=1

(
Ajv

(j)
)

(v(j) ∈ Vj). (14.2)

Here we use that a linear map is completely determined by its action on elementary
tensors. Since X = KI and Y = KJ with I = ×d

j=1 Ij and J = ×d
j=1 Jj , the

linear map can be considered as a matrix A ∈ KI×J.
Tensor products of matrices are also called Kronecker products. Often definitions

as A ⊗ B =

⎡⎢⎣a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

⎤⎥⎦ are used which require a particular ordering of

the indices. The definition (14.2) is independent of any index ordering.
Note that we treat matrices in KI×I and vectors in KI in the same way. Even the

usual sparsity does not help: Also a diagonal matrix has the data size #I.

14.1.6 Functions on Cartesian Products

Let fj be functions defined on Ωj (we may think of Ωj ⊂ R, but any set Ωj is
possible). Use the variables xj ∈ Ωj . The tensor product f :=

⊗d
j=1 fj is a

d-variate function defined on the Cartesian product Ω :=×d
j=1Ωj by the product

f(x1, x2, . . . , xd) = f1(x1) · f2(x2) · . . . · fd(xd).

Note that (14.1) is the particular case of Ωj = {ih : i ∈ Ij} .
Specifying function spaces Vj , e.g., Vj = L2(Ωj), the product f belongs to the

algebraic tensor space Valg :=
⊗d

j=1 Vj . Using the norm of L2(Ω) in Valg, we
can complete the normed vector space Valg and obtain the topological tensor space
Vtop, which in this case coincides with L2(Ω). In the finite dimensional case, the
algebraic and topological tensor spaces coincide.



390 14 Tensor-based Methods

14.2 Sparse Tensor Representation

Although, in general, dim(V) data are needed to describe a tensor in V, there are
subsets of V which can be represented by a smaller number of parameters. We try
to approximate the desired element of V by such a tensor. In the following, we
describe three formats. All are based on the idea of tensors of low rank (different
from the hierarchical matrices and their local low-rank blocks, this kind of rank is
of global nature).

14.2.1 r-Term Format (Canonical Format)

14.2.1.1 Definition and Tensor Rank

Analogously to the rank-r matrices in (D.2), we define the set Rr of tensors of the
representation rank r ∈ N0 by

v =

r∑
ν=1

v(1)ν ⊗ v(2)ν ⊗ . . .⊗ v(d)ν with v(j)ν ∈ Vj . (14.3)

The storage size for any v ∈ Rr is bounded by rdn, where n = maxj dimVj .
Note that d is now a factor and not an exponent. If r is of moderate size, this format
is advantageous. Often, a tensor v requires a high rank, but there may be some
approximation vε ∈ Rr with moderate rank r = r(ε). An example will follow in
§14.3.1.

Since each element of an algebraic tensor space is a finite linear combination of
elementary tensors, each v ∈ V must belong to some Rr, i.e., V =

⋃
r∈N0

Rr.We
may define the tensor rank

rank(v) := min{r ∈ N0 : v ∈ Rr}.

In principle, we would like to use the representation rank r = rank(v) in (14.3).
However, since the determination of rank(v) is in general NP hard (cf. Håstad
[214]), the representation rank used in practice will be larger than rank(v).

In the case of n×m matrices, we know that min{n,m} is the maximal possible
matrix rank. In the case of tensor spaces, the exact maximal tensor rank is not well
known. A rough upper bound is dim(V)/maxj dim(Vj).

The statements above include the case that v(j)ν ∈ Vj are matrices and v is the
matrix A ∈ KI×J from §14.1.5.

14.2.1.2 Operations

For later computational issues it is important to mention that the standard tensor
operations can be performed using the representation (14.3):



14.2 Sparse Tensor Representation 391

1. The sum v +w of tensors v ∈ Rr and w ∈ Rs yields a tensor in Rr+s.
2. The matrix-vector multiplication follows the definition (14.2).
3. The Euclidean scalar product of elementary tensors v =

⊗d
j=1 v

(j) and w =⊗d
j=1 w

(j) is

〈v,w〉 =
d∏

j=1

〈
v(j), w(j)

〉
. (14.4)

In the last two cases, only operations appear involving ‘small’ quantities from
KIj and KIj×Ij . The summation in item 1 is without any cost. Since the first two
operations increase the representation rank, we need a truncation to a smaller rank
like in §D.3.2. This, however, is the weak point of the r-term format. Unlike the
situation in Proposition A.45, the attempt to determine a best approximation may
lead to an instability since Rr is not closed (cf. [195, §9.4]).

Therefore, in general, one prefers the other formats discussed below. If, however,
one succeeds in finding a good approximation of the form (14.3) with moderate r,
this is the method of choice. Such an example will be discussed next.

14.2.2 A Particular Example

14.2.2.1 Definition of the Matrix

We consider positive definite matrices Aj ∈ KIj×Ij and the tensor space KI×I =⊗d
j=1 K

Ij×Ij . By I we denote the identity matrices in KIj×Ij and define

A :=

d∑
j=1

Aj with Aj = I ⊗ . . .⊗ I ⊗ Aj︸︷︷︸
j-th position

⊗ I ⊗ . . .⊗ I. (14.5)

(14.5) is a d-term representation1 for A of the form (14.3).

Lemma 14.2. The following rules are valid.

(a)
( d⊗

j=1

Aj

)( d⊗
j=1

Bj

)
=

d⊗
j=1

(AjBj).

(b)
( d⊗

j=1

Aj

)T
=

d⊗
j=1

AT
j .

(c) A in (14.5) has the spectrum σ(A) =
{ d∑

j=1

λj : λj ∈ σ(Aj)
}

.

(d) If all Aj are positive definite, then also A is positive definite.
(e) The condition of the matrix A in (14.5) satisfies

min
1≤j≤d

cond2(Aj) ≤ cond2(A) ≤ max
1≤j≤d

cond2(Aj).

1 In fact, even the (minimal) tensor rank of A is d, provided that Aj are not multiples of I (cf.
Buczyński–Landsberg [83]).



392 14 Tensor-based Methods

Proof. (a) follows from (14.2). The proof of (b) uses the property (14.4) of the scalar
product. For (c) use the eigenvector

⊗d
j=1 v

(j)
νj of A composed of the eigenvectors

v
(j)
ν of Aj .

(d) Combining (b) and (c), we obtain that A = AT has only positive eigenvalues.
(e) Let λj be the minimal and Λj the maximal eigenvalue of Aj . As a conse-

quence, cond2(Aj) = Λj/λj holds. The extreme eigenvalues of A are
∑d

j=1 λj

and
∑d

j=1 Λj . The inequalities min1≤j≤d
Λj

λj
≤ Λ1+...+Λd

λ1+...+λd
≤ max1≤j≤d

Λj

λj
can

be proved by induction. ��

We conclude from Lemma 14.2e that the large size of A does not effect the
size of the matrix condition. Furthermore, the minimal eigenvalue of A in (14.5)
increases with d. To simplify the following notation, we scale the matrix A so that
λmin(A) = 1 or, at least,

σ(A) ⊂ [1,∞).

In the following we want to approximate the inverse matrix A−1. In Remark D.1
matrix functions are mentioned. The inverse A−1 can be regarded as the matrix
function f(A) for the function f(x) = 1/x. Accordingly, approximations of A−1

can be obtained as g(A), where g(x) ≈ 1/x.

14.2.2.2 Exponential Sums

Functions of the form Er(x) =
∑r

ν=1 αν exp(−βνx) are called exponential sums.
For the general theory of approximation by exponential sums we refer to Braess [60,
Chap. VI]. The best approximation of 1/x in [1,∞) is defined by the minimiser of

εr = min
αν ,βν

max
1≤x<∞

∣∣∣∣∣ 1x −
r∑

ν=1

αν exp(−βνx)
∣∣∣∣∣ . (14.6)

Lemma 14.3. The minimum in (14.6) is taken for positive parameters αν , βν
(1 ≤ ν ≤ r). The approximation error εr decays exponentially:

εr ≤ O
(
exp(−c

√
r )
)

with c > 0.

Explicit bounds are described in Braess–Hackbusch [66, 67]).

As an illustration we show some values of εr:

r 5 10 15 20 30 40 50
εr 6.42810-4 1.31210-5 6.31110-7 4.79410-8 6.18810-10 1.55410-11 5.99210-13

If we replace the interval [1,∞) in (14.6) by a bounded interval [1, R], εr behaves
as O(exp(−cr )) .



14.2 Sparse Tensor Representation 393

14.2.2.3 Approximation of the Inverse

Lemma 14.4. Let A be a symmetric matrix. If f and g are two functions defined on
the spectrum σ(A), then

‖f(A) − g(A)‖2 ≤ max
λ∈σ(A)

|f(λ) − g(λ)|

holds with respect to the spectral norm.

Proof. A = UDU−1 holds a unitary matrix U. Therefore

‖f(A) − g(A)‖2 =
∥∥Uf(D)U−1 − Ug(D)U−1

∥∥
2

= ‖f(D) − g(D)‖2 = max
λ∈σ(A)

|f(λ) − g(λ)|

proves the inequality. ��

We apply this lemma with A = A, f(x) = 1/x and g(x) = Er(x). Since the
maximum over λ ∈ σ(A) is bounded by the maximum over the larger set [0,∞),
the error bound εr defined in (14.6) applies again:∥∥A−1 − Br

∥∥
2

≤ εr for Br := Er(A). (14.7)

Lemma 14.5. The matrix Br in (14.7) has the r-term representation

Br =

r∑
ν=1

αν

d⊗
j=1

exp(−βνAj) ∈ Rr. (14.8)

Proof. The matrices A1, . . . ,Ad defined in (14.5) are commutative; therefore
exp(−βνA) =

∏d
j=1 exp(−βνAj) holds. Using Lemma 14.2a, we obtain

exp(−βνAj) =

∞∑
k=0

1

k!
(−βνAj)

k =

∞∑
k=0

1

k!
(I ⊗ . . .⊗ (−βνAj) ⊗ . . .⊗ I)k

=

∞∑
k=0

1

k!
(Ik ⊗ . . .⊗ (−βνAj)

k ⊗ . . .⊗ Ik)

= I ⊗ . . .⊗
∞∑
k=0

1

k!
(−βνAj)

k ⊗ . . .⊗ I)

= I ⊗ . . .⊗ exp(−βνAj) ⊗ . . .⊗ I

and
∏d

j=1 exp(−βνAj) =
⊗d

j=1 exp(−βνAj). Summation over ν proves the
lemma. ��



394 14 Tensor-based Methods

If we use the hierarchical matrix format for approximating the matrix exponential
exp(−βνAj) (cf. Remark D.1), the overall storage cost is O(rdN log∗N), while
the data size of A−1 is Nd, where N := maxj #Ij .

We conclude with two generalisations.

Remark 14.6. (a) If the matrices Aj are not normal, but diagonalisable: Aj =
SjDjS

−1
j , the estimate of Lemma 14.4 holds in the modified form

‖f(A) − g(A)‖2 ≤ cond2(Sj) max
λ∈σ(A)

|f(λ) − g(λ)|.

(b) The estimate (14.6) measures the error on the real interval [1,∞). If the matrices
Aj have a spectrum in the complex set Σ = {z = x + iy ∈ C : x ≥ 1, |y| ≤ δ},
there are exponential sums approximating 1/x in Σ with an exponential rate.

14.2.3 Subspace Format (Tucker Format)

Given v ∈ V =
⊗d

j=1 Vj , there may be subspaces Uj ⊂Vj of a smaller dimension
rj so that v ∈ U =

⊗d
j=1 Uj . Choosing a basis {b(j)i : 1 ≤ i ≤ rj} of Uj , the

tensor has the representation

v =

r1∑
i1=1

r2∑
i2=1

· · ·
rd∑

id=1

c[i1, i2, . . . , id]

d⊗
j=1

b
(j)
ij
. (14.9)

Instead of one rank parameter, we now have a tuple r := (r1, . . . , rd) ∈ Nd
0. The

minimal value of rj in all possible representations (14.9) of v is called the j-th
(Tucker) rank and denoted by rankj(v).

The storage cost of the basis vectors is bounded by rdn with

r := max
j
rj and n := max

j
dim(Vj).

The coefficients c[i1, i2, . . . , id] form the core tensor c ∈
⊗d

j=1 K
rj and require a

storage of
∏d

j=1 rj . The latter number may become too large for increasing d.

Note that the subspace U =
⊗d

j=1 Uj is not fixed, but adapted to the ten-
sor v. If two tensor v and w are to be added, the associated subspaces U(v)
and U(w) yield the subspace U =

⊗d
j=1 Uj containing v + w with Uj :=

Uj(v) + Uj(w). Similarly, the matrix-vector multiplication and the scalar product
can be performed within the subspace format. Different from the r-term format, the
truncation to smaller ranks rj can be computed in a stable way based on the so-called
HOSVD (higher order singular value decomposition; cf. [195, §8.3 and §10.1] and
De Lathauwer et al. [103]).



14.2 Sparse Tensor Representation 395

14.2.4 Hierarchical Tensor Format

α ={1,2,3}

’={1,2}α ’’={3}α

{1} {2}

{4,5}

{4} {5}

D={1,...,5}

Fig. 14.1 Dimension partition tree.

Figure 14.1 shows a partition of the
set

D = {1, . . . , d}

by the binary tree TD. Its leaves are
the singletons {1}, . . . , {d}. A non-
leaf vertex α ∈ TD has two sons
α′, α′′. All vertices are subsets of
D with the property α = α′ ∪ α′′

(disjoint union). For all α ⊂ D,
the tensor spaces Vα =

⊗
j∈αVj can

be defined. Similar to the previous
format, we associate a subspace Uα ⊂ Vα for each α ∈ TD\L(TD) with the
characteristic property2

Uα ⊂ Uα′ ⊗ Uα′′ (α′, α′′: sons of α ∈ TD). (14.10)

As in §14.2.3, the subspace Uα is described by a basis {b(α)
i : 1 ≤ i ≤ rα} with

rα = dim(Uα). However, only for the leaves α = {j} ∈ L(TD) the basis vectors
b
(α)
i = b

(j)
i are stored explicitly. For α ∈ TD\L(TD), the basis vectors b

(α)
� are

already true tensors requiring a large storage. Instead we conclude from (14.10) the
representation

b
(α)
� =

rα′∑
i=1

rα′′∑
j=1

c
(α,�)
ij b

(α′)
i ⊗ b

(α′′)
j (α′, α′′: sons of α ∈ TD).

For an indirect definition of b
(α)
� it is sufficient to store the coefficient matrix

C(α,�) = (c
(α,�)
ij ) ∈ Krα′×rα′′ .

The subspace UD at the root of TD must contain the tensor which we want
to represent: v ∈ UD. Since UD can be chosen with dim(UD) = 1, the final
representation v = c1b

(D)
1 requires only one real number.

The rank tuple is now r = (rα)α∈TD
. Using the bounds r := maxα rα,

n := maxj dim(U{j}), the total storage cost is bounded by

dr3 + dnr.

Different from the Tucker format in §14.2.3, the storage is linear in d. In spite of the
indirect definition of the basis vectors b(α)

� , all tensor operations can be performed.
Also the HOSVD truncation of the ranks applies (cf. [195, §11.3]).

The so-called TT or matrix product format corresponds to the hierarchical format
with a linear tree TD (cf. [195, §12] and Oseledets–Tyrtyshnikov [300]).

2 This property has a close relation the H2-matrices mentioned in §D.2.7.



396 14 Tensor-based Methods

14.3 Linear Systems

14.3.1 Poisson Model Problem

We generalise the model problem in §1.2 to d spatial dimensions,

−Δu = −
d∑

j=1

∂2u

∂x2j
in Ω = (0, 1)d ⊂ Rd,

with Dirichlet condition u = 0 on ∂Ω, and discretise by a finite difference scheme
with the grid size h = 1/N in a regular product grid. Let Aj be the (positive
definite) tridiagonal matrix built by the (one-dimensional) negative second divided
differences. Then the system matrix A is of the form (14.5). Therefore the construc-
tions of §14.2.2 can be used to build the rather accurate inverse of A.

A similar result can be obtained for finite elements using a regular grid, but then
the identity I is replaced with the mass matrix, i.e.,

Aj =M1 ⊗ . . .⊗Mj−1 ⊗Aj ⊗Mj+1 ⊗ . . .⊗Md.

Define M :=
⊗d

j=1Mj . Then A = MÂ holds with

Â =
d∑

j=1

Âj , Âj = M−1Aj = I ⊗ . . .⊗M−1
j Aj ⊗ . . .⊗ I, Âj =M−1

j Aj .

The inverse M−1
j and the product M−1

j Aj is easy to approximate by hierarchi-
cal matrices. Applying the technique of §14.2.2 together with the generalisation of
Remark 14.6a, Â−1 can be approximated by B̂r. Then B̂rM

−1 approximates the
inverse of A. Note that M−1 =

⊗d
j=1M

−1
j by Lemma 14.2a.

Numerical examples involving matrices A ∈ Rn×n with n = 1024256 (N =
1024 and d = 256) are described by Grasedyck [158].

14.3.2 A Parametrised Problem

Obviously the order of tensors is connected with the number of variables. However,
in the case of boundary value problems, not all variables need to be involved in
derivatives. A standard boundary value problem is Lu = f in D with vanishing
Dirichlet values and

L = div a grad . (14.11)

D may be domain in R1, R2, or R3. In the standard case, the coefficient function a
depends on x ∈ D. Assume now that there are more variables yj ∈ Yj (1 ≤ j ≤ d)
which serve as parameters. In particular, we assume that the coefficient a in (14.11)



14.3 Linear Systems 397

depends on x ∈ Ω and y = (y1, . . . , yd) ∈ Y := ×d
j=1 Yj :

a = a(x, y) (x ∈ D, y ∈ Y ). (14.12)

Such parametrised systems are a simplified version of boundary value problems
with stochastic coefficients

a = a(x, ω) (x ∈ D, ω ∈ Ω),

where ω is a random variable. The infinite singular value decomposition

a(x, ω) = a0(x) +

∞∑
j=1

σj φj(x)Xj(ω) (14.13)

is called the Karhunen–Loève expansion (cf. Karhunen [234], Loève [267, §37.5B]).
The expansion (14.13) shows that ω corresponds to infinitely many variables. Note
that the solution of Lu = f with a as in (14.12) or (14.13) is u(x, y) or u(x, ω)
depending on y or ω.

The standard approach is a truncation of the infinite sum (14.13) (cf. Matthies–
Zander [277]). Concerning the decay of the singular values σj we refer, e.g., to
Todor–Schwab [335]. A truncation to d terms leads to a deterministic problem with
a parametrised coefficient (14.12). For another approach see Espig et al. [124].

Let Z := ×d
j=1 Zj be a (finite) grid contained in Y, i.e., the variable yj ∈ Yj

is restricted to finitely many grid points in Zj . In principle, one has to solve the
discretisation of div a(·, y) grad for all parameter combinations y ∈ Z. If #Zj = n,
there are nd systems A(y)x = b to be solved.

Assume that a has an r-term representation

a =

r∑
ν=1

aν ⊗
d⊗

j=1

ψ(j)
ν , (14.14)

i.e., a(x, y) =
∑r

ν=1 aν(x)ψ
(1)
ν (y1)ψ

(2)
ν (y2) · . . . ·ψ(d)

ν (yd). LetAν be the discreti-
sation of div aν grad. Then the parametrised problem takes the form

Au = f , where A =

r∑
ν=1

Aν ⊗
d⊗

j=1

Ψ (j)
ν ,

where Ψ (j)
ν denotes the Hadamard product Ψ (j)

ν (ϕ) = ψ
(j)
ν ◦ϕ (pointwise product).

Assuming that 0 < α ≤ a(x, y) ≤ α ensures ellipticity, we may choose the
elementary tensor

B := Δ−1
h ⊗

d⊗
j=1

id (14.15)

as a preconditioner, where Δ−1
h is an approximate inverse of the discrete Laplace

operator.



398 14 Tensor-based Methods

14.3.3 Solution of Linear Systems

Consider a linear system Ax = b, where the vectors x,b ∈ V =
⊗d

j=1Vj
and the matrix A ∈

⊗d
j=1L(Vj , Vj) ⊂ L(V,V) are represented in one of the

representation formats. The general linear iteration (2.10) is

xm+1 = xm − N (Axm − b)

with some matrix N given in a tensor representation. If this iteration is applied,
e.g., with the starting value x0 = 0, the representation ranks of xm would blow
up. Therefore truncation T must be applied. This yields the truncated iteration

xm+1 = T (xm − N (T (Axm − b))) . (14.16)

The cost per step is Nd times powers of the involved representation ranks.
A suitable choice of N in (14.16) is Br (cf. (14.8)) in the case of the d-

dimensional Poisson problem in §14.3.1, and B (cf. (14.15)) in the case of the
parametrised problem of §14.3.2.

Br in (14.8) is not only a preconditioner for the Laplace problem, but for any
discretisation A of an elliptic partial differential equation of second order as stated
in Lemma 7.63 (cf. Khoromskij [238]).

14.3.4 CG-Type Methods

An acceleration of the iteration by the CG method is possible. As mentioned on
page 238, floating-point errors cause a loss of the A-orthogonality of the search
directions. This effect is even worse in the presence of tensor rank truncations.
Articles about conjugate gradient methods in the context of tensor methods are by
Tobler [362], Kressner–Tobler [242, 243, 244], Savas–Eldén [332], and Ballani–
Grasedyck [24].

14.3.5 Multigrid Approach

Concerning adapting the multigrid iteration to the tensor case, we refer to Hack-
busch [199]. The critical points are the coarse-grid, the cost, and the smoothing
iteration.

The coarse-grid corresponds to an index set I(0) = I
(0)
1 × . . . × I

(0)
d . If #I

(0)
j

is of moderate size and d is large, the coarse-grid dimension #I(0) =
∏d

j=1 #I
(0)
j

is still rather large, rising the question how to solve the coarse-grid equation. This
difficulty does not appear if #I

(0)
j = 1 for all j.



14.3 Linear Systems 399

Another aspect is the increase of the cost with increasing level-number �.
Assuming the standard halving of the grid size, the problem size in §11 is O(2�d).
The effect for d = 3 is that the cost of the operations (prolongation, restriction,
smoothing) at level � − 1 is only 1/8 of the cost at level �. Now the cost of the
tensor operations is no more exponential in d, but proportional to 2�. In the case of
the W-cycle, the result of Exercise 11.18 applies.

The practical choice of the smoothing iteration is limited. The Richardson iter-
ation is a possible smoothing procedure. It requires only matrix-vector multiplica-
tion by the system matrix (followed by truncation). The Jacobi iteration is already
difficult. If the diagonal parts of the matrices Aj in (14.5) are multiples of the iden-
tity matrix, the resulting Jacobi iteration coincides with the (particularly damped)
Richardson iteration (cf. Remark 3.8). For more general diagonal parts, the inver-
sion of D causes severe difficulties (cf. [199, §4.4.2]).

The prolongations and restrictions are elementary tensor products (i.e., r = 1
in (14.3)). Therefore their applications do not increase the representation ranks.
Constructing the coarse-grid matrices by the Galerkin product (11.20) does also
not increase the representation rank of the matrix at the finest level.

14.3.6 Convergence

We obtain the standard convergence results, provided that no tensor truncation is
applied. The additional effect of truncation is similar to the truncated iteration
analysed by Hackbusch–Khoromskij–Tyrtyshnikov [203] (see also [198, §15.3.2]).
The reached accuracy of the iterate x depends essentially on the choice of the ranks
of x.

Numerical examples for the use of a tensor multigrid iteration can be seen in
Ballani–Grasedyck [24, Example 7.5]. These examples withNfine := N (L) = 1024
and dimensions up to d = 32 demonstrate that the convergence behaviour does not
depend on d.

A multigrid solution of the Sylvester matrix equation AX − XB = C is
described in Grasedyck–Hackbusch [162]. A nonlinear multigrid approach to the
quadratic Riccati equation is presented by Grasedyck [160].

14.3.7 Parabolic Problems

Since the dimensions in the sense of number of coordinates are no limitation,
space-time simultaneous discretisations with the additional time variable are not
disadvantageous. In this respect, the results of Andreev–Tobler [5] are of interest.
In that paper, an additive multigrid preconditioner is used.



400 14 Tensor-based Methods

14.4 Variational Approach

Finally, we mention a quite different approach for solving Ax = b approximately.
If A is positive definite, we may minimise the quadratic cost function

Φ(x) :=
1

2
〈Ax,x〉 − 〈b,x〉

(cf. (9.2)). For a more general, regular A, define

Φ(x) := ‖Ax − b‖2 or Φ(x) := ‖N (Ax − b)‖2

with a suitable preconditioner N and try to minimise Φ(x). The minimisation over
all tensors x is not feasible because of the huge dimension. Instead one fixes a
certain format for the representation of x and minimises over all representation
parameters of x.

A popular technique is the alternating least squares (ALS) minimisation. Con-

sider for instance the r-term format of §14.2.1 and use x =
r∑

ν=1

⊗d
j=1 v

(j)
ν as an

ansatz with fixed r. Then the functional Φ becomes φ(v(1), v(2), . . . , v(d)), where

v(j) = (v(j)ν )ν=1,...,r.

In the first ALS step, we fix v(j) for all j �= 1. Then, due to the multilinearity
of tensors, φ(v(1), v(2), . . . , v(d)) = ϕ1(v

(1)) is quadratic in v(1). The mini-
misation of ϕ(v(1)) leads to a linear system ∂ϕ1(v

(1))/∂v(1) = 0 for v(1).
Replacing the previous v(1) by the computed optimiser v(1), we fix all v(j) for
j �= 2 in φ(v(1), v(2), . . . , v(d)) = ϕ2(v

(2)) and determine a new v(2), etc.

In practice, this method works quite well although the theoretical understand-
ing of the convergence properties is rather involved (see, e.g., Espig–Hackbusch–
Khachatryan [123]). Another difficulty is that Φ has many local minima and that
the global minimisation problem is nonconvex.

Further references to variational approaches are Espig–Hackbusch–Rohwedder–
Schneider [125], Falcó–Nouy [126], Holtz–Rohwedder–Schneider [224], Mohlen-
kamp [284], Oseledets [299] and others cited in these papers.



Appendix A

Facts from Linear Algebra

Abstract We introduce the notation of vector and matrices (cf. Section A.1), and
recall the solvability of linear systems (cf. Section A.2). Section A.3 introduces
the spectrum σ(A), matrix polynomials P (A) and their spectra, the spectral radius
ρ(A), and its properties. Block structures are introduced in Section A.4. Subjects
of Section A.5 are orthogonal and orthonormal vectors, orthogonalisation, the QR
method, and orthogonal projections. Section A.6 is devoted to the Schur normal
form (§A.6.1) and the Jordan normal form (§A.6.2). Diagonalisability is discussed
in §A.6.3. Finally, in §A.6.4, the singular value decomposition is explained.

A.1 Notation for Vectors and Matrices

We recall that the field K denotes either R or C. Given a finite index set I, the linear
space of all vectors x = (xi)i∈I with xi ∈ K is denoted by KI . The corresponding
square matrices form the space KI×I . KI×J with another index set J describes
rectangular matrices mapping KJ into KI .

The linear subspace of a vector space V spanned by the vectors {xα ∈V : α ∈ I}
is denoted and defined by

span{xα : α ∈ I} :=
{∑

α∈I
aαx

α : aα ∈ K
}
.

Let A = (aαβ)α,β∈I ∈ KI×I . Then AT = (aβα)α,β∈I denotes the transposed
matrix, while AH = (aβα)α,β∈I is the adjoint (or Hermitian transposed) matrix.
Note that AT = AH holds if K = R . Since (x1, x2, . . .) indicates a row vector,
(x1, x2, . . .)

T is used for a column vector.

Exercise A.1. Prove the following rules for T and H (where λ ∈ K):

(A+B)T = AT +BT, (AB)T = BTAT, (λA)T = λAT,

(A+B)H = AH +BH, (AB)H = BHAH, (λA)H = λ̄AH,

(A−1)T = (AT)−1, (A−1)H = (AH)−1 = A−H.

401© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5



402 Appendix A

The inverse of a transposed or adjoint matrix is shortly denoted by

A−T := (AT)−1, A−H := (AH)−1.

Definition A.2. A matrix A ∈ KI×I is called
symmetric if A = AT,
Hermitian if A = AH,
regular if A−1 exists,
unitary if AHA=I (i.e., A regular and A−1 = AH),
normal if AAH = AHA .

Remark A.3. (a) Hermitian or unitary matrices are also normal.
(b) All matrix properties of Definition A.2 carry over from A to the adjoint AH.
(c) Products of regular (unitary) matrices are again regular (unitary).

A diagonal matrix D is completely described by its diagonal entries. We write

D = diag{dα : a ∈ I} for D with Dαβ =

{
dα for α = β,
0 for α �= β.

(A.1)

If I is ordered, we may also write D = diag{d1, d2, . . . , dn}. For an arbitrary
matrix A ∈ KI×I ,

D = diag{A}

denotes the diagonal part diag{aαα : α ∈ I} of A.

In the case of an ordered index set, a matrix T is called tridiagonal if Tij = 0
for all |i− j| > 1; i.e., if T has the band width 1 (cf. Definition 1.6). The entries
αi = Ti,i−1 define the lower side diagonal, βi = Tii the (main) diagonal, and
γi = Ti,i+1 the upper side diagonal, while all other entries of T vanish. Such a
matrix is abbreviated as

T = tridiag{(αi, βi, γi) : i ∈ I} (A.2)

(here the values α1 and γ#I are meaningless). By tridiag{A} we denote the
tridiagonal part of an arbitrary matrix A.

Assuming again an ordered index set, a matrix T is called a lower triangular
matrix if Tij = 0 for all i < j. Similarly, T is called upper triangular if Tij = 0
for all i > j. T is a strictly lower or upper triangular matrix if, in addition, Tii = 0
for all i ∈ I .

A.2 Systems of Linear Equations

Let A ∈ KI×I and b ∈ KI . The system of equations to be solved is

Ax = b, i.e.,
∑
β∈I

aαβ xβ = bα for all α ∈ I.



A.2 Systems of Linear Equations 403

Since the right-hand side b may be perturbed (by rounding errors, etc.), the relevant
question is: when is Ax = b solvable for all b ∈ KI ? The following theorem
recalls that this property is equivalent to the regularity of A.

Theorem A.4. For A ∈ KI×I , the following properties are equivalent:
(a) A is regular,
(b) rank(A) = #I ,
(c) det(A) = 0,
(d) Ax = 0 has only the trivial solution x = 0,
(e) Ax = b is solvable for all b ∈ KI ,
(f) Ax = b has at most one solution,
(g) Ax = b is uniquely solvable for all b ∈ KI .

A.3 Eigenvalues and Eigenvectors

The spectrum of a matrix A ∈ KI×I is defined by

σ(A) := {λ ∈ C : det(A− λI) = 0}.

Each λ ∈ σ(A) is called an eigenvalue of A. An eigenvalue has the algebraic
multiplicity k if it is a k-fold root of the characteristic polynomial det(A − λI).
Since det(A − λI) is a polynomial in λ of degree n = #I , there exist exactly
n eigenvalues when they are counted according to their algebraic multiplicity.
The geometric multiplicity of λ is the dimension of ker(A− λI).

The properties of the determinant prove the next properties.

Remark A.5. σ(AT) = σ(A) and σ(AH) = σ(Ā) = σ(A) := {λ̄ : λ ∈ σ(A)}.

A vector e ∈ CI is called an eigenvector of the matrix A, if e �= 0 and

Ae = λe. (A.3)

By Theorem A.4c,d, we conclude from (A.3) that λ must be an eigenvalue.
Vice versa, the same theorem proves the following lemma.

Lemma A.6. For each λ ∈ σ(A), there exists an eigenvector e satisfying the eigen-
value problem (A.3). Hence the geometric multiplicity is at least one.

Exercise A.7. Let A = (aij)i,j∈I be an upper or lower triangular matrix or a
diagonal matrix. Prove that σ(A) = {aii : i ∈ I}.

Definition A.8. Two matrices A,B ∈ KI×I are called similar if there is a regular
matrix T such that

A = T−1B T. (A.4)

If T is unitary, the matrices A and B are called unitarily similar.



404

Theorem A.9. (a) The eigenvalues of similar matrices A and B coincide:
σ(A) = σ(B). The algebraic multiplicities of the eigenvalues are also equal as
well as the geometric multiplicities.
(b) If T is the similarity transformation in (A.4) and e is an eigenvector of A , then
Te is an eigenvector of B.

Proof. The algebraic multiplicities are equal since

det(A− λI) = det(T−1(B − λI)T ) = det(T−1) det(B − λI) det(T )

=
1

det(T )
det(B − λI) det(T ) = det(B − λI).

ker(A−λI) = ker(T−1(B−λI)T ) = ker(B−λI)T proves identical dimensions
of ker(A− λI) and ker(B − λI) and therefore of the geometric multiplicities.

Part (b) uses B(Te) = TT−1BTe = TAe = T (λ e) = λ (Te). ��

Theorem A.10. The products AB and BA have the same spectra with a possible
exception of a zero eigenvalue:

σ(AB)\{0} = σ(BA)\{0}.

This statement is also true for rectangular matrices A ∈ KI×J and B ∈ KJ×I .

Proof. Let the eigenvector e �= 0 belong to the eigenvalue 0 �= λ ∈ σ(AB):
ABe = λe. Since λe �= 0, the vector v := Be does not vanish. Multiplying by
B yields BABe = λBe, i.e., BAv = λv with v �= 0. λ ∈ σ(BA)\{0} proves
σ(AB)\{0} ⊂ σ(BA)\{0}. The reverse inclusion is analogous. ��

Given a polynomial P (ξ) =
∑

ν aνξ
ν in ξ ∈ C, we can extend the domain of

definition of P by

P (A) :=
∑
ν

aνA
ν for arbitrary A ∈ KI×I

to the set of square matrices. Here, A0 is defined as the identity I . The proof of the
following lemma is postponed to the end of §A.6.1.

Lemma A.11. (a) The spectra of A and P (A) satisfy

σ(P (A)) = P (σ(A)) := {P (λ) : λ ∈ σ(A)}.

(b) The algebraic multiplicity of the eigenvalues P (λ) of P (A) is the sum of the
multiplicities of all eigenvalues λ1, λ2, . . . , λk of A with P (λj)=P (λ) (1≤j≤k).
(c) Each eigenvector of A associated with the eigenvalue λ is also an eigenvector
of P (A) with the eigenvalue P (λ).

Appendix A



A.3 Eigenvalues and Eigenvectors 405

Exercise A.12. Prove the following:
(a) If σ(A) contains no zeros of the polynomial P (ξ), then the matrix P (A) is
regular.
(b) The properties ‘diagonal’, ‘upper triangular matrix’, ‘lower triangular ma-
trix’ carry over from A to P (A). This statement is also true for the properties
‘symmetric’ and ‘Hermitian’, provided that P has real coefficients.
(c) Let A be regular. All properties mentioned in (b) carry over from A to A−1 .

Lemma A.13. Let A ∈ KI×I be a strictly (upper or lower) triangular matrix.
Then Am = 0 holds for all m > #I .

Proof. One proves by induction that Am (m ∈ N ) has a vanishing main diagonal
and m − 1 vanishing side diagonals: (Am)ij = 0 for |i− j| < m. For m > #I,
the inequality |i− j| < m holds for all indices; hence Am = 0. ��

Two matrices A and B are called commutative (or ‘A and B commute’) if

AB = BA .

Exercise A.14. Prove: (a) If A and B are commutative, P (A) and Q(B) also
commute for arbitrary polynomials P and Q. In particular, P (A) and Q(A) as well
as P (A) and A are commutative pairs.
(b) For regular A, the matrices P (A) and P (A−1) commute.
(c) Under the assumption of (a), P (A), P (A)−1, Q(B), and Q(B)−1 are pairwise
commutative as long as the inverse matrices exist.

Two polynomials P and Q define the rational function R(ξ) := P (ξ)/Q(ξ).
By Exercise A.12a, the matrix

R(A) := P (A)(Q(A))−1 (A.5)

is defined if and only if the spectrum σ(A) contains no zero of the polynomial Q
in the denominator. The foregoing results prove the next remark.

Remark A.15. Assume that σ(A) contains no pole of the rational function R.
Then the following statements hold:
(a) (A.5) is equivalent to R(A) = (Q(A))−1P (A).
(b) Lemma A.11 also holds for R instead of P . In particular, σ(R(A)) = R(σ(A))
is the spectrum of R(A).
(c) The properties ‘diagonal’, ‘upper triangular matrix’, ‘lower triangular matrix’
carry over from A to R(A). The same statement holds for the terms ‘symmetric’
and ‘Hermitian’ if R has real coefficients.



406

Exercise A.16. Assume that σ(A) contains no pole of the rational function R and
prove:
(a) The similarity A = T−1BT (cf. (A.4)) implies R(A) = T−1R(B)T .
(b) If D = diag{dα : α ∈ I}, then R(D) = diag{R(dα) : α ∈ I}.

A fundamental term for iterative methods is the following.

Definition A.17. The spectral radius ρ(A) of a matrix A is the largest absolute
value of the eigenvalues of A:

ρ(A) := max{|λ| : λ ∈ σ(A)}.

Lemma A.18. The spectral radius satisfies the following rules:

ρ(ζA) = |ζ| ρ(A) for all ζ ∈ K and A ∈ KI×I , (A.6a)

ρ(Ak) = (ρ(A))k for all k ∈ N0 and A ∈ KI×I , (A.6b)

ρ(A) = ρ(B) for similar matrices A,B ∈ KI×I , (A.6c)

ρ(A) = ρ(AH) = ρ(AT) for all A ∈ KI×I . (A.6d)

Proof. (i) Let the maximum of {|λ| : λ ∈ σ(A)} be attained at λ′ ∈ σ(A). Then
|ζλ| and |λk| (λ ∈ σ(A)) also take their maxima at λ = λ′, which proves (A.6a,b).

(ii) For similar matrices A and B, we have σ(A) = σ(B) (cf. Theorem A.9a).
This implies (A.6c).

(iii) (A.6d) is a consequence of Remark A.5. ��

Exercise A.19. Prove the following: (a) A diagonal or triangular matrix has the
spectral radius

ρ(A) = max{|aaa| : α ∈ I}.

(b) ρ(A) = 0 holds for strictly triangular matrices A.
(c) The spectral radius is not submultiplicative. Give an example of two 2 × 2
matrices A, B such that

ρ(AB) > ρ(A) ρ(B).

Lemma A.20. ρ(AB) = ρ(BA) holds for all A ∈ KI×J and B ∈ KJ×I .

Proof. According to Theorem A.10, the spectra of AB and BA differ at most by
the eigenvalue 0, which is irrelevant for the definition of the spectral radius. ��

In the case of a multiple product, cyclic permutations satisfy

ρ(A0A1 . . . Am) = ρ(A1 . . . AmA0).

Appendix A



A.4 Block Vectors and Block Matrices 407

A.4 Block Vectors and Block Matrices

As demonstrated by the matrices of the model problems in (1.8) and (1.9), vectors
and matrices often have a special block structure. The exact definition of a block
structure is based on a decomposition of the index set I into disjoint and nonempty
subsets:

I =
⋃

κ∈B
Iκ, Iκ, Iλ (κ, λ ∈ B) be pairwise disjoint. (A.7)

B is the index set of the blocks. The vector x ∈ KI decomposes into the vector
blocks xκ (κ ∈ B) :

xκ := x|Iκ := (xα)α∈Iκ , x = (xκ)κ∈B . (A.8a)

Example A.21. In the case of the model problem in §1.2, the grid Ωh in (1.3) is the
obvious index set. The grid consists of N − 1 ‘rows’

Ij = {(ih, jh) : 1 ≤ i ≤ N − 1}, j = 1, . . . , N − 1.

In this case, B = {j : 1 ≤ j ≤ N − 1} is the block index set.

Let A ∈ KI×I . For each pair κ, λ ∈ B, the decomposition (A.7) of I defines a
matrix block (a submatrix)

Aκλ := A|Iκ×Iλ := (aαβ)α∈Iκ,β∈Iλ for all κ, λ ∈ B. (A.8b)

In general, the blocks Aκλ are rectangular submatrices. The complete matrix can be
built from these blocks:

A = (Aκλ)κ,λ∈B . (A.8c)

Each submatrix (aαβ)α,β∈K associated with a subsetK ⊂ I is called a principal
submatrix. The diagonal blocks1 Aκκ in (A.8b) are special principal submatrices.

The term ‘block’ is ambiguous. It is used for the index subset Iκ, for a vector
block xκ as well as for the submatrix Aκλ.

Among all block structures there are two extreme cases: if B has only one ele-
ment, A consists of one block coinciding with A; if B = I , i.e., if all subsets
Iκ = {κ} have only one element, the terms ‘block’ and ‘matrix entry’ coincide.

If the block indices B = {1, . . . , k} are ordered, a block matrix can be
represented in the form

A =

⎡⎢⎢⎣
A11 A12 · · · A1k

A21 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 · · · Akk

⎤⎥⎥⎦.
Note that, in general, only the diagonal blocks Aii must be square submatrices.

1 Note that a diagonal block Aκκ is not a diagonal matrix, but a block in the diagonal position of
the block matrix (A.8c). If we want to express that Aκκ is diagonal, this is emphasised explicitly,
e.g., by ‘a block Aκκ of diagonal structure’.



408

Example A.22. In the case of the model problem, the rows can be taken as blocks
according to Example A.21. Then Ajj = h−2T (cf. (1.8)) are the diagonal blocks
and Aj,j−1 = Aj,j+1 = −h−2I are the off-diagonal blocks. All further blocks are
zero and therefore not represented in (1.8). Note that a visual representation by (1.8)
is only possible if the indices are ordered.

Remark A.23. Block matrices can be interpreted twofold. First, they can be re-
garded as matrices that are structured by the index decomposition (A.7). Second,
they can be represented as matrices of the index set B (not I) with matrix-valued
(not K-valued) entries. For example, the matrix multiplication A ·B can be defined
directly by the blocks: (AB)κλ =

∑
γ∈B A

κγBγλ

The second interpretation in Remark A.23 allows us to generalise the terms
‘diagonal, tridiagonal, and triangular matrix’ immediately to block matrices:
A is called a block-diagonal matrix with respect to an index decomposition (A.7)
if Aκλ = 0 (zero block) for all κ �= λ, κ, λ ∈ B.

Analogously to (A.1), we write

A = blockdiag{Dκ : κ ∈ B}

for a block-diagonal matrix with Aκκ = Dκ. For an arbitrary matrix C ∈ KI×I ,

A = blockdiag{C} := blockdiag{Cκκ : κ ∈ B}

denotes the block-diagonal part of C which we obtain after setting all off-diagonal
blocks to zero. Since different block structures B may lead to different block-
diagonal parts, the precise notation is blockdiagB{C}.

Similarly, we write

A = blocktridiag{(Ej , Dj , F j) : j ∈ B} (A.9)

for a block-tridiagonal matrix (cf. (A.2)) if B is ordered. A is an upper (lower)
block-triangular matrix if Aij = 0 for all i, j ∈ B with i > j (i < j).

Exercise A.24. Prove: (a) (AT)κλ = (Aλκ)T, (AH)κλ = (Aλκ)H.
(b) The diagonal blocks of Hermitian matrices are again Hermitian.
(c) Let A be a block diagonal or block-tridiagonal matrix with diagonal blocks Aκκ

(κ ∈ B). The characteristic polynomial of A is the product of the characteristic
polynomials of Aκκ (κ ∈ B). The spectrum and the spectral radius of A satisfy

σ(A) =
⋃

{σ(Aκκ) : κ ∈ B} ,
ρ(A) = max{|λ| : λ eigenvalue of Aκκ, κ ∈ B} = max

κ∈B
ρ(Aκκ). (A.10)

(d) The diagonal blocks of block-triangular or block-diagonal matrices satisfy

(P (A))κκ = P (Aκκ) (κ ∈ B, P polynomial).

(e) The block-diagonal structure is invariant with respect to the application of poly-
nomials P :

P (blockdiag{Dκ : κ ∈ B}) = blockdiag{P (Dκ) : κ ∈ B}.

Appendix A



A.5 Orthogonality 409

A.5 Orthogonality

A.5.1 Elementary Definitions

A scalar product of a vector space V is a positive, symmetric sesquilinear form2

〈·, ·〉 : V × V → K, i.e., it satisfies

〈x, x〉 > 0 for all 0 �= x ∈ V, (A.11a)
〈x+ λx′, y〉 = 〈x, y〉 + λ 〈x′, y〉 for x, x′, y ∈ V, λ ∈ K, (A.11b)

〈x, y〉 = 〈y, x〉 for x, y ∈ V. (A.11c)

(A.11b, c) imply semilinearity with respect to the second argument:

〈x, y + λy′〉 = 〈x, y〉 + λ̄ 〈x′, y〉 for x, y, y′ ∈ V, λ ∈ C

In the real case K = R, one may write 〈y, x〉 and λ instead of 〈y, x〉 and λ̄.
The Euclidean scalar product on V = KI is defined by

〈x, y〉 :=
∑
α∈I

xα yα for x, y ∈ KI .

If not differently defined, 〈·, ·〉 will always denote the Euclidean scalar product.
Another representation of the Euclidean scalar product is 〈x, y〉 = yHx.

Two vectors x, y ∈ V with 〈x, y〉 = 0 are called orthogonal (with respect to
〈·, ·〉) and symbolised by x⊥ y. The vectors x, y ∈ V are orthonormal if they are
orthogonal and normalised, i.e., 〈x, x〉 = 〈y, y〉 = 1. A basis {bα : α ∈ I} is called
an orthonormal basis if the vectors bα are mutually orthonormal.

If W is a subspace of the vector space V , then x ∈ V is called orthogonal to
W (symbolised by x⊥W ) if x⊥w for all w ∈ W. W⊥ denotes the orthogonal
complement of W :

W⊥ := {x ∈ V : x⊥W}.

Exercise A.25. Let dim(V ) < ∞. Prove that (W⊥)⊥ =W.

Remark A.26 (orthogonalisation method). If b1, b2, . . . , bm are m linearly
independent vectors of V , then the procedure

wi := bi −
i−1∑
j=1

〈
vj , bi

〉
vj and vi :=

1

‖wi‖2
wi (i = 1, . . . ,m) (A.12)

produces m pairwise orthonormal vectors vi spanning the same subspace:

span{b1, . . . , bm} = span{v1, . . . , vm}.

2 ‘Sesquilinear’ reduces to ‘bilinear’ in the real case K = R.



410

A.5.2 Orthogonal and Unitary Matrices

Definition A.27. A matrix A ∈ KI×J is called orthogonal if AHA = I ∈ KJ×J ,
i.e., if the columns of A are mutually orthonormal.

Note that a square matrix with AHA = I is unitary and also satisfies AAH = I
(cf. Definition A.2).

Remark A.28 (QR). For V = KI , let A :=
[
b1 b2 . . . bm

]
∈ KI×m be the

matrix formed by the columns bj , while Q :=
[
v1 v2 . . . vm

]
with vi defined

in (A.12) is an orthogonal matrix. Then there is an upper triangular m ×m matrix
R with A = QR. This factorisation is called the QR decomposition of A (cf.
Quarteroni–Sacco–Saleri [314, §3.4.3]).

Finally, we define projections and, in particular, orthogonal projections.

Definition A.29. (a) A linear map (matrix) P : KI → KI is called a projection
onto U ⊂ KI if P 2 = P holds and U := {Px : x ∈ KI} is the range of P .
(b) A projection P is called orthogonal if P is also Hermitian: P = PH.

Exercise A.30. Let P be an orthogonal projection onto U . The vectors u := Px
and u⊥ := x − u describe the unique decomposition of x = u + u⊥ into u ∈ U
and u⊥ ∈ U⊥.

A.5.3 Sums of Subspaces and Orthogonal Complements

Sums of subspaces are defined by U + V = {u + v : u ∈ U, v ∈ V }. The sum
is called a direct sum, denoted by U ⊕ V , if U ∩ V = {0}. The simplest example
of a direct sum is U ⊕ U⊥.

Exercise A.31. Prove that the following statements are equivalent: (i) U ⊕ V is a
direct sum, (ii) any x ∈ U + V has a unique decomposition x = x′ + x′′ with
x′ ∈ U, x′′ ∈ V, (iii) dim(U + V ) = dim(U) + dim(V ).

Proposition A.32. Subspaces U, V ⊂ X satisfy (U ∩ V )⊥ = U⊥ + V ⊥.

Proof. Assume that x ∈ U⊥. Then x⊥U also implies x⊥ (U ∩ V ) . This shows
that U⊥ ⊂ (U ∩ V )⊥. Together with the analogous inclusion V ⊥ ⊂ (U ∩ V )⊥ ,
we obtain U⊥ + V ⊥ ⊂ (U ∩ V )⊥ and the direct sum

Y :=
(
U⊥ + V ⊥)⊕ (U ∩ V ) .

The proposition is proved if Y = X or, equivalently, Y ⊥ = {0}. Let x ∈ Y ⊥.
By definition of Y, x⊥Y implies x⊥U⊥, x⊥V ⊥, and x⊥ (U ∩ V ) . The first
two statements yield x ∈ U and x ∈ V (cf. Exercise A.25), so that x ∈ U ∩ V.
Together with x⊥ (U ∩ V ) , we obtain x = 0; i.e., Y ⊥ = {0} and Y = X. ��

Appendix A



411

Conclusion A.33. Let Ui ⊂ X (1 ≤ i ≤ k) be subspaces. Then(
k⋂

i=1

Ui

)⊥

=

k∑
i=1

U⊥
i .

Proof. The start of the induction proof is given by Proposition A.32 for k = 2. Let
the statement hold for k − 1 and apply Proposition A.32 with U := U1 and V :=⋂k

i=2 Ui. Then
(⋂k

i=1 Ui

)⊥
= (U ∩ V )⊥ = U⊥ + V ⊥ = U⊥

1 +
(⋂k

i=2 Ui

)⊥
=

U⊥
1 +
∑k

i=2 U
⊥
i proves the statement. ��

A.6 Normal Forms

A.6.1 Schur Normal Form

The following theorem states that all matrices are unitarily similar to an upper
triangular matrix (cf. Definition A.8). Evidently, the upper triangular matrix could
also be replaced with a lower one. To be able to define a triangular matrix, the index
set I must be ordered (different orderings yield different Schur normal forms).

Theorem A.34 (Schur normal form). For any matrixA ∈ KI×I , there is a unitary
matrix Q and an upper triangular matrix U such that

A = QUQH. (A.13)

Q describes a unitary similarity transformation of A into upper triangular form
(the normal form):

U = QHAQ. (A.14)

The term ‘normal form’ does not imply that Q and U are uniquely determined.

Proof. We proof Theorem A.34 by induction on n := #I . For n = 1, Eq. (A.13)
holds for Q := I and U := A. Let the assertion be true for n−1. Choose an eigen-
value λ ∈ σ(A) and a corresponding eigenvector e (possible because of Lemma
A.6). The normalised vector x1 := e/

√
〈e, e〉 can be extended to an orthonormal

basis by suitable x2, . . . , xn (use Remark A.26). Let X :=
[
x1, x2, . . . , xn

]
denote the matrix with the column vectors xi. According to Definition A.2, X is
a unitary matrix. Let e1 be the first unit vector: e1i = δ1,i. The first column of
A′ := XHAX is A′e1 =XHAXe1 =XHAx1 = λXHx1 = λXHXe1 = λe1 be-
cause x1 as well as e are eigenvectors corresponding to λ. The decomposition of
the index set I = {1, . . . , n} into I1 := {1} and I2 := {2, . . . , n} induces a block

decomposition ofA′ intoA′ =
[
λe1, . . .

]
=

[
λ a
0 A′′

]
with an I2×I2 matrixA′′ and

an I2 row vector a. Since #I2 = n− 1, the induction hypothesis implies that there

A.5 Orthogonality



412

is a unitary I2 × I2 matrix Y such that Y HA′′Y = U ′ is an upper triangular I2 × I2
matrix. Definition A.2 states that the I × I matrix Y ′ :=

[
1 0
0 Y

]
augmented by one

row and one column is again unitary. The product U := Y ′HA′Y ′ = Y ′HXHAXY ′

results in

Y ′H
[
λ aY
0 A′′Y

]
=

[
1 0
0 Y H

] [
λ aY
0 A′′Y

]
=

[
λ aY
0 Y HA′′Y

]
=

[
λ aY
0 U ′

]
.

If U ′ is an upper triangular matrix, U is also. The product Q := XY ′ is unitary
(cf. Remark A.3c). Hence, (A.14) and (A.13) are proved. ��

Exercise A.7 and Theorem A.9 yield the following result.

Corollary A.35. The diagonal of U in (A.13) contains the eigenvalues of A :

σ(A) = {uii : i ∈ I}.

Proof of Lemma A.11. Let P be a polynomial and represent A according to (A.13)
by QUQH. Because of P (A)=QP (U)QH (cf. Exercise A.16a), the characteristic
polynomials of P (A) and P (U) coincide (cf. Theorem A.9a). P (U) is again an
upper triangular matrix (cf. Remark A.15c) with the diagonal entries (P (U))ii =
P (Uii) (cf. Exercise A.16c). By Theorem A.9a, statements (a) and (b) of the lemma
follow. Part (c) is evident. ��

A.6.2 Jordan Normal Form

Analysing the kernels of (A−λI)k for λ ∈ σ(A) and k = n, n−1, . . . , 1, one can
construct a basis formed by principal vectors and eigenvectors generating a trans-
formation T into the Jordan normal form (cf. Gantmacher [144, 145, VII.§7]). The
Jordan normal form is an upper triangular matrix with a more restrictive structure
than U in (A.13). The disadvantage is that, in general, T is not unitary.

The bidiagonal k × k matrix (Jordan block)

J(λ, k) :=

⎡⎢⎢⎢⎣
λ 1
λ 1

. . .
. . .
λ 1

λ

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ k rows and columns

has the eigenvalue λ with the algebraic multiplicity k. The geometrical multiplicity
is equal to one since only one eigenvector exists.

Theorem A.36 (Jordan normal form). For any matrix A ∈ KI×I , there exists a
regular matrix T transforming A into its Jordan normal form J:

A = TJ T−1 or equivalently J = T−1AT. (A.15a)

Appendix A



A.6 Normal Forms 413

Here, J is an upper triangular matrix with the block-diagonal structure

J = blockdiag
i=1,...,K

{J(λi, ki)} with ki ≥ 1,

K∑
i=1

ki = n := #I. (A.15b)

The numbers λi run over all eigenvalues in σ(A) . The ki corresponding to equal
eigenvalues λi sum up to the algebraic multiplicity of λi . K coincides with the
maximum number of linearly independent eigenvectors.

Since A and J are similar, they have the same characteristic polynomial (cf.
Theorem A.9a). By Exercise A.24c, their characteristic polynomial is

χ(ξ) =
K∏
i=1

det (J(λi, ki) − ξI) =
K∏
i=1

(λi − ξ)ki . (A.16a)

Since some of the λi in (A.16a) may coincide, ki is not necessarily the multiplicity
of λi. We define

k̄(λ) := algebraic multiplicity of λ ∈ σ(A),
k(λ) := max {ki : λi = λ, 1 ≤ i ≤ K} for λ ∈ σ(A). (A.16b)

Obviously, k̄(λ) ≥ k(λ) and χ(ξ) =
∏

λ∈σ(A)(λ−ξ)k̄(λ) hold, where the product
has to be taken over all different eigenvalues in σ(A). Hence, the polynomial

μ(ξ) :=
∏

λ∈σ(A)

(λ− ξ)k(λ) (A.16c)

is a divisor of the characteristic polynomial χ(ξ). The polynomial μ(ξ) is called
the minimum function of A, because it is the polynomial of smallest degree
satisfying the following requirement (A.17).

Theorem A.37 (Cayley-Hamilton). Let μ and χ be the minimum function and the
characteristic polynomial of a matrix A, respectively. Then

μ(A) = χ(A) = 0 (0 : zero matrix). (A.17)

Proof. (i) To prove p(B) = 0 for a polynomial p, it suffices to show q(B) = 0 for
a divisor polynomial q.

(ii) Define q(x) := (λ − ξ)k(λ) with λ = λi for some i ∈ {1, . . . ,K}. Since
λiI − J(λi, ki) is a strictly upper triangular matrix and k̄(λ) ≥ k(λ) according
to definition (A.16b), q(J(λi, ki)) is the zero matrix (cf. Lemma A.13). q(ξ) is a
divisor of μ(ξ); hence, μ(J(λi, ki)) = 0 follows from part (i) for all i = 1, . . . ,K.

(iii) Exercise A.24e applied to the block-diagonal matrix J yields

μ(J) = blockdiagi=1,...,K{μ(J(λi, ki))} = blockdiagi=1,...,K{0} = 0.

By Exercise A.16a, we conclude from (A.15a) that μ(A) = Tμ(J)T−1 = 0. As
μ is a divisor of χ, the remaining part of (A.17) follows from (i). ��



414

A.6.3 Diagonalisability

If ki = 1 for all i = 1, . . . ,K, the matrix J in (A.15b) becomes a diagonal
matrix. In this case, (A.15a) describes a transformation into diagonal form.

Theorem A.38 (diagonalisability). Let A ∈ KI×I . A regular matrix T trans-
forming A into diagonal form,

A = TD T−1, D = diag{λα : α ∈ I}, (A.18)

exists if and only if there are n := #I linearly independent eigenvectors. In this
case, A is termed ‘diagonalisable’. If, furthermore, all eigenvalues λα (α ∈ I)
are real, A is real diagonalisable.

Proof. Assuming (A.18), we conclude from AT = TD that the α-th column
vectors eα := Teα (eα: α-unit vector) of T are the (linearly independent) eigen-
vectors of A. Vice versa, given n linearly independent eigenvectors, from these
column vectors we can build the matrix T satisfying AT = TD and proving the
statement (A.18). ��

Remark A.39. Let A and B be similar matrices. Then A is diagonalisable if and
only if B is also.

In general, the transformation matrix T in (A.18) is not unitary. More precisely,
the following theorem holds (we recall that unitary and normal matrices are defined
in Definition A.2).

Theorem A.40. A unitary matrix Q transforming A into diagonal form,

A = QDQH, Q unitary , D = diag{λα : α ∈ I}, (A.19)

exists if and only if A is normal.

Proof. (i) In the case of A = QBQH with a unitary matrix Q, A is normal
if and only if B is normal, since

AHA = (QBHQH)(QBQH) = QBHBQH

and
AAH = (QBQH)(QBHQH) = QBBHQH.

(ii) In the case of (A.19), we can apply part (i) with B = D. A diagonal matrix
is always normal, hence A is also.

(iii) Let A be normal and assume that QUQH is its Schur normal form.
Following part (i), U is normal. By induction on n := #I we are proving that
a normal upper triangular matrix is diagonal. For n = 1, both terms are identical.

The n × n matrix U can be written in the block structure U =

[
λ aH

0 U ′

]
with

Appendix A



A.6 Normal Forms 415

an upper triangular (n − 1) × (n − 1) matrix U ′ and an (n − 1) row vector aH.
Comparing

UUH =

[
λ aH

0 U ′

] [
λ̄ 0
a U ′H

]
=

[
|λ|2 + aHa . . .

. . . U ′U ′H

]
with

UHU =

[
λ̄ 0
a U ′H

] [
λ aH

0 U ′

]
=

[
|λ|2 . . .
. . . U ′HU ′

]
,

we see that aHa = 〈a, a〉 = 0 , hence a = 0. Furthermore, since U ′ is normal,
the induction hypothesis implies that U ′ is diagonal. Therefore, U is also diagonal,
i.e., D := U satisfies (A.19). ��

Since Hermitian matrices A are special normal matrices (cf. Remark A.3a), they
share the representation (A.19). A = AH is equivalent to D = DH. On the other
hand, D = DH characterises real diagonal matrices. This proves the next theorem.

Theorem A.41. If and only if A is Hermitian, there is a unitary matrix Q trans-
forming A into a real diagonal matrix D,

A = QDQH, Q unitary , D = diag{λα : α ∈ I} real. (A.20)

Not only polynomials but also general functions can be applied to diagonalisable
matrices, as explained below.

Remark A.42. Let A be diagonalisable. For an arbitrary function f : σ(A) → C,
the matrix f(A) is defined by

f(A) := T diag{f(λα) : α ∈ I} T−1

with T and D = diag{λα : α ∈ I} in (A.18). A and f(A) commute. For a second
function g : σ(A) → C, f(A) and g(A) also commute. Furthermore, we have for
all regular matrices S ∈ KI×I that

f(SAS−1) = S f(A) S−1.

Theorem A.43. Let A and B be normal. A and B commute if and only if there
exists a simultaneous unitary transformation into diagonal form:

QHAQ = diag{λα : α ∈ I}, QHBQ = diag{μα : α ∈ I}. (A.21)

The column vectors of Q are the common eigenvectors of A and B.

Proof. (i) Since diagonal matrices always commute, (A.21) implies that

QHABQ = (QHAQ)(QHBQ) = (QHBQ)(QHAQ) = QHBAQ

and therefore AB = BA.



416

(ii) Let T be unitary with

THAT = DA := diag{λα : α ∈ I}.

AB = BA implies that DAX = XDA with X := THBT . First, we suppose that
λα �= λβ for α �= β. From

λαXαβ = (DAX)αβ = (XDA)αβ = λβXαβ ,

it follows that Xαβ = 0 for α �= β. Hence, X is diagonal, i.e., Q := T also
transforms B into a diagonal matrix X = THBT . If, otherwise, there are multiple
eigenvalues, X is a block-diagonal matrix and we can choose

S = blockdiag{Sκ : κ ∈ B}

such that Sκ is unitary and transforms the diagonal block Xκκ into diagonal form.
Q := TS has the desired properties. ��

A.6.4 Singular Value Decomposition

For any matrix M ∈ KI×J with rank(M) = r, there exist orthonormal vectors
(v1, . . . , vr) ∈

(
KI
)r

, orthonormal vectors (w1, . . . , wr) ∈
(
KJ
)r

, and singular
values σ1 ≥ σ2 ≥ . . . ≥ σr > 0 so that

M =
r∑

ν=1

σνvνw
T
ν . (A.22)

The vectors vν (wν) are called the left (right) singular vectors.

Remark A.44. According to Golub–Van Loan [157, §5.4.5], computing the singular
value decomposition (SVD) of an n× n matrix costs about 21n3 operations.

One of the applications of SVD is optimal truncation to smaller rank. Let
s ∈ N0 with 0 ≤ s < r = rank(M) be the target rank of an approximation R
to M. Set

Ms :=
s∑

ν=1

σνvνw
T
ν .

The next statement uses the norms introduced in §B.1.

Proposition A.45. Ms is the best approximation of rank ≤s to M with respect to
the spectral norm ‖·‖ = ‖·‖2 and the Frobenius norm ‖·‖ = ‖·‖F , i.e.,

‖M −Ms‖ ≤ ‖M −X‖ for all X ∈ CI×J with rank(X) ≤ s.

The respective errors are

‖M −Ms‖2 = σs+1, ‖M −Ms‖F =

√∑r

ν=s+1
(σν)2 .

Proof. See [198, §2.5 and §C.5.1]. ��

Appendix A



Appendix B

Facts from Normed Spaces

Abstract In Section B.1, the general norm as well as the Euclidean and maximum
norm are introduced. Matrix norms corresponding to a vector norm and the con-
dition of a matrix are discussed in §B.1.3. Section B.2 refers to Hilbert norms in
general, and to the Euclidean and spectral norm in particular. The relation between
norms and the spectral radius is investigated in Section B.3. The estimates and
convergence results in §§B.3.2–B.3.3 are essential for analysing linear iterations.
The numerical radius introduced in §B.3.4 is a matrix norm of practical interest.

B.1 Norms

B.1.1 Vector Norms

Let V be vector space over the field K ∈ {R,C}. A mapping ‖·‖ : V → [0,∞)
is called a norm on V if

‖x‖ = 0 only for x = 0, (B.1a)
‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V (triangle inequality), (B.1b)

‖λx‖ = |λ| ‖x‖ for all λ ∈ K, x ∈ V. (B.1c)

||| · ||| is also used as a norm symbol. Special norms are indicated by subscripts.

In the following, let V be a finite-dimensional vector space. The standard finite-
dimensional vector space is V = KI , where I is a finite index set.

Example B.1. The maximum norm ‖·‖∞ and the Euclidean norm ‖·‖2 on V = KI

are defined as follows:

‖x‖∞ := max{|xα| : α ∈ I}, ‖x‖2 :=

√∑
α∈I

|xα|2. (B.2)

417© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5



418

Exercise B.2. (a) Check the properties (B.1a–c) for the norms in (B.2). Prove:
(b) Let c > 0. If ‖·‖ is a norm on V , then ||| x ||| := c ‖x‖ is a norm, too.
(c) If ‖·‖ is a norm on V = KI and if A ∈ KI×I is a regular matrix, then
||| x ||| := ‖Ax‖ is also a norm on V .

Lemma B.3. The following inverse ‘triangle inequality’ holds:

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ for all x, y ∈ V. (B.3)

Each norm defines a topology on V and therefore the continuity of mappings in
the normed vector space (V, ‖·‖). Inequality (B.3) leads to the following conclusion.

Conclusion B.4. The norm ‖·‖ is a continuous (even Lipschitz continuous) mapping
from (V, ‖·‖) into R.

B.1.2 Equivalence of All Norms

Two norms ‖·‖ and ||| · ||| on V are called equivalent if there is a constant C such
that

1

C
‖x‖ ≤ ||| x ||| ≤ C ‖x‖ for all x ∈ V. (B.4)

Exercise B.5. Prove: (a) Transitivity holds: If (‖·‖a , ‖·‖b) and (‖·‖b , ‖·‖c) are two
pairs of equivalent norms, then ‖·‖a and ‖·‖c are also equivalent.
(b) The Euclidean norm and maximum norm satisfy the inequalities

‖x‖∞ ≤ ‖x‖2 , ‖x‖2 ≤
√

dim(V ) ‖x‖∞ for all x ∈ V. (B.5)

Since in this book we always assume finite-dimensional vector spaces, the
assumption of the following theorem is satisfied.

Theorem B.6. If dim(V ) < ∞, all norms on V are equivalent.

Proof. (i) Let {eα : α ∈ I} be the basis of V . We define a reference norm by
‖x‖ := max{|aα| : α ∈ I} with aα from the representation x =

∑
α aαeα. Let

||| · ||| be an arbitrary norm on V . Because of the transitivity (cf. Exercise B.5a),
it is sufficient to show the equivalence of ‖·‖ and ||| · |||.

(ii) The second part of (B.4), ||| x ||| ≤ c ‖x‖, follows from the triangle inequality
with c :=

∑
α ||| eα |||:

||| x |||= |||
∑

α
aαeα ||| ≤

∑
α

|aα| ||| eα ||| ≤ c max
α

|aα| = c ‖x‖ .

(iii) The set S := {x ∈ V : ‖x‖ = 1} is bounded in (V, ‖·‖) (the bound is 1) and
closed because it is the inverse image of the value 1 under a continuous mapping

Appendix B



B.1 Norms 419

(cf. Conclusion B.4). Since dim(V ) < ∞, the set S is compact. Inequality (B.3)
and part (ii) yield | ||| x ||| − ||| y ||| | ≤ ||| x − y ||| ≤ c ‖x− y‖ , i.e., ||| · ||| is also
continuous with respect to the normed space (V, ‖·‖). Since a continuous function
on a compact set attains its minimum, there is some x0 ∈ S with

||| x0 ||| ≤ ||| x′ ||| for all x′ ∈ S.

(iv) Since (B.4) is trivial for x = 0, we assume x �= 0. By (B.1a) we have
ξ := ‖x‖ > 0, hence x′ := x/ξ is well defined and satisfies ‖x′‖ = 1, i.e., x′ ∈ S
holds. Part (iii) yields

‖x‖ = ξ ≤ ξ ||| x′ ||| / ||| x0 |||= c0ξ ||| x′ |||= c0 ||| ξx′ |||= c0 ||| x |||

for c0 := 1/ ||| x0 |||. Hence, (B.4) is proved with C := max{c, c0}. ��

Remark B.7. The constant C in (B.4) does not depend on x ∈ V but does depend
on V , more precisely on dim(V ), as illustrated by the second inequality in (B.5).

B.1.3 Corresponding Matrix Norms

The space KI×I of the I × I matrices is also a linear vector space of dimension
(#I)2; hence, one may define norms on KI×I . These are called matrix norms,
whereas norms on KI are called vector norms. Usually, we use matrix norms corre-
sponding to some vector norm (cf. Definition B.9). Other well-known matrix norms
are the Frobenius norm defined below and the numerical radius discussed in §B.3.4.

Example B.8. The Frobenius norm is ‖A‖F :=
√∑

α,β∈I |aαβ |2.

Since the matrices together with the matrix multiplication form an algebra, the
following subclass of matrix norms is of special interest (cf. (B.9a)).

Definition B.9. Let ‖·‖ be a vector norm on KI . The corresponding (or associated)
matrix norm1 is

|||A ||| := sup {‖Ax‖ / ‖x‖ : x �= 0} . (B.6)

Exercise B.10. Prove: (a) ||| · ||| in (B.6) is a norm on KI×I .
(b) The supremum in (B.6) is attained by some x, so that ‘sup’ may be replaced
with ‘max’.
(c) Two vector norms differing only by a factor (cf. Exercise B.2b) lead to identical
corresponding matrix norms.
(d) C :=|||A||| is the smallest possible bound in the inequality

‖Ax‖ ≤ C ‖x‖ for all x ∈ KI . (B.7)

1 Considering the matrix as a mapping (operator), this norm is also called the operator norm.



420

In the following we shall always denote the vector norm and the corresponding
matrix norm by the same norm symbol. A confusion is impossible because of the
disjoint domains of definition. In particular, ‖A‖∞ and ‖A‖2 are the matrix norms
corresponding to the maximum norm ‖x‖∞ and the Euclidean norm ‖x‖2, respec-
tively. Because of its affinity to the spectral radius (cf. §B.2.2), ‖A‖2 is called the
spectral norm. ‖A‖∞ is called the row-sum norm since the following characterisa-
tion (B.8) uses row sums.

Exercise B.11. Prove: (a) ‖A‖∞ has the representation

‖A‖∞ = max
{∑

β∈I

|aαβ | : α ∈ I
}

for all A ∈ KI×I. (B.8)

(b) ‖D‖∞ = ‖D‖2 = maxα∈I |dα| = ρ(D) holds for a diagonal matrix.
(c) The spectral norm ‖A‖2 of real matrices is independent of whether K = R or
K = C is chosen in (B.6). Hint: Use (B.21a).

Theorem B.12. Let ‖·‖ denote the vector norm on KI as well as the corresponding
matrix norm (B.6) on KI×I . Then

‖AB‖ ≤ ‖A‖ ‖B‖ for A,B ∈ KI×I (submultiplicativity), (B.9a)

‖Ax‖ ≤ ‖A‖ ‖x‖ for A ∈ KI×I , x ∈ KI . (B.9b)

Proof. (b) By Exercise B.10, (B.7) holds with C := |||A ||| .
(a) Apply (B.9b) to Bx instead of x: ‖ABx‖≤‖A‖ ‖Bx‖. Another application

of (B.9b) to Bx yields ‖ABx‖ ≤ ‖A‖ ‖B‖ ‖x‖. Hence, (B.7) is satisfied by
C := ‖A‖ ‖B‖ and AB instead on B. Exercise B.10d shows that ‖AB‖ ≤ C. ��

Exercise B.13. Prove: (a) ‖I‖ = 1 holds for all associated norms.
(b) The Frobenius norm in Example B.8 does not correspond to any vector norm,
provided that #I > 1.
(c) Given a vector norm ‖·‖ and a regular matrix T , we may define an additional
vector norm |||·|||T by

|||x|||T := ‖Tx‖ (B.10a)

(cf. Exercise B.2c). The equally denoted corresponding matrix norm satisfies

|||A|||T = ‖TAT−1‖ for all A ∈ KI×I . (B.10b)

Definition B.9 associates each vector norm with a matrix norm. This mapping is
not injective (cf. Exercise B.10d). However, for any corresponding matrix norm
‖·‖M , one can reconstruct the underlying vector norm ‖·‖V up to a factor as
follows. Choose any 0 �= a ∈ KI . The product x aT (x∈KI ) represents the matrix
(xαaβ)α,β∈I . ‖x‖a := ‖x aT‖M is a vector norm differing from ‖·‖V only by
a factor. Let ‖·‖a,M be the matrix norm corresponding to ‖·‖a. Then an arbitrary
matrix norm ‖·‖M corresponds to some vector norm if and only if ‖·‖M = ‖·‖a,M .

Appendix B



B.1 Norms 421

Let X and Y be two normed spaces with the norms ‖·‖X and ‖·‖Y , and let
A : X → Y be a linear mapping. Then

‖A‖Y←X := sup {‖Ax‖Y / ‖x‖X : 0 �= x ∈ X} (B.11)

denotes the corresponding matrix norm.

B.1.4 Condition and Spectral Condition Number

The condition of a regular matrix with respect to the matrix norm ‖·‖ is defined by

cond(A) := ‖A‖ ‖A−1‖. (B.12)

In particular, cond2(A) = ‖A‖2 ‖A−1‖2 denotes the Euclidean condition (associ-
ated with the Euclidean norm). The condition describes the behaviour of the linear
system Ax = b under perturbation.

Proposition B.14. Let the matrix A be regular and b �= 0. Let x be the solution of
Ax = b, while the perturbed right-hand side b+δb yields the solution x+δx; i.e.,
A (x+ δx) = b+ δb. The relative errors satisfy

‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖

(the matrix norm in cond(A) corresponds to the vector norm ‖·‖). For a similar
statement involving a perturbation of the matrix A and for a proof, we refer to
Quarteroni–Sacco–Saleri [314, Theorem 3.1] and Björck [48, §1.2.7].

By definition, the condition cond(·) depends on the underlying matrix norm.
In order to be independent of a reference norm, we define the spectral condition
number

κ(A) := ρ(A)ρ(A−1). (B.13)

Exercise B.15. Prove: (a) cond2(A) = κ(A) holds for normal matrices A.
(b) κ(A) = max{|λ| : λ ∈ σ(A)}/min{|λ| : λ ∈ σ(A)} holds for regular A.
(c) If A has a positive spectrum with the minimal eigenvalue λmin(A) and the
maximal eigenvalue λmax(A) , definition (B.13) reduces to

κ(A) = λmax(A)/λmin(A). (B.14)

(d) Positive definite matrices fulfil cond2(A) = κ(A) with the representation
(B.14), where the extreme eigenvalues are also given by

λmax(A) = ‖A‖2 , λmin(A) = 1/‖A−1‖2 . (B.15)

Hint: For (a), use (B.21b).



422

B.2 Hilbert Norm

B.2.1 Elementary Properties

We recall the well-known properties of the scalar product (cf. §A.5).

Remark B.16. Each scalar product induces the norm

‖x‖ :=
√

〈x, x〉 (B.16)

on V . The Schwarz inequality holds:

|〈x, y〉| ≤ ‖x‖ ‖y‖ for x, y ∈ KI .

An equal sign in the latter inequality implies that x and y are linearly dependent.
Furthermore, a dual statement holds:

‖x‖ = max {|〈x, y〉| / ‖y‖ : 0 �= y ∈ V } . (B.17)

Remark B.17. (a) The norm (B.16) induced by the Euclidean scalar product is the
Euclidean norm ‖·‖2 in (B.2).
(b) The Hermitian is the adjoint matrix with respect to 〈·, ·〉:

〈Ax, y〉 =
〈
x,AHy

〉
for x, y ∈ KI , A ∈ KI×I . (B.18)

In the following, 〈·, ·〉 is fixed as the Euclidean scalar product. Concerning
general scalar products, we refer to Remark C.10.

B.2.2 Spectral Norm

In §B.1.3, the spectral norm ‖·‖2 is defined as the matrix norm corresponding to the
Euclidean vector norm.

Lemma B.18. The Euclidean norm and spectral norm are invariant with respect to
unitary transformations in the following sense. A unitary matrix Q ∈ KI×I satisfies

‖Qx‖2 = ‖x‖2 for all x ∈ KI , (B.19a)

‖Q‖2 =
∥∥QH
∥∥
2
= 1, (B.19b)

‖QA‖2 = ‖AQ‖2 =
∥∥QHA

∥∥
2
=
∥∥AQH

∥∥
2
=
∥∥QAQH

∥∥
2
=
∥∥QHAQ

∥∥
2

= ‖A‖2 (B.19c)

Proof. (a) We have ‖Qx‖22 = 〈Qx,Qx〉 =
〈
x,QHQx

〉
= 〈x, x〉 = ‖x‖22 thanks to

(B.16), Definition A.2 and (B.18).

Appendix B



B.2 Hilbert Norm 423

(b) As, by Remark A.3b, QH is unitary if Q is so, it is sufficient to prove the
assertions for Q. (B.19b) follows from definition (B.6) by using (B.19a).

(c) (B.9a) and (B.19b) yield ‖QA‖2 ≤ ‖Q‖2 ‖A‖2 = ‖A‖2. The same estimate
with QH and QA instead of Q and A shows that ‖A‖2 =

∥∥QHQA
∥∥
2

≤ ‖QA‖2,
and therefore ‖QA‖2 = ‖A‖2. All further statements in (B.19c) can be proved
analogously or follow from the previous ones. ��

Lemma B.19. An equivalent definition of the spectral norm is

‖A‖2 = max

{
|〈Ax, y〉|
‖x‖2 ‖y‖2

: 0 �= x, y ∈ KI

}
.

Proof. Express ‖Ax‖2 in (B.6) by using (B.17). ��

Lemma B.19, (B.18), and (A.11c) prove the next statement.

Corollary B.20. ‖AH‖2 = ‖Ā‖2 = ‖AT‖2 = ‖A‖2 .

Exercise B.21. (a) For all matrices A ∈ KI×I , we have ‖A‖2 ≤
√

‖A‖∞ ‖AH‖∞,
‖A‖2 ≤

√
n ‖A‖∞, and ‖A‖∞ ≤

√
n ‖A‖2 with n :=#I .

(b) ‖A‖2 ≤ ‖A‖∞ for Hermitian A.
(c) |aαβ | ≤ ‖A‖2 for all matrix entries of A.
(d) |aαβ | ≤ C for all α, β ∈ I implies ‖A‖2 ≤ nC.

Exercise B.22. Prove that ‖Ax‖2 = ‖x‖2 holds for orthogonal matrices A (cf.
Definition A.27).

An important problem is the least squares problem mentioned in §1.1 and Re-
mark 5.17. Given a rectangular matrix A ∈ Kn×m of full rank with n > m and
b ∈ Kn, we want to

minimise ‖Ax− b‖2 over all x ∈ Km.

The approach by Gauss uses the characterisation of the optimal least squares
solution x by the normal equations AHAx = AHb. The squared condition of
AHA can be avoided by the following approach. The QR decomposition A = QR
and Exercise B.22 lead to ‖Ax− b‖2 = ‖QRx− b‖2 =

∥∥Q (Rx−QHb
)∥∥

2
=∥∥Rx−QHb

∥∥
2

and prove the following.

Remark B.23. For A and b above, determine the QR decomposition A = QR.
Then the minimiser is given by

x∗ = R−1QHb.

The minimised least squares are

‖Ax∗ − b‖2 =
∥∥(I −QQH)b

∥∥
2
.



424

B.3 Correlation Between Norms and Spectral Radius

B.3.1 Spectral Norm and Spectral Radius

Lemma B.24. Let ‖·‖ be a corresponding matrix norm. Then

|λ| ≤ ‖A‖ for all eigenvalues λ of the matrix A, (B.20a)
ρ(A) ≤ ‖A‖ for all square matrices A. (B.20b)

Proof. According to Lemma A.6, for each eigenvalue λ there is an eigenvector e
with Ae = λe. (B.1c) and (B.9b) yield |λ| ‖e‖ = ‖λe‖ = ‖Ae‖ ≤ ‖A‖ ‖e‖;
hence, we obtain (B.20a). Inequality (B.20b) follows from (B.20a). ��

In §B.1.3, the spectral norm ‖·‖2 is defined as the matrix norm corresponding to
the Euclidean vector norm. The term ‘spectral norm’ is due to the close relation to
spectral properties of the matrix. For normal matrices this norm coincides with the
spectral radius. Even in the general case, it can be expressed by the spectral radius
as shown below.

Theorem B.25. The spectral norm satisfies

‖A‖2 =
√
ρ (AHA) =

√
ρ (AAH) for all A ∈ KI×I , (B.21a)

‖A‖2 = ρ (A) for all normal matrices A ∈ KI×I . (B.21b)

The statement (B.21a) also holds for rectangular matrices A ∈ KI×J .

Proof. (i) By Definition B.9, the square ‖Ax‖22 is the maximum of

‖Ax‖22 / ‖x‖22 = 〈Ax,Ax〉 / 〈x, x〉 =
〈
AHAx, x

〉
/ 〈x, x〉

over all x �= 0. The Hermitian matrix AHA has the representation QDQH with
the diagonal matrix diag{λα} constructed from the eigenvalues λα of AHA. These
eigenvalues are positive (cf. Exercise C.11a, Lemma C.3). There is some β ∈ I
with ρ(AHA) = λβ . Substitution y = QHx and (B.19a) yield ‖Ax‖22 / ‖x‖2 =
〈y,Dy〉 / 〈y, y〉. The latter expression is maximal for the unit vector y = eβ and
yields the value ‖A‖22 = ρ

(
AHA
)
. The second equality in (B.21a) follows from

Lemma A.20.
(ii) Given a normal matrix A, due to Theorem A.40, we find a unitary matrix Q

and a diagonal matrixD such that A = QDQH. (B.19c) shows that ‖A‖2 = ‖D‖2.
According to Exercise B.11b, we have ‖D‖2 = ρ (D). As A and D are similar,
ρ(A) = ρ(D) holds (cf. (A.6c)) and proves (B.21b). ��

AHA and AAH are Hermitian matrices and therefore normal. Hence, we deduce
from (B.21a,b) that

‖A‖22 = ‖AHA‖2 = ‖AAH‖2 for all A ∈ KI×J .

Appendix B



B.3 Correlation Between Norms and Spectral Radius 425

B.3.2 Matrix Norms Approximating the Spectral Radius

Lemma B.26. For any matrix A ∈ KI×I and any ε > 0, there exists a vector norm
and corresponding matrix norm ‖·‖A,ε with the property

ρ(A) ≤ ‖A‖A,ε ≤ ρ(A) + ε . (B.22)

Proof. Let A = QUQH be the Schur normal form (A.13). The eigenvalues of A are
the diagonal elements λi := uii of U (cf. Exercise A.7). Hence, the diagonal matrix
D := diag{λ1, . . . , λn}, n := #I , satisfies (B.23) (cf. (B.21b)):

ρ(A) = ρ(D) = ‖D‖2 . (B.23)

We define ξ := min{1, ε/ [n ‖A‖2]} and apply a similarity transformation with the
diagonal matrix X := diag{1, ξ, ξ2, . . . , ξn−1} to U :

V := X−1UX =

⎡⎢⎣λ1 ξu12 ξ
2u13 . . .

0 λ2 ξu23 . . .
...

. . .

⎤⎥⎦ = D +R, Rij =

{
ξj−iuij for i < j,
0 for i ≥ j.

By Exercise B.21c and (B.19c),

|Rij | ≤ ξj−i |uij | ≤ ξ ‖U‖2 = ξ ‖A‖2 ≤ ε/n

holds for i < j by the choice of ξ. Exercise B.21d yields ‖R‖2 ≤ ε. We define
the vector norm ‖x‖A,ε := ‖X−1QHx‖2 (cf. Exercise B.2c). The corresponding
matrix norm is ‖A‖A,ε = ‖X−1QHAQX‖2 (cf. (B.10b)). Hence, we arrive at

‖A‖A,ε =
∥∥X−1QHAQX

∥∥
2
=
∥∥X−1UX

∥∥
2
= ‖V ‖2 ≤ ‖D‖2 + ‖R‖2 .

(B.23) and ‖R‖2 ≤ ε yield ‖A‖A,ε ≤ ρ(A)+ ε. The first part of inequality (B.22)
is trivial because of (B.20b). ��

The following theorem demonstrates the asymptotic relationship between an
arbitrary matrix norm and the spectral radius. Note that the matrix norm need not be
corresponding to a vector norm.

Theorem B.27. For all A ∈ KI×I and any matrix norm, the spectral radius is the
following limit:

ρ(A) = lim
m→∞ ‖Am‖1/m . (B.24)

Proof. (i) Let ‖·‖ and ||| · ||| be two matrix norms. First, we prove that the limes
superior does not depend on the choice of the underlying matrix norm, i.e.,

lim |||Am |||1/m= lim ‖Am‖1/m .



426

By the equivalence of norms stated in Theorem B.6, there is a constant C with
||| · ||| ≤ C ‖·‖ , so that ||| Am ||| 1

m ≤ C
1
m ‖Am‖

1
m . Since C

1
m → 1 for m → ∞,

lim |||Am ||| 1
m ≤ lim ‖Am‖

1
m . Interchanging the roles of the two norms, we obtain

the reverse inequality. This proves the above statement.
(ii) Next, we consider the case ρ(A) = 0. The Schur normal form yields

U = QHAQ with ρ(U) = 0, i.e., U is strictly triangular (cf. Exercise A.19a).
The assertion follows from Lemma A.13: Am = 0 holds for all m > #I .

(iii) Now assume ρ := ρ(A) > 0 and define B := − 1
ρA. Hence, the assertion is

equivalent to
lim ‖Bm‖1/m = 1

because of ρ(B) = 1. Using the norm ‖·‖ = ‖·‖B,ε (ε > 0) in Lemma B.26,
inequality (B.22) shows that

1 = ρ(B) = ρ(Bm)
1
m ≤ ‖Bm‖

1
m ≤ (‖B‖m)

1
m = ‖B‖ ≤ ρ(B) + ε = 1 + ε

for all m. Hence, 1 ≤ lim ‖Bm‖1/m ≤ lim (‖Bm‖)1/m ≤ 1 + ε. By part (i),
lim (‖Bm‖)1/m is independent of the norm ‖·‖ = ‖·‖B,ε and, therefore, holds for

all ε > 0. The resulting inequality 1 ≤ lim ‖Bm‖1/m ≤ lim ‖Bm‖1/m ≤ 1 implies
the existence of the limit lim ‖Bm‖1/m = 1. ��

B.3.3 Geometrical Sum of Matrices

The finite geometrical series (Neumann’s series) satisfies[m−1∑
ν=0

Aν

]
[ I −A ] = I −Am. (B.25)

If 1 is not an eigenvalue of A, i.e., if I −A is regular, (B.25) can be rewritten as

m−1∑
ν=0

Aν = (I −Am) (I −A)
−1
.

Lemma B.28. Let A ∈ KI×I . limm→∞ ‖Am‖ = 0 holds if and only if ρ(A) < 1.

Proof. (i) Assume ρ := ρ(A) < 1 and choose any ρ′ with ρ < ρ′ < 1. We
conclude from (B.24), i.e., ‖Am‖

1
m → ρ, that ‖Am‖ < ρ′m for m ≥ m0 with

sufficiently large m0. Hence, ρ(A) < 1 is sufficient for ‖Am‖ → 0.
(ii) In the remaining case of ρ := ρ(A) ≥ 1, inequality (B.20b) shows that

‖Am‖ ≥ ρ(Am) = ρ(A)m ≥ 1 (cf. (A.6b)). Hence, ρ(A) < 1 is also a necessary
condition for ‖Am‖ → 0. ��

Appendix B



B.3 Correlation Between Norms and Spectral Radius 427

Theorem B.29. If and only if ρ(A) < 1, the geometrical sum converges and results
in the value ∞∑

ν=0

Aν = (I −A)
−1
. (B.26)

Proof. (i) Assume ρ(A) < 1. By Lemma B.28 we can go to the limit m → ∞ in
(B.25) and obtain ( ∞∑

ν=0

Aν

)
(I −A) = I.

On the other hand, ρ(A) < 1 implies that I −A is regular, i.e., (B.26) follows.
(ii) For ρ(A) ≥ 1, according to Lemma B.28, the terms Aν do not converge to

zero. Hence, the geometrical sum must diverge. ��

B.3.4 Numerical Radius of a Matrix

An intermediate position between the spectral radius and the spectral norm is taken
by a matrix norm called the numerical radius of the matrix A:

r(A) := max{|〈Ax, x〉| / ‖x‖22 : 0 �= x ∈ CI}. (B.27)

The set
F(A) := {〈Ax, x〉 / ‖x‖22 : 0 �= x ∈ CI} ⊂ C

is called the field of values of A (cf. Greenbaum [167, §1.3.6]). Since F(A) is
compact, the maximum in (B.27) exists.

The interesting property is that r(A) can be estimated against the spectral norm
with dimension-independent equivalent constants (cf. (B.28b,d)).

Lemma B.30. The numerical radius r(A) has the following properties:

r(AH) = r(A) for all A ∈ CI×I , (B.28a)

ρ(A) ≤ r(A) ≤ ‖A‖2 for all A ∈ CI×I , (B.28b)

r(A) = ‖A‖2 = ρ(A) for all normal A ∈ CI×I , (B.28c)

‖A‖2 ≤ 2r(A) for all A ∈ CI×I . (B.28d)

Proof. (i) (B.28a) follows from (B.18) and (A.11c): |〈Ax, x〉| =
∣∣〈AHx, x

〉∣∣.
(ii) We conclude from |〈Ax, x〉| ≤ ‖Ax‖2 ‖x‖2 ≤ ‖A‖2 ‖x‖22 that r(A) ≤

‖A‖2. Let x be the eigenvector of A associated with the eigenvalue λ of maximal
modulus: |λ| = ρ(A). |〈Ax, x〉| = |λ| 〈x, x〉 leads to r(A) ≥ |λ| = ρ(A).

(iii) (B.28b) and (B.21b) prove (B.28c).



428

(iv) Any matrix A has the unique decomposition

A = A0 + iA1, A0 :=
1

2
(A+AH), A1 :=

1

2i
(A−AH) (B.29)

into the Hermitian part A0 and the skew-Hermitian part iA1 of A. Obviously, A0

and A1 are Hermitian: A0 = AH
0 , A1 = AH

1 . Hermitian matrices are normal; hence,
‖Ak‖2 = r(Ak) (k = 0, 1) and

‖A‖2 ≤ ‖A0‖2 + ‖A1‖2 = r(A0) + r(A1). (B.30)

〈By, y〉 has a real value for all Hermitian matrices B and all y. Hence, 〈Ax, x〉
consists of the real part 〈A0x, x〉 = λ 〈x, x〉 and of the imaginary part 〈A1x, x〉.
Setting ζ := 〈Ax, x〉 / ‖x‖22, we obtain that

|〈Akx, x〉| / ‖x‖22 ≤ |ζ| ≤ r(A) for k = 0, 1 and all x �= 0.

Maximisation over all x �= 0 yields r(Ak) ≤ r(A). From (B.30), we conclude
(B.28d). ��

Theorem B.31. The spectral radius r(·) is a matrix norm, but submultiplicativity
is restricted 2 to powers of A (cf. Pearcy [309]):

r(An) ≤ r(A)n for n ∈ N0, A ∈ CI×I . (B.31)

Proof. In (i)–(iii) we prove the norm properties.
(i) Because of (B.28d), r(A) = 0 implies ‖A‖2 = 0 and therefore A = 0. Hence

(B.1a) holds.
(ii) Let x �= 0 with ‖x‖2 = 1 be the maximiser in the definition of r(A + B),

i.e., r(A+B) = |〈(A+B)x, x〉| . Then

r(A+B) = |〈(A+B)x, x〉| = |〈Ax, x〉 + 〈Bx, x〉|
≤ |〈Ax, x〉| + |〈Bx, x〉| ≤ r(A) + r(B)

proves the triangle inequality (B.1b).
(iii) The property (B.1c) is trivial: r(λA) = |λ|r(A) (λ ∈ C, A ∈ CI×I ).
(iv) Concerning (B.31), we repeat the proof of [309], which is rather untypical

for matrix estimations. The roots of the polynomial 1− zn are given by the powers
of ζ := exp(2πi/n). This leads to the factorisation

1 − zn =

n∏
k=1

(
1 − ζkz

)
. (B.32a)

2 A simple counterexample concerning submultiplicativity is given by Pearcy [309].

Appendix B



B.3 Correlation Between Norms and Spectral Radius 429

To prove the polynomial identity

1 =
1

n

n∑
j=1

∏
k �=j

(
1 − ζkz

)
(B.32b)

(
∏

k �=j abbreviates
∏

k∈{1,...,n}\{j}), we have to check this identity at n different
points (uniqueness of interpolation by a polynomial of degree n − 1). Denote the
right-hand side in (B.32b) by Q(z). For z = 1, all products

∏
k �=j vanish except

for j = n. Hence

Q(1) =
1

n

∏
1≤k≤n−1

(
1 − ζk

)
follows. Since ∏

1≤k≤n−1

(
z − ζk

)
=
zn − 1

z − 1
=

n−1∑
μ=0

zμ

has a removable singularity at z = 1 with the value n, we obtain Q(1) = 1. One
easily checks that Q(z) =Q(ζz) because of ζn = 1. Therefore, Q(1) = 1 proves
Q(ζk)=1 for all k.

(v) Because of r(λA) = |λ| r(A) (cf. part (iii)), it is sufficient to prove the
desired inequality (B.31) for matricesAwith r(A) = 1. Therefore (B.31) is proved
if we are able to show r(An) ≤ 1, i.e.,

|〈Anx, x〉| ≤ 1 for all x ∈ CI with ‖x‖2 = 1. (B.32c)

Choose any x ∈ CI with ‖x‖2 = 1. First, we have to check the case that x is
an eigenvector with Ax = ζkx for some k ∈ N. Obviously, |〈Anx, x〉| ≤ 1 is
satisfied for this x. Excluding this case, the following vectors

x(j) :=
∏
k �=j

(
1 − ζkA

)
x and ξ(j) :=

1

‖x(j)‖2
x(j) for 1 ≤ j ≤ n (B.32d)

are well defined and satisfy
(
1 − ζjA

)
x(j) = (1 −An)x (cf. (B.32a). Using

(B.32b) with A instead of z, we obtain

1 − 〈Anx, x〉 =
‖x‖2=1

〈[I −An]x, x〉

=
(B.32b)

〈
[I −An]x,

1

n

n∑
j=1

∏
k �=j

(
1 − ζkA

)
x

〉

=
1

n

n∑
j=1

〈
[I −An]x, x(j)

〉
=

(B.32a)

1

n

n∑
j=1

〈[
n∏

k=1

(
1 − ζkA

)]
x, x(j)

〉

=
(B.32d)

1

n

n∑
j=1

〈[
1 − ζjA

]
x(j), x(j)

〉
=

‖x(j)‖22
n

n∑
j=1

〈[
1 − ζjA

]
ξ(j), ξ(j)

〉
=

‖x(j)‖22
n

n∑
j=1

(
1 − ζj

〈
Aξ(j), ξ(j)

〉)
.



430

Using ‖ξ(j)‖2 = 1, we can bound the real part of 1 − ζj
〈
Aξ(j), ξ(j)

〉
by

1 −
∣∣ζj 〈Aξ(j), ξ(j)〉∣∣ = 1 −

∣∣〈Aξ(j), ξ(j)〉∣∣ ≥ 1 − r(A) ≥ 0.

This proves �e(1−〈Anx, x〉) ≥ 0 and �e〈Anx, x〉 ≤ 1. The assumption r(A)=1
is not changed when we replace A with

B := ϑA, where ϑ ∈ C, |ϑ| = 1.

Since
〈Bnx, x〉 = ϑn 〈Anx, x〉 ,

we can choose ϑ such that

�e 〈Bnx, x〉 = |〈Anx, x〉| .

Using the previous result for B, we obtain

|〈Anx, x〉| = �e〈Bnx, x〉 ≤ 1 = r(A)

proving (B.32c). ��

Exercise B.32. (a) Let A be decomposed as in (B.29). Prove that

r(A) ≤
√
r(A0)2 + r(A1)2 =

√
‖A0‖22 + ‖A1‖22. (B.33)

(b) Given ϑ ∈ C, decompose ϑA according to (B.29) into ϑA = Aϑ,0 + iAϑ,1.
Prove that

r(A) = max {ρ(Aϑ,0) : ϑ ∈ C , |ϑ| = 1} .

Appendix B



Appendix C

Facts from Matrix Theory

Abstract The previous chapters are concerned with linear algebra aspects of
matrices and with the properties of normed spaces. Here we introduce two types
of partial order relations between matrices. Section C.1 is devoted to positive
definite matrices. The graph of a matrix and irreducible matrices are introduced
in Section C.2. Positive matrices and the Perron–Frobenius theory are discussed in
Section C.3. The M-matrices introduced in Section C.4 are of interest in connection
with classical iterative methods. The generalisation to H-matrices is given in Section
C.5. Schur complements are defined in Section C.6.

C.1 Positive Definite Matrices

C.1.1 Definition and Notation

Definition C.1. Let 〈·, ·〉 denote the Euclidean scalar product on KI . A matrix
A ∈ KI×I is called
positive definite, if A = AH and 〈Ax, x〉 > 0 for all 0 �= x ∈ KI , (C.1a)
positive semidefinite, if A = AH and 〈Ax, x〉 ≥ 0 for all x ∈ KI , (C.1b)
negative definite, if −A is positive definite, (C.1c)
negative semidefinite, if −A is positive semidefinite. (C.1d)

We write A > 0 for positive definite matrices and A ≥ 0, A < 0, A ≤ 0 in the
cases (C.1b–d).

The terms ‘positive (semi-) definite’ and ‘negative (semi-) definite’ define a
partial1 ordering in the set of Hermitian matrices. For arbitrary Hermitian matrices
A and B, we define:

A > B, if A−B > 0, i.e., if A−B is positive definite.

A ≥ B, A < B, and A ≤ B are defined analogously. Any inequality like A > B
implies tacitly that the involved matrices are Hermitian.

1 Partial ordering means that there may be matrices A and B such that neither A ≥ B nor A ≤ B.

431© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5



432

The definitions (C.1a–d) depend on the choice of the scalar product (see Exer-
cise C.11c). Furthermore, we emphasise that some authors use the term ‘symmetric
positive definite’ (SPD) or ‘Hermitian positive definite’ (HPD) instead of ‘positive
definite’, while ‘A positive definite’ is used in another sense, denoting not necessar-
ily Hermitian matrices satisfying the coercivity condition

�e 〈Ax, x〉 > 0 for all 0 �= x ∈ KI . (C.2)

C.1.2 Rules and Criteria for Positive Definite Matrices

Lemma C.2. The following rules are valid:

A > 0 ⇐⇒ CACH > 0 for regular C ∈ CI×I , (C.3a)
A > B ⇐⇒ CACH > CBCH for regular C ∈ CI×I , (C.3a′)
A ≥ 0 =⇒ CACH ≥ 0 for all C ∈ CI×I , (C.3b)
A ≥ B =⇒ CACH ≥ CBCH for all C ∈ CI×I , (C.3b′)

A,B ≥ 0 =⇒ A+B ≥ 0 for all A,B ∈ CI×I , (C.3c)
A,B ≥ 0 =⇒ A+B > 0 if A > 0 or B > 0, (C.3c′)
A > 0 ⇐⇒ ξA > 0 for all ξ > 0, A ∈ CI×I , (C.3d)

ζI ≤ A ≤ ξI ⇐⇒ σ(A) ⊂ [ζ, ξ] for Hermitian A ∈ CI×I , (C.3e)
−ξI ≤ A ≤ ξI ⇐⇒ ‖A‖2 ≤ ξ for Hermitian A ∈ CI×I , (C.3f)
A ≥ B > 0 ⇐⇒ 0 < A−1 ≤ B−1 for all A,B ∈ CI×I , (C.3g)

Proof. (i) x �= 0 implies y := CHx �= 0. Hence, the inequality 0 < 〈Ay, y〉 =〈
ACHx,CHx

〉
=
〈
CACHx, x

〉
shows that CACH > 0. A second application to

C−1 instead of C yields the reverse implication.
(ii) The proof of (C.3b) is analogous to (C.3a). (C.3c) and (C.3d) follow imme-

diately from the definition in (C.1a,b).
(iii) A can be diagonalised by a unitary Q: A = QDQH. (C.3b′) with C = QH

brings (C.3e) into the form ζI ≤ D ≤ ξI , where the diagonal matrix D contains
the eigenvalues λ ∈ σ(A) as diagonal entries. The equivalence of ζI ≤ D ≤ ξI
and σ(A) ⊂ [ζ, ξ] is easy to see.

(iv) Choosing ζ=−ξ in (C.3e) and exploiting the equivalence of σ(A)⊂ [−ξ, ξ]
with ρ(A) = ‖A‖2 ≤ ξ, we obtain (C.3f).

(v) The proof of (C.3g) is postponed (after Remark C.6). ��

Lemma C.3. A > 0 (respectively, A ≥ 0) holds if and only if A is Hermitian and
all eigenvalues are positive (nonnegative).

Proof. The demonstration of this assertion is elementary for a diagonal matrix D.
Let A=QDQH be the diagonalisation of A (cf. (A.20)). By Lemma C.2, A > 0 is
equivalent to D > 0. Since both matrices have the same eigenvalues, the assertion
is proved. ��

Appendix C



C.1 Positive Definite Matrices 433

C.1.3 Remarks Concerning Positive Definite Matrices

Lemma C.4. (a) Any positive definite matrix is regular.

(b) A is positive definite if and only if A−1 is positive definite:

A > 0 ⇐⇒ A−1 > 0.

(c) Each principal submatrix (aαβ)α,β∈J (J ⊂ I) of a positive (semi-)definite
matrix is again positive (semi-)definite:

A > 0 =⇒ (aαβ)α,β∈J > 0, (C.4)
A ≥ 0 =⇒ (aαβ)α,β∈J ≥ 0 for J ⊂ I.

(d) All diagonal elements of a positive (semi-)definite matrix are positive (non-
negative):

A > 0 ⇒ aαα > 0 and A ≥ 0 ⇒ aαα ≥ 0 for all α ∈ I.

(e) Let A be positive (semi-)definite. The diagonal part D = diag{A} and each
block-diagonal part D = blockdiag{A} of A are again positive (semi-)definite.

Proof. The parts (a,b) are a consequence of Lemma C.3 because A−1 has the
inverse eigenvalues of A (cf. Remark A.15b).

Part (c) follows from definition (C.1a) if one restricts x to the subspace with
xα = 0 for α /∈ J .

Part (d) is a special case of (c) for J :={α}, and (e) follows from (d) and (c). ��

Lemma C.5. (a) 0 ≤ A ≤ B implies ‖A‖2 ≤ ‖B‖2 and ρ(A) ≤ ρ(B).
(b) 0 ≤ A < B implies ‖A‖2 < ‖B‖2 and ρ(A) < ρ(B).

Proof. Because ρ(A) = ‖A‖2 and ρ(B) = ‖B‖2 , it is sufficient to show that
ρ(A) ≤ ρ(B). A ≥ 0 has an eigenvalue λ = ρ(A) and a corresponding eigen-
vector x with ‖x‖ = 1. ρ(A) = 〈Ax, x〉 ≤ 〈Bx, x〉 ≤ r(B) = ρ(B) (cf. (B.28c))
proves part (a). Part (b) follows analogously. ��

Assume that A > 0. Applying Remark A.42 and Lemma C.3 to the nonnegative
square root f(x) =

√
x (well-defined in [0,∞)) yields the matrix A1/2 := f(A).

More generally, Aα is well-defined for α > 0.

Remark C.6. (a) If A is positive definite, then A1/2 represents again a positive
definite matrix. For its inverse, we use the notation A−1/2. It is also equal to
A−1/2 = (A−1)1/2. For a positive semidefinite A, the matrix A1/2 is well-defined
as a positive semidefinite matrix.
(b) A1/2 commutes with A and any polynomial (function) of A.
(c) A1/2 is the unique positive semidefinite solution of the matrix equation X2 =
A > 0.



434

Proof of (C.3g) in Lemma C.2. (C.3′) for C =B− 1
2 yields X :=B− 1

2AB− 1
2 ≥ I .

By (C.3e), all eigenvalues of X are larger or equal to 1. Therefore, the eigenvalues
of X−1 are ≤ 1. Using (C.3e), we conclude that X−1 ≤ I , hence B

1
2A−1B

1
2 ≤ I .

A further application of (C.3b′) shows that A−1 ≤ B−1/2IB−1/2 = B−1. ��
Property (C.3c) implies that the positive (semi-)definite matrices form a

semi-group with respect to matrix addition. This does not hold for multiplication.
In general, AB is no longer positive (semi-)definite since it is not necessarily
Hermitian.

However, we still have the following statement.

Remark C.7. If A and B are positive (semi-)definite, the product AB is real
diagonalisable and has only positive (nonnegative) eigenvalues.

Proof. (i) The proof is simple if one of the factors, say A, is regular. Then we use
the similarity transformation AB �→ A−1/2ABA1/2 = A1/2BA1/2. Note that the
positive (semi-)definite matrix A1/2BA1/2 has positive (nonnegative) eigenvalues.
The general proof uses the following steps.

(ii) If A ≥ 0, set Aε := A + εI. Since Aε > 0, we can apply part (i). The limit
ε → 0 proves the desired result. ��

Let A be a positive definite matrix. As explained in Exercise B.2c,

‖x‖A := ‖A1/2x‖2 =
√

〈Ax, x〉 for x ∈ CI (C.5a)

describes again a norm, often called the energy norm (with respect to A > 0).

Exercise C.8. If A > 0 has some decomposition A = CHC (e.g., Cholesky
decomposition), then ‖x‖A = ‖Cx‖2 holds.

The notation in (C.5a) and (B.10a) is related via ‖·‖A = ||| · |||A1/2 . Using the
definition in (C.5a) and Exercise B.13c, we prove the following statement.

Remark C.9. Let A be positive definite. The norm ‖·‖A in (C.5a) is generated by
the (energy) scalar product

〈x, y〉A := 〈Ax, y〉 . (C.5b)

An equivalent representation of ‖·‖A is

‖x‖A :=
√

〈Ax, x〉 for x ∈ KI . (C.5c)

The corresponding matrix norm ‖·‖A is related to the spectral norm by

‖B‖A = ‖A1/2BA−1/2‖2 for all B ∈ KI×I . (C.5d)

There is a one-to-one correspondence between positive definite matrices and
scalar products. In (C.5b), each matrix A > 0 is associated with a scalar product.
The reverse direction is described in the next remark.

Appendix C



435

Remark C.10. Let 〈〈·, ·〉〉 be an arbitrary scalar product in KI and denote the
Euclidean scalar product by 〈·, ·〉. Then there is a positive definite matrix A with

〈〈x, y〉〉 = 〈Ax, y〉 =
〈
A1/2x,A1/2y

〉
for x, y ∈ KI .

Proof. Using the unit vectors eα , define A by aαβ := 〈〈eα, eβ〉〉. ��

Exercise C.11. Prove: (a) CCH ≥ 0 and CHC ≥ 0 are always valid.
(b) If C is regular, CCH > 0 and CHC > 0 are even positive definite.
(c) The adjoint C∗ of a matrix C with respect to the scalar product 〈〈·, ·〉〉 is defined
by

〈〈Cx, y〉〉 = 〈〈x,C∗y〉〉 for all x, y ∈ KI .

The identity C∗ = A−1CHA holds. C is selfadjoint with respect to 〈〈·, ·〉〉 if
C = C∗. The latter condition is equivalent to

CHA = AC .

C is positive definite with respect to 〈〈·, ·〉〉 if C = C∗ and 〈〈Cx, x〉〉 > 0 for
all x �= 0.

C.2 Graph of a Matrix and Irreducible Matrices

A graph is a pair (V,E) of V (the set of vertices) and E ⊂ V × V (the set
of edges). In the following, V = I is the index set associated with the matrix
A ∈ KI×I . Since, given A, the index set I is fixed, only the specification of E is
of interest.

In this general definition, (V,E) is a directed graph. An undirected graph can be
modelled by the condition that (α, β) ∈ E holds if and only if (β, α) ∈ E.

Definition C.12 (matrix graph). Let A ∈ KI×I be a matrix corresponding to the
index set I . The following subset of all pairs from I× I is denoted as graph G(A)
of the matrix A:

G(A) = {(α, β) ∈ I × I : aαβ �= 0}.

The set G(A) can be visualised as follows. The indices α ∈ I are called ver-
tices, while (α, β) ∈ G(A) is called a (directed) edge from vertex α to vertex β
and is graphically represented by an arrow pointing from α to β (cf. Fig. C.1a).

In the case of aαβ �= 0 and aβα �= 0, the vertices α and β are connected
in both directions (e.g., α = 3, β = 4 in Fig. C.1a). The matrix A has a sym-
metric structure if aαβ �= 0 holds if and only if aβα �= 0. In this case, all edges
are bidirected and one can omit the specification of the directions (cf. Fig. C.1b).
The graph G(A) is minimal for the zero matrix, G(0) = ∅, and maximal for fully
populated matrices: G(A) = I × I .

C.1 Positive Definite Matrices



436

0 1 0 0
0 0 1 0
1 0 0 1
1 0 1 0

2

3

4

1
0 1 0 0 1
1 0 0 0 1
0 0 0 1 0
0 0 2 0 0
2 2 0 0 0

2

1

3

4

5

(a) Matrix A Graph G(A) (b) Matrix A Graph G(A)

Fig. C.1 (a) Directed graph of a matrix. (b) Symmetric structure.

If there is an edge (α, β) ∈ G(A), we say that ‘α is directly connected to β ’.
The statement ‘α is connected to β ’ means that there is at least one path consisting
of direct connections:

α = α0, α1, α2, . . . , αk = β with
k ∈ N and (αi−1, αi) ∈ G(A) for all i = 1, . . . , k.

(C.6)

The number k is called the length of the path (C.6).

Exercise C.13. Prove: (a) The relation ‘α is connected with β ’ is transitive, but not
necessarily symmetric.
(b) Let n := #I . If α is connected with β, the path (C.6) can be chosen so that its
length is k ≤ n− 1.

Definition C.14 (irreducible matrix). A matrix A ∈ KI×I is called irreducible
if any α ∈ I is connected to any β ∈ I or if2 #I = 1. Otherwise, A is called
reducible.

Theorem C.15. A ∈ KI×I is reducible if and only if there is an ordering of the
indices such that A takes the block form

A =

[
A11 A12

0 A22

]
} I1
} I2︸︷︷︸

I1

︸︷︷︸
I2

(A11, A22 : square blocks) (C.7)

with nonempty disjoint index subset I1, I2 ⊂ I (I1 ∪ I2 = I).

Proof. (i) Let A be as in (C.7). Choose any α ∈ I2, β ∈ I1. Assume that a path
(C.6) exists connecting α with β. Then there must be an edge (α�−1, α�) ∈ G(A)
with α�−1 ∈ I2 and α� ∈ I1. The contradiction results from aα�−1,α�

= 0 be-
cause this entry belongs to the block A21 = 0. Hence, α is not connected to β
and therefore A is reducible.

2 The second condition is added to ensure that all 1 × 1 matrices A = (a11) are irreducible,
even if a11 = 0 and G(A) = ∅.

Appendix C



C.2 Graph of a Matrix and Irreducible Matrices 437

(ii) Let A be reducible. Then there must be indices α, β ∈ I , such that α is not
connected to β. Choose

I1 := {γ ∈ I : γ connected to β} ∪ {β}, I2 := I\I1.

The sets are nonempty, since β ∈ I1 and α ∈ I2. Enumerate first I1 then I2. An
entry aδγ from the block A21 has the indices δ ∈ I2, γ ∈ I1. aδγ = 0 must hold,
since otherwise δ is connected to γ, which by definition of I1 is connected to β;
hence, δ ∈ I1 would follow in contradiction to δ ∈ I2. ��

Consider the block matrix
[
A11 A12

0 A22

]
in (C.7). The decomposition can be con-

tinued recursively. If, e.g., A22 is reducible, we apply Theorem C.15 to A22 and

decompose into A22 =

[
A22,11 A22,12

0 A22,22

]
and so on. The recursion stops as soon as

the principal submatrices are irreducible. The resulting matrix has a block structure
{I1, . . . , Ik} as indicated in

A =

A11 A12 · · · A1k }I1
0 A22 · · · A2k }I2
...

...
. . .

...
...

0 · · · 0 Akk }Ik

, Aii irreducible (1 ≤ i ≤ k). (C.8)

Exercise C.16. Prove: (a) The matrix A in Figure C.1a is irreducible, whereas the
matrix in Figure C.1b is reducible.
(b) If A has a symmetric structure (i.e., G(A) = G(AH)) and #I > 1, A is
irreducible if and only if the graph G(A) is connected.
(c) Triangular and diagonal matrices with #I > 1 are reducible.
(d) The matrix of the Poisson model problem is irreducible.

If the matrix of a linear system of equations is reducible, the system allows
a reduction. If A is reducible and {I1, I2} describes the block structure in (C.7),
Ax = b can be solved in two stages using smaller systems of equations:

A22x2 = b2, A11x1 = b1 −A12x2.

Remark C.17. Let n := #I > 1. Define Gk(A) := {(α, β) ∈ I × I : there is a
path (C.6) of length ≤ k connecting α with β}. Then the following statements are
valid:
(a) G(A) = G1(A) ⊂ G2(A) ⊂ . . . ⊂ Gk−1(A) ⊂ Gk(A) ⊂ . . .
(b) Gk(A) = Gn−1(A) for all k ≥ n− 1.
(c) A is irreducible if and only if Gn−1(A) = I × I.

Proof. (a) A chain (C.6) of length k = 1 is a direct connection, i.e., an edge from
G(A). Vice versa, any edge from G(A) belongs to G1(A); hence, G(A) = G1(A).

(b) Statement (b) follows according to Exercise C.13b.
(c) If α is connected with β, then according to (a) and (b), the edge (α, β) must

belong to Gn−1(A). This proves the assertion (c). ��



438

C.3 Positive Matrices

C.3.1 Definition and Notation

The positive definiteness A > 0 establishes a partial order relation in the set of the
Hermitian matrices. Another partial order relation in the algebra of all real matrices
is defined by elementwise inequalities:

A > B :⇐⇒ aαβ > bαβ for all α, β ∈ I, (C.9a)
A ≥ B :⇐⇒ aαβ ≥ bαβ for all α, β ∈ I, (C.9b)

In this section, we use the signs ‘>’ and ‘≥’ only in the componentwise sense of
(C.9a,b).

Remark C.18. The counterexample A =
[
0
0
1
0

]
,B =

[
0
0
0
0

]
shows that A ≥ B and

A �= B do not imply A > B. Therefore, we introduce the notation

A � B :⇐⇒ A ≥ B and A �= B.

The positive matrices are characterised by

A > 0

(i.e., aαβ > 0 for all α, β ∈ I), the nonnegative matrices are defined by

A ≥ 0.

The next remark states that the nonnegative matrices form a semigroup con-
cerning addition and multiplication.

Remark C.19. A,B ≥ 0 yields A + B ≥ 0 and AB ≥ 0. AB > 0 follows from
A,B > 0, while A+B > 0 holds if one of the matrices A,B ≥ 0 is positive.

Analogous order relations can be defined for vectors:

x ≥ y :⇐⇒ xα ≥ yα for all α ∈ I.

Similarly, x > y, x ≤ y, x < y, x � y, etc. are defined.

Exercise C.20. Prove: (a) A ≥ B ≥ 0 and x ≥ y ≥ 0 implies Ax ≥ By. In
particular, Ax ≥ 0 holds for A ≥ 0 and x ≥ 0.
(b) A is positive if and only if Ax > 0 for all x � 0.

The absolute value of a matrix (or a vector) is again a matrix (vector) and is
defined componentwise (do not confuse with a norm!):

|A| := (|aαβ |)α,β∈I ∈ RI×I , |x| := (|xα|)α∈I ∈ RI .

The established order relations match particularly well with the maximum norm and
the row-sum norm as corresponding matrix norm.

Appendix C



C.3 Positive Matrices 439

Exercise C.21. Prove that

‖x‖∞ = ‖ |x| ‖∞ , x ≥ y ≥ 0 ⇒ ‖x‖∞ ≥ ‖y‖∞ ,
‖A‖∞ = ‖ |A| ‖∞ , A ≥ B ≥ 0 ⇒ ‖A‖∞ ≥ ‖B‖∞ .

Some properties of positive matrices correspond to those of positive definite
matrices. However, concerning (C.3g) we obtain the opposite statement.

Exercise C.22. Let #I > 1. A and A−1 cannot simultaneously be positive.

The following results combine the positivity or nonnegativity property with the
matrix graph (cf. §C.2).

Exercise C.23. Prove that G(αA+ βB)=G(A) ∪G(B) for nonnegative matrices
A,B ≥ 0 and positive numbers α, β.

Remark C.24. (a) Gk(A) ⊂ G([I +A]
k
) holds for A ≥ 0 and Gk(A) defined in

Remark C.17.
(b) If A ≥ 0 is irreducible, then (I+A)n−1 > 0 and

∑n−1
ν=0 A

ν > 0 for n := #I .

Proof. (i) Since the matrices in (a) and (b) are nonnegative, the condition aαβ �= 0
in Definition C.12 can be replaced with aαβ > 0. Define the matrix A′ := I + A
and let (α0, αk) ∈ Gk(A), i.e., there is a path of direct connections (α�−1, α�) ∈
G(A) for 1 ≤ � ≤ k. Since A′

αβ ≥ 0, the coefficient(
A′k)

α0,αk
=

∑
β1,...,βk−1∈I

a′α0,β1
a′β1,β2

· . . . · a′βk−1,αk

of the matrix A′k can be bounded from below by(
A′k)

α0,αk
≥ a′α0,α1

a′α1,α2
· . . . · a′αk−1,αk

. (C.10)

For α�−1 �= α�, we conclude from (α�−1, α�) ∈ G(A) that a′α�−1,α�
> 0,

whereas for α�−1 = α� the diagonal entry

a′α�−1,α�
= 1 + aα�−1,α�

≥ 1 > 0

is also positive. Hence, all factors a′α�−1,α�
appearing in (C.10) are positive.

This proves (A′k)α0,αk
> 0, (α0, αk) ∈ G(A′

k), and finally the statement
Gk(A) ⊂ G(A′k) of part (a).

(ii) Obviously, B := (I + A)n−1 ≥ 0 holds (cf. Remark C.19). An irreducible
matrix A satisfies

I × I =
Remark C.17c

Gn−1(A) ⊂
Remark C.17d

G((I +A)n−1) = G(B).

Hence, (α, β) ∈ G(B) is always true, i.e., Bαβ > 0 holds. This proves B > 0.
The case of

∑
Aν is analogous. ��



440

C.3.2 Perron–Frobenius Theory of Positive Matrices

The main result of this section is the theorem of Oskar Perron [311] and Ferdinand
Georg Frobenius [141, 142].

Theorem C.25 (Perron–Frobenius). Let A ≥ 0 be an irreducible matrix in
RI×I , where n := #I > 1. Then the following statements hold:

ρ(A) > 0 is a simple eigenvalue of A, (C.11a)
λ = ρ(A) is associated with a positive eigenvector x > 0, (C.11b)

ρ(B) > ρ(A) for all B � A . (C.11c)

The proof of the theorem is prepared by Lemmata C.26–C.30. We start with
some auxiliary constructions. The set

E := {x ∈ RI : ‖x‖∞ = 1, x ≥ 0}

consists of vectors with 0 ≤ xβ ≤ 1 and at least one component xβ = 1.

Lemma C.26. Assume that A ≥ 0. The set

K := {(x, ρ) ∈ E × R : ρ > 0, Ax ≥ ρ x}

is compact. The maximum

r := max{ρ : (x, ρ) ∈ K for some x ∈ E} (C.12a)

exists. For any pair (y, r) ∈ K, we have

Ay ≥ ry and not Ay > ry. (C.12b)

Proof. (i) Let (x, ρ) be the limit of the sequence (xν , ρν) ∈ K. We conclude from
Axν ≥ ρνxν that Ax ≥ ρx. Therefore, (x, ρ) ∈ K proves that K is closed.

(ii) The boundedness of x is trivial because of ‖x‖∞ = 1. The component ρ
of (x, ρ) ∈ K is bounded by 0 ≤ ρ ≤ ‖A‖∞ , because the index α ∈ I with
xα = 1 satisfies ρ = ρxα ≤ (Ax)α ≤ ‖Ax‖∞ < ‖A‖∞ ‖x‖∞ ≤ ‖A‖∞. This
completes the proof that K is compact.

(iii) Let r be the supremum of {ρ : (x, ρ) ∈ K for some x ∈ E}. There is
a sequence (xν , ρν) ∈ K with ρν → r. Since K is compact, a subsequence
converges to (y, r) ∈ K. By definition of K, the inequality Ay ≥ ry must hold.
If Ay > ry, r could be increased in contradiction to the maximality of r. ��

Lemma C.27. Assume that A ≥ 0 is irreducible with n := #I > 1. Let r be
defined according to (C.12a) and assume that y ∈ E satisfies (C.12b). Then

r > 0, y > 0, Ay = ry;

i.e., y is a positive eigenvector of A corresponding to the positive eigenvalue r.

Appendix C



C.3 Positive Matrices 441

Proof. (i) The residual vector z := Ay − ry is nonnegative because of (C.12b).
Under the assumption z �= 0, Remark C.24b yields (I+A)n−1z > 0 and therefore,

0 < (I +A)n−1z = (I +A)n−1(Ay − ry) = (I +A)n−1(A− rI)y

= (A− rI)(I +A)n−1y = Ay′ − ry′ for y′ := (I +A)n−1y.

From y > 0, we conclude again that y′ = (I + A)n−1y > 0. The normalised
vector y′′ := y′/ ‖y′‖∞ belongs to E. Ay′ > ry′ implies that (y′′, r) ∈ K and
Ay′′ > ry′′, which contradicts (C.12b). Hence, the assumption z �= 0 is not valid.
Thus, z = 0 proves Ay = ry.

(ii) In part (i) we already used (I + A)n−1y > 0. Therefore, the eigenvalue
equation Ay = ry yields (1 + r)n−1y > 0. By 1 + r ≥ 1 > 0, y > 0 follows.

(iii) If r = 0, Ay = ry = 0 would follow. From Ay = 0 and y > 0, we
conclude that A = 0. Because n > 1, A would be reducible. This contradiction
proves that r > 0 . ��

Lemma C.28. Assume that A is irreducible and |B| ≤ A. Then we have

ρ(B) ≤ r (r according to (C.12a)), (C.13a)

ρ(B) = r ⇐⇒
(

|B| = A, B = ωDAD−1, |D| = I, |ω| = 1
)
. (C.13b)

Proof. (i) Let y be the normalised eigenvector corresponding to β ∈ σ(B), i.e.,
By = βy, ‖y‖∞ = 1. By

|β| |y| = |βy| = |By| ≤ |B| |y| ≤ A |y| , (C.13c)

(|y| , |β|) belongs to K and proves that |β| ≤ r. Since β ∈ σ(B) is arbitrary,
(C.13a) is shown: ρ(B) ≤ r.

(ii) Let |β| = r. The vector y in part (i) satisfies (|y| , r) ∈ K. By Lemma
C.27, |y| > 0 is an eigenvector of A : A |y| = r |y|. The inequality

r |y| = |β| |y| ≤ |B| |y| ≤ A |y| = r |y|

(cf. (C.13c)) implies that |B| |y| = A |y|. Since |y| > 0 and |B| ≤ A, the equality
|B| = A follows. The definition D := diag{yα/ |yα| : α ∈ I} makes sense
because of |y| > 0 and leads to D |y| = y. Define ω := β/r with r > 0 in
Lemma C.27. The conditions |D| = I and |ω| = 1 are satisfied. The eigenvalue
equation By = βy becomes

1

ω
D−1BD |y| = r |y| .

The matrix C := 1
ωD

−1BD fulfils |C| = |B| = A and C |y| = r |y| = A |y| =
|C| |y|. |y|>0 implies that C= |C|=A. This proves the direction ‘⇒’ in (C.13b).

(iii) Now let the right-hand part of (C.13b) be valid. Then B has an eigenvalue
β = ωr proving |β| = r and, by part (i), also ρ(B) = r. ��



442

Lemma C.29. r = ρ(A) holds for any irreducible matrix A > 0.

Proof. The right-hand part of (C.13b) is satisfied for B := A with D = I and
ω = 1. Hence, r = ρ(B) = ρ(A) holds. ��

Lemma C.30. Let A ≥ 0 be irreducible and B a proper principal submatrix of A,
i.e., B = (aαβ)α,β∈I′ for a nonempty index subset I ′ � I . Then ρ(B) < ρ(A)
holds.

Proof. The matrix B′ := (b′αβ)α,β∈I with b′αβ =

{
aαβ = bαβ for α, β ∈ I ′
0 otherwise

}
is the block-diagonal matrix blockdiag(B, 0) with respect to the block structure
{I ′, I\I ′}. The identity σ(B′) = σ(B) ∪ {0} proves that ρ(B′) = ρ(B).
Obviously, |B′| = B′ ≤ A is valid. Since B′ is reducible, the right-hand side in
(C.13b) cannot be satisfied for B′ and A; hence, ρ(B) = ρ(B′) < ρ(A) follows. ��

Proof of Theorem C.25. (i) Lemma C.29 shows that r = ρ(A), whereas Lemma
C.27 proves that r = ρ(A) > 0 is an eigenvalue with a positive eigenvector.

(ii) If B�A, the irreducibility of A carries over to B because of G(B)⊃G(A).
Since A = |A| � B, we deduce from Lemma C.28 with interchanged roles
of A and B that ρ(A) < rB , where rB = ρ(B) is the value r in (C.12a) belonging
to B.

(iii) It remains to show (C.11a): λ = ρ(A) is a simple eigenvalue. Let Aγ for
γ ∈ I be the principal submatrices associated with the index set Iγ := I\{γ}.
The derivative of the determinant of λI −A is equal to

d

dλ
det (λI −A) =

∑
γ∈I

det (λI −Aγ) . (C.14)

Since ρ(Aγ) < ρ(A) by Lemma C.30, we have det (λI −Aγ) �= 0 for all
λ > ρ(A). The polynomial det(λI − Aγ)=λ

n−1 + . . . tends to +∞ as λ → ∞.
Hence, it must be positive in the interval [ρ(A),∞). From det (λI −Aγ) > 0 and
(C.14) we conclude that

det (λI −A) > 0 for λ ≥ ρ(A).

A double zero of det(λI − A) at λ = ρ(A) would lead to a vanishing derivative;
hence, λ = ρ(A) is only a simple root and thereby also a simple eigenvalue. ��

Exercise C.31. Prove that the eigenvalue λ=ρ(A) of an irreducible matrix A ≥ 0
is the only one with the property |λ| = ρ(A). Hint: Prove that the eigenvector x
belonging to λ with |λ| = ρ(A) yields a vector y := |x| satisfying (C.12b). Apply
Lemma C.27.

Exercise C.32. Prove that if x>0 is an eigenvector of an irreducible matrixA ≥ 0,
then it belongs to the eigenvalue λ = ρ(A).

Appendix C



C.3 Positive Matrices 443

Theorem C.25 requires irreducibility of A, which, in particular, is ensured for
positive A > 0. However, for reducible matrices A ≥ 0 not all statements of the
theorem remain valid.

Exercise C.33. Prove that there are reducible matrices A ≥ 0, such that ρ(A) is
a multiple eigenvalue and the corresponding eigenvectors x ≥ 0 have components
xα = 0.

Finally, we summarise the properties of possibly reducible matrices A ≥ 0.

Theorem C.34. Let A ≥ 0. Then the following statements hold:

0 < ρ(A) is an eigenvalue of A, i.e., ρ(A) ∈ σ(A),
λ = ρ(A) corresponds to a nonnegative eigenvector x � 0,

ρ(B) ≥ ρ(A) for all B ≥ A. (C.15)

Proof. (i) Since the case n := #I = 1 is trivial, assume that n > 1. We define
Aε := (aαβ+ε)α,β∈I for ε > 0. Aε is irreducible because of G(Aε) = I×I . By
Theorem C.25, λε = ρ(Aε) is an eigenvalue of Aε with the eigenvector xε > 0,
‖xε‖∞ = 1. Since the eigenvalues (as zeros of a polynomial) vary continuously
on ε, λ := limε→0 λε = limε→0 ρ(Aε) = ρ(A) is an eigenvalue of A. The
compactness of {x : ‖x‖∞ = 1} implies the existence of a convergent subsequence
xεν → x with ‖x‖∞ = 1 and x ≥ 0. Aενxεν = λενxεν yields Ax = λx; i.e.,
x � 0 is an eigenvector.

(ii) In analogy to Aε, we define B2ε. From B2ε > Aε and ρ(B2ε) > ρ(Aε),
we conclude that ρ(B) ≥ ρ(A) for ε → 0. ��

Exercise C.35. Prove ρ(B) ≤ ρ(|B|) ≤ ρ(A) for all B ∈ KI×I with |B| ≤ A ∈
RI×I . Hint: Perform the limit Aε → A in Lemmata C.28–C.29.

C.3.3 Diagonal Dominance

Definition C.36. A matrix A ∈ KI×I is strictly diagonally dominant if

|aαα| >
∑

β∈I\{α}
|aαβ | for all α ∈ I, (C.16)

weakly diagonally dominant if

|aαα| ≥
∑

β∈I\{α}
|aαβ | for all α ∈ I,

and irreducibly diagonally dominant if A is an irreducible and weakly diagonally
dominant matrix and if, in addition,

|aαα| >
∑

β∈I\{α}
|aαβ | for at least one α ∈ I.



444

If A is not irreducible, the following generalisation may help.

Definition C.37. For A ∈ KI×I and γ ∈ I , define

Gγ := {β ∈ I : γ connected to β in the matrix graph G(A)}.

Then we call A essentially diagonally dominant if A is weakly diagonally domi-
nant and if condition (C.17) applies for all γ ∈ I :

|aαα| >
∑

β∈I\{α}
|aαβ | for at least one α ∈ Gγ . (C.17)

Note that condition (C.17) implies Gγ �= ∅ for all γ ∈ I .

Exercise C.38. For A ∈ KI×I , let (C.8) be the (I1, . . . , Ik)-block decomposition
into irreducible principal submatrices. Prove that Gγ is the union of some of the
index subsets Ij . Using Gγ for a new block structure, we obtain a block-diagonal
matrix with diagonal blocks being irreducibly diagonally dominant.

Exercise C.39. Prove: (a) For irreducible matrices, the essential and irreducible
diagonal dominance are equivalent.
(b) The following implications hold: strictly diagonally dominant ⇒ essentially
diagonally dominant ⇒ weakly diagonally dominant.
(c) If A is strictly, irreducibly, or essentially diagonally dominant, then the diagonal
elements do not vanish: aαα �= 0.
(d) The matrix of the model problem in §1.2 is irreducibly diagonally dominant, but
not strictly diagonally dominant. Hint: Exercise C.16d.

In the next section, diagonal dominance is used as a criterion for the M-matrix
property. However, it can also be used to prove positive definiteness.

Lemma C.40. Let A ∈ KI×I be Hermitian with a positive diagonal: aαα > 0.
If A is strictly, essentially, or irreducibly diagonally dominant, then A is also
positive definite. A sufficient condition for positive semidefiniteness is that A = AH

be weakly diagonally dominant with aαα > 0.

Proof. By Lemma C.3, it is sufficient to prove that all eigenvalues are positive or
nonnegative, respectively.

Let λ ∈ R be any eigenvalue of A and e a corresponding eigenvector. Let
α ∈ I be the index with |eα| = ‖e‖∞ . Without loss of generality, we may assume
that eα = ‖e‖∞ = 1. The α-th component of the system λe = Ae is

λ = λeα = (Ae)α =
∑
β∈I

aαβeβ = aαα +
∑

β∈I\{α}
aαβeβ .

λ ≥ 0 follows from

Appendix C



445

λ ≥ aαα︸︷︷︸
>0

−
∑

β∈I\{α}
|aαβ | |eβ |︸︷︷︸

≤‖e‖∞=1

≥ |aαα| −
∑

β∈I\{α}
|aαβ | ≥ 0,

where the last step uses the weak diagonal dominance.
Assuming strict diagonal dominance, we obtain λ > 0. For the other types of

diagonal dominance, one has to use the Gershgorin circles (cf. Varga [376]). The
complete proof is in Hackbusch [193, Criterion 4.3.24]. ��

C.4 M-Matrices

The term ‘M-matrix’ was introduced by Ostrowski [301] in 1937 with ‘M’ ab-
breviating ‘Minkowski’ referring to Minkowski’s determinant.

C.4.1 Definition

Definition C.41 (M-Matrix). A matrix A ∈ RI×I is called an M-matrix if

aαα > 0 for all α ∈ I, (C.18a)
aαβ ≤ 0 for all α �= β, (C.18b)

A regular and A−1 ≥ 0. (C.18c)

The sign pattern (C.18a,b) is easy to check, whereas the verification of A−1 ≥ 0
is more difficult. For this purpose, we shall provide other equivalent or sufficient
criteria. Matrices with the property (C.18c) are called inverse positive or monotone.
Hence, M-matrices form a subclass of the inverse positive matrices.

The next lemma shows that the conditions (C.18a–c) are redundant.

Lemma C.42. The conditions (C.18b,c) imply (C.18a).

Proof. For an indirect proof, assume that aγγ ≤ 0 for some γ ∈ I. Let sγ be the
γ-th column of the matrix A, while eγ denotes the γ-th unit vector. Multiplying
eγ by I = A−1A, we obtain A−1sγ = eγ . Using aγγ ≤ 0 and condition (C.18b),
sγ ≤ 0 holds. The property A−1 ≥ 0 in (C.18c) implies that eγ = A−1sγ ≤ 0
in contradiction to (eγ)γ = 1. ��

Exercise C.43. Assume (C.18c) and b ≤ b′ for the right-hand sides of Ax = b and
Ax′ = b′. Prove that x ≤ x′.

Exercise C.44. Prove that, in general, the product A = A1A2 of two M-matrices
A1 and A2 is no more an M-matrix, although A is always inverse positive. Hint:
choose tridiagonal matrices as an example.

C.3 Positive Matrices



446

C.4.2 M-Matrices and the Jacobi Iteration

We recall that the iterations matrix MJac of the pointwise Jacobi iteration (cf. (3.7a))
is defined by M = I −D−1A, where D=diag{aαα : α ∈ I} is the diagonal part
of A. Instead of (C.18a–c), we consider the following three conditions:

aαα > 0 for all α ∈ I, (C.19a)

M := I −D−1A ≥ 0, (C.19b)
ρ(M) < 1. (C.19c)

Inequality (C.19a)–which is a repetition of (C.18a)—ensures thatD−1 in (C.19b)
be well defined. Under the assumption (C.19a), the statements (C.18b) and (C.19b)
are equivalent since

Mαβ = δαβ − aαβ/aαα ≥ 0 for all α, β ∈ I (C.19b′)

(note that Mαβ = 0 for α = β, while (C.18b) applies for α �= β). Therefore,
the main difference between the conditions (C.18a–c) and (C.19a–c) are the last
conditions (C.18c) and (C.19c). Note that inequality (C.19c) characterises the
convergence of the Jacobi iteration.

Theorem C.45. Both conditions, (C.18a–c) and (C.19a–c) are equivalent defini-
tions of an M-matrix.

Proof. (i) (C.18a–c) ⇒ (C.19a–c): As seen above, (C.18a,b) implies (C.19a,b).
Statement (C.19a) is equivalent to D ≥ 0 and D−1 ≥ 0. For A′ := D−1A,
we find the nonnegative inverse A′−1 = A−1D ≥ 0. (C.19b′) shows that M ≥ 0.

By Theorem C.34, λ := ρ(M) ∈ σ(M) belongs to an eigenvector x � 0.
Mx=λx leads to A′−1(1 − λ)x=x. Since A′−1 ≥0 is regular and x�0 holds,
the inequality 1 − λ > 0 must hold, implying 0 ≤ ρ(M) = λ < 1 and (C.19c).

(ii) (C.18a–c) ⇐ (C.19a–c): We apply Theorem B.29. Since ρ(M) < 1, the
geometric sum (I − M)−1 =

∑∞
ν=0M

ν converges and is nonnegative because
M ≥ 0. Then 0 ≤ (I − M)−1D−1 = (D−1A)−1D−1 = A−1DD−1 = A−1

proves (C.18c). ��

The following property is the discrete analogue of the maximum principle of
second-order elliptic differential equations (cf. Hackbusch [193, Theorem 2.3.3]).
Condition (C.20a) replaces A−1 ≥ 0 in (C.18c) by A−1 > 0, while (C.20b)
corresponds to (C.19c) with the additional requirement that M be irreducible.

Corollary C.46. Let A ∈ RI×I satisfy (C.18a,b) (or equivalently (C.19a,b)).
Define D and M as in Theorem C.45. Then the following statements (C.20a) and
(C.20b) are equivalent:

A regular and A−1 > 0, (C.20a)
ρ(M) < 1, A or M irreducible. (C.20b)

Appendix C



C.4 M-Matrices 447

Proof. (i) The graphs G(A) and G(M) coincide up to the (uninteresting) diagonal
edges (α, α). Therefore, M is irreducible if and only if A is irreducible.

(ii) (C.20a) ⇒ (C.20b): If the matrix A is reducible, there is a block structure
{I1, I2} with A21 = 0 (cf. (C.7)). Then the inverse C := A−1 has the blocks

C =

[
(A11)−1 −(A11)−1A12(A22)−1

0 (A22)−1

]
with C21=0 in contradiction to A−1>0.

Hence, A and M are irreducible.
(iii) (C.20a) ⇐ (C.20b). Following part (ii) of the previous proof, we use the

representation A−1 =
∑∞

ν=0M
νD−1. This proves A−1 > 0, since, by Remark

C.17e,
∑∞

ν=0M
ν is positive. ��

Remark C.47. Irreducible M-matrices have a positive inverse.

Proof. By Theorem C.45, M-matrices satisfy (C.19a–c). Adding the irreducibility,
(C.19c) becomes (C.20b). Since Corollary C.46 states the equivalence to (C.20a),
A−1 > 0 is proved. ��

C.4.3 M-Matrices and Diagonal Dominance

The following theorem shows that the diagonal dominance of a matrix, together
with the sign conditions (C.18a,b), is sufficient for the M-matrix property. Usually,
the theorem is proved by using Gershgorin circles (cf. Hackbusch [193, Criterion
4.3.4] and Varga [376]). Here, however, we use the results of the Perron–Frobenius
theory described in §C.3.2.

Theorem C.48. (a) Let the matrix A ∈ KI×I be strictly or essentially or irre-
ducibly diagonally dominant. Then the Jacobi iteration matrix M := I − D−1A
(D: diagonal of A) satisfies

ρ(M) < 1. (C.21)

(b) If furthermore, the sign conditions (C.18a,b) are satisfied, A is an M-matrix.

Proof. (i) By Exercise C.39c, D is regular. Hence M is well-defined. M ′ := |M |
has the entries

M ′
αβ = 0 for α = β, M ′

αβ = |aαβ/aαα| for α �= β.

In part (ii) we shall show that ρ(M ′) < 1. By Exercise C.35, ρ(M) < 1 also holds
and proves (C.21). If, in addition, the conditions (C.18a,b) are satisfied, M fulfils
condition (C.19b): M ≥ 0. Since (C.19a,c) are also valid, Theorem C.45b shows
that A is an M-matrix.

(ii) By construction, M ′ ≥0 holds. Hence, an eigenvector x≥0 with ‖x‖∞=1
belongs to λ := ρ(M ′) ∈ σ(M ′). Let α ∈ I be an index with xα = 1. We want
to show that λ < 1 or xγ = 1 for all γ ∈ Gα, i.e., for all γ connected to α.
Obviously, for an inductive proof, it is sufficient to show this assertion for those γ



448

that are directly connected to α, i.e., for γ with (α, γ) ∈ G(M ′). Because of the
weak diagonal dominance,

λ = λxα = (M ′x)α =

⎛⎝ ∑
β∈I\{α}

|aαβ |xβ

⎞⎠/ |aαα| ≤

⎛⎝ ∑
β∈I\{α}

|aαβ |

⎞⎠/ |aαα| ≤ 1

holds. The equality λ = 1 can be valid only if xβ = 1 for all β with aαβ �= 0,
i.e., for all β with (α, β) ∈ G(A) ⊃ G(M ′). This completes the induction proof.
If λ < 1, ρ(M ′) < 1 is shown. Otherwise, xγ = 1 must hold for all γ ∈ Gα.
By Exercise C.39a–b, A is essentially diagonally dominant. According to this
definition, there is an index γ ∈ Gα such that |aγγ | >

∑
β∈I\{γ} |aγβ | . Since

xγ = xβ = 1 for γ, β ∈ Gα ,

λ = λxγ = (M ′x)γ =

⎛⎝ ∑
β∈I\{γ}

|aγβ |xβ

⎞⎠ / |aγγ | =

⎛⎝ ∑
β∈I\{γ}

|aγβ |

⎞⎠ / |aγγ | < 1

proves the intermediate assertion λ = ρ(M ′) < 1 in (i). ��

Using only the weak diagonal dominance, part (ii) of the proof already shows
λ ≤ 1 proving the following.

Corollary C.49. Let A ∈ KI×I be a weakly diagonally dominant matrix. The
Jacobi iteration matrix M := I −D−1A satisfies

ρ(M) ≤ 1.

Remark C.50. A regular matrix A ∈ RI×I with (C.18b) and
∑

β∈I aαβ ≥ 0 for
all α ∈ I is an M-matrix.

Proof. (i) Using the sign condition (C.18b),
∑

β∈I aαβ ≥ 0 implies the weak
diagonal dominance of A and, in addition, aαα ≥ 0. If aαα = 0, also aαβ = 0
must hold for β �= α (cf. (C.18b)). However, a regular matrix cannot contain a zero
row aαβ = 0 for all β ∈ I. Hence, aαα > 0 and therefore (C.18a) is proved.

(ii) We conclude from M ≥ 0 that λ = ρ(M) ∈ σ(M), while Corollary C.49
shows that λ ≤ 1. Assume that λ = 1. Let x be the corresponding eigenvector.
Mx=x is equivalent to D−1Ax=0 and Ax=0 in contradiction to the regularity
of A. Hence ρ(M)<1 holds, and Theorem proves the M-matrix property of A. ��

Lemma C.51. For any M-matrix A, there is A′ := Δ−1AΔ with a diagonal matrix
Δ ≥ 0 such that the strict inequalities

∑
β∈I a

′
αβ > 0 hold for all α ∈ I .

Proof. (i) First, we assume that A is irreducible, so that A−1 > 0. By Theorem
C.25, there is a positive eigenvector x > 0 with A−1x = λx, λ > 0. The vector
x can be written as x = Δ1, where 1 ∈ RI has the coefficients 1α = 1 (α ∈ I)
and Δ = diag{xα : α ∈ I}. Equation A−1x = λx is equivalent to 1

λΔ1 = 1
λx =

Ax = AΔ1 and Δ−1AΔ1 = Δ−1 1
λ1 > 0, i.e.,

∑
β∈I a

′
αβ > 0.

Appendix C



C.4 M-Matrices 449

(ii) Decompose A as in (C.8) with irreducible diagonal blocks Aii. For sim-

plicity, we assume a 2×2 block structure
[
A11 A12

0 A22

]
. According to part (i), there

are diagonal matrices Δi with Δ−1
i A

iiΔi1 > 0. Set Δ := blockdiag{Δ1, εΔ2}.

For sufficiently small ε>0, we have Δ−1AΔ=

[
A11 εA12

0 A22

]
1 > 0. Analogously,

one treats the general case of (C.8). ��

Applying Corollary C.46, we obtain the following.

Corollary C.52. Let the irreducibly diagonally dominant matrix A ∈ RI×I satisfy
the sign conditions (C.18a,b). Then A is an M-matrix.

C.4.4 Further Criteria

In the following, we describe situations in which M-matrices generate new ones.

Theorem C.53. Let A ∈ RI×I be an M-matrix and let B ≥ A satisfy (C.18b):
bαβ ≤ 0 for α �= β. Then B is also an M-matrix. Further, the inequalities

0 ≤ B−1 ≤ A−1 (C.22)

hold. If, in addition, A is irreducible and B �= A, then even 0 ≤ B−1 < A−1 holds.

Proof. (i) Let M = I − D−1A and MB = I − D−1
B B be the respective Jacobi

iteration matrices. One verifies that 0 ≤ D−1
B ≤ D−1 and 0 ≤ MB ≤ M .

A−1 = (
∑∞

ν=0M
ν)D−1 and B−1 = (

∑∞
ν=0M

ν
B)D

−1
B prove (C.22).

(ii) According to Remark C.47, A−1 > 0 holds for an irreducible A. Set
A(λ) := A+λ(B−A). For 0 ≤ λ ≤ 1, we have A = A(0) ≤ A(λ) ≤ A(1) = B.
The derivative

C(λ) :=
d

dλ
A(λ)−1 = −A(λ)−1(B −A)A(λ)−1

is nonpositive: C(λ) ≤ 0, because A(λ)−1 > 0 (cf. (C.22)) and B −A ≥ 0. The
particular choice λ = 0 yields C(0) = −A−1(B − A)A−1 < 0, since any vector
x � 0 leads to A−1x > 0, (B − A)A−1x > 0, and A−1(B − A)A−1x > 0;
hence, C(0) < 0 (cf. Exercise C.20b). The inequalities C(0) < 0 and C(λ) ≤ 0
prove A−1 > A(λ)−1 ≥ B−1 for all 0 < λ ≤ 1. ��

Theorem C.54. Any principal submatrix of an M-matrix is again an M-matrix.
More precisely: If B = (aαβ)α,β∈I′ for I ′ ⊂ I , then B is an M-matrix with
0 ≤ (B−1)αβ ≤ (A−1)αβ for α, β ∈ I ′. If, furthermore, A is irreducible and
I ′�I is a nonempty subset, then the strengthened inequality (B−1)αβ< (A−1)αβ
is valid for α, β ∈ I ′.

Proof. Define B′ ∈RI×I by the entries b′αβ :=

{
aαβ for α, β∈I ′ or α = β∈I
0 otherwise

}
.

B′ has the form blockdiag{B,D2}, with D2 being the diagonal of the block



450

A22 = (aαβ)α,β∈I\I′ . Hence, B′−1 = blockdiag{B−1, D−1
2 } holds. We apply

Theorem C.53 to B′ and obtain 0≤B′−1 ≤A−1 or 0≤B′−1<A−1, respectively.
A restriction to the first block yields the assertion. ��

Exercise C.55. Prove: (a) 2×2 matrices A are M-matrices if and only if (C.18a,b)
and det(A) > 0 hold.
(b) M-matrices A have a positive determinant: det(A) > 0. Hint: Discuss the
determinant of A(λ) := D + λ(A−D) for 0 ≤ λ ≤ 1 with D := diag{A}.
(c) All principal minors of an M-matrix are positive. Hint: Apply Theorem C.54.

Gauss elimination will play an important role in the following proof. Its basic
operation is the elimination of an entry aβα (α �= β) by subtracting the α-th row.
The corresponding transformation A �−→ A′ is described by the matrix T βα:

A′=T βαA with T βα
βα = −aβα

aαα
, T βα

νν =1 (ν ∈ I), T βα
νμ =0 (ν �= μ). (C.23)

The usual Gauss elimination (without pivoting) requires an ordered index set I and
performs eliminations in the succession (β, α) = (2, 1), (3, 1), . . . , (n, 1), (3.2),
(4, 2), . . . , (n, 2), . . . , (n, n − 1) below the diagonal, resulting in an upper
triangular matrix U . The diagonal elements pi = uii of U are the pivot elements.
The following considerations are even simpler if we eliminate all off-diagonal
entries at (β, α) = (2, 1), (3, 1), . . . , (n, 1), (1, 2), (3, 2), . . . , (n, 2), (1, 3), . . . ,
leading to the diagonal matrix D = diag{pi : i ∈ I} of the pivot elements. Let
Hi be the principal minor of A :

Hi := det ((ak�)1≤k,�≤i) for 1 ≤ i ≤ n, H0 := 1.

A simple consideration shows that

pi = Hi/Hi−1 (1 ≤ i ≤ n), (C.24)

provided that Hi−1 �= 0. This implies that the above elimination process can be
performed without pivoting if Hi−1 �= 0 for all i (cf. Gantmacher [144, p. 36]).

The statement of Exercise C.55c can be extended as follows.

Theorem C.56. Under assumption (C.18b), A is an M-matrix if and only if all
principal minors are positive.

Proof. (i) Since Exercise C.55c proves one direction, it remains to show that
positive principal minors imply the M-matrix property. The diagonal entries aαα
are the determinants of the principal 1×1 submatrices (aαα). This ensures (C.18a):
aαα > 0. Because of (C.24), Gauss elimination needs no pivoting.

(ii) First, we prove that the elimination step (C.23) preserves the sign conditions
(C.18a,b). A and A′ differ only in the β-th row. Since κ := T βα

βα = − aβα

aαα
≥ 0,

the entries aβδ for δ �= α become smaller: a′βδ := aβδ + κaαδ ≤ 0, while
a′βα = 0 again satisfies (C.18b). The only problem is raised by condition (C.18a):
does a′ββ > 0 hold again? As seen above, the diagonal element decreases with each
elimination step. Since at the end of the elimination, it represents the pivot element
pi, Eq. (C.24) with Hβ , H

−1
β−1 > 0 proves the inequality a′ββ ≥ pβ > 0.

Appendix C



C.4 M-Matrices 451

(iii) Performing the elimination (above and below the diagonal), we obtain the
diagonal matrix D of the positive pivot elements. Denoting the elimination matrices
T βα for the respective index pairs by T1, T2, . . . , TN , one arrives at the represen-
tation

TN TN−1 · . . . · T1A = D, i.e., A−1 = D−1TNTN−1 · . . . · T1 . (C.25)

Since, according to (ii), all intermediate matrices fulfil the conditions (C.18a,b),
Ti ≥ 0 holds. Together with D−1 ≥ 0, the missing M-matrix property (C.18c),
A−1 ≥ 0, is obtained. ��

The close connection between M-matrices and positive definite matrices is
underlined by comparing Theorem C.56 and the next result.

Remark C.57. A Hermitian matrix is positive definite if and only if all principal
minors are positive.

Proof. (i) By Lemma C.4c, all principal submatrices are positive definite. Hence,
it is sufficient to show that det(A) > 0 holds for positive definite A . This follows
from det(A) =

∏
λi and the positivity λi > 0 of all eigenvalues λi ∈ σ(A) (cf.

Lemma C.3).
(ii) The determinant of A(λ) := A+ λI can be expanded into

det(A) +
∑

i
λ detAi(λ),

where Ai(λ) is the principal submatrix of A(λ) for the index set Ii := I\{i}.
The analogous expansion of the determinants of Ai(λ) yields a polynomial
p(λ) = detA(λ) =

∑
aνλ

ν with positive coefficients (e.g., a0 = det(A) > 0).
Hence, A + λI is regular for all λ > 0. Since its eigenvalues are λi + λ, all
eigenvalues λi ∈ σ(A) must be positive. According to Lemma C.3, A is positive
definite. ��

Remark C.57 describes one of the numerous characterisations of M-matrices.
The interested reader may find fifty different characterisations in Berman–Plemmons
[45]. Combining Theorem C.56 and Remark C.57 yields the following.

Theorem C.58. A positive definite matrix satisfying the sign condition (C.18b) is an
M-matrix. On the other hand, a Hermitian M-matrix is positive definite.

We remark that a matrix A ∈ RI×I with A > 0 and the sign condition (C.18b)
is called a Stieltjes matrix. The next lemma continues the discussion of the Gauss
elimination.

Lemma C.59. If A is an M-matrix and A′ is obtained by one Gauss elimination
step (C.23), then A′ is again an M-matrix.

Proof. Choose the ordering of the indices such that α = 1 and β = 2. Then
T β,α in (C.23) describes the first step T1 of the complete elimination process
TN TN−1 ·. . .·T1A = D (cf. (C.25)). A′−1 = (T1A)

−1 ≥ 0 follows from Ti ≥ 0,
D−1 ≥ 0, and (T1A)

−1 = D−1TN TN−1 · . . . · T2. Since the conditions (C.18a,b)
are already proved in part (ii) of the proof of Theorem 16, A′ is an M-matrix. ��



452

C.5 H-Matrices

The term ‘M-matrix’ can be generalised as follows. The following construction of
B changes the signs of the entries aαβ in such a way that bαα ≥ 0 and bαβ ≤ 0.
The letter ‘H’ refers to Hadamard (cf. Ostrowski [301]).

Definition C.60. A ∈ CI×I is called an H-matrix if B := |D| − |A−D| with
D := diag{A} is an M-matrix.

Remark C.61. (a) Assume that the diagonal part D of A is regular. If A is
strictly, irreducibly, or essentially diagonally dominant, A is an H-matrix.
(b) The matrix MB := I − |D|−1

B = |D|−1 |A−D| satisfies ρ(MB) < 1.

Proof. Set B := |D| − |A−D| as in Definition C.60 and M := I − |D|−1
B =

|D|−1 |A−D| . Apply Theorem C.48b to B := |D| − |A−D| instead of A to
prove part (a). For part (b), use Theorem C.48a. ��

The counterpart of Lemma C.59 can easily be verified.

Lemma C.62. If A is an H-matrix and A′ is obtained by one Gauss elimination
step (C.23), then A′ is again an H-matrix.

C.6 Schur Complement

Let I = {I1, I2} be a block structure, The blockwise elimination of the block-matrix

M =

[
A B
C D

]
leads to

[
I B′

0 S

]
with B′ := A−1B and the Schur complement S :=

D − CA−1B, provided that A is regular. The inverse of M has the representation

M−1 =

[
A B
C D

]−1

=

[
A−1 +A−1BTCA−1 A−1B T

−TCA−1 T

]
with T := S−1

provided that S is regular. The following statements are elementary.

Remark C.63. Let A be regular. (a) M is regular if and only if S is regular.
(b) If S is regular, T = S−1 is the restriction M−1|I2×I2 .

Proposition C.64. Let M be an M-matrix, H-matrix, or positive definite matrix.
Then S has the same property.

Proof. Blockwise elimination represents the product of all elementary eliminations
(C.23) with indices α corresponding to the columns of the first block and β ∈
I \{α}. Multiple applications of Lemma C.59 prove the M-matrix property of S.
Use Lemma C.62 for the H-matrix property.

If M > 0, Lemma C.4 proves that M−1 > 0 and A > 0 also holds. By
Remark C.63b, T =M−1|I2×I2 > 0 holds implying T−1 = S > 0. ��

Appendix C



Appendix D

Hierarchical Matrices

Abstract The fully populated matrices arising from boundary element methods
can be approximated by hierarchical matrices. This reduces the storage cost to
almost linear complexity. Another important property of hierarchical matrices is
the almost linear cost of matrix operations, including matrix inversion and LU de-
composition. In the case of finite element methods discretising elliptic problems,
the matrices are sparse, but the inverse of the factors of the LU decomposition
can be approximated with any accuracy. The computational cost for accuracy ε is
O(n log∗(n) log∗( 1ε )). In Section D.1, we introduce the idea of the block-structured
matrices using low-rank matrix blocks and illustrate the operation cost by a model
problem. Constructing hierarchical matrices is the subject of Section D.2. In §D.2.9,
we explain how fully populated matrices discretising integral operators can be ap-
proximated by hierarchical matrices and why the error decreases exponentially with
increasing local rank. The matrix operations are described in Section D.3.

D.1 Introduction

D.1.1 Fully Populated Matrices

General fully populated n × n matrices are described by n2 entries. For large n,
this fact causes problems not only for storing the matrix but also for evaluating all
entries. Moreover, matrix operations lead to O(n2) or O(n3) arithmetic operations.

If a matrix is sparse (cf. §1.7), only the storage cost and the cost of matrix-
vector multiplication is proportional to n. This fact has led to the impression that
more costly operations as matrix-matrix multiplications, matrix inversions, or LU
decompositions should be avoided for large-scale matrices. Note that products of
sparse matrices are less sparse and higher powers of a sparse matrix become fully
populated. The inverse of a sparse matrix is in general fully populated (cf. Corollary
C.46). Except for band matrices, the LU decomposition leads to a fill-in, although,
in this case, sparsity can partially be saved.

453© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5



454

The technique of hierarchical matrices (H-matrix technique) applies to matrices
related to elliptic problems. This includes two types of matrices. The first group are
discretisations of elliptic problems formulated by the integral equation method. The
fully populated matrices that arise are an ideal object of this technique. The second
group are usual finite element discretisations of elliptic boundary value problems.
Then all matrix operations, in particular the LU decomposition, can be performed
with a cost1 of O(n log∗ n).

The H-matrix technique introduces an additional error. The reduction of the
storage cost to O(n log∗ n) as well as the H-matrix operations go together with
a truncation error. However, this error can easily be controlled. Usually, it is chosen
of a similar or of smaller size than the already existing discretisation error.

For solving a linear system Ax = b, the LU decomposition A ≈ LU is excep-
tionally important as shown in §13.4. Since computing LU requires only the data
of the matrix A, the associated iteration belongs to the class of purely algebraic
methods (see Definition 2.2b and case (i) in Remark 7.7).

Remark D.1. The availability of cheap matrix operations enables further applica-
tions, e.g., computing matrix functions (cf. Higham [222]) like the matrix expo-
nential exp(A) and solving matrix equations as the Lyapunov, Sylvester, or Riccati
equation.

The construction of hierarchical matrices consists of two ingredients: (i) a very
particular block decomposition, and (ii) the use of low-rank matrices for the matrix
blocks. The block decomposition is individually constructed for each matrix A (cf.
§D.2.3). A typical example of the block structure that arises is shown in Figure D.1
(middle) for a 128×128 matrix. Note that the size of the blocks increases with their
distance from the diagonal. The number of blocks is bounded by O(n). Each block
is filled by a low-rank matrix (cf. §D.1.2). The analysis shows that (i) storage of
low-rank matrices and matrix operations involving low-rank matrices are cheap and
that (ii) truncation to rank r leads to an error decreasing exponentially with respect
to r. Given a tolerance ε, the required rank is r = O(log∗ 1/ε).

Fig. D.1 Left: simple block partition H7. Middle: admissible block partition. Right: partition for
a real-life application of size 447488.

1 The asterix in log∗ replaces some exponent.

Appendix D



D.1 Introduction 455

D.1.2 Rank-r Matrices

Let I and J be index sets. If M ∈ KI×J satisfies rank(M) ≤ r, there are factors
A and B such that

M = ABT with A ∈ KI×r, B ∈ KJ×r. (D.1)

For instance, the QR decomposition in Remark A.26b produces the factorisation
M = QR with an orthogonal matrix A := Q and an upper triangular matrix
BT := R. On the other hand, if M satisfies (D.1), then rank(M) ≤ r follows.

Let a(�) and b(�) be the columns of A and B respectively. Then (D.1) is
equivalent to

M =

r∑
�=1

a(�)b(�)T. (D.2)

The number r in (D.2) is called the representation rank, even if rank(M) < r.
In the following, it is important that A and B are not only existing but explicitly

available. The mapping (A,B) �→ M = ABT describes the representation of M
by its factors (rank-r format). In contrast, M ∈ F describes the full format, i.e., M
is described in the standard way by its entries.

Definition D.2 (F , Rr). (a) The set F is formed by all matrices M ∈ KI×J which
are explicitly given by their entries Mij (i ∈ I, j ∈ J).
(b) The set Rr is formed by all matrices2 M in (D.1) with explicitly known factors
A ∈ F and B ∈ F .

Remark D.3. The storage size of M ∈ F ∩KI×J is #I#J, while the storage size
of M ∈ Rr ∩KI×J is r (#I +#J) .

Operations involving matrices from Rr are much cheaper than those for fully
populated matrices:

matrix-vector multiplication: Mx = A · (BTx),
matrix-matrix multiplication: M ′M ′′ = A′ ·

((
B′T ·A′′) ·B′′T) (D.3)

Let M ∈ Rr ∩ KI×J , M ′ ∈ Rr′ ∩ KI×J , M ′′ ∈ Rr′′ ∩ KJ×K . The respective
numbers of arithmetic operations (+,−, ∗) are

NMV = 2r (#I +#J) − #I − r,

NMM = 2r′r′′ (#J +#K) − r′ (#K + r′′) .

Note that M := M ′M ′′ ∈ Rr has the representation ABT with the explicitly
available factors A := A′ ∈ KI×r′ and B := B′′ ·

(
A′′T ·B′) ∈ KK×r′ .

The (exact) addition of low-rank matrices increases the representation rank,
but does not require any arithmetic operators. The sum of M ′ = A′B′T ∈ Rr′

and M ′′ = A′′B′′T ∈ Rr′′ yields M ∈ Rr′+r′′ :

2 It would be more precise to consider triples (M,A,B) with M = ABT, but this would compli-
cate the notation.



456

M =M ′ +M ′′ = ABT with

{
A := [A′ A′′] ∈ RI×{1,...,r′+r′′},
B := [B′ B′′] ∈ RJ×{1,...,r′+r′′}.

(D.4)

Although the computational cost is zero, the storage cost increases. Therefore, after
one or more additions, the result has to be truncated to smaller rank. Optimal trun-
cation uses the singular value decomposition (SVD) of M (cf. Proposition A.45).
In general, SVD is too costly for large index sets I, J (cf. Remark A.44). However,
the representation ofM ∈ Rr byABT enables a much cheaper application of SVD.

Lemma D.4. Assume M ∈ Rs with M = ABT and r < s. Then the SVD approxi-
mation Mr = A′B′T ∈ Rr can be determined with arithmetic cost

NSVD ≤ 2 (#I +#J) (2s+ r) s+ 65
3 s

3 + . . . .

Proof. Determine the QR decompositionsX = QXRX and Y = QYRY involving
QX ∈ RI×s, QY ∈ RJ×s, RX , RY ∈ Rs×s (cf. Remark A.26b). Compute the
product P := RXR

T
Y ∈ Rs×s. Let P = UΣV T be the singular value decompo-

sition of P with Σ = diag{σ1, . . . , σs} and set Σr = diag{σ1, . . . , σr, 0, . . .}.
Then, Mr = QXUΣrV

TQT
Y is the desired SVD truncation. To obtain again a

representation of the form A′B′T, set A′ := QXUΣ and B′ := QY V . Summation
of the amount of work yields NSVD described above (cf. [198, Remark 2.18]). ��

Corollary D.5. In the case of s = 2 and r = 1, truncation can be performed by
9#I + 8#J + 19 arithmetic operations (cf. [198, Corollary 2.19b]).

D.1.3 Model Format

Since the block structure in Figure D.1 (middle) is already rather involved, we intro-
duce a much simpler structure which, nevertheless, shows the same characteristics.
For p ∈ N0, n := 2p, and k ≥ 1, we define a recursion for the set Hp(r) ⊂ Rn×n

of matrices. For p = 0 (i.e., n = 1), all Hp(r) are 1 × 1 matrices (i.e., Hp(r) is
equivalent to K). For p > 0, the matrices M ∈ Hp(r) are characterised by

M =

[
M11 M12

M21 M22

]
, M11,M22 ∈ Hp−1, M12,M21 ∈ Rk. (D.5)

The block structures are (p = 0), (p = 1), (p = 2), (p = 3).

Figure D.1 (left) shows the case of n = 27 = 128. Each block b of the depicted
block decompositions contains a matrix block M |b of rank(M |b)≤r. Here we use
the following notation.

Notation D.6. Let M ∈ KI×J be any matrix. A general block b is the Cartesian
product b = τ × σ of some nonempty subsets τ ⊂ I and σ ⊂ J. Hence b is a subset
of I × J, while the corresponding matrix block is

M |b := (Mαβ)α∈τ,β∈σ ∈ Kτ×σ.

Appendix D



D.1 Introduction 457

Larger values of the representation rank r in Hp(r) improve the approximation of
general matrices by M ∈ Hp(r), but for following considerations about the matrix
operations the value of r is less relevant. Therefore we fix r = 1.

Let Nbl(p) be the number of blocks in Hp(r). Using Nbl(0) = 1 and the recur-
sion Nbl(p) = 2 + 2Nbl(p− 1), we obtain

Nbl(p) = 3n− 2 (n = 2p).

Similar recursive proofs can be used for the following results (cf. [198, §3]). We
require that all matrix blocksM |b ofM ∈ Hp(1) be R1 matrices. Then the storage
size is

Sp = n+ 2n log2 n .

Matrix-vector multiplication M·x requires computing the products y11 :=M11x1,
y12 := M12x2, y21 := M21x1, y22 := M22x2 (cf. (D.5)) and the sums y11+y12
and y21+y22. The required work is

NMV(p) = 4n log2 n− n+ 2 .

Different from the following operations, matrix-vector multiplication yields an exact
result.

⊕1 (⊕r) denotes addition followed by truncation to rank 1 (r). Using Corollary
D.5, we obtain the following cost of addition involving at least one hierarchical
matrix.

Lemma D.7. Let n = 2p. The formatted additions ⊕1 : Hp × Hp → Hp as well as
⊕1 : Hp × R1 → Hp and ⊕1 : R1 × Hp → Hp require

17n log2 n+ 39n− 38

operations.

Let n = 2p. We distinguish three kinds of matrix-matrix multiplications:

(1) A ·B ∈ R1 for A,B ∈ R1 with the cost NR·R(p),
(2a) A ·B ∈ R1 for A ∈ R1 and B ∈ Hp with the cost NR·H(p),
(2b) A ·B ∈ R1 for A ∈ Hp and B ∈ R1 with the cost NH·R(p),
(3) A ·B ∈ Hp for A,B ∈ Hp with the cost NH·H(p).

In cases (1) and (2a,b), the results are exact since the operation reduces to matrix-
vector multiplication.

In the first case, the solution is NR·R(p) = 3n − 1 (compute the product by
(abT)(cdT) = a ·

(
(bTc)dT

)
.

In the case of A ∈ Hp and B ∈ R1 , we use A ·abT= (Aa) · bT; i.e., the result
is a′bT ∈ Rp with a′ := Aa. This requires one matrix-vector multiplication A · a.
The cost amounts to NH·R(p) = 4n log2 n− n+ 2.



458

Similarly, for B ∈ Rp and A ∈ H1 we perform BA = abT · A = a · (AT)T so
that NR·H(p) = NH·R(p).

In the third case of A,B ∈ Hp , the product AB is of the form[
Hp−1 Rp−1

Rp−1 Hp−1

]
·
[

Hp−1 Rp−1

Rp−1 Hp−1

]
=

[
Hp−1 · Hp−1 + Rp−1 · Rp−1 Hp−1 · Rp−1 + Rp−1 · Hp−1

Rp−1 · Hp−1 + Hp−1 · Rp−1 Rp−1 · Rp−1 + Hp−1 · Hp−1

]
.

On level p − 1, all three types of multiplications appear. The multiplication
Hp−1 · Hp−1 of the third type requires an approximation by �. Finally, addition
via ⊕1 has to be performed. Counting the operations, we derive the recursion

NH·H(p) = 2NH·H(p− 1) + 2NR·R (p− 1)) + 2NH·R (p− 1)

+ 2NR·H(p− 1) + 2NH+R (p− 1) + 2NR+R (p− 1) .

Inserting the known quantitiesNR·R,NH·R,NH+R,NR+R, we obtainNH·H(p) =
2NH·H(p− 1) + 25pn+32n− 32. Together with the starting valueNH·H(0) = 1,
we get the following operation costs:

NH·H(p) =
25

2
n log22 n+

89

2
n log2 n− 31n+ 32,

NH·R(p) = NR·H(p) = 4n log2 n− n+ 2,

NR·R(p) = 3n− 1.

Finally, we want to approximate the inverse M−1 of a matrix M ∈ Hp . For
this purpose, we define the inversion mapping inv : Dp ⊂ Hp → Hp recursively
(Dp : domain of inv). For p = 0, we define inv(M) := M−1 as the exact inverse
of the 1×1-matrix M , provided that M �=0. Let inv be defined on Dp−1 ⊂ Hp−1.
The (exact) inverse of M with the block structure (D.5) is

M−1 =

[
M−1

11 +M−1
11 M12S

−1M21M
−1
11 −M−1

11 M12S
−1

−S−1M21M
−1
11 S−1

]
(D.6)

involving the Schur complement S := M22 − M21M
−1
11 M12 (cf. §C.6). The rep-

resentation (D.6) and therefore the following algorithm also requires M11 to be
regular. If M and M11 are regular, then the Schur complement S is also regular.

Again, the inversion of M at level p involves two inversions (M−1
11 and S−1) at

level p− 1. This yield a similar recursion formula as for NH·H(p). Its solution is

Ninv(p) =
25

2
n log22 n+

55

2
n log2 n− 69n+ 70.

Concerning a detailed derivation of the mentioned recursions see [198, §3.7].

Appendix D



D.2 Construction 459

D.2 Construction

In the following, we are searching for a suitable block decomposition. It is im-
possible to consider all block partitions for two reasons. First, the number of all
possible partitions is far too large; second, the matrix operations causes further
restrictions. It turns out that in both aspects a tree structure is very helpful. In §D.2.1,
we introduce cluster trees T (I) and T (J) providing vector blocks in KI and KJ .
The block cluster tree T (I × J) constructed in §D.2.2 provides a variety of
matrix blocks of all sizes. The choice of the final partition is described in §D.2.3.
In §D.2.9, we illustrate the discretisation of an integral operator and the estimate of
the approximation error.

D.2.1 Cluster Trees

D.2.1.1 General Structure

The tree T (I) will describe the decomposition of the index set I into subsets. The
elements (vertices) of the tree T (I) are called clusters and denoted by τ or σ.
If a cluster τ is not decomposed further, it is a leaf. The set of leaves is denoted
by L(T (I)). Otherwise, τ is decomposed into disjoint subsets τ1, . . . , τs. These τj
are called the sons of τ . The set of sons is denoted by

S(τ) = {τ1, . . . , τs}.
Besides the general properties of a tree, we require

I = root(T (I)), τ �= ∅ for all τ ∈ T (I),

#S(τ) > 1 and
⋃

σ∈S(τ)

σ = τ (disjoint union) for all τ ∈ T (I)\L(T (I)).

One concludes that τ ⊂ I holds for all τ ∈ T (I).
The left and middle partitions in Figure D.1 have blocks of size 1 × 1 close to

the diagonal. For practical purpose, it is advantageous to avoid too small blocks.
Therefore we fix some nmin ∈ N (e.g., nmin = 16 or nmin = 32) and require

#τ ≤ nmin if and only if τ ∈ L(T (I)).

Usually, a binary tree is preferred, i.e., #S(τ) = 2 for τ ∈ T (I)\L(T (I)).
An exception is mentioned in §13.2.

Each vertex of a tree has a level-number which is defined recursively by zero
for the root I and level(σ) = level(τ) + 1 for σ ∈ S(τ). We introduce the notation

T (�)(I) := {τ ∈T (I) : level(τ)=�} , depth(T (I)) := max{level(τ) : τ ∈T (I)}
(D.7)

If necessary, we write levelT (I)(τ) to refer to the underlying tree.



460

D.2.1.2 Concrete Construction

Finite element or difference discretisations use nodal points (grid points). Each
index i ∈ I is connected with a nodal point ξi ∈ Rd. This leads us to the following
construction. A subset τ ⊂ I corresponds to the set of nodal points

Xτ := {ξi : i ∈ τ} ⊂ Rd.

Next, we consider d-dimensional cuboids Q = [a1, b2] × [a2, b2] × . . . × [ad, bd]
containing Xτ . The smallest Q containing Xτ is called the bounding box of Xτ

and denoted by
Qmin(Xτ ).

Let ξi,j (1 ≤ j ≤ d) denote the components of ξi ∈ Xτ . Then Qmin(Xτ ) =
[a1, b2] × . . .× [ad, bd] holds with aj := mini∈τ{ξi,j} and bj := maxi∈τ{ξi,j}.

The general construction of a binary cluster tree T (I) is of the following form:
(a) Start with the root I associated with the box QI := Qmin(XI) and set τ := I.

(b) If #τ ≤ nmin, stop the decomposition, otherwise continue.
(c) Split Qτ into two disjoint subboxes Q1

τ and Q2
τ . This induces the subsets

τk :=
{
i ∈ τ : ξi ∈ Qk

τ

}
for k = 1, 2, representing the two sons of τ . Continue

the algorithm at item (b) with τk (k = 1, 2) instead of τ . The box Qτk has to satisfy
Xτk ⊂ Qτk ⊂ Qk

τ .

The concrete construction depends on the way how Qτ is divided into Q1
τ and

Q2
τ and howQτk is defined. Note that step (c) is performed only if #τ > nmin ≥ 1.

Fig. D.2 Regular geometric partition.

(A) Regular Geometric Bisection. Let Qτ = [a1, b2] × . . . × [ad, bd]. Define j
as the index corresponding to the largest side length bj − aj . Set mj :=

aj+bj
2 .

Divide Qτ into

Q1
τ := [a1, b2] × . . .× [aj ,mj ] × . . .× [ad, bd],

Q2
τ := [a1, b2] × . . .× (mj , bj ] × . . .× [ad, bd]

and set Qτk := Qk
τ (k = 1, 2). After � steps, all boxes are similar and have the

volume vol(Qτ ) = 2−�vol(QI).

Appendix D



D.2 Construction 461

It may happen that Xτ is completely contained, e.g., in Q1
τ . Then τ1 := τ and

τ2 := ∅ hold. In this case, τ2 is omitted as a son and τ has only one son3 τ1 = τ .

(B) Geometric Bisection by Bounding Boxes. Determine Qk
τ and τk as above and

set Qτk := Qmin(Xτk) (k = 1, 2). In this case, one verifies that4 Qτ1 �= ∅ and
Qτ2 �= ∅ (cf. Fig. D.3).

Fig. D.3 Geometric partition by bounding boxes.

In the first two approaches the boxes are bisected. The subboxesQ1
τ andQ2

τ have
the same size, but there is no guaranty that τ1 and τ2 are of a similar cardinality.
In contrast, the next approach ensures that |#τ1 − #τ2| ≤ 1, while Qτ1 and Qτ2

may have different size.

(C) Cardinality-Based Bisection. LetQτ and j as in case (A). Sort all indices of τ
such that τ = {i1, i2, . . . , i#τ} and ξi1,j ≤ ξi2,j ≤ . . . ≤ ξi#τ ,j . Set μ := +#τ/2,
and define τ1 := {i1, i2, . . . , iμ} and τ2 := {iμ+1, . . . , i#τ} . The boxes are chosen
as the minimal ones: Qτk := Qmin(Xτk) (k = 1, 2).

D.2.1.3 Cost of T (I)

The implementation requires a representation of the clusters τ ∈ T (I). Provided
that T (I) is a binary tree, the number of clusters is equal to

#T (I) = 2#L(T (I)) − 1.

In the worst case, #L(T (I)) = #I holds. Since the expectation value of the size
of τ ∈ L(T (I)) is 3nmin/4 , the mean value is

#T (I) ≈ 3

2

#I

nmin
.

The ordering of indices in I can be introduced so that all clusters are identified by
a pair of integers (ατ , βτ ), since τ = {ik ∈ I : ατ ≤ k ≤ βτ}. Therefore, storage
of T (I) requires about 3#I/nmin integers. The ordering of I involves additional
#I integers as labels of i ∈ I .

3 For a precise notation, one has to change the identifier of the vertices of the tree to distinguish
the father τ from the son τ1 (cf. [198, Remark 5.1 and §A.4]).
4 For simplicity we assume that the nodal points satisfy ξi �= ξj for i �= j (cf. [198, (5.21a,b)]).



462

D.2.2 Block Cluster Tree

Matrices in KI×J correspond to the index set I × J . Correspondingly, we have to
describe a block decomposition of I × J . For this purpose, we do not need a new
construction but obtain the tree T (I × J)—now called block cluster tree—directly
from T (I) and T (J).

Definition D.8. A (level-conserving5) block cluster tree is constructed as follows.
(1) I × J is the root.
(2) The recursion starts with the block b = τ × σ for τ = I and σ = J .

(2a) Define the set of sons of b = τ × σ by

S(b) :=

{
∅ if ST (I)(τ) = ∅ or ST (J)(σ) = ∅,
{τ ′ × σ′ : τ ′ ∈ ST (I)(τ), σ

′ ∈ ST (J)(σ)} otherwise.

(2b) Apply (2a,b) recursively to all sons of b, provided that S(b) �= ∅.

Remark D.9. (a) The level-conserving property is described by the identity

levelT (I×J)(b) = levelT (I)(τ) = levelT (J)(σ) for b = τ × σ ∈ T (I × J).

(b) We have depth(T (I × J)) ≤ min{depth(T (I)), depth(T (J))} and
(c) τ × σ ∈ L(T (I × J)) if and only if min{#τ,#σ} ≤ nmin, implying
rank(M |b) ≤ nmin holds for all b ∈ L(T (I × J)).

D.2.3 Partition

Let P be a set of blocks b ⊂ I × J. We say that P is a (block) partition of I×J
if all elements of P are disjoint and if

⋃
b∈P b = I×J (cf. Fig. D.1). As mentioned

before, we are not looking at all partitions but only at those contained in the block
cluster tree: P ⊂ T (I × J).

Lemma D.10. There is a one-to-one correspondence between partitions
P ⊂ T (I×J) and subtrees T ′ ⊂ T (I × J) with root(T ′) = I × J. The tree
corresponding to P is T (I × J ;P ) := {b ∈ T (I × J) : b′ ⊂ b for some b ∈ P}.
The inverse mapping is given by P = L(T ′).

Proof. (i) Let P ⊂T (I×J) be given. For any b∈P, omit the sons of b in T (I×J),
i.e., replace S(b) by the empty set. Hence, b is a leaf of the subtree T ′ := T (I×J ;P )
and P = L(T ′) holds.

(ii) For any subtree T ′ ⊂ T (I×J) with root(T ′) = I×J,we verify by induction
on the depth of T ′ that L(T ′) ⊂ T ′ ⊂ T (I × J) is a set of disjoint blocks and
that
⋃

b∈L(T ′) b = I × J. Hence, P := L(T ′) ⊂ T (I×J) is a partition of I×J. ��

5 For more general trees see [198, §§5.5.2–5.5.3].

Appendix D



D.2 Construction 463

We can define an order relation between partitions. We say that P1 is coarser
than P2 if for all b′′ ∈ P2 there is a b′ ∈ P1 with b′′ ⊂ b′. P1 is finer than P2

if P2 is coarser than P1.
Concerning the partition of a matrix, we have two contradicting requirements.

Let us fix a certain local rank r of the matrix blocks. First, the blocks must be
small enough to allow a good rank-r approximation. Since

∑
b∈P #b = #(I×J),

a small size #b must be compensated by a large number #P of blocks; however,
the larger #P the larger the required storage is.

D.2.4 Admissible Blocks

The study of the singularity functions of elliptic boundary value problems shows
that an optimal partition should use blocks satisfying the following admissibility
condition.

X Xτ σ

σdiam(X  )τdiam(X  )

dist(X ,Y )
στ

Fig. D.4 Supports Xτ and Xσ .

In §D.2.1.2, nodal points ξi and sets Xτ

are introduced. Now, we replace ξi ∈ Rd

with a subset Xi ⊂ Rd. The computations
may use Xi := {ξi}, but the precise analy-
sis of finite element discretisations requires6

Xi := suppφi , where φi denotes the finite
element basis function in (E.7b). Xτ is re-
defined by7

Xτ :=
⋃
i∈τ

Xi ⊂ Rd. (D.8)

The corresponding sets related to a second index set J and clusters σ ∈ T (J)
are denoted8 by Yi and Yσ, respectively. This allows us to define a diameter of a
cluster and the distance between two clusters (cf. Fig. D.4):

diam(τ) := max{‖x′ − x′′‖ : x′, x′′ ∈ Xτ}, τ ⊂ I, (D.9a)
dist(τ, σ) := min{‖x− y‖ : x ∈ Xτ , y ∈ Yσ}, τ ⊂ I, σ ⊂ J. (D.9b)

Definition D.11 (η-admissibility of a block). Let η > 0. The clusters τ ⊂ I and
σ ⊂ J are associated with supportsXτ andXσ . Then the block b = τ × σ is called
η-admissible9 if

min{diam(τ), diam(σ)} ≤ η dist(τ, σ). (D.10)

If η is a fixed value, we use the term admissibility of b without referring to η .

6 The support of a function f : X → Y is defined by supp(f) := {x : f(x) �= 0}.
7 The later analysis requires convex sets; i.e., the sets Xτ should be replaced by their convex hulls.
Since, finally, we shall replace Xτ by its bounding box (cf. §D.2.5), convexity will be guaranteed.
8 Even if I = J, the Petrov–Galerkin discretisation of Definition E.7 may use different ansatz
functions φi (i ∈ I) and test functions ψj (j ∈ J) so that Xi �= Yi.
9 For variants of the admissibility condition see [198, (5.7a–c) and §5.2.3].



464

We cannot require that all blocks b ∈ P of a partition be admissible. Consider,
e.g., a diagonal block b = τ × τ. Then diam(τ) is positive, while dist(τ, τ) = 0,
so that (D.10) cannot hold for η > 0. For such blocks, we cannot expect to find
low-rank approximations. Instead we use the full representation of the matrix block
M |b, but we require that these blocks be small in the sense that b = τ × σ with
min{#τ,#σ} ≤ nmin. The latter condition implies that b ∈ L(T (I × J)). We
combine both requirements in the following definition:

adm∗(b) :=
{
true if (D.10) holds or if b ∈ L(T (I × J)),
false otherwise.

}
(D.11)

A partition P ⊂ T (I × J) is called admissible if adm∗(b) holds for all b ∈ P .
Now we want to find the minimal admissible partition P ⊂ T (I×J) which is the

coarsest partition so that adm∗(b) holds for all b ∈ P. The construction of the set
P uses the equivalent formulation P = L(T ′) with T ′ = T (I × J ;P ) (cf. Lemma
D.10). T ′ and P are the result of the call

T ′ := ∅; P := ∅; MinAdmPart(T ′, P, I × J)

of the following recursion:

procedure MinAdmPart(T ′, P, b); (D.12)
begin T ′ := T ′ ∪ {b};

if adm∗(b) then P :=P ∪ {b} else for all b′ ∈ S(b) do MinAdmPart(T ′, P, b′)
end;

D.2.5 Use of Bounding Boxes for Xτ

The functions diam(τ) and dist(τ, σ) defined above are difficult to evaluate. In the
general finite element case, Xτ is a union of triangles. The computational work for
determining diam(τ) and dist(τ, σ) increases with the number of involved corner
points. For application in practice, we introduce the bounding boxes of Xτ :

Qτ := Qmin(Xτ )

(cf. §D.2.1.2). Obviously, the inequalities

diam(Qτ ) ≥ diam(τ), dist(Qτ , Qσ) ≤ dist(τ, σ)

hold, while evaluating diam(Qτ ) and dist(Qτ , Qσ) is trivial. Computing Qτ from
Qτ ′ and Qτ ′′ for τ = τ ′∪̇τ ′′ is also simple. In (D.12) we replace adm∗(b) with
adm∗

Q(b) which uses

min{diam(Qτ ), diam(Qσ)} ≤ η dist(Qτ , Qσ)

instead of (D.10). One verifies the implication10 adm∗
Q(b) ⇒ adm∗(b).

10 This statement shows that the partition might be finer than necessary. Therefore it makes sense
to coarsen the partition. This technique checks whether a coarser partition with (almost) the same
error bounds exists without increasing the storage size (cf. [198, §6.7.2]).

Appendix D



D.2 Construction 465

D.2.6 Set of Hierarchical Matrices

Let P ⊂ T (I × J) be an admissible partition. Then the near-field P− and the
far-field P+ are defined by

P− := {b = τ × σ ∈ P : min{#τ,#σ} ≤ nmin}, P+ := P\P−.

In Figure D.1 (right) the dark blocks belong to P−.

Definition D.12 (hierarchical matrix). Let I and J be index sets, T (I×J) a block
cluster tree, and P a partition. Furthermore, a local rank distribution is given by the
function

r : P → N0. (D.13)

Then the set H(r, P ) ⊂ RI×J of hierarchical matrices (with respect to partition P
and rank distribution r) consists of all matrices M ∈ RI×J with

rank(M |b) ≤ r(b) for all b ∈ P+.

More precisely,M |b ∈ Rr(b) (cf. Definition D.2) is required for all blocks b ∈ P+;
i.e., the factors Ab, Bb of the representation M |b = AbB

T
b be explicitly available.

Matrix blocks M |b corresponding to the small blocks b ∈ P− are implemented as
full matrices: M |b ∈ F(b) (cf. Definition D.2).

Remark D.13. (a) The standard choice of the function (D.13) is a constant r ∈ N0.
Then we say that the hierarchical matrix has the local rank r.
(b) A variable rank r(b) is in particular needed for the adaptive choice of the local
ranks (cf. Remark D.19).

Remark D.14. Assume that M = MT ∈ H(r, P ) ⊂ RI×I is a symmetric matrix,
and that P is symmetric (i.e., b = τ × σ ∈ P ⇔ σ × τ ∈ P ). Then the factors Ab

and Bb of M |b = AbB
T
b and M |b′ = (M |b)T = BbA

T
b for b = τ × σ ∈ P+ and

b′ = σ × τ have to be stored only once. The same statement holds for b ∈ P−.

D.2.7 H2-Matrices

Without going into details we mention that the set of H2-matrices, which satisfy
additional conditions, leads to even less storage cost and less computational work
of the matrix operations (cf. [198, §8], Börm [54], Börm–Reimer [55]).

D.2.8 Storage

In the following, we introduce the quantity Csp, which is crucial for estimating the
storage cost and the computational cost of the matrix operations discussed later.
Let T (I×J) be the block cluster tree corresponding to T (I), T (J), and let P be



466

the partition. For any σ∈T (J), there should be only a few blocks b = τ × σ ∈ P
containing σ as a factor. The quantities

Csp,l(τ, P ) := #{σ ∈ T (J) : τ × σ ∈ P} for τ ∈ T (I),
Csp,r(σ, P ) := #{τ ∈ T (I) : τ × σ ∈ P} for σ ∈ T (J)

describe how often the clusters τ and σ appear as columns or rows in the blocks of
the partition P . Define

Csp(P ) := max

{
max

τ∈T (I)
Csp,l(τ, P ), max

σ∈T (J)
Csp,r(σ, P )

}
.

For instance, the format in the middle of Figure D.1 has the constant Csp(P ) = 6,
while the simpler hierarchical format on the left side yields the sparsity constant
Csp(P ) = 2. These constants are independent of the size of the matrices.

Proposition D.15. Assume that the regular geometric bisection is used for gener-
ating T (I). Then the finite element matrices for a sequence of grids with uniform
shape regularity have a uniformly bounded Csp.

Proof. See [198, §6.4.3 and Theorem 6.24] or [161]. ��

Lemma D.16. The number of blocks in partition P is bounded by

#P ≤ (2min{#I,#J} − 1)Csp(P ).

Proof. We estimate by

#P =
∑

τ×σ∈P

1 =
∑

τ∈T (I)

#{σ ∈ T (J) : τ × σ ∈ P} ≤
∑

τ∈T (I)

Csp(P )

≤ (2#I − 1)Csp(P ).

Interchanging the roles of τ and σ, we also obtain the bound (2#J−1)Csp(P ). ��

Lemma D.17 (storage). The storage cost SH(r, P ) of matrices in H(r, P ) is
bounded by

Csp(P ) · max{nmin, r} ·
[
(depth(T (I))+1)#I + (depth(T (J))+1)#J

]
.

Proof. SH(r, P ) is the sum of the storage cost of all blocks b = τ × σ ∈ P :

SH(r, P ) =
Remark D.3

r
∑

τ×σ∈P+

(#τ +#σ) +
∑

τ×σ∈P−
#τ · #σ.

Because of min{#τ,#σ} ≤ nmin for τ × σ ∈ P−, we have

#τ#σ = min{#τ,#σ}max{#τ,#σ}
≤ min{#τ,#σ} (#τ +#σ) ≤ nmin (#τ +#σ) ,

proving that
SH(r, P ) ≤ max{nmin, r}

∑
τ×σ∈P

(#τ +#σ) .

Appendix D



D.2 Construction 467

The definition of Csp,l(τ, P ) and Csp(P ) yields

∑
τ×σ∈P

#τ =
∑

τ∈T (I)

[
#τ

∑
σ:τ×σ∈P

1

]
=
∑

τ∈T (I)

#τ Csp,l(τ, P )

≤
depth(T (I)∑

�=0

Csp(P )
∑

τ∈T (�)(I)

#τ ≤ Csp(P ) (depth(T (I)) + 1)#I

with T (�)(I) defined in (D.7). Combining this estimate with the similar inequality∑
τ×σ∈P #σ ≤ Csp(P ) (depth(T (J)) + 1)#J proves the desired bound. ��

D.2.9 Accuracy

D.2.9.1 Discretisation of an Integral Operator

We consider a typical example. The integral operator K is defined by

(Kf) (x) :=
∫ 1

0

σ(x, y)f(y)dy (cf. §11.9.1).

For discretisation, we introduce an equidistant grid xν = νh (h = 1/N ) with
collocation points ξν =

(
ν − 1

2

)
h. The piecewise constant basis functions

bν(x)=
{
1 x ∈ [xν−1, xν ]
0 otherwise

}
are used for the ansatz f =

∑N
j=1 ajbj . Collocation11

of Kf = g yields the equations⎛⎝K
(

N∑
j=1

ajbj

)⎞⎠ (ξi) = g(ξi) (1 ≤ i, j ≤ N) .

The sets Xi and Yj in (D.8) are Xi = {ξi} and Yj = supp(bj) = [xj−1, xj ]. Let
τ × σ ∈ P+ be an admissible block. This means that Xτ = [a, b] and Yσ = [c, d]
satisfy (D.10). The entries of the discretisation matrix K are

Kij =

∫ 1

0

σ(ξi, y) bj(y) dy =

∫ xj

xj−1

σ(ξi, y) dy.

Assume that σ has a separable approximation of separation rank r:

σ(x, y) = σr(x, y) +Rr with σr(x, y) =

r∑
�=1

ϕ�(x)ψ�(y). (D.14)

11 The choice of the discretisation is not essential.



468

Replacing σ with σr, we obtain K(r)
ij instead of Kij :

K
(r)
ij =

∫ xj

xj−1

σr(ξi, y) dy =

r∑
�=1

ϕ�(ξi)︸ ︷︷ ︸
=:a

(�)
i

∫ xj

xj−1

ψ�(y)︸ ︷︷ ︸
=:b

(�)
j

dy.

The vectors a(�) =
(
a
(�)
i

)
i∈τ

and b(�) =
(
b
(�)
j

)
j∈σ

form the rank-r matrix

(K
(r)
ij )(i,j)∈τ×σ = K(r)|τ×σ =

r∑
�=1

a(�)b(�)T.

The general integral equation method uses the singularity function σ(x, y) of an
elliptic differential equation with constant coefficients or its derivatives as kernel
function of the integral operator. The integral is taken over a surface. This does not
change the fact that a separable approximation of separation rank r leads to a matrix
block K(r)|τ×σ ∈ Rr.

D.2.9.2 Error Estimate

Let σ(x, y) be the singularity function of an elliptic differential equation with con-
stant coefficients. Then σ(x, y) is not only analytic for (x, y) ∈ X × Y, x �= y, but
also asymptotically smooth; i.e., the partial derivatives satisfy the estimate∣∣∣∣ ∂α∂xα ∂β

∂xβ
σ(x, y)

∣∣∣∣ ≤ Cα+β |x− y|−|α|−|β|−s

for all multi-indices α, β ∈ Nd
0, α + β �= 0 and for all x ∈ X, y ∈ Y, x �= y.

The fixed value s ∈ R indicates the strength of the singularity (cf. [198, §E]).
A typical example of an asymptotically smooth function is the function

σ(x, y) = log |x− y| for x, y ∈ R (x �= y).

A simple method producing an separable expression is the Taylor12 expansion.
Assume that x ∈ X := [a, b] and y ∈ Y := [c, d] with 0 ≤ a ≤ b < c ≤ d ≤ 1.
Expansion around x0 := a+b

2 yields

log |x− y| =
r−1∑
�=0

(x− x0)
�

�!

d�

dx�
log |x0 − y| +Rr.

This is (D.14) with ϕ�(x) =
(x−x0)

�−1

(�−1)! and ψ�(y) =
d�−1

dx�−1 log |x0 − y|. Remainder
Rr can be estimated by

|Rr| =
∣∣∣∣∣
∞∑
�=r

1

�

(
x− x0
y − x0

)�
∣∣∣∣∣ ≤ 1

r

∣∣∣x−x0

y−x0

∣∣∣r
1 −
∣∣∣x−x0

y−x0

∣∣∣ for x ∈ [a, b], y ∈ [c, d].

12 In practice, interpolation is preferred. It is easier to implement and yields better approximations.

Appendix D



469

Obviously, the error |K(r)
ij −Kij | is described by the remainder Rr. SinceX=[a, b]

and Y = [c, d] are assumed to satisfy η-admissibility (D.10), we have

min{diam(τ), diam(σ)} = b− a ≤ η(c− b),

provided that diam(X) = b − a ≤ diam(Y ) = d − c (otherwise interchange the
roles of x and y). Since |x− x0| ≤ b−a

2 and |y − x0| ≥ b−a
2 + c− b, we obtain the

estimates ∣∣∣∣x− x0
y − x0

∣∣∣∣ ≤
b−a
2

b−a
2 + c− b

=
1

1 + 2 c−b
b−a

≤ 1

1 + 2/η

and
|Rr| ≤ 1

r

η + 2

2

(
1

1 + 2/η

)r

.

This proves that the error Rr decays exponentially with respect to r.

D.2.9.3 Separable Expansion of the Green Function

In the case of an integral operator, the kernel function σ(x, y) is explicitly given. In
the case of the inversion of a sparse finite element matrix, the inverse is implicitly
connected with an integral operator using the Green function G(x, y) instead of σ.
Even if the coefficients of the differential operator in Ω ⊂ Rd are nonsmooth
(only bounded), one can show that G(x, y) has a separable expansion (D.14) with
remainder O(Rr) ≤ O(exp(−c r1/(d+1)) (cf. Bebendorf–Hackbusch [39], Faust-
mann [128], Faustmann–Melenk–Praetorius [129], and [198, §11.3]).

D.3 Matrix Operations

D.3.1 Matrix-Vector Multiplication

Let M ∈ H(r, P ), x ∈ RJ , and y ∈ RI . Calling MVM (y,M, x, I × J) produces
y := y +Mx . It is a recursion in T (I × J, P ):

procedure MVM(y,M, x, b);
if b = τ × σ ∈ P then y|τ := y|τ +M |b · x|σ
else for all b′ ∈ S(b) do MVM(y,M, x, b′);

If b ∈ P−, M |b is represented as a full matrix and M |b · x|σ in the second line of
MVM is the standard matrix-vector multiplication. If b ∈ P+, M |b ∈ Rr(b) holds
and the product M |b · x|σ is performed as in (D.3).

Lemma D.18. The number NMV of arithmetic operations for matrix-vector multi-
plication involving a matrix from H(r, P ) can be bounded by the storage cost
SH(r, P ) (estimated in Lemma D.17):

SH(r, P ) ≤ NMV ≤ 2SH(r, P ).

Proof. See [198, Lemma 7.17]. ��

D.2 Construction



470

D.3.2 Truncations

Truncation to lower rank is an essential part of the following operations. The general
notation of the (nonlinear) truncation operator to rank r is Tr. An additional upper
index indicates the type of matrices to which the operator is applied:

T R←R
r : Rs → Rr (s > r), T R←F

r : F → Rr, T R
r : Rs ∪ F → Rr.

T R←R
r is explained in Lemma D.4. T R←F

r using the singular value decomposition
is only applied to small-sized fully populated matrices. T R←R

r is defined as the
identity if s ≤ r.

Remark D.19. Instead of the target rank r we can fix an accuracy of ε > 0 and
choose r such that the error is bounded by ε.

The truncation T H
r : H(s, P ) → H(r, P ) (s � r) of hierarchical matrices is

defined by a blockwise truncation:

(
T H
r←s(M)

)
|b =
{

T R
r(b)←s(b) (M |b) if b ∈ P+

M |b if b ∈ P−

}
for M ∈ H(s, P ).

D.3.3 Addition

Let M1 ∈ H(r1, P ) and M2 ∈ H(r2, P ) be two hierarchical matrices with the
same partition P . The exact addition yields M = M1 + M2 ∈ H(r1 + r2, P ).
For its computation, we have to add all blocks: M |b := M1|b +M2|b for b ∈ P.
Computational work is only involved for b ∈ P−, since addition of Rr matrices
is free (cf. (D.4)).

Formatted addition ⊕r : H(r1, P ) × H(r2, P ) → H(r, P ) uses truncation
M |b := T R←R

r (M1|b +M2|b) for all b ∈ P+.

Lemma D.20. In the standard case of r = r1 = r2 , the cost is

NH+H ≤ 24 r SH(r, P ) + 176 r3 #P+.

Proof. Use Lemma D.4 with s = 2r for b ∈ P+ and sum #b over all b ∈ P−;
cf. [198, Lemma 7.20b]. ��

In the case of multiple additions, the cost of Rr(
∑q

ν=1Mν) increases with the
rank of

∑
Mν and therefore with the number of terms. Instead, the cheaper but

possibly less accurate pairwise truncation is preferred:

T R
r,pairw

(∑q

ν=1
Mν

)
= T R

r (. . . T R
r (T R

r (T R
r (M1+M2) +M3)︸ ︷︷ ︸+M4)︸ ︷︷ ︸+ . . .).

Appendix D



D.3 Matrix Operations 471

D.3.4 Agglomeration

Next, we consider the conversion of a block-structured matrix into a (global) rank-r
matrix; e.g., �→ . Let b be the block of the output matrix, whereas the

input matrix is split into the blocks bi ∈ S(b):
[
M1 M2

M3 M4

]
∈ Rb with Mi ∈ R(s, bi).

The extension of a matrixM ∈ Kb′ to a larger size Rb is denoted by the symbol ·|b:

(
M |b
)
i,j

=

{
Mi,j if (i, j) ∈ b′,
0 if (i, j) ∈ b\b′.

Therefore the agglomeration can be written as a summation: M =
[
M1 M2

M3 M4

]
=

M1|b + M2|b + M3|b + M4|b. Accordingly, truncation T R
r (or T R

r,pairw) can be
applied. The truncation error is analysed in Hackbusch [200].

D.3.5 Matrix-Matrix Multiplication

We considerM =M ′M ′′ withM ′ ∈ KI×J andM ′′ ∈ KJ×K . The involved block
cluster trees T (I × J) and T (J × K) share the common structure of T (J). This
fact is essential since otherwise the block structures of M ′ and M ′′ would not fit
together.

The basic idea of the multiplication algorithm is as follows. Using the substruc-

turing M =
[
M11 M12

M21 M22

]
of hierarchical matrices, we can divide the multiplication

task M = M ′M ′′ ∈ H(r, P ) with M ′ ∈ H(r′, P ′) and M ′′ ∈ H(r′′, P ′′) in four
subtasks:

M11 =M ′
11M

′′
11 +M

′
12M

′′
21, M12 = . . . , etc.

The terms are of the form M̂ = M̂ ′M̂ ′′. It may happen that one of the submatrices
M̂ ′ or M̂ ′′ is not substructured but belongs to Rr or F . Then, as discussed below,
the product M̂ = M̂ ′M̂ ′′ can be evaluated. Otherwise, we have to subdivide
recursively until one of the following cases applies.

Case 1a) M̂ ′′ = M ′′|b for b ∈ P+, i.e., M̂ ′′ =
∑
aib

T
i ∈ Rr(b). Now the

multiplication M̂ ′M̂ ′′ reduces to r matrix-vector multiplications M̂ ′ai.
Case 1b) M̂ ′′ =M ′′|b for b ∈ P−, i.e., M̂ ′′ ∈ F . Same as Case 1a with vectors

ai being the columns of M̂ ′′.
Case 2) M̂ ′ =M ′|b for b ∈ P . M̂T = M̂ ′′TM̂ ′T can be treated as before.
Case 3) The target matrix M contains the block M̂ = M |b for b = τ × ρ ∈ P .

The other matrices are M̂ ′ ∈ Kτ×σ and M̂ ′′ ∈ Kσ×ρ for some σ ∈ T (J).
Then the operation M |τ×ρ ← M |τ×ρ ⊕r (M

′|τ×σ �r M
′′|σ×ρ) is performed by

the following procedure. Here, �r indicates that the product is truncated to rank r.



472

procedure MMR(M,M ′,M ′′, τ, σ, ρ);
begin

if τ × σ ∈P ′ or σ × ρ ∈ P ′′ then

begin Z :=M ′|τ×σM
′′|σ×ρ;

if τ × ρ ⊂ b ∈ P+ then Z := T R
r (Z) {for a suitable b ∈ T}

end else {the else case corresponds to τ × σ /∈ P ′ and σ × ρ /∈ P ′′}
begin Z|τ×ρ := 0;

for all τ ′ ∈ S(τ), σ′ ∈ S(σ), ρ′ ∈ S(ρ)
do MMR(Z,M ′,M ′′, τ ′, σ′, ρ′) {recursion}

end;

if τ × ρ ∈ P− then M |τ×ρ :=M |τ×ρ + Z else M |τ×ρ := T R
r (M |τ×ρ + Z)

end;

The general formatted product is written in the formM :=M ⊕r (M
′ �r M

′′).
The call MM(M,M ′,M ′′, I, J,K) of the following procedure produces M :=
M ⊕r (M

′ �rM
′′). The factorsM ′,M ′′ are input parameters, whereasM is input

and output parameter. The parameters τ, σ, ρ must satisfy τ × σ ∈ T (I × J, P ′),
σ × ρ ∈ T (J ×K,P ′′), and τ × ρ ∈ T (I ×K,P ).

procedure MM(M,M ′,M ′′, τ, σ, ρ);
if τ × σ /∈ P ′ and σ × ρ /∈ P ′′ and τ × ρ /∈ P then

for all τ ′ ∈ ST (I)(τ), σ
′ ∈ ST (J)(σ), ρ

′ ∈ ST (K)(ρ) do

MM(M,M ′,M ′′, τ ′, σ′, ρ′)
else if τ × ρ /∈ P then {τ × σ ∈ P ′ or σ × ρ ∈ P ′′ hold}
begin Z :=M ′|τ×σM

′′|σ×ρ; M |τ×ρ := T H
r (M |τ×ρ + Z)

end else MMR(M,M ′,M ′′, τ, σ, ρ); {τ × ρ ∈ P}

Analysing the computational cost is more involved (details in [198, §7.8.3]).
For discussing the asymptotic behaviour, we consider the case I = J = K
with n := #I and assume depth(T (I × I, P ) = O(log n) and #P = O(n)
(cf. Lemma D.16). Then we obtain (D.15), where r := max{r′, r′′, nmin}:

NMM(P, r′, r′′) ≤ O
(
rn log(n) (log(n) + r2)

)
. (D.15)

D.3.6 Inversion and LU Decomposition

The representation (D.6) of the inverse yields a recursion. The involved additions
(subtractions) and multiplications are replaced by formatted additions ⊕r and
formatted multiplications �r. Details are given in [198, §7.5 and §7.8.4].

For many purposes, the inversion can be replaced by the LU decomposition
which is described in detail in §13.1.

Appendix D



Appendix E

Galerkin Discretisation of Elliptic PDEs

Abstract A standard source of sparse and large linear systems is discretisation
of elliptic boundary value problems. Here we consider Galerkin discretisation.
The variational formulation of the problem is introduced in Section E.1, while the
Galerkin approach follows in Section E.2. Some details about the finite element
matrix are mentioned in Section E.3. Section E.4 describes the connections
between the continuous differential operator and the discrete problem. The error
estimates are discussed in Section E.5. Two discretisations corresponding to
Galerkin subspaces Vn′ ⊂ Vn lead to characteristic connections between the
corresponding matrices (cf. Section E.6).
Details about finite elements can be found, e.g., in Braess [63], Brenner–Scott [82],
and Hackbusch [193, 201].

E.1 Variational Formulation of Boundary Value Problems

In the following, U and V are Hilbert spaces. The respective scalar products are
denoted by (·, ·)U and (·, ·)V . The norms are induced by the scalar products:

‖u‖U =
√
(u, u)U and ‖v‖V =

√
(v, v)V .

The dual space V ′ is the space of all linear and continuous maps f : V → K
(K denotes the field R or C) with the dual norm

‖f‖V ′ = sup{|f(v)| : ‖v‖V ≤ 1}.

Similarly, the dual space U ′ of U can be introduced. By the Riesz isomorphism
(cf. Riesz [326, §II.30]), any f ∈ U ′ corresponds to an element uf ∈ U with

‖uf‖U = ‖f‖U ′ and (uf , v)U = f(v) for all v ∈ U.

In the case of U, we identify f and uf so that U = U ′. However, V and V ′ are
regarded as different spaces.

473© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5



474

In the following application we consider the Gelfand triple

V ⊂ U = U ′ ⊂ V ′ (continuous and dense embeddings).

The embedding is continuous if sup{‖v‖U/‖v‖V : v ∈ V } < ∞. It is dense if V is
dense in U. If V ⊂ U is a continuous and dense embedding, U ⊂ V ′ is as well.

In the case of standard scalar differential equation of order 2m, the space V is
the Sobolev space Hm(Ω) or a subspace as, e.g., Hm

0 (Ω) with vanishing Dirichlet
boundary values, while U = L2(Ω) (explanation of these spaces in [193, §6.2]).

Finite element discretisations are based on the variational formulation of the
boundary value problem, involving a bilinear or sesquilinear form.

Definition E.1. a(·, ·) : V × V → K is a sesquilinear form if K = C and

a(u+ λv,w) = a(u,w) + λa(v, w), a(u, v + λw) = a(u, v) + λ̄a(u, v + λw)

for all u, v, w ∈ V, λ ∈ K. In the case of K = R , the form a(·, ·) is called
bilinear. The form a is called symmetric if a(u, v) = a(v, u) for all u, v ∈ V.

For simplicity, we restrict the explanations to K = R. The bilinear form is
assumed to be bounded, i.e.,

‖a‖ := sup{|a(v, w)| : v, w ∈ V, ‖v‖V ≤ 1, ‖w‖V ≤ 1} (E.1)

is finite.
Starting from the strong formulation Lv − f = 0, multiplying by a test function

w ∈ V , and applying partial integration, we arrive at the weak formulation or
variational formulation

find v ∈ V with a(v, w) = f(w) for all w ∈ V (E.2)

(cf. [193, §7]). The Poisson model problem corresponds to (E.2) with

V = H1
0 (Ω), U = L2(Ω), a(v, w) =

∫
Ω

〈∇v,∇w〉 dx, f(w) =

∫
Ω

fwdx .

Concerning the solvability of problem (E.2), we refer to [193, §6.5]. A simple
sufficient condition is coercivity of the form a.

Definition E.2. A bilinear (sesquilinear) form is called coercive if there is some
C > 0 with

a(v, v) ≥ 1

C
‖v‖2V for all v ∈ V. (E.3)

Together with ‖a‖ < ∞ (cf. (E.1)), this condition implies that the energy norm

‖v‖a :=
√
a(v, v)

is equivalent to ‖·‖V .

Appendix E



E.1 Variational Formulation of Boundary Value Problems 475

Remark E.3. If a(·, ·) is symmetric and coercive, the variation problem (E.2) is
equivalent to finding the minimiser of min{ 1

2a(v, v) − f(v); v ∈ V }.

A bounded bilinear form a(·, ·) : V ×V → R corresponds to a unique linear
operator

A : V → V ′ with (E.4)
a(u, v) = 〈Av,w〉V ′×V = (Au, v)U for all u, v ∈ V.

Here, 〈ϕ, v〉V ′×V := ϕ(v) denotes the application of the dual map ϕ ∈ V ′ to
v ∈ V . The scalar product (·, ·)U : U×U → R restricted to U × V can be ex-
tended continuously to (·, v)U = 〈·, v〉V ′×V . Therefore, (Au, v)U makes sense.
The operator A is the weak counterpart of the differential operator. Note that A
also contains the boundary condition. Problem (E.2) is equivalent to

Au = f.

Remark E.4. The norms ‖a‖ in (E.1) and ‖A‖V ′←V (cf. (B.11)) coincide.
Problem (E.2) is solvable for all f ∈ V ′ if and only if A is invertible. In the
latter case, the solution is bounded by

‖v‖V ≤
∥∥A−1

∥∥
V←V ′ ‖f‖V ′ .

In the case of (E.3), ‖A−1‖V←V ′ ≤ C holds.

E.2 Galerkin Discretisation

For discretisation, we introduce a subspace1 Vn ⊂ V with dim(Vn) = n < ∞.
The norm on Vn is ‖·‖V restricted to Vn. The variational formulation (E.2) can be
repeated with Vn instead of V :

find un ∈ Vn with a(v, w) = (f, w)U for all w ∈ Vn . (E.5)

For a concrete description of the Galerkin solution un, a basis {φα : α ∈ I} of
Vn must be chosen, where #I = n = dimVn. Any function vn ∈ Vn has a basis
representation

Pn x :=
∑
α∈I

xαφα = vn ∈ Vn (E.6)

involving a vector
x = (xα)α∈I ∈ X := RI

1 The inclusion Vn ⊂ V is characteristic for conforming Galerkin discretisations. Nonconform-
ing discretisations need an extra analysis. Concerning multigrid applications to nonconforming
discretisations, see Brenner [81] and Braess–Dryja–Hackbusch [64].



476

called the coefficient vector of vn. Equation (E.6) defines the injective linear map
Pn : X → Vn ⊂ V . It can be interpreted as an invertible mapping Pn : X → Vn
or as a mapping Pn : X → V .

We make the ansatz un = Pnx for the solution of (E.5). One easily verifies
that is it sufficient to test the equation a(v, w) = (f, w)U with all basis functions
w = φα, α ∈ I. This leads to the following system of equations:

An x = fn with entries (E.7a)
An,αβ = a(φβ , φα), fn,α = (f, φα)U (α, β ∈ I). (E.7b)

A standard finite element basis {φα} has the property that for any α ∈ I there
are only a few β ∈ I so that the interiors of the supports of φα and φβ overlap.
In this case, Galerkin discretisation is a finite element discretisation and the
matrix An is sparse.

The finite element method uses a tessellation of Ω (e.g., a triangulation) into the
finite elements (e.g., triangles), together with a set of nodal points {xα : α ∈ I} .
The standard basis functions are piecewise polynomials (e.g., piecewise linear
functions) with the property

φα(xβ) = δαβ for α, β ∈ I (cf. (1.11)).

The following setting becomes easier if φα is scaled by a factor of h−
d
2 so that2

‖φα‖L2(Ω) = O(1) (E.8)

holds with respect to the limit h → 0, where h is the maximum of the diameters
of the finite elements. This scaling leads to a matrix of order O(h−2) for second
order differential equations as in (1.8). Another consequence is that both the matrix
and the differential operator have a smallest eigenvalue of order O(1).

Exercise E.5. Prove that (E.7b) implies that 〈Ahx, y〉 = a(Phx, Phy) for all
x, y ∈ KI , where 〈·, ·〉 is the Euclidean scalar product in KI .

Several properties of the bilinear form a are inherited by the finite element
matrix Ah.

Exercise E.6. Prove: (a) If a(·, ·) is symmetric, then Ah is Hermitian.
(b) If a(·, ·) is positive, i.e., a(v, v) > 0 for all 0 �= v ∈ V , then the Hermitian part
1
2 (Ah +AH

h) is positive definite. Note that coercivity of a implies that a is positive.

(c) If a(·, ·) is positive and symmetric, then Ah is positive definite.

Unfortunately, in general, the invertibility of Ah is not directly connected with
the invertibility of the operator A associated with a. Ah may be regular, although
A is singular, and vice versa.

2 Concerning the optimality of this choice, see Theorem 7.51.

Appendix E



E.2 Galerkin Discretisation 477

Definition E.7. A generalisation of the Galerkin discretisation is the Petrov–Galerkin
method which uses a test space Wn different from Vn :

find un ∈ Vn with a(v, w) = (f, w)U for all w ∈ Wn.

Here dim(Wn) = dim(Vn) is required. Statements about regularity and stability
of the discrete problem are even more difficult than for the Galerkin method.

E.3 Subdomain Problems and Finite Element Matrix

The finite element matrix is defined in (E.7a,b) as a matrix with entries a(φβ , φα)
involving the basis functions φα. The expression a(φβ , φα) is an integral over
the intersection of the supports of φα and φβ . The intersection may contain more
than one geometric element (triangle, etc.). Therefore, the usual computation of
a(φβ , φα) is split into aν(φβ , φα), where aν involves the integral over one ele-
ment Δν ∈ T of the triangulation T . Let J be the index set in T = {Δν : ν ∈ J}.
Define the quantities b(ν)αβ := aν(φβ , φα) for α, β ∈ I and ν ∈ J and the corre-
sponding matrices B(ν) = (b

(ν)
αβ )α,β∈I . Then the finite element matrix is

A =
∑
ν∈J

B(ν).

Because of sparsity,
∑

ν∈J contains only O(1) nonzero terms.
Now we consider a subset ω � Ω. The consistency with T is expressed by the

condition

ω =
⋃

ν∈J0

Δν for some J0 � J.

Assume that the bilinear form is an integral a(v, w) =
∫
Ω
. . . dx over Ω.

Replacing Ω by ω, we define

aω(v, w) =

∫
ω

. . . dx

with the same integrand. The variational formulation (E.2) with aω describes
the boundary value problem in ω with natural boundary conditions on ∂ω\∂Ω
and the original boundary conditions on ∂ω ∩ ∂Ω (cf. Hackbusch [193, §7.5]).

Remark E.8. (a) The finite element matrix Aω corresponding to aω(φβ , φα) can
easily be computed from B(ν) by Aω =

∑
ν∈J0

B(ν) involving J0 � J .

(b) Neither Aω for ω � Ω nor B(ν) can be obtained from A.
(c) If ω� (1≤�≤L) are disjoint with Ω =

⋃
� ω� , we have a(·, ·)=

∑
� aω�

(·, ·).



478

E.4 Relations Between the Continuous and Discrete Problems

The map Pn : X → Vn ⊂ V introduced in (E.6) is called a prolongation. It is
the first connection between the n-dimensional space X = RI and the infinite-
dimensional function space V. X becomes a Hilbert space when it is endowed with
the Euclidean norm:

〈x, y〉X =
∑

α∈I
xαyα, ‖x‖X =

√∑
α∈I

|xα|2.

Because of the scaling (E.8), the constants CP and C̄P in

C−1
P ‖x‖X ≤ ‖Pnx‖U ≤ C̄P ‖x‖X for all x ∈ X (E.9)

can be expected to be independent of dim(Vn). Inequality (E.9) is justified by
Proposition E.13.

The prolongation Pn : X → V has the adjoint mapping Rn = P ∗
n : V ′ →

X ′ = X which we call the restriction. The definition (Pnx, v)U = 〈x,Rnv〉X with
x = eα (α-th unit vector) yields the explicit description of

Rn = P ∗
n : V ′ → X, (Rnv)α = (φα, v)U =

∫
Ω

φαv dx for α ∈ I.

The matrix An in (E.7a,b) is the discrete equivalent of the operator A in (E.4).
A direct connection is described below.

Proposition E.9. An = RnAPn and fn = Rnf are the quantities in (E.7a,b).

Proof. The first identity is shown by An,αβ = a(φβ , φα) = a(Pneβ , Pneα) =
(APneβ , Pneα)U = 〈RnAPneβ , eα〉X = hd (RnAPn)αβ . The equations

fn,α = (f, φα)U = (f, Pneα)U = 〈Rnf, eα〉X = hd(Rnf)α

prove the second one. ��

The product Mn := RnAPn is called the mass matrix or the Gram matrix of
the basis {φα}.

Proposition E.10. Mn is positive definite. The extreme eigenvalues of Mn deter-
mine the best bounds in (E.9):

CP =

√
‖M−1

n ‖ = 1/
√
λmin(Mn), C̄P =

√
‖Mn‖ =

√
λmax(Mn). (E.10a)

Furthermore,

‖Pn‖U←X = ‖Rn‖X←U =
√

‖Mn‖ = ‖M1/2
n ‖ (E.10b)

holds.

Appendix E



E.4 Relations Between the Continuous and Discrete Problems 479

Proof. (i) C̄2
P ‖x‖2X ≤

(E.9)
‖Pnx‖2U = (Pnx, Pnx)U = 〈RnPnx, x〉X = 〈Mnx, x〉X =

‖Mn‖ ‖x‖2X .

(ii) The estimate ‖M−1
n ‖2 = 1

λ holds with λ = λmin(Mn). The corresponding
eigenvector x satisfies

λ‖x‖2X = λ 〈x, x〉X = 〈Mnx, x〉X = (Pnx, Pnx)U = ‖Pnx‖2U ≥ ‖x‖2X /C
2
P .

(iii) The last statement follows from (B.21a,b). ��

Conclusion E.11. The condition of Mn satisfies

cond(Mn) = κ(Mn) ≤ (C̄PCP )
2.

For the asymptotic behaviour, we have to consider a family of Galerkin
discretisations described by a sequence {Vn : n ∈ N′ ⊂ N} of subspaces for an
infinite subset N′. We conclude that (C̄PCP )

2 is uniformly bounded if and only
if

sup
n∈N′

cond(Mn) < ∞.

The latter property holds under suitable assumptions on the finite elements (cf. [193,
Remark 8.8.4], [100, Corollary 3.2]).

Since Mn = RnPn : X → X is invertible, the mappings

P̂n := Pn (RnPn)
−1, R̂n = P̂ ∗

n := (RnPn)
−1Rn (E.11a)

exist. Qn := P̂nRn = Pn (RnPn)
−1Rn : U → U is the orthogonal projection

onto Vn. The identity

RnP̂n = R̂nPn = I : X → X (E.11b)

proves that R̂n is the left-inverse of Pn : X → V, while Rn is the left-inverse of
P̂n : X → V.

Lemma E.12. (E.11c) holds with CP in (E.9) and vice versa:

‖P̂n‖U←X = ‖R̂n‖X←U = ‖M−1/2
n ‖ ≤ CP . (E.11c)

Proof. ‖P̂n‖2U←X = ‖P̂ ∗
n P̂n‖ = ‖R̂nP̂n‖ = ‖(RnPn)

−1RnPn (RnPn)
−1‖ =

‖M−1
n ‖. ��

Proposition E.13. Assume supn∈N′ cond(Mn) < ∞, let the basis functions φα be
scaled by (E.8), and assume that Mn is uniformly sparse:

sup
n∈N′

max
α

#{β :Mn,αβ �= 0} < ∞

(the latter property is ensured by the shape regularity of the finite element triangu-
lation). Then inequality (E.9) holds.



480

Proof. (i) ‖φα‖L2(Ω) � 1 implies Mn,αβ ∼ 1. Together with the uniform sparsity
of Mn, we conclude that λmax(Mn) ∼ 1 and ‖Pnx‖U � ‖x‖X .

(ii) The first inequality C−1
P ‖x‖X ≤‖Pnx‖U follows from ‖R̂nv‖X ≤CP ‖v‖U

by setting v = Pn x . By (E.11c),

‖R̂nv‖X � ‖v‖U /
√
λmin(Mn) = ‖v‖U

√
cond(Mn)/λmax(Mn)

holds. With cond(Mn) � 1 and part (i) we arrive at ‖R̂nv‖X � ‖v‖U . ��

The inverse estimate is the inequality

‖v‖V ≤ Cinvh
−m ‖v‖U for all v ∈ Vn, (E.12a)

which holds under suitable conditions on the finite elements.

Exercise E.14. Assume (E.11c), (E.12a), and the boundedness

|a(u, v)| ≤ Ca ‖u‖V ‖v‖V for all u, v ∈ V (E.12b)

of a (i.e., ‖a‖ ≤ Ca, cf. (E.1)). Prove (E.12c) with CK := Ca(CinvC̄P )
2 :

‖An‖2 ≤ CKh
−2m. (E.12c)

E.5 Error Estimates

If A in (E.4) corresponds to the (differentiation) order 2m, V is (a subspace of)
the Sobolev space Hm(Ω), whose norm is now denoted by ‖·‖V = ‖·‖m. By
arguments from approximation theory and under suitable assumptions on Vn, one
finds estimates of the form

‖u− un‖m ≤ Cmh
m ‖u‖2m (u, un: solutions of (E.2), (E.5)). (E.13a)

‖·‖2m is the norm of the Sobolev space H2m(Ω) ∩ V .
The problem (E.2) is called 2m-regular if

‖u‖2m ≤ Creg ‖f‖U for u = A−1f and all f ∈ U. (E.13b)

The inequalities (E.13a) and (E.13b) yield the error estimate

‖u− un‖V = ‖u− un‖m ≤ Chm ‖f‖U . (E.13c)

Proposition E.9 shows that un = PnA
−1
n Rnf ; hence, u− un = Enf with

En := A−1 − PnA
−1
n Rn .

Inequality (E.13c) can be expressed as

‖En‖V←U ≤ Chm. (E.13d)

Appendix E



E.5 Error Estimates 481

If the bilinear (sesquilinear) form a is not symmetric, we require the adjoint
problem

find v∗ ∈ V with a(w, v) = (w, f)U for all w ∈ V

to have the same properties (E.13a,b) as the original problem (E.2). Analogously to
(E.13d), we obtain

‖E∗
n‖V←U ≤ C∗hm.

As ‖E∗
n‖V←U = ‖En‖U←V ′ (by U = U ′), it follows that

‖En‖U←V ′ ≤ C∗hm.

The identity

EnAEn =
(
A−1 − PnA

−1
n Rn

)
A
(
A−1 − PnA

−1
n Rn

)
= A−1 − 2PnA

−1
n Rn + PnA

−1
n RnAPn︸ ︷︷ ︸

=An

A−1
n Rn

= A−1 − PnA
−1
n Rn = En

proves

‖En‖U←U ≤ ‖En‖U←V ′ ‖A‖V ′←V ‖E∗
n‖V←U ≤ ‖a‖CC∗h2m (E.14)

with ‖a‖ defined in (E.1). Inequality (E.14) is equivalent to

‖u− un‖U ≤ ‖a‖CC∗h2m ‖f‖U .

Combining the latter estimate with (E.12c), we obtain

‖En‖U←U ≤ C ′/‖An‖2
with C ′ = CC∗(CaCinvC̄P )

2.
So far, we used the 2m-regularity (cf. (E.13b)). In the case of the Poisson

equation, this is

A−1 = −Δ−1 : U = L2(Ω) = H0(Ω) → H2(Ω) ∩H1
0 (Ω).

This property holds for the unit squareΩ = (0, 1)×(0, 1) as for any convex domain,
but it does not hold, e.g., for domains with re-entrant corners. In the general case,
one obtains only statements of the form

A−1 : H−σm(Ω) → H(2−σ)m(Ω) ∩Hm
0 (Ω) for some σ ∈ (0, 1)

(cf. Hackbusch [193, §9.1]). A similar statement may be assumed for A∗. In this
case, the previous estimates must be formulated by other norms. (E.13d) becomes

‖En‖V←H−σm ≤ Chσm.

Repeating the proof above, we obtain ‖En‖Hσm←H−σm ≤ C ′hσm and

‖En‖Hσm←H−σm ≤ C ′/‖An‖σ2 . (E.15)



482

E.6 Relations Between Two Discrete Problems

Now we investigate the case of two Galerkin discretisations corresponding to the
subspaces

Vn′ ⊂ Vn ⊂ V. (E.16)

Typically, the situation Vn′ ⊂ Vn arises when finite elements belonging to Vn′ are
refined. The mappings Pn, Rn, P̂n, R̂n, Pn′ , Rn′ , P̂n′ , R̂n′ are defined as above.
The previous space X = RI is now written as either Xn′ = RIn′ or Xn = RIn .

Proposition E.15. If (E.16) holds, then there are mappings p : Xn′ → Xn and
r : Xn →Xn′ such that

Pnp = Pn′ , rRn = Rn′ . (E.17)

Proof. We recall that Pn : Xn → Vn is an isomorphism with the inverse R̂n

(similarly for n′). Therefore
p := R̂nPn′ (E.18)

satisfies Pnp = PnR̂nPn′ = Pn′ . The adjoint mapping

r := p∗ = P ∗
n′R̂∗

n =
(E.11a)

Rn′ P̂n

satisfies rRn′ = Rn. ��

The property (E.17) is illustrated by the following commuting diagram:

Vn′ →
id

Vn

Pn′ ↑↓ R̂n′ Pn ↑↓ R̂n

Xn′ →
p

Xn

(E.19)

Note that Vn′ ⊂Vn allows us to use the identity id as a mapping from Vn′ into Vn.

Proposition E.16. The two matrices An = RnAPn , An′ = Rn′APn′ , and the
right-hand sides fn = Rnf , fn′ = Rn′f (cf. Proposition E.9) are related by

An′ = rAnp, fn′ = rfn.

Proof. An′ = Rn′APn′ = (rRn)A (Pnp) = r (RnAPn) p = rAnp. ��

Appendix E



References

1. Alefeld, G.: Zur Konvergenz des Peaceman-Rachford-Verfahrens. Numer. Math. 26, 409–
419 (1976)

2. Alefeld, G.: On the convergence of the symmetric SOR method for matrices with red-black
ordering. Numer. Math. 39, 113–117 (1982)

3. Alefeld, G., Varga, R.S.: Zur Konvergenz des symmetrischen Relaxationsverfahrens. Numer.
Math. 25, 291–295 (1976)

4. Allgower, E., Böhmer, K., Zhen, M.: On a problem decomposition for semilinear nearly
symmetric elliptic equations. In: Hackbusch [187], pp. 1–17

5. Andreev, R., Tobler, C.: Multilevel preconditioning and low-rank tensor iteration for space-
time simultaneous discretizations of parabolic PDEs. Numer. Linear Algebra Appl. 22, 317–
337 (2015)

6. Ansorge, R., Glashoff, K., Werner, B. (eds.): Numerical Mathematics, ISNM, Vol. 49.
Birkhäuser, Basel (1979). (Hamburg, Jan. 1979)3

7. Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: Adaptive polynomial preconditioning for
Hermitian indefinite linear systems. BIT 29, 583–609 (1989)

8. Astrachancev, G.P.: An iterative method of solving elliptic net problems. USSR Comput.
Math. Math. Phys. 11,2, 171–182 (1971)

9. Astrachancev, G.P.: Methods of fictitious domains for a second-order elliptic equation with
natural boundary conditions. USSR Comput. Math. Math. Phys. 18, 114–121 (1978)

10. Axelsson, O.: Solution of linear systems of equations: iterative methods. In: Barker [33], pp.
1–51

11. Axelsson, O.: On algebraic multilevel iteration methods for selfadjoint elliptic problems with
anisotropy. Rend. Semin. Mat. Politec. Torino pp. 31–61 (1991)

12. Axelsson, O.: Iterative Solution Methods. Cambridge Univ. Press (1994). Reprinted 1996
13. Axelsson, O., Barker, V.A.: Finite element solution of boundary value problems. Academic

Press, Orlando (1984). Reprinted by SIAM, Philadelphia, 2001
14. Axelsson, O., Brinkkemper, S., Il’in, V.P.: On some versions of incomplete block-matrix

factorization iterative methods. Linear Algebra Appl. 58, 3–15 (1984)
15. Axelsson, O., Polman, B.: A robust preconditioner based on algebraic substructuring and

two-level grids. In: Hackbusch [185], pp. 1–26
16. Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods, part I. Numer.

Math. 56, 157–177 (1989)
17. Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods, part II. SIAM

J. Numer. Anal. 27, 1569–1590 (1990)
18. Axelsson, O., Vassilevski, P.: A black box generalized CG solver with inner iterations and

variable-step preconditioning. SIAM J. Matrix Anal. Appl. 12, 625–644 (1991)

3 The bracket ‘(town, date)’ refers to the town and date of the corresponding conference.

483© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5



484 References

19. Axelsson, O., Vassilevski, P.: Construction of variable-step preconditioners for inner-outer
iteration methods. In: Beauwens and de Groen [38], pp. 1–14

20. Aziz, A.K. (ed.): The mathematical foundation of the finite element method with applications
to partial differential equations. Academic Press, New York (1972). (Maryland, Jun. 1972)

21. Babuška, I.: Über Schwarzsche Algorithmen in partiellen Differentialgleichungen der
mathematischen Physik. ZAMM 37, 243–245 (1957)

22. Bachem, A., Grötschel, M., Korte, B. (eds.): Mathematical programming, the state of art.
Springer, Berlin (1983). (Bonn, Aug. 1982)

23. Bakhvalov, N.S.: On the convergence of a relaxation method with natural constraints on the
elliptic operator. USSR Comput. Math. Math. Phys. 6(5), 101–135 (1966)

24. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format.
Numer. Linear Algebra Appl. 20, 27–43 (2013)

25. Bank, R.E.: Marching algorithms and block Gaussian elimination. In: Bunch and Rose [86],
pp. 293–307

26. Bank, R.E., Chan, T.F.: An analysis of the composite step biconjugate gradient method.
Numer. Math. 66, 295–319 (1993)

27. Bank, R.E., Douglas, C.C.: Sharp estimates for multigrid rates of convergence with general
smoothing and acceleration. SIAM J. Numer. Anal. 22, 617–633 (1985)

28. Bank, R.E., Dupont, T.F.: Analysis of a two-level scheme for solving finite element equations.
Report CNA-159, University of Texas at Austin (1980)

29. Bank, R.E., Dupont, T.F.: An optimal order process for solving elliptic finite element
equations. Math. Comp. 36, 35–51 (1981)

30. Bank, R.E., Dupont, T.F., Yserentant, H.: The hierarchical basis multigrid method. Math.
Comp. 52, 427–458 (1988)

31. Bank, R.E., Holst, M.J., Widlund, O.B., Xu, J. (eds.): Domain Decomposition Methods in
Science and Engineering XX, Lect. Notes Comput. Sci. Eng., Vol. 91. Springer, Berlin (2013).
(San Diego, Feb. 2011)

32. Bank, R.E., Scott, L.R.: On the conditioning of finite element equations with highly refined
meshes. SIAM J. Numer. Anal. 26, 1383–1394 (1989)

33. Barker, V.A. (ed.): Sparse matrix techniques, Lect. Notes Math., Vol. 572. Springer, Berlin
(1977). (Copenhagen, Aug. 1976)

34. Bastian, P., Hackbusch, W., Wittum, G.: Additive and multiplicative multi-grid – a
comparison. Computing 60, 345–364 (1998)

35. Baur, U.: Low-rank solution of data-sparse Sylvester equations. Numer. Linear Algebra
Appl. 15, 837–851 (2008)

36. Baur, U., Benner, P.: Factorized solution of Lyapupov equations based on hierarchical matrix
arithmetic. Computing 78, 211–234 (2006)

37. Beauwens, R.: Approximate factorizations with s/p consistently ordered M-factors. BIT 29,
658–681 (1989)

38. Beauwens, R., de Groen, P. (eds.): Iterative Methods in Linear Algebra. North-Holland,
Amsterdam (1992). (Brussels, April 1991)

39. Bebendorf, M., Hackbusch, W.: Existence of H-matrix approximants to the inverse FE-
matrix of elliptic operators with L∞-coefficients. Numer. Math. 95, 1–28 (2003)

40. Benner, P., Breiten, T.: Low rank methods for a class of generalized Lyapunov equations
and related issues. Numer. Math. 124, 441–470 (2013)

41. Benzi, M.: Gianfranco Cimmino’s contributions to numerical mathematics. In: Ciclo di
Conferenze in Ricordo di Gianfranco Cimmino, March-May 2004, pp. 87–109. Seminario
di Analisi Matematica, Dipartimento di Matematica dell’Universit di Bologna (2005)

42. Benzi, M., Tůma, M.: A robust incomplete factorization preconditioner for positive definite
matrices. Numer. Linear Algebra Appl. 10, 385–400 (2003)

43. Bercovier, M., Gander, M.J., Kornhuber, R., Widlund, O.B. (eds.): Domain Decomposition
Methods in Science and Engineering XVIII, Lect. Notes Comput. Sci. Eng., Vol. 70. Springer,
Berlin (2009). (Jerusalem, Jan. 2008)

44. Berg, L.: Lineare Gleichungssysteme mit Bandstruktur. Deutscher Verlag der Wissen-
schaften, Berlin (1986)



References 485

45. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. Academic
Press, New York (1979)

46. Berman, A., Plemmons, R.J.: Cones and iterative methods for best least squares solutions of
linear systems. SIAM J. Numer. Anal. 11, 145–154 (2006)

47. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
48. Björck, Å.: Numerical Methods in Matrix Computations. Springer, Cham (2015)
49. Bjørstad, P.E.: The direct solution of a generalized biharmonic equation on a disk. In:

Hackbusch [182], pp. 1–9
50. Bjørstad, P.E., Espedal, M.S., Keyes, D.E. (eds.): Ninth International Conference on Domain

Decomposition Methods. ddm.org (1996). (Bergen, June 1996)
51. Bjørstad, P.E., Mandel, J.L.: On the spectra of sums of orthogonal projections with applica-

tions to parallel computing. BIT 31, 76–88 (1991)
52. Bjørstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on

regions partitioned into substructures. SIAM J. Numer. Anal. 23, 1097–1120 (1986)
53. Börgers, C., Widlund, O.B.: On finite element domain imbedding methods. SIAM J. Numer.

Anal. 27, 963–978 (1990)
54. Börm, S.: Efficient Numerical Methods for Non-local Operators. EMS, Zürich (2010).

Corrected 2nd printing, 2013
55. Börm, S., Reimer, K.: Efficient arithmetic operations for rank-structured matrices based on

hierarchical low-rank updates. Comput. Vis. Sci. 16, 247–258 (2013) [published 2015]
56. Bornemann, F., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer.

Math. 75, 135–152 (1996)
57. Bornemann, F., Yserentant, H.: A basic norm equivalence for the theory of multilevel

methods. Numer. Math. 64, 455–476 (1993)
58. Braess, D.: The contraction number of a multigrid method for solving the Poisson equation.

Numer. Math. 37, 387–404 (1981)
59. Braess, D.: The convergence rate of a multigrid method with Gauß-Seidel relaxation for the

Poisson equation. Math. Comp. 42, 505–386 (1984)
60. Braess, D.: Nonlinear Approximation Theory. Springer, Berlin (1986)
61. Braess, D.: On the combination of the multigrid method and conjugate gradients. In: Hack-

busch and Trottenberg [206], pp. 52–64
62. Braess, D.: A multigrid method for the membran problem. Comput. Mech. 3, 321–329 (1988)
63. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,

3rd ed. Cambridge University Press, Cambridge (2007)
64. Braess, D., Dryja, M., Hackbusch, W.: Grid transfer for nonconforming FE-discretisations

with application to non-matching grids. Computing 63, 1–25 (1999)
65. Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including the

V-cycle. SIAM J. Numer. Anal. 20, 967–975 (1983)
66. Braess, D., Hackbusch, W.: Approximation of 1/x by exponential sums in [1,∞).

IMA J. Numer. Anal. 25, 685–697 (2005)
67. Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and

the approximation by exponential sums. In: DeVore and Kunoth [107], pp. 39–74
68. Braess, D., Hackbusch, W., Trottenberg, U. (eds.): Advances in Multi-Grid Methods,

Notes on Numerical Fluid Mechanics, Vol. 11. Vieweg, Braunschweig (1985). (Oberwol-
fach, Dec. 1984)

69. Brakhage, H.: Über die numerische Behandlung von Integralgleichungen nach der Quadra-
turformelmethode. Numer. Math. 2, 183–196 (1960)

70. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic
problems by substructuring, part I. Math. Comp. 47, 103–134 (1986)

71. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic
problems by substructuring, part II. Math. Comp. 49, 1–16 (1987)

72. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic
problems by substructuring, part III. Math. Comp. 51, 415–430 (1988)

73. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic
problems by substructuring, part IV. Math. Comp. 53, 1–24 (1989)



486 References

74. Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J.: Convergence estimates for multigrid algo-
rithms without regularity assumptions. Math. Comp. 57, 23–45 (1991)

75. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms for nonsymmetric
and indefinite elliptic problems. Math. Comp. 51, 389–414 (1988)

76. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comp. 55,
1–22 (1990)

77. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31,
333–390 (1977)

78. Brenner, S.C.: A new look at FETI. In: Debit et al. [106], pp. 41–51
79. Brenner, S.C.: Convergence of the multigrid V-cycle algorithm for second-order boundary

value problems without full elliptic regularity. Math. Comp. 71, 507–525 (2002)
80. Brenner, S.C.: An additive Schwarz preconditioner for the FETI method. Numer. Math. 94,

1–31 (2003)
81. Brenner, S.C.: Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for

second order elliptic boundary value problems. Math. Comp. 73, 1041–1066 (2004)
82. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd ed.

Springer, New York (2008)
83. Buczyński, J.A., Landsberg, J.M.: On the third secant variety. J. Algebraic Combin. (2014).

Published on-line
84. Buleev, N.I.: Numerical method for solving two- and three-dimensional diffusion equations

[in Russian]. Mat. Sb. 51, 227–238 (1960)
85. Bulirsch, R., Grigorieff, R.D., Schröder, J. (eds.): Numerical treatment of differential

equations, Lect. Notes Math., Vol. 631. Springer, Berlin (1978). (Oberwolfach, July 1976)
86. Bunch, J.R., Rose, D.J. (eds.): Sparse Matrix Computations. Academic Press, New York

(1976). (Argonne National Laboratory, Sep. 1975)
87. Buneman, O.: A compact non-iterative Poisson solver. SUIPR Report 294, Stanford Univer-

sity (1969)
88. Buoni, J.J., Varga, R.S.: Theorems of Stein–Rosenberg type. In: Ansorge et al. [6], pp.65–75
89. Buoni, J.J., Varga, R.S.: Theorems of Stein–Rosenberg type II, optimal paths of relaxation in

the complex plane. In: Schultz [334], pp. 231–240
90. Buzbee, B., Golub, G.H., Nielson, C.: On direct methods for solving Poisson’s equations.

SIAM J. Numer. Anal. 7, 627–656 (1970)
91. Buzdin, A., Wittum, G.: Two-frequency decomposition. Numer. Math. 97, 269–295 (2004)
92. Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic problems.

SIAM J. Sci. Statist. Comput. 13, 243–258 (1992)
93. Chan, T.F., Glowinski, R., Périaux, J., Widlund, O.B. (eds.): Domain Decomposition

Methods. SIAM, Philadelphia (1989). (Los Angeles, Jan. 1988)
94. Chan, T.F., Glowinski, R., Périaux, J., Widlund, O.B. (eds.): Domain Decomposition Meth-

ods for Partial Differential Equations. SIAM, Philadelphia (1990). (Houston, Mar. 1989)
95. Chan, T.F., Kako, T., Kawarada, H., Pironneau, O. (eds.): Domain Decomposition Methods

in Science and Engineering. ddm.org (2001). (Chiba, Oct. 1999)
96. Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis. North-Holland, Amsterdam

(1990)
97. Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ricerca

Scientifica ed il Progresso Tecnico 9, 326–333 (1938)
98. Concus, P., Golub, G.H.: A generalized conjugate gradient method for nonsymmetric systems

of linear equations. In: Glowinski and Lions [152], pp. 56–65
99. Concus, P., Golub, G.H., Meurant, G.A.: Block preconditioning for the conjugate gradient

method. SIAM J. Sci. Statist. Comput. 6, 220–252 (1985)
100. Dahmen, W., Faermann, B., Graham, I.G., Hackbusch, W., Sauter, S.A.: Inverse inequalities

on non-quasiuniform meshes and applications to the mortar element method. Math. Comp.
73, 1107–1138 (2003)

101. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)
102. de Boor, C., Rice, J.R.: Extremal polynomials with applications to Richardson iteration for

indefinite linear systems. SIAM J. Sci. Statist. Comput. 3, 47–57 (1982)



References 487

103. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition.
SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

104. de Zeeuw, P.M.: Matrix-dependent prolongations and restrictions in a blackbox multigrid
solvers. J. Comput. Appl. Math. 33, 1–27 (1990)

105. de Zeeuw, P.M.: Incomplete line LU as smoother and as preconditioner. In: Hackbusch and
Wittum [208], pp. 215–224

106. Debit, N., Garbey, M., Hoppe, R.H.W., Keyes, D.E., Kuznetsov, Y.A., Périaux, J. (eds.):
Domain Decomposition Methods in Science and Engineering. CIMNE, Barcelona (2002).
(Lyon, Oct. 2000)

107. DeVore, R.A., Kunoth, A. (eds.): Multiscale, Nonlinear and Adaptive Approximation.
Springer, Berlin (2009) (Günzburg, Oct. 2009)

108. Dick, E., Riemslagh, K., Vierendeels, J. (eds.): Multigrid methods VI, Lect. Notes Comput.
Sci. Eng., Vol. 14. Springer, Berlin (2000). (Gent, Sep. 1999)

109. Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.): Domain Decompo-
sition Methods in Science and Engineering XXII, Lect. Notes Comput. Sci. Eng., Vol. 104.
Springer, Cham (2016). (Lugano, Sep. 2013)

110. D’Jakonov, E.G.: The construction of iterative methods based on the use of spectrally
equivalent operators. USSR Comput. Math. Math. Phys. 6,1, 14–46 (1966)

111. Dryja, M.: A finite-capacitance matrix method for elliptic problems on regions partitioned
into subregions. Numer. Math. 44, 153–168 (1984)

112. Dryja, M.: An additive Schwarz algorithm for two- and three-dimensional finite element
elliptic problems. In: Chan et al. [93], pp. 168–172

113. Dryja, M., Hackbusch, W.: On the nonlinear domain decomposition method. BIT 37,
296–311 (1997)

114. Dryja, M., Widlund, O.B.: Towards a unified theory of domain decomposition algorithms for
elliptic problems. In: Chan et al. [94], pp. 3–21

115. Dryja, M., Widlund, O.B.: Multilevel additive methods for elliptic finite element problems.
In: Hackbusch [187], pp. 58–69

116. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press,
Oxford (1989)

117. Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gradients.
BIT 29, 635–657 (1989)

118. Eiermann, M., Niethammer, W., Ruttan, A.: Optimal successive overrelaxation iterative
methods for p-cyclic matrices. Numer. Math. 57, 593–606 (1990)

119. Eiermann, M., Niethammer, W., Varga, R.S.: A study of semiiterative methods for non-
symmetric systems of linear equations. Numer. Math. 47, 505–533 (1985)

120. Eiermann, M., Niethammer, W., Varga, R.S.: Iterationsverfahren für nichtsymmetrische
Gleichungssysteme und Approximationsmethoden im Komplexen. Jber. d. Dt. Math.-Verein.
89, 1–33 (1987)

121. Elman, H.C.: Relaxed and stabilized incomplete factorizations for non-self-adjoint linear
systems. BIT 29, 890–915 (1989)

122. Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O.B. (eds.): Domain
Decomposition Methods in Science and Engineering XXI, Lect. Notes Comput. Sci. Eng.,
Vol. 98. Springer, Berlin (2014). (Rennes, Jun. 2012)

123. Espig, M., Hackbusch, W., Khachatryan, A.: On the convergence of alternating least squares
optimisation in tensor format representations. arXiv (2015)

124. Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Wähnert, P.: Efficient low-rank
approximation of the stochastic Galerkin matrix in tensor formats. Comput. Math. Appl. 67,
818–829 (2014)

125. Espig, M., Hackbusch, W., Rohwedder, T., Schneider, R.: Variational calculus with sums of
elementary tensors of fixed rank. Numer. Math. 122, 469–488 (2012)

126. Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in
tensor Banach spaces. Numer. Math. 121, 503–530 (2012)

127. Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel
solution algorithm. Int. J. Num. Meth. Engng. 32, 1205–1227 (1991)



488 References

128. Faustmann, M.: Approximation inverser Finite Elemente- und Randelementematrizen mittels
hierarchischer Matrizen. Doctoral thesis, Technische Universität Wien (2015)

129. Faustmann, M., Melenk, J.M., Praetorius, D.: H-matrix approximability of the inverses of
FEM matrices. Numer. Math. 131, 615–642 (2015)

130. Faustmann, M., Melenk, J.M., Praetorius, D.: Existence of H-matrix approximants to the
inverses of BEM matrices: the simple-layer operator. Math. Comp. 85, 119–152 (2016)

131. Fedorenko, R.P.: A relaxation method for solving elliptic difference equations. USSR
Comput. Math. Math. Phys. 1, 1092–1096 (1961)

132. Fedorenko, R.P.: The speed of convergence of one iterative process. USSR Comput. Math.
Math. Phys. 4, 227–235 (1964)

133. Fischer, B.: Polynomial Based Iteration Methods for Symmetric Linear Systems. Advances
in Numerical Mathematics. J. Wiley and Teubner, Stuttgart (1996)

134. Fischer, B., Freund, R.W.: On the constrained Chebyshev approximation problem on ellipses.
J. Approx. Theory 62, 297–315 (1990)

135. Fischer, B., Freund, R.W.: Chebyshev polynomials are not always optimal. J. Approx.
Theory 65, 261–272 (1991)

136. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson [389], pp. 73–89
137. Forsythe, G.E.: Gauss to Gerling on relaxation. Math. Tables and Other Aids to Computation

5, 255–258 (1951)
138. Forsythe, G.E.: Solving linear algebraic equations can be interesting. Bull. Amer. Math. Soc.

59, 299–329 (1953)
139. Forsythe, G.E., Strauss, E.G.: On best conditioned matrices. Proc. Amer. Soc. 6, 340–345

(1955)
140. Fridman, V.M.: The method of minimum iterations with minimum errors for a system of

linear algebraic equations with a symmetrical matrix. USSR Comput. Math. Math. Phys. 2,
362–363 (1963)

141. Frobenius, G.: Über Matrizen aus positiven Elementen. Sitzungsbericht Akad. Wiss. Phys.-
math. Klasse Berlin pp. 417–476 (1908)

142. Frobenius, G.: Über Matrizen aus positiven Elementen. Sitzungsbericht Akad. Wiss. Phys.-
math. Klasse Berlin pp. 514–518 (1909)

143. Frommer, A., Szyld, D.B.: H-Splittings and two-stage iterative methods. Numer. Math. 63,
345–356 (1992)

144. Gantmacher, F.R.: Matrizenrechnung, Band I. Deutscher Verlag der Wissenschaften, Berlin
(1958)

145. Gantmacher, F.R.: The Theory of Matrices, Vol. 1. AMS Chelsea Publ. (1959)
146. Gauss, C.F.: Nachlass: Theoria interpolationis : methodo nova tractata [1805]. In: Werke,

Vol. 3, pp. 265–303. Königliche Gesellschaft der Wissenschaft, Göttingen (1866). Reprint
by Georg Olms, Hildesheim, 1981

147. Gauss, C.F.: Supplementum theoriae combinationis observationum erroribus minimis ob-
noxiae [1826]. In: Werke, Vol. 4, pp. 55–93. Königliche Gesellschaft der Wissenschaft,
Göttingen (1873). Reprint by Georg Olms, Hildesheim, 1981

148. Gauss, C.F.: Brief an Gerling [1823]. In: Werke, Vol. 9, pp. 278–281. Königliche Gesell-
schaft der Wissenschaft, Göttingen (1903). Reprint by Georg Olms, Hildesheim, 1981.
English translation in [137]

149. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10,
345–363 (1973)

150. Glowinski, R., Golub, G.H., Meurant, G.A., Périaux, J. (eds.): First International Symposium
on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia
(1988). (Paris, Jan. 1987)

151. Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J., Widlund, O.B. (eds.): Fourth
International Symposium on Domain Decomposition Methods for Partial Differential
Equations. SIAM, Philadelphia (1991). (Moscow, May 1990)

152. Glowinski, R., Lions, J.L. (eds.): Computing Methods in Applied Sciences and Engineering,
Lect. Notes Econ. Math. Syst., Vol. 134. Addison-Wesley Publ., Reading, Mass. (1976)



References 489

153. Glowinski, R., Périaux, J., Shi, Z.C., Widlund, O.B. (eds.): Domain Decomposition Methods
in Science and Engineering. John Wiley & Sons, Strasbourg (1997). (Beijing, May 1995)

154. Golub, G.H.: Direct methods for solving elliptic difference equations. In: Morris [285], pp.
1–19.

155. Golub, G.H., O’Leary, D.P.: Some history of the conjugate gradient and Lanczos algorithms:
1948-1976. SIAM Rev. 31, 50–102 (1989)

156. Golub, G.H., Overton, M.L.: The convergence of inexact Chebyshev and Richardson itera-
tive methods for solving linear systems. Numer. Math. 53, 571–593 (1988)

157. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd ed. The Johns Hopkins University
Press, Baltimore (1996)

158. Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large
linear systems of tensor product structure. Computing 72, 247–265 (2004)

159. Grasedyck, L.: Existence of a low rank or H-matrix approximant to the solution of a
Sylvester equation. Numer. Linear Algebra Appl. 11, 371–389 (2004)

160. Grasedyck, L.: Nonlinear multigrid for the solution of large-scale Riccati equations in
low-rank and H-matrix format. Numer. Linear Algebra Appl. 15, 779–807 (2008)

161. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing 70,
295–334 (2003)

162. Grasedyck, L., Hackbusch, W.: A multigrid method to solve large scale Sylvester equations.
SIAM J. Matrix Anal. Appl. 29, 870–894 (2007)

163. Grasedyck, L., Hackbusch, W., Khoromskij, B.: Solution of large scale algebraic matrix
Riccati equations by use of hierarchical matrices. Computing 70, 121–165 (2003)

164. Grasedyck, L., Hackbusch, W., Kriemann, R.: Performance of H-LU preconditioning for
sparse matrices. Comput. Methods Appl. Math. 8, 336–349 (2008)

165. Grasedyck, L., Kriemann, R., Le Borne, S.: Parallel black box H-LU preconditioning for
elliptic boundary value problems. Comput. Vis. Sci. 11, 273–291 (2008)

166. Grasedyck, L., Kriemann, R., Le Borne, S.: Domain decomposition based H-LU pre-
conditioning. Numer. Math. 112, 565–600 (2009)

167. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)
168. Griebel, M.: Multilevel algorithms considered as iterative methods on semidefinite systems.

SIAM J. Sci. Comput. 15, 547–565 (1994)
169. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teub-

ner Skripten zur Numerik. Teubner, Stuttgart (1994)
170. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz

algorithms. Numer. Math. 70, 163–180 (1995)
171. Gunn, J.E.: The solution of elliptic difference equations by semi-explicit iterative techniques.

SIAM J. Numer. Anal. 2, 24–45 (1964)
172. Gustafsson, I.: A class of first order factorization methods. BIT 18, 142–156 (1978)
173. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related

algorithms, part I. SIAM J. Matrix Anal. Appl. 13, 594–639 (1992)
174. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related

algorithms, part II. SIAM J. Matrix Anal. Appl. 15, 15–58 (1994)
175. Gutknecht, M.H.: Lanczos-type solvers for nonsymmetric linear systems of equations. Acta

Numerica 6, 271–397 (1997)
176. Hackbusch, W.: A fast iterative method solving Poisson’s equation in a general region. In:

Bulirsch et al. [85], pp. 51–62
177. Hackbusch, W.: The fast numerical solution of very large elliptic difference schemes.

J. Inst. Maths. Appl. 26, 119–132 (1980)
178. Hackbusch, W.: Bemerkungen zur iterativen Defektkorrektur und zu ihrer Kombination mit

Mehrgitterverfahren. Rev. Roumaine Math. Pures Appl. 26, 1319–1329 (1981)
179. Hackbusch, W.: Fast numerical solution of time-periodic parabolic problems by a multi-grid

method. SIAM J. Sci. Statist. Comput. 2, 198–206 (1981)
180. Hackbusch, W.: On the regularity of difference schemes. Ark. Mat. 19, 71–95 (1981)
181. Hackbusch, W.: On the regularity of difference schemes, part II: regularity estimates for

linear and nonlinear problems. Ark. Mat. 21, 3–28 (1983)



490 References

182. Hackbusch, W. (ed.): Efficient Solvers for Elliptic Systems, Notes on Numerical Fluid
Mechanics, Vol. 10. Vieweg, Braunschweig (1984). (Kiel, Jan. 1984)

183. Hackbusch, W.: Multi-grid Methods and Applications, SCM, Vol. 4. Springer, Berlin (1985)
184. Hackbusch, W.: Multi-grid methods of the second kind. In: Paddon and Holstein [306],

pp. 11–83
185. Hackbusch, W. (ed.): Robust Multi-grid Methods, Notes on Numerical Fluid Mechanics,

Vol. 23. Vieweg, Braunschweig (1988). (Kiel, Jan. 1988)
186. Hackbusch, W.: The frequency decomposition multi-grid method, part I: application to

anisotropic equations. Numer. Math. 56, 229–245 (1989)
187. Hackbusch, W. (ed.): Parallel algorithms for PDEs, Notes on Numerical Fluid Mechanics,

Vol. 31. Vieweg, Braunschweig (1991). (Kiel, Jan. 1990)
188. Hackbusch, W.: The solution of large systems of BEM equations by the multi-grid and panel

clustering technique. Rend. Semin. Mat. Politec. Torino pp. 163–187 (1991)
189. Hackbusch, W.: Comparison of different multi-grid variants for nonlinear equations. ZAMM

72, 148–151 (1992)
190. Hackbusch, W.: The frequency decomposition multi-grid method, part II: convergence

analysis based on the additive Schwarz method. Numer. Math. 63, 433–453 (1992)
191. Hackbusch, W.: Integral Equations – Theory and Numerical Treatment, ISNM, Vol. 128.

Birkhäuser, Basel (1995)
192. Hackbusch, W.: Direct domain decomposition using the hierarchical matrix technique. In:

Herrera et al. [217], pp. 39–50
193. Hackbusch, W.: Elliptic Differential Equations – Theory and Numerical Treatment, SSCM,

Vol. 18, 2nd ed. Springer, Berlin (2003)
194. Hackbusch, W.: Multi-Grid Methods and Applications, SCM, Vol. 4. Springer, Berlin (2003)
195. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, SSCM, Vol. 42. Springer,

Berlin (2012)
196. Hackbusch, W.: Numerical tensor calculus. Acta Numerica 23, 651–742 (2014)
197. Hackbusch, W.: The Concept of Stability in Numerical Mathematics, SSCM, Vol. 45.

Springer, Berlin (2014)
198. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, SSCM, Vol. 49. Springer,

Berlin (2015)
199. Hackbusch, W.: Solution of linear systems in high spatial dimensions. Comput. Vis. Sci. 17,

111–118 (2015).
200. Hackbusch, W.: New estimates for the recursive low-rank truncation of block-structured

matrices. Numer. Math. 132, 303–328 (2016).
201. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen, 4th ed. Springer

Spektrum, Wiesbaden (2016)
202. Hackbusch, W., Khoromskij, B., Kriemann, R.: Direct Schur complement method by domain

decomposition based on H-matrix approximation. Comput. Vis. Sci. 8, 179–188 (2005)
203. Hackbusch, W., Khoromskij, B., Tyrtyshnikov, E.E.: Approximate iterations for structured

matrices. Numer. Math. 109, 365–383 (2008)
204. Hackbusch, W., Reusken, A.: Analysis of a damped nonlinear multilevel method. Numer.

Math. 55, 225–246 (1989)
205. Hackbusch, W., Trottenberg, U. (eds.): Multigrid Methods, Lect. Notes Math., Vol. 960.

Springer, Berlin (1982). (Köln-Porz, Nov. 1981)
206. Hackbusch, W., Trottenberg, U. (eds.): Multigrid Methods II, Lect. Notes Math., Vol. 1228.

Springer, Berlin (1986). (Köln, Oct. 1985)
207. Hackbusch, W., Trottenberg, U. (eds.): Multigrid Methods III, ISNM, Vol. 98. Birkhäuser,

Basel (1991). (Bonn, Oct. 1990)
208. Hackbusch, W., Wittum, G. (eds.): Incomplete Decompositions (ILU) – Algorithms, Theory,

and Applications, Notes on Numerical Fluid Mechanics, Vol. 41. Vieweg, Braunschweig
(1992). (Kiel, Jan. 1992)

209. Hackbusch, W., Wittum, G. (eds.): Fast Solvers for Flow Problems, Notes on Numerical
Fluid Mechanics, Vol. 49. Vieweg, Braunschweig (1995). (Kiel, Jan. 1994)



References 491

210. Hackbusch, W., Wittum, G. (eds.): Multigrid Methods V, Lect. Notes Comput. Sci. Eng.,
Vol. 3. Springer, Berlin (1998). (Stuttgart, Oct. 1996)

211. Hadjidimos, A.: Successive overrelaxation (SOR) and related methods. J. Comput. Appl.
Math. 123, 177–199 (2000)

212. Hageman, L.A., Young, D.M.: Applied Iterative Methods. Academic Press, Orlando (1981)
213. Hanke, M., Neumann, M., Niethammer, W.: On the SOR method for symmetric positive

definite systems. Linear Algebra Appl. 154, 457–472 (1991)
214. Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)
215. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier

transform. IEEE ASSP Magazine 1(4), 14–21 (1984)
216. Hemker, P.W., Wesseling, P. (eds.): Multigrid Methods IV, ISNM, Vol. 116. Birkhäuser, Basel

(1994). (Amsterdam, July 1993)
217. Herrera, I., Keyes, D.E., Widlund, O.B., Yates, R. (eds.): Domain Decomposition Methods in

Science and Engineering. National Autonomous University of Mexico, Mexico City (2003).
(Cocoyoc, Mexico, Jan. 2002)

218. Hestenes, M.R.: Conjugate Direction Methods in Optimization. Springer, New York (1980)
219. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.

J. Res. Nat. Bur. Standards 49, 409–436 (1952)
220. Heun, K.: Neue Methoden zur approximativen Integration der Differentialgleichungen einer

unabhängigen Veränderlichen. Z. für Math. und Phys. 45, 23–38 (1900)
221. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd ed. SIAM, Philadelphia

(2002)
222. Higham, N.J.: Functions of Matrices, Theory and Computation. SIAM, Philadelphia (2008)
223. Hockney, R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. J. ACM

12, 95–113 (1965)
224. Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimiza-

tion in the tensor train format. SIAM J. Sci. Comput. 34, A683–A713 (2012)
225. Huang, Y., Kornhuber, R., Widlund, O.B., Xu, J. (eds.): Domain Decomposition Methods

in Science and Engineering XIX, Lect. Notes Comput. Sci. Eng., Vol. 78. Springer, Berlin
(2011). (Zhanjiajie, Aug. 2009)

226. Il’in, V.P.: Somes estimates for conjugate gradient methods. USSR Comput. Math. Math.
Phys. 16,4, 22–30 (1976)

227. Jacobi, C.G.J.: Über eine neue Auflösungsart der bei der Methode der kleinsten Quadrate
vorkommenden linearen Gleichungen. Astron. Nachr. 32, 297–306 (1845)

228. Jennings, A., Malik, G.M.: Partial elimination. J. IMA 20, 307–316 (1977)
229. Jovanovič, B., Süli, E.: Analysis of finite difference schemes for linear partial differential

equations with generalized solutions, SSCM, Vol. 46. Springer, London (2014)
230. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin de

l’Academie Polonaise des Sciences et Lettres, Classe des Sciences Mathématiques et
Naturelles, Série A 35, 355–357 (1937)

231. Kaczmarz, S.: Approximate solution of systems of linear equations. Internat. J. Control 57,
1269–1271 (1993)

232. Kahan, W.M.: Gauss–Seidel methods of solving large systems of linear equations. Doctoral
thesis, University of Toronto, Canada (1958)

233. Kanzow, C.: Numerik linearer Gleichungssysteme – Direkte und iterative Verfahren.
Springer, Berlin (2005)

234. Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci.
Fennicae. Ser. A. I. Math.-Phys. 37, 1–79 (1947)

235. Kettler, R.: Analysis and comparison of relaxation schemes in robust multigrid and pre-
conditioned conjugate gradient methods. In: Hackbusch and Trottenberg [205], pp. 502–534

236. Keyes, D.E., Chan, T.F., Meurant, G.A., Scroggs, J.S., Voigt, R.G. (eds.): Fifth International
Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM,
Philadelphia (1992). (Norfolk, May 1991)

237. Keyes, D.E., Xu, J. (eds.): Domain Decomposition Methods in Science and Engineering
Computing. AMS, Providence (1994). (Penn State, Oct. 1993)



492 References

238. Khoromskij, B.: Tensor-structured preconditioners and approximate inverse of elliptic
operators in R

d. Constr. Approx. 30, 599–620 (2009)
239. Kornhuber, R., Hoppe, R.H.W., Périaux, J., Pironneau, O., Widlund, O.B., Xu, J. (eds.):

Domain Decomposition Methods in Science and Engineering XV, Lect. Notes Comput. Sci.
Eng., Vol. 40. Springer, Berlin (2005). (Berlin, July 2003)

240. Kosmol, P.: Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Opti-
mierungsaufgaben. Teubner, Stuttgart (1989)

241. Kosmol, P., Zhou, X.: The limit points of affine iterations. Numer. Funct. Anal. Optim. 11,
403–409 (1990)

242. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product
structure. SIAM J. Matrix Anal. Appl. 31, 1688–1714 (2010)

243. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear
systems. SIAM J. Matrix Anal. Appl. 32, 1288–1316 (2011)

244. Kressner, D., Tobler, C.: Preconditioned low-rank methods for high-dimensional elliptic PDE
eigenvalue problems. Comput. Methods Appl. Math. 11, 363–381 (2011)

245. Kriemann, R.: Parallel H-matrix arithmetics on shared memory systems. Computing 74,
273–297 (2005)

246. Kriemann, R., Le Borne, S.: H-FAINV: hierarchically factored approximate inverse pre-
conditioners. Comput. Vis. Sci. 17, 135–150 (2015).

247. Kronsjö, L.: A note on the ‘nested iteration’ method. BIT 15, 107–110 (1975)
248. Kronsjö, L., Dahlquist, G.: On the design of nested iterations for elliptic difference equations.

BIT 12, 63–71 (1972). [The front page of the paper shows wrong data: vol. 11 (1971)]
249. Krylov, A. N.: On the numerical solution of the equation by which in technical questions

frequencies of small oscillations of material systems are determined [in Russian]. Izvestiya
Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 491–539
(1931)

250. Kutta, W. M.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen.
Zeitschrift für Math. und Phys. 46, 435–453 (1901)

251. Kuznetsov, Y.A.: Algebraic domain decomposition methods I. Sov. J. Numer. Anal. Math.
Modelling 4, 361–392 (1989)

252. Kuznetsov, Y.A.: Multigrid domain decomposition methods for elliptic problems. Comput.
Methods Appl. Mech. Engrg. 75, 185–193 (1989)

253. Kuznetsov, Y.A.: Multigrid domain decomposition methods. In: Chan et al. [94], pp. 290–313
254. Lai, C.H., Bjørstad, P.E., Cross, M., Widlund, O.B. (eds.): Eleventh International Conference

on Domain Decomposition Methods. ddm.org (1999). (Greenwich, July 1998)
255. Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res. Nat.

Bur. Standards 49, 33–53 (1952)
256. Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Amer.

J. Math. 73, 615–624 (1951)
257. Langer, R.E. (ed.): Boundary Problems in Differential Equations. Kluwer Academic Publ.,

Dortrecht (1960). (Madison, April 1959)
258. Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.): Domain

Decomposition Methods in Science and Engineering XVII, Lect. Notes Comput. Sci. Eng.,
Vol. 60. Springer, Berlin (2008). (St. Wolfgang/Strobl, July 2006)

259. Le Borne, S., Grasedyck, L., Kriemann, R.: Domain decomposition based H-LU precondi-
tioners. In: Widlund and Keyes [399], pp. 661–668. (New York, Jan. 2005)

260. Lebedev, V.I.: On a Zolotarev problem in the method of alternating directions. USSR
Comput. Math. Math. Phys. 17,2, 58–76 (1971)

261. Lebedev, V.I., Finogenov, S.A.: On the order of choice of the iteration parameters in the
Chebyshev cyclic iteration method. USSR Comput. Math. Math. Phys. 11,2, 155–170 (1971)

262. Lebedev, V.I., Finogenov, S.A.: On the order of choice of the iteration parameters in the
Chebyshev cyclic iteration method. USSR Comput. Math. Math. Phys. 13,1, 21–41 (1973)

263. Liebmann, K.O.H.: Die angenäherte Ermittlung harmonischer Funktionen und konformer
Abbildung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der
Bayerischen Akademie der Wissenschaften zu München 47, 385–416 (1918)



References 493

264. Liesen, J., Saylor, P.E.: Orthogonal Hessenberg reduction and orthogonal Krylov subspace
bases. SIAM J. Numer. Anal. 42, 2148–2158 (2005)

265. Liesen, J., Strakos, Z.: Krylov Subspace Methods, Principles and Analysis. Oxford Univer-
sity Press, Oxford (2013)

266. Lions, P. L.: On the Schwarz alternating method I. In: Glowinski et al. [150], pp. 1–42
267. Loève, M.: Probability Theory II, 4th ed. Springer, New York (1978)
268. MacLachlan, S.P., Oosterlee, C.W.: Algebraic multigrid solvers for complex-valued matrices.

SIAM J. Sci. Comput. 30, 1548–1571 (2008)
269. Mandel, J.L.: A multilevel iterative method for symmetric, positive definite problems. Appl.

Math. Optim. 11, 77–95 (1984)
270. Mandel, J.L.: On block diagonal and Schur complement preconditioning. Numer. Math. 58,

79–93 (1990)
271. Mandel, J.L. (ed.): The Tenth International Conference on Domain Decomposition Methods.

AMS, Providence (1998). (Boulder, Aug. 1997)
272. Manteuffel, T.A.: Adaptive procedure for estimating parameters for the nonsymmetric

Tchebychev iteration. Numer. Math. 31, 183–208 (1978)
273. Manteuffel, T.A.: An incomplete factorization technique for positive definite linear systems.

Math. Comp. 34, 473–497 (1980)
274. Marchuk, G.: Splitting and alternating direction methods. In: Ciarlet–Lions [96], pp. 197–462
275. Marek, I.: Iterative methods for solving linear systems with a rectangular matrix. Report

8132, Universiteit Nijmegen (1981)
276. Mathew, T. P. A.: Domain Decomposition Methods for the Numerical Solution of Partial

Differential Equations. Springer, Berlin (2008)
277. Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression.

Linear Algebra Appl. 436, 3819–3838 (2012)
278. McCormick, S.F. (ed.): Multigrid Methods. SIAM, Philadelphia (1987)
279. Meijerink, J.: Iterative methods for the solution of linear equations based on incomplete

factorisation of the matrix. Shell Publ. 643, Rijswijk (1983). Published as SPE Conference
Paper, doi:10.2118/12262-MS

280. Meijerink, J., van der Vorst, H.A.: An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977)

281. Meis, T., Marcowitz, U.: Numerische Behandlung partieller Differentialgleichungen.
Springer, Berlin (1978)

282. Meis, T., Marcowitz, U.: Numerical Solution of Partial Differential Equations. Springer,
New York (1981)

283. Meurant, G.A.: The Lanczos and Conjugate Gradient Algorithms: from Theory to Finite
Precision Computations. SIAM, Philadelphia (2006)

284. Mohlenkamp, M.J.: Musings on multilinear fitting. Linear Algebra Appl. 438, 834–852
(2013)

285. Morris, J.L. (ed.): Symposium on the Theory of Numerical Analysis, Lect. Notes Math., Vol.
193. Springer, Berlin (1971). (Dundee, Sep. 1970)

286. Mróz, M.: Domain decomposition method for elliptic mixed boundary value problems.
Computing 42, 45–59 (1989)

287. Natterer, F.: The Mathematics of Computerized Tomography. J. Wiley and Teubner, Stuttgart
(1986)

288. Nepomnyaschikh, S.V.: Domain decomposition and Schwarz methods in a subspace for the
approximate solution of elliptic boundary value problems [in Russian]. Doctoral thesis,
University Novosibirsk (1986)

289. Neumaier, A., Varga, R.S.: Exact convergence and divergence domains for the symmetric
successive overrelaxation iterative (SSOR) method applied to H-matrices. Linear Algebra
Appl. 58, 261–272 (1984)

290. Nicolaides, R.: On multiple grid and related techniques for solving discrete elliptic systems.
J. Comput. Phys. 19, 418–431 (1975)

291. Niethammer, W.: Relaxation bei komplexen Matrizen. Math. Z. 86, 34–40 (1964)



494 References

292. Niethammer, W.: Relaxation bei nichtsymmetrischen Matrizen. Math. Z. 85, 319–327 (1964)
293. Niethammer, W.: The SOR method on parallel computers. Numer. Math. 56, 247–254 (1989)
294. Niethammer, W., Varga, R.S.: The analysis of k-step iterative methods for linear systems

from summability theory. Numer. Math. 41, 177–206 (1983)
295. Oertel, K.D., Stüben, K.: Multigrid with ILU-smoothing: systematic tests and improvements.

In: Hackbusch [185], pp. 188–199
296. O’Leary, D.P., White, R.E.: Multi-splitting of matrices and parallel solution of linear systems.

SIAM J. Alg. Disc. Meth. 6, 630–640 (1985)
297. Opfer, G., Schober, G.: Richardson’s iteration for nonsymmetric matrices. Linear Algebra

Appl. 58, 343–361 (1984)
298. Ortega, J.M.: Introduction to Parallel Vector Solution of Linear Systems. Plenum Press,

New York (1988)
299. Oseledets, I.V.: DMRG approach to fast linear algebra in the TT-format. Comput. Methods

Appl. Math. 11, 382–393 (2011)
300. Oseledets, I.V., Tyrtyshnikov, E.E.: TT-cross approximation for multidimensional arrays.

Linear Algebra Appl. 432, 70–88 (2010)
301. Ostrowski, A.M.: Über die Determinanten mit überwiegender Hauptdiagonale. Comment.

Math. Helv. 10, 69–96 (1937)
302. Ostrowski, A.M.: On the linear iteration procedures for symmetric matrices. Rend. Math.

Appl. 14, 140–163 (1954)
303. Oswald, P.: On function spaces related to finite element approximation theory. Z. Anal.

Anwendungen 9, 43–64 (1990)
304. Oswald, P.: Multilevel finite element approximation. Teubner Skripten zur Numerik.

Teubner, Stuttgart (1994)
305. Oswald, P.: On the convergence rate of SOR: a worst case estimate. Computing 52, 245–255

(1994)
306. Paddon, D.J., Holstein, H. (eds.): Multigrid Methods for Integral and Differential Equations.

Clarendon Press, Oxford (1985). (Bristol, Sep. 1983)
307. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM

J. Numer. Anal. 12, 617–629 (1975)
308. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differen-

tial equations. J. SIAM 3, 28–41 (1955)
309. Pearcy, C.: An elementary proof of the power inequality for the numerical radius. Michigan

Math. J. 13, 289–291 (1966)
310. Penzl, T.: Low rank solution of data-sparse Sylvester equations. Systems Control Lett. 40,

139–144 (2000)
311. Perron, O.: Zur Theorie der Matrices. Math. Ann. 64, 248–263 (1907)
312. Proskurowski, W., Widlund, O.B.: On the numerical solution of Helmholtz’s equation by the

capacitance matrix method. Math. Comp. 30, 433–468 (1976)
313. Quarteroni, A., Périaux, J., Kuznetsov, Y.A., Widlund, O.B. (eds.): Domain Decomposition

Methods in Science and Engineering. AMS, Providence (1994). (Como, Jun. 1992)
314. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd ed. Springer, Berlin (2007)
315. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations.

Oxford University Press, Oxford (1999)
316. Reich, E.: On the convergence of the classical iterative procedures for symmetric matrices.

Ann. Math. Statist. 20, 448–451 (1949)
317. Reid, J.K.: A method for finding the optimum successive overrelaxation factor. Comput. J.

9, 200–204 (1966)
318. Reid, J.K. (ed.): Large Sparse Sets of Linear Equations. Academic Press, New York (1971).

(Oxford, Apr. 1970)
319. Reid, J.K.: On the method of conjugate gradients for the solution of large sparse systems of

linear equations. In: Reid [318], pp. 231–254
320. Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric

multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16, 151–164 (2013)



References 495

321. Reusken, A.: Steplength optimization and linear multigrid methods. Numer. Math. 58,
819–838 (1991)

322. Reusken, A.: On maximum norm convergence of multigrid methods for two-point boundary
value problems. SIAM J. Numer. Anal. 29, 1569–1578 (1992)

323. Reusken, A.: The smoothing property for regular splittings. In: Hackbusch and Wittum [208],
pp. 130–138

324. Richardson, L.F.: The approximate arithmetical solution by finite differences of physical prob-
lems involving differential equations, with an application to the stresses in a masonry dam.
Philosophical Transactions of the Royal Society of London, Series A 210, 307–357 (1910)

325. Richardson, L.F., Gaunt, A.: The deferred approach to the limit. Philosophical Transactions
of the Royal Society of London, Series A 226, 299–361 (1927)

326. Riesz, F., Sz.-Nagy, B.: Vorlesungen über Funktionalanalysis, 4th ed. VEB Deutscher Verlag
der Wissenschaften, Berlin (1982)

327. Runge, C.D.T.: Ueber die numerische Auflösung von Differentialgleichungen. Math. Ann.
46, 167–178 (1895)

328. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM, Philadelphia (2003)
329. Saad, Y., Schultz, M.H.: A generalized minimal residual method for solving nonsymmetric

linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)
330. Samarskii, A.A., Nikolaev, E.S.: Numerical Methods for Grid Equations, Vol. II, Iterative

Methods. Birkhäuser, Basel (1989)
331. Sauter, S.A., Schwab, C.: Boundary Element Methods, SSCM, Vol. 39. Springer, Berlin

(2011)
332. Savas, B., Eldén, L.: Krylov-type methods for tensor computations I. Linear Algebra Appl.

438, 891–918 (2013)
333. Schröder, J., Trottenberg, U.: Reduktionsverfahren für Differenzengleichungen I. Numer.

Math. 22, 37–68 (1973)
334. Schultz, M. H. (ed.): Elliptic Problem Solvers. Academic Press, New York (1981). (Santa

Fe, June 1980)
335. Schwab, C., Todor, R.A.: Karhunen-Loève approximation of random fields by generalized

fast multipole methods. J. Comput. Phys. 217, 100–122 (2006)
336. Schwarz, H. A.: Über einen Grenzübergang durch alternierende Verfahren. Vierteljahres-

schrift der Naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)
337. Seidel, P.L.: Über ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten

Quadrate führt, sowie lineare Gleichungen überhaupt, durch successive Annäherung aufzu-
lösen. Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen
Akademie der Wissenschaften 11, 81–108 (1874)

338. Shaidurov, V.V.: Multigrid Methods for Finite Elements. Kluwer Academic Publ., Dortrecht
(1995)

339. Sheldon, J.: On the numerical solution of elliptic difference equations. Math. Tables and
Other Aids to Computation 9, 101–112 (1955)

340. Singh, S.P., Burry, J.W.H., Watson, B. (eds.): Approximation Theory and Spline Functions.
Reidel Publ., Dordrecht (1984). (Newfoundland, Aug./Sep. 1983)

341. Skeel, R.D.: Iterative refinement implies numerical stability for Gaussian elimination. Math.
Comp. 35, 817–832 (1980)

342. Skeel, R.D.: Effect of equilibration on residual size of partial pivoting. SIAM J. Numer.
Anal. 18, 449–454 (1981)

343. Smith, B.F., Bjørstad, P.E., Gropp, W.: Domain Decomposition. Cambridge University Press,
Cambridge (1996)

344. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J.
Sci. Statist. Comput. 10, 36–52 (1989)

345. Sonneveld, P., Wesseling, P., de Zeeuw, P.M.: Multigrid and conjugate gradient methods as
convergence acceleration techniques. In: Paddon and Holstein [306], pp. 117–168

346. Southwell, R.V.: Stress-calculation in frameworks by the method of “systematic relaxation
of constraints”, parts I–II. Proc. Roy. Soc. Edinburgh Sect. A 151, 56–95 (1935)



496 References

347. Southwell, R.V.: Stress-calculation in frameworks by the method of “systematic relaxation
of constraints”, part III. Proc. Roy. Soc. Edinburgh Sect. A 153, 41–76 (1935)

348. Southwell, R.V.: Relaxation methods in engineering science – a treatise on approximate
computation. Oxford University Press, London (1940)

349. Southwell, R.V.: Relaxation methods in theoretical physics. Clarendon Press, Oxford (1946)
350. Starke, G.: Optimal ADI parameter for nonsymmetric systems of linear equations. SIAM J.

Numer. Anal. 28, 1431–1445 (1991)
351. Starke, G., Niethammer, W.: SOR for AX−XB = C. Linear Algebra Appl. 154, 355–375

(1991)
352. Stein, P., Rosenberg, R. L.: On the solution of linear simultaneous equations by iteration.

J. London Math. Soc. 23, 111–118 (1948)
353. Stiefel, E.: Über einige Methoden der Relaxationsrechnung. Z. Angew. Math. Phys. 3, 1–33

(1952)
354. Stiefel, E.: Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme.

Comment. Math. Helv. 29, 157–179 (1955)
355. Stoer, J.: Solution of large systems of linear equations by conjugate gradient type methods.

In: Bachem et al. [22], pp. 540–565
356. Stone, H.L.: Iterative solution of implicit approximations of multi-dimensional partial differ-

ential equations. SIAM J. Numer. Anal. 5, 530–558 (1968)
357. Strakos, Z.: On the real convergence rate of the conjugate gradient method. Linear Algebra

Appl. 154, 535–549 (1991)
358. Strang, G.: Variational crimes in the finite element method. In: Aziz [20], pp. 689–710
359. Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput.

13, 419–451 (1983)
360. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309 (2001)
361. Tanabe, K.: Projection method for solving a singular system of linear equations and its

applications. Numer. Math. 17, 203–214 (1971)
362. Tobler, C.: Low-rank tensor methods for linear systems and eigenvalue problems. Doctoral

thesis, ETH Zürich (2012)
363. Todd, J.: Applications of transformation theory: a legacy from Zolotarev (1847-1878). In:

Singh et al. [340], pp. 207–245
364. Todd, J.: A lecagy from E. I. Zolotarv (1847–1878). Math. Intelligencer 10, 50–53 (1988)
365. Törnig, W.: Numerische Mathematik für Ingenieure und Physiker, Band 1: Numerische

Methoden der Algebra. Springer, Berlin (1979)
366. Toselli, A., Widlund, O.B.: Domain Decomposition Methods – Algorithms and Theory,

SCM, Vol. 34. Springer, Berlin (2005)
367. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic Press, San Diego (2001)
368. van der Sluis, A.: Condition numbers and equilibrium matrices. Numer. Math. 14, 14–23

(1969)
369. van der Sluis, A.: Condition, equilibration and pivoting in linear algebraic systems. Numer.

Math. 15, 74–86 (1970)
370. van der Sluis, A., van der Vorst, H.A.: The rate of convergence of conjugate gradients.

Numer. Math. 48, 543–560 (1986)
371. van der Vorst, H.A.: A vectorizable variant of some ICCG methods. SIAM J. Sci. Statist.

Comput. 3, 350–356 (1982)
372. van der Vorst, H.A.: A fast and smoothly converging variant of Bi-CG for the solution of

nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631–644 (1992)
373. van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge Uni-

versity Press (2003)
374. Varga, R.S.: Factorization and normalized iterative methods. In: Langer [257], pp. 121–142
375. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)
376. Varga, R.S.: Geršgorin and his Circles. Springer, Berlin (2004)
377. Vassilevski, P.: Multilevel preconditioning matrices and multigrid V-cycle methods. In:

Hackbusch [185], pp. 200–208



References 497

378. Vassilevski, P.: Multilevel Block Factorization Preconditioners. Springer, New York (2008)
379. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement

Techniques. J. Wiley and Teubner, Stuttgart (1996)
380. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford

University Press, Oxford (2013)
381. von Mises, R., Pollaczek-Geiringer, H.: Praktische Verfahren der Gleichungsauflösung.

ZAMM 9, 58–77 (1929)
382. Wachspress, E.L.: Optimum alternating-direction-implicit iteration parameters for a model

problem. J. Soc. Indust. Appl. Math. 10, 339–350 (1962)
383. Wachspress, E.L.: The ADI Model Problem. Springer, New York (2013)
384. Wachspress, E. L., Habetler, G. J.: An alternating-direction-implicit iteration technique.

J. Soc. Indust. Appl. Math. 8, 403–424 (1960)
385. Wagner, C.: Tangential frequency filtering decompositions for symmetric matrices. Numer.

Math. 78, 119–142 (1997)
386. Wagner, C.: Tangential frequency filtering decompositions for unsymmetric matrices.

Numer. Math. 78, 143–163 (1997)
387. Wagner, C., Wittum, G.: Adaptive filtering. Numer. Math. 78, 305–328 (1997)
388. Walker, H.: Implementation of the GMRES method using Householder transformations.

SIAM J. Sci. Statist. Comput. 9, 152–163 (1988)
389. Watson, G.A. (ed.): Numerical Analysis, Lect. Notes Math., Vol. 506. Springer, Berlin

(1976). (Dundee, July 1975)
390. Weiler, W., Wittum, G.: Parallel frequency filtering. Computing 58, 303–316 (1997)
391. Weissinger, J.: Über das Iterationsverfahren. ZAMM 31, 245–246 (1951)
392. Weissinger, J.: Verallgemeinerungen des Seidelschen Iterationsverfahrens. ZAMM 53,

155–163 (1953)
393. Wesseling, P.: A robust and efficient multigrid method. In: Hackbusch and Trottenberg [205],

pp. 614–630
394. Wesseling, P.: Theoretical and practical aspects of a multigrid method. SIAM J. Sci. Statist.

Comput. 3, 387–407 (1982)
395. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1991)
396. Widlund, O.B.: A Lanczos method for a class of nonsymmetric systems of linear equations.

SIAM J. Numer. Anal. 15, 801–812 (1978)
397. Widlund, O.B.: Iterative substructuring methods: algorithms and theory for elliptic problems

in the plane. In: Glowinski et al. [150], pp. 113–128
398. Widlund, O.B.: Optimal iterative refinement methods. In: Chan et al. [93], pp. 114–125
399. Widlund, O.B., Keyes, D.E. (eds.): Domain Decomposition Methods in Science and Engi-

neering XVI, Lect. Notes Comput. Sci. Eng., Vol. 55. Springer, Berlin (2007). (New York,
Jan. 2005)

400. Wittum, G.: Distributive Iterationen für indefinite Systeme als Glätter im Mehrgitterver-
fahren am Beispiel der Stokes- und Navier-Stokes-Gleichungen mit Schwerpunkt auf un-
vollständigen Zerlegungen. Doctoral thesis, Universität zu Kiel (1986)

401. Wittum, G.: On the robustness of ILU-smoothing. In: Hackbusch [185], pp. 217–239
402. Wittum, G.: Linear iterations as smoothers in multigrid methods: theory with applications to

incomplete decompositions. Impact Comput. Sci. Eng. 1, 180–215 (1989)
403. Wittum, G.: On the robustness of ILU smoothing. SIAM J. Sci. Statist. Comput. 10, 699–717

(1989)
404. Wittum, G.: An ILU-based smoothing correction scheme. In: Hackbusch [187], pp. 228–240
405. Wittum, G.: Filternde Zerlegungen. Teubner Skripten zur Numerik. Teubner, Stuttgart (1992)
406. Wittum, G., Liebau, F.: On truncated incomplete decompositions. BIT 29, 719–740 (1989)
407. Xu, J.: Theory of multilevel methods. Ph.D. thesis, Penn State University (1989)
408. Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J.

Numer. Anal. 29, 303–319 (1992)
409. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34,

581–613 (1992)



498 References

410. Xu, J., Zikatonov, L.: Algebraic multigrid methods. Acta Numerica 26 (2017). To appear
411. Young, D.M.: Iterative methods for solving partial differential equations of elliptic type.

Ph.D. thesis, Harvard University (1950)
412. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, Orlando (1971)
413. Young, D.M.: A historical overview of iterative methods. Comput. Phys. Comm. 53, 1–17

(1989)
414. Young, D.M., Huang, R.: Some notes on complex successive overrelaxation. Report CNA-

185, University of Texas at Austin (1983)
415. Yserentant, H.: Hierarchical bases of finite element spaces in the discretization of non-

symmetric elliptic boundary value problems. Computing 35, 39–49 (1985)
416. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49,

379–412 (1986)
417. Yserentant, H.: Two preconditioners based on the multi-level splitting of finite element

spaces. Numer. Math. 58, 163–184 (1990)

List of authors involved in the references above, but not placed as first author.

Barker, V.A. [13]
Bastian [34]
Benner, P. [36]
Bjørstadt, P.E. [254, 343]
Böhmer, K. [4]
Boor, C. de see de Boor, C.
Breiten, T. [40]
Brinkkemper, S. [14]
Burrus, C.S. [215]
Burry, J.W.H. [340]
Chan, T.F. [26, 236]
Cross, M. [254]
Dahlquist, G. [248]
de Groen, P. [38]
De Moor, B. [103]
de Zeeuw, P.M. [345]
Deuflhard, P. [56]
Discacciati, M. [258]
Douglas, C.C. [27]
Dryja, M. [64]
Dupont, T.F. [28, 29, 30]
Eldén, L. [332]
Erisman, A.M. [116]
Espedal, M.S. [50]
Faermann, B. [100]
Finogenov, S. A. [261, 262]
Freund, R.W. [134, 135]
Gander, M.J. [43, 122, 109]
Garbey, M. [106]
Gaunt, A. [325]
Glashoff, K. [6]
Glowinski, R. [93, 94]
Golub, G.H. [90, 98, 99, 150]
Graham, I.G. [100]
Grasedyck, L. [24, 259]
Griegorieff, R.D. [85]
Groen, P. de [38]

Grötschel, M. [22]
Gropp, W. [343]
Habetler, G. J. [384]
Hackbusch, W. [34, 39, 64–68,
100, 113, 123–125, 161–164]
Halpern, L. [122, 109]
Heppner, I. [320]
Holst, M.J. [31]
Holstein, H. [306]
Hoppe, R.H.W. [106, 239]
Huang, R. [414]
Il’in, V.P. [14]
Johnson, D.H. [215]
Kako, T. [95]
Kawarada, H. [95]
Keyes, D.E. [50, 106, 217, 258,
399]
Khachatryan, A. [123]
Khoromskij, B. [163, 202, 203]
Kornhuber, R. [43, 225]
Korte, B. [22]
Krause, R. [109]
Kriemann, R. [164, 165, 166,
202, 259, 246]
Kunoth, A. [101, 107]
Kuznetsov, Y. [106, 151, 313]
Landsberg, J.M. [83]
Le Borne, S. [165, 166]
Liebau, F. [406]
Lions, J.L. [96, 152]
Litvinenko, A. [124]
Malik, G.M. [228]
Mandel, J.L. [51]
Manteuffel, T.A. [7]
Marcowitz, U. [281, 282]
Matthies, H.G. [124]
Melenk, M. [129]

Meurant, G.A. [99, 117, 150,
151, 236]
Mises, R. von see: von Mises
Neumann, M. [213]
Nielson, C.W. [90]
Niethammer, W. [118, 119,
120, 213, 351]
Nikolaev, E.S. [330]
Nouy, A. [126]
O’Leary, D.P. [155]
Oosterlee, C.W. [268, 367]
Oswald, P. [170]
Overton, M.L. [156]
Pasciak, J.E. [70–76]
Pavarino, L.F. [109]
Périaux, J. [93, 94, 106, 150,
151, 153, 239, 313]
Pichot, G. [122]
Pironeau, J. [95, 239]
Plemmons, R.J. [45, 46]
Pollaczek-Geiringer, H. [381]
Polman, B. [15]
Praetorius, D. [129]
Rachford, H.H. [308]
Reid, J.K. [116]
Reimer, T. [55]
Reusken, A. [204]
Rice, J.R. [102]
Riemslagh, K. [108]
Rohwedder, T. [125, 224]
Rose, D.J. [86]
Rosenberg, R.L. [352]
Roux, F.X. [127]
Rupp, M. [320]
Ruttan, A. [118]
Sacco, R. [314]
Saleri, F. [314]



References 499

Sassi, T. [122]
Saunders, M.A. [307]
Sauter, S.A. [100]
Saylor, P.E. [7, 264]
Schatz, A.H. [70, 71, 72, 73]
Schober, G. [297]
Schneider, R. [125, 224]
Schröder, J. [85]
Schuller, A. [367]
Schultz, M.H. [329]
Schwab, C. [331]
Scott, L.R. [32, 82]
Scroggs, J.S. [236]
Shi, Z.C. [153]
Stiefel, E. [219]
Strakos, Z. [265]
Strauss, E.G. [139]
Stüben, K. [295]
Süli, E. [229]
Sz.-Nagy, B. [326]

Szyld, D.B. [143]
Tobler, C. [5, 242, 243, 244]
Todor, R.A. [335]
Trottenberg, U. [68, 205, 206,
207, 333]
Tůma, M. [42]
Tyrtyshnikov, E.E. [203, 300]
Valli, A. [315]
Vandewalle, J. [103]
Varga, R. [3, 88, 89, 119, 120,
289, 294]
Vassilevski, P. [16, 17, 18, 19]
van der Vorst, H.A. [280, 370]
Van Loan, C.F. [157]
Vierendeels, J. [108]
Vogel, A. [320]
Voigt, R.G. [236]
Vorst see van der Vorst, H.A.
Wähnert, P. [124]
Wang,J. [74]

Watson, B. [340]
Werner, B. [6]
Wesseling, P. [216, 345]
White, R.E. [296]
Widlund, O.B. [31, 43, 52, 53,
92, 93, 94, 114, 115, 122, 151,
153, 217, 225, 239, 254, 258,
312, 313, 366]
Wittum, G. [34, 91, 208, 209,
210, 320, 387, 390]
Xu, J. [31, 74–76, 225, 237, 239]
Yates, R. [217]
Young, D.M. [212]
Yserentant, H. [30, 57]
Zander, E. [277]
Zeeuw, P.M. de see: de Zeeuw
Zhen, M. [4]
Zhou, X. [241]
Zikatonov, L. [410]
Zulehner, W. [258]



Index

ADI method, 201
commutative case, 205
convergence, 203, 204, 207
cost, 209
cyclic, 111, 207
instationary, 204
iteration matrix, 203
numerical example, 209

ADI parameter, 205, 314
optimal, 206

adjoint problem, 481
admissibility, η-, 463
affine subspace, 179
agglomeration, 471
algebra, 419
algebraic reconstruction technique, 117
algorithm, see method or iteration

Buneman, 12
cascade, 289

ALS, 400
alternate-triangular method, 103
alternating least squares, 400
anisotropy, 10, 37
approximation property, 298, 303, 308, 309
Arnoldi basis, 259
Arnoldi method, 261
ART, 117
asymptotically smooth, 468

backward substitution, 372
band width, 11, 402
basic iteration, 175, 192, 200, 216, 219, 220

damped, 181
basis

Arnoldi, 259
finite element, 358, 475

hierarchical, 366, 368

hierarchical, 366
orthogonal, 226, 256
orthonormal, 276, 409

BCG, BiCG, Bi-CGSTAB, 262
biconjugate gradient method, 262
bilinear form, 474

equivalent, 170
bisection

cardinality-based, 461
geometric by bounding boxes, 461
regular geometric, 460

block, 6
admissible, 463

block cluster tree, 462
level conserving, 380

block index set, 407
ordered, 407

block matrix, 6, 407, 408
block structure, 6, 42, 69, 163, 337, 407

chequer-board, 7, 71
lexicographical, 7
plane-wise, 105
row, 105
zebra, 71

block vector, 407
block-diagonal matrix, 42, 44, 408
block-diagonal part, 70, 408, 433
block-tridiagonal matrix, 7, 79, 318, 408
boundary condition

Dirichlet, 4, 328, 474
natural, 477
Neumann, 140, 329

boundary element method, 15, 377
boundary value problem, 4, 325
bounding box, 460, 464
BPX method, 369
breakdown, 238

501© Springer International Publishing Switzerland 2016
W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations,
Applied Mathematical Sciences 95, DOI 10.1007/978-3-319-28483-5



502 Index

lucky, 220
Buneman algorithm, 12, 326

canonical format, 390
capacitance matrix method, 333
cardinality, 8
cascade algorithm, 289
Cauchy–Schwarz inequality, strengthened,

343, 347, 359, 365
CG method, 234, 235, 237, 398

applied to a basic iteration, 241
applied to the multigrid iteration, 315
convergence, 238–240, 242
cost, 245
numerical example, 244
restarted, 238

CGS, 262
Chebyshev method, 111, 187, 190–192,

196–198, 218, 239, 246, 314
convergence, 192
order improvement, 192

Chebyshev polynomial, 187, 188–190, 313
Cholesky decomposition, 12, 122, 219, 371,

434
incomplete, 150

Cimmoni iteration, 118
convergence, 119
iteration matrix, 118

cluster tree, 459
ternary, 379

coarse-grid correction, 272, 273, 280, 298,
317, 358, 360

damped, 315
coarse-grid equation, 272, 273, 281, 317, 369
coarse-grid matrix, 273
coarsening of a block structure, 464
coefficient vector, 476
collocation, 467
comparison theorem, 142
composed iteration, 106–108, 246, 327
computational work, 30

ADI method, 209
CG method, 245
effective, 31, 32, 78, 87, 107, 111, 195, 201,

208, 209, 245, 285
frequency filtering method, 319
Gauss elimination, 11
Gauss–Seidel iteration, 45–47, 87
Jacobi iteration, 45–47
multigrid iteration, 284–286
multigrid iteration of the second kind, 316
nested iteration, 291
Richardson iteration, 46, 47
semi-iteration, 195, 196

SOR iteration, 45–47, 87
SSOR iteration, 133

condition, 167, 217, 221, 223, 391, 421

Euclidean, 421
conjugate gradient method, see CG method

as smoother, 314
conjugate gradient squared method, 262
conjugate residuals, see CR method
conjugate vectors, 226, 235, 242
consistency, 19, 20

semi-iterative, 176
test, 32

consistency error, 5
contraction number, 25, 26, 58, 59, 280, 301
convection, 10
convection-diffusion equation, 283
convergence, 19, 24

Chebyshev method, 192
CR method, 254
Gauss–Seidel iteration, 56, 77, 78, 83, 86,

144, 145
ILU iteration, 159
Jacobi iteration, 55, 62, 76, 78, 144, 145
Kaczmarz iteration, 118
Landweber iteration, 114
linear, 26

order of, see convergence order
monotone, 25, 55, 128, 129, 131, 132, 214
multigrid iteration, 293, 301, 303, 305,

310–312, 364
positive definite iteration, 54
quadratic, 321
Richardson iteration, 47–53, 63, 74, 75
Schwarz iteration, 351

additive, 347
multiplicative, 349

secondary iteration, 108
SOR iteration, 56–62, 66, 67, 78–81, 83–85
SSOR iteration, 132, 133, 135, 146
test, 33
two-grid iteration, 276, 280, 301, 306, 308,

309, 315, 360, 361
V-cycle, 310, 364
W-cycle, 311

convergence order, 32
improved, 66
optimal, 170

convergence rate, 26, 28, 115, 142
ADI method, 204
asymptotic, 178, 192, 194, 197, 200, 217,

254, 255, 347
composed iteration, 110
Gauss–Seidel iteration, 62, 77, 78, 86
Jacobi iteration, 63, 76



Index 503

optimal, 48, 49, 63, 75, 77, 86, 126, 204
order, 32, 170
Richardson iteration, 48, 74
SOR iteration, 81, 86
two-grid iteration, 280
V-cycle, 310

convex hull, 49
core tensor, 394
cost factor, 30, 46, 47, 133, 153, 195
CR method, 250

convergence, 254
numerical example, 255
stabilised, 252

cross-point, 332

damping, 95, 108, 130, 196, 307, 315, 338
optimal, 109, 110, 114, 221, 223

decomposition
frequency filtering, 318
LU, see LU decomposition
QR, 410
UL of the inverse matrix, 381

defect, 22, 24, 28, 213, 272
defect correction, 21
diagonal block, 43
diagonal dominance, 145, 158, 160, 161, 443

essential, 444
irreducible, 443
strict, 146, 443
strong, 105
weak, 162, 298, 443

diagonal part, 402, 433
diagonalisability, 414

real, 414, 434
simultaneous, 205

diameter of a cluster, 463
differential equation, 104, 291, 292, 474

elliptic, 446
ordinary, 171
parabolic, 201, 383, 399
partial, 262

direct method, direct solver, 3, 10–12, 28, 161,
237, 316, 326, 382

direct sum, 410
Dirichlet boundary condition, 4, 328, 474
Dirichlet–Neumann method, 329
discrete regularity, 299
discretisation, 5, 283, 296, 316, 325

finite element, 360, 476
Galerkin, 273, 300, 358, 475

discretisation error, 20, 34, 287, 292
relative, 287

dissection method, 378
distance of two clusters, 463

domain decomposition, 325, 378
nonoverlapping, 329, 332
overlapping, 327, 357

domain of an iteration, 18
dominance, diagonal, see diagonal dominance
dual norm, 473
dual space, 473

eigenvalue, 35, 79, 403, 424, 432
generalised, 55
maximal, 35
minimal, 35

eigenvector, 403, 412–415, 440, 443
orthonormal, 36

enclosure of the solution, 145, 156
energy norm, 54–57, 128, 190, 351, 434

error
consistency, 5
discretisation, 20, 34
iteration, see iteration error

Euclidean norm, 26, 417, 418, 422
exponential sum, 392

family of matrices, 10
far field, 465
fast Fourier transform, 334
FETI, 331
fictitious domains method, 334
field, 8

far, 465
near, 465

field of values, 427
fill-in, 11, 149, 376
finite element basis, 358
finite element discretisation, 476
finite elements, 476

shape regular, 15, 466, 479
five-point formula, 5, 9, 30, 41, 72, 86, 105,

111, 152, 159, 201, 209, 360
fixed point, 18, 19
fixed-point equation, 156–158, 302, 316
fixed-point iteration, 157, 158, 161, 162
FOM, 261
form

bilinear, 409, 474
coercive, 474
positive, 476
sesquilinear, 409, 474
symmetric, 474

format
canonical, 390
model, 456
r-term, 390
tensor, 390



504 Index

forward substitution, 372
Fourier analysis, 276
Fourier transform, fast, 334
frequency filtering decomposition, 318
Frobenius norm, 419, 420
full orthogonalisation method, 261

Galerkin discretisation, conforming, 475
Galerkin product, 273, 304, 336, 362
Gauss elimination, 3, 10, 11, 382, 450–452

cost, 10
Gauss, Carl Friedrich, 3
Gauss–Seidel iteration, 3, 4, 12–14, 35, 39, 40,

41, 56, 117, 118, 140, 295, 357, 368
2-cyclic, 78, 296
backward, 91, 103, 133
block-, 44, 62, 86, 144, 340

cost, 87
chequer-board, 13, 40, 275, 360
convergence, 56, 77, 78, 83, 86, 144, 145
convergence rate, 62, 77, 78, 86
cost, 45–47
iteration matrix, 40
lexicographical, 13, 40
nonlinear, 322
numerical example, 14, 87
pointwise, 44
symmetric, 103, 132, 134, 198, 296

numerical result, 136
Gelfand triple, 474
generalised minimal residual method, 258
Gershgorin circles, 447
Givens rotation, 261
GMRES, 258
GMRES(m), 261
gradient method, 215, 218, 225, 234

applied to a basic iteration, 219–221
biconjugate, 262
convergence, 216, 217, 221–223, 240
direct positive definite case, 223
preconditioned, 220
residual oriented, 222

Gram matrix, 478
graph

directed, 435
of a matrix, 149, 342, 435
undirected, 435

Green function, 469
grid, 5, 9, 268
grid function, 6, 9, 269, 270, 357
grid point, 5
grid size, 5, 11, 268, 269

H-LU decomposition, 371

H-matrix, 145, 146, 155, 452
Hadamard product, 121
Helmholtz equation, 160, 193, 254, 255, 295
Hessian matrix, 212
hierarchical basis, 366
hierarchical basis method, 366
hierarchical matrix, 170, 316, 333, 371, 453,

465

LU decomposition of a, 375
operation, 469
storage, 465
truncation, 470

hierarchy
grid, 318
of subspaces, 299
of systems of equations, 268, 269, 287

ILU decomposition, 148
approximative, 162
blockwise, 163, 318
existence, 155, 156
modified, 154, 162, 256
stability, 157, 163
truncated, 162

ILU iteration, 148
convergence, 159
damped, 160
modified, 164, 317
numerical example, 163
with enlarged diagonal, 160

index set, 7
block, 407
nonordered, 7
ordered, 39, 40, 70, 402, 408, 411, 450

initialisation, 30, 321
instability, 157, 194, 251
integral equation, 316
integral operator, 467
interpolation

bilinear, 270
linear, 270

inverse estimate, 480
inversion of a matrix, see matrix
iterate, 23
iteration, 3, 18, 382

<name>, see <name> iteration
adjoint, 95, 339
algebraic, 18, 38, 40, 41, 43, 140, 150, 382
alternating-direction-implicit, see ADI
basic, 175
composed, 104, 106–108, 246, 327
consistent, 19, 20, 22, 24, 25, 29, 216
convergent, 19, 20, 24, 25, 29, 99
cyclic, 194



Index 505

damped, 95
convergence, 126

diagonally left/right-invariant, 120
domain of an, 18
extrapolated, 95
identical, 98, 100
inconsistent, 20
invariant, 120
k-step , 195
linear, 21
minimal residual, 228
nested, see nested iteration
nonexpansive, 138
nonlinear, 216
normal form of an

first, 21
second, 22, 23
third, 23

one-step, 29
positive definite, 54, 119, 124, 127, 208,

220, 221, 241, 242, 338
convergence, 54
directly, 94, 123, 222, 243

positive semidefinite, 93
projection, 93
A-orthogonal, 93

robust, 10, 317
secondary, 104–106, 110, 246, 262, 282
semi-, see semi-iteration
smoothing, 268
subspace, 325, 336

symmetric, 92, 101, 119, 134, 305, 339, 341,
361

symmetrised, 101, 125, 129
truncated, 398
two-step, 29, 195

iteration error, 24, 31, 34, 290
iteration matrix, 21, 25

ADI method, 203
adjoint iteration, 90
composed iteration, 106
Gauss–Seidel iteration, 40
Jacobi iteration, 38
multigrid iteration, 286
product iteration, 99
Schwarz iteration, 338, 341
SOR iteration, 41
SSOR iteration, 132
two-grid iteration, 274

Jacobi iteration, 35, 38, 76, 140, 151, 166, 357,
446

block-, 43, 56, 63, 64, 144, 340
convergence, 56, 62–64

semi-iterative, 198
convergence, 55, 62, 63, 76–78, 144, 145
cost, 45–47
damped, 76, 96, 118, 280, 296
iteration matrix, 38
nonlinear, 322
numerical examples, 65
semi-iterative, 198

Jacobi, Carl Gustav, 4, 38
Jordan block, 412
Jordan normal form, 412

Kaczmarz iteration, 116
as smoothing iteration, 283, 296
convergence, 116, 118
numerical example, 118

Karhunen–Loève expansion, 397
kernel, 98
Kronecker product, 385
Kronecker symbol, 8
Krylov space, 179, 256

Lagrange parameter, 331
Landau symbol, xxii
Landweber iteration, 94

convergence, 114
Laplace operator, 5
least squares, 3, 94, 214, 423
level conservation, 380
level number, 268
Liebmann method, 39
LU decomposition, 11, 12, 44, 148, 151, 371,

472
cost, 376
existence, 154
incomplete, see ILU decomposition

lucky breakdown, 220
Lyapunov equation, 384, 385

M-matrix, 104, 141, 144, 145, 152, 155, 204,
445, 446–452

mass matrix, 478
matrix, 7

2-cyclic, 70, 77, 78, 347
weakly, 69–77

adjoint, 401, 402, 435
band, 11, 12, 151
block-diagonal, 408
block-tridiagonal, 7, 408
coercive, 432
commutative, 202, 405, 415, 433
consistently ordered, 78
cyclic of index two, 70
diagonal, 402, 405, 406



506 Index

diagonalisable, 185, 414, 415
real, 414, 434

family, 10, 168
finite element, 376
fully populated, 11, 15, 284, 435, 453
Hermitian, 402, 405, 408, 415, 432, 451
Hermitian transposed, 401
Hessenberg, 261
hierarchical, see hierarchical matrix
indefinite, 193, 253, 254, 283, 295
inverse positive, 141, 142, 156, 445

inversion, 458
irreducible, 436, 437, 441–444, 446–449
iteration, see iteration matrix
M-, see M-matrix
monotone, 445
nonnegative, 438, 439
normal, 204, 402, 414, 415, 424, 427
numerical radius, 26, 53, 427

of the first normal form, 21
of the second normal form, 22, 90, 99, 106,

151, 339
of the third normal form, 23, 41, 54, 55, 99,

106, 139
orthogonal, 410
positive, 438, 438, 440, 447
positive definite, 35, 36, 43, 47, 54, 56–59,

62, 197, 202, 203, 211, 213, 421, 431,
432–435, 444, 451, 452

positive definite Hermitian part, 55, 125,
128, 129, 147, 432

positive semidefinite, 203, 432, 434
principal sub-, 154, 338, 407, 433, 442, 449
rank-r, 455
reducible, 436, 443
regular, 17, 402, 433
selfadjoint, 435
similar, 403, 404, 411

unitarily, 403
sparse, 11, 15, 45, 148
spectrally equivalent, 168, 383
Stieltjes, 451
sub-, 407
symmetric, 465
symmetrisable, 262
triangular, 12, 148, 402, 405, 406, 411, 450

block-, 44, 408

strictly, 12, 57, 78, 79, 150, 350, 402, 405
tridiagonal, 7, 44, 79, 402

unitary, 402, 410, 411, 414, 415, 422
weakly p-cyclic, 85, see matrix, 2-cyclic

matrix block, 407
matrix equation

Lyapunov, 384, 385

Riccati, 384, 399
Sylvester, 208, 399

matrix exponential, 394
matrix graph, see graph
matrix inversion, 472
matrix norm, 419, 420, 425

associated, 419
corresponding, 25, 419, 420, 424, 425, 434
Frobenius, see Frobenius norm

matrix polynomial, 177, 184, 185, 236, 243,
313, 404, 405, 408, 413

matrix-matrix addition, 470
matrix-matrix addition, cost, 457
matrix-matrix multiplication, 457, 471

cost, 458
matrix-vector multiplication, 15, 469
maximum norm, 417, 418, 438
maximum principle, 446
method, see iteration

ADI, 201, see ADI
alternate-triangular, 103
Arnoldi, 261
biconjugate gradient, 262
boundary element, 377
BPX, 369
capacitance matrix, 333
Chebyshev, see Chebyshev method
conjugate gradient squared, 262
direct, see direct method
Dirichlet–Neumann, 329
FETI, 331
hierarchical basis, 366
mortar, 326
nested dissection, 333
Neumann–Dirichlet, 334
Neumann–Neumann, 335
Newton, 320
of fictitious domains, 334
of orthogonal directions, 256
of steepest descent, see gradient method
of the conjugate directions, 224
of the conjugate residuals, see CR method
of total reduction, 12
orthogonalisation, 409
Schur complement, 332
semi-iterative, see semi-iteration

minimal residual iteration, 228
minimal residual method, see MINRES

generalised, see GMRES
minimum function, 180, 185, 413
Minkowski, Hermann, 445
MINRES, 261
model format, 456
model problem, see Poisson model problem



Index 507

mortar method, 326
multi-splitting, 140
multigrid iteration, 265, 281, 313, 359, 398

additive, 369, 399
algebraic, 317, 335
convergence, 293, 301, 303, 310, 311, 364
cost, 284–286, 316
damped, 315
frequency decomposition, 369
history, 317
iteration matrix, 286
nonlinear, 292, 323
numerical example, 282
of the second kind, 316
symmetric, 304

multilevel Schwarz iteration, 369
multiplicity

algebraic, 403, 404, 413
geometric, 27, 403, 404, 412

natural boundary condition, 477
near field, 465
nested dissection method, 333
nested iteration, 172, 287, 289–292, 316

computational work, 291
nonlinear, 292, 321

Neumann boundary condition, 140, 329
Neumann’s series, 426
Neumann–Dirichlet method, 334
Neumann–Neumann method, 335
Newton method, 320
nine-point formula, 9, 40, 72, 319
nodal point, 358, 460, 476
norm, 417

<name>, see <name> norm
dual, 473
equivalent, 418
matrix, see matrix norm
operator, 419
submultiplicative, 406, 420, 428

normal equations, 94, 423
normal form

Jordan, 412
Schur, 411

normality, B−, 261
numerical radius, 26, 53, 107, 427

OD method, 256
stabilised, 257

operator
associated to a bilinear form, 475
integral, 15
Laplace, 5
nonlocal, 15

order improvement, 200
CG method, 239
Chebyshev method, 192, 198
modified ILU iteration, 160
smoothing factor, 314
SOR, 60, 84
SSOR iteration, 134
two-step iteration, 195

ordering, 12, 38, 70, 372
backward, 91
chequer-board, 7, 13, 40, 134
four-colour, 40
lexicographical, 6, 7, 11, 13, 43, 66, 136,

148
backward, 43

red-black, see ordering, chequer-board
zebra, 43

ORTHODIR, ORTHOMIN, ORTHORES, 262
orthogonal polynomials, 187
orthogonal space, 409
orthogonal, orthonormal, 409
orthogonalisation (method), 409
Ostrowski, Alexander Markowitsch, 445
overrelaxation method, see SOR iteration

parabolic differential equations, 399
parallel computation, 38, 40, 45, 162, 166,

326, 333, 344, 369, 381
partition, 462

admissible, 464
path, 436

length of a, 436
pattern, 149, 151, 152, 161

star, 151
Perron–Frobenius theory, 440
perturbation lemma, 295
Picard iteration, 15, 316
Poisson model problem, 4, 9–11, 13, 30–32,

34, 35, 43, 46, 64, 71, 86, 201, 204, 266,
268, 396, 408, 437, 444, 474

numerical example, 65, 66, 87, 88, 255
polynomial

characteristic, 403, 408, 413
Chebyshev, 187
matrix, 404, 405
optimal, 184, 185, 193, 194, 239, 314
orthogonal, 187

post-, pre-smoothing, 274
preconditioning, 165, 166, 241, 335

diagonal, 166
principal vector, 412
product iteration, 93, 99, 101, 117, 134, 135,

137, 202, 208, 268, 274, 282, 318, 319,
338, 360, 365



508 Index

projection, 116, 273, 337, 410

A-orthogonal, 138, 337, 361
orthogonal, 308, 410

prolongation, 269, 270, 272, 336–338, 478
canonical, 299, 302, 360
matrix-dependent, 271
nine-point, 270

QR decomposition, 410

r-term format, 390
rank, see representation rank

local, 465
representation, 390
tensor, 390

reconstruction technique
algebraic, 117
simultaneous iterative, 94

reduction factor, 14, 26, 65
regularity, 300, 361

2m-, 480
weaker, 303, 311, 481

relaxation, 4, 39
relaxation parameter, 41, 85

complex, 83
optimal, 81, 86

representation rank, 390, 455
residual, 179, 213
restriction, 271, 336, 478

canonical, 299, 302
matrix-dependent, 272
nine-point, 272
trivial, 271

Reusken’s lemma, 297
Riccati equation, 384, 399
Richardson extrapolation, 34
Richardson iteration, 37, 217, 266, 280,

293–295
convergence, 47–53, 62, 63, 74, 75
cost, 46, 47
nonlinear, 322
numerical example, 65
semi-iterative, 197, 216, 238
smoothing property, 266

Riesz isomorphism, 473
row-sum norm, 298, 365, 420, 438
Runge-Kutta method, 172

scalar product, 409, 435
energy, 434
Euclidean, 409, 435

Schur complement, 452, 458
Schur complement method, 332
Schur normal form, 411

Schwarz inequality, 422
Schwarz iteration, 325, 338, 340

additive, 338, 340, 341, 344, 358
convergence, 347

iteration matrix, 338, 341
multilevel, 369
multiplicative, 338, 340, 361, 362

convergence, 349–351
search direction, 212, 213
Seidel, Phillip Ludwig, 4
semi-iteration, 175, 181

consistent, 177, 178, 181
cost, 195
linear, 177
three-term recursion, 183

separation rank, 467
separator, 377
sesquilinear form, 474
seven-point formula, 104
shape regularity, 15, 466, 479
similarity transformation, 404

unitary, 411
simultaneous iterative reconstruction technique

SIRT, 94
singular value, 416
singular value decomposition, 416

higher order (HOSVD), 394
singular vector, 416
smoothing iteration, 266, 268, 272, 286, 317

Gauss–Seidel
chequer-board, 360

Jacobi, 368, 399
post-, 274
pre-, 274, 304, 362
Richardson, 399
semi-iterative, 313

smoothing property, 293, 294–298, 303, 307

smoothing step, 293
smoothness, asymptotic, 468
SOR iteration, 4, 14, 41, 145, 198, 204

backward, 103, 134
block-, 45, 86

convergence, 62, 66, 67
convergence, 56–61, 66, 81
convergence rate, 86
cost, 45–47, 87
generalised, 61
iteration matrix, 41
modified, 135
nonlinear, 322
numerical example, 14, 66, 67, 88
symmetric, see SSOR iteration
unsymmetric, 136

sparse matrix format, 16



Index 509

sparsity, 15, 465
uniform, 479

spectral condition number, 421

spectral equivalence, 168, 321, 383
spectral norm, 420, 422, 424, 427, 434
spectral radius, 24, 406, 408, 424, 425, 427
spectrum, 403, 404, 408
splitting

additive, 139, 145, 151, 202
multi-, 140
P-regular, 147
regular, 141–145, 156, 159, 204

weakly, 141
SSOR iteration, 103, 132, 164, 296

2-cyclic, 134
convergence, 132, 133, 135, 146
cost, 133
iteration matrix, 132
numerical example, 136, 223
semi-iterative, 199

stability, 157
star notation, 9
star pattern, 151
starting value (of an iteration), 12, 17–19, 29,

33, 288
steepest descent, 213
stencil, see star
step size, see grid size
Stieltjes matrix, 451
stochastic coefficients, 397
stopping criterion, 34, 321
storage cost, 10, 11, 133, 237, 469
submultiplicativity, 420, 428
subspace iteration, 325, 336, 369
substitution

backward, 372
forward, 372

successive displacement, 39
superconvergence, 240
support, 463
SVD, see singular value decomposition
Sylvester equation, 208, 399
SYMMLQ, 257
system of equations

linear, 17
nonlinear, 292, 319, 320
parametrised, 396

tensor
core, 394
elementary, 388

tensor product, 385
tensor rank, 390
tensor representation, 390
tensor space

algebraic, 387

topological, 389
test of consistency, 32
test of convergence, 33
test vector, 154, 318, 319
theorem

Cayley-Hamilton, 185, 413
comparison, 142
Ostrowski, 57
Perron–Frobenius, 440
Rouché, 194
Stein–Rosenberg, 144
Young, 81

three-term recursion, 29, 183, 190, 195, 247
time-stepping method, 171

quasi-, 172
total reduction method, 12
transformation

left, 112, 114, 219
right, 115, 117
similarity, 122, 404, 425
two-sided, 119, 262

triangle inequality, 417
inverse, 418

tridiagonal part, 402
truncated iteration, 398

convergence, 399
truncation, 470

matrix, 416
two-grid iteration, 274

contraction number, 304
convergence, 276, 280, 301, 306, 308, 309,

315, 360
iteration matrix, 274
nonlinear, 323
numerical example, 275

two-step iteration, 195

UL decomposition of the inverse matrix, 381
underrelaxation method, 41

V-cycle, 281, 362
convergence, 310, 364
numerical example, 282

variational formulation, 474
vector, 8

principal, 412
singular, 416
unit, 8

vector block, 407

W-cycle, 281, 285
convergence, 311
numerical example, 282

weak formulation, 474

Young, David M. Jr., 4


	Cover
	Applied Mathematical Sciences, Volume 95
	Iterative Solution of Large Sparse Systems of Equations
	© Springer International Publishing Switzerland 1994, 2016
	ISSN 0066-5452 ISSN 2196-968X (electronic)
	ISBN 978-3-319-28481-1 ISBN 978-3-319-28483-5 (eBook)
	DOI 10.1007/978-3-319-28483-5
	Library of Congress Control Number: 2016940360

	Preface
	Contents
	List of Symbols and Abbreviations
	Symbols
	Greek Letters
	Latin Letters
	Abbreviations and Algorithms

	Part I
Linear Iterations
	1
Introduction
	1.1 Historical Remarks Concerning Iterative Methods
	1.2 Model Problem: Poisson Equation
	1.3 Notation
	1.3.1 Index Sets, Vectors, and Matrices
	1.3.2 Star Notation

	1.4 A Single System Versus a Family of Systems
	1.5 Amount of Work for the Direct Solution of a Linear System
	1.6 Examples of Iterative Methods
	1.7 Sparse Matrices Versus Fully Populated Matrices

	2
Iterative Methods
	2.1 Consistency and Convergence
	2.1.1 Notation
	2.1.2 Fixed Points
	2.1.3 Consistency
	2.1.4 Convergence
	2.1.5 Convergence and Consistency
	2.1.6 Defect Correction as an Example of an Inconsistent Iteration

	2.2 Linear Iterative Methods
	2.2.1 Notation, First Normal Form
	2.2.2 Consistency and Second Normal Form
	2.2.3 Third Normal Form
	2.2.4 Representation of the Iterates xm
	2.2.5 Convergence
	2.2.6 Convergence Speed
	2.2.7 Remarks Concerning the Matrices
M, N, and W
	2.2.8 Three-Term Recursions, Two- and Multi-Step Iterations

	2.3 Efficacy of Iterative Methods
	2.3.1 Amount of Computational Work
	2.3.2 Efficacy
	2.3.3 Order of Linear Convergence

	2.4 Test of Iterative Methods
	2.4.1 Consistency Test
	2.4.2 Convergence Test
	2.4.3 Test by the Model Problem
	2.4.4 Stopping Criterion


	3
Classical Linear Iterations in the Positive Definite Case
	3.1 Eigenvalue Analysis of the Model Problem
	3.2 Traditional Linear Iterations
	3.2.1 Richardson Iteration
	3.2.2 Jacobi Iteration
	3.2.3 Gauss–Seidel Iteration
	3.2.4 SOR Iteration

	3.3 Block Versions
	3.3.1 Block Structure
	3.3.2 Block-Jacobi Iteration
	3.3.3 Block-Gauss–Seidel Iteration
	3.3.4 Block-SOR Iteration

	3.4 ComputationalWork of the Iterations
	3.4.1 Case of General Sparse Matrices
	3.4.2 Amount of Work in the Model Case

	3.5 Convergence Analysis
	3.5.1 Richardson Iteration
	3.5.2 Convergence Criterion for Positive Definite Iterations
	3.5.3 Jacobi Iteration
	3.5.4 Gauss–Seidel and SOR Iterations
	3.5.5 Convergence of the Block Variants

	3.6 Convergence Rates in the Case of the Model Problem
	3.6.1 Richardson and Jacobi Iteration
	3.6.2 Block-Jacobi Iteration
	3.6.3 Numerical Examples for the Jacobi Variants
	3.6.4 SOR and Block-SOR Iteration with Numerical Examples


	4
Analysis of Classical Iterations Under Special Structural Conditions
	4.1 2-Cyclic Matrices
	4.2 Preparatory Lemmata
	4.3 Analysis of the Richardson Iteration
	4.4 Analysis of the Jacobi Iteration
	4.5 Analysis of the Gauss–Seidel Iteration
	4.6 Analysis of the SOR Iteration
	4.6.1 Consistently Ordered Matrices
	4.6.2 Theorem of Young
	4.6.3 Order Improvement by SOR
	4.6.4 Practical Handling of the SOR Method
	4.6.5 p-Cyclic Matrices

	4.7 Application to the Model Problem
	4.7.1 Analysis in the Model Case
	4.7.2 Gauss–Seidel Iteration: Numerical Examples
	4.7.3 SOR Iteration: Numerical Examples


	5
Algebra of Linear Iterations
	5.1 Adjoint, Symmetric, and Positive Definite Iterations
	5.1.1 Adjoint Iteration
	5.1.2 Symmetric Iterations
	5.1.3 Positive Definite Iterations
	5.1.4 Positive Spectrum of NA

	5.2 Damping of Linear Iterations
	5.2.1 Definition
	5.2.2 Damped Jacobi Iteration
	5.2.3 Accelerated SOR

	5.3 Addition of Linear Iterations
	5.4 Product Iterations
	5.4.1 Definition and Properties
	5.4.2 Constructing Symmetric Iterations
	5.4.3 Symmetric Gauss–Seidel and SSOR

	5.5 Combination with Secondary Iterations
	5.5.1 First Example for Secondary Iterations
	5.5.2 Second Example for Secondary Iterations
	5.5.3 Convergence Analysis in the General Case
	5.5.4 Analysis in the Positive Definite Case
	5.5.5 Estimate of the Amount of Work
	5.5.6 Numerical Examples

	5.6 Transformations
	5.6.1 Left Transformation
	5.6.2 Right Transformation
	5.6.3 Kaczmarz Iteration
	5.6.4 Cimmoni Iteration
	5.6.5 Two-Sided Transformation
	5.6.6 Similarity Transformation


	6
Analysis of Positive Definite Iterations
	6.1 Different Cases of Positivity
	6.2 Convergence Analysis
	6.2.1 Case 1: Positive Spectrum
	6.2.2 Case 2: Positive Definite
	6.2.3 Case 3: Positive Definite Iteration
	6.2.4 Case 4: Positive Definite
W+WH or N+NH
	6.2.5 Case 5: Symmetrised Iteration Φsym
	6.2.6 Case 6: Perturbed Positive Definite Case

	6.3 Symmetric Gauss–Seidel Iteration and SSOR
	6.3.1 The CaseA > 0
	6.3.2 SSOR in the 2-Cyclic Case
	6.3.3 Modified SOR
	6.3.4 Unsymmetric SOR Method
	6.3.5 Numerical Results for the SSOR Iteration


	7
Generation of Iterations
	7.1 Product Iterations
	7.2 Additive Splitting Technique
	7.2.1 Definition and Examples
	7.2.2 Regular Splittings
	7.2.3 Applications
	7.2.4 P-Regular Splitting

	7.3 Incomplete Triangular Decompositions
	7.3.1 Introduction and ILU Iteration
	7.3.2 Incomplete Decomposition with Respect to a Star Pattern
	7.3.3 Application to General Five-Point Formulae
	7.3.4 Modified ILU Decompositions
	7.3.5 Existence and Stability of the ILU Decomposition
	7.3.6 Properties of the ILU Decomposition
	7.3.7 ILU Decompositions Corresponding to Other Patterns
	7.3.8 Approximative ILU Decompositions
	7.3.9 Blockwise ILU Decomposition
	7.3.10 Numerical Examples
	7.3.11 Remarks

	7.4 Preconditioning
	7.4.1 Idea of Preconditioning
	7.4.2 Examples
	7.4.3 Preconditioning in the Wider Sense
	7.4.4 Rules for Condition Numbers and Spectral Equivalence
	7.4.5 Equivalent Bilinear Forms

	7.5 Time-Stepping Methods
	7.6 Nested Iteration


	Part II Semi-Iterations and Krylov Methods
	8
Semi-Iterative Methods
	8.1 First Formulation
	8.1.1 Notation
	8.1.2 Consistency and Asymptotic Convergence Rate
	8.1.3 Error Representation
	8.1.4 Krylov Space

	8.2 Second Formulation of a Semi-Iterative Method
	8.2.1 General Representation
	8.2.2 Three-Term Recursion

	8.3 Optimal Polynomials
	8.3.1 Minimisation Problem
	8.3.2 Discussion of the Second Minimisation Problem
	8.3.3 Chebyshev Polynomials
	8.3.4 Chebyshev Method (Solution of the Third Minimisation Problem)
	8.3.5 Order Improvement by the Chebyshev Method
	8.3.6 Optimisation Over Other Sets
	8.3.7 Cyclic Iteration
	8.3.8 Two- and Multi-Step Iterations
	8.3.9 Amount of Work of the Semi-Iterative Method

	8.4 Application to Iterations Discussed Above
	8.4.1 Preliminaries
	8.4.2 Semi-Iterative Richardson Method
	8.4.3 Semi-Iterative Jacobi and Block-Jacobi Method
	8.4.4 Semi-Iterative SSOR and Block-SSOR Iteration

	8.5 Method of Alternating Directions (ADI)
	8.5.1 Application to the Model Problem
	8.5.2 General Representation
	8.5.3 ADI in the Commutative Case
	8.5.4 ADI Method and Semi-Iterative Methods
	8.5.5 Amount of Work and Numerical Examples


	9
Gradient Method
	9.1 Reformulation as Minimisation Problem
	9.1.1 Minimisation Problem
	9.1.2 Search Directions
	9.1.3 Other Quadratic Functionals
	9.1.4 Complex Case

	9.2 Gradient Method
	9.2.1 Construction
	9.2.2 Properties of the Gradient Method
	9.2.3 Numerical Examples
	9.2.4 Gradient Method Based on Other Basic Iterations
	9.2.5 Numerical Examples

	9.3 Method of the Conjugate Directions
	9.3.1 Optimality with Respect to a Direction
	9.3.2 Conjugate Directions

	9.4 Minimal Residual Iteration

	10
Conjugate Gradient Methods and Generalisations
	10.1 Preparatory Considerations
	10.1.1 Characterisation by Orthogonality
	10.1.2 Solvability
	10.1.3 Galerkin and Petrov–Galerkin Methods
	10.1.4 Minimisation
	10.1.5 Error Statements

	10.2 Conjugate Gradient Method
	10.2.1 First Formulation
	10.2.2 CG Method (Applied to Richardson’s Iteration)
	10.2.3 Convergence Analysis
	10.2.4 CG Method Applied to Positive Definite Iterations
	10.2.5 Numerical Examples
	10.2.6 Amount of Work of the CG Method
	10.2.7 Suitability for Secondary Iterations
	10.2.8 Three-Term Recursion for pm

	10.3 Method of Conjugate Residuals (CR)
	10.3.1 Algorithm
	10.3.2 Application to Hermitian Matrices
	10.3.3 Stabilised Method of Conjugate Residuals
	10.3.4 Convergence Results for Indefinite Matrices
	10.3.5 Numerical Examples

	10.4 Method of Orthogonal Directions
	10.5 Solution of Nonsymmetric Systems
	10.5.1 Generalised Minimal Residual Method (GMRES)
	10.5.2 Full Orthogonalisation Method (FOM)
	10.5.3 Biconjugate Gradient Method and Variants
	10.5.4 Further Remarks



	Part III Special Iterations
	11
Multigrid Iterations
	11.1 Introduction
	11.1.1 Smoothing
	11.1.2 Hierarchy of Systems of Equations
	11.1.3 Prolongation
	11.1.4 Restriction
	11.1.5 Coarse-Grid Correction

	11.2 Two-Grid Method
	11.2.1 Algorithm
	11.2.2 Modifications
	11.2.3 Iteration Matrix
	11.2.4 Numerical Examples

	11.3 Analysis for a One-Dimensional Example
	11.3.1 Fourier Analysis
	11.3.2 Transformed Quantities
	11.3.3 Convergence Results

	11.4 Multigrid Iteration
	11.4.1 Algorithm
	11.4.2 Numerical Examples
	11.4.3 Computational Work
	11.4.4 Iteration Matrix

	11.5 Nested Iteration
	11.5.1 Discretisation Error and Relative Discretisation Error
	11.5.2 Algorithm
	11.5.3 Error Analysis
	11.5.4 Application to Optimal Iterations
	11.5.5 Amount of Computational Work
	11.5.6 Numerical Examples
	11.5.7 Comments

	11.6 Convergence Analysis
	11.6.1 Summary
	11.6.2 Smoothing Property
	11.6.3 Approximation Property
	11.6.4 Convergence of the Two-Grid Iteration
	11.6.5 Convergence of the Multigrid Iteration
	11.6.6 Case of Weaker Regularity

	11.7 Symmetric Multigrid Methods
	11.7.1 Symmetric and Positive Definite Multigrid Algorithms
	11.7.2 Two-Grid Convergence for ν1 > 0 , ν2 > 0
	11.7.3 Smoothing Property in the Symmetric Case
	11.7.4 Strengthened Two-Grid Convergence Estimates
	11.7.5 V-Cycle Convergence
	11.7.6 Unsymmetric Multigrid Convergence for all
ν > 0

	11.8 Combination of Multigrid Methods with Semi-Iterations
	11.8.1 Semi-Iterative Smoothers
	11.8.2 Damped Coarse-Grid Corrections
	11.8.3 Multigrid as Basic Iteration of the CG Method

	11.9 Further Comments
	11.9.1 Multigrid Method of the Second Kind
	11.9.2 Robust Methods
	11.9.3 History of the Multigrid Method
	11.9.4 Frequency Filtering Decompositions
	11.9.5 Nonlinear Systems


	12
Domain Decomposition and Subspace Methods
	12.1 Introduction
	12.2 Overlapping Subdomains
	12.2.1 Introductory Example
	12.2.2 Many Subdomains

	12.3 Nonoverlapping Subdomains
	12.3.1 Dirichlet–Neumann Method
	12.3.2 Lagrange Multiplier Based Methods

	12.4 Schur Complement Method
	12.4.1 Nonoverlapping Domain Decomposition with Interior Boundary
	12.4.2 Direct Solution
	12.4.3 Preconditioners of the Schur Complement
	12.4.4 Multigrid-like Domain Decomposition Methods

	12.5 Subspace Iteration
	12.5.1 General Construction
	12.5.2 The Prolongations
	12.5.3 Multiplicative and Additive Schwarz Iterations
	12.5.4 Interpretation as Gauss–Seidel and Jacobi Iteration
	12.5.5 Classical Schwarz Iteration
	12.5.6 Approximate Solution of the Subproblems
	12.5.7 Strengthened Estimate

	12.6 Properties of the Additive Schwarz Iteration
	12.6.1 Parallelism
	12.6.2 Condition Estimates
	12.6.3 Convergence Statements

	12.7 Analysis of the Multiplicative Schwarz Iteration
	12.7.1 Convergence Statements
	12.7.2 Proofs of the Convergence Theorems

	12.8 Examples
	12.8.1 Schwarz Method With Proper Domain Decomposition
	12.8.2 Additive Schwarz Iteration with Coarse-Grid Correction
	12.8.3 Formulation in the Case of Galerkin Discretisation

	12.9 Multigrid Iterations as Subspace Decomposition Method
	12.9.1 Braess’ Analysis without Regularity
	12.9.2 V-Cycle Interpreted as Multiplicative Schwarz Iteration
	12.9.3 Proof of V-Cycle Convergence
	12.9.4 Hierarchical Basis Method
	12.9.5 Multilevel Schwarz Iteration
	12.9.6 Further Approaches


	13 H-LU Iteration
	13.1 Approximate LU Decomposition
	13.1.1 Triangular Matrices
	13.1.2 Solution of LUx = b
	13.1.3 Matrix-Valued Solutions of LX = Z and XU = Z
	13.1.4 Generation of the LU Decomposition
	13.1.5 Cost of the H-LU Decomposition

	13.2 H-LU Decomposition for Sparse Matrices
	13.2.1 Finite Element Matrices
	13.2.2 Separability of the Matrix
	13.2.3 Construction of the Cluster Tree
	13.2.4 Application to Inversion
	13.2.5 Admissibility Condition
	13.2.6 LU Decomposition

	13.3 UL Decomposition of the Inverse Matrix
	13.4 H-LU Iteration
	13.4.1 General Construction
	13.4.2 Algebraic LU Decomposition

	13.5 Further Applications of Hierarchical Matrices

	14
Tensor-based Methods
	14.1 Tensors
	14.1.1 Introductory Example: Lyapunov Equation
	14.1.2 Nature of the Underlying Problems
	14.1.3 Definition of Tensor Spaces
	14.1.4 Case of Grid Functions
	14.1.5 Kronecker Products of Matrices
	14.1.6 Functions on Cartesian Products

	14.2 Sparse Tensor Representation
	14.2.1 r-Term Format (Canonical Format)
	14.2.2 A Particular Example
	14.2.3 Subspace Format (Tucker Format)
	14.2.4 Hierarchical Tensor Format

	14.3 Linear Systems
	14.3.1 Poisson Model Problem
	14.3.2 A Parametrised Problem
	14.3.3 Solution of Linear Systems
	14.3.4 CG-Type Methods
	14.3.5 Multigrid Approach
	14.3.6 Convergence
	14.3.7 Parabolic Problems

	14.4 Variational Approach


	Appendix A
Facts from Linear Algebra
	A.1 Notation for Vectors and Matrices
	A.2 Systems of Linear Equations
	A.3 Eigenvalues and Eigenvectors
	A.4 Block Vectors and Block Matrices
	A.5 Orthogonality
	A.5.1 Elementary Definitions
	A.5.2 Orthogonal and Unitary Matrices
	A.5.3 Sums of Subspaces and Orthogonal Complements

	A.6 Normal Forms
	A.6.1 Schur Normal Form
	A.6.2 Jordan Normal Form
	A.6.3 Diagonalisability
	A.6.4 Singular Value Decomposition


	Appendix B
Facts from Normed Spaces
	B.1 Norms
	B.1.1 Vector Norms
	B.1.2 Equivalence of All Norms
	B.1.3 Corresponding Matrix Norms
	B.1.4 Condition and Spectral Condition Number

	B.2 Hilbert Norm
	B.2.1 Elementary Properties
	B.2.2 Spectral Norm

	B.3 Correlation Between Norms and Spectral Radius
	B.3.1 Spectral Norm and Spectral Radius
	B.3.2 Matrix Norms Approximating the Spectral Radius
	B.3.3 Geometrical Sum of Matrices
	B.3.4 Numerical Radius of a Matrix


	Appendix C
Facts from Matrix Theory
	C.1 Positive Definite Matrices
	C.1.1 Definition and Notation
	C.1.2 Rules and Criteria for Positive Definite Matrices
	C.1.3 Remarks Concerning Positive Definite Matrices

	C.2 Graph of a Matrix and Irreducible Matrices
	C.3 Positive Matrices
	C.3.1 Definition and Notation
	C.3.2 Perron–Frobenius Theory of Positive Matrices
	C.3.3 Diagonal Dominance

	C.4 M-Matrices
	C.4.1 Definition
	C.4.2 M-Matrices and the Jacobi Iteration
	C.4.3 M-Matrices and Diagonal Dominance
	C.4.4 Further Criteria

	C.5 H-Matrices
	C.6 Schur Complement

	Appendix D
Hierarchical Matrices
	D.1 Introduction
	D.1.1 Fully Populated Matrices
	D.1.2 Rank-r Matrices
	D.1.3 Model Format

	D.2 Construction
	D.2.1 Cluster Trees
	D.2.2 Block Cluster Tree
	D.2.3 Partition
	D.2.4 Admissible Blocks
	D.2.5 Use of Bounding Boxes for Xτ
	D.2.6 Set of Hierarchical Matrices
	D.2.7 H2-Matrices
	D.2.8 Storage
	D.2.9 Accuracy

	D.3 Matrix Operations
	D.3.1 Matrix-Vector Multiplication
	D.3.2 Truncations
	D.3.3 Addition
	D.3.4 Agglomeration
	D.3.5 Matrix-Matrix Multiplication
	D.3.6 Inversion and LU Decomposition


	Appendix E
Galerkin Discretisation of Elliptic PDEs
	E.1 Variational Formulation of Boundary Value Problems
	E.2 Galerkin Discretisation
	E.3 Subdomain Problems and Finite Element Matrix
	E.4 Relations Between the Continuous and Discrete Problems
	E.5 Error Estimates
	E.6 Relations Between Two Discrete Problems

	References
	Index



