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Foreword

This book is a tribute to Alexei Pokrovskii (1948–2010) who introduced the Russian
and Irish coauthors and who generously promoted and made important contributions
to our understanding of singular perturbations from an applied and geometric
perspective.

The three authors continue and explain many recent results on the asymptotics
of slow integral (or invariant) manifolds and their stability. They do so by cleverly
describing a series of illustrative examples of increasing complexity and reality.
Many applications in chemical kinetics are particularly impressive, as is their
ultimate study of two-dimensional canards and higher-dimensional black swans.

Readers of this clear and well-motivated monograph will be prepared to advance
to the even more sophisticated research literature that takes a dynamical systems
approach to multi scale systems. The authors are to be congratulated on completing
a tough job, very well done. They’ve certainly earned our appreciation and that of
future students.

Seattle, WA Robert O’Malley
December 2013
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Preface

The idea of using a small parameter to set up a perturbation series has been with
us since at least the work of Stokes in 18471 on the investigation of water waves.
The use of integral manifolds, with a small parameter, is of more recent vintage.
It can be found in [45, 72, 75, 92, 114, 170, 197, 217, 218]. Over the past 50 years
there have been many books devoted to regular and singular perturbations, but there
are few books in which singular perturbations are combined with integral manifolds.
Moreover, many of these were published only in Russian. The purpose of the present
book is to fill this gap.

We deal with a system of first order ODEs some of which are singularly
perturbed, i.e., when the small parameter is set to zero the ability to satisfy all
initial conditions is lost. We introduce a method for the qualitative analysis of these
singularly perturbed ODEs. The method relies on the theory of integral manifolds,
which essentially replaces the original system by another system on an integral
manifold of lower dimension. The lowering of the dimension occurs due to the
decomposition of the original system in the vicinity of the integral surface into
the independent “slow” subsystem and the “fast” subsystem. If the slow integral
manifold is attracting, then the analysis of the original system can be replaced by
the analysis of the slow subsystem. In the language of perturbation theory a slow
integral manifold is associated with the outer (slow) solution and a fast integral
manifold is associated with boundary layer (fast) corrections.

The book proceeds with the interplay of theory and illustrative examples, in
many cases taken from physical problems. There are many such examples in
Chap. 3, where the reader is introduced at an easy pace to the use of the theory.
As the chapters progress, the theory and corresponding examples become more
sophisticated. In Chaps. 7 and 8 we deal with systems where the usual hypotheses
in integral manifold theory are violated. The method of solution is then illustrated

1G.G. Stokes, On the theory of oscillatory waves. Camb Trans 8:441–473.
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x Preface

by a series of examples on gyroscopic motion, control problems, and a model of
thermal explosion. These problems can be quite difficult, so much of the detailed
calculation is given. In Chap. 8 the concepts of canard and black swan are introduced
and illustrated by examples on the van der Pol oscillator, a fast phages–slow bacteria
model, and some laser and chemical models. There is also a detailed discussion of
two classical combustion models, including the calculation of the critical value of
the parameter that separates explosive from non-explosive regimes. In Chap. 9 the
proofs of certain theorems are given that have been signalled earlier in the book.
These require a more mature reader.

The authors are grateful to Robert O’Malley who was there at the beginning and
gave much valuable advice, as well as Grigory Barenblatt, Eric Benoit and Jean
Mawhin for helpful discussions. This work is supported in part by the Russian
Foundation for Basic Research (grants 12-08-00069, 13-01-97002, 14-01-97018,
14-08-91373), TUBITAK (grant 113E595), Division on the EMMCP of Russian
Academy of Sciences, Program for basic research no. 14, project 1.12, and the
Ministry of Education and Science of the Russian Federation in the framework
of the implementation of Program of increasing the competitiveness of SSAU for
2013–2020 years.

Cork, Ireland Michael P. Mortell
Samara, Russia Elena Shchepakina
Samara, Russia Vladimir Sobolev
January 2014
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Chapter 1
Introduction

Abstract Chapter 1 provides an easy introduction to perturbation methods. It
begins with an algebraic equation and proceeds to a second order ODE. The
concept of an initial or boundary layer is introduced. This motivates the method of
multiple scales. The idea of slow surfaces and slow integral manifolds is introduced
and illustrative examples are given. Then a statement of Tikhonov’s theorem is
given which answers the question about the permissibility of the application of a
“degenerate” system (" D 0) as a zero-approximation to the full system.

1.1 Regular and Singular Perturbations

1.1.1 Algebraic Equations

In this subsection we introduce the basic ideas of perturbation theory as applied to
the problem of finding roots of polynomials.

By way of illustration, we consider two quadratic equations

�2 C b�C "a D 0; (1.1)

with roots �1; �2 given by

�1 D �1."/ D �b C p
b2 � 4"a
2

; �2 D �2."/ D �b � p
b2 � 4"a
2

; (1.2)

and

"�2 C b�C a D 0; (1.3)

with roots �1; �2 given by

�1 D �1."/ D �b C p
b2 � 4"a

2"
; �2 D �2."/ D �b � p

b2 � 4"a

2"
: (1.4)

© Springer International Publishing Switzerland 2014
E. Shchepakina et al., Singular Perturbations, Lecture Notes in Mathematics 2114,
DOI 10.1007/978-3-319-09570-7__1
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2 1 Introduction

Here a and b are given constants, and " > 0 is a small parameter. For the sake of
definiteness we suppose b positive and a nonnegative.

We say that (1.1) is regularly perturbed, and (1.3) is singularly perturbed when
" ! 0. To clarify these ideas, we begin by setting " D 0 in (1.1) and (1.3). Thus we
get

�2 C b� D 0;

with roots N�1 D 0 and N�2 D �b; and

b�C a D 0;

with the single root N�1 D �a=b.
It is easy to see that as " ! 0 in (1.1)

�1."/ ! N�1 D 0; and �2."/ ! N�2 D �b:

However, although

�1."/ ! N�1 D �a=b as " ! 0;

the root corresponding to �2."/ is lost. This loss of a root follows from the fact
that when we set " D 0 in (1.3), the resulting equation is reduced in order from a
quadratic to a linear equation. From (1.2) and (1.4) it follows that �1."/; �2."/ are
continuous at " D 0, but �2."/ is not.

Thus, the distinguishing features of singular perturbations are the reduction in
order of the original equation and the loss of continuity for some solution(s) at
" D 0.

We note that the change of variable � D �=" reduces the singular equation (1.3)
to the regular equation (1.1). Changes of variables of this type are typical of
perturbation theory, and it is standard practice to seek such transformations.

Taylor expansions for the roots �i ; �i ; i D 1; 2, given by (1.2) and (1.4) yield
the result, for small ",

�1."/ D �"a=b � "2a2=b3 C : : : ; (1.5)

and

�2."/ D �b C "a=bC "2a2=b3 C : : : ; (1.6)

with

�1;2."/ D �1;2."/=": (1.7)



1.1 Regular and Singular Perturbations 3

The question we now wish to address is whether we can recover the expan-
sions (1.5)–(1.7) directly from the original equations (1.1) and (1.3) without
recourse to the exact solutions (1.2) and (1.4). To this end, the notion of an
asymptotic expansion is introduced.

1.1.2 Asymptotic Expansions

The search for the roots of polynomial equations is probably the simplest problem
in the theory of perturbations, and we use Eqs. (1.1) and (1.3) to illustrate the idea of
an asymptotic expansion. We use the usual order symbols O and o that are defined
as follows. Let �."/ and  ."/ be given functions with

ˇ
ˇ
ˇ
ˇ

�."/

 ."/

ˇ
ˇ
ˇ
ˇ

� C < 1:

Then we write

�."/ D O. ."// as " ! 0:

If

�."/

 ."/
! 0 as " ! 0;

we write

�."/ D o. ."// as " ! 0:

To find an asymptotic expansion to approximate the roots of (1.1), we write the
formal series, called a regular perturbation expansion,

�."/ D ˛0 C "˛1 C "2˛2 CO."3/: (1.8)

On substituting (1.8) into (1.1) and equating to zero the coefficients of the various
powers of ", we find the sequence of equations for ˛0; ˛1; ˛2; : : :

˛20 C b˛0 D 0;

.2b˛0 C b/˛1 C a D 0;

.2b˛0 C b/˛2 C .˛1/
2 D 0;

� � � :
Then

˛0 D 0 or ˛0 D �b:



4 1 Introduction

For ˛0 D 0, ˛1 D �a=b and ˛2 D �a2=b3; and (1.5) is recovered.
For ˛0 D �b, ˛1 D a=b and ˛2 D a2=b3; and (1.6) is recovered.
Thus, the expansions (1.5) and (1.6) for �1."/ and �2."/ are found unless we

have the intuition, or a procedure to tell us, that the asymptotic expansion for the
roots �1."/; �2."/ of (1.3) takes the form

�."/ D �0="C �1 C "�2 CO."2/;

that yields �0 D 0 or �0 D �b on substitution into (1.3). However, recognising that
the transformation � D �=" reduces (1.3) to (1.1), the expansions for �1;2."/ can
again be found by a regular perturbation.

We now write the asymptotic expansion for �1;2."/ as

�1."/ D �"a=b � "2a2=b3 CO."3/;

�2."/ D �b C "a=b C "2a2=b3 CO."3/;

and for �1;2."/ as

�1."/ D �a=b � "a2=b3 CO."2/;

�2."/ D �b="C a=b C "a2=b3 CO."2/:

1.1.3 Second Order Differential Equation

As the next introductory example, we consider the second order ordinary differential
equation

" Rx C b Px C ax D 0I x.0/ D x0; Px.0/ D y0; (1.9)

where the dot refers to differentiation with respect to time t . Equation (1.9) describes
the motion of a damped spring with “small” mass "; 0 < " � 1, if b > 0 and a > 0
and both are constants of O.1/. The initial extension of the spring is x0 and the
initial velocity of the mass is y0, both of which are given.

This is a linear homogeneous ordinary differential equation with constant
coefficients, and is solved by seeking solution of the form x D e�t . Then � satisfies

"�2 C b�C a D 0;

with solutions �1;2."/ given by (1.4). The solution to the problem (1.9) then is

x.t/ D C1e
�1."/t C C2e

�2."/t (1.10)
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where the constants C1 and C2 are determined by the initial conditions to be

C1 D �2x0 � y0

�2 � �1 ; C2 D y0 � �1x0
�2 � �1

: (1.11)

From the form of �1;2."/, we note that if b2 > 4a" the motion of the spring is
critically damped, i.e., there are no oscillations. It is seen from (1.4) that

�1."/ D �a
b

CO."/; and �2."/ D �b
"

CO.1/;

and the dominant terms in the solution x.t; "/ are

x.t; "/ D C1e
�. ab CO."//t C C2e

�. b" CO.1//t :

Since 0 < " � 1, there is a “fast” decay associated with the C2 term as compared
with the slow decay of the C1 term. Thus the term C2e

�2."/t is of significance only
near the initial point t D 0.

This observation motivates the introduction of an “initial layer” or “boundary
layer”, where the natural independent variable is the “stretched” variable � D t=".
The independent variable t is then associated with the “outer region” at a remove
from t D 0. We will construct an asymptotic expansion for the solution x.t; "/
involving the variables t and � .

Following [127] or [205], an outer expansion

xouter.t; "/ D f0.t/C "f1.t/CO."2/; (1.12)

and an initial layer expansion

xlayer.�; "/ D g0.�/C "g1.�/CO."2/ (1.13)

are assumed, where � D t=". The condition

xlayer.�; "/ ! 0; as � ! C1 (1.14)

is also imposed.
On substitution the outer expansion (1.12) into the Eq. (1.9) and equating powers

of ", the equations for f0.t/ and f1.t/ are

b
df0.t/

dt
C af0.t/ D 0;

b
df1.t/

dt
C af1.t/ D �d

2f0.t/

dt2
:
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Then

f0.t/ D c1e
�at=b

and

f1.t/ D c2e
�at=b � t a

2

b3
c1e

�at=b;

where the constants c1; c2 remain to be determined. Then

xouter.t; "/ D c1e
�at=b C "

�

c2e
�at=b � t

a2

b3
c1e

�at=b

�

CO."2/:

On using the variable � D t=", Eq. (1.9) becomes

d2x

d�2
C b

dx

d�
C "ax D 0: (1.15)

Substituting the expansion (1.13) into Eq. (1.15), equating powers of " and noting
the condition (1.14), yields

d2g0

d�2
C b

dg0
d�

D 0; g0.1/ D 0;

d 2g1

d�2
C b

dg1
d�

D �ag0; g1.1/ D 0:

Then,

g0 D d1e
�b�

and

g1 D d2e
�b� � a

b
�d1e

�b� ;

where the constants d1; d2 remain to be determined. Then

xlayer.�; "/ D d1e
�b� C "

h

d2e
�b� � a

b
�d1e

�b�
i

CO."2/:

We now assume that the solution x.t; "/ of (1.9) is of the form

x.t; "/ D xouter.t; "/C xlayer.�; "/:
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The initial conditions associated with Eq. (1.9), with the definitions (1.12)
and (1.13), imply

f0.0/C g0.0/ D x0; g0
0.0/ D 0;

and

f1.0/C g1.0/ D 0; f 0
0 .0/C g0

1.0/ D y0;

on recalling that d
dt D 1

"
d
d�

, f 0; g0 refer to differentiation with respect to t and �
respectively. Then d1 D 0 and c1 D x0; while d2 D �c2 and c2 D 1

b
.y0 C a

b
x0/.

The asymptotic expansion is

x.t; "/ D x0e
�at=b C "

��y0

b
C ax0

b2

�

� t a
2

b3
x0

�

e�at=b

�"
�y0

b
C ax0

b2

�

e�bt=" CO."2/: (1.16)

On examining the exact solution (1.10) and (1.11), it is clear, on noting the
asymptotic forms of �1;2."/, that

xouter.t; "/ D �2x0 � y0
�2 � �1

e�1t

and

xlayer.�; "/ D y0 � �1x0
�2 � �1

e�2t ;

and the validity of the expansion (1.16) is easily checked. It should be noted that
the expansion (1.16) satisfies the displacement condition to O."/ and the velocity
condition toO.1/. Furthermore, the initial conditions are applied to the full solution
x.t; "/ and not just to xlayer.�; "/, as would be in the case for the method of matched
asymptotic expansions. The consequence is that the “matching” of the outer to the
layer solution to determine the arbitrary constants is obviated.

1.2 Method of Multiple Scales

We have noted that the solution (1.10) and (1.11) of Eq. (1.9) has a ‘fast’ time scale
� D t=" and a ‘slow’ time scale t . This observation can be exploited as follows.
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1.2.1 Second Order Differential Equation

Equation (1.9) is rewritten as in (1.15), and we assume the solution of (1.15) in the
form

x.� I "/ D F.�; t I "/; t D "�; (1.17)

and regard t , � as independent variables. In these variables, the initial conditions
become

x.0I "/ D x0 D F.0; 0I "/ (1.18)

and

"
dx

dt
.0I "/ D "y0 D @F

@�
.0; 0I "/C "

@F

@t
.0; 0I "/: (1.19)

The asymptotic expansion for x.� I "/ is assumed to be

F.�; t I "/ D F0.�; t/C "F1.�; t/C "2F2.�; t/C : : : : (1.20)

On substituting (1.20) into (1.15), equating powers of ", and using the initial
conditions (1.18) and (1.19), we get the following sequence of problems.

"0 W
@2F0

@�2
C b

@F0

@�
D 0;

F0.0; 0/ D x0;
@F0

@�
.0; 0/ D 0I

"1 W
@2F1

@�2
C b

@F1

@�
D �aF0 � 2@

2F0

@�@t
� b @F0

@t
;

F1.0; 0/ D 0;
@F1

@�
.0; 0/ D y0 � @F0

@t
.0; 0/I

"2 W
@2F2

@�2
C b

@F2

@�
D �aF1 � 2@

2F1

@�@t
� b @F1

@t
� @2F0

@t2
;

F2.0; 0/ D 0;
@F2

@�
.0; 0/ D �@F1

@t
.0; 0/:
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Then

F0.�; t/ D A0.t/e
�b� C B0.t/;

where, using the initial conditions,

A0.0/ D 0; B0.0/ D x0:

The right hand side at "1 is

� ��aA0.t/ � bA0
0.t/

�

e�b� C aB0.t/C bB 0
0.t/

	

:

In order to avoid any growth (secular terms) in the fast variable � in F1.�; t/, the
r.h.s. is set to zero.

Thus

A0
0.t/ � a

b
A0.t/ D 0; A0.0/ D 0;

B 0
0.t/C a

b
B0.t/ D 0; B0.0/ D x0;

and then

A0.t/ � 0; B0.t/ D x0e
� a
b t :

This gives

F0.�; t/ D x0e
� a
b t

and

F1.�; t/ D A1.t/e
�b� C B1.t/:

The right hand side at "2 is

�

bA0
1 � aA1

�

e�b� � �

bB 0
1 C aB1

� � x0
a2

b2
e� a

b t :

Again we avoid secular terms in � by setting

A0
1 � a

b
A1 D 0

and

B 0
1 C a

b
B1 D �x0 a

2

b2
e� a

b t ;
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where the initial conditions at this order yield

B1.0/ D �A1.0/ D 1

b
.y0 C a

b
x0/:

Then

B1.t/ D 1

b
.y0 C a

b
x0/e

� a
b t � x0 a

2

b3
te� a

b t

and

A1.t/ D �1
b
.y0 C a

b
x0/e

a
b t :

Finally,

x.� I "/ D F0.�; t/C "F1.�; t/CO."2/

D x0e
� a
b t C "

b
.y0 C a

b
x0/e

� a
b t � "x0

a2

b3
te� a

b t

� "
b
.y0 C a

b
x0/e

a
b t e�b� CO."2/: (1.21)

We note that the term e
a
b t e�b� can be replaced by e�b� due to the dominance of e�b�

for � > 0, since

e
a
b t e�b� D e

� bt
" .1�" ab2 /;

and (1.21) agrees with (1.16).

1.2.2 Second Order Differential System

The second order differential equation discussed above can be rewritten as the planar
differential system

Px D y; x.0/ D x0I
" Py D �ax � by; y.0/ D y0:

(1.22)

The solution to (1.22) can be represented in the form

x D xouter.t; "/C xlayer.�; "/ (1.23)

y D youter.t; "/C ylayer.�; "/ (1.24)
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where xouter and xlayer were defined above after (1.16), and

youter.t; "/ D �1
�2x0 � y0
�2 � �1

e�1t D �1xouter.t; "/; (1.25)

ylayer.�; "/ D �2
y0 � �1x0

�2 � �1
e�2t D �2xlayer.�; "/; (1.26)

from the first of (1.22). It should be emphasized that

x D xouter; y D youter;

and

x D xlayer; y D ylayer

are exact solutions of the system of differential equations in (1.22), but do not satisfy
the initial conditions.

We will use this system to illustrate some ideas in the next Section.

1.2.3 A Note on the Initial Conditions

Recall, that

xouter.t; "/ D �2x0 � y0
�2 � �1

e�1t :

Thus, xouter.t; "/ satisfies the initial condition

xouter.0; "/ D �2x0 � y0
�2 � �1 ;

which can be rewritten as follows

xouter.0; "/ D x0 C �2x0 � y0
�2 � �1

� x0 D x0 C �1x0 � y0

�2 � �1
D x0 C "

y0 � �1x0p
b2 � 4"a

:

This means that the initial value of xouter.t; "/ is different from x0 by the amount

"
y0 � �1x0p
b2 � 4"a

D O."/:
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1.2.4 A Note on the Meaning of “Small”

The equation for a mass (m), spring (k), dash-pot (�) system is

m
d2x

dt2
C �

dx

dt
C kx D 0;

where x.t/ is the displacement of the mass from its equilibrium point x D 0. By
comparing terms in the equation, the dimensions of � are mT�1, and of k are mT�2
where T is a measure of time. If we introduce a length scale x0 and a time scale T0,
the dimensionless displacement and time are Nx D x=x0; Nt D t=T0, and the original
equations becomes

m

NkT 20
d2 Nx
d Nt2 C �

NkT0
d Nx
d Nt C a Nx D 0;

where k D a Nk and a is a number.
We write the equation as

"
d2 Nx
d Nt2 C b

d Nx
d Nt C a Nx D 0;

where "; a; b are dimensionless parameters. The meaning of a “small” mass then

is defined by 0 < " � 1, where " D m

NkT
2

0

is a dimensionless constant.

An essential task before using a perturbation scheme is to nondimensionalise the
equations, and identify the small (large) parameter.

Note that prerequisites are an introductory course in perturbation methods e.g.
parts of [6,9,17,25,28,41,62,69,76,77,80,85–88,95,121,122,127,153,169,203].

1.3 Singularly Perturbed Differential Systems

1.3.1 Slow Surfaces and Slow Integral Manifolds

Consider the system of ordinary differential equations

dx

dt
D f .x; y; t; "/;

"
dy

dt
D g.x; y; t; "/;

(1.27)
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with x 2 R
m; y 2 R

n; t 2 R, and " is a small positive parameter. Such systems
are called singularly perturbed systems, since when " D 0 the ability to specify an
arbitrary initial condition for y.t/ is lost. The usual approach to the qualitative study
of (1.27) is to consider first the degenerate system (" D 0)

dx

dt
D f .x; y; t; 0/;

0 D g.x; y; t; 0/;

(1.28)

and then to draw conclusions about the qualitative behavior of the full system (1.27)
for sufficiently small ".

In order to recall a basic result of the theory of singularly perturbed systems we
introduce the following terminology and assumptions.
The system of equations

dx

dt
D f .x; y; t; "/ (1.29)

is called the slow subsystem of (1.27), x is called the slow variable and the system
of equations

"
dy

dt
D g.x; y; t; "/ (1.30)

is called the fast subsystem of (1.27). Here x 2 R
m; y 2 R

n; t 2 R.
In this book we introduce a method for the qualitative asymptotic analysis of

singularly perturbed ordinary differential equations. The method relies on the theory
of integral manifolds, which essentially replaces the original system by another
system on an integral manifold whose dimension is equal to that of the slow
subsystem.

Definition 1. A smooth surface S in R � R
m � R

n is called an integral manifold
of the system (1.27) if any integral curve of the system that has at least one point in
common with S lies entirely on S .

Formally, if .t0; x.t0/; y.t0// 2 S , then the integral curve .t; x.t; "/; y.t; "// lies
entirely on S . The only integral manifolds of system (1.27) discussed here are those
of dimension m (the dimension of the slow variable x) that can be represented as
graphs of vector-valued functions

y D h.x; t; "/:

Here it is assumed that h.x; t; "/ is a sufficiently smooth function of ". Such integral
manifolds are called manifolds of slow motions — the origin of this term lies in
nonlinear mechanics.
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Definition 2. The surface described by the equation

g.x; y; t; 0/ D 0

is called a slow surface. When the dimension of this surface is equal to one, it is
called a slow curve.

So dx
dt D f .x; y; t; "/ is the slow subsystem, while g.x; y; t; 0/ D 0 is the slow

surface. We also stipulate that h.x; t; 0/ D �.x; t/, where �.x; t/ is a function
whose graph is a sheet of the slow surface

g.x; y; t; 0/ D 0;

i.e. the slow surface can be considered as a zero-order approximation of the slow
integral manifold.

To explain the sense of this term (slow surface), it is enough to notice that the
derivative of a fast variable y along a slow surface has small values; that is, the fast
variable near to this surface changes slowly like the slow variable x:

dy

dt
D g.x; y; t; "/

"
D g".x; y; t; 0/CO."/;

since g.x; y; t; 0/ D 0 on the slow surface.
It is also assumed that the equation g.x; y; t; 0/ D 0 has an isolated root �.x; t/:

g.x; �.x; t/; t; 0/ � 0:

Before we pursue the idea of integral manifolds of a differential equation we first
consider several examples of the notation of sheets (or branches) of a surface.

As a first example, let x and y be scalar variables and g D y2 C x. Then the
equation

g D y2 C x D 0

gives two roots y D �.x/ D �p�x and y D �.x/ D p�x, x � 0, corresponding
to two branches of a parabola (see Fig. 1.1). Each branch plays the role of a sheet.

For a second example, let x be a two-dimensional vector x D .x1; x2/ and y a
scalar.

In the case g D y2 C .x1 C x2/, the equation

g D y2 C .x1 C x2/ D 0

gives two roots

y D �.x1; x2/ D �p�x1 � x2 and y D �.x1; x2/ D p�x1 � x2; x1 C x2 � 0;
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Fig. 1.1 Slow curve with
two branches: y � 0; y � 0
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Fig. 1.2 Slow surface with
two sheets: y D
˙p�x1 � x2; x1 C x2 � 0
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corresponding to two sheets of the slow surface (see Fig. 1.2).
As a third example, we take the case g D y3 � y.x21 C x22/� y, and obtain three

roots

y D �.x1; x2/ D 0 and y D �.x1; x2/ D ˙
q

x21 C x22 C 1

of the equation g D y3 � y.x21 C x22/� y D 0 ( see Fig. 1.3).
For the final example, we take g D y3 C x1y C x2 and obtain three sheets of

the slow surface y3 C x1y C x2 D 0, corresponding to the three roots of this cubic
equation in y (see Fig. 1.4).

We now return to integral manifolds of a differential equation. The motion along
an integral manifold of the system (1.27) is governed by the equation

Px D f .x; h.x; t; "/; t; "/; (1.31)

where y D h.x; t; "/ is a slow integral manifold. If x.t; "/ is a solution of (1.31),

then the pair
�

x.t; "/; y.t; "/
�

, where y.t; "/ D h.x.t; "/; t; "/, is a solution of the

original system (1.27), since it defines a trajectory on the integral manifold.
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Fig. 1.3 Slow surface with
three sheets
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Fig. 1.4 Continuous slow
surface with three sheets
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In an autonomous system

dx

dt
D f .x; y; "/;

"
dy

dt
D g.x; y; "/;

(1.32)

i.e., where f and g do not have an explicit dependence on t , an integral manifold
has the form S1 � .�1;1/, where S1 is a surface in the phase space Rm �R

n, i.e.,
the x � y space, and the integral manifolds will be graphs of functions

y D h.x; "/:

In the case of an autonomous system the term “invariant manifold” is normally
used instead of “integral manifold”. More exactly
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Definition 3. A smooth surface S in R
m �R

n is called an invariant manifold of the
system (1.32) if any trajectory of the system that has at least one point in common
with S lies entirely on S .

Tikhonov has proved the following theorem [199], which answers the question
about the permissibility of the application of the degenerate system (1.28) as a
“zero approximation” to (1.27). The basic assumption of the theorem requires the
asymptotic stability of the function y D �.x; t/ (recall that y D �.x; t/ is a
solution of g.x; y; t; 0/ D 0) as a steady state solution of the so-called associated
(or adjoined, or boundary layer) system

dy

d�
D g.x; y; t; 0/ (1.33)

for all fixed x and t [formally, we set the variable � D t=", independent of
the parameter t in (1.33)]: i.e., y D �.x; t/ is the asymptotically stable solution
to (1.33) as � ! 1. Equation (1.33) is sometimes called the layer equation.

We will formulate the statement of Tikhonov’s theorem in a very simple form.
We consider the system (1.27) with initial conditions x.t0; "/ D x0; y.t0; "/ D y0
for the scalar variable y. In order to quote a much-simplified version of Tikhonov’s
theorem the following conditions have to be satisfied:

(i) The functions f and g are uniformly continuous and bounded, together with
their partial derivatives with respect to all variables in some open domain of
space .x; y/, t 2 Œt0; t1� and " 2 Œ0; "0�.

(ii) The boundary layer equation (1.33) has a solution for a given initial value.
(iii) For every fixed x and t , y D �.x; t/ is an isolated root of g.x; y; t; 0/ D 0

i.e., g.x; �.x; t/; t; 0/ D 0, and there exists a positive number ı > 0 such that
the conditions ky � �.x; t/k < ı and y ¤ �.x; t/ imply g.x; y/ ¤ 0.

This does not mean that the equation g.x; y; t; 0/ D 0 has no other roots
except �.x; t/.

(iv) The equation

Px D f .x; �.x; t/; t; 0/

with a given initial condition has a solution x D Nx.t/ on t 2 Œt0; t1�.
(v) There exists � > 0 such that gy.x; �.x; t/; t; 0/ � �� .

This implies that �.x; t/ is an asymptotically stable equilibrium solution
to (1.33).

(vi) The point y0 belongs to the basin of attraction of the steady state solution
y D �.x0; t0/.

Assumption (vi) identifies the initial points for which one can be sure that the
solution to (1.27) converges to corresponding solution of (1.28). To understand its
meaning, recall that the steady state of a nonlinear system does not necessarily
attract all other solutions. If the steady state attracts all other solutions it is
called globally asymptotically stable. Most often, only solutions originating from
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a neighborhood of a steady state converges to it as t ! 1. Such a neighborhood
is called a basin of attraction of steady state. Now, if we take an initial value x0,
then the steady state of the layer equation (1.33) is �.x0; t0/. To make sure that
Tikhonov’s theorem will work, we must take y0 from the basin of attraction of
�.x0; t0/.

It should be noted that the stability condition (v) is slightly stronger than the one
given in [199]. Moreover, (v) guarantees that (vi) holds for all y0 with sufficiently
small y0 � �.x0; t0/.

Then, the following result holds:

Theorem 1 (Tikhonov’s Theorem). If assumptions (i)–(vi) are valid then the
solution .x.�; "/; y.�; "// of the initial value problem (1.27) exists in Œt0; t1� and
the following conditions hold

lim
"!0

x.t; "/ D Nx.t/; t0 � t � t1I (1.34)

lim
"!0

y.t; "/ D �. Nx.t/; t/; t0 < t � t1: (1.35)

The convergence in (1.34) and (1.35) is uniform in the interval t0 � t � t1 for
x.t; "/ and in any interval t0 < � � t � t1 for y.t; "/.

This mean that, under the conditions of Tikhonov’s theorem, the solution travels
to the slow surface and is the limit of the exact solution as " ! 0.

Tikhonov’s theorem permits different interpretations. It is possible to consider his
result as the first step in constructing the asymptotic expansion of the initial value
problem. Now we can consider it as the first step in order reduction.

The foregoing is illustrated by the autonomous system (1.22). Setting " D 0, we
obtain the degenerate problem:

Px D y; x.0/ D x0;

0 D �ax � by;
(1.36)

which cannot satisfy the initial condition y.0/ D y0.
In this case the role of the slow surface is played by the slow curve which is

described by the equation

0 D �ax � by:

In the case b > 0 the root y D �ax=b D �1.0/x of this equation is the
asymptotically stable steady state solution as � ! 1 to the corresponding boundary
layer equation

dy

d�
D �ax � by:

Even though the initial condition y.0/ D y0 is not satisfied, the approximation
y D �ax=b is yet the stable steady state solution of the second equation in (1.22)
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as t ! 1. This follows from the fact that y0 belongs to the basin of attraction of

the steady state solution. Here �1.0/ D �1."/
ˇ
ˇ
ˇ
"D0 is given by (1.5) and (1.7). This

means that Tikhonov’s theorem is applicable to the system (1.22), and the solution
of (1.22) tends to the solution of (1.36) as " ! 0:Of course, the identical conclusion
can be derived from the exact solution of (1.22) under " ! 0:

There are many applied problems where the use of the degenerate equations,
obtained by setting " D 0, instead of the full equations give acceptable results, but
in some cases the approximation (1.28) is too crude. Readers who have an interest
in such problems are referred to Chap. 7 in [117].

There are at least two means of proceeding from Eq. (1.28) as an approximation
to (1.27). In the first the validity of proceeding to the limit

x.t; "/ ! x0.t/; y.t; "/ ! y0.t/ as " ! 0

is examined, where x D x.t; "/; y D y.t; "/ are solutions to the Eq. (1.27), and
x0.t/; y0.t/ are solutions to the degenerate problem, i.e. x0.t/ is a solution of the
equation

dx

dt
D f .x; �.x; t/; t; 0/; (1.37)

and y0.t/ D �.x0.t/; t/ is a solution of 0 D g.x0.t/; y; t; 0/: If the approximation
x D x0.t/; y D y0.t/ is too crude, it is reasonable to construct more exact
approximations for the functions x.t; "/; y.t; "/ with the help of asymptotic
methods, e.g. the boundary layer method [127,130,204,205,211], the multiple-scale
method [121], the regularization method [99], the averaging method [14].

The second method considers the degenerate equation (1.28) as the zero approx-
imation of the decomposition of the system (1.27) , where the slow variable x
is constructed from the independent equation (1.37), and the fast variable y is
determined either from the algebraic relation y D �.x; t/; or from the associated
(or boundary layer) equation (1.33). From this point of view the more exact the
decomposition of the system is, the more precise is the result. This means that
the independent equation (1.31) for the slow variable x is designed to have greater
accuracy, and the fast variable is determined from a more precise algebraic relation
of the form y D h.x; t; "/; or from some differential equation of the dimension
n D dimy, whose coefficients may depend on the slow variable. This second means
of proceeding is the basis for the approach developed in this book.

1.3.2 Integral Manifolds and Asymptotic Expansions
of Solutions

Returning to the system (1.22), we see that an important role is played by two
trajectories, viz., the straight lines y D �1."/x and y D �2."/x. The line y D
�1."/x can be considered to be a slow integral manifold, because if we choose an
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initial point .x0; y0/ on this line, i.e. y0 D �1x0 or C2 D 0 in (1.10), than the whole
trajectory of the corresponding solution

x D �2x0 � y0
�2 � �1

e�1t D x0e
�1t ; y D Px D �1

�2x0 � y0
�2 � �1

e�1t D �1x

lies on this straight line. The behavior of solutions x D x.t; "/ on the slow integral
manifold is then described by the first order differential equation

Px D �1x:

Using the asymptotic representations

�1 D �a=b � "a2=b3 CO."2/;

�2 D "�1Œ�b C "a=b CO."2/�

it is easy to see that the invariant line y D �1."/x is attractive when b > 0 and
repulsive when b < 0 for any a. This is also readily seen from the exact solution
given above or from (1.10) and (1.11). Note that the solution of the degenerate
problem (1.36) can be considered to be a limiting solution (as " ! 0/ with respect
to the solution of the original problem (1.22) when b > 0, see Tikhonov’s theorem
above.

Any trajectory of (1.22) can be represented as a trajectory on the attractive slow
integral manifold plus an asymptotically negligible term corresponding to �2."/
when b > 0 (see Fig. 1.5 which demonstrates that trajectories go through the slow
curve and approach the slow integral manifold).

In a similar manner, we to say that line y D �2."/x is the fast invariant manifold
[170]. The trajectory y D �2."/x corresponds to the initial condition y0 D �2."/x0,
or C1 D 0 in (1.10).

As a note of warning, the formal use of an asymptotic expansion can lead to
an incorrect representation of the solution, or to a representation with restricted

Fig. 1.5 Four trajectories,
corresponding to different
initial conditions, (solid lines)
going through the slow curve
y D �1.0/x (dashed line)
and approach the slow
invariant manifold
y D �1."/x (dotted straight
line) (a D b D 1; " D 0:1),
where the arrows indicate
increasing time

x

y
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application. By way of example, consider the second order linear differential
equation with constant coefficients

" Rx C .1C "2/ Px C "x D 0I x.0/ D x0; Px.0/ D y0:

It is a straightforward exercise to check that the exact solution of this equation is

x D xouter.t; "/C xlayer.�; "/;

where

xouter.t; "/ D ."y0 C x0/

1 � "2
e�"t ;

xlayer.�; "/ D �".y0 C "x0/

1 � "2 e�t=":

The outer solution is an exponentially decreasing function, whereas the asymp-
totic expansion of this solution in terms of powers of "

xouter.t; "/ D x0 C ".y0 � x0t/C "2.x0t
2=2� y0t C x0/CO."3t3/

has a polynomial behaviour, and any order asymptotic approximation of the outer
solution tends to infinity (plus or minus) as t ! C1. The powers of t in
the expansion of xouter.t; "/ are called “secular” terms and the expansion is not
uniformly valid in t . This indicates a different form of asymptotic expansion
is required, e.g., multiple scales. Such difficulties emerge because asymptotic
expansions of this kind are adequate only for a finite range of t , i.e., t D o."�1/. A
multiple scale approach would normally avoid this difficulty, as is shown shortly.

If we consider this second order equation in the form of a planar differential
system

Px D y;

" Py D �.1C "2/y � "x;

then the solution is

x D xouter C xlayer D ."y0 C x0/

1 � "2 e�"t � ".y0 C "x0/

1 � "2
e�t=";

y D youter C ylayer D �" ."y0 C x0/

1� "2
e�"t C y0 C "x0

1 � "2 e�t=":

It is clear from xouter and youter that the straight line

y D �"x
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plays the role of an attractive slow invariant manifold, the motion on which is
described by the equation

Px D �"x:

The solution of this equation, with the initial condition x D ."y0Cx0/
1�"2 as t D 0, is

precisely

x D xouter D ."y0 C x0/

1 � "2 e�"t :

In the context of this approach, based on the integral manifold method, the
essence is to study the behaviour of solutions on the slow integral manifold.

Note that the method of multiple scales is able to give an acceptable result in this
case. Introduce � D t=", then the equation becomes

d2x

d�2
C .1C "2/

dx

d�
C "2ax D 0:

Let x.�; "/ D F.�; s; "/; where s D "t D "2� , and assume the expansion

F.�; t I "/ D F0.�; s/C "2F1.�; s/C "4F2.�; s/C : : : :

On substituting this expansion into the last differential equation and equating
powers of " we get the sequence of problems.

"0 W
@2F0

@�2
C @F0

@�
D 0; F0.0; 0/ D x0;

@F0

@�
.0; 0/ D 0:

Thus

F0.�; s/ D A0.s/e
�� C B0.s/;

where the initial conditions imply

A0.0/ D 0; A0.0/C B0.0/ D x0:

"2 W
@2F1

@�2
C @F1

@�
D �F0 � 2

@2F0

@�@s
� @F0

@�
� @F0

@s
:

Then the r.h.s. is A0
0.s/e

�� � .B 0
0.s/C B0.s//:
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To avoid secular terms in � , require

A0
0.s/ D 0; and B 0

0.s/C B0.s/ D 0:

So A0.s/ � 0 and B0.s/ D x0e
�s on using the initial conditions.

Then

x.t; "/ D F0.�; s/CO."/ D x0e
�"t CO."/;

i.e. the slow component of the solution is given by y D Px D �"x, as before.
The application of integral manifolds in the investigation of singularly perturbed

systems aims to replace the analysis of the full system by the analysis of a system of
lower dimension. The lowering of the dimension occurs due to the decomposition
of the initial system in the vicinity of the integral surface into the independent slow
subsystem of the form (1.31) and the fast subsystem. If the slow integral manifold
is attracting, then the analysis of the system under consideration can be replaced by
the analysis of the slow subsystem.

Note in conclusion that a slow integral manifold is associated with outer (slow)
solutions, and a fast integral manifold is associated with boundary layer (fast)
corrections.



Chapter 2
Slow Integral Manifolds

Abstract In the present chapter we use a method for the qualitative asymptotic
analysis of singularly perturbed differential equations by reducing the order of
the differential system under consideration. The method relies on the theory of
integral manifolds. It essentially replaces the original system by another system
on an integral manifold with a lower dimension that is equal to that of the slow
subsystem. The emphasis in this chapter is on the study of autonomous systems.

2.1 Introduction

The non-autonomous system is

dx

dt
D f .x; y; t; "/;

"
dy

dt
D g.x; y; t; "/;

(2.1)

and the autonomous system is

Px D f .x; y; "/;

" Py D g.x; y; "/:
(2.2)

Definition 4. A smooth surface S in R
m �R

n is called an invariant manifold of the
system (2.2) if any trajectory of the system that has at least one point in common
with S lies entirely on S .

This means that any trajectory x D x.t; "/; y D y.t; "/ of the system (2.2)
that has at least one point x D x0; y D y0 in common with the invariant surface
y D h.x; "/, i.e. y0 D h.x0; "/, then it lies entirely on the invariant surface, i.e. on
y.t; "/ D h.x.t; "/; "/.

The motion along an invariant manifold of the autonomous system (2.2) is
governed by the equation

Px D f .x; h.x; "/; "/: (2.3)

© Springer International Publishing Switzerland 2014
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If x.t; "/ is a solution of this equation, then the pair
�

x.t; "/; y.t; "/
�

, where

y.t; "/ D h.x.t; "/; "/, is a solution of the original system (2.2), since it defines
a trajectory on the invariant manifold.

Note that the formal substitution of the function h.x; "/ instead y into the
autonomous system (2.2) gives the first order PDE, the so called invariance
equation,

"
@h

@x
f .x; h.x; "/; "/ D g.x; h; "/ (2.4)

for h.x.t/; "/, since " Py D "
@h

@x
Px.

In the case of a non-autonomous system, if any integral curve
�

t; x.t; "/; y.t; "/
�

of the solution x D x.t; "/; y D y.t; "/ to the system (2.1) has at least one
point x D x0; y D y0 in common with the integral surface y D h.x; t; "/, i.e.
y0 D h.x0; t0; "/, then it lies entirely in this surface, i.e. y.t; "/ D h.x.t; "/; t; "/.

The motion along an integral manifold of the non-autonomous system (2.1) is
governed by the equation

Px D f .x; h.x; t; "/; t; "/:

In the non-autonomous case the invariance equation for y D h.x; t; "/ is

"
@h

@t
C "

@h

@x
f .x; h.x; t; "/; t; "/ D g.x; h; "/: (2.5)

Consider now the the boundary layer subsystem of (2.2), that is,

dy

d�
D g.x; y; 0/; � D t=";

treating x as a vector parameter. We shall assume that some of the steady states
y0 D y0.x/ of this subsystem, defined g.x; y; 0/ D 0, are asymptotically stable
and that a trajectory starting at any point of the basin of attraction approaches one of
these states as closely as desired as � ! 1. This assumption will hold, for example,
if the matrix

B.x; t/ � .@g=@y/.x; y0.x; /; 0/ �

0

B
B
B
B
@

@g1

@y1
: : :

@g1

@yn
: : : : : : : : :
@gn

@y1
: : :

@gn

@yn

1

C
C
C
C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
yDy0.x/

is stable for some of the stationary states and the basin of attraction can be
represented as the union of the basins of attraction of the asymptotically stable
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steady states. We recall that a matrix is stable if its spectrum is located in the left
open complex halfplane, i.e. all eigenvalues of this matrix have negative real parts.

Notwithstanding the fact that we are interested primarily in autonomous systems,
all statements will be formulated in the more general case of non-autonomous
systems.

It is assumed that

(I) The functions f , g and � are uniformly continuous and bounded, together with
their partial derivatives with respect to all variables up to the .k C 2/�order
.k � 0/ for y in some open domain of space R

n, x 2 R
m, t 2 Œ�1;1� and

" 2 Œ0; "0�.
(II) The eigenvalues �i.x; t/.i D 1; : : : ; n/ of the matrix B.x; t/ D

gy.x; �.x; t/; t; 0/ satisfy the inequality

Re�i .x; t/ � �2� < 0; (2.6)

for some � > 0.
Recall �.x; t/ is a root of the equation g.x; �.x; t/; t; 0/ D 0.
Then the following result holds (see e.g. [92, 170, 195]):

Proposition 1. Under the assumptions (I) and (II) there is a sufficiently small
positive "1, "1 � "0, such that, for " 2 I1 WD f" 2 R W 0 < " < "1g, the system (2.1)
has a smooth integral manifold M" with the representation

M" WD f.x; y; t/ 2 R
mCnC1 W y D h.x; t; "/; .x; t/ 2 G � Rg;

for some domain G 2 R
m.

Proposition 1 guarantees that the invariance equation (2.5) can yield y D
h.x; t; "/ which is the slow integral manifold.

Remark 2.1. The global boundedness assumption in (I) with respect to .x; y/ can
be relaxed by modifying f and g outside some bounded region of Rn � R

m.

We will present the proof of this Proposition in the Appendix in Chap. 9 (see
Theorem 4).

2.2 Stability of Slow Integral Manifolds

In applications it is often assumed that the spectrum of the Jacobian matrix

gy.x; �.x; t/; t; 0/

is located in the left half plane, where �.x; t/ is the root of the equation
g.x; �; t; 0/ D 0. Under this additional hypothesis the manifoldM" is exponentially
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attracting for " 2 I1. This means: the solution x D x.t; "/, y D y.t; "/ of the
original system (2.1) that satisfied the initial condition x.t0; "/ D x0, y.t0; "/ D y0

can be represented as

x.t; "/ D v.t; "/C "'1.t; "/;

y.t; "/ D Ny.t; "/C '2.t; "/:
(2.7)

The fact that there is " before '1 in the first equation and no " before '2 in the second
one is in agreement with the statement of Tikhonov’s theorem (see Sect. 1.3.1). It
is possible to prove that there exists a point v0 which is the initial value for the
motion along an integral manifold which is a solution v.t; "/ of the equation Pv D
f .v; h.v; t; "/; t; "/. The functions '1.t; "/, '2.t; "/ are corrections that determine
the degree to which trajectories passing near the manifold M" tend asymptotically
to the corresponding trajectories on the manifold as t increases. They satisfy the
following inequalities:

j'i.t; "/j � N jy0 � h.x0; t0; "/j expŒ��.t � t0/="�; i D 1; 2; (2.8)

and jy0 � h.x0; t0; "/j � 	 for some positive 	 and t � t0 . An application of this
result to a problem on high-gain control is given in Sect. 5.5. As an illustration of
the above we consider the following example.

Example 1. Consider the third order linear differential equation

"
d3x

dt3
C d2x

dt2
� 2

dx

dt
C 4.1C 2"/x D 0; (2.9)

with constant coefficients and initial conditions

x.0/ D x0; Px.0/ D Px0; Rx.0/ D Rx0: (2.10)

This equation is rewritten in the form of the differential system

Px1 D x2; (2.11)

Px2 D y; (2.12)

" Py D �y C 2x2 � 4.1C 2"/x1; (2.13)

where x1 D x, with initial conditions

x1.0/ D x0; x2.0/ D Px0; y.0/ D Rx0: (2.14)

The slow surface for this system (" D 0) takes the form

y D �4x1 C 2x2;
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and the slow invariant manifold may be written in the same form. To check this fact
it is necessary to write down the invariance equation (2.4) for y D h.x1; x2/ D
�4x1 C 2x2:

"Œ�4x2 C 2.�4x1 C 2x2/� D 4x1 � 2x2 C 2x2 � 4.1C 2"/x1;

which is an identity. Here

x D


x1

x2

�

; f D


x2

y

�

;

g D �y C 2x2 � 4.1C 2"/x1 and @h
@x

D .�4; 2/:
Introducing the new variable z by the formula

z D y C 4x1 � 2x2; (2.15)

we obtain the initial value problem for z:

"Pz D �.1C 2"/z; z.0/ D z0 D y.0/C 4x1.0/� 2x2.0/ D Rx0 C 4x0 � 2 Px0;

the solution to which is

z D z.t; "/ D z0 exp




�1C 2"

"
t

�

: (2.16)

Now we obtain the following differential system for x1 and x2:

Px1 D x2; Px2 D �4x1 C 2x2 C z.t; "/:

It is a straightforward exercise to check that

x1 D x1.t; "/ D
�


x0 � "2



z0

�

cos.
p
3t/

C 1p
3




Px0 � x0 C ".1C 3"/



z0

�

sin.
p
3t/

�

et

C"2



z0 exp




�1C 2"

"
t

�

;

x2 D x2.t; "/ D
�


Px0 C ".1C 2"/



z0

�

cos.
p
3t/
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C 1p
3




Px0 � 4x0 C ".1C 6"/



z0

�

sin.
p
3t/

�

et

�".1C 2"/



z0 exp




�1C 2"

"
t

�

;

where


 D 
."/ D 1C 6"C 12"2:

It follows from (2.15) that

y D y.t; "/ D 2

�


Px0 � 2x0 C ".1C 4"/



z0

�

cos.
p
3t/

� 1p
3




Px0 C 2x0 C "



z0

�

sin.
p
3t/

�

et

C .1C 2"/2



z0 exp




�1C 2"

"
t

�

:

Thus, we obtain the representation (2.7) for (2.11)–(2.13) in the form

x1.t; "/ D v1.t; "/C "2'11.t; "/;

x2.t; "/ D v2.t; "/C "'12.t; "/;

y.t; "/ D Ny.t; "/C '2.t; "/:

Here

v1.t; "/ D
�


x0 � "2



z0

�

cos.
p
3t/C 1p

3




Px0 � x0 C ".1C 3"/



z0

�

sin.
p
3t/

�

et ;

v2.t; "/ D
�


Px0 C ".1C 2"/



z0

�

cos.
p
3t/

C 1p
3




Px0 � 4x0 C ".1C 6"/



z0

�

sin.
p
3t/

�

et ;

Ny.t; "/ D 2

�


Px0 � 2x0 C ".1C 4"/



z0

�

cos.
p
3t/

� 1p
3




Px0 C 2x0 C "



z0

�

sin.
p
3t/

�

et ;
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and

'11.t; "/ D 1



z0 exp




�1C 2"

"
t

�

;

'12.t; "/ D � .1C 2"/



z0 exp




�1C 2"

"
t

�

;

'2.t; "/ D .1C 2"/2



z0 exp




�1C 2"

"
t

�

:

Note that the solutions

x1 D x1.t; "/; x2 D x2.t; "/; y D y.t; "/;

which satisfy the initial conditions

x1.0; "/ D x0; x2.0; "/ D Px0; y.0; "/ D y0;

are exponentially attracted to the corresponding solutions

x1 D v1.t; "/; x2 D v2.t; "/; y D Ny.t; "/

on the slow invariant manifolds as t ! 1 (see Fig. 2.1). Further, note that the initial
conditions for v1 and v2 are

v1.0; "/ D v01 D x0 � "2



z0; v2.0; "/ D v02 D Px0 C ".1C 2"/



z0:

–1
–0.5

0
0.5

1

–1

–0.5
0

0.5
1

–4

–2

0

2

4

6

x2 x1

y

Fig. 2.1 Example 1: the slow invariant manifold (shaded plane), two trajectories (the thin solid
lines) on the slow invariant manifold and one trajectory outside it (the thick solid line) approaching
the trajectory on slow invariant manifold with corresponding initial point; " D 0:1. The arrows
indicate increasing time
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Then there are the initial values v01 and v02, rather than x0 and Px0, that provide the
initial state for the solutions v1.t; "/ and v2.t; "/ on the slow invariant manifold.

From (2.7) and (2.8) we obtain the following Lyapunov Reduction Principle for
a stable integral manifold defined by a function y D h.x; t; "/. A solution x D
x.t; "/, y D h.x.t; "/; t; "/ of the original non-autonomous system (2.1) is stable
(asymptotically stable, unstable) if and only if the corresponding solution of the
system of equations

Pv D F.v; t; "/ D f .v; h.v; t; "/; t; "/

on the integral manifold is stable (asymptotically stable, unstable) [170]. The
Lyapunov Reduction Principle was extended to ordinary differential systems with
Lipschitz right-hand sides by Pliss [138], and to singularly perturbed systems in
[170, 197]. Thanks to the reduction principle and the representation (2.7), the
qualitative behavior of trajectories of the original system near the integral manifold
may be investigated by analyzing the equations on the manifold.

The Reduction Principle and the representation (2.7) can be found in [170].

2.3 Asymptotic Representation of Integral Manifolds

When the method of integral manifolds is being used to solve a specific problem,
then a central question is the calculation of the function h.x; t; "/ in terms of
the manifold described. An exact calculation is generally impossible, and various
approximations are necessary. One possibility is the asymptotic expansion of
h.x; t; "/ in integer powers of the small parameter ":

h.x; t; "/ D �.x; t/C "h1.x; t/C � � � C "khk.x; t/C : : : : (2.17)

Here h.x; t; 0/ D �.x; t/, i.e. the slow surface �.x; t/ can be considered as a
zero-order approximations of the slow integral manifold.

Substituting this formal expansion into the invariance equation (2.5) i.e.,

"
@h

@t
C "

@h

@x
f .x; h.x; t; "/; t; "/ D g.x; h; "/; (2.18)

we obtain the relationship

"
X

k�0
"k
@hk

@t
C "

X

k�0
"k
@hk

@x
f .x;

X

k�0
"khk; t; "/ D g.x;

X

k�0
"khk; t; "/: (2.19)
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We use the formal asymptotic representations

f .x;
X

k�0
"khk; t; "/ D

X

k�0
"kfk.x; �; h1; : : : ; hk; t/

D f0.x; �; t/C "f1.x; �; h1; t/C : : :

C"kfk.x; �; : : : ; hk; t/C : : : ; (2.20)

and

g.x;
X

k�0
"khk; t; "/ D B.x; t/

X

k�1
"khk C

X

k�1
"kgk.x; �; h1; : : : ; hk�1; t/

D B.x; t/."h1 C "2h2 C � � � C "khk C : : : / (2.21)

C"g1.x; �; t/C "2g2.x; �; h1; t/

C � � � C "kgk.x; �; : : : ; hk�1; t/C : : : ;

where the matrix B.x; t/ � .@g=@y/.x; �; t; 0/, and where

g.x; �.x; t/; t; 0/ D 0:

Substituting these formal expansions into (2.19)

"
@�

@t
C "2

@h1

@t
C � � � C "k

@hk�1

@t

C � � � C



"
@�

@x
C "2

@h1

@x
C � � � C "k

@hk�1

@x
C : : :

�

.f0.x; �; t/C "f1.x; �; h1; t/

C � � � C "kfk.x; �; : : : ; hk ; t/C : : : / D B.x; t/."h1 C "2h2 C � � � C "khk C : : : /

C"g1.x; �; t/C "2g2.x; �; h1; t/C � � � C "kgk.x; �; : : : ; hk�1; t/C : : : ;

and equating powers of ", we obtain

@�

@t
C @�

@x
f0.x; �; t/ D Bh1 C g1;

@h1

@t
C @�

@x
f1 C @h1

@x
f0 D Bh2 C g2;

� � �
@hk�1
@t

C
X

0�p�k�1

@hp

@x
fk�1�p D Bhk C gk; k D 2; 3; : : : :
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By virtue of (2.6), B is invertible and then

h1 D B�1
�
@�

@t
C @�

@x
f0.x; �; t/ � g1

�

; (2.22)

h2 D B�1
�
@h1

@t
C @�

@x
f1 C @h1

@x
f0 � g2

�

: (2.23)

In general

hk D B�1
2

4
@hk�1
@t

C
X

0�p�k�1

@hp

@x
fk�1�p � gk

3

5 ; k D 2; 3; : : : (2.24)

We recall that �.x; t/ is determined by g.x; �.x; t/; t; 0/ D 0. Now we can
calculate an approximation to h.x; t; "/ from (2.17).

Asymptotic expansions of slow integral manifolds were used in [186, 195, 196].
These papers address questions in gyroscopic systems, rotating bodies and orienta-
tion of satellites.

The justification of the asymptotic formulae will be given in the Appendix, see
Chap. 9.

2.4 Two Mathematical Examples

We give two examples, for which exact solutions may be constructed, to illustrate
slow invariant manifolds.

Example 2. The autonomous system of the two nonlinear scalar equations

Px D x; " Py D �y � x2;

with the initial value conditions

x.0/ D x0; y.0/ D y0;

has the exact solution

x.t; "/ D x0e
t ; y.t; "/ D � x20

1C 2"
e2t C .y0 C x20

1C 2"
/e�t=":

The first term in y.t; "/ is the outer solution, and the next term is the inner, or
boundary layer, the part of solution.

This system possesses the attractive slow invariant manifold (see Definitions 1
and 3 in Sect. 1.3.1)
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y D � x2

1C 2"
;

because the trajectory on this manifold can be represented in the form

x.t; "/ D x0e
t ; y.t; "/ D �x.t; "/2=.1C 2"/;

if we neglect terms of order O.e�t="/, i.e. the boundary layer terms are neglected.
If we use the formal procedure described above we have f D x, g D �y � x2.

Then the equation for the slow curve �.x; t/ (see Definition 2 in Sect. 1.3.1) is

0 D �y � x2;

which has unique root y D �x2. This root is stable because

@

@y
.�y � x2/

ˇ
ˇ
ˇ
ˇ
yD�x2

D �1 < 0:

The invariance equation (2.4) for h.x; "/ is

"
@h

@x
x D �h� x2;

and it is a straightforward exercise to check that the asymptotic expansion

h.x; "/ D �.x/C "h1.x/C � � � C "khk.x/C : : :

yields �.x/ D �x2, h1.x/ D 2x2, h2.x/ D �4x2, etc and coincides with the
corresponding asymptotic expansion for the function �x2=.1C 2"/.

The exact slow invariant manifold h D �x2=.1C 2"/ and its zero order, �.x/ D
�x2, and first order, �.x/ C "h1.x/ D �x2 C "2x2, approximations are shown in
Figs. 2.2, 2.3 and 2.4. This shows how the approximations improve as " ! 0.

Example 3. We consider the autonomous second order, nonlinear system

Px D y; " Py D �y � y2;

with the initial conditions

x.0/ D x0; y.0/ D y0:

Since the y equation may be written as



1

y
C 1

1C y

�

dy D �dt

"
;
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x

y

x

y

x

y

a b

c

Fig. 2.2 Example 2: the exact slow invariant manifold h (the dotted line), the slow curve � (the
dashed line) and the first-order approximation to the slow invariant manifold (the dashed-dotted
line); (a) " D 0:2, (b) " D 0:1, (c) " D 0:01

x

y

Fig. 2.3 Example 2: the slow invariant manifold (the dotted line), the slow curve (the dashed line)
and the trajectories (the solid lines) with various initial points and " D 0:1. The arrows indicate
increasing time. The reader should note that even though the initial point is not on the slow invariant
manifold, the solution eventually lies very close to the manifold
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t
y

t
y

a b

Fig. 2.4 Example 2: the y-component of the solution with x0 D 0:8, y0 D 1:0 (the solid line), the
y-component of the solution on the slow invariant manifold (the dashed line), and its first-order
approximation (the dotted line); (a) " D 0:1, (b) " D 0:01. This shows that the solution on the
slow invariant manifold deviates significantly from the exact solution only in the initial layer

we have the exact solution in the form

y.t; "/ D y0e
�t="

1C y0 � y0e�t=" ;

x.t; "/ D x0 C " ln .1C y0/C " ln




1 � y0

1C y0
e�t="

�

D x0 C " ln
�

1C y0 � y0e�t="� ; (2.25)

when y0 > �1 and, therefore, the argument of ln is nonnegative. It is clear that the
y-component of the solution tends to the trajectory y � 0 as t ! 1: This means
that the trajectory y � 0 can be considered as an attractive slow invariant manifold,
see Fig. 2.5. In this case the flow on the attractive slow invariant manifold is then
described by the equation

Px D 0;

i.e. x.t; "/ D const, and this constant is the limit of the x-component of the exact
solution x.t; "/ ! x0 C " ln .1C y0/, which is the corresponding component of
the solution on the attractive slow invariant manifold, as t ! 1, see (2.25) and
Fig. 2.6.

If y0 D �1, the exact solution becomes

x D x0 � t; y � �1;

and this means that y D �1 is also a slow invariant manifold.
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1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

0.60 0.65 0.70 0.75 0.80 0.85

1

0

–1

–2

0.78 0.79 0.80

a b

Fig. 2.5 Example 3: the slow invariant manifolds (the dotted lines) and the trajectories (the solid
lines); (a) " D 0:1, the initial points: x.0/ D 0:58 and y.0/ D 1:9, x.0/ D 0:8 and y.0/ D �0:9,
x.0/ D 0:8 and y.0/ D �1:1; (b) " D 0:01, the initial points: x.0/ D 0:78 and y.0/ D 1:9,
x.0/ D 0:8 and y.0/ D �0:9, x.0/ D 0:8 and y.0/ D �1:1. The arrows indicate increasing
time. So y D 0 is attractive and y D �1 is repulsive

x

t

y

t

Fig. 2.6 Example 3: the x- and y-components of the exact solution as functions of t with x0 D
0:78, y0 D 1:9 and " D 0:01

Consider the case y0 < 0. Note that values �1 < y0 < 0 fit in both cases
(y0 > �1 and y0 < 0) with equal facility. On writing the y equation as




� 1
y

C 1

1C y

�

dy D dt

"
;

the exact solution can be represented as

x.t; "/ D x0 � t C " ln .�y0/C " ln




1 � 1C y0

y0
et="

�

D x0 � t C " ln
�

.1C y0/e
t=" � y0

�

;

y.t; "/ D �1C .1C y0/e
t="

.1C y0/et=" � y0 :
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x

t t

y

Fig. 2.7 Example 3: the x- and y-components of the exact solution as functions of t with x0 D
0:8, y0 D �0:9 and " D 0:01. For both sets of initial conditions the exact solution, with " D 0:01,
tends rapidly to the solution y.t/ � 0

x

t t

y

Fig. 2.8 Example 3: the x- and y-components of the solution as functions of t with x0 D 0:8,
y0 D �1:1 and " D 0:01

If �1 < y0 < 0, than the y-component of the solution tends to y � 0 as t ! 1,
see Fig. 2.7. If y0 < �1, than this component tends to �1 as t changes from 0

to t D " ln y0
1Cy0 , where .1 C y0/e

t=" � y0 D 0, see Fig. 2.8. Hence the trajectory
y � �1 is a repulsive slow invariant manifold. The flow on this repulsive slow
invariant manifold is described by the equation

Px D �1:

Thus, the system under consideration possesses the attractive slow invariant
manifold y D 0 and repulsive slow invariant manifold y D �1, see Fig. 2.5.
This example illustrates the possibility of the coexistence of several slow integral
manifolds.

If we use the formal procedure described, we begin from the equation for the
slow curve

0 D �y � y2;
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which has two roots y D 0 and y D �1: The first root is stable because

@

@y
.�y � y2/

ˇ
ˇ
ˇ
ˇ
yD0

D �1 < 0;

and the second one is unstable, because

@

@y
.�y � y2/

ˇ
ˇ
ˇ
ˇ
yD�1

D 1 > 0:

Note, that for the system under consideration the exact expressions (y D 0 and
y D �1) for the slow invariant manifolds coincide with their zero approximations,
since here f D y, g D �y � y2 and the invariance equation (2.4) for h is

"h
dh

dx
D �h.1C h/:

Taking into account that the left hand side of the invariance equation is identically
equal to zero for h D constant, we obtain that h D 0 and h D �1 are exact
solutions of this equation and, therefore, formulae h D 0 and h D �1 give the exact
expressions for slow invariant manifolds.

2.5 Systems That Are Linear with Respect to the Fast
Variables

Now we turn to systems that are linear with respect to the fast variable y, and
consider the following equations

Px D 
.x; t; "/C F.x; t; "/y;

" Py D �.x; t; "/CG.x; t; "/y;
(2.26)

where the righthand sides are linear with respect to the fast variable y: Such systems
are typical of enzyme kinetics [44].

We assume that the eigenvalues�i .x; t/ of the matrixG.x; t; 0/ have the property
Re�i .x; t/ � �2� < 0; in t 2 R; x 2 R

m; and that the matrix- and vector-functions

; �; F and G are continuous and bounded as well as their partial derivatives with
respect to the arguments t 2 R; x 2 R

m; " 2 Œ0; "0�: When these assumptions hold,
the system (2.26) has a slow integral manifold

y D h.x; t; "/ D �.x; t/C "h1.x; t/C : : : :

On noting that

dy

dt
D @h

@t
C @h

@x
.
 C Fh/;
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or using the first of (2.26), the functions hi can be derived from the second of (2.26)

"
@h

@t
C "

@h

@x
.
 C Fh/ D � C Gh:

Assume 
 D
kP

iD0
"i
i .x; t/ C O."kC1/ and a similar representation holds for �; F

and G: Then the following recurrent relations hold:

� D �G�1
0 �0; h1 D G�1

0 Œ
@�

@t
C @�

@x
.
0 C F0�/ � �1 �G1��;

h2 D G�1
0 Œ

@h1

@t
C @�

@x
.
1 C F0h1 C F1�/C @h1

@x
.
0 C F0�/ � �2 �G2� �G1h1�;

hi D G�1
0 f@hi�1

@t
C

i�1X

jD0

@hj

@x
Œ
i�j�1 C

i�j�1
X

sD0
Fshi�j�s�1�

� �i �
iX

jD1
Gj hi�j g; i D 3; : : : ; k: (2.27)

In many applications the o."/ order terms may be neglected, and we may then
restrict ourselves to the first order approximation of the function h D �.x; t/ C
"h1.x; t/:

Example 4. As an example we consider the motion of a pendulum in a viscous
medium. The motion is described by Newton’s second law with the following
autonomous system of equations

Px D y;

" Py D �y � sinx:
(2.28)

Clearly the system is linear in the fast variable y but nonlinear in x. We construct
the slow invariant manifold of the pendulum equation (2.28).

The invariant manifold of slow motions y D h.x; "/ for this system is given in
the following form:

y D h.x; "/ D �.x/C "h1.x/C "2h2.x/C o."2/;

where h.x; "/ satisfies

"h
dh

dx
D �h� sin x:
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y

x

Fig. 2.9 Example 4: the slow curve y D �.x/ D � sin x (the dashed line), the first-order y D
�.x/C "h1.x/ (the dotted line) and the second-order y D �.x/ C "h1.x/ C "2h2.x/ (the solid
line) approximations of the slow invariant manifold with " D 0:2

x

y

x

y

a b

Fig. 2.10 Example 4: the trajectory (the solid line) of the solution with x.0/ D �=4, y.0/ D 0

(there is a boundary layer at the initial point .�=4; 0/), the zero-order y D �.x/ (the dashed line)
and the first-order y D �.x/ C "h1.x/ (the dotted line) approximations of the slow invariant
manifold; (a) " D 0:1, (b) " D 0:01

Then

� D � sinx; h1 D �1
2

sin 2x; h2 D � sinx.cos2 x C cos 2x/:

The motions on this manifolds are described by the scalar equation

Px D h.x; "/ D � sin x � "1
2

sin 2x � "2 sinx.cos2 x C cos 2x/CO."3/:

Figures 2.9 and 2.10 demonstrate the results of the calculations.



Chapter 3
The Book of Numbers

Abstract In this chapter the first number in the title of a section denotes the
dimension of the slow variable, the second one denotes the dimension of the fast
variable. A series of examples, of increasing complexity, are given to illustrate
the theoretical concepts. The main examples come from applications in enzyme
kinetics. These examples illustrate the effectiveness of the order reduction method.

3.1 0C1

A number of examples involving scalar equations are given in this section to
illustrate the concepts introduced in Chap. 2.

Consider the non-autonomous differential equation

"
dy

dt
D g.y; t/ (3.1)

with scalar variable y, sufficiently smooth function g, positive small parameter "
and an initial condition

y D y0 at t D t0:

Equation (3.1) is of (0C1)-type, since the slow variable x is absent, so its dimension
is equal to zero and the fast variable y is scalar, i.e. its dimension is equal to unity.
Let y D y.t; "/ be the solution of this initial value problem. Also let y D �.t/ be the
solution (for simplicity we suppose that this solution is unique) of the corresponding
degenerate equation 0 D g.y; t/, obtained by setting " D 0 in (3.1).

The question now arises of whether there is a relationship between y.t; "/ and
�.t/. If y.t; "/ ! �.t/ as " ! 0, �.t/ is stable (or attractive); if y.t; "/moves away
rapidly from �.t/ as " ! 0, �.t/ is unstable (or repulsive). In order to compare the
functions y.t; "/ and �.t/ for small values of ", consider the function

B.t/ D @g.y; t/

@y
on y D �.t/; i.e. B.t/ D @g.y; t/

@y

ˇ
ˇ
yD�.t/:

© Springer International Publishing Switzerland 2014
E. Shchepakina et al., Singular Perturbations, Lecture Notes in Mathematics 2114,
DOI 10.1007/978-3-319-09570-7__3
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Sufficient conditions for the stability (instability) of �.t/ are [111]

˘ If B.t/ < 0 then the solution of the degenerate equation, y D �.t/, is stable;
˘ If B.t/ > 0 then the solution of the degenerate equation, y D �.t/, is unstable.

The proof of this fact for a special case can be found in Chap. 9 (see Sect. 9.1).
To find an approximate solution, playing the role of the slow integral manifold

of (3.1), we use the form

y D '.t; "/ D �.t/C "'1 C "2'2 C : : : ; (3.2)

which indicates that we are still ignoring terms of order O."3/; the cutoff could
be taken at any power of ", but the more terms that are retained the longer the
calculations become. The first step is to substitute (3.2) into (3.1), obtaining

". P�.t/C " P'1 C "2 P'2 C : : :/ D g.�.t/C "'1 C "2'2 C : : : ; t/: (3.3)

The next step is to expand the r.h.s. of this equality in powers of " by a Taylor series.
If we are still reasoning formally, there is no need to pause over the justification of
this step. It is convenient to have a name for the r.h.s. of (3.3) regarded as a function
of ", so we set p."/ D g.�.t/ C "'1 C "2'2 C : : : ; t/. Expanding in powers of ",
ignoring terms at O."3/, and noting p.0/ D g.�.t// D 0, leads to

p.0/C "p0.0/C 1

2
"2p00.0/

D "gy.�.t/; t/'1 C 1

2
"2
�

gyy.�.t/; t/'
2
1 C 2gy.�.t/; t/'2

�

D "B.t/.'1 C "'2/C 1

2
"2gyy.�.t/; t/'

2
1 :

Thus, we obtain from (3.3)

". P�.t/C " P'1 C "2 P'2 C : : :/ D "B.t/.'1 C "'2/C 1

2
"2gyy.�.t/; t/'

2
1 ;

and '1; '2 must satisfy

P�.t/ D B.t/'1;

P'1 D B.t/'2 C 1

2
gyy.�.t/; t/'

2
1 :

As a result, the functions '1; '2 are given by

'1 D P�.t/=B.t/;
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'2 D Œ P'1 � 1

2
gyy.�.t/; t/'

2
1 �=B.t/;

and �.t/ is defined by g.�.t/; t/ D 0.
Thus, the slow motion of (3.1) is described by the formula (3.2) for y D '.t; "/,

where �, '1, '2 are given above.
If the degenerate equation has several solutions y D �i.t/; i D 1; 2 : : : :; k it is

necessary to verify the stability of each solution. Then the behaviour of the solution
y D y.t; "/, as " ! 0, depends on initial point .t0; y0/.

Example 5. Consider a scalar equation

" Py D �.3t2 C 1/.y C sin.t3 C t// (3.4)

with the initial condition y.t0/ D y0.
The degenerate equation is

g.y; t/ D �.3t2 C 1/.y C sin.t3 C t// D 0

and has a stable solution �.t/ D � sin.t3 C t/, since B.t/ D @g

@y

ˇ
ˇ
yD�.t/ D �.3t2 C

1/ < 0.
The approximate stable slow integral manifold of the above equation is given by

the perturbation expansion

y.t; "/ D �.t/C "'1 C "2'2 C : : : ;

where

�.t/ D � sin.t3 C t/;

'1 D P�.t/=B.t/ D cos.t3 C t/;

'2 D . P'1 � 1

2
gyy.�.t/; t/'

2
1/=B.t/ D sin.t3 C t/:

The approximate slow integral manifold is therefore

�.t/C "'1C "2'2 Co."2/ D � sin.t3 C t/C " cos.t3 C t/C "2 sin.t3 C t/Co."2/:

The exact solution of the original equation (3.4) is easily found using the change of
variable  D t3 C t , and the result is

y.t; "/ D
�

y0 C 1

1C "2

�

sin.t30 C t0/� " cos.t30 C t0/
��

e.t
3
0Ct0�t 3�t /="

� 1

1C "2

h

sin.t3 C t/ � " cos.t3 C t/
i

:
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Fig. 3.1 Example 5: the slow
integral manifold (the dotted
line), the slow curve
y D �.t/ (the dashed line)
and two trajectories (the solid
lines) corresponding to
different initial conditions
and approaching the slow
integral manifold; " D 0:1.
The arrows indicate
increasing time

t

y

Equation (3.4) has the exact slow integral manifold

y.t; "/ D 1

1C "2

�

" cos.t3 C t/ � sin.t3 C t/
�

which is attractive as t ! 1, and this agrees with the results of the perturbation
scheme with an error o."2/.

The exact solution contains the effect of the initial condition at t D t0, and
this decays rapidly for t > t0 to leave only the attractive slow integral manifold.
The latter does not contain the initial condition: in some sense the “initial layer”
is missing and doesn’t affect the steady state solution. This is the essence of
Tikhonov’s theorem, see (1.34), (1.35).

In Fig. 3.1 we show the slow integral manifold, the slow curve y D �.t/ D
� sin.t3 C t/ and some trajectories with " D 0:1.

Example 6. Consider a non-autonomous scalar equation

" Py D .3t2 C 1/.y C sin.t3 C t//

with the initial condition y.t0/ D y0.
The degenerate equation

.3t2 C 1/.y C sin.t3 C t// D 0

has an unstable solution �.t/ D � sin.t3 C t/ due to B.t/ D 3t2 C 1 > 0.
The approximate unstable slow integral manifold of this equation is given by the

perturbation expansion

y.t; "/ D �.t/C "'1 C "2'2 C : : : ;
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where

�.t/ D � sin.t3 C t/;

'1 D P�.t/=B.t/ D � cos.t3 C t/;

'2 D . P'1 � 1

2
"2gyy.�.t/; t/'

2
1/=B.t/ D sin.t3 C t/:

The exact solution is

y.t; "/ D
�

y0 C 1

1C "2

�

" cos.t30 C t0/C sin.t30 C t0/
	


e.t
3Ct�t 30�t0/="

� 1

1C "2

�

" cos.t3 C t/C sin.t3 C t/
�

:

The equation under consideration thus possesses the exact repulsive slow integral
manifold

y.t; "/ D � 1

1C "2

�

" cos.t3 C t/C sin.t3 C t/
�

;

and again the perturbation procedure gives the approximate result with an error at
o."2/ for t > t0, but does not contain the effect of the initial condition at t D t0.

Figure 3.2 shows the slow integral manifold, the slow curve and two trajectories
corresponding to different initial conditions, with " D 0:1.

Example 7. Consider the nonlinear autonomous initial value problem

" Py D y.y2 � 1/; y.0/ D y0: (3.5)

The degenerate equation g.y/ D y.y2�1/ D 0 has three solutions: �1.t/ D �1,
�2.t/ D 0 and �3.t/ D C1. Then

B.t/ D @g

@y

ˇ
ˇ
ˇ
yD�.t/

Fig. 3.2 Example 6: the slow
integral manifold (the dotted
line), the slow curve (the
dashed line) and two
trajectories leaving the
repulsive slow integral
manifold (the solid lines);
" D 0:1. The arrows indicate
increasing time

t

y
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yields

B.t/ D .3y2�1/ˇˇ
yD�1;3.t/ D 3�1 D 2 > 0; B.t/ D .3y2�1/ˇˇ

yD�2.t/ D �1 < 0:

Therefore, �2.t/ is stable, �1.t/ and �3.t/ are unstable for all t .
The exact solution of (3.5) can be found by separation of variables, and the

solution is found by solving

Z
dt

"
D
Z

dy

y.y2 � 1/
D
Z 


� 1
y

C 1

2.y � 1/ C 1

2.y C 1/

�

dy

for y. This gives

t

"
D ln


 jy2 � 1j
y2

�1=2

C C

with the integration constant C . Taking into account the initial conditions we obtain
the solution in the form

y.t/ D y0e
�t=" �1 � y20 C y20e

�2t="��1=2 :

Then

y.t/ ! 0 as t ! C1; if y20 < 1;

y.t/ ! C1 as t ! t�; t� D "

2
ln

y20
y20 � 1

; if y0 > 1;

and

y.t/ ! �1 as t ! t�; if y0 < 1:

Thus the solution y.t/ � 0 is the stable slow integral manifold, y.t/ � �1 and
y.t/ � C1 are unstable slow integral manifolds, see Fig. 3.3.

Example 8. Consider the non-autonomous scalar equation

" Py D ty (3.6)

with initial condition

y D y0 at t D t0:

In this case, g.y; t/ D ty so that �.t/ � 0 and B.t/ D t . Hence, �.t/ is stable for
t < 0 and unstable for t > 0. The solution of the initial value problem for (3.6) is
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Fig. 3.3 Example 7: the
solutions of (3.5) with
different initial values and
" D 0:1. The arrows indicate
increasing time

t
y

Fig. 3.4 Example 8: the
solutions of (3.6) with
different initial values and
" D 0:1. The arrows indicate
increasing time

t

y

y.t/ D y0e
.t2�t 20 /=2": (3.7)

Note that the solution y.t/ � 0, corresponding to y0 D 0, plays the role of the slow
integral manifold, which is attractive for t < 0 and repulsive for t > 0, see Fig. 3.4.

3.2 1C1

3.2.1 Theoretical Background

Moving to the next level of the complexity, we consider a system of two ordinary
autonomous differential equations
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dx

dt
D f .x; y; "/;

"
dy

dt
D g.x; y; "/;

(3.8)

with scalar variables x; y, as “slow” and “fast” respectively, both with dimension
one, sufficiently smooth functions f and g, and a small positive parameter ".

It should be pointed out that (3.1) may be represented in the form (3.8):

dt

dt
D 1; "

dy

dt
D g.y; t/;

and conversely it is possible to represent (3.8) in the form (3.1). Division of the
second equation in (3.8) by the first one gives

"
dy

dx
D g.x; y; "/

f .x; y; "/
:

This form of (3.8) leads to a phase-plane .y � x/ analysis.
Returning to (3.8) we consider the degenerate system

dx

dt
D f .x; y; 0/;

0 D g.x; y; 0/:

The second equation of this system g.x; y; 0/ D 0 describes a slow curve. Suppose
that this equation has an unique solution y D �.x/. Introduce the function

B.x/ D @g.x; y; 0/

@y
on y D �.x/; i.e. B.x/ D @g.x; y; 0/

@y

ˇ
ˇ
yD�.x/:

Sufficient conditions for the stability (instability) of �.x/ are identical to those
for (3.1)

˘ If B.x/ < 0 then the solution of the degenerate equation, y D �.x/, is stable;
˘ If B.x/ > 0 then the solution of the degenerate equation, y D �.x/, is unstable.

If the degenerate equation has several solutions y D �i.x/; i D 1; 2 : : : :; k it is
necessary to check each solution for stability. Then the behavior of the solution

x D x.t; "/; x.t0; "/ D x0; y D y.t; "/; y.t0; "/ D y0

as " ! 0 depends on initial point .x0; y0/, i.e., does it or does it not lie within the
domain of attraction of a stable slow curve y D �.x/.
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3.2.1.1 Asymptotic Expansions

To obtain the asymptotic expansion for a one-dimensional slow invariant manifold

y D h.x; "/ D �.x/C "h1.x/C � � � C "khk.x/C : : : ;

we substitute this formal expansion into the equation

"
dy

dx
D g.x; y; "/

f .x; y; "/
;

or, in more convenient form, into the invariance equation (2.4)

"
dh

dx
f .x; h.x; "/; "/ D g.x; h; "/:

We could use the general formulas from Sect. 2.3, but instead we will calculate the
asymptotic expansion in the form

h.x; "/ D �.x/C "h1.x/CO."2/:

Thus, we obtain the relationship

"
d�

dx
f .x; �.x/; 0/CO."2/ D g.x; �.x/C "h1.x/CO."2/; "/:

We use the formal asymptotic representations

g.x; �.x/C "h1.x/CO."2/; "/ D B.x/."h1 CO."2//C "g1.x; �/CO."2/;

on taking into account

g.x; �.x/; 0/ D 0;

where the function B.x/ � .@g=@y/.x; �.x/; 0/, and

g1.x; �/ � .@g=@"/.x; �.x/; 0/:

Substituting these formal representations into the invariance equation and equat-
ing powers of ", we obtain

h1 D
�
d�

dx
f0 � g1

�

=B;

where f0 D f .x; �.x/; 0/.
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The slow motions of (3.8) are now described by the equations

dx

dt
D f .x; �.x/C "h1.x/C : : : ; "/;

y D h.x; "/ D �.x/C "h1.x/C : : : ;

where h1.x/ is given above.

3.2.2 Michaelis–Menten Kinetics

We use the dimensionless 2D model of Michaelis–Menten kinetics of enzyme
action, (see [118]), to illustrate the .1C 1/-case (i.e. dimx D 1, dimy D 1).

The Michaelis–Menten mechanism is written

E C S
k1•
k

�1
ES

k2! E C P: (3.9)

In the scheme (3.9),E represents an enzyme, S a substrate, ES an enzyme–substrate
complex, and P a product. We write C D ES for the intermediate complex. Also,
concentrations are indicated by lower case letters, i.e., x is a concentration ofX , and
the time derivative dx=dt by Px. In this notation the system of differential equations
for the scheme (3.9) is

Pe D �k1es C k�1c C k2c; (3.10)

Ps D �k1es C k�1c; (3.11)

Pc D k1es � k�1c � k2c; (3.12)

Pp D k2c: (3.13)

The relevant initial conditions for (3.10)–(3.13) are that the concentrations of the
substrate s and the enzyme e are given and non-zero and those of the complex c and
product p are zero, that is,

s.0/ D s0 ¤ 0; e.0/ D e0 ¤ 0; c.0/ D p.0/ D 0: (3.14)

The ultimate purpose is to find the steady state form of the substrate S and the
concentration of the intermediate complex ES.

This system immediately yields two constants of the motion: “total enzyme” and
“total substrate.” Adding Eqs. (3.10) and (3.12) gives

d.e C c/=dt D 0;
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so that

e C c D e0; (3.15)

the total enzyme concentration, since c.0/ D 0. Adding Eqs. (3.11), (3.12)
and (3.13) gives

d.s C c C p/=dt D 0;

so integration gives

s C c C p D s0 (3.16)

the total substrate concentration, since c.0/ D p.0/ D 0. Using Eq. (3.15), e may be
eliminated from Eqs. (3.11) and (3.12), to give the closed, coupled pair of equations

Ps D �k1.e0 � c/s C k�1c; (3.17)

Pc D k1.e0 � c/s � k�1c � k2c: (3.18)

We introduce the nondimensional quantities

� D k1e0t; � D k2

k1s0
; � D k�1 C k2

k1s0
;

x.�/ D s.t/

s0
; y.�/ D c.t/

e0
; " D e0

s0
;

(3.19)

where e0 and s0 are the initial enzyme and substrate concentrations in (3.14). All of
x, y, � , �, � and " in (3.19) are dimensionless variables and parameters independent
of the system of units used. Substituting (3.19) into the system (3.17), (3.18) with
the initial conditions from (3.14) they become the following nondimensional system
for x.�/ and y.�/:

dx

d�
D �x C .x C � � �/y; (3.20)

"
dy

d�
D x � .x C �/y; (3.21)

with initial conditions

x.0/ D 1; y.0/ D 0: (3.22)

In most biological situations the ratio of the initial enzyme to the initial substrate
is small, that is " D e0=s0 � 1, and so (3.20)–(3.22) is a singular perturbation
problem.
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The degenerate system is

dx

d�
D �x C .x C � � �/y;

0 D x � .x C �/y:

The last equation has the solution

y D �.x/ D x

x C �
:

To find the slow invariant manifold of (3.20), (3.21) in the form of an asymptotic
expansion

y D h.x; "/ D �.x/C "h1.x/C : : : (3.23)

we substitute (3.23) into (3.21) and use (3.20) to get the invariance equation

"
dh.x; "/

dx
Œ�x C .x C � � �/h.x; "/� D x � .x C �/h.x; "/:

Then

" .�0.x/C "h0
1.x/C : : : /Œ�x C .x C � � �/.�.x/C "h1.x/C : : : /�

D x � .x C �/.�.x/C "h1.x/C "2h2.x/C : : : /: (3.24)

Equating the coefficients of the first power of " in (3.24), and noting that

x � .x C �/�.x/ D 0 or �.x/ D x

x C �
;

we obtain

�0.x/Œ�x C .x C � � �/�.x/� D �.x C �/h1.x/:

From this and

�0.x/ D �

.x C �/2

we calculate

h1.x/ D ��x

.x C �/4
:

Thus, the slow invariant manifold is
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y D x

x C �
C "

��x

.x C �/4
CO."2/; (3.25)

and the flow on it is described by

dx

d�
D ��x
x C �

C "
��x.x C � � �/

.x C �/4
CO."2/: (3.26)

This slow invariant manifold is attractive since

@g

@y
D @

@y
.x � .x C �/y/ D �.x C �/ < 0;

and thus there is the unique stable equilibrium x D 0 to Eq. (3.26) on this invariant
manifold.

In Fig. 3.5 we can see that the trajectory of (3.20)–(3.22) approaches the slow
invariant manifold very rapidly from the initial point x.0/ D 1, y.0/ D 0, and then
tends to the origin which is the equilibrium of (3.20)–(3.22) along the manifold as
t ! 1.

The zero approximation

dx

d�
D �x C .x C � � �/y D � �x

x C �
; (3.27)

y D �.x/ D x

x C �
;

when put in dimensional variables, gives the well-known Michaelis–Menten kinetic
law:

ds

dt
D e0

�k2 s
K C s

; c D e0
s

K C s
; K D k�1 C k2

k1
: (3.28)

x

y

�

x

y

a b

Fig. 3.5 The trajectory (the solid line) of (3.20)–(3.22) and the slow curve (the dashed line) for
� D 1, � D 0:5, and (a) " D 0:1, (b) " D 0:01. The arrows indicate increasing time
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The first order approximation (3.25), (3.26) is as follows in dimensional terms

ds

dt
D e0

�k2 s
K C s

C e20
.k1 s C k�1/K k2 s

k1.K C s/4
;

c D e0
s

K C s
C e20

K k2 s

k1.K C s/4
:

These relationships may be called the generalized Michaelis–Menten kinetic law.
Since the slow invariant manifold is attractive and 0 < " � 1, the trajectory

lands on the manifold very quickly after the initial instant and then flows to the
origin. Thus an “initial layer” perturbation scheme is of little interest to the long-
term state. However, the reader may wish to do a matched asymptotic expansion
to find a uniformly valid solution for t � 0, see [119] for a detailed discussion of
this problem. R.S. Johnson [80, p. 263], uses a multiple-scale expansion to solve the
problem.

Note that Eq. (3.27) may be solved exactly:

x.t/C � lnx.t/ D 1� �t

on using x.0/ D 1.

3.3 2C1

We now consider the case where the slow variable has dimension 2, while the fast
variable has dimension 1.

3.3.1 Theoretical Background

Consider the autonomous differential system with two slow variables x1; x2 and
one fast variable y

dx1
dt

D f1.x1; x2; y; "/;

dx2
dt

D f2.x1; x2; y; "/; (3.29)

"
dy

dt
D g.x1; x2; y; "/;
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where " is a small positive parameter. The corresponding degenerate system is

dx1
dt

D f1.x1; x2; y; 0/;

dx2
dt

D f2.x1; x2; y; 0/;

0 D g.x1; x2; y; 0/:

The last equation describes the two-dimensional slow surface in implicit form.
Let this equation have the solution (i.e., the slow surface has the form)

y D �.x1; x2/:

The slow surface y D �.x1; x2/ is stable, if

B.x1; x2/ D @g.x1; x2; y; 0/

@y

ˇ
ˇ
yD�.x1;x2/

is negative, and is unstable if B.x1; x2/ > 0.
To obtain the asymptotic expansion for the two-dimensional slow invariant

manifold

y D h.x1; x2; "/ D �.x1; x2/C "h1.x1; x2/C : : : ;

we substitute this formal expansion into the invariance equation for (3.29):

"
@h.x1; x2; "/

@x1
f1.x1; x2; h.x1; x2; "/; "/C "

@h.x1; x2; "/

@x2
f2.x1; x2; h.x1; x2; "/; "/

D g.x1; x2; h.x1; x2; "/; "/;

and obtain the relationship, on noting that g.x1; x2; �.x1; x2/; 0/ D 0,

"
@�.x1; x2/

@x1
f1.x1; x2; �.x1; x2/; 0/C "

@�.x1; x2/

@x2
f2.x1; x2; �.x1; x2/; 0/CO."2/

D B.x1; x2/."h1.x1; x2/C : : : /C "
@g

@"
.x1; x2; �.x1; x2/; 0/CO."2/:

This implies, in particular, that

h1.x1; x2/ D
"

@�.x1; x2/

@x1
f1.x1; x2; �.x1; x2/; 0/C @�.x1; x2/

@x2
f2.x1; x2; �.x1; x2/; 0/

�@g
@"
.x1; x2; �.x1; x2/; 0/

#

B�1.x1; x2/:
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Thus, we can construct the slow invariant manifold

y D h.x1; x2; "/ D �.x1; x2/C "h1.x1; x2/C : : : ;

where h1.x1; x2/ is given above. The motion of the system (3.29) on the slow
invariant manifold is described by

dx1
dt

D f1.x1; x2; h.x1; x2; "/; "/;

dx2
dt

D f2.x1; x2; h.x1; x2; "/; "/;

and may be approximated by using the asymptotic expansion for h.x1; x2; "/.

3.3.2 Bimolecular Reaction System

As an example of the above we consider the bimolecular reaction system [148]

S ! X;

2 Y

k1•
k�1

Z;

X CZ
k2! Y CZ;

Y ! P:

(3.30)

Here S and P denote substances with constant concentrations; k1, k�1, k2 are
positive parameters, k�1 is assumed to be “large”. Under the assumptions of
spatial homogeneity and mass–action kinetics and introducing the small parameter
" D 1=k�1, the dynamic behavior is described by the differential equations in
dimensionless form

dx1
dt

D 1� k2x1y D f .x1; z; y/; (3.31)

"
dz

dt
D �2"k1z2 C 2y C ".k2x1y � z/ D g1.x1; z; y; "/; (3.32)

"
dy

dt
D "k1z

2 � y D g2.x1; z; y; "/; (3.33)

Setting " D 0 we obtain: 2y D 0, y D 0 from (3.32) and (3.33) and the
corresponding Jacobian matrix
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B D

0

B
B
@

@g1

@z

@g1

@y
@g2

@z

@g2

@y

1

C
C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
"D0;yD0

D


0 2

0 �1
�

is degenerate; i.e., detB D 0. This means that the method of invariant manifolds
cannot be applied directly to the system (3.31)–(3.33), see (2.6) in the assumption
(II). However, introducing the new variable x2 by

x2 D z C 2y

leads to the system with nondegenerate matrix B

dx1
dt

D 1 � k2x1y D f1.x1; x2; y; "/; (3.34)

dx2
dt

D k2x1y � x2 C 2y D f2.x1; x2; y; "/; (3.35)

"
dy

dt
D �y C "k1.x2 � 2y/2 D g.x1; x2; y; "/; (3.36)

which is appropriate to the approach under consideration.
Now setting " D 0 we obtain: y D 0, and the corresponding Jacobian matrix

is
@g2

@y
.x1; x2; 0; 0/ D B.x1; x2/ D .�1/ since g.x1; x2; y; 0/ D �y. Thus, the

system (3.34)–(3.36) has an attractive slow invariant manifold y D h.x1; x2; "/;

where h.x1; x2; 0/ D �.x1; x2/ D 0. Therefore, the asymptotic expansion is

y D h.x1; x2; "/ D "h1.x1; x2/C "2h2.x1; x2/C : : : : (3.37)

The flow on this manifold is described by the following differential system

dx1
dt

D 1 � "k2x1.h1.x1; x2/C "h2.x1; x2/C : : : /; (3.38)

dx2
dt

D �x2 C ".2C k2x1/.h1.x1; x2/C "h2.x1; x2/C : : : /; (3.39)

and the invariance equation for h.x1; x2; "/ is

"2


@h1

@x1
C : : :

�

Œ1 � "k2x1.h1 C : : : /�

C"2


@h1

@x2
C : : :

�

Œ�x2 C ".2C k2x1/.h1 C : : : /� (3.40)

D �"h1 � "2h2 � � � � C "k1.x2 � "2h1 � : : : /2:



60 3 The Book of Numbers

Equating powers of " we obtain:

"1:

h1 D k1x
2
2 I

"2:

@h1

@x1
� 1C @h1

@x2
.�x2/ D �h2 � 4k1x2h1;

i.e.,

h2 D 2k1x
2
2.1� 2k1x2/:

Now we can write the second order approximation to the slow motion of (3.31)–
(3.33)

dx1
dt

D 1 � "k1k2x1x22 C "22k1k2x1x
2
2.1 � 2k1x2/CO."3/; (3.41)

dx2
dt

D �x2 C ".2C k2x1/k1x
2
2 C "2.2C k2x1/2k1x

2
2.1 � 2k1x2/

CO."3/; (3.42)

y D "k1x
2
2 C "22k1x

2
2.1 � 2k1x2/CO."3/; (3.43)

z D x2 � 2y: (3.44)

The slow invariant manifold is given by Eqs. (3.43), (3.44), and the flow on this
manifold is described by Eqs. (3.41), (3.42). The trajectory of the system (3.34)–
(3.36) approaches the corresponding trajectory on the slow invariant manifold as
t ! 1. We will return to this model at the end of Sect. 5.2.

3.4 1C2

3.4.1 Theoretical Background

Consider the autonomous differential system with one slow variable x and two fast
variables y1; y2

dx

dt
D f .x; y1; y2; "/;

"
dy1
dt

D g1.x; y1; y2; "/; (3.45)

"
dy2
dt

D g2.x; y1; y2; "/;
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with a small positive parameter ". The corresponding degenerate system is

dx

dt
D f .x; y1; y2; 0/;

0 D g1.x; y1; y2; 0/;

0 D g2.x; y1; y2; 0/:

The last two equations give a description of a one-dimensional slow manifold (slow
curve). Suppose that these equations can be solved for y1 and y2, i.e.,

y1 D N�.x/; y2 D NN�.x/:

Consider the Jacobian matrix

B D

0

B
B
@

@g1

@y1

@g1

@y2
@g2

@y1

@g2

@y2

1

C
C
A

along the slow curve i.e.,

B D B.x/ D

0

B
B
@

@g1

@y1

@g1

@y2
@g2

@y1

@g2

@y2

1

C
C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y1D N�.x/; y2D NN�.x/; "D0

:

If both two roots of the characteristic polynomial

det.B.x/ � �I/ D 0;

where I is the identity matrix, have negative real parts, then the slow curve is stable.
Let

bij.x/ D @gi

@yj

ˇ
ˇ
ˇ
y1D N�.x/; y2D NN�.x/; "D0; i; j D 1; 2;

then

trB.x/ D b11.x/C b22.x/;

and

detB.x/ D b11.x/b22.x/ � b12.x/b21.x/;
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where trB.x/ is the trace and detB.x/ is the determinant of B.x/. The condition
for the stability of the slow curve is the positivity of the coefficients of the quadratic
characteristic polynomial, which are �trB.x/ and detB.x/. This fact can be
checked directly as follows.

Using the representation of the roots of the quadratic polynomial

� D 1

2

�

trB.x/˙
p

.trB.x//2 � 4 detB.x/
�

it is easy to see that both roots (or their real parts) have the same sign (sign of
trB.x/) if and only if detB.x/ > 0.

To calculate an approximation to the one-dimensional slow invariant manifold

y1 D Nh.x; "/; y2 D NNh.x; "/

from the invariance equations

"
@ Nh.x; "/
@x

f .x; Nh.x; "/; NNh.x; "/; "/ D g1.x; Nh.x; "/; NNh.x; "/; "/;

"
@ NNh.x; "/
@x

f .x; Nh.x; "/; NNh.x; "/; "/ D g2.x; Nh.x; "/; NNh.x; "/; "/;

we substitute the formal expansions

Nh.x; "/ D N�.x/C " Nh1.x/CO."2/

and

NNh.x; "/ D NN�.x/C " NNh1.x/CO."2/

into these equations to obtain

"
d N�.x/

dx
f .x; N�.x/; NN�.x/; 0/ D "b11.x/ Nh1.x/C "b12.x/

NNh1.x//

C "
@g1

@"
.x; N�.x/; NN�.x/; 0/CO."2/;

"
d NN�.x/

dx
f .x; N�.x/; NN�.x/; 0/ D "b21.x/ Nh1.x/C "b22.x/

NNh1.x//

C "
@g2

@"
.x; N�.x/; NN�.x/; 0/CO."2/:

(3.46)

It is a straightforward calculation now to obtain the following expressions
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Nh1.x/ D a1.x/b22.x/ � a2.x/b12.x/

detB.x/
;

NNh1.x/ D a2.x/b11.x/ � a1.x/b21.x/

detB.x/
;

where

a1.x/ D d N�.x/
dx

f .x; N�.x/; NN�.x/; 0/ � @g1

@"
.x; N�.x/; NN�.x/; 0/;

and

a2.x/ D d NN�.x/
dx

f .x; N�.x/; NN�.x/; 0/ � @g2

@"
.x; N�.x/; NN�.x/; 0/:

Thus, we construct the slow invariant manifold

y1 D Nh.x; "/ D N�.x/C " Nh1.x/CO."2/;

y2 D NNh.x; "/ D NN�.x/C " NNh1.x/CO."2/;

and the motion of system (3.45) on the slow invariant manifold is described by

dx

dt
D f .x; Nh.x; "/; NNh.x; "/; "/:

3.4.2 Cooperative Phenomenon

Consider now an example of a 1C 2 system: the so called cooperative phenomenon
[119]. J.D. Murray [119] describes the situation as follows. A model consists of an
enzyme molecule E which binds a substrate molecule S to form a single bound
substrate-enzyme complex C1. This complex C1 not only breaks down to form a
product P and enzyme E again, it also combines with another substrate molecule
to form a dual bound substrate-enzyme complex C2. This C2 complex breaks down
to form a product P and the single bound complex C1. A reaction mechanism for
this model is

S C E
k1•
k

�1
C1

k2! E C P; (3.47)

S C C1

k3•
k

�3
C2

k4! C1 C P; (3.48)

where k0s are the rate constants as indicated.
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With lower case letters denoting concentrations, the mass action law applied
to (3.47), (3.48) gives the differential equations in dimensional form

ds

dt
D �k1 s e C .k�1 � k3s/c1 C k�3c2; (3.49)

dc1
dt

D k1 s e � .k�1 C k2 C k3s/c1 C .k�3 C k4/c2; (3.50)

dc2
dt

D k3 s c1 � .k�3 C k4/c2 (3.51)

de

dt
D �k1 s e C .k�1 C k2/c1; (3.52)

dp

dt
D k2 c1 C k4 c2: (3.53)

Appropriate initial conditions are

s.0/ D s0; e.0/ D e0; c1.0/ D c2.0/ D p.0/ D 0; (3.54)

i.e., the initial concentrations of the substrate S and enzyme E are specified to be
non-zero. The conservation of the enzyme is obtained by adding the 2nd, 3rd, and
4th equations in (3.49)–(3.53) and using the initial conditions; it is

d

dt
.c1 C c2 C e/ D 0 ) c1 C c2 C e D e0: (3.55)

Equation (3.53) for the product p.t/ is uncoupled and given by integration, once
c1 and c2 have been found. Thus, by using (3.55), the resulting system is

ds

dt
D �k1 s e0 C .k�1 C k1s � k3s/c1 C .k1s C k�3/c2; (3.56)

dc1
dt

D k1 s e0 � .k�1 C k2 C k1s C k3s/c1 C .k�3 C k4 � k1s/c2; (3.57)

dc2
dt

D k3 s c1 � .k�3 C k4/c2: (3.58)

We nondimensionalize the system by introducing the dimensionless variables

x.�/ D s.t/

s0
; y1.�/ D c1.t/

e0
; y2.�/ D c2.t/

e0
;

the dimensionless time

� D k1 e0 t;
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and the dimensionless parameters

" D e0

s0
; a1 D k�1

k1s0
; a2 D k2

k1s0
; a3 D k3

k1
; a4 D k�3

k1s0
; a5 D k4

k1s0
:

Then (3.56)–(3.58) become

dx

d�
D �x C .x � a3x C a1/y1 C .a4 C x/y2 D f .x; y1; y2/; (3.59)

"
dy1
d�

D x � .xC a3xC a1 C a2/y1 C .a4 C a5 � x/y2 Dg1.x; y1; y2/; (3.60)

"
dy2
d�

D a3xy1 � .a4 C a5/y2 D g2.x; y1; y2/; (3.61)

with initial conditions

x.0/ D 1; y1.0/ D y2.0/ D 0: (3.62)

This problem, as with the Michaelis–Menten problem, is singularly perturbed
for 0 < " � 1. Note, that the origin x D y1 D y2 D 0 is the unique
equilibrium of (3.59)–(3.61) with nonnegative x, y1 and y2. Another equilibrium
has the coordinates

x D xs D �a2.a4 C a5/

a3a5
; y1 D xs.a4 C a5/

ı
; y2 D x2s

ı.a4 C a5/
;

where ı D .a4 C a5/.xs C a1 C a2/C a3x
2
s . Since xs < 0 this equilibrium doesn’t

correspond to a physical situation.
Now we use the results of the previous section to calculate the approximation of

the one-dimensional slow invariant manifold and the equation which describes the
flow on this manifold.

The corresponding degenerate system is

dx

dt
D �x C .x � a3x C a1/y1 C .a4 C x/y2;

0 D x � .x C a3x C a1 C a2/y1 C .a4 C a5 � x/y2;

0 D a3xy1 � .a4 C a5/y2:

The last two equations give the unique solution

y1 D N�.x/ D x=�;

y2 D NN�.x/ D a3ax2=�:
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Here �=a is the determinant of the Jacobian matrix

B D
 
@g1
@y1

@g1
@y2

@g2
@y1

@g2
@y2

!

D

�x � a3x � a1 � a2 a4 C a5 � x

a3x � a4 � a5

�

;

where � D x C a1 C a2 C a3ax2 and a D .a4 C a5/
�1: The slow curve is stable

since the �trB.x/ and detB.x/ are positive.
To calculate the approximation to the one-dimensional slow invariant manifold

y1 D Nh.x; "/ D N�.x/C " Nh1.x/CO."2/;

y2 D NNh.x; "/ D NN�.x/C " NNh1.x/CO."2/;

we rewrite the invariance equations (3.46) for the system (3.59)–(3.61):

"
d N�.x/

dx

��x C .x � a3x C a1/. N�.x/C " Nh1.x/C "2 : : :/

C.a4 C x/. NN�.x/C "
NNh1.x/C "2 : : :/

	

D x � .x C a3x C a1 C a2/. N�.x/C " Nh1.x/C "2 : : :/

C.a4 C a5 � x/. NN�.x/C "
NNh1.x/C "2 : : :/;

"
d NN�.x/

dx

��x C .x � a3x C a1/. N�.x/C " Nh1.x/C "2 : : :/

C.a4 C x/. NN�.x/C " NNh1.x/C "2 : : :/
	

D a3x. N�.x/C " Nh1.x/C "2 : : :/

�.a4 C a5/.
NN�.x/C " NNh1.x/C "2 : : :/:

Using the formulae

d N�.x/
dx

D .a1 C a2 � a3ax2/=�2;

d NN�.x/
dx

D aa3xŒ2.a1 C a2/C x�=�2;

we solve for Nh1.x/; NNh1.x/ to get
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Nh1.x/ D � .a2 C a3a5ax/ax

�4

h

a3ax3 � .a1 C a2/.a4 C a5 C 2a3x � 2a3ax2/
i

;

NNh1.x/ D � .a2 C a3a5ax/ax

�4

h

�a3ax3 � .a1 C a2/a3x
�

1C 2a.a1 C a2/

C.3C 2a3/ax
�i

:

The flow on the stable slow invariant manifold

y1 D x

�
� "

.a2 C a3a5ax/ax

�4

�

a3ax3 � .a1 C a2/.a4 C a5 C 2a3x � 2a3ax2/
	

CO."2/;

y2 D a3ax2

�
� "

.a2 C a3a5ax/ax

�4

�
h

�a3ax3 � .a1 C a2/a3x
�

1C 2a.a1 C a2/C .3C 2a3/ax
�iCO."2/

is given by

dx

d�
D �x C .x � a3x C a1/. N�.x/C " Nh1.x//C .a4 C x/. NN�.x/C " NNh1.x/

CO."2//

or

dx

d�
D �x.a2 C a3a5ax/

�
C "

�

.x � a3x C a1/ Nh1.x/C .a4 C x/ NNh1.x/
	CO."2/:

This last equation implies that the origin is an asymptotically stable equilibrium

because the coefficient �a2
�

is negative.

On Fig. 3.6 we can see that the trajectory approaches the slow invariant manifold
very quickly and then follows along it to the origin, as t ! 1.

Fig. 3.6 The slow invariant
manifold and the trajectory
of (3.59)–(3.61) with initial
conditions (3.62) for a1 D 1,
a2 D 1, a3 D 1, a4 D 1,
a5 D 2, and " D 0:01. The
arrows indicate increasing
time
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If we return to dimensional variables, we obtain the generalization of the
Michaelis–Menten law for the case of the two enzyme–substrate complexes, see
[119].

3.4.3 Cooperative Phenomenon: Another Approach

We take Eqs. (3.59)–(3.61) and apply the approach developed in Sect. 2.5 to
construct an approximation to the slow invariant manifold and the flow on it.

We refer back to Eq. (2.26) viz.,

Px D 
.x; t; "/C F.x; t; "/y;

" Py D �.x; t; "/CG.x; t; "/y:

Then


 D 
0 D �xI F D F0 D �

x � a3x C a1; a4 C x
� I

� D �0 D


x

0

�

I G D G0 D

�x � a3x � a1 � a2 a4 C a5 � x

a3x � a4 � a5

�

:

Note that 
1 D 0; F1 D 0; �1 D 0; and G1 D 0:

The inverse matrix is

G�1
0 D a

�


�a4 � a5 x � a4 � a5
�a3x � x � a3x � a1 � a2

�

;

where a D .a4 C a5/
�1, � D x C a1 C a2 C a3ax2. We obtain the zero order

approximation �.x/ to the slow invariant manifold

y D h.x; "/ D
 Nh.x; "/

NNh.x; "/

!

D
 N�.x/C " Nh1.x/CO."2/

NN�.x/C " NNh1.x/CO."2/

!

viz.,

� D
 N�.x/

NN�.x/

!

D �G�1
0 �0 D 1

�



x

a3ax2

�

:

The zero order approximation to the flow on this slow invariant manifold is
described by the equation Px D 
0 C F0�, where


0 C F0� D �x.a2 C a3a5ax/

�
:
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Taking into account

d�

dx
D 1

�2



a1 C a2 � a3ax2

aa3.a1 C a2/2x C aa3x2

�

;

we obtain the first order correction to the slow invariant manifold

h1 D
 Nh1.x/NNh1.x/

!

D G�1
0

d�

dx
.
0 C F0�/

D � .a2 C a3a5ax/ax

�4



a3ax3 � .a1 C a2/.a4 C a5 C 2a3x � 2a3ax2/

�a3ax3 � .a1 C a2/a3x
�

1C 2a.a1 C a2/C .3C 2a3/ax
�

�

and the first order correction to r.h.s. of the equation for the flow on this manifold
viz.,

F0h1 D .x � a3x C a1/ Nh1.x/C .a4 C x/ NNh1.x/:

We have thus obtained the same representation for the first order approximation
of the slow invariant manifold and the flow on it.

3.5 2C2

3.5.1 Theoretical Background

We now consider the autonomous differential system with two slow variables x1; x2
and two fast variables y1; y2

dx1
dt

D f1.x1; x2; y1; y2/;

dx2
dt

D f2.x1; x2; y1; y2/;

"
dy1
dt

D g1.x1; x2; y1; y2/;

"
dy2
dt

D g2.x1; x2; y1; y2/;

(3.63)

and with a small positive parameter ". For simplicity we consider the case when the
functions on the r.h.s. of (3.63) do not depend on ". The corresponding degenerate
system is



70 3 The Book of Numbers

dx1
dt

D f1.x1; x2; y1; y2/;

dx2
dt

D f2.x1; x2; y1; y2/;

0 D g1.x1; x2; y1; y2/;

0 D g2.x1; x2; y1; y2/:

The last two equations describe a two-dimensional slow surface. Suppose that these
equations are solved for y1; y2, i.e.,

y1 D N�.x1; x2/; y2 D NN�.x1; x2/:

As previously, we consider the Jacobian matrix along the slow surface, i.e.,

B D B.x1; x2/ D

0

B
B
@

@g1

@y1

@g1

@y2
@g2

@y1

@g2

@y2

1

C
C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
y1D N�.x1;x2/; y2D NN�.x1;x2/

:

If both two roots of the characteristic polynomial

det.B.x1; x2/ � �I/ D 0;

where I is the identity matrix, have negative real parts, then the slow surface is
stable. Let

bij.x1; x2/ D @gi

@yj

ˇ
ˇ
ˇ
ˇ
y1D N�.x1;x2/; y2D NN�.x1;x2/

; i; j D 1; 2;

trB.x1; x2/ D b11.x1; x2/C b22.x1; x2/;

detB.x1; x2/ D b11.x1; x2/b22.x1; x2/� b12.x1; x2/b21.x1; x2/;

where trB.x1; x2/ is the trace and detB.x1; x2/ is the determinant of B.x1; x2/.
As before the condition for stability of the slow surface is the positivity of the
coefficients of the quadratic characteristic polynomial, which are �trB.x1; x2/ and
detB.x1; x2/.

To calculate the approximate two-dimensional slow invariant manifold

y1 D Nh.x1; x2; "/; y2 D NNh.x1; x2; "/
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from the invariance equations

"
@ Nh.x1; x2; "/

@x1
f1.x1; x2; Nh.x1; x2; "/; NNh.x1; x2; "//

C"@
Nh.x1; x2; "/
@x2

f2.x1; x2; Nh.x1; x2; "/; NNh.x1; x2; "//

D g1.x1; x2; Nh.x1; x2; "/; NNh.x1; x2; "//; (3.64)

and

"
@ NNh.x1; x2; "/

@x1
f1.x1; x2; Nh.x1; x2; "/; NNh.x1; x2; "//

C"@
NNh.x1; x2; "/
@x2

f2.x1; x2; Nh.x1; x2; "/; NNh.x1; x2; "//

D g2.x1; x2; Nh.x1; x2; "/; NNh.x1; x2; "//; (3.65)

we substitute the formal expansions

Nh.x1; x2; "/ D N�.x1; x2/C " Nh1.x1; x2/CO."2/;

NNh.x1; x2; "/ D NN�.x1; x2/C " NNh1.x1; x2/CO."2/

into these equations. The result is

"
@ N�.x1; x2/
@x1

f1.x1; x2; N�.x1; x2/; NN�.x1; x2//

C"@
N�.x1; x2/
@x2

f2.x1; x2; N�.x1; x2/; NN�.x1; x2// (3.66)

D "b11.x1; x2/ Nh1.x1; x2/C "b12.x1; x2/
NNh1.x1; x2/CO."2/;

and

"
@ NN�.x1; x2/
@x1

f1.x1; x2; N�.x1; x2/; NN�.x1; x2//

C"@
NN�.x1; x2/
@x2

f2.x1; x2; N�.x1; x2/; NN�.x1; x2// (3.67)

D "b21.x1; x2/ Nh1.x1; x2/C "b22.x1; x2/
NNh1.x1; x2/CO."2/:
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It is a straightforward exercise now to obtain the expressions

Nh1.x1; x2/ D a1.x1; x2/b22.x1; x2/ � a2.x1; x2/b12.x1; x2/
B.x1; x2/

;

NNh1.x1; x2/ D a2.x1; x2/b11.x1; x2/ � a1.x1; x2/b21.x1; x2/
B.x1; x2/

;

where

a1.x1; x2/ D @ N�.x1; x2/
@x1

f1.x1; x2; N�.x1; x2/; NN�.x1; x2//

C@ N�.x1; x2/
@x2

f2.x1; x2; N�.x1; x2/; NN�.x1; x2//;

and

a2.x1; x2/ D @ NN�.x1; x2/
@x1

f1.x1; x2; N�.x1; x2/; NN�.x1; x2//

C@ NN�.x1; x2/
@x2

f2.x1; x2; N�.x1; x2/; NN�.x1; x2//:

We have calculated N�.x1; x2/; Nh1.x1; x2/; NN�.x1; x2/ and NNh1.x1; x2/ and thus have
an approximation to the two-dimensional slow invariant manifold. The flow on this
manifold is now calculated from the first two equations in (3.63), taking into account

y1 D Nh.x1; x2; "/ D N�.x1; x2/C " Nh1.x1; x2/CO."2/

and

y2 D NNh.x1; x2; "/ D NN�.x1; x2/C " NNh1.x1; x2/CO."2/:

3.5.2 Enzyme–Substrate-Inhibitor System

In this section a enzyme–substrate reaction [118] is considered as an example of
a 2 C 2 system. The reaction consists of an enzyme E with a single reaction site
(many enzymes have several such sites) for which two substrates compete and form
one of two complexes. These break down to give two products and the original
enzyme. When one substrate combines with the enzyme it means, in effect, that it
is inhibiting the other substrate’s reaction with that enzyme. The reactions can be
written schematically as
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S C E
k1•
k

�1
ES

k2! PS C E; (3.68)

I C E
k3•
k

�3
EI

k4! PI C E; (3.69)

where S and I are the two substrates, which compete for the same enzyme E , and
PS and PI are the products of two enzyme–substrate reactions.

When two substrates are competing for the same enzyme site, the reaction
system (3.68) and (3.69) is said to be fully competitive. In such reactions one or

other of the substrates can be singled out for its reaction rate e.g., r0 D ds

dt

ˇ
ˇ
ˇ
ˇ
tD0

to

be measured by an experiment (see more details in [118]). The one so singled out is
called the substrate and the other the inhibitor. We choose the inhibitor to be I and
its reaction to be (3.69).

Applying the law of mass action to (3.68), (3.69) gives the kinetic equations for
the concentrations of the reactants. Since we shall be interested primarily in the
rates of the reactions of S and I , we do not need the equations for the products;
only the rate constants k2 and k4 in (3.68), (3.69) are involved. Thus we need
only consider the kinetic equations for the substrate, inhibitor, and enzyme complex
whose concentrations as functions of time t are denoted by

s.t/ D ŒS�; i.t/ D ŒI �; e.t/ D ŒE�;

cs.t/ D ŒES�; ci .t/ D ŒEI�: (3.70)

The kinetic equations for the concentrations for the reactions (3.68), (3.69), see
[118], are

ds

dt
D �k1 s e C k�1 cs; (3.71)

dcs
dt

D k1 s e � .k�1 C k2/cs; (3.72)

di

dt
D �k3 i e C k�3 ci ; (3.73)

dci
dt

D k3 i e � .k�3 C k4/ci (3.74)

de

dt
D �k1 s e � k3 i e C .k�1 C k2/cs C .k�3 C k4/ci : (3.75)

Appropriate initial conditions for Eqs. (3.71)–(3.75) are that there are no enzyme
complexes initially but s, i , and e are prescribed, that is

s.0/ D s0; i.0/ D i0; e.0/ D e0; cs.0/ D ci .0/ D 0: (3.76)
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The conservation equation for the enzyme e is obtained immediately by
adding (3.72), (3.74), (3.75) and using the initial conditions (3.76) to get

d

dt
.cs C ci C e/ D 0 ) cs C ci C e D e0: (3.77)

Eliminating e from (3.71)–(3.75) by using (3.77) gives four equations for s, i , cs
and ci . We now introduce nondimensional variables and parameters by

x1.�/ D s.t/

s0
; x2.�/ D i.t/

i0
; y1.�/ D cs.t/

e0
; y2.�/ D ci .t/

e0
;

� D k1 e0 t; " D e0

s0
; ˇ D i0

s0
; � D k3

k1
; (3.78)

Ks D k�1 C k2

k1s0
; Ki D k�3 C k4

k3i0
; Ls D k2

k1s0
; Li D k4

k3i0
:

Then the four equations for s, i , cs and ci become the four dimensionless equations

dx1
d�

D �x1 C .x1 CKs �Ls/y1 C x1y2 D f1.x1; x2; y1; y2/; (3.79)

dx2
d�

D �Œ�x2 C x2y1 C .x2 CKi � Li/y2� D f2.x1; x2; y1; y2/; (3.80)

"
dy1
d�

D x1 � .x1 CKs/y1 � x1y2 D g1.x1; x2; y1; y2/; (3.81)

"
dy2
d�

D ˇ�Œx2 � x2y1 � .x2 CKi/y2� D g2.x1; x2; y1; y2/; (3.82)

with initial conditions

x1.0/ D x2.0/ D 1; y1.0/ D y2.0/ D 0: (3.83)

We use the results of the previous section to calculate the approximate two-
dimensional slow invariant manifold and the equation that describes the flow on
this manifold with the assumption that 0 < " � 1.

The degenerate system is

dx1
d�

D �x1 C .x1 CKs �Ls/y1 C x1y2; (3.84)

dx2
d�

D �Œ�x2 C x2y1 C .x2 CKi � Li/y2�; (3.85)

0 D x1 � .x1 CKs/y1 � x1y2; (3.86)

0 D ˇ�Œx2 � x2y1 � .x2 CKi/y2�; (3.87)
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The last two equations give the unique solution

y1 D N�.x1; x2/ D Kix1=�;

y2 D NN�.x1; x2/ D Ksx2=�:

Here �ˇ� is the determinant of the Jacobian matrix

B.x1; x2/ D

0

B
B
@

@g1

@y1

@g1

@y2
@g2

@y1

@g2

@y2

1

C
C
A

D

�x1 �Ks �x1

�ˇ�x2 �ˇ�.x2 CKi/

�

;

where � D Ksx2CKix1CKsKi : The slow surface is stable since the �trB.x1; x2/
and detB.x1; x2/ are positive.

To calculate the approximations to the two-dimensional slow invariant manifold,
we assume

y1 D Nh.x1; x2; "/ D N�.x1; x2/C " Nh1.x1; x2/CO."2/;

and

y2 D NNh.x1; x2; "/ D NN�.x1; x2/C " NNh1.x1; x2/CO."2/:

The invariance equations (3.67), (3.68) for the system (3.79)–(3.82) yield

"
@ N�.x1; x2/
@x1

.�x1 C .x1 CKs � Ls/. N�.x1; x2/C " Nh1.x1; x2/CO."2//

Cx1. NN�.x1; x2/C " NNh1.x1; x2/CO."2///

C"@
N�.x1; x2/
@x2

.�Œ�x2 C x2. N�.x1; x2/C " Nh1.x1; x2/CO."2//

C.x2 CKi �Li/. NN�.x1; x2/C " NNh1.x1; x2/CO."2//�/

D x1 � .x1 CKs/. N�.x1; x2/C " Nh1.x1; x2/CO."2//

�x1. NN�.x1; x2/C " NNh1.x1; x2/CO."2//;

and

"
@ NN�.x1; x2/
@x1

.�x1 C .x1 CKs � Ls/. N�.x1; x2/C " Nh1.x1; x2/CO."2//

Cx1. NN�.x1; x2/C " NNh1.x1; x2/CO."2///
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C"@
NN�.x1; x2/
@x2

.�Œ�x2 C x2. N�.x1; x2/C " Nh1.x1; x2/CO."2//

C.x2 CKi �Li/. NN�.x1; x2/C " NNh1.x1; x2/CO."2//�/

D ˇ�Œx2 � x2. N�.x1; x2/C " Nh1.x1; x2/CO."2//

�.x2 CKi/.
NN�.x1; x2/C " NNh1.x1; x2/CO."2//�:

Using the formulae

@ N�.x1; x2/
@x1

D KiKs.x2 CKi/=�
2;

@ N�.x1; x2/
@x2

D KiKs.�x1/=�2;

@ NN�.x1; x2/
@x1

D KiKs.�x2/=�2;

@ NN�.x1; x2/
@x2

D KiKs.x1 CKs/=�
2;

we find the expressions for Nh1.x/; NNh1.x/:

Nh1.x/ D KiKs

ˇ��4
.ˇ�.x2 CKi/Px1 � x1x2Q/;

NNh1.x/ D KiKs

ˇ��4
.�ˇ�x1x2P C .x1 CKs/x2Q/;

where

P D .KiLs � �KsLi /x2 CK2
i Ls;

Q D �.KiLs � �KsLi /x1 C �K2
s Li :

Consequently, the first order approximation to the flow on the slow invariant
manifold is

dx1
d�

D Ki

�

"

�Lsx1 C "Ks

ˇ��3
.ˇ�ŒKix1 C .Ks � Ls/.x2 CKi/�P x1

CLsQx1x2/
#

CO."2/;
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dx2
d�

D �Ks

�

"

� Lix2 C "Ki

ˇ��3
.ˇ�x1x2LiP

CŒKsx2 C .Ki �Li/.x1 CKs/�Qx2/

#

CO."2/;

where the manifold is given by

y1 D Kix1

�
C "

KiKs

ˇ��4
Œˇ�.x2 CKi/Px1 � x1x2Q�CO."2/;

y2 D Ksx2

�
C "

KiKs

ˇ��4
Œ�ˇ�x1x2P C .x1 CKs/x2Q�CO."2/:

The first and second differential equations above for x1 and x2 imply that the origin

�
x1 D x2 D 0;

y1 D y2 D 0

is an asymptotically stable equilibrium because the coefficients �KiLs
�0

and �� KsLi
�0

are negative. Here

�0 D �jx1D0; x2D0 D KsKi ¤ 0:

Figures 3.7, 3.8, 3.9, and 3.10 show that the trajectory of (3.79)–(3.83)
approaches the slow invariant manifold very quickly and then follows along it
as � ! 1.

Fig. 3.7 The projections of
the trajectory and slow
invariant manifold
of (3.79)–(3.83) on the plane
x1x2y1 for Ki D Ks D 1,
Li D Ls D 1, � D 2,
ˇ D 0:1, and " D 0:01 0.20.40.60.81
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Fig. 3.8 The projections of the trajectory and slow invariant manifold of (3.79)–(3.83) on the
plane x1x2y2 for Ki D Ks D 1, Li D Ls D 1, � D 2, ˇ D 0:1, and " D 0:01
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t

y2

Fig. 3.9 The y1- and y2-components of the exact solution of (3.79)–(3.82) for Ki D Ks D 1,
Li D Ls D 1, � D 2, ˇ D 0:1, and " D 0:01, and initial conditions y1.0/ D y2.0/ D 0

t

x1

t

x2

Fig. 3.10 The x1- and x2-components of the exact solution of (3.79)–(3.82) for Ki D Ks D 1,
Li D Ls D 1, � D 2, ˇ D 0:1, and " D 0:01, and the initial conditions x1.0/ D x2.0/ D 1
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3.5.3 Enzyme–Substrate-Exhibitor: The Another Approach

We consider again the model from Sect. 3.5.2 viz., Eqs. (3.79)–(3.82) and apply
the technique from Sect. 2.5 to construct an approximation to the slow invariant
manifold and the flow on it.

In this case we have


 D 
0 D

 �x1

��x2
�

I F D F0 D


x1 CKs � Ls x1

�x2 �.x2 CKi � Li/

�

I

� D �0 D



x1
ˇ�x2

�

I G D G0 D

�x1 �Ks �x1

�ˇ�x2 �ˇ�.x2 CKi/

�

:

The inverse matrix is

G�1
0 D 1

ˇ��


�ˇ�.x2 CKi/ x1
ˇ�x2 � x1 �Ks

�

;

where

� D Ksx2 CKix1 CKsKi :

We obtain the zero order approximation �.x1; x2/ to the slow invariant manifold

y D h.x1; x2; "/ D
 Nh.x1; x2; "/NNh.x1; x2; "/

!

D
 N�.x1; x2/C " Nh1.x1; x2/CO."2/

NN�.x1; x2/C " NNh1.x1; x2/CO."2/

!

:

�.x1; x2/ D
 N�.x1; x2/NN�.x1; x2/

!

D �G�1
0 �0 D 1

�



Kix1

Ksx2

�

:

The zero order approximation to the flow on this slow invariant manifold is
described by the equation Px D 
0 C F0�, where


0 C F0� D

 �x1

��x2
�

C


x1 CKs � Ls x1

�x2 �.x2 CKi � Li /

�
1

�



Kix1

Ksx2

�

D � 1

�



KiLsx1

�KsLix2

�

:

Taking into account

@�

@x
D

0

B
B
@

@

@x1



Kix1

�

�
@

@x2



Kix1

�

�

@

@x1



Ksx2

�

�
@

@x2



Ksx2

�

�

1

C
C
A

D KiKs

�2




x2 CKi �x1
�x2 x1 CKs

�

;
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we obtain the first order correction to the slow invariant manifold

h1 D
 Nh1NNh1

!

D G�1
0

@�

@x
.
0 C F0�/ D KiKs

ˇ��4



ˇ�.x2 CKi/Px1 � x1x2Q

�ˇ�x1x2P C .x1 CKs/x2Q

�

;

where

P D .KiLs � �KsLi /x2 CK2
i Ls;

and

Q D �.KiLs � �KsLi /x1 C �K2
s Li :

The first order approximation to the flow on the slow invariant manifold is
described by the equation


 Px1
Px2
�

D 
0 C F0� C "F0h1 CO."2/;

where

F0h1 D KiKs

ˇ��4



ˇ�ŒKix1 C .Ks �Ls/.x2 CKi/�Px1 C LsQx1x2
ˇ�2x1x2LiP C �ŒKsx2 C .Ki � Li/.x1 CKs/�Qx2

�

:

Thus, we obtain the same representation for the first order approximation to the
slow invariant manifold and the flow on it just as in Sect. 3.5.2.



Chapter 4
Representations of Slow Integral Manifolds

Abstract In constructing the asymptotic expansions of slow integral manifolds it
is assumed that the degenerate equation (" D 0) allows one to find the slow surface
explicitly. In many problems this is not possible due to the fact that the degenerate
equation is either a high degree polynomial or transcendental. In this situation many
authors suggest the use of numerical methods. However, in many problems the slow
surface can be described in parametric form, and then the slow integral manifold can
be found in parametric form as asymptotic expansions. If this is not possible, it is
necessary to use an implicit slow surface and obtain asymptotic representations for
the slow integral manifold in an implicit form. Model examples, as well as examples
borrowed from combustion theory, are treated.

4.1 Explicit and Implicit Slow Integral Manifolds

To describe the slow integral manifold for the system

dx

dt
D f .x; y; t; "/;

"
dy

dt
D g.x; y; t; "/;

(4.1)

we usually obtain the explicit representation y D h.x; t; "/. In this case the
approximation to h.x; t; "/may be obtained as an asymptotic expansion in powers of
". However, it is generally not possible to find the function y D �.x; t/ D h.x; t; 0/

exactly from the equation

g.x; y; t; 0/ D 0:

However, in this case the slow integral manifold may be obtained in an implicit form

G.x; y; t; "/ D 0;

and the flow on this manifold is described by the differential equation

© Springer International Publishing Switzerland 2014
E. Shchepakina et al., Singular Perturbations, Lecture Notes in Mathematics 2114,
DOI 10.1007/978-3-319-09570-7__4
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dx

dt
D f .x; y; t; "/:

The invariance equation takes the form

Gy.x; y; t; "/g.x; y; t; "/C "Gt .x; y; t; "/C "Gx.x; y; t; "/f .x; y; t; "/ D 0:

(4.2)

To verify this fact it is necessary to calculate partial derivatives of the function
h.x; t; "/, which describes the slow integral manifold y D h.x; t; "/, from the
identity G.x; h; t; "/ D 0:

Gt CGyht D 0; Gx CGyhx D 0;

i.e. ht D �G�1
y Gt and hx D �G�1

y Gx . Substituting these expressions into the
invariance equation "ht C "hxf D g we obtain

�"G�1
y Gt � "G�1

y Gxf D g

which is (4.2) under the condition detGy ¤ 0.
The zero approximation to the flow on the slow integral manifold is governed by

the differential-algebraic system:

Px D f .x; y; t; 0/; (4.3)

0 D g.x; y; t; 0/: (4.4)

To obtain the first order approximation, it is necessary to differentiate g.x; y; t; "/,
and by virtue of (4.1), the result is

"
d

dt
g D gyg C "gt C "gxf:

Then we equate the result to zero. As a first order approximation, the flow on the
slow integral manifold is governed by the differential-algebraic system

Px D f .x; y; t; "/; (4.5)

gyg C "gt C "gxf D 0; (4.6)

where terms of order o."/ can be neglected. Equation (4.6) may be written in more
convenient form when detgy ¤ 0

g C "g�1
y gt C "g�1

y gxf D 0: (4.7)

In the case of an autonomous system, where g is independent of t , Eq. (4.7) takes
the form
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g C "N D 0; detgy ¤ 0:

where

N D g�1
y gxf:

This is the first order approximation. We recover (4.4), the zero approximation,
on setting " D 0. To obtain the second order approximation, it is necessary to
differentiate g.x; y; t; "/ twice, using (4.1), and to equate the result to zero. The
corresponding relationships are very cumbersome. Because of this we consider only
the case of autonomous systems. Then, on differentiating ".g C "N / D 0 with
respect to t , and noting gt D 0; Nt D 0 the second order approximation takes the
form

"
d

dt
.g C "N / D g C "N C "g�1

y Nyg C "2g�1
y Nxf D 0

or

g C "
h

N C g�1
y Nyg

i

C "2g�1
y Nxf D 0:

On using .I C "g�1
y Ny/

�1 D I � "g�1
y Ny CO."/2 we get the result

g C "N C "2g�1
y .Nxf �NyN/ D 0: (4.8)

The second order approximation to the slow invariant manifold is given by (4.8) to
O."2/, and the flow on it by (4.5). In (4.5), (4.8) all terms in the expansions of f
and g that lead to O."3/ terms can be neglected.

To obtain the k-th order approximation, it is necessary to differentiate
g.x; y; t; "/ k times with respect to t and use (2.20).

To check these formulae it is sufficient to note that in the calculation of the
asymptotic expansions of h.x; t; "/

h D � CO."/; h D � C "h1 CO."2/;

h D � C "h1 C "2h2 CO."3/;

the use of (4.3)–(4.8) gives the same result as those given immediately before (2.24).
It is necessary to use the formulae (2.20), (2.22) and (2.23) to verify this. We use
Eq. (4.6) of the first order approximation in the form

g.x; � C "h1 C "2 : : : ; t; "/C "B�1gt .x; �; t; 0/

C"B�1gx.x; �; t; 0/f .x; �; t; 0/C "2 : : : D 0;
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noting that B.x; t/ D gy D @g

@y
. On neglecting terms of order higher thanO."/, and

noting that g.x; � C "h1; t; "/ D "Bh1 C "g1.x; �; t; 0/CO."2/, we get

Bh1 C g1.x; �; t; 0/C B�1gt .x; �; t; 0/C B�1gx.x; �; t; 0/f .x; �; t; 0/ D 0;

i.e.

h1 D B�1 ��g1.x; �; t; 0/� B�1gt .x; �; t; 0/� B�1gx.x; �; t; 0/f .x; �; t; 0/
�

:

(4.9)

Taking into account that the equality g.x; �; t; 0/ D 0 implies

gy.x; �; t; 0/�t C gt .x; �; t; 0/ D 0

and

gy.x; �; t; 0/�x C gx.x; �; t; 0/ D 0

we obtain �t D �B�1gt .x; �; t; 0/, �x D �B�1gx.x; �; t; 0/: Thus, the formu-
lae (2.22) and (4.9) are equivalent by virtue of the fact that B D gy.x; �; t; 0/,
f0 D f .x; �; t; 0/. In the same way we can verify the second order approximation
and obtain from (4.8)

h2 D B�1
�
@�

@x
f1 C @h1

@x
f0 � g2

�

;

which is equivalent to (2.23) in the autonomous case.
As to the k-th order approximation, it is necessary to use the principle of

mathematical induction. We invite readers to do it for themselves.
To illustrate this approach, consider

Example 9.

Px D y; " Py D x2 C y2 � a; a > 0: (4.10)

Here f D y and g D x2 C y2 � a. The zero approximation to the slow invariant
manifold is

x2 C y2 � a D 0:

The first approximation to the slow invariant manifold is

g C "g�1
y gxf D y2 C x2 � a C "x D 0:
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It is easy to check that the second order approximation is

y2 C .x C "=2/2 � aC "2=4 D 0

and it is also the exact equation for this manifold, since the function y2 C .x C
"=2/2�aC"2=4 is invariant (up to an nonessential nonzero multiplier) with respect
to differentiation by virtue of the differential system under consideration, i.e.

"
d

dt
.y2 C .x C "=2/2 � aC "2=4/ D 2y.x2 C y2 � a/C "2.x C "=2/y

D 2y
�

y2 C .x C "=2/2 � a C "2=4
�

:

This means that the second order approximation satisfies the invariance equa-
tion (4.2). The stability of the invariant manifold requires gy D 2y < 0. Thus
the manifold for y > 0 is repulsive, and that for y < 0 is attractive, as indicated by
the arrows in Fig. 4.1.

In terms of the formalism in Chap. 2, f D y; g D x2 C y2 � a and B D gy D
2y. Then x2 C �2 � a D 0 is the zero order approximation and the second order
approximation h2 C .x C "=2/2 � aC "2=4 D 0 is the exact equation for h.x; "/.

Example 10. The slow curve of the system

dx

dt
D y;

"
dy

dt
D by2 C ax2 C ˛;

(4.11)

in the case ab < 0 and ˛ � "2=4 < 0, is the hyperbola

Fig. 4.1 Example 9. The
slow curve (dashed line) and
the exact slow invariant
manifold (the dotted line)
of (4.10) (a D 3; " D 0:2)
where the arrows indicate
increasing time

x

y
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Fig. 4.2 Example 10. The
slow curve (dashed line) and
the exact slow invariant
manifold (the dotted line)
of (4.11) (a D �1 b D 1,
˛ D �1, " D 0:2) where the
arrows indicate increasing
time

x

y

by2 C ax2 C ˛ D 0

the lower branch of which is attractive and the upper one is repulsive, since gy < 0
(gy > 0) for y < 0 (y > 0) (see Fig. 4.2). The exact slow invariant manifold
is described by the equation of the second order approximation i.e., g C "N C
"2g�1

y .Nxf �NyN/ D 0

by2 C a
�

x C "

2b

�2 C ˛ C "2a

4b2
D 0;

since

"
d

dt




by2 C a
�

x C "

2b

�2 C ˛ C "2a

4b2

�

D 2by
�

by2 C ax2 C ˛ C "ax=b C "2a=2b2
�

y

D 2by




by2 C a
�

x C "

2b

�2 C ˛ C "2a

4b2

�

;

since N D ax=b; gy D 2by, and f D y.

Unlike the models of enzyme kinetics, which are linear with respect to the
fast variables, models of combustion processes usually are strongly nonlinear with
respect to the fast variables. Therefore, the use of the implicit representation
fits naturally into the scheme of approximation of slow invariant manifolds in
combustion problems.

Example 11. As an illustration, consider now the following system which is the
classical heat explosion model with reactant consumption [59, 117].
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Fig. 4.3 Example 11. The
slow curve (dashed line), the
first-order (the dotted line)
and the second-order (the
solid line) approximations to
the slow invariant manifold
of (4.12) (" D 0:01). Note
that the approximations are
not good near the critical
point � D 1, where g� D 0

η

θ

d

d�
D �e� ;

"
d�

d�
D e� � ˛�:

(4.12)

Here � is the dimensionless temperature and  is the dimensionless concentration,
and � is the dimensionless time.

The zero-order approximation to the slow invariant manifold is

g D e� � ˛� D 0; (4.13)

i.e., .�/ D ˛�e�� which is stable when e� � ˛� < 0. Because it is not possible
to explicitly solve Eq. (4.13) for the fast variable � , we will use the implicit form to
obtain an approximation of the slow invariant manifold. The first approximation is
g C "gf=g� D 0 i.e.,

e� � ˛� � "e2�=g� D 0;

where f D �e� ; g� D  exp � � ˛: The second order approximation g C "N C
"2g�1

� .Nf �N�N/ D 0 is

e� � ˛� � "e2�=g� � "2
�

˛e3� =g3� C 2e4� .e� � 2˛/=g4�
� D 0;

since N D gf=g� D �e2�=g� ;N D ˛e2� =g2� ; N� D � �2e� � 2˛� e2�=g2� ,
see Fig. 4.3.

We will return to this physical example in the next section and in Chap. 7.
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4.2 Parametric Representation of Integral Manifolds

We refer again to Eq. (4.1)

dx

dt
D f .x; y; t; "/;

"
dy

dt
D g.x; y; t; "/:

(4.14)

The implicit form of integral manifolds has evident disadvantages, but for
numerous problems it is not possible to find a solution of g.x; y; t; 0/ D 0 in the
explicit form y D �.x; t/. However, sometimes the solution of g.x; y; t; 0/ D 0

can be found in parametric form

x D �0.v; t/; y D '0.v; t/;

where the parameter v 2 R
m, and the following identity holds

g.�0.v; t/; '0.v; t/; t; 0/ � 0; t 2 R; v 2 R
m:

In this case the slow integral manifold may also be found in parametric form

x D �.v; t; "/; y D '.v; t; "/;

where t 2 R, v 2 R
m, �.v; t; 0/ D �0.v; t/, '.v; t; 0/ D '0.v; t/. The flow on the

manifold is governed by an equation of the form

Pv D F.v; t; "/; (4.15)

and the function F.v; t; "/ will be determined below. The functions �; '; F can be
found as asymptotic expansions of the form

�.v; t; "/ D �0.v; t/C "�1.v; t/C : : :C "k�k.v; t/C : : : ;

'.v; t; "/ D '0.v; t/C "'1.v; t/C : : :C "k'k.v; t/C : : : ; (4.16)

F.v; t; "/ D F0.v; t/C "F1.v; t/C : : :C "kFk.v; t/C : : : :

On using (4.14) and (4.15), we obtain the invariance equations

dx

dt
D d�.v; t; "/

dt
D @�

@t
C @�

@v
F D f .�; '; t; "/; (4.17)

"
dy

dt
D "

d'.v; t; "/

dt
D "

@'

@t
C "

@'

@v
F D g.�; '; t; "/ (4.18)
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and their approximations. Equating coefficients of powers of the small parameter "
we obtain equations for the zero order approximation

@�0

@t
C @�0

@v
F0 D f .�0; '0; t; 0/; g.�0; '0; t; 0/ D 0;

for the first order approximation

@�1

@t
C @�1

@v
F0 C @�0

@v
F1 D fx.�0; '0; t; 0/�1 C fy.�0; '0; t; 0/'1 C f1;

@'0

@t
C @'0

@v
F0 D gx.�0; '0; t; 0/�1 C gy.�0; '0; t; 0/'1 C g1;

where f1 D f".�0; '0; t; 0/; g1 D g".�0; '0; t; 0/; and so on.
The two vector equations of the zero order approximation contain three unknown

vector functions �0; '0 and F0, or, what is the same, m C n scalar equations
contain m C n C m unknown scalar functions. The same is true of the first
order approximation. In general, the relationships (4.17), (4.18) contain unknown
functions �; ', F . In a specific problem it is possible on many occasions to consider
one of these functions, or any m scalar components of �; ' and F; as known
functions, and all others may be found from (4.17), (4.18). Moreover, it is possible at
any step of the calculation of the coefficients in (4.16) to choose anym components
of these coefficients as given functions. In the case that F is a given or known
function, Eqs. (4.17), (4.18) are used to calculate the coefficients in the asymptotic
expansions of � and '. If it is possible to predetermine the function �, then these
equations allow the calculation of F and '. To clarify this we consider several
examples.

Note that in the case of the explicit form y D h.x; t; "/; we take

v D x; � D v; ' D h.v; t; "/; F D f .v; h.v; t; "/; t; "/;

since Pv D Px D f . Then (4.18) takes the form

"
@h

@t
C "

@h

@v
f .v; h; t; "/ D g.v; h; t; "/; h D h.v; t; "/:

If dimx D dimy and the role of v is that of y, then ' D v and

@�

@t
C @�

@v
F D f .�; v; t; "/; and g.�; v; t; "/ D "F: (4.19)

by (4.15) and the second of (4.14) (see also (4.17)). The equation for � follows
immediately

"
@�

@t
C @�

@v
g.�; v; t; "/ D "f .�; v; t; "/:
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Then, under the assumption det. @�0
@v / 6D 0, it is possible to calculate � in an

asymptotic expansion. Note that g.�0; '0; t; 0/ D 0 implies that Eq. (4.15) is
regularly perturbed, since the last equation in (4.19) implies, in this case, F D O.1/

as " ! 0.
Consider Example 9 given by Eq. (4.10) for a D 1, viz., Px D y; " Py D

x2 C y2 � 1. In this case the slow curve x2 C y2 D 1 may be represented in a
parametric form

x D cos v; y D sin v:

Then Px D y ) Pv D �1 i.e., F.v; "/ D �1: It is easy to find the slow invariant
manifold as an asymptotic expansion. In the expansion (4.16), �0 D cos v and '0 D
sin v then the equations of the first order approximation are given by � @�1

@v D '1 and

� 1
2

cos v D �1 cos v � @�1
@v sin v. With the particular integral �1 D �1=2 we obtain

'1 D 0. The second order approximation gives � @�2
@v D '2 and 0 D 2�2 cos v C

2'2 sin v C 1=4. These two equalities imply 0 D 2�2 cos v � sin v @�2
@v C 1=4, and

with the particular integral �2 D �.1=8/ cos v we obtain '2 D �.1=8/ sin v. The
end result then is

x D cos v � "=2� "2
1

8
cos v C : : : ;

y D sin v � "2
1

8
sin v C : : : :

Note that the exact solution is

x D
p

1 � "2=4 cos v � "=2; y D
p

1 � "2=4 sin v:

Combustion models in many cases are linear with respect to the slow variables,
and this permits us to use the parametric representation to find slow invariant
manifolds when the fast variables play the role of v. Returning to Example 11,
the combustion problem, consider the degenerate equation e� � ˛� D 0 and
 D �0.�/ D ˛�e�� . The role of variable v here is that of the fast variable � .
Setting  D �0.�/C "�1.�/C "2�2.�/C : : :, we get

"
d�

d�
D ".�1.�/C "�2.�/C : : :/e� D "F (4.20)

and, due to (4.19),

@�

@�
F D ��.�; "/e� :
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Then, on substituting for F from (4.20), we get



@�0

@�
C "

@�1

@�
C "2

@�2

@�
C : : :

�

.�1.�/C "�2.�/C : : :/ e�

D � ��0.�/C "�1.�/C "2�2.�/C : : :
�

e� :

On equating powers of ", we find @�0
@�
�1 D ��0, @�0@� �2 C @�1

@�
�1 D ��1 and @�0

@�
D

˛.1 � �/e�� , and it is then easy to calculate �1 D �
��1 and �2 D e�

�2.��2/
˛.��1/4 .

Thus, we obtain

 D �.�; "/ D ˛�e�� C "
�

� � 1
C "2e�

�2.� � 2/

˛.� � 1/4
CO."3/:

This representation is correct outside some neighborhood of � D 1, and it
gives the approximation of the attractive (repulsive) one-dimensional slow invariant
manifold if 0 � � < 1 (1 < �).

Finally we consider the third order differential equation which has the form of a
differential system with two slow and one fast variable

Px1 D x2; Px2 D y; " Py D �y � ey � x1 � x2:

Note that this system possesses an attractive slow invariant manifold since @
@y
.�y�

ey � x1 � x2/ D �1 � ey < 0: The degenerate equation 0 D �y � ey � x1 � x2
cannot be solved with respect to the fast variable y, but it can be solved with respect
to one of the slow variables x1 or x2. Thus, the fast variable y and the slow variable
x2 may be chosen as parameters and the slow invariant manifold will be represented
in the form x1 D �.x2; y; "/ D �0.x2; y/ C "�1.x2; y/ C "2�1.x2; y/ C O."3/;

where �0.x2; y/ D �y � ey � x2. The flow on this manifold is described by the
equations

Px2 D y; " Py D ��1.x2; y/ � "�1.x2; y/CO."2/

and the invariance equation

@�

@x2
y C @�

@y

1

"
.�y � ey � � � x2/ D x2

takes the form


@�0

@x2
C "

@�1

@x2
C : : :

�

y C


@�0

@y
C "

@�1

@y
C : : :

�

.��1 � "�2 � : : :/ D x2:
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Equating the powers of " we obtain

�1 D x2 C y

1C ey
; �2 D




�@�1
@x2

y C @�1

@y
�1

�

=.1C ey/

after taking into account that @�0
@y

D �1 � ey .



Chapter 5
Singular Singularly Perturbed Systems

Abstract In this chapter we consider singularly perturbed differential systems
whose degenerate equations have an isolated but not simple solution. In that case,
the standard theory to establish a slow integral manifold near this solution does not
work. Applying scaling transformations and using the technique of gauge functions
we reduce the original singularly perturbed problem to a regularized one such
that the existence of slow integral manifolds can be established by means of the
standard theory. We illustrate the method by several examples from control theory
and chemical kinetics.

5.1 Introduction

For a better idea of the problems we wish to examine, and to gain some insight
into why the term in the title is used, we initially consider the following differential
system

"Pz1 D 2z1 � z2; "Pz2 D .6C 3"/z1 � 3z2;

or, in the vector form

"


 Pz1
Pz2
�

D A."/



z1
z2

�

;where A."/ D



2 � 1

6C 3" � 3
�

:

At first glance it would seem that there are two fast variables z1 and z2 and we
apply the proposed approach to the analysis of this system. Setting " equal to zero
we obtain the linear algebraic system

2z1 � z2 D 0; 6z1 � 3z2 D 0:

Apart from the trivial solution this system possesses an one-parameter family of
solutions z1 D s; z2 D 2s, where s is a real parameter. Thus there is no isolated
solution to the degenerate system. The reason is that the matrix is singular, i.e.
detA.0/ D 0 and the singularly perturbed system in this case is called a singular
singularly perturbed system. In fact, in this particular system it is possible to extract
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a slow variable and obtain a system with one slow and one fast variable. Taking
into account that the rows of matrix A are proportional for " D 0 (proportionality
constant is equal 3), we introduce a new variable x D z2 � 3z1; and obtain the
following differential equation for the slow variable Px D �xC z2: To obtain the full
solution, it is possible to use either of the two equations for z1 or z2 as a fast equation.
If we choose the equation for z2, then, after taking into account x � z2 D �3z1; we
obtain the singularly perturbed equation "Pz2 D �.2 C "/x � .1 � "/z2: As a result
we obtain the system

Px D �x C z2; "Pz2 D �.2C "/x � .1 � "/z2

which has the form (2.2). It is easy to check by direct substitution into the invariance
equation that this last system possesses the one-dimensional attractive slow invariant
manifold z2 D kx. On substituting for z2 the above equations imply

"k.�1C k/x D �.2C "/x � .1 � "/kx;

and this implies

"k2 C .1 � 2"/k C 2C " D 0:

Setting in the last equation k D k0 C "k1 CO."2/ and equating the powers of ", we
obtain k0 D �2, k1 D �9. Thus, the invariant manifold has the form

z2 D �.2C 9"CO."2//x D �.2C 9"CO."2//.z2 � 3z1/;

or, in equivalent form

z2 D .2C 3"CO."2//z1: (5.1)

A singularly perturbed differential system can often be written in the form

"Pz D Z.z; t; "/; z 2 R
mCn; t 2 R; (5.2)

z D .z1; z2; : : : ; zmCn/;

Z D .Z1;Z2; : : : ; ZmCn/I Zi D Zi.z; t; "/;

where 0 � " � 1, and the vector-function Z is sufficiently smooth. Suppose that
for " D 0 the limit system Z.z; t; 0/ D 0 has a family of solutions

z D  .v; t/; v 2 R
m; t 2 R; (5.3)

with a sufficiently smooth vector-function  . If m > 0 then (5.2) is called as
singular singularly perturbed system [66]. In the example just givenmCn D 2 and
m D 1.
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We try to find a slow integral manifold of (5.2)

z D P.v; t; "/; (5.4)

with a flow described by an equation of the form

Pv D Q.v; t; "/: (5.5)

We shall restrict our consideration to smooth integral surfaces situated in the "-
neighborhood of the slow surface z D  .v; t/, i. e.

P.v; t; 0/ D  .v; t/;

and to the motion on the integral surface which is described by differential equations
of form (5.5) with a smooth right hand side. Consider, for example, the linear
homogeneous singularly perturbed differential system

"
dz

dt
D Az (5.6)

with a constant (mCn)x(mCn) matrix A. If A is a nonsingular matrix then the
degenerate equationAx D 0 has a unique solution x D 0, but in the case of singular
matrix A the degenerate equation Ax D 0 has an m-parameter family of solutions
(m D dimx � rankA) [98, 192]. In this case it is reasonable to call (5.6) a singular
singularly perturbed differential system [66, 83].

5.2 Construction of Slow Integral Manifold

Suppose the following hypotheses hold for the system (5.2):

.i/ the rank of the matrix  v.v; t/ is equal to m;
.ii/ the rank of the matrix A.v; t/ D Zz. .v; t/; t; 0/ is equal to n where Zz D

�
@Zi
@zj

�

.i; j D 1; : : : ; nCm/;

.iii/ the matrix A.v; t/ has an m-fold zero eigenvalue and n other eigenvalues
�i .v; t/ that satisfy the inequality

Re�i .v; t/ � �2˛ < 0; t 2 R; v 2 R
m: (5.7)

Differentiation of Z. .v; t/; t; 0/ D 0 with respect to v gives

A.v; t/ v.v; t/ D 0:
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This means, by .iii/ above, that the .mC n/ � .mC n/-matrix A.v; t/ possesses m
linearly independent eigenvectors, which are columns of  v.v; t/, corresponding to
multiple zero eigenvalues [98, 192].

We denote by .	/T the transpose of a matrix .	/. LetDT
1 be an .mCn/�n-matrix,

the columns of which are n linearly independent eigenvectors corresponding to m
zero eigenvalues andDT

2 be such an .mCn/�m-matrix so that .DT
1 ;D

T
2 / is a non-

singular .mC n/ � .mC n/-matrix, i.e. det.DT
1 ;D

T
2 / ¤ 0. Then AT .DT

1 ; D
T
2 / D

.0 BT /, due to the zero eigenvalues ofDT
1 , where B is non-singular. In other words

DA D
 

0

B

!

; forD D
 

D1

D2

!

:

Thus, the result of multiplying the non-singular matrixD on the right byA provides
the zero m � .mC n/-block and the non-singular n � .mC n/-block B .

The rank of B is equal to n. Consequently, without loss of generality, the
system (5.2) with renumbered variables and equations may be considered to be of
the form (the model of bimolecular reaction as a 3D example is considered below)

" Px D f1.x; y2; t; "/; x 2 R
m; (5.8)

" Py2 D f2.x; y2; t; "/; y2 2 R
n; (5.9)

when the following assumptions hold.

.B1/. The equation f2.x; y2; t; 0/ D 0 has a smooth isolated root y2 D '.x; t/

with x 2 R
m; t 2 R, and f2.x; '.x; t/; t; 0/ D 0.

.B2/. The Jacobian matrix

A.x; t/ D


f1x f1y2
f2x f2y2

�
ˇ
ˇ
ˇ
ˇ
ˇ
y2D'.x;t/; "D0

on the surface y2 D '.x; t/ has an m-fold zero eigenvalue and m linearly
independent eigenvectors, and the matrix B.x; t/ D f2y2 .x; '.x; t/; t; 0/ has n
eigenvalues satisfying (5.7) where v D x.

.B3/. In the domain

˝ D f.x; y2; t; "/ j x 2 R
m; jjy2 � '.x; t/jj � 	; t 2 R; 0 � " � "0g;

the functions f1; f2 and the matrix A are continuously differentiable .k C 2/ times
.k � 0/ for some positive "0 and 	.

Using the change of variable y2 D y1 C '.x; t/ in (5.8), (5.9), we obtain the
following equations for x and y1

" Px D C.x; t/y1 C F1.x; y1; t/C "X.x; y1; t; "/; (5.10)

" Py1 D B.x; t/y1 C F2.x; y1; t/C "Y.x; y1; t; "/; (5.11)
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where

C.x; t/ D f1y2 .x; '.x; t/; t; 0/; B.x; t/ D f2y2 .x; '.x; t/; t; 0/;

F1.x; y1; y/ D f1.x; y1 C '.x; t/; t; 0/ � C.x; t/y1;

F2.x; y1; t/ D f2.x; y1 C '.x; t/; t; 0/ � B.x; t/y1;

"X.x; y1; t; "/ D f1.x; y1 C '.x; t/; t; "/ � f1.x; y1 C '.x; t/; t; 0/;

"Y.x; y1; t:"/ D f2.x; y1 C '.x; t/; t; "/ � f2.x; y1 C '.x; t/; t; 0/:

Note that the vector-functionsFi .i D 1; 2/ satisfy the relations jjFi.x; y1; t/jj D
O.jjy1jj2/. Thus, "�1Fi .x; "y; t/ are continuous in ˝ .

If the assumptions .B1/–.B3/ are satisfied then there exists "1; 0 < "1 < "0, such
that for any " 2 .0; "1/ the system (5.10), (5.11) possesses a unique slow integral
manifold y1 D "p.x; t; "/. On this manifold the flow of the system is governed by
the equation

Px D X1.x; t; "/;

where X1.x; t; "/ D C.x; t/p.x; t; "/ C X.x; "p; t; "/ C "�1F1.x; "p; t/, and the
function p.x; t; "/ is k times continuously differentiable with respect to x and t .

Note that the change of variable y1 D "y converts the system (5.10), (5.11) to
the form

Px D QX.x; y; t; "/; x 2 R
m; t 2 R; (5.12)

" Py D QY .x; y; t; "/; y 2 R
n; (5.13)

where QX.x; y; t; "/ D C.x; t/y C "�1F1.x; "y; t/ C X.x; "y; t; "/, and
QY .x; y; t; "/ D B.x; t/y C "�1F2.x; "y; t/ C Y.x; "y; t; "/, since the vector-

functions Fi .i D 1; 2/ satisfy the relations jjFi.x; y1; t/jj D O.jjy1jj2/, and the
role of the slow variable is now played by x.

We return now to the model of bimolecular reaction (3.31)–(3.33) and multiply
both sides of the first equation by ", to obtain the differential system in the
form (5.2). Setting x1 D z1; y D z3; z D z2 we get

"
dz1
dt

D ".1� k2z1z3/ D Z1.z1; z2; z3/; (5.14)

"
dz2
dt

D �2"k1z22 C 2z3 C ".k2z1z3 � z2/ D Z2.z1; z2; z3; "/; (5.15)

"
dz3
dt

D "k1z
2
2 � z3 D Z3.z1; z2; z3; "/: (5.16)

For " D 0 the limit system
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0 D 0; 0 D 2z3; 0 D �z3

has the family of solutions z1 D v1; z2 D v2; z3 D 0: In this case mC n D 3 and
m D 2, and the matrix A for the limit system takes the form

A D
0

@

0 0 0

0 0 2

0 0 �1

1

A :

This matrix and the matrix AT have a double zero eigenvalue and the corresponding
eigenvectors of AT are

0

@

1

0

0

1

A ;

0

@

0

1

2

1

A :

Thus,DT can be chosen in the form

DT D
0

@

1 0 0

0 1 0

0 2 1

1

A ; i:e: D D
0

@

1 0 0

0 1 2

0 0 1

1

A :

and the transformation of (5.14)–(5.16), which reduces this system to the
form (3.34)–(3.36) is equivalent to the multiplication of the vector of derivatives
and the vector of the right hand sides of the differential system (3.31)–(3.33) by the
matrixD . As a result we obtain the system

"
dz1
dt

D Z1.z1; z2; z3/;

".
dz2
dt

C 2
dz3
dt
/ D Z2.z1; z2; z3; "/C 2Z3.z1; z2; z3; "/;

"
dz3
dt

D Z3.z1; z2; z3; "/:

Introducing the new variable x2 by x2 D z2 C 2z3 and setting z1 D x1, z3 D y leads
to the system (3.34)–(3.36) . This means that we construct the same transformation
of the differential system under consideration which was used in Sect. 3.3.2.

5.3 Implicit Slow Integral Manifolds

In the previous chapter we pointed out that in many cases slow integral manifolds
may be obtained in an implicit form. We use this approach for the system (5.2) in
the case
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" Px D X.x; y; "/ D Q.x; y/C "q.x; y; "/; (5.17)

" Py D Y.x; y; "/ D KQ.x; y/C "p.x; y; "/: (5.18)

We require

Y.x; y; 0/ D KX.x; y; 0/

and this equality means that components of Y.x; y; 0/ can be represented as a linear
combination of components of X.x; y; 0/, where the matrix K is formed from the
coefficients of these linear combinations. This situation is typical of a wide class of
chemical kinetics systems [96].

Introducing a new variable v D y � Kx; we obtain the following differential
equation for the slow variable

Pv D p.x; y; "/ � Kq.x; y; "/:

Suppose det.Qx CQyK/ ¤ 0. This condition is necessary to satisfy .B1/ and .B2/.
To obtain the full solution, it is possible to use either the equation for x or for y as
a fast equation. If we use the equation for x as the slow subsystem we then obtain

Pv D p.x; v C Kx; "/ � Kq.x; v C Kx; "/;

" Px D Q.x; v C Kx/C "q.x; v C Kx; "/:

In this case the slow invariant manifold can be obtained in an implicit form. The
zeroth approximation of the slow invariant manifold is given by Q.x; v C Kx/ D 0.
To obtain the first order approximation, it is necessary to differentiate Q.x; v C
Kx/C "q.x; v C Kx; "/ with respect to t

d

dt
.Q.x; v C Kx/C "q.x; v C Kx; "//

D @

@v
.Q.x; v C Kx/C "q.x; v C Kx; "// Pv

C @

@x
.Q.x; v C Kx/C "q.x; v C Kx; "// Px;

and use the equations for Pv and " Px above. As a first approximation, the flow on the
slow invariant manifold is governed by the differential-algebraic system

Pv D p.x; v C Kx; "/� Kq.x; v C Kx; "/; (5.19)

.Qx C "qx CQyK C "qyK/.QC "q/C "Qy.p � Kq/ D 0; (5.20)

where terms of order o."/ can be neglected. Here Eq. (5.20) describes approximately
the slow invariant manifold.
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Now we will obtain the same approximation directly from the original differen-
tial system by differentiating the function Q C "q with respect to t and using the
original system (5.17), (5.18):

.Qx C "qx/.QC "q/C .Qy C "qy/.KQ C "p/ D 0: (5.21)

If we neglect terms of order o."/, then Eqs. (5.20), (5.21) take the form

.Qx CQyK/QC ".qx C qyK/QC ".Qxq CQyp/ D 0; (5.22)

or

.Qx C "qx/.QC "q/C .Qy C "qy/.KQ C "p/ D 0: (5.23)

The last equation is just

XxX CXyY D 0; (5.24)

where X and Y are given in (5.17) and (5.18). This implies that we do not need
to know the matrix K to obtain the first order approximation to the slow invariant
manifold.

As an example, we return to that considered at the beginning of the chapter. We
have X D 2z1 � z2; Y D 3.2z1 � z2/ C 3"z1, i.e. Q D 2z1 � z2; q D 0; K D
3; p D 3z1. Then (5.24) takes the form 2z1 � z2 C "3z1 D 0 which is equivalent
to (5.1) with an accuracy O."2/.

5.4 Parametric Representation of Integral Manifolds

As mentioned above, sometimes the slow integral manifold can be found as a
parametric function.

Returning to the system (5.2), "Pz D Z.z; t; "/, we use the parametric form to
describe the slow integral manifold and the flow on the manifold, i.e.

z D P.v; t; "/; Pv D Q.v; t; "/;

see (5.4), (5.5). The functions P andQ will be found as asymptotic expansions

P.v; t; "/ D P0.v; t/C "P1.v; t/C : : :C "kPk.v; t/C : : : ;

Q.v; t; "/ D Q0.v; t/C "Q1.v; t/C : : :C "kQk.v; t/C : : : ;

where P0.v; t/ D  .v; t/ by (5.3). Differentiating P with respect to t , and
using (5.2), (5.5), gives
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"
dP

dt
D "

@P

@t
C "

@P

@v
Q D Z.P; t; "/: (5.25)

Write the Taylor series expansion of Z.P; t; "/ about " D 0 as

Z.P; t; "/ D Z.P0; t; 0/C "�1.P0; P1; t/

C : : :C "k�k.P0; P1; : : : ; Pk; t/ : : : ;

and represent�k.k � 1/ in the form

�k.P0; : : : ; Pk; t/ D ZP .P0; t; 0/Pk CRk.P0; P1; : : : ; Pk�1; t/;

where ZP D @Z
@P

. In particular,

�1.P0; P1; t/ D ZP .P0; t; 0/P1 CR1;

where R1 D Z".P0; t; 0/. Equating powers of ", we obtain from (5.25) with " D 0

Z.P0; t; 0/ D 0:

In keeping with (5.3), let P0.v; t/ D  .v; t/:
Using the notation A.v; t/ D Zz. .v; t/; t; 0/ and on using (5.2) and the form

for�1 above, we obtain at order "

@ 

@t
C @ 

@v
Q0 D AP1 CR1: (5.26)

Equation (5.26) contains two unknown functions P1 and Q0. Where P1 is con-
cerned, Eq. (5.26) may be considered as a nonhomogeneous linear algebraic system
with a singular matrix, detA.v; t/ � 0; v 2 R

m; t 2 R. Thus, Q0 is needed
to ensure the solvability of the system. It is apparent that we have some freedom
in choosing the form of Q0 and P1 . To determine these functions uniquely, we
multiply equation (5.26) on the left by the matrix D, introduced in Sect. 5.2, and
obtain the pair of equations

D1

@ 

@t
CD1

@ 

@v
Q0 D D1R1; (5.27)

since D1A D 0, and

D2

@ 

@t
CD2

@ 

@v
Q0 D BP1 CD2R1; (5.28)

since D2A D B . If it is assumed additionally that the matrix
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D1 D @ =@v

is invertible, (5.27) gives

Q0 D .D1 v/
�1D1.R1 �  t/;

and this permits us to determine P1 uniquely from (5.28): P1 D B�1D2. t C
 vQ0 �R1/. The determination of the pairs of later coefficients Pk;Qk�1 is carried
out in the same way.

As a generalization of the example discussed in Sect. 5.3 consider the system of
two scalar equations

"Pz1 D f .z1; z2; t; "/C "f1.z1; y; t; "/;

"Pz2 D kf .z1; z2; t; "/C "f2.z1; z2; t; "/:

Setting " D 0 we obtain two equivalent equations f .z1; z2; t; 0/ D 0 and
kf .z1; z2; t; 0/ D 0.

Introducing a new variable x D z2 � kz1; we obtain the following differential
equation for the slow variable

Px D f2.z1; z2; t; "/� kf 1.z1; z2; t; "/:

To obtain the full solution, it is possible to use either of the two equations for z1 or
z2 as a fast equation.

5.5 High-Gain Control

We consider a nonlinear control system

Px D f .x/C B.x/u; x.0/ D x0; (5.29)

with, in general, a nonlinear vector function f .x/ and matrix function B.x/, and
high-gain feedback

u D �1
"

KS.x/; (5.30)

where x 2 R
n, u 2 R

r , t � 0, K is a constant r � m-matrix and " is a small
positive parameter, see [201, 202]. This control problem is of practical significance
in itself and is of theoretical significance in the theory of variable structure control
systems and the equivalent control method [92,201,202]. For linear control systems
this problem was analyzed in [92, 128, 216]. The stabilization of movements of a
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mechanical system along a surface is a known problem [106, 202]. It often happens
it is necessary that the working body moves along the given surface. It can be the
movement of an electrode of the welding manipulator along a seam, the movement
of a ladle of a dredge along a planned surface of the ground, movement of the cutting
tool of the manufacturing machine along a processed surface, etc.

The vector function f and the matrix function B are taken to be sufficiently
smooth and bounded. The control vector u is to be selected in such a way as to
transfer the vector x from x D x0 to a sufficiently small neighborhood of a smooth
m-dimensional surface S.x/ D 0:

Suppose that we can choose the matrix K in such a way that the matrix
�N.x; t/ D �GBK is stable1 and its inverse matrix is bounded, where G.x/ D
@S=@x. We introduce the additional variable y D S.x/. Substituting for u
from (5.30) into the original Eq. (5.29) and noting that Py D S 0.x/ Px, x and y satisfy
the system

" Px D "f .x/ � B.x/Ky; x.0/ D x0;

" Py D "G.x/f .x/ �N.x/y; y.0/ D y0 D S.x0/:

The reduced (" D 0) algebraic problem possesses an n-parameter family of
solutions x D v; y D 0. The role of the matrix A.v; t/ in Sect. 5.2 is played
by the singular matrix



0 �BK
0 �N

�

:

The singular singularly perturbed differential system above possesses an n-
dimensional slow integral manifold

x D v; y D "N�1.v/G.v/f .v/CO."2/:

The flow on the manifold is governed by

Pv D ŒI � B.v/KN�1.v/G.v/�f .v/CO."/:

Introduce the new variables

x D v C B.v/KN�1.v/zI y D z C "N�1.x/G.x/f .x/:

Then we obtain the equations

Pv D .I � BKN�1G/f CO."/; "Pz D �.N CO."//z

1A stable matrix is one whose eigenvalues all have strictly negative real parts.
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for v and z. By virtue of the result in (2.7) and (2.8) it is clear that the representations

x D v CO.e��t="/; y D "'.v; "/CO.e��t="/;

where ' D N�1Gf CO."/, are valid for some � > 0 for all t > 0. Thus, under the
given control law

u D �1
"

KS.x/;

the trajectory x.t/ very quickly attains the "-neighborhood of S.x/ D 0.
It is easy to see, as suggested in [176], that the modified control

u D �1
"
K
�

S.x/C "N�1.x/G.x/f .x/
	

;

with the stable matrix �N.x/ D �GBK, is preferable, because it guides the
trajectory of x in a time �t to the e���t"�1-neighborhood of S.x/ D 0. To verify
this note that under this control for the variable x we obtain the equation

" Px D "
�

I � B.x/K.G.x/B.x/K/�1G.x/
	

f .x/ � B.x/KS.x/;

and for the variable y D S.x/ using the identity

Py D dS.x/

dt
D @S

@x
Px D G.x/ Px

D G.x/
�

I � B.x/K.G.x/B.x/K/�1G.x/	 f .x/ � "�1G.x/B.x/KS.x/

D
h

G.x/ � .G.x/B.x/K/ .G.x/B.x/K/�1 G.x/
i

f .x/ � "�1G.x/B.x/KS.x/

D �"�1G.x/B.x/KS.x/ D �"�1N.x/y;

we obtain the equation

" Py D �N.x/y:
Then

y D O
�

e��"�1t
�

; � > 0; t > 0; " ! 0:

To explain the last relationship we use inequalities (2.8) in the case of h � 0. This
relationship is obvious in the simple case of scalar y and constant N > 0 with
� D N .

Additionally we note the following. Since the matrix �N is stable (see the
footnote at the beginning of this section) we can claim that the solution of the
equation
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Fig. 5.1 Example 12. The
parabola and two trajectories
corresponding to high-gain
control law (the dashed line)
and modified control law (the
solid line)

x1

x2

" Py D �Ny; y.0/ D y0

satisfies the inequality

y � N0ky0ke��t="; t > 0

for some positive numbers � and N0. All the details can be found in the Appendix;
see the inequality (9.23) there.

By way of illustration we consider the following control system (Fig. 5.1):

Example 12.

Px1 D x2;

Px2 D �x1 � x2 C u;

with S W x21 � x2 D 0. In this case n D 2;m D 1; r D 1;

f D



x2
�x1 � x2

�

; B D


0

1

�

; @S=@x D G D .2x1; � 1/;

and N D GBK D �K , where K is a scalar since GB and S are scalar. Setting
K D �1 we obtain N D 1.

If the modified control law

u D "�1 �x21 � x2 C ".2x1x2 C x1 C x2/
�
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is used then, due to Px2 D �x1 � x2 C u D �x1 � x2 C "�1�x21 � x2 C ".2x1x2 C
x1 C x2/

� D 2x1x2 C "�1.x21 � x2/ D 2x1x2 C "�1S.x/, we obtain the following
system

Px1 D x2;

Px2 D 2x1x2 C "�1y;

Py D �"�1y

with S D y, i.e. the surface S D 0 is described by the equation z D 0. It is clear
that with y D "z the system is

Px1 D x2;

Px2 D 2x1x2 C z;

"Pz D �z;

and it possesses the attractive slow invariant manifold z D 0 since "Pz D g D
�z and @g=@z D �1. It should be noted that, with the modified control law u D
"�1 �x21 � x2 C ".2x1x2 C x1 C x2/

�

currently selected, the control system

Px1 D x2;

Px2 D 2x1x2 C "�1.x21 � x2/

has the attractive slow invariant manifold x2 D x21 because this function satisfies the
invariance equation:

"
@x21
@x1

x21 D 2x1x
2
1

and @.x21�x2/
@x2

D �1.

Figure 5.2 demonstrates clearly the advantage of the modified control.

Example 13. We consider the control equation

d3x

dt3
D u

with

S D Rx C Px2 � x2:

Setting
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Fig. 5.2 Example 13. The hyperbolic paraboloid and the trajectory corresponding to the modified
control law (the solid line)

x D x1; Px D x2; Rx D x3;

we obtain the following control system

Px1 D x2; Px2 D x3; Px3 D u;

with S W x3 � x21 C x22 D 0 (hyperbolic paraboloid). In this case in accordance
with (5.29) and (5.30)

f D
0

@

x2
x3

0

1

A ; B D
0

@

0

0

1

1

A ; @S=@x D G D .�2x1; 2x2; 1/;

and N D GBK D K , where K is a scalar. Setting K D 1 we obtain N D 1. The
modified control law is

u D �1
"
K
�

S.x/C "N�1.x/G.x/f .x/
	

D �"�1 �x3 C x21 � x22 C ".�2x1x2 C 2x2x3/
�

and the corresponding guided system is

Px1 D x2; Px2 D x3;

" Px3 D u D �x3 C x21 � x22 C "2x2.x1 � x3/:

This last system has the attractive slow invariant manifold x3 D x21 � x22 since this
function satisfies the invariance equation
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"
@.x21 � x22/

@x1
x2 C "

@.x21 � x22/
@x2

.x21 � x22/ D �".�2x1x2 C 2x2.x
2
1 � x22//

and @.�x3Cx21�x22/
@x3

D �1.

5.6 Reaction Kinetics of Organometallic Compounds

The differential system arising in the study of the kinetics of organometallic
compounds has the form (5.2): "Pz D Z.z; t; "/ [187, 205]. In particular, we have:

"
dz1
dt

D �"az1 C bz2; (5.31)

"
dz2
dt

D "az1 � bz2 � cz2z3 � z2z4; (5.32)

"
dz3
dt

D �cz2z3; (5.33)

"
dz4
dt

D �z2z4: (5.34)

The degenerate system Z.z; 0/ D 0 is

0 D bz2; 0 D �bz2 � cz2z3 � z2z4; 0 D �cz2z3; 0 D �z2z4

and it has a three-parameter family of solutions z D  .v/

z1 D v1; z3 D v2; z4 D v3; z2 D 0:

It is clear that the rank of  v is equal to three, and the rank of matrix A D
Zz. ; 0/ is unity where

A D

0

B
B
@

0 b 0 0

0 �b � cv2 � v3 0 0
0 �cv2 0 0

0 �v3 0 0

1

C
C
A

on noting z2 D 0. The unique nonzero eigenvalue of this matrix is �b � cv2 � v3.
The system (5.31)–(5.34) may be reduced to the form (5.8), (5.9) by simply

renaming the variables z1 D x1; z3 D x2; z4 D x3; z2 D y2:

"
dx1
dt

D �"ax1 C by2; "
dx2
dt

D �cx2y2; "
dx3
dt

D �x3y2; (5.35)
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"
dy2
dt

D "ax1 � by2 � cx2y2 � x3y2: (5.36)

Setting " D 0 in (5.36) we obtain that the function y2 D '.x1; x2; x3/ is equal
to zero identically. This implies (see Sect. 5.2) y2 D y1 C ' D y1 and gives the
possibility to use the change of variable y2 D y1 D "y to reduce the system (5.35)
and (5.36) to

dx1
dt

D �ax1 C by;
dx2
dt

D �cx2y;
dx3
dt

D �x3y; (5.37)

"
dy

dt
D ax1 � by � cx2y � x3y (5.38)

with three slow variables x1; x2; x3 and one fast variable y. Note that the differential
system (5.37) and (5.38) is linear with respect to the fast variable y, and this
facilitates the construction of the asymptotic expansion for the three-dimensional
attractive slow invariant manifold

y D h.x1; x2; x3; "/ D h0.x1; x2; x3/C "h1.x1; x2; x3/CO."2/:

The system (5.37), (5.38) has the form (2.2) and the coefficients of the asymptotic
expansion may be found from the invariance equation (2.4) which becomes

"
@h.x1; x2; x3; "/

@x1

��ax1 C bh.x1; x2; x3; "/
�

C "
@h.x1; x2; x3; "/

@x2

��cx2h.x1; x2; x3; "/
�

C "
@h.x1; x2; x3; "/

@x3

��x3h.x1; x2; x3; "/
�

D ax1 � .b C cx2 C x3/h.x1; x2; x3; "/:

Setting " D 0 in (5.38), we obtain

h0.x1; x2; x3/ D ax1=.b C cx2 C x3/:

To calculate h1 we equate the coefficients with the first power of " in the
invariance equation

@h0.x1; x2; x3/

@x1
.�ax1 C bh0.x1; x2; x3//C @h0.x1; x2; x3/

@x2
.�cx2h0.x1; x2; x3//

C @h0.x1; x2; x3/

@x3
.�x3h0.x1; x2; x3// D �.b C cx2 C x3/h1.x1; x2; x3/:
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This gives

h1.x1; x2; x3/ D a2x1Œ.cx2 C x3/� � c2x1x2 � x1x3�=�
4;

where� D b C cx2 C x3.
Returning to the initial variables z1; z2; z3; z4 and taking into account that z1 D

x1; z3 D x2; z4 D x3; z2 D "y it is found that the differential system (5.31)–(5.34)
possesses the three-dimensional attractive slow invariant manifold

z2 D "az1= N�C "2h1.z1; z3; z4/;

where N� D bC cz3C z4, and h1.z1; z3; z4/ D a2z1Œ.cz3 C z4/ N�� c2z1z3 � z1z4�= N�4.
The flow on this manifold is described by equations

dz1
dt

D �az1 C baz1= N�C "bh1 CO."2/; (5.39)

dz3
dt

D �cz3.az1= N�C "bh1/CO."2/; (5.40)

dz4
dt

D �z4.az1= N�C "bh1/CO."2/; (5.41)

It should be noted in conclusion that the original differential system (5.31)–(5.34)
has two first integrals

d

dt
.z1 C z2 � z3 � z4/ D 0;

d

dt
.z3z

�c
4 / D 0;

or

z1 C z2 � z3 � z4 D C1; z3z
�c
4 D C2

with arbitrary C1; C2. This allows us to further reduce the differential system under
consideration. As result, it is possible to reduce the original differential system of
the fourth order to a scalar differential equation without a singular perturbation

dz4
dt

D �z4
haC2zc4 C az4 C aC1

Q� C "a2.C2z
c
4 C z4 C C1/

�
� .z4 C cC2zc4/ Q� � c2C2zc4.z4 C C2zc4 C C1/� z4.z4 C C2zc4 C C1/

Q�4

C 1

Q�2

�i

CO."2/;

where Q� D b C cC2zc4 C z4; z1 C z2 � z3 � z4 D z1.0/C z2.0/ � z3.0/ � z4.0/ D
C1; z3z�c

4 D z3.0/z
�c.0/
4 D C2:



Chapter 6
Reduction Methods for Chemical Systems

Abstract Many systems studied in chemical kinetics can be posed as a high order
nonlinear differential system with slow and fast variables. This has given an impetus
to the development of methods that reduce the order of the differential systems but
retain a desired degree of accuracy. This research has led to a rapidly expanding
volume of papers devoted to reduction methods. All these methods are connected
with the integral manifold method in one way or another. These connections were
clearly given by H. Kaper and T. Kaper in (Physica D 165:66–93, 2002), which also
gives a good overview of reduction methods in chemical kinetics. In this chapter we
will use results given previously in parallel with our interpretation of the connection
between the two most often used reduction methods and demonstrate that both
methods may be replaced successfully by regular procedures of approximation of
slow integral manifolds which were described in Chap. 5.

6.1 Method of Intrinsic Manifolds

The method of intrinsic low-dimensional manifolds (ILDM Method) was proposed
by Maas and Pope in [101] and developed in many later papers. This method, as
applied to the system (2.2) in the form

Px D f .x; y; "/; Py D "�1g.x; y; "/:

is based on a partition of the Jacobian matrix

J D J.x; y; "/ D

0

B
B
@

@f

@x

@f

@y

"�1 @g
@x

"�1 @g
@y

1

C
C
A
;

into fast and slow components at each point of (x-y)-space and a Schur decomposi-
tion [192] to generate bases for the corresponding fast and slow subspaces. This is a
much more elaborate procedure than is necessary for the simplification of (2.2).
The asymptotic method of slow integral manifolds in implicit form, discussed
above in Sect. 4.1, was originally suggested by V. Sobolev several years before

© Springer International Publishing Switzerland 2014
E. Shchepakina et al., Singular Perturbations, Lecture Notes in Mathematics 2114,
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the publication of [101] (see, for example, [54], or [93]), and is simpler and more
efficient. To illustrate this we restrict our attention to the system with scalar variables
x and y.

Following [84], after calculations based on the Schur decomposition, it is
possible represent the equation defined by the ILDM Method in the form

gyg C "gxf � "�sg D 0; (6.1)

where �s is the eigenvalue

�s D 1

2
."�1gy C fx/�

r

1

4
."�1gy C fx/2 � "�1.gyfx � fygx/

of the (2 � 2)-matrix J . When this result is compared with that of Eq. (4.6) in the
autonomous case, viz.,

gyg C "gxf D 0; (6.2)

it is apparent that Eq. (6.1) includes the “unnecessary” term �"�sg. As was shown
in Sect. 4.1, Eq. (6.2) permits the calculation of the slow invariant manifold in the
form

y D �.x/C "h1.x/CO."2/

with an error of order O."2/. In the paper [84] it is shown that, in general, the
ILDM equation (6.1) gives the same error, and only in the case �xx.x/ � 0 is the
corresponding error O."3/. However, it is more convenient to use the second order
approximation equation in the form prior to (4.8) i.e.,

gyg C "gxf C "Nyg C "2Nxf D 0;

on noting

N D g�1
y gxf;

rather than the ILDM equation. Moreover, Eq. (4.8) gives the error O."3/ in the
general case not only for planar systems but also in the case of vector variables x
and y [84]. Note that the assumption gy < 0 in the scalar case or the negativity of
the real parts of all eigenvalues of the matrix gy in the vector case, guarantees the
manifolds are attractive and the corresponding implicit equations are solvable with
respect to the fast variable by the implicit function theorem [146]. We illustrate the
above with two examples.

Firstly we consider the system of two scalar differential equations which repre-
sent the model for the ignition of metal particles. Assuming an uniform temperature
distribution in a particle, a constant particle size and the constant physical properties



6.1 Method of Intrinsic Manifolds 113

of both gas and particle, the known dimensionless model of the process has the
following form [165]:

d

d�
D './ exp



�

1C �ˇ

�

D f .; �/;

"
d�

d�
D './ exp



�

1C ˇ�

�

� �

�
D g.; �/;

(6.3)

with initial conditions

.0/ D 0; �.0/ D ��i :

Here � is the dimensionless temperature of a metal particle and

� D .T � T0/E

RT20
;

where T is the temperature of a metal particle and �i is a given initial temperature,
T0 is the gas temperature, E is the Arrhenius activation energy, R is the universal
gas constant;  is the dimensionless related growth of the thickness of the oxide
film and

 D ı � ıin

ı
;

where ı is the oxide film thickness, ıin is the initial thickness of the film; � is
dimensionless time; the parameters ˇ and " reflect the temperature sensitivity and
the exothermicity of the reaction; � is a modified Semenov number related to
convection heat transfer; './ is the kinetic function. Usually two forms of oxidation
kinetics: './ D .C 1/�n; n D 1; 2; corresponding to the cases of parabolic and
cubic laws, respectively, are considered.

The initial temperature of a metal particle is either lower than the gas temperature
or equal to it. In the first case, corresponding to cold particles, we have �.0/ D
��i < 0, and in the second, when the metal particles and the gas are heated
simultaneously during a very short time, �.0/ D 0.

The chemically relevant phase space � of the system (6.3) is defined by

� WD f.�; / 2 R
2 W � � ��i ;  � 0g:

It should be noted that the system (6.3) is similar to the dimensionless model
for the thermal explosion of a gas. But in the thermal explosion theory the kinetic
function is usually './ D .1 � /n; n D 0; 1; 2, and  reflects the depth of a gas
conversion, while  is the dimensionless concentration of a gas.



114 6 Reduction Methods for Chemical Systems

In the case of very small particle size and significant initial thickness of the oxide
film the parameter " is small and, hence, the system (6.3) is singularly perturbed.
Thus, it is possible to apply the implicit form for the construction of the slow
invariant manifold in this case. Using Eq. (6.2) g�g C "gf D 0; where f and
g are given in (6.3), we obtain the first order approximation to the slow invariant
manifold




'./
E.�/

.1C ˇ�/2
� 1

�

�


'./E.�/ � �

�

�

C "'./'./E
2.�/ D 0;

where E.�/ D exp
�

�
1C�ˇ

�

.

For our second example we consider again the model of the enzyme-substrate-
exhibitor system from Sect. 3.5.2 viz., Eqs. (3.79)–(3.82), to construct an approxi-
mation to the slow invariant manifold. Here

f D

 �x1 C .x1 CKs � Ls/y1 C x1y2

�Œ�x2 C x2y1 C .x2 CKi � Li/�y2

�

;

g D



x1 � .x1 CKs/y1 � x1y2
ˇ�Œx2 � x2y1 � .x2 CKi/y2�

�

;

and the first order approximation equation (6.2) gives the implicit equations with
respect to y1 y2:

� .x1 CKs/ Œx1 � .x1 CKs/ y1 � x1y2� � x1ˇ� Œx2 � x2y1 � .x2 CKi/ y2�

C" .1 � y1 � y2/ Œ�x1 C .x1 CKs � Ls/ y1 C x1y2� D 0;

�ˇ�x2 Œx1 � .x1 CKs/ y1 � x1y2� � ˇ2�2 .x2 CKi/ Œx2 � x2y1 � .x2 CKi/ y2�

C"ˇ�2 .1 � y1 � y2/ Œ�x2 C x2y1 C .x2 CKi � Li/ y2� D 0:

These give the same representations for the first order approximation of slow
invariant manifold as in Sect. 3.5.2.

It should be noted that the use of implicit equations to describe slow integral
manifolds can entail the occurrence of extraneous solutions. Thus, setting " D 0

in (6.2), we obtain the equation gyg D 0; which gives the extraneous solution
gy D 0 besides the equation of slow curve g D 0: After taking into account
terms with the small parameter in a small neighborhood of the extraneous solution,
the corresponding solution of (6.2) can be found and this solution will be also
extraneous. It is clear that all solutions which do not belong to the " order of the
slow surface should be excluded from consideration.
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6.2 Iterative Method

The iterative method was proposed by Fraser [46], and developed by Fraser and
Roussel [145] for autonomous systems that are linear with respect to the fast
variables in the case of scalar slow and fast variables.

Formally, the essence of the iterative method for the system

Px D 
.x; "/C F.x; "/y;

" Py D �.x; "/CG.x; "/y;
(6.4)

i.e., (2.26) in the autonomous case with scalar variables, is as follows. It was found
in Sect. 2.5 that for the autonomous system (6.4)

"
@h

@x
.
 C Fh/ D � C Gh

and then

h D �� C "
hx

G � "Fhx
:

This representation is used to organize the iterative process by the algorithm

'.0/ D �.x/ D � �

G
; '.k/ D �� C "
'

.k�1/
x

G � "F'
.k�1/
x

; k D 1; 2; 3 : : : ;

where '.k/ is considered as an approximation to h. It can be shown that

h.x; "/ � '.k/ D O."kC1/;

see [84].
Now we can extend the Fraser and Roussel [145] approach to the nonautonomous

systems (2.26) in Sect. 2.5 with vector variables. We solve the equation

"
@h

@t
C "

@h

@x
.
 C Fh/ D � C Gh;

for the vector function h.x; t; "/ and obtain

h D .G � "Fhx/
�1.�� C "ht C "
hx/:

As in the scalar case, this formula is the basis for the iterative procedure

'.0/ D �.x; t/ D �G�1�; '.k/ D .G � "F'.k�1/
x /�1.�� C "'

.k�1/
t C "
'.k�1/

x /;

(6.5)
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for the vector function '.k/, k D 1; 2; 3 : : : : Thus, for example,

'.1/ D .G � "F�x/
�1.�� C "�t C "
�x/;

and the asymptotic relationship

kh.x; "/ � '.k/k D O."kC1/

holds. We consider again the model from Sect. 3.5.2 viz., Eqs. (3.79)–(3.82) to
construct an approximation to the slow invariant manifold.

On setting �.x; 0/ C G.x; 0/y D 0 in (6.4), we obtain y1 D N�.x1; x2/ and
y2 D NN�.x1; x2/. Then

'.0/.x/ D � D
 N�.x1; x2/NN�.x1; x2/

!

D 1

�



Kix1

Ksx2

�

;

where� D Ksx2 CKix1 CKsKi ; and, consequently,

�x D

0

B
B
@

@ N�
@x1

@ N�
@x2

@ NN�
@x1

@ NN�
@x2

1

C
C
A

D KiKs

�2



x2 CKi �x1

�x2 x1 CKs

�

:

Now from (6.5) we obtain, on noting � is independent of t ,

'.1/ D .G � "�xF /�1.�g C "�x
/

D 1

�



Kix1

Ksx2

�

C "
KiKs

ˇ��4



ˇ�.x2 CKi/Px1 � x1x2Q

�ˇ�x1x2P C .x1 CKs/x2Q

�

CO."2/;

where P D .KiLs � �KsLi /x2 CK2
i Ls; Q D �.KiLs � �KsLi /x1 C �K2

s Li :We
note kh.x; "/ � '.1/k D O."2/: And this agrees with the result in Sect. 3.5.2.

6.3 Extending the Iterative Method

Consider the differential system (2.1) and suppose that it possesses a slow integral
manifold that can be found as an asymptotic expansion. Let � be an isolated root
of the degenerate equation g.x; y; t; 0/ D 0. Using the change of variable y D
z C �.x; t/ we obtain the system

Px D X.x; z; t; "/; "Pz D B.x; t/z CZ.x; z; t; "/; (6.6)
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where

B.x; t/ D @g

@y
.x; �.x; t/; t; 0/; X.x; z; t; "/ D f .x; z C �.x; t/; t; "/;

Z.x; z; t; "/ D g.x; z C �.x; t/; t; "/� @g

@y
.x; �.x; t/; t; 0/z � "

@�

@t

�"@�.x; t/
@x

X.x; z; t; "//:

The invariance equation (2.5) for this non-autonomous system takes the form

"
@h

@t
C "

@h

@x
X.x; h; t; "// D B.x; t/hCZ.x; h; t; "/: (6.7)

Due to the change of variable y D z C �.x; t/ the functions h and h that
describe the slow integral manifolds for the systems (2.1) and (6.6), respectively,
are connected by the equality h D hC �.x; t/. By solving (6.7) for h

h D B.x; t/�1."
@h

@t
C "

@h

@x
X.x; h; t; "/ �Z.x; h; t; "//;

this equation allows us to organize the iterative procedure in the following way, with
the goal to obtain h D '.k/ CO."kC1/,

'.0/ D 0;

'.k/ D B.x; t/�1."
@'.k�1/

@t
C "

@'.k�1/

@x
X.x; '.k�1/; t; "/

�Z.x; '.k�1/; t; "//; k D 1; 2; : : : :

Note, in conclusion, that the representation of the function g.x; y; t; "/ in the
form

g.x; y; t; "/ D g.x; y; t; 0/C "g1.x; y; t; "/

can be used to construct the following iterative procedure [84]:

g.x;˚.k/; t; 0/ D "
@˚.k�1/

@t
� "

@˚.k�1/

@x
f .x;˚.k�1/; t; "//� "g1.x; ˚

.k�1/; t; "/
(6.8)

in the case when the function ˚.0/ D � can not be found in the explicit form.
However, the use of that procedure is based on numerical differentiation. In such a
situation the use of the slow integral manifold approximation in the implicit form is
preferable, see Sect. 4.1.



Chapter 7
Specific Cases

Abstract The next two chapters consist of a contribution to advancing the geomet-
rical approach to the investigation of singularly perturbed systems in cases when
the main hypothesis is violated, i.e., when the real parts of some or all of the
eigenvalues of the matrix of the linearized fast subsystem are no longer strictly
negative. This means that the hypotheses of the Tikhonov’s theorem are violated.
This chapter is organized as follows. The first section is concerned with weakly
attractive slow integral manifolds. The examples are borrowed from the theory of
gyroscopic systems and flexible-joints manipulators. The next section is devoted to
the application of repulsive slow invariant manifolds to thermal explosion problems.
In the last section, the case when the slow integral manifold is conditionally stable
is discussed and an optimal control problem is given as an application.

7.1 Weakly Attractive Integral Manifolds

In this section we consider the system (2.1) when the matrixB D gy.x; �.x; t/; t; 0/

has eigenvalues on the imaginary axis with nonvanishing imaginary parts. If the
eigenvalues at " D 0 are pure imaginary but after taking into account the
perturbations of higher order they move to the complex left half-plane, then the
system under consideration has stable slow integral manifolds. Some problems of
the mechanics of gyroscopes and manipulators with high-frequency and weakly
damped transient regimes are now discussed in this context. More results along this
line can be found in [94, 131, 132, 134, 179, 197, 210]

7.1.1 Gyroscopic Systems

The general equations of gyroscopic systems on a fixed base may be represented in
the Thomson–Tait form [12]:

dx

dt
D y;

"
d

dt
.Ay/ D �.G C "B/y C "RC "Q; (7.1)
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where R D R.x; y; t/ D 1
2

h
@.Ay/
@x

iT

y is the result of differentiation of the quadratic

forms components of the Routh function with respect to generalized coordinates x
[102]. Here x 2 R

n; A.t; x/ is a symmetric positive definite matrix, G.x; t/ is a
skew-symmetric matrix of gyroscopic forces, and B.x; t/ is a symmetric positive
definite matrix of dissipative forces, Q.x; t/ is a vector of generalized forces
and " D H�1 is a small positive parameter where H is the gyroscopic angular
momentum. It is the tradition in the theory of gyroscopic and robotic systems to
disregard non-dimensionalization (see, for example, [109,190]), and we will follow
that practice here.

The precessional equations take the form

.G C "B/
dx

dt
D "Q (7.2)

which is obtained formally from (7.1) by setting A D 0.
Equation (7.2) are obtained from (7.1) by neglecting some of the terms multiplied

by the small parameter ". All roots of the characteristic equation

det.G � �I/ D 0

are situated on the imaginary axis, since the matrix G is skew-symmetric, so that
the inequality (2.6) is violated. To justify the use of the precessional equations we
use the integral manifold method.

7.1.2 Precessional Motions

The gyroscopic system (7.1) has the slow integral manifold y D "h.x; t; "/, the
motion on which is described by the differential system

dx

dt
D "h.x; t; "/: (7.3)

Substituting y D "h.x; t; "/ in (7.1) and taking into account that "R.x; "h; t/ D
" 1
2

h
@.A"h/

@x

iT

"h D O."3/ and " ddt .A"h/ D "2 @
@t

Ah CO."3/ we obtain the equation

"2
@

@t
.Ah/ D �.G C "B/"hC "QCO."3/ (7.4)

which allows us to represent (7.3) as

dx

dt
D "h.x; t; "/ D ".G C "B/�1




Q � "
@

@t
.Ah/

�

CO."3/: (7.5)
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Let h.x; t; "/ D h1.x; t/ C "h2.x; t/ C O."2/. Substituting this representation
into (7.4) and equating powers of " we obtain the relationships 0 D �Gh1 CQ and
@
@t
.Ah1/ D �Gh2 � Bh1 which imply

h1 D G�1Q; h2 D �G�1
�

Bh1 C @.Ah1/

@t

�

: (7.6)

In the expressions for h1, h2, the matrices A, B; G and the functionQ depend on x
and t . Note that Eq. (7.3) describes slow precessional movements of the gyroscopic
system (7.1).

Returning to the problem of the justification of precessional theory, we see that
the r.h.s. of the precessional equations (7.2) in the form

Px D "ŒG.x; t/C "B.x; t/��1Q.x; t/; (7.7)

coincides with the r.h.s. of (7.4) with an accuracy of order O."2/ in the case of
a nonautonomous system, and with an accuracy of order O."3/ in the case of an
autonomous one. Taking into account that for the system under consideration fast
nutation oscillations (nutation is a small and relatively rapid oscillation of the axis
superimposed on the larger and much slower oscillation known as precession) are
quenched, it may be inferred that the use of the precession equations is justified.
More precisely, the Lyapunov reduction principle (see Chap. 2, formulae (2.7)
and (2.8)) is valid for the slow integral manifold, but it is necessary to use the
following inequalities

j'i.t; "/j � N jy0 � "h.x0; t0; "/j expŒ��.t � t0/�; i D 1; 2; (7.8)

instead of the inequalities (2.8) which contain the faster decaying function
expŒ��.t � t0/="�. In this section we present without proof some results from
[12, 117] on investigations of integral manifolds in gyroscopic type systems.

7.1.3 Vertical Gyro with Radial Corrections

The equations of small oscillations of a gyroscopic system about the equilibrium
position in dimensional variables have the form

A Rx C .HG CB/ Px C Cx D 0;

where A is a symmetric positive-definite matrix of inertia, G is a skew-symmetric
matrix of gyroscopic forces,B is a symmetric positive-definite matrix of dissipative
forces, C is the matrix of potential and nonconservative forces, and H is the
gyroscopic angular momentum. We let " D H�1 be a small positive parameter.
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If G is a non-singular matrix, the characteristic roots of this linear autonomous
system break down into groups of roots of order O."/ and order O.1="/. In those
cases in which the roots of order O.1="/ lie in the left half-plane, we can set up a
slow invariant manifold for which the reduction principle is valid, as in Chap. 2. The
equations of motion on this manifold describe only precessional oscillations.

The corresponding precessional equations (setting A D 0), which can be
considered as approximate equations on the integral manifolds, are

.HG C B/ Px C Cx D 0:

Investigation of a vertical gyroscope with radial corrections leads to the equations

J R̨ �H P̌ C d P̨ � kˇ D 0; J Ř CH P̨ C d P̌ C k˛ D 0:

In these equations J is the equatorial mass moment of inertia of the gyroscope,
H > 0 is its angular momentum, d > 0 is the coefficient of friction. Forces �H P̌
andH P̨ are gyroscopic, while �kˇ and k˛ are nonconservative forces which in the
theory of gyroscopic systems are referred to as forces of radial corrections [109].
The roots of the corresponding characteristic equation, with ˛ D ˛0e

�t and ˇ D
ˇ0e

�t ,

det

ˇ
ˇ
ˇ
ˇ

J�2 C d� �H� � k
H�C k J�2 C d�

ˇ
ˇ
ˇ
ˇ

D 0

are

�1;2 D �� ˙ i�; �3;4 D �˙ i�;

where

� D



d �
q

.�mC p
n/=2

�

=2J; � D



�H C
q

.mC p
n/=2

�

=2J;

 D



d C
q

.�mC p
n/=2

�

=2J; � D



H C
q

.mC p
n/=2

�

=2J;

n D .H2 C d2/2 C 16Jk.Jk � Hd/; m D H2 � d2:
The orders of magnitude of the parameters in the governing equations give the
following asymptotic representations

�D"kCO."3/; �D�"2kdCO."3/;  D d

J
�"kCO."2/; �D 1

"J
CO.1/; " D 1=H:

The exact solution of the differential system under consideration may be represented
in the form
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˛.t/ D N̨ .t/C "'1.t/; ˇ.t/ D Ň.t/C "'2.t/;

where

N̨ .t/ D e��t .� cos �t � 
 sin �t/; Ň.t/ D e��t .� sin �t C 
 cos �t/;

'1.t/ D e�t .p cos � t C q sin � t/; '2.t/ D e�t .�p sin � t C q cos � t/;

and the coefficients �; 
; p; q are defined by the initial values of ˛; ˇ; P̨ ; P̌.
Thus, the solutions of the gyroscopic system are a sum of slowly varying

functions N̨ .t/; Ň.t/ (precessional movements), since � D O."/ and � D O."2/, and
high-frequency and weakly damped motions "'1.t/; "'2.t/ (nutational movements),
since � D O.1="/.

For this system the precessional equations take the form, by removing the second
derivatives terms, (see (7.2))

H P̌ C kˇ � d P̨ D 0; H P̨ C k˛ C d P̌ D 0:

It is easy to see that, even in the case d D 0, the trivial solution of the precessional
equations is asymptotically stable, whereas the trivial solution of the original
equations is unstable, since  < 0 (see the asymptotic formulas above). This means
that in the case d D 0 the use of precessional equations is inappropriate. The
formula  D d

J
� "k CO."2/ shows that the value of the damping factor for which

asymptotic stability will prevail, i.e.,  > 0, is

d > "kJ D kJ

H
:

We note that the angular momentum H of the gyroscope is large compared to kJ.
Therefore, the lower limit for the damping factor is small, i.e., a small amount of
damping renders the system stable. A more detailed analysis of this gyroscopic
system is given in [109].

7.1.4 Heavy Gyroscope

Using either the general equations of motion or the Lagrange equations, the
differential equations governing the motions of the axis of the heavy gyroscope in
the Cardano suspension may be derived [91] as

A.ˇ/ R̨ CH cosˇ � P̌ CE sin 2ˇ � P̨ � P̌ D �m1 P̨ ;

B0 Ř �H cosˇ � P̨ � 1

2
E sin 2ˇ � P̨ 2 D �m2

P̌ � Pl cosˇ;

whereA.ˇ/ D .ACA1/ cos2 ˇCC1 sin2 ˇCA2, B0 D ACB1,E D C1�A�A1:
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Introduce the new time variable � by t D T � and the dimensionless parameters

A.ˇ/

B0
D a.ˇ/;

E

B0
D e;

PlT

B0
D �;

m1T

B0
D b1;

m2T

B0
D b2; B0T=H D ";

and note that T can be chosen in such a way that a.ˇ/, e, �, b1, b2 are parameters
of orderO.1/, and " � 1.

Introducing the new dependent variables ˛1 D P̨T , ˇ1 D P̌T leads to the
dimensionless equations

d˛

d�
D ˛1; "a.ˇ/

d˛1

d�
C cosˇ � ˇ1 C "e sin 2ˇ � ˛1 � ˇ1 D �"b1˛1;

dˇ

d�
D ˇ1; "

dˇ1

d�
� cosˇ � ˛1 � "1

2
e sin 2ˇ � ˛21 D �"b2ˇ1 � "� cosˇ:

Then with

x D



˛

ˇ

�

; y D



˛1
ˇ1

�

; A.x; t/ D



a.ˇ/ 0

0 1

�

;

G.x; t/ D



0 cosˇ
� cosˇ 0

�

; B.x; t/ D


b1 0

0 b2

�

;

Q.x; t/ D



0

�� cosˇ

�

;

and with the new independent variable � we have equations of the form (7.1). Note
that the terms ˛1ˇ1 and ˛21 appear in d

d�
.Ay/ and R respectively in (7.1):

d

d�
.Ay/ D d

d�



a.ˇ/˛1

ˇ1

�

D


a0.ˇ/ˇ1˛1 C a.ˇ/d˛1

d�
dˇ1
d�

�

D


e sin 2ˇˇ1˛1 C a.ˇ/d˛1

d�
dˇ1
d�

�

and

R D 1

2

�
@.Ay/

@x

�T

y D 1

2

�
@

@x



a.ˇ/˛1
ˇ1

��T 

˛1
ˇ1

�

D 1

2

�

0 a0.ˇ/˛1
0 0

��T 

˛1

ˇ1

�

D 1

2
e sin 2ˇ



0

˛21

�

;
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since a0.ˇ/ D e sin 2ˇ, (see definitions of A.ˇ/ and E). We used here the Jacobian
matrix

@

@x



f1.x; y/

f2.x; y/

�

D


f1˛ f1ˇ
f2˛ f2ˇ

�

for f1 D a.ˇ/˛1 and f2 D ˇ1, so that f1˛ D 0; f1ˇ D a0.ˇ/˛1; f2˛ D 0; f2ˇ D 0.
From (7.6) we have

h1 D G�1Q D


�

0

�

; h2 D �G�1Bh1 D
 

0

� �b1
cosˇ

!

;

since A and h1 do not depend on t and, therefore, @.Ah1/
@t

D 0.
The motion on the slow invariant manifold is now described by the equations

P̨ D "� CO."3/;

P̌ D �"2 �b1
cosˇ

CO."3/;

since y D Px D "h D "h1 C "2h2 CO."3/.
These relationships show that the motion of a heavy gyroscope is very close

to a regular precession ( P̨ D const and P̌ D 0) on bounded time intervals, but
over times of order O.1="2/ the angle ˇ tends to the value ��=2, which is to say
that the gyroscopic frames tend to the same plane. To show this, we rewrite the
last differential equation for ˇ, neglecting the terms of order O."3/, in the form
cosˇ dˇ

d�
D �"2�b1. After integration we obtain sinˇ D �"2�b1� C sinˇ0, where

ˇ0 is the initial value of ˇ at � D 0. Note that we cannot use the apparatus of slow
invariant manifolds near the point ˇ D ��=2 since detG D 0 at this point, but it
is possible to show that ˇ �! ��=2 as � �! 1 using the Lyapunov functions
technique, see [112].

7.1.5 Control of a One Rigid-Link Flexible-Joint Manipulator

Consider a simple model of a rigid-link flexible joint manipulator [190], where Jm
is the motor inertia, J1 is the link inertia,M is the link mass, l is the link length, c is
the damping coefficient, k is the stiffness. The model is described by the equations:

J1 Rq1 C Mgl sin q1 C c. Pq1 � Pqm/C k.q1 � qm/ D 0;

Jm Rqm � c. Pq1 � Pqm/ � k.q1 � qm/ D u:

Here q1 is the link angle, qm is the rotor angle, and u is the torque input which is the
controller.
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The control problem under consideration consists of a tracking problem in which
it is desired that the link coordinate q1 follows a time-varying smooth and bounded
desired trajectory qd .t/ so that jqd .t/ � q1.t/j ! 0 as t ! 1 [190].

If we rewrite the original system in the form

J1 Rq1 C Jm Rqm C Mgl sin q1 D u;

Rq1 � Rqm C Mgl

J1
sin q1 C k



1

J1
C 1

Jm

�

.q1 � qm/C c



1

J1
C 1

Jm

�

. Pq1 � Pqm/

D � u

Jm
;

then the use of the small parameter " D 1=
p
k and new variables

x1 D .J1q1 C Jmqm/=.J1 C Jm/; x2 D Px1; y1 D q1 � qm; y2 D " Py1; (7.9)

yields the system

Px1 D x2; Px2 D � Mgl

J1 C Jm
sin




x1 C Jm

J1 C Jm
y1

�

C u

J1 C Jm
; (7.10)

P"y1 D y2; " Py2 D �


1

J1
C 1

Jm

�

y1 � "c



1

J1
C 1

Jm

�

y2 (7.11)

�"2Mgl

J1
sin




x1 C Jm

J1 C Jm
y1

�

� "2
u

Jm
:

Note that neglecting all terms of order O."2/ in the r.h.s. of the last equation we
obtain the independent subsystem

P"y1 D y2;

" Py2 D �


1

J1
C 1

Jm

�

y1 � "c


1

J1
C 1

Jm

�

y2;

solutions of which are characterized by high frequency 
 p

.1=J1 C 1=Jm/=" and
relatively slow decay c.1=J1 C 1=Jm/=2, since this differential system has the
characteristic polynomial

"2�2 C c



1

J1
C 1

Jm

�

�C


1

J1
C 1

Jm

�

which possesses complex zeros

�1;2 D �c
2



1

J1
C 1

Jm

�

˙ i

"

s


1

J1
C 1

Jm

�

� "2 c
2

4



1

J1
C 1

Jm

�2

:
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Since the real part of these numbers is negative, for the analysis of the manipulator
model under consideration it is possible to use the slow invariant manifold noting
that the reducibility principle holds for this manifold (the exact statement may be
found in [117]). The terms of O."2/ of the subsystem (7.11) lead us to conclude
that the slow invariant manifold may be found in the form y1 D "2Y C O."3/ and
y2 D O."3/, where

Y D �
�

Mgl

J1
sin.x1/C u0

Jm

�

1

J1
C 1

Jm

��1
: (7.12)

Here we used the representation u D u0 C "2u1 C O."3/. Thus, the flow on this
manifold is described by equations

Px1Dx2; Px2D� Mgl

J1 C Jm
sin




x1C"2 Jm

J1 C Jm
Y

�

Cu0 C "2u1
J1 C Jm

CO."3/: (7.13)

It is important to emphasize that due to (7.9) q1 D x1 C Jm
J1CJm y1, where y1 D

"2Y CO."3/, and on the slow invariant manifold we obtain the representation

q1 D x1 C "2
Jm

J1 C Jm
Y CO."3/: (7.14)

This allows us to rewrite the system (7.13) on the slow invariant manifold using the
original variable q1 instead x1 in the form

Rq1 � "2
Jm

J1 C Jm
RY D � Mgl

J1 C Jm
sin.q1/C u0 C "2u1

J1 C Jm
CO."3/: (7.15)

The function RY will be calculated below.
Let qd be the desired trajectory, i.e., the goal of the controlled motion is q1 ! qd

as t ! 1 [190]. Unlike [53, 190] we do not use a fast term added to the control
input to make the fast dynamics asymptotically stable to guarantee the fast decay of
fast variables y1 and y2, but we use the slow component of the control function u
which is written as a sum u0 D .J1CJm/ud CMgl sin q1, where ud D Rqd �a1.x1�
qd / � a2. Px1 � Pqd / [190]. The goal of this control law is to obtain an equation with
decaying solutions for the difference between q1 and qd .

Setting " D 0, using (7.15) and the definitions of u0 and ud we obtain, to an
accuracy of orderO."2/,

Rq1 � Rqd C a2. Pq1 � Pqd /C a1.q1 � qd / D 0

for the difference q1 � qd , since q1 D x1 C O."2/ on the slow invariant manifold
by (7.14). This differential equation allows us to choose the coefficients a1 and a2
in the control function ud in such a way that the corresponding control function u
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gives the possibility of realizing a desired motion. Let, for example [190], M D
1; k D 100; l D 1; J1 D 1; Jm D 1, g D 9:8 and c D 2. Setting a1 D 3,
a2 D 4 for the desired trajectory qd D sin t we obtain the following control law for
the original variables

u D .J1 C Jm/ud C Mgl sin x1 D .J1 C Jm/ud C Mgl sin q1 D 2ud C 9:8 sin q1

D 2Œ� sin t � 4. Pq1 � cos t/ � 3.q1 � sin t/�C 9:8 sin q1:

It is illustrated in Fig. 7.1, which contains the response of the controlled single
link manipulator with given values of parameters, that the trajectory of q1 tends to
the desired trajectory sin t as t increases.

If it is necessary to take into account the terms of orderO."2/we set u1 D �Jm RY
to obtain the same equation Rq1 � Rqd C a2. Pq1 � Pqd /C a1.q1 � qd / D 0 from (7.15).
To calculate Y we use (7.12) with u0 D .J1 C Jm/ud C Mgl sin q1, where ud D
Rqd � a1.x1 � qd / � a2. Px1 � Pqd /, and obtain

Y D �Mgl sin q1 � J1ud :

It is easy now to obtain PY

PY D �Mgl cos q1
dq1
dt

� J1
dud
dt

D �Mgl cos q1
dq1
dt

� J1

�
d3qd

dt3
� a1



dq1

dt
� dqd

d

�

� a2


d2q1

dt2
� d2qd

dt2

��

D �Mgl cos q1
dq1
dt

�J1
�
d3qd

dt3
Ca1a2.q1 � qd /C .a22 � a1/



dq1
dt

� dqd
dt

��

;

–1

–0.5
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0.5

1
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q1

t

Fig. 7.1 The graph of q1.t/ (thin solid line) and the desired trajectory qd D sin t (thick solid line)
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because Rq1 � Rqd D �a1.q1 � qd / � a2. Pq1 � Pqd /. Similarly we obtain

RY D Mgl sin q1



dq1
dt

�2

� Mgl cos q1
dq1
dt

�J1
�
d4qd

dt4
� a1.a22 � a1/.q1 � qd / � a2.a22 � 2a1/



dq1
dt

� dqd
dt

��

;

and, finally, with "2 D 1=k,

u D .J1 C Jm/ud C Mgl sin q1 � Jm RY =k:

7.2 Unstable Manifolds

Consider the system (2.1) and suppose that hypothesis (I) holds, but inequality (2.6)
is replaced by

Re�i .x; t/ � 2� > 0: (7.16)

If in system (2.1) we use the new “reverse” time t ! �t , then we obtain a
system that satisfies hypotheses (I) and (II). Consequently (2.1) has the slow integral
manifold y D h.x; t; "/, and for this manifold all propositions from the previous
section are true, with the exception of stability.

But this manifold is stable (and the Lyapunov Reduction Principle applies, see
Sect. 2.2) with respect to t ! �1. This means that for increasing t , the trajectories
of solutions with initial points near the slow integral manifold move away from this
manifold very rapidly.

Now we will demonstrate how the unstable slow integral manifold can be useful
for modelling the critical regime which separates an explosive regime from a non-
explosive one. We use the example of a classical combustion model. Following [107]
it is possible to say that a one-dimensional unstable slow invariant manifold plays
the role of a watershed line in this problem.

Thermal explosion occurs when chemical reactions produce heat too rapidly
for a stable balance between heat production and heat loss. The exothermic
oxidation reaction is usually modelled as a single step reaction obeying an Arrhenius
temperature dependence. The first model for the self-ignition was constructed by
Semenov in 1928 (see, for example [3, 152]). The basic idea of the model was a
competition between heat production in the reactant vessel (due to an exothermic
reaction) and heat losses on the vessel’s surface. Heat losses were assumed
proportional to the temperature excess over the ambient temperature (Newtonian
cooling). The main assumption was that there is no reactant conversion during the
fast highly exothermic reaction. This assumption implies the absence of the energy
conservation law in the model, and gave the possibility of constructing an extremely
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simple and attractive mathematical model. Spatial uniformity of the temperature was
also assumed so that the governing equation was one first-order ordinary differential
equation for the temperature changes:

c	V
dT

dt
D QV




�dC

dt

�

� �S.T � T0/;

where

�dC

dt
D �.C /A exp




� E

RT

�

;

and � expresses the dependence of reaction rate on reactant concentration. HereQ
is an exothermicity per mole reactant; C and C0 are a reactant concentration and
its initial value; A is constant which is known as a pre-exponential rate factor; c is
specific heat capacity; 	 is reactant density; � is the heat-transfer coefficient; E is
the Arrhenius activation energy; R is the universal gas constant; V is the reactant
vessel volume; S is the surface area of the reactant vessel; t is a time variable; T is
absolute temperature; T0 is ambient temperature. The initial temperature is assumed
to be equal to the ambient temperature T0.

Dimensionless variables � , , � are introduced by

� D tCn�1
0 A exp




� E

RT0

�

;  D 1 � C=C0; � D E

RT0
.T � T0/;

(n is the order of the chemical reaction) and we obtain the classical model of thermal
explosion with reactant consumption [65, 219]:

"
d�

d�
D �./ exp .�= .1C ˇ�//� ˛�; (7.17)

d

d�
D �./ exp .�= .1C ˇ�//; (7.18)

.0/ D 0= .1C 0/ D N0; �.0/ D 0:

Here the parameter 0 is a kinetic parameter (the ratio of the initial reaction rate
to an autocatalytic constant), where the small dimensionless parameters

ˇ D RT0
E

and " D c	

QC0

E

RT20

characterize the physical properties of the gas mixture, and

˛ D �S

VQCn
0A

RT20
E

exp



E

RT0

�

(7.19)

is the dimensionless heat loss parameter.
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The following cases are examined: �./ D 1 �  .0 D 0/ (first-order reaction)
and�./ D .1�/ (autocatalytic reaction). The system (7.17), (7.18) is singularly
perturbed. According to the standard approach to such systems the limiting case
" ! 0 is examined, and discontinuous solutions of the reduced system are analyzed.
This makes it possible to determine some critical values of initial conditions, which
provide a jump transition from the slow regime to the explosive ones. The study
of transitional regimes requires the application of higher approximations in the
asymptotic analysis of the systems of the type given in Eqs. (7.17), (7.18). The
integral manifold technique is applied to the qualitative analysis of critical and
transitional regimes for both types of chemical reaction: the case of the first-
order reaction is considered below and in the Example 11, while the case of the
autocatalytic reaction is examined in Sect. 8.5.3.

For the first-order reaction, when �./ D 1 �  and the dimensionless
concentration N D 1 �  replaces , the system (7.17), (7.18) is

"
d�

d�
D N exp .�= .1C ˇ�// � ˛�; (7.20)

d N
d�

D �N exp .�= .1C ˇ�//: (7.21)

The initial conditions are

N.0/ D 1; �.0/ D 0: (7.22)

From the expression (7.19) one can see that the parameter ˛ characterizes the initial
physical state of the chemical system. Depending on its value the chemical reaction
either changes to a slow regime with decay of the reaction, or into a regime of self-
acceleration which leads to an explosion. For some value of ˛ (we call it critical)
the reaction is maintained and gives rise to a sharp transition from slow reactions to
explosive ones. The transition region from slow regimes to explosive ones exists due
to the continuous dependence of the system (7.20), (7.21) on the parameter ˛. To
find the critical value of the parameter ˛, we may use special asymptotic formulae
given in [111]. The equation

N exp .�= .1C ˇ�// � ˛� D 0 (7.23)

gives the slow curve S of the system (7.20), (7.21). The curve S has two jump points
(A1 and A2), see Fig. 7.2, where the slope is zero, given by the equation

@

@�
. N exp .�= .1C ˇ�// � ˛�/ D 0;

i.e.

N .1C ˇ�/�2 exp .�= .1C ˇ�//� ˛ D 0: (7.24)
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Fig. 7.2 The slow curve (the dashed line) and the trajectory (the solid line) of the sys-
tem (7.20), (7.21) in the limit case (" D 0): (a) in the case of a slow combustion regime, (b)
in the case of the thermal explosion when � becomes large and the trajectory does not lie on the
slow integral manifold till Ss3 , (c) in the case of a critical regime

The equation

� � .1C ˇ�/2 D 0;

which is implied from (7.23) and (7.24), determines the coordinates � of the jump
points. The point A1 has the coordinates � D �1 D 1C 2ˇ C 0.ˇ2/ and N D 1 D
˛.1C ˇ/=eC 0.ˇ2/ from (7.24), while the point A2 corresponds to a large value of
the temperature � D O.ˇ�2/ as ˇ ! 0.

The jump points divide the slow curve into three parts Ss1 , Su
2 , Ss3 (see Fig. 7.2)

which are zeroth order approximations for the corresponding slow integral man-
ifolds Ss1;", S

u
2;" and Ss3;". Manifolds Ss1;" and Ss3;" are stable and Su

2;" is unstable.
Each manifold Ss1;", S

u
2;" and Ss3;" is at the same time part of some trajectory of the

system (7.20), (7.21).
For some values of ˛, trajectories of equations (7.20)–(7.22) move along the

manifold Su
2;", sooner or later either falling into an explosive regime (if the

trajectories jump from Su
2;" toward Ss3;"), or rapidly passing into a slow regime (if

the trajectories jump from Su
2;" toward Ss1;"), see Fig. 7.2c. The value of ˛ D ˛2,

at which the trajectory T2 of (7.20)–(7.22) contains the unstable manifold Su
2;" (see
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Fig. 7.3), is said to be critical, i.e. this regime is not a slow combustion regime,
since � achieves a high value, and is not explosive, as the temperature increases
at the tempo of the slow variable as this is the slow manifold. The value ˛ D ˛1,
for which the trajectory T1, corresponding to the limit case for all trajectories, as it
passes through A1, shown in Fig. 7.2a, being the longest one, contains the manifold
Ss1;" (see Fig. 7.4), and is called the slow critical value. The trajectory T3 contains
the stable manifold Ss3;", see Fig. 7.4, and does not determine any critical regime,
since it does not begin from the initial point P . We note that any trajectory of the
system starting at the point N D 1, � D 0, i.e. the initial point, runs to the left of
T3 because different trajectories cannot intersect, ending up at N D � D 0. Since
the analysis of the trajectories near the stable slow manifolds is not our goal we will
concentrate our attention on the transition region.

The value of ˛ D ˛1 gives the critical trajectory T1, see Fig. 7.4. It separates
the transition region (see Fig. 7.5) from slow regimes (see Fig. 7.2a) which are
characterized by a slowdown of the reaction with small degrees of conversion and
heating up is limited from above by � < �1 at A1.

The region of slow transitional trajectories corresponds to the interval .˛2; ˛1/.
These trajectories are characterized by a comparatively rapid (but not explosive)
flow of the reaction till the essential degree of conversion takes place and then a
jump slow-down (horizontal line) and a transition to the slow flow of the reaction
to near the origin, see Fig. 7.5. For ˛ 
 ˛1 the slow transitional trajectories of the

Fig. 7.3 The slow curve (the
dashed line) and the
trajectory T2 (the solid line)
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Fig. 7.4 The slow curve (the
dashed line) and the
trajectories T1 and T3 (the
solid line)
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Fig. 7.5 The slow curve and
the trajectories
of (7.20)–(7.22) for " D 0:01,
ˇ D 0:1, ˛0 D 2:08039,
˛00 D 2:0803865,
˛000 D 2:080386

(˛2 < ˛000 < ˛00 < ˛0 < ˛1),
where the arrows indicate
increasing time. When
˛ > ˛1 we have the slow
regime and when ˛ < ˛2 we
have the explosion
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system are close to the trajectory T1. For the smaller values of the parameter ˛ the
trajectories of the system remain for a longer time on the unstable slow manifold
Su
2;" and the trajectory T2 is the longest of these. For ˛ < ˛2 the trajectories are

explosive where � achieves a high value, see Fig. 7.2b.
The critical value ˛ D ˛2 corresponding to the trajectory T2 may be obtained by

means of the asymptotic expansion

˛2 D e.1� ˇ/

�

1 �˝0
3
p
2




1C 7

3
ˇ

�

"2=3 C 4

9
.1C 6ˇ/" ln

1

"

�

CO."C ˇ2/;

where˝0 D 2:338107, see [111] for the details.
The crucial result is that the unstable slow manifold may be used to construct the

separating regime between the safe regimes and explosive ones.

7.3 Conditionally Stable Manifolds

A rather complicated situation arises if the system (2.1) satisfies hypothesis (I) but
inequality (2.6) in the hypothesis (II) is replaced by

Re�i .x; t/ � 2�1 > 0; i D 1; : : : ; n1; (7.25)

Re�i .x; t/ � �2�2 < 0; i D n1 C 1; : : : ; n: (7.26)

The slow integral manifold y D h.x; t; "/ is then conditionally stable, i.e. in the
space Rm�R

n there exists an n2-dimensional manifold (n2 D n�n1), which has the
following property: all trajectories, with initial points that belong to this manifold,
tend to the slow integral manifold as t ! 1. Besides, in R

m � R
n there exists an

n1-dimensional manifold such that all trajectories, with initial points that belong to
this manifold, tend to the slow integral manifold as t ! �1. Such a situation is
typical of optimal control problems [170].
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As an example consider the problem of the minimization of the functional

I" D 1

2

Z 1

0

Œx21.t/C x22.t/C u2.t/�dt (7.27)

under the restrictions

Px1 D x2; x1.0/ D x01; " Px2 D w.x1/C u; x2.0/ D x02; (7.28)

where u is a control function. A more general situation is considered in the book [92]
where the necessary optimality conditions are derived in detail using the Lagrangian
and Hamiltonian formulations. We formulate a necessary optimality condition using
the Hamiltonian [92]

H D 1

2
.x21 C x22 C u2/C px2 C q.w.x1/C u/;

where p and q are the multipliers (costates or adjoint variables) associated with x1
and x2 respectively. The Hamiltonian necessary conditions are (see, for example,
[92])

0 D @H
@u

I Px1 D @H
@p
; " Px2 D @H

@q
I Pp D � @H

@x1
I " Pq D � @H

@x2

with boundary value conditions

x1.0/ D x01; x2.0/ D x02; p.1/ D 0; q.1/ D 0: (7.29)

Thus, we have for u the condition @H
@u D u C q D 0, i.e.,

u D �q (7.30)

and the boundary value problem can be represented as

Px1 D @H
@p

D x2; " Px2 D @H
@q

D w.x1/� q; (7.31)

Pp D � @H

@x1
D �x1 � w0.x1/q; " Pq D � @H

@x2
D �p � x2; (7.32)

x1.0/ D x01; x2.0/ D x02; p.1/ D 0; q.1/ D 0

where w0.x1/ D @w
@x1

.
Note that this system is linear with respect to the fast variables x2 and q.
Setting
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x D


x1
p

�

; y D


x2
q

�

;

and


 D



0

�x1
�

; � D



w.x1/
�p

�

; F D



1 0

0 �w0.x1/

�

; G D



0 � 1

�1 0

�

;

we represent the system (7.31) and (7.32) in the form (2.26) (see Sect. 2.5):

Px D 
.x/C F.x/y; " Py D �.x/C Gy: (7.33)

The eigenvalues of the constant matrix G are ˙1 and this means that the slow
invariant manifold is conditionally stable. Using the formulas (2.27) we obtain the
first order approximation of this manifold in the form

y D � C "h1 D �G�1� C "G�1 @�
@x
.
 C F�/ D


�p
w

�

C "



w0p

�x1 � w0w

�

(7.34)

on noting

@�

@x
D


0 � 1

w0 0

�

:

Then the motion on the slow invariant manifold is described by

Px D 
 C F� C "Fh1 CO."2/ D

 �.1 � "w0/p

�.x1 C w0w/.1 � "w0/

�

CO."2/: (7.35)

The use of new the variable z D y � h.x; "/ in (7.33) leads to the equation
"Pz D " Py � " @h

@x
Px D � C Gh C Gz � " @h

@x
.
 C Fh C Fz/ D Gz � " @h

@x
Fz due to the

invariance equation " @h
@x
.
C Fh/ D � C Gh and Px D 
C Fh C Fz. As the result, we

obtain the system

Px D 
 C Fh C Fz; (7.36)

"Pz D .G � "
@h

@x
F /z D .G CO."//z; (7.37)

where the second equation is approximately independent of x. To exclude z from
Eq. (7.36) we need to use the change of variables x D v C "P.v; z; "/, where the
function P describes the so called fast invariant manifold [117, 170]. However for
our purposes it is enough to note that the change of variables x D v C "FG�1z
in (7.36) where
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v D



v1
p1

�

; z D



z1
q1

�

(7.38)

leads to the equation

Pv D 
.v/C F.v/.�.v/C "h1.v//CO."2/CO."kzk/; (7.39)

on using (7.37) and recalling h D � C "h1 C CO."2/. Here kzk characterizes
the distance between y and the slow invariant manifold y D h.x; "/ and (7.39)
describes the motion on this manifold. Formally, (7.39) is obtained from (7.35) by
setting x D v (or in scalar form,x1 D v1, p D p1). If we neglect terms of order
O."2/, the change of variables y D z C h.x; "/ written in scalar form is

x2 D z1 � p C "w0.x1/p; q D q1 C w.x1/� ".x1 C w0.x1/w.x1//; (7.40)

on using (7.38) for z and (7.34) for h and noting h D � C "h1. The change of
variables x D v C "FG�1z written in scalar form is

x1 D v1 � "q1; p D p1 C "w0.v1/z1; (7.41)

on using (7.38) for v and z.
Noting that (7.39) is obtained from (7.35) by setting x D v (or in scalar form,

x1 D v1, p D p1), we can to rewrite (7.39) in scalar form to get

Pv1 D �.1 � "w0/p1; Pp1 D �.v1 C w0w/.1 � "w0/:

Terms of order O."2/ C O."kzk/ in these equations are neglected. Using the
additional transformation z1 D z2 C q2, q1 D z2 � q2 (or z2 D .z1 C q1/=2,
q2 D .z1 � q1/=2), which diagonalizes the matrix G, we obtain from (7.37)
("Pz D .G CO."//z, i.e. "Pz1 D �q1, " Pq1 D �z1)

"Pz2 D �z2; " Pq2 D q2;

where w D w.v1/ and w0 D w0.v1/, since "Pz2 D ."Pz1 C " Pq1/=2 D .�q1 � z1/=2 D
�z2 and " Pq2 D ."Pz1�" Pq1/=2 D .�q1Cz1/=2 D q2 . Terms of orderO."/ in the last
two equations are neglected. The main purpose of introducing z2 and q2 is to use the
asymptotic formula exp˛=" D o."k/, where ˛ is any positive number and k is any
positive integer, and we obtain the following representation for z2.t; "/ and q2.t; "/

z2.1; "/ ' 0; q2.0; "/ ' 0; (7.42)

since z2 D Aet=" and q2 D Be.t�1/=" where A and B are arbitrary constants. The
resulting change of variables for x1 and p in scalar form is, from (7.41) with z1 D
z2 C q2, q1 D z2 � q2,
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x1 D v1 � "q1 D v1 � ".z2 � q2/; p D p1 C "w0.v1/z1 D p1 C "w0.v1/.z2 C q2/

(7.43)

and for x2, q from (7.40) :

x2 D z2Cq2�pC"w0.x1/p; q D z2�q2Cw.x1/�".x1Cw0.x1/w.x1//: (7.44)

Using the initial values in the first of (7.43) gives

x01 D x1.0/ D v1.0/� ".z2.0/� q2.0// D v1.0/� "z2.0/;

on noting the second of (7.42). The second of (7.43) and the first of (7.42) gives

0 D p.1/ D p1.1/C "w0.v1.1//.z2.1/C q2.1// D p1.1/C "w0.v1.1//q2.1/:

Similarly, (7.44) gives

x02 D x2.0/ D z2.0/C q2.0/� p.0/C "w0.x1.0//p.0/

D z2.0/� p.0/C "w0.x01/p.0/;

and

0 D q.1/ D z2.1/� q2.1/C w.x1.1//� ".x1.1/C w0.x1.1//w.x1.1//

D �q2.1/C w.x1.1//� ".x1.1/C w0.x1.1//w.x1.1//:

The last two equalities are rewritten in the form

x02 D z2.0/� p1.0/CO."/; 0 D �q2.1/C w.v1.1//CO."/:

It is now a straightforward exercise from the above equations to check that the new
variables v1 and p1, z2 and q2 satisfy the following initial value and boundary value
conditions

z2.0/ D x02 C p1.0/; q2.1/ D w.v1.1//

v1.0/ D x01 C "z2.0/ ) v1.0/� "p1.0/ D x01 C "x20;

p1.1/C "w0.v1.1//w.v1.1// D 0;

on neglecting terms of orderO."/ in the expressions for z2.0/ and q2.1/. As a result
we obtain the independent second order boundary value problem

Pv1 D �.1 � "w0/p1; Pp1 D �.v1 C w0w/.1 � "w0/;
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with the boundary conditions

v1.0/� "p1.0/ D x10 C "x20; p1.1/C "w0.v1.1//w.v1.1// D 0

for the slow variables v1, p1, and two independent initial value problems

"Pz2 D �z2; z2.0/ D x20 C p1.0/

and

" Pq2 D q2; q2.1/ D w.v1.1//

for the fast variables z2, q2. The approximate expression (see (7.30)) for the control
function then is

u D �q D �z2 C q2 � w.x1/C "Œv1 C w0.v1/w.v1/�;

on noting the second of (7.44). This gives a solution of the optimal control
problem (7.27)–(7.28). Here as in (7.43) x1 D v1 � "q1 D v1 � ".z2 � q2/, where
v1 and z2, q2 are the solutions of corresponding boundary value and initial value
problems.

Thus, we have considered the fourth order nonlinear singularly perturbed
boundary value problem which occurs in the investigation of an optimal control
problem. The use of a conditionally stable slow invariant manifold in combination
with specific changes of variables allows us to reduce this boundary value problem
to a second order boundary value problem without singular perturbations and two
independent scalar linear singularly pertsurbed initial value problems.



Chapter 8
Canards and Black Swans

Abstract The chapter is devoted to the investigation of the relationship between
slow integral manifolds of singularly perturbed differential equations and critical
phenomena in chemical kinetics. We consider different problems e.g., laser models,
classical combustion models and gas combustion in a dust-laden medium models,
3-D autocatalator model, using the techniques of canards and black swans. The
existence of canard cascades is stated for the van der Pol model and models of
the Lotka-Volterra type. The language of singular perturbations seems to apply to
all critical phenomena even in the most disparate chemical systems.

8.1 Introduction

A canard trajectory is a trajectory of a singularly perturbed system [129] of
differential equations if it follows at first a stable invariant manifold, and then an
unstable one. In both cases the length of the trajectory is more than infinitesimally
small. If a trajectory at first follows an unstable invariant manifold and then a stable
one, it is called a false canard. The term “canard” (or duck–trajectory) was originally
introduced by French mathematicians [7, 8, 35].

In a majority of the papers devoted to canards the term “canard” is associated
with periodic trajectories. However, in our work a canard is a one-dimensional
slow invariant manifold of a singularly perturbed system of differential equations
if it contains a stable (attractive) slow invariant manifold and an unstable one. It
should be noted that a canard may be a result of gluing stable (attractive) and
unstable (repulsive) slow invariant manifolds at one point of the breakdown surface
(a subset of the slow surface which separates its stable and unstable parts) due to
the availability of an additional scalar parameter in the differential system. This
approach was first proposed in [59,60] and was then applied in [56,61,156,183,184].

If we have several additional parameters then we have the possibility of gluing
stable (attractive) and unstable (repulsive) slow invariant manifolds at several points
of the breakdown surface and thus obtain a canard cascade. If we take an additional
function of a vector variable parameterizing the breakdown surface, we can glue
the stable (attractive) and unstable (repulsive) slow integral manifolds at all points
of the breakdown surface at the same time. As a result we obtain the continuous
stable/unstable (attractive/repulsive) integral surface or black swan. Such surfaces
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E. Shchepakina et al., Singular Perturbations, Lecture Notes in Mathematics 2114,
DOI 10.1007/978-3-319-09570-7__8

141



142 8 Canards and Black Swans

are considered as a multidimensional analogue of the notion of a canard. It is also
possible to consider the gluing function as a special kind of partial feedback control.
This can guarantee the safety of chemical regimes, even with perturbations, during
a chemical process.

8.2 Singular Perturbations and Canards

Let us consider the following two-dimensional autonomous system:

Px D f .x; y; �/; (8.1)

" Py D g.x; y; �/; (8.2)

where x, y are scalar functions of time, " is a small positive parameter, � is an
additional scalar parameter, and f and g are sufficiently smooth scalar functions.
The set of points

S D f.x; y/ W g.x; y; �/ D 0g

of the phase plane is called a slow curve of the system (8.1), (8.2).
We will need the following assumptions (1)–(3):

(1) The curve S consists of ordinary points, i.e. at every such point .x; y/ 2 S

Œgx.x; y; �/�
2 C �

gy.x; y; �/
	2
> 0:

This guarantees that S does not intersect itself.
(2) Nonregular points, i.e. points at which gy.x; y; �/ D 0; are isolated on S (all

other points of S are called regular).
(3) At nonregular points, gyy ¤ 0:

Definition 5 (Jump Point). A nonregular point A (where gy D 0) of the slow
curve S is called a jump point [111] if

gyy.A/gx.A/f .A/ > 0:

Definition 6 (Stable and Unstable Parts of S ). The part of S which contains only
regular points is called regular. A regular part of S , all points of which satisfy the
inequality

gy.x; y; �/ < 0
�

gy.x; y; �/ > 0
�

; (8.3)

is called stable (unstable).
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In order be able to consider more complicated situations when a nonregular point
is not ordinary (self-intersections of the slow curve, see, for instance, Example 15)
or when it is ordinary but gyy.x; y; �/ D 0 at this point, we will use the following
definition.

Definition 7 (Turning Point). A nonregular point A of the slow curve S is called
a turning point if it separates stable and unstable parts of the slow curve.

Note that a jump point is always a turning point, but the reverse is not always true
when the inequality (8.3) is not satisfied, see Fig. 8.1 and Example 14. Figure 8.1
shows a graph of a concave downwards function x D x.y/, which is determined by
the equation g.x; y; �/ D 0, hence we have d2x

dy2
ˇ
ˇA
< 0, sinceA is a maximum point

where dx
dy D 0. By double differentiating the equation g.x; y; �/ D 0 with respect

to y we obtain

gxx



dx

dy

�2

C 2gxy
dx

dy
C gx

d2x

dy2
C gyy D 0

which implies

d2x

dy2
D �

gxx



dx

dy

�2

C 2gxy
dx

dy
C gyy

gx
:

From this using

dx

dy
ˇ
ˇA

D �gy
gx
ˇ
ˇA

D 0

we obtain

Ss Su

A
�

y

x

Ss Su

A
�

y

x

a b

Fig. 8.1 The turning point A separates the stable (Ss ) and unstable (Su) parts of the slow curve S
and (a) is a jump point of S ; (b) is not a jump point because the inequality (8.3) is not satisfied.
The arrows indicate increasing time along the slow curve
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y

x
A

Ss Su

y

x
A

Ss Su

a b

Fig. 8.2 The slow curve and the trajectories of system (8.4) with " D 0:01 and (a) f .x; y/ D 1;
(b) f .x; y/ D �1. The arrows indicate increasing time

d2x

dy2
ˇ
ˇA

D �gyy

gx
ˇ
ˇA

< 0

or, equivalently, gyy.A/gx.A/ > 0.
From Fig. 8.1a it follows that the function x D x.t/ increases and, according

to Eq. (8.1), f .A/ > 0; the function x D x.t/ shown in the graph in Fig. 8.1b
decreases, hence f .A/ < 0. To illustrate this we consider

Example 14. For the system

dx

dt
D f .x; y/ D ˙1; "

dy

dt
D x C y2 � 2y (8.4)

point A.1; 1/ separates the stable (Ss) and unstable (Su) parts of the slow curve
x D 2y � y2 since gy D 2.y � 1/, see Fig. 8.2. For f .x; y/ D 1 > 0 we have
gyy.A/gx.A/f .A/ > 0 and the point A is a jump point. For f .x; y/ D �1 < 0

the inequality (8.3) does not hold and the point A is not a jump point. Both of these
cases appear in thermal explosion models in the case of first-order reactions: the first
case takes place for t ! �1 while the second case holds for t ! 1, see Sect. 7.2.

Stable and unstable parts of the slow curve are zeroth order approximations of
corresponding stable and unstable slow invariant manifolds. The invariant manifolds
lie in an "-neighborhood of the slow curve, except near jump or turning points (see
[117, p. 155] and references therein).

Definition 8 (Canard). Trajectories which at first move along the stable slow
invariant manifold and then continue for a while along the unstable slow invariant
manifold are called canards or duck-trajectories.
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Definition 9 (False Canard). Trajectories which at first move along the unstable
slow invariant manifold and then continue for a while along the stable slow invariant
manifold are called false canard trajectories.

There is a class of problems where assumptions (1)–(3) are not fulfilled for some
value of �. Consider

Example 15. The system

dx

dt
D 1; "

dy

dt
D y2 � x2 C �;

with � D " (� D �") has the exact slow invariant manifold y D x (y D �x).
Since, gy D 2y, the part of y D x (y D �x) with x < 0 (x > 0) is stable
(attractive) while with x > 0 (x < 0) is unstable (repulsive). Note that the canard is
only y D x. In this example [60], the point x D 0, y D 0, at which g2x C g2y D 0,
is the point of self-intersection of the slow curve y2 � x2 C � D 0 at � D 0. Being
a turning point it is not a jump point, see Definition 5.

Problems with a similar context were examined in [2, 35, 59, 60, 110]. On the one
hand, this example demonstrates that canards and false canards may exist when
the assumptions (1)–(3) are not fulfilled, and on the other hand, the same situation
appears in thermal explosion models in the case of autocatalytic reactions. In this
case the canards are the natural mathematical objects which allow us to model
critical phenomena and discover critical parameter values in the form of asymptotic
expansions involving powers of the small parameter ".

8.2.1 Examples of Canards

Example 16 (Simplest Canard). As the simplest system with a canard we propose

Px D 1; " Py D xy C �:

Here g.x; y/ D xy C �. It is clear that for � D 0, the trajectory y D 0 is a
canard. The left part (x < 0) is attractive since @g

@y
< 0 and the right part (x > 0)

is repulsive. These two parts are divided by a turning point, which separates stable
and unstable parts of the slow curve, at x D 0.

Example 17 (Simplest False Canard).
The simplest system with a false canard may be obtained by a slight modification

of the previous example.

Px D 1; " Py D �xy C �:
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Here y D 0 is the slow invariant manifold for � D 0. Then gy D �x and this
implies that the part x < 0 is repulsive (or unstable) and the part x > 0 is attractive
(or stable). Thus for � D 0, the trajectory y D 0 plays the role of a false canard.

The van der Pol oscillator is the most popular model used to illustrate canard
trajectories. A detailed analysis can be found in [42]. We sketch the main points in
the following example.

Example 18 (The van der Pol Oscillator).
Suppose the van der Pol oscillator is biased by a constant force �:

d2y

dt2
C �.y2 � 1/

dy

dt
C y D �;

where � is some real parameter, and � > 0 as usual [194]. We write our system in
Liènard form, i.e. we define �.y/ so that

d2y

dt2
C �.y2 � 1/dy

dt
D d

dt
.
dy

dt
� ��.y//;

which implies �.y/ D �y3=3 C y. We set � dx
dt D y � � and " D 1=�2. Thus, the

system becomes

Px D y � �; " Py D �.y/� x; (8.5)

where dot denotes differentiation with respect to the new independent variable t1,
where t1 D t=�, i.e., Px D dx

dt1
D � dx

dt , Py D dy
dt1

. The jump points A1.�1;�2=3/ and
A2.1; 2=3/ divide the slow curve x D �.y/ into stable (Ss1 and Ss3 ) and unstable
(Su
2 ) parts, see Fig. 8.3. The system (8.5) has an equilibrium at y D �, x D �.y/.

Elementary analysis (see, for example, [42]) shows that the equilibrium is unstable
when �1 < � < 1 and stable when � > 1 or � < �1. Indeed, the eigenvalues of
the Jacobian matrix

J D



0 1

�"�1 "�1.1 � y2/

�

ˇ
ˇyD�

are the roots of the equation

jJ � �I j D �2 � �"�1.1 � �2/C "�1 D 0;

where I is an identity matrix. Hence,

�1;2 D .1 � �2/˙p

.1 � �2/2 � 4"

2"
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Fig. 8.3 The evolution of the limit cycle in the van der Pol oscillator for changing �: the slow
curve S (the dashed line) is x D �.y/, and the trajectories of system (8.5) are the solid lines. The
solid lines constitute a limit cycle. For � < �1 the limit cycle has become a stable steady state P

are real negative numbers when j�j > 1 and 1 � �2 D O.1/ as " ! 0, and �1;2
are complex numbers with negative real parts when j�j > 1 and 1 � �2 D O."/.
The eigenvalues are real positive numbers when j�j < 1 and 1 � �2 D O.1/ as
" ! 0, and �1;2 are complex numbers with positive real parts when j�j < 1 and
1 � �2 D O."/. When � 2 .�1; 1/ there will be a limit cycle, see Fig. 8.3a. When
� > 1 or � < �1 there will be no limit cycle. The question is how does the limit
cycle disappear when � passes through the value �1 or 1. In what follows we shall
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concentrate on the case when � passes �1; the other case is entirely similar. It
has been shown [8] that there exists a value � D �c."/ such that for � in a small
neighborhood of�c the limit cycle deforms into a curve, see solid curve in Fig. 8.3b.
A humorous hand added a few lines plus a dot to the figure, producing a duck as
given in Fig. 8.3c. As � diminishes (still in the neighborhood of �c) the head of the
duck gets smaller and at the next stage one has a duck without a head, as in Fig. 8.3d.
The duck continues to shrink as � tends to �1 (see Fig. 8.3e) and disappears. For
� < �1 all solutions of the system tend to the stable steady state P , see Fig. 8.3f.

8.2.2 Canards of Three-Dimensional Systems

In this subsection we discuss the existence of canards for some special types of
three-dimensional systems.

We consider the autonomous system of three ordinary differential equations:

Px D f .x; y; z; "/; (8.6)

Py D g.x; y; z; �; "/; (8.7)

"Pz D p.x; y; z; �; "/; (8.8)

where the dot denotes the first derivative with respect to time, f , g, p are scalar
functions, and � and " are scalars. The set of points

S D f.x; y; z/ W p.x; y; z; �; 0/ D 0g

is the slow surface of the system (8.6)–(8.8), see Sect. 1.3.1. The stable (pz < 0) and
the unstable (pz > 0) parts of the slow surface are separated by a breakdown curve
(i.e. the subset of the slow surface where pz D 0).

The question we address is whether the system (8.6)–(8.8) has a canard.
To answer this question, we investigate the two-dimensional system obtained
from (8.6)–(8.8) by eliminating the variable t . It is assumed that this two-
dimensional system can be represented as:

y0 D g=f D Y.x; y; z; �; "/; (8.9)

"z0 D p=f D 2xz CZ.x; y; z; �; "/; (8.10)

where � is a scalar and the function Z.x; y; z; �; "/ has the following form:

Z.x; y; z; �; "/ D Z1.x; y; z/C ".C C �C0/C "Z2.x; y; z; �; "/; (8.11)

and prime represents a derivative with respect to x. Here C;C0 are constants,
functions Y.x; y; z; �; "/, Z1.x; y; z/ and Z2.x; y; z; �; "/ are defined, bounded
and continuous in
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˝ D fx 2 R; y 2 R; t j�C CC�1
0 j � �; " 2 Œ0; "0�g; � > 0; "0 > 0;

and satisfy the following conditions in ˝:

jY.x; y; z; �; "/ � Y.x; Ny; Nz; N�; "/j � M .jy � Nyj C jz � Nzj/C �j�� N�j;
(8.12)

jZ1.x; y; z/j � M jzj2; (8.13)

jZ1.x; y; z/ �Z1.x; Ny; Nz/j � M .jzj C jNzj/2 jy � Nyj C M

2
.jzj C jNzj/ jz � Nzj;

(8.14)

jZ2.x; y; z; �; "/j � M�; (8.15)

jZ2.x; y; z; �; "/ �Z2.x; Ny; Nz; N�; "/j � M .jy � Nyj C jz � Nzj/C �j�� N�j;
(8.16)

whereM is a positive constant and � is a sufficiently small positive constant. These
conditions are required for the existence of a unique canard which is bounded for
all x and y.

The slow surface of system (8.9), (8.10) is defined by the equation z D 0, due
to (8.11), (8.13) and the identity

f2xz CZ.x; y; z; �; 0/gzD0 � 0:

We know (see, for instance, Sects. 2.1 and 7.2) that in an "-neighborhood of stable
and unstable foliations of the slow surface there are stable and unstable slow integral
manifolds

z D h.x; y; �; "/:

The parameter � ensures the existence of a gluing point of these integral manifolds,
see for instance Example 19 at the end of this section. By fixing the jump point
.0; y�/, we can single out the trajectory

y D �.x; �/
�

�.0; �/ D y��

on the integral manifold h.x; y; �; "/ which passes along the stable leaf to the jump
point and then continues for a while along the unstable leaf. For convenience we
use the same term ‘trajectory’ for both systems (8.6)–(8.8) and (8.9), (8.10). The
following theorem holds.

If some natural conditions forM , � and � hold, then there is "0 such that for every
" 2 .0; "0/ there exist� D ��."/ and a canard corresponding to this parameter value
which passes through the point .0; y�/. The reader is referred to [184] for an exact
statement and its proof.
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8.2.2.1 Asymptotic Expansions for Canards

In this subsection the asymptotic expansions for the canards of the sys-
tem (8.9), (8.10) are obtained.

It is assumed that functions Y and Z in (8.9), (8.10) have sufficient continuous
and bounded partial derivatives with respect to all variables. For simplicity we
exclude the "-dependence of the functions Y and Z2. Then the canard and the
parameter value �� (corresponding to this trajectory) allow asymptotic expansions
in powers of the small parameter ":

�� D
X

i�0
"i�i ;

y D �.x; ��/ D
X

i�0
"i�i .x/; (8.17)

z D  .x; ��; "/ D h

0

@x;
X

i�0
"i�i .x/;

X

i�0
"i�i ; "

1

A D
X

i�0
"i i .x/:

We can calculate these asymptotic expansions from (8.9), (8.10).
Note that this statements can be generalized to the cases y 2 R

n; z 2 R and
y 2 R

n; z 2 R
m.

Example 19. As a very simple example of (8.6)–(8.8) consider the system

Px D 1; Py D 0; "Pz D 2xz C �� y:

Since pz D 2x, the slow surface 2xzC��y D 0 is divided by the breakdown curve
x D 0 into the stable part (x < 0) and the unstable one (x > 0). If � is a parameter
then the different canards are determined by

Px D 1; y D y0; z D 0;

that is, they pass through the unique gluing point x D 0, y D y0, z D 0 on the
breakdown curve for � D y0.

8.3 Canard Cascades

The goal of this section is to discuss the notion of a canard cascade as a natural
generalization of the term a canard, to derive sufficient conditions for the existence
of canard cascades, and to demonstrate how canard cascades arise in the van der Pol
equation and in the singularly perturbed Lotka–Volterra model.
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If it is necessary to glue stable and unstable slow invariant manifolds at several
turning points, we need several additional parameters and as a result we obtain a
cascade of canards or canard cascade [180].

In the case of a planar system, if we take an additional function whose arguments
are a vector parameter and a slow variable, we can glue the stable (attractive) and
unstable (repulsive) slow invariant manifolds at all breakdown points at the same
time. As a result we obtain a canard cascade. It is possible to consider the gluing
function as a special kind of partial feedback control. The case of a soft control law
is studied later in Sect. 8.3.2. This implies that the control function depends on the
slow variable only and it cannot change a slow curve.

The existence of canard cascades is studied as a problem of the gluing of
stable and unstable one-dimensional slow invariant manifolds at turning points.
This way of looking at the problem makes it feasible to establish the existence of
canard cascades that can be considered as a generalization of canards. A further
development of this approach, with applications to the van der Pol equation and a
problem of population dynamics, is given later in this section.

Definition 10. The continuous slow invariant manifold of (8.1), (8.2) which con-
tains at least two canards or false canards is called a canard cascade.

8.3.1 Simplest Canard Cascades

We now consider several examples of canard cascades. The differential system

Px D 1; " Py D x.x � 1/y

gives a simplest canard cascade y D 0 which consists of two repulsive parts (x < 0
and x > 1 since gy D x.x � 1/ > 0) and one attractive part (0 < x < 1 since
gy D x.x � 1/ < 0) with two turning points (breakdown points) x D 0 and x D 1.

For the next system

Px D 1; " Py D .x C 1/x.x � 1/y

the canard cascade y D 0 consists of two repulsive parts (�1 < x < 0 and x > 1)
and two attractive parts (x < �1 and 0 < x < 1) with three turning points x D �1,
x D 0, and x D 1.

For a case of k turning points the following example is an obvious generalization
of the two previous examples.

The system

Px D 1; " Py D .x � a1/.x � a2/ : : : .x � ak/y
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possesses the simplest canard cascade y D 0 consisting of several repulsive and
attractive parts with k turning points xj D aj , j D 1; : : : ; k.

An example of a system with an infinite number of turning points is

Px D 1; " Py D cos.x/y:

Consider now an example of a periodic canard cascade. For the planar differential
system Example 9 in the Sect. 4.1, the circle .xC"=2/2Cy2 D a�"2=4 is a canard.
The upper semicircle is repulsive and the lower one is attractive. This canard (false
canard) exists for any a > "2=4. The circle is a canard (false canard) if the movement
is from the lower (upper) semicircle to the upper (lower).

8.3.2 Canard Cascade for the van der Pol Model

We consider the following generalization of the van der Pol system in the form (8.5):

Px D y � �;
" Py D pn.y/ � x; (8.18)

where pn is an nth-degree polynomial in y. The corresponding slow curve x D
pn.y/ can have k (k � n � 1) jump points at which p0

n.y/ D 0. If our goal
is to obtain a canard cascade which contains all these points, we need to have k
independent parameters. We can consider � as a control function � D �.x; �/

depending on the slow variable x and the k-vector � D .�1; �2; : : : �k/. The vector
� is a function of ": � D �."/: The consideration of a variant where the function �
is a polynomial in x, i.e., � D �kx

k�1 C �k�1xk�2 C � � � C �1 seems quite natural.
Of course, we can use a trigonometric polynomial or the linear combination of any
linearly independent functions in x with the coefficients �1; �2; : : : �k.

To illustrate the idea of the canard cascade construction we consider the case
n D 3. Let pn.y/ D Ay3CBy2CCyCD then p0

n.y/ D 3Ay2C2ByCC . In the case

B2 � 3AC > 0, p0
n.y/ has two roots

�

�B ˙ p
B2 � 3AC

�

=3A which correspond

to two jump points. It now seems natural to seek � in the form of polynomial with
k D 2 coefficients, i.e. � D ax C b. We search for a slow invariant manifold in
the form of a polynomial x D pn.y/C "qm.y; "/ where qm.y; "/ is an mth-degree
polynomial in y. This representation implies the equation

Py D �qm.y; "/;

and the slow equation Px D y � � or

@

@y
.pn.y/C "qm.y; "// .�qm.y; "// D y � �
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takes the form



3Ay2 C 2By C C C "
@

@y
qm.y; "/

�

.�qm.y; "// D y � ax � b; (8.19)

where x D Ay3CBy2CCy CDC"qm.y; "/. Balancing the degrees of polynomials
on both sides of equality (8.19) implies that m D 1 since the highest power of y in
x is y3, and therefore, qm.y; "/ D ˛y C ˇ: Thus, we obtain the invariance equation

�

3Ay2 C 2By C C C "˛
�

.�˛y � ˇ/
D y � a

�

Ay3 C By2 C Cy CD C ".˛y C ˇ/
� � b:

Equating powers of y, we obtain

�3˛A D �aA;

�3ˇA� 2˛B D �aB;

�2ˇB � ˛C � "˛2 D 1 � aC � "a˛;

�"˛ˇ � ˇC D �aD � "aˇ � b:

Solving for a, b, ˇ we get the following expressions

a D 3˛; b D �3˛D � "2˛ˇ C ˇC; ˇ D B

3A
˛;

where ˛ is a root of the quadratic equation

2"˛2 � 2



B2

3A
� C

�

˛ � 1 D 0: (8.20)

As a result we obtain the following representation for the canard cascade

x D Ay3CBy2CCyCDC"qm.y; "/ D Ay3CBy2CCyCDC".˛yCˇ/: (8.21)

Note that the condition B2 � 3AC > 0 guarantees the existence of two jump
points, with

˛ D


B2 � 3AC

3A

� 1 �
q

1C 2". 3A
B2�3AC

/2

2"
:

We do not consider the other root of Eq. (8.20)
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˛ D


B2 � 3AC

3A

� 1C
q

1C 2". 3A
B2�3AC

/2

2"

because it is of order O.1="/.
In the particular case of the van der Pol system in the form (8.5) we have

dx

dt
D y � �;

"
dy

dt
D y � y3=3� x:

Then A D �1=3; B D 0; C D 1; D D 0 in pn.y/, and, therefore, ˇ D b D 0.
Thus, we obtain

� D �.x; "/ D ax D 3˛."/x;

and, due to (8.21), the canard cascade is

x D Ay3 C By2 C Cy CD C ".˛y C ˇ/ D y � y3=3C "˛."/y;

where

˛."/ D .
p
1C 2"� 1/=2":

Figure 8.4 shows that the canard cascade (the one-dimensional slow invariant
manifold) passes near the slow curve of the system. We glue the stable and
the unstable slow invariant manifolds at two jump points A1 and A2 (which are
the extrema of the slow curve) simultaneously. Figure 8.5 demonstrates that the
canard cascade plays the role of watershed line, i.e. it separates trajectories with
qualitatively different behaviours.

Thus we have the following statements:

Theorem 2. Let n D 3 and B2 � 3AC > 0 then the differential system (8.18)
possesses a canard cascade.

Corollary 1. The van der Pol system (8.5) possesses a canard cascade.

In this case we have used only one additional parameter to obtain a canard
cascade. Moreover, both the “canard cascade value” of this parameter � D 3˛."/x

and the canard cascade are given by exact analytical expressions.
In the general case, when the slow curve of system (8.1), (8.2) has k jump

(turning) points, it is necessary to use k additional parameters to construct a canard
cascade.



8.3 Canard Cascades 155

Fig. 8.4 Slow curve (thin
dashed line) and canard
cascade (thick solid line) in
the case of the van der Pol
equation. A1 and A2 are jump
points where stable and
unstable slow invariant
manifolds are glued

y
A2

x

A1

Fig. 8.5 Slow curve (thin
dashed line), canard cascade
(thick solid line), and two
trajectories (thin solid lines)
with different initial points I1
and I2 in the case of the van
der Pol equation. The arrows
indicate increasing time. The
trajectory I1 evolves to the
vicinity of the upper jump
point and I2 to the vicinity of
the lower jump point

y

x

I1 I2

As was mentioned above, we consider control functions depending on the slow
variable only. But the special case of the control function depending on the fast
variable is of interest also. Eric Benoit is the author of the following statement.

Remark 8.1. The system

Px D �.y/; " Py D p.y/ � x

has a canard cascade with an invariant manifold x D p.y/ C "q.y/ if we choose
the polynomial control �.y/ D �q.y/.p0.y/ C "q0.y//. The direction of slow
dynamics can be controlled by the sign of q.y/ to choose the sequence of true and
false canards.
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8.3.3 Canard Cascades in Biological Models

Definition 11. Trajectories which at first pass along an attractive part of a slow
curve, then continue for a while along a repulsive part of the slow curve and after
that jump in the direction of another attractive part of the slow curve, pass along this
attractive part of the slow curve, then continue for a while along an another repulsive
part of the slow curve are called canard doublets.

We will consider the case of a canard doublet [141] in the situation when the
slow curve has a self-intersection point.

When analyzing the modified Lotka-Volterra model we consider the special case
when one variable y is faster than the other variable x, and use singularly perturbed
differential systems for modeling such phenomena. The biologically relevant case is
“Fast Predators–Slow Prey” or “Fast phages–Slow bacteria”, and the corresponding
system is [141]:

PxDx.a � y � y2 C "�/Df .x; y; "/; " PyDy.�b C x.1C y � ıy2//Dg.x; y/:
(8.22)

Here x and y are the dimensionless “effective size” of the bacteria and phage
populations respectively. The slow curve y.�b C x.1 C y � ıy2// D 0 consists
of horizontal axis y D 0 and curve �b C x.1 C y � ıy2/ D 0 which looks like
a parabola, see Fig. 8.6. (From the physical point of view it is not meaningful to
consider the case y < 0, x < 0). The intersection point of these two lines is a
turning point A1, the part of yD 0 to the left (to the right) of this point is attractive
(repulsive), because @g

@y
D �b C x on y D 0.

The vertex of �b C x.1 C y � ıy2/ D 0 is a jump point A2, the upper branch
of this curve is attractive, while the lower branch until the intersection point at A1 is
repulsive. To check this we consider @g

@y
on the slow curve �bCx.1Cy� ıy2/ D 0

and obtain @g

@y
D yx.1 � 2ıy/. This means that y D 0 is a canard and we need

one additional parameter only to construct the canard cascade. Thus, for any fixed
positive b and ı there exist an a D a."/; a.0/ D 1=2ı C 1=4ı2 and a canard
doublet corresponding to this parameter value [141]. To calculate a.0/ we write the
expression for the canard trajectory near the curve �bC x.1C y � ıy2/ D 0 in the
form x D  .y; "/ D  0.y/C " 1.y/C O."2/, where  0.y/ D b=.1C y � ıy2/

and we obtain

" Py D y
��b C . 0.y/C " 1.y/CO."2//.1C y � ıy2/

�

D "y.1C y � ıy2/ 1.y/CO."2/:

The invariance equation

f D dx

dt
D @ 

@y

dy

dt
D @ 

@y

g

"
;
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Fig. 8.6 Slow curve (dashed line) and the canard doublet (solid line) for the system (8.22). The
slow curve consists of two lines: the horizontal axis y D 0 and the line �b C x.1 � y � ıy2/).
The turning point A1 divides the horizontal axis into the stable (attractive) part Ss1 and the unstable
(repulsive) part Su

2 . The turning point A2 divides the second line into the stable (attractive) part Ss3
and the unstable (repulsive) part Su

4 . The arrows indicate increasing time

i.e.

@ 

@y

g

"
D f;

with the constraint " D 0, takes the form

@ 0

@y
y.1C y � ıy2/ 1.y/ D  0.y/.a.0/� y � y2/

to lowest order. It is easy to obtain the “canard value” of a.0/ from the continuity
condition for  1.y/ at y D 1=2ı:

 1.y/ D  0.y/.a.0/ � y � y2/
@ 0
@y
y.1C y � ıy2/ D �a.0/� y � y2

y.1 � 2ıy/
;

since we require a.0/ � y � y2 D 0 at y D 1=2ı. The canard doublet trajectory at
first passes along an attractive part of �bC x.1C y � ıy2/ D 0, then continues for
a while along a repulsive part of this curve and after that jumps in the direction of
attractive part of y D 0, passes along this attractive part, then continues for a while
along a repulsive part of y D 0, see Fig. 8.6.

A canard doublet of the same form was discovered in a forest pest model [22].
For small values of the timescale of the young trees, the model can be reduced to a
two-dimensional model. This model allows oscillations where long pest-free periods
are interspersed with outbreaks of high pest concentration. In this case the variable
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x corresponds to the population of old trees and the variable y corresponds to the
pest population.

8.4 Black Swans

In this section we use the standard approach of integral manifolds that we have
developed to study slow integral surfaces of variable stability (or black swans).
These surfaces are considered as natural generalizations of the notion of a canard.
We consider the system

Px D f .x; y; z; "/; (8.23)

Py D g.x; y; z; �; "/; (8.24)

"Pz D p.x; y; z; �; "/; (8.25)

where " is a small positive parameter, � is a scalar parameter, x and z are scalar
variables, y is a vector of dimension n.

Recall that the slow surface S of system (8.23)–(8.25) is the surface described
by the equation

p.x; y; z; �; 0/ D 0: (8.26)

Let z D �.x; y/ be an isolated solution of Eq. (8.26), then the subset Ss .Su/ of
S defined by

@p

@z
.x; y; �.x; y/; ˛; 0/ < 0 .> 0/

is the stable (unstable) subset of S . The subset of S defined by

@p

@z
.x; y; �.x; y/; ˛; 0/ D 0

is the breakdown surface (the breakdown curve if dim y D 1) with dimension equal
to dimy:

In "-neighborhood of the subset Ss , which is part of a slow surface, .Su/ there
exists a stable (unstable) slow invariant manifold. If the stable and unstable slow
invariant manifolds are glued at all points of the breakdown surface then the system
has a continuous invariant surface which is called the black swan.

The term “black swan” is suggested for two reasons. The first is that a swan is
a bird from the family of ducks. The second is connected with the usual meaning
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of “black swan” in the sense of a rare phenomenon. It should be noted also that the
French term “canard” is used in the sense of a false rumour1 in English.

An additional parameter is used to glue together the stable and unstable parts
of a canard, and we need an additional function to glue integral manifolds whose
dimension is greater than one. The argument of this function is a vector variable
parameterizing the breakdown surface.

The term “black swan” can also be extended to the case where dim z > 1 [155].
As an example of a black swan we return to Example 19: Px D 1, Py D 0; "Pz D
2xz C � � y: If � is a function of the variable y then for � D y the invariant
manifold z D 0 is stable for x < 0 and unstable for x > 0 since p D 2xz. This
means that the plane z D 0 is a black swan, because z D 0 is a slow invariant
manifold of variable stability.

We consider the system (8.23)–(8.25) reduced to the form

dy

dx
D Y.x; y; z; "/; y 2 R

n; x 2 RI (8.27)

"
dz

dx
D 2xz C �CZ.x; y; z; �; "/; jzj � r; (8.28)

where r is a positive constant, � and " are scalars. It is supposed that the functions
Y;Z are continuous and satisfy some natural smoothness and boundedness condi-
tions (see, for example [117]).

We consider � as a function: � D �.y; "/.
Continuing in the same manner as in Sect. 2.3 we can obtain the asymptotic

representations for black swans and the corresponding functions �.y; "/. We will
give some examples later.

If a gluing function �.y; "/ exists, then every trajectory on the slow integral
manifold is a canard if it crosses the surface x D 0 from the stable part .x < 0/ to
unstable part .x > 0/. Thus, in Example 19 for � D y, every trajectory on the slow
integral manifold z D 0 is a canard. In the case when the gluing function has to be a
constant, �.y; "/ D �.y0; "/, the stable and unstable parts of the integral manifold
can be glued at one point y D y0 only. The canard passes only through this point.

8.5 Laser and Chemical Models

In this section we shall consider the relationship between canards and black swans
and critical phenomena in different laser and chemical systems. We shall show that
canards play the role of separating solutions. This means that canards simulate
the critical regimes separating the basic types of chemical regimes, e.g., slow from
explosive regimes.

1“An absurd story circulated as a hoax”, see Shorter Oxford English Dictionary.



160 8 Canards and Black Swans

The application of black swans consisting entirely of canards to the modelling
of critical phenomena permits us to take into account small perturbations in the
chemical systems. Moreover we can use black swans for the modelling of critical
phenomena in problems without fixed initial conditions.

Before we consider combustion models, we first give some relatively simple
examples of other physical systems.

8.5.1 Lang–Kobayashi Equations

External cavity semiconductor lasers present many interesting features for both
technological applications and fundamental non-linear science. Their dynamics
have been the subject of numerous studies for the last twenty years. Motivations for
these studies vary from the need for stable tunable laser sources, for laser cooling
or multiplexing, to the general understanding of their complex stability and chaotic
behavior. The typical experiment is usually described by a set of delay differential
equations introduced by Lang and Kobayashi [97]:

PE D � .1C i˛/ .N � 1/E C �e�i'0E .t � �/ ;
PN D ��k

�

N � J C jEj2N � : (8.29)

Here E is the complex amplitude of the electric field, N is the carrier density, J
is pumping current, � is the field decay rate, 1=�k is the spontaneous time scale, ˛
is the linewidth enhancement factor, � represents the feedback level, '0 is the phase
of the feedback if the laser emits at the solitary laser frequency and � is the external
cavity round trip time. There are few analytical results since delay equations are
nonlocal. However, this model was recently reduced to a 3D dynamical system
describing the temporal evolution of the laser power P D jEj2, carrier density
N and phase difference .t/ D ' .t/ � ' .t � �/. This was achieved by assuming
P .t � �/ D P .t/ together with the approximation P' D =�C P=2. This expression
remains valid when the phase fluctuates on a time scale much shorter than the
re-injection time � . Under these approximations, the Lang–Kobayashi equa-
tions (8.29) reduce to [78]:

PP D 2 Œ� .N � 1/C � cos .C '0/� P;

PN D ��k .N � J C PN/ ; (8.30)

P D 2
h

�
�

C �˛ .N � 1/� � sin .C '0/
i

:

This model was successfully used to describe low frequency fluctuations com-
monly observed in semiconductor lasers with optical feedback [78].

Suppose that the following relations hold for the various parameters in the model:
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� D o.1/; 1=� D o.1/; �k D o.1/I � D O.1/; ˛ D O.1/:

In this case system (8.30) is singular singularly perturbed, see Sect. 5. With new
variables and parameters:

" D �0=�; t1 D "t; x D lnP � =˛; � D "�0; �k D "�k0;

where " D o.1/ is a dimensionless parameter, �0 D O.1/, 1=�0 D O.1/, �k0 D
O.1/; the system (8.30) takes the form

" PP D 2 Œ� .N � 1/C "�0 cos .˛ lnP � ˛x C '0/� P;

PN D ��k0 .N � J C PN/ ; (8.31)

Px D 2�0

�

cos .˛ lnP � ˛x C '0/C 1

˛
sin .˛ lnP � ˛x C '0/

�

C 2


˛�0
;

where the dot indicates differentiation w.r.t. t1. In this case, system (8.31) possesses
an exact slow invariant manifold P � 0, which coincides with the slow surface
of the system, since P is outside the square bracket and N ¤ 1. The exchange of
stability on this surface is carried out on the breakdown curve

@p

@P
.x;N; 0; 0/ D 2�.N � 1/ D 0;

where p.x;N; 0; "/ D 2 Œ� .N � 1/C "�0 cos .˛ lnP � ˛x C '0/� P . Hence P �
0 is the black swan of (8.31); the part with N < 1 is stable while the part with
N > 1 is unstable. Trajectories of the system (8.31) are the spirals containing a
stable/unstable part of the slow motion along P � 0, see Fig. 8.7, i.e. they are
canards. This behavior corresponds to a pulsed operation of the laser, when the
optical power appears in pulses of some duration at some repetition rate.

Fig. 8.7 The black swan
P � 0 and the trajectories of
system (8.31). The arrows
indicate increasing time
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8.5.2 The Simple Laser

The nonlinear first-order equation

Py D kyp C �.t/y C ı; 0 < " � 1; ı � 0;

with k D ˙1, p D 2; 3 and the control parameter �.t/ D �0 C "t; �0 < 0, is
a typical model of simple lasers, and lasers with saturable absorbers, where y is a
dimensionless amplitude of the field [103]. The additional parameter ı characterizes
the magnitude of the imperfections, " is small quantity, and �0 D O.1/. Note that
these equations with �.t/ D �0 C "t may be written in the form

P� D "; Py D kyp C �y C ı:

For ı D 0 this system has the canard y D 0. Physically the canard simulates the
critical regime separating the basic types of the regimes, slow and self-accelerating
[117, Chap. 8]. We consider in more detail the case p D 3, k D �1:

P� D "; Py D �y3 C �y C ı: (8.32)

The slow curve S is described by the equation �y3 C �y C ı D 0 and has a
different form depending on ı (see Fig. 8.8). When ı < 0 (ı > 0) the trajectories
of the system move along the stable part Ss1 (Ss3) of the slow curve, see Fig. 8.8a, b.
In these cases the trajectories describe fundamentally different slow regimes, with
either a monotonically increasing or decreasing amplitude.

When ı D 0 system (8.32) has the exact canard y � 0, see Fig. 8.8c. Other
canards, which are the intermediate trajectories in the region between those shown
above in Fig. 8.8a, b, pass along the stable part Ss1 and then along the unstable part
Su
2 , jump from the slow invariant manifold towards the stable part Ss3 and then move

along it, see Fig. 8.8c. This means that the amplitude of the field, having remained
close to zero for a long time, almost instantaneously jumps to attain significance and
then increases slowly.

8.5.3 The Classical Combustion Model

From the mathematical viewpoint the situation which appears in the model of an
autocatalytic reaction looks like Example 15 in Sect. 8.2.

The system showing the autocatalytic features of the reaction is given by (7.17)
and (7.18) viz.,

"
d�

d�
D .1 � / exp .�= .1C ˇ�//� ˛�; (8.33)

d

d�
D .1 � / exp .�= .1C ˇ�//; (8.34)
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Fig. 8.8 The slow curve S (the dashed line) and the trajectory (the solid line) of system (8.32) for
" D 0:1, �0 D �4 and (a) ı D �1, (b) ı D 1, (c) ı D 0. The parts Ss1 , Ss3 and Ss4 are stable while
Su
2 is unstable, A is a jump point in each case

with the initial conditions

.0/ D 0= .1C 0/ D N0; �.0/ D 0:

To simplify the demonstration of the main qualitative effects we use a widespread
assumption in thermal explosion theory, ˇ D 0. A detailed analysis shows that the
result is little different from the case ˇ ¤ 0. In this case the slow curve S of the
system (8.33), (8.34) is described by the equation

.1 � /e� � ˛� D 0:
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Fig. 8.9 The slow curve (the dashed line) and the trajectory (the solid line) of the system (8.33),
(8.34) in the limit case (" D 0). P is a stable equilibrium of the system. (a) ˛ > e=4, (b) ˛ D e=4,
(c) ˛ < e=4

The curve S has a different form depending on whether ˛ > e=4 or ˛ < e=4 (see
Fig. 8.9). In the region � < 1 some part of the curve S is stable and in the region
� > 1 it is unstable. We shall denote a stable part S as Ss and an unstable part as
Su. There exist integral manifolds Ss" and Su

" at a distance of O."/ from the curve
S , corresponding to Ss and Su.

As in the first-order reaction we shall give a qualitative description of the
behavior of the system (8.33), (8.34) with the changing parameter ˛. When ˛ > e=4
the trajectories of the system in the phase plane move along the stable branch Ss and
the value of � does not exceed 1, see Fig. 8.9a. These trajectories correspond to the
slow regimes.

With ˛ < e=4 the slow curve S consists of two separate branches. The jump
pointsA1 andA2 divide these branches into stable (Ss1 and Ss2 ) and unstable (Su

1 and
Su
2 ) parts, and the system’s trajectories, having reached the jump point A1 along Ss1

at the tempo of the slow variable jump into the explosive regime, see Fig. 8.9c.
Due to the continuous dependence of the right-hand side of (8.33), (8.34) on the

parameter ˛ there are some intermediate trajectories in the region between those
shown above in Fig. 8.9a, b in the neighborhood of ˛ D e=4, and also a critical
trajectory. With ˛ D e=4 the slow curve S has a self-intersection point A.1; 1=2/.

The canard, passing along the stable part of slow curve Ss1 and then along the
unstable part Su

2 at some value of ˛ (see Fig. 8.9b), is taken as a mathematical object
to model the critical trajectory, which corresponds to a chemical reaction separating
the domain of self-acceleration reactions, i.e. the explosive reactions, .˛ < ˛�/ and
the domain of non-explosive reactions .˛ > ˛�/. The critical value of the parameter
˛ D ˛� corresponding to this trajectory is found in the form

˛� D ˛0 C "˛1 C : : : ; where ˛0 D e=4: (8.35)
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Fig. 8.10 Canard trajectories of system for " D 0:05, ˛0 D 0:659941603; ˛00 D
0:659941646; ˛000 D 0:659952218

Note that there is one more trajectory passing along Su
" and Ss" in Fig. 8.9b.

This trajectory, passing along Su
1 and then along Ss2 , is a false canard which does

not correspond to any chemical regime. The value ˛ D ˛�� corresponds to this
trajectory. At ˛ > ˛�� we get a region of slow regimes and the trajectories of
system (8.33), (8.34) will pass along the stable part of slow curve, see Fig. 8.9a.

The transition trajectories between Ss" and Su
" correspond to the interval

.˛�; ˛��/, see Fig. 8.10 and note ˛0; ˛00; ˛000 2 .˛�; ˛��/. To calculate the critical
value of the parameter ˛ D ˛� (and ˛ D ˛��) we substitute (8.35) and the
expression for the corresponding canard [59, 60]

 D H.�; "/ � H0.�/C "H1.�/C : : :

into (8.33), (8.34). We write (8.33), (8.34) as

"
d

d�
D "

d

d�

d�

d�
D d

d�
Œ.1 � /e� � ˛��

to get

�

H.�; "/ .1 �H.�; "// e� � ˛."/��H 0.�; "/ D "H.�; "/ .1 �H.�; "// e�

or, in more detailed form,




.H0.�/C "H1.�/C : : : / .1 �H0.�/ � "H1.�/� : : : / e�

�.˛0 C "˛1 C : : : /�

�h

H
0

0.�/C "H
0

1.�/C : : :
i

D " .H0.�/C "H1.�/C : : : / .1 �H0.�/� "H1.�/ � : : : / e� :
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Equating the coefficients of like powers of " we get

g.H0.�/; �/ D H0.1 �H0/e
� � ˛0� D 0; (8.36)

since H
0

0.�/ ¤ 0, and

H0 .1 �H0/ e
� D H 0

0

�

H1.1 � 2H0/e
� � ˛1�

	

CH 0
1

�

H0 .1 �H0/ e
� � ˛0�/

	 D H 0
0

�

H1.1 � 2H0/e
� � ˛1�

	

;

using (8.36). From these equations we obtain

H0.�/ D 1

2
˙
r

1

4
� ˛0�e�� ;

H1.�/ D H0.1 �H0/e
� C ˛1�H

0
0

H 0
0.1 � 2H0/e�

D �.˛1H
0
0 C ˛0/

H 0
0.1 � 2H0/e�

:

The coefficients in the expression (8.35) ˛i .i D 0; 1; : : : / are found by requiring
the functions Hi D Hi.�/ to be continuous at � D 1. We note from the form
of H1 D H1.�/ it has a zero under the line when � D 1. Thus we require
˛1 D �˛0=H 0

0.1/; where the valueH 0
0.1/ can be found from Eq. (8.36) after double

differentiation with respect to � :
n

g�� C 2g�H0 C gH0H0
�

H 0
0

�2 C gH0H
00
0

o

ˇ
ˇ�D1 D 0;

or by expanding about � D 1, to give H 0
0.1/ D ˙p˛0=2e: Hence

H 0
0.1/ D ˙ 1

2
p
2
:

We take “C” for the canard, because the function H0.�/ monotonically increases,
and “�” for the false canard, because H0.�/ monotonically decreases in this case.
Thus, we have

˛� D e=4.1� 2
p
2"/CO."2/;

˛�� D e=4.1C 2
p
2"/CO."2/:

Note that critical regimes of combustion were investigated in [1, 3, 37, 43, 52, 55,
57, 89, 107, 108, 116, 165, 166, 193]
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8.5.4 Canards and Black Swan in a Model of a 3-D
Autocatalator

In this section a two-dimensional stable–unstable slow integral manifold (black
swan), consisting entirely of canards, which simulates the critical phenomena for
different initial data of the dynamical system, is constructed. It is shown that this
procedure leads to the phenomenon of auto-oscillations in the chemical system. The
application of a black swan permits us to take into account small perturbations in
the chemical systems.

A model of a three-dimensional autocatalator has the form [135, 137]:

dx

d�
D �.5=2C y/ � xz2 � x;

dy

d�
D z � y; (8.37)

"
dz

d�
D xz2 C x � z;

where

x � 0; y � 0; z � 0; 0 � � < 1: (8.38)

The system (8.37) simulates a sort of Belousov–Zhabotinsky reaction. The variables
x, y and z represent dimensionless concentrations of three chemical reagents, " is a
small positive parameter, � is a bifurcation parameter.

The slow surface (see Fig. 8.11) of the system (8.37) is described by the equation

F.x; y; z/ D xz2 C x � z D 0:

The breakdown surface, which is described by

F D 0;
@F

@z
D 2xz � 1 D 0;

consists of two straight lines, but only one

x D 0:5; z D 1 (8.39)

has physical meaning. The other is x D �0:5, z D �1 and these violate (8.38).
The breakdown surface divides the slow surface into three leaves Su

1 (z > 1), Su
2

(z < 1), Ss (jzj < 1, see Fig. 8.11), which are zeroth order approximations for the
corresponding slow integral manifolds Su

1;", S
u
2;" and Ss" . Manifolds Su

1;" and Su
2;" are

unstable and Ss" is stable. Note that the part of Ss" with 0 � x < 0:5 and Su
1;" are

situated in the domain of interest as given by (8.38).
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Fig. 8.11 The slow surface of the system (8.37)

The system (8.37) has an equilibrium at P , where dx
d�

D dy
d�

D dz
d�

D 0, given by



10�.1� �/

29�2 � 8�C 4
;

5�

2.1� �/
;

5�

2.1� �/

�

;

and with � D 0 this equilibrium is a stable node and lies at .0; 0; 0/. In [158] it
has been shown that P is a stable equilibrium (node) on the stable leaf of the slow
surface when 0 � � < 2=7 and it is an unstable equilibrium (saddle) on the unstable
leaf Su

1 when � > 2=7.
The slow surface is an approximation to a slow integral manifold (for " D

0), hence it is possible to determine the basic types of chemical regimes and
corresponding values of the control parameter �.

With 0 � � < 2=7 a trajectory of the system (8.37), starting from an initial point
in the basin of attraction of the stable slow integral manifold Ss" , follows Ss" for a
short time and tends to the stable equilibrium P as � ! 1, see Fig. 8.12a. This
behavior corresponds to the slow chemical regime.

With � > 2=7 a trajectory of (8.37) will follow the Ss" to the breakdown
line (8.39). After this time, z.�/ will increase rapidly, see Fig. 8.12b. This behavior
characterizes the explosive regime. The point P in Fig. 8.12b is the equilibrium
point .0:4; 1:667/ of the system corresponding to� D 0:4. It lies on the slow surface
above the breakdown curve whose xOz-projection is .0:5; 1/.

Due to the continuous dependence of the right-hand side of (8.37) on the
parameter � there is a critical trajectory in the neighborhood of � D 2=7, which
separates the two regions of the chemical reactions described above.

The availability of the additional scalar parameter � provides the possibility of
gluing Ss" and Su

1;" at one point of the breakdown line (8.39). The canard trajectory
passes through this point.



8.5 Laser and Chemical Models 169

z

x

P�

z

x

P�

a b

Fig. 8.12 xOz-projection of the slow surface (dashed line) and the trajectory (solid line) of system
(8.37); " D 0:01 and (a) � D 0:1, (b) � D 0:4. The arrows indicate increasing time

The canard plays the role of a separating solution, and is taken as a mathematical
object to model the critical trajectory corresponding to the critical value � D �� D
2=7 C O."/, ." ! 0/. This means that the canard simulates a chemical reaction
separating the domain of self-accelerating reactions .� > ��/ and the domain of
slow reactions .� < ��/.

8.5.4.1 Canard in the 3-D Autocatalator

We can find the canard solution, and corresponding critical value of parameter � D
��, by the following asymptotic expansions

z D z.x; "/ D '0.x/C "'1.x/C "2'2.x/C : : : ; (8.40)

y D y.x; "/ D  0.x/C " 1.x/C "2 2.x/C : : : ; (8.41)

�� D �."/ D �0 C "�1 C "2�2 C : : : : (8.42)

From (8.37) and (8.40)–(8.42) using the invariance equation

"
dz

dx

dx

d�
D "

dz

d�
;

dy

dx

dx

d�
D dy

d�
;

we have

"z0.x; "/
h

� .5=2C y.x; "//� xz2.x; "/� x
i

D xz2.x; "/C x � z.x; "/;

y0.x; "/
h

� .5=2C y.x; "// � xz2.x; "/ � x
i

D z.x; "/ � y.x; "/



170 8 Canards and Black Swans

or, in more detailed form,

"
h

' 0
0 C "' 0

1 C "2'22
0 C : : :

ih�

�0 C "�1 C "2�2 C : : :
�

� �5=2C  0 C " 1 C "2 2 C : : :
� � x

�

'0 C "'1 C "2'2 C : : :
�2 � x

i

D x
�

'0 C "'1 C "2'2 C : : :
�2 C x � '0 � "'1 � "2'2 � : : : ; (8.43)

h

 0
0 C " 0

1 C "2 0
2 C : : :

ih�

�0 C "�1 C "2�2 C : : :
�

� �5=2C  0 C " 1 C "2 2 C : : :
��x �'0 C "'1 C "2'2 C : : :

�2 �x
i

D '0 C "'1 C "2'2 �  0 � " 1 � "2 2 C : : : : (8.44)

Setting " D 0 in (8.43), (8.44) we obtain

x'20 � '0 C x D 0;

 0
0

h

�0 .5=2C  0/ � x'20 � x
i

D '0 �  0;
or

x'20 � '0 C x D 0; (8.45)

 0
0

h

�0 .5=2C  0/ � '0
i

D '0 �  0: (8.46)

Then Eq. (8.45) defines the function '0 D '0.x/, the first term in z, and Eq. (8.46)
defines the function  0 D  0.x/, the first term in y.

We now equate terms in "1 in (8.43), (8.44):

' 0
0

h

�0 .5=2C  0/� x'20 � x
i

D '1.2x'0 � 1/;

 0
1

h

�0 .5=2C 0/�x'20�x
i

C 0
0

h

�1 .5=2C 0/C�0 1�2x'0'1
i

D '1� 1

or, taking into account (8.45),

' 0
0

h

�0 .5=2C  0/� '0

i

D '1.2x'0 � 1/; (8.47)

 0
1

h

�0 .5=2C  0/� '0

i

C  0
0

h

�1 .5=2C  0/C �0 1 � 2x'0'1

i

D '1 �  1:
(8.48)

On the breakdown surface (8.39) we have 2x'0 � 1 D 0. By continuity of the
function '1 D '1.x/ we thus require the following condition from (8.47)

�0 .5=2C  0 .0:5//� '0 .0:5/ D 0:
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From this and (8.39) we obtain

�0 D 1

5=2C  0.0:5/
; (8.49)

since '0 .0:5/ D 1. Next, equating terms in "2 in (8.43), (8.44) and applying (8.45),
we get

' 0
0

h

�1 .5=2C  0/C �0 1 � 2x'0'1
i

C ' 0
1

h

�0 .5=2C  0/� '0
i

D x'21 C .2x'0 � 1/'2; (8.50)

 0
0

h

�0 2 C �1 1 C �2 .5=2C  0/� 2x'0'2 � x'21
i

C 0
1

h

�1 .5=2C  0/C�0 1 � 2x'0'1
i

C 0
2

h

�0 .5=2C  0/�'0
i

D'2� 2:

On the breakdown line (8.39) the coefficient of the function '2 D '2.x/ in (8.50)
is equal to zero. To avoid a discontinuity in this function we require, taking into
account (8.49), the following condition (the remaining terms sum to zero)

' 0
0 .0:5/

h

�1 .5=2C  0 .0:5//C �0 1 .0:5/� '0 .0:5/ '1 .0:5/
i

D 0:5'21 .0:5/ :

(8.51)

To calculate the value ' 0
0.0:5/ we differentiate (8.45) with respect to x:

'20 C ' 0
0

�

2x'0 � 1
�

C 1 D 0:

The coefficient at '00 in this expression is equal to zero on the breakdown surface.
Therefore, differentiating the last equation with respect to x, we have

2' 0
0

�

2'0 C x' 0
0

�

C ' 00
0

�

2x'0 � 1
�

D 0:

On the breakdown line 2x'0 � 1 D 0 and then '00 D �2'0=x, i.e.

' 0
0 .0:5/ D �4;

on the breakdown line. Substituting this value into (8.51) we find

�1 D '1.0:5/Œ1 � '1.0:5/=8�� �0 1.0:5/

5=2C  0.0:5/
: (8.52)

The expressions (8.45)–(8.49), (8.52) define the first-order approximations to the
critical value (8.42) of the parameter � that characterizes the rate of the chemical
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reaction and the corresponding canard (8.40), (8.41) of the system. This canard
simulates the critical regime, separating slow chemical regimes from regimes with
a self-acceleration.

Note the initial data for the system (8.37) are not fixed. With concrete initial
data x.0/, y.0/, z.0/ we can glue the stable and unstable slow integral manifold at
one point on the breakdown line (8.39). The canard passes through this point and
corresponds to the initial value problem for (8.46), (8.48). Thus, a canard is a result
of gluing stable and unstable slow integral manifolds at one point of the breakdown
surface.

Let� D �.y; "/ be given as a function. Then the gluing of the stable and unstable
parts of slow integral manifolds can be realized at all points of the breakdown
line (8.39) at the same time. This permits us to construct slow integral manifolds
with changing stability (black swan) consisting entirely of canards. Each simulates
the critical regime corresponding to the specified initial data and passes through a
definite point on the breakdown line.

8.5.4.2 Black Swan Construction

We now take � D �.y; "/ as control function. Then � and the black swan x D
x.y; z; "/ have asymptotic expansions of the form:

� D �.y; "/ D �0.y/C "�1.y/C "2�2.y/C : : : ;

x D x.y; z; "/ D x0.y; z/C "x1.y; z/C "2x2.y; z/C : : : :

Substituting these expansions into the invariance equation

@x

@z

dz

d�
C @x

@y

dy

d�
D dx

d�
;

which for the system (8.37) takes the form

@x.y; z; "/

@z
"�1.x.y; z; "/z2 C x.y; z; "/ � z/C @x.y; z; "/

@y
.z � y/

D �.y; "/.5=2C y/� x.y; z; "/z2 � x.y; z; "/;

and using the slow surface equation

x0z
2 C x0 � z D 0; (8.53)
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we obtain


@x0

@z
C "

@x1

@z
C "2

@x2

@z
C : : :

�

.x1 C "x2 C : : : /.1C z2/

C


@x0

@y
C "

@x1

@y
C "2

@x2

@y
C : : :

�

.z � y/

D �

�0 C "�1 C "2�2 C : : :
�

.5=2C y/ � �

x0 C "x1 C "2x2 C : : :
�

z2

�x0 � "x1 � "2x2 � : : : : (8.54)

Setting " D 0 in (8.54) and taking (8.53) into account, we get

@x0

@z
.1C z2/x1 D �0.5=2C y/ � z: (8.55)

Note that the relationship

@x0

@z
D 1 � z2

.1C z2/2
D 0

holds on the breakdown line (8.39). Noting this, by continuity of the function x1 D
x1.y; z/, we require from (8.55) the condition

�0 D 1

.5=2C y/

to ensure both sides of (8.55) are zero. From this, the expression for @x0
@z , and (8.55)

we have

x1.y; z/ D 1C z2

1C z
: (8.56)

Equating coefficients in " in (8.54), we obtain

@x1

@y
.z�y/C @x1

@z
.1Cz2/x1C @x0

@z
.1Cz2/x2 D �1.5=2Cy/�x1.1Cz2/: (8.57)

To avoid a discontinuity in the function x2 D x2.y; z/ on the breakdown line we
require the continuity condition:

�1 D 3

.5=2C y/
:

Applying (8.53), (8.56) and (8.57) yields

x2.y; z/ D
�

3.1C z/3 � 2z.2C z/.1C z2/2
	

.1C z2/

.1C z/3.1 � z2/
:
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Thus, we obtain the approximation to the black swan

x.y; z; "/ D z

1Cz2
C"1Cz2

1Cz
C"2

�

3.1Cz/3 � 2z.2Cz/.1Cz2/2
	

.1Cz2/

.1Cz/3.1 � z2/
CO."3/;

and the corresponding gluing function

�.y; "/ D ˛."/

.5=2C y/
; ˛."/ D 1C 3"CO."2/: (8.58)

For a given point y D y� on the breakdown line we can find the value �� D
�.y�; "/ from expression (8.58) which corresponds to the canard of the system.
This trajectory lies on the black swan x D x.y; z; "/ and passes through the point
y D y� of the breakdown line. It should be noted that the choice of the gluing point
y D y� is equivalent to the choice of the starting point of the trajectory, or the initial
conditions.

Note that gluing the stable and unstable slow integral manifolds reduces the
original system (8.37) to the following form

dx

d�
D ˛."/� xz2 � x; (8.59)

"
dz

d�
D xz2 C x � z; (8.60)

dy

d�
D z � y; (8.61)

by the definition of �.y; "/ in (8.58).
The system (8.59)–(8.61) has a black swan, which is a cylindrical surface. All

trajectories on this surface are canards (see Figs. 8.13, 8.14, and 8.15), but only one
of them is a limit cycle, and this cycle is asymptotically orbitally stable [158].

8.5.5 Gas Combustion in a Dust-Laden Medium

We now consider models of combustion of a rarefied gas mixture in an inert
porous, or in a dusty, medium. We assume that the temperature distribution and
phase-to-phase heat exchange are uniform. The chemical conversion kinetics are
represented by a one-stage, irreversible reaction. The dimensionless model in this
case has the form [56]

" P� D �./ exp .�= .1C ˇ�//� ˛.� � �c/� ı�;

�c P�c D ˛.� � �c/; (8.62)

P D �./ exp .�= .1C ˇ�//;

.0/ D 0= .1C 0/ D N0; �.0/ D �c.0/ D 0:
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Fig. 8.13 The slow surface and the canard of the system (8.59)–(8.61) with " D 0:01 and initial
point x D 0:1, y D 1, z D 1. The trajectory of the system tends to the limit cycle (dark line)
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Fig. 8.14 xOz-projection of the canard of the system (8.59)–(8.61) with " D 0:01 and initial point
x D 0:1, y D 1, z D 1

Here, � and �c are the dimensionless temperatures of the reactant phase and of the
inert phase;  is the depth of conversion; 0 is the parameter for autocatalyticity
(this kinetic parameter characterizes the degree of self-acceleration of the reaction:
the lower the value, the more marked the autocatalytic reaction will be); the small
parameters ˇ and " characterize the physical properties of a gas mixture. The terms
�ı� and �˛.� � �c/ reflect the external heat dissipation and phase-to-phase heat
exchange. The parameter �c characterizes the physical features of the inert phase.
Depending on the relation between values of the parameters, the chemical reaction
either moves to a slow regime with decay of the reaction, or into a regime of
self-acceleration which leads to an explosion. So, if we change the value of one
parameter, with fixed values of the other parameters, we can change the type of
chemical reaction. Thus, it is possible to consider this problem as a special control
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Fig. 8.15 xOy-projection of
the canard of the system
(8.59)–(8.61) with " D 0:01

and initial point x D 0:1,
y D 1, z D 1 y

x

problem. For example, if we take heat loss from the gas phase as a control action,
we consider ı as a control variable. If the control variable is �c it means regulation
of the dust level in the reactant vessel.

The following two cases are considered: �./ D 1 �  .0 D 0/ (first-order
reaction) and �./ D .1 � / (autocatalytic reaction).

8.5.5.1 Autocatalytic Reaction

Let us consider first the combustion model for the case of autocatalytic reaction
(�./ D .1 � /). To simplify the calculations we ignore the small parameter ˇ
(a widespread assumption in thermal explosion theory, and more detailed analysis
shows that the differences between the results obtained for cases ˇ D 0 and ˇ ¤ 0

are not essential). The slow surface of the system (8.62) is described by the equation

.1 � /e� � ˛.� � �c/ � ı� D 0: (8.63)

The equation

.1 � /e� � ˛ � ı D 0; (8.64)

(this is the derivative of (8.63) w.r.t. �) together with (8.63) define the breakdown
curve L , which separates the slow surface into stable and unstable parts.

We consider �c as a control parameter and recall that it means regulation of dust
levels in the reactant vessel. In this case we construct a special type of feedback
control.

We seek the critical function �c.�; "/ and the black swan �c D �c.; �; "/ in the
form of asymptotic expansions:

�c D �0.�/C "�1.�/CO."2/; (8.65)

�c D P0.; �/C "P1.; �/CO."2/: (8.66)
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We use the black swan for the following reasons. We construct the canard modelling
the critical regime with fixed initial point (or equivalently gluing point). However
during a chemical process perturbations are possible. Due to the perturbations the
trajectory of the system deviates from the canard and as a result a qualitative change
of system behaviour is possible. When we construct the black swan, i.e. we glue the
slow invariant manifold at all points of the breakdown curve, the trajectory of the
system in the case of perturbations just goes from one canard to another. This means
that there is no deviation from the selected regime.

From the invariance equations for system (8.62)

"�c
d�c

dt
D �c

�
@�c

@�
"
d�

dt
C "

@�c

@

d

dt

�

(8.67)

and asymptotic expansions (8.65), (8.66) we get

�

�0 C "�1 C "2�2 C "3 : : :
�
�
@P0

@�
C "

@P1

@�
C "2

@P2

@�
C "3 : : :

�

� �.1� /e� � ˛.� � P0 � "P1 � "2P2 � "3 : : : / � ı�	

C" ��0 C "�1 C "2�2 C "3 : : :
�

�
�
@P0

@
C "

@P1

@
C "2

@P2

@
C "3 : : :

�

.1� /e�

D "˛.� � P0 � "P1 � "2P2 � "3 : : : /: (8.68)

Equating coefficients in "0 and "1 in (8.68), we obtain

.1� /e� � ˛Œ� � P0.; �/� � ı� D 0;

.1� /e��0
@P0

@
C ˛P1�0

@P0

@�
D ˛.� � P0/;

which imply

P0.; �/ D ˛�1Œ.˛ C ı/� � .1 � /e� �; (8.69)

P1.; �/ D
�

˛.� � P0/� .1� /e�
@P0

@
�0

�

=˛�0
@P0

@�
: (8.70)

To ensure continuity of the function P1.; �/, since the relationship @P0
@�

D 0 holds
on the breakdown line L , see (8.63) and (8.64), from (8.70) we get

�

.1� /e��0
@P0

@
� ˛.� � P0/

�

ˇ
ˇL

D 0;
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or, using (8.64) and (8.69),

.˛ C ı/�0

q

e2� � 4.˛ C ı/e� D ˛ C ı � ı�:

Note that (8.64) gives us two expressions for :

 D 1˙p

1� 4.˛ C ı/e��
2

;

but we choose only one (with “C”) because the function .�/ monotonically
increases. Finally we obtain

�0.�/ D ˛.˛ C ı � ı�/

.˛ C ı/
p

e2� � 4.˛ C ı/e�
:

Similarly, equating the coefficients in "2 in (8.68) we obtain

�1.�/ D �
˛P1 C �0

�

.1 � /e�
@P1

@
C ˛P1

@P1

@�

�

.1 � /e� @P0
@

:

Thus we have constructed the black swan that guarantees the safety of the physical
process.

8.5.5.2 First-Order Reaction

The case of the first-order reaction (�./ D .1 � /) is now studied. For simplicity
we introduce the dimensionless concentration N D 1� .

The slow surface of the system (8.62) is described by the equation

Ne� � ˛.� � �c/� ı� D 0: (8.71)

The equation

Ne� � ˛ � ı D 0; (8.72)

together with (8.71) define the breakdown curve L , which separates the slow
surface into stable and unstable parts.

We take �c.�; "/ as control function. Then �c.�; "/ and the black swan �c D
�c. N; �; "/ have asymptotic expansions of the form:

�c D �0.�/C "�1.�/CO."2/;

�c D P0. N; �/C "P1. N; �/CO."2/:
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From the invariance equations (8.67) for system (8.62) and asymptotic expansions
for �c and �c we get

�

�0 C "�1 C "2�2 C "3 : : :
�
�
@P0

@�
C "

@P1

@�
C "2

@P2

@�
C "3 : : :

�

� � Ne� � ˛.� � P0 � "P1 � "2P2 � "3 : : : / � ı�	

�" ��0 C "�1 C "2�2 C "3 : : :
�
�
@P0

@ N C "
@P1

@ N C "2
@P2

@ N C "3 : : :

�

Ne�

D "˛
�

� � P0 � "P1 � "2P2 � "3 : : :
	

: (8.73)

Equating coefficients of "0 and "1 in (8.73), we obtain

Ne� � ˛.� � P0/ � ı� D 0;

˛P1�0
@P0

@�
� Ne��0 @P0

@ N D ˛.� � P0/;

which imply

P0. N; �/ D .ı� � Ne� /=˛ C �; (8.74)

P1. N; �/ D
�

˛.� � P0/C Ne� @P0
@ N �0

�

=˛�0
@P0

@�
: (8.75)

To ensure continuity of the function P1. N; �/, since the relationship @P0
@�

D 0 holds
on the breakdown line L , from (8.75) we get

�0.�/ D

2

6
6
4

�˛.� � P0/
Ne� @P0

@ N

3

7
7
5

ˇ
ˇL

;

or, using (8.72) and (8.74),

�0.�/ D ˛
˛ C ı � ı�

.˛ C ı/e�
:

Then (8.75) takes the form

P1. N; �/ D �ı� Ne�=.˛ C ı � ı�/:

Similarly we can find

�1.�/ D �˛
2ı�

�

.˛ C ı � ı�/.˛ı� � ˛ � ı/C ˛ı.˛ C ı/
	

.˛ C ı/2.˛ C ı � ı�/2
:
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Let us now consider the case when ı is a control function, which means that we
control the combustion process by regulating the external heat dissipation [156].

By the change of variables:

� D �0 C v; �0 D ln ˛��1
c ;

˛a.v; "/ D ı .�0 C v; "/ .�0 C v/; t D ˛��1
c �; N D 1 � 

the system (8.62) is transformed to the form:

"Pv D Nev � �c.�0 C v � �c/ � �ca.v; "/;
P�c D �0 C v � �c; (8.76)

PN D �Nev:

We find the critical function a.v; "/ and slow integral manifold �c D �c. N; v; "/
in the form of asymptotic expansions:

�c D P0. N; v/C "P1. N; v/C "2P2. N; v/C "z;

a.v; "/ D a0.v/C "a1.v/C "2!; (8.77)

when P0. N; v/ is defined by

Nev � �c.�0 C v � P0/� �ca0 D 0: (8.78)

Due to the condition @P0
@v D 0 on the breakdown curve, from Eq. (8.78) we obtain

Nev � �c � �c @a0
@v

D 0: (8.79)

The invariance equation

"Œ�0 C v � P0 � "P1 � "2P2 � "z� D
�
@P0

@v
C "

@P1

@v
C "2

@P2

@v
C "

@z

@v

�

�Œ Nev � �c.�0 C v � P0 � "P1 � "2P2 � "z/ � �c.a0 C "a1 C "2!/�

�"
�
@P0

@ N C "
@P1

@ N C "2
@P2

@ N C "
@z

@ N
�

Nev (8.80)

follows from (8.76), (8.77).
Hence, for z D 0 and the terms at O."/ in (8.80) we obtain

�0 C v � P0 D @P0

@v
�c.P1 � a1/� @P0

@ N Nev
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or, due to (8.78),

Nev � �ca0

�c
D �c

@P0

@v
.P1 � a1/ � @P0

@ N Nev: (8.81)

Thus, on the breakdown curve we have:

Nev � �ca0

�c
D �@P0

@ N Nev:

From this and (8.79) the equation for a0.v/

@a0

@v
.1 � ev/ D a0 � .1 � ev/ (8.82)

follows.
The function a0.v/:

a0.v/ D vev C 1 � ev

1 � ev
(8.83)

is the continuous solution of Eq. (8.82).
The function

P1 D a1 C Nev � �ca0 � Ne2v

�2c .1C a00 � ��1
c Nev/

(8.84)

is determined from (8.78), (8.81).
The equation

�P1 D @P0

@v
�c.P2 � !/C @P1

@v
�c.P1 � a1/� @P1

@ N Nev

is obtained from (8.80) with z D 0 at O."2/.
Hence, on the breakdown curve we have

�P1 D @P1

@v
�c.P1 � a1/ � @P1

@ N Nev:

From this and (8.83), (8.84) the equation for a1.v/ is

@a1

@v
.1 � ev/ D a1 � .1 � ev/.1C ev/

�c
:
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The function

a1.v/ D 1 � ev

�c

is the continuous solution of this equation.
Thus, we obtain the control function

a.v; "/ D vev C 1 � ev

1 � ev
C "

1� ev

�c
C "2!

or, in the original variables,

ı D ı.�; "/ D ��1
"

˛

�

� � ln˛��1
c � 1� e� C ˛��1

c

˛��1
c � e�

C ".˛��1
c � e� /CO."2/

#

;

corresponding to the black swan �c D �c.; �; "/ of the system.
For a fixed point � D �� of the breakdown curve we can find the value ı� from

the last expression which corresponds to the canard of the system. This trajectory
passes through the point �� of the breakdown curve and simulates the critical
regime. It should be noted that the choice of the gluing point �� is equivalent to
the choice of the initial point �.0/ of the trajectory. For example, with �.0/ D 0,
�c D 1=6, " D 0:01, ˛ D 2:34 the critical regime corresponds to ı� D 1:10797.
At ı < ı� we get a thermal explosion in the chemical system, at ı > ı� we get a
non-explosive reaction.



Chapter 9
Appendix: Proofs

Abstract In this chapter we give the proof of a number of assertions from previous
chapters. The level of mathematical sophistication required of the reader is higher
than earlier chapters. For this reason, and if the readers’ primary interest is in the
application of the techniques, this chapter may be skipped.

9.1 The Existence and Properties of Bounded Solutions

In this book we have considered the differential system

dx

dt
D f .x; y; t; "/;

"
dy

dt
D g.x; y; t; "/;

(9.1)

and integral manifolds y D h.x; t; "/ as a manifolds of solutions x D x.t; "/; y D
y.t; "/ which can be represented in the form

x D x.t; "/; y D h.x.t; "/; t; "/: (9.2)

If h.x; t; "/ is a bounded function it is possible to say that the y-component of the
class of solutions (9.2) is bounded or that these solutions are bounded with respect
to the components of the vector y. We will now show how to prove the existence
of an integral manifold for the simple case of solutions bounded on the real line.
Moreover, to make the proof as simple as possible, we begin with the case of a
scalar differential equation.

9.1.1 Scalar Linear Equation

We consider the scalar differential equation

" Py D �ay C g.t/; (9.3)

© Springer International Publishing Switzerland 2014
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with the positive coefficient a and a function g.t/ which is continuous and bounded
on .�1;1/:

jg.t/j � M; � 1 < t < 1:

The function '.t; "/

'.t; "/ D 1

"

tZ

�1
exp




�a.t � s/
"

�

g.s/ds

is a solution to (9.3) which is defined and bounded on .�1;1/ because

j'.t; "/j �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

"

tZ

�1
exp




�a.t�s/
"

�

jg.s/jds

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� 1

"

tZ

�1
exp




�a.t�s/
"

�

Mds D M

a
;

and

"
d'.t; "/

dt
D �a

"

tZ

�1
exp




�a.t � s/

"

�

g.s/ds C g.t/ D �a'.t; "/C g.t/:

We may consider y D '.t; "/ as a simple example of an integral manifold. We will
show that '.t; "/ is attractive. Note that

'.t0; "/ D 1

"

t0Z

�1
exp




�a.t � s/

"

�

g.s/ds:

By linearity an arbitrary solution of (9.3) can be represented in the form

y.t; "/ D exp




�a.t � t0/
"

�

y.t0; "/C 1

"

tZ

t0

exp




�a.t � s/
"

�

g.s/ds:

The same representation is true for '.t; "/, viz.,

'.t; "/ D exp




�a.t � t0/
"

�

'.t0; "/C 1

"

tZ

t0

exp




�a.t � s/
"

�

g.s/ds:

Hence, for y.t; "/� '.t; "/ we obtain the estimate
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jy.t; "/� '.t; "/j D exp




�a.t � t0/
"

�

jy.t0; "/� '.t0; "/j :

This proves the exponential stability, or attractivity, of '.t; "/.

9.1.2 Scalar Nonlinear Equation

Consider the following scalar differential equation

" Py D �ay C g.y; t/; (9.4)

with positive coefficient a and function g.y; t/ which is continuous, bounded

jg.y; t/j � M;

and satisfies the Lipschitz condition

jg.y; t/ � g. Ny; t/j � Ljy � Nyj

on t 2 .�1;1/; y 2 .�1;1/, where L is a constant. If the function '.t; "/ is
a solution to (9.4) which is defined and bounded on .�1;1/ then it satisfies the
equation

'.t; "/ D 1

"

tZ

�1
exp




�a.t � s/

"

�

g.'.s; "/; s/ds: (9.5)

To check the solution (9.5) we consider the inequality

j'.t; "/j �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

"

tZ

�1
exp




�a.t � s/
"

�

jg.'.s; "/; s/jds

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� 1

"

tZ

�1
exp




�a.t � s/
"

�

Mds D M

a
;

and the identity

"
d'.t; "/

dt
D �a

"

tZ

�1
exp




�a.t � s/

"

�

g.'.s; "/; s/ds C g.'.s; "/; t/

D �a'.t; "/C g.'.t; "/; t/:
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Firstly we consider the case when L is small so that

L

a
< 1: (9.6)

In that case we introduce the metric space C.D/: Its elements are the scalar
functions p.t; "/; bounded by the value D i.e., (jp.t; "/j � D) and continuous for
t 2 .�1;1/ and 0 � " � "0 for sufficiently small positive "0. C.D/ is a complete
space with the metric

d.p; p/ D sup jp.t; "/� p.t; "/j:

For the arbitrary p; p 2 C.D/ with D � M=a we use (9.5) to construct the
mapping T .p/:

T .p/.t; "/ D 1

"

tZ

�1
exp




�a.t � s/

"

�

g.p.s; "/; s/ds: (9.7)

Then the inequality

jT .p/.t; "/j � M

a
� D;

follows immediately. This bound means that the operator T .p/ transforms the
complete metric space C.D/ into itself.

The inequality

jT .p/.t; "/�T .p/.t; "/j �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

"

tZ

�1
exp




�a.t�s/
"

�

Œg.p.s; "/; s/�g.p.s; "/; s/�ds

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� 1

"

tZ

�1
exp




�a.t � s/

"

�

Ljp.s; "// � p.s; "/jds

� 1

"

tZ

�1
exp




�a.t � s/

"

�

Ld.p; p/ds D L

a
d.p; p/

implies

d.T .p/; T .p// � L

a
d.p; p/

with L=a < 1. This means that the operator T .p/ is contracting. Hence, due
the Banach Contraction Principle T .p/ has a unique fixed point in C.D/: Thus
Eq. (9.5), which may be rewritten as
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p.t; "/ D T .p/.t; "/;

has a unique solution p D '.t; "/ in C.D/. To prove that this solution is attractive
we need the following inequality [133]:
Gronwall-Bellman Inequality. Let I denote an interval on the real line of the form
Œt0;C1/. Let c and ˇ be nonnegative numbers and u be a real-valued continuous
function defined on I . If u satisfies the integral inequality

u.t/ � c C
Z t

t0

ˇu.s/ ds; 8t 2 I;

then

u.t/ � c exp .ˇ.t � t0// ; t 2 I:
To check that '.t; "/ is attractive note that

'.t0; "/ D 1

"

t0Z

�1
exp




�a.t � s/
"

�

g.'.s; "/; s/ds:

It is easily checked from (9.4) that

y.t; "/ D exp




�a.t � t0/

"

�

y.t0; "/C 1

"

tZ

t0

exp




�a.t � s/

"

�

g.y.s; "/; s/ds;

is the solution that satisfies the arbitrary initial condition y.t0; "/. The same
representation holds for '.t; "/:

'.t; "/ D exp




�a.t � t0/

"

�

'.t0; "/C 1

"

tZ

t0

exp




�a.t � s/

"

�

g.'.s; "/; s/ds:

Hence, for y.t; "/� '.t; "/ we obtain the estimate

jy.t; "/� '.t; "/j � exp




�a.t � t0/
"

�

jy.t0; "/� '.t0; "/j

C1

"

tZ

t0

exp




�a.t � s/

"

�

jg.'.s; "/; s/ � g.y.s; "/; s/jds

� exp




�a.t � t0/
"

�

jy.t0; "/� '.t0; "/j

C1

"

tZ

t0

exp




�a.t � s/

"

�

Lj'.s; "/� y.s; "/jds:
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Multiplying the last inequality by

exp



a.t � t0/

"

�

;

we obtain the inequality

jy.t; "/� '.t; "/j exp



a.t � t0/

"

�

� jy.t0; "/� '.t0; "/j

C1

"

tZ

t0

exp



a.s � t0/

"

�

Lj'.s; "/�y.s; "/jds:

Setting

c D jy.t0; "/� '.t0; "/j ; ˇ D L

"
; u D exp



a.t � t0/

"

�

j'.t; "/� y.t; "/j;

from the Gronwall–Bellman Inequality we obtain

jy.t; "/� '.t; "/j exp



a.t � t0/

"

�

� jy.t0; "/� '.t0; "/j exp



L.t � t0/

"

�

or

jy.t; "/� '.t; "/j � jy.t0; "/� '.t0; "/j exp


�.a � L/.t � t0/

"

�

;

since L
a

� 1. This proves the exponential stability or attractivity of '.t; "/.
Thus, the existence and the attractivity of a slow invariant manifold are proved in

the case 0C1 (see Sect. 3.1). Note, in conclusion, that the corresponding asymptotic
expansion was also constructed there.

9.2 The Existence and Properties of Slow Integral Manifolds

We return now to the general case and consider again the non-autonomous
system (9.1). For " D 0 we obtain the reduced system from (9.1), viz, dx

dt D
f .x; y; t; 0/, 0 D g.x; y; t; 0/. Let the equation g.x; y; t; 0/ D 0 have a solution
y D �.x; t/; where the function �.x; t/ is defined for all x 2 R

m; t 2 R, and it is
an isolated solution. The following conditions are satisfied:
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(I) The functions f , g and � are uniformly continuous and bounded together with
their partial derivatives with respect to all variables up to the .k C 2/�order
.k � 0/.

(II) The eigenvalues �i .x; t/.i D 1; : : : ; n/ of the matrix B.x; t/ D
gy.x; �.x; t/; t; 0/ satisfy the inequality

Re�i.x; t/ � �2� < 0: (9.8)

These assumptions are extremely helpful in transforming the system (9.1), by the
change of variables y D y1 C �.x; t/, into the system

Px D X.x; y1; t; "/;

" Py1 D B.x; t/y1 C Y.x; y1; t; "/; (9.9)

where

B D gy.x; �.x; t/; t; 0/;

X D f .x; y1 C �.x; t/; t; "/;

Y D g.x; y1 C �.x; t/; t; "/� gy.x; �.x; t/; t; 0/y1

�"�t .x; t/ � "�x.x; t/X.x; y1; t; "/:

Using the the Taylor-series expansion for a vector-function with the integral form of
the remainder term we represent the function Y as follows:

Y D
1Z

0

Œgyy.x; �.x; t/C �y1; t; 0/y1�y1d�

C"Œ
1Z

0

g".x; �.x; t/C y1; t; �"/d�

��x.x; t/X.x; y1; t; "/� �t .x; t/�:
From (I) the following bounds may be obtained:

jX.x; y1; t; "/j � A; (9.10)

kY.x; y1; t; "/k � A.ky1k2 C "/; (9.11)

kB.x; t/k � A; (9.12)

kX.x; y1; t; "/� X.x; y1; t; "/k � A.kx � xk C ky1 � y1k/; (9.13)

kY.x; y1; t; "/� Y.x; y1; t; "/k � A.k Oy1k C "/.kx � xk C ky1 � y1k/; (9.14)

kB.x; t/ � B.x; t/k � A.kx � xkC j t � t j/; (9.15)
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where A is a positive number and k Oy1k D maxfky1k; ky1kg. The inequali-
ties (9.11)–(9.15) hold for all

�1 < t; t < 1; x; x 2 R
m; ky1k � 	; ky1k � 	; 0 � " � "0;

where 	 and "0 are positive numbers.
We shall denote by ˝ the domain

˝ D f.x; y1; t; "/ W t 2 R; ky1k � 	; x 2 R
m; 0 � " � "0g;

where X.x; y1; t; "/, B.x; t/ and Y.x; y1; t; "/ are defined above.
Our attention will be focused on the slow integral manifolds of the system (9.9)

which are described by the following equations:

y1 D p.x; t; "/: (9.16)

We shall assume that function p is defined in the domain

˝1 D f.x; t; "/ W x 2 R
m; t 2 R; 0 � " � "0g;

is continuous with respect to t and " in this domain, satisfies the Lipschitz condition
with respect to x and a constant independent of t :

kp.x; t; "/ � p.x; t; "/k � �kx � xk; (9.17)

and its norm is bounded

kp.x; t; "/k � �; (9.18)

for some � > 0. If the trajectory .x.t/; y1.t/; t/ belongs to the integral mani-
fold (9.16), then y1.t/ D p.x.t/; t; "/: Functions x.t/ and y1.t/ D p.x.t/; t; "/

must satisfy the system (9.9), and then

Px D X.x; p.x; t; "/; t; "/: (9.19)

From (9.13) and (9.17) we obtain the inequality

kX.x; p.x; t; "/; t; "/ � X.x; p.x; t; "/; t; "/k � A.1C�/kx � xk: (9.20)

Hence the norm of the right side of Eq. (9.19), kXk, is bounded (with the constant
A) and satisfies the Lipschitz condition with the constant A.1 C �/ independently
of t . Thus there is a unique solution x D '.t/ to Eq. (9.19) at every x0 2 R

m with
an initial condition at t D � :

'.t/ D ˚.t; �; x0; " j p/; ˚.�; �; x0; " j p/ D x0;
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defined at t 2 R: Here the notation .� � � j p/ underlines the dependence of the
solution on the function p:

The function y1 D p.˚.t/; t; "/ is the bounded solution of the equation

" Py1 D B.'.t/; t/y1 C Y.'.t/; y1; t; "/: (9.21)

for all t 2 R. For this reason it must satisfy the integral equation [29] [compare
with (9.5)]

y.�/ D "�1
�Z

�1
U'.�; t; "/Y.'.t/; y.t/; t; "/dt; (9.22)

where U'.t; s; "/ is the fundamental matrix of the homogeneous equation

" Py D B.'.t/; t/y; U'.s; s; "/ D I:

The following bound, which provides the convergence of the improper integral
in (9.22), will be established below:

kU'.�; t; "/k � K"� �
" .��t / K � 1;�1 < t � � < 1: (9.23)

Let x0 D x and '.t/ D ˚.t; �; x; " j p/. Then from (9.22) we get the following
equation for the function p.x; t; "/:

p.x; �; "/ D "�1
�Z

�1
U'.�; t; "/Y.'.t/; p.'.t/; t; "/; t; "/dt: (9.24)

On the other hand, if Eq. (9.24) has a solution which satisfies (9.17), (9.18),
then (9.24) defines the slow integral manifold of system (9.9). We shall give a brief
justification of this fact. For an arbitrary point .x0; y10; t0/; belonging to the surface
y1 D p.x; t; "/; (that is, satisfying the relation y10 D p.x0; t0; "/) Eq. (9.19) has a
solution x D '.t/ D ˚.t; t0; x0; " j p/). Note that Eq. (9.24) implies t < � . The
equality (9.24) and

˚.t; t0; x0; " j p/ D ˚.t; �; ˚.�; t0; x0; " j p/; " j p/

yield the result that the function y1 D p.'.t/; t; "/ is the solution of the Eq. (9.21).
This equality says that the solution at time t , with initial point .x0; t0/, may be
reached by first going to the time � and using this as the initial time for proceeding
to t . Hence Eq. (9.24) may be considered as an operator equation for p:

Now we obtain some auxiliary inequalities. The following statement will often
be used (see, for example, [133]).
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Theorem 3 (Integral Inequality). Let u.t/ be a continuous and positive function
(for all t 2 Œt0; t0 C T �), which satisfies the following inequality:

u.t/ � f .t/C
tZ

t0

Œ'1.t/'2.s/u.s/C  .t; s/�ds;

where f .t/; '1.t/; '2.t/;  .t; s/ are continuous, nonnegative functions for all t 2
Œt0; t0 C T �. Then the following inequality holds:

u.t/� u0.t/ D f .t/C
tZ

t0

 .t; s/dsC'1.t/
tZ

t0

'2.�/f .�/exp

0

@

tZ

�

'1.s/'2.s/ds

1

A d�

C'1.t/
tZ

t0

exp

0

@

tZ

�

'1.s/'2.s/ds

1

A'2.�/

0

@

�Z

t0

 .t; s/ds

1

Ad�:

We note that T may be arbitrarily large. Hence, this estimate is valid for all t � t0
if the functions f;˚1; ˚2;  are defined for t0 � s � t < 1. Similarly, the bound

u.t/ � f .t/C
t0Z

t

Œ'1.t/'1.s/u.s/C  .t; s/�ds

may be considered for t � t0, which yields the inequality u.t/ � u0.t/:
We introduce the metric space C.D;�/: Its elements are the functionsp.x; t; "/;

bounded and continuous in ˝1, with their values in R
n . Besides, these functions

satisfy the conditions (9.17), (9.18) with the metric

d.p; p/ D sup
˝1

kp.x; t; "/ � p.x; t; "/k:

For arbitrary p; p 2 C.D;�/ we consider Eq. (9.19) and establish the validity
of the following statement.

Lemma 1. Let A.1C�/ � ˛: Then the inequality

k˚.t; �; x; " j p/ �˚.t; �; x; " j p/k � kx � xke˛.��t / C d.p; p/

1C�
.e˛.��t / � 1/

(9.25)

holds for all � � t .

Proof. It should be noted that the functions '.t/ D ˚.t; �; x; " j p/ and '.t/ D
˚.t; �; x; " j p/ satisfy the integral equations
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'.t/ D x C
tZ

�

X .'.s/; p.'.s/; s; "/; s; "/ ds

and

'.t/ D x C
tZ

�

X .'.s/; p.'.s/; s; "/; s; "/ ds:

as solutions of corresponding differential equations with initial conditions '.�/ D x

and '.�/ D x.
From (9.14), (9.17) and (9.18), taking into account

kp.'.s/; s; "/; s; "/ � p.'.s/; s; "/k � kp.'.s/; s; "/; s; "/ � p.'.s/; s; "/k
Ckp.'.s/; s; "/; s; "/ � p.'.s/; s; "/k

� �k'.s/ � '.s/k C d.p; p/;

we obtain, for � � t

k'.t/ � '.t/k � kx � xk C
�Z

t

kX .'.s/; p.'.s/; s; "/; s; "/

�X .'.s/; p.'.s/; s; "/; s; "/ kds

� kx � xk C
�Z

t

AŒ.1C�/k'.s/� '.s/k C kp � pk�ds

� kx � xk C
�Z

t

AŒ.1C�/k'.s/� '.s/k C d.p; p/�ds:

Using the Theorem 3 we derive the desired estimate (9.25), on letting

kx � xk D f .t/; A.1C�/ D '1.t/; '2.s/ D 1; Ad.p; p/ D  .t; s/; � � t0

and the right-hand side of (9.25) plays the role of u0.t/: ut
We need the following statement to justify the inequality (9.23) [197]:

Lemma 2. Let the matrix A.t/.�1 < t < 1/ be bounded and satisfy the
Lipschitz condition with respect to t with the constant q: If the real parts of the
eigenvalues of matrix A.t/ do not exceed the number �2� (� > 0) for all t , then
there exist positive numbers K and "0, such that the fundamental matrix U.t; s; "/,
U.s; s; "/ D I; of the equation
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"Pz D A.t/z;

admits the bound

kU.t; s; "/k � Ke��.t�s/=";

for all �1 < s � t < 1; 0 < " � "0.

To prove estimate (9.23) it is sufficient to point out from (9.12) and (9.15), that
kB.t; '.t//k � A and kB.'.t/; t/ � B.'.t/; t /k � A.jt � t j/C k'.t/ � '.t/k �
A.1C A/jt � t j; since k'.t/ � '.t/k � Ajt � t j.

This means that the norm of matrix B.'.t/; t/ is bounded and satisfies the
Lipschitz condition with respect to t; for all real t: Hence, the matrix A.t/ D
B.'.t/; t/ satisfies the conditions of Lemma 2, and the inequality (9.23) follows.

Obviously, the matrix U'.�; t; "/ depends on the choice of the function '. We
shall evaluate the norm of the difference U'.�; t; "/ � U'.�; t; "/, where ' D
˚.t; �; x; " j p/; ' D ˚.t; �; x; " j p/:

The fundamental matrices U' and U' are given by the following differential
equations with initial conditions:

"
dU'

d�
D B.'.�//U'; U'.t; t; "/ D I I

"
dU'

d�
D B.'.�//U'; U'.t; t; "// D I:

Subtracting the second equality from the first

"



d.U' � U'/

d�

�

D B.'.�//
�

U' � U'
�

C .B.'.�// � B.'.�/// U'; U'.t; t; "/� U'.t; t; "// D 0

one can represent the result in integral form

U'.�; t; "/� U'.�; t; "/ D "�1
�Z

t

U'.�; s; "/ŒB.'.s/; s/ � B.'.s/; s/�U'.s; t; "/ds:

The estimates (9.15) and (9.23) yield, for � � t;

kU'.�; t; "/� U'.�; t; "/k � K2A"�1e��"�1.��t /
�Z

t

k'.s/ � '.s/kds: (9.26)

We apply inequality (9.25) and obtain from (9.26), for "˛ � �=2; the inequality
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kU'.�; t; "/� U'.�; t; "/k � 2K2A

�
e��.��t /=2"Œkx � xk C d.p; p/

1C�
�: (9.27)

If we introduce the mapping T :

T .p/.�; x/ D "�1
�Z

�1
U�.�; t; "/Y.�.t/; p.�.t/; t; "/; t; "/dt; (9.28)

where '.t/ D ˚.t; �; x; " j p/; then the following statement is valid.

Lemma 3. The mapping T .p/.�; x/ satisfies the following inequalities:

kT .p/.�; x/k � KA��1.D2 C "/I (9.29)

kT .p/.�; x/ � T .p/.�; x/k � 2KA

�
Œ.D C "/.1C�/

C2KA

�
.D2 C "/�kx � xkI (9.30)

kT .p/.�; x/ � T .p/.�; x/k � 2KA

�.1C�/
Œ.D C "/.1C�/

C2KA

�
.D2 C "/�d.p; p/: (9.31)

Proof. The inequalities (9.11), (9.18), (9.23) yield the following estimate

kT .p/.�; x/k � "�1
�Z

�1
Ke��"�1.��t /A.D2 C "/dt D KA��1.D2 C "/:

Using the bounds (9.14), (9.17), (9.23), (9.25) and (9.27) we obtain

kT .p/.�; x/ � T .p/.�; x/k � "�1
�Z

�1
ŒkU�.�; t; "/k � kY.�.t/; p.�.t/; t; "/; t; "/

�Y.�.t/; p.�.t/; t; "/; t; "/k C kU�.�; t; "/
�U�.�; t; "/k � kY.�.t/; p.�.t/; t; "/; t; "/k�dt

� "�1
�Z

�1
fKe��"�1.��t /A.D C "/Œ.1C�/k�.t/

��.t/k C d.p; p/�C 2K2A

�
Œkx � xk

Cd.p; p/

1C�
�A.D2 C "/e��.��t /=.2"/gdt
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and, finally,

kT .p/.�; x/ � T .p/.�; x/k � 2KA

�
Œ.D C "/.1C�/

C2KA

�
.D2 C "/�Œkx � xk C d.p; p/

1C�
�: (9.32)

Setting p D p and x D x one at a time in the last inequality we obtain the
required bounds (9.30), (9.31).

The proof is now complete. ut
Assume now that D D "D0;� D "�0; while the set C.D;�/ is constructed.
The numbers D0 and �0 will be chosen to obtain the following inequalities for

sufficiently small " .0 < " � "0/ W

2"A.1C "�0/ � �; (9.33)

KA��1.1C "D2
0/ � D0; (9.34)

2KA

�
Œ.D0 C 1/.1C "�0/C 2KA

�
.1C "D2

0/� � �0; (9.35)

"�0=.1C "�0/ < 1: (9.36)

Inequalities (9.30) and (9.31) imply

kT .p/.�; x/k � "D0;

kT .p/.�; x/ � T .p/.�; x/k � "�0kx � xk:

These bounds mean that the operator T .p/ transforms the complete metric space
C."D0; "�/ into itself.

We use the exact upper bound in (9.32) with respect to t and x: Then (9.36) yields
the existence of a positive number q < 1, such that

d.T .p/; T .p// � qd.p; p/:

This means that the operator T .p/ is contracting. Hence it has a unique fixed
point in C."D0; "�0/: Thus the Eq. (9.24), which may be rewritten as

p.x; �; "/ D T .p/.�; x/;

has a unique solution p�.x; t; "/ in C."D0; "�0/. Consequently, the system (9.9)
has an integral manifold y D p�.x; t; "/. It may be noted that the system (9.9)
was obtained from (2.1) by the change of variables y D y1 C �.x; t/. Hence, the
system (2.1) has the integral manifold y D h.x; t; "/ D �.x; t/ C p�.x; t; "/. The
above argument permits us to formulate the following statement.
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Theorem 4. Let the conditions (I),(II) at the beginning section 9.2 hold. Then
there exist "1.0 < "1 � "0/ such that for " 2 .0; "1/ the system (9.1) has an
integral manifold of slow motions y D h.x; t; "/. The motion along this manifold is
described by the equation

Px D f .x; h.x; t; "/; t; "/: (9.37)

Remark 9.1. If f .0; 0; t; "/ � 0; g.0; 0; t; "/ � 0 hold then h.0; t; "/ � 0.

We shall now distinguish some essential properties of the slow integral mani-
folds.

The first is connected with the smoothness of the integral manifolds: under the
conditions of Theorem 3 the function h.x; t; "/ has bounded partial derivatives with
respect to x and t up to and including the k-order.

In many applications there are autonomous, periodic or almost-periodic differen-
tial systems. Hence the question arises as to whether the integral manifold has the
same properties.

The following is a fact. If the functions f and g do not depend on t , or are
periodic or almost-periodic with respect to t , then function h.x; t; "/ has the same
properties, see [197].

9.3 Justification of Asymptotic Representation

To justify the asymptotic expansion of h.x; t; "/ expansion we may follow the same
scheme, as in the proof of the existence of integral manifold y1 D p�.x; t; "/: We
shall denote by pk.x; t; "/ the finite sum

pk D
kX

iD0
"ihi .x; t/

where hi are the coefficients of the expansion computed according to (2.24). We
make the change of variables y D y1 C pk.x; t; "/ in the system (2.1). Then for the
variables x and y we obtain the system of the form (9.9), where the functionsX and
Y are as follows:

X D f .x; y1 C pk.x; t; "/; t; "/

Y D g.x; y1 C pk.x; t; "/; t; "/� gy.x; �.x; t/; t; 0/y1

�"@pk
@t
.x; t; "/ � "

@pk

@x
.x; t; "/X.x; y1; t; "/:

It should be noted that the functions X and Y satisfy inequalities analogous
to (9.10), (9.11), (9.13), (9.14), where the inequality (9.11) must be replaced by
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the bound

kY k � A0.ky1k2 C "ky1k C "kC1/:

Then the operator T .p/.�; x/ for y should be considered on the set
C."kC1Dk; "

kC1�k/; where Dk is a positive number with the restriction

KA0
�
Œ."kC1Dk/

2 C "."kC1Dk/C "kC1� � "kC1Dk:

Thus we obtain the existence of the integral manifold y1 D p�
kC1.x; t; "/; where

kp�
kC1.x; t; "/k � "kC1Dk: This means that system (2.1) has an integral manifold,

which may be represented as follows

y D �.x; t/C "h1.x; t/C � � � C "khk.x; t/C "kC1hkC1.x; t; "/;

where "kC1hkC1 D p�
kC1 and hkC1 is a smooth function with bounded norm.



Bibliographical Remarks

The origins of the method of integral manifolds are found in the works of
J. Hadamard [70], A. Lyapunov [100], H. Poincare [139] and O. Perron [136].
The essence of the method of integral manifolds was realized with amazing depth
by A. Lyapunov [100] who used order reduction when he investigated the critical
cases of one zero, or a pair of purely imaginary, eigenvalues. The possibility of
lowering the dimensionality of the system is the essential aspect of the method
of integral manifolds. The foundations of the theory were laid by N. Bogolyubov
[13] and significant impact on the development of the method was provided by N.
Bogolyubov and Yu Mitropolskii [14, 15] and J. Hale [71–73].

As to the singularly perturbed systems, pioneering papers were published
during 1957–1970 by such as K. Zadiraka, V. Fodchuk and Ya. Baris from the
scientific school headed by N. Bogolyubov and Yu. Mitropolsky in the Institute
of Mathematics of Ukrainian Academy of Science, Kiev. The existence of slow
integral manifolds, stable [217, 218], unstable and conditionally stable [4, 5], are
shown in these papers. Some of these were translated into English on the initiative
of Jack Hale and AMS, the main results of [217] can be found in [112]. The
authors of [53, 90] gave a short but realistic description of the history of the
geometrical theory of singular perturbations. At the same time a series of papers
devoted to the existence and asymptotic expansions of integral manifolds for
nonautonomous differential systems with slow and fast variables were published by
Yu Mitropolskii and O. Lykova. These results can be found in the books [113,114],
see also the books [29,185,197,210]. Various aspects of the theory of slow integral
manifolds and the behavior of solutions in their neighborhood are presented in
[27,38,45,58,74,75,81,92,105,117,120,126,191,200], see also references therein.

The concept of a fast integral manifold was introduced in [170]. This allowed
the construction of a smooth transformation which reduced the original singularly
perturbed differential system to a block-diagonal form. This means that the system
under consideration is decomposed into two subsystems, the first of which is
independent and regularly perturbed with respect to " and the second one describes
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fast components of solutions. Some theoretical and applied results along these lines
were obtained for ODE’s [167, 168, 171–173, 175, 176, 178, 206, 208], for PDE’s
[12,174,177,181], non-Lipschitzian [147], discontinuous [182], discrete [207,209]
and difference-differential systems [48–50].

In the first papers devoted to canards non-standard analysis was the main tool
of investigations [7, 8, 16, 35, 36, 221], matched asymptotics were used in [42, 110],
the Gevrey version of matched asymptotic expansions (see references in [51]), the
approach based on the blow-up technique in [39], and on the technique of upper and
lower solutions in [26, 123].

In many papers devoted to canards the term “canard” is associated with periodic
trajectories [7, 8, 20, 21, 35, 110]. In the papers [59, 60] it was suggested a canard
is a one-dimensional slow invariant manifold if it contains a stable slow invariant
manifold and an unstable one, and a canard is obtained as a result of gluing stable
(attractive) and unstable (repulsive) slow invariant manifolds at one point of the
breakdown surface due to the availability of an additional scalar parameter which
may be considered as a control parameter. This approach was proposed for the first
time in [59,60] and was then applied to construct canards in R

3 [56,61,184], canards
for PDE [60,61] and canard travelling waves [149,189]. Moreover, the use of control
functions instead of control parameters allowed the construction of black swans
[61, 155–158, 161–164, 184, 188], and canard cascades [180], the consideration of
the effect of delayed loss of stability [124,125] and [150,157,162], and the solution
of a number of applied problems [56,61,156,159,160,183,184]. Different kinds of
canards, canards in piecewise linear systems, the influence of stochastic perturba-
tions, mixed mode oscillations and miscellaneous applications were considered in
[10,11,18–20,23,24,30–32,34,40,47,63,64,67,68,79,82,104,115,135,137,140–
144, 151, 154, 198, 212–215, 220], see also the overview [33].
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