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Preface

Systems of polynomial equations are central to mathematics and its applica-
tion to science and engineering. Their solution sets, called algebraic sets, are
studied in algebraic geometry, a mathematical discipline of its own. Algebraic
geometry has a rich history, being shaped by different schools. We quote from
Hartshorne’s introductory textbook (1977):

“Algebraic geometry has developed in waves, each with its own language
and point of view. The late nineteenth century saw the function-theoretic
approach of Brill and Noether, and the purely algebraic approach of Kro-
necker, Dedekind, and Weber. The Italian school followed with Castel-
nuovo, Enriques, and Severi, culminating in the classification of algebraic
surfaces. Then came the twentieth-century “American school” of Chow,
Weil, and Zariski, which gave firm algebraic foundations to the Italian in-
tuition. Most recently, Serre and Grothendieck initiated the French school,
which has rewritten the foundations of algebraic geometry in terms of
schemes and cohomology, and which has an impressive record of solving
old problems with new techniques. Each of these schools has introduced
new concepts and methods.”

As a result of this historical process, modern algebraic geometry provides a
multitude of theoretical and highly abstract techniques for the qualitative and
quantitative study of algebraic sets, without actually studying their defining
equations at the first place.

On the other hand, due to the development of powerful computers and
effective computer algebra algorithms at the end of the twentieth century, it is
nowadays possible to study explicit examples via their equations in many cases
of interest. In this way, algebraic geometry becomes accessible to experiments.
The experimental method, which has proven to be highly successful in number
theory, now also adds to the toolbox of the algebraic geometer.

As in other areas of pure mathematics, computer algebra may help
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• to discover unexpected mathematical evidence, leading to new conjectures
or theorems, later proven by traditional means,

• to construct interesting objects and determine their structure (in particu-
lar, to find counterexamples to conjectures),

• to verify negative results such as the nonexistence of certain objects with
prescribed invariants,

• to verify theorems whose proof is reduced to straightforward but tedious
calculations,

• to solve enumerative problems, and
• to create data bases.

There is a growing number of research papers in algebraic geometry origi-
nating from explicit computations. The computational methods also play a
significant role when it comes to applications of algebraic geometry to practi-
cal problems. And, they enter the classroom, allowing us to introduce students
at an early stage to algebraic geometry, without developing too much of its
abstract machinery.

What are these Notes About ?

These notes are intended to provide a quick start to computing in algebraic ge-
ometry. For each topic treated, we include a compact presentation of the back-
ground material from commutative algebra and algebraic geometry needed to
understand that topic. Further, we discuss the relevant algorithms and explain
how to use them in studying algebraic sets. And, we present many explicit
computational examples which simultaneously introduce the computer algebra
system SINGULAR and which may serve as samples for computations carried
out by the reader. By revealing implementation details, we point out how to
access alternative algorithms for specific tasks. When applying the algorithms
to concrete research problems, the difference in their performance could mean
to get a result, or to run out of time or memory.

In our presentation, we essentially omit proofs, giving references to stan-
dard textbooks instead. Also, at the end of each chapter, we give hints on
further reading. These refer to basic definitions and proofs, and to more ad-
vanced material as well.

Our main reason for focusing on a single computer algebra system is that
we want to keep the size of the notes within reasonable limits. SINGULAR, the
system of our choice for this purpose, offers a large variety of tools for com-
putations in commutative algebra, algebraic geometry, and singularity theory.
We use SINGULAR 3-0 whose many new features have not yet been described
in other textbooks. In fact, some of these features have been implemented by
the authors together with other members of the SINGULAR team to make the
examples presented in these notes work.

The notes originate from an intense one week course given by the authors
at Allahabad, India, January 5–11, 2003 and from other schools taught by the



Preface IX

authors. The Allahabad course started with an introductory lecture on com-
puter algebra, and it ended with an additional lecture on computing sheaf
cohomology and Beilinson monads, given on demand of some of the expe-
rienced members of the audience. In between, the authors gave a series of
lectures in the morning, and posted practical exercises for the afternoon. The
junior and senior participants worked on the exercises in front of the com-
puters, with advice being given by the authors. It is worth pointing out that
these practical sessions often ended well after midnight.

Who may Benefit from the Text

The text may accompany students taking a beginner’s course in algebraic
geometry who might wish to further explore their new playground by exper-
imenting with examples according to their growing knowledge. It can also
help Master and PhD students, as well as more experienced researchers, add
powerful computational methods to their personal toolbox. Further, it may
appeal to users of systems other than SINGULAR who might occasionally need
techniques not implemented in their system of choice. In addition, we address
students and researchers interested in implementing their own computational
tools using SINGULAR as their basis. For these readers we explain, in partic-
ular, how to write and debug SINGULAR libraries. We believe that the use of
this book is not restricted to students and researchers specializing in algebraic
geometry itself, but will also prove useful to those in related disciplines.

The Structure of the Text

Although this text widely extends the written material presented at Alla-
habad, we maintained the original structure of the course, organizing the
material as an introductory lecture, Lectures 1–9, Practical Sessions I–V, and
an appendix.

We start in the introductory lecture by giving some remarks on the devel-
opment of computer algebra. On our way, we present several computer algebra
sessions featuring some of the systems which are relevant for researchers in
algebraic geometry and related fields.

Lecture 1 is an introduction by historical remarks to the concept of
Gröbner bases which is fundamental to computational algebraic geometry. In
Lecture 2, we discuss basic computational problems arising from the geometry-
algebra dictionary and their solution by means of Gröbner basis methods.
Lectures 1 and 2 both already contain explicit SINGULAR examples which
may serve as samples for those wishing to make their first computational ex-
periments with SINGULAR. A thorough introduction to SINGULAR is given in
Lecture 3. This introduction widely exceeds what is necessary for taking the
first steps into SINGULAR as it should also serve as a reference for more expe-
rienced users. In the Allahabad course, Lecture 3 was divided into two parts,
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with Practical Session I being held right after the first part, and Practical
Session II right after the second part.

Lectures 4 and 5 treat computations in homological algebra, covering basic
constructions such as kernels, cokernels, Hom, Ext and Tor, and the more
advanced concepts of flatness and Cohen-Macaulay rings. Such computations
take center stage in Practical Session III.

In Lecture 6, we discuss some of the methods for exact and symbolic-
numerical solving of systems of polynomial equations. These include decom-
position techniques for algebraic sets. Primary decomposition is treated sepa-
rately in Lecture 7 which also deals with normalization. Next follows Practical
Session IV.

In Lecture 8, we return to the historical origin of Gröbner bases as pre-
sented in Lecture 1, giving an overview on recent algorithms for invariant
theory.

Lecture 9 is dedicated to the local study of algebraic sets and, thus, to com-
putations in local rings. For this, we extend the concept of Gröbner bases by
introducing standard bases. Corresponding exercises can be found in Practical
Session V.

In the appendix, we include the additional lecture on computing sheaf
cohomology and Beilinson monads, and we give solutions to the exercises
posted in Practical Sessions I–V.

The Level of the Text

Since we address students and researchers, the level of the text is necessarily
uneven. Some familiarity with groups, rings, ideals, fields, and vector spaces,
together with the information provided in these notes, will enable the reader to
understand many of the computations in Lectures 1, 2, 3, 6, 7, and 8. Though
we summarize some of the basic concepts of algebraic geometry to provide
a common language for all readers, some familiarity with these concepts is
needed to fully appreciate our geometric interpretation of the computations.
The absolute beginner should, thus, read these notes in conjunction with
other books such as Reid’s “Undergraduate Algebraic Geometry” (1988) or
the undergraduate text “Ideals, Varieties, and Algorithms” by Cox, Little,
and O’Shea (1997).

Even in the more elementary lectures, the unexperienced reader will find
mathematical statements for which he is not prepared. In contrast, the com-
putational recipes arising from the statements are often easy to understand.
The reader who is willing to take the recipes for granted will have no problems
in applying them to study algebraic sets.

For large parts of Lectures 4, 5, and 9, for the second section of Lecture 7,
for one example in Lecture 8, and for Appendix A, more background in com-
mutative algebra and algebraic geometry is needed.



Preface XI

Exercises

The exercises are designed so as to make the beginner familiar with some
basic features of computational algebraic geometry and SINGULAR. The serious
reader should solve each exercise in front of the computer before turning to
the authors’ solution of that exercise in the appendix. Further, we highly
recommend to check the textbooks by Cox, Little, and O’ Shea (1997, 1998),
Greuel and Pfister (2002), and Decker and Schreyer (2006) for further exercises
admitting a SINGULAR solution.

Basic Conventions

If not otherwise mentioned, each ring considered in these notes is commuta-
tive, and it has a multiplicative identity 1. Ring homomorphisms take 1 to 1.
If R is a subring of a ring S, and if I is an ideal of R, we write I ·S or simply
IS for the ideal generated by I in S. In the context of free resolutions, we
often write N ←− M for a homomorphism M −→ N since this fits well with
how SINGULAR displays numerical information on free resolutions.

We work over a field K, referring to the elements of K as scalars.
We usually write K[x] = K[x1, . . . , xn] for the polynomial ring in n vari-
ables over K. A monomial in K[x] is a product xα = xα1

1 · · ·xαn
n , where

α = (α1, . . . , αn) ∈ Nn. A term in K[x] is a scalar times a monomial.

Timings and SINGULAR Output

Occasionally, we print the CPU time used by a SINGULAR computation. All
timings are given in full seconds, taken on a Pentium IV 2.4 GHZ processor.

In documenting SINGULAR sessions, we print [...] to indicate that part of
the SINGULAR output is omitted. Without printing [...], we omit the output
displayed by SINGULAR when loading a library. This output gives information
on the library loaded and on related libraries which are automatically loaded
as well.

Website

We maintain a website for this book at

http://www.singular.uni-kl.de/BOOK DL/

We are grateful for comments and corrections which will be posted at the
website if appropriate. Also, selected pieces of code written for the book can
be downloaded from the website.
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Introductory Remarks on Computer Algebra

The remarks in this lecture address computer algebra, its history, and com-
puter algebra systems. We give a few examples of what can be computed,
focusing on some of the systems which are relevant for researchers in algebraic
geometry and related fields. Typically, the examples aim at the experienced
reader. They will not play a role in the subsequent lectures.

Most of mathematics is concerned at some level with setting up and solving
equations, for example to model applications in science and engineering. In
many cases, this involves tedious computations which are difficult to get right
or too extensive to be carried through by hand. Two mathematical disciplines
of their own, numerical analysis and computer algebra, originate from this
problem. In contrast to numerical analysis, calculations in computer algebra
are carried through exactly, that is, no approximation is applied at any step.
Infinite precision arithmetic allows one to compute in the ring of integers, in
the field of rationals and in algebraic number fields, in finite prime fields and
in arbitrary Galois fields, in polynomial rings and in fields of rational func-
tions, in difference fields (needed for indefinite summation), and in differential
fields (needed for indefinite integration). In fact, there is a much larger variety
of algebraic structures in which algebraic algorithms allow one to manipulate
algebraic objects or the structures themselves. Exact computer algebra meth-
ods enable us to create algorithms that decide, for example, the solvability
of systems of polynomial equations or the solvability of indefinite summation
and integration problems in certain specified classes of functions (see von zur
Gathen and Gerhard (1999) and the references cited there).

That automated computing is not restricted to numerical computation
was already evident to Charles Babbage and Lady Ada Augusta in the 19th
century (see Larcombe (1999) for the story). Besides working on his Difference
Engines, Babbage spent many years of his life on designing a more universal
mechanical machine (Analytical Engine), to be programmed with punch-cards
invented by Josef-Maria Jacquard for the control of automatic looms. Bab-
bage’s earliest ideas on how such a machine could perform automated algebraic
manipulations are documented in his notebook (1836):



2 Introductory Remarks on Computer Algebra

“This day I had for the first time a general but very indistinct conception
of the possibility of making an engine work out algebraic developments – I
mean without any reference to the value of the letters. My notion is that
as the cards (Ja[c]quards) of the calc. engine direct a series of operations
and then recommence with the first, so it might perhaps be possible to
cause the same cards to punch others equivalent to any given number of
repetitions. But these hole[s] might perhaps be small pieces of formulae
previously made by the first cards ...”

And, Lady Ada wrote (see Menabrea (1842)):

“There are many ways in which it may be desired in special cases to
distribute and keep separate the numerical values of different parts of an
algebraical formula; and the power of effecting such distributions to any
extent is essential to the algebraical character of the Analytical Engine.
Many persons who are not conversant with mathematical studies, imagine
that because the business of the engine is to give its results in numerical
notation, the nature of its processes must consequently be arithmetical
and numerical , rather than algebraical and analytical . This is an error.
The engine can arrange and combine its numerical quantities exactly as if
they were letters or any other general symbols; and in fact it might bring
out its results in algebraical notation, were provisions made accordingly.
It might develop three sets of results simultaneously, viz. symbolic results
...; numerical results (its chief and primary object); and algebraical results
in literal notation.”

The Analytical Engine, however, was never built, and symbolic computations
were not carried through in an automated way until electronic computers were
available. The first documented computer algebra programs, written for an-
alytic differentiation, were described in two Master Theses by Kahrimanian
(1953) and Nolan (1953). According to the historical account in the introduc-
tory textbook by Geddes, Czapor, and Labahn (1992), the beginning 1960’s
saw increasing activities in the field, in particular, after the LISP language,

“a major advancement on the road to languages for symbolic computa-
tion”,

had been developed. In the period between 1961 and 1971,

“the field progressed from birth through adolescence to at least some level
of maturity.”

This progress may be marked by some algorithmic breakthroughs, and by
the first releases of some well-known LISP-based general purpose computer
algebra systems:
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1965 Buchberger’s algorithm for computing Gröbner bases.

1967, 1970 Berlekamp’s algorithm for factorizing univariate polynomials
over finite fields.

1968-1970 Risch’s algorithm for the indefinite integration of elementary
functions.

1969 Zassenhaus’ algorithm for factorizing univariate polynomials
over the integers.

1968, 1970 First releases of REDUCE, respectively REDUCE2.

1970 First release of MACSYMA.

1971 First release of SCRATCHPAD (today known as AXIOM).

Nowadays, there is a large variety of computer algebra systems suiting differ-
ent needs. User-friendly interfaces and comfortable help functions enable us to
work with powerful computing tools by just looking up a few commands, with-
out any knowledge in programming. On the other hand, modern systems also
offer a user language which allows those interested in programming to extend
the system. Many user-written packages and libraries are publicly available,
providing, thus, even more computing tools.

There are general purpose and special purpose computer algebra systems.
Typically, one has to pay for a general purpose system whereas many of the
special purpose systems can be downloaded from the internet for free. A gen-
eral purpose system allows one to attack problems in many different areas.
In addition to tools for symbolic computation, such a system usually offers
tools for numeric computation and for visualization. Well-established general
purpose systems are REDUCE, MACSYMA, MAPLE, DERIVE, MATHEMATICA, MUPAD,
and AXIOM (see Wester (1999) for a critical comparison).

Example 1. MAPLE, firstly released in 1983, is a general purpose system with a
kernel written in C, and with most higher level functions or packages written
in the MAPLE user language. The following MAPLE session features polynomial
factorization, indefinite summation, and indefinite integration:

> factor(y^2-x*y-x^2*y+x^3);

2

(-y + x) (-y + x )

> sum((-1)^k*binomial(n,k), k=0..m);

(m + 1)

(m + 1) (-1) binomial(n, m + 1)

- --------------------------------------

n

> int( x/(x^2-1), x );

1/2 ln(x - 1) + 1/2 ln(x + 1) ��
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Today, specialized algorithms and software allow one to factorize randomly
chosen polynomials in F2[x] of degree 300 000 (see Roelse (1999)).

There are plenty of user-written MAPLE packages1 some of which are de-
signed for applications in algebraic geometry.

Example 2. SCHUBERT is a MAPLE package specializing on computations in in-
tersection theory. Having downloaded and installed SCHUBERT, one can load
it into a MAPLE session:

with(SF): # symmetric functions package, obtained from Schubert’s webpage

with(schubert);

[\&*, \&-!, \&-*, \&/, \&^*, End, Grass, Hom, POINT, Proj, Symm, adams,

additivebasis, betti, blowup, blowuppoints, bundle, bundlesection,

chern, chi, codimension, compose, curve, determinant, dimension,

division, down, dual, grass, grobnerbasis, insertedge, integral,

integral2, koszul, lowershriek, lowerstar, monomials, monomialvalues,

morphism, multiplepoint, normalbundle, normalform, o, porteous,

porteous2, productvariety, proj, rank, schur, schurfunctor,

schurfunctor2, segre, setvariety, sheaf, strip, symm, tangentbundle,

tensor, todd, toddclass, toricvariety, totalspace, twist, up, upperstar,

variety, verifyduality, wedge, where, whichcone, wproj]

Using SCHUBERT, we compute the number of lines on a general cubic surface
in projective 3-space P3:

grass(2,4,c); # Lines in P^3.

currentvariety_ is Gc, DIM is 4

B := symm(3,Qc): # Qc is the rank 2 quotient bundle, B its

# 3rd symmetric power.

c4 := chern(rank(B),B): # the 4th Chern class of this rank 4 bundle.

integral(c4);

27

Clebsch’s diagonal cubic is a particular nice example of a cubic surface in P3.
We use the software SURF to visualize the diagonal cubic and the lines on it:

��
1 The use of such a package may require an older version of MAPLE.
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Example 3. Another MAPLE package which can be downloaded for free is CASA.
It offers various tools for algebraic geometers.

> with(casa);

|__|

| | Welcome to CASA 2.5 for Maple V.5

| /\| |/\

/=\__| [] |

/ \_ Copyright (C) 1990-2000 by Research Institute

| \ for Symbolic Computation (RISC-Linz), the

\ CASA 2.5 | University of Linz, A-4040 Linz, Austria.

| |

_| ||| | For help type ’?casa’ or ’?casa,<topic>’.

__/ ||| |_

[BCH2, BCHDecode, CyclicEncode, DivBasisL, GWalk, GoppaDecode, GoppaEncode,

GoppaPrepareDu, GoppaPrepareSV, GoppaPrepareSa, GoppaPrimary,

Groebnerbasis, InPolynomial, NormalPolynomial, OutPolynomial,

PolynomialRoots, RPHcurve, SakataDecode, SubsPolynomial, _casaAlgebraicSet,

adjointCurve, algset, casaAttributes, casaVariable, computeRadical, conic,

decompose, delete, dimension, equalBaseSpaces, equalProjectivePoints,

finiteCurve, finiteField, generators, genus, homogeneousForm,

homogeneousPolynomial, homogenize, implDifference, implEmpty, implEqual,

implIdealQuo, implIntersect, implOffset, implSubSet, implUnion,

implUnionLCM, imult, independentVariables, init, isProjective, leadingForm,

makeDivisor, mapOutPolynomial, mapSubsPolynomial, mgbasis, mgbasisx,

mkAlgSet, mkImplAlgSet, mkParaAlgSet, mkPlacAlgSet, mkProjAlgSet, mnormalf,

msolveGB, msolveSP, mvresultant, neighbGraph, neighborhoodTree,

numberOfTerms, pacPlot, paraOffset, parameterList, passGenCurve,

planecurve, plotAlgSet, pointInAlgSet, projPoint, properParametrization,

properties, rationalPoint, realroot_a, realroot_sb, setPuiseuxExpansion,

setRandomParameters, singLocus, singularities, ssiPlot, subresultantChain,

tangSpace, toAffine, toImpl, toPara, toPlac, toProj, toProjective, tsolve,

variableDifferentFrom, variableList]

We use CASA to visualize and parametrize a rational plane curve given by its
equation:

> f := 1/4*y^3+x^2*y^3-2*x^3*y^2-1/4*x^4*y+1/4*x^4-5/4*x^2*y^2+43/4*x*y^3

> +1/4*y^5+1/2*y^4+1/2*x^5+20*x*y^4+37/8*x^3-39/4*x^3*y-37/4*x*y^2;

3 2 3 3 2 4 4 2 2 3

f := 1/4 y + x y - 2 x y - 1/4 x y + 1/4 x - 5/4 x y + 43/4 x y

5 4 5 4 3 3 2

+ 1/4 y + 1/2 y + 1/2 x + 20 x y + 37/8 x - 39/4 x y - 37/4 x y

> A := mkImplAlgSet([f],[x,y]):

> Ap := plotAlgSet(A,x=-4..4,y=-2..2,numpoints=10000,thickness=2,axes=none,
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> colour=black,scaling=constrained):

> with(plots):

> plotsetup(ps,plotoutput=‘curve.ps‘,plotoptions=‘portrait,noborder‘);

> toPara(A,t);

Parametric_Algebraic_Set([

4 2 3 5

1443 t - 2888 t - 2 - 37 t + 37 t - 152 t

2 ---------------------------------------------,

2 4 3 5

16 + 180 t - 16 t - 12 t + 644 t + 1365 t

4 3 2 5

-8 + 74 t - 2590 t - 222 t - 300 t + 1369 t

- -----------------------------------------------], [t])

2 4 3 5

16 + 180 t - 16 t - 12 t + 644 t + 1365 t

The example is due to J. Böhm. We refer to his Diploma Thesis (1999) for fur-
ther examples and for a nice survey on algorithms for parametrizing rational
curves. ��

For some of the more special and advanced applications, general purpose sys-
tems are not powerful enough. Often, the implementation of the required
algorithms is not optimal with respect to speed and storage handling; in ad-
dition, some of the more advanced algorithms might not be implemented at
all. Many of today’s special purpose systems have been created by people spe-
cializing in a field other than computer algebra and having a desperate need
for computational power in the context of some of their research problems. A
pioneering and prominent example is Veltman’s SCHOONSCHIP which helped
to win a Nobel price in physics in 1999 (awarded to Veltman and t’Hooft “for
having placed particle physics theory on a firmer mathematical foundation”).
From a special purpose system, we expect highly tuned implementations of
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the algorithms needed for the area in which the system is specializing. Exam-
ples are KANT, LIDIA, MAGMA (which is not free), PARI and SIMATH for number
theory, or GAP and MAGMA for group theory.

Example 4. In the following LIDIA session, we factor the 8th Fermat number
F8 = 228

+ 1:

lc> factor(2^(2^8)+1);

$0 = [(1238926361552897,1)

(93461639715357977769163558199606896584051237541638188580280321,1)]

��
At this writing, the 11th Fermat number is the largest Fermat number all
whose factors are known.

Example 5. We use GAP to compute the character table of the Heisenberg
group H3. In its Schrödinger representation, H3 is the subgroup of GL3(C)
generated by the matrices

σ =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ and τ =

⎛⎝1 0 0
0 ξ 0
0 0 ξ2

⎞⎠ .

Here, ξ = e
2πi
3 is a primitive 3rd root of unity in C.

gap> m1 := [[0,0,1],[1,0,0],[0,1,0]];;

gap> m2 := [[1,0,0],[0,E(3),0],[0,0,E(3)^2]];;

gap> G := Group(m1,m2);;

gap> Size(G);

27

gap> Display(CharacterTable(G));

CT1

3 3 2 2 2 2 2 2 2 2 3 3

1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j

X.1 1 1 1 1 1 1 1 1 1 1 1

X.2 1 A A A /A /A /A 1 1 1 1

X.3 1 /A /A /A A A A 1 1 1 1

X.4 1 1 /A A 1 /A A /A A 1 1

X.5 1 A 1 /A /A A 1 /A A 1 1

X.6 1 /A A 1 A 1 /A /A A 1 1

X.7 1 1 A /A 1 A /A A /A 1 1

X.8 1 A /A 1 /A 1 A A /A 1 1

X.9 1 /A 1 A A /A 1 A /A 1 1

X.10 3 . . . . . . . . B /B

X.11 3 . . . . . . . . /B B

A = E(3)

= (-1+ER(-3))/2 = b3

B = 3*E(3)^2

= (-3-3*ER(-3))/2 = -3-3b3
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Via the online GAP user manual, one easily finds out how to read the output.
��

Using GAP, finite groups could be, essentially, classified up to order 2000 (see
Besche et al (2001)). For instance, there are 10 494 213 groups of order 512
(up to isomorphism).

Example 6. We use MAGMA to compute a fundamental system of invariants of
the Heisenberg group H3 in its Schrödinger representation:

> R<x> := PolynomialRing(Integers());

> K<g> := NumberField(x^2+x+1);

> m1 := [0,0,1,1,0,0,0,1,0];

> m2 := [1,0,0,0,g,0,0,0,g^2];

> G := MatrixGroup<3,K|m1,m2>;

> R := InvariantRing(G);

> FundamentalInvariants(R);

[

x1^3 + x2^3 + x3^3,

x1*x2*x3,

x1^6 + x2^6 + x3^6,

x1^6*x3^3 + x1^3*x2^6 + x2^3*x3^6

] ��

Special purpose systems for commutative algebra and algebraic geometry al-
low us to manipulate ideals in polynomial rings (and much more). They typi-
cally rely on Gröbner basis techniques, and their engine is Buchberger’s algo-
rithm for computing Gröbner bases and syzygies. The pioneering MACAULAY

and the more modern and complete COCOA, MACAULAY2, RISA/ASIR, and
SINGULAR offer a variety of tools for experiments. FGB is a system just for
the basic task of computing Gröbner bases. With BERGMAN, one can compute
Gröbner bases, Hilbert series and Poincaré series in commutative and non-
commutative graded algebras.

Example 7. We compute a Gröbner basis using SINGULAR:

SINGULAR /

A Computer Algebra System for Polynomial Computations / version 3-0-1

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ October 2005

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0, (x,y), dp;

> ideal I = xy, x2+y2;

> groebner(I);

_[1]=xy

_[2]=x2+y2

_[3]=y3

In MACAULAY2, the same Gröbner basis is obtained as follows:
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Macaulay 2, version 0.9.2

--Copyright 1993-2001, D. R. Grayson and M. E. Stillman

--Singular-Factory 1.3b, copyright 1993-2001, G.-M. Greuel, et al.

--Singular-Libfac 0.3.2, copyright 1996-2001, M. Messollen

i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing

i2 : I = ideal(x*y, x^2+y^2)

2 2

o2 = ideal (x*y, x + y )

o2 : Ideal of R

i3 : gb I

o3 = | xy x2+y2 y3 |

o3 : GroebnerBasis ��

Remark 8 (Webpages). With the exception of SURF, the webpages of the
systems and packages mentioned in this lecture can be easily found on the
net. For SURF, see http://sourceforge.net/projects/surf .



Lecture 1

Basic Notations and Ideas: A Historical
Account

The geometry-algebra dictionary, which will be studied in Lecture 2, trans-
lates geometric problems into algebraic problems and vice versa. It makes,
in particular, many basic operations of algebraic geometry accessible to com-
puter algebra methods. The work horse behind these methods is Buchberger’s
algorithm for computing Gröbner bases. In this lecture, we introduce Gröbner
bases. The roots of Gröbner bases can be traced back to 19th century papers
in classical invariant theory and, thus, to the roots of algebraic geometry it-
self. Proceeding by historical remarks, we include a discussion of several major
ideas of Hilbert which are fundamental to commutative algebra and algebraic
geometry and which are needed in subsequent lectures.

Classical invariant theory originated from the interest in properties
of geometric objects which are unaffected by a change of coordinates.
The question of how to represent such a property lead to the study
of polynomials which are invariant under certain classes of coordinate
transformations (see Lecture 8 for the basic setting of invariant the-
ory). The property of being invariant under transformations of a given
class is preserved under the ring operations on polynomials. The set of
all invariants in a given situation inherits, thus, a ring structure from
the polynomial ring. In fact, the invariants form a graded algebra over
the given coefficient field.

Let K be a field. Each element of the polynomial ring K[x] = K[x1, . . . , xn]
has a unique representation as a sum of homogeneous polynomials of different
degrees. This is to say, the polynomial ring can be written as a direct sum

K[x] =
⊕
ν≥0

K[x]ν ,

where K[x]ν is the K-vector space formed by the homogeneous polynomials
of degree ν. The notion of a graded K-algebra is obtained by abstracting this:
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Remark-Definition 1.1. A graded ring is a ring R together with a de-
composition R =

⊕
ν≥0 Rν as Abelian groups such that RνRμ ⊂ Rν+μ for all

ν, μ. A homogeneous element of R is an element f of some graded piece
Rν , and ν is then called the degree of f . An ideal of R is homogeneous
if it is generated by homogeneous elements. If R0 = K is a field, then R is a
K-algebra and the graded pieces Rν are K-vector spaces. In this case, we say
that R is a graded K-algebra. ��
We usually assume that R is a finitely generated (graded) K-algebra.
That is, there are (homogeneous) f1, . . . , fn ∈ R such that each element of R
is a polynomial expression in the fi. In this case, the Rν are finite dimensional
K-vector spaces.

Example 1.2. If I is a homogeneous ideal of K[x], the quotient ring K[x]/I
inherits a graded structure from K[x]. It is, thus, a (finitely generated) graded
K-algebra. ��

Besides explicitly computing particular invariants, the founders of
classical invariant theory were interested in techniques to enumerate
invariants. Cayley and Sylvester, for instance, made use of suitable
representations of what is nowadays called the Hilbert series to give
formulas for the dimension of the graded pieces of certain rings of
invariants (see Cayley (1889) and J.J. Sylvester (1864)).

We define the Hilbert series in the more general setting of modules which are
to rings what vector spaces are to fields. That is, a module over a ring R is an
additively written Abelian group M , together with an operation R×M →M
such that for all r, s ∈ R and m, n ∈ M the following hold:

r(sm) = (rs)m, r(m + n) = rm + rn, (r + s)m = rm + sm, 1m = m .

Ideals I of K[x] and quotient rings K[x]/I are basic examples of K[x]-modules
which are studied in algebraic geometry. By speaking of modules we may often
formulate definitions and results such that they apply to I and K[x]/I at the
same time. Further, they apply to other modules which appear naturally in
algebraic geometry.

Notions such as homomorphisms of R-modules, direct sums of R-modules,
and submodules of R-modules are defined in the obvious way. If m1, . . . , mr

are elements of a given R-module M , the set 〈m1, . . . , mr〉 of all R-linear com-
binations of the mi is a submodule of M to which we refer as the submodule
generated by the mi. We usually assume that M is a finitely generated
R-module. That is, there are m1, . . . , mr ∈ R such that M = 〈m1, . . . , mr〉.

Definition 1.3. Let R =
⊕

ν≥0 Rν be a graded ring. A graded module over
R is an R-module M together with a decomposition M =

⊕
ν∈Z Mν as Abelian

groups such that RνMμ ⊂ Mν+μ for all ν, μ. The elements of a graded piece
Mν are called homogeneous (of degree ν), and a submodule of M is
called graded if it is generated by homogeneous elements. ��
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If R is a finitely generated graded K-algebra and M is a finitely gener-
ated graded R-module, the graded pieces Mν are finite dimensional K-vector
spaces.

Definition 1.4. Let R be a finitely generated graded K-algebra, and let M =⊕
ν∈Z Mν be a finitely generated graded R-module. The function

H(M, ) : Z −→ Z, ν 
−→ dimK Mν ,

is called the Hilbert function of M . The formal Laurent series

HM (t) :=
∑
ν∈Z

H(M, ν) · tν ∈ Z[[t, t−1]]

is called the Hilbert series of M . ��

Example 1.5. The monomials of degree ν in K[x] = K[x1, . . . , xn] form a K-
vector space basis for K[x]ν . Counting these monomials, we see that

H(K[x], ν) =

(
ν + n− 1

n− 1

)
(this formula holds for all ν ∈ Z if we set K[x]ν = 0 for ν < 0). Thus,
H(K[x], ν) agrees for ν ≥ −(n− 1) with the polynomial expression

(ν + n− 1)(ν + n− 2) · · · (ν + 1)

(n− 1)!
.

We refer to this fact by saying that H(K[x], ) is of polynomial nature. It
means, in particular, that we may represent the infinitely many values of the
Hilbert function of K[x] in finite terms. An alternative way of doing this is
to write the Hilbert series as a rational function:

HK[x1,...,xn](t) =
∑
ν∈Z

(
ν + n− 1

n− 1

)
· tν =

1

(1− t)n
.

From this representation, the values of the Hilbert function can be recomputed
by expanding the rational function (up to each given degree). ��

By speaking of the Hilbert function, we honor David Hilbert who
verified the polynomial nature of the Hilbert function in the
more general setting discussed later in this lecture. This result is con-
tained in the first of Hilbert’s two landmark papers in which classical
invariant theory culminated (1890, 1893). It is a consequence of the
syzygy theorem, proved in the same paper for that application. But
there is much more. In the two papers, Hilbert presented a whole va-
riety of novel ideas whose significance goes far beyond their original
application to invariant theory. Besides the two results already men-
tioned, Hilbert also proved the basis theorem, the Nullstellensatz
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and further fundamental results. These results served as “lemmas”
to show that a large class of rings of invariants is finitely generated
(see Lecture 8, Section 8.2 for some details), and to give examples
which illustrate Hilbert’s ideas. In the 1890 paper, Hilbert proved his
finiteness result as an application of the basis theorem. Having been
criticized for the nonconstructiveness of his proof, he quickly reacted
with a second, constructive proof, based on the Nullstellensatz and
other results (see Sturmfels (1993) for a modern treatment). His lem-
mas, however, opened the door to modern abstract algebra. And, they
deeply influenced the further development of algebraic geometry.

Theorem 1.6 (Hilbert’s Basis Theorem). Every ideal of the polynomial
ring K[x] = K[x1, . . . , xn] is finitely generated.

Among the different proofs of the basis theorem known today, a proof by Gor-
dan (1899) is of particular interest for us. In this proof, which will be treated
later in this lecture, the idea of Gröbner bases made its first appearance.

Remark 1.7. If all ideals of a ring R are finitely generated, then R is said
to be a Noetherian ring. This is to honor Emmy Noether1 who showed
that these rings are characterized by the ascending chain condition2 (1921).
Note that the condition of being finitely generated and the ascending chain
condition carry over from ideals of R to submodules of finitely generated R-
modules (see, for instance, Eisenbud (1995), Section 1.4). ��
By abuse of notation, the word basis in Hilbert’s basis theorem (in Gröbner
basis) is used as another name for a (finite) set of generators. Note, however,
that an ideal I of a ring R does not admit a basis in the sense of linear
algebra (unless I is a principal ideal generated by a nonzerodivisor). In fact, if
r ≥ 2, and if f1, . . . , fr are elements of R, there are always nontrivial R-linear
combinations of the fi which are zero:

g1f1 + . . . + grfr = 0 ∈ R . (1.1)

For instance, there are always the Koszul relations fifj − fjfi = 0. Hence,
f1, . . . , fr are not R-linearly independent.

Remark-Definition 1.8. A module over a ring R is free if it is zero or if
it admits a basis in the usual sense (that is, a set of generators which is R-
linearly independent). In these notes, we only consider free R-modules with
a finite basis. As in linear algebra, the number of basis elements is, then,
independent of the choice of basis. It is called the rank of the free module.
Given a free R-module F of rank r with a fixed basis, we think of it as the
free R-module Rr with its canonical basis (formed by the column vectors
t(1, 0, . . . , 0), . . . , t(0, 0, . . . , 1)); here, Rr is the direct sum of r copies of R.
That is, we consider the elements of F as column vectors with entries in R. ��
1 Emmy Noether was a student of Gordan.
2 The ascending chain condition says that every chain I1 ⊂ I2 ⊂ I3 ⊂ . . . of

ideals of R is eventually stationary. That is, Im = Im+1 = . . . for some m ≥ 1.
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We usually think of a relation of type (1.1) as a column vector t(g1, . . . , gr) ∈
Rr and call it a syzygy on f1, . . . , fr:

Definition 1.9. Let R be a ring, let M be an R-module, and let f1, . . . , fr ∈
M . A syzygy on f1, . . . , fr is an element of the kernel of the homomorphism

ϕ : Rr −→M , εi 
−→ fi ,

where ε1, . . . , εr is the canonical basis of the free R-module Rr.
If kerϕ is finitely generated, we think of the elements of a given finite set

of generators for kerϕ as the columns of a matrix which we call a syzygy
matrix of f1, . . . , fr. ��
Exercise 1.10. If R = K[x, y, z], show that⎛⎝ y z 0

−x 0 z
0 −x −y

⎞⎠
is a syzygy matrix of x, y, z. ��
Remark-Definition 1.11 (Free Resolutions). Let R be a Noetherian
ring, and let M be a finitely generated R-module.

(1) Choosing a finite set of generators for M corresponds to choosing an epi-
morphism ϕ0 : F0 = Rr0→M defined as in Definition 1.9. Since R is Noethe-
rian, the kernel of ϕ0 is finitely generated, too, and the choice of a finite set of
generators corresponds to the choice of an epimorphism F1 = Rr1→ kerϕ0.
Taking ϕ1 to be the composite F1 → kerϕ0 ⊂ F0, we get a sequence

0 M F0
ϕ0

F1
ϕ1

which is referred to as a free presentation of M . If we think of ϕ1 as a
matrix (representing the homomorphism with respect to the canonical bases),
we call it a presentation matrix of M .

(2) Continuing to choose epimorphisms as in (1), we get a sequence

0 M F0
ϕ0

F1
ϕ1 . . . Fi−1 Fi

ϕi
Fi+1

ϕi+1 . . .

with free R-modules Fi. The sequence is exact, that is, imϕi+1 = kerϕi for
all i (in particular, ϕ0 is surjective). By abuse of notation, we refer to the
sequence, as well as to its “free part”

F0 F1
ϕ1 . . . Fi−1 Fi

ϕi
Fi+1

ϕi+1 . . . ,

as a free resolution of M . We call im ϕi an ith syzygy module and its
elements ith order syzygies of M . Note that these modules depend on the
choices made, they are determined by M up to free summands only. If we
think of ϕi as a matrix, we call it an ith syzygy matrix of M . Further, we
say that the free resolution is finite of length m if Fm �= 0, but Fi = 0 for
each i > m. Otherwise, the resolution has length ∞. ��
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In the general situation considered in the definition above, M may not admit
a finite free resolution (see Lecture 4, Example 4.9). Over the polynomial ring,
however, we have the following result:

Theorem 1.12 (Hilbert’s Syzygy Theorem). Every finitely generated
K[x1, . . . , xn]-module has a free resolution of length ≤ n.

As for the basis theorem, there are different ways of proving the syzygy the-
orem. We refer to Remark 1.45 below for a comment on a constructive proof
using Gröbner bases.

Free resolutions allow us to deduce information on modules from infor-
mation on free modules. As a typical example of how this works, we review
Hilbert’s original application of the syzygy theorem, namely the representa-
tion of the infinitely many values of the Hilbert function in finite terms. This
requires some preparations.

Remark-Definition 1.13. Let R =
⊕

ν≥0 Rν be a graded ring.

(1) If M =
⊕

ν∈Z Mν is a graded R-module, and if d ∈ Z, we denote by M(d)
the graded R-module obtained from M by shifting its grading d steps. That is,
M and M(d) agree as an R-module, but the grading of M(d) =

⊕
ν∈Z M(d)ν

is defined by M(d)ν = Mν+d. To put it yet in another way, the homogeneous
elements of M of degree μ are the homogeneous elements of M(d) of degree
μ− d. We refer to M(d) as the dth twist of M . In particular, for each d, we
have the graded R-module R(d) in which the free generator 1 has degree −d.
By specifying a basis together with a degree for each basis vector, a free R-
module F becomes a graded free R-module (with a basis of homogeneous
elements). We may then think of F as a direct sum of type F =

⊕s
i=1 R(di).

Here, for each i, the ith canonical basis vector of
⊕s

i=1 R(di) is homogeneous
of degree −di.

(2) If M and N are graded R-modules, a graded homomorphism from M
to N of degree zero is a homomorphism N ←M taking each homogeneous
element to a homogeneous element of the same degree. If F =

⊕s
i=1 R(di) and

G =
⊕t

j=1 R(ej) are graded free R-modules, a graded homomorphism F ← G
of degree 0 is given by an s×t-matrix whose ij entry is a homogeneous element
of R of degree di − ej , for each pair i, j. We refer to such a matrix as a graded
matrix over R. ��

Example 1.14. If R = K[w, x, y, z], the matrix

ϕ =

(
x + y + z w2 − x2 z3

1 x xy + z2

)
defines a homomorphism

R⊕R(−1)
ϕ←− R(−1)⊕R(−2)⊕R(−3)

which is graded of degree zero. Indeed, ϕ has homogeneous entries of the
appropriate degrees. Note that there is a nonzero scalar entry (namely 1).
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That is, not all entries of ϕ are contained in the homogeneous maximal ideal
〈w, x, y, z〉 of R. ��

If M is a module over a ring R, a minimal set of generators for M is
a set of generators for M such that no proper subset generates M . Exam-
ples such as {x+ x2, x2} and {x} show that minimal sets of generators for
the same module may differ in their number of elements. In the situation
considered in the remark below, however, it follows from the graded ver-
sion of Nakayama’s lemma3 that the number of elements of a minimal set
of homogeneous generators for M and their degrees are uniquely determined
by M . Note that the remark applies, in particular, to the polynomial ring
K[x1, . . . , xn] with its natural grading by degree and its homogeneous maxi-
mal ideal m = 〈x1, . . . , xn〉.

Remark-Definition 1.15 (Minimal Free Resolutions). Let R =
⊕

ν≥0Rν

be a finitely generated graded R0 = K-algebra. Then R is a Noetherian ring
(apply Hilbert’s basis theorem as in Eisenbud (1995), Section 1.4). Further,

m =
⊕
ν≥1

Rν

is a homogeneous maximal ideal of R containing all proper homogeneous ideals
of R. Let M be a finitely generated graded R-module.

(1) The choice of a finite set of homogeneous generators f1, . . . , fr0
for M

corresponds to the choice of a graded epimorphism M ← F0 =
⊕r0

j=1 R(−dj)
of degree 0, where dj = deg fj . Since R is Noetherian, we may continue to
construct a free resolution of M such that all modules are graded, and such
that all homomorphisms are graded of degree zero. Such a resolution is called a
graded free resolution of M . If, at each stage of constructing the resolution,
we choose a minimal set of homogeneous generators, we get a minimal free
resolution of M .

(2) Given a graded free resolution

0 M F0
ϕ0

F1
ϕ1

. . . Fi−1 Fi
ϕi

Fi+1
ϕi+1

. . . ,

the images of the basis vectors of Fi under ϕi form a minimal set of generators
for im ϕi iff im ϕi+1 ⊂ mFi, that is, iff ϕi+1, considered as a graded matrix,
does not have a nonzero scalar entry. In fact, the jth row of ϕi+1 has an entry
in K \ {0} iff the image of the jth basis vector of Fi under ϕi is an R-linear
combination of the images of the other basis vectors.

(3) In writing the ith free module Fi of a minimal free resolution of M , we
usually collect all copies of R involving the same twist:

3 We refer to Decker and Schreyer (2006) for Nakayama’s lemma and its application
in Remarks 1.15 and 1.17.
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Fi =
⊕

j

R(−j)βij .

Note that, as a consequence of the graded version of Nakayama’s lemma, min-
imal free resolutions are uniquely determined up to a graded isomorphism
of free resolutions:

0 M F0

α0

F1
ϕ1

α1

F2
ϕ2

α2

. . .ϕ3

0 M G0 G1
ψ1

G2
ψ2 . . .ψ3

That is, the diagram is commutative and the αi are graded isomorphisms of
degree 0. Hence, the graded Betti numbers βij(M) := βij and the graded
syzygy modules

Syzi(M) := imϕi , i ≥ 1 ,

are uniquely determined by M . ��

Exercise 1.16. If R = K[x, y, z], show that

R R(−1)3
(x,y,z)

R(−2)3

y z 0
−x 0 z
0 −x −y

!
R(−3)

„ z
−y
x

«
0

is the minimal free resolution of R/〈x, y, z〉. Note that R/〈x, y, z〉 = K. It is
a graded R-module consisting of just one graded piece sitting in degree 0. ��

Remark 1.17. A local ring is a ring having just one maximal ideal. Due to
the local version of Nakayama’s lemma, finitely generated modules over local
Noetherian rings have uniquely determined minimal free resolutions, too. If
such a module M is given, its ith Betti number is the rank of the ith free
module in the minimal free resolution of M . ��

In most applications of minimal free resolutions to algebraic geometry, M
will be the homogeneous coordinate ring K[x0, x1, . . . , xn]/I of a projective
algebraic set, considered as a module over K[x0, x1, . . . , xn] (algebraic sets
and their coordinate rings will be treated in Lecture 2).

Example 1.18 (Hilbert). The twisted cubic curve C in the real projective
3-space P3(R) is given parametrically as the image of the map

P1(R) −→ P3(R) , (s : t) 
−→ (s3 : s2t : st2 : t3) .

If w, x, y, z are the homogeneous coordinates on P3(R), the quadrics

f1 := xz − y2, f2 := wz − xy, f3 := wy − x2 ∈ R[w, x, y, z] =: R



1 Basic Notations and Ideas: A Historical Account 19

vanish on C. In fact, one can show by elementary means that the polynomials
f1, f2, f3 account for all polynomials in R vanishing on C (see Cox, Little,
and O’Shea (1997), Chapter 1, §4 and Chapter 8, §4). That is, the ideal
I = 〈f1, f2, f3〉 generated by f1, f2, f3 in R is the vanishing ideal of C. Thus,
R/I = R/〈f1, f2, f3〉 is the homogeneous coordinate ring of C. By “trial and
error”, we easily find the following two R-linear relations among f1, f2, f3:

x · f1 − y · f2 + z · f3 = w · f1 − x · f2 + y · f3 = 0 .

Later in this lecture, we will see that in addition to computing Gröbner bases,
Buchberger’s algorithm also computes syzygies (successively, it computes free
resolutions). For the twisted cubic curve, the algorithm finds the two relations
above and shows that they generate all syzygies on f1, f2, f3. In fact, it shows
that the minimal free resolution of R/I is as follows (see Exercise 1.49):

0←− R/I ←− R
ϕ1←− R(−2)3

ϕ2←− R(−3)2 ←− 0 ,

where

ϕ1 = (xz − y2, wz − xy, wy − x2) and ϕ2 =

⎛⎝ x w
−y −x
z y

⎞⎠ .

Recall that a k × k minor of a matrix ϕ is the determinant of a k × k sub-
matrix of ϕ. In our example here, the entries of ϕ1, that is, f1, f2, f3, are just
the 2× 2 minors of ϕ2 (with appropriate signs). This is no accident. It is,
in fact, a consequence of the theorem of Hilbert-Burch, proved by Hilbert in
his 1890 landmark paper to give examples of free resolutions (see Eisenbud
(1995), Theorem 20.15). ��
From now on, we occasionally present explicit SINGULAR code. A thorough
introduction to SINGULAR is postponed to Lecture 3.

Example 1.19. The polynomials defining the twisted cubic curve C have co-
efficients in Q. This allows us to find the minimal free resolution of its ho-
mogeneous coordinate ring R/I by computations over Q (see Remark 2.9 in
Lecture 2). In SINGULAR, the polynomial ring Q[w, x, y, z] may be defined as
follows:

> ring R = 0, (w,x,y,z), dp;

Note that the input prompt > is offered to the user and should not be typed.
The 0 refers to Q, the prime field of characteristic zero. The meaning of dp

will be explained later in this lecture.

> ideal I = xz-y2, wz-xy, wy-x2;

> I; // prints I

I[1]=-y2+xz

I[2]=-xy+wz

I[3]=-x2+wy

> resolution fI = mres(I,0);
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There are several ways of displaying information on the resolution:

> fI;

1 3 2

R <-- R <-- R

0 1 2

> print(fI[1]); // the first syzygy matrix of R/I

y2-xz,

xy-wz,

x2-wy

> print(fI[2]); // the second syzygy matrix of R/I

x, w,

-y,-x,

z, y

> print(betti(fI),"betti"); // the Betti diagram

> // (see the remark below)

0 1 2

------------------------

0: 1 - -

1: - 3 2

------------------------

total: 1 3 2

��

Remark 1.20 (Betti Diagrams). If I is a homogeneous ideal of a poly-
nomial ring R in SINGULAR, and if fI is any graded free resolution of R/I

computed with SINGULAR, the input line

> print(betti(fI),"betti");

asks SINGULAR to display information on the minimal free resolution of R/I

in form of a diagram which will be referred to as a Betti diagram. To
understand how to read such a diagram, consider the following example:

0 1 2 3

------------------------------

0: 1 - - -

1: - 2 1 -

2: - 2 3 1

------------------------------

total: 1 4 4 1

A number i in the top row refers to the ith free module Fi of the resolution.
More precisely, the column with first entry i lists the number of free generators
of Fi in different degrees and, in the bottom row, the total number of free
generators (that is, the rank of Fi). If k: is the first entry of a row containing
a number β in the column corresponding to Fi, then Fi has β generators in
degree k + i. That is, β is the graded Betti number βij(R/I) with j = k + i.
The diagram above indicates, for instance, that F2 has one generator in degree
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3 and three generators in degree 4. In total, the Betti diagram corresponds to
a minimal free resolution of type

R R(−2)2 ⊕R(−3)2 R(−3)⊕R(−4)3 R(−5) 0 . ��

We are now ready to explain how Hilbert represented the infinitely many
values of the Hilbert function in finite terms. To begin with, it is clear from
Example 1.5 how to do this for the polynomial ring

R = K[x] = K[x1, . . . , xn]

and its twists. Namely, in this case,

H
(
R(d), ν

)
= H(R, ν + d) =

(
ν + d + n− 1

n− 1

)
,

which agrees for ν ≥ −(d + n− 1) with the polynomial expression

PR(d)(ν) :=
(ν + d + n− 1)(ν + d + n− 2) · · · (ν + d + 1)

(n− 1)!
.

Since the Hilbert function is additive with respect to exact sequences of graded
modules and graded homomorphisms of degree 0, the syzygy theorem implies
the following result (see Eisenbud (1995), Section 1.10):

Theorem 1.21 (Polynomial Nature of Hilbert Functions). Let M be
a finitely generated graded K[x]-module. There exists a unique polynomial
PM (t) ∈ Q [t] such that

H(M, ν) = PM (ν) for all ν � 0 .

This polynomial has degree ≤ n− 1 and is called the Hilbert polynomial of
M .

In fact, the proof outlined above gives that H(M, ν) = PM (ν) for each

ν ≥ max{j | βij(M) �= 0 for some i} − n + 1 .

Since

HK[x](t) =
∑
ν∈Z

(
ν + n− 1

n− 1

)
· tν =

1

(1− t)n
,

the same proof shows that the Hilbert series HM (t) is a rational function of
t:

Theorem 1.22 (Representation of the Hilbert Series I). Let M be a
finitely generated graded K[x]-module with graded Betti numbers βij . Then

HM (t) =

∑
i,j(−1)iβijt

j

(1− t)n
.



22 1 Basic Notations and Ideas: A Historical Account

Another representation of the Hilbert series as a rational function is obtained
as a corollary of Theorem 1.21 (see Bruns and Herzog (1993), Section 4.1):

Theorem 1.23 (Representation of the Hilbert Series II). Let M �= 0
be a finitely generated graded K[x]-module, and let d be the degree of PM (t).
There exists a unique Laurent polynomial QM (t) ∈ Z[t, t−1] with QM (1) �= 0
such that

HM (t) =
QM (t)

(1− t)d+1
.

Moreover, if QM (t) =
∑

ν hνtν , then min{ν | hν �= 0} is the least number ν
such that Mν �= 0.

With notations and assumptions as in the theorem, the Hilbert polynomial

PM can be computed from the Laurent polynomial QM : if Q
(i)
M denotes the

ith formal derivative of QM (defined by mimicking the usual rules of differ-
entiation), and if we set

ai =
Q

(i)
M (1)

i!
, i = 0, . . . , d ,

then

PM (t) =
d∑

i=0

(−1)d−iad−i

(
t + i

i

)
.

Moreover, if QM (t) =
∑r

i=� hit
i with hr �= 0, then

H(M, r − d− 1) �= PM (r − d− 1)

and
H(M, ν) = PM (ν) for each ν ≥ r − d .

Remark 1.24. Algebraic geometers use the Hilbert polynomial to rediscover
or define numerical invariants of a projective algebraic set and its embedding.
For instance, if I ⊂ K[x] is a homogeneous ideal, then

d = deg PK[x]/I = dimK[x]/I − 1

is the dimension of the projective algebraic set defined by I. We will explain
this in Lecture 2. ��

Example 1.25. In the example of the twisted cubic curve, we may read off
the Hilbert series and the Hilbert polynomial of R/I from its minimal free
resolution:

HR/I(t) =
1− 3t2 + 2t3

(1− t)4
=

1 + 2t

(1− t)2

and
PR/I(t) = 3t + 1 . ��



1 Basic Notations and Ideas: A Historical Account 23

In more complicated examples, computing the Hilbert series via syzygies may
be costly. As we will see, the computation of a free resolution of K[x]/I
requires the computation of Gröbner bases for I itself and for each kernel
needed to construct the free resolution. For the Hilbert series, there is an
alternative method which only requires the computation of a Gröbner basis
for I. Before explaining all this in detail, we give a SINGULAR example.

Example 1.26. We continue the SINGULAR session from Example 1.19 by com-
puting the Hilbert series of the homogeneous coordinate ring R/I of the
twisted cubic curve. To begin with, we use the groebner command to compute
a Gröbner basis for I:

> ideal GI = groebner(I);

> hilb(GI);

// 1 t^0

// -3 t^2

// 2 t^3

// 1 t^0

// 2 t^1

// dimension (proj.) = 1

// degree = 3

> intvec co1 = hilb(GI,1);

> co1;

1,0,-3,2,0

> intvec co2 = hilb(GI,2);

> co2;

1,2,0

We see that the SINGULAR command hilb computes the two representations
of the Hilbert series of R/I (and some of the numerical invariants referred to
in Remark 1.24). The numerator of each representation is encoded as a vector
of type intvec. That is, the entries of the vector are integers in a certain
range (see Lecture 3, Remark 3.7).

We make use of the SINGULAR user language to write a procedure for
displaying Hilbert polynomials (see Lecture 3, Section 3.8 for more on SINGU-

LAR procedures and Section 3.6 for the built-in command hilbPoly).

proc displayHilbPoly(ideal G)

"USAGE: displayHilbPoly(G), G of type ideal

ASSUME: G must be a homogeneous Groebner basis for an ideal of the

active ring in the SINGULAR session; say, G generates the

homogeneous ideal I of R.

RETURN: None.

NOTE: Displays the Hilbert polynomial of R/I.

"

{

int d = dim(G)-1; // degree of Hilbert polynomial

intvec co = hilb(G,2); // representation II of Hilbert series
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int s = size(co)-1; // s = deg(Q_M) +1

ring Qt = 0, t, dp; // change active ring to Q[t]

poly QM = 0;

for (int i=1; i<=s; i=i+1)

{

QM = QM+co[i]*t^(i-1);

}

poly QMi = QM; // the polynomial Q_M(t)

int ifac = 1;

list a;

for (i=1; i<=d+1; i=i+1)

{

a = insert(a, subst(QMi,t,1)/ifac, i-1);

QMi = diff((QMi),t);

ifac = ifac*i;

}

poly PM = (-1)^(d)*a[d+1];

poly bin = 1;

for (i=1; i<=d; i=i+1)

{

bin = bin*(t+i)/i; // compute binomial coeff. by recursion

PM = PM+(-1)^(d-i)*a[d+1-i]*bin;

}

print(PM);

}

In our session, having read the procedure into SINGULAR, we apply it as follows:

> displayHilbPoly(GI);

3t+1 ��

Gordan, originally one of the major critics of Hilbert’s 1890 paper,
later on gave his own proof of the basis theorem (1899). His novel
idea was to reduce the problem to monomial ideals, that is, to ideals
generated by monomials. Gordan’s very concise paper consists of four
short paragraphs. In the modern terminology that we are about to
introduce, he proceeded along the following lines:
• The monomials in K[x] may be ordered according to the lexico-

graphic order >lp.
• Gordan’s Lemma. Every monomial ideal of K[x] is finitely gen-

erated.
• Every polynomial f ∈ K[x] can be written in the form

f = L(f) + f̃ ,

with leading term L(f) = L>lp
(f) and a tail f̃ . If L(f) is divisible

by the leading term L(g) of another polynomial g ∈ K[x], then



1 Basic Notations and Ideas: A Historical Account 25

L(f) >lp L

(
f − L(f)

L(g)
g

)
.

• Every ideal of K[x] has a Gröbner basis with respect to >lp. In
particular, every ideal of K[x] is finitely generated.

Definition 1.27. (1) A monomial order on K[x] is a total order > on the
set of monomials {xα | α ∈ Nn} which is multiplicative:

xα > xβ =⇒ xγxα > xγxβ for each γ ∈ Nn.

(2) Let > be a monomial order on K[x]. By abuse of notation, we extend >
to terms in K[x]. If a, b ∈ K are nonzero scalars, and if xα, xβ are monomi-
als in K[x] such that xα > xβ (respectively xα ≥ xβ), we write axα > bxβ

(respectively axα ≥ bxβ). This does not give us a partial order on the set of
all terms in K[x], but it allows us to compare the terms of any given nonzero
polynomial f ∈ K[x] with each other.

The largest term of f , written L(f) = L>(f), is called the leading term, or
initial term, of f . If L(f) = axα, with a ∈ K, then a is called the leading
coefficient and xα the leading monomial of f . We occasionally refer to
f − L(f) as the tail of f , written tail(f). Further, we set L(0) = L>(0) = 0.

(3) A monomial order > on K[x] is

• global, if xi > 1 for i = 1, . . . , n,

• local, if 1 > xi for i = 1, . . . , n, and

• mixed, otherwise. ��

The names global and local come from geometry, referring to the global and
local study of an algebraic set. We will deal with local (and mixed) orders
in Lecture 9. Now, we mainly focus on global orders. These orders can be
characterized as follows:

Remark 1.28. Let > be a monomial order on K[x]. The following statements
are equivalent:

(1) > is global.

(2) > refines the natural partial order >nat on Nn. That is,

α >nat β =⇒ xα > xβ ,

where α ≥nat β iff α− β ∈ Nn iff xα is divisible by xβ .

(3) > is a well-order. That is, every nonempty set of monomials in K[x] has
a least element with respect to >.

The nontrivial implication (2) =⇒ (3) follows from Gordan’s lemma which in
this context tells us that every subset of Nn has at most finitely many minimal
elements with respect to >nat. ��
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Example 1.29. Important global monomial orders on K[x] are:

(1) The lexicographic order >lp:

xα >lp xβ :⇐⇒ the first nonzero entry of α− β is positive .

In SINGULAR, we write, for instance:

> ring R = 0, x(1..7), lp;

(2) The degree reverse lexicographic order >dp:

xα >dp xβ :⇐⇒ deg xα > deg xβ or (deg xα = deg xβ and the last nonzero
entry of α− β is negative) .

In SINGULAR, we write, for instance:

> ring R = 0, x(1..7), dp;

Note that with respect to both orders, the variables are sorted in the usual
way: x1 > · · · > xn. ��

In the context of computing syzygies, we also need to talk about monomial
orders on free modules. In what follows, let F be a free K[x]-module with
a fixed basis e1, . . . , es.

Remark-Definition 1.30. A monomial in F is a monomial in K[x] times
a basis vector of F , that is, an element of the form xαei. A term in F is a
monomial in F times a scalar, that is, an element of type axαei, where a ∈ K.
A submodule of F which is generated by monomials is called a monomial
submodule. Such a submodule has a uniquely determined minimal set of
monomial generators. A monomial order on F may be defined in the
same way as a monomial order on K[x]. That is, it is a total order > on the
set of monomials in F satisfying

xαei > xβej =⇒ xγxαei > xγxβej for each γ ∈ Nn.

In these notes, we require in addition that

xαei > xβei ⇐⇒ xαej > xβej ,

for all i, j = 1, . . . , s. In this way, every monomial order on F induces a unique
monomial order on K[x] and notions like global and local carry over to mono-
mial orders on free modules. Finally, given a monomial order on F , we define
the leading term, the leading coefficient, the leading monomial, and
the tail of an element of F as we did for a polynomial in K[x]. ��

One way of getting a monomial order on F is to pick a monomial order > on
K[x], and extend it to F . This can be done in several ways. See Lecture 3,
Section 3.2 for a thorough discussion of monomial orders.
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Definition 1.31. Let I ⊂ F be a submodule, and let > be a global monomial
order on F .

(1) The leading module, or initial module, of I with respect to > is the
monomial submodule

L(I) := L>(I) :=
〈
L>(f)

∣∣ f ∈ I
〉
⊂ F .

That is, L(I) is generated by the leading terms of the elements of I. If I is an
ideal of K[x], we refer to L(I) as the leading ideal, or initial ideal, of I.

(2) A finite subset G = {f1, . . . , fr} of I is a Gröbner basis for I with
respect to > if

L>(I) =
〈
L>(f1), . . . ,L>(fr)

〉
.

That is, the leading module of I is generated by the leading terms of the
elements of G. We say that a finite subset of F is a Gröbner basis, if it is a
Gröbner basis for the submodule it generates. ��
Remark 1.32. (1) Given a global monomial order > on F , every submodule
I ⊂ F has a Gröbner basis with respect to > (indeed, as pointed out by
Gordan, this follows from the fact that L>(I) is finitely generated). Every
Gröbner basis for I generates I (see Remark 1.40 below).

(2) Leading modules depend on the choice of monomial order. Also, a
Gröbner basis with respect to one monomial order may not be a Gröbner
basis with respect to another monomial order. ��

Macaulay (1927), influenced by the ideas of Hilbert, classified the nu-
merical functions which arise as Hilbert functions of (homogeneous)
ideals I. On his way, he showed the following results (see Decker and
Schreyer (2006) or Eisenbud (1995) for a modern treatment):

Theorem 1.33 (Macaulay). Let I ⊂ F be a submodule, and let > be a
global monomial order on F . Then the residue classes of the monomials not
in L>(I) form a K-vector space basis for F/I.

Definition 1.34. The monomials not in L>(I) are called standard mono-
mials (for I, with respect to >). ��
Theorem 1.35 (Macaulay). Suppose that F is a graded free K[x]-module
with a fixed basis of homogeneous elements. Let I ⊂ F be a graded submodule,
and let > be a global monomial order on F . Then the Hilbert function of F/I
equals the Hilbert function of F/ L>(I).

Remark 1.36. (1) The computation of Hilbert functions of monomial sub-
modules is of purely combinatorial nature.

(2) Macaulay’s theorems give examples of how L>(I) carries information on I
itself. As does Gordan’s proof of the basis theorem, this shows the use made of
Gröbner bases: the key idea is to reduce questions on arbitrary ideals to ques-
tions on monomial ideals which are much easier (in fact, often combinatorial
in nature). The same idea works for submodules of free modules. ��
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Hironaka (1964) and, independently, Grauert (1972) introduced stan-
dard bases which are to power series rings what Gröbner bases are to
polynomial rings. Also, Hironaka and Grauert came up with a division
theorem for power series.

The crucial computational breakthrough, however, is due to Buch-
berger (1965, 1970). Buchberger’s thesis problem, proposed by Gröbner
under the influence of Macaulay’s work, was to develop tools for com-
puting in quotient rings K[x1, . . . , xn]/I. Buchberger solved this prob-
lem completely using Gröbner bases (it was Buchberger who coined
the name Gröbner basis; Gordan’s paper was forgotten at that time).
Buchberger’s ideas enable us, in particular, to compute the stan-
dard monomials. The essential new computational ingredient is Buch-
berger’s criterion. This allows us to test whether a given set of gen-
erators for an ideal (for a submodule of a free module) is in fact a
Gröbner basis for the ideal (the submodule). The test is based on di-
vision with remainder in the polynomial ring (in a free module over
the polynomial ring). That Buchberger’s algorithm can also be used
to compute syzygies was observed by Schreyer (1980) and others.

Let F be a free K[x]-module with a fixed basis e1, . . . , es, and let > be a
global monomial order on F .

Notation 1.37. We say that a nonzero term m = axαei ∈ F is divisible by a
nonzero term m′ = bxβej ∈ F , with quotient

m

m′
:=

a

b
· xα−β ∈ K[x] ,

iff i = j and xα is divisible by xβ (that is, α ≥nat β). ��

Note that if I ⊂ F is a monomial submodule, given by monomial generators
m1, . . . , mr, and if m ∈ F is a further monomial, then m ∈ I iff m is divisible
by at least one of the mi.

Theorem 1.38 (Division with Remainder). Let f1, . . . , fr ∈ F \{0}. For
every f ∈ F , there exist g1, . . . , gr ∈ K[x] and an element h ∈ F such that

f =

r∑
k=1

gkfk + h ,

where:

(DIV 1) L(f) ≥ L(gkfk) whenever both sides are nonzero.
(DIV 2’) If h is nonzero, then L(h) is not divisible by any L(fk); that is,

L(h) /∈ 〈L(f1), . . . ,L(fr)〉.

Any expression for f as above is called a standard expression for f in terms
of the fk with remainder h.
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The proof of Theorem 1.38 consists of a division algorithm for computing a
standard expression. In a single step of the division process, if g is the current
dividend, the new dividend is obtained as in Gordan’s proof of Hilbert’s basis
theorem by canceling the leading term: if L(g) is divisible by L(fk) for some
k, and if we choose such a k, the new dividend is

g − L(g)

L(fk)
fk .

This process must stop after finitely many steps since > is a well-order and
since the leading term of the intermediate dividend decreases at each step.

If instead of just canceling the leading terms we remove arbitrary terms of
the intermediate dividends as described above, the algorithm still terminates.
Indeed, this follows again from the fact that > is a well-order. As a result of
this version of the algorithm, we obtain a standard expression whose remainder
h satisfies the following condition:

(DIV 2) If h is nonzero, no term of h is divisible by any L(fk).

The division algorithm as described above is indeterminate, in that we allow
choices to be made in the computational process, and in that the computed
remainder may depend on these choices. We refer to Decker and Schreyer
(2006), Chapter 2 for a determinate version of the algorithm.

Example 1.39. The command for division with remainder in SINGULAR is
reduce. Given, for instance, a polynomial f and an ideal I by a set of gen-
erators, reduce(f,I,1); returns a remainder of f on division by the given
generators. The remainder satisfies condition (DIV 2’) of Theorem 1.38. En-
tering reduce(f,I); instead, the remainder satisfies the stronger condition
(DIV 2) above (the computation might be more expensive in this case). Here
is a simple example:

> ring R = 0, (x,y), dp;

> ideal I = x2y-y3, x3;

> poly f = x3y+x3;

> reduce(f,I,1);

// ** I is no standard basis

xy3+x3

> reduce(f,I);

// ** I is no standard basis

xy3

Note that SINGULAR prints the warning

// ** I is no standard basis

(using standard basis as another name for Gröbner basis). To explain why,
we write f1 = x2y − y3 and f2 = x3. It is clear from the output above that,
in our session, the division algorithm proceeds by first using L(f1) = x2y to
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cancel L(f) = x3y. In this way, we get the new dividend g = xy3 + x3. This
dividend is an element of I, but its leading term L(g) = xy3 is not an element
of 〈L(f1), L(f2)〉 (in particular, f1, f2 do not form a Gröbner basis for I). This
is to say that L(g) is not divisible by any of L(f1), L(f2) and can therefore not
be removed in the division process. As a result, we get a nonzero remainder of
f on division by f1, f2 though f ∈ I = 〈f1, f2〉. Thus, the division algorithm
shows some undesirable behavior when dividing by the elements of an arbi-
trary set of generators. Dividing by the elements of a Gröbner basis instead,
we get the remainder zero:

> ideal GI = groebner(I);

> GI;

GI[1]=x2y-y3

GI[2]=x3

GI[3]=xy3

GI[4]=y5

> reduce(f,GI);

0 ��

Remark 1.40. (1) If f =
∑r

k=1 gkfk + h is a standard expression for a non-
zero f ∈ F in terms of f1, . . . , fr ∈ F \ {0}, then the leading monomial of f
is among the leading monomials of g1f1, . . . , grfr, h. It follows that f1, . . . , fr

form a Gröbner basis iff each element f ∈ 〈f1, . . . , fr〉 has a standard expres-
sion in terms of the fk with remainder zero (in this case, the remainder in
every such standard expression is zero).

(2) Let I ⊂ F be a submodule, and let f ∈ F . The remainder in a standard
expression of f in terms of the elements of a Gröbner basis for I is a normal
form of f mod I. The normal form only depends on I and > if we require
that it satisfies condition (DIV 2) of division with remainder. In this case,
the normal form gives the expression for f mod I in terms of the standard
monomials. ��

If we think of Remark 1.40 (1) as a criterion for f1, . . . , fr to be a Gröbner
basis, then it is certainly not a practical criterion since it asks us to check a
condition for the infinitely many elements in 〈f1, . . . , fr〉. Buchberger’s crite-
rion, which we treat next, tells us that it is actually enough to consider finitely
many of these elements.

Notation 1.41. (1) If axαek, bxβek are two nonzero terms of F involving the
same basis element ek, set

gcd(axαek, bxβek) = x
min(α1,β1)
1 · · ·xmin(αn,βn)

n ek .

(2) Let f1, . . . , fr ∈ F \ {0}. Consider a pair of indices i, j with i > j. If L(fi)
and L(fj) involve the same basis element, set

mij =
L(fi)

gcd(L(fi), L(fj))
∈ K[x]
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and
S(fi, fj) = mjifi −mijfj ∈ F .

If L(fi) and L(fj) involve different basis elements, set S(fi, fj) = 0. ��

By abuse of notation, we call S(fi, fj) the S-polynomial of fi and fj (though,
this is a polynomial only in case F = K[x]). The S in S-polynomial stands for
syzygies. In fact, the S-polynomials are designed to cancel leading terms:

mjiL(fi)−mijL(fj) = 0 .

Theorem 1.42 (Buchberger’s Criterion). With the notation above, com-
pute for each pair of indices i > j a standard expression for the S-polynomial
S(fi, fj) in terms of the fk with remainder hij. Then f1, . . . , fr form a Gröbner
basis iff all hij are zero.

We occasionally refer to the computation of the hij as Buchberger’s test.
If all hij are zero, the test yields standard expressions of type

mjifi −mijfj =
r∑

k=1

g
(ij)
k fk .

These expressions define syzygies on f1, . . . , fr which we view as elements

G(ij) =
(t
−g

(ij)
1 , . . . , (−mij − g

(ij)
j ), . . . , (mji − g

(ij)
i ), . . . ,−g(ij)

r

)
of the kernel of the map

F0 −→ F , εi 
−→ fi ,

where F0 is the free K[x]-module K[x]r with its canonical basis ε1, . . . , εr. On
F0, we consider the induced monomial order defined as

xαεi >0 xβεj :⇐⇒ xαL(fi) > xβL(fj), or(
xαL(fi) = xβL(fj) (up to scalar) and i > j

)
.

(Note that the property of being global carries over from > to >0.)
The syzygies G(ij) and the induced monomial order are the key ingredients

in Schreyer’s proof of Buchberger’s criterion (see Schreyer (1991) and Decker
and Schreyer (2006)). The same proof yields the following result:

Theorem 1.43 (Schreyer). Let f1, . . . , fr ∈ F \ {0} form a Gröbner basis
with respect to >. The syzygies G(ij)∈ K[x]r arising from Buchberger’s test
form a Gröbner basis for the syzygies on f1, . . . , fr with respect to the induced
monomial order on K[x]r. In particular, the G(ij) generate all syzygies on
f1, . . . , fr.

Remark 1.44. Let f1, . . . , fr ∈ F \ {0}. Buchberger’s criterion yields Buch-
berger’s algorithm for computing a Gröbner basis for 〈f1, . . . , fr〉:
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• Compute the remainders hij in Buchberger’s test. If all hij are zero, return
f1, . . . , fr.

• If a nonzero remainder hij occurs, add hij to the set of generators and
start over again.

Note that this algorithm terminates due to the ascending chain condition:

〈L(f1), . . . ,L(fr)〉 � 〈L(f1), . . . ,L(fr), L(hij)〉 if hij �= 0 .

Schreyer’s theorem yields Schreyer’s algorithm for computing a generating
set for the syzygies on f1, . . . , fr (see Decker and Schreyer (2006)):

• Compute a Gröbner basis f1, . . . , fr, fr+1, . . . , fr′ with Buchberger’s al-
gorithm. On your way, store all syzygies on the elements of the Gröbner
basis defined by a standard expression in Buchberger’s test; these syzygies
generate all syzygies on the elements of the Gröbner basis.

• The syzygies obtained from a division leading to a new generator fk in
Buchberger’s test allow us to express fk in terms of f1, . . . , fk−1. Replacing
fk, k = r′, . . . , r + 1, by this expression in each relation obtained from a
division with remainder zero in the test, we get the syzygies on the original
generators f1, . . . , fr. ��

Remark 1.45. In theoretical terms, Schreyer’s approach to computing syzy-
gies allows one to give a constructive proof of Hilbert’s syzygy theorem (see
Decker and Schreyer (2006), Chapter 2 or Eisenbud (1995), Chapter 15). ��

Example 1.46. Consider f1 = xy − y, f2 = −x + y2 ∈ K[x, y] with the lexi-
cographic order (where x > y). Then L(f1) = xy and L(f2) = −x. We compute
the standard expression

S(f2, f1) = y · f2 + 1 · f1 = y3− y = 0 · f1 + 0 · f2 + y3− y ,

and add the nonzero remainder f3 := y3− y to the set of generators. Comput-
ing the standard expressions

S(f3, f1) = x · f3 − y2 · f1 = −xy + y3 = −1 · f1 + 0 · f2 + 1 · f3

and

S(f3, f2) = −x · f3 − y3 · f2 = xy − y5 = 1 · f1 + 0 · f2 − (y2 + 1) · f3 ,

both with remainder zero, we find that f1, f2, f3 form a Gröbner basis for the
ideal I = 〈f1, f2〉.

In the picture on the next page, we visualize the monomials in K[x, y] by
printing their exponent vectors. The dots in the shaded region correspond to
the monomials in L(I).
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The minimal generators for L(I) are y3 and x. By Macaulay’s Theorem 1.33,
the monomials 1, y, y2 not corresponding to dots in the shaded region repre-
sent a K-vector space basis for K[x, y]/I. Thus, K[x, y]/I is a K-vector space
of dimension 3 and every class in K[x, y]/I is represented by a uniquely de-
termined K-linear combination a + by + cy2. To add and multiply classes, we
add and multiply the representatives. Hence, the multiplication in K[x, y]/I
is determined by the following multiplication table (we write f = f + I):

· 1 y y2

1 1 y y2

y y y2 y
y2 y2 y y2

According to Schreyer’s algorithm, the matrix⎛⎝ 1 −y2 + 1 −1
y 0 −y3

−1 x− 1 −x + y2 + 1

⎞⎠
is a syzygy matrix of f1, f2, f3. Notice, however, that the third column is su-
perfluous since it is a K[x, y]-linear combination of the first two columns. The
syzygies on the original generators f1, f2 are generated by a single relation,
namely the Koszul relation −f2f1 +f1f2 = 0. This is obtained by substituting
y · f2 + 1 · f1 for f3 into the relation given by the second column. ��

Remark-Definition 1.47. Let I ⊂ F be a submodule. A Gröbner basis for
I computed with Buchberger’s algorithm quite often contains elements whose
leading terms are unneeded generators for L(I). For instance, in Example 1.46,
the leading term L(f1) = xy is unneeded. By eliminating such generators, by
reducing the tail of each remaining generator such that for i �= j no term of fi

is divisible by L(fj), and by adjusting scalars such that each leading coefficient
is 1, we obtain the uniquely determined reduced Gröbner basis for I. In
Example 1.46, the reduced Gröbner basis is {x− y2, y3− y}. ��
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Remark 1.48. Buchberger’s algorithm generalizes both Gaussian elimination
and Euclid’s gcd algorithm.

Given linear polynomials

fi = ai1x1 + · · ·+ ainxn ∈ K[x] = K[x1, . . . , xn], i = 1, . . . , r,

and a global monomial order > on K[x] such that x1 > · · · > xn, computing
the reduced Gröbner basis for 〈f1, . . . , fr〉 amounts to transforming the coeffi-
cient matrix A = (aij) into a matrix in reduced row echelon form with pivots
1.

In the case of one variable x, there is precisely one global monomial order:
· · · > x2 > x > 1. If f1, f2 ∈ K[x], the reduced Gröbner basis for 〈f1, f2〉 with
respect to this order consists of exactly one element, namely the greatest
common divisor gcd(f1, f2), and Buchberger’s algorithm takes the same steps
as Euclid’s algorithm. ��

Exercise 1.49. Compute the minimal free resolution of the homogeneous co-
ordinate ring of the twisted cubic curve and compare your result with Example
1.18. Do not use a computer. ��

Exercise 1.50 (Schreyer (1991)). Consider the ideal

I = 〈f1, . . . , f5〉 ⊂ R = K[w, x, y, z]

generated by the polynomials

f1 = w2− xz, f2 = wx − yz, f3 = x2− wy, f4 = xy − z2, f5 = y2− wz .

Using Schreyer’s algorithm, compute a graded free resolution of R/I. Is the
resolution minimal? ��

Remark 1.51. One way of improving Buchberger’s algorithm is to reduce
the number of S-polynomials to be considered in Buchberger’s test. We will
discuss this in more detail in Lecture 3, Section 3.5. For one of the more
efficient versions of Buchberger’s criterion and for a solution of Exercise 1.50
based on that version, see Schreyer (1991) and Decker and Schreyer (2006). ��

We finally mention that standard bases of ideals generated by poly-
nomials in formal power series rings can be computed by a variant
of Buchberger’s algorithm due to Mora (1982) which is based on a
different division algorithm. We will discuss this in Lecture 9.

Remark 1.52. Buchberger’s algorithm is fundamental to computational al-
gebraic geometry. In fact, all algorithms described in the following lectures are
based on Gröbner basis computations (in a few cases, additional techniques
are needed).

Quite a number of the algorithms rely on syzygy computations. However,
the use made of syzygy computations is not restricted to being part of these
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algorithms. In fact, when studying geometric objects via their equations, the
syzygies often provide additional geometric insight. See Eisenbud (2005) for
a book which “illustrates the use of syzygies in many concrete geometric
considerations”.

A classical problem to which syzygy computations have been applied suc-
cessfully in recent years is the classification of smooth surfaces of low degree in
projective 4-space (see Decker, Ein, and Schreyer (1993), Decker and Schreyer
(2000), Popescu (1993), Popescu and Ranestad (1996), Aure et al (1997), and
Abo, Decker, and Sasakura (1998)).

Other applications include the study of the Gale transform by Eisenbud
and Popescu (1999, 2000) and Schreyer’s approach of using small finite fields
to construct special examples of algebraic sets (1996, 2001). ��

Remark 1.53 (Further Reading). For more details and complete proofs of
the results presented in this lecture, see Bruns and Herzog (1993), Cox, Little,
and O’Shea (1997, 1998), Decker and Schreyer (2006), and Eisenbud (1995).



Lecture 2

Basic Computational Problems and Their
Solution

Our basic geometric objects of study are sets of solutions of polynomial equa-
tions in affine or projective space and are called affine or projective algebraic
sets. In this lecture, we introduce the geometry-algebra dictionary which re-
lates algebraic sets to ideals of polynomial rings, translating geometric state-
ments into algebraic statements and vice versa. We pay particular attention
to computational problems arising from basic geometric questions. And, we
begin to explore how Gröbner bases can be used to solve the problems.

2.1 Computational Problems Arising from the
Geometry-Algebra Dictionary

Let K be a field, and let An(K) be the affine n-space over K,

An(K) :=
{
(a1, . . . , an)

∣∣ a1, . . . , an ∈ K
}

.

Each polynomial f ∈ K[x] = K[x1, . . . , xn] defines a function

f : An(K)→ K , (a1, . . . , an) 
→ f(a1, . . . , an);

the value f(a1, . . . , an) is obtained by substituting the ai for the xi in f and
evaluating the corresponding expression in K. This allows us to talk about
the vanishing locus of f in An(K), namely V(f) := {p ∈ An(K) | f(p) = 0}.
If f is nonconstant, we call V(f) a hypersurface in An(K).

Example 2.1. We visualize the hypersurface V
(
y4+ z2− y2(1−x2)

)
⊂ A3(R)

using SURF:

��
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A subset A ⊂ An(K) is an (affine) algebraic set if it is the common van-
ishing locus of finitely many polynomials f1, . . . , fr ∈ K[x]:

A = V(f1, . . . , fr) :=
{
p ∈ An(K)

∣∣ f1(p) = · · · = fr(p) = 0
}

.

We then call f1 = 0 , . . . , fr = 0 a set of defining equations for A. Note
that every K[x]-linear combination f =

∑r
i=1 gifi vanishes on A, too. We may,

thus, as well say that A is the vanishing locus V(I) of the ideal I = 〈f1, . . . , fr〉
formed by all these combinations:

A = V(I) :=
{
p ∈ An(K)

∣∣ f(p) = 0 for all f ∈ I
}

.

By Hilbert’s basis theorem, every ideal I of K[x] is of type I = 〈f1, . . . , fr〉
for some f1, . . . , fr ∈ K[x]. Its vanishing locus V(I) ⊂ An(K) is, thus, an al-
gebraic set (in fact, the vanishing locus of any given subset of K[x] is de-
fined as above and is an algebraic set). We have V(0) = An(K), V(1) = ∅,
V(I) ∪V(J) = V(I ∩ J), and

⋂
λ V(Iλ) = V(

∑
λ Iλ). In particular, the alge-

braic subsets of An(K) satisfy the axioms for the closed sets of a topology on
An(K). This topology is called the Zariski topology. If X ⊂ An(K) is any
subset, then X will denote its closure in the Zariski topology.

Having associated an algebraic subset of An(K) to each ideal of K[x], we
now proceed in the other direction. Namely, if A ⊂ An(K) is an algebraic set,
we define the vanishing ideal of A to be

I(A) =
{
f ∈ K[x]

∣∣ f(p) = 0 for all p ∈ A
}
.

Vanishing ideals have a property not shared by all ideals: they are radical
ideals. Here, if I is an ideal of a ring R, its radical is the ideal

√
I :=

{
f ∈ R

∣∣ fm∈ I for some m ≥ 1
}
,

and we call I a radical ideal if I =
√

I.

Example 2.2. If f = c · fm1

1 · · · fms
s is the factorization of a nonconstant poly-

nomial f ∈ K[x] into its irreducible coprime factors fi ∈ K[x], then√
〈f〉 = 〈f1 · · · fs〉.

The product f1 · · · fs is uniquely determined by f up to nonzero scalars and is
called the square-free part of f . If all mi are 1, we say that f is square-free.
In this case, 〈f〉 is a radical ideal. ��
The correspondence between algebraic sets and ideals is made precise by
Hilbert’s Nullstellensatz which is fundamental to the geometry-algebra dic-
tionary:

Theorem 2.3 (Hilbert’s Nullstellensatz). Let A ⊂ An(K) be an alge-
braic set, and let I ⊂ K[x] be an ideal. If K is algebraically closed, then

A = V(I) =⇒ I(A) =
√

I.
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Corollary 2.4. If K is algebraically closed, then I and V define a one-to-one
correspondence

{
algebraic subsets of An(K)

} I

V

{
radical ideals of K[x]

}
.

Under this correspondence, the points of An(K) correspond to the maximal
ideals of K[x].

See, for instance, Decker and Schreyer (2006) for proofs.
Properties of an ideal I of a ring R can be expressed in terms of the

quotient ring R/I. For instance, I is a maximal ideal iff R/I is a field. More
generally, I is a prime ideal iff R/I is an integral domain. Finally, I is a radical
ideal iff R/I is reduced (that is, the only nilpotent element of R/I is zero).

If K is any field, and if A ⊂ An(K) is an algebraic set, the coordinate
ring of A is the reduced ring K[A] := K[x]/I(A). An element of K[A] is,
thus, the residue class f = f + I(A) of a polynomial f ∈ K[x]. We may also
think of it as a polynomial function on A, namely A→ K, p 
→ f(p). The
ring K[A] is an integral domain iff A is irreducible, that is, iff A cannot be
written as the union of two algebraic sets properly contained in A (otherwise,
A is reducible). If A is irreducible, it is also called an (affine) variety. The
empty set is not considered to be irreducible.

Example 2.5. (1) The algebraic subset of A3(R) with defining equations
x2z + y2z− z3 = x3+ xy2− xz2 = 0 is reducible since it decomposes into a
cone and a line:

V(x2z+ y2z− z3, x3+ xy2− xz2) = V(x2+ y2− z2) ∪V(x, z) .

We draw a picture using SURF:

(2) The real algebraic set in Example 2.1 is irreducible (even if the picture
displayed seems to suggest that it is the union of a surface and a line). See
Exercise 2.34 and Lecture 7, Example 7.2. ��

If K is any field, and if I ⊂ K[x] is any ideal, we refer to K[x]/I as an affine
K-algebra, or simply as an affine ring. If I is a prime ideal, we refer to
K[x]/I as an affine domain. Note that every finitely generated K-algebra
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S arises as an affine ring. Indeed, choose finitely many generators s1, . . . , sm

for S, and represent S as the homomorphic image of the polynomial ring
K[y1, . . . , ym] by considering the map φ : K[y1, . . . , ym] � S, yi 
→ si. Then
S ∼= K[y1, . . . , ym]/ kerφ. If K is algebraically closed, and if S is reduced,
then S can be thought of as the coordinate ring of an affine algebraic set.
Indeed, if S is reduced, I := kerφ is a radical ideal. Hence, I(V(I)) = I by the
Nullstellensatz, and we may take the algebraic set V(I) ⊂ Am(K).

Just as affine algebraic sets are given by polynomials, the natural maps
between them are also given by polynomials: if A ⊂ An(K) and B ⊂ Am(K)
are algebraic sets, a map ϕ : A→ B is called a morphism, or a polynomial
map, if there exist polynomials f1, . . . , fm ∈ K[x1, . . . , xn] such that ϕ(p) =
(f1(p), . . . , fm(p)) for all p ∈ A. In this case, ϕ has an algebraic counterpart,
namely the K-algebra homomorphism

ϕ∗ : K[B] −→ K[A], yi + I(B) 
−→ fi + I(A) ,

where y1, . . . , ym are the coordinates on Am(K). If we think of the elements of
K[A] and K[B] as polynomial functions on A and on B, then ϕ∗ is obtained
by composing a polynomial function on B with ϕ to obtain a polynomial
function on A:

A
ϕ

B

K .

We are now ready to present a list of basic geometric questions and the alge-
braic problems arising from them. In formulating the problems, we suppose
that I and J are ideals of K[x], each given by a finite set of generators. Our
basic reference for the results behind our translation from geometry to algebra
and vice versa is Decker and Schreyer (2006).

We begin by recalling that V(I) ∩ V(J) = V(I + J). Thus, computing
the intersection V(I) ∩V(J) just amounts to concatenating the given sets of
generators for I and J . It is not immediately clear, however, how to deal with
the union of algebraic sets.

• Compute the union V(I) ∪ V(J). Algebraically, find generators for the
intersection I ∩ J .

The Noetherian property of K[x] implies that every (nonempty) algebraic set
can be uniquely written as a finite union A = V1 ∪ · · · ∪Vs of varieties Vi such
that Vi �⊂ Vj for i �= j. The Vi are called the irreducible components of A.

• Compute the irreducible components of V(I). Algebraically, compute the
minimal associated primes of I.1 More generally, compute a primary de-
composition of I. More specially, compute the radical of I.

1 The algebraic problem and the geometric problem described here are only equiv-
alent if K is algebraically closed. See Silhol (1978) for a statement that holds over
arbitrary fields.
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Remark 2.6 (Primary Decomposition). A proper ideal Q of a ring R is
said to be primary if f, g ∈ R, fg ∈ Q and f �∈ Q implies g ∈

√
Q. In this

case, P =
√

Q is a prime ideal, and Q is also said to be a P -primary ideal.
Given any ideal I of R, a primary decomposition of I is an expression of
I as an intersection of finitely many primary ideals.

Suppose now that R is Noetherian. Then every proper ideal I of R has
a primary decomposition. We can always achieve that such a decomposition
I =

⋂r
i=1 Qi is minimal. That is, the prime ideals Pi =

√
Qi are all distinct

and none of the Qi can be left out. In this case, the Pi are uniquely determined
by I and are referred to as the associated primes of I. If Pi is minimal among
P1, . . . , Pr with respect to inclusion, it is called a minimal associated prime
of I. The minimal associated primes of I are precisely the minimal prime ideals
containing I. Their intersection is equal to

√
I. Every primary ideal occuring

in a minimal primary decomposition of I is called a primary component of
I. The component is said to be isolated if its radical is a minimal associated
prime of I. Otherwise, it is said to be embedded. The isolated components
are uniquely determined by I, the others are far from being unique. See Atiyah
and MacDonald (1969) for details and proofs. ��

Example 2.7. If f = c · fm1

1 · · · fms
s is the factorization of a nonconstant poly-

nomial f ∈ K[x] into its irreducible coprime factors fi ∈ K[x], then

〈f〉 = 〈fm1

1 〉 ∩ . . . ∩ 〈fms
s 〉

is the (unique) minimal primary decomposition. ��

The names isolated and embedded come from geometry. If K is algebraically
closed, and if I is an ideal of R = K[x], the minimal associated primes of I
correspond to the irreducible components of V(I), while the other associated
primes correspond to irreducible algebraic sets contained (or “embedded”)
in the irreducible components. A more thorough geometric interpretation of
primary decomposition requires the language of schemes (see Eisenbud and
Harris (2000) for an introduction to schemes). For instance:

Example 2.8. Let I = 〈xy, y2〉 ⊂ K[x, y]. Then the minimal primary decom-
position I = 〈y〉 ∩ 〈x, y2〉 exhibits the affine scheme X = Spec(K[x, y]/I) as
the union of the x-axis and an embedded multiple point at the origin. Observe
that there are many different ways of writing X as such a union. For instance,
I = 〈y〉 ∩ 〈x, y〉2 is a minimal primary decomposition as well. ��

In these notes, we will, essentially, avoid to talk about schemes.

Remark 2.9 (The Role of the Coefficient Field). Because of Hilbert’s
Nullstellensatz, algebraic sets are usually studied over an algebraically closed
field such as the field of complex numbers. To visualize geometric objects,
however, the field of real numbers is chosen. And, to compute examples with
exact computer algebra methods, one typically works over a finite field, the
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field of rational numbers, or a number field (that is, a finite extension of Q
such as Q(

√
2) ∼= Q[t]/〈t2−2〉). See also Remark 4.12 in Lecture 4.

In this context, note that if K ⊂ L is a field extension, and if I is an
ideal of L[x] generated by polynomials f1, . . . , fr with coefficients in K, then
Buchberger’s algorithm applied to f1, . . . , fr yields Gröbner basis elements for
I which are also defined over K. For almost all geometric questions discussed
in this lecture, this allows us to study the vanishing locus of I in An(L) by
computations over K.

Note, however, that a prime ideal of K[x] needs not generate a prime
ideal of L[x]. From a computational point of view, this is reflected by the
fact that for computing a primary decomposition, algorithms for polynomial
factorization are needed in addition to Gröbner basis techniques (see Lec-
ture 7). In contrast to Buchberger’s algorithm, the algorithms for polynomial
factorization and their results are highly sensitive to the ground field.

With respect to dimension (see Remark 2.10 below), we point out that
if Q is a primary ideal of K[x] with radical P , then the associated primes
of QL[x] are precisely the prime ideals of L[x] intersecting K[x] in P and
having the same dimension as P (see Zariski and Samuel (1975–1976), Vol II,
Chapter VII, §11). See also Section 6.1.1 in Lecture 6.

With respect to radicals, note that if K is a perfect field, and if I ⊂ K[x]
is a radical ideal, then also IL[x] is a radical ideal (see again Zariski and
Samuel (1975–1976), Vol II, Chapter VII, §11). Recall that finite fields, fields
of characteristic zero, and algebraically closed fields are perfect. ��
In continuing our problem list, we now present problems for which the geo-
metric interpretation of the algebraic operations under consideration relies on
Hilbert’s Nullstellensatz. To emphasize this point, we mark such a problem
by the square � instead of the bullet •.
Convention. For each problem marked by a square, let K be an algebraically
closed extension field of K. If I ⊂ K[x] is an ideal, redefine V(I) to be the
vanishing locus of I in An := An(K). If A = V(I) ⊂ An, then I(A) is the
vanishing ideal of A in K[x] and K[A] = K[x]/I(A) is its coordinate ring. ��
In what follows, if not otherwise mentioned, I and J are again ideals of K[x],
each given by a finite set of generators.

The difference V(I) \V(J) need not be an algebraic set. That is, it may
not be Zariski closed. As an example, consider the punctured plane obtained
by removing the z-axis from the union of the xy-plane and the z-axis.
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� Compute the Zariski closure of V(I) \ V(J). That is, compute the union
of those irreducible components of V(I) which are not contained in V(J).
Algebraically, if I is radical, find generators for the ideal quotient of I
by J which is defined to be the ideal

I : J =
{
f ∈ K[x]

∣∣ fJ ⊂ I
}

.

If I is not necessarily radical, find generators for the saturation of I with
respect to J , that is, for the ideal

I : J∞ =
{
f ∈ R

∣∣ fJm⊂ I for some m ≥ 1
}

=
∞⋃

m=1
(I : Jm) .

� Solvability and ideal membership. Decide whether V(I) is empty.
Algebraically, decide whether 1 ∈ I. More generally, given any polynomial
f ∈ K[x], decide whether f ∈ I.

� Radical membership. Decide whether a given polynomial f ∈ K[x] van-
ishes on V(I). Algebraically, decide whether f is contained in

√
I.

� Compute the dimension of V(I). Algebraically, compute the Krull di-
mension of the affine ring K[x]/I. 2

The definition of the Krull dimension of a ring is somewhat reminiscent of
the fact that the dimension of a vector space over a field is the length of the
longest chain of proper subspaces:

Remark 2.10 (Dimension and Codimension). The Krull dimension
(or simply the dimension) of a ring R, denoted dim R, is the supremum of
the lengths d of chains

P0 � P1 � . . . � Pd

of prime ideals of R. If I � R is a proper ideal, its dimension, written dim I,
is defined to be dimR/I. The codimension of I, written codim I, is defined
as follows. If I is a prime ideal, codim I is the supremum of lengths of chains
of prime ideals with largest ideal Pd = I. If I is not necessarily prime, codim I
is the minimum of the codimensions of the prime ideals containing I.

It follows from the definitions that dim I + codim I ≤ dimR. In general,
the inequality may well be strict (see Lecture 9, Example 9.31). Equality holds
if R is an affine domain over a field K. In fact, in this case, dimR equals the
transcendence degree of the quotient field of R over K, and this number is the
common length of all maximal chains of prime ideals of R (a chain of prime
ideals of R is maximal if it cannot be extended to a chain of greater length
by inserting a further prime ideal). In particular, dim An = dim K[x] = n.

2 The dimension of A = V(I) ⊂ An, written dim A, is defined to be the Krull
dimension of the coordinate ring K[A]. It follows from what we said in Remark
2.9 that K[A] and K[x]/I have the same Krull dimension.
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An important result in dimension theory, proved using Nakayama’s lemma,
is Krull’s principal ideal theorem which asserts that if I = 〈f〉 � R is a
principal ideal of a Noetherian ring R and P is a minimal associated prime of
I, then codimP ≤ 1. If f is a nonzerodivisor of R, each minimal associated
prime of 〈f〉 has precisely codimension 1. In particular, dimK[x]/〈f〉 = n− 1
for each nonconstant f ∈ K[x]. In geometric terms, the dimension (of each
irreducible component) of a hypersurface V(f) ⊂ An is n− 1.

If I � K[x] is any proper ideal, then according to the definition of dimen-
sion, dimK[x]/I is the maximum dimension of a minimal associated prime of
I. Geometrically, the dimension of V(I) in An is the maximum dimension of
an irreducible component of V(I).

See Eisenbud (1995) for details and proofs. ��

� Compute the Zariski closure of the image of V(I) under the projection
An → An−k which sends (a1, . . . , an) to (ak+1, . . . , an). Algebraically, elim-
inate the first k variables from I, that is, compute the kth elimination
ideal Ik = I ∩K[xk+1, . . . , xn] .

� More generally, compute the Zariski closure of the image of V(I) under an
arbitrary morphism ϕ : V(I) → Am. Algebraically, if ϕ is given by poly-
nomials f1, . . . , fm ∈ K[x1, . . . , xn], and if y1, . . . , ym are the coordinates
on Am, consider the ideal

J = IK[x, y] +
〈
f1 − y1, . . . , fm − ym

〉
⊂ K[x, y] .

Then J defines the graph of ϕ in An × Am = An+m, and

ϕ(V(I)) = V(J ∩K[y]) .

Remark 2.11. If K is not algebraically closed, and if VK refers to taking van-
ishing loci in An(K) and Am(K), the Zariski closure of ϕ(VK(I)) in Am(K)
may be strictly contained in VK(J ∩K[y]). Equality holds, however, if VK(I)
is Zariski dense in the vanishing locus of I in the affine n-space over the al-
gebraic closure of K. Note that if K is infinite, then this condition is ful-
filled for An(K) = VK(0). Thus, the above applies, in particular, to polyno-
mial parametrizations over infinite fields. Here, a polynomial parametriza-
tion of an algebraic set B ⊂ Am(K) is a morphism ϕ : An(K)→ B such that
ϕ(An(K)) = B. See Decker and Schreyer (2006) for rational parametrizations
(and for proofs). ��

If a parametrization ϕ : An(K)→ B exists, it allows one to study B in terms
of a simpler variety (namely An(K)). A more general concept in this direc-
tion is normalization. In these notes, we briefly discuss normalization from a
computational point of view, addressing the more experienced reader.

� Find the normalization Ṽ(I) → V(I). Algebraically, if I is a radical ideal,
find for each (minimal) associated prime P of I the normalization of the
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affine domain K[x]/P . That is, find the integral closure of K[x]/P in the
quotient field of K[x]/P . More precisely, represent the integral closure as
an affine domain. As we will see in Lecture 7, this is possible due to a
finiteness result of Emmy Noether.

� Check whether V(I) is smooth. If not, study the behavior of V(I) at its
singular points.

Remark 2.12 (Smooth and Singular Points). Let A ⊂ An = An
(
K
)

be
an algebraic set, and let p = (a1, . . . , an) ∈ A be a point. We say that A is
smooth (or nonsingular) at p if the tangent space TpA to A at p has the
expected dimension, that is, if

dimTpA = dimp A .

Here, dimp A denotes the dimension of A at p, which is defined to be the
maximum dimension of the irreducible components of A through p. Further,
the tangent space to A at p is the linear variety

TpA = V(dpf | f ∈ I(A)) ⊂ An ,

where for each f ∈ K[x], we set

dpf =
n∑

i=1

∂f

∂xi
(p)(xi − ai) ∈ K[x] .

This definition extends the concept of tangent spaces from calculus (the par-
tial derivatives are defined in a purely formal way, mimicking the usual rules of
differentiation). Note that TpA is the union of all lines L = {p + tv | t ∈ K},
v ∈ An, such that all polynomials f(p + tv) ∈ K[t], f ∈ I(A), vanish with mul-
tiplicity ≥ 2 at 0.

�
p

A

TpA

If we regard TpAn = An as an abstract vector space with origin at p and
coordinates Xj = xj − aj , then TpA is a linear subspace of TpAn. In fact, if
I(A) = 〈f1, . . . , fr〉 ⊂ K[x], then TpA is the kernel of the linear map An → Ar

defined by the Jacobian matrix at p,⎛⎜⎝
∂f1

∂x1
(p) . . . ∂f1

∂xn
(p)

...
...

∂fr

∂x1
(p) . . . ∂fr

∂xn
(p)

⎞⎟⎠ .
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Note that the definition given above treats TpA externally, that is, in terms
of the ambient space An. For an intrinsic definition, consider the local ring
of A at p,

OA,p =

{
f

g

∣∣∣∣ f, g ∈ K[A], g(p) �= 0

}
(formally, this is the localization of K[A] at the maximal ideal of all polynomial
functions on A vanishing at p). Then K[A] � f = f + I(A) 
→ dpf |TpA induces

a natural isomorphism of K-vector spaces

mA,p/m
2
A,p

∼=−→ (TpA)∗ = HomK

(
TpA, K

)
,

where mA,p denotes the unique maximal ideal of OA,p,

mA,p =

{
f

g

∣∣∣∣ f, g ∈ K[A], g(p) �= 0, f(p) = 0

}
.

On the other hand, making use of the fact that every maximal chain of prime
ideals of an affine domain R has length dimR, one can show that

dimp A = dimOA,p ,

and the condition on A to be smooth at p may be expressed intrinsically as

dimK mA,p/m
2
A,p = dimOA,p .

If this holds, we refer to OA,p as a regular local ring (it follows from Krull’s
principal ideal theorem that we always have dimK mA,p/m

2
A,p ≥ dimOA,p).

If A is smooth at p, we also say that p is a smooth (or nonsingular)
point of A. Otherwise, we say that A is singular at p, or that p is a singular
point of A, or that p is a singularity of A. We refer to the set Asing of all
singular points of A as the singular locus of A. If A = V1 ∪ · · · ∪ Vs is the
decomposition of A into its irreducible components, then

Asing =
⋃
i�=j

(Vi ∩ Vj) ∪
⋃
i

(Vi)sing.

Starting from this formula, one can show that Asing is an algebraic subset of
A such that A and Asing have no irreducible component in common. If Asing

is empty, then A is smooth. Otherwise, A is singular.
See, for instance, Decker and Schreyer (2006) for details and proofs. ��

How to compute the singular locus will be discussed in Section 2.2 later in
this lecture.

Remark 2.13 (Local Properties). Smoothness of A at p is a local prop-
erty in the sense that it remains unchanged if we replace A by any neighbor-
hood of p in A. Algebraically, this is reflected by the fact that smoothness at
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p is expressed in terms of the local ring OA,p. If p is the origin, we may write
OA,p as the quotient K[x]〈x〉/I(A) ·K[x]〈x〉. Here, if K is any field, we set

K[x]〈x〉 =

{
f

g

∣∣∣∣ f, g ∈ K[x], g �∈ 〈x〉
}

.

From a computational point of view, we may formulate problems analogous
to those discussed so far in this lecture for ideals of K[x]〈x〉 instead of K[x].
In Lecture 9, we will give examples of how to interpret these problems geo-
metrically. ��

We now turn from the affine to the projective case.

In the affine plane, two lines either meet in a point, or are parallel. In
contrast, the projective plane is constructed such that two lines always
meet in a point. This is one example of how geometric statements
become simpler if we pass from affine to projective geometry.

Historically, the idea of the projective plane goes back to renais-
sance painters who introduced vanishing points on the horizon to allow
for perspective drawing:

P
H

We think of a vanishing point (or “point at infinity”) as the meet-
ing point of a class of parallel lines in the affine plane A2(R). The
projective plane P2(R) is obtained from A2(R) by adding one point
at infinity for each such class. A projective line in P2(R) is a line
L ⊂ A2(R) together with the point at infinity in which the lines par-
allel to L meet. Further, the horizon, that is, the set of all points at
infinity, is a projective line in P2(R), the line at infinity.

To formalize the idea of the projective plane, we observe that each
class of parallel lines in A2(R) is represented by a unique line through
the origin of A2(R). This fits nicely with stereographic projection
which allows one to identify the set of lines through the projection
center with the real line together with a point at infinity:

(0, 0)

L

L∞

L′

A1(R)
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If we define the abstract projective line to be the set

P1(R) =
{
lines through the origin in A2(R)

}
and think of it as the line at infinity, we may write

P2(R) = A2(R) ∪ P1(R) .

Formally, the definition of P2(R) is completely analogous to the
definition of P1(R). To see this, we identify A2(R) with the plane
V(z+1) ⊂ A3(R) and P1(R) with the set of lines in the xy-plane V(z)
through the origin. Then we may regard P2(R) as the set of all lines
in A3(R) through the origin:

V(z)

V(z+1) = A2(R)

L

Definition 2.14. If K is any field, the projective n-space over K is de-
fined to be the set

Pn(K) =
{
lines through the origin in An+1(K)

}
. ��

Each line L through the origin 0 ∈ An+1(K) may be represented by a point
(a0, . . . , an) ∈ L \ {0}. We write (a0 : . . . : an) for the corresponding point of
Pn(K) and call a0, . . . , an a set of homogeneous coordinates for this point.
Here, the colons indicate that (a0, . . . , an) is determined up to a nonzero scalar
multiple only. This representation allows us to think of Pn(K) as the quotient
of An+1(K) \ {0} modulo the equivalence relation defined by (a0, . . . , an) ∼
(b0, . . . , bn) iff (a0, . . . , an) = λ(b0, . . . , bn) for some nonzero scalar λ.

Given a polynomial f ∈ K[x0, . . . , xn], the value f(a0, . . . , an) depends on
the choice of representative of the point p = (a0 : . . . : an) ∈ Pn(K) and can
therefore not be called the value of f at p. Note, however, that if f is homo-
geneous, then f(λx0, . . . , λxn) = λdeg(f)f(x0, . . . , xn) for all nonzero scalars
λ and, thus,

f(a0, . . . , an) = 0 ⇐⇒ ∀ λ ∈ K \ {0} : f(λa0, . . . , λan) = 0 .



2.1 The Geometry-Algebra Dictionary 49

As a consequence, f has a well-defined vanishing locus V(f) in Pn(K). If f is
nonconstant, we refer to V(f) as a hypersurface in Pn(K).

A subset A ⊂ Pn(K) is a (projective) algebraic set if it is the com-
mon vanishing locus of finitely many homogeneous polynomials f1, . . . , fr ∈
K[x0, . . . , xn]:

A = V(f1, . . . , fr) :=
{
p ∈ An(K)

∣∣ f1(p) = · · · = fr(p) = 0
}

.

We then call f1 = 0 , . . ., fr = 0 a set of defining equations for A.
If f is a homogeneous linear polynomial, we may identify the algebraic set

V(f) ⊂ Pn(K) with Pn−1(K) and its complement Pn(K) \V(f) with An(K):

Pn(K) = An(K) ∪ Pn−1(K) .

We refer to Pn(K) \V(f) as an affine chart of Pn and to Pn−1(K) as the
corresponding hyperplane at infinity. For instance, if f = xi, we identify

(a0 : · · · : an)←→

⎧⎨⎩
(

a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . .

an

ai

)
∈ An(K) , if ai �= 0 ,

(a0 : . . . : ai−1 : ai+1 : . . . : an) ∈ Pn−1(K) , if ai = 0 .

Remark 2.15 (The Projective Geometry-Algebra Dictionary). The
geometry-algebra dictionary relates projective algebraic subsets of projective
n-space Pn(K) to homogeneous ideals of K[x0, . . . , xn] via maps I and V essen-
tially defined as in the affine case. If K is algebraically closed, the projective
version of the Nullstellensatz implies that there is a one-to-one correspondence

{
projective algebraic
subsets of Pn(K)

}
I

V

⎧⎨⎩
homogeneous radical ideals

of K[x0, . . . , xn]
not equal to 〈x0, . . . , xn〉

⎫⎬⎭ .

Since 〈x0, . . . , xn〉 does not appear in this correspondence, it is called the
irrelevant ideal.

The homogeneous coordinate ring of a projective algebraic subset
A ⊂ Pn(K) is the reduced graded K-algebra

K[A] := K[x0, . . . , xn]/I(A).

In terms of affine algebraic sets, this is the coordinate ring of the affine cone
over A. Here, if A ⊂ Pn(K) is the vanishing locus of a homogeneous ideal
I ⊂ K[x0, . . . , xn], the affine cone over A is the vanishing locus of I in
An+1(K):
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0

V(I|x0=1)

In the projective case, we may ask questions analogous to those formulated in
the affine case. For most of these questions, we consider as in the affine case
an algebraically closed extension field K of K and redefine V(I) to be the
vanishing locus of I in Pn := Pn(K). Further, if A = V(I) ⊂ Pn, then I(A)
is the vanishing ideal of A in K[x0, . . . , xn] and K[x0, . . . , xn]/I(A) its homo-
geneous coordinate ring. The computational answers given to our questions
in what follows are valid in the projective case as well. Indeed, Buchberger’s
algorithm applied to homogeneous polynomials yields Gröbner basis elements
which are homogeneous, too.

The ideals we are concerned with in explicit computations are often not
radical. For instance, if A = V(I) ⊂ Pn(K) is a (nonempty) projective alge-
braic set, given by a homogeneous ideal I ⊂ K[x0, . . . , xn], then I might have
an embedded 〈x0, . . . , xn〉-primary component (which depends on the choice
of a primary decomposition of I). Such a component defines a multiple struc-
ture on the vertex of the affine cone over A; it does not contribute to defining
A itself. Computing the saturation I : 〈x0, . . . , xn〉∞, we get a simpler ideal
defining A. This may not yet be a radical ideal, but at least it does not have
an 〈x0, . . . , xn〉-primary component.

Though we will not need this in what follows, let us mention that there is a
one-to-one correspondence between homogeneous ideals I of K[x0, . . . , xn] sat-
isfying I = I : 〈x0, . . . , xn〉∞ and closed subschemes of Pn(K) (see Hartshorne
(1977), Chapter II, Exercise 5.10). ��

One further problem arises from adding points at infinity to affine alge-
braic sets. To describe this problem, we identify An(K) with the affine chart
Pn(K) \ V(x0) of Pn(K), referring to its complement V(x0) in Pn(K) as the
hyperplane at infinity. Given an affine algebraic set A ⊂ An(K), we are
interested in the projective closure of A, which is defined to be the smallest
projective algebraic subset of Pn(K) containing A.
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� Given generators for an ideal I of K[x1, . . . , xn], compute the projective
closure of the affine algebraic set defined by I. Algebraically, compute the
homogenization Ihom of I with respect to the slack variable x0.

Here, Ihom ⊂ K[x0, . . . , xn] is the ideal generated by the elements

fhom := xdeg f
0 · f

(
x1

x0
, . . . ,

xn

x0

)
,

f ∈ I (we refer to fhom as the homogenization of f with respect to x0).

2.2 Basic Applications of Gröbner Bases

All problems posed in the preceeding section can be settled using Gröbner ba-
sis techniques (for radicals and primary decomposition, additional techniques
are needed). How to compute in the local ring K[x]〈x〉, for instance, will be
explained in Lecture 9. For radicals and primary decomposition, we refer to
Lecture 7. In the same lecture, we will discuss normalization. Solutions to the
other problems will be provided in this section (see Lecture 3, Section 3.6 for
a detailed discussion of the corresponding SINGULAR commands).

To begin with, observe that Remark 1.40 settles the ideal membership
problem. More generally, it settles the submodule membership problem:

Problem 2.16 (Submodule Membership). Given a free K[x]-module F
with a fixed basis and nonzero elements f, f1, . . . , fr ∈ F , decide whether

f ∈ I := 〈f1, . . . , fr〉 ⊂ F .

[If so, express f as a K[x]-linear combination f = g1f1 + . . . + grfr.]

Solution. Compute a Gröbner basis f1, . . . , fr, fr+1, . . . , fr′ for I using Buch-
berger’s algorithm and a standard expression for f in terms of f1, . . . , fr′

with remainder h. If h = 0, then f ∈ I. [In this case, for k = r′, . . . , r + 1,
successively do the following: in the standard expression, replace fk by the
expression for fk in terms of f1, . . . , fk−1 given by the syzygy leading to fk

in Buchberger’s test (this requires the relevant syzygies to be stored during
Buchberger’s test).] ��

Example 2.17. Consider the lexicographic Gröbner basis

f1 = xy − y , f2 = −x + y2, f3 = y3− y

for the ideal I = 〈f1, f2〉 of K[x, y] computed in Lecture 1, Example 1.46. Let

f = x2y − xy + y3 − y .

Then f = x · f1 + 1 · f3 is a standard expression for f in terms of f1, f2, f3 with
remainder 0, so f ∈ I. Reconsidering the computation in Example 1.46, we
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see that we have to substitute y · f2 + 1 · f1 for f3 in the standard expression.
This gives

f = (x + 1) · f1 + y · f2. ��

As already explained, solvability can be decided via ideal membership.
Similarly for radical membership: if an ideal I ⊂ K[x] and a polynomial
f ∈ K[x] are given, then

f ∈
√

I ⇐⇒ 1 ∈ 〈I, tf − 1〉 ⊂ K[x, t] ,

where t is a slack variable.
One way of computing intersections of ideals and ideal quotients

also asks for involving rings with extra variables (see Cox, Little, and O’Shea
(1997)). Alternatively, proceed as follows. Given ideals I = 〈f1, . . . , fr〉 and
J = 〈g1, . . . , gs〉 of K[x], compute the syzygies on the columns of the matrix(

1 f1 . . . fr 0 . . . 0
1 0 . . . 0 g1 . . . gs

)
.

The entries of the first row of the resulting syzygy matrix generate I ∩ J . In
the same way, we obtain a generating set for the ideal quotient

I : J =
{
f ∈ K[x]

∣∣ fJ ⊂ I
}

from the matrix ⎛⎜⎜⎜⎝
g1 f1 . . . fr 0 . . . . . . 0
g2 0 . . . 0 f1 . . . fr 0 . . . 0
...

. . .

gs 0 . . . . . . 0 f1 . . . fr

⎞⎟⎟⎟⎠ .

Note that the intersection of two submodules I, J of a free K[x]-module
F and their submodule quotient I : J =

{
f ∈ K[x]

∣∣ fJ ⊂ I
}
⊂ K[x] are

obtained by similar recipes.
Since I : Jm = (I : Jm−1) : J , the saturation

I : J∞ =

∞⋃
m=1

(I : Jm)

can be computed by iteration. Indeed, the ascending chain

I : J ⊂ I : J2 ⊂ · · · ⊂ I : Jm ⊂ . . .

is eventually stationary since K[x] is Noetherian.
If K[x]/I is a graded affine ring, we already know that its Hilbert series

HK[x]/I(t) and its Hilbert polynomial PK[x]/I can be computed via Gröbner
bases (see Macaulay’s Theorem 1.35 and Remark 1.36 in Lecture 1). This gives
us one way of computing the dimension of homogeneous ideals. Indeed,

dim K[x]/I = deg PK[x]/I + 1 (2.1)

(see Bruns and Herzog (1993) or Eisenbud (1995)).
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Remark-Definition 2.18. In algebraic geometry, we make use of the Hilbert
polynomial to define or rediscover numerical invariants of a projective al-
gebraic set and its embedding. For this purpose, if A ⊂ Pn is a projective al-
gebraic set with homogeneous coordinate ring K[A] = K[x0, . . . , xn]/I(A), we
define the Hilbert polynomial of A to be the polynomial PA(t) = PK[A](t).

If d is the degree of PA(t), the Krull dimension of K[A] equals d + 1 (see equa-
tion (2.1) above). In geometric terms, the dimension of the affine cone over A
is d + 1. The dimension of A itself is defined to be dim A = d. The degree
of A is defined to be d! times the leading coefficient of PA(t). Geometrically,
the degree of A is the number of points in which A meets a sufficiently general
linear subspace of Pn of complementary dimension n − d (see, for instance,
Decker and Schreyer (2006)). Further, the arithmetic genus of A is defined
to be pa(A) = (−1)d

(
PA(0)− 1

)
. ��

Example 2.19. The Hilbert polynomial of the twisted cubic curve C ⊂ P3 is
PC(t) = 3t + 1 (see Lecture 1, Example 1.25). In particular, C has dimension 1
and degree 3. This justifies the name cubic curve. Moreover, C has arithmetic
genus 0. ��

In Lecture 6, Section 6.1.1, we will discuss an alternative way of computing
dimension which applies to nonhomogeneous ideals, too. As for the Hilbert
polynomial, Gröbner bases are used to reduce the general problem to a prob-
lem concerning monomial ideals. The SINGULAR command dim is based on this
approach.

We now turn to the computation of the singular locus of an algebraic set.
For this, we need the following notation. If I � K[x] is a proper ideal, we
say that I has pure codimension c if all its minimal associated primes have
codimension c. Also, I is called unmixed if it has no embedded components.
In many cases of interest, the following criterion allows one to compute the
singular locus (and to check that the given ideal is radical):

Theorem 2.20 (Jacobian Criterion). Let K be a field with algebraically
closed extension field K, let I = 〈f1, . . . , fr〉 � K[x] be an ideal of pure codi-
mension c, and let A = V(I) be the vanishing locus of I in An = An(K). If
J ⊂ K[x] is the ideal generated by the c× c minors of the Jacobian matrix⎛⎜⎝

∂f1

∂x1
. . . ∂f1

∂xn

...
...

∂fr

∂x1
. . . ∂fr

∂xn

⎞⎟⎠ ,

then:

(1) The vanishing locus of J + I in An contains the singular locus Asing.
(2) If 1 ∈ J + I, then A is smooth and I K[x] = I(A).
(3) If 1 �∈ J + I, suppose in addition that I is unmixed (altogether, we ask

that all associated primes of I are minimal and of codimension c). If
codim(J + I) > codim I, then V(J + I) = Asing and I K[x] = I(A).
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See Decker and Schreyer (2006), Chapter 4 for a proof and Eisenbud (1995),
Section 16.6 and Exercise 11.10 for an algebraic version of the criterion.

The following examples show that the assumptions made in the Jacobian
criterion are really needed (in each example, J denotes the respective ideal
defined in the criterion).

Example 2.21. (1) Let I ⊂ K[x, y, z] be the ideal generated by f1 = z2− z
and f2 = xyz. Then I = 〈z〉 ∩ 〈z − 1, x〉 ∩ 〈z − 1, y〉 has codimension 1, but is
not of pure codimension. We have 1 = (2z − 1) ∂f1

∂z − 4f1 ∈ J + I. However,
A = V(I) ⊂ A3 is not smooth. In fact, A is the union of a plane and a pair of
lines intersecting in a point which is necessarily a singular point of A:

(2) Applying the Jacobian criterion to the mixed ideal I = 〈xy, y2〉, we get
J + I = 〈x, y〉. In contrast, the x-axis V(I) ⊂ A2 is smooth.

(3) The ideal I = 〈xy2〉 ⊂ K[x, y] is unmixed and of pure codimension 1. Its
vanishing locus A = V(I) ⊂ A2 is the union of the coordinate axes. Thus, A
is singular precisely at the origin. In contrast, the algebraic set defined by the
ideal J + I = 〈xy, y2〉 in A2 is the whole x-axis (note that codim(J + I) =
codim I = 1). Scheme-theoretically, I defines the y-axis together with the
x-axis doubled. ��

Remark 2.22. If I � K[x] is any proper ideal, the singular points of V(I) ⊂
An arise as the singular points of each irreducible component of V(I) together
with the points of intersection of any two of the components (see Remark 2.12).
Thus, if the Jacobian criterion does not apply directly to I, we can combine
it with some of the more expensive decomposition techniques discussed in
Lecture 7. Indeed, since the Jacobian criterion applies (in particular) to prime
ideals, and since we already know how to compute the sum and intersection
of ideals, the computation of the singular locus of V(I) can be reduced to the
computation of the minimal associated primes of I. Alternatively, compute
an equidimensional decomposition of the radical of I first. ��

Remark 2.23 (Jacobian Criterion in the Projective Case). Let I be a
proper homogeneous ideal of K[x0, . . . , xn], and let A = V(I) be the vanishing
locus of I in Pn = Pn(K). Suppose that I is of pure codimension c and let
J be the corresponding ideal of minors as in Theorem 2.20. Further, suppose
that 1 �∈ J + I (otherwise, A is a linear subspace of Pn). Applying Theorem
2.20 to the affine cone over A, we get:

(1) If codim(J + I) = n + 1, then A is smooth.

(2) If all associated primes of I are minimal and of codimension c, and if
codim(J + I) > codim I, then J + I defines the singular locus of A.

Remark 2.22 applies accordingly. ��
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Determinantal ideals of “expected” codimension provide interesting ex-
amples of ideals which are unmixed and pure codimensional (for instance,
consider the ideal defining the twisted cubic curve). To state a precise result,
let M be a p × q matrix with entries in K[x], and let Ik(M) ⊂ K[x] be the
ideal generated by the k×k minors of M , for some p, q, k. Suppose that Ik(M)
is a proper ideal of K[x].

Proposition 2.24. The codimension of every minimal associated prime of
Ik(M) and, thus, of Ik(M) itself is at most (p− k + 1)(q − k + 1).

Theorem 2.25. If the codimension of Ik(M) is exactly (p−k+1)(q−k+1),
then K[x]/Ik(M) is a Cohen-Macaulay ring.

We will study Cohen-Macaulay rings in Lecture 5. In this section, we need
the corollary below which follows from Theorem 2.25 by applying Theorem
5.41 to the zero ideal of K[x]/Ik(M).

Corollary 2.26 (Unmixedness Theorem). If the codimension of Ik(M)
is exactly (p − k + 1)(q − k + 1), then all associated primes of Ik(M) are
minimal and have this codimension.

We refer to Eisenbud (1995), Section 18.5 and the references cited there for
details and proofs. See also Arbarello et al (1985), Chapter II.

Example 2.27. For the following computation in SINGULAR, we choose K = Q
as our coefficient field. In our geometric interpretation, however, we deal with
curves in P3 = P3(C).

To begin with, we define a ring R implementing Q[x0, . . . , x3] and a 4× 1
matrix A with entries in R:

> ring R = 0, x(0..3), dp;

> matrix A[4][1] = x(0),x(1),0,0;

Next, we randomly create a 4× 2 matrix of linear forms in R. For this, we
load the SINGULAR library random.lib and use its command randommat (see
Lecture 3 for libraries):

> LIB "random.lib"; // loads other libraries incl. matrix.lib

> // and elim.lib, too

> matrix B = randommat(4,2,maxideal(1),100);

(note that maxideal(k) returns the monomial generators for the k-th power
of the homogeneous maximal ideal of the ring R). Concatenating the matrices
B and A, we get a 4× 3 matrix M of linear forms:

> matrix M = concat(B,A); // from matrix.lib

> print(M);

10*x(0)+62*x(1)-33*x(2)+26*x(3), 42*x(0)-12*x(1)-26*x(2)-65*x(3), x(0),

98*x(0)+71*x(1)+36*x(2)+79*x(3), 22*x(0)+84*x(1)-8*x(2)-55*x(3), x(1),

-82*x(0)-8*x(1)+33*x(2)+56*x(3), -29*x(0)+43*x(1)+46*x(2)+57*x(3),0,

-60*x(0)+60*x(1)-90*x(2)-78*x(3),37*x(0)+93*x(1)+100*x(2)-50*x(3),0
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We create the ideal I which is generated by the maximal minors of M and
compute its codimension (applied to a ring R, the SINGULAR command nvars

returns the number of variables in R):

> ideal I = minor(M,3);

> ideal GI = groebner(I);

> int codimI = nvars(R) - dim(GI); codimI;

2

So I has the expected codimension 2 = (4 − 3 + 1)(3 − 3 + 1). It is, thus,
unmixed and of pure codimension 2 by Corollary 2.26. We check that the
assumption on the codimension in the Jacobian criterion is satisfied:

> ideal singI = groebner(minor(jacob(GI),codimI) + I);

> nvars(R) - dim(singI);

3

Applying the Jacobian criterion and summing up, we see that the vanishing
locus C of I in P3 is a curve, that I generates the vanishing ideal of C in
C[x0, . . . , x3], and that singI defines the singular locus of C. We visualize
the number of generators of singI and their degrees by displaying the Betti
diagram of singI (see Remarks 1.20 and 3.34 for the betti command):

> print(betti(singI,0),"betti");

0 1

------------------

0: 1 -

1: - -

2: - 4

3: - 20

------------------

total: 1 24

As it turns out, singI comes with an 〈x0, . . . , x3〉-primary component. We
get rid of this component by saturating singI with respect to 〈x0, . . . , x3〉:

> ideal singI_sat = sat(singI,maxideal(1))[1]; // from elim.lib

> print(betti(singI_sat,0),"betti");

0 1

------------------

0: 1 2

1: - 1

------------------

total: 1 3

> singI_sat;

singI_sat[1]=x(1)

singI_sat[2]=x(0)

singI_sat[3]=3297*x(2)^2-2680*x(2)*x(3)-5023*x(3)^2
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We read from the output that C has two singular points which lie on the
line L = V(x0, x1). In fact, L is a component of C. We check this via ideal
membership (see Problem 2.16 and Lecture 3, Section 3.6.1):

> ideal IL = x(0),x(1);

> reduce(I,groebner(IL),1);

_[1]=0

_[2]=0

_[3]=0

_[4]=0

By saturating with respect to IL, we get an ideal defining the components
of C other than L (in fact, since I is radical, this amounts to just one ideal
quotient computation):

> ideal I’ = sat(I,IL)[1]; // result is a Groebner basis

> degree(GI);

// dimension (proj.) = 1

// degree (proj.) = 6

> degree(I’);

// dimension (proj.) = 1

// degree (proj.) = 5

Since I is a radical ideal of pure codimension 2, the same holds for I’ (in
fact, I’ is the intersection of the (minimal) associated primes of I other than
〈x0, x1〉). We may, thus, use the Jacobian criterion to check that C ′ is smooth:

> int codimI’ = nvars(R)-dim(I’);

> ideal singI’ = minor(jacob(I’),codimI’) + I’;

> nvars(R) - dim(groebner(singI’));

4

Since C ′ and L are smooth, the two singular points of C = C ′ ∪L must arise
as intersection points of C ′ and L. Thus, L is a secant line to C ′. ��

Buchberger’s algorithm requires the choice of a global monomial order. Its
performance and the resulting Gröbner basis depend on the chosen order.
For the type of computations done so far in these lectures, in principle any
Gröbner basis and, thus, any global monomial order will do. With respect to
efficiency, however, the degree reverse lexicographic order is usually preferable
(see Bayer and Stillman (1987) for some remarks in this direction).

The applications discussed next rely on Gröbner bases whose computation
requires the choice of special monomial orders.

Elimination. Let s ⊂ x = {x1, . . . , xn} be a subset of variables, and let I
be an ideal of K[x]. We explain how to eliminate the variables in s from I,
that is, how to compute the elimination ideal I ∩K[x\s].
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Definition 2.28. A monomial order > on K[x] is called an elimination
order with respect to s (the variables in s) if the following implication holds
for all f ∈ K[x]:

L(f) ∈ K[x\s] =⇒ f ∈ K[x\s] .

In this case, we also say that > has the elimination property with respect
to s (the variables in s). ��

Example 2.29. Let s ⊂ x, and let t := x\s. Moreover, let >s on K[s] and >t

on K[t] be monomial orders. The product order (or block order) > =
(>s, >t) on K[x] is defined by

sαtγ > sβtδ :⇐⇒ sα >s sβ or (sα = sβ and tγ >t tδ).

It is a monomial order which has the elimination property with respect to s

iff >s is global, and which is global iff >s and >t are global. A particular
example of a product order is the lexicographic order on K[x] which is an
elimination order with respect to each initial set of variables s = {x1, . . . , xk},
k = 1, . . . , n. ��

Proposition 2.30. Let > be a global elimination order on K[x] with respect to
s ⊂ x, and let G be a Gröbner basis for I with respect to >. Then G ∩K[x\s]
is a Gröbner basis for I ∩K[x\s] with respect to the restriction of > to
K[x\s].

Given a K-algebra homomorphism

φ : K[y] = K[y1, . . . , ym] −→ K[x]/I , yi 
−→ f i := fi + I,

its kernel can be computed via elimination:

Proposition 2.31 (Kernel of a Ring Map). Let J be the ideal

J = IK[x, y] +
〈
f1− y1, . . . , fm − ym

〉
⊂ K[x, y].

Then
kerφ = J ∩K[y].

Computing kerφ means to compute the K-algebra relations on f 1, . . . , fm

and, thus, to represent the subalgebra K
[
f1, . . . , fm

]
of K[x]/I as an affine

ring: K
[
f1, . . . , fm

] ∼= K[y]/ kerφ. Geometrically, as already pointed out,
computing kernels of ring maps means to compute the Zariski closure of
the image of an algebraic set under a morphism. Note that in contrast
to the case of affine algebraic sets, the image of a projective algebraic set
under a morphism is always Zariski closed.

Example 2.32. We use SINGULAR to compute defining equations for the twisted
cubic curve C ⊂ P3(R) via its parametrization. Algebraically, this amounts to
computing the kernel of the ring map
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Q[w, x, y, z]→ Q[s, t], w 
→ s3, x 
→ s2t, y 
→ st2, z 
→ t3 ,

and, thus, to eliminate the variables s, t from the ideal

〈w − s3, x− s2t, y − st2, z − t3〉 ⊂ Q[s, t, w, x, y, z] .

For this, we set up a ring with a block order having the desired elimination
property (see Lecture 3 for more on implementing monomial orders):

> ring P1P3 = 0, (s,t,w,x,y,z), (dp(2),dp(4));

> ideal J = w-s3, x-s2t, y-st2, z-t3;

> J = groebner(J);

> J;

J[1]=y2-xz

J[2]=xy-wz

J[3]=x2-wy

J[4]=sz-ty

[...]

J[10]=s3-w

The first three Gröbner basis elements do not depend on s and t, they define
C. To compute these elements, we may alternatively use the built-in command
preimage which, hiding the elimination step, computes the desired kernel for
us (see Lecture 3, Section 3.6.3):

> ring P1 = 0, (s,t), dp;

> ideal ZERO;

> ideal PARA = s3, s2t, st2, t3;

> ring P3 = 0, (w,x,y,z), dp;

> ideal IC = preimage(P1,PARA,ZERO);

> print(IC);

y2-xz,

xy-wz,

x2-wy

The point p = (1 : 0 : 1 : 0) ∈ P3(R) does not lie on C:

> ideal P = w-y, x, z;

> size(reduce(IC,groebner(P),1)); // ideal membership test

2

By projecting C from p, we obtain, thus, a morphism π : C → P2(R). This
morphism is defined by the linear forms w−y, x, z defining p. We compute
the image π(C), that is, the kernel of the ring map

Q[a, b, c]→ Q[w, x, y, z]/〈y2−xz, xy−wz, x2−wy〉,
a 
→ w − y, b 
→ x, c 
→ z ,

where a, b, c are the homogenous coordinates on P2(R):
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> ring P2 = 0, (a,b,c), dp;

> ideal PIC = preimage(P3,P,IC);

> PIC;

PIC[1]=b3-a2c-2b2c+bc2

The projected curve is a nodal cubic curve which we visualize in the affine
chart A2(R) ∼= P2(R) \V(c). For this, we use SURF:

�

�b

a

Proceeding similarly for the point q = (0 : 1 : 0 : 0), we get a cuspidal cubic
curve (see Lecture 3 for the setring command used below):

> setring P3;

> ideal Q = w, y, z;

> size(reduce(IC,groebner(Q),1)); // check: Q not on C

1

> setring P2;

> ideal QIC = preimage(P3,Q,IC);

> QIC;

QIC[1]=b3-ac2

�

�b

c

��

Example 2.33. Consider the map

S2 −→ A3(R) , (x1, x2, x3) 
−→ (x1x2, x1x3, x2x3),

from the real 2-sphere

S2 = V(x2
1 + x2

2 + x2
3 − 1) ⊂ A3(R)

to the real 3-space. We refer to (the closure of) its image as the Steiner Ro-
man surface. Using the preimage command, we compute a defining equation
for this surface:
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> ring S2 = 0, x(1..3), dp;

> ideal SPHERE = x(1)^2+x(2)^2+x(3)^2-1;

> ideal MAP = x(1)*x(2), x(1)*x(3), x(2)*x(3);

> ring R3 = 0, y(1..3), dp;

> ideal ST = preimage(S2, MAP, SPHERE);

> print(ST);

y(1)^2*y(2)^2+y(1)^2*y(3)^2+y(2)^2*y(3)^2-y(1)*y(2)*y(3)

To visualize the Steiner Roman surface, we again use SURF:

Note that the Steiner Roman surface is irreducible since S2 is irreducible.
What points in the picture are not in the image of S2? ��

Exercise 2.34. Show that the real algebraic set in Example 2.1 is the closure
of the image of the map S2 → A3(R), (x1, x2, x3) 
→ (x1, x2, x2x3). Conclude
that this algebraic set is irreducible. ��

Finally, we explain how to compute the homogenization of an ideal with re-
spect to an extra variable (in general, as we will see in Exercise 2.2, it is not
enough to just homogenize the given generators).

Proposition 2.35. Let I be an ideal of K[x] = K[x1, . . . , xn]. Pick a global
monomial order > on K[x] which is degree compatible, that is, which
satisfies (deg xα > deg xβ =⇒ xα > xβ). If x0 is an extra variable, set

xαxd
0 >hom xβxe

0 :⇐⇒ xα > xβ or (xα = xβ and d > e).

Then >hom is a global monomial order on K[x0, x1, . . . , xn] (in fact, it is a
product order combining two global monomial orders). Further, the following
holds if we homogenize with respect to x0: if f1, . . . , fr form a Gröbner basis
for I with respect to >, the homogenized polynomials f hom

1 , . . . , fhom
r form a

Gröbner basis for the homogenized ideal Ihom with respect to >hom.

Remark 2.36 (Further Reading). For more details and proofs of the re-
sults presented in this lecture, see Cox, Little, and O’Shea (1997), Decker and
Schreyer (2006), Eisenbud (1995), Greuel and Pfister (2002), and Matsumura
(1986).



Lecture 3

An Introduction to SINGULAR

The material presented in this lecture is meant to guide SINGULAR users from
taking their first steps into SINGULAR to writing extensive SINGULAR libraries.
We treat SINGULAR basics such as the implementation of rings with monomial
orders, and we explain more advanced techniques which make Gröbner bases
computations with respect to “slow” monomial orders feasible. We consider
the computational problems discussed in Lecture 2 from a SINGULAR point of
view, and we address the handling of graded modules and the computation of
syzygies. We also include a section on computing in noncommutative algebras.
Finally, we discuss how to write and debug libraries, how to communicate with
other computer algebra systems, and how to access SURF from SINGULAR.

3.1 General Remarks on SINGULAR and its Syntax

SINGULAR is a computer algebra system designed for polynomial computa-
tions, with special emphasis on the needs of commutative algebra, algebraic
geometry, and singularity theory. It is a free software under GNU Public Li-
cense, available for various platforms. To obtain SINGULAR, download it from
its homepage

http://www.singular.uni-kl.de

and install it following the instructions (at this writing, you need to download
up to three files, platform depending). The components of SINGULAR include
a precompiled C/C++ program, referred to as the SINGULAR kernel, several
libraries, and the on-line help system.

In the kernel, the core algorithms for polynomial computations are imple-
mented. These include algorithms for arithmetic operations, for Gröbner basis
and syzygy computations, and for polynomial factorization.

The libraries add further computational tools to SINGULAR, thus widely
extending the functionality provided by the kernel. Each library is a text
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file consisting of a collection of procedures written in the SINGULAR user
language. This language is interpreted, not compiled. It resembles C:

assignments 〈variable〉 = 〈value〉
comparisons ==, <, >, !=

conditional statements if, else

loops for, while

blocks { }
comments //, /* */

In a SINGULAR session, the user enters commands at the key board in response
to the input prompt > which is offered by the system. Each command ends with
a semicolon. Entering a command makes the system perform computations,
display the results on the screen, and offer a new input prompt. For instance:

> 2+3+4;

9

>

Here, the first line is the input line. One input line may consist of several
commands:

> 2+3; 3+5;

5

8

To cut lengthy input into handy pieces, press the enter button at the key-
board without typing a semicolon. Then SINGULAR will offer the prompt . to
start a new line on the screen and wait for further input. For instance:

> 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

. +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1;

42

The on-line help system provides information on what commands are avail-
able and how to use them. Entering

> help;

makes SINGULAR display the title page of its on-line manual which offers a
short table of contents. In response to typing help 〈topic〉, SINGULAR will
print the available documentation on 〈topic〉. Here, 〈topic〉may be any index
entry of the SINGULAR manual (for instance, the name of a command such as
groebner). At this writing, a link to the index is provided towards the end of
the title page of the on-line manual. The help information is displayed using
the default help browser. Platform depending, this may, for instance, be a web
browser. Type help browsers; for a list of the supported browsers and for
information on how to switch to another browser.
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Most SINGULAR libraries are not immediately accessible and have to be
loaded into a SINGULAR session, for instance, by using the LIB command as in
Lecture 2, Example 2.27:

> LIB "random.lib"; // loads other libraries incl. matrix.lib

> // and elim.lib, too

At this writing, SINGULAR offers libraries for computations in linear algebra,
commutative algebra, singularity theory, invariant theory, symbolic-numerical
solving, visualization and coding theory. Type help Singular libraries;

and follow the respective links to see what is available.

Having so far in this lecture discussed SINGULAR features which are simi-
lar to those of general purpose computer algebra systems such as MAPLE,
MATHEMATICA, and MUPAD, we now come to an important difference. Namely, to
define and manipulate polynomial data in SINGULAR, a ring has to be defined
first. Otherwise, it is not even possible to add numbers other than those of
type int (integers in a certain range):

> 1/3 + 1/5;

? no ring active

? error occurred in STDIN line ...: ‘1/3 + 1/5;‘

At first glance, the user may dislike this feature. However, it fits well with han-
dling mathematical problems coming from algebra and geometry. In algebraic
geometry, properties of quotient rings of polynomial rings reflect properties of
algebraic sets. To investigate local properties, we study localizations of poly-
nomial rings at maximal ideals and quotient rings thereof. Further, morphisms
between algebraic sets correspond to ring homomorphisms on the algebraic
side. As a consequence, several distinct rings may have to be considered in a
SINGULAR session, along with ring homomorphisms between them. To avoid
confusion, we need to be able to name and access rings the same way simpler
objects can be named and accessed in other programming languages.

The names of almost all data types in SINGULAR are reminiscent of math-
ematical objects. Most of them are ring dependent types:

Ring independent types int, intmat, intvec, string

Ring types ring, qring

Ring dependent types ideal, map, matrix, module, number,
poly, resolution, vector

Special types link, list, proc, package

In the following two sections, we explain in some detail how rings can be im-
plemented in SINGULAR (as objects of types ring or qring), how to create
ring maps between them (of type map), and how to represent the basic math-
ematical objects (ideal, vector, module) with the help of the respective data
types (ideal, vector, module).
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3.2 Rings in SINGULAR

The basic rings in SINGULAR are polynomial rings with coefficients in a field
and certain localizations thereof. They are implemented using the ring com-
mand. In addition, the qring command allows us to define quotient rings of
one of the basic rings already implemented.

Each ring in SINGULAR carries a monomial order. To implement a polyno-
mial ring, choose a global monomial order1 as in the input line below:

> ring R = 0, (x,y), dp;

The definition consists of a part naming the ring (here, R) and three further
parts, declaring

• the coefficient field,
• the variables, and
• the monomial order.

The basic coefficient fields in SINGULAR are prime fields, specified by their
characteristic. The 0 in the input line above refers to the prime field of char-
acteristic zero, that is, to the field Q of rational numbers. A positive prime p

instead would declare the prime field Fp = Z/pZ with p elements. Entering
parameters in addition to the characteristic, the coefficient field will be an
extension field of the specified prime field.

Example 3.1 (Ring Definitions I: Polynomial Rings). We give examples of
rings over various coefficient fields (always choosing the degree reverse lex-
icographic order).

(1) Q[x1, . . . , x7]:

> ring R1 = 0, x(1..7), dp;

(2) Q(
√
−1)[x, y]:

> ring R2 = (0,i), (x,y), dp;

> minpoly = i^2+1;

A single parameter (here, i) defines a simple algebraic extension of the prime
field if a minimal polynomial is specified (here, i^2+1). In this case, the pa-
rameter is treated as a primitive element of the extension. See Lecture 6,
Remark 6.15 for further information.

(3) F8[x, y]:

> ring R3 = (2,a), (x,y), dp;

> minpoly = a^3+a+1;

1 Localizations of polynomial rings are defined by local and mixed orders; see Lec-
ture 9.
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Due to a different internal representation, the arithmetic operations are faster
if we implement F8[x, y] as follows:

> ring R3prime = (2^3,a), (x,y), dp;

(4) F32003(s, t)[x, y]:

> ring R4 = (32003,s,t), (x,y), dp;

Without any further specification, parameters define a purely transcendental
extension of the prime field (here, the rational function field F32003(s, t)). ��

Next, we give an example of how to define quotient rings of polynomial rings
using the qring command.

Example 3.2 (Ring Definitions II: Quotient Rings).
(5) The homogeneous coordinate ring of the twisted cubic curve in P3 may
be implemented as follows:

> ring R5 = 0, (w,x,y,z), dp;

> matrix m[2][3] = w,x,y,x,y,z;

> ideal I = minor(m,2);

> qring Q = groebner(I); ��

We refer to Remark 3.53 for an alternative way of defining objects of type
ring or qring (using the ringlist command). Moreover, we refer to Section
3.7 for the definition of rings implementing noncommutative GR-algebras.

Remark 3.3 (Active Ring). At each stage of a SINGULAR session, at most
one of the rings already defined is active in the following sense:

• Ring dependent variables are directly accessible only if they belong to the
active ring.

• Computations involving ring dependent objects are only carried through
if the objects belong to the active ring. ��

Entering basering;, you will get information on the active ring:

> basering;

// characteristic : 0

// number of vars : 4

// block 1 : ordering dp

// : names w x y z

// block 2 : ordering C

// quotient ring from ideal

_[1]=y2-xz

_[2]=xy-wz

_[3]=x2-wy
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Here, the active ring is R5 (each definition of a new ring makes this new ring
the active ring). Among others, the output shows that R5 comes equipped
with the order dp. See Example 3.8 for the meaning of block 2 : ordering

C.
To switch to one of the other rings already defined, use setring:

> setring R2;

> 1/3+1/5;

8/15

> setring R3;

> 1/3+1/5;

0

SINGULAR stores and displays a polynomial such that its terms are sorted with
respect to the monomial order on the ring it depends on. The leading term is
first, the smallest term is last. In each of the examples above, we have chosen
the degree reverse lexicographic order >dp which depends on how the variables
are sorted. In SINGULAR, they are sorted according to their appearance in the
ring definition:

> varstr(R3);

x,y

> poly f = x+y;

> f;

x+y

> ring S3 = (2^3,a), (y,x), dp;

> poly f = x+y;

> f;

y+x

3.2.1 Global Monomial Orders

In describing some global monomial orders in SINGULAR, we suppose that
our polynomial ring is K[x] = K[x1, . . . , xn]. We should point out that for a
beginner in SINGULAR, there is no need to study the details of this section.
Usually, the following advice is sufficient:

• If no elimination order is required, use the degree reverse lexicographic
order >dp.

• If an elimination order is required, use the lexicographic order >lp only
if the elimination property with respect to each initial set of variables
x1, . . . , xk, k = 1, . . . , n− 1, is needed. To eliminate a specific initial set of
variables x1, . . . , xk, the product order (dp(k),dp(n-k)) is usually more
effective. See Example 2.29 and Section 3.6.2 for elimination.

On the other hand, some applications of Buchberger’s algorithm require the
choice of global monomial orders other than >dp, >lp, and product orders
combining these. Here is an overview on how global monomial orders are
implemented in SINGULAR.
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A. Predefined Orders

The following global monomial orders are predefined in SINGULAR:

lp lexicographic order

Dp degree lexicographic order

Wp(w) weighted degree lexicographic order(
w = (w1, . . . , wn) ∈ Zn

≥0

)
rp reverse lexicographic order

dp degree reverse lexicographic order

wp(w) weighted degree reverse lexicographic order(
w = (w1, . . . , wn) ∈ Zn

>0

)
The lexicographic and the degree reverse lexicographic order are already
known to us. Before defining the other orders, we introduce the following
notation.

Definition 3.4. If w = (w1, . . . , wn) ∈ Rn is any vector, and if xα ∈ K[x] is
a monomial, we set

w-deg(xα) =

n∑
i=1

wiαi.

We refer to w as a weight vector and define the w-weighted degree of an
arbitrary polynomial 0 �= f =

∑
α cαxα ∈ K[x] to be

w-deg(f) = max
{
w-deg(xα)

∣∣ cα �= 0
}

. ��

We now define the other orders listed above:

xα>Dpx
β :⇐⇒ deg(xα) > deg(xβ) or(

deg(xα) = deg(xβ) and the first nonzero entry of
α− β is positive

)
.

xα>Wp(w)x
β :⇐⇒ w-deg(xα) > w-deg(xβ) or(

w-deg(xα) = w-deg(xβ) and the first nonzero entry
of α− β is positive

)
.

xα>rpx
β :⇐⇒ the last nonzero entry of α− β is negative.

xα>wp(w)x
β :⇐⇒ w-deg(xα) > w-deg(xβ) or(

w-deg(xα) = w-deg(xβ) and the last nonzero entry
of α− β is negative

)
.

B. Product Orders

As already remarked, the main use made of product orders is elimination
(for another application, see Lecture 5, Example 5.15). In Example 2.29, we
introduced the product of two monomial orders. Inductively, we get product
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orders combining three and more monomial orders. Note that a product order
is global iff all its components are global.

In SINGULAR, any combination of predefined monomial orders to a product
order can be implemented. For instance, entering

> ring R = 0, x(1..7), (dp(3),wp(2,1),dp);

defines the polynomial ring Q[x1, . . . , x7] equipped with the global product
order (>1, >2, >3), where

• >1 is the degree reverse lexicographic order on Q[x1, x2, x3],
• >2 is the (2,1)-weighted degree reverse lexicographic order on Q[x4, x5],

and
• >3 is the degree reverse lexicographic order on Q[x6, x7].

Typing basering;, we get the information below:

// characteristic : 0

// number of vars : 7

// block 1 : ordering dp

// : names x(1) x(2) x(3)

// block 2 : ordering wp

// : names x(4) x(5)

// : weights 2 1

// block 3 : ordering dp

// : names x(6) x(7)

// block 4 : ordering C

C. Matrix Orders

By a result of Robbiano (1985), each monomial order on K[x] can be realized
as a matrix order >M for some matrix M ∈ GL(n, R) (see Greuel and Pfister
(2002), Exercise 1.2.9 for some hints on the proof).

Definition 3.5. Let M ∈ Mat(m× n, R) be a matrix of rank n, for some
m ≥ n. The matrix order >M on K[x] is defined by

xα >M xβ :⇐⇒ M · α >lp M · β.

Here, the right-hand side means that the first nonzero entry of M · (α− β) is
positive. ��

In this way, we get a monomial order which is global iff the first nonzero entry
of each column of M is positive.

Example 3.6. The input line below implements a ring equipped with a global
matrix order. In fact, this order coincides with >dp:

> ring R = 0, (x,y,z), M(1,1,1, 0,0,-1, 0,-1,0); ��
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Note that evaluating a matrix order may be time consuming. Hence, SINGU-
LAR computations with respect to a predefined order (here, dp) are usually
faster than computations with the same order implemented as a matrix order.

Remark 3.7 (Internal Limitations). In SINGULAR, only matrix orders de-
fined by a quadratic integer matrix M which is invertible over Q can be
implemented. In fact, the entries of M have to be of type int and are, thus,
integers of a rather limited range. The same applies to the entries of weight
vectors. For information on the range, type

> help limitations; ��

D. Orders with an Extra Weight Vector

Given a weight vector w ∈ Rn and a monomial order > on K[x], we get a
new monomial order >a(w) on K[x] by setting

xα >a(w) xβ :⇐⇒ w-deg(α) > w-deg(β) , or(
w-deg(α) = w-deg(β) and xα > xβ

)
.

In other words, a matrix defining >a(w) is obtained from a matrix defining >
by inserting w as the top row. The following holds:

• >a(w) is global if the wi are strictly positive, or if the wi are nonnegative
and > is global;

• >a(w) has the elimination property with respect to the set of variables
{xi | wi > 0}.

The line below, for instance, implements Q[x, y, z, w] equipped with a global
monomial order which has the elimination property with respect to {x, w}:

> ring R = 0, (x,y,z,w), (a(1,0,0,1),dp);

E. Monomial Orders on Free Modules

Let F be a free K[x]-module with a fixed basis e1, . . . , es. There are many
ways of extending a given monomial order > on K[x] to a monomial order on
F . Most notably, we define:

xαei >(c,>) xβej :⇐⇒ i < j or
(
i = j and xα > xβ

)
,

xαei >(C,>) xβej :⇐⇒ i > j or
(
i = j and xα > xβ

)
,

giving priority to the basis vectors e1, . . . , es ∈ F , and

xαei >(>,c) xβej :⇐⇒ xα > xβ or
(
xα = xβ and i < j

)
,

xαei >(>,C) xβej :⇐⇒ xα > xβ or
(
xα = xβ and i > j

)
,

giving priority to the monomials in K[x]. By definition, an order extending
> is global iff > is global.
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Example 3.8. In SINGULAR, the type of extension has to be chosen when defin-
ing a ring. This choice will then be applied to all free modules over that ring.
In all examples considered so far, we only specified a monomial order > on
the ring itself. In this case, SINGULAR will select the default extension >(>,C).
This explains the output displayed in response to the basering command on
Page 67:

// block 1 : ordering dp

// : names w x y z

// block 2 : ordering C

To define rings with other extensions, type, for instance,

> ring R = 0, (x,y), (c,dp);

Entering basering;, the output now includes the lines below:

// block 1 : ordering c

// block 2 : ordering dp

// : names x y ��

Remark 3.9. For some applications, other ways of extending a monomial
order > on K[x] to one on F are needed. For instance, in addition to giving
weights to the variables xk, it may be necessary to give weights to the vectors
ei. Implementing a monomial order on F which first compares the resulting
weighted degrees of the monomials xαei, using > as a tie breaker if needed,
is more subtle. To do this, define a ring with extra variables e(1), . . . , e(s),
choosing the monomial order appropriately, and compute in the quotient ring
modulo the ideal spanned by the products e(i)e(j), i, j = 1, . . . , s. Here is
an example of how to set this up (assigning the weights −1,−2,−4 to the
three basis vectors):

> ring R = 0, (x,y,e(1..3)), wp(1,1,-1,-2,-4);

> ideal I = e(1..3);

> qring Q = groebner(I^2); ��

3.2.2 Creating Ring Maps

As already remarked, ring dependent objects are directly accessible only if
they belong to the active ring. For instance:

> ring R = 0, (x,y), dp;

> int i = 1; // object of ring independent type int

> poly f = x; // object of ring dependent type poly

> ring S = 0, (x,y), dp; // active ring is changed

> poly g = y;

> f;

? ‘f‘ is undefined

? error occurred in STDIN line 6: ‘f;‘
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Entering listvar(); makes SINGULAR print all objects directly accessible
from the active ring (which is marked by an asterisque):

> listvar();

// S [0] *ring

// g [0] poly

// i [0] int 1

// R [0] ring

We see that SINGULAR lists the ring objects, the objects depending on the
active ring, and the ring independent objects.

In many cases, one should like to transfer objects (here, f) from one ring
to another. This is done via ring homomorphisms (ring maps, for short). In
SINGULAR, the target of a ring map is always the active ring:

ring map : preimage ring −→ active ring .

In describing the implementation of ring maps, we suppose that m is the
number of variables of the preimage ring.

We can use the data type map to set up arbitrary ring maps. An object
of type map is specified by giving the name of the preimage ring and a list of
polynomials f1, . . . , fm of the active ring. Mathematically, we get the unique
ring map sending the ith variable of the preimage ring to fi, for all i.

The commands fetch and imap implement special ring maps. They are
particularly convenient for dealing with inclusions of rings and for changing
the monomial order of the active ring. Using fetch, the ith variable of the
preimage ring is sent to the ith variable of the active ring, or to zero if i
exceeds the number of variables of the active ring. Using imap, a variable of
the preimage ring is sent to the variable with the same name, if such a variable
exists in the active ring, and to zero, otherwise.

Example 3.10 (Definition of Ring Maps).
(1) User-defined maps:

> ring R = 0, (x,y), dp;

> poly f = x2+y;

> ring S = 0, (a,b,c), dp;

> map F = R, a-b, c; // map F: R->S, sending x to a-b, y to c

> poly g = F(f); // apply the map

> g;

a2-2ab+b2+c

> ring S1 = 2, (a,b,c), lp;

> qring Q = std(a^2);

> map F1 = R, a-b, c; // target ring is qring, with another

> // characteristic and monomial order

. poly g=F1(f);

> g; // polynomial is not yet reduced

a2+b2+c

> reduce(g,std(0));

b2+c
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(2) Special maps using imap and fetch:

> ring R1 = 0, (a,b,c,x,y,z), dp;

> fetch(R,f); // fetch preserves order of variables

a2+b

> imap(R,f); // imap preserves names of variables

x2+y

> fetch(Q,g);

a2+b2+c ��

3.3 Ideals, Vectors and Modules in SINGULAR

An ideal is specified by a comma separated list of generating polynomials.
For instance:

> ring R = 0, (x,y,z), dp;

> ideal I = x2-y, y4-z2;

Alternatively:

> ring R = 0, (x,y,z), dp;

> poly f = x2-y;

> poly g = y4-z2;

> ideal I = f,g;

Note that SINGULAR understands input in a short (for instance, x3-2y2) and
a long (for instance, x^3-2*y^2) format. Whether the output is displayed in
the short or the long format depends on the active ring (type help short;

for information). To enforce the long format, enter

> short = 0;

This is particularly useful when communicating with other computer algebra
systems (see Section 3.9).

A vector, that is, an element of a free module, is given as a list of poly-
nomials either in a dense format,

> vector v = [f,0,0,g,0];

or in a sparse format,

> vector v = f*gen(1)+g*gen(4);

Independent of the input format, SINGULAR stores a vector in a sparse repre-
sentation. As a consequence, objects of type vector do not carry information
on the rank of the free module they are supposed to belong to. In particular,
the addition of vectors of different length is allowed (see the SINGULAR code
on the following page).

The output format for a vector depends on the chosen monomial order
for free modules over the active ring. If the order is of type (c,>), the dense
format is used:
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> ring R = 0, (x,y,z), (c,dp);

> vector v = [x,y]+[x2,1,z3,0];

> v;

[x2+x,y+1,z3]

Otherwise, SINGULAR displays vectors in the sparse format:

> ring S = 0, (x,y,z), (dp,c);

> vector v = fetch(R,v);

> v;

z3*gen(3)+x2*gen(1)+x*gen(1)+y*gen(2)+gen(2)

In any case, the dense format can be enforced by using the print command:

> print(v);

[x2+x,y+1,z3]

Implementing modules in SINGULAR is more subtle, and, in fact, somewhat
confusing. The corresponding data types are module and matrix. A SINGULAR

object of type module is implemented as a comma separated list of objects
of type vector which mathematically are thought of as column vectors. For
instance:

> ring R = 0, (x,y), dp;

> module I = [x2,-y,y,-y,0], [0,0,y], [y,x];

> print(I);

x2,0,y,

-y,0,x,

y, y,0,

-y,0,0

Given a module I in SINGULAR, we usually think of it as the submodule I
of a free module F (in our example above, F = Q[x, y]4). Depending on the
context, however, we may sometimes have to interprete I as a different mathe-
matical object, namely the quotient module M = F/I. That is, the polynomial
vectors generating I in SINGULAR are thought of as the columns of a presen-
tation matrix of M . The latter applies in particular to most of the commands
provided by the library homolog.lib. We give two examples of what may
happen in the context of homological algebra:

• The command modulo from the SINGULAR kernel refers to the interpreta-
tion as submodules, while

• the command Hom from homolog.lib refers to the interpretation as quo-
tient modules

(see Lecture 4 for a detailed discussion of these commands).
An object of type matrix is specified by the number of its rows and

columns together with a comma separated list of its entries:
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> matrix MI[4][3] = x2, 0, y,

. -y, 0, x,

. y, y, 0,

. -y, 0, 0;

In our SINGULAR session, having already implemented the module I, we could
have defined the matrix MI also via type conversion from module to matrix:

> matrix MI = I;

Similarly, there is a type conversion from matrix to module.
Note that objects of type module are stored in a sparse representation,

while objects of type matrix are stored in a dense representation. Therefore,
it is recommended to use the type module instead of matrix for large input.

3.4 Handling Graded Modules

To explain how SINGULAR deals with graded modules, we start a new SINGULAR

session, defining a ring R and a module I:

> ring R = 0, (w,x,y,z), dp;

> module I = [xz,0,-w,-1,0], [-yz2,y2, 0,-w,0], [y2z,0,-z2,0,-x],

. [y3,0,-yz,-x,0], [-z3,yz,0,0,-w], [-yz2,y2,0,-w,0],

. [0,0,-wy2+xz2,-y2,x2];

> print(I);

xz,-yz2,y2z,y3, -z3,-yz2,0,

0, y2, 0, 0, yz, y2, 0,

-w,0, -z2,-yz,0, 0, -wy2+xz2,

-1,-w, 0, -x, 0, -w, -y2,

0, 0, -x, 0, -w, 0, x2

A check on degrees shows that the polynomial vectors generating I form a
graded matrix. More precisely, we may think of I as a graded submodule of
the graded free R-module

F = R⊕R(−1)2 ⊕R(−2)2

(or of any twist of this module). We refer to this fact by saying that (0, 1, 1, 2, 2)
is an admissible degree vector for I.

The degree check can be done in SINGULAR. Typing homog(I), SINGULAR
will print 1 if the vectors generating I form a graded matrix. In this case,
SINGULAR will assign an admissible degree vector to I as an attribute. We
may use the attrib command to check that originally, I does not come with
such an attribute:

> attrib(I,"isHomog"); // no attribute => empty output

> homog(I);

1
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> attrib(I,"isHomog");

0,1,1,2,2

If an admissible degree vector is assigned, we may read the degrees from a
Betti diagram (see Remarks 1.20 and 3.34 for Betti diagrams):

> print(betti(I,0),"betti");

0 1

------------------

0: 1 -

1: 2 1

2: 2 5

3: - 1

------------------

total: 5 7

To switch to another admissible degree vector, use the attrib command as
follows:

> intvec DV = 2,3,3,4,4;

> attrib(I,"isHomog",DV);

Now, we get the numerical information printed below:

> attrib(I,"isHomog");

2,3,3,4,4

> print(betti(I,0),"betti");

0 1

------------------

2: 1 -

3: 2 1

4: 2 5

5: - 1

------------------

total: 5 7

To access the top degree d = 2 in the first column of the Betti diagram and
store it for later use, assign the matrix formed by the numbers of the free
generators in the Betti diagram to a matrix of type intmat (a matrix with
entries of type int) and make use of the "rowShift" attribute assigned to
this matrix:

> intmat BI = betti(I,0);

> int d = attrib(BI,"rowShift");

> d;

2

Remark 3.11. At this writing, SINGULAR does not check whether the as-
signed degree vector really is admissible. Moreover, the assigned attributes
are lost under type conversion (for instance, from module to matrix, or from
resolution to list). ��
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3.5 Computing Gröbner Bases

The basic version of Buchberger’s algorithm as described in Lecture 1 leaves
a lot of freedom in carrying out the computational process. The performance
of the algorithm depends in a crucial way on strategies for selecting the next
S-polynomial in Buchberger’s test, and for computing a standard expression
of the S-polynomial in terms of the generators obtained that far (some choices
made in the division process are more efficient than others). Further, consid-
erable improvements are obtained by implementing criteria for reducing the
number of S-polynomials to be actually considered. The two criteria below
have proven to be extremely useful:

• The product criterion (not extendable to free modules). If f, g ∈ K[x]
are polynomials such that L(f) and L(g) have no variables in common,
then S(f, g) has a standard expression in terms of f, g with remainder zero
(indeed, to obtain such an expression, rewrite the relation gf − fg = 0).
Thus, in Buchberger’s test, such an S-polynomial need not be considered.

• The chain criterion. If f, g, h are generators in Buchberger’s test such
that L(h) divides the least common multiple of L(f) and L(g), and if
the S-polynomials S(f, h) and S(g, h) have been dealt with already, then
S(f, g) need not be considered.

We refer to Cox, Little, and O’Shea (1997), Chapter 2, §9 for a discussion of
this topic and for further references. The discussion includes a few remarks on
selection strategies such as the normal strategy and the sugar strategy
which together with the criteria above play a prominent role in the SINGULAR

implementation of Buchberger’s algorithm. This implementation is called by
the std command2 (see Remark 3.19 later in this section for the groebner

command). Example 3.20 will show the implementation at work, illustrating,
in particular, the usefulness of the criteria.

Remark 3.12. (1) The arithmetic operations over Q are much more expen-
sive than those over Z. Therefore, given polynomials with rational coefficients,
SINGULAR clears denominators before applying Buchberger’s algorithm. Start-
ing from a set F of polynomials with integer coefficients3, all computations in
Buchberger’s test take place over Z. Thus, if G is the resulting set of polyno-
mials, the elements of G will have integer coefficients as well. These elements
form a Gröbner basis for the ideal generated by F over Q. The ideal generated
by F over Z, however, may be strictly contained in the ideal generated by G
over Z. This is due to the fact that in the SINGULAR implementation of Buch-
berger’s test, each S-polynomial is divided by the greatest common divisor
of its integer coefficients in order to keep the integer coefficients as small as
possible. For elements of free modules, SINGULAR proceeds accordingly.

2 The name std refers to standard bases, see Lecture 9.
3 In SINGULAR, the elements of a coefficient field are of type number. In contrast to

integers of type int, there is virtually no limitation for the size of integers of type
number.
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(2) A Gröbner basis G computed with SINGULAR is minimal in the sense
that the leading monomials of the elements of G form the uniquely determined
minimal set of monomial generators for L(〈G〉). Depending on the type of the
active ring and on the options set, however, G is not necessarily reduced. Type

> help option;

for more details. Entering

> option(redSB);

in a SINGULAR session will force SINGULAR to compute reduced Gröbner bases.
Over Q , however, the leading coefficients will not necessarily be adjusted to
1. To achieve this, use the simplify command as in the session below:

> ring R = 0, (x,y,z), lp;

> ideal I = 2y+z,3x-y;

> std(I);

_[1]=2y+z

_[2]=3x-y

> option(redSB);

> ideal G = std(I);

> G;

G[1]=2y+z

G[2]=6x+z

> G = simplify(G,1);

> G;

G[1]=y+1/2z

G[2]=x+1/6z ��

As already pointed out, the performance of Buchberger’s algorithm is sensitive
to the choice of monomial order. A Gröbner basis computation with respect
to a less favorable order such as >lp may easily run out of time or memory
even in cases where a Gröbner basis computation with respect to a more
efficient order such as >dp is very well feasible. Gröbner basis conversion
algorithms and the Hilbert driven Buchberger algorithm take their cue
from this observation.

A Gröbner basis conversion algorithm proceeds along the following lines:

• Given an ideal I ⊂ K[x] and a slow monomial order, compute a Gröbner
basis for I with respect to an appropriately chosen fast order.

• Convert the result to a Gröbner basis with respect to the given slow order.

Applying the Hilbert driven Buchberger algorithm usually means to proceed
in two steps as well:

• Given a homogeneous ideal I ⊂ K[x] and a slow order, compute a Gröbner
basis for I with respect to an appropriately chosen fast order. From the
result, compute the Hilbert function of K[x]/I.
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• Compute a Gröbner basis for I with respect to the given slow order. On
your way, make use of the Hilbert function to further reduce the number
of S-polynomials which actually need to be considered in Buchberger’s
test.

Here, the first step is of course superfluous if the Hilbert function of K[x]/I
is already known.

At this writing, there are SINGULAR implementations of the conversion
algorithm of Faugère, Gianni, Lazard, and Mora (1993) (FGLM for short), of
several variants of the Gröbner walk conversion algorithm, and of the Hilbert
driven Buchberger algorithm. How to access these implementations will be
discussed in what follows. Note that the FGLM algorithm works for zero-
dimensional ideals only, while the walk algorithms and the Hilbert-driven
approach can be applied to ideals of any dimension.

The FGLM Algorithm

If I ⊂ K[x] is a zero-dimensional ideal, then K[x]/I is a finite dimensional
K-vector space (see Lecture 6, Theorem 6.1). Based on this fact, the FGLM
algorithm converts Gröbner bases by means of linear algebra (Gaussian elim-
ination). Its SINGULAR implementation is called by the fglm command.

Example 3.13. Using fglm, we compute the reduced lexicographic Gröbner
basis for the ideal I ⊂ Q[x, y, z] generated by the polynomials

f1 = 3x3y + x3 + xy3 + y2z2,

f2 = 2x3z − xy − xz3− y4− z2,

f3 = 2x2yz − 2xy2 + xz2− y4

(see Amrhein, Gloor, and Küchlin (1997), Example Ex3). To begin with, we
compute the reduced Gröbner basis for I with respect to >dp (initializing an
integer by timer allows us to print the CPU time used by SINGULAR).

> ring R = 0, (x,y,z), dp;

> ideal I = 3x3y+x3+xy3+y2z2, 2x3z-xy-xz3-y4-z2, 2x2yz-2xy2+xz2-y4;

> option(redSB); // force computation of reduced GBs

> int aa = timer;

> ideal SI = std(I);

> timer-aa; // time in seconds

0

Now, we apply fglm to SI. For this, SI has to be a reduced Gröbner basis for
a zero-dimensional ideal (SINGULAR checks this). The Gröbner basis returned
by fglm is reduced, too.

> ring S = 0, (x,y,z), lp;

> aa = timer;

> ideal J = fglm(R,SI);

> timer-aa;

1
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We will not display the computed Gröbner basis, as this would fill more than
ten pages of our notes. Instead, we use the size command to get some in-
formation on the Gröbner basis. If applied to an ideal, size returns the
number of nonzero generators. If applied to a string, it returns the num-
ber of characters. Here are some data describing the reduced lexicographic
Gröbner basis:

> size(J); // number of generators

8

> size(string(J))/68; // number of lines with 68 characters

> // needed to display J:

631

. deg(J[1..size(J)]); // degrees of the generators

35 34 34 34 34 34 34 34

> leadmonom(J[1..size(J)]); // generators for L(I) w.r.t. lp

z35 yz6 y2z4 y3z2 y5 xz2 xy x3

> leadcoef(J[8]); // leading coefficient of 8th generator

64400936316237739859695098418592766025128073489865909063485822676518

06942677443883093109641441627364249598438582596862938314965556548533

870597328962260825040847335705757819599104

Note that on our machine, the attempt to compute the lexicographic Gröbner
basis directly in the ring S failed after several hours of running time:

> ideal I = fetch(R,I);

> I = std(I);

error: no more memory ��

Gröbner Walk Conversion Algorithms

Let I ⊂ K[x] be an arbitrary ideal. The basic idea of a Gröbner walk algorithm
is to approach the target Gröbner basis for I in several steps, “walking” along a
path through the Gröbner fan of I (see Sturmfels (1996) for the Gröbner fan).
In each step, a Gröbner basis computation with respect to an “intermediate”
monomial order is performed. There are several strategies for choosing the
path through the Gröbner fan, leading to different variants of the algorithm.
See Collart, Kalkbrener and Mall (1997), Amrhein and Gloor (1998), and Tran
(2000) for details.

At this writing, the SINGULAR implementation of the Gröbner Walk algo-
rithms is affected in its efficiency by the internal limitations on weight vectors
described in Remark 3.7 (while walking, each intermediate monomial order is
defined as an order with an extra weight vector). Nevertheless, the commands
provided by the library grwalk.lib (written by I Made Sulandra) often yield
a result in cases where a direct Gröbner basis computation fails.

Example 3.14. We recompute the reduced lexicographic Gröbner basis for the
ideal I in Example 3.13 by applying the command fwalk from grwalk.lib:



82 3 An Introduction to SINGULAR

> LIB "grwalk.lib";

> ring S = 0, (x,y,z), lp;

> ideal I = 3x3y+x3+xy3+y2z2, 2x3z-xy-xz3-y4-z2, 2x2yz-2xy2+xz2-y4;

> option(redSB); // force computation of reduced GBs

> int aa = timer;

> ideal J = fwalk(I);

> timer-aa;

0

The fwalk command calls a variant of the fractal walk algorithm. Another
implementation of this algorithm is provided by the frwalk command (which
is not part of grwalk.lib, but calls a procedure of the SINGULAR kernel). ��

The Hilbert Driven Buchberger Algorithm

If I ⊂ K[x] is a homogeneous ideal, and if > is a global monomial order on
K[x], the Hilbert function of K[x]/I coincides with that of K[x]/L>(I) by
Macaulay’s Theorem 1.35. In particular, if G is any set of generators for I,
then

dimK(K[x]/I)d ≤ dimK

(
K[x]/〈L>(g) | g ∈ G〉

)
d

for all degrees d. This fact can be used to expedite the computation of a
Gröbner basis for I if the Hilbert function of K[x]/I is already known (see
Traverso (1996)). Supposing that I is given by homogeneous generators, the
resulting Hilbert driven Buchberger algorithm proceeds degree by degree, fol-
lowing in each degree d the basic strategy described below:

(1) The Hilbert function criterion. In Buchberger’s test, let G be the set
of generators computed that far. If

dimK(K[x]/I)d = dimK

(
K[x]/〈L>(g) | g ∈ G〉

)
d
,

the remaining S-polynomials of degree d need not be considered. In this
case, replace d by d + 1.

(2) If the equality in (1) does not hold, select an S-polynomial S(f, g) of degree
d which has not yet been considered, and compute a remainder of S(f, g)
on division by the elements of G. If the remainder is nonzero, add it to
G and go to (1). If all S-polynomials of degree d have been considered,
replace d by d + 1.

The Hilbert driven Buchberger algorithm is implemented in the SINGULAR

kernel. It is accessible by calling the std command with two input parameters,
one of type ideal, and one of type intvec. Entering a homogeneous ideal
I ⊂ K[x], the integer vector is meant to specify the numerator of the Hilbert
series of K[x]/I, represented as in Lecture 1, Theorem 1.22.
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Remark 3.15. If I is not homogeneous, a Gröbner basis for I may be ob-
tained as follows. Homogenize the given generators for I with respect to a
new variable, say, x0. Extend the given slow order on K[x1, . . . , xn] to an or-
der on K[x0, x1, . . . , xn] as in Lecture 2, Proposition 2.35. Apply the Hilbert
driven Buchberger algorithm to the homogenized generators (first computing
a Gröbner basis with respect to a fast order and, thus, the desired Hilbert
function, then computing a Gröbner basis with respect to the extended or-
der, making use of the Hilbert function). Dehomogenize the elements of the
resulting Gröbner basis. ��

Example 3.16. Using the Hilbert driven Buchberger algorithm (homogenizing
and dehomogenizing as explained in Remark 3.15), we again recompute the
lexicographic Gröbner basis from Example 3.13:

> ring S = 0, (x,y,z), lp;

> ideal I = 3x3y+x3+xy3+y2z2, 2x3z-xy-xz3-y4-z2, 2x2yz-2xy2+xz2-y4;

> option(redSB);

> ring Rhom = 0, (x,y,z,t), dp;

> ideal I = imap(S,I);

> ideal Ih = homog(I,t); // generators of I are homogenized

> int aa = timer;

> Ih = std(Ih);

> timer-aa;

0

> aa = timer;

> intvec H = hilb(Ih,1); timer-aa;

0

> ring Shom = 0, (x,y,z,t), lp;

> ideal Ih = imap(Rhom,Ih);

> aa = timer;

> Ih = std(Ih,H); timer-aa;

0

> Ih = subst(Ih,t,1);

> setring S;

> ideal J = imap(Shom,Ih);

> size(J);

102

The result J is a lexicographic Gröbner basis, but it is far from being the
reduced lexicographic Gröbner basis. To turn J into the reduced Gröbner basis
(up to adjusting the leading coefficients), we apply the interred command:

> aa = timer;

> J = interred(J);

> timer-aa;

3

> size(J);

8 ��



84 3 An Introduction to SINGULAR

Remark 3.17. Let polynomials f1, . . . , fr ∈ Z[x] be given, and let I be the
ideal of Q[x] generated by these polynomials. As we saw in Example 3.13, the
coefficients of the polynomials produced by applying Buchberger’s algorithm
to f1, . . . , fr may be huge. Thus, to compute a Gröbner basis for I using the
Hilbert driven Buchberger algorithm, it is often more efficient to perform the
Gröbner basis computation yielding the Hilbert function by reducing the given
polynomials modulo a sufficiently large prime p (for instance, p = 32003). If
Ip denotes the ideal of Fp[x] generated by the images of f1, . . . , fr, the Hilbert
functions of Q[x]/I and of Fp[x]/Ip typically coincide. In examples such as
I = 〈x−32003y, x〉 ⊂ Q[x, y], however, this approach yields a function Φ which
differs from the Hilbert function in characteristic zero. Using Φ as a second
input parameter for std, we may get a result which is not even a generating
set for the ideal under consideration. ��

Remark 3.18 (The slimgb Command). Besides the commands discussed
so far, SINGULAR also provides the slimgb command for computing Gröbner
bases. The underlying algorithm is a variant of Buchberger’s algorithm which
is specifically designed to reduce the size of the intermediate polynomials
produced on its way. It is based on ideas of Faugère and has been developed
and implemented in SINGULAR by Brickenstein (2004). As several benchmark
examples show, the use of slimgb instead of std is advisable for Gröbner basis
computations over transcendental extensions of prime fields. For instance:

> ring R = (32003,a,b,c,d), (t,u,v,w,x,y,z), dp;

> ideal I = -cw+bx, ct+2au-2bu-2cv-(ad+bd),

. -2tx+4wy+4xz+ct-2aw-2dw-2by-2cz+(ab+bd),

. t*(z-x)+(a-b+d)*(y-w)+c*(x-z), -tw+a*(t-x)+dx,

. -2tv+ct-2du+(ad+bd), ct2-(b2-ab+c2)*t-(acd-cd2);

> int aa = timer;

> ideal SI = slimgb(I);

> timer-aa; // timing for slimgb command

0

> aa = timer;

> SI = std(I);

> timer-aa; // timing for std command

649

This example is taken from the list of benchmark examples provided by the
Symbolic Data Project (see http://www.SymbolicData.org). In this list, it
is referred to as Geometry/Chou 274 2. ��

Remark 3.19 (The groebner Command). Depending on the active ring
and some heuristics, the SINGULAR command groebner refers to one of the
algorithms for computing Gröbner bases discussed in this section. At this
writing, it directly calls std if the active ring comes equipped with a fast
order such as >dp; if the order is >lp, it refers to the Hilbert driven Buchberger
algorithm (first computing a Gröbner basis with respect to a fast order and,
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thus, the Hilbert function, then calling std with the Hilbert function as a
second input parameter, homogenizing and dehomogenizing, if needed). The
groebner command is provided by the SINGULAR library standard.libwhich
is automatically loaded when starting a SINGULAR session. For information on
the heuristics behind groebner, see the library file standard.lib. How to
find and read SINGULAR library files will be explained on Page 112. ��
Example 3.20. We once more compute the lexicographic Gröbner basis from
Example 3.13, now using the groebner command. Entering option(prot);

makes SINGULAR display some information on how the computation proceeds.
In particular, each S-polynomial which needs not be considered due to the
Hilbert function criterion is indicated by printing the symbol h.

> ring S = 0, (x,y,z), lp;

> ideal I = 3x3y+x3+xy3+y2z2, 2x3z-xy-xz3-y4-z2, 2x2yz-2xy2+xz2-y4;

> option(redSB);

> option(prot);

> int aa = timer;

> ideal J = groebner(I);

std in (0),(x,y,z,@t),(dp,C)

[255:1]4(2)sss5s6s7(3)s(4)s(5)s(6)s8(8)s(9)-ss(11)s(12)---9-s(9)-s(

10)--s--10-s(8)s(9)-s---11------

product criterion:9 chain criterion:124

std with hilb in (0),(x,y,z,@t),(lp(3),C)

[255:1]4(2)sss5ss6s(3)s(5)s7(6)s(7)s(9)s(11)s(13)-s(14)s8(16)s(17)s

(19)s(21)s(23)s(25)s(27)s(28)-s(29)--shhhhh9(24)s(26)s(28)s(30)s(32

)s(33)s(35)s(37)s(39)s(41)shhhhhhhhhhhhhhh10(28)ss(29)s(30)s(32)s(3

4)s(35)s(37)s(39)s(41)s(43)shhhhhhhhhhhhhhhhhh11(26)s(28)s(30)s(32)

s(34)s(35)shhhhhhhhhhhhhhhhhhhhh12(16)s(18)s(20)s(22)s(24)shhhhhhhh

hhhh13(14)s(15)s(17)s(19)s(21)shhhhhhhhhh14(13)s(15)s(17)s(19)shhhh

hhhhhh15(10)s(12)s(14)shhhhhhhh16(8)s(10)s(12)shhhhhh17(8)s(10)s(12

)shhhhhh18(8)s(9)s(11)shhhhhh19(7)s(9)shhhhhh20(5)s(7)shhhh21(5)s(7

)shhhh22(5)s(7)shhhh23(5)s(7)shhhh24(5)s(6)shhhh25(4)shhhh26(2)shh2

7shh28shh29shh30shh31shh32shh33shh34shh35shh36shh37shh38shhhh

product criterion:27 chain criterion:4846

hilbert series criterion:175

dehomogenization

imap to original ring

simplification

interreduction

> timer-aa;

0

> size(J);

8

For an interpretation of the various symbols printed above, enter

> help option;

At this writing, you will find the relevant information at the end of the help
text displayed. ��
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Limitations of Gröbner basis methods

Starting from a few polynomials of low degree and with small coefficients,
Buchberger’s algorithm may well produce an enormous number of polynomials
of high degree and with huge coefficients (as in Examples 3.13 and 3.16). This
may happen even though the original set of generators and the resulting
Gröbner basis are of modest size. That is, the computation may run into the
dreaded phenomenon of intermediate expression swell. To illustrate this
fact, we recompute a simple example given by Adams and Loustaunau (1994),
Section 3.3:

Example 3.21. Consider I = 〈4x2y2+3x, y3+2xy, 7x3+6y〉 ⊂ Q[x, y].

> ring R = 0, (x,y), dp;

> ideal I = 4x2y2+3x, y3+2xy, 7x3+6y;

> std(I);

_[1]=y

_[2]=x

Thus, the reduced Gröbner basis for I is {x, y}. The coefficients during the
computation, however, grow as large as 108. In our SINGULAR session, this can
be seen by expressing x as a Q[x, y]-linear combination of the original genera-
tors. For this, we use the lift command which is based on the solution to the
Submodule Membership Problem 2.16 (we will discuss the lift command in
some detail in Sections 3.6.1 and 4.1):

> ideal J = x;

> matrix A = lift(I,J);

> A;

A[1,1]=-3670016/18809541x2y+9604/6269847xy2-134217728/131666787y3

-128/63xy-100352/6269847y2-458752/6269847y+1/3

A[2,1]=536870912/131666787x2y2+401408/6269847x2y+1835008/6269847x2

-4194304/6269847xy+10976/2089949y2+64/21x+50176/2089949y+

229376/2089949

A[3,1]=2097152/18809541xy3-5488/6269847y4-25088/6269847y3

-114688/6269847y2

> matrix(I)*A;

_[1,1]=x ��

There is a “worst case” upper bound for the degree of the elements of the
reduced Gröbner basis for an ideal 〈f1, . . . , fr〉 ⊂ K[x1, . . . , xn] due to Möller
and Mora (1984). If d is the maximum degree of the fi, this bound is

2

(
d2

2
+ d

)2n−1

.

It is, thus, doubly exponential in the number of variables. Examples of Mayr
and Meyer (1982) show that the double exponential form of the bound cannot
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be improved. Despite this high worst case complexity, Buchberger’s algorithm
works well for many problems of practical interest. The range in the number of
variables and degrees in which Gröbner basis computations can be completed,
however, is relatively small. See Decker and Schreyer (2001), Section 10 for
some benchmarks.

3.6 Basic Applications of Gröbner Bases (revisited)

In this section, we come back to some of the basic problems discussed in
Lecture 2, considering these and a few related problems from a SINGULAR

point of view. We give explicit SINGULAR examples for several of the problems,
while for others only the name of the built-in SINGULAR command is listed.

• Ideal membership test (Section 3.6.1) ,

• radical membership test (Section 3.6.1) ,

• elimination of variables (Section 3.6.2) ,

• intersection with free submodules (elimination of module components,
Section 3.6.2) ,

• intersection of ideals and submodules (intersect) ,

• ideal and submodule quotients (quotient) ,

• saturation with respect to an ideal (sat) ,

• kernel of a map between affine rings (Section 3.6.3) ,

• test for algebraic dependence (Section 3.6.3) ,

• subalgebra membership test (Section 3.6.4) ,

• test for surjectivity of a map between affine rings (Section 3.6.5) ,

• Krull dimension of ideals and modules (dim) ,

• vector space dimension of a quotient module F/I (vdim) ,

• Hilbert polynomial and Hilbert series, represented as vectors of type
intvec (hilbPoly from poly.lib and hilb) ,

• syzygies and free resolutions (Section 3.6.6) .

For the commands dim and vdim, we refer also to Lecture 9, Remark 9.30.

3.6.1 Ideal Membership Test

The test whether a given polynomial f ∈ K[x] is contained in a given ideal
I ⊂ K[x] is arguably the most basic application of Gröbner bases. If G is a
Gröbner basis for I, then f is contained in I iff the remainder of f on division
by the elements of G is zero (see Remark 1.40 and Problem 2.16).

Example 3.22. Problem 1. Check ideal membership:

> ring R = 0, (x,y), dp;

> ideal I = x7+x5y2, y4-xy7;

> poly f1, f2 = x6y7+x3y5, x6y7+x7y2;
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Solution. Proceed as explained above:

> ideal GI = groebner(I);

> reduce(f1,GI,1); // see Example 1.39 for reduce

y5-y4

> reduce(f2,GI,1);

0

Alternatively, if an expression of f as a K[x]-linear combination of the orig-
inal generators for I is needed, apply the lift command which follows our
solution of the Submodule Membership Problem 2.16 step by step (computing
a Gröbner basis, storing the relevant syzygies, and computing a normal form).
It is, thus, more involved than the reduce command.

> lift(I,f1);

? 2nd module lies not in the first

? error occurred in STDIN line 8: ‘lift(I,f1); ‘

> matrix C = lift(I,f2);

> C;

C[1,1]=x4y22-x2y24-x3y19+xy21+y2

C[2,1]=x10y15-x6y19-x5

> f2 - C[1,1]*I[1] - C[2,1]*I[2]; // check (result must be 0)

0

We will return to the lift command in Lecture 4, Section 4.1.

Problem 2. Check the inclusion of ideals.

> ideal J1 = f1, f2;

> ideal J2 = f2, x5y9+x6y4;

Solution.

> reduce(J1,GI,1); // normal form for the generators of J1

_[1]=y5-y4

_[2]=0

> size(reduce(J2,GI,1));

0

Recall that the size command applied to an ideal returns the number of
nonzero generators. Hence, the output 0 above indicates that the ideal gener-
ated by J2 is contained in the ideal generated by GI. ��

As explained in Lecture 2, radical membership can be decided via ideal
membership: if t is a slack variable, then

f ∈
√

I ⇐⇒ 1 ∈ 〈I, tf − 1〉 ⊂ K[x, t] .
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Example 3.23. Problem. Check radical membership:

> ring R = 0, (x,y), dp;

> ideal I = maxideal(3); // the ideal <x,y>^3

> poly f1, f2 = x, 1-x;

Solution. Follow the recipe given above step by step, first setting up the ring
with a slack variable:

> ring S = 0, (x,y,t), dp;

> ideal I = imap(R,I);

> poly f1 = imap(R,f1);

> ideal Jf1 = I, t*f1-1;

> Jf1 = std(Jf1);

> reduce(1,Jf1,1); // result is 0 iff f1 is in radical(I)

0

> poly f2 = imap(R,f2);

> ideal Jf2 = I, t*f2-1;

> Jf2 = std(Jf2);

> reduce(1,Jf2,1);

1

The built-in command . Directly in the ring R, use the SINGULAR command
rad con provided by the library poly.lib:

> LIB "poly.lib";

> rad_con(f1,I); // result is 1 iff f is in radical(I)

1

> rad_con(f2,I);

0 ��

3.6.2 Elimination

In Lecture 2, Proposition 2.30, we explained how to eliminate variables from a
given ideal I ⊂ K[x1, . . . , xn]. This requires the choice of a global elimination
order. Possible choices are:

• The lexicographic order lp. This has the elimination property with respect
to each initial set of variables {x1, . . . , xk}, k = 1, . . . , n− 1.

• The product order (dp(k),dp(n-k)), or, more generally, any product
order (>1, >2) combining a global monomial order >1 on K[x1, . . . , xk]
and a global monomial order >2 on K[xk+1, . . . , xn]. Such an order is
an elimination order with respect to the specific initial set of variables
{x1, . . . , xk}.

• A global monomial order > with extra weight vector w = (w1, . . . , wn)
∈ Zn

≥0 (see Page 71). Such an order has the elimination property with
respect to the set of variables {xi | wi > 0}.
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The SINGULAR command eliminate uses an order with extra weight vector.
If > is the order of the active ring in a SINGULAR session, then eliminate

returns a Gröbner basis for the elimination ideal with respect to the restriction
of > to the subring specified by the remaining variables. Note, however, that
using eliminate might be significantly slower than using a product order
(dp(k),dp(n-k)).

Example 3.24 (Levelt). We consider a system of 12 polynomial equations in
13 indeterminates:

> ring R = 0, (a,b,c,d,e,f,g,t,u,v,w,y,z), dp;

> ideal I = z2+e2-1, g2+w2+a2-1, t2+u2+b2-1, f2+v2+c2-1, y2+d2-1,

. zw+ea, gt+wu+ab, tf+uv+bc, fy+cd, a+b+c+d+e, f+g+t+y+1,

. u+v+w+z-1;

These equations define, as one can check, a curve C = V(I) ⊂ A13(C). We
compute the projection of C to the yz-plane by eliminating all variables
other than y, z from I. This is quite a challenge for every computer al-
gebra system (in SINGULAR, try to compute the projection by entering di-
rectly eliminate(I,abcdefgtuvw);). To get a result in due time, we apply
a Hilbert driven elimination (following the recipe given in Section 3.5):

> ring Rhom = 0, (a,b,c,d,e,f,g,t,u,v,w,y,z,h), dp;

> ideal I = imap(R,I);

> ideal J = homog(I,h); // homogenize the given generators

> int aa = timer;

> ideal L = std(J);

> timer-aa;

127

> intvec H = hilb(L,1); // assign Hilbert series

> aa = timer;

> ideal K = eliminate(J,abcdefgtuvw,H);

> timer-aa;

138

> K = subst(K,h,1); // dehomogenize

The resulting projection of C to the yz-plane is a plane curve defined by a
polynomial of degree 32:

> size(K);

1

> K[1]; // the equation

790272y16z16-3612672y16z15+3612672y15z16-6530048y16z14-6006784y15z15

-6530048y14z16+41607168y16z13-56159232y15z14+[...] ��

Remark 3.25. Another approach to eliminating variables, historically pre-
ceeding the one via Gröbner bases, makes use of resultants (see Grete Her-
mann (1926)). For more details on this approach and some examples, we refer
to Lecture 6, Section 6.2. ��
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Closely related to eliminating variables is the elimination problem for
module components: given a free K[x]-module F =

⊕s
i=1 K[x]ei and a

submodule I = 〈f1, . . . , fr〉 ⊂ F , compute the kth elimination submodule

Ik := I ∩
s⊕

i=k+1

K[x]ei ⊂ F .

That is, compute finitely many generators for the module of vectors in I
whose first k components are zero. The solution to this problem is based on
the following result:

Proposition 3.26. Let > be a global monomial order on K[x], and let G be a
Gröbner basis for I with respect to >(c,>) on F . Then, for each k = 0, . . . , s−1,
the set

Gk := G ∩
s⊕

i=k+1

K[x]ei

is a Gröbner basis for Ik with respect to >(c,>) on
⊕s

i=k+1 K[x]ei. In partic-
ular, Gk generates Ik.

Alternatively, if we are just interested in computing Ik for a fixed k, we may
choose any other global elimination order with respect to e1, . . . , ek, that
is, any global monomial order on F satisfying

L(f) ∈
s⊕

i=k+1

K[x]ei =⇒ f ∈
s⊕

i=k+1

K[x]ei

for all f ∈ F . In view of Remark 3.9, this shows that there is actually no
difference between the problem of eliminating variables and the problem of
eliminating module components.

3.6.3 Kernel of a Ring Map

In Lecture 2, we already explained how to compute the kernel of a K-algebra
homomorphism

φ : K[y1, . . . , ym] −→ K[x1, . . . , xn]/I , yi 
−→ f i = fi + I ,

via elimination:
kerφ = J ∩K[y] ,

where J is the ideal

J = IK[x, y] +
〈
f1 − y1, . . . , fm − ym

〉
⊂ K[x, y] .

Example 2.32 in Lecture 2 shows two ways of carrying this out in SINGULAR.
We may either follow the recipe given above step by step (setting up J in
K[x, y] and eliminating), or we may apply the built-in SINGULAR command
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preimage which returns the preimage of an ideal under a given ring map (for
the elimination problem above, we compute the preimage of I under the map
K[y]→ K[x] defined by the fi). Note that similar to the eliminate command
discussed in Section 3.6.2, the preimage command makes use of an order with
an extra weight vector.

Being able to compute kernels of ring maps, we can, in particular, check
whether a given set of elements f1, . . . , fm of an affine ring K[x]/I is alge-
braically dependent over K. Indeed, this means to check whether the kernel
of the map K[y]→ K[x]/I defined by the f i contains a nontrivial element.

Example 3.27. Problem. Use SINGULAR to check that the polynomials

f1 = x6
1x

2
3− x6

2x
2
3, f2 = x3

1− x3
2, f3 = x3

1+ x3
2 and f4 = x3

3

are algebraically dependent over Q :

> ring R = 0, x(1..3), dp;

> poly f1 = x(1)^6*x(3)^2-x(2)^6*x(3)^2;

> poly f2,f3,f4 = x(1)^3-x(2)^3, x(1)^3+x(2)^3, x(3)^3;

Solution. Follow the recipe given above step by step (setting up φ and com-
puting its kernel by using preimage):

> ring S = 0, y(1..4), dp;

> setring R;

> ideal zero; // the zero ideal

> map phi = S,f1,f2,f3,f4;

> setring S;

> preimage(R,phi,zero); // the kernel of phi

_[1]=y(2)^3*y(3)^3*y(4)^2-y(1)^3

The built-in command . Directly in the ring R, use the SINGULAR command
algDependent provided by the library algebra.lib:

> LIB "algebra.lib";

> list L = algDependent(ideal(f1,f2,f3,f4));

At this point, SINGULAR gives an explanation on how to access what has been
computed. We follow the explanation (without printing it here). On our way,
we make use of the def command which allows us to assign a name to a
SINGULAR object without specifying its type (the type will then be specified
by SINGULAR according to the type of the object).

> L[1]; // first entry of L is 1 iff the polynomials are

> // algebraically dependent

1

. def S = L[2]; // second entry of L is a ring which contains

> // an ideal ker defining the algebraic relation

. setring S;

> ker;

ker[1]=y(2)^3*y(3)^3*y(4)^2-y(1)^3 ��
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3.6.4 Test for Subalgebra Membership

Problem. Given elements f, f 1, . . . , fm of an affine ring K[x]/I, decide whe-
ther f is contained in the subalgebra K

[
f1, . . . , fm

]
of K[x]/I .

Solution. Let J = IK[x, y] + 〈f1 − y1, . . . , fm − ym〉 ⊂ K[x, y], let > be a
global elimination order on K[x, y] with respect to x, and let G be a Gröbner
basis for J with respect to >. Then f ∈ K

[
f1, . . . , fm

]
iff the remainder h

of f on division by the elements of G is in K[y]. The remainder h describes,
then, how to write f as a polynomial in f 1, . . . , fm.

Example 3.28. Problem. Use SINGULAR to check whether x6
1x

6
2 − x6

1x
6
3 is con-

tained in the subalgebra Q
[
x3

1x
3
2− x3

1x
3
3, x

3
1x

3
2+ x3

1x
3
3

]
of Q

[
x1, x2, x3

]
:

> ring R = 0, x(1..3), dp;

> poly f = x(1)^6*x(2)^6-x(1)^6*x(3)^6;

> poly f1 = x(1)^3*x(2)^3-x(1)^3*x(3)^3;

> poly f2 = x(1)^3*x(2)^3+x(1)^3*x(3)^3;

Solution. Follow the recipe given above step by step:

> ring S = 0, (x(1..3),y(1..2)), (dp(3),dp(2));

> ideal J = imap(R,f1)-y(1), imap(R,f2)-y(2);

> ideal G = groebner(J);

> reduce(imap(R,f),G);

y(1)*y(2)

From the output, we read that f = f1f2 ∈ Q[f1, f2].

The built-in command . Directly in the ring R, use the SINGULAR command
algebra containment from algebra.lib:

> LIB "algebra.lib";

> algebra_containment(f,ideal(f1,f2));

// y(1)*y(2)

1

The return value 1 indicates that f ∈ Q[f1, f2], while the displayed polynomial
y(1)*y(2) stands for the algebraic relation f1f2 − f = 0.

Calling algebra containment with the additional parameter 1 will allow
us to access the polynomial:

> def L = algebra_containment(f,ideal(f1,f2),1);

Again, SINGULAR displays an explanation which we follow without printing it
here:

> def S = L[2];

> setring S;

> check; // polynomial defining the algebraic relation

y(1)*y(2)
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Note that the SINGULAR library algebra.lib provides the alternative com-
mand inSubring for the subalgebra membership problem. This command is
based on a slightly different algorithm (see Greuel and Pfister (2002), Section
1.8.11). ��

3.6.5 Test for Surjectivity of a Ring Map

Problem. Given a map φ : K[y] → K[x]/I, yi 
→ f i, find out whether φ is
surjective. That is, check whether x1, . . . , xn are contained in the subalgebra
K
[
f1, . . . , fm

]
⊂ K[x]/I.

Solution. Set J = IK[x, y] +
〈
f1 − y1, . . . , fm − ym〉 ⊂ K[x, y], and com-

pute the reduced Gröbner basis G for J using a global elimination order
with respect to x. Then xi ∈ K

[
f1, . . . , fm

]
iff G contains an element of type

xi − hi(y), for i = 1, . . . , n.

Example 3.29. Problem. Let φ : Q[x, y, z]→Q[a, b, c]/〈c−b3〉 be induced by
x 
→ 2a+b6, y 
→ 7b−a2, z 
→ c2. Check that φ is surjective using SINGULAR.

Solution. Follow the recipe given above step by step:

> ring C = 0, (a,b,c,x,y,z), (dp(3),dp);

> ideal J = c-b3, 2a+b6-x, 7b-a2-y, c2-z;

> option(redSB);

> simplify(groebner(J),1); // the reduced Groebner basis for J

_[1]=x12-12x11z+66x10z2-220x9z3+495x8z4-792x7z5+[...]

_[2]=c-1/21952x6+3/10976x5z-15/21952x4z2+[...]

_[3]=b-1/28x2+1/14xz-1/28z2-1/7y

_[4]=a-1/2x+1/2z

The built-in command . Use the command is surjective from algebra.lib:

> LIB "algebra.lib";

> ring B = 0, (x,y,z), dp;

> ring A = 0, (a,b,c), dp;

> qring Q = groebner(c-b3); // quotient ring

> map psi = B, 2a+b6, 7b-a2, c2;

> is_surjective(psi);

1 ��

Note that algebra.lib also provides the command is bijective.

3.6.6 Syzygies and Free Resolutions

Consider the free K[x]-module F = K[x]s with its canonical basis, and let
f1, . . . , fr ∈ F \ {0} be polynomial vectors. Recall from Remark 1.44 how to
compute the syzygies on f1, . . . , fr using Schreyer’s algorithm:
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• Compute a Gröbner basis f1, . . . , fr, fr+1, . . . , fr′ with Buchberger’s al-
gorithm. On your way, store all syzygies on the elements of the Gröbner
basis defined by a standard expression in Buchberger’s test; these syzygies
generate all syzygies on the elements of the Gröbner basis.

• The syzygies obtained from a division leading to a new generator fk in
Buchberger’s test allow us to express fk in terms of f1, . . . , fk−1. Suc-
cessively substituting these expressions for fk into each relation obtained
from a division with remainder zero in the test, we get the syzygies on the
original generators f1, . . . , fr.

The SINGULAR command sres is based on Schreyer’s algorithm (see Remark
3.33). However, sres is implemented such that it requires as input a Gröbner
basis (see Example 3.35). Hence, it can only be used to compute the syzygies
on the elements of a Gröbner basis (and not those on an arbitrary set of
generators).

An alternative method for computing syzygies is based on the following
easy observation. View f1, . . . , fr ∈ F = K[x]s as column vectors with s en-
tries, and consider the (s + r)× r matrix⎛⎜⎜⎜⎜⎝

f1 f2 . . . fr

1 0 . . . 0

0
. . .

. . .
......

. . .
. . . 0

0 . . . 0 1

⎞⎟⎟⎟⎟⎠ .

Then the vector t(g1, . . . , gr) ∈ K[x]r is a syzygy on f1, . . . , fr iff the extended
vector t(0, g1, . . . , gr) ∈ K[x]s+r is a K[x]-linear combination of the columns
of this matrix. In this way, computing syzygies amounts to eliminating module
components (see Proposition 3.26). The SINGULAR command syz makes use
of this idea.

Example 3.30. We show syz at work:

> ring R = 0, (w,x,y,z), dp;

> poly f1, f2, f3 = y2-xz, xy-wz, x2z-wyz;

> ideal I = f1, f2, f3;

> module phi2 = syz(I);

> print(phi2);

x, wz,

-y,-xz,

1, y

> size(syz(phi2)); // we check that there are no higher syzygies

0 ��

By successively computing syzygies, starting from f1, . . . , fr and using either
Schreyer’s algorithm or the alternative method, we eventually obtain a free
resolution
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F1 F2
ϕ2

F3
ϕ3 . . .ϕ4

of the submodule I = 〈f1, . . . , fr〉 ⊂ F and, thus, a free resolution

F0 = F F1

ϕ1=(f1,...,fr)
F2

ϕ2

F3
ϕ3 . . .ϕ4

of the quotient module M = F/I, with syzygy matrices ϕi.
If f1, . . . , fr are homogeneous, both ways of computing syzygies yield

graded free resolutions. However, since we compute at each stage a Gröbner
basis for the syzygy module, the resulting resolutions are usually far from
being minimal. This is already evident from Example 3.30 above.

To detect and get rid of superfluous generators in a given set of generators,
we need to know a syzygy matrix of the given generators. Minimizing the
given generators amounts, then, to Gaussian elimination applied to the syzygy
matrix.

Example 3.31. Consider the graded free resolution

R R2(−2)⊕R(−3)
ϕ1=(f1,f2,f3)

R(−3)⊕R(−4)
ϕ2

0

computed in Example 3.30. The entry 1 of the syzygy matrix ϕ2 indicates
that f1, f2, f3 do not form a minimal set of generators for I. In fact, from the
first column of ϕ2, we see that f3 = −xf1 +yf2. Gaussian elimination applied
to ϕ2 yields a commutative diagram

R R2(−2)⊕R(−3)
ϕ1

α1

R(−3)⊕R(−4)
ϕ2

α2

0

R R2(−2)⊕R(−3)
eϕ1

R(−3)⊕R(−4)
eϕ2

0,

where

α1 =

⎛⎝1 0 −x
0 1 y
0 0 1

⎞⎠ , α2 =

(
1 y
0 1

)
, ϕ̃1 = (f1, f2, 0), ϕ̃2 =

⎛⎝0 −f2

0 f1

1 0

⎞⎠ .

Cancelling the superfluous part

0 R(−3) R(−3)
1

0

in the second row, we a get the minimal free resolution of R/I:

R R2(−2)
(f1,f2)

R(−4)

(
−f2

f1

)
0 . ��
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Using the alternative method for computing free resolutions, minimization
can be done directly at each stage, minimizing each set of generators as soon
as the syzygies on it have been computed. In contrast, Schreyer’s algorithm
requires that at each stage we work with the syzygies on a Gröbner basis. Thus,
minimization has to be done after the whole resolution has been computed.

A variant of Schreyer’s algorithm due to La Scala (see La Scala and Still-
man (1998)) uses a “horizontal” strategy, proceeding degree by degree (not
syzygy module by syzygy module). In this way, direct minimization is possible.

A horizontal Hilbert driven algorithm for computing free resolutions has
been described by Capani, De Dominicis, Niesi and Robbiano (1997).

Remark 3.32. Schreyer’s algorithm is more conceptual than the alternative
method. As already pointed out in Lecture 1, Remark 1.45, it allows one to
give a constructive proof of Hilbert’s syzygy theorem. Also, if I is a graded
submodule of a graded free K[x]-module, it follows from applying Schreyer’s
algorithm to both I and L(I) that βij(F/I) ≤ βij(F/L(I)) for all i, j (see
Decker and Schreyer (2006)). This fact can be used to expedite the computa-
tion of free resolutions via the alternative method. ��
Remark 3.33 (SINGULAR Commands for Computing Free Resolutions
I: Polynomial Rings). The following commands are available:

Command Implemented Method Applies to
nres alternative method ideals, modules
mres alternative method ideals, modules
sres Schreyer ideals, modules
lres La Scala homogeneous ideals
hres Hilbert driven homogeneous ideals

Each command requires two input parameters, one of type ideal or module,
and one of type int. The integer, say k, has to be nonnegative. If k > 0, the
free resolution is computed up to stage k; if k = 0, it is computed up to stage
n + 1, where n is the number of variables in the active ring. The result of
such a computation has its own SINGULAR type, namely resolution. To give
a first example, we continue the session from Example 3.30:

> resolution FI = nres(I,0);

> typeof(FI[1]); // ’typeof’ displays type of given object

ideal

> print(FI[1]);

y2-xz,

xy-wz

x2z-wyz

> typeof(FI[2]);

module

> print(FI[2]);

x, wz,

-y,-xz,

1, y
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It is hard to predict a priori which of the commands for computing free reso-
lutions is best suited for a given problem. ��

Before giving an example which, in particular, illustrates the difference be-
tween nres and mres, we explain the use of the betti command:

Remark 3.34 (Graded Betti Numbers). Let I be a graded submodule
of a graded free module F , and suppose that a graded free resolution FI of
I has already been computed. Then the graded Betti numbers of F/I can be
directly read off, even if FI is not yet minimal. In SINGULAR, these numbers
will be displayed as response to entering print(betti(FI),"betti");. That
is, typing print(betti(FI),"betti"); will make SINGULAR print numerical
information on the minimal free resolution of F/I (and not on the resolution
which has been computed). For instance, for the ideal I considered in Example
3.30 and Remark 3.33, we obtain:

> print(betti(FI),"betti");

0 1 2

------------------------

0: 1 - -

1: - 2 -

2: - - 1

------------------------

total: 1 2 1

To get numerical information on the computed resolution, type

> print(betti(FI,0),"betti");

0 1 2

------------------------

0: 1 - -

1: - 2 1

2: - 1 1

------------------------

total: 1 3 2

Similarly, to visualize the degrees of the generators of a given homogeneous
ideal (submodule) I, enter print(betti(I,0),"betti");. ��

In the following example, we show the behavior of nres, mres, and sres, and
we introduce the commands prune and minres.

Example 3.35. To begin with, we define the ring R and the module I which
we already considered in Section 3.4:

> ring R = 0, (w,x,y,z), dp;

> module I = [xz,0,-w,-1,0], [-yz2,y2, 0,-w,0], [y2z,0,-z2,0,-x],

. [y3,0,-yz,-x,0], [-z3,yz,0,0,-w], [-yz2,y2,0,-w,0],

. [0,0,-wy2+xz2,-y2,x2];
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> print(I);

xz,-yz2,y2z,y3, -z3,-yz2,0,

0, y2, 0, 0, yz, y2, 0,

-w,0, -z2,-yz,0, 0, -wy2+xz2,

-1,-w, 0, -x, 0, -w, -y2,

0, 0, -x, 0, -w, 0, x2

Recall from Section 3.4 that we may think of I as a graded submodule of the
graded free module F = R⊕R(−1)2 ⊕R(−2)2 :

> homog(I);

1

> attrib(I,"isHomog");

0,1,1,2,2

Applying nres to compute a free resolution of I, the given generators re-
main untouched, but for each subsequent syzygy module, a minimal set of
generators will be computed:

> resolution FInres = nres(I,0);

> print(betti(FInres,0),"betti");

0 1 2

------------------------

0: 1 - -

1: 2 1 1

2: 2 5 1

3: - 1 1

------------------------

total: 5 7 3

> print(FInres[1]); // the given generators

xz,-yz2,y2z,y3, -z3,-yz2,0,

0, y2, 0, 0, yz, y2, 0,

-w,0, -z2,-yz,0, 0, -wy2+xz2,

-1,-w, 0, -x, 0, -w, -y2,

0, 0, -x, 0, -w, 0, x2

> print(FInres[2]); // display syzygies on the given generators

0, y2,0,

-1,0, xz,

0, -x,wy,

0, 0, -wz,

0, 0, -xy,

1, 0, 0,

0, -1,0

> size((FInres[3]));

0

The nonzero constant entries of the syzygy matrix FInres[2] indicate that
in our example, the given generators do not form a minimal set of generators.
Using mres, the given set of generators will be minimized before computing
the resolution:
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> resolution FImres = mres(I,0);

> print(betti(FImres,0),"betti");

0 1 2

------------------------

0: 1 - -

1: 2 1 -

2: 2 4 -

3: - - 1

------------------------

total: 5 5 1

> print(FImres[1]); // the new generators

xz,z3, yz2,y2z,y3,

0, -yz,-y2,0, 0,

-w,0, 0, -z2,-yz,

-1,0, w, 0, -x,

0, w, 0, -x, 0

> print(FImres[2]); // display syzygies on the new generators

0,

xy,

-xz,

wy,

-wz

Thus, considering I as a submodule of F = R ⊕ R(−1)2 ⊕ R(−2)2 as above,
its minimal free resolution is R(−2)⊕R(−3)4 ← R(−5)← 0.

Note, however, that there is still a nonzero constant entry of FImres[1]

(the columns of FImres[1] form the original set of generators for I). Hence,
F ← R(−2)⊕R(−3)4 ← R(−5)← 0 is not the minimal free resolution of the
module M = F/I. More precisely, the images of the canonical basis vectors
of F under M ← F do not generate M minimally. To obtain the minimal free
resolution of M , we first have to compute a presentation

0 M F0
ϕ0

F̃1

eϕ1

such that ϕ0 corresponds to a minimal set of generators for M . This is done
by Gaussian elimination. The corresponding SINGULAR command is prune:

> module PI = prune(I);

> print(betti(PI,0),"betti");

0 1

------------------

0: 1 -

1: 2 -

2: 1 5

3: - 1

------------------

total: 4 6
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> print(PI);

wxz+yz2,-y2z,-y3+x2z,z3, wxz+yz2,xy2z,

-y2, 0, 0, -yz,-y2, 0,

-w2, z2, -wx+yz, 0, -w2, -xz2,

0, x, 0, w, 0, -x2

> resolution FPImres = mres(PI,0);

> print(betti(FPImres,0),"betti");

0 1 2

------------------------

0: 1 - -

1: 2 - -

2: 1 4 -

3: - - 1

------------------------

total: 4 4 1

> print(FPImres[1]);

z3, y2z,wxz+yz2,y3-x2z,

-yz,0, -y2, 0,

0, -z2,-w2, wx-yz,

w, -x, 0, 0

> print(FPImres[2]);

xy,

wy,

-xz,

-wz

Thus, the minimal free resolution of M is of type

R⊕R(−1)2 ⊕R(−2) R(−3)4 R(−5) 0 .

Next, we apply sres to PI. As already remarked, this command requires a
Gröbner basis as input. This is checked by SINGULAR:

> resolution FPIsres = sres(PI,0);

? ideal not a standard basis

? error occurred in STDIN line 27:

‘resolution FPIsres = sres(PI,0);‘

> resolution FPIsres = sres(groebner(PI),0);

> print(betti(FPIsres,0),"betti");

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: 2 - - - -

2: 1 4 1 - -

3: - 1 5 1 -

4: - 4 2 3 1

5: - 1 3 1 -

------------------------------------

total: 4 10 11 5 1
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As the reader might have expected, the resolution is far from being minimal.
In fact, it is even longer than the minimal free resolution.

Applying the command minres to a given resolution FI of I, all syzygy
matrices of I will be minimized. Note, however, that minres does not prune
I. That is, the resolution obtained when entering minres(FI) is isomorphic
to that obtained when entering mres(I):

> resolution FInresmin = minres(FInres);

> print(betti(FInresmin,0),"betti");

0 1 2

------------------------

0: 1 - -

1: 2 1 -

2: 2 4 -

3: - - 1

------------------------

total: 5 5 1

> resolution FPIsresmin = minres(FPIsres);

> print(betti(FPIsresmin,0),"betti");

0 1 2

------------------------

0: 1 - -

1: 2 - -

2: 1 4 -

3: - - 1

------------------------

total: 4 4 1 ��

Remark 3.36 (SINGULAR Commands for Computing Free Resolutions
II: Quotient Rings and Local Rings).

(1) The commands syz, nres, mres, and sres also work over quotient rings
of polynomial rings. Note, however, that modules over such a ring may not
have a free resolution of finite length. See Example 4.9.

(2) Recall from Remark 1.17 that it makes sense to speak of minimal free
resolutions over local Noetherian rings, too (in general, as in part (1) above, a
free resolution of finite length may not exist). In Lecture 9, we will extend the
concept of Gröbner bases to the ring K[x]〈x〉 which is obtained by localizing
K[x] at the maximal ideal 〈x〉 corresponding to the origin of affine space.
Adapting Buchberger’s algorithm to local monomial orders, we will be able
to compute Gröbner bases and syzygies over K[x]〈x〉. In SINGULAR, the com-
mands syz, nres, mres, and sres also work over K[x]〈x〉 and quotient rings
thereof. Note that in theoretical terms, Schreyer’s algorithm shows as for the
polynomial ring itself that Hilbert’s syzygy theorem holds over K[x]〈x〉: every
finitely generated K[x]〈x〉-module has a free resolution of length at most n. ��
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3.7 Gröbner Bases over Noncommutative Algebras

The SINGULAR kernel component PLURAL4 allows us to perform computations
over a large class of noncommutative algebras to which we refer as GR-al-
gebras5. In Appendix A, we will discuss one application of this in algebraic
geometry, namely the computation of sheaf cohomology via free resolutions
over the exterior algebra. In this section, we briefly sketch the theoretical
background of PLURAL, illustrating the usage of its basic commands by some
small pieces of SINGULAR code.

GR-algebras are obtained by imposing specific relations on the free non-
commutative algebra on x1, . . . , xn. We denote this free algebra by K〈x〉 =
K〈x1, . . . , xn〉. That is, K〈x〉 is the K-algebra with K-vector space basis

B =
{
xi1xi2 · · ·xiν

∣∣ ν ∈ N, 1 ≤ i� ≤ n for all �
}

,

where multiplying two elements of B means to concatenate these elements.
Note that K〈x〉 carries a natural grading which is defined by assigning the
degree ν to xi1xi2 · · ·xiν .

We refer to the elements of B as words in (the letters) x1, . . . , xn. More-
over, we set

M :=
{
xα = xα1

1 · · ·xαn
n

∣∣ α = (α1, . . . , αn) ∈ Nn
}
⊂B .

Since M can be identified with the set of monomials in K[x], each monomial
order > on K[x] induces a total order on M which we again denote by >. It,
thus, makes sense to speak of the leading term L(h) = L>(h) of a K-linear
combination h of words in M .

Definition 3.37 (G-algebra, Preliminary Version). A G-algebra R is
the quotient of K〈x〉 by a two-sided ideal J0 generated by elements of type

xjxi − cijxixj − hij , 1 ≤ i < j ≤ n , (3.1)

where the cij are nonzero scalars, and where the hij are K-linear combinations
of words in M . Further, we require that

(G1) cikcjkhijxk − xkhij + cjkxjhik − cijhikxj + hjkxi − cijcikxihjk = 0

for all 1 ≤ i < j < k ≤ n, and that

(G2) there exists a global monomial order > on K[x] such that xixj > L(hij)
for all i, j. ��

Each global monomial order on K[x] satisfying (G2) is called an admissible
monomial order for R. We refer to the elements of M as monomials in R
and to a scalar times a monomial as a term in R.

4 The name PLURAL results from the obvious wordplay.
5 GR stands for Gröbner-ready.
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Remark 3.38. The “rewriting relations” (3.1) together with (G2) imply that
each element of R can be represented by a K-linear combination of monomials.
More precisely, successively rewriting6 a word w = xi1xi2 · · ·xiν according to
the relations (3.1), we get

w ≡ cxα + h mod J0 ,

where c ∈ K \ {0}, xα is the monomial obtained by rearranging the letters of
w, and h is a K-linear combination of monomials such that xα > L(h). ��

Definition 3.39 (G-algebra, Final Version). A G-algebra7 is defined as
in Definition 3.37, with condition (G1) being replaced by the weaker condition

(G1’) Successively rewriting6 the left-hand side of (G1) according to the
relations (3.1), we get 0. ��

The condition (G1’) guarantees that the representation discussed in Remark
3.38 above is uniquely determined. Indeed, for i < j < k, it guarantees that the
result obtained by rewriting xkxjxi in terms of monomials does not depend
on whether we first apply the rewriting relation for the pair (j, k) or that for
the pair (i, j). As a consequence, we get that M is a K-vector space basis for
R (see Levandovskyy (2005), Chapter 1, Section 2).

In what follows, we explain how to define and compute Gröbner bases over
G-algebras. This allows us to compute over G-algebras and quotients thereof.

Definition 3.40. A GR-algebra A is the quotient A = R/J of a G-algebra
R by a two-sided ideal J ⊂ R. ��

To implement an explicitly given G-algebra R in SINGULAR proceed as follows
(the notations are as in Definition 3.37):

Step 1. Define a ring which implements K[x] with a global monomial order
that is admissible for R.

Step 2. Define a matrix C[n][n] with entries C[i,j] = cij of type number

(for i ≥ j, set cij = 0).
Step 3. Define a matrix H[n][n] with entries H[i,j] = hij of type poly (for

i ≥ j, set hij = 0).
Step 4. Enter ncalgebra(C,H); to activate the rewriting relations (3.1). The

active basering is now an implementation of R. It is accessible under the
name of the ring defined in Step 1.

6 Each single rewriting step consists of replacing a product of letters xjxi, i < j,
occurring in some word of the current intermediate result by the K-linear com-
bination of monomials cijxixj + hij . Extending the “monomial” order on M to
an appropriate order > on the words in K〈x〉 such that xjxi > xixj if i < j,
we may regard this step as a single division step. Then “successively rewrit-

ing” means nothing but applying an indeterminate division algorithm (see Levan-
dovskyy (2005), Chapter 1, Section 2).

7 Here, we follow the notation used in the SINGULAR manual.
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Note that the ncalgebra command does not check whether C and H satisfy
one of the conditions (G1) or (G1’). To check (G1’), use the command ndcond

from nctools.lib.
Having implemented R, we can implement a GR-algebra A = R/J by us-

ing the qring command. Similar to the commutative case, this requires the
computation of a Gröbner basis for J in R (see Definition 3.42). The com-
mand for computing a Gröbner basis for the two-sided ideal generated by
given elements of R is twostd (see page 108 for this command).

Example 3.41 (Ring Definitions III: GR-Algebras). We show how to imple-
ment the Weyl algebra and the exterior algebra. The Weyl algebra is a G-
algebra, while for the exterior algebra, we have to make use of the qring

command. In both cases, it follows directly from the definitions that all global
monomial orders are admissible. In our implementations, we choose >dp.

(1) The elements of the Weyl algebra Dn are K-linear differential operators
on K[x]. Its generators are x1, . . . , xn, ∂1, . . . , ∂n, where we think of xi as the
operator which multiplies a polynomial by xi and where applying ∂i means
to take the partial derivative with respect to xi. To obtain Dn from the free
algebra K〈x1, . . . , xn, ∂1, . . . , ∂n〉, we have to impose the relations between
the generating operators, that is, we have to factor out the two-sided ideal
generated by the elements

∂ixi − xi∂i − 1 , ∂ixj − xj∂i , 1 ≤ i �= j ≤ n ,

∂j∂i − ∂i∂j , xjxi − xixj , 1 ≤ i < j ≤ n .

The following SINGULAR session implements D3 over Q:

> ring D3 = 0, (x(1..3),d(1..3)), dp;

> int i,j;

> matrix C[6][6];

> for (i=1; i<=6; i++) { for (j=i+1; j<=6; j++) { C[i,j] = 1; } }

> matrix H[6][6];

> H[1,4] = 1; H[2,5] = 1; H[3,6] = 1;

> ncalgebra(C,H);

Alternatively, apply the built-in command Weyl from the library nctools.lib:

> LIB "nctools.lib";

> ring D3 = 0, (x(1..3),d(1..3)), dp;

> Weyl();

Using the basering command to make SINGULAR display information on the
active ring, we get in both cases:

> basering;

// characteristic : 0

// number of vars : 6

// block 1 : ordering dp
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// : names x(1) x(2) x(3) d(1) d(2) d(3)

// block 2 : ordering C

// noncommutative relations:

// d(1)x(1)=x(1)*d(1)+1

// d(2)x(2)=x(2)*d(2)+1

// d(3)x(3)=x(3)*d(3)+1

(2) The exterior algebra En on the K-vector space with basis x1, . . . , xn

is obtained from K〈x〉 by imposing skew-commutativity, that is, by factoring
out the two-sided ideal generated by the elements

xjxi + xixj , x2
i , 1 ≤ i < j ≤ n .

The following SINGULAR session implements E3 over Q:

> ring R = 0, x(1..3), dp;

> int i,j;

> matrix C[3][3];

> for (i=1; i<=3; i++) { for (j=i+1; j<=3; j++) { C[i,j] = -1; } }

> matrix H[3][3];

> ncalgebra(C,H);

> ideal Q = x(1)^2, x(2)^2, x(3)^2;

> Q = twostd(Q); // compute Groebner basis for two-sided ideal

> qring E3 = Q;

Alternatively, use the built-in command Exterior from nctools.lib:

> LIB "nctools.lib";

> ring R = 0, x(1..3), dp;

> def E3 = Exterior();

> setring E3;

In both cases, we get:

> basering;

// characteristic : 0

// number of vars : 3

// block 1 : ordering dp

// : names x(1) x(2) x(3)

// block 2 : ordering C

// noncommutative relations:

// x(2)x(1)=-x(1)*x(2)

// x(3)x(1)=-x(1)*x(3)

// x(3)x(2)=-x(2)*x(3)

// quotient ring from ideal

_[1]=x(3)^2

_[2]=x(2)^2

_[3]=x(1)^2 ��
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We now turn to Gröbner bases over G-algebras. In formulating the basic
definitions and results, we essentially work with left ideals (the case of right
ideals is completely analogous).

Let R be a G-algebra, and let > be an admissible monomial order for
R. According to Remark 3.38, we may think of the elements of R as K-
linear combinations of monomials. In particular, it makes sense to speak of
the leading term L(f) = L>(f) of an element f ∈ R.

Definition 3.42. (1) We say that a nonzero term axα in R is divisible by
a nonzero term bxβ in R if βi ≤ αi for each 1 ≤ i ≤ n.

(2) A finite subset G = {f1, . . . , fr} of a left ideal I ⊂ R is called a (left)
Gröbner basis for I with respect to > if for each f ∈ I \ {0}, the leading
term of f is divisible by the leading term of some fi, 1 ≤ i ≤ r.

(3) We say that a finite subset of R is a left Gröbner basis if it is a Gröbner
basis for the left ideal it generates.

(4) If I ⊂ R is a two-sided ideal, the monomials in R which are not divisible
by the leading term of some f ∈ I are called standard monomials (for I,
with respect to >). ��

Remark 3.43. (1) Each left ideal I ⊂ R has a left Gröbner basis due to
Gordan’s lemma. In particular, R is left Noetherian, that is, each left ideal
is finitely generated.

(2) If I ⊂ R is a two-sided ideal, each left Gröbner basis for I is also a right
Gröbner basis for I. Indeed, the divisibility of terms in R is independent of
“left” or “right”.

(3) Given a two-sided ideal I ⊂ R, the residue classes of the standard mono-
mials for I form a K-vector space basis for R/I. As in the commutative case,
this basis may be obtained by computing a Gröbner basis for I.

(4) If a nonzero term axα in R is divisible by a nonzero term bxβ , there exist
uniquely determined c ∈ K \ {0} and h ∈ R such that axα = cxα−β · bxβ + h,
where xα > L(h). Moreover, there is an obvious algorithm for computing c
and h. This allows us to mimic the steps of the division algorithm in K[x].
As a result, we get an algorithm for left division with remainder in R. In
particular, we get a division theorem extending Theorem 1.38 in Lecture 1.
Further, Remark 1.40 applies accordingly: each left Gröbner basis for a left
ideal I ⊂ R generates I (as a left ideal), and we can speak of left normal
forms of elements of R mod I. ��

If F is the free R-module Rs with its canonical left and right module struc-
tures and with its canonical basis e1, . . . , es, then we can define monomials
and terms in F in the usual way. A monomial order on F is nothing but a
monomial order on the free K[x]-module with basis e1, . . . , es. Such an or-
der is called admissible if the induced order on K[x] is admissible for R.
Definition 3.42 and Remark 3.43 above apply accordingly to left (respectively
two-sided) submodules of F .
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Definition 3.44. Let f, g ∈ F \ {0}. If L(f) and L(g) involve the same basis
element, say L(f) = axαek, L(g) = bxβek, we define the left S-polynomial
of f and g to be

S(f, g) = c1bx
γ−α · f − c2axγ−β · g ,

where γi = max{αi, βi}, i = 1, . . . , n, and where c1, c2 ∈ K \{0} are the unique
coefficients appearing when dividing xγ by xα, xβ:

xγ = c1x
γ−α · xα + h1 = c2x

γ−β · xβ + h2, xγ > L(h1), L(h2).

If L(f) and L(g) involve different basis elements, we set S(f, g) = 0. ��

With this notion of S-polynomials, the analogs to Buchberger’s criterion and
Schreyer’s result on syzygies in Lecture 1 can be proved for G-algebras. In
particular, we have variants of the algorithms of Buchberger and Schreyer for
computing left Gröbner bases and syzygies. Remark 1.47 on reduced Gröbner
bases applies accordingly.

The PLURAL implementation of Buchberger’s algorithm is accessible via
the std command. It allows one to work over the large class of GR-algebras
and is tuned for that general purpose.8

If we apply std to f1, . . . , fr ∈ F , SINGULAR computes a left Gröbner ba-
sis for the left submodule of F generated by f1, . . . , fr. To obtain a right
Gröbner basis for the right submodule generated by f1, . . . , fr, perform the
Gröbner basis computation over the opposite algebra of R, which is defined
by reversing the order of the multiplication operation of R. The correspond-
ing SINGULAR commands are opposite (for defining the opposite algebra) and
oppose (for mapping objects to the opposite algebra).

Further, PLURAL provides a command twostd which computes a Gröbner
basis for the two-sided submodule generated by f1, . . . , fr. The underlying
algorithm proceeds along the following lines:

Step 0. Set G = {f1, . . . , fr}.
Step 1. Using Buchberger’s algorithm, extend G to a left Gröbner basis for

the left module generated by G.
Step 2. For each g ∈ G and i = 1, . . . , n, compute a remainder on left division

of g · xi by the Gröbner basis elements. If the remainder is nonzero, add
it to G and go to Step 1.

Step 3. Return G.

Example 3.45. Continuing the SINGULAR session from Example 3.41 (1), we
compute the reduced left Gröbner basis LSI for the left ideal I ⊂ D3 generated
by the elements f1 = x2

1∂
2
2 + x2

2∂
2
3 and f2 = x1∂2 + x3 (with respect to >dp):

8 At this writing, custom-built, fast implementations specializing on particular GR-
algebras (such as the Weyl algebra or the exterior algebra) are still missing.
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> ideal I = x(1)^2*d(2)^2+x(2)^2*d(3)^2, x(1)*d(2)+x(3);

> option(redSB);

> ideal LSI = std(I);

> LSI;

LSI[1]=x(1)*d(2)+x(3)

LSI[2]=x(3)^2

LSI[3]=x(2)*x(3)-x(1)

LSI[4]=x(1)*x(3)

LSI[5]=x(2)^2

LSI[6]=x(1)*x(2)

LSI[7]=x(1)^2

Next, we compute the right Gröbner basis RSI for the right ideal generated by
f1 and f2 and check whether RSI is contained in I (by computing left normal
forms for the elements of RSI mod I):

> def D3_opp = opposite(D3);

> setring D3_opp; // active ring is the opposite algebra of D3

> basering;

// characteristic : 0

// number of vars : 6

// block 1 : ordering a

// : names D(3) D(2) D(1) X(3) X(2) X(1)

// : weights 1 1 1 1 1 1

// block 2 : ordering ls

// : names D(3) D(2) D(1) X(3) X(2) X(1)

// block 3 : ordering C

// noncommutative relations:

// X(3)D(3)=D(3)*X(3)+1

// X(2)D(2)=D(2)*X(2)+1

// X(1)D(1)=D(1)*X(1)+1

> ideal I = oppose(D3,I); // map I to opposite algebra

> ideal RSI_opp = std(I);

> setring D3;

> ideal RSI = oppose(D3_opp,RSI_opp);

> RSI;

RSI[1]=x(1)*d(2)+x(3)

RSI[2]=x(3)^2

RSI[3]=x(2)*x(3)+x(1)

RSI[4]=x(1)*x(3)

RSI[5]=x(2)^2

RSI[6]=x(1)*x(2)

RSI[7]=x(1)^2

> size(reduce(RSI,LSI));

1

The output 1 indicates that the right ideal generated by f1, f2 is not contained
in I. This is not a surprise since the Weyl algebra over a field of characteristic
zero is simple, that is, there is no nontrivial two-sided ideal in Dn (see, for
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instance, McConnel and Robson (2001), Section 1.3.1). In our example, we
compute:

> ideal SI = twostd(I);

> SI;

SI[1]=1 ��

Remark 3.46 (Elimination of Variables). Let R = K〈x〉/J0 be a G-al-
gebra (with notations as in Definition 3.37). Suppose that, for some 1 ≤ k < n
and all k < i < j ≤ n, the letters x1, . . . , xk do not occur in hij . Then the two-
sided ideal Jk := J0 ∩K〈xk+1, . . . , xn〉 ⊂ K〈xk+1, . . . , xn〉 is generated by the
elements xjxi − cijxixj − hij , k < i < j ≤ n. If I ⊂ R is a left ideal, we may
aim at computing the kth elimination ideal

Ik := I ∩K〈xk+1, . . . , xn〉/Jk .

In analogy to Proposition 2.30 in Lecture 2, this problem is solvable if there
is a global monomial order on K[x] which has the elimination property with
respect to x1, . . . , xk and which is admissible for R.

However, such an order does not always exist. For instance, consider the G-
algebra K〈x1, x2〉/〈x2x1 − x1x2 − x2

1〉. If > is an admissible order for R, then
x1x2 > x2

1 and, thus, x2 > x1. So > does not have the elimination property
with respect to x1. ��

The related elimination problem for module components is always solv-
able over R. In fact, it can be settled as in the commutative case (see Section
3.6.2): if > is an admissible monomial order for R, and if F is the free R-
module Rs with its canonical basis e1, . . . , es, then >(c,>) is admissible for F
(and an elimination order with respect to e1, . . . , ek for each k).

As an application of this, left syzygies and free resolutions over GR-alge-
bras can be computed using the alternative method introduced in Section
3.6.6. In SINGULAR, use the syz, mres and nres commands (at this writing,
Schreyer’s algorithm is not yet implemented for the noncommutative case).

In theoretical terms, Schreyer’s algorithm allows one to show that Hilbert’s
syzygy theorem holds for G-algebras. Over arbitrary GR-algebras, however, a
given module may not have a finite free resolution:

Example 3.47. We continue our SINGULAR session from Example 3.41 (2). Con-
sidering the coefficient field Q as the graded E3-module Q = E3/〈x1, x2, x3〉
which consists of one graded piece sitting in degree 0, we compute its minimal
free resolution:

> ideal I = maxideal(1);

> def rI = mres(I,0);

// ** full resolution in a qring may be infinite,

// setting max length to 5

> print(betti(rI),"betti");
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0 1 2 3 4 5

------------------------------------------

0: 1 3 6 10 15 21

------------------------------------------

total: 1 3 6 10 15 21

> print(rI[1],"");

x(3),x(2),x(1)

> print(rI[2]);

x(3),x(2),0, x(1),0, 0,

0, x(3),x(2),0, x(1),0,

0, 0, 0, x(3),x(2),x(1) ��
Remark 3.48. To get more information on PLURAL and the commands pro-
vided for computations over noncommutative GR-algebras, type

> help plural;

For further details, see Levandovskyy (2005). ��

3.8 Writing SINGULAR Procedures and Libraries

In SINGULAR, the user may enlarge the set of commands available by adding
his own procedures. These are either written in the SINGULAR user language
or in C/C++. In these notes, we only address the first type of procedures,
referring to them as SINGULAR procedures (see the footnote on page 112 for
a reference on how to deal with procedures written in C/C++). The general
structure of a SINGULAR procedure is as follows:

proc 〈procedure name〉 (〈parameter list〉)

"〈help text of the procedure〉"

{

〈procedure body〉

}

The help text is optional but highly recommended if the procedure is meant
to be stored in a file for later use. For instance:

proc sum(int n,m)

"USAGE: sum(n,m), n,m int.

RETURN: int, the sum n+(n+1)+...+m

"

{

int i,N;

for (i=n; i<=m; i++)

{

N=N+i;

}

return(N);

}
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If this procedure has been written to the file, say, sum.sing, it can be read
into a SINGULAR session and executed as follows:

> <"sum.sing";

> sum(3,7);

25

A SINGULAR library is a text file collecting several SINGULAR procedures. The
recommended format for a library is as follows:

/**** header of the library ****/

version = "〈version of the library〉";

info = "〈general help text for the library〉";

/**** other libraries to be loaded ****/

LIB "〈library 1〉"; ..... LIB "〈library n〉";

/****** procedure ******/

proc 〈procedure name〉 (〈parameter list〉)

"〈help text of the procedure〉"

{

〈procedure body〉

}

example {

〈example of usage〉

}

/**** next procedure ****/

. . .

Again, the help texts and the example sections are optional, at least as long as
the library is not to be included in the official SINGULAR package. Recall that
a library can be loaded into a SINGULAR session using the LIB command.9

Our experience is that the most efficient way of writing a new library is to
use one of the official SINGULAR libraries, say algebra.lib, as a sample. On
a Unix-like operating system, type

> LIB "algebra.lib";

// ** loaded [...]

to see where the libraries are stored on your disk.

9 A collection of procedures written in C/C++ can be linked to SINGULAR as a
dynamic module during a SINGULAR session. At this writing, this feature is
only provided for Unix-like operating systems. See Frühbis-Krüger, Krüger, and
Schönemann (2003).
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Example 3.49 (Debugging Tools). SINGULAR offers several tools which may
help to debug a procedure or library:

˜ Break point inside a procedure.

listvar(); Display all objects directly accessible from
the active ring.

listvar(〈type-name〉); Display all objects of type 〈type-name〉 di-
rectly accessible from the active ring.

listvar(〈ring-name〉); Display all objects belonging to the ring
〈ring-name〉.

printlevel Integer variable used to control the output
of dbprint.

dbprint(〈level〉,〈text〉); 〈text〉 is printed iff the integer 〈level〉 is
strictly positive.

TRACE Integer variable used to set debugging level.

We discuss some of these tools by considering a short procedure which, given
an integer n, computes n! and prints the result on the screen. We define the
procedure such that it depends on a parameter n of type int. Recall, however,
that the range of integers of type int is rather limited (see Remark 3.7). Hence,
already for relatively small values of n, the value of n! exceeds this range. To
allow a larger range for the computation, we make the procedure work with
elements of the coefficient field of a ring of characteristic zero which virtually
have no limitation (the corresponding data type is number). Since the active
ring when calling the procedure may not be as desired, we define an auxiliary
ring in the body of the procedure:

proc fac(int n)

"USAGE: fac(n), n int.

RETURN: None

NOTE: displays n!

"

{

ring S = 0, x, dp;

number N = 1;

int l;

for (l=2; l<=n; l++)

{

N = N*l;

dbprint(printlevel-voice+2,

"// "+string(l)+"! successfully computed");

}

print(N);

}

Executing our procedure, the string given as a second argument of dbprint
will be displayed iff the value of printlevel-voice+2 is strictly positive.
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Notice that printlevel is a predefined variable whose value can be changed
by the user, while voice is an internal variable, representing the nesting level
of procedures. In this way, we can control the nesting level up to which the
string will be displayed if our procedure is called by other procedures. Having
entered the procedure in a SINGULAR session, we apply it as follows:

> fac(5);

120

To get the additional output provided by the dbprint command, we have to
raise the value of printlevel:

> printlevel;

0

> voice-1; // display current nesting level

0

> printlevel = 1;

> fac(5);

// 2! successfully computed

// 3! successfully computed

// 4! successfully computed

// 5! successfully computed

120

Using the listvar() command to make SINGULAR display all objects which
are directly accessible, we see, in particular, that there is not an active ring
yet:

> listvar();

Indeed, the objects defined in our procedure are local in the sense that they
only exist while the procedure is being executed, and that they differ from
objects of the same name defined elsewhere.

In writing the procedure fac, we could have inserted the symbol ~ to mark
a break point. For instance, we could have replaced the last three lines of the
procedure by the lines below:

}

~

print(N);

}

If the break point is reached while executing the procedure, SINGULAR waits
for input (without displaying any prompt).

> fac(5);

// 2! successfully computed

// 3! successfully computed

// 4! successfully computed
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// 5! successfully computed

-- break point in ::fac --

-- called from STDIN --

We may now access objects which exist only during the execution of the
procedure. To see what is available, enter again listvar();:

listvar();

// l [1] int 6

// S [1] *ring

// N [1] number

// n [1] int 5

-- break point in ::fac --

The numbers in square brackets refer to the nesting level in which the objects
are accessible (see also the footnote on Page 119). Typing voice-1;, we see
that the current nesting level is 1. Hence, all objects listed above are accessible.
For instance, typing N;, we get the result 120.

Having reached a break point, we may also define new local objects, assign
new values to given objects, or turn local objects into global ones by applying
the export command (see Remark 3.50). For instance, entering

int k = int(N);

export(k);

makes SINGULAR create a new (local) variable k of type int, assign the com-
puted value 5! = 120 to k (type conversion), and declare k to be a global object
(of the name space Top, see Remark 3.51).

Pressing the enter button on an empty line of input, the execution of the
procedure is continued and the result is printed. We may now check that the
variable k is still accessible:

> listvar();

// k [0] int 120 ��

Remark 3.50 (The Commands return and export). The commands
return and export are used in the body of a procedure to make local data
accessible elsewhere. The first command makes the procedure return the value
and type of a local object (or, several local objects), terminating the execution
of the procedure at the same time. The value is then accessible for later use if
the procedure call assigns it to an object of the appropriate type. The second
command exports the local object as a whole, making it a global object which
is accessible under its original name (see Example 3.52 for a more precise
statement in terms of name spaces).

Note that applying these commands to ring dependent objects has to be
done with some care. If the active ring when executing the return or export
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command inside the procedure is not the ring which was active when calling
the procedure, the returned or exported ring dependent data will not be ac-
cessible (return brings forth an error message). To overcome this problem,
we have to implement the procedure in such a way that it exports the desired
ring dependent object and returns its ring for subsequent use. For instance,
in our procedure fac, we could have replaced the last three lines by the lines
below:

}

export(N);

return(S);

}

Then fac has a return value of type ring. Together with this ring comes an
object N of type number (the result of our computation). This object may be
accessed as follows:

> def RR = fac(5);

> setring RR;

> N;

120

Warning. When exporting a local object, SINGULAR does not check whether
there is already a global object with the same name. This may cause different
kinds of conflicts. Hence, we recommend to use the export command only if
it is really needed (that is, the return command cannot be used instead). ��
Remark 3.51 (Name Spaces). To assist the user in avoiding name con-
flicts, SINGULAR makes use of the concept of name spaces. Roughly speaking,
this means that the system groups all objects defined in a SINGULAR session
into several collections (the name spaces) so that names of objects in different
collections cannot interfere with each other. The SINGULAR data type for name
spaces is package. Entering listvar(package);, all name spaces defined in
the current session are displayed. Having just started the session, we get:

> listvar(package);

// Standard [0] package (S,standard.lib)

// Top [0] package (N)

At each stage of a SINGULAR session, precisely one of the name spaces is active
in the following sense:

• Objects created at that stage (except those of type package) are assigned
to the active name space (unless another name space is specified in the
definition of the object).

• Objects assigned to the active name space are accessible under their name,
while for objects from other name spaces the prefix 〈package-name〉:: has
to be added.10

10 An object assigned to Top is accessible without prepending Top:: unless an object
of the same name is assigned to the active name space.
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We illustrate this by continuing our SINGULAR session above:

> int i = 1; // assign i to the active name space Top

> int Standard::j = 1; // assign j to the name space Standard

> i;

1

> j; // as Standard is not active, j is not found

? ‘j‘ is undefined

? error occurred in STDIN line 5: ‘j;‘

> Standard::j; // prepending Standard::, j is accessible

1

Note that Top is the active name space whenever SINGULAR offers one of the
prompts . or >.

For each library loaded into a SINGULAR session, the system creates an
object of type package associated to that library.11 The name of the package
is obtained from the name of the library by capitalizing the first letter and
removing the suffix .lib. For instance:

> LIB "grwalk.lib";

> listvar(package);

// Grwalk [0] package (S,grwalk.lib)

// Standard [0] package (S,standard.lib)

// Top [0] package (N)

The name space associated to a library is active precisely when a procedure
of the library is being executed.12

A large library may contain many auxiliary procedures which are meant for
internal use only. To prevent the names of these procedures from interfering
with the names of user defined objects or procedures from other libraries, the
auxiliary procedures can be declared to be static. In this case, the procedure
is not user accessible in a SINGULAR session. ��

We illustrate the concepts of name spaces and static procedures in the follow-
ing example.

Example 3.52. Consider the three SINGULAR procedures below :

static proc add_one(int n)

{

return(n+1);

}

proc namespaceDemo(int n)

{

11 The same applies to dynamic modules.
12 In these notes, we do not encounter any other situation in which the active name

space is different from Top.
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n = add_one(n);

def R = namespaceDemo1(n);

return(R);

}

proc namespaceDemo1(int n)

{

int k,m = 1,-1;

n = add_one(n);

export m; // turn m into a global object

ring R; poly f,g;

export f; // turn f into a global object (of R)

~ // break point

return(R);

}

We collect the procedures in a library named xxxx.lib and begin a SINGULAR

session by loading this library:13

> LIB "xxxx.lib";

> listvar(package);

// Xxxx [0] package (S,xxxx.lib)

// Standard [0] package (S,standard.lib)

// Top [0] package (N)

We check that the static procedure add one is not accessible for us:

> add_one(3);

? ‘add_one(3)‘ is undefined

? error occurred in STDIN line 3: ‘add_one(3);‘

Next, we define two objects n,m of type int (which are automatically assigned
to the active name space Top). Then, we apply the procedure namespaceDemo
to n, assigning the return value to a variable named R. The execution of the
procedure namespaceDemo1, which is called by namespaceDemo, is interrupted
at the break point:

> int m,n = 2,3;

> def R = namespaceDemo(n);

-- break point in xxxx.lib::namespaceDemo1 --

-- called from xxxx.lib::namespaceDemo --

-- called from STDIN --

listvar();

// R [2] *ring

13 Instead of LIB, we could also use the load command for this. Using either of
the commands, all library procedures will be assigned to the name space Xxxx. If
LIB is used, the procedures which are not declared to be static are in addition
considered to be assigned to Top.
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// g [2] poly

// f [0] poly

// m [0] int -1

// k [2] int 1

// n [2] int 5

// R [1] def

// n [1] int 4

-- break point in xxxx.lib::namespaceDemo1 --

m; n;

-1

5

-- break point in xxxx.lib::namespaceDemo1 --

Note that listvar() displays only objects assigned to the active name space
Xxxx. We see that the names m,n refer to objects of Xxxx.14 The objects with
the same names m, n assigned to the name space Top are accessible as follows:

Top::m; Top::n;

2

3

-- break point in xxxx.lib::namespaceDemo1 --

Pressing the enter button one more time, the execution of the procedure is
continued. After termination, Top is the active name space again:

> setring R;

> listvar();

// R [0] *ring

// f [0] poly

// n [0] int 3

// m [0] int 2

> listvar(Xxxx); // display all objects belonging to Xxxx

// Xxxx [0] package (S,xxxx.lib)

// ::m [0] int -1

// ::namespaceDemo1 [0] proc from xxxx.lib

// ::namespaceDemo [0] proc from xxxx.lib

// ::add_one [0] proc from xxxx.lib (static)

We see that applying export to the ring independent local object m makes
m a global object in the name space Xxxx (that is, the name space which is
active while the procedure is being executed). On the other hand, applying
export to a ring dependent local object f makes f a global object of the ring

14 In searching for an object of a given name, SINGULAR begins in the current (nest-
ing) level of the active name space. Then it turns to level 0 of the same name
space, before it, finally, checks level 0 of Top. The search is terminated as soon as
an object of the desired name has been found. If such object does not exist, an
error message will be printed.
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R to which it belongs. To make f accessible from Top (that is, the name space
which was active when calling the procedure), the ring R itself has to be either
returned or exported. ��

Remark 3.53 (Modifying the Active Ring). It is occasionally necessary
to design a procedure such that during its execution, the active ring is modified
(for instance, we may wish to change the monomial order or to add a slack
variable). In SINGULAR versions prior to 3-0-0, this often required the use of
the execute command (see the solution to Exercise 5.1). Now, we strongly
recommend to use the ringlist command which is custom-made for what we
have in mind. If applied to the active ring, the ringlist command returns
a list of data which determine the ring. We demonstrate this in the following
SINGULAR session:

> ring R = (0,a), (x(1..3),y(1..2),z(1..2)), (dp(3),wp(2,5),lp);

> minpoly = a^2+1;

> qring Q = std(y(1)^2-x(1));

> list L = ringlist(Q);

> size(L);

4

So the list L has four entries. The first entry, which describes the coefficient
field, is a list with four entries itself:

> L[1];

[1]:

0

[2]:

[1]:

a

[3]:

[1]:

[1]:

lp

[2]:

1

[4]:

_[1]=(a^2+1)

We see that L[1][1], L[1][2], and L[1][4] are meant to store the char-
acteristic (of type int), the parameters, and the minimal polynomial of the
coefficient field. At this writing, the entry L[1][3], which refers to a mono-
mial order, is mainly meant for internal use (giving the list L[1] a structure
similar to that of L).

The second entry L[2] is a list of strings such that L[2][i] is the name
of the ith variable. For instance:

> L[2][7];

z(2)
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The entry L[3] is a list of lists describing the blocks of the monomial or-
der (as displayed by the basering command, see Page 70). In this way, the
monomial order on the ring and its extension to free modules are specified:

> L[3];

[1]:

[1]:

dp

[2]:

1,1,1

[2]:

[1]:

wp

[2]:

2,5

[3]:

[1]:

lp

[2]:

1,1

[4]:

[1]:

C

[2]:

0

The first entry of L[3][i] is always of type string, referring to the name
of a monomial order. The second entry provides further information on the
monomial order and indicates the size of the block. In our example, this is
done by entries of type intvec, specifying the weights of the variables (and
the size of the block). See the online help for matrix orders.

Finally, the fourth entry of L is the ideal defining the quotient ring (this
ideal is zero if the ring under consideration is of type ring).

> L[4];

_[1]=x(1)-y(1)^2

Given a list L as above, we can modify it and define a new ring, say S, by
applying the ring command. We illustrate this by changing the name of the
parameter, adding an extra variable w (and changing the monomial order
accordingly):

> L[1][2][1] = "b"; // new name for the parameter

> L[2][8] = "w"; // append a new variable with name w

> L[3][3][2] = intvec(1,1,1); // raise the size of the third block

> // of the monomial order

. def S = ring(L);

> setring S;
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> basering;

// characteristic : 0

// 1 parameter : b

// minpoly : (b^2+1)

// number of vars : 8

// block 1 : ordering dp

// : names x(1) x(2) x(3)

// block 2 : ordering wp

// : names y(1) y(2)

// : weights 2 5

// block 3 : ordering lp

// : names z(1) z(2) w

// block 4 : ordering C

// quotient ring from ideal

_[1]=x(1)-y(1)^2 ��

3.9 Communication with Other Systems

SINGULAR can be used as a support for other computer algebra systems. What
we present here is the most basic way of communicating between MAPLE and
SINGULAR on Unix-like platforms, writing to and reading from files (a similar
way of communication should be possible for almost all computer algebra
systems in place of MAPLE). More advanced scripts for data exchange are
given in Greuel and Pfister (2002), Appendix B.

Example 3.54 (SINGULAR Support for a MAPLE Session). Given polynomials in
a MAPLE session, we use SINGULAR to compute a lexicographic Gröbner basis
for the ideal generated by the polynomials and read the result into the MAPLE

session. To begin with, we make MAPLE write the polynomials to a file, say
SINGULAR in, using a format which SINGULAR can understand. Here is the
corresponding MAPLE code:

> f1 := x^7+y^7:

> f2 := y^7+z^7:

> f3 := x^7+z^7+2:

> f4 := x^6*y+y^6*z+z^6+x:

> interface(prettyprint=0);

> interface(echo=0);

> writeto(SINGULAR_in);

lprint(‘ideal I = ‘);

f1, f2, f3, f4;

lprint(‘;‘);

writeto(terminal);

>
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The resulting file looks as follows:

ideal I =

x^7+y^7, y^7+z^7, x^7+z^7+2, x^6*y+y^6*z+z^6+x

;

Now, we run a SINGULAR session:

> ring R = 0, (x,y,z), lp;

> option(redSB);

> <"SINGULAR_in";

> short = 0; // enforce long format for the output

> ideal J = groebner(I);

> write(":w MAPLE_in","SingResult:=[");

> write(":a MAPLE_in",J);

> write(":a MAPLE_in","];");

The last three lines make SINGULAR write the Gröbner basis J to a file named
MAPLE in, using a format which MAPLE can understand. This file looks as
follows:

SingResult:=[

z^7+1,y*z^6-y*z^5+y*z^4-y*z^3+y*z^2-y*z+y-z^6+z^5-z^4+z^3-z^2+z-1,y^2

-y*z^2-y+z^2,x+y*z^5-y*z^4+y*z^3-y*z^2+y*z-y+z^6-z^5+z^4-z^3+z^2-z+1

];

The file MAPLE in can be read into the MAPLE session by typing

> read(MAPLE_in):

> SingResult;

[z^7+1, y*z^6-y*z^5+y*z^4-y*z^3+y*z^2-y*z+y-z^6+z^5-z^4+z^3-z^2+z-1,

y^2-y*z^2-y+z^2, x+y*z^5-y*z^4+y*z^3-y*z^2+y*z-y+z^6-z^5+z^4-z^3+z^2

-z+1] ��

3.10 Visualization: Plotting Curves and Surfaces

If the software SURF is correctly installed on your computer, you may call it
from inside a SINGULAR session to plot a picture of a plane curve, respectively
of a surface in 3-space:

> LIB "surf.lib";

> ring r = 0, (x,y), dp;

> poly f = x2*(1-x2)-y2;

> plot(f,"scale_x=0.11; scale_y=0.11;");
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> ring R = 0, (x,y,z), dp;

> plot(x4+y4+z4-15*xyz);

Remark 3.55 (Further Reading). For more information on SINGULAR and
for proofs of the results presented in Section 3.6, see Greuel and Pfister (2002),
Chapters 1, 2, and Appendix B. For more details on noncommutative Gröbner
bases, we refer to Mora (1986), Apel (1988), Mora (1994), and Li (2002).
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Exercise 1.1. Start a SINGULAR session.

(a) Define a ring by typing ring R;. Then type R; or basering; to ob-
tain information on the ring R. Observe that R is the polynomial ring
F32003[x, y, z] equipped with the degree reverse lexicographic order dp.
Define the polynomial f = x4 + x3z + x2y2 + yz4 + z5. Print f by typing
f;. How are the monomials of f ordered?

(b) Use the ring command to define a new ring S which differs from R only
by the choice of the monomial order: choose the lexicographic order lp.
Use the command fetch to map f from R to S (call the “new” polynomial
g). Print g. How are the monomials ordered now?

Exercise 1.2. Generate 10 homogeneous random polynomials in 5 variables
of degree 5 over a finite (!) field (of your choice).

(a) Compute a lexicographic Gröbner basis for the ideal generated by the 10
polynomials (use timer to check the computing time).

(b) How many Gröbner basis elements do you get? Print all elements.
(c) Print the degree of the first and the last element, respectively.
(d) Write the computed Gröbner basis to a file named lexGB.out (use the

write command).
(e) Repeat (a) – (c), replacing the lexicographic order lp by the degree reverse

lexicographic order dp. Write the computed Gröbner basis to a file named
dpGB.out.

Exercise 1.3. Define the matrix

M =

(
x0 x1 x2 x3

x1 x2 x3 x4

)
and the ideal I ⊂ Q[x0, . . . , x4] generated by its 2× 2 minors.

(a) Compute the minimal free resolution of I and print the corresponding
Betti diagram.

(b) Print the syzygy matrices. What is their data type ?
(c) Compute the Hilbert series of Q[x0, . . . , x4]/I.
(d) Check that V(I) ⊂ P4(C) is smooth.
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Exercise 1.4. This exercise is concerned with SINGULAR procedures. Check
the SINGULAR on-line help system for proc.

(a) Write a SINGULAR procedure which takes as input an ideal I, given by
generators f1, . . . , fr, and which returns the maximum degree of the fi.

(b) Apply the procedure to the Gröbner bases computed in Exercise 1.2 (read
the data from the files lexGB.out, respectively dpGB.out).

Exercise 1.5. Let VP5 denote the Veronese surface in P5, namely P2 em-
bedded by the map

P2 → P5 , (u : v : w) 
→ (u2 : v2 : w2 : uv : uw : vw) ,

where Pn = Pn(C).

(a) Compute an ideal of Q[x0, . . . , x5] defining VP5. How many generators of
which degree do you get? Check that VP5 is smooth.

(b) Check that the point p = (0 : 0 : 0 : 1 : 1 : 1) does not lie on VP5.
The Veronese surface VP4 in P4 is obtained by projecting VP5 from
p. Compute an ideal of Q[x0, . . . , x4] defining VP4 (you should get seven
cubic generators). Check that VP4 is smooth.

(c) Randomly choose two cubics in the ideal defining VP4. Let CI1 be the
complete intersection defined by these two cubics. Then CI1 is the union
of VP4 and some other surface, say QES (we say that QES is linked to VP4

by CI1). Compute an ideal defining QES and its minimal free resolution.
Print the Betti numbers. Check that QES is smooth.

(d) Check that the point q = (1 : 1 : 1 : 1 : 1 : 1) lies on VP5. Compute an ideal
defining the surface CS in P4 obtained by projecting VP5 from q. Check that
CS is smooth. Randomly choose two cubics in the ideal defining CS. Let CI2
be the complete intersection defined by these two cubics. Compute an ideal
defining the surface B which is linked to CS by CI2. How many generators
of which degree do you get? Compute the minimal free resolution of the
ideal defining B and print the Betti numbers. Check that B is smooth.

(e) Check that the line L = V(x0 +x1 +x2, x3, x4, x5) does not meet VP5.
Compute a defining equation for the surface SRS obtained by project-
ing VP5 from L to P3. You should get the homogenized equation of the
Steiner Roman surface (see Example 2.33).

Remark . The constructions of the surfaces in this exercise depend on the choice
of some parameters. For instance, instead of u2, v2, w2, uv, uw, vw, we could
take any other K-basis for the quadrics in u, v, w. Thus, we obtain a whole
family of Veronese surfaces in P5, and, similarly, families of Veronese surfaces
in P4 and families of surfaces of type QES, CS, and B. The latter surfaces are
usually referred to as quintic elliptic scrolls, cubic scrolls, and Bordiga
surfaces.
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Exercise 2.1. (a) Compute the algebra relations on the polynomials

f1 = x2 + y2, f2 = x2y2, f3 = x3y − xy3 ∈ Q[x, y].

(b) Consider the polynomials

g = x4 + y4, g1 = x + y, g2 = xy ∈ Q[x, y].

Use SINGULAR to verify that g is contained in the subalgebra Q[g1, g2] of
Q[x, y] and express g as a polynomial in g1, g2.

(c) Consider the endomorphism Q[x1, x2, x3]
φ−→ Q[x1, x2, x3] defined by

x1 
−→ x2x3 , x2 
−→ x1x3 , x3 
−→ x1x2 .

Use SINGULAR to verify that φ induces an automorphism of

Q[x1, x2, x3]/〈x1x2x3 − 1〉.

Exercise 2.2. (a) The affine twisted cubic curve in C ⊂ A2(C) is defined
by the ideal

I = 〈f1, f2〉 ⊂ Q[x, y, z], where f1 = y − x2, f2 = z − x3

(note that C is the image of the parametrization t 
→
(
t, t2, t3

)
). Compute

the homogenization Ihom of I with respect to a further variable w, and
compare the result with the ideal defining the projective twisted cubic
curve in Example 1.18 of Lecture 1.

(b) Consider the ideal J ⊂ Q[w, x, y, z] generated by the homogenized polyno-
mials fhom

1 , fhom
2 . By construction, J is contained in Ihom, so V(Ihom) ⊂

V(J) ⊂ P3(C). Verify this with SINGULAR. Further, verify that the inclu-
sion of ideals is strict. In fact, V(J) has an “extra component at infinity”.

Check this by computing V(J) \V(Ihom) ⊂ P3(C).

Exercise 2.3. A cubic curve in the projective plane P2 = P2(C) is defined by
a nonzero polynomial of type

Fa = a1x
3 + a2x

2y + a3xy2 + a4y
3 + a5x

2z + a6xyz + a7y
2z + a8xz2

+a9yz2 + a10z
3 ,
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where a = (a1, . . . , a10) ∈ C10. In the affine chart Uz = {z �= 0} ∼= A2 = A2(C)
of P2, it is defined by the dehomogenization fa of Fa obtained from Fa by
substituting 1 for z. Use elimination to compute defining equations for the
Zariski closure of the locus of points a ∈ C10 for which V(fa) has a singular
point p in the sense that fa and all its first partial derivatives vanish at p.
How many equations do you get ? Are the equations homogeneous ? What is
their degree and how many terms do they have ?

Exercise 2.4. Write SINGULAR procedures for computing

(a) ideal intersections,
(b) ideal quotients, and
(c) the saturation of an ideal.

Rely on syzygy computations as explained in Lecture 2 (see Page 52). Check
all procedures by computing examples.



Lecture 4

Constructive Module Theory and Homological
Algebra I

Homological algebra deals with constructions involving modules and com-
plexes of modules. If R is a ring, a complex of R-modules is a sequence of
R-modules and homomorphisms of R-modules

M : · · · Mi−1 Mi
di

Mi+1
di+1 · · ·

such that di ◦ di+1 = 0 for all i. The homology of M at M i is defined to
be ker di/ imdi+1. The sequence is exact at M i if the homology at Mi is
zero, and exact if it is exact at each Mi. Particular examples of complexes
are free resolutions of modules as introduced in Lecture 1: if M is a (finitely
generated) R-module, the “free part”

F0 F1
ϕ1 . . . Fi−1 Fi

ϕi
Fi+1

ϕi+1 . . .

of a free resolution of M is exact at Fi for i ≥ 1, and its homology at F0 is
M . Hilbert’s proof of the polynomial nature of the Hilbert function via the
syzygy theorem is an early application of homological algebra.

In this lecture, we discuss some of the basic constructions of homological
algebra from a computational point of view.

4.1 Lifting Homomorphisms

Let R = K[x1, . . . , xn]. We explain a construction which is central to many
other constructions involving homomorphisms of R-modules.

Problem 4.1 (Lifting Homomorphisms). Given free R-modules F, G, H
with fixed bases, and given homomorphisms ϕ : H → F and ψ : G → F such
that

im ψ ⊂ im ϕ,

construct a “lift” ψ̃ : G→ H such that ϕ ◦ ψ̃ = ψ. That is, the diagram
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G

ψ
eψ

F Hϕ

is commutative.

Solution. A lift ψ̃ as desired exists iff im ψ ⊂ im ϕ. To explicitly construct
it in this case, let h1, . . . , hr be the images of the basis vectors of H under
ϕ, and let g1, . . . , gs be the images of the basis vectors of G under ψ. Since
im ψ ⊂ im ϕ, and since the hi generate im ϕ, each gj may be written as an
R-linear combination gj =

∑r
i=1 aijhi (follow the recipe given in the solution

to the Submodule Membership Problem 2.16). The matrix (aij) gives ψ̃. ��
In SINGULAR, the command lift takes care of lifting homomorphisms. We
refer to Section 4.2.4 for examples.

4.2 Constructive Module Theory

Let R = K[x1, . . . , xn]. We say that we have constructed a finitely generated
R-module M if we can give finitely many generators and relations for it, that
is, if we can describe M explicitly by means of an exact sequence

0 M F0 F1 ,
ϕ

with free R-modules F0, F1. Recall from Lecture 1 that we refer to such a
sequence as a free presentation of M . Since we can compute syzygies, ev-
ery submodule of a free R-module which is explicitly given by finitely many
generators may be regarded as having been constructed.

If M is given by means of a free presentation as above, and if N is another
finitely generated R-module given by means of a free presentation, say

0 N G0 G1 ,
ψ

then every homomorphism α : M → N lifts to a homomorphism of pre-
sentations. That is, there is a commutative diagram

0 M

α

F0

α0

F1
ϕ

α1

0 N G0 G1 .
ψ

Conversely, every pair α0 : F0 → G0, α1 : F1 → G1 of homomorphisms satis-
fying α0 ◦ ϕ = ψ ◦ α1 gives rise to a homomorphism α : M → N . If just a
homomorphism α0 : F0 → G0 is given, then α0 descents to a homomorphism
α : M → N only if it can be lifted to a homomorphism α1 : F1 → G1. That
is, we need that α0 takes the image of ϕ to the image of ψ.
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4.2.1 Cokernels and Mapping Cones

If a homomorphism α between two finitely generated R-modules M and N
as above is given, we have a commutative diagram with exact rows and col-
umn(s):

0 M

α

F0

α0

F1
ϕ

α1

0 N G0 G1
ψ

cokerα

0

Chasing this diagram, we see that the induced sequence

0 cokerα G0 F0 ⊕G1

(α0,ψ)

is exact. It is, thus, a free presentation of cokerα. So if α0 and ψ are explic-
itly given as matrices, constructing cokerα just means to concatenate these
matrices (in SINGULAR, use concat from matrix.lib).

If a homomorphism of free resolutions is given, that is, if we have a
commutative diagram

0 M

α

F0

α0

F1
ϕ1

α1

F2
ϕ2

α2

. . .ϕ3

0 N G0 G1
ψ1

G2
ψ2 . . . ,ψ3

we get a free resolution of cokerα by taking a mapping cone:

G0 F0 ⊕G1

(α0,ψ1)
F1 ⊕G2

“
−ϕ1 0
α1 ψ2

”
F2 ⊕G3

“
−ϕ2 0
α2 ψ3

”
. . .

4.2.2 Modulo

Many problems in constructive module theory can be reduced to solving sys-
tems of equations over R and, thus, to syzygy computations over R. As an
example, we explain a construction which is central to many other construc-
tions in homological algebra. The SINGULAR command for this construction is
modulo.

Problem 4.2 (Modulo). Given free R-modules F, G, H with fixed bases,
and given homomorphisms
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G

ψ

F H ,
ϕ

construct the R-module

(im ϕ + imψ)/ im ψ.

Solution. Let h1, . . . , hr be the images of the basis vectors of H under ϕ, and
let g1, . . . , gs be the images of the basis vectors of G under ψ. Computing the
syzygies on h1, . . . , hr, g1, . . . , gs, we get a free presentation of im ϕ + im ψ,
say

0 im ϕ + imψ H ⊕G
(ϕ,ψ)

H ′.

(
α
β

)
The induced sequence

0 (im ϕ + imψ)/ im ψ H
ϕ

H ′α

is a free presentation of (im ϕ + im ψ)/ im ψ. Indeed, to see exactness, chase
the following commutative diagram with exact rows and columns:

0 0

0 im ψ G
ψ

0 im ϕ + im ψ H ⊕G
(ϕ,ψ)

H ′

(
α
β

)

0 (im ϕ + imψ)/ im ψ H
ϕ

H ′α

0 0
��

4.2.3 Kernel, Hom, Ext, Tor, and more

We use modulo to give solutions to several problems asking for constructions
which are fundamental to homological algebra. In formulating the problems
and solutions, we suppose that M, N and L are finitely generated R-modules
given by means of free presentations

0 M F0 F1 , 0
ϕ

N G0 G1 ,
ψ

0 L E0 E1 .
η
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Problem 4.3 (Image and Kernel). Given a homomorphism α : M → N
by means of a homomorphism α0 : F0 → G0 taking the image of ϕ to the
image of ψ, construct imα and kerα.

Solution. To obtain im α, we just need a single modulo computation. An addi-
tional modulo computation yields kerα. We illustrate these constructions by
two commutative diagrams with exact rows and columns:

G1

ψ

H0

β0

G1

ψ

F1

ϕ

H1

κ

G0 F0
α0

α0

G0 F0
α0

H0
β0

β0

N A 0 N M
α

B 0

0 0 0 0 0

In the first diagram, A = (imα0 + im ψ)/ im ψ, and the second column is ob-
tained via modulo. It is clear from the construction in Problem 4.2 that α0

descends to a monomorphism which embeds A as im α into N .
In the second diagram, B = (imβ0 + im ϕ)/ im ϕ, the third column is ob-

tained via modulo, and β0 descends to a monomorphism which embeds B as
kerα into M . ��

Problem 4.4 (Homology). Construct the homology at M of the complex

N M
α

L ,
α′

supposing that α and α′ are given by means of homomorphisms α0 : F0 → G0

and α′
0 : E0 → F0 taking the image of ϕ to the image of ψ, respectively the

image of η to the image of ϕ, and satisfying im(α0 ◦ α′
0) ⊂ im ψ.

Solution. Having computed β0 as in the construction of imα described above,
computing the homology at M requires only one further modulo computation:

kerα/ im α′ = (im β0 + im α′
0 + im ϕ)/(im α′

0 + im ϕ) . ��

Problem 4.5 (Hom). Construct HomR(M, N).

Solution. Since HomR(M, N) is the kernel of the map

HomR(F1, N) HomR(F0, N) ,
HomR(ϕ,N)

it can be computed from the free presentations

0 HomR(Fi, N) HomR(Fi, G0) HomR(Fi, G1)

which are induced by the given free presentation of N , i = 0, 1. ��
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Next, we consider the Ext functors which measure the extent to which the
functors Hom(M,−) and Hom(−, N) fail to be exact: if

0 C B A 0

is a short exact sequence of R-modules, there are long exact sequences of
Ext,

HomR(M, C) HomR(M, B) HomR(M, A) 0

. . . Ext1R(M, C) Ext1R(M, B) Ext1R(M, A)

and

HomR(A, N) HomR(B, N) HomR(C, N) 0

. . . Ext1R(A, N) Ext1R(B, N) Ext1R(C, N)

Problem 4.6 (Ext). Construct the modules Exti
R(M, N).

Solution. From the given free presentation of M , compute a free resolution of
M :

0 M F0 F1 F2
. . .

Then Exti
R(M, N) is the homology of the induced complex

. . . HomR(F2, N) HomR(F1, N) HomR(F0, N) 0

at HomR(Fi, N). ��

We turn from Hom to ⊗. A free presentation of M ⊗R N is induced by the
given free presentations of M and N :

0 M ⊗R N F0 ⊗R G0 (F0 ⊗R G1)⊕ (F1 ⊗R G0).

The Tor functors measure the extent to which M ⊗R − fails to be exact: if
0 ← C ← B ← A ← 0 is a short exact sequence of R-modules, there is a long
exact sequence of Tor,

TorR
1 (M, C) TorR

1 (M, B) TorR
1 (M, A) . . .

0 M ⊗R C M ⊗R B M ⊗R A

There is also a long exact sequence of Tor for −⊗R N . Indeed, the commu-
tativity of the tensor product, M ⊗R N ∼= N ⊗R M , induces natural isomor-
phisms TorR

i (M, N) ∼= TorR
i (N, M), i ≥ 0.
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Problem 4.7 (Tor). Construct the modules TorR
i (M, N).

Solution. From the given free presentation of N , compute a free resolution of
N :

0 N G0 G1 G2 . . .

Then TorR
i (M, N) is the homology of the induced complex

0 M ⊗R G0 M ⊗R G1 M ⊗R G2
. . .

at M ⊗R Gi. ��

We refer to Eisenbud (1995) and Hilton and Stammbach (1971) for a detailed
discussion of Ext and Tor.

Remark 4.8 (Graded Structures). Let M and N be finitely generated
graded R-modules. If α : M → N is a graded homomorphism of degree 0,
then the kernel, the image, and the cokernel of α inherit a grading, too. The
same is true for M ⊗R N and, thus, for the modules TorR

i (M, N), i ≥ 0.
With respect to Hom, let HomR(M, N)d be the K-vector space consisting

of all elements of HomR(M, N) which are graded of degree d (that is,
which send homogeneous elements of degree e to homogeneous elements of
degree e + d). Then

⊕
d HomR(M, N)d is a submodule of HomR(M, N). In

our case, the two modules coincide due to the assumption that M is finitely
generated. Thus, HomR(M, N) is graded, and the same holds for the modules
Exti

R(M, N), i ≥ 0. For instance, the dual module R(d)∨ := HomR

(
R(d), R

)
is equal to R(−d). ��

The SINGULAR commands for the constructions in this section are kernel,
homology, Hom, Ext R, Ext, tensorMod, and Tor. The use of these and the
other commands discussed in this lecture is not restricted to the polynomial
ring R (see Remark 3.36 for free resolutions over other rings). For instance,
the commands make sense and work over any quotient ring Q = R/I. Note,
however, that modules over a quotient ring need not have a free resolution
of finite length. Thus, the modules Exti

Q(M, N) and TorQ
i (M, N) may be

nonzero for arbitrary large integers i.

Example 4.9. Let Q = K[w, x, y, z]/I be the homogenous coordinate ring of
the twisted cubic curve in P3(K), and let 〈w, x, y, z〉 be the homogeneous max-
imal ideal of Q which is generated by the (residue classes of the) coordinates.
Then

K = Q/〈w, x, y, z〉
is a graded Q-module consisting of just one graded piece sitting in degree 0.
We use SINGULAR to compute a part of its minimal free resolution. Note that
for each i, the graded Betti number βii(K) is the dimension of Exti

Q(K, K)
as a K-vector space. All other graded Betti numbers are zero.
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> ring R = 0, (w,x,y,z), dp;

> matrix m[2][3] = w,x,y,x,y,z;

> ideal I = minor(m,2);

> I;

I[1]=-y2+xz

I[2]=-xy+wz

I[3]=x2-wy

> qring Q = groebner(I);

> resolution F=mres(maxideal(1),0);

// ** full resolution in a qring may be infinite,

setting max length to 6

> print(betti(F),"betti");

0 1 2 3 4 5 6

------------------------------------------------

0: 1 4 9 18 36 72 144

------------------------------------------------

total: 1 4 9 18 36 72 144

To obtain, say, 7 terms of the resolution, enter instead:

> resolution F = mres(maxideal(1),7);

> print(betti(F),"betti");

0 1 2 3 4 5 6 7

------------------------------------------------------

0: 1 4 9 18 36 72 144 288

------------------------------------------------------

total: 1 4 9 18 36 72 144 288

> print(F[1],"");

z,y,x,w

> print(F[2]);

y, 0, 0, x, 0, 0, w, 0, 0,

-z,y, 0, 0, x, 0, 0, w, 0,

0, -z,y, -z,0, x, 0, 0, w,

0, 0, -z,0, -z,-y,-z,-y,-x

Of course, the K-dimension of, say, Ext7Q(K, K) can also be computed via the
Ext command:

> LIB "homolog.lib";

> module M = Ext(7,F[1],F[1]);

// dimension of Ext^7: 0

// vdim of Ext^7: 288 ��

We refer to Avramov and Grayson (2002) for a method which, for finitely gen-
erated graded modules M, N over a graded complete intersection Q = K[x]/I,
computes all modules Exti

Q(M, N), i ≥ 0, simultaneously. Here, we say that a
quotient ring K[x]/I is a (graded) complete intersection if I is generated
by a (homogeneous) regular sequence on K[x] (see Definition 5.24 for regular
sequences).
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4.2.4 Some Explicit Constructions

In this section, we explain how to construct graded homomorphisms between
suitably twisted syzygy modules of the coefficient field K over the graded
polynomial ring K[x0, . . . , xn]. The significance of these modules and of the
graded homomorphisms between them comes from a theorem of Beilinson
which has important applications in projective algebraic geometry. We will
discuss the theorem of Beilinson in Appendix A.

We consider
K = K[x0, . . . , xn]/〈x0, . . . , xn〉

as a graded K[x0, . . . , xn]-module consisting of one graded piece sitting in
degree 0. In contrast to Example 4.9, the minimal free resolution of K over
S = K[x0, . . . , xn] must be finite due to Hilbert’s syzygy theorem. In fact, its
shape is as follows:

S ←− S(−1)(
n+1

1 ) ←− . . .←− S(−n)(
n+1

n ) ←− S(−n−1)←− 0 .

We will formally introduce this sequence in Lecture 5, referring to it as the
Koszul complex defined by x0, . . . , xn (recall that the minimal free reso-
lution is determined up to an isomorphism of free resolutions). Twisting all
modules of the Koszul complex by d, we get the minimal free resolution of
K(d), that is, of K, considered as a graded S-module sitting in degree −d.

Example 4.10. If n = 2, the Koszul complex reads

S S(−1)3
(x0,x1,x2)

S(−2)3

x1 x2 0
−x0 0 x2

0 −x0 −x1

!
S(−3)

„ x2

−x1
x0

«
0 .

Dualizing it, we get the minimal free resolution of K(3) (for arbitrary n, the
twist is n + 1). ��

Example 4.11. We compute the Koszul complex in case n = 3:

> ring S = 0, x(0..3), dp;

> resolution kos = mres(maxideal(1),0);

> print(betti(kos),"betti");

0 1 2 3 4

------------------------------------

0: 1 4 6 4 1

------------------------------------

total: 1 4 6 4 1

Consider the graded syzygy modules M = Syz3(K(2)) and N = Syz2(K(1)).
Our goal is to construct a nontrivial graded homomorphism M → N of degree
zero.
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To fix our ideas on how to proceed, we suppose for the moment that
such a homomorphism α is given. Then α lifts to a homomorphism of free
presentations

0 M

α

S(−1)4

α0

S(−2)
ϕ

α1

0 N S(−1)6 S(−2)4
ψ

such that the αi are graded of degree 0. That is, the homomorphisms
αi are represented by matrices with constant entries. The composite map
α̃1 := ψ ◦ α1 is represented by a matrix with linear entries.

Since ψ ◦ α1 = α0 ◦ ϕ, we have a commutative diagram of dual maps which
is reminiscent of the Lifting Problem 4.1:

S(1)6

eα∨

1

α∨

0

S(2) S(1)4.
ϕ∨

Reversing what we just did, we get a recipe for constructing the desired ho-
momorphism. The crucial fact in the construction is that im ϕ∨ is generated
by x0, . . . , x3. This implies that if α1 is an arbitrarily chosen 4 × 1 matrix
with constant entries, and if α̃1 := ψ ◦ α1, then im α̃∨

1 ⊂ im ϕ∨. Hence, α̃∨
1

can be lifted to a homomorphism α∨
0 which is represented by a 4× 6 matrix

with constant entries. The dual map α0 descents to a graded homomorphism
α : M → N of degree 0. In our SINGULAR session, we choose α1 at random,
aiming at a “generic” α :

> matrix alpha1 = random(1000,4,1); // randomly created intmat

> matrix tphi = transpose(kos[4]);

> matrix psi = kos[3];

> matrix talpha1tilde = transpose(psi*alpha1);

> matrix talpha0 = lift(tphi,talpha1tilde);

> print(talpha0);

35,834,102,0, 0, 0,

65,0, 0, 834,102,0,

0, 65, 0, -35,0, 102,

0, 0, 65, 0, -35,-834 ��

In the next two examples, we construct homomorphisms whose cokernel is
the ideal of a smooth surface in P4 = P4(C). It is crucial to choose “generic”
homomorphisms since otherwise the cokernel might be an ideal defining a
singular surface. Even worse, it might not even be an ideal at all. The theory
behind the constructions is best understood in the language of vector bundles
and sheaves. We refer to Example A.9 in Appendix A for some explanations.
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In fact, each homomorphism M → N to be constructed can be thought of
as a homomorphism F → G of vector bundles on P4 (obtained by sheafifying
M → N). The ideal we are aiming at defines the degeneracy locus of this ho-
momorphism. A variant of the Unmixedness Theorem 2.26 in Lecture 2, which
applies to such a locus if the locus has the expected codimension, allows us to
check smoothness using the Jacobian Criterion 2.23 (see Arbarello et al (1985),
Chapter II for details). In the two examples below, rankG = rankF + 1. This
means that the expected codimension is 2.

Especially in the second example, the computations based on the Jacobian
criterion are expensive if performed over the integers (rationals).

Remark 4.12. As illustrated by Example 3.21 in Lecture 3, Gröbner basis
computations in characteristic zero are quite involved due to the explosion of
coefficients coming with Buchberger’s algorithm. For experiments in algebraic
geometry, it is therefore often advisable to perform the computations over a
sufficiently large finite field, say over K = F32003. As experience shows, the
geometric evidence resulting from such computations is usually identical to
what we would get in characteristic zero. ��
To ease the smoothness check in the following examples, we choose K = F32003

as our coefficient field.

Example 4.13. Let n = 4. We compute the cokernel of a “generic” graded
homomorphism α : M = S(−1)3→ N = Syz2(K(1)) of degree 0 :

0 S(−1)3

α

S(−1)3
id

α0 ⊕

0

0 Syz2(K(1)) S(−1)10 S(−2)10 S(−3)5 S(−4) 0

On our way, we adjust the degrees using the attrib command such that the
correct Betti numbers are displayed (see Lecture 3, Section 3.4 for the attrib
command).

> ring S = 32003, x(0..4), dp;

> module MI=maxideal(1);

> attrib(MI,"isHomog",intvec(-1));

> resolution kos = nres(MI,0);

> print(betti(kos),"betti");

0 1 2 3 4 5

------------------------------------------

-1: 1 5 10 10 5 1

------------------------------------------

total: 1 5 10 10 5 1

> matrix alpha0 = random(32002,10,3);

> module pres = module(alpha0)+kos[3];

The 10×13 matrix pres is a presentation matrix for cokerα. Resolving it, we
get a free resolution and, thus, the graded Betti numbers of cokerα:
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> attrib(pres,"isHomog",intvec(1,1,1,1,1,1,1,1,1,1));

> resolution fcokernel = mres(pres,0);

> print(betti(fcokernel),"betti");

0 1 2 3

------------------------------

1: 7 10 5 1

------------------------------

total: 7 10 5 1

We see that, up to twist, the graded Betti numbers are equal to those of
the ideal of a Veronese surface in P4 (which is minimally generated by seven
cubics, see Exercise 1.5). Resolving “in the other direction”, that is, resolving
the transposed of pres, we indeed get a 7× 1 matrix with cubic entries.

> module dir = transpose(pres);

> intvec w = -1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2;

> attrib(dir,"isHomog",w);

> resolution fdir = mres(dir,2);

> print(betti(fdir),"betti");

0 1 2

------------------------

-2: 10 7 -

-1: - - -

0: - - 1

------------------------

total: 10 7 1

We use the SINGULAR command flatten from matrix.lib which turns a
matrix into the ideal generated by its entries.

> LIB "matrix.lib";

> ideal I = groebner(flatten(fdir[2]));

> resolution FI = mres(I,0);

> print(betti(FI),"betti");

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - - - - -

2: - 7 10 5 1

------------------------------------

total: 1 7 10 5 1

Finally, we check that the ideal I generated by the seven cubics defines a
smooth surface of degree 4 in P4. By classification results, this surface must
be a Veronese surface (see, for instance, Okonek (1983)).

> int codimI = nvars(S)-dim(I);

> codimI;

2
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> degree(I);

// dimension (proj.) = 2

// degree (proj.) = 4

> nvars(S)-dim(groebner(minor(jacob(I),codimI) + I));

5 ��

Example 4.14. As in the preceeding example, let n = 4. Now, we compute the
cokernel of a “generic” graded homomorphism

α = (β, γ) : M = Syz4(K(3))2 −→ N ⊕ S = Syz2(K(1))2 ⊕ S

of degree 0. We begin by constructing β : M → N (following the recipe given
in Example 4.11):

0 M

β

S(−1)10

β0

S(−2)2
ϕ

β1

0 N S(−1)20 S(−2)20
ψ

> LIB "matrix.lib";

> ring S = 32003, x(0..4), dp;

> resolution kos = nres(maxideal(1),0);

> betti(kos);

1,5,10,10,5,1

> matrix kos5 = kos[5];

> matrix tphi = transpose(dsum(kos5,kos5));

> matrix kos3 = kos[3];

> matrix psi = dsum(kos3,kos3);

> matrix beta1 = random(32002,20,2);

> matrix tbeta1tilde = transpose(psi*beta1);

> matrix tbeta0 = lift(tphi,tbeta1tilde);

Now, we turn to the construction of γ : M → S. According to its definition,
M fits as kernel into an exact sequence

0 Syz3(K(3))2 S20 M 0.

Splitting the Koszul complex into short exact sequences and using the long
exact sequence of Ext, we find that Ext1S

(
Syz3(K(3))2, S

)
vanishes. This can

also be seen using SINGULAR:

> LIB "homolog.lib";

> def E = Ext_R(1,kos[4]);

// dimension of Ext^1: -1

Thus, it follows from the long exact sequence of Ext that every homomor-
phism γ : M → S lifts to a homomorphism γ−1 : S20 → S which fits into a
commutative diagram
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. . . S20

γ−1

S(−1)10

γ0

. . .

0 S S 0 ,

where the top row is the direct sum of two copies of the Koszul complex
resolving K(3). Conversely, every homomorphism γ−1 : S20→ S gives rise
to a homomorphism γ0 : S(−1)10→ S which descends to a homomorphism
γ : M → S. If γ−1 is graded of degree zero, then so are γ0 and γ. In SINGU-

LAR, we construct such homomorphisms as follows:

> matrix kos4 = kos[4];

> matrix tkos4pluskos4 = transpose(dsum(kos4,kos4));

> matrix tgammamin1 = random(32002,20,1);

> matrix tgamma0 = tkos4pluskos4*tgammamin1;

Putting things together, we obtain the desired homomorphism α. It is induced
by a homomorphism α0 : S(−1)10 → S(−1)20 ⊕ S dual to the map given by
the following matrix:

> matrix talpha0 = concat(tbeta0,tgamma0);

We construct the cokernel of α via a mapping cone:

M

α

S(−1)10

⊕α0

S(−2)2
ϕ

α1 ⊕

0

N ⊕ S S(−1)20 ⊕ S S(−2)20
(ψ
0)

S(−3)10 . . .

> matrix zero[20][1];

> matrix tpsi = transpose(psi);

> matrix tpresg = concat(tpsi,zero);

> matrix pres = module(transpose(talpha0))

. + module(transpose(tpresg));

The matrix pres is a presentation matrix for cokerα, as desired. Minimally
resolving its transposed, we get an 11× 1 matrix with 1 quartic and 10 quintic
entries which define an ideal I in S:

> module dir = transpose(pres);

> dir = prune(dir);

> homog(dir);

1

> intvec deg_dir = attrib(dir,"isHomog");

> attrib(dir,"isHomog",deg_dir-2); // set degrees

> resolution fdir = mres(prune(dir),2);
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> print(betti(fdir),"betti");

0 1 2

------------------------

-2: 20 10 -

-1: - 1 -

0: - - -

1: - - -

2: - - 1

------------------------

total: 20 11 1

> ideal I = groebner(flatten(fdir[2]));

> resolution FI = mres(I,0);

> print(betti(FI),"betti");

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - - - - -

2: - - - - -

3: - 1 - - -

4: - 10 18 10 2

------------------------------------

total: 1 11 18 10 2

As in Example 4.13, one can check that I defines a smooth surface. ��

Remark 4.15 (Further Reading). For some of the basics of homological
algebra, see Hilton and Stammbach (1971) and Eisenbud (1995). For more on
smooth surfaces in P4 and their construction, we refer to Decker, Ein, and
Schreyer (1993) and Decker and Schreyer (2000).



Lecture 5

Homological Algebra II

In this lecture, we study homological methods in conjunction with several
concepts from commutative algebra which are central to algebraic geometry.
We begin by introducing flatness and by showing how do check flatness in
SINGULAR. Then we discuss the relation between depth and codimension and
explain how to compute depth via Ext, respectively via the Koszul complex.
Finally, we treat Cohen-Macaulay rings from a computational point of view.

5.1 Flatness

The concept of flatness is a riddle that comes out of algebra,
but which is technically the answer to many prayers.

Mumford (1999), Chapter 3, Section 10.

Geometrically, flatness comes into play when studying families of algebraic
sets. Naively, we think of such a family as a collection of objects depending
on some parameters. The parameters typically vary in an algebraic set, and it
is natural to ask that the objects depending on the parameters “vary contin-
uously with the parameters”. One attempt of making this precise is to define
a family of, say, affine algebraic sets with base T to be an algebraic subset
X ⊂ T × An. Here, the base T is supposed to be an algebraic set, and we
think of the fibers of the projection X → T as the members of the family.
A simple example shows that even if we are primarily interested in algebraic
sets, schemes occur naturally in this context.

Example 5.1. Consider the family

V(x2− yt) ⊂ A3 = A1
t × A2

xy
pr−→ A1

t .

For t �= 0, the fiber over t is a parabola. Over t = 0, however, we get the
double line V(x2). There is nothing wrong with that: as long as we consider
the fiber over 0 with its double structure, we may think of it as a conic which
is the limit of its neighboring fibers. ��
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The example suggests that when viewing a morphism of algebraic sets as a
family, its members should be the scheme-theoretic fibers rather than the set-
theoretic fibers. Without putting further conditions on the morphism, how-
ever, the fibers may have little to do with one another. In fact, it may happen
that a particular fiber is larger than its neighboring fibers:

Example 5.2. For the first two families below, the dimension of the fiber over 0
exceeds the dimension of its neighboring fibers. For the third one, all fibers are
finite, but the fibers over 0,±1 consist of more points than their neighboring
fibers:

(1)

V(tx) ⊂ A1
t × A1

x

�

0

�

pr

A1
t

(2) V
(
x2− t27yz, xz− t13y, x− t14z2

)
⊂ A1

t × A3
xyz

pr−→ A1
t .

(3)

V(x2− x, x(t3− t)) ⊂ A1
t × A1

x

�

0−1 1

�

pr

A1
t

Note that for the second family, the fiber over a point t �= 0 is the affine part
of a twisted cubic curve, while the fiber over t = 0 is a multiple structure on
the plane A2 = V(x) ⊂ A3. ��

In what follows, we will see that the condition of flatness prevents the patho-
logical behavior of the fibers shown in the example above. To begin with, we
recall the purely algebraic definition of flatness:

Definition 5.3. A module M over a ring R is called flat if for each monomor-

phism ι : N → L of R-modules, the induced map N ⊗R M
ι⊗idM−−−−→ L⊗R M is

a monomorphism, too. ��
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Since tensorizing with a module always preserves right-exact sequences, we
may as well say that M is flat over R iff tensorizing with M preserves exact
sequences of R-modules. Taking into account that localization preserves ex-
actness and that being injective is a local property of module homomorphisms,
we get the following result:

Proposition 5.4 (Flatness is a Local Property). Let R be a ring, and
let M be an R-module. The following are equivalent:

(1) M is flat over R.
(2) For all prime ideals P of R, the localization MP is flat over RP .
(3) For all maximal ideals P of R, the localization MP is flat over RP .

Remark 5.5. If R is a graded K-algebra with K a field, and if m is the
homogeneous maximal ideal of R, then a graded R-module M is flat iff Mm

is flat (see Eisenbud (1995), Exercise 6.10). ��

Geometrically, it should be clear from Example 5.1 that the natural environ-
ment for introducing flat families is that of schemes. Rather than giving the
general definition, however, we focus on some special cases.

Definition 5.6 (Flat Families).

(1) If φ : R → S is a homomorphism of rings, we say that φ is flat, or that
S is flat over R, if S regarded as an R-module via φ is flat.

(2) A morphism π : X → T of affine algebraic sets is flat if the induced map
of coordinate rings is flat.

(3) If T is an algebraic set, and if X ⊂ T × Pn is an algebraic subset, the
projection π : X → T is flat if for each point p ∈ X there are open affine
neighborhoods Up of p in X and Uf(p) of f(p) in T such that π restricts to a
flat morphism Up → Uf(p).

(4) We refer to each flat morphism as a flat family. ��

Example 5.7. The projection in Example 5.2 (1) is not flat. Indeed, the mod-
ule M = K[x, t]/〈tx〉 is not flat over K[t]. To see this, consider the inclusion
ι : 〈t〉 → K[x, t] of the ideal generated by t in K[x, t] and observe that the
induced map

ι⊗ idM : 〈t〉 ⊗K[t] K[x, t]/〈tx〉 → K[x, t]⊗K[t] K[x, t]/〈tx〉

is not injective: 0 �= t⊗ x 
−→ t⊗ x = 1⊗ tx = 0. ��

Remark 5.8 (Flatness and Fibers). For a flat morphism of varieties, all
nonempty fibers have the same dimension.1 See Hartshorne (1977), Corollary

1 For a flat morphism of affine varieties, it may well be that special fibers are
empty. For example, consider V(xt− 1) ⊂ A1

t × A1
x

pr
−→ A1

t (for flatness, argue as
in Example 5.14 later in this lecture).
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III.9.6 for a more precise statement. Further, flatness implies that several
other numerical invariants of the fibers are constant. In fact, if π : X → T is a
family as in Definition 5.6 (3) with an irreducible base T , the family is flat iff
all scheme-theoretic fibers have the same Hilbert polynomial. See Hartshorne
(1977), Theorem III.9.9 and Eisenbud (1995), Exercise 20.14 for more general
statements. ��

From a computational point of view, we are interested in conditions which
characterize flatness, and which can be checked algorithmically. In what fol-
lows, we give characterizations in terms of Tor (Theorem 5.11), in terms of
syzygies (Theorem 5.12), and in terms of Fitting ideals (Theorem 5.22). While
the first two criteria work over local Noetherian rings, the third one allows us
to check flatness over arbitrary Noetherian rings.

Proposition 5.9 (Flatness via Tor I). Let R be a ring, and let M be an
R-module. Then:

(1) M is flat iff TorR
1 (R/I, M) = 0 for each finitely generated ideal I ⊂ R.

(2) If R is a local Noetherian ring with maximal ideal m, and if M is finitely
generated over R, then M is flat over R iff TorR

1 (R/m, M) = 0.

Remark 5.10. Let M be a finitely generated module over an arbitrary ring.
Clearly, if M is free, then M is flat. It easily follows from the proposition that
over a local Noetherian ring, also the converse is true. ��

Statement (1) of Proposition 5.9 can be proved as an application of the long
exact sequence of Tor. Note that it is not a practical criterion since it asks us
to check a condition for infinitely many ideals. Statement (2) easily follows
from Nakayama’s lemma. Making use of the Artin-Rees lemma and Krull’s in-
tersection theorem, one can show that the assumptions on M can be weakened
(see Eisenbud (1995), Theorem 6.8):

Theorem 5.11 (Flatness via Tor II). Let (R, m) be a local Noetherian ring,
and let (S, n) be a local Noetherian R-algebra such that mS ⊂ n. If M is a
finitely generated S-module, then M is flat over R iff TorR

1 (R/m, M) = 0.

In this stronger form, the statement has important applications. For instance:

Theorem 5.12 (Flatness via Syzygies). Suppose that (R, m) is a local
Noetherian ring, and let K = R/m be its residue field. Let I = 〈f1, . . . , fr〉
be an ideal of R[x]〈x〉= R[x1, . . . , xn]〈x1,...,xn〉, and let f1, . . . , fr ∈ K[x]〈x〉

be the reductions of f1, . . . , fr mod m. That is, the f i are the images of the
fi under the natural projection R[x]〈x〉 → K[x]〈x〉. Then the following are
equivalent:

(1) R[x]〈x〉

/
I is a flat R-module.

(2) TorR
1 (K, R[x]〈x〉

/
I) = 0.

(3) The syzygies on f 1, . . . , fr are generated by the reductions mod m of the
syzygies on f1, . . . , fr.
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We will refer to condition (3) above by saying that each syzygy on f 1, . . . , f r

can be lifted to a syzygy on f1, . . . , fr.

Remark 5.13. The statement of Theorem 5.12 also holds if we replace the
localization R[x]〈x〉 by the formal power series ring R[[x]] (and K[x]〈x〉 by
K[[x]]). Indeed, the proof is word for word identical in both cases, see Greuel
and Pfister (2002), Corollary 7.4.7.

Further, if we replace the localization R[x]〈x〉 by the polynomial ring R[x]
(and K[x]〈x〉 by K[x]), the implications (1)⇒ (2) ⇔ (3) remain true. But
now, the implication (2)⇒ (1) holds only under some extra assumptions on
R. For instance, it holds

(a) if R is a principal ideal domain (for example, if R = K[t]〈t〉), or

(b) if R is Artinian, that is, if dim R = 0.

See Eisenbud (1995), Corollary 6.3 for (a), and Artin (1976) for (b).
If R = K[t1, t2]〈t1,t2〉, however, the implication (2)⇒ (1) does not hold.

Indeed, if I = 〈t1x−1, t2〉 ⊂ R[x], the map m⊗R R[x]/I → R⊗R R[x]/I in-
duced by the inclusion m = 〈t1, t2〉 ⊂ R is not injective since the nonzero ele-
ment t2 ⊗ 1 ∈ m⊗R[x]/I is sent to t2 ⊗ 1 = 1⊗ t2 = 0. Thus, R[x]/I is not a
flat R-module. On the other hand, we have TorR

1 (K, R[x]/I) = 0. To see this,
consider the Koszul complex resolving K:

0← K = R/〈t1, t2〉 ← R
(t1,t2)←−−−− R2

(−t2
t1

)
←−−− R← 0 .

Then TorR
1 (K, R[x]/I) is the homology of the complex

R[x]/I
(t1,0)←−−− (R[x]/I)2

( 0

t1
)

←−− R[x]/I

which is obviously exact. ��

Example 5.14. In Example 5.1, the ideal under consideration is generated by
the single polynomial x2− yt. Reducing mod t, we get the nonzero polynomial
x2 which does not admit a nontrivial syzygy over K[x, y]. Thus, the localiza-
tion of the K[t]-module K[x, y, t]/〈x2−yt〉 at 〈t〉 ⊂ K[t] is a flat K[t]〈t〉-module
by Remark 5.13 (a). The same argument applies to any other maximal ideal
m ⊂ K[t] in place of 〈t〉. Since flatness is a local property (see Proposition
5.4), this implies that K[x, y, t]/〈x2− yt〉 is a flat K[t]-module.

In contrast, we see once more that the K[t]-module K[x, t]/〈tx〉 in Example
5.2 (1) is not flat. Indeed, the localization of this module at 〈t〉 ⊂ K[t] is not
a flat K[t]〈t〉-module since tx reduces to zero mod t. ��

More illustrating is Example 5.2 (2). Reconsidering this example, we will see
that the characterization of flatness via syzygies is closely related to the notion
of Gröbner bases:
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Example 5.15. Let I ⊂ Q[x, y, z, t] be the ideal generated by the polynomials

f1 = x2− t27yz, f2 = xz− t13y, f3 = x− t14z2.

Then M := Q[x, y, z, t]/I is not a flat Q[t]-module. Indeed, it suffices to show
that the localization of M at the maximal ideal 〈t〉 ⊂ Q[t] is not a flat
R := Q[t]〈t〉-module. We apply Remark 5.13 (a). Reducing f1, f2, f3 mod 〈t〉,
we get the polynomials

f1 = x2, f2 = xz, f3 = x ∈ Q[x, y, z].

The syzygies on f1, f2, f3 are generated by the column vectors t(1, 0,−x) and
t(0, 1,−z). The first generator can be lifted to a syzygy on f1, f2, f3 :

1 · f1 − x · f3 = t14zf2 .

The situation is different for the second generator:

1 · f2 − z · f3 = −t13y + t14z3

cannot be written as an R[x, y, z]-linear combination of tf1, tf2, tf3. We check
this using SINGULAR. As will be explained in Lecture 9, the ring Rxyz below
implements Q[t]〈t〉[x, y, z]:

> ring Rxyz = 0, (x,y,z,t), (dp(3),ds(1));

Note that the chosen monomial order is a mixed order. We compute the
syzygies on f1, f2, f3 over Q[t]〈t〉[x, y, z] and compare their reductions mod 〈t〉
with the syzygies on f1, f2, f3:

> ideal I = x2-t27yz, xz-t13y, x-t14z2;

> module M = syz(I);

> print(M);

0, -1,

z2t14-x,zt14,

xz-yt13,x

> ring Kxyz = 0, (x,y,z), dp;

> ideal I1 = imap(Rxyz,I);

> module M1 = imap(Rxyz,M); // reducing the syzygies

> M1 = std(M1);

> print(M1);

-z,-1,

x, 0,

0, x

> module M2 = syz(I1); // syzygies on the reductions

> print(M2);

0, -1,

-1,0,

z, x

> reduce(M2,M1);

_[1]=z*gen(3)-gen(2)

_[2]=0
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We see that the syzygy t(0, 1,−z) cannot be lifted. To analyze this from
a Gröbner basis point of view, write gi = fi|t=1 ∈ Q[x, y, z], i = 1, 2, 3, and
consider the lexicographic order on Q[x, y, z]. Then L(gi) = f i for all i and the
two generators for the syzygies on f1, f2, f3 correspond to the S-polynomials
below:

1 · g1 − x · g3 = S(g1, g3), 1 · g2 − z · g3 = S(g2, g3) = −y + z3.

That the second syzygy cannot be lifted is reflected by the fact that the con-
dition on remainders in Buchberger’s criterion is violated for S(g2, g3). Thus,
the set {g1, g2, g3} is not a lexicographic Gröbner basis. Adding g4 = S(g2, g3)
to g1, g2, g3, we get such a basis. Correspondingly, if J ⊂ Q[x, y, z, t] is the
ideal generated by I, and if

f4 := t−13 · (1 · f2 − z · f3) = −y + tz3,

then the localization of Q[x, y, z, t]/J at 〈t〉 ⊂ Q[t] is a flat R = Q[t]〈t〉-module:

> setring Rxyz;

> ideal J = I, -y+tz3;

> M = syz(J);

> setring Kxyz;

> ideal J1 = imap(Rxyz,J);

> M1 = imap(Rxyz,M); // reducing the syzygies

> M1 = std(M1);

> print(M1);

0, -z,-1,0,

-1,x, 0, 0,

z, 0, x, y,

0, 0, 0, x

> M2 = syz(J1); // syzygies on the reductions

> print(M2);

0, -1,0,

-1,0, 0,

z, x, y,

0, 0, x

> size(reduce(M2,M1));

0 ��

The relation between flatness and Gröbner bases is clarified by the following
result (which actually holds in a more general context, see Greuel and Pfister
(2002), Proposition 7.5.3):

Theorem 5.16 (Flatness and Gröbner Bases). Let > be a global mono-
mial order on K[x], let g1, . . . , gr ∈ K[x], and let positive weights w1, . . . , wn ∈
Z be chosen such that, with respect to w = (w1, . . . , wn),

w-deg
(
L(gi)

)
> w-deg

(
L(tail(gi))

)
, i = 1, . . . , r .
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Let >w be the weighted degree order on K[x, t] with weight vector (w, 1) ex-
tending >,2 and denote by

ghom
i := tw-deg(gi) · gi

( x1

tw1
, . . . ,

xn

twn

)
the weighted homogenization of gi with respect to t, i = 1, . . . , r. Then the
following are equivalent:

(1) {g1, . . . , gr} is a Gröbner basis with respect to >.

(2) {ghom
1 |t=λ, . . . , ghom

r |t=λ} is a Gröbner basis with respect to > for all
λ ∈ K.

(3) {ghom
1 , . . . , ghom

r } is a Gröbner basis with respect to >w .

(4) M = K[x, t]/〈ghom
1 , . . . , ghom

r 〉 is a flat K[t]-module .

In the situation of the theorem, observe that ghom
i |t=1 = gi for i = 1, . . . , r.

Moreover, the weights w1, . . . , wn are chosen such that ghom
i |t=0 = L(gi).

Hence, if I denotes the ideal I = 〈g1, . . . , gr〉 of K[x], and if we view M as
a family of affine rings parametrized by the maximal ideals of K[t], the fiber
over 〈t− 1〉 is K[x]/I, and the fiber over 〈t〉 is K[x]/L(I).

Example 5.17. We reconsider Example 5.15 in view of Theorem 5.16.
Let g1 = x2−yz, g2 = xz−y, g3 = x−z2, g4 = −y + z3, and assign weight

16 to x, weight 4 to y, and weight 1 to z. Then the assumptions of The-
orem 5.16 are satisfied for > = >lp, and the polynomials f1 = x2− t27yz,
f2 = xz− t13y, f3 = x− t14z2, f4 = −y+ tz3 are the weighted homogeniza-
tions of g1, . . . , g4 with respect to t.

As in Example 5.15, let I = 〈f1, f2, f3〉 and J = 〈I, f4〉. Since {g1, g2, g3} is
not a lexicographic Gröbner basis, the K[t]-module K[x, y, z, t]/I is not flat.
In contrast, {g1, . . . , g4} is such a basis, and K[x, y, z, t]/J is flat over K[t].

Geometrically, passing from I to J has no effect on the fibers over a point
t �= 0, whereas the fiber over t = 0 is cut down from a plane to a line. In fact,
if we consider the projective closures, that is, if we homogenize the gi with
respect to a further variable, say w, and if we change the fi accordingly, then
we obtain a flat family whose fiber over a point t �= 0 is a twisted cubic curve,
and whose fiber over t = 0 consists of a line, a double line, and an embedded
point on the double line. Indeed,

〈x2, xz, wx, w2y〉 = 〈x, y〉 ∩ 〈x, w2〉 ∩ 〈z, x2, wx, w2〉 .

This multiple structure accounts for the correct Hilbert polynomial:

> ring Kwxyz = 0, (w,x,y,z), dp;

> ideal F = x2, xz, wx, w2y;

> displayHilbPoly(std(F)); // enter procedure first

3t+1 ��
2 If A is a defining matrix for >, then >w is defined by the matrix

„
w1 . . . wn 1

A 0

«
.
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Remark 5.18. Let > be a global monomial order on K[x], and let I ⊂ K[x]
be an ideal. If I is homogeneous, it follows from Macaulay’s Theorem 1.35
that dim

(
K[x]/I

)
= dim

(
K[x]/L(I)

)
. As a corollary of Theorem 5.16, one

can show that this equality holds for arbitrary ideals I. Further, the theorem
and the dimension formula can be formulated such that they hold for arbitrary
monomial orders. See Lecture 9, Section 9.4 for more on this. ��

Our final characterization of flatness is in terms of Fitting ideals. To begin
with, we introduce the necessary notation.

Remark-Definition 5.19. Let R be a Noetherian ring, and let M be a

finitely generated R-module. If 0←M ← Rs ϕ←− Rt is a free presentation of
M with presentation matrix ϕ, we consider the ideals

Fi(M) :=
〈
(s− i)× (s− i) minors of ϕ

〉
⊂ R.

Here, we make the convention that Fi(M) = R for i ≥ s, and that Fi(M) = 0
for i < max {s− t, 0}. Justifying our notation, we remark that the Fi(M) only
depend on M (see Greuel and Pfister (2002), Lemma 7.2.5). We call Fi(M)
the i-th Fitting ideal of M . Note that we have an increasing chain of Fitting
ideals

0 = F−1(M) ⊆ F0(M) ⊆ F1(M) ⊆ . . . ⊆ Fs(M) = R . ��

The Singular procedure fitting from homolog.lib computes Fitting ide-
als:

proc fitting (matrix phi, int i)

"USAGE: fitting(phi,i); phi matrix, i int

RETURN: ideal, the ith Fitting ideal of M=coker(phi).

"

{

int s = nrows(phi);

int a = s-i;

if (a<=0) { return(ideal(1)); }

if ( (a>s) or (a>ncols(phi)) ) { return(ideal(0)); }

return(minor(phi,a));

}

To characterize flatness in terms of Fitting ideals, we need the notion of con-
stant rank (see Bruns and Herzog (1993), Section 1.4):

Proposition 5.20. Let R be a Noetherian ring, let Quot(R) be its total quo-
tient ring, and let M be a finitely generated R-module. The following are
equivalent:

(1) M ⊗R Quot(R) is a free Quot(R)-module of rank ρ.
(2) The localization MP is a free RP -module of rank ρ for all prime ideals P

of R.
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Definition 5.21. If M satisfies the equivalent conditions in Proposition 5.20,
we say that M has constant rank ρ, or simply that M has rank ρ. ��

If R is a (Noetherian) integral domain, Quot(R) is a field, and each finitely
generated module M over R has constant rank dimQuot(R)

(
M ⊗R Quot(R)

)
.

In contrast, if R = K[x, t]/〈tx〉, the ideal generated by x in R is not an R-
module of constant rank.

Theorem 5.22 (Flatness via Fitting Ideals). Let R be a Noetherian ring,
and let M be a finitely generated R-module. The following are equivalent:

(1) M is flat and has constant rank ρ.
(2) Fρ(M) = R and Fρ−1(M) = 0.

Of course, the interesting part of this theorem is the implication (2)⇒ (1).
For its proof, notice that if (2) holds, then we may choose an s× t presentation
matrix of M of type

ϕ =

(
Es−ρ 0

0 0

)
,

where Er is the r × r identity matrix. Hence, (1) follows as flatness is a local
property and as for finitely generated modules over local Noetherian rings,
flatness is equivalent to freeness (see Remark 5.10). We refer to Greuel and
Pfister (2002), Theorem 7.2.7 for details.

The SINGULAR procedure isFlat from homolog.lib is based on Theorem
5.22:

proc isFlat (matrix phi)

"USAGE: isFlat(phi); phi matrix

RETURN: 1 if M=coker(phi) is flat;

0 otherwise.

"

{

if ( size(ideal(phi))==0 ) { return(1); }

int i;

ideal F = fitting(phi,0);

while ( size(F)==0 )

{

i++;

F = fitting(phi,i);

}

if ( deg(std(F)[1])==0 ) { return(1); }

return(0);

}

Example 5.23. (1) We study the projection

π : V(x2− x, x(t3− t)) ⊂ A1
t × A1

x → A1
t
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from Example 5.2 (3). The Q[t]-module M := Q[x, t]/〈x2− x, x(t3− t)〉 is gen-
erated by (the residue classes of) 1 and x. It has the free presentation

0 ←− M
( 1, x )←−−−− Q[t]2

“
0

t3−t

”
←−−−−− Q[t] .

We use isFlat to check that M is not flat:

> LIB "homolog.lib";

> ring R = 0, t, dp;

> module phi = gen(2)*(t3-t);

> isFlat(phi);

0

The procedure flatLocus from homolog.lib allows us to determine the flat
locus of M , that is, the set of all prime ideals P of R such that MP is a flat RP -
module. In fact, if phi is a presentation matrix of M , then flatLocus(phi)

returns the ideal

FL(M) =

〈 ⋃
k≥0

{
f ∈ Fk(M)

∣∣ f · Fk−1(M) = 0
}〉

⊂ R .

It, thus, returns the complement of the flat locus in the sense that

MP is a flat RP -module ⇐⇒ P �⊃ FL(M) .

In the present example, we compute:

> flatLocus(phi);

_[1]=t3-t

As expected, the result reflects the fact that just the three fibers of the pro-
jection π over t = 0,±1 are too big. Over A1 \ {0,±1}, the family is flat.

(2) Let I := 〈x2− t1, xt1− t2, xt2 − t21〉 ⊂ Q[x, t1, t2], and consider the projec-
tion π : V(I) ⊂ A2

t1t2× A1
x → A2

t1t2 .
As above, the Q[t] = Q[t1, t2]-module M := Q[x, t1, t2]/I is generated by

1 and x. To determine a set of generators for the module of syzygies on the
generators (and, thus, a free presentation of M), we compute a Gröbner basis
for I with respect to the product order (>dp, >dp) on Q[x, t]:

> ring S = 0, (x,t(1..2)), (dp(1),dp);

> ideal I = x2-t(1), x*t(1)-t(2), x*t(2)-t(1)^2;

> std(I);

_[1]=t(1)^3-t(2)^2

_[2]=x*t(2)-t(1)^2

_[3]=x*t(1)-t(2)

_[4]=x^2-t(1)
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Note that, in terms of the elements of a given Gröbner basis G = {f1, . . . , fr}
for I with respect to the chosen monomial order, each Q[t]-linear combina-
tion of 1 and x in I has a standard expression

∑r
i=1(ai · 1 + bi · x) · fi, where

ai, bi ∈ Q[t] such that bi = 0 if degx(fi) ≥ 1, and ai = 0 if degx(fi) ≥ 2. Hence,
from the Gröbner basis computed above, we get the free presentation

0 ←− M
( 1, x )←−−−− Q[t1, t2]

2

„
t31−t22 0 −t21 −t2

0 t31−t22 t2 t1

«
←−−−−−−−−−−−−−−− Q[t1, t2]

4 .

Applying isFlat, we see that M and, hence, π is not flat:

> ring R1 = 0, t(1..2), dp;

> module phi = gen(1)*(t(1)^3-t(2)^2),

. gen(2)*(t(1)^3-t(2)^2),

. gen(2)*t(2)-gen(1)*t(1)^2,

. gen(2)*t(1)-gen(1)*t(2);

> isFlat(phi);

0

> flatLocus(phi);

_[1]=t(1)^3-t(2)^2

This is no surprise as V(t31 − t22) ⊂ A2 is the image of π. Considering π as a
map V(I)→ V(t31 − t22), we get:

> qring Q = std(t(1)^3-t(2)^2);

> module phi = imap(R1,phi);

> isFlat(phi);

0

> flatLocus(phi);

_[1]=t(2)

_[2]=t(1)

The result reflects the fact that the fiber of π over t1 = t2 = 0 is the double
point V(x2, t1, t2), while each of the other fibers over V(t31 − t22) consists of
precisely one reduced point. ��

5.2 Depth and Codimension

Throughout this section, we assume that R is a Noetherian ring. We explain
how to compute the depth of an ideal I of R. The depth of I is a measure of the
size of I, as is its codimension. Though both notions are closely related, the
notion of depth is more algebraic and less intuitive than that of codimension.
We recall the basic definitions.

Definition 5.24. Let M be an R-module. Then a sequence of nonzero ele-
ments f1, . . . , fr ∈ R is called a regular sequence on M , or an M-sequence,
if M �= 〈f1, . . . , fr〉M , and if fi is a nonzerodivisor on M/〈f1, . . . , fi−1〉M for
i = 1, . . . , r. ��
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Remark 5.25. The permutation of an M -sequence needs not be an M -
sequence. See Remark 5.30 and Example 5.32 below. ��

Let M be a finitely generated R-module, and let I ⊂ R be an ideal such that
M �= IM . Since R is Noetherian, every M -sequence with elements in I can be
extended to a maximal M-sequence f1, . . . , fr in I. That is, f1, . . . , fr is an
M -sequence with elements in I such that f1, . . . , fr, g is not an M -sequence
for all g ∈ I. By exchanging elements in M -sequences, one can show that each
maximal M -sequence in I has the same number of elements.3

Definition 5.26. Let I ⊂ R be an ideal, and let M be a finitely generated
R-module. If M �= IM , we call

depth(I, M) := max
{
r
∣∣ there is an M -sequence f1, . . . , fr ∈ I

}
the I-depth of M . We call depth I := depth(I, R) the depth of I. If R is a
local ring with maximal ideal m, then depth(M) := depth(m, M) is called the
depth of M . ��

Remark 5.27. Let M be a finitely generated R-module, and let P ⊂ R be a
prime ideal containing the annihilator of M ,

annM = {f ∈ R | fM = 0} = 0 : M ⊂ R .

Then each M -sequence in P localizes to an MP -sequence. Thus,

depth(I, M) ≤ depth(IP , MP )

for every ideal I of R contained in P . In particular,

depth P ≤ depth RP

for each prime ideal P of R. If P is a maximal ideal of R, equality holds. See
Eisenbud (1995), Lemma 18.1 for a proof. ��

The following result is the key to computing depth (see Eisenbud (1995),
Proposition 18.4 and Greuel and Pfister (2002), Corollary 7.6.11):

Theorem 5.28. If I = 〈f1, . . . , fr〉 ⊂ R is an ideal, and if M is a finitely
generated R-module such that M �= IM , then

depth(I, M) = inf {k | Extk
R(R/I, M) �= 0}

= r − sup {p | Hp(f1, . . . , fr; M) �= 0}.

Here, we denote by Hp(f1, . . . , fr; M) the homology of the Koszul complex at
K(f1, . . . , fr; M)p.

3 Other ways of showing this consist of expressing the number of elements of a
maximal M -sequence in I in terms of Ext, respectively in terms of the Koszul
complex, see Theorem 5.28.
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The Koszul complex K(f1, . . . , fr; M) is defined as the tensor product

K(f1, . . . , fr; M) = K(f1, . . . , fr; R)⊗R M ,

where
Kp(f1, . . . , fr; R) =

⊕
1≤i1<···<ip≤r

Rei1...ip

is the free R-module of rank
(

r
p

)
with basis vectors ei1...ip , and where the

differential dp : Kp(f1, . . . , fr; R)→ Kp−1(f1, . . . , fr; R) is defined by setting

dp(ei1...ip) =

p∑
ν=1

(−1)ν−1fiν ei1... biν ...ip
.

In particular, this means that K0(f1, . . . , fr; R) = R, that d1 is defined by
d1(ei) = fi, and that Kp(f1, . . . , fr; R) = 0 if p is not in the range 0 ≤ p ≤ r.

Example 5.29. The Koszul complex K(f1, f2, f3; M) reads

M M3
(f1,f2,f3)

M3

−f2 −f3 0
f1 0 −f3

0 f1 f2

!
M

f3

−f2

f1

!
0 . ��

Remark 5.30. Let f1, . . . , fr and M be as in Theorem 5.28. It is easy to
check that any permutation of the fi leads to an isomorphic Koszul complex.
Moreover, by construction,

H0(f1, . . . , fr; M) = M/〈f1, . . . , fr〉M.

One can show that if f1, . . . , fr is an M -sequence, then all other homology
modules of the Koszul complex vanish (that is, the Koszul complex defines
a free resolution of M/〈f1, . . . , fr〉M). In the local, respectively graded case,
also the converse is true. See Theorem 5.31 below for a stronger statement
(obtained as an application of Nakayama’s lemma). In particular, in the sit-
uation of Theorem 5.31, any permutation of an M -regular sequence is again
an M -regular sequence. ��

Theorem 5.31. Suppose that R is local with maximal ideal m (or, that R
is a finitely generated graded K-algebra with homogeneous maximal ideal m)
and that f1, . . . , fr are (homogeneous) elements of m. If 0 �= M is a finitely
generated (graded) R-module, the following are equivalent:

(1) f1, . . . , fr is an M -sequence.
(2) H1(f1, . . . , fr; M) = 0.

See Matsumura (1986), Theorem 16.5 for a proof.

With respect to computing depth, Theorem 5.28 gives us two ways of how to
proceed. One way is based on the computation of Ext, the other relies on the
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computation of Koszul homology. How to compute Ext was explained in some
detail in Lecture 4. Now, we turn to the computation of Koszul homol-
ogy. Let M be a finitely generated R-module, given by a free presentation

0 ←M ← Rs ϕ←− Rt. Chasing the commutative diagram with exact columns

0 0 0

· · · Kp−1(f ; M) Kp(f ; M) Kp+1(f ; M) · · ·

· · · Kp−1(f ; Rs) Kp(f ; Rs)
dp⊗id

Kp+1(f ; Rs)
dp+1⊗id · · ·

· · · Kp−1(f ; Rt)

idp−1 ⊗ϕ

Kp(f ; Rt)

idp ⊗ϕ

Kp+1(f ; Rt) · · · ,

we get

Hp(f1, . . . , fr; M) =
(dp ⊗ id)−1

(
im(idp−1⊗ϕ)

)
im(dp+1 ⊗ id) + im(idp⊗ϕ)

.

The SINGULAR procedure KoszulHomology from homolog.lib is based on
this formula. Let f be an ideal, given by an ordered list of polynomials
f1, . . . , fr ∈ R = K[x], let I be a module (corresponding to a submodule I of
a free R-module F ), and let p be an integer. Then KoszulHomology(f,I,p)

returns a module, say N, which is zero if Hp(f1, . . . , fr; F/I) = 0. If N is
nonzero, then matrix(N) is a presentation matrix of Hp(f1, . . . , fr; F/I).

Example 5.32. We use SINGULAR to compute the homology of the Koszul com-
plex K(f1, f2, f3; Q[x, y, z]), where f1 = (x−1)z, f2 = (x−1)y and f3 = x.

> LIB "homolog.lib";

> ring R = 0, (x,y,z), dp;

> ideal f = xz-z, xy-y, x;

> module I = 0; // a presentation matrix of R=Q[x,y,z]

> print(KoszulHomology(f,I,0)); // 0th Koszul homology

z,y,x

> print(KoszulHomology(f,I,1)); // 1st Koszul homology

0

From the output, we read H0(f1, f2, f3; Q[x, y, z]) = Q[x, y, z]/〈x, y, z〉 = Q,
and H1(f1, f2, f3; Q[x, y, z]) = 0. In contrast to the situation in Theorem 5.31,
however, the sequence f1, f2, f3 is not a Q[x, y, z]-sequence since f2 is a ze-
rodivisor on Q[x, y, z]/〈f1〉. Indeed, we have z(xy − y) = y(xz − z). On the
other hand, the permuted sequence f1, f3, f2 is a Q[x, y, z]-sequence (see also
Exercise 3.1). Thus, the first Koszul homology has to vanish, and the Koszul
complex K(f1, f2, f3; Q[x, y, z]) is a free resolution of Q. In the following ex-
ample, obviously no permutation of the given sequence is a Q[x, y, z]-sequence,
and the first Koszul homology does not vanish:
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> ideal g = xy, xz, yz;

> print(KoszulHomology(g,I,0)); // 0th Koszul homology

yz,xz,xy

> print(KoszulHomology(g,I,1)); // 1st Koszul homology

-z,0,x,

z, y,0

> print(KoszulHomology(g,I,2)); // 2nd Koszul homology

0 ��

Before giving an example of how to compute depth in SINGULAR, we summa-
rize some important facts on depth (see Eisenbud (1995), Corollary 17.8 and
Theorem 19.9):

Remark 5.33. (1) Depth is a geometric notion in the sense that

depth(I, M) = depth(
√

I, M) .

That is, in case R = K[x], the depth only depends on the algebraic set defined
by I.

(2) Auslander-Buchsbaum Formula. If R is a local Noetherian ring with
maximal ideal m (or, if R is a finitely generated graded K-algebra with homo-
geneous maximal ideal m), and if M is a finitely generated (graded) R-module
of finite projective dimension, then

pdR(M) = depth(m, R)− depth(m, M) .

Here, the projective dimension of M , written pdR(M), is the length of a
minimal free resolution of M .

(3) As we already pointed out, the notion of depth is closely related to the
notion of codimension. Indeed, if R is any Noetherian ring, and if I � R is
any ideal, then

depth I ≤ codim I .

The example below of the homogeneous coordinate ring of the Veronese sur-
face in P4 shows that the inequality may well be strict. ��

The command depth from homolog.lib relies on the computation of Koszul
homology. If phi is a matrix, corresponding to a presentation matrix ϕ of a
module M , and if I is an ideal, then depth(phi,I) returns depth

(
I, M

)
.

Entering depth(phi); is equivalent to entering depth(phi,maxideal(1));.

Example 5.34. To show depth at work, we continue our SINGULAR session from
Lecture 4, Example 4.13 in which we created the ring S = F32003 [x0, . . . , x4]
and an ideal I ⊂ S defining a Veronese surface in P4. Now, we compute the
depth of the homogeneous maximal ideal m of the quotient ring S/I, or,
equivalently, the 〈x0, . . . , x4〉-depth of the S-module S/I:
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> LIB "homolog.lib";

> depth(I); // I is a presentation matrix of S/I

1

> dim(std(I));

3

Hence, depth m = 1 < 3 = dim I = codimm. ��

The rings satisfying depth I = codim I for each properly contained ideal I are
of particular interest. We will study them in the next section.

5.3 Cohen-Macaulay Rings

The notion of Cohen-Macaulay rings is a
workhorse of commutative algebra.

It is sufficiently general to allow a wealth of examples.
It is sufficiently strict to admit a rich theory.

Freely adapted from Bruns and Herzog (1993).

Throughout this section, we assume that R is a Noetherian ring.

Definition 5.35. We say that R is a Cohen-Macaulay ring if

depth I = codim I

for every ideal I � R. ��

As one can show, it is enough to ask that depth I = codim I for each maximal
ideal I ⊂ R.

Example 5.36. If R is zero-dimensional, it is Cohen-Macaulay. The same holds
if R is one-dimensional and reduced. If R is one-dimensional but nonreduced,
then R may be Cohen-Macaulay or not. The ring K[x, y]/〈y2〉, for instance,
is Cohen-Macaulay, while K[x, y]/〈xy, y2〉 is not Cohen-Macaulay. ��

The Cohen-Macaulay property is local in a strong sense (see Eisenbud (1995),
Proposition 18.8):

Proposition 5.37. The following are equivalent:

(1) R is Cohen-Macaulay.
(2) For each maximal ideal m ⊂ R, the localization Rm is Cohen-Macaulay.

(3) For each maximal ideal m ⊂ R, the m-adic completion R̂m is Cohen-Ma-
caulay.

If these conditions are satisfied, the localization of R at any prime ideal P ⊂ R
is Cohen-Macaulay, and depth P = depthRP .
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Remark 5.38. If R is a finitely generated graded algebra over a field K, and
if m is the homogeneous maximal ideal of R, then R is Cohen-Macaulay iff
Rm is Cohen-Macaulay. ��

Remark 5.39. Let (R, m) be a local ring, and let f1, . . . , fr ∈ m be an R-
sequence. Then R/〈f1, . . . , fr〉 is a Cohen-Macaulay ring iff R is a Cohen-
Macaulay ring (see Matsumura (1986), Theorem 17.3 (ii)). ��

It follows from Krull’s principal ideal theorem that if I ⊂ R is an ideal gen-
erated by c = codim I elements, then I has pure codimension c (that is, all
minimal associated primes of I have codimension c).

Definition 5.40. We say that the unmixedness theorem holds for R if
every ideal I ⊂ R generated by codim I elements is unmixed (that is, I has no
embedded components). This includes as the case of codimension zero that
〈0〉 ⊂ R is unmixed. ��

The following theorem relates the unmixedness theorem and the Cohen-
Macaulay property. For a proof, we refer to Matsumura (1986), Theorem
17.6:

Theorem 5.41. The unmixedness theorem holds for R iff R is Cohen-Macau-
lay.

Macaulay (1916) showed that the unmixedness theorem holds for polynomial
rings over a field, and Cohen (1946) proved that it holds for regular local
rings. This is the reason for the name Cohen-Macaulay. Taking Theorem 5.41
into account, Macaulay’s result is easy to prove. In fact, one shows:

Theorem 5.42. If R is Cohen-Macaulay, then so is R[x].

Taking once more Theorem 5.41 into account, Cohen’s theorem reads as fol-
lows:

Theorem 5.43 (Cohen). A Noetherian regular local ring is Cohen-Macau-
lay.

In this form, the theorem easily follows from the fact that regular local rings
are integral domains.

Example 5.44. (1) We say that R is locally a complete intersection if for
each maximal ideal m ⊂ R there is a Noetherian regular local ring S and an
S-sequence f1, . . . , fr ∈ S such that the localization Rm

∼= S/〈f1, . . . , fr〉. By
Cohen’s theorem and Remark 5.39, if R is locally a complete intersection,
then it is Cohen-Macaulay.

(2) If R is of type K[x]/Ik(M) as in Lecture 2, Theorem 2.25, we refer to it
as an affine determinantal ring. Theorem 2.25 tells us that such rings are
Cohen-Macaulay. ��



5.3 Cohen-Macaulay Rings 163

Remark 5.45. SINGULAR allows us to check the Cohen-Macaulay property for
rings of type K[x]〈x〉/I, where I ⊂ K[x]〈x〉 is an ideal given by finitely many
polynomial generators. Having implemented K[x]〈x〉 using a local monomial
order as explained in Lecture 9, and having created the ideal I, we may check
the defining condition of a Cohen-Macaulay ring by computing depth either
directly or via the Auslander-Buchsbaum formula:

(1) Entering

depth(I) == dim(std(I));

SINGULAR will display 1, if equality holds (that is, if K[x]〈x〉/I is Cohen-
Macaulay), and 0, otherwise. The command isCM from homolog.lib is
based on this approach.

(2) Using mres, we may easily write a procedure projdim which takes as input
the ideal I, and which returns the projective dimension of K[x]〈x〉/I. Then
we may enter

nvars(basering)-projdim(I) == dim(std(I));

Taking Remark 5.38 into account, the Cohen-Macaulay property for a graded
affine ring K[x]/I may be checked by applying the above to the ideal generated
by I in K[x]〈x〉. ��

Example 5.46. We check that the homogeneous coordinate ring of the twisted
cubic curve is Cohen-Macaulay. The local ring K[x, y, z, w]〈x,y,z,w〉 is imple-
mented using a local monomial order (see Lecture 9 for details).

> LIB "homolog.lib";

> ring R = 0, (x,y,z,w), dp;

> ideal I = xz-y2, wz-xy, wy-x2;

> ring R_loc = 0, (x,y,z,w), ds;

> ideal I = imap(R,I);

> isCM(I);

1 ��

Observe that is often much easier to check whether the following sufficient
conditions are satisfied.

Proposition 5.47. Let I ⊂ K[x]〈x〉 be an ideal given by finitely many polyno-
mial generators, let > be a local monomial order on K[x], and let L(I) ⊂ K[x]
be the leading ideal of I as defined in Lecture 9. Suppose that the following
conditions hold for some c:

(1) L(I) ⊃ 〈x1, . . . , xc〉N for some N ;
(2) L(I) is generated by monomials in K[x1, . . . , xc].

Then K[x]〈x〉/I is a Cohen-Macaulay ring.
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Remark 5.48. The statement of Proposition 5.47 also holds if we replace
K[x]〈x〉/I and the local monomial order by a graded affine ring K[x]/I and
a global monomial order. ��

Example 5.49. Now using Remark 5.48, we check once more that the homo-
geneous coordinate ring of the twisted cubic curve is Cohen-Macaulay:

> ring R = 0, (x,y,z,w), dp;

> ideal I = xz-y2, wz-xy, wy-x2;

> I = std(I);

> lead(I); // the leading ideal

_[1]=y2

_[2]=xy

_[3]=x2 ��

Note that the assumptions of Proposition 5.47 imply that S = K[x]〈x〉/I is
a finitely generated free (hence, flat) R = K[xc+1, . . . , xn]〈xc+1,...,xn〉-module.
Thus, the proposition follows from the first part of the following theorem
which associates the Cohen-Macaulay property with flatness.

Theorem 5.50. Let (R, m) and (S, n) be Noetherian local rings, and let
φ : R→ S be a homomorphism of local rings (that is, φ(m) ⊂ n). Then:

(1) If S is flat over R, the following are equivalent:
(a) S is Cohen-Macaulay;
(b) R and S/φ(m)S are Cohen-Macaulay.

(2) If R is regular and if S is Cohen-Macaulay, the following are equivalent:
(a) dim(S) = dim(R) + dim(S/φ(m)S);
(b) S is flat over R. ��

For a proof, we refer to Matsumura (1986), Theorem 23.1 and Corollary 23.3,
respectively to Eisenbud (1995), Theorem 18.16.

In the following geometric interpretation of Theorem 5.50, we say that an
algebraic set A is locally Cohen-Macaulay if all its local rings OA,p are
Cohen-Macaulay.

Remark 5.51. Let π : X → T be a morphism as in Definition 5.6 (2) or (3).
Then, as flatness is a local property, Theorem 5.50 implies:

(1) If π is flat, then X is locally Cohen-Macaulay iff the base T and all fibers
are locally Cohen-Macaulay. In particular, if π is flat and X is locally
Cohen-Macaulay, the scheme-theoretic fibers of π have no embedded com-
ponents.

(2) If X is locally Cohen-Macaulay and connected, and if T is smooth and
connected, then π is flat iff all isolated components of each fiber are of
dimension dim(X)− dim(T ) (see Remark 5.8).

In Example 5.1, X = V(x2− yt) is locally Cohen-Macaulay of dimension 2,
and each fiber is irreducible of dimension 1 = dim(X) − dim(A1

t ). So (2)
shows once more that the projection X → A1

t is flat. ��
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Remark 5.52 (Further Reading). For more details and complete proofs of
the results presented in this lecture, see Matsumura (1986), Eisenbud (1995),
Chapters 17–20, and Greuel and Pfister (2002), Chapter 7. For more on the
richness of the theory of Cohen-Macaulay rings, we refer to Bruns and Herzog
(1993).
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Exercise 3.1. Write a SINGULAR procedure which checks whether a given (or-
dered) list of polynomials f1, . . . , fr ∈ K[x1, . . . , xn] defines a regular sequence
on K[x1, . . . , xn]. Apply this procedure to the polynomials f1 = (x− 1)z,
f2 = (x− 1)y, f3 = x ∈ Q[x, y, z] and permutations thereof.

Exercise 3.2. Use SINGULAR to check whether the following rings are Cohen–
Macaulay:

(a) C[x, y, z]/〈xy, yz, xz〉;
(b) the homogeneous coordinate ring C[s4, s3t, st3, t4] of the rational quartic

curve in P3.

Exercise 3.3. Let M =
⊕

ν∈Z Mν be a finitely generated graded module over
K[x1, . . . , xn].

(a) For d ∈ Z, the truncated module M≥d is defined to be the graded sub-
module

M≥d =
⊕
ν≥d

Mν ⊂M.

Write a SINGULAR procedure which, given a presentation matrix of M ,
computes a presentation matrix of M≥d.

(b) The Castelnuovo-Mumford regularity of M is defined to be the least
integer r such that, for every i, the ith syzygy module of M is generated
in degrees ≤ r + i (in particular, M is generated in degrees ≤ r). In terms
of the graded Betti numbers of M , we ask that max{j | βij(M) �= 0} ≤
r + i for every i. Write a SINGULAR procedure which, given a presentation
matrix of M , computes the regularity of M .

(c) Let R = Q[w, x, y, z], let I be the graded submodule of F = R⊕R(−1)2⊕
R(−2)2 considered in Section 3.4 of Lecture 3, and let M = F/I. Compute
the regularity of M and the minimal free resolutions of the truncated
modules M≥d for d = 2, 3.

Exercise 3.4. Write SINGULAR procedures for computing kernels of module
homomorphisms, Hom and Ext over K[x1, . . . , xn].
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Exercise 3.5. Consider the Koszul complex over S = K[x0, . . . , x4] resolving
K (choose K = F32003 for your computations). Use SINGULAR to check that
the cokernel of a “generic” homomorphism

S(−1)5 −→ Syz3(K(2))

is the ideal of a smooth surface in P4. Do the same for a “generic” homomor-
phism

M = Syz4(K(3))
3 −→ N,

where N is the kernel of a “generic” homomorphism

γ : Syz3(K(2))⊕ Syz2(K(1))2 → S.

Compare the Betti diagram obtained by resolving the ideal of the first surface
with that of the surface QES constructed in Exercise 1.5.



Lecture 6

Solving Systems of Polynomial Equations

Depending on the application one has in mind, “solving” a system

f1(x1, . . . , xn) = 0
...

fr(x1, . . . , xn) = 0

(6.1)

of polynomial equations could mean to decide whether there are finitely many
solutions and, if so, to find all solutions (or, to find all solutions together with
their multiplicities). It could mean to find just one solution, or to represent
each irreducible component of the solution set by explicit points on it. We
may be interested in finding the solutions over the given coefficient field K,
or over some extension field of K. And, if K is a subfield of C, we may
aim at representing the solutions symbolically, or at computing floating point
approximations of the solutions up to a given precision.

In this lecture, we pay special attention to the latter problem, which is
widely considered to be a task just for numerical analysis. However, numerical
methods are often unstable in an unpredictable way, they may have problems
with over-determined systems (that is, systems with more equations than
variables), and they may not find all solutions, respectively the correct number
of different real or complex solutions1.

Taking our cue from this situation, we explore the possibility of using
Gröbner bases in a symbolic-numerical approach to solving. Such an ap-
proach combines symbolic and numerical methods with the aim of determining
the solutions more accurately. Here, the symbolic methods are used to find
additional information on the structure of the solution set which allows one
some control of the numerical methods and/or to preprocess the given system
of equations such that it is expected to be better suited for numerical methods
(see Fig. 6.1 for an example).

1 See Cox, Little, and O’Shea (1998), Chapter 2 for some examples of what can
happen.
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Fig. 6.1. Purely numerical methods for visualizing the set of real solutions of a
polynomial equation f(x1, x2) = 0 may run into trouble near singular points, and
they may fail to find isolated solutions (left). A symbolic-numerical approach can
produce relief here (right)

Another topic in this lecture is a classical symbolic approach to solving
which makes use of resultants and which can be combined with numerical
methods, too (we will not discuss numerical methods, here).

Even though our main interest lies in a symbolic-numerical approach, we
set up most of the theory behind the symbolic methods for an arbitrary coeffi-
cient field K. In principle, this provides the basis for finding symbolic solutions
for the system (6.1) over the algebraic closure of K.

6.1 Gröbner Basis Techniques

Let K be an arbitrary field. We consider an ideal I = 〈f1, . . . , fr〉 ⊂ K[x] and
its vanishing locus V(I) ⊂ An = An(K), where K is an algebraically closed
extension field of K. If p ∈ V(I) is a point, we occasionally refer to it as a
solution of I.

6.1.1 Computing Dimension

Let > be a global monomial order on K[x], and let G be a Gröbner basis for
I with respect to >. Since

dim(K[x]/I) = dim(K[x]/L>(I)) (6.2)

by Lecture 5, Remark 5.18, we may compute the dimension of V(I) starting
from G by purely combinatorial means.

To explain this in detail, we begin by recalling that, due to Hilbert’s Null-
stellensatz, V(I) is nonempty iff no element of G has 1 as its leading monomial.
Moreover, if V(I) is nonempty and finite, say

V(I) = {(aj,1, . . . , aj,n) | 1 ≤ j ≤ s} ⊂ An ,

the products
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gi :=
s∏

j=1

(xi − aj,i) ∈ K[xi] , i = 1, . . . , n ,

vanish along V(I). Applying again the Nullstellensatz, we see that gmi

i ∈ I K[x]
for some mi ∈ N, so xsmi

i ∈ L>(I) (it is clear from what we said in Lecture
2, Remark 2.9 on the role of the coefficient field that each generating set of
monomials for L>(I) is also a generating set for L>(I K[x]). Combining this
with Macaulay’s Theorem 1.33 in Lecture 1, we get:

Theorem 6.1 (Conditions for Finiteness). The following are equivalent:

(1) V(I) is a finite subset of An.

(2) For each 1 ≤ i ≤ n, there is some αi ∈ N such that xαi

i ∈ L>(I).

(3) For each 1 ≤ i ≤ n, there is some αi ∈ N such that xαi

i is the leading
monomial of some element of the Gröbner basis G.

(4) The K-vector space K[x]/L>(I) is finite dimensional.

(5) The K-vector space K[x]/I is finite dimensional.

Moreover, if I � K[x] is proper, then (1) – (5) are equivalent to dim I = 0.

Remark 6.2 (Multiplicities). Suppose that V(I) is finite. Given a point
p ∈ V(I), there is a natural way of assigning a multiplicity to p as a solution
of I, written mult (p | I) (see Definition 9.32 in Lecture 9). Counted with mul-
tiplicity, there are precisely dimK(K[x]/I) = dimK(K[x]/L>(I)) solutions of
I over K (see Lecture 9, Remark 9.33). That is, counted with multiplicity,
the number of solutions of I equals the number of standard monomials for I.
Note that all multiplicities are 1 iff IK[x] is a radical ideal. ��

Turning to the computation of dimension in general, we note that if I � K[x]
is any proper ideal, then

dim K[x]/I = dimK[x]/I K[x] = dim V(I) . (6.3)

For the second equality, recall from Lecture 2 that by its very definition,
dimV(I) is the dimension of the vanishing ideal of V(I) which in turn is
the dimension of the radical of IK[x] by Hilbert’s Nullstellensatz. Then note
that the dimension of an ideal coincides with that of its radical. For the
first equality, see Remark 2.9 in Lecture 2. Alternatively, observe that the
dimension of a monomial ideal J ⊂ K[x] is particularly easy to determine.
Indeed, if g1, . . . , gr are monomial generators for J , then dimJ is the maximal
cardinality of a subset u ⊂ x such that none of the gi is in K[u]. Together
with what we said right before Theorem 6.1, this gives

dimK[x]/L>(I) = dim K[x]/L>(I K[x]) ,

and we are done by equation (6.2).
Summing up our discussion, we get the following recipe for computing

dimension in the general case:
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Theorem 6.3. If I � K[x] is a proper ideal, then dim I = dimV(I) is the
maximal cardinality of a subset u ⊂ x such that L>(I) ∩K[u] = {0}. That
is, if G is a Gröbner basis for I (with respect to any global monomial order
on K[x]), then dim I = dimV(I) is the maximal cardinality of a subset u ⊂ x

such that none of the leading terms of the elements of G is in K[u].

See Greuel and Pfister (2002), Theorem 3.5.1 and Exercise 3.5.1 and Decker
and Schreyer (2006), Chapter 3 for alternative proofs of this theorem.

6.1.2 Zero-Dimensional Solving by Elimination

Throughout this section, we suppose that I is a zero-dimensional ideal, that
is, V(I) is a (nonempty) finite subset of An. A naive idea for finding the points
of V(I) originates from Theorem 6.1:

Remark 6.4. In the situation of Theorem 6.1, if we choose > to be a global
elimination order with respect to x \ {xi}, condition (2) of the theorem im-
plies that the principal ideal I ∩K[xi] is nontrivial. Computing a Gröbner
basis for I with respect to such an order, we get a generator, say hi, for
I ∩K[xi]. Rather than performing n different Gröbner basis computations,
we may obtain the hi simultaneously starting from a single Gröbner basis for
I (with respect to an arbitrary monomial order) by making use of the lin-
ear algebra behind the FGLM algorithm (see Lecture 3, Section 3.5 for that
algorithm). The SINGULAR implementation of this idea is accessible by the
finduni command which takes as input a reduced Gröbner basis for I. ��
In principle, we may, thus, compute the points of V(I) as follows:

Step 1. Compute generators hi for I ∩K[xi], i = 1, . . . , n.

Step 2. Solve the univariate equations hi(xi) = 0 over K to obtain candidates
for each single coordinate entry of a point of V(I).

Step 3. Form all points with coordinates as computed in Step 2, substitute
these points into the equations to distinguish solutions from nonsolutions,
and discard nonsolutions.

Here, in Step 2, either use a numerical solver or compute the roots of the hi

symbolically by factorizing the hi (see Example 6.16).
For another approach to solving, recall that the lexicographic order >lp

has the elimination property with respect to any initial set of variables. In
conjunction with Theorem 6.1, this gives:

Theorem 6.5. Let G be a Gröbner basis for the zero-dimensional ideal I with
respect to >lp. Then there are elements g1, . . . , gn ∈ G such that

g1 ∈ K[xn] , L(g1) = c1x
m1
n ,

g2 ∈ K[xn−1, xn] , L(g2) = c2x
m2

n−1,
...

...
gn ∈ K[x1, . . . , xn] , L(gn) = cnxmn

1 .

(6.4)
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Thus, starting from a lexicographic Gröbner basis G for I, computing V(I)
is again reduced to univariate solving: we solve g1(xn) = 0, substitute the
solutions for xn in g2(xn−1, xn) = 0, solve the resulting univariate equation,
and so on. In a last step, we discard those points of V(g1, . . . , gn) at which at
least one of the polynomials in G \ {g1, . . . , gn} does not vanish.

Having to detect nonsolutions in a last step makes the two methods for
solving just discussed especially prone to errors introduced by numerical root
finding. This applies, specifically, to the second method. Indeed, substitut-
ing approximate solutions into an equation makes the equation itself only
approximate and rounding errors will accumulate. In Section 6.1.3 below, re-
fining the second method, we discuss algorithms for triangular decomposition
which allow us to reduce the zero-dimensional solving problem to the problem
of solving several zero-dimensional systems with n equations in n variables of
the form (6.4) in Theorem 6.5. In this way, the step in which nonsolutions
have to be detected becomes superfluous.

Remark 6.6 (Zero-Dimensional Radical). If K is a perfect field, and if
h1, . . . , hn are polynomials as in Remark 6.4, then the radical

√
I is gener-

ated by I and the square-free parts of the hi (see, for instance, Greuel and
Pfister (2002), Chapter 4). In practical applications, the square-free parts
are obtained by gcd computations (see, for instance, Geddes, Czapor, and
Labahn (1992)). With respect to solving, if one is not interested in computing
the multiplicities of the solutions, replacing I by

√
I is one possible way of

preprocessing (see Example 6.14 later in this lecture). This is of particular
importance for a symbolic-numerical approach since multiple solutions may
cause severe problems for numerical solvers. ��

6.1.3 Decomposition

Given an ideal I = 〈f1, . . . , fr〉 ⊂ K[x] of arbitrary dimension and its vanish-
ing locus V(I) ⊂ An = An(K), decomposition techniques aim at computing a
list of finite sets of polynomials F1, . . . ,F� ⊂ K[x] such that

V(I) = V(F1) ∪ . . . ∪V(F�) .

One way of doing this is to compute the minimal associated primes of I (more
generally, to compute a primary decomposition of I). We will discuss symbolic
algorithms for primary decomposition in Lecture 7. Note, however, that these
algorithms are usually not suited for symbolic preprocessing as they are too
expensive.2

In this section, our focus is on cheaper decomposition techniques. We
mainly discuss algorithms for triangular decomposition which we combine

2 See Sommese and Wampler (2005) for a purely numerical approach to primary
decomposition and solving.
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with numerical root finding to obtain a symbolic-numerical method for solv-
ing zero-dimensional systems. We begin, however, by explaining the factoriz-
ing Buchberger algorithm which in some examples finds a nontrivial decom-
position rather quickly, while in other examples it spends its time trying to
factorize irreducible polynomials.

The Factorizing Buchberger Algorithm

As its name suggests, the factorizing Buchberger algorithm combines Buch-
berger’s algorithm with (multivariate) polynomial factorization. Applied to
the generators f1, . . . , fr for I, it computes a list of Gröbner bases G1, . . . ,G�

such that
V(I) = V(G1) ∪ . . . ∪V(G�) . (6.5)

In general, the V(Gi) are not irreducible.
The basic idea of the algorithm is easy to describe. Apply Buchberger’s

algorithm to f1, . . . , fr. Whenever a nonzero remainder h appears in Buch-
berger’s test, apply a polynomial factorization algorithm to h. If this yields
a nontrivial factorization, say h = h1h2 decomposes into a product of two
factors, apply the factorizing Buchberger algorithm recursively to both ide-
als 〈I, h1〉 and 〈I, h2〉 (where I is represented by the Gröbner basis elements
computed so far). Geometrically, we have a decomposition

V(I) = V(I, h1) ∪V(I, h2).

This decomposition may be redundant in that V(I, h1) and V(I, h2) may have
some irreducible components in common. One way to overcome this problem
is to replace 〈I, h2〉 by the saturation 〈I, h2〉 : 〈h1〉∞. Indeed,

V(I) = V(I, h1) ∪V
(
〈I, h2〉 : 〈h1〉∞

)
= V(I, h1) ∪V(I, h2) \V(h1)

is an irredundant decomposition. However, applying saturation at each step
may be costly. An alternative approach, which reduces some of the redun-
dancy, is to use h1 as a nonzero constraint for the factorizing Buchberger
algorithm applied to 〈I, h2〉. That is, compute a standard expression for h1

in terms of the given generators for 〈I, h2〉. If the resulting remainder is zero,
there is no need to consider 〈I, h2〉 any further. Otherwise, proceed similarly
for each new factor found in subsequent steps. See Czapor (1989) and Gräbe
(1995a) for more details.

Remark 6.7 (The facstd Command). SINGULAR offers an implementation
of the factorizing Buchberger algorithm which is accessible via the facstd

command. This command takes as input two ideals, say I and J. The sec-
ond input parameter J, which is optional, implements additional nonzero con-
straints (the given generators for J). If facstd(I,J) returns the list G1, . . . ,G�

of Gröbner bases, then
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V(I) \V(J) ⊂ V(G1) ∪ . . . ∪V(G�) ⊂ V(I) .

If G1, . . . ,G� happen to generate prime ideals of K[x], we have

V(G1) ∪ . . . ∪V(G�) = V(I) \V(J) .

In general, however, this is not the case (see Example 6.8 below).
Note that the number of sets in the decomposition computed by facstd

may depend on some random choices made by the polynomial factorization
algorithm (these choices affect the order in which the factors are returned). ��

Example 6.8. We give an example of a zero-dimensional ideal I in a polyno-
mial ring with 5 variables to indicate that usually the number of sets in the
decomposition computed by facstd depends on the choice of monomial order.
We begin by picking the lexicographic order:

> option(redSB);

> ring R = 0, x(1..5), lp;

> poly f1 = x(1)^2+x(1)+2*x(2)*x(5)+2*x(3)*x(4);

> poly f2 = 2*x(1)*x(2)+x(2)+2*x(3)*x(5)+x(4)^2;

> poly f3 = 2*x(1)*x(3)+x(2)^2+x(3)+2*x(4)*x(5);

> poly f4 = 2*x(1)*x(4)+2*x(2)*x(3)+x(4)+x(5)^2;

> poly f5 = 2*x(1)*x(5)+2*x(2)*x(4)+x(3)^2+x(5);

> ideal I = f1^2,f2^2,f3,f4,f5;

> list L = facstd(I);

> size(L); // number of sets in the decomposition

12

Inspecting the entries of L, we see that they represent maximal ideals of Q[x].
Thus, if Q is the algebraic closure of Q, each entry of L defines a set of points in
An(Q) which are pairwise conjugate over Q.3 In fact, each entry L[i] consists
of a set of 5 polynomials of the form (6.4) in Theorem 6.5. For instance, L[3]
defines a single, rational point:

> L[3];

_[1]=5*x(5)-1

_[2]=5*x(4)-1

_[3]=5*x(3)-1

_[4]=5*x(2)-1

_[5]=5*x(1)+4

Applying facstd(I,5*x(5)-1) instead of facstd(I), we get:

> list L2 = facstd(I,5*x(5)-1);

> size(L2);

11

3 In general, if K is the algebraic closure of K, and if P is a maximal ideal of K[x],
the vanishing locus V(P ) ⊂ An(K) is an orbit under the natural action of the
Galois group of K over K on An(K). We then say that the points of V(P ) are
pairwise conjugate over K .
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Inspecting the entries of L2, we see that they describe V(I) \V(5x5 − 1).
Whereas with respect to >lp, facstd separates all components over Q, it

shows the opposite extremal behavior when applied with respect to >dp:

> ring R1 = 0, x(1..5), dp;

> ideal I = imap(R,I);

> size(facstd(I));

1

> size(facstd(I,5*x(5)-1));

1

Actually, one can check that in this case the results returned by facstd(I)

and facstd(I,5*x(5)-1) coincide. ��

Triangular Decompositions

Let I ⊂ K[x] = K[x1, . . . , xn] be a zero-dimensional ideal.

Definition 6.9. A set of polynomials T =
{
g1, . . . , gn

}
⊂ K[x] is called a tri-

angular basis if, for each j = 1, . . . , n,

(TB 1) gj ∈ K[xn−j+1, . . . , xn] \K, and

(TB 2) the leading monomial of gj with respect to the lexicographic order is
of the form x

mj

n−j+1 for some mj ≥ 1.

A list of triangular bases T1, . . . , T� is called a triangular decomposition
for I if V(I) = V(T1) ∪ . . . ∪V(T�). ��
Note that the product criterion implies that a triangular basis T is a (min-
imal) lexicographic Gröbner basis (of a zero-dimensional ideal). Hence, “tri-
angular basis” can be understood as a short-cut for “triangular lexicographic
Gröbner basis”. The key point is that the number of elements of such a basis
coincides with the number of variables. Thus, if we solve the corresponding
zero-dimensional system using the second approach to zero-dimensional solv-
ing described in Section 6.1.2, the step in which we have to detect nonsolutions
becomes superfluous. As an immediate consequence, we obtain:

Remark 6.10 (Number of Solutions). If T =
{
g1, . . . , gn

}
⊂K[x] is a tri-

angular basis, then Remark 6.2 implies that, counted with multiplicity, the
number of solutions of g1 = · · · = gn = 0 over the algebraic closure of K is the
product of the degrees deg(L>lp

(gi)), i = 1, . . . , n. ��

The SINGULAR library triang.lib provides implementations of two different
algorithms which use Gröbner bases to compute triangular decompositions of
zero-dimensional ideals. These algorithms are due to Lazard (1992), respec-
tively Möller (1993).

We study in some detail a variant of the algorithm by Möller as imple-
mented in SINGULAR by Hillebrand (1999). This algorithm returns an irredun-
dant triangular decomposition. Starting from a reduced lexicographic Gröbner
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basis G = {f1, . . . , fs} for I, sorted such that L>lp
(fs) > . . . > L>lp

(f1), it re-
cursively computes a decomposition of the form

V(G) =

s−1⋃
i=1

•

(
V
(
G, a1, . . . , ai−1

)
\V
(
ai

)︸ ︷︷ ︸
=: Wi

)
∪·
(
V
(
G, a1, . . . , as−1

))
, (6.6)

where ai ∈ K[x2, . . . , xn] is the leading coefficient of fi as a univariate poly-
nomial in x1. Note that the sets Wi are Zariski closed (since V(G) is finite).
A set of defining equations for Wi can be computed from G ∪ {a1, . . . , ai−1}
by saturating with respect to 〈ai〉.

Two key observations make this approach work: from our assumptions, it
follows that

(1) L>lp
(fs) = xm

1 , for some m ≥ 1, and that

(2) {a1, . . . , as−1} is a lexicographic Gröbner basis for the ideal quotient J :=
〈f1, . . . , fs−1〉 : 〈fs〉 ⊂ K[x]. In particular,

V(G, a1, . . . , as−1) = V(a1, . . . , as−1︸ ︷︷ ︸
⊂K[x2,...,xn]

, fs) . (6.7)

Since G is a reduced lexicographic Gröbner basis, (1) is an immediate conse-
quence of Theorem 6.5. Moreover, for each 1 ≤ i ≤ s− 1, we have L>lp

(fi) =

L>lp
(ai) · xdi

1 , for some 0 ≤ di < m.
To see (2), fix the lexicographic order on K[x] and write L = L>lp

. Buch-
berger’s criterion implies that each S-polynomial S(fi, fj), 1 ≤ j < i ≤ s− 1,
has a standard expression in terms of f1, . . . , fs with remainder 0. Since
these S-polynomials have degree at most m− 1 as a univariate polynomial
in x1, the summand involving fs in such a standard expression is zero. Thus,
once more applying Buchberger’s criterion, we get that {f1, . . . , fs−1} is a
lexicographic Gröbner basis, too. It follows that, for each g ∈ J , the prod-
uct g · fs ∈ 〈f1, . . . , fs−1〉 has a standard expression in terms of f1, . . . , fs−1

with remainder 0. In particular, L(gfs) = L(g) · xm
1 is divisible by some

L(fi) = L(ai) · xdi
1 , 1 ≤ i ≤ s− 1. We conclude that L(g) is divisible by L(ai),

and it only remains to show that {a1, . . . , as−1} ⊂ J . Fix some i ≤ s− 1. The
difference aifs − xm−di

1 fi ∈ I has degree at most m− 1 as a univariate poly-
nomial in x1 and, thus, a standard expression in terms of f1, . . . , fs−1 with
remainder 0 (argue as above). It follows that aifs ∈ 〈f1, . . . , fs−1〉, that is,
ai ∈ J .

Since the ideal I ′ := 〈a1, . . . , as−1〉 ⊂ K[x2, . . . , xn] is again zero-dimensio-
nal, the equality (6.7) allows us to compute a triangular decomposition of
the right-most set in the decomposition (6.6) by recursion on the number
of variables: If a triangular decomposition T ′

1 , . . . , T ′
�′ for I ′ is given, then

T ′
1 ∪ {fs}, . . . , T ′

�′ ∪ {fs} is a triangular decomposition for 〈I ′, fs〉 ⊂ K[x].
Summing up, we get:
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Algorithm 6.11 (triangMH).

Input: a list of polynomials f1, . . . , fs ∈ K[x] = K[x1, . . . , xn] forming
a reduced lexicographic Gröbner basis for a zero-dimensional
ideal of K[x].

Assume: L>lp
(fs) > . . . > L>lp

(f1).

Output: a list T1, . . . , T� of triangular bases such that V(f1, . . . , fs) is
the disjoint union of V(T1), . . . ,V(T�).

Step 1 (Initialization):

• set G1 := {f1, . . . , fs} ;
• for i = 1, . . . , s− 1, let ai ∈ R := K[x2, . . . , xn] be the leading coefficient

of fi considered as an element of R[x1] ;
• reduce the lexicographic Gröbner basis {a1, . . . , as−1} and assign the re-

sult to G′;

Step 2 (Recursion in Dimension):

• compute L′ := triangMH (G′) (in n− 1 variables) ;
• define L to be the list of all T ′ ∪ {fs}, T ′ ∈ L′ ;

Step 3 (Iteration): for i = 1, . . . , s− 1 do

if ai �∈ 〈Gi〉
• compute the reduced lexicographic Gröbner basis G ′

i for the satu-
ration 〈Gi〉 : 〈ai〉∞;

• append the result of triangMH (G ′
i) to L;

• set Gi+1 := Gi ∪ {ai};
else set Gi+1 := Gi ;

return(L). ��

Remark 6.12. If G is the reduced lexicographic Gröbner basis for I, and if
T1, . . . , T� are the triangular bases computed by applying triangMH to G, then
I ⊂ 〈T1〉 ∩ . . . ∩ 〈T�〉 ⊂

√
I. Note that both inclusions may well be strict. ��

Example 6.13. We continue the SINGULAR session from Example 6.8, now com-
puting a triangular decomposition for the zero-dimensional ideal I under con-
sideration:

> LIB "triang.lib";

> setring R;

> ideal G = groebner(I); // option(redSB) is already set

> list T = triangMH(G); T;

[1]:

_[1]=x(5)

_[2]=x(4)



6.1 Gröbner Basis Techniques 179

_[3]=x(3)

_[4]=x(2)^2

_[5]=x(1)^4+2*x(1)^3+x(1)^2

[2]:

_[1]=9765625*x(5)^10-1

_[2]=x(4)-15625*x(5)^7

_[3]=x(3)-25*x(5)^3

_[4]=x(2)^2-781250*x(2)*x(5)^9+15625*x(5)^8

_[5]=2*x(1)+31250*x(2)*x(5)^6+625*x(5)^5+1

[3]:

_[1]=95367431640625*x(5)^20-1201171875*x(5)^10+1

_[2]=11*x(4)^2-1281738281250*x(4)*x(5)^17[...]

_[3]=11*x(3)+152587890625*x(4)*x(5)^16-1906250*x(4)*x(5)^6[...]

_[4]=22*x(2)+275*x(4)*x(5)^2+16021728515625*x(5)^19[...]

_[5]=22*x(1)+3814697265625*x(4)*x(5)^18-47656250*x(4)*x(5)^8[...]

Thus, the computed triangular decomposition of I consists of three triangular
bases. ��

Together with what we did in Section 6.1.2, we are now in the position to for-
mulate a symbolic-numerical algorithm for zero-dimensional solving:

Input: a list of polynomials f1, . . . , fr ∈ K[x] generating a zero-di-
mensional ideal of K[x], K a subfield of C.

Output: the set of all complex solutions of f1 = . . . = fr = 0 (the mul-
tiplicities of the solutions are neglected).

Step 1. Compute a reduced lexicographic Gröbner basis for I = 〈f1, . . . , fr〉.
Step 2. Starting from the Gröbner basis, compute a triangular decomposition

T1, . . . , T� for I using Algorithm 6.11.

Step 3. For each i, successively use a numerical solver to find the coordinate
entries of the complex zeros of Ti as explained in Section 6.1.2.

A SINGULAR implementation of this algorithm is accessible via the solve com-
mand provided by solve.lib. To get more reliable numerical solutions, how-
ever, it may be preferable to proceed step by step, inspecting the triangu-
lar bases obtained, and applying additional symbolic preprocessing steps, if
needed.

Example 6.14. We continue our session from Example 6.13 in which we already
computed a triangular decomposition T for the ideal I under consideration.
Now, we apply Step 3 above. For this, we make use of the triang solve
command which is also provided by the library solve.lib:

> LIB "solve.lib";

> triang_solve(T,20); // 20 digits should be displayed

// ** Laguerre: Too many iterations!

// ** rootContainer::solver: No roots found!
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We see that the numerical solver has problems to find the roots. Therefore,
some further symbolic preprocessing is advised. As a next step, we replace
each triangular basis of T by a triangular basis representing the radical of
the ideal generated by the basis. Here, we make use of the zeroRad com-
mand, which is based on Remark 6.6, and which is provided by the library
primdec.lib. Further, we factorize the first, univariate, polynomials in two
of the triangular bases.4 Here, we apply the factorize command which de-
composes a polynomial over the given coefficient field (see Lecture 7, Remark
7.1 for more on this command). Each factor leads to a new triangular basis.
We group these bases together in the new triangular decomposition TS:

> LIB "primdec.lib";

> list TR;

> int k,j;

> for (k=1; k<=size(T); k++)

. { TR = TR + triangMH(std(zeroRad(T[k]))); }

> triang_solve(TR,20);

// ** Laguerre: Too many iterations!

// ** rootContainer::solver: No roots found!

> for (k=1; k<=size(TR); k++) { print(TR[k][1]); }

x(5)

9765625*x(5)^10-1

95367431640625*x(5)^20-1201171875*x(5)^10+1

> list TS = TR[1];

> ideal J,JJ,LL;

> for (k=2; k<=size(TR); k++)

. { J = TR[k];

. LL = factorize(J[1],2)[1]; // returns nonconstant factors only

. for (j=1; j<=size(LL); j++)

. { JJ = LL[j],J[2..size(J)];

. TS = TS+list(JJ); }

. }

> size(TS); // number of triangular bases

11

> def RC = triang_solve(TS,20);

> setring RC;

> basering;

// characteristic : 0 (complex:20 digits, additional 20 digits)

// 1 parameter : I

// minpoly : (I^2+1)

// number of vars : 5

// block 1 : ordering lp

// : names x(1) x(2) x(3) x(4) x(5)

// block 2 : ordering C

> size(rlist); // number of complex solutions

32

4 Since the coefficients of these polynomials differ in size by a factor of 107, respec-
tively of 1014, they are not well-suited for direct numerical solving.
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> rlist[3]; // the third solution

[3]:

[1]:

-0.8

[2]:

(-0.16180339887498948482-I*0.11755705045849462583)

[3]:

(0.06180339887498948482+I*0.19021130325903071442)

[4]:

(0.06180339887498948482-I*0.19021130325903071442)

[5]:

(-0.16180339887498948482+I*0.11755705045849462583) ��

Having computed a triangular decomposition, we can, in principle, also make
use of it to find symbolic solutions. Typically, this requires to work over (suc-
cessive) finite extensions of the given coefficient field.

Remark 6.15 (Finite Field Extensions in SINGULAR). Recall that each
finite extension L of a perfect field K is simple, that is, L is obtained from K
by adjoining a root α of a (monic) irreducible polynomial h ∈ K[t]. As usual,
we refer to α as a primitive element and to h as the minimal polynomial
of the extension. Given a prime field K and a tower of finite extensions

K ⊂ K(α1) ⊂ K(α1, α2) ⊂ K(α1, α2, . . . , αs) = L ,

at this writing, the extension field L can only be implemented in SINGULAR

if its minimal polynomial over K is known. Given the minimal polynomial of
each extension K(α1, . . . , αi+1) ⊃ K(α1, . . . , αi), the minimal polynomial of
L ⊃ K can be computed with SINGULAR by using the command primitive

from primitiv.lib. ��

We illustrate symbolic solving by a small example:

Example 6.16. We use SINGULAR to compute symbolic solutions for the fol-
lowing zero-dimensional system of polynomial equations which is given by a
triangular basis:

z5+ z3− 2z2− 2 = y2+ z2+ 1 = x2+ 2yx− x− y − z2− 3 = 0 .

> ring R = 0, (x,y,z), lp;

> ideal I = z5+z3-2z2-2, y2+z2+1, x2+2yx-x-y-z2-3;

We begin by factorizing the univariate polynomial I[1]:

> def F = factorize(I[1],1); F;

F[1]=z3-2

F[2]=z2+1

Treating the second irreducible factor of I[1] first, we now choose Q(i) =
Q[t]/〈t2+ 1〉 as our coefficient field and substitute i for z in I:
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> ring R1 = (0,a), (x,y), lp;

> map phi = R,x,y,a;

> minpoly = number(phi(F)[2]);

> ideal Iz = phi(I); // substitute a for z

> Iz = simplify(Iz,2); Iz; // remove zero generators

Iz[1]=y2

Iz[2]=x2+2*xy-x-y-2

From the output, we read that the solutions with z-component i have y-
component 0 (and multiplicity at least 2). Substituting 0 for y, we can compute
the x-coordinates of these solutions:

> ideal Izy = reduce(Iz,std(y)); // substitute 0 for y

> Izy = simplify(Izy,2); Izy;

Izy[1]=x2-x-2

> def Fzy = factorize(Izy[1],1); Fzy;

Fzy[1]=x-2

Fzy[2]=x+1

So far, we got the four solutions (2, 0,±i), (−1, 0,±i) of I (each of these
solutions has multiplicity 2). We continue by considering the first irreducible
factor z3− 2 of I[1]. Proceeding as above, we get

> ring R2 = (0,b), (x,y), lp;

> map phi = R,x,y,b;

> minpoly = number(phi(F)[1]);

> ideal Iz = phi(I); // substitute a for z

> Iz = simplify(Iz,2); Iz; // remove zero generators

Iz[1]=y2+(b2+1)

Iz[2]=x2+2*xy-x-y+(-b2-3)

> def Fz = factorize(Iz[1],1); Fz;

Fz[1]=y2+(b2+1)

The output shows that we have to adjoin i
√

( 3
√

2)2+ 1 to the coefficient field

Q[t]/〈t3− 2〉 = Q( 3
√

2). As discussed in Remark 6.15, we apply the command
primitive from primitiv.lib:

> LIB "primitiv.lib";

> ring S = 0, (b,c), dp;

> ideal E = b3-2, c2+(b2+1);

> def L = primitive(E); L;

L[1]=c6+3c4+3c2+5

L[2]=1/2c4+c2+1/2

L[3]=c

The entry L[1] is the minimal polynomial of the simple extension and L[2],

L[3] represent 3
√

2, i
√

( 3
√

2)2+ 1.
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> ring R3 = (0,c), x, lp;

> def L = imap(S,L);

> map phi = R, x, L[3], L[2];

> minpoly = number(L[1]);

> ideal Izy = simplify(phi(I),2); Izy;

Izy[1]=x2+(2c-1)*x+(c2-c-2)

> def Fzy = factorize(Izy[1],1); Fzy;

Fzy[1]=x+(c+1)

Fzy[2]=x+(c-2)

Thus, we found four more solutions of I:(
−1∓ i

√
(

3
√

2)2+ 1, ±i

√
(

3
√

2)2+ 1,
3
√

2

)
,(

2∓ i

√
(

3
√

2)2+ 1, ±i

√
(

3
√

2)2+ 1,
3
√

2

)
.

We leave it as an exercise to compute the remaining eight solutions (corre-
sponding to the remaining two zeros of z3− 2). This requires a further field
extension. ��

Remark 6.17. Triangular decompositions can be defined and computed for
ideals of positive dimension, too (see Aubry, Lazard, and Moreno Maza (1999),
and Gräbe (1995b)). For a comparison of triangular decomposition methods
which do not rely on Gröbner basis computations, see Aubry and Moreno
Maza (1999). ��

6.2 Resultant Based Methods

In this section, we briefly discuss a classical approach to the elimination prob-
lem which makes use of resultants. Before turning to the general concept of
multipolynomial resultants and their application to the solving problem, we
consider the well-known Sylvester resultant of two univariate polynomials.

6.2.1 The Sylvester Resultant

If R is a ring, and if

f =

d∑
i=0

aix
i , g =

e∑
j=0

bjx
j ∈ R[x]

are two polynomials of positive degrees d, e, the Sylvester resultant of f
and g is the determinant
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Res(f, g) := det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ad ad−1 . . . a0

ad ad−1 . . . a0

. . .
. . .

ad ad−1 . . . a0

be be−1 . . . . . . b0

. . .
. . .

be be−1 . . . . . . b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R .

Here, the matrix has e rows containing ai’s and d rows containing bj ’s.

The Sylvester resultant has the following key properties:

(R1) If R is a unique factorization domain, then Res(f, g) = 0 iff f and g
have a common nonconstant factor in R[x].

(R2) If R is an integral domain, then Res(f, g) = Af + Bg for some polyno-
mials A, B ∈ R[x].

Remark 6.18. Note that the Sylvester resultant is an integer polynomial in
the coefficients of f and g. That is, there is a polynomial

Res(d,e) ∈ Z[u0, . . . , ud, v0, . . . , ve]

such that if f, g are as above, then

Res(f, g) = Res(d,e)(a0, . . . , ad, b0, . . . , be) .

Similarly, we may think of A and B in (R2) as integer polynomials in the
coefficients of f and g. ��

The property (R2) implies that Res(f, g) ∈ 〈f, g〉 ∩R. As demonstrated by the
following example, this makes the resultant applicable to elimination prob-
lems:

Example 6.19. Consider the polynomials

f = xy2 − xy − y3 + 1 , g = x2y2 − x2y + xy − 1 ∈ Q[x, y] .

Here, we face two variables, but we can “hide” the y-variable by regarding f
and g as univariate polynomials in x with coefficients in R = Q[y]. Then

Res(f, g) = det

⎛⎝ y2− y −y3+ 1 0
0 y2− y −y3+ 1

y2− y y −1

⎞⎠
= y8− y7+ y6− 3y5+ y4+ y3+ y2− y .

We compute this resultant and its irreducible factors using SINGULAR:
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> ring S = 0, (x,y), dp;

> poly f, g = xy2-xy-y3+1, x2y2-x2y+xy-1;

> poly r = resultant(f,g,x); r;

y8-y7+y6-3y5+y4+y3+y2-y;

> factorize(r,2); // display nonconstant factors only

[1]:

_[1]=y-1

_[2]=y

_[3]=y5+y4+2y3-y-1

[2]:

2,1,1

As stated above, Res(f, g) is contained in the elimination ideal 〈f, g〉 ∩Q[y]. It
follows that the y-coordinates of all complex solutions of f(x, y) = g(x, y) = 0
must be zeros of Res(f, g) = y(y − 1)2(y5+ y4+ 2y3− y − 1). That is, if π :
V(f, g)→ A1 is the projection which sends (a, b) to b, then

π(V(f, g)) ⊂ V(Res(f, g)) .

To determine the points of V(Res(f, g)) which are not in the image of π (if
any), observe that if none of the leading coefficients of f, g ∈ R[x] vanishes at
y0 ∈ A1, then the resultant of the univariate polynomials f(x, y0), g(x, y0) ∈
C[x] coincides with Res(f, g)(y0). In our example, this shows that π(V(f, g))
contains V

(
Res(f, g)

)
\V(y2− y) (use property (R1) of the resultant).

It, thus, remains to check the points in V(y2− y). Since f(x, 1) = 0,
g(x, 1) = x− 1, we get that y0 = 1 is in the image of π. In contrast, f(x, 0) = 1
is a nonzero constant, so y0 = 0 is not the y-coordinate of a complex solution
of f(x, y) = g(x, y) = 0. In fact, y0 = 0 is not a zero of the generator of the
elimination ideal I1 = 〈f, g〉 ∩Q[y]:

> ideal I1 = eliminate(ideal(f,g),x);

> I1;

I1[1]=y6+y4-2y3-y2+1

> factorize(I1[1],2);

[1]:

_[1]=y-1

_[2]=y5+y4+2y3-y-1

[2]:

1,1 ��
The considerations made in the example lead to the following remark:

Remark 6.20. Let f =
∑d

i=0 aix
i, g =

∑e
j=0 bjx

j be polynomials of positive
degrees d, e in x, with coefficients ai, bj ∈ R = K[y] = K[y1, . . . , ym]. Further,
suppose that ad and be are (nonzero) constants. Then

V
(
Res(f, g)

)
= V

(
〈f, g〉 ∩K[y]

)
⊂ Am .

Note, however, that even in this case, 〈Res(f, g)〉 may be a proper subideal of
the elimination ideal 〈f, g〉 ∩K[y]:
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> ring S = 0, (x,y), dp;

> poly f, g = x2+y2-1, x2+2y2-1;

> resultant(f,g,x);

y4

> eliminate(ideal(f,g),x);

_[1]=y2 ��

Actually, using generalized resultants as in Example 6.24 below, one can prove
the following theorem (see Cox, Little, and O’Shea (1997), Chapter 3, §6):

Theorem 6.21 (Extension Theorem). Let I = 〈f1, . . . , fr〉 ⊂ K[x], let
1 ≤ k ≤ n, and let Gk−1 be a lexicographic Gröbner basis for the elimina-
tion ideal Ik−1. Regard the elements of Gk−1 as univariate polynomials in
K[xk+1, . . . , xn][xk]. If the leading coefficients of the elements of Gk−1 do not
all vanish at

(ak+1, . . . , an) ∈ V(Ik) ⊂ An−k ,

then there is some ak ∈ A1 such that

(ak, . . . , an) ∈ V(Ik−1) .

In the situation of the theorem, we also say that (ak+1, . . . , an) is a partial
solution of I.

Remark 6.22. Theorem 6.21 yields an alternative method for zero-dimen-
sional solving by elimination. Indeed, after a general change of coordinates,
the assumption of Theorem 6.21 is satisfied for all k (if K is infinite, the
change of coordinates can be taken to be linear; see, for instance, Decker
and Schreyer (2006), Chapter 3). We may, then, proceed similar to Section
6.1.2, successively extending partial solutions to solutions. Since each partial
solution can be extended, we do not have to discard nonsolutions in a final
step. Nevertheless, from a practical point of view, this method is usually too
expensive. Applying a general coordinate transformation destroys sparseness
and makes all subsequent computations much more involved. ��

In the next two examples, we use resultants to compute defining equations for
parametrized curves. The first example is taken from Cattani and Dickenstein
(2005). It shows that resultant based methods may behave much better than
Gröbner basis techniques.5

Example 6.23 (Fröberg). We compute a defining equation for the affine plane
curve given by the polynomial parametrization

t 
→
(
t32, t48− t56− t60− t62− t63

)
:

5 Via a Hilbert driven approach, we also succeeded to compute the desired equation
using the eliminate command. On its way, SINGULAR allocated more than 7 GB
of memory, and it took more than 2 days of computing to get the result.
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> ring R = 0, (x,y,t), dp;

> poly f = x-t32;

> poly g = y-t48+t56+t60+t62+t63;

> int aa = timer;

> poly h = resultant(f,g,t);

> timer-aa;

2

> h;

x63-595965x62-32x61y+6143174x61+3656768x60y+464x59y2-70859517x60

-65651616x59y-13277840x58y2-4064x57y3+49771514x59+220805184x58y+

[...]

-448x8y27-88x7y28-120x6y28+32x5y29+16x3y30-y32

> deg(h); // the total degree

63

> size(h); // number of terms of h

257

The result of the computation is a polynomial h of degree 63 which is the de-
gree expected by Bézout’s Theorem. It follows that h generates the elimination
ideal 〈f, g〉 ∩Q[x, y], where f = x− t32, g = y − t48+ t56+ t60+ t62+ t63. ��

Example 6.24. We compute the equations of the affine twisted cubic curve
C ⊂ A3 = A3(C) from its parametrization t 
→

(
t, t2, t3

)
. Now, we face the

problem of eliminating t from the ideal of Q[x, y, z, t] generated by the three
polynomials f1 = x− t, f2 = y − t2, f3 = z − t3, and we cannot apply the
Sylvester resultant directly. To overcome this problem, we introduce auxiliary
variables u2, u3 and compute

h = Res
(
f1, u2f2 + u3f3

)
∈ Q[x, y, z, u2, u3] :

> ring R = 0, (x,y,z,t,u(2),u(3)), dp;

> poly f(1), f(2), f(3) = x-t, y-t2, z-t3;

> poly h = resultant(f(1), u(2)*f(2)+u(3)*f(3), t);

> h;

x^3*u(3)+x^2*u(2)-y*u(2)-z*u(3)

Considering h = h(u2, u3) as an element of Q[x, y, z][u2, u3], we refer to its
coefficients as generalized resultants. If a, b ∈ Q, b �= 0, then h(a, b) coin-
cides with the resultant of f1 and af2 + bf3. It is, thus, an element of the
elimination ideal 〈f1, af2 + bf3〉 ∩Q[x, y, z]. In particular, for all (a, b) ∈ Q2

with b �= 0, h(a, b) vanishes along C = V(〈f1, f2, f3〉 ∩Q[x, y, z]). This implies
that each of the generalized resultants vanishes along C. We compute:

> ideal CO = coeffs(coeffs(h,u(2)),u(3));

> simplify(CO,2); // remove zeros among generators of CO

_[1]=x^3-z

_[2]=x^2-y

The equations are also obtained by computing several Sylvester resultants:
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> resultant(f(1),f(2),t);

-x^2+y

> resultant(f(1),f(3),t);

x^3-z ��

6.2.2 Multipolynomial Resultants

If R is a ring and

F =
d∑

i=0

aix
iyd−i , G =

e∑
j=0

bjx
jye−j ∈ R[x, y]

are homogeneous polynomials of positive degrees d, e in two variables x, y, we
may define the resultant Res(d,e)(F, G) of F and G using the same determinant
as in the univariate case. If R = K is a field, then Res(d,e)(F, G) is zero iff the
system F = G = 0 has a nontrivial solution (that is, a solution in the affine
space over the algebraic closure of K which is different from the origin). In
fact, this essentially follows from property (R1) of the Sylvester resultant (see
Cox, Little, and O’Shea (1998), Chapter 3, Proposition 1.7).

To generalize this, we consider variables x0, . . . , xn and fix positive de-
grees d0, . . . , dn. If α = (α0, . . . , αn) ∈ Nn+1, we write |α| = α0 + · · ·+ αn and
xα = xα0

0 · · ·xαn
n . For each pair i, α, where i ∈ {0, . . . , n} and |α| = di, we in-

troduce a new variable ui,α.

Theorem 6.25 (Multipolynomial Resultant). Let d0, . . . , dn be positive
integers. There is a unique irreducible polynomial

Res(d0,...,dn) ∈ Z
[
ui,α

∣∣ i = 0, . . . , n, |α| = di

]
such that the following hold:

(1) If K is a field and F0, . . . , Fn ∈K[x0, . . . , xn] are homogeneous of degrees
d0, . . . , dn, then Res(d0,...,dn)(F0, . . . , Fn) is zero iff the system F0 = . . . =
Fn = 0 has a nontrivial solution.

(2) Res(d0,...,dn)(x
d0

0 , . . . , xdn
n ) = 1.

Here, Res(d0,...,dn)(F0, . . . , Fn) ∈ K denotes the value obtained by replacing
each variable ui,α in Res(d0,...,dn) with the coefficient of xα in Fi. ��

We call the polynomial Res(d0,...,dn) the (multipolynomial) resultant (in
degrees d0, . . . , dn). To show the uniqueness of the resultant is an easy exercise.
For a proof of existence, we refer to Gelfand, Kapranov, and Zelevinsky (1994),
Chapter 13, respectively van der Waerden (1931), Chapter XI.

One important property of the resultant is that for each fixed i, it is a
homogeneous polynomial in the ui,α. More precisely, we have the following
result:
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Theorem 6.26. The resultant Res(d0,...,dn) is a homogeneous polynomial of
degree d0 · · ·di−1di+1 · · ·dn in the variables ui,α, |α| = di.

See Gelfand, Kapranov, and Zelevinsky (1994), Proposition 13.1.1.

Remark 6.27 (Computing Multipolynomial Resultants). By its very
definition, the Sylvester resultant can be expressed as a single determinant.
Except in special cases, it is not known whether this is possible for the multi-
polynomial resultant (see Weyman and Zelevinsky (1994) for a discussion of
this problem). There are, however, several classical approaches to representing
and computing the resultant (see Gelfand, Kapranov, and Zelevinsky (1994),
Chapter 13 for an overview). For a recent method to find resultant formulas
via exterior algebra methods, see Eisenbud and Schreyer (2003). ��

The SINGULAR implementation of multipolynomial resultants is based on the
method of Macaulay (1903) which we describe now. We follow the presen-
tation in Cox, Little, and O’Shea (1998). For each i, consider the universal
homogeneous polynomials of degree di:

F i =
∑

|α|=di

ui,αxα ∈ Z[ui,α

∣∣ |α| = di

]
[x0, . . . , xn] .

Set

d := −n +

n∑
i=0

di .

Then each α = (α0, . . . , αn) ∈ Nn+1 with |α| = d satisfies αi ≥ di for at least
one index i (and d is the minimal integer with this property). Ordering the
variables such that x0 > x1 > . . . > xn and defining

Si :=
{
xα
∣∣ |α| = d and xi is the least variable such that αi ≥ di

}
,

i = 0, . . . , n, we get a partition of K[x0, . . . , xn]d into disjoint subsets:

K[x0, . . . , xn]d = S0 ∪· . . . ∪· Sn . (6.8)

Consider the following system of polynomial equations:

xα0−d0

0 xα1

1 · · ·xαn
n · F 0 = 0 for all α such that xα ∈ S0 ,

xα0

0 xα1−d1

1 · · ·xαn
n · F 1 = 0 for all α such that xα ∈ S1 ,

...
...

xα0

0 xα1

1 · · ·xαn−dn
n · F n = 0 for all α such that xα ∈ Sn .

(6.9)

Regarding the monomials of degree d as unknowns, we get
(
d+n

d

)
linear equa-

tions in
(
d+n

d

)
unknowns. Let M0 be the coefficient matrix of this system of

linear equations, and set

D0 := det(M0) ∈ Z[ui,α

∣∣ i = 0, . . . , n, |α| = di

]
.

Then each nonzero entry of M0 equals some ui,α and the following holds:
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Theorem 6.28. (1) D0 is an integer polynomial in the ui,α.
(2) For a fixed i, D0 is homogeneous in the ui,α of degree equal to the number

of elements in Si. In particular, D0 is homogeneous of degree d1 · · · dn in
the u0,α.

(3) D0 is divisible by the multipolynomial resultant Res(d0,...,dn).

For (3), note that substituting the coordinates of a zero p ∈ A(d+n
d ) of the

resultant Res(d0,...,dn) for the ui,α in the F i, the system (6.9) has a nontrivial
solution (by the defining property of the resultant). Hence, the determinant
D0 vanishes at p, too.

The partition (6.8) depends on the chosen ordering of the x-variables. We
may repeat the construction by choosing any ordering of the variables such
that xk (in place of x0) is the largest variable. Let Dk denote the resulting de-
terminant. Then Dk is divisible by Res(d0,...,dn) and is homogeneous of degree
d0 · · · dk−1dk+1 · · · dn in the uk,α. A reasoning on degrees shows:

Theorem 6.29. The resultant Res(d0,...,dn) is the greatest common divisor of

D0, . . . , Dn in the ring Z
[
ui,α

∣∣ i = 0, . . . , n, |α| = di

]
(up to sign).

For practical applications, however, computing the polynomials D0, . . . , Dn

and their gcd is too involved. Going one step further, Macaulay represented
the resultant as a quotient of two polynomials. More precisely, he showed that
the “extraneous factor” D0/ Res(d0,...,dn) is a minor of the matrix M0 and he
gave an explicit description of the corresponding square submatrix.

In Exercise 4.6, we will explore Macaulay’s formula to compute Res(2,2,2).
We will see that this resultant (which is a polynomial in 18 variables) has total
degree 12 and consists of 21894 terms. This indicates that multipolynomial
resultants tend to be huge expressions which are difficult to represent and
compute.

6.2.3 Zero-Dimensional Solving via Resultants

In the remaining part of this lecture, we suppose that K is a subfield of C.
We consider a (quadratic) system of equations

f1(x1, . . . , xn) = . . . = fn(x1, . . . , xn) = 0 , (6.10)

where f1, . . . , fn ∈ K[x1, . . . , xn] are polynomials of degrees d1, . . . , dn, and
we write

A = V(f1, . . . , fn) ⊂ An(C)

for the set of complex solutions of the system.
In the results below, we specify conditions on f1, . . . , fn which allow us to

find the solutions by using resultants. To be able to apply the multipolynomial
resultant, we have to consider homogeneous polynomials. Homogenizing the
fi with respect to a slack variable x0, we get n polynomials
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Fi := fhom
i , i = 1, . . . , n ,

in n + 1 variables. Thus, we cannot apply the multipolynomial resultant
directly. We overcome this problem by either adding another equation (u-
resultant method) or by regarding one variable as a constant as in Example
6.19 (hidden variable method).

The u-resultant method, which is due to van der Waerden (1931), is based
on the following theorem (see Cox, Little, and O’Shea (1998), Chapter 4,
Proposition (2.8)). In formulating the theorem, we say that the system (6.10)
has no solutions at infinity if the homogenized system F1 = . . . = Fn = 0
has no solutions in the hyperplane V(x0) ⊂ Pn(C). Equivalently, the resultant
Res(d1,...,dn)(F1|x0=0, . . . , Fn|x0=0) is nonzero.

Theorem 6.30 (u-Resultant). Suppose that the system (6.10) has no so-
lutions at infinity6. Further, let

F0 = x0u0 + u1x1 + . . . + unxn ∈ K(u0, . . . , un)[x0, . . . , xn] ,

where u0, . . . , un are auxiliary variables. Then

Res(1,d1,...,dn)

(
F0, F1, . . . , Fn

)
(6.11)

= c ·
∏
p∈A

(u0 + a1u1 + . . . + anun)mult (p|I) ,

for some nonzero scalar c ∈ K. Here, mult (p | I) denotes the multiplicity of
p = (a1, . . . , an) as a solution of I = 〈f1, . . . , fn〉. 7

We call Res(1,d1,...,dn)

(
F0, F1, . . . , Fn

)
the u-resultant of the system (6.10).

Theorem 6.30 implies that we can compute the set A by multivariate
absolute polynomial factorization8, provided we have already computed the
u-resultant.

Remark 6.31. It follows from Macaulay’s description of the extraneous fac-
tor D0/ Res(d0,...,dn) that the u-resultant of the system (6.10) and the de-
terminant D0 evaluated at the coefficients of F0, F1, . . . , Fn differ only by a
scalar factor when regarded as polynomials in K[u0, . . . , un]. Moreover, for a
“generic” system (6.10), the scalar is nonzero. If this is the case, the complex
zeros of the system can already be read from D0. ��

Example 6.32. Using the SINGULAR command mpresmat, we compute the com-
mon zeros of a plane cubic and a plane quadric in A2(C). In response to
entering mpresmat(I,1);, SINGULAR will compute the matrix M0 (whose de-
terminant is D0), evaluated at the coefficients of the given generators for I.
Here, SINGULAR expects that I is given by n + 1 homogeneous polynomials in

6 Note that this condition implies that the system (6.10) is zero-dimensional.
7 See Lecture 9, Section 9.4 for the definition of mult (p | I).
8 See Lecture 7, Remark 7.1 for absolute factorization.
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n + 1 variables (the first generator must implement the u-polynomial F0). At
this writing, SINGULAR returns the matrix such that the parameters u0, . . . , un

are replaced by the corresponding ring variables x0, . . . , xn (thus, factorizing
D0 = det(M0) does not require to change the active ring):

> ring R = (0,u,v,w), (x,y,z), dp;

> poly f1 = x3+y-xy-1;

> poly f2 = x2+y2+4x+4y-2;

> ideal I = ux+vy+wz, homog(f1,z), homog(f2,z);

> def M0 = mpresmat(I,1); // the evaluated matrix M_0

> nrows(M0); // the number of rows of M_0

15

> poly D0 = det(M0); // the value of D_0

> D0;

12*x6-64*x5y+140*x4y2-352*x3y3+804*x2y4-864*xy5+324*y6-16*x5z

+56*x4yz+32*x3y2z+48*x2y3z-336*xy4z+216*y5z-36*x4z2+64*x3yz2-

264*x2y2z2+672*xy3z2-564*y4z2+16*x3z3+32*x2yz3-208*xy2z3-

160*y3z3+20*x2z4+32*xyz4+236*y2z4-56*yz5+4*z6

As expected, we get a polynomial of degree 6. Applying factorize, we com-
pute the multivariate factorization of M0 over Q:

> int aa = timer;

> factorize(D0);

[1]:

_[1]=4

_[2]=3*x3-x2y+9*xy2-27*y3-7*x2z-14*xyz-27*y2z+xz2+11*yz2-z3

_[3]=x-3*y+z

_[4]=x-y-z

_[5]=x-y+z

[2]:

1,1,1,1,1

> timer-aa;

0

We see that there are 6 complex solutions of I, namely the three rational
points (1,−3), (−1, 1), and (1,−1), and a triple of points which are pair-
wise conjugate over Q. For more information on the latter points, use the
absFactorize command (see Lecture 7, Remark 7.1 for this command). ��

From a practical point of view, multivariate polynomial factorization is usually
too expensive. By conveniently specializing the coefficients ui in F0, it suffices
to apply univariate solving. For instance, setting u = (u0;−ei), where ei is
the ith canonical basis vector of Kn, we get a resultant in K[u0] whose zeros
are the possible xi coordinates of the solutions.

Example 6.33. We continue the session from Example 6.32, using univariate
instead of multivariate factorization:
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> map phi = R,-1,0,z;

> poly D0x = phi(D0);

> factorize(D0x); // x-coordinates

[1]:

_[1]=4

_[2]=z-1

_[3]=z3+z2+7*z+3

_[4]=z+1

[2]:

1,2,1,1

> map psi = R,0,-1,z;

> poly D0y = psi(D0);

> factorize(D0y); // y-coordinates

[1]:

_[1]=4

_[2]=z-1

_[3]=z3+11*z2+27*z-27

_[4]=z+1

_[5]=z+3

[2]:

1,1,1,1,1

Thus, the possible x values of the solutions are 1,−1, λ1, λ2, λ3, where λ1, λ2, λ3

are the complex roots of z3+z2+7z+3; the possible y values are 1,−1,−3, μ1,
μ2, μ3, where μ1, μ2, μ3 are the complex roots of z3+11z2+27z−27. ��
Without printing the computation, we remark that the same sets of values
are obtained by applying the hidden variable method which is based on the
following theorem (see Cox, Little, and O’Shea (1998), Chapter 4, Formula
(2.9)):

Theorem 6.34 (Hidden Variable). Assume that the system (6.10) has no
solutions at infinity. Further, let δi be the degree of fi as a polynomial in
x1, . . . , xn−1 (with coefficients in R = K[xn]), and set

F̂i = xδi
0 · fi

(
x1

x0
, . . . ,

xn−1

x0
, xn

)
∈ R[x0, x1, . . . , xn−1] ,

i = 1, . . . , n. Then

Res(δ1,...,δn)

(
F̂1, . . . , F̂n

)
= c ·

∏
p∈A

(xn − an)mult (p|I) , (6.12)

for some nonzero scalar c ∈ K. Here, mult (p | I) denotes the multiplicity of
p = (a1, . . . , an) as a solution of I = 〈f1, . . . , fn〉.
The advantage of the hidden variable method is that it involves resultants
with less variables than the u-resultant method. The u-resultant method has
the advantage that additionally to the coordinates, it provides information on
how these match up to solutions (replace the ui by different values as in Steps
3 and 4 of Algorithm 6.44 below).
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Remark 6.35 (Symbolic-Numerical Approach). If one is only interested
in floating point approximations of the solutions, for both methods, the uni-
variate factorization may be replaced by a numerical univariate solver. ��

As mentioned before, multipolynomial resultants tend to be huge polynomial
expressions. This severely restricts their applicability to practical problems.
On the other hand, most systems of polynomial equations arising from such
problems are sparse in the sense that only a few monomials appear with a
nonzero coefficient. The concept of sparse resultants takes this into account.

Sparse Resultants

In what follows, we roughly sketch the concept of sparse resultants. For more
general statements, details and proofs, we refer to Gelfand, Kapranov, and
Zelevinsky (1994), Chapter 8, and Cox, Little, and O’Shea (1998), Chapter
7. We begin by introducing some notation. A polytope in Rn is the convex
hull

conv(A) :=

{
s∑

i=1

λiα
(i)

∣∣∣∣ 0 ≤ λi ≤ 1 ,
s∑

i=1

λi = 1

}
⊂ Rn

of a finite subset A = {α(1), . . . , α(s)} of Rn. Such a polytope has dimension
n if the vectors α(i)−α(1) span Rn as a real vector space.

Definition 6.36. The support of a polynomial f =
∑

α∈Nn cαxα ∈ K[x] =
K[x1, . . . , xn] is the finite setA = {α ∈ Nn | cα �= 0} ⊂ Nn. Its Newton poly-
tope is the convex hull conv(A). ��

Theorem 6.37 (Sparse Resultant). Let A0, . . . ,An be finite subsets of Nn

such that each conv(Ai) is an n-dimensional polytope. Then there is an irre-
ducible polynomial (unique up to sign)

Res(A0,...,An) ∈ Z
[
ui,α

∣∣ i = 0, . . . , n, α ∈ Ai

]
such that the following holds: If g0, . . . , gn ∈ K[x] are polynomials such that
the system g0 = . . . = gn = 0 has a solution in (C \ {0})n and such that, for
each i, the support of gi is contained in Ai, then Res(A0,...,An)(g0, . . . , gn) = 0.9

Here, Res(A0,...,An)(g0, . . . , gn) denotes again the value obtained by replacing
each variable ui,α with the coefficient of xα in gi.

Definition 6.38. The polynomial Res(A0,...,An) is referred to as a (mixed)
sparse resultant or as the (A0, . . . ,An)-resultant. ��

Theorem 6.39. Let A0, . . . ,An be as in Theorem 6.37. Suppose, additionally,
that the union of the Ai generates Zn as an affine lattice (that is, there are
finitely many α(j)∈ A0 ∪ . . . ∪ An such that

∑
j(α

(j)−α(1)) · Z = Zn).

9 Note that it may happen that Res(A0,...,An)(g0, . . . , gn) = 0 though the system
g0 = . . . = gn = 0 has no solution in the complex torus (C \ {0})n.
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Then, as a polynomial in the variables ui,α, α ∈ Ai, the mixed sparse re-
sultant Res(A0,...,An) is homogeneous of degree

degi(Res(A0,...,An)) =

n∑
�=1

(−1)n−�
∑

T ⊂{0, . . . , n}\{i}
|T | = �

Voln

⎛⎝∑
j∈T

conv(Aj)

⎞⎠ .

Here, Voln denotes the n-dimensional volume and
∑

j∈T conv(Aj) refers to
the Minkowski sum

∑
j∈T

conv(Aj) =

{∑
j∈T

pj ∈ Rn

∣∣∣∣∣ pj ∈ conv(Aj) for all j ∈ T

}
.

Remark 6.40 (Computing Sparse Resultants). To our knowledge, the
first constructive method for computing and evaluating sparse resultants was
proposed by Sturmfels (1993a) (for the case A0 = . . . = An). Later on, Canny
and Emiris (1993-2000) designed several algorithms for computing mixed
sparse resultants. A nice description of such an algorithm (partly following
the lines of Macaulay’s method for the computation of multipolynomial resul-
tants) can be found in Cox, Little, and O’Shea (1998), Section 7.6. ��

Example 6.41. Consider the three quadratic polynomials

f0 = a1 + a2xy + a3y
2 , f1 = b1 + b2xy + b3y

2 , f2 = c1x + c2y + c3xy

as elements of Q(a, b, c)[x, y]. The respective supports are

A0 = A1 = {(0, 0), (1, 1), (0, 2)} , A2 = {(1, 0), (0, 1), (1, 1)} .

In particular, each convex hull conv(Ai) is a two-dimensional polytope:

conv(A0) conv(A1) conv(A2)

We may compute the sparse resultant ResA0,A1,A2
(f0, f1, f2) ∈ Q(a, b, c) us-

ing the SINGULAR command mpresmat. More precisely, when called with the
integer 0 as a second input, mpresmat computes a matrix M0 whose deter-
minant is some multiple of the mixed sparse resultant (evaluated at the co-
efficients of the given generators for the first entry of mpresmat). The imple-
mented algorithm is based on Canny and Emiris (2000). In the construction
of the matrix M0, combinatorial rules involving particular subdivisions of the
Minkowski sum

∑
i conv(Ai) are applied.
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> ring R = (0,a(1..3),b(1..3),c(1..3)), (x,y), dp;

> poly f0 = a(1)+a(2)*xy+a(3)*y2;

> poly f1 = b(1)+b(2)*xy+b(3)*y2;

> poly f2 = c(1)*x+c(2)*y+c(3)*xy;

> ideal I = f0, f1, f2;

> def M0 = mpresmat(I,0); // M0 depends on random choices

> print(M0);

(b(1)),0, 0, 0, 0, 0, 0, 0, 0,

0, (a(1)),0, (b(1)),0, 0, 0, 0, 0,

(b(3)),0, (a(1)),0, (b(1)),0, (c(2)),0, 0,

0, (a(3)),0, (b(3)),0, 0, 0, (c(2)),0,

0, 0, (a(3)),0, (b(3)),0, 0, 0, 0,

(b(2)),0, 0, 0, 0, (b(1)),(c(1)),0, (a(1)),

0, (a(2)),0, (b(2)),0, 0, (c(3)),(c(1)),0,

0, 0, (a(2)),0, (b(2)),(b(3)),0, (c(3)),(a(3)),

0, 0, 0, 0, 0, (b(2)),0, 0, (a(2))

> def p = det(M0);

> p;

(-a(1)^3*b(1)*b(2)*b(3)^2*c(3)^2+ [...]

Considering the determinant det(M0) as an element of Z[a, b, c], we see that
it has degree 3 as a polynomial in the ai, degree 4 in the bi and degree 2 in
the ci. On the other hand, Theorem 6.39 yields that the sparse resultant has
degree 3 in the ai, degree 3 in the bi and degree 2 in the ci. Thus, det(M0)
must have a (homogeneous) extraneous linear factor in the bi. We determine
this factor via multivariate polynomial factorization:

> ring S = 0, (a(1..3),b(1..3),c(1..3)), dp;

> poly p = imap(R,p);

> factorize(p,1);

_[1]=b(1)

_[2]=a(3)^3*b(1)^2*b(2)*c(1)^2-a(2)*a(3)^2*b(1)^2*b(3)*c(1)^2- [...]

��

We come back to our polynomials f1, . . . , fn ∈ K[x] and their set of solutions

A = V(f1, . . . , fn) ⊂ An = An(C) .

Let Ai be the support of fi, i = 1, . . . , n. As a consequence of Theorem 1.1 in
Pedersen and Sturmfels (1993), we obtain a sparse version of Theorem 6.30:

Theorem 6.42 (Sparse u-Resultant). With notations as above, sup-
pose that, for each 1 ≤ i ≤ n, the Newton polytope conv(Ai) of fi is an n-
dimensional polytope. Moreover, suppose that A ⊂ (C \ {0})n. Let

f0 = u0 + u1x1 + . . . + unxn ∈ K(u0, . . . , un)[x] ,

where u0, . . . , un are auxiliary variables, and let A0 = {0, e1, . . . , en}, where
ei denotes the ith canonical basis vector of Rn. Then
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Res(A0,A1,...,An)

(
f0, f1, . . . , fn

)
(6.13)

= c ·
∏
p∈A

(u0 + a1u1 + . . . + anun)mult (p|I) ,

for some scalar c ∈ K. Here, mult (p | I) denotes the multiplicity of the point
p = (a1, . . . , an) as a solution of I = 〈f1, . . . , fn〉. If the coefficients of the fi

are generically chosen10, then c is nonzero.

Remark 6.43. The statement remains true, if we replace the sparse resultant
Res(A0,A1,...,An)

(
f0, f1, . . . , fn

)
by the determinant of the sparse resultant ma-

trix M0 introduced in Example 6.41 (see Canny and Emiris (2000), Theorem
7.4 and Corollary 6.5).

Even more, if each fi, i = 1, . . . , n, has an n-dimensional Newton polytope,
and if det(M0) �= 0, then there is a nonzero scalar c′ such that

det(M0) = c′ ·
∏

p∈A′

(u0 + a1u1 + · · ·+ anun)mult (p|I) ,

for some subset A′ ⊂ A containing A ∩ (C \ {0})n. ��

We, thus, have the skeleton of an algorithm for solving quadratic zero-dimen-
sional systems of complex polynomial equations via sparse resultants:

Algorithm 6.44 (ures solve).

Input: f1, . . . , fn ∈ K[x] = K[x1, . . . , xn], K ⊂ C a subfield.

Assume: f1, . . . , fn have n-dimensional Newton polytopes.

Output: a set of complex solutions of f1 = . . . = fn = 0, including all
solutions which lie in the complex torus (C \ {0})n,
or an error message (nongeneric case).

Step 1. Make R := K(u0, . . . , un)[x1, . . . , xn] the active ring, map f1, . . . , fn

to R, and set f0 := u0 + u1x1 + . . . + unxn.

Step 2. Construct M0(u0; u1, . . . , un), the sparse resultant matrix evaluated
at (f0, . . . , fn). If det(M0(u0; u1, . . . , un)) = 0, return an error message.

Step 3. Compute a set containing all candidates for solutions: let Li be the set
of all roots of det(M0(u0;−ei)

)
. Then the ith coordinate of each solution

(a1, . . . , an) ∈ (C \ {0})n of f1 = . . . = fn = 0 is contained in Li.

Step 4. Identify the solutions among the candidates: solve successively

det
(
M0(u0; n1, . . . , ni, 0, . . . , 0)

)
= 0 ,

where n1, . . . , ni are random integers, and compare the zeros with the
candidates a1n1 + . . . + aini as computed in Step 3.

10 The set of all polynomial vectors (f1, . . . , fn) with nonvanishing scalar factor c in
(6.13) is Zariski dense in the product of the spaces of polynomials with support
in Ai, i = 1, . . . , n.
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Step 5. Return the solutions. ��

Example 6.45. We reconsider Example 6.32, now computing a sparse resultant
matrix:

> ring R = (0,u,v,w), (x,y), dp;

> poly f1 = x3+y-xy-1;

> poly f2 = x2+y2+4x+4y-2;

> ideal I = u+vx+wy, f1, f2;

> def M0 = mpresmat(I,0); // the evaluated sparse resultant matrix

> nrows(M0);

13

> def D0 = det(M0);

> ring S = 0, (u,v,w), dp;

> poly D0 = imap(R,D0);

> map phi = S,u,-1,0;

> factorize(phi(D0)); // determine x-coordinates of solutions

[1]:

_[1]=2

_[2]=u-1

_[3]=u3+u2+7u+3

_[4]=u+1

[2]:

1,2,1,1

> map psi = S,u,0,-1;

> factorize(psi(D0)); // determine y-coordinates of solutions

[1]:

_[1]=2

_[2]=u-1

_[3]=u3+11u2+27u-27

_[4]=u+1

_[5]=u+3

[2]:

1,1,1,1,1

From the output, we read the same possible x and y values of the solutions as
in Example 6.33. We continue with Step 4 of the algorithm, choosing n1 = 1,
n2 = 3:

> map psi_13 = S,u,1,3;

> factorize(psi_13(D0));

[1]:

_[1]=2

_[2]=u3-34u2+292u+648

_[3]=u-2

_[4]=u+2

_[5]=u-8

[2]:

1,1,1,1,1
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The output shows, in particular, that each rational solution (a1, a2) of f1 =
f2 = 0 satisfies a1 + 3a2 ∈ {−2, 2,−8}. Thus, we can exclude the candidates
(1, 1), (−1,−1), and (−1,−3). Moreover, we see that each solution with a
nonrational x-coordinate also has a nonrational y-coordinate. A more careful
analysis allows us to exclude 6 of the 9 nonrational candidates for solutions
as well. ��

The SINGULAR library solve.lib provides the built-in command ures solve

implementing Algorithm 6.44. Instead of making use of univariate factoriza-
tion as we did above, a numerical solver is applied in Steps 3 and 4 of the
algorithm.

Remark 6.46 (Further Reading). For a broader treatment of the solving
problem, we refer to Sturmfels (2002), Dickenstein and Emiris eds. (2005),
and to Sommese and Wampler (2005). For more on elimination methods, see
Wang (2001). To learn more about resultants, we refer to Gelfand, Kapranov,
and Zelevinsky (1994), Cox, Little, and O’Shea (1998), Sturmfels (1997), and
Cattani and Dickenstein (2005).



Lecture 7

Primary Decomposition and Normalization

In this lecture, we give answers to two of the computational questions posed
in Lecture 2. We begin by discussing algorithms for primary decomposition.
Then we study an algorithm for normalization and explain how normalization
is related to primary decomposition.

7.1 Primary Decomposition

To be prepared for this section, recall the basic definitions and results on
primary decomposition stated in Lecture 2, Remark 2.6. Note that for many
applications of primary decomposition in algebraic geometry, it is not really
necessary to compute a complete primary decomposition. Some of the informa-
tion which can be extracted from a primary decomposition may be computed
directly, by cheaper algorithms.

We fix some notation. Let I � K[x] = K[x1, . . . , xn] be an ideal, and let
d be its dimension. Then the primary components of I of dimension d have
the largest dimension among all primary components of I. They are, thus,
isolated and uniquely determined by I. Their intersection, written E(I), is
called the equidimensional hull of I. The radical of E(I), written equi

√
I, is

called the equidimensional radical of I. If I is unmixed, that is, if there are
no embedded components, then all primary components of I are uniquely de-
termined by I. In this case, for each v ≤ d, we write Ev(I) for the intersection
of the primary components of I of dimension v (if there are no components of
dimension v, we set Ev(I) = K[x]). The intersection I =

⋂
v≤d Ev(I) is, then,

called the equidimensional decomposition of I.
With this notation, we list some of the computational problems arising in

the context of primary decomposition:

• Compute a primary decomposition of I.
• Compute all associated primes of I.
• Compute the minimal associated primes of I.
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• Compute the radical
√

I of I.
• Compute the equidimensional hull E(I).
• Compute the equidimensional radical equi

√
I.

• For each v ≤ d, compute an ideal whose associated primes are the asso-
ciated primes of I of dimension v. By abuse of notation, we say that this
means to compute a weak equidimensional decomposition of I.

• If I is unmixed, compute the equidimensional decomposition of I.

The first algorithms for these tasks were given by Grete Hermann (1926), a
student of Emmy Noether. Hermann used generic projections, that is, elimi-
nation, based on resultant techniques, to reduce to the case of hypersurfaces
(algebraically, to the case of principal ideals). Thus, computing radicals re-
duces to the computation of the square-free part of polynomials and comput-
ing primary decomposition reduces to factorizing polynomials. In contrast to
the algorithms based on Gröbner basis techniques, algorithms for polynomial
factorization highly depend on the nature of the underlying field. We refer
to the survey papers by Kaltofen (1982, 1990, 1992, 2003) for the history of
univariate and multivariate polynomial factorization over various coefficient
domains.

Remark 7.1 (The Role of the Coefficient Field). The basic SINGULAR

command for polynomial factorization is the factorize command. It applies
to polynomials with coefficients in a finite field, in Q, or in a number field.
For instance:

> ring R1 = 0, x, dp;

> poly f1 = 3x7+3x6-18x5-30x4+15x3+63x2+48x+12;

> factorize(f1);

[1]:

_[1]=3

_[2]=x+1

_[3]=x-2

[2]:

1,5,2

We read from the output that f1 = 3(x + 1)5(x− 2)2 is the factorization of f1

into irreducible factors in Q[x]. To control the output, we can add an integer
as a second input of factorize. If this integer is 1, for instance, the constant
factor (here, 3) and the multiplicities (here, 1,5,2) will not be printed.

We consider further examples:

> factorize(x4-2,1);

_[1]=x4-2

> ring R2 = (0,a), x, dp; minpoly = a4-2;

> factorize(x4-2,1);

_[1]=x2+(a2)

_[2]=x+(a)

_[3]=x+(-a)
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> ring R3 = 0, (x,y), dp;

> poly f3 = x2y4+y6+2x3y2+2xy4-7x4+7x2y2+14y4+6x3+6xy2+47x2+47y2;

> factorize(f3,1);

_[1]=y4+2xy2-7x2+14y2+6x+47

_[2]=x2+y2

We see that factorize computes the factorization over the given coefficient
field and not over a finite extension where the decomposition into the abso-
lutely irreducible factors occurs. Here, a polynomial with coefficients in K is
called absolutely irreducible if it is irreducible over the algebraic closure
of K.

SINGULAR kernel commands for absolute polynomial factorization will
be available with future versions of SINGULAR. At this writing, the library
absfact.lib written by Lecerf provides the command absFactorize which
is based on ideas of Trager (1976)1. The command takes as input a polynomial
with coefficients in Q, say f ∈ Q[x1, . . . , xn]. For each irreducible factor g of
f over Q, absFactorize computes

• one absolutely irreducible factor of g, say g1, and
• a minimal polynomial specifying a finite extension of Q of minimal degree

over which g1 is defined.

Note that the absolutely irreducible factors of g are pairwise conjugate over
Q, they form an orbit under the natural action of the Galois group of Q over
Q on Q[x1, . . . , xn], where Q is the algebraic closure of Q. This does not mean,
however, that all absolutely irreducible factors of g are defined over the field
specified for g1. Here is an example:

> LIB "absfact.lib";

> setring R1;

> def R4 = absFactorize(x4-2);

At this point, SINGULAR gives an explanation on how to access what has been
computed. We follow the explanation (without printing it in our notes):

> setring R4;

> absolute_factors;

[1]:

_[1]=1

_[2]=x+(-a)

[2]:

1,1

[3]:

_[1]=(a)

_[2]=(a4-2)

[4]:

4

1 For more details on the implemented algorithm, see Chèze and Lecerf (2005).
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The list absolute factors has four entries, referring to the absolutely ir-
reducible factors (one per conjugacy class), the multiplicities, the minimal
polynomials, and the total number of absolutely irreducible factors. In our
example, we spot the absolutely irreducible factor x− a which is defined
over Q(a) = Q[t]/〈t4− 2〉. Altogether, there are 4 absolutely irreducible fac-
tors which are pairwise conjugate over Q. As we saw on Page 202, two of these
factors are not defined over Q(a).

For the polynomial f3 in the ring R3 considered above, we obtain:

> setring R3;

> def R5 = absFactorize(f3);

> setring R5;

> absolute_factors;

[1]:

_[1]=1/169

_[2]=13*y2+(-14a+19)*x+(-7a+94)

_[3]=x+(a)*y

[2]:

1,1,1

[3]:

_[1]=(a)

_[2]=(7a2-6a-47)

_[3]=(a2+1)

[4]:

4

We see that f3 decomposes into 2 pairs of absolutely irreducible factors such
that the factors of each pair are conjugate over Q. One pair is represented by
the factor 13y2−14ax+19x−7a+94, where a is a complex zero of 7t2−6t−47.
The other pair is x + iy, x− iy, where i2 = −1. ��

We can, in particular, use absFactorize to check whether a given polynomial
over Q is absolutely irreducible.

Example 7.2. We return to the polynomial f = y4+ z2− y2(1−x2) ∈ Q[x, y, z]
considered in Lecture 2, Examples 2.1 and 2.5:

> LIB "absfact.lib";

> ring R = 0, (x,y,z), dp;

> poly f = y4+z2-y2*(1-x2);

> def S = absFactorize(f);

> setring S;

> absolute_factors[4]; // number of absolutely irreducible factors

1 ��

Providing efficient algorithms for the problems arising in the context of pri-
mary decomposition is difficult and still one of the big challenges in computer
algebra. A survey on some of the modern algorithms can be found in Decker,
Greuel, and Pfister (1999). Most of the algorithms follow the basic strategy of
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Hermann. They use elimination, now based on Gröbner basis techniques (and,
in the case of Wang’s algorithm below, in addition on characteristic set meth-
ods), to reduce to square-free decomposition or to polynomial factorization.
A different approach is taken by Eisenbud, Huneke, and Vasconcelos (1992)
(EHV for short), who avoid generic projections, relying on syzygy methods
instead. The EHV algorithm for computing the equidimensional hull, for in-
stance, is based on the following result:

Proposition 7.3. If I � R = K[x] is an ideal, then

E(I) = ann Extn−d
R (R/I, R), where d = dim I.

Here, if M is a module over a ring R, its annihilator is the ideal

annM = {f ∈ R | fM = 0} = 0 : M ⊂ R .

Algorithms which compute, possibly in combination with other algorithms, a
complete primary decomposition are given in the following papers:

• Gianni, Trager, and Zacharias (1988);
• Wang (1989, 2001) (minimal associated primes only);
• Eisenbud, Huneke, and Vasconcelos (1992);
• Shimoyama and Yokoyama (1996) (suppose that the minimal associated

primes are given).

Wang’s algorithm finds the minimal associated primes by combining the char-
acteristic set decomposition technique with Gröbner bases (needed for satura-
tion). Eisenbud, Huneke and Vasconcelos use Gröbner bases to reduce primary
decomposition to normalization (see Remark 7.12 at the end of this lecture).

The starting point of the algorithm of Gianni, Trager, and Zacharias (GTZ
for short) is the following simple observation:

Lemma 7.4 (Splitting Tool). If I ⊂ K[x] is an ideal, if h ∈ K[x] is a poly-
nomial, and if m ≥ 1 is an integer such that I : 〈h〉∞ = I : 〈h〉m, then

I =
(
I : 〈h〉m

)
∩ 〈I, hm〉 .

The key result on which the algorithm is based specifies which polynomials h
are considered:

Proposition 7.5. Let I � K[x] be a proper ideal, and let u ⊂ x be a subset
of maximal cardinality such that I ∩K[u] = {0}. Then:

(1) The ideal I K(u)[x\u] ⊂ K(u)[x\u] is zero-dimensional.
(2) Let > = (>x\u , >u) be a global product order on K[x], and let G be a

Gröbner basis for I with respect to >. Then G is a Gröbner basis for
I K(u)[x\u] with respect to the monomial order obtained by restricting
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> to the monomials in K[x\u]. Further, if h ∈ K[u] is the least com-
mon multiple of the leading coefficients of the elements of G (regarded as
polynomials in K(u)[x\u]), then

I K(u)[x\u] ∩K[x] = I : 〈h〉∞ .

(3) All primary components of the ideal I K(u)[x\u] ∩K[x] have the same
dimension, namely dim I. Further, if I K(u)[x\u] = Q1 ∩ . . . ∩Qr is the
minimal primary decomposition, then

I K(u)[x\u] ∩K[x] = (Q1 ∩K[x]) ∩ . . . ∩ (Qr ∩K[x])

is the minimal primary decomposition, too.

Taking Theorem 6.3 in Lecture 6 and the discussion right before that theorem
into account, (1) and the first statement of (3) do not come as a great surprise.
In fact, it is easy to see that if > is a global monomial order on K[x], then
every subset u ⊂ x of maximal cardinality satisfying L>(I) ∩K[u] = {0} is
also a subset of maximal cardinality such that I ∩K[u] = {0}.

By recursion, the proposition allows us to reduce the general case of pri-
mary decomposition to the zero-dimensional case. In turn, if I ⊂ K[x] is a
zero-dimensional ideal “in general position” (with respect to the lexicographic
order satisfying x1 > · · · > xn), and if hn is a generator for I ∩K[xn] (see Re-
mark 6.4 in Lecture 6), the minimal primary decomposition of I is obtained
by factorizing hn. In characteristic zero, the condition that I is in general po-
sition can be achieved by means of a generic linear coordinate transformation
(since such a transformation destroys sparseness, it should only be applied if
this is really needed). See, for instance, Greuel and Pfister (2002), Chapter 4
for details.

Finally, the algorithm of Shimoyama and Yokoyama is a variant of the
GTZ algorithm reducing primary decomposition in the general case to the
computation of the minimal associated primes.

The GTZ algorithm and a combination of the algorithms of Wang and
Shimoyama-Yokoyama are implemented in the SINGULAR library primdec.lib.
The corresponding commands are primdecGTZ and primdecSY.

Remark 7.6 (The Role of the Coefficient Field). The primdecGTZ and
primdecSY commands decompose an ideal over the given coefficient field. For
primdecSY, this may be a finite field, the field Q, or a number field. For
primdecGTZ, recall from the discussion above that the GTZ algorithm is de-
signed for coefficient fields of characteristic zero. In its SINGULAR implemen-
tation, it works over Q and over number fields. It also works correctly over
finite fields as long as it terminates. Over a small finite field, however, it
may well run into an indefinite loop (trying to find an appropriate coordinate
transformation as discussed above).

The library primdec.lib also provides the absPrimdecGTZ command
which relies on the absFactorize command. We explain its usage towards
the end of the following example. ��
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Note that primdec.lib provides, in fact, implementations of algorithms for
all tasks listed at the beginning of this section. For each task, no “generally
best” algorithm is known. Depending on the example, the difference in the
performance of the various algorithms could mean to get a result, or to run
out of time or memory.

Example 7.7 (Butcher). We show some commands of primdec.lib at work.

> ring R = 0, (a,b,c,d,e,f,g,h), dp;

> ideal I = a+c+d-e-h, 2df+2cg+2eh-2h2-h-1,

. 3df2+3cg2-3eh2+3h3+3h2-e+4h,

. 6bdg-6eh2+6h3-3eh+6h2-e+4h,

. 4df3+4cg3+4eh3-4h4-6h3+4eh-10h2-h-1,

. 8bdfg+8eh3-8h4+4eh2-12h3+4eh-14h2-3h-1,

. 12bdg2+12eh3-12h4+12eh2-18h3+8eh-14h2-h-1,

. -24eh3+24h4-24eh2+36h3-8eh+26h2+7h+1;

We compute a primary decomposition of I:

> LIB "primdec.lib";

> int aa = timer;

> list PD = primdecGTZ(I);

> timer-aa; // time in seconds

59

> size(PD);

9

Thus, there are 9 components. For each component, SINGULAR stores the pri-
mary ideal and the corresponding associated prime. In our example, one can
check that there are three components of dimension 3, four components of
dimension 2, and two components of dimension 0. For instance:

> ideal Prime6 = std(PD[6][2]);

> dim(Prime6);

2

Thus, the 6th component has dimension 2. We print this component:

> PD[6];

[1]:

_[1]=h2+2h+1

_[2]=gh+g

[...]

_[15]=-144h5-408h4-384h3-118h2+8e+3h+9

_[16]=-144h5-408h4-384h3-118h2+8a+8c+8d-5h+9

[2]:

_[1]=h+1

_[2]=g

_[3]=f

_[4]=d

_[5]=-144h5-408h4-384h3-118h2+8e+3h+9

_[6]=-144h5-408h4-384h3-118h2+8a+8c+8d-5h+9
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Let us check that the ideal PD[6][2] is indeed the radical of PD[6][1]. In
SINGULAR, the command radical is based on the algorithm of Kemper (2002)
in positive characteristic and on the GTZ type algorithm of Krick and Logar
(1991) in characteristic 0 (this algorithm makes use of Proposition 7.5 to
reduce the general case to the zero-dimensional case which can be settled as
explained in Lecture 6, Remark 6.6). The command radicalEHV is based on
the ideas of Eisenbud, Huneke and Vasconcelos (we do not recommend to
apply this command for the ideal under consideration).

> ideal check = std(radical(PD[6][1]));

> check;

check[1]=h+1

check[2]=g

check[3]=f

check[4]=e+1

check[5]=d

check[6]=a+c+2

> size(reduce(Prime6,check,1));

0

> size(reduce(check,Prime6,1));

0

The equidimensional hull can also be computed by a GTZ type algorithm. The
corresponding SINGULAR command is equidimMax (in our example, because
of the high codimension of I, we do not use the command equidimMaxEHV

based on Proposition 7.3).

> ideal EI = equidimMax(I);

> dim(std(EI));

3

> list PDEI = primdecGTZ(EI);

> size(PDEI);

3

This shows that there are 3 components of top dimension 3.
Finally, we apply absPrimdecGTZ:

> aa = timer;

> def S = absPrimdecGTZ(I);

> timer-aa;

123

The return value of absPrimdecGTZ(I) is a ring S which comes with a list
absolute primes. This list has the same number of entries as the list re-
turned by primdecGTZ(I). The entry absolute primes[j] has as first en-
try an ideal describing one representative of the class of pairwise conjugate
absolute primes corresponding to the jth prime ideal PD[j] returned by
primdecGTZ(I) (here, we use a notation similar to that in Remark 7.1). The
second entry refers to the number of conjugates in the class.
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In our example, PD[6][2] is an absolute prime:

> setring S;

> absolute_primes[6];

[1]:

_[1]=@c

_[2]=h+1

[...]

_[7]=a+c+2

[2]:

1

In contrast, PD[9][2] decomposes into 2 absolute primes:

> absolute_primes[9];

[1]:

_[1]=12*@c^2+12*@c+1

_[2]=h-@c

_[3]=2*g+2*@c+1

_[4]=f+2*@c+1

_[5]=e+1

_[6]=4*d+@c+1

_[7]=2*c+@c+1

_[8]=b+2*@c+1

_[9]=4*a-7*@c+1

[2]:

2

The first generator12*@c∧2+12*@c+1 of absolute primes[9] refers to the
minimal polynomial of a finite extension of Q (of minimal degree) over which
the absolute prime is defined.

The total number of absolute primes is obtained as follows:

> int num_abs_primes;

> for (int j=1; j<=size(absolute_primes); j++)

. { num_abs_primes = num_abs_primes + absolute_primes[j][2]; }

> num_abs_primes;

12 ��
Remark 7.8. (1) To compute minimal associated primes over the given coef-
ficient field, use minAssGTZ (based on a GTZ type algorithm), or minAssChar
(based on Wang‘s characteristic set algorithm).

(2) The SINGULAR command equidim relies on an algorithm which combines
equidimMax and sat. It computes a weak equidimensional decomposition over
the given coefficient field. For instance:

> LIB "primdec.lib";

> ring R = 0, (x,y), dp;

> ideal I = xy, y2; // ideal is mixed

> list LI = equidim(I);

> LI;
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[1]:

_[1]=y

_[2]=x

[2]:

_[1]=y

> intersect(LI[1],LI[2]);

_[1]=y

If the ideal under consideration is unmixed, equidim returns an equidimen-
sional decomposition:

> ideal J = xy, y3-2y2+y;

> list LJ = equidim(J);

> LJ;

[1]:

_[1]=x

_[2]=y2-2y+1

[2]:

_[1]=y

> intersect(LJ[1],LJ[2]);

_[1]=xy

_[2]=y3-2y2+y
��

7.2 Normalization

If S is an integral domain, its normalization S is the integral closure of S in
the quotient field of S. An important finiteness result of Emmy Noether tells
us that if S is an affine domain, then S is a finitely generated S-module; in
particular, S is again an affine domain (see Eisenbud (1995), Corollary 13.13).
In other words, if S is of type S = K[x1, . . . , xn]/P , where P is a prime ideal,
then S is of type K[y1, . . . , ym]/P ′, where P ′ is a prime ideal. To compute
the normalization means to find such a representation for S together with the
normalization map

S = K[x1, . . . , xn]/P ↪→ S = K[y1, . . . , ym]/P ′.

More generally, if S is any reduced ring, its normalization S is the integral
closure of S in the total quotient ring of S. In conjunction with Noether’s
finiteness result, the theorem on the splitting of normalization tells us that
if S is a reduced affine ring, then S may be written as a product of affine
domains. More precisely, if S is of type S = K[x1, . . . , xn]/I, where I is a
radical ideal, and if P1, . . . , Ps are the (minimal) associated primes of I, then

S ∼= (K[x1, . . . , xn]/P1)× · · · × (K[x1, . . . , xn]/Ps) .

See de Jong and Pfister (2000), Theorem 1.5.20.
Algorithms to compute the normalization were given by several authors.

The algorithm proposed by de Jong (1998) is based on a criterion for normality
due to Grauert and Remmert (1971):
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Theorem 7.9. Let S be a reduced Noetherian ring, let

Spec(S) = {P ⊂ S | P is a prime ideal}

be its spectrum, let J be a radical ideal of S, and let

V(J) = {P ∈ Spec(S) | J ⊂ P}

be the vanishing locus of J in Spec(S). Suppose that J contains a nonzero-
divisor and that V(J) contains the nonnormal locus

{P ∈ Spec(S) | the localization SP is not normal}

of Spec(S). Then S is normal iff S equals the ring HomS(J, J) of endomor-
phisms of J .

Notice that in the situation of the theorem, we have canonical inclusions of
rings:

S ⊂ HomS(J, J) ⊂ S.

The first inclusion is the map which sends an element of S to multiplication
with this element. For the second inclusion, we pick a nonzerodivisor f ∈ J and

map φ ∈ HomS(J, J) to φ(f)
f . It is easily checked that this map is independent

of the choice of f . That we in fact land in S is a consequence of the theorem of
Cayley-Hamilton (see Eisenbud (1995), Theorem 4.3). To compute the norma-
lization, de Jong’s algorithm proceeds as follows. If S is given, find an ideal J
satisfying the assumptions of the theorem. Check whether S = HomS(J, J). If
so, stop. Otherwise, replace S by the strictly larger ring HomS(J, J) and start
over again. This process must eventually terminate due to Emmy Noether’s
finiteness result.

De Jong’s algorithm is implemented in the SINGULAR library normal.lib

(see Decker et al (1999)). The corresponding command normal takes as
input a radical ideal I in a polynomial ring R = K[x1, . . . , xn] (if I is
not radical, apply I = radical(I); first). The algorithm finds an ideal
J ⊂ S = K[x1, . . . , xn]/I as in Theorem 7.9 as follows. The singular locus

{P ∈ Spec(S) | the localization SP is not regular}

of Spec(S) contains the nonnormal locus (see for instance Greuel and Pfister
(2002), Section 5.7). Thus, if K is a perfect field (for instance, a field of char-
acteristic zero), we may apply the algebraic version of the Jacobian Criterion
(see Eisenbud (1995), Section 16.6): if I is known to have pure codimension c,
the algorithm picks J to be the ideal generated by the residue classes of the
c × c minors of I. Otherwise, it computes an equidimensional decomposition
of I first. The algorithm returns polynomial rings R1, . . . , Rt, ideals Ij ⊂ Rj ,
and ring maps πj : R → Rj such that the induced map
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π : R/I −→
t∏

j=1

Rj/Ij , f + I 
−→
(
π1(f) + I1, . . . , πt(f) + It

)
,

is the normalization map. At this writing, the algorithm is implemented so
that its basic version does not necessarily return prime ideals Ij . That is, the
prime components of I are not necessarily separated.

Example 7.10. We use SINGULAR to compute a normalization of the affine ring
Q[x, y, z]/I, where I = 〈z−x4, z−y6〉:

> LIB "normal.lib";

> ring R = 0, (x,y,z), dp;

> ideal I = z-x4, z-y6;

> list nor = normal(I);

// ’normal’ created a list of 1 ring(s)

At this point, SINGULAR gives an explanation on how to access what has
been computed. We follow the explanation (without printing it in our notes).
Making use of the notation introduced above, we may say that normal creates
the list of rings R1, . . . , Rt. Each ring Rj comes with two ideals referred to as
norid and normap. Here, norid is the ideal Ij , and normap defines the ring
map πj : R → Rj . In our example here, only one ring has been created. We
make this ring the active ring and print norid and normap:

> def R1 = nor[1]; setring R1; R1;

// characteristic : 0

// number of vars : 2

// block 1 : ordering a

// : names T(1) T(2)

// : weights 1 0

// block 2 : ordering dp

// : names T(1) T(2)

// block 3 : ordering C

> norid;

norid[1]=T(2)^2-1

> normap;

normap[1]=T(1)^3*T(2)^2

normap[2]=T(1)^2*T(2)

normap[3]=T(1)^12*T(2)^8

Though normal computed only one ring, the ideal I has more than one pri-
mary component:

> setring R;

> primdecGTZ(I);

[1]:

[1]:

_[1]=y6-z

_[2]=-y3+x2
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[2]:

_[1]=y6-z

_[2]=-y3+x2

[2]:

[1]:

_[1]=y6-z

_[2]=y3+x2

[2]:

_[1]=y6-z

_[2]=y3+x2

We see that I is the intersection of two prime ideals. In particular, it is radical.
Using another version of the normalization algorithm, the prime components
are separated:

> list NOR = normal(I,1);

// ’normal’ created a list of 2 ring(s).

Again, we follow the explanation printed by SINGULAR.

> R1 = NOR[1]; // the 1st ring

> setring R1; R1;

// characteristic : 0

// number of vars : 1

// block 1 : ordering dp

// : names T(1)

// block 2 : ordering C

> norid;

norid[1]=0

> normap;

normap[1]=T(1)^3

normap[2]=-T(1)^2

normap[3]=T(1)^12

> def R2 = NOR[2]; // the 2nd ring

> setring R2; R2;

// characteristic : 0

// number of vars : 1

// block 1 : ordering dp

// : names T(1)

// block 2 : ordering C

> norid;

norid[1]=0

> normap;

normap[1]=T(1)^3

normap[2]=T(1)^2

normap[3]=T(1)^12 ��

Example 7.11. Again, we compute the normalization of an affine ring which
is defined by two polynomials in three indeterminates:
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> LIB "normal.lib";

> ring R = 0, x(1..3), dp;

> poly f1 = -x(1)^3*x(2)^3*x(3)^2-x(1)^3*x(2)*x(3)^4

. -x(1)*x(2)^3*x(3)^4+x(1)^5*x(2)^2+x(1)^5*x(3)^2

. +x(1)^3*x(2)^2*x(3)^2+x(1)^2*x(2)^2*x(3)^3

. -x(1)^4*x(2)*x(3);

> poly f2 = -x(1)^2*x(2)^3*x(3)^5-x(1)^2*x(2)*x(3)^7-x(2)^3*x(3)^7

. +x(1)^2*x(2)^5*x(3)^2+x(1)^4*x(2)^2*x(3)^3+x(2)^5*x(3)^4

. +x(1)^4*x(3)^5+x(1)^2*x(2)^2*x(3)^5-x(1)^2*x(2)*x(3)^6

. +x(1)*x(2)^2*x(3)^6-x(2)^3*x(3)^6-x(1)^4*x(2)^4

. -x(1)^2*x(2)^4*x(3)^2-x(1)*x(2)^4*x(3)^3+x(1)^4*x(3)^4

. -x(1)^3*x(2)*x(3)^4+x(1)^2*x(2)^2*x(3)^4

. +x(1)*x(2)^2*x(3)^5+x(1)^3*x(2)^3*x(3)

. -x(1)^3*x(2)*x(3)^3;

> ideal I = f1, f2;

> list NOR = normal(I);

// ’normal’ created a list of 3 ring(s).

To access what has been computed, we follow the explanation given by SINGU-

LAR:

> def R1 = NOR[1]; // the 1st ring

> setring R1;

> norid;

norid[1]=T(3)^2+T(4)^2+T(4)*T(5)-T(4)

norid[2]=T(2)*T(3)+T(1)*T(4)+T(1)*T(5)-T(1)

norid[3]=T(1)*T(3)-T(2)*T(4)

norid[4]=T(2)^2+T(4)*T(5)+T(5)^2-T(5)

norid[5]=T(1)*T(2)-T(3)*T(5)

norid[6]=T(1)^2-T(4)*T(5)

> normap;

normap[1]=T(1)

normap[2]=T(2)

normap[3]=T(3)

> def R2 = NOR[2]; // the 2nd ring

> setring R2; norid;

norid[1]=0

> normap;

normap[1]=T(1)*T(2)

normap[2]=T(2)^2

normap[3]=T(1)

> def R3 = NOR[3]; // the 3rd ring

> setring R3; norid;

norid[1]=0

> normap;

normap[1]=0

normap[2]=T(1)^3-T(1)

normap[3]=T(1)^2-1
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Thus, the normalization has three components, an affine part of the Veronese
surface in P5, a plane, and a line. A check on the primary decomposition of I
shows that this is not a great surprise:

> setring R;

> primdecGTZ(I);

[1]:

[1]:

_[1]=x(1)^2*x(2)^2+x(1)^2*x(3)^2+x(2)^2*x(3)^2-x(1)*x(2)*x(3)

[2]:

_[1]=x(1)^2*x(2)^2+x(1)^2*x(3)^2+x(2)^2*x(3)^2-x(1)*x(2)*x(3)

[2]:

[1]:

_[1]=-x(2)*x(3)^2+x(1)^2

[2]:

_[1]=-x(2)*x(3)^2+x(1)^2

[3]:

[1]:

_[1]=-x(3)^3+x(2)^2-x(3)^2

_[2]=x(1)

[2]:

_[1]=-x(3)^3+x(2)^2-x(3)^2

_[2]=x(1)

We see that I is the intersection of three prime ideals, defining the Steiner
Roman surface (see Exercise 1.5 (e)), the Whitney umbrella (see Lecture 9,
Example 9.31), and a nodal plane curve, respectively. In particular, I is a
radical ideal. ��

Remark 7.12. Here is how Eisenbud, Huneke, and Vasconcelos (1992) reduce
primary decomposition to normalization. By localization techniques, they re-
duce to computing the associated primes of an ideal I ⊂ K[x1, . . . , xn]. For
this, they may assume that I is equidimensional and radical (making use of
algorithms for weak equidimensional decomposition and equidimensional rad-
ical). In addition, I can be assumed to be homogeneous. It, thus, remains to
find the minimal prime ideals of the graded, reduced ring S = K[x1, . . . , xn]/I.
These can be obtained by intersecting the minimal primes of the normaliza-
tion S of S with S. The latter ideals are in one-to-one correspondence with
the idempotents of S and can therefore be computed. ��

Remark 7.13 (Further Reading). For definitions and basic results on pri-
mary decomposition and normalization, we refer to Atiyah and MacDonald
(1969), Eisenbud (1995), and Greuel and Pfister (2002). For more on the al-
gorithms, see Decker, Greuel, and Pfister (1999).
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Exercise 4.1. Compute a primary decomposition of the ideal of Q[t, w, x, y, z]
which is generated by the polynomials below:

w2xy + w2xz + w2z2,

tx2y + x2yz + x2z2,

twy2 + ty2z + y2z2,

t2wx + t2wz + t2z2.

How many components of which dimension do you get? Are there nonprime
components? Which components are embedded?

Exercise 4.2. Compute the normalization of the affine ring

R = Q[b, s, t, u, v, w, x, y, z]/I ,

where I is the ideal

I := 〈wy − vz, vx− uy, tv − sw, su− bv, tuy − bvz〉 .
What do you get?

Exercise 4.3. Compute a nonnormal affine ring of dimension 2 whose nor-
malization is the affine ring F32003 [x, y, z]/〈z2− x5− y5〉.
Hint. For instance, consider the subalgebra of F32003 [x, y, z]/〈z2− x5− y5〉 gener-

ated by the residue classes x, z, xy, y2, yz, y3.

Exercise 4.4. Consider the matrix

D =

⎛⎝ x1 x2 x2
3 − 1

x2 x3 x1x2 + x3 + 1
x2

3 − 1 x1x2 + x3 + 1 0

⎞⎠
and the ideal I = 〈f1, f2〉 ⊂ Q[x1, x2, x3] generated by the determinant f1 =
detD and the “first” 2×2 minor f2 = x1x3−x2

2 of D. Use SINGULAR to verify
the following statements:

(a) The ideal I has pure codimension 2 and is unmixed.

(b) The vanishing locus of the ideal J = I2(
∂fi

∂xj
) + I coincides with that of I,

that is, V(J) = V(I) =: A ⊂ A3(C).

(c) A is smooth.
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Exercise 4.5. Write a SINGULAR procedure

• which assumes that the active ring is a univariate polynomial ring with
coefficients in a prime field,

• which takes as input a polynomial f in the active ring, and
• which returns a ring in which f decomposes into linear factors, making

the solutions of f = 0 accessible for later use.

Test your procedure with the polynomials

(a) f = (x2 + 2)(x2 + 3)(x2 + 5) ∈ Q[x],

(b) f = x6 − 13 ∈ Q[x], and

(c) f = x100 − 13 ∈ F167[x].

Exercise 4.6. Compute the multipolynomial resultant Res2,2,2, and display
its (total) degree and its number of terms (do not print Res2,2,2 itself). Use
Macaulay’s method: if

F 0 = a1z
2 + a2yz + a3y

2 + a4xz + a5xy + a6x
2 ,

F 1 = b1z
2 + b2yz + b3y

2 + b4xz + b5xy + b6x
2 ,

F 2 = c1z
2 + c2yz + c3y

2 + c4xz + c5xy + c6x
2 ,

then, up to a sign,

Res2,2,2 =
D0

Dext
0

∈ Z[a1, . . . , a6, b1, . . . , b6, c1, . . . , c6] .

Here, D0 is the determinant of the matrix of coefficients of the following
system of 15 equations (considered as linear equations in the 15 monomials in
x, y, z of degree 4):

x2F 0 = xyF 0 = xzF 0 = yzF 0 = 0 ,
x2F 1 = xyF 1 = xzF 1 = y2F 1 = yzF 1 = 0 ,
x2F 2 = xyF 2 = xzF 2 = y2F 2 = yzF 2 = z2F 2 = 0 .

Further, Dext
0 is the determinant of the 3× 3 matrix whose entries are the

coefficients of the monomials x2y2, x2z2, y2z2 in x2F 1, x2F 2, y2F 2.

Exercise 4.7. As in Exercise 2.3, consider a nonzero polynomial

Fa = a1x
3 + a2x

2y + a3xy2 + a4y
3 + a5x

2z + a6xyz

+a7y
2z + a8xz2 + a9yz2 + a10z

3 ,

where a = (a1, . . . , a10) ∈ C10. Using the multivariate resultant Res2,2,2 from
Exercise 4.6, find a necessary and sufficient condition in terms of a for the
first partial derivatives of Fa to have a common zero in P2(C). Compare your
result with the result obtained in Exercise 2.3.



Lecture 8

Algorithms for Invariant Theory

As all the roads lead to Rome so I find in my own case at least
that all algebraic inquiries, sooner or later, end at the Capitol

of modern algebra over whose shining portal is inscribed
the Theory Of Invariants.

J.J. Sylvester (1864), p. 380.

In this lecture, we return to the historical origin of Gröbner bases as presented
in Lecture 1, giving an overview on recent algorithms for invariant theory.
We begin by introducing the basic setting of invariant theory. Let G be a
group, and let K[x] = K[x1, . . . , xn] be the polynomial ring with its natural
grading K[x] =

⊕
d≥0 K[x]d by degree. Suppose that G is represented as a

group of K-linear transformations of the K-vector space W = K[x]1 of linear
forms in K[x]. That is, G acts on W by means of a group homomorphism
G → GLn(K), where we regard GLn(K) as the group of invertible K-linear
transformations of W by means of the basis x1, . . . , xn. We extend the action
of G to all of K[x] by setting, for π ∈ G and f ∈ K[x],

(πf)(x1, . . . , xn) = f(π−1x1, . . . , π
−1xn).

An invariant of G is a fixed point of this action. The set of all invariants,
written

K[x]G = {f ∈ K[x] | πf = f for all π ∈ G},
is a graded subalgebra of K[x]. It is called the ring of invariants of G (with
respect to the given representation).

Example 8.1. The symmetric group Sn acts on K[x] by permuting the vari-
ables. The ring of invariants K[x]Sn is the ring of symmetric polynomials. It
is generated by the elementary symmetric polynomials

σ1(x1, . . . , xn) := x1 + · · ·+ xn,
σ2(x1, . . . , xn) := x1x2 + x1x3 + · · ·+ xn−1xn,

...
σn(x1, . . . , xn) := x1 · · ·xn.
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That is, every symmetric polynomial can be represented as a polynomial in the
elementary symmetric polynomials. In fact, such a representation is unique
since the elementary symmetric polynomials are algebraically independent
over K (there are no K-algebra relations among them). In sum,

K[x]Sn = K[σ1, . . . , σn]

is a finitely generated polynomial algebra. ��

The first fundamental problem of invariant theory is to decide, whether
a given ring of invariants K[x]G is finitely generated as a K-algebra, and, if so,
to compute a finite set of generators. The second fundamental problem of
invariant theory is to compute the K-algebra relations on the generators.
Elimination is a (costly) solution to the second problem (see Proposition 2.31
and Section 3.6.3). Example 8.10 will show how to carry this out in SINGULAR.
Now, we focus on the first problem.

8.1 Finite Groups

In the setting introduced above, let G be a finite group. Emmy Noether (1926)
showed that in this case K[x]G ⊂ K[x] is an integral ring extension. In par-
ticular, dimK[x]G = dimK[x] = n. From this, Noether deduced with a non-
constructive proof that K[x]G is finitely generated.

How can we compute a finite set of generators? Since we already know that
K[x]G has dimension n, one basic idea is to proceed in two steps as follows. In
the first step, we compute homogeneous invariants p1, . . . , pn, referred to as
primary invariants, such that K[p1, . . . , pn] ⊂ K[x]G is a graded Noether
normalization (see, for instance, Eisenbud (1995), Chapter 13 for Noether
normalization). In the second step, we compute a minimal system of homo-
geneous invariants s0 = 1, s1, . . . , sm, referred to as secondary invariants,
such that K[x]G is generated by s0, . . . , sm as a K[p1, . . . , pn]-module. The
pi and sj together form a (non-minimal) set of generators for the K-algebra
K[x]G. To describe algorithms for computing primary and secondary invari-
ants, we suppose that G is explicitly given as a matrix group G ⊂ GLn(K)
by a (finite) set of generating matrices. We distinguish two cases. We say that
we are in the nonmodular case if the group order |G| is invertible in K.
That is, the characteristic of K is either zero or a prime not dividing |G|.
Otherwise, we say that we are in the modular case.

8.1.1 The Nonmodular Case

In the nonmodular case, the map

R : K[x]→ K[x], f 
→ 1

|G|
∑
π∈G

πf,



8.1 Finite Groups 221

is well-defined. It is K-linear and graded of degree zero, and it projects K[x]
onto K[x]G such that R◦R = R. Moreover, it is a K[x]G-module homomor-
phism. We refer to it as the Reynolds operator.

Further, in the nonmodular case, we can precompute the Hilbert series of
K[x]G due to a result of Molien (1897). In fact, the Hilbert series equals what
is nowadays called the Molien series of G. If charK = 0, the Molien series
is the formal power series in t obtained by expanding the rational function

1

|G|
∑
π∈G

1

det(1− tπ)

(see, for instance, Decker and de Jong (1998) for the Molien series in positive
characteristic). Thus, for each given degree d, the dimension of K[x]Gd is known
to us a priori. Hence, we can compute a K-basis for K[x]Gd by applying R to
the elements of a (monomial) K-basis for K[x]d until the correct number of
linearly independent invariants has been found.

One way of computing primary invariants is to proceed degree by degree,
and, if p1, . . . , pi−1 have already been constructed, to search for a homogeneous
invariant pi satisfying dim〈p1, . . . , pi〉 = n − i (see Decker, Heydtmann, and
Schreyer (1998); an alternative method is due to Kemper (1999)). Indeed:

Lemma 8.2. Let p1, . . . , pi ∈ K[x]G be homogeneous. Then

dim(K[x]G/〈p1, . . . , pi〉) ≥ n− i,

with equality iff p1, . . . , pi can be extended to a system of primary invariants
for K[x]G.

Algorithm 8.3 (Primary Invariants).

Input: a set Δ of generators for G.

Output: a system of primary invariants for K[x]G.

Step 1. Initialization:

d := 0; i := 0;

Step 2. Iteration (degree by degree):

repeat

• d := d + 1;
• compute a K-basis b1, . . . , bcd

for K[x]Gd ;
• compute m = dim〈p1, . . . , pi, b1, . . . , bcd

〉;
• while n− i > m do

if K is infinite then

− i := i + 1;
− find a K–linear combination pi of b1, . . . , bcd

such that
dim〈p1, . . . , pi−1〉 > dim〈p1, . . . , pi〉;
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else

− find a new K–linear combination q of b1, . . . , bcd
;

− if dim〈p1, . . . , pi〉 > dim〈p1, . . . , pi, q〉 then
i := i + 1, pi := q;

− if all combinations have been tested then

break [of while–loop]
until i = n;

return(p1, . . . , pn). ��

The computation of secondary invariants is based on the fact that, in the
nonmodular case, K[x]G is Cohen-Macaulay (see, for instance, Decker and
de Jong (1998)). As a consequence, if p1, . . . , pn are primary invariants, then
K[x]G is a free K[p1, . . . , pn]-module (see Bruns and Herzog (1993), Lemma
6.4.13). This gives information on the Hilbert series of K[x]G (depending on
the degrees of the primary invariants). Comparing with Molien’s series, we
get a polynomial from which the degrees of the secondary invariants and their
number in each degree can be read off:

Remark 8.4. In the nonmodular case, the following hold:

(1) The degrees dj of the secondary invariants and their number μj in each
degree are uniquely determined as the exponents and the coefficients of the
polynomial

b∑
j=0

μjt
dj := HK[x]G(t) ·

n∏
i=1

(1− tdeg(pi)).

(2) The total number of secondary invariants is

1

|G|

n∏
i=1

deg(pi) .

In fact, property (2) characterizes rings of invariants of finite groups which are
Cohen-Macaulay (see Kemper (1996)). In the modular case, it can, thus, be
used to check whether an explicitly given ring of invariants is Cohen-Macaulay.

��
Following Kemper and Steel (1999), we formulate an algorithm for computing
secondary invariants such that the irreducible ones are singled out. Here, a
secondary invariant is irreducible if it is not a power product of secondary
invariants of lower degree.

Algorithm 8.5 (Secondary Invariants, Nonmodular Case).

Input: the Reynolds operator R, the Hilbert series H = HK[x]G , and
a set P = {p1, . . . , pn} of primary invariants for K[x]G.

Output: a corresponding system of secondary invariants, where the
irreducible ones are singled out.
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Step 1. Initialization:

• SecInv := ∅;
• PowerProd := {1};

• compute the polynomial
b∑

j=0

μjt
dj = H ·

n∏
i=1

(1− tdeg(pi));

Step 2. Iteration (by degree):

for j = 1, . . . , b do

i := 0;
while i < μj do

• for all power products q ∈ K[x]dj of elements of SecInv do

if the classes s1, . . . , si, q ∈ K[x]/〈P 〉 are K-linearly inde-
pendent then
− i := i + 1;
− si := q;
− PowerProd := PowerProd∪ {si};

• compute the standard monomials m1, . . . , mc

of degree dj for 〈P 〉;
• for r = 1, . . . , c do

if the classes s1, . . . , si,R(mr) ∈ K[x]/〈P 〉 are K-linearly
independent then
− i := i + 1;
− si := R(mr);
− SecInv := SecInv ∪ {si};

return SecInv, PowerProd. ��

Note that if the set P of primary invariants has been found by Algorithm
8.3, then a Gröbner basis for the ideal 〈P 〉 has already been computed for
the dimension check. This Gröbner basis can be used to find the standard
monomials in Step 2 above.

Example 8.6. In SINGULAR, rings of invariants of finite groups can be computed
using the library finvar.lib written by Heydtmann (1999) and its command
invariant ring. As an example, we compute the ring of invariants of the
Heisenberg group H5 in its Schrödinger representation. That is, H5 is the
subgroup of GL5(C) generated by the matrices

σ =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠ and τ =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 ξ 0 0 0
0 0 ξ2 0 0
0 0 0 ξ3 0
0 0 0 0 ξ4

⎞⎟⎟⎟⎟⎠ .

Here, ξ = e
2πi
5 is a primitive 5th root of unity in C.
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> LIB "finvar.lib";

> ring R = (0,a), (x(0..4)), dp;

> minpoly = a4+a3+a2+a+1; // need fifth roots of unity

> matrix Si[5][5] = 0,0,0,0,1,

. 1,0,0,0,0,

. 0,1,0,0,0,

. 0,0,1,0,0,

. 0,0,0,1,0;

> matrix Ta[5][5];

> Ta[1,1] = 1; Ta[2,2] = a; Ta[3,3] = a2; Ta[4,4] = a3;

> Ta[5,5] = a4;

> int aa = timer; // time in seconds

> matrix P,S,IS = invariant_ring(Si,Ta,intvec(0,0,1));

Generating the entire matrix group. Whenever a new group element is

found, the corresponding ring homomorphism of the Reynolds operator

and the corresponding term of the Molien series is generated.

Group element 3 has been found.

[...]

Group element 125 has been found.

Now we are done calculating Molien series and Reynolds operator.

We can start looking for primary invariants...

Computing primary invariants in degree 5:

We find: x(0)*x(1)*x(2)*x(3)*x(4)

We find: x(0)^3*x(2)*x(3)+x(0)*x(1)*x(3)^3+x(0)*x(2)^3*x(4)+[...]

We find: x(0)*x(1)^3*x(2)+x(1)*x(2)^3*x(3)+x(0)^3*x(1)*x(4)+[...]

Computing primary invariants in degree 10:

We find: x(0)^10+x(1)^10+x(2)^10+x(3)^10+x(4)^10

We find: -x(0)^5*x(1)^5+x(0)^5*x(2)^5-[...]

We found all primary invariants.

Polynomial telling us where to look for secondary invariants:

x(0)^30+3*x(0)^25+24*x(0)^20+44*x(0)^15+24*x(0)^10+3*x(0)^5+1

In degree 0 we have: 1

Searching in degree 5, we need to find 3 invariant(s)...

We find: x(0)^2*x(1)^2*x(3)+x(0)*x(2)^2*x(3)^2+[...]

We find: x(0)^2*x(1)*x(2)^2+x(1)^2*x(2)*x(3)^2+[...]

We find: x(0)^5+x(1)^5+x(2)^5+x(3)^5+x(4)^5 .

Searching in degree 10, we need to find 24 invariant(s)...

[...]

Searching in degree 15, we need to find 44 invariant(s)...
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[...]

Searching in degree 20, we need to find 24 invariant(s)...

[...]

Searching in degree 25, we need to find 3 invariant(s)...

[...]

Searching in degree 30, we need to find 1 invariant(s)...

We find: x(0)^15*x(1)^10*x(3)^5+x(0)^10*x(1)^15*x(3)^5+[...]

We’re done!

> timer-aa;

1554

To just compute a vector space basis for the invariants of a given degree
with finvar.lib, use the command invariant basis. The famous Horrocks-
Mumford quintics, for instance, form a C-basis for the degree-5 invariants of
H5 (see Horrocks and Mumford (1973)):

> aa = timer;

> ideal HMQ = invariant_basis(5,Si,Ta);

> timer-aa;

2

> print(HMQ);

x(0)*x(1)*x(2)*x(3)*x(4),

x(0)^2*x(1)*x(2)^2+x(1)^2*x(2)*x(3)^2+x(0)^2*x(3)^2*x(4)+[...]

x(0)^2*x(1)^2*x(3)+x(0)*x(2)^2*x(3)^2+x(1)^2*x(2)^2*x(4)+[...]

x(0)^3*x(2)*x(3)+x(0)*x(1)*x(3)^3+x(0)*x(2)^3*x(4)+[...]

x(0)*x(1)^3*x(2)+x(1)*x(2)^3*x(3)+x(0)^3*x(1)*x(4)+[...]

x(0)^5+x(1)^5+x(2)^5+x(3)^5+x(4)^5 ��

Remark 8.7. Following Remark 4.12 in Lecture 4, we may ease the compu-
tations in the example above by working over a finite field K. In the session
below, we pick the field K = F101 for which 36 is a primitive 5th root of unity.

> LIB "finvar.lib";

> ring R = 101, (x(0..4)), dp;

> matrix Si[5][5] = 0,0,0,0,1,

. 1,0,0,0,0,

. 0,1,0,0,0,

. 0,0,1,0,0,

. 0,0,0,1,0;

> number a = 36; // primitive fifth root of unity

> matrix Ta[5][5];

> Ta[1,1] = 1; Ta[2,2] = a; Ta[3,3] = a^2; Ta[4,4] = a^3;

> Ta[5,5] = a^4;

> int aa = timer; // time in seconds

> matrix P,S,IS = invariant_ring(Si,Ta,intvec(0,0,0));

> timer-aa;

456
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> size(S);

100

> print(S[100]);

[x(0)^15*x(1)^10*x(3)^5+x(0)^10*x(1)^15*x(3)^5+[...]

> ideal HMQ = invariant_basis(5,Si,Ta); ��

At this point, we set the computation of invariants aside and consider for a
moment a geometric application of what we did above. Addressing the readers
who are familiar with the classification of vector bundles on projective spaces,
we remark that the geometric significance of the Heisenberg group H5 comes
from the fact that its normalizer in SL5(C) is the symmetry group of the
Horrocks-Mumford bundle on P4 = P4(C) (see Horrocks and Mumford (1973)
and Decker (1984)). In the following more involved example, which is in the
spirit of Exercise 1.5 and Examples 4.13 and 4.14 in Lecture 4, we present an
experiment which leads to the construction of the Horrocks-Mumford bundle
and which reveals some of the geometry behind it:

Example 8.8. Continuing our SINGULAR session from the remark above, we
compute a primary decomposition of the ideal generated by the first two
Horrocks-Mumford quintics.

> ring P4 = 101, (x(0..4)), dp;

> ideal HMQ = fetch(R,HMQ);

> ideal CI = HMQ[1], HMQ[2];

> list DEG = primdecGTZ(CI);

> size(DEG);

10

We see that that there are ten components. In fact, there are five components
defining a cubic surface and five components defining a double structure on a
plane. For instance:

> ideal I6 = DEG[6][1]; I6;

I6[1]=x(1)^2*x(3)+x(2)*x(4)^2

I6[2]=x(0)

> degree(std(I6));

// dimension (proj.) = 2

// degree (proj.) = 3

> ideal I10 = DEG[10][1]; I10;

I10[1]=x(2)^2

I10[2]=x(2)*x(3)^2+x(0)*x(4)^2

I10[3]=x(0)*x(2)

I10[4]=x(0)^2

> degree(std(I10));

// dimension (proj.) = 2

// degree (proj.) = 2

The union of the degree 2 surfaces defines a degree 10 subscheme X of P4.
We compute the minimal free resolution of its coordinate ring:
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> ideal IX = intersect(DEG[3][1],DEG[4][1],DEG[8][1],DEG[9][1],

. DEG[10][1]);

> degree(std(IX));

// dimension (proj.) = 2

// degree (proj.) = 10

> resolution FIX = mres(IX,0);

> print(betti(FIX),"betti");

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - - - - -

2: - - - - -

3: - - - - -

4: - 3 - - -

5: - 15 35 20 -

6: - - - - 2

------------------------------------

total: 1 18 35 20 2

The degree 10 subscheme X is one of the degenerated Horrocks-Mumford
surfaces studied by Barth et al (1987). It, thus, arises as a zero scheme of the
Horrocks-Mumford bundle. In other words, there is an exact sequence

0 I(X)(5) MHM S = C[x0, . . . , x4] 0 , (8.1)

where I(X)(5) is the 5th twist of I(X), and where MHM is the graded module
of global sections of the Horrocks-Mumford bundle. We expect from (8.1) and
the Betti diagram visualizing the minimal free resolution of the coordinate
ring of I(X) that MHM has a minimal free resolution of type

0 MHM 4S ⊕ 15S(−1) 35S(−2) 20S(−3) 2S(−5) 0 .

It turns out that we may compute this resolution as follows:

> module N = transpose(FIX[3]);

> homog(N);

1

> intvec deg_N = attrib(N,"isHomog");

> attrib(N,"isHomog",deg_N-3); // set degrees

> resolution FN = mres(N,0);

> print(betti(FN),"betti");

0 1 2 3 4 5

------------------------------------------

-3: 20 35 15 - - -

-2: - - 4 - - -

-1: - - - - - -

0: - - 5 15 10 2

------------------------------------------

total: 20 35 24 15 10 2
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> matrix NN = FN[2];

> matrix PRESMHM[35][19] = NN[1..35,1..19];

> PRESMHM = transpose(PRESMHM);

> resolution FMHM = mres(PRESMHM,0);

> print(betti(FMHM),"betti");

0 1 2 3

------------------------------

0: 4 - - -

1: 15 35 20 -

2: - - - 2

------------------------------

total: 19 35 20 2

Having constructed the Horrocks-Mumford bundle starting from a zero scheme
of one of its sections, we may now construct zero schemes of other sections.
The ideal sheaf of each such scheme fits into an exact sequence of type (8.1)
and can, thus, be computed by a cokernel construction (see Lecture 4). As
shown by Horrocks and Mumford (1973) with a nontrivial proof, a generic
section of the Horrocks-Mumford bundle vanishes along a smooth surface (of
degree 10). We verify this using SINGULAR (applying the Jacobian criterion as
in Examples 4.13 and 4.14 in Lecture 4):

> matrix zero[1][15];

> matrix ran = random(100,1,4);

> matrix psi = transpose(concat(zero,ran));

> matrix pres = PRESMHM + module(psi);

> module dir = transpose(pres);

> resolution fdir = mres(dir,2);

> print(betti(fdir),"betti");

0 1 2

------------------------

0: 35 15 -

1: - 3 -

2: - - -

3: - - -

4: - - -

5: - - 1

------------------------

total: 35 18 1

> ideal IA = groebner(flatten(fdir[2]));

> int codimIA = nvars(P4) - dim(IA);

> ideal sIA = minor(jacob(IA),codimIA)+IA;

> nvars(P4) - dim(groebner(sIA));

5

We randomly choose two quintics in the ideal defining A. The complete in-
tersection surface defined by these quintics is the union of A and some other
surface, say A′ (we say that A is linked to A′ by the complete intersection).
We compute A′ via saturation and check that it is smooth:
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> matrix dummy[1][3] = IA[1..3]; // the 3 quintics in IA

> ideal CI2 = dummy*random(100,3,2);

> ideal IA’ = sat(CI2,IA)[1];

> resolution FIA’ = mres(IA’,0);

> print(betti(FIA’),"betti");

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - - - - -

2: - - - - -

3: - - - - -

4: - 3 - - -

5: - - - - -

6: - 5 15 10 2

------------------------------------

total: 1 8 15 10 2

> ideal sIA’ = slocus(IA’);

> nvars(P4) - dim(std(sIA’));

5

It follows from general classification results that A is an Abelian surface and
that A′ is the blow-up of an Abelian surface in 25 points (see Aure et al (1997),
Section 2 and the references cited there). In fact, there are 25 exceptional lines
on A′ which can be rediscovered as the 6-secants to A. By Bézout’s theorem,
the 6-secants to A must be contained in the hypersurfaces defined by the
quintics in the ideal of A. In fact, these quintics cut out A and the 25 lines:

> ideal QA = IA[1..3];

> ideal HMlines = sat(QA,IA)[1]; // result is a Groebner basis

> degree(HMlines);

// dimension (proj.) = 1

// degree (proj.) = 25 ��

We refer to Popescu (1993) and Aure et al (1997) for further surfaces admitting
a H5-symmetry.

8.1.2 The Modular Case

Still suppose that G is a finite group, explicitly given as a matrix group
G ⊂ GLn(K) by a (finite) set of generating matrices. Linear algebra provides
an alternative way of computing a K-basis for K[x]Gd , where d is a given
degree. Indeed, to be invariant under just one element of G imposes a linear
condition on the polynomials of degree d. Thus, we may obtain the desired K-
basis by solving a linear system of equations depending on the given generators
for G; no Reynolds operator and no precomputed Hilbert series are needed.
In particular, we can use Algorithm 8.3 to compute primary invariants also
in the modular case. The computation of secondary invariants in the modular
case is reduced to that in the nonmodular case by a trick of Kemper (1996).
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In describing the resulting algorithm, we suppose that a system p1, . . . , pn of
primary invariants for G has already been computed (for instance, by applying
Algorithm 8.3).

Step 1. Choose a subgroup H of G whose order is invertible in K (for example,
the trivial subgroup will do).

Then p1, . . . , pn is also a system of primary invariants for H .

Step 2. Compute t1, . . . , tk, a system of secondary invariants for H corre-
sponding to p1, . . . , pn (for instance, by applying Algorithm 8.5).

Step 3. Choose a subset Δ ⊂ G such that the elements of Δ∪H generate G.

Note that K[x] is a free K[p1, . . . , pn]-module of rank
∏n

i=1 deg(pi) with a
basis B given by the standard monomials for 〈p1, . . . , pn〉 (with respect to the
chosen monomial order). Setting r = |Δ| ·

∏
i deg(pi), we get a commutative

diagram of graded K[p1, . . . , pn]-modules with exact rows and columns

0 0 0

0 K[x]G K[x]H
α ⊕

π∈Δ

K[x]

0 M K[p1, . . . , pn]k

β

eα K[p1, . . . , pn]r

0 0 0 .

Here, α is the map defined by f 
→ (πf − f)π∈Δ, and β is the map given by

(f1, . . . , fk) 
→
∑k

j=1 fjtj .

Step 4. Via linear algebra or Gröbner bases, compute the map α̃, that is, the
representation of each (πtj − tj) in terms of B.

Step 5. Compute the first syzygy module M of im α̃ ⊂ K[p1, . . . , pn]r, and get
the secondary invariants for G by determining the images in K[x]H of the
generators for M .

Example 8.9. We consider the cyclic group G of order 4, represented as a
subgroup of GL4(F2).

> ring R = 2, (x(1..4)), dp;

> matrix A[4][4];

> A[1,4] = 1; A[2,1] = 1; A[3,2] = 1; A[4,3] = 1;

> print(A);

0,0,0,1,

1,0,0,0,

0,1,0,0,

0,0,1,0
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> LIB "finvar.lib";

> matrix P,S = invariant_ring(A);

> P;

P[1,1]=x(1)+x(2)+x(3)+x(4)

P[1,2]=x(1)*x(3)+x(2)*x(4)

P[1,3]=x(1)*x(2)+x(2)*x(3)+x(1)*x(4)+x(3)*x(4)

P[1,4]=x(1)*x(2)*x(3)*x(4)

> size(S);

5

We, hence, need more than
∏4

i=1 deg(pi)/|G| = 4 secondary invariants. So,
K[x]G is not Cohen-Macaulay. A check on the secondary invariants shows
that the invariants of degree ≤ |G| = 4 do not generate K[x]G (see Exercise
5.1). Thus, Noether’s degree bound (1916)1 does not hold in the modular
case (see Richman (1990) for examples with a fixed group order involving
generators of arbitrary high degree). ��

8.1.3 Quotients for Finite Group Actions

We begin by pointing out that the algorithms presented so far in this sec-
tion do not compute a fundamental system of invariants. That is, they
do not compute a minimal generating set for the ring of invariants un-
der consideration. As a solution to Exercise 5.1, we will write a procedure
min generating set

• which takes as input matrices of primary and secondary invariants of a
finite group as provided by the invariant ring command, and

• which computes a fundamental system of invariants.

The following example shows this procedure at work. Further, we show how
to compute the algebra relations on the resulting invariants.

Example 8.10. We consider the cyclic group Z5 of order 5, represented as the
subgroup of GL4(C) with generator

A =

⎛⎜⎜⎝
ξ 0 0 0
0 ξ2 0 0
0 0 ξ3 0
0 0 0 ξ4

⎞⎟⎟⎠ .

Here, as in Example 8.6, ξ = e
2πi
5 . We compute the ring of invariants using

SINGULAR:

> LIB "finvar.lib";

> ring R = (0,a), (x(0..3)), dp;

> minpoly = a4+a3+a2+a+1;

1 In the nonmodular case, Noether proved that K[x]G is generated in degrees ≤ |G|.
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> matrix A[4][4];

> A[1,1] = a; A[2,2] = a2; A[3,3] = a3; A[4,4] = a4;

> matrix P,S,IS = invariant_ring(A,intvec(0,0,0));

> size(P);

4

> size(S);

12

Now we enter the procedure min generating set (without printing this here)
and apply it to P and S. As a result, we obtain a fundamental system of
invariants for C[x0, . . . , x3]

Z5 :

> ideal FSI = min_generating_set(P,S);

> size(FSI);

14

Next, we compute the C-algebra relations on the minimal generators as ele-
ments in a polynomial ring over C with 14 variables, say y0, . . . , y13. In this
way, we represent C[x0, . . . , x3]

Z5 as the quotient of C[y0, . . . , y13] modulo the
ideal defined by the relations. Observe, however, that this ideal is not ho-
mogeneous with respect to the natural grading of C[y0, . . . , y13]. Indeed, the
fundamental generators have different degrees. To represent C[x0, . . . , x3]

Z5 as
a graded ring, we have to assign the degrees of the fundamental generators as
weights to the variables yi:

> ring Rnew = 0, (x(0..3)), dp; // coefficient field is now Q

> ideal FSI = fetch(R,FSI);

> ideal ZERO;

> ring R1 = 0, (y(0..13)), wp(5,5,5,5,4,4,4,4,3,3,3,3,2,2);

> ideal REL = preimage(Rnew,FSI,ZERO);

> homog(REL); // check that REL is homogeneous

1

> size(REL);

54

Inspecting the fundamental generators, we see that the Fermat quintic

F = x5
0 + x5

1 + x5
2 + x5

3

is one of the invariants:

> setring Rnew;

> FSI[4];

x(0)^5+x(1)^5+x(2)^5+x(3)^5

Thus, the action of Z5 on C[x0, . . . , x3] induces an action of Z5 on the affine
ring S = C[x0, . . . , x3]/〈F 〉 and it makes sense to speak of the ring SZ5 of
invariants under this action.
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Note that the natural projection C[x0, . . . , x3]
Z5 → SZ5 is surjective. In-

deed, if f ∈ C[x0, . . . , x3] is a polynomial representing an invariant of S un-
der Z5 and R : C[x0, . . . , x3] → C[x0, . . . , x3]

Z5 is the Reynolds operator, then
R(f) is congruent to f mod F . We represent SZ5 as a quotient of the weighted
polynomial ring C[y0, . . . , y13]:

> ideal F = FSI[4];

> setring R1;

> ideal GODEAUX = preimage(Rnew,FSI,F);

> size(GODEAUX);

55

> GODEAUX[1];

y(3)

> dim(std(GODEAUX));

3 ��
Readers who are familiar with the classification of surfaces may have realized
that in the example above, we used SINGULAR to repeat a classical construction
due to Godeaux (see Barth et al (2004), Sections V.15 and VII.10 and the
references cited there). Namely, from a geometric point of view, we constructed
the quotient of the quintic hypersurface V(x5

0 + x5
1 + x5

2 + x5
3) ⊂ P3 under the

action of Z5 described above. This quotient is a smooth surface of general type
which is usually referred to as a Godeaux surface (the smoothness follows
from the fact that Z5 acts freely on V(x5

0 +x5
1 +x5

2 +x5
3), see Mumford (1970),

Section II.7).
The Godeaux surface is one interesting example of an algebraic set A

whose construction yields an embedding of A into a weighted projective
space (in our case, this is the space P(5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2)). We
may, then, study A in terms of this ambient space, for instance, by project-
ing it to weighted projective subspaces. See Harris (1992), Chapter 10 and
Dolgachev (1982) for weighted projective spaces.

The construction of “geometric” quotients for group actions on algebraic
sets is the subject of geometric invariant theory ( see Mumford et al (1994) and
Newstead (1978)). In general, such quotients do not exist. In the case of finite
groups acting on affine or projective algebraic sets, however, the situation is
different (see Harris (1992), Chapter 10 and Mumford (1970), Section II.7).
Note that weighted projective spaces arise as quotients of specific finite group
actions on classical projective spaces.

8.2 Linearly Reductive Groups

In Lecture 1, we introduced some of the basic concepts and theorems of
computational algebraic geometry by historical remarks, starting with papers
originating from classical invariant theory. In particular, we quickly reviewed
Hilbert’s landmark papers (1890, 1893) in which classical invariant theory cul-
minated and in which Hilbert showed that a large class of rings of invariants
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is finitely generated. In modern terminology, he showed that if G is a linearly
reductive group acting rationally on the K-vector space of linear forms in
K[x], then K[x]G is finitely generated.

We will not recall what a linearly reductive group and a rational action
of such a group are (see, for instance, Derksen and Kemper (2002) for precise
definitions). We should mention, however, that if such an action on the space
of linear forms in K[x] is given, then, as for finite groups in the nonmodular
case, there exists a Reynolds operator R : K[x]→ K[x] projecting K[x]
onto K[x]G. Also, the ring K[x]G is Cohen-Macaulay by a result of Hochster
and Roberts (1974). Examples of linearly reductive groups are finite groups
in the nonmodular case and the classical groups SLn(C), GLn(C), On(C),
SOn(C) und Spn(C).

Hilbert’s first proof of the finiteness result (1890) is an application of the
basis theorem which was proved for that purpose. In fact, we may conclude
from the basis theorem that the ideal IN generated by all homogeneous invari-
ants of positive degree is generated by finitely many of them, say by f1, . . . , fr.
That is, if f is any homogeneous invariant of positive degree, then f can be
written as a K[x]-linear combination f =

∑r
i=1 gifi. Applying the Reynolds

operator R, we get

f =

r∑
i=1

R(gi)fi.

The R(gi) are invariants, which may be assumed to be of lower degree than
f . By induction on the degree, the R(gi) are in the subalgebra generated by
f1, . . . , fr. Hence, so is f .

As it stands, this proof is nonconstructive since no recipe is given for com-
puting the ideal generators f1, . . . , fr. Only recently, Derksen (1999) refined
Hilbert’s ideas and turned them into an algorithm which reduces the problem
to elimination, and which is easy to implement.

Hilbert himself, in his more constructive second paper (1893), presented
two ways of reducing the computation of invariants to normalization (see
Sturmfels (1993) and Decker and de Jong (1998)). For this purpose, he proved
the Hilbert-Mumford criterion (which, in practical terms, requires elimina-
tion), the Nullstellensatz, and the Noether normalization theorem (in the
graded case). Except for rather small examples, Derksen’s and Hilbert’s al-
gorithm are not of practical interest (requiring a Gröbner basis computation
with respect to an elimination order in a large number of variables).

Remark 8.11 (Further Reading). For more details and proofs of the re-
sults presented in this lecture, see Decker and de Jong (1998), Derksen and
Kemper (2002), and Sturmfels (1993).



Lecture 9

Computing in Local Rings

This lecture deals with methods for studying the behavior of a given algebraic
set A “near” a given point p ∈ A, that is, for studying arbitrarily small neigh-
borhoods of p in A. To give this a precise meaning, we introduce the following
notation.

Definition 9.1. Let X be a topological space, and let p ∈ X be a point. We
call two subsets A, B ⊂ X equivalent at p if there is a neighborhood U of p
in X such that A ∩ U = B ∩ U and refer to the equivalence class of A as the
germ of A at p, written (A, p). ��

In the geometric setting considered in this lecture, A will always be an al-
gebraic subset of An = An(K), where K is a field and where K is an alge-
braically closed field containing K. We suppose that A is defined by poly-
nomials in K[x] = K[x1, . . . , xn] and that p = (0, . . . , 0) ∈ An is the origin.
Choosing different topologies on An, we get different types of germs (A, p) of
A at p. Depending on the choice of topology, we associate to (A, p) a local
ring of germs of functions at p, where germs of functions at p are defined as
above by identifying two functions defined on A near p if their restrictions to
a suitable neighborhood of p in A coincide. We may say, then, that studying
A near p means to study properties of the germ of A at p and its associated
local ring.

If we choose the Zariski topology on An, we refer to the resulting germ
(A, p) as the algebraic germ of A at p and associate to it the ring of germs
of regular functions at p obtained from K[A] by inverting all polynomial
functions on A which do not vanish at p. Formally, this ring is the localization
of K[A] at the maximal ideal 〈x〉 of polynomial functions on A vanishing at
p,

OA,p = K[A]〈x〉 = K[x]〈x〉

/
I(A)K[x]〈x〉

(see Remark 2.12 in Lecture 2). Note that two algebraic sets A, B ⊂ An define
the same germ at p with respect to the Zariski topology iff their irreducible
components through p coincide. Algebraically, if I ⊂ K[x] is any ideal defining
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A, and if Q is a primary component of I such that Q �⊂ 〈x〉, then Q contains
a unit of K[x]〈x〉. Hence, QK[x]〈x〉 = K[x]〈x〉.

If K = C, we may also choose the usual Euclidean topology on An. In this
case, we refer to the resulting germ (A, p) as the analytic germ of A at p
and associate to it the ring of germs of holomorphic functions at p,

Oan
A,p := C{x}

/
I(A) C{x} .

Here, C{x} is the ring of convergent power series in x1, . . . , xn with coefficients
in C.

Over an arbitrary field K, there is no analogue to the Euclidean topology,
and it is not meaningful to speak of convergent power series. We may, however,
always consider the ring

ÔA,p := K[[x]]
/
I(A)K[[x]] ,

where K[[x]] is the ring of formal power series in x1, . . . , xn with coefficients
in K. Its geometric counterpart is defined in the language of schemes and
referred to as the formal germ of A at p (we go no further into this).

Note that the neighborhoods of p in An in the Zariski topology are rather
large (in fact, dense in An), whereas in the Euclidean topology, we can choose
arbitrarily small ε-neighborhoods of p in An. On the algebraic side, this is
reflected by the fact that there are more holomorphic functions at p than
regular functions at p. In fact, there are strict inclusions of rings

C[A] � OA,p � Oan
A,p � ÔA,p ,

where for the first inclusion to hold we have to suppose that all components
of A pass through p.

Remark 9.2. (1) We always have the natural inclusion K[x]〈x〉 ⊂ K[[x]] ob-
tained by power series expansion. Indeed, write each element of K[x]〈x〉 as a
fraction of type g/(1−h), with polynomials g ∈ K[x] and h ∈ 〈x〉, and expand
1/(1− h) in a geometric series:

g

1− h
=

∞∑
k=0

ghk .

This defines a formal power series as the sequence (ghk)k∈N converges to zero
with respect to the 〈x〉-adic topology. That is, for each N ∈ N, there is some
k0 ∈ N such that ghk ∈ 〈x〉N for all k ≥ k0. If K ⊂ C, we obtain a convergent
power series in this way.

(2) If I ⊂ K[x]〈x〉 is an ideal, then the induced homomorphism K[x]〈x〉/I →
K[[x]]/IK[[x]] is injective. Indeed, the inclusion of rings K[x]〈x〉⊂ K[[x]] is
faithfully flat (see Proposition 9.4 (1) below for a definition and for a more
general statement). In particular, IK[[x]] ∩K[x]〈x〉 = I (Matsumura (1986),
Theorem 7.5). ��
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Investigating A near p means, in particular, to decide whether A is smooth at
p and, if not, to study the singularity of A at p. The computational questions
arising in this context include:

• Compute invariants of the germ (A, p) that help to describe the type of
singularity of A at p. Most notably, compute the Tjurina number and the
Milnor number.

• Decide whether (A, p) is irreducible, that is, whether 〈0〉 is a prime ideal
of the associated local ring.

• If (A, p) is reducible, compute the number of irreducible components, that
is, the number of (minimal) associated primes of 〈0〉 in the associated local
ring.

• Check whether the local ring associated to (A, p) is Cohen-Macaulay or
whether a given map of germs is flat.

• Study the behavior of (A, p) under a small flat deformation.

The answer to many local questions does not depend on the type of germ cho-
sen (for the Cohen-Macaulay property, for instance, this holds due to Lecture
5, Proposition 5.37). If it comes to local irreducibility, however, the situation
is different:

Example 9.3. Consider the complex affine plane curve C = V
(
x2(1−x2)− y2

)
at the origin:

The picture indicates:

• In the affine plane and, thus, in each Zariski neighborhood of the origin,
C is irreducible.

• In a sufficiently small Euclidean neighborhood of the origin, however, C
has two smooth branches that meet transversally.

Algebraically, the polynomial f = x2(1−x2)− y2 is irreducible in C[x, y] (for
instance, use absFactorize to check this). In contrast, considering f as an
element of C{x, y}, we have the nontrivial decomposition

f =
(
x
√

1− x2− y
)(

x
√

1− x2 + y
)

. ��

To provide tools for local computations, we introduce standard bases, ex-
tending the concept of Gröbner bases to the local rings K[x]〈x〉, K{x} (in
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case K ⊂ C), and K[[x]]. Note that from a practical point of view, we are es-
sentially restricted to computations over K[x] and K[x]〈x〉 (or quotient rings
thereof). This is often sufficient, however, to study analytic and formal germs,
too. The following proposition, for instance, is the key to computing invariants
of such germs:

Proposition 9.4. Let I ⊂ K[x]〈x〉 be an ideal. Then:

(1) The inclusion K[x]〈x〉/I ⊂K[[x]]/IK[[x]] is faithfully flat. This is to
say, a sequence 0 →M ′ →M →M ′′ → 0 of K[x]〈x〉/I-modules is exact
iff the sequence of K[[x]]/IK[[x]]-modules obtained by tensorizing with
K[[x]]/IK[[x]] is exact.

(2) If dimK(K[x]〈x〉/I) <∞, the inclusion K[x]〈x〉/I ⊂K[[x]]/IK[[x]] is an
isomorphism of local K-algebras. In particular, both vector spaces have the
same dimension.

If K ⊂ C, the analogous statements hold for K{x} in place of K[[x]].

The key step in the proof of assertion (1) is to show that with the notation
and under the assumptions of Lecture 5, Theorem 5.11, a finitely generated S-
module M is flat over R iff M/m

nM is flat over R/m
n for all n (using Krull’s

intersection theorem). See Greuel and Pfister (2002), Corollaries 7.4.4, 7.4.6
and Exercise 7.3.12 for details. For (2), observe that due to the assumption,
a sufficiently large power of the maximal ideal 〈x〉 ⊂ K[x]〈x〉 is contained in
I. Thus, each element of K[[x]]/IK[[x]] may be represented by a polynomial.

We present the tools for local computations in six sections. In Section 9.1,
we treat local and mixed monomial orders. Section 9.2 is concerned with the
definition and computation of standard bases. In Section 9.3, we return to
factorization and primary decomposition, now interpreting the results of our
computations in terms of the local ring K[x]〈x〉. Section 9.4 is concerned with
computing local invariants such as the local dimension, the Milnor number,
and the Tjurina number. Here, Proposition 9.4 above applies, that is, standard
basis computations yield results for the algebraic germ and for the analytic
germ as well. In Section 9.5, we treat the elimination problem in local rings.
Finally, and somewhat independently, Section 9.6 on Hamburger-Noether ex-
pansions is devoted to the factorization problem in K[[x, y]] (geometrically, to
computing information on the branches of germs of plane curves).

9.1 Rings Implemented by Monomial Orders

Given any monomial order > on K[x], the set

S> :=
{
u ∈ K[x]

∣∣ L>(u) ∈ K \ {0}
}

is multiplicatively closed. We define K[x]> to be the localization of K[x] at
S>,
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K[x]> := S−1
> K[x] =

{
f

u

∣∣∣∣ f, u ∈ K[x], L>(u) ∈ K \ {0}
}

.

In SINGULAR, it is possible to compute with ideals of K[x]> and submodules
of free K[x]>-modules. In fact, computations over K[x]> are mimicked by
considering the elements of S> as units in standard basis computations which
entirely take place in K[x]. To emphasize this point, we say that K[x]> is
the ring implemented by the monomial order >. Before explaining in
detail how different types of orders are related to different types of rings, we
illustrate the behavior of standard basis computations by a simple example:

Example 9.5. We consider the ideal generated by x2+ x = x(x+1) in two dif-
ferent rings:

> ring R = 0, x, dp; // global order: x>1

> ideal I = x2+x;

> std(I);

_[1]=x2+x

> ring S = 0, x, ds; // local order: 1>x

> ideal I = x2+x;

> std(I);

_[1]=x ��

Clearly, if > is global, then S> = K \ {0} and K[x]> = K[x] (in SINGULAR,
the p in the names of the predefined global monomial orders such as lp and
dp stands for “polynomial ring”).

Local Monomial Orders

The name local monomial order comes from the fact that these orders are
precisely the orders implementing the local ring K[x]〈x〉. This is to say, if >
is a monomial order on K[x], the following statements are equivalent:

(1) > is local, that is, 1 > xi for i = 1, . . . , n.
(2) K[x]> = K[x]〈x〉.

Note that every local monomial order is obtained by “inverting” a global
one. Indeed, if >′ is a monomial order on K[x], and if > is defined by setting
xα > xβ iff xβ >′ xα, then > is local iff >′ is global. In terms of matrix orders,
if >′ is given by a matrix M ′, then > is given by the matrix M = −M ′.

Example 9.6. The negative lexicographic order >ls is defined to be the
inverse of >lp (the s in ls stands for “power series ring”). ��

From a computational point of view, the most important examples of local
monomial orders are obtained by considering degree anticompatible or-
ders (instead of degree compatible orders in the global case).



240 9 Computing in Local Rings

Example 9.7. (1) The negative degree reverse lexicographic order >ds

is defined by setting

xα >ds xβ :⇐⇒ deg xα < deg xβ or (deg xα = deg xβ and the last nonzero
entry of α− β is negative) .

(2) Let w = (w1, . . . , wn) ∈ Rn
≥0 be a degree vector. The weighted negative

degree reverse lexicographic order >ws(w) is defined in the same way as
>ds, with deg(xα) being replaced by the w-weighted degree w-deg(xα). 1 ��

Note that further examples of local monomial orders are obtained by combin-
ing local monomial orders already known to product orders.

Mixed Monomial Orders

According to our definition in Lecture 1, a monomial order on K[x] is mixed
if it is neither local nor global. In this case, we have strict inclusions

K[x] � K[x]> � K[x]〈x〉 .

Example 9.8. Let >1 be a monomial order on K[x], let >2 be a monomial
order on K[y], and let > be the product order (>1, >2) on K[x, y].

(1) If >1 is global and >2 is local, then S>⊂ K[x, y] consists precisely of the
polynomials of type a + f , where a ∈ K \ {0} and f ∈ 〈y〉 ⊂ K[y]. Thus,

K[x, y]> = (K[y]〈y〉)[x] = K[y]〈y〉 ⊗K K[x] .

(2) If >1 is local and >2 is global, then S> consists precisely of the polyno-
mials of type a + f , where a ∈ K \ {0} and f ∈ 〈x〉 ⊂ K[x, y]. Thus,

(K[x]〈x〉)[y] � K[x, y]> � K[x, y]〈x〉 . ��

Remark 9.9. (1) In the situation of the example, if >1 is global and >2 is
arbitrary, then K[x, y]> = (K[y]>2

)[x] .

(2) To implement the ring K[x, y]〈x〉, choose a local monomial order > on
K(y)[x] (considering K(y) as the coefficient field). Then

K(y)[x]> = K[x, y]〈x〉 . ��

In Lecture 5, Example 5.15, we already made use of mixed orders to implement
the ring Q[t]〈t〉[x] in the context of studying flat families. Another important
application of mixed orders is the elimination of variables in the local case
(see Section 9.5 later in this lecture).

1 Note that the SINGULAR implementation of a weighted negative degree reverse
lexicographic order requires additionally that w1 > 0.
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Remark-Definition 9.10 (Monomial Orders on Free K[x]>-Modules).
Let > be a monomial order on K[x], and let F> be a free K[x]>-module with a
fixed basis e1, . . . , es. Then a monomial in F> is an element of the form xαei

and a monomial order on F > is nothing but a monomial order on the free
K[x]-module F ⊂ F> with basis e1, . . . , es (see Lecture 1, Remark-Definition
1.30). We usually require additionally that the monomial order on F> ex-
tends >, that is, that it induces > on K[x]. Note that there are many ways
of extending > to a monomial order on F> (see Lecture 3, Section 3.2.1.E). ��

Ring Maps

Generalizing what we did in Lecture 3, we consider ring maps (that is, ring
homomorphisms) between rings implemented by arbitrary monomial orders.
In SINGULAR, these maps are created using the type map (or the commands
fetch and imap) introduced in Section 3.2.2. Implementing a map means to
choose images for the variables in the preimage ring. In the nonglobal case,
this has to be done with some care. If >1 and >2 are monomial orders on
K[x] and K[y] = K[y1, . . . , ym], each choice of elements f1, . . . , fm ∈ K[x]
defines a ring map K[y] → K[x]>1

. In the nonglobal case, however, this does
not necessarily induce a ring map K[y]>2

→ K[x]>1
. In fact, for this, the

universal property of localization requires that the elements of S>2
⊂ K[y]

are sent to units in K[x]>1
:

Lemma 9.11. Let >1 and >2 be monomial orders on K[x] and K[y], and let
f1, . . . , fm ∈ K[x]. There is a ring map K[y]>2

→ K[x]>1
taking the yi to the

fi iff h(f1, . . . , fm) ∈ S>1
⊂ K[x] for each h ∈ S>2

⊂ K[y].

If >1 and >2 are both local orders, the condition of Lemma 9.11 is equivalent
to f1, . . . , fm ∈ 〈x〉 ⊂ K[x], that is, f1, . . . , fm �∈ S>1

. For mixed orders, how-
ever, the analogous condition (fi �∈ S>1

for each i such that 1 >2 yi) is not suf-
ficient. To give an example, consider the matrix orders >1 and >2 on K[v, w]
given by the integer matrices

(
−2 3

0 −1

)
and

(
−2 1

0 −1

)
. Then w >1 1 >1 v and

w >2 1 >2 v, so both orders are mixed. Since 1− vw ∈ S>2
but 1− vw �∈ S>1

,
the identity on K[v, w] does not induce a ring map K[v, w]>2

→ K[v, w]>1.

Warning. When creating a map (or applying imap or fetch) in SINGULAR,
the condition given in Lemma 9.11 is not checked by the system:

> ring R = 0, (v,w), M(-2,1,0,-1);

> poly f = 1-vw;

> reduce(1,std(ideal(f))); // output shows: f is a unit in R

0

> ring S = 0, (v,w), M(-2,3,0,-1);

> map phi = R,v,w; // implementing a nonexisting ring map

> reduce(1,std(phi(f))); // output shows: f is not a unit in S

1 ��
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9.2 Standard Bases and their Computation

If > is a local monomial order on K[x], every nonempty set of monomials
in K[x] has a largest element with respect to > (indeed, by inverting >, we
obtain a well-order). In particular, we can define the leading term of a power
series f ∈ K[[x]] with respect to > as the largest term of f . If > is a mixed
monomial order on K[x], however, an arbitrary power series in K[[x]] may not
have a largest term with respect to >. The situation is different for elements
of K[x]> :

Remark-Definition 9.12. Let > be any monomial order on K[x]. If 0 �=
f ∈ K[x]>, there is an element u ∈ K[x] such that L>(u) = 1 and uf ∈ K[x].
The largest term of uf is independent of the choice of u and equals the largest
term of the power series expansion of f . It is called the leading term of f ,
written L(f) = L>(f). If L(f) = axα, with a ∈ K, then a is called the leading
coefficient and xα the leading monomial of f . We refer to f − L(f) as the
tail of f . Further, we set L(0) = L>(0) = 0. If I ⊂ K[x]> is an ideal, the
leading ideal of I with respect to > is defined to be the monomial ideal

L>(I) := L(I) := 〈L(f) | f ∈ I〉 ⊂ K[x] .

The monomials not in L>(I) are called standard monomials (for I, with
respect to >). ��

Example 9.13. In the case of one variable x, there is precisely one local mono-
mial order: 1 > x > x2 > · · · . With respect to this order, if

f =
2x

1− x
+ x = 3x +

∞∑
k=2

2xk ∈ K[x]〈x〉 ,

then L(f) = L((1− x)f) = 3x ∈ K[x]. ��

Definition 9.14. Let > be a monomial order on K[x], and let I ⊂ K[x]>
be an ideal. A finite subset {f1, . . . , fr} ⊂ I is called a standard basis for I
with respect to > if

L>(I) = 〈L>(f1), . . . ,L>(fr)〉 ⊂ K[x] .

We say that a finite subset G of K[x]> is a standard basis over K[x]> if
it is a standard basis for the ideal of K[x]> generated by G. ��

Remark 9.15. As for Gröbner bases, the existence of a standard basis for
a given ideal I ⊂ K[x]> is guaranteed by Gordan’s lemma. Moreover, the
Mora Division Theorem 9.19 below implies that each standard basis for I is
a generating set for I. Finally, the concept of standard bases extends to free
K[x]>-modules F> with a fixed basis e1, . . . , es. ��
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The definition of standard bases over K[[x]] (with respect to a local mono-
mial order) is completely analogous to Definition 9.14. Further, Remark 9.15
applies accordingly (replace the Mora Division Theorem by the Grauert Di-
vision Theorem 9.16 below).2

Division with Remainder and Normal Forms

A nonzero power series g ∈ K[[x]] = K[[x1, . . . , xn]] is called xn-general of
order m if its leading monomial with respect to >ls equals xm

n . The clas-
sical Weierstrass division theorem for formal power series asserts that if
f, f1 ∈ K[[x]] are power series such that f1 is xn-general of order m, then there
exist uniquely determined g1 ∈ K[[x]] and h ∈ K[[x1, . . . , xn−1]][xn] such that

f = g1f1 + h, degxn
(h) ≤ m− 1 .

See Grauert and Remmert (1971), §I.4, Satz 2 for a proof.
Extending the Weierstrass division theorem, the following theorem treats

the simultaneous division by several power series. More generally, in analogy to
the Division with Remainder Theorem 1.38 for polynomial vectors in Lecture
1, we may divide in free K[[x]]-modules:

Theorem 9.16 (Grauert Division Theorem). Let F̂ be a free K[[x]]-

module with a fixed basis e1, . . . , es, let > be a local monomial order on F̂ ,
and let f1, . . . , fr ∈ F̂ \ {0}. For every f ∈ F̂ , there exist g1, . . . , gr ∈ K[[x]]

and an element h ∈ F̂ such that

f =

r∑
k=1

gkfk + h ,

where:

(DIV 1) L(f) ≥ L(gkfk) whenever both sides are nonzero.
(DIV 2) If h is nonzero, no term of h is divisible by any L(fk).

See Decker and Schreyer (2006) for a determinate version of the theorem and
its proof.

Remark 9.17. (1) As in the polynomial case, we also have the following
condition which is weaker than (DIV 2):

(DIV 2’) If h �= 0, then L(h) is not divisible by any L(fk).

We call each expression f =
∑r

k=1 gkfk + h satisfying (DIV 1) and (DIV 2’)
a standard expression for f in terms of the fk with remainder h. If all
components of the vectors f, f1, . . . , fr are in K[x], a standard expression is
called polynomial if the factors gk and the components of the remainder h
are polynomials in K[x], too.

2 If bF is a free K[[x]]-module with a fixed basis e1, . . . , es, then a local monomial

order on bF is nothing but a local monomial order on the free K[x]-module

F ⊂ bF with basis e1, . . . , es.
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(2) Lecture 1, Remark 1.40 on normal forms applies accordingly.

(3) Standard bases over K[[x]] are characterized by Buchberger’s criterion
over K[[x]], which is based on the Grauert division theorem, and which reads
word for word identically to Buchberger’s criterion in the polynomial case. ��

The Grauert division theorem and, as a consequence, Buchberger ’s criterion
over K[[x]] are not of practical interest. Even when starting with polynomi-
als f, f1, . . . , fr ∈ K[x], the Grauert division theorem only asserts that the
remainder h and the factors g1, . . . , gr exist as formal power series. In fact, a
polynomial standard expression for f in terms of the fk may not exist. Fur-
ther, if n ≥ 2, there is no analogue to the Grauert division theorem which
holds over K[x]〈x〉 (the condition (DIV 2) cannot always be achieved).

Example 9.18. (1) Applying the division process from Lecture 1 with respect
to the unique local monomial order on K[x], it takes infinitely many steps to
divide f = x by f1 = x− x2. As a result, we get the standard expression

f = g1f1 + 0, where g1 =
1

1− x
=

∞∑
k=0

xk . (9.1)

This standard expression is uniquely determined by f, f1 and is not polyno-
mial.

(2) Consider the polynomials f = y and f1 = y − y2− x as elements of the
local ring K[x, y]〈x,y〉 ⊂ K[[x, y]], and fix the negative lexicographic order
>ls on K[x, y] (with y >ls x). Suppose that there is a standard expression
f = g1f1 + h satisfying (DIV 2), where g1, h ∈ K[x, y]〈x,y〉. Then each term
of the remainder h is not divisible by L(f1) = y, that is, h ∈ K[x]〈x〉. This
implies that y = L(f) = L(g1f1) = L(g1) · y and, thus, that g1 is a unit in
K[x, y]〈x,y〉. Further, substituting h for y in f = g1f1 + h, we get the equality

g1(x, h) · (h− h2 − x) = 0 ∈ K[x]〈x〉 .

Since f and f1 vanish at the origin, h cannot have a constant term. It follows
that g1(x, h) �= 0 since g1 is a unit. We conclude that h− h2 − x = 0. Writing
h as h1

1+h2
, with h1 ∈ K[x] and h2 ∈ 〈x〉, we get the equality

(1 + h2) · h1 − h2
1 − x · (1 + h2)

2 = 0 ∈ K[x] .

A check on degrees shows that this is impossible. ��

It is clear from the first example above that for computations with local (and
mixed) orders, we have to modify the division process. Inspecting the standard
expression (9.1), we see what should be done. Namely, by rewriting (9.1), we
get a polynomial standard expression for (1 − x) · f :

(1− x) · f = 1 · f1 + 0 .
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Similarly, in the second example, we get a polynomial standard expression for
(1− y) · f :

(1− y) · f = 1 · f1 + x

(the resulting standard expression

f =
1

1− y
· f1 +

x

1− y

for f in K[x, y]〈x,y〉 does, of course, not satisfy (DIV 2)). Note that in both
cases, we obtained a polynomial standard expression for f times a polynomial
unit in the ring K[x]〈x〉. In general, we have the following result:

Theorem 9.19 (Mora Division Theorem). Let F be a free K[x]-module
with a fixed basis e1, . . . , es, let > be a monomial order on F , and let
f1, . . . , fr ∈ F \ {0}. For every f ∈ F , there exist polynomials u, g1, . . . , gr ∈
K[x] and an element h ∈ F such that

u · f =

r∑
k=1

gkfk + h, L(u) = 1 ,

and:

(DIV 1) L(f) ≥ L(gkfk) whenever both sides are nonzero.
(DIV 2’) If h is nonzero, then L(h) is not divisible by any L(fk).

Equivalently, we may formulate the Mora division theorem as a division the-
orem over the ring K[x]> implemented by the monomial order > :

Corollary 9.20. Let > be a monomial order on K[x], let F> be a free K[x]>-
module with a fixed basis e1, . . . , es and with a monomial order extending >,
and let f1, . . . , fr ∈ F>\ {0} be polynomial vectors. For every f ∈ F>, there
exist elements g1, . . . , gr ∈ K[x]> and an element h ∈ F> such that

f =

r∑
k=1

gkfk + h

and:

(DIV 1) L(f) ≥ L(gkfk) whenever both sides are nonzero.
(DIV 2’) If h is nonzero, then L(h) is not divisible by any L(fk).

We prove the Mora division theorem by presenting a general indeterminate
division algorithm (due to Greuel and Pfister, based on ideas of Mora and
Lazard). In comparison to the global case, there is one new feature — we are
not only dividing by f1, . . . , fr, but also by some of the intermediate dividends.
To decide whether an intermediate dividend h should be stored as a possible
divisor for division steps still to come, the ecart of h is computed.
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Definition 9.21. Let F be a free K[x]-module with a fixed basis e1, . . . , es,
and let > be a monomial order on F . If axαei is a nonzero term in F , we set

deg xαei := deg xα .

If f ∈ F \ {0}, the ecart of f (with respect to >) is defined to be

ecart(f) := deg f − deg L(f) ,

where deg f is the maximum degree of a term of f . ��

Algorithm 9.22 (Mora Division).

Let F be a free K[x]-module with a fixed basis e1, . . . , es, and let > be a
monomial order on F .

Input: f ∈ F , f1, . . . , fr ∈ F \ {0}.
Output: the remainder h ∈ F in a polynomial standard expression for

u · f in terms of f1, . . . , fr, where u is a polynomial unit in
K[x]>.

Step 1. Set h := f and D := {f1, . . . , fr};
Step 2. while

(
h �= 0 and Dh := {g ∈ D | L(g) divides L(h)} �= ∅

)
• choose g ∈ Dh with ecart(g) minimal;
• if (ecart(g) > ecart(h)) then D := D ∪ {h};
• set h := h− L(h)

L(g) g;

Step 3. return(h). ��

Note that in a single division step, h is added to D iff L(h) ∈ 〈L(g) | g ∈ D〉,
but tecart(h)L(h) �∈ T := 〈tecart(g)L(g) | g ∈ D〉 ⊂ F ⊗K[x]K[t, x], where t is an
extra variable. Due to Gordan’s lemma, the submodule T can only be enlarged
finitely many times in the process. Thus, to show termination of the Mora divi-
sion algorithm, we may assume that T is not enlarged in the process. Then Al-
gorithm 9.22 performs the same steps as the division with remainder algorithm
discussed in Lecture 1 applied to the homogenizations3 fhom, fhom

1 , . . . , fhom
r

and the global monomial order defined by

tcxαei >t tdxβej :⇐⇒ c + |α| > d + |β| , or(
c + |α| = d + |β| and xαei > xβej

)
(note that >t is defined such that L>t(g

hom) = tecart(g)L>(g)). Thus, termi-
nation follows from the termination result in Lecture 1.

To show the correctness of the algorithm is a simple exercise. See Greuel
and Pfister (2002) for details.

3 Here, the homogenization ghom of a vector g =
P

α,i
cαxαei ∈ F is defined as

ghom =
X
α,i

cαtdeg(g)−|α|
x

αei ∈ F ⊗K[x]K[t, x] .
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Remark 9.23. (1) If we apply the Mora algorithm to homogeneous polyno-
mials f, f1, . . . , fr, the ecart is always zero, and we obtain the indeterminate
division algorithm described in Lecture 1.

(2) If > is a global monomial order, then L(g) | L(h) implies that L(g) ≤ L(h).
Hence, even if added to D in the division process, h will not be used in further
division steps. Thus, we obtain again the division algorithm of Lecture 1 (with
the freedom of choice being reduced). ��

A version of the Mora division algorithm is implemented in SINGULAR and
accessible via the reduce and division commands. If called by the reduce

command, only the remainder h is returned. In contrast, the division com-
mand also yields the unit u and the quotients gk (this requires some extra
bookkeeping).

Computing Standard Bases

Based on Mora’s division theorem, we get Buchberger’s criterion over K[x]>.
Having practical computations in mind, we formulate the criterion such that
it involves polynomial data only:

Theorem 9.24 (Buchberger’s Criterion). Let > be a monomial order on
K[x], let F> be a free K[x]>-module with a fixed basis e1, . . . , es and with a
monomial order extending >. Moreover, let f1, . . . , fr ∈ F>\ {0} be polyno-
mial vectors. Compute for each pair of indices i > j a polynomial standard
expression

u(ij) · S(fi, fj) =

r∑
k=1

g
(ij)
k fk + hij

such that u(ij)∈ K[x] is a polynomial with a constant leading term. Then
f1, . . . , fr form a standard basis over K[x]> iff all remainders hij are zero.

Remark 9.25. (1) As in the special case of global monomial orders, Buch-
berger’s criterion yields algorithms for computing standard bases and syzygies
over K[x]> (working with polynomial data). In theoretical terms, we can make
use of Schreyer’s syzygy algorithm to extend Hilbert’s syzygy theorem to the
ring K[x]> (see Greuel and Pfister (2002), Section 2.5).

(2) Lecture 2, Remark 2.9 on the role of the coefficient field applies accord-
ingly. ��

Remark 9.26. Let > be a local monomial order on K[x], and let f1, . . . , fr ∈
K[x]s be polynomial vectors. It follows from the two versions of Buchberger’s
criterion considered in this section that {f1, . . . , fr} is a standard basis over
K[x]> iff it is a standard basis over K[[x]]. ��
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9.3 Factorization and Primary Decomposition

Let > be a monomial order on K[x], and let f ∈ K[x] be a nonzero polyno-
mial. Then we may ask for finding the irreducible factors of f in the localized
ring K[x]>. We already know from Remark 7.1 in Lecture 7 that in SINGULAR,
if K is a finite field, the field Q, or a number field, the factorization of f in K[x]
can be computed using the factorize command. If f = c · fm1

1 · . . . · fms
s is

this factorization, the irreducible factors of f in K[x]> are precisely the fi

which are non-units in K[x]>:

f = c ·
∏

L(fi)∈K

fmi

i︸ ︷︷ ︸
unit

·
∏

L(fi) �∈K

fmi

i

is the factorization of f into irreducibles in K[x]>.

Example 9.27. We use SINGULAR to factorize a bivariate polynomial of degree
19 over Q:

> ring R = 0, (x,y), ds; // local monomial order

> poly f = y13-y15+x2y9+x2y10-2x2y11-x2y12+x2y13-3x3y11+3x3y13+x4y6

. -x4y7-2x4y8+x4y9+x4y10-3x5y7-3x5y8+5x5y9-x5y10-2x5y11+4x5y12-x6y4

. +x6y6+3x6y9-3x6y11-3x7y4+2x7y5+x7y6-6x7y7+6x7y8+3x7y9-4x7y10+x7y11

. +3x8y5+3x8y6-4x8y7+x8y8+x8y9-4x8y10+2x9y2-4x9y3+2x9y4+7x9y5-5x9y6

. -3x9y7+x9y8+3x10y2-x10y3+5x10y5-3x10y6-3x10y7-x10y9+4x11y-x11y2

. -4x11y3+x11y4-x12+4x12y+x12y2-3x12y3+x12y4-x12y5-x12y6+x14-x14y2;

> factorize(f);

[1]:

_[1]=-1

_[2]=-y4+2x3y2-x6+4x5y+x7

_[3]=x2-y2+x3

_[4]=x2+y3

_[5]=x2+y4

_[6]=-1+y

_[7]=1+y

[2]:

1,1,1,1,1,1,1

Though we have chosen an order which implements Q[x, y]〈x,y〉, the factorize
command returns the irreducible factors in Q[x, y] (it does not single out the
factors which are irreducible in Q[x, y]〈x,y〉). A check on the leading terms
shows that the factors −1 + y and 1 + y (and the constant −1) are units in
Q[x, y]〈x,y〉, while the other factors are not. Hence, up to the unit u = 1− y2,
the factorization of f into irreducibles in Q[x, y]〈x,y〉 is the product

(−y4+ 2x3y2− x6+ 4x5y + x7) · (x2− y2+ x3) · (x2+ y3) · (x2+ y4) .

The rightmost factor decomposes over the extension field Q(i) as x2 + y4 =
−(ix+y2)(ix−y2). The other factors can be shown to be absolutely irreducible
(for instance, use absFactorize). ��
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Remark 9.28. A similar recipe works for primary decomposition: if I is an
ideal of K[x], and if I =

⋂s
i=1 Qi is a primary decomposition of I, then

I K[x]> =
⋂

Qi⊂K[x]\S>

Qi K[x]>

is a primary decomposition of I K[x]>. Note that, if > is a local order, then
Qi ⊂ K[x] \ S> iff none of the given generators for Qi has a constant leading
term with respect to >. ��

We may also ask for the factorization of f in the power series ring K[[x]]. 4

Here, the situation is different. The only case in which the factorization prob-
lem in a power series ring can be tackled successfully is the case of (at most)
two variables. We will discuss this in Section 9.6.

9.4 Computing Dimension

Let > be a monomial order on K[x]. We already know that if > is global, then
dim
(
K[x]/I

)
= dim

(
K[x]/L>(I)

)
for each ideal I ⊂ K[x]. Indeed, if I is ho-

mogeneous, this follows from Macaulay’s Theorem 1.35 on Hilbert functions,
while for I arbitrary, the statement is obtained as a corollary of Theorem 5.16
on Flatness and Gröbner Bases (see Remark 5.18).

Starting from a version of Theorem 5.16 which holds for arbitrary mono-
mial orders, we obtain, more generally, the first statement of the theorem
below. The second statement, which is also a consequence of the extended
version of Theorem 5.16, generalizes Macaulay’s Theorem 1.33 on standard
monomials. See Greuel and Pfister (2002), Section 7.5 for details.

Theorem 9.29. Let > be any monomial order on K[x], and let I ⊂ K[x]>
be an ideal. Then we have:

(1) dim(K[x]>/I) = dim(K[x]/L>(I)).
(2) dimK(K[x]>/I) = dimK(K[x]/L>(I)).

Moreover, if > is global or if dimK(K[x]>/I) <∞, then the standard mono-
mials represent a K-basis for K[x]>/I.

Note that the standard monomials are always K-linearly independent mod-
ulo I. If > is not global and dimK(K[x]>/I) =∞, their residue classes may
fail, however, to generate the quotient ring. For instance, 1

1−x =
∑∞

k=0 xk ∈
K[x]〈x〉 cannot be written as a finite K-linear combination of the xk. On the

other hand, the xk are precisely the standard monomials for the zero ideal of
K[x]〈x〉 (with respect to the unique local monomial order on K[x]).

4 If K ⊂ C, we can deduce from Artin’s approximation theorem that the factoriza-
tion in K{x} coincides with that in K[[x]]. See de Jong and Pfister (2000), Thm.
8.1.1 for Artin’s approximation theorem.
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Remark 9.30 (The SINGULAR Commands dim and vdim). Theorem 9.29
and Buchberger’s algorithm in its general form as discussed in Section 9.2
reduce the computation of dimension to a problem concerning monomial ide-
als of K[x] which is of a purely combinatorial nature (as already explained
in Lecture 6, Section 6.1.1). Namely, if > is a monomial order on K[x], if
I ⊂ K[x]> is an ideal, and if we have computed a standard basis G for I,
then the Krull dimension of K[x]>/I is the maximal cardinality of a subset
u ⊂ {x1, . . . , xn} such that no leading term of an element of G is in K[u]. The
K-vector space dimension of K[x]>/I equals, then, the number of monomials
xα such that no leading term of an element of G divides xα. These numbers
can be computed using the SINGULAR commands dim and vdim, respectively.5

��

Given an ideal I ⊂ K[x], we may use dim to compute the dimension of the
algebraic set A = V(I) ⊂ An = An(K) (the global dimension), and we may
use it to compute the dimension of A at a given point q ∈ A (the local di-
mension at q). Indeed, according to Lecture 6, Section 6.1.1, we have

dimA = dim K[x]/I(A) = dimK[x]/I ,

and this number can be computed choosing a global monomial order on K[x].
Further, if q = p is the origin, then

dimp A = dimK[x]〈x〉/I K[x]〈x〉 , (9.2)

and this number can be computed choosing a local monomial order on K[x].
For (9.2), recall that, in general,

dimq A = dimOA,q = dimK[x]mq/I(A)K[x]mq ,

where mq denotes the maximal ideal of K[x] consisting of all polynomials in
K[x] vanishing at q (see Lecture 2, Remark 2.12). Thus, we may argue as
in Lecture 6, Section 6.1.1 (applying Hilbert’s Nullstellensatz and Theorem
9.29).

If q is different from the origin, then dimq A can be computed by translating
q to the origin as in the following example (if necessary, replace K by an
appropriate extension field which contains all coordinate entries of q):

Example 9.31. We consider the ideal

I = 〈x(x2− y2z), (y − z)(x2− y2z)〉 ⊂ Q[x, y, z] ,

the algebraic set A = V(I) ⊂ A3(C), and the three points p = (0, 0, 0), (0, 1, 1),
and (0, 0,−1) on A:

5 If the input for dim is not a standard basis, SINGULAR prints a warning and
computes the dimension of the monomial ideal generated by the leading terms of
the given generators. Similarly for vdim.
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(0, 1, 1)

(0, 0,−1)

p

> ring R = 0, (x,y,z), dp;

> ideal I = x*(x2-y2z), (y-z)*(x2-y2z);

> ideal G = std(I); G; // compute Groebner basis

G[1]=y3z-y2z2-x2y+x2z

G[2]=xy2z-x3

We see that u = {x, y} is a set of variables of maximal cardinality such that
no leading term of G is in Q[u]. Hence, dimA = 2:

> dim(G); // global dimension

2

> ring R1 = 0, (x,y,z), ds; // implements local ring at (0,0,0)

> ideal I = imap(R,I);

> ideal G = std(I); G; // compute standard basis

G[1]=x3-xy2z

G[2]=x2y-x2z-y3z+y2z2

> dim(G); // local dimension at (0,0,0)

2

> map phi = R,x,y-1,z-1; // translate (0,1,1) to the origin

> I = phi(I);

> G = std(I); G;

G[1]=x

G[2]=y-z-2y2+yz+z2+x2y+y3-x2z+y2z-2yz2-y3z+y2z2

> dim(G); // local dimension at (0,1,1)

1

Pausing for a moment, we read from the output that

dimm + codimm = 0 + 1 �= 2 = dim Q[x, y, z]/I ,

where m = 〈x, y − 1, z − 1〉 ⊂ Q[x, y, z]/I (indeed, m is a maximal ideal and
codim m = dim(Q[x, y, z]/I)m is the dimension of A at (0, 1, 1)). This is an
example of an ideal of an affine ring whose dimension and codimension do not
add up to the dimension of the ring (see Lecture 2, Remark 2.10).
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Now, we continue our session:

> map psi = R,x,y,z+1; // translate (0,0,-1) to the origin

> I = psi(I);

> G = std(I);

> G;

G[1]=x2-y2-x2y+y3+x2z-2y2z+y3z-y2z2

> dim(G); // local dimension at (0,0,-1)

2

That the local dimension of A at (0, 0,−1) is 2 indicates that the real picture
of A displayed on the previous page is misleading. In contrast to the line
V(x, y−z), the line V(x, y) is not an irreducible component of A:

> setring R;

> LIB "primdec.lib";

> list L = minAssGTZ(G); L;

[1]:

_[1]=y-z

_[2]=x

[2]:

_[1]=-y2z+x2

We refer to V(x2− y2z) as the Whitney umbrella. The “stick” V(x, y) is
its singular locus:

> ideal SLoc = L[2][1], jacob(L[2][1]);

> radical(SLoc);

_[1]=y

_[2]=x ��

Let I � K[x] be a proper ideal, and let A = V(I) ⊂ An = An(K). Recall from
Theorem 6.1 in Lecture 6 that the global dimension of A is zero iff A is finite.
Similarly, the local dimension of A at a point q ∈ A is zero iff q is an isolated
point of A, that is, if there is a Zariski open neighborhood U of q in An

containing no other points of A. In fact, q is an isolated point of A iff mq

is among the minimal associated primes of IK[x] iff IK[x]mq is mqK[x]mq -

primary iff K[x]mq/IK[x]mq is a finite dimensional K-vector space. Making
use of this fact, we extend the notion of multiplicity defined for roots of
univariate polynomials as follows:

Definition 9.32. Let I ⊂ K[x] be an ideal, and suppose that q ∈ V(I) ⊂ An

is an isolated point of V(I). The multiplicity of q as a solution of I is
defined to be

mult (q | I) = dimK K[x]mq/IK[x]mq . ��

In particular, an isolated point q ∈ V(I) has multiplicity 1 as a solution of I
iff IK[x]mq equals mqK[x]mq , that is, iff IK[x]mq is radical.
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Note that if q = p is the origin, then

mult (p | I) = dimK K[x]〈x〉/IK[x]〈x〉 ,

and this number can be computed using the vdim command. If q is different
from the origin, translate it to the origin.

Remark 9.33. If I ⊂ K[x] is a zero-dimensional ideal, there is an isomor-
phism of rings

K[x]/IK[x] ∼=
∏

q∈V(I)

K[x]mq/IK[x]mq

(see Cox, Little, and O’Shea (1998), Theorem 4.2.2). In particular, we have,
then,

dimK K[x]/I = dimK K[x]/IK[x] =
∑

q∈V (I)

mult (q | I) . (9.3)

��

If K is a perfect field, this formula allows us to read the multiplicities of the
solutions from a primary decomposition of I:

Remark 9.34. Let I ⊂ K[x] be an ideal and suppose that Q is an isolated
zero-dimensional primary component of I with radical P . Then P is a maximal
ideal of K[x] and the points of V(P ) ⊂ An = An(K) are pairwise conjugate
over K. If K is a perfect field, each such point has multiplicity 1 as a solu-
tion of P . In this case, it follows from formula (9.3) that there are precisely
dimK K[x]/P such points and if q is one of them, then

mult (q | I) = mult (q | Q) =
dimK K[x]/Q

dimK K[x]/P
.

In particular, mult (q | I) = 1 iff Q = P . ��

In what follows, we give two examples of computing multiplicities. The first
example deals with Tjurina numbers:

Definition 9.35. Let f ∈ K[x]. The Tjurina number of f at q ∈ An is de-
fined to be

τq(f) = dimK K[x]mq/TfK[x]mq ,

where Tf ⊂ K[x] is the Tjurina ideal of f , that is, the ideal generated by
f and its partial derivatives. In particular, the Tjurina number at the origin
p ∈ An is

τp(f) = dimK K[x]〈x〉

/〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn

〉
= dimK K[[x]]

/〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn

〉
.

��
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If the Tjurina ideal Tf is zero-dimensional and if n ≥ 2, then f is square-free,
V(Tf ) is the singular locus Asing of A = V(f) ⊂ An (see Lecture 2, Theorem
2.20), and the Tjurina number τq(f) is the multiplicity of q as a solution of
Tf . Further, (9.3) implies that

dimK K[x]

/〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn

〉
=
∑

q∈Asing

τq(f) .

This formula can be used to check whether a given hypersurface of An, n ≥ 2,
is nonsingular outside the origin:

Example 9.36. Consider the bivariate polynomial

f = y2− 2x28y − 4x21y17+ 4x14y33− 8x7y49+ x56+ 20y65+ 4x49y16

with coefficients in Q. Obviously, p = (0, 0) ∈ V
(
f, ∂f

∂x , ∂f
∂y

)
⊂ A2(C). We com-

pute the Tjurina number of f at p:

> ring S = 0, (x,y), ds; // the local ring

> poly f = y2-2x28y-4x21y17+4x14y33-8x7y49+x56+20y65+4x49y16;

> ideal I = f, jacob(f);

> vdim(std(I)); // Tjurina number at the origin

2260

Readers who are familiar with Arnold’s classification of simple hypersurface
singularities (see Arnold, Gusein-Zade, and Varchenko (1985)) may conclude
that V(f) has a singularity of type A2260 at the origin.6 That is, there is an
analytic automorphism φ of C{x, y} such that f ◦ φ = y2− x2261.

Next, we verify that dimQ Q[x, y]/
〈
f, ∂f

∂x , ∂f
∂y

〉
= τp(f), showing in this way

that V(f) ⊂ A2(C) is singular precisely at the origin:

> ring R = 0, (x,y), dp; // the affine ring Q[x,y]

> ideal I = fetch(S,I);

> vdim(std(I));

2260

Are there singular points at infinity? To check this, we homogenize f with re-
spect to a third variable z. As a result, we obtain a polynomial f hom ∈ Q[x, y, z]
such that C = V(fhom) ⊂ P2(C) is the projective closure of V(f):

> ring SH = 0, (x,y,z), dp;

> poly f = fetch(S,f);

> poly fhom = homog(f,z);

6 Note that 65 is the smallest degree for which the existence of a bivariate poly-
nomial defining an A2260-singularity is known. In fact, this example belongs to a
series of “world record” examples due to Gusein-Zade and Nekhoroshev (2000).
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Since the point of P2(C) with coordinates x = z = 0 is obviously not on C, it
suffices to find the singular points of C in the affine chart U = {x = 1} which
does not contain the singular point (0 : 0 : 1). Let g be the dehomogenization
of fhom with respect to x:

> ring R1 = 0, (y,z), dp;

> map phi = SH,1,y,z;

> poly g = phi(fhom); // fhom in the affine chart (x=1)

> g;

20y65+y2z63-8y49z9+4y33z18-4y17z27-2yz36+4y16+z9

> ideal J = g, jacob(g);

> vdim(std(J));

120

Hence, counted with multiplicity, there are precisely 120 singular points of
C in the chart U . As g ∈ 〈y, z〉9, the origin y = z = 0 is one of these singular
points. Let us compute its multiplicity as a singular point, that is, the Tjurina
number of g at the origin:

> ring R2 = 0, (y,z), ds; // the local ring at (1:0:0)

> ideal J = fetch(R1,J);

> vdim(std(J));

120

We conclude that (1 : 0 : 0) is the only singular point of C at infinity. ��

Remark 9.37. (1) The Tjurina number is an important invariant of singu-
larity theory. It is a measure of how complicated the analytic structure of a
hypersurface singularity is.

(2) Closely related to the Tjurina number is the Milnor number which is an
important topological invariant in the study of critical points of complex func-
tions (see Milnor (1968)). Given a polynomial f ∈ C[x1, . . . , xn], the Milnor
number of f at the origin p ∈ An, written μp(f), is defined to be

μp(f) := dimC C{x1, . . . , xn}
/〈

∂f

∂x1
, . . . ,

∂f

∂xn

〉
.

This definition is extended to an arbitrary point of An by translating the point
to the origin.

(3) If f ∈ C[x1, . . . , xn] is weighted homogeneous, that is, if all terms of f
have the same w-weighted degree for some weight vector w = (w1, . . . , wn) ∈
Zn

>0, then τp(f) = μp(f) due to Euler’s formula:

w-deg(f) · f =

n∑
i=1

wi · xi ·
∂f

∂xi
.

In fact, the equality μp = τp <∞ characterizes weighted homogeneous polyno-
mials defining isolated singularities (see Saito (1971) for a precise statement).
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(4) The Tjurina and the Milnor number can be defined (and computed
with SINGULAR using the commands tjurina and milnor from sing.lib) in
the more general setting of complete intersection singularities (see Looijenga
(1984)). ��

In the case of n equations in n variables, multiplicities of solutions are usually
referred to as intersection multiplicities. We treat the case n = 2, that is,
the case of plane curves, demonstrating in an example that, in case K ⊂ C,
intersection multiplicities can be visualized by appropriately perturbing the
defining equations.

Remark-Definition 9.38. Let f, g ∈ K[x, y] \ {0}. The intersection mul-
tiplicity of f and g at the origin p ∈ A2 is defined to be

ip(f, g) = dimK K[x, y]〈x,y〉/〈f, g〉 .

Again, this definition is extended to an arbitrary point q ∈ An by translating
q to the origin.

We have iq(f, g) < ∞ iff f and g have no common factor which vanishes
at q. In this case, iq(f, g) is the multiplicity of q as a solution of 〈f, g〉. If
iq(f, g) = 1, we say that f and g intersect transversally at q. ��
Geometrically, consider the curves C = V(f) and D = V(g) in A2. If f and
g are square-free as polynomials in K[x, y], then f and g generate the van-
ishing ideals of C and D, and we refer to ip(f, g) also as the intersection
multiplicity of C and D at p, written ip(C, D). Similarly, we say that C and
D intersect transversally at p if this holds for f and g. In this case, p is
a smooth point of both C and D, and the two curves have different tangent
lines at p.

Example 9.39. We define two affine plane curves which both have a singularity
at the origin p ∈ A2(C) and compute their intersection multiplicity at p:

> ring R_loc = 0, (x,y), ds; // local monomial order

> poly f, g = 2x2-y3, 2x2-y5;

> ideal I = f, g;

> vdim(std(I)); // intersection multiplicity at origin

6

> LIB "surf.lib";

> plot(f,"scale_x=0.15; scale_y=0.15;");

> plot(g,"scale_x=0.15; scale_y=0.15;");

> plot(f*g,"scale_x=0.15; scale_y=0.15;");

�

�
V(f)

�

�
V(g)

�

�
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As the rightmost picture indicates, V(f) and V(g) intersect at the origin and
at further points of A2(C). According to the formula (9.3), we may compute
the sum of the intersection multiplicities at all points of intersection as follows:

> ring R_aff = 0, (x,y), dp; // global monomial order

> ideal I = imap(R_loc,I);

> vdim(std(I));

10

The coordinates of the intersection points (and the intersection multiplicities
at these points) can be read from a primary decomposition of I in Q[x, y] (see
Remark 9.34):

> LIB "primdec.lib";

> primdecGTZ(I);

[1]:

[1]:

_[1]=y3

_[2]=x2

[2]:

_[1]=y

_[2]=x

[2]:

[1]:

_[1]=y-1

_[2]=2x2-1

[2]:

_[1]=y-1

_[2]=2x2-1

[3]:

[1]:

_[1]=y+1

_[2]=2x2+1

[2]:

_[1]=y+1

_[2]=2x2+1

Hence, in contrast to the behavior at the origin p, V(f) and V(g) intersect
transversally (and are smooth) at the other intersection points. Indeed, the
primary components defining the intersection points other than p coincide
with their radical, so all solutions of 〈f, g〉 in A2(C) \ {p} have multiplicity 1.
Note that the points corresponding to the third component are not real and,
hence, invisible in the picture printed above.

Due to the principle of conservation of numbers (see de Jong and Pfister
(2000), Section 6.4), the intersection multiplicity 6 of V(f) and V(g) at the
origin p can be visualized by slightly perturbing f and g. Indeed, consider two
polynomials F, G ∈ Q[x, y, t] such that F (x, y, 0) = f , G(x, y, 0) = g, and set
fc := F (x, y, c), gc := G(x, y, c) for each c ∈ A1(C). Then the principle implies
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that there is an ε-neighborhood U of p such that
∑

q∈U iq(fc, gc) = ip(f, g) = 6,

for each sufficiently small c ∈ C. 7 Choosing F and G suitably, we get, for each
sufficiently small c ∈ R \ {0}, six distinct intersection points near p which are
all real. For instance, as the following computations show,

F = f − t · y2

2
, G = g + t2 ·

(
5

4
y3 − 5t2

16
y − t3

16

)
are just right.

> ring Rt_loc = (0,t), (x,y), ds; // choose coefficient field Q(t)

> poly F = imap(R_loc,f)-(t/2)*y2;

> poly G = imap(R_loc,g)+(5t2/4)*y3-(5t4/16)*y-(t5/16);

> ideal I = F, G;

> vdim(std(I)); // intersection number at (0,0) for general fiber

0

> ring Rt_aff = (0,t), (x,y), dp;

> ideal I = imap(Rt_loc,I);

> vdim(std(I)); // sum of intersection numbers for general fiber

10

Thus, for a general choice of c ∈ C, the curves V(fc) and V(gc) do not intersect
at the origin. Further, counted with multiplicity, there are 10 intersection
points in A2(C). In fact, all multiplicities are 1, that is, the curves intersect
transversally (and are smooth) at ten distinct intersection points. To see this,
we apply again Remark 9.34, verifying that the primary ideal defining these
points is already radical:

> primdecGTZ(I);

[1]:

[1]:

_[1]=16*y5+(-20t2-16)*y3+(-8t)*y2+(5t4)*y+(t5)

_[2]=-2*y3+4*x2+(-t)*y2

[2]:

_[1]=16*y5+(-20t2-16)*y3+(-8t)*y2+(5t4)*y+(t5)

_[2]=-2*y3+4*x2+(-t)*y2

Next, we plot V(f1/10) and V(g1/10) using a high magnification. For a third
picture, to be able to distinguish the 6 intersection points near the origin, we
once more raise the magnification:

7 More generally, if F1, . . . , Fr ∈ C[x, t] are such that C{x, t}/〈F1, . . . , Fr〉 is a flat
C{t}-module, then the principle of conservation of numbers implies that there is
an ε-neighborhood U of p such that, for each sufficiently small c ∈ C,

mult
`
p

˛̨
〈f1, . . . , fr〉

´
=

X
q∈U

mult
`
q

˛̨
〈f1,c, . . . , fr,c〉

´
.

Here, fi,c = Fi(x, c) ∈ C[x], fi = fi,0, for all i. In our situation, the flatness con-
dition is automatically satisfied due to Lecture 5, Theorem 5.12 and Remark
5.13.
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> setring Rt_loc;

> poly f_def = subst(F,t,1/10);

> poly g_def = subst(G,t,1/10);

> setring R_loc;

> poly f_def = imap(Rt_loc,f_def);

> poly g_def = imap(Rt_loc,g_def);

> plot(f_def,"scale_x=0.001; scale_y=0.015;");

> plot(g_def,"scale_x=0.001; scale_y=0.015;");

> map phi = R_loc, 1/1000*x, 1/10*y; // zooming map

> plot(10000000*phi(f_def)*phi(g_def),"scale_x=0.5;scale_y=0.075;");

�

�
V(f1/10)

�

�
V(g1/10)

�

�

The specific families of curves considered above can also be used to visualize
the complexity of the singularities of V(f) and V(g) at the origin as measured
by the Tjurina and the Milnor number (which coincide in both cases since f
and g are weighted homogeneous):

> LIB "sing.lib";

> tjurina(f);

2

> milnor(f);

2

> tjurina(g);

4

> milnor(g);

4

In a flat family of plane curves over A1(C), defined by a polynomial H in
C[x, y, t] such that h0 = H(x, y, 0) is square-free, the Tjurina number is semi-
continuous in the following sense: setting hc = H(x, y, c), c ∈ C, there is an
ε-neighborhood U ⊂ A2(C) of the origin p such that

∑
q∈U τq(hc) ≤ τp(h0),

for each sufficiently small c (see Greuel, Lossen, and Shustin (2006)).
For the families defined by F and G above, this inequality becomes strict.

In fact, the singularity of V(f) at the origin, which is a simple cusp (an A2-
singularity in Arnold’s classification), is deformed into a node at the origin:8

> setring Rt_loc;

> tjurina(F); // Tjurina number at origin for general fiber

1

8 Note that all analytic germs of algebraic sets with Tjurina number 1 (respectively
2) are isomorphic and referred to as nodes (respectively simple cusps).
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> setring Rt_aff;

> poly F = imap(Rt_loc,F);

> tjurina(F); // sum of Tjurina numbers for general fiber

1

Further, the A4-singularity of V(g) splits up into two nodes for c �= 0 close to
0 (none of the nodes is at the origin):

> poly G = imap(Rt_loc,G);

> tjurina(G);

2

> setring Rt_loc;

> tjurina(G);

0

Observe that, in both cases, the number of nodes appearing on the general
fiber is the maximal possible one obtained by deforming a simple cusp, re-
spectively an A4-singularity (see Slodowy (1980), Section 8.10 for a general
discussion of possible degenerations of simple hypersurface singularities).

While the sum of Tjurina numbers decreases if c becomes nonzero, the
sum of Milnor numbers for the polynomial functions fc, gc remains the same.
This follows already from the considerations above since the Milnor number
of a polynomial h ∈ C[x, y] at a point q ∈ A2(C) is nothing but an intersection
multiplicity, namely the intersection multiplicity at q of two polars (that is,
linear combinations of the partial derivatives) of h.

> setring Rt_aff;

> milnor(F); // sum of Milnor numbers for general fiber

2

> milnor(G);

4

To get illuminative pictures, we have to choose square-free polars. For the
family defined by G, we consider

H =
∂G

∂x
= 4x , H ′ =

∂G

∂x
+

∂G

∂y
= 4x− 5y4 +

15

4
t2y2 − 5

16
t4

and we write hc = H(x, y, c), h′
c = H ′(x, y, c) ∈ C[x, y]. The intersection point

with multiplicity 4 of h0 and h′
0 at the origin splits up into 4 points of transver-

sal intersection of hc and h′
c for c �= 0 close to 0 (at each of these four inter-

section points, the Milnor number of gc is 1):

> setring R_loc;

> poly h0 = diff(g,x);

> poly h0_prime = diff(g,x)+diff(g,y);

> poly hc = diff(g_def,x);

> poly hc_prime = diff(g_def,x)+diff(g_def,y);

> plot(h0*h0_prime,"scale_x=0.15; scale_y=0.15;");

> plot(hc*hc_prime,"scale_x=0.000005; scale_y=0.015;");
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�

V
(

∂g0

∂x + ∂g0

∂y

)
�

V
( ∂g1/10

∂x +
∂g1/10

∂y

)

The four intersection points in the right picture (and, thus, the Milnor number
4) can be rediscovered in the real picture of V(g1/10) printed earlier as nodes,
respectively centers of loops. Similarly for the family defined by F . ��

Besides using standard bases, intersection multiplicities of plane curves can
also be computed via Hamburger-Noether expansions (see Section 9.6, Remark
9.47 later in this lecture).

9.5 Elimination

In this section, we consider the following problem. Given an ideal I ⊂ K[x, y]
such that A = V(I) ⊂ An+m = An+m(K) contains the origin p of An+m, com-
pute the image of (the germ of) the linear projection

π : (A, p)→ (Am, o)

onto the y-components, provided that this image is well-defined.

Remark 9.40. A continuous map of germs (A, p) → (B, q) is obtained
by identifying continuous maps between representatives of (A, p) and (B, q) if
their restrictions to a suitable neighborhood of p in A coincide. In general, it
does not make sense to talk about the image of such a map. As an example,
consider the blow-up map

π : A = V(y − xz)→ A2, (x, y, z) 
→ (y, z) ,

and note that there are arbitrarily small representatives A1 and A2 of the
germ of A at the origin of A3 such that for each neighborhood U of the origin
of A2 we have U ∩ π(A1) �= U ∩ π(A2). If f is a finite map of germs however,
the image is well-defined. Here, finite means that there is a continuous rep-
resentative of f which is closed, and which has finite fibers (see de Jong and
Pfister (2000), Section 3.4 for details). ��

In the case of algebraic germs, computing the image of a finite linear projection
π amounts to computing the elimination ideal

(I K[x, y]〈x,y〉) ∩K[y]〈y〉 .

Comparing the elimination problem in the local ring K[x, y]〈x,y〉 to the one
in the polynomial ring K[x, y], we detect an extra difficulty. Namely, no local
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monomial order on K[x, y] has the elimination property with respect to x.
Indeed, if 1 > xi, then L>(1 + xi) = 1 ∈ K[y], but 1 + xi �∈ K[y]. In contrast,
any mixed order obtained as the product of a global order on K[x] and a
local order on K[y] has the desired elimination property. Recall that such an
order implements the ring K[y]〈y〉[x]. This suggests to solve the elimination
problem in K[x, y]〈x,y〉 via the chain of rings

K[y]〈y〉 ⊂ K[y]〈y〉[x] ⊂ K[x, y]〈x,y〉 .

In a first step, intersect the given ideal with the subring K[y]〈y〉[x]. Then, use
a mixed monomial order as above to eliminate the x-variables.

For the first step, recall from Remark 9.28 that if I =
⋂s

i=1 Qi is a primary
decomposition, and if I0 =

⋂
Qi⊂〈x,y〉 Qi, then I K[x, y]〈x,y〉 = I0 K[x, y]〈x,y〉

(geometrically, the irreducible components of A not passing through p do
not contribute to defining the germ (A, p)). It easily follows that each set of
polynomial generators {f1, . . . , fr} for I0 also generates the contracted ideal
I ′ = (I K[x, y]〈x,y〉) ∩K[y]〈y〉[x].

Indeed, for each g ∈ I ′ there are polynomials u1 ∈ K[y], u ∈ K[x, y] such
that u1g ∈ K[x, y], uu1g ∈ I0, and u(0,0) · u1(0) �= 0. Since I0 is an intersec-
tion of primary ideals Qi ⊂ 〈x, y〉 and since uk �∈ 〈x, y〉 for all k ∈ N, it follows
that u1g ∈ I0. But, this implies that g can be written as a linear combination
g =

∑r
i=1

ai

u1
fi, where a1, . . . , ar ∈ K[x, y].

Unfortunately, other than computing a primary decomposition of I, we do
not know any general method for computing a set of generators for I0 from a
given set of generators for I.

Remark 9.41. Applying the SINGULAR command eliminate in local rings
has to be done with some care since the first step described above is not
automatically performed. As an example, consider the ideal I Q[x, y, z]〈x,y,z〉,
where

I = I0 ∩ I1 = 〈x − z, y − z2〉 ∩ 〈x− z + 1, y − z2 + 1〉 ⊂ Q[x, y, z] .

We begin by defining I:

> ring R = 0, (x,y,z), dp;

> ideal I0 = x-z, y-z^2; // vanishing at the origin

> ideal I1 = x-z+1, y-z^2+1; // not vanishing at the origin

> ideal I = intersect(I0,I1);

> I = std(I); I;

_[1]=z2+x-y-z

_[2]=x2-2xz+y

Note that I contains the polynomial z2+ x− y − z which is monic in z. This
implies that the projection V(I) → A2(C), (x, y, z) 
→ (x, y), is finite (see The-
orem 6.21).
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Next, we turn to the local ring:

> ring Rloc = 0, (x,y,z), ds;

> ideal Iloc = fetch(R,I);

> Iloc = std(Iloc); Iloc;

_[1]=x-y-z+z2

_[2]=y+x2-2xz

In Q[x, y, z], the polynomials originating from the standard basis computation
in the local ring generate the ideal I which is a proper subset of I0. As a
consequence, entering eliminate(Iloc,z); results in an ideal which does
not define the desired image:

> ideal J = eliminate(Iloc,z);

> J;

J[1]=2xy-y2-2x3+2x2y-x4

> factorize(J[1],1);

_[1]=-2x+y-x2

_[2]=-y+x2

> ideal I0loc = fetch(R,I0);

> eliminate(I0loc,z);

_[1]=y-x2 ��

In the case of analytic germs, we do not know a general method for computing
the image of π. In fact, computing polynomial generators for the elimination
ideal (I K[x, y]〈x,y〉) ∩K[y]〈y〉 as above may not be sufficient. Namely, if Ã ⊂
Am is the algebraic set defined by these generators, the image of π as an
analytic germ is contained in the analytic germ (Ã, o), but the containment
may well be strict:

Example 9.42. Consider the smooth irreducible space curve C parametrized
by t 
→ (t−t3, t−t2, t).

V(x, y)

(0, 0, 1)

p
C

The following SINGULAR session computes defining equations for the analytic
germ of C at the origin p ∈ A3(C), and it eliminates z from these equations:
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> ring R = 0, (t,x,y,z), ds;

> ideal I = x-t+t3, y-t+t2, z-t;

> ideal C = eliminate(I,t); C;

C[1]=x-z+z3

C[2]=y-z+z2

> eliminate(C,z);

_[1]=x2-3xy+2y2+y3

> plot(x2-3xy+2y2+y3,"scale_x=0.05;scale_y=0.05;");

The analytic germ defined by x2− 3xy + 2y2+ y3 at the origin of A2(C) con-
sists of two smooth branches intersecting transversally. As C is smooth at p,
the image of (C, p) under the linear projection onto the xy-plane can only be
one of these branches. ��

Note, however, that if A denotes the Zariski closure of A in Pn × Am and if
the fiber of the projection A→ Am over the origin o consists of the origin p
only, then the image of π coincides with (Ã, o).

9.6 Hamburger-Noether Expansion

If it comes to factorizing a polynomial in K[[x]], the only case which can be
tackled algorithmically is the case of two variables (geometrically, the case of
germs of plane curves).

Definition 9.43. Let 0 �= f ∈ K[[x, y]], and let f = c · fm1

1 · . . . · fms
s be the

absolute factorization of f , that is, the factorization of f as an element of
K[[x, y]]. Then we call f1, . . . , fs the branches of f . Each such branch is a
power series with coefficients in some finite extension of K. ��

The name branch comes from geometry. If K ⊂ C, and if 0 �= f ∈ K{x, y}
is a convergent power series, each branch of f is a convergent power series,
too. It, thus, defines the germ of an analytic set at the origin p ∈ A2(C). This
germ is a branch (an irreducible component) of the analytic germ of V(f) at
p.

A classical approach to computing branches goes back to Newton. His
constructive method yields the following result (see Brieskorn and Knörrer
(1986) or Greuel, Lossen, and Shustin (2006) for details):
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Theorem 9.44. Let f ∈ C{x, y} \ {0} be a convergent power series which
is irreducible and y-general of order m > 0. There exists a power series
y(t) ∈ C{t} such that y(0) = 0, and such that ϕ : t 
→

(
tm, y(t)

)
defines a

parametrization of the analytic germ of V(f) at the origin of A2(C).

We refer to the fractional power series y(x1/m) ∈ C{x1/m} as a Puiseux
expansion for f .

Remark 9.45. More generally, let K be any field of characteristic zero. If
f ∈ K[[x, y]] \ {0} is square-free, Newton’s method yields for each branch fi

of f a parametrization of type t 
→
(
tmi , yi(t)

)
or t 
→

(
xi(t), t

mi
)
. Here, no

a priori knowledge on the decomposition of f into branches is required. In
particular, Newton’s method allows us to compute the number of branches
and, via elimination, the power series expansion of each branch (up to any
given degree). We will return to this in Remark 9.49. ��

In positive characteristic, Puiseux expansions do not necessarily exist. Instead,
there is the concept of Hamburger-Noether expansions which works in any
characteristic.

Definition 9.46. Let K be any field, and let f ∈ K[[x, y]] \ {0} be abso-
lutely irreducible (that is, f is irreducible in K[[x, y]]). Suppose that x is
a transversal parameter for f , that is, there is a lowest degree term of
f which is contained in K[y]. A Hamburger-Noether expansion for f
consists of a system of equations in the variables z−1, z0, . . . , z� of type

z−1 = a0,1z0 + a0,2z
2
0 + . . . + a0,h0

zh0

0 + zh0

0 z1

z0 = a1,2z
2
1 + . . . + a1,h1

zh1

1 + zh1

1 z2

...
...

zi−1 = ai,2z
2
i + . . . + ai,hiz

hi

i + zhi

i zi+1

...
...

z�−2 = a�−1,2z
2
�−1 + . . . + a�−1,h�−1

z
h�−1

�−1 + z
h�−1

�−1 z�

z�−1 =
∑
j≥2

a�,jz
j
� ,

where � is a nonnegative integer, the coefficients ai,j are elements of K, the
hi are positive integers, and

f
(
z0(z�), z−1(z�)

)
= 0 ∈ K[[z�]] .

Here, the power series z0(z�), z−1(z�) ∈ K[[z�]] are obtained as follows. Let
z�−1(z�) ∈ K[[z�]] denote the power series on the right-hand side of the last
equation in the Hamburger-Noether expansion. Then, for j = �−1, . . . , 0, de-
fine zj−1(z�) ∈ K[[z�]] by substituting zj(z�) for zj and zj+1(z�) for zj+1 on
the right-hand side of the equation for zj−1.
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If the last equation of a system as above is replaced by an implicit equa-
tion of type g(z�, z�−1) = 0, where g ∈ K[x, y] is a polynomial satisfying
∂g
∂y (0, 0) �= 0, then the system is called a symbolic Hamburger-Noether
expression for f . ��
In contrast to a Hamburger-Noether expansion, the data in a symbolic
Hamburger-Noether expression are all polynomial. Given a symbolic Hambur-
ger-Noether expression, a corresponding expansion can be computed up to any
given degree via the implicit function theorem.

If K ⊂ C, and if f is convergent, then z0(z�) and z−1(z�) are convergent,
too. In this case, the map t 
→

(
z0(t), z−1(t)

)
defines a parametrization of the

analytic germ of V(f) at the origin of A2(C).

Remark 9.47. (1) Campillo (1980) showed that every nonzero polynomial
f ∈ K[x, y] which is irreducible as a power series in K[[x, y]] admits a sym-
bolic Hamburger-Noether expression (if x is not a transversal parameter for
f , the roles of z0(z�) and z−1(z�) have to be interchanged). The proof is
constructive and yields an algorithm for computing the expression. More gen-
erally, there is an algorithm due to Rybowicz (1990) taking as input a polyno-
mial 0 �= f ∈ K[x, y] which is square-free in K[[x, y]], and computing for each
branch of f a symbolic Hamburger-Noether expression with coefficients in a
finite extension of K. As for Puiseux expansions, no a priori information on
the decomposition of f into branches is required. In particular, a finite exten-
sion of K over which the absolute factorization of f as a formal power series
occurs is (successively) specified in the process. A variant of the algorithm
of Rybowicz is implemented in the SINGULAR library hnoether.lib and is
accessible via the hnexpansion command.

(2) Given nonzero power series f, g ∈ K[[x, y]], the intersection multiplic-
ity of f and g at the origin p ∈ A2 is defined to be

ip(f, g) = dimK K[[x, y]]/〈f, g〉 .

One can show that if f is as in Definition 9.46, and if z0(z�), z−1(z�) ∈ K[[z�]]
are the power series obtained from a Hamburger-Noether expansion for f ,
then

ip(f, g) = ordz�
g
(
z0(z�), z−1(z�)

)
.

Here, if h ∈ K[[z�]] \ {0}, we write ordz�
(h) for the lowest degree of a term of

h. Moreover, ordz�
(0) =∞.

(3) If f, g are polynomials in K[x, y], then, by Proposition 9.4, the intersection
multiplicity at p defined in (2) coincides with that defined earlier. Note that
if f is square-free over K, and if f1, . . . , fs ∈ K[[x, y]] are the branches of f ,
then

ip(f, g) =

s∑
i=1

dimK K[[x, y]]/〈fi, g〉 .

This sum can be computed over any finite extension of K over which the
branches are defined.
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For a proof of (2) and (3), we refer to Greuel, Lossen, and Shustin (2006). For
(2), see also de Jong and Pfister (2000), Lemma 5.1.5. ��

Example 9.48. We continue our SINGULAR session from Example 9.27, now
computing symbolic Hamburger-Noether expressions for the branches of f .
We use the hnexpansion command.

> LIB "hnoether.lib";

> list L = hnexpansion(f);

According to the information printed by SINGULAR at this point, hnexpansion
created a ring in which the symbolic Hamburger-Noether expressions have
been computed. Making this ring the active ring, the (truncated) Hamburger-
Noether expansions can be recovered from a list named hne:

> def HNring = L[1];

> show(HNring);

// ring: (0,a),(x,y),(ls(2),C);

// minpoly = (a2+1)

// objects belonging to this ring:

// f [0] poly

// hne [0] list, size: 6

We see that the branches are defined over the finite extension Q(i) of Q. The
size 6 of the list hne is the number of branches. Having made HNring the
active ring, we may display the computed (truncated) Hamburger-Noether
expansions of the individual branches:

> setring HNring;

> displayHNE(hne);

// Hamburger-Noether development of branch nr.1:

y = x+1/2*x^2 + ..... (terms of degree >=3)

// Hamburger-Noether development of branch nr.2:

y = -x-1/2*x^2 + ..... (terms of degree >=3)

// Hamburger-Noether development of branch nr.3:

y = z(1)*x

x = z(1)^2+z(1)^2*z(2)

z(1) = 1/4*z(2)^2-1/2*z(2)^3 + ..... (terms of degree >=4)

// Hamburger-Noether development of branch nr.4:

x = z(1)*y

y = -z(1)^2

// Hamburger-Noether development of branch nr.5:

x = (a)*y^2

// Hamburger-Noether development of branch nr.6:

x = (-a)*y^2
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For the branches numbered 1, 2, 5, 6, we can directly read the corresponding
factors of f in C[[x, y]]:

• Factor #1: y − x− 1
2x2 + g(x), with g ∈ 〈x〉3 ⊂ Q[[x]] .

• Factor #2: y + x + 1
2x2 + h(x), with h ∈ 〈x〉3 ⊂ Q[[x]] .

• Factor #5: x− iy2 .
• Factor #6: x + iy2 .

For the 4th branch, we get the equation x =
√−y · y, hence:

• Factor #4: x2 + y3.

For the 3rd branch, we compute a parametrization using the param command
from hnoether.lib:

> ring R_param = (0,a), (x,y,t), ls;

> minpoly = a2+1;

> list hne = imap(HNring,hne);

> list P = param(hne[3],1);

// ** Warning: result is exact up to order 5 in x and 7 in y !

> P[1];

_[1]=1/16*t4-3/16*t5+1/4*t7

_[2]=1/64*t6-5/64*t7+3/32*t8+1/16*t9-1/8*t10

We see that the computed parametrization is exact up to degree 5 in the first
component and up to degree 7 in the second one. Exactness for higher degrees
is obtained by computing further terms on the right-hand side of the last row of
the Hamburger-Noether expansion z(1) = 1/4*z(2)^2-1/2*z(2)^3 + ....
For instance:

> hne[3] = extdevelop(hne[3],5);

> P = param(hne[3],1);

// ** Warning: result is exact up to order 7 in x and 9 in y !

> P[1];

_[1]=1/16*t4-3/16*t5+47/128*t6-19/32*t7+ [...]

_[2]=1/64*t6-5/64*t7+237/1024*t8-271/512*t9+ [...]

We read the parametrization of the third branch:

t 
−→
(

1
16 t4− 3

16 t5+ 47
128 t6− 19

32 t7+ . . . ,
1
64 t6− 5

64 t7+ 237
1024 t8− 271

512 t9+ . . .
)

.

More information on the branches is obtained via the displayInvariants

command. In particular, the intersection multiplicities are printed (for a dis-
cussion of the other invariants shown below, we refer to the literature listed
in Remark 9.50 at the end of this lecture):

> displayInvariants(hne);

[...]

--- invariants of branch number 3 : ---
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characteristic exponents : 4,6,7

generators of semigroup : 4,6,13

Puiseux pairs : (3,2)(7,2)

degree of the conductor : 16

delta invariant : 8

sequence of multiplicities: 4,2,2,1,1

[...]

-------------- intersection multiplicities : --------------

branch | 6 5 4 3 2

-------+-----------------------------

1 | 1, 1, 2, 4, 1

2 | 1, 1, 2, 4

3 | 4, 4, 8

4 | 3, 3

5 | 2

[...] ��

Remark 9.49. As indicated by the example, Hamburger-Noether expressions
are extremely useful in that they carry plenty of geometric information on the
branches. Typically, however, there is no way of computing the branches them-
selves. Here, as already pointed out, Puiseux expansions are better behaved.
In the example above, a Puiseux expansion for the third branch is x3/2+ x7/4,
leading to the local parametrization t 
→ (t4, t6+ t7). From this (polynomial)
parametrization, we obtain the branch via elimination as explained in Section
9.5:

> ring R = 0, (x,y,t), ds;

> ideal J = x-t4, y-t6-t7;

> eliminate(J,t);

_[1]=y4-2x3y2+x6-4x5y-x7

The reason for the different behavior of Puiseux and Hamburger-Noether ex-
pansions is that in the elimination problem resulting from a parametrization
of type t 
→

(
tm, y(t)

)
(as obtained from a truncated Puiseux expansion), the

origin is the unique point of

V
(
x− tm, y − y(t)

)
⊂ A3(C)

which projects to the origin (0, 0) of the xy-plane, while for the elimination
problem resulting from a truncated Hamburger-Noether expansion, there are
usually further points projecting to (0, 0). ��

Remark 9.50 (Further Reading). For more details and proofs of the re-
sults presented in this lecture, see Greuel and Pfister (2002) and Decker and
Schreyer (2006). To learn more on analytic germs and on singularities, we re-
fer to Brieskorn and Knörrer (1986), de Jong and Pfister (2000), and Greuel,
Lossen, and Shustin (2006).
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Exercise 5.1. (a) Write a SINGULAR procedure min generating set

• which takes as input matrices of primary and secondary invariants of a
finite group as provided by the SINGULAR command invariant ring from
finvar.lib, and

• which computes a fundamental system of invariants, that is, a mini-
mal generating set for the ring of invariants under consideration.

(b) In Example 8.9 of Lecture 8, compute a fundamental system of invariants.
Conclude that, as stated in the lecture, Noether’s degree bound does not hold
in this case.

Exercise 5.2. (a) Write a SINGULAR procedure which takes as input a poly-
nomial f in the active ring, and which returns 1 if f is a unit in the active
ring (and 0 otherwise).

(b) Write a SINGULAR procedure which takes as input a polynomial f in the
active ring and an integer d, and which returns the power series expansion of
the inverse of f up to terms of degree d if f is a unit in the active ring (and
0 otherwise).

Exercise 5.3. Consider the curve C ⊂ P2(C) with defining equation(
(x4 + y4 + z4)4 − x9y5z2

)
· (x4 + y4 + z4) ∈ Q[x, y, z] .

For each singular point p of C, make SINGULAR compute the number of
branches of C at p and the pairwise intersection multiplicities of the branches.
Which of the branches are smooth ?

Exercise 5.4. Consider the projective closure C ⊂ P2(C) of the affine plane
curve with defining equation

3y3 − 3xy2 − 2xy3 + x2y3 + x3 = 0 .
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(a) Determine the singular locus of C and show that each singular point is
either an ordinary multiple point or a simple cusp of C.9

(b) Compute the adjoint linear system L3 of C of degree 3. By definition,
this system is formed by all homogeneous polynomials f ∈ C[x, y, z] of
degree 3 satisfying

f ∈
{

I({p})m−1 if p is an ordinary m-multiple point of C ,
I({p}) if p is a simple cusp of C .

Choose two polynomials f1, f2 of L3 at random and compute the set B1

(respectively B2) of intersection points of V(f1) (respectively V(f2)) with
C outside the singular locus of C.

(c) Compute the linear system L′ formed by those polynomials in the adjoint
linear system of C of degree 4 which vanish along B1 ∪B2. Choose an
element f ′ of L′ at random and compute the set B3 of intersection points
of V(f ′) with C outside the base locus of L′.

(d) Compute the subsystem L′′ ⊂ L3 formed by the polynomials which vanish
along B3. Observe that L′′ is a pencil, that is, it has projective dimension
1. Choose two elements f ′′

1 , f ′′
2 ∈ L′′ which span L′′.

(e) By construction, the curve V(f ′′
1 + af ′′

2 ) intersects C at 14 fixed points
plus one point that moves with a ∈ C. Use this to compute a rational
parametrization of (the affine part of) C with rational coefficients. That
is, compute gi, hi ∈ Q[t] such that the image of the map

ϕ : A1(C) −→ A2(C) , t 
−→
(

g1(t)

h1(t)
,

g2(t)

h2(t)

)
,

is dense in C. Use elimination to show that your result is indeed a rational
parametrization of C.

9 Here, a point p is called an ordinary m-multiple point of C if the analytic germ
(C, p) consists of m smooth branches, intersecting transversally at p. If u, v are
local coordinates at p, if f ∈ C{u, v} is a local equation for C at p, and if jetk(f)
denotes the k-jet of f (that is, the sum of all terms of f up to degree k), then p
is an ordinary m-multiple point of C iff jetm−1(f) = 0 and jetm(f) decomposes
into m pairwise different linear factors. Note that ordinary 2-multiple points are
just nodes.
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Sheaf Cohomology and Beilinson Monads

In this appendix, which is more involved than the other parts of the book,
we explain how to compute sheaf cohomology. As examples, we compute the
cohomology of the ideal sheaves of the two surfaces constructed in Lecture 4.
We also reveal some of the mathematics behind the constructions of the sur-
faces by discussing Beilinson monads. In our presentation, we follow Decker
and Eisenbud (2002).

To fix our notation for what follows, let V be a vector space of dimension
n + 1 over a field K, W = V ∗ its dual space, Pn = P(W ) the projective space
of 1-quotients of W , and S = SymK(W ) its homogeneous coordinate ring. We
write O(i) = OPn(i) for the line bundles on Pn (in particular, O = O(0) is the
structure sheaf). If F is any coherent sheaf on Pn, we write F(i) = F ⊗O(i)
for the ith twist of F , and HjF = Hj(Pn,F) for its jth cohomology group.
Then

Hj
∗F :=

⊕
i∈Z

HjF(i)

is a graded module over S. Note that Serre’s sheafification functor M 
→ M̃
allows us to consider the coherent sheaf F as an equivalence class of finitely
generated graded S-modules, where we identify two such modules M and M ′

if, for some r, the truncated modules M≥r and M ′
≥r are isomorphic.

Computing the cohomology of F could mean, for example, to compute one
of the dimensions hj F(i) := dimK HjF(i), or to compute these dimensions in
a certain range of twists, or to compute the graded S-modules Hj

∗F . We discuss
two methods for this, one relying on the ability to compute free resolutions
over the symmetric algebra S, and one asking for syzygy computations over
the exterior algebra E on V .

The first method, described by Eisenbud (1998), is based on local duality:

Theorem A.1. Let M be a finitely generated graded S-module, and let F =
M̃ be the associated coherent sheaf. For all j ≥ 1, we have

Hj
∗F ∼= Extn−j

S (M, S(−n− 1))∨.
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For j = 0, we have the exact sequence

0→ Extn+1
S (M, S(−n− 1))∨ →M → H0

∗F → Extn
S(M, S(−n− 1))∨ → 0 .

Here, if N =
⊕

i∈Z Ni is any graded S-module, we write N∨ for the graded
vector space dual N =

⊕
i∈Z HomK(N−i, K) with its natural structure as a

graded S-module.
Since we know how to compute Ext, the formula in the theorem allows us,

in particular, to compute each of the dimensions hj F(i), starting from a given
presentation of M . The SINGULAR command sheafCoh from sheafcoh.lib

makes use of this idea.
If M is a finitely generated graded module over S, represented as M = F/I,

where I is a graded submodule of a graded free module F over S, and if l ≤ h
are integers, then sheafCoh(I,l,h) makes SINGULAR display a cohomology
table for the sheaf F = M̃ of the form

hn F(l) hn F(l + 1) . . . hn F(h)
...

...
...

h0 F(l) h0 F(l + 1) . . . h0 F(h)

(A.1)

Example A.2. Continuing our SINGULAR session from Lecture 4, Example 4.13,
we compute part of the cohomology of the ideal sheaf F of the Veronese surface
in P4:

> LIB "sheafcoh.lib";

> module F = FI[2];

> int aa = timer;

> def B = sheafCoh(F,-2,6);

-2 -1 0 1 2 3 4 5 6

-------------------------------------------------

4: - - - - - - - - -

3: 3 - - - - - - - -

2: - - - - - - - - -

1: - - - 1 - - - - -

0: - - - - - 7 25 60 119

-------------------------------------------------

chi: -3 0 0 -1 0 7 25 60 119

> timer-aa;

2

The column with top entry i refers to the sheaf F(i). The bottom value in
that column is the Euler-Poincaré characteristic of F(i),

χ(F(i)) =

n∑
i=1

hj F(i) .

In our example, n = 4 and we have, for instance, χ(F(1)) = −1.
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Similarly, we get for the surface constructed in Example 4.14:

> LIB "sheafcoh.lib";

> module F = FI[2];

> int aa = timer;

> def B = sheafCoh(F,0,8);

0 1 2 3 4 5 6 7 8

-------------------------------------------------

4: - - - - - - - - -

3: - - - - - - - - -

2: - 2 - - - - - - -

1: - - - 2 - - - - -

0: - - - - 1 15 47 105 198

-------------------------------------------------

chi: 0 2 0 -2 1 15 47 105 198

> timer-aa;

21 ��

The second method we are going to discuss is due to Eisenbud, Fløystad, and
Schreyer (2003). It makes use of a constructive version of the correspondence of
Bernstein, Gelfand, and Gelfand (BGG for short). The BGG correspondence
consists of a pair of adjoint functors R and L which define an equivalence be-
tween the derived category of bounded complexes of finitely generated graded
S-modules and the derived category of bounded complexes of finitely gener-
ated graded E-modules (see Bernstein, Gelfand, and Gelfand (1978) for its
original description).

Let us explain how R(M) is defined for a finitely generated graded S-
module M =

⊕
i Mi, considered as a complex concentrated in cohomological

degree 0. We grade S and E by taking elements of W to have degree 1 and
elements of V to have degree -1. Then R(M) is the sequence of free E-modules
and maps

R(M) : · · · F i+1 F i
φi

F i−1
φi−1 · · ·

defined as follows. Set

F i = HomK(E, Mi) = Mi ⊗K ωE ,

where

ωE = HomK(E, K) = E ⊗
n+1∧

W ∼= E(−n− 1) ,

and where Mi is considered as a vector space concentrated in degree i. Further,
let φi : F i → F i+1 be the map taking α ∈ HomK(E, Mi) to(

e 
→
∑

jxjα(ej ∧ e)
)
∈ HomK(E, Mi+1) ,

where {xj} and {ej} are dual bases of W and V respectively. It is not too
difficult to check that R(M) is indeed a complex.
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An important fact is that this complex is eventually exact. The point at
which exactness sets in is the Castelnuovo-Mumford regularity of M whose
definition we recalled in Exercise 3.3. Alternatively, the regularity can be char-
acterized as follows. If M =

⊕
i Mi is a finitely generated graded S-module,

then for all large integers r, the truncated module M≥r ⊂ M is generated
in degree r and has a linear free resolution; that is, its first syzygies are
generated in degree r + 1, its second syzygies in degree r + 2, and so on. The
Castelnuovo-Mumford regularity of M is the least integer r for which this
occurs (see Eisenbud (1995), Chapter 20).

Theorem A.3 (Eisenbud, Fløystad, and Schreyer (2003)). Let M be
a finitely generated graded S-module, and let r be its Castelnuovo-Mumford
regularity. The complex R(M) is exact at HomK(E, Mi) for all i ≥ s iff s > r.

Starting from T>r(M) := R(M>r), we get a doubly infinite, exact, E-free
complex T(M), the Tate resolution of M , by adjoining a minimal free
resolution of the kernel of HomK(E, Mr+1)→ HomK(E, Mr+2). In fact, we
may construct T(M) starting from any truncation R(M>s), s ≥ r. So T(M)

only depends on the sheaf F = M̃ associated to M . We write T(F) = T(M)
and refer to this complex as the Tate resolution of F .

Theorem A.4 (Eisenbud, Fløystad, and Schreyer (2003)). Let M be a

finitely generated graded S-module, and let F = M̃ be the associated coherent
sheaf on Pn. The term of the complex T(F) with cohomological degree i is⊕

j

HjF(i− j)⊗ ωE ,

where HjF(i− j) is regarded as a vector space concentrated in degree i− j.

Hence, each cohomology group of each twist of the sheaf F occurs exactly
once in a term of T(F). We can, thus, compute part of the cohomology of F
by computing part of the Tate resolution T(F).

The resulting algorithm is easy to implement – provided, the system we are
working with offers the possibility of computing free resolutions over the ex-
terior algebra. In SINGULAR, this is done by the kernel component PLURAL

which we introduced in Lecture 3, Section 3.7.1 The SINGULAR command
sheafCohBGG from sheafcoh.lib makes use of PLURAL and the ideas dis-
cussed above. If M is a finitely generated graded module over S, represented
as M = F/I, where I is a graded submodule of a graded free module F over
S, and if l ≤ h are integers, then sheafCohBGG(I,l,h); prints a cohomology
table for the sheaf F = M̃ of the form (A.1) on Page 274.

1 Recall that PLURAL allows one to work over the large class of GR-algebras. At this
writing, there is no custom-built, fast implementation specializing on the exterior
algebra. As a result, the SINGULAR implementation of the algorithm of Eisenbud,
Fløystad, and Schreyer is much slower than its Macaulay2 implementation.
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Example A.5. As in Example A.2, we continue our SINGULAR session from
Lecture 4, Example 4.13, computing part of the cohomology of the ideal sheaf
of the Veronese surface:

> LIB "sheafcoh.lib";

> module F = FI[2];

> int aa = timer;

> def B = sheafCohBGG(F,-2,6);

-2 -1 0 1 2 3 4 5 6

-------------------------------------------------

4: - - - - - * * * *

3: * - - - - - * * *

2: * * - - - - - * *

1: * * * 1 - - - - *

0: * * * * - 7 25 60 119

-------------------------------------------------

chi: * * * * 0 * * * *

> timer-aa;

70

Due to the shape of the Tate resolution, SINGULAR did not compute all di-
mensions hjF(i) in the range −2 ≤ i ≤ 6. In the cohomology table printed
above, the missing values are indicated by the symbol *. To compute also
these values, enter sheafCohBGG(F,-6,10);. ��

To explain some of the mathematics behind our construction of the surfaces
considered above, we briefly discuss Beilinson monads. The technique of mon-
ads provides powerful tools for problems such as the construction and clas-
sification of coherent sheaves with prescribed invariants (see, for example,
Okonek, Schneider, and Spindler (1980)). The basic idea is to represent ar-
bitrary coherent sheaves in terms of simpler sheaves such as line bundles or
bundles of differentials, and in terms of homomorphisms between these simpler
sheaves.

Definition A.6. A monad on Pn with homology F is a bounded complex

· · · ←− K1 ←− K0 ←− K−1 ←− · · ·

of coherent sheaves on Pn with homology F at K0, and with no homology
otherwise. ��

If M is a finitely generated graded S-module, with associated sheaf F = M̃ ,
the sheafification of the minimal free resolution of M is a monad for F which
involves direct sums of line bundles and, thus, graded matrices over S. The
Beilinson monad for F involves direct sums of twisted bundles of differentials
and, thus, as we will see, graded matrices over E. It is much more directly
connected with cohomology than the free resolution. Eisenbud, Fløystad, and
Schreyer (2003) give an explicit construction of the Beilinson monad, starting
from the Tate resolution.
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To explain the construction, let T ∗
P(W ) be the cotangent bundle on Pn =

P(W ), and let Ωi = Ωi
P(W ) =

∧i
T ∗

P(W ) be the ith bundle of differentials (in

particular, Ω0 = O, Ωn(n) = O(−1), and Ωi = 0 if i < 0 or i > n). The fiber
of Ω1(1) at the point of P(W ) corresponding to the line 〈a〉 ⊂ V is the subspace
(V/〈a〉)∗⊂W . Thus, Ω1(1) fits as tautological subbundle into the short exact
sequence

0 O(1) W ⊗O Ω1(1) 0 .

Taking exterior powers, we get the short exact sequences

0 Ωi(i + 1)
∧i+1

W ⊗O Ωi+1(i + 1) 0 .

Twisting the ith sequence by −i − 1 and gluing them together, we get the
exact sequence

0
∧0W ⊗O · · · ∧n+1W ⊗O(−n− 1) 0

which is nothing but the sheafification of the Koszul complex resolving K =
S/〈W 〉. Thus, the bundles of differentials Ωi are obtained as sheafifications
of the syzygy modules Syzi+1(K). By lifting homomorphisms between the
bundles to homomorphisms between the Koszul resolutions, one shows (see,
for example, Decker and Eisenbud (2002)):

Lemma A.7. There are canonical isomorphisms∧i−j
V

∼=−→ Hom
(
Ωi(i), Ωj(j)

)
, 0 ≤ i, j ≤ n .

Under such an isomorphism, an element of
∧i−j

V acts by contraction on the
fibers of Ωi(i).

The construction of the Beilinson monad can now be easily described. Given
T(F), we define Ω(F) to be the complex of vector bundles on Pn obtained by
replacing each summand ωE(i) by the sheaf Ωi(i), and by using the isomor-
phisms

HomE(ωE(i), ωE(j)) ∼=
∧i−j

V ∼= Hom(Ωi(i), Ωj(j))

to provide the maps.

Theorem A.8 (Eisenbud, Fløystad, and Schreyer (2003)). Let F be a
coherent sheaf on Pn. Then F is the homology of Ω(F) in cohomological degree
0, and Ω(F) has no homology otherwise. We refer to Ω(F) as the Beilinson
monad for F .

Since Ωi = 0 if i < 0 or i > n, only a small part of the Tate resolution and,
thus, only a small part of the cohomology of F is actually involved in the
construction of the Beilinson monad for F . We are free, however, to apply
the theorem also to twists of F . In this way, we involve different parts of the
cohomology and obtain, hence, different types of monads.
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Example A.9. For the ideal sheaves of the surfaces in P4 considered in Example
A.2, we get, for instance, the Beilinson monads

0 JX(2) Ω1(1) O(−1)3 0 ,

respectively

0 JY (4)
(
Ω1(1)

)2 ⊕O (
Ω3(3)

)2
0 .

Indeed, this follows by inspecting the cohomology tables printed by the
sheafCoh command in Example A.2. The astute reader will observe that in
Lecture 4, Examples 4.13 and 4.14, we actually constructed the surfaces by
constructing their Beilinson monads. See Decker, Ein, and Schreyer (1993)
and Decker and Schreyer (2000) for the construction of smooth surfaces in P4.

��

Remark A.10 (Further Reading). For more details and proofs of the re-
sults presented in this lecture, see Eisenbud (1998), Eisenbud, Fløystad, and
Schreyer (2003), Decker and Eisenbud (2002), and Smith (2000).
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Solutions to Exercises

In this appendix, we present solutions to all exercises posed in the practical
sessions. We print the relevant SINGULAR code, but not the corresponding
output.

Exercise 1.1. (a) On a Unix-like platform, start a Singular session by ei-
ther entering Singular or ESingular in a command shell. In the first case,
the session will be run in the command shell. In the second case, it will be
run in an emacs buffer. Having started the session, enter

> ring R;

> R;

Now, you may define the polynomial f by typing

> poly f = x^4+x^3*z+x^2*y^2+y*z^4+z^5;

Alternatively, use the short format

> poly f = x4+x3z+x2y2+yz4+z5;

To display f , type f;.

(b) Proceed as follows:

> ring S = 32003, (x,y,z), lp;

> poly g = fetch(R,f);

> g;

To exit SINGULAR, type quit;, exit;, or $. Within emacs, preferably enter
CTRl-C $. ��

Exercise 1.2. As a finite field, we choose F32003 (in characteristic 0, the com-
putation below will not terminate in due time).

> ring R = 32003, x(1..5), lp;

> int d = 5;
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To define an ideal I generated by 10 homogeneous random polynomials of
degree d, you may proceed as follows:

> ideal MId = maxideal(d);

> int s = size(MId);

> int i,j;

> ideal I;

> for (i=1; i<=10; i++)

. {

. poly f(i);

. for (j=1; j<=s; j++)

. {

. f(i) = f(i)+random(0,32002)*MId[j];

. }

. I = I, f(i);

. }

Alternatively, load the library random.lib and use one of its commands to
create I:

> LIB "random.lib";

> ideal I = randomid(maxideal(d),10,32002);

(a)-(d) Proceed as follows:

> int aa = timer;

> ideal II = groebner(I);

> timer-aa;

> size(II);

> II;

> deg(II[1]);

> deg(II[size(II)]);

> write (":w lexGB.out",II);

(e) Proceed as follows:

> ring R1 = 32003, x(1..5), dp;

> ideal I = imap(R,I);

> aa = timer;

> ideal II = std(I);

> timer-aa;

> size(II);

> II;

> deg(II[1]);

> deg(II[size(II)]);

> write (":w dpGB.out",II); ��
Exercise 1.3. Define the matrix M and the ideal I:

> ring R = 0, x(0..4), dp;

> matrix M[2][4] = x(0),x(1),x(2),x(3),

. x(1),x(2),x(3),x(4);

> ideal I = minor(M,2);
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(a) Compute the minimal free resolution and display the Betti diagram:

> resolution rI = mres(I,0);

> print(betti(rI),"betti");

(b) Display the syzygy matrices and determine their data type:

> for (int i=1; i<=3; i++)

. {

. i,"th syzygy matrix: ";

. "--------------------- ";

. print(rI[i]);

. "";

. "has data type : ", typeof(rI[i]);

. "";

. }

(c) Display the two representations of the Hilbert series:

> ideal GI = groebner(I);

> hilb(GI);

For the interpretation of the output, type help hilb; and follow the link to
Hilbert function.

(d) To check smoothness, apply the Jacobian Criterion 2.23 (taking Corol-
lary 2.26 into account):

> matrix JM = jacob(I);

> int codimI = nvars(R) - dim(GI);

> ideal singI = minor(JM,codimI) + I;

> nvars(R) - dim(groebner(singI)); ��

Exercise 1.4. (a) Here is the desired procedure:

proc maximaldegree (ideal I)

"USAGE: maximaldegree(I); I=ideal

RETURN: integer; the maximum degree of the given

generators for I

NOTE: return value is -1 if I=0

"

{

if (size(I)>0)

{

int i,dd;

int d = deg(I[1]);

for (i=2; i<=size(I); i++)

{

dd = deg(I[i]);

if (dd>d) { d = dd; }

}
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return(d);

}

else

{

return(-1);

}

}

(b) Having entered the procedure, apply it as follows:

> ring R = 32003, x(1..5), lp;

> string xxx = "ideal II="+read("lexGB.out")+";";

> execute(xxx);

> maximaldegree(II);

> xxx = "ideal JJ="+read("dpGB.out")+";";

> execute(xxx);

> maximaldegree(JJ); ��

Exercise 1.5. All smoothness tests are performed as in Exercise 1.3 (d) by
applying the Jacobian criterion (all ideals are of pure codimension 2 by con-
struction).

(a) To compute equations for the Veronese surface in P5, use preimage:

> ring P2 = 0, (u,v,w), dp;

> ideal emb = u2, v2, w2, uv, uw, vw;

> ideal I0 = ideal(0);

> ring P5 = 0, x(0..5), dp;

> ideal VP5 = preimage(P2, emb, I0);

> print(betti(list(VP5)),"betti");

(b) Define the ideal of the point p = (0 : 0 : 0 : 1 : 1 : 1) and check that p
does not lie on the Veronese surface in P5. Project the surface from p to P4:

> ideal p = x(0), x(1), x(2), x(3)-x(5), x(4)-x(5);

> size(reduce(VP5,groebner(p),1));

> ring P4 = 0, x(0..4), dp;

> ideal VP4 = preimage(P5,p,VP5);

> print(betti(list(VP4)),"betti");

(c) Randomly choose two Q-linear combinations of the 7 cubics generating
VP4:

> LIB "elim.lib"; // loads random.lib, too

> ideal CI1 = randomid(VP4,2,100);

To compute the ideal of the linked surface, saturate CI1 with respect to VP4:

> ideal QES = sat(CI1,VP4)[1];
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Compute the minimal free resolution and display the Betti diagram:

> resolution FQES = mres(QES,0);

> print(betti(FQES),"betti");

(d) Proceed as in (b) and (c) above, projecting from the point q = (1 : 1 :
1 : 1 : 1 : 1):

> setring P5;

> ideal q = x(0)-x(1), x(1)-x(2), x(2)-x(3), x(3)-x(4), x(4)-x(5);

> size(reduce(VP5,groebner(q),1));

> setring P4;

> ideal CS = preimage(P5,q,VP5);

> print(betti(list(CS)),"betti");

> ideal CI2 = matrix(CS)*randommat(3,2,maxideal(1),100);

> ideal B = sat(CI2,CS)[1];

> print(betti(list(B)),"betti");

(e) Now, project from the line V(x0 + x1 + x2, x3, x4, x5):

> setring P5;

> ideal L = x(0)+x(1)+x(2), x(3), x(4), x(5);

> nvars(P5) - dim(groebner(VP5+L));

> ring P3 = 0, y(0..3), dp;

> ideal SRS = preimage(P5,L,VP5); SRS; ��

Exercise 2.1. (a) Use the command algDependent from algebra.lib:

> ring R = 0, (x,y), dp;

> poly f1, f2, f3 = x2+y2, x2y2, x3y-xy3;

> LIB "algebra.lib";

> def L = algDependent(ideal(f1,f2,f3));

Then follow the explanation printed by SINGULAR:

> L[1];

> def S = L[2];

> setring S;

> ker;

(b) Use the command algebra containment from algebra.lib:

> setring R;

> poly g, g1, g2 = x4+y4, x+y, xy;

> L = algebra_containment(g,ideal(g1,g2),1);

Then follow the explanation printed by SINGULAR:

> def S2 = L[2];

> setring S2;

> check;
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(c) Use the command is bijective from algebra.lib:

> ring T = 0, x(1..3), dp;

> qring Q = groebner(x(1)*x(2)*x(3)-1);

> map phi = Q, x(2)*x(3), x(1)*x(3), x(1)*x(2);

> is_bijective(phi,Q); ��

Exercise 2.2. (a) Define the ideal of the affine twisted cubic curve and ho-
mogenize it with respect to a slack variable:

> ring R = 0, (w,x,y,z), dp;

> ideal I = y-x2, z-x3;

> ideal SI = groebner(I);

> ideal Ih = homog(SI,w); // generators are homogenized

> Ih;

Since the generators for I do not depend on w, the computation of SI takes
place in Q[x, y, z]. The result is a degree reverse lexicographic Gröbner basis
for I in Q[x, y, z]. Homogenizing its elements yields generators for the homog-
enized ideal Ihom (in general, however, the result of such a computation is not
necessarily a Gröbner basis for Ihom with respect to >dp on Q[w, x, y, z], see
Proposition 2.35).

(b) Define the ideal J obtained by homogenizing the original generators for
I, check that J is strictly contained in Ih, and compute the “extra component
at infinity” (which is a triple structure on the line w = x = 0):

> ideal J = homog(I,w); // generators are homogenized

> size(reduce(J,groebner(Ih),1)); // J is contained in Ih

> size(reduce(Ih,groebner(J),1)); // Ih is not contained in J

> LIB "elim.lib";

> ideal Iinf = sat(J,Ih)[1];

> Iinf; ��

Exercise 2.3. Consider the “universal polynomial”

f = a1x
3 + a2x

2y + a3xy2 + a4y
3 + a5x

2 + a6xy

+a7y
2 + a8x + a9y + a10 ∈ C [x, y, a1, . . . , a10] ,

and let J be the ideal J = 〈f, ∂f
∂x , ∂f

∂y 〉. Then the Zariski closure of the desired

locus in the affine space A10 with coordinates a1, . . . , a10 is obtained as the
image of V(J) ⊂ A2 × A10 under the projection onto A10. It is, thus, defined
by the elimination ideal J∩C[a1, . . . , a10] which we compute directly following
Proposition 2.30 (we do not use the commands eliminate and preimage).
For this, we implement the ring Q[x, y, a1, . . . , a10] equipped with a monomial
order having the elimination property with respect to x, y.

> ring S = 0, (y,x), dp;

> ideal I = maxideal(3),maxideal(2),x,y,1;

> ring R = 0, (x,y,a(1..10)), (dp(2),dp(10));
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> ideal I = imap(S,I);

> matrix A[10][1] = a(1..10);

> poly f = (matrix(I)*A)[1,1];

> ideal J = f, diff(f,x), diff(f,y);

> J = groebner(J);

> // check for generators for J that do not depend on x,y

. ideal JJ;

> int i;

> for (i=1; i<=size(J); i++) { if (J[i][1]<y){ JJ=JJ,J[i]; } }

> JJ = simplify(JJ,2); // erase zero generators

> size(JJ);

> homog(JJ);

We see that the elimination ideal is generated by a single homogeneous poly-
nomial. This polynomial has degree 12 and 2040 terms:

> poly D = JJ[1];

> deg(D); size(D);

Note that the defining polynomial Fa of a cubic curve in P2 is determined up
to a scalar multiple. Thus, these curves are parametrized by the projective
space P9 = P9(C) associated to the vector space formed by the Fa. Since the
polynomial D is homogeneous, it defines a hypersurface V(D) in P9. What
we just verified is that V(D) is the Zariski closure of the locus of points for
which the corresponding cubic curve has a singular point in the affine chart
Uz = {z �= 0} of P2. In Exercise 4.6, we will see that V(D) parametrizes
precisely the cubic curves in P2 having a singular point p in P2 (in the sense
that Fa and all its first partial derivatives vanish at p). We refer to D as the
discriminant of the homogeneous “universal polynomial”

F = a1x
3 + a2x

2y + a3xy2 + a4y
3 + a5x

2z + a6xyz

+a7y
2z + a8xz2 + a9yz2 + a10z

3 . ��

Exercise 2.4. We collect the procedures in a text file, say sol.lib, respecting
the recommended format for a SINGULAR library (see Page 112).

version = "1.0";

info = "solution to Exercise 2.4";

//

proc ideal_intersect (ideal I, ideal J)

"USAGE: ideal_intersect(I,J); I,J ideals

RETURN: ideal

NOTE: Output is generating set for the intersection of I and J.

EXAMPLE: example ideal_intersect; shows an example

"

{

int r = size(I);

int s = size(J);
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if ((r==0) or (s==0)) { return(ideal(0)); }

module M = gen(1)+gen(2);

for ( int i=1;i<=r;i++ ) { M = M, I[i]*gen(1); }

for ( i=1;i<=s;i++ ) { M = M, J[i]*gen(2); }

module S = syz(M);

ideal result;

for ( i=ncols(S);i>0;i-- ) { result[i] = S[i][1]; }

return(simplify(result,2)); // remove zeros in result

}

example

{ "EXAMPLE:"; echo = 2;

ring R = 0, (x,y), dp;

ideal I = x2, y;

ideal J = x, y2;

ideal_intersect(I,J);

}

//

proc ideal_quotient (ideal I, ideal J)

"USAGE: ideal_quotient(I,J); I,J ideals

RETURN: ideal

NOTE: Output is generating set for the quotient I:J.

EXAMPLE: example ideal_quotient; shows an example

"

{

int r = size(I);

int s = size(J);

if ((r==0)) { return(ideal(0)); }

if ((s==0)) { return(I); }

vector v;

for ( int i=1;i<=s;i++ ) { v = v+J[i]*gen(i); }

module M = v;

for ( int j=1;j<=s;j++ )

{

for ( i=1;i<=r;i++ ) { M = M, I[i]*gen(j); }

}

module S = syz(M);

ideal result;

for ( i=ncols(S);i>0;i-- ) { result[i] = S[i][1]; }

return(simplify(result,2));

return(result);

}

example

{ "EXAMPLE:"; echo = 2;

ring R = 0, (x,y), dp;

ideal I = x2, y;

ideal J = x, y2;

ideal_quotient(I,J);

}

//
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proc saturate (ideal I, ideal J)

"USAGE: saturate(I,J); I,J ideals

RETURN: ideal

NOTE: Output is generating set for the saturation of I with

respect to J.

EXAMPLE: example saturate; shows an example

"

{

ideal I_old = groebner(I);

ideal I_new;

while (1)

{

I_new = groebner(ideal_quotient(I_old,J));

if (size(reduce(I_new,I_old))==0) { return(I_new); }

I_old = I_new;

}

}

example

{ "EXAMPLE:"; echo = 2;

ring R = 0, (x,y), dp;

ideal I = x5*(x-1), y3;

ideal J = x, y2;

saturate(I,J);

}

Having loaded this file into a SINGULAR session, the procedures are accessible.
In particular, we may apply the example command to make SINGULAR run
the examples (without affecting the current SINGULAR session):

> LIB "sol.lib";

// ** loaded sol.lib 1.0

> example ideal_intersect;

// proc ideal_intersect from lib sol.lib

EXAMPLE:

ring R = 0, (x,y), dp;

ideal I = x2, y;

ideal J = x, y2;

ideal_intersect(I,J);

_[1]=y2

_[2]=xy

_[3]=x2 ��

Exercise 3.1. Here is the desired procedure:

proc is_reg_sequence (ideal I)

"USAGE: is_reg_sequence(I); I ideal,

RETURN: 1 if the given (ordered) list of generators for I is a

regular sequence;

0 otherwise.

"
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{

int i;

ideal J;

while(i<size(I))

{

i++;

if (size(reduce(quotient(J,I[i]),J))!=0)

{

return(0);

}

J = groebner(J+I[i]);

}

if (size(reduce(1,J))==0) { return(0); }

return(1);

}

We apply the procedure to the given (ordered) list of polynomials f1, f2, f3

and the permutation f1, f3, f2 thereof:

> ring R = 0, (x,y,z), dp;

> ideal I = (x-1)*z, (x-1)*y, x;

> is_reg_sequence (I);

0

> I = (x-1)*z, x, (x-1)*y;

> is_reg_sequence (I);

1 ��

Exercise 3.2. As being Cohen-Macaulay is a local property (see Proposition
5.37 and Remark 5.38), and since each of the given affine rings R is graded,
it suffices to check in each case whether the localization Rm of R at the
homogeneous maximal ideal m is Cohen-Macaulay. Apply the command isCM

from homolog.lib:

(a) > LIB "homolog.lib";

> ring R1 = 0, (x,y,z), dp;

> ideal I = xy, yz, xz;

> ring R1_loc = 0, (x,y,z), ds;

> ideal I = imap(R1,I); // ideal generated by I in localized ring

> isCM(I);

(b) > ring R2 = 0, (s,t,x,y,z,w), dp;

> ideal I = x-s4, y-s3t, z-st3, w-t4;

> ideal IC = eliminate(I,st);

> ring R2_loc = 0, (x,y,z,w), ds;

> ideal IC = imap(R2,IC);

> isCM(IC); ��

Exercise 3.3. (a) We compute the truncated module M≥d by applying
modulo: let R = K[x1, . . . , xn], and let
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0 M F0 =
s⊕

i=1
R(−vi) F1

ϕ

be a (graded) free presentation of M . Moreover, let L be a matrix whose
columns span

⊕s
i=1〈x〉d−vi · ei ⊂ F0, where e1, . . . , es denote the canonical

basis vectors of F0. Then

M≥d =
(
im L + imϕ

)/
im ϕ .

Here is the resulting procedure:

proc truncate(module phi, int d)

"USAGE: truncate(phi,d); phi module, d int

ASSUME: phi comes assigned with an admissible degree vector as an

attribute

RETURN: module

NOTE: Output is a presentation matrix for the truncation of

coker(phi) at d.

"

{

if ( typeof(attrib(phi,"isHomog"))=="string" )

{

ERROR("No admissible degree vector assigned");

}

else

{

intvec v=attrib(phi,"isHomog");

}

int s = nrows(phi);

int i,m,dummy;

module L;

for (i=1; i<=s; i++)

{

if (d>v[i])

{

L = L+maxideal(d-v[i])*gen(i);

}

else

{

L = L+gen(i);

}

}

L = modulo(L,phi);

L = prune(L);

if (size(L)==0) {return(L);}

// it only remains to set the degrees for L:

// ------------------------------------------

m = v[1];
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for(i=2; i<=size(v); i++)

{

if(v[i]<m)

{

m = v[i];

}

}

dummy = homog(L);

intvec vv = attrib(L,"isHomog");

if (d>m)

{

vv = vv+d;

}

else

{

vv = vv+m;

}

attrib(L,"isHomog",vv);

return(L);

}

(b) For the Castelnuovo-Mumford regularity, we compute the number of rows
in the Betti diagram corresponding to the minimal free resolution of M :

proc CM_regularity (module phi)

"USAGE: CM_regularity(phi); phi module

ASSUME: phi comes assigned with an admissible degree vector as an

attribute

RETURN: integer

NOTE: Output is the Castelnuovo-Mumford regularity of coker(phi).

"

{

if ( typeof(attrib(phi,"isHomog"))=="string" )

{

ERROR("No admissible degree vector assigned");

}

def L = mres(phi,0);

intmat BeL = betti(L);

int r = nrows(module(matrix(BeL)));

int shift = attrib(BeL,"rowShift"); // See Section 3.4

return(r+shift-1);

}

(c) To begin with, define the module I (and, thus, the module M = F/I):

> ring R = 0, (w,x,y,z), dp;

> module I = [xz,0,-w,-1,0], [-yz2,y2, 0,-w,0], [y2z,0,-z2,0,-x],

. [y3,0,-yz,-x,0], [-z3,yz,0,0,-w], [-yz2,y2,0,-w,0],

. [0,0,-wy2+xz2,-y2,x2];

> homog(I);
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After having read the procedures designed in part (a) and (b) into SINGULAR,
apply them as desired:

> CM_regularity(I);

3

> def T2 = mres(truncate(I,2),0);

> print (betti(T2),"betti");

0 1 2 3

------------------------------

2: 19 36 23 6

3: - - 1 -

------------------------------

total: 19 36 24 6

> def T3 = mres(truncate(I,3),0);

> print (betti(T3),"betti");

0 1 2 3

------------------------------

3: 40 91 71 19

------------------------------

total: 40 91 71 19

For a better understanding of what has been computed, compare the output
with the characterization of the regularity given prior to Theorem A.3 in
Appendix A.

Exercise 3.4. We present two procedures, one for computing kernels of mod-
ule homomorphisms, and one for computing Ext modules. Since HomR(M, N)
is isomorphic to Ext0R(M, N), the latter procedure can in particular be used
to compute Hom. Again, we collect the procedures in a text file, respecting
the recommended format for a SINGULAR library.

For the kernel, we compute the modules A and B described in the solution
to the Image and Kernel Problem 4.3 on Page 133:

version = "1.0";

info = "solution to Exercise 3.4";

//

LIB "matrix.lib";

//

proc ker_Mod (matrix alp, module phi,psi)

"USAGE: ker_Mod(alp,phi,psi); alp matrix, phi,psi modules

RETURN: module

NOTE: The generators for the output module are the columns of a

presentation matrix for the kernel of the homomorphism

coker(phi)->coker(psi) induced by alp.

EXAMPLE: example ker_Mod; shows an example

"

{

module A = modulo(alp,psi);
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module B = modulo(A,phi);

return(B);

}

example

{ "EXAMPLE:"; echo = 2;

ring R = 0, (x,y,z), dp;

module phi = [y3,-xy2];

module psi = [0,y,0],[0,0,z];

module alp = [x+xy,z,0],[y+y2,xyz,z];

print(ker_Mod(alp,phi,psi));

}

Now, we turn to Ext. To compute Exti
R(M, N) from given free presentations

0 M F0 F1 and 0
ϕ

N G0 G1 ,
ψ

we first compute a free resolution of M up to stage i + 1:

0 M F0 F1 . . . Fi Fi+1 .

Then we consider the induced commutative diagram with exact rows and
columns below:

HomR(Fi+1, N) HomR(Fi, N) HomR(Fi−1, N)

HomR(Fi+1, G0) HomR(Fi, G0)
a2

HomR(Fi−1, G0)
a1

HomR(Fi+1, G1)

b2

HomR(Fi, G1) .

b1

In this diagram, the relevant maps for constructing Exti
R(M, N) are indicated.

Here is the complete procedure:

proc Ext_Mod (int i, module phi,psi)

"USAGE: Ext_Mod(i,phi,psi); i int, phi,psi modules

RETURN: module

NOTE: The generators for the output module are the columns of a

presentation matrix for Ext^i(coker(phi),coker(psi)).

EXAMPLE: example Ext_Mod; shows an example

"

{

if (i<0) {return([1]);}

def ResPhi = mres(phi,i+1);

module M1,M2;

M2 = ResPhi[i+1];

if (i==0) {M1 = 0;} else {M1 = ResPhi[i];}
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int row = nrows(psi);

module a1 = transpose( tensor( diag(1,row), M1 ) );

module a2 = transpose( tensor( diag(1,row), M2 ) );

module b1 = tensor( psi, diag(1,ncols(M1)) );

module b2 = tensor( psi, diag(1,ncols(M2)) );

module A = modulo(a2,b2);

module B = modulo(A,a1+b1);

return(B);

}

example

{ "EXAMPLE:"; echo = 2;

ring R = 0, (x,y,z), dp;

module phi,psi = [x2-y3],[x2-y5];

print(Ext_Mod(0,phi,psi));

print(Ext_Mod(1,phi,psi));

} ��

Exercise 3.5. To construct the first surface (and to check smoothness), pro-
ceed as for the Veronese surface in Example 4.13:

> ring S = 32003, x(0..4), dp;

> resolution kos = nres(maxideal(1),0);

> print(betti(kos),"betti");

> matrix alpha0 = random(32002,10,5);

> matrix pres = module(alpha0)+kos[4];

> matrix dir = transpose(pres);

> resolution fdir = mres(dir,2);

> print(betti(fdir),"betti");

> LIB "matrix.lib";

> ideal I = flatten(fdir[2]);

Now, compute the minimal free resolution and display the Betti diagram:

> resolution FI = mres(I,0);

> print(betti(FI),"betti");

Comparing with the Betti diagram obtained by resolving the ideal of the
surface QES in Exercise 1.5, you will see that the two diagrams coincide. In
fact, the two surfaces belong to the same family of smooth surfaces, they are
quintic elliptic scrolls. See Decker, Ein, and Schreyer (1993).

The construction of the second surface is a bit more subtle. As in Example
4.14, every homomorphism

S
γ←− Syz3(K(2))⊕ Syz2(K(1))2

lifts to a homomorphism S ←− S20 which fits into a commutative diagram
with exact rows and columns:
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0 S Syz3(K(2))⊕ Syz2(K(1))2
γ

N 0

0 S S20 S19
eγ

δ

0

7S(1) 7S(1)

To construct a “generic” γ and N = ker γ, start by choosing γ̃ at random:

> ring S1 = 32003, x(0..4), dp;

> resolution kos = nres(maxideal(1),0);

> betti(kos);

> matrix gammatilde = random(32002,20,19);

> matrix kos1 = matrix(kos[1]);

> matrix kos2 = kos[2];

> LIB"matrix.lib";

> matrix kos2pluskos1pluskos1 = dsum(kos2,kos1,kos1);

> module delta = kos2pluskos1pluskos1*gammatilde;

> attrib(delta,"isHomog",intvec(-1,-1,-1,-1,-1,-1,-1));

> resolution fdelta = mres(delta,0);

> print(betti(fdelta),"betti");

0 1 2 3 4 5

------------------------------------------

-1: 7 19 25 15 3 -

0: - - - 2 3 1

------------------------------------------

total: 7 19 25 17 6 1

From the free presentations of M = Syz4(K(3))3 and N , it is clear how to
construct the desired homomorphism α:

0 M

α

S(−1)15

α0

S(−2)3
ϕ

α1

0 N S(−1)25 S(−2)15 ⊕ S(−3)2
ψ

> matrix psi = matrix(fdelta[3]);

> matrix talpha1 = random(32002,3,15);

> matrix zero[3][2];

> talpha1 = concat(talpha1,zero);

> matrix kos5 = kos[5];

> matrix tphi = transpose(dsum(kos5,kos5,kos5));

> matrix talpha1tilde = talpha1*transpose(psi);

> matrix talpha0 = lift(tphi,talpha1tilde);

Next, construct the cokernel of α by taking a mapping cone:
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> matrix dir = transpose(concat(psi,transpose(talpha0)));

> resolution fdir = mres(dir,2);

> print(betti(fdir),"betti");

> ideal I = groebner(flatten(fdir[2]));

> resolution FI = mres(I,0);

> print(betti(FI),"betti");

Finally, check smoothness as in Example 4.13. ��

Exercise 4.1. Apply the command primdecGTZ from primdec.lib to com-
pute a primary decomposition of the given ideal:

> ring R = 0, (t,w,x,y,z), dp;

> ideal I = w2xy+w2xz+w2z2, tx2y+x2yz+x2z2, twy2+ty2z+y2z2,

. t2wx+t2wz+t2z2;

> LIB "primdec.lib";

> list L = primdecGTZ(I);

Next, compute the number of components, check whether the components are
prime, and compute their dimension:

> int s = size(L); // number of components

> int i,j;

> for (i=1; i<=s; i++)

. {

. L[i][1]=std(L[i][1]);

. L[i][2]=std(L[i][2]);

. // test for primeness:

. if ( size( reduce( lead(L[i][2]), std(lead(L[i][1])) ) ) > 0 )

. {

. print(string(i)+"th component is not prime and of dimension "

. +string(dim(L[i][2]))+".");

. }

. else

. {

. print(string(i)+"th component is prime and of dimension "

. +string(dim(L[i][2]))+".");

. }

. }

Finally, check which of the components are embedded:

> for (i=1; i<=s; i++)

. {

. for (j=1; j<=s; j++)

. {

. if (( dim(L[j][2]) > dim(L[i][2]) ) and

. ( size(reduce(L[j][2],L[i][2],1)) == 0 ))

. {

. print(string(i)+"th component is embedded.");
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. j=s;

. }

. }

. } ��

Exercise 4.2. Apply the command normal from normal.lib:

> ring R = 0, (b,s,t,u,v,w,x,y,z), dp;

> ideal I = wy-vz, vx-uy, tv-sw, su-bv, tuy-bvz;

> LIB "normal.lib";

> list nor = normal(I);

The result is a list of three rings. Follow the instructions displayed by SINGU-

LAR to get information on these rings:

> for (int i=1; i<=size(nor); i++) { def R_nor(i) = nor[i]; }

> setring R_nor(1);

> R_nor(1); norid; normap;

> setring R_nor(2);

> R_nor(2); norid; normap;

> setring R_nor(3);

> R_nor(3); norid; normap;

Compare the result with the primary decomposition of I:

> setring R;

> primdecGTZ(I);

The output shows that I is the intersection of three prime ideals. In particular,
it is radical. Each normalization map is an isomorphism onto the affine domain
defined by the corresponding prime component. That is, these domains are
already normal, and the normalization algorithm just separates the prime
components of I. Geometrically, we get the linear subspaces V(u, v, w) and
V(s, v, y) of P8, and the variety defined by the 2× 2 minors of the “generic”
3× 3 matrix with rows (b, s, t), (u, v, w), and (x, y, z). ��

Exercise 4.3. Making use of elimination, compute a representation for the
subalgebra of F32003 [x, y, z]/〈z2− x5− y5〉 described in the hint to the exercise
as an affine ring S/J :

> ring R = 32003, (x,y,z,a,b,c,d), dp;

> ideal I = a-xy, b-y2, c-yz, d-y3;

> I = I, z2-x5-y5;

> ideal J = eliminate(I,y);

> ring S = 32003, (x,z,a,b,c,d), dp;

> ideal J = imap(R,J);

> attrib(J,"isSB",1);

> J;

To check that S/J has the desired properties, compute its dimension and its
normalization:
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> dim(J);

> LIB "normal.lib";

> list nor = normal(J);

> def R_nor = nor[1]; setring R_nor;

> norid; normap; ��

Exercise 4.4. (a) Proceed as follows:

> ring R = 0, x(1..3), dp;

> matrix D[3][3] = x(1), x(2), x(3)^2-1,

. x(2), x(3), x(1)*x(2)+x(3)+1,

. x(3)^2-1, x(1)*x(2)+x(3)+1, 0;

> ideal I = det(D), x(1)*x(3)-x(2)^2;

> matrix Df = jacob(I);

> I = std(I);

> int c = nvars(R) - dim(I); c;

The output shows that I has codimension 2. Since it is generated by 2 ele-
ments, it has pure codimension 2 and is unmixed (see Section 5.3 on Cohen-
Macaulay rings). To verify this with SINGULAR, check that I coincides with
its equidimensional hull:

> LIB "primdec.lib";

> ideal I_max = equidimMax(I);

> size(reduce(I_max,I));

(b) Define J and compute the saturation of I with respect to J :

> ideal J = minor(Df,c), I;

> J = groebner(J);

> sat(I,J);

The output shows that I : J2 = I : J∞ = Q[x1, x2, x3]. Hence, J2 ⊂ I ⊂ J
and, thus, V(I) = V(J). Of course, this could also be verified by checking
that

√
I =

√
J .

(c) As for I, check that J coincides with its equidimensional hull.

> ideal J_max = equidimMax(J);

> size(reduce(J_max,J));

Thus, J is unmixed and has pure codimension 2. To show that A = V(J) ⊂
A3(C) is smooth, apply the Jacobian criterion:

> matrix DJ = jacob(J);

> ideal SLoc = minor(DJ,c), J;

> groebner(SLoc);

The output shows that the ideal SLoc contains 1. According to the Jacobian
criterion, this implies in particular that J is a radical ideal. Of course, this
could also be verified by checking that

√
J = J . ��
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Exercise 4.5. To write the desired procedure, we make use of the procedure
maximaldegree from Exercise 1.4.

proc zeros (poly f)

"USAGE: zeros(f); f poly

ASSUME: the active ring is univariate

RETURN: ring

NOTE: In the output ring, f decomposes into linear factors. The

list of solutions of f=0 may be accessed by typing, for

instance,

def RRR=zeros(f); setring RRR; ZEROS;

"

{

if (defined(primitive)==0){ LIB "primitiv.lib"; }

if (nvars(basering)!=1)

{ ERROR("The active ring is not univariate"); }

if (deg(f)<=0){ ERROR("f is a constant polynomial"); }

def R_aux = basering;

ideal facts_f = factorize(f,1);

int d = maximaldegree(facts_f);

int counter=size(facts_f);

int i;

while (d>1)

{

while (deg(facts_f[counter])<=1) { counter--; }

if (defined(minpoly)) { poly g = minpoly; }

else { poly g=0; }

poly h = facts_f[counter];

if (g==0)

{

ring R_aux2 = (char(basering),a), x, dp;

map psi = R_aux,a;

minpoly = number(psi(h));

ideal facts_old = imap(R_aux,facts_f);

ideal facts_f;

for (i=1; i<=size(facts_old); i++)

{

facts_f = facts_f, factorize(facts_old[i],1);

}

}

else

{

ring R_aux1 = char(basering), (a,x), dp;

poly g = imap(R_aux,g);

poly h = imap(R_aux,h);

ideal facts_f = imap(R_aux,facts_f);

ideal I = g,h;

ideal Prim = primitive(I);

poly MP_new = Prim[1];
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poly a_new = Prim[2];

poly x_new = Prim[3];

ring R_aux2 = (char(basering),a), x, dp;

map psi = R_aux1,0,a;

minpoly = number(psi(MP_new));

poly a_new = psi(a_new);

poly x_new = psi(x_new);

map phi = R_aux1,a_new,x;

ideal facts_old = phi(facts_f);

ideal facts_f;

for (i=1; i<=size(facts_old); i++)

{

facts_f = facts_f, factorize(facts_old[i],1);

}

kill R_aux1;

}

facts_f = simplify(facts_f,2);

kill R_aux;

def R_aux = R_aux2;

setring R_aux;

kill R_aux2;

d = maximaldegree(facts_f);

}

ideal ZEROS = -subst(facts_f,x,0);

export(ZEROS);

return(R_aux);

}

We describe how to test the procedure by considering the third example given
in the exercise:

> ring R = 167, x, dp;

> def RRR = zeros(x100-13);

> setring RRR;

> ZEROS;

> poly g = 1;

> for (int i=1; i<=size(ZEROS); i++) { g = g*(x-ZEROS[i]); }

> g; ��

Exercise 4.6. To begin with, compute the numerator D0:

> ring R = 0, (x,y,z), dp;

> ideal MI_2 = maxideal(2);

> ideal MI_3 = maxideal(3);

> ideal MI_4 = maxideal(4);

> ring R_ext = 0, (a(1..6),b(1..6),c(1..6),x,y,z), dp;

> ideal MI_2 = imap(R,MI_2);

> matrix A[6][1] = a(1..6);

> matrix B[6][1] = b(1..6);

> matrix C[6][1] = c(1..6);
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> poly F(0) = (matrix(MI_2)*A)[1,1];

> poly F(1) = (matrix(MI_2)*B)[1,1];

> poly F(2) = (matrix(MI_2)*C)[1,1];

> ideal G = x2*F(0), xy*F(0), xz*F(0), yz*F(0), x2*F(1),

. xy*F(1), xz*F(1), y2*F(1), yz*F(1), x2*F(2),

. xy*F(2), xz*F(2), y2*F(2), yz*F(2), z2*F(2);

> ideal MI_4 = imap(R,MI_4);

> matrix M = coeffs(G,MI_4,xyz);

> poly D_0 = det(M);

> deg(D_0); size(D_0);

The output shows that D0 has degree 15 and consists of 37490 terms. Next,
compute the extraneous factor Dext

0 :

> ideal G_ext = x2*F(1), x2*F(2), y2*F(2);

> ideal MI_ext = x2y2, x2z2, y2z2;

> matrix M_ext = coeffs(G_ext,MI_ext,xyz);

> poly D_0_ext = det(M_ext);

Entering the two lines below, you will define the resultant Res2,2,2 (up to
sign), and you will see that it is a polynomial of degree 12 with 21894 terms:

> poly Res = D_0/D_0_ext;

> deg(Res); size(Res); ��

Exercise 4.7. Continuing the SINGULAR session above, compute the value of
the resultant Res2,2,2 for the polynomials F0 = ∂F

∂x , F1 = ∂F
∂y , F2 = ∂F

∂z , where
F = Fa:

F = a1x
3 + a2x

2y + a3xy2 + a4y
3 + a5x

2z + a6xyz

+a7y
2z + a8xz2 + a9yz2 + a10z

3 :

> ring S = 0,(x,y,z,a(1..10)), (dp(2),dp(11));

> ideal MI_2 = imap(R,MI_2);

> ideal MI_3 = imap(R,MI_3);

> matrix A[10][1] = a(10),a(9),a(7),a(4),a(8),a(6),a(3),a(5),a(2),

. a(1);

> poly F = (matrix(MI_3)*A)[1,1];

> ideal J = diff(F,x), diff(F,y), diff(F,z);

> LIB "matrix.lib";

> map phi = R_ext, flatten(coeffs(diff(F,x),MI_2,xyz)),

. flatten(coeffs(diff(F,y),MI_2,xyz)),

. flatten(coeffs(diff(F,z),MI_2,xyz));

> poly D = phi(Res);

> deg(D); size(D);

As in Exercise 2.3, we get a polynomial D in a1, . . . , a10 of degree 12 with 2040
terms. This polynomial coincides with that of Exercise 2.3 up to the constant
factor −27. Note that Euler’s formula
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deg(F ) · F = x · ∂F

∂x
+ y · ∂F

∂y
+ z · ∂F

∂z

implies that F vanishes at a point of P2 if all its first partial derivatives vanish.
Hence, D defines the locus of points in P9 for which the plane curve V(F ) ⊂ P2

is singular (see the solution to Exercise 2.3). ��

Exercise 5.1. (a) The solution requires to compute algebra relations and is,
thus, based on elimination. More precisely, we make use of the following obser-
vation. Let f1, . . . , fs ∈ K[x] be homogeneous polynomials which are sorted
such that deg(f1) ≥ . . . ≥ deg(fs) ≥ 1. Write Li = {1, . . . , s} \ {i}. Suppose
that for some j, we have K[fν | ν ∈ Li] � K[f1, . . . , fs], for all i < j. Then
K[fν | ν ∈ Lj ] = K[f1, . . . , fs] iff the ideal J := 〈y1−f1, . . . , ys−fs〉 ⊂ K[x, y]
contains an element of type yj − g, where g ∈ K[yj+1, . . . , ys].

proc min_generating_set (matrix P,S)

"USAGE: min_generating_set(P,S); P,S matrix

ASSUME: The entries of P,S are homogeneous and ordered by ascending

degrees. The first entry of S equals 1. (As satisfied by

the first two output matrices of invariant_ring(G).)

RETURN: ideal

NOTE: The given generators for the output ideal form a minimal

generating set for the ring generated by the entries of

P,S. The generators are homogeneous and ordered by

descending degrees.

"

{

if (defined(flatten)==0) { LIB "matrix.lib"; }

ideal I1,I2 = flatten(P),flatten(S);

int i1,i2 = size(I1),size(I2);

// We order the generators by descending degrees

// (the first generator 1 of I2 is omitted):

int i,j,s = i1,i2,i1+i2-1;

ideal I;

for (int k=1; k<=s; k++)

{

if (i==0) { I[k]=I2[j]; j--; }

else

{

if (j==0) { I[k]=I1[i]; i--; }

else

{

if (deg(I1[i])>deg(I2[j])) { I[k]=I1[i]; i--; }

else { I[k]=I2[j]; j--; }

}

}

}

intvec deg_I = deg(I[1..s]);

int n = nvars(basering);
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def BR = basering;

// Create a new ring with elimination order:

//---------------------------------------------------------------

// **** this part uses the command ringlist which is ****

// **** only available in SINGULAR-3-0-0 or newer ****

//---------------------------------------------------------------

list rData = ringlist(BR);

intvec wDp;

for (k=1; k<=n; k++) {

rData[2][k] ="x("+string(k)+ ")";

wDp[k]=1;

}

for (k=1; k<=s; k++) { rData[2][n+k] ="y("+string(k)+ ")"; }

rData[3][1] = list("dp",wDp);

rData[3][2] = list("wp",deg_I);

def R_aux = ring(rData);

setring R_aux;

//---------------------------------------------------------------

ideal J;

map phi = BR, x(1..n);

ideal I = phi(I);

for (k=1; k<=s; k++) { J[k] = y(k)-I[k]; }

option(redSB);

J = std(J);

// Remove all generators that are depending on some x(i) from J:

int s_J = size(J);

for (k=1; k<=s_J; k++) { if (J[k]>=x(n)) {J[k]=0;} }

// The monomial order on K[y] is chosen such that linear leading

// terms in J are in 1-1 correspondence to superfluous generators

// in I :

ideal J_1jet = std(jet(lead(J),1));

intvec to_remove;

i=1;

for (k=1; k<=s; k++)

{

if (reduce(y(k),J_1jet)==0){ to_remove[i]=k; i++; }

}

setring BR;

if (to_remove == 0) { return(ideal(I)); }

for (i=1; i<=size(to_remove); i++)

{

I[to_remove[i]] = 0;

}

I = simplify(I,2);

return(I);

}
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In versions of SINGULAR prior to 3-0-0, creating a new ring in a procedure as
above typically required the use of the execute1 command:

// Create a new ring with elimination order:

//---------------------------------------------------------------

if (minpoly<>0){ string @MP=string(minpoly); }

string newring =

"ring R_aux = (" + charstr(BR) + "),(x(1.." + string(n)

+ "),y(1.." + string(s) + ")),(dp(" + string(n) + "),wp("

+ string(deg_I) + "));";

execute(newring);

if (defined(@MP)) { @MP = "minpoly=" + @MP; execute(@MP); }

//---------------------------------------------------------------

To test the procedure, we apply it to an example with superfluous generators:

> ring R1 = 0, (x,y), dp;

> matrix P[1][3] = x2+y2, x2-y2, x3-y3;

> matrix S[1][5] = 1, x-y, x3-xy2, x4-y4, xy3+y4;

> min_generating_set(P,S);

The output shows that x2− y2, x2+ y2, and x− y form a minimal set of
generators.

(b) We apply the procedure from part (a) to Example 8.9. It turns out that the
ring of invariants under consideration has a fundamental generator of degree
5. Thus, Noether’s degree bound does not hold in this case (the group order
is 4).

> ring R = 2, x(1..4), dp;

> matrix A[4][4];

> A[1,4]=1; A[2,1]=1; A[3,2]=1; A[4,3]=1;

> LIB "finvar.lib";

> matrix P,S = invariant_ring(A);

> ideal MGS = min_generating_set(P,S);

> deg(MGS[1]); ��

Exercise 5.2. (a) proc is_unit (poly f)

"USAGE: is_unit(f); f poly

RETURN: int; 1 if f is a unit in the active ring,

0 otherwise.

"

{

return(leadmonom(f)==1);

}

1 The execute command may give rise to name conflicts. Moreover, procedures
which make use of the execute command cannot be precompiled (a feature which
future versions of SINGULAR will provide). Therefore, we recommend to use the
execute command only if it is really needed.
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We apply the procedure to the polynomial 3 + x, regarded as an element of
four different rings. These rings are implemented by orders which are global,
local, and mixed, respectively:

> ring R = 0, (x,y), dp;

> poly f = 3+x;

> is_unit(f);

> ring R1 = 0, (x,y), ds;

> is_unit(imap(R,f));

> ring R2 = 0, (x,y), (ds(1),dp);

> is_unit(imap(R,f));

> ring R3 = 0, (x,y), (dp(1),ds);

> is_unit(imap(R,f));

(b) Let u0 ∈ K \ {0}, and let u1 ∈ K[x], with u1(0) = 0. Then

(u0 − u0u1)
−1 =

1

u0
·
(

1 +

∞∑
k=1

uk
1

)
∈ K[[x]] .

This formula is used by the following procedure.

proc invert_unit (poly u, int d)

"USAGE: invert_unit(u,d); u poly, d int

RETURN: poly;

NOTE: If u is a unit in the active ring, the output polynomial

is the power series expansion of the inverse of u up to

order d. Otherwise, the zero polynomial is returned.

"

{

if (is_unit(u)==0) { return(poly(0)); }

poly u_0 = jet(u,0);

u = jet(1-u/u_0,d);

poly u_1 = u;

poly inv = 1 + u_1;

for (int i=2; i<=d; i++)

{

u_1 = jet(u_1*u,d);

inv = inv + u_1;

}

return(inv/u_0);

} ��

Exercise 5.3. We start by computing the singular locus of the affine cone
over C and the minimal associated primes of the resulting ideal:

> LIB "primdec.lib";

> ring R = 0, (x,y,z), dp;

> poly f = ((x4+y4-z4)^4-x2y5z9)*(x4+y4-z4);

> ideal Slocf = f,jacob(f);

> list SLoc = minAssGTZ(Slocf);

> SLoc;
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From the output, we see that the singular locus consists of the four rational
points (0 : 1 : 1), (0 : −1 : 1), (1 : 0 : 1), (−1 : 0 : 1), two pairs of points which
are conjugate over Q (defined by the primes 〈x, y2 + z2〉 and 〈y, x2 + z2〉),
and a quadruple of pairwise conjugate points over Q (defined by the prime
〈z, x4 + y4〉). We describe the branches of C at some of these points. To begin
with, consider p = (0 : 1 : 1):

> LIB "hnoether.lib";

> ring R_loc1 = 0, (u,v), ds;

> map phi = R,u,v-1,1;

> poly f = phi(f);

> def L1 = hnexpansion(f);

> def HNE_ring1 = L1[1];

> setring HNE_ring1;

> list INV = invariants(hne);

> // Number of branches:

. size(INV)-1;

> // Intersection Multiplicities of the branches:

. print(INV[size(INV)][2]);

The output shows that there are three branches. Two of the branches intersect
each other with multiplicity two and intersect the third branch transversally.
In particular, all branches are smooth. Smoothness can also be seen by check-
ing the invariants of the branches. For instance, a branch is smooth iff its
δ-invariant is zero:

> for (int i=1; i<size(INV); i++)

. {

. if (INV[i][5]==0){ print("branch No."+string(i)+" is smooth");}

. }

The same picture is obtained for a point defined by the prime 〈x, y2 + z2〉. To
see this, first enter the code below. Then, proceed as above.

> ring R_loc2 = (0,a), (u,v), ds;

> minpoly = a2+1;

> map phi = R,u,v-a,1;

> poly f = phi(f);

> def L2 = hnexpansion(f);

> def HNE_ring2 = L2[1];

> setring HNE_ring2;

> displayInvariants(hne);

Finally, consider a point corresponding to the prime 〈z, x4 + y4〉:
> ring R_loc3 = (0,a), (u,v), ds;

> minpoly = a4+1;

> map phi = R,1,v-a,u;

> poly f = phi(f);

> def L3 = hnexpansion(f);

> displayInvariants(L3);
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Checking, for instance, the δ-invariant, we see that there is one smooth and
one singular branch. The branches intersect each other with multiplicity 9. ��

Exercise 5.4. (a) Determine the singular locus of the affine cone over C:

> ring R = 0, (x,y,z), dp;

> poly f = 3y3-3xy2-2xy3+x2y3+x3;

> poly C = homog(f,z);

> ideal I = jacob(C);

> I = std(I);

> LIB "primdec.lib";

> list SLoc = primdecGTZ(I);

> SLoc;

The output shows that C has exactly 4 singular points:

(1 : 1 : 1), (0 : 1 : 0), (1 : 0 : 0), (0 : 0 : 1)

(in addition to the primary components defining these points, the ideal SLoc
has an embedded component corresponding to the origin of A3). We already
see that the first two singular points are nodes (for each point, the correspond-
ing primary component coincides with its radical). Further, the point (1 : 0 : 0)
is a simple cusp (the Tjurina number at this point is dimC C{y, z}/〈y2, z〉 = 2).
For the singular point (0 : 0 : 1), the 2-jet of the given equation is zero, while
the 3-jet is nonzero. To show that the singularity at (0 : 0 : 1) is an ordinary
3-multiple point, it, thus, remains to check that the 3-jet decomposes into 3
different linear factors over C:

> factorize(jet(f,3));

The output shows that the 3-jet is irreducible over Q. Thus, it cannot have a
multiple factor over C.

(b) Proceed as follows:

> ideal Adj_S = 1;

> for (int k=1; k<=3; k++)

. {

. Adj_S = intersect(Adj_S,SLoc[k][2]);

. }

> Adj_S = intersect(Adj_S,SLoc[k][2]^2);

> ideal Adj_LS_3 = jet(std(Adj_S),3);

> Adj_LS_3 = simplify(Adj_LS_3,6); Adj_LS_3;

From the output, we see that the four polynomials xyz−y2z, x2z−y2z, xy2−
y2z, and x2y − y2z span L3. We randomly choose two Q-linear combinations
f1, f2 of these polynomials, and compute the sets B1 and B2 of intersection
points of V(f1) and V(f2) with C outside the singular locus of C:
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> LIB "random.lib";

> def f(1),f(2) = randomid(Adj_LS_3,2,10);

> ideal I(1) = f(1),C;

> ideal I(2) = f(2),C;

> ideal B(1) = sat(I(1),I)[1];

> ideal B(2) = sat(I(2),I)[1];

(c) Proceed as follows:

> Adj_S = intersect(Adj_S,B(1),B(2));

> option(redSB);

> ideal L’ = jet(std(Adj_S),4);

> L’ = simplify(L’,6);

> poly f’ = randomid(L’,1,10)[1];

> ideal I’ = f’,C;

> ideal B(3) = sat(I’,L’)[1];

(d) Proceed as follows:

> ideal L’’ = jet(std(intersect(Adj_LS_3,B(3))),3);

> L’’ = simplify(L’’,6); L’’;

From the output, we read that L′′ is a one-dimensional linear system. We take
f ′′
1 , f ′′

2 to be the given generators:

> poly f’’(1),f’’(2) = L’’;

(e) Proceed as follows:

> ring R_t = (0,t), (x,y,z), dp;

> poly f’’ = imap(R,f’’(1)) + t*imap(R,f’’(2));

> ideal I_t = f’’, imap(R,C);

> I_t = std(I_t);

> ideal L’’ = imap(R,L’’);

> I_t = sat(I_t,L’’)[1];

> I_t = std(subst(I_t,z,1));

> def phi_x = reduce(x,I_t); phi_x;

> def phi_y = reduce(y,I_t); phi_y;

To double check that the map ϕ with components ϕx and ϕy is indeed a
parametrization of C, we verify that the image of ϕ is contained in C, and
compute the Zariski closure of the image.

> map testmap = R, phi_x, phi_y, 1;

> testmap(C);

> ring S = 0, (t,x,y), dp;

> ideal I_t = imap(R_t,I_t);

> eliminate(I_t,t); ��
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(eds.): Gröbner Bases and Applications, 305–322, LNS 251, CUP, Cambridge.
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gen. Invent. Math. 15, 171–198.

Grauert, H.; Remmert, R. (1971): Analytische Stellenalgebren. Springer-Verlag.
Greuel, G.-M.; Pfister, G. (2002): A SINGULAR introduction to commutative algebra.

Springer-Verlag.
Greuel, G.-M.; Lossen, C.; Shustin, E. (2006): Introduction to Singularities and De-

formations. To appear.
Gusein-Zade, S.M.; Nekhoroshev, N.N. (2000): Singularities of type Ak on plane

curves of a chosen degree. Funct. Anal. Appl. 34, No. 3, 214–215.
Harris, J. (1992): Algebraic Geometry. Springer-Verlag.
Hartshorne, R. (1977): Algebraic Geometry. Springer-Verlag.
Hermann, G. (1926): Die Frage der endlich vielen Schritte in der Theorie der Poly-

nomideale. Math. Ann. 95, 736–788.
Heydtmann, A.E.: Generating invariant rings of finite groups. Diplomarbeit, Uni-

versität des Saarlandes, Saarbrücken (1999).
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isolated 41
primary 41

concat 55, 131
conjugate

factors 203
points 175, 253
primes 208

constraint 174
convex hull 194
coordinate ring 39

homogeneous 49
CPU time XI, 80
cubic scroll 126
cusp 259

data type 65
ring dependent 65, 72

dbprint 114
debugging tools 113
decomposition 173, 201

equidimensional 201
primary 41, 201
redundant 174
triangular 176
weak equisingular 202

def 92
defining equations 38, 49
degree 12, 16, 53, 69, 76

anticompatible order 239
compatible order 61
of a homogeneous element 12
of a projective algebraic set 53, 57
reverse lexicographic order 26

negative 240
weighted 69

degree 57
depth 157, 161

is geometric notion 160
depth 160
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determinantal
ideal 55
ring 162

dim 87, 250
dimension 43, 45, 53, 170, 249, 250

at p 45
computation of 53, 170, 250
global 250
local 45, 250
of a ring 43
of an algebraic set 43, 53
of an ideal 43
projective 160

discriminant 287
displayHilbPoly 23
displaying output 75, 113
divisible 28, 107
division

algorithm 29, 245
theorem 28

Grauert 243
Mora 245
Weierstraß 243

with remainder 28, 243
division 246, 247
double line 54
dp 26
dynamic module 112

ecart 246
eliminate 90, 262
elimination 44, 57, 89, 110, 261

Hilbert-driven 90
ideal 44, 57, 110, 261
local case 261
of module components 91, 95, 110
order 58, 68, 91
property 58, 68, 262
submodule 91

embedded component 41
equidim 209
equidimensional

decomposition 201
weak 202

hull 201
radical 201

equidimMax 208
ERROR 291
Euler’s formula 255, 302

exact sequence 15, 129
of Ext 134
of Tor 134

example 289
execute 284, 305
export 115
Ext 134, 157

long exact sequence of 134
Ext 135, 136
Ext R 135
extension theorem 186
Exterior 106
exterior algebra 106

facstd 174
factorization 174, 248

absolute 264
role of the coefficient field 202

factorize 184, 202, 248
factorizing Buchberger Algorithm 174
faithfully flat 238
fetch 73
fglm 80
FGLM algorithm 80, 172
field extension

finite 66, 181
purely transcendental 67
simple 66, 181

finduni 172
finite

free resolution 15
map 261

finitely generated
algebra 12
module 12

finvar.lib 223
fitting 153
Fitting ideal 153
flat 145–149, 151, 154, 155, 238, 258

family 147
locus 155
module 146
morphism 147

flatLocus 155
flatness

and fibers 147, 164
and Gröbner bases 151
criteria for 148, 154

flatten 140



322 Index

free
module 14
presentation 15, 130
resolution 15, 94

finite 15
graded 17
homomorphism of 131
isomorphism of 18
length 15
minimal 17, 99
over quotient rings 110, 135
SINGULAR commands 97

frwalk 82
fundamental

problem of invariant theory 220
system of invariants 231, 271

G-algebra 103
GAP 7
general of order m 243
genus 53
germ 235

algebraic 235
analytic 236
formal 236

global
dimension 250
order 25, 68, 239

Godeaux surface 233
Gordan 14, 24, 27
Gordan’s lemma 24, 25, 242
GR-algebra 104
graded

algebra 12
Betti number 18, 98
free module 16
free resolution 17
homomorphism 135

of degree zero 16
matrix 16
module 12, 76, 135
ring 12
submodule 12
syzygy modules 18

Grauert 28, 243
division theorem 243

Gröbner 28
basis 27, 28, 78

application of 87

computation of 78
conversion 79
left 107
limitations 86
minimal 79
reduced 33, 79, 83
techniques for solving 170

walk algorithm 81
groebner 23, 84
grwalk.lib 81
GTZ type algorithm 205, 206, 208, 209

Hamburger-Noether expansion 265
Hermann 90, 202
hidden variable 191
hilb 23, 87
Hilbert 11, 13, 14, 16, 19, 21, 24, 27,

233, 234
basis theorem 14
-Burch theorem 19
driven algorithm 82, 97
function 13, 82

criterion 82, 85
Nullstellensatz 38, 170
polynomial 21, 52

of a projective algebraic set 53
series 13, 52
syzygy theorem 16

hilbPoly 87
HNE 265
hnexpansion 266, 267
Hom 133
Hom 135
homog 76, 83
homogeneous 12, 48, 49, 255

coordinate ring 49
coordinates 48
element 12
ideal 12
polynomial 48
weighted 255

homogenization 51, 61, 246
of a polynomial 51
of an ideal 51, 61
weighted 152

homology 129
of a monad 277

homology 135
homomorphism
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of free resolutions 131
of local rings 164
of presentations 130

Horrocks-Mumford bundle 226
hres 97
hull

convex 194
equidimensional 201

hyperplane at infinity 50
hypersurface 37, 49

ideal XI, 12, 74
determinantal 55
elimination 44, 57, 110, 261
homogeneous 12
intersection 52
irrelevant 49
membership 43, 51, 87
monomial 24
primary 41
quotient 43, 52
radical 38
unmixed 53, 162
vanishing 38

ideal 74
I-depth 157
image 44, 58, 59, 133
imap 73
induced monomial order 31
initial

ideal 27
module 27
term 25

inSubring 94
int 71, 113
interred 83
intersect 87
intersection 52, 87, 256

multiplicity 256, 266
of ideals 52
transversal 256

intmat 77
intvec 23
invariant 219

primary 220
secondary 220

invariant basis 225
invariant ring 223
irreducible 39, 40

absolutely 203, 265
algebraic set 39
component 40

irrelevant ideal 49
is bijective 94
isCM 163
isFlat 154
isolated

component 41
point 252

isomorphism of free resolutions 18
is surjective 94

jacob 56
Jacobian

criterion 53, 54, 56, 139
matrix 45, 53

jet 272
de Jong algorithm 211

kernel 91, 133
kernel 135
Koszul

complex 137, 158
homology 159
relations 14

Krull
dimension 43
principal ideal theorem 44

La Scala algorithm 97
lead 164
leading

coefficient 25, 26, 242
ideal 27, 164, 242
module 27
monomial 25, 26, 242
term 25, 26, 103, 107, 242

leadmonom 81
length of free resolution 15
letter 103
lexicographic order 26, 89

negative 239
LIB 55, 65, 112, 118
LIDIA 7
lift 88, 130
linear free resolution 276
linked 126, 228
list 65, 77, 120
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listvar 73
load 118
local

dimension 45, 250
object 114
order 25, 239
property 46
ring 18

of A at p 46
locus

nonnormal 211
singular 46, 211

lp 26
lres 97

Macaulay 27, 162, 189, 190
MACAULAY2 8
MAGMA 8
map 73, 241
map of germs 261
MAPLE 3
mapping cone 131
matrix 75
matrix order 70
maxideal 55
milnor 256
Milnor number 255, 256
minAssChar 209
minAssGTZ 209
min generating set 232, 303
minimal

associated prime 41, 201, 209
free resolution 17, 99
Gröbner basis 79
polynomial 66, 181
primary decomposition 41
set of generators 17, 26

Minkowski sum 195
minor 19, 56
minor 56
minpoly 66
minres 98, 102
mixed order 25, 240
modular case 220
module 12, 75

constructed 130
dth twist 16
flat 146
free 14

graded 12, 76
quotient 52
truncated 167

module 75
modulo 131
Molien series 221
monad 277

Beilinson 278
monomial XI, 26, 103, 241

ideal 24
order 25, 26, 66, 241

admissible 103, 107
degree anticompatible 239
degree compatible 61
degree reverse lexicographic 26
extra weight vector 71, 89
global 25, 68, 239
induced 31
lexicographic 26
local 25, 239, 243
matrix order 70
mixed 25, 240
negative degree reverse lexico-

graphic 240
negative lexicographic 239
on free modules 26, 71, 241, 243
product order 69

submodule 26
Mora division 245, 246
morphism of algebraic sets 40
mres 97, 98, 102, 110
M -sequence 156

maximal 157
multiplicity 171, 252, 256

intersection 266
multipolynomial resultant 188

Nakayama’s lemma 17
name space 116, 117
ncalgebra 104
nctools.lib 105
ndcond 105
negative

degree reverse lexicographic order
240

lexicographic order 239
nesting level 114, 115
Newton polytope 194
node 259
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Noether 14, 45, 202, 210, 220
degree bound 231, 305

Noetherian ring 14
nonmodular case 220
nonnormal locus 211
nonsingular 45, 46
normal form 30, 107, 244
normalization 44, 210
nres 97, 98, 102, 110
Nullstellensatz 38
number 78, 113
number field 42
nvars 56

oppose 108
opposite 108
opposite algebra 108
option(redSB) 79
option(prot) 85
ordinary multiple point 272

package 116
pairwise conjugate 175, 253
parametrization 44, 265, 266

rational 44, 272
partial solution 186
perfect field 42, 253
plot 123
PLURAL 103, 276
polar 260
polynomial

function 39
homogeneous 48
map 40
nature 13

polytope 194
preimage 59, 92
presentation 15, 130

matrix 15, 75
primary

component 41
decomposition 41, 201, 205, 248

absolute 208
algorithms for 202, 204
minimal 41
role of the coefficient field 206

ideal 41
invariants 220

primdecGTZ 206

primdecSY 206
primitiv.lib 181
primitive 181, 182
primitive element 181
print 75
printlevel 114
proc 111
procedure 111

static 117
product

criterion 78
order 69

projective
algebraic set 49
closure 50
dimension 160
geometry-algebra dictionary 49
line 48
space 48

prune 98, 100
Puiseux expansion 265
pure codimension 53

qring 67, 105
quintic elliptic scroll 126, 295
quotient 43
quotient 87

rad con 89
radical 38, 202, 208

computation of 173, 180, 202, 208
equidimensional 201
ideal 38
membership 43, 52, 88
zero-dimensional 173, 180

radicalEHV 208
radical 208
random 138
random.lib 55, 282
randommat 55
rank 14, 20, 154
read from a file 112, 123
reduce 109, 247
reduced

Gröbner basis 33, 79, 83
ring 39

reducible algebraic set 39
regular

local ring 46
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sequence 156
maximal 157

regularity 167, 276
remainder 28, 243
resolution 15, 94, 276

free 15
linear free 276
Tate 276

resolution 97
resultant 90, 183

application to solving 190
generalized 187
multipolynomial 188
sparse 194
Sylvester 183

resultant 184
return 115
Reynolds operator 221, 234
ring XI

active 67, 72, 120
affine 39
Cohen-Macaulay 161
coordinate 39
determinantal 162
graded 12
implemented by > 239
in SINGULAR 66, 120
local 18
map 72, 241
Noetherian 14
of invariants 219
reduced 39

ring 66, 121
ringlist 67, 120, 303
rowShift 77

S-polynomial 31, 108
sat 56, 87
saturation 43, 52, 56, 87
scalar XI
scheme 41
Schreyer algorithm 32, 97
SCHUBERT 4
secondary invariant 220

irreducible 222
modular case 229
nonmodular case 222

setring 68
sheafcoh 274

sheafCohBGG 276
short 74, 123
simple

algebra 109
cusp 259
field extension 66, 181

simplify 79
sing.lib 256
SINGULAR VIII, 8, 19, 63

and MAPLE 122
debugging tools 113
help system 63, 64
homepage 63
internal limitations 71
kernel 63
libraries 63, 65, 112

general structure 112
procedure 111
user language 64

singular 46
locus 46, 53, 211

singularity 46
size 81
slimgb 84
smooth 45, 46
solution 170

nontrivial 188
partial 186

solvability 43, 52
solve 179
solve.lib 179
sparse resultant 194
spectrum 211
square-free 38

part 38
sres 97, 101, 102
standard

basis 28, 237, 242
expression 28, 243

polynomial 243
monomial 27, 107, 242

standard.lib 85
static procedure 117
std 78, 82, 108
Steiner Roman surface 60, 126
subalgebra membership 93
submodule membership 51, 88, 130
support 194
SURF 4, 9, 123, 256
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surface
Bordiga 126
cubic scroll 126
Godeaux 233
quintic elliptic scroll 126, 295
Steiner Roman 60, 126
Veronese 126, 284

surjective 94
Sylvester resultant 183
symbolic-numerical approach 169,

173, 179, 194
syz 95, 102, 110
syzygy 15, 94

matrix 15
module 15

tail 24–26, 242
tangent space 45
Tate resolution 276
tensorMod 135
term XI, 26
timer 80
timings XI, 80
tjurina 256
Tjurina number 253, 256
topology

Euclidean 236
〈x〉-adic 236
Zariski 38, 235

Tor 135
long exact sequence of 134

Tor 135
transversal intersection 256
triang.lib 176
triangMH 178
triang solve 179
triangular

basis 176
decomposition 176
system 179

truncate 291
truncated module 167, 290
twist 16
twisted cubic curve 18, 19

affine 127, 187
twostd 106, 108
type 65

conversion 76, 77, 115
ring dependent 65, 72

typeof 97

unmixed ideal 53, 162
unmixedness theorem 55, 162
ures solve 197, 199
u-resultant 191

sparse 196

vanishing
ideal 38
locus 38, 49, 211

variable 66
variety 39
varstr 68
vdim 87, 250, 253
vector 74
Veronese surface 126, 284
voice 114

w-deg(f) 69
weak equidimensional decomposition

202
Weierstraß division theorem 243
weight vector 69
weighted

degree 69
homogeneous 255
homogenization 152

well-order 25
Weyl 105
Weyl algebra 105
Whitney umbrella 252
word 103
write 123

xn-general 243

Zariski topology 38, 235
zeroRad 180
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