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Preface

The idea of this research arose from the discussion between Professors
Y. Shtessel, A. Poznyak, and L. Fridman in Mexico City in September 2002
motivated by the recently obtained result, the so-called robust min–max prin-
ciple, by Professors V. Boltyanski and A. Poznyak. The main topic of this
discussion was about the advantages and disadvantages of two different types
of robust control concepts: min–max and sliding modes. In conclusion, Pro-
fessors Poznyak and Fridman decided to start the investigation joining the
advantages of two approaches to robustness:

– the ability of integral sliding mode controllers to compensate matched
uncertainties starting from initial time moment;

– the possibilities of robust optimal controllers to provide the best possible
solution for the worst case of a set of uncertainties.

This decision finally defined the topic of master and Ph.D. thesis and post-
doctoral study life of Dr. Francisco Javier Bejarano.

Working on this topic we discover that for the case when the number of
matched unknown inputs is less than the number of the outputs sometimes it
is possible to design an observer estimating unmeasured coordinates theoret-
ically exactly starting from the initial time moment even in the presence of
unknown inputs.

In this way the concept of output integral sliding modes was born which
we would like to present in this book.

Mexico City, Mexico Leonid Fridman
Alexander Poznyak

Francisco Javier Bejarano
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1

Introduction

1.1 Importance of Robust Control

Robust control is a branch of modern control theory that explicitly deals with
uncertainty in its approach to controller design. Robust control methods are
designed to function properly so long as uncertain parameters or disturbances
are within some (typically compact) set. Robust methods aim to achieve
robust performance and/or stability in the presence of bounded modelling
errors. The classical control design, based on the frequency domain method-
ology, was fairly robust; the state-space methods invented in the 1960s and
1970s were sometimes found to lack robustness [1], prompting research to
improve them. This was the start of the theory of robust control, which took
shape in the 1980s and 1990s and is still active today. In contrast with an
adaptive control policy, a robust control policy is static; rather than adapting
to measurements of variations, the controller is designed to work assuming
that certain variables will be unknown but, for example, bounded [2, 3].

When is a control method said to be robust? Informally, a controller
designed for a particular set of parameters is said to be robust if it would
also work well under a different set of assumptions. High-gain feedback is a
simple example of a robust control method; with sufficiently high gain, the
effect of any parameter variations will be negligible. High-gain feedback is the
principle that allows simplified models of operational amplifiers and emitter-
degenerated bipolar transistors to be used in a variety of different settings.
This idea was already well understood by Bode and Black in 1927.

The modern theory of robust control began in the late 1970s and early 1980s
and soon developed a number of techniques for dealing with bounded system
uncertainty [4, 5]. Probably the most important example of a robust control
technique is H∞ loop-shaping, which was developed by Duncan McFarlane
and Keith Glover [6]; this method minimizes the sensitivity of a system over
its frequency spectrum, and this guarantees that the system will have suffi-
ciently small deviation from expected trajectories when disturbances enter the

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,
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2 1 Introduction

system. Another example is LQG/LTR, which was developed to overcome the
robustness problems of LQG control [7]. In [8] the polynomial robust stability
is analyzed.

In this book we will deal with two different types of robust control
strategies: min–max concept and sliding mode control. Let us discuss firstly
the advantages and drawbacks of both strategies.

1.2 Min–Max Concept

When we do not have a complete information on a dynamic model to be
controlled the main problem consists in designing an acceptable control which
remains to be “close to an optimal one” having a small sensibility with respect
to any unknown (unpredictable) factor from a given possible set. In other
words the desired control should be robust with respect to an unknown factor.
In the presence of any sort of uncertainties (parametric type, unmodelled
dynamics, external perturbations, etc.) the main way to obtain a solution
suitable for a class of given models is to formulate a corresponding min–max
control problem, where

– maximization is taken over a set of uncertainty;
– minimization is taken over control actions within a given set.

The min–max controller design for different classes of nonlinear systems has
been a hot topic of research for over the last two decades. A recent more
comprehensive publication on this topic can be found in [9].

Three drawbacks of min–max concept are that:

• it requires the availability of the entire state vector along all the time;
• it deals only with parametric uncertainties;
• it needs the complete knowledge of all possible plant variations.

1.3 Sliding Mode Control

1.3.1 Main Steps of Sliding Mode Control

Sliding mode controllers (SMC) were developed in the Soviet Union in the
mid-1950s (see, e.g., [10]) in the framework of variable structure control
(VSC), a nonlinear control method that alters the dynamics of a nonlinear
system by the application of a switching control. In the framework of VSC it
was understood that if the controllers are ensuring finite-time arrival to some
surface in both sides of the surface, the solution should slide on the surface if
it is supposed the frequency of the switching is infinite. Moreover, analyzing
the phase plane, it was shown that such motions have three principal specific
features (see, e.g., [11–14]):
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– the sliding mode dynamics are not coinciding with any dynamics of the
system outside of the surface;

– the sliding motions are invariant with respect to uncertainties/distur-
bances;

– the sliding dynamics is described by reduced order equations;
– the finite-time convergence of the system trajectory to the sliding surface.

Later in the early 1960s the rigorous mathematical analysis of SMC was
done (see [15]). In 1969 Drazenovic [16] showed that the sufficient and nec-
essary condition that sliding dynamics be invariant with respect to uncer-
tainties/disturbances be that they should be matched. In 1981 Lukyanov and
Utkin [17] proposed a two-step procedure of SMC design:

– design of the sliding surface;
– discontinuous controller design.

However, SMC has the following drawbacks:

• chattering, i.e., fast undesirable oscillations inspired by discontinuity of
control law and presence of nonidealities: parasitic unmodelled dynamics,
hysteresis and time delays, etc.;

• sliding motions are invariant with respect to matched perturbations only.

1.3.2 Sliding Mode Control for Systems with Unmatched
Uncertainties/Disturbances

The SMC for the systems with unmatched uncertainties are designed in many
papers.

We would like to underline the following direction:

1. Compensation of unmatched uncertainties/disturbances using dynamic
sliding surfaces is presented in [18] (see also a discussion therein).

2. The LMI-based approach is applied in [19].
3. The combination of backstepping and higher-order sliding modes [20, 21].
4. [22] proposed the LQ multimodel problem solution presented as a com-

bination of two optimal problems: firstly an optimal sliding surface for
singular Multimodel LQ problem was designed. After that, the time min-
imization problem for reaching phase was solved.

The main disadvantage of those approaches is that they need complete infor-
mation about system states.

1.3.3 Output-Based Minimization of Unmatched
Uncertainties/Disturbances via SMC

Normally the output-based sliding mode controllers are designed basing on
some kind of observers. In doing so:
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• output-based minimization of unmatched uncertainties/disturbances using
H∞ was proposed in [23, 24];

• in [25] the observer-based approach was suggested identifying the pertur-
bations and compensating them through sliding surface;

In all the abovementioned approaches sliding motions are not starting from
initial time moment, i.e., the reaching phase exists and does not allow the
matched uncertainties/disturbances compensation from initial time moment.

1.4 Integral Sliding Mode Control

1.4.1 Main Results

In some control problems the control law, i.e., the nominal trajectory, is
already done in the initial state space. The only thing the designers need
is to ensure the insensitivity of the trajectory tracking with respect to uncer-
tainties starting from the initial time moment. To ensure exact (with respect
to the matched uncertainties/disturbances) tracking of the nominal trajectory
designed for nominal systems in original state space starting from initial time
moment the concept of integral sliding mode control (ISMC) [26, 27] was
proposed.

The integral sliding surface is a surface in an extended state space. The
motions on this surface are starting from the initial time moment. So the
systems governed by ISMC have the following advantages:

• compensation of the matched uncertainties/disturbances starts from the
initial time moment since the motion surface is a virtual surface;

• the motions in integral sliding modes have the same dimension as the
initial state space;

• it leads to chattering reduction, because ISMC needs the smaller discon-
tinuous control gains since the nominal system dynamics are supposed to
be already compensated by the nominal control law.

Unfortunately the main drawbacks of ISMC are that:

• they need complete information about all of the system’s states starting
from initial time moment;

• ISMC cannot compensate unmatched uncertainties.

1.4.1.1 ISM-Based Compensation of Unmatched Uncertainties

The works [28, 29] presented a projection method allowing to design ISMC
compensating completely matched uncertainties/disturbances and minimizing
and not amplifying the unmatched once.

In the papers [28, 30–32] the combination of ISMC and H∞ control is
suggested for minimization of the effect of the presence of unmatched uncer-
tainties/disturbances on the quality of nominal trajectory tracking.
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1.5 Main Contribution of the Book

The aim of the book is to present a concept of output integral sliding modes
(OISM). OISM [33, 34] controller provides theoretically exact tracking of
nominal trajectory for the systems with matched uncertainties if we suppose
that the ideal sliding modes do exist and equivalent control signals are
available.

This concept has two main advantages:

• it provides the information about the system states:
– theoretically exactly;
– right after initial time moment;
– even in the presence of matched uncertainties;

• it ensures exact tracking of the nominal trajectory:
– right after the first moment;
– in the presence of matched uncertainties;
– basing on output’s information only.

Combination of OISM and LQ controllers allows maybe firstly in the
history to offer theoretically exact solution of LQ problem basing
on output’s information only.

Application of OISM to robustification of LQ problem for linear uncertain
systems ensures theoretically exact tracking of nominal LQ trajectory:

• in the presence of matched uncertainties;
• starting from initial time moment;
• using only output information.

Combination of OISM with multimodel LQ problem has one more advantage:
it allows to eliminate the matched part of model variations and uncertainties
and consider only the unmatched part.

In Table 1.1, we have summarized the main advantages of the combina-
tions of ISM and OISM strategies with LQ and multimodel LQ problems for
LTV uncertain systems. The advantages of the proposed strategies are marked
in bold letters.

1.6 Structure of the Book

The book consists of an introduction, three parts, and two appendixes.
In Part I the concept of output integral sliding modes is presented.
As the first step in Chap. 2 the concept of integral sliding mode (ISM)

is revisited. The efficiency of ISM is illustrated on the example of robustifi-
cation of LQ control for systems with uncertainties/disturbances. Then the
projection to the unmatched variable subspace is designed ensuring that by
applying the ISMC we are not amplifying, but minimizing the unmatched
uncertainties/disturbances.
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Table 1.1. Advantages of using min–max and OISM together

Unmatched
model variation

Matched uncertainties
/disturbances

Needed
information

MM-LQ
Part of the

min–max problem
in original space

Can’t reject All states

ISM+LQ Can’t reject Compensates completely All states

OISM+LQ Can’t reject Compensates completely Output

MM-LQ
+

OISM

Eliminates matched
variations of models

Compensates completely Output

Chapter 3 describes the OISM observer design. The main idea of such
observer is the following: by designing the output-based integral sliding mode
one can reconstruct the value of the output´s derivative as an equivalent
control signal right after initial time moment, provided that ideal sliding
modes do exist and the equivalent control value is available. Applying such
procedure step-by-step one can reconstruct all necessary derivatives of the
outputs and consequently observe theoretically exactly all of the system states
for observable systems right after initial time moment.

Chapter 4 presents the main concept of the book output integral sliding
mode control. Such type of controllers ensures theoretically exact tracking of
nominal optimal trajectory right after the initial moment even in the presence
of matched uncertainties/disturbances based on output information only, if it
is supposed that there exist ideal sliding modes and equivalent output sig-
nal is available. The discrete realization of output integral sliding mode con-
troller requires the filtration to obtain the equivalent output injections. It is
shown that the observation error can be made arbitrarily small after an arbi-
trary small time without any adjustment of the observer parameters, only by
decreasing the sampling step and filter time constant.

Part II presents three different combinations of min–max control [9] and
ISMC or OISM control.

This part starts with Chap. 5 revisiting the concept of robust min–max
control. Firstly the min–max control problem in Bolza form is discussed.
Then the robust exact principle theorem is formulated. Finally, the application
of robust maximum principle to the solution of LQ problem for multimodel
systems is given.

Chapter 6 presents the combination of ISMC with min–max controllers
basing on the state information. The multimodel systems with matched
uncertainties are considered. It is shown that the application of ISMC to
the solution of min–max problem reduces to a solution of an equivalent
min–max nominal LQ problem. The ISMC completely dismisses the influence
of matched uncertainties right after the initial time instant.
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In Chap. 7 we consider the application of a min–max optimal control based
on the LQ index for a set of systems where only the output information is
available. Here every system is affected by matched uncertainties, and we
propose to use an OISM to compensate matched uncertainties right after
the beginning of the process if we suppose that there exist ideal sliding modes
and equivalent output injections are available. For the case when the extended
system is free of invariant zeros, a hierarchical sliding mode observer is applied.
The error of realization of the proposed control algorithm is estimated in terms
of the sampling step and actuator time constant.

Part III of the book presents applications of the methodology developed
in Part II to three different control and observation problems.

In Chap. 8 an OISM-based fault detection scheme is proposed. The effi-
ciency of the proposed scheme is illustrated by the example of the estimation
of the actuator’s level damage in the cart pendulum.

Chapter 9 tackles the problem of a two-player differential game affected
by matched uncertainties with only the output measurement available for
each player. We suggest a state estimation based on the so-called algebraic
hierarchical observer for each player in order to design the Nash equilibrium
strategies based on such estimation. At the same time, the use of an output
integral sliding mode term for the Nash strategies robustification for both
players ensures the compensation of the matched uncertainties. A simulation
example shows the feasibility of this approach in a magnetic levitator problem.

In Chap. 10 the OISM controllers, based only on output information, are
applied to a Stewart platform. This platform has three degrees of freedom,
and it is used as a remote surveillance device. We consider the hierarchical
sliding mode observer, allowing the reconstruction of the system states from
the initial moment. This allows the implementation of an OISM controller
ensuring the insensitivity of the state trajectory with respect to the matched
uncertainties from the initial moment.

In Appendixes we present the most important material needed to read
the book. Appendix A presents basic information about equivalent control
method for definition of solution in sliding mode. There, a lemma, by [11],
about online calculation of the equivalent control is presented. Appendix B
presents a numerical method for the optimal weight adjustment for the min–
max LQ problem, where “max” is taken over a finite set of indices (models)
and “min” is taken over the set of admissible controls. The solution is obtained
by the robust optimal control application. The control turns out to be a linear
combination of the controls optimal for each individual model.

We hope that such structure makes the book complete and self-content.

1.7 How to Read This Book?

In writing the book we supposed that it can be useful for readers interested in:

• robustification of optimal control problems;
• new methods of sliding mode control.
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So we supposed that we will have four different categories of readers:

• beginners;
• readers skilled in optimal control;
• readers skilled in sliding mode control;
• readers skilled in both optimal and sliding mode control.

So we would like to suggest four strategies in reading this book:

1. It is desirable that beginners have the basic knowledge about
– LQ control (e.g., [35]);
– sliding mode control (see Appendix A containing the minimal necessary

information or for more deep knowledge [11, 12, 14]).
After these two steps this category of readers can start with Chap. 1.

2. Readers skilled in optimal control should read firstly Appendix A con-
taining the minimal necessary information or for more deep knowledge
[11, 12, 14] and then start to read the book.

3. Readers skilled in sliding mode control should revise the basic books of LQ
control (e.g., [35]).

4. Readers skilled in both optimal and sliding mode control can start to read
the book from Part I.

For the readers which would like to use the book results for implementation
we have included Appendix B discussing numerical realization for min–max
multimodel control.

Enjoy reading!



Part I

OPTIMAL CONTROL AND SLIDING MODE
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Integral Sliding Mode Control

Abstract In this chapter the concept of integral sliding mode (ISM) is
revisited. The efficiency of ISM is illustrated on the example of LQ control.
Then the projection to the unmatched variable subspace is designed ensuring
that the application of ISM is not amplifying, but minimizing the unmatched
perturbations. An illustrative example of application of ISM to LQ problem
is presented.

2.1 Motivation

Sliding mode control techniques are very useful for the controller design in
systems with disturbances and model/parametric uncertainties. The system’s
compensated dynamics become insensitive to matched disturbances and unc-
ertainties under sliding mode control. The price for this insensitivity is control
chattering and a reaching phase, during which the system’s dynamics are
vulnerable to disturbances/uncertainties. For linear systems, whose dynamics
are completely known, a traditional controller, including proportional-plus-
derivative (PD), proportional-plus-integral-plus-derivative (PID), and optimal
linear quadratic regulator (LQR), can be successfully designed to compensate
the dynamics. A nonlinear system which is completely known can be com-
pensated, for instance, by a feedback linearization controller, backstepping
controller, or any other Lyapunov-based nonlinear controller [36]. Systems
compensated by these types of controllers will be of the full order equal to the
order of the uncompensated system. Once the system is subjected to external
bounded disturbances, it is natural to try to compensate such disturbances
by means of an auxiliary control retaining the effect of the main controller
designed for the unperturbed system. The sliding mode based auxiliary
controller that compensates the disturbance from the very beginning of the
control action, while retaining the order of uncompensated system, is named
integral sliding mode (ISM) controller. This chapter is dedicated to the study
of the ISM controller design. ISM has been studied in [13, 26–28, 33, 37–40].

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3 2,

© Springer Science+Business Media New York 2014
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2.2 Problem Formulation

Consider the following controlled uncertain system represented by the state-
space equation:

ẋ (t) = f (x (t)) +B (x (t))u (t) + φ (x, t) (2.1)

where x (t) ∈ R
n is the state vector and u (t) ∈ R

m is the control input vector.
The function φ (x, t) represents the uncertainties affecting the system due to
parameter variations, unmodelled dynamics, and/or exogenous disturbances.

Let u = u0 be a nominal control designed for (2.1) assuming φ = 0, where
u is designed to achieve a desired task, whether it be stabilization, tracking, or
an optimal control problem. Thus, the trajectories of the ideal system (φ = 0)
will be given by the solutions of the following ODE equations:

ẋ0 (t) = f (x0 (t)) +B (x0 (t))u0 (t) (2.2)

Thus, for x (0) = x0 (0) and φ being not equal to zero, the trajectories of
(2.1) and (2.2) are different. The trajectories of (2.2) satisfy some specified
requirements, whereas the trajectories of (2.2) might have a quite different
performance (depending on φ) to the one expected by the control designer.
For the control design given below it is necessary to assume that:

A3.1. rankB (x) = m for all x ∈ R
n;

A3.2. the disturbance φ (x, t) is assumed to be matched, i.e., it satisfies the
so-called matching condition:

φ(x, t) ∈ ImB (x)

i.e., there exists a vector γ(x, t) ∈ R
m such that φ(x, t) = B (x) γ(x, t).

• From a control point of view, the matching condition means that the effects
produced by φ(x, t) in the system can be produced by u, and vice versa.

A3.3. An upper bound for γ(x, t) can be found, i.e.,

‖γ(x, t)‖ ≤ γ+(x, t) (2.3)

Obviously, the second restriction is needed to compensate φ; if it is known, it
would be enough to choose u = −γ. However, since γ is uncertain, some other
restrictions are needed in order to eliminate the influence of φ. In this way,
the sliding mode approach replaces the lack of knowledge of φ by the first and
third assumptions.
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2.3 Control Design Objective

Now the control design problem is to design a control law that, provided
that x (0) = x0 (0), guarantees the identity x (t) = x0 (t) for all t ≥ 0. By
comparing (2.1) and (2.2), it is clear that the control design is achieved only if
the equivalent control is equal to the negative of the uncertainty (u1eq = −γ).
Thus, the control objective can be reformulated in the following terms: design
the control u = u (t) in the following form:

u (t) = u0 (t) + u1 (t) (2.4)

where u0 (t) is the nominal control part designed for (2.2) and u1 (t) is the
integral sliding mode (ISM) control part guarantying the compensation of the
unmeasured matched uncertainty φ(x, t), starting from the beginning (t = 0).

2.4 ISM Control Design

Since φ(x, t) = B (x) γ(x, t), substitution of (2.4) into (2.1) yields

ẋ = f (x) +B (x) (u0 + u1 + γ)

The sliding manifold is given by means of the equation s (x) = 0 with s defined
by the formula

s (x) = s0 (x) − s0 (x (0))−
t∫

0

G (x (τ )) [f (x (τ )) +B (x (τ )) u0 (τ )] dτ (2.5)

where s0 (x) ∈ R
m is a vector that could be designed as a linear combination

of the state and G (x) = ∂s0
∂x . Then, in contrast with conventional sliding

modes, here an integral term is included. Furthermore, in this case we have
s (x (0)) = 0.
Thus, the time derivative of s is obtained by the formula

ṡ = G (x)B (x) (u1 + γ)

In order to achieve the sliding mode, the term s0 should be designed such that

det [G (x)B (x)] �= 0, for all x ∈ R
n

The sliding mode control should be designed as

u1 = −M (x, t)
DT s

‖DT s‖ (2.6)

M (x, t) > γ+(x, t), D (x) = G (x)B (x)
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Taking V = 1
2s

T s, and in view of (2.3), the time derivative of V is bounded
as follows:

V̇ = (s, ṡ) = (s,D (u1 + γ)) =
(
DT s, u1 + γ

)

≤ − ∥∥DT s
∥
∥
(
M − γ+

)
< 0

Hence V decreases, which implies

V (t) ≤ V (0) =
1

2
‖s (x (0))‖2 = 0

That is, the sliding mode is achieved from the beginning. Now, the
equivalent control u1eq is taken from ṡ = 0

ṡ = u1 + γ = 0

A review of the equivalent control method is discussed in Appendix A. As it
is explained there, u1eq is taken as the solution for the control obtained from
the equation of ṡ when this is equal to zero. Thus, in this case,

u1eq = −γ
Hence, the sliding motion is given by

ẋ (t) = f (x (t)) +B (x (t))u0 (t)

and our aim is achieved since now x (t) ≡ x0 (t).
Notice that the order of the dynamic equation in the sliding mode is not
reduced. This property defines an integral sliding mode [13].

2.5 Linear Case

Let us consider the linear time invariant system:

ẋ = Ax+B (u0 + u1) + φ (2.7)

In this case the vector function s can be defined by means of the formula

s (x) = G (x(t)− x (0)) + (GB)−1G
t∫

0

(Ax (τ) +Bu0 (τ )) dτ (2.8)

where G ∈ R
m×n is a projection matrix satisfying the condition

det [GB] �= 0

Thus, the time derivative of s takes the form

ṡ (x) = GB (u1 + γ)
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The control u1 is designed as

u1 = −M (x, t)
(GB)T s
∥
∥
∥(GB)

T
s
∥
∥
∥

M (x, t) > γ+(x, t)

(2.9)

Therefore, taking V = 1
2s

T s, and in view of (2.3), the following inequality is
obtained:

V̇ =
(
(GB)

T
s, ṡ
)
= (s, u1 + γ)

≤ −
∥
∥
∥(GB)T s

∥
∥
∥
(
M − γ+

)
< 0

Hence, the integral sliding mode is guaranteed.

2.6 Example: LQ Optimal Control and ISM

Consider the following system:

ẋ = Ax+B (u0 + u1) + φ

representing a linearized model of an inverted cart–pendulum of Fig. 2.1,
where x1 and x2 are the car position and pendulum angle and x3 and x4 are
their respective velocities. The matrices A and B take the following values:

A =

⎡

⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

0 1.25 0 0

0 7.55 0 0

⎤

⎥
⎥
⎥
⎦
, B =

⎡

⎢
⎢
⎢
⎣

0

0

0.19

0.14

⎤

⎥
⎥
⎥
⎦

Fig. 2.1. Inverted cart–pendulum.
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The control u0 = u∗ is designed for the nominal system, where u∗ solves the
following optimal problem subject to an LQ performance index:

J (u0) =

∞∫

0

xT0 (t)Qx0 (t) + u0 (t)
T Ru0 (t) dt

u∗0 = argmin J (u0)

It is known (see, e.g., [35]) that the solution of the previous optimal control
is given in its state feedback representation by means of

u∗0 (x) = −R−1BTPx

where P is a symmetric positive definite matrix that is the solution of the
algebraic Riccati equation

ATP + PA− PBR−1BTP = −Q
For the considered matrices A and B, and taking Q = I and R = 1, we have
that P and K := R−1BTP have the following values:

P =

⎡

⎢
⎢
⎣

4.3 −48.5 8.9 −18.9
−48.5 3149 −191.4 1174.4
8.9 −191.4 33.1 −74.5

−18.9 1174.4 −74.5 438.6

⎤

⎥
⎥
⎦

K =
[−1 131.36 −4.337 48.47

]

We considered that φ = Bγ with γ = 2 sin (0.5t) + 0.1 cos (10t) and the ISM
control is

u1 = −5 sign (s)

where s is designed according to (2.8). Now, the only restriction over G is
that detGB �= 0 and therefore we have a big range of election. One simple
selection is G =

[
0 0 1 0

]
, and thus we obtain GB = 0.19, which obviously is

different from zero.
Figure 2.2 shows the position of the car and the pendulum. We can see

that there is no influence of the disturbance γ thanks to the compensation
effect caused by the ISM control part u1.

2.6.1 Unmatched Disturbances

One may think why not use G = B+ =
(
BTB

)−1
BT . In such a way ṡ =

(u1 + γ) and control u1 is still as in (2.9). A criterion for selecting G in an
appropriate way can be given if we do not assume φ (x, t) to be matched (it
may or may not be).

Let B⊥ ∈ R
n×m be a full rank matrix whose image is orthogonal to

the image of B, i.e., BTB⊥ = 0 and
[
B B⊥ ] is nonsingular. Notice that



2.6 Example: LQ Optimal Control and ISM 17

0 5 10 15 20 25 30
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time [s]

Fig. 2.2. States x1 (dashed) and x2 (solid) using ISM for matched uncertainties.

rank [I −BB+] = n − m and [I −BB+]B = 0; therefore, the columns of
B⊥ can be formed by taking the linearly independent columns of [I − BB+].
Thus, let γ (x, t) ∈ R

m and μ (x, t) ∈ R
n−m be the vector defined by the

formula
[
γ (x, t)
μ (x, t)

]

=
[
B B⊥ ]−1

φ (x, t)

Thus, (2.7) takes the following form:

ẋ = Ax+B (u1 + u0) +Bγ +B⊥μ (2.10)

Then selecting s as in (2.8), we have

ṡ = GB (u1 + γ) +GB⊥μ

The control part u1 should be designed as in (2.9) if GB is positive definite;
otherwise, it should be designed as in (2.6). In both cases the condition M ≥
γ+ + (GB)+GB⊥μ. Following the equivalent control method, we have that
the equivalent control taken from ṡ = 0 is given by the equation

u1eq = −γ − (GB)
−1
GB⊥μ

Substituting u1eq in (2.10) yields the sliding motion equation:

ẋ = Ax+Bu0 +
[
I −B (GB)

−1
G
]
B⊥μ

Let us define d̄ :=
[
I −B (GB)

−1
G
]
B⊥μ. Taking G = BT or G = B+, we

get d̄ = B⊥μ, that is, the sliding mode control does not affect the unmatched
disturbance part.
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Now the question is if by selecting G properly, then the norm of d̄ can be
made less than the norm of B⊥μ.

Proposition 2.1. Let Ḡ be the set of matrices

Ḡ =
{
G ∈ R

m×n : detGB �= 0
}

The optimization problem

G∗ = argmin
G∈Ḡ

∥
∥
∥
[
I −B (GB)

−1
G
]
B⊥μ
∥
∥
∥

for μ �= 0 has as solutions the set of matrices
{
G=QBT : Q ∈ R

m×m

and detQ �= 0}.
Proof. Since B⊥μ and B (GB)

−1
GB⊥μ are orthogonal vectors, the norm of∥

∥
∥
[
I −B (GB)

−1
G
]
B⊥μ
∥
∥
∥ is always greater than

∥
∥B⊥μ

∥
∥. Indeed,

∥
∥
∥
[
I −B (GB)

−1
G
]
B⊥μ
∥
∥
∥
2

=
∥
∥B⊥μ

∥
∥2 +

∥
∥
∥B (GB)

−1
GB⊥μ

∥
∥
∥
2

That is, ∥
∥
∥
[
I −B (GB)

−1
G
]
B⊥μ
∥
∥
∥ ≥
∥
∥B⊥μ

∥
∥ (2.11)

Evidently, if identity (2.11) is achieved, then the norm of
∥
∥
∥
[
I −B (GB)

−1
G
]
B⊥μ
∥
∥
∥

is minimized with respect to G. The identity is obtained if and only if
B (GB)−1GB⊥μ = 0. Or equivalently, since rankB = m, GB⊥μ = 0, i.e.,
G = QBT , where Q is nonsingular. �

�	
Notice that the control law is not modified in order to optimize the effect of
the unmatched uncertainties, and moreover, an optimal solution G∗ is quite

simple. The simplest choice is G∗ = BT , but B+ =
(
BTB

)−1
BT is also

another possibility, which moreover facilitates the sliding surface design.

Proposition 2.2. For an optimal matrix G∗, the Euclidean norm of the
disturbance is not amplified, that is,

‖φ (t)‖ ≥
∥
∥
∥
[
I −B (G∗B)

−1
G∗
]
B⊥μ (t)

∥
∥
∥ (2.12)

Proof. From Proposition 2.1, we have that
∥
∥
∥
[
I −B (G∗B)−1G∗

]
B⊥μ (t)

∥
∥
∥ =
∥
∥
[
I −BB+

]
B⊥μ (t)

∥
∥ =
∥
∥B⊥μ (t)

∥
∥

(2.13)
Now, since φ (t) = Bγ +B⊥μ and BTB⊥ = 0, we obtain the equation

‖φ (t)‖2 =
∥
∥Bγ (t)+B⊥μ (t)

∥
∥2 = ‖Bγ (t)‖2 + ‖Bμ (t)‖2 ≥ ‖Bμ (t)‖2 (2.14)

Hence, comparing (2.13) and (2.14), we can obtain (2.12). �
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Fig. 2.3. States x1 (dashed) x2 and (solid) using G = BT .

2.6.2 Example: ISM and Unmatched Disturbances

Let us consider the same system as in Sect. 2.6, except that here we con-
sider the unmatched disturbance φ =

[
0 0 γ 0.1 sin (1.4t)

]
and γ is the same

function used in Sect. 2.6. The control law is exactly as in Sect. 2.6, except
for the choice of matrix G, which according to Proposition 2.1, G is opti-
mal if G = BT =

[
0 0 0.19 0.14

]
. In Sect. 2.6 the goal was simplicity. The

argument given in this example revolves around optimality. States x1 and x2
are depicted in Fig. 2.3; there we can see that the uncertainties do not affect
the trajectories of the system. Figure 2.4 shows the state trajectories for a
not optimal G. There we can see that an optimal G does not diminish the
effect of the unmatched uncertainties. To compare the effect of the ISM, even
in the presence of unmatched disturbances, Fig. 2.5 shows the trajectories of
x1 and x2 when the ISM control part is omitted (u = u0). It is clear that in
this case, the disturbances considerably affect the system; compared with the
trajectories of Fig. 2.3 we can see that a well-designed ISM control (with an
optimal G) considerably reduces the effect of the disturbances.

2.7 Conclusions

In this section we have seen that the ISM allows to compensate the matched
uncertainties. Thus, the performance of the control is equivalent to that of
the nominal control which is designed for the nominal system. Furthermore,
we have seen that by choosing correctly the matrix projection in the sliding
surface the unmatched uncertainties are not increasing in the sliding mode.
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Fig. 2.4. Trajectories of the position for G = BT (solid) and G =
[
0 0 10 0

]

(dashed).
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Fig. 2.5. States x1 (dashed) and x2 (solid), without using ISM control.
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Observer Based on ISM

Abstract In this chapter the concept of output ISM observer for systems
with matched unknown inputs is developed. It is shown that using the output
as a sliding mode surface one can compensate the unknown inputs. Then if
the number of the inputs is more than the number of unknown outputs it is
still possible to observe the system. Moreover, the main advantage of such
observers is that they can provide, theoretically, an exact value of the state
variables right after the initial time moment.

3.1 Motivation

When only the output of a system is available, there are two possibilities for
sliding mode control design. One is to use an output feedback control, i.e.,
design a sliding surface using the output of the system in such a way that
the dynamics of the system, during the corresponding sliding motion, have
a property required by the designer. This kind of controls can be seen in
[41, 42]. Another possibility is to design an observer. To construct an esti-
mator, providing convergence of the generated estimates to the real states,
the corresponding sliding surface should be specially designed. There are two
main methods for designing sliding mode observers:

• one is aimed to get a zero tracking error between the outputs of the plant
and the observer to be constructed (see, e.g., [12, 13, 43, 44]);

• the other one is to design several sliding surfaces to estimate the state
step-by-step (see [45, 46]).

Here we design a hierarchical observer which differs from the observers studied
in [45–47]. We obtained a vector which is the result of multiplying an observ-
ability matrix by the state. Thus, at each k-level of the hierarchy, we estimate
a subblock of such vector and so on until we obtain all the vector previ-
ously mentioned. The aim is to design an observer whose convergence error

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3 3,
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can be modified by modifying the accuracy of the sensors and computational
resources without modifying the output injection gains. We will show that the
observation error can be made arbitrarily small after an arbitrary small time
just by adjusting the parameters of the filter required during the realization.

3.2 System Description

Let us consider a linear time invariant system

ẋ (t) = Ax (t) +Bu (t), x (0) = x0
y (t) = Cx (t)

(3.1)

where x (t) ∈ R
n is the state vector, u (t) ∈ R

m is the control law, and
y (t) ∈ R

p (1 ≤ p < n) is the output of the system. The pair {u (t) , y (t)}
is assumed to be measurable (available) for all time t ≥ 0. The current state
x (t) and the initial state x0 are supposed to be non-available. A,B,C are
known matrices of appropriate dimension with rankB = m and rankC = p.
All the solutions of the dynamic systems are defined in Filippov’s sense [15].
It is assumed that the pair (A,C) is observable.
We will assume that the following conditions are satisfied:

A4.1. the vector x0 is supposed to be unknown but belonging to a given ball,
that is,

‖x0‖ ≤ μ (3.2)

A4.2. rank (CB) = m

3.3 Observer Design

The hierarchical observer will be based on the reconstruction of vectors Cx (t),
CAx (t), and so on until obtaining CAl−1x (t). After arranging the vectors
CAix (t), we will have obtained the vector f (t) := Ox (t), where

O =

⎡

⎢
⎢
⎢
⎣

C
CA
...

CAl−1

⎤

⎥
⎥
⎥
⎦
, O ∈ R

pl×n (3.3)

By definition l (the observability index) is the least positive integer such that
rank (O) = n. Since (A,C) is observable, such an index l always exists (see,
e.g., [48]). Hence, to reconstruct x (t), we only need to reconstruct f (t) and
then to solve the set of algebraic equations f (t) = Ox (t).
Let x̃(t) be defined by the following dynamic equation:

˙̃x(t) = Ax̃(t) +Bu(t) + L (y (t)− Cx̃ (t)) (3.4)
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where L must be designed such that the eigenvalues of Â := (A − LC) have
negative real part.
Define r (t) = x (t) − x̃ (t). From (3.1) and (3.4), the dynamic equations
governing r (t) are

ṙ (t) = [A− LC] r (t) = Âr (t) (3.5)

Since the eigenvalues of Â have negative real part, (3.5) is exponentially stable,
i.e., there exist constants γ, η > 0 such that

‖r (t)‖ ≤ γe−ηt ‖r (0)‖ ≤ γe−ηt (μ+ ‖x̃ (0)‖) (3.6)

3.3.1 Auxiliary Dynamic Systems and Output Injections

The main goal in the design of the observer is to recover the vectors

CAix (t) , i = 1, l− 1

where l is defined as the observability index (see, e.g., [48]). Firstly, to recover

CAx (t), let us introduce an auxiliary state vector x
(1)
a (t) governed by

ẋ(1)a (t) = Ax̃ (t) +Bu+ L̃
(
CL̃
)−1

v(1) (t) (3.7)

where L̃ satisfies detCL̃ �= 0 and x
(1)
a (0) satisfies

Cx(1)a (0) = y (0)

For the variable s(1) ∈ R
p defined by

s(1)
(
y (t) , x(1)a (t)

)
= Cx (t)− Cx(1)a (t) (3.8)

we have

ṡ(1) (t) = CA (x (t)− x̃ (t))− v(1) (t) (3.9)

with the output injection v(1) (t) given by

v(1) =

⎧
⎨

⎩
M1 (t)

s(1)
∥
∥s(1)
∥
∥ if s(1) �= 0

0 if s(1) = 0

Here the gain scalar function M1 (t) should satisfy the condition

M1 (t) > ‖CA‖ ‖x− x̃‖ (3.10)

to obtain the sliding mode regime. From (3.6), the scalar functionM1 (t) may
be chosen, for example, in the following manner:

M1 (t) = ‖CA‖ [γ exp (−ηt) (μ+ ‖x̃ (0)‖)] + λ, λ > 0
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Then, using the Lyapunov function V = (s, s), we obtain

s(1) (t) = 0, ṡ(1) (t) = 0 ∀t ≥ 0 (3.11)

Thus, in view of (3.11) and (3.8), we have

Cx (t) = Cx(1)a (t) (3.12)

and from (3.11) and (3.9), the equivalent output injection is

v(1)eq (t) = CAx (t)− CAx̃ (t) , ∀t > 0

Thus, CAx (t) is reconstructed by means of the following representation:

CAx (t) = CAx̃ (t) + v(1)eq (t) , ∀t > 0 (3.13)

The reconstruction of CAx (t) in the form it is expressed in (3.13) is not

realizable since v
(1)
eq (t) is not directly available. Thereby, below in Sect. 3.4

we explain a method to carry out the estimation of v
(1)
eq (t) by means of a

first-order low-pass filter applied to v(1) (t).
The next step is to reconstruct the vector CA2x (t). To do that, let us design

the second auxiliary state vector x
(2)
a (t) generated by

ẋ(2)a (t) = A2x̃(t) +ABu (t) + L̃
(
CL̃
)−1

v(2) (t)

where x
(2)
a (0) satisfies

v(1)eq (0) + CAx̃(0)− Cx(2)a (0) = 0

Again, for s(2) ∈ R
p defined by

s(2)
(
v(1)eq (t) , x(2)a (t)

)
= CAx̃(t) + v(1)eq (t)− Cx(2)a (t)

in view of (3.13), it follows that

s(2)
(
v(1)eq (t) , x(2)a (t)

)
= CAx (t)− Cx(2)a (t) (3.14)

and hence, the time derivative of s(2) is

ṡ(2) (t) = CA2 (x (t)− x̃(t))− v(2) (t) (3.15)

Take the output injection v(2) (t) as

v(2) =

⎧
⎨

⎩
M2 (t)

s(2)
∥
∥s(2)
∥
∥ if s(2) �= 0

0 if s(2) = 0
M2 (t) >

∥
∥CA2

∥
∥ ‖x− x̃‖

(3.16)



3.3 Observer Design 25

where, by (3.6), M2 (t) given by means of the following formula:

M2 (t) =
∥
∥CA2

∥
∥ [γ exp (−ηt) (μ+ ‖x̃ (0)‖)] + λ, λ > 0

satisfies (3.16). Thus, following a standard method for proving the existence
of the integral sliding mode (Chap. 2), we obtain that

s(2) (t) = ṡ(2) (t) = 0 (3.17)

From (3.17) and (3.15) the equivalent output injection v
(2)
eq (t) may be repre-

sented as

v(2)eq (t) = CA2 (x (t)− x̃(t))

and the vector CA2x (t) can be recovered by means of the equality:

CA2x (t) = CA2x̃(t) + v(2)eq (t) , t > 0 (3.18)

Thus, iterating the same procedure, all the vectorsCAkx can be reconstructed.
The abovementioned procedure could be summarized as follows:

(a) The dynamics of the auxiliary state x
(k)
a (t) at the kth level are governed by

ẋ(k)a (t) = Akx̃(t) +Ak−1Bu (t) + L̃
(
CL̃
)−1

v(k) (3.19)

where L̃ ∈ R
n×p is a matrix such that det

(
CL̃
)
�= 0 for all k. Further-

more, the output injection v(k) at the kth level is

v(k) =

⎧
⎨

⎩
Mk (t)

s(k)
∥
∥s(k)

∥
∥ if s(k) �= 0

0 if s(k) = 0
Mk (t) > ‖CA‖ ‖x (t)− x̃ (t)‖

Mk (t) is selected as Mk (t) =
∥
∥CAk

∥
∥
[
γ exp (−ηt) (μ+ ∥∥x̃0∥∥)]+λ, λ > 0.

(3.20)

(b) Define the sliding surface s(k) at the k-level of the hierarchy as

s(k) =

{
y − Cx

(1)
a for k = 1

v
(k−1)
eq + CAk−1x̃− Cx

(k)
a for k > 1

(3.21)

where v
(k−1)
eq is the equivalent output injection whose general expression

will be obtained in the lemma below and v
(k−1)
eq (0) and s(k) (0) should

satisfy

s(k) (0) =

{
Cy (0)− Cx

(1)
a (0) = 0 for k = 1

v
(k−1)
eq (0) + CAk−1x̃(0)− Cx

(k)
a (0) = 0 for k > 1

(3.22)

Here, v(k) (t) is treated as a sliding mode output injection. The equivalent

output injection of v
(k)
eq (t) is given in the next lemma.



26 3 Observer Based on ISM

Lemma 3.1. If the auxiliary state vector x
(k)
a and the variable s(k) are

designed as in (3.19) and (3.21), respectively, then, for all t ≥ 0,

v(k)eq (t) = CAkx (t)− CAkx̃(t) (3.23)

and each k = 1, l− 1.

Proof. As it was shown before, the following identity holds:

v(1)eq (t) = CAx (t)− CAx̃(t), ∀t > 0

Now, suppose that the equivalent output injection v
(k−1)
eq is as in (3.23). Thus,

substitution of v
(k−1)
eq in (3.21) gives

s(k)
(
v
(k−1)
eq (t) , x

(k)
a (t)

)
= CAk−1x (t)− Cx

(k)
a (t) (3.24)

Differentiating (3.24) yields

ṡ(k)
(
v(k−1)
eq (t) , x(k)a (t)

)
= CAk (x (t)− x̃ (t))− v(k) (t) (3.25)

Thus, selecting the Lyapunov function V =
1

2

∥
∥s(k)

∥
∥2 and v(k) (t) as in (3.20),

for any t ≥ 0, one gets

s(k) (t) ≡ 0, ṡ(k) (t) ≡ 0 (3.26)

Therefore, from (3.26) and (3.25), it follows that

v(k)eq (t) ≡ CAkx (t)− CAkx̃ (t)

The lemma is proven.
�	

3.4 Observer in the Algebraic Form

From (3.12) and (3.23), we have the following set of equations:

Cx (t) = Cx̃ (t) + Cx
(1)
a − Cx̃ (t)

CAx (t) = CAx̃ (t) + v
(1)
eq

...

CAl−1x (t) = CAl−1x̃ (t) + v
(l−1)
eq

(3.27)
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or, in a matrix representation

Ox (t) = Ox̃ (t) + veq (t) , ∀t > 0 (3.28)

where

O =

⎡

⎢
⎢
⎢
⎣

C
CA
...

CAl−1

⎤

⎥
⎥
⎥
⎦
, veq =

⎡

⎢
⎢
⎢
⎢
⎣

Cx
(1)
a − Cx̃ (t)

v
(1)
eq

...

v
(l−1)
eq

⎤

⎥
⎥
⎥
⎥
⎦

(3.29)

Thus, the left multiplication of (3.28) by O+ :=
[OTO]−1 OT implies

x (t) ≡ x̃ (t) +O+veq (t) , ∀t > 0 (3.30)

That is why an observer based on the hierarchical ISM can be suggested as
follows:

x̂ (t) := x̃ (t) +O+veq (t) (3.31)

Remark 3.1. Notice that, in general,

x∗ := arg min
x∈Rn

‖f −Ox‖2 = O+f , f ∈ R
n

where the limit O+ = lim
δ→0

(
δ2I +OTO)−1 OT always exists (see [49]) and,

moreover,

‖f −Ox∗‖2 =
∥
∥
(
I −OO+

)
f
∥
∥2

This norm is not necessarily equal to zero. In the particular case when f = Ox,
one has

min
z∈Rn

‖f −Oz‖2 = ‖f −Ox∗‖2 =
∥
∥(I −OO+

)
f
∥
∥2 =

∥
∥(I −OO+

)Ox∥∥2 =
∥
∥(O −OO+O)x∥∥2 = 0

Now we are ready to formulate the main result of this chapter.

Theorem 3.1. Under the assumptions A4.1–A4.2 and supposing the ideal
output integral sliding mode exists, the following identity holds:

x̂ (t) ≡ x (t) ∀t > 0 (3.32)

Proof. It follows directly from (3.30) and (3.31).
�	

Remark 3.2. The realization of the observer (3.31) requires filters whose
parameters affect the convergence time of the observer.
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3.5 Observer Realization

To carry out the observer in the form (3.31), the surface s(k) must be
realizable. Thus, to guarantee the realization of s(k), the equivalent output

injection v
(k)
eq must be available. However, the nonidealities in the implemen-

tation of v(k) cause the so-called chattering phenomenon. Thus, we will have

a high-frequency signal and therefore v
(k)
eq cannot be directly obtained from

v(k). Nevertheless, v
(k)
eq could be computed via filtration. Namely, the first-

order low-pass filter

τ v̇(k)av (t) + v(k)av (t) = v(k) (t) ; v(k)av (0) = 0 (3.33)

gives an approach of v
(k)
eq (see Appendix A and [11]). Or, in other words,

lim
τ→0

Δ/τ→0

v(k)av (t) = v(k)
eq

(t) , t > 0

where Δ is proportional to the sampling time (the time that vα,k takes to
pass from one state (M) to another (−M)). So, selecting τ = Δη (0 < η < 1),
we have the following conditions to realize the OISM observer:

1. use a very small sampling interval Δ;

2. substitute v(k−1)
eq

(t) in (3.21) by v
(k−1)
av (t);

3. substitute v(k−1)
eq

(0) in (3.22) by v
(k−1)
av (0) ≡ 0, i.e., the initial conditions

x
(k)
a (0) should satisfy the equations

CAk−1x
(k−1)
a (0)− Cx

(k)
a (0) = 0 for k > 1

Cy (0)− Cx
(1)
a (0) = 0 for k = 1

So, the realization of the observer in (3.31) takes the form

x̂ (t) := x̃ (t) +O+vav (t)

vav =

[(
Cx

(1)
a − Cx̃ (t)

)T (
v
(1)
av

)T
· · ·
(
v
(l−1)
av

)T
]T (3.34)

An example of the proposed observer design is given in Chap. 4.

3.6 Example

To illustrate the procedure given above, let us take again the linearized
model of an inverted pendulum over an inverted cart–pendulum (Fig. 3.1).
The motion equations are as follows:

ẋ (t) = Ax (t) +B (u0 + u1) +Bγ (x, t)
y (t) = Cx (t)

(3.35)
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Fig. 3.1. Inverted cart–pendulum.

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 1.2586 0 0
0 7.5514 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0

0.1905
0.1429

⎤

⎥
⎥
⎦ , C =

[
1 0 0 0
0 0 0 1

]

γ (t) =

{−0.4 n− 5 ≤ t < n− 2.5
0.4 n− 2.5 ≤ t < n

, n = 5, 10, . . .

The state vector x consists of four state variables: x1 is the distance between
a reference point and the center of inertia of the cart; x2 represents the angle
between the vertical and the pendulum; x3 represents the linear velocity of the
cart; finally, we have that x4 is equal to the angular velocity of the pendulum.
As can be verified, the pair (A, C) has no invariant zeros.

The initial conditions are considered as x (0) =
[
0.3 0.2 0.1 − 0.1

]T
and

as a consequence we have y (0) =
[
0.3 − 0.1

]�
. As can be verified, the pair

(Ã, C) is observable.
Matrix L chosen so that (A − LC) be Hurwitz. We chose an LQ optimal

control with finite horizon, where the estimated state vector is used in place of
the original state vector. The simulations were carried out with two sampling
steps: Δ = 2 · 10−5 and Δ = 2 · 10−4. In both cases, as the filter constant, the
value τ was chosen as τ = 150Δ4/5.
To realize the suggested observer, the filters suggested in (3.33) must be used.
The simulations show that those filters do not affect considerably the observa-
tion process (see the observation error e (t) = x (t)− x̂ (t) in Figs. 3.2 and 3.3).
As we can see in those figures, the convergence to zero is better when Δ is
smaller, i.e., the convergence depends only on Δ.
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Fig. 3.2. Observation error e = x− x̂ using Δ = 2× 10−5.
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Fig. 3.3. Observation error e = x− x̂ using Δ = 2× 10−4.
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Output Integral Sliding Mode Based Control

Abstract Here, the problem of the realization of integral sliding mode
controllers based only on output information is discussed. The OISM con-
troller ensures insensitivity of the state trajectory with respect to the matched
uncertainties from the initial time moment. In the case when the number of
inputs is more than or equal to the number of outputs, the closed-loop sys-
tem, describing the output integral sliding mode dynamics, is shown to lose
observability. For the case when the number of inputs is less than the number
of outputs, a hierarchical sliding mode observer is proposed. The realization
of the proposed observer requires a filtration to obtain the equivalent output
injections. Assigning the first-order low-pass filter parameter small enough
(during this filter realization), the convergence time and the observation er-
ror can be made arbitrarily small. The results obtained are illustrated by
simulations.

4.1 Motivation

The main problem related to the implementation of the ISM consists in
the requirement of the complete knowledge of the state vector, including the
initial one. Obviously, when dealing with ISM and only output (no states)
information available, it turns out to be useless when being applied directly.
Here, we present a possible approach to the solution of this problem. We design
an ISM controller, using only output information, which compensates the
matched uncertainties from the initial time of the control process. It is shown
that in the case when the number of inputs is more than (or equal to) the num-
ber of outputs, the corresponding ISM dynamics always lose observability and
therefore the application of ISM, based only on output information, is useless
when the state estimation is required. Then, we use the hierarchical sliding
mode observer proposed in Chap. 3.

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,
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4.2 System Description

Consider a linear time invariant system with matched disturbances

ẋ (t) = Ax (t) +Bu (t) + Bγ (t) ; x (0) = x0

y (t) = Cx (t)
(4.1)

where x (t) ∈ R
n is the state vector, u (t) ∈ R

m is the control law, and
y (t) ∈ R

p (1 ≤ p < n) is the output of the system. The pair {u (t) , y (t)}
is assumed to be measurable (available) for all time t ≥ 0. The current state
x (t) and the initial state x0 are supposed to be non-available. A,B,C are
known matrices of appropriate dimension with rankB = m and rankC = p.
All the solutions of the dynamic system are defined in Filippov’s sense ([15]).
We will assume that:

A5.1. the pair (A,B) is controllable and the pair (A,C) is observable;
A5.2. function γ (t) is bounded, that is,

‖γ (t)‖ ≤ γ+ (y, t) (4.2)

A5.3. the vector x0 is supposed to be unknown but belonging to a given ball,
that is,

‖x0‖ ≤ μ (4.3)

A5.4. rank (CB) = m.

Let the nominal state be as follows:

ẋ0 (t) = Ax0 (t) +Bu0 (t) , x (0) = x0 (4.4)

Now, for system (4.1), we design the control law u to be

u = u0 + u1 (4.5)

where the control u0 ∈ R
m is the ideal control designed for system (4.4) and

u1 ∈ R
m is designed to compensate the matched uncertainty φ (t) from the

initial time.

4.3 OISM Control

This section, firstly, deals with the design of control u1. Then, a hierarchical
integral sliding mode (HISM) observer is applied.
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4.4 Output Integral Sliding Modes

Define the auxiliary affine sliding function s : Rp → R
m as follows:

s (y) := Gy −
t∫

0

[GCAx̂ (τ ) +GCBu0 (τ )] dτ −Gy (0) (4.6)

Here, matrix G ∈ R
m×p must satisfy the condition

det (GCB) �= 0

Thus, for the time derivative ṡ, we have

ṡ = GCA (x− x̂) +GCB (u1 + γ) , s (0) = 0 (4.7)

Vector x̂ represents an observer that will be designed below. We propose the
control u1 in the following form:

u1 = −β (t)D−1 s(t)

‖s(t)‖ , D := GCB (4.8)

with M (t) being a scalar gain which satisfies the condition

β (t)− (‖D‖ γ+ (y, t) + ‖GCA‖ ‖x (t)− x̂ (t)‖) ≥ λ > 0

where λ is a constant. Selecting the Lyapunov function as V =
1

2
‖s‖2 and in

view of (4.8) and (4.2), differentiating V yields

V̇ = (s, ṡ) =

(

s,GCA (x− x̂)− β
s

‖s‖ +Dγ

)

≤
≤ −‖s‖ (β − ‖GCA‖ ‖x− x̂‖ − ‖D‖ γ+) ≤ −‖s‖λ ≤ 0

((s, ṡ) := sT ṡ). This means that V does not increase in time and since s(0) = 0,
this implies

1

2
‖s (t)‖ = V (s (t)) ≤ V (s (0)) =

1

2
‖s (0)‖ = 0

Thus, the identities
s (t) = ṡ (t) = 0 (4.9)

hold for all t ≥ 0, i.e., there is no reaching phase.
From (4.7) and in view of the equality in (4.9), the equivalent control is

u1eq = − (GCB)
−1
GCA (x (t)− x̂ (t))− γ (4.10)



34 4 Output Integral Sliding Mode Based Control

The substitution of u1eq in (4.1) yields the sliding mode equations

ẋ (t) = Ãx (t)−B (GCB)−1GCAx̂ (t) +Bu0
y (t) = Cx (t)

(4.11)

where Ã is defined as

Ã :=
[
I −B (GCB)

−1
GC
]
A (4.12)

Lemma 4.1. When the number of outputs is less than or equal to the number
of inputs, the matrix Ã in (4.12) always belongs to the null space of the matrix

C, and, consequently, the pair
(
Ã, C
)
is not observable.

The proof of Lemma 4.1 is given at the end of this chapter in Appendix 4.A.

Remark 4.1. Lemma 4.1 means that in the case when p ≤ m, the ISM control
using only output information cannot be realized.

The following lemma establishes the condition, in terms of A, B, and C,

providing the observability of the pair
(
Ã, C
)
.

Lemma 4.2. The pair
(
Ã, C
)
is observable if and only if the triple (A,B,C)

has no zeros, i.e.,

{s ∈ C : rank (P (s)) < n+m} = ∅ (4.13)

where P (s) is the system matrix defined as

P (s) =

[
sI −A B
−C 0

]

(4.14)

A proof of Lemma 4.2 is given in Appendix 4.B of this chapter.

Remark 4.2. Notice that Ã defined in (4.12) depends on a matrix G, which
can be designed in a nonunique form. However, due to Lemma 4.2, the obs-

ervability of the pair
(
Ã, C
)
depends only on the matrices A, B, and C. In

other words, the design of G does not affect the observability of
(
Ã, C
)
.

4.5 Design of the Observer

Define G as G = (CB)+ :=
[
(CB)T (CB)

]−1

(CB)T which is the pseudo-

inverse of CB. Substituting G in (4.11) leads to the following expression:

ẋ (t) = Ãx (t) +Bu0 +B (CB)
+
CAx̂ (t)

y (t) = Cx (t)
(4.15)
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where matrix Ã in (4.12) becomes

Ã =
[
I −B (CB)

+
C
]
A

It is assumed that:

A5.5. The triple (A,B,C) has no zeros (
(
Ã, C
)
is observable).

We can follow the design of the observer proposed in Chap. 3 with no essential
modifications. Next we will summarize the observer design.
Design the following dynamic system:

˙̃x(t) = Ãx̃(t) +Bu0(t) +B (CB)
+
CAx̂ (t) + L (y (t)− Cx̃ (t)) (4.16)

where L must be designed so that Â := (Ã − LC) only has eigenvalues with
negative real part.
Let r (t) = x (t) − x̃ (t), and then, from (4.15) and (4.16), the dynamic
equations governing r (t) are

ṙ (t) =
[
Ã− LC

]
r (t) = Âr (t) (4.17)

Then, we should find positive constant numbers γ and η so that

‖r (t)‖ ≤ γe−ηt (μ+ ‖x̃ (0)‖) (4.18)

Design the dynamics of the auxiliary state x
(k)
a (t) at the kth level as follows:

ẋ(k)a (t)=Ãkx̃(t)+Ãk−1B
[
u0(t)+ (CB)

+
CAx̂ (t)

]
+L̃
(
CL̃
)−1

v(k) (4.19)

where L̃ ∈ R
n×p is a matrix such that det

(
CL̃
)
�= 0. The initial conditions

should satisfy the identities

CÃk−1x
(k−1)
a (0)− Cx

(k)
a (0) = 0 for k > 1

Cy (0)− Cx
(1)
a (0) = 0 for k = 1

The output injection v(k) at the kth level is

v(k) =

⎧
⎨

⎩
Mk

s(k)
∥
∥s(k)

∥
∥ if s(k) �= 0

0 if s(k) = 0

Mk ≥
∥
∥
∥CÃk

∥
∥
∥
(
γe−ηt

(
μ+
∥
∥x̃0
∥
∥))+ λ, λ > 0

(4.20)

Define the sliding surface s(k) at the kth level of the hierarchy as

s(k) (t) =

{
y (t)− Cx

(1)
a (t) for k = 1

v
(k−1)
av (t) + CÃk−1x̃ (t)− Cx

(k)
a (t) for k > 1

(4.21)
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where v
(k)
av is the output of the low-pass filter

τ v̇(k)av (t) + v(k)av (t) = v(k) (t) ; v(k)av (0) = 0 (4.22)

Thus, the hierarchical ISM observer takes the following form:

x̂ (t) := x̃ (t) +O+vav (t)

OT =
[
CT (CA)T · · · (CAl−1

)T
]

vav =

[(
Cx

(1)
a − Cx̃ (t)

)T (
v
(1)
av

)T
· · ·
(
v
(l−1)
av

)T
]T (4.23)

4.6 LQ Control Law

Here, as a case of study, we design the nominal control u0 as an optimal
control based on the standard LQ index for a finite horizon. The control u0
is designed for the nominal dynamics, i.e.,

ẋ (t) = Ax (t) +Bu0, x (0) = x0 (4.24)

Control u0 is an admissible control (belonging to a set Uadm of piecewise
continuous functions) which minimizes the following standard LQ index:

Jtf (u0 (·)) := x� (tf )Fx (tf ) +

tf∫

t=0

(
x� (t)Qx (t) + u�0 (t)Ru0 (t)

)
dt

where F = F� ≥ 0, Q = Q� ≥ 0, and R = R� > 0. Thus, the aim of the
control u0 is to minimize the index J (u (·)), i.e.,

u∗0 (·) = arg min
u0∈Uadm

Jtf (u0 (·)) (4.25)

Thus, the control law solving (4.25) for (4.24) (e.g., see [35]) is of the form

u∗0 (x (t)) = −R−1B�P (t)x (t)

with P (t) ∈ R
n×n satisfying the differential Riccati equation

Ṗ (t) + P (t)A+A�P (t)− P (t)BR−1B�P (t) +Q = 0
P (tf ) = F

(4.26)

Since the state x can be estimated with any required accuracy, the esti-
mated state x̂ is used to realize the control u0, i.e., the control u0 should
be designed as

u0 (t) = −R−1B�P (t) x̂ (t) (4.27)

with x̂ (t) being designed as in (4.23). That is, since we have compensated the
matched uncertainties and we can ensure the estimation error being arbitrarily
small after an arbitrarily small time, we can design the control u0 for the
nominal system, but being applied to system (4.1).
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The proposed OISM algorithm can be summarized as follows:

(1) design matrix L such that the eigenvalues of Â := (Ã−LC) have negative
real part;

(2) compute the scalar gain β (t) as in (4.8);

(3) design the auxiliary systems x
(k)
a as in (4.19) with the sliding surfaces s(k)

as in (4.21) and compute the constants Mk, k = 1, .., l− 1;
(4) run simultaneously the observer x̂ according to (4.23) and the controllers

u0, u1 according to (4.27) and (4.8), respectively.

4.7 Example

To illustrate the procedure given above, let us take again the linearized model
of an inverted pendulum over an inverted cart–pendulum (see Fig. 4.1).The con-
trol problem is to maintain the inverted pendulum in a vertical line. The
control law is the force applied to the trolley. The motion equations are as
follows:

ẋ (t) = Ax (t) +B (u0 + u1) +Bγ (x, t)
y (t) = Cx (t)

(4.28)

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 1.2586 0 0
0 7.5514 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0

0.1905
0.1429

⎤

⎥
⎥
⎦ , C =

[
1 0 0 0
0 0 0 1

]

γ (t) =

{−0.4 n− 5 ≤ t < n− 2.5
0.4 n− 2.5 ≤ t < n

, n = 5, 10, . . .

The state vector x consists of four state variables: x1 is the distance between a
reference point and the center of inertia of the trolley; x2 represents the angle

Fig. 4.1. Inverted cart–pendulum.
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between the vertical and the pendulum; x3 represents the linear velocity of
the trolley; finally, we have that x4 is equal to the angular velocity of the
pendulum. As can be verified, the pair (A, C) has no invariant zeros. By

Lemma 4.2, it implies that (Ã, C) is observable (Ã =
[
I −B (CB)

+
C
]
A).

The initial conditions are considered as x (0) =
[
0.3 0.2 0.1 − 0.1

]T
,

and as a consequence we have y (0) =
[
0.3 − 0.1

]�
. The matrix Ã takes the

form

Ã =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 −8.81 0 0
0 0 0 0

⎤

⎥
⎥
⎦

As can be verified, the pair (Ã, C) is observable.
Matrix L was calculated as follows:

L =

⎡

⎢
⎢
⎣

4.6234 −0.3148
−1.3423 0.5548
10.2373 −1.7542
−0.3148 0.9492

⎤

⎥
⎥
⎦

The weighing matrices Q, R, and F were chosen as Q = 20I, R = 0.5, and
F = 20I.
The simulations were carried out with two sampling steps: Δ = 2 · 10−5 and
Δ = 2 · 10−4. In both cases, as the filter constant, the value τ of (4.22) was
chosen as τ = 150Δ4/5. The trajectories of the state vector, when x̂ (called
xe in the graph) is used in the control u and when x is used in the control u,
are depicted in Figs. 4.2 and 4.3.

4.A Proof of Lemma 4.1

Proof. Consider system (4.1) with p ≤ m and rank (CB) = p. Suppose that
the control law u is designed in the following way:

u = u0 + u1

where u0 is the nominal control used after the compensation of the matched
disturbance and u1 is designed to compensate the matched disturbance.
At first we will consider the case when p = m and next the case when p < m.

1. Consider the case when p = m.

Define the auxiliary function s as follows:

s = Gy −
t∫

0

GCAx̂ (τ ) +GCBu0 (τ ) dτ −Gy (0) (4.29)
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Fig. 4.2. Trajectories of x using Δ = 2× 10−5. Trolley position (T.P.), pendulum
position (P.P.), trolley velocity (T.V.), and pendulum angular velocity (P.A.V.).

Matrix G ∈ R
m×m must satisfy rank (GCB) = m, but this is only satisfied

when det (G) �= 0. Following the same process as in 4.4, one has

u1eq = − (GCB)
−1
GCA (x− x̂)− γ

Substitution of u1eq in system (4.1) yields

ẋ (t) = Ãx (t) +B (GCB)
−1
GCAx̂ (t) +Bu0

y (t) = Cx (t)

Recall that Ã =
[
I −B (GCB)

−1
GC
]
A. Then by pre-multiplying Ã by GC

one gets

GCÃ = GC
[
I −B (GCB)

−1
GC
]
A = 0

This means Ã belongs to the null space of GC and since G is a nonsingular
matrix, then Ã belongs to the null space of C and it implies that (Ã, C) is
not observable.
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Fig. 4.3. Trajectories of x using Δ = 2× 10−4. Trolley position (T.P.), pendulum
position (P.P.), trolley velocity (T.V.), and pendulum angular velocity (P.A.V.).

2. Now suppose that p < m.

Let the auxiliary function s as in (4.29). Since rank (CB) = p and p < m,
then there is no matrix G ∈ R

m×p satisfying rank (GCB) = m. That is why
the sliding surface s cannot be designed in a space of dimension greater than
p. Let us define s in the space R

p, that is,

s = Gy −Gy (0)−
t∫

0

[GCAx̂ (τ) +GCBu0 (τ)] dτ

where the matrix G ∈ R
p×p. Thus, the time derivative ṡ is as follows:

ṡ = GC [A (x− x̂) +B (u1 + γ)]

Since in this case p < m, there is no matrix G satisfying det (GCB) �= 0.
Hence, to produce the sliding mode, the control u1 should be designed as
u1 := F̄ ū, where the matrix F̄ ∈ R

m×p should satisfy rank
(
GCBF̄

)
= p.

Thus BF̄ can be considered as the new matrix of input distribution and ū as
the new control. In this form, we can consider that the number of inputs is p,
i.e., we have the same number of inputs as the number of outputs. Hence, we
can follow the same proof used for the case 1.

�	
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4.B Proof of Lemma 4.2

Proof. Lemma (4.2) asserts that for every complex scalar s, the equivalence

rank

[
sI −A B
−C 0

]

= n+m ⇐⇒ rank

[
sI − Ã
C

]

= n

is fulfilled. Let B⊥ be a matrix so that B⊥B = 0 and rankB⊥ = n − m.
Define the matrices V and U in the following form:

V :=

[
B⊥

(GCB)
−1
GC

]

, V −1 =
[[
I −B (GCB)

−1
GC
]
B⊥+ B

]

U :=

[
(CB)

⊥

G

]

, U−1 =
[[
I − CB (GCB)

−1
GC
]
(CB)

⊥+
CB (GCB)

−1
]

Before proving the required equivalence, we need to express the following
matrices into an expanded form, i.e.,

V AV −1 =

[
A11 A12

A21 A22

]

, UCV −1 =

[
C1 0
0 GCB

]

(4.30)

where A11 ∈ R
n−m×n−m and C1 ∈ R

p−m×n−m. We obtain

V ÃV −1 =

[
A11 A12

A21 A22

]

−
[
0
I

]
[
A21 A22

]
=

[
A11 A12

0 0

]

(4.31)

Then, from (4.30) and (4.31), and since det (GCB) �= 0, we have the following
equivalences:

rank

[
sI −A B
−C 0

]

= n+m⇔ rank

[
sI − V AV −1 V B
−UCV −1 0

]

= n+m⇔

rank

⎡

⎢
⎢
⎣

sI −A11 −A12 0
−A21 sI −A22 I
−C1 0 0
0 −GCB 0

⎤

⎥
⎥
⎦ = n+m⇔ rank

[
sI −A11

−C1

]

= n−m⇔

⇔ rank

⎡

⎢
⎢
⎣

sI −A11 −A12

0 sI
−C1 0
0 −GCB

⎤

⎥
⎥
⎦ = n⇔ rank

[
sI − V ÃV −1

−UCV −1

]

= n⇔

rank

{[
In 0
0 U

] [
V 0
0 Ip

] [
sI − Ã
−C

]

V −1

}

= n⇔ rank

[
sI − Ã
−C

]

= n

(4.32)

and so this lemma is proven.
�	
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The Robust Maximum Principle

Abstract The purpose of this chapter is to explore the possibilities of the
maximum principle (MP) approach for the class of min–max control problems
dealing with construction of the optimal control strategies for a class of uncer-
tain models given by a system of ordinary differential equations with unknown
parameters from a given finite set. The problem under consideration belongs
to the class of optimization problems of the min–max type and consists in the
design of a control providing a “good” behavior if applied to all models from
a given class. Here a version of the robust maximum principle applied to the
min–max Bolza problem with a terminal set is presented. The cost function
contains a terminal term as well as an integral one. A fixed horizon is consid-
ered. The main result deals with finite parametric uncertain sets involved in a
model description. The min–max LQ control problem is considered in detail.

5.1 Min–Max Control Problem in the Bolza Form

The min–max control problem, dealing with different classes of partially
known nonlinear systems, can be formulated in such a way that

• the operation of the maximization is taken over a set of uncertainty or
possible scenarios;

• the operation of the minimization is taken over control strategies within a
given set.

5.1.1 System Description

Consider a system of multimodel controlled plants

·
x = f

α

(x, u, t) (5.1)

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3 5,

© Springer Science+Business Media New York 2014
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where

x =
(
x1, . . . , xn

)T ∈ R
n is its state vector,

u =
(
u1, . . . , ur

)T ∈ R
r is the control that may run over a given control

region U ⊂ R
r,

α is a parameter belonging to a given parametric set A which is assumed to
be finite that corresponds to a multimodel situation and t ∈ [0, T ].

The usual restrictions are imposed on the right-hand side

f
α

(x, u, t) =
(
f

α,1

(x, u, t) , . . . , f
α,n

(x, u, t)
)T

∈ R
n

that is,

– the continuity with respect to the collection of the arguments x, u, t;
– the differentiability (or Lipschitz condition) with respect to x

One more restriction is formulated below.

5.1.2 Feasible and Admissible Control

Remember that a function u(t), 0 ≤ t ≤ T is said to be a feasible control if it
is piecewise continuous and u(t) ∈ U for all t ∈ [0, T ]. For convenience, every
feasible control is assumed to be right-continuous, that is,

u(t) = u(t+ 0) for 0 ≤ t < T (5.2)

and, moreover, u(t) is continuous at the terminal moment:

u(T ) = u(T − 0) (5.3)

For a given feasible control u(t), t0 ≤ t ≤ T, consider the corresponding
solution

x
α

(t) =
(
x

α,1

(t), . . . , x
α,n

(t)
)T

of (5.1) with the initial condition

x
α

(0) = xα0

Any feasible control u(t), 0 ≤ t ≤ T as well as all solutions x
α

(t), α ∈ A
are assumed to be defined on the whole segment [0, T ] (this is the additional
restriction to the right-hand side of (5.1)).

In the space Rn the terminal set M given by the inequalities

gl(x) ≤ 0 (l = 1, . . . , L) (5.4)

is defined, where gl(x) is a smooth real function of x ∈ R
n.
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For a given feasible control u(t), 0 ≤ t ≤ T we are interested in the
corresponding trajectory starting from the initial point x

α

. However, the pos-
sible realized value of α ∈ A is a priory unknown. That’s why the family of
trajectories x

α

(t) with insufficient information about the realized trajectory
is considered.

The control u(t), 0 ≤ t ≤ T is said to be admissible or that it realizes the
terminal condition ( 5.4), if it is feasible and for every α ∈ A the corresponding
trajectory x

α

(t) satisfies the inclusion

x
α

(T ) ∈ M (5.5)

The set of all admissible control strategies will be denoted by Uadm.

5.1.3 The Cost Function and the Min–Max Control Problem

Let the cost function in the Bolza form contain an integral term as well as a
terminal one, that is,

h
α

:= h0(x
α

(T )) +

t=T∫

t=0

fn+1
(
x

α

(t) , u (t) , t
)
dt (5.6)

The end time-point T is assumed to be fixed and x
α

(t) ∈ R
n. Analogously,

since the realized value of the parameter α is unknown, the worst (highest)
cost can be defined as follows:

F = max
α∈A

h
α

(5.7)

The function F depends only on the considered admissible control u(t),
0 ≤ t ≤ T . In other words, we wish to construct the admissible control action
which provides a “good” behavior for a given collection of models that may
be associated with the multimodel robust optimal design.

Definition 5.1. A control u (·) is said to be robust optimal if

(i) it realizes the terminal condition, that is, it is admissible;
(ii) it realizes the minimal worst (highest) cost F (among all admissible

controls).

Thus the Robust Optimization Problem consists in finding a control action
u(t), 0 ≤ t ≤ T, which realizes

min
u(·)∈Uadm

F = min
u(·)∈Uadm

max
α∈A

h
α

(5.8)

where the minimum is taken over the set Uadm of all admissible control
strategies. This is the min–max Bolza problem.
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5.1.4 The Mayer Form Representation

Below we follow the standard transformation scheme. For each fixed α ∈
A introduce the (n+ 1)-dimensional space R

n+1 of the variables x =
(x1, . . . , xn, xn+1) where the first n coordinates satisfy (5.1) and the com-
ponent xn+1 is given by

x
α,n+1

(t) :=

t∫

τ=0

fn+1
(
x

α

(τ) , u (τ ) , τ
)
dτ

or, in the differential form,

ẋ
α,n+1

(t) = fn+1
(
x

α

(t) , u (t) , t
)

(5.9)

with the initial condition for the last component given by

x
α,n+1

(0) = 0

As a result, the initial Robust Optimization Problem in Bolza form can be
reformulated in the space R

n+1 as the Mayer Problem (without the integral
term) with the cost function

h
α

= h0(x
α

(T )) + x
α,n+1

(T ) (5.10)

where the function h0(x
α

) does not depend on the last coordinate x
α,n+1

,
that is,

∂

∂xα,n+1 h0(x
α

) = 0

So, the Mayer Problem with the cost function (5.10) is equivalent to the initial
optimization problem (5.8) in the Bolza form.

5.1.5 The Hamiltonian Form

Let

x̄
α

(t) =
(
x

α,1

(t) , . . . , x
α,n

(t) , x
α,n+1

(t)
)
∈ R

n+1

be a solution of systems (5.1) and (5.9). We also introduce for any α ∈ A the
following conjugate (or adjoint) variables:

ψ̄
α
(t) =

(
ψ

α,1
(t) , . . . , ψ

α,n
(t) , ψ

α,n+1
(t)
)
∈ R

n+1

satisfying the ODE-system of the adjoint variables:
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ψ̇
α,i

= −
n+1∑

k=1

∂f
α,k (

x
α

(t), u(t)
)

∂xα,i ψ
α,k

(5.11)

with the terminal condition

ψ
α,j

(T ) = bα,j , t0 ≤ t ≤ T

α ∈ A, j = 1, . . . , n+ 1
(5.12)

Let now ψ̄� = (ψ
α,i

) ∈ R� be a covariant vector and

f̄�(x̄�, u) =
(
f

α,k
)
, x̄� =

(
x

α,k
)

Introduce the Hamiltonian function

H�(ψ̄�, x̄�, u, t) := 〈ψ̄�, f̄�(x̄�, u, t)〉 =

∑

α∈A

〈
ψ̄

α ,f̄
α

(x
α

, u, t)
〉
=
∑

α∈A

n+1∑

i=1

ψ
α,i

f
α,i

(x
α

, u, t)
(5.13)

and remark that H�(ψ̄�, x̄
�, u) is the sum of “usual” Hamiltonian functions:

H�(ψ̄�, x̄
�, u, t) =

∑

α∈A

〈
ψ̄

α
, f̄

α

(x
α

, u, t)
〉

The function (5.13) allows us to rewrite the conjugate equations (5.11) for the
plant (5.1) in the following vector form:

d

dt
ψ̄� = −∂H

�(ψ̄�, x̄�(t), u(t), t)
∂x̄�

(5.14)

Let now b� = (b
α,i

) ∈ R̄� be a covariant vector. Denote by ψ�(t) the solution
of equation (5.14) with the terminal condition

ψ�(T ) = b�

We say that the control u(t), t0 ≤ t ≤ T, satisfies the maximum condition
with respect to the pair x�(t), ψ�(t) if

u(t) = arg max
u∈U

H�(ψ�(t), x
�(t), u, t) ∀t ∈ [t0, T ] (5.15)

that is, ∀u ∈ U, t ∈ [t0, T ] we have

H�(ψ�(t), x
�(t), u(t), t) ≥ H�(ψ�(t), x

�(t), u, t)
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5.2 Robust Maximum Principle

5.2.1 Main Result

Following [9], we may formulate the main result dealing with the necessary
conditions for the robust optimality of an admissible control.

Theorem 5.1 (The Maximum Principle for the Bolza Problem with
a Terminal Set). Let u(t) (t ∈ [t0, T ]) be an admissible control and x

α

(t)
be the corresponding solution of (5.1) with the initial condition x

α

(0) = xα0
(α ∈ A) . The parametric uncertainty set A is assumed to be finite. For robust
optimality of a control u(t), t0 ≤ t ≤ T , it is necessary that there exists
a vector b� ∈ R̄� and nonnegative real values μ(α) and νl(α) (l = 1, . . . , L)
defined on A such that the following conditions are satisfied:

(i) the maximality condition: denote by ψ�(t), t0 ≤ t ≤ T the solution of
equation (5.11) with the terminal condition (5.12); then the robust optimal
control u(t), t0 ≤ t ≤ T satisfies the maximality condition (5.15);

(ii) the complementary slackness conditions: for every α ∈ A, either
the equality h

α

= F 0 holds, or μ(α) = 0, that is,

μ(α)
(
h

α − F 0
)
= 0

moreover, for every α ∈ A, either the equality gl(x
α

(T )) = 0 holds, or
νl(α) = 0, that is,

ν(α)g(x
α

(T )) = 0

(iii) the transversality condition: for every α ∈ A, the equalities

ψ
α
(T ) + μ(α) grad h0(x

α

(T )) +
L∑

l=1

νl(α) grad gl(x
α

(T ) = 0

and
ψ

α,n+1
(T ) + μ(α) = 0

hold;
(iv) the nontriviality condition: there exists α ∈ A such that either

ψ
α
(T ) �= 0, or at least one of the numbers μ(α), νl(α) is different from

zero, that is,

∣
∣ψ

α
(T )
∣
∣+ μ(α) +

L∑

l=1

νl(α) > 0

The proof of this theorem is based on the so-called Tent Method and can be
found in [50, 51] and [9].
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5.3 Min–Max Linear Quadratic Multimodel Control

5.3.1 The Problem Formulation

Consider the following class of nonstationary linear systems given by

{
ẋα (t) = Aα (t)xα (t) +Bα (t)u (t) + dα (t)
xα (0) = xα0

(5.16)

where xα (t) , dα (t) ∈ Rn, u (t) ∈ R
r and the functions Aα (t) , Bα (t) , dα (t)

are continuous on t ∈ [0, T ]. The following performance index is defined as

hα = 1
2x

α (T )
ᵀ
Gxα (T )+

1

2

T∫

t=0

[xα (t)ᵀQxα (t) + u (t)ᵀRu (t)] dt
(5.17)

where

G = Gᵀ ≥ 0, Q = Qᵀ ≥ 0

and
R = Rᵀ > 0

Any terminal set is not assumed to be given as well as any control region,
that is,

gl (x) ≡ 0

and

U = R
r

The min–max linear quadratic control problem can be formulated now in the
form (5.8):

max
α∈A

(hα) → min
u(·)∈Uadm

(5.18)

5.3.2 The Hamiltonian Form and the Parameterization of Robust
Optimal Controllers

Following the suggested technique, introduce the Hamiltonian

H�=
∑

α∈A

[
ψᵀ

α
(Aαxα +Bαu+ dα)+1

2ψα,n+1
(xαᵀQxα+uᵀRu)

]
(5.19)

and the adjoint variables ψ
α
(t) satisfying

⎧
⎨

⎩
ψ̇

α
(t) = − ∂

∂xα
H� = −Aαᵀ (t)ψ

α
(t)− ψ

α,n+1
(t)Qxα (t)

ψ̇
α,n+1

(t) = 0
(5.20)
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as well as the transversality condition

⎧
⎨

⎩

ψ
α
(T ) = −μ (α) grad hα =

−μ (α) grad [xα (T )
ᵀ
Gxα (T )+xαn+1 (T )

]
= −μ (α)Gxα (T )

ψ
α,n+1

(T ) = −μ (α)
(5.21)

Here vector ψ
α
(t) is defined as

ψ
α
(t) :=

(
ψ

α,1
(t) , . . . , ψ

α,n
(t)
)ᵀ

The robust optimal control u (t) satisfies (5.15) and leads to

∑

α∈A
Bαᵀψ

α
−
(
∑

α∈A
μ (α)

)

R−1u (t) = 0 (5.22)

Since at least one active index exists it follows that

∑

α∈A
μ (α) > 0

Taking into account that if μ (α) = 0, then ψ̇
α
(t) = 0 and ψ

α
(t) ≡ 0, the

following normalized adjoint variable ψ̃
α
(t) can be introduced

ψ̃
α,i

(t) =

{
ψ

α,i
(t)μ−1 (α) if μ (α) > 0

0 if μ (α) = 0
i = 1, . . . , n+ 1

(5.23)

satisfying

⎧
⎪⎨

⎪⎩

·
ψ̃

α
(t)= − ∂

∂xα
H�= −Aαᵀ (t) ψ̃

α
(t)−ψ̃

α,n+1
(t)Qxα (t)

·
ψ̃

α,n+1
(t) = 0

(5.24)

with the transversality conditions given by

{
ψ̃

α
(T ) = −Gxα (T )

ψ̃
α,n+1

(T ) = −1
(5.25)

The robust optimal control (5.22) becomes

u (t) =

(
∑

α∈A
μ (α)

)−1

R−1
∑

α∈A
μ (α)Bαᵀψ̃

α

= R−1
∑

α∈A
λαB

αᵀψ̃
α

(5.26)
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where the vector λ := (λα,1, . . . , λα,N)
ᵀ
belongs to the simplex SN defined as

SN :=

⎧
⎪⎪⎨

⎪⎪⎩
λ ∈ RN=|A| : λα=

μ (α)
N∑

α=1
μ (α)

≥ 0,

N∑

α=1

λα=1

⎫
⎪⎪⎬

⎪⎪⎭
(5.27)

5.3.3 The Extended Form for the Closed-Loop System

For simplicity, the time argument in the expressions below will be omitted.
Introduce the block-diagonal RnN×nN valued matrices A,Q,G,Λ and the
extended matrix B as follows:

A:=

⎡

⎢
⎢
⎣

A1 0 · · 0

· ·
· ·

0 · · 0 AN

⎤

⎥
⎥
⎦ , Q:=

⎡

⎢
⎢
⎣

Q 0 · · 0

· ·
· ·

0 · · 0 Q

⎤

⎥
⎥
⎦

G:=

⎡

⎢
⎢
⎣

G 0 · · 0
0

·
· 0

0 · · 0 G

⎤

⎥
⎥
⎦ , Λ:=

⎡

⎢
⎢
⎣

λ1In×n 0 · · 0

0
·
· 0

0 · · 0 λNIn×n

⎤

⎥
⎥
⎦

(5.28)

and

Bᵀ :=
[
B1ᵀ ·· BNᵀ ] ∈ R

r×nN

In view of these definitions, the dynamic equations (5.16) and (5.24) can be
rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Ax+Bu+ d

xᵀ(0) =
(
x1ᵀ(0

)
, . . . , xNᵀ(0))

ψ̇ = −Aᵀψ +Qx

ψ(T ) = −Gx(T )
u = R−1BᵀΛψ

(5.29)

where

xᵀ :=
(
x1ᵀ, . . . , xNᵀ) ∈ R

1×nN

ψᵀ :=
(
ψ̃

ᵀ
1 , . . . , ψ̃

ᵀ
N

)
∈ R

1×nN

dᵀ :=
(
d1ᵀ, . . . , dNᵀ) ∈ R

1×nN
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5.3.4 The Robust LQ Optimal Control

Theorem 5.2. The robust LQ optimal control (5.22) realizing (5.18) is
equal to

u = −R−1Bᵀ [Pλx+ pλ] (5.30)

where the matrix Pλ= PT
λ ∈ R

nN×nN is the solution of the parameterized
differential matrix Riccati equation

{
Ṗλ+PλA+AᵀPλ−PλBR−1BᵀPλ+ΛQ = 0

Pλ (T ) = ΛG = GΛ
(5.31)

and the shifting vector pλ satisfies

{
ṗλ+Aᵀpλ−PλBR

−1Bᵀpλ +Pλd = 0

pλ (T ) = 0
(5.32)

The matrix Λ = Λ (λ∗) is defined by (5.28) with the weight vector λ = λ∗

solving the following finite-dimensional optimization problem:

λ∗ = arg min
λ∈SN

J (λ) (5.33)

with

J (λ) := max
αεA

hα =
1

2
[xᵀ (0)Pλ (0)x (0)− xᵀ(T )ΛGx(T )]

−1

2

T∫

0

xᵀ(t)ΛQx(t)dt+

1

2
max
i=1,N

[

tr

{[
T∫

0

xi(t)xiᵀ(t)dt

]

Q+ xi(T )xiᵀ(T )G

}]

+ xᵀ (0)pλ (0) +
1

2

T∫

t=0

[
2dᵀpλ − pᵀ

λBR
−1Bᵀpλ

]
dt

(5.34)

Proof. Since the robust optimal control (5.29) turns out to be proportional
to Λψ, let us try to find the solution for ψ as follows:

Λψ = −Pλx− pλ (5.35)

The commutation property of the operators

ΛAᵀ = AᵀΛ, ΛkQ = QΛk (k ≥ 0)

implies

Λψ̇ = −Ṗλx−Pλ [Ax+Bu+ d]−ṗλ =

−Ṗλx−Pλ

(
Ax−BR−1Bᵀ [Pλx+ pλ] + d

)−ṗλ =[
−Ṗλ−PλA+PλBR

−1BᵀPλ

]
x+
(
PλBR

−1Bᵀpλ −Pλd− ṗλ

)
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= [−ΛAᵀψ +ΛQx] = [−AᵀΛψ +ΛQx]
= Aᵀ [Pλx+ pλ] +ΛQx = AᵀPλx+Aᵀpλ+ΛQx

or, in the equivalent form,

[
Ṗλ+PλA+AᵀPλ−PλBR−1BᵀPλ+ΛQ

]
x

+
[
Aᵀpλ−PλBR

−1Bᵀpλ +Pλd+ ṗλ

]
= 0

These equations are fulfilled identically under the conditions (5.31) and (5.32)
of this theorem. This implies

J (λ) := max
αεA

hα = max
νεSN

N∑

i=1

νih
i =

1

2
max
νεSN

N∑

i=1

νi

[
T∫

0

[
uᵀRu+ xiᵀQxi

]
dt+ xiᵀ(T )Gxi(T )

]

=

1

2
max
νεSN

T∫

0

(uᵀRu+ xᵀQνx) dt+ xᵀ(T )Gνx(T )

where

Qν :=

⎡

⎢
⎢
⎣

ν1Q 0 · 0
0 · · ·
· · · 0
0 · 0 νNQ

⎤

⎥
⎥
⎦ , Gν :=

⎡

⎢
⎢
⎣

ν1G 0 · 0
0 · · ·
· · · 0
0 · 0 νNG

⎤

⎥
⎥
⎦

and, hence,

J (λ) =
1

2
max
νεSN

[
T∫

0

([uᵀBᵀ + xᵀA+ dᵀ]Λψ − xᵀ [AΛψ −Qνx]− dᵀΛψ) dt

+xᵀ(T )Gνx(T )] =

1

2
max
νεSN

[
T∫

0

(
ẋᵀΛψ + xᵀΛψ̇ + x

ᵀ
Qν−λx− dᵀΛψ

)
dt+ xᵀ(T )Gνx(T )

]

=
1

2
max
νεSN

[
T∫

0

(d (xᵀΛψ)+xᵀQν−λx− dᵀΛψ) dt+

xᵀ(T )Gνx(T )] =
1

2
(xᵀ (T )Λψ (T )− xᵀ (0)Λψ (0))−

1

2

T∫

0

(xᵀQλx− dᵀ (Pλx+ pλ)) dt+

1

2
max
νεSN

[
T∫

0

xᵀQνxdt+ xᵀ(T )Gνx(T )

]
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Thus we obtain

J (λ)=
1

2
(xᵀ (0)Pλ (0)x (0)−xᵀ (T )Gλx (T )+xᵀ (0)p (0))

−1

2

T∫

0

(xᵀQλx− dᵀ (Pλx+ pλ)) dt+

1

2
max
νεSN

[
T∫

0

xᵀQνxdt+ xᵀ(T )Gνx(T )

]
(5.36)

In view of the identity

−xᵀ (0)pλ (0) = xᵀ (T )pλ (T )−xᵀ (0)pλ (0) =
T∫

t=0

d (xᵀpλ)

=
T∫

t=0

[
pᵀ
λ

[
Ax−BR−1Bᵀ [Px+ pλ] + d

]
+xᵀṗλ

]
dt

=
T∫

t=0

[
xᵀ (Aᵀpλ+ṗλ−PBR−1Bᵀpλ

)− pᵀ
λBR

−1Bᵀpλ + dᵀpλ

]
dt

=
T∫

t=0

[−xᵀPd− pᵀ
λBR

−1Bᵀpλ + dᵀpλ

]
dt

it follows that

J (λ) =
1

2
[xᵀ (0)Pλ (0)x (0)− xᵀ (T )Gλx (T )] + xᵀ (0)pλ (0)

−1

2

T∫

0

xᵀQλxdt+
1

2
max
νεSN

[
T∫

0

xᵀQνxdt+ xᵀ(T )Gνx(T )

]

+
1

2

T∫

t=0

[
2dᵀpλ − pᵀ

λBR
−1Bᵀpλ

]
dt

and the relation (5.36) becomes (5.33).
�	

5.3.5 Robust Optimal Control for Linear Stationary Systems
with Infinite Horizon

Let us consider the class of linear stationary controllable systems (5.16) with-
out exogenous inputs, that is,

Aα (t) = Aα, Bα (t) = Bα, d (t) = 0

Then, from (5.32) and (5.34), it follows that pλ (t) ≡ 0 and

J (λ) := max
αεA

hα =
1

2
[xᵀ (0)Pλ (0)x (0)− xᵀ(T )ΛGx(T )]

−1

2

T∫

0

xᵀ(t)ΛQx(t)dt+

1

2
max
i=1,N

[

tr

{[
T∫

0

xi(t)xiᵀ(t)dt

]

Q+ xi(T )xiᵀ(T )G

}]
(5.37)
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Hence, if the algebraic Riccati equation

PλA+AᵀPλ−PλBR
−1BᵀPλ+ΛQ = 0 (5.38)

has a positive definite solution Pλ (the pair
(
A,R−1/2Bᵀ) should be control-

lable; the pair
(
Λ1/2Q1/2,A

)
should be observable; see, e.g., [52]) for any λ

from some subset SN
0 ⊆ SN , then the corresponding closed-loop systems turn

out to be stable (xα (t) →
t→∞ 0) and the integrals in the right-hand side of

(5.37) converge, i.e.,

J (λ) := max
αεA

hα =
1

2
[xᵀ (0)Pλ (0)x (0)− xᵀ(T)ΛGx(T)]

−1

2

∞∫

0

xᵀ(t)ΛQx(t)dt+

1

2
max
i=1,N

[

tr

{[∞∫

0

xi(t)xiᵀ(t)dt
]

Q+ xi(T )xiᵀ(T )G
}]

(5.39)

Corollary 5.1. The min–max control problem, formulated for the class of
multilinear stationary models without exogenous inputs and with the quadratic
performance index (5.6) within the infinite horizon, in the case when the alg-
ebraic Riccati equation has a positive solution Pλ for any λ ∈ SN

0 ⊆ SN , is
solved by the following robust optimal control:

u = −R−1BᵀPλx (5.40)

where Λ (λ∗) is defined by (5.28)) with λ∗ ∈ SN
0 ⊆ SN minimizing (5.39).

5.4 Conclusions

– In this chapter the robust maximum principle is applied to the min–max
Bolza multimodel problem given in the general form where the cost func-
tion contains a terminal term as well as an integral one and furthermore
a fixed horizon and a terminal set are considered.

– For the class of stationary models without any external inputs the robust
optimal controller is also designed for the infinite horizon problem.

– The necessary conditions for robust optimality are derived for the class of
uncertain systems given by an ordinary differential equation with param-
eters from a given finite set.

– As an illustration of the suggested approach, the min–max linear quadratic
multimodel control problem is considered in the details.

– It is shown that the design of the min–max optimal controller is reduced
to a finite-dimensional optimization problem given at the corresponding
simplex set containing the weight parameters to be found.
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Multimodel and ISM Control

Abstract Here, an original linear time-varying system with matched and
unmatched disturbances and uncertainties is replaced by a finite set of dy-
namic models such that each one describes a particular uncertain case in-
cluding exact realizations of possible dynamic equations also as external un-
matched bounded disturbances. Such a trade-off between an original uncertain
linear time-varying dynamic system and a corresponding higher-order multi-
model system containing only matched uncertainties leads to a linear mul-
timodel system with known unmatched bounded disturbances and unknown
matched disturbances as well. Each model from a given finite set is charac-
terized by a quadratic performance index. The developed min–max integral
sliding mode control strategy gives an optimal min–max linear quadratic (LQ)
control with additional integral sliding mode term. The design of this con-
troller is reduced to a solution of an equivalent min–max LQ problem that
corresponds to the weighted performance indices with weights from a finite-
dimensional simplex. The additional integral sliding mode controller part com-
pletely dismisses the influence of matched uncertainties from the initial time
instant. Two numerical examples illustrate this study.

6.1 Motivation

The purpose of this chapter is to take advantage of both techniques used in
previous chapters: the min–max robust optimal control and the ISM control.
As we have seen, optimal control requires the knowledge of the dynamic
equations, here is where the ISM control plays an important role since using
it allows to implement the optimal control without affecting the nominal
performance of the system. Here we will consider an uncertain system in two
senses: we only know that the parameters of the system belong to a finite set
and that matched disturbances affect the system.

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3 6,

© Springer Science+Business Media New York 2014
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6.2 Problem Formulation

Let us consider a controlled linear uncertain system

ẋ (t) = A (t)x (t) +B (t)u (t) + ζ (t) , x(0) = x0 (6.1)

where x (t) ∈ R
n is the state vector at time t ∈ [0, T ], u (t) ∈ R

m is a control
action, and ζ is an external disturbance (or uncertainty). We will assume that

A6.1 Matrix B (t) is known, it has full rank for all t ≥ 0 and its pseudoinverse
matrix B+ is bounded:

rankB (t) = m,
∥
∥
∥[B (t)]+

∥
∥
∥ < b+, [B (t)]+ := [Bᵀ (t)B (t)]−1Bᵀ (t)

Matrix A (t) may take on the value of a matrix function in a finite number
of fixed and a priory known matrix functions, i.e.,

A (t) ∈ {A1 (t) , A2 (t) , . . . , AN (t)
}

where N is a finite number of possible dynamic scenarios, here Aα (t)(
α = 1, N

)
is supposed to be bounded, that is,

sup
t≥0

sup
α=1,N

‖Aα (t)‖ < a+ (6.2)

A6.2 The external disturbances ζ are represented in the following manner:

ζ (t) = φ(t, x) + ξ (t) , t ∈ [0, T ] (6.3)

where φ(·) is an unmeasured smooth uncertainty, representing the pertur-
bations, which satisfies the matching condition, i.e., there exists γ (x, t)
such that

φ(x, t) = Bγ(x, t)

and γ (x, t) is assumed to be bounded as

||γ(x, t)|| ≤ q||x|| + p, q, p > 0 (6.4)

and ξ (t) is an uncertainty taking the finite number of alternative functions,

that is, ξ (t) ∈ Ξ =:
{
ξ1 (t) , . . . , ξN (t)

}
where ξα (t)

(
α = 1, N

)
are

known (smooth enough) bounded functions such that ‖ξ (t)‖ ≤ ξ+ for
all t ∈ [0, T ].

Thus, for each concrete realization of possible scenarios, we obtain the
following dynamics:

ẋα (t) = Aα (t)xα (t) +B (t)u (t) + φ(xα, t) + ξα (t) , xα(0) = x0 (6.5)
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which resembles (5.16), except for the disturbance φ. That is why instead of
directly applying the min–max optimal control first we will compensate the
matched uncertainties.
The control design problem can be formulated as follows: design the control
u (t) in the form

u (t) = u0 (t) + u1 (t)
u1 (t) = u1corr + u1comp

}

(6.6)

Control u1 (x, t) is a term named the ISM control part. u1comp is responsible
for the exact compensation of the unmeasured matched part of φ(x, t) and
ξ (t) from the very beginning of the process. u1corr is a correction term for
the linear part of the ISM equations. Control u0 (x, t) is intended to minimize
the worst possible scenario in the sense of an LQ index over a finite horizon
tf ≥ 0, that is,

u∗0 = min
u0∈Rm

max
α=1,N

hα (6.7)

hα :=
1

2
(xα (tf ))

T Lxα (tf ) +
1

2

tf∫

0

[
(xα (t))T Qxα (t)+

+ (u0 (t) + u1corr (t))
T
R (u0 (t) + u1corr (t))

]
dt

Q = Q� ≥ 0, L = L� ≥ 0, R = R� > 0

(6.8)

Since u1comp is particularly designed for the compensation of matched part of
φ(x, t) and ξ (t), then it is not included in the performance (6.8).

6.3 Design Principles

Substitution of the control laws (6.6) and (6.3) into system (6.1) yields

ẋ (t) = A (t)x (t)+B (t)u0 (t)+B (t) u1 (t) +φ(x, t) + ξ (t) , x(0) = x0 (6.9)

Define the auxiliary sliding function s (x, t) ∈ R
m as

s (x, t) = [B (t)]
+
x (t)− σ (t) (6.10)

where σ (t) represents the integral term which will be defined bellow. Then,
it follows that

ṡ (x, t) = [B (t)]+ [A (t)x+ ξ (t)] + γ(x, t) + u1 (t) + u0 (t)− σ̇ (t) (6.11)

Select the auxiliary variable σ as the solution to the differential equation

σ̇ (x, t) = [B (t)]
+
[B (t)u0(t)] +

(
d

dt
[B (t)]

+

)

x

σ((x (0) , 0)) = [B (0)]
+
x (0)

(6.12)
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Since A (t) ∈ {A1 (t) , A2 (t) , . . . , AN (t)
}
, but we do not know which of these

matrices is the matrix of our realization, at difference with the design given
in Chap. 2, we cannot include matrix A(t) in the integral term of s (in this
case in σ̇). Then the equation for s (x, t) becomes

ṡ (x, t) = [B (t)]+ [A (t)x+ ξ (t)] + γ(x, t) + u1(t), s (x, 0) = 0 (6.13)

In order to achieve sliding mode dynamics, let us design the relay control with
the form

u1(t) = u1(x, t) = −M(x)
s

‖s‖ , M(x) = q̄||x||+ p̄+ ρ, ρ > b+ξ+ (6.14)

with p̄ ≥ p, q̄ ≥ q + b+a+ (a+ is a positive constant), which implies

ṡ(x, t) = [B (t)]+
[

B (t)

(

γ(x, t) −M(x)
s

‖s‖
)

+ ξ (t)

]

+ [B (t)]+A (t)x

For the Lyapunov function V (s) =
1

2
‖s‖2, in view of (6.4) and (6.2), it follows

that

d

dt
V (s) = (s, ṡ) =

(

s,

(

γ(x, t)−M(x)
s

‖s‖
)

+ [B (t)]
+
(A (t)x+ ξ (t))

)

≤
≤ −‖s‖

(
M(x)− ‖γ(x, t)‖ −

∥
∥
∥[B (t)]+

∥
∥
∥ ξ+ −

∥
∥
∥[B (t)]+

∥
∥
∥ ‖A (t)‖ ‖x‖

)
≤

≤ −‖s‖ [(q̄ − q − b+a+) ||x||+ (p̄− p) + ρ− b+ξ+
] ≤ −‖s‖ [ρ− b+ξ+

] ≤ 0

Thus, in view of (6.12), we derive

V (s (x, t)) ≤ V (s (x, 0)) =
1

2
‖s (x, 0)‖2 = 0

which implies, for all t ≥ 0, the identities

s (x, t) = 0, ṡ (x, t) = 0 (6.15)

It means that the integral sliding mode control (6.14) completely compensates
the effect of the matched uncertainty φ from the beginning of the process.
The relations (6.15) and (6.13) lead to the following representations:

u1eq = u1corr + u1comp

u1comp = −γ(x, t)− [B (t)]
+
ξ (t) and u1corr = − [B (t)]

+
A (t)x

Therefore,

ẋ =
[
I −B (t) [B (t)]

+
]
A (t) x+B (t)u0(t)+

[
I −B (t) [B (t)]

+
]
ξ (t) (6.16)

Remark 6.1. Define ξeq as

ξeq =
[
I −BB+

]
ξ

It is clear that
ξeq ∈ kerB+

which means that vector ξeq is a projection of vector ξ onto the space kerB+.
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6.4 Optimal Control Design

Returning to the multimodel case when A (t) may take one of the possible
scenarios Aα (t)

(
α = 1, N

)
, one can conclude that the multimodel system

dynamics into the ISM take the form

ẋα(t) =
[
I −B (t) [B (t)]

+
]
Aα (t) x(t) +B (t)u0(t)

+
[
I −B (t) [B (t)]

+
]
ξα (t)

(6.17)

and LQ index (6.8) becomes

hα :=
1

2
(xα (tf ) , Lx

α (tf )) +
1

2

tf∫

0

[(xα (t) , Qxα (t))+
[
u0 (t)−

(
[B (t)]

+
Aα (t)xα (t)

)
, R
(
u0 (t)− [B (t)]

+
Aα (t)xα (t)

)]
]dt

(6.18)

The next and last step is to apply the min–max LQ control (see Appendix 5)
to the plant (6.17) and obtain the control u0(t) which together with u1 (6.14)
solves the min–max problem for (6.18).

With the extended system

ẋ(t) = Aeq (t)x(t) +B (t)u0(x, t) + d

and according to Chap. 5, this control is as follows:

u0(x, t) = −R−1BT [Pλx+ pλ] +B+AΛx (6.19)

Matrix Pλ= PT
λ ∈ R

nN×nN is the solution of the parameterized differential
matrix Riccati equation:

{
Ṗλ+Pλ

(
Aeq+BB+AΛ

)
+
(
Aeq+BB+AΛ

)T
P

λ
−PλBR

−1BTPλ+

+Λ
(
Qeq − (B+A)

T
RB+AΛ

)
= 0; Pλ (tf ) = ΛL

(6.20)
and the shifting vector pλ satisfies

{
ṗλ+

(
Aeq+BB+AΛ

)T
pλ−PλBR

−1BTpλ +Pλd = 0
pλ (tf ) = 0.

(6.21)

Here

A := diag
(
A1, . . . , AN

)
, Aeq := diag

(
A1

eq , . . . , A
N
eq

)
, Aα

eq = [I −BB+]Aα

Qeq := diag
(
Q1, . . . , QN

)

L := diag (L, . . . , L) , Λ := diag (λ1In×n, . . . , λNIn×n)

Qα = Q+
[
[B (t)]

+
Aα (t)

]T
R [B (t)]

+
Aα (t)

(6.22)
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and

B� :=
[
B (t)1T · · · B (t)NT

]
∈ R

m×nN , B+ :=
[
[B (t)]+ · · · [B (t)]+

]

d� :=

[
(
ξ1eq (t)

)T · · ·
(
ξNeq (t)

)T
]

∈ R
1×nN , ξαeq =

[
I −B (t) [B (t)]

+
]
ξα

Matrix Λ = Λ (λ∗) is defined by (6.22) with the weight vector λ = λ∗ solving
the following finite-dimensional optimization problem:

λ∗ = arg min
λ∈SN

J (λ) (6.23)

J (λ) := max
α=1,N

hα =
1

2
xT (0)Pλ (0)x (0) + xT (0)pλ (0)+

+
1

2
max
i=1,N

⎡

⎢
⎣

tf∫

0

[
xiT (t)Qixi(t)+2xiT (t)

(
B+Ai

)T (
B� [Pλx+ pλ]−RB+AΛx

)]
dt

+xiT (tf )Lx
i(tf )

]−

1

2

N∑

i=1

λi

⎡

⎢
⎣

tf∫

0

[
xiT (t)Qixi(t)+2xiT (t)

(
B+Ai

)T (
B� [Pλx+ pλ]−

RB+AΛx
)]

dt+ xi�(tf )Lx
i(tf )

]
+

1

2

tf∫

t=0

p�
λ

[
2d−BR−1B�pλ

]
dt

S
N =

{

λ ∈ R
N : λα ≥ 0,

N∑

α=1

λα = 1

}

A numerical algorithm to find λ∗ can be found in Appendix B.2.
This means that u0 is a linear combination of a feedback part (proportional
to x) and a shifting vector pλ which is indeed an open-loop control part.
We can summarize the designed control algorithm as follows:

Step 1. for a fixed control u0, we construct the nominal systems (6.17) and
the corresponding LQ index (6.18);

Step 2. construct the control u0 using the extended system (6.22);
Step 3. design the ISM law u1 in the form (6.14), compensating the matched

part of the uncertainties from the beginning of the process completely;
Step 4. apply the control u = u0 + u1 to the closed-loop system (6.1).

6.5 Examples

Example 6.1. Let us consider two possible scenarios (N = 2) with

A1 =

[−0.2t 2t
−0.3t −1.5t

]

, A2 =

[−0.25t 2.3t
−0.27t −1.7t

]

B� =
[
2 t
]
, gT =

[
1.2 sin (4πt) 0.6t (sin 4πt)

]

(
ξ1
)T

=
[
0.2 sin(πt) 0.25

]
,
(
ξ2
)T

=
[
0.5 0.3 sin(πt)

]
(6.24)
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Fig. 6.1. Trajectory of the state variables for system (6.24) and performance in-
dex J .

Selecting R = 1, Q = I, L = I, tf = 6, we obtain (see Fig. 6.1) λ∗1 = 0.58,
λ∗2 = 0.42 and J(λ∗) = 3.744. The corresponding state variable dynamics are
depicted in Fig. 6.1 and the control law is in Fig. 6.2.

Example 6.2. Consider the case of three possible scenarios (N = 3) where

A1 =

[−1 2
0 −0.5

]

, A2 =

[−0.5 2.2
0 −0.7

]

, A3 =

[−1.3 1.5
0 −0.8

]

(6.25)

BT =
[
2 2
]
, gT =

[
0.8x1 0.8x1

]
,
(
ξ1
)T

=
[
0.62 sin(2πt) 0.13

]

(
ξ2
)T

=
[
0.2 0.7

]
,
(
ξ3
)T

=
[
0.55 0.15

]

Selecting R = 1, Q = I, L = I, tf = 6 we obtain the optimal weights
λ∗1 = 0, λ∗2 = 0, λ∗3 = 1 and the functional J(λ∗) = 4.365. The corresponding
state variable dynamics are shown in Fig. 6.3 and the control law is shown
in Fig. 6.4.
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Fig. 6.2. Control u0 and u1 for α = 1 and α = 2.

6.6 Linear Time Invariant Case

The direct usage of ISM in the previous sections requires designing the
min–max control law in the space of extended variable with the dimension
equal to the product of the state vector’s dimension (n) multiplied by the
number of scenarios (N), that is, the multimodel optimal problem was solved
in the space of nN -order. In this section we design the sliding surface in order
to reduce the dimension of the min–max multimodel control design problem
(originally equal to n · N) up to the space of unmatched uncertainties by
[Nn− (N − 1)m] dimension (m is the dimension of the control vector).
Let us suppose that system (6.1) is time invariant and that all assumptions
are maintained, i.e.,

ẋ (t) = Ax (t) +Bu0 (t) +Bu1 (x, t) + φ(x, t) + ξ (t) , x(0) = x0 (6.26)

Control u1 is designed following the scheme presented in Sect. 6.3. Thus,
system (6.16), in its time invariant version, takes the following form:

ẋ = Aeqx+B (t)u0(t) + ξeq (t) (6.27)

where Aeq = [I −BB+]A and ξeq (t) = [I −BB+] ξ (t).



6.6 Linear Time Invariant Case 67

Fig. 6.3. Trajectory of the state variables for system (6.25).

Fig. 6.4. Controls u0 and u1 for α = 1, α = 2, and α = 3.
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Therefore, the multimodel system dynamics into the ISM is

ẋα(t) = Aα
eqx(t) +Bu0(t) + ξαeq (t) (6.28)

6.6.1 Transformation of the State

Now, let us transform system (6.27) into two subsystems using the coordinates
corresponding to the matched and unmatched parts of uncertainties. Define
the following nonsingular transformation:

T :=

[
B⊥

B+

]

where B⊥ ∈ R
(n−m)×n is a matrix which is composed by the transposition of

a basis of the orthogonal space of B. Since rank (B) = m, then rank
(
B⊥) =

n−m.
Applying the transformation T to system (6.27) one obtains

z (t) =

[
z1 (t)
z2 (t)

]

:= Tx (t) =

[
B⊥x (t)
B+x (t)

]

and

ż (t) =

[
ż1 (t)
ż2 (t)

]

=

[
B⊥ẋ (t)
B+ẋ (t)

]

(6.29)

Thus, in the new coordinates, the sliding mode dynamics are governed by the
following equations:

ż (t) =
[
TAeqT

−1z (t) + TBu0 (t) + Tξeq (t)
]
=

[
ż1 (t)
ż2 (t)

]

=

[[
B⊥AT−1z (t) +B⊥ξ (t)

]

u0(t)

]

=

[
Ae1 Ae2

0 0

] [
z1 (t)
z2 (t)

]

+

[
ξe1 (t)

0

]

+

[
0

u0(t)

]
(6.30)

which may be called the transformed nominal system.

6.6.2 The Corrected LQ Index

Let us apply the min–max approach (see the Appendix) to system (6.27),
allowing to obtain the control u0(x) as a control function minimizing the
worst LQ index over a finite horizon tf , that is,

min
u0∈Rm

max
α=1,N

hα (6.31)
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where

hα :=
1

2
(xα(tf ), Lx

α(tf )) +
1

2

tf∫

t=0

[(xα(t), Qxα(t))

+ [u0 (t)− (B+Aαxα (t)) , R (u (t)−B+Aαxα (t))]]dt

L = LT ≥ 0, Q = QT ≥ 0, R = RT > 0

Since z (t) = Tx (t) and x (t) = T−1z (t) , the LQ index hα can be repre-
sented as

hα :=
1

2
(zα(tf ),

(
T T
)−1

LT−1zα(tf )) +
1

2

tf∫

t=0

[(zα(t),
(
T�)−1

QT−1zα(t))+

+
[
u0 (t)−

(
B+AαT−1zα (t)

)
, R
(
u0 (t)−B+AαT−1zα (t)

)]
]dt

6.6.3 Min–Max Multimodel Control Design

Thus, according to [50, 53] (see Appendix at the end of the book), the solution
of the optimal problem is as follows. Consider the extended system

ẋ = Aeqx+Bu0 + d (6.32)

where

xT=
[
x1T · · · xNT

]
, Aeq:= diag (A1

eq, . . . , A
N
eq), x ∈ RN ·n

BT :=
[
BT · · · BT

]
, dT :=

[
ξ1Teq · · · ξNT

eq

] (6.33)

Using the previous extended system, the control u0, denoted below by u0x to
emphasize that it is designed before any state-space transformation applica-
tion, is as follows:

u0x = −R−1BT [Pλx+ pλ] +B+AΛx (6.34)

where the matrix Pλ= P�
λ ∈ R

nN×nN is the solution to the parameterized
differential matrix Riccati equation:

{
Ṗλ+Pλ

(
Aeq+BB+AΛ

)
+
(
Aeq+BB+AΛ

)T
Pλ−PλBR

−1BTPλ+

+Λ
(
Qeq − (B+A)

T
RB+AΛ

)
= 0; Pλ (tf ) = ΛL

(6.35)
and the shifting vector pλ satisfies

{
ṗλ+

(
Aeq+BB+AΛ

)T
pλ−PλBR

−1BTpλ +Pλd = 0
pλ (tf ) = 0

(6.36)
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with the matrices defined as

A := diag
(
A1, . . . , AN

)
, Qeq := diag

(
Q1, . . . , QN

)

L := diag (L, . . . , L) , Λ := diag (λ1In×n, . . . , λNIn×n)

Qα = Q+ [B+Aα]
T
RB+Aα.

Now consider the extend system using z(t)

ż = TAeqT
−1z+TBu0 +Td (6.37)

where

zT =
[
z1T · · · zNT

]
, T = diag (T, . . . , T )

By (6.37), the control u0 (denoted by u0z to emphasize that it is designed
after the T -transformation application) is as follows:

u0z = −R−1 (TB)
T
[Sλz+ sλ] +B+AT−1Λz (6.38)

where the matrix Sλ= ST
λ ∈ R

nN×nN is the solution to the parameterized
differential matrix Riccati equation:

⎧
⎪⎪⎨

⎪⎪⎩

Ṡλ+Sλ

(
TAeqT

−1+TBB+AT−1Λ
)
+
(
TAeqT

−1+TBB+AT−1Λ
)T

Sλ−
−SλTBR−1 (TB)T Sλ+Λ

(
TT
)−1
(
Qeq − (B+A)

T
RB+AΛ

)
T−1 = 0

Sλ (tf ) = Λ
(
TT
)−1

LT−1

(6.39)
and

{
ṡλ+
(
TAeqT

−1+TBB+AT−1Λ
)T

sλ−SλTBR−1 (TB)
T
sλ + SλTd = 0

sλ (tf ) = 0
(6.40)

Lemma 6.1. The controls u0x in (6.34), designed for system (6.32), and u0z
in (6.38), designed for system (6.37), are identical, that is,

u0z = u0x � u0 (6.41)

Proof. (6.41) is true if

−R−1BT [Pλx+ pλ] +B+AΛx =−R−1 (TB)
T
[Sλz+ sλ] +B+AT−1Λz

Since TΛ = ΛT by the triangularity of both multipliers, it implies

Pλ = TTSλT and pλ = TT sλ (6.42)

and, of course, if (6.42) is true, then the equality (6.41) is satisfied. That is
why in order to prove (6.41), it is necessary and sufficient to prove (6.42).
Premultiplying (6.39) by TT and postmultiplying by T we obtain
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⎧
⎪⎨

⎪⎩

TᵀṠλT+TᵀSλT
(
Aeq+BB+AΛ

)
+
(
Aeq+BB+AΛ

)T
TTS

λ
T−

−TTSλTBR−1BTTTSλT+Λ
(
Qeq − (B+A)

T
RB+AΛ

)
= 0

TTSλ (tf )T = ΛL

The previous differential Riccati equation is equal to (6.35), taking Pλ =
TTSλT. Now, premultiplying (6.40) by TT , we obtain

{
TT ṡλ+

(
Aeq+BB+AΛ

)T
TT sλ−TTSλTBR−1BTTT sλ +TTSλTd = 0

TT sλ (tf ) = 0

The previous equation is equal to (6.36) when pλ = TT sλ and Pλ = TTSλT.
Therefore, (6.41) is proven.

�	
Since zα(0) = z0 and zα2 = z2, system (6.37), by rearranging the component
order, can be represented as follows:

żr = Arzr +Bru0 + dr (6.43)

zr=

⎡

⎢
⎢
⎢
⎣

z11
...
zN1
z2

⎤

⎥
⎥
⎥
⎦
, Ar :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
e1 0 . . . 0 A1

e2
...

. . .
...

...
0 0 . . . AN

e1 A
N
e2

0 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

BT
r =
[
0 · · · 0 Im

]
, zr ∈ R

N(n−m)+m

dT
r =
[
ξ1Te1 · · · ξNT

e1 0
]

(6.44)

We note that in (6.44) we reduce the original (nN)dimension of the state
vector up to Nn−(N − 1)m. Hence we can design the control u0 using system
(6.32) or using system (6.37). It seems to be simpler to deal with the latter
from a computational point of view.
According to [50, 53] this control is as follows:

u0 = −R−1BT
r

[
P̄λzr+p̄λ

]
+ FΛzr (6.45)

where the matrix P̄λ= P̄
T
λ ∈ R

[N(n−m)+m]×[N(n−m)+m] is the solution to the
following parameterized differential matrix Riccati equation

⎧
⎪⎨

⎪⎩

�
P̄λ+P̄λ (Ar+BrFΛ)+ (Ar+BrFΛ)

T
P̄λ−P̄λBrR

−1BT
r P̄λ+

+
(
ΛQr−ΛFTRFΛ

)
= 0; P̄λ (tf ) = ΛL

(6.46)
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and the shifting vector p̄λ ∈ R
N(n−m)+m satisfies

{ �
p̄λ+(Ar+BrFΛ)

T
p̄λ−P̄λBrR

−1BT
r p̄λ + P̄λdr= 0

p̄λ (tf ) = 0
(6.47)

with

F =
[
F 1
1 · · · FN

1 λ1F 1
2 + · · ·+ λNFN

2

]

Fα : =
[
Fα
1 Fα

2

]
= B+AαT−1, Fα

2 ∈ R
m×m

and using the following partitions

Q =:

[
Q1 Q2

QT
2 Q3

]

, Qα =:

[
Qα

1 Qα
2

(Qα
2 )

T
Qα

3

]

L =:

[
L1 L2

LT
2 L3

]

Q1, L1 ∈ R
(n−m)×(n−m), Q3, L3 ∈ R

m×m

Qα
1 = Q1 +

(
B−1

2 Aα
21

)T
R
(
B−1

2 Aα
21

)

Qα
2 = Q2 +

(
B−1

2 Aα
21

)T
R
(
B−1

2 Aα
22

)

Qα
3 = Q3 +

(
B−1

2 Aα
22

)T
R
(
B−1

2 Aα
22

)

the following matrices are defined:

Λ := diag (λ1In−m, λ2In−m, . . . , λNIn−m, Im)

ΛQr:=

⎡

⎢
⎢
⎢
⎣

λ1Q
1
1 0 . . . 0 λ1Q

2
2

...
. . .

...
...

0 0 . . . λNQ
N
1 λNQ

N
2

λ1
(
Q1

2

)�
. . . λN

(
QN

2

)T
λ1Q

1
3 + · · ·+ λNQ

N
3

⎤

⎥
⎥
⎥
⎦

ΛL:=

⎡

⎢
⎢
⎢
⎣

λ1L1 0 . . . 0 λ1L2

...
. . .

...
...

0 0 . . . λNL1 λNL2

λ1L
T
2 . . . λNL

T
2 L3

⎤

⎥
⎥
⎥
⎦

(6.48)

Matrix Λ = Λ (λ∗) is defined by (6.48) with the weight vector λ = λ∗ solving
the following finite-dimensional optimization problem:

λ∗ = arg min
λ∈SN

J (λ) (6.49)
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J (λ) := max
α=1,N

hα =
1

2
zTr (0) P̄λ (0) zr (0) + zTr (0) p̄λ (0)+

+
1

2
max
i=1,N

⎡

⎣

tf∫

0

xiT0 (t)Qixi0(t) + 2xiT0 (t)× (F i
)T (

BT
r

[
P̄λzr+p̄λ

]−

RFΛzr)

]

dt+ xiT0 (tf )Lx
i
0(tf )

]

− 1

2

N∑

i=1

λi

⎡

⎣

tf∫

0

[
xiT0 (t)Qixi0(t) + 2xiT0 (t)×

× (F i
)T (

BT
r

[
P̄λzr+p̄λ

]−RFΛzr
)]

dt+ xiT0 (tf )Lx
i
0(tf )
]

+
1

2

tf∫

t=0

p̄T
λ

[
2dr −BrR

−1BT
r p̄λ

]
dt

S
N =

{

λ ∈ �N : λα ≥ 0,
N∑

α=1

λα = 1

}

where λ∗ may be calculated by using the numerical algorithm described in
Appendix B.2.

6.7 Example

Let us consider the following system:

ẋ (t) = Aαx (t) +Bu (t) + φ(x, t) + ξα (t)

with three possible scenarios (N = 3), where

A1 =

[−1 2
1.2 −1.5

]

, A2 =

[
1 −2
1.5 1

]

, A3 =

[
0.5 2.5
−1.5 1

]

BT =
[
1 1
]
, g� =

[
0.8x1 0.8x1

]
,
(
ξ1
)T

=
[
0.25 0.15

]

(
ξ2
)T

=
[
0.12 0.57

]
,
(
ξ3
)T

=
[
0.45 0.25

]

(6.50)

Step 1. The nominal system has the following parameters and unmatched
uncertainties:

ż (t) =
[
TAeqT

−1z (t) + TBu0 (t) + Tξeq (t)
]

where

T :=

[
B⊥

B+

]

=

[−0.7071 0.7071
0.5 0.5

]
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TA1
eqT

−1 =

[−2.85 −0.9192
0 0

]

,
[
T
(
ξ1eq
)]T

=
[−0.0707 0

]

TA2
eqT

−1 =

[
1.25 2.4749
0.0 0.0

]

,
[
T
(
ξ2eq
)]T

=
[
0.3182 0

]

TA3
eqT

−1 =

[
0.25 −2.4749
0.0 0.0

]

,
[
T
(
ξ3eq
)]T

=
[−0.1414 0

]

Step 2. Then, now the objective is to design the control u0 such that

min
u0∈Rm

max
α=1,3

hα

selecting R = 1, Q = I, L = I, tf = 10. The LQ index becomes

hα :=
1

2
(xα (10) , xα (10)) +

1

2

10∫

t=0

[(xα (t) , xα (t))+

(Kαxα,Kαxα) + (u0 (t) , u0 (t))− 2 (Kαxα, u0 (t))] dt

K1 :=
[
0.1061 0.3500

]
x1, K2 :=

[−1.2374 0.7500
]
x2

K3 =
[
1.5910 1.2500

]
x3

Step 3. The control u0 is designed using the following extended system:

żr = Arzr +Bru0(zr , t) + dr

zTr =
[
z11 z

2
1 z

3
1 z2
]
, BT

r =
[
0 0 0 1

]

Ar =

⎡

⎢
⎢
⎣

−2.85 0 0 −0.9192
0 1.25 0 2.4749
0 0 0.25 −2.4749
0 0 0 0

⎤

⎥
⎥
⎦

dT
r =
[−0.0707 0.3182 −0.1414 0

]

The optimal weights are approximately found as λ∗1 = 0, λ∗2 = 0.1, and
λ∗3 = 0.9, and the optimal performance index is J(λ∗) = 594.6517.
The control u0 was calculated as in (6.34) and also as in (6.38). In

both cases it turned out to be the same. This confirms that the proposed
decomposition scheme does not affect the value of J(λ∗). In this example
the dimension of the extended state vector zr of the previous extended
system is 4, while the dimension of the state vector z of system (6.37) is
equal to 6.

Step 4. Design the ISM law of control with M = (2 ‖x‖+ 0.5) (this is only
an option; the choice of M depends on the knowledge of the bound of the
matched uncertainty), that implies u1 = − (2 ‖x‖+ 0.5) s

‖s‖ .
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Step 5. Applying the control u = u0 + u1 to each one within the set of
the different given scenarios we obtain the corresponding state variable
dynamics and the control law which are depicted in Figs. 6.5 and 6.6.
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Fig. 6.5. Trajectories of the state variables for the system (6.50).
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Multiplant and ISM Output Control

Abstract Here, we consider the application of a min–max optimal control
based on the LQ index for a set of systems where only the output information
is available. Here every system is affected by matched uncertainties, and we
propose to use an output integral sliding mode to compensate the matched
uncertainties right after the beginning of the process. For the case when the
extended system is free of invariant zeros, a hierarchical sliding mode observer
is applied. The error of realization of the proposed control algorithm is esti-
mated in terms of the sampling step and actuator time constant. An example
illustrates the suggested method of design.

7.1 Motivation

For the multiplant case there are two main approaches to control such systems.
One is to decentralize the controls of each plant [54, 55]. The other method is
to design the same optimal control law for all the plants and make this control
robust with respect to perturbations. As it is explained in the Appendix, in [50,
53], a robust optimal control based on a min–max LQ index for a multimodel
system was proposed. Basically, a set of possible models was considered for
the same plant, each model is characterized by an LQ index and the objective
of the robust optimal control is to minimize the worst of the LQ indexes.
However, the exact solution to this optimal control problem requires two basic
assumptions:

• the system is free from any uncertainty;
• the state vector is completely available.

Thus, for the case when we have output information only, we should ensure
the compensation of the matched uncertainties. Furthermore, we need to
reconstruct the original states to take advantage of the state feedback robust
optimal control.

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3 7,

© Springer Science+Business Media New York 2014
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The integral sliding mode (ISM) is used to compensate the matched
uncertainties from the beginning of the process. However, again, the main
problem related to the implementation of this ISM concept consists in
the requirement of the knowledge of the state vector, including the initial
conditions. Thus, the ISM turns out to be useless if being applied directly in
the case when only output information is available.

To realize the robust optimal output control for the multiplant case three
approaches must be synthesized:

• the min–max optimal LQ control;
• the integral sliding mode control;
• the hierarchical sliding mode observation.

In Chap. 6 an approach to deal with the problem of matched uncertainty
compensation was proposed for the case of a control based on the min–max
LQ index in the context of a multimodel system. The difference between
multiplant and multimodel systems is the following: in the multimodel case
it is considered that for the same plant different models may be realized.
However, in the multiplant systems (the case considered in this chapter), we
will consider a set of plants working simultaneously and the min–max control
law is applied to all plants simultaneously. Moreover in this chapter we will
consider that we have no information over the entire state, but only the output
of each system can be measured online.

7.2 Problem Formulation

Consider a set of linear time invariant uncertain systems

ẋα (t) = Aαxα (t) +Bα (u (t) + γ (t)) + dα(t), xα(0) = xα0
yα (t) = Cαxα (t)

(7.1)

where α = 1, N (N is a positive integer), xα ∈ R
n represents the state vector

for the plant α, u (t) ∈ R
m is the vector of control inputs, applied to all

the plants, and yα (t) ∈ R
p (1 ≤ p < n) represents the output vector of

each system. Each excitation vector dα(t) is assumed to be known for all
t ∈ [0, tf ]. The current state x

α (t) and the initial state xα0 are supposed to be
non-available. Aα, Bα, and Cα are known matrices of appropriate dimensions
with rankBα = m and rankCα = p. All the plants are running in parallel.

Throughout this chapter we will assume that:

A7.1. the vector γ (t) is upper bounded by a known scalar function qa (t),
that is,

‖γ (t)‖ ≤ qa (t) (7.2)

A7.2. every vector xα0 is bounded by a known constant μ, i.e.,

‖xα0 ‖ ≤ μ (7.3)
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Before designing an optimal control we have to make the system free from
the effects of matched uncertainties. Therefore, the control design problem
can be formulated as follows: design the control u in the form

u = u0 + u1 (7.4)

where the control u1 will compensate the uncertainty γ (t) just after the
beginning of the process t = 0 and u0 (·) is the robust optimal control law
u∗
0 (·) minimizing the min–max LQ index:

min
u0∈Rm

max
α∈1,N

hα (7.5)

hα :=
1

2
(xα (tf ) , G

αxα (tf ))+

+
1

2

tf∫

t=0

[(xα (t) , Qαxα (t)) + (u0 (t) , Ru0 (t))] dt

Qα ≥ 0, Gα ≥ 0, R > 0

(7.6)

along the nominal system trajectories

ẋα (t) = Aαxα (t) +Bαu0 + dα (7.7)

As an optimal control problem, the exact solution of (7.5) requires the avail-
ability of all the vector states xα (t) at any t ∈ [0, tf ], and the system must be
free of any uncertainty. Therefore, to carry out this optimal control, we firstly
should

1. ensure the compensation of the matched uncertainties γ (t);
2. design state estimators for each system to reconstruct each state vector
xα (t) practically from the beginning of the process.

7.3 Output Integral Sliding Mode

For each α, substitution of the control law (7.4) into (7.1) yields

ẋα (t) = Aαxα (t) +Bα (u0 + u1 + γ (t)) + dα(t) (7.8)

Let us define the following extended system:

ẋ(t) = Ax(t) +B (u0 + u1 + γ) + d
y (t) = Cx(t)

(7.9)

where

xT :=
[
x1T · · · xNT

]
, A := diag (A1, . . . , AN ) , BT :=

[
BT

1 · · · BT
N

]

C = diag (C1, . . . , CN ) , dT :=
[
dT1 · · · dTN

]

(7.10)
To carry out the OISM, we will also assume that
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A7.3. rank (CB) = m

Thus, define the auxiliary sliding function s as follows:

s (t) := (CB)
+
y (t)− (CB)

+
y (0)−

−
t∫

0

[
(CB)+ C [Ax̂ (τ ) + d (τ)]− u0 (τ )

]
dτ

(7.11)

where (CB)
+
=
[
(CB)

T
(CB)

]−1

(CB)
T
. Thus, for the time derivative ṡ, we

have

ṡ = (CB)
+
CA (x− x̂) + u0 + u1 + γ, s (0) = 0 (7.12)

The vector x̂ represents the state of the observer that will be designed in
Sect. 7.4. It is suggested that the control u1 be designed in the following form:

u1 = −β (t) s(t)

‖s(t)‖ (7.13)

with β (t) being a scalar gain satisfying the condition

β (t)− qa (t)−
∥
∥
∥(CB)+ CA

∥
∥
∥ ‖x− x̂‖ ≥ λ0 > 0

where λ is a constant.

Remark 7.1. By A7.2, an upper bound of ‖x− x̂‖ can always be estimated.
Indeed, since ‖x− x̂‖ ≤ ‖x‖ + ‖x̂‖, using the Gronwall–Bellman inequality,
an upper-bound Ω (t,x (0)) for ‖x‖ can be calculated. Therefore, through the
knowledge of ‖x̂‖, ‖x− x̂‖ ≤ Ω (t,x (0)) + ‖x̂‖. Nevertheless, this could be a
big overestimation, which is why a better way to estimate ‖x− x̂‖ is as follows.
The vector x̂ will be given by x̂ = x̃+w where x̃ represents a Luenberger
observer and w is known and its norm tends to a small constant (see

Sects. 7.4.3 and 7.6). Then ‖x− x̃‖ < φ (t) = ζ exp (−κt)
(√

Nμ+ ‖x̃ (0)‖
)
+ρ

for positive known constants ζ and κ, and ρ is any arbitrarily small positive
constant. Therefore, ‖x− x̂‖ < φ (t) + ‖w‖. Thus, even in the case when x is
unstable, ‖x− x̂‖ has an upper bound which tends to ρ+ ‖w‖.

As we have done previously, the Lyapunov function V =
1

2
‖s‖2 is selected

to prove the sliding mode existence. Since V̇ = (s, ṡ) and in view of (7.13)
and (7.2), one gets

V̇ = sT
(

(CB)+ CA (x− x̂) + γ − β
s

‖s‖
)

≤
≤ −‖s‖

(
β −
∥
∥
∥(CB)

+
CA
∥
∥
∥ ‖x− x̂‖ − qa

)
≤

≤ −‖s‖λ0 ≤ 0
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Therefrom, due to s(0) = 0, one obtains
1

2
‖s (t)‖2 = V (s (t)) ≤ V (s (0)) =

1

2
‖s (0)‖2 = 0. Thus, the identities

s (t) = ṡ (t) = 0 (7.14)

hold for all t ≥ 0, i.e., there is no reaching phase to the sliding mode.
From (7.12) and in view of the equality (7.14) the equivalent control is

u1eq = − (CB)
+
CA (x− x̂)− γ (7.15)

Substitution of u1eq into (7.9) yields

ẋ (t) = Ãx (t) +B (CB)+ CAx̂ (t) +Bu0 + d (t)
y (t) = Cx (t)

(7.16)

where

Ã :=
[
I −B (CB)

+
C
]
A (7.17)

Thus, our first objective has been achieved, i.e., we have compensated the
uncertainty γ. The next section is devoted to the design of the hierarchical
sliding mode observer to generate x̂.

7.4 Design of the Observer

Now, having the system without uncertainties, we can reconstruct the state
vector. To design the observer, the pair (Ã,C) must be observable. The
necessary and sufficient condition that guarantees the observability of (Ã,C)
was given in Lemma 4.2. Therefore, from now on, we will assume that:

A7.4. the triple (A,B,C) has no zeros.

It is well known that both conditions together, rank (CB) = m and
pN = m, imply that the triple (A,B,C) has zeros. Therefore, A7.3 and A7.4
imply pN > m.

As we saw in Chap. 4, the suggested observer is based on the reconstruction

of vectors Cx (t), CÃx (t), and so on, until CÃ
l−1

x (t). Afterwards, the aim
is to recover the vector Ox (t) where

OT =

[

CT
(
CÃ
)T

· · ·
(
CÃ

l−1
)T
]

(7.18)

The positive integer l is defined as the observability index, that is, the least
positive integer such that rank (O) = n (see, e.g., [48]). Thus, after pre-
multiplying Ox (t) by O+, the state vector x (t) can be reconstructed by
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x (t) = O+Ox (t) (vectorOx (t) is reconstructed online) (O+ =
(
OTO

)−1
OT

is the pseudoinverse of O).
Design the following dynamic system:

�
x̃(t) = Ãx̃(t) +Bu0(t) +B (CB)

+
CAx̂ (t)+

+L (y (t)−Cx̃ (t)) + d (t)
(7.19)

where L must be designed such that Â := (Ã − LC) has eigenvalues with
negative real part. Let r (t) = x (t)−x̃ (t), from (7.16) and (7.19); the dynamic
equations governing r (t) are

ṙ (t) =
[
Ã− LC

]
r (t) = Âr (t) (7.20)

Since the eigenvalues of Â have negative real part, (7.20) is exponentially
stable, i.e., there exist constants γ,η > 0 such that

‖r (t)‖ ≤ γe−ηt
(√

Nμ+ ‖x̃ (0)‖
)

(7.21)

The Luenberger observer used here ensures the boundedness of the new vector
state r = x− x̃. The next step is to reconstruct the error r.

7.4.1 Auxiliary Dynamic Systems and Output Injections

To recover CÃx (t), let us introduce an auxiliary state vector x1
a (t) governed

by the following dynamic equations:

ẋ1
a (t) = Ãx̃ (t) +B

[
u0(t) + (CB)

+
CAx̂ (t)

]
+

+L̄
(
CL̄
)−1

v1 (t) + d (t)
(7.22)

where x1
a(0) satisfies Cx1

a(0) = y (0) and L̄ is any matrix such that
det
(
CL̄
) �= 0. The vector x̂ (t) represents the observer we will design below.

For the variable s1 (t) ∈ R
Np defined by

s1
(
y (t) ,x1

a (t)
)
= Cx (t)−Cx1

a (t) (7.23)

we have

ṡ1
(
y (t) ,x1

a (t)
)
= CÃ (x (t)− x̃ (t))− v1 (t) (7.24)

with v1 (t) defined as v1 =M1
s1

‖s1‖ . Here the scalar gain M1 must satisfy the

conditionM1 >
∥
∥
∥CÃ

∥
∥
∥ ‖r‖ to obtain the sliding mode regime. A bound of ‖r‖

can be estimated using (7.21). Hence, with such a scalar gain M1, we get the
identities s1 (t) = 0, ṡ1 (t) = 0, ∀t ≥ 0. Thus, from (7.23) we obtain that

Cx (t) = Cx̃ (t) , ∀t ≥ 0 (7.25)
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and from (7.24), the equivalent output injection is

v1eq (t) = CÃx (t)−CÃx̃ (t) , ∀t > 0 (7.26)

Thus, in principle, CÃx (t) can be recovered from (7.26).

Now, the next step is to recover the vector CÃ
2
x (t). Let us design the

second auxiliary state vector x2
a(t) generated by

ẋ2
a(t) = Ã2x̃(t) + ÃBu0(t) + L̄

(
CL̄
)−1

v2 (t)+

+ÃB (CB)
+
CAx̂ (t) + d (t)

where x2
a(0) satisfies CÃx

1

a(0) + v1eq (0) − Cx2
a(0) = 0. Again, for s2 ∈ R

Np

defined by s2
(
v1eq,x

2
a

)
= CÃx̃(t) + v1eq (t) − Cx2

a, and in view of (7.26), we
have that s2 takes the form

s2
(
v1eq,x

2
a

)
= CÃx (t)−Cx2

a (7.27)

Hence, the time derivative of s2 is

ṡ2
(
v1eq,x

2
a

)
= CÃ

2
x (t)−CÃ

2
x̃(t)− v2 (t) (7.28)

Now, take the output injection v2 (t) as

v2 =M2
s2

‖s2‖ , M2 >
∥
∥
∥CÃ

2
∥
∥
∥ ‖r‖ (7.29)

which implies the identities

s2 (t) = ṡ2 (t) = 0 (7.30)

In view of (7.30) and (7.28), v2eq (t) is

v2eq (t) = CÃ
2
x (t)−CÃ

2
x̃(t), t > 0 (7.31)

and the vector CÃ
2
x (t) can be recovered from (7.31).

By iterating the same procedure, all the vectors CÃ
i
x can be recovered.

In a summarized form, the procedure above goes as follows:

(a) the dynamics of the auxiliary state xk
a(t) at the kth level are governed by

ẋk
a(t) = Ãkx̃(t) + Ãk−1Bu0(t) + L̄

(
CL̄
)−1

vk+

+Ãk−1B (CB)
+
CAx̂ (t) + d (t)

(7.32)

with L̄ being any constant matrix such that det
(
CL̄
) �= 0, and the output

injection vk at the kth level is

vk =Mk
sk

‖sk‖ , Mk >
∥
∥
∥CÃ

k
∥
∥
∥ ‖r‖ (7.33)

where Mk is a scalar gain. A bound of ‖r‖ may be found using (7.21);
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(b) define sk at the k-level of the hierarchy as

sk (t) =

{
y −Cx1

a, k = 1

vk−1
eq +CÃ

k−1
x̃−Cxk

a , k > 1
(7.34)

where vk−1
eq is the equivalent output injection whose general expression will

be obtained in the following lemma, but xk
a (0) should be chosen such that

sk (0) satisfies
sk (0) = 0, k = 1, .., l− 1 (7.35)

Lemma 7.1. If the auxiliary state vector xk
a and the variable sk are designed

as in (7.32) and (7.34), respectively, then

vkeq (t) = CÃ
k
[x (t)− x̃(t)] for all t ≥ 0 (7.36)

at each k = 1, l − 1.

Proof. It was shown that the following identity holds v1eq (t) = CÃ [x (t)

−x̃(t)], ∀t > 0. Now, suppose that the equivalent output injection vk−1
eq is

as (7.36), then the substitution of vk−1
eq into (7.34) gives

sk
(
vk−1
eq (t) ,xk

a (t)
)
= CÃ

k−1
x (t)−Cxk

a (t) (7.37)

The derivative of (7.37) yields

ṡk (t) = CÃ
k
[x (t)− x̃ (t)]− vk (t) (7.38)

Thus, selecting vk (t) as in (7.33), one gets

sk (t) ≡ 0, ṡk (t) ≡ 0 for all t ≥ 0 (7.39)

Therefore, (7.39) and (7.38) imply (7.36).
�	

7.4.2 Observer in Its Algebraic Form

Now, we can design an observer with the properties required in the problem
statement. From (7.25) and (7.36), we obtain the following algebraic equation
arrangement:

Cx (t) = Cx̃(t) + [y (t)−Cx̃(t)]

CÃx (t) = CÃx̃(t) + v1eq (t)
...

CÃ
l−1

x (t) = CÃ
l−1

x̃(t) + vl−1
eq

(7.40)

Thus, (7.40) yields the matrix equation

Ox (t) = Ox̃ (t) + veq (t) , ∀t > 0 (7.41)
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where O was defined in (7.18) and

vTeq =
[
(y (t)−Cx̃(t))T

(
v1eq
)T · · · (vl−1

eq

)T
]

(7.42)

Since the pair
(
Ã,C

)
is observable, matrix O has rank Nn. Thus, after

premultiplying O+ by (7.41), we obtain

x (t) ≡ x̃ (t) +O+veq (t) , ∀t > 0 (7.43)

Thus, the observer can be designed as

x̂ (t) := x̃ (t) +O+veq (t) (7.44)

Now, we can formulate the following theorem.

Theorem 7.1. Under the assumptions A7.1–A7.4

x̂ (t) ≡ x (t) ∀t > 0 (7.45)

Proof. It follows directly from (7.43) and (7.44).
�	

7.4.3 Observer Realization

As was explained in Chap. 4, to implement the observer described in (7.44),
we need to estimate vkeq, which can be indirectly measured by means of the
following first-order low-pass filter:

τ v̇kav (t) + vkav (t) = vk (t) ; vkav (0) = 0 (7.46)

thereby obtaining an approximation of vkeq. That is, lim
τ→0

δ/τ→0

vkav (t) = vk
eq
(t),

t > 0, where δ is the sampling time used in the computations during the
realization of the observer. So, we can select τ = δη (0 < η < 1).

Hence, to realize the HSM observer, we should

(1) use a very small sampling interval δ;
(2) substitute vk

eq
(t) into (7.34) and (7.42) by vkav (t);

(3) choose xk
a (0) so that

y (0)−Cx1
a(0) = 0, for k = 1

CÃ
k−1

x̃(0)−Cxk
a(0) = 0, for k > 1

Therefore the identity sk (0) = 0, k = 1, . . . , l − 1 is achieved.
Thus, with the extended vector formed by the filter outputs, i.e.,

vT
av :=

[
(y (t)−Cx̃(t))T

(
v1av
)T · · · (vl−1

av

)T
]

the observer x̂ (t) must be redefined as

x̂ (t) := x̃ (t) +H+vav (t) (7.47)
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7.5 Min–Max Optimal Control Design

In this section we return back to the problem of the optimal control u0 which
solves the problem (7.5). Substitution of (7.45) into (7.16) yields the sliding
motion equations and the state x takes the form

ẋ(t) = Ax(t) +Bu0(x) + d

The control solving (7.5) for (7.7) is of the form

u∗0 (x, t) = −R−1Bᵀ (Pλ∗x+ pλ∗) (7.48)

where the matrix Pλ ∈ R
nN×nN is the solution of the parameterized differ-

ential matrix Riccati equation:

Ṗλ+PλA+ATPλ−PλBR
−1BTPλ+ΛQ = 0

Pλ (tf ) = ΛG
(7.49)

and the shifting vector pλ satisfies

ṗλ+Aᵀpλ−PλBR
−1Bᵀpλ +Pλd = 0; pλ (tf ) = 0 (7.50)

where the weighting vector λ belongs to the simplex S
N

S
N :=

{

λ ∈ R
N : λα ≥ 0,

N∑

α=1

λα = 1

}

and the matrices Q, G, and Λ denote the extended matrices

Q := diag (Q1, . . . , QN) , G := diag (G1, . . . , GN )
Λ := diag (λ1In, . . . , λNIn)

(7.51)

The matrix Λ = Λ (λ∗) is defined by (7.51) with the weighting vector λ = λ∗

solving the following finite-dimensional optimization problem:

λ∗ = arg min
λ∈SN

J (λ)

J (λ) := max
α=1,N

hα (7.52)

From Theorem B.1, the weighting vector λ∗ can be generated by means of the

sequence
{
λk
}
defined by

λk+1 = π

⎧
⎨

⎩
λk +

γk

J
(
λk
)
+ ε

F
(
λk
)
⎫
⎬

⎭
, λ0 ∈ S

N

k = 0, 1, 2, . . .

F
(
λk
)
=
[
h1
λk · · · hN

λk

]T
, J
(
λk
)
:= max

α∈1,N
hα
λk

(7.53)
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where ε is an arbitrary strictly positive (small enough) constant and π {·} is
the projector to the simplex S

N , i.e., for each z ∈ R
N ,

‖π {z} − z‖ < ‖λ− z‖ , for every λ ∈ S
N , λ �= π {z}

From Theorem B.1 we have that

lim
k→∞

λk = λ∗ (7.54)

provided that the following conditions are satisfied:

(1) for any λ� �= λ�� ∈ S
N the following inequality holds:

(
λ� − λ��, F

(
λ

�

)
− F
(
λ

��

))
< 0 (7.55)

and the identity in (7.55) is possible if and only if λ� = λ��;
(2) there exists a constant L such that for all α ∈ 1, N and for any μ, λ ∈ S

N ,

|hα (μ)− hα (λ)| ≤ J (λ)L |μ− λ|
(3) the gain sequence

{
γk
}
satisfies

γk > 0,

∞∑

k=0

γk = ∞,

∞∑

k=0

(
γk
)2
<∞

Since the observation error can be made arbitrarily small after any arbitrarily
small time, the estimated state x̂ can be used instead of x. Therefore, the
control u0 should be designed as

u0 (x̂, t) = u∗0 (x̂, t) = −R−1Bᵀ [Pλ∗x̂+ pλ∗ ] (7.56)

with x̂ being designed according to (7.47).

7.5.1 Control Algorithm

The proposed control algorithm can be summarized as follows:

1. design the control u1 according to (7.13);
2. design the matrix L such that the eigenvalues of Â := (Ã − LC) have

negative real part;
3. design the auxiliary systems xk

a as in (7.32) with the sliding function sk as
in (7.34) and compute the constants Mk, k = 1, .., l− 1;

4. design the state estimator x̂ according to (7.47);
5. calculate the matrix Pλ∗ and the vector pλ∗ according to (7.49) and (7.50),

respectively;
6. use the sequence (7.53) for finding λ∗, using x̂ instead of x;
7. design u0 according to (7.56).
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7.6 Error Estimation During Implementation
of the Closed-Loop Control

We have seen that filters cause some errors in the state estimation. Evidently
those errors directly affect the controller since we have used the estimated
states instead of the original ones. Hence, here we will calculate the estimation
of the error appearing during the realization of the closed-loop control, that is,
the errors due to the actuators plus the error due to the observation process.
The control error due to the devices used in the implementation of the control,
including the OISM control, is of the order O (μ), where μ is a constant
characterizing the control execution depending generally from the actuator
time constants. Let us estimate the order of the error due to the observation
process. As we saw, the observer design is based on the recursive use of filters
of the form (7.46). Firstly, let us recall the following lemma regarding the
error induced for such sort of filters.

Lemma 7.2 ([11]). If in the differential equation

τ ż + z = h(t) +H(t)ṡ (7.57)

where τ is a constant and z, h, and s are m-dimensional vector functions

(1) the functions h(t) and H(t) and their first-order derivatives are bounded
in magnitude by a certain number M and

(2) ‖s(t)‖ ≤ ξ (ξ is a constant positive value)

then for any pair of positive numbers Δt and υ there exists a number
d(υ,Δt, z(0)) such that

‖z(t)− h(t)‖ ≤ υ

with 0 < τ ≤ d, ξ/τ ≤ d and t ≥ Δt.

Indeed, ‖z (t)− h (t)‖ satisfies the following inequality:

‖z (t)− h (t)‖ ≤ ‖z (0)− h (0)‖ exp (−t/τ) +
+M (τ + ξ) + 3M

(
ξ

τ

)

In our case, the expression (7.57) can be related with the expression

τ1v̇
1
av + v1av = v1eq − ṡ1

obtained from (7.46) and (7.24). Thus, in our case h (t) refers to the equivalent
output injection. Furthermore, the error due to sliding mode control directly
affects the performance of the first sliding mode in the observation process,
and it is known that the sampling step δ induces an error of the order O (δ)
in the variable ṡ1 during the sliding motion. Hence, it is reasonable to accept
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that the error in the sliding variable ṡ1 is of the order O (μ) + O (δ), that
is, by defining Δ := μ + δ, we have that the constant ξ in Lemma 7.2 is
ξ = O (Δ) = O (μ) + O (δ). Therefore, choosing τ = O

(
Δ1/2
)
, we have that

the error in the first step of the observation scheme is of the order O
(
Δ1/2
)
,

that is, v1av − v1eq = O
(
Δ1/2
)
. As it was mentioned in Sect. 7.4.3, we must

substitute v1eq by v1av into the variable s2 in (7.27). Thus, we can consider that

during the sliding motion, s2 will be bounded for a constant of order O
(
Δ1/2
)
,

and consequently, by using a constant of the filter τ2 = O
(
Δ1/4
)
, the error

induced for the second filter will be v2av−v2eq = O
(
Δ1/4
)
. Following a likewise

analysis, we obtain an error of the order O
(
Δ1/2k

)
in the kth step for the

reconstruction of the observer. Thus, it turns out to be that the observation

error is of the order O
(
Δ1/2l

)
, recalling that l is the least integer such that

matrix O in (7.18) has rank nN . Thus, we can say that, during the realization
of the control process, the total error εc of the closed-loop control is

εc = O (μ) +O
(
Δ1/2l

)

7.7 Example

Consider the case N = 3 where the parameters are given by

A1 =

⎡

⎣
−2 0.5 1
0.5 1.2 −2
1 2 −1.5

⎤

⎦ , A2 =

⎡

⎣
−0.3 1.5 −0.15
−1 0.12 2
1 2 −3

⎤

⎦

A3 =

⎡

⎣
0.4 −1 0.3
0.5 −0.4 0.3
0.5 0.6 −1

⎤

⎦ , B1 =

⎡

⎣
0.5
1
1

⎤

⎦ , B2 =

⎡

⎣
1.5
−2
1

⎤

⎦

B3 =

⎡

⎣
0.5
0.2
1

⎤

⎦ , Cα =

[
1 0 0
0 1 0

]

, dα =

⎡

⎣
0.05
0.02
0.01

⎤

⎦

In the simulations we used γ (t) = sin (t) and a sampling time δ = 10−4.
Table 7.1 shows the components of the vector λk, k = 1, . . . , 35, calculated
using the sequence (7.53); it also shows the performance indexes of each plant

hα
λk and the index1 J

(
λk
)
. The trajectories for the three plants are shown

1It is known that Pλ and pλ must be precomputed backward using a numerical
method. However, the difference here with the classical optimal control is that these
equations are parameterized by a weighting vector λ. The calculation of the optimal
weighting vector λ∗ is not standard. That is why in the example we present a table
with the values obtained using the numerical algorithm described above for the
calculation of λ∗.
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Table 7.1. Values of λk and hα
(
λk

)

k λk
1 λk

2 λk
3 h1

λk h2
λk h3

λk J
(
λk

)

1 0.5 0.4 0.1 119.361 114.875 1, 093.288 1, 093.288

2 0.204426 0.100323 0.695249 251.698 1, 283.885 333.333 1, 283.885

3 0.058934 0.357712 0.582453 562.026 388.354 558.513 562.026

4 0.094863 0.289738 0.615398 374.660 419.256 511.321 511.321

5 0.049725 0.314217 0.636057 667.014 476.239 500.736 667.014

6 0.085411 0.292701 0.621886 409.412 516.387 507.633 516.387

7 0.063335 0.305152 0.631512 534.273 494.481 503.540 534.273

8 0.069621 0.300798 0.629580 490.292 502.854 504.118 504.118

9 0.067440 0.601731 0.630827 504.600 501.292 503.313 504.600

10 0.067777 0.301340 0.630881 502.326 502.108 503.166 503.166
...

...
...

...
...

...
...

...

30 0.067709 0.301065 0.631225 502.791 502.799 502.802 502.802

31 0.067708 0.301065 0.631225 502.793 502.799 502.802 502.802

32 0.067708 0.301065 0.631225 502.794 502.764 502.802 502.802

33 0.067708 0.301064 0.631226 502.793 502.802 502.800 502.802

34 0.067708 0.301064 0.631226 502.795 502.802 502.800 502.802

35 0.067708 0.301064 0.631226 502.796 502.801 502.800 502.801

in Figs. 7.1–7.3. They represent a comparison between the trajectories of the
original state vector and the trajectories of the estimated states. The esti-
mation error (eα3 = xα3 − x̂α3 , α = 1, 2, 3) for two different sampling times is
graphed in Figs. 7.4 and 7.5. Since the first two components of the state vector
are available, then only the third component of the error vector is presented.
Figure 7.6 shows a comparison between the control law u0 when the state
vector is completely available and when only the output information is avail-
able. This was done for three different sampling times and we can see how by
reducing the sampling time the error decreases between the control designed
for the nominal system (the state vector is known and there is no uncertain-
ties) and the control using OISM and the hierarchical sliding mode observer.
Clearly, this is a consequence of the fact that by reducing the sampling time
we reduce the state estimation error.
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Fig. 7.1. Trajectories of the original state and the estimated one for the first plant.

0 2 4 6 8 10

−5

0

5

10

15

20

25

30

Time [s]

S
ta

te
 x
2  

an
d

 o
b

se
rv

er
 x
e2

0 0.01 0.02 0.03 0.04
−6

0

4
x2

xe2

Fig. 7.2. Trajectories of the original state and the estimated one for the second
plant.
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Fig. 7.3. Trajectories of the original state and the estimated one for the third plant.
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PRACTICAL EXAMPLES



8

Fault Detection

Abstract Here, we will use the OISM to design a fault estimator. We will
continue using the cart–pendulum system as in Chap. 4. Here the matched
uncertainties are assumed to represent a signal indicating the level of the
control performance, that is, in the absence of actuator failures, the matched
disturbances do not exist, and when the actuator has a fail, the disturbances
appeared in the system. Thus, after the observer is designed and the control
law is given, a third step is followed to estimate the fault signal by using the
equivalent control method and a low-pass filter.

8.1 Model Description

Let us take again the linearized model of an inverted pendulum over an
inverted cart–pendulum given in Fig. 8.1. The aim here is to do a fault
estimation allowing to indicate the level of the actuator failure, if it exists.
The equations governing the dynamics of the system are as follows:

ẋ (t) = Ax (t) +Bu+Bγ (t)
y (t) = Cx (t)

(8.1)

The state vector x consists of four state variables: x1 is the distance between a
reference point and the center of inertia of the trolley; x2 represents the angle
between the vertical and the pendulum; x3 represents the linear velocity of
the trolley; finally, we have that x4 is equal to the angular velocity of the
pendulum. Matrices A, B, and C are

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 1.2586 0 0
0 7.5514 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0

0.1905
0.1429

⎤

⎥
⎥
⎦ , C =

[
1 0 0 0
0 1 0 0

]

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,
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Fig. 8.1. Inverted cart–pendulum.

For this example, we consider that the system output is given by the cart and
pendulum positions. We consider that γ (t) is given by

γ (t) = −α (t)u (t) , α (t) ∈ [0, 1]

Hence, α (t) gives an indication of how the actuator is functioning. Thus, if
α (t) is equal to zero, the control is in perfect conditions; in the other extreme,
if α (t) is equal to one, then the control is totally failing. Then system (8.1)
may be rewritten in the following form:

ẋ (t) = Ax (t) +Bu−Bα (t)u (t)
y (t) = Cx (t)

(8.2)

The control law is designed as a infinite horizon LQ optimal control:

u∗ (t) = min
u∈Uadm

∫ ∞

0

x� (t)Qx (t) + u� (t)Ru (t) dt

For this example Q = 10I, R = 1. Thus, u∗ (t) = −Kx (t), where

K =
[−3.16 158.56 −9.26 59.12

]

Since x (t) is not directly available, we will use an estimate of it x̂ (t), i.e.,
u (t) = −Kx̂ (t), where x̂ (t) will be designed following the procedure given in
Chap. 3.

8.2 Observer Design

Let x̃(t) be defined by the following dynamic equation,

˙̃x(t) = Ax̃(t) +Bu(t) + L (y (t)− Cx̃ (t)) (8.3)
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where L is designed so that Â := (A − LC) be Hurwitz. For this example L
was chosen as

L =

⎡

⎢
⎢
⎣

0.6 0
0 0.4

0.08 1.25
0 7.58

⎤

⎥
⎥
⎦

We will assume that the initial condition for x (t) is a bounded region, that
is, ‖x (0)‖ ≤ 10. Thus, we recall that the norm of r (t) = x (t) − x̃ (t) stays
bounded [see (3.6)].

In this case it is enough to reconstruct the vector CAx (t). Hence, to recover

CAx (t), let us introduce an auxiliary state vector x
(1)
a (t) governed by

ẋ(1)a (t) = Ax̃ (t) +Bu+ L̃
(
CL̃
)−1

v(1) (t) (8.4)

where L̃ satisfies detCL̃ �= 0; in this case L̃ is designed as C� and so CC� = I.

Furthermore, we chose x
(1)
a (0) so that

Cx(1)a (0) = y (0)

The variable s(1) ∈ R
p is defined as

s(1)
(
y (t) , x(1)a (t)

)
= y (t)− Cx(1)a (t) (8.5)

Then, since CB = 0, the derivative of s along the time is

ṡ(1) (t) = CA (x (t)− x̃ (t))− v(1) (t) (8.6)

with the output injection v (t) given by:

v(1) =

⎧
⎨

⎩
M (t)

s(1)
∥
∥s(1)
∥
∥ if s(1) �= 0

0 if s(1) = 0

Here the gain scalar function M1 (t) should satisfy the condition

M1 (t) > ‖CA‖ ‖r (t)‖ (8.7)

to obtain the sliding mode regime. Thus from (8.6), the equivalent output
injection is

v(1)eq (t) = CAx (t)− CAx̃ (t)

=

[
x3 (t)
x4 (t)

]

−
[
x̃3 (t)
x̃4 (t)

]

, ∀t > 0

Thus, CAx (t) is reconstructed by means of the following representation:
[
x3 (t)
x4 (t)

]

=

[
x̃3 (t)
x̃4 (t)

]

+ v(1)eq (t) , ∀t > 0 (8.8)
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8.3 Fault Estimation

Let us designed a second auxiliary system with x
(2)
a (t) generated by

ẋ(2)a (t) = A2x̃(t) +ABu (t) + C�v(2) (t)

where x
(2)
a (0) satisfies

v(1)eq (0) + CAx̃(0)− Cx(2)a (0) = 0

As for s(2) ∈ R
p, it is defined by

s(2)
(
v(1)eq (t) , x(2)a (t)

)
= CAx̃(t) + v(1)eq (t)− Cx(2)a (t)

The output injection v(2) (t) is

v(2) =

⎧
⎨

⎩
M2 (t)

s(2)
∥
∥s(2)
∥
∥ if s(2) �= 0

0 if s(2) = 0
M2 (t) >

∥
∥CA2

∥
∥ ‖r (t)‖

(8.9)

Thus CA2x (t) can be recovered by means of the equality:

CA2x (t)− CABα (t)u (t) = CA2x̃(t) + v(2)eq (t) , t > 0 (8.10)

Now, from (8.10), we have that

CABα (t) u (t) = CA2x (t)− CA2x̃(t)− v(2)eq (t)

In our example

CAB =

[
0.1905
0.1429

]

, CA2x (t) =

[
0 1.2586
0 7.5514

] [
x1
x2

]

For the case u (t) �= 0, α (t) can be expressed as

α (t)u =

[
0.1905
0.1429

]+([
0 1.2586
0 7.5514

](

y (t)−
[
x̃1
x̃2

])

− v(2)eq (t)

)

As explained in Chap. 3, v
(1)
eq (t) and v

(2)
eq (t) are recovered by using low-pass

filters, i.e.,

τ v̇(k)av (t) + v(k)av (t) = v(k) (t) ; v(k)av (0) = 0, k = 1, 2

Thus the estimation of α (t)u is carried out by means of

α̂u =

[
0.1905
0.1429

]+([
1.2586
7.5514

]

(y2 (t)− x̃2)− v(2)av (t)

)

For the simulations we use a sample step of 2× 10−5. In Fig. 8.2, the function
α (t) used for the simulations is shown. The comparison of the values of
α (t)u (t) and its estimation α̂u is given in Fig. 8.3
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9

Stewart Platform

Abstract We present an application associated with the so-called Stewart’s
platform, which is a robot of closed cinematic chain. This is one of the most
important examples of totally parallel manipulator, understanding as such
a robot that possess two bodies, one fixed and the other mobile, which are
connected between them by several arms. Typically each arm is controlled by
an actuator. Stewart’s platform has, therefore, a parallel configuration of six
degrees of freedom composed of two rigid bodies connected by six prismatic
actuators. The biggest rigid body is named the base, and the mobile body
is called the mobile platform. Here, the goal is to design a robust control to
stabilize Stewart’s platform with three degrees of freedom around a wished
position when we do not have complete information with regard to the initial
conditions and the permanent disturbance that affect this platform. The spe-
cific application consists in an aerostatic balloon easy to manipulate that is
mooring to earth by a cable of approximately 400m of length. This balloon is
connected to the base platform and a video camera is fixed to the mobile plat-
form to keep under surveillance a specific area of 20 km2 approximately. Since
the platform basis is over the mobile one, we will name this platform inverted
Stewart’s platform. Due to the type of application, the platform is perma-
nently under the action of the force of the wind. Therefore, we will work with
the wind’s acceleration as our permanent disturbance. Another characteristic
of our implementation is that we have only output (not state) information
available. In this situation the implementation of an OISM control seems to
be useful.

9.1 Model Description

Let us describe the inverted Stewart’s platform, which consists of a base
platform and a mobile one, both with shape of an equilateral triangle, of
sides a and b, a > b, respectively. The vertexes of the base are joined to

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3 9,

© Springer Science+Business Media New York 2014

103



104 9 Stewart Platform

Fig. 9.1. Scheme of the remote surveillance device.

the correspondent vertexes of the mobile platform by actuators of lengths, li
(i = 1, 2, 3), variable and enclosed. These actuators are fastened to the base
platform in the points Ai (i = 1, 2, 3) by cylindrical joints which axes of rota-
tion perpendiculars to the segment AiA0 (i = 1, 2, 3). And they are connected
to the mobile platform in the respective points Bi (i = 1, 2, 3) by spherical
joints (see Fig. 9.2). The type of joints used to connect the platforms, base
and mobile, through the actuators allow to restrict the six original degrees
of freedom to three: two rotations (α and β) and one translation (h). Two
sensors measure the angular velocities, concerning to both rotations α and β
of the mobile platform regarding to the horizontal plane and a GPS to mea-
sure the position that will allow us to recover the mentioned angles. We are
going to assume that the measurement error of the GPS is small enough not
to be taken in account in our application. The wished position to stabilize is
α = β = 0 and h = h0.
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Fig. 9.2. Geometric scheme of the platform P .

This way we obtain the following linear time invariant model with uncer-
tainties of the platform P [58],

ẋ (t) = Ax (t) +B (u (t) + γ (x, t)) ; x (0) = x0

y (t) = Cx (t)
(9.1)

where x (t) ∈ R
6 is the state vector, u (t) ∈ R

3 is the control law, y (t) ∈ R
5 is

the output of the system, and w is the permanent perturbation, which repre-
sents the wind’s acceleration. The vector state x consists of six state variables:
x1 = α − α0, x3 = β − β0, x5 = (h − h0)/h0, and x2, x4, and x6 represent
the velocity of x1, x3, and x5, respectively. There exist two kinds of influences
of the external disturbance on the platform P , which are known as general
(normal) resonance and parametric resonance. The most important analysis
is when the parametric resonance occurs, due to the fact that this one is more
dangerous because it grows exponentially, whereas the normal resonance grows
linearly. That’s why, according to the supposition that the coefficient of the
additional presence is small, we are going to study the parametric influence.
In Sect. 9.4 we will include an additional influence in the simulation and verify
how the system is affected.

The matrices A,B, and C are described below.

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
b2 cos2 γ0−b(a−b)

6r2y
0 0 0 0 0

0 0 0 1 0 0

0 0 − b2 cos2 γ0+b(a−b)
6(h2

0+r2x)
0 0 0

0 0 0 0 0 1
0 0 0 0 − cos2 γ0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9.2)
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B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0

− bh0

6
√
3r2y

− bh0

6
√
3r2y

bh0

3
√
3r2y

0 0 0
bh0

6(h2
0+r2x)

− bh0

6(h2
0+r2x)

0

0 0 0
− 1

3 − 1
3 − 1

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9.3)

and

C =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

(9.4)

As in Chap. 4, now, for the system (9.1), we design the control law u to be

u = u0 + u1 (9.5)

where the control u0 ∈ R
m is the ideal control designed for the nominal system

(i.e., γ = 0) and u1 ∈ R
m is designed to compensate the uncertainty γ (x, t)

from the initial time.

9.2 Output Integral Sliding Mode

According to (4.8) and (4.6) control u1 is designed in the following form:

u1 = −β (t) s(t)

‖s(t)‖
β (t)−

(
γ+ (y, t) +

∥
∥
∥(CB)

+
CA
∥
∥
∥ ‖x (t)− x̂ (t)‖

)
≥ λ > 0

(9.6)

with

s (y (t)) = (CB)+ y (t)−
t∫

0

(
(CB)+ CAx̂ (τ)− u0 (τ )

)
dτ−(CB)+ y (0) (9.7)

The observer in this case is designed as follows:

x̂ (t) = x̃ (t) +H+vav (t)

vav =

[(
Cx

(1)
a − Cx̃ (t)

)T (
v
(1)
av

)T
]T (9.8)

with

�
x̃(t) = Ãx̃(t) + Bu0(t) +B (CB)

+
CAx̂ (t) + L (y (t)− Cx̃ (t)) (9.9)
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where L must be designed such that the eigenvalues of Â := (Ã − LC) have

negative real part. H =

[
C

CÃ

]

and vav is calculated as follows

τ v̇(1)av (t) + v(1)av (t) = v(1) (t) ; v(1)av (0) = 0

with v(1) designed as

v(1) =

⎧
⎨

⎩
M1

s(1)
∥
∥s(1)
∥
∥ if s(1) �= 0

0 if s(1) = 0

with s(1) ∈ R
5 defined by

s(1)
(
y (t) , x(1)a (t)

)
= Cx (t)− Cx(1)a (t) (9.10)

and x
(1)
a (t) takes the form

ẋ(1)a (t) = Ãx̃ (t) +B
[
u0(t) + (CB)+ CAx̂ (t)

]
+ L̄
(
CL̄
)−1

v(1) (t) (9.11)

where L̄ ∈ R
6×5 is a matrix so that det(CL̄) �= 0 and x

(1)
a (0) satisfies

Cx(1)a (0) = y (0)

9.3 Min–Max Stabilization of Platform P

Let us consider for our application the nominal control u0 as a control with
linear output feedback:

u0 = Ky (9.12)

where K ∈ F = {F ⊂ R
m×p|Re(λi) ≤ −k0, k0 > 0} and λi (i = 1, · · · , n) are

the eigenvalues of the matrix A1(K) := A+ BKC.
In the ideal sliding motion, the dynamic equations for the state x have the

form

ẋ (t) = A1(K)x (t) , x (0) = x0 (9.13)

Thus, the min–max problem consists in finding the values of kij which satisfy
the following evaluation criterium

J(K) = max
|x(0)|≤μ

∫ ∞

0

xT (t)Qx (t) dt → min
K∈F

(9.14)

where Q = Q� ≥ 0; we chose Q as the identity matrix of dimension n.
Physically this means that given the worst initial conditions the control

minimizes the deviations in time of the system parameters and also in this
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way an asymptotically stable behavior is achieved. For our application, as a
remote surveillance device, it is of great importance to decrease not only the
angle deviations but also their velocities since we need the movement of the
camera to be slow enough to capture better images.

Thus, the control law solving (9.14) for (9.13) is of the form

u0 (t) ≡ u∗0 (t) = K∗y(t)

Let us change the optimal control problem (9.14) to a nonlinear programming
problem (see [59]). For that let us consider the differential matrix equation:

Ż = Aᵀ
1Z + ZA1, Z(0) = Q (9.15)

The general solution of (9.15) has the form

Z(t) = eA
T
1 tQeA1t (9.16)

Since, for any K ∈ F , A1 matrix is stable, then the integral
∫∞
0
Z(t)dt con-

verges. Thus we have

AT
1

∫ ∞

0

Z(t)dt+

∫ ∞

0

Z(t)dtA1 =

∫ ∞

0

Ż(t)dt =

= Z(∞)− Z(0) = −F

Then it is possible to affirm that the matrix

P =

∫ ∞

0

Z(t)dt (9.17)

is the solution of the matrix equation

Aᵀ
1P + PA1 = −F (9.18)

As we mentioned before F = In (In denotes the identity matrix with
dimension n). (9.18) is the well-known Lyapunov equation, and its solution is
a symmetrical positive-defined matrix. Since A1 depends on the choice of K
matrix, P matrix also depends on K.

Then, the functional J(K̃) can be rewritten as:

max
|x(0)|≤μ

∫ ∞

0

xTxdt= max
|x(0)|≤μ

∫ ∞

0

xT (0)Z (t)x (0) dt= max
|x(0)|≤μ

xᵀ(0)P (K)x(0)

(9.19)

On the other hand, for any symmetrical definite positive matrix, it fulfills the
following inequality:

xT (0)P (K)x(0) ≤ λmax (P (K))μ2 (9.20)
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Between all the initial conditions, |x(0)| ≤ μ, there exists one for which the
equality is reached in (9.20). Consequently the functional can be expressed in
the following way:

max
|x(0)|≤μ

∫ ∞

0

xT (t)x(t)dt = μ2λmax (P (K))

This way we can reduce the min–max problem (9.14) to the following extrema
problem of finite dimension:

μ2λmax (P (K)) → min
K∈F

(9.21)

Let K∗ be the matrix solving the optimization problem (9.21).

u0 (t) = K∗y (t) (9.22)

9.4 Numerical Simulations

Let us consider the following structural dimensions for our platform P : a =
0.5m; b = 0.3m; g = 9.81m/s

2
; h0 = 0.2m; γ0 = 60◦, and m = 3kg (see

Fig. 9.2). Then, the matrices A and B for the motion equations (9.1) are

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
−1.875 0 0 0 0 0

0 0 0 1 0 0
0 0 −0.3433 0 0 0
0 0 0 0 0 1
0 0 0 0 −0.25 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
−1.732 −1.732 3.464

0 0 0
0.2105 −0.2105 0

0 0 0
− 1

3 − 1
3 − 1

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The vector γ(w, x, t) is

γ(w, x, t) =

⎛

⎝
wx3 + 1.3686wx5
wx3 − 1.3686wx5

wx3

⎞

⎠ (9.23)

We assume that w (t) represents the wind acceleration, and it takes the
following expression w(t) = 0.1 + 0.5 sin t.
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Notice that in (9.23) the perturbation only affects the deviation of param-
eters β and h. This occurs because we assume that the wind only acts on the
direction of axis y (see Fig. 9.2). The wished point that we want to stabilize
is (0, 0, 0, 0, h0, 0).

Nevertheless, for our application, the changes in the height of the cen-
ter of mass of the mobile platform with regard to the plane of the platform
base are not of vital importance, since the platform P is set at a height of
approximately 400m of the level of the ground and we wish to maintain the
horizontal position of the mobile platform in order to keep certain area under
surveillance. That’s why we are going to focus on the behavior of the states x1,
x2, x3, and x4, corresponding to the deviation of α and β and their velocities.

The matrix Ã = [I −B(CB)+C]A takes the form

Ã =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
−0.2512 0 0 0 0 0

0 0 0 1 0 0
0 0 −0.0023 0 0 0
0 0 0 0 0 1

−0.1563 0 0 0 −0.25 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Control u0 is taken as

u0 =

⎛

⎝
3.53x1 + 5x2

4.982x3 + 9.982x4
7.059x1 + 9.999x2 + 5.2369x3 + 7.4865x4 + 3.36x5

⎞

⎠

Matrix L is selected as C�.
Different simulations were carried out, each one with a sampling step of

Δ = 2 ·10−3 and � = 2 ·10−4, respectively. The filter constant, τ , was chosen
as τ = Δ1/2. The trajectories of the state vector corresponding to the behavior
of the deviation of xi (i = 1, · · · , 4) under the perturbation w when we use
only nominal control u0 and when we also use control u1 are compared in
Figs. 9.3–9.4 and 9.5–9.6.

We also see the observation error e(t) = x(t)−x̂(t) in Fig. 9.7. As expected,
we can see in those figures that the convergence to zero is better when Δ is
smaller.

Now, we include in (9.1) the additional influence of the perturbation w
given by the following expression

γ(w, x, t) =

⎛

⎜
⎜
⎝

wx3 + 1.3686wx5 +
1

0.2105

(
h2
0

h2
0+r2x

)
w

wx3 − 1.3686wx5 − 1
0.2105

(
h2
0

h2
0+r2x

)
w

wx3

⎞

⎟
⎟
⎠

g̃ =
[
0 0 0 −

(
h2
0

h2
0+r2x

)
w 0 0

]T
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Fig. 9.3. Comparison of behavior of x1, x2 using � = 2× 10−3.
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Fig. 9.4. Comparison of behavior of x3 and x4 using � = 2× 10−3.

In Fig. 9.8 we compare the behavior of state x3 using u0+u1 (for Δ = 2 ·10−4)
when we have only the parametric influence and when we have both influences
of the external perturbationw. We see that in the second case there is a slightly
bigger oscillation. This is a deviation of 1.22× 10−5 degrees from the wished
position of angle β and it represents a deviation of the video camera of 5mm
in the ground.
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Fig. 9.5. Comparison of behavior of x1, x2 using � = 2× 10−4.
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Fig. 9.6. Comparison of behavior of x3 and x4 using � = 2× 10−4.

Fig. 9.7. Observation error e = x6 − x̂6.
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Fig. 9.8. Comparison of behavior of x3 when the general resonance of w is added.
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Magnetic Bearing

Abstract Here, we present an example of an application of the output in-
tegral sliding mode. We will apply that method to a magnetic levitator. We
will consider a magnetic bearing system, which is composed of a planar ro-
tor disk and two sets of stator electromagnets: one acting in the y-direction
and the other acting in the x-direction. This system may be decoupled into
two subsystems, one for each direction, with similar equations. Here, only the
linearized subsystem in the y-direction is considered.

10.1 Preliminaries

The optimal control used for this example is based on an LQ differential
game (LQDG) where the players’ dynamic is represented by linear ordinary
differential equations

ẋ(t) = Ax(t) +

2∑

i=1

Bi
(
ui(t) + γi (t)

)
(10.1)

y1(t) = C1x(t), y2(t) = C2x(t)

x(0) = x0, t ∈ [0, t1]

A ∈ R
n×n and Bi ∈ R

n×mi (i = 1, 2) and ζi(t) ∈ R is an unknown input.
In addition, x(t) ∈ R

n is the game state vector, with ui(t) ∈ R
mi being the

control strategies of each i-player, and yi(t) ∈ R
pi is the output of the game

for each player which can be measured at each time. Finally, Ci ∈ R
pi×n is

the output matrix for player i.
As for the optimal control, let us consider the nominal system, i.e., that γ

is identical to zero, then we consider the following quadratic cost functional:

J i(ui0, u
ı̂
0) =

∞∫

0

(xTQi(t)x+
2∑

j=1

ujT0 Rijuj0)dt, j �= i (10.2)

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3 10,

© Springer Science+Business Media New York 2014
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Fig. 10.1. Top view of a planar rotor disk magnetic bearing system [60].

The performance index J i(ui0, u
ı̂
0) (10.2) of each i-player for infinite time hori-

zon nominal game is given in the standard form, where ui0 is the strategy for
i-player and uı̂0 are the strategies for the rest of the players (̂ı is the player
counteracting to the player with index i). Matrices Qi (t) and Rji(t) should
satisfy the following conditions:

Qi(t) = Qiᵀ(t) ≥ 0, Rji(t) = Rjiᵀ(t) > 0
Rij(t) = Rijᵀ(t) ≥ 0 (j �= i)

(10.3)

Thus, from the limiting solution of the finite-time problem [62], the next
coupled algebraic equations appear [63]:

− (A− S2P 2
)ᵀ
P 1 − P 1

(
A− S2P 2

)
+

P 1S1P 1 −Q1 − P 2S21P 2 = 0 (10.4)

− (A− S1P 1
)ᵀ
P 2 − P 2

(
A− S1P 1

)
+

P 2S2P 2 −Q2 − P 1S12P 1 = 0 (10.5)

with

Si = Bi
(
Rji
)−1

Biᵀ

Sij = Bi
(
Rji
)−1

Rji
(
Rji
)−1

Biᵀ for j �= i
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The following result is well established (see [64]): for a 2-player LQDG
described by (10.1) with (10.2), let P i (i = 1, 2) be a symmetric stabilizing
solution of (10.4) and (10.5).

Note that it is known that (10.4) and (10.5) in general may not be
unique [65]; therefore, we consider only a couple of stabilizing strategies.

Taking

F i∗ :=
(
Rji
)−1

BiᵀP i

for i = 1, 2, then
(
F 1∗, F 2∗) is a feedback Nash equilibrium. The limiting

stationary (Nash) strategies are

ui∗0 (t) = −Rji−1

BiᵀP ix(t) (10.6)

10.2 Disturbances Compensator

Define for each player the next output based sliding function

si
(
yi
)
= Giyi −

t∫

0

(
GiCiAx̂ (τ ) +GiCiBiui0(τ )

)
dτ −Giyi (0) (10.7)

where vector x̂ ∈ R
n is the observer state vector which is designed following

the procedure given in Chap. 4. We define Gi = Di
(
CiB ı̂

)⊥
. Let us remark

that, with this assignation of the matrix Gi, the term
(
CiB ı̂

)⊥
will cancel all

terms related to the opposite player. The matrixDi ∈ R
mi×(pi−mı̂) is assumed

so that the following condition det
(
GiCiBi

) �= 0 is satisfied.
The time derivative of si takes the form

ṡi
(
yi
)
= GiCiA (x− x̂) +GiCiBiui1(t) +GiCiBiγi(t) (10.8)

We propose the control ui1(t) as follows:

ui1(t) = β (t)
(
W i
)−1 si(t)

‖si(t)‖
W i := GiCiBi

(10.9)

The function β (t) should satisfy the inequality

β (t) >
∥
∥GiCiA

∥
∥ ‖x− x̂‖+ γ+

∥
∥W i
∥
∥

An estimation for ‖x− x̂‖ may be done following the procedure given in
Chap. 4. Thus, an ideal sliding mode is achieved for all t ≥ 0. This means
that from the beginning of the game, the ISM strategy for each player com-
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pletely compensates the matched uncertainty. The equivalent control which
maintains the trajectories on the sliding surface is

ui1eq(t) = − (GiCiBi
)−1

GiCiA (x− x̂)− γi(t)

Substitution of the equivalent control in (10.1) yields the sliding mode
dynamic

ẋ(t) = Āx(t) +

2∑

i=1

Bi
((
W i
)−1

GiCiAx̂(t) + ui0(t)
)

(10.10)

y1(t) = C1x(t), y2(t) = C2x(t)

where Ā := A−∑2
i=1

(
W i
)−1

GiCiA.

10.3 Observer Design

Now, for the design of the observer, we follow the method explained in Sects. 3.3
and 4.5. For the design of the observer, anyoneof the outputs can be used.
According to the system we are considering, the vector x̃(t) should be defined
in the following way:

·
x̃(t) = Āx̃(t)+

2∑

i=1

Bi
((
W i
)−1

GiCiAx̂+ ui0(t)
)
+

2∑

i=1

Li
(
yi − Cix̃

)
(10.11)

Thus, with r(t) = x− x̃, from (10.10) and (10.11) we have

ṙ(t) =
(
Ā− LiCi

)
r(t) = Âr(t)

The vectors x
(k)
a are adapted according to the system under consideration

ẋ(k)a (t) = Āx̃+

2∑

i=1

Bi
((
W i
)−1

GiCiAx̂+ ui0(t)
)
+ Li

(
CiL̄i

)−1
v(1)(t)

where L̄i is a matrix of the corresponding dimensions such that det
(
CiL̄i

) �= 0

and x
(1)
a (0) satisfies Cix

(1)
a (0) = yi (0). Besides these two slight modifications,

the observer is designed following the procedure given in Sect. 4.5.
Thus, the control ui (x̂, t) takes the following form:

ui (x̂, t) = −Rji−1

BiTP ix̂− f (t)
(
W i
)−1 si(t)

‖si(t)‖ , i = 1, 2 (10.12)
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10.4 Numerical Simulations

The magnetic bearing system has the following dynamic equations [60]:

ẋ =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
8LoI

2
o

mk2 0 2LoIo
mk2 − 2LoIo

mk2

0 − 2Io
k −kR1

Lo
0

0 2Io
k 0 −kR2

Lo

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
A

x+

⎡

⎢
⎢
⎣

0
0
k
Lo

0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
B1

(
u1 + γ1

)
+

⎡

⎢
⎢
⎣

0
0
0
k
Lo

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
B2

(
u2 + γ2

)

(10.13)
where k = 2go + a, go is the air gap when the rotor is in the position y = 0;
a is a positive constant introduced to model the fact that the permeability of
electromagnets is finite; Lo > 0 is a constant which depends on the system con-
struction; Io is the premagnetization constant; m is the mass of the rotor; and
R1, R2 are the resistances in the first set of stator electromagnets. The state

variables x =
[
y ẏ i1 − Io i2 − Io

]T
and the control inputs u1 = e1 − IoR1

and u2 = e2 − IoR2.
Let us take m = 2kg, L0 = 0.3mH, I0 = 60mA, R1,...,4 = 1Ω, and

k = 0.002m. With

C1 =

⎡

⎣
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎦ , C2 =

[
1 0 0 0
0 0 0 1

]

and the controller parameters R11 = diag
([

1 1
])

; R22 = diag
([

1 1
])

;Q1 =
Q2 = 50I; and R12 = R21 = 1. It can be verified that for this system the
triplet (A,Bi, Ci) does not have invariant zeros.

The initial condition is taken as x(0) =
[
0.0005 0 0.06 0.06

]T
. The pair(

A,C1
)
is observable. Matrices A and L take the following values:

A =

⎡

⎢
⎢
⎣

0 1 0 0
530 0 0.2 −0.2
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , L =

⎡

⎢
⎢
⎣

25 0 0
686 0.2 −0.2
0 10.2 −0.4
0 −0.4 10.8

⎤

⎥
⎥
⎦

The gain L guarantees that the Â = A − LC1 matrix is Hurwitz. Applying
the Lyapunov iteration algorithm [66] we find F 1 =

(
20949 901 10 3

)
and

F 2 =
(−20949 −901 −3 10

)
. The uncertainties are ζ1 (t) = 2 sin(4t) +

2 cos(2t)+1 and ζ2 (t) = 3 cos(5t). The output ISM gains are G1 =
[−1 1 0

]
,

G2 =
[−1 0 1

]
, M1

1 = −10, and M2
1 = −10. The simulation integra-

tion time was 10 μs, i.e., Δ = 10 μs, and the filter constant was chosen as
τ = Δ1/2. Figure 10.2 shows the feasibility of the Robust Nash methodology;
the effects of the perturbations are clearly compensated. The players’ perfor-
mance indexes are shown in Fig. 10.3 and listed in Table 10.1.
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Fig. 10.2. Position of rotor for the perturbed system without compensation (dotted
line) and using Robust Nash strategy (solid line).
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Fig. 10.3. Individual performance index for each player. Perturbed system without
compensation (solid line) and with compensation (dash line).
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Table 10.1. Players’ performance with and without compensation

t (s) Nash strategy Robust Nash strategy

J1(u1
0, u

2
0) J

2(u2
0, u

1
0) J

1(u1
0, u

2
0) J2(u2

0, u
1
0)

0 0 0 0 0

0.5 22.2 22.7 8.1662 7.7529

1 32.5 31.7 8.1698 7.7565

1.5 48.4 56.4 8.1734 7.7601

2 60.4 65.3 8.177 7.7638

2.5 74.1 81.0 8.1806 7.7673

3 85.8 98.3 8.1842 7.7709

3.5 96.5 107.3 8.1878 7.7745

4 115.4 132.7 8.1914 7.7781



Appendix A

Sliding Modes and Equivalent Control Concept

Abstract This chapter presents basic information about equivalent control
method for definition of the conventional sliding mode controllers: Some useful
results about online calculation of equivalent control are presented. When
using SM control, one of the most interesting and even practical problems
appearing is that of finding the trajectory of the state variables, the so-called
sliding equations. A formal approach is through the solution of differential
inclusions in the Filippov sense. However, a simpler way to study the effect
of a discontinuous control acting on a system is the equivalent control method
(ECM), which, for affine systems, in fact turns out to give the same results
as studying differential inclusions in the Filippov sense. Thus, the aim of this
chapter is to introduce a short description of the ECM.

A.1 Introduction

In general, the motion of a control system with discontinuous right-hand side
may be described by the differential equation:

ẋ = f (x, t, u) , x ∈ R
n, u ∈ R

m (A.1)

ui =

{
u+i (x, t) if si > 0
u−i (x, t) if si < 0

for i = 1, . . . ,m

where the vector function s = s (x) defines the sliding manifold S =
{x : s (x) = 0}. It is assumed that f (x, t, u), u+i (x, t), u−i (x, t), and s (x) are
continuous functions of the system state. The motion on the discontinuity
surfaces si (x) = 0 is the so-called sliding mode motion (see Fig. A.1). This
motion is characterized by high-frequency (theoretically infinite) switching of
the control inputs and the fact that, due to changes in the control input, the
function f (x, t, u) on the different side of the discontinuity surface (x1 �= x2)
satisfies the relation f

(
x1, t, u+i

) �= f
(
x2, t, u−i

)
and consequently conditions

for the uniqueness of the solution of the ordinary differential equation do not

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,

Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4962-3,
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Fig. A.1. Sliding motion.

hold in this case. It has been shown that, if a regularization method yields
an unambiguous result, the motion equations on the discontinuity surfaces
exist. A regularization method consists in replacing the ideal motion equa-
tions (A.1) by more accurate ones f (x, t, ũ). These new equations take into
account nonidealities (like hysteresis, delay, etc.) in the implementation of the
control input ũ. The new equations have solutions in the conventional sense,
but nevertheless motion is no longer restricted to the manifold S but instead
evolves in some vicinity Δ (boundary layer) of the manifold. If Δ tends to
zero the motion in the boundary layer tends to the motion of system with the
ideal control. Equations of motion obtained as results of such a limit process
will be regarded as ideal sliding modes. For systems linear with respect to the
control input, regularization allows for substantiation of the so-called equiva-
lent control method which is used as a simple procedure for finding the sliding
mode motion equations.

A.2 Equivalent Control Method

Consider the system described by the following affine system:

ẋ (t) = f (x, t) +B (x, t)u (t) , t ≥ t0 (A.2)

where x ∈ R
n and u ∈ R

m represent the state vector and the control vector,
respectively. Moreover, f (x, t) and B (x, t) are continuous vector and matrix
functions, respectively, with respect to all the arguments. Here, u is to be
designed as a discontinuous control so as to drive the trajectories of (A.2) into
the sliding manifold S and to maintain them there for all future time. The
function s (x) ∈ R

m, which we will call the sliding variable, is to be designed
according to some specific requirements. Once the trajectories of (A.2) are in
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the manifold S, i.e., s (x) = 0, we say that (A.2) is on a sliding mode (SM).
A u achieving the SM will be referred to as a sliding mode control.

Let us assume that if s (x (t)) ≡ 0, then its derivative will also be identical
to zero. Thus, we have that

ṡ (x) =
∂s

∂x
[f (x, t) +B (x, t) u (t)] = 0 (A.3)

Assuming that G (x) := ∂s
∂x fulfills the condition detG (x)B (x) �= 0, and u (t)

taken from (A.3) is the so-called equivalent control, then we have that

ueq (t) = − [G (x)B (x, t)]
−1

[G (x) f (x, t)] (A.4)

What the EC method asserts is that the dynamics of (A.2) can be calculated
by substituting ueq in the place of u, i.e., on the sliding mode, the system is
governed by the following equations:

ẋ = f (x, t)−B (x, t) [G (x)B (x, t)]
−1

[G (x) f (x, t)] (A.5)

Consider then the following simple scalar example:

ẋ (t) = ax (t) + bu (t) + γ (t) (A.6)

where a and b �= 0 are real scalars and γ (t) is a disturbance. Let’s say that
we wish to constrain x (t) to the origin in a finite time and in spite of the lack
of knowledge of γ (t). This can be achieved by selecting u = −b−1M (t) signx
and M (t) > |ax| + |γ (t)|+ ε, for some arbitrarily small ε. By differentiating

V = 1
2 |x|2 we get

V̇ = |x| (ax+ bu+ γ) ≤ − |x| (M (t)− |ax| − |γ|)
≤ − |x| ε = −

√
2ε
√
V

By using the comparison principle, we obtain that

|x (t)|√
2

=
√
V (t) ≤

√
V (t0)− ε√

2
(t− t0) for all t ≥ t0 (A.7)

Since V (t) is by definition a positive function, from (A.7) we can calculate
an upper estimate of the time ts when V (t) vanishes and consequently x (t)
does as well. Consequently, we obtain that

ts ≤
√
2

ε
V (t0) + t0

Thus in this example the EC is obtained from (A.6) when ẋ and x are identical
to zero, i.e., ueq = −b−1γ (t). We immediately notice that the disturbance γ (t)
might be estimated by means of the equivalent control; a way to do it will be
given below.
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Notice that with the control u being a signum function the right-hand side
of (A.6) is not Lipschitz; therefore, we cannot resort to the standard theory of
differential equations. To overcome such a complexity, we can use the theory
of differential inclusions treated extensively in [15]. Thus, we can obtain a
solution of (A.6) in the Filippov sense.

Nevertheless, the effects of real devices, let’s say small delays, uncertainties,
hysteresis, digital computations, etc., always make it impossible to achieve
the identity s (x) ≡ 0, and so the trajectories are constrained to some region
around the origin, i.e., ‖s (x)‖ ≤ Δ. This is why we can ask for the limit
solution of (A.2) when Δ tends to zero. That solution is in fact the solution
of (A.2) on the sliding mode and it will be found using the equivalent control
method, which will be justified by means of Theorem A.1, given below.

Let ũ be a control for which we obtain the boundary layer ‖s (x)‖ ≤ Δ.
We could say that ũ is the real control which we obtain a real sliding mode
with. Thus, the dynamic equations are

ẋ (t) = f (x, t) +B (x, t) ũ (t) (A.8)

Let us denote by x∗ the state vector obtained using the EC method, i.e., the
trajectories whose dynamics is governed by (A.5). Let us assume that the
distance of any point in the set Sr = {x : ‖s (x)‖ ≤ Δ} to the manifold S is
estimated by the inequality

d (x, S) ≤ PΔ, for P > 0

Such a number P always exists if all gradients of functions si (x) are lin-
early independent and are lower bounded in the norm by some positive num-
ber. In fact the first condition follows from the assumption that det (GB) �= 0.

Theorem A.1. Let us assume that the following four conditions are satisfied:

(1) There is a solution x (t) of system (A.8) which, on the interval [0, T ],
fulfills the inequality ‖s (x)‖ ≤ Δ.

(2) For the right-hand part of (A.5), rewritten using x∗ as

ẋ∗ (t) = f (x∗, t)− B (x∗, t) [G (x∗)B (x∗, t)]−1 [G (x∗) f (x∗, t)] (A.9)

a Lipschitz constant exists.
(3) Partial derivatives of the function B (x, t) [G (x)B (x, t)]

−1
with respect to

all arguments exist and are bounded in every bounded domain.
(4) For the right-hand part (A.8) there exist positive numbers M and N such

that
‖f (x, t) +B (x, t) ũ‖ ≤M +N ‖x‖ (A.10)

Then for any pair of solutions to equations (A.9) and (A.8), with their
initial conditions satisfying

‖x (0)− x∗ (0)‖ ≤ PΔ
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there exists a positive number H such that

‖x (t)− x∗ (t)‖ ≤ HΔ for all t ∈ [0, T ]

Proof. For (A.8) we will obtain the following derivative on time of s (x):

ṡ (x) = G (x) f (x, t) +G (x)B (x, t) ũ (t) (A.11)

Since we have assumed that det (GB) �= 0, from (A.11) we obtain that

ũ (t) = [G (x)B (x, t)]
−1
ṡ (x) − [G (x)B (x, t)]

−1
G (x) f (x, t) (A.12)

The substitution of ũ (t) into (A.8) yields

ẋ = f −B [GB]
−1
Gf +B [GB]

−1
ṡ (A.13)

Thus, we have that (A.9) and (A.13) differ from a term depending on ṡ.
By integrating, x∗ and x can be written by the following integral equations:

x∗ (t) = x∗0+

t∫

0

{
f (x∗, τ)−B (x∗, τ) [G (x∗)B (x∗, τ)]−1

[G (x∗) f (x∗, τ )]
}
dτ

(A.14)

x (t) = x0 +

t∫

0

{
f (x, τ )−B (x, τ ) [G (x)B (x, τ )]−1 [G (x) f (x, τ )]

}
dτ

+

∫ t

0

B (x, τ ) [G (x)B (x, τ )]
−1
ṡ (x) dτ (A.15)

Integrating the last term of (A.15) by parts, and taking into account the
hypothesis of the theorem, we can obtain the following estimation of the dif-
ference of the two solutions:

‖x (t)− x∗ (t)‖ ≤ PΔ+

t∫

0

L ‖x (τ )− x∗ (τ )‖ dτ

+
∥
∥
∥B (x, τ ) [G (x)B (x, τ )]−1 s (x)

∥
∥
∥

t

|
0

+

t∫

0

∥
∥
∥
∥
d

dτ
B (x, τ ) [G (x)B (x, τ )]

−1

∥
∥
∥
∥ ‖s (x)‖ dτ (A.16)

By the assumption (A.10), we have that the norm of x (t) is bounded in an
interval [0, T ], indeed, since
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‖x (t)‖ ≤ ‖x (0)‖+MT +

t∫

0

N ‖x (τ )‖ dτ

According to the Bellman–Gronwall lemma (see, e.g., [52]) the following
inequality is satisfied:

‖x (t)‖ ≤ (‖x (0)‖+MT ) eNT , for all t ∈ [0, T ] (A.17)

Thus, by the continuity of f and B, and taking into account hypothesis 3 of
the theorem, the inequality (A.16) may be represented as follows:

‖x (t)− x∗ (t)‖ ≤ QΔ+

∫ t

0

L ‖x (τ )− x∗ (τ )‖ dτ

where Q is a positive number. Using the Bellman–Gronwall lemma once again,
we obtain the inequality

‖x (t)− x∗ (t)‖ ≤ QΔeLT

Taking H = QeLT , the theorem is proven.
�	

Thus, from the theorem we have that limΔ→0 x (t) → x∗ (t) in a finite
interval. This justifies the equivalent control method.

We have said that the equivalent control method might be used to estimate
matched disturbances, as in the example where ueq = −γ. Next, we will see
how to estimate the function ueq by means of a first-order low-pass filter.
We will make use of the following lemma.

Lemma A.1. Let the differential equation be as follows:

τ ż (t) + z (t) = h (t) +H (t) ṡ (A.18)

where τ is a scalar constant and z, h, and s are m-dimensional function
vectors. If the following assumptions are satisfied:

(i) the functions h (t) and H (t) and their first-order derivatives are bounded
in magnitude by a certain number M and

(ii) ‖s (t)‖ ≤ Δ, Δ being a constant positive value,

then, for any pair of positive numbers Δt and ε, there exists a number
δ = δ (ε,Δt, z (0)) such that the following inequality is fulfilled:

‖z (t)− h (t)‖ ≤ ε

provided that 0 < τ ≤ δ, Δ/τ ≤ δ and t ≥ Δt.
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Proof. The solution of (A.18) is as follows:

z (t) = e−t/τz (0) +
1

τ

t∫

0

e−(t−σ)/τ [h (σ) +H (σ) ṡ (σ)] dσ

Integrating by parts we obtain

z (t) = e−t/τz (0) + h (t)− h (0) e−t/τ

−
t∫

0h

e−(t−σ)/τ ḣ (σ) dσ +H (t)
s

τ
−H (0) e−t/τ s (0)

τ

− 1

τ

t∫

0

e−(t−σ)/τ

[

Ḣ (σ) +
1

τ
H (τ )

]

s (σ) dσ

Then, by assumptions (i) and (ii), we deduce the following inequality:

‖z (t)− h (t)‖ ≤ ‖z (0)− h (0)‖ e−t/τ +Mτ +
2MΔ

τ
+MΔ+

MΔ

τ

Grouping similar terms together yields

‖z (t)− h (t)‖ ≤ ‖z (0)− h (0)‖ e−t/τ +M (τ +Δ) + 3M
Δ

τ
(A.19)

Therefore, it is easy to conclude from (A.19) that for any positive number Δt,
the following identity is achieved:

lim
τ→0

Δ/τ→0

z (t) = h (t) for all t ≥ Δt (A.20)

Thus, the lemma is proven.
�	

From (A.20), we see that Δ should be much smaller than τ in order to
achieve a good estimation of h (t) by means of z (t). Furthermore, (A.19) gives
us a more qualitative expression to measure the effect of τ on the estimation.
That is, there we can see that if τ is too small, then the term depending on
the difference on the initial conditions could be considered negligible, i.e., z (t)
reaches rapidly a neighborhood around h (t) of order O (τ +Δ) + O

(
Δ
τ

)
. In

this case, if Δ is not much smaller than τ , then the neighborhood around
h (t) will be big. On the other hand if Δ << τ , but τ is not too small, then
z (t) would take some time before reaching a small neighborhood around h (t).
That is why we can say that an ‘ideal’ case is when Δ << τ << 1.

Thus, the filter designed as

τuav (t) + uav (t) = ũ (t) (A.21)
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can be used to estimate ueq. Indeed, from (A.4) and (A.12), (A.21) takes the
form

τuav (t) + uav (t) = ueq + [G (x)B (x, t)]−1 ṡ (x) (A.22)

Hence, by comparing (A.18) with (A.22), lemma implies that

lim
τ→0

Δ/τ→0

uav = ueq for t ∈ (0, T ] (A.23)

provided that ueq and (GB)
−1

are bounded and have bounded derivatives,
which is fulfilled if conditions of Theorem A.1 are fulfilled.

Remark A.1. Let us assume that Δ is known (which in general might not be

true). Then, we could select τ = Δ1/r (r > 1), implying that Δ/τ = Δ
r−1
r .

Thus, asΔ tends to zero,Δ/τ tends to zero also. Therefore, in that case, (A.23)
is still satisfied. For the same qualitative arguments given above, a good
estimation of ueq using uav is obtained when Δ << τ << 1. When r is
close to 1 then τ is close to Δ; therefore, r near 1 is not a good selection.
On the other hand, for r >> 1, τ is close to 1; then in that case r is not a
good choice either. By selecting r = 2, we obtain, for Δ small enough, that
Δ << τ << 1. Hence, selecting τ = Δ1/2 and provided that Δ is much
smaller than 1, we obtain a good estimation of ueq.



Appendix B

Min–Max Multimodel LQ Control

Abstract This chapter develops a numerical method for the optimal weight
adjustment for the min–max LQ problem, where “max” is taken over a finite
set of indices (models) and “min” is taken over the set of admissible con-
trols. The control turns out to be a linear combination of the controls that
are each one an optimal control when each model is considered individually.
Dealing with the control design for some uncertain systems, there exist sit-
uations when the model of the system cannot be defined exactly since the
more adequate model can depend on several possible scenarios. In this case
the control can be designed as a multimodel control. To design such control,
the min–max approach has been suggested where “max” is taken over all pos-
sible models (scenarios) and “min” is taken over all admissible controls. Such
robust optimal control is shown to be a weighted combination of the controls
optimal for each individual model. Hence, the problem is reduced to a finite-
dimensional optimization problem since this robust optimal control depends
on a weighting vector belonging to the N-dimensional simplex which should
be selected providing a minimal value for the original worst LQ functional.
Finding an analytical expression for this function as a function of the weights
seems to be a very difficult task. In the simplest cases with two (N = 2) and
three (N = 3) models, such expression can be easily obtained in a graphic
form using a standard PC. However, for more complex situations (N ≥ 4),
such cannot be realized. That is why here we give a numerical procedure for
the corresponding weight adjustment (optimization).

B.1 Multimodel System

Let us consider a set of linear state models given by

ẋα (t) = Aα (t)x (t) +Bα (t)u (t) + dα(t), xα(0) = xα0 (B.1)

L. Fridman et al., Robust Output LQ Optimal Control via Integral Sliding Modes,
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where the index α belongs to a finite set, that is, α ∈ 1, N (N is a positive
integer), xα (t) , dα (t) ∈ R

n, u (t) ∈ R
m, and Aα (t), Bα (t), and dα(t) are

known continuous functions on t ∈ [0, T ]. Let us define the performance
index as

hα :=
1

2
(xα (tf ) , G

αxα (tf )) +
1

2

tf∫

t=0

[(xα (t) , Qαxα (t)) + (u (t) , Ru (t))] dt

(B.2)
where Qα ≥ 0, Gα ≥ 0, and R > 0. The min–max linear quadratic (LQ)
control problem is formulated as

u∗ = min
u∈Rm

max
α∈1,N

hα. (B.3)

The solution of this problem is as follows.1 Define the extended system

ẋ(t) = Ax(t) +Bu(x,t) + d

where

x :=

⎡

⎢
⎣

x1

...
xN

⎤

⎥
⎦ , A := diag

(
A1 (t) , . . . , AN (t)

)

B :=

⎡

⎢
⎣

B1 (t)
...

BN (t)

⎤

⎥
⎦ , d :=

⎡

⎢
⎣

d1 (t)
...

dN (t)

⎤

⎥
⎦

Q := diag (Q1, . . . , QN) , G := diag (G1, . . . , GN )
Λ := diag (λ1In×n, . . . , λNIn×n)

(B.4)

where λ = (λ1, . . . , λN ) belongs to the simplex S
N defined as follows:

S
N =

{

λ ∈ R
N : λi ≥ 0,

N∑

i=1

λi = 1

}

Then, the robust optimal control realizing (B.3) is of the form

u = −R−1Bᵀ (Pλx+ pλ) (B.5)

where the matrix Pλ= PT
λ ∈ R

nN×nN is the solution of the parameterized
differential matrix Riccati equation:

Ṗλ+PλA+ATPλ−PλBR
−1BTPλ+ΛQ = 0; Pλ (T ) = ΛG (B.6)

1For details of how the solution of the problem can be found see Chap. 5.
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and the shifting vector pλ ∈ R
nN satisfies

ṗλ+Aᵀpλ−PλBR
−1Bᵀpλ +Pλd = 0; pλ (T ) = 0

Thus, the solution of (B.3) is reduced to finding the optimal weighting
vector λ∗ which solves the following finite-dimensional optimization problem:

λ∗ = arg min
λ∈SN

J (λ) (B.7)

J (λ) := max
α=1,N

hα =
1

2
xT (0)Pλ (0)x (0) + xT (0)pλ (0)+

+
1

2
max
α=1,N

⎡

⎣xαT (tf )G
αxα(tf ) +

tf∫

t=0

xαT (t)Qαxα(t)dt

⎤

⎦−

−1

2

N∑

α=1
λi

⎡

⎣xαT (tf )G
αxα(tf ) +

tf∫

t=0

xαT (t)Qαxα(t)dt

⎤

⎦+

+
1

2

tf∫

t=0

pT
λ

[
2d−BR−1BTpλ

]
dt

(B.8)

B.2 Numerical Method for the Weight Adjustment

The next step is to develop a numerical method which allows to find the
optimal weighting vector λ∗ for any finite number N of possible models (or
scenarios).

Lemma B.1. Let λ∗ be a minimum point, that is, J (λ∗) ≤ J (λ) for all
λ ∈ S

N . Then, for any active index α ∈ 1, N such that 1 ≥ λ∗α > 0, the
functional hα (λ∗) satisfies the following equality:

hα (λ∗) = J (λ∗) (B.9)

and for all inactive indices α such that λ∗α = 0

hα (λ∗) ≤ J (λ∗) (B.10)

Proof. Suppose that for a j ∈ 1, N we have hj (λ∗) > J (λ∗). Then

J (λ∗) = max
α∈1,N

hα (λ∗) ≥ hj (λ∗) > J (λ∗)

which leads to a contradiction. Hence, for all indices α, it follows that
hα (λ∗) ≤ J (λ∗). The result (B.9) for active indices follows directly from
the complementary slackness condition established in [53] (see also Chap. 5).

�	
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Corollary B.1. The optimal performance index J (λ∗) can be represented as

J (λ∗) =
1

2
xT (0)Pλ∗ (0)x (0) + xT (0)pλ∗ (0)+

+
1

2

tf∫

t=0

pT
λ∗ (t)

[
2d (t)−B (t)R−1BT (t)pλ∗ (t)

]
dt

(B.11)

Proof. Adding and subtracting the integral of uT (t)Ru (t) in (B.8), we get

J (λ) =
1

2
xT (0)Pλ (0)x (0) + xT (0)pλ (0)+

+

[

J (λ)−
N∑

i=1

λαh
α (λ)

]

+
1

2

tf∫

t=0

pT
λ

[
2d−BR−1BTpλ

]
dt

Therefore, taking λ = λ∗, in view of (B.9), and since
N∑

α=1
λα = 1, we find that

J (λ∗) =
N∑

i=1

λ∗αhα (λ∗). Hence the performance index J (λ∗) is exactly as it is

expressed in (B.11).
�	

Corollary B.2. If the vector λ∗ is a minimum point, then for any γ > 0

λ∗ = π {λ∗ + γh (λ∗)} (B.12)

where π {·} is the projector to the simplex S
N , that is,

‖π {x} − x‖ < ‖λ− x‖ for any λ ∈ S
N , λ �= π {x}

and h (λ) ∈ R
N is the vector whose ith term is the performance functional hi,

i.e.,

h (λ) =

⎡

⎢
⎣

h1 (λ)
...

hN (λ)

⎤

⎥
⎦

Proof. Since S
N is a closed convex set, the following property holds:

for any x ∈ R
n, μ = π {x} ⇐⇒ (x− μ, λ− μ) ≤ 0 for all λ ∈ S

N (B.13)

Let λ∗ij , j = 1, r be the components of λ∗ different from zero and λ∗ik k =

r + 1, N be the components of λ∗ equal to zero. Thus, taking into account
Lemma B.1 and since λik − λ∗ik ≥ 0 (λ∗ik = 0), we obtain
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(λ∗ + γh (λ∗)− λ∗, λ− λ∗) =

= γ

[

J (λ∗)
r∑

j=1

(
λij − λ∗ij

)
+

N∑

k=r+1

hik (λ∗)
(
λik − λ∗ik

)
]

≤

≤ γJ (λ∗)

[
r∑

j=1

(
λij−λ∗ij

)
+

N∑

k=r+1

(
λik−λ∗ik

)
]

= γJ (λ∗)
N∑

j=1

(
λij−λ∗ij

)
= 0

(B.14)
for all λ ∈ S

N . Thus, by (B.13), (B.14) implies λ∗ = π {λ∗ + γh (λ∗)}.
�	

In [53] (see Chap. 5) it was shown that the control u (x,t) designed as
in (B.3) is the combination (where the weights are the components λα) of
the controls optimal for each individual model. Hence, it seems to be clear
that a bigger weight λα of the control, optimizing the α-model, implies a
better (smaller) performance index hα (λ). This fact may be expressed in the
following manner: if λ�α �= λ��α

(
λ�α − λ��α

) [
hα
(
λ

�

)
− hα

(
λ

��

)]
< 0 (B.15)

for any λ� �= λ�� ∈ S
N . Adding (B.15) on α ∈ 1, N leads to the following

condition which we will accept as an assumption.

A6.1 For any λ� �= λ�� ∈ S
N the following inequality holds
(
λ� − λ��,h

(
λ

�

)
− h
(
λ

��

))
< 0 (B.16)

and the identity in (B.16) is possible only if λ� = λ��.

Proposition B.1. Under A6.1, the functional J (λ) has a unique minimum
point λ∗.

Proof. We will show that if λ̃ differs from λ∗, then λ̃ does not satisfy the
identity (B.12).

Let us assume that λ̃ �= λ∗. Then (B.14) implies

(
λ̃+ γh

(
λ̃
)
− λ̃, λ∗ − λ̃

)
≥

≥ γ
[(

h
(
λ̃
)
, λ∗ − λ̃

)
+
(
h (λ∗) , λ̃− λ∗

)]
= γ
(
h
(
λ̃
)
− h (λ∗) , λ∗ − λ̃

)

(B.17)
On the other hand, A6.1 yields the following:

γ
(
h
(
λ̃
)
− h (λ∗) , λ∗ − λ̃

)
= −γ

(
λ̃− λ∗,h

(
λ̃
)
− h (λ∗)

)
> 0 (B.18)

Both (B.17) and (B.18) imply

(
λ̃+ γh

(
λ̃
)
− λ̃, λ∗ − λ̃

)
> 0 (B.19)
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Nevertheless, (B.19) means that λ̃ �= π
{
λ̃+ γh

(
λ̃
)}

[see (B.13)]. Therefore,

by Corollary B.2, we can deduce that λ̃ is not a minimum point.
�	

Now, we are ready to present a numerical method for the adjustment of
the weight vector λ.

B.2.1 Numerical Method

Define the sequence of vectors
{
λk
}
as

λk+1 = π

⎧
⎨

⎩
λk +

γk

J
(
λk
)
+ ε

h
(
λk
)
⎫
⎬

⎭
, λ0 ∈ S

N , k = 0, 1, 2, . . .

h
(
λk
)
=
[
h1
(
λk
)
· · · hN

(
λk
)]T

J
(
λk
)
:= max

α∈1,N
hα
(
λk
)

(B.20)

where ε is an arbitrary strictly positive (small enough) constant.

Theorem B.1. Let λ∗ be the minimum point for J (λ). If

(1) the sequence
{
λk
}

is generated by (B.20)

(2) A6.1 holds
(3) there exists a constant L such that for all α ∈ 1, N and for any μ, λ ∈ S

N

|hα (μ)− hα (λ)| ≤ J (λ)L |μ− λ|

(4) the gain sequence
{
γk
}
satisfies

γk > 0,

∞∑

k=0

γk = ∞,

∞∑

k=0

(
γk
)2
<∞

then

lim
k→∞

λk = λ∗. (B.21)

Proof. For vk := λk − λ∗, in view of (B.12) and the property of projection
‖π {x} − π {y}‖ ≤ ‖x− y‖ for all x, y ∈ R

N , we obtain
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∥
∥vk+1

∥
∥2 =

∥
∥
∥
∥
∥
∥
π

⎧
⎨

⎩
λk +

γk

J
(
λk
)
+ ε

h
(
λk
)
⎫
⎬

⎭
− λ∗

∥
∥
∥
∥
∥
∥

2

=

=

∥
∥
∥
∥
∥
∥
π

⎧
⎨

⎩
λk +

γk

J
(
λk
)
+ ε

h
(
λk
)
⎫
⎬

⎭
− π

⎧
⎨

⎩
λ∗ +

γk

J
(
λk
)
+ ε

h (λ∗)

⎫
⎬

⎭

∥
∥
∥
∥
∥
∥

2

≤

≤
∥
∥
∥
∥
∥
∥
vk +

γk

J
(
λk
)
+ ε

[
h
(
λk
)
− h (λ∗)

]
∥
∥
∥
∥
∥
∥

2

=

=
∥
∥vk
∥
∥2 +

(
γk
)2

J2
(
λk
)
+ 2J

(
λk
)
ε+ ε2

∥
∥
∥h
(
λk
)
− h (λ∗)

∥
∥
∥
2

+

+2
γk

J
(
λk
)
+ ε

(
vk,h

(
λk
)
− h (λ∗)

)
≤

≤ ∥∥vk∥∥2
(
1 +
(
γk
)2
L2
)
+ 2

γk

J
(
λk
)
+ ε

(
vk,h

(
λk
)
− h (λ∗)

)
≤

≤ ∥∥vk∥∥2
(
1 +
(
γk
)2
L2
)
.

(B.22)

In the last inequality of (B.22) we have used A6.1. Define the new variable
wk by

wk :=
∥
∥vk
∥
∥2

∞∏

s=k

[
1 + (γs)

2
L2
]
.

With the previous definition of wk, (B.22) implies

wk+1 :=
∥
∥vk+1

∥
∥2

∞∏

s=k+1

[
1 + (γs)

2
L2
]
≤

≤ ∥∥vk∥∥2
(
1 +
(
γk
)2
L2
) ∞∏

s=k+1

[
1 + (γs)

2
L2
]
= wk

which means (by Weierstrass theorem) that the sequence
{
wk
}
converges and,

hence, implies the existence of the limit

w := lim
k→∞

wk = lim
k→∞

∥
∥vk
∥
∥2

Nevertheless, from (B.22), we also have the inequality

2
γk

J
(
λk
)
+ ε

∣
∣
∣
(
vk,h

(
λk
)
− h (λ∗)

)∣
∣
∣ ≤
∥
∥vk
∥
∥2
(
1 +
(
γk
)2
L2
)
− ∥∥vk+1

∥
∥2 =

wk − wk+1

∞∏

s=k+1

[
1 + (γs)2 L2

] ≤ wk − wk+1
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Summation of it by k from 0 up to ∞ yields

2

∞∑

k=0

γk

∣
∣
∣
(
vk,h

(
λk
)
− h (λ∗)

)∣∣
∣

J
(
λk
)
+ ε

≤ w0 − w <∞

In view of the property

∞∑

k=0

γk = ∞, it follows that there exists a subsequence

kt (t = 1, 2, . . .) such that

∣
∣
∣
(
vkt ,h

(
λkt

)
− h (λ∗)

)∣∣
∣

J
(
λkt

)
+ ε

−→
t→∞ 0 (B.23)

Since J
(
λkt

)
is bounded, then, by (B.16), the limit in (B.23) implies that

λkt −→
t→∞ λ∗, or, equivalently,

lim
t→∞wkt = lim

t→∞
∥
∥vkt
∥
∥2 = 0

Since
{
wk
}
converges to w, all its subsequences converge to the same limit,

which in turn implies that w = 0. Theorem is proven.
�	

B.3 Example

The following example illustrates the proposed numerical method (B.20) in
the case N = 3 where the parameters of possible models are as follows:

A1 =

⎡

⎣
−2 0.5 1
0.5 1.2 −2
1 2 −1.5

⎤

⎦ , A2 =

⎡

⎣
−0.3 1.5 −0.15
−1 0.12 2
1 2 −3

⎤

⎦ , A3 =

⎡

⎣
0.4 −1 0.3
0.5 −0.4 0.3
0.5 0.6 −1

⎤

⎦

B1 =

⎡

⎣
0.5
1
1

⎤

⎦ , B2 =

⎡

⎣
1.5
−2
1

⎤

⎦ , B3 =

⎡

⎣
0.5
0.2
1

⎤

⎦

d1 =

⎡

⎣
0.1
0.05
0.01

⎤

⎦ , d2 =

⎡

⎣
0.1 sin (t)
0.2 sin (t/2)

0.1

⎤

⎦ , d3 =

⎡

⎣
0.1

0.05 cos (t)
0.1

⎤

⎦

For simulation purposes, we select matrices Qα = Gα = I, R = 1. Using the

gain-step sequence
{
γk
}
given in (B.20) with γk =

1

k + 1
(k = 0, 1, 2, . . .), we
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obtained the results presented in Table B.1. There, the values of the vector

λk and the performance index hα
(
λk
)
are shown for each iteration k.

From Table B.1, one can see that the weights practically converge after 10
iterations. Since all indices are active (λ∗α > 0), all performance functionals

hα
(
λk
)

practically turn out to be equal after 40 iterations. Thus, we have

λ∗ � (0.072035, 0.296663, 0.631301). The control law u = u (λ∗) is depicted in
Fig. B.1. Figures B.2–B.4 show the trajectories of xα for α = 1, 2, 3.

Table B.1. Values of λk and hα
(
λk

)

k λ1 λ2 λ3 h1 h2 h3 J

1 0.5 0.4 0.1 116.060 109.897 977.037 977.037

2 0.208365 0.102057 0.689576 236.303 1116.18 310.533 1116.18

3 0.065899 0.353738 0.580362 489.798 349.164 503.783 503.783

4 0.093832 0.288619 0.617548 360.415 462.742 460.030 462.742

5 0.057465 0.307535 0.634999 555.476 432.953 451.644 555.476

6 0.084632 0.290587 0.624780 393.174 461.878 455.737 461.878

7 0.068843 0.299589 0.631567 471.404 447.301 453.104 471.404

8 0.073125 0.296569 0.630305 446.649 452.593 453.386 453.386

9 0.071960 0.297042 0.630997 453.083 451.886 452.979 453.083

10 0.072066 0.296855 0.631077 452.488 452.251 452.875 452.875
...

...
...

...
...

...
...

...

31 0.072036 0.296664 0.631299 452.660 452.656 452.665 452.665

32 0.072036 0.296664 0.631299 452.661 452.657 452.664 452.664

33 0.072036 0.296663 0.631300 452.666 452.658 452.664 452.665

34 0.072036 0.296663 0.631300 452.661 452.658 452.664 452.664

35 0.072036 0.296663 0.631300 452.660 452.658 452.664 452.664

36 0.072035 0.296663 0.631300 452.660 452.660 452.663 452.663

37 0.072035 0.296663 0.631300 452.661 452.659 452.663 452.663

38 0.072035 0.296663 0.631300 452.660 452.660 452.663 452.663

39 0.072035 0.296663 0.631301 452.662 452.659 452.663 452.663

40 0.072035 0.296663 0.631301 452.662 452.659 452.663 452.663
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Fig. B.1. Control law u for λ∗.
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Fig. B.2. Trajectories of the state corresponding to α = 1.
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Fig. B.3. Trajectories of the state corresponding to α = 2.

0 2 4 6 8 10
−10

−5

0

5

10

15

Time [s]

T
ra

je
ct

or
ie

s 
fo

r 
x3

Fig. B.4. Trajectories of the state corresponding to α = 3.



Notations

ODE - Ordinary differential equation
SM - Sliding mode
ISM - Integral sliding mode
OISM - Output integral sliding mode
R - The field of real numbers
R

n - The vector space of dimension equal to n
C - The field of complex numbers
C

− - The set of complex numbers with negative real part
(x, y) = xT y

‖x‖ =
√
xTx (the Euclidean norm)

φ (t) - Represents a matched uncertainty, i.e., φ (t)=Bγ (t)
for some function γ (t)

diag (X1, X2, . . . , Xr) - A block diagonal matrix with the matrices
X1, X2, to Xr in the main diagonal blocks
and zeros elsewhere

B� - The transpose of B matrix
B⊥ - A matrix whose transposed rows form a

basis of the orthogonal space of ImB (B⊥B = 0)
B+ - The Moore–Penrose pseudoinverse of B
Im - Identity matrix of dimension m by m
Pλ - Parameterized Riccati matrix
s (x) - Sliding variable
ueq - Equivalent control.
λmax (A) - The greatest eigenvalue of the square A matrix
λmin (A) - The lowest eigenvalue of the square A matrix
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