
Algorithms and Combinatorics 29

Marcus Brazil
Martin Zachariasen

Optimal
Interconnection
Trees in the
Plane
Theory, Algorithms and Applications

Algorithms and Combinatorics

Volume 29

Editorial Board

Ronald Graham
Bernhard Korte
László Lovász
Avi Wigderson
William J. Cook
Günter M. Ziegler

More information about this series at
http://www.springer.com/series/13

http://www.springer.com/series/13

Marcus Brazil � Martin Zachariasen

Optimal Interconnection
Trees in the Plane
Theory, Algorithms and Applications

123

Marcus Brazil
The University of Melbourne
Department of Electrical and

Electronic Engineering
Parkville
Victoria
Australia

Martin Zachariasen
University of Copenhagen
Department of Computer Science (DIKU)
Copenhagen
Denmark

ISSN 0937-5511 ISSN 2197-6783 (electronic)
Algorithms and Combinatorics
ISBN 978-3-319-13914-2 ISBN 978-3-319-13915-9 (eBook)
DOI 10.1007/978-3-319-13915-9

Library of Congress Control Number: 2015937188

Mathematics Subject Classification (2010): 05C05; 05C40; 68R10; 90C35

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.springer.com

To Jacinta and Elin

Preface

Physical networks are pervasive in our society. They range from the traditional
copper networks in telecommunications to the modern optical cable networks used
for broadband communications; from the microscopic networks of interconnect
within a microchip to the invisible wireless networks used by sensors and mobile
phones. Roads and rail are examples of networks, as are the systems of pipes
for water distribution, or the systems of high and low voltage cables for power
distribution. All of these networks are vital for the smooth functioning of our society,
but they are often costly from either an economic or environmental point of view.
This book studies the fundamental problem of how we can design networks of these
types that are functional but as cost-efficient as possible.

There are two essential aspects to efficient network design: the combinatoric and
the geometric. The combinatoric aspect is about making decisions which involve
choices from a finite (but possibly extremely large) set of possibilities. For example,
if we define the topology of a network as the pattern of interconnections within
the network or, equivalently, as its underlying graph structure, then the problem
of determining the correct topology for an optimal network is combinatoric. The
geometric aspect is about those design decisions which rely on the mathematical
properties of the space in which the network sits, and which generally range over
a continuous set of possibilities. For example, finding the optimal location of a
junction or relay within a network is a geometric problem.

Although there are many books on network optimisation, most focus exclusively
on the combinatorial aspects of the problem, using a wealth of techniques from
graph theory and operations research. Such an approach works particularly well in
cases where the network is constrained to fitting into a given physical infrastructure,
such as multicast routing over the Internet. There are, however, a very few books
that consider, in any depth, the geometric aspects of optimal network design, and
none that covers the exciting advances in the field over the past 15–20 years. The
aim of this book is to fill this gap in the literature in an accessible and illuminating
way.

This book explores some of the fundamental aspects of geometric network
optimisation with applications to a range of real-world problems. At the simplest

vii

viii Preface

level, these problems involve taking a given set points at known locations in a metric
space and designing a network that interconnects the points while minimising a
given cost function. It is assumed that this cost function depends on aspects of the
geometry of the network, such as the lengths and embeddings of arcs. Without any
further constraints, such optimal networks are almost always trees, i.e., networks
containing no cycles. For this reason, we restrict ourselves in this book to properties
of trees. We also assume that although an optimal tree must interconnect, and hence
contain as nodes, a given set of embedded points, it may also contain other nodes
whose potential locations are essentially unconstrained. These extra, variable nodes
are usually referred to as Steiner points (after the nineteenth century mathematician,
Jacob Steiner), and the problem of constructing such optimal trees is known as the
(geometric) Steiner tree problem. The nature of the Steiner tree problem depends
very much on the underlying metric space and the definition of the cost function.

In this book we focus principally on the geometric structure of optimal Steiner
trees in the plane, under a range of metrics and cost functions, and on how
this understanding of the structure can be used to design practical algorithms for
constructing exact solutions to the Steiner tree problem. Almost all Steiner tree
problems are known to be intrinsically difficult, in the sense that they belong to the
class of NP-hard problems, a class for which polynomial-time solutions are believed
not to exist. Nevertheless, the strongly constrained geometric structure exhibited
by minimum Steiner trees in many metrics makes it possible to design algorithms
for exactly solving the Steiner tree problem that often perform extremely well in
practice.

Our decision to restrict the focus of this book to exact algorithms reflects
our interest in understanding the mathematical structure of optimal Steiner trees
in as much depth as possible. One of the great breakthroughs in this area over
the last 20 years has been the development of the GeoSteiner optimisation tool
at the University of Copenhagen. By cleverly exploiting both local and global
structural properties of minimum Steiner trees, this software is able to exactly
solve the Steiner tree problem for thousands of given points in a range of metric
environments. GeoSteiner shows the power of rigorous mathematical analysis in
helping design fast practical algorithms that achieve the best results possible. Of
course we recognise that heuristics and approximation algorithms also have an
important role (and indeed may be employed by exact algorithms to provide good
upper bounds), but a detailed discussion of these sorts of techniques is left for
another place.

One of the important aims of this book is to bring together the somewhat
disparate literature on Steiner trees into a common framework to build a cohesive
mathematical theory for the area. In doing so, we have tried to develop a con-
sistent language and viewpoint for describing the theory for different metrics and
constraints. Where possible we have also tried to draw useful connections between
related topics, such as using the general canonical forms for minimum Steiner trees
under fixed orientation metrics to better understand the well-known Hwang form for
minimum rectilinear Steiner trees, to give just one example.

Preface ix

Structure and Features of the Book

This book consists of four main chapters on geometric Steiner tree problems,
followed by a short final chapter on the Steiner tree problem in graphs. Chapter 1
begins with a comprehensive study of the Euclidean Steiner tree problem. This is the
most intuitively appealing of the Steiner tree problems and the one with the longest
history. The first two sections of this chapter present the fundamental theory, which
then leads into topics including computational complexity, algorithmic approaches
and special cases. The chapter then looks at how some of the fundamental properties
of Euclidean Steiner trees can be generalised to arbitrary norms, establishing some
key general properties which are drawn on in the later chapters.

Chapter 2 covers the comparatively recent theory of Steiner trees for fixed
orientation metrics. This is equivalent to solving the Steiner tree problem under a
norm in which the unit ball is a centrally symmetric polygon. The chapter builds on
some of the more general properties of normed Steiner trees from Chap. 1. Here the
fundamental theory is developed in the first three sections, followed by discussions
of global properties and algorithms.

The rectilinear Steiner tree problem, which is the most important form of
the Steiner tree problem in terms of current applications (mostly involving the
design of microchips), is the subject of Chap. 3. We have attempted to make
this chapter reasonably self-contained, although a familiarity with some of the
concepts in Chap. 2, such as direction sets and canonical forms, is assumed. Here
the fundamental properties are described in the first section, followed by global
properties, two different algorithmic approaches and a discussion of special sets of
points for which polynomial-time algorithms exist.

Chapter 4 features four variants of the Steiner problem with cost functions
other than those discussed in the first three chapters, and in some cases with extra
constraints. Each of these variants is interesting from both a theoretical and an
applications point of view. The main topics covered in this chapter are the gradient-
constrained Steiner tree problem, which is another example of a Steiner tree problem
in a normed plane with interesting properties and applications; the obstacle-avoiding
Steiner tree problem, in a comprehensive new treatment; Steiner tree problems
in which there is a fixed bound on the number of Steiner points, including the
geometric bottleneck Steiner tree problem; and problems involving Steiner trees
minimising flow costs, such as Gilbert trees. The chapter concludes with a brief
discussion of some related problems.

Finally, Chap. 5 is a brief survey of some of the main properties and algorithms
connected with the Steiner tree problem in graphs and hypergraphs. The problems
in this chapter are somewhat different from those in the rest of the book, as they are
purely combinatorial. This chapter has been included for completeness and because
some of the results on hypergraphs are crucial ingredients in the concatenation phase
of the GeoSteiner algorithm discussed in the earlier chapters.

x Preface

Some of the other features of this book include:

• Sections on applications and extensions. Each chapter, or in the case of Chap. 4
each main section, concludes with a section in which we discuss a range of
real-world and mathematical applications, as well as extensions. The extensions
include additional constraints and generalisations to higher dimensions.

• Colour figures. Many of the geometrical concepts underlying the mathematical
formulations and proofs in this book are highly visual in nature. To make the
mathematical ideas as accessible as possible, we have used a consistent visual
language in the figures and have made extensive use of colour to help clarify
the concepts and constructions. We are grateful to our publisher, Springer, for
supporting our use of colour printing throughout the book.

• Exercises. This book is suitable for use as a teaching text at a graduate level. To
help facilitate this, we have included exercises at the end of each chapter. Almost
all exercises are referenced in the main text.

• Index. The book has a comprehensive index. Note, however, that the index does
not record every instance of a term or concept, but rather points to the first
introduction or definition of a concept (or in a few cases also to a significant
reintroduction). In this way, the index acts more as a sort of glossary than as a
conventional index.

Background and Supplementary Reading

One of the great attractions of the Steiner tree problem is that it is easy to state
and understand but very challenging to solve. Nevertheless, most variants of the
problem can be effectively tackled using classical techniques from computational
geometry, combinatorics and discrete mathematics. We assume the reader of this
book has a good undergraduate background in mathematics, including areas such
as graph theory, discrete mathematics and metric spaces, and in computer science,
including topics such as computational complexity and algorithm design. Beyond
these background requirements, we have attempted to make the book reasonably
self-contained.

Some useful background textbooks include: Introduction to Graph Theory, by
West [397]; Metric Spaces, by O’Searcóid [342]; Introduction to Algorithms, by
Cormen et al. [121]; and the classic book on computational complexity, Computers
and Intractability: A Guide to the Theory of NP-Completeness, by Garey and
Johnson [170]. For those who wish to know more about Minkowski spaces,
we recommend the book, Minkowski Geometry, by Thompson [367], and for a
comprehensive treatment of combinatorial optimisation we suggest Combinatorial
Optimization: Theory and Algorithms, by Korte and Vygen [237].

Preface xi

For supplementary reading, we suggest the following books and monographs:
The Steiner Tree Problem, by Hwang et al. [211]—this was the first major study of
geometric and combinatorial Steiner tree problems, but is now more than 20 years
old; On Optimal Interconnections for VLSI, by Kahng and Robins [229], which
describes, from a geometric perspective, algorithms for high-performance, high-
density interconnections during the routing phases of circuit layout, including
heuristics for the rectilinear Steiner problem; The Steiner Tree Problem: A Tour
Through Graphs, Algorithms, and Complexity, by Prömel and A. Steger [316],
which includes a detailed treatment of the Steiner tree problem in graphs; Geometric
Spanner Networks, by Narasimhan and Smid [290], on the closely related network
optimisation problem of constructing geometric spanners; and Steiner Tree Prob-
lems in Computer Communication Networks, by Du and Hu [134], which considers
a range of Steiner tree problems, though almost exclusively from a combinatorial
point of view.

Acknowledgements The authors wish to thank all of the many people associated with the
production of this book. These include:

• Ron Graham and Jens Vygen, who encouraged and supported the project. Both were official
opponents of the second author’s Doctor of Science Dissertation, ‘Fixed Orientation Intercon-
nection Problems: Theory, Algorithms and Applications’ [431], and both urged him to convert
the dissertation into a ‘real book’ about the Steiner tree problem and related research, which,
after 2 years of work, has resulted in this current volume. We are also grateful to Jens Vygen
for inviting us to visit the Research Institute for Discrete Mathematics, University of Bonn, for
3 weeks in 2012.

• Stephan Held, Stefan Hougardy, Tim Nieberg, Dirk Müller and others at the Research
Institute for Discrete Mathematics, University of Bonn, for helpful discussions on VLSI design
optimisation and for providing feedback on our sections on applications to microchip design.

• Pawel Winter, David Warme, Rasmus Fonseca, Daniel Juhl, Ray Booth, Christian Wulff-Nilsen
and a number of anonymous referees at Springer, for reading and providing helpful comments
on early drafts of the book.

• Pimin Kefaloukos for helping produce Fig. 1.6. Almost all of the other figures in this book were
constructed by the authors using the IPE extensible drawing software developed by Otfried
Cheong.

• Martin Peters, Ruth Allewelt, Torrey Adams and the editorial team at Springer, who have always
been enthusiastic, patient and supportive.

• Our many Steiner colleagues whose collaborations with us, both published and unpublished,
we have drawn upon in this book. These colleagues include Pawel Winter, Hyam Rubin-
stein, Doreen Thomas, Nick Wormald, David Warme, Benny Nielsen, Marcus Volz, Konrad
Swanepoel, Charl Ras and many others. We pay special tribute to our esteemed colleague and
friend Jia Weng, who passed away in March 2014, having just celebrated his 76th birthday.

• Our families: Jacinta, Reuben and Natasha (in Melbourne) and Elin (in Copenhagen).

The first author also wishes to thank the Department of Computer Science DIKU, University of
Copenhagen, which hosted a visit to Denmark for 3 months in 2012 and another 1-month visit in
2014. Some of the work on this book was supported by a Discovery Grant from the Australian
Research Council and by a grant awarded under the Melbourne Research Grant Support Scheme
from the University of Melbourne.

Marcus Brazil
Martin Zachariasen

Contents

1 Euclidean and Minkowski Steiner Trees . 1
1.1 Euclidean Steiner Trees and Local Properties . 1

1.1.1 The Fermat-Torricelli Problem .. 1
1.1.2 The Steiner Tree Problem . 5
1.1.3 Topologies and Full Components . 9

1.2 Algorithms for a Given Steiner Topology.. 15
1.2.1 The Melzak-Hwang Algorithm . 15
1.2.2 Relatively Minimal Tree for a Given Full Steiner

Topology . 21
1.3 Global Properties of Minimum Steiner Trees. 22

1.3.1 Minimum Spanning Trees and the Steiner Ratio 23
1.3.2 Structural Properties . 25
1.3.3 Computational Complexity . 31

1.4 GeoSteiner Algorithm . 39
1.4.1 Top-Level Algorithm . 39
1.4.2 Enumeration of Equilateral Points, Branches

and Branch Trees . 40
1.4.3 Pruning of Equilateral Points/Branches and Full

Steiner Trees . 43
1.4.4 Concatenation of Full Steiner Trees . 51

1.5 Efficient Constructions for Special Terminal Sets . 52
1.5.1 Terminals Constrained to Circles or Curves 52
1.5.2 Terminals on Rectangular Lattices . 57

1.6 Steiner Trees in Minkowski Planes. 61
1.6.1 Steiner Points of Degree 3 . 63
1.6.2 Steiner Points of Degree � 4 . 67

1.7 Applications and Extensions . 73
1.7.1 Applications .. 73
1.7.2 Extensions to Higher Dimensions. 76

xiii

xiv Contents

2 Fixed Orientation Steiner Trees . 83
2.1 Fixed Orientation Networks . 84

2.1.1 Fixed Orientation Metrics . 84
2.1.2 The Fixed Orientation Steiner Tree Problem 88

2.2 Local Properties of Steiner Points . 90
2.2.1 Steiner Points for Uniform Orientation Metrics 90
2.2.2 Steiner Points for General Fixed Orientations 93

2.3 Local Properties of Full Components . 103
2.3.1 Direction Sets . 103
2.3.2 Degree 4 Steiner Points . 106
2.3.3 Zero-Shifts . 108
2.3.4 Canonical Forms . 116

2.4 Algorithms for a Given Topology . 118
2.4.1 Linear Programming Formulation . 118
2.4.2 Algorithms Based on the Canonical Form.. 119
2.4.3 Algorithms for Flexibility Polygons . 124

2.5 Global Properties of Minimum Steiner Trees. 127
2.5.1 Steiner Ratios . 127
2.5.2 Generalised Hanan Grid Reduction . 129
2.5.3 Computational Complexity . 131

2.6 GeoSteiner Algorithm . 139
2.6.1 Top-Level FST Generation Algorithm .. 139
2.6.2 Pruning of Branch Trees and Full Steiner Trees 140

2.7 Applications and Extensions . 143
2.7.1 Printed Circuit Boards and Channel Routing 144
2.7.2 General Routing in Chip Design . 146

3 Rectilinear Steiner Trees . 151
3.1 Local Properties of Steiner Points and Full Components 152

3.1.1 Basic Definitions and Properties . 152
3.1.2 Hwang Form for Full Components . 156

3.2 Global Properties of Minimum Steiner Trees. 164
3.2.1 Steiner Ratio . 164
3.2.2 Hanan Grid Reduction .. 166
3.2.3 Empty Regions . 169
3.2.4 Bounds on the Number of Full Components 172
3.2.5 Computational Complexity . 179
3.2.6 Equivalence to Other Problems with a Pair

of Fixed Orientations . 184
3.3 GeoSteiner Algorithm . 186

3.3.1 Top-Level FST Generation Algorithm .. 187
3.3.2 FST Independent Preprocessing . 188
3.3.3 Growing Hwang Form Full Steiner Trees . 191

Contents xv

3.4 FLUTE Algorithm . 193
3.4.1 Position Sequence and Wire Length Vectors 194
3.4.2 Basic FLUTE Algorithm . 196
3.4.3 Optimised FLUTE Algorithm .. 196
3.4.4 Enumeration of Minimal Wire Length Vectors 197

3.5 Efficient Constructions for Special Terminal Sets . 198
3.5.1 Terminals Constrained to Parallel Lines . 198
3.5.2 Terminals on Rectilinearly Convex Polygons 200
3.5.3 Terminals Constrained to Curves . 202

3.6 Applications and Extensions . 203
3.6.1 Physical Design of Circuits . 204
3.6.2 Extensions Motivated by the Physical Design of Circuits 209
3.6.3 Extensions to Higher Dimensions. 214

4 Steiner Trees with Other Cost Functions and Constraints 219
4.1 The Gradient-Constrained Steiner Tree Problem .. 219

4.1.1 Basic Properties of Gradient-Constrained Steiner Trees 220
4.1.2 Construction of Gradient-Constrained Steiner Trees. 224
4.1.3 Applications .. 228

4.2 Obstacle-Avoiding Steiner Trees . 232
4.2.1 Steiner Trees with Polygonal Obstacles . 233
4.2.2 Obstacle-Avoiding Euclidean Steiner Trees 237
4.2.3 Obstacle-Avoiding Fixed Orientation

and Rectilinear Steiner Trees . 239
4.2.4 GeoSteiner Algorithm . 247
4.2.5 Applications and Extensions . 249

4.3 Bottleneck and General k-Steiner Tree Problems . 251
4.3.1 The Generalised k-Steiner Tree Problem .. 252
4.3.2 An Algorithm for the Generalised k-Steiner Tree

Problem . 263
4.3.3 Bottleneck Steiner Trees for the Euclidean

and Other Metrics . 269
4.3.4 Applications .. 273

4.4 Trees Minimising Flow Costs . 277
4.4.1 Gilbert Networks and Arborescences .. 277
4.4.2 Applications and Extensions . 286

4.5 Related Topics . 289
4.5.1 Power-p Steiner Trees . 289
4.5.2 Node-Weighted Steiner Trees . 292
4.5.3 Rotationally Optimal Steiner Trees . 295

5 Steiner Trees in Graphs and Hypergraphs . 301
5.1 Steiner Trees in Graphs . 302

5.1.1 Graph Reductions . 304
5.1.2 Dynamic Programming .. 305
5.1.3 Integer Programming . 306

xvi Contents

5.2 Spanning Trees and Steiner Trees in Hypergraphs . 311
5.2.1 Spanning Trees in Hypergraphs .. 312
5.2.2 Steiner Trees in Hypergraphs . 315

Bibliography . 319

Index . 339

Symbols

j � j Euclidean norm
k � k Minkowski norm
R Set of real numbers
R

2 Real number plane
.px; py/ Cartesian coordinates of point p

pq Straight line segment with endpoints p and q

pq Straight line defined by points p and q�!pq Ray from p passing through q
*
pq Vector from p to q

cpq The Steiner arc of p and q

†abc Acute angle between
�!
ab and

�!
bc

WD Equals by definition
ıG.v/ The neighbouring vertices to v in a given graph G

� Set of obstacles
V� Set of convex vertices of all polygonal obstacles in �

conv Convex hull of a region or set of regions

xvii

Chapter 1
Euclidean and Minkowski Steiner Trees

The central question addressed throughout this book is that of how to interconnect
a set of points in the plane in an optimal way. There are many ways of defining the
‘optimality’ of an interconnection, but the most familiar, from a geometric point of
view, is Euclidean length. The very simplest version of this problem is as follows:
How do we connect two points in the Euclidean plane such that the length of the
connection is as short as possible? The answer was known by the ancient Greeks
and is known by every schoolchild today: draw a straight line between the points.

Now suppose that we have three or more points in the plane. How do we create
a shortest possible network that interconnects the points? This is the theme of
this chapter. More specifically, we first consider the Euclidean problem, where
length is measured in the usual way. At the end of the chapter we present some
fundamental properties of shortest networks under a more general class of metrics:
the Minkowski metrics.

1.1 Euclidean Steiner Trees and Local Properties

1.1.1 The Fermat-Torricelli Problem

We begin with a simple example. Suppose that a, b and c are the vertices of an
equilateral triangle in the plane with side length 1 as shown in Fig. 1.1 (left). What
is the shortest network interconnecting these vertices? That is, we wish to find an
interconnection network such that the sum of the lengths of the edges of the network
is minimum. One approach, shown in Fig. 1.1 (middle), is to take the two shortest
edges of the triangle, which in this case means any two edges of the equilateral
triangle, resulting in a network of length 2. The optimal solution, however, involves
adding an extra vertex located at the centre of the equilateral triangle to the network,
as shown in Fig. 1.1 (right). Each edge from the central point to one of the vertices
has a length that is 2=3 of the height

p
3=2 of the equilateral triangle; i.e., each edge

© Springer International Publishing Switzerland 2015
M. Brazil, M. Zachariasen, Optimal Interconnection Trees in the Plane,
Algorithms and Combinatorics 29, DOI 10.1007/978-3-319-13915-9_1

1

2 1 Euclidean and Minkowski Steiner Trees

a

bc

a

bc

a

bc

Fig. 1.1 The vertices of an equilateral triangle (left) and two possible interconnecting networks
(middle and right). The network on the right is the minimum length network where the possibility
of including extra vertices is allowed

is of length
p

3=3. Hence, the network has total length
p

3 (which is less than 2).
We will confirm later in this section that this solution is the best possible.

The above example is a specific instance of the following problem, posed by the
seventeenth century mathematician, Pierre de Fermat, and first solved by the Italian
physicist and mathematician Evangelista Torricelli1:

FERMAT-TORRICELLI PROBLEM

Given: A set of three points N D fa; b; cg lying in the plane.
Find: A point s such that the sum of Euclidean distances from s to a, b and c

is minimised.

The connections from s to a, b and c form a star T of length jasj C jbsj C jcsj.
(Recall that a star on k C 1 vertices is a tree containing one vertex of degree k and
k vertices of degree 1.) In this star, s may coincide with one of the given points in
N (making one of the edges degenerate). It is easy to see that a star T solving the
Fermat-Torricelli problem is a shortest network interconnecting the points in N (see
Exercise 1.1).

Definition [Steiner point]: Given points a, b and c in the plane, a point s

solving the Fermat-Torricelli problem for the given points will be referred to
as a Steiner point.2

1The problem was suggested by Pierre de Fermat (1601–1665) in his celebrated essay on minima
and maxima [152]: “Let he who does not approve of my method attempt the solution to the
following problem: Given three points in the plane, find a fourth point such that the sum of its
distances to the three given points is a minimum”. The earliest known solution to Fermat’s problem
was a geometric construction due to the Italian physicist and mathematician Evangelista Torricelli
(1608–1647) [371]. For a comprehensive study of the problem, see Kupitz and Martini [240].
2The more usual term for this point is Fermat point or Fermat-Torricelli point, and for the more
general case with n points minimising their distances to a single point, the point sought is also
called the Steiner-Weber point. In this book we adopt the term Steiner point for all these cases,
in order to emphasise the unity of this problem with the more general Steiner tree problems we

1.1 Euclidean Steiner Trees and Local Properties 3

a

x

b

c

s

f

a

x

b

c

s

f

C

Fig. 1.2 The rotation proof construction for 4abc. In each diagram, red, green or blue edges of
the same colour have the same length. Hence, the sum of distances jasj C jbsj C jcsj is equal to
the length of the path c � s � f � x

We now examine a method for solving the Fermat-Torricelli problem using the
so-called rotation proof.3 Not only is this an extremely elegant construction, but
it also introduces some of the key concepts that we require for solving the more
general Steiner tree problem later in this chapter.

Consider three distinct points a, b and c in the plane. Assume, for now, that each
angle in the triangle 4abc formed by the points is less than 2�=3 (or 120ı), and
that the points a, b and c are labelled in clockwise order around 4abc. Suppose we
wish to find a point s solving the Fermat-Torricelli problem, i.e., such that jasj C
jbsj C jcsj is minimised. To this end, let x be a point that is obtained by rotating b

counter-clockwise around a through an angle of �=3. Point x is the third point of
an equilateral triangle with ab as one of its sides (Fig. 1.2, left).

Let s be any arbitrary point in 4abc; let f similarly be the point obtained by
rotating s counter-clockwise around a through an angle of �=3. Note that 4afs is
equilateral. Since x and f are obtained via the same rotation around a, we have
jabj D jaxj, jasj D jaf j and jsbj D jfxj (Fig. 1.2, left). Our objective is to choose a
point s that minimises jasj C jbsj C jcsj D jsf j C jfxj C jcsj, which by reordering
the terms is the same as jcsj C jsf j C jfxj. Therefore, if the path c � s � f � x forms
a straight line from c to x, the minimum sum of distances is achieved.

To see that this minimum can be achieved, consider the circumcircle C of
the equilateral triangle abx. Let s be the intersection (inside 4abc) of C and cx
(Fig. 1.2, right). Since †asx and †abx subtend the same chord of C , we have
†asx D †abx D �=3. For this choice of s, point f clearly lies on cx, so the

discuss later. Essentially we are viewing the Fermat-Torricelli problem as the simplest non-trivial
case of the Steiner tree problem.
3This elegant construction is often attributed to Hofmann [200], but according to Honsberger [201,
pp. 22–34], the Hungarian mathematician Tibor Gallai (1912–1992) discovered it independently.
Some earlier attributions are mentioned in Kupitz and Martini [240], who name it the “rotation
proof”. Presentations of the construction (and some generalisations) can be found in [125, 129,
184, 201, 222, 239].

4 1 Euclidean and Minkowski Steiner Trees

a

ebc

b

c

s

eab
eca

CabCca

Cbc

Fig. 1.3 Equilateral points, Simpson lines (blue) and Steiner arcs (red) for 4abc

minimum can indeed be achieved. Noting that †bsx D †bax D �=3, it also follows
that †asb D †bsc D †csa D 2�=3.4

The same construction can be applied to the other two sides bc and ca of 4abc,
using the following definitions and notation.

Definitions [Equilateral point, Simpson line]: Given distinct points a and b

in the plane, define the equilateral point eab for a and b to be the third point
of the equilateral triangle with vertices a to b, such that the three vertices are
labelled a, b and eab in counter-clockwise order around the triangle. Given
three points a, b and c labelled in clockwise order around 4abc, the Simpson
line for c is the line segment ceab.

Note that in the example in Fig. 1.2, we have x D eab. Then the Steiner point
is also the unique intersection point of the three Simpson lines, aebc, beca and ceab

(Fig. 1.3). Furthermore, each Simpson line has length jasj C jbsj C jcsj, where s is
the Steiner point.

4Bonaventura Cavalieri (1598–1647), an Italian mathematician and Jesuate, argued that the
segments connecting the given points with the Fermat-Torricelli point meet at 120ı angles. The
fact that the Simpson lines, which connect the third corner of the equilateral triangle to the opposite
given point, also meet at the Fermat-Torricelli point was shown in 1750 by Thomas Simpson
(1710–1761). In 1834, Heinen [190] proved that the length of the Simpson lines are equal to the
sum of distances from the given points to the Fermat-Torricelli point.

1.1 Euclidean Steiner Trees and Local Properties 5

It is also clear from Fig. 1.3 that we can construct the Steiner point using a slightly
different method—called the Torricelli construction—by drawing the circumcircles
of the three equilateral triangles on the sides of 4abc. The unique intersection point
of these circles is also the Steiner point.

Definition [Steiner arc]: Given three points a, b and c labelled in clockwise
order around 4abc, let Cab be the circumcircle of the equilateral triangle abeab.
Then the open arc of Cab between a and b (and not containing eab) is called the
Steiner arc of a and b, denoted bab.

It now follows that the Steiner point can be obtained as the intersection of any
pair of Simpson lines and/or Steiner arcs for 4abc.

Finally, if one of the angles of 4abc is 2�=3 or greater, it is easy to see that the
point that minimises the sum of distances to a, b and c is equal to one of the given
points—namely the one having an angle of 2�=3 or greater (Exercise 1.2). In this
case, the solution to the Fermat-Torricelli problem is the vertex shared by the two
shortest edges of the triangle. The following theorem summarises the solution to the
Fermat-Torricelli problem.

Theorem 1.1 (Fermat-Torricelli problem solution) Let a, b and c be three
distinct points in the plane; let s be the Steiner point minimising jasjCjbsjCjcsj.
1. If each angle in the triangle 4abc is less than 2�=3, then

(i) s can be obtained as the intersection between any pair of Simpson lines
aebc, beca and ceab and/or Steiner arcs bab, bbc and bca;

(ii) The length of each Simpson line is jasj C jbsj C jcsj; and
(iii) The three angles around s are each 2�=3.

2. If some angle in 4abc at some vertex is greater than or equal to 2�=3, then s

coincides with that vertex.

It follows that a minimum length interconnection of three given points either
consists of a star connecting a Steiner point to the three given points or consists of
a pair of line segments connecting one of the given points to the two other points.

1.1.2 The Steiner Tree Problem

In this book we define a geometric network G D .V .G/; E.G// to be a connected
graph that is embedded in the plane. The vertices V.G/ are points and the edges
E.G/ are simple curves in the plane; let jej denote the Euclidean length of the
embedding of edge e 2 E.G/. If s is a vertex of G, we define the meeting angles

6 1 Euclidean and Minkowski Steiner Trees

Fig. 1.4 Meeting angles of a
vertex s in a geometric
network

s

a
b

� bsc

c

� asb

� csa

of s to be the angles that appear counter-clockwise around s in G. For example,
if s has three neighbouring vertices labelled a, b and c in counter-clockwise order
around s, then the meeting angles are †asb, †bsc and †csa (see Fig. 1.4).

We now describe the general problem considered in this chapter.5

EUCLIDEAN STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying in the plane.
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, and
such that jT j WD P

e2E.T / jej is minimised.

We make some observations concerning this definition. First of all we note that
T , considered as a graph, can be assumed to be a tree: if T contains a cycle, then any
edge on the cycle can be removed without disconnecting the network or increasing
jT j. Furthermore, all non-zero edges must be embedded as line segments, otherwise
they would not have minimal length.

5The earliest known statement and analysis of the Euclidean Steiner tree problem was by the French
mathematician and logician Joseph Diaz Gergonne (1771–1859). In 1810 Gergonne established
his own mathematics journal entitled the Annales de mathématiques pures et appliquées but more
generally known as the Annales de Gergonne. In the first volume of the journal from 1810/11 [174],
Gergonne states the following problem: “A number of cities are located at known locations on a
plane; the problem is to link them together by a system of canals whose total length is as small as
possible”. It is clear from the analysis that this is indeed the Euclidean Steiner tree problem, and
Gergonne even proposes a method for solving the problem that basically is identical to Melzak’s
algorithm from 1961 [277]. During the nineteenth century, three other statements of the problem
were given by: Carl Friedrich Gauss (1777–1855) in a letter to Schumacher from March 19, 1836;
Karl Bopp (1856–1905) in his dissertation [36] from 1879; and Eduard Hoffmann (1858–1923)
in a celebration essay [199] from 1890. The first modern treatment of the problem was given
by Vojtěch Jarník and Miloš Kössler in 1934 [223]. For a detailed account on the history of the
Euclidean Steiner tree problem, see [47].

1.1 Euclidean Steiner Trees and Local Properties 7

a

b

c

a

b

c

a

b

c

a

b

c

Fig. 1.5 Replacing a pair of edges ab and ac for which †bac < 2�=3 with a shortest
interconnection provided by a solution to the Fermat-Torricelli problem for fa; b; cg. On the left
each angle in 4abc is less than 2�=3 (case (1) in Theorem 1.1). On the right one of the angles
is greater than or equal to 2�=3 (case (2) in Theorem 1.1). In both cases a shorter local tree is
constructed

Definitions [Minimum Steiner tree, terminals, Steiner points]: A network
T D .V .T /; E.T // representing a solution to the Steiner tree problem will be
referred to as a minimum Steiner tree. The given points N � V.T / are called
terminals, and possible extra vertices S D V.T / n N are called Steiner points
(as with the Fermat-Torricelli problem).6

All Steinerpoints in a minimum Steiner tree can be assumed to have degree
at least 3 in T : a Steiner point of degree 1 and its incident edge can simply be
removed, and a Steiner point of degree 2 can, together with its two incident edges,
be replaced by a line segment between the opposite endpoints of the two incident
edges. All these changes can be made without increasing the length of the tree.

Consider a vertex a in T , and a pair of non-zero edges ab; ac 2 E.T / meeting
at a. Note that ab and ac must form a shortest interconnection of fa; b; cg. As shown
in the previous section, a solution to the Fermat-Torricelli problem for fa; b; cg
provides a shortest interconnection of fa; b; cg. An immediate consequence is that
the angle †bac must be at least 2�=3. To see why, assume that †bac < 2�=3; then
we have two cases as shown in Fig. 1.5, and in neither case is ab and ac a shortest
interconnection of fa; b; cg.

As an immediate consequence of the fact that all meeting angles are at least
2�=3, terminals have degree at most 3 in T and Steiner points have degree exactly

6Minimum Steiner trees are more typically referred to as ‘Steiner minimum trees’ or ‘Steiner
minimal trees’ in the literature. The main reason for this appears to be to give them an acronym
‘SMT’ that is different from that of a minimum spanning tree ‘MST’. Mathematically, however,
the term ‘Steiner minimum tree’ does not make sense (what is a ‘minimum tree’ and how can it be
Steiner?), and hence in this book we avoid it. In some of the early literature terminals were also
referred to as ‘regular points’, but ‘terminal’ seems preferable as the word ‘regular’ is ambiguous
and heavily used in other areas of mathematics.

8 1 Euclidean and Minkowski Steiner Trees

3 in T . The following theorem summarises some basic properties of a minimum
Steiner tree. The proofs of properties (1) and (4) are left as Exercises 1.5 and 1.6,
respectively.

Theorem 1.2 (Basic properties of a minimum Steiner tree) For any finite set of
points N in the plane, there exists a minimum Steiner tree T D .V .T /; E.T // for
terminals N � V.T /, having Steiner points S D V.T /nN , satisfying the following
four conditions:

1. The edges of T are line segments and are embedded in such a way that their
interior does not intersect any other vertex or edge of T .

2. Terminals in N have degree at most 3 in T , and each pair of incident edges meets
at an angle of 2�=3 or greater.

3. Steiner points in S have degree 3 in T , and each pair of incident edges meets at
an angle of 2�=3.

4. T has at most n � 2 Steiner points and at most 2n � 3 edges, where n D jN j is
the number of terminals.

Figure 1.6 shows an example of a minimum Steiner tree. As noted above, the
properties of a Steiner point in the Fermat-Torricelli problem (Theorem 1.1) transfer
to each Steiner point in a minimum Steiner tree: a Steiner point s with neighbours a,
b and c must necessarily be a solution to the Fermat-Torricelli problem for fa; b; cg.
Thus, if we know the location of neighbours a, b and c, the Steiner point can be
constructed in the manner described in Theorem 1.1.

Fig. 1.6 Euclidean minimum Steiner tree for 2,741 cities in Denmark, found using GeoSteiner 4.0

1.1 Euclidean Steiner Trees and Local Properties 9

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Fig. 1.7 Three distinct full Steiner topologies (top row) and corresponding relatively minimal
trees (bottom row) for a set of four terminals fa; b; c; dg. The three topologies are distinct, since
terminals a and b have a common Steiner point as neighbour only in the topology on the left,
whereas a and c have a common Steiner point as neighbour only in the middle topology. The
relatively minimal tree on the left is a full Steiner tree, while the one on the right is not (since it
contains a degenerate edge in the embedding)

1.1.3 Topologies and Full Components

The underlying (undirected) graph T D .V .T /; E.T // for a geometric network
T D .V .T /; E.T // that interconnects a set of terminals N is called the topology of
T . In a topology, the vertices and edges are are not embedded in the plane, but each
vertex is either labelled with the label of its corresponding terminal (having a given
location in the plane) or labelled as a Steiner point (having no given location in the
plane).

An embedding of a geometric network is called non-degenerate if all edges in
the embedding have non-zero length—otherwise it is degenerate.

Definitions [Steiner topology, full Steiner topology]: The topology of a non-
degenerate minimum Steiner tree is called a Steiner topology. The topology of
a non-degenerate minimum Steiner tree in which every terminal has degree 1
is called a full Steiner topology.

By Theorem 1.2 we can assume that Steiner vertices have degree exactly 3 in a
Steiner topology; furthermore, terminals have degree at most 3 in a Steiner topology.
A shortest possible embedding of a Steiner topology is called a relatively minimal
tree; such an embedding is obtained by locating the Steiner vertices in such a way
that the total length of the geometric network is minimised. A relatively minimal
tree may be degenerate, in which case edges can have meeting angles that are less
than 2�=3 (Fig. 1.7).7

7We should note that this definition of a Steiner tree is different from the one in Gilbert and
Pollak [179] and Hwang, Richards and Winter [211], but it is more operational.

10 1 Euclidean and Minkowski Steiner Trees

Definition [Steiner tree, full Steiner tree]: A non-degenerate relatively
minimal tree for a (full) Steiner topology T is called a (full) Steiner tree for
T .

Our interest in Steiner trees stems from the fact that there exists a Steiner tree that
is a minimum Steiner tree; this follows from the definition of Steiner topologies and
Steiner trees. Furthermore, a minimum Steiner tree that interconnects two or more
terminals is a union of full Steiner trees (Fig. 1.6); note that a full Steiner tree must
contain at least one edge since each terminal has degree 1 in the tree. The following
lemma characterises Steiner trees precisely.

Lemma 1.3 (Necessary and sufficient properties of Steiner trees) If a non-
degenerate embedding T of a Steiner topology T fulfils the four conditions of
Theorem 1.2, then T is the unique Steiner tree for T .

Proof We prove this lemma in two steps. In Step 1 we show that if T fulfils the
conditions of Theorem 1.2, then T is a Steiner tree. We then show, in Step 2, that
such a T is unique.

Step 1. Let T be a non-degenerate embedding of a given Steiner topology T . Let
L.T / WD jT j, the total edge length of T . For a fixed set of terminals we think of
L.T / as being a function of the locations of the Steiner points. Since the Euclidean
length of an edge with respect to its endpoints is convex, it follows that L.T / D
P

e2E.T / L.e/ is convex with respect to the Steiner points S of T (since a sum of
convex functions is convex). Hence, if T is not a Steiner tree, then there exists a
perturbation � of the elements of S that reduces the length of T .

Now suppose s1 and s2 are adjacent Steiner points in T . Then L.s1s2/ is the
length of the edge s1s2, and we denote by PL.s1s2/� the derivative of this length with
respect to �. Let �1 and �2 represent the induced perturbations of � on s1 and s2

respectively (i.e., �i D �jsi). We now show that

PL.s1s2/� D PL.s1s2/�1 C PL.s1s2/�2 : (1.1)

Let l be the line extending s1s2. Then PL.s1s2/� , PL.s1s2/�1 and PL.s1s2/�2 are each
equal to the derivative of the length of the projection of s1s2 onto l following the
corresponding perturbation (since the component perpendicular to l has derivative
0), and Eq. (1.1) immediately follows.

It follows from Eq. (1.1) that PL.s1s2/� < 0 implies that either PL.s1s2/�1 < 0

or PL.s1s2/�2 < 0. By iterating this argument we conclude that if � is a length-
reducing perturbation for T , then there exists a Steiner point s 2 S such that the
induced perturbation on s is also length-reducing. But if T fulfils the conditions of
Theorem 1.2, then no Steiner point of T has a length-reducing perturbation, and
hence T is a Steiner tree.

Step 2. The Euclidean length of an edge with respect to its endpoints is
convex, but not strictly convex; hence, we need a further argument to establish
the uniqueness of a Steiner tree for a given topology. We argue by contradiction;
assume there exist at least two distinct Steiner trees, T1 and T2, each with the same

1.1 Euclidean Steiner Trees and Local Properties 11

terminal set and topology. Since T1 and T2 are both relatively minimal trees with the
same length, as we move the Steiner points of T1 to their corresponding positions
in T2 (say, each at a constant rate), we create a continuum of relatively minimum
intermediate trees between the two trees. Under this transformation from T1 to T2,
there exists a Steiner point s that is non-stationary but is adjacent to two stationary
vertices (since all the terminals are fixed). However, in T1, any sufficiently small
movement of s with respect to two fixed adjacent vertices means that s no longer
satisfies the condition that each pair of incident edges at s meets at an angle of 2�=3,
contradicting the relative minimality of the intermediate trees between T1 and T2.

ut
If we split a Steiner topology T into separate connected components at each

terminal that has degree more than 1, we obtain a set of full components that have
full Steiner topologies. A full Steiner topology for n D jN j terminals has exactly
n � 2 Steiner points. If a full Steiner tree exists for a given full Steiner topology,
then it is unique (Lemma 1.3). From an algorithmic point of view, full Steiner
topologies and full Steiner trees are particularly useful, since we are actually able to
construct full Steiner trees from full Steiner topologies efficiently, as shown in the
next section. The challenge is that the number of full Steiner topologies (and trees)
increases rapidly as the number of terminals increases. A useful concept in the proof
of this result, and throughout this chapter, is the following:

Definition [Cherry]: A pair of terminals adjacent to a common Steiner point
in a Steiner topology is called a cherry for the topology.

Note that at least one cherry always exists for a full Steiner topology for n � 3

terminals (Exercise 1.7).

Lemma 1.4 (Number of full Steiner topologies) The number of distinct full
Steiner topologies for n terminals, where n � 3, is:

f .n/ D 1 � 3 � 5 � � � .2n � 7/ � .2n � 5/ D .2n � 4/Š

.n � 2/Š 2n�2
:

Furthermore, each of these topologies can be realised by the unique minimum
Steiner tree for some set of terminals.8

Proof A full Steiner topology interconnects n terminals and n � 2 Steiner points
and hence has 2n � 3 edges. Let f .n/ be the number of full Steiner topologies
spanning n terminals. Clearly, f .2/ D f .3/ D 1. Assume that Tn�1 is a full Steiner
topology spanning n � 1 terminals for n � 3. We can obtain a full Steiner topology
on n terminals by connecting the nth terminal tn to each edge e of Tn�1 by inserting

8A recursion was first given by Bopp [36] in 1879. Gilbert and Pollak [179] gave the same recursion
and the formula; they credit Riordan [324] with solving the recursion. The proof that any Steiner
topology can be realised by some minimum Steiner tree was first given by Hwang et al. [213].

12 1 Euclidean and Minkowski Steiner Trees

Fig. 1.8 Possible full Steiner topologies for four terminals—based on a full Steiner topology for
three terminals

a Steiner point on e and connecting tn to this new Steiner point. Thus, we obtain
a new full Steiner topology for each of the 2n � 3 edges in Tn�1 (as illustrated
for n D 4 in Fig. 1.8). Conversely, in a full Steiner topology Tn with n terminals,
we can remove the nth terminal and its incident edge and make a shortcut at the
Steiner point to create a full Steiner topology for n�1 terminals. The function f .n/

therefore fulfils the recursion

f .n/ D .2.n � 1/ � 3/f .n � 1/ D .2n � 5/f .n � 1/

from which the number of full Steiner topologies follows.
We next show that for each of the f .n/ full Steiner topologies, there exists a

terminal set N with n D jN j such that the minimum Steiner tree for N has that full
Steiner topology. The proof is essentially by induction on the number of terminals.

Suppose there exists a full minimum Steiner tree Tn with terminal set N , such
that jN j D n, and such that Tn is the unique minimum Steiner tree for N . Let tn be
an arbitrary element of N , let e be the edge of Tn incident with tn, and let Nn�1 WD
N nftng. Since Tn is unique, there exists a real number " > 0 such that jT 0

nj�jTnj > "

for every other relatively minimal tree T 0
n for N , and such that " � jej. We now

define a pair of points a and b (designed to replace tn) such that the line segment
ab satisfies the following properties: ab ? e; the midpoint of ab lies on e; the
equilateral point eab D tn; and jabj D jaeabj D jbeabj D " (Fig. 1.9).

It follows from the basic properties of Steiner trees, that by shortening the edge e

(at tn) and adding two new edges connecting it to a and b, as illustrated in Fig. 1.9,
we can construct a new Steiner tree TnC1 with terminal set Nn�1 [fa; bg such that
jTnC1j D jTnj.

1.1 Euclidean Steiner Trees and Local Properties 13

b

a

tne

ε
b

a

tn

Tn Tn+1

Fig. 1.9 Given a minimum Steiner tree Tn on N , we can replace a terminal tn by a pair of points a

and b such that eab D tn, as shown, resulting in a Steiner tree TnC1 with terminal set .N n ftng/ [
fa; bg and with the same length as Tn

Table 1.1 Number of full topologies f .n/ and Catalan numbers c.n � 2/ for small values of n

n 2 3 4 5 6 7 8 9 10

f .n/ 1 1 3 15 105 945 10,395 135,135 2,027,025

c.n � 2/ 1 1 2 5 14 42 132 429 1,430

We now show that TnC1 is the unique minimum Steiner tree for Nn�1 [fa; bg.
Suppose, to the contrary, there exists another Steiner tree T 0

nC1 for Nn�1 [fa; bg
(with different Steiner topology) such that jT 0

nC1j � jTnC1j. As before, we can
remove either a or b from T 0

nC1 and its Steiner topology, also removing its incident
edge and making a shortcut at the adjacent Steiner point (if there is one), to create
a Steiner tree T 0

a or T 0
b with terminal set Nn�1 [fag or Nn�1 [fbg, respectively.

By construction, jT 0
aj � jT 0

nC1j and jT 0
bj � jT 0

nC1j, and at least one of these Steiner
trees, say T 0

a, has Steiner topology different from that of Tn (when a is relabelled tn).
Now, consider the geometric network T 0

a [atn; this is a network of length jT 0
aj C "

interconnecting N . But, since jT 0
aj � jTnj, this implies that there exists a relatively

minimal tree for N of length at most jTnj C " with different Steiner topology from
Tn, giving a contradiction.

We can now iteratively repeat the above replacement method, starting with, say,
the minimum Steiner tree for the vertices of an equilateral triangle, to create a
minimum Steiner tree with any given full Steiner topology. ut

The function f .n/ is super-exponential (Table 1.1), so enumerating all possible
full Steiner topologies for large values of n is infeasible. Many of the full Steiner
topologies have, however, no associated full Steiner tree for a given configuration
of terminals. For example, in Fig. 1.8 we have f .4/ D 3, but only two of these full
Steiner topologies can lead to a full Steiner tree. Let us assume that we know the
order in which the terminals appear if we make an outer walk of the corresponding
full Steiner tree; that is, the circumferential order of the terminals is fixed. This
could, for example, be the case when all terminals are vertices of their convex
hull; here it can be shown (see Sect. 1.3.2) that the circumferential order must
necessarily respect the order in which the terminals appear on the convex hull. If
the circumferential order of a set of n terminals is fixed, then the number of possible

14 1 Euclidean and Minkowski Steiner Trees

1(((23)4)5)

1

2

3 4

5

1((23)(45))

1

2

3 4

5

1((2(34))5)

1

2

3 4

5

1(2((34)5))

1

2

3 4

5

1(2(3(45)))

1

2

3 4

5

Fig. 1.10 Correspondence between full Steiner topologies that respect a given circumferential
order of the terminals, and parenthesisations of terminal labels. Note that terminal 1 does not
participate in the parenthesisation

full Steiner topologies is the .n � 2/th Catalan number

c.n � 2/ D .2n � 4/Š

.n � 1/Š.n � 2/Š
;

which grows asymptotically as O.4n/; that is, the growth would (only) be
exponential (Table 1.1). Figure 1.10 illustrates why the number of full Steiner
topologies for a fixed circumferential order is the .n � 2/th Catalan number:
each full Steiner topology corresponds to n � 2 applications of a binary operator,
say, a complete parenthesisation of n � 1 terminal labels, and it is well known
that c.n � 2/ is the number of different ways n � 1 ordered symbols can be
completely parenthesised. For more details, see [111]. It should be noted, however,
that no general exponential bound is known on the number of possible (relevant)
circumferential orders of the terminals, so in theory this does not reduce the number
of possible full Steiner topologies to an exponential function of n.

1.2 Algorithms for a Given Steiner Topology 15

1.2 Algorithms for a Given Steiner Topology

In this section we present an efficient algorithm—known as the Melzak-Hwang
algorithm—for constructing a full Steiner tree for a given full Steiner topology (or
deciding that it does not exist). Also, we address the problem of constructing a
relatively minimal tree for an arbitrary, not necessarily full Steiner topology.

1.2.1 The Melzak-Hwang Algorithm

Let T be a full Steiner topology for n � 3 terminals. In this section we give an
efficient algorithm for computing a full Steiner tree T for T . First we present a
basic recursive (and slow) algorithm, and then we show how the running time can
be improved. Finally, we present an efficient implementation of the algorithm.

Basic Recursive Algorithm

Let u be a Steiner point in T with neighbouring vertices a; b and s, where a and
b are terminals (and hence form a cherry). Denote by ab the straight line passing
through a and b. Let eab be the equilateral point of a and b, and assume that in the
full Steiner tree T for T the vertex u is located on the opposite side of ab to eab.
By Theorem 1.1, u must lie on the Steiner arc bab (on the same side of ab as s) as
illustrated in Fig. 1.11; furthermore, both eab and bab can be constructed in constant
time from a and b.

It also follows from Theorem 1.1 that the Simpson line starting at eab and passing
through u will overlap with edge us in T , and that jeabuj D jauj C jbuj. In other

s

a

b

eab (= tu)

u

Fig. 1.11 The basic recursive step in the Melzak-Hwang algorithm, involving replacing a cherry
for a pair of terminals a; b by a pseudo-terminal tu

16 1 Euclidean and Minkowski Steiner Trees

words, not only does the Simpson line start at eab, but the total length of segments
au and bu is identical to the length of the part of the Simpson line from eab to u.
Hence, we may replace a, b and u with a new point tu D eab that is connected
directly to s. We refer to this new point as a pseudo-terminal, since it plays the role
of a terminal in a simpler tree of equal length to jT j. (This is the reverse procedure
to that illustrated in Fig. 1.9.)

Let T 0 be the full Steiner topology on the new set of n � 1 terminals (that is, the
same set of terminals as for T but where a and b have been replaced by tu), and
let T 0 be the full Steiner tree for T 0. Then the location of u can be determined by
taking the intersection between Steiner arc bab and edge tus in T 0. The full Steiner
tree T for T is constructed by deleting edge tus in T 0, and adding the edges au, bu
and us. Note that T exists if and only if T 0 exists and the edge tus in T 0 intersects
the Steiner arc bab.

The reduction from a problem on n terminals to a problem on n � 1 terminals
is called a merging step. Constructing T from T 0 is called a reconstruction step.
The complete algorithm therefore consists of n � 2 merging steps (one for each
Steiner point), and similarly n � 2 reconstruction steps; after n � 2 merging steps
the topology consists of two terminals for which the full Steiner tree is a simple line
segment.

Identifying the Side of the Equilateral Point

The major difficulty in implementing the above algorithm is that for any pair of
terminals a; b forming a cherry we do not know on which side of ab to construct
the pseudo-terminal tu in each merging step. There are two possibilities for tu,
corresponding to the two equilateral points eab and eba; this creates two subproblems
for each merging step—in total a running time of O.2n/. We now show that we can
in fact implement the algorithm to run in O.n/ time. This is achieved by selecting
a particular merging order, which makes it possible to correctly identify a single
equilateral point in each merging step.

For convenience assume that topology T has five or more terminals, that is, at
least three Steiner points (otherwise, we solve the problem by brute force). Select
an arbitrary terminal r in T , and denote by Tr the tree T with r as its root. Note that
every Steiner point in Tr is an internal node with two children. Let u be a Steiner
point that is furthest away from r in Tr (or deepest in the rooted tree); therefore, u
has two terminals as children, which we denote by a and b. Let s be the parent of
u, and let v be the second child of s (or the sibling of u). Finally, let w be the parent
of s.

Since u is chosen as a Steiner point of maximal depth in Tr , v is either a terminal
(Fig. 1.12, left) or a Steiner point with two children c and d that are both terminals
(Fig. 1.13, left). We now consider each of these two cases in turn.

1. v is a terminal: Assume without loss of generality that au is parallel to sv, and
bu is parallel to sw (Fig. 1.12, right). Observe that v and b are on opposite sides

1.2 Algorithms for a Given Steiner Topology 17

a

b

u

s

v
w

a b

u

v

s

w

r

Fig. 1.12 Identifying the correct side for a Steiner point where v is a terminal. The rooted topology
Tr is shown on the left, and a possible embedding of part of T is shown on the right. On the right,
edges with the same direction are indicated by the same colour

a
b

u

s
v

w

d

c
s

a b

u v

w

r

c d

Fig. 1.13 Identifying the correct side for a Steiner point (either u or v) where v is a Steiner point.
The rooted topology Tr is shown on the left, and a possible embedding of part of T is shown on
the right

of line au; hence, u and v are on the same side of line ab. In other words, the
Steiner point u must be chosen to be on the same side of line ab as terminal v.

2. v is a Steiner point: Assume without loss of generality that au is parallel to sv
and bu is parallel to cv; note that both bu and cv are also parallel to sw. Thus,
travelling along the path b ! u ! s ! v ! c involves turning through an
angle of �=3 in the same direction (either left or right) at every interior vertex
(Fig. 1.13, right). Such a path is referred to as a convex path. The line sw separates
the line segments ab and cd. Therefore, ab and cd cannot intersect each other:
either c and d are both on the same side of line ab (in which case the Steiner
point u is on the same side of ab as c and d), or a and b are both on the same
side of line cd (in which case the Steiner point v is on the same side of cd as a

and b).

18 1 Euclidean and Minkowski Steiner Trees

Fig. 1.14 Construction of a full Steiner tree for six terminals: rooted full Steiner topology (row
1), merging steps 1–4 (left to right on rows 2 and 3)

Whichever case occurs, we are able to perform a merging operation that correctly
identifies a single equilateral point to choose as our next pseudo-terminal. Assuming
that the same rooted tree Tr is used throughout the complete algorithm, identifying
the correct side for the equilateral point (and constructing the pseudo-terminal)
clearly takes constant time per merging operation. Figures 1.14 and 1.15 illustrate
the complete construction on a problem instance with six terminals; the merging
phase is shown in Fig. 1.14 and the reconstruction phase is shown in Fig. 1.15.

Efficient Implementation

In the description above, some implementation details of the Melzak-Hwang
algorithm were omitted. The complete algorithm is presented as Algorithm 1.1.
In the algorithm we assign the topology T a root at a terminal r , and use standard
terminology for rooted trees. Also note that the algorithm orders the Steiner points
by depth by performing a breadth-first search (BFS) from the root. A BFS algorithm
runs in linear time in the number of vertices and edges in a graph [121].

1.2 Algorithms for a Given Steiner Topology 19

Algorithm 1.1: Melzak-Hwang algorithm
Input: Full Steiner topology Tr with at least 5 terminals, with root at some terminal r .
Output: Locations of Steiner points in full Steiner tree T for T (if T exists).

1
2 Perform a breadth-first search (BFS) from r in Tr

3 S# = Steiner points of Tr in BFS order
4 S" = Steiner points of Tr in opposite BFS order (deepest first)
5
6 // Merging steps
7 foreach u 2 S" do
8 .a; b/ = CHILDREN(u) // children of vertex u in Tr

9 s = PARENT(u) // parent of vertex u in Tr

10 v = OTHERCHILD(s,u) // other child of s in Tr (other than u)
11 if v is a terminal then

12 if v is to the right of
�!
ab then

13 Locate u at eab and mark it as a pseudo-terminal
14 else
15 Locate u at eba and mark it as a pseudo-terminal

16 else
17 .c; d/ = CHILDREN(v)

18 if line segment cd is to the right of
�!
ab then

19 Locate u at eab and mark it as a pseudo-terminal

20 else if line segment cd is to the left of
�!
ab then

21 Locate u at eba and mark it as a pseudo-terminal

22 else if line segment ab is to the right of
�!
cd then

23 Delete v from S"; Push u back into the front of S"

24 Locate v at ecd and mark it as a pseudo-terminal

25 else if line segment ab is to the left of
�!
cd then

26 Delete v from S"; Push u back into the front of S"

27 Locate v at edc and mark it as a pseudo-terminal

28
29 // Reconstruction steps
30 foreach u 2 S# do
31 Let l be the line segment from u to PARENT(u)
32 Unmark u as pseudo-terminal
33 .a; b/ = CHILDREN(u)
34 // Order children such that a, b, and u appear counter-clockwise on 4abu

35 Set the location of u in T to be the intersection between Steiner arc bab and l

36 (if the intersection does not exist, then no full Steiner tree exists for Tr)

20 1 Euclidean and Minkowski Steiner Trees

Fig. 1.15 Construction of a full Steiner tree for six terminals: reconstruction steps 1–4 (left to
right on each row), leading to a full Steiner tree (row 2, right)

Each of the three main phases of the Melzak-Hwang algorithm—breadth-first
search, merging and reconstruction—clearly takes O.n/ time, resulting in the
following theorem:

Theorem 1.5 ([210, 277] Melzak-Hwang Theorem) Given a full Steiner topol-
ogy T with n terminals, there is an O.n/ time algorithm to either compute a full
Steiner tree for T or decide that no such tree exists.9

Note that the running time is optimal in the sense that the input to the algorithm has
space complexity �.n/.

Numerical Issues

In the implementation above we have assumed that computers can efficiently
represent and perform computations on the coordinates of equilateral points and
Steiner points. In fact, this is not quite true. Computers can only explicitly handle
numbers that have finite representations, such as integers or rational numbers.
Furthermore, constant-time operations can only be performed if the numbers have a

9The exponential but finite construction of Melzak [277] was given in 1961. Melzak’s algorithm
was for a long time believed to be the first finite-time algorithm for solving the problem. More
recently it has been discovered that Gergonne in 1810/11 [174] presented a solution method
that basically is identical to the one suggested by Melzak 150 years later [47]. Hwang [210]
improved the running time of Melzak’s original exponential algorithm to linear time. A number
of implementation details were presented by Smith [351].

1.2 Algorithms for a Given Steiner Topology 21

bounded number of digits. Irrational numbers, such as
p

3 or � , can be manipulated
symbolically, but when an expression involving these symbolic irrational numbers
needs to be evaluated, the irrational numbers must be rounded to rational numbers.

Let us assume that the coordinates of the terminals in N are rational numbers.
Consider an equilateral point eab for terminals a; b 2 N . The point eab can be
obtained by rotating vector *

ab counter-clockwise by angle �=3. The corresponding
rotation matrix contains the elements cos �=3 and ˙ sin �=3, which are 1=2 and
˙p

3=2. Thus, the coordinates of eab can be written in the form ˛ C ˇ
p

3 where
˛ and ˇ are rational numbers. In fact, it can be shown that the coordinates of all
pseudo-terminals and Steiner points can be written in the form ˛ C ˇ

p
3 [168, 351]

(Exercise 1.9). In algebra terminology this means that these coordinates belong to
the quadratic field Q.

p
3/. Since the length of a full Steiner tree is equal to the

distance between a pseudo-terminal and a terminal, we conclude that such a length

can be written in the form
q

˛ C ˇ
p

3, where ˛ and ˇ are rational numbers; the
same holds for the lengths of the individual edges of the tree.

In the Melzak-Hwang algorithm we can therefore efficiently represent all
coordinates and distances symbolically, and can output the coordinates of Steiner
points and edge lengths to any precision required (in polynomial time in the number
of digits required).

1.2.2 Relatively Minimal Tree for a Given Full Steiner
Topology

The Melzak-Hwang algorithm only covers the case where the relatively minimal
tree for the given full Steiner topology is non-degenerate, that is, where all edges
of the relatively minimal tree have non-zero length. For the general problem, where
the relatively minimal tree may be degenerate, Hwang and Weng [212] proposed
the so-called ‘luminary algorithm’, which solves the problem for a given full
Steiner topology with n terminals in O.n2/ time. The luminary algorithm is a fairly
involved generalisation of the Melzak-Hwang algorithm, as significant bookkeeping
is needed to handle the various degenerate cases that may appear. (The average
running time of the luminary algorithm is O.n log n/, where the average is taken
over all full topologies for the set of terminals [415].)

A more practical method for solving the general problem is the iterative approach
by Smith [351]. In this algorithm, the Steiner points are initially located in the plane
using any heuristic or randomised method. Then the Steiner points are iteratively
relocated in such a way that the length of the resulting tree is reduced in every
iteration. Since the underlying optimisation problem is strictly convex, any iterative
method that (strictly) reduces the length of the tree is guaranteed to converge to the
unique global minimum [179]. The length function has, unfortunately, non-smooth
and complicated behaviour near the optimum, so convergence can be very slow.

22 1 Euclidean and Minkowski Steiner Trees

The main idea of Smith’s algorithm is as follows. Assign labels ft1; : : : ; tng to the
terminals and labels ftnC1; : : : ; t2n�2g to the Steiner points in the topology T . Let vk

i

denote the location of terminal or Steiner point ti in iteration k (where the location
of a terminal, of course, is fixed at its given location throughout the algorithm). In
iteration k C 1, Smith sets up the following vector equation for each Steiner point
ti 2 ftnC1; : : : ; t2n�2g:

X

j Wti tj 2E.T /

v
.kC1/
i � v

.kC1/
j

jvk
i � vk

j j D 0

Note that the equation uses the locations from the previous iteration k, and thus the
denominator is a constant in iteration k C 1. Hence, the equation is linear. Each
Steiner point converges towards a location where the forces on the Steiner point are
in equilibrium; the equation makes the sum of the outgoing unit vectors along the
three edges incident to the Steiner point converge to zero. This is only possible when
each pair of incident edges meets at an angle of 2�=3 at the Steiner point.

Due to the special tree structure, the system of linear equations can be solved
in O.n/ time using Gaussian elimination [351]. Furthermore, Smith proves that the
algorithm converges with high probability, and that convergence is geometric (and
thus fast in practice). Smith’s algorithm can be generalised to higher dimensions
and other metrics. For dimension three or higher, no finite algorithm can exist for the
Euclidean problem, so it is necessary to resort to infinite converging processes [351].

1.3 Global Properties of Minimum Steiner Trees

In the previous sections we looked at properties of Steiner points, the geometry of
full Steiner trees, and the construction of full Steiner trees and relatively minimal
trees for a given full Steiner topology. In this section we discuss some important
global properties of minimum Steiner trees, that is, properties that do not assume
that a topology is given.

First we define the related minimum spanning tree problem, and discuss the
Steiner ratio—which is the smallest ratio between the length of a minimum Steiner
tree and the length of a minimum spanning tree for the same set of terminals. Then
we describe a number of global structural properties, that is, necessary properties of
minimum Steiner trees; these properties include constraints on the geometric region
in which a minimum Steiner tree can appear, and bounds on the length of edges
in the tree. Finally, we show that the Euclidean Steiner tree problem is NP-hard,
meaning that a polynomial-time algorithm for solving the problem is unlikely to
exist.10

10The Euclidean Steiner tree problem in the plane does, however, have a polynomial-time
approximation scheme [16]. This means that for any fixed � > 0 there exists a polynomial-time
algorithm for computing a Steiner tree of length at most a factor 1 C � from optimum.

1.3 Global Properties of Minimum Steiner Trees 23

1.3.1 Minimum Spanning Trees and the Steiner Ratio

We begin by defining a shortest network problem that does not include Steiner
points:

EUCLIDEAN MINIMUM SPANNING TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying in the plane.
Find: A geometric network NT D .V . NT /; E. NT //, such that N D V. NT /, and
such that j NT j WD P

e2Ej NT j jej is minimised.

A solution to this problem is called a minimum spanning tree (MST). MSTs in
edge-weighted graphs can be computed in polynomial time (essentially in linear
time in the number of edges [121]). By constructing the complete graph on the set
of points N , an MST in the plane can be computed in O.n2/ time using, for example,
Prim’s algorithm for the corresponding graph problem [314]. Prim’s algorithm is a
classic example of a greedy algorithm.

By exploiting the geometry of the problem, Euclidean MSTs in the plane can be
constructed in O.n log n/ time [313]. One well known approach is to use the dual of
the Voronoi diagram for N , the Delaunay triangulation (which can be constructed
in O.n log n/ time), to identify a subgraph with O.n/ edges of the complete graph
on N that contains an MST for N (see, for example, [18]).

Clearly, minimum Steiner trees are in general shorter than MSTs for the same
terminal set N , since minimum Steiner trees are allowed to contain Steiner points.
Let jT .N /j and j NT .N /j denote the length of a minimum Steiner tree and that of an
MST, respectively, for N . How much shorter can a minimum Steiner tree be relative
to an MST for the same set of terminals? Define

�.N / WD jT .N /j
j NT .N /j

to be the ratio between the length of a minimum Steiner tree and an MST for N .
The Steiner ratio � is defined as

� WD inf
N

�.N /:

That is, the Steiner ratio is the smallest possible ratio between the minimum Steiner
tree and the MST lengths for any set of terminals.

Conjecture 1.6 ([179] Steiner ratio conjecture) The Steiner ratio for the Euclidean
Steiner tree in the plane problem is

p
3=2 D 0:866025 : : :.

This long-standing conjecture was first given by Gilbert and Pollak [179] in
1968. The conjecture remains open, despite a paper published in 1992 claiming to

24 1 Euclidean and Minkowski Steiner Trees

prove the conjecture (the proof was later shown to be erroneous).11 The conjectured
Steiner ratio is achieved when N is the set of vertices of an equilateral triangle (see
Fig. 1.1), hence

p
3=2 is an upper bound for �. It is straightforward to show that 1=2

is a lower bound for � (in any metric); see Exercise 1.10. Currently, the best known
lower bound is as follows:

Lemma 1.7 ([106] Lower bound for Steiner ratio) The Steiner ratio � is bounded
below by �0 D 0:82416874 : : :, where �0 is the unique real root of the polynomial

x12 � 4x11 � 2x10 C 40x9 � 31x8 � 72x7 C 116x6 C 16x5 � 151x4 C 80x3 C 56x2 � 64x C 16

satisfying 0:8 < �0 < 1.

Not surprisingly, the proof of this result is highly technical, and is found in [106].
Another approach towards trying to establish the Steiner ratio conjecture is to

show that it holds when n, the number of terminals, is bounded by some small
value. For example, it is easy to show that the conjecture holds when n � 3; see
Exercise 1.11. Rubinstein and Thomas [326], in 1991, showed that the Steiner ratio
conjecture holds for n � 6; in 2009 de Wet [128] extended this result to n � 7; and
more recently, in 2014, Kirszenblat [233] proved it for n � 8.

As a final remark, we note that if a minimum Steiner tree has terminal-terminal
connections, then these may be assumed to come from a single arbitrary MST:

Lemma 1.8 ([179] MST edges in minimum Steiner tree) Let NT be an MST for
N . Then there exists a minimum Steiner tree T for N such that all terminal-terminal
connections (or 2-terminal full Steiner trees) in T are edges from NT .

Proof Consider some minimum Steiner tree T . We show that if T contains a
terminal-terminal edge e that is not in NT , then we can replace this edge with an
edge f from NT where jf j � jej. From this the lemma follows.

Remove edge e from T and consider the two connected components (subtrees)
T1 and T2. Let ti and tj be the terminal endpoints of edge e. In NT there is a unique

11Here we give a brief history of the Steiner ratio conjecture, based largely on the 2012 account by
Ivanov and Tuzhilin [220], and their update in 2014 [221]. In 1992 a paper by Du and Hwang [135]
presented a proof of the Steiner ratio conjecture. This proof, though generally accepted throughout
most of the Steiner tree community, also caused some concern as the argument had a certain lack
of precision and formality making it difficult to verify. The first paper to seriously question the
proof in [135] was that of Yue [426], in 2000; however, the details of Yue’s criticism of the
proof were unconvincing, and a proposed alternative proof was flawed. In 2001–2003 a number of
mathematicians, including Ivanov, Tuzhilin, Morgan, Bern, Ceislik, Graham and others, discussed
Du and Hwang’s proof via e-mail in some detail. Two major gaps were identified in the proof:
one concerned the continuity of the inner spanning tree length and the other the reduction to full
Steiner topologies. While some discussion of these gaps (by Ivanov and Tuzhilin) appeared in the
Russian language literature at the time it was not until 2008 that these gaps were discussed in the
English language mathematics literature, first by Ivanov and Tuzhilin [219], and shortly afterwards
by de Wet [128] and Innami et al. [218]. The general consensus appears to be that there is no
obvious way of fixing these gaps in the proof, hence the Steiner ratio conjecture remains open.

1.3 Global Properties of Minimum Steiner Trees 25

path P from ti to tj . Let f be the first edge on P that connects a terminal in T1

with a terminal in T2. Edge f reconnects T1 and T2, and clearly jf j � jej, since
otherwise we could replace f with e in NT and obtain a shorter spanning tree. ut

1.3.2 Structural Properties

In this section we study some necessary geometric conditions that must be satisfied
by minimum Steiner trees for a given terminal set N , independently of the topology
of the tree. These conditions can be checked rapidly, and hence can be used as
efficient pruning conditions for eliminating non-feasible topologies, or families of
topologies, when attempting to construct a minimum Steiner tree. For example,
many of these properties are exploited as part of the GeoSteiner algorithm which
we discuss in Sect. 1.4. The properties fall into two groups: empty regions and edge-
length bounds. An empty region is a region in the plane that can be shown to be free
of Steiner points and/or terminals if certain conditions are fulfilled. An edge-length
bound provides a lower and/or an upper bound on the length of certain edges in
a minimum Steiner tree. We are interested in identifying empty regions and edge-
length bounds that can be efficiently computed without having to first compute a
minimum Steiner tree.

The Wedge Property and Steiner Hulls

We define a wedge to be any translation of a convex cone in the plane. The ‘wedge
property’ and its elegant proof were established by Gilbert and Pollak [179].

Lemma 1.9 (The wedge property) Let W be an open wedge having angle 2�=3

or more and containing no elements of N . Then W contains no Steiner point of any
minimum Steiner tree for N .

Proof Arguing by contradiction, suppose W contains at least one Steiner point s.
Without loss of generality, we introduce a Cartesian coordinate system .x; y/ with
positive x-axis along the angle bisector of the wedge, and choose s to be a Steiner
point in W with the largest x-coordinate. Of the three incident edges at s, one leaves
s in a direction within ˙�=3 of the positive x-axis. This edge cannot leave W and
so cannot end at a terminal. Moreover, its other endpoint has a larger x-coordinate
than that of s, giving a contradiction. ut

Given two distinct points a and b in the Euclidean plane, let tab be the third
vertex of an equilateral triangle with vertices a and b (hence, tab equals one of the
two equilateral points for a and b, eab or eba). Furthermore, let Cab be the open
finite region bounded by the circumcircle of 4abtab, and let Rab be the union of
Cab and the open half-plane defined by the line through a and b and containing
tab, as illustrated in Fig. 1.16. Note that Rab is not uniquely defined; there are two
possibilities for tab resulting in two possible choices for the region Rab.

26 1 Euclidean and Minkowski Steiner Trees

Fig. 1.16 One of the two
possible regions Rab for two
given points a and b. The
other region is obtained by
reflecting the diagram
through the line through a

and b

tab

ba

Rab

This definition leads to the following corollary of the wedge property, which will
be used in Sect. 1.3.3.

Corollary 1.10 Let a and b be terminals of a Euclidean minimum Steiner tree T . If
there exists a region Rab, as defined above, containing no terminals of T , then that
region also contains no Steiner points of T .

Proof This is a simple extension of the wedge property (Lemma 1.9); any open
wedge-shaped region having an angle of 2�=3 and containing no terminals of T

also contains no Steiner point of T . Region Rab is an infinite union of such wedges,
all with a and b on their boundary. ut

To see the power of this corollary, consider a terminal set fa; b; cg such that each
angle of the triangle 4abc is less than 2�=3. Then the union of the three regions
Rab, Rbc and Rca (where in each case the open circular arc intersects the interior of
4abc) covers the entire plane with the exception of four points: the three terminals
a; b; c and a single point s in the interior of 4abc (see Fig. 1.3). By Corollary 1.10,
s must be the Steiner point of the Euclidean minimum Steiner tree on fa; b; cg.

Definition [Steiner hull]: Given any set of terminals N , a Steiner hull for N

is a bounded region of the plane containing every minimum Steiner tree for N .

A Steiner hull can be found by taking the complement of a union of wedges
satisfying the wedge property. For example, it follows that the convex hull of N

is a Steiner hull of N , since it is the complement of a union of �-angled wedges
(containing no terminals) bounded by the supporting lines of the convex hull [179].

We now describe a replacement process aimed at reducing the size of a Steiner
hull, using terminology suggested by Winter [405].

Let PN denote a polygon with a subset of the terminal set N D ft1; : : : ; tng as its
vertices, and such that PN is the boundary of a Steiner hull for N . (We know that
at least one such Steiner hull exists, namely the convex hull of N .) Let ti tj be an
edge of PN . A replacement of ti tj by a pair of edges ti tk and tktj , tk 2 N n fti ; tj g,
denoted by ti tj ! ti tktj , is said to be legal if

• 4ti tktj is contained in PN ;
• 4ti tktj contains no terminals other than its vertices; and
• †ti tktj � 2�=3.

1.3 Global Properties of Minimum Steiner Trees 27

Fig. 1.17 An edge crossing
the triangle 4ti tktj

ti tj

tk
xi xj

Each legal replacement ti tj ! ti tk tj corresponds to a triangle with one of its sides
on PN being replaced by the other two sides and with tk as a new vertex of the
polygon. Note that a legal replacement may result in a non-simple polygon.

Lemma 1.11 ([111]) Let PN be the boundary of a Steiner hull for N . If there is a
legal replacement ti tj ! ti tktj of the edge ti tj of PN , then the reduced polygon is
also the boundary of a Steiner hull for N .

Proof We need to show that no minimum Steiner tree for N enters the interior of
4ti tk tj or includes the edge ti tj . First, suppose there is at least one Steiner point
of some minimum Steiner tree for N in the interior of 4ti tktj . Then, by the same
argument as in the proof of Lemma 1.9, there exists a Steiner point s in the interior
of 4ti tk tj such that some edge incident with s crosses the interior of ti tj , giving a
contradiction.

Next, suppose that 4ti tktj contains an edge of some minimum Steiner tree T for
N that crosses ti tj in xi (where, possibly, xi D ti , but xi 6D tk), and crosses tj tk
in xj (where, possibly, xj D tj , but xj 6D tk); see Fig. 1.17. Remove xi xj from
T ; this splits T into two connected components, one of which contains tk . We can
reconnect the components by adding an edge from tk to either xi or xj . This results
in a tree shorter than T interconnecting N , giving a contradiction to minimality. ut

This suggests a simple recursive procedure for constructing a minimal area
polygonal Steiner hull: beginning with PN being the boundary of the convex hull
of N , apply legal replacements to the edges of PN until no more replacements are
possible. This can be done in any order, for example, in depth-first, clockwise order,
beginning with a fixed edge of the convex hull. Winter [405] shows that the order
in which legal replacements are applied is immaterial; every maximal sequence of
replacements results in the same final PN .12 In addition, Winter also shows that
there is a ‚.n log n/ time and ‚.n/ space algorithm for constructing this minimal
Steiner hull, by making use of the Delaunay triangulation of N ; see [405] for more
details.

Related to these above results is the following useful observation, first made by
Cockayne [110].

12This invariance property for the minimal Steiner hull was first stated 10 years earlier in Part 1,
Theorem 1.5 of the book [211] by Hwang et al. However, Winter [405] gives a simple counter-
example to show that a key assumption in the ‘proof’ of this result in [211], that any pair of
consecutive legal replacements can be directly reversed, is incorrect.

28 1 Euclidean and Minkowski Steiner Trees

Fig. 1.18 The lune (left) and
diamond (right) of a line
segment uv

u

v

u

v

Corollary 1.12 If a set of terminals N has the property that all elements of N lie
on the boundary PN of the convex hull of N , then every cherry of a minimum Steiner
tree T consists of an adjacent pair of vertices of PN .

This follows immediately from the observations that the convex hull of N is a
Steiner hull, and that T has no crossing edges. In fact, by the same argument, a
slightly stronger statement is true, namely that the order of terminals in an outer
walk of T is the same as the order of terminals around PN .

The Lune Property

Another important empty region result is the ‘lune property’, also established by
Gilbert and Pollak [179].

Definition [Lune]: Given a line segment uv, we define the lune of uv, L.u; v/,
to be the intersection of open discs D.u/ and D.v/ centred at the points u
and v, respectively, and each of radius juvj. Equivalently, L.u; v/ is the region
consisting of all points x such that juxj < juvj and jvxj < juvj.13

An example of a lune is shown in Fig. 1.18 (left).

Lemma 1.13 (The lune property) If uv is an edge of a minimum Steiner tree T ,
then the lune L.u; v/ does not contain any points of the tree T other than the interior
of uv.

The proof of this lemma is straightforward (Exercise 1.12). The lune property
forms the basis for one of the most important pruning criteria in the generation
phase of the GeoSteiner algorithm. This is described in more detail in Sect. 1.4.3.

13The terminology for a lune, which originated with Gilbert and Pollak [179] and is now standard
in the Steiner tree literature, is inconsistent with the standard geometrical terminology. In planar
geometry, the term ‘lune’ usually refers to a crescent-shaped convex-concave region bounded by
two circular arcs, or in other words, the relative complement of one disc in another (where they
intersect but neither is a subset of the other). A ‘lune’, as defined here, is an example of a ‘lens’ in
standard planar geometry.

1.3 Global Properties of Minimum Steiner Trees 29

The Diamond Property

To conclude the discussion of empty regions, we briefly mention the ‘diamond
property’. By the diamond of a line segment uv we mean the open set of points x

such that both angles †xuv and †xvu are less than �=6. Hence, the diamond of uv is
a rhombus with angles �=3, 2�=3, �=3, 2�=3, and with uv as the longest diagonal;
see Fig. 1.18 (right). Clearly, the diamond of an edge of a minimum Steiner tree is
an empty region (apart from its main diagonal) since it is contained in the lune of
that edge. Gilbert and Pollak [179] show that if one constructs diamonds for every
edge of a minimum Steiner tree T , then no two diamonds intersect. The significance
of this is that if n is the number of terminals of T and these terminals lie in a region
R, then the result gives a way of finding an upper bound for jT j in terms of n and the
area of a region U which must contain all the diamonds of T and can be computed
from R. While this upper bound does not appear to have been used much in practice
for Euclidean Steiner trees, an equivalent result has been more widely studied for
rectilinear Steiner trees, and is discussed in Chap. 3.

Bottleneck Steiner Distance Bound

We now turn our attention to edge-length bounds. Assume that ti ; tj 2 N is a pair of
distinct terminals. Let P NT .ti ; tj / denote the unique path between ti and tj in some
minimum spanning tree (MST) NT for N .

Definition [Bottleneck Steiner distance]: Given two terminals ti and tj in N ,
the bottleneck Steiner distance, BSD.ti ; tj /, is equal to the length of the longest
edge on P NT .ti ; tj / for some MST NT .

Note that BSD.ti ; tj / is well defined, since any MST will result in the same
bottleneck Steiner distances; this follows from elementary properties of MSTs. Now,
let PT .ti ; tj / denote the unique path between ti and tj in a minimum Steiner tree T .
Then we have the following useful lemma:

Lemma 1.14 (Bottleneck Steiner distance bound) Given two terminals ti ; tj 2
N , let PT .ti ; tj / be a path in some minimum Steiner tree T for N . For any edge
e 2 PT .ti ; tj /, we have jej � BSD.ti ; tj /.

Proof Assume that there exists an edge e 2 PT .ti ; tj / such that jej > BSD.ti ; tj /.
Remove e from T , and consider the two connected components (subtrees) T1 and
T2. Choose any minimum spanning tree NT and consider the unique path p between
ti and tj in NT . The longest edge on this path has length BSD.ti ; tj /. This means
that the first edge f on p that connects a terminal in T1 with a terminal in T2 has
length jf j � BSD.ti ; tj /. By reconnecting T1 and T2 using edge f , a shorter tree
interconnecting N is obtained—a contradiction. ut

The necessary condition provided by Lemma 1.14 turns out to be very powerful
in practice, and can be supplemented by a generalisation given in Exercise 1.13.
Note that the bottleneck Steiner distance bound is independent of the norm; the

30 1 Euclidean and Minkowski Steiner Trees

Fig. 1.19 A full Steiner tree
T on four terminals; T is
acute, since †t1ot2 � �=2.
Hence, by Lemma 1.15, T is
a minimum Steiner tree

t1

t2

o

proof is not reliant on the geometry of the Euclidean plane. In particular, this bound
also holds for the Steiner trees discussed in Chaps. 2 and 3.

Four Terminal Edge-Length Bounds

There are other edge-length bounds that do exploit Euclidean geometry. We first
require a result that provides a useful way of recognising when a full Steiner tree on
four terminals is minimum.

Definition [Acute Steiner tree]: Let N be a set of four terminals forming
the vertices of a convex quadrilateral, and let o be the intersection of the two
diagonals of the quadrilateral. Suppose there exists a full Steiner tree T for N

where one of the two cherries is, say, t1; t2. If the angle †t1ot2 � �=2, then we
say that the Steiner tree T is acute.

An example of an acute Steiner tree is illustrated in Fig. 1.19.

Lemma 1.15 Let N be a set of four terminals forming the vertices of a convex
quadrilateral. If an acute full Steiner tree exists for N , then it is a minimum
Steiner tree. Furthermore, unless the two diagonals of the convex quadrilateral are
orthogonal, this is the unique minimum Steiner tree for N .

For details of the proof, see Du et al. [137].14 The proof relies on showing that
the Simpson line for the acute full Steiner tree is shorter than the length of any other
Steiner tree on the same set of terminals.

14A slightly weaker version of Lemma 1.15, with the added assumption that two different full
Steiner trees exist for N , was first proved by Pollak [305]. Du et al. [137] later simplified Pollak’s
proof, and showed that the existence of a second full Steiner tree is not required. They also showed
that it is possible for a full Steiner tree of N that is not acute to be a minimum Steiner tree (if no
other full Steiner tree exists).

1.3 Global Properties of Minimum Steiner Trees 31

Fig. 1.20 The part of T

inside the rectangle with
corners p1, p2, p3, p4. The
lengths of the parts of the
edges within this rectangle
are indicated in blue

l0

|s1s2|

l0 l0

l0

p1

p2 p3

p4

s1 s2

Using the above lemma, we now have the following result.

Lemma 1.16 ([179]) Let s1 and s2 be two adjacent Steiner points in a minimum
Steiner tree T . Let l0 be the length of the shortest of the four edges (other than s1s2)
incident with s1 or s2. Then js1s2j � .

p
3 � 1/l0.

Proof Let p1 and p2 be the two points which lie on the two edges (other than s1s2)
incident with s1 at distance l0 away from s1. Similarly, let p3 and p4 be the two
points which lie on the two edges (other than s1s2) incident with s2 at distance
l0 away from s2. See Fig. 1.20. The points p1, p2, p3, p4 lie at the corners of a
rectangle, and the part of T which interconnects p1, p2, p3, p4 is a full minimum
Steiner tree with cherries at fp1; p2g and fp3; p4g. The side lengths of the rectangle
are jp1p2j D jp3p4j D p

3l0 and jp1p4j D jp2p3j D l0 C js1s2j. Since there
exists an acute full Steiner tree for any rectangle, it follows from Lemma 1.15 that
jp1p4j � jp1p2j, from which the statement of the lemma follows. ut

There are other similar edge-length bounds that can be proved using
Lemma 1.15; see, for example, Exercise 1.14.

1.3.3 Computational Complexity

In this section we discuss the computational complexity of the Euclidean Steiner tree
problem. Discussing the computational complexity demands particular care, as the
problem involves irrational numbers (see Sect. 1.2.1). When a computer outputs the
coordinates of Steiner points and/or lengths of edges/trees, it must in general round
these irrational numbers to rational numbers. So it is actually more interesting to
consider the computational complexity of a discretised version of the problem.

First we prove that a certain restricted and discretised version of the Euclidean
Steiner tree problem is NP-hard (see Garey and Johnson [170] for a comprehensive
introduction to computational complexity). We do this by proving that the decision

32 1 Euclidean and Minkowski Steiner Trees

version of the problem is NP-complete. Based on this result, we are able to show,
in Theorem 1.18 below, that the same restricted version of the (original) Euclidean
Steiner tree problem is NP-hard—and hence that the general Euclidean Steiner tree
problem is NP-hard. The decision version of the restricted problem is the following:

PARALLEL LINES EUCLIDEAN STEINER TREE DECISION PROBLEM

Instance: A finite set of points N lying on two parallel lines in the Euclidean
plane and a positive integer L.
Question: Is there a Euclidean Steiner tree T with terminal set N such that the
length of T is at most L?

As already mentioned, in order to avoid issues related to the theoretical com-
plexity of computing with exact real arithmetic, we in fact consider a discretised
version of the problem, where distances and coordinates of terminals and Steiner
points are constrained to be integers. In the construction below we initially ignore
this technical difficulty, and address it at the end of the proof.

The first proof that the discretised Euclidean Steiner tree problem is NP-hard was
an intricate and highly technical proof given by Garey, Graham and Johnson [168]
in 1977. Our approach here, where the terminals are restricted to parallel lines, is
based on an elegant argument by Rubinstein et al. [330], later refined by Brazil
et al. [66]. The way we present the construction and proof differs a little from those
previous two papers in order to allow us to generalise the result to a much larger
class of Steiner tree problems in Chap. 2.

The main idea is to show that the problem can be used to polynomially encode an
instance of the subset sum problem, which is well known to be NP-complete [170]:

SUBSET SUM PROBLEM

Instance: A set S D fd1; : : : ; dng of integers and an integer d .
Question: Is there a set J � f1; : : : ; ng such that

P

i2J di D d?

The main result is as follows. In the proof we let d.a; b/ represent the Euclidean
distance between the points or parallel lines a and b.

Theorem 1.17 The discretised parallel lines Euclidean Steiner tree decision prob-
lem is NP-complete.

Proof Let S D fd1; : : : ; dng and d <
Pn

iD1 di WD D be a given instance of
the subset sum problem. We first show how to use this instance to construct (in
polynomial time) an instance of the parallel lines Euclidean Steiner tree problem,
and then show that the instance for the subset sum problem is a ‘yes’ instance if
and only if the corresponding instance for the parallel lines Euclidean Steiner tree
decision problem is a ‘yes’ instance. The statement of the theorem then follows.

The construction of the instance for the parallel lines Euclidean Steiner tree
problem is as follows. We describe the construction in four stages:

1.3 Global Properties of Minimum Steiner Trees 33

v

x2

un

u1

x1

u0

V1 V ′
1 V ′

2 V2
V1

ai

bi

ci

xidi

di

a b

c
V1

ai

bi

ci

xidi

di

Fig. 1.21 Construction of a Euclidean Steiner tree: (a) shows the initial two stages of the
construction resulting in the tree shown, the base tree Tx ; (b) shows how Tv connects to each
triple ai , bi , ci ; and (c) is the alternative connection possible in the tree T0, used in Claim 2

1. Let V1; V 0
1 ; V 0

2 ; V2 be four vertical lines ordered from left to right such that

d.V1; V2/ 	 d.V1; V 0
1 / D d.V 0

2 ; V2/ 	 D: (1.2)

Let u0 be a fixed point on V2, and construct a zigzag path P between u0 and
a point on V1 (labelled v), such that: P is composed of line segments with
alternating polar angles 2�=3 and �=3; P has 2n internal vertices (where n is
the cardinality of S); and these internal vertices lie alternatively on V 0

1 and V 0
2 ;

see Fig. 1.21a.
2. Now from each internal vertex of P on V 0

1 extend a horizontal line segment to
a point on V1. Label these n points x1 to xn in ascending order. Similarly, from

34 1 Euclidean and Minkowski Steiner Trees

each internal vertex of P on V 0
2 extend a horizontal line segment to a point on

V2, and label these points u1 to un in ascending order. Again, this is illustrated
in Fig. 1.21a. This results in a Euclidean Steiner tree interconnecting u0, the ui ’s,
xi ’s and v (where in each case i runs from 1 to n). We call this tree the base tree
Tx .

3. The next stage of the construction is to replace each point xi by three points on V1

labelled, from bottom to top, ai , bi and ci , satisfying: jai bi j D di ; jbi ci j D di ;
and xi is the midpoint of ai bi ; see Fig. 1.21b.

We also alter the Steiner tree constructed in Stage 2, so that it connects to ai , bi

and ci , instead of xi . This is done by shortening the horizontal edge by di =.2
p

3/

on the left and creating a Steiner point at that new left endpoint with two new
incident edges with polar angles 2�=3 and �=3 and each with length di=

p
3

connecting to ai and bi . Finally we connect bi to ci with a single (geodesic)
edge, i.e., a vertical line segment. This is illustrated in Fig. 1.21b. Let Nv be
the set consisting of u0, the ui ’s, ai ’s, bi ’s, ci ’s and v. We denote the above
Euclidean Steiner tree (interconnecting the elements of Nv) by Tv . We will refer
to the topology of the base tree Tx (from Stage 2) as the base topology of Tv .

Before completing the construction, we establish the following claim:

Claim 1 Tx and Tv are each the unique minimum Steiner tree for their respective
terminal sets.

Proof of Claim 1 Given the differences in scale in Inequality (1.2), consider the
limiting case where d.V1; V 0

1 / D d.V 0
2 ; V2/ D 0. In that case each of Tx and Tv

becomes a single zigzag path with polar angles 2�=3 and �=3 between terminals
fx1; : : : ; xn; vg on V1 and fu0; u1; : : : ung on V2. The fact that this path is a Euclidean
minimum Steiner tree on its vertices follows from Corollary 1.10 by constructing
suitable regions: Rui uiC1

for each i 2 f0; : : : ; n � 1g; Rxi xiC1
for each i 2

f1; : : : ; n � 1g; and Rxnv (where in each case the semi-circular open boundary lies
between V1 and V2). Taking the union of these regions, it is clear that any Steiner
points must coincide with terminals; hence, the minimum Steiner tree coincides with
the minimum spanning tree. Furthermore, this minimum spanning tree is easily seen
to be unique.

The result now follows immediately by continuity, and the fact that Tx and Tv (in
the non-limiting case) are each locally minimal at every Steiner point. ut

Note that it is straightforward to compute the total Euclidean length of Tv (i.e.,
jTvj) in terms of d.V 0

1 ; V 0
2 /, d.V1; V 0

1 /, n and the elements of S (see Exercise 1.15).
Let Lv WD jTvj. Also, we observe that in the main full component of Tv , containing
all the Steiner points (in other words, all of Tv apart from each of the .bi ; ci / edges),
one of the three orientations of edges is horizontal. We describe such a tree as a
horizontal-edge Steiner tree.

The final stage of our initial construction is as follows.

4. Let v0 be the point on V1 below v such that jv0vj D 2d . Let N0 be the set Nv

where v has been replaced by v0. Let T0 be a minimum Steiner tree for N0.

1.3 Global Properties of Minimum Steiner Trees 35

Claim 2 The minimum Steiner tree T0 has the same base topology as Tv . Further-
more, for each triple, ai , bi and ci , the main full component of T0 either connects
directly to ai and bi only, as in Fig. 1.21b, or to bi and ci only, as in Fig. 1.21c.

Proof of Claim 2 The first statement follows by the relative scale of the distances
involved in Inequality (1.2), using the same argument as in the proof of Claim 1.
For the second statement, it is an easy exercise to show that the configurations
shown in Fig. 1.21b, c are the only locally minimal ways of connecting the main
full component of T0 to ai , bi and ci . ut

In other words, we can think of T0 as being the new minimum Steiner tree
obtained from Tv by moving the terminal v vertically downwards by 2d .

Claim 3 The following three statements are equivalent:

(A) The answer to the given instance of the subset sum problem is ‘yes’.
(B) There exists a horizontal-edge minimum Steiner tree on N0 with the same base

topology as Tv .
(C) There exists a Steiner tree on N0 with length at most Lv � p

3d .

Proof of Claim 3 The equivalence of the three statements is shown in four steps.
Step 1: (A)) (B). Let Tx be the minimum Steiner tree constructed in Stage 2 of

the main construction. Suppose we treat v and one of the terminals xi as ‘movable’
points, able to move along V1. Then consider the following question: If we move
xi vertically upwards by a distance ı, how does the position of v on V1 change so
that Tx remains a horizontal-edge Steiner tree? As Fig. 1.22 shows, each horizontal
edge incident with a terminal uj (for j such that i � j � n) increases in length
by 2ı=

p
3. In particular, the horizontal edge incident with un increases in length by

2ı=
p

3, which implies that v moves downwards by 2ı.
We now apply a similar argument to Tv. Again, allow v to be a ‘movable’ point,

and consider the effect of changing the connection of the tree at one of the triples
ai ; bi ; ci (from the original connection as shown in Fig. 1.21b to the alternative
connection shown in Fig. 1.21c) while keeping the tree a horizontal-edge Steiner
tree. By the symmetry of the two connection types this is equivalent in its effect
on v to moving xi upwards by di in Tx; that is, v moves downwards by 2di . This
effect is additive across all of the triples, meaning that if we change to the alternative
connection scheme at each i 2 J where J � f1; : : : ; ng is a set that corresponds to
a ‘yes’ instance of the given subset sum problem, then v moves downwards by 2d

to v0, giving the required horizontal-edge minimum Steiner tree on N0.
Step 2: (B)) (A). The argument here is similar to that in Step 1. This time

we begin with a horizontal-edge minimum Steiner tree on N0 with the same base
topology as Tv , and treat the terminal v0 as being a ‘movable’ point on V1. Since
v0 6D v it follows that there must be at least one i 2 f1; : : : ; ng such that the
connection of the tree to ai ; bi ; ci uses the alternative connection scheme shown
in Fig. 1.21c. Let J 0 � f1; : : : ; ng be the set of all such i where this alternative
connection scheme is used. If for any i 2 J 0 we change to the original connection
scheme (as shown in Fig. 1.21b) while keeping the tree as a horizontal-edge tree,

36 1 Euclidean and Minkowski Steiner Trees

Fig. 1.22 Construction for
proof of Claim 3 (Step 1) v

xi+1

un

ui

xi

V1 V1 V2 V2

δ {

2δ {

2δ√
3

then, by the same argument as in Step 1, v0 moves upwards by 2di . Now if for
every i 2 J 0 we change to the original connection scheme while keeping the tree
as a horizontal-edge tree, then it is clear that v0 now coincides with v (since the
position of v0 is uniquely determined by the positions of the other terminals, the
topology of the tree and the three directions). Since d.v0; v/ D 2d it follows that
P

i2J 0 di D d , and hence J 0 gives a ‘yes’ solution to the given instance of the subset
sum problem.

Step 3: (B)) (C). We first analyse the change in length to Tx under the
movement of xi by ı described in Step 1 and illustrated in Fig. 1.22. For the
horizontal edges: the edge incident with xi decreases in length by ı=

p
3, each edge

incident with xj for i C 1 � j � n decreases in length by 2ı=
p

3, and each edge
incident with uj for i � j � n increases in length by 2ı=

p
3. Hence, the total

length of the horizontal edges increases by ı=
p

3. For the main zigzag path: its
height decreases by 2ı and hence its length decreases by 4ı=

p
3. Together, these

result in an overall decrease in length of 3ı=
p

3 D p
3ı for the whole tree.

It follows for the tree Tv that if we treat v as a ‘movable’ point, and consider
the effect of changing to the alternative connection of the tree at one of the triples
ai ; bi ; ci , while keeping the tree a horizontal-edge Steiner tree, the tree decreases in

1.3 Global Properties of Minimum Steiner Trees 37

V1

ai

ci

ti bi

ei

e′
i

si

p0

V ′
i

Fig. 1.23 Construction for Step 4 of Claim 3

length by
p

3di . Hence, by additivity, the horizontal-edge minimum Steiner tree on
N0 has length Lv � p

3d .
Step 4: :(B)) :(C). To prove this last statement, we argue as follows: choose

any set J 0 � f1; : : : ; ng. Let T 0
0 be the Steiner tree on N0 with the same base

topology as Tv , where for each j 2 J 0 (and only those j) the connection of the
tree to aj ; bj ; cj uses the alternative connection scheme shown in Fig. 1.21c. Now
choose some i 2 f1; : : : ; ng. We will assume i 62 J 0 (but the same argument applies
if i 2 J 0). Let si be the Steiner point of T 0

0 adjacent to ai and bi . Let ei D eai bi

and e0
i D ebi ci be the equilateral points (to the left of V1) for ai ; bi and bi ; ci ,

respectively; see Fig. 1.23. Let V 0
i be the vertical line through ei and e0

i . We can
use an initial merging step in the Melzak-Hwang algorithm at si to replace ai and
bi by ei , without changing the length or orientations in T 0

0 . We continue to apply the
merging process in the Melzak-Hwang algorithm until we have a single Simpson
line from ei passing through si to a point p0 such that jeip0j D jT 0

0j. Again, this
is illustrated in Fig. 1.23. By the given assumption (:(B)), this Simpson line is not
horizontal. Let ti be the point on V 0

1 such that the line segment ti p0 is horizontal. By
the same argument as in Step 3, it follows that jtip0j D Lv � p

3d . Hence, since
ti p0 ? V 0

1 it follows that jeip0j D jT 0
0 j > Lv � p

3d .

Discretisation and scaling. Above we have presented a transformation of any
instance of the subset sum problem to show that the parallel lines Euclidean Steiner
tree decision problem is NP-complete if one ignores arithmetic precision issues.
Here we demonstrate that the result remains true when applying a discretisation and
scaling that resolves the issues related to computing with irrational numbers.

In the discretised problem, Euclidean distances are rounded up to the nearest
integer. Also, it is assumed that terminals and Steiner points can only have integer
coordinates. Thus, for a given Steiner tree T , performing discretisation increases or
decreases the length of every edge by at most 3. Since all trees considered have at
most 7n C 1 edges, every tree is at most length 3 � .7n C 1/ longer or shorter than
before the discretisation.

We need to be able to distinguish between ‘yes’ and ‘no’ instances in the
discretised problem. More precisely, as shown in the proof of Claim 3 above, we

38 1 Euclidean and Minkowski Steiner Trees

need to be able to distinguish between horizontal-edge minimum Steiner trees and
non horizontal-edge minimum Steiner trees.

First we observe that jei ti j � 1. This follows from the arguments in the proof
of Claim 3 (Step 1); a positive integer shift ı � 1 is needed to turn the tree into an
edge-horizontal tree. From this it follows that jeip0j � pjti poj2 C 12 � jti poj C
1=.3jtipoj/.

Assume that Inequality (1.2) implies that d.V1; V2/ D ‚.D/; that is, d.V1; V2/

is a (large) constant factor times D. Thus Lv D jTvj D ‚.nD/, and jtipoj D
Lv�p

3d � ˛nD for some (large) constant factor ˛ > 0. Define �D
n WD 1=.3˛nD/.

We now have that jeip0j � jti poj � �D
n .

The problem is now scaled by multiplying all terminal coordinates by an integer
K . One can distinguish between ‘yes’ and ‘no’ instances, if K�D

n �2�3�.7nC1/ � 1.
Choosing K � .42n C 7/=�D

n D .42n C 7/ � 3˛nD suffices, and results in a
polynomial scaling.

It follows that the reduction from the subset sum problem to the discretised
problem can be performed in polynomial time, since the number of terminals is
linear in n, and the coordinates of the terminals can be represented using a number
of bits that is polynomial in n and log D. Since the sizes of coordinates of the Steiner
points of a solution to the Steiner tree problem are bounded by the coordinates of
the terminals, it follows that a certificate can be represented in polynomial space in
n and log D, and can be verified within the same time bound. Thus, the discretised
parallel lines Euclidean Steiner tree decision problem is in NP. ut

We have now shown that the discretised parallel lines Euclidean Steiner tree
decision problem is NP-complete. Consider again the (original) parallel lines
Euclidean Steiner tree decision problem. We do not know if this problem is NP. The
technical difficulty is that no polynomial algorithm currently exists for deciding
if
Pk

iD1

p
Li � L for some given set of integers L1; : : : ; Lk and L; the size of

the input is measured here as the total number of bits used to represent the given
integers.

Even if the problem may not be in NP, we can argue that it is at least as hard
as any problem in NP (and thus NP-hard) [168]. For assume that there exists a
polynomial-time algorithm for the parallel lines Euclidean Steiner tree problem—
where the irrational numbers in the output are represented symbolically. As argued
in Sect. 1.2.1, such a symbolic representation enables us to obtain an output with
any required precision (in polynomial time in the number of digits required). This
means that the discretised parallel lines Euclidean Steiner tree decision problem—
and hence all NP-complete problems—can be solved in polynomial time.

Theorem 1.18 The parallel lines Euclidean Steiner tree problem is NP-hard—and
hence the general Euclidean Steiner tree decision problem is NP-hard.

1.4 GeoSteiner Algorithm 39

1.4 GeoSteiner Algorithm

The fact that the Euclidean Steiner tree problem is NP-hard does not preclude the
possibility of developing efficient exact algorithms for solving real-world problem
instances. NP-hardness is a measure of worst-case performance, and such difficult
instances may almost never occur in practice.

The GeoSteiner algorithm is by far the most efficient exact algorithm for com-
puting a minimum Steiner tree. The running time of GeoSteiner shows good average
behaviour and scaling in practice. The GeoSteiner approach was originally proposed
by Winter [402] in 1985, but some of the algorithmic ideas have their origin in
the 1960s and 1970s.15 More recently, significant improvements to GeoSteiner
have been implemented, allowing the computation of minimum Steiner trees with
several thousand terminals, even for a variety of distance metrics [12, 188, 294, 386–
389, 407, 427].

In this section we first present a top-level description of the GeoSteiner algo-
rithm. We next discuss the full Steiner tree generation algorithm, first presenting the
basic concepts and then giving some key details, particularly for pruning methods.
It should be noted that the GeoSteiner algorithm is, in a sense, a framework that can
be filled out in various ways. In this book we pay particular attention to the most
important parts of the algorithm—from a performance point of view.

1.4.1 Top-Level Algorithm

A naïve algorithm for computing a minimum Steiner tree is to enumerate all full
Steiner topologies (see Sect. 1.1.3) for every subset of terminals, and then apply
the Melzak-Hwang algorithm (see Sect. 1.2.1) to compute a full Steiner tree (FST)
for each such full Steiner topology. A minimum Steiner tree is then obtained by
identifying a subset among the constructed FSTs that interconnects N and has
minimum length. However, since the number of terminal subsets is exponential in
N —and the number of full Steiner topologies for each subset is super-exponential—
this algorithm would exhibit very bad scaling. It would be infeasible in practice to

15Cockayne and Schiller [115] developed the first computer code to compute minimum Steiner
trees in 1972. The computer program enumerated terminal subsets and full Steiner topologies
for each subset, and used Melzak’s algorithm [277] to compute a full Steiner tree for a
given full Steiner topology. The constructed full Steiner trees were then combined to form a
minimum Steiner tree. Improved implementations of the algorithm were suggested by Boyce
and Seery [39] and Boyce [38]. None of these implementations were able to compute minimum
Steiner trees for more than 10 terminals. Winter [402] suggested the GeoSteiner approach in 1985,
allowing the computation of minimum Steiner trees with more than 20 terminals. Cockayne and
Hewgill [112, 113] suggested a number of improvements to Winter’s algorithm that allowed the
computation of minimum Steiner trees with up to 50 terminals.

40 1 Euclidean and Minkowski Steiner Trees

Algorithm 1.2: GeoSteiner algorithm
Input: Set of points (terminals) N in the plane.
Output: A minimum Steiner tree for N .

1
2 // Generation phase
3 Construct a sufficient set of full Steiner trees F D fT1; T2; : : : ; Tmg by efficient enumeration
4
5 // Concatenation phase
6 Identify a subset F� � F such that F� interconnects N and has minimum total length

compute minimum Steiner trees with more than, say, 15 terminals using this naïve
algorithm.

It turns out that a significant amount of the work in the naïve algorithm is wasted.
Firstly, most of the full Steiner topologies have no associated FST. Secondly, most
of the constructed FSTs are not shortest networks for their terminals and do not fulfil
the structural properties presented in Sect. 1.3.2.

GeoSteiner follows the same two-phase approach as the naïve algorithm, but
reduces the work significantly by implicit instead of explicit enumeration of
FSTs (for all subsets and all full Steiner topologies). FSTs that do not fulfil
necessary structural properties are eliminated early—and in most cases without
direct geometric construction. The set of generated FSTs should be sufficient in the
sense that it must contain the full components of at least one minimum Steiner tree;
furthermore, the generation of FSTs should be efficient in the sense that as many of
the FSTs as possible that cannot be part of some minimum Steiner tree should be
removed—or, ideally, never considered at all.

The FST generation phase of GeoSteiner is followed by the FST concatenation
phase, where subsets of generated FSTs are combined to form a minimum Steiner
tree. The overall GeoSteiner algorithm is given in Algorithm 1.2. The details of the
algorithm will be given in the following sections. Some parts of the generation phase
are heavily metric-dependent, and some parts can be adapted to other metrics as
shown in the following chapters of the book. The concatenation phase is completely
metric-independent, so an algorithm for solving this problem can be directly applied
to other metrics.

1.4.2 Enumeration of Equilateral Points, Branches and
Branch Trees

In this section we introduce some of the core concepts of the FST generation phase
of GeoSteiner. Consider the three FSTs in Fig. 1.24, each indicated by a different
colour. The terminal pair fa; bg forms a cherry in each of these FSTs, and the Steiner
points are located on a common Steiner arc bab. Not only do the three FSTs share

1.4 GeoSteiner Algorithm 41

Fig. 1.24 Three FSTs
sharing an equilateral point
and having a Steiner point on
the Steiner arc bab. The green
FST spans fa; b; cg, the blue
FST spans fa; b; dg and the
red FST spans fa; b; c; dg

a

b

eab

c

d

Fig. 1.25 Lunes for edges as
and bs in FSTs

a

b
c

d

t

s

a sub-topology (namely the cherry fa; bg), but the corresponding Steiner points are
also on the same side of the line ab.

Recall the definition of equilateral points from Sect. 1.1.1. Instead of enu-
merating FSTs directly, GeoSteiner enumerates equilateral points with associated
sub-topologies as described below. Equilateral points fix a part of the geometry
of the associated FSTs, which makes it possible to check some of the necessary
structural properties early in the enumeration algorithm. For example, imagine that
there existed a fifth terminal t halfway between a and b in Fig. 1.24, as shown in
Fig. 1.25. Now consider a Steiner point s on Steiner arc bab. No matter where s is
located on bab, terminal t would be inside one of the two lunes defined by edges
as and bs. (For more on areas covered by lunes, see [179].) This implies that the
equilateral point eab has no feasible Steiner point on bab and can be pruned. Hence,
none of the three FSTs shown in Fig. 1.25 would be generated.

Equilateral Points and Feasible Subarcs

The idea of the FST generation algorithm is to enumerate equilateral points
bottom-up starting from the terminals. The algorithm simulates the Melzak-Hwang
algorithm but attempts to construct FSTs for all possible full Steiner topologies in
parallel.

Consider an equilateral point x D eab. Define R.x/ D a and L.x/ D b to
be the base points of x (Fig. 1.26). Note that R.x/ and L.x/ may be terminals or

42 1 Euclidean and Minkowski Steiner Trees

Fig. 1.26 An equilateral
point x D eab for a and b and
a feasible subarc (indicated in
red) for the associated Steiner
point

a = R(x)

b = L(x)

x = eab

r(x)

l(x)

equilateral points. The equilateral point x forms the root of a binary tree in which
the children of an equilateral point are its base points—and where terminals are
leaves. The order of x is the depth of the associated binary tree. Hence, if R.x/ and
L.x/ are terminals, x is of order one; for convenience, terminals are considered to
be equilateral points of order zero.

The Steiner point for a given equilateral point x must be located somewhere on

the Steiner arc 4R.x/L.x/ of x (Fig. 1.26). Usually only a part of the Steiner arc
is in fact feasible. Therefore, GeoSteiner maintains a feasible subarc 3r.x/l.x/ for
x: a feasible Steiner point can only be located on this subarc (and not including its
endpoints). Initially we have r.x/ D R.x/ and l.x/ D L.x/, and by employing a
number of pruning tests, the subarc is iteratively reduced—and possibly eliminated
completely, in which case the equilateral point x can be removed altogether.

Branches and Branch Trees

On a slightly more abstract and metric-independent level, we may consider the FST
generation of GeoSteiner as an enumeration of so-called branches. Given any FST
T and an edge pq in T , imagine that we cut edge pq at its midpoint. We obtain two
branch trees: one rooted at p having an ‘unfinished’ edge leaving p along pq, and
another rooted at q having an ‘unfinished’ edge leaving q along qp. More formally,
branch trees and branches are defined as follows.

Definitions [Branch trees, branches]: A branch tree B is a tree spanning a
set of terminals NB , and containing a ray (known as the stem) emanating from
one of the vertices v of the tree (known as the root), such that for any point
a.¤ v/ on the stem the union of av with all edges of B other than the stem is
an FST for fag [NB . A branch B is a (possibly infinite) set of branch trees,
each of which spans a common set of terminals N.B/, such that every branch
tree B 2 B has the same topology.

Intuitively, we can think of a branch tree as an FST spanning a set of terminals
and a single point at infinity. Note that for the Euclidean metric, equilateral
points and the associated binary trees are in fact branches: for a given equilateral

1.4 GeoSteiner Algorithm 43

point/branch, each Steiner point on the feasible subarc forms the root of a branch
tree. We define the size of a branch B (respectively branch tree B) to be the number
of terminals jN.B/j spanned by B (respectively B). A branch tree of size 1 consists
of a single terminal with a single emanating stem; such a branch tree has no Steiner
points, and the terminal is the root of the branch tree. A branch tree of size k � 2

has k terminals and k � 1 Steiner points.
The generation phase of GeoSteiner enumerates branches of increasing size—

essentially using a dynamic programming approach. For a set of n terminals, there
are n branches of size 1, each corresponding to a terminal ti 2 N with an infinite
set of stems pointing in all possible directions. Branches of size k are obtained by
joining branches of size l with branches of size k � l , where l runs from 1 to bk=2c.
More specifically, the new set of branch trees is obtained by intersecting the stems
from the branch trees of the branches of size l and k � l . The meeting angle of the
intersection (which is a new Steiner point and root) must be 2�=3, which uniquely
determines the new stem of the combined branch tree.

An FST is obtained by identifying two branches where the stems can be made
to overlap with each other in opposite directions. The complete FST generation
algorithm is given as Algorithm 1.3. The presented algorithm should be seen as a
template that can be filled out in a number of different ways—even for different
metrics. Note that from Lemma 1.8 we know that the only FSTs spanning 2
terminals that need to be included in F are the n � 1 edges from any minimum
spanning tree for N (line 2 in Algorithm 1.3).

1.4.3 Pruning of Equilateral Points/Branches and Full Steiner
Trees

In this section we describe the most important tests for pruning equilateral
points/branches (line 14 in Algorithm 1.3) and for pruning FSTs (line 19 in
Algorithm 1.3). Pruning tests for equilateral points/branches are based on reducing
the feasible subarc of equilateral points [402, 407]. We begin with simple projection
tests that basically use the fact that edges meet at angles of 2�=3 at Steiner points.
We then describe tests based on the lune property and the bottleneck Steiner distance
bound (see Sect. 1.3.2). Finally, we present some so-called upper bound tests that
use the fact that we can discard branch trees that cannot be used to construct a
minimum FST on a subset of the terminals. Throughout this section we assume that
the coordinates of the terminals are given as rational numbers.

Projections

Consider an equilateral point x D eab where the base points a and b are of non-zero
order. A necessary condition for the existence of x is that it is possible to construct
at least one FST that has a Steiner point on the Steiner arc bab (and the topology

44 1 Euclidean and Minkowski Steiner Trees

Algorithm 1.3: GeoSteiner FST generation algorithm
Input: Set of points (terminals) N in the plane.
Output: A set of FSTs F D fT1; T2; : : : ; Tmg that is guaranteed to contain the full

components of at least one minimum Steiner tree for N .
1
2 Let F be the n � 1 edges of any minimum spanning tree for N

3 Let �1 be the set of branches of size 1 (set of terminals N)
4
5 for k D 2 to n do
6 // Generate �k , the set of branches of size k, and generate FSTs of size k

7 Let �k D ;
8 for l D 1 to bk=2c do
9 foreach B1 2 �l do

10 foreach B2 2 �k�l do
11 // Generate a new branch
12 if k < n then
13 Construct a new branch B from B1 and B2

14 if B is feasible and passes pruning tests then
15 Add B to �k

16 // Generate a new FST
17 if k > 2 then
18 Construct a new FST T from B1 and B2

19 if T is feasible and passes pruning tests then
20 Add T to F

given by the construction of x). More specifically, there must exist a Steiner point s

on bab such that the ray from a through s intersects the feasible subarc 3r.a/l.a/ in
a point sa strictly between a and s; similarly, there must exist a ray from b through
s that intersects the feasible subarc3r.b/l.b/ in a point sb strictly between b and s

(Fig. 1.27). Note that sas and sbs are possible edges in an FST.
The Steiner point s can be viewed as a projection of sa (or sb) onto Steiner arc

bab. A necessary condition for the existence of an equilateral point x is therefore
that there exists a projection of some point on the feasible subarc3r.a/l.a/ onto bab;
similarly for the feasible subarc 3r.b/l.b/. Below we exactly identify the feasible
projections for the equilateral point a; the feasible projections corresponding to b are
identified in a similar manner. The final set of feasible projections is the intersection
of these two projection sets. If this intersection set is empty, the equilateral point x

can be pruned.
Let C be the circle circumscribing a, b and x. We now consider the following

cases of the relative locations of r.a/ and l.a/ with respect to circle C (illustrated
in Figs. 1.28–1.30):

• Case 1. r.a/ and l.a/ are outside C . The equilateral point x can be pruned, since
no feasible projection onto bab exists (Fig. 1.28, left).

1.4 GeoSteiner Algorithm 45

ab

x = eab

r(a)

l(a)
sasb

l(b)

r(b)

s

Fig. 1.27 Construction of Steiner point s for equilateral point x D eab

ab

x = eab

r(a)l(a)

C

ab

x = eab

r(a)

l(a)

C

Fig. 1.28 Case 1: r.a/ and l.a/ are outside C (left). Case 2: r.a/ is inside C , l.a/ is outside C

(right). In both cases x can be pruned

• Case 2. r.a/ is inside C , l.a/ is outside C . The projection of r.a/ onto C is
not on bab, so no feasible subarc exists. The equilateral point x can be pruned
(Fig. 1.28, right).

• Case 3. r.a/ is outside C , l.a/ is inside C . Let p be the projection of l.a/ onto
C , and let q be the intersection of3r.a/l.a/ with bab (if q does not exist, x can be

46 1 Euclidean and Minkowski Steiner Trees

ab

x = eab

r(a)

l(a)

C

p

q

ab

x = eab

r(a)

l(a)

C

p

q

Fig. 1.29 Case 3: r.a/ is outside C , l.a/ is inside C

ab

x = eab

r(a)

l(a)

C

p

q

ab

x = eab

r(a)

l(a)

C

p

q

Fig. 1.30 Case 4: Both r.a/ and l.a/ are inside C

pruned). If p is on bab, then bpq forms a feasible subarc for x; otherwise, bbq forms
a feasible subarc for x (Fig. 1.29).

• Case 4. Both r.a/ and l.a/ are inside C . This implies that 3r.a/l.a/ is also
completely inside C . Let p be the projection of l.a/ onto C , and let q be the
projection of r.a/ onto C . If both p and q are on bab, then bpq forms a feasible
subarc for x. If only q is on bab, then bbq forms a feasible subarc for x (Fig. 1.30).
In all other cases, x can be pruned.

1.4 GeoSteiner Algorithm 47

ab

u

v = l(x)

t
r(x)

ab

u

v

t

v = l(x)
r(x)

Fig. 1.31 Lune property test. Terminal t is inside lune L.u; v/ (left). Endpoint v D l.x/ is pushed
toward r.x/ on bab to a point v0 such that t is no longer in L.u0; v0/ (right)

For a given equilateral point, the projection test takes constant time; furthermore,
it can be performed using simple geometric constructions that do not involve
trigonometric functions [389, 407].

The Lune Property

Recall that a lune L.u; v/ is defined as the set of points that are strictly within
distance juvj of both u and v. If uv is an edge in a minimum Steiner tree, then
L.u; v/ cannot contain any terminal (Lemma 1.13). This property can be used to
design a very effective pruning test as follows.

Assume that a feasible subarc3l.x/r.x/ for the equilateral point x D eab has been
identified using the projection test. If a is of non-zero order, let u be the point on
3l.a/r.a/ that is projected onto point v D l.x/ (Fig. 1.31, left); if a is of order zero
(i.e., a terminal), let u D a. Assume that there exists a terminal t inside L.u; v/. We
may now push v D l.x/ toward r.x/ on bab until the corresponding lune does not
contain t (Fig. 1.31, right). If v is pushed all the way to r.x/, equilateral point x can
be pruned.

The test can be repeated for endpoint r.x/, where r.x/ is pushed toward l.x/.
Furthermore, the test is repeated until the lunes corresponding to l.x/ and r.x/ are
free of terminals—or the feasible subarc is empty and equilateral point x can be
pruned.

Similarly to the projection test, the lune property test can be performed using
elementary geometric constructions and computations that do not involve trigono-
metric functions [389, 407]. The test takes constant time for each push, plus the time
needed to identify a terminal inside the corresponding lune (if any).

The Bottleneck Steiner Distance Bound

Consider the equilateral point x D eab, where each of the points a and b is either a
terminal or equilateral point; let N.a/ and N.b/ be the terminals that are involved

48 1 Euclidean and Minkowski Steiner Trees

in the construction of a and b, respectively. A Steiner point s on bab is the root of a
branch tree Bs with two children (also branch trees) that interconnect the terminals
in N.a/ and N.b/, respectively. Any path in Bs between a pair of terminals ta 2
N.a/ and tb 2 N.b/ includes the Steiner point s, and, more specifically, includes
the adjacent edges sas and sbs (Fig. 1.27).

The bottleneck Steiner distance BSD.ta; tb/ bounds the length of each edge on a
Steiner tree path between ta and tb (Lemma 1.14). Let

B D min
ta2N.a/; tb2N.b/

BSD.ta; tb/

be the minimum pairwise bottleneck Steiner distance between a terminal in N.a/

and a terminal in N.b/. Then we must have jsasj � B and jsbsj � B .
This edge-length bound results in a very powerful pruning test, that can be

implemented in a similar manner as the lune property test. Consider Fig. 1.31 (left).
If we have juvj > B , then we may push v D l.x/ toward r.x/ on bab until
juvj D B , or until l.x/ is pushed all the way to r.x/ and equilateral point x can
be pruned. As in the previous tests, the bottleneck Steiner distance test can be
performed using elementary geometric constructions and computations that do not
involve trigonometric functions [389, 407]. The test takes constant time, plus the
time needed to compute B (which depends on the data structure used for holding
pairwise bottleneck Steiner distances, as discussed below).

Upper Bounds

Let s be a Steiner point on the feasible subarc 3l.x/r.x/ for the equilateral point
x D eab. We define the length of the branch tree Bs rooted at s to be the sum of the
lengths of all edges of Bs other than the unbounded edge; hence, the length of Bs

is jsxj, as sx is part of a Simpson line (see Sect. 1.1.1). Since it is assumed that Bs

will merge with other branch trees to form a minimum Steiner tree, it follows that
Bs must have minimum length; that is, it must be a minimum length interconnection
of N.x/ [fsg. The challenge is that s can appear anywhere on the feasible subarc
3l.x/r.x/, so s is a ‘floating terminal’. However, it is not difficult to see that jsxj
is a strictly concave function as s moves from l.x/ to r.x/ on 3l.x/r.x/, so the
minimum is attained at one of the endpoints. Let LB D minfjl.x/xj; jr.x/xjg be
that minimum—or lower bound on the length of any branch tree for equilateral
point x.

A number of different heuristics can now be applied to provide an upper bound on
the length of a Steiner tree that interconnects N.x/ and some point on3l.x/r.x/. Let
UB.a/ and UB.b/ be upper bounds on the length of Steiner trees that interconnect
the terminals N.a/ and N.b/, respectively. (These bounds can be computed and
stored when equilateral points a and b are generated.) Let sm be the midpoint of
3l.x/r.x/. Now the following is a legal upper bound:

1.4 GeoSteiner Algorithm 49

UB D UB.a/ C min
ta2N.a/

jtar.x/j C jr.x/smj C UB.b/ C min
tb2N.b/

jtbl.x/j C jl.x/smj:

Note that replacing sm in the above equation by any other point selected from
3l.x/r.x/ results in a lower value on the right-hand side of the equation.

The equilateral point x can now be pruned if UB < LB. A number of other upper
bounds can be computed. In the current version of GeoSteiner several upper bounds
are computed—properly ordered so that the bounds that can be computed fast are
tried first [389]. Even if x cannot be pruned, it may be possible to reduce the feasible
subarc. For example, assume that UB � LB, but UB < jl.x/xj (and UB � jr.x/xj).
We may now push l.x/ towards r.x/ on bab until jl.x/xj D UB, in the same manner
as for the bottleneck Steiner distance bound. The upper bound tests, however, can
be quite time consuming, so it is important to find the right balance between running
time and pruning efficiency.

Construction and Pruning of Full Steiner Trees

Full Steiner trees (FSTs) are constructed by combining two equilateral
points/branches (lines 16–20 in Algorithm 1.3). More specifically, a valid FST
T is obtained if the Simpson line between the two equilateral points/branches
x1 and x2 properly intersect their feasible subarcs. This does, however, result in
multiple constructions of T —one for each edge of T . We may therefore arbitrarily
select the edge of T that is incident to the terminal spanned by T that has the highest
index in N . Thus, line 19 in Algorithm 1.3 first tests if x1 is a terminal t that has a
higher index than all terminals in N.x2/.

In summary, an FST T is generated by combining a terminal t D x1 with an
equilateral point x D x2. The Simpson line tx must intersect the feasible subarc
3l.x/r.x/. The FST T must be a minimum Steiner tree, and this can be tested by
computing a number of heuristic trees interconnecting ftg [N.x/; if any of these
heuristic trees has length less than jT j D jtxj, FST T can be pruned. Again, it is
important to find the right balance between running time and pruning efficiency.

Numerical Issues

The coordinates of the equilateral points can be written in the form ˛ Cˇ
p

3, where
˛ and ˇ are rational numbers [389, 407] (see also Sect. 1.2.1). The same holds for
the endpoints of the feasible subarcs that are obtained in the projection test. More
generally, trigonometric functions can be avoided in all the important pruning tests,
and the coordinates involved are therefore algebraic numbers—and can in principle
be represented symbolically with full precision.

In the GeoSteiner implementation an appropriate trade-off between precision and
running time is chosen [389]. In the pure floating point version of the algorithm,
all computations and comparisons are performed carefully to avoid numerical

50 1 Euclidean and Minkowski Steiner Trees

issues. It is also possible to compute equilateral points with full precision (in the
form ˛ C ˇ

p
3, where ˛ and ˇ are rational numbers), but this has mainly been

implemented to test the numerical robustness of the pure floating point version of
the implementation.

Use of Data Structures and Overall Performance of FST Generation

When the GeoSteiner FST generation algorithm is used on large problem instances,
say with more than 1,000 terminals, the use of appropriate data structures becomes
important.

Firstly, bottleneck Steiner distances between every pair of terminals can trivially
be determined in O.n2/ time by computing a minimum spanning tree and doing
a depth-first traversal in this tree from every terminal. This gives constant-time
lookup of bottleneck Steiner distances, but requires ‚.n2/ space. For large problem
instances, it is more efficient to use the data structure described in [227] which
uses O.n/ space; the preprocessing time is O.n log n/, and queries can be made in
O.log n/ time.

The lune property test requires the identification of terminals within a certain
region in the plane. So-called range search algorithms can be used for this purpose
(see, e.g., [127]). In the GeoSteiner implementation a simple bucket structure has
been applied. The minimum rectangle containing the set of terminals N is divided
into K
K subrectangles, and the terminals in each subrectangle are identified. This
bucket structure enables fast range search in practice.

Althaus [12] has suggested the use of range search for identifying relevant pairs
of equilateral points/branches. Let Bmax be the maximum bottleneck Steiner distance
between any pair of terminals in N . Then no edge in any minimum Steiner tree for
N can be longer than Bmax. Consider two equilateral points a and b. Let dab be
the minimum distance between their feasible subarcs; if a and b are terminals, dab

is simply the distance between a and b. Clearly, if dab > 2Bmax then no feasible
combination of a and b exists, since at least one of the new edges would have a
length greater than Bmax. Thus, given equilateral point a, we can use the bucket data
structure to identify all equilateral points of a given size—or branches spanning a
given number of terminals—that are within distance 2Bmax of a, where distance
is defined as above. This method significantly improves the running time for large
problem instances.

The practical performance of the GeoSteiner FST generation algorithm for the
Euclidean Steiner tree problem has been carefully studied in [388, 407]. A number
of improvements have been made since these papers were published around year
2000. Using the current version of the code on a modern computer, the FSTs
for 1,000 uniformly distributed terminals can be generated in less than 10 s. This
amazing performance comes in particular from an efficient implementation of the
lune property and bottleneck Steiner distance tests. For example, when combining
equilateral points of size 1 (i.e., terminals), there exist n.n � 1/ possible ordered
pairs. For n D 1;000, this yields almost one million possible pairs. The GeoSteiner

1.4 GeoSteiner Algorithm 51

algorithm combines these pairs in less than one second, and only around 5,000
equilateral points of size 2 survive the pruning test (that is, on average each terminal
participates in 10 equilateral points of size 2). For n D 1;000, in total around
60,000 equilateral points are generated, the largest having around 10–15 terminals,
and around 2,500 FSTs are generated. The running time is less than quadratic in
practice: for n D 10;000, the running time on the same modern computer is less
than 500 s; the number of surviving equilateral points is around 600,000 and the
number of surviving FSTs is 26,000.

1.4.4 Concatenation of Full Steiner Trees

The output of the FST generation phase is a set of FSTs F D fT1; T2; : : : ; Tmg that
is guaranteed to contain the full components of at least one minimum Steiner tree
for N . In the FST concatenation problem, we need to identify a subset F� � F
such that F� interconnects N and has minimum total length. This problem can be
solved in (at least) two ways: as a minimum spanning tree problem in hypergraphs
or as a Steiner tree problem in graphs.

The FST Concatenation Problem as a Minimum Spanning Tree Problem in
Hypergraphs

The FST concatenation problem can be solved as a purely combinatorial problem if
we think of each FST Ti as a subset of terminals N.Ti/ having an associated length
jTi j; that is, we reduce the problem to an abstract combinatorial problem where the
underlying geometry is completely ignored. The problem reduces to the so-called
minimum spanning tree problem in hypergraphs (see Sect. 5.2.1). The vertex set of
the hypergraph is the set of terminals N , and each FST is a weighted hyperedge.
The task is to find a set of hyperedges that forms a spanning tree in the hypergraph,
and that has minimum total weight. An integer programming algorithm [388] for
the minimum spanning tree in hypergraphs problem can solve a typical 1,000
terminal problem in a few seconds on a modern computer; however, the running
time increases quickly and rather unpredictably for problems of size 10,000 and
greater.

The FST Concatenation Problem as a Steiner Tree Problem in Graphs

The FST concatenation problem can also be formulated as an ordinary Steiner tree
problem in graphs (see Sect. 5.1). The vertex set of the graph is the union of the
terminals N and the Steiner points in the set of generated FSTs F . The edge set
of the graph is the union of all edges in the generated FSTs, and the weight of
each edge is the Euclidean length of the edge in the FST. The advantage of this

52 1 Euclidean and Minkowski Steiner Trees

approach is that well-engineered algorithms, also based on integer programming,
already exist for the Steiner tree problem in graphs [311]. The disadvantage is
that the approach breaks up the FSTs—making it feasible, in principle, to choose
a subset of edges of a single FST. Another disadvantage is that the number of
decision variables increases. Polzin and Vahdati Daneshmand [310] have studied
the Steiner tree in graph approach from a theoretical and practical perspective, and
have shown that the approach has significant potential; a benchmark of large-scale
FST concatenation problems was in fact solved faster by this method than by using
the minimum spanning tree in hypergraph integer programming approach.

1.5 Efficient Constructions for Special Terminal Sets

To conclude our study of Euclidean minimum Steiner trees, we look at families
of sets consisting of special geometric configurations of terminals for which the
problem can be solved in polynomial time. Such sets are of interest for a number of
reasons: since the Euclidean Steiner tree problem is NP-hard, these sets give some
insight into where the boundary between polynomial complexity and NP-hardness
lies for this problem; also, such sets are useful for testing both exact and heuristic
algorithms for the Steiner tree problem.

The proofs that minimum Steiner trees for particular families of terminal
configurations can be constructed in polynomial time tend to be long and technical.
Because of this, we will survey these results and the main underlying ideas, rather
than giving all the details. We will also focus mainly on some of the most recent
results from after the mid-1990s, since the cases from earlier in the literature have
already been well surveyed in Part I, Chapter 5 of [211].

1.5.1 Terminals Constrained to Circles or Curves

Let N be the set of vertices of a regular n-gon. It seems intuitively reasonable that
for sufficiently large values of n any minimum Steiner tree for N should coincide
with a minimum spanning tree (MST) for N , in other words, should be composed
of all except one of the edges of the regular n-gon. This problem was first studied
in 1934 by Jarník and Kössler [223] and fully solved in 1987 by Du et al. [138] to
give the following result.

Theorem 1.19 A minimum Steiner tree for the vertices of a regular n-gon, with
n � 6, is an MST.

Note that the vertices of a regular n-gon form a cocircular set. In 1992
Rubinstein and Thomas [327] used variational techniques to extend this theorem
to more general sets of cocircular points (thus proving a conjecture of Ron Graham
appearing in his unpublished manuscript, Some results on Steiner minimal trees. 11
May 1967).

1.5 Efficient Constructions for Special Terminal Sets 53

Theorem 1.20 Let N be a set of cocircular teminals, lying on a circle of radius r .
If at most one pair of adjacent terminals in N have a distance between them greater
than r , then a minimum Steiner tree for N is an MST.

In 1987, Ron Graham conjectured that the Steiner tree problem for any set
of terminals lying on a circle could be solved in polynomial time. We now
consider a more general version of this question: finding a minimum Steiner tree
interconnecting a set of given points lying on a fixed set of smooth disjoint curves
of finite total length in the plane. It was established by Rubinstein et al. [330], in
1997, that this problem can be solved in polynomial time, showing that Graham’s
conjecture also holds.

Theorem 1.21 ([330]) If G is a fixed finite set of disjoint compact simple smooth
curves in the plane, then there is a polynomial-time algorithm for the Euclidean
Steiner tree problem where all terminals are constrained to lie on G.

Note that a compact curve must have finite length; hence, the total length of G

is finite. The theorem ignores the complexity of the representation of G and the
terminals and assumes that elementary geometric constructions can be performed
in bounded time. In particular, ‘polynomial time’ here means time polynomial in
the number of terminals. Furthermore, the degree of the polynomial involved in
the proof is in general quite high, and is highly dependent on the geometry of G.
The running time of the algorithm depends on such features as the length and the
maximum curvature of G as well as the mutual proximity of curves or sections of
curves in G.

We now give a brief outline of a strategy for proving Theorem 1.21, based on
the proof in [330]. The underlying idea is to show that the number of topologies
that need to be considered in order to find a minimum Steiner tree topology is
a polynomial function of the number of terminals. The theorem then follows by
applying the Melzak-Hwang algorithm (Theorem 1.5).

The main steps for restricting the number of possible topologies are as follows.

Step 1: Construction of Capsules

Suppose G is a fixed finite set of disjoint smooth (i.e., continuously differentiable)
simple, compact curves of finite total length. In view of the smoothness of the curves
of G, we can choose, for any ı > 0, a covering of G consisting of a finite set
Q WD Q.ı/ of simply connected compact curves with the following properties:

1. Elements of Q overlap only on their endpoints;
2. G D

[

Q2Q
Q; and

3. All tangents to the curve of G at points in any fixed Q 2 Q and in the (at most
two) neighbouring curves in Q have orientations within ı of each other.

An example is shown in Fig. 1.32a.

54 1 Euclidean and Minkowski Steiner Trees

ε

ε

a b

Fig. 1.32 A covering Q for G, and a capsule C.Q/ for some Q 2 Q

By choosing a small enough ı we can consider the curves of G to be approx-
imately straight in each Q 2 Q and its immediate neighbouring curves. We next
define regions associated with the elements of Q. If, for some " > 0, the set of points
at distance exactly " from the curves is self-intersecting, then there is a minimum
strictly positive value at which this occurs. We will fix " to have a smaller positive
value than this, as determined below.

Given Q 2 Q, we define the capsule C.Q/ to be

fx W d.x; Q/ � "g;

as illustrated in Fig. 1.32b. Note that G \ C.Q/ is a simply connected curve by the
choice of ".

We define the orientation of G in a capsule to be the orientation of a tangent
to G at some point in the capsule. We choose " so small that the orientation of G

is within ı of the orientation of all tangents to the curve of G at points within the
capsule. This can be done by choosing it small enough to make sure that the parts
of G contained in the capsule are within Q and the neighbouring elements of Q.
Note that, despite this condition on ", we can still make ı as small as we please and
(if necessary by subdividing elements in Q) we can ensure that for each Q 2 Q the
length of G \ C.Q/ is at most some bounded multiple of " (for example 100").

The set of capsules may now be regarded as fixed for a given G. The determina-
tion of the capsules takes constant time independent of the number of terminals n,
and hence does not contribute to the computational complexity of an algorithm for
computing a minimum Steiner tree.

Step 2: Bounding the Number of Full Components That Cross Capsule
Boundaries

Given a set N of n terminals lying on G, let T � be a minimum Steiner tree for N .
Note that there is an upper bound L on the length of T �, independent of N . For
example, we could take L to be the total length of the curves in G plus a sum of
distances between the components of G.

1.5 Efficient Constructions for Special Terminal Sets 55

Consider a full component T of T � that interconnects some terminal on Q 2 Q
with some terminal not on Q. The intersection of T and C.Q/ is a forest. A tree
T 0 in this forest is called a terminating partial full component (TPF component) if
T 0 connects to some terminal on Q; note that a TPF component by definition also
touches one or more boundary points of C.Q/.

Lemma 1.22 The total number of TPF components in T � is bounded. Furthermore,
the total number of points that TPF components touch on capsule boundaries is
bounded.

Proof Let T be a full component in T �, and let T 0 be one of the TPF components
of T in capsule C.Q/. The TPF component T 0 connects some terminal on Q with
some point on the boundary of the capsule C.Q/; therefore, the length of T 0 is at
least ". Since the length of T � is bounded by L, the total number of TPF components
is bounded.

For the second part of the theorem, let X be the set of points that T 0 touches
on the boundary of C.Q/; each point in X corresponds to an intersection point
between T and the boundary of capsule C.Q/. The forest T n T 0 contains exactly
jX j trees. Each of these trees contains at least one TPF component—otherwise T

is not length-minimal. Therefore, the forest T n T 0 has length at least jX j". Again,
since the length of T � is bounded by L, the size of set X is bounded. Since the
total number of TPF components is bounded, the total number of points that TPF
components touch on capsule boundaries is also bounded. ut

Step 3: Enumerating All Relevant TPF Component Topologies in
Polynomial Time and Constructing a Minimum Steiner Tree

In this section we briefly argue that it is possible to enumerate all relevant TPF
component topologies in polynomial time (and that the resulting number of TPF
topologies is polynomial). Assume for a moment that this indeed is possible. Then
a tree interconnecting all terminals can be constructed as follows:

1. Choose a bounded set of TPF topologies among the polynomial set of alternatives
that is enumerated.

2. Choose a topology that interconnects the set of chosen TPF topologies.
3. Greedily add terminal-terminal connections between the remaining connected

components.
4. For each full topology, locate the Steiner points using the Melzak-Hwang

algorithm.

The total running time to try all possible choices—and hence to construct a
minimum Steiner tree—is polynomial. Step 1 takes polynomial time since the
number of bounded sets in a ground set of polynomial size is polynomial. Step 2
takes constant time since the total number of edges leaving the chosen set of TPF
topologies is bounded; furthermore, the number of topologies on a bounded set is
bounded. Step 3 takes polynomial time as it corresponds to running a minimum

56 1 Euclidean and Minkowski Steiner Trees

s4

s3

s2

s1
t0

t1

t3

t2

t4

Fig. 1.33 An alternating branch for terminals t0; t1; t2; t3; t4; : : : on G (Note that the alternating
branch illustrated here cannot be part of a minimum Steiner tree since, for example, the edge
t3s3 could be replaced by the edge t3t1, which is clearly shorter. In general, however, alternating
branches can be part of a minimum Steiner tree if each ratio d.si ; siC1/=d.si�1; si / is sufficiently
large)

spanning tree algorithm on the set of terminals. Finally, Step 4 takes linear time per
full topology. In conclusion, we can construct a minimum Steiner tree in polynomial
time.

In order to complete the argument, we need to show that all relevant TPF
topologies can be enumerated in polynomial time. Consider a capsule C.Q/. The
challenge is that a single TPF topology in C.Q/ can span an unbounded number
of terminals. On the other hand, Q is close to straight. It is shown in [330] that a
full component can only contain an unbounded number of Steiner points if it forms
an alternating branch (as in Fig. 1.33). An alternating branch is defined to be a full
component in which one of the three orientations (say the red direction) is within
ı of the orientation of G in C.Q/, and the Steiner points all lie on a zigzag path
using the other two orientations. An alternating branch contains a unique cherry; let
s1; s2; s3; : : : ; sj be the Steiner points in order along the zigzag path, starting at the
cherry. In order for the alternating branch to be part of a minimum Steiner tree, no
pair of red edges can run too close to each other, but at the same time each red edge
must reach a terminal on Q. Since Q is arbitrarily close to being straight, it follows
that there is an arbitrarily large constant ! such that

d.si ; siC1/

d.si�1; si /
> !

for 2 � i � j � 1. This inequality places strong geometric constraints on the
alternating branch. In particular, it can be used to deduce two things: first, the
terminals of two different alternating branches (on opposite sides of G) cannot
intermingle along G very much; and second, the choice of which terminals are
to be included in the branch for a specific capsule has a polynomial number of
alternatives; the terminals on the branches are completely determined by the choice
of cherry. The details of these results are rather technical, and can be found in [330].
These properties suffice to complete the proof of Theorem 1.21.

1.5 Efficient Constructions for Special Terminal Sets 57

1.5.2 Terminals on Rectangular Lattices

A somewhat more useful class of terminal sets for which there exist polynomial-
time solutions to the Steiner tree problem is the class of rectangular lattices:

Definition [Rectangular lattices]: A set of mn terminals arranged in an m
n

regular lattice of unit squares (like the corners of the cells of a checkerboard)
is said to be an m
 n rectangular lattice (or square lattice if m D n).

Unlike the polynomial-time algorithm for terminals constrained to curves in
Sect. 1.5.1, where the polynomial-time algorithm has very high degree and is
probably impractical to implement, the length of a minimum Steiner tree for a
rectangular lattice can be computed in constant time, and the minimum Steiner tree
itself is easy to construct.

The Steiner tree problem for rectangular lattices was first considered in 1989 by
Chung, Gardner and Graham in [104]; these authors examined what they described
as the checkerboard problem, that of solving the Steiner tree problem when the
terminals form a square lattice. They gave a number of constructions for various
cases which they conjectured to be minimal. These constructions use as a basic
building block the Steiner tree for the corners of a unit square, which we will denote
by X , shown in Fig. 1.34.

The main constructions presented in [104] were (at the time) conjectured
minimum Steiner trees for all n
n square lattices. These constructions fall naturally
into six classes based on the value of n .mod 6/, except when n is a power of 2. The
striking thing about all these constructions is that in each Steiner tree all but at most
three of the full components are X ’s and no full component contains more than
10 terminals. This contrasts noticeably with the minimum Steiner trees for 2
 n

rectangular arrays, which have been shown in [105] to be full for all odd n.
In the case of a 2k
 2k square lattice, there is a simple recursive construction for

building a Steiner tree using only X ’s. This is illustrated for the 8
 8 square lattice
in Fig. 1.35. Note that the network is built from four networks for 4
 4 square
lattices connected in the centre by a single X . In a similar way a network composed
only of X ’s for a 2k
 2k square lattice can be constructed from four networks for
2k�1
 2k�1 square lattices joined by a central X .

Chung et al. [104] showed that Steiner trees for rectangles in which all full
components are X ’s only occur for 2k
 2k square lattices. Furthermore, they
conjectured that these are also minimum Steiner trees. All of these conjectures (with
a slight adjustment to one of the conjectured solutions) were proved in a series of
papers by Brazil et al. [46, 58, 59]. The proof is long and technical, involving a lot

Fig. 1.34 The minimum
Steiner tree X

58 1 Euclidean and Minkowski Steiner Trees

Fig. 1.35 A Steiner tree for the 8 � 8 square lattice

of careful case analysis. Here we will simply outline the underlying idea and the
nature of the results.

Let T � be a minimum Steiner tree for a rectangular lattice. A key to proving that
the conjectured solutions are minimum is the observation that, per terminal, an X

appears to be the most efficient possible full component that can be part of T �. This
idea is formalised by the concept of excess, which we define below.

Definition [Excess]: Let T 0 be a subtree of T � such that T 0 is a union of full
components of T � and spans r terminals. Let

� D jX j
3

D 1 C p
3

3
D 0:91068 � � � :

Then we define the excess of T 0 to be

e.T 0/ D jT 0j � .r � 1/�:

1.5 Efficient Constructions for Special Terminal Sets 59

Note that the excess is additive in the sense that if T 0 is a subtree of T � such that
T 0 D Sk

iD1 Ti where each Ti is a full component of T �, then e.T 0/ D Pk
iD1 e.Ti /.

Also note that for any pair of Steiner trees on the same number of terminals the one
with greater excess has greater length. By definition, e.X/ D 0.

The additive property of excess can be used to prove the following theorem.

Theorem 1.23 ([46]) Let T denote a full component of a minimum Steiner tree T �
for a rectangular lattice. Then either T D X or e.T / > 0.

Let S denote the set of connected components of the union of the vertices and
edges of T resulting when the boundaries of the cells of the rectangular lattice
are deleted. Define the graph G.T / to be the graph whose vertex set is S , two
components in S being adjacent in G.T / if they both contain parts of the same
edge of T or if they both contain edges adjacent to a Steiner point on the boundary
of a square. It is immediate that G.T / is a tree since T is a tree.

The proof of Theorem 1.23 works by induction on the number of terminals
spanned by T (say m) to show that certain graph structures for T are impossible
in or near the leaves of G.T / if e.T / � 0. It is assumed that m is the smallest
number of terminals for which there exists a full component T such that e.T / � 0,
and then it is shown that this leads to a contradiction if T 6D X . To give a flavour
of how this works, we prove a lemma below eliminating one of the possible graph
structures of T that could occur in a leaf of G.T /.

Lemma 1.24 Let T denote a full component on m terminals of a minimum Steiner
tree T � for a rectangular lattice. Assume e.T / � 0 and any connected graph on
less than m terminals has excess at least 0. Then the part of T occurring in a leaf
of G.T / cannot have the topology shown in Fig. 1.36.

Proof Let abcd be a cell of the rectangular lattice, and suppose the part of T

occurring in a leaf of G.T / corresponding to this cell has the topology shown in
Fig. 1.36. Let T1 denote the part of the branch of T which lies above the line cd
and let u be the point where T intersects the interior of cd. Let x be the distance
from d to u. Since jT j � .m � 1/�, then by the minimality of T we require that
jT1j � x C �, or in other words that jT1j � x � �, for otherwise we can remove
T1 from T and replace it by du. This would reduce the excess of the tree and the
number of terminals, thereby contradicting the assumption in the lemma.

Fig. 1.36 A topology for the
part of T corresponding to a
leaf of G.T /

b a

c du

60 1 Euclidean and Minkowski Steiner Trees

Let Y denote the minimum Steiner tree on terminals a; c; d . A simple calculation

(using the Melzak-Hwang algorithm) shows that jT1j D
p

x2 � x
p

3 C 1. The

function
p

x2 � x
p

3 C 1 � x is monotone decreasing for x > 0. But when x D 1,

jT1j � x D jY j � 1 D 1 C p
3p

2
� 1 D 0:93185 � � � > �;

which gives the required contradiction. ut
Two other comparable results are given in Exercise 1.16. A series of similar but

more sophisticated arguments allows one to eliminate all possible topologies for a
leaf (or leaf and adjacent vertex) of G.T /, completing the proof of Theorem 1.23.
The details of the proof are given in [46]. The following is an immediate corollary
of this theorem:

Corollary 1.25 A minimum Steiner tree for a 2k
 2k square lattice is composed
entirely of X ’s.

Since 2k
 2k square lattices are the only rectangular lattices for which there
exist Steiner trees composed only of X ’s, it follows that for any other rectangular
lattice a minimum Steiner tree T � must have one or more full components not equal
to X . In [58], a number of detailed geometric arguments are used to completely
classify all possible full components of a minimum Steiner tree for a rectangular
lattice, or indeed any nicely clustered set of lattice points. This is clearly an infinite
set, since, for example, the minimum Steiner trees for 2
 n rectangular lattices
are full whenever n is odd. The important property of this set is that the candidate
full components can be divided into four distinct infinite families, each of which is
easily described and constructed, and each of which has the property that the excess
for the trees in the family monotonically increases (in an unbounded way) with the
number of terminals. This means that only full components on a small number of
terminals have small excess. Hence, we would expect a minimum Steiner tree for
a rectangular lattice to be composed chiefly of X ’s along with a small number of
other small full components.

This complete classification of possible full components essentially turns the
problem of constructing minimum Steiner trees for rectangular lattices into a purely
combinatorial problem, which is solved in [59]. The main strategy is as follows. Let
T � be a minimum Steiner tree for an m
 n rectangular lattice. When m and n are
large (i.e., greater than 7) we can think of T as consisting of a chain of X ’s winding
around a central core, which is a minimum Steiner tree for an a
 b rectangular
array (a and b even) connected to the chain in a suitable way that makes the whole
network a tree. This idea is illustrated in Fig. 1.37, for m and n both even. If m

or n is odd, we can delete the part of the chain of X ’s running along the bottom
or leftmost edge of the lattice. This construction gives a Steiner tree whose excess
is small and is determined by the values of m and n .mod 6/. Such a tree can be
shown to be minimum by showing that the non-X components cannot be replaced
by any of the small number of other possible combinations of non-X components
with smaller excess.

1.6 Steiner Trees in Minkowski Planes 61

CORE

Chain of Xs

Fig. 1.37 A central core and surrounding chain of X’s for an m � n rectangular lattice when m

and n are both even. A detail of the chain of X’s is shown on the right

In a similar way, minimum Steiner trees for m
 n rectangular lattices where
m D 3; 5; 6 or 7 have bounded excess and can be constructed by expanding a
rectangular core using only X ’s. The only remaining cases are the 2
 n and 4
 n

rectangular lattices. Both of these cases have unbounded excess as n increases, and
hence require somewhat more sophisticated arguments to determine and validate the
minimum networks. The 2
 n case was studied by Chung and Graham [105], who
showed that in this case the minimum Steiner tree is a single full component if n is
odd, or an alternating sequence of X ’s and unit length edges if n is even. For the
4
 n case the minimum Steiner trees are composed of unit edges, about five times
as many X ’s and up to two other small full components. The strategy for proving
minimality in this case is to show that the average per-column increase in excess for
these trees is smaller than that for any other possibility. This involves some detailed
case analysis, which again appears in [59].

1.6 Steiner Trees in Minkowski Planes

The previous sections of this chapter have presented properties of minimum Steiner
trees in the Euclidean plane that derive from Euclidean geometry. The Euclidean
plane is the most familiar example of a Minkowski or normed plane. In such a
plane, the norm k � k is specified by C, the boundary of a compact, convex, centrally
symmetric domain, where C D fx W kxk D 1g. In the Euclidean plane C is the
Euclidean unit circle. See [273] and [367] for more details on Minkowski planes.

In terms of both theory and applications, there is much to be gained from
understanding properties of minimum Steiner trees in Minkowski planes beyond
the Euclidean plane. Chapters 2 and 3 both investigate properties of minimum
Steiner trees in specific (non-Euclidean) families of norms, with applications to
VLSI physical design. In this section, we look at what geometric properties of

62 1 Euclidean and Minkowski Steiner Trees

minimum Steiner trees can be established in general Minkowski planes, with as
few restrictions on the unit circle C as possible. This will provide a generalisation of
some of the Euclidean properties discussed earlier in this chapter, and will act as a
toolbox of general properties which will prove useful in the next chapters. Most of
the emphasis here will be on properties of Steiner points and Steiner configurations
(which we define below).

We first establish some terminology and notation. In formal terms, the Steiner
tree problem can be stated as follows:

MINKOWSKI STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying on a Minkowski plane with unit
circle C.
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, and
such that

P

e2E.T / kek is minimised.

As in the Euclidean case, the initial set of points N is referred to as a set of
terminals; and any network solving the Minkowski Steiner tree problem is a tree,
which we refer to as a minimum Steiner tree; elements of V.T / not in N are referred
to as Steiner points. All non-zero edges in a minimum Steiner tree are geodesics
between their endpoints and hence can be embedded as line segments in the given
Minkowski plane. However (depending on the nature of the unit circle C), there may
be many other possible embeddings of a minimum edge, such as a zigzig path, since
the Minkowski norm is not necessarily strictly convex.

For the Minkowski Steiner tree problem we define Steiner topologies and Steiner
trees in exactly the same way as in Sect. 1.1.3. That is, a Steiner topology is a
topology that can be realised by some non-degenerate minimum Steiner tree, and
a Steiner tree is a non-degenerate relatively minimal tree for a Steiner topology.

Again, as in the Euclidean case, a Steiner tree can be decomposed into compo-
nents in which every terminal is a leaf, known as full components, or full Steiner
trees. This decomposition is unique for a given Steiner tree but is not necessarily
unique for a given terminal set. Indeed, the number of full components may not be
unique for a given terminal set. Because of this, we have the following definition:

Definition [Fulsome trees]: A Steiner tree T is said to be fulsome16 if it has
the maximum possible number of full components amongst all Steiner trees
with the same length as T for the given terminal set. Hence, a Steiner tree is
full and fulsome if there is no Steiner tree with the same length on the same set
of terminals with two or more full components.

We note that even in the Euclidean plane full minimum Steiner trees are not
necessarily fulsome (see Exercise 1.17). Restricting our attention to fulsome Steiner

16This use of the term “fulsome” is unfortunate, as the usual English meaning of the word is
‘excessive’ or ‘insincere’. However, since the publication of [211] the term has become standard.

1.6 Steiner Trees in Minkowski Planes 63

trees means that the structure of each full component is as simple as possible; it also
helps in the development of good canonical forms.

Definitions [Configurations]: A Steiner configuration in a Minkowski plane
is defined as a star with centre s and leaves x1; : : : ; xm (with s; x1; : : : ; xm all
distinct) that is part of some minimum Steiner tree with Steiner point s. If a star
is not necessarily part of some minimum Steiner tree, then it is simply referred
to as a configuration.17

Note that any configuration with centre s that is part of a Steiner tree with Steiner
point s is, in fact, a Steiner configuration (Exercise 1.18).

The results in this section are mainly concerned with local properties of a Steiner
tree in a general Minkowski plane; more specifically, with Steiner configurations. As
discussed in the previous sections, the Steiner point can be viewed as a solution to
the general Fermat-Torricelli problem for its neighbouring points x1; : : : ; xm—i.e.,
as a Fermat-Torricelli point. A useful survey on results pertaining to this problem in
general Minkowski planes and spaces is given by Martini et al. [274].

Many of the geometric properties developed in this section are largely a
consequence of the fundamental properties of a norm, such as the triangle inequality
and positive definiteness. This is illustrated in the proof of the following useful
theorem.

Theorem 1.26 (Pointed Configuration Theorem) Let fsxi W i D 1; : : : ; mg be a
configuration about s in a Minkowski plane. If there is a line L through s such that
the interior of each segment sxi is in the same open half-plane bounded by L, then
fsxi g is not a Steiner configuration.

Proof We first consider the case where m D 3. We may assume, without loss of
generality, that the points xi are labelled so that x2 lies in the convex cone bounded
by �!sx1 and �!sx3. Hence, there exist points x0

1 in the interior of sx1 and x0
3 in the interior

of sx3 such that the line segment x0
1x0

3 intersects the interior of sx2, at say x0
2. By the

triangle inequality, ksx0
1kCksx0

3k � kx0
1x0

3k, and by positive definiteness, ksx0
2k > 0.

Hence, replacing the line segments fsx0
i W i D 1; : : : ; 3g by x0

1x0
3 strictly reduces the

length of the configuration (while maintaining connectivity), showing that fsxi g is
not a Steiner configuration.

A similar argument applies if m > 3 (Exercise 1.19). ut

1.6.1 Steiner Points of Degree 3

We have seen in Sect. 1.1.2 above that in the Euclidean plane every Steiner point of
a Steiner tree has degree 3. This result generalises to any smooth Minkowski plane

17This terminology is taken from [358].

64 1 Euclidean and Minkowski Steiner Trees

(a Minkowski plane is said to be smooth if every point on the corresponding unit
circle C is differentiable).

Theorem 1.27 ([241]) If T is a minimum Steiner tree in a smooth Minkowski plane,
then every Steiner point of T has degree 3.

For the proof of this theorem we refer the reader to [241]—the proof relies on a
somewhat technical analytic argument.18

Theorem 1.27 does not hold in general Minkowski planes, where the boundary
of the unit ball may have non-differentiable points. However, as we will see later, in
these cases higher degree Steiner points only occur in very special circumstances.
In this subsection we focus on properties of degree 3 Steiner configurations in
Minkowski planes. The most important of these results is the centroid theorem
(Theorem 1.28 below), which will also be used extensively in Chap. 2.

Du et al. [133] have proved the following result for strictly convex and differ-
entiable unit circles (which includes the Euclidean metric): if one of the edges of a
degree 3 Steiner configuration, say sx1, is given, then the orientations of the other
edges sx2 and sx3 are unique. In other words, if the Steiner point s and one of the
leaves, say x1, are given, then the meeting angles of s are unique. Below, we present
a proof of this result and establish an analogous theorem for general unit circles.

Our approach here is based on properties established by Chakerian and Ghande-
hari [80] for norms with strictly convex and differentiable unit circles.

Theorem 1.28 (Centroid Theorem) Let x1, x2 and x3 be a set of leaves of a
Steiner configuration in the Minkowski plane (with unit circle C) with Steiner point
s. Let x0

1, x0
2 and x0

3 be the points where sCC intersects �!sx1, �!sx2 and �!sx3, respectively.
Then for each i 2 f1; 2; 3g there exists a line Li which is a supporting line of s C C
at x0

i , such that L1, L2 and L3 form a triangle whose centroid coincides with s.

Proof 19 By the properties of the gradient of the gauge function in the Minkowski
plane, it follows that there exist supporting lines Li of s C C at each xi , such that

u1

h1

C u2

h2

C u3

h3

D 0 (1.3)

where each ui is the outward normal vector to the supporting line Li , and each hi is
the (Euclidean) distance from s to Li . This is illustrated in Fig. 1.38. Since a strictly
positive linear combination of the vectors ui equals 0, it follows that L1, L2 and L3

form a triangle around s C C, which we denote by �.

18Theorem 1.27 was first stated by Cockayne [110], but without a complete proof. Full proofs were
given by Levy [252] and Alfaro et al. [7], before the rather more elegant and general proof given
by Lawler and Morgan [241].
19The approach here is loosely based on that outlined in [80] for the more restricted problem where
the Minkowski norm has a strictly convex and differentiable unit circle. More details on the proof
of this restricted problem, based on the method of Lagrange Multipliers, have also appeared in
[176].

1.6 Steiner Trees in Minkowski Planes 65

s

x3 x2

x1

p3 p2

L3
L2

L1

L0

y3 y2

s + C

Fig. 1.38 The geometry around a Steiner point s

Let L0 be the line through s parallel to L1. For i 2 f2; 3g, let pi be the
intersection of Li and the line perpendicular to Li through s, and let yi D Li \ L0.
Note that hi D jspi j. Equation (1.3) implies that u2=h2 C u3=h3 is perpendicular to
L0, and hence that

cos.†p2sy2/

jsp2j
D cos.†p3sy3/

jsp3j
(1.4)

which implies jy2sj D jy3sj. In other words, s lies on the median of � through
L2 \ L3 (recalling that a median of a triangle is a line segment joining a vertex of
the triangle to the midpoint of the opposing side). By symmetric arguments, s also
lies on the other two medians of �, and hence coincides with the centroid of �. ut

Definition [Centroid property]: Given a Minkowski unit circle C, we say that
any set of supporting lines of C forming a triangle whose centroid is the centre
of C satisfies the centroid property.

In terms of the above definition, Theorem 1.28 shows that for any degree 3

Steiner configuration at a point s there exists a set of lines supporting s C C at
points determined by the Steiner configuration that satisfies the centroid property.

A useful consequence of the centroid property is that in a smooth Minkowski
plane the edges in a full Steiner tree use at most three directions. Before proving
this theorem we first establish a series of lemmas characterising properties of sets
of supporting lines satisfying the centroid property.

The first lemma follows immediately from the observation that the centroid of a
triangle divides each of its medians in the ratio 2W1.

Lemma 1.29 ([133]) Let L1, L2 and L3 be three supporting lines of the unit circle
s C C, and let L0 be the line that is parallel to L1 and contains s. Let d be the

66 1 Euclidean and Minkowski Steiner Trees

Fig. 1.39 The centroid
property. Here s is the
centroid of the triangle
formed by L1 , L2 and L3 if
jsy2j D jsy3j

sy3 y2

L

L0

L1

L2L3

2d

d

Euclidean distance between L1 and L0, and define L to be the line that is parallel
to L1 at distance 3d from L1, and at distance 2d from L0 (as in Fig. 1.39). Let
y2 D L2 \ L0 and let y3 D L3 \ L0. Then supporting lines L1, L2 and L3 satisfy
the centroid property if and only if (i) L2 \ L3 lies on L, and (ii) jsy2j D jsy3j.

In the following lemmas we continue to refer to L0 and L as defined by
Lemma 1.29. These two lemmas give some useful characterisations of sets of
supporting lines that fulfil the centroid property.

Lemma 1.30 Let L1, L2 and L3 be a set of supporting lines of s CC that fulfils the
centroid property, and let L0 be the line that is parallel to L1 and contains s. Then
neither L2 nor L3 supports C at a point that is strictly between L1 and L0.

The proof of the above lemma is left as an exercise for the reader (Exercise 1.20).

Lemma 1.31 Let L1 be a line that supports a unit circle C with centre s, and let L0

be the line that is parallel to L1 and contains s. If L0 intersects C at a differentiable
point, then there exists exactly one pair of supporting lines L2 and L3, such that L1,
L2 and L3 have the centroid property.

Proof Assume L0 intersects C at a differentiable point. By the central symmetry
of C, both the points where C intersects L0 are differentiable. Consider a line L2

supporting C at one of these two intersection points (Fig. 1.40a). Note that L2 is in
fact a tangent of C.

Let L be defined as in Lemma 1.30, and let z be the intersection between L2

and L. Define L3 as the unique supporting line that contains z and supports C on
the ‘opposite’ side to L2, such that L1, L2 and L3 form a triangle with s in its
interior. Let y2 (respectively y3) be the intersection of L2 (respectively L3) with L0

(Fig. 1.40a). By Lemma 1.30 we only need to consider supporting lines that meet C
on or above L0.

Imagine rotating L2 and L3 jointly in a counter-clockwise manner around C,
such that they continuously intersect L at a common point z. This rotation strictly
increases jsy2j, while it strictly decreases jsy3j, since all rotation points are strictly
above L0. The rotation is performed until L3 is parallel to the original line L2 (and
thus supports the opposite point of C that is also on L0), as in Fig. 1.40b. Before the

1.6 Steiner Trees in Minkowski Planes 67

sy3 y2

L

L0

L1

L2

L3

sy3 y2
L2

L3

z z
ba

Fig. 1.40 Illustration of proof of Lemma 1.31. (a) The initial positions of supporting lines L2 and
L3. (b) The final positions of the supporting lines. The position for which the centroid property
holds lies between these two extremes

rotation started we clearly had jsy2j < jsy3j, and when the rotation ends we have
jsy2j > jsy3j. Hence, since both distances are strictly increasing/decreasing, there
exists exactly one point z on L where the corresponding supporting lines L2 and L3

have jsy2j D jsy3j. For this and only this set of supporting lines the centroid property
holds. ut

An immediate consequence of Lemma 1.31 in a smooth Minkowski plane is the
following result:

Corollary 1.32 In a smooth Minkowski plane the directions of the edges in a degree
3 Steiner configuration are uniquely determined by the direction of any one edge.

Theorem 1.33 In a smooth Minkowski plane the edges of a full Steiner tree use at
most three distinct directions.

Proof Let T be a full Steiner tree in a smooth Minkowski plane. By Theorem 1.27
every Steiner point in T has degree 3. Since any pair of neighbouring Steiner points
in T share a common incident edge, it follows from Corollary 1.32 that the incident
edges of each of those Steiner points each use the same set of directions. The
theorem follows from the observation that the Steiner points of a full Steiner tree
induce a tree. ut

1.6.2 Steiner Points of Degree � 4

In this subsection we consider higher degree Steiner points in Minkowski planes
which are not smooth. All of the results in this section are based on a replacement
principle. This principle operates in one of two ways: either we replace certain line
segments in a minimum tree T by new line segments with the same length and
direction (and hence the same cost), or we replace a set of line segments by a new

68 1 Euclidean and Minkowski Steiner Trees

a b

x1

x2

x3

s sx0

Fig. 1.41 (a) An example of a Steiner point of degree 5; the Minkowski unit circle around s is
shown in orange. (b) The Steiner point s can be split into two Steiner points as shown without
increasing the length of the tree

set of line segments which by minimality we can show have the same cost. The result
is to either find an alternative form for T , or in some cases to obtain a contradiction
to the minimality or assumed fulsomeness of T .

We begin by showing that it suffices to investigate properties of degree 4 Steiner
points in a minimum Steiner tree.

Theorem 1.34 ([7, 107]) Given a set of terminals N in a Minkowski plane, there
exists a minimum Steiner tree T for N in which every vertex has degree at most 4.

Proof Let s be a Steiner point of degree 5 or more with five adjacent vertices
x1; : : : ; x5. By rescaling if necessary, we can assume that for each i 2 f1; : : : ; 5g
we have ksxi k > 1. Let x0

i be the point on the interior of the line segment sxi such
that ksx0

i k D 1 (i.e., the points x0
i lie on the Minkowski unit circle around s, as in

Fig. 1.41a). There exists a set of three points in fx0
i ji 2 f1; : : : ; 5gg, say x0

1; x0
2; x0

3

in clockwise order around the unit circle, such that all three points lie in the interior
of a half-plane induced by a line through s. (See Fig. 1.41a.) By the convexity of
the unit ball, it follows that x0

1x
0
3 \ sx0

2 6D ;. Let x0
1x0

3 \ sx0
2 WD x0, and note that

x0 6D s. By the triangle inequality kx0
1x0

3k � ksx0
1k C ksx0

3k. Hence, if we replace
fsx0

1; sx0
3g in T by fx0x0

1; x0x0
3g to form a new interconnection tree T 0 (as illustrated

in Fig. 1.41b), then kT 0k � kT k, and we have reduced the degree of s (by 2) by
introducing a new degree 4 Steiner point x0. This procedure can be repeated until
every Steiner point has degree at most 4. ut

We note that Swanepoel [358] has strengthened this result, using properties of
the dual and methods from functional analysis, to show that in a minimum Steiner
tree, Steiner points of degree 5 or more never occur (even without a fulsomeness
condition).

In light of Theorem 1.34, we can now restrict our attention to Steiner points of
degree 4.

Definition [Opposite pairs of edges]: Let fsxi W i D 1; : : : ; 4g be a degree
4 Steiner configuration around s where the neighbours of s are indexed in
counter-clockwise order around s. We say that such a Steiner configuration
consists of two opposite pairs of edges, fsx1; sx3g and fsx2; sx4g.

1.6 Steiner Trees in Minkowski Planes 69

Lemma 1.35 ([358]) In a degree 4 Steiner configuration in a Minkowski plane one
of the opposite pairs of edges is collinear.

Proof Let fsxi W i D 1; : : : ; 4g be a degree 4 Steiner configuration around a Steiner
point s where the xi are indexed in counter-clockwise order around s. We assume
that neither of the opposite pairs of edges is collinear, and obtain a contradiction.
By Theorem 1.26 there is no line L through s such that the interior of each segment
sxi is in the same open half-plane bounded by L. We now show that the same is true
for a closed half-plane. Suppose, on the contrary, that sx4 and sx1 are collinear, as
in Fig. 1.42a. Choose ai 2 sxi (for i D 1; : : : ; 4) such that a1a2 k sx3, a2a3 k sx1

and a3a4 k sx2. If we replace the line segments fsai W i D 1; : : : ; 4g in the Steiner
configuration by fa1a2; a2a3; a3a4g, then the resulting tree

fx1a1; a1a2; x2a2; a2a3; x3a3; a3a4; x4a4g

(illustrated in Fig. 1.42b) still interconnects the terminals xi , but is strictly shorter
(by ksa4k) than the Steiner configuration, contradicting minimality.

By relabelling the terminals if necessary, we may therefore assume, without loss
of generality, that x3 and x4 lie on opposite sides of the line sx1; and x1 and x2 lie
on opposite sides of the line sx4, as in Fig. 1.43a. Choose bi 2 sxi (for i D 1; : : : ; 4)
and c 2 sx2 such that sb1b2b3 and scb3b4 are parallelograms. This is illustrated
in Fig. 1.43a, where the new edges of the two parallelograms are coloured red

x1x4

x2

x3

sa4 a1

a3 a2
x1x4

x2

x3

a3 a2

a b

Fig. 1.42 A configuration of degree 4 with a meeting angle of � is not a Steiner configuration.
The Steiner point s in (a) can be replaced by two Steiner points a2 and a3 in (b) to create a strictly
shorter interconnection tree

x1

x4

x2x3

sb4 b1

b3 b2

a b

x1

x4

x2x3

c

b3 b2

Fig. 1.43 A configuration with no opposite pair of edges being collinear is not a Steiner
configuration. The Steiner point s in (a) can be replaced by two Steiner points b2 and b3 in (b)
to create a strictly shorter interconnection tree

70 1 Euclidean and Minkowski Steiner Trees

and green, respectively. Note that since x1 and x2 lie on opposite sides of sx4 it
follows that b2 2 sc. Furthermore, since the configuration is minimum, we have that
kb3ck � ksck, since otherwise we could reduce the length of the tree by introducing
a second Steiner point at b3. Hence ksb4k � kb3b4k. It follows that the tree

fx1b1; b1b2; x2b2; b2b3; x3b3; b3b4; x4b4g;

(shown in Fig. 1.43b) interconnecting the terminals xi , is shorter than the Steiner
configuration (by at least ksb2k), again contradicting minimality. ut

Definitions [First and second opposite pairs]: Let fsxi W i D 1; : : : ; 4g be a
degree 4 Steiner configuration around s where the neighbours of s are indexed
in counter-clockwise order around s. One of the opposite pairs of edges, say
f.s; x1/; .s; x3/g, must be collinear, by Lemma 1.35; we refer to this as the first
opposite pair of edges. The other pair of edges, f.s; x2/; .s; x4/g, is called the
second opposite pair of edges.

The above classification into pairs is not necessarily unique, but this is not
important in the following.

Lemma 1.36 Suppose the second opposite pair of edges f.s; x2/; .s; x4/g around
a degree 4 Steiner point s in a Steiner configuation fsxi W i D 1; : : : ; 4g is not
collinear. Then there exists a point s0 in the interior of sx1 or sx3 such that for every
point s0 2 ss0 we have ksx2k D ks0x2k and ksx4k D ks0x4k.

The proof of this lemma is straightforward and is left as an exercise for the reader
(Exercise 1.21).

A consequence of the above lemma is that if the second opposite pair of edges is
not collinear, then we can split the Steiner point s into a pair of adjacent degree 3

Steiner points, as illustrated in Fig. 1.44. Let Ta, Tb and Tc be the configurations
(all on the same set of terminals) shown in diagrams (a), (b) and (c) of the
figure, respectively. Observe that 2kTak D kTbk C kTck; hence, if Ta is a Steiner
configuration, then Tb and Tc are each Steiner configurations as well. Note that this

x2

x3

x4

x1

a b cx2

x3

x4

x1

x2

x3

x4

x1s

s

s

s

s

s

Fig. 1.44 Diagram (a) shows a degree 4 Steiner configuration where the second opposite pair of
edges is not collinear. The Steiner point can be split into two degree 3 Steiner points in two different
ways, as shown in (b) and (c)

1.6 Steiner Trees in Minkowski Planes 71

split can be made in two topologically different ways, as indicated by the different
colourings of edges in Fig. 1.44b, c.

Definition [Cross]: A cross is defined to be a degree 4 Steiner point where
both the first and second opposite pairs of edges are collinear.

Thus far we have shown that unless a degree 4 Steiner point is a cross, we can
always split it into two adjacent degree 3 Steiner points.

We now look at properties of a degree 4 Steiner point in a full and fulsome
component of a minimum Steiner tree. One of the main aims is to show that even
if the Steiner point is a cross, then in most cases it can still be split into two degree
3 Steiner points without increasing the length of the Steiner tree. A key lemma for
helping establish this is the following.

Lemma 1.37 (Sliding lemma) Let e D .s1; s2/ be an edge connecting two Steiner
points (s1 and s2) in a fulsome minimum Steiner tree T . Let e1 D .s1; v1/ be the
next edge incident with s1 (in counter-clockwise order around s1 from e), and let
e2 D .s2; v2/ be the next edge incident with s2 (in clockwise order around s2 from
e)—see Fig. 1.45. Then 	 , the angle at s1 between e and e1, and
, the angle at s2

between e and e1, satisfy 	 C
 > � .

Proof Let u1 be the outward direction of e1 at s1 and let u2 be the outward direction
of x2 at s2. Observe that

	 C
 � � (1.5)

since otherwise we could simultaneously perturb s1 in direction u1 and s2 in
direction u2, decreasing ks1s2k and hence decreasing kT k, which contradicts
minimality.

Now suppose that the lemma does not hold; in other words, that 	 C
 D � ,
as illustrated in Fig. 1.45. Then we can perform a slide on e, by which we mean
a simultaneous movement of s1 in direction u1 and s2 in direction u2 (at the same

Fig. 1.45 A slide on the
edge e

v1

v2

s1
s2

e3

e1

e2

e

72 1 Euclidean and Minkowski Steiner Trees

speed), without increasing the length of e.20 We can continue to slide e until either
s1 coincides with v1 or s2 coincides with v2.

Assume, without loss of generality, that s1 coinciding with v1 occurs first. If v1

is a terminal, then we have a contradiction to T being fulsome. If v1 is a Steiner
point, then let 	1 be the meeting angle at v1 between e1 and the next edge e3 going
counter-clockwise around v1 from e1. By Theorem 1.26, 	1 � � . If 	1 < � then
continuing to slide e past v1 strictly decreases the length of e, contradicting the
minimality of T . Hence 	1 D � . We can now continue to slide e past v1 without
increasing kT k. The same argument applies at each Steiner point encountered (or
if two Steiner points are encountered simultaneously). Hence, we can continue the
slide until we reach a terminal, giving a contradiction to T being fulsome. ut

Before applying the sliding lemma to degree 4 Steiner points, we note the
following result, which is a straightforward corollary.

Lemma 1.38 Let s be a degree 3 Steiner point in a fulsome minimum Steiner tree
in a Minkowski plane. Let u, v and w be the three neighbouring nodes of s in T , and
suppose the edges su and sv are collinear. Then w is a terminal.

The proof of this lemma requires a straightforward argument by contradiction
(Exercise 1.22).

Theorem 1.39 In a fulsome minimum Steiner tree, a degree 4 Steiner point can
always be split into two adjacent degree 3 Steiner points unless it is a cross and is
adjacent to terminals only.

Proof By the comment following Lemma 1.36, we only need to consider the case
where the Steiner point s is a cross. Assume that one of the neighbours of s is a
Steiner point v, and that v has degree 3. Let a, b and s be the neighbours of v (as in
Fig. 1.46a). By Lemma 1.37, neither of the edges va or vb is parallel to the edges in
the opposite pair at s that does not include vs. Hence, we can make the (small) local
change indicated in Fig. 1.46b without increasing the length of the tree. This change
splits s into two adjacent degree 3 Steiner points s1 and s2 while moving v to a new
position v0.

Finally, if v is a degree 4 Steiner point, then we arrive at a contradiction to length-
minimality, since the local change given above would decrease the length of the tree.

ut
It follows that in a GeoSteiner-type algorithm for constructing a minimum

Steiner tree one can, for the most part, limit the construction of candidate full Steiner
components to full and fulsome minimum Steiner trees where all Steiner points have
degree 3. In the chapters that follow we will see that for many Minkowski metrics
there exist efficient methods for constructing such candidates. (The construction of
a cross with terminals as neighbours can easily be handled separately.)

20Such an edge e is referred to elsewhere in the literature [353] as a trombone wire. The slide
described here is an example of a zero-shift, which we study in more detail in Chap. 2.

1.7 Applications and Extensions 73

s

v

a b

s

v

a b

v

s1

s2

a b

Fig. 1.46 Splitting of a cross into two adjacent degree 3 Steiner points. Diagram (a) shows a cross
s with an adjacent Steiner point v. Diagram (b) shows a local perturbation that splits s into two
degree 3 Steiner points without increasing the length of the tree

Finally, we note that although the results in this section have been expressed
in terms of properties of minimum Steiner trees, it is straightforward to see that
they also apply to a general Steiner tree T : whenever a length-reducing replacement
changes the topology in the above proofs it invalidates the underlying Steiner
topology of T ; when a length-reducing replacement does not change the topology
it shows that T is not relatively minimal. This observation will be useful in Chap. 2,
where we apply a number of these results.

1.7 Applications and Extensions

In this section we first discuss applications of the Euclidean Steiner tree problem
both to practical engineering problems and to other areas of mathematics. We then
look briefly at the extension of the problem to higher dimensional spaces.

1.7.1 Applications

The Euclidean Steiner tree problem in the plane is a problem that immediately gives
the impression that it should have useful physical applications. Indeed, most of the
earliest literature in this area poses the problem in terms of applications. The first
known paper on the Euclidean Steiner tree problem, by the French mathematician

74 1 Euclidean and Minkowski Steiner Trees

Joseph Diaz Gergonne [174], addresses a formulation of the problem that involves
designing a network of canals interconnecting a given set of cities (though in the
solution the problem is treated as an abstract problem in pure geometry). When
the problem was independently rediscovered some 25 years later by Carl Friedrich
Gauss in a letter dated 21 March 1836 to the Danish-German astronomer, Heinrich
Christian Schumacher [171], Gauss described the problem in terms of a railway
connection between four towns in Germany. In a later restatement of the problem
in 1941, in the book What is Mathematics? [123], the authors, Richard Courant
and Herbert Robbins, call the problem the ‘street network problem’, suggesting its
potential applications in the design of systems of roads.21

Despite these concrete formulations of the Steiner tree problem in the early
literature, there is no evidence that the problem was ever studied as anything other
than a problem in pure geometry before the 1950s. In the late 1950s, however,
a genuine application emerged for the Euclidean Steiner tree problem. As Henry
Pollak relates in [305], the Bell Telephone Company faced the issue that its tariff
for private line service was written in terms of the length of the minimum network
connecting the customers’ stations (that is, the customer would not be charged for
redundancy or inefficient interconnections in the network). In theory, a customer
could insist that the Bell Service add a new terminal at a location that would
reduce the cost of the minimum network (even if it was of no direct use to the
customer), or at least that the customer be charged as though such a terminal
existed. Hence, there was a real motivation for understanding how to compute the
minimum network cost where such extra terminals (Steiner points) were allowed,
which engaged the attention of a number of researchers working for or associated
with Bell Laboratories.22

More recently, Durand et al. [144] have shown that an understanding of the local
structure of minimum Steiner trees gives insight into the geometry of an electrical
network made of resistive wires in which the averaged conductivity is maximised.
In such networks, wires between junctions are straight, and each junction (i)
between two or more wires satisfies

P

j eij D 0; where eij are the outward-pointing
unit vectors in the directions of the adjoining wires. Clearly, these are the same
local conditions as those satisfied by edges and Steiner points in a Steiner tree.
The extension of this problem to three dimensions has particular applications to
estimating the conductivity of foams.

From the 1960s onwards, however, it has been variations on the Euclidean Steiner
tree problem in the plane, rather than the original problem itself, that have found
the most significant real-world applications. In 1966, Maurice Hanan published his

21For more details on the early history of the Euclidean Steiner tree problem, see [47]. One of
the few modern papers further exploring the potential of the Euclidean Steiner tree problem in the
design of road networks is the work of Stückelberger et al. [357].
22Employees or associates of Bell Laboratories who made important early contributions to the
Euclidean Steiner tree problem in the plane include Zdzislaw Melzak [277], Edgar Gilbert [178],
Henry Pollak [179], and Ronald Graham and Frank Hwang [183].

1.7 Applications and Extensions 75

Fig. 1.47 A soap film construction of a Steiner tree on four points

highly influential paper on the Steiner tree problem in the rectilinear metric [187].
This paper establishes most of the basic properties of minimum Steiner trees where
distance is measured using the rectilinear norm (also known as the Manhattan or
`1 norm), and correctly predicts the importance of this theory to the emerging area
of ‘printed circuit technology’ (i.e., physical design of microchips). This problem
and its applications are discussed in Chap. 3. More recently, a more general class of
minimum trees, known as fixed orientation Steiner trees (which are the subject of
Chap. 2), have been shown to have applications to the physical design of the next
generation of microchips.

The Euclidean Steiner tree problem in the plane does, however, have some
interesting links with other areas of pure and applied mathematics. Courant and
Robbins [123], for example, suggested a relationship between Steiner trees and
minimal surfaces. Minimal surfaces with constraints such as fixed boundaries or
enclosing fixed volumes can be effectively realised using soap films, obtained by
dipping an object into a soap or detergent solution. Courant and Robbins proposed
an experiment in which two parallel glass or perspex plates are joined by three
or more perpendicular bars, and the object is immersed in a soap solution and
withdrawn. The resulting soap film forms a system of vertical planes between
the plates and joining the fixed bars, the projection of which is a Steiner tree;
see Fig. 1.47. It is important to note, however, that this mechanism does not in
general solve the Euclidean Steiner tree problem; the projection of the soap films
will generally be a locally minimal network, but there is no guarantee of global
minimality. A number of authors, including Miehle [279] and Dutta et al. [146],
have built physical models to test this heuristic method. In the latter paper, the
authors run a number of six-pin soap film experiments, where the pins are arranged
as the vertices of a regular hexagon. They obtain a range of different Steiner trees,
including but not restricted to the minimum one (which, by Theorem 1.19, consists
of five sides of the regular hexagon); they also show that for thicker pins they obtain
non-minimal spanning trees, or trees composed of Steiner components where the
angles between edges at some terminals are less than 2�=3.

76 1 Euclidean and Minkowski Steiner Trees

Fig. 1.48 A minimum perimeter unfolding of a cube, obtained by finding a minimum Steiner tree
(shown in red) on the surface of the cube interconnecting the eight vertices of the cube

A Euclidean Steiner tree for a fixed topology can also be viewed as an equilib-
rium system minimising directed forces on the edges or potential energy, which
can be physically realised by a mechanism involving weights and strings (as in
Exercise 1.4). This sort of model was proposed as early as 1811 by Gergonne [174],
and has been physically implemented by Miehle [279].

Another problem that requires an understanding of the Euclidean Steiner tree
problem in the plane for its solution, is that of constructing a minimum perimeter
unfolding of a polyhedron. An unfolding (also known as a development) of a
convex polyhedron is a connected plane figure obtained by cutting the surface of
the polyhedron and unfolding it. The surface cuts can be made both along edges
and across faces, and need not be restricted to straight cuts. Akiyama et al. [6] have
shown that for any convex polyhedron an unfolding with minimum perimeter can
be found by cutting along a minimum Steiner tree on the surface of the polyhedron
interconnecting all the vertices. In Fig. 1.48, for example, a minimum Steiner tree
on the surface of a cube interconnecting the vertices of the cube is shown. By cutting
along this tree the unfolding on the right is obtained. It is straightforward to show
that this unfolding has minimum perimeter, since the perimeter is clearly twice
the length of the tree interconnecting the vertices. Despite its three-dimensional
setting, the problem of constructing a Steiner tree on the surface of a polyhedron is
essentially a planar problem, and can be solved using the techniques in this chapter
(see Exercise 1.23).

The Steiner tree problem has also been studied in a completely different context
by Beardwood et al. in their well known 1959 paper [25], in which they show that
the length of the shortest closed path through n points in a bounded plane region
of area v is ‘almost always’ asymptotically proportional to

p
nv as n ! 1. The

authors show that this asymptotic bound also applies to the Euclidean Steiner tree
problem as the number of terminals in a bounded region increases.

1.7.2 Extensions to Higher Dimensions

A related Steiner tree problem that has useful applications is the Steiner tree problem
in three (or higher) dimensional Euclidean space. This problem has been studied
both as a natural generalisation of the planar problem and for its applications to areas

1.7 Applications and Extensions 77

such as phylogenetics ([62, 78, 108] and others) and to the structure and folding of
proteins [349].

An interest in Steiner trees in higher dimensions dates back to the work of
Bopp [36] in 1879 and to the first modern treatment of the Steiner tree problem by
Jarník and Kössler [223] in 1934.23 The formal statement of the Euclidean problem
is essentially identical to that of the planar problem but in a more general setting.

EUCLIDEAN STEINER TREE PROBLEM IN d -DIMENSIONAL SPACE

Given: A set of points N D ft1; : : : ; tng lying in d -dimensional space (for
d � 2).
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, and
such that jT j WD P

e2E.T / jej is minimised.

As in the planar case, a network solving the Euclidean Steiner tree problem
in d -dimensional space is a tree, referred to as a minimum Steiner tree. All the
other associated definitions including terminals, Steiner points, Steiner tree, meeting
angles and full components carry across to this more general setting in a natural way.

In a d -dimensional Steiner tree the geometric properties of a Steiner point are
remarkably similar to those in the planar case. Note first that any two edges of a
Steiner tree incident to a single vertex are coplanar, and hence by the same argument
as in the planar case the angle between them is at least 2�=3. From this, it is
straightforward to prove the following result (see Exercise 1.24).

Theorem 1.40 Let s be a Steiner point of a d -dimensional Steiner tree T . Then s

has degree 3 in T , each meeting angle at s is 2�=3, and the three edges incident
with s are coplanar.

However, despite the local similarities with the planar case expressed in The-
orem 1.40, the construction of a Steiner tree (for a given terminal set and given
Steiner topology) is much harder in d -space than in the plane. The difficulty arises
from the fact that although the edges at each Steiner point are coplanar, the plane
those edges lie in is not known in advance if there are more than three terminals.
This means that the Melzak-Hwang algorithm cannot be applied here, because there
is no longer a unique equilateral point (or pair of equilateral points) associated with

23Karl Bopp’s publication on Steiner trees took the form of a dissertation entitled “On the shortest
connection system for four points” [36]. As the title suggests, the work considers the problem of
how to construct a minimum Euclidean Steiner tree on four terminals. Although most of the focus
is on the planar case, the thesis concludes with some brief observations on the three-dimensional
problem, and states (without proof) some of the fundamental properties of three-dimensional
Euclidean Steiner trees. These properties were proved and generalised to d -dimensional space
(for all integers d � 2) in 1934 by the Czech mathematicians Jarník and Kössler [223], who
were almost certainly unaware of Bopp’s earlier work. This paper fell into obscurity until it was
eventually rediscovered in the 1970s. Higher dimensional Steiner trees were not studied again in
the literature until the seminal paper of Gilbert and Pollak [179] in 1968, where there is a short
discussion of the three-dimensional problem.

78 1 Euclidean and Minkowski Steiner Trees

a cherry, but rather a continuous range of candidate equilateral points lying on a
circle in d -space. In fact, it has been shown that for d � 3 and n � 4 (where n

is the number of terminals) the locations of the Steiner points cannot be exactly
computed (in radicals), as the solution involves finding roots of a polynomial of
degree 8 [276, 351].24

A consequence of this is that numerical approaches are required for solving
the Euclidean Steiner tree problem in d -dimensional space, d � 3. The best-
known method is the iterative algorithm of Smith [351], discussed in Sect. 1.2.2.
Smith’s method involves enumerating all full Steiner topologies on the given set
of terminals, and for each such topology computing the unique relatively minimal
tree via a length-decreasing iterative process that has been shown to have linear
convergence. In each case the resulting relatively minimal tree may be degenerate
(i.e., have some edges of length zero); if a zero-length edge occurs between two
Steiner points, then the relatively minimal tree cannot be a minimum Steiner tree,
and hence the topology can be discarded. The shortest surviving relatively minimal
tree is the required minimum Steiner tree.

In practice, Smith’s algorithm can only solve relatively small instances of the
Steiner tree problem, due to the large number of topologies that need to be
considered. Smith’s algorithm uses a branch-and-bound strategy to search through
all possible full topologies. Improvements to the algorithm have been proposed
and implemented by Fampa and Anstreicher [150], essentially by obtaining better
lower bounds on the lengths of the candidate Steiner trees to reduce branching in
the branch-and-bound tree. The improved algorithm, however, can still only solve
problems with up to 15 or 16 terminals. Another easily computed lower bound on
the length of relatively minimal trees has been suggested by Brazil et al. [68], but
this is unlikely to be tight enough to give much additional improvement in a branch-
and-bound algorithm.

Finally, we briefly mention the Steiner ratio �d for a d -dimensional Euclidean
space (where �d is the infimum of the ratio of the length of a minimum Steiner
tree and an MST for any set of terminals). As in the planar case, the precise Steiner
ratio is not known for any d � 3. However, for d D 3 the terminal sets with
the smallest known Steiner ratio are the so-called 3-sausages, which are formed
by gluing together faces of regular 3-simplices (i.e., regular tetrahedra) so that
their vertices lie on a helix. Smith and Smith [352] conjecture that as the length
of the 3-sausage increases, the ratio of the minimum Steiner tree to the MST
monotonically decreases, and in the limit converges to �d . This conjectured value of
�d is � 0:78419037. The low Steiner ratios associated with 3-sausages have been
exploited in the design of heuristics for the 3-dimensional Steiner tree problem, such
as the algorithm of Toppur and Smith [370].

24This non-computability result was first given by Smith [351], however the counter-example
derived in that paper is difficult to verify. A clearer, more elegant counter-example was given by St.
Mehlhos [276], who was apparently unaware of Smith’s paper. An easier method for constructing
counter-examples was later devised by Rubinstein et al. [329].

1.7 Applications and Extensions 79

Exercises

1.1. If T is a star network solving the Fermat-Torricelli problem for N D fa; b; cg,
show that T is the minimum length network interconnecting the points of
N . [Hint: In particular, we need to show that for a minimum length network
interconnecting the points of N : the network must be a tree; we can assume
that any vertex of the network not in N has degree 3 or more; and there can
be at most one such vertex.]

1.2. Show that if 4abc has an angle that is 2�=3 or greater then the point that
minimises the sum of distances to a, b and c coincides with the vertex with
the largest angle. [Hint: Prove that (i) the point cannot be inside 4abc, (ii) the
point cannot be outside 4abc, and (iii) the point has to appear at a vertex if it
is on the boundary of 4abc.]

1.3. Prove the following theorem which historically has been attributed to
Napoleon (for a discussion see [398]). The centres of circumcircles Cab,
Cbc, Cca for a given triangle 4abc form an equilateral triangle.

1.4. Show that the mechanical model for the Steiner tree problem for three given
terminals, where the terminals correspond to the centres of three circular holes
in a tabletop (see Fig. 1.49), correctly identifies the location of the Steiner
point for three given points.

Fig. 1.49 The mechanical model for the Steiner tree problem. A tabletop contains three circular
holes, whose centres correspond to the locations of three terminals. Three strings with equal
lengths, each with equal weights attached, pass through the holes and are tied together above the
tabletop in a single knot. Assuming the system is frictionless, we claim that the resting position of
the knot corresponds to the position of the Steiner point

80 1 Euclidean and Minkowski Steiner Trees

1.5. Show that the edges of a minimum Steiner tree are straight line segments, and
that they are embedded in such a way that their interior does not intersect any
other vertex or edge of the minimum Steiner tree.

1.6. Show that a minimum Steiner tree with n terminals has at most n � 2 Steiner
points and at most 2n � 3 edges. Hint: Suppose that the tree has k Steiner
points. Use the fact that a tree with n C k vertices has n C k � 1 edges, and
that all Steiner points have degree 3.

1.7. Show that a full Steiner topology with four or more terminals has at least two
cherries, that is, pairs of terminals sharing a Steiner point.

1.8. Consider a Euclidean full minimum Steiner tree T . Show that for any edge uv
in T , there exists a merging order of the cherries of the topology, such that the
final Simpson line overlaps with e.

1.9. Show that if the coordinates of the terminals N are given as rational numbers,
then the coordinates of the equilateral points and Steiner points of a full
Steiner tree for N can be written in the form ˛ C ˇ

p
3, where ˛ and ˇ are

rational numbers.

1.10. Show that 1=2 is a lower bound for the Steiner ratio �. [Hint: Show that the
distance traversed by an outer walk of a Steiner tree is greater than or equal to
the length of a minimum spanning tree on the same set of terminals.]

1.11. Show that the Steiner ratio for n terminals where n D 3 is
p

3=2. [Hint: Let
a; b; c be the three terminals, let s be the Steiner point, and assume that bc

is the longest edge of triangle 4abc. Show that there exist points b0 and c0
on the line segments bs and cs respectively such that 4ab0c0 is an equilateral
triangle.]

1.12. Prove Lemma 1.13, the lune property. [Hint: The argument is similar to the
proof of Lemma 1.11.]

1.13. Consider removing a set e1; e2; : : : ; ek of distinct edges from a minimum
Steiner tree. For each of the remaining components containing at least one
terminal, choose one (arbitrary) terminal from this component. Let NR be
the set of chosen terminals. Construct a minimum spanning tree (MST) over
NR using BSD.ti ; tj / (defined in Sect. 1.3.2) as the distance between a pair
of terminals ti ; tj 2 NR. Let L be the length of this MST. Show that
L � Pk

lD1 jel j.
1.14. Let s1, s2 be adjacent Steiner points in a minimum Steiner tree T . Let e1 and

e2 be two edges of T incident with s1 and s2, respectively, and both lying
on the same side of the line extending s1s2. Show, using Lemma 1.15, that if
je1j � je2j then js1s2j � .

p
3 � 1/je1j=2.

1.7 Applications and Extensions 81

b a

c du

a

c du

b

Fig. 1.50 Two candidate topologies for the part of T corresponding to a leaf of G.T /

1.15. In the proof of Theorem 1.17, calculate the length jTvj in terms of R WD
d.V 0

1 ; V 0
2 /; r WD d.V1; V 0

1 / and fd1; : : : ; dng.

1.16. Let T denote a full component on m terminals of a minimum Steiner tree T �
for a rectangular lattice. Assume e.T / � 0 and any connected graph on less
than m terminals has excess at least 0. Define the graph G.T / to be the graph
whose vertex set is S , two components in S being adjacent in G.T / if they
both contain parts of the same edge of T or if they both contain edges adjacent
to a Steiner point on the boundary of a square. Without using Theorem 1.23,
show that the part of T occurring in a leaf of G.T / cannot have either of the
two topologies shown in Fig. 1.50.

1.17. Show that there exists a full minimum Steiner tree on five terminals in the
Euclidean plane that is not fulsome. [Hint: You may use the fact (which
follows easily from [59]) that a Euclidean minimum Steiner tree on the set
of terminals f.0; 0/, .1; 0/, .0; 1/, .1; 1/, .0; 2/g has length 2 C p

3.]

1.18. Show that any configuration with centre s that is part of a Steiner tree with
Steiner point s must be a Steiner configuration.

1.19. Prove, carefully, Theorem 1.26 for the case where m > 3.

1.20. Prove Lemma 1.30. [Hint: Suppose one of the supporting lines, say L2,
supports C at a point x that is strictly between L1 and L0. Consider the line
Ly parallel to L2, supporting s C C at y, the antipodal point to x on s C C.
By comparing L3 to Ly show that if L2 and L3 intersect on the line L then
jsy2j 6D jsy3j.]

1.21. Prove Lemma 1.36. [Hint: Choose s0 on the interior of sx1 or sx3 such that
there exist points a 2 sx2 and b 2 sx4 for which sas0b is a parallelogram.]

82 1 Euclidean and Minkowski Steiner Trees

1.22. Prove Lemma 1.38. [Hint: Argue by contradiction, and apply Lemma 1.37.]

1.23. Find a minimum perimeter unfolding for a regular tetrahedron.

1.24. Show that if every meeting angle at a vertex s of a Steiner tree in d -
dimensional Euclidean space is at least 2�=3, then s has degree at most 3.
Hence, prove Theorem 1.40.

Chapter 2
Fixed Orientation Steiner Trees

In this chapter we look at the problem of designing a network interconnecting a
given set of points in the Euclidean plane, where each edge of the network is
composed of straight line segments restricted to a fixed finite set of orientations,
known as legal orientations. Associated with each of the legal orientations is a
weight, and the aim is to find the interconnection network of this type with the
minimum weighted length.

This is known as the fixed orientation Steiner tree problem. It has important
applications in chip design, where millions of nets need to be routed on a (small)
number of chip layers. On each routing layer, all wires generally use the same
orientation in order to make joint routing of multiple nets feasible. In optimising the
routing, the design of each net is usually treated as a planar geometric optimisation
problem with fixed orientations, where the cost of transition between layers is
treated as negligible.

The most well-known examples of fixed orientation networks are the rectilinear
(or Manhattan) networks, where edges in the network are composed of horizontal
and vertical line segments. The interest in such networks stems, at least in part, from
the fact that at present most chip design technologies use only two perpendicular
routing orientations. This strong restriction to only two legal orientations results
in Steiner trees that have very specific geometric properties that will be studied in
Chap. 3.

Here, however, we focus on the general fixed orientation Steiner tree problem,
particularly where there are at least three legal orientations available. In chip design,
the increasing number of available routing layers has made the use of multiple
orientations relevant in practice [87, 362]. The fixed orientation Steiner tree problem
can also provide a convenient way to approximate solutions to the Steiner tree
problem in arbitrary norms (such as those in Sect. 1.6). These applications are
discussed in greater detail in Sect. 2.7 of this chapter.

© Springer International Publishing Switzerland 2015
M. Brazil, M. Zachariasen, Optimal Interconnection Trees in the Plane,
Algorithms and Combinatorics 29, DOI 10.1007/978-3-319-13915-9_2

83

84 2 Fixed Orientation Steiner Trees

2.1 Fixed Orientation Networks

In this section, we show that representing edges of a network by weighted line
segments with fixed orientations (and weights) induces a metric on the cost of edges.
Here we establish a few fundamental properties of such a metric before defining the
associated Steiner tree problem.

2.1.1 Fixed Orientation Metrics

Assume that a finite set of weighted orientations (referred to as legal orientations)
is given. The weight wi of each orientation is assumed to be a positive real number.
A convenient way to represent a weighted orientation is by a symmetric pair of
vectors ui ; �ui where a line extending either vector has the required orientation,
and the magnitude of ui is chosen such that jui j D w�1

i . For each such vector ui , we
let ui denote the corresponding point in the Euclidean plane with position vector ui .

Associated with a set of legal orientations is a centrally symmetric polygon C
defined as follows.

Definitions [Legal orientations and the orientation polygon]: Suppose we
are given a set of k legal orientations each with weight wi , i D 0; : : : ; k � 1;
we denote each orientation by a pair of vectors ui ; uiCk with ui D �uiCk and
jui j D w�1

i . The corresponding points in the Euclidean plane u0; u1; : : : ; u2k�1

form the vertices of centrally symmetric polygon C, centred at the origin o,
which we call the orientation polygon. We will assume that the set of legal
orientations and weights are chosen so that the orientation polygon C is convex.

Note that although the convexity condition in the above definition seems
restrictive, we will later show that if there is a legal orientation not satisfying the
convexity condition, then that orientation is never required in a minimal network,
and hence can be ignored.

An example of an orientation polygon defined by a set of three legal orientations
is given in Fig. 2.1 (left).

The networks that we study in this chapter are built up from paths of line
segments in legal directions, defined as follows.

Definition [Fixed orientation path]: A path composed of line segments in
legal directions between two given endpoints is referred to as a fixed orientation
path; we calculate the length (or cost) of this path as the sum of the length of
each line segment multiplied by its weight. For a given fixed orientation path,
we refer to the endpoints of the path and the points shared by two adjacent line
segments (with different orientations) as the vertices of the path.

An example of a fixed orientation path for a given set of legal directions is given
in Fig. 2.1 (right).

2.1 Fixed Orientation Networks 85

1

2

2

2

1
1

C

Fig. 2.1 On the left is an example of an orientation polygon C, defined by three legal orientations,
each indicated with a different colour. On the right is an example of a fixed orientation path P with
respect to C. The length of P is the sum of the length of each line segment multiplied by its weight,
which in this case is .1 � 1=2/ C .2 � 1/ C .2 � 1=2/ D 3:5

The above definition gives a natural way of measuring the distance between two
points with respect to a given polygon C, representing a set of fixed orientations.
Given two points p and q we define the distance jpqjC to be the minimum possible
length of a fixed orientation path from p to q. Similarly, given a path P1 D
v1v2 � � � vm we define

jP jC WD
m�1
X

1

jviviC1jC :

If the orientation of the line through p and q coincides with a legal orientation,
then the minimum fixed orientation path from p to q is simply the straight line
segment pq, and is clearly unique. On the other hand, if the orientation of the
line through p and q does not coincide with a legal orientation, then the minimum
fixed orientation path from p to q contains at least one intermediate vertex. These
observations motivate the following definitions.

Definitions [Straight edges and bent edges]: For two given points p and q,
if the line pq through p and q coincides with a legal orientation, then we say
that the minimum fixed orientation path pq (from p to q) is a straight edge.
If the orientation of pq does not coincide with a legal orientation, then the
minimum fixed orientation path between p and q is called a bent edge, and the
intermediate vertices of a bent edge are called corner points.

Note that a minimum path corresponding to a bent edge is composed of multiple
legal line segments. We will show below (Theorem 2.1 to Corollary 2.4) that if we
consider a line segment not with legal orientation; then any zigzag path between
the endpoints consisting of legal line segments having the immediately preceding
and succeeding legal orientations constitutes a shortest path; Fig. 2.1 (right) is an
example of such a shortest path. In fact, a bent edge can be assumed to consist of at
most two line segments (having legal orientations) and a single corner point.

86 2 Fixed Orientation Steiner Trees

v1 v2

v3 v4

v1 v2

v3

v4

L1,2

L3,4

L1,2

L3,4

Fig. 2.2 Two examples of subpaths composed of three line segments. In each case there exists
a perturbation moving v2 towards v1 that does not change the length of the path on the left and
strictly decreases the length of the path on the right

The above definitions and the following three theorems are largely based on
the results of Widmayer et al. [400, 401], who proved equivalent results for the
unweighted case.1

Theorem 2.1 There exists a shortest fixed orientation path between any two points
composed of at most two line segments (and hence using at most two directions).

Proof Let the set of legal directions be determined by a convex centrally symmetric
polygon C, and suppose P is a fixed orientation path from p to q composed of
at least three line segments in legal directions. There exists a subpath of P , say
P1 D v1v2v3v4, such that v1; v2; v3 and v4 are vertices of P . Two examples of such
subpaths are illustrated in Fig. 2.2.

We will show that either P1 is not a minimal path between v1 and v4, or that there
exists another fixed orientation path from v1 to v4 of the same length composed of
at most two line segments.

Let L1;2 be the line extending v1v2 and let L3;4 be the line extending v3v4.
Consider a perturbation of P1 to a path P 0

1 obtained by moving v2 to a point v0
2

on L1;2 and v3 to a point v0
3 on L3;4 such that v0

2v0
3 k v2v3. Here the location of

v0
3 is determined by that of v0

2, so we can think of the movement of these points as
being controlled by a single parameter: the distance v2 moves along L1;2. This is
clearly a reversible perturbation; hence, there exists a direction of movement of the
two points such that the instantaneous change in jP1jC is either negative or zero.

If the instantaneous change in jP1jC is negative, then P1 is not minimal. If, on the
other hand, the change is zero, we note that the rate of change of the length of each
line segment of P1 is constant, and hence the change in jP1jC continues to be zero
as we move v2 along L1;2. It follows that we can move v2 along L1;2 until either v0

2

coincides with v1 or v0
3 coincides with v4. The resulting path has the same length as

P1 but is composed of at most two line segments.
The statement of the theorem now follows. ut

1The results of Widmayer et al. [400, 401] were also anticipated, in part, by earlier and
contemporary papers such as [408] and [385].

2.1 Fixed Orientation Networks 87

Furthermore, it can be shown that any convex fixed orientation path containing
two or more corner points is strictly non-minimal (Exercise 2.1).

A similar argument to the proof of Theorem 2.1 can also be used to show that
if we choose a set of legal orientations such that the orientation polygon C is not
convex, then for any pair of points p and q and for any orientation corresponding to a
vertex of C that is not an extreme point of the convex hull of C there exists a shortest
fixed orientation path between p and q not using that orientation (Exercise 2.2).
This means that the restriction on the set of legal orientations to a set such that C is
convex is not a restriction in the context of path minimisation, since we only need
to consider orientations corresponding to extreme points of the convex hull of C.

Theorem 2.2 The fixed orientation measurement of distance induces a metric
on R

2.

Proof From the definition of distance as the minimum possible length of a fixed
orientation path between the given pair of points, it is immediately clear that the
triangle inequality holds; i.e., for any three points p, q and r we have jpqjC �
jprjC C jrqjC, where equality holds if and only if r lies on a minimum length fixed
orientation path from p to q. Similarly, the other properties of a metric, positive
definiteness and symmetry, also follow immediately from the definition. ut

Definition [Fixed orientation metric]: The metric resulting from the fixed
orientation measurement of distance is called a fixed orientation metric.2

Theorem 2.3 If C is a convex centrally symmetric polygon in the plane, centred at
the origin o, defining a fixed orientation metric, then the unit circle at o for that
metric is C.

Proof The theorem is clearly true at the vertices of C: for each vertex ui we have
joui jC D wi jui j D jui j�1jui j D 1. Let ui and uiC1 be adjacent vertices of C and let
q be a point in the interior of uiuiC1. We will show that joqjC D 1, from which the
theorem follows.

By Theorem 2.1 there exists a minimum length fixed orientation path Pq between
o and q composed of exactly two legal line segments. Since ui and uiC1 are adjacent
legal directions it follows that Pq intersects the interior of either oui or ouiC1; we
assume, without loss of generality, that it intersects oui , as illustrated in Fig. 2.3.

Note that there exists a unique fixed orientation path P1 between o and q

composed of two legal line segments with directions ui and uiC1, such that the
interior vertex of P1, say q1, lies in the interior of oui . We also note that 4q1qui �
4ouiC1ui . It follows that jq1qjC D jq1ui jC , and hence that jP1jC D 1.

2The norms associated with the class of fixed orientation metrics have been referred to in the
literature as ‘polyhedral norms’, in [408], or ‘block norms’, in [385]. Moreover, if we relax the
condition that the polygon C is centrally symmetric, then rather than having an associated norm,
we have an associated gauge; see [145] for more details.

88 2 Fixed Orientation Steiner Trees

Fig. 2.3 Construction for the
proof of Theorem 2.3

ui+1

ui

q

o

q1
q1

q1

It now remains to show that P1 is a minimum fixed orientation path. Let P 0
1

be any fixed orientation path between o and q that is composed of two legal line
segments, that intersects the interior of oui , and that uses at least one direction other
than ui and uiC1. Since ui and uiC1 are adjacent, the interior vertex of P 0

1, q0
1, does

not lie in the interior of the cone from the origin induced by ui and uiC1. It follows
that q0

1q intersects the interior of q1ui at a point, say q00
1 (not necessarily different

than q0
1). Applying the triangle inequality (from Theorem 2.2) twice, we obtain

jP 0
1jC D joq0

1jC C jq0
1qjC

� joq00
1 jC C jq00

1 qjC
D joq1jC C jq1q

00
1 jC C jq00

1 qjC
> joq1jC C jq1qjC D jP1jC

as required (where the final strict inequality follows from the proof of Theorem 2.2).
ut

An immediate corollary is as follows:

Corollary 2.4 Let p and q be points in R
2 such that the orientation of the line pq

through p and q does not coincide with a legal orientation. Then P is a shortest
fixed orientation path from p to q if and only if P is a zigzag path from p to q

consisting of line segments having the immediate preceding and succeeding legal
orientations to that of pq.

2.1.2 The Fixed Orientation Steiner Tree Problem

In this section we consider the Steiner tree problem for fixed orientation networks,
for a given set of weighted legal orientations. The preceding theorems show that this
is equivalent to solving the Steiner tree problem in a Minkowski plane where the
unit circle C is a convex centrally symmetric polygon. We could define the Steiner
tree problem here in terms of networks embedded in this Minkowski plane, as in

2.1 Fixed Orientation Networks 89

the definition in Sect. 1.6. However, in order to best exploit the geometry of these
networks, it is more convenient to express the problem in terms of fixed orientation
networks embedded in the Euclidean plane. By a fixed orientation network we mean
one where each edge in the network is a fixed orientation path between its endpoints.

Formally, the definition of the problem is as follows:

FIXED ORIENTATION STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying in the plane, and a convex
centrally symmetric polygon C.
Find: A fixed orientation network T D .V .T /; E.T //, such that N � V.T /,
and such that

P

e2E.T / jejC is minimised.

As in Chap. 1, a solution to this problem is a tree, referred to as a minimum fixed
orientation Steiner tree. The vertices of such a tree not in N are called Steiner points.
Furthermore, by minimality the edges of such a tree are minimum fixed orientation
paths between their endpoints, and hence they are either straight line segments with
legal orientation, or they satisfy the properties of Corollary 2.4.

For the fixed orientation Steiner tree problem we again have associated concepts
of topology, Steiner topology and Steiner trees. These are defined in exactly the
same way as in Chap. 1: in particular, for a given polygonal unit circle C, the
topology of a fixed orientation network is its underlying graph structure; a Steiner
topology is a topology that can be realised by some non-degenerate minimum fixed
orientation Steiner tree; and a Steiner tree is a non-degenerate relatively minimal
fixed orientation tree for a Steiner topology.

The best known example of a Minkowski plane with polygonal unit circle is
the rectilinear plane, where there are two fixed orientations: horizontal and vertical
(Fig. 2.4a) with equal weights. Special properties of the rectilinear Steiner tree
problem are discussed in Chap. 3. A useful generalisation of the rectilinear plane
is as follows:

a b c d

Fig. 2.4 Examples of polygonal unit circles. (a) Rectilinear (two perpendicular orientations).
(b) Uniform orientations (� D 4). (c) Non-uniform orientations (with three unweighted orien-
tations). (d) General weighted non-uniform orientations

90 2 Fixed Orientation Steiner Trees

Definitions [�-geometry]: The �-geometry plane is defined to be a Minkowski
plane in which the unit circle C is a regular 2�-gon for some integer � � 2

(as illustrated in Fig. 2.4b). The corresponding metric is known as a uniform
orientation metric [337]. A minimum Steiner tree in a �-geometry plane is
referred to as a minimum �-geometry Steiner tree. We denote by ! WD �=�

the smallest possible angle between two distinct legal orientations in a given
�-geometry.

Unit circles for some general fixed orientation metrics are shown in Fig. 2.4.
Figure 2.4c shows a polygon whose vertices lie on a Euclidean unit circle, meaning
that the weight associated with each legal orientation is 1. Finally, Fig. 2.4d
illustrates a case where the orientations are non-uniform and have different weights.
By convention, we always assume that one of the legal orientations is horizontal.

Despite our Euclidean point of view in this chapter, where fixed orientation trees
are viewed as trees embedded in the Euclidean plane composed of weighted line
segments in legal directions, it is nevertheless convenient to express the length of an
edge in a fixed orientation Steiner tree, or indeed the whole tree itself, in terms of the
Minkowski norm (for the given polygonal unit ball), k�k. This will be our convention
throughout the remainder of this chapter. This has a number of advantages, including
keeping the notation consistent with that used in Sect. 1.6.

In the next two sections we examine geometric properties of the Steiner points
and full components of a fixed orientation Steiner tree.

2.2 Local Properties of Steiner Points

We begin our study of fixed orientation Steiner trees with local properties, and in
particular the geometry of these trees around an individual Steiner point. Here we
present bounds on the degrees and angles for Steiner points, first for the uniform
orientation cases and then for general fixed orientation metrics. The relatively
straightforward theory for the uniform orientation cases can be viewed as a warm-
up for the more complex theory for fixed orientation metrics. For the more general
case we make use of the centroid property developed in Sect. 1.6.1.

Although we focus on Steiner points, degree and angle bounds can also be
obtained for terminals, but from an algorithmic point of view, properties related
to Steiner points are substantially more interesting.

2.2.1 Steiner Points for Uniform Orientation Metrics

One of the most important fundamental results in the Euclidean case is that in a
Euclidean Steiner tree no angle at a vertex (i.e., a terminal or Steiner point) is less

2.2 Local Properties of Steiner Points 91

than 2�=3. It immediately follows from this that every Steiner point has degree 3,
and that the angles at any Steiner point are all exactly 2�=3.

Clearly, these results do not, in general, hold for minimum �-geometry Steiner
trees, since all angles in such trees must be multiples of ! D �=�. We will, however,
show that results very close to the Euclidean result do hold; for example, the angles
at a Steiner point do not differ from 2�=3 by more than !, and for most values of �

all Steiner points are of degree 3.
We first consider the meeting angles at Steiner points in �-geometry.
As discussed earlier, we assume that all given minimum �-geometry Steiner trees

are embedded in the Euclidean plane. Hence, we have an embedding of each of the
edges as a minimum fixed orientation path. This means that each meeting angle at a
vertex is an angle between line segments in legal orientations.

Theorem 2.5 In a minimum �-geometry Steiner tree, the minimum meeting angle
at any Steiner point is at least d2�=3 � 1e!, while the maximum meeting angle is at
most b2�=3 C 1c!.3

Proof The theorem states that the minimum possible angle at a Steiner point is the
largest multiple of ! that is strictly less than 2�=3 and, similarly, that the maximum
possible angle is the smallest multiple of ! that is strictly greater than 2�=3.

We first prove the minimum meeting angle condition. The argument is essentially
by contradiction. First note that in any minimum �-geometry Steiner tree the
minimum meeting angle is strictly greater than �=2 � 2! (Exercise 2.4). Let T

be a �-tree interconnecting a given terminal set, and let s be a vertex of T with
incident legal straight line segments sp and sq such that

�=2 � 2! < †psq < d2�=3 � 1e!:

Let s0 be a point in the cone induced by the rays from s extending sp and sq such
that jss0j D 1 and ss0 is in a legal orientation as close as possible to the bisector of
the orientations of sp and sq (as illustrated in Fig. 2.5).

By rescaling, if necessary, it follows that there exist points a and b on sp and
sq, respectively, such that †sas0 D †sbs0 D !. Note that s0a and s0b both have
legal orientations. We will show that replacing sa and sb by the three line segments
s0s, s0a and s0b reduces the length of T , from which the minimum meeting angle
condition follows.

Let †ass0 D ˛1 and †bss0 D ˛2 (as shown in Fig. 2.5). By the angle conditions
on s we have

�=2 � 2! < ˛1 C ˛2 � 2�=3 � !:

3The first proof of Theorem 2.5 was given by Sarrafzadeh and Wong [338], albeit not covering the
case where � is a multiple of 3 correctly. Alternative (and correct) proofs using various proof
techniques were given by Koh [235] (only for � D 4), Li et al. [256] (only lower bounds),
Brazil et al. [65], Swanepoel [358], Hayase [189] and Il’yutko [217].

92 2 Fixed Orientation Steiner Trees

Fig. 2.5 A non-minimal
meeting angle, illustrated for
the case where � D 8

p q

s

s

1

ω ω

α1 α2

a b

Since ss0 is in a legal orientation as close as possible to the bisector of the
orientations of sp and sq we have

˛1 � ˛2 � !:

We want to show that js0aj C js0bj C 1 < jsaj C jsbj. By applying the sine rule on
4ass0 and 4bss0, and using standard trigonometric identities, we obtain:

sin.!/.jsaj C jsbj � js0aj � js0bj/
D sin.˛1 C !/ C sin.˛2 C !/ � sin.˛1/ � sin.˛2/

D 4 sin
�!

2

�

cos
�˛1 � ˛2

2

�

cos

�

˛1 C ˛2 C !

2

�

> 4 sin
�!

2

�

cos
�!

2

�

cos.�=3/ D sin.!/

as required. Note that the inequality in the above system makes use of both the upper
and lower bounds on †psq.

We prove the maximum meeting angle condition by a similar construction. Let
s be a vertex of T such that the minimum meeting angle condition holds but the
maximum meeting angle condition does not; i.e., there are incident legal straight
line segments sp and sq such that †psq is the largest angle at s and is strictly greater
than 2�=3 C !. Note that this immediately implies that s has degree 3. By rescaling
if necessary, let s0 be a point on the remaining straight line segment incident with s

such that jss0j D 1, and again let a and b be the points on sp and sq, respectively,
such that †sas0 D †sbs0 D ! (as illustrated in Fig. 2.6).

As before, let †ass0 D ˛1 and †bss0 D ˛2. By the angle conditions on s we have

˛1 C ˛2 � 4�=3 � !:

Since the minimum meeting angle condition holds, it follows that ss0 is in a legal
orientation as close as possible to the bisector of the orientations of sp and sq; thus

˛1 � ˛2 � !:

2.2 Local Properties of Steiner Points 93

ω

ωα1 α2

s

p a

b

q

s

1

Fig. 2.6 A non-minimal Steiner point, illustrated for the case where � D 9

We want to show that jsajCjsbjC1 > js0ajCjs0bj, and hence that T is not minimal.
A similar calculation to that in the minimal case shows that sin.!/.js0aj C js0bj �
jsaj � jsbj/ < sin.!/, as required.

It follows that the minimum and maximum meeting angle conditions must both
hold in a minimum Steiner �-tree. ut

In fact, a slightly stronger statement is possible for the minimum possible
meeting angle at a Steiner point in a minimum �-geometry Steiner tree (see
Exercise 2.5).

Obviously, if the minimum angle d2�=3 � 1e! is strictly greater than �=2, then
the maximum Steiner point degree is 3. Direct computation shows that degree 4

Steiner points are only possible for � D 2; 3; 4 and 6. Thus we have the following:

Corollary 2.6 In �-geometry, Steiner points have degree 3, except when � D 2; 3; 4

and 6 (where Steiner points with degree 4 exist).

Note, however, that in the cases � D 3 and � D 6 a degree 4 Steiner point can
be split into a pair of degree 3 Steiner points. Furthermore, it can be shown that
in both of these cases �-geometry Steiner points of degree 5 or 6 never occur (see
Exercise 2.6).

If we think of edges as being composed of line segments in legal orientations
embedded in the Euclidean plane, then for � D 3m, a meeting angle can either be
2�=3 � !, 2�=3 or 2�=3 C !, while for � ¤ 3m, only two meeting angles are
possible.

2.2.2 Steiner Points for General Fixed Orientations

We now generalise the above results by giving a complete characterisation of the
distribution of meeting angles of Steiner points in minimum Steiner trees for a
metric defined by a polygonal unit circle C. By Theorems 1.34 and 1.39, we can
assume that there are no Steiner points of degree > 4 and that any degree 4 Steiner

94 2 Fixed Orientation Steiner Trees

point in a Steiner tree is a cross and is adjacent to four terminals. Such points are
algorithmically trivial to find and construct. Hence, in this section, and throughout
most of the remainder of this chapter, we assume all Steiner points have degree 3.

As we will see later in this chapter, the characterisation of meeting angles for
degree 3 Steiner points is a crucial step in developing fast algorithms for finding a
fixed orientation Steiner tree for a given Steiner topology.

We first extend the concept of legal orientations to that of legal directions.

Definition [Legal directions]: Let ul , l D 0; : : : ; 2� � 1 be the 2� vectors
that define the vertices of the unit circle C (in counter-clockwise order around
the circle). These are unit vectors in the metric given by C; that is, they have
length 1 under metric k � k. By the central symmetry of C, it follows that ul D
�u.lC�/ mod 2� . Each unit vector ul corresponds to a legal direction; that is,
under this metric, any (oriented) legal line segment must use one of the 2� unit
vector directions. The successor of a unit vector ul is the vector ulC1 where
ulC1 WD u0 if l D 2� � 1.

Throughout this chapter we will make frequent use of the assumption that the
unit circle C is placed somewhere in the plane such that its centre coincides with a
given point s. For such a fixed centre we can unambiguously refer to the vertices of
C, which are the endpoints of the unit vectors ul for this fixed centre. The vertex that
corresponds to the endpoint of a unit vector ul is denoted by ul for l D 0; : : : ; 2��1.

Recall that we refer to a star network centred at a Steiner point that is part of
some full minimum Steiner tree as a Steiner configuration. In order to understand
which sets of legal directions can occur in a Steiner configuration we make use of
the centroid property established in Sect. 1.6 (Theorem 1.28). The aim is to develop
a way of constructing all possible sets of supporting lines satisfying the centroid
property, each of which corresponds to a feasible set of directions. We begin by
formalising the notion of a direction set.

Definitions [Maximal Steiner configuration, direction set]: For any Steiner
configuration of degree 3 there is an associated set of legal directions, namely
the legal directions used by all edges in the star (where directions are
considered as oriented outward from the centre). A Steiner configuration S
is said to be maximal if there exists no other Steiner configuration (for any set
of terminals) that uses a strict superset of the legal directions used by S. We
define a direction set D D fd1; d2; : : : ; dkg to be a set of legal directions used
by a maximal Steiner configuration, listed in counter-clockwise order around
the centre.4

4Note that in �-geometry these direction sets are the same as the ‘feasible direction sets’ defined
in [70].

2.2 Local Properties of Steiner Points 95

Fig. 2.7 Complementary direction sets in �-geometry for � D 4

The following definition will also prove useful:

Definition [Complementary direction set]: For a direction set D we define the
complementary direction set as the direction set that is obtained by reversing
all directions in D (Fig. 2.7). By the central symmetry of C, direction sets
appear as pairs of complementary direction sets.

Lemma 2.7 below shows that for any direction set D D fd1; d2; : : : ; dkg we have
k D 4; 5 or 6.

Lemma 2.7 A direction set contains at least 4 and at most 6 distinct directions.

Proof The correctness of the upper bound is clear, since each edge uses at most two
legal directions (by Corollary 2.4). We establish the lower bound using a continuity
argument.

Suppose, contrary to the claim of the lemma, there exists a direction set D with
only three directions. Let S be a Steiner configuration with three leaves, x1; x2; x3

and a Steiner point s, such that S has direction set D. By convexity, the choice
of s is unique, since if there were a second Steiner point s0 that gave a Steiner
configuration, then every point in the line segment ss0 would also be the Steiner
point of a minimum Steiner tree. This would mean that a larger direction set strictly
containing D could be found by moving the Steiner point from s a small distance
towards s0.

For all points p in the plane define the function f .p/ WD kx1pkCkx2pkCkx3pk.
Since S is a Steiner configuration it follows that, for every p, f .p/ � f .s/ D kSk.
For every " > 0, let B" be the open Euclidean ball with centre s and radius ". By
the continuity of f it follows that for each " there exists ı D ı."/ > 0 such that
f .p/ > f .s/ C ı for all p 62 B". Clearly, we can also assume that ı < ".

Now choose " > 0 sufficiently small such that perturbing one or both endpoints
of each edge xi s by at most " results in an edge in the normed plane that still uses a
direction from D (for i 2 f1; 2; 3g). Suppose we move leaf x1 to x0

1 not on the line

96 2 Fixed Orientation Steiner Trees

through x1s such that 0 < kx1x0
1k < ı."/ and such that S 0, the Steiner configuration

for x0
1; x2; x3, satisfies kS 0k � kT k. Let s0 be a Steiner point for S 0. Then

f .s0/ � kS 0k C kx1x0
1k

< kT k C ı:

Hence, s0 lies in B". By our choice of " it follows that D0, the direction set of S 0,
contains D as a subset (since the endpoints of the three edges of S have each been
perturbed by at most "). Since exactly one of the terminals of S has been perturbed
it is easy to see that the direction set of S 0 is not the same as the direction set for S .
Hence, D is a strict subset of D0, contradicting the statement that D is a direction
set. ut

The above lemma shows that a maximal Steiner configuration always has at least
one edge that contributes two legal directions to the corresponding direction set.
We now use this observation to define a colouring scheme for edges in a maximal
Steiner configuration, which we extend to directions in a direction set.

The colouring scheme is as follows. We colour one of the edges of a maximal
Steiner configuration that contributes two legal directions to the directions set red
and the other edges green and blue, respectively, in counter-clockwise order from
the red edge. We extend these colour labels to the directions in the direction set.

Definition [Coloured direction set]: A direction set D D fd1; d2; : : : ; dkg
with coloured directions (red, green and blue) based on a colouring of edges in
the maximal Steiner configuration is denoted a coloured direction set. Without
loss of generality, we assume that a coloured direction set contains two red
directions, d1 and d2; these are adjacent legal directions.

Note that for each given colour in a coloured direction set we have either one or
two legal directions. This leads to the following definition.

Definitions [Primary and secondary directions]: When we have two direc-
tions in a direction set with the same colour, these are labelled as the
(exclusively) primary and the (exclusively) secondary direction, respectively,
in counter-clockwise order around the unit circle. When we have a single
direction for a given colour, this direction can be labelled either primary or
secondary.

It will sometimes be convenient to refer to all the primary (or secondary)
line segments in a fixed orientation Steiner tree as constituting the primary (or
respectively secondary) material in the tree.

Assume we fix a pair of adjacent red directions, which correspond to two unit
vectors ui and uiC1 of C. How many coloured direction sets exist for this pair of
red edges? In the proof of Theorem 2.9 below we show that there exists either one
or two direction sets for each fixed pair of red directions. We then show that the
collection of all maximal direction sets can be constructed in linear time.

2.2 Local Properties of Steiner Points 97

Notation: For the remainder of this section we make use of some of the notation
established in Chap. 1 (Sect. 1.6). In particular, given a unit circle C with centre s,
and given a supporting line L1, we denote by L0 the line that is parallel to L1 and
contains s, and, if d is the Euclidean distance between the parallel lines L1 and L0,
then we denote by L the line parallel to L1 at distance 3d from L1 (and at distance
2d from L0).

Recall (from Lemma 1.29) that the conditions we require on two additional
supporting lines L2 and L3 for the centroid property to hold (i.e., for s to be the
centroid of the triangle formed by L1; L2 and L3) are that L2 and L3 intersect on L

and that the distances from s of their respective intersections with L0 are equal.

Lemma 2.8 Given a polygonal unit circle C with centre s and a supporting line L1,
let L0 and L be defined as above.

(a) If L0 does not intersect a vertex of C, then there exists exactly one pair of
supporting lines L2 and L3, such that L1, L2 and L3 have the centroid property;

(b) If L0 does intersect a vertex of C, then either

• There exists exactly one pair of supporting lines L2 and L3, such that L1, L2

and L3 have the centroid property, or
• There exists an infinite set of supporting lines L2 and L3 such that L1, L2

and L3 have the centroid property, and L2 and L3 both support C at vertices
of C.

Proof Statement (a) has been proved in Lemma 1.31.
For statement (b), note that if L0 intersects a vertex of C, then by the central

symmetry of C it intersects two vertices, say uj and uk . The predecessor of
uj (respectively uk) on C is uj �1 (respectively uk�1) and the successor is uj C1

(respectively ukC1).
Let z�

j be the intersection of the line through uj and uj C1 with L, and let zC
j be

the intersection of the line through uj �1 and uj with L; define z�
k and zC

k similarly
(see Fig. 2.8).

Now we distinguish between three cases, depending on the order (from left to
right) in which the points z�

j and zC
k appear on L:

1. z�
j < zC

k : In this case any point z in the interval Œz�
j ; zC

k defines a pair of
supporting lines L2 and L3 that contain z and support C on opposite sides, such
that L1, L2 and L3 have the centroid property. Furthermore, these are the only
intersection points on L for which the centroid property holds. Hence, in this case
there are an infinite number of supporting line pairs L2 and L3 which, together
with L1, satisfy the centroid property, and all these pairs support C at uj and uk ,
respectively.

2. z�
j D zC

k : Here the point z D z�
j D zC

k defines a pair of supporting lines L2 and
L3 that contain z and support C on opposite sides, such that L1, L2 and L3 have
the centroid property. Note that L2 supports C both at uj and uj C1 (is a tangent),

98 2 Fixed Orientation Steiner Trees

L1

L0

L

s

z+
jz+

kz−
jz−

k

uj−1

uj

uj+1

uk−1

uk

uk+1

C

Fig. 2.8 An example of a polygonal unit circle C with supporting line L1 for which z�

j < zC

k .

Here, L1 and any pair of supporting lines through uj and uk that intersect in the interval Œz�

j ; zC

k

have the centroid property

and similarly L3 supports C both at uk and uk�1. In this case this is the only pair
of supporting lines that, jointly with L1, have the centroid property.

3. z�
j > zC

k : In this case there is clearly no pair of supporting lines that (jointly with
L1) have the centroid property and support C at either uj or uk . It follows that
the method of proof of statement (a) (Lemma 1.31) applies to this case; hence,
exactly one pair of supporting lines, jointly with L1, has the centroid property.
The intersection point for this pair of supporting lines lies strictly between zC

k

and z�
j on L. ut

Theorem 2.9 There are at most 4� coloured direction sets, where � is the
number of legal orientations defined by C. Hence, there are at most 2� pairs of
complementary coloured direction sets.5

5This theorem can be strengthened to include a lower bound of � on the number of complementary
coloured direction sets. This follows by proving a converse to Theorem 1.28 showing that every
set of supporting lines satisfying the centroid property corresponds to a Steiner configuration. The
details can be found in [74], where some of the arguments rely on results from [274]. The main
consequence of this lower bound is to show that the time complexity of the linear-time enumeration
algorithm developed at the end of this section cannot be improved.

2.2 Local Properties of Steiner Points 99

Table 2.1 Feasible directions in a direction set (up to rotation by a multiple of !)

� Red directions Green direction(s) Blue direction(s)

3m 0; ! 2m!; .2m C 1/! 4m!; .4m C 1/!

3m C 1 0; ! .2m C 1/! .4m C 2/!

3m C 2 0; ! .2m C 2/! .4m C 3/!

Proof Suppose we fix a pair of adjacent red directions, which correspond to two
unit vectors ui and uiC1 of C, and let L1 be the line supporting C at the endpoints
of ui and uiC1. We will show, using Lemmas 1.31 and 2.8, that there exist either
one or two direction sets for this fixed pair of red directions. For the case considered
in Lemma 1.31, where L0 intersects C at differentiable points, there is exactly one
direction set which is given by the unit vectors whose endpoints are supported by
the unique supporting lines L1, L2 and L3 having the centroid property. If, on the
other hand, L0 intersects a vertex of C, then we have the situation considered in
Lemma 2.8(b). For the first of the three subcases in the proof of Lemma 2.8 (Fig. 2.8)
there are exactly two direction sets—one corresponding to a pair of green directions
uj and uj C1, and a single blue direction uk ; the other corresponding to a single
green direction uj and a pair of blue directions uk�1 and uk . The other positions
of L2 and L3 do not give direction sets as in each case the corresponding set of
directions is not maximal. For the remaining subcases in the proof of Lemma 2.8
there is exactly one direction set. ut

Note that for �-geometry a stronger version of Theorem 2.9 (in which ‘4�’ can
be replaced by ‘2�’) follows almost immediately from the upper and lower bounds
on meeting angles (Theorem 2.5). Consider two adjacent directions and a Steiner
configuration fs; x1; x2; x3g with an edge sx1 that uses these two directions. If � is
not a multiple of 3, then, since there are only two feasible meeting angles, both
edges sx2 and sx3 must be straight. Hence, for � not a multiple of 3, a direction set
contains 4 directions only—one direction set for each pair of adjacent directions. For
� a multiple of 3, both edges sx2 and sx3 can be bent while fulfilling the upper and
lower bounds on the meeting angles—hence, a direction set contains 6 directions
if � is a multiple of 3. Again, only one direction set is possible if we fix a pair
of adjacent directions. Since there are 2� pairs of adjacent directions, the theorem
follows. Furthermore, these 2� direction sets can trivially be constructed in O.�/

time. A precise characterisation of the direction sets for each � is given in Table 2.1.

A Quadratic-Time Algorithm for Constructing All Direction Sets

In this section we give an O.�2/-time algorithm to determine all coloured direction
sets for a given centrally symmetric polygonal unit circle C with 2� vertices. Up
to symmetry there are � choices of adjacent red directions. By the arguments of
Theorem 2.9, there is either one direction set or two direction sets for each fixed pair

100 2 Fixed Orientation Steiner Trees

L1

L0

L

s

zkzj z

ui

uj

uj+1

uk

uk+1

C

ui+1

w2(z)w3(z)

Fig. 2.9 Initial step of the algorithm to determine direction sets for a fixed pair of red directions.
The diagram shows the initial position of z and the computation of zj and zk

of red directions. The algorithm iterates over all choices of adjacent red directions,
constructing the possible corresponding green and blue directions for each choice
in linear time.

Let ui and uiC1 be a pair of red directions (we identify directions with the unit
vectors of C). In order to determine the direction set(s) for this pair of red directions,
we employ the construction used in the proof of Lemma 1.31.

Let L1 be the tangent supporting C at ui and uiC1, and define L0 and L as in the
paragraph immediately preceding Lemma 2.8. In counter-clockwise order around C,
starting at uiC1, let uj be the first vertex that is on or above L0. Define L2.z/ as the
tangent supporting C at uj �1 and uj (Fig. 2.9), where z denotes the intersection of
L2.z/ with L. Let L3.z/ be the other supporting line of C that intersects z (Fig. 2.9).
Line L3.z/ either supports C at a single vertex uk, or at two adjacent vertices uk�1

and uk. Clearly, given L1, the supporting lines L2.z/ and L3.z/ can be determined
in O.�/ time.

Now we simulate a continuous movement of the point z to the left along L.
Let w2.z/ and w3.z/ be the intersections of L2.z/ and L3.z/, respectively, with
L0 (Fig. 2.9). Note that initially we have jsw2.z/j < jsw3.z/j, where s is the
centre of C. The movement of z is continued until we have a point z� such that
jsw2.z�/j D jsw3.z�/j, that is, until we fulfil the centroid property; by Lemma 1.31
and Lemma 2.8 such a point must exist. At this stage the direction set(s) for the
current choice of red edges can be determined by the properties of these two
supporting lines through z�.

2.2 Local Properties of Steiner Points 101

A detailed outline of this procedure is given in Algorithm 2.1. The algorithm
outputs between � and 2� direction sets, each of which is a set of 4–6 directions
(unit vectors of C). The output also includes the correct colour for each direction.

Algorithm 2.1: Direction sets algorithm
Input: A centrally symmetric polygonal unit circle C with 2� ordered vertices

u0; : : : ; u2��1.
Output: Between � and 2� coloured direction sets D.

1
2 // Iterate over all choices of red directions
3 for i D 0 to � � 1 do
4 Construct lines L1.D ui uiC1/, L0 and L

5 Find j such that uj is the first vertex of C on or above L0

6 Let z0 = uj�1uj \ L, giving the supporting line L2.z0/

7 Find k such that uk lies on the second supporting line through z0, L3.z0/

8 Let zj = uj ujC1 \ L, and let zk = ukukC1 \ L

9 Let z be the point zj or zk closest to z0 (or both if zj D zk)
10
11 // Simulate movement of z
12 while jsw2.z/j < jsw3.z/j do
13 if zj D z then Set j D j C 1

14 if zk D z then Set k D k C 1

15 Let zj = uj ujC1 \ L, and let zk = ukukC1 \ L

16 Let z be the point zj or zk closest to z0 (or both if zj D zk)

17
18 // Generate direction set(s) for the given red direction
19 if jsw2.z/j > jsw3.z/j then
20 Output D D .ui ; uiC1; uj ; uk/ as a direction set
21 else if jsw2.z/j D jsw3.z/j then
22 if zj D z then
23 if zk 6D z then
24 Output D D .ui ; uiC1; uj ; ujC1; uk/ as a direction set
25 else if zk D z then
26 Output D D .ui ; uiC1; uj ; uJ C1; uk; ukC1/ as a direction set
27 else if zj 6D z and zk D z then
28 Output D D .ui ; uiC1; uj ; uk; ukC1/ as a direction set
29 if uj and ukC1 both lie on L0 then
30 Output D D .ui ; uiC1; uj ; ujC1; uk/ as a direction set
31
32
33

We conclude with a brief discussion of the direction set generation phase of the
algorithm. Each direction set contains exactly two red directions and either one or
two green and one or two blue directions. The direction sets are determined by
whether the supporting lines each touch an edge or only a vertex of C, once the
centroid property is fulfilled. There are essentially five possible subcases, depending
on the location of z after the completion of the ‘while’ loop:

102 2 Fixed Orientation Steiner Trees

Case 1: jsw2.z/j > jsw3.z/j
The point z� where jsw2.z�/j D jsw3.z�/j must lie strictly between the last and
second last locations of z on L. Hence, there is a unique direction set with a
single green direction and a single blue direction (4 directions in total).

Case 2: jsw2.z/j D jsw3.z/j
(i) zj D z and zk ¤ z: Here we have a unique direction set with a pair of green

directions and a single blue direction (5 directions in total).
(ii) zj ¤ z and zk D z:

(a) If either uj or ukC1 are not on the line L0 through s, then there is a
unique direction set with a single green direction and two blue directions
(5 directions in total).

(b) If, on the other hand, both uj and ukC1 are on the line L0 through s, then
there are two direction sets: the one just described in (i), and one with a
pair of green directions and a single blue direction (5 directions in total).
Note that in this case we have uj D w2.z/ and ukC1 D w3.z/.

(iii) zj D zk D z: Here we have a unique direction set with two green and two blue
directions (6 directions in total).

The algorithm clearly takes O.�2/ time, since the ‘while’ loop can be executed
in constant time, and is iterated at most 2� times: in each iteration j and/or k is
increased, and there are at most � possibilities for each iterator. Finally, the outer
‘for’ loop is iterated exactly � times. Hence, we have the following theorem.

Theorem 2.10 There are between � and 2� direction sets for any given centrally
symmetric polygonal unit circle C with 2� vertices, and they can be determined in
O.�2/ time.

Theorem 2.10 can in fact be improved to linear time. The strategy behind the
linear-time algorithm is as follows. First we compute a set of supporting lines L1,
L2 and L3 that fulfil the centroid property for a fixed pair of red directions d1 D ui

and d2 D uiC1 using the O.�/-time algorithm above. Intuitively, we then rotate all
three supporting lines in counter-clockwise order around C while maintaining the
centroid property, locating all positions of the supporting lines that correspond to
direction sets. The proof that this can be done efficiently is somewhat technical and
will not be included here; details can be found in [74].

The key lemma is to show that only counter-clockwise rotations of the supporting
lines are required. Not all supporting lines necessarily rotate in every step, but none
of the supporting lines need to rotate clockwise in order to maintain the centroid
property. Furthermore, in each step of the algorithm—which takes constant time—
at least one of the supporting lines will change its rotation point to the successor on
C of the previous rotation point; such a supporting line will after the rotation step be
a tangent supporting both the previous and new rotation points. Thus, the running
time of the algorithm is clearly O.�/, since each supporting line has exactly 2�

possible rotation points.

2.3 Local Properties of Full Components 103

Note that for most applications the size of � is likely to be relatively small,
so optimising the speed of generation of the direction sets is only of marginal
importance.

2.3 Local Properties of Full Components

The fixed orientation metric is not strictly convex, so in general there are infinitely
many minimum Steiner trees for a given set of terminals. In this section we
investigate properties of fulsome full Steiner trees, each of which can be thought
of as being a component of some larger Steiner tree. (Recall that a Steiner tree is
full and fulsome if there is no Steiner tree on the same set of terminals with two
or more full components.) The overall aim of this section is to develop a relatively
simple canonical form for such Steiner trees that facilitates the design of an efficient
algorithm for constructing a Steiner tree for a given topology, given in Sect. 2.4.

Let T be a full and fulsome fixed orientation Steiner tree. The main results in this
section are as follows:

1. We show that T uses a single direction set (Theorem 2.11).
2. We show that any degree 4 Steiner point in T is a cross (Theorem 2.12).

Next we define zero-shifts, which are essentially a way of exchanging primary
and secondary material in a pair of edges of T without increasing the length of
the tree. A zero-shift is complete if it uses all of the exclusively primary or all
of the exclusively secondary material from one of the pair of edges. By first
examining the properties of fundamental (i.e., indecomposable) zero-shifts we
get the following results:

3. Given any two edges e1 and e2 in T , where e1 has an exclusively primary
segment and e2 has an exclusively secondary segment, we show that there exists
a complete zero-shift for e1 and e2 (Theorem 2.19).

4. Using the above, we show that there exists a Steiner tree with the same terminals
and topology as T that has at most one bent edge (Corollary 2.20).

The above two results are the key to developing a useful canonical form for T

(Theorem 2.23).
We start this process by extending the idea of a direction set for a Steiner point

to that of a direction set for a full component.

2.3.1 Direction Sets

Let T be a full and fulsome minimum fixed orientation Steiner tree where all Steiner
points have degree 3. We begin by describing a (not necessarily unique) method of
colouring the edges of T .

104 2 Fixed Orientation Steiner Trees

Fig. 2.10 Example of a full
Steiner tree showing an
assignment of colours to
edges. The different colours
of the nodes (yellow or white)
correspond to the assignment
of parity

Pick any Steiner point s and any feasible coloured direction set D for s. The
direction set D defines a colour for each of the edges incident with s, and these
appear as red, green and blue in counter-clockwise order around s. Now pick any
Steiner point neighbour s0 of s. Again assume that the colours appear in counter-
clockwise order as red, green and blue around s0; thus, the single coloured edge
incident with s0 uniquely defines the colours of the other two edges. Repeat this
procedure until all edges of T have been coloured.

We also assign a parity to the vertices of T depending on whether the path in T

from s to that vertex contains an odd or even number of edges. Since T is a tree, this
assignment of parity is well defined. When, in the following, we say that there exists
a single direction set D that is used by all Steiner points of T , the interpretation
should be that the direction set D is used at even vertices while the complementary
direction set of D is used at odd vertices. This is illustrated in Fig. 2.10.

The following key theorem is similar in spirit to Theorem 1.33 for metrics defined
by differentiable unit circles, which says that edges of a full Steiner tree use at most
three different orientations. Here we show that for a polygonal unit circle the Steiner
points in a full and fulsome Steiner tree all use a single direction set.

Theorem 2.11 Given a full and fulsome minimum fixed orientation Steiner tree T ,
there exists a single direction set that is used by every Steiner point in T .

Proof We prove the theorem by showing that, given any two adjacent Steiner
points s1 and s2 in T , there exists a single direction set that is used by s1 and s2.
Furthermore, we show that if the edges incident with s1 and the edges incident with
s2 do not share exactly the same set of directions, then there exists a small finite
perturbation of s1 and s2 such that the resulting tree is still a full minimum fixed
orientation Steiner tree and the directions used by the edges incident with each of s1

and s2 exactly coincide. This means that the direction set at any Steiner point can be
propagated throughout the tree, since the Steiner points of a full Steiner tree induce
a tree. The theorem then immediately follows.

2.3 Local Properties of Full Components 105

v1

v2

v3

v4

v1

v2

v3

v4

θ1

θ2 θ3

φ1

φ2

φ3

s1

s2

s1

s2

s1

s2

c4

c2

a b

Fig. 2.11 Performing a shift on adjacent Steiner points

Let s1 and s2 be adjacent Steiner points in T . Let v1 and v2 be the nodes or
corner points adjacent to s1 on the other two incident edges, travelling counter-
clockwise from s1s2, i.e., line segments s1v1 and s1v2 each use a single legal
orientation. Similarly, let v3 and v4 be the nodes or corner points adjacent to s2

on the other two incident edges, travelling counter-clockwise from s2s1. Let T1 be
the resulting full Steiner tree on terminal set fv1; v2; v3; v4g with Steiner points s1

and s2. This is illustrated in Fig. 2.11a. Let u1 and u2 be the directions of ��!s1v1 and��!s1v2, respectively, and let u3 and u4 be the directions of ��!s2v3 and ��!s2v4, respectively.
For simplicity, we assume either that s1s2 is a straight edge or that it is embedded

using two corner points (like the left-hand path in Fig. 2.2), so that both ends
of the edge use the same direction. Let 	1; 	2; 	3 be the three angles around s1,
travelling counter-clockwise from s1s2, and let
1;
2;
3 be the three angles around
s2, travelling counter-clockwise from s2s1. Again, this is illustrated in Fig. 2.11a. By
the sliding lemma from Chap. 1 (Lemma 1.37), we can choose the embedding of the
original full Steiner tree T such that

	1 C
3 > �: (2.1)

Suppose that

	3 >
3: (2.2)

Under this assumption, we construct a transformation on T1 that does not increase
its length. We do this by defining a shift on s1 and s2 (shifts will be discussed in more
generality later in this section). This involves moving each of s1 and s2 a distance "

in direction u1 to s0
1 and s0

2, respectively, where " > 0 is small compared to all edge
lengths in T1.

We claim that we can construct a line segment from s0
1 in direction �u4 meeting

s1v2 at a point c2. For such a construction to be possible, for sufficiently small
", we require that the ray from s1 in direction u2 must intersect the ray from s0

1

in direction �u4. This occurs if
3 � � � 	1 and
3 < 	3 which follow from

106 2 Fixed Orientation Steiner Trees

inequalities (2.1) and (2.2), respectively. Similarly, we can construct a line segment
from s0

2 in direction �u2 meeting s2v4 at a point c4. Furthermore, c4 does not
coincide with s0

2 since inequality (2.1) is a strict inequality.
Now, construct a new tree T2 interconnecting fv1; v2; v3; v4g via Steiner points s0

1

and s0
2, such that c2 is the corner point of the edge s0

1v2, c4 is the corner point of the
edge s0

2v4 and s2 is the corner point of the edge s0
2v3. The remaining external edge,

s0
1v1, is a straight edge. This is illustrated in Fig. 2.11b.

We next observe that kT2k D kT1k. To see this, note that in transforming T1 to T2

the edge s1s2 and line segments s1s0
1, s1c2 and s2c4 have been removed, and the edge

s0
1s

0
2 and line segments s2s

0
2, s0

2c4 and s0
1c2 have been added. But ks1s2k D ks0

1s0
2k

(since s1 and s2 undergo identical translations), ks1s0
1k D ks2s0

2k (by construction)
and ks1c2k D ks0

2c4k, ks2c4k D ks0
1c2k (since triangles �s1s

0
1c2 and �s0

2s2c4 are
congruent). Hence, kT2k D kT1k. In other words, T2 is also a full Steiner tree on
the terminal set of T1.

We now show that there is a single direction set that is used by s1 and s2 in
the original full Steiner tree, and that by performing a pair of shifts as described
above we can construct a new Steiner tree such that the directions used by the edges
incident with s1 exactly coincide with the directions used by the edges incident
with s2. We do this by showing that, for each of the three colour labels for edges,
the direction sets for s1 and s2 coincide on that colour and we can ensure that all
directions are used at each Steiner point. Note that this is trivially true for the colour
of the edge s1s2. Now, observe that the edges (or half-edges) s1v2 and s2v4 are
labelled with the same colour (say, blue). If both these line segments use the same
direction for every embedding, then the direction sets for s1 and s2 coincide on the
blue colour. If there exists an embedding such that s1v2 and s2v4 have different
directions, then either 	3 >
3 or
3 > 	3. In either case we can perform the local
transformation above (swapping the roles of s1 and s2 if necessary), resulting in a
new Steiner tree that uses both blue directions at s0

1 and s0
2. In order for this new tree

to be minimal (under any embedding of the original tree) it again follows that the
direction sets for s1 and s2 coincide on the blue label, and that both directions are
used by both edges after applying the transformation. The same argument applies to
the remaining colour label, concluding the proof. ut

A corollary of this theorem is that the edges of a full and fulsome minimum fixed
orientation Steiner tree use at most six legal orientations. Later in this section we
show that four legal orientations actually suffice.

2.3.2 Degree 4 Steiner Points

Over the next few sections, we will develop an understanding of the geometric
structure of minimum fixed orientation Steiner trees by studying the effects of
length-preserving perturbations on the tree, similar to that used in the proof of
Theorem 2.11. If a full and fulsome Steiner tree T has more than four terminals,

2.3 Local Properties of Full Components 107

Fig. 2.12 A degree 4 Steiner
point s that is not a cross. By
perturbing s if necessary, the
second pair of opposite edges
can be embedded so as to be
locally collinear at the Steiner
point in two different ways,
as shown in (a) and (b). s

v2

v3

v4

v1

v2

v3

v4

v1

a b

then by Theorem 1.39 we can initially assume that all Steiner points have degree 3;
hence, there exists a direction set and colouring for the edges of T . However, during
the process of moving the Steiner points some edges may degenerate to length zero,
creating degree 4 Steiner points. The following theorem gives strong restrictions
on when such a Steiner point can occur as part of a fulsome Steiner tree. This
theorem builds on some of the properties of degree 4 Steiner points developed in
Sect. 1.6.

Recall that a cross is defined to be a degree 4 Steiner point where both opposite
pairs of edges are collinear. Hence, in the context of fixed orientation trees, all four
incident edges must also be straight edges.

Theorem 2.12 In a fulsome Steiner tree, a degree 4 Steiner point must be a cross,
unless it is adjacent to terminals only.

Proof Consider a degree 4 Steiner point s with neighbours v1, v2, v3 and v4 which
does not form a cross. By Lemma 1.35, one pair of opposite edges (say .s; v1/ and
.s; v3/) are collinear and straight, but by the assumption the second pair of opposite
edges, .s; v2/ and .s; v4/, are not collinear and possibly not straight (as in Fig. 2.12a).

By Lemma 1.36 and the discussion that follows it, the Steiner point s can be split
into two adjacent degree 3 Steiner points (as illustrated in Fig. 2.13a, b). Hence, by
Lemma 1.38 vertices v2 and v4 are terminals. In such a splitting, the edges incident
with v2 and v4 both have the same colour (say red), and hence these edges use at
most two adjacent orientations.

Before we prove that v1 and v3 also must be terminals, we make a few
observations. Two embedded fixed orientation edges incident with a single point are
said to be locally collinear if the straight line segments of the edges immediately
incident with the point are collinear. By moving s along the line segment v1v3, we
can find embeddings that make the second pair of opposite edges locally collinear
in two different ways as shown in Fig. 2.12a, b. As a consequence, the vertex v1

cannot be a degree 4 Steiner point, since then we could construct a pair of locally
collinear edges around s and v1, respectively, but the collinear edges of s and v1

could be made non-parallel—hence making a length-decreasing shift of the edge
.s; v1/ possible.

Thus, if v1 is a Steiner point, then it will be a degree 3 Steiner point. Let x1 and
x2 be the two neighbours of v1 (other than s), where x1 is on the same side of v1v3

108 2 Fixed Orientation Steiner Trees

v2

v3

v4

v1

x1

x2

v2

v3

v4

v1

x1

x2

v2

v3

v4

v1

x1

x2

s

a b

c

Fig. 2.13 Diagrams (a) and (b) show two topologically distinct splittings of s, and the resulting
colours of the nearby edges. Note that both .v1; x1/ and .v1; x2/ must use red orientations.
Diagram (c) illustrates that there is now a locally minimal location of s that leads to a contradiction
to fulsomeness by the sliding lemma

as v2 and x2 is on the same side of v1v3 as v4. By splitting s into degree 3 Steiner
points in the two topologically different ways shown in Fig. 2.13a, b, and applying
Theorem 2.11, it follows that the two edges .v1; x1/ and .v1; x2/ must use the same
pair of adjacent legal orientations as .s; v2/ and .s; v4/. If either one of the edges
.v1; x1/ or .v1; x2/ is a bent edge, then we can always construct a pair of locally
collinear edges at v1. This again leads to a contradiction to length minimality by
using the same arguments as in the degree 4 case.

As a consequence, we are left with the case where the edges .v1; x1/ and .v1; x2/

are straight and not collinear, as in the figure. However, it is possible to move s

along the line segment v1v3 to a point s0 where either .s0; v2/ is straight and parallel
to .v1; x1/—or .s0; v4/ is straight and parallel to .v1; x2/ (Fig. 2.13c). In either case,
by Lemma 1.37, we arrive at a contradiction to fulsomeness. ut

2.3.3 Zero-Shifts

The efficiency of the algorithms that we develop in this chapter for constructing
Steiner trees comes from the fact that we can assume that full Steiner trees have
particular canonical forms. Our means of establishing these canonical forms is to

2.3 Local Properties of Full Components 109

use the properties of length-preserving perturbations, denoted zero-shifts, which we
describe in this section.6

Fundamental Zero-Shifts

By Theorem 2.11, we can think of a coloured direction set D D fd1; d2; : : : ; dkg as
applying to all edges in a full and fulsome Steiner tree T . Recall that the elements
of D, treated as vectors rooted at the origin, appear in counter-clockwise order,
beginning with d1, which corresponds to the exclusively primary red direction, and
d2, which corresponds to the exclusively secondary red direction.

Definitions [Zero-shifts]: We define a zero-shift to be a perturbation of one
or more Steiner points in T that does not increase the length of T . Such a
perturbation � is called a fundamental zero-shift if it cannot be decomposed
into two zero-shifts, each of which acts on a subset of the Steiner points acted
on by �, and at least one of which acts on a proper subset of those Steiner
points.

Note that if a zero-shift exists in a tree T , then we can continue to apply this
shift, without changing the length of T , until the length of some line segment of
T goes to zero (for example, until a Steiner point coincides with a corner point
or with another Steiner point). This means that we can treat zero-shifts as discrete
repositionings of Steiner points, rather than simply perturbations. The importance of
such a zero-shift is that it can effectively move exclusively primary and exclusively
secondary material from one edge to another without increasing the length of the
tree T . This idea motivates the following definition.

Definition [Complete zero-shifts]: Let e1 and e2 be two edges in T such that
e1 has an exclusively secondary segment and e2 has an exclusively primary
segment. Suppose there exists a zero-shift � on the Steiner points on the path
between e1 and e2. Then � is called a complete zero-shift for e1 and e2 if after
applying � either e1 is exclusively primary or e2 is exclusively secondary, and
� preserves the direction of all straight edges in T except (possibly) e1 and e2.

Figure 2.14 shows an example of a complete zero-shift.
We will show that complete zero-shifts exist for any suitable pairs of edges in T .

We begin by briefly categorising those fundamental zero-shifts that act on either one
Steiner point or two adjacent Steiner points in T . These are referred to, respectively,
as 1-point and 2-point fundamental zero-shifts. Later we will in fact show that
these are the only fundamental zero-shifts that can occur in T . We first require the
following lemma.

6Zero-shifts were introduced by Du and Hwang [136] for � D 3, and originally used as a technical
tool in the quest for better bounds on the size of the generalised Hanan grid [235, 244, 245].

110 2 Fixed Orientation Steiner Trees

e1

e2

PRI SEC

SEC PRI

e1

e2

a b

Fig. 2.14 An example of a complete zero-shift between edges e1 and e2. Diagram (a) shows the
initial state, where exclusively primary and exclusively secondary segments are labelled ‘PRI’ and
‘SEC’, respectively. Diagram (b) shows the consequence of a complete zero-shift, resulting in edge
e1 being exclusively primary. Note that directions of the straight edges in (a) are preserved by the
zero-shift

Lemma 2.13 If a direction set D has cardinality 4, then the angle between the
green and blue directions is strictly less than � .

For the proof of this lemma, see Exercise 2.7.
Let s be a Steiner point in T such that the edges incident with s use all directions

in D. Clearly, for any D, there exists a T that contains such a Steiner point; for
example, we can construct a suitable Steiner configuration T with this property.

We now consider properties of 1-point fundamental zero-shifts for s. We show
that the existence of such a perturbation depends on the number of directions in the
direction set for s.

Lemma 2.14 Let s be a Steiner point in T such that the edges incident with s use
all directions in some given direction set D. Let k be the cardinality of D.

(a) If k D 4 then there is no 1-point zero-shift of s.
(b) If k D 5, where d5 is the only blue direction, then there exist 1-point fundamental

zero-shifts for s, perturbing s in the directions of d5 and �d5 only.
(c) If k D 6 then there exist 1-point fundamental zero-shifts for s, perturbing s in

any direction.

Proof For statement (a), we observe, by Lemma 2.13, that the angle 	 between the
green and blue directions satisfies 0 < 	 < � . It follows that the position of s is
uniquely determined by the positions of the two adjacent vertices incident with the
green and blue edges, and thus there can be no 1-point zero-shift of s.

For statements (b) and (c) it is straightforward to confirm the existence of suitable
1-point zero-shifts. For the case k D 5, a zero-shift of s in the direction of �d5 to a
new Steiner point s0 is illustrated in Fig. 2.15.

The new point s0 uses the same direction set as s and hence is still part of a
minimum Steiner configuration. In the same way, the shift from s0 to s is a zero-shift
in the direction of d5. Clearly, there are no possible zero-shifts in other directions, as
that would create a second blue direction. For k D 6 we can construct independent
zero-shifts of this type in directions d5 and d6, and hence in any direction, since
those two vectors span R

2. ut

2.3 Local Properties of Full Components 111

Fig. 2.15 A 1-point
fundamental zero-shift for a
Steiner point whose direction
set contains 5 directions.
Here, exclusively primary and
exclusively secondary
segments of the original tree
are labelled ‘PRI’ and ‘SEC’,
respectively

s

s PRI

SEC
PRI

SEC

The existence of the zero-shifts given in Lemma 2.14 (b) and (c) imply that a
direction set with cardinality 5 or 6 can only exist if the directions and weights
satisfy a prescribed relationship; see Exercise 2.8.

The next lemma shows that 1-point fundamental zero-shifts can always be made
complete.

Lemma 2.15 Let e1 and e2 be two edges in a full and fulsome minimum fixed
orientation Steiner tree T both incident with a degree 3 Steiner point s, such that e1

has an exclusively secondary segment and e2 has an exclusively primary segment.
Then there exists a complete 1-point zero-shift for e1 and e2 in T .

Proof Let v be the neighbouring vertex to s that is not an endpoint of e1 or e2. Since
e1 and e2 have different colours, it follows from the conditions of the lemma that the
direction set for s has cardinality at least 5. Hence, by Lemma 2.14, there exists a
1-point zero-shift that either moves s away from or towards v while decreasing both
the secondary segment of e1 and the primary segment of e2. If s moves away from
v, then the lemma clearly holds. If s moves towards v, then the only problem that
can occur is that s may meet v before either e1 or e2 is straight. But in that case T is
either not fulsome (if v is a terminal) or we have two adjacent bent edges incident
with a degree 4 Steiner point, which is a contradiction to T being a full Steiner tree,
by Lemma 1.35. ut

Next, we consider properties of 2-point fundamental zero-shifts.

Lemma 2.16 Let s1 and s2 be neighbouring Steiner points in a full and fulsome
minimum fixed orientation Steiner tree T . Assume that .s1; s2/ is a straight edge
which is neither exclusively primary nor exclusively secondary. Let e1 and e2 be
distinct edges of T incident with s1 and s2, respectively, such that e1 and e2 have
the same colour in the direction set of T . Assume that for at least one of i D 1 or
i D 2 the meeting angle between the two edges other than ei at si is not � . For each
i 2 f1; 2g let vi be the closest neighbouring node or corner point on ei to si . If ��!s1v1

and ��!v2s2 have different directions, then there exists a 2-point fundamental zero-shift
for s1 and s2.

Proof This lemma follows immediately from the proof of Theorem 2.11, using the
construction illustrated in Fig. 2.11. Note that the condition on .s1; s2/ means that
the direction set of T contains either 4 or 5 directions. It follows that there are no

112 2 Fixed Orientation Steiner Trees

1-point zero-shifts that move s1 or s2 in the same direction as the constructed 2-point
zero-shift, and hence that the 2-point zero-shift is fundamental. ut

There are two remaining 2-point zero-shifts not covered by Lemma 2.16. The first
is where .s1; s2/ contains an exclusively primary or exclusively secondary segment;
in this case there is a 1-point fundamental zero-shift at either s1 or s2, and hence any
2-point zero-shift on these Steiner points is not fundamental. The second is where
T contains meeting angles of � at both s1 and s2, in each case between the two
incident edges other than e1 or e2. This implies that all edges incident with s1 and
s2 other than e1 and e2 are straight and collinear. In this case, the resulting 2-point
zero-shift is again not fundamental, but can be decomposed into two independent
1-point zero-shifts at each Steiner point.

General Zero-Shifts

We next show that 2-point fundamental zero-shifts, and indeed general zero-shifts,
can be made complete. A potential difficulty in doing this comes from the possible
formation of degree 4 Steiner points, during a zero-shift. By Theorem 2.12, in a
fulsome Steiner tree T a degree 4 Steiner point must be a cross, unless it is adjacent
to terminals only.

We begin with two useful corollaries to this theorem.

Corollary 2.17 Let e1 and e2 be two distinct edges in T incident with neighbouring
Steiner points, s1 and s2, respectively. Suppose that e1 and e2 have the same colour
in the direction set of T , and that e1 has an exclusively secondary segment and e2

has an exclusively primary segment. Then there exists a complete 2-point zero-shift
for e1 and e2.

Proof First, suppose that the edge .s1; s2/ is straight. Then we can apply a 2-point
zero-shift of the sort illustrated in Fig. 2.11b (where .s1; v2/ D e1 and .s2; v4/ D e2).
This zero-shift acts to decrease the length of one of the edges e0 incident with s1 and
s2 but not on the path from e1 to e2 (where .s1; v1/ D e0 in the figure). It immediately
follows that the zero-shift can be continued until it is complete, unless the length of
e0 decreases to 0 before either e1 or e2 is straight. However, in such a case the
resulting tree contains a degree 4 Steiner point with an incident bent edge, and a
second Steiner point, giving a contradiction to fulsomeness by Theorem 2.12.

If on the other hand, .s1; s2/ is a bent edge, then we can embed it with two corner
points (as in the path in Fig. 2.2), and then apply the same zero-shift and argument
as above. ut

Note that Corollary 2.17 implies that any 2-point fundamental zero-shift can be
made complete.

Corollary 2.18 Suppose T has four terminals and a single (degree 4) Steiner point
s. Let e1 and e2 be two edges in T such that e1 has an exclusively secondary segment

2.3 Local Properties of Full Components 113

and e2 has an exclusively primary segment. Then there exists a complete 1-point
zero-shift for e1 and e2.

The proof of this corollary is straightforward (Exercise 2.9).
The following theorem gives conditions for the existence of complete general

zero-shifts. This theorem is the key tool for constructing canonical forms in the next
section.

Theorem 2.19 (Complete Zero-Shift Theorem) Let e1 and e2 be two edges in a
full and fulsome Steiner tree T such that e1 has an exclusively secondary segment
and e2 has an exclusively primary segment. Then there exists a zero-shift acting on
the Steiner points on the path from e1 to e2 in T that is complete for e1 and e2.

Proof Let s1 and s2 be, respectively, the first and last Steiner points on the path from
e1 to e2 in T . We may assume s1 and s2 are distinct, since otherwise the theorem is
immediately true by Lemma 2.15 and Corollary 2.18. We may also assume that s1

and s2 each have degree 3 in T , by Theorem 1.39. For each i 2 f1; 2g let 	i be the
meeting angle at si between the two incident edges other than ei .

Case 1. For i D 1 or i D 2 assume that the two edges incident with si are
straight edges and that 	i D � . Since ei has an exclusively primary or secondary
segment, there is a 1-point zero-shift moving si along the line through those other
two edges (as implied by Lemma 1.36). If T spans at least five terminals and the
moving Steiner point si meets another Steiner point before the edge ei becomes
straight, then this is a contradiction to fulsomeness by Theorem 2.12. If, on the
other hand, T spans four terminals and a Steiner point si meets another Steiner
point before the zero-shift is complete, then in fact we must have s1 D s2, and the
zero-shift can be made complete by Corollary 2.18. Hence, it is always possible
either to make e1 exclusively primary or to make e2 exclusively secondary.

Case 2. If Case 1 does not apply, then we argue by induction on the number of
Steiner points in the path between e1 and e2. As a first step, we establish some
base cases for the induction, where there are at most two Steiner points in the
path from e1 to e2, in other words, for 1-point and 2-point zero-shifts.

If s1 D s2, or if e1 and e2 have the same colour and are incident with neighbouring
Steiner points, then the existence of a complete zero-shift follows from Lemma 2.15
and Corollary 2.18, respectively. Hence, the only base case remaining to consider
is the one in which e1 and e2 have different colours and s1 and s2 are neighbours.
Let e0 be the edge incident with s2 with the same colour as e1. If e0 is exclusively
primary, then an appropriate zero-shift can be constructed as follows (see Fig. 2.16).

We can apply a small 2-point fundamental zero-shift at s1 and s2, effectively
transferring an arbitrarily small exclusively secondary segment to e0. In particular,
it strictly reduces the secondary/primary material ratio in e1, and increases it in e0.
Now there exists a 1-point fundamental zero-shift between the secondary segment
of e0 and the edge e2. Because the secondary segment of e0 can be assumed to be
arbitrarily small, it follows that this second shift can reduce the secondary segment
of e0 to zero. Hence, together these two shifts form a zero-shift on the path between

114 2 Fixed Orientation Steiner Trees

PRISEC

e1

e2

e0

s1

s2

e1 e1

e2
e2

e0 e0

SEC

SEC

PRI

PRI

a b c

Fig. 2.16 An example of a 2-point zero-shift between two edges e1 and e2 with different colours.
Diagram (a) shows the initial state, where exclusively primary and exclusively secondary segments
are labelled ‘PRI’ and ‘SEC’, respectively. In (b) a small 2-point fundamental zero-shift transfers
some secondary material from e1 to e0. In (c) a 1-point fundamental zero-shift transfers all of this
secondary material from e0 to e2. The result is that the secondary/primary material ratio has been
strictly reduced in e1 and increased in e2

e1 and e2 that preserves the direction of e0. By Theorem 2.12 and the fulsomeness
of T this combined zero-shift can continue to be applied until it is complete for
e1 and e2. The only remaining subcase is where e0 has an exclusively secondary
segment, in which case we apply a similar argument, but reverse the order of the
two fundamental zero-shifts.

We now conclude the argument by applying induction on the number of Steiner
points in the path between e1 and e2. The inductive step involves generalising the
construction in the previous paragraph, where e0 is now any suitable edge incident
to a Steiner point on the path between e1 and e2. An easy but important observation
in the inductive step is that we can always find a suitable edge e0 incident with some
s0 on the path between e1 and e2 such that the condition of Case 1 (0 D �) does not
apply at s0. This means that the required increase and decrease in secondary/primary
material ratio occurs in the smaller zero-shift by the inductive assumptions and can
be continued until the shift is complete. The induction argument now follows. ut

Note that an immediate corollary of the proof of Theorem 2.19 is that any zero-
shift, other than the 1-point and 2-point fundamental zero-shifts described earlier,
can be decomposed into two zero-shifts, at least one of which acts on a strictly
smaller set of Steiner points. Hence, the only fundamental zero-shifts are those
described in Lemmas 2.14 and 2.16.

Another important corollary of Theorem 2.19 is the following.

Corollary 2.20 Let N be a given set of terminals, and suppose there exists a full
and fulsome fixed orientation Steiner tree T for N . Then there exists a full fixed
orientation Steiner tree for N (with the same topology as T) which contains at most
one bent edge.

2.3 Local Properties of Full Components 115

Proof The corollary is an immediate application of Theorem 2.19. If T contains two
bent edges e1 and e2, perform a zero-shift acting on the Steiner points on the path
in T between these edges that is complete for e1 and e2. This reduces the number
of bent edges in T by at least 1. The corollary follows by repeating this procedure
until there is no remaining pair of bent edges. ut

A further property of zero-shifts that will prove useful in the later sections is
that in almost all cases they preserve the total amount of primary material in a fixed
orientation Steiner tree T . Note that if T contains directions that are both primary
and secondary we say that the amount of primary material is preserved under a zero-
shift if there exists a partitioning of each non-exclusive edge of T into primary and
secondary segments, both before and after the zero-shift, so that the total length of
‘primary’ edges remains unchanged.

Theorem 2.21 (Primary material preserved) Let T be a fulsome minimum fixed
orientation Steiner tree such that T is either a �-geometry Steiner tree or the
direction set for T contains at most 5 directions. Then the total amount of primary
material in T is preserved under zero-shifts.

Proof Clearly, it suffices to show that the total amount of primary material in the tree
is preserved by any fundamental zero-shift. For a 2-point fundamental zero-shift the
result immediately follows from the description of such shifts in Lemma 2.16. For a
1-point fundamental zero-shift where there are exactly 5 directions the result follows
from the definition of preservation of primary material above, since there exists a
non-exclusive edge incident with the Steiner point where the fundamental zero-shift
takes place. Finally, if T is a �-geometry Steiner tree with 6 distinct directions in
its direction set, then � is a multiple of 3 (see Table 2.1), and the preservation of
primary material can be shown by direct construction (Exercise 2.10). ut

The only case where Theorem 2.21 may fail is when the direction set has 6

directions and the tree is not a �-geometry Steiner tree. This is a highly contrived
situation, which will almost never occur in practice; for example, the weights must
satisfy the conditions given in Exercise 2.8(b). In what follows we will ignore this
case and assume that we can apply the theorem.

The next corollary gives a condition under which a given edge in a minimum
Steiner tree can be identified as being able to be the unique bent edge of the
tree (after some suitable zero-shifts). This will prove to be particularly useful in
Sect. 2.5.3 of this chapter.

Corollary 2.22 Let T be a full and fulsome minimum fixed orientation Steiner tree
on a given set of terminals N such that T is either a �-geometry Steiner tree or
the direction set for T contains at most 5 directions. Let e be an edge of T , such
that e is red if � 6D 3m (or any colour if � D 3m). Suppose that the total length of
all exclusively primary (or exclusively secondary) components of the edges of T is
small compared to jej. Then there exists a full and fulsome minimum Steiner tree for
N with the same topology as T such that the only edge of this tree containing an

116 2 Fixed Orientation Steiner Trees

exclusively primary (respectively, secondary) component is the edge corresponding
to e.

This is an easy consequence of Theorems 2.19 and 2.21 obtained by performing
a series of zero-shifts, each of which moves some exclusively primary (respectively,
secondary) material to e. If the length of e is sufficient to absorb all such material in
the tree, then the corollary follows.

2.3.4 Canonical Forms

The existence of zero-shifts makes it possible to transform any full and fulsome
Steiner tree into another full Steiner tree with the same topology that has some well-
defined canonical form. In this section we establish canonical forms for Steiner trees
for the fixed orientation metric, based on the form originally proposed in [70] for
the uniform orientation metric.

Definitions [Canonical tree, transition edge]: Given an ordering of the edges
in a full Steiner topology T , a full Steiner tree T for topology T is said to be
canonical with respect to that ordering if T contains an edge, which we refer
to as a transition edge, satisfying the following properties:

• All edges other than the transition edge are straight edges;
• All edges that come before the transition edge under the given ordering are

primary;
• All edges that come after the transition edge under the given ordering are

secondary.

Note that this definition implies that a canonical tree has at most one bent edge.
The proof of the following theorem follows from the fact that we can use zero-

shifts to move primary/secondary material between edges in T .

Theorem 2.23 Let a set of terminals N and a full Steiner topology T for that set of
terminals be given. Suppose there exists a full and fulsome fixed orientation Steiner
tree for N with topology T . Then for any ordering of the edges of T there exists a
full fixed orientation Steiner tree for N (with topology T) which is canonical with
respect to that ordering.

Proof We give a constructive proof. Let T be a full and fulsome Steiner tree for N

with topology T . Since T is full, T contains 2n�3 edges (where n D jN j) . Assign
the natural numbers 1 to 2n � 3 to the edges of T to reflect the given ordering of
edges. We can use the edge numbers of T to also number the corresponding edges of
T , or any Steiner tree for N with topology T . We next show that we can iteratively
apply the Complete Zero-Shift Theorem (Theorem 2.19) to transform T to another
full Steiner tree for N with the same topology, which we call T 0, and which is
canonical with respect to the given ordering. Suppose, on the contrary, there is an

2.3 Local Properties of Full Components 117

edge e1 with an exclusively secondary segment whose label is strictly less than that
of an edge e2 with an exclusively primary segment. Then, by Theorem 2.19, there
exists a complete zero-shift for e1 and e2 on the path between these two edges. After
applying this shift we either have that e1 has no exclusively secondary segment
or e2 has no exclusively primary segment. Since a complete zero-shift does not
change the direction of any other straight edges of T , the shift reduces the number
of primary/secondary edge pairs where the primary edge has a higher number than
the secondary edge. Hence, by repeatedly applying zero-shifts, we can construct a
tree T 0, with the same length as T , such that no primary edge of T 0 has a higher
number than any secondary edge. ut

Depending on the chosen ordering, various canonical forms can be obtained.
From an algorithmic point of view, the depth-first ordering is the most important
one. Set some terminal r as the root of T and order the edges as they appear in
a depth-first traversal of the tree from r . This results in a canonical form that is
illustrated in Fig. 2.17. If we divide such a canonical tree T into two subtrees T1

and T2 by deleting the transition edge, the tree T2 that does not contain the root is
secondary (i.e., all edges in T2 are secondary edges). Furthermore, the path P from
r to the transition edge is primary, while the subtrees that are attached to P are
each either primary or secondary subtrees. These properties are used by the linear-
time algorithm for constructing a full Steiner tree for a given full Steiner topology
(Sect. 2.4) and by the GeoSteiner algorithm (Sect. 2.6).

By choosing another ordering of the edges, we obtain the following interesting
theorem [70]:

PRI

PRI

SEC

PRI

SEC

T1

T2

r

transition edge

Fig. 2.17 Illustration of a tree T with the depth-first order canonical form. Primary edges are
drawn in purple, secondary edges are drawn in dark green. The dashed red curve indicates the
division of T into two subtrees, T1 and T2

118 2 Fixed Orientation Steiner Trees

Theorem 2.24 Let T be a full and fulsome fixed orientation Steiner tree for a
terminal set N , with topology T . Then there exists a full fixed orientation Steiner
tree T 0 for N with topology T that uses at most four legal orientations.

Proof Order the edges of T by their colour; for example, the red edges may come
first in the ordering followed by the green edges and then the blue edges. This
is a legitimate method of ordering, since edge colours are invariant under zero-
shifts. Consider a canonical full Steiner tree T 0 that comes from this ordering (by
Theorem 2.23 such a tree exists). Then it follows from the canonical form that the
edges of any given colour, not the same as the colour of the transition edge, are
either all primary or all secondary. Hence, T 0 uses at most four legal orientations. ut

In Chap. 3 we will discuss the relationship between the well-known Hwang
canonical form for rectilinear trees [209, 427] and the canonical forms developed
in this section.

2.4 Algorithms for a Given Topology

In this section we discuss algorithms for efficiently constructing and understanding
the properties of fixed orientation Steiner trees, i.e., fixed orientation interconnection
networks that are minimum with respect to their terminals for a given Steiner
topology. As with the Euclidean Steiner tree problem, if the topology is known, then
the minimum tree can be constructed in polynomial time—here, indeed, in linear
time. We begin by giving a straightforward linear programming formulation of the
problem, which immediately shows that the problem can be solved in polynomial
time. We then take advantage of the canonical form developed in the previous
section to first give a very simple quadratic-time algorithm, and then a linear-time
algorithm for the construction.

These methods only construct a single fixed orientation Steiner tree for a given
topology. Generally, however, a continuum of such trees (all of the same length)
exists, due to the fact that the metric is convex but not strictly convex. In the third
subsection, we show how to efficiently construct the so-called flexibility polygon for
a given topology, which shows the extent to which Steiner points and edges of the
Steiner tree can move within this continuous family of minimal trees.

2.4.1 Linear Programming Formulation

Linear programming gives a conceptually straightforward way of showing that
the fixed orientation Steiner tree problem for a given topology can be solved in
polynomial time. The fact that the unit circle C for the weighted fixed orientation
metric is linearly constrained (and convex) makes it possible to compute distances

2.4 Algorithms for a Given Topology 119

using linear programming—and hence to compute fixed orientation Steiner trees for
any given topology by solving a linear programming problem.

Our discussion here is based on the approach of Zachariasen [430], which
corrected and reformulated an argument of Xue and Thulasiraman [417].7

As before, let ul , l D 0; : : : ; 2� � 1, be the 2� vectors that define the extreme
points of the unit circle C (in counter-clockwise order around the circle). The
successor of unit vector ul is the vector ulC1, where ulC1 D u0 when l D 2� � 1.
Suppose we are given two points p and q, expressed in Cartesian coordinates, and
we wish to compute the distance kpqk under the metric given by C. Let f˛l ; ˇlg be
the unique solution to

q D p C ˛lul C ˇl ulC1

for each l D 0; : : : ; 2� � 1. A straightforward argument (Exercise 2.11) shows that

kpqk D max
l2f0;:::;2��1g

.˛l C ˇl /

and therefore that dpq D kpqk can be computed by solving the following linear
program:

minimise dpq

subject to ˛l C ˇl � dpq; l 2 f0; : : : ; 2� � 1g:

Note that ˛l and ˇl depend linearly on the coordinates of p and q. By applying the
constraints in the above formulation for each of the edges in the given topology, a
Steiner tree for this topology can be computed in polynomial time (in the size of
the input). Clearly, degenerate and non-tree topologies can also be handled by this
formulation.

A special case of the above problem, the (separable) rectilinear problem [76], is
known to be the dual of a transshipment problem. Similar connections are currently
unknown for the general problem.

2.4.2 Algorithms Based on the Canonical Form

We now present two algorithms for constructing a fixed orientation Steiner tree for
a given terminal set N and a given full Steiner topology T . Both algorithms exploit

7In 1999, Thurber and Xue [368] gave a linear programming formulation for the � D 3 case, and in
2002, Xue and Thulasiraman [417] generalised the formulation to the general uniform orientation
metric. Zachariasen [430] pointed out a non-trivial error in this formulation and presented a new
and correct formulation, now generalised to all fixed orientation metrics. This latter formulation is
the one briefly presented here.

120 2 Fixed Orientation Steiner Trees

the canonical form developed in Sect. 2.3.4, and both depend strongly on a so-called
merging operation that can be performed in constant time. The first simple algorithm
that we present runs in O.� n2/ time (where, as before, 2� is the number of extreme
points of C and n is the number of terminals), while the second runs in O.� n/

time—which is the best time possible for a given C.

Constant-Time Merging Operation

The following lemma establishes conditions under which we can uniquely construct
a Steiner point adjacent to two given points, given a knowledge of the direction set
and whether incident edges are primary or secondary. The operation of constructing
such a Steiner point and replacing the two given points by this Steiner point will be
referred to as a merging operation. The purpose of this operation is to facilitate the
efficient bottom-up construction of the tree, based on the canonical form.

Lemma 2.25 (Constant-time merging) Let T be a fixed orientation Steiner tree
with full Steiner topology T , and let s be a Steiner point in T . Assume that the
locations in T of two of the neighbours of s, u and v are known; furthermore,
assume that each edge .s; u/ and .s; v/ is straight and has been labelled primary
or secondary. Finally, assume that we know the direction set for T . If the Steiner
point s exists in T and is not collinear with u and v, then its location is unique
and can be computed in constant time; also, the colours of the edges .s; u/ and
.s; v/—and hence also the colour of the third edge incident with s—are unique.

Proof For the given direction set, we first make the following simple observa-
tions:

1. An exclusively primary edge and an exclusively secondary edge of the same
colour use adjacent orientations;

2. Every meeting angle is at most � .

Now suppose, contrary to the statement of the lemma, that it is possible to
construct two distinct Steiner points s and s0 adjacent to both u and v. Direct each
incident edge so that it is pointing outwards from s or s0. These incident edges use
four (not necessarily distinct) directions, all of which belong to a single direction
set. We will consider two cases, each of which show that we reach a contradiction
to one of the observations above.

Case 1. Suppose that s and s0 are not collinear with u or with v.

We will first show that the interiors of two of the edges intersect at a single point.
Consider the colours of the four edges .s; u/, .s; v/, .s0; u/ and .s0; v/. Since there
are only three colours, at least one colour (say, red) appears twice. Without loss of
generality, we can assume that .s; u/ is a red edge. Then .s0; v/ must also be a red
edge (since the other edge incident with u has the same primary/secondary labelling
as .s; u/ but is not collinear, and the two edges incident with s have distinct colours).

2.4 Algorithms for a Given Topology 121

Fig. 2.18 Diagrams (a) and
(b) illustrate Cases 1 and 2,
respectively, in the proof of
Lemma 2.25

s's

vu

s'

s

vu

a bc

d

a b

We introduce the following vectors (see Fig. 2.18a):

a D �!su; b D �!
s0v; c D �!sv; d D �!

s0u:

Assume the two red edges .s; u/ and .s0; v/ do not intersect. We will show that the
other two edges .s; v/ and .s0; u/ do intersect. Note that this occurs if and only if
there exist real numbers 0 < k1 < 1 and 0 < k2 < 1 satisfying the following
condition:

a D k1c C k2d: (2.3)

Also note that a � d D c � b, that is:

a C b D c C d: (2.4)

First suppose .s; u/ and .s0; v/ both use the same red direction, that is, b D ka
for some k > 0. From Eq. (2.4) we obtain: a D .c C d/=.1 C k/, which satisfies
condition (2.3) where k1 D k2 D 1=.k C 1/.

On the other hand, suppose that .s; u/ and .s0; v/ use different red directions (one
exclusively primary and the other exclusively secondary). By observation 1, these
are adjacent orientations; hence, a and b are linearly independent. This means there
exist ˛1; ˛2; ˇ1; ˇ2 2 R such that c D ˛1a C ˛2b and d D ˇ1a C ˇ2b. Since c and d
do not use red directions, at least one of the ˛i ’s and at least one of the ˇi ’s must be
negative. Again it can be shown that .s; v/ and .s0; u/ intersect (see Exercise 2.12).

We have now established that the interiors of two of the edges intersect at a single
point. We can assume that this pair of intersecting edges is .s; v/ and .s0; u/ (noting
that we are no longer carrying across any of the previous assumptions about colours
of edges). This is the situation shown in Fig. 2.18a.

If .s; v/ and .s0; u/ are the same colour, then the orientation corresponding
to the direction of .s; u/ lies strictly between the directions of .s; v/ and .s0; u/,
contradicting observation 1. On the other hand, if .s; v/ and .s0; u/ have different
colours, then the remaining two edges must both use the third colour (since the
primary and secondary labelling of each edge is known). Hence, the four edges
.s; u/, .s; v/, .s0; u/ and .s0; v/ use three distinct colours. However, the four vertices
of the polygonal unit circle @D (centred at the origin) corresponding to the directions

122 2 Fixed Orientation Steiner Trees

of these four edges all lie in one of the open half-planes on one side of the line

through the origin with direction
�!
ss0. This means that one of the meeting angles is

greater than � , contradicting observation 2.

Case 2. The remaining possibility is that s and s0 are both collinear with exactly
one of the points u and v, say u (as in Fig. 2.18b).

Since .s; v/ and .s0; v/ are either both primary or both secondary, it follows that
the two edges have different colours, while the edge .s0; u/ must have the third
colour. As in Case 2, these three directions all lie in an open half-plane, again
contradicting observation 2.

We conclude that at most one Steiner point can be constructed.
Note that this construction can be done in constant time since the direction set is

known. ut

A Simple Quadratic-Time Algorithm

Suppose we are given a set of n terminals N , a full Steiner topology T for the set
of terminals, and a direction set D. The aim is to construct a full fixed orientation
Steiner tree T for N with topology T and direction set D (or prove that no such tree
exists).

First choose an ordering of the 2n�3 edges in T . This ordering can be completely
arbitrary, and it is clearly possible to find an ordering in O.n/ time given any sparse
graph representation of T . The aim is to construct (if possible) a full Steiner tree
having the canonical form given by this ordering. Recall, from the previous section,
that such a tree has a unique bent edge, or transition edge under the given ordering of
the edges. Suppose that the transition edge has number k under the chosen ordering,
where 1 � k � 2n � 3, and that the value of k is known to us. Then, in O.n/ time,
we can construct T as follows. Label all edges numbered less than k as primary
edges and label all edges numbered greater than k as secondary edges. We treat the
transition edge as the root of T and iteratively apply the merging operation to leaf
nodes sharing a parent until the locations of the endpoints of the transition edge
have been constructed. Since the primary/secondary labelling of every edge except
the transition edge is known, every merging operation has a unique solution (unless
the two edges to be merged are collinear) and can be performed in constant time by
Lemma 2.25.

If the two edges to be merged, say .s; u/ and .s; v/, are collinear, then again the
colours of the edges .s; u/, .s; v/ and the third edge incident with s are uniquely
determined (by the proof of Lemma 2.25), but the position of s is not unique.
This does not cause a problem in the bottom-up construction algorithm due to
Lemma 1.38. As a consequence of this lemma, at most one merging operation in
the bottom-up construction algorithm can result in a non-unique Steiner point s. In
fact, this must then be the final merging operation where the third edge incident to
s (i.e., the edge other than .s; u/ and .s; v/) is the transition edge, and the other
end of this edge is a terminal t . This holds since the construction is moving in

2.4 Algorithms for a Given Topology 123

towards the transition edge. What we can do here is leave the position of the Steiner
point undetermined and construct the transition edge by finding the shortest edge
connecting t to the line segment uv. Clearly, this can also be done in constant time
like an ordinary merging operation.

Since there are 2n � 3 different choices for the transition edge, iterating over
all possible combinations and using the O.n/ algorithm just described will clearly
construct a full and fulsome Steiner tree for N , T and D (if any such tree exists)
in time O.n2/. Finally, there are only a constant number of possible direction sets
(up to 2�), all of which can be efficiently generated by Theorem 2.10—in fact, the
discussion immediately following Theorem 2.10 shows that all directions can be
generated in time O.�/. The result is summarised in the following theorem:

Theorem 2.26 Let a set of n terminals N and a full Steiner topology T for that
set of terminals be given. Then in O.� n2/ time we can either construct a full and
fulsome fixed orientation Steiner tree for N with topology T , or determine that no
such tree exists.

A Linear-Time Algorithm

We conclude this section by outlining an argument showing that the above quadratic
algorithm can be improved to run in linear time by a careful choice of the order in
which the merging operations take place. Here we simply sketch the strategy. Full
details for the �-geometry case can be found in [70]—the arguments there easily
generalise to all fixed orientation Steiner trees.

The idea of the linear-time algorithm (for a given topology T and fixed direction
set D) is that if there exists a full and fulsome fixed orientation Steiner tree T with
full Steiner topology T and direction set D, then T can be assumed to have the
depth-first order canonical form illustrated in Fig. 2.17. The new algorithm consists
of two depth-first traversals of T from an arbitrary root terminal r :

1. For the first traversal we assume that all edges are labelled as secondary edges.
Secondary subtrees (that is, subtrees where all edges are secondary edges) are
constructed bottom-up in T . The merging operation is performed bottom-up for
each Steiner node; if a Steiner point cannot be constructed, then none of the
ancestors of the node (relative to r) can be constructed either.

2. For the second traversal, primary subtrees are constructed bottom-up in T . At
the same time, each edge in T is tried as a potential transition edge. The idea is
that it is possible iteratively to construct the endpoints of the transition edge in
constant time per edge: the endpoint that is closest to the root r is constructed in
the second traversal, while the other endpoint is constructed in the first traversal
of T (see Fig. 2.17).

Full implementation details are given by Brazil et al. [70]. Thus, we have the
following theorem (from [74]):

124 2 Fixed Orientation Steiner Trees

Theorem 2.27 Let a set of n terminals N and a full Steiner topology T for that
set of terminals be given. Then in O.� n/ time we can either construct a full and
fulsome fixed orientation Steiner tree for N with topology T , or determine that no
such tree exists.

2.4.3 Algorithms for Flexibility Polygons

Minimum Steiner trees in fixed orientation metrics are usually not unique. Non-
unique minimum Steiner trees are flexible in the sense that we may choose amongst
several (lengthwise equally good) embeddings of these minimum Steiner trees.
Hence, flexibility is a measure of the extent to which edges and Steiner points in
the minimum length network can be perturbed without increasing the length of the
network. This has important applications in solving multi-objective optimisation
problems in chip design, involving minimisation of negative effects of properties
such as congestion or signal delay as a secondary objective [41, 42, 304].

In this section we characterise flexibility formally by defining the flexibility
polygon for a given topology (and for each of the Steiner points in this topology).
This concept was introduced by Brazil, Winter and Zachariasen [72, 73], and
they furthermore gave an efficient algorithm to construct the flexibility polygon.
The original algorithm [73] was only given for �-geometry, but it can easily be
generalised to arbitrary weighted fixed orientation metrics by applying the structural
results from Brazil and Zachariasen [74].

The results related to the flexibility polygon subsume some of the previous work
on flexibility. One of the earliest papers in this area was that of Yan et al. [418] which
considered the problem of constructing a minimum Steiner tree with three terminals
and one Steiner point for the � D 3 case, and showed that the set of feasible Steiner
points forms a region bounded by an equilateral triangle (Fig. 2.19).8 (See, also,
Exercise 2.15.)

More generally, the feasible region for a Steiner point in a minimum fixed
orientation Steiner tree is a convex polygon with up to six vertices. This is not
surprising given that the problem of constructing a minimum fixed orientation
Steiner tree for a given topology can be solved by linear programming, where the
coordinates of Steiner points are variables [417, 430]. Even if linear programming
in principle can be used to construct feasible Steiner point regions, this would not
be as efficient as direct computation, as is outlined in this section.

8Subsequently Li et al. [255] gave a simple algorithm to construct this triangular region based
on finding median points and so-called mid-orientation lines. More generally, Shen [346] and
Hayase [189] independently showed that when � is a multiple of 3, the feasible region (called
a ‘public domain’ in [346] and a ‘diamond area’ in [189]) is a convex polygon with up to six
vertices; when � is not a multiple of 3, then the minimum Steiner tree for three terminals is unique
and the feasible region contains a single point.

2.4 Algorithms for a Given Topology 125

Fig. 2.19 Triangular flexibility polygon for three terminals and � D 3. The Steiner point may be
placed anywhere in the grey-shaded region

λ = 4 λ = 6

Fig. 2.20 Examples of �-minimum Steiner trees and flexibility polygons. Notice that a flexibility
polygon may have overlapping boundary segments, indicating that parts of some edges may exhibit
no flexibility at all

Definition [Flexibility polygon]: For a set of terminals N and a full Steiner
topology T for N , we denote by S.N; T / the set of all full and fulsome
minimum Steiner trees interconnecting N with topology T . The flexibility
polygon for a terminal set N and a full Steiner topology T is defined to be
the union of the embeddings of all minimum Steiner trees in S.N; T /.

It can be shown that this union forms a simply connected region with a polygonal
boundary whose vertices include the terminals N [73]. Some examples of flexibility
polygons for minimum �-geometry Steiner trees for the cases where � D 4 and
� D 6 are shown in Fig. 2.20.

In the remainder of this section we briefly discuss a constructive algorithm that
gives the following theorem of Brazil et al. [73]:

126 2 Fixed Orientation Steiner Trees

Theorem 2.28 Given a full Steiner topology T with n terminals and a weighted
fixed orientation metric with � legal orientations, the flexibility polygon for T can
be computed in O.� n/ time.

The first step of the algorithm is to compute a minimum Steiner tree T

by applying Theorem 2.27. The minimum Steiner tree T implicitly identifies a
direction set that is used by every Steiner point in T . Recall that a direction set
consists of directions of three different colours. For each colour in the direction set
there are either one or two directions; in the latter case there is one primary and one
secondary direction, and in the former case there is a single direction that can be
thought of as being both primary and secondary. Note that minimum Steiner trees
that use a direction set with 5 or 6 directions usually have much more flexibility than
minimum Steiner trees that use a direction set with 4 directions. (As an example,
minimum Steiner trees in �-geometry where � is a multiple of 3 usually have the
greatest flexibility since for these minimum Steiner trees the corresponding direction
sets have 6 directions.)

Consider a counter-clockwise outer walk of T , beginning and ending at the same
terminal. This defines a set of convex paths in T that have terminals as endpoints and
Steiner points as interior points. In other words, these are paths between terminals
where at each intermediate Steiner point the rightmost outgoing edge is taken.

For each convex path we now seek an embedding of the minimum Steiner tree
that pushes the path as far as possible to the right (with respect to the direction of
the walk along each path), defining a so-called rightmost convex path. This means
that for each edge e on the rightmost convex path there is no alternative embedding
where the same edge is to the right of e. It can be shown that the collection of these
rightmost convex paths defines the flexibility polygon.

Consider a convex path P D v1v2 : : : vk�1vk connecting two terminals v1 and
vk . We define an ordering of the edges of T by making a depth-first traversal from
v1. At every Steiner point vi , the subtree of T with its root at vi (and not intersecting
P) is traversed before the edge viviC1 is traversed. The main technical result is now
that the minimum Steiner tree that has the canonical form given by this ordering
defines the embedding of the rightmost convex path from v1 to vk [73].

In order to compute these rightmost convex paths efficiently the algorithm first
constructs all primary and secondary subtrees of T , that is, embeddings that consist
of primary (or respectively, secondary) directions only. This can be accomplished in
O.n/ time even though there are O.n/ potential subtrees. The algorithm works in a
bottom-up fashion by maintaining a queue of subtrees that can be constructed at a
given point in time.

The final construction of rightmost convex paths, and hence the flexibility
polygon, is achieved essentially by traversing a primary subtree as far as possible
along a convex path—and then switching to a secondary subtree with its root at the
opposite end of the edge where the primary subtree ends. The construction only
requires one outer walk of T and can be performed in constant time for each edge
traversed—in total O.n/ time.

2.5 Global Properties of Minimum Steiner Trees 127

Fig. 2.21 Examples of flexibility polygons (dark-shaded) for Steiner points (� D 6). The
flexibility polygon on the left has 6 vertices, while the flexibility polygons on the right have 3,
4 and 5 vertices, respectively

For a given Steiner point s in T , the union of all feasible positions of s in the
minimum Steiner trees in S.N; T / is denoted the flexibility polygon for s. Given the
flexibility polygon for T , the flexibility polygon for s can be constructed in constant
time and has at most six vertices [73]. Examples of such flexibility polygons are
shown in Fig. 2.21.

2.5 Global Properties of Minimum Steiner Trees

The previous sections have focused mainly on fixed orientation Steiner trees, i.e.,
fixed orientation trees that are minimal for their given Steiner topology. In this
section we look at properties relating to globally minimum fixed orientation Steiner
trees—in particular, we discuss known bounds on the Steiner ratio, briefly study
the generalised Hanan grid reduction, and show that the problem of constructing
globally minimum trees is NP-hard.

2.5.1 Steiner Ratios

Consider the problem of optimally interconnecting a set of terminals N under a
metric given by an arbitrary unit circle C without being allowed to use Steiner points.
As seen in Chap. 1, this corresponds to computing a minimum spanning tree (MST)
for N —a problem that is polynomially solvable.

Let TC.N / and T C.N / denote a minimum Steiner tree and a minimum spanning
tree, respectively, for N under the metric given by C. As in Sect. 1.3.1, define

�C.N / D kTC.N /k
kT C.N /k

128 2 Fixed Orientation Steiner Trees

to be the ratio between the length of a minimum Steiner tree and a minimum
spanning tree for N . The Steiner ratio �C for the metric given by unit circle C
is defined as

�C D inf
N

�C.N /:

In other words, the Steiner ratio is the smallest possible ratio between the minimum
Steiner tree and minimum spanning tree lengths for any set of terminals. If C is the
unit circle for the �-geometry metric (for a given �), then we denote �C by ��. In
this section we briefly survey the results on the Steiner ratio, mainly for �-geometry.

Let � denote the Steiner ratio for the Euclidean metric. As discussed in
Sect. 1.3.1, the value of � is currently unknown, but is strongly conjectured to bep

3=2 � 0:8660. Similarly, in �-geometry for most values of � the Steiner ratio is
not known; however, bounds, or in some cases precise values, can be given in terms
of �.

For the general Steiner ratio problem in �-geometry, Sarrafzadeh and Wong [338]
derived the following inequality:

�� � � cos
�

2�
: (2.5)

Let T .N / and T .N / denote a Euclidean minimum Steiner tree and a minimum
spanning tree, respectively, for N . Note that cos.�=.2�//�1 is the maximum
ratio of the distance between two points in �-geometry and Euclidean geometry
(Exercise 2.13). Then, for the case where C is a regular 2�-gon, we obtain Eq. (2.5)
as follows:

kTC.N /k � jT .N /j
� �jT .N /j
� � cos

�

2�
kT C.N /k:

It follows from this lower bound that for � D 3 we have that �3 � 3=4. For � D
3 there is also a matching upper bound for a three-terminal example obtained by
placing a terminal on every second vertex of the regular hexagon representing the
unit circle.

This is one of only a few values of � for which the Steiner ratio is known. In
Chap. 3 we prove that the Steiner ratio for the rectilinear metric (� D 2) is 2=3.
Table 2.2 summarises the results known for �-geometry. It is interesting to note
that the Steiner ratio appears not to be a monotonically increasing function of �.
However, both the lower and upper bounds approach � as � ! 1 as could be
expected.

For general fixed orientation metrics the bounds on the Steiner ratio are the same
as those for arbitrary normed planes, since any norm can be approximated arbitrarily

2.5 Global Properties of Minimum Steiner Trees 129

Table 2.2 Overview of the results on the Steiner ratio �� for �-geometry

Metric Steiner ratio References

� D 2 (rectilinear) 2
3

[209]

� D 3 (hexagonal) 3
4

[244]

� D 4 (octilinear) 2C

p

2

4
[346]

� � 3 mod 6 � cos �
2�

[244]

� � 0 mod 6 � [244]

General � (lower bound) maxf 2
3
; � cos �

2�
g [133, 338]

General � (upper bound) minf
p

13�1

3
; � .cos �

2�
/�1g [109, 133, 338]

closely by a weighted fixed orientation metric. In Minkowski planes, 2=3 is a tight
lower bound on the Steiner ratio [167] (the bound is achieved in, for example, the
rectilinear plane—see Chap. 3). The best known upper bound is .

p
13 � 1/=3 �

0:8686 [133], but it is conjectured that the (tight) upper bound is the Steiner ratio
for the Euclidean metric [135].

2.5.2 Generalised Hanan Grid Reduction

For the rectilinear Steiner tree problem it is known that for any terminal set N there
exists a minimum Steiner tree in the Hanan grid, which is the grid obtained by
drawing a horizontal line and a vertical line through each terminal. For more on the
properties and role of the Hanan grid, see Sect. 3.2.2. The definition of the Hanan
grid can be generalised in a natural way to any fixed orientation metric by defining
it as the grid resulting when lines of every legal orientation are drawn through each
terminal. Sarrafzadeh and Wong [338], however, have pointed out that when going
from two to three orientations in the plane, there exist terminal sets for which every
minimum Steiner tree has Steiner points that are not in the corresponding Hanan
grid.

A natural question is therefore: Does there exist a ‘small’ grid structure in which
a minimum Steiner tree for the general fixed orientation problem can always be
found? As for the rectilinear problem, the existence of such a grid—which induces
a weighted planar graph—would make it possible to reduce the fixed orientation
problem to the Steiner tree problem in graphs. In this section we survey the results
relating to such a reduction.

Definition [Generalised Hanan grid]: For any set of points P , define GG.P /

to be the set of intersection points obtained by drawing lines in all legal
orientations through every point in P . Define the generalised Hanan grid GGi

as follows: For terminal set N , GG0.N / D N and for i > 0 recursively define
GGi .N / D GG.GGi�1.N //. Note that GG1.N / coincides with the vertices
of a Hanan grid for the rectilinear metric.

130 2 Fixed Orientation Steiner Trees

Fig. 2.22 Generalised Hanan grid GG1.N / (left) and GG2.N / (right) for � D 4, and a set N

with 5 terminals. Only the segments of the lines that are within the rectangular bounding box of
the terminals are shown

A single step in this recursive process is illustrated in Fig. 2.22. It is, perhaps,
surprising to see how rapidly the density of the grid increases after a single iteration
for only four legal orientations.

The generalised Hanan grid was introduced in 1992 by Du and Hwang [136];
these authors also established the first version of the following theorem (for �-
geometry with � D 3). This theorem has had a fairly long history9 before being
stated in the following form.

Theorem 2.29 For any polygonal unit circle C and each set of n terminals N there
exists a minimum fixed orientation Steiner tree T for N such that all Steiner points
are in GGn�2.N /.

Proof We assume that T is a full and fulsome fixed orientation Steiner tree for T

(for if it is not, we simply apply the same argument below to each full component).
By Corollary 2.20, we can also assume, without loss of generality, that T contains
at most one bent edge. The theorem then easily follows since (if n > 2) there must

9This theorem has been shown over time to hold for increasingly larger classes of fixed orientation
problems. In 1992 Du and Hwang [136] proved that Theorem 2.29 holds for � D 3 (uniform metric
with three orientations). They also conjectured that for any i > 0 there exists a fixed orientation
metric and a terminal set N such that all minimum Steiner trees for N have some Steiner point
not in GGi .N /. In other words, they conjectured that the bound n � 2 in Theorem 2.29 cannot
be reduced to a constant. In 1995 Koh [235] and Lee et al. [245] independently proved that the
theorem holds for � D 4 by showing that it is always possible to perform zero-shifts such that some
Steiner point is connected to two terminals using straight edges only. In 1996 Lee and Shen [244]
generalised the result to any � (or uniform orientation metric) using the same proof technique. In
2001 Li et al. [257] showed that Theorem 2.29 holds for all unweighted fixed orientation metrics.
Finally, in 2009 Brazil and Zachariasen [74] implicitly proved that the theorem also holds for the
weighted case; this was first stated explicitly later that year by Zachariasen [431].

2.5 Global Properties of Minimum Steiner Trees 131

exist a Steiner point s in T that is connected with straight edges to two terminals;
hence, s is in GG1.N /. By removing the two terminals and their straight edges, and
now treating s as a terminal (like the pseudo-terminals in the Euclidean case), the
argument can be repeated for all n � 2 Steiner points. ut

The bound provided by Theorem 2.29 can be improved for special cases of the
fixed orientation problem. For � D 3 (three uniform orientations) a bound of d.n �
2/=2e follows from the fact that for n � 4 it is possible to perform zero-shifts in
such a way that two Steiner points simultaneously are connected to two terminals
using straight edges only [418]. For three arbitrary orientations (� D 3) a weaker
bound of d.n � 1/=2e is known [257], and for four uniform orientations (� D 4),
the best known bound is d2n=3e � 1 [259, 261]. The bounds for � D 3 and � D 3

are known to be tight; furthermore, it is known that the bound for � D 4 must be
strictly greater than d.n � 2/=2e [257].

It has been conjectured that the bound in Theorem 2.29 can be improved [45,
259, 261]. There are nevertheless arguments that support the opposite fact, and we
conjecture that the bound in Theorem 2.29 is tight.

From an algorithmic point of view, Theorem 2.29 has limited use since the
number of vertices in GGi .N / is �.niC1�i / for jN j D n, which is �.nn�1�n�2/

for i D n � 2. Even for small problem instances, the generalised Hanan grid is too
large to be useful (see Fig. 2.22).

2.5.3 Computational Complexity

It seems natural to conjecture that a suitably discretised version of the fixed
orientation Steiner tree problem is always NP-hard. More precisely, one can ask
whether for a given convex centrally symmetric polygon C the corresponding fixed
orientation Steiner tree problem is NP-hard, after applying a discretisation and
scaling to the problem (if necessary) to resolve any computational issues arising
from working with exact real arithmetic. Until recently, NP-hardness had been
established for only two cases, both of which are examples of �-geometry Steiner
tree problems. These two cases are the rectilinear metric (� D 2) [169] and the
octilinear metric (� D 4) [288]. Here we extend these results to all �-geometry
Steiner tree problems with � > 2, using a restriction of the terminals to parallel
lines very similar to that employed in Sect. 1.3.3. (The rectilinear case, � D 2,
requires a different approach, which is discussed in Chap. 3.)

The approach here is very similar to that used for the Euclidean case in Chap. 1;
we show the problem is NP-hard for a specific set of instances, where the terminals
are constrained to lying on two parallel lines. More specifically, we show that the
following class of decision problems is NP-complete for each value of � > 2.

132 2 Fixed Orientation Steiner Trees

PARALLEL LINES �-GEOMETRY STEINER TREE DECISION PROBLEM

Instance: A finite set of points N lying on two parallel lines in the Euclidean
plane and a positive integer L.
Question: Is there a �-geometry Steiner tree T with terminal set N such that
the length of T is at most L?

As in Sect. 1.3.3, the main strategy of the proof is to show that there is
a polynomial transformation from each instance of the subset sum problem to
a corresponding instance of the parallel lines �-geometry Steiner tree decision
problem. We begin by only considering the case where � is a multiple of 3 (i.e.,
� D 3m for some positive integer m), since the proof of this case is almost identical
to the proof of the Euclidean case given in Sect. 1.3.3. The cases where � 6D 3m

pose some additional technical difficulties which we then show how to circumvent.

Theorem 2.30 The discretised parallel lines �-geometry Steiner tree decision
problem is NP-complete for any given � D 3m (where m is a positive integer).

Proof The proof here is very similar to the proof of Theorem 1.17. The construction
of the base tree Tx is the same as in the Euclidean case, as is Tv, with the small
change that the geodesics from each bi to ci may not be straight line segments; in
particular, they will be straight line segments when m is even and bent edges when
m is odd. This makes a slight change to the value of Lv , the length of Tv, but not
to the validity of the proof. In addition, we now refer to Tv as a three-orientation
tree (rather than a horizontal tree), indicating that the main full component uses only
three legal orientations.

Claims 1 and 2 are essentially identical in their statements and proofs to those in
the proof of Theorem 1.17. The only minor change occurs in Claim 3:

Claim 3 The following three statements are equivalent:

(A) The answer to the given instance of the subset sum problem is ‘yes’.
(B) There exists a three-orientation minimum �-geometry Steiner tree on N0 with

the same base topology as Tv .
(C) There exists a Steiner �-tree on N0 with length at most Lv � p

3d .

Proof of Claim 3 The first parts of this claim, showing that (A) , (B), and that (B)
) (C), are identical in their methods of proof to the arguments in the first three
steps of Claim 3. It only remains to show that :.B/) :.C/. Suppose we have a
minimum Steiner tree T0 on N0 with the same base topology as Tv , but which is
not a three-orientation tree. As discussed in Sect. 2.3.3, we can assume that there
is only one bent edge in T0 (by Corollary 2.20). Furthermore, since d.V1; V 0

1 / 	
D, we can assume that the bent edge corresponds to one of the horizontal edges
of Tv connecting to some triple ai ; bi ; ci (by Corollary 2.22) and that this edge is
embedded with a single corner point so that the horizontal part is incident with the
Steiner point furthest from xi . An example of such a bent edge is illustrated by the
red edge in Fig. 2.23a. Now, suppose we replace this bent edge by the orthogonal

2.5 Global Properties of Minimum Steiner Trees 133

V1

ai

bi

xi

V1

ai

bi

xi

a b

Fig. 2.23 Illustration of the construction for the proof of Claim 3. Diagram (a) shows the bent
edge closest to xi , while diagram (b) shows the projection of that bent edge onto the line extending
its horizontal component. Here the Steiner point is adjacent to ai and bi but the same argument
and construction apply if the Steiner point is adjacent to bi and ci . Also, here the non-horizontal
component of the bent edge has positive gradient, but again the same argument applies if it has
negative gradient, in which case all other edges of T0 are secondary edges

projection of this edge onto the line extending the horizontal segment of the edge.
This is shown in Fig. 2.23b. Note that the disconnected end of this new edge lies on
the vertical line through the Steiner point closest to xi , since the projection is in the
vertical direction. It is easy to see, by the same argument used to show (B)) (C),
that the length of the resulting (disconnected) three-orientation �-geometry network
is again Lv � p

3d . By the construction, this disconnected tree has length strictly
less than that of T0; hence, the length of T0 is greater than Lv � p

3d , giving the
required conclusion to the claim. ut

To conclude the proof of the theorem we need to address the issue of discreti-
sation, which is actually easier here than in the Euclidean case. Recall that in the
discretised problem Euclidean distances are rounded up to the nearest integer, and it
is assumed that terminals and Steiner points only have integer coordinates. Since all
trees considered have at most 7n C 1 edges, every tree is at most length 3 � .7n C 1/

longer or shorter than before the discretisation.
In order to distinguish between ‘yes’ and ‘no’ instances in the discretised

problem, we need to be able to distinguish between three-orientation minimum
Steiner trees and non three-orientation minimum Steiner trees. Consider a non three-
orientation minimum Steiner tree Tv . In the ‘worst’ case Tv comes from a subset sum
problem for which there exists a subset J � f1; : : : ; ng such that jd �Pi2J di j D 1.
From the proof that (B)) (A) in Claim 3 it follows that Tv can be transformed into
a three-orientation tree T 0

v by moving exactly one xi upwards or downwards by
distance 1. From the last part of the proof of Claim 3 (and Fig. 2.23) it follows that
the length of T 0

v is �� D .1�cos !/=.sin !/ greater than Lv �p
3d . More generally,

the length of any non three-orientation minimum Steiner tree is at least �� greater
than Lv � p

3d .
Suppose we multiply all terminal coordinates of the original problem by some

integer K before we perform the discretisation. This increases the minimum length
difference to K��. By choosing K such that K�� > 2 � 3 � .7n C 1/, we can ensure

134 2 Fixed Orientation Steiner Trees

that a three-orientation minimum Steiner tree is always shorter than a non three-
orientation minimum Steiner tree in the discretised problem. Choosing K > .42nC
6/=�� suffices, and results in a polynomial scaling. ut

Since every instance of the parallel lines �-geometry Steiner tree decision
problem is also an instance of the �-geometry Steiner tree decision problem, we
immediately get the following corollary.

Corollary 2.31 The discretised �-geometry Steiner tree decision problem is NP-
complete for any given � D 3m (where m is a positive integer).

The proof of Theorem 2.30 relies, to a large extent, on the properties of the base
tree Tx constructed in the course of the proof. A key property of the base tree is that
if we perturb a single terminal xi up or down along V1 the resulting minimum Steiner
tree on the new terminal set is strictly longer than Tx. If xi is perturbed downwards
(away from v), then the only change to the tree Tx is that the edge incident with
xi becomes a bent edge via the introduction of a new secondary direction; all other
edges in the tree are straight primary edges. On the other hand, if xi is perturbed
upwards (towards v), then the edge incident with xi again becomes a bent edge but
this time via the introduction of a new primary direction; all other edges in the tree
are straight secondary edges. This is possible due to the symmetry in the direction
set for � D 3m, which means that in a three-orientation Steiner tree such as Tx it is
ambiguous as to whether the edges are all primary or all secondary (see Table 2.1).

The difficulty in generalising Theorem 2.30 to other values of � lies in the fact
that the direction sets no longer exhibit this symmetry when � 6D 3m. If we construct
a base tree for one of these other values of � (as in the proof of Theorem 2.30) using
primary directions (as in Table 2.1), then it is no longer true that perturbing xi in
either direction along V1 always reduces the length of the Steiner tree; perturbing
xi upwards again results in the three directions in the base tree all being treated as
secondary directions which, because of the lack of symmetry in the direction sets,
means that the ‘red’ edges (i.e., the edges that have more than one direction in the
direction set) no longer correspond to the horizontal edges of the base tree. In other
words, under the perturbation an edge with a different colour to the edge incident
with xi will become bent. It can be shown that the new minimum Steiner tree that
results from perturbing xi upwards is shorter than the original base tree.

This problem, however, can be successfully circumvented via a slight alteration
to the construction, as we show in the following theorem.

Theorem 2.32 The discretised parallel lines �-geometry Steiner tree decision
problem is NP-complete for any given � > 2.

Proof The case where � D 3m is proved in Theorem 2.30, so we can now assume
that � 6D 3m. As before, let S D fd1; : : : ; dng and d <

Pn
iD1 di WD D be a given

instance of the subset sum problem. The argument here is again similar to the proof
of Theorem 1.17 (the Euclidean case), except for a few crucial differences in the
construction, which we indicate below.

2.5 Global Properties of Minimum Steiner Trees 135

We again begin by constructing an instance of the parallel lines �-geometry
Steiner tree decision problem designed to encode the given instance of the subset
sum problem. Recalling that ! WD �=�, let V1; V 0

1 ; V 0
2 ; V2 be four parallel lines each

with a polar slope of �=2 C !=3, ordered from left to right such that

d.V1; V2/ 	 d.V1; V 0
1 / D d.V 0

2 ; V2/ 	 D:

Let u0 be a fixed point on V2, and construct a zigzag path P between u0 and a point
on V1 (labelled v), such that: P is composed of line segments with alternating polar
angles .4m C 2/! and .2m C 1/! if � D 3m C 1, or .4m C 3/! and .2m C 2/!

if � D 3m C 2; and P has 2n internal vertices lying alternatively on V 0
1 and V 0

2 .
As before, horizontal edges are then extended from each of the internal vertices to
points xi on V1 or ui on V2 to create the base tree Tx, as illustrated in Fig. 2.24a.

This base tree is then used to construct a tree Tv (as in Stage 3 of the proof of
Theorem 1.17) by replacing each xi by the triple ai , bi and ci , satisfying: jai bi j D

u0

x1

u1

x2

un

v

V1 V1 V2 V2

di

di

xi

ai

bi

ci

V1

a b

Fig. 2.24 Diagram (a) illustrates the base tree Tx , for the case � D 5. Diagram (b) shows how Tv

connects to each triple ai , bi , ci , again for the case � D 5

136 2 Fixed Orientation Steiner Trees

di ; jbi ci j D di so that the main full component of Tv is a three-orientation tree.
Note that, unlike the � D 3m case, xi is not the mid-point of ai bi ; see Fig. 2.24b.
As in Claim 1 of the proof of Theorem 1.17, it is straightforward to show that Tx

and Tv are unique minimum �-geometry Steiner trees for their respective terminal
sets. Let Lv WD jTvj.

For the final stage of the construction, we define the two constants:

K1 D 2 sin.�=3 � !=3/ cos.!=3/

sin.�=3 C 2!=3/
; K2 D cos.!=3/

sin.�=6 C !=3/

and let v0 be the point on V1 below v such that jv0vj D Ki d for the case � D 3mCi

(where i 2 f1; 2g). As before, we define T0 to be the minimum �-geometry Steiner
tree on the same terminals as Tv except where v has been replaced by v0. (Note
that if we substitute ! D 0 into the expression for K1 or K2 we obtain 2, which
corresponds to the constant in the � D 3m case (where the given parallel lines are
vertical).)

The aim now is to use this construction to prove an equivalent statement to
Claim 3 in the proof of Theorem 2.30. We first note that in the base tree Tx , if
we treat v and a point xi as movable points and perturb xi upwards along V1

by a distance of ı while keeping the tree a three-orientation tree, then v moves
downwards along V1 by a distance of K1ı or K2ı for the cases � D 3m C 1 and
� D 3m C 2, respectively. Furthermore, the tree reduces in length by a constant
multiple of ı (independent of the choice of xi), say Cı; a straightforward calculation
shows that

C D

8

ˆ

ˆ

<

ˆ

ˆ

:

cos.!=3/

sin.�=3 C 2!=3/
C .K1 � 1/.cos.!=3/ � 1=2/

sin.�=3 � !=3/
if � D 3m C 1,

cos.!=3/ � 1=2

sin.�=3 C !=3/
C .K2 � 1/ cos.!=3/

sin.�=3 � 2!=3/
if � D 3m C 2.

(Again note that if we substitute ! D 0 into either expression for C we obtain
p

3,
which corresponds to the constant in the � D 3m case.)

Using this notation, we now prove the following claim, equivalent to Claim 3 in
the proof of Theorem 2.30.

Claim The following three statements are equivalent:

(A) The answer to the given instance of the subset sum problem is ‘yes’.
(B) There exists a three-orientation minimum �-geometry Steiner tree on N0 with

the same base topology as Tv .
(C) There exists a Steiner �-tree on N0 with length at most Lv � Cd .

Proof of Claim The first parts of this claim, showing that (A) , (B), and that (B)
) (C), are identical in their methods of proof to the arguments in the first three steps
of Claim 3. It only remains to show that :.B/) :.C/. As before, this statement is
equivalent to showing that any perturbation of one of the points xi in the base tree

2.5 Global Properties of Minimum Steiner Trees 137

xi

xi

V1

ω
r

Fig. 2.25 The effect of a downward perturbation of xi on the base tree, illustrated for � D 5.
Under the perturbation the horizontal edge incident with xi becomes a bent edge

xi

xi

s

s

p

q r

V1

xi

xi

s

s

p

r

V1

a b

Fig. 2.26 The effect of an upward perturbation of xi on the base tree, illustrated for (a) � D 4,
and (b) � D 5. In (a), under the perturbation s moves to s0 and the line segments ps and xi s are
replaced by the new edges shown in dashed lines. In (b) the three line segments ps, s0s and xi s are
replaced by the edges indicated in dashed lines

Tx upwards or downwards along V1 to a new point x0
i creates a fourth direction and

strictly increases the length of the tree.
First suppose x0

i lies below xi , as in Fig. 2.25.
Then the choice of directions for the non-horizontal edges implies that the red

edges include the horizontal direction, and hence we can assume that the edge
incident with x0

i becomes bent. We can embed this bent edge so that the corner
point r lies on the horizontal line through xi , as in the figure. Since †xirx0

i D !

and the polar slope of V1 is �=2 C !=3 it follows that †rxi x
0
i D �=2 � !=3 and

†rx0
i xi D �=2 � 2!=3; this implies that jx0

i r j > jxi r j since x0
i r is opposite the

larger angle in 4rxi x
0
i . We can assume that this red edge is the only edge that

changes length; hence, the base tree increases in length under the perturbation.
Next suppose x0

i lies above xi and � D 3m C 1. This is illustrated (for � D 4) in
Fig. 2.26a.

In this case the red edges are necessarily those that include the polar direction
of .4m C 2/!, which is now the secondary red direction. Let s be the Steiner point
adjacent to xi in Tx , and let s0 be the location of the Steiner point adjacent to x0

i in the
perturbed tree, which we denote T 0

x. As shown in Fig. 2.26a, under the perturbation
of xi the edge incident to s with polar direction .2mC1/! is extended, the horizontal

138 2 Fixed Orientation Steiner Trees

0.06

0.05

0.04

0.03

0.02

0.01

0.2 0.4 0.6 0.8 1

1.5

1

0.5

0.5 0.4 0.6 0.8 1

Fig. 2.27 The graphs of f1 (left) and f2 (right) as a continuous function of ! in the interval Œ0; 1

edge incident to s is translated upwards and shortened, while the third edge incident
to s0 is a bent edge which can be embedded with a single corner point p lying on
the third edge incident with s. Now let q be the intersection of the line extending ps0
with xi s, and let r be the intersection of the line through s0 parallel to V1 (i.e., with
polar direction �=2 C !=3) with xi s. A simple calculation shows that js0qj D js0sj.

Define the function f1.!/ D jT 0
x j � jTxj. Using the notation above and rescaling

so that jpsj D 1, it follows that

f1.!/ D jps0j C jss0j � jpsj � jsrj
D jpqj � jpsj � jsrj

D 2 cos.�=3 � !=3/ � 1 � sin.!/.1 � tan.�=3 � !=3/ tan.!=3//

2 sin.�=3 � !=3/
:

If we treat f1 as a continuous function of !, as graphed on the left in Fig. 2.27,
then it can be shown analytically that the only root of f1 in the interval Œ0; 1 is at
! D 0, and consequently that f1 is positive throughout the interior of that interval.
Hence, jT 0

x j � jTx j > 0 for all relevant values of ! as required.
Finally, the argument for the case where x0

i lies above xi and � D 3m C 2 is
similar to the above. In this case it is an edge of Tx with polar direction of .2mC2/!

that becomes bent, as illustrated in Fig. 2.26b. Again we let s be the Steiner point
adjacent to xi in Tx, s0 be the Steiner point adjacent to xi in T 0

x , and p be the corner
point on the bent edge in T 0

x (as in the figure). We define r to be the intersection of
the line through s parallel to V1 with x0

i s
0. Define the function f2.!/ D jT 0

x j � jTxj,
and again rescale so that jpsj D 1. Then

f2.!/ D jrs0j C jps0j � jss0j � jspj

D sin.!/

2 cos.!=3/ sin.2�=3 � !=3/
C sin.2�=3 � !=3/ � sin.!/

sin.�=3 � 2!=3/
� 1:

2.6 GeoSteiner Algorithm 139

Again, f2.!/, as a continuous function, is positive in the interior of the interval
Œ0; 1, as verified by the rightmost graph in Fig. 2.27.

This concludes the proof of the claim. The issue of discretisation is again easy to
deal with (as in the proof of Theorem 2.30), concluding the proof of the theorem.

ut
Theorem 2.32 immediately implies the following corollary.

Corollary 2.33 The discretised �-geometry Steiner tree decision problem is NP-
hard for any given � > 2.

2.6 GeoSteiner Algorithm

The GeoSteiner approach (see Sect. 1.4) has been adapted to the uniform orientation
(�-geometry) Steiner tree problem by Nielsen, Winter and Zachariasen [294]. The
efficiency of the approach depends critically on the use of canonical forms for fixed
orientation full Steiner trees (FSTs) as described in Sect. 2.3.4.

Independently of the work of Nielsen et al. [294], Coulston [122] has imple-
mented a similar algorithm for � D 4. Coulston’s algorithm can only solve
small problem instances—mainly due to the absence of the more sophisticated
pruning techniques, such as pruning tests based on canonical forms. More recently,
Pagh [298] has adapted the GeoSteiner approach to the general weighted fixed
orientation metric. Here again no pruning tests based on canonical forms are
employed, and consequently this algorithm also does not scale well.

In this section we describe the main ideas of the FST generation algorithm
proposed by Nielsen et al. [294]. As noted in Chap. 1, the FST concatenation phase
of the algorithm is independent of the underlying metric, and can be reduced to
either the Steiner tree problem in graphs (Sect. 5.1) or the minimum spanning tree
problem in hypergraphs (Sect. 5.2.1).

2.6.1 Top-Level FST Generation Algorithm

Consider a fulsome FST T in a minimum fixed orientation Steiner tree. As in the
previous sections, we view T as a tree embedded in the Euclidean plane composed
of line segments in legal directions. We can assume that T has at most one bent
edge pq (Corollary 2.20), and that pq contains a single corner point c; if T consists
of straight edges only, let c be the midpoint of an arbitrary edge pq in T . Recall the
definition of branches and branch trees from Sect. 1.4.2. If we cut edge pq at c, we
obtain two branch trees having straight edges only: one rooted at p having a stem
(or ray) leaving p along pc, and another rooted at q having a stem (or ray) leaving q

along qc. A branch is a set of branch trees that span a common set of terminals and
that have a common topology. For the fixed orientation problem, it is convenient to

140 2 Fixed Orientation Steiner Trees

B1

s1

s2

B2
s

Fig. 2.28 Branch trees B1 and B2 with roots s1 and s2 are joined to form a larger branch tree with
root s. The arrows indicate the paths from the terminals to the root of each branch tree. The purple
arrow shows the direction of the new stem

let each branch contain exactly one branch tree; that is, branches and branch trees
are identical in the discussion that follows.

As in the Euclidean problem, it is easy to see that we can combine
branches/branch trees to form larger branches/branch trees. Branch trees of size
1 consist of a single terminal having a stem leaving in one of the legal directions;
hence there are exactly 2� n branch trees of size 1 (where � is the number of legal
orientations and n is the number of terminals).

Consider two branch trees B1 and B2 with stems rooted at s1 and s2, respectively.
Assume that the stems of B1 and B2 intersect at a point s. If the directions of the
two stems correspond to the directions of two different colours in a single direction
set, then we can now form a larger branch tree B having its root at the intersection
s—with a new stem that emanates from s (Fig. 2.28). Also, if the directions of the
two stems correspond to directions of the same colour in a direction set, we can
view the intersection s as a potential corner point in a new FST, with s1s2 being the
single bent edge in the tree. With this interpretation, Algorithm 1.3 from Sect. 1.4
can be applied directly to the minimum fixed orientation Steiner tree problem.

One of the main tasks of the FST generation algorithm is to prune branches and
full Steiner trees (lines 14 and 19 in Algorithm 1.3). In the following section we
present the pruning tests applied in [294].

2.6.2 Pruning of Branch Trees and Full Steiner Trees

In this section we describe the most important tests for pruning branch trees and
for pruning FSTs. The tests are presented in the order in which they are used in
the algorithm—from the simple tests to the more time-consuming powerful tests.

2.6 GeoSteiner Algorithm 141

The section concludes with some remarks on the experimental performance of the
algorithm.

Direction Sets

One of the most basic properties of an FST T is that the directions of the edges in
T must come from a common direction set. Let D1 be the collection of direction
sets that the edges in branch tree B1 can come from; define D2 similarly for branch
tree B2. Now we must have D1 \ D2 ¤ ;, otherwise the merging of B1 and B2

would result in a non-minimal branch tree. Furthermore, the direction of the new
stem emanating from root s must come from a direction set in D1 \ D2, such that it
forms a valid set of directions around s. In the algorithm, we create one branch tree
for each possible direction of the stem—the number of such stems is at most three
(Exercise 2.14).

Canonical Forms

The concept of canonical forms facilitates a pruning procedure based on a strategic
choice of canonical form for each FST T . The idea is to choose a canonical form
that can be tested bottom-up in the algorithm, that is, which has an effect even for
small branch trees. This can be achieved by using the edge ordering that comes from
a depth-first traversal starting in the lowest indexed terminal of T (under any given
ordering of the terminals). To appreciate the effectiveness of such a canonical form,
consider two branch trees B1 and B2. Either the lowest indexed terminal is amongst
the terminals spanned by B1 and B2, or it is ‘outside’ (and thus unknown). In the
former case, we know which terminal has the lowest index, and this restricts the
distribution of directions in the merged branch tree. In the latter case, even more
restrictions can be enforced; if neither the restrictions in the former nor the latter
case can be fulfilled, the resulting branch tree can be pruned.

More specifically, we use the following canonical form for each FST T . Consider
any embedding for T . Let t be the lowest index terminal in T , and number the edges
according to a depth-first traversal of T from t . The children of a Steiner point in T

are visited by the depth-first traversal in the order given by their geometric locations
in the embedding of T such that the leftmost child is visited before the rightmost
child (see Fig. 2.17); note that zero-shifts preserve this ordering.

Define a branch tree to be clean if the edges use at most three directions, and
these three directions form a valid set of purely primary and/or purely secondary
edges in some direction set. (For example, for the uniform orientation problem with
� D 3m this corresponds to a branch tree where the edges meet at an angle of 2�=3

at every Steiner point.) A branch tree that is not clean is called mixed. The following
powerful constant-time tests can now be applied:

142 2 Fixed Orientation Steiner Trees

1. A mixed branch tree can only be merged with a clean branch tree, and the
minimum index terminal must reside in the mixed branch tree.

2. When merging a mixed branch tree with a clean branch tree, the directions used
by the clean branch tree must correspond to primary (respectively secondary)
edges in the mixed branch tree when the clean branch tree is on the left
(respectively right) as seen from the mixed branch tree; in addition, only one
stem direction is possible, corresponding to a primary edge.

3. When merging two clean branch trees to create a mixed branch tree, the merged
branch tree must have the required canonical form; for example, there can be no
primary edge in a right subtree on the path from the minimum index terminal to
the new root.

Other Pruning Tests

The other pruning tests used in FST generation for the minimum fixed orientation
Steiner tree problem are similar to those described in Chap. 1 for the Euclidean case,
and hence are only outlined very briefly here.

Lune property. Recall that a lune L.u; v/ is defined as the set of points that are
strictly within distance juvj of both u and v (where distance here is given by the
fixed orientation metric). If uv is an edge in a minimum fixed orientation Steiner tree,
then L.u; v/ cannot contain any terminal (Lemma 1.13). This test can be applied to
the two new edges s1s and s2s (see Fig. 2.28): if a terminal is inside one of the
lunes L.s1; s/ or L.s2; s/, the merged branch tree cannot be used to generate a full
component of a minimum Steiner tree, and hence can be discarded.

Bottleneck Steiner distance bound. The bottleneck Steiner distance BSD.t1; t2/

bounds the length of each edge on a path between terminals t1 and t2 in a minimum
fixed orientation Steiner tree (Lemma 1.14). Let N.B1/ and N.B2/ be the set of
terminals spanned by branch trees B1 and B2, respectively. Let

B D min
t12N.B1/; t22N.B2/

BSD.t1; t2/

be the minimum pairwise bottleneck Steiner distance between a terminal in N.B1/

and a terminal in N.B2/. Then we must have js1sj � B and js2sj � B .

Upper bounds. The new branch tree B interconnects the root s with the terminals
N.B1/ and N.B2/. Since B is assumed to be part of some minimum fixed
orientation Steiner tree, it must have minimum length. A number of different
heuristics can be applied to provide an upper bound on the length of a Steiner tree
that interconnects fsg [N.B1/ [N.B2/. For example, the following is a simple
upper bound:

U.B1; B2/ D jB1j C min
t12N.B1/

kt1sk C jB2j C min
t22N.B2/

kt2sk:

2.7 Applications and Extensions 143

The branch tree B can now be pruned if U.B1; B2/ < jBj. In GeoSteiner several
upper bounds are computed—properly ordered so that the bounds that can be
computed quickly are tried first [294]. As in the Euclidean case, the upper bound
tests can be quite time consuming, so it is important to find the right balance between
running time and pruning efficiency.

Construction and Generation of Full Steiner Trees

Like a branch tree, an FST is also constructed by merging a pair of branch trees B1

and B2. The stems of B1 and B2 must intersect at an angle that forms a valid bent
edge—or must simply overlap to create an FST with straight edges only. All of the
above pruning tests for branch tree candidates can be applied in a similar fashion to
test FST candidates; specifically, the tests based on direction sets, canonical forms,
the lune property, bottleneck Steiner distance bounds and upper bounds all apply for
the construction of an FST from two branch trees.

After applying these pruning tests, the resulting number of generated FSTs is
almost linear in practice, and the size of the largest generated FST, in practice, is
bounded by a constant as n increases. Using this algorithm, Nielsen et al. [294]
have solved randomly generated problem instances with up to 1,000 terminals in
less than 1 h for � � 8. On a modern computer, FST generation for 1,000 terminals
and � D 4 takes around 1 min.

2.7 Applications and Extensions

Basically all known applications of the fixed orientation Steiner tree problem come
from printed circuit design and chip design. (For a more detailed introduction to
these two problems, particularly chip design, see Sect. 3.6.) Since the invention of
integrated circuits, Manhattan routing has been the de facto standard in chip design.
In Manhattan routing, wires run either in horizontal or vertical directions. On a given
layer of the chip, almost all wires run in the same direction—the so-called preferred
direction of the layer. Vias are used to connect wires across layers.

During the 1990s advances in manufacturing technologies made it possible to
produce chips with more than two interconnect layers. The increased number of
layers opened up the possibility of using alternative directions so as to improve
the quality of the routing with respect to congestion, delay and power usage. As a
general rule, decreasing total wire length improves all these quality measures, and
may even lead to a reduced chip size.

In this section we first discuss some early applications of non-Manhattan
routing—namely printed circuit board routing and channel routing. Then we move
on to discuss advantages and disadvantages of pervasive full-chip non-Manhattan
routing. For further information about routing in chip design and extensions of the
fixed orientation Steiner tree problem motivated by chip design, see Sect. 3.6.

144 2 Fixed Orientation Steiner Trees

Fig. 2.29 Printed circuit board with diagonal routing (From Heiss [191])

2.7.1 Printed Circuit Boards and Channel Routing

The first algorithm for non-Manhattan routing in printed circuit design appears
to be due to Heiss [191]. In 1968, he gave an extension of the classical Lee
algorithm [242] that enabled diagonal routing (Fig. 2.29). Heiss also gave a
generalisation to more than two routing layers (where two layers correspond to
the two surfaces of a double-sided printed circuit board). Another alternative to
Manhattan routing was given by Chaudhuri [82] in 1979. Chaudhuri introduced
routing with three uniform orientations (corresponding to � D 3), and the new
metric was denoted the ‘Steiner metric’ to distinguish it from the usual rectilinear
(or Manhattan) metric. For printed circuit boards, Chaudhuri described a general
routing scheme for two layers, and he presented a method to deal with the problem
of routing three orientations on only two layers.

Chaudhuri also discussed non-Manhattan routing for the channel routing prob-
lem. Channel routing was one of the basic problems in chip design up to the late
1990s. In the technology of the time, cells were placed on rows on the chip surface,
and routing was performed in the areas between these rows (the channels). A
channel consists of two horizontal shores, where the terminals to be interconnected

2.7 Applications and Extensions 145

Manhattan Diagonal

Times square Hexagonal

Octo-square

Track 1

Track 2

Track 3

Track 4

Fig. 2.30 Channel routing models: Manhattan, diagonal, times square, hexagonal and octo-square

are located. Usually, each net consists of terminals from both shores; hence, the
interconnection for each net has to cross the channel.

In the traditional Manhattan routing model, routing is performed on a rectilinear
grid with horizontal tracks and vertical columns (Fig. 2.30). The number of tracks is
called the width of the channel. The main objective of the channel routing problem is
to minimise the number of tracks needed for the routing, as this minimises the area
used by the channel. Since the objective is not to minimise the length of the nets
(individually or jointly), channel routing may result in long connections for some of
the nets. For a detailed introduction to the theory and algorithms for the Manhattan
model, see [26, 249]. In the following we discuss some of the alternatives to the
Manhattan model that have been considered in the literature.

In the diagonal routing model, the rectilinear grid is simply rotated 45ı—hence
there are still only two orientations [263, 264, 266] (Fig. 2.30). One of the immediate
advantages of this model is that short two-terminal interconnections (between two
points on opposite horizontal shores) only require one layer change, as compared to
the Manhattan model where two changes always are needed—except when the two
terminals can be connected by a direct vertical connection. Thus fewer vias are in
general needed for channel routing under this model.

Returning to the problem studied by Chaudhuri [82], where three uniform
orientations are employed, one may distinguish between two cases. In the first
case, the so-called times square model, one of the three orientations is the (usual)
horizontal track, and the other two orientations are denoted right and left tracks,
respectively [43, 265, 354, 360, 361]. In the second case, the hexagonal model, one

146 2 Fixed Orientation Steiner Trees

of the three orientations is vertical [44, 312]. One of the advantages of the hexagonal
model is that terminals can be spaced at the same interval that separates the wires
in the grid; this is not possible under the times square model. Both models can be
shown to have superior properties when compared to the Manhattan or diagonal
models. Finally, the octo-square model merges the Manhattan and diagonal models.
This model has four uniform orientations corresponding to � D 4.

The octo-square model is discussed in a series of papers [26, 81, 83, 248, 291,
335, 382, 399, 419]. Although this model clearly has the advantage of having more
available orientations, it also has the disadvantage that the rectilinear and diagonal
wires cannot possibly have the same separation. A slightly different model was
discussed by Chiang and Sarrafzadeh [95], who introduced 45ı wires locally to
avoid so-called knock-knees in the wiring.

It is unclear to what extent the proposed models and algorithms have found
their way into the design of real chips. Channel routing essentially became obsolete
during the 1990s as a result of the new sea-of-cells technology, where cells could be
placed (more or less) freely on the chip surface; also, over-the-cell routing became
possible. In the next subsection we discuss general non-Manhattan routing which is
relevant for current day microchip technology.

2.7.2 General Routing in Chip Design

The application of multiple orientations to the general routing problem in chip
design was already anticipated by Widmayer et al. [400, 401] in 1985. In the early
1990s, Burman et al. [77] and Sarrafzadeh and Wong [338] gave the first practical
applications of �-geometry to general routing in chip design. During the following
decade a series of heuristics—mostly with inspiration from rectilinear and Euclidean
counterparts—were proposed for solving the Steiner tree problem in uniform and
fixed orientation metrics.

In 2000 Koh and Madden [236] presented the first in-depth study of the feasibility
of large-scale non-Manhattan routing architectures. Using simulation on realistic
benchmarks they showed that average wire length reductions between 1 and 11 %
could be obtained for hexagonal routing (� D 3) for a complete chip. Similarly,
reductions between 6 and 17 % could be obtained for octilinear routing (� D 4). It
should be noted that these improvements were obtained from the same placement
of cells on the chip.

Choi et al. [97] presented a similar analysis for octilinear routing that confirmed
the reductions in wire length; however, these reductions were obtained at the cost of
an increase in the number of non-routed nets and an increase in the number of vias.

X architecture The increasing commercial interest in non-Manhattan routing
during the 1990s led to the formation of the X Initiative in 2001, a consortium
of software and chip companies that supported the development of the so-called X
architecture [362]. The X architecture essentially adds diagonal wires to traditional

2.7 Applications and Extensions 147

Manhattan architecture (corresponding to � D 4). Early test cases have shown that
this architecture can lead to impressive reductions in area and path delay [214].

One of the major problems, however, with the X architecture is that gridded
routing does not work in practice; rectilinear and diagonal wires do not have the
same separation. This either results in problems with signal integrity or delay
(if diagonal wires are too close or too thin), or results in suboptimal use of
routing area (if only every second diagonal wire is used or the separation between
rectilinear wires is increased). One solution to this problem—but an algorithmically
challenging one—is to drop the preferred direction constraint and to allow all
directions on all layers; this is denoted liquid routing. This allows for directional
changes on a single layer, and can dramatically reduce the number of vias.

Ho et al. [198] suggested a multilevel approach for the X architecture. A multi-
level algorithm consists of two main steps: coarsening followed by uncoarsening.
The coarsening step is similar to the use of a global routing algorithm, but is
iteratively employed. The algorithm of Ho et al. on average reduced wire length
by 18.7 % for a set of benchmark instances when compared to Manhattan routing.

Y architecture As a reaction to the shortcomings of the X architecture,
Chen et al. [85–88] in 2003 took one step back and investigated the use of
hexagonal routing (corresponding to � D 3); they coined this the Y architecture.
The advantage is that gridded routing is in fact possible for this architecture since
all parallel wires have the same separation. Therefore, from an algorithmic point
of view, this architecture has a major advantage over the X architecture. Based
on simulations under realistic scenarios, Chen et al. [87] estimated that the Y
architecture improves wire length in the range 5–8 % over Manhattan architecture,
while the X architecture obtains improvements in the range 9–11 %. If the effect
of decrease in routing area can be fully utilised to make the chip smaller, wire
length improvements of approximately 23 and 29 % are possible for the Y and X
architecture, respectively.

A number of authors, including Yan [420] and Samanta et al. [333], have also
proposed models for Steiner trees in X and Y architectures that attempt to optimise
delay, rather than wire length.

Although it has been shown that both the X and Y architectures have the potential
to decrease wire length and signal delay significantly, it is (as of this writing) unclear
how many chips have been produced with these architectures. The first commercial
chip (from Toshiba) using the X architecture was produced in 2004, and at least one
chip (from ATI) followed in 2005.

General architecture In general architecture any number of uniform orientations
can be used for routing. Since each routing layer has a preferred direction, the total
number of available orientations usually depends on the number of layers. However,
since more than 10 routing layers are already common, the number of available
layers is not a limiting factor.

The problem of balancing the use of routing resources on the available layers was
studied for the Manhattan architecture by Yildiz and Madden [424, 425], and for
general architecture by Agnihotri and Madden [3]. The idea is to make the routing

148 2 Fixed Orientation Steiner Trees

cost on each layer (as seen by the routing algorithm) depend on the congestion on
the layer. By iteratively adjusting the routing cost on each layer, congestion can be
lowered on highly utilised layers.

Paluszewski et al. [299, 300] presented a completely different, geometry-oriented
approach to deal with congestion when many routing layers are available. The idea
is to exploit the fact that a minimum Steiner tree can be embedded in many different
ways in �-geometry. In the first phase of the algorithm, minimum Steiner trees
and their flexibility polygons are computed for each net on the chip; recall that a
flexibility polygon is a geometric representation of all minimum Steiner trees for
a given net (see Sect. 2.4.3). Each flexibility polygon is assigned a weight that is
equal to the routing area used by the minimum Steiner tree divided by the area of
the flexibility polygon. The weight represents the average probability that routing
resources are needed for a given point in the flexibility polygon. Based on the
weights of the flexibility polygons, a congestion map is constructed for the whole
chip area. The congestion map gives the estimated routing resources needed for each
point of the chip area. The idea of the algorithm is now to move wires away from
highly congested areas. Experiments with the new method show that it is indeed an
advantage to use flexibility polygons in the initial routing phase. When using 5 or 6
layers, architectures with � � 4 reduce total wire length by 7–18 % when compared
to Manhattan routing.

Exercises

2.1. If P1 D u1u2u3u4 is a convex fixed orientation path between u1 and u4, then it
is non-minimal.

2.2. Show that if we choose a set of legal orientations such that the orientation
polygon C is not convex, then for any pair of points p and q and for any
orientation corresponding to a vertex of C that is not an extreme point of the
convex hull of C there exists a shortest fixed orientation path between p and
q not using that orientation.

2.3. Prove Corollary 2.4.

2.4. Show that in any minimum �-geometry Steiner tree the minimum meeting
angle at any Steiner point or terminal is strictly greater than �=2�2! (without
using Theorem 2.5).

2.5. Show that, for any given �, there exists a minimum �-geometry Steiner tree
such that the minimum meeting angle
 at a Steiner point satisfies
 < 2�=3.
[Hint: For the case where � D 3m this requires a continuity argument.
Consider a minimum �-geometry Steiner tree with a single Steiner point
where all angles at the Steiner point are 2�=3, and investigate the effect of
perturbing one of the terminals at right angles to the incident edge.]

2.7 Applications and Extensions 149

2.6. Show that, despite Corollary 2.6, if � D 3 or 6, then for any terminal set:

(a) No minimum �-geometry Steiner tree has a Steiner point of degree
5 or 6; and

(b) There exists a minimum �-geometry Steiner tree in which every Steiner
point has degree 3.

2.7. Show that if a direction set D has cardinality 4, then the angle 	 between the
green and blue directions is strictly less than � (Lemma 2.13). [Hint: Apply a
continuity argument similar to that used in the proof of Lemma 2.7.]

2.8. Let s be a Steiner point in a fixed orientation Steiner configuration with
coloured direction set D D fd1; d2; : : : ; dkg, where k D 5 or 6. Define the
direction weight set of D to be the set fw1; w2; : : : ; wkg where each wi D
1=jdi j, and define the direction angle set of D to be the set f	1; 	2; : : : ; 	kg
where each 	i is the angle between di and diC1 (where addition in the
subscripts is modulo k).

(a) If k D 5 show that

w2 sin.	5/ � w1 sin.	1 C 	5/

sin.	1/
C w3 sin.	4/ � w4 sin.	3 C 	4/

sin.	3/
D w5:

(b) If k D 6 show that the following two conditions hold simultaneously:

w2 sin.	5 C 	6/ � w1 sin.	1 C 	5 C 	6/

sin.	1/
C w3 sin.	4/ � w4 sin.	3 C 	4/

sin.	3/
D w5

and

w2 sin.	6/ � w1 sin.	1 C 	6/

sin.	1/
C w3 sin.	4 C 	5/ � w4 sin.	3 C 	4 C 	5/

sin.	3/
D w6:

2.9. Prove Corollary 2.18.

2.10. Let T be a fulsome �-geometry Steiner tree, where � D 3m. Show that any
fundamental 1-point zero-shift for T preserves the amount of primary material
in T .

2.11. Given a fixed orientation metric with unit circle C, let ul , l D 0; : : : ; 2� � 1,
be the 2� vectors that define the extreme points C (in counter-clockwise order
around the circle). For two given points p and q, let f˛l ; ˇl g be the unique
solution to q D p C ˛l ul C ˇl ulC1 for each l D 0; : : : ; 2� � 1. Show that
kpqk D maxl2f0;:::;2��1g.˛l C ˇl /.

150 2 Fixed Orientation Steiner Trees

2.12. Complete the proof of Lemma 2.25, by showing that if .s; u/ and .s0; v/ use
different red directions, then .s; v/ and .s0; u/ intersect. [Hint: Show that there
exist real numbers p; q > 0 such that: ˛1 D 1 C p; ˛2 D �q; ˇ1 D
�p; ˇ2 D 1 C q, and derive suitable expressions for k1 and k2 in terms of p

and q that satisfy Eq. (2.3).]

2.13. Show that cos.�=.2�//�1 is the maximum ratio of the distance between two
points in �-geometry and Euclidean geometry.

2.14. Show that, in the process of generating an FST for a minimum fixed
orientation Steiner tree, when merging two given branch trees to create a
new branch tree there are at most three possible directions for the stem of
the merged branch tree.

2.15. Note that the triangular feasible region for the Steiner point in Fig. 2.19
includes one of the terminals of the tree. This implies that the minimum
Steiner tree shown is not fulsome. Show that, for � D 3 and any set of three
terminals, any non-degenerate minimum Steiner tree that contains a Steiner
point is not fulsome.

Chapter 3
Rectilinear Steiner Trees

In this chapter we consider the problem of constructing a network of minimum
length interconnecting a given set of points in the Euclidean plane, where each edge
of the network is composed of horizontal and vertical line segments. This problem
is known as the rectilinear Steiner tree problem. Of all the problems studied in this
book, the rectilinear Steiner tree problem is probably the most important from an
applications point of view. Since its introduction by Maurice Hanan [187] in 1966,
the problem has been recognised as having a crucial role in chip design, in particular
in the physical design of very-large-scale integration (VLSI) circuits. In chip design
the given points correspond to electrical terminals that should be interconnected
using a minimum amount of wire. An overview of current applications is given at
the end of this chapter.

For any two points p and q in the plane, the minimum length of a path between
them composed of horizontal and vertical line segments defines a norm, known as
the `1 norm (or `1 distance). If p D .px; py/ and q D .qx; qy/ in the plane, their `1

distance is jpqj1 D jpx � qx j C jpy � qy j, that is, the sum of distances in each of
the two dimensions. The `1 distance is also called the rectilinear or Manhattan or
taxicab distance. Formally, the rectilinear Steiner tree problem is as follows:

RECTILINEAR STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying in the plane.
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, and
such that jT j1 WD P

e2E.T / jej1 is minimised.

A solution to this problem is always a tree, and is referred to as a minimum
rectilinear Steiner tree. The given points in N are denoted terminals, and the
possible points in V.T / n N are called Steiner points. The rectilinear Steiner tree
problem is clearly identical to the uniform orientation Steiner tree problem for
� D 2 (see Chap. 2). In this chapter we always consider a minimum rectilinear
Steiner tree as being embedded in the Euclidean plane using horizontal and vertical

© Springer International Publishing Switzerland 2015
M. Brazil, M. Zachariasen, Optimal Interconnection Trees in the Plane,
Algorithms and Combinatorics 29, DOI 10.1007/978-3-319-13915-9_3

151

152 3 Rectilinear Steiner Trees

line segments. This means that all lengths can be measured using the Euclidean
metric.

Note that although the theory of rectilinear Steiner trees builds in a natural way
on many of the results in the previous two chapters, we will nevertheless present
this material in a way that is as self-contained as possible.

3.1 Local Properties of Steiner Points and Full Components

We begin our study with some definitions that are useful for characterising the
structure of minimum rectilinear Steiner trees, and we recall a number of the relevant
definitions that were introduced in Chaps. 1 and 2. We then establish some basic
geometric properties of minimum rectilinear Steiner trees, and we end the section
with a powerful characterisation of the full components of a minimum rectilinear
Steiner tree – the so-called Hwang form.

3.1.1 Basic Definitions and Properties

Basic Definitions

Consider a minimum rectilinear Steiner tree T D .V .T /; E.T // for a given terminal
set N ; an example of such a tree is given in Fig. 3.1. The node set V.T / contains all
elements of N and some additional Steiner points. We can assume without loss of
generality that all Steiner points have degree 3 or 4. A Steiner point of degree 3 is
called a T-point, and a Steiner point of degree 4 is called a cross.1

The edge set E.T / consists of edges that connect pairs of nodes u and v

by shortest rectilinear paths. The edge .u; v/ is a straight edge if uv is either a
horizontal or a vertical line segment; otherwise, .u; v/ is a bent edge. As shown by
Theorem 2.1, a bent edge can be assumed to consist of exactly two line segments.
Therefore, we may assume that a rectilinear bent edge consists of a horizontal and
a vertical line segment that meet at a corner point. For any bent edge .u; v/ there
are two possible minimum length embeddings that contain a single corner point;
this is illustrated in Fig. 3.2. We describe the process of moving from one of these
embeddings to the other as a flip.

A line of segments is a sequence of one or more adjacent, collinear segments with
no terminal nodes sharing two adjacent segments (however, the endpoints of the line
may be terminals). This leads to two definitions that are important for developing
canonical forms for minimum rectilinear Steiner trees.

1The more general definition of a cross, for any norm, is given in Sect. 1.6.2. Clearly, the definition
in this chapter is consistent with the more general definition.

3.1 Local Properties of Steiner Points and Full Components 153

t1

t2

t3

t4

t5

t6

t7

s1

s2 s3 s4

c1

c2
c3

t1

t2

t3

t4

t5

t6

t7

Fig. 3.1 Two minimum rectilinear Steiner trees for the same set of terminals t1; : : : ; t7. In the top
tree, s1, s2, s3 and s4 are Steiner points, while c1, c2 and c3 are corner points. Edge .s1; s2/ is
a straight edge and edge .s4; t7/ is a bent edge; line c3t4 is a complete line and .c3t4; c3t7/ is a
complete corner. The top tree has two full components and is not fulsome. The bottom tree has
three full components and is fulsome

u

vc1

c2

Fig. 3.2 Two possible embeddings of an edge .u; v/, one containing corner point c1 and the other
containing corner point c2. The orange arrow indicates a flip between one embedding and the other

154 3 Rectilinear Steiner Trees

Definitions [Complete line, complete corner]: A complete line is a line of
segments of maximal length; it is not properly contained in any other line of
segments. Any corner point c is an endpoint of two complete lines, one in each
of the two perpendicular directions given by the incident segments. Let t and t 0
be the other endpoints of the complete lines incident to c. The pair of complete
lines (ct, ct0) is called a complete corner located at c; ct and ct0 are the legs of
the complete corner.

An example of a complete corner is .c3t4; c3t7/ in Fig. 3.1 (top).
As in the previous chapters, a rectilinear Steiner tree in which every terminal has

degree 1 is called a full rectilinear Steiner tree. Every rectilinear Steiner tree is a
union of full rectilinear Steiner trees (also known as full components) meeting only
at terminals. A rectilinear Steiner tree is said to be fulsome if it has the maximum
possible number of full components amongst all rectilinear Steiner trees with the
same length. (Hence, a minimum rectilinear Steiner tree is full and fulsome if there
is no minimum rectilinear Steiner tree on the same set of terminals with two or more
full components.)

Properties of Steiner Points

The following lemma summarises some basic properties of Steiner points in
minimum rectilinear Steiner trees; the proof is left as Exercise 3.1.

Lemma 3.1 Let s be a Steiner point in a minimum rectilinear Steiner tree T . Then
the following properties are true:

• The edges incident to s cannot overlap with each other for any embedding of the
edges.

• If s is a cross, then all edges incident to s are straight edges.
• If s is a T-point, then at most one edge incident to s is a bent edge.
• For any straight edge .s; u/ incident to s there exists another straight edge .s; v/

incident to s and perpendicular to .s; u/.

In order to achieve a useful geometric characterisation of the Steiner points in
a minimum rectilinear Steiner tree T , we assume in the remainder of this section
that T is fulsome. We begin with a technical lemma that is a direct corollary of
Lemma 1.37; for completeness, we sketch the proof of the lemma here.

Lemma 3.2 (Rectilinear sliding lemma) Let e D .s1; s2/ be a straight edge
connecting two Steiner points s1 and s2 in a fulsome minimum rectilinear Steiner
tree T . Let e1 D .s1; v1/ be the next edge incident to s1 travelling counter-clockwise
from e, and let e2 D .s2; v2/ be the next edge incident to s2 travelling clockwise
from e. Suppose e1 and e2 are straight edges, perpendicular to e, and located on the
same side of the line through e (Fig. 3.3). Then T is not fulsome.

3.1 Local Properties of Steiner Points and Full Components 155

Fig. 3.3 Illustration of
rectilinear sliding lemma

s1 s2

v2

v1

e1

e

e2

Proof (Sketch) We define a slide of a straight edge in a rectilinear Steiner tree to
be a displacement of that edge in a direction orthogonal to the direction of the
edge. Assume that we slide e so that its endpoints move in the direction of v1 and
v2 (see Fig. 3.3). As we slide e, the endpoints will overlap with the nodes on the
perpendicular complete lines containing s1 and s2, respectively. If e meets a terminal
during the slide, then T is not fulsome. Therefore, v1 and v2 must be Steiner points.
None of the Steiner points met by e can have an edge that overlaps with e; thus, it
must be possible to continue the slide past any Steiner point. Also, it is easy to show
that none of the subsequent nodes met by e (after v1 and v2) can be corner points,
as this would contradict the minimality of T . Hence, we can continue the slide of e

until we obtain a contradiction to either minimality or fulsomeness. ut
This lemma is called the rectilinear sliding lemma, since it can be restated as

follows: in a fulsome minimum rectilinear Steiner tree we cannot slide any straight
edge freely between two perpendicular straight edges, as this leads to a contradiction
to either minimality or fulsomeness. (Note that such a slide is an example of a zero-
shift that does not change the length of the tree; see Sect. 2.3.3.)

Together, Lemmas 3.1 and 3.2 can be used to obtain the following properties of
Steiner points in fulsome minimum rectilinear Steiner trees:

Lemma 3.3 (A cross has only terminals as neighbours) Let s be a cross in a
fulsome minimum rectilinear Steiner tree T . Then the neighbours of s are terminals.

Proof The four edges incident to s are straight edges (Lemma 3.1). Assume that
one of the neighbours of s, denoted by u, is a Steiner point. By Lemma 3.1, Steiner
point u must have an incident straight edge .u; x/ that is perpendicular to .s; u/. Now,
edge .s; u/ fulfils the conditions of the rectilinear sliding lemma, contradicting the
fulsomeness of T . ut
Lemma 3.4 (A T-point ends in a terminal) Let s be a T-point in a fulsome
minimum rectilinear Steiner tree T , and let u, v and w be the three neighbouring

156 3 Rectilinear Steiner Trees

nodes of s. Suppose the edges .s; v/ and .s; w/ are collinear and straight edges.
Then .s; u/ is a straight edge and u is a terminal.

Proof First we observe that .s; u/ must necessarily be a straight edge – otherwise it
is clear, by applying a flip to .s; u/, that T is not length-minimal. Assume that u is a
Steiner point. Now we can use the same arguments as in the proof of Lemma 3.3 to
show that T is not fulsome. ut

In other words, if a degree 3 Steiner point has two collinear incident edges, then
the third edge must be connected to a terminal. Note that the lemma does not hold
if one of the neighbours v or w is a corner point.

The proof of the third corollary of Lemmas 3.1 and 3.2, below, is left as an
exercise (Exercise 3.2).

Lemma 3.5 (A complete corner ends in terminals) Let c be a corner point for a
bent edge in a fulsome minimum rectilinear Steiner tree T , and let (ct, ct0) be the
complete corner located at c. Then t and t 0 are both terminals of T .

3.1.2 Hwang Form for Full Components

The rectilinear distance function induces a metric, known as the rectilinear metric.
The rectilinear metric is not strictly convex, so in general there may be infinitely
many minimum rectilinear Steiner trees for a given set of terminals. It is therefore
important from an algorithmic point of view to devise canonical forms of minimum
rectilinear Steiner trees that can be constructed efficiently. In this section we focus
on the local structure of full components, and we show that full and fulsome
minimum rectilinear Steiner trees can be assumed to have a simple canonical form
called the Hwang form.2

As a consequence of Lemma 3.3, we first focus on full components where all
Steiner points have degree 3 (i.e., are T-points). Later we shall see how crosses –
which are special full components that have a single Steiner point of degree 4 – fit
into the picture.

The approach that we follow in this section is as follows. First we recall and apply
the relevant parts of the general theory developed in Chap. 2 for fixed orientation
metrics to the rectilinear metric. Then we show that the general theory leads to a
particularly simple characterisation of full components for the rectilinear metric,
immediately implying the Hwang form property.

2The Hwang form is named after Frank K. Hwang, who gave the characterisation in his seminal
paper from 1976 [209]. A simpler proof of the Hwang form was given by Richards and
Salowe [322] (see also Zachariasen [429]). In this book we give a proof that is based on the theory
of canonical forms developed for general fixed orientation metrics in Chap. 2.

3.1 Local Properties of Steiner Points and Full Components 157

Direction Sets, Primary/Secondary Directions, Zero-Shifts
and One Bent Edge

Recall that the legal directions that are used by the edges incident to a Steiner point
are part of some direction set (where directions are considered as oriented either
inward or outward from the Steiner point). For the rectilinear metric, a Steiner
point of degree 3 has at most one incident bent edge (Lemma 3.1). Therefore, a
direction set has four directions: two red directions corresponding to the (possibly)
bent edge, one green and one blue direction (Fig. 3.4). The two red directions are
labelled the exclusively primary and exclusively secondary direction, respectively,
in counter-clockwise order around the Steiner point; the blue and green edges can be
considered to be both primary and secondary. Note that all the figures in this section
are illustrated using the specific direction set shown in Fig. 3.4.

We can use zero-shifts (as introduced in Sect. 2.3.3) to make length-preserving
perturbations of the Steiner points. In the rectilinear metric, zero-shifts are obtained
by performing a series of slides of straight edges (as in Fig. 3.3) and/or flips of bent
edges. Zero-shifts can be decomposed into perturbations that exchange exclusively
primary and exclusively secondary material in a pair of edges. A zero-shift is
complete if it uses all of the exclusively primary or all of the exclusively secondary
material from one of the pair of edges. (Hence, a zero-shift has the effect of making
at least one bent edge straight.)

Let T be a full and fulsome minimum rectilinear Steiner tree. From Chap. 2 we
have the following results:

1. T uses a single direction set (Theorem 2.11).
2. Given any two red edges e1 and e2 in T , where e1 has an exclusively primary

component and e2 has an exclusively secondary component, there exists a
complete zero-shift for e1 and e2 (Theorem 2.19).

3. There exists a minimum rectilinear Steiner tree with the same terminals and
topology as T that has at most one bent edge (Corollary 2.20).

The fact that T may be assumed to have at most one bent edge can be used to
prove a powerful characterisation of T . We make use of the following definition.

Fig. 3.4 Rectilinear direction
set (left) and a Steiner point s

using the direction set (right)

PRI

SEC

s

158 3 Rectilinear Steiner Trees

Definition [Caterpillar tree]: Define a caterpillar tree to be a tree that has a
central path P such that every node in the tree is either on P or is connected
directly to P .

In other words, a full Steiner tree T is a caterpillar tree if and only if the subtree
induced by the Steiner points of T is a path. Note that being a caterpillar is a property
of the topology of the Steiner tree.

Lemma 3.6 (Rectilinear full components are caterpillar trees) Let T be a full
and fulsome minimum rectilinear Steiner tree spanning at least 3 terminals, and
containing at most one bent edge. Then the topology of T is a caterpillar tree where
the central path is formed by all the Steiner points in T .

Proof We begin by showing that every Steiner point in T has at least one terminal
as neighbour (or, equivalently, at most two adjacent Steiner points). First consider a
Steiner point s that is incident to straight edges only. By Lemma 3.4, Steiner point
s has at least one adjacent terminal.

Next, if T contains a bent edge, consider a Steiner point s that is incident to
the single bent edge in T (Fig. 3.5). Let .s; u/ and .s; v/ be the two other (straight)
edges that are incident to s. We show that either u or v is a terminal. Both u and
v are incident to straight edges only, since T has at most one bent edge. We can
assume that the bent edge is embedded so that its corner point c is collinear with s

and v, as in Fig. 3.5.
If u is a Steiner point then, by Lemma 3.4, u must have an adjacent terminal t ,

such that .u; t/ is perpendicular to .s; u/. If t is on the same side of su as v, then
the rectilinear sliding lemma is violated. Instead, assume that t is on the side of
su opposite to v, as in Fig. 3.5. If t is closer to su than the corner point c of the
bent edge, then we may slide su towards t : the slide can be continued until the edge
meets t – which contradicts the fulsomeness of T (Fig. 3.5, left). If t is further away
from su than c, then the slide can be continued until an endpoint of the edge meets
c (Fig. 3.5, right). In this case c becomes a T-point where the neighbour v must be a
terminal (by Lemma 3.4). Thus, we have shown that either u or v must be a terminal.

Fig. 3.5 Illustration of
Lemma 3.6. On the left t is
closer to su than c. On the
right t is further away from su
than c

sv

u t

sv

u t

c c

3.1 Local Properties of Steiner Points and Full Components 159

Fig. 3.6 Illustration of proof
of Lemma 3.7. Exactly one of
the two red edges is collinear
with .s1; s2/ PRI

SEC

s2
s1

Let T be the topology of T . Note that, because T is full, the subgraph of T
induced by the Steiner points is a tree (in other words, is connected). Since each
Steiner point is adjacent to at most two other Steiner points, this tree must be a path,
completing the proof. ut

We note that the condition in Lemma 3.6 that T has only one bent edge can
be omitted, as it can be shown that if T is a full and fulsome minimum rectilinear
Steiner tree, then any slide (and hence any zero-shift) in T preserves the topology
of T . See Exercise 3.3.

Recall from Chap. 2 that a subtree of T is a primary subtree (or secondary
subtree), if all edges are primary (respectively, secondary) edges. A subtree that
is either primary or secondary is denoted a clean subtree.

Lemma 3.7 (Subtrees consisting of straight edges only are clean) Let T be a
full and fulsome minimum rectilinear Steiner tree. Consider any subtree T 0 of T

that consists of straight edges only. Then T 0 is a clean subtree.

Proof Assume that T 0 is not clean; that is, there exist both a primary red edge and a
secondary red edge in T 0. Then there must exist a pair of neighbouring Steiner points
s1 and s2 in T 0, such that s1 has an incident primary red edge and s2 has an incident
secondary red edge. It follows that exactly one of these red edges is collinear with
.s1; s2/; hence, either s1 or s2 is a T-point where the non-collinear incident edge does
not end in a terminal (Fig. 3.6). By Lemma 3.4, this gives a contradiction. ut

Canonical Forms

Consider any ordering
 of the edges of a full and fulsome minimum rectilinear
Steiner tree T . From Theorem 2.23 we know that there exists a minimum rectilinear
Steiner tree T
 with the same terminals and topology as T with the following
properties: T
 contains an edge e
 , which we refer to as a transition edge, satisfying
the following properties:

• All edges other than the transition edge are straight edges;
• All edges that come before the transition edge under the given ordering are

primary;

160 3 Rectilinear Steiner Trees

Fig. 3.7 A primary and a
secondary clean subtree for
the direction set shown in
Fig. 3.4

• All edges that come after the transition edge under the given ordering are
secondary. We say that T
 is canonical with respect to the given ordering
 of
the edges.

Consider a full and fulsome minimum rectilinear Steiner tree T that is canonical
under some ordering of the edges, and let e be the transition edge. Let T1 and
T2 be the two connected components of T � e (the forest obtained from T by
deleting the edge e). Note that these two subtrees consist of straight edges only.
From Lemma 3.7 it follows that T1 and T2 are clean subtrees, and therefore each has
one of the two forms that are illustrated in Fig. 3.7. Hence, each subtree consists of
a complete line containing the Steiner points with alternating segments attached to
the complete line.

The Hwang Form

So far we have shown that for a full and fulsome minimum rectilinear Steiner tree
T that is canonical under some ordering of the edges, the two subtrees T1 and T2,
obtained by deleting the transition edge e, are clean subtrees. In order to achieve a
particularly simple canonical form, we now restrict the given ordering of the edges
in the canonical form as follows. Consider the Steiner point path P of T , and let t be
a terminal that is connected directly to one of the endpoints of P . We order the edges
by a depth-first traversal of T starting at t . When we visit a Steiner point during the
traversal we always visit the adjacent terminal leaf or leaves before visiting the
single Steiner point child (if any). Informally, we visit the nodes of T in the order in
which they appear along the central path P of T . Denote this ordering of the edges
by
 D
.t/, and let e
 be the transition edge of the tree T
 having the resulting
canonical form.

First, assume that e
 is a bent edge, and let subtrees T1 and T2 be the two
connected components of T � e
 , where T1 contains terminal t . Observe that e

must either be an edge on the central path P or incident to one of the endpoints
of P ; this follows from the arguments in the proof of Lemma 3.6. Therefore, from

3.1 Local Properties of Steiner Points and Full Components 161

PRI PRI
SEC

SEC

eφ

PRI

PRI

e

SEC

T T

SECSEC

T1

T2

Fig. 3.8 Illustration of proof of claim

Lemma 3.7 we have that T1 is a primary (clean) subtree and T2 a secondary (clean)
subtree.

Claim One of the subtrees T1 and T2 spans at most 2 terminals.

Proof of Claim Assume, to the contrary, that both T1 and T2 span more than 2
terminals (as illustrated in Fig. 3.8, left). This implies that T1 contains an exclusively
primary red edge and T2 contains an exclusively secondary red edge. Then we
can always perform a simple zero-shift such that we obtain a new minimum
rectilinear Steiner tree T 0, where another edge e0 is the only bent edge (Fig. 3.8,
right). Furthermore, in T 0 one of the subtrees is no longer clean, contradicting
Lemma 3.7. ut

Second, assume that e
 is a straight edge. Then all edges in T are straight edges,
and it follows from Lemma 3.7 that T consists of either primary edges or secondary
edges. We have obtained the following theorem.

Theorem 3.8 ([209] Hwang form for rectilinear trees) There exists a minimum
rectilinear Steiner tree for a given set of terminals N such that every full component
has the so-called Hwang form. In the Hwang form, every full component spanning k

terminals consists of a complete corner (which is also referred to as the backbone)
with terminal endpoints referred to as the root t1 and the tip tk . The leg containing
the root is called the long leg and the leg containing the tip is called the short leg of
the complete corner. There are two main types (i) and (ii) and two degenerate cases
of type (i):

• Type (i) has k � 2 alternating segments incident to the long leg and no segment
incident to the short leg. Degenerate case (i0) has a zero-length short leg; i.e., the
complete corner is degenerated into a complete line. Degenerate case (i00) is a
cross interconnecting exactly four terminals.

• Type (ii) has k � 3 alternating segments incident to the long leg and one segment
incident to the short leg.

162 3 Rectilinear Steiner Trees

t1

t2

t3

t4

t5

t6

Type (i)

t1

t2

t3

t4

t5

t6

Type (ii)

Fig. 3.9 Hwang form full components: main types

t1

t2

t3

t4

t5

t6

Case (i’)

t1

t2

t3

t4

Case (i”)

Fig. 3.10 Hwang form full components: degenerate cases of type (i)

Note that the terminology short leg and long leg is not meant to connote
geometric length – rather, the long leg can have more incident segments than the
short leg. The two main types are illustrated in Fig. 3.9, and the two degenerate
type (i) cases are depicted in Fig. 3.10.

A non-degenerate Hwang form tree T can be transformed into a corner-flipped
version of itself (Fig. 3.11). The corner-flipped version is obtained through a zero-
shift (a series of slides and flips), or equivalently, by considering a canonical form
where the edges are ordered in the opposite order to that of T .

In the corner-flipped version the direction of the long leg from the corner point
becomes the opposite to what it is in the original tree (east versus west or north
versus south). This observation implies that we only need to consider two rather
than four directions of the long leg when enumerating Hwang form trees.

The notion of corner-flipped trees creates three equivalence classes of Hwang
forms given by the type and parity (odd/even) of the number of segments incident
to the long leg. The first equivalence class contains Hwang form type (i) trees with
an odd number of segments incident to the long leg, and type (ii) trees with an even
number of incident segments. The second equivalence class contains Hwang form
type (i) trees with an even number of segments incident to the long leg; and the third
equivalence class contains type (ii) trees with an odd number of incident segments.

The transformation between corner-flipped Hwang forms implies the following
lemma; the proof is left as Exercise 3.4:

Lemma 3.9 (Short leg upper bound) Let T be a full and fulsome minimum
rectilinear Steiner tree with Hwang form. For a type (i) tree, let d denote the length

3.1 Local Properties of Steiner Points and Full Components 163

Type (i) odd Type (ii) even

Type (i) even

Type (ii) odd

Type (ii) even

Type (i) even

Type (ii) odd

Type (i) odd

Fig. 3.11 Corner-flipped Hwang forms

of the short leg; otherwise, for a type (ii) tree, let d denote the distance from the
corner point to the Steiner point on the short leg. Let st be any segment incident to
the long leg and on the same side of the long leg as the short leg. Then d < jstj.

Finally, we note that a Hwang form tree for a given topology can be constructed
in linear time. That is, given a full Steiner topology with a caterpillar topology
spanning a given set of terminals, we can locate the Steiner points according to
a Hwang form – or decide that no such tree exists – in linear time in the number of
terminals (see Exercise 3.5).

164 3 Rectilinear Steiner Trees

3.2 Global Properties of Minimum Steiner Trees

In the previous section we looked at properties of Steiner points and full compo-
nents, that is, local properties of minimum rectilinear Steiner trees. In this section
we discuss some important global properties of these trees. First we define the
related minimum spanning tree problem, and discuss the Steiner ratio – which is
the smallest ratio between the length of a minimum Steiner tree and the length of
a minimum spanning tree for the same set of terminals. We then define the Hanan
grid, which gives a polynomial reduction of the rectilinear Steiner tree problem
to the Steiner tree problem in graphs. We present a number of so-called empty
regions associated with minimum rectilinear Steiner trees, and use these to give
some bounds on the number of possible Hwang form trees. Finally, we show that
the rectilinear Steiner tree problem is NP-hard, and that it is equivalent to any fixed
orientation Steiner tree problem with two legal orientations.

3.2.1 Steiner Ratio

Consider the problem of optimally interconnecting N under the rectilinear metric
without being allowed to use Steiner points. As in Chap. 1, this corresponds to
computing a minimum rectilinear spanning tree for N . This problem can be solved
in O.n log n/ time, where n D jN j [197].

Let T .N / and T .N / denote a minimum rectilinear Steiner tree and a minimum
rectilinear spanning tree, respectively, for N under the rectilinear metric. Recall that
we denote the rectilinear (or `1) norm by j � j1. As in Sect. 2.5.1, define

�2.N / WD jT .N /j1
jT .N /j1

to be the ratio between the lengths of a minimum rectilinear Steiner tree and a
minimum rectilinear spanning tree for N . (Note that the notation ‘�2’ comes from
the more general notation introduced in Sect. 2.5.1, where ‘��’ is the Steiner ratio
in �-geometry.) The Steiner ratio �2 for the rectilinear metric is defined as

�2 WD inf
N

�2.N /:

In other words, the Steiner ratio is the smallest possible ratio between the minimum
rectilinear Steiner tree and minimum rectilinear spanning tree lengths for any set of
terminals.

Consider the set of terminals N4 D f.�1; 0/; .0; �1/; .1; 0/; .0; 1/g. The min-
imum rectilinear Steiner tree for N4 is a cross of length 4. Since the rectilinear
distance between any pair of points in N4 is 2, it follows that the length of a
minimum rectilinear spanning tree for N4 is 6; hence �2.N4/ D 4=6 D 2=3. Thus,

3.2 Global Properties of Minimum Steiner Trees 165

the Steiner ratio in the rectilinear metric is at most 2=3. In the following theorem
we show that the ratio is exactly 2=3.

Theorem 3.10 ([209]) The Steiner ratio for the rectilinear plane is

�2 D 2

3
:

Proof Let T WD T .N / and T WD T .N / denote a minimum rectilinear Steiner tree
and a minimum rectilinear spanning tree, respectively, for some set of terminals N .
We show that jT j1=jT j1 � 2=3, or equivalently jT j1 � 3=2jT j1.

The statement only needs to be established for every possible full component, in
particular only for full components having the Hwang form. To see why, assume
that T is a union of full components T1; : : : ; Tm. Assume that the Steiner ratio
theorem holds for every full component Tl ; then there exists a minimum rectilinear
spanning tree, denoted by T l , for the set of terminals spanned by Tl such that
jT l j1 � 3=2jTlj1. The union of T 1; : : : ; T m, denoted by T

0
, is clearly a spanning

tree for N . Since

jT j1 � jT 0j1 D
m
X

lD1

jT l j1 �
m
X

lD1

3=2jTlj1 D 3=2jT j1;

the theorem also holds for any – not necessarily full – minimum rectilinear
Steiner tree.

We therefore focus our attention on an arbitrary Hwang form full component
Tl spanning a set of terminals Nl , and show that jT l j1 � 3=2jTlj1, where T l is a
minimum rectilinear spanning tree for Nl . Suppose Tl spans k D jNl j terminals.
Our proof will be by induction on k. The base case, k � 4, is left as Exercise 3.6.

First we assume that Tl is a Hwang form type (i) tree. The root is denoted by t1
and the alternating incident segments, in the direction from the root to the corner
point, are denoted by s2t2; : : : ; sktk , where sk is the corner point of Tl . It turns out
to be useful also to consider the root t1 as being connected to the long leg via a
degenerate edge connecting to the Steiner point s1 D t1.

By converting Tl to its corner-flipped form, if necessary, we can show that there
exists an i 2 f1; : : : ; k � 3g such that jsi ti j � jsiC2tiC2j and jsiC1tiC1j � jsiC3tiC3j
(see Exercise 3.7). Let A D ft1; : : : ; ti g and B D ftiC3; : : : ; tkg (Fig. 3.12). Let TA

and TB be the subtrees of Tl that interconnect A and B , respectively, and let TC

be the subtree containing the remaining edges of Tl . Let T A and T B be minimum
rectilinear spanning trees for A and B , respectively. By the inductive hypothesis we
have jT Aj1 � 3=2jTAj1 and T B j1 � 3=2jTBj1.

Let C D fti ; tiC1; tiC2; tiC3g. Consider the boundary of the smallest axis-aligned
rectangle R that contains C . Rectangle R has width W D jsi siC3j and height
H D jsiC1tiC1j C jsiC2tiC2j, and we have jTC j1 D W CH . The boundary of R has
length 2.W C H/, and it contains all terminals in C . Therefore, we can construct a
spanning tree interconnecting C (consisting of terminal-terminal connections only)

166 3 Rectilinear Steiner Trees

W

H
si

si+1

si+2

si+3

ti

ti+2

ti+1

ti+3

R

TB

TA

TC

Fig. 3.12 Illustration of proof of Theorem 3.10

by deleting the longest connection between two terminals on the boundary (this
longest connection has length at least .W C H/=2). The length of a minimum
rectilinear spanning tree T C for C is therefore bounded by

jT C j1 � 3=2.W C H/ D 3=2jTC j1:

In conclusion,

jT l j1 � jT Aj1 C jT B j1 C jT C j1 � 3=2.jTAj1 C jTB j1 C jTC j1/ D 3=2jTlj1:

For a Hwang form type (ii) tree all the arguments above can be repeated; the
single terminal attached to the short leg will never be part of the set C . ut

3.2.2 Hanan Grid Reduction

One of the first and most important structural results for the rectilinear Steiner tree
problem was given by Hanan [187] in 1966. We begin with a definition of the Hanan
grid and the Hanan grid graph.

Definitions [Hanan grid, Hanan grid graph]: The Hanan grid GG.N / is the
set of intersection points obtained by drawing a horizontal line and a vertical
line through each point in N ; note that N � GG.N /. The Hanan grid graph is
a geometric network H.N / that has GG.N / as its vertex set; there is an edge
between two vertices u; v 2 GG.N / if u and v are adjacent along a horizontal
or vertical line, and the weight of edge .u; v/ is the Euclidean distance juvj
between u and v.

3.2 Global Properties of Minimum Steiner Trees 167

t1

t2

t3

t4

t5

t6

t7

Fig. 3.13 Hanan grid graph for the set of terminals given in Fig. 3.1

The Hanan grid graph for the set of terminals given in Fig. 3.1 is shown in
Fig. 3.13. The following theorem is an immediate corollary of Theorem 3.8:

Theorem 3.11 ([187] Hanan grid reduction) There exists a minimum rectilinear
Steiner tree for N such that every Steiner point belongs to GG.N /.

One obvious consequence of this theorem is that we only need to consider a
polynomial number of Steiner point candidates – namely the O.n2/ points in the
Hanan grid. Also, in terms of computational complexity, this means that there exist
short certificates of optimal solutions, as we only need to consider Steiner point
coordinates that are amongst the coordinates of the given terminals. The rectilinear
Steiner tree problem is therefore in NP – in contrast with the Euclidean Steiner tree
problem, for which this question is still unsettled (see Sect. 1.3.3).

The Steiner tree problem in an edge-weighted graph G D .V; E/ is the problem
of constructing a tree in G interconnecting a given set of terminals NG � V

with minimum weight. It follows from the Hanan grid reduction that the rectilinear
Steiner tree problem is equivalent to solving the Steiner tree problem in the Hanan
grid graph H.N / with terminal set N . The rectilinear Steiner tree problem can
therefore be solved as a planar graph problem with at most n2 vertices and 2n.n�1/

edges, where n D jN j. An overview of structural properties and exact algorithms
for the Steiner tree problem in graphs is given in Sect. 5.1. In the remainder of this
section we cover some specialised algorithms that can be applied to the Hanan grid
graph.

Graph Reductions for the Hanan Grid Graph

For particular problem instances, so-called graph reductions can often significantly
reduce the size of the Hanan grid graph H.N / while retaining at least one minimum

168 3 Rectilinear Steiner Trees

Steiner tree for H.N / in the reduced graph. Graph reductions iteratively remove
vertices and edges from the graph using a series of reduction tests. Here we briefly
mention some of the specialised reductions that are effective for the Hanan grid
graph; more general graph reductions are discussed in Sect. 5.1.

Provan [317, 318] introduced the path-convex hull, which is a generalisation of
the convex hull for planar point sets to vertex sets in planar graphs. Consider a
straight-line embedding of an edge-weighted planar graph G D .V; E/. Let w be
a closed walk in G – possibly traversing some edges in G more than once – and
let R.w/ be the polygonal region defined by w. Let c.w/ be the total weight of the
edges travelled by w, that is, the perimeter of the polygonal region R.w/.

Definition [Path-convex hull]: A polygonal region R.w/ given by a walk w
in a straight-line embedding of a planar graph G D .V; E/ with terminal set
NG � V is a path-convex hull if all terminals NG are within R.w/ and the
perimeter c.w/ is minimum amongst all such walks.

Theorem 3.12 ([317]) Let R.w/ be a path-convex hull for a straight-line embed-
ding of a planar graph G D .V; E/ with terminal set NG � V . Then there exists a
minimum Steiner tree for NG that lies entirely in R.w/.

Let us apply this theorem to the Hanan grid graph in Fig. 3.13. The walk w1

along the outer boundary of the Hanan grid graph – or the boundary of the smallest
axis-aligned rectangle that contains N – clearly defines a region R.w1/ that is a
path-convex hull. The walk w1 visits the terminals t1, t2, t7 and t5 in clockwise order
around the Hanan grid graph. If the path from t1 to t2 instead of moving up and right,
first moved right and then up, essentially ‘cutting off’ the leftmost upper rectangle
in the Hanan grid graph, the new walk w2 would still define a path-convex hull. By
iteratively removing rectangles in the Hanan grid, we obtain a series of smaller path-
convex hulls, each guaranteed to contain at least one minimum rectilinear Steiner
tree. For the Hanan grid graph in Fig. 3.13, the final result would be the reduced
Hanan grid graph shown in Fig. 3.14, which is significantly smaller than the original
Hanan grid graph.

Winter [404] proposed several reduction tests that take advantage of the special
structure of the Hanan grid graph, in particular that vertices have low degree and
that many edges have the same length. Uchoa, Poggi de Aragão and Ribeiro [372]
extended the ideas of Winter to reducing Hanan grid graphs with holes/obstacles
(see also Sect. 4.2).

Another straightforward and fast method to reduce the Hanan grid graph is to
enumerate Hwang form full components (see Sect. 3.3). That is, take the set of
generated full Steiner trees (FSTs) and place them on the Hanan grid. (Note that
every Hwang form full component is contained in the Hanan grid.) Edges and
Steiner points in the Hanan grid which are not used by any FST can be deleted.
This is in practice the fastest way to reduce the Hanan grid. The number of Steiner
points that remain is almost linear in the number of terminals; for problem instances
with 1,000 terminals, less than 0.5 % of the vertices in the Hanan grid remain after

3.2 Global Properties of Minimum Steiner Trees 169

t1

t2

t3

t4

t5

t6

t7

Fig. 3.14 Reduced Hanan grid graph based on rectangle removal

FST generation [427], and the FST generation only takes a fraction of a second on
a modern computer.

We note that a number of generalisations of the rectilinear Steiner tree problem
can be solved in the underlying Hanan grid. Ganley and Cohoon [163] have shown
that the rectilinear Steiner tree problem with rectilinear obstacles can be solved
in the Hanan grid given by the terminals and the corners of the obstacles; see
Sect. 4.2.3. Zachariasen [428] has presented a catalog of problems that have an
optimal solution in the Hanan grid, including so-called weighted-obstacle, group
and prize-collecting variants.

3.2.3 Empty Regions

In this section we study some necessary geometric conditions that must be satisfied
by minimum rectilinear Steiner trees for a given terminal set N , independently of
the topology of the tree. All the conditions presented are so-called empty region
properties. An empty region is a region in the plane that can be shown to be free
of Steiner points and/or terminals if certain conditions are fulfilled. All the empty
regions can be efficiently computed without having to first compute a minimum
rectilinear Steiner tree, and they are therefore useful as efficient pruning conditions
for eliminating non-feasible full components; furthermore, they are useful from a
theoretical viewpoint for helping bound the number of candidate full components,
as will be shown in the next section.

170 3 Rectilinear Steiner Trees

Fig. 3.15 Empty lunes for a
straight edge (left) and a bent
edge (right)

u v u

v

The Lune Property

Recall from Chap. 1 that a lune L.u; v/ is defined as the set of points that are strictly
within distance juvj1 of both u and v (where distance here is given by the rectilinear
metric). If .u; v/ is an edge in a minimum rectilinear Steiner tree, then L.u; v/

does not contain any points of the tree that do not lie on .u; v/ (Lemma 1.13).
Geometrically, a lune for edge .u; v/ is the intersection of the interiors of the two `1

circles with radius juvj1 centred at u and v, respectively (Fig. 3.15).
Consider a full component T in a minimum rectilinear Steiner tree. Not only are

the lunes empty; they are also pairwise geometrically disjoint:

Lemma 3.13 ([411] Disjoint lunes property) Let T be a full and fulsome
minimum rectilinear Steiner tree with Hwang form. For any pair of distinct segments
uv and wz in T , we have L.u; v/ \ L.w; z/ D ;.

Proof Consider any pair of distinct segments from T . If one of the segments is part
of the backbone of T , then the corresponding lunes are clearly disjoint. If the two
segments are not on the same side of the backbone, then they are also disjoint.

The only remaining case is when the segments are on the same side of the
backbone. Let si ti and sj tj be a pair of such incident segments; we assume without
loss of generality that si ti and sj tj are both vertical segments and that jsi ti j � jsj tj j.

Suppose that L.si ; ti / \ L.sj ; tj / ¤ ;. Then we have the situation depicted in
Fig. 3.16: let p be the point on the horizontal line through ti on the same side of
si ti as tj such that jti pj D jti si j. Since the lunes overlap, it follows that tj is in the
interior of triangle 4si ti p, which implies that jsi sj j < jsj tj j. We can now construct
a shorter tree by removing segment sj tj and adding a connection of length jsi sj j
from tj to segment si ti , contradicting the optimality of T . ut

The proof of Lemma 3.13 implies that incident segments on the same side of the
backbone of a Hwang form full component cannot be too close to each other. More
precisely, if si ti and sj tj are two incident segments, then jsi sj j � min.jsi ti j; jsj tj j/.

3.2 Global Properties of Minimum Steiner Trees 171

Fig. 3.16 Illustration of
proof of Lemma 3.13

ti

si sj

tj

p

Fig. 3.17 Illustration of
proof of Lemma 3.14

lu

vw

R(u, v)

The Empty Rectangle Property

Consider two perpendicular segments uw and wv meeting at a node w (Fig. 3.17).
Let R.u; v/ be the interior of the axis-aligned rectangle with sides uw and wv.

Lemma 3.14 (Empty rectangle property) If uw and wv are perpendicular
segments in a minimum rectilinear Steiner tree T , then R.u; v/ contains no point
of T .

Proof Assume on the contrary that T contains a point p 2 R.u; v/. Let l be the
line through w which bisects the perpendicular angle, and assume that p is above l

(in Fig. 3.17). Remove uw from T , splitting T into two connected components. If
p belongs to the same component as u, then add a vertical segment from p down
to segment wv, otherwise reconnect by connecting u and p. In both cases the tree
is shortened, a contradiction. If p is below l a similar argument shows that the tree
also can be shortened in this case. Finally, assume that p is exactly on the line
l . Since T consists of vertical and horizontal segments, T must contain another
point p0 2 R.u; v/ that is either above or below l , again allowing us to shorten
the tree. ut

172 3 Rectilinear Steiner Trees

The empty rectangle property given in Lemma 3.14 has been used with great
success in the design of both exact and heuristic methods for the rectilinear Steiner
tree problem [27, 271, 427].

We conclude this section with another empty region denoted the empty inner
rectangle property. (The proof of the lemma is left as Exercise 3.8.)

Lemma 3.15 Let T 0 be a fulsome minimum rectilinear Steiner tree, and let T be
a full component of T 0 with Hwang form. Let t1 be the root of T . If T is a type (i)
full component, then let tk be the tip of T ; otherwise, let tk be the single terminal
attached to the short leg of T . Then R.t1; tk/ contains no point of T 0 (other than the
edges of T).

3.2.4 Bounds on the Number of Full Components

In the previous sections we described some necessary structural properties of
minimum rectilinear Steiner trees. Each of the full components of a minimum
rectilinear Steiner tree T must fulfil these necessary properties. This leads to the
following question: Assuming that T is unknown, how many full components
having the Hwang form – spanning a subset of terminals and fulfilling some subset
of necessary properties – can be constructed? Bounds on the number of such full
components are highly relevant, e.g., for the GeoSteiner algorithm that enumerates
full components in the so-called generation phase of the algorithm (see Sect. 3.3).

A trivial upper bound on the number of candidate full components is O.2n/. To
see why, consider some subset of terminals S � N ; there exist at most four trees
for S having the Hwang form – one for each of the four root candidates having a
minimum or maximum x- or y-coordinate in S .

It turns out that all worst-case bounds are in fact exponential, and remain so
no matter what (known) necessary structural properties are enforced. The good
news is that the expected number of full components is much smaller. Assume
that the terminals are randomly and uniformly distributed in a square, i.e., each
terminal coordinate is chosen uniformly at random within an interval. Then the
expected number of full components spanning k terminals (and fulfilling the empty
and disjoint lune properties) is O.n�k�1/, that is, linear in n. In the following
subsections we first present worst-case upper and lower bounds on the number of
full components, and then we prove the probabilistic bound on the expected number
of full components.

Worst-Case Upper and Lower Bounds

In this section we consider worst-case upper and lower bounds on the number of
full components. We focus on one relatively simple upper bound of O.n � 1:42n/,
given by Fößmeier and Kaufmann [155], that improves on the trivial O.2n/ bound.

3.2 Global Properties of Minimum Steiner Trees 173

t1

t2
t4

t7

t6

t5
t3

s2 s3 s4 s5
s6

A2

Fig. 3.18 Type (ii) full component with the Hwang form satisfying the empty rectangle property.
Terminal t3 makes empty rectangles with Steiner point s2 and Steiner point s4. Lemma 3.16 shows
that if the root of the component and terminals t2 and t4 are given, terminal t3 is unique. The same
holds for terminal t6 if the root and the tip of the full component are given

The presented bound is not the best known upper bound, but the proof of the bound
gives the flavour of the arguments that are used to prove such bounds. The best
known worst-case bound is by Fuchs et al. [159], who have shown that the number
of full components satisfying the so-called tree star property is O�.1:357n/, where
the O� notation indicates that factors of polynomial order in n are suppressed.

The upper bound is achieved by requiring that all full components satisfy the
empty rectangle property (Lemma 3.14). Furthermore, in order to simplify the
arguments, we assume that the terminals are in general position (that is, have
pairwise different x- and y-coordinates).

Assume that such a set of terminals N is given, and that we wish to construct a
potential full component T of a minimum rectilinear Steiner tree for N spanning k

terminals. By Sect. 3.1.2, we can assume that T has Hwang form. We also assume
that the root of T and the orientation of the long leg of T are given. The k terminals
of T are labelled t1; t2; : : : ; tk in order along the backbone of the Hwang form tree,
where terminal t1 is the root of the tree (as illustrated in Fig. 3.18).

With T defined in this way, we have the following lemma.

Lemma 3.16 If two consecutive terminals ti and tiC2 on the same side of the long
leg of T are given, then the terminal tiC1 on the opposite side of the long leg is
uniquely determined by ti and tiC2. The same holds for the terminal tk�1 attached
to the short leg if the tip of the full component is given (for a type (ii) full component).

Proof We can assume, without loss of generality, that the root t1 is the leftmost
terminal in the full component (and hence the long leg is horizontal), and that
terminals ti and tiC2 are above the long leg (as in Fig. 3.18). Consider the infinite
vertical strip given by terminals ti and tiC2, and let Ai be the intersection of the strip
with the half-plane below the long leg. Clearly, terminal tiC1 must be located in Ai .

174 3 Rectilinear Steiner Trees

Now, since we assume that T satisfies the empty rectangle property, terminal tiC1

must necessarily be the terminal in Ai with the largest y-coordinate – otherwise one
of the two rectangles given by tiC1 and its adjacent Steiner point would not be free
of terminals. Also, since the terminals are assumed to be in general position, tiC1 is
unique.

The same arguments can be used to prove that the terminal tk�1 attached to the
short leg is unique. Here tk�1 is the unique terminal with the smallest x-coordinate
to the right of the tip, and within the horizontal strip given by the root and
the tip. ut

We now ask the question: How many full components spanning k terminals can
be constructed for a given terminal t , assuming that t is the root and the leftmost
terminal of the full component? Let n.t/ be the total number of terminals in N to the
right of t , and assume, without loss of generality, that at most dn.t/=2e terminals are
above and to the right of t (otherwise we change ‘above’ to ‘below’ in the following
discussion). We consider four cases.

Case 1: T is a type (i) full component and the tip is above the long leg
Assume that the terminals in T above the long leg are given. Lemma 3.16 implies
that there exists at most one full component for this given set of terminals. Since
at most bk=2c terminals are above the long leg, the total number of possible full
components is at most

�dn.t/=2e
bk=2c

�

.

Case 2: T is a type (i) full component and the tip is below the long leg
Assume that the terminals in T above the long leg and the tip of T are given.
Again, there exists at most one full component for this given set of terminals.
The total number of possible full components is at most n.t/ � �dn.t/=2e

bk=2c
�

(since
there are up to n.t/ choices for the tip).

Case 3: T is a type (ii) full component and the tip is above the long leg
Assume that the terminals in T above the long leg, except the terminal attached to
the short leg, are given. By Lemma 3.16, there exists at most one full component
for this given set of terminals. The total number of possible full components is at
most

�dn.t/=2e
bk=2c

�

.

Case 4: T is a type (ii) full component and the tip is below the long leg
Assume that the terminals in T above the long leg and the tip of T are given.
Again, by Lemma 3.16, there exists at most one full component for this given
set of terminals. The total number of possible full components is at most n.t/ �
�dn.t/=2e

bk=2c
�

.

In summary, for a given k, where 1 � k � 1 � n.t/, the number of full
components is bounded by n.t/ � �dn.t/=2e

bk=2c
�

. Taken over all possible values of k, the
number of full components is bounded by:

n.t/C1
X

kD2

n.t/�

dn.t/=2e
bk=2c

!

� 2�n�
dn.t/=2e
X

kD1

dn.t/=2e
k

!

� 2�n�2dn.t/=2eC1 � 4�n�2dn.t/=2e:

3.2 Global Properties of Minimum Steiner Trees 175

Let us order the terminals of the problem instance from left to right (that is, by
their x-coordinate). The leftmost terminal has n � 1 terminals to the right, the next
has n � 2 terminals to the right and so on. Taken over all root candidates, this gives
the following bound on the number of full components:

4 � n � .2d.n�1/=2e C 2d.n�2/=2e C : : : C 2d0=2e/ � 16 � n � 2dn=2e:

Finally, there are four orientations of the long leg, resulting in the bound 64 � n �
2dn=2e, which is O.n � 1:42n/, implying the following theorem.

Theorem 3.17 ([155]) Given a set N of n terminals in general position, the number
of full components with Hwang form, and satisfying the empty rectangle property,
is O.n � 1:42n/.

Fößmeier and Kaufmann [155] also give an exponential worst-case lower bound
on the number of full components. More precisely, they show that the problem
instance illustrated in Fig. 3.19 has an exponential number of full components that
satisfy the so-called tree star property – a strictly stronger property than the empty
rectangle property. In the constructed problem instance, if terminals t2 and t12 are
part of a full component, then any combination of the remaining terminals above
the long leg t4, t6, t8 and t10 results in a full component that satisfies the tree star
property. Since the problem instance can be infinitely extended (see Fig. 3.19), the
number of full components is 24=5	n=2, which is �.1:32n/. Even if more necessary
conditions are enforced, experiments by Zachariasen [427] show that the number of
full components for this particular series of problem instances grows as �.1:06n/.

Probabilistic Bounds

In this section we present the best bound known for the expected number of full
components.3 This bound was given by Wulff-Nilsen [411] in the theorem below,
and it makes use of the empty lune and disjoint lune properties form Sect. 3.2.3.

Theorem 3.18 ([411]) Given a set N of n terminals randomly and uniformly
distributed in a square, the expected number of full components with the Hwang
form spanning k terminals, and satisfying the empty lune property and the disjoint
lune property, is O.n�k�1/.

3One of the first probabilistic bounds on the number of full components was given by Salowe
and Warme [332] in 1995. They showed that for a set of randomly and uniformly distributed
terminals, the expected number of full components spanning k terminals, where k is a constant,
is O.n2/. Also, for k D �.n/ they proved that the expected number of full components spanning
k terminals is O.1/. Zachariasen [427] showed that the expected number of full components
spanning k terminals, and satisfying the rectangle property and a simplified bottleneck Steiner
distance property, is O.n.log log n/k�2/. Finally, Fößmeier and Kaufmann [155] showed that the
expected number of full components satisfying the tree star property is O.n 	 2

p

n log n/ with high
probability.

176 3 Rectilinear Steiner Trees

t1
t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

Fig. 3.19 A series of problem instances with an exponential number of full components. The small
rectangles are scaled-down versions of the large rectangle. The series of instances is constructed
by iteratively adding scaled-down configurations of terminals t3–t12, where terminal t12 acts as
terminal t2 in the next scaled-down configuration

Proof Let U be a square in the plane, and assume that the n terminals are randomly
and uniformly distributed in U . Let T be some full component having the Hwang
form and spanning k terminals, 2 � k � n. We assume that T satisfies the empty
lune property and disjoint lune property (Lemma 3.13). The k terminals of T are
denoted t1; t2; : : : ; tk along the backbone of the Hwang form tree. Terminal t1 is the
root of the tree, and tk is the tip of the tree. For a type (ii) tree, tk�1 is the single
terminal attached to the short leg of the tree.

We consider a process where the terminals are selected in order t1; t2; : : : ; tk , and
give a bound on the expected number of choices in each of the k steps. (For a type
(ii) tree, the selection order of the last two terminals is tk and then tk�1.)

In the first step we choose t1, a direction of the long leg (north, south, east or
west) and a side (left or right of the long leg as seen from t1 in the given direction)
where the second terminal t2 should be chosen. Clearly, there are exactly 8n choices
in this first step.

3.2 Global Properties of Minimum Steiner Trees 177

Assume that we have chosen the first i � 1 terminals, i � 2. Let Li be the union
of the lunes of the (partial) tree given by the terminals t1; : : : ; ti�1. Note that Li

must be completely free of terminals; therefore, the remaining n � i C 1 terminals
of N are randomly and uniformly distributed in U n Li . We denote by A the area of
U n Li .

We distinguish between four cases, depending on the type of full component that
is constructed and the relation between i and k. An inner terminal of a Hwang form
tree is a terminal that is attached to the long leg of the tree, not including the root or
the tip of the tree.

Case 1: Terminal ti is an inner terminal

Consider the terminal ti�1 and the Steiner point si�1 connecting ti�1 to the long
leg of T . Assume without loss of generality that si�1 is located at the origin, and
that a candidate terminal ti D .x; y/ is located somewhere in the first quadrant; the
corresponding Steiner point si D .x; 0/ is located on the x-axis (Fig. 3.20, left). We
would like to bound the expected number of choices of ti .

The lunes L.si�1; si / and L.si ; ti / should contain no terminals in their interior.
The combined area of these two disjoint lunes is 1

2
x2 C 1

2
y2 D 1

2
r2, where r is the

Euclidean distance from ti to the origin. Clearly, at least half of the two lunes are
within the given square U . Thus, in order for ti to be a candidate terminal, an area
of size at least 1

4
r2 (out of total area A) must be free of terminals. The probability

that this is the case is no more than

�

1 � r2

4A

�n�i

since each of the remaining n� i terminals must be chosen from the area uncovered
by the lunes. Note that we must have 1 � r2=.4A/ > 0, so 2

p
A is an upper bound

on r .

C(r, h)

ti−1

si−1 si

ti

h

r

tk−2

sk−2 sk

sk−1

tk

tk−1

Fig. 3.20 Illustration for Cases 1 and 2 (left) and Cases 3 and 4 (right)

178 3 Rectilinear Steiner Trees

Define C.r; h/ to be the region in the first quadrant containing the points that are
at least distance r and at most distance r Ch from the origin (Fig. 3.20, left). Region
C.r; h/ has area

�

4
..r C h/2 � r2/ D �

2
rh C �

4
h2;

and the expected number of terminals in C.r; h/ is at most

.n � i C 1/
��

2
rh C �

4
h2
�

=A:

The expected number of candidate terminals for ti in C.r; h/ is bounded by

�

1 � r2

4A

�n�i

.n � i C 1/
��

2
rh C �

4
h2
�

=A:

By integrating over r (and taking the limit as h ! 0), we obtain a bound E on the
expected number of candidates for ti :

E �
Z 2

p
A

rD0

�

1 � r2

4A

�n�i

.n � i C 1/
�

2A
rdr

D �.n � i C 1/

2A

Z 2
p

A

rD0

�

1 � r2

4A

�n�i

rdr

D �.n � i C 1/

2A

2

6

4�2A

�

1 � r2

4A

�n�iC1

n � i C 1

3

7

5

2
p

A

rD0

D �

Case 2: Terminal ti is the tip of a type (i) full component (i D k)

This case is identical to Case 1 except that the connection point si from ti to the
long leg is a corner point rather than a Steiner point. However, this does not change
the bound, as the same types of lunes as in Case 1 must be free of terminals. The
expected number of candidates is bounded by � .

Case 3: Terminal ti is the tip of a type (ii) full component (i D k)

This case is similar to Case 2, but with a crucial difference. Since an unknown
terminal tk�1 will be attached through a Steiner point sk�1 to the short leg, only
the lunes L.sk; sk�1/ and L.sk�1; tk/ – rather than L.sk; tk/ – can be assumed to
be free of terminals (Fig. 3.20, right). However, lunes L.sk; sk�1/ and L.sk�1; tk/

have an area that is at least one half of that of L.sk; tk/. Letting r be the Euclidean
distance from sk�2 to tk , it follows from the arguments of Case 1 that the expected
number of candidates is bounded by 2� .

3.2 Global Properties of Minimum Steiner Trees 179

In order to ‘prepare’ for the handling of Case 4, we will assume that only half of
the lune L.sk�1; tk/ (say, the half that is closest to sk�1) is free of terminals. This
increases the bound with the same factor, so it becomes 4� .

Case 4: Terminal ti is the terminal attached to the short leg for a type (ii) full
component (i D k � 1)

In this case we consider r to be the Euclidean distance from tk to tk�1. The lunes
L.sk�1; tk/ and L.sk�1; tk�1/ are free of terminals, so the arguments are in principle
similar to those of Case 1. However, in order to obtain independence of expectation,
we need to consider empty regions that are disjoint from the empty regions that are
used for terminals t1; : : : ; tk�2 and tk . In Case 3, lune L.sk�1; tk/ was also used –
but only half of it. The other half was reserved for this case, resulting in a bound of
2� for the expected number of candidates.

In conclusion, the expected number of type (i) full components is bounded by
.8n/�k�1; similarly, the expected number of type (ii) full components is bounded
by .8n/�k�3.4�/.2�/. In both cases we obtain a bound of O.n�k�1/. ut

The theorem shows that the expected number of full components spanning k

terminals is linear in n. However, the theorem does not provide a polynomial bound
in n on the total number of expected full components (over all k); experimental
evidence indicates that the expected total number of full components fulfilling the
empty lune and disjoint lune properties is not polynomial in n [411]. Thus, in order
to obtain a better bound, additional necessary properties such as the bottleneck
distance property must be enforced.

3.2.5 Computational Complexity

In this section we show that the rectilinear Steiner tree problem is NP-hard. More
precisely, we prove that the following decision problem is NP-complete:

RECTILINEAR STEINER TREE DECISION PROBLEM

Instance: A finite set N of points with integer coordinates in the plane, and a
positive integer L.
Question: Is there a rectilinear Steiner tree T with terminal set N such that the
length of T is at most L?

In contrast to the Euclidean Steiner tree problem (see Chap. 1), we are not able to
show that the restricted problem where the terminals are lying on two parallel lines
is NP-complete; in fact, this problem is polynomially solvable for the rectilinear
problem, as will be shown in Sect. 3.5. This is despite the fact that the corresponding
�-geometry problem is NP-complete for points lying on two parallel lines for � � 3

(see Chap. 2). The rectilinear problem, which is identical to the �-geometry problem
for � D 2, is therefore a limiting case when it comes to computational complexity.

180 3 Rectilinear Steiner Trees

On the positive side, the rectilinear Steiner tree decision problem is clearly in
NP; since the Steiner points can be assumed to be on the Hanan grid for N , their
x- and y-coordinates can be assumed to be identical to the integer coordinates of the
terminals. If the set of Steiner points of a rectilinear Steiner tree for N is known, then
the length of this tree can be obtained in polynomial time by computing a minimum
spanning tree of N and the given Steiner points.

The proof of NP-completeness given by Garey and Johnson [169] in 1977
involves a series of polynomial-time reductions, and in this section we only describe
the last reduction – which is also the only reduction that involves planar geometry.
Recall that a vertex cover of a graph G D .V; E/ is a subset of vertices C � V that
contains at least one endpoint of every edge e 2 E . Garey and Johnson first proved
that the following variant of the vertex cover decision problem is NP-complete:

CONNECTED VERTEX COVER IN PLANAR GRAPHS WITH MAXIMUM

DEGREE 4 DECISION PROBLEM

Instance: A planar graph G D .V; E/ with no vertex degree exceeding 4, and
a positive integer k.
Question: Does there exist a vertex cover C � V for G satisfying jC j � k,
such that the subgraph induced by C is connected?

Note that this problem is more restricted than the classical vertex cover problem:
the input graph is planar and each vertex has degree 4 or less. On the output side, we
enforce a special requirement on the vertex cover – namely that the graph induced
by C is connected. More precisely, if we only keep the edges in E that connect the
vertices in the cover C , the resulting graph should be connected. (We can assume
that G is connected – otherwise the problem is trivial or can be reduced to the
problem where G is connected.)

Theorem 3.19 ([169]) The rectilinear Steiner tree decision problem is NP-
complete.

Proof Let G D .V; E/ be a planar graph with no vertex degree exceeding 4, and
let k be a positive integer. We construct a terminal set N in the plane for which a
rectilinear Steiner tree T of length at most L exists if and only if G has a connected
vertex cover C of size at most k. (The length bound L is specified later.)

The first step in the construction of N is to embed the planar graph G D .V; E/

in the plane. Let n D jV j and m D jEj. Define the integer � D 2m C 2.k � 1/ C 1.
Consider a grid of squares in the plane, where each grid point has integer coordinates
that are multiples of �. Map each vertex in V to distinct grid points, and each edge in
E to non-intersecting grid paths (Fig. 3.21). Such a grid embedding can be obtained
in O.n/ time – and in such a way that the rectangular area covered has at most
O.n2/ grid squares [359].

For each vertex vi 2 V , let pi be the corresponding grid point in the embedding.
The terminal set N is constructed by adding terminals located at each integer
coordinate point lying on an edge in the embedding – except that no terminals are

3.2 Global Properties of Minimum Steiner Trees 181

Fig. 3.21 Embedding of
planar graph (top) in a grid of
squares (bottom). The vertex
set fv2; v3; v4; v6g forms a
connected vertex cover of
size 4

v1

v2

v3

v4

v5

v6

v7

v1 v2

v3

v4

v7

v6

v5

Fig. 3.22 Construction of
terminal set N . The terminals
are indicated by the black
squares. Each red connected
component (i.e., edge
component) corresponds to an
edge e 2 E p1 p2 p4

p7

p6

p3

p5

Δ

added within a distance of 2 from the points pi (Fig. 3.22). An edge e 2 E that
maps to a grid path of length �e results in �e � 3 added terminals. Since the total
length of all edges in the embedding is O.�n2/, the total number of terminals is
O.n3/, that is, polynomial in the size of G.

182 3 Rectilinear Steiner Trees

Imagine that we connect all terminals in N that are distance 1 apart, as indicated
by the red edges in Fig. 3.22. These terminal-terminal connections are called edge
segments. Each connected component of edge segments corresponds to an edge
e 2 E , and is called an edge component. The total length of all edge components is
� D P

e2E.�e � 4/. The bound in the rectilinear Steiner tree decision problem is set
to L D � C 2m C 2.k � 1/.

Now, assume that there exists a connected vertex cover C � V for G satisfying
jC j � k. We show that there exists a rectilinear Steiner tree for N of length at
most L.

The rectilinear Steiner tree consists of all edge components plus a number of
length 2 line segments that interconnect the edge components. Let GC D .C; EC /

be the connected subgraph that is induced by C in G, and let TC D .C; ET / be a
tree spanning C in GC ; note that ET contains jC j � 1 edges. (For example, if, for
the graph in Fig. 3.21, we take C D fv2; v3; v4; v6g, then a suitable choice of ET

would be ET D f.v2; v3/; .v3; v4/; .v4; v6/g.) For each edge .vi ; vj / 2 ET , connect
the corresponding edge component to the points pi and pj using two length 2 line
segments. This results in a rectilinear Steiner tree that interconnects the grid points
corresponding to the vertices in C . Finally, connect each remaining edge component
to this tree using a single length 2 line segment. This is indeed possible since C is
a vertex cover (Fig. 3.23). The total length of the rectilinear Steiner tree for N is
� C .2 C 2/.jC j � 1/ C 2.m � .jC j � 1// D � C 2m C 2.jC j � 1/ � L.

Conversely, let T be a rectilinear Steiner tree for N of length at most L. We can
assume that T is on the Hanan grid for N . Since the terminals in N have integer
coordinates, all line segments in T have integer length. As a consequence, we can
assume that T contains all the edge segments of the edge components (each edge
segment has length 1). To see why, suppose that one of these edge segments uv is

Fig. 3.23 Construction
of rectilinear Steiner
tree for vertex cover
C D fv2; v3; v4; v6g, where
ET D f.v2; v3/; .v3; v4/;

.v4; v6/g. Length 2 line
segments (blue) are added to
interconnect the edge
components (red)

p1 p2 p4

p7

p6

p3

p5

Δ

3.2 Global Properties of Minimum Steiner Trees 183

not in T . Adding uv to T creates a cycle that by the construction of N contains at
least one non-edge segment. By removing this non-edge segment, we obtain a tree
of at most the same length that contains uv. This process can be iterated until all
edge segments belong to T .

So we may assume that T contains all edge segments – or all terminal-terminal
full Steiner trees of length 1 (the red edges in Fig. 3.23). The remaining full Steiner
trees of T must therefore interconnect the edge components formed by the edge
segments; that is, the terminals must come from different edge components.

Claim Each of the remaining full Steiner trees of T interconnects edge components
that correspond to edges that meet at a common vertex in G.

Proof of Claim Let F be a full Steiner tree in T that interconnects two terminals u
and v that come from edge components that correspond to the edges e and f in G.
Assume that e and f do not share an endpoint in G. In the grid embedding of G this
means that no points on the embeddings of e and f are within rectilinear distance
� of each other. Thus the rectilinear distance between u and v is at least �. Since
terminals u and v are connected by a path in F , the length of this path is at least � –
which implies that F has length at least �. As a consequence, T has length at least
� C � D � C 2m C 2.k � 1/ C 1 > L – a contradiction. ut

Each of the remaining full Steiner trees in T therefore interconnects two or
more of the (at most four) edge components that meet at a single point pi in the
embedding. Clearly, the shortest possible interconnection is either an L-shaped tree
of length 4 that interconnects two edge components (see point p2 in Fig. 3.23), a
T-shaped tree of length 6 that interconnects three edge components (see point p6 in
Fig. 3.23) or a cross-shaped tree of length 8 that interconnects four edge components
(see point p4 in Fig. 3.23). In every case we can think of each full Steiner tree as
composed of length 2 line segments that join an edge component to a common
point pi .

Given T , we define the vertex cover of G as follows:

C D fvi 2 V W some edge component is joined to pi g:

Since T is a tree that joins every edge component to some point pi , C is clearly a
vertex cover. Also, since the edge components in T have length �, the remaining
full Steiner trees have length at most 2m C 2.k � 1/. This means that at most k � 1

out of the m edge components are joined to two points pi and pj in T . Thus, if we
delete all edge components that are joined to a single point pi in T , the resulting tree
exactly interconnects the points corresponding to the vertex cover C , and contains
at most k � 1 edge components. Therefore, C is connected in G and jC j � k. ut

Theorem 3.19 immediately implies the following corollary.

Corollary 3.20 The rectilinear Steiner tree problem is NP-hard.

184 3 Rectilinear Steiner Trees

3.2.6 Equivalence to Other Problems with a Pair of Fixed
Orientations

As we have seen, the rectilinear metric is an example of a fixed orientation metric
(as discussed in Chap. 2) where the two legal orientations are given by a pair
of horizontal and vertical unit vectors. In this section we show that all of the
results in this chapter can be directly generalised to any fixed orientation metric
defined by exactly two linearly independent legal orientations, or equivalently to
any Minkowski plane where the unit ball is a centrally symmetric quadrilateral.

The key result is the following theorem, showing an affine equivalence between
the two problems.

Theorem 3.21 Given a pair of (weighted) legal orientations u0; u1 defining a
fixed orientation metric, there exists an invertible affine transformation A0;1 of the
Euclidean plane with the following property: for any terminal set N , if TA is a
minimum rectilinear Steiner tree for NA WD A0;1.N /, then T WD A�1

0;1.TA/ is a
minimum fixed orientation Steiner tree for N (for the given pair of orientations),
and kT k D jTAj.
Proof Given the set of fixed orientations fu0; u1g and a terminal set N with
n terminals, it follows from Theorem 2.29 that there exists a minimum fixed
orientation Steiner tree T for N where every Steiner point is in GGn�2.N /, the
(n � 2)th generalised Hanan grid for N . Since there are only two legal orientations
it follows that GG1.N / D GG2.N / D � � � D GGn�2.N /. Therefore, there exists
a minimum fixed orientation Steiner tree T in the Hanan grid graph H0;1.N / for
N : the vertices of H0;1.N / are GG1.N / (that is, the intersection points obtained by
drawing lines in both legal orientations through every point in N) and the edges of
H0;1.N / are all line segments in legal directions connecting adjacent vertices; the
edge weights in H0;1.N / are the weighted Euclidean distances given by u0 and u1.

Let o D .0; 0/ be the origin, and let a0 and a1 be the points such that *oa0 D u0

and *oa1 D u1. Furthermore, let b0 and b1 be the points with Cartesian coordinates
b0 D .1; 0/ and b1 D .0; 1/. We define the transformation A0;1 to be the invertible
affine transformation that maps 4oa0a1 to 4ob0b1. Under this transformation the
Hanan grid graph H0;1.N / maps to the (rectilinear) Hanan grid graph H.NA/ for
NA WD A0;1.N /; this is illustrated in Fig. 3.24. Note that not only do the two grid
graphs have the same topology, but the length of each edge of H.NA/ is equal to
the weighted length of the corresponding edge of H0;1.N /. It follows that solving
the rectilinear Steiner tree problem for NA as a graph Steiner problem on H.NA/

immediately gives a solution to the fixed orientation Steiner tree problem on N (by
applying the inverse transformation A�1

0;1) and that both trees have the same cost. ut
Theorem 3.21 implies that solving any fixed orientation Steiner tree problem for

a metric defined by two legal orientations is equivalent to solving the rectilinear
Steiner tree problem. For example, this shows that the Steiner tree problem in the
rectilinear metric is equivalent to the Steiner tree problem in the well-known `1 (or

3.2 Global Properties of Minimum Steiner Trees 185

u0

u1

A0,1

H0,1(N) H(NA))

Fig. 3.24 An example of the affine transformation A0;1 for a set of five terminals. Here the fixed
orientations u0; u1 are shown in blue and have weights w0 D 1=2 and w1 D 1, respectively

maximum) metric, where the distance between two points is given by the maximum
Euclidean distance between them in the horizontal and vertical directions.

In the proof of Theorem 3.21 the transformation is performed on the correspond-
ing Hanan grid graph. In practice we only need to transform the terminal set (in
linear time): compute and apply the affine transformation A0;1 to the terminal set,
solve the resulting rectilinear Steiner tree problem (using, for example, GeoSteiner),
then apply the inverse transformation A�1

0;1 to get the solution to the original problem.
The final step of applying the inverse transformation can be omitted if only the
length of the minimum Steiner tree is required.

Note also that there are numerous corollaries to Theorem 3.21 resulting from
the properties of rectilinear Steiner trees discussed in this chapter. For example,
it follows from this theorem and Theorem 3.10 that the Steiner ratio for any
Minkowski plane where the unit ball is a centrally symmetric quadrilateral is 2=3.

Finally, we mention that these results can be generalised, to a limited extent, to
other Minkowski planes with polygonal unit balls. In particular, if the unit ball is an
affinely regular polygon (meaning that it can be obtained from a regular polygon by
an affine transformation), then an argument similar to the proof of Theorem 3.21
shows that the associated fixed orientation Steiner tree problem is equivalent to
the uniform orientation Steiner tree problem for the corresponding regular polygon.
Hence, in these cases the version of GeoSteiner for uniform orientation Steiner trees
[294] can be used. Note, however, that for most arbitrary centrally symmetric convex
polygons no such affine transformation exists.

186 3 Rectilinear Steiner Trees

3.3 GeoSteiner Algorithm

The most efficient practical algorithms for computing minimum rectilinear Steiner
trees are based on the GeoSteiner approach (see Sect. 1.4).4 Recall that the main
idea of the GeoSteiner approach is to enumerate full components – or full Steiner
trees (FSTs) – and then choose a subset of the generated FSTs to form a minimum
rectilinear Steiner tree. The first phase is called FST generation and the second
FST concatenation. Salowe and Warme [332] presented the first serious attempt
to apply the GeoSteiner approach to the rectilinear problem. A few years later,
Zachariasen [427] and Warme [386] significantly improved the FST generation
and FST concatenation parts of the algorithm; a computational study reporting the
solution of rectilinear Steiner tree problems with more than 1,000 terminals was
presented in [388].

Compared to other metrics, FST generation for the rectilinear problem appears
to be particularly fast in practice. This is mainly due to the existence of the Hwang
form for full components. Although the number of generated FSTs is exponential in
the worst case (see Sect. 3.2.4), on average the number of generated FSTs is almost
linear. In this section we first present the top-level FST generation algorithm. Then
we describe some of the important details of the algorithm, including so-called
FST independent preprocessing and the actual enumeration algorithm. As noted
in Chap. 1, the FST concatenation phase of the algorithm is independent of the
underlying metric, and can be reduced to either the Steiner tree problem in graphs
(Sect. 5.1) or the minimum spanning tree problem in hypergraphs (Sect. 5.2.1).

4The first computer code to compute minimum rectilinear Steiner trees appears to have been
developed by Yang and Wing [421] in 1971. The algorithm used a reduction to the Hanan grid,
and solved the graph problem using a branch-and-bound algorithm for graphs. The largest solved
problem had 9 terminals, and it was solved on a reduced Hanan grid with 20 vertices and 31 edges –
pruned using a path-convex hull approach. In a follow-up paper from 1972, Yang and Wing [422]
mentioned that by using the Dreyfus and Wagner dynamic programming algorithm [131], it
should be possible to solve problems with 14 terminals in a couple of minutes, but problems
with 18 terminals would require more than a day of computing time. In 1989, Sirodenko [348]
presented an approach that allowed problems with up to 11 terminals to be solved. In the early
1990s, a number of papers appeared. Ganley and Cohoon [161] presented a dynamic programming
algorithm that made it possible to solve problems with up to 16 terminals; an improved FST-based
dynamic programming algorithm increased the range to 18 terminals [162]. Using a considerable
engineering effort, Thomborson et al. [366] managed to solve problem instances with up to 23
terminals. Shortly after, Salowe and Warme [332] suggested a GeoSteiner approach, allowing the
solution of problem instances with more than 30 terminals; Hetzel [195] pushed the range to 50
terminals. The real breakthrough occurred a few years later when Warme [386] in 1998 computed
minimum rectilinear Steiner trees for problem instances with more than 1,000 terminals.

3.3 GeoSteiner Algorithm 187

3.3.1 Top-Level FST Generation Algorithm

Consider a Hwang form FST T in a minimum rectilinear Steiner tree, and assume
that T spans k terminals t1; t2; : : : ; tk . Recall that T consists of a complete corner
(or backbone) given by a root t1 and a tip tk . All other terminals spanned by T are
connected directly to the backbone with straight line segments, such that T has a
caterpillar topology.

Let c be the corner point of the single bent edge pq of T ; if T has no bent edge,
then let c be the midpoint of the straight edge pq incident to the tip tk of T . Recall
the definition of branches and branch trees from Sect. 1.4.2. If we cut edge pq at c,
we obtain two branch trees having straight edges only: one with its root at p having
a stem (or ray) leaving p along pc, and another with its root at q having a stem (or
ray) leaving q along qc. A branch is a set of branch trees that span a common set of
terminals and that have a common topology.

In the construction below, it suffices to consider the generation of individual
branch trees rather than branches. For a branch of size greater than 1 with a given
root and a given direction for the long leg we will see that under the construction
scheme below the branch has a uniquely determined branch tree.

As in the Euclidean problem, we first describe how to combine branch trees to
form larger ones. Branch trees of size 1 consist of a single terminal having a stem
leaving in one of the legal directions; hence there are exactly 4n branch trees of size
1. The Hwang form for rectilinear FSTs and its caterpillar topology imply that we
only need to consider combinations where one of the branch trees has size 1. More
specifically, any full component T can be obtained by starting with a branch tree B1

consisting of the root of T with a stem in the direction of the long leg. Then each
of the terminals – in alternating fashion along the long leg – is iteratively added by
combining the current branch tree with a size 1 branch tree that spans the added
terminal. This results in a series of increasingly larger branch trees B1; B2; : : : as
shown in Fig. 3.25. A type (i) full component is obtained by combining a branch
tree Bi with a size 1 branch tree that spans the tip of the full component; finally, a
type (ii) full component can be obtained by attaching a terminal to the short leg of
the constructed type (i) full component (Fig. 3.25, bottom row).

The simplified construction of branch trees for the rectilinear Steiner tree
problem makes it possible to design a particularly efficient version of the general
FST generation algorithm (Algorithm 1.3 from Sect. 1.4). Recall that one of the
main tasks of the FST generation algorithm is to prune branches and full Steiner
trees (lines 14 and 19 in Algorithm 1.3). Instead of enumerating branch trees by
increasing size as in Algorithm 1.3, the main loop of the rectilinear FST generation
algorithm iterates through all terminals t1 2 N . For a given terminal t1, all
feasible FSTs that have t1 as their root (in the Hwang form) are constructed. Each
possible direction of the long leg is tried in turn; however, due to the existence of
corner-flipped topologies (see Sect. 3.1.2), only two perpendicular directions need
to be tried (say, north and east). The enumeration of feasible FSTs for a given
(root, direction) pair is performed using a recursive algorithm that is described in

188 3 Rectilinear Steiner Trees

B1

B2

B3 B4

Type (i) full component Type (ii) full component

Combining B1 with a size 1 branch tree

Combining B3 with a size 1 branch tree Combining B4 with a size 1 branch tree

Combining B2 with a size 1 branch tree

Fig. 3.25 Combining branch trees to form Hwang form full components of type (i) and type (ii).
The arrows indicate the paths from the terminals to the root of each branch tree. The red arrow
shows the direction of the new stem. The bottom row shows the resulting type (i) and type (ii) full
components

Sect. 3.3.3. In the next section we first present a preprocessing step that significantly
speeds up the enumeration algorithm.

3.3.2 FST Independent Preprocessing

In this section we describe an O.n2/-time and -space preprocessing phase which
is used to reduce the average complexity of the FST growing phase. (In fact, time
and space requirements for this phase can be reduced to essentially O.n log n/ in
practice; see [427] for details.) First we set up the following data structures:

• Sort the terminals according to each of the four directions (north, south, east,
west). For a given direction ˛, let N˛.ti / denote the successor of terminal ti in
direction ˛.

• Compute the bottleneck Steiner distance BSD.ti ; tj / for every pair of terminals
ti ; tj 2 N ; recall that the bottleneck distance bounds the length of each edge

3.3 GeoSteiner Algorithm 189

Fig. 3.26 Upper bound
based on lune property for
inner terminal candidates

Q
α

ti

UB0(ti, α)

tj

on a path between terminals ti and tj in a minimum rectilinear Steiner tree
(Lemma 1.14).

• Determine whether or not the axis-aligned rectangle defined by ti and tj , denoted
by R.ti ; tj /, is free of terminals (for every pair of terminals ti ; tj 2 N).

Inner Terminal Candidates

Let .ti ; ˛/ be any (terminal, direction) pair. Consider a line segment ti si having
direction ˛ which attaches ti to some FST backbone via Steiner point si . We wish
to compute an upper bound UB0.ti ; ˛/ on the length of ti si such that if ti si is a
part of some minimum rectilinear Steiner tree, then jti si j � UB0.ti ; ˛/. We use
the condition that the lune property must be fulfilled for ti si , that is, L.ti ; si / must
be free of terminals. Draw two perpendicular 45ı lines through ti and let Q be the
quadrant in direction ˛ given by these two lines (or, in other words, the cone from
ti bounded by the two lines and containing the ray from ti in direction ˛, as in
Fig. 3.26). From the lune property it follows that the distance from ti to the closest
terminal tj in Q is then a valid upper bound UB0.ti ; ˛/. If there exists no terminal
in Q, we set UB0.ti ; ˛/ D 1.

Short Leg Terminal Candidates

A short leg in a Hwang form FST has either zero or one attached terminal. Let .ti ; ˛/

be any (terminal, direction) pair. Assume that ti is a tip in a Hwang form FST and
that the short leg points in direction ˛ from ti . Since we only need to consider two
perpendicular directions of the long leg when constructing Hwang form trees (say,
north and east), a terminal can only be attached to one side of a short leg pointing in
direction ˛. We wish to determine an ordered list N.ti ; ˛/ of terminals that may be
attached to the left or right (depending on ˛) of this short leg.

The key observations are the following. Let tj sj be a segment attached to the
short leg of a backbone with tip ti . Assume that the direction from tj to sj is ˇ

190 3 Rectilinear Steiner Trees

ti

tjsj

c

α

β

Fig. 3.27 Determination of short leg terminal candidates and bounds for the corresponding corner
points. For any candidate short leg terminal tj the regions shown in blue must be free of terminals.
The maximum corresponding length of the short leg is then determined by the furthest potential
corner point c for which the pink regions are also free of terminals

(Fig. 3.27). Then we must have:

• jti sj j � min.UB0.ti ; ˛/; BSD.ti ; tj //;

• jtj sj j � min.UB0.tj ; ˇ/; BSD.ti ; tj //;

• R.ti ; tj / is empty (contains no terminals).

The short leg candidates N.ti ; ˛/ are identified by making a sweep from ti
in direction ˛. We use the first condition above to stop the scan when jti sj j >

UB0.ti ; ˛/. One implication of the third condition above is that the distance jtj sj j
for any accepted terminal tj must be smaller than or equal to the shortest such
distance seen during the sweep – otherwise the rectangle would be non-empty.
The first two conditions are easily checked in constant time by using precomputed
information.

Once N.ti ; ˛/ is determined, we can compute an upper bound UB1.ti ; ˛/ on the
length of a short leg with one attached terminal with tip ti and pointing in direction
˛. Recall that UB0.ti ; ˛/ already is an upper bound on the length of a short leg
without any attached terminal.

If N.ti ; ˛/ D ;, we set UB1.ti ; ˛/ D 0; this means that no short leg with an
attached terminal exists. Otherwise, we seek the longest ti c such that there is a
tl 2 N.ti ; ˛/ having both an empty lune L.sl ; c/ and an empty rectangle R.tl ; c/.
Let tj be the last terminal accepted into N.ti ; ˛/, i.e., jti sj j is maximum. Then it is
sufficient to check the empty regions for tj only, since for all other tl 2 N.ti ; ˛/nftj g
the regions L.sj ; c/ and R.tj ; c/ are covered by L.sl ; c/ and R.tl ; c/, respectively.

The upper bound UB1.ti ; ˛/ is computed by making a sweep from sj (or
equivalently tj) in direction ˛. The largest possible lune L.sj ; c/ is identified
by using the algorithm used for computing inner terminal candidates. The empty
rectangle property is equivalent to testing whether there exists a terminal tl and
corner point c such that jtl cj < jtj sj j; if such a terminal is encountered during the
sweep, we set UB1.ti ; ˛/ D jti cj and stop; otherwise, the value of UB1.ti ; ˛/ is that
given by the largest possible lune L.sj ; c/.

3.3 GeoSteiner Algorithm 191

Algorithm 3.1: Recursive FST growing algorithm
Input: Branch tree B with root t1 (in the Hwang form) and a direction ˛. B has segments

s2t2; : : : ; si�1ti�1 attached to the long leg.
Output: All Hwang form full Steiner trees that can be obtained by growing branch tree B in

direction ˛.
1
2 // Determine candidate terminal successors for growing B

3 Let N˛.B/ be the ordered set of terminals in direction ˛, starting from N˛.ti�1/

4 foreach ti 2 N˛.B/ do
5 // Assume that ti is attached to the long leg via Steiner point si

6 if ti passes distance tests (I) then
7 if si�1si passes long leg segment tests (II) then
8 Bi D B [fsi�1si g [fti si g // new extended branch tree
9 foreach short leg attachment candidate tj do

10 // Assume that tj is attached to short leg ti si via Steiner point sj

11 if Bi [ftj sj g passes type (ii) FST tests (IV) then
12 Save Bi [ftj sj g as a permanent type (ii) FST

13 if Bi passes branch tree tests (III) then
14 if Bi passes type (i) FST tests (IV) then
15 Save Bi as a permanent type (i) FST

16 Call algorithm recursively with input Bi and direction ˛

3.3.3 Growing Hwang Form Full Steiner Trees

The basic idea of the FST growing algorithm was presented in Sect. 3.3.1. In
this section we give a more detailed description of the algorithm which uses the
information obtained in the preprocessing phase. The main algorithm makes a call
to the recursive algorithm (Algorithm 3.1) for every root t1 2 N and direction
˛ 2 fnorth; eastg, corresponding to a branch tree of size 1. With a slight abuse of
notation, in the algorithm we view a branch tree B as being both a branch tree and
an FST candidate (by removing the stem of the branch tree).

The recursive algorithm performs four different types of tests, which are outlined
below. Tests (I)–(III) are particularly important as they eliminate the need for further
recursive calls of the algorithm. The FST tests (IV) determine whether an FST
candidate fulfils elementary optimality conditions. In the discussion below let ˇ

be the direction from ti to the Steiner point si on the long leg.

Distance Tests (I)

The upper bounds UB0 and UB1 obtained in the preprocessing phase are
used to eliminate terminals from consideration. We must have jti si j �
max.UB0.ti ; ˇ/; UB1.ti ; ˇ// since otherwise the segment ti si can neither be
attached to the long leg as an inner terminal nor be a short leg in an FST.

192 3 Rectilinear Steiner Trees

This test only depends on the root t1 (in the Hwang form) and on the direction ˛

of the long leg and not on the current branch tree B . This actually allows us to make
a (short) list of candidates before calling the algorithm. However, since the FST
growing algorithm typically stops well before reaching the end of the candidate list,
we do not construct this list before calling the algorithm. Rather, we add candidates
to the list during the execution of the recursive algorithm.

Long Leg Segment Tests (II)

This series of tests depends on the branch tree B and the new long leg segment
si�1si . A long leg segment si�1si fails this test if the tree B [fsi�1si g cannot be
a subtree of any larger FST that also spans ti . We assume that ti is connected to si

either directly or via a short leg Steiner point.
Firstly, ti must be on the side of the long leg opposite to ti�1. Secondly, the lune

property must be satisfied for si�1si , and R.ti�1; ti / should contain no terminals.
The lune property can be checked by maintaining an upper bound on the length of
the segment si�1si based on the previous terminal candidates seen for ti . Finally,
the longest edge on the path between si and any terminal tl , l 2 f1; : : : ; i � 1g,
in B [fsi�1si g cannot be longer than BSD.ti ; tl /. This condition holds since the
same (longest) edge will also appear on the path between ti and tl in any tree having
B [fsi�1si g as a subtree. By updating this longest edge information dynamically
while growing the tree this test can be performed very efficiently.

Branch Tree Tests (III)

These tests check whether the branch tree Bi D B[fsi�1si g[fti si g can be a subtree
of any larger branch tree or FST (including Bi itself). We do this by testing the
conditions jti si j � UB0.ti ; ˇ/ and jti si j � BSD.ti ; tl / for all tl , l 2 f1; : : : ; i � 1g.

Type (i) and Type (ii) FST Tests (IV)

These tests check the optimality and fulsomeness of a specific FST candidate
(of type (i) or type (ii)). One efficient test is the short leg upper bound given
in Lemma 3.9, which can be tested in constant time by dynamically updating
relevant information while growing the FST. The lune property (respectively, empty
rectangle property) is also tested for every segment (respectively, pair of adjacent
segments) both in the candidate topology and in the corner-flipped topology. (Many
of these conditions are, in fact, satisfied by construction.) Furthermore, the empty
inner rectangle property is checked (Lemma 3.15).

3.4 FLUTE Algorithm 193

Practical Performance of the FST Generation Algorithm

For most problem instances the preprocessing phase dominates the total running
time even though the recursive FST growing algorithm requires exponential time
in the worst case. For randomly generated instances, the running time of the
preprocessing phase grows as O.n log n/, while the running time of the FST
growing algorithm is close to being linear in n. The almost linear behaviour of
the FST growing algorithm can be explained by the fact that very few terminals
(less than 6 terminals for randomly generated problem instances with 10,000
terminals) are added to the short list of terminals considered for a given root and
direction [427].

On a modern computer, a well-tuned implementation of this algorithm generates
the FSTs for a randomly generated 1,000-terminal instance in less than 0.1 s; for
10,000 terminals the running time is less than 2 s, and more than half of the time is
used for preprocessing. The number of FSTs surviving all tests is approximately 4n.

The bottleneck of the GeoSteiner algorithm for the rectilinear Steiner tree prob-
lem is therefore the concatenation of FSTs. As noted above, the FST concatenation
problem can be reduced to either the Steiner tree problem in graphs or the minimum
spanning tree problem in hypergraphs (see Chap. 5).

3.4 FLUTE Algorithm

In the early stages of physical chip design, rectilinear Steiner trees are often used for
estimating the necessary wire length in the final routing of the chip. By computing
a minimum rectilinear Steiner tree for every electrical net, an accurate lower bound
on the necessary wire length of the chip is obtained. In these applications, millions
of rectilinear Steiner tree problems must be solved, so fast algorithms are required.
Fortunately, most of the nets span very few terminals. For a typical chip, more than
90% of the nets span less than 10 terminals.

One extremely fast but rough wire length estimator is the half-perimeter wire
length (HPWL) algorithm: find the smallest axis-aligned rectangle R that contains
the terminal set N , and compute the half-perimeter of R (or the sum of the height
and width of R). This estimate can clearly be computed in linear time by finding
the minimum and maximum x- and y-coordinates amongst the terminals. HPWL is
a lower bound on the length of a minimum rectilinear Steiner tree, and it gives the
exact result for 2 and 3 terminals; for 4 or more terminals it usually underestimates
the length of a minimum rectilinear Steiner tree.

The FLUTE (fast lookup table estimation) algorithm [102, 103] is an exact
algorithm for computing minimum rectilinear Steiner trees for small cardinality
terminal sets. FLUTE is very fast for terminal sets with less than 10 terminals,
and therefore useful as a wire length estimator in physical chip design. In this
section we describe the main ideas of the FLUTE algorithm. We focus on how the
length of a minimum rectilinear Steiner tree is computed by the FLUTE algorithm;

194 3 Rectilinear Steiner Trees

a corresponding minimum rectilinear Steiner tree can be obtained by extending the
lookup table [103]. It is convenient – but not necessary – to think of the terminals
as being in general position, such that no two terminals are on the same grid line in
the Hanan grid.

3.4.1 Position Sequence and Wire Length Vectors

Let x1 � x2 � � � � � xn be the sorted sequence of x-coordinates for the
terminals in the given terminal set N ; similarly, let y1 � y2 � � � � � yn be the
sorted sequence of y-coordinates. Assume that the terminals are sorted by their x-
coordinates such that the i th terminal, 1 � i � n, has coordinates .xi ; y
i /, and such
that
 D .
1;
2; : : : ;
n/ is the corresponding permutation of the y-coordinates (see
Fig. 3.28). The permutation
 is called the position sequence for N .

In the Hanan grid for N , the i th vertical line has x-coordinate xi , and the j th
horizontal line (from the bottom) has y-coordinate yj . Let hi WD xiC1 � xi be the
distance between adjacent vertical grid lines for 1 � i � n�1, and let vj WD yj C1�
yj be the distance between adjacent horizontal grid lines for 1 � j � n � 1 (see
Fig. 3.28). In the Hanan grid graph H.N / for N , all edge lengths clearly come from
the two sets fh1; h2; : : : ; hn�1g and fv1; v2; : : : ; vn�1g. Since there exists a minimum
rectilinear Steiner tree for N in H.N /, the length of a minimum rectilinear Steiner
tree T can be expressed as

n�1
X

iD1

˛i hi C
n�1
X

j D1

ˇj vj ;

1

2

3

4

y1

y2

y3

y4

x1 x2 x3 x4

h1 h2 h3

v1

v2

v3

Position sequence: (2,4,1,3)

1

2

3

4

y1

y2

y3

y4

x1 x2 x3 x4

h1 h2 h3

v1

v2

v3

Position sequence: (1,2,3,4)

Fig. 3.28 Position sequences for two terminal sets

3.4 FLUTE Algorithm 195

1

2

1

1 1 1

T1 1

1

1

1 2 1

T2

W(T1) = (1, 1, 1, 1, 2, 1) W(T2) = (1, 2, 1, 1, 1, 1)

Fig. 3.29 Two rectilinear trees and corresponding wire length vectors

where the integer vector

W.T / WD f˛1; ˛2; : : : ; ˛n�1; ˇ1; ˇ2; : : : ; ˇn�1g

is called the wire length vector for T (Fig. 3.29). Note that all ˛i � 1, and all ˇj � 1,
since otherwise the tree would not interconnect all terminals. A wire length vector
that consists only of ones corresponds to the half-perimeter wire length (HPWL),
and is called the HPWL vector.

The position sequence for N uniquely places the n terminals at specific grid
points in the n
 n Hanan grid – independent of the distances between adjacent
horizontal lines and adjacent vertical lines. Therefore, for any two terminal sets
N and N 0 with the same position sequence (and hence also the same number of
terminals), any tree T that spans N in H.N / corresponds to a tree T 0 that spans
N 0 in H.N 0/. The trees T and T 0 have exactly the same topology relative to their
respective Hanan grids; also, T and T 0 have the same wire length vectors.

This observation leads to the main idea of the FLUTE algorithm. For a given
position sequence
, imagine that we enumerate the set of trees S that span the
terminals in the Hanan grid for a position sequence
 (ignoring the distances
between adjacent horizonal lines and adjacent vertical lines). Each tree T 2 S has
an associated wire length vector W.T /.

Definitions [Wire length domination, minimal wire length vector]: For trees
T; T 0 2 S, we say that the wire length vector W.T 0/ dominates the wire length
vector W.T / if no component of W.T 0/ is greater than the corresponding
component in W.T /, and at least one component of W.T 0/ is strictly smaller.
A wire length vector W.T / for a tree T 2 S is a minimal wire length vector if
there exists no other tree T 0 2 S such that W.T 0/ dominates W.T /.5

5In the original papers on the FLUTE algorithm a minimal wire length vector is called a potentially
optimal wire length (POWL) vector. We find that the prefix ‘minimal’ better characterises the
properties of these vectors, namely that they are the ones that are locally minimal under domination.

196 3 Rectilinear Steiner Trees

3.4.2 Basic FLUTE Algorithm

In order to compute the length of a minimum rectilinear Steiner tree for a set of
terminals with position sequence
, we obviously only need to consider the set W

of minimal wire length vectors for a position sequence
. For a wire length vector
W 2 W
 , where W D f˛1; ˛2; : : : ; ˛n�1; ˇ1; ˇ2; : : : ; ˇn�1g, the length of a tree
having wire length vector W is denoted by l.W / WD Pn�1

iD1 ˛i hi CPn�1
j D1 ˇj vj . The

following lemma is immediate from the above discussion:

Lemma 3.22 Let N be a terminal set with position sequence
, and let W
 be the
set of minimal wire length vectors for
. Then the length of a minimum rectilinear
Steiner tree for N is

min
W 2W

l.W /:

The HPWL vector .1; 1; 1; 1/ is the sole minimal wire length vector for any
position sequence for 3 terminals (see Exercise 3.9). For 4 terminals, the position
sequences are divided into two groups. The first group, which includes the position
sequence shown in Fig. 3.28 (right), has only one minimal wire length vector, the
HPWL vector .1; 1; 1; 1; 1; 1/. The second group has two minimal wire length
vectors, namely .1; 1; 1; 1; 2; 1/ and .1; 2; 1; 1; 1; 1/; see also Fig. 3.29. Since the
HPWL vector dominates any wire length vector, it always appears alone in a group.

The number of minimal wire length vectors for a given position sequence, that is,
the worst-case cardinality of W
 , appears to grow exponentially in n (no asymptotic
bounds are currently known). However, the absolute numbers are quite small for n <

10: for n D 7 the average and maximum numbers of minimal wire length vectors for
a given position sequence are 8 and 15, respectively; for n D 9 the corresponding
numbers are 30 and 79 [103]. This means that the minimum in Lemma 3.22 only
needs to be taken over at most 79 minimal wire length vectors for n < 10, which is
very fast in practice.

3.4.3 Optimised FLUTE Algorithm

The basic FLUTE algorithm can be optimised in two ways. Firstly, we note that
there are nŠ position sequences for n terminals. This rapid growth affects both
the running time of minimal wire length vector enumeration, and the memory
requirements, since all minimal wire length vectors for each position sequence must
be stored.

One improvement is to use the symmetry of terminal sets, e.g., horizontal,
vertical and diagonal symmetry. This makes it possible to transform minimal wire
length vectors between symmetric position sequences. Another improvement is
to partition the position sequences into groups that have the same minimal wire

3.4 FLUTE Algorithm 197

length vectors; as shown above, this reduces the lookup table for 4 terminals from
4Š D 24 to 2 groups (or equivalence classes). In [103], these improvements reduce
the number of groups by a factor of around 26 on average; the size of the lookup
table is reduced by the same factor.

Secondly, the computation of the minimum in Lemma 3.22 can be optimised.
We use the fact that minimal wire length vectors are very similar, and contain
small integer numbers. Therefore, multiplications can be avoided when computing
Pn�1

iD1 ˛i hi C Pn�1
j D1 ˇj vj by using additions and subtractions of numbers from

the sets fh1; h2; : : : ; hn�1g and fv1; v2; : : : ; vn�1g. Consider a position sequence
for 4 terminals with associated minimal wire length vectors .1; 1; 1; 1; 2; 1/ and
.1; 2; 1; 1; 1; 1/. We may compute the length of these two wire length vectors as
follows. First we compute the HPWL l . Then we add v2 to l to obtain the length of
the first wire length vector. Next we subtract v2 and add h2 to obtain the length of
the second wire length vector.

More generally, in order to find a sequence of wire length vectors that minimises
the total number of additions and subtractions, we can set up a complete graph
with the wire length vectors, including the HPWL vector, as vertices. The distance
between two vertices is the `1 distance between their wire length vectors – which
corresponds to the number of additions and subtractions needed to move from
one vector to the other. A minimum-length Hamiltonian path, starting in the
HPWL vector, now gives a wire length vector sequence that minimises the total
number of additions and subtractions. In [103], the wire length vector sequence is
obtained using a heuristic approach. For n D 9, given the HPWL, the length of a
minimum rectilinear Steiner tree can on average be computed using 74 additions
and subtractions, or around 2.5 additions/subtractions per wire length vector.

3.4.4 Enumeration of Minimal Wire Length Vectors

The FLUTE algorithm requires that the set of minimal wire length vectors W
 has
been computed for every position sequence
. This is a preprocessing step that only
needs to performed once, and therefore the running time is in principle not critical.
However, in order to make it feasible to enumerate minimal wire length vectors
for, say n � 7, it is necessary to devise a fairly efficient algorithm. The FLUTE
enumeration algorithm is a recursive algorithm that involves a number of Hanan grid
reductions, or boundary compaction techniques, that reduce the number of cases
considered. For example, it can be assumed that ˛1 D 1, ˛n�1 D 1, ˇ1 D 1 and
ˇn�1 D 1 for any minimal wire length vector f˛1; ˛2; : : : ; ˛n�1; ˇ1; ˇ2; : : : ; ˇn�1g.
The FLUTE enumeration algorithm is able to compute minimal wire length vectors
for n � 9 [103].

198 3 Rectilinear Steiner Trees

3.5 Efficient Constructions for Special Terminal Sets

Although the rectilinear Steiner tree problem is NP-hard (as discussed in
Sect. 3.2.5), there nevertheless exist exact algorithms, such as the GeoSteiner
algorithm, that in practice appear to be able to solve the problem in low-order
polynomial time for randomly and uniformly distributed terminal sets in the plane.
To give some insight into this behaviour, we will survey some of the instances of
configurations of terminals for which it can be shown that the rectilinear Steiner
tree problem can be solved in polynomial time.6 Many of these instances are also
directly relevant to chip design applications. For example, the parallel lines cases,
discussed below, where terminals are restricted to lying on a fixed set of horizontal
(or vertical) lines, can be viewed as modelling the restriction of the routing problem
where the pins are located on a fixed set of parallel tracks (see Sect. 3.6).

3.5.1 Terminals Constrained to Parallel Lines

We first consider the case where all n terminals N lie on a pair of horizontal lines La

and Lb , and show that a minimum rectilinear Steiner tree for N can be constructed
in linear time. This provides an interesting contrast with the Euclidean case, where
it has been shown that the Euclidean Steiner tree problem for terminals constrained
to two parallel lines is NP-hard (see Sect. 1.3.3).

If the terminals N are restricted to La and Lb then the Hanan grid graph H.N / is
a 2
 m grid, for some m < n, as illustrated in Fig. 3.30. Here the vertices of H.N /

are a1; : : : ; am; b1; : : : ; bm where the ai ’s and bi ’s lie on La and Lb respectively. We
can assume that the four nodes a1; b1; am and bm are all terminals, since otherwise
the reduced Hanan grid graph has terminal leaves which can be removed; see
Sect. 3.2.2. Moreover, for each pair ai ; bi of vertices of H.N / at least one of the
vertices is a terminal in N .

Fig. 3.30 The Hanan grid
graph for a set of terminals
constrained to two horizontal
lines. Here a1; b1; am and bm

are all terminals, and at least
one of each vertical pair ai ; bi

is a terminal

a1 a2 a3 ai−1 ai am

b1 b2 b3 bi−1 bi bm

La

Lb

6In addition to the references to the primary sources given in this section, more details on some of
the results discussed here can also be found in Part III, Chapter 3 of Hwang et al. [211] and in the
survey article of Thomas and Weng [364].

3.5 Efficient Constructions for Special Terminal Sets 199

Algorithm 3.2: Minimum rectilinear Steiner tree on two parallel lines algo-
rithm

Input: Set of terminals N lying on two horizontal lines La and Lb .
Output: A minimum rectilinear Steiner tree T for N .

1
2 Let H.N / be the Hanan grid graph for N , with vertex set fa1; : : : ; am; b1; : : : ; bmg where the

ai ’s and bi ’s lie on La and Lb respectively
3 Set Ta.1/ D Tb.1/ D Tab.1/ D a1b1

4 for i D 2 to m do
5 Let Tab.i/ D the minimum length tree from f Ta.i � 1/ [fai�1ai g [fai bi g;

Tb.i � 1/ [fbi�1bi g [fai bi g;

Tab.i � 1/ [fai�1ai g [fbi�1bi g g
6 if bi 2 N then
7 Let Ta.i/ D Tab.i/

8 else
9 Let Ta.i/ D Ta.i � 1/ [fai�1ai g

10 if ai 2 N then
11 Let Tb.i/ D Tab.i/

12 else
13 Let Tb.i/ D Tb.i � 1/ [fbi�1bi g
14 Compute the lengths jTab.i/j; jTa.i/j; jTb.i/j
15 T D Tab.m/

This Hanan grid graph H.N / is an example of what is known as a series-parallel
graph, meaning it contains no subgraph homeomorphic to K4. It follows from a
result of Wald and Colbourn [381] on Steiner trees on graphs (see Chap. 5) that
Steiner trees on such graphs can be constructed in linear time. Here, however, we
outline a more direct constructive proof based on an earlier approach by Aho, Garey
and Hwang [4].

Let T be a minimum rectilinear Steiner tree for N . For each positive integer i �
m let Hi .N / be the induced subgraph of H.N / with vertices a1; : : : ; ai ; b1; : : : ; bi

and let Ti be the part of T contained in H.N / (in other words, Ti consists of the
parts of T on and to the left of ai bi). With this definition of Ti we have the following
lemma.

Lemma 3.23 For a terminal set N constrained to two horizontal lines, there exists
a minimum rectilinear Steiner tree T such that each subgraph Ti is a tree.

This lemma can be proved by sliding all vertical components of T as far to the
left as possible without disconnecting the tree and its terminals (Exercise 3.10).

Let Ni be the set of all terminals in a1; : : : ; ai ; b1; : : : ; bi . Lemma 3.23 suggests
that it should be possible to construct T from left to right by, for example, a
simple dynamic programming approach. An algorithm along these lines is given
in Algorithm 3.2. As i increases from 1 to m, the algorithm recursively keeps track

200 3 Rectilinear Steiner Trees

of the three possible (not necessarily disjoint) forms that the subtree Ti can take:

Tab.i/ D a minimum rectilinear Steiner tree on Ni [fai ; bi g;
Ta.i/ D a minimum rectilinear Steiner tree on Ni [fai g;
Tb.i/ D a minimum rectilinear Steiner tree on Ni [fbig.

It is straightforward to prove the correctness of this algorithm; see Exercise 3.11.
Clearly each of the constructions in lines 5–13 of the algorithm can be performed

in constant time, and the updating of the lengths of each of the candidates for Ti (in
line 14) can then also be done in constant time based on these constructions. This
results in the desired linearity result.

Theorem 3.24 ([4]) A minimum rectilinear Steiner tree for a terminal set con-
strained to two horizontal lines can be constructed in linear time.

The dynamic programming strategy underlying Algorithm 3.2 can be extended to
the construction of a minimum rectilinear Steiner tree T for terminals N constrained
to any fixed number k of horizontal lines. Again the tree can be built up from left
to right by constructing candidate subgraphs for each Ti , the part of T that lies on
or to the left of a vertical line through vertices in the Hanan grid. One of the main
differences in this more general case is that Ti is no longer necessarily a tree, but in
general will be a Steiner forest with multiple components. The difficulty of keeping
track of all possible combinations of components and all possible optimal updates
of Ti as i increases means that the complexity of constructing T is exponential in
k, the number of horizontal lines, but is still linear in n.

A general algorithm of this type was developed by Brazil, Thomas and
Weng [67], leading to the following result.

Theorem 3.25 ([67]) A minimum rectilinear Steiner tree for a set of n terminals
constrained to k horizontal lines can be constructed by an algorithm with time
complexity O.nk310k/ and space complexity O.nk5k/.

3.5.2 Terminals on Rectilinearly Convex Polygons

Recall, from Sect. 3.2.2, that a path-convex hull for a set of terminals N in the
rectilinear plane is defined to be a rectilinear polygonal region containing all
elements of N such that a walk around its perimeter has minimum possible length.
A key property of path-convex hulls is that there always exists a minimum Steiner
tree for N contained in any path-convex hull of N . The boundary of a path-convex
hull is sometimes referred to as a rectilinearly convex boundary, and the hull itself as
a rectilinearly convex polygon. We will make use of this terminology in the survey
that follows.

Here we consider the case where all terminals N lie on the boundary of a
rectilinearly convex polygon Rk with k sides. Note that we can assume that each

3.5 Efficient Constructions for Special Terminal Sets 201

side of the polygon contains at least one terminal, since otherwise we could reduce
it to a problem with a smaller k. This implies that Rk is a path-convex hull of N .

One of the earliest approaches for developing a polynomial-time algorithm for
the case where all terminals lie on the boundary of a path-convex hull of N was
proposed by Provan [318]. Provan observed that in this case solving the rectilinear
Steiner tree problem is equivalent to solving the Steiner tree problem in graphs
(see Chap. 5) where the underlying graph is the reduced Hanan grid graph for N

(as illustrated, for example in Fig. 3.14) and where all terminals lie on the outer
boundary of the graph. Note also that any leaf edges of the reduced Hanan grid
graph (such as those incident with t1; t2; t5 and t7 in Fig. 3.14) can be collapsed
down to zero-length edges to give an equivalent problem where the reduced Hanan
grid graph is a 2-connected planar graph (meaning that it is connected, and remains
connected if any single edge is deleted), and all terminals lie on the boundary of the
exterior face. Such a planar graph is referred to as 1-planar.

The Steiner tree problem in graphs for 1-planar graphs has been shown (via
a straightforward dynamic programming algorithm) to be solvable in polynomial
time. In particular, a result of Bern [29] on 1-planar graphs translates into an O.n5/-
time algorithm for solving the corresponding Steiner tree problem. This was later
improved to an O.n3/-time algorithm by Cheng et al. [90].

Theorem 3.26 ([90]) Let N be a set of n terminals that lie on the boundary of the
reduced Hanan grid for N . Then a minimum rectilinear Steiner tree for N can be
constructed by an algorithm with time complexity O.n3/.

If we return to the case of finding a minimum rectilinear Steiner tree T for a set of
n terminals on the boundary of a given rectilinearly convex polygon Rk with k sides,
then stronger results are possible, particularly if k is significantly smaller than n. An
algorithm for solving this problem with time complexity O.nk4/ was presented by
Richards and Salowe in [323]. The key to developing such an algorithm is to show
that there are only a limited number of possible locations for any full component of
T containing at least one Steiner point.

To take a representative case, suppose there is a full component T0 of T that has
Hwang form of type (ii) (as defined in Theorem 3.8). This is illustrated in Fig. 3.31.
We define the extended backbone of T0 to be the union of the complete corner of T0

with the segment incident to the short leg and with the segment incident to the long
leg closest to the corner point. For example, the extended backbone of the type (ii)
full component in Fig. 3.31 is indicated in bold. For each corner point of Rk with
interior angle of 3�=2, Richards and Salowe identify at most 10 associated grid
lines of the Hanan grid which they define to be blue lines, and then they show that
the extended backbone of T0 is blue (that is, is composed only of segments of blue
lines). Since there are O.k/ blue lines there are O.k4/ possibilities for the extended
backbone of T0.

Each possibility for the extended backbone of T0 divides Rk into four subregions
(indicated by the four different coloured regions in Fig. 3.31) and hence decomposes
the problem of constructing T into four subproblems. Richards and Salowe [323]
show that each of these subproblems can be solved in time O.k4 C n/, using a

202 3 Rectilinear Steiner Trees

Fig. 3.31 A full component (shown in black) for terminals on a rectilinearly convex boundary
(shown in orange). Only terminals belonging to this full component are shown. The extended
backbone of the full component (indicated by the bold black lines) partitions the rectilinearly
convex polygon into four subregions (indicated by the different colours)

dynamic programming approach based on solving the subproblems for regions of
increasing area. This results in an O.k8 C k4n/-time algorithm, which they show,
through detailed case analysis, can be improved to O.k4n/. More recently, Cheng
and Tang [91, 92] have shown that the running time can be further improved to
O.k2n/ by refining the dynamic programming method used for the subproblems.

Theorem 3.27 ([91]) Let R be a rectilinearly convex polygon with k sides and let
N be a set of n terminals that lie on the boundary of R. Then a minimum rectilinear
Steiner tree for N can be constructed by an algorithm with time complexity O.k2n/.

We note that Cheng [89] has also developed a similar algorithm for terminals
lying on the boundary of a non-convex rectilinear polygon, showing that a minimum
rectilinear Steiner tree T can be constructed in time O.k3n/ as long as T lies inside
the polygon.

3.5.3 Terminals Constrained to Curves

We conclude this section with a brief discussion of a more general class of instances
that admit polynomial-time solutions, namely terminals constrained to lying on a
given set of compact simple curves. The result is analogous to Theorem 1.21 for the
Euclidean Steiner tree problem in Chap. 1. As with that theorem, the result here is
more of theoretical than practical interest, as the degree of the polynomial may be
high (depending on the geometry of the given set of curves). The theorem, however,
gives some insight into the boundary between P and NP for the rectilinear Steiner
tree problem.

3.6 Applications and Extensions 203

Before stating the theorem, we require some simple definitions. For a given
compact curve C in the plane, we define a rectilinear segment of C to be a maximal
closed straight line segment which is either vertical or horizontal. Furthermore, a
non-differentiable point p in the interior of C is said to be an abnormal point if
there exists a supporting line for C at p which is either vertical or horizontal.

Theorem 3.28 ([64]) Let G be a finite union of disjoint compact simple continuous
curves in the plane that are smooth almost everywhere and contain a finite number
of abnormal points and rectilinear segments. Then, there is a polynomial-time
algorithm for solving the rectilinear Steiner tree problem for any set of terminals
lying on G.

Note that in the above theorem we treat the set G as a given quantity. Here,
“polynomial time” refers to time polynomial only in n, the number of terminals.
The degree of this polynomial, however, is highly dependent on the nature of G.

The overall strategy for proving Theorem 3.28 is similar to that used in the proof
of Theorem 1.21. For the given set G we define a finite set of capsules covering G;
each capsule is a region consisting of a small neighbourhood around a section of one
of the curves in G. The capsules are defined in such a way as to guarantee that there
are only a polynomial set of possibilities for the topology of the part of a minimum
rectilinear Steiner tree T within the capsule (in terms of the number of terminals in
the capsule). It can also be shown that there are only a bounded number of edges
leaving each capsule, giving a finite bound on the number of possible topologies for
the part of T outside the capsules.

One of the main challenges in the proof is to find a polynomial-time algorithm
for constructing any part of T in a capsule containing an abnormal point, as these
capsules can contain an unbounded number of Steiner points. The proof here makes
use of a result of Bern and Bienstock [30] that gives a polynomial-time solution
for the Steiner tree problem on planar graphs where the terminals all lie within a
bounded number of layers of the infinite face. For the full proof of Theorem 3.28
see Brazil et al. [64].

3.6 Applications and Extensions

The rectilinear Steiner tree problem plays an important role in the physical
realisation of electronic circuits. The physical design of circuits is about mapping
a circuit onto an almost planar surface – or converting a circuit description into a
geometric description.

The construction of an electronic circuit begins by describing the behaviour of
the circuit. The process of specifying the logic functions of the circuit and their
interrelations, often referred to as logic synthesis, is performed using a hardware
description language (HDL). Logic synthesis produces a netlist, which describes
how a set of standard components such as NANDs or NORs are interconnected.
For each component, a specific physical realisation is chosen, depending on

204 3 Rectilinear Steiner Trees

requirements related to area consumption, load capacitance and timing. A compo-
nent with a specific physical realisation is called a module, and it can be considered
to be a rectangle with given dimensions. Each net of the netlist should interconnect
a set of pins from different modules. One of the pins is the source, that is, the pin
that drives the electric signal of the net.

In its simplest form, the physical design of a circuit is about placing the modules
of the circuit without overlap onto a given planar surface, and connecting the pins of
each net such that wires from different nets do not intersect. In this section we first
describe some of the steps involved in this mapping procedure – and in particular
those where minimum rectilinear Steiner trees play a role. Then we describe some
of the extensions of the rectilinear Steiner tree problem that are motivated by the
physical design of circuits. Finally, in this section, we briefly discuss extensions of
the rectilinear Steiner tree problem to higher dimensions.

3.6.1 Physical Design of Circuits

The modules of a printed circuit board consist of individually packed electronic
components (e.g., resistors, capacitors or more complex integrated circuits) that
are placed on a non-conductive planar board. The wires are ‘printed’ on the
surface of the board by removing parts of a copper-layer using etching or milling
techniques (Fig. 3.32); the planar board can consist of several layers, allowing
wiring on multiple layers. The orientation of wires on a single layer is typically
rectilinear or octilinear (see also Sect. 2.7.1). The history of printed circuit boards
goes back to the early twentieth century. Before the invention of printed circuit
boards, components were connected using point-to-point wire connections. Printed
circuit boards reduced the cost of circuits, and significantly increased robustness and
reliability.7

An integrated circuit (also referred to as an IC or a chip) is a set of electronic
circuits on one small plate (chip) of semiconductor material. Integrated circuits are
fabricated on silicon wafers (also called the substrate). By marking different areas
of the substrate using photolithography, patterns/tracks consisting of polysilicon,
insulator or metal can be deposited on the substrate (Fig. 3.33). In this way
transistors and the wires connecting them can be built on a very small scale on the
surface of the substrate – a process often referred to as very-large-scale integration
(VLSI) design. Current technology makes it possible to construct patterns/tracks

7A classical paper on the physical layout of circuits, including the design of printed circuit boards,
is that of Soukup [356]. A more recent overview of mathematical methods for the physical layout
of printed circuit boards can be found in [1].

3.6 Applications and Extensions 205

Fig. 3.32 Printed circuit board design (left) and realisation (right). In the design, the placement of
the modules (yellow), the wire layout on the front side (red) and the wire layout on the back side
(blue) are shown

less than 25 nm wide. For an introduction to algorithms for the physical design of
integrated circuits, see Alpert et al. [11] and Held et al. [192]. 8

In this section the focus is on integrated circuits, rather than printed circuit
boards. In printed circuit boards, almost all nets are simple paths between pairs
of pins, and hence the theory of Steiner trees is less relevant to the physical design.
Here one of the principal optimisation challenges in the physical design stage is
efficiently packing all the nets on a small number of layers [1].

Main Steps of Physical Design: Placement and Routing

The overall objective of the physical design of printed circuit boards and integrated
circuits is to obtain a feasible placement of the modules, and a feasible routing of
the wires. Also, as a general rule, the wire length of individual nets, as well as the

8The literature on the physical design of integrated circuits is vast. Some fairly recent books and
theses include – in chronological order – Lengauer [249], Kahng and Robins [229], Pecht and
Wong [301], Sarrafzadeh and Wong [339], Gerez [173], Sait and Youssef [331], Sherwani [347],
Vygen [378], Saxena et al. [340] and Kahng et al. [226]. Some early contributions on the routing
problem are Yang and Wing [423] and Hightower [196]; more recent surveys can be found in
Möhring et al. [284], Cong et al. [118], Peyer [303], Moffitt et al. [283], Moffitt [282], Müller [286],
Robins and Zelikovsky [325], Alpert et al. [10] and Gester et al. [175]. The list of combinatorial
problems in chip design recently compiled by Korte and Vygen [238] illustrates the challenges in
the field. The authors consider the chip design problem to be one of the most important application
areas in (discrete) mathematics. In particular, efficient algorithms are needed to handle problems
with millions of modules and nets.

206 3 Rectilinear Steiner Trees

Fig. 3.33 Model of a small
integrated circuit with three
metal layers (insulator has
been removed). The
sand-coloured structures at
the top are lines of metal
interconnect. The layers are
connected using vias (vertical
pillars). The reddish middle
structures are polysilicon
gates, and the solid layer at
the bottom is the substrate

total wire length of all nets, should be minimised. Short interconnections minimise
area usage and reduce the signal delay of nets. In the following, we describe the
steps of physical design for integrated circuits (or chips). The steps can be iterated
in order to improve the performance of the chip.

The first step of physical design is usually floorplanning, where major parts of the
circuit are placed on the chip surface. (For an integrated circuit of a CPU, such major
parts could be arithmetic logic units, branch predictors, caches etc.) In the placement
step each of the modules is located on the chip surface. The placement problem
is a multi-objective problem, where area usage, wire length and signal delay are
the primary objectives. These objectives are usually combined into a single quality
measure called netlength. The problem of meeting timing (or clock rate) constraints
is called timing optimisation. Timing can be improved by inserting amplifiers on
wires (buffer insertion) and by adjusting the size of transistors (gate sizing). Also,
timing can be optimised by adjusting the netlength of critical nets and reoptimising
the placement under the new netlength objective.

The final step of physical design is routing, where the wires interconnecting
the modules are located on the chip surface and assigned to different (metal)
layers. Wires on a given layer have a preferred direction which is either horizontal
or vertical – the so-called Manhattan routing. Each net of the netlist should
interconnect a given set of pins on the chip surface, and wires from different nets
should not intersect each other. The main objectives of routing are firstly to obtain
a physically feasible routing layout and secondly to minimise the total wire length

3.6 Applications and Extensions 207

MINI

Fig. 3.34 A placement and a routing of a small circuit. The circuit has 19 modules, 22 nets and
58 pins. The horizontal blue wires and vertical red wires run on different metal layers. Vias are
indicated by �’s (Figure reproduced by courtesy of Research Institute for Discrete Mathematics,
University of Bonn)

and signal delay. Figure 3.34 illustrates a small chip where placement and routing
has been performed.

Global and Detailed Routing

Routing is performed with the help of a (flat) three-dimensional grid graph, where
the distance between neighbouring grid lines is the minimum width of a wire plus
the minimum distance between wires. In older technologies modules and wires
were aligned perfectly on the grid graph, but in current designs, modules and
wires can be placed off-grid; such routing is usually called gridless or shape-based
routing. Furthermore, wires are typically wider on the upper metal layers of the
chip, allowing timing-critical long-distance nets to be routed there. Modern routing
algorithms therefore only implicitly use the grid graph.

208 3 Rectilinear Steiner Trees

Routing millions of nets in a grid graph with billions of nodes is a challenging
task. The problem is therefore divided into at least two steps: global routing and
detailed routing. The global routing problem is a coarse version of the routing
problem, where the chip surface is divided into axis-aliged rectangular regions. The
height and width of a region is typically 50–100 grid lines in the grid graph. In the
global routing grid graph the vertices are the regions, and two vertices are connected
by an edge if the two regions are neighbours. The edges in the global routing
grid graph have associated lengths and capacities, where the capacities estimate the
maximum number of wires that can be routed between two neighbouring regions.
The global routing problem is, in its simplest form, a so-called Steiner tree packing
problem, where trees should be ‘packed’ in the global routing grid graph such that
the capacities of the edges are respected.

The output of the global routing problem is a ‘global routing corridor’ for each
net, that is, a coarse description of the wiring of each net. In the detailed routing
problem the exact wiring of each net is determined – and in such a way that the
output of global routing is respected. Using the output from global routing both
minimises the risk of congestion in detailed routing and speeds up detailed routing,
since only a relatively small part of the full grid graph needs to be considered. Due to
the size of the detailed routing problem, the problem is normally solved one net at a
time – and in most cases one point-to-point connection at a time (however, state-of-
the-art routing software can perform these routing tasks in parallel for a single chip).
While global routing is a multi-objective problem where congestion, timing and
wire length are considered, detailed routing is primarily concerned with feasibility,
and the only real optimisation involved is (implicit) shortest-path computation in the
grid graph.

Technological Constraints: Design Rules

Over the last 50 years, chip producers have managed to halve the size of transistors
(and width of wires) every 2 years or so – a development often referred to as
Moore’s law. For example, Intel has moved from a 130 nanometre technology to a 14
nanometre technology over a time span of 12 years (from 2002 to 2014). Due to the
shrinking scales of wires, chip production processes and the physics related to small
scales enforce still more so-called design rules that must be met by the final routing.
Such rules not only involve distances between different nets (diff-net rules), but
increasingly also involve rules prohibiting certain configurations of shapes within a
single net (same-net rules). Examples include constraints on the minimum length of
wire segments, and constraints on the minimum area of a single wire on a layer. Such
design rules make it increasingly difficult just to use simple optimisation algorithms,
and the problem can only be solved partially through postprocessing of a proposed
routing solution.

3.6 Applications and Extensions 209

The Role of Rectilinear Steiner Trees in Chip Design

Although every net on a modern chip is an almost planar rectilinear Steiner tree,
the direct use of minimum rectilinear Steiner trees in chip design has its limitations.
Firstly, a routed net is not planar, and the cost of connecting wires on different
layers cannot be ignored. Secondly, a net cannot be routed freely on the surface
of the chip, but has to avoid all other nets of the chip. And thirdly, design rules
and optimisation criteria other than wire length may require rectilinear Steiner trees
that are not necessarily length-minimal. In the next section we discuss some of the
extensions of the rectilinear Steiner tree problem that are motivated by the physical
design of circuits.

3.6.2 Extensions Motivated by the Physical Design of Circuits

In this section we present a number of extensions of the rectilinear Steiner tree
problem that are motivated by chip design. The presentation is not comprehensive
and does not cover all the literature, but it does cover many of the most important
extensions.

Wire Length Estimation

One of the important direct applications of the rectilinear Steiner tree problem
is wire length estimation (see also Sect. 3.4). A minimum rectilinear Steiner tree
provides a very accurate lower bound on the necessary wire length in the placement
phase of physical chip design. In this phase, complicating constraints can be – or
rather must be – ignored; therefore, computing a minimum rectilinear Steiner tree
for every net provides a good indication of the quality of a placement solution.

More generally, wire length can be estimated using a number of different
netlength models. The purpose of a netlength model is to quantify the quality of
a given placement; minimising total wire length is usually a primary objective, but
other objectives such as signal delay and power consumption also play an important
role. A minimum rectilinear Steiner tree obviously has minimum length, but is NP-
hard to compute. Therefore, computational methods that can rapidly estimate the
minimum length – and that can be incorporated directly and efficiently into the
objective function of the placement algorithm – are of great interest.

In addition to minimum rectilinear Steiner tree length and half-perimeter wire
length estimates (see Sect. 3.4), a number of other methods can be used to estimate
wire length. Consider a set N of n terminals. Brenner and Vygen [75] compare the
following alternative estimates: the length of a minimum rectilinear spanning tree
for N [321], the star length of N (i.e., a solution to the general Fermat problem for
N) and clique length (i.e., the sum of distances over all pairs of points in N divided
by some function of n). Brenner and Vygen [75] argue that the clique model is most

210 3 Rectilinear Steiner Trees

appropriate in placement algorithms that only consider two-terminal connections,
that is, where a fixed topology must be assumed for each net of the chip.

Delay-Driven Routing

In the routing problem the task is to interconnect the pins/terminals of every net
of the chip. For each net N , one of the terminals r 2 N is the source, while the
remaining terminals in N are the sinks. The electrical signal should propagate from
the source to the sinks via the constructed tree. Thus, the rectilinear Steiner tree is
in fact directed – or a so-called Steiner arborescence.

One of the important objectives that should be taken into account is the signal
delay from the source to the sinks. In particular, if the net is part of the critical signal
path of the chip, then the signal delay of the constructed tree has a direct influence on
the clock rate (or performance) of the chip. Signal delay is related to the lengths of
the paths from the source to the sinks, so minimising total path length often improves
the signal delay properties of the tree. However, the actual signal delay has more
complex behaviour, and depends not only on the length of the path itself, but also
on the lengths of the subtrees that are attached to the path. Furthermore, for a simple
two-terminal connection, signal delay increases quadratically with the length of the
connection. The popular Elmore delay model [19, 148, 202, 229, 302, 341] serves
as a good estimation for computing the signal delay. The slightly simpler distributed
RC delay model is easier to use for optimisation, but serves best as an upper bound
on the delay [120]. An overview of models and techniques for optimising delay can
be found in [40, 118, 229]. The problem of minimising Elmore delay is still a major
algorithmic challenge in chip design [238].

Other simpler models can be used to incorporate delay into rectilinear Steiner
tree algorithms. The simplest model is to assume that the delay of a wire is
linear in its length. Ignoring all other objectives, a shortest-path tree would provide
minimum delay. The problem of constructing a rectilinear tree of minimum length
in which every source-sink path is a shortest rectilinear path is called the rectilinear
Steiner arborescence problem [320]. Unfortunately, shortest-path trees usually
have unacceptable high total length. Therefore, so-called shallow-light trees have
attracted considerable interest [9, 20, 119, 232, 289]. These are trees that have short
paths from their source to their sinks (are ‘shallow’) and also have small total
length (are ‘light’). Other relatively simple models that incorporate delay have been
proposed by Bartoschek et al. [24] and Held and Rotter [193].

For most nets on the chip, a minimum rectilinear Steiner tree has satisfactory
delay properties – assuming buffers have been inserted to meet timing constraints.
Furthermore, a minimum rectilinear Steiner tree is usually not unique, and different
embeddings may have different delay properties. Bozorgzadeh et al. [41, 42]
discussed methods that can exploit the flexibility of embeddings of rectilinear
Steiner trees. Boese et al. [33–35] introduced a Global Slack Removal algorithm
that attempts to improve the delay properties of a rectilinear Steiner tree without
increasing its length. Peyer et al. [304] took this idea one step further and

3.6 Applications and Extensions 211

considered the problem of constructing a minimum rectilinear Steiner tree with
some secondary delay-related objective. More specifically, they focussed on the
problem of constructing a minimum rectilinear Steiner tree with the weighted sum
of path lengths as the secondary objective (i.e., path lengths from a given source to
a set of sinks). An optimal solution to this problem exists in the Hanan grid for the
terminal set [428], but Peyer et al. [304] proved the following stronger result:

Theorem 3.29 In a rectilinear Steiner tree problem equipped with a secondary
objective of minimising a weighted sum of the path lengths, the Steiner points of an
optimal solution must overlap with vertices of the Hanan grid for the terminal set.

Adding the secondary objective to the problem thus forces the Steiner points to
belong to the Hanan grid. Peyer et al. [304] presented both exact and heuristic
algorithms for the problem. The heuristic algorithm, denoted Extended Global Slack
Removal (XGSR), is also capable of minimising Elmore delay as a secondary
objective. Experiments with real-life chip instances with 4–40 terminals were
presented. (Note that minimum rectilinear Steiner trees with 2 or 3 terminals are
always optimal with respect to the weighted sum of path lengths.) On average,
XGSR constructed secondary objective optimal trees for 98.4 % of the problem
instances; only 52.0 % of the problem instances were optimal before applying
XGSR.

Group Interconnections

During the global routing phase of chip design, it is usually assumed that each pin
of the net is a single point. Thus, computing a minimum length interconnection
is the same as computing a minimum rectilinear Steiner tree for the pins of the
net. However, on a real chip a pin typically consists of several rectangles (or line
segments), and any point on this set of rectangles suffices as a connection point.
This fact motivates the study of so-called group Steiner trees, where each ‘terminal’
consists of a set of rectangles. The roots of this problem go back to Melzak [278],
who discussed the Euclidean group problem (where the groups are convex sets in
the plane).

As shown by Zachariasen and Rohe [432], the rectilinear group problem with
rectangles reduces to the rectilinear group problem with points, as the problem can
be solved in the Hanan grid of the corner points of the given rectangles. So from
here on we consider the following definition of the rectilinear group Steiner tree
problem: Given a set of groups N D fN1; N2; : : : ; Nkg, where each group Ni ,
i D 1; : : : ; k, is a finite set of points in the plane, construct a minimum rectilinear
Steiner tree which spans at least one point from each group; such a tree is called
a minimum rectilinear group Steiner tree. This problem is NP-hard even for very
restricted cases, e.g., when all the terminals are required to lie on two parallel
lines [215] or when Steiner points are not allowed [216]. The group problem can be
transformed to the ordinary Steiner tree problem in a graph by introducing so-called

212 3 Rectilinear Steiner Trees

super-terminals. Therefore, the problem can be solved using any exact algorithm for
the Steiner tree problem in graphs (see Chap. 5).

Zachariasen and Rohe [432] gave a first (tailored) exact algorithm for solving
the rectilinear group Steiner tree problem. They presented techniques to reduce the
given set of points, that is, to remove points in the groups Ni from consideration
by showing that an optimal tree exists that does not use these points. Also, a
generalised version of Zachariasen’s [427] full Steiner tree generation algorithm
was used to reduce the Hanan grid graph – hence speeding up standard branch-
and-cut algorithms for solving the corresponding graph problem. Computational
experiments on real-life and random problem instances with up to 100 groups were
performed. The techniques employed resulted in a speed-up approaching an order
of magnitude, and increased the range of practically solvable real-life problem
instances from around 40 groups to beyond 70 groups.

Obstacle-Avoiding Interconnections: Hard and Soft Obstacles

When solving the routing problem in chip design, certain regions of the chip
surface may be forbidden – or may have certain restrictions. Such regions are
usually denoted obstacles. Obstacles typically consist of pre-placed macros or other
circuits (Fig. 3.35). In older technologies, where the number of available layers was
limited, routing across pre-placed circuits was impossible. These circuits formed
hard obstacles. In newer technologies, where the number of layers is higher, it
is possible to route wires across pre-placed circuits; however, routing across such
soft obstacles is usually less attractive, since these regions have less interconnect
capacity and/or no space for placing buffers/repeaters.

Fig. 3.35 Typical distribution of obstacles on two real-life chips (Pictures reproduced by courtesy
of Research Institute for Discrete Mathematics, University of Bonn)

3.6 Applications and Extensions 213

Of these two routing problems, the problem of constructing a minimum length
tree that interconnects a given set of terminals and avoids a set of hard polygonally
bounded obstacles has by far received the most attention in the literature. Ganley and
Cohoon [163] observed that the obstacle-avoiding rectilinear Steiner tree problem
can be solved in a subset of the Hanan grid of the terminals and obstacle corners –
thus providing an efficient reduction to the Steiner tree problem in planar graphs.
The obstacle-avoiding problem for hard obstacles is studied in depth in Sect. 4.2.

For the rectilinear Steiner tree problem with soft obstacles, a number of different
variants may be considered:

Uniform weight obstacles Each obstacle has a given weight, and the problem
is to find a minimum rectilinear Steiner tree, where the length of any part of the
tree that crosses an obstacle is multiplied by the weight. The regions correspond
to congestion hot-spot regions where previous placement or routing iterations
identified potentially high levels of congestion. There exists an optimal solution
to this problem in the Hanan grid of the terminals and obstacle corners [428],
so this problem reduces to the Steiner tree problem in planar graphs. The prob-
lem of computing shortest rectilinear paths with weighted obstacles was studied
in [243, 246].

Non-uniform weight obstacles This variant is similar to the previous variant
except that the weight of an obstacle is not uniform, but decreases closer to the
boundary. The idea is that there is a central region (a congestion hot spot) that has
a high weight and an outer region where the weight decreases as one moves away
from the central region (see also [157]).

Length-bounded intersections In this variant the problem is to find a minimum
rectilinear Steiner tree, such that each maximal component of the tree that overlaps
with the interior of an obstacle has length bounded by some constant. An interesting
special case is the problem where all terminals are on the boundary of a single
rectilinear obstacle. Approximation algorithms for the length-bounded intersection
variant have been proposed in [194, 287].

Slew-constrained intersections This variant is similar to the previous variant, but
here the constraint on the overlap depends on the delay properties of the overlapping
tree. An exact algorithm for this variant is given in [207].

Other Extensions

Here we briefly mention some other extensions of the rectilinear Steiner tree
problem that have been studied.

Floating Steiner trees Sarrafzadeh et al. [336] studied rectilinear floating Steiner
trees. In this problem multiple Steiner trees share a terminal that is movable. This
problem is relevant in the placement phase of chip design. The problem is to find
the position of the terminal that minimises overall tree length.

214 3 Rectilinear Steiner Trees

Minimum segment lengths In this problem the task is to find a minimum
rectilinear Steiner tree with the restriction that there is a given lower bound for
the length of any segment – due to lithographic constraints in the production of the
chip. More generally, there may be a collection of similar lithographic constraints
that the tree must satisfy [275, 293].

3.6.3 Extensions to Higher Dimensions

As described in the previous sections, the three-dimensional rectilinear Steiner
problem has obvious applications in the physical design of integrated circuits (since
such circuits are in fact three-dimensional). In this section we briefly present some
of the main properties of rectilinear Steiner trees in d -dimensional space (with a
focus on d � 3), and cover some interesting applications of higher dimensional
rectilinear Steiner trees (see also [211]).

For any two points p D .x1; x2; : : : ; xd / and q D .y1; y2; : : : ; yd / in a
d -dimensional space, their `1 distance is jpqj1 D jx1 � y1j C jx2 � y2j C � � � C
jxd � yd j, that is, the sum of distances in each of the d dimensions. Formally, the
d -dimensional rectilinear Steiner tree problem is as follows:

RECTILINEAR STEINER TREE PROBLEM IN d -DIMENSIONAL SPACE

Given: A set of points N D ft1; : : : ; tng lying in d -dimensional space (for
d � 2).
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, and
such that jT j WD P

e2E.T / jej1 is minimised.

As in the planar case, a network solving the rectilinear Steiner tree problem in d -
dimensional space is a tree, referred to as a minimum rectilinear Steiner tree. All the
other associated definitions including terminals, Steiner points, and full components
carry across to this more general setting in a natural way.

Generalisation of the Hanan Grid Property

The rectilinear Steiner tree problem in d -dimensional space can be reduced to a
Steiner tree problem on a grid graph. More precisely, Snyder [353] generalised the
Hanan grid property (see Sect. 3.2.2) to higher dimensional spaces:

Theorem 3.30 ([353] Hanan grid reduction in d -dimensional space) Let N be
a set of terminals in d -dimensional space (for d � 2). There exists a minimum
rectilinear Steiner tree for N such that every Steiner point is located at a point
whose coordinates appear in N .

3.6 Applications and Extensions 215

It follows that the rectilinear Steiner tree problem in d -dimensional space can be
solved on a grid graph with O.nd / vertices and O.dnd / edges, where n D jN j;
the size of the grid graph is polynomial in n for constant dimension d . Du and
Hwang [136] generalised Snyder’s result to any d -dimensional normed space with
a unit sphere that is a centrally symmetric polytope with 2d extreme points. (Du
and Hwang’s proof is much simpler than Snyder’s original proof.)

Non-existence of Hwang Forms for Dimensions d � 3

The existence of the Hwang form for full components has played a pivotal role in
the design of exact algorithms for the rectilinear Steiner tree problem in the plane
(see Sect. 3.3). One of the key features of the Hwang form for a full component is
that it is a caterpillar tree, meaning that the subtree induced by the Steiner points is
a single path. Wulff-Nilsen [410] has shown that for d � 3 we can no longer assume
that each full component is a caterpillar. For a given full component T and a Steiner
point s in T , let the Steiner depth of s be the minimum distance (measured in the
number of edges) to a terminal in T . The Steiner depth of T is then the maximum
Steiner depth for any Steiner point in T . The Steiner depth can be at most O.log n/

for any full component that spans n terminals (Exercise 3.12). A full component
which is a caterpillar clearly has Steiner depth 1.

Theorem 3.31 ([410] Full components for d � 3 can have large Steiner depth)
For any dimension d � 3 and any k 2 N there exists a set of terminals N of
cardinality n D 2k C 1, such that there is a unique minimum rectilinear Steiner tree
T for N , and such that T is a single full component with Steiner depth ‚.log n/.

This theorem leaves little hope of finding simple characterisations of full
components in minimum rectilinear Steiner trees for d � 3, and suggests that any
algorithm for solving the rectilinear Steiner tree problem in d -dimensional space
will have to consider all possible Steiner topologies for full components.

Exact Algorithms

A basic approach for computing a minimum rectilinear Steiner tree is to enumerate
all full Steiner topologies (where Steiner vertices have degree 3 and terminals
have degree 1), and to compute a relatively minimal tree for each topology (see
Sect. 1.1.3). Sankoff and Rousseau [334] gave a dynamic programming algorithm
for locating the Steiner vertices for a given topology. Here we sketch the Sankoff-
Rousseau algorithm for the case where the topology is a full Steiner topology (see
also [410]).

The main observation is that we may consider each of the d dimensions
separately, since optimising the rectilinear length for one dimension does not affect
the rectilinear length for any other dimension. Let T be a full Steiner topology for
terminal set N . Set the root of the topology to be one of the terminals r 2 N .

216 3 Rectilinear Steiner Trees

The idea is now to process the Steiner vertices bottom-up in the rooted (binary)
tree/topology as in the Melzak-Hwang algorithm for the Euclidean Steiner tree
problem in the plane (see Sect. 1.2.1). For a given dimension and Steiner vertex
s, we identify a simple interval in which Steiner vertex s must be located in order to
obtain a minimum rectilinear Steiner tree for the subtree rooted at s. The interval can
be computed in constant time given the corresponding intervals for the two children
of s in T .

When the bottom-up algorithm reaches the root, we do an inverse top-down
traversal fixing the locations of each Steiner vertex – also in constant time per vertex
for a given dimension. The construction results in a unique canonical minimum
rectilinear Steiner tree for the given topology and root r [334, 410].

Theorem 3.32 ([334] Sankoff-Rousseau algorithm) Let N be a set of n termi-
nals in d -dimensional space (for d � 2), and let T be a full Steiner tree topology
for N . Then we can compute a relatively minimal rectilinear Steiner tree for N and
T in O.dn/ time.

The relatively minimal tree that is obtained by the Sankoff-Rousseau algorithm
has the property that the coordinates of the Steiner vertices only come from the given
terminals, and therefore the existence of the canonical tree immediately implies
Theorem 3.30.

It seems likely from Theorem 3.31 that any GeoSteiner-type algorithm must take
all possible full Steiner topologies into consideration when generating full Steiner
trees (FSTs) for d � 3. Wulff-Nilsen, in [410], has implemented a GeoSteiner
algorithm for the d -dimensional rectilinear Steiner tree problem. Despite the
application of several sophisticated FST-pruning tests, the algorithm was able to
compute minimum rectilinear Steiner trees for only up to around 15 terminals for
d D 3 and around 10 terminals for d D 4; 5; 6. Wulff-Nilsen [410, 411] has also
given some bounds on the expected number of FSTs in higher dimensions fulfilling
certain necessary conditions.

For some classes of problem instances the number of different coordinates for
each dimension may be low – leading to a small number of Steiner point candidates
in the grid graph. Chowdhury et al. [101] exploited this fact in the design of a
spanning tree enumeration algorithm (see Sect. 5.1) for the rectilinear Steiner tree
problem in higher dimensions.

Relation to Phylogenetic Trees, Wagner Trees and Hamming
Distance Problems

Rectilinear Steiner trees in higher dimensions appear to have been mentioned first
in the context of the construction of phylogenetic trees in the 1960s. A phylogeny
is a tree representing the ancestral relationship for a set of species. A species is
represented by a sequence ˛1˛2 : : : ˛d of characters (e.g., nucleotides or proteins),
and the difference, or distance, between two species ˛1˛2 : : : ˛d and ˇ1ˇ2 : : : ˇd

is measured as the number of sites i 2 f1; : : : ; d g where ˛i ¤ ˇi – also

3.6 Applications and Extensions 217

called the Hamming distance between the two species. We mention three special
cases/variations of this problem.

Hypercube Steiner trees The simplest case of the phylogeny problem is the case
where each character can take only two values, say, 0 and 1. This case corresponds to
the rectilinear Steiner tree problem where the coordinate in each dimension is either
0 or 1. The problem is also called the Steiner tree in hypercube problem, since it is
identical to the Steiner tree problem on a hypercube graph. Foulds and Graham [156]
showed that this problem is NP-hard, and it remains NP-hard when no more than
two coordinates differ from 0 in each terminal [280]. Upper and lower bounds on
the length of Steiner trees for the hypercube problem were given by Miller and
Perkel [280], Miller and Pritkin [281] and Jiang, Miller and Pritkin [224].

Wagner trees In a Wagner tree [380], each of the characters ˛1˛2 : : : ˛d that
represent a species has a numerical value, and the difference between two species
is the sum of differences of character values across all sites. A minimum-cost
Wagner tree is therefore identical to a minimum rectilinear Steiner tree for a
problem instance where each coordinate can take only a fixed set of values.
Farris [151] formalised the problem and suggested algorithmic methods for solving
the problem. A recent application of Wagner trees to understanding the development
and progression of solid tumors, such as those associated with many forms of cancer,
can be found in [101].

Hamming distance trees In this problem each of the characters ˛1˛2 : : : ˛d is
taken from an alphabet A, and the distance between two species is the Hamming
distance (as described above). An exact algorithm was suggested by Althaus and
Naujoks [14], and Althaus et al. [13] showed that the problem remains NP-hard
even for dimension 3 (with an arbitrarily large alphabet).

Exercises

3.1. Prove Lemma 3.1.

3.2. Prove Lemma 3.5.

3.3. Let T be a full and fulsome minimum rectilinear Steiner tree spanning at
least 3 terminals. Show (without using Lemma 3.6) that any slide of a straight
edge of T preserves the topology of T . Hence, show that the condition that
T contains at most one bent edge can be omitted from the statement of
Lemma 3.6.

3.4. Prove Lemma 3.9.

3.5. Suppose we are given a full Steiner topology T with n terminals. Assume
that T has a caterpillar topology (see Sect. 3.1.2). Locate the Steiner points in

218 3 Rectilinear Steiner Trees

T such that the resulting rectilinear tree has a Hwang form. Your algorithm
should run in O.n/ time. [Hint: For each possible root in a Hwang form tree,
attempt to construct a tree with either a horizontal or vertical long leg.]

3.6. Given a Hwang form full component T spanning at most 4 terminals, show
that there always exists a minimum rectilinear spanning tree of length at most
3=2jT j1 that spans the same set of terminals.

3.7. Prove the claim given in the proof of Theorem 3.10: show that there always
exists an i 2 f1; : : : ; k � 3g such that jsi ti j � jsiC2tiC2j and jsiC1tiC1j �
jsiC3tiC3j. [Hint: Assume that the claim does not hold. For a type (i) tree
show that the segments on each side of the long leg must have strictly
increasing length as we move from the root to the corner point, and arrive
at a contradiction. For a type (ii) use the same approach, but consider both the
full component and its corner-flipped version.]

3.8. Prove Lemma 3.15. [Hint: Use Lemma 3.9 and the existence of corner-flipped
Hwang forms.]

3.9. Show that .1; 1; 1; 1/ is the sole wire length vector for any set of 3 terminals,
or equivalently, that the half-perimeter wire length is equal to the length of a
minimum rectilinear Steiner tree for 3 terminals.

3.10. Prove Lemma 3.23.

3.11. Show that Algorithm 3.2 correctly constructs a minimum rectilinear Steiner
tree T . In particular, show that in the for loop all possible forms for Ti are
correctly constructed.

3.12. Show that the Steiner depth for a full component that spans n terminals is
bounded by O.log n/.

Chapter 4
Steiner Trees with Other Cost Functions
and Constraints

In this chapter we look at Steiner tree problems that involve other cost functions
and constraints (beyond those discussed in the first three chapters) but that still can
be solved exactly by exploiting the geometric properties of minimal solutions. We
focus particularly on four types of Steiner tree problems: the gradient-constrained
Steiner tree problem, which serves as another example of an exactly solvable Steiner
tree problem in a Minkowski plane with useful applications; the obstacle-avoiding
Steiner tree problem, which is an important variation of the Steiner tree problem
with applications in the physical design of microchips; bottleneck and other k-
Steiner tree problems, where there is a given bound on the number of Steiner points;
and Steiner tree problems optimising a cost associated with flow on the network.

4.1 The Gradient-Constrained Steiner Tree Problem

We begin by investigating an example of the Steiner tree problem in a Minkowski
plane other than the Euclidean or fixed orientation planes. The most important
normed Steiner tree problem outside of these cases is the gradient-constrained
Steiner tree problem. This problem is interesting both from a mathematical point
of view and because of its industrial applications in, for example, access design in
underground mines. Based on these applications, we will begin with an intuitive
description of the problem, and then show that it is an example of a Minkowski
Steiner tree problem, as defined in Sect. 1.6.

There are, of course, many other norms that could be studied as cost functions
for the Steiner tree problem (other than the ones considered in this section and
the previous chapters of this book), but very few of them lead to nice geometric
properties in the associated Steiner network that can be used to construct exact
solutions.

© Springer International Publishing Switzerland 2015
M. Brazil, M. Zachariasen, Optimal Interconnection Trees in the Plane,
Algorithms and Combinatorics 29, DOI 10.1007/978-3-319-13915-9_4

219

220 4 Steiner Trees with Other Cost Functions and Constraints

4.1.1 Basic Properties of Gradient-Constrained Steiner Trees

Let .px; py/ denote the Cartesian coordinates of a point p in the Euclidean plane.
We assume that the y-axis is vertical. Then, for any two points p and q the gradient
of pq is defined here to be the slope of the line segment from p to q, and is denoted
by g.pq/. That is,

g.pq/ D qy � py

qx � px

:

Note that the gradient is independent of the orientation of pq, that is, g.pq/ D g.qp/.
Given a differentiable curve, we define the gradient of the curve at any given

point to be the gradient of the tangent to the curve at that point. This leads to the
following definition.

Definition [Gradient-constrained network]: A geometric network T D
.V .T /; E.T // embedded in the plane is said to be a gradient-constrained
network with respect to a given positive constant m if each edge e 2 E.T /

is a piecewise differentiable curve such that the absolute value of the gradient
at each differentiable point of e is at most m, and e is a shortest path between
its endpoints under this constraint.

Suppose pq is an edge of a gradient-constrained network embedded in the
Euclidean plane, where the maximum permitted gradient m is given. If jg.pq/j � m,
then pq is a straight line joining p and q, and is referred to as a straight edge.
However, if jg.pq/j > m, then pq cannot be represented as a straight line without
violating the gradient constraint, but it can be represented by a zigzag line joining p

and q with each segment having absolute gradient m. Such edges are referred to as
bent edges.

The lengths of edges in a gradient-constrained tree can be measured in a special
metric, called the gradient metric. Suppose o is the origin and p D .px; py/ is
a point in the plane. Define a vertical metric of the line op to be jopjv D cpy

where c is a given constant. Then the gradient metric can be defined in terms of the
Euclidean metric and a vertical metric. The length of op in the gradient metric is
defined as follows:

jpqjg D
� jpqj D p

.qx � px/2 C .qy � py/2; if jg.pq/j � m;
jpqjv D p

1 C m�2jqy � py j; if jg.pq/j � m.

It is easily checked that this defines a metric, as it is the maximum of two metrics
which are equal exactly when jg.pq/j D m. Note also that the gradient metric is
convex, although it is not strictly convex. The unit ball for the gradient metric looks
like a Euclidean unit ball with the top and bottom flattened (Fig. 4.1).

4.1 The Gradient-Constrained Steiner Tree Problem 221

oB oB

Fig. 4.1 Unit balls B for the gradient metric for m D 1 and m D 1=3, respectively. In each case
the line segments from the origin oB to the non-differentiable points on the boundary of B have
gradients with absolute value m

In formal terms, the associated Steiner tree problem can be stated as follows:

GRADIENT-CONSTRAINED STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N lying in the plane, and a gradient bound m satisfying
0 < m � 1.
Find: A geometric gradient-constrained network T D .V .T /; E.T // with
respect to m, such that N � V.T /, and such that jT jg WD P

e2E.T / jejg is
minimised.

As usual, the points in N are referred to as terminals, and the nodes of T not in
N (of degree 3 or more) are referred to as Steiner points. A network T , solving this
problem, is referred to as a minimum m-constrained Steiner tree. As in Chaps. 2
and 3, it is convenient to think of the edges as being embedded as mimimum
gradient-constrained paths in the Euclidean plane. Under such an embedding jT jg
is equivalent to the Euclidean length of the embedded network. Like the rectilinear
networks in Chap. 3, we can think of a gradient-constrained network embedded in
the Euclidean plane as consisting of straight line segments that only intersect at
their endpoints. There are two types of intersection points: the nodes of the network
which consist of terminals (from the set N) and Steiner points (non-terminals with
degree 3 or more); and corner points (having degree 2 where one incident segment
has gradient m and the other �m). Note that the angle between the two incident
segments at a corner point is 2 arctan m.

A useful restriction on the problem (which is included in the definition above) is
that the gradient bound m satisfies m � 1. Let ˛ D arctan m be the angle of an edge
of maximum gradient from the horizontal. The condition is equivalent to saying that
˛ � �=4. This condition (which is almost always satisfied in practical applications)
is imposed largely for convenience. In particular, it immediately gives the following
local property of T at any node.

Lemma 4.1 Let T be a minimum m-constrained Steiner tree (for 0 < m � 1) in a
plane. Then the angle at which any two edges of T meet at a vertex is at least 2˛

(where ˛ D arctan m).

Proof Suppose, on the contrary, that there exists a node v of T such that two of the
edges incident with v, say av and bv, meet at an angle less than 2˛, and hence less

222 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.2 Replacing av by av0,
in the proof of Lemma 4.1,
reduces the length of T

(illustrated here for m D 1=2)
< 2α

a
v

b

v

than �=2. Clearly, at least one of the two edges, say av, has gradient of absolute
value strictly less than m. Since 2˛ < �=2, the length of T can now be strictly
reduced by moving the point where this edge connects a to bv towards b and away
from v, to a new point v0 such that either av0 has absolute gradient m or v0 D b

(whichever occurs first), as illustrated in Fig. 4.2. The shorter tree is still gradient-
constrained, contradicting the minimality of T . ut

It follows from Lemma 4.1 (and the gradient constraint) that all nodes of T

have degree at most 4, and hence that all Steiner points of T have degree 3 or 4.
(This observation also follows from the more general results of Swanepoel [358],
discussed in Sect. 1.6.2, on the maximum degree of Steiner points in a Minkowski
plane.) Furthermore, the lemma has the following easy consequence, giving local
geometric properties at each Steiner point.

Corollary 4.2 Let s be a Steiner point of a minimum m-constrained Steiner tree
T . Let Ls be the vertical line through s. If s is of degree 3, then s has two incident
segments, one of gradient m and the other of gradient �m, lying on one side of Ls ,
and a third incident segment lying on the other side of Ls . If s is of degree 4, then
s has two incident segments, one of gradient m and the other of gradient �m, lying
on each side of Ls .

As in the previous chapters, we say that an m-constrained Steiner tree is full
if every terminal has degree 1. A minimum m-constrained Steiner tree T can be
uniquely decomposed into full components, meeting only at terminals, each of
which is a full m-constrained Steiner tree on its corresponding set of terminals. The
tree T is said to be fulsome if it contains the maximum number of full components
of any minimum m-constrained Steiner tree on the same set of terminals.

It is helpful to divide the study of the structure of full minimum m-constrained
Steiner trees into two distinct cases: the first where all edges in the full tree have
absolute gradient �m and hence all segments of the tree have absolute gradient m;
the second where there is at least one edge of gradient k where jkj < m. Each of
these two cases will be considered in turn.

Case 1: All segments have absolute gradient m

Let T be a full minimum m-constrained Steiner tree such that every segment in T

has absolute gradient m. This is very similar to the situation for rectilinear Steiner
trees. Indeed, since T uses line segments with only two orientations, it follows from

4.1 The Gradient-Constrained Steiner Tree Problem 223

Theorem 3.21 and the proof of that theorem that we can assume T has exactly the
same canonical form as a minimum rectilinear Steiner tree. If we generalise the
Hwang form (defined in Sect. 3.1.2) to any given pair of orientations, then we have
the following result:

Theorem 4.3 Let T be a full and fulsome minimum m-constrained Steiner tree that
contains only segments of absolute gradient m. Then T can be assumed to have
Hwang form (with the two orientations corresponding to m and �m).

The consequence of this theorem is that for any terminal set N there exists a
minimum m-constrained Steiner tree on N such that every full component either
has a Hwang form or contains an edge with absolute gradient strictly less than m.
The generation of all candidate full Steiner trees with all segments having absolute
gradient m (say, as part of a GeoSteiner approach) can be done efficiently in practice
using the techniques discussed in Sect. 3.3. This part of the generation process is also
made easier by the fact that only Hwang forms in which the corner point belongs to
a bent edge need to be generated—otherwise we have a full component belonging
to Case 2, below.

Case 2: There exists an edge with absolute gradient less than m

For this case, let T be a full minimum m-constrained Steiner tree such that T

contains a segment with gradient k where jkj < m. Such a segment is said to have
intermediate gradient. Clearly, the segment must be a straight edge since segments
at a corner point have absolute gradient m. Furthermore, if a node v is an endpoint
of an edge in T of intermediate gradient, then all edges of T incident with v are
straight. This is an easy consequence of Lemma 4.1, since if there is a bent edge at
v, then there exists an embedding of that edge such that two of the segments incident
with v have an angle between them of less than 2˛, leading to a contradiction of the
lemma; see Fig. 4.3. By a similar argument it is also clear that v has degree at most 3.

A key property of T is that every edge in T with intermediate gradient has
the same gradient. This result mirrors Theorem 1.33 (for smooth metrics) and
Theorem 2.11 (for polygonal metrics). More specifically, the following structure
theorem holds.

a

b

c

m

−m
k

v

−m

a

b

c

−m
k

v
β

m

Fig. 4.3 Suppose av has intermediate gradient k and the edge .b; v/ is a bent edge, as in the
diagram on the left. Then the diagram on the right shows that there is an embedding of .b; v/

resulting in a meeting angle ˇ < 2˛ at v, contradicting the minimality of T

224 4 Steiner Trees with Other Cost Functions and Constraints

a

b

c

d

m

m

−m
k a

b

c

d

m

m

−m

s1

s2

a b

Fig. 4.4 The effect of applying the potentially length-reducing perturbation �. Diagram (a) shows
the initial state, with the gradients of most edges indicated in blue. Diagram (b) shows the new
network after applying the perturbation �

Theorem 4.4 Let T be a full and fulsome minimum m-constrained Steiner tree
containing an edge of gradient k where jkj < m. Then every Steiner point of T is
adjacent to three straight edges, one of gradient m, one of gradient �m and one of
gradient k.

The idea of the proof of this theorem, which appears in [63], is to show that if
there are two adjacent Steiner points in T that do not satisfy the theorem, then there
exists a simultaneous perturbation of both Steiner points that strictly reduces the
length of T . This is illustrated in Fig. 4.4. Suppose T is the m-constrained tree with
nodes a; b; c; d shown in the figure. Here all edges have gradient m or �m, apart
from as1 which has intermediate gradient k, and (possibly) s2c which may have
any gradient (with absolute value �m) other than k. Each of the two Steiner points
satisfies the conditions of Corollary 4.2, and it is straightforward to confirm that each
Steiner point is locally minimal. In other words, no small movement or perturbation
of s1 or s2 (which fixes the other Steiner point) can reduce the length of T . Consider,
however, the 2-point perturbation � shown in the figure, where s1 is perturbed along
the line through s1b away from b, s2 is perturbed along the line through s2d towards
d , and s1s2 remains an edge of gradient m. Under this perturbation, the sum js1bj C
js1s2jCjs2d j clearly remains unchanged, but it is straightforward to show that either
� or �� strictly reduces js1aj C js2cj, and hence the total length of the tree; see
Exercise 4.1.

4.1.2 Construction of Gradient-Constrained Steiner Trees

Using the properties in the previous section, we now show that there is a finite
procedure for constructing a minimum m-constrained Steiner tree. Since there are
only a finite number of possible Steiner topologies for any given cardinality of the
terminal set, the problem can be reduced to that of constructing a minimum Steiner
tree T for a fixed full topology T . If T contains no edge with intermediate gradient
(Case 1, in the previous section) then, like full minimum rectilinear Steiner trees,

4.1 The Gradient-Constrained Steiner Tree Problem 225

T is a caterpillar (that is, the subgraph of T induced by the Steiner points is a single
path) and T can be constructed in linear time from N and T —see Chap. 3 for more
details.

If T does contain an edge with intermediate gradient, then the construction is less
obvious. The construction here makes use of Theorem 4.4. Recall, from Chap. 2, that
for fixed orientation metrics, the usefulness of knowing that a full minimum Steiner
tree uses only a single direction set lies in the fact that there are only a relatively
small number of direction sets that need to be considered; in fact if there are �

legal orientations (or equivalently � vertices on the polygonal unit ball), then the
number of candidate direction sets that need to be considered is ‚.�/, and these can
be identified in ‚.�/ time [74]. For the gradient metric, however, the ‘direction
set’ at each Steiner point includes an unknown intermediate direction k which
belongs to the uncountable set .�m; m/. This potential difficulty in determining
the intermediate direction has been resolved in [63], where it is shown that for any
full minimum m-constrained Steiner tree there is a simple formula for computing
the gradient of the intermediate edge in terms of the coordinates of the terminals
and information about the topology of the tree. The correct statement of this result
requires a number of definitions (presented below) based on an understanding of the
structural properties of minimum trees.

A full Steiner topology T (with each Steiner point having degree 3) is referred
to as a labelled Steiner topology if each edge of T is assigned a label m, �m or k

such that the three edges meeting at each Steiner point all have different labels. A
full minimum m-constrained Steiner tree T is said to have a given labelled topology
if there exists a real number k with jkj < m such that the gradient of each edge
corresponds to the label on that edge. There are no restrictions on the topology of T

beyond each Steiner point having degree 3, as it can be shown—using the threshold
technique developed by Hwang and Weng [212]—that minimum m-constrained
Steiner trees with any labelled Steiner topology can occur. However, there are
some simple structural properties that T must exhibit that allow us to compute k

without pre-knowledge of the locations of the Steiner points. In particular, T can
be viewed as being composed of pairs of terminals with zigzag paths (known as
m-zigzags) between them, where each edge has gradient m or �m; these m-zigzags
are connected to each other and other terminals by edges with gradient k. This is
illustrated in Fig. 4.5. Note that, given the labelled topology, we can identify which
terminals are at the top and bottom of each zigzag by looking at the relative y-
coordinates of the endpoint terminals.

It follows from Corollary 4.2 that the sequence of gradients in an m-zigzag is
strictly alternating in sign, and that the path rises monotonically from the bottom
terminal endpoint to the top. Clearly, the set of m-zigzags in T is well defined, and
any two distinct m-zigzags are disjoint. We denote a given m-zigzag by z.ti ; tj /

where ti is at the top and tj is at the bottom of the zigzag.
Given an m-zigzag z.ti ; tj /, let " be the element of f�1; 1g such that the edge

of T incident to tj has gradient "m. Define the point ui;j to be the intersection of
the line of gradient "m passing through tj and the line of gradient �"m passing

226 4 Steiner Trees with Other Cost Functions and Constraints

t1 t2
t3

t4

t5

t6t7

t8

t9

k
m

−m

Labelsu1,7

u2,4

Fig. 4.5 An example of a full minimum m-constrained Steiner tree on nine terminals (for the case
where m D 1=3). The colour of each edge indicates its label. Note that the tree consists of three
zigzag paths (in blue and green) connected to each other and the terminals t3, t8 and t9 by red edges.
The locations of two of the elements of U.T / are shown in purple; the third element of U.T /, u5;6,
coincides with the Steiner point adjacent to t5 and t6

through ti . Let U.T / be the set of all such points ui;j in T (hence, the cardinality of
U.T / equals the number of m-zigzags in T). See Fig. 4.5 for an example.

Let L.T / be the set of terminals of T such that for each tl 2 L.T / either the
edge of T incident to tl has gradient k or there exists an m-zigzag z.tl ; ta/ such that
the edge of T incident to tl does not lie on the line segment tlul;a. (In the example
in Fig. 4.5 L.T / consists of the terminals t1; t2; t3; t8 and t9, but does not include t5.)

Note that the known orientation of each m-zigzag means that we can determine
from the labelled topology of T whether the edge incident to each tl 2 L.T / lies to
the left or right of tl . So, for each tl 2 L.T / we define

".tl / D
�

1 if the edge of T incident to tl lies to the left of tl ,
�1 if the edge of T incident to tl lies to the right of tl .

Similarly, for each ui;j 2 U.T / we define

".ui;j / D
�

1 if the edge of T incident to tj lies to the left of tj ,
�1 if the edge of T incident to tj lies to the right of tj .

If we think of all points in the plane as being described by their Cartesian
coordinates (with respect to a given origin), then using the above definitions we
have the following theorem.

Theorem 4.5 ([63]) Let T be a full minimum m-constrained Steiner tree contain-
ing an edge of gradient k, where jkj < m, and with a labelled Steiner topology. Let
U.T / and L.T / be defined as above. Define the vector .x; y/ by the equation

.x; y/ D
X

tl 2L.T /

".tl /tl C
X

ui;j 2U.T /

".ui;j /ui;j :

Then k D y=x.

4.1 The Gradient-Constrained Steiner Tree Problem 227

The proof is a fairly technical but straightforward inductive argument on the
number of terminals of T and is not given here. The base cases for the induction,
where the number of terminals is either two or three, are however easy to verify
(Exercise 4.2).

The above theorem means that for a labelled Steiner topology the corresponding
m-constrained Steiner tree can be constructed in linear time. Since there are only
a finite number of possible labellings for a given Steiner topology, it follows that
Steiner trees for Case 2 can be constructed in finite time, as required.

Although an m-constrained Steiner tree can be constructed in linear time for
a given labelled Steiner topology, it is not clear that the same thing is true for
an unlabelled Steiner topology. If the label of one of the edges at a particular
Steiner point in a Steiner topology is known, then there are two possibilities for
the labelling of the other two edges. Hence, the number of possible labellings for
a given full Steiner topology increases exponentially with the number of Steiner
points (or terminals).

We know, however, from Chaps. 1 and 2, that for a given terminal set and
full Steiner topology a Euclidean Steiner tree can be constructed in linear time
(Theorem 1.5) and a fixed orientation Steiner tree can also be constructed in linear
time (Theorem 2.27), so it seems likely that a similar result is true for gradient-
constrained Steiner trees.

Conjecture 4.6 (Fixed topology gradient-constrained Steiner tree conjecture) Sup-
pose we are given a set of n terminals N , a full Steiner topology T for that
set of terminals and a gradient bound m. Then in polynomial time (in n) it is
possible to either construct a full and fulsome m-constrained Steiner tree for N

with topology T , or determine that no such tree exists.

We conclude this section by briefly noting that the gradient-constrained Steiner
tree problem is NP-hard, which suggests that there will always be families of
instances for which any exact solution algorithm is unable to scale efficiently. The
result is similar to the computational complexity results for the Euclidean Steiner
tree problem (Sect. 1.3.3) and the �-geometry Steiner tree problem (Sect. 2.5.3). As
in those cases, it is possible to prove a somewhat stronger result, namely that the
decision problem form of the (discretised) gradient-constrained Steiner tree problem
is NP-complete even when the terminals are restricted to lying on two parallel lines.

The formal decision version of the problem is as follows:

PARALLEL LINES GRADIENT-CONSTRAINED STEINER TREE DECISION

PROBLEM

Instance: A finite set of points N lying on two parallel lines in the Euclidean
plane, a gradient bound m satisfying 0 < m � 1 and a positive integer L.
Question: Is there an m-constrained Steiner tree T with terminal set N such
that the length of T is at most L?

228 4 Steiner Trees with Other Cost Functions and Constraints

The basic strategy for proving that this problem is NP-complete is very similar
to that used in the Euclidean and �-geometry cases. The idea is to show that solving
any specific instance of the discretised parallel lines gradient-constrained Steiner
tree decision problem depends on being able to solve the subset sum problem, that
is, the problem of deciding for any given subset S D fd1; : : : ; dng of integers
and integer s whether there exists a subset J � S such that

P

i2J di D s. The
subset sum problem is known to be NP-complete, from which the theorem follows.
The key to the construction of the instance encoding the subset sum problem is
as follows: beginning with two vertical lines, place regularly spaced terminals on
one line and closely spaced triples of terminals on the other in such a way that
in a minimum m-constrained Steiner tree each triple will have a Steiner point
adjacent to two of the terminals, and there will be a bent edge connecting the third
terminal to one of that pair. For each triple there is a choice as to which pair of
terminals has an adjacent Steiner point. The locations of all terminals are carefully
chosen so that in a minimum m-constrained Steiner tree all edges with intermediate
gradient are horizontal, and finding a choice of connection to each triple that makes
all intermediate gradient edges horizontal is equivalent to solving the subset sum
problem. This construction can easily be done in polynomial time from any instance
of the subset sum problem, which completes the proof.

This leads to the following theorem.

Theorem 4.7 ([63]) The parallel lines gradient-constrained Steiner tree problem
is NP-hard, for any given m satisfying 0 < m � 1; and hence the general gradient-
constrained Steiner tree problem is NP-hard.

Although the proof of this theorem was first outlined in [63], a more rigorous and
complete proof can be found in [66].

4.1.3 Applications

One of the main practical motivations for studying the gradient-constrained Steiner
tree problem lies in its application to the design of underground mines. Mining
is a significant industry worldwide. Reducing the cost of mining operations is
an important issue for mining companies in an extremely competitive and price-
sensitive marketplace. For many years there have been well-developed methods
for modelling and optimising the operation of open-cut mines, based originally on
integer programming models developed in 1965 by Lerchs and Grossmann [250].
These methods have revolutionised the design of open-pit mines, allowing mining
engineers and planners to manipulate and visualise data associated with optimal
designs, and perform reliable risk analysis.

Until recently, no such methods were available for the design and planning of
underground mining operations. A number of research groups, however, are now
in the process of designing and developing an optimisation tool for underground
mines. An example is the access optimisation tool, Decline Optimisation Tool

4.1 The Gradient-Constrained Steiner Tree Problem 229

(DOT), which has been developed at the University of Melbourne. This application
efficiently determines a near-optimal (where optimal means least-cost) underground
mining network servicing a given set of points associated with an ore body [48].

Several constraints, including a gradient constraint, are typically imposed on the
geometry of the tunnels in the network, to ensure that the tunnels are navigable by
haulage trucks. The associated gradient bound m is usually about 1=7, since this is
typical of the maximum gradient at which a fully laden haulage vehicle can safely
operate.

Modelling Underground Mining Networks

An underground mine1 consists of a series of interconnecting tunnels, ore passes
(near-vertical chutes down which ore is dropped) and vertical shafts (used to hoist
ore up to the surface). Its purpose is to allow extraction of ore containing valuable
minerals (such as gold, silver, lead, zinc and copper) from underground locations to
a predetermined surface portal (or breakout point), from where it is transported to a
processing mill.

Ore zones (or stopes) are identified by geological tests such as surface and
infill drilling. From this information, mining engineers can determine suitable draw
points, which are the locations on the boundary of each stope from which the ore
is accessed. The ore is then excavated using one of a number of possible mining
methods (such as stoping, caving, room and pillar, etc.) and is transported to the
surface via an access network using large haulage trucks. The access network is
primarily composed of declines, which are the main traffic corridors for the haulage
trucks, and crosscuts coming off the declines which give direct access to the stopes.
See Fig. 4.6.

Given that the laden trucks must be able to traverse the ramps, the following
important constraints must be imposed on the design of the mine:

• Ramps must have absolute gradient not greater than some constant m. This con-
stant is typically in the range 1:9 to 1:7 depending on equipment specifications.

• Ramps must satisfy a minimum turning radius (typically in the range of 15–30
metres), so that they are navigable by the trucks.

• Ramps must avoid certain no-go regions such as the interior of an ore body or
other ramps in the mine.

A set of tunnels satisfying these constraints and interconnecting the draw points
and a point at the surface can be modelled by a mathematical network T , where the
draw points correspond to fixed vertices and the tunnels correspond to edges. The
cost C.T / associated with a network T with a set E of edges can be modelled by a

1This background on mining, which focusses on hard rock mines containing metallic deposits, is
drawn primarily from [8] and [48]. For a more comprehensive introduction to the infrastructure of
an underground mine see [186].

230 4 Steiner Trees with Other Cost Functions and Constraints

Decline

Crosscut

Crosscut

Ore Body

SurfaceSurface Portal

Access Point
Ore Drive

Stopes

Stope Access Drives

Fig. 4.6 Schematic diagram showing some of the key elements of the access network for an
underground mine, including a decline, crosscuts, and some stopes and part of the level layout
(operational access to the stopes) on a single level

function of the form

C.T / D
X

e2E

.d C hte/le (4.1)

where d is a development cost rate (that is, the per-metre cost of tunnelling), h is
a haulage cost rate (per tonne�kilometre) associated with each edge of the network,
te is the total quantity of ore to be transported along an edge e over the life of
the mine, and le is the length of e. The first term

P

dle can be viewed as the
total development cost of the mine, and the second component

P

htele as the total
haulage cost associated with the mine over its life. If h is set to zero, then the cost of
the network is proportional to its length, and a network that optimises this objective
function is a minimum length network of the type discussed in the previous two
sections.

Generalisations of the Planar Model

We now briefly mention some of the generalisations of the gradient-constrained
Steiner tree problem in the plane that are most significant in the context of
underground mine planning. In general it is important to recognise that the
design of the access infrastructure in an underground mine is only one of many

4.1 The Gradient-Constrained Steiner Tree Problem 231

m = 1 m = 0.58 m = 0.14

Fig. 4.7 Three-dimensional unit balls for the m-constrained metric for a number of different
values of the gradient bound m

interconnected mine planning tasks that need to be undertaken when building and
running an underground mine. These tasks range from optimal stope layout to high
level strategic planning to access network design to scheduling of equipment and
operations (amongst others). For a wider perspective on the range of opportunities
for operations research in mine planning and the place of access network design,
see [8] and [292].

The most natural generalisation of the gradient-constrained Steiner tree problem
in the plane in the context of mine planning is to extend it to three dimensions.
If one axis, say the z-axis, is assumed to be vertical, then the notions of gradient
and gradient metric can easily be extended to the higher dimensional space. The
associated Minkowski plane that correctly models length under the gradient metric
becomes a Minkowski space, where the unit ball is a sphere flattened on the top and
bottom (Fig. 4.7).

If the terminals in an instance of the three-dimensional gradient-constrained
Steiner tree problem all lie in a vertical plane P , then there exists a minimum
Steiner tree T that also lies in P and hence the problem reduces to the planar
problem. This follows from the observation that the projection of T onto P does
not increase the length of any edge of T (since the vertical displacement between
the end-points remains the same and the horizontal displacement does not increase).
This observation, however, is no longer true in general if the plane P is not restricted
to being vertical.

There have been a number of papers studying the fundamental geometric proper-
ties of three-dimensional minimum gradient-constrained Steiner trees [60, 61, 69].
The construction of these Steiner trees is much more difficult than in the planar
case. The problem can be approached by labelling the edges in a full topology to
indicate whether each edge is bent, straight with absolute gradient m, or straight with
absolute gradient less than m. It can then be shown that: Steiner points have degree
3 or 4; there are only a small number of different combinations of labellings that
can occur on the edges incident to a Steiner point; and for each of these labellings
the Steiner point can be determined in terms of the positions of the neighbouring
vertices (though in some cases this has to be done numerically). These structural

232 4 Steiner Trees with Other Cost Functions and Constraints

results have led to the development of a software tool called the Underground
Network Optimiser (UNO) [49, 363].

The results described above focus on gradient-constrained networks which
minimise length. While length-minimising networks optimise the total development
(or infrastructure) cost associated with an underground mine, they do not account
for the effects of haulage on the optimal design of the mine. Haulage costs can
have a significant impact on the structure and layout of an underground mine,
and considerable savings can be achieved by including both cost components as
part of the optimisation objective. The general theory of networks minimising a
cost function dependent not only on length but also on associated flows between
terminals is discussed in more detail in Sect. 4.4. A detailed discussion of such
minimum flow-dependent networks with a gradient constraint, in two or three
dimensions, can be found in [71].

Two other important constraints, in the context of underground mine design,
which significantly change the nature of the gradient-constrained Steiner problem
are obstacle avoidance (which is the subject of the next section of this chapter) and
the incorporation of a turning-circle constraint (see [50]).

4.2 Obstacle-Avoiding Steiner Trees

In all the previous sections of this book there has been an implicit assumption
that the environment in which we are constructing an interconnection network
is homogeneous; in other words, all regions of the plane are equally available
to the network. In many applications, however, such an assumption may be an
oversimplification; in particular, there may be known obstacles, or forbidden
regions, which the network must avoid. In VLSI applications these obstacles may
correspond to cells or modules containing transistors and other internal connections;
in underground mining networks, as discussed in the previous section, the obstacles
generally correspond to the ore bodies themselves and existing mine workings; in
large-scale road networks the obstacles may be geographical obstructions, such as
lakes or mountains.

The importance of obstacle avoidance in the construction of Steiner trees has
been recognised in the literature, but most of the published work has focussed on
heuristic methods and approximation algorithms.2 Furthermore, those papers that
have developed exact algorithms have only done so for the rectilinear or Euclidean
metrics, and have tended to treat the underlying mathematical theory in a somewhat

2Some examples of the many heuristic approaches developed for the rectilinear obstacle-avoiding
Steiner tree problem include the algorithms of Lin et al. [258], Long et al. [267], Li and
Young [254], Liu et al. [262] and Ajwani et al. [5]. The last of these makes use of the
FLUTE algorithm, described in Sect. 3.4. Also of note is a graph-based approximation algorithm
for the octilinear obstacle-avoiding Steiner tree problem proposed by Müller-Hannemann and
Schulze [288].

4.2 Obstacle-Avoiding Steiner Trees 233

superficial way. In this section we aim to give a thorough and very general treatment
of obstacle-avoiding Steiner trees, showing how the elegant underlying theory can
be used to develop surprisingly efficient exact algorithms. The focus throughout this
section will be on polygonal obstacles, though some discussion of smooth obstacles
will also be given in Sect. 4.2.5.

4.2.1 Steiner Trees with Polygonal Obstacles

We begin by investigating some of the fundamental properties of obstacle-avoiding
Steiner trees in general Minkowski planes (which include the Euclidean and
rectilinear planes).

Obstacle-Avoiding Paths in Minkowski Planes

In order to understand the properties of obstacle-avoiding Steiner trees, we first
investigate some of the basic properties of obstacle-avoiding paths.

Consider a Minkowski (or normed) plane containing a set � D f!1; : : : ; !hg of
disjoint polygonal regions, which we refer to as polygonal obstacles (or simply
obstacles if it is understood that the regions are polygonal). A vertex on the
boundary of a polygonal obstacle is said to be a convex vertex if the interior angle at
the vertex is less than � . For a given set of polygonal obstacles � we denote the set
of convex vertices of all elements of � as V�.

Definition [Obstacle-avoiding path]: Given a set of obstacles in a Minkowski
plane, a path between two points in this plane is said to be an obstacle-avoiding
path if no point on the path lies in the interior of an obstacle.

The following fundamental property of obstacle-avoiding paths is well known in
the Euclidean setting,3 but is here proved more generally for Minkowski planes.

Lemma 4.8 For a given set of disjoint polygonal obstacles � in a given Minkowski
plane, there exists a minimum length obstacle-avoiding path between two given
points p and q (neither of which lies in the interior of an obstacle) which is a
polygonal path whose inner vertices are elements of V�.

Proof Let P be an obstacle-avoiding path between p and q with minimum length
(under the given Minkowski norm). Suppose there exist distinct points a and b on
P such that Pab, the section of P between a and b, is not a straight line segment,
and the line segment ab does not intersect the interior of any obstacle. If we replace
such a subpath Pab by ab in P , then we call this shortcutting P . Clearly shortcutting
P strictly reduces the Euclidean length of P and does not increase its length under

3For the equivalent result to Lemma 4.8 in the Euclidean plane, see for example [345].

234 4 Steiner Trees with Other Cost Functions and Constraints

p

q

x

a b

Fig. 4.8 In (a), the path P between p and q (shown in blue) can be shortcut in the vicinity of x

via the line segment shown in red. In (b), the polygonal path can be shortcut (as shown) at each of
its interior vertices that meet an obstacle at a point not in V�

the given Minkowski norm (by the triangle inequality). We will show that if P is
not a polygonal path whose inner vertices are elements of V�, then we can shortcut
P , and hence we can prove the lemma by choosing P to have minimal Euclidean
length.

Let x be a point on P that is not on the boundary of an obstacle in �. Since x

is in the interior of obstacle-free space, there exists a disc of positive radius centred
at x that is completely contained in the free space, as illustrated in Fig. 4.8a. If
the part of P inside the disc is not a straight line segment then it can be replaced
by a straight line segment connecting the two points where P enters the disc and
leaves the disc, shortcutting P . Hence, the path P with minimal Euclidean length
is polygonal with interior vertices on the obstacles in �. By a similar argument, if
any of these interior vertices of P is not an element of V�, then again the Euclidean
length of P can be strictly reduced by shortcutting in the vicinity of that vertex (as
illustrated in Fig. 4.8b). ut

The polygonal paths resulting from this lemma lead naturally to the concept of a
visibility graph.

Definition [Visibility graph]: Given a finite set of points N and a finite set
of polygonal obstacles � in the plane, we define the visibility graph for N

and � to be the network GN;� D .V .GN;�/; E.GN;�//, where V.GN;�/ D
N [V� and where E.GN;�/ is the set of all line segments between elements
of V.GN;�/ that do not intersect the interior of any obstacle in �.

It immediately follows from Lemma 4.8 that for a given set of obstacles � there
exists a minimum length obstacle-avoiding path between two given points p and
q that is a subpath of the visibility graph for fp; qg and �. An example of such a
visibility graph is shown in Fig. 4.9. Note that the visibility graph is independent
of the Minkowski norm, but determining the minimum obstacle-avoiding subpath
does depend on the norm (see Exercise 4.3), and can be computed, for example,
using Dijkstra’s algorithm [130].

An important property of visibility graphs is that they can be constructed
efficiently. Let n be the cardinality of V.GN;�/; it was independently shown by

4.2 Obstacle-Avoiding Steiner Trees 235

Fig. 4.9 The visibility graph
for p, q and the convex
vertices of the three obstacles
from Fig. 4.8a. A minimum
length obstacle-avoiding path
between p and q (for the
Euclidean metric) is indicated
in blue

p

q

Welzl [391] and Asano et al. [17] that the visibility graph GN;� can be constructed
in time O.n2/. Furthermore, for cases where the obstacles are densely packed,
meaning that the visibility graph is relatively sparse, Ghosh and Mount [177] have
developed an O.m C n log n/-time algorithm for constructing GN;�, where m is the
cardinality of E.GN;�/.

Obstacle-Avoiding Steiner Trees in Minkowski Planes

The concept of an obstacle-avoiding path can be easily generalised to that of an
obstacle-avoiding network.

Definition [Obstacle-avoiding network]: Given a set of obstacles in a
Minkowski plane, a network in this plane is said to be an obstacle-avoiding
network if no point on the network (i.e., no vertex or interior point of an edge)
lies in the interior of an obstacle.

As usual, our main interest is in optimal interconnection networks of this form.
We now formally define the obstacle-avoiding Steiner tree problem. Recall, as in the
previous chapters, that we denote by k � k the given Minkowski norm.

OBSTACLE-AVOIDING STEINER TREE PROBLEM IN THE PLANE

Given: A set of disjoint obstacles � and a set of points N lying in a normed
plane, such that no point in N lies in the interior of an obstacle.
Find: A geometric obstacle-avoiding network T D .V .T /; E.T //, such that
N � V.T /, and such that kT k WD P

e2E.T / kek is minimised.

As in the obstacle-free case, T necessarily has a tree topology, and hence we
refer to T as a minimum obstacle-avoiding Steiner tree. Note that any subpath of
T in which no internal vertex is a terminal and every internal vertex has degree
2 is a minimum length obstacle-avoiding path between its endpoints. Hence, by
Lemma 4.8, we can assume that every element of V.T / of degree 2 or less is an
element of N [V�. More precisely, we have the following corollary.

236 4 Steiner Trees with Other Cost Functions and Constraints

Corollary 4.9 For any set of disjoint polygonal obstacles � and terminal set N in
a Minkowski plane there exists a minimum obstacle-avoiding Steiner tree T with the
following properties:

1. Each vertex of T is either: an element of N (that is, a terminal), an element of
V�, or a Steiner point of degree 3 or more; and

2. The edges of T are straight line segments, and each edge not incident to a Steiner
point belongs to the visibility graph GN;�.

For the remainder of this section we will assume that a minimum obstacle-
avoiding Steiner tree in a Minkowski plane has the form described in Corollary 4.9
above. Associated with this characterisation of minimum obstacle-avoiding Steiner
trees, we also have the following useful definitions.

Definitions [Virtual terminals and full components]: Given a set of obstacles
� in a Minkowski plane, we refer to the set of points V� as the associated
set of virtual terminals. A minimum obstacle-avoiding Steiner tree T in
this Minkowski plane can be uniquely decomposed into full components (by
splitting T apart at each terminal and virtual terminal) where every terminal
and every virtual terminal of each component has degree 1 in that component.

With a slight abuse of definitions, we will refer to each full component of a
minimum obstacle-avoiding Steiner tree T as a full minimum obstacle-avoiding
Steiner tree (although strictly speaking such a full component is not necessarily a
minimum obstacle-avoiding Steiner tree, in fact it may have no terminals at all). As
in the previous chapters, we also say that T is fulsome if it contains the maximum
number of full components amongst all minimum obstacle-avoiding Steiner trees
on the same set of terminals.

We now observe that all the properties of Steiner points in Minkowski planes
without obstacles (as discussed in Sect. 1.6), such as the degree and nature of the
meeting angles, also apply to Steiner points in the obstacle-avoiding case. Essen-
tially this follows from the fact that no meeting angle at a Steiner point is greater
than � (by the pointed configuration theorem, Theorem 1.26) and that the properties
of Steiner points are all local properties using the local Steiner configuration. The
idea is that in the obstacle-free case if a node of an interconnection network (not
in N) is not a Steiner point, then there exists a perturbation of that node (which in
the case of high degree nodes may also include a splitting or decomposition of the
node into two or more nodes) that reduces the total length of the network. In the
case with obstacles, there are two possibilities to consider: if such a node does not
lie on the boundary of an obstacle, then we can apply exactly the same perturbation
as in the obstacle-free case to reduce the length of the network; if the node does lie
on the boundary of an obstacle ! 2 �, then either it is a virtual terminal (that is, an
element of V�) and hence not a candidate Steiner point, or else the length-reducing
pertubation moves it away from the interior of !, and so it is not a Steiner point of
the obstacle-avoiding network.

4.2 Obstacle-Avoiding Steiner Trees 237

From the above discussion and the convexity of the length function, it follows
that each full component of a minimum obstacle-avoiding Steiner tree T is an
obstacle-free full Steiner tree on the terminals and virtual terminals that it spans,
in other words, is a relatively minimal tree for its Steiner topology. Hence, T has
the local properties of Steiner points presented in Sect. 1.6, giving the following
result (Exercise 4.4).

Theorem 4.10 For any set of disjoint polygonal obstacles � and terminal set N

in a Minkowski plane there exists a minimum obstacle-avoiding Steiner tree T such
that each full component Ti of T is a full Steiner tree on the terminals and virtual
terminals that it spans, and has the following properties:

• Every Steiner point in Ti has degree at most 4.
• If Ti contains two or more Steiner points, then each Steiner point of Ti has

degree 3.
• If the Minkowski plane is smooth, then each Steiner point of Ti has degree 3.
• If the Minkowski plane is smooth, then the edges of Ti use at most three distinct

orientations.

Note that although each full component Ti , in Theorem 4.10, is a relatively
minimal (obstacle-free) tree on the terminals and virtual terminals that it spans, it is
not necessarily the globally minimum Steiner tree (over all Steiner topologies, in the
obstacle-free plane). We will see an example of this in the discussion of Euclidean
obstacle-avoiding Steiner trees in the next section.

4.2.2 Obstacle-Avoiding Euclidean Steiner Trees

We now look at some of the properties of minimum obstacle-avoiding Steiner trees
in the Euclidean plane.4 By Theorem 4.10, each full component Ti of such a tree is
a full Euclidean Steiner tree on the terminals and virtual terminals that it spans, and
hence has the properties of a Euclidean Steiner tree (as discussed in Chap. 1). These
properties include that the meeting angles at each Steiner point are 2�=3 and the
edges in Ti use at most three different orientations differing by multiples of 2�=3

(see Theorem 1.2).
Some examples of minimum obstacle-avoiding Steiner trees in the Euclidean

plane are illustrated in Fig. 4.10. The diagram on the left shows a minimum obstacle-
avoiding Steiner tree interconnecting three terminals and avoiding a set of three

4One of the most important early references on the Euclidean problem with polygonal obstacles is
the paper of Provan [317] on approximation schemes for this problem. Other early papers relating
to the Euclidean problem include [350] and [391]. The key papers on algorithmic approaches to
solving the exact problem are those of Winter [403] and Zachariasen and Winter [433].

238 4 Steiner Trees with Other Cost Functions and Constraints

15

16

Fig. 4.10 Two examples of minimum obstacle-avoiding Steiner trees in the Euclidean plane. The
example on the left is composed of four full components; terminals are indicated by the black
squares and virtual terminals by the red squares. The diagram on the right shows that full minimum
obstacle-avoiding Steiner trees are not necessarily minimum Steiner trees, even though they must
be Steiner trees. Here the four terminals lie on the corners of a 16 � 15 rectangle; the minimum
Steiner tree is shown in green, while the slightly longer minimum obstacle-avoiding Steiner tree is
shown in blue

obstacles. The obstacles have a total of 12 convex vertices which form the potential
virtual terminals of the tree. The tree contains four full components, each of which
is a Steiner tree on the spanned terminals and virtual terminals. The diagram on the
right shows that a full minimum obstacle-avoiding Steiner tree is not necessarily
a minimum Steiner tree. The minimum Steiner tree on the four terminals (shown
in green) has length 16 C 15

p
3 � 41:9808, but is not obstacle-avoiding. The

minimum obstacle-avoiding Steiner tree is shown in blue; it is a Steiner tree, but
with a different full topology, and has length 15 C 16

p
3 � 42:7128.

Theorem 4.10 is clearly sufficient to show that there is a finite algorithm for
finding a minimum obstacle-avoiding Steiner tree for a given set of terminals N

and obstacles �. For example, one could apply a GeoSteiner-type approach as
follows:

1. Generate all full Steiner trees (with all possible full topologies) interconnecting
subsets of points from the (finite) set N [V�;

2. Discard those full trees that intersect the interior of an obstacle in �;
3. Compute all concatenations of the remaining full trees that span N —such a

concatenation with shortest total length is a minimum obstacle-avoiding Steiner
tree.

A discussion of how to make this or other related approaches more efficient is given
in Sect. 4.2.4 below.

The obstacle-avoiding Steiner tree problem in the Euclidean plane is NP-hard,
since the problem without obstacles is already NP-hard (Theorem 1.18). It is clear
in the above algorithm that the computational complexity depends both on the
cardinality of N and the cardinality of V�. Hence, it seems natural to ask the
question of how efficiently a minimum Steiner tree can be constructed if we bound
some, but not all, of the following elements: the number of terminals, the number

4.2 Obstacle-Avoiding Steiner Trees 239

of obstacles, or the number of convex vertices. We briefly survey a couple of results
along these lines.

We first consider the case where there are three terminals and a single obstacle.

Theorem 4.11 ([406]) For any set of three terminals and a single convex polygonal
obstacle with k vertices in the Euclidean plane, a minimum obstacle-avoiding
Steiner tree spanning the terminals can be constructed in O.k/ time.

The result seems reasonable, since the set of convex vertices occurring in the
interior of a shortest obstacle-avoiding path between a terminal and the Steiner
point must constitute a set of adjacent vertices on the boundary of the obstacle.
Winter and Smith [406] also show that if the obstacle is appropriately preprocessed
in O.k/ time, then the above problem with the preprocessed convex polygonal
obstacle can be solved in O.log k/ time. This latter result is clearly useful for solving
multiple three-terminal problems with the same convex obstacle. We also note that
this result can be generalised to non-convex obstacles (by replacing the obstacle
with its convex hull) as long as none of the terminals is located inside the convex
hull.

More recently, in 2001, Weng and Smith [395] proved a more general result
for a single obstacle and an unbounded number of terminals, but with a stronger
set of assumptions. Given a minimum obstacle-avoiding Steiner tree T , define
the primitive topology of T to be the graph obtained from the topology of T by
iteratively replacing each pair of edges incident with a degree 2 virtual terminal by
a single edge (in other words, deleting all degree 2 virtual terminals). Also, define a
convex path of T to be a subpath in T from one terminal to another that either turns
left at every interior node or turns right at every interior node. With these definitions
we have the following result.

Theorem 4.12 ([395]) Given a set N of n terminals and a single polygonal
obstacle with k vertices in the Euclidean plane, suppose that the primitive topology
for a minimum obstacle-avoiding Steiner tree T spanning N is known, and suppose
further that all virtual terminals of T are contained in a single convex path of T

between two terminals. Then T can be constructed in time O.n2 C nk log k/, or in
time O.n2 C n log2 k/ if the obstacle is convex.

4.2.3 Obstacle-Avoiding Fixed Orientation and Rectilinear
Steiner Trees

In this section, we look more specifically at properties of minimum obstacle-
avoiding Steiner trees for fixed orientation metrics, including the rectilinear metric.
The results in this section are largely new. Although there is some previous literature

240 4 Steiner Trees with Other Cost Functions and Constraints

for the rectilinear version of this problem,5 the results here are much more general,
have simpler proofs, and subsume the earlier results.

Obstacle-Avoiding Steiner Trees for Fixed Orientation Metrics

As discussed in Chaps. 2 and 3, fixed orientation metrics correspond to cases
where the unit ball is a centrally symmetric polygon (some examples of which are
illustrated in Fig. 2.4). Furthermore, these trees can be embedded in the Euclidean
plane as trees composed of (possibly weighted) line segments restricted to legal
orientations, which are the orientations of the vertices of the polygonal unit ball from
the centre of the ball (see Sect. 2.1.2 for more details). As in the previous chapters,
it is convenient to take this Euclidean point of view in order to better understand the
geometry of the Steiner trees.

First we recall some properties of embeddings of a bent edge in the Euclidean
plane. Let .p; q/ be a bent edge of a Steiner tree for a given fixed orientation metric.
Then .p; q/ can be embedded as a pair of line segments in legal orientations in two
different ways (Fig. 4.11a); for each of the two embeddings there is a corresponding
corner point (c1 or c2) where the two line segments meet. We describe the process
of moving from one of these embeddings to the other as a flip (as in Chap. 3), and
the parallelogram pc1qc2 will be referred to as the edge parallelogram of .p; q/. We
can also perform a partial flip on the two line segments incident with a corner point;
for example, if we choose any point p1 on the interior of pc1 and any point q1 on the
interior of qc1, then performing a flip on the path p1c1q1 (as in Fig. 4.11b) gives a
zigzag geodesic path embedding of .p; q/ with multiple corner points. By iteratively

p

qc1

c2

p

qc1

c2

p1

q1a b

Fig. 4.11 Diagram (a) shows two embeddings pc1q and pc2q using legal orientations for the edge
.p; q/; these two geodesic paths form the boundary of the edge parallelogram of .p; q/. Diagram
(b) illustrates a partial flip on pc1q resulting in a zigzag geodesic path embedding of .p; q/

5Although numerous heuristics for the rectilinear minimum obstacle-avoiding Steiner tree problem
have been developed, the literature on exact solutions is rather sparse. The first substantial results
appear to be those of Ganley and Cohoon [163], who developed algorithms for solving instances
with up to four terminals, using the so-called escape graph. More recently, Huang et al. [204,
208] presented a GeoSteiner-type algorithm able, in theory, to exactly solve instances of arbitrary
size, using an approach similar to the one developed in this section. These methods were further
refined and discussed by Juhl [225]. We note, however, that all of these previous results assume
that the polygonal obstacles have boundary edges using only legal orientations, whereas we make
no restrictions on the orientations of the boundary edges of obstacles in this section.

4.2 Obstacle-Avoiding Steiner Trees 241

ω ω

Fig. 4.12 The diagram on the left shows an edge incident with a terminal at a restricted non-
convex vertex of an obstacle ! with an obstacle-avoiding embedding in the Minkowski plane for
the rectilinear metric. The diagram on the right indicates that there is no finite embedding of this
edge in the Euclidean plane (using legal orientations)

applying such partial flips we can create geodesic embedded paths with arbitrarily
many corner points. It follows that the edge parallelogram of .p; q/ can be thought
of as the union of all geodesic paths representing .p; q/ (compare Sect. 2.4.3).

To avoid some minor technical problems resulting from such embeddings in the
presence of obstacles, we require the following definition.

Definition [Corner-free terminal set]: Given a fixed orientation metric and
polygonal obstacle ! we say that a non-convex vertex v on the boundary of
! is restricted if the orientations of the two boundary edges incident with v

(oriented outwards from v) lie on or between two adjacent legal orientations
of the metric. A terminal set N is said to be corner-free with respect to ! if
no element of N coincides with a restricted non-convex vertex of !. More
generally, for a set of polygonal obstacles �, N is said to be corner-free with
respect to � if it is corner-free with respect to each ! 2 �.

Throughout this section we will require the terminal set to be corner-free with
respect to the obstacle set. The reason for this is clear from Fig. 4.12, which shows
that although an edge of a tree T incident with a terminal at a restricted non-
convex vertex of ! can be embedded in the Minkowski plane, there may be no
finite embedding of the same edge (using legal orientations) in the Euclidean plane.

The following lemma shows that once we impose this condition, obstacle-
avoiding embeddings in the Euclidean plane can always be achieved for obstacle-
avoiding trees in the corresponding Minkowski plane. In the proof of the lemma let
“conv” denote the convex hull of a region or set of regions.

Lemma 4.13 For a Minkowski plane with a fixed orientation metric, suppose we
are given: a set of disjoint polygonal obstacles �, a set of terminals N which is
corner-free with respect to �, and a fulsome minimum obstacle-avoiding Steiner
tree T for N . Then T can be embedded in the Euclidean plane (with the same
terminals and obstacles) so that it is obstacle-avoiding and no interior of a bent
edge touches an obstacle.

242 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.13 Construction of an
obstacle-avoiding geodesic
path between p and q, shown
in blue, using legal
orientations

p

q

Ω1

Ω2

c1

c2

Fpq

Proof Let .p; q/ be any bent edge of T . We will show that there exists a minimum
length embedding of .p; q/ in the Euclidean plane such that the interior of the
embedded edge does not touch an obstacle, proving the lemma.

Let Fpq D pc1qc2 be the edge parallelogram of .p; q/, where c1 and c2 are the two
corner points; see Fig. 4.13. The line segment pq partitions Fpq into two triangular
sub-regions: F1 WD 4pc1q and F2 WD 4qc2p.

Let �F WD � \ Fpq. No component of �F intersects the interior of both F1

and F2, since .p; q/ is obstacle-avoiding in the Minkowski plane. If either � \
.F1 n fp; qg/ D ; or � \ .F2 n fp; qg/ D ;, then the lemma is true (since we
can choose the embedding of .p; q/ to be pc1q or pc2q, respectively). If, on the
other hand, neither condition holds let �1 WD conv..�F [c1/ \ .F1 n fp; qg// and
�2 WD conv..�F [c2/ \ .F2 n fp; qg//. For each i 2 f1; 2g, it is easy to see that
there is no convex vertex of � on the boundary of �i in the interior of Fi (since
otherwise we get a contradiction to fulsomeness); hence, �i is a triangular region
with one edge contained in pci and another edge contained in qci .

Because the obstacles are disjoint and neither p nor q is a restricted non-convex
vertex of an obstacle, it follows that at most one of �1 and �2 contains p, and
similarly at most one of �1 and �2 contains q. Since �1 and �2 are disjoint it
follows that there is a geodesic zigzag path from p to q not touching �1 and �2

(except at p and q) which can be obtained from, say, pc1q by a finite series of flips
and partial flips. This is illustrated in Fig. 4.13. Finally note that the partial flips can
be adjusted by an arbitrarily small amount so that none of the corner points touches
�1 or �2. ut

An easy corollary of the proof of Lemma 4.13 (see Exercise 4.5) is the following.

Corollary 4.14 For a given fixed orientation metric let � be a set of disjoint
polygonal obstacles such that all boundary edges of the elements of � use legal
orientations. Then the interior of the edge parallelogram for any bent edge of a
fulsome minimum obstacle-avoiding Steiner tree is obstacle-free.

In order to be able to efficiently construct minimum obstacle-avoiding Steiner
trees, using, say, a GeoSteiner-type algorithm, we need to be able to show that the
full components of the Steiner trees have the same canonical forms available to them

4.2 Obstacle-Avoiding Steiner Trees 243

as in the obstacle-free case. In particular, this means in the rectilinear case that each
full component can be assumed to be in the Hwang form.

Theorem 4.15 For a given set of disjoint polygonal obstacles �, let T be a full
and fulsome minimum obstacle-avoiding Steiner tree in a fixed orientation metric
embedded in the Euclidean plane. Then for every canonical form of T from the
obstacle-free case (with the same topology) there exists an embedding of T with
that canonical form in the Euclidean plane that is obstacle-avoiding.

Proof We want to show that T can have any canonical form that would be available
to it (for its topology) if there were no obstacles. By Chap. 2, we know that we
can move from a given full and fulsome Steiner tree to any canonical form via a
sequence of fundamental zero-shifts; so it suffices to show that no fundamental zero-
shift of T can cause a part of T to enter an obstacle. It is also sufficient to argue this
in the Minkowski plane (with all edges in T represented by straight line segments),
since it follows from Lemma 4.13 that any such obstacle-avoiding Steiner tree has
an obstacle-avoiding embedding in the Euclidean plane.

By Chap. 2, we know that there are two possible types of fundamental zero-shifts,
1-point and 2-point zero-shifts. We begin by considering any 2-point fundamental
zero-shift, moving adjacent Steiner points s1 and s2 in T to s0

1 and s0
2, respectively.

Such a shift is shown in Fig. 4.14, where the original (obstacle-avoiding) edges of T

are shown in blue, and the edges after the zero-shift are shown in red. Suppose,
contrary to the theorem, that the red tree is not obstacle-avoiding. Then some
connected section of the boundary of one of the obstacles in � enters the region
between the blue edges and the red edge. More specifically, in terms of Fig. 4.14, a
connected section of the boundary of one of the obstacles, say !1, enters either the
region shaded in green or the region shaded in pink, but not both since the section
of blue edge separating the two regions (s2s

0
2 in the figure) is obstacle-avoiding. So

suppose a connected section of the boundary of !1 enters the green region. Since
each meeting angle at s0

1 is at most � it follows that any supporting line of the part
of !1 inside the green region touches a convex vertex of !1 that lies within the
green region. As s1 moves to s0

1 under the zero-shift, one of the incident edges in

Fig. 4.14 A 2-point
fundamental zero-shift, where
the original blue edges are
obstacle-avoiding. In
particular, the segment s2s0

2

does not meet the interior of
an obstacle

s1

s2

s1

s2

1

2

ω

ω

244 4 Steiner Trees with Other Cost Functions and Constraints

T must meet such a convex vertex as soon as it touches the boundary of !1, giving
a contradiction to fulsomeness. Similarly, if an obstacle enters the pink region (as
illustrated by !2 in the figure) we again get a contradiction to fulsomeness.

The same argument as above also applies for any 1-point zero-shift, giving the
required result. ut

Reducing the Set of Virtual Terminals for Fixed Orientation Metrics

The efficiency of constructing minimum obstacle-avoiding Steiner trees can be
further improved if we can reduce the number of virtual terminals that need to be
considered for a given set of obstacles. The following definition suggests a method
of reducing the complexity of obstacles.

Definition [Transparent vertex]: For a given polygonal obstacle ! let
vi ; viC1; viC2 be three adjacent vertices on the boundary of ! such that viC1 is
a convex vertex. Then viC1 is said to be a transparent vertex if:

(1) The line segment vi viC2 lies entirely in !, and
(2) The path vi viC1viC2 lies in the edge parallelogram of vi viC2 (for a given

fixed orientation metric).

Condition (2) of the above definition is equivalent to saying that the vectors
*vi viC1 and*viC1viC2 lie on or between two adjacent legal orientations. An example
is shown in Fig. 4.15a (illustrated for the rectilinear norm) where of the four convex
vertices v1; v2; v3; v4 only v2 is transparent; v1 and v4 fail condition (2), whereas v3

satisfies condition (2) but fails condition (1).

v1
v2

v3
v4

v5

a b

Fig. 4.15 An example of a transparent vertex for an obstacle in the rectilinear plane. In
diagram (a) the vertex v2 is transparent. Diagram (b) shows the reduced obstacle obtained by
removing vertex v2

4.2 Obstacle-Avoiding Steiner Trees 245

v1 v2

v3

v4v5

v1, v4

v2, v5

v5

v2

v3

v1

v3

v4

Fig. 4.16 An example of an obstacle in the rectilinear plane for which there is not a unique
completely reduced obstacle. The two different sequences of reductions, indicated in blue, result
in different completely reduced obstacles

The following lemma shows that if viC1 is transparent, then the path vi viC1viC2

is geodesic, with respect to the fixed orientation metric (Exercise 4.6).

Lemma 4.16 For a given fixed orientation metric, with norm k � k, let viC1 be a
transparent vertex for a polygonal obstacle !, with neighbouring vertices vi and
viC2. Then kvi viC1k C kviC1viC2k D kvi viC2k.

If viC1 is a transparent vertex of an obstacle !, then we say that ! can be reduced
by replacing the boundary edges vi viC1 and viC1viC2 by the single edge vi viC2 (or,
in other words, deleting the triangular region 4viviC1viC2 from !). An example of
a reduced obstacle is shown in Fig. 4.15b. In general, this reduction process can then
be iterated by finding and removing a transparent vertex of the resulting obstacle.
An obstacle is said to be completely reduced if after a series of reductions there are
no more transparent vertices. Note that for a given obstacle ! a resulting completely
reduced obstacle is not necessarily unique, but may depend on the sequence of
reductions; see Fig. 4.16.

Theorem 4.17 Given a fixed orientation metric and a set of disjoint polygonal
obstacles �, let �0 be a corresponding set of completely reduced obstacles obtained
from �. Let T be a fulsome minimum obstacle-avoiding Steiner tree with respect to
�0. Then there exists an embedding of T in the Euclidean plane that is obstacle-
avoiding with respect to �.

Proof For a given polygonal obstacle ! let !0 be the reduced obstacle obtained by
removing a single transparent vertex viC1 (where the neighbouring vertices on the
boundary of ! are vi and viC2). Clearly, it suffices to show that if !0 2 �0 then
there exists an embedding of T in the Euclidean plane that is obstacle-avoiding with
respect to .�0 n f!0g/ [f!g, since this result can then be iterated to obtain the
statement of the theorem.

246 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.17 If there is a Steiner
point s of T in the region
4vi viC1viC2, where viC1 is
transparent, then moving s to
p2 strictly reduces the length
of T

vi

vi+1

vi+2

s
p1

p2

p3

ω

So suppose, in the Minkowski plane, that part of T intersects the interior of the
triangular region 4viviC1viC2. If this intersection consists of part of a single edge
of T , meeting the path vi viC1viC2 at, say, p1 and p2, then by Lemma 4.16 it follows
that p1p2 can be replaced by the path p1viC1p2 without increasing the length of T ,
and that this modified form of T can be embedded in the Euclidean plane so that it
is obstacle-avoiding with respect to .�0 n f!0g/ [f!g by Lemma 4.13.

Suppose on the other hand that the part of T in the interior of 4viviC1viC2

contains a single Steiner point s, as illustrated in Fig. 4.17. Then there are three
(order labelled) points p1; p2; p3 on the path vi viC1viC2 where the three edges of
T incident with s intersect that path. But, using Lemma 4.16 it is easy to see that
kp1sk C ksp3k D kp1p2k C kp2p3k. Hence, moving the Steiner point from s to
p2 strictly reduces the length of T (by at least ksp2k) giving a contradiction to
minimality. Finally, a similar argument applies if there are multiple Steiner points
in the interior of 4vi viC1viC2. ut

The consequence of Theorem 4.17 is that the complexity of computing a
minimum obstacle-avoiding Steiner tree for a given fixed orientation metric can
potentially be decreased by first completely reducing all obstacles.6 This reduction
process can be carried out in time O.k/ where k is the total number of vertices in
the set of obstacles (since transparency of a vertex can be checked in constant time,
and reducing an obstacle cannot make a non-transparent vertex transparent).

It follows from the proof of Theorem 4.17 that we can obtain a minimum
obstacle-avoiding Steiner tree for the unreduced problem instance simply by
embedding each of the bent edges in the minimum obstacle-avoiding Steiner tree
T for the reduced instance appropriately.

Reducing the Set of Virtual Terminals for the Rectilinear Metric

We conclude this section by briefly looking at a couple of properties specific to the
rectilinear plane. Suppose we are given a rectangular obstacle ! in the rectilinear
plane (with vertical and horizontal edges). Note that initially all four vertices of !

6A slightly weaker version of this result has appeared in the literature, but only for the rectilinear
Steiner tree problem, with rectilinear obstacles; see [205, 206, 208] and [225].

4.2 Obstacle-Avoiding Steiner Trees 247

are transparent, and a completely reduced obstacle for ! consists of a single line
segment which is one of the diagonals of ! (where T cannot cross the interior of
such a line segment).

As an immediate corollary of Theorem 4.17 we have the following result.

Theorem 4.18 Let � be a set of disjoint rectangular obstacles with vertical and
horizontal edges, and let �0 be a corresponding set of line segments consisting of
diagonals of the elements of �. If T is a fulsome rectilinear minimum obstacle-
avoiding Steiner tree with respect to �0, then there exists an embedding of T in the
Euclidean plane that is obstacle-avoiding with respect to �.

This result allows us to halve the number of virtual terminals that need to be
considered. The restriction to rectangular obstacles is a natural one in many VLSI
applications, and will be further discussed in Sect. 4.2.5.

For the second result, suppose that the set of obstacles consists of convex
polygonal regions (with no restrictions on the orientations of edges). If some, or
all, of the individual obstacles have large numbers of vertices, then the following
theorem shows that the process of completely reducing the obstacles should
substantially improve the complexity of computing a rectilinear minimum obstacle-
avoiding Steiner tree.

Theorem 4.19 Let ! be a convex polygonal obstacle in the rectilinear plane. Then
the corresponding completely reduced obstacle !0 contains at most four vertices.

For the proof of this theorem see Exercise 4.7.

4.2.4 GeoSteiner Algorithm

As in the obstacle-free case, the GeoSteiner approach is currently the most efficient
exact algorithm for computing minimum obstacle-avoiding Steiner trees. The Geo-
Steiner approach has been adopted to the obstacle-avoiding Euclidean Steiner tree
problem [433], and to the obstacle-avoiding rectilinear Steiner tree problem [204–
206, 208]. In both cases, problem instances with hundreds of terminals have been
solved to optimality.

In this section we describe the main modifications that are needed when applying
the GeoSteiner approach to the obstacle-avoiding problem. We assume that the
reader is familiar with the basic idea of the GeoSteiner algorithm; details are
given in Sect. 1.4 on the Euclidean problem, in Sect. 2.6 on the fixed orientation
problem, and in Sect. 3.3 on the rectilinear problem. In the GeoSteiner algorithm
for the obstacle-avoiding problem, we first generate (obstacle-free) full Steiner trees
(FSTs) spanning any subset of terminals and virtual terminals. Then in the FST
concatenation phase, a subset of the generated FSTs is chosen such that the FSTs
form a tree with minimum length that interconnects the terminals (and some subset
of the virtual terminals).

248 4 Steiner Trees with Other Cost Functions and Constraints

Consider an (obstacle-free) full and fulsome Steiner tree T that spans some
subset of terminals and virtual terminals. From Theorem 4.15 we know that T can
be assumed to have any well-defined canonical form, e.g., the Hwang form in the
rectilinear problem. This makes it possible to reuse core parts of the full Steiner
tree generation algorithm from the obstacle-free case; this property contributes to
making the approach very powerful even for the obstacle-avoiding case.

Recall the definition of a branch tree from Sect. 1.4.2. If we cut an edge pq of
a full Steiner tree T at some point c, we obtain two branch trees: one rooted at p

having a stem (or ray) leaving p along pc, and another rooted at q having a stem
(or ray) leaving q along qc. In the FST generation algorithm, we combine branch
trees to form larger branch trees. Branch trees of size 1 consist of a single (virtual)
terminal having a stem leaving in one of the legal directions (for fixed orientation
metrics) or any direction for other metrics.

The core pruning test in the obstacle-avoiding problem is that an edge pq in
a branch tree (or full Steiner tree) cannot intersect the interior of any obstacle in
�—otherwise the branch tree (or full Steiner tree) is discarded. Most pruning tests
for the obstacle-free problem can be used for the obstacle-avoiding problem in a
slightly altered version. Below we briefly describe the modifications for an arbitrary
Minkowski norm denoted by k � k.

Lune property. Recall that a lune L.u; v/ is defined as the set of points that
are strictly within distance kuvk of both u and v. In the obstacle-avoiding problem,
distances are shortest obstacle-avoiding paths under the given metric. If uv is an
edge in a minimum obstacle-avoiding Steiner tree, then L.u; v/ cannot contain any
terminal (Lemma 1.13).

Bottleneck Steiner distance bound. The bottleneck Steiner distance BSD.t1; t2/

bounds the length of each edge on a path between terminals t1 and t2 in a
minimum obstacle-avoiding Steiner tree (Lemma 1.14). The bottleneck Steiner
distance BSD.t1; t2/ is equal to the longest edge on the path between t1 and t2
in a minimum spanning tree for the terminals. In the obstacle-avoiding problem,
distances between terminals are shortest obstacle-avoiding paths, and the minimum
spanning tree is computed using these distances.

Upper bounds. Consider some branch tree B with root s, and let N.B/ be the
set of (virtual) terminals spanned by B . Since B is assumed to be part of some
minimum obstacle-avoiding Steiner tree, it must have minimum length. A number
of different heuristics can be applied to provide an upper bound on the length of
an obstacle-avoiding Steiner tree that interconnects fsg [N.B/. If any of these
heuristics provide a tree that is shorter than B , then we can discard B .

The FST concatenation problem for the obstacle-avoiding problem can be solved
either as a Steiner tree problem in a graph (Sect. 5.1) or as a Steiner tree problem in
a hypergraph (Sect. 5.2.2).

4.2 Obstacle-Avoiding Steiner Trees 249

4.2.5 Applications and Extensions

Obstacle avoidance is one of the most important constraints in practical applications
of the Steiner problem and related routing problems. In the design of microchips
the obstacles correspond to the placement of cells or modules on the chip, or
may represent pre-routed nets; see Sect. 3.6.2. In other infrastructure applications,
such as the design of wireless sensor networks or roads or underground mines,
the obstacles generally represent large physical obstructions or existing workings.
These problems are closely related to constrained optimal path planning problems,
which have applications in designing navigation systems for autonomous mobile
robots and are becoming increasingly important in the design of computer games.

Throughout this section we have focussed on Steiner trees in the presence of
polygonal obstacles. This constraint is a natural one in the context of microchip
design, where the modules are not only polygonal, but also generally rectilinear.
For more general applications, a restriction to polygonal obstacles can be justified
by the ease with which general shapes can be accurately approximated by polygons
[79]. The approach is also appropriate for problems based on real-world situations
where the boundaries of the obstacles are determined by sampling, and then
constructing a triangulated wireframe based on these sampled points (as is done
in the determination of ore body and bad ground envelopes in underground mine
design). If this is done in three dimensions, then for the corresponding two-
dimensional problem the obstacle will be a cross section or projection of such a
region, and hence will be polygonal.

Despite this, there are cases where it is worthwhile and interesting to consider
smooth obstacles, and in some cases it is possible to obtain exact solutions. In
particular, we now look briefly at the obstacle-avoiding Steiner tree problem in the
Euclidean plane where the obstacles have circular boundaries. Let fCig be a given
set of circular obstacles and let T be a minimum obstacle-avoiding Steiner tree for
such a problem for a given set of terminals N . As before, we refer to a point at which
a straight line segment of T touches the boundary of an obstacle (tangentially) as a
virtual terminal. Unlike the problem with polygonal obstacles, however, every point
on the boundary of an obstacle Ci is now a potential virtual terminal. Again we can
think of T as being composed of full components, where each full component is
either an (obstacle-free) full Euclidean Steiner tree interconnecting terminals and
virtual terminals, or is a boundary arc of one of the obstacles.

Weng [394] has shown that, given its Steiner topology, we can construct T in
linear time (in terms of the number of terminals and virtual terminals it spans)
despite not knowing the locations of the virtual terminals beforehand. The key step
to this construction is to show that any full component Ti containing one or more
Steiner points can be efficiently constructed using a generalisation of the Melzak-
Hwang algorithm (see Sect. 1.2.1).

Recall that the main recursive step in the Melzak-Hwang algorithm involves
replacing a pair of terminals adjacent to a single Steiner point by a so-called pseudo-
terminal, which then acts as a terminal in later stages of the recursion. This can

250 4 Steiner Trees with Other Cost Functions and Constraints

C2

C1

Ce

o2

o1

oe
s

v

Fig. 4.18 An illustration of how the basic recursive step in the Melzak-Hwang algorithm is
generalised for obstacle-avoiding Steiner trees. Here the two circular obstacles C1 with radius
r1 and C2 with radius r2 are replaced by a pseudo-obstacle Ce with radius r2 � r1

be generalised to the obstacle-avoiding case as follows. Suppose Ti contains two
virtual terminals t1; t2 adjacent to a single Steiner point s and lying on the boundary
of obstacles C1; C2 with centres o1; o2 and radii r1; r2, respectively. Let v be the
remaining vertex of Ti adjacent to s. See Fig. 4.18. Without loss of generality
assume r2 � r1. Let oe be the third vertex of the equilateral triangle 4o1o2oe,
lying on the side of the line t1t2 opposite to v. Let Ce be the circular region with
centre oe and whose radius is .r2 � r1/ if o1 and o2 both lie on the same side of t1t2,
or .r2 C r1/ if o1 and o2 lie on opposite sides of t1t2. Then Weng [394] shows that
the line vs is tangent to Ce . Hence, we can replace the pair of obstacles C1 and C2

by the pseudo-obstacle Ce to reduce the size of the problem. This is illustrated in
Fig. 4.18.

The important feature of this construction is that it can be performed without
knowing the locations of the two virtual terminals on the boundaries of C1 and
C2. It thus forms the basis for a generalised Melzak-Hwang algorithm, where the
final step involves simply finding a line segment cotangent to the last two circular
regions. Note that the same construction also applies if any of the virtual terminals
in the description above is actually a proper terminal, by setting the corresponding
radius to 0.

A number of applications of this work on minimum obstacle-avoiding Steiner
trees with circular obstacles have been suggested. Weng [393] shows that the
method above can be adapted to optimally design networks that separate and
surround circular regions. This has an industrial application in the chemical industry
involving the design of safety infrastructure around storage tanks for hazardous
liquid chemicals or petroleum products. To guard against possible spillage or other
accidents the tanks need to be separated and surrounded by earthen dikes. The tanks
and a minimum buffer region around each tank can be modelled as circular regions

4.3 Bottleneck and General k-Steiner Tree Problems 251

and the system of dikes can be modelled as a separating and surrounding network.
The problem of minimising the construction and maintenance costs of the dikes then
becomes a suitably constrained network optimisation problem.7

More generally, this approach can be used as an effective method for finding
good heuristic solutions to the obstacle-avoiding Steiner tree problem with smoothly
bounded obstacles, by approximating the boundary of each obstacle by a collection
of circular arcs. An example of this approach is given in [394]. Weng [392] has also
studied exact solutions for the Steiner tree problem with general smooth obstacles
using a method based on differential calculus in the hexagonal coordinate system.

4.3 Bottleneck and General k-Steiner Tree Problems

One effective way of reducing the complexity of solving the Steiner tree problem is
to place a bound on the number of Steiner points, independent of the number of ter-
minals. Such a constraint results in problems that lie between the minimum Steiner
tree problem and minimum spanning tree problem in computational complexity, and
can generally be solved exactly in polynomial time (depending on the norm and the
choice of cost function for the network). This restriction on the number of Steiner
points is quite natural in some applications, where the addition of an extra node in
the network may be expensive; in such situations the restriction on the number of
Steiner points represents an absolute resource limitation.

A type of problem where an imposed bound on the number of Steiner points is
not only natural but necessary is the geometric version of the bottleneck Steiner tree
problem,8 which is defined as follows:

BOTTLENECK k-STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N lying in a normed plane (with norm denoted by k�k),
and a positive integer k.
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, jV.T /n
N j � k and such that maxfkek W e 2 E.T /g is minimised.

7This application was first suggested by David Lee in his unpublished paper, ‘Some industrial
case studies of Steiner trees’ presented at the NATO Advanced Research Workshop, ‘Topological
Network Design: Analysis and Synthesis’, in Copenhagen, 1989.
8The bottleneck Steiner tree problem was first proposed by Chiang et al. [96] in the context of
Steiner trees in graphs, and was originally known as the Steiner min-max tree problem. There it
was shown that this problem has a simple polynomial-time algorithm, in terms of the number of
vertices and edges of the entire graph. However, in terms of the cardinality of the terminal set,
Berman and Zelikovsky [28] have shown that the problem does not admit any polynomial-time
approximation algorithm with performance ratio less than 2 unless P D NP . The Euclidean
version of the geometric bottleneck k-Steiner tree problem in the plane, as defined in this chapter,
was first studied by Du et al. in [139] and [384]. A survey of the results in this area up to 2008,
with a focus on approximation algorithms, can be found in Chapter 6 of [134].

252 4 Steiner Trees with Other Cost Functions and Constraints

We refer to T as a bottleneck k-Steiner tree, and we refer to maxfkek W e 2
E.T /g as the bottleneck length of T . As in the previous chapters, we refer to the
points in V.T / n N as Steiner points; however, for this problem Steiner points may
have degree 2. Note that without a bound on the number of Steiner points the lengths
of all edges in the network could be made arbitrarily small. We also note in the above
definition that T , considered as a graph, can be assumed to be a tree: if T contains a
cycle, then any edge on the cycle can be removed without disconnecting the network
or increasing the bottleneck length of T .

In this section we begin by developing an efficient exact algorithm for solving
a very general class of k-Steiner tree problems. The algorithm makes use of a
partitioning of the plane, known as the overlaid oriented Dirichlet cell partition. We
then discuss stronger results that apply for the bottleneck Steiner tree problem in the
rectilinear and Euclidean planes. We conclude the section by discussing applications
of this work, both in wireless sensor networks and as a heuristic for solving the
(unconstrained) Steiner tree problem.

4.3.1 The Generalised k-Steiner Tree Problem

In this subsection, and the one that follows, we look at properties of k-Steiner trees,
and use them to develop an efficient O.n2k/ algorithm for solving the associated
Steiner tree problem over a wide range of norms and cost functions (where n is
the number of terminals and k is the bound on the number of Steiner points). Our
treatment here is based closely on the work of Brazil et al. [52], which generalises
the approach developed by Georgakopoulos and Papadimitriou in [172].

Notation and Fundamental Definitions

We begin by establishing a formal definition for the generalised k-Steiner tree
problem. The set of norms over which we define the problem is the following:

Definition [Polygonal/elliptic norms]: We define the polygonal/elliptic norms
(PE norms) to be the set of norms k � k for which the unit ball fx W kxk � 1g
is either a polygonal or elliptic region.

The PE norms encompass the Euclidean norm (Chap. 1) and the general polygo-
nal norms (Chap. 2), which include the rectilinear norm (Chap. 3).9

9The algorithm developed in Sect. 4.3 for the general k-Steiner tree problem can in theory apply to
a wider range of norms than the PE norms. The algorithm for these other norms will, however, be
difficult to implement in practice. The precise required properties of the widest class of norms for
which the algorithm can apply are given in [52].

4.3 Bottleneck and General k-Steiner Tree Problems 253

In order to define the set of possible objective functions for the generalised
k-Steiner tree problem, we now set up our notation for this section. Given a
set of terminals in the plane, N D ft1; : : : ; tng, let T be a geometric network
interconnecting N with tree topology T . The tree T contains k0 extra nodes (not
in N) which we denote by S D ftnC1; : : : ; tnCk0g, and, as usual, refer to as the set
of Steiner points of the network. Since T is a tree, E.T / contains n C k0 � 1 edges
which we denote fe1; : : : ; enCk0�1g. Now let eT ;N;S D .ke1k; : : : ; kenCk0�1k/; i.e.,
the components of eT ;N;S are the edge lengths of such a network, for a given tree
topology and a given set of embedded nodes. Such a vector is well defined up to the
order of its components.

Let ˛ W RnCk0�1
C ! R be a symmetric function (i.e., independent of the order

of the components of the vector on which it acts). We think of ˛ as a cost function
on a geometric tree network T , acting on the edges of T ; we denote the cost of
such a tree by kT k˛ . In other words, kT k˛ D ˛.eT ;N;S / is the cost of the network
with topology T and nodes N and S , and min

T ;S
˛.eT ;N;S / is the minimum cost (with

respect to ˛) of any tree interconnecting the nodes N and k0 other points, where
0 � k0 � k for some given positive integer k.

For example, the standard network cost function we have considered so far,
namely the sum of the lengths of the edges (under a given norm), is denoted by
˛1 and is defined by

˛1.eT ;N;S / WD
nCk0�1
X

iD1

kei k:

For any positive real number p, we can generalise this to the power-p cost function,
˛p , where the cost of each edge is the edge length raised to the power p and the
network cost is the sum of edges costs:

˛p.eT ;N;S / WD
nCk0�1
X

iD1

keikp:

For the bottleneck cost function, ˛1, the cost of the network is the length of the
longest edge:

˛1.eT ;N;S / WD max
iD1;:::;nCk0�1

kei k

D lim
p!1

0

@

nCk0�1
X

iD1

keikp

1

A

1=p

:

254 4 Steiner Trees with Other Cost Functions and Constraints

Definition [`1-optimisable function]: We say that a symmetric function ˛ D
˛.eT ;N;S / is `1-optimisable if and only if there exist T � and S� such that
˛.eT �;N;S�/ D min

T ;S
˛.eT ;N;S / and ˛1.eT �;N;S�/ D min

T
˛1.eT ;N;S� /.

In other words, ˛ is `1-optimisable if for any given N there exists a tree
T interconnecting N , with minimum cost with respect to ˛, that is a minimum
spanning tree on its complete set of nodes. It is easy to show that ˛p , for p > 0, and
˛1 are `1-optimisable (Exercise 4.8).

GENERALISED k-STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N lying in the plane, a norm k � k, a symmetric `1-
optimisable function ˛, and a positive integer k.
Find: A geometric network T D .V .T /; E.T // with topology T and Steiner
points S , such that N � V.T /, jS j � k, and such that kT k˛ D ˛.eT ;N;S / is
minimised.

Note that S D V.T / n N . We refer to T as a generalised minimum k-Steiner
tree. The lemma below shows that such a T is equivalent in cost to any minimum
spanning tree on N [S .

Lemma 4.20 Let S be the set of Steiner points of a generalised minimum k-Steiner
tree T on N . Then every minimum spanning tree on N [S is a generalised minimum
k-Steiner tree on N .

Proof By the `1-optimisability of ˛ we may assume that T is a minimum spanning
tree on N [S . Let T 0 be any other minimum spanning tree N [S . Using standard
properties of minimum spanning trees (see, for example, the Swapping Algorithm in
[247]) we can transform T 0 to T by a series of edge swaps, each of which replaces
an edge with another of the same length. By the symmetry of ˛ each such edge swap
does not increase kT 0k˛ . ut

The Overlaid Oriented Dirichlet Cell Partition

Throughout this subsection we assume that a PE norm k � k on R
2 is given, with

corresponding unit ball B; the boundary of B is denoted by bd.B/. Our aim is to
describe the construction of the oriented Dirichlet cell (ODC) partition for any set N

of n terminals embedded in this normed plane, and to show that it can be constructed
in O.n log n/ time. We also show that, with a time complexity of O.n2/, multiple
ODC partitions can be overlaid. This final partition is the so-called overlaid ODC
partition (OODC partition), and is the key to devising an efficient algorithm.

The essential motivation behind an OODC partition is that it forms a partition of
the plane with the following property: if s is a Steiner point of T , then there is a
set of up to six terminals, determined by the region of the partition in which s lies,

4.3 Bottleneck and General k-Steiner Tree Problems 255

Fig. 4.19 Six evenly spaced
points yi on the boundary of
the unit ball for the rectilinear
plane, and the associated
hexagonal direction set f	i g

oB

y0

y1y2

y3

y4 y5

θ0

θ1θ2

θ3

θ4 θ5

which are the only possible neighbouring terminals of s in T . This partition can be
constructed by overlaying a set of six carefully defined Voronoi diagrams. We will
show that the total number of regions in this overlay is O.n2/ and that the partition
can be constructed in O.n2/ time.

Lemma 4.21 There exist six points fyi W i D 0; : : : ; 5g on the boundary bd.B/

of the unit ball B , with indices in anti-clockwise order around the boundary, such
that for each pair of consecutive points yi ; yiC1, we have kyi yiC1k D 1. Moreover,
these six points are constructible.

The lemma can be proved via a variation of the standard ruler and compass
construction of the hexagon where B plays the role of the circle in the construction.
Given any point y0 on bd.B/ the idea is to construct a translation of bd.B/ centred
around y0. The point y0 along with the two intersection points of the two boundaries
closest to y0, constitute three of the six points. The remaining three points are
constructed using the central symmetry of B (Exercise 4.9). An example of such
a set of six points is shown in Fig. 4.19 for the unit ball of the rectilinear plane.

For any two directions
i and
j in the plane let K.y;
i ;
j / denote the cone
formed from the union of all rays emanating from y in direction
, for
i �
 �
j .
For each yi from Lemma 4.21 let 	i be the direction of the ray ���!oByi , where oB is
the centre of B . We refer to the set f	ig of six directions as a hexagonal direction set
of the norm k � k. Note that the f	ig are ordered in an anticlockwise manner, and two
consecutive directions will be denoted by 	i and 	iC1 (i.e. the mod 6 notation will
be omitted). Figure 4.19 shows a hexagonal direction set for the rectilinear plane.

Lemma 4.22 Let x 2 B with x ¤ oB and a; b 2 bd.B/ such that the segments
aoB and bx intersect in a point. Then kaxk � kbxk.

Proof Let p be the intersection of aoB and bx. Applying the triangle inequality to
4pax and 4pboB , we obtain kaxkCkboBk � kbxkCkaoBk from which the lemma
follows; see Fig. 4.20. ut

256 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.20 Illustration of the
proof of Lemma 4.22 for the
case where the unit ball is an
elliptic region

p

oB

b

a

x

It is well known, and easy to prove, that in a Euclidean minimum spanning tree
no angle between edges incident to a single point is less than �=3. This means that
given a vertex x of a minimum spanning tree T , if we partition the plane into six
�=3 cones centred around x, each cone contains at most one neighbour of x in T .
The following lemma shows that a similar partitioning exists for any PE norm, based
on the construction in Lemma 4.21.

Lemma 4.23 Given a plane with PE norm k � k and a corresponding hexagonal
direction set f	ig, let y be any point in the plane. Then there exists a minimum
spanning tree T on N [fyg with the following property: for each i D 0; : : : ; 5 there
is at most one point of N that is adjacent to y in T and lies in cone K.y; 	i ; 	iC1/,
and this point is a closest terminal to y in the cone.

Proof Let T 0 be a minimum spanning tree on N [fyg. Let t0 2 N be a terminal in
K.y; 	i ; 	iC1/ that is closest to y, and suppose that .y; t1/ 2 E.T 0/ where t1 2 N

is any other terminal in K.y; 	i ; 	iC1/. We show that we can replace the edge .y; t1/

in T 0 by either .y; t0/ or .t1; t0/ so that the resulting tree is still a minimum spanning
tree on N [fyg. From this, the statement of the lemma follows.

If the path in T 0 connecting y and t0 passes through t1, then clearly we can
replace .y; t1/ by .y; t0/ without losing connectivity or increasing the length of T 0.
So, assume, on the other hand, that the path in T 0 connecting y and t0 does not pass
through t1. We first prove the following claim.

Claim kt0t1k � kyt1k.

Proof of Claim Without loss of generality, we assume that y D oB , koBt1k D 1,
and K.oB; 	i ; 	iC1/ intersects the boundary of the unit ball B in an arc from a to
b (with kabk D 1). We can also assume, without loss of generality, that t1 lies on
the same side of the line through oBt0 as b. The convexity of B implies that the line
segments oBt1 and ab intersect; hence, by Lemma 4.22 we have

kat1k � kabk D 1: (4.2)

4.3 Bottleneck and General k-Steiner Tree Problems 257

y = oB

t1

a

θi+1

B

y = oB

t1

a

θi+1

B

t0
t0

t0

Fig. 4.21 Constructions for each of the two cases in the proof of the claim in Lemma 4.23,
illustrated for the case where the unit ball B is an elliptic region. In each case kt0t1k � koB t1k

We now prove the claim via two cases, illustrated in Fig. 4.21.
Firstly, suppose t0 and oB are on the same side of at1 (including the case where t0

lies on at1). By inequality (4.2) a lies in the unit ball centred at t1, so, by convexity, t0
also lies in this unit ball. Hence, kt0t1k � 1 as required. For the second case, suppose
that t0 and oB are on opposite sides of at 1. Let the ray from t1 passing through t0
intersect B at t 0

0. Then t 0
0 and oB are also on opposite sides of at 1, and hence, by

Lemma 4.22, kt0t1k � kt 0
0t1k � kat1k. Therefore, kt0t1k � 1 by inequality (4.2),

completing the proof of the claim.
By the claim we can now replace the edge .y; t1/ by .t1; t0/ without losing

connectivity or increasing the length of T 0. ut

Definition [Oriented Dirichlet cell]: Given a plane with PE norm k � k and a
corresponding hexagonal direction set f	ig, for each i D 0; : : : ; 5, we define
the i th oriented Dirichlet cell (ODC) of t 2 N to be the set:

fy 2 R
2 W ktyk D minfkt 0yk W t 0 2 N \ K.y; 	i ; 	iC1/:gg

In other words, the i th ODC of t 2 N is the set of all points fyg whose closest
terminal in the cone K.y; 	i ; 	iC1/ is t . We will show that the set of i th ODCs for
all N , called the i th ODC partition of N is a type of Voronoi diagram.

For some background on Voronoi diagrams we refer the reader to the book by
Okabe et al. [296] and the survey paper by Aurenhammer and Klein [18]. In the
current context, a useful way of conceptualising Voronoi diagrams is the ‘expanding
waves’ view of Chew and Drysdale [94]. If n pebbles are dropped simultaneously
into a pond, the places where wavefronts meet can be thought of as defining the
Voronoi diagram on the n points of impact. In the Euclidean case the wavefronts are
circular, but in theory any closed convex curve C bounding a region containing the
origin o can qualify as a wavefront and thereby define an abstract Voronoi diagram.
We can think of this curve C as representing the boundary of a unit ball. Here, C

defines a distance function ıC on the plane where the distance of o to a point v is
jovj=jov0j where v0 is the point at which the ray �!ov intersects the boundary of C .

258 4 Steiner Trees with Other Cost Functions and Constraints

(Note that ıC is not necessarily a norm, since C may not be centrally symmetric
around o; however, being a distance function ıC is invariant under translations.)
For a given finite set of points N the bisectors between elements of N under the
distance function ıC (corresponding to the lines where wavefronts meet) determine
the Voronoi diagram of N based on C .

Here we slightly extend the definition of these abstract ‘expanding waves’
Voronoi diagrams from [94] by allowing for the possibility that o may lie on C ,
rather than being restricted to the interior of C . If o lies on C this means that some
points inR2 are infinitely distant from o. We can then define this generalised Voronoi
diagram more formally as follows. Given a finite set of points N , for each t 2 N

define a region Vt D fy 2 R
2 W ıC .t; y/ < 1 and ıC .t; y/ D minfıC .t 0; y/ W t 0 2

N gg. The set fVt g is the required Voronoi diagram based on C . Note that if o lies on
C , for the distance function, then the Voronoi diagram of N based on C does not
cover the entire plane R

2 since some points in the plane are infinitely distant from
all elements of N .

Recall that B is the unit ball of our given PE norm. It follows from the above
discussion, that for each i D 0; : : : ; 5 the i th ODC partition of N is equal to the
Voronoi diagram of N based on the boundary of the sector B \ K.oB; � C 	i ; � C
	iC1/. Some examples of such ODC partitions in the Euclidean plane are given in
Fig. 4.22.

We can now state the time and space complexity for calculating the i th ODC
partition.

a

b
c

a

b
c

θi

θi + π/3 = θi+1 θi+1θi+2

Fig. 4.22 Two examples of ODC partitions (corresponding to different cones, shown at the top of
the figure) for a set of three terminals in the Euclidean plane. Each region has the same colour as
its corresponding terminal. Note, in the second example, that part of the boundary is determined
by the bisector of b and c

4.3 Bottleneck and General k-Steiner Tree Problems 259

Theorem 4.24 Given a plane with PE norm k � k and a corresponding hexagonal
direction set f	i g, for any set of n points N the i th ODC partition of N can be
constructed in O.n log n/ time and O.n/ space.

Proof (Sketch) The result follows immediately from a theorem of Chew and
Drysdale [94] that states that the generalised Voronoi diagram of n points based
on a closed convex shape C can be constructed in O.n log n/ time and O.n/ space
as long as the following operations can be performed in constant time:

1. Given two points, find the boundary where the two wavefronts meet.
2. Given two such boundaries, compute their intersection(s).

It is easy to see that these conditions hold for PE norms, since the bisector of
two points for a PE norm consists of a bounded number of straight line segments.
This is clear for the Euclidean and polygonal unit balls; for an elliptical unit ball
it follows from the observation that an ellipse is a linear transformation of a circle,
and hence a bisector for an elliptical norm is a linear transformation of a Euclidean
bisector. ut

By the overlay of two or more partitions we mean the union of the boundaries of
all regions in the partitions, and the resulting regions from this union. This concept
leads to the following definition.

Definition [Overlaid oriented Dirichlet cell partition]: Given a plane with
PE norm k�k and a corresponding hexagonal direction set, the overlaid oriented
Dirichlet cell partition (OODC partition) for a finite set of points N is the
overlay of the six i th ODC partitions for N .

An example of an overlay of two ODC partitions is given in Fig. 4.23. (See also
Exercise 4.10.)

Fig. 4.23 An example of an
overlay of ODC partitions,
showing the overlay of the
two partitions in Fig. 4.22.
The colour in each region
indicates the associated
terminals. For the general
case, with multiple Steiner
points and six overlays, each
region corresponds to up to
six terminals

a

b, c

b

c

a, b

a, c

a

b

c

260 4 Steiner Trees with Other Cost Functions and Constraints

Theorem 4.25 Given a plane with PE norm k � k and a corresponding hexagonal
direction set f	ig, for any set of n points N the OODC partition can be constructed
in O.n2/ time and contains O.n2/ regions.

Proof (Sketch) This follows from a result of Georgakopoulos and Papadim-
itriou [172] showing that q linear plane partitions, with n regions in each partition,
can be overlaid in O.q2n2/ time. The observation about the number of regions is
also straightforward. ut

Note that each region R of an OODC partition is an intersection of at most
six regions from different ODC partitions. Each of these ODC regions has a
corresponding terminal tj . Let IR be the set of up to six indices of the terminals
corresponding to the ODC regions which intersect to give R, and let NR D ftj W
j 2 IRg. In other words, NR is the set of up to six terminals associated with R. The
importance of the OODC partition lies in the next theorem, which follows directly
from Lemma 4.23.

Theorem 4.26 Let R be a region of an OODC partition for the terminal set N . Let
s be any point in R. Then there exists a minimum spanning tree T on N [fsg such
that the set of neighbours of s in T is a subset of NR.

Updating a Minimum Spanning Tree

To understand the next main step in efficiently constructing a generalised minimum
k-Steiner tree T on a terminal set N , consider first the case where k D 1, that is,
where there is only a single Steiner point s. Since the cost function being minimised
is `1-optimisable it follows that T is a minimum spanning tree on N [fsg. By
Theorem 4.26, there are O.n2/ possibilities for the set of neighbours of s in T ,
namely the subsets of NR, where R ranges over the regions of the OODC of N . For
a given set of (up to six) neighbours of s we assume that the optimal location of s,
say s�, can be computed in finite time (an issue which we discuss in more generality
at the end of Sect. 4.3.2). Georgakopoulos and Papadimitriou [172] have shown
that there is an O.n2/ preprocessing step that can be performed on the minimum
spanning tree of N that will allow it to be updated to a minimum spanning tree on
N [fs�g in constant time. The tree T can now be constructed by performing this
update for every possible s� and choosing the one with minimum cost.

We now generalise this strategy for k � 1. In this general case, instead of a
single Steiner point s interconnecting a set of terminals, we have a set of up to k

Steiner points S forming the interior nodes of a Steiner forest F , where the set of
leaves of F , say A, is a subset of N . By Lemma 4.23 we only have to consider
topologies where nodes have degree at most 6. Hence jAj � 6k. In what follows we
will show that if we fix the leaf set A and the topologyF of F , then with appropriate
preprocessing, the minimum spanning tree on N can be updated in constant time to
a k-Steiner tree on N that is minimum with respect to the given A and F .

4.3 Bottleneck and General k-Steiner Tree Problems 261

To establish this result we first set up some appropriate notation and definitions.
Let ıT .s/ denote the set of neighbours of a node s in a graph T . We assume a set of
terminals N is given.

Definition [Viable forest]: A forest F with node set A [S , where A � N

and S R
2 with jS j � k, is called viable if and only if ft 2 V.F / W

t is a leaf of F g D A and jıF .s/j � 6 for every s 2 S .

Definition [Minimum F -fixed spanning tree]: Let F be a viable forest (with
leaf set A � N and interior nodes S). A minimum F -fixed spanning tree is
a tree TF with minimum cost under the conditions that V.TF / D N [S and
ıTF .s/ D ıF .s/ for every s 2 S .

Note that the above definition means that in a minimum F -fixed spanning tree
TF the subgraph induced by A [S has the same topology as the forest F .

In addition to these definitions, we use the notation PT .t; y/ to represent a path
through T with endpoints t and y, and we use BSDT .t; y/ to denote the longest edge
on PT .t; y/ (or the edge having the bottleneck Steiner distance; see Sect. 1.3.2).

We will make use of the following well-known theorem, which gives an
alternative way of recognising minimum spanning trees.

Theorem 4.27 ([237]) A tree T is a minimum spanning tree on N if and only if for
every t; y 2 N , kek � ktyk for every e 2 PT .t; y/.

We next define a preprocessing procedure required to achieve a constant-time
update.

Definition [Preprocessing procedure PP1]: Let T be a minimum spanning
tree on N ; denote by PP1 a preprocessing procedure to calculate BSDT .t; y/

for every pair of nodes t; y 2 N .

Clearly, PP1 requires O.n2/ time and O.n2/ space (see Sect. 1.3.2), and we
assume it incorporates a consistent tie-breaking process, based on an ordering of
the edges of T , for choosing between edges of exactly the same length during the
procedure.

For the main constant-time update theorem below, we restrict our attention to the
case where the forest F is connected (i.e., F is a tree). This is done in order to keep
the arguments relatively simple—the case where F contains multiple connected
components requires some further preprocessing and is discussed in Sect. 3.6.2.

Theorem 4.28 ([52]) Given a terminal set N and a constant k, let F be a viable
tree with leaf set A � N and interior nodes S , with jS j � k. Let T be a minimum
spanning tree on N , and assume that PP1 has been performed. Then a minimum
F -fixed spanning tree TF can be constructed from T in O.k2/ time.

262 4 Steiner Trees with Other Cost Functions and Constraints

Proof Let G D T [F , and note that jAj � 6k. A number of cycles may occur in
G, each one of them containing a path through F with endpoints from A. Let T 0 be
the graph obtained by deleting the set of edges fBSDT .ti ; tj / W ti ; tj 2 A; i 6D j g
from G. We will show that T 0 D TF for some choice of TF , which suffices to
prove the proposition since T 0 can clearly be constructed in O.k2/ time, due to the
preprocessing procedure.

To prove that T 0 D TF we first show that T 0 is acyclic and connected. Every
cycle of G is of the form PF .ti ; tj / [PT .tj ; ti / (with ti ; tj 2 A), and therefore
deleting every BSDT .ti ; tj / from G produces an acyclic graph. We use induction on
jAj to prove that T 0 is connected. Let A D ft1; : : : ; tjAjg and let Ab D ft1; : : : ; tbg �
A for some 2 � b � jAj. Let Fb be the subtree of F induced by S [Ab , and let
Gb D T [Fb . Subtracting Lb D fBSDT .ti ; tj / W 1 � i < j � bg from E.Gb/

produces the graph Tb . For the base case we let b D 2. The only cycle of G2 is
PF .t1; t2/[PT .t2; t1/, and BSDT .t2; t1/ is an edge of this cycle. Therefore, deleting
BSDT .t2; t1/ does not destroy the connectivity of T2 on N [S .

Next suppose, by the inductive assumption, that Tb is connected and acyclic for
some 2 � b � jAj � 1. This implies there is exactly one path connecting tbC1 to
a node of Ab not passing through any element of S ; i.e., this path is of the form
PT .tbC1; tr / for some unique tr 2 Ab . Let s D ıF .tbC1/; that is, s is the Steiner
point in F adjacent to tbC1. Then TbC1 is the graph with V.TbC1/ D N [S and

E.TbC1/ D .E.Tb/ [f.s; tbC1/g/ nfBSDT .tbC1; ti / W ti 2 Abg:

We now make the following claim, the proof of which we leave for Exercise 4.11.

Claim For every ti 2 Ab either BSDT .tbC1; ti / 2 Lb or kBSDT .tbC1; ti /k D
kBSDT .tbC1; tr /k.

By this claim E.TbC1/ D .E.Tb/ [f.s; tbC1/g/ nfBSDT .tbC1; tr /g and we
deduce that TbC1 can be constructed from Tb by adding one edge from F and then
deleting an edge of T on the resultant cycle. This completes the induction argument,
and hence T 0 is connected.

Next we prove that T 0 is a minimum F -fixed spanning tree. Let K be the
complete graph on N . Furthermore, suppose that the edges of K are weighted by
the function w, where

w.t; y/ D
�

0 if t 2 A and y 2 A;

ktyk otherwise:

Let TA be any spanning tree on A. Then clearly T 0 is a minimum F -fixed
spanning tree if and only if the graph TK , where V.TK/ D N and E.TK/ D
.E.T 0/ \ .N
 N // [TA, is a minimum spanning tree of K with the above weight
function. But this follows from a simple application of Theorem 4.27. Hence
T 0 D TF , as required. ut

4.3 Bottleneck and General k-Steiner Tree Problems 263

Algorithm 4.1: Generalised minimum k-Steiner tree algorithm
Input: A set N of n points in a plane with PE norm k 	 k, a positive integer k, and a

symmetric `1-optimisable function ˛.
Output: A set S of at most k Steiner points, and a tree T � interconnecting N [S , such

that kT �k˛ D min
T ;S 0

˛.eT ;N;S 0/.

1
2 Construct an OODC partition of N

3 Construct a minimum spanning tree T on N

4 Perform preprocessing procedure PP1 on T

5 if k > 1 then Perform preprocessing procedure PP2 on T

6
7 // Generate the viable forests
8 foreach choice (with repetition) of k0 � k regions, R1; : : : ; Rk0 ; of the OODC partition do
9 Associate a Steiner point si with region Ri

10 Construct the graph G consisting of the vertices
S

NRi [fs1; : : : ; sk0 g, all edges
.si ; sj /; i ¤ j , and all edges .si ; t / for every t 2 NRi

11 Let G� be the set of all viable subforests of G
12 foreach F 2 G� do
13 Solve the fixed topology generalised Steiner tree problem for F to get the forest F

14 Run the minimum F -fixed spanning tree algorithm with input T and F and let TF

be its output

15 Select a smallest total cost TF produced and let T � D TF

16 Let S be the set of Steiner points of T �

4.3.2 An Algorithm for the Generalised k-Steiner Tree
Problem

In this subsection we use the properties of generalised k-Steiner trees established
in Sect. 4.3.1 to develop an efficient exact algorithm for constructing such trees.
We begin by presenting an overall algorithm for solving the generalised k-Steiner
tree problem, and then outline a crucial sub-procedure that involves generating a
minimum F -fixed spanning tree for a viable forest F . Finally, we discuss some of
the practical issues associated with implementing this algorithm.

The Main Algorithm

We begin by presenting the main O.n2k/ algorithm for solving the generalised k-
Steiner tree problem in the plane. An outline of the process is given in Algorithm 4.1.

There are four main parts to the algorithm, which we discuss below. Since k is a
bounded constant, we ignore factors in the complexity that are functions of k.

Stage 1 – Preliminaries (Lines 2–5) For the given terminal set N we first
construct an OODC partition (in O.n2/ time, by Theorem 4.25), and then a
minimum spanning tree T on N (in O.n log n/ time). Preprocessing procedure

264 4 Steiner Trees with Other Cost Functions and Constraints

PP1 is then performed in O.n2/ time. If k > 1 a second preprocessing procedure,
PP2, is required which is defined as follows.

Definition [Preprocessing procedure PP2]: Let T be a minimum span-
ning tree on N ; denote by PP2 a preprocessing procedure to calculate a
TRUE/FALSE table H such that He;y;z D TRUE if and only if edge e 2
E.PT .y; z//.

Procedure PP2 requires at most O.n3/ time and O.n3/ space; the importance of
PP2 will become clear when we discuss the computation of the minimum F -
fixed spanning trees. In all, this preliminary stage requires O.n2/ time if k D 1,
or O.n3/ time if k > 1.

Stage 2 – Forest generation (Lines 8–11) Let F be the subforest of T � induced
by the Steiner points and their neighbours. By Theorem 4.26 the set of leaf
neighbours in F of each Steiner point is a subset of the terminals associated
with a region of the OODC; since there are at most k Steiner points and O.n2/

regions, the number of such possibilities is O.n2k/. For each choice of OODC
regions in line 8, all possible viable topologies of F are constructed in line 11.
The number of such topology choices is a function of k and does not contribute
to the complexity of the algorithm.

Stage 3 – Forest optimisation (Line 13) This step involves finding a minimum
Steiner tree, under the cost function ˛ for F where the topology and leaf nodes
are given. As we have seen throughout this book, such computations are generally
possible in finite time. Since jV.F /j is assumed to be bounded by a constant (a
multiple of k), we assume that this step can be performed in constant time. The
practicalities of implementing this step will be discussed later in this section.

Stage 4 – Spanning tree update (Line 14) If F is a tree (i.e., it has only one
connected component), then by Theorem 4.28, T can be updated to incorporate
F in constant (O.k2/) time using the constructive method described in the proof
of that theorem. A procedure (the minimum F -fixed spanning tree algorithm) for
generalising this to forests with multiple components will be discussed below.
The procedure makes use of PP2, and also runs in constant time (O.k2kC3kŠ/).

If we assume that Stage 4, the spanning tree update, can be successfully
completed in constant time, then it is straightforward to see that the generalised
minimum k-Steiner tree algorithm constructs, in a time of O.n2k/, a tree T � that
is a generalised minimum k-Steiner tree on the terminal set N . It remains now to
develop an algorithm to construct a minimum F -fixed spanning tree for any viable
forest F .

The Minimum F -Fixed Spanning Tree Algorithm

Our aim is now to extend Theorem 4.28 to the case where F is not necessarily
connected, which must be considered if k > 1. We claim that the minimum F -fixed
spanning tree algorithm, given in Algorithm 4.2 and run in line 14 of the generalised

4.3 Bottleneck and General k-Steiner Tree Problems 265

Algorithm 4.2: Minimum F -fixed spanning tree algorithm
Input: A set N of n points in the plane, a minimum spanning tree T on N , and a viable

forest F with � connected components F 1; : : : ; F � .
Output: A minimum F -fixed spanning tree TF on N [S .

1
2 Let D0 D ;, and let T 0 D T

3
4 // Iterate over the components of F

5 for i D 1 to � do
6 Let Ai D V .F i / \ N

7 for every distinct pair t; y 2 Ai do
8 if i D 1 then
9 Let J be the graph with V .J / D fftg; fygg and E.J / D f.ftg; fyg/g

10 Let �J
1 ..ftg; fyg// D t , and let �J

2 ..ftg; fyg// D y

11 else if i > 1 then
12 Let J be the graph with V .J / D fftg; fyg; A1; : : : ; Ai�1g and E.J / D

f.U; U 0/ W 9w 2 U ^ 9w0 2 U 0such that He0 ;w;w0 D FALSE 8e0 2 Di�1g
13 For every e D .U; U 0/ 2 E.J / let �J

1 .e/ D w and let �J
2 .e/ D w0 (where

w; w0 are from the previous step)
14 Find the unique path in J , P i D PJ .ftg; fyg/

15 Let ` i .t; y/ be the edge from
˚

BSDT .�J
1 .e/; �J

2 .e// W e 2 E.P i /
	

of maximum
length

16 Let Li D f` i .t; y/ W t; y 2 Ai g
17 Let Di D Di�1 [Li

18 Let T i D .V .T i�1 [F i /; E.T i�1 [F i /nDi /

19 Let TF D T t

minimum k-Steiner tree algorithm, computes a minimum F -fixed spanning tree for
any viable forest F . The algorithm makes use of preprocessing procedure PP2 when
k > 1.

To understand the minimum F -fixed spanning tree algorithm, observe first that
for t D 1 the algorithm is identical to the method outlined in the proof of
Theorem 4.28. In other words D1 D L1 D fBSDT .ti ; tj / W ti ; tj 2 A; i 6D j g
and this set is deleted from G1 D T [F to produce TF . The algorithm is iterative
in nature, at each step adding a component F i to the current tree T i�1 and then
deleting the longest edges on every cycle to get a tree T i . All cycles that are obtained
when adding F i to T i�1 are of the form PT i�1 .t; y/ [PF i .t; y/ where t; y 2 Ai .
Similarly to the proof of Theorem 4.28, the required edge to be deleted at Step i for
the pair t; y, namely `i .t; y/, is simply the longest edge on PT i�1 .t; y/. It is clear
that PT i�1 .t; y/ is either a path of T or consists of alternating subpaths of T and F j

for various j < i . Since k is constant it is possible to find, also in constant time, the
subpaths of PT i�1 .t; y/ that lie in T . By taking the maximum of the longest edges
of all these paths in T we get `i .t; y/.

The purpose of J , as defined in the algorithm, is to have a graph of bounded
structural complexity that contains a representative edge for every path of T i�1

266 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.24 An example of
graph J at Step i . The red
circles and lines represent,
respectively, the nodes and
edges of J ; the filled black
circles and black lines
represent some of the nodes
and edges of T . The path Pab

in T corresponds to the edge
eab in J and we have
�J

1 .eab/ D ta and
�J

2 .eab/ D tb

Aa

Ab

eab

Pab

tb

ta

y

t

Ai

that begins and ends at nodes adjacent to Steiner points and lies wholly in T .
The specification of the nodes and edges of J in line 12 of the minimum F -
fixed spanning tree algorithm ensures that PT i�1 .t; y/ corresponds to a path in J

connecting ftg and fyg. Observe that any path Pab in T i�1 connecting nodes ta 2 Aa

and tb 2 Ab lies entirely in T if and only if He0 ;ta;tb D FALSE for all e0 2 Di�1,
where Di�1 is the set of edges that have been deleted from T up to and including
Step i � 1. Given an edge e of J we need to know the endpoints of the path in
T represented by e. For this we introduce the functions �J

j .e/, j D 1; 2 in the
minimum F -fixed spanning tree algorithm; see Fig. 4.24.

It is straightforward to show by induction that each network T i generated by the
algorithm (in line 18) is a tree; see Exercise 4.12. It immediately follows that there
is a unique path in each graph J connecting ftg and fyg, as required in line 14 of
the algorithm. (As usual, we assume that a path in J contains no repeated vertices.)
A consequence of this is the following lemma.

Lemma 4.29 Let t; y 2 Ai in the minimum F -fixed spanning tree algorithm. Then
` i .t; y/ (as defined in line 15 of the algorithm) is the longest edge of PT i�1 .t; y/,
excluding any edges of F .

Proof By the previous comments, there is a unique path P i D PJ .ftg; fyg/ for
the minimum F -fixed spanning tree algorithm to find. The required longest edge on
this path is the maximum of the longest edges for each subpath of W.P i / containing
edges of T only. The result follows. ut

We now verify the correctness and establish the complexity of the minimum F -
fixed spanning tree algorithm. The theorem implies that even in the case when F

is disconnected, our update method, as described in the minimum F -fixed spanning
tree algorithm, produces an optimal F -fixed spanning tree in constant time.

Theorem 4.30 Let T be a minimum spanning tree on N , and assume that
preprocessing steps PP1 and PP2 have been performed. If F is a viable forest,

4.3 Bottleneck and General k-Steiner Tree Problems 267

then the minimum F -fixed spanning tree algorithm correctly produces a minimum
F -fixed spanning tree TF in at most O.k2kC3kŠ/ time.

Proof The proposition is verified by using induction on t (the number of connected
components of F). Theorem 4.28 proves the base case: T 1 is connected, acyclic,
and a minimum F 1-fixed spanning tree. Similar reasoning is used to prove that
each subsequent T i is connected and acyclic. At each inductive step, Lemma 4.29
guarantees that the minimum F -fixed spanning tree algorithm correctly deletes the
longest edge (excluding edges of F) of any new cycle formed. Let Fi D S

j �i F j .
To prove minimality of T i we once again construct (analogously to Theorem 4.28)
a weighted complete graph K on N and a tree TK , such that T i is a minimum Fi -
fixed spanning tree on N [S if and only if TK is a minimum spanning tree of K .
Theorem 4.27 then completes the minimality proof.

To verify the time complexity first note that t � k, meaning that the outer
for loop at line 5 is repeated O.k/ times. Since jAi j � 6k the inner for loop at
line 7 is repeated O.k2/ times. Constructing the graph J , lines 8–13, requires at
most O.k2kkŠ/ time, and lines 14 and 15 require O.k/ time. The complexity of the
algorithm follows. ut

Implementation Issues

The generalised minimum k-Steiner tree algorithm (Algorithm 4.1) shows that the
generalised k-Steiner tree problem in the plane can be solved in O.n2k/ time. This
is a useful result in understanding the complexity bounds on this very general class
of problems. However, it is also natural to ask how practical it is to implement such
an algorithm for a given cost function.

In practice there are a number of obstacles to efficiently implementing the main
algorithm. The most obvious problem is that of the large hidden constants that take
effect as k increases. In particular, we have just seen that the minimum F -fixed
spanning tree algorithm runs in O.k2kC3kŠ/ time, meaning that Stage 4 (line 14) of
the generalised minimum k-Steiner tree algorithm becomes slow as k increases.

The other practical difficulty lies in Stage 3 of the generalised minimum k-
Steiner tree algorithm, the construction of fixed topology Steiner trees for each of the
components of F . In general the efficient (usually linear-time) methods developed
in earlier sections of this book for optimising a Steiner tree with a given Steiner
topology cannot be applied directly, as we need to consider topologies other than
Steiner topologies (because of the restriction on the number of Steiner points). In
particular, we may need to consider topologies where some Steiner points have
degree greater than 3. Hence, the question is: For a given cost function ˛ and a
given PE norm k �k, can we solve the fixed topology Steiner tree problem, where the
topology corresponds to a minimum Steiner tree for a bounded number of Steiner
points?

Although there are only a few instances of .˛; k � k/ for which the fixed topology
problem has been shown to be solvable, there are, as far as we know, no instances

268 4 Steiner Trees with Other Cost Functions and Constraints

of ˛ and k � k for which it has been demonstrated that the fixed topology problem
is impossible to solve (to within a fixed precision in finite time). Note also that
for many cost functions and norms there exist numerical methods (for instance,
gradient descent methods) that solve the fixed topology problem to any finite degree
of accuracy. We now briefly discuss a few cost functions ˛ for which methods
for solving the fixed topology Steiner tree problem have been developed, for some
norms.

1. ˛.eT ;A;S / D P kei k: This case is the standard geometric Steiner tree problem
(as discussed in the first three chapters of this book) for a fixed topology. We
have seen that for the Euclidean norm the problem has a linear-time solution, by
the Hwang-Melzak algorithm (Theorem 1.5), provided that no point has degree
larger than 3. However, in solutions to the k-Steiner tree problem degree 4

Steiner points do occur, but it has been shown that degree 5 Steiner points do
not occur [328]. The geometric properties of degree 4 Steiner points lead to a
simple finite algorithm for solving this fixed topology Steiner tree problem in
the Euclidean plane; see Exercise 4.13. Similar results hold for the rectilinear
and other fixed orientation norms, by, for example, using the linear programming
formulation described in Sect. 2.4.1.

2. ˛.eT ;A;S / D P kei kp; p > 0: This is referred to as the power-p Steiner tree
problem for a fixed topology. In the Euclidean plane with p D 2, Ganley [160]
has shown that the problem can be solved in linear time. Unfortunately, Ganley’s
methods do not appear to generalise to the rectilinear or other fixed orientation
norms, or to other values of p.

3. ˛.eT ;A;S / D lim
p!1

�
X

keikp
�1=p

: This is the bottleneck k-Steiner tree problem

for a fixed topology. Ganley and Salowe [165] have shown that this problem
can be solved in quadratic time in the rectilinear plane. In the Euclidean plane
(and other general `p planes) the problem is significantly harder, but there
exist various numerical algorithms that can calculate a solution to any desired
precision; for example algorithms based on nonlinear optimisation techniques
have been proposed by Elzinga et al. [149] and Drezner et al. [132], and an
even simpler algorithm based on a binary-search application of an algorithm
of Sarrafzadeh and Wong [337] is described in [165]. Furthermore, a fully
polynomial-time approximation scheme (FPTAS) exists for the problem in the
Euclidean plane (see [160]). More recently, Bae et al. [21] have produced an
efficient algorithm for solving the bottleneck k-Steiner tree problem in the `p

plane that outperforms the generalised minimum k-Steiner tree algorithm; this
work is discussed in the next section.

4.3 Bottleneck and General k-Steiner Tree Problems 269

4.3.3 Bottleneck Steiner Trees for the Euclidean
and Other Metrics

In this subsection we develop an approach for solving the bottleneck k-Steiner
tree problem which is more efficient than the general algorithm in the previous
subsection. This approach is based on the papers of Bae, Lee and Choi [22] and
Bae, Choi et al. [21]. We will first show, in some detail, how to solve the bottleneck
1-Steiner tree problem in the Euclidean plane, and then outline how this method can
be generalised to larger values of k and other metrics.

The Bottleneck 1-Steiner Tree Problem in the Euclidean Plane

As indicated at the beginning of Sect. 4.3, we can assume that a solution T to
the bottleneck 1-Steiner tree problem for a given set of terminals N is a tree.
Furthermore, since the bottleneck cost function is an example of an `1-optimisable
function, it follows that T can be assumed to be a minimum spanning tree on its
nodes (which comprise the elements of N and at most one extra node). The idea is
to show that T can be constructed by modifying any minimum spanning tree of N .
The key to achieving this lies in the following two lemmas.

The first lemma is a simple application of Theorem 4.27 (Exercise 4.14).

Lemma 4.31 Let T be a minimum spanning tree of N . Then there exists a minimum
bottleneck 1-Steiner tree T for N with Steiner point s such that each edge of T is
either an edge of T or is incident to s.

Lemma 4.32 Let T be a minimum spanning tree of N , and let e1; : : : ; en�1 be
the edges of T listed in non-increasing order of edge length. Then, either T is a
minimum bottleneck 1-Steiner tree for N or there exists a minimum bottleneck 1-
Steiner tree T for N with Steiner point s of degree c C 1 > 1 such that the edges of
T not incident with s are ecC1; : : : ; en�1.

Proof If T is not a minimum bottleneck 1-Steiner tree for N , then we know that
there exists such a tree T that satisfies the conditions of Lemma 4.31, that is, all
edges not incident to the Steiner point belong to T . Suppose we choose this tree T

so that the degree of the Steiner point s is as small as possible.
Let b be the bottleneck length of T . We claim that b < jej, where e is the shortest

edge in T not in T . If the claim is not true, then adding e to T does not increase
the bottleneck length but creates a cycle which includes the Steiner point. So, by
then deleting one of the edges incident to s we create another tree with bottleneck
length no greater than b and satisfying the conditions of Lemma 4.31, but where s

has smaller degree. Hence, by contradiction, the claim is true. The statement of the
lemma immediately follows from the claim. ut

It is well known, and easy to prove, that no node in a Euclidean minimum
spanning tree can have degree greater than 6, so 6 is an upper bound for c in the

270 4 Steiner Trees with Other Cost Functions and Constraints

Algorithm 4.3: Bottleneck 1-Steiner algorithm
Input: A set N of n points in the plane.
Output: A minimum bottleneck 1-Steiner tree T for N ; b, the bottleneck length of T .

1
2 Construct T0, a minimum spanning tree of N

3 Let e1; : : : ; en�1 be the edges of T0 listed in non-increasing order of edge length
4 Let S D ;, let b D je1j
5
6 // Iterate over the possibilities for the degree (c C 1) of the Steiner point
7 for c D 1 to 4 do
8 Let Tc D Tc�1 n fecg
9 Construct the smallest radius disc Dc containing a node from each connected

component of TC

10 Let sc be the centre of Dc , and let rc be the radius of Dc

11 if rc < b then Set S D fscg and b D maxfrc ; jecC1jg
12 Let T be a minimum spanning tree of N [S

above lemma. In fact, it has been shown by Monma and Suri [285] that for any set
of nodes there exists a Euclidean minimum spanning tree with maximum degree 5.
It follows from their arguments that we can restrict the value of c in Lemma 4.32 to
at most 5.

Lemma 4.32 suggests a straightforward way to solve the bottleneck 1-Steiner
tree problem, outlined in Algorithm 4.3. Analysing the computational complexity of
Algorithm 4.3 requires an understanding of how efficiently line 9 of the algorithm
can be performed. Suppose, once we remove the c longest edges of T0, we assign
colours to the terminals according to which of the c C 1 connected components of
the resulting forest they belong to. See Fig. 4.25. Then the disc Dc in line 9 is known
as the smallest colour spanning disc, that is, the disc of smallest radius containing
at least one terminal of each colour. A brute force method for constructing Dc is
to consider all possible combinations obtained by selecting one terminal of each
colour and construct the smallest enclosing disc for each combination; this clearly
requires O.ncC1/ time. A much more efficient approach makes use of the farthest
colour Voronoi diagram (see [2]), defined below.

Definition [Farthest colour Voronoi diagram]: Given a collection C D
fP1; : : : ; PcC1g of c C 1 sets of coloured points and a point x 2 R

2, define the
distance of x to a colour i (for 1 � i � c C 1) as di.x/ WD minp2Pi jxpj. Then,
the farthest colour Voronoi diagram, FCVD(C), is a decomposition of R2 into
Voronoi regions VRi for each subset Pi , where VRi D fx 2 R

2jdi.x/ >

dj .x/; 1 � j � c C 1; j 6D ig.

An example of a farthest colour Voronoi diagram is shown in Fig. 4.25 (lower
left diagram), where the colour of each Voronoi region corresponds to the colour of
the points from which it is most distant. Note that each edge of FCVD(C) is the set
of points that have the same set of two equally farthest colours, while each vertex of
FCVD(C) is a point that has three or more farthest colours.

4.3 Bottleneck and General k-Steiner Tree Problems 271

Fig. 4.25 Construction of a Euclidean bottleneck 1-Steiner tree for eight terminals: First a
minimum spanning tree on the terminals is constructed, and then the longest c edges (where
here c D 2) are deleted. The terminals are assigned colours depending on which connected
component they belong to, and then the farthest colour Voronoi diagram for the coloured terminals
is constructed. Finally the Voronoi diagram is used to locate the centre of the smallest colour-
spanning disc; this centre forms the location of the Steiner point which reconnects the three
connected components

It follows that the centre of a smallest colour spanning disc is either a vertex of the
corresponding farthest colour Voronoi diagram, or, in degenerate cases, the midpoint
of two terminals of different colours. Using this characterisation, Abellanas et al. [2]
have given a straightforward algorithm for constructing a smallest colour spanning
disc in O.c3n log n/ time. Since a minimum spanning tree on n points can be
constructed in time O.n log n/, we get the following result.

Theorem 4.33 Let N be a set of n terminals in the Euclidean plane. Then the
bottleneck 1-Steiner algorithm (Algorithm 4.3) correctly produces a minimum
bottleneck 1-Steiner tree T for N in at most O.n log n/ time.

272 4 Steiner Trees with Other Cost Functions and Constraints

Proof The correctness of the algorithm follows from Lemma 4.32; the time
complexity follows from the discussion above. ut

The General Bottleneck k-Steiner Tree Problem

We now briefly outline how the above approach can be generalised to k > 1 Steiner
points, and general `p metrics. A complete treatment of the problem is given in [21]
and involves numerous technical details, which we omit here. The key properties to
developing an efficient exact algorithm are those given in the following theorem.

Theorem 4.34 Let N be a set of n terminals in the `p metric plane. Let T be
a minimum spanning tree of N , and let e1; : : : ; en�1 be the edges of T listed in
non-increasing order of edge length. Then for any given integer k there exists a
bottleneck k-Steiner tree T that satisfies the following conditions.

1. Each edge in T is either an edge of T or is incident to a Steiner point.
2. Each Steiner point is located at the centre of the minimum enclosing `p circle of

its neighbours in T .
3. Each Steiner point of T has degree at most 5.
4. There is a positive integer c with 1 � c � 4k such that T excludes e1; : : : ; ec but

includes ecC1; : : : ; en�1.

For details of the proof, see [21].10 In brief, conditions 1–3 follow from
arguments similar to those given above for the bottleneck 1-Steiner tree problem in
the Euclidean plane. For condition 4, note that the bounds on the number of Steiner
points (namely k) and on the degree of each Steiner point (5) imply that if we delete
all Steiner points and their incident edges from T , then the resulting number of
connected components is at most 4k C 1 (at most 5 components for the first Steiner
point to be removed, and up to an extra 4 components for each subsequent Steiner
point); condition 4 immediately follows.

Using the properties in Theorem 4.34 the strategy for solving the bottleneck k-
Steiner tree problem is similar to that outlined in Algorithm 4.3. We first construct a
minimum spanning tree T for N , then for each c satisfying 1 � c � 4k we remove
from T the c longest edges e1; : : : ; ec . This results in c C1 induced disjoint subtrees
T1; : : : ; TcC1. We then need to find up to k Steiner points to reconnect the Ti ’s with
new edges incident to the Steiner points, minimising the longest edge length. These
new edges form a Steiner forest F where all internal nodes are Steiner points and

10Note that [21] gives a slightly weaker version of condition 3, the bound on the degree of Steiner
points; in particular, for `1 and `1 an upper bound of 7 rather than 5 is given. The bounds in [21]
are based on the Hadwiger numbers of the unit balls, that is, the largest number of non-overlapping
translates of the unit ball that can be brought into contact with it. However, for `1 and `1 (each of
which have polygonal unit balls) a tighter bound can be found by using Lemma 4.22 together with
the arguments of Monma and Suri in [285].

4.3 Bottleneck and General k-Steiner Tree Problems 273

all leaf nodes are elements of N . Finally we choose the best solution amongst all c

as an optimal solution for the original problem.
The main challenge remaining is that of constructing a suitable Steiner forest

F minimising the bottleneck length. The approach given in [21] is to first list all
possible topologies for the Steiner forest F , where the leaves are labelled only
by their associated connected component Ti rather than the precise terminal—the
number of such topologies is bounded by O..4k C 1/4k�1/. For each topology we
enumerate all possible so-called ‘determinator lists’; these are essentially partial
orderings on the edges of a given topology for F that determine the relative
lengths of edges in the forest. For each topology it can be shown that there are
at most 2O.k/nk distinct determinator lists that need to be considered, and that
they can be enumerated in the same time bound. This result makes use of the
properties of farthest colour Voronoi diagrams (as discussed previously for the
Euclidean k D 1 case). Each determinator list can then be used to compute a
minimum associated bottleneck length and the locations of the Steiner points in
time O.2O.k// C O.k2 log k/.

Together, these bounds result in the following theorem.

Theorem 4.35 ([21]) Given n terminals in the plane and a positive integer k, a
bottleneck k-Steiner tree in the `p metric, for any fixed rational p with 1 < p < 1,
can be computed in f .k/ � .nk C n log n/ time, where f .k/ D k5k � 2O.k/.

Finally, we note that when k D 1, the proof of Theorem 4.33 can easily be
adapted to solve the bottleneck 1-Steiner tree problem for any `p metric in time
O.n log n/. It is also shown in [21] that for the `1 and `1 metrics the bottleneck k-
Steiner tree problem has the remarkable property of being fixed-parameter tractable,
as it can be solved in time O.f .k/ � n log2 n/, for some suitable function f .

4.3.4 Applications

The most important practical application of efficient algorithms for the k-Steiner
tree problems discussed above is to the design of wireless sensor networks. They
are particularly relevant to the problems of relay deployment and augmentation.
They have also been shown to be useful in the development of effective heuristics
for general Steiner tree problems. We discuss both these applications below.

Wireless Sensor Networks

Wireless sensor networks (WSNs) consist of small low-powered sensing and relay
devices that can be readily deployed in diverse environments to form distributed
wireless networks for collecting information in a robust and autonomous manner.
A schematic illustration of a multi-hop WSN allowing data to be sent from a
set of sensors to a central base station is given in Fig. 4.26. Although early

274 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.26 A schematic diagram of a multi-hop wireless sensor network. The sensors are indicated
in green, the relays in red, and the base station in black. The network transmits data from the
sensors to the base station (for collection and analysis) via the intermediary relays. The dashed
orange lines show the routing network

research was mainly motivated by potential military uses, there are now many
other important applications such as fault detection, natural disaster early warning
systems, and health care and environmental monitoring (see, for example, [297]).
An example of the latter is the recent deployment of wireless sensors to monitor
factors that contribute to coral bleaching in the Great Barrier Reef in Australia [23].
Other applications include pollution control, climate control in large buildings, and
medical applications using implantable devices.

The theory of bottleneck and other k-Steiner trees is particularly relevant to
the design and layout of WSNs, especially with regard to the locations of relays.
Suppose we assume that an initial WSN deployment phase has already taken place
and that the locations of the sensors are known. For many applications the locations
of the sensors will be determined by the positions of specific data sources, and
hence can be assumed to be fixed. Furthermore, we can generally assume that the
base station, where all the field data is collected and processed, also has a fixed (or
at least highly constrained) location. In the next design phase, known as the relay
augmentation phase, a bounded number of relays are deterministically introduced to
the region, resulting in a multi-hop routing tree allowing data from the sensors to be
passed to the base station, and similarly allowing instructions from the base station
to be communicated back to the sensors. The relays can be thought of as Steiner
points of the network and ideally they should be located so as to optimise some
objective function, such as minimising the cost or maximising the performance of

4.3 Bottleneck and General k-Steiner Tree Problems 275

the WSN. The number of relays is assumed to be bounded due to the relatively high
cost at present of reliable sensors and relays.

Two typical objectives in the relay augmentation phase are to either: (1) maximise
the lifetime of the network; or (2) minimise the total energy consumption of the
network. Achieving either of these objectives requires an understanding of how
the locations of the relays influence power consumption. The idea is that once the
locations of the relays have been determined a routing tree rooted at the base station
and spanning all nodes can be constructed (as illustrated by the dashed orange lines
in Fig. 4.26). The power consumption at each sensor and relay is dominated by
the power required to transmit data to its parent in the rooted tree. At this stage
the power level of each sensor and relay can be adjusted so that each node is
able to transmit data to its parent in the routing tree. (We assume, in the simplest
models, that all sensors and relays transmit data at the same constant rate throughout
the lifetime of the network.) The energy consumed during data transmission is
an increasing function of the communication distance; sometimes this function is
modelled as simply being proportional to the distance, but in more realistic models
it may be taken to be a multiple of some power (usually between 2 and 4) of the
communication distance [383].

For objective (1) above, assume that each relay and sensor has an equal finite
power supply (such as a battery). If we measure the lifetime of the network as the
time until the first sensor or relay exhausts its power supply, then the problem of
maximising this lifetime corresponds to minimising the length of the longest link
in the network, and hence is equivalent to solving the bottleneck k-Steiner tree
problem (where k is the number of relays). For objective (2), assume that through
regular maintenance the batteries for each sensor or relay are recharged or replaced
as needed. Then minimising the energy consumption of the network is equivalent
to minimising the sum of energy costs across all the edges of the routing tree.
Hence, the objective is equivalent to solving a form of the generalised k-Steiner
tree problem.

It follows that the algorithms developed in this section form a fundamental
foundation for solving the relay augmentation problem for WSNs. However, it is
important to also be aware of the limitations of these exact algorithm. One key
issue is the difficulty in implementing these algorithms, as discussed at the end of
Sect. 4.3.2; even for small values of k the algorithms contain large hidden constants
which may make implementation impractical unless one is willing to compromise
optimality. Another issue is that the models described above are simplifications of
reality that do not take into consideration some of the costs and constraints that are
vital to good layout design for the network.

For example, some WSNs require a robustness constraint, which guarantees that
the unexpected failure of a single node (or a given number of nodes) does not kill
off the rest of the network. This constraint can be modelled by requiring that the
routing network is a �-connected network rather than a tree. By a �-connected
network we mean a network that remains connected when any ��1 nodes and their
incident edges are removed; see Fig. 4.27. Even for � D 2 this added constraint
makes the generalised k-Steiner tree problem substantially more difficult. This is

276 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.27 A 2-connected routing network for the sensors, relays and base station from the example
in Fig. 4.26. Note that the network remains connected if any single sensor or relay fails

not surprising, given that for k D 0 (that is, for the spanning network version)
the problem is already NP-hard [32]. However, it has recently been shown that for
the 2-connected bottleneck k-Steiner problem efficient polynomial-time algorithms
exist that build upon the methods of Bae et al. [21]; for details see the papers of
Brazil et al. [54, 56].

Heuristics

The other significant application of exact algorithms for the k-Steiner tree problems
has been in the development of heuristics. Although the algorithms for the gener-
alised k-Steiner tree problems present real challenges in terms of implementation,
for some metrics it is possible to find efficient implementations for the case where
k D 1, which can be used as the basis of a heuristic method for more difficult
problems.

The earliest example of this was the Iterated 1-Steiner algorithm of Khang and
Robins [228]. This algorithm is a heuristic for solving the rectilinear Steiner tree
problem (of Chap. 3). Starting with the given set of n terminals, the algorithm simply
solves the rectilinear 1-Steiner problem in O.n2/ time (using a variant of the method
developed by Georgakopoulos and Papadimitriou [172]), adds this Steiner point to
the set of fixed nodes, and repeats the procedure n times. This heuristic clearly runs
in time O.n3/, and has been shown to be a very effective approach. At the time it
was introduced, in the early 1990s, it outperformed all other known heuristics, most
of which were based on making local improvements to the rectilinear minimum

4.4 Trees Minimising Flow Costs 277

spanning tree. Subsequently, however, equally effective but computationally faster
methods have been developed, such as the edge-based heuristic of Borah et al. [37].

Along similar lines, a heuristic algorithm for the Euclidean bottleneck k-Steiner
tree problem has been developed (in [55]) based on iteratively solving the Euclidean
bottleneck 1-Steiner tree problem, using the exact O.n log n/-time algorithm of
Theorem 4.33. Again, this has been shown to outperform all previous known
heuristics for this problem.

4.4 Trees Minimising Flow Costs

The aim of an interconnection network, in an engineering context, is generally to
facilitate the movement of traffic between a number of sites. The specific type
of traffic can vary from one application to the next: from cars, to lightwaves, to
electricity, to digital signals; all of these different types of traffic can be modelled
as flows on the networks. In this section we look at the effect of including costs
associated with these flows as part of the overall cost of the network, and how we
design optimal networks that minimise such costs. As usual we will focus on a
geometric version of this problem, where the network can contain extra nodes that
can be located anywhere in the plane.

4.4.1 Gilbert Networks and Arborescences

The idea of incorporating flow into the Steiner tree problem dates back to a paper of
Gilbert [178] in 1967.11 Gilbert proposed a generalisation of the Euclidean Steiner
tree problem by incorporating into the network cost a set of flows between terminals.
In this section we consider this flow version of the Steiner tree problem, and its
extension to networks in general Minkowski spaces. Much of the discussion here is
based on [377].

Preliminaries

In Gilbert’s generalisation of the Steiner tree problem, symmetric non-negative
flows are assigned between each pair of terminals. The aim is to find a least-cost
network interconnecting the terminals, where each edge has an associated total
flow such that the flow conditions between terminals are satisfied and there is
conservation of flow at each Steiner point (see Fig. 4.28).

11This paper actually predates Gilbert’s seminal paper with Henry Pollak [179] on the Euclidean
Steiner tree problem.

278 4 Steiner Trees with Other Cost Functions and Constraints

Fig. 4.28 A representation of a Gilbert network on four terminals with two Steiner points. For each
pair of terminals (indicated by the black rectangles) there is a given symmetric flow (indicated
by the different coloured paths between pairs of terminals). Here the topology of the network
determines the flows associated with each edge. The weight of each edge is a function of the total
flows through that edge

The cost of an edge is its length multiplied by a non-negative weight, where the
weight is determined by a given function of the total flow being routed through that
edge. This weight function should satisfy a number of conditions which we discuss
below. Originally Gilbert networks were defined only for Euclidean space, but here
we extend the definition to general Minkowski spaces.

Let T be a network interconnecting a set N D ft1; : : : ; tng of n terminals in a
Minkowski space. For each pair ti ; tj ; i ¤ j; of terminals, a non-negative flow
fij D fji is given. The cost of an edge e in T is w.fe/le , where le D kek is the
length of e under the given norm, fe is the total flow being routed through e, and
w.�/ is a unit cost weight function defined on Œ0; 1/ satisfying

w.0/ � 0 and w.f / > 0 for all f > 0; (W1)

w.f2/ � w.f1/ for all f2 > f1 � 0; (W2)

w.�/ is a concave function. (W3a)

That the function w is concave means by definition that �w is convex. Condi-
tions (W1) and (W3a) imply the following subadditivity condition:

w.f1 C f2/ � w.f1/ C w.f2/ for all f1; f2 > 0: (W3b)

4.4 Trees Minimising Flow Costs 279

Definitions [Gilbert network, weight of an edge]: Let w be a weight function
satisfying conditions (W1), (W2) and (W3b) above. A Gilbert network is a
network interconnecting a given set of terminals, with given symmetric non-
negative flows between each pair of terminals, such that the cost of each edge
e is a product of its length le and its weight w.fe/, where fe is the total flow
through e.

The total cost of a Gilbert network T D .V .T /; E.T // is the sum of all edge
costs, that is,

C.T / D
X

e2E.T /

w.fe/le:

GILBERT NETWORK PROBLEM IN THE PLANE

Given: A set of points N lying in the plane, a norm k � k, a symmetric non-
negative flow demand between each pair of terminals in N , and a weight
function w satisfying conditions (W1), (W2) and (W3b) above.
Find: A Gilbert network T D .V .T /; E.T //, for N and the given flow
demands, whose cost C.T / with respect to the given weight function is
minimum amongst all such Gilbert networks.

A network T solving the Gilbert network problem in the plane is called a mini-
mum Gilbert network. A straightforward argument of [124] (based on establishing
a bound on the number of Steiner points) shows that a minimum Gilbert network
always exists in a Minkowski space when conditions (W1), (W2) and (W3b) are
assumed for the weight function. These three conditions are very natural conditions
for most applications; however, they are not enough to guarantee that a minimum
Gilbert network is a tree, as we will show later in this section.

The assumption, in the definition of the Gilbert network problem, that the
flows are symmetric, while generally reasonable in the design of communications
networks, is not a valid assumption for many other applications. An important
variation on the Gilbert network problem, that we will show to be a special case
of the Gilbert network problem, occurs when the terminals consist of n � 1 sources
and a single sink (or one source and n � 1 sinks) and all flows not between a source
and a sink are zero. The general cost setup here is the same as for the Gilbert network
problem, except that most edges now have fewer flows being routed through them,
and these flows are now directed. For example, in Fig. 4.28 if the terminal in the top
left-hand corner is the sink, then the network contains the red, green and dark blue
flows only, and all flows are oriented towards the sink.

If the weight function in the single sink problem satisfies the four conditions
(W1), (W2), (W3a), (W3b), then it follows from [178] that the resulting minimum
network has a tree topology, and provides a directed path from each source to the
sink. In this case the weight associated with each edge is uniquely determined by

280 4 Steiner Trees with Other Cost Functions and Constraints

the tree topology and the flow demands at the terminals. Such a network is an
arborescence (a rooted tree), and allows us to define the following problem.

GILBERT ARBORESCENCE PROBLEM IN THE PLANE

Given: A set of points N lying in the plane consisting of n sources and a
single sink, a norm k � k, a directed flow demand between each source and the
sink, and a weight function w satisfying conditions (W1), (W2), (W3a), (W3b)
above.
Find: An arborescence T , for N and the given flow demands, whose cost
C.T / with respect to the given weight function is minimum amongst all such
arborescences.

An arborescence T solving the above problem is called a minimum Gilbert
arborescence. Traditionally, the term ‘arborescence’ has been used to describe a
rooted tree providing directed paths from the unique root (source) to a given set of
sinks. Here, based on a number of applications which we describe in Sect. 4.4.2, we
consider the case where the flow directions are reversed; that is, the flow is from
n sources to a unique sink. It is clear, however, that the resulting weights for the
two problems are equivalent, hence we will continue to use the term ‘arborescence’
for the latter case. Moreover, if we take the sum of these two cases, and rescale
the flows (dividing flows in each direction by 2), then again the weights for the
total flow on each edge are the same as in the previous two cases, and the flows are
symmetric. This justifies our earlier claim that the Gilbert arborescence problem can
be treated as a special case of the Gilbert network problem. It will be convenient for
the remainder of this section to think of an arborescence as a network with a unique
sink.

Constructing Steiner Points, and the Importance of Concavity

We now describe a method for geometrically constructing a degree 3 Steiner point
in a Euclidean minimum Gilbert network, assuming that the weights of the three
incident edges are known. We will then use this method to show that, without the
concavity property, condition (W3a), we cannot guarantee that a minimum Gilbert
network is a tree.

Let s be a degree 3 Steiner point of a minimum Gilbert network, with adjacent
vertices a; b and c. Let the weights in T of the three edges incident with s be wa,
wb and wc , respectively (as in Fig. 4.29a). Note, by conditions (W2) and (W3b),
that there exists a triangle with side lengths wa, wb and wc ; we call this triangle the
weight triangle of s. Let ˛ D †bsc, ˇ D †asc and � D †asb be the three meeting
angles at s. Similarly to the unweighted Euclidean case (in Chap. 1), the relative
minimality of T implies that the sum of the three weighted unit vectors wabsa, wb

bsb

4.4 Trees Minimising Flow Costs 281

a

bc

s

eab

wa

wb

wc

α
β γ

a

bc

s

eab

wa

wbwc

α
π − α

π − α

a b

Fig. 4.29 A Steiner point s, and the construction of the weighted equilateral point eab

and wcbsc must equal 0. Hence, it is straightforward to show (Exercise 4.15) that
these angles satisfy

cos ˛ D w2
a � w2

b � w2
c

2wbwc

(4.3)

cos ˇ D w2
b � w2

a � w2
c

2wawc

(4.4)

cos � D w2
c � w2

a � w2
b

2wawb

(4.5)

and furthermore that the angles of the weight triangle of s are � � ˛, � � ˇ and
� � � . These results imply that if the edge weights and topology of a minimum
Gilbert network are known, then the angles ˛, ˇ, � around a degree 3 Steiner point
are entirely determined by the weights wa, wb , wc on the incident edges, and hence
are independent of the locations of the neighbouring vertices.

We now describe a method for constructing s that results in a recursive
algorithm, similar to Melzak’s algorithm for Euclidean Steiner trees.12 Let C be
the circumcircle of triangle 4asb (indicated in orange in Fig. 4.29), let Lcs be the
line extending cs, and let eab be the intersection of Lcs and C , other than s. These
constructions are illustrated in Fig. 4.29a. Note that if we move the vertex c, while
fixing a and b, then s moves along the arc of C between a and b since the angle �

12The problem of constructing a Steiner point in the weighted case (i.e., the weighted Fermat-
Torricelli problem) was first solved, for the Euclidean plane, by Weber [390] in 1909. More
details on the history and mathematics behind the general weighted Fermat-Torricelli problem
(for Steiner points of degree �3) can be found in the surveys of Wesolowsky [396] and Kupitz and
Martini [240]. A recent treatment of the Euclidean weighted Fermat-Torricelli problem for Steiner
points of degree 3 can be found in a paper of Jalal and Krarup [222], where the problem is referred
to as FERPOS.

282 4 Steiner Trees with Other Cost Functions and Constraints

is determined only by the weights and not the location of c. Furthermore, we have
the following lemma.

Lemma 4.36 The location of the point eab, as described above, is independent of
the location of c .

Proof Referring to Fig. 4.29b, note that †baeab D � � ˛ since the angles †bseab

and †baeab are both subtended by the same arc of C and hence are equal. Similarly,
†abeab D � � ˇ. It follows that the location of eab depends only on the locations of
a and b and the weights wa, wb and wc . ut

It follows from the above proof that 4abeab is similar to the weight triangle.
The point eab is called a weighted equilateral point, in analogy with the unweighted
case where eab is the third point of an equilateral triangle. In a sense, 4abeab is a
weighted equilateral triangle since jabj=wc D jaeabj=wb D jbeabj=wa. Hence the
term for eab and its role are both consistent with the unweighted equilateral point
from Chap. 1.

Given points a, b and c, and weights wa, wb and wc we can now construct eab and
s as follows. Compute ˛; ˇ from Eqs. (4.3), (4.4); then eab is the intersection of two
rays originating at a and b making respective angles � � ˛ and � � ˇ with ab, such
that the intersection is on the opposite side of ab to c. Finally, s is the intersection
of the interior of the line segment ceab with the circumcircle of 4abeab.

The line ceab is called a generalised Simpson line [222], and has the property
stated in the theorem below, analogous to the Simpson line in the unweighted case.
The proof of this theorem uses Ptolemy’s theorem, which states that in a cyclic
quadrilateral, the product of the diagonals is equal to the sum of the products of the
two pairs of opposite sides.13

Theorem 4.37 Let s be a degree 3 Steiner point of a minimum Gilbert network,
with adjacent vertices a; b and c and corresponding weights wa, wb and wc . Let eab

be the weighted equilateral point, as described above. Then wc jceabj D wajasj C
wbjbsj C wcjcsj.
Proof First note that asbeab forms a cyclic quadrilateral; see Fig. 4.29. By Ptolemy’s
theorem we have jabjjeabsj D jasjjbeabj C jaeabjjbsj, and hence

jeabsj D jasj jbeabj
jabj C jbsj jaeabj

jabj :

Since 4abeab is similar to the weight triangle for s we obtain

jeabsj D jasjwa

wc

C jbsjwb

wc

I

13Ptolemy’s theorem is named after the Greek astronomer and mathematician Claudius Ptole-
maeus, who stated and used the result in about AD 150. Jalal and Krarup [222] prove Theorem 4.37
without the use of Ptolemy’s theorem, and are then able to obtain Ptolemy’s theorem as a simple
corollary.

4.4 Trees Minimising Flow Costs 283

therefore, wc jeabsj D wajasj C wb jbsj, and the result follows by adding wc jcsj to
each side of the equation. ut

It follows from the above results that if a minimum Gilbert network has a known
tree topology and all Steiner points have degree 3, then we can construct the network
using Melzak’s algorithm from Chap. 1 (that is, building it up recursively from the
cherries). Furthermore, the weighted length of the resulting generalised Simpson
line will equal the cost of the network. However, for this weighted problem there
is no obvious way of solving the side problem, that is, for any two terminals a and
b adjacent to a Steiner point determining the side of ab on which eab should be
constructed. This means that although we have a finite algorithm for constructing
such a Gilbert network, we cannot guarantee that it will run in polynomial time for
a given topology.

We will demonstrate this constructive method, by using it to show that condi-
tions (W1), (W2) and (W3b) are not sufficient to guarantee that a minimum Gilbert
network is a tree—this is why we included all four conditions in the definition
of the Gilbert arborescence problem. The claim can be seen by considering the
following example of a Gilbert network problem with two sources and one sink
in the Euclidean plane, where we will show that there exists a split-route flow (that
is, some vertex has at least two outgoing edges and therefore the network topology
contains a cycle) that has a lower cost than any arborescence.

For this example, assume there are two sources a; b and a sink q which are the
vertices of a triangle 4abq with edge lengths jabj D 1 and jaqj D jbqj D 10, as
illustrated in Fig. 4.30 (top). The magnitude of the flow from a and b is 2 and 4,
respectively. The weight function is w.f / D d.3t C 1/=2e, i.e., .3t C 1/=2 rounded
up to the nearest integer. This function is positive, non-decreasing and subadditive,
but not concave. For the example, only the following values need to be considered:

t 1 2 3 4 6

w.f / 2 4 5 7 10

t = 1
t = 3

t = 3
a

b

q

t = 2

t = 4

t = 6
a

b

q

Fig. 4.30 Two possible solutions for the example are shown. In each the flow from a is indicated
in blue, the flow from b in red, and a combined flow in purple. The top diagram shows a split-
route flow solution, while the bottom shows the only possible topology for a minimum Gilbert
arborescence

284 4 Steiner Trees with Other Cost Functions and Constraints

a

b

eab s

q1

0.7

0.4

Fig. 4.31 Construction of the Steiner point and weighted Simpson line for the minimum Gilbert
arborescence for the example

Routing 1 unit of the flow from b to q via a (and the remainder of the flow directly
to q) gives a Gilbert network (Fig. 4.30 (top)) of total cost

w.1/jabj C w.3/jaqj C w.3/jbqj D 102:

For a Gilbert arborescence the flows from a and b to q are routed via some
variable point s as in Fig. 4.30 (bottom). A minimum Gilbert arborescence can be
calculated by using the weighted Melzak algorithm as described above. To construct
the Steiner point s, we first construct the weighted equilateral point eab outside
4abq such that

jaeabj D w.4/

w.6/
jabj D 0:7 and jbeabj D w.2/

w.6/
jabj D 0:4;

as shown in Fig. 4.31. We then construct the circumcircle of 4abeab, which
intersects the weighted Simpson line eabq in the required point s. It follows from
Theorem 4.37 that the resulting total cost is

w.2/jasj C w.4/jbsj C w.6/jsqj

D w.6/jeabqj D
q

9982:5 C 7
p

3890:25

D 102:074 : : :

This shows that the split routing network constructed in Fig. 4.30 (top) is cheaper
than the cheapest network with non-split routing, meaning that split routing can
be necessary when the weight function is not concave. So, for minimum Gilbert
arborescences we assume that the weight function w satisfies conditions (W1),
(W2), and (W3a) (and hence also (W3b)). If these conditions hold, it is known

4.4 Trees Minimising Flow Costs 285

[178, 365] that in the case where there is a single sink there always exists a minimum
Gilbert network that is a Gilbert arborescence.14

Characterisation and Degrees of Steiner Points

From the above discussion, we now have a finite algorithm for constructing a
Euclidean minimum Gilbert arborescence, using a Melzak-like strategy, as long as
we know that all Steiner points in the minimum Gilbert arborescence have degree 3.
Hence, it is natural to ask the question: Under what conditions and for which weight
functions does this degree 3 property hold? Here we will summarise the main known
results in this area, all of which have appeared in the paper of Volz et al. [377]. The
proofs of these results require detailed analysis and a subtle understanding of dual
vector spaces, and are not included here.

We first look at some theorems that show that in Euclidean space there is a very
general class of weight functions for which the Steiner points of a minimum Gilbert
arborescence are necessarily of degree 3. Although our main interest is in networks
in the plane, these results are in fact completely independent of the dimension.

This first theorem gives a general characterisation of the degree of Steiner points
in a minimum Gilbert arborescence.

Theorem 4.38 A Steiner point of degree m C 1 is possible in some minimum
Gilbert arborescence in Euclidean space with a weight function w.�/ that satisfies
conditions (W1)–(W3a), if and only if there exist vectors v1; : : : ; vm and flow
demands f1; : : : ; fm > 0 such that

jvi j D w.fi /; i D 1; : : : ; m (4.6)

j
m
X

iD1

vi j D w.

m
X

iD1

fi /; (4.7)

8I � f1; : : : ; mg with 2 � jI j � m � 2; j
X

i2I

vi j � w.
X

i2I

fi /: (4.8)

In this theorem the vectors v1; : : : ; vm correspond to the m edges directed towards
a given Steiner point, and the fi ’s are the associated flows. By Kirchhoff’s law the
flow on the outward edge of the Steiner point is

Pm
iD1 fi . Hence, we can think of

Eqs. (4.6) and (4.7) as constituting a flow-balancing condition at the Steiner point.
Equation (4.8) guarantees that there is no advantage in any subset of the incoming
flows combining at another point before they reach the Steiner point; in other words,
there is no cost-reducing perturbation under which the Steiner point splits into two
or more Steiner points.

14Note that in [124], condition (W3b), the subadditivity condition, was incorrectly interpreted as
concavity of the cost function.

286 4 Steiner Trees with Other Cost Functions and Constraints

Using Theorem 4.38 it is possible to define a quite general class of weight
functions for which all Steiner points are necessarily of degree 3.

Theorem 4.39 If the weight function w.�/ satisfies conditions (W1), (W2), (W3a)
and is differentiable with w.0/ > 0 and such that .w2/0 is a convex function, then
all Steiner points in minimum Gilbert arborescences with weight function w in
Euclidean space have degree 3.

It easily follows that the degree 3 condition holds for any positive linear weight
function. Indeed, it is straightforward to show that the hypothesis of Theorem 4.39
is satisfied for the weight function w.f / D d C hf ˛ for any d; h > 0 and ˛ 2
Œ0; 1=2 [f1g, but not when ˛ 2 .1=2; 1/ (Exercise 4.16). For any ˛ 2 .1=2; 1/

it has been shown that there exist weight functions of the above form for which a
minimum Gilbert arborescence can have a degree 4 Steiner point.

Note that in proving Theorem 4.39 one has to inductively apply Theorem 4.38 to
all values of m C 1 � 3. Again the details of the proof appear in [377].

Finally, in a smooth Minkowski plane we have the following result.

Theorem 4.40 Let w.�/ be a linear weight function w.f / D d C hf , d > 0; h � 0.
In a smooth Minkowski plane, a Steiner point in a minimum Gilbert arborescence
with cost function w necessarily has degree 3.

4.4.2 Applications and Extensions

There are many applied Steiner tree problems in which the presence of a flow on
the network should ideally be incorporated into the optimisation model, either as
part of the objective function or as constraints. The original application given by
Gilbert [178] was to communications networks, where the weight associated with
an edge of the network indicates the number of channels being installed along the
corresponding route. One of the most significant current applications where the
effects of flow need to be taken into account is in the physical design of microchips;
here the geometry of the network affects the signal delay and skew of each net,
which can strongly impact the performance of the chip. This has been discussed in
Sect. 3.6.2. Another recent application where signal flow is potentially important is
in the design of wireless sensor networks; some aspects of this will be examined
later in this chapter in Sect. 4.5.1.

In the remainder of this section we briefly look at two flow-related Steiner tree
problems that are closely associated with engineering applications: grade of service
Steiner trees, and gradient-constrained Steiner trees with flows.

4.4 Trees Minimising Flow Costs 287

Grade of Service Steiner Trees

Suppose we are given a collection of cities (modelled as points on a plane) that we
wish to interconnect by a minimum cost network of roads. Solving the Euclidean
Steiner tree problem for the given set of cities gives a minimum total length to the
road network, but does not account for the fact that not all roads are of equal cost;
the cost, per kilometre, of building and maintaining a multi-lane highway is much
greater than that for a road with a single lane in each direction. Each edge of the
Steiner tree should be weighted to indicate the grade of service of the section of road
associated with that edge; the weights in the tree should be proportional to the per-
kilometre costs of the grade of road for each edge. The grade of service associated
with each edge is determined by the volume of traffic using each section of road—
this can be determined by the volume of traffic driving in and out of each city. In
particular, for each city tk we can associate a service request grade r.tk/ 2 R

C so
that for the path in the tree between any two given cities ti and tj every edge of
the path has a grade of service of at least minfr.ti /; r.tj /g. This problem can be
formally stated as follows.15

EUCLIDEAN GRADE OF SERVICE STEINER TREE PROBLEM IN THE PLANE

Given: A set of points (terminals) N D ft1; : : : ; tng lying in the plane, and a
service request grade r.tk/ 2 R

C for each terminal tk 2 N .
Find: A geometric network T D .V .T /; E.T //, satisfying the following
properties: N � V.T /; each edge e 2 E.T / has an assigned grade of service
r.e/ such that, for every pair of terminals ti and tj , if e lies on the path in
T between ti and tj , then r.e/ � minfr.ti /; r.tj /g; and

P

e2E.T / r.e/jej is
minimised.

A network T solving the grade of service Steiner tree problem is a tree, referred
to as a minimum cost grade of service Steiner tree. If the topology of T is known,
then the grade of service for every edge of T can be determined in linear time.

Lemma 4.41 ([416]) Given any Steiner topology T for N , we can compute the
grades of service for all edges that appear in a minimum cost grade of service
Steiner tree with topology T in O.n/ time.

15The formulation and solution of a hierarchical network design problem in which there are at
least two grades of service dates back to a 1986 paper of Current et al. [126]. The first study of the
grade of service Steiner tree problem, where the grades of service on the edges are determined by
weights on the terminals, was a paper by Colbourn and Xue in 2000 [116], although this was for
the Steiner tree problem in graphs. The main study of the geometric version of this problem is the
paper of Xue et al. [416]. Note that our formulation of the Euclidean grade of service Steiner tree
problem in the plane slightly simplifies that given in [416].

288 4 Steiner Trees with Other Cost Functions and Constraints

The idea behind this result is that deleting any edge e of T creates two connected
components, and hence partitions N into two subsets. By taking the largest service
request grade associated with each subset and then taking the minimum of these
two values we obtain the required grade of service of e. Using this principle, it is
reasonably straightforward to prove Lemma 4.41 (Exercise 4.17).

As discussed in Sect. 4.4.1, however, knowing the topology and edge weights
of a minimum grade of service Steiner tree may not be enough to allow us to
efficiently construct the tree (even if we add the constraint that every Steiner point
has degree 3)—whether the tree can be constructed in polynomial time is currently
an open problem. Xue et al. [416] have developed a heuristic algorithm and a
recursive approximation algorithm for this fixed topology problem, as well as a
general branch-and-bound approach (see also Chapter 4 of [134]).

Gradient-Constrained Networks with Flows

An important application of the Gilbert arborescence problem in the plane, already
mentioned in Sect. 4.1.3, is to the strategic design of underground mine access
tunnels in a vertical plane. Here each of the source nodes represents a stope or
stoping level and the sink represents the mine portal; the flow demands correspond
to the total tonnages of ore transported along the access tunnels over the life of the
mine, as specified in Eq. (4.1). Note that the resulting weight on each edge of the
network is a linear function of the development and haulage costs, and hence a linear
function of the total tonnage. The metric used in this model for measuring the length
of each edge is the gradient-constrained metric, since there is a maximum gradient
at which the haulage trucks can travel.

Unlike minimum Steiner trees, minimum Gilbert arborescences in a vertical
plane under this metric do not appear to have a strong geometric structure or
a canonical form. However, it has been shown in [376] that there are structural
restrictions at Steiner points that have the potential to be exploited as part of an
exact or heuristic algorithm. For a given gradient-constrained Gilbert arborescence
with maximum gradient m, suppose we label each edge as follows: ‘b’ to indicate
that the edge is bent; ‘m’ to indicate that the edge is straight with absolute gradient
m; or ‘f’ (for flat) to indicate that the edge is straight with absolute gradient less
than m. Then, in terms of these labels, we have the following key result.

Theorem 4.42 ([376]) Let T be a minimum gradient-constrained Gilbert arbores-
cence and let s be a Steiner point in T . Then:

1. The Steiner point s has at most one incident b-edge.
2. If the incident sink edge to s is an m-edge, then s has at most one incident f-edge.
3. The degree of s is either 3 or 4.

4.5 Related Topics 289

It is also shown in [376], using methods of subdifferential calculus and
Minkowski sums, that if Steiner points are classified by the labels of their incident
edges, then there is only a small number of possible label combinations that can
occur in a minimum gradient-constrained Gilbert arborescence (that is, a smaller
number of possibilities than those allowed by Theorem 4.42). See [71] for further
details, where it is also shown that similar results can be derived for the problem in
three dimensions.

4.5 Related Topics

In this section we briefly describe a few other topics. These are either more recent or
less well-developed variations on the Steiner tree problem, but ones that are natural
generalisations of the standard problem from a mathematical point of view or are
constrained versions that have interesting potential applications.

4.5.1 Power-p Steiner Trees

In most of the Steiner problems we have considered so far, the cost of an edge is
directly proportional to its length (or magnitude under a given metric). However, for
some applications, particularly those related to wireless communications, the cost
of an edge can be more accurately modelled in terms of its length raised to a given
power, p.

POWER-p STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying on a normed plane (with norm
denoted by k � k), and a real number p.
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, and
such that the cost

P

e2E.T / kekp is minimised.

For applications relating to wireless communication networks, where the cost of
an edge is proportional to the transmission power required to communicate between
two adjacent vertices, p is generally modelled as a real number between 2 and 5

(see, for example, [230]). In such applications p is sometimes also known as the
path loss exponent.

In a similar way to previous sections, we refer to the network T , which
necessarily has a tree topology, as a minimum power-p Steiner tree, and to the
elements of V.T / n N as Steiner points. We have previously discussed a version of
this problem as an example of a generalised k-Steiner tree problem (in Sect. 4.3.1).
Here again, for p > 1, a minimum Steiner tree will only exist if there is some
sort of bound on the number of Steiner points, since otherwise the cost of any

290 4 Steiner Trees with Other Cost Functions and Constraints

network can be reduced by adding one or more degree 2 Steiner points to any edge
(Exercise 4.18). However, rather than simply imposing a fixed bound on the number
of Steiner points, as in Sect. 4.3.1, one can adopt other methods for constraining the
number of Steiner points. Two popular methods are to impose a lower bound on the
degree of Steiner points, by stipulating, for example, that the degree of each Steiner
point is at least 3, or alternatively to impose a fixed cost on each Steiner point which
is included as part of the cost function of the Steiner tree.16

For most values of p, the power-p Steiner tree problem appears to be difficult to
solve exactly. For example, Ganley and Salowe [166] strongly conjecture that the
problem is not finitely solvable for integer values of p � 5. However, the p D 2

case, which is sometimes referred to as the quadratic Steiner tree problem, does
admit exact solutions, which can be found either algebraically or geometrically.

The Euclidean quadratic Steiner tree problem was studied by Ganley and
Salowe, in [160] and [166]. They showed that in a minimum quadratic Steiner
tree a Steiner point of degree 3 is located at the arithmetic mean of the three
neighbouring vertices. In other words, if the neighbouring vertices have coordinates
.ax; ay/; .bx; by/; .cx; cy/, respectively, then the Steiner point has coordinates .ax C
bx Ccx; ay Cby Ccy/=3. This means that given a full Steiner topology (where each
Steiner point has degree 3) for a quadratic Steiner tree, the coordinates for all Steiner
points can be expressed in terms of a system of linear equations. Ganley and Salowe
show that these equations are well conditioned, and hence the system can be solved
in linear time (using, for example, Gaussian elimination) in terms of the coordinates
of the terminals. Unfortunately, the large number of possible topologies makes this
an impractical approach for solving the quadratic Steiner tree problem for more than
a small number of terminals.

Flow-Dependent Quadratic Steiner Trees

A natural way of generalising the Euclidean quadratic Steiner tree problem,
particularly in terms of wireless sensor network applications, is to combine it with
the Gilbert arborescence problem, described in Sect. 4.4.1. If the cost of the tree aims
to model power consumption in a wireless sensor network, then this cost should
take into account the amount of data flowing from each sensor to the base station.
As with the Gilbert arborescence problem, we thus think of the set of terminals N

as consisting of n sources (each with a given flow supply) and a single sink. For any
specific tree T spanning the terminals and a set of Steiner points we can uniquely
associate with each edge ei a flow fi satisfying the given flow supply at each source
and conservation of flow at each Steiner point. Here we take the cost of each edge to

16The former of these two methods of bounding the number of Steiner points is the most popular
in the literature, and is employed in [160, 166, 355] and [28] amongst others. The second method
is particularly relevant to applications surrounding the modelling of wireless sensor network
deployment; see for example [412] and [413]. Both methods are also discussed in [57].

4.5 Related Topics 291

be the flow on that edge times the square of its length, and hence the flow-dependent
cost of T is

jT jf WD
X

ei 2E.T /

fi jei j2:

The flow-dependent quadratic Steiner tree problem is the problem of finding a tree
T spanning N with minimum flow-dependent cost; such a tree is referred to as a
minimum flow-dependent quadratic Steiner tree.

The flow-dependent quadratic Steiner tree problem has been studied in some
detail in [57]; here we survey some of the key results. Given a Steiner point s in a
minimum flow-dependent quadratic Steiner tree T , we can assign a weight to each
neighbouring vertex vi of s in T , namely the flow on the edge between vi and s.
Note that determining the weight of each vertex vi depends only on knowing the
topology of T (but not the location of any of the Steiner points). Using this definition
of weight we have the following theorem.

Theorem 4.43 ([57]) In a minimum flow-dependent quadratic Steiner tree each
Steiner point lies at the centre of mass of its neighbouring vertices.

This theorem gives a simple geometric method for finding the location of a
Steiner point in terms of the positions of its neighbouring vertices, using properties
of mass point geometry (see, for example, [125]). The centre of mass of a given
set of points can be constructed geometrically by recursively merging masses
and subdividing line segments into appropriate ratios. For example, consider the
problem of constructing a Steiner point s of degree 3 with neighbouring vertices
v1; v2; v3, where the flow is directed towards v3, and where the neighbouring vertices
have weights f1; f2; f1 C f2, respectively; this is illustrated in Fig. 4.32. We first
merge v1 and v2 into the point v1;2 where v1;2 is the point on the line segment v1v2

such that jv1v1;2j=jv2v1;2j D f2=f1. This merged point v1;2 is assigned the weight
f1 C f2. Merging v1;2 and v3 yields the point s at the midpoint of v1;2v3, since v1;2

and v3 have equal weights.

Fig. 4.32 Merging weighted
vertices to construct a Steiner
point. Here v1; v2; v3 have
weights f1; f2; f1 C f2,
respectively

v1

v2

v3

v1,2

s

f1
f1 + f2

|v1v2|

292 4 Steiner Trees with Other Cost Functions and Constraints

In the above merging process, the point v1;2 essentially plays the same role
as a pseudo-terminal in the merging phase of the Melzak-Hwang algorithm for
the Euclidean Steiner problem (Sect. 1.2.1). Using the same recursive approach
as in the Melzak-Hwang algorithm it is possible to describe a geometric linear-
time algorithm for constructing a minimum flow-dependent quadratic Steiner tree
with a given full topology, where each Steiner point is assumed to have degree
3. Some care, however, needs to be taken in assigning weights to each of the
new pseudo-terminals so that the recursive merging and reconstruction processes
correctly construct the required Steiner points. Details on how to do this are given
in [57]. This approach suggests that it should be possible to design a GeoSteiner-
type algorithm for solving the flow-dependent quadratic Steiner tree problem (where
Steiner points have maximum degree 3).

4.5.2 Node-Weighted Steiner Trees

One of the methods mentioned in the previous section for effectively bounding the
number of Steiner points (for power-p Steiner trees) is to impose a cost on each
Steiner point. This constraint can also be applied to other forms of the Steiner
problem, such as the Steiner tree problem in a Euclidean or other normed plane.
In terms of applications, the constraint is a natural one: for example, in wireless
sensor networks the Steiner points represent the relays of the network, which carry
significant construction, installation and maintenance costs; while in chip design the
Steiner points correspond to the vias between layers which contribute to the overall
length of the nets between modules in the chip.

This problem is known as the node-weighted Steiner tree problem. In describing
the problem, we can assume that the only node costs that need to be considered
are those associated with Steiner points; any costs placed on the terminals have no
effect on the optimisation, since the terminals are fixed. This problem has mainly
been studied for Steiner trees in graphs [343], and is closely related to the prize-
collecting Steiner tree problem. The geometric version is defined as follows:

NODE-WEIGHTED STEINER TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying on a normed plane (with norm
denoted by k � k), and a positive real number p.
Find: A geometric network T D .V .T /; E.T //, such that N � V.T /, and
such that the cost pjV.T / n N j CP

e2E.T / kek is minimised.

As usual, such a tree T is known as a minimum node-weighted Steiner tree and
the elements of V.T / n N are referred to as Steiner points.

For the remainder of this section we consider the Euclidean node-weighted
Steiner tree problem. We first observe that if a minimum node-weighted Steiner tree
has a Steiner topology (that is, a topology where each Steiner point has degree 3),

4.5 Related Topics 293

10

10

Fig. 4.33 Examples of locally minimal interconnection trees for the vertices of a 10 � 10 square.
If the Steiner points (indicated in red) each have a cost of 1 unit, then the cost of each tree (from
left to right) is: 30; 2 C 10.1 C p

3/
 29:3205; and 1 C 20
p

2
 29:2843. Here the example on
the right with a degree 4 Steiner point is minimum

then T is the same as the Euclidean Steiner tree for that topology (without node
weights). More generally, once the topology of T is known the node weight p

plays no further role in determining the locations of the Steiner points. However,
unlike the standard Euclidean Steiner tree problem, it is possible for Steiner points
of T to have degree greater than 3. An example is illustrated in Fig. 4.33, where the
terminals are the vertices of a 10
 10 square, and p D 1. Here the minimum node-
weighted Steiner tree contains a single degree 4 Steiner point; see Exercise 4.19.

The following theorem, proved by Rubinstein et al. [328] using variational
techniques, shows that Steiner points of degree greater than 4 never occur.

Theorem 4.44 ([328]) No Steiner point of degree 5 or more can occur in a
minimum node-weighted Steiner tree in the Euclidean plane.

This result was also proved independently and extended to higher dimensions by
Colthurst et al. [117]. It has also been shown that for any given instance there exists
a minimum node-weighted Steiner tree in which each terminal has degree at most 5

[414].
Theorem 4.44 is a very useful result, since locally minimal points of degree

5 are not in general constructible using elementary geometric techniques; see for
example [114]. Degree 3 and degree 4 Steiner points, on the other hand, can be
easily constructed: for degree 3 Steiner points, the three meeting angles are each
2�=3 and the Steiner point can be constructed in terms of the locations of its
neighbouring vertices, as detailed in Sect. 1.1; for degree 4 Steiner points, the four
incident edges form two collinear pairs, making the Steiner point trivial to construct
in terms of its neighbouring vertices. A straightforward algorithm for constructing
a node-weighted Steiner tree for a given topology (where each Steiner point has
degree 3 or 4), based on the Melzak-Hwang algorithm, is given in [374]—see also
Exercise 4.13. Unfortunately, this algorithm runs in exponential time for a given
topology; the question of whether or not there exists a polynomial-time algorithm
remains open.

Despite these challenges, a reasonably efficient algorithm for solving the node-
weighted Steiner tree problem has been proposed and implemented by Xue [414].

294 4 Steiner Trees with Other Cost Functions and Constraints

Xue gives a method for enumerating the possible topologies, and proves a recursive
bounding condition on subtrees; together these form the building blocks for an effec-
tive branch-and-bound algorithm, similar in strategy to Smith’s algorithm [351]. In
practice the algorithm is able to exactly solve problems with up to ten terminals.

Minimum Steiner Point Trees

We conclude this section by describing a useful variation on the node-weighted
Steiner tree problem. Suppose we consider an instance of the node-weighted Steiner
tree problem in which the node weight p is very large. In this case, the main
optimisation objective is to minimise the number of Steiner points, and in the limit,
as p ! 1, the problem becomes the minimum spanning tree problem. If we then
add a further constraint, namely a given upper bound on the length of any edge in
the network, then the resulting problem is known as the minimum Steiner point tree
problem. The formal definition is as follows.

MINIMUM STEINER POINT TREE PROBLEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying on a normed plane (with norm
denoted by k � k), and a positive real number R.
Find: A geometric network T D .V .T /; E.T //, such that N � V.T / and
kek � R for each e 2 E.T /, and such that jV.T /j is minimised.

We refer to T as a minimum Steiner point tree and to the elements of V.T / n N

as Steiner points. Note that here, unlike many other variations of the Steiner tree
problem, Steiner points may have degree 2.

The edge-length bound is a very natural one in many applications. In wireless
sensor networks it may correspond to the maximum distance a signal can be
transmitted from the sensors and relays [93]; in optical networks it may represent
a bound on the maximum distance between optical amplifiers [253, 319]; while in
networks in microchips the bound may correspond to a maximum permitted distance
between buffers [269].

The minimum Steiner point tree problem was first proposed by Sarrafzadeh and
Wong [337], who showed that the problem is NP-hard in both the Euclidean and
rectilinear metrics. Note that the problem is essentially the dual to the bottleneck
k-Steiner tree problem (Sect. 4.3.3): here instead of bounding the number of Steiner
points and minimising the longest edge length we place a bound on the longest edge
length and minimise the number of Steiner points. This suggests a finite algorithm
for solving the minimum Steiner point tree problem involving solving the bottleneck
k-Steiner tree problem for different values of k until the smallest k for which the
bottleneck length is no greater than R is found.

Most of the literature on this problem has focussed on finding polynomial time
approximation algorithms. These approximation algorithms are mainly based on
Steinerising a minimum spanning tree, in other words, generating a minimum

4.5 Related Topics 295

spanning tree and replacing any edge longer than R by a path with the minimum
number of degree 2 Steiner points such that each edge in the path has length
at most R [260]. Măndoiu and Zelikovsky [272] have shown that this gives an
approximation ratio of 4 in the Euclidean plane and 3 in the rectilinear plane.
Chen et al. [84] have developed an improved polynomial-time approximation
scheme for the Euclidean metric with a performance ratio of 3.

An alternative approach, investigated by Brazil et al. [53], is to Steinerise a
minimum Steiner tree rather than a minimum spanning tree. For any norm, this
results in a solution that is larger than the optimal by at most 2n � 4, where n is the
number of terminals. Of course, this is not a polynomial-time algorithm, since the
Steiner tree problem itself is NP-hard, but for many norms this approach will work
well in practice, using the GeoSteiner-type algorithms described in this book.

4.5.3 Rotationally Optimal Steiner Trees

The final problem we consider in this chapter is a variation on the �-geometry
Steiner tree problem (see Chap. 2), which includes the rectilinear Steiner tree
problem. In these problems the minimum Steiner tree is composed of line segments,
each of which uses one of a set of � evenly spaced orientations. For the �-geometry
Steiner tree problem this set of orientations is given, but suppose, instead, we are
permitted to choose any set of � evenly spaced orientations; in other words, we can
rotate all legal orientations simultaneously to find the set that gives the minimum
Steiner tree with shortest length. This results in the following problem.

ROTATIONALLY OPTIMAL UNIFORM ORIENTATION STEINER TREE PROB-
LEM IN THE PLANE

Given: A set of points N D ft1; : : : ; tng lying in the plane, and a positive
integer � � 2.
Find: A geometric network T D .V .T /; E.T // and a uniform orientation
metric k � k� with � legal orientations, such that N � V.T / and such that
P

e2E.T / kek� is minimised.

As discussed in Sect. 2.7, the uniform orientation Steiner tree problem has impor-
tant applications in chip design and printed circuit board design. The rotationally
optimal version of this problem has the potential to further optimise such networks
and to provide an accurate lower bound on the minimum length possible. However,
given that we are considering a continuous set of rotations of the coordinate system
defining the legal orientations, it is not immediately obvious how to solve this
problem, or indeed whether a finite algorithm exists.

The rectilinear problem (where � D 2) has been studied by Nielsen et al. [295],
and the more general uniform orientation problem by Brazil et al. [51]; we briefly
survey the results of those papers here. Let ! D �=�. Note first, by symmetry, that

296 4 Steiner Trees with Other Cost Functions and Constraints

the length of a �-geometry network remains unchanged if we rotate the coordinate
system by ! or a multiple of !. This means that we only need to consider rotations
˛ in the interval Œ0; !/. Let u and v be a fixed pair of points in the plane such that
uv is in a legal orientation when ˛ D 0. Let kuvk˛ be the length of uv under the
�-geometry metric for a given ˛. Then it is straightforward to see that

kuvk˛ D juvj sin ˛ C sin.! � ˛/

sin !

where juvj is the Euclidean length of uv. (In particular, when � D 2 and hence
! D �=2 we have kuvk˛ D juvj.sin ˛ C cos ˛/, as expected.)

It follows that the function fuv.˛/ D kuvk˛ is periodically strictly concave
(with period !) and that the minimum is attained when uv has a legal orientation.
This immediately gives us a finite method for solving the rotationally optimal
uniform orientation minimum spanning tree problem (where no Steiner points are
permitted). Since a sum of strictly concave functions is strictly concave, it is easy to
see that in a rotationally optimal uniform orientation minimum spanning tree at least
one of the edges of the tree must be straight (that is, have a legal orientation). Hence,
an algorithm for solving the problem is as follows: for each pair of terminals ti ; tj in
N choose ˛ so that ti tj has a legal orientation and then solve the uniform orientation
minimum spanning tree problem for this fixed ˛—the minimum tree over all pairs
is the solution. This algorithm runs in time O.n3 log n/.

In [51] it is shown that a similar result holds for the rotationally optimal
uniform orientation Steiner tree problem. Recall, from Chap. 2, that for the uniform
orientation Steiner tree problem there exists a solution in which each full component
F contains at most one bent edge (consisting of two half-edges, which are the line
segments between the corner point and a vertex)—all other edges are straight edges.
It can be shown that as the coordinate system is continuously rotated by ˛ (over
a suitable interval) the length of each straight edge and half-edge of F defines a
strictly concave function of ˛. This implies the following theorem.

Theorem 4.45 ([51]) A rotationally optimal uniform orientation minimum Steiner
tree is a union of full Steiner trees, at least one of which contains no bent edges.

This theorem leads to a finite algorithm for constructing the optimal tree. For
every subset Ni of the terminals, every Steiner topology T on Ni , and every legal
angle distribution around Steiner points in T for the given �, a full Steiner tree
in �-geometry without bent edges can be constructed in a bottom-up manner (if it
exists). If such a tree exists, the orientations used by the edges in the tree give a
feasible rotation angle ˛, for which the uniform orientation Steiner tree problem for
that fixed value of ˛ can be solved in finite time.

For general � the algorithm is rather impractical, as a super-exponential number
of rotation angles must be tried. However, for the rectilinear case (� D 2) only
O.n2/ rotation angles need to be considered: those given by the lines through each
pair of terminals. This follows from the fact that for the rectilinear plane each full
component of a minimum Steiner tree can be assumed to be in Hwang form. When

4.5 Related Topics 297

there is no bent edge in such a full component, the backbone becomes a line segment
between two terminals.

Shang et al. [344] have also studied the Steiner ratio for the rotationally optimal
uniform orientation Steiner tree problem. Recall, from Sect. 2.5.1, that for a given
�, if T�.N / and T �.N / denote a minimum Steiner tree and a minimum spanning
tree, respectively, for N in �-geometry, then the Steiner ratio is defined as follows:

�� D inf
N

kT�.N /k
kT �.N /k :

The rotationally optimal Steiner ratio O�� is defined in the same way except that
T�.N / and T �.N / are rotationally optimal minimum spanning trees and minimum
Steiner trees respectively (each with potentially different rotation angles for the
coordinate system). For the case where jN j D 3, Shang et al. [344] show that

O�2 D 3 C p
3

6
and O�4 D

p
6 � p

3 C 1

2
;

and they conjecture that these ratios hold for any cardinality of N .

Exercises

4.1. Prove Theorem 4.4. [Hint: See the paragraph immediately following the
statement of Theorem 4.4.]

4.2. Verify Theorem 4.5 for the cases where the number of terminals of T is two,
three or four.

4.3. Construct an example consisting of two points and a single obstacle, with
visibility graph G, satisfying the following properties: there is a unique
minimum length obstacle-avoiding path P1 in G between the two points under
the L1 norm; there is a unique minimum length obstacle-avoiding path P2 in
G between the two points under the L2 norm; and P1 and P2 are distinct.

4.4. Prove Theorem 4.10 using any of the results proved or quoted in Sect. 1.6.

4.5. Prove Corollary 4.14.

4.6. Prove Lemma 4.16. [Hint: Show that there exists an embedding of vi viC2 in
the Euclidean plane (using legal orientations) that passes through viC1.]

4.7. Show that any convex obstacle in the rectilinear plane with five or more ver-
tices contains at least one transparent vertex, and hence deduce Theorem 4.19.

4.8. Show that the cost functions ˛p , for p > 0, and ˛1 are `1-optimisable.

298 4 Steiner Trees with Other Cost Functions and Constraints

4.9. Prove Lemma 4.21. [Hint: Given any point y0 on bd.B/ construct a translation
of bd.B/ centred around y0. The point y0, along with the two intersection
points of the two boundaries closest to y0, will constitute three of the six
points. The remaining three points can be constructed using the central
symmetry of B .]

4.10. Assume that the terminals a, b and c in Figs. 4.22 and 4.23 have coordinates
.5; 7/, .0; 2/ and .4; 0/, respectively, and assume that the Euclidean hexagonal
direction set includes the horizontal directions. Using a vector-based graphics
program, or otherwise, construct the six i th ODC partitions for these three
terminals and the resulting OODC partition.

4.11. Prove the claim in the proof of Theorem 4.28. [Hint: Let ti 2 Abnftrg
and consider separately the two cases where tbC1 does and does not lie
on PT .ti ; tr /. For the second case, let y be the first common point of
the paths PT .ti ; tr / and PT .tbC1; tr /, and make use of the observation that
kBSDT .ti ; y/k � kBSDT .y; tr /k.]

4.12. Prove that each network T i generated in the F-SMT algorithm (Algo-
rithm 4.2) is a tree. The proof should be by induction on the number of
connected components in the input viable forest F , noting that the base case,
i D 1, follows from Theorem 4.28.

4.13. Find a finite algorithm for solving the fixed topology Euclidean Steiner tree
problem in the plane, where Steiner points can have degree 3 or 4. [Hint:
First show that for a degree 4 Steiner point the four incident edges form two
collinear pairs; in other words, the edges in the neighbourhood of the Steiner
point look like two crossing lines. Hence, show that each degree 4 Steiner
point corresponds to one of three possible decompositions of the problem into
two smaller problems.]

4.14. Prove Lemma 4.31 by showing that it is a corollary to Theorem 4.27.

4.15. Let s be a degree 3 Steiner point of a Euclidean minimum Gilbert network T ,
with meeting angles ˛, ˇ and � . If w1, w2 and w3 are the weights of the three
edges incident with s, show that the meeting angles satisfy Eqs. (4.3), (4.4)
and (4.5), and that the angles of the weight triangle of s are � � ˛, � � ˇ and
� � � .

4.16. Show that the hypothesis of Theorem 4.39 is satisfied for the weight function
w.t/ D d C ht˛ for any d; h > 0 and ˛ 2 Œ0; 1=2 [f1g, but not when
˛ 2 .1=2; 1/.

4.17. Prove Lemma 4.41.

4.18. For p > 1, compute the cost c of a straight-line path between two fixed points
p and q in a Euclidean power-p Steiner tree containing k equally spaced
Steiner points between p and q. Show that c ! 0 as k ! 1.

4.5 Related Topics 299

4.19. Let N be the four vertices of a 10
 10 square. Show carefully that the
minimum node-weighted Steiner tree, with p D 1 for N , is the rightmost tree
shown in Fig. 4.33. Furthermore, for each of the trees illustrated in Fig. 4.33
determine the range of values of p for which it is a minimum node-weighted
Steiner tree for N .

Chapter 5
Steiner Trees in Graphs and Hypergraphs

In this chapter we consider two combinatorial versions of the Steiner tree problem:
the Steiner tree problem in graphs and the Steiner tree problem in hypergraphs.
Also, we consider the minimum spanning tree problem in hypergraphs. Although
this book focuses on geometric interconnection problems in the plane, these
combinatorial problems are included for several reasons. Firstly, the Steiner tree
problem in graphs is probably the best studied of all the many variants of the Steiner
tree problem. Secondly, the fixed orientation Steiner tree problem in the plane (and
specifically the rectilinear Steiner tree problem in the plane) can be reduced to the
Steiner tree problem in graphs (see Chaps. 2 and 3). Thirdly, the full Steiner tree
concatenation phase of GeoSteiner, the most efficient exact algorithm for computing
minimum Steiner trees in the plane, can be reduced to either the Steiner tree problem
in graphs or the minimum spanning tree problem in hypergraphs (see Sect. 1.4.4).

The purpose of this chapter is mainly to give a brief introduction, and to describe
some of the most successful exact algorithms for these problems. The text is
therefore not comprehensive, and most mathematical proofs are not included here;
either they are left as exercises, or references to the original papers containing the
proofs are given.

In contrast to Steiner tree problems in the plane, the set of Steiner points is a
given finite set for Steiner tree problems in graphs and hypergraphs. This turns the
problem into a pure combinatorial problem, where the task is to select an optimal
subset of edges and/or vertices. Often methods other than those introduced so far in
this book are required. The book by Korte and Vygen [237] gives an introduction
to these methods. The books by Hwang, Richards and Winter [211], Prömel and
Steger [316], and Du and Hu [134] give in-depth introductions to the Steiner tree
problem in graphs; the paper by Polzin and Vahdati Daneshmand [311] covers recent
algorithmic developments for the problem.

© Springer International Publishing Switzerland 2015
M. Brazil, M. Zachariasen, Optimal Interconnection Trees in the Plane,
Algorithms and Combinatorics 29, DOI 10.1007/978-3-319-13915-9_5

301

302 5 Steiner Trees in Graphs and Hypergraphs

5.1 Steiner Trees in Graphs

The Steiner tree problem in graphs is a well-studied combinatorial version of the
geometric Steiner tree problem. The origins of the problem date back to the early
1970s.1

STEINER TREE PROBLEM IN GRAPHS

Given: An undirected, connected and edge-weighted graph G D .V; E/, where
c.e/ > 0 denotes the weight of edge e 2 E , and a set of terminals NG � V .
Find: A connected subgraph T D .V .T /; E.T // in G, such that NG � V.T /,
and such that

P

e2E.T / c.e/ is minimised.

Since the edge weights are positive, it is easy to see that the subgraph T must
in fact be a tree. Even if the edge weights are allowed to be zero or negative,
the problem can be reduced to the problem with positive edge weights (see
Exercise 5.1). A tree T D .V .T /; E.T // that represents a solution to the Steiner
tree problem in graphs is called a minimum Steiner tree. An example of such a
minimum Steiner tree is given in Fig. 5.1.

The Steiner tree problem in graphs is NP-hard [231], and remains so for a number
of special cases, including planar graphs [169] and complete graphs with edge
weights 1 and 2 [31]. The problem has no polynomial-time approximation scheme
unless P = NP [31].

The vertices S.T / D V.T / n NG are denoted the Steiner vertices (or Steiner
points) of T . Note that Steiner vertices in T may have degree 2, that is, may be

5

12

4

5

1

3

4

3

2

6

5

12

4

3

1

3

4
3

2

56

5

6
84

5

74

2
5

Fig. 5.1 An example of the Steiner tree problem in graphs. The terminals are indicated by the
solid black vertices, and the minimum Steiner tree is indicated by the bold edges. The diagram on
the right shows the corresponding distance graph, with a minimum Steiner tree again indicated by
bold edges

1The Steiner tree problem in graphs was originally formulated by Hakimi [185] (and independently
by Levin [251]) in 1971. In the literature the problem is sometimes called the Steiner problem in
networks (and the graph version is reserved for the unweighted case). Exact algorithms based on
enumeration and dynamic programming were first proposed by Hakimi [185], Levin [251] and
Dreyfus and Wagner [131].

5.1 Steiner Trees in Graphs 303

internal vertices of some path in T . Consider a path PT .u; v/ in T interconnecting
two vertices u; v 2 V.T /; assume that all internal vertices (if any) on PT .u; v/ are
Steiner vertices of degree 2. Since T has minimum weight, the path PT .u; v/ must
be a shortest path in G.

Definition [Distance graph]: The distance graph D D .V .D/; E.D// for
an edge-weighted graph G is a complete edge-weighted graph with vertex set
V.D/ D V . The weight of an edge .u; v/ 2 E.D/ is equal to the weight
cP .u; v/ of a shortest path between u and v in G.

An example of a distance graph is illustrated in Fig. 5.1 (right). Note that edge
weights in the distance graph have the properties of a metric: they are non-negative,
symmetric, and they fulfil the triangle inequality. Based on these observations and
definitions, we have the following lemma (compare to Theorem 1.2):

Theorem 5.1 (Basic properties of a minimum Steiner tree in a graph) Let
G D .V; E/ be an undirected, connected and edge-weighted graph, and let D be
the distance graph for G. Let T D .V .T /; E.T // be a minimum Steiner tree for
terminal set NG � V in G, where n D jNGj. Let S.T / � S.T / be the set of Steiner
vertices of degree 3 or more in T . Then T satisfies the following conditions:

(1) jS.T /j � n � 2.
(2) T decomposes into at most 2n � 3 shortest paths (or geodesics in G) with

endpoints in NG [S.T /.
(3) T can be mapped into an equal-length tree in D (and vice versa, any minimum

Steiner tree in D can be mapped into an equal-length tree in G).

As a consequence of this theorem, we may solve the Steiner tree problem in the
distance graph instead of the original graph; see Fig. 5.1. One advantage is that we
may assume that all Steiner vertices have degree at least 3, that the number of Steiner
vertices is bounded by n � 2, and that the tree has at most 2n � 3 edges. The Steiner
tree problem for D can be solved by enumerating all subsets S � V nNG of possible
Steiner vertices, such that jS j � n � 2, and computing a minimum spanning tree in
the subgraph of D induced by NG [S . This immediately leads to the following
theorem:

Theorem 5.2 ([185]) The Steiner tree problem in a graph can be solved in
polynomial-time in the following two cases:

1. The number of terminals n D jNGj is bounded by a constant.
2. The number of potential Steiner vertices jV j � n is bounded by a constant.

Proof The number of Steiner vertex subsets in the distance graph is clearly bounded
by minfjV jn�2; 2jV j�ng. If n is bounded by a constant, then the number of subsets is
polynomial in jV j. If jV j � n is bounded by a constant, then the number of subsets
is also bounded by a constant. ut

304 5 Steiner Trees in Graphs and Hypergraphs

5.1.1 Graph Reductions

For many problem instances of the Steiner tree problem, we can preprocess the
input graph to reduce its size while preserving at least one minimum Steiner tree.
For example, consider an edge e D .u; v/ 2 E of weight c.e/. If there exists a path
between u and v in G of weight less than c.e/, then e may clearly be disregarded.

Graph reductions play a central role for exact algorithms, since exact algorithms
(in the worst case) have exponential running time behaviour in the size of the graph.
In practice, some of the best graph reduction algorithms can reduce the original
graph to a small fraction of its original size by using a (low-order) polynomial-time
effort.

The first systematic studies of graph reductions were presented by Duin [140],
Duin and Volgenant [142, 143], and Hwang, Richards and Winter [211]. Win-
ter [404] proposed a series of reductions that were particularly powerful for grid
graphs (for example, the Hanan grid graph). Duin [141] and Uchoa, Aragão and
Ribeiro [373] extended the ideas of Winter further, resulting in powerful reductions
for grid graphs coming from chip design. Currently, the fastest and most powerful
graph reduction techniques are due to Polzin and Vahdati Daneshmand [306, 308,
309, 375].

Graph reduction tests can be divided into two main types: exclusion tests and
inclusion tests. Both types of tests are performed on edges and/or Steiner vertices.
The purpose of exclusion tests is to show that there exists a minimum Steiner tree
that does not use the edge or Steiner vertex in question. The purpose of inclusion
tests is to show that there exists a minimum Steiner tree that does use the edge or
Steiner vertex in question. The tests are performed sequentially, so at any given stage
in the reduction process there exists a minimum Steiner tree T for G in the reduced
graph, such that T does not use the excluded edges and Steiner vertices—and such
that T does use the included edges and Steiner vertices.

A range of techniques is used to design reduction tests. One of the powerful
techniques is based on bottleneck Steiner distances (see Sect. 1.3.2). Consider the
distance graph D of G, and let T be a minimum spanning tree in the subgraph
induced by the terminals NG in D. The bottleneck Steiner distance between two
terminals u and v is the weight of the longest edge on the unique path between u and
v in T . If e D .u; v/ has weight c.e/ greater than the bottleneck Steiner distance,
edge e can be excluded. This test can be extended in many directions, including the
case where u and/or v are Steiner vertices.

Another powerful technique is based on the idea of expansion. The basic idea is
to assume that some edge e D .u; v/ 2 E is part of a minimum Steiner tree—thus
forming a subtree T 0 of a minimum Steiner tree. The question is now if T 0 actually
can be expanded into a minimum Steiner tree for all terminals. Each of the edges
incident to u and v is iteratively added to T 0; if for each of these expansions it can
be shown that the expanded tree T 00 cannot be part of some minimum Steiner tree,
edge e can be excluded. By using (limited) backtrack search starting in e, wider
expansions can be investigated; if all these expansions fail, edge e can be excluded.

5.1 Steiner Trees in Graphs 305

The tests described above are so-called alternative-based reductions: for exclu-
sion tests it is shown that edges or Steiner vertices can be excluded since equally
good or better alternatives exist in the remaining graph (and vice versa for inclusion
tests). Polzin and Vahdati Daneshmand [308, 309] introduced the notion of bound-
based tests. Let UB be the weight of some (heuristic) Steiner tree for G, and consider
some Steiner vertex u. Assume that we can compute a lower bound LB on the weight
of a Steiner tree that includes Steiner vertex u. If LB > UB, then Steiner vertex u can
be excluded. Polzin and Vahdati Daneshmand showed that efficiently computable
lower bounds can be obtained by using, for example, Voronoi regions for G and
dual ascent methods based on linear programming relaxations.

5.1.2 Dynamic Programming

Some of the first non-trivial exact algorithms for the Steiner tree problem were
based on dynamic programming. The idea of dynamic programming is to solve
problems recursively; that is, to solve problems bottom-up by storing optimal
solutions to subproblems, and combining these solutions into optimal solutions for
larger subproblems. Dynamic programming algorithms are particularly effective for
special cases, for example, when the number of terminals and/or Steiner vertices is
small.

For the Steiner tree problem a natural dynamic programming approach is to
compute minimum Steiner trees for non-empty terminal subsets X � NG; let the
weight of such a minimum Steiner tree for X be c.X/. The base case, X D fu; vg
where u; v 2 NG , is easy: here c.X/ is simply the weight cP .u; v/ of a shortest path
between u and v in G. The challenge is to compute c.X/ for larger subsets of NG ,
and ultimately to compute c.NG/.

Dreyfus-Wagner Algorithm

The Dreyfus-Wagner algorithm [131] is a clever implementation of the dynamic
programming paradigm. (Levin [251] independently suggested a similar approach.)
Consider some vertex v 2 V n X . Let c.X [v/ be the weight of a minimum Steiner
tree for X [v, and let cv.X [v/ be the weight of a minimum Steiner tree for X [v

where v has degree 2 or more.
Consider a minimum Steiner tree Tv for the set X [v where v has degree 2 or

more. Clearly, we can decompose Tv into two subtrees T 1
v and T 2

v , such that T 1
v is

a minimum Steiner tree for X 0 [v (where X 0 X), and T 2
v is a minimum Steiner

tree for .X n X 0/ [v. Thus we have:

cv.X [v/ D min;�X 0�X
fc.X 0 [v/ C c..X n X 0/ [v/g: (5.1)

306 5 Steiner Trees in Graphs and Hypergraphs

Now, consider a minimum Steiner tree T for the set X[v without any restrictions
on the degree of v. If v has degree 2 or more in T , then obviously c.X [v/ D
cv.X [v/. So assume that v has degree 1. Consider the unique path pT .v; w/ in
T from v to the first vertex w in T that either is a terminal or is a Steiner vertex
of degree 3 or more. (Hence, all interior vertices of pT .v; w/, if any, are Steiner
vertices of degree 2.) If w is a terminal, the weight of T is equal to the weight of a
shortest path from v to w plus the weight of a minimum Steiner tree for X (since
w 2 X). If w is a Steiner vertex of degree 3 or more, the weight of T is equal to the
weight of a shortest path from v to w plus the weight of a minimum Steiner tree for
X [w, where w has degree 2 or more. Therefore, we have:

c.X [v/ D minfmin
w2X

fcP .v; w/ C c.X/g; min
w2V nX

fcP .v; w/ C cw.X [w/gg: (5.2)

The running time of the Dreyfus-Wagner algorithm is O�.3n/, where the function
O�. / ignores polynomial factors (see Exercise 5.2).

Theorem 5.3 ([131] Dreyfus-Wagner algorithm) The Steiner tree problem in a
graph can be solved using dynamic programming in O�.3n/ time, where n is the
number of terminals.

For small terminal sets, the Dreyfus-Wagner algorithm is much more efficient
than the spanning tree enumeration algorithm (see Theorem 5.2), and it is still the
method of choice today for problem instances with small terminal sets. Although
theoretically faster algorithms exist (with a running time of O�.cn/ for any c >

2 [158, 379]), it is not clear if these algorithms are faster in practice due to the large
constants involved. Efficient variants of the Dreyfus-Wagner algorithm can solve
large problem instances to optimality [203].

5.1.3 Integer Programming

Like many other combinatorial optimisation problems, the Steiner tree problem in
graphs can be modelled using (linear) integer programming. The use of integer
programming formulations for the problem dates back to Yang and Wing [423], who
formulated a Steiner tree packing problem using an integer programming model.
Aneja [15] and Wong [409] pioneered the use of integer programming for the Steiner
tree problem in graphs in the early 1980s.

In this section we present four integer programming formulations for the
Steiner tree problem in graphs. Our first formulation, called the spanning tree
formulation, has not been used much for the graph problem, but it has success-
fully been used to compute minimum Steiner trees and minimum spanning trees
in hypergraphs (see Sect. 5.2). The second formulation is Aneja’s cut formula-
tion, and the third formulation is the one that is used by current state-of-the-art
exact algorithms—namely Wong’s directed cut formulation. Finally, we present

5.1 Steiner Trees in Graphs 307

a multi-commodity flow formulation that has polynomially many variables and
constraints.

Spanning Tree Formulation

The main idea of this formulation is to keep track of the Steiner vertices that are part
of the Steiner tree. When the set of Steiner vertices is known, the problem reduces to
a minimum spanning tree problem on the terminals and the selected Steiner vertices.
Thus, well-known integer programming formulations for the minimum spanning
tree problem can be used.

We represent a Steiner tree as an incidence vector x, where xe D 1 if edge e 2 E

is part of the Steiner tree, and otherwise xe D 0. Clearly, the weight of a Steiner tree
is then

P

e2E c.e/xe . For any edge set F � E define x.F / D P

e2F xe to be the
sum of x over edge set F (in other words, the number of edges of the Steiner tree in
F).

Let SG D V n NG be the set of candidate Steiner vertices in G. Define an
incidence vector y, such that yv D 1 if v 2 SG is part of the Steiner tree, and
otherwise yv D 0. For any vertex set W � SG define y.W / D P

v2W yv to be
the sum of y over vertex set W ; denote by E.W / � E the set of edges with both
endpoints in W . The spanning tree formulation IPspt is as follows:

minimise
X

e2E

c.e/xe (5.3)

subject to x.E/ D y.SG/ C jNGj � 1 (5.4)

x.E.W // � y.SG \ W / C jNG \ W j � 1;
W V;

W \ NG ¤ ; (5.5)

xe 2 f0; 1g; e 2 E (5.6)

yv 2 f0; 1g; v 2 SG: (5.7)

This formulation was suggested and studied by Goemans and Myung [182],
and it has its origin in Edmond’s description of the spanning tree polytope [147].
The objective function (5.3) is the sum of the weights of the selected edges.
Equality (5.4) states that the number of edges in a spanning tree is equal to the
number of vertices minus 1. Finally, the so-called generalised subtour elimination
constraints (5.5) state that the number of tree edges within any vertex subset W

should be at most the number of tree vertices minus 1—otherwise a cycle (or sub-
tour) would be created. The number of generalised subtour elimination constraints is

308 5 Steiner Trees in Graphs and Hypergraphs

exponential, so the LP-relaxation is solved iteratively by adding violated constraints;
the separation problem (finding a linear inequality that separates the optimum point
from the convex hull of the true feasible set) is equivalent to a minimum cut problem
that can be solved in polynomial time (see Sect. 5.2).

Cut Formulation

In the cut formulation [15] the focus is on the connectivity of the Steiner tree—
namely that there should be path between any pair of terminals in the Steiner tree.

For a set of vertices W � V , let ı.W / � E denote the cut given by W , that is,
the set of edges with exactly one endpoint in W . Choose any terminal vertex r 2 NG

as the root of the Steiner tree. The cut formulation IPcut is as follows:

minimise
X

e2E

c.e/xe (5.8)

subject to x.ı.W // � 1; W � V n frg; W [NG ¤ ; (5.9)

xe 2 f0; 1g; e 2 E: (5.10)

The cut constraints (5.9) ensure that for any cut that separates r from some other
terminal, there is at least one edge that crosses the cut. Clearly, the resulting Steiner
tree is feasible, as it connects r to each of the remaining terminals. Again, the
number of cut constraints is exponential. The separation problem can be solved in
polynomial time by solving at most jNG j � 1 minimum cut problems (as described
in the next section).

The cut formulation is sometimes denoted the set cover formulation [211], since
it is actually a special case of the set cover problem: each cut in the graph that
separates the root from some other terminal needs to be covered by at least one edge
in the Steiner tree.

Directed Cut Formulation

The directed cut formulation [409] is a seemingly minor variant of the cut
formulation, but it turns out that the LP-relaxation is much stronger.

Consider an edge-weighted directed graph D D .V; A/ constructed from G D
.V; E/. The directed graph D has the same vertex set as G, and for each edge
.u; v/ 2 E , there are two opposite arcs Œu; v and Œv; u in A; the weight c.a/ of
an arc a 2 A is the same as the weight c.e/ of the underlying edge e 2 E . A
Steiner arborescence in D is a directed tree rooted in some terminal r 2 NG that
spans all the terminals NG . Clearly, a minimum-weight Steiner arborescence in D

corresponds to a minimum Steiner tree in G.

5.1 Steiner Trees in Graphs 309

We represent a Steiner arborescence as an incidence vector w, where wa D 1 if
arc a 2 A is part of the Steiner arborescence, and otherwise wa D 0. Clearly, the
weight of a Steiner arborescence is then

P

a2A c.a/wa. For any arc set B � A define
w.B/ D P

a2B wa to be the sum of w over arc set B . For a set of vertices W � V ,
let ı�.W / D fŒu; v 2 A W u … W; v 2 W g denote the directed cut given by W ,
that is, the set of arcs ending (but not beginning) in W . The directed cut formulation
IPdicut is as follows:

minimise
X

a2A

c.a/wa (5.11)

subject to w.ı�.W // � 1; W � V n frg; W [NG ¤ ; (5.12)

wa 2 f0; 1g; a 2 A: (5.13)

As before, the directed cut constraints (5.12) ensure that for any cut that separates
r from some other terminal, there is at least one arc that crosses the cut. The
separation problem can be solved as follows. Consider some fractional solution
wa, a 2 A. Set up a flow network on A with r as source, one of the terminals
t 2 NG n frg as sink, and wa as the (fractional) capacity of arc a 2 A. Compute a
minimum-capacity cut in this network. If the minimum cut has capacity less than 1,
this cut corresponds to a violated directed cut constraint.

Multi-commodity Flow Formulation

A formulation that uses a polynomial number of constraints can be obtained by
setting up a multi-commodity flow network. Consider again the directed graph D D
.V; A/ from the directed cut formulation. As before, let ı�.v/ denote the set of arcs
ending in a vertex v 2 V . Similarly, let ıC.v/ denote the set of arcs beginning in
v 2 V .

For each terminal t 2 NG n frg, we would like to send one unit of flow from r

to t . Let f t be the flow vector defining the flow from r to t , such that f t
a is the flow

on arc a 2 A. For any arc set B � A define f t .B/ D P

a2B f t
a to be the sum of f t

over arc set B . The multi-commodity flow formulation IPmcf is as follows:

minimise
X

a2A

c.a/wa (5.14)

subject to f t .ıC.v// � f t .ı�.v// D

8

ˆ

ˆ

<

ˆ

ˆ

:

1; v D r

�1; v D t

0; v 2 V n fr; tg
;

v 2 V;
t 2 NG n frg

(5.15)

310 5 Steiner Trees in Graphs and Hypergraphs

f t
a � wa;

a 2 A;
t 2 NG n frg (5.16)

wa 2 f0; 1g; a 2 A (5.17)

f t
a � 0;

a 2 A;
t 2 NG n frg : (5.18)

The flow conservation constraints (5.15) ensure that ft corresponds to
one unit of flow from r to t . The necessary capacity wa on arc a 2 A is
given by constraints (5.16). Clearly, the number of constraints is bounded by
O.jV j maxfjV j; jAjg/, or polynomial in the size of the directed graph D D .V; A/.

Relation Between Optimal Solutions to LP-Relaxations

How are the optimal values of the four LP-relaxations LPspt, LPcut, LPdicut and LPmcf

related? For each formulation the optimal value of the LP-relaxation is independent
of the choice of the root r 2 NG [182]. Denote by v.LPspt/, v.LPcut/, v.LPdicut/ and
v.LPmcf/ the optimal values of the four LP-relaxations for a given problem instance.

Lemma 5.4 ([99, 182])

v.LPcut/ � v.LPdicut/ D v.LPspt/ D v.LPmcf/:

The relation v.LPcut/ � v.LPdicut/ was shown by Chopra and Rao [99], who
also proved that even if the cut formulation is strengthened using so-called Steiner
partition inequalities and odd hole inequalities, the directed cut formulation remains
stronger than the cut formulation. In practice v.LPcut/ is significantly worse than
v.LPdicut/, so even if the LP-relaxation LPdicut has twice as many variables as LPcut,
it is more than worth the extra effort.

The relation v.LPdicut/ D v.LPspt/ essentially follows from the fact that we can
transform any solution to LPdicut to a solution for LPspt—and vice versa. Consider a
solution w to LPdicut; define x.u;v/ D wŒu;v C wŒv;u, .u; v/ 2 E , and yv D w.ı�.v//,
v 2 SG . Then .x; y/ is a feasible solution to LPspt (see Exercise 5.3). The other
direction is similar, but a bit more involved [182].

The relation v.LPdicut/ D v.LPmcf/ follows from the max-flow min-cut theorem.
Any feasible solution to LPdicut corresponds to a feasible solution to LPmcf, since
each relevant cut has capacity at least 1. Also, any feasible solution to LPmcf

corresponds to a feasible solution to LPdicut, since the flow across any relevant cut is
at least 1 [182].

The directed cut formulation has been the preferred formulation for all recent
exact algorithms for the Steiner tree in graphs [98, 234, 306, 308, 311, 375]. The

5.2 Spanning Trees and Steiner Trees in Hypergraphs 311

Fig. 5.2 An example of a hypergraph G containing 8 vertices and 7 hyperedges. The middle
diagram shows a chain in G, while the diagram on the right shows a spanning tree for G

LP-relaxation can be approximated very efficiently using dual ascent methods
[308, 409].

Other Integer Programming Formulations

A number of other integer programming formulations exist for the Steiner tree
problem in graphs. For example, the problem can be formulated as a degree-
constrained minimum spanning tree problem. Also, a number of facet-defining
inequalities can be added to strengthen these formulations. For an overview of
formulations and polyhedral properties, see [99, 100, 182, 211, 307, 310, 311].
Integer programming formulations for a wider range of tree problems on graphs
are studied in [180, 181, 270].

5.2 Spanning Trees and Steiner Trees in Hypergraphs

In this section we consider a generalisation of (undirected) graphs denoted hyper-
graphs. In hypergraphs, edges can connect two or more vertices.

Definitions [Hyperedge, hypergraph]: Given a finite set V , a hyperedge e �
V is a subset of V of cardinality jej � 2. A hypergraph G D .V; E/ consists of
a set of vertices V and a set E of hyperedges of V .

An example of a hypergraph is given in Fig. 5.2 (left).
Two problems are discussed in this section. First we consider a generalisation of

the minimum spanning tree problem in graphs to hypergraphs. It turns out that this
generalisation makes the problem NP-hard—in contrast with the minimum spanning
tree problem in graphs, which can be solved in polynomial time. The second
problem is a generalisation of the Steiner tree problem in graphs to hypergraphs.

312 5 Steiner Trees in Graphs and Hypergraphs

5.2.1 Spanning Trees in Hypergraphs

Below we give a formal definition of the minimum spanning tree problem in
hypergraphs, and then we discuss a number of exact algorithms for the problem.
First we generalise the concept of paths and (spanning) trees to hypergraphs.

Definition [Chain in hypergraph]: A chain in a hypergraph G D .V; E/

from v0 2 V to vk 2 V is an alternating sequence of vertices and hyperedges
v0; e1; v1; e2; v2; : : : ; ek; vk such that all vertices and hyperedges are distinct
and vi�1; vi 2 ei for i D 1; 2; : : : ; k.

Definition [Tree in hypergraph, spanning tree in hypergraph]: A tree T D
.V .T/; E.T// in a hypergraph G D .V; E/ is a set of hyperedges E.T/ � E
spanning a set of vertices V.T/ D [e2E.T/e such that there is a unique chain
using vertices and hyperedges from E.T/ between every pair of vertices u; v 2
V.T/. A spanning tree T D .V .T/; E.T// in a hypergraph G D .V; E/ has
V.T/ D V .

These concepts are illustrated in Fig. 5.2. Note that the uniqueness of chains in
a tree in a hypergraph implies that any two distinct hyperedges in a tree contain at
most one common vertex. Furthermore, a (spanning) tree in a hypergraph has the
same key property as a (spanning) tree in an ordinary graph—namely that there is a
unique path in the tree between every pair of vertices spanned by the tree.

MINIMUM SPANNING TREE PROBLEM IN HYPERGRAPHS

Given: An edge-weighted hypergraph G D .V; E/, where c.e/ > 0 denotes
the weight of each hyperedge e 2 E.
Find: A spanning tree T D .V; E.T// in G such that

P

e2E.T/ c.e/ is
minimised.

The minimum spanning tree problem in hypergraphs is (in general) NP-hard
when the hypergraph contains edges of cardinality 4 or more [315, 386].2 The
main motivation for studying the minimum spanning tree problem in hypergraphs
is that it can be used to solve the full Steiner tree (FST) concatenation problem (see
Sect. 1.4.4). Recall that the output of the FST generation phase is a set of FSTs
F D fT1; T2; : : : ; Tmg that is guaranteed to contain the full components of at least
one minimum Steiner tree for terminal set N . In the FST concatenation problem,
we need to identify a subset F� � F such that F� interconnects N and has

2For hypergraphs with edges of size 3, there exists a polynomial-time algorithm for the unweighted
case [268, 315]. Note that for a different definition of the minimum spanning tree problem in a
hypergraph, Tomescu and Zimand [369] have shown that the problem is NP-hard for hypergraphs
with edges of size 3.

5.2 Spanning Trees and Steiner Trees in Hypergraphs 313

minimum total length. Clearly, the FST concatenation problem can be formulated
as a minimum spanning tree problem in a hypergraph, where the terminal set N

forms the vertex set; for each FST Ti the associated terminal subset N.Ti/ � N is
a hyperedge with weight equal to the geometric length jTi j of the FST.

It should be noted that the pure minimum spanning tree problem in hypergraphs
does not capture the underlying geometry of the associated FSTs. For example,
based on the geometry of the FSTs, it may be known that certain pairs of FSTs
cannot appear together in a minimum Steiner tree, for example, by using the notion
of FST compatibility [113, 407]. So-called FST pruning methods (or hypergraph
reduction methods) can be used to eliminate FSTs from consideration or to identify
FSTs that must be in a minimum Steiner tree [113, 154, 407].

Backtrack Search

Backtrack search is a simple, yet reasonably effective algorithm for the minimum
spanning tree problem in a hypergraph G D .V; E/. Starting with a partial solution
consisting of a single hyperedge e1 2 E, we seek a minimum spanning tree
containing e1. This is done by recursively adding hyperedges to the solution so
that it remains connected—until it spans V or it can be concluded that it cannot be
optimal, for example, if a cycle is created. In this case the search backtracks and
some other hyperedges are added. Obviously, it is only necessary to try hyperedges
spanning a particular vertex as the initial hyperedge.

The cut-off tests (for non-optimality) applied during the search determine the
practical behaviour of the algorithm. Winter’s original GeoSteiner implementation
from 1985 used only relatively simple cut-off tests, and he observed that the
backtrack search algorithm for FST concatenation began to dominate the FST
generation algorithm already at 15 terminals [402]. Over the next decade a number
of increasingly sophisticated techniques were applied to reduce the running time of
backtrack search [112, 113, 332, 407], allowing the solution of FST concatenation
problems with up to around 150 terminals.

Dynamic Programming

Ganley and Cohoon [161, 162, 164] designed the first dynamic programming
algorithm for the minimum spanning tree problem in a hypergraph. The algorithm
was originally stated as an algorithm to solve the FST concatenation problem for
the rectilinear Steiner tree problem in the plane, and it was called full set dynamic
programming.

The algorithm computes the weight c.X/ of a minimum spanning tree for every
non-empty subset X � V (or decides that no such tree exists). Subsets X of V are
enumerated in order of increasing cardinality starting with subsets of size 2.

Consider a subset X . Let E.X/ D fe 2 E W e � Xg be the set of edges that are
completely contained in X . The main observation is that a minimum spanning tree

314 5 Steiner Trees in Graphs and Hypergraphs

for X either consists of a single hyperedge e 2 E.X/ where e D X , or consists of a
hyperedge e 2 E.X/ joined with a minimum spanning tree for v [.X n e/, where
v 2 e. Formally we have:

c.X/ D min
e2E.X/

(

c.e/; e D X

minv2efc.e/ C c.v [.X n e//g; e X
: (5.19)

For n D jV j the running time of this dynamic programming algorithm is O�..1C

/n/, when the number of hyperedges is bounded by O.
n/. When the number of
hyperedges is polynomial in n, the running time drops to O�.2n/ (see Exercise 5.4).

Ganley and Cohoon applied this dynamic programming algorithm to the rectilin-
ear Steiner tree problem in the plane, where they obtained a worst-case running time
of O�.2:62n/. This running time has been improved to O�.2:38n/ by Fößmeier and
Kaufmann [153], and more recently to O�.2:357n/ by Fuchs, Kern and Wang [159].

Although dynamic programming provides the best worst-case bounds for the
minimum spanning tree problem in hypergraphs, the practical behaviour seems to
be inferior to backtrack search [153]. In addition, huge memory requirements make
the approach impractical for problem instances with more than 40 vertices.

Integer Programming

The first integer programming formulation for the minimum spanning tree problem
in hypergraphs was proposed by Warme [386] in 1998. Warme generalised the
spanning tree formulation for graphs (see Sect. 5.1.3) to hypergraphs. This approach
turned out to be a major breakthrough for solving the minimum spanning tree
problem in hypergraphs—and hence the FST concatenation problem—allowing the
solution of problems of several orders of magnitude greater than was possible using
either backtrack search or dynamic programming.

A minimum spanning tree is represented as an incidence vector x, where xe D 1

if edge e 2 E is part of the minimum spanning tree, and otherwise xe D 0. Recall
that jej denotes the number of vertices spanned by hyperedge e 2 E. The spanning
tree formulation IPhmspt is as follows:

minimise
X

e2E

c.e/xe (5.20)

subject to
X

e2E

.jej � 1/xe D jV j � 1 (5.21)

X

e2EW
e\W ¤;

.je \ W j � 1/xe � jW j � 1; ; ¤ W V (5.22)

xe 2 f0; 1g; e 2 E: (5.23)

5.2 Spanning Trees and Steiner Trees in Hypergraphs 315

The objective (5.20) is to minimise the total weight of the chosen hyperedges
subject to the following constraints: Eq. (5.21) enforces the correct number and
cardinality of hyperedges to construct a spanning tree. The intuition behind this
equation is that the number of 2-edges in a spanning tree of an ordinary graph
is one less than the number of vertices. We can think of the number of 2-edges
in a hyperedge e 2 E as being jej � 1, corresponding to a local tree of 2-edges
interconnecting the vertices of the hyperedge.

Constraints (5.22) eliminate cycles by extending the standard notion of subtour
elimination constraints. For a given non-empty subset W V , the total number
of 2-edges in the subset (again viewing hyperedges as a set of 2-edges) can be at
most jW j � 1, otherwise a cycle is created. The number of 2-edges contributed by a
hyperedge e 2 E that intersects W is je \ W j � 1.

Warme [386] proved several fundamental properties of the polytope corre-
sponding to these constraints, including the fact that the subtour elimination
constraints (5.22) are facet-defining for jV j � 3. This result contributes to
explaining the strength of the formulation.

The integer program is solved via branch-and-cut. Lower bounds are provided by
LP-relaxation. The number of subtour elimination constraints (5.22) is exponential
in jV j, and the constraints are therefore dynamically added by separation methods.
The separation problem can be solved in polynomial time (in jV j and jEj) by solving
a series of minimum cut problems [386]. However, heuristic separation methods are
also used whenever applicable in order to speed up convergence to LP-optimum.

Alternative integer programming formulations for the minimum spanning tree
problem in hypergraphs were studied by Polzin and Vahdati Daneshmand [310,
311]. They proved that a directed version of the spanning tree formulation of Warme
is equivalent to Warme’s formulation—in the sense that the optimal solutions
to the LP-relaxations are identical. Also, a hypergraph version of the directed
cut formulation for graphs (see Sect. 5.1.3) is equivalent to the spanning tree
formulation. Finally, Polzin and Vahdati Daneshmand presented examples where the
hypergraph formulation is strictly stronger than the graph version of the directed cut
formulation for the FST concatenation problem; however, alternative formulations
of the graph problem were shown to be incomparable to the hypergraph formulation.

5.2.2 Steiner Trees in Hypergraphs

Consider the following generalisation of the minimum spanning tree problem in
hypergraphs:

STEINER TREE PROBLEM IN HYPERGRAPHS

Given: An edge-weighted hypergraph G D .V; E/, where c.e/ > 0 denotes
the weight of each hyperedge e 2 E, and a set of terminals NG � V .
Find: A tree T D .V .T/; E.T// in G such that NG � V.T/, and such that
P

e2E.T/ c.e/ is minimised.

316 5 Steiner Trees in Graphs and Hypergraphs

The motivation for studying this problem comes from the FST concatenation
problem when considering the obstacle-avoiding Steiner tree problem in the plane
(see Sect. 4.2). The problem was first formulated by Zachariasen and Winter [433] in
1999. In the obstacle-avoiding problem, the vertices V n NG correspond to obstacle
corners, and the FSTs span both terminals and obstacle corners. In the minimum
Steiner tree, obstacle corners may or may not be included.

The Steiner tree problem in hypergraphs can be solved using both backtrack
search and dynamic programming, as described in the previous section. The problem
can also be formulated as an integer program using the spanning tree formulation.
As before, we represent a Steiner tree as an incidence vector x, where xe D 1 if
edge e 2 E is part of the Steiner tree, and otherwise xe D 0. Let SG D V n NG be
the set of Steiner vertices in G. Define incidence vector y, where yv D 1 if Steiner
vertex v 2 SG is part of the Steiner tree, and otherwise yv D 0. The spanning tree
formulation IPhsspt is as follows:

minimise
X

e2E

c.e/xe (5.24)

subject to
X

e2E

.jej � 1/xe D
X

v2SG

yv C jNGj � 1 (5.25)

X

e2EW
e\W ¤;

.je \ W j�1/xe �
X

v2SG\W

yvCjNG \ W j�1;
W V;

W \ NG ¤ ;

(5.26)

xe 2 f0; 1g; e 2 E (5.27)

yv 2 f0; 1g; v 2 SG: (5.28)

Equation (5.25) enforces the correct number and cardinality of hyperedges to
construct a spanning tree given that we have chosen

P

v2SG
yv Steiner vertices. Con-

straints (5.26) eliminate cycles using subtour elimination constraints; the right-hand
side counts the total number of vertices chosen within subset W (minus 1). As for
the minimum spanning tree problem, the separation problem for constraints (5.26)
can be solved in polynomial time (in jV j and jEj) by solving a series of minimum cut
problems [386, 433]. Valid inequalities based on the underlying geometric problem,
such as bounds on the degrees of terminals and Steiner vertices, can be added to the
formulation [204, 433].

5.2 Spanning Trees and Steiner Trees in Hypergraphs 317

Exercises

5.1. Show that the Steiner tree problem in graphs with zero-weight and/or
negative-weight edges reduces to the Steiner tree problem with positive edge
weights.

5.2. Show that the running time of the Dreyfus-Wagner algorithm is O�.3n/,
where n is the number of terminals. [Hint: Show that a terminal can
appear in three different sets in recursion (5.1) and in two different sets in
recursion (5.2).]

5.3. Consider a solution w to LPdicut; define x.u;v/ D wŒu;v CwŒv;u , .u; v/ 2 E , and
yv D w.ı�.v//, v 2 SG . Show that .x; y/ is a feasible solution to LPspt.

5.4. Show directly using recursion (5.19) that the running time of the dynamic
programming algorithm for the minimum spanning tree problem in hyper-
graphs becomes O�.2n/, when the number of vertices is n and the number of
hyperedges is polynomial in n.

Bibliography

1. Abboud, N., Grötschel, M., Koch, T.: Mathematical methods for physical layout of printed
circuit boards: an overview. OR Spectr. 30(3), 453–468 (2008)

2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán,
V.: The farthest color Voronoi diagram and related problems. Technical report, Department
of Computer Science I, University of Bonn (2006)

3. Agnihotri, A.R., Madden, P.H.: Congestion reduction in traditional and new routing archi-
tectures. In: Proceedings of the 13th ACM Great Lakes Symposium on VLSI (GLSVLSI),
Washington, DC, pp. 211–214 (2003)

4. Aho, A.V., Garey, M.R., Hwang, F.K.: Rectilinear Steiner trees: efficient special-case
algorithms. Networks 7(1), 37–58 (1977)

5. Ajwani, G., Chu, C., Mak, W.-K.: FOARS: FLUTE based obstacle-avoiding rectilinear
Steiner tree construction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(2), 194–
204 (2011)

6. Akiyama, J., Chen, X., Nakamura, G., Ruiz, M.: Minimum perimeter developments of the
platonic solids. Thai J. Math. 9(3), 461–487 (2012)

7. Alfaro, M., Conger, M., Hodges, K., Levy, A., Kochar, R., Kuklinski, L., Mahmood, Z., von
Haam, K.: The structure of singularities in
-minimizing networks in R2. Pac. J. Math. 149,
201–210 (1991)

8. Alford, C., Brazil, M., Lee, D.H.: Optimisation in underground mining. In: Weintraub, A.,
Romero, C., Bjørndal, T., Epstein, R. (eds.) Handbook of Operations Research in Natural
Resources, pp. 561–577. Springer, New York (2007)

9. Alpert, C.J., Hu, T.C., Huang, J.H., Kahng, A.B.: A direct combination of the Prim and
Dijkstra constructions for improved performance-driven global routing. In: Proceedings of
the IEEE International Symposium on Circuits and Systems, Chicago, pp. 1868–1872 (1993)

10. Alpert, C.J., Li, Z., Moffitt, M.D., Nam, G.-J., Roy, J.A., Tellez, G.: What makes a design
difficult to route. In: Proceedings of the 19th ACM International Symposium on Physical
Design (ISPD), New York, pp. 7–12 (2010)

11. Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (ed.): Handbook of Algorithms for Physical Design
Automation. CRC, London (2009)

12. Althaus, E.: Berechnung optimaler Steinerbäume in der Ebene. Master’s thesis, Max-Planck-
Institut für Informatik in Saarbrücken, Universität des Saarlandes (1998)

13. Althaus, E., Kupilas, J., Naujoks, R.: On the low-dimensional Steiner minimum tree problem
in Hamming metric. Theor. Comput. Sci. 505, 2–10 (2013)

14. Althaus, E., Naujoks, R.: Computing Steiner minimum trees in Hamming metric. In:
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm

© Springer International Publishing Switzerland 2015
M. Brazil, M. Zachariasen, Optimal Interconnection Trees in the Plane,
Algorithms and Combinatorics 29, DOI 10.1007/978-3-319-13915-9

319

320 Bibliography

(SODA), Miami, pp. 172–181 (2006)
15. Aneja, Y.P.: An integer linear programming approach to the Steiner problem in graphs.

Networks 10, 167–178 (1980)
16. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems. J. ACM 45(5), 753–782 (1998)
17. Asano, T., Asano, T., Guibas, L., Herchberger, J., Imai, H.: Visibility of disjoint polygons.

Algorithmica 1, 49–63 (1986)
18. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook

of Computational Geometry, chapter 5, pp. 201–290. North-Holland, Amsterdam (2000)
19. Avci, M., Yamacli, S.: An improved Elmore delay model for VLSI interconnects. Math.

Comput. Model. 51(7), 908–914 (2010)
20. Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication protocols. In:

Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing
(PODC), New York, pp. 177–187 (1990)

21. Bae, S.W., Choi, S., Lee, C., Tanigawa, S.: Exact algorithms for the bottleneck Steiner tree
problem. Algorithmica 61(4), 924–948 (2011)

22. Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner tree
problem. Inf. Process. Lett. 110(16), 672–678 (2010)

23. Bainbridge, S., Eggeling, D., Page, G.: Lessons from the field – two years of deploying
operational wireless sensor networks on the Great Barrier Reef. Sensors 11(7), 6842–6855
(2011)

24. Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The repeater tree construc-
tion problem. Inf. Process. Lett. 110(24), 1079–1083 (2010)

25. Beardwoord, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points.
Math. Proc. Camb. Philos. Soc. 55(4), 299–327 (1959)

26. Berger, B., Brady, M.L., Brown, D.J., Leighton, T.: Nearly optimal algorithms and bounds for
multilayer channel routing. J. ACM 42, 500–542 (1995)

27. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem. J. Algo-
rithms 17(3), 381–408 (1994)

28. Berman, P., Zelikovsky, A.: On approximation of the power-p and bottleneck Steiner trees.
In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees. Combinatorial
Optimization, vol. 6, pp. 117–135. Springer, New York (2000)

29. Bern, M.W.: Faster exact algorithm for Steiner trees in planar networks. Networks 20, 109–
120 (1990)

30. Bern, M., Bienstock, D.: Polynomially solvable special cases of the Steiner problem in planar
networks. Ann. Oper. Res. 33(6), 403–418 (1991)

31. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett.
32, 171–176 (1989)

32. Bienstock, D., Brickell, E.F., Monma, C.L.: On the structure of minimum-weight k-connected
spanning networks. SIAM J. Discret. Math. 3(3), 320–329 (1990)

33. Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Rectilinear Steiner trees with minimum
Elmore delay. In: Proceedings of the ACM Design Automation Conference (DAC), San
Francisco, pp. 381–386 (1994)

34. Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Near-optimal critical sink routing tree
constructions. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14(12), 1417–1436
(1995)

35. Boese, K.D., Kahng, A.B., Robins, G.: High-performance routing trees with identified critical
sinks. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 182–
187 (1993)

36. Bopp, K.: Üeber das kürzeste Verbindungssystem zwischen vier Punkten. PhD thesis,
Universität Göttingen (1879)

37. Borah, M., Owens, R.M., Irwin, M.J.: An edge-based heuristic for Steiner routing. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 1563–1568 (1994)

Bibliography 321

38. Boyce, W.M.: An improved program for the full Steiner tree problem. ACM Trans. Math.
Softw. 3(4), 359–385 (1977)

39. Boyce, W.M., Seery, J.B.: STEINER 72, An improved version of Cockayne and Schiller’s
program STEINER for the minimal network problem. Technical report No. 35, Bell Labora-
tories, Murray Hill (1973)

40. Boyd, S.P., Kim, S.-J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric
programming. Oper. Res. 53(6), 899–932 (2005)

41. Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in Steiner
trees. In: Proceedings of the ACM Design Automation Conference (DAC), Las Vegas,
pp. 195–198 (2001)

42. Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in recti-
linear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(5), 605–615
(2003)

43. Brady, M.L., Brown, D.J., Powers, K.: Channel routing on a 60ı grid. In: Proceedings of the
Conference on Information Science and Systems, Princeton, New Jersey, pp. 926–931 (1990)

44. Brady, M.L., Brown, D.J., Powers, K.: Hexagonal models for channel routing. Algorithmica
19, 263–290 (1997)

45. Brazil, M.: Steiner minimum trees in uniform orientation metrics. In: Du, D.-Z., Cheng, X.
(eds.) Steiner Trees in Industries, pp. 1–27. Kluwer Academic, Boston (2001)

46. Brazil, M., Cole, T., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Minimal
Steiner trees for 2k � 2k square lattices. J. Comb. Theory Ser. A 73, 91–110 (1996)

47. Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the Euclidean
Steiner tree problem. Arch. Hist. Exact Sci. 68, 327–354 (2014)

48. Brazil, M., Grossman, P.A., Lee, D.H., Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Con-
strained path optimisation for underground mine layout. In: World Congress on Engineering
2007, London, pp. 856–861 (2007)

49. Brazil, M., Lee, D.H., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Network
optimisation of underground mine design. Proc. Australas. Inst. Min. Metall. 305(1), 57–66
(2000)

50. Brazil, M., Lee, D.H., Van Leuven, M., Rubinstein, J.H., Thomas, D.A., Wormald, N.C.:
Optimising declines in underground mines. Min. Technol. 112(3), 164–170 (2003)

51. Brazil, M., Nielsen, B.K., Winter, P., Zachariasen, M.: Rotationally optimal spanning and
Steiner trees in uniform orientation metrics. Comput. Geom. Theory Appl. 29, 251–263
(2004)

52. Brazil, M., Ras, C.J., Swanepoel, K.J., Thomas, D.A.: Generalised k-Steiner tree problems in
normed planes. Algorithmica 71(1), 66–86 (2015)

53. Brazil, M., Ras, C.J., Thomas, D.A.: Approximating minimum Steiner point trees in
Minkowski planes. Networks 56(4), 244–254 (2010)

54. Brazil, M., Ras, C.J., Thomas, D.A.: The bottleneck 2-connected k-Steiner network problem
for k � 2. Discret. Appl. Math. 160(7), 1028–1038 (2012)

55. Brazil, M., Ras, C.J., Thomas, D.A.: Relay augmentation for lifetime extension of wireless
sensor networks. IET Wirel. Sens. Syst. 3(2), 145–152 (2013)

56. Brazil, M., Ras, C.J., Thomas, D.A.: An exact algorithm for the bottleneck 2-connected k-
Steiner network problem in Lp planes. arXiv preprint arXiv:1111.2105 (2014)

57. Brazil, M., Ras, C.J., Thomas, D.A.: A flow-dependent quadratic Steiner tree problem in the
Euclidean plane. Networks 64(1), 18–28 (2014)

58. Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Full minimal Steiner
trees on lattice sets. J. Comb. Theory Ser. A 78, 51–91 (1997)

59. Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Minimal Steiner trees
for rectangular arrays of lattice points. J. Comb. Theory Ser. A 79, 181–208 (1997)

60. Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Gradient-constrained
minimum networks. I. Fundamentals. J. Global Optim. 21(2), 139–155 (2001)

61. Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Gradient-constrained
minimum networks. III. Fixed topology. J. Optim. Theory Appl. 155(1), 336–354 (2012)

322 Bibliography

62. Brazil, M., Thomas, D.A., Nielsen, B.K., Winter, P., Wulff-Nilsen, C., Zachariasen, M.: A
novel approach to phylogenetic trees: d -dimensional geometric Steiner trees. Networks 53(2),
104–111 (2009)

63. Brazil, M., Thomas, D.A., Weng, J.F.: Gradient constrained minimal Steiner trees. In:
Pardalas, P.M., Du, D.-Z. (eds.) Network Design: Connectivity and Facilities Location
(DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 40).
American Mathematical Society, Providence, Rhode Island (1998)

64. Brazil, M., Thomas, D.A., Weng, J.F.: A polynomial time algorithm for rectilinear Steiner
trees with terminals constrained to curves. Networks 33(2), 145–155 (1999)

65. Brazil, M., Thomas, D.A., Weng, J.F.: Minimum networks in uniform orientation metrics.
SIAM J. Comput. 30, 1579–1593 (2000)

66. Brazil, M., Thomas, D.A., Weng, J.F.: On the complexity of the Steiner problem. J. Comb.
Optim. 4, 187–195 (2000)

67. Brazil, M., Thomas, D.A., Weng, J.F.: Rectilinear Steiner minimal trees on parallel lines. In:
Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 27–37. Kluwer
Academic, Boston (2000)

68. Brazil, M., Thomas, D.A., Weng, J.F.: Upper and lower bounds for the lengths of Steiner trees
in 3-space. Geometriae Dedicata 109, 107–119 (2004)

69. Brazil, M., Thomas, D.A., Weng, J.F.: Gradient-constrained minimum networks (II). Labelled
or locally minimal Steiner points. J. Global Optim. 42(1), 23–37 (2008)

70. Brazil, M., Thomas, D.A., Weng, J.F., Zachariasen, M.: Canonical forms and algorithms for
Steiner trees in uniform orientation metrics. Algorithmica 44, 281–300 (2006)

71. Brazil, M., Volz, M.G.: Gradient-constrained minimum interconnection networks. In: Parda-
los, P.M., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1459–
1510. Springer, New York (2013)

72. Brazil, M., Winter, P., Zachariasen, M.: Flexibility of Steiner trees in uniform orientation
metrics. In: Proceedings of the International Symposium on Algorithms and Computation
(ISAAC), Hong Kong. Lecture Notes in Computer Science, vol. 3341, pp. 196–208. Springer,
Berlin/Heidelberg (2004)

73. Brazil, M., Winter, P., Zachariasen, M.: Flexibility of Steiner trees in uniform orientation
metrics. Networks 46, 142–153 (2005)

74. Brazil, M., Zachariasen, M.: Steiner trees for fixed orientation metrics. J. Global Optim. 43,
141–169 (2009)

75. Brenner, U., Vygen, J.: Worst-case ratios of networks in the rectilinear plane. Networks 38,
126–139 (2001)

76. Brenner, U., Vygen, J.: Analytical methods in VLSI placement. In: Alpert, C.J., Mehta,
D.P., Sapatnekar, S.S. (eds.) Handbook of Algorithms for VLSI Physical Design Automation,
chapter 17, pp. 327–346. Taylor & Francis, Boca Raton (2009)

77. Burman, S., Chen, H., Sherwani, N.: Improved global routing using �-geometry. In: Proceed-
ings of the 29 Annual Allerton Conference on Communications, Computing and Controls,
Urbana (1991)

78. Cavalli-Sforza, L.L., Edwards, A.W.F.: Phylogenetic analysis: models and estimation proce-
dures. Evolution 21, 550–570 (1967)

79. Cavendish, J.C.: Automatic triangulation of arbitrary planar domains for the finite element
method. Int. J. Numer. Methods Eng. 8(4), 679–696 (1974)

80. Chakerian, G.D., Ghandehari, M.A.: The Fermat problem in Minkowski spaces. Geometriae
Dedicata 17, 227–238 (1985)

81. Chaudhary, K., Robinson, P.: Channel routing by sorting. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 10, 754–760 (1991)

82. Chaudhuri, P.P.: An ecological approach to wire routing. In: IEEE International Symposium
on Circuits and Systems, Tokyo, pp. 854–857 (1979)

83. Chen, C.Y.R., Hou, C.Y., Singh, U.: Optimal algorithms for bubble sort based non-Manhattan
channel routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 603–609 (1994)

Bibliography 323

84. Chen, D., Du, D.-Z., Hu, X.-D., Lin, G.-H., Wang, L., Xue, G.: Approximations for Steiner
trees with minimum number of Steiner points. J. Global Optim. 18(1), 17–33 (2000)

85. Chen, H., Cheng, C.K., Kahng, A.B., Mandoiu, I.I., Wang, Q.: Estimation of wirelength
reduction for �-geometry vs. Manhattan placement and routing. In: Proceedings ACM
International Workshop on System Level Interconnect Prediction (SLIP), Monterey, pp. 71–
76 (2003)

86. Chen, H., Cheng, C.K., Kahng, A.B., Mandoiu, I.I., Wang, Q., Yao, B.: The Y-architecture
for on-chip interconnect: analysis and methodology. In: Proceedings ACM International
Conference on Computer-Aided Design (ICCAD), San Jose, pp. 13–19 (2003)

87. Chen, H., Cheng, C.K., Kahng, A.B., Mandoiu, I.I., Wang, Q., Yao, B.: The Y-architecture
for on-chip interconnect: analysis and methodology. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 24, 588–599 (2005)

88. Chen, H., Yao, B., Zhou, F., Cheng, C.K.: The Y-architecture: yet another on-chip inter-
connect solution. In: Proceedings Asia and South Pacific Design Automation Conference,
Kitakyushu, pp. 840–846 (2003)

89. Cheng, S.-W.: The Steiner tree problem for terminals on the boundary of a rectilinear polygon.
Theor. Comput. Sci. 237(1–2), 213–238 (2000)

90. Cheng, S.-W., Lim, A., Wu, C.-T.: Optimal rectilinear Steiner tree for extremal point
sets. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) Algorithms
and Computation. Lecture Notes in Computer Science, vol. 762, pp. 523–532. Springer,
Berlin/Heidelberg (1993)

91. Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees
for extremal point sets. Technical report HKUST-CS95-20, Department of Computer Science,
HKUST (1995)

92. Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for
extremal point sets (Extended Abstact). In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.)
Algorithms and Computations. Lecture Notes in Computer Science, vol. 1004, pp. 322–331.
Springer, Berlin/Heidelberg (1995)

93. Cheng, X., Du, D.-Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks.
Wirel. Netw. 14(3), 347–355 (2008)

94. Chew, L.P., Drysdale III, R.L.: Voronoi diagrams based on convex distance function. In:
Proceedings of the First Annual ACM Symposium on Computational Geometry (SCG), New
York, pp. 235–244 (1985)

95. Chiang, C., Sarrafzadeh, M.: Wirability of knock-knee layouts with 45-degree wires. IEEE
Trans. Circuits Syst. 38, 613–624 (1991)

96. Chiang, C., Sarrafzadeh, M., Wong, C.K.: Global routing based on Steiner min-max trees.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9, 1318–1325 (1990)

97. Choi, B., Chiang, C., Kawa, J., Sarrafzadeh, M.: Routing resources consumption on M-arch
and X-arch. In: Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), Vancouver, vol. 5, pp. V-73–V-76 (2004)

98. Chopra, S., Gorres, E., Rao, M.R.: Solving the Steiner tree problem on a graph using branch
and cut. ORSA J. Comput. 4, 320–335 (1992)

99. Chopra, S., Rao, M.R.: The Steiner tree problem I: formulations, compositions and extension
of facets. Math. Program. 64, 209–229 (1994)

100. Chopra, S., Rao, M.R.: The Steiner tree problem II: properties and classes of facets. Math.
Program. 64, 231–246 (1994)

101. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A.,
Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from
tumor cell populations. Bioinformatics 29, i189–i198 (2013)

102. Chu, C.: FLUTE: Fast lookup table based wirelength estimation technique. In: Proceedings
ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 696–701
(2004)

324 Bibliography

103. Chu, C., Wong, Y.-C.: FLUTE: fast lookup table based rectilinear Steiner minimal tree
algorithm for VLSI design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(1),
70–83 (2008)

104. Chung, F., Gardner, M., Graham, R.L.: Steiner trees on a checkerboard. Math. Mag. 62(2),
83–96 (1989)

105. Chung, F.R.K., Graham, R.L.: Steiner trees for ladders. Ann. Discret. Math. 2, 173–200
(1978)

106. Chung, F.R.K., Graham, R.L.: A new bound for Euclidean Steiner minimal trees. Ann. N. Y.
Acad. Sci. 440(1), 328–346 (1985)

107. Cieslik, D.: The vertex degrees of Steiner minimal trees in Minkowski planes. In: Bodendiek,
R., Henn, R. (eds.) Topics in Combinatorics and Graph Theory, pp. 201–206. Physica-Verlag,
Heidelberg (1990)

108. Cieslik, D.: Shortest Connectivity – Introduction with Applications in Phylogeny. Combina-
torial Optimization, vol. 17. Springer, New York (2004)

109. Cieslik, D.: The Steiner ratio of Banach-Minkowski spaces – a survey. In: Du, D.Z., Pardalos,
P.M. (eds.) Handbook of Combinatorial Optimization, Supplement Volume B, pp. 55–81.
Springer, New York (2005)

110. Cockayne, E.J.: On the Steiner problem. Can. Math. Bull. 10, 431–450 (1967)
111. Cockayne, E.J.: On the efficiency of the algorithm for Steiner minimal trees. SIAM J. Appl.

Math. 18(1), 150–159 (1970)
112. Cockayne, E.J., Hewgill, D.E.: Exact computation of Steiner minimal trees in the plane. Inf.

Process. Lett. 22, 151–156 (1986)
113. Cockayne, E.J., Hewgill, D.E.: Improved computation of plane Steiner minimal trees.

Algorithmica 7(2/3), 219–229 (1992)
114. Cockayne, E.J., Melzak, Z.A.: Euclidean constructibility in graph-minimization problems.

Math. Mag. 42(4), 206–208 (1969)
115. Cockayne, E.J., Schiller, D.G.: Computation of Steiner minimal trees. In: Welsh, D.J.A.,

Woodall, D.R. (eds.) Combinatorics, pp. 52–71. Institute for Mathematics and Applications,
Southend-on-Sea, Essex (1972)

116. Colbourn, C.J., Xue, G.: Grade of service Steiner trees in series-parallel networks. In: Du,
D.-Z., Smith, J.M., Rubinstein, J.H. (eds) Advances in Steiner Trees, pp. 163–174. Kluwer
Academic Publishers, Dordrecht (2000)

117. Colthurst, T., Cox, C., Foisy, J., Howards, H., Kollett, K., Lowy, H., Root, S.: Networks
minimizing length plus the number of Steiner points. In: Du, D.-Z., Pardalos, P.M. (eds.)
Network Optimization Problems: Algorithms, Applications and Complexity, pp. 23–36.
World Scientific, Singapore (1993)

118. Cong, J., He, L., Koh, C.-K., Madden, P.H.: Performance optimization of VLSI interconnect
layout. Integr. VLSI J. 21, 1–94 (1996)

119. Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good performance-
driven global routing. Comput. Aided Des. 11(6), 739–752 (1992)

120. Cong, J., Leung, K.S., Zhou, D.: Performance-driven interconnect design based on distributed
RC delay model. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas,
pp. 606–611 (1993)

121. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT,
Cambridge (2001)

122. Coulston, C.S.: Constructing exact octagonal Steiner minimal trees. In: Proceedings of the
13th ACM Great Lakes Symposium on VLSI (GLSVLSI), Washington, DC, pp. 1–6 (2003)

123. Courant, R., Robbins, H.: What Is Mathematics? Oxford University Press, London (1941)
124. Cox, C.L.: Flow-dependent networks: existence and behavior at Steiner points. Networks

31(3), 149–156 (1998)
125. Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1969)
126. Current, J.R., ReVelle, C.S., Cohon, J.L.: The hierarchical network design problem. Eur. J.

Oper. Res. 27(1), 57–66 (1986)

Bibliography 325

127. de Berg, M.: Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry.
Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

128. de Wet, P.O.: Geometric Steiner minimal trees. PhD thesis, UNISA, Pretoria (2009)
129. DeMar, R.F.: The problem of the shortest network joining n points. Math. Mag. 41(5), 225–

231 (1968)
130. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik

1(1), 269–271 (1959)
131. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1972)
132. Drezner, Z., Wesolowsky, G.O.: A new method for the multifacility minimax location

problem. J. Oper. Res. Soc. 29(11), 1095–1101 (1978)
133. Du, D.-Z., Gao, B., Graham, R.L., Liu, Z.-C., Wan, P.-J.: Minimum Steiner trees in normed

planes. Discret. Comput. Geom. 9, 351–370 (1993)
134. Du, D.-Z., Hu, X.-D.: Steiner Tree Problems in Computer Communication Networks. World

Scientific, Singapore (2008)
135. Du, D.-Z., Hwang, F.K.: A proof of Gilbert and Pollak’s conjecture on the Steiner ratio.

Algorithmica 7, 121–135 (1992)
136. Du, D.-Z., Hwang, F.K.: Reducing the Steiner problem in a normed space. SIAM J. Comput.

21, 1001–1007 (1992)
137. Du, D.-Z., Hwang, F.K., Song, G.D., Ting, G.Y.: Steiner minimal trees on sets of four points.

Discret. Comput. Geom. 2, 401–414 (1987)
138. Du, D.-Z., Hwang, F.K., Weng, J.F.: Steiner minimal trees for regular polygons. Discret.

Comput. Geom. 2, 65–84 (1987)
139. Du, D.-Z., Wang, L., Xu, B.: The Euclidean bottleneck Steiner tree and Steiner tree with

minimum number of Steiner points. In: Wang, J. (ed.) Computing and Combinatorics,
pp. 509–518. Springer, New York (2001)

140. Duin, C.W.: Steiner’s problem in graphs – approximation, reduction, variation. PhD thesis,
University of Amsterdam (1993)

141. Duin, C.W.: Preprocessing the Steiner problem in graphs. In: Du, D.-Z., Smith, J.M.,
Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 173–233. Kluwer Academic, Boston
(2000)

142. Duin, C.W., Volgenant, A.: An edge elimination test for the Steiner problem in graphs. Oper.
Res. Lett. 8(2), 79–83 (1989)

143. Duin, C.W., Volgenant, A.: Reduction tests for the Steiner problem in graphs. Networks 19(5),
549–567 (1989)

144. Durand, M., Sadoc, J.-F., Weaire, D.: Maximum electrical conductivity of a network of
uniform wires: the Lemlich law as an upper bound. Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci. 460(2045), 1269–1284 (2004)

145. Durier, R., Michelot, C.: Geometrical properties of the Fermat-Weber problem. Eur. J. Oper.
Res. 20, 322–343 (1985)

146. Dutta, P., Khastgir, S.P., Roy, A.: Steiner trees and spanning trees in six-pin soap films. Am.
J. Phys. 78, 215–221 (2010)

147. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R.K. (ed.)
Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York
(1970)

148. Elmore, W.C.: The transient response of damped linear networks with particular regard to
wideband amplifiers. J. Appl. Phys. 19, 55–63 (1948)

149. Elzinga, J., Hearn, D., Randolph, W.D.: Minimax multifacility location with Euclidean
distances. Transp. Sci. 10(4), 321–336 (1976)

150. Fampa, M., Anstreicher, K.M.: An improved algorithm for computing Steiner minimal trees
in Euclidean d -space. Discret. Optim. 5, 530–540 (2008)

151. Farris, J.S.: Methods for computing Wagner trees. Syst. Zool. 19(1), 83–92 (1970)
152. Fermat, P.: Oeuvres, vol. 1. Gauthier-Villars, Paris (1891)
153. Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree problem.

Technical report WSI-96-09, Universität Tübingen (1996)

326 Bibliography

154. Fößmeier, U., Kaufmann, M.: Solving rectilinear Steiner tree problems exactly in theory and
practice. In: Burkard, R., Woeginger, G. (eds.) Algorithms – ESA’97, Graz. Lecture Notes in
Computer Science, vol. 1284, pp. 171–185. Springer, Berlin/Heidelberg (1997)

155. Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree problem. Part
I: theoretical results. Algorithmica 26, 68–99 (2000)

156. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Adv. Appl.
Math. 3, 43–49 (1982)

157. Frommer, I., Golden, B., Pundoor, G.: Heuristic methods for solving Euclidean non-uniform
Steiner tree problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave
in Computing, Optimization, and Decision Technologies. Operations Research/Computer
Science Interfaces, vol. 29, pp. 133–148. Springer, New York (2005)

158. Fuchs, B., Kern, W., Molle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic programming
for minimum Steiner trees. Theory Comput. Syst. 41(3), 493–500 (2007)

159. Fuchs, B., Kern, W., Wang, X.: The number of tree stars is O�.1:357k/. Electron. Notes
Discret. Math. 25, 183–185 (2006)

160. Ganley, J.L.: Geometric interconnection and placement algorithms. PhD thesis, The Univer-
sity of Virginia (1995)

161. Ganley, J.L., Cohoon, J.P.: A faster dynamic programming algorithm for exact rectilinear
Steiner minimal trees. In: Proceedings of the Fourth Great Lakes Symposium on VLSI, South
Bend, pp. 238–241 (1994)

162. Ganley, J.L., Cohoon, J.P.: Optimal rectilinear Steiner minimal trees in o.n22:62n/ time.
In: Proceedings of the Sixth Canadian Conference on Computational Geometry, Saskatoon,
pp. 308–313 (1994)

163. Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in
the presence of obstacles. In: IEEE Proceedings of the International Symposium on Circuits
and Systems, London, pp. 113–116 (1994)

164. Ganley, J.L., Cohoon, J.P.: Improved computation of optimal rectilinear Steiner minimal trees.
Int. J. Comput. Geom. Appl. 7(5), 457–472 (1997)

165. Ganley, J.L., Salowe, J.S.: Optimal and approximate bottleneck Steiner trees. Oper. Res. Lett.
19, 217–224 (1996)

166. Ganley, J.L., Salowe, J.S.: The power-p Steiner tree problem. Nord. J. Comput. 5(2), 115–127
(1998)

167. Gao, B., Du, D.-Z., Graham, R.L.: The tight lower bound for the Steiner ratio in Minkowski
planes. In: Proceedings of the Tenth Annual Symposium on Computational Geometry, Stony
Brook, New York, pp. 183–191 (1994)

168. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal
trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)

169. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J.
Appl. Math. 32(4), 826–834 (1977)

170. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco (1979)

171. Gauss, C.F., Schumacher, H.C.: Briefwechsel Zwischen C. F. Gauss und H. C. Schumacher.
G. Esch (1861)

172. Georgakopoulos, G., Papadimitriou, C.H.: The 1-Steiner tree problem. J. Algorithms 8, 122–
130 (1987)

173. Gerez, S.H.: Algorithms for VLSI Design Automation. Wiley, New York (1999)
174. Gergonne, J.D.: Solutions purement géométriques des problèmes de minimis proposés aux

pages 196, 232 et 292 de ce volume, et de divers autres problèmes analogues. Annales de
Mathématiques pures et appliquées 1, 375–384 (1811)

175. Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: Algorithms and data
structures for fast and good VLSI routing. In: ACM Proceedings of the 49th Annual Design
Automation Conference (DAC), New York, pp. 459–464 (2012)

176. Ghandehari, M., O’Neill, E.J.: The reflection property in normed linear planes with applica-
tions to generalized conics. Technical report TR – 351, University of Texas Arlington (2005)

Bibliography 327

177. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs.
SIAM J. Comput. 20(5), 888–910 (1991)

178. Gilbert, E.N.: Minimum cost communication networks. Bell Syst. Tech. J. 46, 2209–2227
(1967)

179. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)
180. Goemans, M.X.: The Steiner tree polytope and related polyhedra. Math. Program. 63, 157–

182 (1994)
181. Goemans, M.X., Bertsimas, D.J.: Survivable networks, linear programming relaxations and

the parsimonious property. Math. Program. 60, 145–166 (1993)
182. Goemans, M.X., Myung, Y.S.: A catalog of Steiner tree formulations. Networks 23, 19–28

(1993)
183. Graham, R.L., F.K. Hwang. A remark on Steiner minimal trees. Bull. Inst. Math. Acad. Sinica

4(1), 177–182 (1976)
184. Gueron, S., Tessler, R.: The Fermat-Steiner problem. Am. Math. Mon. 109(5), 443–451

(2002)
185. Hakimi, S.L.: Steiner’s problem in graphs and its implications. Networks 1, 113–133 (1971)
186. Hamrin, H.: Underground mining methods and applications. In: Hustrilid, W.A., Bullock,

R.L. (eds.) Underground Mining Methods. Society for Mining, Metallurgy, and Exploration,
Littleton, Colorado (2001)

187. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14(2), 255–
265 (1966)

188. Harris, F.C.: Steiner minimal trees: an introduction, parallel computation, and future work.
In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 2, pp. 105–
157. Kluwer Academic, New York (1998)

189. Hayase, M.: Exact location of the Steiner point in the three-point Steiner minimum tree for
�-geometry. Electron. Commun. Jpn. 84, 84–94 (2001)

190. Heinen, F.: Über Systeme von Kräften. G. D. Bädeker, Essen (1834)
191. Heiss, S.: A path connection algorithm for multi-layer boards. In: ACM Proceedings of the

5th Annual Design Automation Workshop (DAC), New York, pp. 6.1–6.14 (1968)
192. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design.

In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 33–96. IOS,
Amsterdam (2011)

193. Held, S., Rotter, D.: Shallow-light Steiner arborescences with vertex delays. In: Goemans,
M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in
Computer Science, vol. 7801, pp. 229–241. Springer, Berlin/Heidelberg (2013)

194. Held, S., Spirkl, S.T.: A fast algorithm for rectilinear Steiner trees with length restrictions on
obstacles. In: Proceedings of the 2014 ACM International Symposium on Physical Design
(ISPD), Petaluma, pp. 37–44 (2014)

195. Hetzel, A.: Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles
Lösungsverfahren. PhD thesis, Research Institute for Discrete Mathematics, University of
Bonn (1995)

196. Hightower, D.: The interconnection problem: a tutorial. Computer 7, 18–32 (1974)
197. Ho, J.-M., Vijayan, G., Wong, C.K.: New algorithms for the rectilinear Steiner tree problem.

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(2), 185–193 (1990)
198. Ho, T.-Y., Chang, C.-F., Chang, Y.-W., Chen, S.-J.: Multilevel full-chip routing for the

X-based architecture. In: Proceedings of the ACM Design Automation Conference (DAC),
Anaheim, pp. 597–602 (2005)

199. Hoffmann, E.: Über das kürzeste Verbindungssystem zwischen vier Punkten der Ebene. In:
Program des Königlichen Gymnasiums zu Wetzlar für das Schuljahr von Ostern 1889 bis
Ostern 1890. Schnitzler (1890)

200. Hofmann, J.E.: Elementare Lösung einer Minimumsaufgabe. Zeitschrift für mathematischen
und naturwissenschaftligen Unterricht 60, 22–23 (1929)

201. Honsberger, R.: Mathematical Gems. Mathematical Association of America, Washington, DC
(1973)

328 Bibliography

202. Hou, H., Hu, J., Sapatnekar, S.S.: Non-Hanan routing. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 18(4), 436–444 (1999)

203. Hougardy, S., Silvanus, J., Vygen, J.: Dijkstra meets Steiner: a fast exact goal-oriented Steiner
tree algorithm. Technical report, Research Institute for Discrete Mathematics, University of
Bonn (2014)

204. Huang, T., Li, L., Young, E.F.Y.: On the construction of optimal obstacle-avoiding rectilinear
Steiner minimum trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(5), 718–
731 (2011)

205. Huang, T., Young, E.F.Y.: Obstacle-avoiding rectilinear Steiner minimum tree construction:
an optimal approach. In: Proceedings ACM International Conference on Computer-Aided
Design (ICCAD), San Jose, pp. 610–613 (2010)

206. Huang, T., Young, E.F.Y.: An exact algorithm for the construction of rectilinear Steiner
minimum trees among complex obstacles. In: Proceedings of the 48th ACM/IEEE Design
Automation Conference (DAC), San Diego, pp. 164–169 (2011)

207. Huang, T., Young, E.F.Y.: Construction of rectilinear Steiner minimum trees with slew
constraints over obstacles. In: Proceedings ACM International Conference on Computer-
Aided Design (ICCAD), New York, pp. 144–151 (2012)

208. Huang, T., Young, E.F.Y.: Obsteiner: an exact algorithm for the construction of rectilinear
Steiner minimum trees in the presence of complex rectilinear obstacles. IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 32(6), 882–893 (2013)

209. Hwang, F.K.: On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math. 30,
104–114 (1976)

210. Hwang, F.K.: A linear time algorithm for full Steiner trees. Oper. Res. Lett. 4(5), 235–237
(1986)

211. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete
Mathematics, vol. 53. Elsevier, Amsterdam (1992)

212. Hwang, F.K., Weng, J.F.: The shortest network under a given topology. J. Algorithms 13,
468–488 (1992)

213. Hwang, F.K., Weng, J.F., Du, D.Z.: A class of full Steiner minimal trees. Discret. Math. 45(1),
107–112 (1983)

214. Igarashi, M., Mitsuhashi, T., Le, A., Kazi, S., Lin, Y.-T., Fujimura, A., Teig, S.: A diagonal
interconnect architecture and its application to RISC core design. In: IEEE Proceedings of the
International Solid-State Circuits Conference, San Francisco pp. 460–461 (2002)

215. Ihler, E.: The rectilinear class Steiner tree problem for intervals on two parallel lines. Math.
Program. 63(3), 281–296 (1994)

216. Ihler, E., Reich, G., Widmayer, P.: Class Steiner trees and VLSI-design. Discret. Appl. Math.
90, 173–194 (1999)

217. Il’yutko, D.P.: Locally minimal trees in n-normed spaces. Math. Notes 74, 619–629 (2003)
218. Innami, N., Kim, B.H., Mashiko, Y., Shiohama, K.: The Steiner ratio conjecture of Gilbert-

Pollak may still be open. Algorithmica 57(4), 869–872 (2010)
219. Ivanov, A.O., Tuzhilin, A.A.: Immersed polygons and their diagonal triangulations. Izv. Math.

72(1), 63 (2008)
220. Ivanov, A.O., Tuzhilin, A.A.: The Steiner ratio Gilbert-Pollak conjecture is still open.

Algorithmica 62(1–2), 630–632 (2012)
221. Ivanov, A.O., Tuzhilin, A.A.: Du-Hwang characteristic area: catch-22. ArXiv e-prints (2014)
222. Jalal, G., Krarup, J.: Geometrical solution to the Fermat problem with arbitrary weights. Ann.

Oper. Res. 123, 67–104 (2003)
223. Jarník, V., Kössler, M.: O minimálních grafeth obeahujících n daných bodú. Cas. Pest. Mat. a

Fys. 63, 223–235 (1934)
224. Jiang, T., Miller, Z., Pritkin, D.: Near optimal bounds for Steiner trees in the hypercube. SIAM

J. Comput. 40, 1340–1360 (2011)
225. Juhl, D.D.: Full Steiner trees for the obstacle-avoiding rectilinear Steiner tree problem.

Master’s thesis, Department of Computer Science, University of Copenhagen (2013)

Bibliography 329

226. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning
to Timing Closure. Springer, Dordrecht (2011)

227. Kahng, A.B., Mandoiu, I.I., Zelikovsky, A.Z.: Highly scalable algorithms for rectilinear and
octilinear Steiner trees. In: Proceedings of the Asia and South Pacific Design Automation
Conference, New York, pp. 827–833 (2003)

228. Kahng, A.B., Robins, G.: A new class of iterative Steiner tree heuristics with good
performance. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(7), 893–902 (1992)

229. Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic, Boston
(1995)

230. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley,
New York (2007)

231. Karp, R.M.: Reducibility among combinatorial problems. In: Thatcher, J.W. (ed.) Complexity
of Computer Computations, pp. 85–103. Plenum, New York (1972)

232. Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-
path trees. Algorithmica 14, 305–321 (1995)

233. Kirszenblat, D.: The Steiner ratio conjecture for eight points. Master’s thesis, The University
of Melbourne (2014)

234. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 33,
207–232 (1998)

235. Koh, C.-K.: Steiner problem in octilinear routing model. Master’s thesis, National University
of Singapore (1995)

236. Koh, C.-K., Madden, P.H.: Manhattan or non-Manhattan? A study of alternative VLSI
routing architectures. In: Proceedings of the 10th ACM Great Lakes Symposium on VLSI
(GLSVLSI), Evanston, pp. 47–52 (2000)

237. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algorithms and
Combinatorics, 4th edn. Springer, Berlin (2008)

238. Korte, B., Vygen, J.: Combinatorial problems in chip design. In: Grötschel, M., Katona,
G.O.H. (eds.) Building Bridges Between Mathematics and Computer Science, pp. 333–368.
Springer, Berlin (2008)

239. Krarup, J., Vajda, S.: On Torricelli’s geometrical solution to a problem of Fermat. IMA J.
Manage. Math. 8(3), 215–224 (1997)

240. Kupitz, Y.S., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. In:
Barany, I., Boroczky, K. (eds.) Bolyai Society Mathematical Studies, 6: Intuitive Geometry,
pp. 55–127. Janos Bolyai Mathematical Society, Budapest (1997)

241. Lawlor, G., Morgan, F.: Paired calibrations applied to soap films, immiscible fluids, and
surfaces or networks minimizing other norms. Pac. J. Math. 166, 55–83 (1994)

242. Lee, C.Y.: An algorithm for path connections and its applications. IRE Trans. Electron.
Comput. EC-10, 346–365 (1961)

243. Lee, D.T., Chen, T.H., Yang, C.D.: Shortest rectilinear paths among weighted obstacles. In:
Proceedings of the Sixth Annual ACM Symposium on Computational Geometry (SCG),
New York, pp. 301–310 (1990)

244. Lee, D.T., Shen, C.F.: The Steiner minimal tree problem in the �-geometry plane. In: Pro-
ceedings of the International Symposium on Algorithms and Computation (ISAAC), Osaka.
Lecture Notes in Computer Science, vol. 1178, pp. 247–255. Springer, Berlin/Heidelberg
(1996)

245. Lee, D.T., Shen, C.F., Ding, C.L.: On Steiner tree problem with 45 degree routing. In:
Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Seattle,
pp. 1680–1683 (1995)

246. Lee, D.T., Yang, C.D., Chen, T.H.: Shortest rectilinear paths among weighted obstacles. Int.
J. Comput. Geom. Appl. 1, 109–124 (1991)

247. Lee, J.: A first course in combinatorial optimization. Cambridge Texts in Applied Mathemat-
ics. Cambridge University Press, Cambridge (2004)

248. Lee, K.K., Leong, H.W.: SOAR: a channel router for octilinear routing model. In: Proceedings
of the IEEE Asia-Pacific Conference on Circuits and Systems, Sydney, pp. 346–351 (1992)

330 Bibliography

249. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester
(1990)

250. Lerchs, H., Grossmann, I.F.: Optimum design of open-pit mines. Trans. Can. Inst. Min.
Metall. Pet. 68, 17–24 (1965)

251. Levin, A.Y.: Algorithm for the shortest connection of a group of graph vertices. Sov. Math.
Dokl. 12, 1477–1481 (1971)

252. Levy, A.: Energy-minimizing networks meet only in threes. J. Undergrad. Math. 22, 53–59
(1990)

253. Li, C.-S., Tong, F.F.-K., Georgiou, C.J., Chen, M.: Gain equalization in metropolitan and wide
area optical networks using optical amplifiers. In: Proceedings of the 13th IEEE Conference
on Computer Communications: Networking for Global Communications (INFOCOM),
Toronto, pp. 130–137 (1994)

254. Li, L., Young, E.F.: Obstacle-avoiding rectilinear Steiner tree construction. In: Proceedings
ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 523–528
(2008)

255. Li, Y.Y., Cheung, S.K., Leung, K.S., Wong, C.K.: Steiner tree constructions in �3-metric.
IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 45(5), 563–574 (1998)

256. Li, Y.Y., Leung, K.S., Wong, C.K.: Efficient heuristics for orientation metric and Euclidean
Steiner tree problems. J. Comb. Optim. 4, 79–98 (2000)

257. Li, Y.Y., Leung, K.S., Wong, C.K.: Steiner trees in general nonuniform orientations. Comput-
ing 66, 41–78 (2001)

258. Lin, C.-W., Chen, S.-Y., Li, C.-F., Chang, Y.-W., Yang, C.-L.: Obstacle-avoiding rectilinear
Steiner tree construction based on spanning graphs. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 27(4), 643–653 (2008)

259. Lin, G.-H., Xue, G.: The Steiner tree problem in �4-geometry plane. In: Proceedings of the
International Symposium on Algorithms and Computation (ISAAC), Taejon. Lecture Notes
in Computer Science, vol. 1533, pp. 327–337. Springer, Berlin/Heidelberg (1998)

260. Lin, G.-H., Xue, G.: Steiner tree problem with minimum number of Steiner points and
bounded edge-length. Inf. Process. Lett. 69(2), 53–57 (1999)

261. Lin, G.-H., Xue, G.: Reducing the Steiner problem in four uniform orientations. Networks 35,
287–301 (2000)

262. Liu, C.-H., Kuo, S.-Y., Lee, D.T., Lin, C.-S., Weng, J.-H., Yuan, S.-Y.: Obstacle-avoiding
rectilinear Steiner tree construction: a Steiner-point-based algorithm. IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 31(7), 1050–1060 (2012)

263. Lodi, E.: Routing multiterminal nets in a diagonal model. In: Proceedings of the 1988
Conference on Information Sciences and Systems, Princeton, pp. 899–902 (1988)

264. Lodi, E., Luccio, F., Pagli, L.: A preliminary study of a diagonal channel-routing model.
Algorithmica 4, 585–597 (1989)

265. Lodi, E., Luccio, F., Pagli, L.: Routing in times square mode. Inf. Process. Lett. 35, 41–48
(1990)

266. Lodi, E., Luccio, F., Song, X.: A 2D channel router for the diagonal model. Integr. VLSI J.
11, 111–125 (1991)

267. Long, J., Zhou, H., Memik, S.O.: EBOARST: an efficient edge-based obstacle-avoiding
rectilinear Steiner tree construction algorithm. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 27(12), 2169–2182 (2008)

268. Lovász, L.: The matroid matching problem. Algebraic methods in graph theory. Colloquia
Mathematica Societatis János Bolyai, Szeged (1978)

269. Lu, B., Gu, J., Hu, X., Shragowitz, E.: Wire segmenting for buffer insertion based on RSTP-
MSP. Theor. Comput. Sci. 262(1), 257–267 (2001)

270. Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Monma, C.L., Ball, M.O., Magnanti,
T.L., Nemhauser, G.L. (eds.) Network Models. Handbooks in Operations Research and
Management Science, vol. 7, pp. 503–615. Elsevier, Amsterdam (1995)

271. Măndoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rectilinear Steiner trees. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 19, 1129–1139 (2000)

Bibliography 331

272. Măndoiu, I.I., Zelikovsky, A.Z.: A note on the MST heuristic for bounded edge-length Steiner
trees with minimum number of Steiner points. Inf. Process. Lett. 75(4), 165–167 (2000)

273. Martini, H., Swanepoel, K.J., Weiß, G.: The geometry of Minkowski spaces – a survey. Part
I. Expositiones Mathematicae 19(2), 97–142 (2001)

274. Martini, H., Swanepoel, K.J., Weiß, G.: The Fermat-Torricelli problem in normed planes and
spaces. J. Optim. Theory Appl. 115, 283–314 (2002)

275. Maßberg, J., Nieberg, T.: Rectilinear paths with minimum segment lengths. Discret. Appl.
Math. 161(12), 1769–1775 (2013)

276. Mehlhos, S.: Simple counter examples for the unsolvability of the Fermat- and Steiner-Weber-
problem by compass and ruler. Beiträge zur Algebra und Geometrie 41(1), 151–158 (2000)

277. Melzak, Z.A.: On the problem of Steiner. Can. Math. Bull. 4(2), 143–148 (1961)
278. Melzak, Z.A.: Companion to Concrete Mathematics, vol. II. Wiley, New York (1976)
279. Miehle, W.: Link-length minimization in networks. Oper. Res. 6(2), 232–243 (1958)
280. Miller, Z., Perkel, M.: The Steiner tree problem in the hypercube. Networks 22, 1–19 (1992)
281. Miller, Z., Pritkin, D.: Applying a result of Frankl and Rödl to the construction of Steiner

trees in the hypercube. Discret. Math. 131, 183–194 (1994)
282. Moffitt, M.D.: Global routing revisited. In: Proceedings ACM International Conference on

Computer-Aided Design (ICCAD), New York, pp. 805–808 (2009)
283. Moffitt, M.D., Roy, J.A., Markov, I.L.: The coming of age of (academic) global routing.

In: Proceedings of the 2008 ACM International Symposium on Physical Design (ISPD),
New York, pp. 148–155 (2008)

284. Möhring, R., Wagner, D., Wagner, F.: VLSI network design. In: Ball, M.O., Magnanti, T.L.,
Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management
Science, vol. 7. Elsevier, Amsterdam (1995)

285. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discret. Comput.
Geom. 8, 265–293 (1992)

286. Müller, D.: Fast resource sharing in VLSI routing. PhD thesis, Research Institute for Discrete
Mathematics, University of Bonn (2009)

287. Müller-Hannemann, M., Peyer, S.: Approximation of rectilinear Steiner trees with length
restrictions on obstacles. In: Workshop on Algorithms and Data Structures (WADS), Ottawa.
Lecture Notes in Computer Science, vol. 2748, pp. 207–218. Springer, Berlin/Heidelberg
(2003)

288. Müller-Hannemann, M., Schulze, A.: Hardness and approximation of octilinear Steiner trees.
Int. J. Comput. Geom. Appl. 17, 231–260 (2007)

289. Naor, J., Schieber, B.: Improved approximations for shallow-light spanning trees. In: Pro-
ceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach,
pp. 536–541 (1997)

290. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press,
Cambridge (2007)

291. Natarajan, S., Sherwani, N., Holmes, N.D., Sarrafzadeh, M.: Over-the-cell channel routing
for high performance circuits. In: Proceedings of the 29th ACM/IEEE Design Automation
Conference (DAC), Los Alamitos, pp. 600–603 (1992)

292. Newman, A.M., Rubio, E., Caro, R., Weintraub, A., Eurek, K.: A review of operations
research in mine planning. Interfaces 40(3), 222–245 (2010)

293. Nieberg, T.: Gridless pin access in detailed routing. In: Proceedings of the 48th ACM/IEEE
Design Automation Conference (DAC), San Diego, pp. 170–175 (2011)

294. Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented
Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Rome.
Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer, Berlin/Heidelberg
(2002)

295. Nielsen, B.K., Winter, P., Zachariasen, M.: Rectilinear trees under rotation and related
problems. In: Proceedings of the 18th European Workshop on Computational Geometry,
Warsaw, pp. 18–22 (2002)

332 Bibliography

296. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams, 2nd edn. Wiley, New York (1995)

297. Oppermann, F.J., Boano, C.A., Römer, K.: A decade of wireless sensing applications: survey
and taxonomy. In: Ammari, H.M. (ed.) The Art of Wireless Sensor Networks, pp. 11–50.
Springer, Heidelberg (2014)

298. Pagh, M.H.: Steiner trees in weighted fixed orientation metrics. Master’s thesis, Department
of Computer Science, University of Copenhagen (2005)

299. Paluszewski, M.: VLSI routing in uniform orientation metrics. Master’s thesis, Department
of Computer Science, University of Copenhagen (2004)

300. Paluszewski, M., Winter, P., Zachariasen, M.: A new paradigm for general architecture
routing. In: Proceedings of the 14th ACM Great Lakes Symposium on VLSI (GLSVLSI),
Boston, pp. 202–207 (2004)

301. Pecht, M., Wong, Y.T.: Advanced Routing of Electronic Modules. CRC, New York (1996)
302. Peyer, S.: Elmore-delay-optimale Steinerbäume im VLSI-Design. Master’s thesis, Research

Institute for Discrete Mathematics, University of Bonn (2000)
303. Peyer, S.: Shortest paths and Steiner trees in VLSI routing. PhD thesis, Research Institute for

Discrete Mathematics, University of Bonn (2007)
304. Peyer, S., Zachariasen, M., Jørgensen, D.G.: Delay-related secondary objectives for rectilinear

Steiner minimum trees. Discret. Appl. Math. 136, 271–298 (2004)
305. Pollak, H.O.: Some remarks on the Steiner problem. J. Comb. Theory Ser. A 24(3), 278–295

(1978)
306. Polzin, T.: Algorithms for the Steiner problem in networks. PhD thesis, Universität des

Saarlandes (2003)
307. Polzin, T., Vahdati Daneshmand, S.: A comparison of Steiner tree relaxations. Discret. Appl.

Math. 112, 241–261 (2001)
308. Polzin, T., Vahdati Daneshmand, S.: Improved algorithms for the Steiner problem in networks.

Discret. Appl. Math. 112, 263–300 (2001)
309. Polzin, T., Vahdati Daneshmand, S.: Extending reduction techniques for the Steiner tree

problem. In: Möhring, R., Raman, R. (eds.) Algorithms – ESA 2002, Rome. Lecture Notes in
Computer Science, vol. 2461, pp. 795–807. Springer, Berlin/Heidelberg (2002)

310. Polzin, T., Vahdati Daneshmand, S.: On Steiner trees and minimum spanning trees in
hypergraphs. Oper. Res. Lett. 31, 12–20 (2003)

311. Polzin, T., Vahdati Daneshmand, S.: Approaches to the Steiner problem in networks. Lect.
Notes Comput. Sci. 5515, 81–103 (2009)

312. Powers, K., Brown, D., Brady, M.L.: The 60ı grid: routing channels in width d=
p

3. In:
Proceedings of the 1st Great Lakes Symposium on VLSI, Kalamazoo, pp. 214–219 (1991)

313. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 2nd edn. Springer,
New York (1988)

314. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6),
1389–1401 (1957)

315. Prömel, H.J., Steger, A.: RNC-approximation algorithms for the Steiner problem. In: Proceed-
ings of the STACS’97, Lübeck. Lecture Notes in Computer Science, vol. 1200, pp. 559–570.
Springer, Berlin/Heidelberg (1997)

316. Prömel, H.J., Steger, A.: The Steiner Tree Problem: A Tour Through Graphs, Algorithms, and
Complexity. Advanced Lectures in Mathematics. Friedrick Vieweg and Son, Berlin (2002)

317. Provan, J.S.: An approximation scheme for finding Steiner trees with obstacles. SIAM J.
Comput. 17(5), 920–934 (1988)

318. Provan, J.S.: Convexity and the Steiner tree problem. Networks 18, 55–72 (1988)
319. Ramamurthy, B., Iness, J., Mukherjee, B.: Minimizing the number of optical amplifiers

needed to support a multi-wavelength optical LAN/MAN. In: Proceedings of INFOCOM’97.
Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Driving the Information Revolution, Kobe, vol. 1, pp. 261–268 (1997)

Bibliography 333

320. Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner arborescence
problem. Algorithmica 7, 277–288 (1992)

321. Rautenbach, D.: Rectilinear spanning trees versus bounding boxes. Electron. J. Comb. 11,
N12 (2004)

322. Richards, D.S., Salowe, J.S.: A simple proof of Hwang’s theorem for rectilinear Steiner
minimal trees. Ann. Oper. Res. 33, 549–556 (1991)

323. Richards, D.S., Salowe, J.S.: A linear-time algorithm to construct a rectilinear Steiner minimal
tree for k-extremal point sets. Algorithmica 7(2/3), 247–276 (1992)

324. Riordan, J.: The enumeration of labeled trees by degrees. Bull. Am. Math. Soc. 72(1), 110–
112 (1966)

325. Robins, G., Zelikovsky, A.: Minimum Steiner tree construction. In: Alpert, C.J., Mehta, D.P.,
Sapatnekar, S.S. (eds.) Handbook of Algorithms for Physical Design Automation, chapter 24,
pp. 487–508. CRC, Boca Raton (2009)

326. Rubinstein, J.H., Thomas, D.A.: The Steiner ratio conjecture for six points. J. Comb. Theory
Ser. A 58(1), 54–77 (1991)

327. Rubinstein, J.H., Thomas, D.A.: Graham’s problem on shortest networks for points on a
circle. Algorithmica 7(1–6), 193–218 (1992)

328. Rubinstein, J.H., Thomas, D.A., Weng, J.F.: Degree-five Steiner points cannot reduce network
costs for planar sets. Networks 22(6), 531–537 (1992)

329. Rubinstein, J.H., Thomas, D.A., Weng, J.F.: Minimum networks for four points in space.
Geometriae Dedicata 93, 57–70 (2002)

330. Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Steiner trees for terminals constrained to
curves. SIAM J. Discret. Math. 10(1), 1–17 (1997)

331. Sait, S.M., Youssef, H.: VLSI Physical Design Automation: Theory and Practice. World
Scientific, Singapore (1999)

332. Salowe, J.S., Warme, D.M.: Thirty-five-point rectilinear Steiner minimal trees in a day.
Networks 25(2), 69–87 (1995)

333. Samanta, R., Erzin, A., Raha, S.: Timing-driven Steiner tree construction on uniform
�-geometry. In: 18th International Symposium on VLSI Design and Test, Coimbatore, India,
pp. 1–4. IEEE (2014)

334. Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in an arbitrary metric space.
Math. Program. 9, 240–246 (1975)

335. Sarrafzadeh, M.: Hierarchical approaches to VLSI circuit layout. PhD thesis, University of
Illinois at Urbana-Champaign (1986)

336. Sarrafzadeh, M., Lin, W.-L., Wong, C.K.: Floating Steiner trees. IEEE Trans. Comput. 47(2),
197–211 (1998)

337. Sarrafzadeh, M., Wong, C.K.: Bottleneck Steiner trees in the plane. IEEE Trans. Comput. 41,
370–374 (1992)

338. Sarrafzadeh, M., Wong, C.K.: Hierarchical Steiner tree construction in uniform orientations.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 1095–1103 (1992)

339. Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw-Hill,
New York (1996)

340. Saxena, P., Shelar, R.S., Sapatnekar, S.: Routing Congestion in VLSI Circuits: Estimation and
Optimization. Springer, New York (2007)

341. Scheifele, R.: Steiner trees with bounded RC-delay. In: 12th Workshop on Approximation
and Online Algorithms, Wroclaw (2014)

342. O’Searcóid, M. Metric Spaces. Springer, New York (2006)
343. Segev, A.: The node-weighted Steiner tree problem. Networks 17(1), 1–17 (1987)
344. Shang, S., Hu, X., Jing, T.: Rotational Steiner ratio problem under uniform orientation

metrics. In: Discrete Geometry, Combinatorics and Graph Theory. Lecture Notes in Computer
Science, vol. 4381, pp. 166–176. Springer, Berlin/Heidelberg (2007)

345. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15(1), 193–
215 (1986)

334 Bibliography

346. Shen, C.F.: The �-geometry Steiner minimal tree problem and visualization. PhD thesis,
Northwestern University, Evanston (1997)

347. Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn. Kluwer
Academic, Boston (1999)

348. Sirodenko, A.F.: Minimal rectilinear Steiner trees. Diskretnaya Matematika 1, 28–37 (1989)
349. Smith, J.M., Jang, Y., Kim, M.K.: Steiner minimal trees, twist angles, and the protein folding

problem. PROTEINS: Struct. Funct. Bioinf. 66(4), 889–902 (2007)
350. Smith, J.M., Liebman, J.S.: Steiner trees, Steiner circuits and the interference problem in

building design. Eng. Optim. 4, 15–36 (1979)
351. Smith, W.D.: How to find Steiner minimal trees in Euclidean d -space. Algorithmica 7(2/3),

137–177 (1992)
352. Smith, W.D., Smith, J.M.: On the Steiner ratio in Euclidean 3-space. J. Comb. Theory Ser. A

69, 301–332 (1995)
353. Snyder, T.L.: On the exact location of Steiner points in general dimension. SIAM J. Comput.

21(1), 163–180 (1992)
354. Song, X., Tan, X.: An optimal channel-routing algorithm in the Times Square model. IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 891–998 (1994)
355. Soukup, J.: On minimum cost networks with nonlinear costs. SIAM J. Appl. Math. 29(4),

571–581 (1975)
356. Soukup, J.: Circuit layout. Proc. IEEE 69(10), 1281–1304 (1981)
357. Stückelberger, J.A., Heinimann, H.R., Chung, W., Ulber, M.: Automatic road-network

planning for multiple objectives. In: Proceedings of the 29th Council on Forest Engineering
Conference, Coeur d’Alene, Idaho, vol. 30, pp. 233–248 (2006)

358. Swanepoel, K.J.: The local Steiner problem in normed planes. Networks 36, 104–113 (2000)
359. Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circuits Syst.

36(9), 1230–1234 (1989)
360. Tan, X., Song, X.: Hexagonal 3-layer channel routing. Inf. Process. Lett. 55, 223–228 (1995)
361. Tan, X., Song, X.: Routing multiterminal nets on an hexagonal grid. Discret. Appl. Math. 90,

245–255 (1999)
362. Teig, S.: The X Architecture: Not your father’s diagonal wiring. In: International Workshop

on System-Level Interconnect Prediction (SLIP), San Diego, pp. 33–37. ACM (2002)
363. Thomas, D.A., Brazil, M., Lee, D.H., Wormald, N.C.: Network modelling of underground

mine layout: two case studies. Int. Trans. Oper. Res. 14(2), 143–158 (2007)
364. Thomas, D.A., Weng, J.F.: Polynomial time algorithms for the rectilinear Steiner tree

problem. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 405–426. Springer,
New York (2001)

365. Thomas, D.A., Weng, J.F.: Minimum cost flow-dependent communication networks. Net-
works 48, 39–46 (2006)

366. Thomborson, C.D., Alpern, B., Carter, L.: Rectilinear Steiner tree minimization on a
workstation. In: Dean, N., Shannon, G.E. (eds.) Discrete Mathematics and Theoretical
Computer Science. Computational Support for Discrete Mathematics, DIMACS Series,
vol. 15. American Mathematical Society, Providence (1994)

367. Thompson, A.C.: Minkowski Geometry. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge (1996)

368. Thurber, A.P., Xue, G.: Computing hexagonal Steiner trees using PCX. In: Proceedings of
the 6th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Pafos,
pp. 381–384 (1999)

369. Tomescu, I., Zimand, M.: Minimum spanning hypertrees. Discret. Appl. Math. 54, 67–76
(1994)

370. Toppur, B., Smith, J.M.: A sausage heuristic for Steiner minimal trees in three-dimensional
Euclidean space. J. Math. Model. Algorithms 4(2), 199–217 (2005)

371. Torricelli, E.: De maximis et minimis. In: Loria, G., Vassura, G. (eds.) Opere di Evangelista
Torricelli. G. Montanari, Faenza (1919)

Bibliography 335

372. Uchoa, E., Poggi de Aragão, M., Ribeiro, C.: Preprocessing Steiner problems from VLSI
layout. Technical report MCC. 32/99, PUC-Rio (1999)

373. Uchoa, E., Poggi de Aragão, M., Ribeiro, C.: Preprocessing Steiner problems from VLSI
layout. Networks 40, 38–50 (2002)

374. Underwood, A.: A modified Melzak procedure for computing node-weighted Steiner trees.
Networks 27, 73–79 (1996)

375. Vahdati Daneshmand, S.: Algorithmic approaches to the Steiner problem in networks. PhD
thesis, Universität Mannheim (2004)

376. Volz, M.G.: Gradient-constrained flow-dependent networks for underground mine design.
PhD thesis, The University of Melbourne (2008)

377. Volz, M.G., Brazil, M., Ras, C.J., Swanepoel, K.J., Thomas, D.A.: The Gilbert arborescence
problem. Networks 61(3), 238–247 (2013)

378. Vygen, J.: Theory of VLSI Layout. Habilitation, University of Bonn (2001)
379. Vygen, J.: Faster algorithm for optimum Steiner trees. Inf. Process. Lett. 111, 1075–1079

(2011)
380. Wagner, W.H.: Problems in the classification of ferns. In: Bailey, D.L. (ed) Recent Advances

in Botany, pp. 841–844. University of Toronto Press, Toronto (1961)
381. Wald, J.A., Colbourn, C.J.: Steiner trees, partial 2-trees, and minimum IFI networks.

Networks 13(2), 159–167 (1983)
382. Wang, D.C.: Novel schemes for IC layout, Part I: two-layer channel routing. In: Proceedings

of the 28th ACM/IEEE Design Automation Conference, San Francisco, pp. 49–53 (1991)
383. Wang, F., Wang, D., Liu, J.: Traffic-aware relay node deployment for data collection in

wireless sensor networks. In: 6th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON’09), Rome, pp. 1–9
(2009)

384. Wang, L., Du, D.-Z.: Approximations for a bottleneck Steiner tree problem. Algorithmica
32(4), 554–561 (2002)

385. Ward, J.E., Wendell, R.E.: Using block norms for location modeling. Oper. Res. 33(5), 1074–
1090 (1985)

386. Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis,
University of Virginia (1998)

387. Warme, D.M., Winter, P., Zachariasen, M.: Exact solutions to large-scale plane Steiner
tree problems. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Baltimore, pp. 979–980 (1999)

388. Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems:
a computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner
Trees, pp. 81–116. Kluwer Academic, Boston (2000)

389. Warme, D.M., Winter, P., Zachariasen, M.: GeoSteiner 3.1. Department of Computer Sci-
ence, University of Copenhagen (DIKU). http://www.diku.dk/hjemmesider/ansatte/martinz/
geosteiner/ (2001)

390. Weber, A.: Über den Standort der Industrien. Teil I: Reine Theorie des Standorts. Verlag J. C.
B. Mohr (1909). Translated by C. J. Friedrich as Alfred Weber’s Theory of the Location of
Industries. Chicago University Press, Chicago, 1929

391. Welzl, E.: Constructing the visibility graph for n-line segments in O.n2/ time. Inf. Process.
Lett. 20, 167–171 (1985)

392. Weng, J.F.: Shortest networks for smooth curves. SIAM J. Optim. 7(4), 1054–1068 (1997)
393. Weng, J.F.: Minimum networks for separating and surrounding objects. In: Cheng, X., Du,

D.-Z. (eds.) Steiner Trees in Industry. Combinatorial Optimization, vol. 11, pp. 427–439.
Springer, New York (2001)

394. Weng, J.F.: Generalized Melzak’s construction in the Steiner tree problem. Int. J. Comput.
Geom. Appl. 12(6), 481–488 (2002)

395. Weng, J.F., Smith, J.M.: Steiner minimal trees with one polygonal obstacle. Algorithmica
29(4), 638–648 (2001)

396. Wesolowsky, G.O.: The Weber problem: history and perspectives. Locat. Sci. 1, 5–23 (1993)

http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/
http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/

336 Bibliography

397. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice-Hall, Upper Saddle River (2001)
398. Wetzel, J.E.: Converses of Napoleon’s theorem. Am. Math. Mon. 99(4), 339–351 (1992)
399. Whitney, T., Mead, C.: An integer based hierarchical representation for VLSI. In: Advanced

Research in VLSI (Proceedings of the 4th MIT Conference), Cambridge, pp. 241–257 (1986)
400. Widmayer, P., Wu, Y.F., Wong, C.K.: Distance problems in computational geometry with

fixed orientations. In: Proceedings of the Symposium on Computational Geometry, Baltimore,
pp. 186–195 (1985)

401. Widmayer, P., Wu, Y.F., Wong, C.K.: On some distance problems in fixed orientations. SIAM
J. Comput. 16(4), 728–746 (1987)

402. Winter, P.: An algorithm for the Steiner problem in the Euclidean plane. Networks 15, 323–
345 (1985)

403. Winter, P.: Euclidean Steiner minimal trees with obstacles and Steiner visibility graphs.
Discret. Appl. Math. 47, 187–206 (1993)

404. Winter, P.: Reductions for the rectilinear Steiner tree problem. Networks 26, 187–198 (1995)
405. Winter, P.: Optimal Steiner hull algorithm. Comput. Geom. Theory Appl. 23(2), 163–169

(2002)
406. Winter, P., Smith, J.M.: Steiner minimal trees for three points with one convex polygonal

obstacle. Ann. Oper. Res. 33, 577–599 (1991)
407. Winter, P., Zachariasen, M.: Euclidean Steiner minimum trees: an improved exact algorithm.

Networks 30, 149–166 (1997)
408. Witzgall, C.: Optimal location of a central facility: mathematical models and concept.

Technical report, National Bureau of Standards, Washington, DC (1965)
409. Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math.

Program. 28, 271–287 (1984)
410. Wulff-Nilsen, C.: Higher dimensional rectilinear Steiner minimal trees. Master’s thesis,

Department of Computer Science, University of Copenhagen (2006)
411. Wulff-Nilsen, C.: Bounding the expected number of rectilinear full Steiner trees. Networks

56(1), 1–10 (2010)
412. Xin, Y., Guven, T., Shayman, M.: Relay deployment and power control for lifetime elongation

in sensor networks. In: IEEE International Conference on Communications, Istanbul, vol. 8,
pp. 3461–3466 (2006)

413. Xu, K., Hassanein, H., Takahara, G., Wang, Q.: Relay node deployment strategies in
heterogeneous wireless sensor networks. IEEE Trans. Mob. Comput. 9(2), 145–159 (2010)

414. Xue, G.: A branch-and-bound algorithm for computing node weighted Steiner minimum trees.
In: Jiang, T., Lee, D.T. (eds.) Computing and Combinatorics. Lecture Notes in Computer
Science, vol. 1276, pp. 383–392. Springer, Berlin/Heidelberg (1997)

415. Xue, G., Du, D.-Z.: An O.n log n/ average time algorithm for computing the shortest network
under a given topology. Algorithmica 23, 354–362 (1999)

416. Xue, G., Lin, G.-H., Du, D.-Z.: Grade of service Steiner minimum trees in the Euclidean
plane. Algorithmica 31, 479–500 (2004)

417. Xue, G., Thulasiraman, K.: Computing the shortest network under a fixed topology. IEEE
Trans. Comput. 51, 1117–1120 (2002)

418. Yan, G.Y., Albrecht, A., Yound, G.H., Wong, C.K.: The Steiner tree problem in orientation
metrics. J. Comput. Syst. Sci. 55, 529–546 (1997)

419. Yan, J.-T.: An improved optimal algorithm for bubble-sorting-based non-Manhattan channel
routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18, 163–171 (1999)

420. Yan, J.-T.: Timing-driven octilinear Steiner tree construction based on Steiner-point reassign-
ment and path reconstruction. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 13(2), 26
(2008)

421. Yang, Y.Y., Wing, O.: An algorithm for the wiring problem. In: Digest of the IEEE
International Symposium on Electrical Networks, London, pp. 14–15 (1971)

422. Yang, Y.Y., Wing, O.: Suboptimal algorithm for a wire routing problem. IEEE Trans. Circuit
Theory 19(5), 508–510 (1972)

Bibliography 337

423. Yang, Y.Y., Wing, O.: On a multinet wiring problem. IEEE Trans. Circuit Theory 20(3), 250–
252 (1973)

424. Yildiz, M.C., Madden, P.H.: Preferred direction Steiner trees. In: Proceedings of the 11th
ACM Great Lakes Symposium on VLSI (GLSVLSI), West Lafayette, pp. 56–61 (2001)

425. Yildiz, M.C., Madden, P.H.: Preferred direction Steiner trees. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 21, 1368–1372 (2002)

426. Yue, M.: A report on the Steiner ratio conjecture. OR Transl. 4, 1–21 (2000)
427. Zachariasen, M.: Rectilinear full Steiner tree generation. Networks 33, 125–143 (1999)
428. Zachariasen, M.: A catalog of Hanan grid problems. Networks 38, 76–83 (2001)
429. Zachariasen, M.: The rectilinear Steiner tree problem: a tutorial. In: Du, D.-Z., Cheng, X.

(eds.) Steiner Trees in Industries, pp. 467–507. Kluwer Academic, Boston (2001)
430. Zachariasen, M.: Comment on “Computing the shortest network under a fixed topology”.

IEEE Trans. Comput. 55, 783–784 (2006)
431. Zachariasen, M.: Fixed orientation interconnection problems: theory, algorithms and applica-

tions. Technical report, University of Copenhagen (Doctor of Science Dissertation) (2009)
432. Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in VLSI design.

Math. Program. 94, 407–433 (2003)
433. Zachariasen, M., Winter, P.: Obstacle-avoiding Euclidean Steiner trees in the plane: an exact

algorithm. In: Workshop on Algorithm Engineering and Experimentation (ALENEX), Bal-
timore. Lecture Notes in Computer Science 1619, pp. 282–295. Springer, Berlin/Heidelberg
(1999)

Index

Acute Steiner tree, 30
Algorithm

bottleneck 1-Steiner algorithm, 270
Dijkstra’s algorithm, 234
direction sets algorithm, 101
Dreyfus-Wagner algorithm, 305
FLUTE algorithm, 193
generalised minimum k-Steiner tree

algorithm, 263
GeoSteiner algorithm, 39, 40
GeoSteiner FST generation algorithm, 44
half-perimeter wire length algorithm, 193
integer programming for Steiner trees in

graphs, 306
iterated 1-Steiner algorithm, 276
luminary algorithm, 21
Melzak-Hwang algorithm, 15, 19
minimum F -fixed spanning tree algorithm,

264
minimum rectilinear Steiner tree on two

parallel lines algorithm, 199
Prim’s algorithm, 23
range search algorithms, 50
recursive FST growing algorithm, 191
Sankoff-Rousseau algorithm, 216
Smith’s algorithm, 21
XGSR algorithm, 211

Backbone, 161
extended, 201

Bent edge, 85, 152, 220
edge parallelogram, 240
flip, 152, 240
partial flip, 240

Bottleneck 1-Steiner algorithm, 270
Bottleneck k-Steiner tree, 252

bottleneck length, 252
Steiner points, 252

Bottleneck k-Steiner tree problem, 251
Bottleneck length, 252
Bottleneck Steiner distance, 29
Bottleneck Steiner distance bound, 29, 47
Bound-based tests, 305
Branch, 42

size, 43
Branch tree, 42

clean, 141
length, 48
mixed, 141
root, 42
size, 43
stem, 42

Breadth-first search (BFS), 18

Canonical form, 116
Canonical tree, 116
Capsule, 54
Catalan number, 14
Caterpillar tree, 158
Cavalieri, B., 4
Centroid

property, 65
theorem, 64

Chain in hypergraph, 312
Channel routing problem, 144

diagonal routing, 145
hexagonal routing, 145
Manhattan routing, 145

© Springer International Publishing Switzerland 2015
M. Brazil, M. Zachariasen, Optimal Interconnection Trees in the Plane,
Algorithms and Combinatorics 29, DOI 10.1007/978-3-319-13915-9

339

340 Index

octo-square routing, 146
times square routing, 145

Cherry, 11
Chip design routing problem, 146

general architecture, 147
liquid routing, 147
X architecture, 146
Y architecture, 147

Clean subtree, 159
Coloured direction set, 96
Complementary direction set, 95
Complete corner, 154

legs, 154
Complete line, 154

with alternating segments, 160
Complete zero-shift theorem, 109, 113
Configuration, 63
Conjecture

fixed topology gradient-constrained Steiner
tree, 227

Connected vertex cover in planar graphs
with maximum degree 4 decision
problem, 180

Constant-time merging lemma, 120
Convex hull, 26
Convex path, 17

rightmost convex path, 126
Corner point, 85, 152
Corner-free terminal set, 241
Cross, 71, 152

De Fermat, P., 2
Delaunay triangulation, 23
Delay-driven routing, 210

Elmore delay model, 210
RC delay model, 210

Depth-first ordering, 117
Detailed routing problem, 208
Diamond property, 29
Diamond region, 29
Dijkstra’s algorithm, 234
Direction set, 94

algorithm, 101
coloured, 96
complementary, 95
for full Steiner tree, 104
�-geometry, 99

Disjoint lunes property, 170
Distance graph, 303
Dreyfus-Wagner algorithm, 305

Edge component, 182
Edge parallelogram, 240

Empty rectangle property, 171
inner, 172

Equilateral point, 4, 41
base points, 41
feasible subarc, 42
order, 42
weighted, 282

Euclidean Steiner tree problem, 6
d -dimensional space, 77

Excess, 58
Exclusion tests, 304
Expansion tests, 304
Extended backbone, 201
Extended Global Slack Removal (XGSR)

algorithm, 211

Farthest colour Voronoi diagram, 270
Fast lookup table estimation (FLUTE)

algorithm, 193
optimised, 196

Fermat-Torricelli problem, 2
rotation proof, 3
solution, 5
Torricelli construction, 5
weighted, 281

Fixed orientation metric, 87
Fixed orientation networks, 89
Fixed orientation path, 84

length, 84
vertices, 84

Fixed orientation Steiner tree problem, 89
fixed topology algorithms, 118
linear programming formulation, 118
two legal orientations, 184

Flexibility of a Steiner tree, 124
Flexibility polygon, 125

for a Steiner point, 127
Flip, 152, 240
Flow-dependent quadratic Steiner tree

problem, 291
Full component, 11
Full Steiner topology, 9

enumeration, 11
Full Steiner tree (FST), 10

concatenation problem, 51
direction set, 104
enumeration, 11
generation problem, 40
independent preprocessing, 188

inner terminal candidates, 189
short leg terminal candidates, 189

parity of vertices, 104
Fulsome Steiner tree, 62

Index 341

Generalised k-Steiner tree problem, 254
Generalised Hanan grid, 129
Generalised minimum k-Steiner tree, 254
Generalised minimum k-Steiner tree algorithm,

263
Generalised Simpson line, 282
Geometric network, 5

degenerate, 9
non-degenerate, 9

GeoSteiner algorithm, 39, 40
data structures, 50
fixed orientation metrics, 139
FST

concatenation phase, 40, 51
generation algorithm, 44
generation phase, 40
independent preprocessing, 188

numerical issues, 49
obstacle-avoiding problem, 247
pruning tests, 43
pruning tests for fixed orientation metrics,

141
rectilinear, 186
rectilinear FST generation algorithm, 187

Gergonne, J.D., 6
Gilbert arborescence problem, 280
Gilbert network, 279

problem, 279
total cost, 279

Global routing grid graph, 208
Global routing problem, 208

grid graph, 208
Grade of service

Steiner tree problem, 287
Gradient metric, 220
Gradient-constrained network, 220

bent edge, 220
intermediate gradient edge, 223
straight edge, 220

Gradient-constrained Steiner tree problem, 221
Graph reduction tests, 304

exclusion tests, 304
inclusion tests, 304

Half-perimeter wire length (HPWL) algorithm,
193

Hamming distance, 217
trees, 217

Hanan grid, 166
d -dimensional space, 214
generalised Hanan grid, 129

Hanan grid graph, 166
graph reductions, 167

reduction tests, 167, 168
Hexagonal direction set, 255
HPWL vector, 195
Hwang form, 161

backbone, 161
corner-flipped trees, 162
equivalence classes, 162
long leg, 161
root, 161
short leg, 161
tip, 161

Hypercube Steiner trees, 217
Hyperedge, 311
Hypergraph, 311

chain, 312
spanning tree, 312
tree, 312

Inclusion tests, 304
Integer programming for Steiner trees in

graphs, 306
cut formulation, 308
directed cut formulation, 308
multi-commodity flow formulation, 309
spanning tree formulation, 307

Integrated circuit physical design
floorplanning, 206
routing, 206

Intermediate gradient edge, 223
Iterated 1-Steiner algorithm, 276
i th ODC partition, 257

`1 norm, 151
`1-optimisable function, 254
Labelled Steiner topology, 225
�-geometry

minimum Steiner tree, 90
!, 90
plane, 90

�-geometry
meeting angles at a Steiner point, 91

Legal directions, 94
Legal orientations, 84
Line of segments, 152
Locally collinear edges, 107
Luminary algorithm, 21
Lune, 28
Lune property, 28, 47

rectilinear, 170

m-zigzag, 225
Maximal Steiner configuration, 94

342 Index

Meeting angles, 5
Melzak-Hwang algorithm, 15, 19
Melzak-Hwang theorem, 20
Merging operation, 120
Minimal surfaces, 75
Minimal wire length vector, 195
Minimum cost grade of service Steiner tree,

287
Minimum F -fixed spanning tree, 261
Minimum F -fixed spanning tree algorithm,

264
Minimum flow-dependent quadratic Steiner

tree, 291
Minimum Gilbert arborescence, 280
Minimum Gilbert network, 279
Minimum m-constrained Steiner tree, 221
Minimum node-weighted Steiner tree, 292
Minimum obstacle-avoiding Steiner tree, 235

full components, 236
primitive topology, 239

Minimum power-p Steiner tree, 289
Minimum rectilinear Steiner tree, 151

bounds on the number of full components,
172

expected number of full components, 175
Minimum rectilinear Steiner tree on two

parallel lines algorithm, 199
Minimum spanning tree, 23

rectilinear, 164
Minimum spanning tree problem, 23
Minimum spanning tree problem in

hypergraphs, 312
backtrack search, 313
dynamic programming, 313
integer programming, 314

Minimum Steiner point tree problem, 294
Minimum Steiner tree, 7, 302

Euclidean, properties, 8
fixed orientation, 89
graph, properties, 303
�-geometry, 90
rectilinear, 151

Minkowski plane, 61
smooth, 64

Minkowski Steiner tree problem, 62

Net, 204
Netlist, 203
Node-weighted Steiner tree problem, 292
NP-hard problem, 31

Obstacle, 233
avoiding network, 235

avoiding path, 233
shortcutting, 233

avoiding Steiner tree problem, 212, 235
circular obstacles, 249
Euclidean plane, 237

Opposite pair of edges, 68
first, 70
second, 70

Orientation polygon, 84
Oriented Dirichlet cell (ODC), 257
Overlaid ODC partition, 254
Overlaid oriented Dirichlet cell (OODC)

partition, 254, 259
Overlay of partitions, 259

1-planar graph, 201
Parallel lines Euclidean Steiner tree decision

problem, 32
Parallel lines gradient-constrained Steiner tree

decision problem, 227
Parallel lines �-geometry Steiner tree decision

problem, 132
Partial flip, 240
Path loss exponent, 289
Path-convex hull, 168
Phylogeny, 216
Pins, 204
Pointed configuration theorem, 63
Polygonal obstacle, 233

completely reduced, 245
reduced, 245
transparent vertex, 244
virtual terminal, 236

Polygonal unit circle, 87
vertices, 94

Polygonal/elliptic norm (PE norm), 252
hexagonal direction set, 255

Position sequence, 194
Power-p Steiner tree problem, 289
PP1 preprocessing procedure, 261
PP2 preprocessing procedure, 264
Prim’s algorithm, 23
Primary direction, 96
Primary material, 96

preserved theorem, 115
Printed circuit boards, 144, 204
Problem

bottleneck k-Steiner tree problem, 251
channel routing problem, 144
chip design routing problem, 146
connected vertex cover in planar graphs

with maximum degree 4 decision
problem, 180

Index 343

detailed routing problem, 208
Euclidean Steiner tree problem, 6

in d -dimensional space, 77
Fermat-Torricelli problem, 2
fixed orientation Steiner tree problem, 89
flow-dependent quadratic Steiner tree

problem, 291
FST

concatenation problem, 51
generation problem, 40

generalised k-Steiner tree problem, 254
Gilbert arborescence problem, 280
Gilbert network problem, 279
global routing problem, 208
grade of service Steiner tree problem, 287
gradient-constrained Steiner tree problem,

221
minimum spanning tree problem, 23
minimum spanning tree problem in

hypergraphs, 51, 312
minimum Steiner point tree problem, 294
Minkowski Steiner tree problem, 62
node-weighted Steiner tree problem, 292
obstacle-avoiding Steiner tree problem,

212, 235
parallel lines Euclidean Steiner tree

decision problem, 32
parallel lines gradient-constrained Steiner

tree decision problem, 227
parallel lines �-geometry Steiner tree

decision problem, 132
power-p Steiner tree problem, 289
quadratic Steiner tree problem, 290
rectilinear group Steiner tree problem, 211
rectilinear Steiner arborescence problem,

210
rectilinear Steiner tree decision problem,

179
rectilinear Steiner tree problem, 151

in d -dimensional space, 214
rotationally optimal uniform orientation

minimum spanning tree problem,
296

rotationally optimal uniform orientation
Steiner tree problem, 295

Steiner tree problem in graphs, 51, 302
Steiner tree problem in hypergraphs, 315
subset sum problem, 32
three-dimensional gradient-constrained

Steiner tree problem, 231
Projection test, 43
Pruning tests for FST generation, 43

bottleneck Steiner distance bound, 47
lune property test, 47

projection test, 43
upper bound tests, 48

Pseudo-terminal, 16
Ptolemy’s theorem, 282

Quadratic Steiner tree problem, 290

Rectangular lattice, 57
Rectilinear distance, 151
Rectilinear group Steiner tree problem, 211
Rectilinear metric, 156
Rectilinear sliding lemma, 154
Rectilinear Steiner arborescence problem, 210
Rectilinear Steiner tree problem, 151, 179

d -dimensional space, 214
Rectilinearly convex boundary, 200
Rectilinearly convex polygon, 200
Recursive FST growing algorithm, 191

branch tree tests, 192
distance tests, 191
FST tests, 192
long leg segment tests, 192

Relatively minimal tree, 9
Replacement principle, 67
Restricted vertex, 241
Rotationally optimal Steiner ratio, 297
Rotationally optimal uniform orientation

minimum spanning tree problem,
296

Rotationally optimal uniform orientation
Steiner tree problem, 295

3-sausage, 78
Sankoff-Rousseau algorithm, 216
Secondary direction, 96
Secondary material, 96
Service request grade, 287
Shift, 105
Shortcutting, 233
Simpson line, 4

generalised, 282
Sliding lemma, 71

rectilinear, 154
Smallest colour spanning disc, 270
Smith’s algorithm, 21
Soap film construction, 75
Spanning tree in hypergraph, 312
Split-route flow, 283
Square lattice, 57
Star network, 2
Steiner arborescence, 210

344 Index

Steiner arc, 5
Steiner configuration, 63

maximal, 94
Steiner depth, 215
Steiner hull, 26
Steiner point, 2, 7, 89

cross, 71, 152
T-point, 152

Steiner ratio, 23
conjecture, 23
for fixed orientation metrics, 128
rectilinear, 164
rotationally optimal, 297

Steiner topology, 9
full, 9

Steiner tree, 10
Euclidean, properties, 10
full, 10
fulsome, 62
uniqueness, 10
X , 57

Steiner tree problem in graphs, 51, 302
Steiner tree problem in hypergraphs, 315
Steiner vertices, 302
Steinerise, 294
Straight edge, 85, 152, 220
Subset sum problem, 32

T-point, 152
Terminals, 7

cocircular points, 52
constrained to parallel lines, 198
constrained to rectangular lattices, 57
constrained to smooth curves, 53, 202
on rectilinearly convex polygons, 200
position sequence, 194
regular n-gon, 52

Terminating partial full (TPF) component, 55
Three-dimensional gradient-constrained

Steiner tree problem, 231
Three-orientation tree, 132

Topology of a network, 9
Torricelli, E., 2
Transition edge, 116, 159
Transparent vertex, 244
Tree in hypergraph, 312

Underground mine, 229
Unfolding of a polyhedron, 76
Uniform orientation metric, 90
Upper bound pruning tests, 48

Vertex cover, 180
Vertical metric, 220
Viable forest, 261
Virtual terminal, 236
Visibility graph, 234
Voronoi diagram, 257

Wagner trees, 217
Wedge property, 25
Weight function, 278
Weight of an edge, 279
Weight triangle, 280
Weighted equilateral point, 282
Wire length domination, 195
Wire length estimation, 209

netlength models, 209
Wire length vector, 195

minimal, 195
Wireless sensor network (WSN), 273

relay augmentation, 274

Zero-shift, 109, 157
1-point, 109
2-point, 109
complete, 109
fundamental, 109

	Preface
	Structure and Features of the Book
	Background and Supplementary Reading

	Contents
	Symbols
	1 Euclidean and Minkowski Steiner Trees
	1.1 Euclidean Steiner Trees and Local Properties
	1.1.1 The Fermat-Torricelli Problem
	1.1.2 The Steiner Tree Problem
	1.1.3 Topologies and Full Components

	1.2 Algorithms for a Given Steiner Topology
	1.2.1 The Melzak-Hwang Algorithm
	Basic Recursive Algorithm
	Identifying the Side of the Equilateral Point
	Efficient Implementation
	Numerical Issues

	1.2.2 Relatively Minimal Tree for a Given Full SteinerTopology

	1.3 Global Properties of Minimum Steiner Trees
	1.3.1 Minimum Spanning Trees and the Steiner Ratio
	1.3.2 Structural Properties
	The Wedge Property and Steiner Hulls
	The Lune Property
	The Diamond Property
	Bottleneck Steiner Distance Bound
	Four Terminal Edge-Length Bounds

	1.3.3 Computational Complexity

	1.4 GeoSteiner Algorithm
	1.4.1 Top-Level Algorithm
	1.4.2 Enumeration of Equilateral Points, Branchesand Branch Trees
	Equilateral Points and Feasible Subarcs
	Branches and Branch Trees

	1.4.3 Pruning of Equilateral Points/Branches and Full Steiner Trees
	Projections
	The Lune Property
	The Bottleneck Steiner Distance Bound
	Upper Bounds
	Construction and Pruning of Full Steiner Trees
	Numerical Issues
	Use of Data Structures and Overall Performance of FST Generation

	1.4.4 Concatenation of Full Steiner Trees
	The FST Concatenation Problem as a Minimum Spanning Tree Problem in Hypergraphs
	The FST Concatenation Problem as a Steiner Tree Problem in Graphs

	1.5 Efficient Constructions for Special Terminal Sets
	1.5.1 Terminals Constrained to Circles or Curves
	Step 1: Construction of Capsules
	Step 2: Bounding the Number of Full Components That Cross Capsule Boundaries
	Step 3: Enumerating All Relevant TPF Component Topologies in Polynomial Time and Constructing a Minimum Steiner Tree

	1.5.2 Terminals on Rectangular Lattices

	1.6 Steiner Trees in Minkowski Planes
	1.6.1 Steiner Points of Degree 3
	1.6.2 Steiner Points of Degree ≥4

	1.7 Applications and Extensions
	1.7.1 Applications
	1.7.2 Extensions to Higher Dimensions

	Exercises

	2 Fixed Orientation Steiner Trees
	2.1 Fixed Orientation Networks
	2.1.1 Fixed Orientation Metrics
	2.1.2 The Fixed Orientation Steiner Tree Problem

	2.2 Local Properties of Steiner Points
	2.2.1 Steiner Points for Uniform Orientation Metrics
	2.2.2 Steiner Points for General Fixed Orientations
	A Quadratic-Time Algorithm for Constructing All Direction Sets

	2.3 Local Properties of Full Components
	2.3.1 Direction Sets
	2.3.2 Degree 4 Steiner Points
	2.3.3 Zero-Shifts
	Fundamental Zero-Shifts
	General Zero-Shifts

	2.3.4 Canonical Forms

	2.4 Algorithms for a Given Topology
	2.4.1 Linear Programming Formulation
	2.4.2 Algorithms Based on the Canonical Form
	Constant-Time Merging Operation
	A Simple Quadratic-Time Algorithm
	A Linear-Time Algorithm

	2.4.3 Algorithms for Flexibility Polygons

	2.5 Global Properties of Minimum Steiner Trees
	2.5.1 Steiner Ratios
	2.5.2 Generalised Hanan Grid Reduction
	2.5.3 Computational Complexity

	2.6 GeoSteiner Algorithm
	2.6.1 Top-Level FST Generation Algorithm
	2.6.2 Pruning of Branch Trees and Full Steiner Trees
	Direction Sets
	Canonical Forms
	Other Pruning Tests
	Construction and Generation of Full Steiner Trees

	2.7 Applications and Extensions
	2.7.1 Printed Circuit Boards and Channel Routing
	2.7.2 General Routing in Chip Design

	Exercises

	3 Rectilinear Steiner Trees
	3.1 Local Properties of Steiner Points and Full Components
	3.1.1 Basic Definitions and Properties
	Basic Definitions
	Properties of Steiner Points

	3.1.2 Hwang Form for Full Components
	Direction Sets, Primary/Secondary Directions, Zero-Shifts and One Bent Edge
	Canonical Forms
	The Hwang Form

	3.2 Global Properties of Minimum Steiner Trees
	3.2.1 Steiner Ratio
	3.2.2 Hanan Grid Reduction
	Graph Reductions for the Hanan Grid Graph

	3.2.3 Empty Regions
	The Lune Property
	The Empty Rectangle Property

	3.2.4 Bounds on the Number of Full Components
	Worst-Case Upper and Lower Bounds
	Probabilistic Bounds

	3.2.5 Computational Complexity
	3.2.6 Equivalence to Other Problems with a Pair of Fixed Orientations

	3.3 GeoSteiner Algorithm
	3.3.1 Top-Level FST Generation Algorithm
	3.3.2 FST Independent Preprocessing
	Inner Terminal Candidates
	Short Leg Terminal Candidates

	3.3.3 Growing Hwang Form Full Steiner Trees
	Distance Tests (I)
	Long Leg Segment Tests (II)
	Branch Tree Tests (III)
	Type (i) and Type (ii) FST Tests (IV)
	Practical Performance of the FST Generation Algorithm

	3.4 FLUTE Algorithm
	3.4.1 Position Sequence and Wire Length Vectors
	3.4.2 Basic FLUTE Algorithm
	3.4.3 Optimised FLUTE Algorithm
	3.4.4 Enumeration of Minimal Wire Length Vectors

	3.5 Efficient Constructions for Special Terminal Sets
	3.5.1 Terminals Constrained to Parallel Lines
	3.5.2 Terminals on Rectilinearly Convex Polygons
	3.5.3 Terminals Constrained to Curves

	3.6 Applications and Extensions
	3.6.1 Physical Design of Circuits
	Main Steps of Physical Design: Placement and Routing
	Global and Detailed Routing
	Technological Constraints: Design Rules
	The Role of Rectilinear Steiner Trees in Chip Design

	3.6.2 Extensions Motivated by the Physical Design of Circuits
	Wire Length Estimation
	Delay-Driven Routing
	Group Interconnections
	Obstacle-Avoiding Interconnections: Hard and Soft Obstacles
	Other Extensions

	3.6.3 Extensions to Higher Dimensions
	Generalisation of the Hanan Grid Property
	Non-existence of Hwang Forms for Dimensions d ≥3
	Exact Algorithms
	Relation to Phylogenetic Trees, Wagner Trees and Hamming Distance Problems

	Exercises

	4 Steiner Trees with Other Cost Functions and Constraints
	4.1 The Gradient-Constrained Steiner Tree Problem
	4.1.1 Basic Properties of Gradient-Constrained Steiner Trees
	4.1.2 Construction of Gradient-Constrained Steiner Trees
	4.1.3 Applications
	Modelling Underground Mining Networks
	Generalisations of the Planar Model

	4.2 Obstacle-Avoiding Steiner Trees
	4.2.1 Steiner Trees with Polygonal Obstacles
	Obstacle-Avoiding Paths in Minkowski Planes
	Obstacle-Avoiding Steiner Trees in Minkowski Planes

	4.2.2 Obstacle-Avoiding Euclidean Steiner Trees
	4.2.3 Obstacle-Avoiding Fixed Orientationand Rectilinear Steiner Trees
	Obstacle-Avoiding Steiner Trees for Fixed Orientation Metrics
	Reducing the Set of Virtual Terminals for Fixed Orientation Metrics
	Reducing the Set of Virtual Terminals for the Rectilinear Metric

	4.2.4 GeoSteiner Algorithm
	4.2.5 Applications and Extensions

	4.3 Bottleneck and General k-Steiner Tree Problems
	4.3.1 The Generalised k-Steiner Tree Problem
	Notation and Fundamental Definitions
	The Overlaid Oriented Dirichlet Cell Partition
	Updating a Minimum Spanning Tree

	4.3.2 An Algorithm for the Generalised k-Steiner TreeProblem
	The Main Algorithm
	The Minimum F-Fixed Spanning Tree Algorithm
	Implementation Issues

	4.3.3 Bottleneck Steiner Trees for the Euclideanand Other Metrics
	The Bottleneck 1-Steiner Tree Problem in the Euclidean Plane
	The General Bottleneck k-Steiner Tree Problem

	4.3.4 Applications
	Wireless Sensor Networks
	Heuristics

	4.4 Trees Minimising Flow Costs
	4.4.1 Gilbert Networks and Arborescences
	Preliminaries
	Constructing Steiner Points, and the Importance of Concavity
	Characterisation and Degrees of Steiner Points

	4.4.2 Applications and Extensions
	Grade of Service Steiner Trees
	Gradient-Constrained Networks with Flows

	4.5 Related Topics
	4.5.1 Power-p Steiner Trees
	Flow-Dependent Quadratic Steiner Trees

	4.5.2 Node-Weighted Steiner Trees
	Minimum Steiner Point Trees

	4.5.3 Rotationally Optimal Steiner Trees

	Exercises

	5 Steiner Trees in Graphs and Hypergraphs
	5.1 Steiner Trees in Graphs
	5.1.1 Graph Reductions
	5.1.2 Dynamic Programming
	Dreyfus-Wagner Algorithm

	5.1.3 Integer Programming
	Spanning Tree Formulation
	Cut Formulation
	Directed Cut Formulation
	Multi-commodity Flow Formulation
	Relation Between Optimal Solutions to LP-Relaxations
	Other Integer Programming Formulations

	5.2 Spanning Trees and Steiner Trees in Hypergraphs
	5.2.1 Spanning Trees in Hypergraphs
	Backtrack Search
	Dynamic Programming
	Integer Programming

	5.2.2 Steiner Trees in Hypergraphs

	Exercises

	Bibliography
	Index

