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Preface

This volume presents selected contributions from the Fourth Tetrahedron Workshop
on Grid Generation for Numerical Computation, which was held in Verbania, Italy,
in July 2013. The previous editions of this workshop have been hosted by the
Weierstrass Institute in Berlin, Germany, in 2005, by INRIA Rocquencourt, France,
in 2007, and by Swansea University, United Kingdom, in 2010.

The goal of this book is to present recent developments in mesh generation
and adaptation, with emphasis on applications to different fields of interest in
science and engineering. Mesh generation is a crucial aspect of numerical simulation
of problems governed by partial differential equations. Almost all discretization
methods for this large class of problems rely on partitioning the computational
domain into a set of elements that form a tessellation of the domain of interest. These
elements are used either to define the support of the basis of the approximating space
(in finite element or spectral element formulations) or as the basic unit for the setup
of the discrete problem (as in a finite volume framework).

As a consequence, their shape and distribution may considerably affect the
quality and accuracy of the numerical solution. One of the issues tackled in this
book is how to efficiently generate a mesh that ensures a certain bound of the error
between the exact solution and a corresponding discretization. This is normally
accomplished by resorting to either a priori or a posteriori bounds relating the
discretization error to the element size, shape, and orientation, often through the
definition of a solution-dependent metric.

Things are even more difficult when dealing with realistic three-dimensional
domains, whose boundary can be extremely complex and non-planar. In such cases,
the control of the error induced by the discretization of the physical boundary is
also demanded. Thus, the generation of good surface meshes and the control of
mesh quality near the domain boundary become crucial tasks.

Another more practical issue is how to generate or adapt the mesh in an
automatic and computationally efficient manner. Since mesh generation is often one
of the most time-consuming issues in simulations applied to engineering problems,
research on this topic is of great importance for real-life applications and deserves
methodical investigation.

v



vi Preface

With the contributions in this book, we cover different, though related, aspects in
the field of mesh generation and adaptation: the generation of quality grid for com-
plex three-dimensional geometries, with some contributions on parallel techniques;
mesh adaptation, addressing both theoretical and implementation aspects; and mesh
generation and adaptation on surface — all with an interesting mix of numerical
analysis, computer science, and strongly applicative problems.

It was the intention of the editors and organizers of the workshop to bring
together mathematicians, engineers, and industrial researchers. This explains the
variety of the contributions, which, in our opinion, gives added value to this work.
The book is thus addressed to the numerical analysis and scientific computing
community as well as to industrial researchers or software engineers who wish to
keep abreast of the state of the art in the field of mesh generation and adaptation.

We wish to acknowledge the institutions and companies that have supported the
workshop and thus made possible the production of this monograph: the Comune
di Verbania, the Istituto Nazionale di Alta Matematica “F. Severi” (INDAM), the
Department of Mathematics of Politecnico di Milano and, in particular, its labo-
ratory for Modeling and Scientific Computing (MOX), Springer Italy, MOXOFF
S.r.L., and Beta CAE System. The workshop was held under the auspices of Società
Italiana di Matematica Applicata e Industriale (SIMAI).

Special thanks are also due to Laura Guarino and Anna Rho of the EventiMate
staff of the Department of Mathematics of Politecnico di Milano for their precious
help in organizing the event.

Milan, Italy Simona Perotto
September 2014 Luca Formaggia
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Implicit Boundary and Adaptive Anisotropic
Meshing

Thierry Coupez, Luisa Silva, and Elie Hachem

Abstract Implicit boundary means that the boundaries and/or interfaces between
domains are not anymore defined by an explicit boundary mesh but rather by an
implicit function. It is the case with embedded boundary methods or immersed
boundary methods. Here we consider a filtered level set methods and meshing is
then performed using an anisotropic mesh adaptation framework applied to the level
sel interpolation. The interpolation error estimate is driving the adaptive process
giving rise to a new way of boundary recovery. The accuracy of the recovery process
depends then on the user given parameter, an arbitrary thickness of the interface. The
thickness is normally related to the mesh size, but it is shown that adaptive meshing
enables to reverse this condition: fixing the thickness parameter and accounting for
the adaptation process to fulfill the mesh size condition. Several examples are given
to demonstrate the potential of this approach.

1 Introduction

Numerical simulation is still strongly depending on the meshing capabilities of
complex geometry and especially in fmulti-domain, multi-physics, fluid structure
interaction and multiphase flow applications. One of the drawback of the common
usage in multi-domain meshing is to remain on the constraint of enforcement of
the boundary or interface meshes in the volume mesh. This task becomes more
and more difficult in computational mechanics when one wants to use a posteriori
adaptive meshing or/and dealing with boundary layers.

The alternative proposed in this paper is to consider an implicit representation
of the boundary. It means the boundary is not given anymore by a surface mesh
or any explicit representation but implicitly by a scalar field which value can be
accessed anywhere in the domain of calculation. For instance it can be the distance
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2 T. Coupez et al.

to the boundary and therefore the zero-value of this distance function is defining the
position of the boundary.

In fact, we can vary the choice of the implicit function. In this paper, we propose
to use a composition of the distance function with an hyperbolic tangent. The latter
enables to filter in a smooth way the distance function to a narrow band around the
targeted boundary. The thickness of the narrow band is central to the paper, giving
rise to the proposed theory of implicit boundary as the meshing counterpart of the
embedded or immersed volume method.

The second fundamental idea of the proposed approach, is to interpolate the
implicit function within meshes and to rely to an adaptive process based on an a
posteriori interpolation error framework to improve its representation. Anisotropic
meshing is a particularly powerful tool to do this task in an very efficient way.
The result is an optimal capture of the interfaces within the mesh, whatever is the
complexity of the geometrical configuration. However, surface meshes do not exist
anymore, and numerical methods (flow or solid solvers. . . ) need to account for a
new paradigm.

Eventually, this approach becomes universal once the flow solver (as well as
the structure solver) can afford with anisotropic meshes and implicit boundary
representation as it is the case with the immersed volume method.

Immersed methods for Fluid Structure Interaction (FSI) are gaining popularity
in many scientific and engineering applications. Different approaches can be found
such as the Embedded Boundary method [1], the Immersed Boundary method [2],
the fictitious domain [3], the Immersed Volume method [4–6] and the Cartesian
method [7]. All these methods are attractive because they simplify a number of
issues in Fluid-Structure applications, such as meshing the fluid domain, using a
fully Eulerian algorithm, problems involving large structural motion and deforma-
tion [8] or topological changes [9].

However, they use non-body fitted grids which require special interface treat-
ments. Indeed, recent developments are focusing on issues related to the immersion
of a surface mesh for complex 3D geometries: the detection and the intersection
algorithms for the interface and finally the transmission of boundary conditions
between the solid and the fluid regions. In particular, these methods appear to be
limited by the quality and the accuracy of the surface mesh description of a given
immersed solid.

It is claimed in this paper that these methods can be as accurate as classical
explicit boundary methods, once the thickness parameter is small enough. Moreover,
the thickness parameter can be chosen small a priori in order to meet the accuracy
threshold because anisotropic adaptation enables to build the required meshes able
to render interfaces which thickness remains as small as desired.

The proposed technique is the present achievement of research started earlier.
Our meshing engine is based on local modification and a minimal volume principle
first proposed in [10–12] and fully proven latter in [13]. The first idea about meshing
geometries with multiple interfaces by using an anisotropic adaptive framework has
been proposed in [14]. However, the technique proposed in this work was quite
complex because of the VOF like method used to define implicitly the geometries.



Implicit Boundary and Adaptive Anisotropic Meshing 3

Nowadays, we rely on the level set method to represent the various domains, the
solid ones as the moving and deformable ones, all together in a single mesh [15,
16]. Combined with anisotropic mesh adaptation, it provides an attractive immersed
framework.

The anisotropic techniques behind the proposed work are based on our recent
theoretical framework with a metric field constructed directly at the node of the
mesh without any direct information from the element, neither considering any
underlying interpolation [17]. It introduced the basic idea of length distribution
function approximated by a second order tensor constructed by gathering the edges
at the node. The error is only calculated along and in the direction of each edge.
The mesh construction is controlled by the total number of mesh nodes aimed in the
simulation and a robust improvement has been done on that matter in [18], where
extension to vector field and multi-components objective can be also found in [19]
with a first application to high Reynolds flow and a first clue on possible boundary
layers automatic capturing.

The paper is structured as follows. Section 2 presents the details of the immersed
technique. Section 3 describes the used error estimator for anisotropic mesh
adaptation. In Section 4 several numerical examples are used to highlight the
capability of the approach. Finally, conclusions and perspectives are given in Sect. 5.

2 Implicit Boundary

2.1 Immersed Subdomain and Regularisation

Let us consider a domain ! totally included in the larger one,˝ . It will be said that
! is immersed into˝ . However, it is not a limitation, but it simplifies the following
presentation.

More precisely, if � D ı! is its boundary, immersion means that ! \ ˝ D !

and � \˝ D � .
From a geometrical view point, ! is fully defined by the complete knowledge

of its boundary. The implicit view point is to represent the domain by an implicit
function. For instance, the immediate candidate is the signed distance function:

˛ D Nd.x; � / D
(

d.x; � / if x 2 !
�d.x; � / if x … ! : (1)

Reciprocally, the interface is completely defined by the zero value of the distance
function and thus, to know the domain ! is equivalent to know the scalar field
spanned by the distance function that is defined everywhere in the larger domain˝ .
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From ˛, we can calculate the Heaviside function by:

H.˛/ D
(
1 if ˛ > 0

0 if ˛ < 0
; (2)

and thus, H.˛.x// D 1!.x/, the characteristic function associated with !.
The Heaviside function enables to separate strictly the domains, but the counter-

part is to reintroduce the discontinuity which has been left by the use of an implicit
function. It is why an important ingredient of the proposed approach is to introduce
a regularization process. Let us consider the following implicit function:

u� D u.˛; �/ D � tanh.˛=�/: (3)

It enables to introduce a thick interface which thickness is related to the parameter
�. Moreover, u� gives us a way to define a smooth truncation of the distance function
allowing to introduce a narrow band of thickness � and in which u� is approximating
the distance function when ˛ is small (i.e.: ˛ << � and beyond it takes a constant
value �).

The smoothed Heaviside function can be introduced as well by:

H� D 1

2
.1C u�

�
/: (4)

In fact, the regularized Heaviside function is about the distance function in the
vicinity of the interface. Indeed, we have the following:

u0�.˛/ D 1 � tanh.
˛

�
/2 D 1 � .

u�
�
/2 and u�.˛/ D u�.0/C u0�.0/˛ CO.˛2/

therefore u�.˛/ � ˛ when ˛ << �: (5)

Remark 1 lim�!0 H� �! H , and it means that, in the case of the true modeling, it
is well in the limit of the regularized model, the basic idea is now to design a method
in which the regularization parameter can be small enough to attain a satisfying
accuracy.

Remark 2 The zero-value of the distance function and those of the implicit scalar
u� are strictly the same whatever the value of � is. Thus, varying the value of � will
not change the background geometrical representation but only its vicinity.

Remark 3 Knowing the distance function, it easy to build the scalar field u� . But, in
fact, knowing only the zero value (the interface position), it is possible to rebuild the
scalar field everywhere by solving an hyperbolic equation. Indeed, because u0�.˛/ D
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1 � . u�
�
/2, then u� is the solution of following equation:

8̂<
:̂
@u

@�
D s.u/.jruj � .1 � .u

�
/2//

u.� D 0/ D 0 on �

(6)

where s.u/ denotes the sign of u.

2.2 Interface Thickness

The smoothed Heaviside function is useful for dealing with the multiphase modeling
required by the implicit boundary approach. Let us introduce the material scalar
field � from the material parameters �1 and �2 occupying two domains sharing an
interface � implicitly defined by the signed distance function ˛.

� D �1H.˛/C �2.1 �H.˛//: (7)

This represents a strict discontinuous variation of the global scalar field and it is
not tractable by any standard numerical method without care and adjustment. But if
we consider the regularized version of this mixture law, we get a smooth transition
which is controlled by the thickness parameter, for instance:

�� D �1.1 � u�/=2C �2.1C u�/=2: (8)

In fact, any kind of mixture is possible under the condition that lim�!0 �� �!
�. The regularization can be done for all material parameters replaced by material
fields varying everywhere in the global domain. We will admit in the sequel that the
regularized model gives solutions which are close approximations of the solution of
the original discontinuous model.

2.3 Smoothness and Interpolation Error

u� is a smooth function, at least a continuous function which represents exactly the
background geometry since:

� D fx; u�.x/ D 0g ;8� � 0

� does not depend on �. Thus, � can be retrieved from u� for any �. Let
us consider an unstructured mesh of ˝ and a simple P1 Lagrange interpolation
uh� of u� .

U i D u�.X
i / D uh� .X

i /
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where
˚
Xi ; i 2 N

�
are the vertexes of the triangulation and uh� jK 2 P1.K/,K being

any element of the mesh.
The main idea of this paper is to construct the geometrical mesh of the sub-

domain ! as the adapted mesh of its associated interpolated implicit function, uh� by
using the interpolation error theory. The boundary is still given by the zero value of
the approximated function and the accuracy of the geometrical representation is of
the same order of one given by a surface triangulation (it is also an interpolation, the
nodes being chosen on the boundary).

Figures 1 and 2 show the obtained function uh� and the adapted meshes for
different values of �, the captured interface being the corner depicted by the centered
plotted contour. It is clear that � does not change from case to case. Note that in the

Fig. 1 From top left to bottom right: uh� for different values of the thickness � 2
f1; 0; 01; 0; 001; 0; 0001g
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Fig. 2 The optimal anisotropic meshes at a constant number of nodes for different values of the
thickness � 2 f1; 0; 01; 0; 001; 0; 0001g

first sub figure, for (� D 1), we have the exact level set function and the mesh is
totally changing with it. Therefore, the smaller is the thickness parameter, the closer
is uh� to the characteristic function of !. However, the smoothness near the interface
is still there but enclosed in a narrow band and becomes non visible.

An important remark appearing clearly from these figures is that such a singu-
larity (the inner corner) is well regularized by the use of a distance function outside
the domain, the function being infinitely derivable, but the singularity is propagated
inside, since only continuity is preserved. In fact, it depends on the convex, concave
local properties of the contour. Consequently, the use of a small thickness parameter
enables to constrain the geometrical singularity in such a thin region.
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3 Anisotropic Mesh Adaptation

In this section, we will see how to make a mesh by using the interpolation error
analysis, and thus doing a geometrical mesh by adaptation on the implicit scalar
field of the previous section. We recall first, the main features of the anisotropic
meshing approach using a posteriori estimates relying on the length distribution
tensor approach and the associated edge based error analysis as developed in [17].

3.1 Edge Based Error Estimation

We consider u 2 C 2.˝/ D V and Vh a simple P1 finite element approximation
space:

Vh D ˚
wh 2 C 0.˝/;whjK 2 P1.K/;K 2 K

�
where˝ D S

K2K
K andK is a simplex (segment, triangle, tetrahedron, . . . ).

We define X D ˚
Xi 2 R

d ; i D 1; � � � ; N � as the set of node coordinates of the
mesh and we denote by U i the nodal value of u at Xi and define uh in unique way
by the Lagrange interpolation operator˘h from V to Vh as:

uh.Xi / D .˘hu.Xi / D u.Xi / D U i ; 8i D 1; � � � ; N:

The set of nodes connected to node i is denoted by

� .i/ D fj ; 9K 2 K ; i; j 2 Kg :

We introduce the edge vector by: Xij D Xj � Xi and the variation of u within the
edge by U ij, as plotted on Fig. 3.

Fig. 3 Edge vector Xij

joining nodes i to j .
U ij D U j � U i , the variation
of u over the edge
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We first remark that:

ruh � Xij D U ij ; (9)

and using the analysis carried in [17], we can set the following results:

jj ruh � Xij„ ƒ‚ …
U ij

�ru.Xi/ � Xijjj � max
Y2ŒXi ;Xj �

jH.u/.Y /Xij � Xijj ; (10)

where H.u/ D r.2/u is the associated Hessian of u. Recall that taking u 2 C 2.˝/,
we obtain ru 2 C 1.˝/.

Applying the interpolation operator on ru and using (9), we obtain a definition
of the projected second derivative of u in terms of only the values of the gradient at
the extremities of the edge:

rghXij � Xij D gij � Xij (11)

where rgh D ˘hru, gi D ru.Xi / and gij D gj � gi .
Using a mean value argument, we set that:

9y 2 Œxi ; xj �jgij � Xij D H.u/.Y /Xij � Xij :

We use this projection as an expression of the error along the edge:

eij D gij � Xij: (12)

However, this equation cannot be evaluated exactly as it requires that the gradient
of u be known and continuous at the nodes of the mesh. For that reason, we resort
to a gradient recovery procedure.

3.2 Gradient Recovery

Based on an optimization analysis, the recovery gradient operator proposed in [17]
is defined by:

Gi D .Xi /�1
X
j2� .i/

U ijXij (13)

where X
i D d

j� .i/j
P

j2� .i/
Xij ˝ Xij is the length distribution tensor at node Xi . Note

that such a reconstruction preserves the second order:

ˇ̌�
Gi � gi

� � Xij
ˇ̌ � �

H.u/Xij � Xij
�
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where Gi is the recovered gradient at node i [given by (13)] and gi is the exact
value of the gradient at node i .

The error is evaluated by substituting G by g in (12):

eij D Gij � Xij:

3.3 Metric Construction from the Edge Distribution Tensor

Taking into account this error analysis, we construct the metric for the unit mesh as
follows:

M
i D

0
@ d

j� .i/j
X
j2� .i/

Xij ˝ Xij

1
A
�1

:

For a complete justification of this result, the reader is referred to [17].

3.4 Error Behavior Due to Varying the Edge Length

In this section, we introduce a new way to enforce the number of nodes N and
we propose a novel approach to compute the stretching factor without using the
dimensional parameter p as was proposed in [17]. First, we start by examining how
the error behaves when we change the length of the edges by stretching coefficients

S D ˚
sij 2 R

C ; i D 1; � � � ; N ; j D 1; � � � ; N ; � .i/ \ � .j / ¤ �
�
:

In order to obtain a new metric depending on the error analysis, one has to calculate
first a new length for each edge and then use it to rebuild the length distribution
tensor. An interesting way of linking the error variations to the changes in edge
lengths is by introducing a stretching factor s 2 R such that

� fXij D sXij

jjeeijjj D s2jjeijjj D s2jjGij � Xijjj (14)

where eeij and fXij are the target error at edge ij and its associated edge length.
Following the lines of [17], we can simply define the metric associated with S by:

f
M
i D j� .i/j

d

�e
X
i
��1

(15)
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Fig. 4 Varying the edge in
its own direction

where

e
X
i D d

j� .i/j
X
j2� .i/

s2ijX
ij ˝ Xij

is the length distribution tensor. Let nij be the number of created nodes in relation
with the stretching factor sij and along the edge ij. When scaling the edges by a factor
sij, the error changes quadratically so that the number of created nodes (number of
sub-edges as shown in Fig. 4) along the edge ij is given by:

nij D
�eeij

eij

	 1
2

D s�1ij :

Here, eeij denotes the induced error for edge fXij.
Giving the number of nodes (or sub-edges) created along the current edge, it is

possible now to build a tensor of distribution of number of nodes in all directions at
node i , Ni , by solving the following optimization problem:

min
i

X
j2� .i/

jNi � Xij � nijXijj2

and from which we can calculate the number of nodes around it by:

ni D det.Ni / D det

0
@.Xi /�1 X

j2� .i/
nijXij ˝ Xij

1
A :

By considering the averaging process of the number of nodes distribution
function, the total number of nodes in the adapted mesh is given by:

N D
X
i

ni :
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Assuming a uniform totally balanced error along the edge, eeij D e is constant, we
get a direct relation between N and e as follows:

nij.e/ D s�1ij .e/ D
�eeij

eij

	� 12
:

For a node i we have

ni .e/ D det

0
@.Xi /�1 X

j2� .i/
nij.e/

1
A

with

ni .e/ D e
2
d ni .1/

so that

N D e
2
d

X
i

ni .1/:

Hence, the global induced error for a given total number of nodes N can be
determined by:

e.N / D
0
@ NP

i

ni .1/

1
A

2
d

: (16)

Therefore, the corresponding stretching factors under the constraint of a fixed
number of nodes N are given by:

sij D
� eeij

e.N /

	� 12
:

3.4.1 Extension to Multi-Component Field

Here, we propose to construct a unique metric directly from a multi-component
vector field containing, for instance, all the components of the velocity field and/or
different levelset functions of the immersed solids. Consequently, we do not need
to intersect several metrics but construct it using the following error vector: eij Dn
e1ij; e

2
ij; � � � ; enij

o
.

Let us introduce u D fu1; u2; � � � ; ung,

Z D V 	 V 	 � � � 	 V
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and

Zh D Vh 	 Vh 	 � � � 	 Vh:

In the view of constructing a unique metric, we choose to apply the above theory for
each component of u. It comes out immediately that the error is now a vector given
by the following expression:

�!eij D ˚
e1ij; e

2
ij; � � � ; enij

�
and then

sij D
 

jjeeijjj
jj�!eij jj

! 1
2

:

Here, the norm can be L2, L1 or L1. In the following numerical experiments, we
used the L2 case to compute the error.

3.5 Application to the Velocity Field and to the Levelset
Function

Let vh.Xi / D V i 2 R
d ; d D 2; 3 be the finite element solution of the Navier–

Stokes equations. We introduce the vector field Y D
�
v
jvj ;

jvj
max.jvj/ ;

u�
�

�
made of

dC1 component vector fields. Recall that ˛ is the level set function used to localize
an immersed body. We obtain then for every node i ,

˘hY .Xi / D
�
V i

jV i j ;
jV i j

max.jV i j/ ;
U i
�

�



D Y i :

Obviously, the case jvj D 0 must be accounted for by using V i

max.jvi j;"/ with " �
10�6 chosen as a small value so that Y i

k D 0 when jvi j D 0.
Using the vector Y i , the adaptivity will now take into account, using one unique

metric, the variations in the velocity directions, the velocity norm and the levelset
functions. Indeed, the adaptivity will focus mainly on the change of direction rather
than the intensity of the velocity. Consequently, and as presented by the numerical
results in the following section, even the small vortices developed by the solution
will be very well captured. What is even more interesting is the capability of the
method to automatically detect the boundary layers at the fluid-solid interfaces due
to the anisotropically adapted mesh exhibiting highly stretched elements. Finally,
we recall that we use a mesh technique (MTC) based on the local modification and
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the conformity control through the theorem for minimal volume preserving. This
was introduced in [20] and extended to anisotropic mesh adaptation in [17, 21].

4 Applications

The performance of the implicit boundary method will be assessed using several 2D
and 3D examples. First we show that combining the new immersed method with
anisotropic mesh adaptation can lead to a novel, efficient and flexible immersed
framework able to handle simple and very complex geometries. Then, we combine
it with flow solvers based on a stabilized finite element method [22] to simulate
complex multiphase flows and fluid structure interaction problems. Moreover, to
calculate the interface motion and deformation, we use the convected levelset
method proposed earlier in [23].

4.1 Flow Past a Cylinder and a Sphere

First, we revisit two well-known examples using the new implicit boundary method:
the flow past a cylinder and a sphere. We immerse the cylinder and the sphere inside
a unit fluid domain. To represent the immersed geometries, we compute the distance
functions for the circle and the sphere using simple analytical functions. We set the
thickness to � D 0:0001 and we use the smoothed Heaviside function given in (2)
to mix the physical properties between the solid and the surrounding fluid.

Figure 5 shows the evolution of the implicit representation of the circle. Indeed,
by simulating the flow past the circle and applying the anisotropic mesh adaptation,
the implicit boundary representation evolves automatically and improves. The mesh
is adapted dynamically and the whole process converges to the exact representation
of the circle. The smaller the thickness is, the more the regularized interface will
be close to the exact representation. Moreover, Fig. 6 shows the flow characteristics
past the cylinder and the sphere. All the boundary layers at the interface and the

Fig. 5 The distance function of the immersed circle and the obtained adapted mesh at different
time steps
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Fig. 6 Snapshots of the adapted mesh for the flow past a circle (up) and a sphere (bottom)

Fig. 7 Snapshots of the adapted mesh around a F1 car

flow detachments in the wake are captured automatically. This again highlights that
combining both the implicit representation with anisotropic mesh adaptation leads
to an attractive immersed framework (Fig. 6).

4.2 Flow Past a 3D Formula One Car

The objective of the second example is to show the performance of the anisotropic
meshing on real applications. Indeed, combined with flow solvers it allows to easily
and accurately deal with complex fluid structure interaction problems. Therefore,
we consider a turbulent flow past an immersed F1 car. This 3D computations have
been obtained using 64 2.4 GHz Opteron cores.

Figure 7 shows the evolution of both the implicit representation of the immersed
car and the surrounding velocity fields. Note the concentration of the resolution
along all the boundary layers. The zoomed snapshots, in particular close to the
wheels, highlight the capability of the proposed implicit boundary method. This
reflects well the anisotropy of the solution caused by the discontinuity of the



16 T. Coupez et al.

boundary conditions and the nature of the flow. Taking a closer look at the mesh
near the interfaces, we can detect the good orientation of the elements with the
stretching in the right direction. This demonstrates the ability of the algorithm to
work under the constraint of a fixed number of nodes and to effectively control the
element sizes, orientations and locations.

The elements far from the immersed solid are mostly isotropic and increase in
size as the velocity gradient decreases. Again, this reflects and explains why, for a
controlled number of nodes, the mesh is naturally and automatically coarsened in
that region with the goal of reducing the mesh size around the boundaries and in the
wake regions.

4.3 3D Multiphase Flow

In this section, we test the implicit immersed method on a complex multiphase flow
problem: the falling drop simulation. The simulation of a droplet of water falling
on a flat surface of water is commonly used to demonstrate the capability of a
multiphase flow solver. Indeed, handling the true viscosities of water and air and the
high ratio of the densities, determine the ability of the implemented Navier–Stokes
solver.

Figure 8 shows clearly the splash-back resulting from the water droplet impacting
on the flat water surface. A very important feature of this simulation is the physical
effect of the surface tension. To take it into account in the proposed framework, it
was necessary to introduce a Dirac force depending on the local curvature of the
implicit air-water interface. A smooth Dirac function is then given directly by the

Fig. 8 The impact of a falling droplet into water
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derivative of the regularized Heaviside function given in (4) and the curvature is
obtained by using the recovered gradient operator of uh� described in (13).

As expected, the use of anisotropic adapted meshing is important to capture all
the pattern formations. A closer look at the interface shows the right orientation and
deformation of the mesh elements (longest edges parallel to the boundary). This
yields a great reduction of the number of triangles and consequently a reduction in
the computational costs. Once again the results prove that the implemented method
works well and shows that combining the new immersed method with anisotropic
mesh adaptation lead to a very practical tool for immersed methods.

5 Conclusions

One of the drawback in automatic meshing and even more in the adaptive meshing is
the treatment of the surface boundary in a volume mesh. Explicit boundary meshing
is referring to methods for which the boundary must be given as a surface mesh
which constrains the volume mesh construction, i.e.: surface faces must be face
of volume elements. The alternative which has been proposed in this paper is to
consider an implicit representation of the boundary. The boundary is given with
the help of an implicit function and a composition of a hyperbolic tangent and the
distance function. This implicit function enabled to introduce a scalar field which is
defined everywhere in the domain of calculation. Its zero-value defines the position
of the boundary. This is a common way to define interfaces in embedded boundary
methods or immersed volume ones. Several 2D and 3D examples were given
and show that using the interpolation error analysis and the anisotropic meshing
machinery based on the edge error analysis and length distribution tensor metrics
were able to solve various adaptive meshing multi-domain problems with complex
geometrical representations. In such a strategy, both the geometrical representation
and the flow pattern are solved in a unique loop of adaptation leading to a very new
way of making complex applications without user intervention in the entire process
of meshing.
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A Curvature-Adapted Anisotropic Surface
Re-meshing Method

Franco Dassi and Hang Si

Abstract We present a method for re-meshing surfaces in order to follow the
intrinsic anisotropy of the surfaces. In particular, we use the information related to
the normals to the surfaces, and embed the surfaces into a higher dimensional space
(here we embed the surfaces in a six-dimensional space). This allows us to settle an
isotropic mesh optimization problem in this embedded space: starting from an initial
mesh of a surface, we optimize the mesh by improving the mesh quality measured
in the embedded space. The mesh is optimized by properly combining common
local mesh operations, i.e., edge flipping, edge contraction, vertex smoothing, and
vertex insertion. All operations are applied directly on the three-dimensional surface
mesh and the resulting mesh is curvature adapted. This new method improves the
approach proposed by Lévy and Bonneel (Variational anisotropic surface meshing
with Voronoi parallel linear enumeration. In: Proceedings of the 21st International
Meshing Roundtable, pp. 349–366. Springer, New York, 2013), by allowing to
preserve sharp features. The reliability and robustness of the proposed re-meshing
technique is shown via a number of examples.

1 Introduction

Surface mesh generation is a central topic in computer visualization, geometry
processing, and numerical simulation. Many computational applications involve
triangulation of a complex surface geometry. The main challenge is to automatically
generate a surface mesh which satisfies various criteria with respect to geometry
approximation such as mesh size and mesh quality.

The goal of the current work is to generate a surface mesh which well
approximates the geometry of the surface and with a number of elements as small
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Fig. 1 The best approximation of a surface (shown in the middle) should consist of mesh elements
of different size, shape, and orientation that respect the principle curvatures of that surface

as possible. For this purpose, we aim at modifying the mesh in order to get a
new mesh whose elements are adapted according to the curvature of the surface.
Intuitively, more curved regions of the surface will contain small elements and a
dense vertex sampling, while almost flat regions will have large elements with more
sparse vertices. Using only isotropic elements may be far from optimal for these
purposes. However, an anisotropic mesh, i.e., a mesh with stretched elements, could
offer a better “number of elements vs geometry fitting” behavior. Figure 1 shows an
example of an anisotropic mesh.

In this paper, we propose a new method for re-meshing 3d surfaces based on the
idea of higher dimensional embedding [8, 32, 34]. We use the information related to
the normals to the surface, and we embed the surface into R

6. Our method directly
optimizes a two-dimensional triangular mesh of the surface embedded in R

6 in such
a way that its triangles are as uniform as possible in R

6. Thus, the resulting mesh
will be a curvature-adapted anisotropic surface mesh. This method has the following
properties:

• The core operation of this method is a uniform re-meshing of a surface. It fits the
well-developed mesh adaptation strategies. It is possible to use any optimization-
based isotropic surface re-meshing method.

• It can handle arbitrary complicated geometries and topologies, as well as a very
strong anisotropy.

• It automatically preserves sharp features, corner and edge singularities.
• It is robust. For instance, the initial mesh can be very coarse or crude in geometry

approximation.
• It is easy to implement.

This paper is organized as follows: Sect. 2 presents the background about
anisotropic meshes and reviews the related works on anisotropic surface re-meshing.
In Sect. 3, the main idea of the embedding space is introduced. The proposed method
is described into the details in Sect. 4. Some experimental results of re-meshing
surfaces from implicit functions and on a surface containing sharp features are
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shown in Sect. 5. Finally, a summary of the proposed method and an outlook of
future works are given in Sect. 6.

2 Background and Related Work

In this section we describe the basic idea behind anisotropic mesh adaptation, then
we provide the state of art about surface re-meshing.

2.1 Anisotropic Meshes

Many physical problems exhibit anisotropic features, i.e., their solutions change
more significantly in one direction than others. Examples include in particular
convection-dominated problems whose solutions have, e.g., layers, shocks, or corner
and edge singularities. Anisotropic meshes have great importance in numerical
methods to solve partial differential equations. They improve the accuracy of the
solution and decrease the computational cost.

Anisotropy denotes the way distances and angles are distorted. It is naturally
related to approximation theory and it is important in function interpolation [10,
21, 39, 42, 43]. For a smooth function, the anisotropy is best characterized by
the Hessian of that function. In practice, a central question is how to efficiently
distinguish the anisotropy of a given problem. Another important question is how to
characterize the anisotropy in a such a way that an optimal mesh for a given problem
can be defined. These are all difficult questions and are active research subjects.
In practice, a Riemannian metric tensor field (either provided or automatically
derived) is used to guide the generation of anisotropic meshes [19, 27, 37, 38].
Mesh adaptation has been proven an efficient way to capture the anisotropy, see,
e.g., [14, 21, 22].

2.2 Related Works

Surface re-meshing has been an active research subject for nearly two decades, see
a nice survey given by Alliez et al. [3]. Most of the early methods work either in
a 2d parameterization space or directly in the 3d space, and their focus is to create
isotropic 3d surface meshes. Many recent methods have been developed for creating
anisotropic surface meshes. In the following, we give an overview of works which
are more related to ours. More complete surveys are available [6, 44].
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2.2.1 Curvature Evaluation and Reconstruction

Heckbert and Garland [24] proposed a quadric-based metric tensor for surface
simplification. It is defined for each vertex of the mesh and uses the face normals
around it. They showed that this metric is directly related to surface curvature.
Jiao et al. [28] used this metric to derive a Riemannian metric field for anisotropic
surface mesh adaptation. The method of Alliez et al. [1] first constructs a curvature
tensor field from a given polygonal surface mesh by estimating the curvature tensor
at every vertex. Then, they trace lines along the principle curvature directions
from which an anisotropic mesh can be obtained. These methods, which rely on a
reconstructed metric tensor field, are very suitable for re-meshing polygonal meshes
whose original geometry is not available. As we will show in Sect. 3, for surfaces
whose geometry is accessible, such as implicit functions and CAD models, there is
a natural way to perform a surface re-meshing that respects the curvature without
using a reconstructed metric tensor field.

2.2.2 Delaunay Refinement Based Methods

Voronoi diagrams and their dual Delaunay triangulations are fundamental data
structures and have several applications [4]. The so-called restricted Voronoi
diagram (RVD) and restricted Delaunay triangulation (RDT) are their general-
ization to surfaces [18]. Cheng et al. proposed to generate an anisotropic RDT
from a 3d anisotropic RVD [11, 31]. Although their concept is valid in theory,
it remains a big challenge in practice to ensure that the dual of an anisotropic
RVD admits a valid triangulation. Boissonnat et al. [5] proposed the notion of
locally uniform anisotropic Delaunay meshes, and proposed a practical Delaunay
refinement algorithm to generate an anisotropic RDT of a surface with respect to
a given metric tensor field [6]. By using the curvature tensor of the surface, this
algorithm is able to produce a curvature-adapted anisotropic mesh of the surface.
However, a fundamental difficulty of Delaunay refinement based algorithms is that
it does not respect sharp features. Cheng et al. [12] showed that sharp features
can be respected by using weighted restricted Delaunay triangulations. However, to
efficiently obtain the appropriate weights remains a challenging problem.

2.2.3 Centroidal Voronoi Based Methods

A Centroidal Voronoi Tessellation (CVT) is a particular type of Voronoi diagram
such that its generating points coincide with the centroids (center of mass) of
its Voronoi cells. It has a highly regular structure such that the RDT obtained
from it will have well-shaped triangles. It has been applied in many applications
including surface mesh generation [2, 16, 35]. Efficient algorithms are proposed
to generate CVTs [36]. It has been further generalized to anisotropic CVT with
respect to a Riemannian metric tensor field [15], and an anisotropic RVD on surfaces
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can be defined. However, a more theoretical analysis is needed in understanding
anisotropic CVTs, and it remains a challenge to efficiently generate them. Lévy
and Bonneel [34] proposed a novel approach to compute CVT in higher dimensions.
They used it to generate anisotropic curvature-adapted surface meshes. However, it
does not preserve sharp features. Our method is inspired by the idea of Lévy and
Bonneel in [34], and it can easily preserve sharp features.

3 Surface Embedding in R
6

The re-meshing method proposed in this paper is inspired by the method of Lévy
and Bonneel [34]. The basic idea is pioneered by Cañas and Gortler and
Lai et al [8, 32] and is originated in the application of feature characterization [41]
from image processing [29]. It treats the anisotropy by increasing the dimensions
such that it becomes an isotropy in a higher dimensional space: an isotropic mesh in
a higher dimensional space will correspond to an anisotropic mesh in the lower
dimensional space (see Fig. 2). This concept has been successfully applied in
generating curvature-adapted surface meshes [30, 34].

For a smooth surface, it is natural to consider the unit normals defined on surface
points as the components of the codimension, i.e., using the components of the
Gaussian map of the surface. Given a surface˝ in R

3, one can embed it into R
6 by

using the embedding: ˚ W ˝ ! R
6 defined by: ˚.x/ D Œx; y; z; s nx; s ny; s nz�

t ,
where .nx; ny; nz/

t denotes the unit normal to ˝ at x, and s 2 Œ0;C1/ is a user-
specified constant. This embedding ˚ allows us to approximate the geodesic edge
lengths in ˝ by the Euclidean edge lengths in ˚.˝/. Each edge length in ˚.˝/ is
determined by two parts: its Euclidean length in R

3 and the variation of the normals
at its endpoints, scaled by the parameter.

By this transformation, in flat regions of˝ , the lengths of edges remain the same
in˚.˝/. While in regions which have high curvatures, the lengths of edges in˚.˝/
become much larger than theirs in R

3. Since the distance in R
6 are affected by the

Fig. 2 An isotropic mesh in R
3 (left) and the corresponding anisotropic mesh in R

2 (right). This is
a very representative picture of the idea behind the higher dimension embedding proposed in [34]
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normals, an isotropic mesh of the surface ˚.˝/ in R
6, when transformed back into

R
3, will become a curvature-adapted anisotropic mesh of ˝ .
By embedding a surface in higher dimensions motivates the new problem: How

to generate an isotropic good quality surface mesh in this embedding space? In
principle, a direct generalization of available methods in 3d is possible. But this will
be impractical due to the dŠ cost of memory requirement.

Lévy and Bonneel [34] overcome this difficulty by using their Vorpaline (Voronoi
Parallel Linear Enumeration) technique to compute a restricted centroidal Voronoi
diagram (CVT) embedded in 6d. It directly compute the 6d Voronoi cells by iterative
half-space clipping. It requires only the nearest neighbor information for a point set
in R

6.
It is reported by Lévy and Bonneel [34] that this method may produce flipped

(self-intersected) triangles, in particular in regions where the anisotropy varies too
fast. This fact implies that if the normals between the neighbor vertices are varying
too big, their method may not work correctly. One possible way to resolve this
problem is to insert new vertices between these neighboring vertices. However,
the method of Lévy and Bonneel [34] does not support inserting new vertices
dynamically.

Another well-known problem in RVD- and CVT-based methods is that sharp
features or details of the surfaces may be smoothed or missing in the resulting mesh,
see the examples in [34]. Although a theoretical solution has been proposed in [12],
its efficiency is still a challenge in practice.

Due to these problems, we propose a new method in the next section. In
particular, we show that a common mesh optimization framework for isotropic
surface re-meshing may be applied in re-meshing surfaces embedded in a higher
dimensional space. The primary difference between previous methods and ours is
the use of lengths and angles evaluated in the embedded space.

4 The Re-meshing Approach

Consider a surface ˝ in R
3. For simplicity, we assume that ˝ is a smooth surface,

i.e., it contains no corner and edge singularities, then we consider the non-smooth
case. In this section, we propose an optimization-based method for re-meshing˝ .

4.1 Preliminaries

4.1.1 Assumptions

Our method assumes that the following two functions are provided: (1) given a
point p 2 ˝ , the function returns the normal to˝ at p; (2) given a point p 2 R

3, the
function returns the closest point q 2 ˝ . If˝ is represented by an implicit function
or it is a parameterized surface (of CAD models), the exact normals and the closest
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points of ˝ are provided. If ˝ is given as a polygonal mesh, these two functions
must be approximated from the input data, see [1, 9, 23, 40].

Our method assumes that an initial triangular surface mesh Tinit of˝ is provided.
Moreover, all triangles in Tinit are consistently oriented. For example, when the edge
ab is the common edge of two triangles abc and bad in Tinit, we understand that
both normals to abc and bad are pointing outwards the surface.

4.1.2 Geometry Approximation

We use a heuristic condition to justify geometric approximation. Intuitively, if a
triangle is used to approximate a patch of a surface, the normal of the triangle should
not vary too much with respect to the normals of any point in this patch. Let f be
a face in the surface mesh. We say that f is inverted if the angle between two
vectors nf and nc is less than a given threshold, where nf is the outwards normal
to f and nc is the normal to the surface at the closest point of the centroid c of f .
In other words, the angle between nf and nc determines if the face is inverted or
not. An inverted face is considered as a bad approximation of the geometry. It is
crucial to use an appropriate threshold in order to achieve best mesh quality. In our
experiments in Sect. 5, the threshold we used is 90ı.

4.1.3 Controlling Anisotropy

The basic idea behind the anisotropic mesh adaptation is to distort the distance. In
this framework we are going to achieve this goal moving from the standard scalar
product in the embedded space. We consider a surface � and two points A;B 2 � ,
we apply the map ˚ and we have: ˚.A/ D .xA; yA; zA; snA; svA; swA/t , and
˚.B/ D .xB ; yB; zB; snB; svB; swB/t , where xA; yA; zA and xB; yB; zB are the
R
3 coordinates of A and B , respectively, and nA; vA; wA and nB; vB ; wB are

the components of the unit normal vectors to � at A and B , respectively. Then,
we define a scalar product by .A;B/6d WD xAxB C yAyB C zAzB C s2

�
nAnB C

vAvB C wAwB
�
. Then the length of a segment AB in the embedded space is

lAB D p
.A � B;A � B/6d and the angle could be computed via the cosine

cos .ACB/ WD .A � C;B � C/6d

.A � C;A� C/6d.B � C;B � C/6d

;

where C is another point of the surface � . At this level, we find it is better to
reinterpret the constant s in ˚ . We consider a surface � and two points A;B 2 � .
The 6d vector scalar product between these two points is

.A;B/6d D xAxB C yAyB C zAzB„ ƒ‚ …
I

Cs2�nAnB C vAvB C wAwB„ ƒ‚ …
II

�
:
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Fig. 3 Bounding box of the
surface �

Since the coordinates of both A and B varies in the bounding box of the surface � ,
we can say that I 2 Œ�d2; d 2� where d is the diagonal of the bounding box of � .
Moreover, we have n2A C v2A C w2A D 1 and n2B C v2B C w2B D 1. We can see that the
quantity II 2 Œ�1; 1�. The parameter s is introduced to give more or less importance
to the normals, II, on the whole value of .A;B/6d. But, since I 2 Œ�d2; d 2� and
II 2 Œ�1; 1�, the contribution of I and II is unbalanced because it depends on the
dimension of the bounding box. To make the quantity I and II almost comparable,
we decide to modify the 6d scalar product in .A;B/6d D xAxB C yAyB C zAzB C
.h� s/

2
�
nAnB C vAvB C wAwB

�
, where h� D .dx C dy C dz/=3 and dx, dy and dz

are the dimension of the bounding box of � , see Fig. 3. In this way the quantity I
and II are at most comparable and the parameter s have effectively the effect to give
more or less importance to the normals.

4.2 Overview of the Approach

The inputs of the algorithm are: an initial triangular mesh Tinit of the surface ˝ ,
a user-specified edge length Ldes, a user-specified minimum face angle �min, and a
parameter s that specifies the desired amount of anisotropy.

We initialize a mesh T WD Tinit. Then we use the map ˚ to transform T into
a surface mesh T˚ in R

6. Our goal is to remesh T such that T˚ is an uniform
isotropic triangular mesh in R

6. For simplicity, we assume the map ˚ W R3 ! R
6

is bijective. Therefore, we still work in R
3, but we use calculated quantities (edge

lengths and angles) from R
6.

Our method works in two phases: (i) sampling, we split edges in T whose
lengths (measured in R

6) are too long with respect to the given parameter Lmin

(Sect. 4.4); (ii) optimizing, we maximize the smallest face angle (measured in R
6)

such that they are not smaller than �min (Sect. 4.5). The result is a curvature-adapted
anisotropic triangular mesh of the surface. This method is detailed in the following
subsections.
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Fig. 4 Edge-flip (left); edge-collapse (right)

4.3 Local Mesh Modifications

Our algorithm applies a series of local surface mesh modifications directly on the
mesh T . The most well-known and commonly used local modifications are: edge-
flip, edge-collapse, vertex insertion, and vertex smoothing. These operations are
already extensively discussed, see [13, 23, 25, 26]. In this section, we describe how
they are realized in our method (Fig. 4).

4.3.1 An Edge-Flip Algorithm

Edge-flip is the most efficient and effective local operation to improve simultane-
ously the geometry approximation and the quality of the surface mesh. Therefore, it
should be applied whenever it is possible. For this purpose, we developed an edge-
flip algorithm. It is inspired by the well-known Lawson’s flip algorithm [33] for
constructing 2d Delaunay triangulations.

An edge-flip on ab will remove the two faces abc and bad and replace them with
two new faces cdb and dca. As a result, edge ab is replaced by edge cd. In our
method, we want to flip ab if the new triangles are “better” than the old ones with
regard to either geometry approximation or mesh quality.

Given an edge ab in T , we check if ab needs to be flipped if one of the following
two conditions are met: (a) geometric approximation, either face abc or face bad is
inverted; (b) mesh quality both abc and bad are not inverted and the smallest 6d-
angle of the two new faces (cdb and dca) is larger than the smallest 6d-angle of abc
and bad.

If an edge ab satisfies either (a) or (b), it implies that either face abc or face bad
is bad (or both of them), it (or they) should be replaced by a better face(s). However,
it is not always possible to do an edge-flip. An edge ab is flippable, if both of the
following two conditions are satisfied: (c) topology validation, the edge cd does not
exist in T ; (d) geometry validation, neither cdb nor dca is inverted. Condition (c)
guarantees that the topology of the surface will not be changed after the flip, and (d)
ensures that the new created faces are not bad approximation of the geometry.

The edge-flip algorithm is shown in Algorithm 1. This algorithm uses two stacks
S and S1. Initially, the stack S keeps all edges to be checked and flipped, and the
stack S1 is empty, and it will keep edges which are not flippable. Edges in S1 are
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Algorithm 1 The edge-flip algorithm
FLIPEDGES(S , S1)
Data: S is a stack of edges to be checked and flipped; and

S1 is another stack which is empty on input.
1: while S is non-empty do
2: count WD 0;
3: while S is non-empty do
4: pop ab from S ;
5: if ab meets condition (a) or (b) then
6: if ab meets conditions (c) and (d) then
7: flip ab to cd;
8: for xy 2 fac; cb; bd; dag do
9: push xy on S ;

10: end for
11: count WD countC 1;
12: else
13: push ab on S1;
14: end if
15: end if
16: end while
17: if S1 is non-empty and count > 0 then
18: swap S and S1;
19: end if
20: end while

tried again if any flip has been done in the inner loop (lines 3–16). Once an edge is
get flipped, we push the boundary edges of the new triangles into stack (lines 8–10).
Hence flips may propagate to the neighboring edges. On return, if S1 is not empty,
it means there are unflippable edges or even inverted faces.

4.3.2 Edge Collapse

Edge collapse is a common operation for simplifying meshes. An edge collapse
unifies the two endpoints of the edge and two adjacent faces of this edge vanish.
The unification of the two endpoints can be either one of the endpoints or a new
vertex inside the cavity of adjacent faces of this edge.

For simplicity, we simply choose one of the endpoints as the new vertex by
checking if there will be no inverted face at this endpoint after the edge collapse.
Then, we push all the linked edges of this vertex into a stack, and the routine
FLIPEDGES() is called to locally improve the mesh.

4.3.3 Vertex Insertion

Vertex insertion is a common operation for refining meshes. Two well-known
approaches for vertex insertion are the Bowyer-Watson algorithm and the
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Fig. 5 Vertex insertion. Face-split (left); edge-split (right)

incremental flip algorithm [17]. They are equivalent in generating Delaunay
triangulations. We use the incremental flip algorithm for our vertex insertion in
3d surfaces.

Let v be a new vertex (in the surface) to be inserted. It is first located in the
mesh, i.e., either a triangle abc or an edge ab of the mesh is declared to contain this
vertex to be inserted. We then replace the face abc by three new faces, abv;bcv; cav
(see Fig. 5, left); or split the edge ab by replacing two faces abc;bad by four faces
avc; vbc;bvd; vad (see Fig. 5, right). Then we put all linked edges of v into a stack,
and the routine FLIPEDGES() is called to improve the mesh.

Remark 1 Since the surface may be curved, the vertex (in the surface) is not
necessary in a face or edge in current mesh. Vertex location in a 3d surface mesh is
a difficult problem. We avoid this problem in our method by always choosing the
midpoint of an edge, and then a new vertex is obtained by snapping this point to the
surface. Hence, we can declare that the edge to be split contain this new vertex.

4.3.4 Vertex Smoothing

For a given vertex v, the vertex smoothing operation finds a new location for this
vertex such that the local mesh quality is improved without changing the mesh
topology.

A generic smoothing method moves a point v in a new location v0 given by the
formula

v0 D v C ˛
X

vi2!v

f .d.v ; vi //ui ; (1)

here ˛ is a constant, f is a function f W R ! R, !v is the set of vertices that are
connected to v and ui are the unit vectors that identifies the direction from vi to v,
see Fig. 6. Finally, d is the distance between v and vi , normalized with a desired
edge length of the mesh, i.e. d.v; vi / D jjv � vi jj=Ldes, where jj � jj is the standard
euclidean norm in R

3 and Ldes is the desired edge length.
Different smoothing methods are characterized by different choices of the

parameter ˛ and the function f in Equation (1). For example the classical Laplacian
smoothing, [20], is defined by ˛ D 1=#!v andf .d/ D �d; where #!v is the
cardinality of the set !v.
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Fig. 6 Patch !v

Fig. 7 Scheme of the
re-meshing process

It is interesting to notice that, according to the sign of the function f , the vertex v
is v is attracted or repelled by the vertex vi , i.e., if f .d.v; vi // > 0, v is repelled by
vi , while if f .d.v; vi // < 0 it is attracted by vi . Bossen and Heckbert [7] implement
a vertex smoothing method that exploits this attraction/repulsion behavior via the
function fBH.d/ WD .1�d4/e�d4 . Since their mesh generation procedure is metric-
based, their desired edge length 1. Thus if the vertex v is too close to vi , 0 < d < 1,
it is repelled by vi , then if it is far from vi , 1 < d < 1:7, it is attracted. Finally,
if it is too far, d � 1:7, or if it is exactly at the right distance, d D 1, vi does not
influence the position of v.

In this paper we use the vertex smoothing function proposed by Bossen and
Heckbert [7]. But we use the distance from the embedded space. We the vertex
v v and the set of vertexes !v D fv1; v2; : : : vng, the desired location of the vertex
v, will be the one such that jjv � vi jj6d D Ldes 8i D 1; 2; : : : n. To move the
point in this optimal location, we use the following normalized distance function
d6d.v; vi / D jjv � vi jj6d=lmean, where lmean is the mean 6d-length of the edges
vvi in the patch !v. The smoothing formula we propose is v0 D v C ˛w=jjwjj,
where w D P

vi2!v
fBH .d6d.v; vi //ui ; and the parameter ˛ is chosen in such a

way ˛ WD max
˚
c1l!v ; c2Lmin

�
; where Lmin is the minimum valid edge length and

L!v WD minvi2!v jjv � vi jj ; and c1 and c2 are constant that adjust these two length,
in this work we choose c1 D 0:01 and c2 D 10. After we have found the location
v0, we project the point on the surface � , we push all the link edges at v into a stack
and we call the routine FLIPEDGES() to locally improve the quality of the mesh.

The vertex smoothing is the most time consuming step in the proposed surface
re-meshing method. To increase the speed of this process we decide to move not
all the vertices of the mesh, but only the ones that are more far away from their
desired positions. We first sort the vertices according to the distances to their desired
locations. Then, we move a percentage of the vertices which are far away from their
desired locations.

A sketch of the whole embedding procedure is provided in Fig. 7.
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Algorithm 2 The sampling algorithm
SAMPLING(˝, T , Q, Lmin)
Data: Q is a queue of triangles in T .
1: whileQ is non-empty do
2: pop a face f from Q;
3: Let e be the longest edge of f ;
4: if kek6d > 1:5 Lmin, then
5: split e by adding v 2 ˝ into T ;
6: update Q;
7: end if
8: end while

4.4 Sampling

The purpose of sampling is to achieve the desired mesh size with respect to the
given 6d-length parameter Lmin. Our strategy is straightforward, splitting edges of
T whose 6d-lengths is too long compared to Lmin. For simplicity, each long edge
is split by adding the point in the surface which is closet to the midpoint of the
edge. Also, we do not collapse short edges in this phase, it will be applied in the
optimization phase.

The sampling algorithm is shown in Algorithm 2. It initializes a queue Q which
contains all triangles in T . It then works in a loop untilQ is empty. On each face f
popped fromQ, it checks the longest edge e of f and split it if the 6d-length of e is
too long (lines 4–7). Then Q is updated (line 6) by removing old faces and adding
new faces.

Inserting a new vertex into a 3d surface mesh may deform it very much. This is
particularly the case when the surface mesh is only a very crude approximation of
the original geometry. Recall that our vertex insertion routine will automatically
improve the local mesh by FLIPEDGES(). Our experiments (shown in Sect. 5)
showed that this edge flip algorithm is very effective in improving both of the
geometry approximation and the mesh quality in this phase.

4.5 Optimizing

Since the sampling phase has removed long edges, the goal of the optimizing phase
is to maximize the smallest 6d-angle of triangles in the mesh T .

Mesh optimization is performed by iteratively combining a series of local
modifications, which are, edge-flips, vertex smooth, edge-collapse, and vertex
insertion: vertex smoothing iteratively moves the positions of vertices (stay on
surface) such that the minimum 6d-angle is improved around each vertex; edge
collapse is used to remove the edges opposite to small angles; edge split is used to
split the edges opposite to large angles by inserting a vertex close to the midpoints of



32 F. Dassi and H. Si

Algorithm 3 The optimizing algorithm
OPTMIZING(˝, T , Lmin, �min, I , J , K)
Data: I , J , and K are user-specified iterations.
1: �max WD 180o � 2 � �min;
2: Collapse too short edges with respect to Lmin;
3: for i 2 f1; : : : ; Ig do
4: for j 2 f1; : : : ; Jg do
5: for k 2 f1; : : : ;Kg do
6: Smooth all vertices;
7: end for
8: Collapse edges for removing angles < �min;
9: end for

10: Split edges for removing angles >D �max;
11: end for

the edges, iteratively. We call the routine FLIPEDGES() within each local operations
to improve local mesh quality.

4.5.1 Sharp Features

Our method can be easily adapted to mesh non-smooth surfaces, i.e., surfaces
containing edges and corner singularities and sharp features. These features are
commonly present in complicated geometries. Sharp features can be preserved as
follows. We consider a surface � , for example a geometry coming from a CAD
model. The whole geometry is the sum of a finite set of patches that are joint together
along their common boundaries, i.e.,

� D
n[
iD1

�i ; and �i \ �j D
� ;
	ij

; (2)

where �i are the patches and 	ij is the common line between �i and �j , if it exists.
The proposed method will re-mesh each sub-surface�i separately. To preserve sharp
features in the routine FLIPEDGES() we add the condition (e) sharp features, an edge
that belongs to a sharp feature will never be flipped.

5 Examples

In this section, several examples are presented to demonstrate the reliability of
the proposed method. Firstly, we re-mesh some very simple cases to ensure that
this method works. In particular, we consider surface in which we could predict
where and how the triangles will be stretched, and we experimentally verify the
behavior of the proposed re-meshing method. Then, we use several examples which
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Table 1 Statistics of examples

Examples 1 2 3 4

1. Lmin 0.1 0.1 0.1 0.1

2. # Vertices in Tinit 11,518 49,761 12,985 5,246

3. # Triangles in Tinit 23,032 98,560 25,543 10,488

4. # Vertices in Toutput 3,697 20,659 4,937 2,357

5. # Triangles in Toutput 7,390 40,790 9,582 4,710

6. Sampling time (s) 7 28 8 2

7. Optimizing time (s) 20 141 85 49

8. Minimum aspect ratio 3.841e�02 2.383e�01 8.414e�04 3.249e�01

The Optimizing time (in row 7) was the time for one outer loop in the optimizing algorithm
(Algorithm 3), i.e. I D 1. The number of inner loops is J D K D 4

contain strong anisotropy and sharp features. The statistical information about these
examples and the CPU times are given in Table 1. To evaluate the level of anisotropy
of the resulting mesh, we consider the so-called aspect ratio:

q.T / WD 2
rT

RT
; (3)

here T is a generic triangle of the mesh, rT andRT are the radii of the inscribed and
circumscribed circle, respectively. If q.T / � 0, the triangle T is stretched, while,
for triangles close to the equilateral one, we have q.T / � 1.

From Table 1, we observe that the meshes present really stretched elements, in
fact the minimum value of the aspect ratio is close to 0. Moreover, we see that in
all these examples the final anisotropic mesh have fewer number of elements and
nodes than the initial one.

Example 1 We consider the disk, defined by the zero level set of the function
f1.x ; y ; z/ WD �

x
0:8

�2 C �
y

0:8

�2 C �
z
0:4

�2 � 1. In Fig. 8, we highlight some zones
and we indicate how the triangles will look like after the re-meshing procedure.

Since there is a very big change of curvature along one direction �!v , see zoneA in
Fig. 8, we expect that the triangles will be stretched along �!w , i.e. the perpendicular
direction that lies on the tangent plane to the surface. Moreover we expect equilateral
triangles in the zone B , where the surface is smooth and flat. The resulting mesh of
this example is shown in Fig. 9. The shapes of triangles in the resulting mesh behave
as expected.

Example 2 We consider the sinusoidal surface, defined by the zero level set of the
function f2.x ; y ; z/ WD sin .
x/ sin .
y/� z. In Fig. 10 we show the whole surface
together some zones of interest. In particular we notice that there are a lot of regions
where the mesh has to be isotropic, see the zones A and B in Fig. 10. The resulting
mesh of this example is shown in Fig. 11.
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Fig. 8 The geometry of Example 1. The zero level set of the function f1, some zones are
highlighted to show how the adapted mesh will look like
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Fig. 9 The optimized mesh of Example 1. The mesh quality (the smallest 6d angles in triangles)
histogram (bottom-right)

Example 3 In this example, we consider the function, f3.x ; y ; z/ WD tanh .20x/�
tanh .20.x � y/ �10/ � z. The zero level set of such a function is a surface that
presents a smart change of curvature and it is flat in others. We stat from a very
bad approximating mesh obtained by a marching cube algorithm, see Fig. 12 on
the left. This initial mesh does not sharply approximate the surface: the triangles
are not oriented in the right way, there is an over sampling and the triangles are
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Fig. 10 The geometry of the Example 2. The zero level set of the function f2, some zones are
highlighted to show how the adapted mesh will look like
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Fig. 11 The resulting mesh of Example 2. The mesh quality (the smallest 6d angles in triangles)
histogram (bottom-right)

somewhere really far away from the real geometry. This experiment will challenge
the robustness of the proposed method.

Figure 12, right shows the resulting mesh of this example. We may appreciate
that the geometry is really well fitted by the resulting mesh. In particular, the initial
mesh has been entirely changed. Both the shape and orientation of the elements
are suited to fit correctly the geometry at hand.

Example 4 In this example, we constructed a surface containing sharp features. The
purpose is to illustrate that the sharp features are well preserved by our method. The
input of this example consists of three surface patches. They join together along their
common boundary, see Fig. 13. The resulting mesh shown in Fig. 13 well preserved
the sharp features.
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Fig. 12 The initial mesh of Example 3 (left) and the resulting mesh (right) with some zooms

Fig. 13 Example 4. The initial mesh (top-left) and the resulting mesh and some of its details
(bottom-right)
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Fig. 14 The geometry of example in subsection 5.1. The zero level set of the function f4, some
zones are highlighted to show how the adapted mesh will look like

5.1 Numerical Test of the s Parameter

In all the previous examples we have considered s D 1 to proceed with the re-
meshing algorithm. Now we try to change this value and see what is the effect
on the resulting mesh. We define the function, f4.x ; y ; z/ WD tanh .20y/ �
tanh .20.x � y/ � 10/� z, whose zero level set is the surface represented in Fig. 14.
This surface presents some flat regions, like the zone A in Fig. 14, and a series of
very deep jumps, see the arrows in Fig. 14.

We set a desired 6d-length and we consider these values of the parameter s D
0:1; 1:; 5:; 25:

Increasing the factor s, will increase the length of the edges of the mesh, but
this fact it is not completely true. The real effect of increasing the parameter s is
to emphasize the variation of the normal, i.e., the variation of curvature. In fact,
where the surface is flat, the size of the mesh elements is the same for each values
of s. Instead, where it presents a variation of the curvature, it is more and more
refined. When we are dealing with big values of s, small variation of the normals
will correspond to large variation of the edge length, so the sampling procedure may
refine these edges. The resulting meshes are shown in Figs. 15 and 16. In Table 2
we report the minimum value of the aspect ratio for each mesh. From these data we
observe that higher values of s increase the stretching of triangles and the number
of elements.
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Fig. 15 Resulting meshes for different values of the parameter s

Fig. 16 Details of the optimized meshes in Fig. 15

Table 2 Minimum value of the aspect ratio with different value of s

s D 0:2 s D 1: s D 5: s D 25:

Minimum aspect ratio 1.472e�01 3.173e�04 8.414e�05 4.162e�07

# Vertices in Toutput 2,652 8,583 54,001 409,444

# Triangles in Toutput 5,067 16,696 107,239 817,605



A Curvature-Adapted Anisotropic Surface Re-meshing Method 39

6 Conclusions

In this paper, we presented a curvature-adapted anisotropic surface re-meshing
method, based on a high-dimensional embedding of surfaces. This method is, in
principle, simple. It fits the well-developed mesh adaptation framework, while it
has several advantages. For instances, sharp features are always respected; it is
robust in handling strong anisotropy, and it is easy to implement. Our experimental
results showed that this method is able to produce good meshes for various 3d
surfaces which may have an arbitrarily complicated geometry and may contain
strong anisotropy.

There are many questions which are still open. A very important theoretical
question is: How well may this mapping˚ approximate the geodesic distances in 3d
surfaces? Are there upper or lower bounds on distance variations by this mapping?
A theoretical study of these issues could lead to more efficient methods, and meshes
with fewer elements.

The edge-flip algorithm we described seems very useful in improving both
geometry approximation and mesh quality. However, its termination is not yet
proved. We found that the selection of the threshold angle for checking inverted
faces is very crucial. A good value will give edge-flip more freedom and may
produce highly stretched triangles.

In practice, many surfaces are given as a polygonal mesh, i.e., the original
geometry is not available. A good recovery and estimation of the surface normals
are necessary in order to achieve good results. We plan to implement such feature
into our code.

The running time of our implementation is far from optimal. There are many
possibilities to improve it.
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The Benefits of Anisotropic Mesh Adaptation
for Brittle Fractures Under Plane-Strain
Conditions

Marco Artina, Massimo Fornasier, Stefano Micheletti, and Simona Perotto

Abstract We develop a reliable a posteriori anisotropic first order estimator for the
numerical simulation of the Frankfort and Marigo model of brittle fracture, after
its approximation by means of the Ambrosio-Tortorelli variational model. We show
that an adaptive algorithm based on this estimator reproduces all the previously
obtained well-known benchmarks on fracture development with particular attention
to the fracture directionality. Additionally, we explain why our method, based on
an extremely careful tuning of the anisotropic adaptation, has the potential of
outperforming significantly in terms of numerical complexity the ones used to
achieve similar degrees of accuracy in previous studies.

1 Introduction

A variational formulation for the evolution of the fracture surface in a brittle, linearly
elastic solid was proposed by Frankfort and Marigo in [19]. The main feature of this
model is that there is no predefined crack, i.e., the crack is able to propagate in
the material without any constraint, driven only by elastic forces. Bourdin et al.
[7] addressed the numerical approximation of the solution of the fracture model
by Frankfort and Marigo by first approximating it via the Ambrosio-Tortorelli
variational model. Then, an extremely fine discretization is considered to be able to
capture the fracture path and its expected directional developments, independently
of the intrinsic anisotropies of the a priori prescribed mesh. This technique proved
to be very stable not only in the case of anti-plane shear, but also in the more
challenging situation where plane-strain is considered, capturing the physically
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expected crack paths and directionalities. However, the cost of an extremely fine
discretization to render the material numerically homogenous is enormous, leading
to the quest for possible alternative techniques based on adaptive strategies, which
can break the ambiguity of “the crack following the mesh or the mesh following
the crack”. In the work of Chambolle et al. [10], an anisotropic adaptive finite
element method was presented for the simulation of the model of Frankfort and
Marigo in the anti-plane shear case. The adaptive re-meshing is, however, based on
a local approximation of the Hessian of the solution, which, unfortunately, may
lack the expected regularity. In the approach of Süli et al. [8], the adaptivity is
driven exclusively by an a posteriori first order estimator, but only isotropic mesh
refinement was considered. In our recent work [5], we tried to combine these two
previous approaches, designing an appropriate a posteriori anisotropic first order
estimator, leading to mesh coarsening far from the fracture and fine mesh elements
exclusively very close to the crack path. Again this new method resulted being very
efficient and effective, producing stable and realistic results for some test cases
where the force applied to the domain is orthogonal to the domain itself. In this
work, we study and present numerical results in the case the fracture is induced
by a plane-strain. These tests play a key role in validating the reliability and the
applicability of anisotropic mesh adaptation in the context of quasi-static crack path
detection. Indeed, for assessing the quality of our results we can count on previous
precise studies of the behaviour of the fracture, both from numerical and physical
viewpoints [2, 7].

The numerical experiments in Sect. 4 show that the proposed method is very
stable and it allows us to reproduce all the previously obtained predictions on
fracture development, in particular its directionality features. Additionally, we
expect that our method, based on an extremely careful tuning of the anisotropic
adaptation, outperforms significantly the ones used to achieve similar degrees of
accuracy in previous studies. Unfortunately, the only reference with which we
can compare the computational burden is Süli et al. [8], while for Bourdin et al.,
Chambolle et al., Del Piero et al. [7, 10, 16] we are obliged to extrapolate our positive
expectation from the very fine meshes showed in the corresponding numerical
sections.

The paper is organized as follows. In Sect. 1.1, we describe the model, in Sect. 2,
we introduce the discrete setting and the anisotropic error estimator which drives
the mesh adaptation. In Sect. 3, we provide the algorithm for the minimization of
the energy functional, while in Sect. 4, we address the numerical results on the
benchmark tests, comparing them with the expected ones from the literature.

1.1 The Mathematical Model of Plane-Strain Fracture

The considered model extends the anti-plane case proposed in [1] and, following
[7], we introduce an isotropic linearly elastic constitutive law, i.e., the Plane-strain
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Ambrosio-Tortorelli functional

J PAT.u; v/ D 1

2

Z
˝

.v2 C �/�.u/ W E.u/ dx C 1

2

Z
˝

h
˛.1 � v/2 C "jrvj2

i
dx;

(1)

where ˝ 
 R
2, the fields u W ˝ ! R

2 and v W ˝ ! Œ0; 1� are the displacement
and a smoothed crack path indicator, 0 < � � " � 1 and ˛ D 1=.4"/ are suitable
regularizing constants, �.u/ D � tr .E.u// IC2E.u/, is the Cauchy stress tensor,
with � and  the Lamé constants, and, where, for every d W ˝ ! R

2,

E.d/ D
2
4 @d1

@x1

1
2

�
@d1
@x2

C @d2
@x1

�
1
2

�
@d1
@x2

C @d2
@x1

�
@d2
@x2

3
5

is the symmetric gradient tensor, T1 W T2 denoting the tensor product between
T1; T2 W ˝ ! R

2�2, and x D .x1; x2/
T 2 ˝ . In practice, v, with 0 � v � 1,

can be considered as a phase field for the crack interface [6, 28]. The first integral
in (1) represents the elastic energy of the material, while the second integral models
the energy associated with the crack propagation inside the material. The case v D 1

is the crack-free configuration, since the last integral vanishes. On the contrary, the
regions where v D 0 identify the cracked area.

Let 0 D t0 < : : : < tF D T be a partition of the time window Œ0; T �. Let
g W ˝ 	 Œ0; T � ! R

2 be an displacement assigned over a subset ˝D 
 ˝ which
drives the fracture onset, i.e.,

g.x; t/ D
(

gD.t/ if x 2 ˝D;

0 elsewhere :

Notice that, with a view to the numerical test cases, function gD is assumed to be
constant in space. We denote by Ak.g/ D fu 2 ŒH1.˝/�2 W u.x/ D g.x; tk/ 8x 2
˝Dg the space of the admissible solutions, i.e., the fields which coincide with g on
˝D at t D tk . According to a quasi-static approximation [19], the minimization of
the functional J in (1) at the time level tk consists of finding the pair .u.tk/; v.tk//,
with k D 0; : : : ; F , such that

.u.tk/; v.tk// 2 argmin
u 2 Ak.g/

v 2 H1.˝I Œ0; 1�/; vjCRk�1
D 0

J.u; v/; (2)

where CRk�1 D fx 2 ˝ W v.tk�1/ < CRTOLg, with CRTOL a tolerance used to
enforce the irreversibility of the crack. For simplicity we denote hereafter g.x; t/
with g.t/. Moreover, standard notation is understood to denote Sobolev spaces and
their norms [23].
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Following [5], we relax the constraint in (2) with two penalization terms which
lead us to rewrite the Plane-strain Ambrosio-Tortorelli elasticity functional as

J PAT.u; v/ D 1

2

Z
˝

.v2 C �/�.u/ W E.u/ dx C 1

2

Z
˝

h
˛.v � 1/2 C "jrvj2

i
dx

C 1

2	A

Z
˝D

ju � g.tk/j2 dx C 1

2	B

Z
CRk�1

v2 dx;

(3)

where 	A and 	B are the penalty constants. Henceforth we always deal with this
functional instead of (1). We are dealing now with an unconstrained minimization
process. At each time level, we seek the pair .u.tk/; v.tk// such that

.u.tk/; v.tk// 2 argmin
.u;v/2ŒH1.˝/�2�H1.˝IŒ0;1�/

J PAT.u; v/: (4)

Since the penalized constraints are clearly continuous, convex, and always non-
negative, the proof of the convergence of the minimizers of (4) to the minimizers
of (2), for 	A; 	B ! 0, follows from � -convergence arguments (see [14]).
Moreover, we are interested in local minimizers for two reasons. On the one side,
the search for global minimizers is an NP-hard problem; on the other side, one can
expect that the fracture moves along critical points of the physical energy. Therefore,
it is not only (numerically) impossible to compute global minimizers with some
guarantees, but it may also not be a meaningful choice from a physical viewpoint.

Mimicking the proof in [8] for the anti-plane case, we can prove that the
functional J PAT is Fréchet-differentiable in ŒH1.˝/�2 	 .H1.˝/ \ L1.˝//. In
particular, the Fréchet derivative of J PAT along direction .w; z/ is

�
J PAT.u; vI w; z/

�0 D
Z
˝

.v2 C �/�.u/ W E.w/ dx C 1

	A

Z
˝D

.u � g.tk// � w dx„ ƒ‚ …
Da.vIu;w/

C
Z
˝

h
v z�.u/ W E.u/C ˛.v � 1/z C "rv � rz

i
dx C 1

	B

Z
CRk�1

v zdx:„ ƒ‚ …
Db.uIv;z/

(5)

Accordingly, we recall the definition of critical points of J PAT :

Definition 1 The pair .u; v/ 2 ŒH1.˝/�2 	 .H1.˝/ \ L1.˝// is a critical point
of J PAT if

�
J PAT.u; vI w; z/

�0 D 0 for all w 2 ŒH1.˝/�2 and for all z 2 .H1.˝/ \
L1.˝//.

Following Proposition 2.2 in [5], we can prove that condition 0 � v � 1 is
automatically guaranteed for any critical point.
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2 Anisotropic Error Analysis

This section collects the main developments of this paper. After providing the
discrete approximation of the functional J PAT , we introduce the main tools of
the anisotropic background, and we derive the theoretical result used to drive the
anisotropic mesh adaptation procedure.

2.1 Discretization of J PAT

We introduce the discrete counterpart of the minimization problem (4) in a finite
element setting. Thus, we denote by fThgh>0 a family of conforming meshes of
˝, and let Nh be the index set of the vertices of Th, and Eh the skeleton of
Th. Henceforth, we assume that the boundary of ˝D coincides with the union of
consecutive edges in Eh. We associate with Th the spaceXh of continuous piecewise
linear finite elements [11].
We denote by J PAT

h .uh; vh/ the discrete correspondent of J PAT.u; v/ in (3), with
uh D .uh;1; uh;2/T 2 ŒXh�2 and vh 2 Xh, given by

J PAT
h .uh; vh/ D 1

2

Z
˝

h �
Ph.v

2
h/C �

�
�.uh/ W E.uh/

C ˛Ph..vh � 1/2/C "jrvhj2
i
dx

C 1

2	A

2X
iD1

Z
˝D

Ph
�
.uh;i � gh;i .tk//

2
�
dx C 1

2	B

Z
CRk�1

Ph
�
v2h
�
dx;

(6)

where Ph W C0.˝/ ! Xh is the Lagrangian interpolant onto the space Xh, with
gh.tk/ D .gh;1.tk/; gh;2.tk//

T 2 ŒXh�2 a suitable discrete approximation of g.tk/. In
particular, we pick gh.tk/ such that

Z
˝D

gh.tk/ � wh dx D
Z
˝D

g.tk/ � wh dx 8wh 2 ŒXh�2; (7)

i.e., gh.tk/ is the L2.˝D/-projection of g.tk/ onto ŒXh�2. The action of the operator
Ph is equivalent to a mass lumping [30].

The discrete analogue to (4) consists of finding the pair .uh.tk/; vh.tk// such that

.uh.tk/; vh.tk// 2 argmin
.uh;vh/2ŒXh�2�Xh

J PAT
h .uh; vh/:

Definition 1 can be also provided in the discrete case.
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Definition 2 The pair .uh; vh/ 2 ŒXh�
2 	 Xh is a critical point of J PAT

h if, for all
.wh; zh/ 2 ŒXh�2 	Xh,

�
J PAT
h .uh; vhI wh; zh/

�0 D 0, where

�
J PAT
h .uh; vhI wh; zh/

�0 D
Z
˝

.Ph.v
2
h/C �/�.uh/ W E.wh/ dx C 1

	A

2X
iD1

Z
˝D

Ph ..uh;i � gh;i .tk//wh;i / dx

„ ƒ‚ …
Dah.vhIuh;wh/

C

Z
˝

h
Ph.vhzh/�.uh/ W E.uh/C ˛Ph

�
.vh � 1/zh

�C "rvh � rzh
i
dx

C 1

	B

Z
CRk�1

Ph.vhzh/dx„ ƒ‚ …
Dbh.uhIvh;zh/

is the Fréchet derivative of J PAT
h .

Thanks to the mass lumping associated with Ph and to the assumption

kij D
Z
˝

r�i � r�j dx � 0 8i ¤ j 2 Nh;

about the stiffness matrix K , with f�lg#Nh
lD1 the basis of Xh, the property 0 � vh � 1,

related to the discrete maximum principle (see, e.g., [12, 22, 29]), can be assessed
for any critical point vh of (6).

2.2 The Anisotropic Setting

Following [15, 25], we recover the anisotropic information from the spectral
properties of the affine map TK W OK ! K , with x D TK.Ox/ D MK Ox C bK , from
the equilateral reference triangle OK with vertices .�p

3=2;�1=2/, .p3=2;�1=2/,
.0; 1/, inscribed in the unit circle, to the generic triangleK of Th, withMK 2 R

2�2,
bK 2 R

2, x 2 K and Ox 2 OK.
In particular, we apply the polar decomposition to the Jacobian MK , i.e., MK D
BKZK , where BK;ZK 2 R

2�2 are a symmetric positive definite and an orthogonal
matrix, respectively. Matrix BK deforms K , while ZK turns it about the origin.
Then, we consider the spectral decomposition of BK , i.e., BK D RTK�KRK , with
RTK D Œr1;K ; r2;K� and �K D diag.�1;K; �2;K/, with �1;K � �2;K . The eigenvectors
ri;K identify the directions of the semi-axes of the ellipse circumscribed toK , while
the eigenvalues �i;K provide the length of these semi-axes (see Fig. 1). We also
define the aspect ratio of the element K by sK D �1;K=�2;K . The value sK D 1

corresponds to the isotropic case.
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K^
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2,Kr

TK

Fig. 1 Anisotropic geometric quantities associated with the map TK

To derive the a posteriori error estimator, we introduce anisotropic error estimates
for the quasi-interpolant Clément operator Ch W L2.˝/ ! Xh [13].

Lemma 1 Let w 2 H1.˝/. If #�K � N for some N 2 N, and
diam.T �1K .�K// � C� ' O.1/, where �K D fT 2 Th W T \ K ¤ ;g,
then there exist constants Cs D Cs.N ; C�/, with s D 1; 2; 3, such that, for any
K 2 Th, it holds

kw � Ch.w/kL2.K/ � C1

h 2X
jD1

�2j;K.r
T
j;KG�K .w/rj;K/

i1=2
;

jw � Ch.w/jH1.K/ � C2
1

�2;K

h 2X
jD1

�2j;K.r
T
j;KG�K .w/rj;K/

i1=2
; (8)

kw � Ch.w/kL2.@K/ � C3

�
hK

�1;K�2;K

	1=2 24 2X
jD1

�2j;K.r
T
j;KG�K .w/rj;K/

3
5
1=2

;

where hK D diam.K/, while G�K.w/ is the symmetric positive semi-definite matrix

G�K.w/ D
X
T2�K

2
66664

Z
T

�
@w

@x1

	2
dx

Z
T

@w

@x1

@w

@x2
dx

Z
T

@w

@x1

@w

@x2
dx

Z
T

�
@w

@x2

	2
dx

3
77775 : (9)

We refer to [17, 18] for the proof.
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Remark 1 The geometric hypotheses in Lemma 1 do not limit the anisotropic
features of the elements, but ensure that the variation of these features is smooth
over�K [27].

An equivalence result between the H1.�K/-seminorm and a corresponding
anisotropic version is also useful for the a posteriori analysis.

Lemma 2 Let w 2 H1.˝/ andK 2 Th. For any ˇ1; ˇ2 > 0, it holds

minfˇ1; ˇ2g � ˇ1.rT1;KG�K .w/r1;K/C ˇ2.rT2;KG�K .w/r2;K/

jwj2
H1.�K/

� maxfˇ1; ˇ2g;

where G�K .�/ is defined as in (9).

The proof of this result can be found in [24].
We have now all the theoretical tools required for tackling the anisotropic a

posteriori analysis.

2.3 The A Posteriori Error Estimator

The following proposition states the main result of the paper and provides a variant
on the anti-plane case addressed in [5].

Proposition 1 Let .uh; vh/ 2 ŒXh�
2 	 Xh be a critical point of J PAT

h according to
Definition 2. Then, for any pair of functions .w; z/ 2 ŒH1.˝/�2 	 H1.˝/, with
w D .w1;w2/T , it holds

ˇ̌�
J PAT.uh; vhI w; z/

�0ˇ̌ � C
X
K2Th

n 2X
iD1

�Ai;K.vh;uh/ !K.wi /C �BK.uh; vh/ !K.z/
o
;

(10)

where C D C.N ; C�/, the residuals �Ai;K.vh;uh/ and �BK.uh; vh/ are

�Ai;K.vh;uh/ D k2vh�i .uh/ � rvhkL2.K/ C 1
�2;K

kv2h � Ph.v
2
h/kL1.K/ k�i .uh/kL2.K/

C 1
2
kŒŒ�i .uh/��kL1.@K/ kv2h C �kL2.@K/

�
hK

�1;K�2;K

�1=2C jKj1=2 h2K
�2;K 	A

juh;i � gh;i .tk/jW 1;1.K/

C ıK;˝D
	A

�kuh;i � gh;i .tk/kL2.K/ C kgh;i .tk/ � gi .tk/kL2.K/
�
;
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�BK.uh; vh/ D k.�.uh/ W E.uh/C ˛/vh � ˛kL2.K/ C "
2

kŒŒrvh��kL2.@K/
�

hK
�1;K�2;K

�1=2
C ıK;CRk�1

	B
kvhkL2.K/ C h2K

�2;K

h
k�.uh/ W E.uh/C ˛kL2.K/

C jKj1=2ıK;CRk�1

	B

i
jvhjW 1;1.K/;

with uh D .uh;1; uh;2/T , the weights are

!K.�/ D
h 2P
iDj

�2j;K.r
T
j;KG�K .�/rj;K/

i1=2 8� 2 H1.˝/;

where

ŒŒ�i .uh/�� D
8<
:
Œ�i .uh/ � n�e e 2 Eh \˝
2.�i .uh/ � n/je e 2 Eh \ @˝

; ŒŒrvh�� D
8<
:
Œrvh � n�e e 2 Eh \˝

2.rvh � n/je e 2 Eh \ @˝

(11)

denote the generalized jump of the i -th component of the normal Cauchy stress
tensor and of the normal derivative of vh, respectively, with Œ��e the standard jump
across e, n the unit normal vector to the generic edge in Eh, �i .uh/ the i -th column
of � , gh is chosen as in (7), and ıK;$ D 1 if K \$ ¤ ; and ıK;$ D 0 otherwise,
with $ 
 ˝ .

Proof Since .uh; vh/ is a critical point of J PAT
h , we have that

ah.vhI uh;wh/ D 0 8wh 2 ŒXh�2; bh.uhI vh; zh/ D 0 8zh 2 Xh: (12)

Moreover, from (5), for any pair .w; z/ 2 ŒH1.˝/�2 	H1.˝/, it holds

j�J PAT.uh; vhI w; z/
�0j � ja.vhI uh;w/j C jb.uhI vh; z/j: (13)

Now, we analyze the two terms in (13) separately, starting from ja.vhI uh;w/j.
Thanks to (12), for any w 2 ŒH1.˝/�2 and wh 2 ŒXh�2, we have that

ja.vhI uh;w/j � ja.vhI uh;w � wh/j C ja.vhI uh;wh/� ah.vhI uh;wh/j: (14)
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Let us focus on the first term on the right-hand side of (14). After splitting the
integrals on the mesh elements, and by exploiting integration by parts, we get

ˇ̌
a.vhI uh;w � wh/

ˇ̌ D
ˇ̌̌ X
K2Th

n Z
K

.v2h C �/�.uh/ W E.w � wh/ dx

C 1

	A

Z
K

.uh � g.tk// � .w � wh/ �˝D dx
oˇ̌̌

D
ˇ̌̌ X
K2Th

n Z
K

�2vh �.uh/ .w � wh/ � rvh dx C
Z
@K

.v2h C �/�.uh/ .w � wh/ � n ds

C 1

	A

Z
K

�
.uh � gh.tk//C .gh.tk/� g.tk//

� � .w � wh/ �˝D dx
oˇ̌̌
;

where �$ denotes the characteristic function of the generic set$ 
 ˝ . To preserve
the directional information, we now deal with the terms on the right-hand side
componentwise. For this purpose, we define

a.vhI uh;w � wh/ D
2X
iD1

ai .vhI uh;wi � wh;i /;

with wh D .wh;1;wh;2/T , and

ai .vhI uh;wi � wh;i / DX
K2Th

n Z
K

�2vh�i .uh/ � rvh.wi � wh;i / dx C
Z
@K

.v2h C �/�i .uh/ � n.wi � wh;i / ds

C 1

	A

Z
K

�
.uh;i � gh;i .tk//C .gh;i .tk/ � gi .tk//

�
.wi � wh;i / �˝D dx

o
:

Thanks to Hölder and Cauchy–Schwarz inequalities and definition (11), we obtain

ˇ̌
ai .vhI uh;wi � wh;i /j � P

K2Th

n
k2vh�i .uh/ � rvhkL2.K/ kwi � wh;ikL2.K/

C 1
2
kŒŒ�i .uh/��kL1.@K/kv2h C �kL2.@K/ kwi � wh;ikL2.@K/

C 1
	A

k.wi � wh;i / �˝DkL2.K/
�
k.uh;i � gh;i .tk//�˝DkL2.K/ C k.gh;i .tk/� gi .tk//�˝DkL2.K/

�o
:
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Picking wh;i D Ch.wi / and thanks to Lemma 1, we obtain

ˇ̌
ai .vhI uh;wi � wh;i /

ˇ̌ � C
P

K2Th

n
k2vh�i .uh/ � rvhkL2.K/

C 1
2
kŒŒ�i .uh/��kL1.@K/kv2h C �kL2.@K/

�
hK

�1;K�2;K

�1=2
C ıK;˝D

	A

�kuh;i � gh;i .tk/kL2.K/ C kgh;i .tk/ � gi .tk/kL2.K/
�o

"
2P

jD1
�2j;K.r

T
j;KG�K .wi /rj;K/

#1=2
:

(15)

Now we deal with the second term on the right-hand side of (14), that we bound as

ja.vhI uh;wh/� ah.vhI uh;wh/j �
ˇ̌̌ Z

˝

�
v2h � Ph.v

2
h/
�
�.uh/ W E.wh/ dx

ˇ̌̌
C 1

	A

ˇ̌̌ Z
˝D

.I � Ph/
�
.uh � gh.tk// � wh

�
dx
ˇ̌̌
C 1

	A

ˇ̌̌ Z
˝D

�
gh.tk/ � g.tk/

� � wh dx
ˇ̌̌
:

(16)

We anticipate the auxiliary result based on the equivalence of norms on a finite-
dimensional space,

j'h hjH2.K/ � 4 j'hjW 1;1.K/ kr hkL2.K/ 8'h;  h 2 Xh; 8K 2 Th;

(17)

which follows by straightforward calculus. Using the definition (7) of gh.tk/, the
last term in (16) turns out to be zero. Considering again (16) componentwise,
employing Hölder and Cauchy–Schwarz inequalities together with the standard
isotropic estimate for the L2-norm of the interpolation error associated with Ph,
we get

jai .vhI uh;wh/ � ai;h.vhI uh;wh/j � C
P

K2Th

n jKj1=2 h2K
	A

j.uh;i � gh;i .tk//wh;i jH2.K/

Ckv2h � Ph.v
2
h/kL1.K/ k�i .uh/kL2.K/ krwh;ikL2.K/

o
;

where the constant C does not depend on the aspect ratio sK of K . Then, we
employ (17) together with estimate (8) and Lemma 2 with ˇ1 D �21;K , ˇ2 D �22;K ,
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to obtain

jai .vhI uh;wh/ � ai;h.vhI uh;wh/j � C
P

K2Th

n� jKj1=2 h2K
	A

juh;i � gh;i .tk/jW 1;1.K/

Ckv2h � Ph.v
2
h/kL1.K/ k�i .uh/kL2.K/

�
krwh;ikL2.K/

o
� C

P
K2Th

n� jKj1=2 h2K
	A

juh;i � gh;i .tk/jW 1;1.K/

Ckv2h � Ph.v
2
h/kL1.K/ k�i .uh/kL2.K/

��
krwh;i � rwikL2.K/ C krwikL2.K/

�o

� C
P

K2Th

n� jKj1=2 h2K
	A

juh;i � gh;i .tk/jW 1;1.K/

Ckv2h � Ph.v2h/kL1.K/ k�i .uh/kL2.K/
�

1
�2;K

h 2P
jD1

�2j;K.r
T
j;KG�K .wi /rj;K/

i1=2o
:

(18)

Therefore, collecting (15) and (18), we are able to bound componentwise the first
term on the right-hand side of (13), as

ja.vhI uh;w/j � C
X
K2Th

2X
iD1

�Ai;K.vh;uh/ !
A
K.wi /:

The estimate of the second term on the right-hand side of (13) can be carried
out exactly as the corresponding one in the proof of Proposition 3.3 in [5], after
replacing jruhj2 with �.uh/ W E.uh/. This yields

4jb.uhI vh; z/j � C
X
K2Th

�BK.uh; vh/ !K.z/:

ut
To make estimate (10) useful in practice, we have to pick the pair of functions .w; z/.
Mimicking the considerations in [5], we choose w D uh and z D vh. This leads us
to define the error estimator

� D
X
K2Th

�K.uh; vh/;

where the local estimator is

�K.uh; vh/ D
2X
iD1

�Ai;K.vh;uh/ !K.uh;i /C �BK.uh; vh/ !K.vh/: (19)
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Remark 2 Although in this work we deal with a specific case of linear elasticity
constitutive law, we do believe that it is possible to extend the a posteriori analysis
to a more general model, for instance, the one recently introduced in [9].

3 The Numerical Anisotropic Procedure

The numerical minimization of (6) is not a trivial task since it is a nonconvex
functional due to the presence of the term Ph.v

2
h/�.uh/ W E.uh/. In particular, the

methods available in the literature do not guarantee, in general, the convergence to
global minimizers (see, e.g., [3]) but only to local minima.

In the first part of this section, we introduce the procedure exploited to convert the
anisotropic estimator (19) into an actual anisotropic tool. In the second part of this
section, we merge this approach with a suitable minimization algorithm, extending
the method in [5].

3.1 A Metric-Driven Approach

Following [15, 25], we use a metric-based mesh adaptive approach (see, e.g., [20]).
In particular, we predict the mesh with the least number of elements ensuring a given
accuracy on the global estimator �.

There exists a tight relation between metric and mesh. Actually, with an assigned
mesh Th, we can associate a corresponding piecewise constant metric given by
MK D RTK�

�2
K RK , for any K 2 Th, where matrices RK and �K are exactly the

same as in Sect. 2.2. Likewise, for a given metric field M W ˝ ! R
2�2, we can build

a mesh, say TM , such that MK D M jK coincides with MK , for anyK 2 TM .
To build the new adapted mesh, we adopt a two-step procedure. First, we derive a

metric M out of the error estimator (19). Then, we generate the new mesh induced
by this metric using the metric-based mesh generator in FreeFem++ [21].

To obtain M , we resort to an iterative procedure. At each iteration, say l , we deal
with three quantities:

(i) The actual mesh T
.l/

h .

(ii) The new metric M .lC1/ computed on T
.l/

h .

(iii) The updated mesh T .lC1/
h induced by M .lC1/.

The new metric is predicted by suitably rewriting the local estimator �K.uh; vh/
to single out the geometric information and then by applying an error equidistri-
bution criterion combined with the minimization of the number of elements. The
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re-arranged local estimator is

�K.uh; vh/ D K

n 2X
iD1

�Ai;K.vh;uh/ !K.uh;i /C �BK .uh; vh/ !K.vh/
o
; (20)

where K D j OKj ��1;K�2;K�3=2 lumps all the area jKj information,

�Ai;K.vh;uh/ D �Ai;K.vh;uh/�j OKj�1;K�2;K
�1=2 ; �BK .uh; vh/ D �BK.uh; vh/�j OKj�1;K�2;K

�1=2 ;
with i D 1; 2, are approximately pointwise values (at least for a sufficiently fine
mesh), while the anisotropic information associated withK is collected in the scaled
weights

!K.�h/D
h
sK rT1;K G�K.�h/ r1;K C 1

sK
rT2;K G�K .�h/ r2;K

i1=2
with �h D uh;1; uh;2; vh;

with G�K.�/ D G�K.�/=.j OKj�1;K�2;K/. In principle, each term in (20) provides a
metric. For practical reasons, however, we merge this information to obtain a single
metric, thus avoiding metric intersection. To do this, we follow the approach in
Sect. 4 of [26], which allows us to rewrite (20) as �K.uh; vh/ D K�K with

�K D
h
sK r T1;K �K r1;K C 1

sK
r T2;K �K r2;K

i1=2
; (21)

where the local matrix

�K D
2X
iD1

�
�Ai;K.vh;uh/

�2
G�K .uh;i /C �

�BK .uh; vh/
�2
G�K .vh/ (22)

gathers the anisotropic information provided by uh and vh, suitably weighted via the
local residuals.

We minimize now the number of mesh elements by maximizing the area of each
element K with an error equidistribution constraint, i.e., we enforce that, for each
element K 2 T

.lC1/
h , �K.uh; vh/ D K �K D TOL=#T .l/

h , where TOL and #T .l/

h

are the user-defined global tolerance and the number of mesh elements in T
.l/

h ,

respectively. The constant value TOL=#T .l/

h is ensured with an element of maximal
area only if �K is minimized with respect to sK and r1;K , i.e., we solve elementwise
the constrained minimization problem

min
sK�1;rm;K �rn;KDımn

�K.r1;K; sK/; (23)
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ımn being the Kronecker symbol. For computational convenience, all the quantities
appearing in (22) are evaluated on the background grid T

.l/

h . On the other hand,
the aspect ratio sK and the unit vector r1;K in (21) represent our actual unknowns.
According to Proposition 4.2 in [26], we can state the desired minimization result.

Proposition 2 Let f� i;K; gi;Kg be the eigenvector-eigenvalue pair of �K with
g1;K � g2;K > 0. Then, the minimum (23) is obtained for the choices

r1;K D �2;K and sK D
�
g1;K

g2;K

	1=2
; (24)

yielding the value
�
2

p
g1;Kg2;K

�1=2
for �K .

The minimization problem (23) can be solved analytically via (24) without resorting
to any numerical optimization tool.

Finally, the optimal metric M .lC1/ is generated by exploiting again the equidis-
tribution constraint, i.e., by solving the equations

j OKj ��1;K�2;K�3=2 �2p
g1;Kg2;K

�1=2 D TOL

#T .l/

h

and
�1;K

�2;K
D sK D

�
g1;K

g2;K

	1=2
:

(25)

System (25) provides us with the distinct values

�1;K D
�

1

j OKj p
2

�
g1;K

g22;K

	1=2 TOL
#T .l/

h

	1=3
;

�2;K D
�

1

j OKj p
2

�
g2;K

g21;K

	1=2 TOL
#T .l/

h

	1=3
: (26)

Eventually, the optimal metric M .lC1/ is characterized by r1;K in (24), �1;K and
�2;K in (26), with r2;K ? r1;K .

3.2 The Whole Adaptive Procedure

In this section we propose a numerical algorithm which combines a suitable
minimization method for the nonconvex functional J PAT

h with the mesh adaptation
procedure of the previous section.

The algorithm is a generalization of the Algorithms 2 and 3 proposed in [5].
In practice, we switch from mesh adaptation, driven by the tolerance TOL D
REFTOL � 1, to minimization of J PAT

h , until both the mesh and the functional
stagnate to within given thresholds, MESHTOL � 1 and VTOL � 1, respectively.
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The minimization of the functional exploits the alternate minimization algorithm
proposed in [8] for dealing with nonconvex functionals, relying on the convexity
only along the directions identified by uh and vh. In particular, our new algorithm
carries out mesh adaptation after a maximum number, nMIN, of minimization steps.
Given an initial mesh, T .0/

h , we proceed as follows:

Algorithm 1 Optimize(nMIN)-while-adapt
1: Set k D 0, l D 0;
2: If k D 0, set v1h D 1; else v1h D vh.tk�1/;
3: Set l D 0; errmeshD 1; errD 1;
4: while errmesh � MESHTOL j err � VTOL do
5: Set i D 1; err=1;
6: while err � VTOL& i � nMIN do
7: uih D argmin

zh2ŒX
.l/
h �2

J PAT
h .zh; vih/;

8: v
iC1
h D argmin

zh2X
.l/
h

J PAT
h .uih; zh/;

9: errD kviC1
h � vihkL1.˝/;

10: i  i C 1;
11: end while
12: Compute the new metric M .lC1/ based on ui�1

h and vih;

13: Build the adapted mesh T
.lC1/

h ;

14: errmesh D j#T .lC1/

h � #T .l/

h j=#T .l/

h ;
15: Set v1h D ˘l!lC1.v

i
h/;

16: l  l C 1;
17: end while
18: uh.tk/ D ˘l�1!l .ui�1

h /; vh.tk/ D ˘l�1!l .v
i
h/; T

k
h D T

.l/

h ;

19: Set T .0/

h D T k
h ;

20: k k C 1;
21: if k > F , stop; else goto 2.

The minimization of the functional with respect to uh and vh is performed by
solving the corresponding Euler-Lagrange equations, since the functional is actually
(strictly) convex with respect to the individual variables. In both cases, the equations
are standard linear elliptic problems.

The interpolation operator˘n!nC1.zh/ is used to map the finite element function
zh defined on T n

h onto the new mesh T nC1
h , before restarting any new optimization

or time loop.
The convergence of the mesh adaptivity is assessed by checking the relative

variation of the number of elements. The main novelty with respect to the algorithms
in [5] is that, through nMIN, the functional J PAT

h is not necessarily exactly
minimized after the inner while loop. Algorithms 2 and 3 represent particular
cases of the algorithm above. Selecting nMIN D 1, we recover Algorithm 2,
which is suited to deal with slowly advancing fractures, because the coupling
between optimization and adaptation is not so tight. Setting nMIN D 1, we get
back Algorithm 3, which alternates optimization and mesh adaptation more closely.
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However, in such a case, the crack evolution may be biased by the mesh which is
adapted to nonoptimal fields, uh; vh. These values of nMIN represent two extreme
choices. In general, we may pick any intermediate value, e.g., nMIN D 7 in the
section below.

4 Numerical Assessment

We verify Algorithm 1 on two numerical tests inspired by [7, 16]. The second test
case turns out to be particularly challenging.

4.1 Traction of a Fiber-Reinforced Matrix

We consider the rectangular domain˝ D .0; 3/	 .0; 3:5/ in Fig. 2 left, comprising
a nonelastic circular fiber of radius 0:5 centered at .1:5; 1:5/, for t 2 Œ0; 0:5�,
uniformly partitioned with a total number of F D 50 time steps. On the subdomain
˝D D .0; 3/ 	 .3; 3:5/ we enforce the load g, with gD D .0; t/T . The fiber is held
fixed while a uniform vertical displacement is induced by gD on the top side of the
matrix. The other sides of the domain are traction-free. As a function of time, at
the beginning the matrix behaves elastically; then, an asymmetric crack suddenly

Ω

θ

Ω

ΩD+ΩD

ΩD−

Fig. 2 Geometric configurations for the traction of a fiber-reinforced matrix (left) and for the crack
branching test (right)
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develops and eventually cuts the matrix in two parts. The parameters involved in (3)
are set to

" D 10�1; � D 10�3; 	A D 	B D 10�7;

� D Yp

.1C p/.1 � 2p/
 D Y

2.1C p/
;

where Y D 30 is Young’s modulus and p D 0:18 is the Poisson coefficient. The
values of the tolerances required by Algorithm 1 are

VTOL D 5 � 10�3; CRTOL D REFTOL D 10�3; MESHTOL D 10�2:

Figure 3 shows the vh-field at three time levels as well as the associated anisotropic
adapted mesh. At time t D 0:25 a crack on top of the fiber is created and starts
propagating slowly and symmetrically with respect to the fiber. At time t D 0:35

the symmetry is broken and the crack splits the matrix on one side only. Afterwards,
at time t D 0:39, the domain is thoroughly split into two parts. This behavior is
not essentially affected by ". Actually, a reduction of this parameter by one order
of magnitude yields the results in Fig. 4, which share the same pattern as in Fig. 3,
although with a sharper crack. In all cases, the adapted meshes are very fine close to
the fracture and in the area of higher stress. Moreover, the correct path of the crack
is detected in a very efficient way, i.e., with quite few elements. In particular, in
Figs. 3 and 4 (bottom-right), the meshes consist only of 1,810 and 12,381 elements,
respectively. The maximum aspect ratio of the three meshes in Fig. 3 is 16, 32 and
109. Figure 5 shows the time evolution of the energy. The elastic energy (dashed
line) is associated with the first term in the integral over˝ in (6), while the fictitious
crack energy (dash-dotted line) represents the second term. The black line is the sum
of these two contributions. Theoretically, we expect the elastic energy to disappear
after the collapse of the domain. On the contrary, a residual energy remains, due to
the regularization parameter � in the model. Moreover, three sudden increases of the
crack energy occur: the first at time t D 0:24, when a finite-length crack appears on
top of the fiber; the second at time t D 0:37, when the domain breaks on one side;
and the last takes place when the domain breaks down, at t D 0:39. This behavior
is qualitatively comparable with the ones in Fig. 4 in [16] and in Fig. 3 in [7]. This
corroborates the fact that anisotropic meshes do not affect the crack dynamics.

4.2 Crack Branching

The domain for the second test case is the cracked rectangular elastic sample shown
in Fig. 2, right. The initial crack is horizontal and parallel to the upper end lower
sides of the sample, while a displacement field of increasing magnitude and fixed
orientation, � , to the x1-axis, is applied to the horizontal sides. The later crack
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Fig. 3 Traction of a fiber-reinforced matrix. Time evolution of the vh-field (left): t D 0:25 (top),
t D 0:35 (center), and t D 0:39 (bottom); corresponding adapted meshes (right) with " D 10�1
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Fig. 4 Traction of a fiber-reinforced matrix. Time evolution of the vh-field (left): t D 0:30 (top),
t D 0:38 (center), and t D 0:40 (bottom); corresponding adapted meshes (right) with " D 10�2
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Fig. 5 Traction of a
fiber-reinforced matrix. Time
evolution of the energy
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evolution is monitored for several values of � . The final time is set to T D 0:2,
and the total number of uniform time steps is F D 20. The final time is chosen
when the crack is about to turn towards the bottom right corner of the domain. The
key issues of this problem is the correct prediction of the actual branching angle of
the crack, in particular when the applied displacement field is not orthogonal to the
domain border. For this purpose, we resort to a suitable mesh adaptation strategy. In
particular, we identify˝ with the square domain .�1:5; 1:5/2, ˝D D ˝D� [˝DC

with˝D� D .�1:5; 1:5/	 .�1:5;�1:3/ and˝DC
D .�1:5; 1:5/	 .1:3; 1:5/, gD is

gD.t/ D
(
.t cos.�/; t sin.�// on˝DC

.�t cos.�/;�t sin.�// on˝D�

(27)

and the model parameters are

" D 10�2; � D 10�5; 	A D 	B D 10�5;

� D Yp

.1C p/.1 � 2p/
;  D Y

2.1C p/
;

with Y D 45 and p D 0:18. The tolerances of Algorithm 1 are

VTOL D 10�4; CRTOL D 3 � 10�4; REFTOL D 10�3; MESHTOL D 10�2:

Figure 6 gathers the vh-field and the corresponding anisotropic adapted mesh at the
final time, for several orientations � . The cardinality of the meshes in Fig. 6 is 2,941,
1,268, 1,652, 1,302, 1,570, 3,804, in top-down order. Notice that the mesh adaptive
procedure identifies the configurations associated with � D 
=2 and � D 0 as being
the most challenging. In all cases, the mesh closely matches the crack path, with
a very thin thickness of the adapted area. The anisotropic features of the meshes
are highlighted by the values of the maximum aspect ratio, which varies between
28, for � D 
=20, and 384, for � D 0. Moreover, when � D 0, in contrast to
[7], where it appears an unphysical symmetric crack branching, we obtain a crack



64 M. Artina et al.

Fig. 6 Crack branching. Distribution of the vh-field around the tip of the initial crack (left) and
final adapted mesh (right) for � D 
=2; 
=4; 
=6; 
=20; 
=60; 0 (top-down)
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Fig. 7 Crack branching. Branching angle as a function of the impressed displacement orientation

which moves straight a very short distance, before turning downwards but with a
slightly smaller angle than expected. In practice, we are able to predict reliably
the crack branching for � & 3ı. Figure 7 shows the branching angle as a function
of the orientation � . This angle has been computed by picking the angle at which
the distribution of the unit vectors, r1;K , gathered in bins of 20 angles each, over
the rectangle Œ0; 0:08� 	 Œ�0:08; 0� is a maximum. On comparing our results with
the ones in [7], we observe a good agreement, with the additional capability of
correctly simulating the physical behavior for 3ı . � . 7ı, by enlarging the range
of reliability of the numerical tool in [7] where � & 7ı.

5 Conclusions

We have extended the anisotropic approach provided in [5] for the anti-plane case to
the more challenging plane-strain framework. This implies moving from a scalar to
a vector elastic problem. The proposed Algorithm 1 has been shown to correctly
identifying the physical crack path, under reasonable choices of the physical
and algorithmic parameters, aware also of the theoretical limits of the adopted
mechanical model. In particular, in the crack branching test case, the proposed
procedure allowed us to broaden the range of applicability of this model, with
respect to what studied in [7]. Another interesting issue to be investigated is a proper
tuning of the modeling parameters, such as ", �, and also of the physical parameters
� and . In Sect. 4.1, we tackle to a some extent the sensitivity to " by highlighting
the actual influence of " on the crack thickness. A more thorough investigation has
been carried out in [4] in the anti-plane case. We have also introduced a generalized
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version of the algorithm proposed in [5]. In particular, Algorithm 1 employs the
new parameter, namely nMIN, through which we can adjust in a more precise way
the interplay between the minimization of the functional and the adaptation of the
mesh. In future developments, we shall be concerned with the study of more general
mathematical models, such as the ones introduced in [9], for a possible comparison
with actual experimental tests.
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Deforming Surface Meshes

Siu-Wing Cheng and Jiongxin Jin

Abstract We study the problem of maintaining a deforming surface mesh, specified
only by a dense sample of n points that move with the surface. We propose a motion
model under which the class of ."; ˛/-meshes can be efficiently maintained by a
combination of edge flips and insertion and deletion of vertices. We can enforce
bounded aspect ratios and a small approximation error throughout the deformation.

1 Introduction

1.1 Background

The simulation of deforming surfaces appears in various settings such as the
interface between fluids [14, 18, 21, 28], boundary element methods [5, 15], moving
cloth [4, 29], and surgery simulation [10, 19]. In this paper, we consider the
simulation of a surface that deforms without changing its topology. The surface is
specified only by a set of sample points dense with respect to the local feature size
(LFS) and the goal is to approximate the surface by a mesh with vertices chosen
from the sample points and triangles of bounded aspect ratio, the latter being a
desirable feature for numerical simulation. The deformation may make the angles
in the mesh smaller between two successive time steps. Our problem is to restore
the mesh quality at the next time step before resuming the deformation. The left two
images in Fig. 1 shows snapshots of a twisting cylinder output by our algorithm.

Some notation is needed to state our results. The Euclidean distance between two
points x and y is denoted by d.x; y/. For all Y � R

3, d.x; Y / D infy2Y d.x; y/.
For every pair of vectors u and v, †.u; v/ denotes the angle between them which lies
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x

y

Fig. 1 The left two images show a twisting cylinder. On the right, the dashed skeleton is the medial
axis. The local feature sizes are small at x and y because the curvature is high at x and y is near a
subcurve that is far way from y along the curve

in the range Œ0; 
�. Given three points a, b and c, we use †abc to denote †.a � b;

c�b/. Let h and h0 be two linear objects such as vectors, segments, lines, polygons,
and planes. We use †a.h; h

0/ to denote the nonobtuse angle between the affine
subspaces spanned by h and h0. B.x; r/ denotes the ball with center x and radius r .
Given a ball B , we use @B to denote its boundary. Given a triangle � , c� denotes its
circumcenter, 	� denotes its circumradius, B� denotes the diametric ball B.c� ; 	� /
of � , and n� denotes a unit vector orthogonal to aff.�/.

A triangulated polygonal surface T is a set of vertices, edges and triangles such
that the intersection of every pair of elements in T is either empty or an element
in T , and for every vertex of T , its incident triangles form a topological disk. The
union of the vertices, edge and triangles form the underlying space jT j of T . The
star of a vertex p 2 T , denoted star.p/, is the set of edges and triangles in T that
are incident to p.

Let ˙ 
 R
3 be a closed connected C2-smooth surface throughout this paper.

For every point x 2 ˙ , a medial ball B at x is a maximal ball tangent to ˙ at
x such that the interior of B does not intersect ˙ . The medial axis M of ˙ is
the set of centers of medial balls at points in ˙ . The local feature size of a point
x 2 ˙ is f .x/ D d.x;M /. The local feature size function f is 1-Lipschitz, i.e.,
f .x/ � f .y/C d.x; y/ [11].

A finite point set P 
 ˙ is an "-sample of ˙ for some " 2 .0; 1/ if d.x; P / �
"f .x/ for every point x 2 ˙ . The local feature size is mall at a point x if the
curvature is high at x or if x is near a point in ˙ whose geodesic distance from x

is much larger. The image on the right in Fig. 1 illustrates these two cases in 2D. In
such cases, a higher sampling density is needed around x for the reconstruction to be
faithful. The local feature size must be nonzero for an "-sample to be well defined.
Thus,˙ is required to beC2-smooth (no sharp feature or junction). Boundary is also
not allowed, although it seems not difficult to handle boundaries in practice as shown
in our experiments. Suppose that one has the primitive to compute intersections
between ˙ and lines, and the primitive to check for every axes-aligned cube C ,
whether every pair of surface normals in˙ \C deviate by a small angle. Then, one
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can recursively refine an octree partition until the intersections between the leaf cell
edges and˙ define a dense sample of ˙ [25].

The nearest point map ' maps a point x 2 R
3 nM to the point '.x/ 2 ˙ closest

to x. We use nx to denote the outward unit surface normal at a point x 2 ˙ .
A mesh of˙ is a triangulated polygonal surface T such that the vertices of T are

points in ˙ and jT j is homeomorphic to ˙ .

1.2 Motion Model

Consider the simulation of a deforming surface that progresses in unit time steps.
The surface is specified by n moving sample points on it. At time t , ˙t denotes the
surface, ft denotes the LFS function of ˙t , Pt denotes the set of moving sample
points, and �t.x/ denotes the speed of a point x 2 ˙t . For any vertex v of a mesh
T of ˙t , nT .v/ denotes the distance from v to the nearest vertex in T and RT .v/
denotes the largest circumradius of the triangles incident to v.

Suppose that Pt is an "-sample of ˙t at all times and, at any time step t , the
velocities of the n sample points are returned by the numerical procedure that drives
the simulation. Not all points in Pt can be used as mesh vertices in order that no
triangle angle is too small. Theoretically, since an "-sample can be arbitrarily dense
locally, it is impossible to prove that some constant fraction of Pt must appear
as mesh vertices. However, it is unlikely that Pt is arbitrarily dense anywhere in
practice, and we have observed in our experiments that more that 50 % of the sample
points appear as mesh vertices. We assume that the deformation is smooth as defined
below.

Definition 1 We say that deformation is smooth if the following conditions are
satisfied at every time step t :

(i) For every point x 2 ˙t , �t.x/ is at most 0:005"0 sin ˛0 times the LFS of x at
t , and �tC1.x/ D O.�t.x//.

(ii) For every pair of sample points p and q, if d.p; q/ � �t.p/, then �t.p/ D
O.�t.q//.

(iii) At time t , the displaced mesh vertices from the previous time step form an
"1-sample, where "1 � �" for some constant �.

We are interested in the deformation of a particular class of surfaces meshes
defined as follows [7, 8].

Definition 2 For every " 2 .0; 1/ and every constant ˛ 2 .0; 
=3�, an ."; ˛/-mesh
of ˙ is a triangulation T that satisfies the following conditions.

• The vertices of T form an "-sample of ˙ .
• The angles of every triangle in T are at least ˛.



72 S.-W. Cheng and J. Jin

• There exists a triangle � in T and a vertex p of � such that †a.np;n� / �
arcsin

�
0:8

1C2 csc.˛=2/

�
.

• ' restricted to jT j is a homeomorphism between jT j and ˙ .

1.3 Main Result

We prove that there exist constants "0 2 .0; 1/ and ˛0 2 .0; 
=6/ such that
an ."0; ˛0/-mesh can be constructed before the simulation begins and, at each
subsequent time step, an ."0; ˛0/-mesh can be restored via edge flips and insertions
and deletions of vertices. Theoretically, ˛0 can be made close to 
=6, but the
sampling density would need to be extremely high. Our experiments suggest that
˛0 can be made greater than 10ı in practice. The asymptotic running time can be
made O.n/ [7, 17]. In our experiments (Sect. 6), 90% of angles are in the range
Œ30ı; 120ı�, only less than 0:02% of angles are less than 15ı, and no angle is
smaller than 11ı. Our theoretical framework does not allow for topological changes,
boundaries, or sharp features. We cater for boundaries in our experiments by keeping
all input sample points on the boundaries as mesh vertices and the edges connecting
such adjacent sample points as mesh edges.

Level set methods [12, 23, 27] and point-based methods [1, 22, 24] are popular
methods to model deforming objects with topological changes, but an explicit mesh
is not maintained. Our focus is on fast maintenance of a mesh with theoretical
guarantees on its quality instead of producing the deformation. We avoid recon-
struction from scratch in order to improve efficiency. Thus, our result is most
similar to the prior work on tracking a deforming mesh without any topological
change [14, 16, 28], but these prior work do not offer any guarantee. Several
techniques have been developed to track and modify a mesh in order to produce
topological changes [6, 26, 30]. It may be possible to combine them with our
algorithm to allow topological changes and preserve sharp features.

2 High Level Strategy

Our strategy is to maintain an ."0; ˛0/-mesh Mt with vertices from Pt that satisfies
the following conditions C1–C3. Let ` and � be two constants such that ` is
sufficiently large and � is less than 1. The setting of ` and � will be explained
later. By C2, ˛0 can be set to be arcsin.�=2/.

C1: For every vertex v of Mt , nMt .v/ � 20.sin˛0/�1�t .v/.
C2: For every vertex v and triangle � inMt , if v 2 B.c� ; `	� /, then nMt .v/ � �	� .
C3: Some points in Pt may not appear as vertices in Mt . Such a point p is stored

in some list points.v/, where v is a vertex of Mt and d.p; v/ � 2RMt .v/.
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Property C1 ensures that a mesh edge turns an angle less than ˛0=10 from time t to
tC1. Property C2 ensures that the triangle circumradii vary smoothly. By C3, every
sample point that is not a vertex is stored at some vertex nearby. LetKtC1 denote the
deformedMt at time tC1, which has the same connectivity asMt . Based on C1–C3
and the smoothness of the deformation, we can show that the deformed mesh KtC1
is an ."1; ˛1/-mesh for some ˛1 2 Œ 4

5
˛0; ˛0� that satisfies the following conditions

OC1– OC3, which are degraded versions of C1–C3. The proof is given in Sect. 3.

OC1: For any vertex v ofKtC1, nKtC1
.v/ � 18.sin˛0/�1�t .v/.

OC2: For every vertex v and triangle � in KtC1, if v 2 B.c� ;
1
2
`	�/, then

nKtC1
.v/ � 1

2
�	� .

OC3: For every vertex v in KtC1 and every point p 2 points.v/, d.p; v/ D
O.RKtC1

.v//. The big-Oh constant depends on that the constant in assump-
tion (ii) of our smooth deformation model.

Our problem is to compute an ."0; ˛0/-mesh MtC1 from KtC1 that satisfies C1–C3
so that the simulation can continue to the next time step and so on.

The initial ."0; ˛0/-mesh can be obtained by pruning the sample to an "0-sample
that is sparse with respect to their initial velocities and the local feature sizes,
followed by running a surface reconstruction algorithm (e.g. [3, 9]) on the pruned
sample. The output mesh is an ."0; ˛0/-mesh satisfying C1–C3.

Lemma 1 One can compute an ."0; ˛0/-mesh from an "-sample that satisfies C1,
C2 and C3.

Proof We first compute a surface mesh M 0 from the "-sample using a sur-
face reconstruction algorithm. Then for every vertex v, we define its decimation
radius ıv D max

˚
4�	� � �

`
d.v; c� / W triangle � 2 M 0�. Initially, all vertices are

unmarked. Take an unprocessed vertex v that is unmarked. Mark all vertices in
B.v;maxfıv; 20.sin˛0/�1�0.v/g/ n fvg. Repeat it until all vertices are processed.
Run reconstruction again on the unmarked vertices to compute our initial mesh M .
We enforce condition C3 by storing each non-vertex sample point in the point list
of its nearest vertex in M . We can show that M is an ."0; ˛0/-mesh that satisfies
C1–C3 by using the same arguments as in the proofs of Lemmas 17 and 18. ut

At time t C 1, we call UPDATE.KtC1/ to compute MtC1. UPDATE iterates two
phases, REFINE and DECIMATE. In the first iteration, REFINE inserts some sample
points as vertices to make the vertex set an O.�"1/-sample of ˙tC1. Refinement
alone cannot restore the angle lower bound ˛0, because the vertices may become
very crowded in some region, where the inter-vertex distance is much less than
" times the local features sizes, and we run out of sample points to refine its
neighborhood. In the second phase, DECIMATE deletes some vertices to increase
the inter-vertex distances while keeping a good sampling density. At the end of
the first iteration, the vertex set forms an O.�"1/-sample. Another iteration of
the two phases makes the vertex set an O.�2"1/-sample. So we obtain MtC1 in
O.log.1="0// D O.1/ iterations.
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3 Mesh Deterioration

Inductively, the mesh at time t satisfies conditions C1–C3. We want to show that
after the deformation, the mesh at time t C 1 satisfies OC1– OC3, a set of similar
conditions with some degraded constants. The next lemma can be proved by a
straightforward trigonometric argument.

Lemma 2 Let � 0 D x0y0x0 be a triangle at time t with minimum angle larger than
˛0, and it deforms to � D xyz at time t C 1. Assume that the displacement of each
vertex is at most ��1 sin ˛0 times the length of any of its incident edges, where � is
a constant greater than 14. Then .1 � 6=�/	� 0 � 	� � .1C 14=�/	� 0 .

Lemma 3 LetMt be the mesh at time t satisfying C1–C3. LetKtC1 be the deformed
mesh at time t C 1. Assume ` � 54. ThenKtC1 satisfies OC1– OC3.

Proof Consider OC1. Let u be the nearest vertex of v in KtC1. Suppose u and v
are at u0 and v0, respectively, at time t . By C1, both �t.v

0/ and �t.u0/ are less
than d.u0; v0/=20. Therefore, nKtC1

.v/ D d.u; v/ � d.u0; v0/ � �t.v
0/ � �t.u0/ �

0:9d.u0; v0/ � 0:9nMt .v
0/. which is at least 18.sin˛0/�1�t .v/ by C1.

OC2 requires that for every triangle � and every vertex v in B.c� ; 12`	�/, nKtC1
.v/

is at least 1
2
�	� . Let u be the vertex of � . Let u0, v0 and � 0 be the counterparts of

u, v and � in Mt . d.v0; u0/ � d.v; c� / C d.u; c� / C �t.u0/ C �t.v
0/ � .`=2 C

1/	� Cd.v0; u0/=10. Rearranging the terms, we obtain d.v0; u0/ � 10
9

�
1
2
`C 1

�
	� <

.`�1/	� 0 by Lemma 2 and the fact that ` � 54. Since d.v0; c� 0/ � d.v0; u0/C	� 0 �
`	� 0 , C2 implies that nMt .v

0/ � �	� 0 and hence nKtC1
.v/ � 0:9nMt .v

0/ � 0:9�	� 0 .

Lemma 2 further implies that nKtC1
.v/ � 0:9�	� 0 � 0:9�	�

1C14=20 >
1
2
�	� , establishing

OC2.
Consider OC3. Let v be a vertex in KtC1, and p a sample point in points.v/.

Suppose they are at v0 and p0 at time t , respectively. By C1 and C3, d.p; v/ �
d.p0; v0/C�t.p

0/C�t.v
0/ � 2RMt .v

0/C�t.p
0/C nMt .v

0/=20 � 2:1RMt .v
0/C

�t.p
0/. If �t.p

0/ � d.p0; v0/, �t.p
0/ � d.p0; v0/ � 2RMt .v

0/. Otherwise, by
our assumption on the smoothness of the deformation,�t.p

0/ � c�t .v
0/ for some

constant c. Therefore, �t.p
0/ � c�t.v

0/ � cnMt .v
0/=20 � cRMt .v

0/=10. In both
cases, d.p; v/ < .5C c=10/RMt .v

0/ D O.RKtC1
.v// by Lemma 2. ut

4 Refinement

In the first iteration, the input to REFINE is KtC1. In remaining iterations, we feed
it with the output of DECIMATE. Inductively, the input mesh X of REFINE is an
("X; ˛0/-mesh satisfying OC1– OC3 for some "X � "1. Our goal is to improve the
sampling condition from "X to O.�"X/.

First, we update the point lists of every vertex, so that a non-vertex sample point
is stored in the point list of its nearest vertex. As a result, for every non-vertex sample
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point p and the vertex u such that p 2 points.u/, d.p; u/ � 2RX.u/. Then, initialize
an intermediate mesh T to beX and incrementally inserts points. We go through the
points in PtC1 that are not vertices and insert those that are far away from existing
vertices. Let p be the current non-vertex point being processed. Let u be the vertex
of X such that p is stored in points.u/. Let w be the vertex of the current mesh T
nearest to p, which must lie inB.u; 4RX.u// because d.u;w/ � d.u; p/Cd.p;w/ �
2d.p; u/ � 4RX.u/. We find w by searching T within B.u; 4RX.u//. If the distance
between p and w is less than �RX.u/ or 20.sin˛0/�1�tC1.p/, skip p; otherwise,
insert p as explained below.

Suppose that p is a candidate point to be inserted. We apply a result to be
introduced shortly, Theorem 1(iii), to the vertices whose incident triangles intersect
B.u; 4RX.u//. In the end, all the triangles intersecting B.u; 4RX.u// have almost
empty diametric balls, and so do their neighboring triangles. The common edge ab
between two triangles abc and abd is flippable if and only if the diametric ball of
abc contains d in its interior and the diametric ball of abd contains c in its interior.

In particular, the triangle v1v2v3 nearest to p has an almost empty diametric ball,
because the distance between u and the nearest triangle v1v2v3 is at most d.u; p/C
d.p; v1v2v3/ � 2d.u; p/ � 4RX.u/. We insert p by calling ADD(T , p, v1v2v3). It
works as follows. Compute the point Qp in v1v2v3 nearest to p. Split v1v2v3 using
Qp. That is, we replace v1v2v3 by three triangles Qpv1v2, Qpv2v3 and Qpv3v1. Flip the

edges v1v2, v2v3 and v1v3 if they are flippable. Finally, for each triangle incident to
Qp, replace its vertex Qp by p. This adds p as a vertex to T .

After all the insertions, we flip the flippable edges in T , and migrate all non-
vertex sample points to the point lists of their nearest vertices in the current mesh.

4.1 Mesh Properties

To analyze REFINE, we need some surface sampling results in the literature and
some properties of ."; ˛/-meshes that we established in another paper [8]. Some
preliminary analogous results can be found in [7].

Lemma 4 ([2, 11, 13]) Let p, q and r be any three points on ˙ .

(i) For every " � 1=3, if d.p; q/ � "f .p/, then †.np; pq/ � 
=2 � " and
†.np;nq/ � 2".

(ii) For every " � 1=10, if 	pqr � "f .p/, then †.np;npqr/ � 10".
(iii) For every " � 1=4 and every point z on tangent plane at p, if d.p; z/ � "f .p/,

then d.z; ˙/ � "d.p; z/.

Lemma 5 ([8]) Let p, q and r be any three points on ˙ . Let c be any positive
constant. Suppose that 	pqr � c"f .p/ for some " < minf1; 1=.72c/g. Then, for
every point x in the circumdisk of pqr, d.x; '.x// � 10c" d.p; x/ � 20c2"2f .p/

and d.p; '.x// � .2c"C 20c2"2/f .p/.
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Lemma 6 ([8]) Let  D 2.csc˛/4
=˛C1. There exists an "0 2 .0; 1/ depending on
˛ such that for every " 2 .0; "0�, if If T is an ."; ˛/-mesh of ˙ , then

(i) For each vertex p 2 T and every triangle � 2 star.p/, 	� � "f .p/ and
†a.np;n� / < 6".

(ii) For every pair of triangles �; � 2 T that share an edge, the dihedral angle at
� \ � is greater than 
 � 12".

Lemma 7 ([8, 17]) For all c > 1, if T is an ."; ˛/-mesh of ˙ for a small enough
", then for every vertex p 2 T , jT j \ B.p; c"f .p// is connected and it projects
injectively onto any plane that makes an angle at least 
=3 with np .

Theorem 1 ([7, 8]) For every constant c 2 .0; 0:5/ and every constant ˛ 2
Œ0; 
=3�, there exists "0 2 .0; 1/ depending on c and ˛ such that for every " 2 .0; "0�,
if T is an ."; ˛/-mesh of a connected closed smooth surface, then the following
properties are satisfied. The common edge ab between two triangles abc and abd is
flippable if and only if the diametric ball of abc contains d in its interior and the
diametric ball of abd contains c in its interior.

(i) We can flip flippable edges in T until no edge is flippable in time linear in the
number of vertices in T . An ."; ˛/-mesh T 0 is produced in the end and for every
triangle � 2 T 0, B.c� ; .1 � "c/	�/ does not contain any vertex.

(ii) For every vertex p 2 T and every triangle � 2 star.p/, if B.c� ; .1 � "c/	� /

does not contain any vertex, then 	� � ."CO."1Cc//f .p/.
(iii) Given any subset V of vertices of T , we can flip flippable edges inO.jV j/ time

to produce an ."; ˛/-mesh T 0 so that for every triangle � 2 T 0 that is incident
to a vertex in V or a neighbor of a vertex in V , B.c� ; .1 � "c/	� / does not
contain any vertex.

4.2 Analysis of Refinement

We apply the mesh properties to analyze the effects of refinement. The proofs of the
next two technical lemmas are straightforward and omitted.

Lemma 8 Let T be an ."; ˛/-mesh of ˙ for a sufficiently small ".

(i) For every point x in the circumdisk of a triangle � 2 T , d.x; '.x// �
10"	� � 102"2f .'.x//.

(ii) For every point y 2 ˙ , the distance between y and its nearest point z 2 jT j is at
most 102"2f .y/. For any triangle � 2 T that contains z, d.y; z/ < 24"	� .

Lemma 9 Let T1 and T2 be a .�1; �1/-mesh and a .�2; �2/-mesh of ˙ , respectively,
possibly with different vertex sets. Let � be a triangle in T1. Let � be the triangle in
T2 nearest to '.c� /.

(i) d.c� ; �/ � 10�1	� C 24�2	� .
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(ii) Let ˇ be any constant in the range .0; 1�. Assume that �1 and �2 are sufficiently
small. If B.c� ; ˇ	� / does not contain any vertex of T2, then 	� � 0:9ˇ	� .

Throughout the procedure, we need to maintain certain invariants so that the local
edge-flip algorithm works (which requires a constant lower bound on angles).

Lemma 10 Let X be an ."X ; ˛0/-mesh satisfying OC1– OC3. During the execution of
REFINE.X/, the following invariants on the intermediate mesh T are maintained.

(i) For every vertex a in X and every vertex b in T , if d.a; b/ � .`=4� 3/RX.a/,
then nT .b/ � 1

4
�2RX.a/.

(ii) T is an ."X; �/-mesh for some constant � > 0.

Proof Consider invariant (i). Let T be the mesh just after we add a vertex p. Let u
be the vertex of X nearest to p. It is also the vertex whose point list contains p at
the beginning of the main loop.

We first show that invariant (i) holds for b D p. Let a be any vertex in X such
that d.a; p/ � .`=4 � 3/RX.a/. If RX.a/ � RX.u/, then since nT .p/ � �RX.u/
for us to decide to insert p, we have nT .p/ � �RX.a/ as desired. Assume that
RX.a/ > RX.u/. We have d.a; u/ � d.a; p/ C d.p; u/ � .`=4 � 3/RX.a/ C
2RX.u/ < .`=4� 1/RX.a/. Let � be the triangle incident to a in X with the largest
circumradius, i.e., 	� D RX.a/. Then, d.u; c� / � d.a; u/ C d.a; c� / � .`=4/	� .
So OC2 applies and implies that RX.u/ � 1

2
nX.u/ � 1

4
�	� D 1

4
�RX.a/. Since

nX.p/ � �RX.u/ for us to insert p, we conclude that nX.p/ � 1
4
�2RX.a/. This

proves invariant (i) for the new vertex p.
Now consider a vertex b of T other than p. If the nearest vertex to b is not

changed by the insertion of p, then invariant (i) holds for b inductively. Assume that
the nearest vertex of b becomes p. Let a be any vertex of X such that d.a; b/ �
.`=4 � 3/RX.a/. If RX.a/ � RX.u/, then nT .b/ D d.p; b/ � nT .p/ � �RX.u/ �
�RX.a/. So invariant (i) holds for b in this case. Assume that RX.a/ > RX.u/. Since
p is the nearest vertex of b, we have d.p; b/ � d.a; b/ � .`=4 � 3/RX.a/. This
implies that d.a; u/ � d.a; b/ C d.p; b/C d.p; u/ � .`=2 � 4/RX.a/. Then, we
can invoke the same analysis as in the previous paragraph to show that RX.u/ �
1
4
�RX.a/. It follows that nX.b/ D d.p; b/ � nX.p/ � 1

4
�2RX.a/. This proves

invariant (i).
Consider invariant (ii). The mesh density cannot decrease because vertices are

being inserted. We show that any new angle in X is at least some constant � after
inserting a point p. We omit the argument for establishing the bound on the triangle
circumradii and the nearest point map being a homeomorphism as required by the
definition of an ."X; �/-mesh, which is similar to the proof of Theorem 1(i) [8].

Suppose that a point p is inserted into the triangle v1v2v3. That is, v1v2v3 is
the closest triangle to p in the current mesh and we split v1v2v3 into three smaller
triangles by connecting the three vertices to the projection Qp of p on v1v2v3. Let
qv1v2 be the triangle that shares v1v2 with Qpv1v2.

We first bound the angles in the triangle qv1v2 from below. Applying
Theorem 1(iii) makes the diametric ball of qv1v2 almost empty. Thus,
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B.cqv1v2 ; 0:8	qv1v2 / does not contain any vertex of X . Then by Lemma 9, we can
find a triangle � inX such that 	� > 0:7	qv1v2 , and d.cqv1v2 ; �/ < 0:1	qv1v2 C0:1	� .
Take the vertex a of � nearest to cqv1v2 . The distance between a and any vertex of
qv1v2 is at most

d.a; cqv1v2 /C 	qv1v2 < 	� C .0:1	qv1v2 C 0:1	�/C 	qv1v2 < 3	� : (1)

Thus, invariant (i) applies to a and any vertex of qv1v2. We conclude that qv1v2 has
edge lengths at least 1

4
�2RX.a/ � 1

4
�2	� >

1
6
�2	qv1v2 . The angles in qv1v2 are then

at least  D arcsin.�2=12/. Similarly, all angles in v1v2v3 are at least  .
Since we decide to insert p, nT .p/ � �RX.u/. As argued in proving (i), this

leads to nT .p/ � 1
4
�2RX.a/, so nT .p/ >

1
6
�2	qv1v2 . This implies that d.p; v1/

and d.p; v2/ are at least 1
6
�2	qv1v2 . Since Qp is the point on the current mesh nearest

to p, Lemma 8(ii) implies that d.p; Qp/ � .40�rad"X/	v1v2v3 � 40�rad"X
sin 	qv1v2 �

40�rad"1
sin 	qv1v2 . So for a small enough "1, d. Qp; v1/ and d. Qp; v2/ are at least 1

7
�2	qv1v2 .

Suppose that 	qv1v2 � 	 Qpv1v2 sin. =2/. So sin † Qpv1v2 D d. Qp;v2/
2	

Qpv1v2

�
1
7 �

2	qv1v2
2	qv1v2 = sin. =2/ � �2

14
sin. =2/. It follows that † Qpv2v1 � arcsin

�
�2

14
sin. =2/

�
.

Similarly, † Qpv2v1 � arcsin
�
�2

14
sin. =2/

�
. Also, we have †v1 Qpv2 � †v1v3v2 �  .

Suppose that 	qv1v2 � 	 Qpv1v2 sin. =2/. We claim that v1v2 is flippable. Since

†v1 Qpv2 � †v1v3v2 �  and sin †v1 Qpv2 D d.v1;v2/

2	
Qpv1v2

� 2	qv1v2
2	

Qpv1v2

� sin. =2/, the

angle †v1 Qpv2 must be obtuse and greater than 
 �  =2. Imagine that we rotate
v1 Qpv2 while fixing v1v2 to make the dihedral angle between v1 Qpv2 and v1qv2 larger.
Since †v1 Qpv2 > 
=2, Qp moves closer to the boundary of the diametric ball of v1qv2
as we rotate v1 Qpv2. Let p0 be the point in the plane of v1v2q such that †v1p0v2 D
†v1 Qpv2 and it is on the different side of v1v2 from q. So Qp is in the diametric ball
of v1qv2, if p0 is in the diametric ball of v1qv2, which is true because †v1p0v2 C
†v1qv2 < 
 . We show below that q also lies inside the diametric ball of v1v2 Qp, and
hence v1v2 is flippable. The plane of v1v2q intersects Bv1v2 Qp in a diskD with radius
	 � .1�O."//	v1v2 Qp , as the dihedral angle between v1v2q and v1v2 Qp is 
 �O."/.
If q is outside Bv1v2 Qp, then q is outside D, and  � †v1qv2 � arcsin

�
d.v1;v2/

2	

�
.

Since d.v1; v2/ D 2	v1v2 Qp sin †v1 Qpv2 � 2	v1 Qpv2 sin. =2/, we get sin � .1 C
O."// sin. =2/ , 2 cos. =2/ � 1C O."/, which is impossible for  < 
=3. So
q lies inside the diametric ball of v1v2 Qp.

Flipping v1v2 produces v1 Qpq and v2 Qpq. First, † Qpv1q � v2v1q �  , as the
dihedral angle between qv1v2 and Qpv1v2 is obtuse. Next, if †v1 Qpq is non-obtuse,
since v1v2 is flippable, one can show that †v1 Qpq � †v1v2q �  [8]. If †v1 Qpq is
obtuse, it is less than 
 � † Qpv1q � 
 �  . This implies that sin †v1 Qpq � sin .

Finally, we can bound †v1q Qp: sin †v1q Qp D d. Qp;v1/
d.q;v1/

�sin †v1 Qpq � 1
7 �

2	qv1v2
2	qv1v2

�sin D
.�2=14/ sin . A similar argument bounds the angles in v2q Qp from below.

So all new angles are at least minf ; 0;  00g before lifting the triangles incident
to Qp to p, where  0 D arcsin

�
�2

14
sin. =2/

�
, and  00 D arcsin

�
�2

14
sin 

�
. Since p
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is very close to Qp, the lifting decreases the angles by only a constant factor. So an
angle lower bound � can be preserved by an appropriate setting of � . ut

The lemma below summarizes the properties of the final mesh obtained.

Lemma 11 Let X be an ."X ; ˛0/-mesh satisfying OC1– OC3. REFINE.X/ runs in time
linear in the number of sample points, and produces a mesh Y such that:

(i) For every triangle � in Y , there is no vertex in B.c� ; 0:8	�/, and if a vertex v
lies in B

�
c� ; .`=6� 4/	�

�
, then nY .v/ � 1

6
�2	� .

(ii) Y is an ."Y ; �/-mesh, where � 2 .0; 
=3� and "Y D maxf0:3"0; 4�"Xg.

Proof Consider the running time of REFINE.X/. We first show that updating the
nearest vertex for each sample point takes O.1/ time. For every non-vertex sample
point p, it is initially stored in the list of some vertex u such that d.p; u/ D
O.RX.u//, as X satisfies OC3. Set ` large enough so that 2d.p; u/ � .`=2/RX.u/.
The distance between p and its nearest vertex w is at most d.p; u/, so d.w; u/ �
2d.p; u/. All triangles intersecting B.u; 2d.p; u// are connected, and they project
injectively in the tangent plane at u by Lemma 7. OC2 ensures that all edges of those
triangles have lengths at least ˝.RX.u//. Since all angles in X are at least some
constant, a standard packing argument shows that there are only O.1/ triangles
intersecting B.u; 2d.p; u//. Therefore, we can search for the nearest vertex of p
by traversing the triangles intersecting B.u; 2d.p; u// in O.1/ time.

Inside the main loop, for each sample point p, we need to find its nearest vertex
again. The point p is stored in the point list of the vertex u in X nearest to p.
So d.p; u/ � 2RX.u/. Lemma 10(ii) ensures that all angles in an intermediate
mesh are at least some constant. Lemma 10(i) implies that all edges intersecting
B.u; 4RX.u// have lengths ˝.RX.u//. Then the nearest vertex of p can be found
in O.1/ time by the same reasoning. Consider edge flips before the search for the
nearest triangle of p. There are constant number of vertices whose incident triangles
intersect B.u; 4RX.u//. So by Theorem 1(iii), it takes O.1/ time to flip edges so
that their incident triangles have almost empty diametric balls. Finding the nearest
triangle of p can also be done in O.1/ time by traversing the triangles intersecting
B.u; 4RX.u//. The remaining operations in the main loop clearly take O.1/ time.

The post-processing, including the edge flips and point migrations, can be done
in linear time. Therefore, REFINE runs in linear time.

Consider (i). Since edges are flipped in post-processing until none is flippable,
Theorem 1(i) any triangle � in Y , B.c� ; 0:8	�/ does not contain any vertex. Let v be
a vertex such that d.v; c� / � .`=6� 4/	� . By Lemma 9, we can find a triangle � in
X such that d.c� ; �/ < 0:1.	� C 	�/ and 	� � 0:7	� . Let a be a vertex of � . So we
have d.a; v/ � d.a; c� /Cd.v; c� / � 2	�C0:1.	�C	�/C.`=6�4/	� � .`=4�3/	� .
Lemma 10(i) applies and implies that nY .v/ � 1

4
�2RX.a/ � 1

4
�2	� >

1
6
�2	� .

Consider (ii). The angle lower bound � follows from Lemma 10(ii). It remains to
show that the vertices of Y form an "Y -sample of ˙tC1. Take any point x in ˙tC1.
SincePtC1 remains an "-sample of˙tC1 in our motion model, there exists p 2 PtC1
such that d.p; x/ � "ftC1.x/. If p is a vertex of Y , we are done. Suppose that p is
not a vertex of Y . Let u be the vertex of X where p 2 points.u/. Recall that, before



80 S.-W. Cheng and J. Jin

the main loop, we move every sample point to the point list of its nearest vertex in
X , so d.p; u/ � 2RX.u/. Let w0 be the nearest vertex to p in the intermediate mesh
when we decided not to insert p. Let w be the vertex of Y nearest to p. The point p
was not inserted because d.p;w0/ � 20.sin˛0/�1�tC1.p/ or d.p;w0/ � �RX.u/.
Since nearest vertex distances can only decrease in the insertion phase, we have
d.p;w/ � d.p;w0/ � 20.sin˛0/�1�tC1.p/ or d.p;w/ � d.p;w0/ � �RX.u/.

In the case that d.p;w/ � 20.sin˛0/�1�tC1.p/, we have d.p;w/ �
0:1"0ftC1.p/ as �tC1.p/ � .0:005"0 sin ˛0/ftC1.p/ by the smoothness of the
deformation. Then, d.w; x/ � d.p;w/C d.p; x/ � 0:1"0ftC1.p/C "ftC1.x/. The
Lipschitzness of LFS implies that d.w; x/ � 0:1"0.1 C "/ftC1.x/ C "ftC1.x/ <
0:3"0ftC1.x/ because we assume that "0 � 10". Therefore, d.w; x/ � "Y ftC1.x/.

Thus, the requirement of an "Y -sample is fulfilled by the vertex w of Y .
Consider the case that d.p;w/ � �RX.u/. Since X is an ."X; ˛0/-mesh,

d.p; u/ � 2RX.u/ � 2"XftC1.u/. So d.u; x/ � d.p; u/ C d.p; x/ �
2"XftC1.u/ C "ftC1.x/. The Lipschitzness of LFS implies that ftC1.u/ � .1 C
2" C 4"X/ftC1.x/ < 2ftC1.x/. So d.p;w/ � �RX.u/ � �"XftC1.u/ D
2�"XftC1.x/, and d.w; x/ � d.p;w/ C d.p; x/ � .2�"X C "/ftC1.x/ �
maxf4�"X; 2"g � ftC1.x/ < "Y ftC1.x/. ut

5 Decimation

Some vertices must be deleted in order to increase the inter-vertex distances. This
will restore conditions C1 and C2 and the angle lower bound ˛0 D ˝.�/. Let Y be
the output of the refinement phase. Our idea is to define a decimation radius ıv for
each vertex v of Y sensitive to the triangle circumradii nearby, so that if we keep v,
then the vertices at distance less than radius ıv from v should be deleted. We want
the decimation radius to satisfy the following properties.

P1: For any two vertices v and u, ıv � ıu � .�=`/d.v; u/.
P2: There exists a constant �dec such that for each vertex v, ıv � 4�RY .v/ and

there exists a triangle � in Y such that d.v; c� / � �dec	� and ıv � 1
15
	� .

P1 ensures that the function is smooth, so after the decimation, the nearest vertex
distances of close vertices are similar. P2 provides lower and upper bounds on the
decimation radius.

Define the decimation radius ıv D maxf4�	� � .�=`/d.v; c� / W triangle � in Y g.
It is easy to verify that it satisfies P1 and P2 with �dec D 4` for 4� � 1

15
. To evaluate

the decimation radii for all vertices, we perform a breadth-first search from each
triangle � , update the decimation radii at the vertices visited, and stop at edges e
where 4�	� � .�=`/d.e; c� /.

Vertex deletions cannot be performed in an arbitrary order because this may
produce tiny angles in an intermediate mesh that makes it impossible to apply
Theorem 1(iii) in subsequent vertex deletions. To avoid this problem, we decimate
vertex neighborhoods gradually in rounds as explained below.
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Algorithm 1 DELETE(mesh T , vertex w)
1: Flip edges so that all triangles incident to w have almost empty diametric balls.
2: H  the plane through a triangles incident to u.
3: Remove all the triangles incident to w, and let P be the polygonal hole.
4: Q the projection of P inH .
5: Compute the constrained Delaunay triangulation of Q.
6: Fill the hole P by lifting these triangles.

Define nmin to be the smallest distance between two vertices in Y . Define
ımax D max

˚
maxfıv; 20.sin˛0/�1�tC1.v/g W vertex v in Y .

�
. Place the vertices

of Y into lists S0; : : : ; Sm such that Si contains v iff 2inmin � nY .v/ < 2iC1nmin,
where m D maxf0; blog2.ımax=nmin/cg. This can be done in O.m C n/ time as
follows without assuming constant-time integral logarithm operations. We find m
by computing ımax inO.n/ time and computing the integral logarithm inO.m/ time
in a brute force manner. Then initialize mC 1 empty lists, and insert the vertex vmin

with the smallest nearest vertex distance in Sm. Next, start a breadth-first search to
traverse the mesh from vmax. Notice that for any two adjacent vertices, their nearest
vertex distances differ by a constant factor. So for each vertex encountered during
the traversal, knowing at which list any of its adjacent vertices is placed allows us
to locate its list in O.1/ time.

Then, we initialize a mesh T to be Y and decimate its vertices in mC 1 rounds.
In round i , we decimate the neighborhood of each vertex v 2 Si as follows.

1. Remove v from Si . If 2inmin � maxfıv; 20.sin˛0/�1�tC1.v/g, delete the
vertices in B.v; 2iC1nmin/ other than v from T . Algorithm 1 explains how
to delete a vertex from T . Deleted vertices are also removed from the lists
S0; : : : ; Sm.

2. Compute the nearest vertex distance nT .v/ of v by finding its nearest vertex in the
updated mesh T . The nearest vertex of v can be found by traversing the triangles
intersecting B.v; d.u; v// for any edge uv incident to v in T .

3. Compute the index j such that 2jnmin � nT .v/ < 2jC1nmin. We will show in
Lemma 16 that j D i C O.1/, so j can be computed in O.1/ time. If j > m,
then nT .v/ � ımax, so we can drop v. If j � m, we put v in Sj for future
processing.

In other words, vertices within distances 2nmin; 4nmin; 8nmin; : : : from v are deleted
in rounds. After processing all vertices in SmC1, we need to migrate the points in
points.w/ for each vertex w deleted.

In the end, the algorithm flips edges until none is flippable, and places every point
that is not a vertex to the point list of its nearest vertex.

In the following, we show that the algorithm correctly decimates the neighbor-
hood of each vertex (Lemma 12); and it does not over-decimate in the sense that each
deleted vertex is at distance O

�
maxfıv; 20.sin˛0/�1�tC1.v/g

�
from some vertex v

in Z (Lemma 13).
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Lemma 12 LetZ be the output mesh of DECIMATE.Y /. The distance between any
vertex v to its nearest vertex in Z is at least maxfıv; 20.sin˛0/�1�tC1.v/g.

Proof Throughout the decimation procedure, we maintain the invariant that each
vertex v in Si has nearest vertex distance nZ.v/ � 2inmin, and we drop it only when
2inmin > maxfıv; 20.sin˛0/�1�tC1.v/g. So the lemma follows. ut

Consider a chronological sequence of vertices .w0;w1; : : : ;wg/ that satisfies the
following properties: (1) for k 2 Œ0; g�, wk is a vertex in the initial mesh Y ; (2)
wg is a vertex of an intermediate mesh T in DECIMATE.Y /; (3) for k 2 Œ1; g�,
wk�1 2 B.wk; 2ikC1nmin/ and wk�1 was deleted when we processed wk in some list
Sik . We call the chronological sequence .w0;w1; : : : ;wg/ a deletion chain. It has the
following property.

Lemma 13 Let .w0;w1; : : : ;wg/ be a deletion chain. Suppose that wg 2 Sj when
wg�1 was deleted. If 2jnmin � ıwg , then d.w0;wg/ � 2jC2nmin � 4ıwg ; otherwise,
d.w0;wg/ � 80.sin˛0/�1�tC1.wg/ � 0:4"0f .wg/.

Proof For k 2 Œ0; g � 1�, after deleting the vertices in B.wk; 2ikC1nmin/ n fwkg for
some ik , we cannot delete wk when examining another vertex in the same list Sik .
Thus, wkC1 2 SikC1

for some ikC1 > ik when wk was deleted. We have d.w0;wg/ �Pg

kD1 d.wk�1;wk/ � Pj
iD0 2iC1nmin � 2jC2nmin. Since wg 2 Sj when wg�1 was

deleted, we have 2jnmin � maxfıwg ; 20.sin˛0/�1�tC1.wg/g. If 2jnmin � ıwg ,
we obtain d.w0;wg/ � 4ıwg . Suppose that 2jnmin � 20.sin˛0/�1�tC1.wg/.
Since we assume that �tC1.wg/ � .0:005"0 sin˛0/ftC1.wg/, we get d.w0;wg/ �
80.sin˛0/�1�tC1.wg/ � 0:4"0ftC1.wg/. ut

In DELETE(T , w), the first step is to flip edges so that the triangles incident to
w have almost empty diametric balls. The next technical result shows the property
ensured by this step.

Lemma 14 Consider the intermediate mesh T during DECIMATE.Y /. Suppose that
` is sufficiently large and � is sufficiently small. (Their settings depend on the hidden
constant in assumption (i) in our motion model.) Suppose that all the angles are at
least some constant before calling DELETE.T;w/. Then after the execution of line 1
of DELETE.T;w/, for any vertex v of T , nT .v/ � 1

14
�2RT .v/.

Proof Let � be the triangle incident to v such that 	� D RT .v/. Recall that Y stands
for the output mesh of the insertion phase. Let � be the triangle in Y closest to
'˙tC1

.c� /. By Lemma 9, we have d.c� ; �/ < 0:1.	� C 	�/. Let a be any vertex of
� . The distance d.a; c� / is at most 2:1	� C 0:1	� .

Suppose that the vertices of � lie outside B.c� ; 0:5	�/. Then, 	� � 0:45	� by
Lemma 9. We have d.a; v/ � d.a; c� / C d.v; c� / � 2:1	� C 0:1	� C 	� < 5	� .
Then, for ` � 54, Lemma 11(i) implies that nT .v/ � nY .v/ � 1

6
�2	� � 1

14
�2	� .

Suppose that some vertex a of � lies in B.c� ; 0:5	� /. There is a deletion chain
.a; : : : ; u;w/, where w is a vertex in the current T . Since B.c� ; 0:8	�/ contains no
vertex of T , d.w; c� / � 0:8	� . So we have d.a;w/ � d.w; c� / � d.a; c� / � 0:3	�
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Hence, d.v;w/ � d.v; c� / C d.a; c� / C d.a;w/ < 1:5	� C d.a;w/ � 6d.a;w/.
Assume that u was deleted when we processed w in some list Si .

Suppose that 2inmin � ıw. Lemma 13 implies that ıw � 1
4
d.a;w/: Combining

it with the previous inequality and the smoothness of the decimation radii, we
have ıv � ıw � .�=`/d.v;w/ � ıw � .24�=`/ıw > ıw=2. If we dropped v
before processing w (i.e., did not place v in any list for further processing), we
must have nT .v/ � ıv, which is greater than 1

2
ıw. Then, Lemma 13 implies that

nT .v/ > ıw=2 � d.a;w/=8 � 0:3	�=8, which is greater than �2	�=14. If we did
not drop v before processing w, we must have nT .v/ � 2inmin. Then, Lemma 13
implies that nT .v/ � 2inmin � d.a;w/=4 � 0:3	�=4, which is also greater than
�2	�=14.

If 2inmin > ıw, then d.a;w/ � 80.sin˛0/�1�tC1.w/ by Lemma 13. By
assumption,�tC1.w/ � c�t .w/ for some constant c. Condition OC1 and the working
of REFINE ensure that RY .w/ � nY .w/ � 18�t .w/

sin˛0
� 18�tC1.w/

c sin˛0
� 9d.a;w/

40c
.

Recall that d.a;w/ � 0:3	� . By property P2 of decimation radii, we have ıw �
4�RY .w/ >

9
10c
�d.a;w/ � 27

100c
�	� . Set ` to be a constant greater than 20c=3. Then

ıv � ıw � �
`

� d.w; v/ � ıw � �
`

� 6d.a;w/ � ıw � �
`

� 10c
9�

� 6ıw � ıw=2 � 27
200c

�	� .
Then, we can invoke the same analysis in the previous paragraph and show that
nT .v/ � �2	�=14 by setting � small enough. ut

By Lemma 14, all triangles have angles at least arcsin
�
1
28
�2
�

after the execution
of line 1 in DELETE. This allows us to show that the deletion of a single vertex
preserves an˝.1/ lower bound on angles. Then, inductively, any intermediate mesh
during the decimation has constant lower bound on its smallest angle.

Lemma 15 At any time during DECIMATE, DELETE.T;w/ produces angles that
are at least some constant.

Proof Consider the deletion of a vertex w from T . We first show that the distance
between any two vertices adjacent to w is at least ˝.nT .w//. Take any two vertices
a and b incident to w. If †awb � 
=2, then d.a; b/ � d.a;w/ � nT .w/. Suppose
†awb < 
=2. Then d.a; b/ � d.a;w/ � sin †awb � nT .w/ � sin †awb. Since each
angle at w is at least arcsin

�
1
28
�2
�

and triangles incident to w are fairly flat, we have
†awb � arcsin

�
1
28
�2
�
, and hence d.a; b/ � 1

28
�2nT .w/.

Let Q be the projection of the triangles incident to w to the plane of one of
these triangles. By Lemma 7, Q is a simple polygon. The distance between any
two vertices adjacent to w is shortened by a constant factor by the projection.
So the distance between any two vertices of Q is ˝.�2nT .w//. In the following,
we prove that any triangle � in the constrained Delaunay triangulation of Q has
circumradius at most 112

�2
RT .w/. Then, the ratio of the shortest edge length of � to

	� is ˝
�
�4 � nT .w/

RT .w/

�
D ˝.1/, which implies that the smallest angle in � is ˝.1/.

Assume to the contrary that 	� > 112
�2

RT .w/. Refer to Fig. 2. Since the distance
between w and any vertex incident to w is at most 2RT .w/, each edge of � is at most
4RT .w/. The large circumradius of � implies that it has an obtuse angle. Moreover,
c� lies outsideQ because 	� is larger than the largest distance between two vertices
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Fig. 2 � is a constrained
Delaunay triangle of the
projected polygon Q

a

c

Q

x

y
p

w

of Q. Let a be the vertex of � with an obtuse angle. Since Q contains � , the line
segment ac� must intersect at least one edge of Q. Let xy be the one closest to a.
Let p denote the intersection point xy \ ac� . Both x and y avoid the interior of the
circumcircle of � by the constrained Delaunay condition. The line segment ap is
insideQ by our choice of xy. The polygonQ is star-shaped with w in the kernel, so
the line segment wp lies inside Q as well. Thus, w and a are on the same side of xy.
If †wxy > †axy and †wyx > ayx, the triangle wxy would contain a in its interior,
which is impossible. So †wxy � †axy or †wyx � ayx. Assume the former is true.

Recall that all angles in the triangles incident to w are at least arcsin
�
1
28
�2
�
. They

can be affected by the projection only slightly. So †axy � †wxy > arcsin. 1
56
�2/.

Since x and y are outside the circumcircle of � and xy separates a and c� , we have
	� � 	axy � d.a;y/

2 sin†axy � 28d.a;y/

�2
. Both a and y are at distance at most 2RT .w/ from

w, so d.a; y/ � 4RT .w/. It follows that 	� � 112
�2

RT .w/, a contradiction. ut
Lemma 16 Let v be a vertex in list Si . Lines 14–15 of DECIMATE place v in list
Sj for some j D i CO.1/.

Proof Let T be the current mesh. Consider the mesh T 0 right before the last vertex
u in B.v; 2inmin/ n fvg is deleted. Let w ¤ v be a vertex adjacent to u in T 0. By
Lemma 15, d.w; u/ � cnT 0.u/ � cd.u; v/ for some constant c. So d.v;w/ �
d.v; u/Cd.u;w/ � .cC1/d.v; u/ � .cC1/2inmin, and the nearest vertex distance
of v after deleting u is at most .c C 1/2inmin.

If u is deleted during the decimation of the neighborhood of v, then w remains a
vertex in T . Therefore, nT .n/ � d.v;w/ � .c C 1/2inmin, and j D i CO.log c/.

Suppose that u is deleted during the decimation of the neighborhood of another
vertex. Consider the deletion chain .w0;w1; : : : ;wg/ that contains u, where wg is
a vertex in T . The neighborhood of wg is decimated in round i or earlier, so we
have d.u;wg/ � Pg�1

kD0 d.wk;wkC1/ < 2d.wg�1;wg/ � 2iC1nmin. So nT .v/ �
d.v;wg/ � d.v; u/C d.u;wg/ � 3 � 2inmin, meaning that j � i C 2. ut

Next, we show that the vertices of the output mesh Z of DECIMATE is still a
dense sample despite the vertex deletions.

Lemma 17 Let Y be the output of the refinement phase, andZ D REFINE.Y /. The
vertices of Z form an "Z-sample, where "Z D maxf"0; 15�"Xg.
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Proof Take any point x 2 ˙tC1. Let w be the nearest vertex in Y to x. So
d.w; x/ � "Y ftC1.x/ by Lemma 11. If w is a vertex of Z, we are done. Suppose
that w was deleted. Then by Lemma 13, there exists a vertex v in Z such that
d.v;w/ � maxf4ıv; 0:4"0ftC1.v/g.

Suppose d.v;w/ � 0:4"0ftC1.w/. Then, d.x; v/ � d.x;w/ C d.w; v/ �
"Y ftC1.x/ C 0:4"0ftC1.v/. The Lipschitzness of LFS implies that d.x; v/ �
0:4"0C"Y
1�0:4"0 ftC1.x/ � .0:7"0 C "Y / � ftC1.x/. Since "Y � maxf0:3"0; 4�"Xg by

Lemma 11, it can be verified that 0:7"0 C "Y � maxf"0; 15�"Xg: So d.x; v/ �
"ZftC1.x/.

Consider the case that d.v;w/ � 4ıv. By property P2 of decimation radii,
we can find a triangle � in Y such that d.v; c� / � �dec	� and ıv � 1

15
	� . Let

a be a vertex of � . By Theorem 1(ii), 	� � 1:5"Y ftC1.a/. Therefore, we have
d.v; c� / � 1:5�dec"Y ftC1.a/ and ıv � 1

15
	� � 0:1"Y ftC1.a/. The Lipschitzness

of LFS implies that ıv � 0:1"Y
�
1 C 1:5.�dec C 1/"Y

�
ftC1.v/ � 0:2"Y ftC1.v/.

Thus, d.x; v/ � 4ıv C "Y ftC1.x/ � 0:8"Y ftC1.v/C "Y ftC1.x/ < 3"Y ftC1.x/ �
"ZftC1.x/. ut

We are ready to show that DECIMATE restores the angle lower bound to ˛0, while
ensuring a good sampling density.

Lemma 18 LetX be an ."X ; ˛1/-mesh satisfying OC1– OC3 for some constants "X and
˛1. Let Y be the output mesh of REFINE.X/. Assume that the decimation radii for
the vertices in Y are known. Then, DECIMATE.Y / runs in linear time and produces
an ."Z; ˛0/-meshZ that satisfies conditions C1–C3, where "Z D maxf"0; 15�"Xg
and ˛0 D ˝.�/.

Proof The angles in Y are at least some constant by Lemma 11, so deleting
the first vertex can be done in O.1/ time. Then by Lemma 15, all angles in
the mesh after the deletion are still at least some constant. So Lemmas 14
and 15 are applicable inductively, and hence the deletion of each single vertex
can be deleted in O.1/ time. Thus, we only need to bound the total number
of migrations of vertices in the m C 1 rounds of vertex deletions. Let � be
the triangle in Y with the largest circumradius. Let u be the vertex in Y with

the largest �tC1.u/. So, m � log
�

1
nmin

max
˚
1
15
	� ; 20.sin˛0/�1�tC1.u/

�� D
log O.	�C�t .u//

nmin
D log O.	�CRY .u//

nmin
D O

�
log.	�=nmin/

�
. Since each angle in Y is

at least some constant, the circumradii of two adjacent triangles differ by a constant
factor, implying that the radio of the largest to the smallest circumradii is at most
2O.n/. Therefore, m D O.n/. Consider the processing of v 2 Si in a round. In
the case that i < j � mC 1, we deleted some vertex p in a previous round where
d.p; v/ equals the old nM.v/. We charge to p the migration of v to Sj . We can show
that p is charged only O.1/ time as in bounding the degree of a planar minimum
spanning tree by six. Therefore, the total number of migrations is O.n/, implying
that the total running time is O.n/.

Condition C1 follows from Lemma 12.
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Condition C2 requires that for any vertex v and any triangle � in Z, if v 2
B.c� ; `	� /, then nM.v/ > �	� . Let � be the triangle in Y closest to '˙tC1

.c� /. Let a
be any vertex of � . By Lemma 9, d.a; c� / < 2:1	�C0:1	� . Suppose that the vertices
of � lie outsideB.c� ; 0:7	�/. Then, Lemma 9 implies that 	� > 0:6	� , and we have
d.a; v/ � d.a; c� /C d.v; c� / � 2:1	� C 0:1	� C `	� < 2`	� . By the properties of
decimation radii, ıa � 4�	� and nZ.v/ � ıv � ıa � .�=`/d.a; v/ � 2�	� > �	� .
If some vertex a of � lies inside B.c� ; 0:7	� /, d.a; v/ � `	� C 0:7	� < 2`	� .
We can invoke the same proof as that in Lemma 14: identify the deletion chain
.a; : : : ;w/ where w is a vertex ofZ, and relate ıv and ıw. We have d.w; c� / � 0:8	�
and 0:1	� � d.a;w/ � 4ıw. Set � to be a small enough number. We have ıv �
ıw�.�=`/d.v;w/ � ıw�.�=`/.d.v; a/Cd.a;w// � .1�4�=`/ıw�.�=`/.2`	� / >
1
80
	� > �	� .
Condition C3 is satisfied simply because we put every point p 2 PtC1 that is not

a vertex of M in points.w/ such that w is the nearest vertex of M to p.
Finally, by Lemma 17, the vertices of the output mesh Z form an "Z-sample of

˙tC1, and by C2, ˛0 can be set to arcsin.�=2/, so Z is an ."Z; ˛0/-mesh. ut
Lemma 19 LetKtC1 be the deformed mesh at time tC1, which is an ."1; ˛1/-mesh
satisfying OC1� OC3. We can iterate REFINE and DECIMATE O.1/ times to return an
."0; ˛0/-mesh MtC1 that satisfies C1–C3.

Proof Our mesh update procedure iterates REFINE and DECIMATE forO.log 1
"0
/ D

O.1/ times. The angle bound ˛0 and the conditions C1–C3 are enforced by
Lemma 18. Consider the sampling condition. The vertex set ofKtC1 is an "1-sample,
so after the first iteration, we obtain a mesh whose vertex set is an maxf"0;O.�"1/g-
sample by Lemma 18. Another iteration gives a maxf"0;O.�2"1/g-sample. There-
fore, after O.log 1

"0
/ iterations, we can obtain an ."0; ˛0/-mesh. ut

Finally, we obtain our deforming mesh maintenance result as stated in the
theorem below. The O.n/ running time bound is obtained by using an octree to
speed up the computation of the decimation radii.

Theorem 2 ([7, 17]) Consider the simulation of a deforming surface, specified by
n moving sample points, that progresses in unit time steps. Suppose that the sample
points form an "-sample for a sufficiently small " throughout the simulation. There
exist constants "0 2 .10"; 1/ and ˛0 > 0 such that an ."0; ˛0/-mesh can be built
before the simulation begins and if the deformation is smooth, an ."0; ˛0/-mesh can
be restored in O.n/ time at each subsequent time step.

6 Experiments

We built a prototype of the mesh maintenance algorithm and experimented with two
test cases on a machine with Intel Xeon E5450 3GHz CPU and 16G memory. Two
iterations of the insertion and deletion phases were run on the two test cases, and
we found that the mesh size and quality are nearly identical at the end of the first
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Fig. 3 The leftmost screen shots are taken at time 0.2, 0.4 and 0:7 respectively. The rightmost
screen shot is the back of the object at time 0.7

Fig. 4 A piece of cloth falling on a ball

and second iterations. Since the iterations aim to increase the mesh density, it is
reasonable to stop if the mesh size stays nearly the same.

The first test case is a deformation of a sphere [12, 20]. The velocity field is
defined as: vx D 2 sin2.
x/ sin.2
y/ sin.2
z/, vy D � sin.2
x/ sin2.
y/ sin.2
z/,
and vz D � sin.2
x/ sin.2
y/ sin2.
z/. Initially we have 10K random samples on
a sphere centered at .0:35; 0:35; 0:35/ with radius 0:15. After the simulation starts,
the points move with the velocity determined by its current position. Figure 3
shows how the object deforms. The rightmost two images in Fig. 3 show the front
and back views of the surface mesh at time 0.7. As the object deforms, the front
side is stretched and the sample points move to the back side of object. From the
screen shots, one can see that our algorithm is indeed adaptive to the sampling: the
triangles in the front are much larger than those at back. The average number of
mesh vertices is around 6K, 90 % of angles are in the range Œ30ı; 120ı�, less than
0:02% of them are less than 15ı, and none is smaller than 11ı. The average update
time per time step is less than 0.36 s. Reduction in running time seems possible as
we did not optimize the code. For comparison, we reconstructed the mesh from the
sample points using Cocone [3]. Cocone took 3.7 s on average per time step.

We also ran our algorithm with different numbers of sample points and observed
that the average update time increases linearly with the number of sample points.

Our second test case is the deformation of a piece cloth as it falls on a sphere [4].
10K sample points are used. The cloth boundary is preserved by not allowing any
boundary edge to be flipped. Figure 4 shows the results. The statistics is highly
similar to the first test case.



88 S.-W. Cheng and J. Jin

Acknowledgements Research supported by the Research Grant Council, Hong Kong, China
(project no. 612107).

References

1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans.
Graph. 26, 3–48 (2007)

2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom.
22, 481–504 (1999)

3. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface
reconstruction. Int. J. Comput. Geom. Appl. 12, 125–141 (2002)

4. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH, pp. 43–54 (1998)
5. Beer, G., Smith, I., Duenser, C.: The Boundary Element Method with Programming. Springer,

New York (2008)
6. Bredno, J., Lehmann, T.M., Spitzer, K.: A general discrete contour model in two, three, and

four dimensions for topology-adaptive multichannel segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 25, 550–563 (2003)

7. Cheng, S.-W., Jin, J.: Edge flips and deforming surface meshes. In: Proceedings of the 28th
Annual Symposium on Computational Geometry, pp. 331–340 (2011)

8. Cheng, S.-W., Jin, J.: Edge flips in surface meshes. Manuscript. http://www.cse.ust.hk/faculty/
scheng/pub/deform.pdf (2013)

9. Cheng, S.-W., Jin, J., Lau., M.-K.: A fast and simple surface reconstruction algorithm. In:
Proceedings of the 28th Annual Symposium on Computational Geometry, pp. 69–78 (2012)

10. Delingette, H.: Towards realistic soft tissue modeling in medical simulation. In: Proceedings
of the IEEE: Special Issue on Surgery Simulation, pp. 512–523 (1998)

11. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis.
Cambridge University Press, New York (2006)

12. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for
improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

13. Giesen, J., Wagner, U.: Shape dimension and intrinsic metric from samples of manifolds.
Discrete Comput. Geom. 32, 245–267 (2004)

14. Glimm, J., Grove, J.W., Li, X.L., Tan, D.C.: Robust computational algorithms for dynamic
interface tracking in three dimensions. SIAM J. Sci. Comput. 21, 2240–2256 (1999)

15. Hall, W.S.: The Boundary Element Method. Kluwer Academic Publishers, Dordrecht (1994)
16. Jiao, X.: Face offsetting: a unified approach for explicit moving interfaces. J. Comput. Phys.

220, 612–625 (2007)
17. Jin, J.: Surface reconstruction and deformation. Doctoral Dissertation, The Hong Kong

University of Science and Technology (2012)
18. Khayat, R.E.: Three-dimensional boundary element analysis of drop deformation in confined

flow for Newtonian and viscoelastic systems. Int. J. Numer. Methods Fluids 34, 241–275
(2000)

19. Koch, R.K., Gross, M.H., Carls, F.R., von Büren, D.F., Fankhauser, G., Parish, Y.I.H.:
Simulating facial surgery using finite element methods. In: SIGGRAPH, pp. 421–428 (1996)

20. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow.
SIAM J. Numer. Anal. 33, 627–665 (1996)

21. Liu, T., Shen, D., Davatzikos, C.: Deformable registration of cortical structures via hybrid
volumetric and surface warping. NeuroImage 22, 1790–1801 (2004)

22. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applica-
tions. In: SIGGRAPH, pp. 154–159 (2003)

23. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on
Hamiltonian Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

http://www.cse.ust.hk/faculty/scheng/pub/deform.pdf
http://www.cse.ust.hk/faculty/scheng/pub/deform.pdf


Deforming Surface Meshes 89

24. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of
fracturing solids. ACM Trans. Graph. 24, 957–964 (2005)

25. Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Vis. Comput. 23, 45–58 (2007)
26. Pons, J., Boissonnat, J.D.: Delaunay deformable models: topology-adaptive meshes based on

the restricted Delaunay triangulation. In: CVPR, 1–8 (2007)
27. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press,

Cambridge (1999)
28. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas,

S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput.
Phys. 169(2), 708–759 (2001)

29. Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth
simulation. In: Proceedings of the International Conference on Computer Graphics, pp. 265–
272 (2001)

30. Wojtan, C., Thüey, N., Gross, M., Turk, G.: Deforming meshes that split and merge. ACM
Trans. Graph. 28 (2009). Article 76



An Optimization Based Method
for the Construction of 2D Parameterizations
for Isogeometric Analysis with T-Splines

José Iván López, Marina Brovka, José María Escobar, José Manuel Cascón,
and Rafael Montenegro

Abstract We present a new strategy, based on the idea of the meccano method and a
novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D
geometries for the application of isogeometric analysis. The proposed method only
demands a boundary representation of the geometry as input data. The algorithm
obtains, as a result, high quality parametric transformation between 2D objects
and the parametric domain, the unit square. First, we define a parametric mapping
between the input boundary of the object and the boundary of the parametric
domain. Then, we build a T-mesh adapted to the geometric singularities of the
domain in order to preserve the features of the object boundary with a desired toler-
ance. The key of the method lies in defining an isomorphic transformation between
the parametric and physical T-mesh finding the optimal position of the interior nodes
by applying a new T-mesh untangling and smoothing procedure. Bivariate T-spline
representation is calculated by imposing the interpolation conditions on points sited
both on the interior and on the boundary of the geometry. Proposed method also
permits the modeling of objects with embedded geometries that can be used to
solve problems with domains composed of several materials. Application of the
isogeometric analysis to these type of domains are presented. The effectiveness of
the proposed technique is shown in several examples.
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1 Introduction

An open problem in the context of isogeometric analysis [1] is how to obtain a spline
parameterization of a complex computational domain from the CAD description of
its boundary.

Parameterization is suitable for analysis if it does not have self-intersection, i.e.,
the Jacobian is strictly positive at any point of the computational domain. Moreover,
in order to expect a high accuracy in numerical results it is necessary to obtain a good
quality parameterization. Orthogonality and uniformity of isoparametric curves are
desirable for the tensor-product structured parameterization. This task is not trivial
and can be very time-consuming. For application of IGA it is essential to have
an efficient method to construct T-spline parameterization. In the present work we
investigate this problem for planar and embedded geometries.

There are only a few works addressing this problem. In [26], the parameterization
is found by solving a constraint optimization problem for the control points of a
planar B-spline surface. Constraints are defined by imposing injectivity sufficient
conditions in terms of control points, and the optimization consists in the minimiza-
tion of some energy functions in order to reach a good orthogonality and uniformity
of the parametric mapping. Another similar technique was proposed by these
authors in [27]. They use a harmonic mapping obtained by solving an optimization
problem for the control points. Additional term is added to the objective function
in order to improve the quality where needed. The use of harmonic mapping is a
common characteristic of several works dealing with 2D and 3D parameterization
methods [20–22].

In this paper, we propose a different approach where the parameterization is
accomplished by transforming isomorphically a T-mesh from the parametric domain
to the physical one. The construction of this transformation is mainly based on a
simultaneous T-mesh untangling and smoothing procedure.

As far as we know, the only case of performing mesh untangling and smoothing
procedure for a T-mesh, in order to construct T-spline representation of 3D domains,
was described in [25, 28]. They remove tangled elements by maximizing the worst
Jacobian. Smoothing is performed by moving each node towards the mass center of
its neighboring elements. Another strategy for optimizing a grid with hanging nodes
was described in [3]. Mesh optimization is carried out via a global grid smoothing
functional based on shape quality and size control metrics for the elements of the
mesh. Some constraints are imposed on the position of hanging nodes in order to
place them in the middle point of their edge.

In our previous works [13, 14] we constructed the physical T-mesh of the solid
using a volumetric parameterization obtained by deforming a tetrahedral mesh of
the solid. In general, this approach does not provide an optimal T-mesh quality in
the sense of its uniformity and orthogonality. Now, we propose a different approach
where the optimization is applied directly to the T-mesh.

Our technique is simple and easy to implement. Satisfactory results are obtained
with low computational effort for a variety of complex geometries.
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This paper is organized as follows. In next section we describe the main steps
of the proposed algorithm and explain the process of boundary parameterization
and construction of a T-mesh adapted to the singularities of the object boundary.
Section 3 describes the simultaneous T-mesh untangling and smoothing procedure
that leads to the construction of a high quality T-mesh of the object. The modeling of
the geometry by means of bivariate T-splines and a quality improvement strategy is
developed in Sect. 4. Construction of embedded geometries is described in Sect. 5.
In Sect. 6 we present applications of the proposed method to some 2D domains,
including the resolution of the Poisson equation by means of the isogeometric
analysis. Finally, in Sect. 7 we present the conclusions and set out some challenges.

2 General Scheme of the Method

In this section we summarize the main steps of our method in order to facilitate
its understanding. Some ideas of the method are taken from our previous works on
mesh untangling and smoothing and the meccano method [6–8, 10, 12, 23, 24], but
they have been adapted to the requirements of the present work.

The algorithm includes the following stages:

1. Boundary parameterization and construction of an adapted T-mesh: A bijective
correspondence between the input boundary of the object and the boundary of the
parametric domain is defined. Then, an adapted T-mesh is generated by refining
the initial mesh in order to approximate the geometry with a prescribed tolerance.
During this process, the boundary nodes of the parametric domain are mapped to
the boundary of the object.

2. T-Mesh optimization: We relocate the inner nodes of the T-mesh by applying a
simultaneous mesh untangling and smoothing procedure. A previous relocation
of the inner nodes is accomplished in order to facilitate this task.

3. Construction of a T-spline representation of the geometry: The T-spline param-
eterization is obtained by imposing interpolation conditions. As interpolation
points, we take the vertices of the physical T-mesh obtained after the optimization
process and other necessary additional points.

4. Adaptive refinement to improve the mesh quality: If the quality of the T-mesh is
not satisfactory, we apply an adaptive refinement in order to increase the degree
of freedom in the areas with high distortion. Then, we return to step 2 and repeat
the process until reaching a good T-spline parameterization.

In the first stage, to define a parametric mapping between the input boundary of
the object and the boundary of the parametric domain, the unit square, we have to
select four points of the boundary that will correspond to the four corners of the
square. These points divide the input boundary into four parts that are mapped via
chord-length parameterization into its corresponding edge of the square, as shown in
Fig. 1. Next, we construct an adapted T-mesh that approximates the input boundary
with a prescribed tolerance �. To do that, an approximation error is calculated for
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Fig. 1 Corners selection and
boundary parameterization.
(a) Boundary of the
parametric domain;
(b) physical boundary where
each part is mapped to a
parametric edge. The colors
represent the correspondence
between boundaries

each boundary cell and the cell is refined if this error is greater than �. More details
about the boundary approximation can be found in our previous work [4].

As result of the two first stages, the position of the boundary nodes in the physical
domain are known and the position of the inner nodes will be defined by means of
the T-mesh optimization procedure developed in next section.

Figure 2 illustrates the main stages of the algorithm applied to a Test geometry.

3 T-Mesh Optimization

The key of the proposed method lies in the optimization procedure that allows to
obtain a high quality physical T-mesh used to construct the T-spline representation
of the object.

It is preferable to perform a previous relocation of the inner nodes in order to
reduce the computational effort during the optimization process. In the present work,
we have used for this purpose Coons patch [9, 15] to define a surface that interpolates
given boundary curves. This previous relocation procedure facilitates the untangling
process, but in general does not obtain a satisfactory mesh quality and can produce
self-intersections, as shown in Fig. 2d. Therefore, it is essential to apply an efficient
optimization algorithm.

3.1 Objective Function

The mesh optimization process is carried out by iterative relocation of each inner
node of the mesh in such a way that the new position of the node improves the
quality of the local submesh corresponding to this node. A local submesh is the set
of all the elements connected with the movable or free node. The local objective
function for a free node is based on algebraic shape quality metrics proposed by
Knupp in [18, 19] for triangular and quadrilateral elements. Shape quality metric for
a given triangle is defined in terms of the Jacobian matrix of the affine mapping from
ideal triangle to the given one. This shape quality metric represents the deviation
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Fig. 2 Stages of the method to parameterize a Test geometry. (a) Initial regular refinement of the
parametric space; (b) parametric T-mesh adapted to the boundary of the geometry; (c) tangled
physical mesh obtained after projecting the parametric boundary to the physical boundary. Note
that the image of the parametric space is scaled respect to the previous ones; (d) resulting tangled
mesh after previous relocation of the inner nodes by using Coons patch. This step is optional;
(e) optimized physical T-mesh; (f) T-spline representation

of the physical triangle from the ideal one. It attains its maximum value, 1, if the
triangle is similar to the ideal one, and it equals 0 if the triangle is degenerated.
The distortion metric of an element is defined as the inverse of its quality metric. In
order to asses the quality of the local submesh for a given free node of a T-mesh, we
have to decompose each neighboring cell into triangles and asses the quality of each
triangle. For a T-mesh, this decomposition depends on the type of the free node.
There are two types of free node: a regular node and a hanging node. The optimal
position of each free node is determined by minimizing a local objective function.
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Fig. 3 Triangular decomposition of the free node local submesh, where the red point is the free
node. (a) Regular node case, where each cell is decomposed in three triangles; (b) hanging node
case, where five triangles are formed in the cell where the node generates a T-junction; (c) barriers
(red lines) and feasible region (light blue) induced by the 12 triangles in the objective function for
a regular node; (d) barriers and feasible region induced by the 11 triangles in the objective function
for a hanging node

We define the objective function as a sum of shape distortion metrics of the triangles
of the local submesh. For each triangle of the physical mesh, the corresponding
triangle of the parametric mesh is used as its ideal element. Therefore, each cell
of the physical mesh tends to have the same shape as its counterpart cell of the
parametric mesh. Thus, repeating this procedure for all the inner nodes of the mesh,
we achieve the physical mesh of the object is as similar to the parametric one as
possible.

A regular node is surrounded by four cells with equal or different sizes. In order
to perform the mesh improvement, the local submesh is decomposed in twelve
triangles, three triangles per cell whose qualities depends on the position of the free
node. Figure 3a illustrates this decomposition and Fig. 3c shows the feasible region
of the objective function.

In a hanging node case, the free node is surrounded by three cells and the local
submesh is decomposed in eleven triangles. The cell in which the node forms a T-
junction is decomposed in five triangles whose qualities depend on the position of
the free node. Each one of the other two cells is decomposed in three triangles, as
was described in the case of a regular node. Figure 3b shows the decomposition
of a local submesh for hanging node case and the feasible region of the objective
function. Note that, for the ideal case shown in Fig. 3d, the feasible region induced
by these eleven triangles is the same as the one obtained after a refinement of the
T-junction cell, see Fig. 3c.

In order to define the objective function we introduce the following concepts.
Let T be a triangle whose vertices are given by xk D .xk; yk/

T 2 R
2; k D 0; 1; 2

and TR be the reference triangle with vertices u0 D .0; 0/T , u1 D .1; 0/T and
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u2 D .0; 1/T . If we choose x0 as the translation vector, the affine map that takes TR
to T is x D Au C x0, where A is the Jacobian matrix of the affine map referenced
to node x0, and expressed as A D .x1 � x0; x2 � x0/.

Let consider that TI is our ideal or target triangle whose vertices are v0, v1 and v2.
If we take v0 D .0; 0/T , the linear map that takes TR to TI is v DW u, where W D
.v1; v2/ is its Jacobian matrix. As the parametric and real meshes are topologically
identical, each triangle in the physical space has its counterpart in the parametric
space.

Affine map that takes TI to T is given by x DAW�1v C x0, and its Jacobian
matrix is S D AW�1. Note that this weighted matrix S depends on the node chosen
as reference, so this node must be the same for T and TI . We can use matrix norms,
determinant or trace of S to construct algebraic quality metrics of T . For example,
the mean ratio, q D 2�

kSk2 , is an easily computable algebraic quality metric of T ,

where � D det .S/ and kSk is the Frobenius norm of S . The maximum value of q
is the unity, and it is reached whenA D RW, where is a scalar andR is a rotation
matrix. In other words, q is maximum if and only if T and TI are similar. Besides,
any flat triangle has quality measure zero. We can derive an optimization function
from this quality metric. Thus, let x D .x; y/T be the position of the free node, and
let Sm be the weighted Jacobian matrix of the m-th triangle connected to this free
node. We define the objective function of x, associated to an m-th triangle as

�m D kSmk2
2�m

: (1)

The local objective function used for mesh quality improvement is defined by
means of the inverse of mean ratio quality metric of each triangle of the local
submesh. The function to be minimized is given by

K.x/ D
 

MX
mD1

�pm

! 1
p

p > 1; (2)

where M is the number of triangles in the local submesh and Sm is the Jacobian
matrix associated to the affine mapping from the ideal triangle to the physical one.
The value of the power p may affect the result of the optimization. For quadrilateral
meshes, we have obtained the best results with p D 2 in most cases.

The objective function defined by Eq. (2) is appropriate to improve the quality
of a valid mesh, but it does not work properly when there are inverted elements
[16, 17]. In the previous work [10] we introduced a modified objective functionK�,
where the untangling and smoothing are carried out in the same stage. This modified
objective function K� does not have singularities, it works as the original function
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Fig. 4 Resulting meshes after optimization with different objective functions. (a) Orthogonal
mesh using K� or K�

� ; (b) no orthogonality result for a non-conformal local submesh using K�;
(c) orthogonal mesh using weighted objective function K�

�

K for the valid elements and tends to untangle the inverted and degenerated ones.
This objective function is defined as

K�.x/ D
 

MX
mD1

��m
p

! 1
p

(3)

being

��m D kSmk2
2h .�m/

(4)

where h.�/ D 1
2
.� C p

�2 C 4ı2/. Objective function K� is smooth in R
2, so the

unconstrained optimization problem can be easily solved with any standard method.
In case of a conformal local submesh, the result obtained by minimizing the

objective function K� is, when possible, an orthogonal submesh, as shown in
Fig. 4a. However, not the same result is obtained for a non-conformal submesh.
In this case, two special situations can appear: a regular node surrounded by cells of
different scales and a hanging node. In these situations, a variation in the position
of the free node does not affect in the same way to the quality of the triangles of the
local submesh. The objective function tends to form triangles as similar as possible
to the reference ones, but the influence of the smaller cells are greater than the bigger
ones. For example, in Fig. 4b it can be seen how the free node is moved toward the
small cell and, therefore, the resulting mesh is not orthogonal.

In cases when it is desirable to have orthogonal mesh, this problem can be solved
by a modification of the objective functionK�, namely multiplying the terms of the
objective function by appropriate weights.
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3.2 Weighted Objective Function

The terms of the objective functionK� can be grouped according to the belonging to
each cell of the local submesh. Each group is multiplied by an appropriated weight
in order to avoid the mentioned problems in Sect. 3.1.

For a regular node, the weighted objective function is

K�� .x/ D
 
�1

3X
mD1

��m
p C �2

6X
mD4

��m
p C �3

9X
mD7

��m
p C �4

12X
mD10

��m
p

! 1
p

(5)

where each summation is the group associated to each cell and �i is the applied
weight. We can prove that this weight is equal to the scale factor of the cell in the
parametric space, but it has not been included due to space limitation of this paper.
We assume that the smallest cells in the local submesh have scale factor � D 1

and the other cells can have scale factor � D 2 or � D 4, as illustrated in Fig. 5a.
Figure 4c shows the resulting orthogonal mesh when these weights are applied.

A hanging node is surrounded by three cells as it was mentioned above. In this
case, the weighted objective functions is

K�� .x/ D
 
�1

3X
mD1

��m
p C �2

6X
mD4

��m
p C �3

11X
mD7

��m
p

! 1
p

: (6)

Hanging node is a more particular case because its local submesh is decomposed
in different types of triangles. To guarantee the orthogonality in the local submesh
after optimization, we have determined that the weights are �3 D 8

5
for the cell

where the node forms a T-junction and �1 D �2 D 1 for the other two cells, as
shown in Fig. 5b. More details about weighted objective function and the selection
of the weights can be found in our previous work [4].

Two different options, weighted and no weighted objective functions, are
available for T-mesh optimization, that should be chosen by the user according to

Fig. 5 Weights for the
objective functions K�

� .
(a) Regular node where
�1 D 1, �2 D �4 D 2 and
�3 D 4; (b) hanging node
where �1 D �2 D 1 and
�3 D 8

5
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Fig. 6 Comparison of optimization procedure with weighted and no weighted objective functions.
(a) Regular mesh; (b) T-mesh optimized without weights; (c) the same T-mesh optimized with
weights. Note that the positions of the nodes in case (c) are closer to the node positions of the
regular mesh than in case (b)

necessities of the problem to solve. Optimization process with weighted objective
function obtains a T-mesh as orthogonal and similar to a regular mesh as possible.
However, no weighted objective function does not produce T-meshes so orthogonal,
but it provides more flexibility in order to facilitates the untangling process in very
complicated geometries. On the other hand, the quality of the mesh tends to be
more uniform when it is optimized with the weighted objective function. Figure 6
shows the effects of optimizing a T-mesh without weights (b) and with weights (c)
in comparison with an optimized regular mesh (a).

4 Construction of a T-Spline Geometry and Adaptive
Refinement to Improve the Parametrization Quality

4.1 Geometry Construction via Interpolation

In order to define T-spline basis functions of degree 3 over a given T-mesh in
2D, a local knot vector for both parametric directions should be assigned to each
basis function R˛: �˛ D �

�˛1 ; �˛2 ; �˛3 ; �˛4 ; �˛5

�
, H˛ D �

�˛1 ; �˛2 ; �˛3 ; �˛4 ; �˛5

�
.

These knot vectors are inferred by traversing T-mesh edges. This basis function is
associated to the central knot .�˛3 ; �˛3/ that is called anchor. As we are using open
knot vector structure, there are some blending functions that have the same anchor.
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The T-spline blending functions that we use in this work are rational B-spline
functions defined as

R˛ .�/ D N˛ .�/P
ˇ2A

Nˇ .�/
(7)

being N˛ .�/ D N1
˛ .�/N

2
˛ .�/ the bivariate B-spline function defined over its local

knot vectors � ˛ D f�˛;H˛g, andA is the index set of the basis spanned by T-mesh.
A detailed report about T-splines and their relationship with isogeometric

analysis can be found in [2].
We build bivariate T-spline surface representation of our physical domain as

lineal combination of T-spline blending functions

S .�/ D
X
˛2A

P˛ R˛ .�/ (8)

where P˛ 2 R
2 is the control point corresponding to the ˛-th blending function.

Control points P˛ are found by imposing interpolation conditions. Assuming that
the set of blending functions are linearly independent, we need as many interpolation
points as blending functions. Nevertheless, we have not a theoretical proof of their
linear independence and, therefore, of the solubility of the liner system. Buffa et al.
[5] prove the linear independence of the T-splines by supposing that a sequence
of nested T-meshes produces a sequence of nested spaces. Unfortunately, this
supposition is not satisfied in our case, that is, our spaces are not nested although we
have nested T-meshes. However, we have verify in numerous tests that the T-splines
defined over a balanced quadtree mesh are linear independent.

As interpolation points, we use the vertices of the mesh. For each vertex, �v˛ , its
position in the physical space, xv˛ , was determined by the mesh optimization process.

4.2 Mean Ratio and Adaptive Refinement Strategy to Improve
Parameterization Quality

Our objective is to get high-quality geometry parameterization suitable for isogeo-
metric analysis. The parametric T-spline mapping of Eq. (8) is suitable for analysis
if it has positive Jacobian in all the domain. High distortion of the geometry
can produce a large variation of the Jacobian that can lead to a poor accuracy
in the numerical results. Therefore, a good uniformity and orthogonality of the
isoparametric curves are desired for the parametric mapping S.

A high quality of the optimized T-mesh is a necessary, but not sufficient,
condition for a high quality of the T-spline mapping. It can happen that the Jacobian
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Fig. 7 Mean ratio Jacobian. A quality metric of the parametric mapping S at any point P0 in terms
of the mean ratio of the triangle P0

0P
0

1P
0

2

of the spline parameterization takes negative values even if all the cells of the T-mesh
are valid. In order to assess the quality of the constructed parametric transformation
we analyze the mean ratio Jacobian, given by

Jr .�/ D 2 det .J /

kJ k2 ; (9)

where J is the Jacobian matrix of the mapping S at the point � D .�; �/ and kJ k is
its Frobenius norm.

The value of the mean ratio Jacobian at any point P0 of the parametric domain
is a shape quality metric for the infinitesimal triangle formed by two isoparametric
curves of the physical domain passing through the point P00 D S.P0/, as illustrated in
Fig. 7. In contrast to the scaled Jacobian, that represents a quality of the mapping S
in the sense of the orthogonality of its isoparametric curves, the mean ratio Jacobian
represents both: a quality of the mapping in the sense of the orthogonality and
uniformity of its isoparametric curves. Scaled Jacobian attains its maximum value
1 at the given point if the mapping conserves orthogonality of the isoparametric
curves. Mean ratio Jacobian is equal 1 at the point P0 if the mapping conserves
orthogonality and produces the same length distortion in both parametric directions,
i.e., the mapping is conformal at this point.

It is easy to see that 8� W 0 � jJr.�/j � jJs.�/j � 1, where Js D det.J /
kS�k kS�k is

scaled Jacobian.
Parameterization of complex geometries entails a severe distortion that can lead

to appearance of low quality cells, even cells with negative Jacobian. This can be
explained by the lack of degrees of freedom provided by the inner nodes. In order to
improve the mesh quality in this case, we propose an adaptive strategy that refines
all the cells with low quality. A similar idea was implemented for tetrahedral meshes
in [11].
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Fig. 8 Adaptive refinement strategy to improve the parametric transformation quality in Gran
Canaria island domain. (a) T-spline representation of the domain; (b) initial T-spline parametriza-
tion and color map of its mean ratio Jacobian with negative values; (c) resulting T-spline
parameterization after applying adaptive refinement and color map of its mean ratio Jacobian with
no negative values

We proceed as follows. For each cell of the mesh, the mean ratio Jacobian is
calculated at Gauss quadrature points. We use 16 D 4 	 4 quadrature points per
cell. A cell Ő

e is marked to refine if, at least, one of its quadrature points has mean
ratio Jacobian less than a certain threshold ı. The refined T-mesh is optimized again
and the process is repeated until a satisfactory mesh quality is obtained. Figure 8
illustrates the efficacy of the proposed strategy. Additional refinements were applied
to Gran Canaria Island domain with ı D 0:2. The initial mesh with 3,439 cells
produces a T-spline parametric mapping with low quality in some areas and negative
Jacobian in the North East part of the island. After adaptive refinement we have
a mesh with 3,577 cells and positive Jacobian in all the domain. Moreover, the
minimum value of mean ratio Jacobian at the quadrature points is 0:21.
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In most cases, adaptive refinements only affect to a localized area of the
geometry. A good strategy to optimize the mesh after adaptive refinement is to apply
the optimization algorithm only to refined areas. Initially it is marked to optimize a
list of nodes composed by the nodes of the new cells created in the refinement and
the nodes that conform the local submesh of each of them. After optimization, if the
position of the node does not change significantly, the node is extracted of the list.
Otherwise, the node remains in the list and its local submesh is added. The process
finalizes when the list of nodes is empty. This strategy avoids unnecessary iterations
in zones where the optimization process does not produce relevant changes in the
mesh. This accelerates the optimization after each adaptive refinement.

5 Parameterization of Embedded Geometries

The proposed method can be easily extended to parameterize embedded geometries.
Embedded geometries are composed by the insertion of individuals figures into
another one. Each of these figures can be parameterize individually with the method
seen until now, obtaining the parametric and physical T-meshes of each one. The
key to parameterize the composed geometry is to build a global parametric space
based on the individual ones. In our method, the parametric space has a quadtree
structure. A cell of a quadtree could be seen as the root of a new quadtree. This
allows to insert the quadtree of an inner geometry in a cell or set of cells belonging
to an outer quadtree.

After the insertion, we obtain a new full quadtree for the global geometry. This
new quadtree is not balanced, so it is necessary to apply the 2:1 balance algorithm
after the quadtree merging. The untangling and smoothing procedure is carried
out with this new balanced quadtree, starting at the node positions obtained in the
individual construction of each figure. In this untangling step, the nodes of the inner
boundaries are fixed in the same manner that the outer boundary. Figure 9 describes
the process to build a T-mesh with embedded geometries. The rest of the process to
construct the T-spline representation of the geometry and the adaptive refinement is
exactly the same that for a basic geometry.

With this strategy it is possible to insert any number of geometries into another
one. Moreover, we can build geometries with holes, simply deleting the cells
corresponding to an inner geometry.
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Fig. 9 T-mesh construction of an embedded geometry. (a) Parametric space of the outer geometry.
Red lines define the area where the inner parametric space will be inserted; (b) T-mesh of the outer
geometry. The position of the inner boundary is marked in red; (c) parametric space of the inner
geometry; (d) T-mesh of the inner geometry; (e) resulting parametric space after inserting the inner
one into a region of the outer one, with a subsequent 2:1 balance; (f) T-mesh of the global geometry
after optimization withK�

� and p D 2
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6 Results and Applications

6.1 Geometric Modeling Results

The proposed algorithm was tested on several 2D domains. For all of them, we have
obtained parametric mappings of high quality suitable for isogeometric analysis. In
this section we present some results of the application of the method.

Figure 10 shows the parameterization quality of the Test geometry exposed in
the description of the method, where the T-mesh has been optimized with K�� and
p D 2. The color map represents the mean ratio Jacobian of the parameterization.
As it was described in Sect. 4.2, we have analyzed the quality of the parametric
mapping by evaluating the mean ratio Jacobian at the quadrature points of each cell.
In this case, no adaptive refinement was necessary.

Figure 11 shows the refined parametric space, the physical T-mesh and the color
map of the mean ratio Jacobian in the Puzzle geometry. We have constructed the
adapted T-mesh starting from an initial uniform 32 	 32 mesh in order to increase
the degree of freedom in the inner of the geometry. It has been optimized with K��
and p D 2. Only one adaptive refinement were necessary to improve the mesh
quality and assure positive Jacobian in all quadrature points.

Figure 12 shows the parameterization quality of the Embedded Test geometry
exposed in the previous section, optimized with K�� and p D 2. In this case no
adaptive refinement was necessary and minimum value of the mean ratio Jacobian
at quadrature points is 0:26.

Fig. 10 Test geometry with 2,287 cells and 3,363 control points, optimized with K�

� and pD 2.
(a) Color map of the mean ratio Jacobian of the parametric transformation represented in the
parametric domain; (b) color map of the mean ratio Jacobian in the physical domain. Minimal
value of mean ratio Jacobian at quadrature points is 0:138
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Fig. 11 Puzzle geometry with 3,748 cells and 5,946 control points. (a) Parametric T-mesh;
(b) physical T-mesh, optimized with K�

� and p D 2; (c) color map of the mean ratio Jacobian
in the parametric domain; (d) T-spline representation and color map of the mean ratio Jacobian in
the physical domain, where minimal value of mean ratio Jacobian at quadrature points is 0:19

Fig. 12 Embedded Test geometry with 916 cells and 1,317 control points, optimized withK�

� and
p D 2. (a) Color map of mean ratio Jacobian in parametric domain; (b) color map of mean ratio
Jacobian in physical domain, minimal value of mean ratio Jacobian at quadrature points is 0:26
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6.2 Isogeometric Analysis Applications

In this section we present two examples of the resolution of the Poisson equation
for domains composed of two materials using isogeometric analysis with T-splines.
Let us consider the next problem

�O.k.x/Ou/ D f in ˝;

u D g on @˝:
(10)

6.2.1 Dielectric Cylinder in a Uniform Electric Field

The first problem is an infinity dielectric cylinder of radio b immersed in uniform
electric field E0i. Actually, it is a bi-dimensional problem as there is no dependence
with z coordinate. The domain ˝ is a rectangle with a embedded circle of radius b
in its center where the dielectric constants are

k.x/ D
�
�0�r if � < b
�0 if � � b:

The analytic solution is given in cylindrical coordinates by

u�<b D �2E0� cos'

.�r C 1/

u��b D E0 cos'

�
�� C b2.�r � 1/

�.�r C 1/

	
:

By calculating the electric field E D �ru it can be seen that the electric field
tends to initial electric field E0i as � tends to infinity and it is constant inside the
cylinder.

In order to obtain a numerical solution as accurate as possible, we impose the
boundary Dirichlet conditions taking into account the exact solution.

The T-spline geometry of the embedded domains is shown in Fig. 13a and the
result of the numerical simulation with b D 0:5 and �r D 20 is presented in Fig. 13b.
Note that the stream lines of the electric field are constant in the cylinder. Comparing
with the analytic solution, we have measured a maximum error in the potential of
0:88%.

6.2.2 Heat Conduction Problem

The other example is a heat conduction problem in a more complex geometry. We
consider an interior “spot-shape” domain with conductivity k1 D 1 immersed in
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Fig. 13 (a) Zoom of the T-spline centred in the immersed cylinder; (b) the stream lines of the
electric field around of the cylinder

Fig. 14 Gran Canaria Island geometry with two materials, 6,466 cells and 9,439 control points.
T-mesh optimized with K� and p D 2. (a) Parametric domain; (b) T-spline representation
of physical domain; (c) numerical solution for heat conduction problem in parametric domain;
(d) numerical solution in physical domain
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Gran Canaria island domain with conductivity k2 D 0:1. The source term f

is a Gaussian function centred in the interior domain and the Dirichlet boundary
condition g D 0 in @˝ .

The T-spline parameterization and the solution of the heat conduction problem
for Gran Canaria Island domain with interior subdomain of high conductivity is
shown in Fig. 14.

7 Conclusions

We have proposed a new effective technique for obtaining a T-spline parame-
terization of 2D geometries for the application of isogeometric analysis. A new
T-mesh untangling and smoothing procedure have been applied in order to define an
isomorphic transformation between parametric and physical T-meshes. Presented
technique is simple and easy to implement. The algorithm have been tested in
several 2D geometries and, for all of them, we have obtained a high quality
parametric transformation between the object and the parametric domain. To asses
the quality of the parametric mapping, we evaluate its mean ratio Jacobian. Thereby,
we detect the areas with low quality and perform an adaptive refinement in order to
increase the degree of freedom in the areas with high distortion. This strategy allows
to obtain a parameterization suitable for analysis with no negative Jacobian, even
for complex geometries. Moreover, we have proposed an extension of the method
to parameterize embedded geometries.

All the geometries presented in this work have been parameterized with the unit
square. As a next step, we plan on overcome this limitation and to develop an
algorithm to parameterize a 2D object with more complex polygon-type parametric
domain that fits better the geometry. Also, in future research we expect to extend the
presented method to 3D.
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Thread-Parallel Anisotropic Mesh Adaptation

Gerard J. Gorman, Georgios Rokos, James Southern, and Paul H.J. Kelly

Abstract Mesh adaptation is a powerful way to minimise the computational cost
of mesh based computation. It is particularly successful for multi-scale problems
where the required mesh resolution can vary by orders of magnitude across the
domain. The end result is local control over solution accuracy and reduced time to
solution.

In the case of large scale simulations, where the time to solution is unacceptable
or the memory requirements exceeds available RAM, mesh based computation
is typically parallelised using domain decomposition methods using the Message
Passing Interface (MPI). This allows a simulation to run in parallel on a distributed
memory computer. While this has been a high successful strategy up until now, the
drive towards low power multi- and many-core architectures means that an even
higher degree of parallelism is required and the memory hierarchy exploited to
maximise memory bandwidth.

For this reason application codes are increasingly adopting a hybrid parallel
approach whereby decomposition methods, implemented using the Message Pass-
ing Interface (MPI), are applied for inter-node parallelisation, while a threaded
programming model is used for intra-node parallelisation. Mesh adaptivity has
been successfully parallelised using MPI by a number of groups, and can be
implemented efficiently with few modifications to the serial code. However, thread-
level parallelism is significantly more challenging because each thread modifies the
mesh data and therefore must be carefully marshalled to avoid data races while still
ensuring enough parallelism is exposed to achieve good parallel efficiency.
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Here we describe a new thread-parallel algorithm for anisotropic mesh adaptation
algorithms. For each mesh optimisation phase (refinement, coarsening, swapping
and smoothing) we describe how independent sets of tasks are defined. We show
how a deferred updates strategy can be used to update the mesh data structures in
parallel and without data contention. We show that despite the complex nature of
mesh adaptation and inherent load imbalances in the mesh adaptivity, good parallel
efficiency can be achieved.

1 Introduction

Anisotropic mesh adaptation methods provide an important means to minimise
superfluous computation associated with over-resolving the solution while still
achieving the required accuracy, [1, 5, 17, 18]. In order to use mesh adaptation
within a simulation, the application code requires a method to estimate the local
solution error. Given an error estimate it is then possible to calculate the required
local mesh resolution in order to achieve a specific solution accuracy.

There are a number of examples where adaptive mesh methods have been
parallelised in the context of distributed memory parallel computers. The main
challenge in performing mesh adaptation in parallel is maintaining a consistent
mesh across domain boundaries. One approach is to first lock the regions of the
mesh which are shared between processes and for each process to apply the serial
mesh adaptation operation to the rest of the local domain. The domain boundaries
are then perturbed away from the locked region and the lock-adapt iteration is
repeated [7]. Freitag et al. [12, 13] considers a fine grained approach whereby a
global task graph is defined which captures the data dependencies for a particular
mesh adaptation kernel. This graph is coloured in order to identify independent sets
of operations. The parallel algorithm then progresses by selecting an independent set
(vertices of the same colour) and applying mesh adaptation kernels to each element
of the set. Once a sweep through a set has been completed, data is synchronised
between processes, and a new independent set is selected for processing. In [3] each
process applies the serial adaptive algorithm, however rather than locking the halo
region, operations to be performed on the halo are first stashed in buffers and then
communicated so that the same operations will be performed by all processes that
share mesh information. For example, when coarsening is applied all the vertices
to be removed are computed. All operations which are local are then performed
while pending operations in the shared region are exchanged. Finally, the pending
operations in the shared region are applied.

However, over the past decade there has been a trend towards multi- and many-
core compute nodes. Indeed, it is assumed that the compute nodes of a future
exascale supercomputer will each contain thousands or even tens of thousands of
cores [9]. On multi-core architectures, a popular parallel programming paradigm is
to use thread-based parallelism to exploit shared memory within a shared memory
node and a message passing using MPI for interprocess communication. When the
computational intensity is sufficiently high, a third level of parallelisation may be
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implemented via SIMD instructions at the core level. There are some opportunities
to improve performance and scalability by reducing communication needs, memory
consumption, resource sharing as well as improved load balancing [19]. However,
the algorithms themselves must also have a high degree of thread parallelism if they
are to have a future on multi-core architectures; whether it be CPU or coprocessor
based.

Rokos et al. [20] and Gorman et al. [16] develop thread parallel algorithms
for many-core and multi-core processors based on the independent set approach
described in [12]. However, this approach does not easy carry over for a threaded
implementation of the other mesh adaptation operations. Therefore, in this paper
we take a fresh look at the anisotropic adaptive mesh methods in 2D to develop new
scalable thread-parallel algorithms suitable for modern multi-core architectures. We
show that despite the irregular data access patterns, irregular workload and need to
rewrite the mesh data structures, good parallel efficiency can be achieved.

The algorithms described in this paper have been implemented in the open source
code PRAgMaTIc (Parallel anisotRopic Adaptive Mesh ToolkIt).1 The remainder
of the paper is laid out as follows: Sect. 2 gives an overview of the anisotropic
adaptive mesh procedure; Sect. 3 describes the thread-parallel algorithm; and Sect. 4
illustrates how well the algorithm scales for a benchmark problem. We conclude
with a discussion on future work and possible implications of this work.

2 Overview

In this section we will give an overview of anisotropic mesh adaptation. In particular,
we focus on the element quality as defined by an error metric and the anisotropic
adaptation kernels which iteratively improve the local mesh quality as measured by
the worst local element.

2.1 Error Control

Solution discretisation errors are closely related to the size and the shape of the
elements. However, in general meshes are generated using a priori information
about the problem under consideration when the solution error estimates are not
yet available. This may be problematic because:

• Solution errors may be unacceptably high.
• Parts of the solution may be over-resolved, thereby incurring unnecessary

computational expense.

1https://code.launchpad.net/~pragmatic-core/pragmatic/pragmatic2d-2.0

https://code.launchpad.net/~pragmatic-core/pragmatic/pragmatic2d-2.0
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A solution to this is to compute appropriate local error estimates, and use this
information to compute a field on the mesh which specifies the local mesh
resolution requirement. In the most general case this is a metric tensor field so
that the resolution requirements can be specified anisotropically; for a review of
the procedure see [14]. Size gradation control can be applied to this metric tensor
field to ensure that there are not abrupt changes in element size [2].

2.2 Element Quality

As discretisation errors are dependent upon element shape as well as size, a number
of different measures of element quality have been proposed, e.g. [1, 5, 18, 21, 22].
Here we use the element quality measure for triangles proposed by [22]:

qM .4/ D 12
p
3

j4jM
j@4j2M„ ƒ‚ …
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� j@4jM
3

	
„ ƒ‚ …

II

; (1)

where j4jM is the area of element 4 and j@4jM is its perimeter as measured in
a Riemannian space locally defined by the metric tensor M as evaluated at the
element’s centre. The first factor (I ) is used to control the shape of element 4.
For an equilateral triangle with sides of length l in metric space, j4j D l2

p
3=4 and

j@4j D 3l ; and so I D 1. For non-equilateral triangles, I < 1. The second factor
(II) controls the size of element 4. The function F is smooth and defined as:

F.x/ D .min.x; 1=x/.2 � min.x; 1=x///3 ; (2)

which has a single maximum of unity with x D 1 and decreases smoothly away
from this with F.0/ D F.1/ D 0. Therefore, II D 1 when the sum of the lengths
of the edges of 4 is equal to 3, i.e. an equilateral triangle with sides of unit length,
and II < 1 otherwise. Hence, taken together, the two factors in (1) yield a maximum
value of unity for an equilateral triangle with edges of unit length, and decreases
smoothly to zero as the element becomes less ideal.

2.3 Overall Adaptation Procedure

The mesh is adapted through a series of local operations: edge collapse (Sect. 2.4.1);
edge refinement (Sect. 2.4.2); element-edge swaps (Sect. 2.4.3); and vertex smooth-
ing (Sect. 2.4.4). While the first two of these operations control the local resolution,
the latter two operations are used to improve the element quality.
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Algorithm 1 Mesh optimisation procedure
Inputs: M , S .
.M �;S �/ coarsen.M , S /
repeat
.M �;S �/ refine.M �, S �/

.M �;S �/ coarsen.M �, S �/

.M �;S �/ swap.M �, S �/

until (maximum number of iterations reached) or (algorithm convergence)
.M �;S �/ smooth.M �, S �/

return M �

Algorithm 1 gives a high level view of the anisotropic mesh adaptation procedure
as described by Li et al. [17]. The inputs are M , the piecewise linear mesh from
the modelling software, and S , the node-wise metric tensor field which specifies
anisotropically the local mesh resolution requirements. Coarsening is initially
applied to reduce the subsequent computational and communication overheads.
The second stage involves the iterative application of refinement, coarsening and
swapping to optimise the resolution and the quality of the mesh. The algorithm
terminates once the mesh optimisation algorithm converges or after a maximum
number of iterations has been reached. Finally, mesh quality is fine-tuned using
some vertex smoothing algorithm (e.g. quality-constrained Laplacian smoothing
[11], optimisation-based smoothing [12]), which aims primarily at improving worst-
element quality.

2.4 Adaptation Kernels

2.4.1 Coarsening

Coarsening is the process of lowering mesh resolution locally by removing mesh
elements, leading to a reduction in the computational cost. Here this is done by
collapsing an edge to a single vertex, thereby removing all elements that contain
this edge. An example of this operation is shown in Fig. 1.

2.4.2 Refinement

Refinement is the process of increasing mesh resolution locally. It encompasses two
operations: splitting of edges; and subsequent division of elements. When an edge
is longer than desired, it is bisected. An element can be split in three different ways,
depending on how many of its edges are bisected:

1. When only one edge is marked for refinement, the element can be split across the
line connecting the mid-point of the marked edge and the opposite vertex. This
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Fig. 1 Edge collapse: the dashed edge in the left figure is reduced into a single vertex by bringing
vertex VB on top of vertex VA, as can be seen in the middle figure. The two elements that used to
share the dashed edge are deleted. Edge collapse is an oriented operation, i.e. eliminating the edge
by moving VB onto VA results in a different local patch than moving VA onto VB , which can be
seen in the right figure

Fig. 2 Mesh resolution can be increased either by bisecting an element across one of its edges
(1:2 split, a), by performing a 1:3 split (b) or by performing regular refinement to that element (1:4
split, c)

operation is called bisection and an example of it can be seen on the left side of
Fig. 2 (left shape).

2. When two edges are marked for refinement, the element is divided into three
new elements. This case is shown in Fig. 2 (middle shape). The parent element is
split by creating a new edge connecting the mid-points of the two marked edges.
This leads to a newly created triangle and a non-conforming quadrilateral. The
quadrilateral can be split into two conforming triangles by dividing it across one
of its diagonals, whichever is shorter.

3. When all three edges are marked for refinement, the element is divided into four
new elements by connecting the mid-points of its edges with each other. This
operation is called regular refinement and an example of it can be seen in Fig. 2
(right shape).
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Fig. 3 Flipping the common
edge V0V1 results in the
removal of triangles 1V0V1V2
and 1V0V1V3 and their
replacement with new
triangles 1V0V2V3 and 1V1V2V3

Fig. 4 Local mesh patch: vi
is the vertex being relocated;
fei;0; : : : ; ei;mg is the set of
elements connected to vi

2.4.3 Swapping

In 2D, swapping is done in the form of edge flipping, i.e. flipping an edge shared
by two elements, see Fig. 3. The operation considers the quality of the swapped
elements—if the minimum element quality has improved then the original mesh
triangles are replaced with the edge swapped elements.

2.4.4 Quality Constrained Laplacian Smooth

The kernel of the vertex smoothing algorithm should relocate the central vertex
such that the local mesh quality is increased (see Fig. 4). Probably the best known
heuristic for mesh smoothing is Laplacian smoothing, first proposed by Field [10].
This method operates by moving a vertex to the barycentre of the set of vertices
connected by a mesh edge to the vertex being repositioned. The same approach
can be implemented for non-Euclidean spaces; in that case all measurements of
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Algorithm 2 Smart smoothing kernel: a Laplacian smooth operation is accepted
only if it does not reduce the infinity norm of local element quality

v0i  vi
quality0  Q.vi /
n 1

vni  vLi F Initialise vertex location using Laplacian smooth
Mn
i  metric_interpolation.vni /

qualityn D Q.vni / F Calculate the new local quality for this relocation.
while .n � max_iteration/and.qualityni � quality0i < �q/ do

vnC1
i  .vni C v0i /=2
M

nC1
i  metric_interpolation.vnC1

i /

qualitynC1  Q.vnC1
i /

n D nC 1
if qualityni � quality0i > �q then F Accept if local quality is improved

vi  vni
Mi  Mn

i

length and angle are performed with respect to a metric tensor field that describes
the desired size and orientation of mesh elements [18]. Therefore, in general, the
proposed new position of a vertex vLi is given by

vLi D
PJ

jD1 jjvi � vj jjMvjPJ
jD1 jjvi � vj jjM

; (3)

where vj , j D 1; : : : ; J , are the vertices connected to vi by an edge of the mesh,
and jj � jjM is the norm defined by the edge-centred metric tensor Mij. In Euclidean
space, Mij is the identity matrix.

As noted by Field [10], the application of pure Laplacian smoothing can actually
decrease local element quality; at times, elements can even become inverted. There-
fore, repositioning is generally constrained in some way to prevent local decreases
in mesh quality. One variant of this, termed smart Laplacian smoothing by Freitag
and Ollivier-Gooch [11] (while they only consider the Euclidean geometry it is
straightforward to extend to Riemannian geometry), is summarised in Algorithm 2.
This method accepts the new position defined by a Laplacian smooth only if it
increases the infinity norm of local element quality,Qi (i.e. the quality of the worst
local element):

Q.vi /  kqk1; (4)

where i is the index of the vertex under consideration and q is the vector of the
element qualities from the local patch.
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3 Thread-Level Parallelism in Mesh Optimisation

To allow fine grained parallelisation of anisotropic mesh adaptation we make
extensive use of maximal independent sets. This approach was first suggested
in a parallel framework proposed by Freitag et al. [13]. However, while this
approach avoids updates being applied concurrently to the same neighbourhood,
data writes will still incur significant lock and synchronisation overheads. For this
reason we incorporate a deferred updates strategy, described below, to minimise
synchronisations and allow parallel writes.

In the same paper [13] the authors describe the need for propagation of
operations. Adaptive operations need to be propagated to adjacent vertices/edges
because topological changes or changes in element quality might give rise to new
configurations of better quality.

3.1 Design Choices

Before presenting the adaptive algorithms, it is necessary to give a brief description
of the data structures used to store mesh-related information. Following that, we
present a set of techniques which help us avoid hazards and data races and guarantee
fast and safe concurrent read/write access to mesh data.

3.1.1 Mesh Data Structures

The minimal information necessary to represent a mesh is an element-node list
(we refer to it in this article as ENList), which is implemented in PRAgMaTIc
as a C++ Standard template library (STL) vector container class storing vertex
IDs (std::vector<int>), and an array of vertex coordinates (referred to as
coords), which is an STL vector of coordinates (std::vector<double>).
Element eid is comprised of vertices ENList[3*eid], ENList[3*eid+1]
and ENList[3*eid+2], whereas the x- and y-coordinates of vertex vid are
stored in coords[2*vid] and coords[2*vid+1] respectively. The metric
tensor field is similarly stored in the STL vector metric.

All necessary structural information about the mesh can be extracted from
ENList. However, it is convenient to create and maintain two additional adjacency-
related structures, the node-node adjacency list (referred to as NNList) and the
node-element adjacency list (referred to as NEList). As NNList is a ragged
array it is implemented as std::vector< std::vector<int> > where the
vector NNList[vid] contains the IDs of all vertices adjacent to vertex vid.
Similarly, NEList is implemented as an STL vector of STL sets of element IDs
(std::vector< std::set<int> >) and NEList[vid] contains the IDs
of all elements which vertex vid is part of.
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It should be noted that, contrary to common approaches in other adaptive frame-
works, we do not use other adjacency-related structures such as element-element
or edge-edge lists. Manipulating these lists and maintaining their consistency
throughout the adaptation process is quite complex and constitutes an additional
parallel overhead. Instead, we opted for the approach of finding all necessary
adjacency information on the fly using ENList, NNList and NEList.

3.1.2 Colouring

There are two types of hazards when running mesh optimisation algorithms in
parallel: structural hazards and data races. The term structural hazards refers to the
situation where an adaptive operation results in invalid or non-conforming edges and
elements. For example, on the local patch in Fig. 3, if two threads flip edges V0V1
and V0V2 at the same time, the result will be two new edges V2V3 and V1VB crossing
each other. Structural hazards for all adaptive algorithms are avoided by colouring
a graph whose nodes are defined by the mesh vertices and edges are defined by
the mesh edges. Maximal independent sets are readily selected by calculating the
intersection between the set of vertices of each colour and the set of active vertices.

The fact that topological changes are made to the mesh means that after an
independent set has been processed the graph colouring has to be recalculated.
Therefore, a fast scalable graph colouring algorithm is vital to the overall perfor-
mance. In this work we use a parallel colouring algorithm described by [15]. This
algorithm can be described as having three stages: (a) initial pseudo-colouring where
vertices are coloured in parallel and invalid colourings are possible; (b) loop over the
graph to detect invalid colours arising from the first stage; (c) the detected invalid
colours are resolved in serial. Between adaptive sweeps through independent sets
it is only necessary to execute stages (b) and (c) to resolve the colour conflicts
introduced by changes to the mesh topology.

3.1.3 Deferred Operations Mechanism

Data race conditions can appear when two or more threads try to update the same
adjacency list. An example can be seen in Fig. 5. Having coloured the mesh, two
threads are allowed to process vertices VB andVC at the same time without structural
hazards. However, NNList[ VA ] and NEList[ VA ] must be updated. If both
threads try to update them at the same time there will be a data race which could
lead to data corruption. One solution could be a distance-2 colouring of the mesh
(a distance-k colouring of G is a colouring in which no two vertices share the
same colour if these vertices are up to k edges away from each other or, in other
words, if there is a path of length � k from one vertex to the other). Although this
solution guarantees a race-free execution, a distance-2 colouring would increase the
chromatic number, thereby reducing the size of the independent sets and therefore
the available parallelism. Therefore, an alternative solution is sought.
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Fig. 5 Example of hazards when running edge collapse in parallel. VB is about to collapse
onto VA. The operation is executed by thread T1. Clearly, VA cannot collapse at the same time.
Additionally, VC cannot collapse either, because it affects VA’s adjacency list. If a thread T2
executes the collapse operation collapse on VC , then both T1 and T2 will attempt to modify VA’s
adjacency list concurrently, which can lead to data corruption. This race can be eliminated using
the deferred-updates mechanism

In a shared-memory environment with nthreads OpenMP threads, every
thread has a private collection of nthreads lists, one list for each OpenMP
thread. When NNList[i] or NEList[i] have to be updated, the thread does
not commit the update immediately; instead, it pushes the update back into the list
corresponding to thread with ID tid D i%nthreads. At the end of the adaptive
algorithm, every thread tid visits the private collections of all OpenMP threads
(including its own), locates the list that was reserved for tid and commits the
operations which are stored there. This way, it is guaranteed that for any vertex Vi ,
NNList[ Vi ] and NEList[ Vi ] will be updated by only one thread. Because
updates are not committed immediately but are deferred until the end of the iteration
of an adaptive algorithm, we call this technique the deferred updates. A typical
usage scenario is demonstrated in Algorithm 3.

3.1.4 Worklists and Atomic Operations

There are many cases where it is necessary to create a worklist of items which
need to be processed. An example of such a case is the creation of the active sub-
mesh in coarsening and swapping, as will be described in Sect. 3.3. Every thread
keeps a local list of vertices it has marked as active and all local worklists have to
be accumulated into a global worklist, which essentially is the set of all vertices
comprising the active sub-mesh.

One approach is to wait for every thread to exit the parallel loop and then perform
a prefix sum [4] on the number of vertices in its private list. After that, every thread
knows its index in the global worklist at which it has to copy the private list. This
method has the disadvantage that every thread must wait for all other threads to
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Algorithm 3 Typical example of using the deferred updates mechanism
typedef std::vector<Updates> DeferredOperationsList;
int nthreads = omp_get_max_threads();

// Create nthreads collections of deferred operations lists
std::vector< std::vector<DeferredOperationsList> > defOp;
defOp.resize(nthreads);

#pragma omp parallel
{

// Every OMP thread executes
int tid = omp_get_thread_num();
defOp[tid].resize(nthreads);
// By now, every OMP thread has allocated one list per thread

// Execute one iteration of an adaptive algorithm in parallel
// Defer any updates until the end of the iteration
#pragma omp for
for(int i=0; i<nVertices; ++i){

execute kernel(i);
// Update will be committed by thread i%nthreads
// where the modulo avoids racing.
defOp[tid][i%nthreads].push_back(some_update_operation);

}

// Traverse all lists which were allocated for thread tid
// and commit any updates found
for(int i=0; i<nthreads; ++i){

commit_all_updates(defOp[i][tid]);
}

}

exit the parallel loop, synchronise with them to perform the prefix sum and finally
copy its private data into the global worklist. Profiling data indicates that this way
of manipulating worklists is a significant limiting factor towards achieving good
scalability.

Experimental evaluation showed that, at least on the Intel Xeon, a better method
is based on atomic operations on a global integer variable which stores the size of
the worklist needed so far. Every thread which exits the parallel loop increments
this integer atomically while caching the old value. This way, the thread knows
immediately at which index it must copy its private data and increments the integer
by the size of this data, so that the next thread which will access this integer knows in
turn its index at which its private data must be copied. Caching the old value before
the atomic increment is known in OpenMP terminology as atomic capture. Support
for atomic capture operations was introduced in OpenMP 3.1. This functionality
has also been supported by GNU extensions (intrinsics) since GCC 4.1.2, known
under the name fetch-and-add. An example of using this technique is shown in
Algorithm 4.
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Algorithm 4 Example of creating a worklist using OpenMP’s atomic capture
operations

int worklistSize = 0; // Points to end of the global worklist
std::vector<Item> globalWorklist;

// Pre-allocate enough space
globalWorklist.resize(some_appropriate_size);

#pragma omp parallel
{

std::vector<Item> private_list;

// Private list - no need to synchronise at end of loop.
#pragma omp for nowait
for(all items which need to be processed){

do_some_work();
private_list.push_back(item);

}

// Private variable - the index in the global worklist
// at which the thread will copy the data in private_list.
int idx;

#pragma omp atomic capture
{

idx = worklistSize;
worklistSize += private_list.size();

}

memcpy(&globalWorklist[idx], &private_list[0],
private_list.size() * sizeof(Item));

}

Note the nowait clause at the end of the #pragma omp for directive. A
thread which exits the loop does not have to wait for the other threads to exit. It
can proceed directly to the atomic operation. It has been observed that dynamic
scheduling for OpenMP for-loops is what works best for most of the adaptive
loops in mesh optimisation because of the irregular load balance across the mesh.
Depending on the nature of the loop and the chunk size, threads will exit the loop
at significantly different times. Instead of having some threads waiting for others
to finish the parallel loop, with this approach they do not waste time and proceed
to the atomic increment. The profiling data suggests that the overhead or spinlock
associated with atomic-capture operations is insignificant.
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3.1.5 Reflection on Alternatives

Our initial approach to dealing with structural hazards, data races and propagation
of adaptivity was based on a thread-partitioning scheme in which the mesh was
split into as many sub-meshes as there were threads available. Each thread was
then free to process items inside its own partition without worrying about hazards
and races. Items on the halo of each thread-partition were locked (analogous
to the MPI parallel strategy); those items would be processed later by a single
thread. However, this approach did not result in good scalability for a number of
reasons. Partitioning the mesh was a significant serial overhead, which was incurred
repeatedly as the adaptive algorithms changed mesh topology and invalidated the
existing partitioning. In addition, the single-threaded phase of processing halo items
was another hotspot of this thread-partition approach. In line with Amdahl’s law,
these effects only become more pronounced as the number of threads is increased.
For these reasons this thread-level domain decomposition approach was not pursued
further.

3.2 Refinement

Every edge can be processed and refined without being affected by what happens to
adjacent edges. Being free from structural hazards, the only issue we are concerned
with is thread safety when updating mesh data structures. Refining an edge involves
the addition of a new vertex to the mesh. This means that new coordinates and
metric tensor values have to be appended to coords and metric and adjacency
information in NNList has to be updated. The subsequent element split leads to
the removal of parent elements from ENList and the addition of new ones, which,
in turn, means that NEList has to be updated as well. Appending new coordinates
to coords, metric tensors to metric and elements to ENList is done using
the thread worklist strategy described in Sect. 3.1.4, while updates to NNList and
NEList can be handled efficiently using the deferred operations mechanism.

The two stages, namely edge refinement and element refinement, of our threaded
implementation are described in Algorithms 5 and 6, respectively. The procedure
begins with the traversal of all mesh edges. Edges are accessed using NNList, i.e.
for each mesh vertex Vi the algorithm visits Vi ’s neighbours. This means that edge
refinement is a directed operation, as edge ViVj is considered to be different from
edge Vj Vi . Processing the same physical edge twice is avoided by imposing the
restriction that we only consider edges for which Vi ’s ID is less than Vj ’s ID. If
an edge is found to be longer than desired, then it is split in the middle (in metric
space) and a new vertex Vn is created. Vn is associated with a pair of coordinates
and a metric tensor. It also needs an ID. At this stage, Vn’s ID cannot be determined.
Once an OpenMP thread exits the edge refinement phase, it can proceed (without
synchronisation with the other threads) to fix vertex IDs and append the new data
it created to the mesh. The thread captures the number of mesh vertices index D
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Algorithm 5 Edge-refinement
Global worklist of split edges W , refined_edges_per_element[NElements]
#pragma omp parallel

private W split_cnt 0; newCoords; newMetric; newVertices
#pragma omp for schedule(dynamic)
for all vertices Vi do

for all vertices Vj adjacent to Vi , ID.Vi / < ID.Vj / do
if length of edge ViVj > Lmax then
Vn new vertex of split edge ViVnVj ; Append new
coordinates, interpolated metric, split edge to newCoords,
newMetric, newVertices; split_cnt split_cntC 1

#pragma omp atomic capture
index NNodes; NNodes NNodesC splint_cnt

Copy newCoords into coords, newMetric into metric
for all edges ei 2 newVertices do
ei D ViVnVj ; increment ID of Vn by index

Copy newVertices into W
#pragma omp barrier
#pragma omp parallel for schedule(dynamic)
for all Edges ei 2 W do

Replace Vj with Vn in NNList[Vi]; replace Vi with Vn in NNList[Vj ]
Add Vi and Vj to NNList[Vn]
for all elements Ei 2 fNEList ŒVi �\ NEList ŒVj �g do

Mark edge ei as refined in refined_edges_per_element[Ei ].

Algorithm 6 Element refinement phase
#pragma omp parallel

private W newElements
#pragma omp for schedule(dynamic)
for all elements Ei do

REFINE_ELEMENT(Ei)
Append additional elements to newElements.

Resize ENList.
Parallel copy of newElements into ENList.

NNodes and increments it atomically by the number of new vertices it created. After
capturing the index, the thread can assign IDs to the vertices it created and also copy
the new coordinates and metric tensors into coords and metric, respectively.

Before proceeding to element refinement, all split edges are accumulated into a
global worklist. For each split edge ViVj , the original vertices Vi and Vj have to
be connected to the newly created vertex Vn. Updating NNList for these vertices
cannot be deferred. Most edges are shared between two elements, so if the update
was deferred until the corresponding element were processed, we would run the risk
of committing these updates twice, once for each element sharing the edge. Updates
can be committed immediately, as there are no race conditions when accessing
NNList at this point. Besides, for each split edge we find the (usually two) elements
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sharing it. For each element, we record that this edge has been split. Doing so makes
element refinement much easier, because as soon as we visit an element we will
know immediately how many and which of its edges have been split. An array of
length NElements stores this type of information.

During mesh refinement, elements are visited in parallel and refined indepen-
dently. It should be noted that all updates to NNList and NEList are deferred
operations. After finishing the loop, each thread uses the worklist method to append
the new elements it created to ENList. Once again, no thread synchronisation is
needed.

Compared to Freitag’s task graph approach, this parallel refinement algorithm
has the advantage of not requiring any mesh colouring and having low synchronisa-
tion overhead as. Additionally, the element refinement phase is based on the results
of the edge refinement phase, so we completely avoid having non-conformities and
the subsequent need to propagate operations in order to eliminate them.

3.3 Coarsening

Because any decision on whether to collapse an edge is strongly dependent upon
what other edges are collapsing in the immediate neighbourhood of elements, an
operation task graph for coarsening has to be constructed. Edge collapse is based on
the removal of vertices, i.e. the elemental operation for edge collapse is the removal
of a vertex. Therefore, the operation task graph G is the mesh itself.

Figure 5 demonstrates what needs to be taken into account in order to per-
form parallel coarsening safely. It is clear that adjacent vertices cannot collapse
concurrently, so a distance-1 colouring of the mesh is sufficient in order to avoid
structural hazards. This colouring also enforces processing of vertices topologically
at least every other one which prevents skewed elements forming during significant
coarsening [8, 17].

An additional consideration is that vertices which are two edges away from each
other share some common vertex Vcommon. Removing both vertices at once means
that Vcommon’s adjacency list will have to be modified concurrently by two different
threads, leading to data races. These races can be avoided using the deferred
operations mechanism.

Algorithm 7 illustrates a thread parallel version of mesh edge collapse. Coars-
ening is divided into two phases: the first sweep through the mesh identifies what
edges are to be removed, see Algorithm 8; and the second phase actually applies
the coarsening operation, see Algorithm 9. Function coarsen_identify(Vi) takes as
argument the ID of a vertex Vi , decides whether any of the adjacent edges can
collapse and returns the ID of the target vertex Vt onto which Vi should collapse (or
a negative value if no adjacent edge can be removed). coarsen_kernel(Vi) performs
the actual collapse, i.e. removes Vi from the mesh, updates vertex adjacency
information and removes the two deleted elements from the element list.



Thread-Parallel Anisotropic Mesh Adaptation 129

Algorithm 7 Edge collapse
Allocate dynamic_vertex;worklist.
#pragma omp parallel

#pragma omp for schedule(static)
for all vertices Vi do dynamic_vertexŒVi � �2
Colour mesh
repeat

#pragma omp for schedule(dynamic)
for all vertices Vi do

if dynamic_vertexŒVi �DD �2 then
dynamic_vertexŒVi � COARSEN_IDENTIFY(Vi)

if dynamic vertex countDD 0 then break
Im maximal independent set of dynamic vertices
#pragma omp for schedule(dynamic)
for all Vi 2 Im do

F mark all neighbours for re-evaluation
for all vertices Vj 2 NNList[Vi ] do

dynamic_vertexŒVj � �2
dynamic_vertexŒVi � �1
COARSEN_KERNEL(Vi)

Commit deferred operations.
Repair colouring

until true

Algorithm 8 coarsen_identify
procedure COARSEN_IDENTIFY(Vi)
Si  the set of all edges connected to Vi
S0  Si
repeat
Ej  shortest edge in Sj

if length of Ej > Lmin then F if shortest edge is of acceptable
return -1 F length, no edge can be removed

Vt  the other vertex that bounds Ej
evaluate collapse of Ej with the collapse of Vi onto Vt
if (8 edges 2 Si � Lmax) and (6 9 inverted elements) then

return Vt
else

remove Ej from Sj F Ej is not a candidate for collapse

until Si D ;



130 G.J. Gorman et al.

Algorithm 9 Coarsen_kernel with deferred operations
procedure COARSEN_KERNEL(Vi)
Vt  dynamic_vertexŒVi �
removed_elements NEList[Vi] \ NEList[Vt]
common_patch NNList[Vi] \ NNList[Vt]
for all Ei 2 removed_elements do
Vo the other vertex of Ei D1ViVtVo
NEList[Vo].erase(Ei) F deferred operation
NEList[Vt].erase(Ei) F deferred operation
NEList[Vi].erase(Ei)
ENList[3*Ei] �1 F erase element by resetting its first vertex

for all Ei 2 NEList[Vi ] do
replace Vi with Vt in ENList[3*Ei+{0,1,2}]
NEList[Vt].add(Ei) F deferred operation

remove Vi from NNList[Vt] F deferred operation
for all Vc 2 common_patch do

remove Vi from NNList[Vc] F deferred operation

for all Vn 62 common_patch do
replace Vi with Vt in NNList[Vn]
add Vn to NNList[Vt] F deferred operation

NNList[Vi].clear()
NEList[Vi].clear()

Parallel coarsening begins with the initialisation of array dynamic_vertex which
is defined as:

dynamic_vertexŒVi � D
8<
:

�1 Vi cannot collapsed;
�2 Vi must be re-evaluated;
Vt Vi is about to collapse onto Vt :

At the beginning, the whole array is initialised to -2, so that all mesh vertices will
be considered for collapse.

In each iteration of the outer coarsening loop, coarsen_identify_kernel is called
for all vertices which have been marked for (re-)evaluation. Every vertex for which
dynamic_vertexŒVi � � 0 is said to be dynamic or active. At this point, a reduction
in the total number of active vertices is necessary to determine whether there is
anything left for coarsening or the algorithm should exit the loop.

Next up, we find the maximal independent set of active vertices Im. Working
with independent sets not only ensures safe parallel execution, but also enforces the
every other vertex rule. For every active vertex Vr 2 Im which is about to collapse,
the local neighbourhood of all vertices Va formerly adjacent to Vr changed and target
vertices dynamic_vertexŒVa�may not be suitable choices any more. Therefore, when
Vr is erased, all its neighbours are marked for re-evaluation. This is how propagation
of coarsening is implemented.

Algorithm 9 describes how the actual coarsening takes place in terms of
modifications to mesh data structures. Updates which can lead to race conditions
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have been pointed out. These updates are deferred until the end of processing of
the independent set. Before moving to the next iteration, all deferred operations are
committed and colouring is repaired because edge collapse may have introduced
inconsistencies.

3.4 Swapping

The data dependencies in edge swapping are virtually identical to those of edge
coarsening. Therefore, it is possible to reuse the same thread parallel algorithm as
for coarsening in the previous section with slight modifications

In order to avoid maintaining edge-related data structures (e.g. edge-node list,
edge-edge adjacency lists etc.), an edge can be expressed in terms of a pair of
vertices. Just like in refinement, we define an edge Eij as a pair of vertices .Vi ; Vj /,
with ID.Vi / < ID.Vj /. We say that Eij is outbound from Vi and inbound to
Vj . Consequently, the edge Eij can be marked for swapping by adding Vj to
marked_edgesŒVi �. Obviously, a vertex Vi can have more than one outbound edge,
so unlike dynamic_vertex in coarsening, marked_edges in swapping needs to be a
vector of sets.

The algorithm begins by marking all edges. It then enters a loop which is
terminated when no marked edges remain. The maximal independent set Im of
active vertices is calculated. A vertex is considered active if at least one of its
outbound edges is marked. Following that, threads process all active vertices of Im

in parallel. The thread processing vertex Vi visits all edges in marked_edgesŒVi � one
after the other and examines whether they can be swapped, i.e. whether the operation
will improve the quality of the two elements sharing that edge. It is easy to see that
swapping two edges in parallel which are outbound from two independent vertices
involves no structural hazards.

Propagation of swapping is similar to that of coarsening. Consider the local patch
in Fig. 3 and assume that a thread is processing vertex V0. If edge V0V1 is flipped,
the two elements sharing that edge change in shape and quality, so all four edges
surrounding those elements (forming the rhombus in bold) have to be marked for
processing. This is how propagation is implemented in swapping.

One last difference between swapping and coarsening is that Im needs to be
traversed more than once before proceeding to the next one. In the same example
as above, assume that all edges adjacent to V0 are outbound and marked. If edge
V0V1 is flipped, adjacency information for V1, V2 and V3 has to be updated. These
updates have to be deferred because another thread might try to update the same lists
at the same time (e.g. the thread processing edge VCV1). However, not committing
the changes immediately means that the thread processing V0 has a stale view of the
local patch. More precisely,NEList[V2] and NEList[V3] are invalid and cannot
be used to find what elements edges V0V2 and V0V3 are part of. Therefore, these two
edges cannot be processed until the deferred operations have been committed. On
the other hand, the rest of V0’s outbound edges are free to be processed. Once all
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Algorithm 10 Thread-parallel mesh smoothing
repeat

relocate_count 0

for colour D 1! k do
#pragma omp for schedule(static)
for all i 2 V c do

F move_success is true if vertex was relocated,
move_success smooth_kernel.i/ F false otherwise.
if move_success then

relocate_count relocate_countC 1
until .n � max_iteration/or.relocate_count D 0/

threads have processed whichever edges they can for all vertices of the independent
set, deferred operations are committed and threads traverse the independent set
again (up to two more times in 2D) to process what had been skipped before.

3.5 Smoothing

Algorithm 10 illustrates the colouring based algorithm for mesh smoothing and is
described in greater detail in [16]. In this algorithm the graph G .V ;E / consists
of sets of vertices V and edges E that are defined by the vertices and edges of
the computational mesh. By computing a vertex colouring of G we can define
independent sets of vertices, V c , where c is a computed colour. Thus, all vertices
in V c , for any c, can be updated concurrently without any race conditions on
dependent data. This is clear from the definition of the smoothing kernel in
Sect. 2.4.4. Hence, within a node, thread-safety is ensured by assigning a different
independent set V c to each thread.

4 Results

In order to evaluate the parallel performance, an isotropic mesh was generated on
the unit square with using approximately 200	200 vertices. A synthetic solution  
is defined to vary in time and space:

 .x; y; t/ D 0:1 sin.50x C 2
t=T /C arctan.�0:1=.2x � sin.5y C 2
t=T ///;

(5)

where T is the period. An example of the field at t D 0 is shown in Fig. 6. This
is a good choice as a benchmark as it contains multi-scale features and a shock
front. These are the typical solution characteristics where anisotropic adaptive mesh
methods excel.
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Fig. 6 Benchmark solution field

Fig. 7 Histogram of element qualities aggregated over all iterations

Because mesh adaptation has a very irregular workload we simulate a time
varying scenario where t varies from 0 to 51 in increments of unity and we use
the mean and standard deviations when reporting performance results. To calculate
the metric we used the Lp-norm as described by [6], where p  2. The number of
mesh vertices and elements maintains an average of approximately 250k and 500k
respectively. As the field evolves all of the adaptive operations are heavily used,
thereby giving an overall profile of the execution time.

In order to demonstrate the correctness of the adaptive algorithm we plot a
histogram (Fig. 7) showing the quality of all element aggregated over all time steps.
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Fig. 8 Wall time for each mesh adaptation phase

Fig. 9 Speedup for each mesh adaptation phase

We can see that the vast majority of the elements are of very quality. The lowest
quality element had a quality of 0:34, and in total only ten elements out of 26million
have a quality less than 0:4.

The benchmarks were run on a Intel(R) Xeon(R) E5-2650 CPU. The code was
compiled using the Intel compiler suite, version 14.0.1 and with the compiler flags
-Ofast. In all cases we used Intel’s thread-core affinity support - specifically
scatter which distributes the threads as evenly as possible across the entire
system.

Figures 8, 9 and 10 show the wall time, speedup and efficiency of each phase
of mesh adaptation. Simulations using between 1 and 8 cores are run on a single
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Fig. 10 Parallel efficiency for each mesh adaptation phase

socket while the 16 core simulation runs across two CPU sockets and thereby
incurring NUMA overheads. From the results we can see that all operations achieve
good scaling, including for the 16 core NUMA case. The dominant factors limiting
scaling are the number of synchronisations and load-imbalances. Even in the case
of mesh smoothing, which involves the least data-writes, the relatively expensive
optimisation kernel is only executed for patches of elements whose quality falls
below a minimum quality tolerance. Indeed, the fact that mesh refinement, coarsen-
ing and refinement are comparable is very encouraging as it indicates that despite
the invasive nature of the operations on these relatively complex data structures it is
possible to get good intra-node scaling.

5 Conclusions

This paper is the first to examine the scalability of anisotropic mesh adaptivity
using a thread-parallel programming model and to explore new parallel algorithmic
approaches to support this model. Despite the complex data dependencies and
inherent load imbalances we have shown it is possible to achieve practical levels
of scaling. To achieve this two key ingredients were required. The first was to use
colouring to identify maximal independent sets of tasks that would be performed
concurrently. In principle this facilitates scaling up to the point that the number of
elements of the independent set is equal to the number of available threads. The
second important factor contributing to the scalability was the use of worklists and
deferred whereby updates to the mesh are added to worklists and applied in parallel
at a later phase of an adaptive sweep. This avoids the majority of serial overheads
otherwise incurred with updating mesh data structures.
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While the algorithms presented are for 2D anisotropic mesh adaptivity, we
believe many of the algorithmic details carry over to the 3D case as the challenges
associated with exposing a sufficient degree of parallelism are very similar.
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Immersed NURBS for CFD Applications

Jeremy Veysset, Ghina Jannoun, Thierry Coupez, and Elie Hachem

Abstract We present a new immersed method for Computational Fluid Dynamics
applications. It is based on the use of Non Uniform Rational B-Splines (NURBS).
The distance function to an immersed solid is computed directly from its Computer
Aided Design (CAD) description. This allows to bypass the generation of surface
meshes and to obtain accurate levelset functions for complex geometries. Combined
with a metric based anisotropic mesh adaptation and stabilized Finite Elements
Method (FEM), it allows a novel, efficient and flexible approach to deal with a wide
range of fluid structure interaction problems. The metric field is computed directly
at the node of the mesh using the length distribution tensor and an edge based error
analysis. Several 2D and 3D numerical examples will demonstrate the applicability
of the proposed method.

1 Introduction

Immersed methods for Fluid Structure Interaction (FSI) are gaining popularity in
many scientific and engineering applications. Different approaches can be found
such as the embedded boundary method [1], the immersed boundary method [2],
the fictitious domain [3], the immersed volume method [4–7] and the cartesian
method [8]. All these methods are attractive because they simplify a number of
issues in Fluid-Structure applications such as meshing the fluid domain, using a fully
Eulerian algorithm, problems involving large structural motion and deformation [9]
or topological changes [10].

However they use non-body fitted grids which require special interface treat-
ments. Indeed recent developments are focusing on issues related to the immersion
of a surface mesh for complex 3D geometries [7], the detection and the intersection
algorithms for the interface and finally the transmission of boundary conditions
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between the solid and the fluid regions. In particular these methods appear to be
limited by the quality and the accuracy of the surface mesh description of a given
immersed solid.

In this work, we present a new immersion technique that simplifies and bypasses
the generation of a surface mesh. It is based on the use of Non Uniform Rational
B-Splines (NURBS) curves or surfaces, representing simple or complex geometries.
We compute the distance function from any point in the fluid mesh to these NURBS,
thus representing the immersed solid by the zero iso-value of this function. The
computation of the distance mainly relies on patching the NURBS functions [11]
and using a Newton method [12]. Although, many methods and techniques have
been already developed to compute the distance to NURBS functions, none of them
has been used to compute level-set functions for immersed objects needed to solve
FSI problems. Therefore instead of relying on the resolution of the surface mesh, the
proposed method uses directly the Computer Aided Design (CAD) definition which
keeps the quality of its analytical description. In practice, it eliminates the cost of the
surface mesh generation step and reduces the complexity to set up a Fluid-Structure
application.

Combined with anisotropic mesh adaptation, it provides an attractive immersed
framework. Therefore, for the mesh adaptation, we retain the use of a metric
constructed directly at the nodes of the mesh without any direct information from the
elements, neither considering any underlying interpolation [13–15]. It is performed
by introducing a statistical concept: the length distribution function. First, we use a
second order tensor to approximate the distribution of lengths defined by gathering
the edges at the node. Then we compute the error along and in the direction of each
edge. Finally we extend the approach to deal with multicomponent fields (tensors,
vectors, scalars). It uses a single metric to account for different fields such as the
levelset function of the immersed solid and all components of the velocity field. Note
also that the proposed algorithm is implemented in the context of adaptive meshing
under the constraint of a fixed number of nodes. With such an advantage, we can
provide a very useful tool for practical FSI problems and avoid a drastic increase
in the number of nodes. The paper is structured as follows. Section 2 presents the
details of the new immersion technique. Section 3 describes the used error estimator
for anisotropic mesh adaptation. In Sect. 4 several numerical examples are used to
highlight the capability of the approach. Finally conclusions and perspectives are
given in Section 5.

2 NURBS Immersion

Let us first recall some notations and definitions of the NURBS functions. All
the steps that constitute the computation of the distance function to an immersed
solid defined by NURBS functions will be outlined. First, we highlight the relation
between the computation of the distance function and the geometrical problem.
Based on the principle of an elimination criterion, we obtain the needed initial guess
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for the Newton resolution. Finally a simple algorithm is used to sign the obtained
distance function, positive in the solid domain and negative outside.

2.1 Definition of NURBS Functions

NURBS or Non-Uniform Rational B-Spline functions are piecewise-polynomial
parametric functions. They were introduced in the 1950s [16, 17] in the industrial
engineering field to represent complicated geometries like ship hulls and aircraft
exterior surfaces. They are now widely implicated in the CAD field and used
in many designing softwares (CATIA, Pro Engineer, SolidWorks. . . ). With such
mathematical functions, it is possible to represent any geometry with different levels
of complexity. Their main advantage is that they can be locally modified by just
moving control points without affecting the rest of the geometry. Figure 1 shows an
example of a NURBS curve with the corresponding control points and knots. The
definition of a NURBS curve c is as follows:

c.u/ D
Pn

iD1 Ni;p.u/!iPiPn
iD1 Ni;p.u/!i

(1)

where p is the degree of the curve,Ni;p the basis functions, Pi the control points, n
the number of control points, !i the weights and u the parameter taking its values
in the knot vector U . The knot vector U has n C p C 1 knots. The first and last
knots have multiplicity p C 1 (U D fu0; : : : ; u0„ ƒ‚ …

pC1
; u1; : : : ; un�1; un; : : : ; un„ ƒ‚ …

pC1
g). The

basis functions are defined by the Cox-De Boor recursion formula [18, 19]:

Ni;0.u/ D
�
1 if ui � u < uiC1
0 otherwise

(2)

Ni;p.u/ D u � ui
uiCp � ui

Ni;p�1.u/C uiCpC1 � u

uiCpC1 � uiC1
NiC1;p�1.u/; with p 2 N

�:

(3)

Fig. 1 Example of a NURBS curve and a NURBS surface, their control points and knots
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Following the definition given by (1), a NURBS surface is defined as follows:

s.u; v/ D
Pm

iD1
Pn

jD1 Ni;p.u/Nj;q.v/!ijPijPm
iD1

Pn
jD1 Ni;p.u/Nj;q.v/!ij

(4)

where p and q are the polynomial degrees in the u and v directions, Ni;p and Nj;q
the basis functions in the u and v directions, Pij the control points, !ij the weights
and u and v the parameters taking their values in the U and V knot vectors. The
latters are constructed in the same way as mentioned previously in the NURBS
curve definition.

2.2 The Closest Point Problem

The objective is to compute the level-set of the immersed objects involved in the
simulations directly from their CAD definition, i.e. their CAD files. Indeed, in these
files, each object is commonly characterized by NURBS curves or surfaces. Let˝ ,
˝f , ˝s and � represent respectively the whole domain, the fluid domain, the solid
domain and the interface verifying:

�
˝f

S
˝s D ˝

˝f

T
˝s D �

: (5)

Then for each node X of the computational domain ˝ , the level-set function ˛
which is the signed distance from the interface reads:

˛.X/

8<
:
> 0 if X 2 ˝s

D 0 if X 2 �
< 0 if X 2 ˝f

: (6)

The immersed solid is implicitly defined by the zero iso-value of this function
˛. In what follows, we describe the algorithm to compute the minimum distance
between the nodes of the computational mesh and the surface of the immersed
object. This can be achieved by solving the closest point problem, which can be
seen as a root finding problem [20]. In fact, if we consider a point P and a NURBS
curve c, the projection of the pointP on the curve c is mathematically equivalent to
finding the parameter u� such that:

.P � c.u�//:c0.u�/ D 0: (7)
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This kind of problem can be solved by using a Newton method. It requires a
good starting value in order to obtain fast and accurate results. Different approaches
are proposed in the literature. In [12], the authors make a sampling of points on the
curve and take as an initial value the closest one. However, this method has been
described as time consuming. We will adopt here a more efficient way to find a
good initial value [21]. It consists first in selecting the part of the curve containing
the root. Then the initial value is taken on this part of the curve and the Newton
method is performed only on this part. Therefore, we subdivide the NURBS curve
into rational Bezier segments as a preparation phase. We recall that a rational Bezier
curve c of degree p is defined by:

c.u/ D
Pp

iD0 Bi;p.u/!iPiPp
iD0 Bi;p.u/!i

(8)

where Pi are the control points, !i the weights and Bi;p the Bernstein polynomials
defined by the following formula:

Bi;p.u/ D nŠ

i Š.n � i/Šu
i .1 � u/n�i : (9)

Then we eliminate the Bezier segments that do not satisfy a certain criterion
(this criterion is detailed thereafter). Finally we use a Newton-Raphson method to
solve the point projection problem (7) on the remaining rational Bezier segments.
Analogously, a NURBS surface can be decomposed into a set of rational Bezier
surfaces. Then the same scheme is performed in order to find the minimum distance
relatively to the NURBS surface.

s.u; v/ D
Pp

iD0
Pq

jD0 Bi;p.u/Bj;q.v/!ijPijPp
iD0

Pq
jD0 Bi;p.u/Bj;q.v/!ij

(10)

where s is the rational Bezier surface, p and q the degrees of s, Pij the control points
and !ij the weights.

Different alternatives are proposed in the literature. For instance, in [22] and
[23], the Bezier segments are subdivided until the created control polygons become
simple and convex or until a flatness condition is reached. In our case, the Bezier
segments are not subdivided. In [24], the authors prefer to use a geometric criterion
for the elimination of the rational Bezier curves based on computing the tangent
cone of every rational Bezier curve. In [25], they introduce an algebraic function
instead of subdividing the NURBS geometry. Consequently, Eq. (7) is transformed
into a polynomial equation and the roots of this new equation are extracted using a
Sturm method.
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Algorithm 1 Closest Extremity
if 8 i 2 [1,n] P1Pi :PP1 � 0 then
P1 is the closest point

else if 8 i 2 [1,n] PnPi :PPn � 0 then
Pn is the closest point

else
Go to Algorithm 2

end if

Algorithm 2 Segment Elimination
if 8 i 2 [1,pC 1] Pk;1Pk;i :PPk;1 � 0 then
Pk;1 is the closest point and the Bezier patch Bk is eliminated

else if 8 i 2 [1,p C 1] Pk;nPk;i :PPk;n � 0 then
Pk;n is the closest point and the Bezier patch Bk is eliminated

else
Apply Newton method

end if

2.3 Outline of the Algorithm

Inspired by all the above described works, we present a new modified algorithm,
adapted mainly from [21]. We first subdivide the curve into a set of rational Bezier
segments Bk as a preparation phase. Then we check if one of the extremities of the
NURBS curve is the closest point (Algorithm 1).

If the closest point is not an endpoint, we eliminate all the subcurves Bk whose
closest point from point P is an extremity of Bk (Algorithm 2).
Pk;i being the control points of the Bezier segment Bk . If all the subcurves Bk

have been suppressed, then the curve has got at least a cust and the closest point is
one of these custs (point of multiplicity equal to p, p being the degree of the curve).
Thus we compute the distance for all the singular points and check which one is
the closest. Otherwise we look for the closest point with a Newton method on the
remaining sub segments.

Analogously, we transpose the algorithm to compute the closest distance between
a point and a NURBS surface. We first subdivide the surface into a set of rational
Bezier patches (i.e. surfaces) Bk . Then, as for NURBS curves, we check if one of
the corners of the NURBS surface is the closest point (Algorithm 3). If none of the
corners of the NURBS surface is selected as the closest point of the query point P ,
we eliminate the rational Bezier patches Bk whose closest point from point P is a
corner of Bk (Algorithm 4). If all the sub patches Bk have been suppressed, then
the surface has got at least a cust and the closest point is one of these custs (point
of multiplicity equal to p and q, p and q being the degrees of the curve respectively
in the u and v directions). Thus we compute the distance for all the singular points
and check which one is the closest. Otherwise we look for the closest point using a
Newton method on the remaining sub-patches.
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Algorithm 3 Closest Corner
if 8 i 2 [1,m] and 8 j 2 [1,n] P11Pij:PP11 � 0 then
P11 is the closest point.

else if 8 i 2 [1,m] and 8 j 2 [1,n] Pm1Pij:PPm1 � 0 then
P11 is the closest point.

else if 8 i 2 [1,m] and 8 j 2 [1,n] P1nPij:PP1n � 0 then
P11 is the closest point.

else if 8 i 2 [1,m] and 8 j 2 [1,n] PmnPij:PPmn � 0 then
P11 is the closest point.

else
Go to Algorithm 4

end if

Algorithm 4 Patch Elimination
if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;11Pk;ij :PPk;11 � 0 then
Pk;11 is the closest point and the Bezier patch Bk is eliminated

else if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;m1Pk;ij :PPk;m1 � 0 then
Pk;m1 is the closest point and the Bezier patch Bk is eliminated

else if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;1nPk;ij :PPk;1n � 0 then
Pk;1n is the closest point and the Bezier patch Bk is eliminated

else if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;mnPk;ij :PPk;mn � 0 then
Pk;mn is the closest point and the Bezier patch Bk is eliminated

else
Apply Newton method

end if

2.4 The Newton Method Resolution

The last part of the algorithm consists in solving, using the Newton method, the
point inversion problem (7) on the selected segments or patches of the NURBS
function. Since the corners of the NURBS function have been treated in the previous
subsection, the distance between a point and a NURBS function can now simply be
expressed as an orthogonal point projection problem [c.f. Eq. (7)]. The segment
constituted by the query point and the closest point on the curve is orthogonal to the
derivative of the curve at this closest point. From the Taylor expansion of Eq. (7),
we can state that the parameter of the curve in the Newton algorithm is computed as
follows:

uiC1 D ui � .c.ui /� P/:c0.ui /
.c.ui � P/:c00.ui /C kc0.ui /k2 : (11)

The algorithm is performed as far as the parameter value does not change
significantly or until Eq. (7) is satisfied under a given precision. Analogously, the
problem statement for finding the distance between a point and a NURBS surface is
the following, find the parameters u and v such that:�

a.u; v/ D .s.u; v/� P/:su.u; v/ D 0

b.u; v/ D .s.u; v/ � P/:sv.u; v/ D 0
(12)
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where su and sv are the partial derivatives respectively in the u and v directions of the
NURBS surface s. The problem is transformed by solving iteratively the following
system:


au.ui ; vi /av.ui ; vi /
bu.ui ; vi /bv.ui ; vi /

� 
ıu
ıv

�
D
�a.ui ; vi /

�b.ui ; vi /
�

(13)

where au, av , bu and bv are the partial derivatives respectively in the u and v
directions of a and b. Replacing (12) in (13) gives:

Ji :


ıu
ıv

�
D
�.s.ui ; vi /� P/:su.ui ; vi /

�.s.ui ; vi / � P/:sv.ui ; vi /
�

(14)

with Ji D

2
664

ksu.ui ; vi /k2 C .s.ui ; vi /� P/:suu.ui ; vi /su.ui ; vi /:sv.ui ; vi /
C.s.ui ; vi / � P/:suv.ui ; vi /

su.ui ; vi /:sv.ui ; vi /C .s.ui ; vi / � P/:svu.ui ; vi /ksv.ui ; vi /k2
C.s.ui ; vi / � P/:svv.ui ; vi /

3
775 :

(15)

Finally the parameters are computed by the following equation:


uiC1
viC1

�
D

ıu
ıv

�
C


ui
vi

�
: (16)

The method is performed iteratively until the u and v parameters do not change
significantly or both equations in (12) are satisfied under a given precision.

2.5 Computing the Sign of the Distance

Now that the distance has been obtained with the detailed algorithm, we need to
sign it in order to check whether the point lies inside or outside the object. If the
point is outside the object, then the distance will take a negative sign and vice versa.
We propose two methods for signing the distance. The first one consists in defining

a point O lying inside the object and computing the scalar product
���!
PpP :

���!
PpO, P

being the query point and Pp the closest point of P on the object boundary (Fig. 2).
If the sign of the obtained scalar product is negative, then it means that the point

P is outside of the object and the distance takes a negative sign. This method is
efficient and easy to implement but its main drawback lies in the fact that it works
only for convex objects. The second method is more generic and works for any type
of objects. It consists in computing the number of intersections between the edge
constituted by the query point P and the inside point O and the object’s boundary
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Fig. 2 Scalar product signing method (left) and intersection signing method (right)

(Fig. 2). If the number of intersections is odd, then the distance takes a negative sign.
The outline of the new implemented algorithm takes finally the following form:

1. The NURBS curve (respectively surface) is subdivided into rational Bezier
segments (respectively patches).

2. Then we check if one of the corner of the NURBS function is the closest point.
3. If it is the case, go to step 6.
4. Eliminate the rational Bezier segments (respectively patches) that do not contain

the closest point.
5. Compute the closest point with a Newton method on the remaining segment

(respectively patch).
6. Sign the distance.

3 Construction of an Anisotropic Mesh

In this section, we recall important features of the anisotropic meshing approach
relying on the length distribution tensor approach and the associated edge based
error analysis as developed in [13].

3.1 Edge Based Error Estimation

We consider u 2 C 2.˝/ D V and Vh a simple P1 finite element approximation
space:

Vh D ˚
wh 2 C 0.˝/;whjK 2 P1.K/;K 2 K

�
where˝ D S

K2K
K andK is a simplex (segment, triangle, tetrahedron, . . . ).
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Fig. 3 Length Xij of the edge
joining nodes i and j

We define X D ˚
Xi 2 R

d ; i D 1; � � � ; N � as the set of nodes of the mesh and we
denote by U i the nodal value of u at Xi and we let˘h be the Lagrange interpolation
operator from V to Vh such that:

˘hu.Xi / D u.Xi / D U i ; 8i D 1; � � � ; N:

As shown in Fig. 3, we define the set of nodes connected to node i by � .i/ D˚
j ; 9iK 2 K ; Xi ;Xj are nodes of K

�
.

By introducing the following notation: Xij D Xj � Xi and using the analysis
carried in [13], we can set the following results:

ruh � Xij D U ij ; (17)

jj ruh � Xij„ ƒ‚ …
U ij

�ru.Xi/ � Xijjj � max
Y2ŒXi ;Xj �

jH.u/.Y /Xij � Xijj ; (18)

where H.u/ D r.2/u is the associated Hessian of u. Recall that taking u 2 C 2.˝/

we obtain ru 2 C 1.˝/.
Applying the interpolation operator on ru and using (17) we obtain a definition

of the projected second derivative of u in terms of only the values of the gradient at
the extremities of the edge:

rghXij � Xij D gij � Xij (19)

where rgh D ˘hru, gi D ru.Xi/ and gij D gj � gi .
Using a mean value argument, we set that:

9y 2 Œxi ; xj �jgij � Xij D H.u/.Y /Xij � Xij :

We use this projection as an expression of the error along the edge:

eij D gij � Xij: (20)
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However this equation cannot be evaluated exactly as it requires that the gradient of
u be known and continuous at the nodes of the mesh. For that reason, we resort to a
gradient recovery procedure.

3.2 Gradient Recovery

Based on an optimization analysis, the author in [13] proposes a recovery gradient
operator defined by:

Gi D .Xi /�1
X
j2� .i/

U ijXij (21)

where X
i D d

j� .i/j
P

j2� .i/
Xij ˝ Xij is what we call the length distribution tensor at

node Xi . Note that this construction preserves the second order:

ˇ̌�
Gi � gi � � Xij

ˇ̌ � �
H.u/Xij � Xij

�
where Gi is the recovery gradient at node i [given by (21)] and gi being the exact
value of the gradient at node i .

The error is evaluated by substituting G by g in (20):

eij D Gij � Xij:

3.3 Metric Construction from the Edge Distribution Tensor

Taking into account this error analysis, we construct the metric for the unit mesh as
follows:

M
i D

0
@ d

j� .i/j
X
j2� .i/

Xij ˝ Xij

1
A
�1

:

For a complete justification of this result, the reader is referred to [13].

3.4 Error Behavior due to Varying the Edge Length

In this section, we introduce a new way to enforce the number of nodes N and
we propose a novel approach to compute the stretching factor without using the
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dimensional parameter p as was proposed in [13]. First, we start by examining how
the error behaves when we change the length of the edges by stretching coefficients

S D ˚
sij 2 R

C ; i D 1; � � � ; N ; j D 1; � � � ; N ; � .i/ \ � .j / ¤ �
�
:

In order to obtain a new metric depending on the error analysis, one has to calculate
first a new length for each edge and then to use it for rebuilding the length
distribution tensor. An interesting way of linking the error variations to the changes
in edge lengths is by introducing a stretching factor s 2 R such that

� fXij D sXij

jjeeijjj D s2jjeijjj D s2jjGij � Xijjj (22)

where eeij and fXij are the target error at edge ij and its associated edge length.
Following the lines of [13] we can simply define the metric associated with S by:

f
M
i D 1

d

�e
X
i
��1

(23)

where

e
X
i D 1

� .i/

X
j2� .i/

s2ijX
ij ˝ Xij

is the length distribution tensor. Let nij be the number of created nodes in relation
with the stretching factor sij and along the edge ij. When scaling the edges by a factor
sij, the error changes quadratically so that the number of created nodes (number of
sub-edges as shown in Fig. 4) along the edge ij is given by:

nij D
�eeij

eij

	 1
2

D s�1ij :

Here eeij denotes the induced error for edge fXij.
Giving the number of nodes (or sub-edges) created along the current edge, it is

possible now to build a tensor of distribution of nodes in all directions by solving

Fig. 4 Varying the edge in its
own direction
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the following optimization problem:

min
i

X
j2� .i/

jN i � Xij � nijXij ˝ Xijj2

where

N i D det.N i / D det

0
@.Xi /�1 X

j2� .i/
nijXij ˝ Xij

1
A :

By considering the averaging process of the number of nodes distribution function,
the total number of nodes in the adapted mesh is given by

N D
X
i

N i :

Assuming a uniform totally balanced error along the edge, eeij D e is constant, we
get a direct relation between N and e as follows:

N ij.e/ D s�1ij .e/ D
�eeij

eij

	C 1
2

:

For a node i we have

N i.e/ D det

0
@� 1

d

	
.Xi /�1

X
j2� .i/

Nij.e/Xij ˝ Xij

1
A

with

N i.e/ D e
2
d N i .1/

so that

N D e
2
d

X
i

N i .1/:

Hence, the global induced error for a given total number of nodes N can be
determined by:

e.N / D
0
@ NP

i

N i .1/

1
A
� 4
d

:
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Therefore the corresponding stretching factors under the constraint of a fixed
number of nodes N are given by:

sij D
� eeij

e.N /

	� 12
:

3.4.1 Extension to Multi-Component Field

Here we propose to construct a unique metric directly from a multi-component
vector field containing, for instance, all the components of the velocity field and/or
different levelset functions of the immersed solids. Consequently, we do not need
to intersect several metrics but construct it using the following error vector: eij Dn
e1ij; e

2
ij; � � � ; enij

o
.

Let us introduce u D fu1; u2; � � � ; ung,

Z D V 	 V 	 � � � 	 V

and

Zh D Vh 	 Vh 	 � � � 	 Vh:

In the view of constructing a unique metric, we choose to apply the above theory for
each component of u. It comes out immediately that the error is now a vector given
by the following expression:

�!eij D ˚
e1ij; e

2
ij; � � � ; enij

�
and then

sij D
 

jjeeijjj
jj�!eij jj

!� 12
:

Here, the norm can be L2, L1 or L1. In the following numerical experiments, we
used the L2 case to compute the error.

3.5 Application to the Velocity Field and to the Levelset
Function

Let vh.Xi / D V i 2 R
d ; d D 2; 3 the finite element solution of the Navier-Stokes

equations. Introduce the vector field Y D
�
v
jvj ; jvj; ˛

�
made of d C 1 components
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vector fields. Recall that ˛ is the level set function used to localize an immersed
body. We obtain then for every node i ,

˘hY .X
i / D

�
V i

jV i j ; jV
i j; ˛



D Y i :

Obviously the case jvj D 0 must be accounted for by using V i

max.jvi j;"/ with " �
10�6 chosen as a small value so that Y i

k D 0 when jvi j D 0.
Using the vector Y i , the adaptivity will now take into account, using one unique

metric, the variations in the velocity directions, the velocity norm and the levelset
functions. Indeed, the adaptivity will focus mainly on the change of direction rather
than the intensity of the velocity. Consequently, and as presented by the numerical
results in the following section, even the small vortices developed by the solution
will be very well captured. What is even more interesting is the capability of the
method to automatically detect the boundary layers at the fluid-solid interfaces due
to the anisotropically adapted mesh exhibiting highly stretched elements. Finally,
we recall that we use a mesh technique (MTC) based on the local modification and
the conformity control through the theorem for minimal volume preserving. This
was introduced in [26] and extended to anisotropic mesh adaptation in [13, 27].

4 Applications

The performance of the new NURBS immersed method will be assessed using
several 2D and 3D examples. First we show that combining the new immersed
method with anisotropic mesh adaptation can lead to a novel, efficient and flexible
immersed framework able to handle simple and very complex geometries. Then, we
combine it with flow solvers based on a stabilized three-fields velocity-pressure-
stress finite element formulation, designed for the computation of rigid bodies
in an incompressible Navier-Stokes flow at high Reynolds number. Indeed, this
formulation consists of considering the whole domain as a single one, meshed
by a single grid, and solved with an Eulerian framework. Continuity at the fluid-
solid interface is then obtained naturally and there is no need to enforce it. Then, it
imposes the use of an appropriate constitutive equation describing both the fluid and
the solid domain. For instance, the presence of the solid is taken into account as an
extra stress in the Navier-Stokes equation [6, 28]. The results show that the method
is very efficient and robust in particular at high Reynolds numbers using anisotropic
meshes with highly stretched elements.
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Fig. 5 2D applications of the immersed NURBS method: level-set zero iso-value (top); adapted
meshes (bottom)

4.1 Immersed 2D and 3D Simple Geometries

First we test the method by immersing simple objects. Indeed, the distance function
for the circle and the rectangle can be obtained easily using analytical functions.
Therefore, they will be used first to test the implemented algorithm, in particular
in the presence of curvatures, sharp angles and singularity. We immerse the CAD
descriptions of a circle, a rectangle and a NACA profile in 2D, a sphere and cube in
3D. We use the computed levelset functions as the mesh criterion.

Figure 5 presents the zero isovalues of the immersed objects inside the compu-
tational domain. As expected, it reflects the sharp capture of the geometries and
the right orientation and deformation of the mesh elements (longest edges parallel
to the boundary). This yields a great reduction of the number of triangles and
consequently a reduction in the computational costs. These first results show that
the method works properly and that the obtained results are accurate and respect
well the geometry of the objects.

The extension of the method to deal with 3D objects described this time by
NURBS surfaces is tested on a sphere and a cube immersed inside a larger domain.
Figure 6 shows the zero-isovalues of the computed levelset functions and several
cut in the planes highlighting the obtained meshes at the interfaces. Once again the
results prove that the implemented method works well and shows that combining
the new immersed method with anisotropic mesh adaptation lead to a very practical
tool for immersed methods.

Taking a closer look at the mesh near the interfaces, we can detect the good ori-
entation of the elements with the stretching in the right direction. This demonstrates
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Fig. 6 3D applications of the immersed NURBS method: level-set zero iso-value (top); adapted
meshes (bottom)

the ability of the algorithm to work under the constraint of a fixed number of nodes
and to effectively control the elements sizes, orientations and locations.

4.2 Immersed 3D Complex Geometries

In this section, we test the immersed method on complex geometries: a ship hull and
a large airship. Two difficulties must be underlined. The first is clearly the edge of
the ship hull while the second is the presence of the hole all along the airship. Note
also that both geometries are described this time by several NURBS surfaces.
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Fig. 7 3D applications of the immersed NURBS method: level-set zero iso-value (top); adapted
meshes (bottom)

The same algorithm is applied iteratively on both geometries: (1) distance
function computation using NURBS, (2) sign determination and (3) anisotropic
mesh adaptation. The obtained results are shown in Fig. 7. As expected, the
algorithm progressively detects and refines the mesh at the interfaces leading to
a well respected shape in terms of curvature, angles, etc. All the small details in
the given geometries are captured accurately. These observations reflect the ability
of the anisotropic mesh adaptation algorithm to automatically adjust the shape
and orientation of the elements while optimizing their numbers. For instance, the
singularity of these edges could not be recovered without an accurate distance
computation and anisotropic refined mesh adaptation.

It is worth mentioning that both the use of NURBS and anisotropic mesh
adaptation are complementary. As mentioned previously, immersed objects are
usually surface meshes. Therefore the anisotropic mesh adaptation can be limited by
the facetization of the object, i.e. the accuracy of the surface mesh file. By immersing
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Table 1 Computational time
in seconds of the distance
calculation of the ship hull
immersed with an IGES file,
a STL file and the
transportation method

n cores NURBS Surface mesh NURBS + transport

1 138:10 13:37 2:72

2 70:92 6:99 2:23

4 43:14 3:53 2:12

8 22:30 2:03 0:70

NURBS objects we overcome this issue as the object geometry is kept analytical.
Thus the anisotropic mesh adaptation reaches its full potential.

We present in Table 1 the computational time taken to compute the distance
function of the ship hull. We compare several techniques and we use different
number of cores (1, 2, 4 and 8) also to test the implementation in a parallel
environment. First, we notice that the algorithm works well in parallel and shows a
good scalability. Note that we did not extend further this study since it is not in the
scope of this paper. Secondly, we compare the present method to the computation
of the distance function obtained by immersing a surface mesh (i.e. STL file). Even
though the comparison is not fair since the execution time to obtain the surface mesh
is not counted and the quality of the surface mesh remains unclear, the purpose
of this comparison still gives us an idea on the potential of the method and the
possibilities for improvement. However, to make the comparisons fair, we immersed
first the ship hull inside a smaller domain using the NURBS, and then we transport
the obtained distance function on this refined mesh to the larger computational
domain. In the latter case, the cost of this method referred as NURBS + Transport
becomes negligible and interesting for practical CFD applications.

4.3 CFD Applications

The objective of this test case is to show the utility of the immersed NURBS
method. Indeed, combined with flow solvers it allows to easily and accurately
deal with complex fluid structure interaction problems. Therefore, we consider a
turbulent flow past an immersed large scale airship. This 3D computations have been
obtained using 64 2:4 GHz Opteron cores. The air movement around the airship is
quite complex and interesting; i.e. it allows the study of the influence of different
airfoils and their positions to optimize the aerodynamic design. A number of vortices
between the objects and the surroundings can be observed due to the turbulence
dissipation. All these observations are highlighted by the streamlines in Fig. 8.
Moreover, we can clearly see on the vertical planes cutting through the airships
that the solid region satisfies the zero velocity and, hence, the no-slip condition
on the extremely refined interface is also verified. The airship slows down the air
circulation on the surface and influences the main air circulation along the hole.

Note also in Fig. 9 the concentration of the resolution not only along all the
boundary layers but also at the detachment and in the wake regions. This reflects
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Fig. 8 Snapshots of the streamlines around an airship described by NURBS surfaces

Fig. 9 Snapshots of the adapted mesh around an airship described by NURBS surfaces
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well the anisotropy of the solution caused by the discontinuity of the boundary
conditions and the nature of the flow. The elements far from the immersed solid are
mostly isotropic and increase in size as the velocity gradient decreases. Again, this
reflects and explains why, for a controlled number of nodes, the mesh is naturally
and automatically coarsened in that region with the goal of reducing the mesh size
around the boundaries and in the wake regions.

5 Conclusions

We present a new NURBS immersed method for Computational Fluid Dynamics
applications. This method is an extension of the standard Immersed Volume method
and more accurate. The immersion of an object described by surface meshes is
replaced by the direct use of the CAD definition keeping the quality of its analytical
description. The distance computation is performed using a modified algorithm
based on the decomposition of the NURBS functions in sub-curves or surfaces
and a selection criterion. The Newton method is presented and used to solve the
distance problem. The numerical examples show that combined with anisotropic
mesh adaptation and flow solver, it leads to a novel, accurate and efficient method
to deal with complex fluid structure interaction problems. The natural extension of
this work is to optimize and accelerate the implemented algorithm.
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Recherche Scientifique (ANR), France, under the project ANR-10-REALISTIC-0065.
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Strategies for Generating Well Centered
Tetrahedral Meshes on Industrial Geometries

Sean Walton, Oubay Hassan, and Kenneth Morgan

Abstract This paper outlines some recent developments in the process of gener-
ating well centered tetrahedral meshes. A well centered tetrahedron contains its
circumcentre, which is a basic property required for a valid co-volume discretisa-
tion. Although most work in this area has focussed on improving meshes generated
using classical techniques, in this paper we consider modification of the generation
procedure itself. A simple lattice point insertion technique is introduced and the
potential of the technique for generating well centered meshes is demonstrated. This
is accomplished by comparing, for some complex geometries, the meshes generated
with the meshes created by a standard Delaunay mesh refinement technique. Despite
the simplicity of the lattice point insertion method, the comparison is found to be
favourable and the method is shown to produce good well centered elements in the
vicinity of the geometry.

1 Introduction

Co-volume algorithms, such as the marker and cell (MAC) algorithm for the
solution of the Navier Stokes equations [1] or the Yee scheme for the solution
of Maxwell’s equations [2], exhibit a high degree of computational efficiency
in terms of their low operation count and their low storage requirements. These
properties, together with the simplicity of the algorithm, have made the Yee
scheme a favoured computational solution technique for industrial electromagnetic
simulations. However, these algorithms are highly sensitive to the quality of the
mesh employed. Specifically, they require well centered meshes, i.e. meshes in
which each element contains its circumcentre.

The primary goal of this work is to develop a technique which automatically
generates a well centered unstructured mesh around an arbitrary geometry in three
dimensions. It has been shown that it is possible for uniform meshes, and with
enough optimisation, for non-uniform meshes, to obtain well centered meshes for
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Fig. 1 A detail of an example well centered mesh in two dimensions

general two dimensional geometries [3–5]. An example of such a mesh is shown in
Fig. 1. This mesh was generated using a Delaunay refinement technique and was
optimised using a modified cuckoo search [4–6]. Our work is currently focussed on
attempting to obtain the equivalent level of mesh quality in three dimensions.

This paper details some recent developments aimed at addressing the problem
of generating well centered meshes for industrial geometries. At present, the
problem remains unsolved, but the results presented here demonstrate the recent
progress that has been achieved. The paper is structured in the following way.
The mesh quality required for successful implementation of co-volume algorithms
is discussed. Volume mesh generation that is accomplished by extending the
stitching methods that was successfully implemented in two dimensions [3] is
described. Near field meshes generated by the Delaunay insertion of ideal lattice
is highlighted. Previously developed mesh optimisation techniques are then briefly
outlined and applied to the meshes initially generated using the lattice insertion
technique. The quality of the meshes generated using the proposed technique for
three representative geometries, consisting of an ONERA M6 wing, a full B60
geometry and a full F16 geometry, is illustrated. The paper concludes with a
discussion and suggestions for further work.

1.1 Co-volume Algorithms and Their Mesh Requirements

In its most basic form, a classical co-volume method is staggered in time and is
implemented on a pair of orthogonal staggered Cartesian meshes in space. The
mutually orthogonal pair of meshes are termed the primal and the dual mesh. The
resulting discretisation is second order accurate, in both space and time, on uniform
meshes and has the additional advantages of preserving the energy, and maintaining
the amplitude, of plane waves. This enables the approximation of electromagnetic
fields near sharp edges, vertices and wire structures, without a need for excessive
local mesh refinement [7].
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The success of a co-volume solver is, however, particularly sensitive to the
quality of the meshes employed [4]. On general meshes, second order accuracy of a
co-volume scheme can only be ensured if [8]:

• The primal and dual meshes are mutually orthogonal, i.e. the edges of the primal
mesh pass orthogonally through the faces of the dual mesh.

• A dual mesh node must lie inside its corresponding primal mesh element,
otherwise integrals over primal mesh elements will be approximated in terms
of solution values located outside the elements.

• The nodes of the dual mesh lie at the centroid of corresponding primal mesh and
the dual mesh edges pass through the centroids of the corresponding primal mesh
faces.

The most obvious choice, for meshes with these properties, is to employ a primal
Delaunay mesh and its Voronoi dual [8]. This is advantageous because the first
condition above is then met automatically. The second and third conditions are,
however, not met for a general set of nodes. When all the conditions are met, the
set of nodes is said to form a centroidal Voronoi tesselation (CVT). The aim of the
current work is to develop new mesh generation and optimisation techniques, which
will make the use of co-volume techniques feasible for complex three dimensional
geometries.

In isolation, a tetrahedral element whose faces are equilateral triangles has a
Voronoi node which sits at its centroid. Note, however, that such tetrahedra do not
fill space. To date, only one type of tetrahedron has been found which fills space
and satisfies all of the above conditions [9–11]. Each face of this tetrahedron is
an isosceles triangle, with one side of length 1 and the other two, shorter, sides of
length

p
3=2. The tiling of space which is created by these tetrahedra is illustrated in

Fig. 2, where each internal node is connected to 14 neighbouring nodes in a regular
lattice. Clearly, a tiling of this form will be unable to mesh the volume surrounding
a general surface. In addition, in the analysis of practical problems, it is normally
desirable that the local mesh size matches a user-defined target mesh spacing at
each point in space. It has proved possible to obtain well centered volume meshes,
for regions lying inside simple shapes, by using optimisation techniques [4, 12, 13].
However, it is yet to be shown that this can also be achieved for general geometries
with specific mesh spacing functions.

Since the use of the Delaunay Voronoi dual ensures mutual orthogonality, our
current work is focused on producing well centered meshes. Much of the current
literature, in this field, employs traditional meshing techniques and attempts to
improve the mesh through the use of a variety of mesh cosmetics procedures.
Cosmetic procedures are when either the positions, connectivity of the mesh nodes
are adjusted after the initial generation, in an attempt to improve quality. Although it
is not technically the same as the problem of interest here, the problem of calculating
a CVT of a set of nodes is particularly relevant. CVT techniques aim to minimise an
energy function [14], which is related to the deviation of the primal Delaunay nodes
from the mass centroid of the Voronoi cell in which they lie. Such methods, which
are iterative by nature, require that the CVT energy is calculated several times and
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Fig. 2 Detail of a mesh of ideal tetrahedral elements, showing the surface Delaunay faces and the
internal Voronoi cells

this can be an expensive task, when it is applied to large meshes of practical interest.
It is apparent that it is possible to find a CVT for a range of examples, but even state
of the art techniques, using quasi-Newton based optimisation methods, require that
the CVT energy be calculated hundreds of times for simple geometries [15].

During our own efforts at directly optimising meshes for this type of application
we introduced the concept of reduced order mesh optimisation [4, 5]. By applying
reduced order modelling techniques we were able to represent full meshes, with
a large number of nodes, with much fewer degrees of freedom. The reduced
number of degrees of freedom allowed the application of gradient free optimisation
techniques. To date this approach has only been explored once so more work in
this area is needed, to ascertain its strengths and weaknesses. However, our work
still showed that a large number of iterations is required to eliminate all non well
centered elements [4, 5]. For this reason, it is important to develop mesh generation
techniques that aim, at the outset, to create a high quality mesh. If this can be
achieved, it will, hopefully, ensure a reduction in the time spent on cosmetics.

2 Volume Mesh Generation Techniques

Two dimensional surface meshing is now well established. For example, using
advancing front techniques, close to ideal surface meshes can be obtained for a
wide range of geometries, provided, of course, that the geometry definitions are
water-tight. Therefore, it will be assumed that high quality surface meshes can be
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obtained for the geometries of interest. However, it might be necessary, at some
later stage, to consider introducing additional specific surface mesh generation
techniques, if we find that existing surface meshes prevent us from obtaining the
volume meshes of the desired quality.

The challenge of generating well centered tetrahedral meshes for complex
geometries has previously been approached using a stitching method [3]. This
method starts by employing an advancing front technique [16] to generate a
local high quality triangulation close to the boundaries. This triangulation is then
stitched to an ideal mesh which covers the remainder of the computational domain.
The advancing front technique places nodes at ideal locations and generates the
elements in layers, while advancing away from the boundary surfaces. Although
this approach is effective and relatively simple in two dimensions, its extension to
three dimensions is clearly dependent on the ability to efficiently create high quality
triangulation in the vicinity of the geometry.

Here we consider an alternative mesh generation approach that combine the
classical Delaunay refinement method with an ideal mesh lattice for the creation
of high quality near field mesh.

2.1 Delaunay Refinement

The Delaunay refinement method [17] requires a surface mesh defining the bound-
ary and a user-defined mesh spacing function. Initially, the surface mesh nodes are
inserted into a convex hull which contains the entire computational domain. Once
this is completed, the boundary triangulation of the surface is recovered, resulting in
a Delaunay triangulation of these nodes. New nodes are then inserted sequentially
at the centroids of existing elements that do not comply with the required mesh
spacing, with a new Delaunay mesh of the nodes being produced at each stage.
Since we are looping over the elements in the mesh, we immediately know the
element into which the node should be inserted. Furthermore, since the insertion
of new nodes takes place inside existing elements, there is no need to check for
self intersection of the primal meshes faces and edges. This results in a very
fast algorithm. This process of centroid insertion continues until the node density
is within a user defined-factor of the local value specified by the mesh spacing
function [18].

2.2 Lattice Point Insertion

To ensure the creation of well centered meshes, we start by considering the ideal
mesh shown in Fig. 2. Here, each node in this lattice is connected to 14 neighbouring
nodes, as shown in Fig. 3. Each tetrahedron is well centered when these nodes are
triangulated in a Delaunay fashion. The method that is proposed for generating
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Fig. 3 A single point from
the lattice of Fig. 2, with its
14 neighbours lying either on
the sphere of radius

p
3=2 or

on the sphere of radius 1=
p
2

volume meshes is then to use these 14 nodes as a template for locating nodes in
space. This approach, which requires a surface mesh and a defined spacing function,
may then be simply described by the following steps:

1. For each node on the surface:

(a) Calculate the value ı of mesh spacing function at the node.
(b) Generate the co-ordinates of the 14 lattice nodes described above, such that

the long edges of the isosceles triangular faces are of length ı.
(c) Check each of the 14 nodes in turn; store the nodes lying inside the

computational domain in a list, xtemp.

2. When xtemp is generated, loop over each node currently in the volume mesh;
delete any point in xtemp that lies within 0:5ı of an existing point.

3. Now loop over the remaining nodes in xtemp and, for each point:

(a) Calculate the spacing function, ıi , at the point xitemp.
(b) Perform a search for nodes either already in the mesh or in the list which lie

within a radius ıi of xitemp.
(c) Calculate the spacing, ıj , at each of the nodes found by this search.
(d) If any point lies within 0:5max.ıi ; ıj / of xitemp then delete xitemp.

4. Insert the remaining nodes in xtemp into the mesh in a Delaunay fashion. During
this insertion, a check is made to ensure that the minimum distance between a
new point and the cavity into which it is inserted is greater than the local spacing.
If this is not the case, the point is rejected. This step is the main difference
between the lattice technique considered here and others [19].

This process is then repeated for the desired number of layers using the last set of
nodes xtemp as the starting surface or until all the nodes are rejected in the final step.
Connecting the nodes in a Delaunay fashion rather than specifying a connectivity
is justified since it is known that, if a well centered triangulation of a set of nodes
exists it is unique and it is the Delaunay triangulation [20].
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At first glance, it may appear that this algorithm will be expensive, due to the
nearest neighbour searching. However, many data structures have been developed
for this operation and, in this implementation, a KD-tree library is employed. This
enables searches for neighbours within a given range to be performed in O.logN/
operations, whereN denotes the total number of nodes [21]. Other costs associated
with point insertion and background space calculation can be reduced by employing
careful data structure and storage. For instance when building the mesh we store the
elements connected to each node, this allows a good first guess for which element
the new lattice nodes originating from that node lie inside.

2.3 Examples

It is recognised that meshing techniques can be highly sensitive to the nature of the
geometry under consideration. Several three dimensional examples, are considered
to illustrate the potential of the proposed methodology. The examples that have been
selected are of particular interest to the aerospace community. Meshes are generated
using both lattice insertion and the original Delaunay refinement. No mesh cosmetic
steps are performed on the meshes presented in this section and the target mesh
spacing function is the same for both generation techniques. Since the extension
of the stitching method requires the generation of near field elements that exhibit
the required qualities for co-volume methods, at this stage, only elements that are
attached to boundary faces and boundary nodes are considered in the analysis. In the
following, the term bad element is meant to refer to an element whose circumcentre
lies outside the element.

The first example is the problem of generating a volume mesh, for the ONERA
M6 wing. The surface mesh, shown in Fig. 4 consists of 16,178 triangular elements
and 8,091 nodes. Table 1 details the mesh statistics for the two meshes generated for

Fig. 4 ONERA M6 wing:
detail of the surface mesh
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Table 1 Comparison of mesh quality measures for the ONERA M6 wing

Delaunay refinement Lattice point insertion

No. nodes 93,066 79,591

No. elements 572,711 485,324

No. bad elements touching a surface 24,637 15,157

No. (%) surface elements connected 2,309 (14 %) 318 (2 %)
to a bad element

this geometry. It is clear that a considerable reduction in the number of bad elements
has been achieved. The percentage of surface elements which are connected to bad
elements is very low, at 2% when using lattice point insertion and at 14% when
using Delaunay refinement. This is due to the fact that the proposed technique
was able to better represent the spacing function. Figure 5a shows a view of the
volume mesh generated using the Delaunay refinement technique. The elements
shown in black are the bad elements. There also appears to be a high concentration
of bad elements at the leading edge of the wing, where the curvature is the highest.
Figure 5b shows a view, at the same location, of the volume mesh generated using
the lattice insertion technique. The bad elements are again shaded black, while a
number of elements on the surface of the wing are well structured and are almost
ideal. This mesh for the ONERA M6 geometry appears to be more structured and
the effect of the lattice insertion is quite clear.

The second example is that of a B60 full aircraft configuration. the surface mesh
consists of 144,240 triangular elements and 72,122 nodes. A view of the surface
mesh is shown in Fig. 6. The corresponding mesh statistics for the B60 geometry are
presented in Table 2. For this configuration, significantly fewer nodes are inserted
using the lattice insertion method. As with the previous ONERA M6 wing example,
the total percentage of bad elements is similar for both generation techniques, but
the percentage of bad elements connected to the surface is much less when lattice
insertion is employed. Figure 7a, b show similar views of the meshes created using
Delaunay refinement and lattice point insertion respectively. As reflected by the
statistics, in Fig. 7b it is apparent that there are areas of the mesh, attached to
the boundaries, which almost match the ideal mesh. This can be explained by the
fact that, the Delaunay insertion of the lattice nodes results in the ideal that satisfy
the mesh quality requirements. There is the obvious question of how the constant
orientation meets with the surfaces. It may be beneficial to adjust the orientation of
the inserted lattice nodes at the surface. Alternatively, it may be possible to move
the nodes on the surface, so as to produce a better match with the orientation of the
lattice. These are possible modifications that we are currently considering.
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Fig. 5 ONERA M6 wing: detail of the volume mesh generated using (a) Delaunay refinement;
(b) lattice point insertion

The final example is a complete generic F16 configuration that provides a
geometry that is challenging to mesh. The surface mesh, shown in Fig. 8 consists
of 291,378 triangular element and 145,699 nodes.The mesh statistics that are
obtained for this example are given in Table 3. Despite the increased geometric
complexity, the conclusions reached are similar to those for the other two examples.
The percentage of bad elements in the complete mesh is about the same for both
techniques, but the percentage of surface triangles which connect to bad elements is
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Fig. 6 B60: details of the
surface mesh, indicating the
complicated nature of the
geometry on the underside of
the wing

Table 2 Comparison of mesh quality measures for the B60

Delaunay refinement Lattice point insertion

No. nodes 1,358,561 1,221,477

No. elements 8,511,731 7,665,517

No. bad elements touching a surface 204,293 142,817

No. (%) surface elements connected 18,417 (13 %) 4,356 (3 %)
to a bad element

significantly less when using lattice point insertion. Figure 9a, b show similar views
of the meshes created by Delaunay refinement and lattice insertion respectively. In
these figures, the surface elements are not plotted. It is apparent that there are areas
of the mesh generated using lattice insertion which closely resemble the structured
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Fig. 7 B60: detail of the volume mesh generated using (a) Delaunay refinement; (b) lattice point
insertion

ideal mesh. This effect is even clearer when comparing Fig. 10a, b, which show
wider views of the meshes generated using Delaunay refinement and lattice insertion
respectively. Bad elements are not coloured in these figures. Pairs of elements
in Fig. 10b which lie on the same circumsphere may be potential candidates for
merging [7] before the mesh is employed with a co-volume scheme.
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Fig. 8 F16 configuration,
details of the surface and the
surface mesh, indicating the
challenges posed by the
presence of the attached
stores

Table 3 Comparison of mesh quality measures for the generic F16

Delaunay refinement Lattice point insertion

No. nodes 2,308,738 1,848,771

No. elements 14,389,566 11,367,474

No. bad elements touching a surface 424,796 309,181

No. (%) surface elements connected 42,292 (14 %) 8,150 (3 %)
to a bad element
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Fig. 9 Generic F16: detail of the volume mesh generated using (a) Delaunay refinement;
(b) lattice point insertion
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Fig. 10 Generic F16: wider view of the volume mesh generated using (a) Delaunay refinement;
(b) lattice point insertion

3 Mesh Optimisation

Mesh optimisation techniques attempt to minimise an objective function, which
has been constructed to represent any mesh quality measure of interest. Classical
gradient based optimisation techniques prove ineffective at finding global optima,
particularly when considering non-smooth objective functions [22], which are
typical of mesh quality measures [23]. This motivates the use of gradient free
techniques, which employ large populations of potential solutions and which move
around the search space evaluating the objective function. This means any optimum
that is found is likely to be global and, since no objective function gradient
information is required, the smoothness of the objective function has no effect on
the process. Examples illustrating the application of gradient free techniques to
mesh optimisation can be found in the literature [4, 23, 24]. Here, we consider the
application of the gradient free optimisation technique, modified cuckoo search, to
the meshes that have been generated using the lattice point insertion technique.

3.1 Modified Cuckoo Search (MCS)

MCS [6] is a metaheuristic search algorithm that is inspired by the reproduction
strategy of cuckoos. Cuckoo eggs have evolved to mimic the eggs of local birds by
the process of laying eggs in the nests of host birds. These birds will discover eggs
that do not resemble their own and destroy them. Thus, only cuckoo eggs which
resemble the host bird eggs will pass genetic information to the next generation
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of cuckoos. MCS uses this simple mechanism as a basis for an optimisation
algorithm. The algorithm turns out to be very effective, for high-dimensional
objective functions. It has also been shown on benchmark functions that MCS has a
high convergence rate to the global minimum.

3.2 Local Coordinate Optimisation

As noted above, the number of nodes in industrial meshes makes it impossible to
apply a global gradient optimisation technique without some modification. Instead,
a local approach is adopted, in which the position of each node of the Delaunay
primal mesh is optimised in turn. Since MCS has a very high convergence rate, this
is computationally feasible [4]. The objective function

F.k/ D
EX
iD1

Wi

kCi � Vik
ıi

(1)

is minimised at each node, where k is the node index, E is the number of elements
which include node k, the index i nodes to the elements including node k, Ci is the
position vector of the centroid of element i , Vi is the position vector of the Voronoi
vertex of i , and ıi is the mean edge length of element i . The weight Wi is equal
to zero if Vi is inside element i and equal to one otherwise. For each node, MCS
is applied for five generations and the position of the node is moved towards the
optimally located position [4]. After the volume mesh is generated, this procedure
is applied recursively until no improvement in global mesh quality is obtained.

3.3 Local Weight Optimisation

Using this technique, it is not always possible to eliminate all bad elements from
a mesh. A second approach is adopted, in which the requirement that a dual edge
be a bisector of the corresponding Delaunay edge is relaxed, but the corresponding
Voronoi vertex is moved in such a way to retain orthogonality [7]. To illustrate
this process consider the two dimensional element shown in Fig. 11. If circles of
equal radius are positioned such that their centres lie on the nodes of a Delaunay
element, then the corresponding Voronoi vertex is located at the point of intersection
of the common chords of these circles, as shown in Fig. 11a. By reducing the radius
of the circle at B , the Voronoi vertex is pulled inside the element as shown in
Fig. 11b. Changing this radius will also affect the position of Voronoi vertices in
surrounding elements such that orthogonality is obtained. By allocating a weight
to each Delaunay node, which corresponds to the change in the radius of the circle
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a b

Fig. 11 (a) A bad element ABC and the corresponding Voronoi vertex O; (b) moving the Voronoi
vertex O to repair the bad element ABC

Table 4 Quality measures
for the ONERA M6 wing
mesh generated using lattice
point insertion and modified
cuckoo search optimisation

No. nodes 78,999

No. elements 485,254

No. of bad elements touching a surface 4,154

No. (%) surface elements connected 99 (0.6 %)
to a bad element

(or the sphere in three dimensions), the coordinates of each Voronoi vertex can be
readily obtained [4].

After this coordinate optimisation procedure is completed, MCS is used to
optimise the weight of each node, in turn, using the objective function of Eq. (1).
This procedure is repeated until no further improvement is obtained.

3.4 Examples

The optimisation procedures described above are applied to the meshes generated
previously using the lattice point insertion technique. The results are presented in
the same fashion as previously. All optimisation processes were run until no further
improvement was produced. To give an idea of the runtime requirements for this
approach, the M6 example was completed in around half an hour, while the other
examples were left to run overnight for around 8–12 h.

The quality measures for the ONERA M6 volume mesh, generated and optimised
as described above, are given in Table 4. A view of a cut through the mesh is shown
in Fig. 12. Bad elements are coloured black in this figure. The optimisation process
reduces the total percentage of faces which are connected to a bad element has
reduced from 2 to 0:6%.
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Fig. 12 ONERA M6 wing: detail of the volume mesh generated using lattice point insertion and
modified cuckoo search optimisation

Table 5 Quality measures
for the B60 mesh generated
using lattice insertion and
modified cuckoo search
optimisation

No. nodes 1,120,620

No. elements 7,086,250

No. bad elements touching a surface 47,305

No. (%) surface elements connected 1,550 (1 %)
to a bad element

Fig. 13 B60: detail of the volume mesh generated using lattice point insertion and modified
cuckoo search optimisation

The quality measures for the mesh produced for the B60, after optimisation,
are presented in Table 5. A view of a cut through this mesh is shown in Fig. 13
and the bad elements are again coloured black. The percentage of surface elements
connected to bad elements has also dropped from 3 to 1%.
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Table 6 Quality measures
for the generic F16 mesh
generated using lattice
insertion and modified
cuckoo search optimisation

No. nodes 1,657,926

No. elements 10,280,144

No. bad elements touching a surface 106,631

No. (%) surface elements connected 3,432 (2 %)
to a bad element

Fig. 14 Generic F16: detail of the volume mesh generated using lattice point insertion and
modified cuckoo search optimisation

The results for the mesh created for the generic F16 show the same trend as the
other examples. The mesh quality measures are given in Table 6 and a detail of a
cut through the mesh is shown in Fig. 14. In this figure, black elements indicate
bad elements. The optimisation process reduces the percentage of faces which are
connected to bad elements from 3 to 2%.

4 Conclusions

In this paper, we have detailed our current line of investigation into the problem of
generating well centred tetrahedral meshes for general geometries. The lattice inser-
tion method appears to be a promising approach, which offers certain advantages
over competing methods to produce the quality required for a co-volume schemes.
The steps involved in the algorithm are based on a few simple rules, which gives
confidence that the method will be robust when it is applied to problems involving
complex geometries. This claim is supported by the quality of the initial results
obtained for the examples presented here. Future investigations will concentrate on
the possibility of controlling the orientation of the lattice, of merging elements as
part of the mesh generation process and of preparing the surface mesh by moving
nodes into positions better suited for building the lattice. We have also shown
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that, by additionally applying previously developed optimisation techniques, we can
significantly improve the quality of these meshes. The generation of this high quality
near field meshes will then enable the extension of the stitching methods into three
dimensions.

Acknowledgements Sean Walton acknowledges the financial support for this work provided by
the UK Engineering and Physical Sciences Research Council (EPSRC) under Research Grant
EP/K000705.
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Enhanced Viscous Mesh Generation
with Metric-Based Blending

David Marcum and Frédéric Alauzet

Abstract In this work we describe a unified approach that blends the best charac-
teristics of both a near body pseudo-structured boundary-layer (BL) and generalized
anisotropic metric approaches. Specifically, near-body physics with anisotropy are
resolved using an a priori pseudo-structured process and off-body or field features
are resolved using an adaptive generalized approach. In particular the metric field
of the adaptive approach is derived from the BL region of the pseudo-structured
approach. The derived metric is based on local aspect ratio and geometry. This
metric is then blended from the BL region into the overall field to allow for a
smooth transition to the generalized field. The result is a flexible and optimal
overall mesh generation process that can be used with or without adaptation. Metric-
based formulations for quality functions and other geometric quantities require for
mesh generation are presented. Results are presented that demonstrate the overall
approach in the context of blending between the near body pseudo-structured region
and the outer tetrahedral field region. These results point out that the metric-based
transition can be used to improve mesh quality and density for configurations with
anisotropic surface meshes and BL regions that do not reach outer region length
scale.

1 Introduction

Large-scale computational field simulation applications with unstructured meshes
are widely used to help solve real world problems found in industry and government.
In many of these cases the physics involved includes widely varying gradients. In
particular, computational fluid dynamic (CFD) applications often involve significant
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flow field regions where viscous effects are dominant. These regions have gradients
that vary by orders of magnitude in different directions. While viscous regions are
typically prominent at the vehicle surface in the boundary-layer (BL) region, they
can also be significant in the field with shear layers and vortical flows. In addition,
high-speed flow fields can also include discontinuous phenomena, with shock waves
and contact surfaces. These features may also have significant interaction with
viscous dominated regions. High-resolution simulation of such cases with ideal
isotropic discretization is simply not possible. Discretization of the field using
anisotropic elements with length scales that match the gradients of the physics is the
only known way to numerically solve such problems with a high level of resolution.

There are two primary approaches to generating unstructured meshes with
anisotropic elements. The most general involves anisotropic triangulation using
generalized metric terms [2, 6, 7, 10, 12, 13, 17, 23]. If the metrics are based upon the
flow field as it evolves in the simulation [2, 3] then the result is a mesh adapted to the
physics. Such a mesh typically has length scales that are directionally optimal for
the given flow field. However, in BL regions the characteristics of a mesh generated
using a generalized approach are not always ideal. Viscous BL regions near a surface
often have very stringent numerical requirements as they involve high-gradient and
non-linear physics that usually includes turbulence. These regions are known a priori
and ideally suited to a pseudo-structured approach that generates elements with an
advancing layer/normal type process [11, 14, 18, 19, 21, 24]. The resulting mesh is
highly aligned, precisely spaced and very structured in at least the normal direction.
Often such regions are generated with pentahedral and hexahedral elements for
optimal flow solver efficiency. The characteristics of a pseudo-structured type mesh
are ideal for the BL regions. Combining an advancing layers approach with a high-
quality tetrahedral mesh generator for the field region results in an ideal approach for
many applications. However, if there are significant field features then this approach
requires an aligning surface for off-body features that may not be know a priori and
it may be difficult to smoothly blend between attached and detached regions.

In this work we describe an approach that blends the two very different processes
for a more elegant and optimal solution to overall problem. A good example
application is an aircraft in a landing or takeoff condition as shown in Fig. 1. In such
cases there are numerous regions of viscous dominated flow with fully extended
flaps and slats that interact with the main wing in widely varying ways and produce
substantial detached viscous shear layers and vortices. Also, small features can be
significant contributors to overall performance and high-resolution discretization of
all features is essential to accurate simulation. In addition, anisotropy is required in
multiple directions, not just normal to the surface. A blended approach that smoothly
blends the near body pseudo-structured region into a generalized anisotropic field
region to capture attached and detached shear layers considerably improves the
knowledge of and ability to predict such flow fields [22].

The unified approach taken here utilizes the best characteristics of both near body
BL and generalized approaches. Specifically, near-body physics with anisotropy
are resolved using an a priori pseudo-structured process [19, 21] and off-body or
field features are resolved using an adaptive generalized approach [8, 9, 15, 17]. In
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Fig. 1 Typical unstructured mesh and solution for a high-lift aircraft configuration

particular the metric field of the adaptive approach is derived from the BL region
of the pseudo-structured approach. The derived metric is based on local aspect ratio
and geometry. This metric is then blended from the BL region into the overall field
to allow for a smooth transition to the generalized field. The result is a flexible and
optimal overall mesh generation process that can be used with or without adaptation.
Results are presented here without adaptation that demonstrate the overall approach
in the context of blending between the near body pseudo-structured region and the
outer tetrahedral field region.

2 Mesh Generation Algorithms

2.1 Advancing-Front and Local Reconnection (AFLR)
Algorithm

The volume meshing process used in the present work is based on the Advancing-
Front and Local Reconnection (AFLR) algorithm [19, 21]. It has proven to be
capable of generating high-quality unstructured volume meshes suitable for large-
scale high-resolution CFD applications and is widely used in aerospace and other
engineering disciplines.
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The overall grid generation procedure used in the present work is a combination
of automatic point creation, advancing type ideal point placement, and connectivity
optimization schemes. A valid grid is maintained throughout the grid generation
process. This provides a framework for implementing efficient local search opera-
tions using a simple data structure. It also provides a means for smoothly distributing
the desired point spacing in the field using a point distribution function. This func-
tion is propagated through the field by interpolation from the boundary point spacing
or by specified growth normal to the boundaries. Points are generated using either
advancing-front type point placement for isotropic elements, advancing-point type
point placement for isotropic right angle elements, or advancing-normal type point
placement for high-aspect-ratio elements. The connectivity for new points is initially
obtained by direct subdivision of the elements that contain them. Connectivity is
then optimized by local-reconnection with a combined Delaunay/min-max type
(minimize the maximum angle, maximize the edge weight, etc.) type criterion. The
overall procedure is applied repetitively until a complete field grid is obtained.

Complete details of the algorithm and results are presented in [19, 21]. For the
present work the algorithm is modified to operate in metric space. The overall algo-
rithm above utilizes an isotropic length scale defined by the distribution function.
For generalized anisotropic elements (not pseudo-structured boundary-layer (BL)
elements) an anisotropic length scale definition is required. For the present work a
generalized metric approach is used to generate anisotropic elements outside of the
BL region. Modifications to the original algorithm for anisotropy are accomplished
by using a functional approach for calculation of all geometric properties such
as dot products, cross products, reconnection criterion, etc. Processes that require
modification include; ideal point placement for creation of new points, proximity
checking, and local-reconnection criteria. All of these processes are modified
to operate in metric space rather than physical space. These modifications are
described in Sect. 3.

2.2 Boundary Layer Meshing Algorithm

Within the BL region a pseudo-structured mesh aligned with the boundary surface is
optimal for accuracy and performance of typical CFD solvers. This is the approach
taken in the present work. While the standard unstructured meshing procedure
previously described can be utilized to generate pseudo-structured elements in
the BL region, an open (extrusion) or closed (displacement) approach is far more
efficient. A modified procedure using an advancing-normal/layers approach [19, 20]
is used for volume mesh generation. In this approach, the element connectivity is
generated along with new points in high-aspect-ratio regions. Local-reconnection is
not used to determine the connectivity in these regions. Instead, the connectivity
is directly determined as each new point is generated. This produces a very
structured connectivity and allows the tetrahedral elements to be easily combined
into structured type elements. Typically, the majority of the tetrahedral elements
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within the high-aspect-ratio region can be combined into prismatic elements. If the
surface mesh contains quad faces then hexahedral elements can be formed. The
outer layer of this region may require some pyramid elements to match the outer
tetrahedral element region. In all cases, the pentahedral elements have strict node,
edge, and face matching to each other and to neighboring tetrahedral elements.
Hexahedral elements may have either full matching with an attached pyramid
element or split-face matching without.

For the present work the advancing-normal/layers algorithm does not require a
generalized anisotropic metric as the a priori assumption of BL gradients is part
of the process. In an adaptive process the tangential and normal spacing could
be adapted using a generalized metric approach [8, 9, 15, 17] by treating each
separately. In a typical complex aerospace configuration the elements at the edge
of the BL region often have considerable anisotropy from the normal spacing not
having reached outer region length scales. Further, optimal surface meshes for
high-resolution of leading edge type or high-curvature regions require a structured
or pseudo-structured mesh aligned with the curvature. Example surface meshes
are shown for a wing-body in Fig. 5 and for a nacelle in Fig. 9. As with BL
regions, aligned pseudo-structured quad-faces or right-angle-tria-faces are optimal.
Surface aspect-ratios for realistic configurations often involve anisotropy similar in
scale to BL regions. Unfortunately this results in issues with transition to isotropic
elements that are more ideal in the outer field region. This creates practical limits
on anisotropy of the surface faces to order ten. Consequently the combined pseudo-
structured and generalized anisotropic meshing approach is advocated in this work
to eliminate these limits. In the overall implementation a metric is required to
accomplish the blending from BL to outer region. This metric is derived from the
normal and tangential spacing of BL region elements in the outer layer. A discussion
of this is provided in Sect. 3.3.

3 Metric-Based Transition for Viscous Flowfields

This section deals with the blending or the transition of the mesh between the
pseudo-structured boundary-layer (BL) region mesh and the generalized outer mesh
region. We propose to use metric-based anisotropic mesh operators to generate a
smooth anisotropic transition between the boundary layer and the rest of the flow
field. These operators have been widely used successfully for anisotropic mesh
adaptation [2, 6, 7, 10, 12, 13, 17, 23].

The blending requires to compute a metric field associated with the last layer of
the boundary layer, to extrapolate this metric field into the flow field and to write the
operators of Sect. 2.1 into the metric space, in other words, all geometric quantities
thus quality function are computed in the given metric space. Moreover, the addition
of metric-based operators provides the necessary framework and capability for
adaptation with generalized anisotropic elements.
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3.1 Basics of Metric and Notion of Unit Mesh

3.1.1 Euclidean Metric Space

For the sake of clarity, we recall the differential geometry notions that are used in
the sequel. We use the following notations: bold face symbols, as a;b;u; v; x; : : :,
denote vectors or points of R

3. The natural dot and cross product between two
vectors u and v of R3 are denoted by: u � v D hu; vi and u 	 v :

An Euclidean metric space .R3;M / is a vector space of finite dimension where
the dot product is defined by means of a symmetric definite positive tensor M :

u �M v D hu; viM D hu;M vi D tuM v ; for .u; v/ 2 R
3 	 R

3 : (1)

In the following, the matrix M is simply called a metric tensor or a metric. In
such space, the length `M of a segment ab is given by the distance between its
extremities:

`M .ab/ D dM .a;b/ D kabkM D
p

ab �M ab: (2)

As metric tensor M is symmetric, it is diagonalizable in an orthonormal basis:

M D tR�R ;

where R is an orthonormal matrix the lines of which are composed of the
eigenvectors .vi /iD1;3 of M verifying tRR D R tR D I3. � D diag.�i / is a
diagonal matrix composed of the eigenvalues of M , denoted .�i /iD1;3, which are
strictly positive. From the previous definition, we deduce that application �

1
2 R

where �
1
2 D diag.�

1
2

i / defines the mapping from the physical space .R3;I3/,
where I3 is the identity matrix, to the Euclidean metric space .R3;M /.

We are now able to deduce the following expression of the 3D cross product
with respect to M :

u 	M v D �
�

1
2 R

�
u 	 �

�
1
2 R

�
v D p

detM
�
tR��

1
2

�
.u 	 v/ : (3)

In an Euclidean metric space, volumes and angles are still well defined. These
features are of main interest when dealing with meshing. For instance using
Relations (1) and (3), given a parallelepiped K of R3, the volume of K computed
with respect to metric tensor M is:

jKjM D u �M .v 	M w/ D p
detM jKjI3 ; (4)
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Fig. 2 Left: geometric interpretation of the unit ball BM where vi are the eigenvectors of M
and �i D h�2

i are the eigenvalues of M . Right: mappings between physical space .R3;I3/ and
Euclidean metric space .R3;M /

where jKjI3 is the Euclidean volume ofK . The angle between two non-zero vectors
u and v is defined by the unique real-value �M 2 Œ0; 
� verifying:

cos.�M / D hu; viM
kukM kvkM : (5)

In three dimensions, dihedral angles1 of a tetrahedron can be computed in a given
Euclidean space from this definition as it is the angle between the faces normal.
These relations are very useful in 3D for computing the area of faces with respect to
M , let F be a triangle in R

3:

2 jF jM D k��1
2 R

�
u 	 �

�
1
2 R

�
vk D kukM kvkM sin.�M / :

We will often refer to the geometric interpretation of a metric tensor. In the
vicinity V .a/ of point a, the set of points that are at distance 1 of a is called the
unit ball of M and is given by:

BM D ˚
x 2 V .a/ j t .x � a/M .x � a/ D 1

�
:

The above relation defines an ellipsoid centered at a with its axes aligned with the

eigen directions of M . Sizes along these directions are given by hi D �
� 12
i . This

ellipsoid depicted in Fig. 2 (left).

3.1.2 Riemannian Metric Space

In differential geometry, a Riemannian manifold or Riemannian space .M;M / is a
smooth manifold M in which each tangent space is equipped with a dot product

1The dihedral angle is the angle between two triangular faces of a tetrahedron.
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defined by a metric tensor M , a Riemannian metric, in a manner which varies
smoothly from point to point. Even if no global definition of the scalar product
exists, various geometric notions can be defined on a Riemannian manifold. In
the context of mesh adaptation, we do not know any manifold. For our concern,
we work with a simpler object called a Riemannian metric space defined by
M D .M .x//x2˝ . In that specific case, we only know M a Riemannian metric and
˝ 
 R

n a common space of parametrization which is our computational domain.
There is still no global notion of scalar product.

In the context of meshing, notions of length and volume defined in Sect. 3.1.1
can be easily extend to Riemannian metric spaces because we want to evaluate then
for a given parametrization. Indeed, as regards edge length computation, we want to
compute the length of the path between these two points defined by the straight line
parameterization. To take into account the variation of the metric along the edge, the
edge length is evaluated with an integral formula. Formally speaking, in Riemannian
metric space M D .M .x//x2˝ , the length of edge ab is computed using the straight
line parameterization 	.t/ D a C t ab, where t 2 Œ0; 1�:

`M .ab/ D
Z 1

0

k	 0.t/kM dt D
Z 1

0

p
tab M .a C t ab/ ab dt ; (6)

and, given a bounded subset K of ˝ , the volume of K computed with respect to
.M .x//x2˝ is:

jKjM D
Z
K

p
detM .x/ dx : (7)

3.1.3 Metric-Based Mesh Generation

To generate anisotropic meshes, one must be able to prescribe at each point of the
domain privileged sizes and orientations for the elements. This information will
be transmitted to the mesher which will try to best fit these demands. The use of
Riemannian metric spaces is an elegant and efficient way to achieve this goal. The
main idea of metric-based mesh adaptation, initially introduced in [9], is to generate
a unit mesh in a prescribed Riemannian metric space.

Unit Element A tetrahedron K , defined by its list of edges .ei/iD1::6, is unit with
respect to a metric tensor M if the length of all its edges is unit in metric M :

8i D 1; : : : ; 6; `M .ei/ D 1 with `M .ei/ D
p
tei M ei:
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IfK is composed only of unit length edges, then its volume jKjM in M is constant
equal to:

jKjM D
p
2

12
and jKj D

p
2

12
.det.M //� 1

2 ;

where jKj is its Euclidean volume.

Unit Mesh The notion of unit mesh is far more complicated than the notion of unit
element as the existence of a mesh composed only of unit regular simplices with
respect to a given Riemannian metric space is not guaranteed. A discrete mesh H
of a domain ˝ 
 R

n is a unit mesh with respect to Riemannian metric space
.M .x//x2˝ if all its elements are quasi-unit. The definition of unity for an element
is relaxed by taking into account technical constraints imposed by mesh generators.
To avoid cycling while analyzing edges lengths, a tetrahedronK defined by its list of
edges .ei/iD1:::6 is said to be quasi-unit if, 8i; `M .ei/ 2 Œ 1p

2
;
p
2�. The study in [16]

shows that several non-regular space filling tetrahedra verify this constraint, which
guarantees the existence for constant Riemannian metric space. Unfortunately, this
weaker constraint on edges lengths can lead to the generation of quasi-unit elements
with a null volume. Consequently, controlling only the edges length is not sufficient,
the volume must also be controlled to relax the notion of unit element which is
practically achieved by managing a quality function.

Generating Adapted Anisotropic Meshes Using the previous notions, the problem
of mesh generation can be considerably simplified. Indeed, whatever the kind of
desired mesh (uniform, adapted isotropic, adapted anisotropic), the mesh generator
will always generate a unit mesh in the prescribed Riemannian metric space [9].
Consequently, the generated mesh is uniform and isotropic in the Riemannian metric
space while it is adapted and anisotropic in the Euclidean space. This idea has turned
out to be a huge breakthrough in the generation of anisotropic adapted meshes.

3.2 Practical Use of Metrics

The main advantage when working with metric spaces is the well-posedness of
operations on metric tensors which enable us to manage directional sizes. These
operations have a straightforward geometric interpretation when considering the
ellipsoid associated with a metric. In this section, the practical uses of metrics inside
the mesh generator is described.

3.2.1 Metric Interpolation

In practice, the Riemannian metric space or metric field is only known discretely at
mesh vertices. The definition of an interpolation procedure on metrics is therefore
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Fig. 3 Metric interpolation along a segment where the endpoints metrics are the blue and violet
ones

mandatory to be able to compute the metric at any point of the domain. Figure 3
illustrates metric interpolation along a segment, for which the initial data are the
endpoints metrics. The proposed metric interpolation is based on the log-Euclidean
framework introduced in [4].

Log-Euclidean Framework We first define the notion of metric logarithm and
exponential:

ln.M / WD tR ln.�/R and exp.M / WD tR exp.�/R ;

where ln.�/ D diag.ln.�i // and exp.�/ D diag.exp.�i //. We can now define the
logarithmic addition ˚ and the logarithmic scalar multiplication ˇ:

M1˚M2 WD exp .ln.M1/C ln.M2// and ˛ˇM WD exp .˛: ln.M // D M ˛ :

The logarithmic addition is commutative and coincides with matrix multiplication
whenever the two tensors M1 and M2 commute in the matrix sense. The space of
metric tensors, supplied with the logarithmic addition ˚ and the logarithmic scalar
multiplication ˇ is a vector space.

Metric Interpolation in the Log-Euclidean Framework Let .xi /iD1:::k be a set of
vertices and .M .xi //iD1:::k their associated metrics. Then, for a point x of the
domain such that:

x D
kX
iD1

˛i :xi with
kX
iD1

˛i D 1 ;
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the interpolated metric is defined by:

M .x/ D
kM
iD1

˛i ˇ M .xi / D exp

 
kX
iD1

˛i ln.M .xi //

!
: (8)

This interpolation is commutative. Moreover, it has been demonstrated in [4] that
this interpolation preserves the maximum principle, i.e., for an edge pq with
endpoints metrics M .p/ and M .q/ such that det.M .p// < det.M .q// then we
have det.M .p// < det.M .p C t pq// < det.M .q// for all t 2 Œ0; 1�.
Remark 1 The interpolation formulation (8) reduces to M .x/ D Qk

iD1M .xi /˛i ;
if all the metrics commute. Therefore, an arithmetic mean in the log-Euclidean
framework could be interpreted as a geometric mean in the space of metric tensors.

3.2.2 Computation of Geometric Quantities in Riemannian Metric Space

In this section, we describe how geometric quantities are computed numerically in
Riemannian metric space as such quantities involve integrals. Let M be a discrete
metric field defined at the vertices of a mesh H of a domain ˝h. Thanks to the
interpolation operation, we have a continuous metric field in the whole domain,
i.e., a Riemannian metric space .M .x//x2˝h . This representation of the metric field
depends on H as the interpolation law is applied at the element level.

Computation of Edge Length Approximation can be used to evaluate edge length in
Riemannian metric space given by Relation (6). However, an analytical expression
can be obtained if we consider that the metric field conforms to a geometric variation
law as described in Sect. 3.2.1.

Let e D p1p2 be an edge of the mesh of Euclidean length kek2, and M .p1/ and
M .p2/ be the metrics at the edge extremities p1 and p2. We denote by `Mi .e/ Dp
teM .pi /e the length of the edge in metric M .pi /. We assume `M1 .e/ >

`M2 .e/ and we set a D `M1 .e/
`M2 .e/

. The restriction of the (multi-dimensional) metric

interpolation operator given by Relation (8) to an edge e D p1p2 leads to a geometric
interpolation law on eigen values � and size h:

�.t/ D exp ..1 � t/ ln.�1/C t ln.�2// D �
.1�t /
1 �t2 ” h.t/ D h

.1�t /
1 ht2 :

Under these assumption, we deduce [1]:

`M .e/ D `M1 .e/
a � 1

a ln.a/
: (9)

Computation of Element Volume The evaluation of a tetrahedron volume in a
Riemannian metric space consists in computing numerically Integral (7). Higher
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order approximation can be obtained by using Gaussian quadrature and metric
interpolation based on the Log-Euclidean framework. For instance, if one considers
a k-point Gaussian quadrature with weights .!j /jD1:::k and barycentric coefficients
.ˇ1j ; ˇ

2
j ; ˇ

3
j ; ˇ

4
j /jD1:::k , it yields:

jKjM � jKjI3

kX
jD1

!j

vuutdet

�
exp

� 4X
iD1

ˇij log .Mi /
�	
:

However, for faster volume evaluation, only a first order approximation is consid-
ered in this work:

jKjM �
p

detMK jKjI3 D jKjMK where MK D exp
�1
4

4X
iD1

log
�
Mpi

��
(10)

and pi are the four vertices of tetrahedronK .

3.2.3 Metric-Based Quality Function

In this section, we propose the generalization of two quality functions to metric
spaces.

Minimum Edge Weight Function This quality function corresponds to the weight
[5] for an element edge shared by two faces:

QM .K/ D min
iD1::6

keikMK

tan �iMK

D max
iD1::6

nFi;1 �MK nFi;2
6jKjMK

;

where �iM is the dihedral angle between two faces Fi;1 and Fi;2 sharing edge ei .
It represents the geometric contribution to the value of the diagonal terms in a
solution matrix for an elliptic equation. Consequently, it represents a quantity that
can degrade performance. This is directly analogous to minimizing the maximum
angle in 2D and similar to that in 3D. This quality function can be rewritten:

QM .K/ D max
iD1::6

.tei �MK ej /.tei �MK ek/ � `2MK
.ei /.tej �MK ek/

6jKjMK

:

Tetrahedron Dihedral Angle Function The maximum value corresponds to the
function for the edge with the minimum dihedral angle between the two faces that
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share the edge. The minimum value corresponds to the function for the edge with
the maximum dihedral angle between the two faces that share the edge:

QM .ei / D cos �iM
j cos.� iM /j D .nFi;1 �M nFi;2 /jnFi;1 �M nFi;2 j

16jFi;1j2M jFi;2j2M
:

The maximum element angle is useful as a basic measure of quality for a given
element. Particularly at extremes. Large dihedral angles always correspond to low
quality elements as defined by any quality criteria.

3.3 Metric-Based Anisotropic Mesh Transition

This section presents the new blended approach that smoothly blends the near-body
pseudo-structured region into a generalized anisotropic field region. The unified
approach taken here utilizes the best characteristics of both near body BL with
pseudo-structured elements and field region unstructured mesh with metric-based
anisotropic element.

First, the BL region mesh is generated using the advancing-normal BL mesh
generation algorithm. Second, the unstructured anisotropic mesh of the outer field
region is generated utilizing the advancing-front based/local-reconnection based
approach. Here, the metric field does not come from an error estimate as in mesh
adaptation but, instead, it is derived on the fly by interpolation when each new
vertex is inserted into the volume mesh. The initial metric values are specified to
be isotropic at all surface points except at the interface between the BL and outer
tetrahedral region. That metric is determined from the normal and tangential spacing
at the edge of the BL region as shown in Fig. 4.

hn

ht1

ht2vn

vt1

vt2

Fig. 4 Left: metric associated with boundary layer prismatic elements. Right: metric-based
anisotropic mesh transition
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Two different methods have been tested. For the first one, called metric-based
transition based on metric interpolation, each time a new vertex x is inserted in
tetrahedronK its metric is simply interpolated from the metric of the vertices ofK:

M .x/ D
exp

�P
pi2K !i log .M .pi //

�
P

pi2K !i
;

where the weight are chosen to be !i the barycentrics of point x with respect to K ,
i.e., the classical FEM basis function coefficient.

For the second method, when a new vertex x is inserted in tetrahedron K , its
metric is computed from growth metric issued from vertices of K . For each vertex
p of tetrahedron K supplied with a metric M .p/, the growth metric issued from
p at position x, denoted Mp.x/, is computed. To this end, the metric growth law
proposed in [1] which is homogeneous in the physical space is chosen. This means
that the eigenvalues are growing separately and differently, the shape of the metric is
not more preserved. This law gradually makes the metric more and more isotropic as
it gradually propagates in the domain. The growth factor associated independently
with each eigenvalue of M is given by:

�2i .px/ D
�
1C

p
�ikpxk2 ln.ˇ/

��2
for i D 1; : : : ; 3 ;

where ˇ is the specified growth rate factor. The growth metric at x is given by:

Mp.x/ D tRN .px/�R where N .px/ D
 
�21.px/ 0 0

0 �22.px/ 0

0 0 �23.px/

!
: (11)

Finally, the metric at new vertex x is obtained by a weighted interpolation of all the
vertices growth metrics of tetrahedronK:

M .x/ D
exp

�P
pi2K !i log

�
Mpi .x/

��
P

pi2K !i
;

where !i are again the barycentrics of point x with respect to K . We will refer to
this method as metric-based transition with growth.

4 Numerical Comparison

Numerical results are presented here to demonstrate the basic characteristics of
approach described in this work. These cases where chosen to best illustrate the
properties in a graphical context. However, their resolution is relatively coarse (for
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ease of graphical presentation) in comparison to what is more typical in realistic
aerospace configurations. In each case, an anisotropic pseudo-structured surface
mesh is used and three distinctly different volume meshes were generated using
the same BL region mesh characteristics. The volume meshes were generated using
pentahedral BL elements to facilitate the graphic process. With hexahedra elements
the number of BL elements are reduced by up to a factor of two. Of the three
different volume meshes, one is generated uses a pure isotropic approach with an
immediate transition from the BL region to the outer tetrahedral region. The other
two use metric-based anisotropic blending described in Sect. 3.3. Of those one uses
standard metric interpolation and the other uses metric-based transition with growth.

4.1 Wing-Body

The first test case is a wing-body profile with relatively high-aspect ratio quad faces
on the wing surface. Length scale transition between anisotropic and isotropic faces
has been selected with relatively high growth to amplify the effect of the blending.
Geometry and the initial surface mesh are depicted in Fig. 5 for this configuration.
The surface mesh is composed of 19,724 triangles and 1,170 quads.

The results for a purely isotropic approach are depicted in Fig. 6. As shown,
mesh quality suffers in the transition region. For this case, this is largely driven by
the anisotropic surface mesh and there is simply no way to gracefully transition
immediately from a high-aspect ratio face to an isotropic tet element.

For the case with metric interpolation the results are depicted in Fig. 7. As shown
the transition now is blended. And the mesh quality is improved from a length
scale and element volume perspective. However, the transition is very slow and
the mesh density maybe inappropriate for typical applications. Compared to the no
blending case, the number of vertices has increased by a factor two and the number
of tetrahedra in the outer region are nearly ten times more (Table 1). Finally, the
results for the case using metric-based transition with growth are depicted in Fig. 8.
As with metric interpolation, the transition is blended and the mesh quality is again

Fig. 5 Wing-body hybrid surface mesh with high-aspect ratio quad faces on the wing
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Fig. 6 Wing-body meshes obtained with no anisotropic blending

Table 1 Wing-body mesh size statistics

Case # Vertices # Tets # Prisms # Pyramids

No blending 377,563 313; 766 625,859 389

Interpolation 838,477 3; 049; 515 625,859 389

Growth 469,390 859; 133 625,859 389

improved. However, growth has significantly improved the rate of transition and
provided a more reasonable mesh density for the given configuration. Compared
to the no blending case, the number of vertices has increased by a factor 1:25 and
the number of tetrahedra in the outer region are 2:75 times more. By varying the
parameter in the growth function, density can be increased. Here, it has been set to
1:01. Increasing it to 1:05 reduces the number of tetrahedra by a factor 2:75. And,
reducing it to 1:0025 increases the number of tetrahedra by a factor two.

4.2 Nacelle

The second test case is a nacelle configuration with a predominantly structured quad
faces on the surface. Geometry and the initial surface mesh are depicted in Fig. 9
for this configuration. The surface mesh is composed of 14,192 triangles and 24,640
quads.
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Fig. 7 Wing-body meshes obtained with metric-based transition based on metric interpolation

Fig. 8 Wing-body meshes obtained with metric-based transition with growth
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Fig. 9 Nacelle hybrid surface mesh with high-aspect ratio quad element

Fig. 10 Nacelle meshes obtained with no anisotropic blending

The results for the pure isotropic approach with an immediate transition from
the BL region to the outer tetrahedral region are presented in Fig. 10. As before,
mesh quality suffers in the transition region. For this case, this is driven by both
the anisotropic surface mesh at the leading edge and the normal spacing at the
edge of the BL region. Graceful and immediate transition from BL elements with
anisotropy in both normal and tangential directions to the isotropic outer elements
is not possible.

For the case with metric interpolation the results are depicted in Fig. 11. As
shown the transition now is blended. And the mesh quality is improved from a length
scale and element volume perspective. However, the transition is again very slow
and the mesh density maybe inappropriate for typical applications. Compared to
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Fig. 11 Nacelle meshes obtained with metric-based transition based on metric interpolation

Fig. 12 Nacelle meshes obtained with metric-based transition with growth
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Table 2 Nacelle mesh size statistics

Case # Vertices # Tets # Prisms # Pyramids

No blending 1,591,712 875; 740 2,855,180 4,356

Interpolation 2,569,867 6; 715; 561 2,855,180 4,356

Growth 1,729,584 1; 702; 926 2,855,180 4,356

the no blending case, the number of vertices has increased by a factor 1:6 and the
number of tetrahedra in the outer region are nearly eight times more (Table 2).

The results for the case using metric-based transition with growth are depicted
in Fig. 12. As with metric interpolation, the transition is blended and the mesh
quality is again improved. Also, the metric-based transition is accounting for both
the normal and tangential anisotropy. However, growth has once again significantly
improved the rate of transition and provided a more reasonable mesh density for
the given configuration. Compared to the no blending case, the number of vertices
has increased by a nominal amount and the number of tetrahedra by a factor two
(Table 2).

5 Conclusions

A metric-based approach for smooth transition between BL region and tetrahedral
outer region has been proposed. This unified method utilizes the best characteristics
of both near body BL and generalized metric-based approaches. Metric-based
formulations for quality functions and other geometric quantities require for mesh
generation have been presented. Results point out that the metric-based transition
can be used to improve mesh quality and density for configurations with anisotropic
surface meshes and BL regions that do not reach outer region length scale.

Further work is required to demonstrate this approach combined with an adaptive
approach to resolve off-body or field features.
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On the Generation of Curvilinear Meshes
Through Subdivision of Isoparametric Elements

David Moxey, Mashy D. Green, Spencer J. Sherwin, and Joaquim Peiró

Abstract Recently, a new mesh generation technique based on the isoparametric
representation of curvilinear elements has been developed in order to address the
issue of generating high-order meshes with highly stretched elements. Given a valid
coarse mesh comprising of a prismatic boundary layer, this technique uses the
shape functions that define the geometries of the elements to produce a series of
subdivided elements of arbitrary height. The purpose of this article is to investigate
the range of conditions under which the resulting meshes are valid, and additionally
to consider the application of this method to different element types. We consider
the subdivision strategies that can be achieved with this technique and apply it to
the generation of meshes suitable for boundary-layer fluid problems.

1 Introduction

In recent years, interest in high-order finite element methods has increased dramat-
ically. Their attractive dispersion properties, exponential convergence of approx-
imate solutions and computational performance when compared to traditional
low-order methods make high-order methods an attractive prospect for researchers
in both academia and industry across a wide range of application areas. However,
one of the main issues to be overcome before these methods can be widely adopted
is the development of methods for reliable generation of curvilinear meshes for
complex three-dimensional domains.

A particularly important problem to be solved is the generation of meshes where
highly stretched elements are desired, either as function of the geometry or for
reasons of computational cost. In a typical high-order generation process one begins
by generating a linear mesh, and then deforming the elements connected to curved
surfaces by projecting points lying on the surface geometry into the interior of
each face. When the linear elements are highly stretched so that their thickness
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is small, then in regions where the curvature of the geometry is high, deforming
only the elements connected to the surface can result in self-intersection and thus
the mesh becomes unsuitable for computations [5]. Whilst techniques exist to
deform linearly refined meshes using linear or non-linear elastic analogies [4, 7]
or alternatively untangle and optimise meshes that have self-intersecting elements
[6], they are relatively expensive and their success has been limited when applied to
these problems.

One solution to this problem that has been recently proposed by the authors of
this work is to consider an isoparametric approach to producing highly stretched
meshes [3]. Given an existing valid high-order mesh of prismatic elements, in
this technique one subdivides each prism by using the shape functions defining
the geometry of the original prismatic element. This method is simple, cheap to
implement and leads to the generation of meshes that are guaranteed to be valid so
long as the original mapping is valid. Furthermore, this subdivision technique can
be adapted to address other issues, such as the generation of meshes containing only
high-order simplex elements for solvers which do not support hybrid meshes.

The purpose of this paper is to frame the subdivision technique in the context
of a more general mathematical framework and demonstrate how it can be utilised
to subdivide a broader range of elemental types in both two and three dimensions.
We note that in general, the subdivision of elements in this manner often requires
the enrichment of the polynomial space so that the subdivided elements capture all
curvature of the original element. One of aims of this paper therefore is to establish
the necessary conditions for the validity of the resulting subelements under various
subdivision strategies, demonstrate through numerical examples the applicability of
the method to mesh generation and that such conditions are indeed required.

The paper is structured as follows. Section 2 outlines the motivation for the
subdivision technique and gives a brief overview of the process through which
an element is subdivided as presented in [3]. The mathematical framework for
a generalisation of the method to other element types is given in Sect. 3. We
then demonstrate some applications of the method in Sect. 4 to problems in
aeronautics and biomechanics, and the subdivision of elements to produce meshes
containing only simplex elements. Finally we conclude with some remarks on
further applications and improvements in Sect. 5.

2 Motivation

One of the main application areas of high-order methods is the simulation of fluid
flow over aeronautical geometries where, near walls, flow gradients in the direction
normal to the wall are several orders of magnitude larger than those tangential to
the wall. Sufficient resolution in the near-wall boundary layer in order to resolve
this shear is crucial since the vortices which lead to turbulent instabilities develop
close to this region, and so under-resolution will usually lead to unphysical or biased
results. In these simulations therefore, the size of elements in wall-normal directions
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must be small so that the steep gradient of the near-wall flow profile is adequately
resolved. In the other directions however, such resolution is not usually required,
leading to the generation of elements with a large stretching ratio. Introducing
curvature into elements near the boundary layer will often lead to self-intersection
in regions of high curvature.

The isoparametric subdivision technique proposed in [3] addresses this problem.
Firstly, we assume that a coarse mesh, comprising of a prismatic boundary layer
and tetrahedra elsewhere, has been generated. As part of the usual high-order mesh
generation procedure, we construct a mapping � which maps coordinates � in a
reference element into the Cartesian coordinates of ˝ . In order to produce a series
of refined prismatic elements in the physical domain, we instead refine the standard
elemental region, and utilise the mapping � to map this back into physical space.

An overview of this process can be seen for a representative quadrilateral element
in Fig. 1, where we assume the bottom edge of the element is attached to the wall,
and therefore require extra resolution in the vertical direction. The top row shows
how the standard quadrilateral element ˝st is deformed under the mapping � to
produce a curved element ˝ . To refine the element in physical space, we first split
˝st into a series of smaller elements as shown in bottom left of the figure. Applying
the mapping � to these subelements of the standard region leads to the production
of curved subelements of the physical element as desired.

What remains to be presented, and indeed is the focus of the rest of this
paper, is an examination of the conditions under which the subdivision process
produces valid elements, not only for the refinement procedure outlined here, but for
more generic transformations of the standard element. In the following section we

Fig. 1 Overview of boundary layer refinement technique presented in [3]
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describe the mathematical framework in which this problem is defined, and describe
more precisely how a subdivision procedure impacts the polynomial spaces which
define the elements.

3 Mathematical Framework

We begin by providing a brief mathematical framework for the method. Let ˝e

denote an element, which in general belongs to a mesh arising from the tessellation
T .�/ D f˝1; : : : ;˝Nelg of some domain � 
 R

n with n D 2; 3 of Nel elements,
so that

� D
Nel[
eD1

˝e; ˝e \˝f D ; if e ¤ f:

In two dimensions, we consider quadrilateral and triangular shaped elements,
and in three dimensions tetrahedral, prismatic and hexahedral elements. In order
to introduce curvature into an element ˝ (where we drop the superscript e for
convenience), we assume there exists a mapping � W ˝st ! ˝ which projects a
canonical standard element ˝st into the Cartesian coordinates defining an element.
In this work we define reference elements to be

˝
quad
st D f.�1; �2/ j � 1 � �1; �2 � 1g;
˝ tri

st D f.�1; �2/ j � 1 � �1 C �2 � 1g;
˝hex

st D f.�1; �2; �3/ j � 1 � �1; �2; �3 � 1g;
˝

pri
st D f.�1; �2; �3/ j � 1 � �1 C �3 � 1;�1 � �2 � 1g;

˝ tet
st D f.�1; �2; �3/ j � 1 � �1 C �2 C �3 � 1g;

respectively. Inside the standard elements we define a polynomial space in terms of
the reference coordinates � D .�1; �2; �3/ from which an expansion basis is selected.
Assuming that we select a polynomial order P , Q and R for each coordinate
direction, the polynomial spaces take the form

P.˝st/ D spanf�p1 �q2 �r3 j .pqr/ 2 I g

where I represents an indexing set, defined for each element as

I quad D f.pqr/ j 0 � p � P; 0 � q � Q; r D 0g
I tri D f.pqr/ j 0 � p � P; 0 � p C q � Q; r D 0; P � Qg
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I hex D f.pqr/ j 0 � p � P; 0 � q � Q; 0 � r � Rg
I pri D f.pqr/ j 0 � p � P; 0 � q � Q; 0 � p C r � P; P � Rg
I tet D f.pqr/ j 0 � p � P; 0 � pC q � Q; 0�pC qC r �R; P �Q�Rg:

In order to preserve the positivity of discretised spatial operators, we insist that given
the components of � D .�1; : : : ; �n/ the determinant of the Jacobian matrix

ŒJ�.�/�ij D @�i .�/

@�j
; i; j D 1; : : : ; n

is positive for all � 2 ˝st, so that � preserves orientation and is invertible.
Furthermore we consider an isoparametric representation of � in terms of a set of
shape functions �pqr, so that

�i .�/ D
X

.pqr/2I
. O�i /pqr�pqr.�/:

In the numerical demonstrations below we consider an expansion in terms of a
tensor product of modified hierarchical modal functions which permits a boundary-
interior decomposition [2]. We note however that in this setting the choice of shape
function is relatively unimportant, so long as they span the polynomial space of
the element. However, as we will demonstrate later, this choice of basis is useful
for certain types of elemental subdivisions as it permits fewer restrictions on the
resulting subelement polynomial spaces.

3.1 Subdivision into the Same Element Type

In this section we demonstrate how the isoparametric mapping �, which we assume
has positive Jacobian for all � 2 ˝st, can be used to subdivide an element into
smaller elements of the same type. The goal of the subdivision process is to obtain
a mapping � W ˝st ! Q̋ where Q̋ 
 ˝ and det J�.�/ > 0 for all � 2 ˝st.

In the isoparametric approach we adopt here, instead of attempting to determine
the exact subdomain Q̋ of the physical element ˝ , we select a subdomain of the
standard region, f̋st, and construct an invertible mapping f W ˝st ! f̋st with
detJf .�/ > 0. Initially, we also assume that the polynomial expansion in each
direction is equal so that P D Q D R. Setting � as the composition � ı f we then
obtain a subelement Q̋ D �.˝st/.

The justification for the validity of �, and moreover the resulting element Q̋
under the restriction of equal polynomial order is as follows. Firstly, it is clear that
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the determinant of the Jacobian of � is positive for any � 2 ˝st, since through an
application of the chain rule we have that

detJ�.�/ D det J�.f .�// det Jf .�/ > 0: (1)

Let us assume that each component of � lies in the polynomial space P.˝st/. In
order for � to retain the isoparametric representation of the subelements, we note
in turn that each of its components must be defined in a polynomial space P 0.˝st/

where in the most general case, P.˝st/ 
 P 0.˝st/. A consequence of subdivision
therefore is that the subdivided elements may have a higher polynomial order than
the parent element depending on the choice of f .

Figure 2 shows a simple application of this subdivision strategy for a quadrilat-
eral element. Here we choose for example an affine mapping f .�1; �2/ D .�1; c�2/

for some c 2 .0; 1/ so that the standard element is scaled in the �2 direction.
Applying the original �mapping we obtain a new element Q̋ which is appropriately
scaled, and naturally introduces curvature into the resulting subelement. In this case,
any polynomial term �

p
1 �

q
2 is mapped under f to the term cq�

p
1 �

q
2 which clearly lies

in P.˝
quad
st /, and indeed it is clear that by Eq. (1) that det�.�/ is simply a scalar

multiple of det�.�/. We may therefore choose P 0.˝st/ D P.˝st/ and the order of
the subelements may be the same as the parent element.

Since the restriction of equal polynomial order is somewhat burdensome, we
now consider the case where the polynomial order in each direction is not equal.
Whilst a similar argument to the previous explanation can be used in this case, more

Fig. 2 Construction of the mapping � for the subdivision of a quadrilateral element
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care must be taken either in the choice of the mapping f or in the order of the
resulting subelements to ensure that the polynomial space is correctly spanned. For
example, consider a quadrilateral element with expansion orders P D 2 andQ D 1

which has corresponding polynomial space P , and suppose we choose to produce
a trivially subdivided element by applying the transformation f .�1; �2/ D .��2; �1/.
This map has positive Jacobian determinant and indeed is affine, as in the previous
example. However, since �1 and �2 are permuted in the composition with f , the
expansion has polynomial terms which lie outside of P leading to unpredictable
element generation.

There are two solutions in this case. Firstly we may choose to obey the general
condition P.˝st/ 
 P 0.˝st/, and enrich the polynomial order of the subelement
so that P D Q D 2. Alternatively however, we may permute the polynomial orders
of the resulting subelements, so that P D 1 and Q D 2, to form a space Q. We
see in this instance that the resulting subelement is still valid as all of the terms of
the original � expansion are represented in �, but the previous condition is not held
since P 6
 Q. We therefore note that P.˝st/ 
 P 0.˝st/ represents a sufficient,
but not necessary condition on the validity of subelements in this case.

A similar warning also applies to the other element types, and in particular
triangles, prisms and tetrahedra since additional conditions are placed on the
summation of mode indices which must be observed. In the next section, we discuss
an enrichment strategy to permit the subdivision of elements into different element
types.

3.2 Subdivision into Different Element Types

Another possible strategy one may adopt when subdividing elements is to consider
their division into elements of a different type; for instance, we may subdivide a
quadrilateral into triangles in two dimensions, or alternatively hexahedra into prisms
or prisms into tetrahedra in three dimensions. Such techniques are well understood
for linear finite elements [1] but for curvilinear elements self-intersection may occur
if the interior deformation is not taken into account. In this section we demonstrate
how the technique introduced in the previous section can be adapted to introduce
curvature into the subelements in such a way as to prevent them becoming invalid.

We must adapt the previous argument above since now f W ˝ 0st ! Q̋ where
˝ 0st ¨ ˝st and so the polynomial spaces which span these standard elements obey
the relation P.˝ 0st/ ¨ P.˝st/. In the same way that the technique needs an
enrichment of the polynomial space if direction-dependent polynomial orders are
used, if we naively apply the method then the polynomial expansion � can contain
terms which are not contained inside P.˝ 0st/, and so the resulting mapping � may
not produce valid elements.
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Fig. 3 Construction of the map � in the case of a quadrilateral being split into two triangles

To demonstrate this point, we first examine the problem of Fig. 3, which depicts
an example where a quadrilateral is split along a diagonal edge in order to obtain
two triangles. We may again utilise an affine mapping f .�/ D �� in order to map
˝ tri

st onto a subdomain f̋st of ˝quad
st . From our previous argument we see that each

component of � D � ı f has degree 2P in general if the original quadrilateral is of
order P .

Since � 2 ŒP.˝ tri
st /�

2 we must select a sufficiently large polynomial order for the
triangular space so that all terms of the expansion are represented in the resulting
expansion. To guarantee this for a general quadrilateral-to-triangle split, given a
quadrilateral of order P we must generate triangles of order 2P . Then the space
P.˝

quad
st / 
 P.˝ tri

st / and thus � captures all curvature of the original mapping. For
a visual illustration of this, we may represent the polynomial spaces of the triangular
and quadrilateral elements in the form of a Pascal’s triangle as shown in Fig. 4.

Figure 5 illustrates the problem of using triangular elements which are not
sufficiently enriched. On the left, a second-order (P2) quadrilateral is split into
two second-order triangles. Splitting the quadrilateral into two P

2 triangles leads to
the generation of degenerate elements. In this case, the symmetry of the deformed
element coupled with the quadratic order of the triangles means that the diagonal
edge which bisects the quadrilateral is forced to remain straight and thus causes
a self-intersection. We note that in this example, the interior quadrilateral mode
�21 �

2
2 is not energised since curvature is only introduced in one coordinate direction.
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Fig. 4 Pascal’s triangle representing the polynomial spaces of P2 quadrilateral (shaded grey) and
P
4 triangular (black outline) elements. The triangle shows that in order to split a general P

2

quadrilateral we require P
4 triangles so that all terms can be represented in the resulting mapping

Fig. 5 Qualitative example of the necessary condition for subdivision. A P
2 quadrilateral is split

into P
2 (left) and P

3 (right) triangles. Since a P2 triangular expansion does not capture some of the
terms of the original mapping, an additional order is required to produce valid elements

We additionally note that this can be very intuitively achieved by the choice of
a boundary-interior hierarchical expansion in which edge and vertex degrees of
freedom are decoupled from the interior. Other basis types, such as a nodal Lagrange
scheme, will not in general have this property, although the use of the classical
Gordon-Hall blending does have this property.

Consulting the Pascal triangle of polynomial spaces we therefore see that only
a P

3 expansion is required for the triangular elements. Using this insight, from a
qualitative perspective we can predict how the diagonal edge will be deformed under
this mapping, since if we consider a parametrisation r.t/ D .t;�t/ for t 2 Œ�1; 1�
then the composition �.r.t// should be a cubic polynomial in t . The resulting
subdivision, shown on the right-hand side of Fig. 5, confirms this observation and
consequently we obtain two valid triangular elements.

We note that the same logic can be used in the splitting of prismatic and
hexahedra elements into tetrahedra. In general an order P prismatic or hexahedral
element also requires enrichment so that the resulting tetrahedra have order 2P and
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3P respectively. However by applying the logic above, if curvature is introduced
only into the triangular faces of the prisms, then it is only necessary to produce
order P C 1 tetrahedra. Since visualisation of the Pascal’s triangle structure is
more difficult in three dimensions, this can alternatively be seen from a brief
analysis of the prismatic and tetrahedral spaces. If a linear expansion is used in
the homogeneous direction of the prismatic element (i.e. Q D 1) and P D R then
the resulting polynomial space is

Ppri.˝st/ D f�p1 �q2 �r3 j 0 � p C r � P; q D 0; 1g:

A tetrahedron with equal polynomial order P in each direction has the restriction
on a triple .pqr/ that 0 � p C q C r � P . If q D 1 then we obtain the restriction
0 � p C r � P � 1, and so the tetrahedral space at order P does not contain the
prismatic space, leading to possible invalid elements. In order to guarantee validity
of elements we therefore require tetrahedra of order P C 1.

In the following section, we give a demonstration of this prism-to-tetrahedral
splitting and also highlight the application of the refinement method in boundary-
layer problems.

4 Applications

This section demonstrates the usefulness of the subdivision method by showing how
it can be used to generate three-dimensional meshes for challenging applications.
Firstly we consider the subdivision of a coarse prismatic boundary-layer mesh into
a series of progressively thinner elements as the distance to the wall decreases. We
then show how the prismatic elements can be subdivided to obtain a boundary-
layer mesh comprising only tetrahedra for use by solvers supporting only simplex
elements.

4.1 Boundary Layer Mesh Generation

Figure 6 shows how the subdivision technique can be used to generate a boundary
layer mesh for an intercostal pair of a rabbit aorta. In these simulations one wishes
to simulate the flow of blood through the aortic arch. From this, one may simulate
an advection-diffusion equation in order to measure the concentration of particles
which are transported by the flow of blood. Whilst in this case, the Reynolds number
of the flow is not particularly large, the diffusion coefficient is inversely proportional
to the Peclet number, which in turn is inversely proportional to the size of particle
being advected. At high Peclet numbers, in a similar fashion to if the Reynolds
number were high, one must use a thin boundary layer in order to resolve the steep
gradient of the scalar variable representing concentration.
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Fig. 6 Boundary layer refinement for an intercostal pair of a rabbit aorta pictured right. The upper
left image shows the high curvature of one smaller vessel, and below the resulting boundary layer
mesh is visualised

In order to generate a sequence ofN subelements which gradually become more
slender towards the surface of the domain, we define a spacing distribution �k for
1 � k � N which defines the height of each prismatic subelement inside˝prism

st . In
this case, we choose �k to be a geometric progression so that

�k D ark; a D 2.1� r/
1 � rNC1

where r denotes a ratio dictating the relative height of each element. Under the
framework of Sect. 3 then, we define a straightforward affine scaling function
similar to that used in Fig. 2 which obeys the necessary conditions in order to
generate valid subelements. We additionally note that as long as the same spacing
distribution is used for all prismatic elements, the resulting mesh is conformal. One
of the major advantages of this method for the generation of boundary layer meshes
is that the resulting subelements are guaranteed to be valid, as shown in Sect. 3, and
thus we are able to produce boundary layers of arbitrary thickness.
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4.2 Generating Meshes of Simplex Elements

Certain solvers only have support for meshes which are composed only of simplex
elements. For problems where boundary layers are required, this poses an additional
problem for mesh generation software. In Fig. 7, we show how the same method can
be used to split the prismatic elements of Fig. 6 into three tetrahedra. Firstly we note
that in order for the resulting mesh to be conformal, we must employ a strategy so
that the quadrilateral faces which connect prismatic elements are split in a consistent
fashion, such as the one outlined by Dompierre et al. [1].

Once this strategy is applied, we may utilise the subdivision strategy to split the
standard prismatic element into three tetrahedra by using an affine transformation
similar to that used in Fig. 3. We note that in the specific case of Fig. 7, since the
curvature of the original prisms is only imposed on the triangular surface, we may
obtain valid tetrahedra by enriching the polynomial space by one order.

An important point to note is that whilst the validity of the resulting tetrahedra is
guaranteed through our previous arguments, this method may lead to the production
of tetrahedra which have suboptimal quality in terms of interior angles, depending
on the curvature of the original prismatic elements. However, when tetrahedral
boundary layers are required this is often unavoidable since the elements are
required to possess a large stretching ratio. In the very worst cases, the use of these
meshes as a starting point for a mesh deformation procedure may lead to better
quality elements. We suggest that the validity of the meshes produced here may
lead to improved convergence speeds in such methods.

Fig. 7 The result of a tetrahedralisation of the intercostal pair mesh of Fig. 6. The left-hand figure
shows a prism to tetrahedron split of the original mesh; on the right we apply the splitting after the
boundary layer refinement has been performed
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5 Conclusions

In this paper we have derived the mathematical conditions that are necessary for
the subdivision of high-order isoparametric elements, and show how this technique
can be applied to tackle challenges in high-order mesh generation. We posit that the
simplicity of the method outlined here will prove to be a valuable tool in improving
both the efficiency and robustness of curvilinear mesh generation software, and
particularly for the generation of meshes for high Reynolds number computational
fluid dynamics problems or high Peclet number advection-diffusion problems.
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Anisotropic, Adaptive Finite Elements for a Thin
3D Plate

Marco Picasso and Adrien Loseille

Abstract An adaptive, anisotropic finite element algorithm is proposed to solve the
3D linear elasticity equations in a thin 3D plate. Numerical experiments show that
adaptive computations can be performed in thin 3D domains having geometrical
aspect ratio 1:1000.

1 The Linear Elasticity Model and the Numerical Method

Anisotropic adaptive algorithms are now widely used to solve complex systems
based on partial differential equations, see for instance [5, 6, 11, 16]. Our goal is to
experiment such techniques for the 3D linear elasticity system, the computational
domain being a thin 3D plate.

Let ˝ be the reference configuration of a bounded, polyhedral, elastic body of
R
3, @˝ D �D [ �N , �D not empty, �D \ �N D ;, n the unit outer normal of @˝ .

Given f 2 L2.˝/3, given the positive Lamé coefficients �;, we are looking for a
displacement vector u D .u1; u2; u3/T and a symmetric stress tensor � such that

� div � D f in ˝; (1)

� D 2D.u/C �div u I in ˝; (2)

u D 0 on �D;

�n D 0 on �N :

Hereabove, we have used the notationDij .u/ D 1
2
.@ui =@xj C@uj =@xi /, and I is the

unit 3 	 3 tensor. Introducing V D fv 2 H1.˝/3; v D 0 on �Dg, the displacement
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weak form corresponding to this problem is to find u 2 V such that

Z
˝

�
2D.u/ W D.v/C �div u div v

�
dx D

Z
˝

f � vdx 8v 2 V; (3)

where we have set D.u/ W D.v/ D P3
i;jD1 Dij .u/Dij .v/. Thanks to Korn’s

inequality

v !
0
@ 3X
i;jD1

kDij .v/k2L2.˝/

1
A
1=2

is a norm on V and the above problem has a unique solution. For any h > 0, let
Th be a conforming mesh of ˝ into tetrahedrons K with diameter hK less than h.
Assume that the mesh is such that �D is the union of triangles lying on @˝ . Let Vh
be the usual finite element space of continuous displacements having components
that are linear on the tetrahedrons of Th, zero valued on �D . Then, the Galerkin
formulation corresponding to (3) is to find uh D .u1;h; u2;h; u3;h/T 2 Vh such that

Z
˝

�
2D.uh/ W D.vh/C �div uh div vh

�
dx D

Z
˝

f � vh dx 8vh 2 Vh: (4)

The matrix of the linear system corresponding to (4) is symmetric positive definite
so that the Conjugate Gradient (CG) method can be used. From Korn, Poincaré and
the inverse inequalities, it can be shown that the number of iterations required to
solve the linear system with a Jacobi preconditioner is O.1=h/, thus doubles when
the mesh size is divided by two. Thus, the complexity isO.1=h4/; it can be reduced
toO.1=h3/—which is optimal—when using multigrid as a preconditioner, this will
not be the case in this paper.

Our goal is to consider the case when the computational domain ˝ is a thin
3D volume—for instance ˝ D .0; 1/ 	 .0; 1/ 	 .0; "/ with " small—and when
anisotropic finite elements are used—that is tetrahedrons with large aspect ratio.

2 An Anisotropic Error Indicator

We now use the notations of [2, 3] in order to describe the mesh anisotropy, similar
results can be found in [8]. For any tetrahedronK of the mesh, let TK W OK ! K be
the affine transformation which maps the reference tetrahedron OK into K . Let MK

be the Jacobian of TK that is

x D TK.Ox/ D MK Ox C tK:
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SinceMK is invertible, it admits a singular value decompositionMK D RTK�KPK ,
where RK and PK are orthogonal and where �K is diagonal with positive entries.
In the following we set

�K D
0
@�1;K 0 0

0 �2;K 0

0 0 �3;K

1
A and RK D

0
B@r

T
1;K

rT2;K
rT3;K

1
CA ; (5)

with the choice �1;K � �2;K � �3;K . In the frame of anisotropic meshes, the
classical minimum angle condition is not required. However, for each vertex, the
number of neighbouring vertices should be bounded from above, uniformly with
respect to the mesh size h. Also, for each tetrahedron K of the mesh, there is
a restriction related to the patch �K , the set of tetrahedrons having a vertex
common with K . More precisely, the diameter of the reference patch � OK , that
is � OK D T �1K .�K/, must be uniformly bounded independently of the mesh
geometry. This assumption excludes some too distorted reference patches, see
[15]. This assumption is needed in order to prove the interpolation estimates—
Clément’s interpolant involves quantities on the reference patch—and implies that
the local geometric quantities �i;K , ri;K , i D 1; 2; 3, vary smoothly on neighbouring
tetrahedrons. Two examples of admissible and non-admissible patches are presented
in Fig. 1. The anisotropic mesh generator used in this paper has always produced
admissible patches.

Let us now introduce our anisotropic error indicator. It is similar to the one
presented in [14, 15] for the Laplace equation. For allK 2 Th, let `i;K , i D 1; 2; 3; 4

be the four faces of tetrahedronK , with unit normal ni;K (in arbitrary direction), let
Œ�� denote the jump of the bracketed quantity across `i;K , with the convention Œ�� D 0

for a face `i;K on the boundary �D. Then, our error indicator on tetrahedron K is
defined by

�2K D �K.uh/!K.e/; (6)

Fig. 1 Admissible (left) and non-admissible (right) patches
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where

�K.uh/ D 1

2

4X
iD1

� j`i;K j
�1;K�2;K�3;K

	1=2
 Z

`i;K

�
Œru1;h � ni;K�2 C Œru2;h � ni;K�2 C Œru3;h � ni;K�2

�
dx

!1=2
;

where e D .e1; e2; e3/
T D u � uh is the true error, and !K.e/ is defined by

.!K.e//
2 D �21;K

�
rT1;KGK.e/r1;K

�
C�22;K

�
rT2;KGK.e/r2;K

�
C�23;K

�
rT3;KGK.e/r3;K

�
:

(7)

Here GK.e/ denotes the 3 	 3 matrix defined by

GK.e/ D
3X

jD1

0
BBBBBBB@

Z
�K

�
@ej

@x1

	2
dx

Z
�K

@ej

@x1

@ej

@x2
dx

Z
�K

@ej

@x1

@ej

@x3
dxZ

�K

@ej

@x1

@ej

@x2
dx

Z
�K

�
@ej

@x2

	2
dx

Z
�K

@ej

@x2

@ej

@x3
dxZ

�K

@ej

@x1

@ej

@x3
dx

Z
�K

@ej

@x2

@ej

@x3
dx

Z
�K

�
@ej

@x3

	2
dx

1
CCCCCCCA
: (8)

The indicator (6) is not a usual error estimator since e D u � uh (and therefore
u) is still involved. However, the error e can be estimated using post-processing
techniques, so that (6) can be used to derive a computable quantity. An efficient
anisotropic error indicator has been previously obtained replacing the derivatives

@ej

@xi
in (8) by

@uj;h
@xi

�˘h

@uj;h
@xi

; i,j=1,2,3 (9)

where ˘h is an approximate L2.˝/ projection onto Vh. More precisely, from
constant values of @uj;h=@xi on triangles, we build values at vertices P using the
formula

˘h

�
@uj;h
@xi

	
.P / D 1X

K2Th
P2K

jKj
X
K2Th
P2K

jKj
�
@uj;h
@xi

	
jK

i; j D 1; 2; 3:

Approximating @ej =@xi by .I � ˘h/@uj;h=@xi is at the base of the celebrated
Zienkiewicz-Zhu error estimator and can be justified theoretically whenever super-
convergence occurs, that is when ruj � ˘hruj;h convergences faster to zero than
ruj�ruj;h. To our knowledge, the most recent and general result has been obtained
for a second order elliptic problem and 2D mildly structured anisotropic meshes



Anisotropic, Adaptive Finite Elements for a Thin 3D Plate 221

in [1]. In practice, on general 3D unstructured anisotropic meshes, superconver-
gence is not observed; however, ruj �˘hruj;h is much smaller than ruj � ruj;h.

3 An Adaptive Algorithm

We have considered the anisotropic, adaptive algorithm presented in [14, 15], the
goal being to build an anisotropic triangulation such that the estimated relative error
is close to a preset tolerance TOL, namely

.1 � ˇ/TOL �

0
@X
K2Th

�2K

1
A
1=2

kruhkL2.˝/
� .1C ˇ/TOL: (10)

Here �K is defined by (6)–(8) and the post-processing (9) has been used in order
to approximate the error gradient GK.e/. Also, 0 < ˇ < 1 is the equidistribution
parameter, ˇ D 0:25 throughout the paper.

Our goal is to equidistribute locally the error in the three directions of stretching
r1;K; r2;K ; r3;K , and to align the mesh along the eigenvectors of the matrixGK.e/. In
practice, all the meshes are generated using the feflo software [13] which requires
a metric to be prescribed at the mesh vertices. The method used to build this metric
is now described. For each vertex P of the mesh, we compute

GP .e/ D
X
K2Th
P2K

GK.e/;

where (9) has been used to estimate GK.e/. We then compute an orthonormal basis
QP.e/ of the eigenvectors of GP .e/. Our goal is to align the tetrahedron around
vertex P with the eigenvectors of GP .e/. The metric is then defined by

QP.e/
T

0
BBBBBB@

1

h21;P
0 0

0
1

h22;P
0

0 0
1

h23;P

1
CCCCCCA
QP .e/; (11)
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where the desired mesh size at vertex P , h1;P , h2;P , h3;P , is prescribed in order to
satisfy (10). More precisely, we go back to (6) and split the estimator on triangleK
in the three directions of stretching corresponding to ri;K :

.�i;K/
4 D .�K.uh//

2�2i;K

�
rTi;KGK.e/ri;K

�
i D 1; 2; 3;

and then compute the corresponding quantity at each vertex P of the mesh

.�i;P /
4 D

X
K2Th
P2K

.�i;K/
4 i D 1; 2; 3:

Let NP is the number of mesh vertices. Since

3X
iD1

X
P2Th

.�i;P /
4 D 4

3X
iD1

X
K2Th

.�i;K/
4 D 4

X
K2Th

.�K/
4;

if

�
4

3N 2
P

	1=4
.1� ˇ/TOLkruhkL2.˝/ � �i;P �

�
4

3N 2
P

	1=4
.1C ˇ/TOLkruhkL2.˝/;

for i D 1; 2; 3 and for each vertex P of the mesh, then (10) is satisfied. The desired
mesh size at vertex P , h1;P , h2;P , h3;P , is then computed as follows. If

4

3N 2
P

.1 � ˇ/4TOL4kruhk4L2.˝/ > .�i;P /4;

then the values of hi;P are set to 2�i;P , i D 1; 2; 3, if

4

3N 2
P

.1 � ˇ/4TOL4kruhk4L2.˝/ � .�i;p/
4 � 4

3N 2
P

.1C ˇ/4TOL4kruhk4L2.˝/;

then the values of hi;P are set to �i;P , i D 1; 2; 3, if

.�i;P /
4 >

4

3N 2
P

.1C ˇ/4TOL4kruhk4L2.˝/;

then the values of hi;P are set to �i;P =2, i D 1; 2; 3. Once new values of hi;P are
obtained, the metric at each vertex is computed from (11) and the feflo software
[13] is used to generate a new anisotropic mesh. The whole process is then repeated
several times.
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4 Anisotropic Mesh Generation

We give in the section some details on the algorithm and the mechanisms used in
feflo [12] to refine the mesh according to the previous error estimate. The mesh
generator fits the Riemannian metric framework of [4]. The goal is to generate a
quasi-unit mesh with respect to the prescribed metric (11). The input of the mesh
generator is the metric—a 3	3 symmetric positive definite matrix—thus we assume
that, for each x 2 ˝ , the metric M .x/ is known.

The two fundamental operations in a mesh generator are the computation of
length and volume. Let E be the edge joining vertices xi and xj . The length of
E and the volume of a tetrahedronK , with respect to the metric M , are defined by:

`M .E/ D
Z 1

0

q
.xj � xi /T M .xi C t.xj � xi // .xj � xi / dt;

jKjM D
Z
K

p
det.M .x// dx:

From a discrete point view, the metric field needs to be interpolated [4] to
compute an approximate edge length and tetrahedron volume. We consider a linear
interpolation of the point-wise metric field Mi at the vertices xi of the mesh; the
following approximations are then used:

`M .E/ �
q
.xj � xi /T Mi .xj � xi /

r � 1

r ln.r/
;

jKjM �
vuutdet

 
1

4

4X
iD1

Mi

!
jKj;

where jKj is the Euclidean volume of K and r stands for the ratio

p
.xj � xi /T Mi .xj � xi /p
.xj � xi /T Mj .xj � xi /

;

see Example 1.3 in [9] for details. A mesh is said to be a unit-mesh with respect to
M when the six edges of each tetrahedronK satisfy

`M .Ei/ 2

1p
2
;
p
2

�
i D 1; : : : ; 6; (12)
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Fig. 2 Some unit-elements with respect to a 3D metric represented by its unit-ball

and when the quality functionQM satisfies

QM .K/ D 36

3
1
3

jKj 23M
6X
iD1
`2M .ei /

2 Œ˛; 1�; (13)

where ˛ > 0 is a parameter. A classical and admissible value of ˛ is 0:8. This
value arises from some discussions on the possible tessellation of R

3 with unit-
elements [10]. Some unit-elements with respect to a 3D metric are depicted in Fig. 2.

To generate a unit-mesh in a given metric field M , two operators are recursively
used: edge collapse and point insertion on edge. The starting point for the insertion
of a new point on an edge is to consider the shell of this edge composed of all
elements sharing this edge. Each element of the shell is then divided into two new
elements. The new point is accepted if each new tetrahedron has a positive volume.
The edge collapse starts from the ball of the vertex to be deleted. Again, for the
deletion of points inside the volume, the only possible rejection is the creation of a
negative volume element.

We also combine the previous operators with a quality function QM together
with the unit-length check. This supplementary check can be done at no cost
since a lot of information can be re-used: the volume is already computed, as
well as the length of the edges. By simply computing the quality function, we
give to these operators the missing information on the orthogonal directions of the
current scanned edge. For an optimal performance, two parameters are added in the
rejection cases: a relative quality tolerance qr � 1 and a global quality tolerance qa.
Rather than trying to increase QM , a new configuration of elements is accepted if

qr Q
ini
M � Qnew

M < qa;

where Qini
M is the worse element quality of the initial configuration and Qnew

M is the
worse quality of the new configuration. This approach is similar to the simulated
annealing global optimization technique [7]. Note that the current version does not
fully implement the classical metropolis algorithm where the rejection is based
on a random probability. To ensure the convergence of the algorithm, the relative
tolerance qr is decreased down to 1 after each pass of insertions and collapses. At
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the end of the process, the absolute tolerance qa is set up to the current worse quality
among all elements.

This strategy yields a robust local remeshing procedure as a valid mesh is always
provided on output. In particular, the volume and surface mesh generation are done
simultaneously. Consequently, this procedure may be used advantageously for cases
where global remeshing techniques become either unfeasible or unreliable. For the
thin plate case, as a very high level of anisotropy is present on the surface, global
remeshing approaches are likely to fail.

5 Numerical Experiments

Consider the case when ˝ D .0; 1/ 	 .0; 1/ 	 .0; "/, with " D 0:01 or " D 0:001,
�D are the lateral faces of the plate, �N the top and bottom faces corresponding to
z D 0 and z D ". Let f D 1 in (1), � D  D 1 in (2). The exact solution is not
known exactly but numerical experiments indicate that the maximum displacement
up to three digits is between 0:0736 and 0:0737.

In Fig. 3, the mesh and vertical deformation are reported when " D 0:01 or
" D 0:001 when using a 10 	 10 	 2 mesh, each bloc being cup into six vertices.
Starting from this 10 	 10 	 2 mesh, convergence results with non-adapted meshes
are presented in Table 1 when " D 0:01. A locking effect can be observed when
each bloc is cut into five tetrahedrons.

The adaptive procedure presented in the previous section is repeated 150 times,
starting from the 10 	 10 	 2 mesh considered above. At first, the TOL parameter
which drives precision, see (10), is set to 1; it is halfed every 30 mesh genera-
tions, thus the adapted mesh number 29 corresponds to 30 mesh iterations with

Fig. 3 10�10�2 mesh, each bloc being cut in six tetrahedron, "D 0:01 (first row) and " D 0:001

(second row). Left column: xy plane, Middle and Right column: zoom
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Table 1 Convergence results
with non-adapted meshes and
"D 0:01. Here tet/bloc
denotes the number of
tetrahedron per bloc

Mesh tet/bloc nb. vert. CG umax

10� 10 � 2 6 363 103 0.0731

20� 20 � 4 6 2; 205 401 0.0735

40� 40 � 8 6 15; 129 1229 0.0736

80� 80 � 16 6 111; 537 2294 0.0737

10� 10 � 2 5 363 45 0.0129

20� 20 � 4 5 2; 205 229 0.0340

40� 40 � 8 5 15; 129 879 0.0571

80� 80 � 16 5 111; 537 2514 0.0687

Locking occurs when each bloc is cut into five tetra-
hedrons. CG denotes the number of iterations of the
CG algorithm with diagonal preconditioner. The CG
algorithm is stopped when the relative residual is less
than 10�6

TOL D 1, the adapted mesh number 149 corresponds to 30 mesh iterations with
TOL D 0:0625. The obtained adapted meshes corresponding to a plate thickness
" D 0:01 are shown in Fig. 4, those corresponding to a plate thickness " D 0:001

are shown in Fig. 5. A careful examination of the adapted meshes reveals that there
is only one layer of elements across the plate thickness and that mesh refinement
is more important at the corners of the plate. Tables 2 and 3 contain the important
numbers associated to these numerical experiments.

6 Conclusions

An adaptive, anisotropic finite element algorithm has been proposed to solve the
3D linear elasticity equations on a thin plate. Since the tetrahedrons are allowed
to have large aspect ratio, the local mesh size can be small in the direction of the
plate’s thickness and coarse in the other directions. Numerical experiments show
that adaptive computations can be performed on thin plates having geometrical
aspect ratio 1:1000.

We are looking forward to perform numerical experiments on curved plates
and/or plates having non homogenous thickness. In the case of curved plates, an
error estimator for the geometry error has to be investigated. Also, the surface mesh
should be reprojected onto the true geometry using the CAD data.
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Fig. 4 Adapted meshes with plate thickness " D 0:01 and several values of TOL (TOL D 1 on
row 1, TOL D 0:5 on row 2,. . . , TOL D 0:0625 on row 5). Left column: xy plane, Right column:
zoom of the (0,0,0) corner
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Fig. 5 Adapted meshes with plate thickness " D 0:001 and several values of TOL (TOL D 1 on
row 1, TOL D 0:5 on row2,. . . ,TOL D 0:0625 on row 5). Left column: xy plane. Middle column:
zoom of the (0,0,0) corner. Right column: zoom at the center of an edge



Anisotropic, Adaptive Finite Elements for a Thin 3D Plate 229

Table 2 Results with adapted meshes and plate thickness "D 0:01 and several values of TOL

Mesh nb. TOL nb. vert. CG umax max�1 min�3
0 363 103 0:0731 0:16 0:0050

29 1 490 337 0:0697 0:17 0:0042

59 0:5 768 384 0:0713 0:19 0:0032

89 0:25 1419 401 0:0734 0:18 0:0030

119 0:125 3045 416 0:0736 0:15 0:0014

149 0:0625 7610 455 0:0736 0:11 0:00062

Here max�1 D maxK2Th �1;K , min�3 D minK2Th �3;K

Table 3 Results with adapted meshes and plate thickness "D 0:001 and several values of TOL

Mesh nb. TOL nb. vert. CG umax max �1 min�3
0 363 117 0:0731 0:16 0:00050

29 1 1; 274 1; 656 0:0717 0:18 0:000049

59 0:5 2; 790 2; 680 0:0745 0:18 0:000061

89 0:25 7; 069 3; 375 0:0732 0:18 0:000072

119 0:125 17; 402 4; 090 0:0736 0:17 0:000054

149 0:0625 49; 718 4; 008 0:0737 0:16 0:000033
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Anisotropic Mesh and Time Step Adaptivity
for Solute Transport Modeling in Porous Media

Bahman Esfandiar, Giovanni Porta, Simona Perotto, and Alberto Guadagnini

Abstract We assess the impact of space-time mesh adaptivity on the modeling
of solute transport in porous media. This approach allows an automatic selection
of both the spatial mesh and the time step on the basis of a suitable recovery-
based error estimator. In particular, we deal with an anisotropic control of the
spatial mesh. The solver coupled with the adaptive module deals with an advection-
dispersion equation to model the transport of dissolved species, which are assumed
to be convected by a Darcy flow field. The whole solution-adaptation procedure
is assessed through two-dimensional numerical tests. A numerical convergence
analysis of the spatial mesh adaptivity is first performed by considering a test-case
with analytical solution. Then, we validate the space-time adaptive procedure by
reproducing a set of experimental observations associated with solute transport in
a homogeneous sand pack. The accuracy and the efficiency of the methodology
are discussed and numerical results are compared with those associated with
fixed uniform space-time discretizations. This assessment shows that the proposed
approach is robust and reliable. In particular, it allows us to obtain a significant
improvement of the simulation quality of the early solute arrivals times at the outlet
of the medium.

1 Introduction

A wide set of physical processes involves transport of solutes in porous media.
These include contamination of groundwater by inorganic and organic chemicals,
petroleum generation and migration, reactive processes which can modify the
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properties of soil and rock formations. Several modeling techniques and analytical
solutions are proposed in the literature, while a variety of algorithms and software
packages have been developed for the numerical simulation of solute transport
in the subsurface (see, e.g., [3, 20, 52]). Transport of solutes in porous media is
typically modeled through an advection-dispersion equation, where the dispersive
coefficient embeds the effects of molecular diffusion and hydrodynamic dispersion.
The advective term results from a velocity field, which is typically assumed to obey
Darcy’s law.

Different examples of mesh adaptivity applied to fluid flow and solute transport
in homogeneous and heterogeneous porous media are available in the literature (see,
e.g., the review in [34]). In the context of flow simulation in heterogeneous media,
the advantages resulting from an a priori refinement of an otherwise static mesh
have been quantified in field scale flow simulation [36] as well as in transport
problems [23]. In [30], a moving mesh algorithm for the modeling of a three-
dimensional flow in the subsurface is proposed. A two-dimensional technique based
on local refinement of hierarchical meshes is presented in [9]. The mesh adaptivity
is here driven by an a posteriori error estimator for the energy norm. An example of
anisotropic adaptivity is provided in [51], where a dynamic mesh adaptation for a
reactive transport problem is proposed. The directional features of the solution are
taken into account via local refinement/coarsening error indicators. In particular, the
authors deal with structured and rectangular grids in a hierarchical framework.

Time step adaptivity has also been applied to the error control in the context
of transient transport phenomena in porous media. These include density driven
flows (e.g., [16, 54, 55]), flow in unsaturated media (e.g., [29]) and reactive transport
processes [49].

In this contribution, we aim at combining mesh with time step adaptivity for
modeling solute transport in porous media. To the best of our knowledge, this
represents a first attempt in this applicative context. To maximize the advantages
deriving from adapted meshes, we resort to an anisotropic mesh adaptivity (see,
e.g., [12, 26, 45]). Size, orientation and shape of the elements are optimized to
match the directional features of the problem at hand. We base our work on the
methodology used in [46] for simulating unsteady shallow water problems. Here, the
adaptive procedure relies on a recovery-based a posteriori estimator for the global
(i.e., space–time) error. The contribution of space and time approximation errors
is kept separated following, e.g., [11, 37, 39, 50] so that the space and the time
discretization grids are sequentially and independently adapted. The spatial mesh
adaptivity is grounded on the a posteriori error estimate proposed in [40], which
essentially represents the anisotropic counterpart of the error estimator originally
proposed by Zienkiewicz and Zhu in [56]. This yields a computationally cheap,
problem-independent error estimator, which has been already applied successfully
to different two- and three-dimensional problem settings [18, 41, 47]. The time step
adaptivity is derived through the recovery-based technique devised in [46]. This
methodology allows us estimating the time approximation error upon relying on a
higher-order local reconstruction of time derivatives. Finally, this paper is enriched
by comparing the results provided by the proposed numerical approach with actual
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experimental data similar to those presented in [32]. This is a key contribution of
this paper, and allows us discussing the impact of space-time adaptive simulation
methodologies on the interpretation of experiments.

The paper is organized as follows. Section 2 introduces the flow and solute
transport equations and the adopted finite-element discretization. In Sect. 3, we
provide the reference anisotropic setting and define the recovery-based space-time
error estimator. Section 4 provides the procedures adopted to predict the new space-
time adapted mesh together with the coupling strategy used to combine the solver
in Sect. 2.1 with the whole adaptive procedure. Finally, in Sect. 5 we deal with
the numerical validation, by considering first a benchmark analytical test case and
then by performing a comparison with the experimental results. A discussion with
concluding remarks ends the paper.

2 Solute Transport Modeling

Solute transport in porous media is typically described through a standard
advection-dispersion equation (ADE). While the transport phenomenon is
intrinsically three-dimensional, we assume here that the variation of solute
concentration along the vertical direction may be neglected. This approximation is
typically acceptable in the context of the laboratory settings that we consider in this
work and allows us casting the transport equation into a two-dimensional (planar)
framework [3].

Let ˝ 
 R
2 be a bounded polygonal domain with boundary @˝ , and Œ0; T � a

time window of interest. The ADE reads

@C

@t
C r � .vC/� r � .DrC/ D 0 in ˝ 	 .0; T �; (1)

where C D C .x; t/[mol/m3] is the (unknown) vertically averaged solute concen-
tration at location x and at time t , v D .v1; v2/

T [m/s] is the fluid velocity and
D D fDijg is the symmetric positive definite dispersion tensor. Following [3], this
tensor is typically defined as

Dij D .˛T kvk2 CDm/ ıij C .˛L � ˛T /
vivj

kvk2
with i; j D 1; 2 ; (2)

where ˛T ; ˛L[m] are the transverse and the longitudinal dispersivity, respectively, ıij

is Kronecker’s delta symbol,Dm[m2/s] is the molecular diffusion and kwk2 denotes
the standard Euclidean norm of a generic vector w 2 R

2. Equation (1) is completed
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with a suitable set of initial and boundary conditions which, in general, coincides
with relations as

8̂̂
<
ˆ̂:
C .x; 0/ D C0 .x/ for x 2 ˝;
C .x; t/ D f1 .x; t/ for x 2 �1; t 2 .0; T �;
� .DrC/ � n D f2 .x; t/ for x 2 �2; t 2 .0; T �;
.vC � DrC/ � n D f3 .x; t/ for x 2 �3; t 2 .0; T �;

(3)

where �1; �2 and �3, with [3
iD1�i D @˝ ,

ı
�i \ ı

�jD ;, for i; j D 1; 2; 3 and
i ¤ j , represent a partition of the boundary @˝ associated with Dirichlet, Neumann
and Robin boundary conditions, respectively, C0 is the initial value of the solute
concentration, fi , with i D 1; 2; 3, are the boundary data, and n is the unit outward
normal vector to @˝ .

The velocity field v in (1) is typically obtained through the numerical approxi-
mation of the following equations

8̂̂<
ˆ̂:

v D � k

�
.rp C �gk/ for x 2 ˝;

r � v D 0 for x 2 ˝;
v � n D  for x 2 @˝;

(4)

where p[Pa] is the pressure, g[m/s2] is the gravity,  > 0[Pa�s] and � > 0[Kg/m3]
are the fluid viscosity and density, respectively, k > 0[m2] is the porous medium
permeability, 0 < � < 1 is the porosity, is a flux imposed on the domain boundary
and k denotes the unit vector aligned with the vertical direction. In particular, we
assume , �, k, � real constants. Equation (4)1 coincides with Darcy’s law coupled
with the continuity equation (4)2, while equation (4)3 models an imposed flux.
Notice that, via the divergence theorem, we obtain

R
@˝
 ds D 0. Since Eq. (4)

is steady, we are assuming to deal with a time independent field v in (1).

2.1 The Finite Element Discretization

In this section, we provide the finite element formulation used to discretize
problem (1)–(4). We first introduce the discretization of the flow problem (4) by
resorting to a mixed two-field formulation (see, e.g., [15, 35, 44]). For this purpose,
we consider the following function spaces

V D H .div;˝/ D ˚
v 2 ŒL2 .˝/�2 W r � v 2 L2 .˝/ ; trace.v � n/ D  2 H�1=2.@˝/

�
;

W D H0 .div;˝/ D ˚
w 2 ŒL2 .˝/�2 W r � w 2 L2 .˝/ ; trace.w � n/ D 0 on @˝

�
;

P D L20 .˝/ D ˚
p 2 L2 .˝/ W

Z
˝

p d˝ D 0
�
;

(5)
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where trace.�/ denotes the standard trace operator. The demand on the average of p
in P is due to the fact that the pressure field in (4) is involved in a gradient form.
As a consequence, to guarantee the uniqueness of p, we have to constrain it with a
condition. In practice, we specify the value of p at a certain point in ˝ instead of
implementing condition

R
˝
p d˝ D 0. For all the details concerning the spaces in

(5), we refer to [6].
Thus, for given values of the physical parameters , k, �, � and  , the weak

formulation of (4) reads: find v 2 V and p 2 P such that, for any w 2 W and
q 2 P ,

Z
˝

�
�

k
v � w � pr � w C r � vq

	
d˝ D �

Z
˝

.�gk � w/ d˝: (6)

For sufficiently regular data, the weak formulation (6) is known to have a unique
solution. To discretize problem (6), we introduce a conformal partition Th D fKg
of the domain˝ into trianglesK of diameter hK [13]. Then, we define the spaces

Vh D ˚
vh 2 ŒL2 .˝/�2 W vh

ˇ̌
K

2 RT0 .K/ ;8K 2 Th; trace.vh � n/ D  h
�
;

Wh D ˚
wh 2 ŒL2 .˝/�2 W wh

ˇ̌
K

2 RT0 .K/ ;8K 2 Th; trace.wh � n/ D 0
�
;

where RT0 denotes the space of the zero-order Raviart–Thomas finite elements [6],
while  h is a piecewise constant approximation of the trace  . The space Vh is
employed to discretize the velocity field, while Wh is used to discretize the test
functions. This choice leads us to select the space

Ph D ˚
ph 2 P W ph

ˇ̌
K

2 P0.K/;8K 2 Th

�
;

for the pressure, P0 being the set of the polynomials of degree zero. Thus, the RT0�
P0 discretization of problem (6) reads: find vh 2 Vh and ph 2 Ph such that, for any
wh 2 Wh and qh 2 Ph,

X
K2Th

n Z
K

�
�

k
vh � wh � phr � wh C r � vhqh

	
dK
o

D
X
K2Th

n
�
Z
K

.�gk � wh/ dK
o
: (7)

Notice that, the combination RT0 � P0 of shape functions for the velocity and
pressure does satisfy the Babuška-Brezzi stability condition. Moreover, since we
assume to deal with a steady velocity field, we solve problem (7) only once, for a
prescribed set of data and before dealing with ADE (1).
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The discretization of the ADE moves from the weak formulation of Eq. (1): for
any t 2 .0; T �, find C .t/ 2 Z such that, for any z 2 Z,

Z
˝

�
@C.t/

@t
z C .DrC.t/ � vC.t// � rz

	
d˝ D 0; (8)

where Z coincides with a subspace of the Sobolev space H1.˝/, suitably modified
to satisfy the essential boundary conditions assigned on @˝ . On the other hand, the
imposition of natural boundary conditions leads to modify accordingly the right-
hand side in (8) by introducing suitable integral boundary terms.

The spatial discretization of (8) is obtained via a streamline upwind technique
(see, e.g., [7]) to damp the spurious oscillations yielded by the standard
Galerkin finite element approximation. Let Zh D ˚

zh 2 C0.˝/ W zh
ˇ̌
K

2 P
1 .K/ ,

8K 2 Thg \ Z be the space of the affine finite elements associated with
the partition Th. Thus, the streamline upwind finite element discretization
of (8) is: for any t 2 .0; T �, find Ch .t/ 2 Zh such that, for any zh 2
Zh,

X
K2Th

n Z
K

�@Ch.t/
@t

zh C .DhrCh.t/ � vhCh.t// � rzh
�

dK

CQK

Z
K

.vh � rCh.t// .vh � rzh/ dK
o

D 0;

(9)

where QK D ıK= jvhj represents the stabilization coefficient associated with
element K , ıK being a suitable coefficient proportional to the element dimension
(we refer to Sect. 3.1 for an explicit expression of ıK ). Notice that the dispersion
tensor D and the advective field v in (8) are here replaced by the discrete counterparts
Dh and vh, respectively. In particular, the discrete tensor Dh is computed via (2)
after substituting v with vh. Moreover, the meshes employed to discretize (6)
and (9) may differ. In such a case, vh will be projected on the P1 degrees of
freedom.

Finally, the full discretization of problem (8) is obtained by discretizing the
time dependence in (9) via the standard �-method. For this purpose, we introduce
a partition of the time window [0,T] by fixing the time levels

˚
t0; : : : ; tn

�
, with

t0  0 and tn  T , which identify the set fIkgn�1kD0 of the time intervals Ik of
width �tk D tkC1 � tk , for k D 0; : : : ; n � 1. To guarantee the unconditionally
absolute stability of the �-method, we set � equal to 2=3. This choice relieves us
from any constraint in the choice of the time step in order to avoid the occurrence
of spurious oscillations in the discrete solution. This is a crucial issue in view of the
time adaptivity procedure in Sect. 4.2.
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3 A Space-Time Recovery-Based Error Estimator

In this section, we provide the theoretical tools used to drive the space-time
adaptive procedure. In particular, after introducing the framework used to settle the
anisotropic mesh adaptivity, we furnish the a posteriori estimators for the control of
the space and of the time discretization errors.

3.1 The Anisotropic Setting

Following the setting proposed in [21, 22], the anisotropic information is derived by
introducing the standard invertible affine map TK W OK ! K which transforms the
equilateral triangle OK with vertices .�p

3=2;�1=2/, .p3=2;�1=2/, .0; 1/ into the
generic triangle K 2 Th. The triangle OK is inscribed in the unit circle centered at
.0; 0/. The map TK changes this circle into an ellipse circumscribing K , as shown
in Fig. 1. In particular, we have

x D TK .Ox/ D MK Ox C tK 8x D .x1; x2/
T 2 K;

with Ox D . Ox1; Ox2/T 2 OK, MK 2 R
2�2 the Jacobian associated with the map TK

and tK 2 R
2 a shift vector. We exploit the spectral properties of MK to describe

the anisotropic features of the element K . To do this, first we introduce the polar
decomposition MK D BKZK of MK , with BK 2 R

2�2 a symmetric positive
definite matrix andZK 2 R

2�2 an orthogonal matrix. Then, we consider the spectral
decomposition BK D RTK�KRK of BK , where RTK D Œr1;K; r2;K� 2 R

2�2 is the
matrix of the right eigenvectors of BK and �K D diag .�1;K; �2;K/ is the diagonal
matrix of the corresponding eigenvalues, where we assume �1;K � �2;K .

Thus, shape, size and orientation of K are fully described by the quantities ri;K
and �i;K for i D 1; 2. In particular, r1;K and r2;K identify the directions of the two
semi-axes of the ellipse circumscribingK , while �1;K and �2;K measure the length
of these semi-axes (see Fig. 1). The aspect ratio sK D �1;K=�2;K � 1 quantifies the

Fig. 1 Geometric interpretation of the map TK
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deformation of triangle K . In particular, if K coincides with an equilateral triangle
(the isotropic case), sK D 1 while sK increases as the shape of K stretches.

Now, we provide the anisotropic interpolation error estimate that inspired the
estimator introduced in Sect. 3.2.1 for the spatial discretization error. Let I 1h be the
Clément quasi-interpolant [14] defined, in the case of linear finite elements, by

I 1h .u/.x/ D
X
Nj 2N

Pj u.Nj / 'j .x/ 8u 2 L2.˝/;

where N is the set of the mesh vertices except the ones belonging to the Dirichlet
portion �1, 'j is the Lagrangian basis function associated with the node Nj , and
where Pj u denotes the affine function associated with the patch�j of the elements
sharing node Nj defined by the relations

Z
�j

�
Pj u � u

�
# d�j D 0 with # D 1; x1; x2:

The local feature of the employed error estimator leads us to introduce the restriction
I 1K of I 1h to K , such that I 1K.u

ˇ̌
K
/ D I 1h .u/

ˇ̌
K

for any u 2 L2.˝/ and for any
K 2 Th. Moving from [21], we can state the following result

Lemma 1 Let �K D fT 2 Th W T \K ¤ ;g be the patch of elements sharing at
least a vertex withK ,� OK D T �1K .�K/ be the reference patch obtained by mapping
back the whole �K via the map TK and let u 2 H1.˝/. Then, if card.�K/ � M
and diam.� OK/ � N�, there exists a constant C D C.M ;N�/ such that

ku � I 1K.u/kL2.K/ � C
h 2X
iD1

�2i;K
�
rTi;KGK.u/ri;K

�i1=2
; (10)

where GK.u/ 2 R
2�2 is the symmetric positive semi-definite matrix given by

GK.u/ D
X
T2�K

2
664
Z
T

� @u

@x1

�2
dT

Z
T

@u

@x1

@u

@x2
dTZ

T

@u

@x1

@u

@x2
dT

Z
T

� @u

@x2

�2
dT

3
775 : (11)

ut
We highlight the explicit dependence of estimate (10) on the quantities ri;K and

�i;K , i D 1; 2, which allows us to characterize anisotropically the triangle K , i.e.,
to fix its size, shape and orientation. Moreover, the conditions on �K and � OK just
avoid too distorted patches in the reference framework without introducing any limit
on the anisotropic features of the mesh (we refer to [42] for examples of acceptable
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and not acceptable patches). When �1;K ' �2;K ' hK , we recover the standard
isotropic result [14]

ku � I 1K.u/kL2.K/ � C hK jujH1.�K/: (12)

Note that the diameter hK in (12) is replaced by the lengths �i;K in (10), while
the components of the H1-seminorm jujH1.�K/ are projected along the anisotropic
directions ri;K via the terms rTi;KGK.u/ri;K .

Finally, we exploit the anisotropic spacing to fix the coefficient ıK characterizing
the stabilization coefficientQK in (9). Following [42], we set ıK D �2;K=2.

3.2 Recovery-Based Error Estimators

Recovery-based error estimators have been originally proposed by Zienkiewicz and
Zhu in the framework of linear elasticity [56–58]. The key idea underlying this class
of error estimators is to improve the accuracy of the gradient of a numerical solution
through suitable interpolation or averaging techniques, generally known as gradient
recovery procedures. In a displacement-based finite element approach, the demand
for a sharper numerical gradient arises from the necessity to deal with derived
fields (e.g., stresses or strain rates) at least as accurate as the primary ones (e.g.,
displacements), due to their significant physical meaning in practical applications.

As a byproduct of the gradient recovery procedure, in [58] Zienkiewicz and Zhu
propose an a posteriori error estimator for the H1-seminorm of the discretization
error, simply defined as the L2-norm of the difference between the recovered and
the numerical gradient. This estimator is usually referred to as recovery-based.
Many good properties characterize the recovery-based error estimators: they depend
only on the adopted discrete space, being completely independent of the considered
problem, of the governing equations and of the other details characterizing the
adopted discrete formulation (e.g., the stabilization scheme); they are robust, easy to
implement and cheap in terms of computational cost, since their definition involves
only the numerical solution and the corresponding gradient. These properties make
recovery-based error estimators a practical tool in view of an adaptive procedure
and justify the extensive employment of these estimators in diverse applicative fields
(see, e.g., [5, 8, 28, 33, 43]). More recently, an anisotropic version of the recovery-
based error estimators has been proposed in [40] and successfully employed in
two-dimensional as well as in three-dimensional settings [18, 41, 46, 47]. This
anisotropic generalization allows us to combine the good properties of a recovery-
based estimator with the richness of information needed for an anisotropic error
analysis.

A theoretical investigation of the recovery-based error estimators is a recurrent
but not yet very well understood issue in the literature, even in the simplest isotropic
case [10, 31, 38, 53].
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Following [46], in this section we resort to a recovery-based error estimator to
adapt both the spatial mesh and the time step. For this purpose, we introduce an
estimator �Aht to control the global (i.e., in space and time) discretization error where
the space and time contributions are separate (see also [11, 37, 39, 50]), namely,
such that

�Aht D �Ah C �t ; (13)

with �Ah and �t the space and time recovery-based error estimator, respectively. In
particular, our interest in anisotropic adapted meshes leads us to identify �Ah with an
anisotropic error estimator. Estimators �Ah and �t are formulated separately in the
two next sections.

3.2.1 The Spatial Error Estimator

Let us consider a generic time-dependent scalar variable z and let zh be the
corresponding linear finite element approximation. For any t > 0, we aim
at providing an anisotropic estimate for the H1-seminorm

ˇ̌
e z
h .t/

ˇ̌2
H1.˝/

DR
˝ jrz .t/ � rzh .t/j2 d˝ of the discretization error e z

h.t/ D z .t/ � zh .t/. In
an isotropic framework, the idea is to compute e z

h .t/ by replacing the (generally)
unknown exact gradient rz.t/ with a suitable recovered gradient P.rzh.t// [56–
58], so that

ˇ̌
e z
h .t/

ˇ̌2
H1.˝/

'
Z
˝

jP.rzh.t// � rzh .t/j2 d˝ D �
�ZZ.e z

h.t//
�2
: (14)

To provide an anisotropic variant of estimator �ZZ.e z
h.t//, we refer to the anisotropic

interpolation error estimate (10). In practice, by comparing estimates (10) and
(12) we observe that the matrix GK.u/ provides the anisotropic counterpart of
the standard isotropic H1-seminorm of u. This equivalence can be exploited for
the definition of an anisotropic recovery-based error estimator, since �ZZ.e z

h.t// in
(14) coincides exactly with the L2-norm of the recovered error on the gradient
E.zh.t// D P.rzh.t// � rzh .t/. Thus, following [18, 40] and moving from
definitions (10) and (14) we identify the spatial recovery-based anisotropic estimator
to be replaced in (13) with

�
�Ah .e

z
h.t//

�2 D
X
K2Th

�
�AK;h.zh.t//

�2
; (15)

where

�
�AK;h.zh.t//

�2 D 1

�1;K�2;K

2X
iD1

�2i;K
�
rTi;KGK.EK.zh.t///ri;K

�
(16)
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denotes the local error estimator, with EK.zh.t// D E.zh.t//
ˇ̌
K

. The scaling factor
.�1;K�2;K/

�1 ensures the consistency with respect to the isotropic case, i.e., when
we choose �1;K D �2;K , we get the isotropic estimator

�
�Ih.e

z
h.t//

�2 D
X
K2Th

�
�IK;h.zh.t//

�2
with

�
�IK;h.zh.t//

�2 D
Z
�K

jEK.zh.t//j2 d�K:

Finally, the quantity zh involved in (15) strictly depends on the problem at hand and
identifies the physical quantity used to drive the spatial mesh adaptivity. Estimator
(15) may be applied to more general problems involving not only scalar quantities,
such as the elasticity or the Navier-Stokes equations [18].

We detail in the following the adopted gradient recovery procedure. Several
recipes have been provided in the literature to compute the recovered gradient (see,
e.g., [10, 33, 48, 57]). Following [40], we resort here to a very simple approach
which defines a patchwise constant recovered gradient. We let

P�K .rzh/.x; t/ D 1

j�K j
X
T2�K

jT j rzh.t/
ˇ̌
T

with x 2 K; t > 0; (17)

with j$ j the measure of the generic set $ 
 R
2, namely we compute the area-

weighted average over the whole patch �K of the gradients of the discrete solution
and then we assign such a value to the single element K (see Fig. 2, left for a
sketch of the recovery procedure). Thus, for any element K 0 2 �K with K 0 ¤ K ,
P�K0

.rzh/ is, in general, different from P�K .rzh/, and it is constant on the patch
�K0 . In view of a practical implementation, the time t in (17) coincides with a
time level tk of the time partition ft0; : : : ; tng. The recovery procedure in (17) can
be generalized to higher degree polynomials as shown in [40]. Here, to contain the
computational costs, we adopt the simplest choice, i.e., zh coincides with a piecewise
linear function.

Fig. 2 Spatial gradient recovery procedure (left): gradient of the discrete solution (black) and
recovered gradient (grey); time gradient recovery (center): recovered solution zR (dotted and
dashed lines) and linear interpolant of values zjh (continuous line); time derivatives (right): @zR=@t
(dotted and dashed lines), @zh=@t (continuous line)
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Despite the heuristic nature of the anisotropic estimator �Ah .e
z
h.t//, a correspond-

ing theoretical background is furnished in [40], where a patch test on the estimator
is provided and an equivalence relation between the local estimator �AK;h.zh.t// and
the H1-seminorm of the discretization error on the patch �K is derived.

Finally, estimator �Ah .e
z
h.t// has been successfully extended and assessed in a

three-dimensional setting in [18, 41].

3.2.2 The Time Error Estimator

The actual goal pursued in our time adaptive procedure is to predict, at the generic
time level tk , the time step �tk identifying interval Ik. Following [46], this
prediction is carried out by defining a local time error estimator instead of the global
one �t in (13). As a consequence, we observe that the number n of time intervals
is not known a priori but it will be fixed by the adaptive procedure itself. As in
Sect. 3.2.1, we consider a generic scalar variable z together with the corresponding
linear finite element approximation zh. Then, in the spirit of a recovery-based error
estimator, we move from the H1-seminorm of the time discretization error on the
time interval Ik�1

ˇ̌
ez
h .x/

ˇ̌2
H1.Ik�1/

D
Z
Ik�1

ˇ̌̌
ˇ@z .x/
@t

� @zh .x/
@t

ˇ̌̌
ˇ
2

dt: (18)

Of course, at the generic time level tk , we know zh at all the previous times t i , with
i D 0; : : : ; k�1. Now, the idea is to replace the two time derivatives in (18) with two
easily computable quantities. We approximate the derivative of the discrete solution,
@zh .x/ =@t , by replacing zh with the straight line interpolating zh at tk�1 and tk (see
Fig. 2, center), so that

@zh .x/
@t

ˇ̌̌
Ik�1

' zkh � zk�1h

�tk�1
;

with zjh D zh.x; t j / for j D 0; : : : ; n. To replace @z .x/ =@t , we first substitute z
with a suitable recovered solution zR and then we compute @z .x/ =@t as @zR .x/ =@t .
In particular, we select zR as the parabola interpolating the pairs of values
.tk�2; zk�2h /, .tk�1; zk�1h /, .tk; zkh/ (see Fig. 2, center). Notice that this choice leads to
a piecewise linear recovered gradient in contrast to the piecewise constant discrete
quantity @zh .x/ =@t (see Fig. 2, right), in agreement with a standard recovery-
based approach. Thus, the H1-seminorm in (18) is approximated via the local time
recovery-based error estimator �k�1;t .zh.x// as

ˇ̌
ez
h .x/

ˇ̌2
H1.Ik�1/

' QT
Z
Ik�1

ˇ̌̌@zR .x/
@t

ˇ̌̌
Ik�1

� zkh � zk�1h

�tk�1
ˇ̌̌2
dt D �

�k�1;t .zh.x//
�2
;

(19)
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with QT a suitable time scale factor typical of the problem at hand. Different choices
are possible for QT . It may just coincide with the time step�tk�1 or it may be related
to geometrical and/or physical quantities, e.g., we can choose QT D L=w, with
L a characteristic length of the domain ˝ and w a representative velocity. In the
numerical validation of Sect. 5, we always choose QT D �tk�1. Factor QT essentially
makes the time estimator dimensionless, i.e., suited to be added to the dimensionless
space estimator �Ah .e

z
h.t// in view of (13). Estimator �k�1;t .zh.x// can be evaluated

at each vertexN of the mesh, i.e., for any x  N . Nevertheless, we need in practice
a unique value for such an estimator on the interval Ik�1. With this aim, we first
obtain a unique value on the generic triangle K 2 Th simply by considering the
mean of the values at the three vertices of K

�
�k�1;t;K.zh/

�2 D 1

3

X
N2K

�
�k�1;t .zh.N //

�2
:

Then, we lump the information on the whole mesh by introducing the further area-
weighted average

�
�k�1;t .zh/

�2 D 1X
K2Th

jKj
X
K2Th

jKj ��k�1;t;K.zh/�2: (20)

In [46] we employ a standard sum over the mesh elements to get the value �k�1;t .zh/.
The variant in (20) normalizes the time error estimator with respect to the domain
dimension. This makes the element time estimators comparable even in the presence
of strongly non-uniform spatial meshes. Finally, in view of the time adaptive
procedure in the next section, we formally introduce the global time error estimator

�
�t .e

z
h/
�2 D

nX
kD1

�
�k�1;t .zh/

�2
(21)

which can be introduced in (13). Notice that the number n of time subintervals
involved in (21) represents an unknown of the space-time adaptive procedure.

4 The Solution-Adaptation Procedure

We illustrate here how we combine the discretization of ADE (1) with the informa-
tion provided by the error estimators �Ah .e

z
h.t// and �t .e

z
h.x// to automatically adapt

the spatial mesh Th and the discretization of the time window Œ0; T � to model an
unsteady solute transport process. We aim at guaranteeing the total error below a
certain global tolerance � . Following [39], we split this tolerance by setting a space
and a time tolerance, �h and �t , respectively such that � D �h C �t . Tolerance �h
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will drive the mesh adaptive procedure detailed in Sect. 4.1, while �t will lead us to
identify the next time step via the predictive procedure in Sect. 4.2. The algorithm
coupling these two adaptive procedures with the discrete solver for (1) is then
provided in Sect. 4.3.

4.1 Spatial Mesh Adaptivity

We resort to a well-established metric-based adaptive procedure, following the
approach proposed in [22] and successfully employed in a number of works
(see, e.g., [18, 39, 40, 47]). In particular, the adapted mesh is built starting from
a metric induced by the error estimator �Ah .e

z
h.t// so that the number of mesh

elements is minimized and the tolerance �h is guaranteed on �Ah .e
z
h.t// via an error

equidistribution criterion.
According to the generic definition, a metric is a symmetric positive definite

tensor field M W ˝ ! R
2�2, such that M .x/ D QRT .x/ Q��2.x/ QR.x/ for any x 2 ˝ ,

with Q�.x/ D diag. Q�1.x/; Q�2.x// and QRT .x/ D ŒQr1.x/; Qr2.x/� a positive diagonal and
an orthogonal tensor, respectively [24]. For an assigned mesh Th, it is a standard
practice to approximate the pointwise tensors Q�.x/ and QR.x/ via quantities which
are piecewise constant on Th, so that Q�i .x/

ˇ̌
K

D Q�i;K , Qri .x/
ˇ̌
K

D Qri;K for any
K 2 Th and for i D 1; 2.

Now, we briefly explain how to associate a piecewise constant metric M � with
a background grid T B

h by exploiting the anisotropic spatial error estimator in
(15)–(16) evaluated on T B

h . For the sake of simplicity, we drop the time dependence
in (15)–(16). In particular, we focus on the local estimator �AK;h.zh/. We properly
rewrite it, by collecting the area information in a unique multiplicative factor,
i.e., as

�
�AK;h.zh/

�2 D j�
OK j�1;K�2;K

n
sK
�
rT1;KG

�

K.EK.zh//r1;K
�Cs�1

K

�
rT2;KG

�

K.EK.zh//r2;K
�o

(22)

where G�K.EK.zh// D GK.EK.zh//=j�K j, with j�K j D j� OK j�1;K�2;K and � OK
defined as in Lemma 1. Now, the idea is to apply an error equidistribution criterion
to guarantee that each element K 2 T B

h provides the same contribution to the

global error, i.e., to ensure that
�
�AK;h.zh/

�2 D �2loc, where �loc D �h=card.T B
h / is

the local tolerance, with card.T B
h / the cardinality of the background grid. At the

same time, we aim at minimizing the number of mesh elements, which is equivalent
to maximizing the area of each triangle K . Consequently, we minimize the term in
brackets in (22), i.e., for each K 2 T B

h , we solve the minimization problem

find fsK; r1;Kg W sK
�
rT1;KG

�
K.EK.zh//r1;K

�Cs�1K �
rT2;KG

�
K.EK.zh//r2;K is minimum;
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constrained by the following requirements sK � 1, kr1;Kk2 D kr2;Kk2 D 1,
r1;K � r2;K D 0. As shown in [38], there exists a unique analytical solution to this
problem which provides the optimal aspect ratio Qs �K D p

	1;K=	2;K and the optimal
direction Qr �1;K D g2;K , with 	1;K � 	2;K the eigenvalues ofG�K.EK.zh// and g2;K the
eigenvector associated with 	2;K . The metric M � is then completely identified by
deriving two separate optimal values Q��1;K , Q��2;K from Qs �K . With this aim, we exploit

the error equidistribution to get Q��1;K D
q
p Qs �K , Q��2;K D

q
p=Qs �K , with

p D Q��1;K Q��2;K D �2loc

h
j� OK j .Qs �K 	2;K C .Qs �K /�1 	1;K/

i�1
: (23)

To summarize, the metric M � induced by �Ah .e
z
h.t// is univocally identified by the

triplets
˚ Q��1;K; Q��2;K; Qr �1;K

�
, with K 2 T B

h . This provides us with an optimal metric,
which minimizes the number of elements, while guaranteeing the desired global
accuracy �h and the equidistribution of the spatial discretization error.

Finally, the new adapted mesh is generated moving from the metric M � and
the background grid T B

h . To this end, we employ the two-dimensional metric-
based mesh generator BAMG which performs a remesh on T B

h , although trying
to preserve the original position of the mesh nodes [27].

The generation of the adapted mesh is constrained by some additional checks.
In particular, we avoid an excessive element clustering, for instance where solution
discontinuities occur, by setting a minimum value pmin on the product Q��1;K Q��2;K ,
i.e., on the minimum area allowed forK . In practice, we predict p via (23) and then
we set p D max.p; pmin/. We also check the number of the triangles predicted by
the metric M �. We impose that the cardinality of the adapted mesh belongs to a
specific interval ŒNmin;Nmax�, to prevent an extreme coarsening or refinement of the
mesh elements. In particular, we predict the number of elements associated with the
metric M �; if this number is smaller than Nmin or greater than Nmax, we generate a
new metric via a global and uniform scaling of the tensor M �. This check turns out
to be crucial especially in the presence of unsteady phenomena characterized by a
strong heterogeneity of space-time dynamics.

4.2 Time Step Adaptivity

Goal of the time step adaptivity here proposed is to predict, at each time tk , the
time step �tk which identifies the next time level tkC1. An error equidistribution
criterion is pursued also in this case. Nevertheless, since the total number of time
intervals is determined only at the end of the adaptive procedure, we fix a local
tolerance ��tt to be associated with each Ik instead of the global tolerance �t as in
(13). Following [46], we rewrite the time error estimator in (20) as

�
�k�1;t .zh/

�2 D �
�tk�1�k�1;t .zh/

�2
(24)
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with

�
�k�1;t .zh/

�2 D 1�
�tk�1

�2X
K2T k

h

jKj
X
K2T k

h

jKj��k�1;t;K.zh/�2

and where T k
h denotes the spatial mesh associated with the time tk . Relation (24)

is now exploited to predict �tk . In particular, after imposing �k�1;t .zh/ D ��tt , we
solve (24) with respect to the time step and we obtain

�tk D ��tt
�k�1;t .zh/

: (25)

Finally, we check that the time step predicted in (25) belongs to a suitable range of
variation Œ�tmin; �tmax�, fixed a priori according to the temporal scales involved in
the problem at hand. This control improves the global stability and accuracy of the
whole adaptive procedure. Finally, since the time recovery procedure (19) involves
the three times tk , tk�1, tk�2, we are obliged to assign a priori the time steps �t0

and�t1, which are both set to �tmin in the numerical validation below.

4.3 Coupling Discretization with Adaptivity

We detail here the strategy followed to combine the discretization in Sect. 2.1
with the space and time adaptive procedures of Sects. 4.1, 4.2, in view of a
reliable and efficient modeling of unsteady solute transport processes. For this
purpose, we identify the scalar variable z driving the adaptive procedure with the
concentration C .

To start the solution-adaptation procedure, we have to preliminarily assign the
initial datum C0 in (3) as well as the velocity field v, solution to Darcy’s problem
(4), on a sufficiently fine initial grid T 0

h . We focus now on the generic time tk�1,
i.e., we assume to know the discrete concentration field Ck�1

h D Ch.t
k�1/ at time

tk�1, the mesh T k�1
h and the time step �tk�1, both predicted at the previous

time step. First of all, we discretize Eq. (1) on the interval Ik�1 via the stabilized
finite element scheme (9), thus yielding the approximate solution C �kh at time tk .
This solution is employed to generate the next adapted mesh, T k

h , following the
anisotropic adaptive procedure detailed in Sect. 4.1, after identifying zh with C �kh
and T B

h with T k�1
h . Then, all the quantities associated with T k�1

h are projected on
the new mesh T k

h . This last projection leads us to define the actual value, Ck
h , of

the concentration field at the time tk . Notice that, to contain the computational cost
characterizing the whole time window, we do not resort to an iterative procedure to
get the adapted mesh T k

h , by demanding, for instance, a stagnation of the number of
mesh elements (see, e.g., [39]). On the contrary, the mesh identified by the optimal
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Fig. 3 Sketch of the solution-adaptation procedure

metric in Sect. 4.1 is directly assumed as the mesh to be associated with time tk .
Finally, moving from the approximate solutions Ck

h , Ck�1
h and Ck�2

h , we predict the
next time step �tk (i.e., the new time level tkC1) via the time adaptive procedure in
Sect. 4.2, after setting zh D Ch and a local time tolerance ��tt . The whole procedure
is sketched in Fig. 3.

Concerning the projection step, following [46], we resort to a standard
L2-projection which exhibits good conservation properties when applied, for
instance, to the unsteady shallow water equations [47]. More sophisticated recipes
to deal with such a projection are available in the literature (see, e.g., [1, 19]).

5 Numerical Results

We assess here the methodology introduced in Sects. 3–4. In particular, we first
perform a quantitative investigation by considering a test case characterized by
an analytical solution. Then, we model a solute transport experiment performed
in a homogeneous sand box. For this test case, a comparison with experimental
measurements is provided as well.

5.1 Analytical Test Case

We consider a two-dimensional solute transport problem assigned in the semi-
infinite rectangular domain ˝ D .0;C1/ 	 .0;W /[m]. A constant solute
concentration C in D 1 is introduced into the domain at the inlet section � in

corresponding to the segment f.x1; x2/ W x1 D 0m; x2 2 ŒY1; Y2�mg. A zero-
flux boundary condition is imposed on the remaining part of the left-side boundary
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as well as on the top and bottom edges. Then, we assume that a horizontal uniform
velocity field v D .v1; 0/

T , with v1 � 0, is applied to the system, while we choose
Dm D 0, ˛L D 0:1 m and ˛T D 0:05 m in (2) and the initial value C0 D 0.
An implicit analytical expression for the concentration field C , solution to (1), is
available in [52] and coincides with

C .x1; x2; t/ D
C1X
nD0

LnPn cos.�x2/
n

exp
h
x1.v1�ˇ/
2D11

i
erfc

h
x1�ˇt
2
p
D11t

i
C exp

h
x1.v1Cˇ/
2D11

i
erfc

h
x1Cˇt
2
p
D11t

io
;

(26)

with

Ln D
8<
:
1

2
if n D 0

1 if n > 0;
Pn D

8̂<
:̂
Y2 � Y1
W

if n D 0

Œsin .�Y2/� sin .�Y1/�

n

if n > 0;

� D n
=W; ˇ D
q
v21 C 4D11 .�2D22/;

where erfc is the complementary error function, whileD11,D22 denote the diagonal
components of the dispersion tensor D according to (2). In particular, we set Y1 D
0:13m, Y2 D 0:67m, W D 1m and v1 D 10�3m/s. These values, together with
the choices made for ˛T and ˛L, are representative of a typical laboratory scale
transport setting.

The analytical solution (26) allows us to investigate the convergence properties
of the proposed adaptive procedure. We perform this analysis for a fixed time
level t� D 150 s, when the solute concentration C already exhibits a moderate
spread within the domain as shown in Fig. 4-a. Figure 4-b shows the corresponding

Fig. 4 Analytical test case: (a) contour plot of the concentration field in (26) for t� D 150s;
(b) corresponding anisotropic adapted mesh; (c) trend of the H1.˝/-seminorm of the relative
error for different space-time meshes
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Table 1 Analytical test case: quantitative information associated with the convergence analysis

Fixed uniform Space adaptivity Space-time adaptivity

Nel 732 2,482 10,388 967 2,928 8,104 627 2,829 8,081

N�t 150 150 150 150 150 150 54 36 32ˇ̌
eCh .t

�/
ˇ̌
H1 3 � 10�1 1:70 � 10�1 9:7 � 10�2 1:18 � 10�1 5:93 � 10�2 3:47 � 10�2 1:54 � 10�1 5:72 � 10�2 3:78 � 10�2

anisotropic adapted mesh. The anisotropic features of the solution are not so marked.
This is confirmed by the corresponding maximum value of the aspect ratio which
is about equal to 8. We analyze the trend of the H1.˝/-seminorm of the spatial
discretization error eCh .t

�/ D C.t�/�Ch.t�/ at time t�. Concerning the evaluation
of the exact solution, we truncate the series (26) at the hundredth term while, to
mimic the semi-infinite domain, we identify ˝ with a rectangular domain whose
right side is sufficiently far from the left one so that it is never reached by the
phenomenon at hand. Homogeneous Neumann condition are assigned along this
fictitious boundary. In Fig. 4-c we compare the trend of the error eCh .t

�/ as a function
of the number of elements. We consider three different space-time discretization
strategies: i) fixed and uniform space-time grids; ii) meshes anisotropically adapted
in space, but fixed and uniform in time; iii) meshes adapted both in space and time,
with an anisotropic adaptivity in space. The slope of the three curves is comparable
and consistent with the expected order of convergence, i.e., �1=2, while it is evident
that, for a given number of mesh elements, the error associated with the fixed space-
time mesh is the largest one.

More quantitative information are provided in Table 1. For each type of mesh, we
furnish the mesh cardinality, #Th, the number,N�t , of time steps used to reach time
t� and the H1.˝/-seminorm of the error eCh .t

�/. Of course, a different tolerance
�h and different values for Nmin and Nmax drive the mesh adaptive procedure
through the columns of the table. The choice pmin D 10�5 is common to all the
simulations. The time step is set to�t D 1s for the fixed uniform and space adaptive
simulations (first two macro-columns in Table 1), while we set �tmin D 1 s and
�tmax D 20 s for the space-time adaptive procedure (i.e., in the third macro-column
in Table 1). An error of approximately 10% is obtained with a fixed space-time grid
of approximately 10; 000 triangles and 150 time intervals. On the other hand, for the
same N�t , we are able to guarantee a better accuracy (i.e., an error of about 6%)
via an anisotropic adapted mesh consisting of about 3; 000 triangles only. When
also the time step is adapted, we obtain a comparable error by resorting to a similar
number of elements but reducing N�t by a factor four. A comparison between the
second and the third macro-column shows that for a comparable number of mesh
elements, the number of time intervals predicted by the time adaptive procedure is
significantly reduced (i.e., by a factor comprised between three and five).

5.2 Solute Transport in a Homogeneous Sand Box

Goal of this section is to compare the results provided by our numerical approach
with experimental data. This provides an important added value to this work.
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Fig. 5 Experimental flow cell: (a) velocity vector field superimposed to the color map of
log10 kvk2; (b) pressure contour plot

The experiments are performed within a square flow cell with an extension of
0:249	0:249m2 and a thickness of 1:5 cm. The inlet and outlet sections are located
near the bottom-left and the top-right corner, respectively as shown in Fig. 5-a. The
width of the inflow and outflow sections is very small, equal to 3mm. The flow
cell is packed with a homogeneous sand with porosity � D 0:325 and permeability
k D 1:4256 � 10�10 m2 while, since the fluid is simply water, we set the viscosity
 and density � to 10�3Pa�s and 1; 000Kg/m3, respectively [32]. The solute
concentration in the system is zero at the beginning of the experiment. A solution
containing a constant concentrationC in is then introduced as a step-input at the inlet,
while a zero flux condition is imposed on the remaining part of @˝ . The injection
flow rate is constant in time and equal to Qin D 4ml/s. The available experimental
measurements correspond to the time evolution of the average concentration at the
outflow section, i.e., they coincide with the breakthrough curve

Cout.t/ D 1

j�outj
Z
�out

C.x; t/d� 8t 2 Œ0; T �; (27)

where �out is the outflow section and j�outj denotes its length. We consider here data
from two identical experimental tests to increase the robustness of the results with
respect to measurement errors.

The velocity field v is obtained by approximating (4) through the discrete formu-
lation (7) on a fixed uniform unstructured grid of 22;108 elements. Figure 5 shows
the pressure contour plot in panel b), and the velocity vector field superimposed
to the contour plot of the corresponding modulus in logarithmic scale in panel a).
A constant (atmospheric) pressure is imposed at the outlet boundary, while we set
v � n D Qin=Ain at the inlet, Ain being the area of the inflow cross section. The
remaining parts of the boundary of the flow cell are considered as impermeable, i.e.,
we set v � n D 0.

Then, the solute transport is modeled by means of the space-time adaptive
procedure detailed in Sect. 4 within the time window Œ0; 12;000� s. The dispersivities
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Fig. 6 Experimental flow cell: solute concentration field (a)-(c); associated anisotropic adapted
mesh (d)-(f); details of the adapted mesh (g)-(i) for t D 10s (left), t D 1; 500s (center), t D 3; 000s
(right)

˛L and ˛T are set to 10�4m and 10�5m, respectively, upon preliminary visual
calibration against experimental data. The effect of molecular diffusion is here
embedded in the dispersion coefficients, i.e., we set Dm D 0. In the following,
we describe the process evolution, we provide a comparison with experimental
measurements and, finally, we discuss the sensitivity of the numerical results to
the parameters involved in the space-time adaptive technique.

Figure 6-a-c shows some snapshots of the concentration evolution. During the
first instants the solute spreads radially into the cell, around the inflow section
(Fig. 6-a). Then, the advective field and the dispersive processes deform and displace
the concentration front towards the center of the cell (Fig. 6-b). At time t � 3; 000 s,
the solute reaches the outlet boundary following a preferential flow path (Fig. 6-c).
For longer times, the solute slowly spreads towards the top-left and bottom-right
corners of the cell. At the final time T D 12; 000 s, the cell is characterized by
a constant concentration equal to one. In Fig. 6-d-f we gather the corresponding
anisotropic adapted meshes, while a zoom in on the boxed areas is provided in
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the last row of the figure. A good matching between solution and mesh can be
observed. The refinement of the mesh essentially follows the advancing front, where
the gradient variations are significant, while a general coarsening occurs where the
concentration is basically uniform. The anisotropic features of the adapted mesh
become more significant when the front develops and gradually spreads the cell
(see the enlarged views in Fig. 6-h and 6-i). On the contrary, at the initial times the
triangles are clustered around the inlet section but they exhibit a mild anisotropy,
due to extremely reduced size of the concentration front. Thus, the maximum value
of the aspect ratio increases in time, and corresponds to 26:5, 27:8 until 49:82 for
the meshes displayed in Fig. 6-d, -e, -f, respectively. The maximum value reached
by sK on the whole time window is 407:18. To obtain the results in Fig. 6, we
have employed the following setting for the parameters involved in the space-
time adaptive procedure: concerning the adaptivity in space we choose �h D 0:7,
Nmin D 400 and Nmax D 10; 000 while the adaptivity in time is performed by
assigning the values ��tt D 0:17,�tmin D 1 s and�tmax D 50 s.

The numerical validation demonstrates that the value pmin proportional to the
minimum allowed element area plays a critical role in the adaptive procedure. In
principle, the choice pmin D 10�6m2 should allow to capture all the meaningful
details of the process at hand since the whole flow cell area is equal to 0:062m2.
Nevertheless, this value is still too large to provide an accurate approximation of the
solute behaviour at the outlet and inlet cross sections, which are 3mm wide. This
represents a critical issue for two important reasons: (i) a sharp discretization of the
concentration field at the inlet is crucial to capture the initial times of the solute
evolution and, consequently, to allow the correct development of the phenomenon;
(ii) a proper discretization of the concentration at the outlet is essential to compare
the numerical results with the experimental measurements that we have at our
disposal, i.e., with the breakthrough curve (27). To take into account both these
demands, we introduce an adaptive choice of the quantity pmin during the simulation
time window, following this two-value strategy: for t < 20s, we set pmin D 10�9m2

to properly model the solution near the inflow section (see Fig. 6-d and 6-g); in
the next phase, we increase pmin to 10�6m2 to save computational resources (see
Fig. 6-e and 6-h); then, as soon as we detect at the outlet concentration values above
a given threshold (set to 10�3 in this application), we set again pmin D 10�9m2 (see
Fig. 6-f and 6-i).

We deal now with the comparison between the numerically computed and
experimentally measured breakthrough curves. As for the previous test case, we
consider three different space-time discretization strategies, namely, a fixed uniform
space-time mesh, a mesh anisotropically adapted in space but fixed and uniform in
time, a fully adapted mesh, i.e., adapted both in space and time. The fixed uniform
mesh is characterized approximatively by 10; 000 elements, while the discretization
step is�t D 1 s. When we adapt the spatial mesh only, we set �h D 0:7 and preserve
the constant time step �t D 1 s. Finally, the fully adaptive procedure is associated
with the values �h D 0:7 and ��tt D 0:14.

Figure 7 compares the corresponding results with the experimental measure-
ments. As shown in Fig. 7-a, the three simulations seem to correctly reproduce
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Fig. 7 Experimental flow cell: (a) comparison of experimental measurements with the numerical
breakthrough curves for three different choices of the space-time mesh; (b) enlarged view on the
early solute breakthrough in semi-logarithmic scale

the general trend of the experimental measurements within the considered time
window. However, a detailed inspection of the concentration trend at the ini-
tial times shows a significant difference among the three approximations (see
Fig. 7-b, where data are plotted in a semi-logarithmic scale to emphasize the small
values of the concentration characterizing the early tail of the solute breakthrough
curve). Note that accurate modeling of the early solute arrivals is often crucial,
for instance when dealing with risk assessment analysis in contaminant transport
scenarios [2]. The data of the experiment 1 show two isolated positive concentration
values at t < 3;000 s; then, a sudden increase of the concentration is observed at
t � 3;000 s. In our analysis we assume that the early arrival time of the solute
can be identified with t � 3;000 s, since the earlier values can be considered as
oscillations which typically cannot be rendered by a continuum scale approximation
such as the ADE (1). The solution obtained through a fixed space-time discretization
under-estimates the solute early arrival time of about 400 s (i.e., of about 15% of the
experimental value). When the mesh is spatially adapted and the time step is fixed to
�t D 1 s, the difference between the numerical and the experimental breakthrough
curves significantly reduces. However, this approach is computationally expensive,
since the spatial mesh is adapted at each of the 12;000 time steps. The space-time
adaptivity still provides a sufficiently accurate solution, while containing the whole
computational cost as the total number of time steps reduces to 1; 232. To provide
a quantitative assessment of the results, we compute the mean squared error (MSE)
between the computed and the observed breakthrough concentrations depicted in
Fig. 7. The MSE is defined as

MSE D

NOX
iD1

�
Cout;h.ti / � C �out.ti /

�2
NO

; (28)
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where C �out and Cout;h are the experimentally measured and the numerically com-
puted breakthrough concentrations, respectively, NO is the number of available
experimental observations and ti denotes the time corresponding to the i -th
observation. For the fixed uniform meshes we obtain a MSE of 6:417 � 10�4. The
MSE decreases to 2:983 � 10�4 and 2:811 � 10�4 when resorting to space and
to space-time adaptive procedures, respectively. We observe that, while all three
approximation strategies yield acceptable results in terms of MSE, the adaptive
discretization strategies enable us to halve the MSE with respect to the fixed
uniform discretization. Moreover, consistent with results presented in Sect. 5.1, we
emphasize that the space-time discretization technique enables us to obtain a slight
improvement of the accuracy with respect to the space adaptive methodology, while
significantly reducing the computational cost.

Now, we assess the sensitivity of the numerical results to the tolerances, �h
and ��tt . Figure 8 compares the experimental data with the solutions associ-
ated with the three choices �h D 1, 1:4, 1:8 for ��tt D 0:17. In particular,
Fig. 8-a provides the corresponding early breakthrough curves analogously to
Fig. 7-b, while Fig. 8-b shows the evolution in time of the cardinality of the
adapted meshes. The capability of the numerical breakthrough curves to reproduce
experimental observations decreases as the tolerance increases while the trend
becomes more and more irregular (see Fig. 8-a). In particular, the numerical curves
locate leftward which means that the solute arrival time is underestimated by
the numerical procedure. This can be justified by the considerable difference in
terms of mesh cardinality among the three simulations, as shown in Fig. 8-b. For
�h D 1 the number of elements increases for t 2 Œ0; 2; 600� s; then, the maximum
threshold Nmax D 10; 000 is reached and maintained for the remaining part of the
simulation time window. The increase in the number of elements is also associated
with the decrease of the parameter pmin, from 10�6m2 to 10�9m2, as previously
discussed. For �h D 1:4, we get a similar oscillation in the mesh cardinality for

Fig. 8 Experimental flow cell: (a) comparison of experimental measurements with the numerical
breakthrough curves in a semi-logarithmic scale and (b) time evolution of the mesh cardinality for
three different choices of the spatial tolerance �h
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t < 2; 600 s. Nevertheless, in this case, the number of elements smoothly increases
up to approximately 8; 000 triangles at the end of the simulation and the maximum
number Nmax of elements is never reached. For �h D 1:8, the number of mesh
elements is around 1; 000 for the entire simulation time. This significant difference
with respect to the number of elements predicted for �h D 1 is reflected in the
computed breakthrough curve (Fig. 8-a). The strong oscillations exhibited by the
numerical solution can be also ascribed to the reinterpolation step which involves
coarse meshes for �h D 1:8. The amplitude of the oscillations reduces for �h D 1:4

and �h D 1, namely in the presence of finer meshes.
Finally, we perform a sensitivity analysis to the local time tolerance ��tt .

Figure 9-a provides a comparison among the breakthrough curves and the exper-
imental data for �h D 0:7 and by choosing ��tt D 0:14; 0:17, 0:2. As expected, the
accuracy of the numerical solution decreases as the tolerance increases. In Fig. 9-b
we show the evolution of the time step predicted for the three different choices of
��tt . For ��tt D 0:2, the time step quickly changes from the initial value �tmin to
�tmax and then it remains constant for the rest of the simulation. For ��tt D 0:17, the

Fig. 9 Experimental flow cell: (a) comparison of experimental measurements with the numerical
breakthrough curves in a semi-logarithmic scale and (b) evolution of the time step �t for three
different choices of the local time tolerance ��tt ; (c) concentration fields corresponding to box 1
and (d) to box 2
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time step initially increases until reaching�t � 20 s at t � 1; 500 s. The numerical
solution corresponding to this time level is shown in Fig. 9-c. In this initial phase the
concentration front has a reduced amplitude and the concentration is equal to zero in
a considerable portion of the domain. At the same time, the concentration gradient
at the front decreases due to the effect of dispersion. These features justify the trend
of the time step observed in Fig. 9-b. As the front expands, we observe a progressive
reduction of the time step,which attains a minimum value �t � 5 s at t � 3; 000 s
when the solute reaches the outlet section (see Fig. 9-d), i.e., when the breakthrough
curve starts to sharply increase in time. As time advances, the concentration field
smoothly evolves and, for t > 3; 000 s, �t tends to the maximum allowed value
�tmax D 50 s. A similar trend can be observed for ��tt D 0:14, even though the
predicted time steps are now, in general, smaller with respect to the ones associated
with ��tt D 0:17. For instance, �t reaches the minimum value �tmin D 1 s around
t � 3; 000 s for a limited time interval.

6 Conclusions

Accurate numerical approximations are required to obtain reliable predictions of
solute transport processes in porous media. In this paper, we detail an adaptive
numerical methodology, where the computational space and time discretizations
are automatically selected on the basis of a suitable error control. In particular,
we implement an anisotropic mesh adaptation technique which allows us to
optimize the spatial computational grid according to the directional features of the
numerical solution. Both the adaptive procedures are grounded on recovery-based
error estimators, which typically guarantee robust and computationally cheap error
estimates.

A spatial mesh adaptivity significantly increases the accuracy of a finite element
approximation for a fixed number of elements. This has been quantitatively verified
in Sect. 5 by comparing the numerical results with an analytical solution as well
as with experimental measurements. However, the proposed metric-based adaptive
procedure may become computationally intensive, especially due to the prediction
of the new metric. As a consequence, we have tried to contain the number of
solution-adaptation iterations throughout each simulation, by combining space with
time adaptivity. Results in Sect. 5 show that coupling mesh with time step adaptivity
leads to a degree of accuracy similar to the one provided by the spatial adaptivity
only, but it significantly reduces the number of demanded time steps.

The comparison against experimental data has allowed to assess the influence of
the space-time discretization strategy on the accuracy of the simulation, quantified
in terms of solute concentration at the outlet section (i.e., the solute breakthrough
curve). In particular, we have focused on the analysis of the early solute arrival
times, which are relevant in practical applications, such as risk assessment in
contaminant transport analysis. It is shown that an adaptive space-time discretization
is able to greatly improve the prediction of early solute arrival times with respect to
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a fixed uniform space-time discretization, clearly upon setting the same physical
parameters in the differential problems describing flow and solute transport, respec-
tively. This result suggests that the impact of an adaptive space-time discretization
within parameter calibration and inverse modeling schemes may be relevant in
laboratory and field scale applications.

An ad-hoc tuning of the parameters involved in the solution-adaptation procedure
proved to be a key issue in view of meaningful results. In more detail, we constrain
both the space and time adaptivity via a set of criteria which improve the robustness
of the solution-adaptation approach. We resort to both global and local controls,
by fixing the minimum and maximum number of mesh elements and a minimum
value for the element area. Our results show that these controls have to be tuned
according to the characteristic space-time scales of the problem at hand, as well as
to the desired accuracy. In particular, a coarse mesh typically yields an oscillating
numerical breakthrough curve, due to successive interpolations between coarse
meshes at the outlet section. On the contrary, when the tolerance and the minimum
element area are properly tuned, these oscillations attain a negligible amplitude (i.e.,
O.10�2/ or smaller).

Future investigations may lead to combine different information within the space-
time adaptive strategy by properly intersecting distinct metrics, as proposed, e.g.,
in [47]. These metrics may be related to the numerical solution as well as to a
target output of the simulation (e.g., the breakthrough curve), in the spirit of a
goal-oriented approach [4, 17, 25]. Further extensions of this research will involve
solute transport modeling in the presence of both block heterogeneous and random
permeability fields, with a view to field scale applications.
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A 2D Topology-Adaptive Mesh Deformation
Framework for Mesh Warping

Jibum Kim, David McLaurin, and Suzanne M. Shontz

Abstract We propose a framework for performing anisotropic mesh deformations.
Our goal is to produce high quality meshes with no inverted elements on domains
which undergo large deformations. To the greatest extent possible, the meshes
should have similar element shape; however, topological changes are performed
as necessary in order to improve mesh quality. Our framework is based upon the
previous work of two of the authors and their collaborators (Kim et al., Int. J.
Numer. Methods Eng. 94(1):20–42, 2013; Kim et al., Computer and Mathematics
with Applications, Submitted, November 2014) and consists of four steps. The first
step is to perform anisotropic finite element-based mesh warping to estimate the
interior vertex positions based upon an appropriate choice of the PDE coefficients.
The second step is to perform multiobjective mesh optimization in order to eliminate
inverted elements and improve element shape. Edge swaps are then performed to
further improve the mesh quality. A final mesh smoothing pass is then performed.
Our numerical results show that our framework can be used to generate high quality
meshes with no inverted elements for very large deformations. In particular, the
addition of topological changes to our hybrid mesh deformation algorithm (Kim
et al., Computer and Mathematics with Applications, Submitted, November 2014)
proved to be an extremely efficient way of improving the mesh quality.
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1 Introduction

There are numerous scientific applications for which the geometric domains
deform as a function of time. Such applications include simulations of Arbitrary-
Lagrangian-Eulerian (ALE) fluid flow [1, 2], fluid-structure interaction [3, 4], ALE
plasticity [5], crack propagation [6], biomedical applications [7, 8], patient and
medical devices [9–11], and computer graphics [12]. Whenever such deformations
occur, the meshes must be updated with respect to time in order to remain valid
approximations of the geometry. There are two main types of strategies for updating
the mesh in response to a deforming geometric domain. The first strategy is to
remesh the domain whenever necessary in response to the deforming domain. This
typically creates a different mesh, and the associated numerical partial differential
equation (PDE) solution must be interpolated from the initial mesh to the new mesh
since their topology is different. Another issue with this approach is that frequent
remeshing can lead to loss of data resolution and accumulation of round-off errors
leading to inaccuracies [13]. Alternatively, a mesh deformation (i.e., mesh warping
or mesh morphing) strategy can be used to move the mesh from the source domain
onto the target domain; such techniques recompute interior mesh vertex positions
after the boundary has been deformed. Mesh warping is preferred over remeshing
based on accuracy (as described above) as well as efficiency.

There are numerous mesh warping techniques in the literature. We give a
summary of relevant mesh warping techniques here; however, this list is not
comprehensive. Mesh warping techniques are typically based on the solution of
a PDE which describes the motion of the interior mesh vertices or on the solution
of an optimization problem which guides the mesh motion based on desired prop-
erties. Researchers have proposed various mesh warping techniques [14] based on
Laplace’s equation, e.g., finite element-based mesh warping (FEMWARP) [15, 16],
weighted Laplacian smoothing [17], biharmonic PDEs [1], elasticity [18–20], and
an inverse distance function [21]. Researchers have also proposed techniques which
combine the solution of PDEs with techniques for altering the mesh topology [22–
25] in order to yield high quality deformed meshes in simulations with large
deformations.

Researchers have also proposed several optimization-based mesh deformation
techniques. For example, techniques have been developed based on a log-barrier
techniques [17] and the target matrix paradigm [26]. Many of the mesh defor-
mation techniques which are guided by optimization also involve PDE solutions.
For example, the nonlinear elasticity-based Untangling before Newton (UBN)
method [20] mentioned above can also be thought of as an optimization-based mesh
warping technique in that it solves a variational problem (which is equivalent to a
minimization problem) to achieve static equilibrium. An adjoint-based optimization
procedure for mesh warping was developed in [27] in order to improve the
robustness and extend the range of linear elasticity-based mesh warping techniques.
FEMWARP has also been combined with PDE-based level set techniques [9, 10],
the purpose of which is to first predict the mesh deformation using an evolving
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level set and then FEMWARP to deform the mesh to the location computed by
the level set method. Another example of a hybrid mesh deformation algorithm
which employs both optimization and PDEs is found in [28]. This particular hybrid
algorithm employs an anisotropic version of FEMWARP for the mesh deformation
followed by multiobjective mesh optimization [29] for smoothing and untangling of
the deformed mesh.

All of the methods described thus far, with the exception of the hybrid mesh
deformation algorithm in [28], suffer from one or more of the following problems:
a tendency to produce inverted elements for large boundary deformations, or an
inability to preserve features of the initial mesh in the deformed mesh.

In the current work, we consider larger boundary deformations than those in [28].
In particular, the hybrid mesh deformation method in [28] is unable to produce high
quality deformed meshes for these test cases.

In this paper, we propose a topology-adaptive mesh deformation framework for
mesh warping. In particular, we combine the hybrid mesh deformation algorithm
of Kim, Miller, and Shontz in [28] with topological changes in order to generate
high quality meshes for extremely large boundary deformations. We describe
our topology-adaptive mesh deformation framework in Sect. 2. In Sect. 3, we
describe several numerical experiments in which we test the ability of our algorithm
to generate high quality deformed meshes on several extremely large boundary
deformations. The numerical results from the first two experiments can be compared
against those from the same experiments in [28] in order to obtain a comparison
against the method by Kim, Miller, and Shontz. In Sect. 4, we summarize our work
and describe several possibilities for future work.

2 Algorithmic Framework

In this section, we describe our topology-adaptive mesh deformation framework for
use in mesh warping applications. Our mesh deformation framework is composed
of four steps: (1) anisotropic FEMWARP, (2) multiobjective mesh optimization,
(3) topological changes, and (4) mesh smoothing. Our algorithmic framework builds
upon the hybrid mesh deformation algorithm [28] of Kim, Miller, and Shontz, which
performs only step 1 (anisotropic FEMWARP) and step 2 (multiobjective mesh
optimization), and the multiobjective mesh optimization framework [29] of Kim,
Panitanarak, and Shontz.

Initially, the deformation that the user provides is applied to the boundary
vertices. This prescribes the final positions of the boundary vertices in the deformed
mesh. We then perform the four steps in our topology-adaptive mesh deformation
framework in order to compute the positions of the interior vertices.

The first step in our framework is to compute initial, approximate locations for
the interior vertices in the deformed mesh by performing one step of anisotropic
finite element-based mesh warping (i.e., anisotropic FEMWARP) with an appro-
priate choice of PDE coefficients as proposed in [28]. In particular, anisotropic
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FEMWARP solves the following anisotropic version of Laplace’s equation

� ˛
@2u

@x2
� ˇ

@2u

@y2
D 0 on �; (1)

where u D u0 on @�:We assume that ˛ > 0 and ˇ > 0 and solve the PDE using an
elliptic PDE solver. The mesh topology is held fixed during anisotropic FEMWARP.

We adaptively choose ˛ and ˇ with respect to the direction of the boundary
deformation. In [28], we demonstrated that ˛ and ˇ control the strength of the x-
and y-axis couplings between adjacent vertices, respectively. Therefore, ˛ should
be larger than ˇ if more deformation occurs along the x-axis. Similarly, ˇ should
be larger than ˛ if more deformation occurs along the y-axis. We compute the
cumulative boundary vertex displacements in the x and y directions to decide
in which direction more deformation occurs. Let xk and yk be the kth vertex
coordinates on the initial mesh and Oxk and Oyk be the kth vertex coordinates on the
deformed mesh. A particular choice of the anisotropic PDE coefficients that worked
well for our experiments in [28] was

(
˛ D PNB

kD1 . Oxk � xk/ ; k 2 B
ˇ D PNB

kD1 . Oyk � yk/ ; k 2 B;
(2)

where B is the set of boundary vertices and NB is the number of boundary vertices.
Here, the relative ratio between ˛ and ˇ can be understood as the angle of the
direction of the deformation [28].

Our second step is the multiobjective mesh optimization. The deformed mesh
using anisotropic FEMWARP could include inverted elements with poor element
qualities on the deformed domain when a huge deformation occurs. Similar to the
hybrid deformation algorithm [28], we employ the target matrix paradigm (TMP)
shape metric to improve the element quality on the deformed domain. The TMP
shape metric is useful when our goal is to preserve good element qualities (shapes)
on the deformed domain. Let .Adef/i and .Ainit/i be the Jacobians of the mappings
from the reference element to the actual elements in the deformed and initial
domains, respectively. The TMP shape metric in 2D is defined as

qi D ˇ̌
Ti � .adj.Ti /T /

ˇ̌2
F
;

where Ti D .Adef/i .Ainit/
�1
i . The TMP shape metric (qi ) is zero when the quality of

the element on the deformed mesh is same as the one on the initial mesh. In order
to eliminate inverted elements on the deformed domain, we employ the untangling
beta quality metric [29]. The untangling beta quality metric is defined as

qj D ˇ̌
Vj � ˇˇ̌ � .Vj � ˇ/;
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where Vj is the signed area of the j th element and ˇ is a user defined small constant
value. The untangling beta quality metric is zero when the deformed mesh does not
have any inverted elements.

Let the overall mesh quality computed by the TMP shape metric and the
overall mesh quality computed by the untangling beta quality metric be F1 and F2,
respectively. Then, F1 D PjEj

iD1 q2i and F2 D PjEj
jD1 q2j , where jEj is the number of

elements on the mesh.
In order to simultaneously untangle inverted elements and smooth the deformed

mesh, we employ the exponential sum multiobjective mesh optimization method
in [29]. The exponential sum multiobjective mesh optimization method utilizes
the min-max property, which minimizes the worst (maximum) objective function
using the exponential penalty function. The exponential sum multiobjective mesh
optimization function is denoted as

F D c ln
�
eF1=c C eF2=c

�
:

Our goal is to minimize F to find the optimal vertex positions on the deformed
domain. Similar to [29], we employ the Fletcher-Reeves nonlinear conjugate
gradient method to find a locally optimal point. The combination of the first two
steps described above is the hybrid mesh deformation algorithm in [28]. Similar
to other mesh untangling algorithms [26, 29], there is no guarantee that our hybrid
mesh deformation algorithm in [28] is able to always untangle the deformed mesh.

Once the mesh is untangled, we perform edge swaps (step 3) as indicated in [30]
in order to further improve the quality of the mesh. Even if we eliminate all inverted
elements after step 2, the output after step 2 still suffer from poor element qualities
when a huge deformation occurs. From [30],

For an edge uv with opposite vertices p and q, we flip uv if the Delaunay flipping criterion
(i.e., †upv C †uqv > 
) is satisfied. . . We used a greedy strategy to flip edges in
decreasing order of maximum opposite angle. . . .

This work differs from [30] in the manner in which infinite loops cause by repeated
edge flipping are avoided. There, a constraint was added to the algorithm to only
allow a given edge to be flipped once. Here, a suitably small tolerance, tol (a scalar
multiple of the run-time-calculated round-off error), is used as a “buffer” for angle
comparison. This changes the edge-flip criteria to: .†upv C †uqv > .
 C tol//

This buffer lessens the likelihood of numerical errors causing infinite loops. Since
an infinite is loop is still possible (but improbable), a limit of 100 flips per edge was
enforced—but never encountered in practice. This developed strategy of limiting
edge-flips produced results that were more favorable for this application than those
in [30]. Additionally, any edge flips that would create invalid topology (cannot
flip boundary edges) or geometry (inverted/tangled triangles) were not allowed.
GRX5 [31], a topology repair and feature removal toolkit and library, was used
to make the topological changes. The data structures and algorithms are optimized
for performing topological operations on triangular surface grids. Currently it is
available as a stand-alone tool and is also incorporated into SolidMesh [32].
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The final step in our mesh deformation framework is to perform a final pass
of mesh smoothing according to the inverse mean ratio (IMR) metric in order to
obtain further improvement in the mesh quality. Let the coordinates of the three
vertices of a triangle denoted by a, b and c. Then, an incidence matrix,C is given by
Œb � a; c � a�. For an equilateral triangle, the incidence matrix for an ideal element,
W , is denoted by

W D
"
1 1

2

0
p
3
2

#
;

The IMR quality metric measures how similar the current element to the ideal
element (equilateral element). The IMR quality metric is defined as

qIMR D
��CW�1

��2
F

2
ˇ̌
det.CW�1/

ˇ̌ :
The IMR quality metric has the value of 1 for the ideal element (equilateral
triangle) and a smaller value indicates a better element quality. Similar to the
TMP shape metric, we compute the overall mesh quality by computing, FIMR DPjEj

iD1 q2IMR. We minimize FIMR using the the Fletcher-Reeves nonlinear conjugate
gradient method to find a locally optimal point. For our test meshes, roughly 10–
30 nonlinear conjugate gradient iterations are needed to reach the locally optimal
points. Numerical results show that our final mesh smoothing step is able to improve
the average and worst mesh quality up to 52.2 % and 96.2 %, respectively for the test
meshes.

3 Numerical Experiments

Table 1 summarizes a description of each step and language/software we used to
perform each step. We use Mesquite [33] to perform steps 2 and 4. We stop to
perform step 2 and move to step 3 when we eliminates all inverted elements on the
deformed mesh. We use GRX5 [31] to perform step 3. For step 3, GRX5 was used

Table 1 Description of each step

Description of each step Language/software

Step 1 Perform anisotropic FEMWARP C/C++

Step 2 Perform multiobjective mesh optimization Mesquite [33]

Step 3 Perform topological changes C/C++

Step 4 Perform mesh smoothing Mesquite [33] (C++)
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to swap interior edges that did not meet Delaunay criteria. The resultant mesh is a
constrained Delaunay triangulation.

In our framework, we first perform multiobjective mesh optimization (step 2)
and perform topological changes (step 3) as a next step. This is because preliminary
numerical experiments show that the reverse order (first perform step 3 and
second perform step 2) results in much slower multiobjective mesh optimization
time compared with the proposed order. When we perform multiobjective mesh
optimization, we use the TMP shape metric such that the initial element and the
deformed element have the similar element shape. However, we noticed that initially
performing edge swaps often result in output meshes which are less similar to the
initial mesh and therefore time to perform multiobjective mesh optimization could
be very slow.

We compare our mesh deformation framework with Knupp’s mesh deformation
algorithm [26]. Knupp’s mesh deformation algorithm sets the initial mesh to be a
reference mesh and deforms the given mesh to be similar to the reference mesh
based on a target matrix paradigm framework. We use Mesquite [33] to implement
Knupp’s mesh deformation algorithm.

The machine employed for this study is equipped with an AMD Opteron
processor 6174 (2.2 GHz) and 6.5 GB of RAM.

3.1 Moving Bar Domain for Anisotropic Boundary
Deformation Along the Y-axis

We consider a moving bar domain where the deformation occurs along the y-axis.
Since the deformation only occurs along the y-axis, we chose the PDE coefficients,
˛=0 and ˇ=1. Figures 1, 2, 3, 4, and 5 show the initial mesh and output meshes after
each step. The initial mesh (Fig. 1) has no inverted elements and the output mesh
after performing anisotropic FEMWARP (Fig. 2) has 84 inverted elements. Most of

Fig. 1 Moving bar domain for anisotropic boundary deformation: Initial mesh (left) and zoomed-
in mesh (right) on the bar domain
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Fig. 2 Moving bar domain for anisotropic boundary deformation: Output mesh after step 1 (left)
and zoomed-in output mesh after step 1 (right)

Fig. 3 Moving bar domain for anisotropic boundary deformation: Output mesh after step 2 (left)
and zoomed-in output mesh after step 2 (right)

Fig. 4 Moving bar domain for anisotropic boundary deformation: Output mesh after step 3 (left)
and zoomed-in output mesh after step 3 (right)
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Fig. 5 Moving bar domain for anisotropic boundary deformation: Output mesh after step 4 (left)
and zoomed-in output mesh after step 4 (right)

Table 2 Mesh quality statistics of moving bar domain measured by the inverse mean ratio quality
metric and the number of inverted elements after each step

# of inverted
Mesh quality Minimum Avg rms Maximum Std.dev. elements

Initial 1 1.076 1.081 1.649 0.110 0

Step 1 1 11,628.3 107,803 1e+06 107,174 84

Step 2 1 2.135 3.669 71.127 2.970 0

Step 3 1 1.268 1.348 10.682 0.456 0

Step 4 1 1.081 1.086 2.019 0.0969 0

Knupp [26] �0:000471 2.478 33.826 2,822.830 33.736 27

Here, “each step” indicates the output mesh after each step

the inverted elements occur around the bar due to the large deformation. The output
mesh after performing multiobjective mesh optimization is shown in Fig. 3. After
this step, all inverted elements are eliminated but many elements are still distorted
due to the large deformation. The output mesh after performing topological changes
is shown in Fig. 4. Here we observe that mesh quality is improved—especially the
poorest quality elements. The output mesh after performing final mesh smoothing
is shown in Fig. 5. Here we observe that the final output mesh has a good element
quality and similar isotropy relative to the initial mesh.

Table 2 shows mesh quality statistics and the number of inverted elements of
the initial and output meshes after each step. The IMR quality metric was used
to measure the element quality. Here, a smaller value indicates a better element
quality. The final output mesh is exhibits similar element quality to the initial mesh
(near isotropy). Knupp’s mesh deformation algorithm [26] results in an output mesh
with 27 inverted elements and poor element qualities. Knupp’s mesh deformation
algorithm does not include the mesh untangling step and only tries to keep similar
element qualities. Therefore, we observe that Knupp’s mesh deformation algorithm
fails to produce an output mesh with no inverted elements and good element
qualities.
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3.2 Moving Cylinder Domain for Anisotropic Boundary
Deformation Along the X-axis

We consider a moving cylinder domain where the deformation occurs along the
x-axis. We choose the PDE coefficients ˛=1 and ˇ=0, since the deformation only
occurs along the x-axis. Figures 6, 7, 8, 9, and 10 show the initial mesh (Fig. 6)
and output meshes after performing each step. Overall results are similar to the
previous moving bar example. Many poor quality and inverted elements (19 inverted
elements) occur after the large deformation (Fig. 7). After performing multiobjective
mesh optimization, we are able to eliminate inverted elements; but poor quality
elements persist around the cylinder (Fig. 8). We observe that topological changes
are effective in that they adjust the edges so that an increased amount of vertex
movement can be performed as compared to before. For this example, topological
changes reconnected the edges in the crowded area around the cylinder (Fig. 9).
The final output mesh has a good element quality after performing mesh smoothing
(Fig. 10).

Table 3 shows mesh quality statistics and the number of inverted elements
of the initial mesh and output meshes after performing each step. The output
mesh, after performing multiobjective mesh optimization, still suffers from poor
element quality. However, performing topological changes significantly improves
the element quality. The worst element quality improves approximately 99 % after
performing topological changes. Note that the step 3 is significantly faster than
the step 2 as we will discuss later. Similar to the previous moving bar example,
the final output mesh has a similar element quality to the initial mesh. Similar to
the previous example, Knupp’s mesh deformation algorithm [26] fails to eliminate
inverted elements and results in an output mesh with poor element qualities.

Fig. 6 Moving cylinder domain for anisotropic boundary deformation: Initial mesh (left) and
zoomed-in mesh (right) on the cylinder domain
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Fig. 7 Moving cylinder domain for anisotropic boundary deformation: Output mesh after step 1
(left) and zoomed-in output mesh after step 1 (right)

Fig. 8 Moving cylinder domain for anisotropic boundary deformation: Output mesh after step 2
(left) and zoomed-in output mesh after step 2 (right)

Fig. 9 Moving cylinder domain for anisotropic boundary deformation: Output mesh after step 3
(left) and zoomed-in output mesh after step 3 (right)

Fig. 10 Moving cylinder domain for anisotropic boundary deformation: Output mesh after step 4
(left) and zoomed-in output mesh after step 4 (right)
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Table 3 Mesh quality statistics of moving cylinder domain measured by the inverse mean ratio
quality metric and the number of inverted elements after each step

# of inverted
Mesh quality Minimum Avg rms Maximum Std.dev. elements

Initial 1 1.040 1.040 1.940 0.0594 0

Step 1 1 8,490.440 92,098.6 1e+06 91,706.4 19

Step 2 1 9.437 148.19 6,979.570 147.889 0

Step 3 1 1.761 2.358 17.131 1.568 0

Step 4 1 1.159 1.171 1.948 0.170 0

Knupp [26] �0:000441 15.843 7,296.871 345,349 7,295.152 248

Here, “each step” indicates the output mesh after each step

Fig. 11 Moving particles domain for anisotropic boundary deformation: Initial mesh (left) and
zoomed-in mesh on the particles domain (right)

3.3 Moving Particles Domain for Anisotropic Boundary
Deformation Along the X-axis

We consider a geometry that simulates moving particles—where several particles
(cylinders) are moving in anisotropic ways. This example is more challenging than
the previous moving cylinder example, since particles with different size are moving
in different directions along the x-axis. The PDE coefficients are chosen as ˛=1
and ˇ=0 because the deformation occurs along the x-axis. Figure 11 shows the
initial mesh and the output meshes (Figs. 12, 13, 14, and 15) after performing each
step. The bottom two particles are initially close each other and move toward the
boundary. Therefore, movement of the vertices in elements around each particle
is highly constrained after the deformation occurs (Fig. 12). After deformation,
218 inverted and (or) anisotropic elements are generated—mostly around each
particle. After performing multiobjective mesh optimization, all inverted elements
are removed, but many of the elements are still anisotropic, and the movement
of the corresponding vertices is highly constrained (Fig. 13). However, we are
able to more uniformly distribute the positions of these elements after performing
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Fig. 12 Moving particles domain for anisotropic boundary deformation: Output mesh after step 1
(left) and zoomed-in output mesh after step 1 (right)

Fig. 13 Moving particles domain for anisotropic boundary deformation: Output mesh after step 2
(left) and zoomed-in output mesh after step 2 (right)

Fig. 14 Moving particles domain for anisotropic boundary deformation: Output mesh after step 3
(left) and zoomed-in output mesh after step 3 (right)
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Fig. 15 Moving particles domain for anisotropic boundary deformation: Output mesh after step 4
(left) and zoomed-in output mesh after step 4 (right)

Table 4 Mesh quality statistics of moving particles domain measured by the inverse mean ratio
quality metric and the number of inverted elements after each step

# of inverted

Mesh quality Minimum Avg rms Maximum Std.dev. elements

Initial 1 1.017 1.018 2.548 0.0430 0

Step 1 1 4,893.13 69,907.3 1e+06 69,735.9 218

Step 2 1 2.889 17.421 1,346.45 17.180 0

Step 3 1 1.348 1.774 93.742 1.154 0

Step 4 1 1.087 1.095 3.609 0.132 0

Knupp [26] �0:00520 2.850 28.434 4,631.670 28.290 647

Here, “each step” indicates the output mesh after each step

topological changes. After performing topological changes, the worst element
quality is improved approximately 93 % (Fig. 14). After the final mesh smoothing
pass, we are able to restore element quality similar to the input mesh (Fig. 15).

Table 4 shows mesh quality statistics and the number of inverted elements for
the initial mesh and the output meshes after each step. We observe that the overall
mesh quality of the final output mesh is similar to the initial mesh. Similar to
previous examples, Knupp’s mesh deformation algorithm is not able to remove
inverted elements in the deformed mesh and instead increases the number of inverted
elements.

3.4 Summary of Numerical Results

Choice of PDE Coefficients We compare FEMWARP [15, 16] with anisotropic
FEMWARP in terms of both the number of inverted elements and efficiency.
FEMWARP always fixes the PDE coefficient as ˛=1 and ˇ=1; however, anisotropic
FEMWARP adaptively chooses the appropriate PDE coefficients with respect to
the direction of deformation. Figure 16 shows the number of inverted elements
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Fig. 16 Number of inverted elements after performing FEMWARP and anisotropic FEMWARP

Fig. 17 Time (s) to untangle inverted elements using multiobjective mesh optimization

after performing FEMWARP and anisotropic FEMWARP. The output mesh with
anisotropic FEMWARP has up to 95.9 % fewer number of inverted elements than the
output mesh with isotropic FEMWARP. Since mesh untangling step is a relatively
time-consuming step, these results indicate the importance of choosing appropriate
PDE coefficients. Figure 17 shows the timing results for using FEMWARP and
anisotropic FEMWARP to eliminate inverted elements using multiobjective mesh
optimization (step 2). The FEMWARP algorithm by itself does not include the
mesh untangling step. Therefore, for the purposes of comparison, we apply our step
2 to untangle the output meshes after applying FEMWARP. We observe that the
use of anisotropic FEMWARP results in a decrease in the untangling time of up to
67.3 % compared with using FEMWARP. Note that the multiobjective optimization
step, which performs untangling, is the slowest individual step of the developed
algorithm. Therefore, it is desirable to have as fewer inverted elements as possible
by choosing appropriate PDE coefficients.

Mesh Quality Figures 18 and 19 shows the average and the worst element quality
of the initial mesh and the final output mesh (after step 4), respectively, for each
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Fig. 18 Average element quality of the initial mesh and the final output mesh for each geometric
domain measured by the IMR quality metric

Fig. 19 Worst element quality of the initial mesh and the final output mesh for each geometric
domain measured by the IMR quality metric

geometric domain. We observe that our framework is able to maintain good element
quality even when large deformations were performed. For a moving bar and
cylinder domain, the initial and the final output meshes exhibit nearly identical mesh
quality, which is highly desirable for PDE-based applications. For a challenging
moving particles domain, our algorithm is able to maintain similar average mesh
quality; although a slight increase in the worst element quality was noticed.

Timing Results Table 5 shows timing results of each step for three geometric
domains. We compare our timing results with Knupp’s deformation algorithm [26].
We observe that step 2 and step 3 are the slowest and fastest steps of the entire
procedure, respectively. Step 3 significantly improves the overall element quality
and distributes the elements whose vertex movement is highly constrained, and it
takes less than 1 s to perform. This timing result justifies the motivation of using step
3 to rather than keep performing step 2 to improve the element quality. Note that our
algorithm performs topological changes (step 3) right after all inverted elements are
eliminated. Knupp’s mesh deformation algorithm is slightly faster to converge than
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Table 5 Timing results (s) of each geometric domain

Timing (s) Step 1 Step 2 Step3 Step 4 Knupp [26]

Bar (7K elements) 1:512 141:714 0:003 16:854 131:902

Cylinder (2K elements) 0:625 20:586 0:003 6:151 20:443

Particles (44K elements) 4:183 540:674 0:062 53:742 534:124

our framework, but it results in an output mesh with inverted elements and poor
element qualities.

4 Conclusions

We propose a mesh deformation framework for anisotropic mesh deformations. Our
framework is composed of four steps: (1) anisotropic FEMWARP, (2) multiobjective
mesh optimization, (3) topological changes, (4) mesh smoothing. Numerical results
show that our framework successfully eliminates inverted elements and keeps
good element qualities on the deformed domain—even when applied to a large
deformation. By choosing appropriate PDE coefficients, anisotropic FEMWARP is
able to decrease the number of inverted elements up to 95.9 %. Our second step,
multiobjective mesh optimization successfully eliminates inverted elements while
keeping good element quality. We observe that performing topological changes is an
extremely efficient and effective way of increasing the amount of vertex movement
possible on the final smoothing pass and hence improving the element quality on
the deformed domain. Our final mesh smoothing step is able to further improve
the element quality. Numerical results show that our mesh deformation framework
significantly outperforms Knupp’s mesh deformation algorithm based on a target
matrix paradigm framework [26].

Our topology-adaptive mesh deformation framework expands on our earlier
hybrid mesh deformation framework by incorporating topological changes for
additional mesh quality improvement as is required by large, anisotropic defor-
mations. Because edge swaps yield a large improvement in the mesh quality
very efficiently, we developed our initial framework in two dimensions. However,
the hybrid mesh deformation algorithm upon which our work builds also works
for three-dimensional mesh warping. Thus, our framework can be extended to
three dimensions by the consideration of edge swaps and/or face swaps in three
dimensions.

It is likely the case that the addition of other operations to alter the topology
(e.g., edge splits, edge contractions, and multi-face removal) will lead to even further
improvements in the mesh quality. In fact, such a strategy was used to evolve surface
meshes in [34]. We plan to investigate the addition of such topological operations
for our future research. Discrete optimization algorithms [35] can then be developed
which improve the quality of the mesh by altering the mesh topology.
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We also plan to compare the performance of our topology-adaptive mesh
deformation framework with meshless techniques for mesh deformation (e.g., [36]).
Meshless techniques do not use the mesh topology and hence are much faster than
either PDE or optimization-based techniques for mesh deformation. However, more
insight is needed as to how to appropriately choose a kernel function for use with
meshless techniques for various types of mesh deformation.
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On Shape Deformation Techniques
for Simulation-Based Design Optimization

Daniel Sieger, Stefan Menzel, and Mario Botsch

Abstract We present an in-depth analysis and benchmark of shape deformation
techniques for their use in simulation-based design optimization scenarios. We first
introduce classical free-form deformation, its direct manipulation variant, as well as
deformations based on radial basis functions. We compare the techniques in a series
of representative synthetic benchmarks, including computational performance,
numerical robustness, quality of the deformation, adaptive refinement, as well as
precision of constraint satisfaction. As an application-oriented benchmark we inves-
tigate the ability to adapt an existing volumetric simulation mesh according to an
updated surface geometry, including unstructured tetrahedral, structured hexahedral,
and arbitrary polyhedral example meshes. Finally, we provide a detailed assessment
of the methods and give concrete advice on choosing a suitable technique for a given
optimization scenario.

1 Introduction

Simulation-based design optimization is a key aspect of the product development
process of automotive industry, aircraft construction, and naval architecture. The
overall goal is to explore alternative and novel designs with improved physical or
aesthetic properties. The development process typically starts with the creation of an
initial design prototype using a computer aided design (CAD) tool. Subsequent steps
create a polygon surface mesh from the CAD model as well as a volumetric sim-
ulation mesh for physical performance evaluation, e.g., using computational fluid
dynamics (CFD) simulations for aerodynamic performance calculation, or finite
element methods (FEM) for structural mechanics simulations. Design variations are
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then created based on physical performance during simulation. In this paper, we are
concerned with efficient means to create such alternate designs.

The obvious approach of changing the CAD model directly is prohibitive in
many cases, since both the surface and volume meshing steps would have to be
repeated. For complex geometries and precise physical simulations the meshing
process might even require manual interaction by an expert. An alternative is to use
shape deformation techniques to adapt both the surface and the volume mesh of the
initial design prototype directly. This way, the design optimization can be performed
in a fully automatic and parallel manner, which is of particular importance when
using stochastic optimization techniques—such as evolutionary algorithms—which
typically require the creation and evaluation of a large number of design variations
in order to find a feasible solution.

This paper is organized as follows: We begin with an investigation of the funda-
mental requirements a deformation method should satisfy in order to be suitable for
common design optimization scenarios (Sect. 2). Based on these requirements we
introduce state-of-the-art shape deformation methods including classical free-form
deformation (FFD), direct manipulation FFD (DM-FFD), and deformations based
on radial basis functions (RBFs). We compare the different methods in a series
of synthetic and application oriented benchmarks in Sect. 3. Finally, we perform
a detailed assessment of the methods in Sect. 4 and give concrete guidance for
choosing a suitable technique for a particular design optimization scenario.

2 Shape Deformation Methods

In this section we introduce state-of-the-art shape deformation methods for their
use in simulation-based design optimization. Before describing the individual
techniques in detail, we briefly review related work, motivate our selection of
methods, and introduce the concept of a space deformation. Shape deformation
methods have been an area of continuous and extensive research within the fields
of computer graphics and geometric modeling. Consequently, a wide variety of
techniques has been proposed during recent years. Since providing an overview
of the complete field is beyond the scope of this work we refer to existing
introductions and surveys. Detailed references for the individual methods covered
in this work are provided in the corresponding sections. A general introduction to
shape deformation techniques is provided by [5]. Surveys on space deformation
techniques have been presented in [1, 8]. While the former concentrates on building
a mathematical formalism for the different methods, the latter is focused on the
interactive manipulation of a model by a designer. In contrast, a survey of shape
parametrization techniques in the context of design optimization is given in [27].
Staten and coworkers recently proposed and evaluated several mesh morphing
techniques, which they compared with respect to computational performance and
element quality on different tetrahedral and hexahedral meshes [38]. This evaluation
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was later extended by Sieger and colleagues [35, 36]. Linear variational surface
deformation methods have been investigated in detail in [4].

The selection of deformation methods considered in our comparison is highly
driven by our application domain—design optimization. In this context, one may
formulate several requirements a deformation technique should satisfy. A funda-
mental one is the ability to transparently deal with different object representations
such as triangular or quadrilateral surface meshes, volumetric meshes, polygon
soups, as well as point-based representations. On the one hand, this requirement
stems from the desire to be able to optimize a wide variety of designs. On the
other hand, it is particularly important when the evaluation of the objective function
involves computationally expensive CFD or FEM simulations. As already outlined
in Sect. 1, the volumetric simulation meshes typically are very time-consuming to
generate. Therefore, in order to avoid the costly mesh generation process for each
design variation created during optimization, one typically aims at adapting an
initial simulation mesh alongside with the surface. A second requirement is the
ability to robustly deal with defects in the input geometry. Especially when the
surface mesh is the result of an automatic conversion process from the CAD model
the resulting mesh might contain degeneracies such as badly shaped triangles, non-
manifold configurations, or disconnected components.

A type of deformation methods that naturally fulfills the above requirements
are so-called space deformations. The fundamental idea behind these methods is
to deform the embedding space around an object, thereby deforming the object
implicitly. From a mathematical point of view a space deformation is a function
dWR3 ! R3 that maps each point in space to a certain displacement. Given a
deformation function, a model M can be transformed to a deformed model M0 by
computing updated point locations x0 D xCd.x/ for each original point x 2 M. The
basic procedure is illustrated in Fig. 1, where a space deformation for the DrivAer
body [12] is shown. Naturally, space deformation techniques differ in how the
function d is constructed. Typically, a control structure such as a volumetric lattice
or a set of points is blended with some form of basis functions, as we will describe
for the individual methods in the sections that follow. Since the deformations
applied during optimization are typically relatively small, we focus on linear space
deformation methods.

x′ = x+ d(x)

Fig. 1 Deformation of the DrivAer model. The model M is warped by the space deformation
function d. Each point x 2M is transformed to updated locations x0 D xC d.x/ 2M0
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2.1 Free-Form Deformation

Free-form deformation (FFD) is a well-established deformation technique that has
been widely used in both academia and industry. Since it also has been employed
within shape optimization [18, 28] and simulation-based design optimization [19–
21, 34] it forms the basis for our comparison. Before describing the method in detail
we first review important variants of the technique. Free-form deformations using
Bézier basis functions have been originally introduced in [31]. Local deformations
using B-spline basis functions have been introduced in [11]. An extension to more
flexible control lattices, in particular cylindrical ones, has been proposed in [6]. This
approach was later extended to control lattices of arbitrary topology [17]. Free-form
deformations using non-uniform rational B-splines are described in [16]. A highly
flexible but computationally involved variant of FFD based on a 3D-Delaunay
triangulation, its Voronoi dual, and Sibson coordinates [33] has been presented
in [23]. A variant of FFD using T-splines [32] as basis functions—thereby allowing
for local refinement of the control lattice—has been presented in [37].

The basic idea of FFD is based on embedding the object to be deformed in a
parallelepiped lattice and deforming it using a trivariate tensor-product Bézier or
B-spline function. The deformation procedure to perform free-form deformation of
an object can be divided into several steps. First, a control lattice has to be generated
and adapted to the deformation scenario at hand. Then the local coordinates with
respect to the control lattice have to be computed for each point to be deformed.
After this embedding each object point x 2 M can be expressed as a linear
combination of lattice control points cijk and basis functionsNi :

x D
lX

iD0

mX
jD0

nX
kD0

cijkNi.u1/Nj .u2/Nk.u3/; (1)

where .u1; u2; u3/ are the local coordinates of x with respect to the control lattice,
and l; m; n are the numbers of control points in each direction. For the sake of
simplicity we define

u.x/ WD .u1; u2; u3/; Np.u.x// WD Ni.u1/Nj .u2/Nk.u3/;

as well as

ıcp WD ıcijk D c0ijk � cijk;

where c0ijk denotes an updated control point location. We can then define the FFD
space deformation function as

dffd.x/ D
X
p

ıcpNp.u.x//: (2)
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Finally, the deformation is performed by moving the control points and computing
the updated object point locations. An example deformation using FFD is illustrated
in Fig. 2.

In our implementation of FFD we use cubic B-splines with a uniform knot vector.
While this type of basis functions requires an iterative root-finding technique such as
a Newton method [26] for computing the local coordinates, the important advantage
is the capability to perform deformations with local support.

2.2 Direct Manipulation FFD

In an interactive modeling system the manipulation of control points to perform
a deformation becomes a tedious task—especially when using a complex control
lattice with a large number of control points. A more flexible and intuitive interface
for controlling a deformation is offered by direct manipulation approaches, which
have been introduced for FFD in [13], referred to as DM-FFD throughout this paper.
Instead of moving control points, the user directly moves the object points. The
modeling system then computes control point displacements so that the new object
point positions are matched as precise as possible. An example deformation of the
DrivAer model using direct manipulation is shown in Fig. 3.

dffd

Fig. 2 Free-form deformation applied to the DrivAer model. The original model M is embedded
in a regular lattice of 4 � 4 � 4 control points (golden). After moving the selected control points
(red) the updated object point locations x0 are computed by evaluating the FFD space deformation
function dffd for the local coordinates u of the point x

H
D

ddmffd

Fig. 3 Direct manipulation FFD on the DrivAer model using a handle-based direct manipulation
interface. The vertices of the model M are classified into three distinct sets: Handle vertices (H,
golden) can be directly displaced, fixed vertices (F , gray) are kept in place, and deformable vertices
(D, blue) are updated according to the deformation method
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Direct manipulation interfaces are not only beneficial within an interactive
modeling scenario, they can also be used effectively within simulation-based design
optimization, as has been shown for direct manipulation FFD in [21]. Due to the
more direct influence of the parameters determined during optimization on the
design, using such an interface can result in a drastically faster convergence of the
optimization. In contrast to classical FFD, the ability to choose an arbitrary object
point for optimization offers a higher degree of flexibility. Furthermore—due to the
automatic computation of control point displacements—this approach also reduces
the need to pre-deform the control lattice to a certain degree.

Within a direct manipulation interface the user—be it an engineer or an opti-
mization algorithm—prescribes a set of m displacement constraints at so-called
handle points fh1; : : : ;hmg, where the deformation function has to attain certain
displacement values d.hi / D h0i � hi D ıhi . The displacements fıc1; : : : ; ıcng
of the n control points satisfying the prescribed displacements can be computed by
solving the linear system

2
64
N1.u.h1// : : : Nn.u.h1//

:::
: : :

:::

N1.u.hm// : : : Nn.u.hm//

3
75

„ ƒ‚ …
ˆ

0
B@

ıcT1
:::

ıcTn

1
CA

„ ƒ‚ …
C

D

0
B@

ıhT1
:::

ıhTm

1
CA

„ ƒ‚ …
H

: (3)

Since the linear system (3) can be over-determined as well as under-determined, it is
typically solved by computing the pseudo-inverse ˆC of the basis function matrix
ˆ. This is typically done by performing a singular value decomposition (SVD) [10,
13] so that ˆ D U†VT , where U is a m 	 m orthogonal matrix, † is a m 	 n

diagonal matrix containing the singular values of ˆ, and VT is a n 	 n orthogonal
matrix. The pseudo-inverse of ˆ then is ˆC D V†CUT , where the pseudo-inverse
of the diagonal matrix † can be computed as

†Cij D
(

1
�i
; if i D j ^ �i ¤ 0;

0; otherwise;
(4)

where �i is the i -th singular value of ˆ. We note that for values close to zero �i
has to be clamped in order to prevent numerical instabilities. Once ˆC has been
computed the control point displacements can be computed by

C D ˆCH; (5)

where C is the matrix of control point displacements and H is the matrix of
constraint displacements. However, solving for C using the pseudo-inverse has its
drawbacks. If the system is under-determined, a least-norm solution is found, i.e.,
the amount of movement of the control points kıck is minimized. If the system is
overdetermined, a least-squares solution is found, i.e., the error in satisfying the
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specified constraints is minimized. This means that depending on the resolution of
the control lattice the system might not be able to satisfy the constraints specified by
the user in an exact manner. In both cases, however, the solution does not necessarily
result in a physically plausible deformation.

2.3 RBF Deformation

Mesh deformation using radial basis functions (RBFs) has been proposed by several
authors [2, 3, 15, 22]. This method improves upon FFD and DM-FFD in two
significant aspects: First, due to its point-based or kernel-based nature, introducing
additional degrees of freedom in regions of interest is highly flexible, without the
need to maintain a complicated control structure. Second, the deformation function
can be constructed in such a way that it directly minimizes a physically inspired
energy—resulting in a smooth and physically plausible deformation. An example
deformation based on radial basis functions using the same handle-based interface
as described in Fig. 3 for DM-FFD is given in Fig. 4.

On a more abstract level, we can treat mesh deformation as a scattered data
interpolation problem: We search for a function dWR3 ! R3 that (1) exactly
interpolates the prescribed displacements d.hi / D ıhi and (2) smoothly interpolates
these displacements through space. Radial basis functions are well known to
be suitable for solving this type of problem [39]. Using RBFs we define the
deformation function as a linear combination of radially symmetric kernel functions
'j .x/ D '.

��x � cj
��/, located at centers cj 2 R3 and weighted by wj 2 R3, plus a

linear polynomial to guarantee linear precision:

d.x/ D
mX
jD1

wj 'j .x/ C
4X

kD1
qk
k.x/ ; (6)

where f
1; 
2; 
3; 
4g D fx; y; z; 1g is a basis of the space of linear trivariate
polynomials, weighted by coefficients qk 2 R3. Note that the polynomial term is
important, since it guarantees to find the optimal affine motion (translation, rotation,
scaling) contained in the prescribed displacements ıhi .

H
D

drbf

Fig. 4 Deformation of the DrivAer model using a handle-based direct manipulation interface
for RBFs
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Table 1 Commonly used radial basis functions

Gaussian '.r/ D e�.�r/2

Multiquadric '.r/ Dp
1C .�r/2

Inverse multiquadric '.r/ D 1=
p
1C .�r/2

Polyharmonic spline in Rd 'k.r/ D
(
r2k�d ; d odd;

r2k�d log.r/; d even:

For Gaussians and (inverse) multiquadrics � denotes the shape parameter. For polyharmonic splines
k denotes the order of smoothness

The choice of the kernel function 'WR ! R basically determines the shape of
the interpolant. Commonly used kernels include Gaussians, (inverse) multiquadrics,
and polyharmonic splines (see Table 1 for an overview). In our application we aim
for high quality deformations minimizing the distortion of mesh elements. To meet
this goal, we have to use a sufficiently smooth kernel function. While Gaussian
and multiquadric basis functions provide infinite smoothness, i.e., they are C1,
they require the choice of an additional shape parameter (the � in Table 1). Small
values of � increase approximation accuracy, but lead to numerically instabilities,
and vice versa. Therefore, finding the optimal shape parameter for a given radial
basis function and the particular application is a non-trivial task on its own (see [7]
for an overview of different strategies).

In contrast, polyharmonic splines are free of shape parameters, but only of finite
smoothness. Depending on the application scenario, we have to choose a sufficiently
high degree of smoothness. In R3 the polyharmonic spline 'k.r/ D r2k�3 is
a fundamental solution of the k-th order Laplacian �k , such that also the RBF
deformation (6) is k-harmonic, i.e.,�kd D 0. Being the strong form of a variational
energy minimization, this is equivalent [39] to d minimizing the weak form

•
R3

����@kd
@xk

����
2

C
���� @kd
@xk�1@y

����
2

C : : :C
����@kd
@zk

����
2

dx dy dz: (7)

In order to preserve mesh quality during deformation, we should construct a
deformation function that at least minimizes the change of first-order derivatives of
the mesh elements [38], and therefore the first-order derivatives of the deformation
function. With k D 1 in (7), this is achieved by the harmonic RBF '.r/ D 1=r , but
those basis functions are singular at their centers. The biharmonic spline '.r/ D r

is well defined, but not differentiable at the center and therefore not smooth enough
for our application (see Fig. 5). By choosing '.r/ D r3, we obtain a deformation
function that is triharmonic, therefore penalizes third-order derivatives in (7), and is
globallyC2 smooth. With these properties, it is the lowest-order polyharmonic RBF
suitable for our application. Since for numerical robustness a low order is preferable,
we eventually chose triharmonic RBFs for our deformation method.
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Fig. 5 Comparison between a biharmonic (left) and a triharmonic (right) deformation of a plane.
We displace the golden region, keep the gray region fixed, and deform the blue region. We place
RBF kernels on all vertices in the golden and gray regions

We can exactly satisfy the interpolation constraints d.hi / D ıhi by placing RBF
kernels at the constraint positions (i.e., cj D hj ) and finding the coefficients wj and
qk by solving the .mC 4/ 	 .mC 4/ linear system

0
BBBBBBBBB@

'1.h1/ � � � 'm.h1/ 
1.h1/ � � � 
4.h1/
:::

: : :
:::

:::
: : :

:::

'1.hm/ � � � 'm.hm/ 
1.hm/ � � � 
4.hm/

1.h1/ � � � 
1.hm/ 0 � � � 0
:::

: : :
:::

:::
: : :

:::


4.h1/ � � � 
4.hm/ 0 � � � 0

1
CCCCCCCCCA

„ ƒ‚ …
ˆ

�

0
BBBBBBBBB@

wT
1
:::

wT
m

qT1
:::

qT4

1
CCCCCCCCCA

„ƒ‚…
W

D

0
BBBBBBBBB@

ıhT1
:::

ıhTm
0
:::

0

1
CCCCCCCCCA

„ ƒ‚ …
H

: (8)

After solving (8) we can compute the morphed mesh M0 by simply evaluating
the RBF deformation at each mesh vertex: x0i D xi C d.xi /. The computationally
most expensive part is the solution of the linear system (8), which is dense due to
the global support of '.r/. We discuss the performance and the scalability of our
method in Sect. 3.1.

3 Benchmarks

In this section we evaluate the different deformation methods based on a set of
synthetic benchmarks. The goal of these benchmarks is to capture basic properties
of the different deformation methods which are relevant for the use in design
optimization scenarios. We perform our evaluation based on the following criteria:
computational performance, numerical robustness, adaptivity and precision, as well
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as quality of the deformation. For each criterion we first describe our tests and
methodology, and then present the results for the individual deformation methods.

We performed all tests on a Dell T7500 workstation with an Intel Xeon E5645
2.4 GHz CPU and 18GB RAM running Ubuntu Linux 12.04 x86_64. We compiled
all code with gcc 4.6.3, optimization turned on (using -O3) and debugging checks
disabled (-DNDEBUG). In order to rule out caching and power saving issues, we
averaged the timings over five morphing steps.

In many of the benchmarks a direct comparison with FFD based on control point
manipulation is not really feasible, i.e., it is not possible to compare the methods
on a solid and representative basis. In these cases, we only compare DM-FFD and
RBFs.

3.1 Performance

While the impact of the performance of a deformation method is often negligi-
ble when used within an design optimization loop, it is still an important and
fundamental characteristic. Furthermore, it is crucial for usage in an interactive
modeling application. Within control point-based FFD, the only performance-
critical component is the computation of the local coordinates of each object
point with respect to the control lattice. When using B-spline basis functions, this
computation requires the use of a numerical technique such as a golden section
search or a Newton method [26]. However, since the local coordinate computation
is independent for each object point, this part is trivial to parallelize.

Naturally, direct manipulation FFD also requires the local coordinate computa-
tion discussed above. In addition, however, the linear system (3) has to be solved.
The standard approach for this is based on computing the pseudo-inverse using
singular value decomposition, which has a computational cost of 4m2n C 22n3

floating point operations [10]. Additional computational costs come from the matrix
multiplications required to actually compute the pseudo-inverse ˆC D V†CUT

from the SVD.
Within the RBF deformation technique the most expensive part is the solution

of the linear system (8), which is dense due to the global support of the chosen
radial basis functions '.r/ D r3. The resulting asymptotic complexity is of O.m3/

when using standard solvers for dense linear systems. Since the linear system
(8) is symmetric but not positive definite, efficient Cholesky-type solvers are not
applicable. However, the system can still be solved efficiently by using a LDLT

factorization, which has computational costs of 1
3
m3 floating point operations. For

a more comprehensive investigation of different solvers for RBF deformation we
refer to [36].
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However, benchmarking the performance by simply measuring the time it takes
to deform a given mesh is not really meaningful since the methods pre-compute
different amounts of information. Comparing the performance of control point-
based FFD to directly manipulated DM-FFD or RBFs is not feasible, since there
is no way to perform the same deformation with all three methods. In order to
facilitate a representative and objective comparison between DM-FFD and RBFs,
we present an alternative formulation of both deformation methods which allows us
to fully pre-compute the deformation. The deformation methods we investigated are
linear, i.e., they require solving a linear problem in one form or another. Therefore,
the deformations can be pre-computed by solving a sequence of m linear system
(see, e.g., [3]). Even more, the methods can be handled in a uniform manner by
expressing the deformation in terms of handle basis functions.

The m displacement constraints ıhi are given as prescribed values of the defor-
mation function d.hi / D ıhi . In case of DM-FFD, the control point displacements
ıcj satisfying these constraints are found by solving the linear system of (3). In case
of RBFs, we find the weights wj for the deformation function (6) by solving (8).
What we are searching for are the displacements x0i � xi D ıxi for each deformable
vertex xi . Written in matrix form this becomes X D .ıx1; : : : ; ıxk/T , where k is the
number of deformable vertices. In case of DM-FFD, X can be computed using

X D M � C; Mij D Nj .u.xi //; (9)

where Nj .u.xi // is the trivariate tensor-product B-spline basis function of control
point cj evaluated at point xi , and C is the matrix of control point displacements
ıcj . By substituting C using (5) we can rewrite (9) as

X D M � ˆC„ ƒ‚ …
B

�H;

where H is the m 	 3 matrix of prescribed handle displacements. Using the k 	m
matrix B we can then directly evaluate the vertex displacements in terms of handle
displacements.

The corresponding formulation for RBFs is similar: X can be computed by

X D M � W; Mij D 'j .xi /; (10)

where W is the matrix of radial basis function weights. Based on (8) the weight
matrix W can be computed by inverting ˆ, i.e., as W D ˆ�1H. This yields

X D M � ˆ�1„ ƒ‚ …
B

�H:

Then B is the desired k 	m basis function matrix that can be used to compute the
vertex displacements from the given handle displacements.
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Fig. 6 Performance comparison of the deformation methods. Times in seconds. For FFD methods
a control grid of resolution 83 was used, which results in a comparable number of DoFs as the RBF
setup

Based on this formulation, we compare the performance of the methods by pre-
computing a deformation with 427 constraints. In Fig. 6 we present the results
comparing both FFD variants in their serial and parallel (using OpenMP [25])
versions as well as RBFs. As to be expected from theory, DM-FFD offers the
worst performance. While parallel local coordinate computation clearly improves
(DM-)FFD performance, RBFs require the same amount of time to solve the full
problem.

3.2 Robustness

The robustness of a deformation method describes its robustness towards defects
in the input data. Such defects can include low-quality triangles with very large or
very small angles, such as caps or needle elements, non-manifold configurations,
or self-intersections in the input mesh (see Fig. 7 some for common examples).
Due to their space-based nature, FFD and RBFs are highly robust with respect to
defects in the input data. However, in the direct manipulation variant of FFD the
singular value decomposition used to compute the pseudo-inverse might also be a
source for numerical instabilities. In order to prevent division by zero, artifacts in
the deformation, as well as extreme distortions of the control lattice, one has to
clamp the singular values �i in (4). Figure 8 presents an example of the unwanted
artifacts in the deformation depending on different clamping values. Since a suitable
clamping value for a given deformation setup is not known a-priori, it has to be
determined heuristically by the user—thereby constituting a source of increased
effort and potential failure.
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Fig. 7 Examples of common surface mesh degeneracies. Top row: low quality triangles. Bottom
row: non-manifold connectivity

Fig. 8 Artifacts in the deformation of a sphere due to lack of clamping of singular values.
DM-FFD with a 5� 5� 5 control lattice. Different clamping values: 10�10 (left) and 10�2 (right).
The handle displacements are exactly the same in both examples

Non-manifold configurations are problematic in general, since in this case the
1-ring neighborhood of a vertex can no longer be traversed reliably. While this does
not pose a direct problem for the methods investigated, it might prevent the use of a
more efficient reduced constraint direct manipulation interface as described in [3].
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3.3 Quality of Deformation

The quality of the deformation includes several aspects. On the most general level,
the deformation should be free of any unexpected oscillations or artifacts. Following
the principle of simplest shape [29], the deformation function should be smooth,
fair, and physically plausible. Furthermore, we want the deformation to maintain
mesh element quality as much as possible in order to allow for as large as possible
deformations. We note, however, that the methods we consider do not incorporate
additional mesh optimization procedures that are eventually required for particularly
large deformations.

As a first benchmark we investigate the smoothness of the deformation tech-
niques by analyzing the curvature of a surface mesh after deformation. More
specifically, we consider mean curvature defined as

H D �1 C �2

2
;

where �1 and �2 are the principal (maximum and minimum) curvatures of the
surface. Using the cotangent weight discretization of the Laplace-Beltrami operator
[5] we compute the mean curvature on for a given vertex xi of the mesh by

H.xi / D 1

2
k�xik :

For more details we refer the reader to [5]. A color-coded mean curvature visualiza-
tion is shown in Fig. 9 after performing a pre-defined deformation with both RBFs
and DM-FFD. As can be seen from the visualization, DM-FFD suffers from aliasing
artifacts due to its lattice-based nature. The same artifacts occur in control point
FFD. In contrast, RBFs result in highly smooth deformations due to their built-in
minimization of physically-inspired energies as described in Sect. 2.3.

FFD results in deformations that are not necessarily physically plausible. Espe-
cially its direct manipulation variant does not optimize for a high quality deforma-
tion, but for minimization of control point movement. In general, using a lattice-
based method the shape of the deformation strongly depends on the resolution and
form of the control lattice, as shown in Fig. 10. Therefore, it becomes highly difficult
to predict the shape resulting from a particular deformation setup in advance.

Another problem with lattice-based methods is the continuity in case of partial
control grids. If the control grid covers only a subset of the object, non-smooth
transitions between object points inside the control volume and those outside may
occur (see Fig. 11, center). In such cases additional sheets of control points have
to be inserted in order to assure a smooth transition (Fig. 11, right). This not only
complicates the setup process of FFD, it also introduces unnecessary degrees of
freedom due to bad adaptivity (see Sect. 3.4).
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Fig. 9 Comparison of mesh smoothness after deformation based on mean curvature visualizations.
Red indicates high curvature, blue low curvature. From left to right: Setup, deformed mesh and
curvature visualizations for DM-FFD (729 control points) and RBFs (792 kernels)

Fig. 10 Dependency of the deformation on the control lattice resolution. For all examples the
same handle region was moved by the same translation

Fig. 11 Continuity problems in FFD in case of partial control volumes. From left to right: Original
setup, non-smooth transition, smooth transition

3.4 Adaptivity

In general, the adaptivity of a deformation method describes how well the method
is capable of approximating a certain shape with an as low as possible number
of degrees of freedom (DoFs). In the context of shape optimization the ability
to dynamically add additional DoFs in regions of high interest is particularly
important.
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In order to evaluate the adaptivity we implemented a benchmark test that matches
a source shape to a given target shape. In this test case, all vertices are prescribed
as constraints, and the deformation method has to match the shape as closely
as possible. For each of the methods we start with a low number of DoFs and
successively refine the method to include more and more DoFs. We stop refinement
once the number of DoFs is equal to the number of constraints.

Adaptivity can be measured best when approximating a target shape that is
identical to the source shape for most vertices while having sharp local features
in another region. The target shape is shown in Fig. 12. This shape is particularly
demanding since the transition from the plane to the feature area is very steep.

In case of DM-FFD we perform adaptive refinement by inserting additional
control point planes in x- and y-directions in those cells containing the vertex with
the largest error. We do not perform refinement in z-direction, since in our example
this would only result in wasted degrees of freedom. As becomes clear from Fig. 12,
the adaptivity of DM-FFD is generally poor, since it depends on the resolution of the
lattice being used. While increasing the resolution of the lattice leads to sufficient
degrees of freedom to approximate fine details as well, at the same time the insertion
process also alters the deformation itself. An alternative to the current control point
refinement would be to use knot insertion.

In case of RBFs we use straightforward adaptive greedy refinement [30]. Initially,
we uniformly sample the plane with a given number of kernels. We then successively
add additional kernels at the vertices of the mesh having the largest errors.
The results in Fig. 12 clearly confirm that RBFs provide superior approximation
accuracy compared to DM-FFD.

102 103
10−20

10−15

10−10

10−5

Fig. 12 Adaptive refinement benchmark results. Left: degrees of freedom vs. approximation error.
Right: example results. From top to bottom : target shape, DM-FFD (900 DoF), and RBFs (993
DoF)
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3.5 Precision

The precision of a deformation method describes the accuracy in satisfying the
positional constraints as prescribed by the user or optimization method. Typically,
the accuracy is either exact, only provided in a least-squares sense, or only in a
qualitative manner. Manipulating control points of a lattice as in case of FFD can
only provide qualitative precision. Directly manipulated FFD improves on this by
providing precision in a least-squares sense through the solution of (3). Finally,
by solving (8) RBFs allow for exact satisfaction of constraints, thereby offering
the highest level of precision. The quantitative results of Sect. 3.4 underline the
differences in precision.

3.6 Volume Mesh Morphing

The ability to morph an existing volumetric simulation mesh according to a updated
CAD geometry or alongside with a changed surface mesh is a crucial feature
for deformation techniques in simulation-based design optimization: By avoiding
costly (re-)meshing, it drastically reduces the computational cost, and it enables the
construction of fully automatic optimization loops. This benchmark is particularly
meaningful, since it accumulates results from the previous synthetic benchmarks.
Even though both FFD and RBFs allow for volume mesh morphing due to their
space-based nature, there are significant differences in the resulting mesh element
quality. We present two different test scenarios involving three different mesh types:
We investigate morphing of unstructured tetrahedral and structured hexahedral
meshes according to an updated CAD geometry in Sect. 3.6.1. Finally, present a
test-case of the DrivAer model involving an arbitrary polyhedral mesh to used CFD
computations in Sect. 3.6.2.

In case of DM-FFD we generate a uniform control lattice enclosing the complete
volume mesh. Unfortunately, the resolution required to satisfy given deformation
constraints as precisely as possible is not known in advance and heavily depends
on the complexity of the deformation and the geometry to be deformed. To
accommodate for this, we investigate different grid resolutions, namely from 53,
103, 153, and 253 control points (referred to as DM-FFD-5/10/15/25 below).
Therefore, the problem of automatic control grid generation is largely unsolved and
a serious obstacle for fully automatic optimization procedures.

3.6.1 Pipe Model

In this section we investigate mesh quality based on the morphing benchmarks
introduced in [36, 38]. Given an initial CAD surface and a volume mesh, shape
variations are created by changing geometric parameters of the CAD model and
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computing updated surface nodes to match the new geometry. The surface nodes
are then used as input to the morphing technique computing updated interior volume
nodes. For a more detailed description of the benchmarks we refer to [36, 38]. We
choose absolute morphing of the unstructured tetrahedral and structured hexahedral
Pipe meshes as a representative example and present the results by means of
minimum Scaled Jacobian in the volume mesh vs. percentage of parameter change
in the CAD model in Fig. 14. The plots show that RBFs better preserve element
quality. Note that while the low resolution DM-FFD-5 test case results in more
or less reasonable mesh quality, the constraints are not fulfilled exactly, i.e., the
boundary nodes of the volume mesh do not match the update CAD surface (see
Fig. 13, right for an example). In contrast, higher resolutions are not capable
of dealing with large changes due to the increasing locality of the deformation
(Fig. 14).

Fig. 13 Pipe model morphing examples. From left to right: Initial mesh, RBF, DM-FFD-5

a b

Fig. 14 Pipe model morphing results. Mesh quality vs. parameter change. (a) Pipe Tet model-
absolute; (b) pipe Hex model-absolute
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3.6.2 DrivAer Model

As an application-oriented benchmark we investigate an exemplary CFD test case
for the DrivAer model. We use OpenFOAM [24] for the CFD setup and generate
the volume mesh using the snappyHexMesh utility. The resulting arbitrary
polyhedral mesh contains 1.2M cells and 1.6M points. To investigate the resulting
mesh quality we use OpenFOAM’s checkMesh tool, which analyzes general mesh
properties, such as connectivity, ordering, and orientation, but also essential mesh
quality characteristics, such as cell orthogonality, aspect ratio, and face skewness.
For the deformation setup we select three handle vertices on the car roof while
keeping the outer boundary of the volume mesh fixed. For the deformation itself we
simply lift the handle vertices upwards.

A cut view of the resulting volume mesh and car surface patch is shown in
Fig. 15. A summary of results as obtained by OpenFOAM’s checkMesh tool is
given in Table 2. For a detailed description of the individual mesh checks we refer
to the OpenFOAM [24] documentation. In case of RBFs the volume mesh is still
usable and all mesh quality checks succeed. In case of DM-FFD-10 and DM-
FFD-15 the meshes are still usable, but the cell orthogonality check warns about
one non-orthogonal cell that might spoil the accuracy and/or convergence of the
simulation. Furthermore, we note that for more complex deformations the 103 and
153 resolutions might not be sufficient to satisfy the displacement constraints with
acceptable precision. In case of the higher resolution DM-FFD-25 setup several
mesh quality checks fail and the mesh is no longer usable for simulation at all:

Fig. 15 Cut-view and car surface patch of the resulting volume mesh after deformation. Original
(top left), RBF (top center), zoom to the surface (top right), DM-FFD (bottom row). In case of
DM-FFD the results for control grid resolutions 103, 153, and 253 are shown
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Table 2 Results reported by OpenFOAM’s checkMesh

Aspect ratio Cell orthogonality Face skewness Face pyramids

Original 6.9 ✓ 64.7 ✓ 3.4 ✓ ✓

RBF 6.6 ✓ 68.6 ✓ 3.7 ✓ ✓

DM-FFD-10 7.0 ✓ 71.3 ! 3.6 ✓ ✓

DM-FFD-15 7.0 ✓ 70.7 ! 3.4 ✓ ✓

DM-FFD-25 2.5eC195 ✗ 179.7 ✗ 1,031.8 ✗ ✗

Successful tests are indicated by a ✓, warnings by !, and errors by ✗. Numbers are given for the
worst quality element in the mesh

The mesh contains 151 high aspect ratio cells, 1,353 non-orthogonal faces, 1,414
incorrectly oriented face pyramids, and 62 highly skewed faces. For all DM-FFD
setups, Fig. 15 again demonstrates the strong dependence of the resulting shape on
the chosen control grid resolution.

4 Conclusions

The results of the individual benchmarks show that there are significant differences
between the deformation methods. A compact and simplified summary of the results
is presented in Table 3. For each of the benchmarks and methods we assign either
a positive ( + ), neutral ( ı ), or a negative ( – ) assessment. Both FFD and
DM-FFD achieve mixed results. While DM-FFD improves upon FFD in terms of
precision, computational costs increase and robustness issues might occur. Both
FFD techniques expose significant weaknesses with regards to adaptive refinement
and quality of the deformation. In contrast, RBFs score the largest number of
positive and only one neutral assessment.

However, the choice of a deformation method heavily depends on the needs
of a given design optimization scenario. If the scenario neither demands for
precise constraint satisfaction nor for adaptive refinement but only aims for general
exploration of the design space, FFD offers a simple and robust deformation
technique. In many cases, however, exact control is highly important in order obtain
valid designs that meet production limitations such as keeping critical components
fixed or deforming them only rigidly. In such cases, we clearly recommend RBFs
over both FFD and its direct manipulation variant.

In some optimization scenarios the locality of the deformation might also be an
important aspect. Both FFD methods allow for local deformations—depending on
control grid resolution and setup as well as basis function degree. In contrast, our
RBF deformations are global due to our choice of triharmonic basis functions. While
there exist compactly supported RBFs [39], these basis functions lack the built-in
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Table 3 Summary of results

Performance Robustness Quality Adaptivity Precision

FFD ı + ı – –
DM-FFD – ı ı – ı
RBF ı + + + +

For each benchmark test and deformation method we assign a negative ( – ), neutral ( ı ), or a
positive ( + ) assessment

energy minimization of (7). However, in many cases a proper setup of fixed and
handle regions in the direct manipulation interface eventually provides a sufficient
degree of locality.

Naturally, all of three methods can be enhanced in several ways. In case of
both FFD methods the use of more flexible basis functions such as T-splines [32]
or truncated hierarchical B-splines [9] would drastically improve the adaptivity of
the respective methods. As for RBFs, constraining the deformation function to be
positive—similar to the bounded biharmonic weights introduced in [14]—offers an
interesting perspective for future work.
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Creating Free-Surface Flow Grids
with Automatic Grid Refinement

Jeroen Wackers, Ganbo Deng, Emmanuel Guilmineau, Alban Leroyer,
Patrick Queutey, and Michel Visonneau

Abstract The objective of this work is to create grids for free-surface water flow
simulation entirely with automatic grid refinement. It is shown why it is necessary
to refine the mesh iteratively as the solution converges and why refinement and
derefinement of hexahedral cells must be treated anisotropically.

The proposed refinement criterion is a combination of the pressure Hessian with
refinement at the free surface, in order to capture the flow which drives the surface
motion and the position of the surface itself. Smoothing is needed in the computation
of the Hessian in order to remove oscillations in the pressure, the pressure Hessian
is extrapolated through the free surface to remove its discontinuity there.

Two test cases confirm that effective fine meshes for wave computation can be
created with the proposed automatic refinement procedure.

1 Introduction

Free-surface flows with gravity waves, such as the water flow around ships and
offshore structures, are created through the interaction between the turbulent viscous
flows on both sides of the interface and the motion of the interface. To simulate such
flows, the position of the free surface needs to be modelled as well as the velocity
and pressure fields. An attractive and very robust model is the surface capturing
mixture-fluid approach [8]. Here, the entire fluid is modelled as a numerical mixture
of the pure fluids on the two sides of the interface. The proportion of both fluids
in the mixture is computed with a convection equation for the volume fraction
of one of them, having a discontinuous inflow condition. This discontinuity is
convected through the flow, implicitly giving the position of the free surface
without any specific treatment of the surface region (as opposed to, for example,
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the Volume-of-Fluid or Level-Set approaches). However, for accuracy, special care
must be taken to keep the numerical interface sharp.

Adaptive local grid refinement is particularly well suited for these simulations.
Free-surface water flows have many features which are local in nature and whose
exact position is difficult to estimate beforehand, so their precision can be increased
with adaptive grid refinement. For example, refinement around the surface strongly
increases the resolution of the volume fraction equation, so the modeling of the free
surface is improved. But also other aspects of these flows, such as wakes and trailing
vortices, are resolved with greater precision when grid refinement is used.

The unstructured Reynolds-averaged Navier-Stokes solver ISIS-CFD which we
develop contains an automatic grid refinement method [10–13]. This flow solver,
distributed by NUMECA Int. as part of the FINE/Marine software, is aimed at
the simulation of realistic flow problems in all branches of marine hydrodynamics.
Therefore, the grid refinement method is general and flexible, featuring anisotropic
refinement on unstructured hexahedral grids, derefinement of previous refinements
to enable unsteady flow computation, and full parallelisation including integrated
dynamic load balancing. The anisotropic refinement is based on metric tensors. To
our knowledge, it is the first grid adaptation method included with success in a
general-purpose hydrodynamic flow solver.

In our earlier work on grid refinement for free-surface flows, the multiphysics
character of the flows was not explicitly taken into account for the grid refinement.
Instead, the original grid was chosen sufficiently fine to get a reasonable resolution
of the flow, then automatic grid refinement was used to improve the accuracy of one
particular flow feature. Thus, gravity waves at the water surface were computed with
refinement based on the discontinuity in the volume fraction [12] and wake flows
with refinement based on the pressure [10, 13].

The objective of this paper is to go beyond these earlier works and create fine
meshes for free-surface flow simulation entirely with adaptive grid refinement. This
removes the need for original grids with finer cells in all the possible positions of
the water surface and other important flow features, that are difficult to generate and
very costly if strong waves appear or if a simulated object is free to move. The new
refinement approach simplifies the mesh generation for users and can be much more
efficient, since all fine cells are placed only there where they are really needed.

For such refinement, the technical part of the algorithm has to be modified to treat
both refinement and derefinement of cells in an anisotropic way, allowing division
or merging of cells in one direction only. The first part of the paper highlights the
aspects of the existing algorithm that are essential for free-surface flows, such as the
need to continuously modify the refined mesh as the solution converges, and shows
why anisotropic derefinement must be introduced. The most important evolution
however is in the refinement criterion, which must be a combination of different
physical sensors due to the multiphysics character of two-fluid flows. A criterion
is proposed which combines refinement at the free surface with a pressure Hessian
criterion, modified to remove the singularity in the pressure gradient at the surface.
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The paper is organised as follows. Section 2 describes the ISIS-CFD flow
solver and the meshes that we use. Section 3 then discusses the aspects of its
grid refinement method which are relevant for free-surface flow. Section 4 looks
at anisotropic derefinement, which is currently under development. The combined
refinement criterion is introduced in Sect. 5. Finally, Sect. 6 shows a test on two ship
flow cases, with a new case which highlights the interest of grid refinement for a
flow containing both free surface and strong vortices.

2 Solver and Meshes

ISIS-CFD is an incompressible unsteady Reynolds-averaged Navier-Stokes method.
The solver is based on the finite-volume method to build the spatial discretisation
of the transport equations. The velocity field is obtained from the momentum con-
servation equations and the pressure field is extracted from the mass conservation
constraint transformed into a pressure equation. These equations are similar to
the Rhie and Chow SIMPLE method [9], but have been adapted for flows with
discontinuous density fields. As mentioned, free-surface flow is simulated with a
mixture flow approach: the water surface is captured with a conservation equation
for the volume fraction of water, discretised with specific compressive discretisation
schemes. A detailed description of the solver is given by [3, 8].

The unstructured discretisation is face-based: fluxes are computed face by face,
the reconstructions of the cell-centred state variables to the face centres are made
with interpolations that use the two cells next to a face and their neighbour cells
without a-priori assumptions about the cell topologies. And while the linearised
systems used to solve the momentum and pressure equations are formulated in the
cell-centred unknowns, these systems are constructed by summing the contributions
of the faces to each cell. Thus, no cell topology assumptions are made anywhere,
which means that cells with any number of arbitrarily shaped faces are accepted.

The solver is mostly used with unstructured hexahedral grids generated by the
HEXPRESS grid generator which is also part of FINE/Marine. The grid in Fig. 1
shows the typical features of such meshes: several semi-structured regions, with
body-fitted boundary grids near the walls in order to ensure the best possible grid
quality in the boundary. The grid consists purely of hexahedral cells, with mesh size
variations obtained by placing one large cell next to two or four smaller neighbour
cells. Due to its face-based nature, the ISIS-CFD solver treats these grids just
the same as any other type of mesh. With these meshes, good solution accuracy
is obtained from the semi-structured parts and the body-fitted boundary meshes,
combined with the flexibility to mesh complex geometries.
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Fig. 1 Cut through an
unstructured hexahedral mesh
for a ship geometry. The
objective of the present work
is to generate the fine grid
around the water surface with
adaptive refinement

3 Grid Refinement Method

The natural method of grid adaptation for unstructured pure-hexahedral meshes is
local grid refinement by dividing cells into smaller cells, as this is how the original
grids themselves are constructed. Thus, adaptively refined grids are of the same type
as all other grids so the flow solver can use them without modifications. This section
shows our existing grid refinement method and how refinement criteria in a metric
context are used to pilot the refinement, focusing on those aspects which are relevant
for free-surface flows. More details of the metric criteria are found in [12].

3.1 Refinement Algorithm

For free-surface flows the simulated position of flow features often depends strongly
on the level of grid refinement; for example, waves may become steeper when the
flow is resolved on finer and finer grids. This means either that automatic grid
refinement should be applied in a large buffer zone around the flow features of
interest to take into account their displacement once the grid is refined, or that
the refinement procedure must be iterative, continuously changing the grid as the
solution converges. Thus, in each refinement iteration, new cells must be refined if
the features of interest have moved, while previous refinements of other cells may
need to be undone in positions which the features of interest have left. For such an
approach, the derefinement of previously refined cells is a necessity.

Our refinement algorithm takes this second approach. ISIS-CFD computes both
steady and unsteady flows with a time integration technique. For grid refinement,
after a given number of time steps (usually 25 for steady flows and 2–4 for unsteady
flows), the grid is adapted to the current solution, after which the time integration
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continues until the grid is adapted again. For steady flows, this procedure eventually
converges (typically after 40–50 refinement cycles). If the refinement criterion
(Sect. 3.4) indicates that the grid is well adapted to the flow and the flow solution
itself has converged, then the refinement procedure will no longer modify the mesh.

3.2 Anisotropy

Anisotropic refinement is the possibility to divide a hexahedral cell in its three
directions independently, either in two, four or eight smaller cells. This is essential
for our refinement procedure, since isotropic refinement (division in eight cells only)
is much too costly in three dimensions if very fine cells are needed to accurately
resolve a local flow feature. By applying anisotropic refinement for features that
require a fine grid in only one direction (notably, the water surface!), the total
number of cells required can be greatly reduced, or much finer flow details can
be resolved.

A second reason for directional refinement is, that the original grids (Fig. 1)
already contain anisotropic refinement with cells of different aspect ratios lying side
by side. Therefore, when refining, we need to control the size of the fine cells in all
their directions independently, otherwise refined grids may have smoothly varying
sizes in one direction, but repeated changes from fine to coarse and back to fine
in another. Isotropic refinement cannot prevent this (see Fig. 2 for an example), so
directional refinement is the mandatory choice.

IsotropicOriginal

Isotropic DirectionalOriginal

a

b

Fig. 2 Isotropic grid refinement is satisfactory on an original grid where all cells have the
same aspect ratios (a), otherwise directional refinement is needed (b). (a) Locally isotropic grid;
(b) Locally anisotropic grid
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3.3 Quality of Refined Cells

Since the cells in the refined grid are formed by the subdivision of the cells in the
original grid, the shape of the refined cells is entirely determined by the original
grid. If these original cells are close to rectangular, then the refined cells will be
rectangular as well (this is the case in Fig. 2). However, the quality of bad original
cells is deteriorated by grid refinement. Especially if an original cell is arrow-
shaped, its subdivision may result in cells that are turned inside out.

Thus, the quality of the refined grids can be assured by making sure that the
original grid is as regular as possible. In HEXPRESS meshes, bad quality cells
only appear near the surface of objects, typically at inward-facing angles in the
geometry. Usually, bad original grids can be prevented by locally imposing fine
original cells near these surface features. This is not contrary to the idea of automatic
grid refinement; if the original grid is made to capture the geometry well, the rest of
the fine grid can be created by automatic refinement.

3.4 Metric-Based Refinement Criteria

The use of metric tensors as refinement criteria allows us to specify different cell
sizes in different directions. This technique was first developed for the generation
and refinement of unstructured tetrahedral meshes [4]. It is also an extremely useful
and flexible framework for the anisotropic refinement of hexahedral meshes.

In the metric context, the refinement criterion is a smoothly varying tensor field
whose values at every point in the flow domain indicate what the ideal size for a cell
in that position would be. In each cell, the criterion is a 3 	 3 symmetric positive
definite matrix C , which is interpreted as a geometric transformation of the cell in
the physical space to a deformed space. The refinement of the cells is decided as
follows. Let the criterion tensors C in each cell be known (their computation from
the flow solution is described in Sect. 5). In each hexahedral cell, the cell sizes dj
(j D 1; 2; 3), which are the vectors between the opposing face centres in the three
cell directions, are determined. Next, the modified sizes are computed as:

Qdj D Cdj : (1)

Finally, a cell is refined in the direction j when the modified size exceeds a given,
constant threshold value Tr :

kQdj k � Tr; (2)

while a previously refined group of cells is derefined back into one cell if:

kQdj k � Tr=d 8j D 1 � � �3; (3)
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for all cells in the group. d is chosen slightly larger than 2, to prevent cells being
alternately derefined and re-refined (because Qdj doubles when cells are derefined).
Since the procedure only uses the vectors dj to characterise a cell, it can be used for
any shapes and sizes of cells.

The objective of the refinement is thus to create a uniform grid in the deformed
space. The tensors C are direct specifications of the desired cell sizes: in a converged
refined grid, the cell sizes are inversely proportional to the magnitude of the C . The
threshold Tr functions as a global specification of the fineness of the grid; sensible
choices for Tr in different situations are discussed in Sect. 6 (see also Sect. 5.3).

4 The Need for Directional Derefinement

The derefinement of previously refined cells, like the refinement, ought to be treated
in an anisotropic way. Until now, the refinement of a cell is decided separately for
each direction [Eq. (2)] but the derefinement only allows the complete undoing of
a refinement step; if a cell was divided in eight, the eight cells have to be derefined
back into one which requires the criterion (3) to be satisfied in all three directions j .
This section shows why this limitation is much too restrictive and how we will
modify our method to anisotropic derefinement. As the transformation of an existing
grid refinement method like ours is difficult compared with developing it correctly
from the beginning, this section may serve as a warning to others. . . .

For free-surface flows, isotropic derefinement is inefficient because cells refined
initially in different directions often need to remain refined in at least one direction.
A typical example is the simulation of a travelling wave with grid refinement around
the free surface (see Sect. 5.1). When the wave passes, the free surface is inclined so
the grid is refined both in horizontal and in vertical direction. Then after the wave
has passed and the free surface has returned to its rest state, the vertical refinement
must remain in place. Thus, with isotropic derefinement, the horizontal refinement
cannot be removed either. This leads to large clusters of unnecessary fine cells and
the more the grid is refined, the more this is evident. Since the creation of free-
surface grids entirely with automatic refinement requires much refinement of the
original cells, this problem has to be solved.

A situation which shows the problem of isotropic derefinement particularly
well is the initialisation of the refined grid. Usually the mesh is adapted to the
undisturbed position of the free surface before starting the simulation, to have a
good initial resolution of the volume fraction. When the original grid contains
no specific refinement at the free surface, it has varying cell sizes at the surface
position (Fig. 3a): the grid near a solid wall is much finer than elsewhere. Thus,
the discontinuity in the volume fraction is thinner near solid walls than far
away, which means that its top and bottom are inclined! This, in turn, leads to
horizontal refinement of cells. At the end of the initialisation, when the vertical
cell sizes around the surface have become equal due to the automatic refinement,
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Fig. 3 Initialisation of the free-surface refined grid from the original grid (a): as it should
be (b) and with only isotropic derefinement (c). The middle figure was created artificially by
initialising without allowing refinement in x- and y-directions

this horizontal refinement is no longer required (Fig. 3b). However, with isotropic
derefinement it cannot go away because the vertical refinement must remain in place
(Fig. 3c).

Thus, for efficient derefinement it is necessary to remove previous refinements
in one direction only (in Fig. 3 the horizontal direction), for example by changing
a cell divided in four into one divided in two. The problem that we have is that our
data structure is not suited for this, since the history of the refinement is stored in
the refined cells as ‘mother’ pointers towards the cells that were divided and ‘sister’
pointers to one of the other refined cells, forming a loop. This structure does not
preserve the relative position of the fine cells. The solution that we are working on
consists of adaptively modifying the refinement history after the fact in order to suit
the required directional derefinement. Clearly, it would be much more elegant to
work with a suitable data structure, for example one which directly indicates the
position of a small cell within the original cell.
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5 Combined Criteria

Suitable refinement criteria for free-surface flows must take into account gravity
waves, which propagate through a cyclic exchange of potential (gravity) and kinetic
energy, caused by the interaction of the free-surface motion with the pressure and
velocity fields below the surface. So in order to correctly simulate free-surface flows,
a good resolution is needed of the volume fraction equation which gives the position
of the free surface, as well as the pressure and velocity variations below the surface.

A grid refinement criterion for free-surface wave simulation must therefore be
based both on the pressure and velocity field and on the volume fraction. For these
two, different indicators are used because the volume fraction ˛ is discontinuous at
the free surface and constant everywhere else, while the pressure and the velocity
are smooth in the whole flow field except at the surface. Spatial derivative based
error indicators can identify the regions of importance for the flow field below the
surface, but do not work at the water surface itself since any derivative of ˛ goes to
infinity when the grid is refined. Also, the grid specified by the criterion must be as
uniform as possible near the surface, since transitions from fine to coarse cells lead
to large errors in the volume fraction. Basing a criterion only on the value of ˛ itself
gives the most stable values for the criterion and thus the best meshes.

This section describes a criterion which is based on the Hessian of the pressure,
combined with refinement where ˛ is neither 0 nor 1. These criteria are first
introduced individually, then we indicate how they are combined. The section is
a continuation of the work in [11].

5.1 Free-Surface Criterion

To resolve accurately the volume fraction field ˛ which is a discontinuity that is
convected with the flow, it is sufficient to refine the grid at and around the free
surface, in the direction normal to the surface. When the surface is locally aligned
with the cell directions, anisotropic refinement can be used to keep the total number
of cells as low as possible. It is important that cells locally have the same size, to
prevent distortions of the volume fraction.

The free-surface criterion CS is non-zero when ˛ is neither 0 nor 1. The normal
direction to the surface is computed from a field ˛s which corresponds to ˛,
smoothed out by averaging over a cell and its neighbours a given number of times.
The gradient of this field gives the normal directions. The criterion is then derived
from vectors v˛ in each cell which are unit vectors in this normal direction for those
cells where the smoothed ˛s field is non-zero:

v˛ D
( r˛skr˛sk if 0:1 � ˛s � 0:9;

0 otherwise:
(4)
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Using the smoothed field guarantees that the normals are well defined and also that
the mesh is refined in a certain zone around the surface to create a margin of safety.

In tensor form, the free-surface criterion is computed as matrices having only one
non-zero eigenvalue, associated with the direction of the vector v˛. The tensors CS
are computed as follows (with ˝ representing the tensor product):

CS D v˛ ˝ v˛: (5)

In the directions normal to the vector v˛, the eigenvalues are zero. This implies a
modified cell size of zero [Eq. (1)]. As a consequence, the grid is not refined in
these directions. Since the v˛ are unit vectors, the only non-zero eigenvalues of CS
are equal to 1. Thus, Eq. (2) shows that the threshold value Tr directly indicates the
desired cell size at the surface. Also, the specified cell size normal to the surface is
exactly the same in all surface cells, as required. The free-surface criterion has been
used on its own, with good results, in our earlier work [10, 12].

5.2 Computing the Pressure Hessian

The Hessian matrix of second spatial derivatives can be linked to the interpolation
error of a smooth solution, thus it is a well-known refinement criterion for
anisotropic refinement (see for example [6, 7]). Here this criterion is based on the
pressure, since we prefer a criterion which is insensitive to boundary layers [12].
The number of layers in the boundary layer grid should be the same everywhere for
solution accuracy and the required layer thickness is known, so these layers can be
created in the original grid and do not have to come from adaptive refinement.

For the numerical computation of the Hessian (see also [11]) we need discretised
second-derivative operators. A particular complication for this discretisation is
that our meshes always contain places where the grid size changes abruptly, as
small cells lie next to twice larger cells (see Sect. 2). The number of these places
increases significantly when automatic refinement is used so a suitable technique
for computing the Hessian must be insensitive to cell size variations.

5.2.1 Definition of the Hessian Criterion

The pressure Hessian matrix is:

H .p/ D
2
4.p/xx .p/xy .p/xz

.p/xy .p/yy .p/yz

.p/xz .p/yz .p/zz

3
5 : (6)
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Assuming, heuristically, that an indication of the local truncation error is given by
H times the cell sizes to a power b (where b depends on the numerical method)
and requiring equidistribution of this error indicator leads to a refinement criterion
where the Hessian matrix is modified with a power law:

CH D .H .p/a/; (7)

where H a has the same eigenvectors as H and eigenvalues that are those of H (in
absolute value) to the power a D 1

b
. In general, we use a D 1

2
which is appropriate

for a second-order accurate discretisation.

5.2.2 Smoothed Gauss (SG) Method

Unfortunately, due to the variations in cell sizes, the numerical pressure is non-
smooth. The SIMPLE-based pressure equation in ISIS-CFD contains a Laplace
operator in finite-volume form for which normal derivatives on the cell faces are
constructed with central interpolation. On non-uniform meshes these interpolations
are first-order accurate, so the Laplace operator itself in the worst case has a
truncation error of order zero. The pressure still converges because these local errors
cancel, but the second derivatives of the pressure have the same order of accuracy
as the Laplace operator, i.e. they are inconsistent. This is not due to the numerical
evaluation of the second derivatives, but inherent in the pressure solution itself. The
consequence for grid refinement is, that refining cells creates large errors in the
Hessian on the boundaries between finer and coarser cells. Thus, the grid is not only
refined where the solution dictates it, but also in places where it has already been
refined. This leads to irregular meshes.

As the error in the Hessian is related to small-scale irregularities in the pressure
field, which can be reduced by smoothing, we define a smoothed Gauss (SG)
Hessian. Let the Gauss approximation to the gradient of a field q be given as:

�!r G.q/ D 1

V

X
f

qf Sf nf ; (8)

where the face values qf are computed with central interpolation from the two
neighbour cells. V is the volume of the cell, Sf are the areas of the faces. With
the same face reconstructions, a Laplacian smoothing L is defined as:

L .q/ D
P

f qf SfP
f Sf

: (9)
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Then the SG Hessian is computed as follows:

1. Compute the gradient of p using
�!r G .

2. Smooth each component of the gradient by applying N times the smoothing L ,
where N D 4 is sufficient in most cases.

3. Compute the gradients of the smoothed gradient components using
�!r G .

4. Symmetrize the resulting Hessian matrix by setting .H /ij D 1
2
..H /ij C .H /ji/.

5. Smooth the Hessian by applyingN times L to each component.

The reason for this procedure is, that the second derivatives of the pressure have
zeroth-order oscillatory errors which means first-order errors in the derivatives and
second-order wiggles in the solution itself. The smoothing operator uses the same
type of discretisation as the original Laplace equation, so the smoothing itself
introduces second-order wiggles. Therefore, it is useless to smooth the pressure.
However, the gradient of the pressure has first-order errors; these are still small
compared with the gradient itself but they are large enough to be removed by the
smoother. Therefore, step 2 is the core of the procedure. The smoothing of the
second derivative cannot further remove errors since they are of the same order
as the solution now, but it creates a more regular refinement criterion and thus better
meshes.

The smoothing procedure decreases the spurious oscillations in the refinement
criterion but also reduces the intensity of physical small-scale features. This
limitation of the criterion is the reason that all smoothing should be kept to a
minimum.

5.2.3 Hessian at the Free Surface

The Hessian criterion cannot be directly evaluated at the free surface. Due to the
presence of gravity, there exists a pressure gradient proportional to the density
�, which is discontinuous in the normal direction at the free surface. Therefore,
the second derivative is a Dirac ı function. For numerical solutions, the second
derivative in the zone of varying ˛ has a peak which grows as the grid becomes
finer. Numerical differentiation produces large errors in this case.

As a result, no correct values can be computed for the pressure Hessian around
the surface so an approximative procedure is needed. In the cells where 0:0001 �
˛ � 0:9999, the gradient smoothing (step 2 in the SG algorithm) is not performed.
The Hessian smoothing (step 5) is replaced by the following algorithm:

5a. Smooth the Hessian in all cells except those where 0:0001 � ˛ � 0:9999 plus
two layers of cells around those, to take into account that the perturbed pressure
gradient in the cells at the surface influences the Hessian in their neighbours as
well.

5b. Copy the computed values of the Hessian from outside the zone in (5a) across
the zone, following the vertical direction (this removes the peak at the surface).
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The criterion is copied in the upward direction, so the Hessian values computed
in the water are used across the surface region.

5c. Smooth the Hessian only in the zone of (5a).

The idea of this approach is, that the SG Hessian at the surface must not be used.
Therefore, sensible values must be copied from elsewhere. While this procedure is
heuristic, it works well in practice as will be shown in Sect. 6.

5.3 The Combined Criterion

The final criterion is a combination of the two criteria above. Considering the
problems of the Hessian criterion at the surface, it is tempting to select the free-
surface criterion there and the Hessian everywhere else. However, the free-surface
criterion specifies no refinement in the direction parallel to the surface, while this
refinement may be needed if only to ensure that the grid at the surface is not less
refined than just below it. The criterion in each cell is thus computed from both
criteria.

The criteria are combined with a weighted maximum of the two tensors. We
want the threshold Tr to indicate directly the desired cell size at the surface (as for
the free-surface criterion), so a weighting factor c is applied only to the Hessian
criterion:

CC D max .CS ; c CH/ : (10)

Computing the approximate maximum of the two tensors is described in [12], a
modification of the procedure presented by [4].

There are (as yet) no universal guidelines for choosing c, since appropriate
values depend on the type of problem the results of interest. However, for the
specification of guidelines for computations which are similar, a non-dimensional Nc
is introduced as:

c D Nc
 

L2

1
2
�V 21

!a
: (11)

where L, V1, and � are respectively the reference length, velocity, and the density.
The power a is the one in Eq. (7). If two computations are geometrically identical
except for a scaling in L and V1, then choosing the same Nc will result in identical
refinement for both cases.
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6 Test Cases

This section presents two test cases which evaluate the capacity of the refinement
method to create effective fine meshes for typical ship flow cases and discuss the
choice of the weighting factor c. The cases are the Series 60 ship (Sect. 6.1) and the
Delft Catamaran in drift condition (Sect. 6.2).

6.1 Series 60 Wave Pattern

The Series 60 hull is studied in straight-ahead motion and calm water. Detailed
experiments for this case are available from IIHR [5] at Fr D 0:316 and Re D
5:3 � 106. Apart from this Froude number, we also compute the flow at Fr D 0:16

and Fr D 0:41 with Re D 2:7 � 106 and Re D 6:9 � 106 respectively.
The computations are started from an original grid (242k cells) without any

refinement around the free surface. Since directional derefinement is not yet
available, the refinement is initialised as in Fig. 3b by allowing only refinement
in vertical direction. The computation is then continued with refinement in all
directions. The threshold (equivalent to the desired cell size at the surface) is the
same for all cases, Tr D 0:001L which is the usual cell size at the surface for ISIS-
CFD. For each Froude number, the flow is computed with Nc D 0:016, 0:024 and
0:032 which gives the grid sizes in Table 1. Reference results are obtained without
grid refinement on a fine mesh of 3.45M cells. Turbulence is modelled with the
Menter k � ! SST model.

The wave pattern at the three Froude numbers is shown in Fig. 4. The wave
strength varies strongly with Fr; for the two highest Fr, the bow wave breaks.
Figure 5 shows cross-sections of the mesh for the three Froude numbers at the largest
weighting factor Nc D 0:032. Around the position of the free surface, the meshes have
directional refinement. The cell size below the surface decreases gradually from the
bottom up, the finest cells are concentrated in the bow wave (left) and the stern wave
(right). The refined cells below the waves are predominantly square, although some
cells near the surface are smaller in the vertical direction. The size of the cells in the
original grid can be seen in the upper right corner of Fig. 5b, so the entire fine grid
is actually created by automatic refinement.

Table 1 Number of cells in
the refined meshes for the
Series 60 test cases

Nc 0:016 0:024 0:032

Fr D 0:16 698k 1169k 1793k

Fr D 0:316 597k 892k 1360k

Fr D 0:41 757k 973k 1348k
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Fig. 4 Wave patterns for the Series 60 at Fr D 0:16 (a), Fr D 0:316 (b), and Fr D 0:41 (c). The
isoline distance is the same for all figures and corresponds to L=1000. The Fr D 0:316 result is
compared with experiments from IIHR [5]

The solutions for all cases are compared in Fig. 6, which shows the free surface
in three X -cuts when Nc is varied, compared with the non-adapted fine grid. For the
highest Froude number (Fig. 6c), all solutions are close to the fine-grid solution, only
some discrepancy is seen for the Nc D 0:024 solution behind the ship. However, at
Fr D 0:316 (Fig. 6b) notable differences exist for Nc D 0:016. Finally, at Fr D 0:16

(Fig. 6a) the computation for Nc D 0:016 is the closest to the fine-grid solution, which
means that both are questionable! For very small waves, the wave heights may in fact
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Fig. 5 Series 60, cross-sections of the grid at Y=L D 0:118 for Fr D 0:16 (a), Fr D 0:316

(b), and Fr D 0:41 (c)

be overpredicted on too coarse grids [2]. The solutions for Nc D 0:024 and Nc D 0:032

are reasonably close. Figure 6d shows velocity profiles on a horizontal line below
the water at the stern. Only Fr D 0:316 is shown here, since the results for other Fr
are similar. Results for all Nc are close to the fine-grid solution, the discrepancy with
the experiments may be due to the isotropic k � ! SST turbulence model which is
not always well adapted to the simulation of ship wake flows [1, 3].

In conclusion, to accurately model the wave pattern, higher values for Nc are
needed at low Fr than at high Fr. However, considering the weak influence of the
waves on the rest of the flow field at low Fr, a constant choice for Nc is justified, which
gives the added advantage that the grid on the hull below the surface is refined in the
same way for all Fr. For slender hulls like the Series 60, setting Tr D 0:001L with
a value of Nc around 0:024 gives sufficient accuracy. Higher Nc increase significantly
the total number of cells (Table 1).
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Fig. 6 Series 60, comparisons of the water surface in three X-cuts at Fr D 0:16 (a), Fr D 0:316

(b), and Fr D 0:41 (c). Comparison of the velocities on the line X=L D 1, Z=L D �0:02 (d) for
Fr D 0:316. Experiments from IIHR [5]

6.2 Delft Catamaran in Sideslip

As a second case, the flow around the Delft-327 Catamaran in sideslip is computed.
The particularity of this case is that it has both strong waves and longitudinal
vortices created below the hull, so the combined refinement criterion is of great
interest since it can capture both these features. The case concerns a motion in
steady drift (ˇ D 6o) at Fr D 0:4. Automatic grid refinement is started from an
original grid of 1.0M cells which has some limited refinement around the surface,
it is computed with Tr D L=500 and with Nc D 0:064. This higher value of Nc than
for the Series 60 case comes mostly from the higher Tr ; the combination creates
refinement that is concentrated in the trailing vortices. The converged refined grid
has 2.96M cells, the results are compared with a fine-grid solution of 20M cells. The
anisotropic EASM turbulence model [1] is used.
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Fig. 7 Delft Catamaran, free surface on adaptively refined (a) and fine (b) grid. The vertical line
shows the position of the cut in Fig. 8

A cut through the mesh is shown in Fig. 8a, with refinement around the deformed
surface and in the cores of two vortices below the hulls. Figure 7 compares the free
surface for the refined-grid and fine-grid solution. The two are similar, although
the far-field waves are damped slightly more on the refined grid due to the high
threshold. However, the breaking bow waves have more details on the refined grid,
because the cells are locally smaller in y-direction than on the fine grid. These small
waves (especially between the hulls) are also seen in Fig. 8b, c, which show the axial
velocity and the free surface. The vortices are computed on very fine cells in the
refined mesh, so they are notably stronger than on the fine mesh.

Thus, also for this case the relevant flow features can be computed well on an
adaptively refined mesh. The value for Nc, if Tr D L=1000 had been used, would
have been 0.032. This is still higher than for the Series 60 case, which is justified by
the objective to capture the trailing vortices particularly well.
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Fig. 8 Delft Catamaran, cut at x=L D 0:3. Refined mesh (a), axial velocity on refined (b) and
fine (c) mesh
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7 Conclusions

The goal of this paper is the simulation of free-surface water flows. For these flows,
fine grids are needed around the water surface and the surface position is not known
beforehand. Therefore, automatic grid refinement can be very useful, placing fine
cells only exactly where they are needed and removing from the user the task of
estimating the surface position before the computation in order to generate the mesh.

To create the fine grid needed for flows with waves entirely using grid refinement,
the refinement technique must adapt the grid often to the solution as it evolves,
since the surface position for example may change position when the grid becomes
finer. For refinement by subdivision of cells, this means that both refinement
and derefinement are needed even for steady cases, the latter to remove refined
cells which are no longer needed as the simulation converges. Refinement and
derefinement must be performed in an anisotropic way to limit the total number
of cells in three dimensions. The anisotropic derefinement is especially important to
allow cells which were refined in several directions and need to remain refined in
only one, to get rid of the refinement in the other directions.

Suitable refinement criteria must create refinement both around the surface, to
resolve the convection equation for the volume fraction, and in the region below
the surface in order to capture the orbital flow fields. To ensure a regular mesh
at the surface, a derivative-based criterion suitable for detecting the velocity and
pressure fields is combined with a robust free-surface capturing criterion. We
choose a criterion which uses directional refinement in the region where the volume
fraction is between 0.1 and 0.9 and refinement based on the pressure Hessian. On
unstructured hexahedral meshes, the Hessian is found with Gauss derivation twice to
compute first the gradient of the pressure and then the second derivatives, followed
by smoothing to remove irregularities. The numerical pressure Hessian has a peak
at the free surface, due to the discontinuity in the pressure gradient. Therefore, the
free-surface region is not smoothed and the computed Hessian outside the surface
zone is extrapolated through this zone. To combine the two criteria, their relative
weights must be chosen; a non-dimensional scale-independent form for the Hessian
criterion is introduced with a weight Nc.

Two different ship flow test cases show that the automatic grid refinement is able
to create effective fine meshes from original meshes which are neither much refined
near the surface, nor around other significant flow features such as vortices. These
features were simulated with the same precision as on uniformly fine meshes using
50 % to 85 % less cells. For the weight of the Hessian, the Series 60 case shows that
it is acceptable to choose Nc independently of Fr. Sensible values for slender ships
are Nc D 0:02–0:035 with a refinement threshold set around Tr D L=1000, a high
must be chosen if wake features are of major importance. Based on these tests, the
perspective of generating complete free-surface meshes with automatic refinement
seems entirely realistic.
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