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Preface

Riemannian holonomy groups is an area of Riemannian geometry, in the field of differ-

ential geometry. The holonomy group Hol(g) of a Riemannian manifold (M, g) deter-

mines the geometrical structures on M compatible with g. Thus, Berger’s classification

of Riemannian holonomy groups gives a list of interesting geometrical structures com-

patible with a Riemannian metric, and the aim of the subject is to study each such struc-

ture in depth. Most of the holonomy groups on Berger’s list turn out to be important in

string theory in theoretical physics.

Given some class of mathematical objects, there is often a natural class of subobjects

living inside them, such as groups and subgroups for instance. The natural subobjects

of Riemannian manifolds (M, g) with special holonomy are calibrated submanifolds—

lower-dimensional, volume-minimizing submanifolds N in M compatible with the geo-

metric structures coming from the holonomy reduction. So calibrated geometry is an

obvious companion subject for Riemannian holonomy groups. Calibrated submanifolds

are also important in string theory, as ‘supersymmetric cycles’ or ‘branes’.

This is a graduate textbook on Riemannian holonomy groups and calibrated geom-

etry. It is aimed at graduates and researchers working in differential geometry, and also

at physicists working in string theory, though the book is written very much from a

mathematical point of view. It could be used as the basis of a graduate lecture course.

The main prerequisites are a good understanding of topology, differential geometry,

manifolds, and Lie groups at the advanced undergraduate or early graduate level. Some

knowledge of Hilbert and Banach spaces would also be very useful, but not essential.

A little more than half this book is a revised version of parts of my monograph,

Compact Manifolds with Special Holonomy, Oxford University Press, 2000, reference

[188]. The main goal of [188] was to publish an extended research project on compact

manifolds with holonomy G2 and Spin(7), so Chapters 8–15 were almost wholly my

own research. Chapters 1–7 of [188] have been rewritten to form Chapters 1, 2, 3, 5, 6,

7 and 10 respectively of this book, the core of the Riemannian holonomy material.

To this I have added new material on quaternionic Kähler manifolds in Chapter 10;

Chapter 11 on the exceptional holonomy groups, which summarizes Chapters 10–15

of [188] and subsequent developments; and four new chapters on calibrated geometry,

Chapters 4, 8, 9 and 12 below. This textbook is not intended to replace the monograph

[188], and I hope my most discerning readers will want to own both. But unless you have

a particular interest in compact manifolds with holonomy G2 or Spin(7), this book is

probably the better of the two to buy.

This book is not a vehicle for publishing my own research, and I have aimed to

select material based on how I see the field and what I think it would be useful for

a new researcher in the subject to know. No doubt I have overemphasized my own

v
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contributions, and I apologize for this; my excuse is that I knew them best, and they were

easiest to plagiarize. Calibrated geometry is a younger field than Riemannian holonomy,

and a very active area of research. I have tried in Chapters 8, 9 and 12 to discuss the

frontiers of current research, and open problems I think are worth attention.

Some other books on Riemannian holonomy groups are Salamon [296] and [188],

and they are also discussed in Kobayashi and Nomizu [214, 215], Besse [30, Ch. 10],

Gross, Huybrechts and the author [138, Part I] and Berger [28, Ch. 13]. The only other

book I know on calibrated geometry is Harvey [150].

Acknowledgements. Many people have shared their insights and ideas on these subjects

with me; I would like in particular to thank Bobby Acharya, Tom Bridgeland, Robert

Bryant, Simon Donaldson, Mark Haskins, Simon Salamon and Richard Thomas. I am

grateful to Maximilian Kreuzer for permission to reproduce in Figure 7.1 the graph

of Hodge numbers of Calabi–Yau 3-folds from Kreuzer and Skarke [225], and to the

EPSRC for financial support whilst I was writing this book.

I dedicate this book to my wife Jayne and daughters Tilly and Kitty, without whom

my life would have been only half as enjoyable, and this book written in half the time.

Oxford
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1
Background material

In this chapter we explain some background necessary for understanding the rest of the

book. We shall assume that the reader is already familiar with the basic ideas of dif-

ferential and Riemannian geometry (in particular, manifolds and submanifolds, tensors,

and Riemannian metrics) and of algebraic topology (in particular, fundamental group,

homology and cohomology). We start in §1.1 with a short introduction to exterior forms

on manifolds, de Rham cohomology, and Hodge theory. These will be essential tools

later in the book, and we discuss them out of completeness, and to fix notation.

The rest of the chapter is an introduction to the analysis of elliptic operators on

manifolds. Section 1.2 defines Sobolev and Hölder spaces, which are Banach spaces

of functions and tensors on a manifold, and discusses their basic properties. Then §1.3–

§1.5 define elliptic operators, a special class of partial differential operators, and explain

how solutions of elliptic equations have good existence and regularity properties in

Sobolev and Hölder spaces.

1.1 Exterior forms on manifolds
We introduce exterior forms on manifolds, and summarize two theories involving exte-

rior forms—de Rham cohomology and Hodge theory. The books by Bredon [49], Bott

and Tu [40] and Warner [338] are good references for the material in this section.

Let M be an n-manifold, with tangent bundle TM and cotangent bundle T ∗M . The

kth exterior power of the bundle T ∗M is written ΛkT ∗M . It is a real vector bundle over

M , with fibres of dimension
(

n
k

)
. Smooth sections of ΛkT ∗M are called k-forms, and

the vector space of k-forms is written C∞(ΛkT ∗M).
Now ΛkT ∗M is a subbundle of

⊗k
T ∗M , so k-forms are tensors on M , and may

be written using index notation. We shall use the common notation that a collection of

tensor indices enclosed in square brackets [. . .] are to be antisymmetrized over. That is,

if Ta1a2...ak
is a tensor with k indices, then

T[a1...ak] = 1
k!

∑
σ∈Sk

sign(σ)Taσ(1)...aσ(k) ,

where Sk is the group of permutations of {1, 2, . . . , k}, and sign(σ) is 1 if σ is even,

and −1 if σ is odd. Then a k-form α on M is a tensor αa1...ak
with k covariant indices

that is antisymmetric, i.e. that satisfies αa1...ak
= α[a1...ak].

The exterior product ∧ and the exterior derivative d are important natural operations

on forms. If α is a k-form and β an l-form then α∧ β is a (k+l)-form and dα a (k+1)-
form, which are given in index notation by

1



2 BACKGROUND MATERIAL

(α ∧ β)a1...ak+l
= α[a1...ak

βak+1...ak+l] and

(dα)a1...ak+1 = T[a1...ak+1], where Ta1...ak+1 =
∂αa2...ak+1

∂xa1
.

If α is a k-form and β an l-form then

d(dα)=0, α ∧ β =(−1)klβ ∧ α and d(α ∧ β)=(dα) ∧ β +(−1)kα ∧ (dβ).

The first of these is written d2 = 0, and is a fundamental property of d. If dα = 0, then

α is closed, and if α = dβ for some β then α is exact. As d2 = 0, every exact form

is closed. If M is a compact, oriented n-manifold and α an (n−1)-form, then Stokes’

Theorem says that
∫

M dα = 0.

1.1.1 De Rham cohomology
Let M be a smooth n-manifold. As d2 = 0, the chain of operators

0 → C∞(Λ0T ∗M) d−→C∞(Λ1T ∗M) d−→ · · · d−→C∞(ΛnT ∗M) → 0

forms a complex, and therefore we may find its cohomology groups. For k = 0, . . . , n,

define the de Rham cohomology groups Hk
DR

(M, R) of M by

Hk
DR(M, R) =

Ker
(
d : C∞(ΛkT ∗M) → C∞(Λk+1T ∗M)

)
Im
(
d : C∞(Λk−1T ∗M) → C∞(ΛkT ∗M)

) .

That is, Hk
DR

(M, R) is the quotient of the vector space of closed k-forms on M by the

vector space of exact k-forms on M . If η is a closed k-form, then the cohomology class

[η] of η in Hk
DR

(M, R) is η + Im d, and η is a representative for [η].
There are several different ways to define the cohomology of topological spaces, for

example, singular, Alexander–Spanier and Čech cohomology. If the topological space

is well-behaved (e.g. if it is paracompact and Hausdorff) then the corresponding coho-

mology groups are all isomorphic. The de Rham Theorem [338, p. 206], [40, Th. 8.9]

is a result of this kind.

Theorem 1.1.1. (The de Rham Theorem) Let M be a smooth manifold. Then the de

Rham cohomology groups Hk
DR(M, R) are canonically isomorphic to the singular,

Alexander–Spanier and Čech cohomology groups of M over R.

Thus the de Rham cohomology groups are topological invariants of M . As there is

usually no need to distinguish between de Rham and other sorts of cohomology, we will

write Hk(M, R) instead of Hk
DR

(M, R) for the de Rham cohomology groups. The kth

Betti number bk or bk(M) is bk = dimHk(M, R). The Betti numbers are important

topological invariants of a manifold.

Theorem 1.1.2 (Poincaré duality) Let M be a compact, oriented n-manifold. Then

there is a canonical isomorphism Hn−k(M, R) ∼=
(
Hk(M, R)

)∗
, and the Betti num-

bers satisfy bk = bn−k.
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1.1.2 Exterior forms on Riemannian manifolds
Now let M be a compact, oriented Riemannian n-manifold, with metric g. The metric

and the orientation combine to give a volume form dVg on M , which can be used to

integrate functions on M . We shall define two sorts of inner product on k-forms. Let

α, β be k-forms on M , and define (α, β) by

(α, β) = αa1...ak
βb1...bk

ga1b1 . . . gakbk ,

in index notation. Then (α, β) is a function on M . We call (α, β) the pointwise inner

product of α, β. Now for k-forms α, β, define 〈α, β〉 =
∫

M (α, β)dVg . As M is com-

pact, 〈α, β〉 exists in R provided α, β are (for instance) continuous. We call 〈α, β〉 the

L2 inner product of α, β. (This is because it is the inner product of the Hilbert space

L2(ΛkT ∗M), which will be defined in §1.2.)

The Hodge star is an isomorphism of vector bundles ∗ : ΛkT ∗M → Λn−kT ∗M ,

which is defined as follows. Let β be a k-form on M . Then ∗β is the unique (n−k)-form

that satisfies the equation α∧(∗β) = (α, β)dVg for all k-forms α on M . The Hodge star

is well-defined, and depends upon g and the orientation of M . It satisfies the identities

∗1 = dVg and ∗(∗β) = (−1)k(n−k)β, for β a k-form, so that ∗−1 = (−1)k(n−k)∗.

Define an operator d∗ : C∞(ΛkT ∗M) → C∞(Λk−1T ∗M) by

d∗β = (−1)kn+n+1 ∗ d(∗β).

Let α be a (k − 1)-form and β a k-form on M . Then

〈α, d∗β〉 =
∫

M (α, d∗β)dVg =
∫

M α ∧ (∗d∗β) = (−1)k
∫

M α ∧ d ∗ β.

But d(α∧∗β) = (dα)∧∗β+(−1)k−1α∧d∗β, and as M is compact
∫

M d(α∧∗β) = 0
by Stokes’ Theorem. Therefore

(−1)k
∫

M α ∧ d ∗ β =
∫

M dα ∧ ∗β =
∫

M (dα, β)dVg = 〈dα, β〉.

Combining the two equations shows that 〈α, d∗β〉 = 〈dα, β〉. This technique is called

integration by parts. Thus d∗ has the formal properties of the adjoint of d, and is some-

times called the formal adjoint of d.

As d2 = 0 we see that (d∗)2 = 0. If a k-form α satisfies d∗α = 0, then α is

coclosed, and if α = d∗β for some β then α is coexact. The Laplacian ∆ is ∆ = dd∗ +
d∗d. Then ∆ : C∞(ΛkT ∗M) → C∞(ΛkT ∗M) is a linear elliptic partial differential

operator of order 2. By convention d∗ = 0 on functions, so ∆ = d∗d on functions.

Several different operators are called Laplacians. When we need to distinguish be-

tween them we will refer to this one as the d-Laplacian, and write it ∆d. If α is a k-form

and ∆α = 0, then α is called a harmonic form.

1.1.3 Hodge theory
Let M be a compact, oriented Riemannian manifold, and define

H k = Ker
(
∆ : C∞(ΛkT ∗M) → C∞(ΛkT ∗M)

)
,
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so that H k is the vector space of harmonic k-forms on M . Suppose α ∈ H k. Then

∆α = 0, and thus 〈α, ∆α〉 = 0. But ∆ = dd∗ + d∗d, so

0 = 〈α, dd∗α〉 + 〈α, d∗dα〉 = 〈d∗α, d∗α〉 + 〈dα, dα〉 = ‖d∗α‖2
L2 + ‖dα‖2

L2,

where ‖ . ‖L2 is the L2 norm defined in §1.2. Thus ‖d∗α‖L2 = ‖dα‖L2 = 0, so that

d∗α = dα = 0. Conversely, if d∗α = dα = 0 then ∆α = (dd∗ + d∗d)α = 0, so that a

k-form α lies in H k if and only if it is closed and coclosed. Note also that if α ∈ H k,

then ∗α ∈ H n−k.

The next result is proved in [338, Th. 6.8].

Theorem 1.1.3. (The Hodge Decomposition Theorem) Let M be a compact, oriented

Riemannian manifold, and write dk for d acting on k-forms and d∗
k for d∗ acting on

k-forms. Then

C∞(ΛkT ∗M) = H k ⊕ Im(dk−1) ⊕ Im(d∗
k+1).

Moreover, Ker(dk) = H k ⊕ Im(dk−1) and Ker(d∗
k) = H k ⊕ Im(d∗

k+1).

Now Hk
DR

(M, R) = Ker(dk)/ Im(dk−1), and as Ker(dk) = H k⊕Im(dk−1) there

is a canonical isomorphism between H k and Hk
DR

(M, R). Thus we have:

Theorem 1.1.4. (Hodge’s Theorem) Let M be a compact, oriented Riemannian man-

ifold. Then every de Rham cohomology class on M contains a unique harmonic repre-

sentative, and H k ∼= Hk
DR

(M, R).

1.2 Introduction to analysis
Let M be a Riemannian manifold with metric g. In problems in analysis it is often

useful to consider infinite-dimensional vector spaces of functions on M , and to equip

these vector spaces with norms, making them into Banach spaces. In this book we will

meet four different types of Banach spaces of this sort, written Lq(M), Lq
k(M), Ck(M)

and Ck,α(M), and they are defined below.

1.2.1 Lebesgue spaces and Sobolev spaces
Let M be a Riemannian manifold with metric g. For q � 1, define the Lebesgue space

Lq(M) to be the set of locally integrable functions f on M for which the norm

‖f‖Lq =
(∫

M |f |qdVg

)1/q

is finite. Here dVg is the volume form of the metric g. Suppose that r, s, t � 1 and that

1/r = 1/s + 1/t. If φ ∈ Ls(M), ψ ∈ Lt(M), then φψ ∈ Lr(M), and ‖φψ‖Lr �
‖φ‖Ls‖ψ‖Lt ; this is Hölder’s inequality.

Let q � 1 and let k be a nonnegative integer. Define the Sobolev space Lq
k(M) to be

the set of f ∈ Lq(M) such that f is k times weakly differentiable and |∇jf | ∈ Lq(M)
for j � k. Define the Sobolev norm on Lq

k(M) to be

‖f‖Lq
k

=
(∑k

j=0

∫
M |∇jf |qdVg

)1/q
.

Then Lq
k(M) is a Banach space with respect to the Sobolev norm. Furthermore, L2

k(M)
is a Hilbert space.
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The spaces Lq(M), Lq
k(M) are vector spaces of real functions on M . We generalize

this idea to vector spaces of sections of a vector bundle over M . So, let V → M be a

vector bundle on M , equipped with Euclidean metrics on its fibres, and ∇̂ be a connec-

tion on V preserving these metrics. Then as above, for q � 1, define the Lebesgue space

Lq(V ) to be the set of locally integrable sections v of V over M for which the norm

‖v‖Lq =
(∫

M |v|qdVg

)1/q

is finite, and the Sobolev space Lq
k(V ) to be the set of v ∈ Lq(V ) such that v is k times

weakly differentiable and |∇̂jv| ∈ Lq(M) for j � k, with the obvious Sobolev norm.

1.2.2 Ck spaces and Hölder spaces
Let M be a Riemannian manifold with metric g. For each integer k � 0, define

Ck(M) to be the space of continuous, bounded functions f on M that have k con-

tinuous, bounded derivatives, and define the norm ‖.‖Ck on Ck(M) by ‖f‖Ck =∑k
j=0 supM |∇jf |, where ∇ is the Levi-Civita connection.

The fourth class of vector spaces are the Hölder spaces Ck,α(M) for k � 0 an

integer and α ∈ (0, 1). We begin by defining C0,α(M). Let d(x, y) be the distance

between x, y ∈ M calculated using g, and let α ∈ (0, 1). Then a function f on M is

said to be Hölder continuous with exponent α if

[f ]α = sup
x �=y∈M

|f(x) − f(y)|
d(x, y)α

is finite. Any Hölder continuous function f is continuous. The vector space C0,α(M)
is the set of continuous, bounded functions on M which are Hölder continuous with

exponent α, and the norm on C0,α(M) is ‖f‖C0,α = ‖f‖C0 + [f ]α.

In the same way, we shall define Hölder norms on spaces of sections v of a vector

bundle V over M , equipped with Euclidean metrics in the fibres, and a connection ∇̂
preserving these metrics. Let δ(g) be the injectivity radius of the metric g on M , which

we suppose to be positive, and set

[v]α =
sup

x �=y∈M
d(x,y)<δ(g)

|v(x) − v(y)|
d(x, y)α

, (1.1)

whenever the supremum exists. Now we have a problem interpreting
∣∣v(x) − v(y)

∣∣ in

this equation, since v(x) and v(y) lie in different vector spaces. We make sense of it in

the following way. When x �= y ∈ M and d(x, y) < δ(g), there is a unique geodesic γ
of length d(x, y) joining x and y in M . Parallel translation along γ using ∇̂ identifies

the fibres of V over x and y, and the metrics on the fibres. With this understanding, the

expression
∣∣v(x) − v(y)

∣∣ is well-defined.

So, define Ck,α(M) to be the set of f in Ck(M) for which the supremum [∇kf ]α
defined by (1.1) exists, working in the vector bundle

⊗k T ∗M with its natural metric

and connection. The Hölder norm on Ck,α(M) is ‖f‖Ck,α = ‖f‖Ck + [∇kf ]α. With

this norm, Ck,α(M) is a Banach space, called a Hölder space.
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Hölder continuity is analogous to a sort of fractional differentiability. To see this,

observe that if f ∈ C1(M) and x �= y ∈ M then |f(x) − f(y)| � 2‖f‖C0 , and

|f(x)− f(y)|/d(x, y) � ‖∇f‖C0 by the Mean Value Theorem. Hence [f ]α exists, and

[f ]α �
(
2‖f‖C0

)1−α‖∇f‖α
C0.

Thus [f ]α is a sort of interpolation between the C0 and C1 norms of f . It can help to

think of Ck,α(M) as the space of functions on M that are (k + α) times differentiable.

Now suppose that V is a vector bundle on M with Euclidean metrics on its fibres,

and ∇V is a connection on V preserving these metrics. As in the case of Lebesgue

and Sobolev spaces, we may generalize the definitions above in an obvious way to give

Banach spaces Ck(V ) and Ck,α(V ) of sections of V , and we leave this to the reader.

1.2.3 Embedding theorems
An important tool in problems involving Sobolev spaces is the Sobolev Embedding The-

orem, which includes one Sobolev space inside another. Embedding theorems are dealt

with at length by Aubin in [16, §2.3–§2.9]. The following comes from [16, Th. 2.30].

Theorem 1.2.1. (Sobolev Embedding Theorem) Suppose M is a compact Rieman-

nian n-manifold, k, l ∈ Z with k � l � 0, q, r ∈ R with q, r � 1, and α ∈ (0, 1). If

1
q

� 1
r

+
k − l

n
,

then Lq
k(M) is continuously embedded in Lr

l (M) by inclusion. If

1
q

� k − l − α

n
,

then Lq
k(M) is continuously embedded in Cl,α(M) by inclusion.

Next we define the idea of a compact linear map between Banach spaces.

Definition 1.2.2 Let U1, U2 be Banach spaces, and let ψ : U1 → U2 be a continuous

linear map. Let B1 =
{
u ∈ U1 : ‖u‖U1 � 1

}
be the unit ball in U1. We call ψ a

compact linear map if the image ψ(B1) of B1 is a precompact subset of U2, that is, if

its closure ψ(B1) is a compact subset of U2.

It turns out that some of the embeddings of Sobolev and Hölder spaces given in the

Sobolev Embedding Theorem are compact linear maps in the above sense. This is called

the Kondrakov Theorem, and can be found in [16, Th. 2.34].

Theorem 1.2.3. (The Kondrakov Theorem) Suppose M is a compact Riemannian n-

manifold, k, l ∈ Z with k � l � 0, q, r ∈ R with q, r � 1, and α ∈ (0, 1). If

1
q

<
1
r

+
k − l

n

then the embedding Lq
k(M) ↪→ Lr

l (M) is compact. If

1
q

<
k − l − α

n

then Lq
k(M) ↪→ Cl,α(M) is compact. Also Ck,α(M) ↪→ Ck(M) is compact.
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Finally, we state two related results, the Inverse Mapping Theorem and the Implicit

Mapping Theorem for Banach spaces, which can be found in Lang [230, Th. 1.2, p. 128]

and [230, Th. 2.1, p. 131].

Theorem 1.2.4. (Inverse Mapping Theorem) Let X, Y be Banach spaces, and U an

open neighbourhood of x in X . Suppose the function F : U → Y is Ck for some

k � 1, with F (x) = y, and the first derivative dFx : X → Y of F at x is an

isomorphism of X, Y as both vector spaces and topological spaces. Then there are

open neighbourhoods U ′ ⊂ U of x in X and V ′ of y in Y , such that F : U ′ → V ′ is

a Ck-isomorphism.

Theorem 1.2.5. (Implicit Mapping Theorem) Let X, Y and Z be Banach spaces, and

U, V open neighbourhoods of 0 in X and Y . Suppose the function F : U × V → Z is

Ck for some k � 1, with F (0, 0) = 0, and dF(0,0)|Y : Y → Z is an isomorphism of

Y, Z as vector and topological spaces. Then there exists a connected open neighbour-

hood U ′ ⊂ U of 0 in X and a unique Ck map G : U ′ → V such that G(0) = 0 and

F (x, G(x)) = 0 for all x ∈ U ′.

1.3 Introduction to elliptic operators

In this section we define elliptic operators, which are a special sort of partial differential

operator on a manifold. Many of the differential operators that crop up in problems

in geometry, applied mathematics and physics are elliptic. For example, consider the

equation ∆u = f on a Riemannian manifold M , where ∆ is the Laplacian, and u, f are

real functions on M . It turns out that ∆ is a linear elliptic operator.

The theory of linear elliptic operators tells us two things about the equation ∆u = f .

First, there is a theory about the existence of solutions u to this equation. If f is a given

function, there are simple criteria to decide whether or not there exists a function u with

∆u = f . Secondly, there is a theory about the regularity of solutions u, that is, how

smooth u is. Roughly speaking, u is as smooth as the problem allows, so that if f is k
times differentiable, then u is k+2 times differentiable, but this is an oversimplifica-

tion. These theories of regularity and existence of solutions to elliptic equations will be

explained in §1.4 and §1.5.

Here we will define elliptic operators, and give a few examples and basic facts.

Although the underlying idea of ellipticity is fairly simple, there are many variations on

the theme—elliptic operators can be linear, quasilinear or nonlinear, for instance, and

they can operate on functions or on sections of vector bundles, and so on. Some useful

references for the material in this section are the books by Gilbarg and Trudinger [126]

and Morrey [267], and the appendix in Besse [30].

1.3.1 Partial differential operators on functions
Let M be a manifold, and ∇ a connection on the tangent bundle of M , for instance, the

Levi-Civita connection of a Riemannian metric on M . Let u be a smooth function on

M . Then the kth derivative of u using ∇ is ∇kf , or in index notation ∇a1 · · ·∇ak
u.

We will write ∇a1...ak
u as a shorthand for this kth derivative ∇a1 · · ·∇ak

u. Here is the

definition of a partial differential operator on functions.
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Definition 1.3.1 A partial differential operator or differential operator P on M of order

k is an operator taking real functions u on M to real functions on M , that depends on

u and its first k derivatives. Explicitly, if u is a real function on M such that the first k
derivatives ∇u, . . . ,∇ku of u exist (possibly in some weak sense), then P (u) or Pu is

a real function on M given by(
Pu
)
(x) = Q

(
x, u(x),∇u(x), . . . ,∇ku(x)

)
(1.2)

for x ∈ M , where Q is some real function of its arguments.

It is usual to require that this function Q is at least continuous in all its arguments. If

Q is a smooth function of its arguments, then P is called a smooth differential operator.

If Pu is linear in u (that is, P (α u + β v) = α Pu + β Pv for u, v functions and

α, β ∈ R) then P is called a linear differential operator. If P is not linear, it is called

nonlinear.

Here is an example. Let P be a linear differential operator of order 2, and let

(x1, . . . , xn) be coordinates on an open set in M . Then we may write

(
Pu
)
(x) =

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x), (1.3)

where for i, j = 1, . . . , n, each of aij , bi and c are real functions on this coordinate

patch, and aij = aji. We call aij , bi and c the coefficients of the operator P , so that,

for instance, we say P has Hölder continuous coefficients if each of aij , bi and c are

Hölder continuous functions. Also, aij are called the leading coefficients, as they are

the coefficients of the highest order derivative of u.

Now in §1.2 we defined various vector spaces of functions: Ck(M), C∞(M),
Hölder spaces and Sobolev spaces. It is often useful to regard a differential opera-

tor as a mapping between two of these vector spaces. For instance, if P is a smooth

differential operator of order k, and u ∈ C∞(M), then Pu ∈ C∞(M), so P maps

C∞(M) → C∞(M). On the other hand, if u ∈ Ck+l(M) then Pu ∈ Cl(M), so that

P also maps Ck+l(M) → Cl(M).
It is not necessary to assume P is a smooth operator. For instance, let P be a linear

differential operator of order k. It is easy to see that if the coefficients of P are bounded,

then P : Lq
k+l(M) → Lq

l (M) is a linear map, and if the coefficients of P are at least

Cl,α, then P : Ck+l,α(M) → Cl,α(M) is also a linear map, and so on. In this way we

can consider an operator P to act on several different vector spaces of functions.

Definition 1.3.2 Let P be a (nonlinear) differential operator of order k, that is defined

as in (1.2) by a function Q that is at least C1 in the arguments u,∇u, . . . ,∇ku. Let u
be a real function with k derivatives. We define the linearization LuP of P at u to be

the derivative of P (v) with respect to v at u, that is,

LuPv = lim
α→0

(
P (u + α v) − P (u)

α

)
. (1.4)

Then LuP is a linear differential operator of order k. If P is linear then LuP = P .

Note that even if P is a smooth operator, the linearization LuP need not be smooth if u
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is not smooth. For instance, if P is of order k and u ∈ Ck+l(M), then LuP will have

Cl coefficients in general, as it depends on the kth derivatives of u.

Many properties of a linear differential operator P depend only on the highest order

derivatives occurring in P . The symbol of P is a convenient way to isolate these highest

order terms.

Definition 1.3.3 Let P be a linear differential operator on functions of order k. Then in

index notation, we may write

Pu = Ai1...ik∇i1...ik
u + Bi1...ik−1∇i1...ik−1u + · · · + Ki1∇i1u + Lu,

where A, B, . . . , K are symmetric tensors and L a real function on M . For each point

x ∈ M and each ξ ∈ T ∗
xM , define σξ(P ; x) = Ai1...ikξi1ξi2 . . . ξik

. Let σ(P ) :
T ∗M → R be the function with value σξ(P ; x) at each ξ ∈ T ∗

xM . Then σ(P ) is

called the symbol or principal symbol of P . It is a homogeneous polynomial of degree

k on each cotangent space.

1.3.2 Elliptic operators on functions
Now we can define linear elliptic operators on functions.

Definition 1.3.4 Let P be a linear differential operator of degree k on M . We say

P is an elliptic operator if for each x ∈ M and each nonzero ξ ∈ T ∗
xM , we have

σξ(P ; x) �= 0, where σ(P ) is the principal symbol of P .

Thus, σ(P ) must be nonzero on each T ∗
xM \ {0}, that is, on the complement of the

zero section in T ∗M . Suppose dim M > 1. Then T ∗
xM \{0} is connected, and as σ(P )

is continuous on T ∗
xM , either σξ(P ; x) > 0 for all ξ ∈ T ∗

xM \ {0}, or σξ(P ; x) < 0
for all ξ ∈ T ∗

xM \ {0}. However, σ−ξ(P ; x) = (−1)kσξ(P ; x). It follows that if

dimM > 1, then the degree k of an elliptic operator P must be even. Also, if M
is connected and P has continuous leading coefficients, then σ(P ) is continuous on a

connected space, so that either σ(P ) > 0 or σ(P ) < 0 on the whole of the complement

of the zero section in T ∗M .

For example, let P be a linear differential operator of order 2, given in a coordinate

system (x1, . . . , xn) by (1.3). At each point x ∈ M , the leading coefficients aij(x) form

a real symmetric n × n matrix. The condition for P to be elliptic is that aijξiξj �= 0
whenever ξ �= 0, that is, either aijξiξj > 0 for all nonzero ξ or aijξiξj < 0 for all

nonzero ξ. This is equivalent to saying that the eigenvalues of the matrix aij(x) must

either all be positive, or all be negative.

The best known example of a linear elliptic operator is the Laplacian on a Rie-

mannian manifold, defined by ∆u = −gij∇iju. The symbol σ(∆) is σξ(∆; x) =
−gijξiξj = −|ξ|2, so that if ξ �= 0 then σξ(∆; x) < 0, and ∆ is elliptic. Next we define

nonlinear elliptic operators.

Definition 1.3.5 Let P be a (nonlinear) differential operator of degree k on M , and let

u be a function with k derivatives. We say P is elliptic at u if the linearization LuP of

P at u is elliptic. A nonlinear P may be elliptic at some functions u and not at others.
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1.3.3 Differential operators on vector bundles
Now let M be a manifold, and let V, W be vector bundles over M . As above, let ∇ be

some connection on TM , and let ∇V be a connection on V . Let v be a section of V .

By coupling the connections ∇ and ∇V , one can form repeated derivatives of v. We

will write ∇V
a1a2...ak

v for the kth derivative of v defined in this way. Here is the idea of

differential operator on vector bundles.

Definition 1.3.6 A differential operator P of order k taking sections of V to sections

of W is an operator taking sections v of V to sections of W , that depends on v and

its first k derivatives. Explicitly, if v is a k times differentiable section of V then Pv is

given by (
Pv
)
(x) = Q

(
x, v(x),∇V

a1
v(x), . . . ,∇V

a1...ak
v(x)
)
∈ Wx

for x ∈ M . If Q is a smooth function of its arguments, then P is called smooth, and

if Pv is linear in v then P is called linear. If P is not linear, it is nonlinear. If P is

a (nonlinear) differential operator defined by a function Q that is C1 in the arguments

v,∇V
a1

v, . . . ,∇V
a1...ak

v, then we define the linearization LuP at u by (1.4). Although

P maps sections of V to sections of W , by an abuse of notation we may also say that P
is a differential operator from V to W .

This is a natural generalization of differential operators on functions. Since real

functions are the same thing as sections of the trivial line bundle over M with fibre R,

a differential operator on functions is just the special case when V = W = R. Here are

some examples. The operators

d : C∞(ΛkT ∗M) → C∞(Λk+1T ∗M), d∗ : C∞(ΛkT ∗M) → C∞(Λk−1T ∗M),

and ∆ : C∞(ΛkT ∗M) → C∞(ΛkT ∗M)

introduced in §1.1 are all smooth linear differential operators acting on the vector bundle

ΛkT ∗M , where d, d∗ have order 1 and ∆ has order 2. A connection ∇V on a vector

bundle V is a smooth linear differential operator of order 1, mapping from V to V ⊗
T ∗M , and so on.

As in the case of differential operators on functions, we can regard differential op-

erators on vector bundles as mapping a vector space of sections of V to a vector space

of sections of W . For instance, if P is a smooth, linear differential operator of order k
from V to W , then P acts by P : C∞(V ) → C∞(W ), P : Ck+l,α(V ) → Cl,α(W )
and P : Lq

k+l(V ) → Lq
l (W ).

Let P be a linear differential operator of order k from V to W . Then in index

notation, we write

Pv = Ai1...ik∇i1...ik
v + Bi1...ik−1∇i1...ik−1v + · · · + Ki1∇i1v + Lv. (1.5)

However, here Ai1...ik , Bi1...ik1 , . . . are not ordinary tensors, but tensors taking values

in V ∗ ⊗ W . For instance, if ξi is a 1-form at x ∈ M , then Ai1...ik(x)ξi1 . . . ξik
is not a

real number, but an element of V ∗
x ⊗ Wx, or equivalently, a linear map from Vx to Wx,

the fibres of V and W at x.
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One can represent this in index notation by writing Aα i1...ik

β in place of Ai1...ik ,

where i1, . . . , ik are indices for TM , α is an index for W , and β is an index for V ∗, but

we prefer to suppress the indices for V and W . We call Ai1...ik , . . . , L the coefficients

of P . Next we define the symbol of a linear differential operator on vector bundles.

Definition 1.3.7 Let P be a linear differential operator of order k, mapping sections

of V to sections of W , that is given by (1.5) in index notation. For each point x ∈ M
and each ξ ∈ T ∗

xM , define σξ(P ; x) = Ai1...ikξi1ξi2 . . . ξik
. Then σξ(P ; x) is a linear

map from Vx to Wx. Let σ(P ) : T ∗M × V → W be the bundle map defined by

σ(P )(ξ, v) = σξ(P ; x)v ∈ Wx whenever x ∈ M , ξ ∈ T ∗
xM and v ∈ Vx. Then σ(P ) is

called the symbol or principal symbol of P , and σ(P )(ξ, v) is homogeneous of degree

k in ξ and linear in v.

1.3.4 Elliptic operators on vector bundles
Now we define linear elliptic operators on vector bundles.

Definition 1.3.8 Let V, W be vector bundles over a manifold M , and let P be a linear

differential operator of degree k from V to W . We say P is an elliptic operator if for

each x ∈ M and each nonzero ξ ∈ T ∗
xM , the linear map σξ(P ; x) : Vx → Wx is

invertible, where σ(P ) is the principal symbol of P .

Also, we say that P is an underdetermined elliptic operator if for each x ∈ M and

each 0 �= ξ ∈ T ∗
x M , the map σξ(P ; x) : Vx → Wx is surjective, and that P is an

overdetermined elliptic operator if for each x ∈ M and each 0 �= ξ ∈ T ∗
xM , the map

σξ(P ; x) : Vx → Wx is injective. If P is a (nonlinear) differential operator of degree k
from V to W , and v is a section of V with k derivatives, then we say P is elliptic at v
if the linearization LvP of P at v is elliptic.

Suppose the vector bundles V, W have fibres R
l and R

m respectively. If x ∈ M
then Vx

∼= Rl and Wx
∼= Rm, so that σξ(P ; x) : Rl → Rm. Thus, σξ(P ; x) can only

be invertible if l = m, it can only be surjective if l � m, and it can only be injective if

l � m. So, if P is elliptic then dimV = dimW , if P is underdetermined elliptic then

dimV � dimW , and if P is overdetermined elliptic then dimV � dimW .

Consider the equation P (v) = w on M . Locally we can think of v as a collection of

l real functions, and the equation P (v) = w as being m simultaneous equations on the

l functions of v. Now, guided by elementary linear algebra, we expect that a system of

m equations in l variables is likely to have many solutions if l > m (underdetermined),

one solution if l = m, and no solutions at all if l < m (overdetermined). This can help

in thinking about differential operators on vector bundles.

Some authors (particularly of older texts) make a distinction between elliptic equa-

tions, by which they mean elliptic equations in one real function, and elliptic systems,

by which they mean systems of l real equations in l real functions for l > 1, which we

deal with using vector bundles. We will not make this distinction, but will refer to both

cases as elliptic equations.

Papers about elliptic systems often use a more general concept than we have given,

in which the operators can have mixed degree. (See Morrey [267], for instance). It seems

to be a general rule that results proved for elliptic equations (in one real function), can

also be proved for elliptic systems (in several real functions). However, it can be difficult
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to locate the proof for elliptic systems in the literature, as many papers deal only with

elliptic equations in one real function.

Here are some examples. Let M be a Riemannian manifold of dimension n, and

consider the operators d, d∗ and ∆ on M defined in §1.1. Now d : C∞(Λ0T ∗M) →
C∞(Λ1T ∗M) is a smooth linear differential operator of order 1. For x ∈ M and ξ ∈
T ∗

xM , the symbol is σξ(d; x)v = v ξ, for v ∈ R = Λ0T ∗
xM . Thus, if ξ �= 0, σξ(d; x) is

injective, and d is overdetermined elliptic. But if n > 1 then σξ(d; x) is not surjective,

so d is not elliptic. Similarly, d∗ : C∞(Λ1T ∗M) → C∞(Λ0T ∗M) is underdetermined

elliptic. It can also be shown that the operator

d + d∗ : C∞(⊕n
k=0 ΛkT ∗M

)
−→ C∞(⊕n

k=0 ΛkT ∗M
)

is a smooth linear elliptic operator of order 1, and the Laplacian ∆ : C∞(ΛkT ∗M) →
C∞(ΛkT ∗M) on k-forms is smooth, linear and elliptic of order 2 for each k.

1.3.5 Elliptic operators over compact manifolds
Let M be a compact Riemannian manifold. Then from §1.2, L2(M) is a Banach space

of functions on M . In fact, it is a Hilbert space, with the L2 inner product 〈u1, u2〉 =∫
M u1u2 dVg for u1, u2 ∈ L2(M). We can also use this inner product on any vector

subspace of L2(M), such as C∞(M). In the same way, if V is a vector bundle over M
equipped with Euclidean metrics on its fibres, then L2(V ) is a Hilbert space of sections

of V , with inner product 〈 , 〉V given by 〈v1, v2〉V =
∫

M
(v1, v2)dVg .

Now suppose that V, W are vector bundles over M , equipped with metrics on the

fibres, and let P be a linear differential operator of order k from V to W , with co-

efficients at least k times differentiable. It turns out that there is a unique linear dif-

ferential operator P ∗ of order k from W to V , with continuous coefficients, such that

〈Pv, w〉W = 〈v, P ∗w〉V whenever v ∈ L2
k(V ) and w ∈ L2

k(W ). This operator P ∗ is

called the adjoint or formal adjoint of P . We have already met an example of this in

§1.1.2, where the adjoint d∗ of the exterior derivative d was explicitly constructed.

Here are some properties of adjoint operators. We have (P ∗)∗ = P for any P .

If P is smooth then P ∗ is smooth. If V = W and P = P ∗, then P is called self-

adjoint ; the Laplacian ∆ on functions or k-forms is an example of a self-adjoint elliptic

operator. If P is elliptic then P ∗ is elliptic, and if P is overdetermined elliptic then P ∗

is underdetermined elliptic, and vice versa.

One can write down an explicit formula for P ∗ in terms of the coefficients of P and

the metric g. Because of this, adjoint operators are still well-defined when the manifold

M is not compact, or has nonempty boundary. However, in these cases the equation

〈Pv, w〉W = 〈v, P ∗w〉V may no longer hold, and must be modified by boundary terms.

1.4 Regularity of solutions of elliptic equations

Let M be a compact manifold and V, W vector bundles over M , and suppose P is a

smooth linear elliptic operator of order k from V to W . Consider the equation Pv =
w. Clearly, if v ∈ Ck+l(V ) then w ∈ Cl(W ), as w is a function of v and its first

k derivatives, all of which are l times differentiable. It is natural to ask whether the

converse holds, that is, if w ∈ Cl(W ), is it necessarily true that v ∈ Ck+l(V )?
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In fact this is false, and an example is given by Morrey [267, p. 54]. However, it is

in general true that for α ∈ (0, 1), if w ∈ Cl,α(W ) then v ∈ Ck+l,α(V ), and for p > 1,

if w ∈ Lp
l (W ) then v ∈ Lp

k+l(V ). One way to interpret this is that if v is the solution

of a linear elliptic equation, then v must be as smooth as the problem allows it to be.

This property is called elliptic regularity. The main reason that Hölder and Sobolev

spaces are used a lot in analysis, instead of the simpler Ck spaces, is that they have this

regularity property but the Ck spaces do not.

Let us begin by quoting a rather general elliptic regularity result, taken from [30,

Th. 27, Th. 31, p. 463–4]. For a proof, see [267, Th. 6.4.8, p. 251].

Theorem 1.4.1 Suppose M is a compact Riemannian manifold, V, W are vector bun-

dles over M of the same dimension, and P is a smooth, linear, elliptic differential

operator of order k from V to W . Let α ∈ (0, 1), p > 1, and l � 0 be an integer. Sup-

pose that P (v) = w holds weakly, with v ∈ L1(V ) and w ∈ L1(W ). If w ∈ C∞(W ),
then v ∈ C∞(V ). If w ∈ Lp

l (W ) then v ∈ Lp
k+l(V ), and

‖v‖Lp
k+l

� C
(
‖w‖Lp

l
+ ‖v‖L1

)
, (1.6)

for some C > 0 independent of v, w. If w ∈ Cl,α(W ), then v ∈ Ck+l,α(V ), and

‖v‖Ck+l,α � C
(
‖w‖Cl,α + ‖v‖C0

)
, (1.7)

for some C > 0 independent of v, w.

The estimates (1.6) and (1.7) are called the Lp estimates and Schauder estimates for

P respectively. Theorem 1.4.1 is for smooth linear elliptic operators. However, when

studying nonlinear problems in analysis, it is often necessary to deal with linear elliptic

operators that are not smooth. Here are the Schauder estimates for operators with Hölder

continuous coefficients, taken from the same references as the previous result.

Theorem 1.4.2 Suppose M is a compact Riemannian manifold, V, W are vector bun-

dles over M of the same dimension, and P is a linear, elliptic differential operator of

order k from V to W . Let α ∈ (0, 1) and l � 0 be an integer. Suppose that the coeffi-

cients of P are in Cl,α, and that P (v) = w for some v ∈ Ck,α(V ) and w ∈ Cl,α(W ).
Then v ∈ Ck+l,α(V ), and ‖v‖Ck+l,α � C

(
‖w‖Cl,α + ‖v‖C0

)
for some constant C

independent of v, w.

1.4.1 How elliptic regularity results are proved
We shall now digress briefly to explain how the proofs of results like Theorems 1.4.1

and 1.4.2 work. For simplicity we will confine our attention to linear elliptic operators

of order 2 on functions, but the proofs in the more general cases follow similar lines.

First, let n > 2 and consider R
n with coordinates (x1, . . . , xn), with the Euclidean

metric (dx1)2 + · · · + (dxn)2. The Laplacian ∆ on Rn is given by

∆u = −
∑n

j=1
∂2u

(∂xj)2
.

Define a function Γ : R
n \ {0} → R by Γ(x) = 1

(n−2)Ωn−1
|x|2−n, where Ωn−1 is the

volume of the unit sphere Sn−1 in R
n. Then ∆Γ(x) = 0 for x �= 0 in R

n. Now suppose
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that ∆u = f , for u, f real functions on Rn. It turns out that if u(x) and f(x) decay

sufficiently fast as x → ∞ in R
n, we have

u(y) =
∫

x∈Rn Γ(x − y)f(x)dx. (1.8)

This is called Green’s representation for u, and can be found in [126, §2.4].

Because (1.8) gives u in terms of f , if we know something about f or its derivatives,

we can deduce something about u. For instance, differentiating (1.8) with respect to xj ,

we see that

∂u

∂xj
(y) = −

∫
x∈Rn

∂Γ(x − y)
∂xj

f(x)dx =
∫

x∈Rn

Γ(x − y)
∂f

∂xj
(x)dx

by integration by parts, provided ∂f/∂xj exists, and using this equation one can deduce

bounds on ∇u. Working directly from (1.8), one can deduce Lp estimates and Schauder

estimates analogous to those in Theorem 1.4.1, for the operator ∆ on R
n.

Now ∆ is an operator with constant coefficients, that is, the coefficients are constant

in coordinates. The next stage in the proof is to extend the results to operators P with

variable coefficients. The idea is to approximate P by an operator P ′ with constant co-

efficients in a small open set, and then use results about elliptic operators with constant

coefficients proved using the Green’s representation. For the approximation of P by P ′

to be a good approximation, it is necessary that the coefficients of P should not vary

too quickly. This can be ensured, for instance, by supposing the coefficients of P to be

Hölder continuous with some given bound on their Hölder norm.

As an example, here is a result on Schauder estimates for operators P with Hölder

continuous coefficients, part of which will be needed in Chapter 6.

Theorem 1.4.3 Let B1, B2 be the balls of radius 1, 2 about 0 in R
n. Suppose P is a

linear elliptic operator of order 2 on functions on B2, defined by

Pu(x) = aij(x)
∂2u

∂xi∂xj
(x) + bi(x)

∂u

∂xi
(x) + c(x)u(x).

Let α ∈ (0, 1). Suppose the coefficients aij , bi and c lie in C0,α(B2) and there are

constants λ, Λ > 0 such that
∣∣aij(x)ξiξj

∣∣ � λ|ξ|2 for all x ∈ B2 and ξ ∈ Rn, and

‖aij‖C0,α � Λ, ‖bi‖C0,α � Λ, and ‖c‖C0,α � Λ on B2 for all i, j = 1, . . . , n. Then

there exist constants C, D depending on n, α, λ and Λ, such that whenever u ∈ C2(B2)
and f ∈ C0,α(B2) with Pu = f , we have u|B1 ∈ C2,α(B1) and∥∥u|B1

∥∥
C2,α � C

(
‖f‖C0,α + ‖u‖C0

)
, (1.9)

and whenever u ∈ C2(B2) and f is bounded, then u|B1 ∈ C1,α(B1) and∥∥u|B1

∥∥
C1,α � D

(
‖f‖C0 + ‖u‖C0

)
. (1.10)

More generally, let l � 0 be an integer and α ∈ (0, 1). Suppose the coefficients

aij , bi and c lie in Cl,α(B2) and there are constants λ, Λ > 0 such that
∣∣aij(x)ξiξj

∣∣ �
λ|ξ|2 for all x ∈ B2 and ξ ∈ R

n, and ‖aij‖Cl,α � Λ, ‖bi‖Cl,α � Λ, and ‖c‖Cl,α � Λ
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on B2 for all i, j = 1, . . . , n. Then there exists a constant C depending on n, l, α, λ
and Λ such that whenever u ∈ C2(B2) and f ∈ Cl,α(B2) with Pu = f , we have

u|B1 ∈ Cl+2,α(B1) and

∥∥u|B1

∥∥
Cl+2,α � C

(
‖f‖Cl,α + ‖u‖C0

)
. (1.11)

Here the estimates (1.9) and (1.11) follow from [126, Ths 6.2 and 6.17], and also

from [267, Th. 5.6.2]. Estimate (1.10) follows from Morrey [267, Th. 5.5.5′(b)]. In fact,

Morrey shows that the norm ‖f‖Ln/(1−α) rather than ‖f‖C0 is sufficient in (1.10).

Theorem 1.4.3 specifies exactly what C and D in eqns (1.9)–(1.11) depend on, and

this is worth looking at. The inequality
∣∣aij(x)ξiξj

∣∣ � λ|ξ|2 implies that P is elliptic, by

definition, so that the constant λ > 0 represents a sort of lower bound for the ellipticity

of P . The constants C and D also depend on Λ, which is a bound for the coefficients of

P in C0,α or Ck,α. Thus, Λ provides a measure of how close P is to being an operator

with constant coefficients.

Notice that although u, f exist on B2, the theorem only gives estimates of u on B1,

and these estimates depend on data on B2. A result of this sort is called an interior

estimate, because it estimates u only on the interior of the domain. Here is one reason

why we must prove results of this structure. Consider the equation ∆u = 0 on some

domain Ω in Rn. The maximum principle [126, §3] says that u cannot have a strict

maximum at any point in the interior of Ω, roughly because ∆u > 0 at that point. It

follows that the maximum of u on Ω must occur at the boundary of Ω.

This illustrates the general principle that if P is a linear elliptic operator and Pu = f
on Ω, then u is likely to be most badly behaved, and most difficult to bound, near the

boundary of Ω. Because of this, it is easier to prove an interior estimate like Theorem

1.4.3, than to estimate u on the whole of its domain.

Now Theorems 1.4.1 and 1.4.2 deal not with subsets of R
n, but with compact man-

ifolds. The final step in the proof of results like these goes as follows. Let M be a

compact manifold. Using the compactness of M , we can find a finite set I and sets

{Xi : i ∈ I} and {Yi : i ∈ I}, where each Xi, Yi is an open set in M , the sets Xi

form an open cover of M , and for each i ∈ I we have Xi ⊂ Yi and the pair (Xi, Yi) is

diffeomorphic to the pair (B1, B2), where B1, B2 are the balls of radius 1, 2 in R
n.

Suppose that we know an interior estimate for linear elliptic equations Pv = w on

the balls B1, B2 in R
n, analogous to Theorem 1.4.3. Since (Xi, Yi) is diffeomorphic to

(B1, B2), we may apply this estimate to (Xi, Yi), and the result is an estimate of v|Xi ,

depending on norms of v|Yi and w|Yi . Since the sets Xi form an open cover of M , in

this way we estimate v on all of M .

Using this argument, we can use interior estimates for balls in R
n to prove results

for compact manifolds M , that estimate the solution on the whole of M . Therefore,

results such as Theorems 1.4.1 and 1.4.2 should be understood as purely local results,

that do not encode any important global information about M and P .
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1.5 Existence of solutions of linear elliptic equations

Now we will use the elliptic regularity results of §1.4 and the Kondrakov Theorem to

prove some basic facts about linear elliptic operators. Our first result shows that the

kernel of a linear elliptic operator on a compact manifold is very well-behaved.

Theorem 1.5.1 Let V, W be vector bundles over a compact manifold M , and let P
be a smooth linear elliptic operator of order k from V to W . Then P acts by P :
C∞(V ) → C∞(W ), P : Ck+l,α(V ) → Cl,α(W ) and P : Lq

k+l(V ) → Lq
l (W ). The

kernel KerP is the same for all of these actions, and is a finite-dimensional subspace

of C∞(V ).

Proof If v ∈ KerP then Pv = 0. Since 0 ∈ C∞(W ), Theorem 1.4.1 shows that

v ∈ C∞(V ). Thus KerP lies in C∞(V ), and is therefore the same for all three actions

above. Let α ∈ (0, 1), and define B = {v ∈ KerP : ‖v‖Ck,α � 1}, so that B is the

unit ball in KerP in the Ck,α norm. The Kondrakov Theorem, Theorem 1.2.3, shows

that the inclusion Ck,α(V ) ↪→ Ck(V ) is compact. Therefore B lies in a compact subset

of Ck(V ), and the closure B of B in Ck(V ) is compact.

But P : Ck(V ) → C0(W ) is continuous, and P (b) = 0 ∈ C0(W ) if b ∈ B. Thus

P (b′) = 0 if b′ ∈ B, so B ⊂ KerP . Since KerP ⊂ Ck,α(V ), we see that B = B, and

B is a compact topological space. Now the only Banach spaces with compact unit balls

are finite-dimensional, so KerP is finite-dimensional, as we have to prove. �

Now let M be a compact Riemannian manifold and V, W vector bundles over M
equipped with metrics in the fibres. Let P be a smooth linear elliptic operator from V to

W . Recall from §1.3.5 that L2(V ) has an inner product 〈 , 〉V . If A is a vector subspace

of L2(V ) and v ∈ L2(V ), we say that v ⊥ A if 〈v, a〉V = 0 for all a ∈ A. Using this

notation, we shall prove:

Proposition 1.5.2 Let V, W be vector bundles over a compact Riemannian manifold

M , equipped with metrics in the fibres, and let P be a smooth linear elliptic operator

of order k from V to W . Let l � 0 be an integer, and let α ∈ (0, 1). Then there is

a constant D > 0 such that if v ∈ Ck+l,α(V ) and v ⊥ KerP , then ‖v‖Ck+l,α �
D‖Pv‖Cl,α .

Similarly, if p > 1 and l � 0 is an integer, there is a constant D > 0 such that if

v ∈ Lp
k+l(V ) and v ⊥ KerP , then ‖v‖Lp

k+l
� D‖Pv‖Lp

l
.

Proof For simplicity, we will prove only the case ‖v‖Ck,α � D‖Pv‖C0,α . The proofs

in the other cases work in exactly the same way, and are left to the reader. Define a

subset S of Ck,α(V ) by S =
{
v ∈ Ck,α(V ) : v ⊥ KerP and ‖v‖Ck,α = 1

}
,

and let γ = inf
{
‖Ps‖C0,α : s ∈ S

}
. Suppose for a contradiction that γ = 0. Then

we can choose a sequence {sj}∞j=1 in S such that ‖Psj‖C0,α → 0 as j → ∞. Now

S is bounded in Ck,α(V ) and the inclusion Ck,α(V ) ↪→ Ck(V ) is compact, by the

Kondrakov Theorem. Therefore there exists a subsequence {sij}∞j=1 that converges in

Ck(V ) to some s′ ∈ Ck(V ).
As sij → s′ in Ck we see that Psij → Ps′ in C0. But ‖Psij‖C0,α → 0, and

‖Psij‖C0 � ‖Psij‖C0,α . Thus Ps′ = 0 and s′ ∈ KerP , so that s′ ∈ Ck,α(V ). Now
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by Theorem 1.4.1, there is a constant C such that ‖v‖Ck,α � C
(
‖Pv‖C0,α + ‖v‖C0

)
for all v ∈ Ck,α(V ). Therefore

‖sij − s′‖Ck,α � C
(
‖Psij‖C0,α + ‖sij − s′‖C0

)
for each j, since Ps′ = 0. But ‖Psij‖C0,α → 0 as j → ∞, and ‖sij − s′‖C0 → ∞ as

j → ∞ because sij converges to s′ in Ck and so in C0. Thus ‖sij − s′‖Ck,α → 0 as

j → ∞. But S is closed in Ck,α(V ), and therefore s′ ∈ S.

As s′ ∈ S, we have s′ ⊥ KerP . But also s′ ∈ KerP , from above. So s′ = 0.

However, ‖s′‖Ck,α = 1 since s′ ∈ S, a contradiction. Therefore γ > 0. Put D = γ−1.

Then for all s ∈ S we have ‖s‖Ck,α = 1 � D‖Ps‖C0,α , by definition of γ. But

any v ∈ Ck,α(V ) with v ⊥ KerP can be written v = λs for some s ∈ S, and so

‖v‖Ck,α � D‖Pv‖C0,α , as we have to prove. �

From §1.3.5, if V, W are vector bundles, with metrics on the fibres, over a compact

Riemannian manifold M , and P is a smooth linear elliptic operator from V to W , then

there is a smooth linear elliptic operator P ∗ from W to V . Our next result is an existence

result for the equation Pv = w, as it gives a simple condition on w, that w ⊥ KerP ∗,

for there to exist a solution v. This is called the Fredholm alternative.

Theorem 1.5.3 Suppose V, W are vector bundles over a compact Riemannian manifold

M , equipped with metrics in the fibres, and P is a smooth linear elliptic operator of

order k from V to W . Let l � 0 be an integer, let p > 1, and let α ∈ (0, 1). Then the

images of the maps

P : Ck+l,α(V ) → Cl,α(W ) and P : Lp
k+l(V ) → Lp

l (W )

are closed linear subspaces of Cl,α(W ) and Lp
l (W ) respectively. If w ∈ Cl,α(W ) then

there exists v ∈ Ck+l,α(V ) with Pv = w if and only if w ⊥ KerP ∗, and if v ⊥ KerP
then v is unique. Similarly, if w ∈ Lp

l (W ) then there exists v ∈ Lp
k+l(V ) with Pv = w

if and only if w ⊥ KerP ∗, and if v ⊥ KerP then v is unique.

Proof Let {wj}∞j=1 be a sequence in P
[
Ck+l,α(V )

]
that converges to some w′ in

Cl,α(W ). Then for each wj there exists a unique vj ∈ Ck+l,α(V ) such that vj ⊥ KerP
and Pvj = wj . Applying Proposition 1.5.2 we see that for all i, j, ‖vi − vj‖Ck+l,α �
D‖wi − wj‖Cl,α , for D some constant. Since {wj}∞j=1 converges in Cl,α(W ), ‖wi −
wj‖Cl,α → 0 as i, j → ∞, and therefore ‖vi − vj‖Ck+l,α → 0 as i, j → ∞, and

{vj}∞j=1 is a Cauchy sequence in Ck+l,α(V ).
As Ck+l,α(V ) is a Banach space and therefore complete, {vj}∞j=1 converges to

some v′ ∈ Ck+l,α(V ). By continuity, P (v′) = w′, so that w′ ∈ P
[
Ck+l,α(V )

]
.

Therefore P
[
Ck+l,α(V )

]
contains its limit points, and is a closed linear subspace of

Cl,α(W ). Similarly, P
[
Lp

k+l(V )
]

is closed in Lp
l (W ). This proves the first part.

By definition of P ∗, if v ∈ L2
k(V ) and w ∈ L2

k(W ), then 〈v, P ∗w〉V = 〈Pv, w〉W .

It follows that if w ∈ Cl,α(W ), then w ∈ KerP ∗ if and only if 〈Pv, w〉W = 0 for

all v ∈ Ck+l,α(V ). So, KerP ∗ is the orthogonal subspace to P
[
Ck+l,α(V )

]
. But

P
[
Ck+l,α(V )

]
is closed. Therefore, if w ∈ Cl,α(W ), then w ⊥ KerP ∗ if and only

if w ∈ P
[
Ck+l,α(V )

]
, that is, if and only if there exists v ∈ Ck+l,α(V ) with Pv = w.
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Clearly, we may add some element of KerP to v to make v ⊥ KerP , and then v is

unique. This proves the second part. The last part follows by the same method. �

From elementary linear algebra, if A, B are finite-dimensional inner product spaces

and L : A → B is a linear map, then KerL and KerL∗ are finite-dimensional vector

subspaces of A, B. For given b ∈ B, the equation La = b has a solution a ∈ A
if and only if b ⊥ KerL∗, and two solutions differ by an element of KerL. Now

by Theorems 1.5.1 and 1.5.3, these properties also hold for linear elliptic operators

P : Ck+l,α(V ) → Cl,α(W ) or P : Lp
k+l(V ) → Lp

k(W ). Thus, linear elliptic operators

behave very like linear operators on finite-dimensional vector spaces.

This gives us a way of thinking about linear elliptic operators. In the situation of

theorem 1.5.3, define E =
{
v ∈ Ck+l,α(V ) : v ⊥ KerP

}
and F =

{
w ∈ Cl,α(W ) :

w ⊥ KerP ∗}. Then Ck+l,α(V ) = KerP ⊕ E and Cl,α(W ) = KerP ∗ ⊕ F , and

the theorem implies that P : E → F is a linear homeomorphism, that is, it is both an

invertible linear map and an isomorphism of E and F as topological spaces.

Now KerP, Ker P ∗ are finite-dimensional, and E, F infinite-dimensional. In some

sense, P is close to being an invertible map between the infinite-dimensional spaces

Ck+l,α(V ) and Cl,α(W ), as P : E → F is invertible, and it is only the finite-

dimensional pieces KerP and KerP ∗ that cause the problem. Because of this, the

existence and uniqueness of solutions of linear elliptic equations can be reduced, more-

or-less, to finite-dimensional linear algebra. In contrast, non-elliptic linear differential

equations are truly infinite-dimensional problems, and are more difficult to deal with.

Here is another example of the analogy between linear elliptic operators and finite-

dimensional linear algebra. If L : A → B is a linear map of finite-dimensional inner

product spaces A, B, then dimKerL−dimKerL∗ = dimA−dimB. Thus the integer

dimKerL − dimKerL∗ depends only on A and B, and is independent of L. Now let

V, W be vector bundles over a compact Riemannian manifold M , with metrics in the

fibres, and let P be a smooth linear elliptic operator of order k from V to W . Define

the index indP of P by indP = dim KerP − dim KerP ∗ in Z. The Atiyah–Singer

Index Theorem [13] gives a formula for indP in terms of topological invariants of the

symbol σ(P ). That is, the index of P is actually a topological invariant. It is unchanged

by deformations of P that preserve ellipticity, and in this sense is independent of P .

Finally, here is a version of the results of this section for operators with Cl,α coeffi-

cients. To prove it, follow the proofs above but apply Theorem 1.4.2 instead of Theorem

1.4.1 wherever it occurs. The reason for requiring l � k is in order that P ∗ should exist.

Theorem 1.5.4 Let k > 0 and l � k be integers, and α ∈ (0, 1). Suppose V, W are

vector bundles over a compact Riemannian manifold M , equipped with metrics in the

fibres, and P is a linear elliptic operator of order k from V to W with Cl,α coefficients.

Then P ∗ is elliptic with Cl−k,α coefficients, and KerP, KerP ∗ are finite-dimensional

subspaces of Ck+l,α(V ) and Cl,α(W ) respectively. If w ∈ Cl,α(W ) then there exists

v ∈ Ck+l,α(V ) with Pv = w if and only if w ⊥ KerP ∗, and if one requires that

v ⊥ KerP then v is unique.



2
Introduction to connections,
curvature and holonomy
groups

In this chapter we will introduce the theory of connections, focussing in particular on

two topics, the curvature and the holonomy group of a connection. Connections can be

defined in two different sorts of bundle, that is, vector bundles and principal bundles.

Both definitions will be given in §2.1.

Sections 2.2–2.4 define the holonomy group of a connection on a vector or princi-

pal bundle, and explain some of its basic properties, including its relationship with the

curvature of the connection. The curvature is a local invariant of the connection, since

it varies from point to point on the manifold, whereas the holonomy group is a global

invariant, as it is independent of any base point in the manifold.

Section 2.5 considers connections on the tangent bundle TM of a manifold M ,

defines the torsion of a connection on TM , and discusses the holonomy groups of

torsion-free connections. Finally, §2.6 defines G-structures on a manifold and considers

the question of existence and uniqueness of torsion-free connections compatible with a

G-structure. For a more detailed introduction to connections and holonomy groups, see

Kobayashi and Nomizu [214, Ch. 2, App. 4,5,7].

2.1 Bundles, connections and curvature

We now discuss connections, and their curvature. Connections can be defined in two

settings: vector bundles and principal bundles. These two concepts are different, but

very closely related. We will define both kinds of connection, and explain the links

between them.

2.1.1 Vector bundles and principal bundles
We begin by defining vector bundles and principal bundles.

Definition 2.1.1 Let M be a manifold. A vector bundle E over M is a fibre bundle

whose fibres are (real or complex) vector spaces. That is, E is a manifold equipped

with a smooth projection π : E → M . For each m ∈ M the fibre Em = π−1(m) has

the structure of a vector space, and there is an open neighbourhood Um of m such that

π−1(Um) ∼= Um × V , where V is the fibre of E.

19
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Now let M be a manifold, and G a Lie group. A principal bundle P over M with

fibre G is a manifold P equipped with a smooth projection π : P → M , and an action

of G on P , which we will write as p
g�−→ g ·p, for g ∈ G and p ∈ P . This G-action must

be smooth and free, and the projection π : P → M must be a fibration, with fibres the

orbits of the G-action, so that for each m ∈ M the fibre π−1(m) is a copy of G.

Vector bundles and principal bundles are basic tools in differential geometry. Many

geometric structures can be defined using either vector or principal bundles. Thus vector

and principal bundles often provide two different but equivalent approaches to the same

problem, and it is useful to understand both.

We shall explain the links between vector and principal bundle methods by showing

how to translate from one to the other, and back. First, here is a way to go from vector

to principal bundles.

Definition 2.1.2 Let M be a manifold, and E → M a vector bundle with fibre Rk.

Define a manifold F E by

F E =
{
(m, e1, . . . , ek) : m ∈ M and (e1, . . . , ek) is a basis for Em

}
.

Define π : F E → M by π : (m, e1, . . . , ek) �→ m. For each A = (Aij) in GL(k, R)
and (m, e1, . . . , ek) in F E, define A · (m, e1, . . . , ek) = (m, e′1, . . . , e

′
k), where e′i =∑k

j=1 Aijej . This gives an action of GL(k, R) on F E, which makes F E into a principal

bundle over M , with fibre GL(k, R). We call F E the frame bundle of E.

One frame bundle is of particular importance. When E = TM , the bundle F TM

will be written F , and called the frame bundle of M .

We can also pass from principal bundles to vector bundles.

Definition 2.1.3 Suppose M is a manifold, and P a principal bundle over M with fibre

G, a Lie group. Let ρ be a representation of G on a vector space V . Then G acts on

the product space P × V by the principal bundle action on the first factor, and ρ on

the second. Define ρ(P ) = (P × V )/G, the quotient of P × V by this G-action. Now

P/G = M , so the obvious map from (P ×V )/G to P/G yields a projection from ρ(P )
to M . Since G acts freely on P , this projection has fibre V , and thus ρ(P ) is a vector

bundle over M , with fibre V .

These two constructions are inverse, in the sense that if ρ is the canonical repre-

sentation of GL(k, R) on Rk then E ∼= ρ(F E). This gives a 1-1 correspondence be-

tween vector bundles over M with fibre R
k, and principal bundles over M with fibre

GL(k, R). But any Lie group G can be the fibre of a principal bundle, and not just

G = GL(k, R), so principal bundles are more general than vector bundles.

Let P be a principal bundle over M with fibre G, let g be the Lie algebra of G, and

let ad : G → GL(g) be the adjoint representation of G on g. Definition 2.1.3 gives a

natural vector bundle ad(P ) over M , with fibre g, called the adjoint bundle. This will

be important later.

Let ρ be a representation of G on V , and π : P × V → ρ(P ) the natural projection.

We may regard P × V as the trivial vector bundle over P with fibre V . Then if e ∈
C∞(ρ(P )

)
is a smooth section of ρ(P ) over M , the pull-back π∗(e) is a smooth section
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of P ×V over P . Moreover, π∗(e) is invariant under the action of G on P ×V , and this

gives a 1-1 correspondence between sections of ρ(P ) over M and G-invariant sections

of P × V over P .

2.1.2 Connections on vector bundles
Here is the definition of a connection on a vector bundle.

Definition 2.1.4 Let M be a manifold, and E → M a vector bundle. A connection ∇E

on E is a linear map ∇E : C∞(E) → C∞(E ⊗ T ∗M) satisfying the condition

∇E(α e) = α∇Ee + e ⊗ dα,

whenever e ∈ C∞(E) is a smooth section of E and α is a smooth function on M . If ∇E

is such a connection, e ∈ C∞(E), and v ∈ C∞(TM) is a vector field, then we write

∇E
v e = v · ∇Ee ∈ C∞(E), where ‘·’ contracts together the TM and T ∗M factors in

v and ∇Ee. Then if v ∈ C∞(TM) and e ∈ C∞(E) and α, β are smooth functions on

M , we have

∇E

αv(βe) = αβ∇E

v e + α(v · β)e. (2.1)

Here v · β is the Lie derivative of β by v. It is a smooth function on M , and could also

be written v · dβ.

Suppose E is a vector bundle with fibre Rk over M , and let e1, . . . , ek be smooth

sections of E over some open set U ⊂ M , that form a basis of E at each point of

U . Then every smooth section of E over U can be written uniquely as
∑k

i=1 αiei,

where α1, . . . , αk are smooth functions on U . Let f1, . . . , fk be any smooth sections of

E ⊗ T ∗M over U , and define

∇E
[∑k

i=1 αiei

]
=
∑k

i=1(αifi + ei ⊗ dαi)

for all smooth functions α1, . . . , αk on U . Then ∇E is a connection on E over U , and

moreover, every connection on E over U can be written uniquely in this way.

Next we explain how to define the curvature of a connection on a vector bundle.

Curvature is a very important topic in geometry, and there are a number of ways to define

it. The approach we take uses vector fields, and the Lie bracket of vector fields. Let M
be a manifold, and E a vector bundle over M . Write End(E) = E ⊗ E∗, where E∗ is

the dual vector bundle to E. Let ∇E be a connection on E. Then the curvature R(∇E)
of the connection ∇E is a smooth section of the vector bundle End(E) ⊗ Λ2T ∗M ,

defined as follows.

Proposition 2.1.5 Let M be a manifold, E a vector bundle over M , and ∇E a connec-

tion on E. Suppose that v, w ∈ C∞(TM) are vector fields and e ∈ C∞(E), and that

α, β, γ are smooth functions on M . Then

∇E

αv∇E

βw(γe) −∇E

βw∇E

αv(γe) −∇E

[αv,βw](γe)

= αβγ ·
{
∇E

v∇E

we −∇E

w∇E

v e −∇E

[v,w]e
}
,

(2.2)

where [v, w] is the Lie bracket. Thus the expression ∇E
v∇E

we − ∇E
w∇E

v e − ∇E

[v,w]e is

pointwise-linear in v, w and e. Also, it is clearly antisymmetric in v and w. Therefore
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there exists a unique, smooth section R(∇E) ∈ C∞(End(E) ⊗ Λ2T ∗M
)

called the

curvature of ∇E, that satisfies the equation

R(∇E) · (e ⊗ v ∧ w) = ∇E

v∇E

we −∇E

w∇E

v e −∇E

[v,w]e (2.3)

for all v, w ∈ C∞(TM) and e ∈ C∞(E).

Proof If v, w ∈ C∞(TM) and α, β are smooth functions on M , then [αv, βw] =
αβ[v, w] + α(v · β)w − β(w · α)v. Using this and (2.1) to expand the terms on the left

hand side of (2.2), we see that

∇E

αv∇E

βw(γe) =αβγ∇E

v ∇E

we + αβ(w·γ)∇E

v e +
{
αβ(v ·γ) + α(v ·β)γ

}
∇E

we

+
{
α(v ·β)(w·γ) + αβ(v ·(w·γ))

}
e,

∇E

βw∇E

αv(γe) =αβγ∇E

w∇E

v e +
{
αβ(w·γ) + (w·α)βγ

}
∇E

v e + αβ(v ·γ)∇E

we

+
{
(w·α)β(v ·γ) + αβ(w·(v ·γ))

}
e,

∇E

[αv,βw](γe) =αβγ∇E

[v,w]e − (w·α)βγ∇E

v e + α(v ·β)γ∇E

we

+
{
αβ([v, w]·γ) + α(v ·β)(w·γ) − (w·α)β(v ·γ)

}
e.

Combining these equations with the identity v · (w · γ) − w · (v · γ) = [v, w] · γ, after

some cancellation we prove (2.2), and the proposition follows. �

Here is one way to understand the curvature of ∇E. Let (x1, . . . , xn) be local coor-

dinates on M , and define vi = ∂/∂xi for i = 1, . . . , n. Then vi is a vector field on M ,

and [vi, vj ] = 0. Let e be a smooth section of E. Then we may interpret ∇E
vi

e as a kind

of partial derivative ∂e/∂xi of e. Using (or abusing) this partial derivative notation, eqn

(2.3) implies that

R(∇E) · (e ⊗ vi ∧ vj) =
∂2e

∂xi∂xj
− ∂2e

∂xj∂xi
. (2.4)

Now, partial derivatives of functions commute, so ∂2f/∂xi∂xj = ∂2f/∂xj∂xi if f is

a smooth function on M . However, this does not hold for sections of E, as (2.4) shows

that the curvature R(∇E) measures how much partial derivatives in E fail to commute.

2.1.3 Connections on principal bundles
Suppose P is a principal bundle over a manifold M , with fibre G and projection π :
P → M . Let p ∈ P , and set m = π(p). Then the derivative of π gives a linear map

dπp : TpP → TmM . Define a subspace Cp of TpP by Cp = Ker(dπp). Then the

subspaces Cp form a vector subbundle C of the tangent bundle TP , called the vertical

subbundle. Note that Cp is Tp(π−1(m)), the tangent space to the fibre of π : P → M
over m. But the fibres of π are the orbits of the free G-action on P . It follows that there

is a natural isomorphism Cp
∼= g between Cp and the Lie algebra g of G.

Here is the definition of a connection on P .

Definition 2.1.6 Let M be a manifold, and P a principal bundle over M with fibre G,

a Lie group. A connection on P is a vector subbundle D of TP called the horizontal
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subbundle, that is invariant under the G-action on P , and which satisfies TpP = Cp ⊕
Dp for each p ∈ P . If π(p) = m, then dπp maps TpP = Cp ⊕ Dp onto TmM , and as

Cp = Ker dπp, we see that dπp induces an isomorphism between Dp and TmM .

Thus the horizontal subbundle D is naturally isomorphic to π∗(TM). So if v ∈
C∞(TM) is a vector field on M , there is a unique section λ(v) of the bundle D ⊂ TP
over P , such that dπp

(
λ(v)|p

)
= v|π(p) for each p ∈ P . We call λ(v) the horizontal lift

of v. It is a vector field on P , and is invariant under the action of G on P .

We now define the curvature of a connection on a principal bundle. Let M be a

manifold, P a principal bundle over M with fibre G, a Lie group with Lie algebra g,

and D a connection on P . If v, w ∈ C∞(TM) and α, β are smooth functions on M ,

then by a similar argument to the proof of (2.2) in Proposition 2.1.5, we can show that[
λ(αv), λ(βw)

]
− λ
(
[αv, βw]

)
= αβ ·

{[
λ(v), λ(w)

]
− λ
(
[v, w]

)}
,

where [ , ] is the Lie bracket of vector fields. Thus the expression
[
λ(v), λ(w)

]
−

λ
(
[v, w]

)
is pointwise-linear and antisymmetric in v, w. Also, as dπ

(
λ(v)
)

= v for

all vector fields v on M we see that

dπ
(
[λ(v), λ(w)]

)
= dπ

(
λ([v, w])

)
= [v, w].

Therefore,
[
λ(v), λ(w)

]
− λ
(
[v, w]

)
lies in the kernel of dπ, which is the vertical sub-

bundle C of TP . But there is a natural isomorphism Cp
∼= g for each p ∈ P , and thus

we may regard
[
λ(v), λ(w)

]
− λ
(
[v, w]

)
as a section of the trivial vector bundle P × g

over P .

As λ(v), λ(w) and λ([v, w]) are invariant under the action of G on P , this section

of P × g is invariant under the natural action of G on P × g. But from above there is a

1-1 correspondence between G-invariant sections of P × g over P , and sections of the

adjoint bundle ad(P ) over M . We use this to deduce the following result, which defines

the curvature R(P, D) of a connection D on P .

Proposition 2.1.7 Let M be a manifold, G a Lie group with Lie algebra g, P a princi-

pal bundle over M with fibre G, and D a connection on P . Then there exists a unique,

smooth section R(P, D) of the vector bundle ad(P ) ⊗Λ2T ∗M called the curvature of

D, that satisfies

π∗(R(P, D) · v ∧ w
)

=
[
λ(v), λ(w)

]
− λ
(
[v, w]

)
(2.5)

for all v, w ∈ C∞(TM). Here the left hand side is a g-valued function on P , the right

hand side is a section of the subbundle C ⊂ TP , and the two sides are identified using

the natural isomorphism Cp
∼= g for p ∈ P .

Next we relate connections on vector and principal bundles. Let M, P and G be as

above. Let ρ be a representation of G on a vector space V , and define E → M to be

the vector bundle ρ(P ) over M . Given a connection D on the principal bundle P , we

will explain how to construct a unique connection ∇E on E. Let e ∈ C∞(E), so that

π∗(e) is a section of P × V over P . Then π∗(e) is a function π∗(e) : P → V , so its
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exterior derivative is a linear map dπ∗(e)|p : TpP → V for each p ∈ P . Thus dπ∗(e)
is a smooth section of the vector bundle V ⊗ T ∗P over P .

Let D be a connection on P . Then for each p ∈ P there are isomorphisms

TpP ∼= Cp ⊕ Dp, Cp
∼= g and Dp

∼= π∗(Tπ(p)M).

These give a natural splitting V ⊗T ∗P ∼= V ⊗g∗⊕V ⊗π∗(T ∗M). Write πD

(
dπ∗(e)

)
for the component of dπ∗(e) in C∞(V ⊗ π∗(T ∗M)

)
in this splitting. Now both π∗(e)

and the vector bundle splitting are G-invariant, so πD

(
dπ∗(e)

)
must be G-invariant.

But there is a 1-1 correspondence between G-invariant sections of V ⊗ π∗(T ∗M)
over P , and sections of the corresponding vector bundle E ⊗ T ∗M over M . There-

fore πD

(
dπ∗(e)

)
is the pull-back of a unique element of C∞(E ⊗ T ∗M

)
. We use this

to define ∇E.

Definition 2.1.8 Suppose M is a manifold, P a principal bundle over M with fibre

G, and D a connection on P . Let ρ be a representation of G on a vector space V , and

define E to be the vector bundle ρ(P ) over M . If e ∈ C∞(E), then πD

(
dπ∗(e)

)
is a

G-invariant section of V ⊗ π∗(T ∗M) over P . Define ∇Ee ∈ C∞(E ⊗T ∗M) to be the

unique section of E ⊗ T ∗M with pull-back πD

(
dπ∗(e)

)
under the natural projection

V ⊗ π∗(T ∗M) → E. This defines a connection ∇E on the vector bundle E over M .

To each connection D on a principal bundle P , we have associated a unique con-

nection ∇E on the vector bundle E = ρ(P ). If G = GL(k, R) and ρ is the standard

representation of G on Rk, so that P is the frame bundle F E of E, then this gives a 1-1

correspondence between connections on P and E. However, for general G and ρ the

map D �→ ∇E may be neither injective nor surjective.

Our final result, which follows quickly from the definitions, relates the ideas of

curvature of connections in vector and principal bundles.

Proposition 2.1.9 Suppose M is a manifold, G a Lie group with Lie algebra g, P
a principal bundle over M with fibre G, and D a connection on P , with curvature

R(P, D). Let ρ be a representation of G on a vector space V , E the vector bundle

ρ(P ) over M , and ∇E the connection given in Definition 2.1.8, with curvature R(∇E).
Now g and End(V ) are representations of G, and ρ gives a G-equivariant linear

map dρ : g → End(V ). This induces a map dρ : ad(P ) → End(E) of the vector

bundles ad(P ) and End(E) over M corresponding to g and End(V ). Let

dρ ⊗ id : ad(P ) ⊗ Λ2T ∗M → End(E) ⊗ Λ2T ∗M

be the product with the identity on Λ2T ∗M . Then (dρ ⊗ id)
(
R(P, D)

)
= R(∇E).

Thus, the definitions of curvature of connections in vector and principal bundles are

essentially equivalent.

2.2 Vector bundles, connections and holonomy groups

We now define the holonomy group of a connection on a vector bundle, and prove some

elementary facts about it. Let M be a manifold, E → M a vector bundle over M , and
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∇E a connection on E. Let γ : [0, 1] → M be a smooth curve in M . Then the pull-back

γ∗(E) of E to [0, 1] is a vector bundle over [0, 1] with fibre Eγ(t) over t ∈ [0, 1], where

Ex is the fibre of E over x ∈ M .

Let s be a smooth section of γ∗(E) over [0, 1], so that s(t) ∈ Eγ(t) for each t ∈
[0, 1]. The connection ∇E pulls back under γ to give a connection on γ∗(E) over [0, 1].
We say that s is parallel if its derivative under this pulled-back connection is zero, i.e. if

∇E

γ̇(t)s(t) = 0 for all t ∈ [0, 1], where γ̇(t) is d
dtγ(t), regarded as a vector in Tγ(t)M .

Now this is a first-order ordinary differential equation in s(t), and so for each pos-

sible initial value e ∈ Eγ(0), there exists a unique, smooth solution s with s(0) = e. We

shall use this to define the idea of parallel transport along γ.

Definition 2.2.1 Let M be a manifold, E a vector bundle over M , and ∇E a connection

on E. Suppose γ : [0, 1] → M is smooth, with γ(0) = x and γ(1) = y, where

x, y ∈ M . Then for each e ∈ Ex, there exists a unique smooth section s of γ∗(E)
satisfying ∇E

γ̇(t)s(t) = 0 for t ∈ [0, 1], with s(0) = e. Define Pγ(e) = s(1). Then

Pγ : Ex → Ey is a well-defined linear map, called the parallel transport map. This

definition easily generalizes to the case when γ is continuous and piecewise-smooth, by

requiring s to be continuous, and differentiable whenever γ is differentiable.

Here are some elementary properties of parallel transport. Let M, E and ∇E be as

above, let x, y, z ∈ M , and let α, β be piecewise-smooth paths in M with α(0) = x,

α(1) = y = β(0), and β(1) = z. Define paths α−1 and βα by

α−1(t) = α(1 − t) and βα(t) =

{
α(2t) if 0 � t � 1

2 ,

β(2t − 1) if 1
2 � t � 1.

Then α−1 and βα are piecewise-smooth paths in M with α−1(0) = y, α−1(1) = x,

βα(0) = x and βα(1) = z.

Suppose ex ∈ Ex, and Pα(ex) = ey ∈ Ey . Then there is a unique parallel section s
of α−1(E) with s(0) = ex and s(1) = ey . Define s′(t) = s(1− t). Then s′ is a parallel

section of (α−1)∗(E). Since s′(0) = ey and s′(1) = ex, it follows that Pα−1(ey) = ex.

Thus, if Pα(ex) = ey , then Pα−1(ey) = ex, and so Pα and Pα−1 are inverse maps. In

particular, this implies that if γ is any piecewise-smooth path in M , then Pγ is invertible.

By a similar argument, we can also show that Pβα = Pβ ◦ Pα.

Definition 2.2.2 Let M be a manifold, E a vector bundle over M , and ∇E a connection

on E. Fix a point x ∈ M . We say that γ is a loop based at x if γ : [0, 1] → M is a

piecewise-smooth path with γ(0) = γ(1) = x. If γ is a loop based at x, then the parallel

transport map Pγ : Ex → Ex is an invertible linear map, so that Pγ lies in GL(Ex), the

group of invertible linear transformations of Ex. Define the holonomy group Holx(∇E)
of ∇E based at x to be Holx(∇E) =

{
Pγ : γ is a loop based at x

}
⊂ GL(Ex).

If α, β are loops based at x, then α−1 and βα are too, and from above we have

Pα−1 = P−1
α and Pβα = Pβ ◦Pα. Thus, if Pα and Pβ lie in Holx(∇E), then so do P−1

α

and Pβ ◦ Pα. This shows Holx(∇E) is closed under inverses and products in GL(Ex),
and therefore Holx(∇E) is a subgroup of GL(Ex), which justifies calling it a group.
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Note that in this book we suppose all manifolds to be connected. Suppose x, y ∈ M .

Since M is connected, we can find a piecewise-smooth path γ : [0, 1] → M with

γ(0) = x and γ(1) = y, so that Pγ : Ex → Ey . If α is a loop based at x, then γαγ−1

is a loop based at y, and Pγαγ−1 = Pγ ◦ Pα ◦ P−1
γ . Hence, if Pα ∈ Holx(∇E), then

Pγ ◦ Pα ◦ P−1
γ ∈ Holy(∇E). Thus

Pγ Holx(∇E)P−1
γ = Holy(∇E). (2.6)

Now this shows that the holonomy group Holx(∇E) is independent of the base point

x, in the following sense. Suppose E has fibre Rk, say. Then any identification Ex
∼= Rk

induces an isomorphism GL(Ex) ∼= GL(k, R), and so we may regard Holx(∇E) as a

subgroup H of GL(k, R). If we choose a different identification Ex
∼= Rk, we instead

get the subgroup aHa−1 of GL(k, R), for some a ∈ GL(k, R). Thus, the holonomy

group is a subgroup of GL(k, R), defined up to conjugation. Moreover, (2.6) shows that

if x, y ∈ M , then Holx(∇E) and Holy(∇E) yield the same subgroup of GL(k, R), up

to conjugation. This proves:

Proposition 2.2.3 Let M be a manifold, E a vector bundle over M with fibre R
k,

and ∇E a connection on E. For each x ∈ M , the holonomy group Holx(∇E) may be

regarded as a subgroup of GL(k, R) defined up to conjugation in GL(k, R), and in this

sense it is independent of the base point x.

Because of this we may omit the subscript x and write the holonomy group of ∇E

as Hol(∇E) ⊂ GL(k, R), implicitly supposing that two subgroups of GL(k, R) are

equivalent if they are conjugate in GL(k, R). In the same way, if E has fibre Ck, then the

holonomy group of ∇E is a subgroup of GL(k, C), up to conjugation. The proposition

shows that the holonomy group is a global invariant of the connection. Next we show

that if M is simply-connected, then Hol(∇E) is a connected Lie group.

Proposition 2.2.4 Let M be a simply-connected manifold, E a vector bundle over M
with fibre R

k, and ∇E a connection on E. Then Hol(∇E) is a connected Lie subgroup

of GL(k, R).

Proof Choose a base point x ∈ M , and let γ be a loop in M based at x. Since M is

simply-connected, the loop γ can be contracted to the constant loop at x, that is, there

exists a family
{
γs : s ∈ [0, 1]

}
, where γs : [0, 1] → M satisfies γs(0) = γs(1) = x,

γ0(t) = x for t ∈ [0, 1] and γ1 = γ, and γs(t) depends continuously on s and t. In

fact, as shown in [214, p. 73–75], one can also suppose that γs is piecewise-smooth,

and depends on s in a piecewise-smooth way.

Therefore s �→ Pγs is a piecewise-smooth map from [0, 1] to Holx(∇E). Since γ0

is the constant loop at x we see that Pγ0 = 1, and Pγ1 = Pγ as γ1 = γ. Thus, each Pγ

in Hol(∇E) can be joined to the identity by a piecewise-smooth path in Hol(∇E). Now

by a theorem of Yamabe [343], every arcwise-connected subgroup of a Lie group is a

connected Lie subgroup. So Hol(∇E) is a connected Lie subgroup of GL(k, R). �

When M is not simply-connected, it is convenient to consider the restricted holon-

omy group Hol0(∇E), which we now define.
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Definition 2.2.5 Let M be a manifold, E a vector bundle over M with fibre Rk, and

∇E a connection on E. Fix x ∈ M . A loop γ based at x is called null-homotopic

if it can be deformed to the constant loop at x. Define the restricted holonomy group

Hol0x(∇E) of ∇E to be Hol0x(∇E) =
{
Pγ : γ is a null-homotopic loop based at x

}
.

Then Hol0x(∇E) is a subgroup of GL(Ex). As above we may regard Hol0x(∇E) as a

subgroup of GL(k, R) defined up to conjugation, and it is then independent of the base

point x, and so is written Hol0(∇E) ⊆ GL(k, R).

Here are some important properties of Hol0(∇E).

Proposition 2.2.6 Let M be a manifold, E a vector bundle over M with fibre Rk, and

∇E a connection on E. Then Hol0(∇E) is a connected Lie subgroup of GL(k, R). It

is the connected component of Hol(∇E) containing the identity, and is a normal sub-

group of Hol(∇E). There is a natural, surjective group homomorphism φ : π1(M) →
Hol(∇E)/Hol0(∇E). Thus, if M is simply-connected, then Hol(∇E) = Hol0(∇E).

Proof The argument used in Proposition 2.2.4 shows that the restricted holonomy

group Hol0(∇E) is a connected Lie subgroup of GL(k, R). Fix x ∈ M . If α, β are

loops based at x and β is null-homotopic, then αβα−1 is null-homotopic. Thus, if Pα ∈
Holx(∇E) and Pβ ∈ Hol0x(∇E), then Pαβα−1 = PαPβP−1

α also lies in Hol0x(∇E), and

so Hol0x(∇E) is a normal subgroup of Holx(∇E).
The group homomorphism φ : π1(M)→Holx(∇E)/Hol0x(∇E) is given by φ

(
[γ]
)

= Pγ · Hol0x(∇E), where γ is a loop based at x and [γ] the corresponding element of

π1(M). It is easy to verify that φ is a surjective group homomorphism. Since π1(M)
is countable, the quotient group Holx(∇E)/Hol0x(∇E) is also countable. Therefore,

Hol0x(∇E) is the connected component of Holx(∇E) containing the identity. �

Now we can define the Lie algebra of Hol0(∇E).

Definition 2.2.7 Let M be a manifold, E a vector bundle over M with fibre R
k, and

∇E a connection on E. Then Hol0(∇E) is a Lie subgroup of GL(k, R), defined up to

conjugation. Define the holonomy algebra hol(∇E) to be the Lie algebra of Hol0(∇E).
It is a Lie subalgebra of gl(k, R), defined up to the adjoint action of GL(k, R). Similarly,

Hol0x(∇E) is a Lie subgroup of GL(Ex) for all x ∈ M . Define holx(∇E) to be the Lie

algebra of Hol0x(∇E). It is a Lie subalgebra of End(Ex).

Note that because Hol0(∇E) is the identity component of Hol(∇E), the Lie algebras

of Hol0(∇E) and Hol(∇E) coincide. Also, although Hol0(∇E) is a Lie subgroup of

GL(k, R), it is not necessarily a closed subgroup, and so it may not be a submanifold

of GL(k, R) in the strictest sense. (The inclusion of R in T 2 = R2/Z2 given by t �→
(t + Z, t

√
2 + Z) for t ∈ R gives an example of a non-closed Lie subgroup of a Lie

group, and this is the sort of behaviour we have in mind.) Even if Hol0(∇E) is closed,

the full holonomy group Hol(∇E) may not be closed in GL(k, R).
The term ‘holonomy group’ is in some ways misleading, as it suggests that the

holonomy group is defined simply as an abstract Lie group. In fact, if ∇E is a connec-

tion on a vector bundle E, then the holonomy group Hol(∇E) comes equipped with a

natural representation on the fibre R
k of E, or equivalently, Hol(∇E) is embedded as

a subgroup of GL(k, R). Thus, when we describe the holonomy group of a connection,
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we must specify not only a Lie group, but also a representation of this group. It is im-

portant to remember this. We will refer to the representation of Hol(∇E) on the fibre of

E as the holonomy representation.

2.3 Holonomy groups and principal bundles

Next we define holonomy groups of connections in principal bundles.

Definition 2.3.1 Let M be a manifold, P a principal bundle over M with fibre G, and

D a connection on P . Let γ : [0, 1] → P be a smooth curve in P . Then γ̇(t) ∈ Tγ(t)P is

tangent to γ
(
[0, 1]

)
for each t ∈ [0, 1]. We call γ a horizontal curve if its tangent vectors

are horizontal, that is, γ̇(t) ∈ Dγ(t) for each t ∈ [0, 1]. Similarly, if γ : [0, 1] → P is

piecewise-smooth, we say that γ is horizontal if γ̇(t) ∈ Dγ(t) for t in the open, dense

subset of [0, 1] where γ̇(t) is well-defined.

Now, if γ : [0, 1] → M is piecewise-smooth with γ(0) = m, and p ∈ P with

π(p) = m, then there exists a unique horizontal, piecewise-smooth map γ′ : [0, 1] → P
such that γ′(0) = p and π ◦ γ′ is equal to γ, as maps [0, 1] → M . This follows from

existence results for ordinary differential equations, and is analogous to the facts about

existence and uniqueness of parallel sections of γ∗(E) used in Definition 2.2.1. We call

γ′ a horizontal lift of γ.

Here is the definition of holonomy group.

Definition 2.3.2 Let M be a manifold, P a principal bundle over M with fibre G, and

D a connection on P . For p, q ∈ P , write p ∼ q if there exists a piecewise-smooth

horizontal curve in P joining p to q. Clearly, ∼ is an equivalence relation. Fix p ∈ P ,

and define the holonomy group of (P, D) based at p to be Holp(P, D) = {g ∈ G :
p ∼ g · p}. Similarly, define the restricted holonomy group Hol0p(P, D) to be the set of

g ∈ G for which there exists a piecewise-smooth, horizontal curve γ : [0, 1] → P such

that γ(0) = p, γ(1) = g · p, and π ◦ γ is null-homotopic in M .

If g ∈ G and p, q ∈ P with p ∼ q, then there is a horizontal curve γ in P joining

p and q. Applying g to γ, we see that g · γ is a horizontal curve joining g · p and

g · q. Therefore if g ∈ G and p ∼ q, then g · p ∼ g · q. If g ∈ Holp(P, D), then

p ∼ g · p. Applying g−1 gives that g−1 · p ∼ g−1 · (g · p) = p. Thus p ∼ g−1 · p and

g−1 ∈ Holp(P, D), so that Holp(P, D) contains inverses of its elements.

Now suppose that g, h ∈ Holp(P, D). Applying g to p ∼ h·p shows that g·p ∼ (gh)·
p. But p ∼ g · p, so p ∼ (gh) · p as ∼ is an equivalence relation, and gh ∈ Holp(P, D).
So Holp(P, D) is closed under products, and therefore it is a subgroup of G. A similar

argument shows that Hol0p(P, D) is a subgroup of G.

Since ∼ is an equivalence relation, it is easy to see that if p, q ∈ P and p ∼ q,

then Holp(P, D) = Holq(P, D). Also, one can show that for all g ∈ G and p ∈ P , we

have Holg·p(P, D) = g Holp(P, D)g−1. Now if p, q ∈ P , then π(p), π(q) ∈ M . As

M is connected, there exists a piecewise-smooth path γ in M with γ(0) = π(p) and

γ(1) = π(q). There is a unique horizontal lift γ′ of γ with γ′(0) = p and γ′(1) = q′,
for some q′ ∈ P . As π(q′) = π(q), we see that q′ = g · q for some g ∈ G, and as γ′ is

horizontal we have p ∼ q′. Thus, whenever p, q ∈ P , there exists g ∈ G with q ∼ g · p,



HOLONOMY GROUPS AND PRINCIPAL BUNDLES 29

and so from above Holq(P, D) = Holg·p(P, D) = g Holp(P, D)g−1. This proves the

following result, the analogue of Proposition 2.2.3.

Proposition 2.3.3 Let M be a manifold, P a principal bundle over M with fibre G,

and D a connection on P . Then the holonomy group Holp(P, D) depends on the base

point p ∈ P only up to conjugation in G. Thus we may regard the holonomy group as

an equivalence class of subgroups of G under conjugation, and it is then independent of

p and is written Hol(P, D). Similarly, we regard Hol0p(P, D) as an equivalence class of

subgroups of G under conjugation, and write it Hol0(P, D).

By following the proofs of Propositions 2.2.4 and 2.2.6, we can show:

Proposition 2.3.4 Let M be a manifold, P a principal bundle over M with fibre G,

and D a connection on P . Then Hol0(P, D) is a connected Lie subgroup of G. It is the

connected component of Hol(P, D) containing the identity, and is normal in Hol(P, D).
There is a natural, surjective homomorphism φ : π1(M) → Hol(P, D)/Hol0(P, D). If

M is simply-connected, then Hol(P, D) = Hol0(P, D).

We define the Lie algebra of Hol0(P, D).

Definition 2.3.5 Suppose M is a manifold, P a principal bundle over M with fibre

G, and D a connection on P . Then Hol0(P, D) is a connected Lie subgroup of G,

defined up to conjugation. Define the holonomy algebra hol(P, D) to be the Lie algebra

of Hol0(P, D). Then hol(P, D) is a Lie subalgebra of the Lie algebra g of G, and is

defined up to the adjoint action of G on g.

Similarly, Hol0p(P, D) is a Lie subgroup of G for all p ∈ P . Let holp(P, D) ⊆ g

be the Lie algebra of Hol0p(P, D). Let π(p) = m ∈ M , and define holm(P, D) =
π
(
holp(P, D)

)
, where π : P × g → ad(P ) is as in Definition 2.1.3. Then holm(P, D)

is a vector subspace of ad(P )m. As holg·p(P, D) = Ad(g)
[
holp(P, D)

]
for g in G, we

see that holm(P, D) is independent of the choice of p ∈ π−1(m). Thus holm(P, D) is

well-defined.

Now let M, P, G and D be as above, and fix p ∈ P . Write H = Holp(P, D), and

suppose H is a closed Lie subgroup of G. Define Q = {q ∈ P : p ∼ q}. Clearly, Q is

preserved by the action of H on P , and thus H acts freely on Q. Also, π restricts to Q
giving a projection π : Q → M , and it is easy to see that the fibres of π : Q → M are

actually the orbits of H . As H is a closed subgroup of G, it is a Lie group, and one can

also show that Q is a submanifold of P , and thus a manifold. If H is not closed in G,

then Q is not a submanifold of P in the strict sense.

All this shows that Q is a principal subbundle of P , with fibre H . A subbundle of this

sort is called a reduction of P . Let C′ be the vertical subbundle of Q. A point q lies in

Q if it can be joined to p by a horizontal curve. Therefore, any horizontal curve starting

in Q must remain in Q, and so TqQ must contain all horizontal vectors at q, giving that

Dq ⊂ TqQ. Now TqP = Cq ⊕ Dq , and Dq ⊂ TqQ, and clearly C′
q = Cq ∩ TqQ.

But these equations imply that TqQ = C′
q ⊕ Dq . Therefore, the restriction D′ of the

distribution D to Q is in fact a connection on Q. Thus we have proved:
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Theorem 2.3.6. (Reduction Theorem) Let M be a manifold, P a principal bundle

over M with fibre G, and D a connection on P . Fix p ∈ P , let H = Holp(P, D),
and suppose that H is a closed Lie subgroup of G. Define Q = {q ∈ P : p ∼ q}. Then

Q is a principal subbundle of P with fibre H , and the connection D on P restricts to

a connection D′ on Q. In other words, P reduces to Q, and the connection D on P
reduces to D′ on Q.

The hypothesis that H is closed in G here may be dropped, but then Q may not be

closed in P . An example of such a subgroup H ⊂ G was given in the previous section.

Using this theorem, we can interpret holonomy groups in the following way. Suppose P
is a principal bundle over M , with fibre G, and a connection D. Then Hol(P, D) is the

smallest subgroup H ⊆ G, up to conjugation, for which it is possible to find a reduction

Q of P with fibre H , such that the connection D reduces to Q.

Finally, we shall compare the holonomy groups of connections in vector bundles

and in principal bundles, using the ideas of §2.1. The relation between the two is given

by the following proposition, which is easy to prove.

Proposition 2.3.7 Let M be a manifold, and P a principal bundle over M with fibre

G. Suppose ρ : G → GL(V ) is a representation of G on a vector space V , and set E =
ρ(V ). Let D be a connection on P , and ∇E the connection on E given in Definition

2.1.8. Then Hol(P, D) and Hol(∇E) are subgroups of G and GL(V ) respectively, each

defined up to conjugation, and ρ
(
Hol(P, D)

)
= Hol(∇E).

Similarly, suppose M is a manifold, E a vector bundle over M with fibre R
k,

and F E the frame bundle of E. Then F E is a principal bundle with fibre GL(k, R).
Let ∇E be a connection on E, and DE the corresponding connection on F E. Then

Hol(∇E) and Hol(F E, DE) are both subgroups of GL(k, R) defined up to conjugation,

and Hol(∇E) = Hol(F E , DE).

Thus the two definitions of holonomy group are essentially equivalent.

2.4 Holonomy groups and curvature
Given a connection on a vector bundle or a principal bundle, there is a fundamental

relationship between the holonomy group (or its Lie algebra) and the curvature of the

connection. The holonomy algebra both constrains the curvature, and is determined by

it. Here are two results showing that the curvature of a connection lies in a vector bundle

derived from the holonomy algebra.

Proposition 2.4.1 Let M be a manifold, E a vector bundle over M , and ∇E a con-

nection on E. Then for each m ∈ M the curvature R(∇E)m of ∇E at m lies in

holm(∇E) ⊗ Λ2T ∗
mM , where holm(∇E) is the vector subspace of End(Em) given in

Definition 2.2.7.

Proposition 2.4.2 Let M be a manifold, P a principal bundle over M with fibre G,

and D a connection on P . Then for each m ∈ M the curvature R(P, D)m of D at m
lies in holm(P, D) ⊗ Λ2T ∗

mM , where holm(P, D) is the vector subspace of ad(P )m

given in Definition 2.3.5.

We will only prove the second proposition, as the first follows from it.
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Proof of Proposition 2.4.2 It is enough to show that if v, w are vector fields on M then

(R(P, D)·v∧w)m lies in holm(P, D). Choose p ∈ M with m = π(p). Then (R(P, D)·
v ∧ w)m lies in holm(P, D) if and only if π∗(R(P, D) · v ∧ w)p lies in holp(P, D).

So by (2.5), we must show that for all v, w ∈ C∞(TM) and p ∈ P , we have[
λ(v), λ(w)

]
|p − λ

(
[v, w]

)
|p ∈ holp(P, D). (2.7)

Here [λ(v), λ(w)]|p−λ([v, w])|p ∈ Cp, which is identified with g, and holp(P, D) ⊆ g.

Let Q be the subset {q ∈ P : p ∼ q} ⊆ P considered in §2.3. Then by Theorem 2.3.6,

Q is a principal subbundle of P with fibre Holp(P, D), and the connection D reduces

to Q. This means that at q ∈ Q, we have Dq ⊂ TqQ.

Consider the restriction of λ(v) to Q. Since it is horizontal, it lies in Dq and hence

in TqQ at each q ∈ Q. Thus, λ(v)|Q is a vector field on Q. Similarly, λ(w)|Q and

λ
(
[v, w]

)
|Q are vector fields on Q, so

[
λ(v), λ(w)

]
|Q is a vector field on Q. Since

p ∈ Q, we see that
[
λ(v), λ(w)

]
|p − λ

(
[v, w]

)
|p ∈ TpQ. But we already know this lies

in Cp, so it lies in Cp ∩ TpQ. However, Cp ∩ TpQ is identified with holp(P, D) under

the isomorphism Cp
∼= g. This verifies eqn (2.7), and the proof is complete. �

There is a kind of converse to Propositions 2.4.1 and 2.4.2, known as the Ambrose–

Singer Holonomy Theorem [10], [214, p. 89]. We state it here in two forms, for con-

nections in vector bundles and principal bundles.

Theorem 2.4.3 (a) Let M be a manifold, E a vector bundle over M , and ∇E a con-

nection on E. Fix x ∈ M , so that holx(∇E) is a Lie subalgebra of End(Ex). Then

holx(∇E) is the vector subspace of End(Ex) spanned by all elements of End(Ex) of

the form P−1
γ

[
R(∇E)y · (v ∧w)

]
Pγ , where x ∈ M is a point, γ : [0, 1] → M is piece-

wise smooth with γ(0) = x and γ(1) = y, Pγ : Ex → Ey is the parallel translation

map, and v, w ∈ TyM .

(b) Let M be a manifold, P a principal bundle over M with fibre G, and D a

connection on P . Fix p ∈ P , and define Q = {q ∈ P : p ∼ q}, as in §2.3. Then

holp(P, D) is the vector subspace of the Lie algebra g of G spanned by the elements

of the form π∗(R(P, D) · v ∧ w)q for all q ∈ Q and v, w ∈ C∞(TM), where π maps

P × g to ad(P ).

This shows that R(∇E) determines hol(∇E), and hence Hol0(∇E). For instance, if

∇E is flat, so that R(∇E) = 0, then hol(∇E) = 0, and therefore Hol0(∇E) = {1}.

The theorem is used by Kobayashi and Nomizu [214, Th. 8.2, p. 90] to prove the next

proposition.

Proposition 2.4.4 Let M be a manifold and P a principal fibre bundle over M with

fibre G. If dimM � 2 and G is connected, then there exists a connection D on P
with Hol(P, D) = G.

As a corollary we have the following result, which can be seen as a sort of converse

to Theorem 2.3.6.

Theorem 2.4.5 Let M be a manifold, and P a principal bundle over M with fibre G.

Suppose dimM � 2. Then for each connected Lie subgroup H ⊂ G, there exists a
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connection D on P with holonomy group Hol(P, D) = H if and only if P reduces to

a principal bundle Q with fibre H .

This shows that the question of which groups can appear as the holonomy group of a

connection on a general vector or principal bundle is determined entirely by global topo-

logical issues: it comes down to asking when the principal bundle admits a reduction to

a subgroup, which can be answered using algebraic topology. Therefore, the question

of which groups can be the holonomy groups of a connection on a general bundle is not

very interesting from the geometrical point of view. To make the question interesting we

must impose additional conditions on the connection, as we will see in the next section.

2.5 Connections on the tangent bundle, and torsion

We now consider connections ∇ on the tangent bundle TM of a manifold M . We

shall show that ∇ also acts on the tensors on M , and the constant tensors on M are

determined by the holonomy group Hol(∇). We also define an invariant T (∇) called

the torsion, and discuss the holonomy groups of torsion-free connections.

Suppose M is a manifold of dimension n, and let F be the frame bundle of M , as in

Definition 2.1.2. Then TM is a vector bundle over M with fibre Rn, and F a principal

bundle over M with fibre GL(n, R). As in §2.1, there is a 1-1 correspondence between

connections ∇ on TM , and connections D on F .

Now §2.1–§2.4 developed the theories of connections in vector bundles and prin-

cipal bundles in parallel, comparing them, but keeping the two theories distinct. From

now on we will not make this distinction. Instead, we will identify a connection ∇ on

TM with the corresponding connection D on F . We will refer to both as connections

on M , and we will make use of both vector and principal bundle methods, according to

which picture is most helpful.

2.5.1 Holonomy groups and constant tensors
Let M be a manifold of dimension n, and ∇ a connection on M . Then ∇ is identi-

fied with a connection D on the frame bundle F of M , a principal bundle with fibre

GL(n, R). Now if ρ is a representation of GL(n, R) on a vector space V then Defi-

nitions 2.1.3 and 2.1.8 define a vector bundle ρ(F ) on M and a connection, ∇ρ say,

on ρ(F ).
Let ρ be the usual representation of GL(n, R) on V = R

n. Then ρ(F ) is just TM ,

and ∇ρ = ∇. However, starting from V we can construct many other representations of

GL(n, R) by taking duals, tensor products, exterior products and so on. From each of

these representations, we get a vector bundle with a connection. For instance, the repre-

sentation of GL(n, R) on V ∗ gives the cotangent bundle T ∗M , and the representation⊗k V ⊗
⊗l V ∗ yields the bundle

⊗k TM ⊗
⊗l T ∗M .

In fact, all of the vector bundles of tensors
⊗k

TM ⊗
⊗l

T ∗M , and subbundles of

these such as the symmetric tensors SkTM or the exterior forms ΛlT ∗M , arise through

the construction of Definition 2.1.3. Thus, Definition 2.1.8 yields a connection on each

of these bundles. This gives:
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Lemma 2.5.1 Let M be a manifold. Then a connection ∇ on TM induces connections

on all the vector bundles of tensors on M , such as
⊗k

TM ⊗
⊗l

T ∗M . All of these

induced connections on tensors will also be written ∇.

Let M be a manifold, ∇ a connection on M , and S a tensor on M , so that S ∈
C∞(⊗k

TM ⊗
⊗l

T ∗M
)

for some k, l. We say that S is a constant tensor if ∇S = 0.

Our next result shows that the constant tensors on M are determined entirely by the

holonomy group Hol(∇).

Proposition 2.5.2 Let M be a manifold, and ∇ a connection on TM . Fix x ∈ M , and

let H = Holx(∇). Then H is a subgroup of GL(TxM). Let E be the vector bundle⊗k TM ⊗
⊗l T ∗M over M . Then the connection ∇ on TM induces a connection

∇E on E, and H has a natural representation on the fibre Ex of E at x.

Suppose S ∈ C∞(E) is a constant tensor, so that ∇ES = 0. Then S|x is fixed by

the action of H on Ex. Conversely, if Sx ∈ Ex is fixed by the action of H , then there

exists a unique tensor S ∈ C∞(E) such that ∇ES = 0 and S|x = Sx.

Proof Let ρ : H → GL(Ex) be the natural representation. Then Proposition 2.3.7

shows that Holx(∇E) = ρ(H). Let γ be a loop in M based at x, and Pγ ∈ GL(Ex)
the parallel translation map using ∇E in E. Then Pγ ∈ Holx(∇E), so Pγ ∈ ρ(H), and

Pγ = ρ(h) for some h ∈ H . Moreover, for every h ∈ H we have Pγ = ρ(h) for some

loop γ in M based at x.

Now ∇ES = 0, and therefore the pull-back γ∗(S) is a parallel section of γ∗(E)
over [0, 1]. Therefore Pγ

(
S|γ(0)

)
= S|γ(1). But γ(0) = γ(1) = x, so Pγ

(
S|x
)

= S|x.

Thus ρ(h)
(
S|x
)

= S|x for all h ∈ H , and S|x is fixed by the action of H on Ex.

For the second part, suppose Sx ∈ Ex is fixed by ρ(H). We will define S ∈ C∞(E)
with the required properties. Let y ∈ M be any point. As M is connected, there is a

piecewise-smooth path α : [0, 1] → M with α(0) = x and α(1) = y. Let α and β
be two such paths, and let Pα, Pβ : Ex → Ey be the parallel transport maps, so that

Pα−1β = P−1
α Pβ . But α−1β is a loop based at x, and thus Pα−1β = P−1

α Pβ = ρ(h) for

some h ∈ H .

Now ρ(h)(Sx) = Sx by assumption. Hence P−1
α Pβ(Sx) = Sx, giving Pα(Sx) =

Pβ(Sx). Therefore, if α, β : [0, 1] → M are any two piecewise-smooth paths from x
to y then Pα(Sx) = Pβ(Sx), and the element Pα(Sx) ∈ Ey depends only on y, and

not on α. Define a section S of E by S|y = Pα(Sx), where α is any piecewise-smooth

path from x to y. Then S is well-defined. If γ is any path in M then γ∗(S) is parallel,

and thus S is differentiable with ∇ES = 0. Also S|x = Sx by definition, and clearly

S ∈ C∞(E), which finishes the proof. �

In the proposition we wrote ∇E for the connection on E, in order to distinguish it

from the connection ∇ on TM . Usually we will not make this distinction, but will write

∇ for the connections on all the tensor bundles of M . As a corollary we have:

Corollary 2.5.3 Let M be a manifold and ∇ a connection on TM , and fix x ∈ M .

Define G ⊂ GL(TxM) to be the subgroup of GL(TxM) that fixes S|x for all constant

tensors S on M . Then Holx(∇) is a subgroup of G.
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Now, in nearly all of the geometrical situations that interest us—if, for instance,

Holx(∇) is compact and connected—we actually have Holx(∇) = G in this corollary.

This is not true in every case, as for instance G is closed in GL(TxM) but Holx(∇) is

not always closed, but it is a good general rule. The point is that Hol(∇) = G if Hol(∇)
can be defined as the subgroup of GL(n, R) fixing a collection of elements in the finite-

dimensional representations of GL(n, R), and this is true for most of the subgroups of

GL(n, R) of any geometrical interest.

Thus, given a manifold M and a connection∇ on TM , the holonomy group Hol(∇)
determines the constant tensors on M , and the constant tensors on M usually determine

the holonomy group Hol(∇). Therefore, studying the holonomy of a connection, and

studying its constant tensors, come down to the same thing.

2.5.2 The torsion of a connection on M

Let M be a manifold, and ∇ a connection on M . Then the torsion T (∇) of ∇ is a tensor

on M defined in the following proposition. We leave the proof as an easy exercise, as it

is similar to that of Proposition 2.1.5.

Proposition 2.5.4 Let M be a manifold, and ∇ a connection on TM . Suppose v, w ∈
C∞(TM) are vector fields and α, β smooth functions on M . Then

∇αv(βw) −∇βw(αv) − [αv, βw] = αβ ·
{
∇vw −∇wv − [v, w]

}
,

where [v, w] is the Lie bracket. Thus the expression ∇vw −∇wv − [v, w] is pointwise-

linear in v and w, and it is clearly antisymmetric in v and w. Therefore there exists

a unique, smooth section T (∇) ∈ C∞(TM ⊗ Λ2T ∗M
)

called the torsion of ∇, that

satisfies the equation

T (∇) · (v ∧ w) = ∇vw −∇wv − [v, w] for all v, w ∈ C∞(TM). (2.8)

The torsion T (∇) of a connection ∇ is a tensor invariant, similar to the curvature

R(∇). The definition of T (∇) uses ∇ once, but that of R(∇) uses ∇ twice. In fact, the

torsion is a much simpler invariant than the curvature. Note also that we can only define

the torsion of a connection on TM , as the definition makes no sense for an arbitrary

vector bundle E over M . A connection∇ on TM with T (∇) = 0 is called torsion-free,

or of zero torsion. Torsion-free connections are an important class of connections.

Let M be a manifold and ∇ a connection on M . For simplicity we will write T for

the torsion T (∇) and R for the curvature R(∇) of ∇. Then T and R are tensors on M .

Using the index notation, we have

T = T a
bc with T a

bc = −T a
cb, and R = Ra

bcd with Ra
bcd = −Ra

bdc.

For a torsion-free connection ∇, the curvature R and its derivative ∇R have certain

extra symmetries, known as the Bianchi identities.
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Proposition 2.5.5 Let M be a manifold, and ∇ a torsion-free connection on TM .

Then the curvature Ra
bcd of ∇ satisfies the tensor equations

Ra
bcd + Ra

cdb + Ra
dbc = 0, and (2.9)

∇eR
a
bcd + ∇cR

a
bde + ∇dR

a
bec = 0. (2.10)

These are known as the first and second Bianchi identities, respectively.

Proof Equation (2.9) is equivalent to the condition that

R · (u ⊗ v ∧ w) + R · (v ⊗ w ∧ u) + R · (w ⊗ u ∧ v) = 0 (2.11)

for all vector fields u, v, w ∈ C∞(TM). By definition of R we have

R · (u ⊗ v ∧ w) = ∇v∇wu −∇w∇vu −∇[v,w]u. (2.12)

But ∇ is torsion-free, so T = 0, and therefore

T ·
(
u ∧ [v, w]

)
= ∇u[v, w] −∇[v,w]u − [u, [v, w]] = 0.

Substituting this into (2.12) gives

R · (u ⊗ v ∧ w) = ∇v∇wu −∇w∇vu −∇u[v, w] + [u, [v, w]].

Applying the three cyclic permutations of u, v, w to this equation and adding the

results together, we find that the left hand side of (2.11) is equal to

∇u

(
∇vw −∇wv − [v, w]

)
+ ∇v

(
∇wu −∇uw − [w, u]

)
+∇w

(
∇uv −∇vu − [u, v]

)
+ [u, [v, w]] + [v, [w, u]] + [w, [u, v]].

The first term is ∇u

(
T · (v ∧ w)

)
, which is zero as T = 0, and the two similar terms

vanish in the same way. But the remaining three terms sum to zero, by the Jacobi identity

for vector fields. Thus (2.11) holds, and this proves (2.9). Equation (2.10) can be proved

by similar methods. �

2.5.3 The holonomy of torsion-free connections
It was explained in §2.4 that Theorem 2.4.5 describes exactly the possible holonomy

groups of a connection on a bundle, and so the problem of which groups can be the

holonomy groups of a general connection on a bundle, is not a very fruitful one. How-

ever, the problem can be made much more interesting by restricting attention to torsion-

free connections. We state this as the following question, which is one of the main

motivating problems in the field of holonomy groups.

Question 1: What are the possible holonomy groups Hol(∇) of torsion-free connec-

tions ∇ on a given manifold M?

In general, the problem of determining which holonomy groups are realized by

torsion-free connections on a given manifold M , a compact manifold for instance, is

very difficult and depends strongly on the topology of M . So, let us consider instead the

corresponding local problem, that is:
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Question 2: What are the possible holonomy groups Hol(∇) of torsion-free connec-

tions ∇ on an open ball in R
n?

This question is still rather difficult, but some powerful algebraic techniques can be

applied to the problem, and a fairly complete answer to the question is known.

The classification of Lie groups, and representations of Lie groups, is well under-

stood. Therefore one could, in principle, write down a list of all possible connected Lie

subgroups of GL(n, R) up to conjugation, for each n. This list is of course infinite, and

rather complicated. The idea is to test every subgroup on this list, to see whether or not

it can be a holonomy group.

Naturally, because of the complexity of the classification of Lie groups and represen-

tations, this is a huge task, and so one looks for short cuts. There is an algebraic method

that excludes many groups H from being holonomy groups. This is to study the space

RH of possible curvature tensors for H . Proposition 2.4.1 and the first Bianchi identity

restrict RH , making it small. But the Ambrose–Singer Holonomy Theorem shows that

RH must be large enough to generate the Lie algebra h of H . If these requirements are

not consistent, then H cannot be a holonomy group.

The list of groups H that pass this test is shorter and more manageable. Berger [27,

Th. 3–Th. 5, p. 318–320] published, without proof, a list of these groups which is sub-

stantially complete, but with some omissions. Later, a number of holonomy groups

of torsion-free connections that did not appear on Berger’s list were discovered by

Bryant, Chi, Merkulov and Schwachhöfer, who called them exotic holonomy groups.

A (hopefully) complete classification of holonomy groups of torsion-free connections,

with proof, has been published by Merkulov and Schwachhöfer [260], to which the

reader is referred for further details and references.

These algebraic methods eventually yield a list of candidates H for possible holon-

omy groups, but they do not prove that every such H actually occurs as a holonomy

group. There is another approach to the classification problem using the machinery of

Cartan–Kähler theory, which is a way of describing how many solutions there are to

a given partial differential equation. The advantage of this approach is that it system-

atically determines whether each H occurs as a holonomy group or not. Bryant [57]

uses Cartan–Kähler theory to give a unified treatment of the classification of holonomy

groups. We shall discuss the problem of classification of Riemannian holonomy groups

at greater length in §3.4.

2.6 G-structures and intrinsic torsion
We will now discuss G-structures on manifolds, and their torsion. The theory of G-

structures gives a different way of looking at connections on M and their holonomy

groups, and is a useful framework for studying geometrical structures.

Definition 2.6.1 Let M be a manifold of dimension n, and F the frame bundle of M ,

as in §2.5. Then F is a principal bundle over M with fibre GL(n, R). Let G be a Lie

subgroup of GL(n, R). Then a G-structure on M is a principal subbundle P of F , with

fibre G.

The G-structures, for the many possible Lie subgroups G ⊆ GL(n, R), provide

a large family of interesting geometrical structures on manifolds. Other geometrical
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objects such as Riemannian metrics and complex structures can also be interpreted as

G-structures, as the following example shows.

Example 2.6.2 Let (M, g) be a Riemannian n-manifold, and F the frame bundle of M .

Each point of F is (x, e1, . . . , en), where x ∈ M and (e1, . . . , en) is a basis for TxM .

Define P to be the subset of F for which (e1, . . . , en) is orthonormal with respect to

g. Then P is a principal subbundle of F with fibre O(n), so P is an O(n)-structure on

M . In fact, this gives a 1-1 correspondence between O(n)-structures and Riemannian

metrics on M .

Now let M be a manifold of dimension n with frame bundle F , let G be a Lie

subgroup of GL(n, R), and P a G-structure on M . Suppose D is a connection on P .

Then there is a unique connection D′ on F that reduces to D on P . Conversely, a

connection D′ on F reduces to a connection D on P if and only if for each p ∈ P , the

subspace D′|p of TpF lies in TpP .

As we explained in §2.5, connections D′ on the principal bundle F are equivalent to

connections ∇ on the vector bundle TM . We call a connection ∇ on TM compatible

with the G-structure P , if the corresponding connection on F reduces to P . Thus we see

that every connection D on P induces a unique connection ∇ on TM , and conversely,

a connection ∇ on TM arises from a connection D on P if and only if ∇ is compatible

with P . Our next result shows that if ∇ is a fixed connection on TM , then there is a

compatible G-structure P if and only if Hol(∇) ⊆ G.

Proposition 2.6.3 Let M be a connected manifold of dimension n, with frame bundle

F , and fix f ∈ F . Let ∇ be a connection on TM . Then for each Lie subgroup G ⊂
GL(n, R), there exists a G-structure P on M compatible with ∇ and containing f if

and only if Holf (∇) ⊆ G ⊆ GL(n, R). If P exists then it is unique. More generally,

there is a 1-1 correspondence between the set of G-structures on M compatible with

∇, but not necessarily containing f , and the homogeneous space G
∖{

a ∈ GL(n, R) :
a Holf (∇)a−1 ⊆ G

}
.

Proof The proof is similar to that of Theorem 2.3.6, so we will be brief. If P exists

then it contains f and is closed under G, so it contains g · f for each g ∈ G. As P is

compatible with ∇, any horizontal curve starting in P remains in P . Thus, if p ∈ P and

q ∈ F with p ∼ q then q ∈ P , where ∼ is the equivalence relation defined in §2.3.

Combining these two facts shows that if p ∈ F and p ∼ g · f for any g ∈ G, then

p ∈ P . But as M is connected, every p ∈ P must satisfy p ∼ g · f for some g ∈ G. So

P must be {p ∈ F : p ∼ g · f for some g ∈ G} if it exists. It is easy to show that this

set is a principal bundle over M , with fibre the subgroup of GL(n, R) generated by G
and Holf (∇). Hence, P exists if and only if Holf (∇) ⊆ G, and if it exists it is unique.

Now if a ∈ GL(n, R), then Hola·f (∇) = a Holf (∇)a−1. Thus from above, there is

a unique G-structure P containing a · f if and only if a Holf (∇)a−1 ⊆ G. But any G-

structure containing a · f also contains (ga) · f for all g ∈ G. So the set of G-structures

on M compatible with ∇ is in 1-1 correspondence with the given set. �

This proposition gives a good picture of the set of G-structures compatible with

a fixed connection ∇ on TM . So let us turn the problem around, and ask about the

set of connections ∇ on TM compatible with a fixed G-structure P on M . We have
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seen above that these are in 1-1 correspondence with connections on P , of which there

are many. So we shall restrict our attention to torsion-free connections ∇, and ask the

question: given a G-structure P on a manifold M , how many torsion-free connections

∇ are there on TM compatible with P ?

If ∇ and ∇′ are two connections on P , then the difference α = ∇′ −∇ is a smooth

section of ad(P ) ⊗ T ∗M . But ad(P ) is a vector subbundle of TM ⊗ T ∗M . So α is a

tensor, written αa
bc in index notation, and if v, w are vector fields then (∇′

vw−∇vw)a =
αa

bcw
bvc. Substituting this into (2.8) we see that

T (∇′)a
bc = T (∇)a

bc − αa
bc + αa

cb.

Let ∇ be an arbitrary, fixed connection on P . Clearly, there exists a torsion-free

connection ∇′ on P if and only if there is an α ∈ C∞(ad(P )⊗ T ∗M
)

with T (∇)a
bc =

αa
bc − αa

cb. Moreover, if some such ∇′ does exist, then the set of all torsion-free con-

nections ∇′ on P is in 1-1 correspondence with the vector space of α ∈ C∞(ad(P ) ⊗
T ∗M

)
for which αa

bc = αa
cb.

Here is an alternative way to explain this.

Definition 2.6.4 Let G be a Lie subgroup of GL(n, R), and let V be Rn. Then G acts

faithfully on V , and g ⊂ V ⊗ V ∗. Define σ : g ⊗ V ∗ → V ⊗ Λ2V ∗ by σ(αa
bc) =

αa
bc − αa

cb, in index notation. Define vector spaces W1, . . . , W4 by

W1 = V ⊗ Λ2V ∗, W2 = Im σ, W3 = V ⊗ Λ2V ∗/ Imσ and W4 = Kerσ,

and let ρj : G → GL(Wj) be the natural representations of G on W1, . . . , W4. Now

suppose M is a manifold of dimension n, and P a G-structure on M . Then we can

associate a vector bundle ρ(P ) over M to each representation ρ of G, as in §2.1.1. Thus

ρ1(P ), . . . , ρ4(P ) are vector bundles over M . Clearly, ρ2(P ) is a vector subbundle of

ρ1(P ), and the quotient bundle ρ1(P )/ρ2(P ) is ρ3(P ).
If ∇ is any connection on P , then its torsion T (∇) lies in C∞(ρ1(P )), and if ∇,∇′

are two connections on P , then T (∇′) − T (∇) lies in the subspace C∞(ρ2(P )) of

C∞(ρ1(P )). Therefore, the projections of T (∇) and T (∇′) to the quotient bundle

ρ3(P ) = ρ1(P )/ρ2(P ) are equal. Define the intrinsic torsion T i(P ) of P to be the

projection to ρ3(P ) of the torsion T (∇) of any connection ∇ on P . Then T i(P ) lies in

C∞(ρ3(P )), and depends only on the G-structure P and not on the choice of ∇.

We call the G-structure P torsion-free if T i(P ) = 0. Clearly, there exists a torsion-

free connection ∇ on P if and only if P is torsion-free, and so the intrinsic torsion

T i(P ) is the obstruction to finding a torsion-free connection on P . Any two torsion-free

connections differ by an element of C∞(ρ4(P )). Thus, if T i(P ) = 0 then the torsion-

free connections ∇ on P are in 1-1 correspondence with C∞(ρ4(P )). If Kerσ = 0,

this set is a single point, so ∇ is unique.

The proof of the next result is similar to that of Proposition 2.6.3.

Proposition 2.6.5 Let M be a manifold of dimension n, and G a Lie subgroup of

GL(n, R). Then M admits a torsion-free G-structure P if and only if there exists a

torsion-free connection ∇ on TM with Hol(∇) = H , for some subgroup H of G.
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This shows that torsion-free G-structures on a manifold M are intimately related

to torsion-free connections ∇ on TM with Hol(∇) = G. However, torsion-free G-

structures are simpler, and often easier to work with, than torsion-free connections with

prescribed holonomy. This is because a torsion-free G-structure P is defined by a dif-

ferential equation T i(P ) = 0, whereas the condition Hol(∇) = G involves both differ-

entiation and integration, and is rather more complicated.

A number of familiar geometric structures are in fact torsion-free G-structures in

disguise. Here are some examples. We saw in Example 2.6.2 that a Riemannian metric

g is equivalent to an O(n)-structure P . But when G = O(n) in Definition 2.6.4 it turns

out that σ is both injective and surjective. Therefore, every O(n)-structure P is torsion-

free, and there is a unique torsion-free connection ∇ on P . This is the Levi-Civita

connection, and will be discussed at greater length in §3.1.1.

Set n = 2m, and let G be the subgroup GL(m, C) ⊂ GL(2m, R). Then an almost

complex structure J on a manifold M is equivalent to a GL(m, C)-structure on M ,

and J is a complex structure if and only if this GL(m, C)-structure is torsion-free.

(Complex structures and almost complex structures will be defined in §5.1.) Thus, a

complex structure is equivalent to a torsion-free GL(m, C)-structure.

Note that in this case, because Kerσ is nonzero, a complex manifold admits infi-

nitely many torsion-free connections preserving the complex structure. In a similar way,

a symplectic structure on a manifold M of dimension 2m is the same thing as a torsion-

free Sp(m, R)-structure, where Sp(m, R) ⊂ GL(2m, R) is the symplectic group, and a

Kähler structure on M is the same as a torsion-free U(m)-structure.



3
Riemannian holonomy groups

Let M be a manifold, and g a Riemannian metric on M . Then there is a unique, pre-

ferred connection ∇ on TM called the Levi-Civita connection, which is torsion-free

and satisfies ∇g = 0. The curvature R(∇) of the Levi-Civita connection is called the

Riemann curvature, and its holonomy group Hol(∇) the Riemannian holonomy group

Hol(g) of g.

In 1955, Marcel Berger proved that if (M, g) is a Riemannian manifold with M
simply-connected and g irreducible and nonsymmetric, then Hol(g) must be one of

SO(n), U(m), SU(m), Sp(m), Sp(m) Sp(1), G2 or Spin(7). The goal of §3.1–§3.4 is

to explain what this result means and how it is proved. We start with the Levi-Civita

connection, Riemann curvature, and Riemannian holonomy groups. After sections on

reducible Riemannian manifolds and symmetric spaces we move onto Berger’s classifi-

cation, describing the proof and the groups on Berger’s list. Sections 3.5 and 3.6 explore

the relationship between the holonomy group Hol(g) and the topology of the underlying

manifold M , in particular when M is compact.

For more information on the material of §3.1–§3.4, see Kobayashi and Nomizu [214,

§III, §IV]. The treatments by Besse [30, §10] and Salamon [294, §2, §10] are also help-

ful, and Bryant [57] approaches the classification of holonomy groups from a different

point of view, that of Cartan–Kähler theory.

3.1 Introduction to Riemannian holonomy groups

We define the Levi-Civita connection ∇ and Riemann curvature tensor R of a Rie-

mannian metric g, and prove some symmetries of R and ∇R. Then we discuss the el-

ementary properties of Riemannian holonomy groups and their relation to torsion-free

G-structures.

3.1.1 The Levi-Civita connection
Each Riemannian manifold (M, g) has a natural Levi-Civita connection ∇ on TM ,

which is torsion-free with ∇g = 0. This result is called the Fundamental Theorem of

Riemannian Geometry, and is very important. Here is a proof.

Theorem 3.1.1 Let M be a manifold and g a Riemannian metric on M . Then there

exists a unique, torsion-free connection ∇ on TM with ∇g = 0, called the Levi-Civita

connection.

40
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Proof Suppose first that ∇ is a torsion-free connection on TM with ∇g = 0. Let

u, v, w ∈ C∞(TM) be vector fields on M . Then g(v, w) is a smooth function on

M , and so u acts on g(v, w) to give another smooth function u · g(v, w) on M . Since

∇g = 0, using the properties of connections we find that

u · g(v, w) = g(∇uv, w) + g(v,∇uw).

Combining this with similar expressions for v · g(u, w) and w · g(u, v) gives

u · g(v, w) + v · g(u, w) − w · g(u, v)
= g(∇uv, w) + g(v,∇uw) + g(∇vu, w) + g(u,∇vw)

− g(∇wu, v) − g(u,∇wv)
= g(∇uv + ∇vu, w) + g(∇vw −∇wv, u) + g(∇uw −∇wu, v)
= g(2∇uv − [u, v], w) + g([v, w], u) + g([u, w], v).

Here we have used ∇uv−∇vu = [u, v], and two similar equations, which hold because

∇ is torsion-free. Rearranging this equation shows that

2g(∇uv, w) = u · g(v, w) + v · g(u, w) − w · g(u, v)
+ g([u, v], w) − g([v, w], u) − g([u, w], v).

(3.1)

It is easy to show that for fixed u, v, there is a unique vector field ∇uv which satisfies

(3.1) for all w ∈ C∞(TM). This defines ∇ uniquely, and it turns out that ∇ is indeed

a torsion-free connection with ∇g = 0. �

In §2.5 we saw that a connection on the tangent bundle TM of a manifold M induces

connections on vector bundles of tensors on M . Thus, the Levi-Civita connection ∇
of a Riemannian metric g on M induces connections on all the tensors on M . These

connections will also be written ∇.

3.1.2 The Riemann curvature
Suppose M is a Riemannian manifold, with metric g and Levi-Civita connection ∇.

Then the curvature R(∇) of ∇ is a tensor Ra
bcd on M . Define Rabcd = gaeR

e
bcd.

We shall refer to both Ra
bcd and Rabcd as the Riemann curvature of g. The following

theorem gives a number of symmetries of Rabcd. Equations (3.3) and (3.4) are known

as the first and second Bianchi identities, respectively.

Theorem 3.1.2 Let (M, g) be a Riemannian manifold, ∇ the Levi-Civita connection

of g, and Rabcd the Riemann curvature of g. Then Rabcd and ∇eRabcd satisfy

Rabcd = −Rabdc = −Rbacd = Rcdab, (3.2)

Rabcd + Radbc + Racdb = 0, (3.3)

and ∇eRabcd + ∇cRabde + ∇dRabec = 0. (3.4)
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Proof Since ∇ is torsion-free, by Proposition 2.5.5 the Bianchi identities (2.9) and

(2.10) hold for Ra
bcd. Contracting these with g and substituting in ∇g = 0, we get (3.3)

and (3.4). Also R(∇) ∈ C∞(End(TM)⊗Λ2T ∗M
)
, and thus Ra

bcd = −Ra
bdc, which

gives Rabcd = −Rabdc, the first part of (3.2).

Now ∇ also acts on tensors such as g, and by properties of curvature we deduce that

∇c∇dgab −∇d∇cgab = −Re
acdgeb − Re

bcdgae.

But the left hand side is zero as ∇g = 0, and the right hand side is −Rbacd − Rabcd by

definition. Therefore Rabcd = −Rbacd, the second part of (3.2).

To prove the third part of (3.2), by permuting a, b, c, d in (3.3) we get

Rabcd + Radbc + Racdb = 0, Rdabc + Rdcab + Rdbca = 0, (3.5)

Rbcda + Rbacd + Rbdac = 0, Rcdab + Rcbda + Rcabd = 0. (3.6)

Adding together eqns (3.5), subtracting eqns (3.6), and applying the first two parts of

(3.2) we get 2Rabcd − 2Rcdab = 0, and thus Rabcd = Rcdab, as we want. �

Next we define two components of the Riemann curvature tensor, the Ricci curvature

and the scalar curvature.

Definition 3.1.3 Let (M, g) be a Riemannian manifold, with Riemann curvature Ra
bcd.

Then g is called flat if Ra
bcd = 0. The Ricci curvature of g is Rab = Rc

acb, and the

scalar curvature of g is s = gabRab = gabRc
acb. By (3.2), the Ricci curvature satisfies

Rab = Rba. We say that g is Einstein if Rab = λgab for some constant λ ∈ R, and that

g is Ricci-flat if Rab = 0.

Einstein and Ricci-flat metrics are interesting for a number of reasons. There are of

course a huge number of Riemannian metrics on any manifold of dimension at least two.

The Einstein and Ricci-flat metrics provide a natural way of picking out a much smaller

set of special, ‘best’ metrics on the manifold. Also, Einstein and Ricci-flat metrics are

of great importance to physicists, because in general relativity, empty space is described

by a Ricci-flat Lorentzian metric.

3.1.3 Riemannian holonomy groups
Let (M, g) be a Riemannian manifold of dimension n with Levi-Civita connection ∇.

Then ∇g = 0, and so g is a constant tensor in the sense of §2.5.1. Therefore, by Propo-

sition 2.5.2, if x ∈ M then the action of Holx(∇) on TxM preserves the metric g|x on

TxM . But the group of transformations of TxM preserving g|x is the orthogonal group

O(n). Therefore, the holonomy group Hol(∇) is a subgroup of O(n).
Here is another way to see this, using the ideas of Theorem 2.3.6. Let F be the frame

bundle of M . Then each point of F is a basis (e1, . . . , en) for one of the tangent spaces

TxM of M . Define P to be the subset of points (e1, . . . , en) in F such that e1, . . . , en

are orthonormal with respect to the metric g. Then P is a principal subbundle of F with

fibre O(n), that is, a reduction of F . Moreover, because the connection ∇ in F satisfies

∇g = 0, the connection ∇ reduces to P . Again, we see that Hol(∇) is a subgroup of

O(n), defined up to conjugation.
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Definition 3.1.4 Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇.

Define the holonomy group Hol(g) of g to be Hol(∇). Then Hol(g) is a subgroup of

O(n), defined up to conjugation in O(n). We shall refer to the holonomy group of a

Riemannian metric as a Riemannian holonomy group. Similarly, define the restricted

holonomy group Hol0(g) of g to be Hol0(∇). Then Hol0(g) is a connected Lie sub-

group of SO(n) defined up to conjugation in O(n).

Using the results of §2.5 it is easy to prove the following proposition.

Proposition 3.1.5 Let M be an n-manifold, and ∇ a torsion-free connection on TM .

Then ∇ is the Levi-Civita connection of a Riemannian metric g on M if and only if

Hol(∇) is conjugate in GL(n, R) to a subgroup of O(n).

Thus, Riemannian holonomy is really part of the wider subject of holonomy groups

of torsion-free connections.

Definition 3.1.6 Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇.

Define the holonomy algebra hol(g) of g to be hol(∇). Then hol(g) is a Lie subalgebra

of so(n), defined up to the adjoint action of O(n). Let x ∈ M . Then holx(∇) is a

vector subspace of TxM ⊗ T ∗
xM . We may use the metric g to identify TxM ⊗ T ∗

x M

and
⊗2

T ∗
xM , by equating T a

b with Tab = gacT
c
b. This identifies holx(∇) with a

vector subspace of
⊗2

T ∗
xM that we will write as holx(g). It is easy to see that holx(g)

actually lies in Λ2T ∗
xM .

Now Proposition 2.4.1 shows that Ra
bcd lies in holx(∇) ⊗ Λ2T ∗

xM at x. Lowering

the index a to get Rabcd as above, we see that Rabcd lies in holx(g) ⊗ Λ2T ∗
x M at x.

Using this and eqn (3.2), we have:

Theorem 3.1.7 Let (M, g) be a Riemannian manifold with Riemann curvature Rabcd.

Then Rabcd lies in the subspace S2holx(g) of Λ2T ∗
x M⊗Λ2T ∗

xM at each x∈M .

Combining this theorem with the Bianchi identities, (3.3) and (3.4), gives quite

strong restrictions on the curvature tensor Rabcd of a Riemannian metric g with a pre-

scribed holonomy group Hol(g). These restrictions are the basis of the classification of

Riemannian holonomy groups, which will be explained in §3.4.

3.1.4 Riemannian holonomy groups and torsion-free G-structures
We now apply the ideas of §2.6 to Riemannian holonomy groups. Suppose M is an

n-manifold, and g a Riemannian metric on M . Then Example 2.6.2 defines a unique

O(n)-structure P on M . If G is a Lie subgroup of O(n) and Q a G-structure on M , we

say that Q is compatible with g if Q is a subbundle of P . Equivalently, Q is compatible

with g if each point of Q, which is a basis of some tangent space TxM , is orthonormal

with respect to g.

If Q is compatible with g, then P = O(n) · Q as a subset of the frame bundle F of

M , and so one can reconstruct P , and hence g, from Q. Thus, if G is a Lie subgroup

of O(n) then a G-structure Q on M gives us a Riemannian metric g on M , and some

additional geometric data as well. For instance, an SO(n)-structure on M is equivalent

to a metric g, together with a choice of orientation on M .
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Putting G = O(n) in Definition 2.6.4, the map σ : o(n)⊗ (Rn)∗ → Rn ⊗Λ2(Rn)∗

turns out to be an isomorphism. As σ is surjective, every O(n)-structure P on M is

torsion-free, and so there exists a torsion-free connection ∇ on TM compatible with

P . And since σ is injective, ∇ is unique. Thus, given a Riemannian metric g on M ,

there is a unique torsion-free connection ∇ on TM compatible with the O(n)-structure

P corresponding to g. This is the Levi-Civita connection of g, and we have found an

alternative proof of Theorem 3.1.1.

When G is a Lie subgroup of O(n), then the map σ of Definition 2.6.4 is injective,

but not in general surjective. Hence, if Q is a G-structure on M , then the condition

T i(Q) = 0 for Q to be torsion-free is in general nontrivial. If Q is torsion-free, then

there is a unique torsion-free connection ∇ on TM compatible with Q, which is the

Levi-Civita connection of the unique metric g compatible with Q.

If Q is a torsion-free G-structure compatible with g then Hol(g) ⊆ G. Because

of this, torsion-free G-structures are a useful tool for studying Riemannian holonomy

groups. The following result is easily deduced from Proposition 2.6.3, and shows the

relationship between torsion-free G-structures and metrics with prescribed holonomy.

Proposition 3.1.8 Let (M, g) be a connected Riemannian n-manifold. Then Hol(g)
is a subgroup of O(n), defined up to conjugation. Let G be a Lie subgroup of O(n).
Then M admits a torsion-free G-structure Q compatible with g if and only if Hol(g)
is conjugate to a subgroup of G. Moreover, there is a 1-1 correspondence between the

set of such G-structures Q, and the homogeneous space

G
∖{

a ∈ O(n) : a Hol(g)a−1 ⊆ G
}
.

G-structures are often used in constructions of Riemannian metrics g with holonomy

G. Here is a sketch of an argument used in Chapter 11. One writes down an explicit G-

structure Q on a manifold M with intrinsic torsion T i(Q) small, in some suitable sense.

Then one proves that Q can be deformed to a nearby G-structure Q̃ with T i(Q̃) = 0.

The metric g̃ associated to Q̃ has Hol(g̃) ⊆ G. Finally, if M satisfies certain topological

conditions, it can be shown that Hol(g̃) = G.

3.2 Reducible Riemannian manifolds

Let M1, M2 be manifolds, and M1 × M2 the product manifold. Then at each point

(p1, p2) of M1×M2, we have T(p1,p2)(M1×M2) ∼= Tp1M1 ⊕ Tp2M2. Let g1, g2 be

Riemannian metrics on M1, M2. Then g1|p1 + g2|p2 is a metric on Tp1M1 ⊕ Tp2M2.

Define the product metric g1×g2 on M1×M2 by g1×g2|(p1,p2) = g1|p1 + g2|p2 for all

p1 ∈ M1 and p2 ∈ M2. Then g1×g2 is a Riemannian metric on M1×M2, and M1×M2

is a Riemannian manifold. We call (M1×M2, g1×g2) a Riemannian product.

A Riemannian manifold (M, g) is said to be reducible if it is isometric to a Rie-

mannian product (M1×M2, g1×g2), with dimMi > 0. Also, (M, g) is said to be locally

reducible if every point has a reducible open neighbourhood. We shall call (M, g) irre-

ducible if it is not locally reducible. The following proposition, which is easy to prove,

gives the holonomy group of a product metric g1×g2.
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Proposition 3.2.1 Let (M1, g1), (M2, g2) be Riemannian manifolds. Then the product

metric g1 × g2 has holonomy Hol(g1 × g2) = Hol(g1) × Hol(g2).

In our next three propositions we shall show that if g is a Riemannian metric and the

holonomy representation (see the end of §2.2) of g is reducible, then the metric itself is

at least locally reducible, and its holonomy group is a product. The first proposition is

left as an exercise for the reader.

Proposition 3.2.2 Let (M, g) be a Riemannian manifold with Levi-Civita connection

∇, and fix p ∈ M , so that Holp(g) acts on TpM . Suppose that TpM = Vp⊕Wp, where

Vp, Wp are proper vector subspaces of TpM preserved by Holp(g), and orthogonal with

respect to g. Then there are natural vector subbundles V, W of TM with fibres Vp, Wp

at p. These subbundles V, W are orthogonal with respect to g and closed under parallel

translation, and satisfy TM = V ⊕ W and T ∗M = V ∗ ⊕ W ∗.

Proposition 3.2.3 In the situation of Proposition 3.2.2, let Rabcd be the Riemann cur-

vature of g. Then Rabcd is a section of the subbundle S2(Λ2V ∗) ⊕ S2(Λ2W ∗) of

S2(Λ2T ∗M). Also, the reduced holonomy group Hol0p(g) is a product group HV ×HW ,

where HV is a subgroup of SO(Vp) and acts trivially on Wp, and HW is a subgroup of

SO(Wp) and acts trivially on Vp.

Proof As T ∗M ∼= V ∗ ⊕ W ∗, we see that Λ2T ∗M ∼= Λ2V ∗ ⊕ Λ2W ∗ ⊕ V ∗ ⊗ W ∗.

By Theorem 3.1.7 we know that Rabcd lies in S2holp(g) at p ∈ M , where holp(g) is a

vector subspace of Λ2T ∗M identified with the holonomy algebra hol(g). But, because

the holonomy algebra preserves the splitting TM = V ⊕W , we see that holp(g) lies in

the subspace Λ2V ∗
p ⊕ Λ2W ∗

p of Λ2T ∗
p M . Therefore, Rabcd is a section of

Λ2V ∗⊗Λ2V ∗ ⊕ Λ2W ∗⊗Λ2W ∗ ⊕ Λ2V ∗⊗Λ2W ∗ ⊕ Λ2W ∗⊗Λ2V ∗. (3.7)

Now, Rabcd satisfies the first Bianchi identity (3.3). Using this, we find that the

components of Rabcd in the last two components of (3.7) are zero. Therefore, since

Rabcd is symmetric in the two Λ2T ∗M factors we see that it is a section of S2(Λ2V ∗)⊕
S2(Λ2W ∗), as we have to prove. We deduce that Ra

bcd is a section of the bundle

V ⊗ V ∗ ⊗ Λ2V ∗ ⊕ W ⊗ W ∗ ⊗ Λ2W ∗. (3.8)

Let q ∈ M , let γ : [0, 1] → M be piecewise-smooth with γ(0) = p and γ(1) = q,

and let Pγ : TpM → TqM be the parallel translation map. Because R lies in the

subbundle (3.8), it follows that 〈Rq · (u ∧ v) : u, v ∈ TqM〉 = Aq ⊕ Bq , where Aq

is a subspace of Vq ⊗ V ∗
q and Bq a subspace of Wq ⊗ W ∗

q . Now V and W are closed

under parallel translation, so Pγ takes Vp to Vq and Wp to Wq , and thus P−1
γ AqPγ lies

in Vp ⊗ V ∗
p and P−1

γ BqPγ lies in Wp ⊗ W ∗
p .

But Theorem 2.4.3 says that holp(∇) is spanned by the elements of End(TpM) of

the form P−1
γ

[
Rq · (u ∧ v)

]
Pγ , for all q ∈ M and u, v ∈ TqM , and we have just

shown that for each fixed q ∈ M , the subspace generated by these elements splits into

a direct sum of a piece in Vp ⊗ V ∗
p , and a piece in Wp ⊗ W ∗

p . Therefore, the span of

these elements for all q ∈ M splits in the same way, so by Theorem 2.4.3 we see that

holp(∇) = hV ⊕hW , where hV is a subspace of Vp⊗V ∗
p and hW a subspace of Wp⊗W ∗

p .
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As holp(∇) is the Lie algebra of Hol0p(g), which is a connected Lie group, we

see that hV , hW are the Lie algebras of subgroups HV , HW of SO(Vp) and SO(Wp)
respectively, and Hol0p(g) = HV × HW . This completes the proof. �

Proposition 3.2.4 In the situation of Proposition 3.2.3, there is a connected open neigh-

bourhood N of p in M and a diffeomorphism N ∼= X × Y for manifolds X, Y ,

such that under the isomorphism T (X × Y ) ∼= TX ⊕ TY , we have V |N = TX and

W |N = TY . There are Riemannian metrics gX on X and gY on Y such that g|N
is isometric to the product metric gX × gY . Thus g is locally reducible, and moreover

Hol0q(gX) ⊆ HV and Hol0r(gY ) ⊆ HW , where p ∈ N is identified with (q, r) ∈ X×Y .

Proof Since V is closed under parallel translation, we deduce that if u ∈ C∞(TM)
and v ∈ C∞(V ), then ∇uv ∈ C∞(V ). Suppose that v, v′ ∈ C∞(V ). Then ∇vv′

and ∇v′v ∈ C∞(V ). But ∇ is torsion-free, so that [v, v′] = ∇vv
′ − ∇v′v. Thus, if

v, v′ ∈ C∞(V ), then [v, v′] ∈ C∞(V ). This proves that V is an integrable distribution,

so that by the Frobenius Theorem [214, p. 10] we see that locally M is fibred by a

family of submanifolds of M , with tangent spaces V .

Similarly, we deduce that W is an integrable distribution. But TM = V ⊕ W , so

these two integrable distributions define a local product structure on M . This means that

we can identify a connected open neighbourhood N of p ∈ M with a product manifold

X × Y , such that the isomorphism T (X × Y ) ∼= TX ⊕ TY identifies V with TX and

W with TY , as we want.

As V and W are orthogonal, we may write g = gV + gW , where gV ∈ C∞(S2V ∗)
and gW ∈ C∞(S2W ∗). Since ∇ is torsion-free and N is connected, it is not difficult

to show that the restriction of gV to N = X × Y is independent of the Y directions,

and is therefore the pull-back to X × Y of a metric gX on X . Similarly, gW |N is the

pull-back of a metric gY on Y . Therefore g|N is isometric to gX × gY , as we have to

prove. The rest of the proposition follows from Proposition 3.2.1 and the definition of

local reducibility. �

From Propositions 3.2.2–3.2.4 we immediately deduce:

Corollary 3.2.5 Let M be an n-manifold, and g an irreducible Riemannian metric on

M . Then the representations of Hol(g) and Hol0(g) on Rn are irreducible.

More generally, if (M, g) is a Riemannian manifold of dimension n, then Hol0(g)
is a subgroup of SO(n), and has a natural representation on R

n. By the representation

theory of Lie groups, we may decompose Rn into a finite direct sum of irreducible

representations of Hol0(g). By applying Propositions 3.2.2–3.2.4 and using induction

on k, we easily prove the following theorem.

Theorem 3.2.6 Let (M, g) be a Riemannian n-manifold, so that Hol0(g) is a subgroup

of SO(n) acting on R
n. Then there is a splitting R

n = R
n1 ⊕· · ·⊕R

nk , where nj > 0,

and a corresponding isomorphism Hol0(g) = H1 × · · ·×Hk, where Hj is a connected

Lie subgroup of SO(nj) acting irreducibly on Rnj .

The theorem shows that if the holonomy representation of Hol0(g) is reducible,

then Hol0(g) is in fact a product group, and the holonomy representation a direct sum
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of irreducible representations of each factor. Therefore, if G is a connected Lie group

and V a representation of G, such that G and V cannot be written G = G1× · · · ×Gk

and V = V1 ⊕ · · · ⊕ Vk where Vj is an irreducible representation of Gj , then G and V
cannot be the reduced holonomy group and holonomy representation of any Riemannian

metric. This is a strong statement, because there are very many such pairs G, V , and all

are excluded as possible holonomy groups.

Notice that Theorem 3.2.6 does not claim that the groups Hj are the holonomy

groups of metrics on manifolds of dimension nj . In fact, a careful examination of the

proof shows that the group Hj is generated by subgroups which are the holonomy

groups of metrics on small open subsets of R
nj , but there are topological difficulties

in assembling these patches into a single Riemannian manifold: there is a natural way

to do it, but the resulting topological space may not be Hausdorff.

The reason this is important to us is in the classification of Riemannian holonomy

groups. Theorem 3.2.6 nearly says that if the holonomy representation of Hol0(g) is

reducible, then Hol0(g) is a product of holonomy groups of metrics in lower dimen-

sions. If we knew this was true, then a classification of groups Hol0(g) with irreducible

holonomy representations would imply a classification of all groups Hol0(g), and thus

we could restrict our attention to holonomy groups with irreducible representations.

In fact, this problem turns out not to matter. The classification theory for irreducible

holonomy groups that we will summarize in §3.4 also works to classify the groups Hj

arising in Theorem 3.2.6, and the classification is the same. This is because the failure

of the Hausdorff condition we referred to above does not affect the proof. For further

discussion of this point, see Besse [30, §10.42, §10.107].

Next, suppose that the manifold M in Propositions 3.2.2–3.2.4 is simply-connected,

and the metric g is complete. In this case, by a result of de Rham [93], the local product

structure constructed in Proposition 3.2.4 is actually a global product structure, so that

M ∼= X × Y , and g is globally isometric to a Riemannian product metric gX × gY .

Therefore, using similar arguments to the previous theorem we may prove the following

result, which is a sort of converse to Proposition 3.2.1.

Theorem 3.2.7 Let (M, g) be a complete, simply-connected Riemannian manifold.

Then there exist complete, simply-connected Riemannian manifolds (Mj , gj) for j =
1, . . . , k, such that the holonomy representation of Hol(gj) is irreducible, (M, g) is

isometric to (M1×· · ·×Mk, g1×· · ·×gk), and Hol(g) = Hol(g1)×· · ·×Hol(gk).

It is shown in [214, App. 5], using the theory of Lie groups, that every connected

Lie subgroup of SO(n) that acts irreducibly on R
n is closed in SO(n). From this result

and Theorem 3.2.6 we deduce:

Theorem 3.2.8 Let (M, g) be a Riemannian n-manifold. Then Hol0(g) is a closed,

connected Lie subgroup of SO(n).

Since SO(n) is compact, this implies that Hol0(g) is also compact. By a study of

the fundamental group of a compact, irreducible Riemannian manifold, Cheeger and

Gromoll [75, Th. 6] prove the following result.

Theorem 3.2.9 Let (M, g) be a compact, irreducible Riemannian n-manifold. Then

Hol(g) is a compact Lie subgroup of O(n).
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3.3 Riemannian symmetric spaces
We will now briefly describe the theory of Riemannian symmetric spaces. These were

introduced in 1925 by Élie Cartan, who classified them completely, by applying his own

classification of irreducible representations of Lie groups. For a very thorough treatment

of symmetric spaces, see Helgason’s book [157]. Also, the treatments by Kobayashi and

Nomizu [215, Chap. XI] and Besse [30, §§7.F, 10.G, 10.K] are helpful.

Definition 3.3.1 A Riemannian manifold (M, g) is said to be a Riemannian symmetric

space if for every point p ∈ M there exists an isometry sp : M → M that is an

involution (that is, s2
p is the identity), such that p is an isolated fixed point of sp.

Let (M, g) be a complete Riemannian manifold, and p ∈ M . Then for each unit

vector u ∈ TpM , there is a unique geodesic γu : R → M parametrized by arc length,

such that γu(0) = p and γ̇u(0) = u. Define the exponential map expp : TpM → M
by expp(tu) = γu(t) for all t ∈ R and unit vectors u ∈ TpM . Then expp induces a

diffeomorphism between neighbourhoods of 0 in TpM and p in M .

Identifying TpM ∼= R
n yields a coordinate system on M near p. These are called

normal coordinates or geodesic normal coordinates at p. If we start with a Riemannian

manifold (M, g) that is not complete, then expp can still be defined in a neighbourhood

of 0 in TpM . The following lemma shows that the isometries in Definition 3.3.1 assume

a particularly simple form in normal coordinates.

Lemma 3.3.2 Let (M, g) be a complete Riemannian manifold, let p ∈ M , and suppose

s : M → M is an involutive isometry with isolated fixed point p. Then s
(
expp(v)

)
=

expp(−v) for all v ∈ TpM .

Proof The derivative ds of s maps TpM to itself. Since s2 is the identity, (ds)2 is the

identity on TpM , and as p is an isolated fixed point, 0 is the sole fixed point of ds on

TpM . Clearly, this implies that ds(v) = −v for all v ∈ TpM . Now s preserves g, as it is

an isometry, and the map expp depends solely on g. Therefore, expp must commute with

s, in the sense that s
(
expp(v)

)
= expp

(
ds(v)

)
for v ∈ TpM . Substituting ds(v) = −v

gives the result. �

The next three propositions explore the geometry of Riemannian symmetric spaces.

Proposition 3.3.3 Let (M, g) be a connected, simply-connected Riemannian symmet-

ric space. Then g is complete. Let G be the group of isometries of (M, g) generated

by elements of the form sq ◦ sr for q, r ∈ M . Then G is a connected Lie group acting

transitively on M . Choose p ∈ M , and let H be the subgroup of G fixing p. Then H
is a closed, connected Lie subgroup of G, and M is the homogeneous space G/H .

Proof Let γ : (−ε, ε) → M be a geodesic segment in M , parametrized by arc length.

Then the lemma shows that sγ(0)(γ(y)) = γ(−y) for y ∈ (−ε, ε). More generally we

see that sγ(x/2)(γ(y)) = γ(x − y) whenever 1
2x, y and x − y lie in (−ε, ε). This gives

sγ(x/2) ◦ sγ(0)

(
γ(y)
)

= γ(x + y),

provided 1
2x, y and x + y are in (−ε, ε). Thus, the map αx = sγ(x/2) ◦ sγ(0) moves

points a distance x along γ. But αx is defined on the whole of M . By applying αx and
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its inverse α−x many times, one can define the geodesic γ not just on (−ε, ε), but on R.

Therefore, every geodesic in M can be extended indefinitely, and g is complete.

Now αx lies in G by definition. Hence, if p, q are two points in M joined by a

geodesic segment of length x, there exists an element αx in G such that αx(p) = q. But

M is connected, and so every two points p, q in M can be joined by a finite number of

geodesic segments put end to end. Composing the corresponding elements of G, we get

an element α of G with α(p) = q. Therefore G acts transitively on M .

Let q, r ∈ M . Then, as M is connected, there exists a smooth path γ : [0, 1] → M
with γ(0) = q and γ(1) = r. Consider the family of isometries sq ◦ sγ(t) for t ∈ [0, 1].
This is a smooth path in G, joining the identity at t = 0 with sq ◦ sr at t = 1. Thus, the

generating elements sq ◦ sr of G can be joined to the identity by smooth paths, and so

G is arcwise-connected.

By the Myers–Steenrod Theorem [30, p. 39], the isometry group of (M, g) is a Lie

group acting smoothly on M . Thus G is an arcwise-connected subgroup of a Lie group,

so by the theorem of Yamabe quoted in §2.2, G is a connected Lie group. Also G acts

smoothly on M , and so H is a closed Lie subgroup of G. Since G acts transitively on

M , we have M ∼= G/H . Because M is simply-connected, G/H is simply-connected,

and this implies that H is connected. �

Note that the group G in the proposition may not be the full isometry group of

(M, g), or even the identity component of the isometry group. For example, if M is R
n

with the Euclidean metric, then G = Rn acting by translations and H = 0, but the full

isometry group also includes the rotations O(n) acting on R
n.

Proposition 3.3.4 Let M, g, G, p and H be as above, and let g be the Lie algebra of

G. Then there is an involutive Lie group isomorphism σ : G → G, and a splitting

g = h ⊕ m, where h is the Lie algebra of H , and h and m are the eigenspaces of the

involution dσ : g → g with eigenvalues 1 and −1 respectively. These subspaces satisfy

[h, h] ⊆ h, [h, m] ⊆ m and [m, m] ⊆ h. (3.9)

There is a natural isomorphism m ∼= TpM . The adjoint action of H on g induces a

representation of H on m, or equivalently TpM , and this representation is faithful.

Also, H is the identity component of the fixed point set of σ.

Proof Define σ : G → G by σ(α) = sp ◦ α ◦ sp. Clearly σ does map G to G, and

is a group isomorphism, so dσ : g → g is a Lie algebra isomorphism. Also, σ is an

involution, as s2
p = 1, so (dσ)2 is the identity. Therefore dσ has eigenvalues ±1, and g

is the direct sum of the corresponding eigenspaces. As M is connected, the isometries

sp in Definition 3.3.1 are unique. Hence, for p ∈ M and α ∈ G we have α ◦ sp ◦α−1 =
sα(p). Therefore h ◦ sp ◦ h−1 = sp for h ∈ H , so that σ(h) = sp ◦ h ◦ sp = h. Thus,

H is fixed by σ, and dσ is the identity on h.

The identification of G/H with M identifies p with the coset H and TpM with g/h.

Under this identification, the maps dsp : TpM → TpM and dσ : g/h → g/h coincide.

But dsp multiplies by −1, as in Lemma 3.3.2. Thus, dσ is the identity on h ⊂ g, and

acts as −1 on g/h. Therefore there exists a unique splitting g = h ⊕ m where h, m are

the 1 and −1 eigenspaces of dσ, as we want. The relations in (3.9) then follow easily

from the fact that dσ is a Lie algebra isomorphism.
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The splitting g = h ⊕ m and the isomorphism TpM ∼= g/h give an isomorphism

m ∼= TpM , as required. Clearly, m is preserved by the adjoint action of H on g, and this

gives a representation of H on m, and so on TpM . This action of H on TpM can also be

described as follows: each element h ∈ H fixes p, and so dh maps TpM to itself. Now

g is complete, so the exponential map expp : TpM → M is well-defined, and clearly

satisfies expp(dh(v)) = h · expp(v) for all h ∈ H and v ∈ TpM .

Thus, dh : TpM → TpM determines the action of h on the subset expp(TpM) of

M , and so on all of M , as M is connected. It follows that if dh is the identity then

h is the identity. Therefore, the representation of H on TpM , or equivalently on m, is

faithful. Finally, we know that H is part of the fixed point set of σ, that H is connected,

and that the subspace of g fixed by dσ is h. Together these show that H is the identity

component of the fixed points of σ. �

Proposition 3.3.5 In the situation of Proposition 3.3.4, the Riemann curvature Rp of g
at p lies in TpM ⊗ T ∗

p M ⊗ Λ2T ∗
p M . Identifying m and TpM in the natural way, Rp is

given by the equation

Rp · (u ⊗ v ∧ w) = [u, [v, w]], (3.10)

for all u, v, w ∈ m. Moreover, the holonomy group Holp(g) is H , with the above

representation on TpM , and the Riemann curvature R of g satisfies ∇R = 0.

Proof Using the splitting g = h ⊕ m, one can construct a unique torsion-free, G-

invariant connection ∇ on TM . This satisfies ∇g = 0, and so ∇ is the Levi-Civita

connection of g. Explicit computation then yields the formula (3.10) for Rp. For more

details of this argument, see [215, §X.2, §XI.3]. The formula shows that for v, w ∈
m, we have Rp · (v ∧ w) = − ad

(
[v, w]

)
in End(m). But [m, m] ⊂ h by (3.9), so

that Rp · (v ∧ w) ∈ ad(h).
By definition, G is generated by sq ◦ sr for q, r ∈ M . By fixing r = p and letting

q approach p we can prove an infinitesimal version of this statement, which says that g
is generated by the elements d

dt

(
sexpp(tv) ◦ sp

)
|t=0 of g, for all v ∈ TpM . But these

are exactly the elements of m, and thus g is generated as a Lie algebra by m. Therefore

(3.9) implies that [m, m] = h, and so the equation Rp · (v ∧ w) = − ad
(
[v, w]

)
gives〈

Rp · (v ∧ w) : v, w ∈ m
〉

= ad(h). (3.11)

Proposition 2.4.1 then shows ad(h) is a subset of holp(g), the Lie algebra of Holp(g).
Let q ∈ M . Then sp : M → M is an isometry, and so preserves R and ∇R. But

dsq acts as −1 on TqM , and thus dsq(∇R|q) = −∇R|q . Therefore ∇R|q = 0 for all

q ∈ M , giving and ∇R = 0 as we want. Let γ : [0, 1] → M be piecewise-smooth

with γ(0) = p and γ(1) = q, and let Pγ : TpM → TqM be the parallel translation

map. Since ∇R = 0, it follows that P−1
γ [Rq · (v ∧ w)]Pγ = Rp · (P−1

γ v ∧ P−1
γ w), for

all v, w ∈ TqM .

Now Theorem 2.4.3 shows that holp(∇) is spanned by elements of End(TpM) of

the form P−1
γ

[
Rq · (v ∧w)

]
Pγ . Therefore (3.11) implies that holp(∇) = ad(h). But H

is connected by Proposition 3.3.3, and Holp(g) is connected as M is simply-connected,

and so Holp(g) = Ad(H), where Ad is the adjoint representation of H on m, and we
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identify m and TpM . Since the representation is faithful, we have Holp(g) ∼= H , and

the proof is complete. �

Propositions 3.3.3–3.3.5 reduce the problem of classifying simply-connected Rie-

mannian symmetric spaces to a problem in the theory of Lie groups. This was solved

completely by E. Cartan in 1926–7, who was able to write down a complete list of all

simply-connected Riemannian symmetric spaces. Helgason [157, Chap. IX] discusses

Cartan’s proof, and Besse [30, §7.H, §10.K] gives tables of all the possibilities.

Using the results above, the holonomy group of a Riemannian symmetric space is

easily found. Therefore, Cartan’s classification implies the classification of the holon-

omy groups of Riemannian symmetric spaces. A considerable number of Riemannian

holonomy groups arise in this way: for example, every connected, compact, simple

Lie group is (up to a finite cover) the holonomy group of an irreducible Riemannian

symmetric space, with holonomy representation the adjoint representation.

Some well-known examples of Riemannian symmetric spaces are Rn with the Eu-

clidean metric, Sn with the round metric, Hn with the hyperbolic metric, and CP
n with

the Fubini–Study metric. The corresponding groups are G = R
n and H = {1} for

Rn, so that Rn has holonomy group {1}, G = SO(n+1) and H = SO(n) for Sn

and G = SO(n, 1) and H = SO(n) for Hn, so that Sn and Hn both have holonomy

group SO(n), and G = U(n+1)/ U(1) and H = U(n) for CP
n, so that CP

n has

holonomy U(n).

Next we shall discuss locally symmetric Riemannian manifolds, which satisfy a

local version of the symmetric space condition.

Definition 3.3.6 We call a Riemannian manifold (M, g) locally symmetric if every

point p ∈ M admits an open neighbourhood Up in M , and an involutive isometry

sp : Up → Up, with unique fixed point p. We call (M, g) nonsymmetric if it is not

locally symmetric.

Clearly, every Riemannian symmetric space is locally symmetric. Conversely, one

can show that every locally symmetric Riemannian manifold is locally isometric to a

Riemannian symmetric space.

Theorem 3.3.7 Suppose (M, g) is a locally symmetric Riemannian manifold. Then

there is a unique simply-connected Riemannian symmetric space (N, h) with (M, g)
locally isometric to (N, h). In other words, given any points p ∈ M and q ∈ N , there

exist isometric open neighbourhoods U of p in M and V of q in N .

A proof of this theorem can be found in [157, p. 183], but we will not give it. Here

is one way the result can be proved. The problem is that because the isometries sp are

defined only locally, they cannot be put together to form Lie groups of isometries G, H ,

as in Proposition 3.3.3. However, the Lie algebras g, h of G, H can be defined in the

locally symmetric case, as Lie algebras of Killing vector fields, defined locally. Let G
be the unique connected, simply-connected Lie group with Lie algebra g, and let H
be the unique connected Lie subgroup of G with Lie algebra h. Then N = G/H is a

Riemannian symmetric space, with the desired properties.

Let (M, g) be a Riemannian manifold. If (M, g) is locally symmetric, then by The-

orem 3.3.7 it is locally isometric to a Riemannian symmetric space, and so Proposition
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3.3.5 shows that ∇R = 0, where ∇ is the Levi-Civita connection, and R the Riemann

curvature. Surprisingly, the converse is also true: if ∇R = 0, then (M, g) is locally

symmetric.

Theorem 3.3.8 Let (M, g) be a Riemannian manifold, with Levi-Civita connection ∇
and Riemann curvature R. Then (M, g) is locally symmetric if and only if ∇R = 0.

See [215, p. 244] for a proof of this. Here is how it works. Let (M, g) be a Rie-

mannian manifold, and let p ∈ M . Then expp : TpM → M is well-defined and

injective in a small ball Bε(0) about the origin in TpM . Define Up = expp

(
Bε(0)

)
, and

define sp : Up → Up by sp

(
expp(v)

)
= expp(−v). This map sp is called the geodesic

symmetry about p, and is clearly an involution.

Now, if ∇R = 0 it can be shown that sp is an isometry on Up. This is because the

Jacobi fields along a geodesic are the solutions of a differential equation with constant

coefficients, and therefore the metric g on Up assumes a simple form in normal coordi-

nates at p, determined entirely by the metric and curvature at p. A similar argument is

given in detail in [214, §VI, Th. 7.2, Th. 7.4].

Theorem 3.3.8 is important in the classification of Riemannian holonomy groups.

For suppose (M, g) is a Riemannian manifold with ∇R = 0. Then (M, g) is locally iso-

metric to a simply-connected Riemannian symmetric space (N, h) by Theorems 3.3.7

and 3.3.8, and therefore Hol0(g) = Hol(h). But, as we have seen above, the classi-

fication of holonomy groups of Riemannian symmetric spaces comes out of Cartan’s

classification of Riemannian symmetric spaces, and is already well understood.

Therefore, we may restrict our attention to holonomy groups of Riemannian metrics

that are nonsymmetric, for which ∇R �= 0. Now, this condition ∇R �= 0 can be used

to exclude many candidate holonomy groups, in the following way. Theorems 3.1.2

and 3.1.7 show that if a metric g has a prescribed holonomy group H ⊂ O(n), then

the Riemann curvature R and its derivative ∇R have certain symmetries, and also lie

in vector subspaces determined by the Lie algebra h of H . For some groups H , these

conditions force ∇R = 0, so that H cannot be a nonsymmetric holonomy group.

3.4 The classification of Riemannian holonomy groups
In this section we shall discuss the question: which subgroups of O(n) can be the

holonomy group of a Riemannian n-manifold (M, g)? To simplify the answer, it is

convenient to restrict the question in three ways. Firstly, we suppose that M is simply-

connected, or equivalently, we study the restricted holonomy group Hol0(g) instead of

the holonomy group Hol(g). This eliminates issues to do with the fundamental group

and global topology of M .

Secondly, we know from §3.2 that if g is locally reducible then Hol0(g) is a prod-

uct of holonomy groups in lower dimensions. Therefore, we suppose that g is irre-

ducible. And thirdly, from §3.3, if g is locally symmetric then Hol0(g) lies on the list of

holonomy groups of Riemannian symmetric spaces, which are already known. So we

suppose that g is not locally symmetric, and ask another question: which subgroups of

SO(n) can be the holonomy group of an irreducible, nonsymmetric Riemannian metric

g on a simply-connected n-manifold M? In 1955, Berger [27, Th. 3, p. 318] proved the

following result, which is the first part of the answer to this question.
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Theorem 3.4.1. (Berger) Suppose M is a simply-connected manifold of dimension n,

and g is an irreducible, nonsymmetric Riemannian metric on M . Then exactly one of

the following seven cases holds:

(i) Hol(g) = SO(n),
(ii) n = 2m with m � 2, and Hol(g) = U(m) in SO(2m),

(iii) n = 2m with m � 2, and Hol(g) = SU(m) in SO(2m),
(iv) n = 4m with m � 2, and Hol(g) = Sp(m) in SO(4m),
(v) n = 4m with m � 2, and Hol(g) = Sp(m) Sp(1) in SO(4m),

(vi) n = 7 and Hol(g) = G2 in SO(7), or

(vii) n = 8 and Hol(g) = Spin(7) in SO(8).

In fact Berger also included the eighth case n = 16 and Hol(g) = Spin(9) in

SO(16), but it was shown by Alekseevskii [7] and also by Brown and Gray [53] that

any Riemannian metric with holonomy group Spin(9) is symmetric. We shall refer to

Theorem 3.4.1 as Berger’s Theorem, and to the groups in parts (i)–(vii) as Berger’s

list. Berger’s proof will be discussed in §3.4.3. It is rather algebraic, and uses the clas-

sification of Lie groups and their representations, and the symmetry properties of the

curvature tensor.

Berger proved that the groups on his list were the only possibilities, but he did not

show whether the groups actually do occur as holonomy groups. It is now known (but

this took another thirty years to find out) that all of the groups on Berger’s list do occur

as the holonomy groups of irreducible, nonsymmetric metrics.

Here are a few remarks about Berger’s Theorem.

• Theorem 3.4.1 gives the holonomy group Hol(g) not just as an abstract group, but

as a particular subgroup of SO(n). In other words, the holonomy representation of

Hol(g) on R
n is completely specified.

• Combining Theorem 3.4.1 with the results of §3.2 and §3.3, we see that the re-

stricted holonomy group Hol0(g) of any Riemannian manifold (M, g) is a product

of groups from Berger’s list and the holonomy groups of Riemannian symmetric

spaces, which are known from Cartan’s classification.

• In cases (ii)–(v) of Theorem 3.4.1, we require m � 2 to avoid repeating holonomy

groups. In case (ii), U(1) = SO(2), coinciding with n = 2 in case (i). In (iii)

SU(1) = {1}, which acts reducibly, and can be regarded as SO(1)×SO(1) acting

on R
2 = R⊕R. In (iv) Sp(1) = SU(2) in SO(4), and in (v) Sp(1) Sp(1) = SO(4).

In §3.4.1, we will say a little bit about each of the groups on Berger’s list. Chapters

5, 7, 10 and 11 discuss cases (ii)–(vii) in much more detail. Then §3.4.2 will discuss

Berger’s list as a whole, bringing out various common features and themes. Finally,

§3.4.3 explains the principles behind the proofs by Berger and Simons of Theorem 3.4.1.

3.4.1 The groups on Berger’s list
We make some brief remarks, with references, about each group on Berger’s list.

(i) SO(n) is the holonomy group of generic Riemannian metrics.

(ii) Riemannian metrics g with Hol(g) ⊆ U(m) are called Kähler metrics. Kähler

metrics are a natural class of metrics on complex manifolds, and generic Kähler
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metrics on a given complex manifold have holonomy U(m). Kähler geometry is

covered by Griffiths and Harris [132], and Kobayashi and Nomizu [215, §IX].

(iii) Metrics g with Hol(g) ⊆ SU(m) are called Calabi–Yau metrics. Since SU(m)
is a subgroup of U(m), all Calabi–Yau metrics are Kähler. If g is Kähler, then

Hol0(g) ⊆ SU(m) if and only if g is Ricci-flat. Thus Calabi–Yau metrics are

locally the same as Ricci-flat Kähler metrics.

Explicit examples of complete metrics with holonomy SU(m) were given by

Calabi [69]. The existence of metrics with holonomy SU(m) on compact man-

ifolds follows from Yau’s solution of the Calabi Conjecture, [345]. The most

well-known example is the K3 surface, which admits a family of metrics with

holonomy SU(2).
(iv) Metrics g with Hol(g) ⊆ Sp(m) are called hyperkähler metrics. As Sp(m) ⊆

SU(2m) ⊂ U(2m), hyperkähler metrics are Ricci-flat and Kähler. Explicit ex-

amples of complete metrics with holonomy Sp(m) were found by Calabi [69].

Yau’s solution of the Calabi Conjecture can be used to construct metrics with

holonomy Sp(m) on compact manifolds; examples were given by Fujiki [114] in

the case Sp(2), and Beauville [25] in the case Sp(m).
(v) Metrics g with holonomy group Sp(m) Sp(1) for m � 2 are called quaternionic

Kähler metrics. (Note that quaternionic Kähler metrics are not in fact Kähler.)

They are Einstein, but not Ricci-flat. For the theory of quaternionic Kähler man-

ifolds, see Salamon [294], and for explicit examples, see Galicki and Lawson

[120, 121]. It is an important open question whether there exist compact, non-

symmetric quaternionic Kähler manifolds with positive scalar curvature.

(vi) and (vii) The holonomy groups G2 and Spin(7) are called the exceptional holon-

omy groups. The existence of metrics with holonomy G2 and Spin(7) was first

established in 1985 by Bryant [56], using the theory of exterior differential sys-

tems. Explicit examples of complete metrics with holonomy G2 and Spin(7) were

found by Bryant and Salamon [64]. Metrics with holonomy G2 and Spin(7) on

compact manifolds were constructed by the author in [183, 184] for the case of

G2, and [185] for the case of Spin(7).

3.4.2 A discussion of Berger’s list
Attempts to generalize the concept of number from real numbers to complex numbers

and beyond led to the discovery of the four division algebras: the real numbers R, the

complex numbers C, the quaternions H, and the octonions or Cayley numbers O. At

each step in this sequence, the dimension doubles, and one algebraic property is lost. So,

the complex numbers have dimension 2 (over R) and are not ordered; the quaternions

have dimension 4 and are not commutative; and the octonions have dimension 8 and

are not associative. The sequence stops here, possibly because there are no algebraic

properties left to lose.

The groups on Berger’s list correspond to the division algebras. First consider cases

(i)–(v). The group SO(n) is a group of automorphisms of R
n. Both U(m) and SU(m)

are groups of automorphisms of C
m, and Sp(m) and Sp(m) Sp(1) are automorphism

groups of Hm. To make the analogy between R, C and H more complete, we add the
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holonomy group O(n). Then O(n), U(m) and Sp(m) Sp(1) are automorphism groups

of R
n, C

m and H
m respectively, preserving a metric. And SO(n), SU(m) and Sp(m)

are the subgroups of O(n), U(m) and Sp(m) Sp(1) with ‘determinant 1’ in an appro-

priate sense.

The exceptional cases (vi) and (vii) also fit into this pattern, although not as neatly.

One can regard G2 and Spin(7) as automorphism groups of O. The octonions split as

O ∼= R ⊕ Im O, where Im O ∼= R
7 is the imaginary octonions. The automorphism

group of Im O is G2.

In some sense, G2 is the group of ‘determinant 1’ automorphisms of O, so it fits

into the sequence SO(n), SU(m), Sp(m), G2. Similarly, Spin(7) is the group of auto-

morphisms of O ∼= R
8 which preserve a certain part of the multiplicative structure of

O, and it fits into the sequence O(n), U(m), Sp(m) Sp(1), Spin(7).
Here are three ways in which we can gather together the holonomy groups on

Berger’s list into subsets with common features.

• The Kähler holonomy groups are U(m), SU(m) and Sp(m). Any Riemannian

manifold with one of these holonomy groups is a Kähler manifold, and thus a

complex manifold. Therefore one can use complex geometry to study the Kähler

holonomy groups, and this is a tremendous advantage.

As complex manifolds are locally trivial, complex geometry has a very different

character to Riemannian geometry, and a great deal is known about the global

geometry of complex manifolds, particularly through complex algebraic geometry,

which has no real parallel in Riemannian geometry.

Although metrics with holonomy Sp(m) Sp(1) for m > 1 are not Kähler, they

should be considered along with the Kähler holonomy groups. A Riemannian man-

ifold M with holonomy Sp(m) Sp(1) has a twistor space [294], a complex mani-

fold Z of real dimension 4m + 2, which fibres over M with fibre CP
1. If M has

positive scalar curvature, then Z is Kähler. Thus, metrics with this holonomy group

can also be studied using complex and Kähler geometry.

• The Ricci-flat holonomy groups are SU(m), Sp(m), G2 and Spin(7). Any metric

with one of these holonomy groups is Ricci-flat. As irreducible symmetric spaces

(other than R) are Einstein with nonzero scalar curvature, none of the Ricci-flat

holonomy groups can be the holonomy group of a symmetric space, or more gen-

erally of a homogeneous space. Because of this, simple examples of metrics with

the Ricci-flat holonomy groups are difficult to find, and one has to work harder to

get a feel for what the geometry of these metrics is like.

• The exceptional holonomy groups are G2 and Spin(7). They are the exceptional

cases in Berger’s classification, and they are rather different from the other holon-

omy groups. The holonomy groups U(m), SU(m), Sp(m) and Sp(m) Sp(1) can

all be approached through complex geometry, and SO(n) is uninteresting for ob-

vious reasons.

This leaves G2 and Spin(7), which are similar to one another but stand out from

the rest. Since we cannot use complex manifold theory to tell us about the global

geometry of manifolds with holonomy G2 and Spin(7), at present our understand-

ing of them is essentially local in nature.
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3.4.3 A sketch of the proof of Berger’s Theorem
Here is a sketch of Berger’s proof of Theorem 3.4.1. As M is simply-connected, The-

orem 3.2.8 shows that Hol(g) is a closed, connected Lie subgroup of SO(n), and since

g is irreducible, Corollary 3.2.5 shows that the representation of Hol(g) on Rn is irre-

ducible. So, suppose that H is a closed, connected subgroup of SO(n) with irreducible

representation on R
n, and Lie algebra h. The classification of all such groups H follows

from the classification of Lie groups (and is of considerable complexity).

Berger’s method was to take the list of all such groups H , and to apply two tests

to each possibility to find out if it could be a holonomy group. The only groups H
which passed both tests are those in the theorem. Berger’s tests are algebraic and involve

the curvature tensor. Suppose that Rabcd is the Riemann curvature of a metric g with

Hol(g) = H . Then Theorem 3.1.2 shows that Rabcd ∈ S2h, and the first Bianchi

identity (3.3) applies.

If h has large codimension in so(n), then the vector space RH of elements of S2h
satisfying (3.3) will be small, or even zero. But Theorem 2.4.3 shows that RH must be

big enough to generate h. For many of the candidate groups H this does not hold, and so

H cannot be a holonomy group. This is the first test. Now ∇eRabcd lies in (Rn)∗⊗RH ,

and also satisfies the second Bianchi identity (3.4). Frequently these requirements imply

that ∇R = 0, so that g is locally symmetric. Therefore we may exclude such H , and

this is Berger’s second test.

Later, with the benefit of hindsight, Simons [313] found a shorter (but still difficult)

proof of Theorem 3.4.1 based on showing that if g is irreducible and nonsymmetric,

then Hol(g) must act transitively on the unit sphere in Rn. But the list of compact,

connected Lie groups acting transitively and effectively on spheres had already been

found by Montgomery and Samelson [262], [38].

They turn out to be the groups on Berger’s list, plus two others, Sp(m)U(1) acting

on S4m−1 for m > 1, and Spin(9) acting on S15. Thus, to complete the second proof

one must show that these two cannot occur as holonomy groups. Short accounts of

Simons’ proof are given by Besse [30, p. 303–305] and Salamon [294, p. 149–151].

3.5 Holonomy groups, exterior forms and cohomology

Let (M, g) be a compact Riemannian manifold. In this section we explore the links be-

tween Hol(g) and the de Rham cohomology H∗(M, R). We explain how a G-structure

on M divides the bundle of k-forms on M into a sum of vector subbundles, correspond-

ing to irreducible representations of G. If the G-structure is torsion-free for G ⊆ O(n)
then Hk(M, R) has an analogous decomposition into vector subspaces by Hodge the-

ory. Finally we show that if Hol(g) is one of the Ricci-flat holonomy groups then

H1(M, R) = 0, and π1(M) is finite.

3.5.1 Decomposition of exterior forms
Let M be an n-manifold, G a Lie subgroup of GL(n, R), and Q a G-structure on M .

Then from Definition 2.1.3, to each representation ρ of G on a vector space V we can

associate a vector bundle ρ(Q) over M , with fibre V . In particular, if ρ is the restriction

to G of the natural representation of GL(n, R) on V = R
n, then ρ(Q) = TM .
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The representation of G on V induces representations of G on the dual vector space

V ∗ and its exterior powers ΛkV ∗. Write ρk for the representation of G on ΛkV ∗. Then

ρk(Q) = ΛkT ∗M , the bundle of k-forms on M . Now ΛkV ∗ is an irreducible repre-

sentation of GL(n, R) for every k. However, if G is a proper subgroup of GL(n, R), it

can happen that the representation ρk of G on ΛkV ∗ is reducible. Then we can write

ΛkV ∗ =
⊕

i∈Ik W k
i and ρk =

⊕
i∈Ik ρk

i , where each (ρk
i , W k

i ) is an irreducible rep-

resentation of G, and Ik is a finite indexing set.

But then ΛkT ∗M = ρk(Q) =
⊕

i∈Ik ρk
i (Q). This means that a G-structure on M

induces a splitting of the vector bundle ΛkT ∗M of k-forms on M into a direct sum of

vector subbundles ρk
i (Q) corresponding to irreducible representations of G. We shall

use the notation Λk
i for ρk

i (Q), and πi : ΛkT ∗M → Λk
i for the projection to Λk

i in the

decomposition ΛkT ∗M =
⊕

i∈Ik Λk
i .

Note that analogous decompositions hold for tensor bundles
⊗k

TM ⊗
⊗l

T ∗M
on a manifold with a G-structure Q, and also, if G is a subgroup of O(n) and M is

spin, for the spin bundles of M with respect to the Riemannian metric induced by Q.

We will not make much use of these, though. The following proposition, which is trivial

to prove, summarizes the material above.

Proposition 3.5.1 Let G be a Lie subgroup of GL(n, R). Write (ρ, V ) for the natural

representation of G on R
n, and let ρk be the induced representation of G on ΛkV ∗.

Then (ρk, ΛkV ∗) is a direct sum of irreducible representations (ρk
i , W k

i ) of G, for

i ∈ Ik, a finite indexing set. Suppose M is an n-manifold, and Q a G-structure on M .

Then there is a natural decomposition

ΛkT ∗M =
⊕

i∈Ik Λk
i , (3.12)

where Λk
i is a vector subbundle of ΛkT ∗M with fibre W k

i . If two representations

(ρk
i , W k

i ) and (ρl
j , W

l
j) are isomorphic, then Λk

i and Λl
j are isomorphic. If φ : ΛkV ∗ →

ΛlV ∗ is a G-equivariant linear map, there is a corresponding map Φ : ΛkT ∗M →
ΛlT ∗M of vector bundles.

We can also do the same thing, but working with complex forms ΛkV ∗ ⊗R C,

ΛkT ∗M ⊗R C, and their decomposition into irreducible representations over C. The

advantage of doing this is that G-representations which are irreducible over R may be

reducible over C when complexified, so working over C can give a finer decomposition

into smaller pieces. This occurs when G = U(m), as will be explained in §5.2.2.

As an example of these ideas, we explain the Hodge star of §1.1.2.

Example 3.5.2 Let G be the subgroup SO(n) of GL(n, R). Then a G-structure on an

n-manifold M is equivalent to a Riemannian metric g and an orientation on M . There

is an isomorphism ∗ : ΛkV ∗ → Λn−kV ∗ between the representations of SO(n). By

Proposition 3.5.1, this induces an isomorphism ∗ : ΛkT ∗M → Λn−kT ∗M called the

Hodge star.

In the case n = 4m, the map ∗ : Λ2mV ∗ → Λ2mV ∗ satisfies ∗2 = 1, and so

Λ2mV ∗ splits as Λ2mV ∗ = W 2m
+ ⊕ W 2m− , where W 2m± are the eigenspaces of ∗ with

eigenvalues±1. Here W 2m
+ and W 2m

− are in fact irreducible representations of SO(4m)
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of equal dimension, and we choose the indexing set I2m = {+,−}. Thus, there is a

corresponding splitting Λ2mT ∗M ∼= Λ2m
+ ⊕ Λ2m− .

We are principally interested in the case in which G is a Lie subgroup of O(n)
in GL(n, R), and Q a torsion-free G-structure. The condition that Q be torsion-free

implies that the exterior derivative d on k-forms, and its formal adjoint d∗, behave in a

special way with regard to the splitting ΛkT ∗M =
⊕

i∈Ik Λk
i , and this has important

consequences for the de Rham cohomology of M .

3.5.2 Hodge theory and the splitting of de Rham cohomology
Suppose (M, g) is a compact Riemannian n-manifold. Let G be a Lie subgroup of

O(n), and suppose that Hol(g) ⊆ G. Then from §3.1.4, there is a unique, torsion-free

O(n)-structure P on M induced by g, and a torsion-free G-structure Q on M contained

in P . Moreover, the Levi-Civita connection ∇ of g reduces to Q.

Our goal is to study the Hodge theory of M . Hodge theory is described in §1.1.3,

and concerns the Laplacian ∆ = dd∗ + d∗d acting on k-forms on M , and its kernel

H k, which is a finite-dimensional vector space of k-forms. The Weitzenbock formula

for k-forms [30, §1.I], [296, Prop. 4.10] is

(dd∗ + d∗d)ξ = ∇∗∇ξ − 2R̃(ξ), (3.13)

where, using the index notation and writing Rab for the Ricci curvature and Ra
bcd for

the Riemann curvature of g, we have

R̃(ξ)r1...rk
=
∑

1�i<j�k gbcRa
ricrj

ξr1...ri−1ari+1...rj−1brj+1...rk

− 1
2

∑k
j=1 gabRrjb ξr1...rj−1arj+1...rk

.
(3.14)

Proposition 3.5.1 gives an isomorphism

C∞(ΛkT ∗M) =
⊕

i∈Ik C∞(Λk
i ). (3.15)

Suppose that ξ ∈ C∞(Λk
i ) for some i. As ∇ preserves the G-structure Q, it preserves

the decomposition (3.12). Thus ∇ξ ∈ C∞(T ∗M ⊗ Λk
i ), and so ∇∗∇ξ ∈ C∞(Λk

i ).
Now Theorem 3.1.7 shows that the Riemann curvature Rabcd lies in S2holx(g)

at each x ∈ M , where holx(g) is a vector subspace of Λ2T ∗
xM isomorphic to the

holonomy algebra hol(g). As Hol(g) ⊆ G, we have hol(g) ⊂ g, where g is the Lie

algebra of G. Using this, one can show that the linear map R̃ : ΛkT ∗M → ΛkT ∗M de-

fined by (3.14) preserves the splitting (3.12), and thus R̃(ξ) ∈ C∞(Λk
i ). Therefore we

see that if ξ ∈ C∞(Λk
i ), then both ∇∗∇ξ and R̃(ξ) lie in C∞(Λk

i ), and so (dd∗+d∗d)ξ
lies in C∞(Λk

i ) by (3.13). This proves that the Laplacian ∆ = dd∗+d∗d maps C∞(Λk
i )

into itself for each i ∈ Ik.

Thus in (3.15), the Laplacian ∆ takes each factor C∞(Λk
i ) to itself. Therefore

H k =
⊕

i∈Ik H k
i , where H k = Ker∆ and H k

i = Ker
(
∆|Λk

i

)
. (3.16)

In Proposition 3.5.1 we saw that if W k
i and W l

j are isomorphic representations of G,

then the vector bundles Λk
i and Λl

j are isomorphic. Now it turns out that ∇∗∇ and R̃
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depend only on the representation of G, and not on its particular embedding in ΛkV ∗.

By (3.13) this is true also of dd∗ + d∗d, and so if W k
i and W l

j are isomorphic represen-

tations of G, it follows that H k
i and H l

j are isomorphic.

But Hk(M, R) is isomorphic to H k by Theorem 1.1.3. Thus, (3.16) gives a de-

composition of Hk(M, R) corresponding to the splitting (3.12). This yields:

Theorem 3.5.3 Suppose M is a compact n-manifold and Q a torsion-free G-structure

on M , where G is a Lie subgroup of O(n), and let g be the metric associated to Q.

Then Proposition 3.5.1 gives a splitting ΛkT ∗M =
⊕

i∈Ik Λk
i , corresponding to the

decomposition of Λk(Rn)∗ into irreducible representations of G.

The Laplacian ∆=dd∗+d∗d of g maps C∞(Λk
i ) to itself. Define H k

i =Ker∆|Λk
i
,

and let Hk
i (M, R) be the subspace of the de Rham cohomology group Hk(M, R) with

representatives in H k
i . Then Hk

i (M, R)∼=H k
i , and we have the direct sum

Hk(M, R) =
⊕

i∈Ik Hk
i (M, R). (3.17)

If W k
i and W l

j are isomorphic as representations of G, then Hk
i (M, R) ∼= H l

j(M, R).

The theorem shows that if a Riemannian metric g on a compact manifold M has

Hol(g) = G, then the de Rham cohomology H∗(M, R) has a natural decomposition

into smaller pieces, which depend on G and its representations. The Betti numbers

of M are bk(M) = dimHk(M, R). Define the refined Betti numbers bk
i (M) to be

bk
i (M) = dim Hk

i (M, R), for i ∈ Ik. Then (3.17) shows that bk(M) =
∑

i∈Ik bk
i (M).

The refined Betti numbers carry both topological information about M , and geometrical

information about the G-structure Q.

If a compact manifold M admits a metric g with Hol(g) = G, then the theorem

forces its cohomology H∗(M, R) to assume a certain form. Conversely, if one can show

that H∗(M, R) cannot be written in this way, then M cannot admit any metric g with

Hol(g) = G. Thus, one can prove that some compact manifolds do not admit metrics

with a given holonomy group, for purely topological reasons. For example, when G =
U(m) one finds that bk(M) must be even when k is odd; roughly speaking, this is

because each irreducible representation occurs twice.

Suppose that for some k and i ∈ Ik, we have W k
i
∼= R, the trivial representation of

G. Now Λ0(Rn)∗ = W 0
1 is also a copy of R, the trivial representation. So W k

i and W 0
1

are isomorphic as representations of G, and Hk
i (M, R) ∼= H0

1 (M, R) = H0(M, R)
by Theorem 3.5.3. But H0(M, R) = R, as M is connected. Thus, if W k

i is the trivial

representation R, then there is a natural isomorphism Hk
i (M, R) ∼= R.

The explanation for this is simple. Proposition 2.5.2 shows that there is a 1-1 corre-

spondence between constant tensors on M , and invariant elements of the corresponding

representation of Hol(g). Since Hol(g) ⊆ G, if W k
i is a trivial representation its ele-

ments are invariant under Hol(g), and so correspond to constant k-forms. Now if ξ
is a constant k-form, then ∇ξ = 0. But dξ and d∗ξ are components of ∇ξ, and so

dξ = d∗ξ = 0. Hence (dd∗ + d∗d)ξ = 0, and ξ lies in H k. Thus, if W k
i is a trivial

representation, then H k
i is a vector space of constant k-forms isomorphic to W k

i .

We have shown that if Q is a torsion-free G-structure on a compact manifold M ,

then to each G-invariant element of ΛkV ∗ there corresponds a constant k-form ξ, and
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this defines a cohomology class [ξ] ∈ Hk(M, R). So, to each torsion-free G-structure

Q we associate a collection of cohomology classes in Hk(M, R), corresponding to the

G-invariant part of ΛkV ∗. Now Hk(M, R) is a topological invariant of M , and does

not depend on Q. Thus we can compare the cohomology classes associated to different

torsion-free G-structures Q, Q′ on M .

Often, the family of torsion-free G-structures on M , when divided by the group of

diffeomorphisms of M isotopic to the identity, forms a finite-dimensional manifold M G

called a moduli space. The cohomology classes associated to a torsion-free G-structure

give maps M G → Hk(M, R), and these provide a natural coordinate system on M G.

More generally, the splitting (3.17) may also be regarded in this light. This topological

information can be exploited to give a local (and, in good cases, global) description of

the moduli spaces M G, when G is one of the Ricci-flat holonomy groups.

3.5.3 One-forms and the Ricci-flat holonomy groups
Let (M, g) be a compact Riemannian n-manifold. From eqns (3.13) and (3.14) we see

that if ξ is a 1-form, then

(dd∗ + d∗d)ξa = ∇∗∇ξa + Rabg
bcξc,

where Rab is the Ricci curvature of g. Suppose now that ξ ∈ H 1, the kernel of dd∗ +
d∗d on 1-forms. Then we have ∇∗∇ξa + Rabg

bcξc = 0. Taking the inner product of

this equation with ξ and integrating by parts yields

‖∇ξ‖2
L2 +

∫
M

Rabg
bcgadξcξddV = 0. (3.18)

If the Ricci curvature Rab is zero, this shows that ‖∇ξ‖L2 = 0, so that ∇ξ = 0.

More generally, if Rab is nonnegative, then the second term in (3.18) is nonnegative.

But the first term is also nonnegative, so both must be zero. Thus, if Rab is nonnegative,

we have ∇ξ = 0. If Rab is positive definite, then either ξ ≡ 0, or the second term in

(3.18) is positive, which is a contradiction. This shows that if Rab is zero or nonnegative,

then all 1-forms ξ in H 1 are constant, and if Rab is positive definite, then all 1-forms ξ
in H 1 are zero.

Suppose that Rab is nonnegative, and that dimH 1 = k > 0. Choose a basis

ξ1, . . . , ξk for H 1. Then ξ1, . . . , ξk are constant 1-forms, and so by Proposition 2.5.2

they correspond to elements of (Rn)∗ fixed by Hol(g). Clearly, this implies that k � n
and R

n splits orthogonally as R
n = R

k ⊕ R
n−k, where Hol(g) preserves the splitting

and acts trivially on Rk.

Thus, the action of Hol(g) on R
n is reducible, and so by Corollary 3.2.5 the metric

g is locally reducible. Moreover, let (M̃, g̃) be the universal cover of (M, g). Then

Hol(g̃) = Hol0(g) ⊆ Hol(g), and g̃ is complete as M is compact. So Theorem 3.2.7

applies to show that (M̃, g̃) is globally reducible. In fact (M̃, g̃) is isometric to a product

Rk×N , where Rk carries the Euclidean metric and N is a Riemannian (n−k)-manifold.

But H 1 ∼= H1(M, R) by Theorem 1.1.3. Thus we have proved the following result,

known as the Bochner Theorem.
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Theorem 3.5.4. (Bochner [32]) Let (M, g) be a compact Riemannian manifold. If the

Ricci curvature of g is nonnegative, then dimH1(M, R) = k � dim M , and the uni-

versal cover (M̃, g̃) of (M, g) is isometric to a product R
k × N , where R

k has the

Euclidean metric. If the Ricci curvature of g is positive definite, then H1(M, R) = 0.

One can also prove strong results on the fundamental group of a compact manifold

with nonnegative Ricci curvature. As a consequence of the Cheeger–Gromoll Splitting

Theorem [75], [30, §6.G] we get the following result, from Besse [30, Cor. 6.67].

Theorem 3.5.5 Suppose (M, g) is a compact Riemannian manifold. If g is Ricci-flat

then M admits a finite cover isometric to T k × N , where T k carries a flat metric and

N is a compact, simply-connected Riemannian manifold. If the Ricci curvature of M
is positive definite then π1(M) is finite.

Now suppose that Hol(g) is one of the Ricci-flat holonomy groups SU(m), Sp(m),
G2 and Spin(7). Then Rab = 0, so that H 1 consists of constant 1-forms, from above.

But by Proposition 2.5.2, the constant tensors on M are entirely determined by Hol(g).
Since SU(m), Sp(m), G2 and Spin(7) all fix no nonzero elements in (Rn)∗, there are no

nonzero constant 1-forms. Thus H 1 = 0, and so H1(M, R) = 0. Moreover, it follows

from Theorem 3.5.5 that π1(M) is finite. Therefore we have:

Corollary 3.5.6 Suppose (M, g) is a compact Riemannian manifold and Hol(g) is one

of the Ricci-flat holonomy groups SU(m), Sp(m), G2 and Spin(7). Then H1(M, R) =
0, so that b1(M) = 0, and the fundamental group π1(M) is finite.

This is an example of how the topology of a compact manifold M can impose

constraints on the possible holonomy groups Hol(g) of Riemannian metrics g on M .

3.6 Spinors and holonomy groups
If (M, g) is a Riemannian spin manifold, then there is a natural vector bundle S over

M called the spin bundle, and sections of S are called spinors. Spinors are closely

related to tensors, and have similar properties. In particular, just as the constant tensors

on M are determined by Hol(g), so the constant spinors on M are also determined

by Hol(g), with the right choice of spin structure. In this section we explore the link

between spin geometry and holonomy groups, and deduce some topological information

about compact 4m-manifolds M with the Ricci-flat holonomy groups.

3.6.1 Introduction to spin geometry
Here is a brief explanation of some ideas from spin geometry that we will need later.

Some general references are Lawson and Michelson [233] and Harvey [150].

For each n � 3, the Lie group SO(n) is connected and has fundamental group

π1(SO(n)) = Z2. Therefore it has a double cover, the Lie group Spin(n), which is a

compact, connected, simply-connected Lie group. The covering map π : Spin(n) →
SO(n) is a Lie group homomorphism. There is a natural representation ∆n of Spin(n),
called the spin representation. It has the following properties:

• ∆2m is a complex representation of Spin(2m), with complex dimension 2m. It

splits into a direct sum ∆2m = ∆2m
+ ⊕∆2m− , where ∆2m± are irreducible represen-

tations of Spin(2m) with complex dimension 2m−1.
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• ∆2m+1 is a complex representation of Spin(2m+1), with complex dimension 2m.

It is irreducible, and does not split into positive and negative parts.

• When n = 8k−1, 8k or 8k+1, ∆n = ∆n
R
⊗R C, where ∆n

R
is a real representation

of Spin(n).
Now let (M, g) be an oriented Riemannian n-manifold. The metric and orientation

on M induce a unique SO(n)-structure P on M . A spin structure (P̃ , π) on M is a

principal bundle P̃ over M with fibre Spin(n), together with a map of bundles π : P̃ →
P , that is locally modelled on the projection π : Spin(n) → SO(n). We may regard P̃
as a double cover of P , and π as the covering map.

Spin structures do not exist on every manifold. In fact, an oriented Riemannian man-

ifold M admits a spin structure if and only if w2(M) = 0, where w2(M) ∈ H2(M, Z2)
is the second Stiefel–Whitney class of M . Also, if a spin structure exists it may not be

unique: when w2(M) = 0, the family of spin structures on M is parametrized by

H1(M, Z2). This is finite if M is compact, and zero if M is simply-connected. We call

M a spin manifold if w2(M) = 0, that is, if M admits a spin structure.

Let (M, g) be an oriented, spin Riemannian n-manifold, and choose a spin structure

(P̃ , π) on M . Define the (complex) spin bundle S → M to be S = P̃×Spin(n)∆n. Then

S is a complex vector bundle over M , with fibre ∆n. Sections of S are called spinors. If

n = 2m, then ∆n splits as ∆n = ∆n
+⊕∆n−, and so S also splits as S = S+⊕S−, where

S± are vector subbundles of S with fibre ∆n
±. Sections of S+, S− are called positive

and negative spinors respectively. In dimensions 8k−1, 8k and 8k+1 there is a real spin

representation ∆n
R

as well as a complex one ∆n. In this case one defines the real spin

bundle SR = P̃ ×Spin(n) ∆n
R

. We shall always work with complex spinors, unless we

explicitly say otherwise.

The SO(n)-bundle P over M has a natural connection, the Levi-Civita connection

∇ of g. Because π : P̃ → P is locally an isomorphism, we may lift ∇ to P̃ . Thus, P̃ also

carries a natural connection, and as in §2.1, this induces a connection ∇S : C∞(S) →
C∞(T ∗M ⊗ S) on S, called the spin connection. Now, there is a natural linear map

from T ∗M ⊗ S to S, defined by Clifford multiplication. Composing this map with ∇S

gives a first-order, linear partial differential operator D : C∞(S) → C∞(S) called the

Dirac operator.

The Dirac operator is self-adjoint and elliptic. In even dimensions, it splits as a sum

D = D+ ⊕ D−, where D+ maps C∞(S+) → C∞(S−) and D− maps C∞(S−) →
C∞(S+). Here D± are both first-order linear elliptic operators, and D− is the formal

adjoint of D+, and vice versa. The result of changing the orientation of M is, in even

dimensions, to exchange S+ and S−, and D+ and D−.

3.6.2 Parallel spinors and holonomy groups
Let (M, g) be an oriented Riemannian n-manifold with a spin structure. Then the

holonomy group Hol(∇S) is a subgroup of Spin(n). Moreover, under the projection

π : Spin(n) → SO(n), the image of Hol(∇S) is exactly Hol(g). The projection

π : Hol(∇S) → Hol(g) may be an isomorphism, or it may be a double cover; in gen-

eral, this depends on the choice of spin structure. However, if M is simply-connected,

then both Hol(g) and Hol(∇S) are connected, which forces Hol(∇S) to be the identity

component of π−1(Hol(g)) in Spin(n). Thus, for simply-connected spin manifolds, the
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classification of holonomy groups of spin connections ∇S follows from that of Rie-

mannian holonomy groups.

Suppose that σ ∈ C∞(S) satisfies ∇Sσ = 0, so that σ is a parallel spinor, or con-

stant spinor. Just as in §2.5.1 we found a 1-1 correspondence between constant tensors

and elements of the appropriate representation invariant under Hol(∇), so there is a 1-1

correspondence between parallel spinors and elements of ∆n invariant under Hol(∇S).
Therefore, one can apply Berger’s classification of Riemannian holonomy groups to

classify the holonomy groups of metrics with parallel spinors. This has been done by

Wang [336, p. 59], in the following result.

Theorem 3.6.1 Let M be an orientable, connected, simply-connected spin n-manifold

for n � 3, and g an irreducible Riemannian metric on M . Define N to be the dimension

of the space of parallel spinors on M . If n is even, define N± to be the dimensions of

the spaces of parallel spinors in C∞(S±), so that N = N+ + N−.

Suppose N � 1. Then, after making an appropriate choice of orientation for M ,

exactly one of the following holds:

(i) n = 4m for m � 1 and Hol(g) = SU(2m), with N+ = 2 and N− = 0,

(ii) n = 4m for m � 2 and Hol(g) = Sp(m), with N+ = m + 1 and N− = 0,

(iii) n = 4m + 2 for m � 1 and Hol(g) = SU(2m + 1), with N+ = 1 and N− = 1,

(iv) n = 7 and Hol(g) = G2, with N = 1, and

(v) n = 8 and Hol(g) = Spin(7), with N+ = 1 and N− = 0.

With the opposite orientation, the values of N± are exchanged.

Notice that the holonomy groups appearing here are exactly the Ricci-flat holonomy

groups. Hence, every Riemannian spin manifold that admits a nonzero parallel spinor is

Ricci-flat. (In fact, this can be proved directly.) Conversely, it is natural to ask whether

every Riemannian manifold with one of the Ricci-flat holonomy groups is in fact a spin

manifold, and possesses constant spinors. The answer to this is yes, and it follows from

the next proposition.

Proposition 3.6.2 Suppose M is an n-manifold that admits a G-structure Q, where

n � 3 and G is a connected, simply-connected subgroup of SO(n). Then M is spin,

and has a natural spin structure P̃ induced by Q.

Proof Since G and SO(n) are connected, the embedding ι : G ↪→ SO(n) lifts to a

homomorphism ι̃ between the universal covers of G and SO(n). Because G is simply-

connected and the universal cover of SO(n) is Spin(n), as n � 3, this gives an injective

Lie group homomorphism ι̃ : G ↪→ Spin(n) such that π ◦ ι̃ = ι, where π : Spin(n) →
SO(n) is the covering map.

Now the G-structure Q on M induces an SO(n)-structure P = SO(n) · Q on M .

By definition, M is spin if and only if P admits a double cover P̃ , which fibres over

M with fibre Spin(n). But using the embedding ι̃ : G ↪→ Spin(n) we may define

P̃ = Q×G Spin(n), and this is indeed a double cover of P that fibres over M with fibre

Spin(n). Thus M is spin. �

Since all of the Ricci-flat holonomy groups SU(m), Sp(m), G2 and Spin(7) are

connected and simply-connected, the next corollary quickly follows.
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Corollary 3.6.3 Let (M, g) be a Riemannian manifold, and suppose that Hol(g) is one

of the Ricci-flat holonomy groups SU(m), Sp(m), G2 and Spin(7). Then M is spin,

with a preferred spin structure. With this spin structure, the spaces of parallel spinors on

M are nonzero and have the dimensions prescribed by Theorem 3.6.1.

Thus, an irreducible metric has one of the Ricci-flat holonomy groups if and only if

it admits a nonzero constant spinor.

3.6.3 Harmonic spinors and the Â-genus
Let (M, g) be a compact Riemannian spin manifold, with spin bundle S and Dirac

operator D. The Weitzenbock formula of Lichnerowicz [244, p. 8, eqn (7)] states that if

σ ∈ C∞(S) then D2σ = (∇S)∗∇Sσ + 1
4s σ, where s is the scalar curvature of g. We

call σ a harmonic spinor if Dσ = 0, that is, if σ ∈ KerD. By the ‘Bochner argument’

used to prove Theorem 3.5.4, we find:

Proposition 3.6.4 Let (M, g) be a compact Riemannian spin manifold. If the scalar

curvature s of g is zero, then every harmonic spinor on M is parallel. If the scalar

curvature s of g is positive, then there are no nonzero harmonic spinors.

Suppose (M, g) is a compact Riemannian spin manifold of dimension 4m, for

m � 1. Then D+ is a linear elliptic operator, with adjoint D−, which has index

indD+ = dimKerD+ − dimKerD−. Now the Atiyah–Singer Index Theorem [13]

gives a topological formula for indD+, and by [13, Th. 5.3], indD+ is equal to Â(M),
a characteristic class of M called the Â-genus. From Proposition 3.6.4, if M is a com-

pact Riemannian spin manifold of dimension 4m with positive scalar curvature, then

KerD± = 0, and so Â(M) = 0. Conversely, if M is a compact spin manifold of di-

mension 4m and Â(M) �= 0, then there are no Riemannian metrics with positive scalar

curvature on M .

If M is a compact Riemannian spin manifold with zero scalar curvature, Proposition

3.6.4 shows that KerD± are the spaces of parallel positive and negative spinors, which

are determined by Hol(∇S). Thus, ind D+ is determined by Hol(∇S), and in fact by

Hol(g). When Hol(g) is SU(2m), Sp(m) or Spin(7), by Corollary 3.6.3 the dimensions

of KerD± are those given in Theorem 3.6.1, and this gives Â(M) explicitly. Thus we

have proved the following result.

Theorem 3.6.5 Let (M, g) be a compact Riemannian spin manifold of dimension 4m,

for m � 1. If the scalar curvature of g is positive, then Â(M) = 0. If the scalar

curvature of g is zero, then Â(M) is an integer determined by the holonomy group

Hol(g) of g. In particular, if Hol(g) = SU(2m) then Â(M) = 2. If Hol(g) =
SU(2k) × SU(2m−2k) for 0 < k < m then Â(M) = 4. If Hol(g) = Sp(m) then

Â(M) = m + 1, and if m = 2 and Hol(g) = Spin(7) then Â(M) = 1.

Here is one way this theorem is applied. Let G be SU(2m), Sp(m) or Spin(7). Then

we can use analytic methods to construct a torsion-free G-structure Q on a compact

manifold M . The Riemannian metric g associated to Q must then have Hol(g) ⊆ G,

but it does not immediately follow that Hol(g) = G. However, by studying the topology

of M we may compute Â(M), and so use Theorem 3.6.5 to distinguish between the

different possibilities for Hol(g).



4
Calibrated geometry

The theory of calibrated geometry was invented by Harvey and Lawson in their seminal

paper [151], which is still an excellent reference. It concerns calibrated submanifolds, a

special kind of minimal submanifold of a Riemannian manifold M , which are defined

using a closed form on M called a calibration. It is closely connected with the theory of

Riemannian holonomy groups because Riemannian manifolds with reduced holonomy

usually come equipped with one or more natural calibrations.

We begin in §4.1 by discussing minimal and calibrated submanifolds. Section 4.2

explains the relation between calibrated geometry and holonomy groups, central to this

book, and §4.3 considers the problem of classifying constant calibrations on R
n. Finally,

§4.4 describes geometric measure theory, which studies a class of measure-theoretic

generalizations of submanifolds called integral currents that have good compactness

properties and are natural in calibrated geometry problems.

4.1 Minimal submanifolds and calibrated submanifolds

For clarity we first define submanifolds, following Kobayashi and Nomizu [214, §1.1].

Definition 4.1.1 Let M and N be smooth manifolds, and ι : N → M a smooth map.

We call ι an immersion if for each x ∈ N , the linear map dι|x : TxN → Tι(x)M is

injective. We then say that N (or its image ι(N) in M ) is an immersed submanifold in

M . We call ι an embedding if it is an injective immersion. We then say that N (or its

image ι(N) in M ) is an embedded submanifold in M . Two submanifolds ι : N → M
and ι′ : N ′ → M are isomorphic if there exists a diffeomorphism δ : N → N ′ with

ι = ι′ ◦ δ. We consider isomorphic submanifolds to be the same. In this book we do not

require submanifolds N to be connected (though the ambient manifold M is assumed

connected), nor the image ι(N) to be closed in M .

As usual, we generally think of a submanifold ι : N → M as a special kind of

subset of M , that is, we implicitly identify N with its image ι(N) in M , and suppress

all mention of the immersion ι. For embedded submanifolds this is reasonable, as the set

ι(N) can be given the structure of a smooth manifold uniquely such that the inclusion

ι(N) ↪→ N is an embedding, and then ι(N) ↪→ N is isomorphic to ι : N → M .

But for immersed submanifolds there can be distinct points x, y ∈ N with ι(x) =
ι(y) in M , so that ι(x) is a ‘self-intersection point’ of ι(N). Then the image ι(N) may

be singular at ι(x), that is, we cannot give ι(N) the structure of a manifold such that the

65
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inclusion ι(N) ↪→ N is an embedding. Alternatively, ι(N) could be a nonsingular em-

bedded submanifold with ι : N → ι(N) a nontrivial multiple cover. In these cases one

cannot reconstruct N, ι up to isomorphism from ι(N), so an immersed submanifold is

more than just a subset of M . Next we discuss minimal submanifolds. Two introductory

books on minimal submanifolds are Lawson [232] and Xin [342].

Definition 4.1.2 Let (M, g) be a Riemannian manifold, and N a compact submanifold

of M with immersion ι : N → M . Then ι∗(g) is a Riemannian metric on N , so we can

define the volume vol(N) of N by integrating the volume form of ι∗(g) over N . We

call N a minimal submanifold if its volume is stationary under small variations of the

immersion ι : N → M .

For noncompact submanifolds we modify this definition as follows, as vol(N) may

be infinite (undefined), or N might have a boundary. Let S ⊂ N be an open subset

whose closure S̄ in N is compact. Then the volume vol(S) is well-defined and finite. We

call N a minimal submanifold if for all such subsets S, the volume vol(S) is stationary

under small variations of ι : N → M which are supported in S, that is, we consider

only variations ι̃ : N → M with ι̃|N\S ≡ ι|N\S .

One-dimensional minimal submanifolds are geodesics. It is natural to think of min-

imal submanifolds as submanifolds with minimal volume, but in fact we only require

the volume to be stationary. For example, the equator in S2 is minimal, but does not

minimize length amongst lines of latitude.

We can also define minimal submanifolds by a partial differential equation. Suppose

N is a submanifold in a Riemannian manifold (M, g). Let ν → N be the normal

bundle of N in M , so that TM |N = TN ⊕ ν is an orthogonal direct sum. The second

fundamental form is a section B of S2T ∗N⊗ν such that whenever v, w are vector fields

on M with v|N , w|N sections of TN over N , then B ·
(
v|N ⊗ w|N

)
= πν

(
∇vw|N

)
,

where ‘·’ contracts S2T ∗N with TN ⊗ TN , ∇ is the Levi-Civita connection of g, and

πν is the projection to ν in the splitting TM |N = TN ⊕ ν.

The mean curvature vector κ of N is the trace of the second fundamental form B
taken using the metric g on N . It is a section of the normal bundle ν. It can be shown

by the Euler–Lagrange method that a submanifold N is minimal if and only if its mean

curvature vector κ is zero. Thus, an equivalent definition of minimal submanifold is a

submanifold with zero mean curvature.

If ι : N → M is an immersed submanifold, then the mean curvature κ of N depends

on ι and its first and second derivatives, so the condition that N be minimal is a nonlinear

second-order p.d.e. on ι. In a certain sense (after factoring out by diffeomorphisms of N )

this p.d.e. is elliptic, as in §1.3. Thus elliptic regularity results apply, as in §1.4. Using

results of Morrey [266], one can show that if ι : N → M is a C2 immersion with zero

mean curvature then ι : N → M is isomorphic to a smooth immersion ι′ : N ′ → M ,

and if (M, g) is real analytic then we can take N ′, ι′ to be real analytic.

Now we can define calibrated submanifolds, following Harvey and Lawson [151].

Definition 4.1.3 Let (M, g) be a Riemannian manifold. An oriented tangent k-plane

V on M is a vector subspace V of some tangent space TxM to M with dimV = k,

equipped with an orientation. If V is an oriented tangent k-plane on M then g|V is a
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Euclidean metric on V , so combining g|V with the orientation on V gives a natural

volume form volV on V , which is a k-form on V .

Now let ϕ be a closed k-form on M . We say that ϕ is a calibration on M if for every

oriented k-plane V on M we have ϕ|V � volV . Here ϕ|V = α · volV for some α ∈ R,

and ϕ|V � volV if α � 1. Let N be an oriented submanifold of M with dimension k.

Then each tangent space TxN for x ∈ N is an oriented tangent k-plane. We say that N
is a calibrated submanifold or ϕ-submanifold if ϕ|TxN = volTxN for all x ∈ N .

It is easy to show that calibrated submanifolds are automatically minimal subman-

ifolds [151, Th. II.4.2]. We prove this in the compact case, but noncompact calibrated

submanifolds are locally volume-minimizing as well.

Proposition 4.1.4 Let (M, g) be a Riemannian manifold, ϕ a calibration on M , and N
a compact ϕ-submanifold in M . Then N is volume-minimizing in its homology class.

Proof Let dim N = k, and let [N ] ∈ Hk(M, R) and [ϕ] ∈ Hk(M, R) be the homol-

ogy and cohomology classes of N and ϕ. Then

[ϕ] · [N ] =
∫

x∈N
ϕ
∣∣
TxN

=
∫

x∈N
volTxN = vol(N),

since ϕ|TxN = volTxN for each x ∈ N , as N is a calibrated submanifold. If N ′ is any

other compact k-submanifold of M with [N ′] = [N ] in Hk(M, R), then

[ϕ] · [N ] = [ϕ] · [N ′] =
∫

x∈N ′ ϕ
∣∣
TxN ′ �

∫
x∈N ′ volTxN ′ = vol(N ′),

since ϕ|TxN ′ � volTxN ′ as ϕ is a calibration. The last two equations give vol(N) �
vol(N ′). Thus N is volume-minimizing in its homology class. �

Now let (M, g) be a Riemannian manifold with a calibration ϕ, and let ι : N → M
be an immersed submanifold. Whether N is a ϕ-submanifold depends upon the tangent

spaces of N . That is, it depends on ι and its first derivative. So, to be calibrated with

respect to ϕ is a first-order p.d.e. on ι. But if N is calibrated then N is minimal, so it has

zero mean curvature. As above this is a second-order p.d.e. on ι, which is implied by the

calibration first-order p.d.e. One moral is that the calibrated equations, being first-order,

are often easier to solve than the minimal submanifold equations, which are second-

order. So calibrated geometry is a fertile source of examples of minimal submanifolds.

4.2 Calibrated geometry and Riemannian holonomy groups

A calibration ϕ on (M, g) can only have nontrivial calibrated submanifolds if there exist

oriented tangent k-planes V on M with ϕ|V = volV . For instance, ϕ = 0 is a calibration

on M , but has no calibrated submanifolds. This means that a calibration ϕ is only inter-

esting if the set of oriented tangent k-planes V on M with ϕ|V = volV has reasonably

large dimension. We now explain a natural method of constructing interesting calibra-

tions ϕ on Riemannian manifolds (M, g) with special holonomy, which automatically

have families of calibrated tangent k-planes with reasonably large dimension.

Let G ⊂ O(n) be a possible holonomy group of a Riemannian metric. In particular,

we can take G to be one of Berger’s list U(m), SU(m), Sp(m), Sp(m) Sp(1), G2 or
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Spin(7). Then G acts on the k-forms Λk(Rn)∗ on Rn, so we can look for G-invariant

k-forms on R
n. Suppose ϕ0 is a nonzero, G-invariant k-form on R

n. By rescaling ϕ0

we can arrange that for each oriented k-plane U ⊂ R
n we have ϕ0|U � volU , and that

ϕ0|U = volU for at least one such U . Let F be the family of oriented k-planes U in Rn

with ϕ0|U = volU , and let l = dimF . Then F is nonempty. Since ϕ0 is G-invariant, if

U ∈ F then γ · U ∈ F for all γ ∈ G. This usually means that l > 0.

Let M be a manifold of dimension n, and g a metric on M with Levi-Civita con-

nection ∇ and holonomy group G. Then by Proposition 2.5.2 there is a k-form ϕ on M
with ∇ϕ = 0, corresponding to ϕ0. Hence dϕ = 0, and ϕ is closed. Also, the condition

ϕ0|U � volU for all oriented k-planes U in R
n implies that ϕ|V � volV for all oriented

tangent k-planes in M . Thus ϕ is a calibration on M .

At each point x ∈ M there is an l-dimensional family Fx of oriented tangent k-

planes V with ϕ|V = volV , isomorphic to F . Hence, the set of oriented tangent k-

planes V in M with ϕ|V = volV has dimension l + n, which is reasonably large. This

suggests that locally there should exist many ϕ-submanifolds N in M , so the calibrated

geometry of ϕ on (M, g) is nontrivial.

This gives us a general method for finding interesting calibrations on manifolds with

reduced holonomy. Here are some examples of this, taken from [151].

• Let G = U(m) ⊂ O(2m). Then G preserves a 2-form ω0 on R
2m. If g is a metric

on M with holonomy U(m) then g is Kähler with complex structure J , and the

2-form ω on M associated to ω0 is the Kähler form of g, as in Chapter 5.

One can show that ω is a calibration on (M, g), and the calibrated submanifolds are

exactly the holomorphic curves in (M, J). More generally ωk/k! is a calibration

on M for 1 � k � m, and the corresponding calibrated submanifolds are the

complex k-dimensional submanifolds of (M, J).
• Let G = SU(m) ⊂ O(2m). Riemannian manifolds (M, g) with holonomy SU(m)

are called Calabi–Yau manifolds, and are the subject of Chapter 7. A Calabi–Yau

manifold comes equipped with a complex m-form θ called a holomorphic volume

form. The real part Re θ is a calibration on M . Its calibrated submanifolds are

called special Lagrangian submanifolds, and are the subject of Chapter 8.

• The group G2 ⊂ O(7) preserves a 3-form ϕ0 and a 4-form ∗ϕ0 on R
7, which will

be given explicitly in §11.1. Thus a Riemannian 7-manifold (M, g) with holonomy

G2 comes with a 3-form ϕ and 4-form ∗ϕ, which are both calibrations. We call

ϕ-submanifolds associative 3-folds, and ∗ϕ-submanifolds coassociative 4-folds.

They will be studied in Chapter 12.

• The group Spin(7) ⊂ O(8) preserves a 4-form Ω0 on R8, which will be given

explicitly in §11.4. Thus a Riemannian 8-manifold (M, g) with holonomy Spin(7)

has a 4-form Ω, which is a calibration. We call Ω-submanifolds Cayley 4-folds.

They will be discussed in Chapter 12.

It is an important general principle that to each calibration ϕ on an n-manifold

(M, g) with special holonomy we construct in this way, there corresponds a constant

calibration ϕ0 on Rn. Locally, ϕ-submanifolds in M look very like ϕ0-submanifolds in

R
n, and have many of the same properties. Thus, to understand the calibrated subman-

ifolds in a manifold with special holonomy, it is often a good idea to start by studying
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the corresponding calibrated submanifolds of Rn.

In particular, singularities of ϕ-submanifolds in M will be locally modelled on sin-

gularities of ϕ0-submanifolds in R
n. So by studying singular ϕ0-submanifolds in R

n,

we may understand the singular behaviour of ϕ-submanifolds in M .

4.3 Classification of calibrations on Rn

Just as we classified Riemannian holonomy groups in Chapter 3, it is an interesting

problem to look for some form of classification of calibrated geometries. In particular,

we will see in Chapters 8 and 12 that the special Lagrangian, associative, coassocia-

tive and Cayley calibrations mentioned in §4.2 have a beautiful, rich theory with many

calibrated submanifolds, and a classification should reveal if there are other interesting

calibrated geometries that we have missed.

We now explain some ideas from Harvey and Lawson [151, §II.7] and Morgan [264]

which go some way towards answering this question. We restrict to calibrations ϕ on

Euclidean space (Rn, g) with constant coefficients. As in §4.2, if such a ϕ is invariant

under a possible holonomy group G ⊂ O(n) then Riemannian n-manifolds with holon-

omy G also carry calibrations modelled on ϕ, so classifying constant calibrations ϕ on

Rn implies a classification of constant calibrations on manifolds with special holonomy.

Let ϕ ∈ Λk(Rn)∗ be a calibration on R
n. Write Gr+(k, Rn) for the Grassmannian

of oriented k-planes V in R
n, so that ϕ|V � volV for all V ∈ Gr+(k, Rn) as ϕ is

a calibration. Define Fϕ ⊆ Gr+(k, Rn) to be the subset of V which are calibrated

with respect to ϕ, that is, those V with ϕ|V = volV . Then an oriented k-submanifold

N ⊆ R
n is a ϕ-submanifold if and only if TxN ∈ Fϕ for all x ∈ N . So Fϕ determines

the family of ϕ-submanifolds in Rn.

The first principle in our classification is that two calibrations ϕ, ψ ∈ Λk(Rn)∗

are equivalent if Fϕ = Fψ, that is, if they determine the same calibrated submanifolds.

Also we will consider two calibrations ϕ, ψ equivalent if they are conjugate under O(n).
Thus what we want to determine is the family of possible subsets Fϕ in Gr+(k, Rn)
realized by calibrations ϕ ∈ Λk(Rn)∗, up to the action of O(n) on Gr+(k, Rn). Our

next definition explains a useful point of view on these sets Fϕ.

Definition 4.3.1 For integers 0 < k < n, define a map Gr+(k, Rn) → ΛkRn as

follows: map each V in Gr+(k, Rn), which is an oriented k-dimensional subspace of

R
n, to e1 ∧ e2 ∧ · · · ∧ ek in ΛkR

n, where (e1, . . . , ek) is an oriented orthonormal basis

of V . The point e1 ∧ e2 ∧ · · · ∧ ek is independent of choice of (e1, . . . , ek), so this

defines a map Gr+(k, Rn) → ΛkR
n, which is in fact an embedding. We use this to

regard Gr+(k, Rn) as a compact submanifold of ΛkRn.

Now Λk(Rn)∗ ∼= (ΛkR
n)∗, so each k-form ϕ on R

n defines a linear map Lφ :
ΛkR

n → R. It is easy to see that for V ∈ Gr+(k, Rn) ⊂ ΛkR
n we have ϕ|V =

Lφ(V ) volV . Therefore ϕ is a calibration on Rn if and only if
∣∣Lφ|Gr+(k,Rn)

∣∣ � 1, and

if this holds then the set Fϕ is the set of V ∈ Gr+(k, Rn) with Lϕ(V ) = 1. That is, Fϕ

is the intersection of Gr+(k, Rn) with the real hyperplane Lϕ = 1 in ΛkR
n.

Thus we have the following picture. The oriented Grassmannian Gr+(k, Rn) is a

compact submanifold of ΛkR
n. If we bring a real hyperplane in from infinity in the

vector space ΛkR
n ∼= R

n!/k!(n−k)! until it first touches the submanifold Gr+(k, Rn)
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then the contact set is Fϕ for some calibration ϕ, and all nonempty Fϕ arise this way.

Therefore these sets Fϕ are called faces of the Grassmannian Gr+(k, Rn), by analogy

with faces of polyhedra in Euclidean geometry.

The Hodge star ∗ of §1.1.2 gives linear isometries ∗ : Λk(Rn)∗ → Λn−k(Rn)∗ and

∗ : ΛkR
n → Λn−kR

n, which satisfy ∗Gr+(k, Rn) = Gr+(n−k, Rn) and ∗Fϕ = F∗ϕ.

To see this on the level of k-planes, note that each oriented k-plane V has a unique

orthogonal oriented (n−k)-plane V ⊥, such that if ϕ ∈ Λk(Rn)∗ with ϕ|V = α volV for

α ∈ R then ∗ϕ|V ⊥ = α volV ⊥ . Thus, ϕ is a calibration if and only if ∗ϕ is a calibration,

and then V is calibrated w.r.t. ϕ if and only if V ⊥ is calibrated w.r.t. ∗ϕ. Therefore,

classifying faces of Gr+(k, Rn) is equivalent to classifying faces of Gr+(n−k, Rn).
The case k = 1 is trivial as Gr+(1, Rn) is the unit sphere Sn−1 in R

n, and nonempty

faces are single points. Faces of Gr+(2, Rn) are classified by Harvey and Lawson [151,

Th. II.7.16], and come from symplectic calibrations on subspaces R
2m ⊆ R

n. Applying

the Hodge star gives classifications of faces of Gr+(n−1, Rn) and Gr+(n−2, Rn). This

gives a complete description of calibrations of degree 1, 2, n−2 and n−1 in R
n. We

express it in terms of choices of orthonormal coordinates in R
n, which is equivalent to

working up to the action of O(n).

Theorem 4.3.2 Let ϕ ∈ Λk(Rn)∗ be a calibration with Fϕ �= ∅ for k = 1, 2, n− 2 or

n − 1. Then there exist orthonormal coordinates (x1, . . . , xn) on Rn such that either:

(i) k = 1, ϕ = dx1 and Fϕ = {(1, 0, . . . , 0)}, and ϕ-submanifolds in R
n are real

affine lines parallel to (1, 0, . . . , 0);
(ii) k = 2 and Fϕ = Fψm

∼= CPm−1 for some 1 � m � n/2 where ψm =∑m
j=1 dx2j−1 ∧ dx2j , and ϕ-submanifolds are of the form Σ× {v} for Σ a holo-

morphic curve in R2m = C2m with complex coordinates zj = x2j−1 + ix2j for

j = 1, . . . , m, and v ∈ R
n−2m with coordinates (x2m+1, . . . , xn);

(iii) k = n− 2 and Fϕ = F∗ψm
∼= CP

m−1 for some 1 � m � n/2 and ψm as in (ii),

and ϕ-submanifolds are of the form Σ × Rn−2m for Σ a complex hypersurface

in R
2m = C

2m with complex coordinates zj = x2j−1 + ix2j for j = 1, . . . , m,
where R

n−2m has coordinates (x2m+1, . . . , xn); or

(iv) k = n−1, ϕ = dx2∧· · ·∧dxn and Fϕ = { ∂
∂x2

∧· · ·∧ ∂
∂xn

}, and ϕ-submanifolds

in R
n are real hyperplanes x1 = c for c ∈ R.

Theorem 4.3.2 classifies all calibrations on Rn for n � 5, so the first new case is

3-forms on R
6. These were classified by Dadok and Harvey [90] and Morgan [263, §4].

Theorem 4.3.3 Let ϕ ∈ Λ3(R6)∗ be a calibration with Fϕ �= ∅. Then there exist

orthonormal coordinates (x1, . . . , x6) on R
6 such that either:

(i) Fϕ = Fdx1∧dx2∧dx3 = { ∂
∂x1

∧ ∂
∂x2

∧ ∂
∂x3

}, and ϕ-submanifolds in R
6 are affine

3-planes (x4, x5, x6) = c for c ∈ R
3;

(ii) Fϕ = {V1, V2}, where V1, V2 have oriented orthonormal bases ∂
∂x1

, ∂
∂x2

, ∂
∂x3

and

cos θ1
∂

∂x1
+sin θ1

∂
∂x4

, cos θ2
∂

∂x2
+sin θ2

∂
∂x5

, cos θ3
∂

∂x3
+sin θ3

∂
∂x6

for some 0 <

θ1 � θ2 � θ3 < π with θ3 < θ1 + θ2, and ϕ-submanifolds in R6 are affine

3-planes parallel to V1 or V2. Furthermore, for each choice of θ1, θ2, θ3 as above

there is a unique calibration ϕ ∈ Λ3(R6)∗ with Fϕ = {V1, V2};
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(iii) Fϕ = Fdx1∧dx2∧dx5+dx3∧dx4∧dx5
∼= CP1, and ϕ-submanifolds are of the form

Σ × R × {c} for Σ a holomorphic curve in R
4 = C

2 with complex coordinates

(z1, z2) = (x1 + ix2, x3 + ix4), and R has coordinate x5, and x6 = c ∈ R; or

(iv) ϕ = Re
(
(dx1 + idx2)∧ (dx3 + idx4)∧ (dx5 + idx6)

)
and Fϕ

∼= SU(3)/ SO(3),
and ϕ-submanifolds are special Lagrangian 3-folds in R

6 = C
3, as in Chapter 8.

The faces of Gr+(3, R7) were classified by Harvey and Morgan [152, Th. 6.2].

There are five discrete and five infinite types of families. Here is a partial statement.

Theorem 4.3.4 Let ϕ ∈ Λ3(R7)∗ be a calibration with Fϕ �= ∅. Then there exist

orthonormal coordinates (x1, . . . , x7) on R
7 such that either:

(i) ϕ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 as in (11.1),

where dxabc = dxa ∧ dxb ∧ dxc, and Fϕ
∼= G2/ SO(4), and ϕ-submanifolds are

associative 3-folds in R7, as in Chapter 12;

(ii) ϕ = Re
(
(dx1 + idx2)∧ (dx3 + idx4)∧ (dx5 + idx6)

)
and Fϕ

∼= SU(3)/ SO(3),
and ϕ-submanifolds are of the form Σ× {c} for Σ a special Lagrangian 3-fold in

R6 ∼= C3, as in Chapter 8, and x7 = c ∈ R;
(iii) ϕ = (dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6) ∧ dx7 and Fϕ

∼= CP
2, and ϕ-

submanifolds are of the form Σ × R for Σ a holomorphic curve in R
6 = C

3 with

complex coordinates (z1, z2, z3) = (x1 + ix2, x3 + ix4, x5 + ix6), and R has

coordinate x7;
(iv) Fϕ = Fdx1∧dx2∧dx5+dx3∧dx4∧dx5

∼= CP1, and ϕ-submanifolds are of the form

Σ × R × {c} for Σ a holomorphic curve in R
4 = C

2 with complex coordinates

(z1, z2)=(x1+ix2, x3+ix4), and R has coordinate x5, and (x6, x7)=c∈R
2; or

(v) in the remaining six cases Fϕ is one point, or two points, or two CP1’s intersecting

in a point, or diffeomorphic to S1,S2 or S3.

Applying the Hodge star classifies faces of Gr+(4, R7). In particular, from case (i)

we get coassociative 4-folds in R7, which will be studied in Chapter 12. One conclusion

we can draw from Theorems 4.3.2–4.3.4 is that for all constant calibrations ϕ on R
n

for n � 7 with dimFϕ reasonably large (that is, with dimFϕ > 0 for n � 6 and

dimFϕ > 3 for n = 7), the ϕ-submanifolds are derived from one of: (a) complex

curves in C
2 or C

3, (b) complex surfaces in C
3, (c) special Lagrangian 3-folds in C

3,

(d) associative 3-folds in R
7, or (e) coassociative 4-folds in R

7. So we have not missed

any interesting calibrated geometries in 7 dimensions or less.

No complete classification of faces of Gr+(k, Rn) is known for any n � 8, and it

seems certain the full answer will be very complex and messy. Dadok, Harvey and Mor-

gan [91] classify Fϕ for ϕ in several large subspaces of Λ4(R8)∗, including Λ4
+(R8)∗.

Calibrations in Λ4
+(R8)∗ include the following interesting examples:

• The Cayley 4-form Ω0 of (11.12), which has FΩ0
∼= Spin(7)/(SU(2)3/Z2), with

dimFΩ0 = 12. Its calibrated submanifolds are Cayley 4-folds, as in Chapter 12.

• The special Lagrangian calibration Re(dz1 ∧ · · · ∧ dz4) on C4 = R8, which has

FRe(··· ) ∼= SU(4)/ SO(4), with dimFRe(··· ) = 9. Its calibrated submanifolds are

special Lagrangian 4-folds, as in Chapter 8.
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• The Kähler calibration 1
2ω ∧ ω for ω the Kähler form on C4 = R8, which has

Fω∧ω/2
∼= U(4)/ U(2)×U(2), with dimFω∧ω/2 = 8. Its calibrated submanifolds

are complex surfaces in C
4.

• A calibration ϕ with Fϕ
∼= Sp(2)/U(2) and dimFϕ = 6, whose calibrated sub-

manifolds are complex Lagrangian surfaces in C
4 = R

8 with respect to the com-

plex symplectic form dz1 ∧ dz2 + dz3 ∧ dz4.

• A calibration ϕ with Fϕ
∼= Sp(2)/ Sp(1) × Sp(1) and dimFϕ = 4, whose cali-

brated submanifolds are affine quaternionic lines H in H
2 = R

8.

For all five examples we have Fϕ ⊆ FΩ0 , so that all these different kinds of cali-

brated 4-folds in R8 are examples of Cayley 4-folds. Also, if A3 is an associative 3-fold

and C4 a coassociative 4-fold in R
7 then R × A3 and {c} × C4 for c ∈ R are Cayley

4-folds in R × R
7 = R

8. Thus, Cayley 4-folds in R
8 include as special cases all the

other interesting classes of calibrated 4-submanifolds we have found.

4.4 Geometric measure theory and tangent cones

We now review some geometric measure theory, and its application to calibrated geom-

etry. An introduction to the subject is provided by Morgan [265] and an in-depth (but

dated) treatment by Federer [102], and Harvey and Lawson [151, §II] relate geomet-

ric measure theory to calibrated geometry. Geometric measure theory studies measure-

theoretic generalizations of submanifolds called rectifiable and integral currents, which

may be very singular, and is particularly powerful for minimal submanifolds.

Let (M, g) be a complete Riemannian manifold. For k = 0, . . . ,dimM write Dk

for the vector space of smooth k-forms on M with compact support, and Dk for its dual

vector space. Elements of Dk are called currents. We equip Dk with the weak topology,

that is, Tj → T in Dk as j → ∞ if and only if Tj(ϕ) → T (ϕ) in R for all ϕ ∈ Dk.

Let N be a compact, oriented k-dimensional submanifold of M , possibly with

boundary. Then N defines a current N ∈ Dk by N(ϕ) =
∫

N ϕ for all ϕ ∈ Dk.

There is a natural boundary operator ∂ : Dk → Dk−1 given by (∂T )(ϕ) = T (dϕ) for

all ϕ ∈ Dk−1. This is compatible with the boundary operator on submanifolds, for if

N is an oriented k-submanifold with boundary and ϕ ∈ Dk−1 then
∫

∂N ϕ =
∫

N dϕ by

Stokes’ Theorem, so ∂N = (∂N).
Thus currents can be regarded as generalizations of oriented submanifolds. The

space Dk is too huge to be useful, so we introduce two subspaces, rectifiable and in-

tegral currents. Roughly speaking, rectifiable currents are compactly-supported, finite

area, countable Z-linear combinations of currents of the following form: let A ⊂ R
k

have finite Hausdorff k-measure and F : R
k → M be a Lipschitz map, then we de-

fine a current by ϕ �→
∫

A
F ∗(ϕ). As F is Lipschitz it is differentiable almost every-

where, so F ∗(ϕ) exists almost everywhere as a bounded k-form on R
k, and

∫
A F ∗(ϕ)

is well-defined. Rectifiable k-currents T have a volume vol(T ) defined using Hausdorff

k-measure. We call T ∈ Dk an integral current if T and ∂T are rectifiable.

Here is a very important property of integral currents [265, 5.5], [102, 4.2.17].

Theorem 4.4.1. (The Compactness Theorem) Let (M, g) be a complete Riemannian

manifold, U ⊆ M be compact, 0 � k � dimM and C � 0. Then the subset of k-
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dimensional integral currents T in M supported in U with vol(T ) � C and vol(∂T ) �
C is compact in the weak topology on Dk.

The following argument is useful in the study of minimal submanifolds. Let (M, g)
be a compact Riemannian manifold, and α a nonzero homology class in Hk(M, Z).
We would like to find a compact minimal k-submanifold N in M with homology class

[N ] = α. To do this, we choose a minimizing sequence (Ni)∞i=1 of compact subman-

ifolds Ni with [Ni] = α, such that vol(Ni) approaches the infimum of volumes of

submanifolds with homology class α as i → ∞.

Pretend for the moment that the set of all closed k-dimensional submanifolds N
without boundary with vol(N) � C is a compact topological space. Then there exists a

subsequence (Nij )∞j=1 which converges to some submanifold N , which is the minimal

submanifold we want. In fact this does not work, because the set of submanifolds N
does not have the compactness properties we need. However, Theorem 4.4.1 implies

that integral currents do have these properties, and so every integral homology class α
in Hk(M, Z) is represented by a volume-minimizing integral current.

The question remains: how close are these volume-minimizing integral currents to

being submanifolds? Here is a major result of Almgren [9], [265, Th. 8.3]. The interior

T ◦ of an integral current T is supp T \ supp ∂T . It is not known whether the singular

set of T ◦ has finite Hausdorff (k−2)-measure. When k = 2 or k = dimM − 1 one can

go further; for a survey, see Morgan [265, §8].

Theorem 4.4.2. (Almgren [9]) Let (M, g) be a complete Riemannian manifold and

T ∈ Dk be a volume-minimizing rectifiable current in M . Then the interior T ◦ of T is

a smooth, embedded minimal submanifold of M except for a singular set of Hausdorff

dimension at most k − 2.

Harvey and Lawson [151, §II] discuss calibrated geometry and geometric measure

theory. They show that on a Riemannian manifold (M, g) with calibration k-form ϕ one

can define integral ϕ-currents, that is, integral currents which are calibrated w.r.t. ϕ, and

that they are volume-minimizing in their homology class. An integral current T in M is

a ϕ-current if
∫

T
ϕ = vol(T ), or equivalently if the tangent k-planes to T are calibrated

by ϕ almost everywhere in Hausdorff k-measure. If N is a compact ϕ-submanifold with

boundary then N is an integral ϕ-current.

Next we discuss tangent cones of volume-minimizing integral currents, a general-

ization of tangent spaces of submanifolds, as in [265, 9.7]. Since cones in R
n except

{0} are never compactly-supported, tangent cones are not rectifiable currents, but they

are locally rectifiable, that is, their restriction to compact sets in Rn is rectifiable.

Definition 4.4.3 A locally rectifiable current C in R
n is called a cone if C = tC for

all t > 0, where t : Rn → Rn acts by dilations in the obvious way. Let T be a locally

rectifiable current in R
n, and let x ∈ T ◦. We say that C is a tangent cone to T at x if

there exists a decreasing sequence r1 > r2 > · · · tending to zero such that r−1
j (T − x)

converges to C as a locally rectifiable current as j → ∞.

More generally, if (M, g) is a complete Riemannian n-manifold, T is a locally recti-

fiable current in M , and x ∈ T ◦, then one can define a tangent cone C to T at x, which
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is a locally rectifiable current cone in the Euclidean vector space TxM . Identifying M
with R

n near x using a coordinate system, the two notions of tangent cone coincide.

The next result follows from Morgan [265, p. 94-95], Federer [102, 5.4.3] and Har-

vey and Lawson [151, Th. II.5.15].

Theorem 4.4.4 Let (M, g) be a complete Riemannian manifold, and T a volume-

minimizing integral current in M . Then for all x ∈ T ◦, there exists a tangent cone

C to T at x. Moreover C is itself a volume-minimizing locally rectifiable current in

TxM with ∂C = ∅, and if T is calibrated with respect to a calibration ϕ on (M, g),
then C is calibrated with respect to the constant calibration ϕ|x on TxM .

Note that the theorem does not claim that the tangent cone C is unique, and in fact

it is an important open question whether a volume-minimizing integral current has a

unique tangent cone at each point of T ◦. However, Simon [312] shows that if some

tangent cone C is nonsingular and multiplicity 1 away from 0, then C is the unique

tangent cone, and T converges to C in a C1 sense. Simon claims only that φ is C2

rather than smooth, but smoothness follows by elliptic regularity as in §4.1.

Theorem 4.4.5 Let C be an m-dimensional oriented minimal cone in R
n with C′ =

C \ {0} nonsingular, so that Σ = C ∩ Sn−1 is a compact, oriented, nonsingular, em-

bedded, minimal (m−1)-submanifold of Sn−1. Define ι : Σ × (0,∞) → C′ ⊂ Rn

by ι(σ, r) = rσ. Let (M, g) be a complete Riemannian n-manifold and x ∈ M . Fix

an isometry υ : Rn → TxM , and choose an embedding Υ : BR → M with Υ(0) = x
and dΥ|0 = υ, where BR is the ball of radius R > 0 about 0 ∈ R

n.

Suppose T is a minimal integral current in M with x ∈ T ◦, and υ∗(C) is a tangent

cone to T at x with multiplicity 1. Then υ∗(C) is the unique tangent cone to T at x.

Furthermore there exists R′∈(0, R] and an embedding φ : Σ×(0, R′)→BR′ ⊆BR with∣∣φ(σ, r)
∣∣ ≡ r,

∣∣φ − ι
∣∣ = o(r) and

∣∣∇(φ − ι)
∣∣ = o(1) as r → 0, (4.1)

such that T ∩
(
Υ(BR′) \ {x}

)
is the embedded submanifold Υ ◦ φ

(
Σ× (0, R′)

)
, with

multiplicity 1.

In §8.5 we will discuss special Lagrangian m-folds with isolated conical singular-

ities, which have this kind of behaviour near their singular points. One moral we can

draw from these ideas is that the tangent cone at a singular point of a calibrated subman-

ifold captures the leading order behaviour of the submanifold near the singular point,

and so to understand the possible singularities of calibrated submanifolds we should

start by constructing and studying calibrated cones in R
n with respect to the corre-

sponding constant calibration.



5
Kähler manifolds

In this chapter we shall introduce the very rich geometry of complex and Kähler man-

ifolds. Complex manifolds are manifolds with a geometric structure called a complex

structure, which gives every tangent space the structure of a complex vector space. They

are defined in §5.1, together with complex submanifolds and holomorphic maps. Sec-

tion 5.2 discusses tensors on complex manifolds, and their decomposition into compo-

nents using the complex structure, and §5.3 defines holomorphic vector bundles over a

complex manifold.

Sections 5.4–5.7 deal with Kähler metrics on complex manifolds. A Kähler metric

is a Riemannian metric on a complex manifold, that is compatible with the complex

structure in a natural way. Also, Kähler metrics have special holonomy groups: if g
is a Kähler metric on a complex manifold of dimension m, then the holonomy group

Hol(g) is a subgroup of U(m). Quite a lot of the geometry of Kähler metrics that we

will describe has parallels in the geometry of other holonomy groups. We discuss Kähler

potentials, the curvature of Kähler metrics, and exterior forms on Kähler manifolds.

In §5.1–§5.7 we treat complex and Kähler manifolds using differential and Rie-

mannian geometry. But one can also study complex and Kähler manifolds using com-

plex algebraic geometry, and we give an introduction to this in §5.8–§5.10. Algebraic

geometry is a very large subject and we cannot do it justice in a few pages, so we aim

only to provide enough background for the reader to understand the algebraic parts of

the rest of the book, which occur mostly in Chapters 7, 10 and 11.

Section 5.8 introduces complex algebraic varieties, the objects studied in complex

algebraic geometry, and briefly describes some of the fundamental ideas—morphisms,

rational maps, sheaves and so on. We then cover two areas in more detail: singulari-

ties, resolutions and deformations in §5.9, and holomorphic line bundles and divisors

in §5.10.

And now a word about notation. Unfortunately, the literature on Kähler geometry is

rather inconsistent about the notation it uses. For example, while writing this chapter I

found four different definitions of the Kähler form ω of §5.4 in various books, that differ

from the definition we shall give by constant factors. In the same way, the operator dc of

§5.2, the Ricci form ρ of §5.6 and the Laplacian ∆ on a Kähler manifold all have several

definitions, differing by constant factors. I have done my best to make the formulae in

this book consistent with each other, but readers are warned that other books and papers

have other conventions.
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5.1 Introduction to complex manifolds
A complex manifold is a real, even-dimensional manifold equipped with a geometric

structure called a complex structure. Here are three ways to define this.

First Definition. Let M be a real manifold of dimension 2m. A complex chart on M is

a pair (U, ψ), where U is open in M and ψ : U → Cm is a diffeomorphism between U
and some open set in C

m. Equivalently, ψ gives a set of complex coordinates z1, . . . , zm

on U . If (U1, ψ1) and (U2, ψ2) are two complex charts, then the transition function is

ψ12 : ψ1(U1 ∩U2) → ψ2(U1 ∩U2), given by ψ12 = ψ2 ◦ψ−1
1 . We say M is a complex

manifold if it has an atlas of complex charts (U, ψ), such that all the transition functions

are holomorphic, as maps from Cm to itself.

This is the traditional definition of complex manifold, using holomorphic coordi-

nates. However, in this book we prefer to take a more differential geometric point of

view, and to define geometric structures using tensors. So, here are the preliminaries to

our second definition of complex manifold.

Let M be a real manifold of dimension 2m. We define an almost complex structure

J on M to be a smooth tensor Jb
a on M satisfying Jb

aJc
b = −δc

a. Let v be a smooth

vector field on M , written va in index notation, and define a new vector field Jv by

(Jv)b = Jb
ava. Thus J acts linearly on vector fields. The equation Jb

aJc
b = −δc

a implies

that J(Jv) = −v, so that J2 = −1. Observe that J gives each tangent space TpM the

structure of a complex vector space.

For all smooth vector fields v, w on M , define a vector field NJ(v, w) by

NJ(v, w) = [v, w] + J
(
[Jv, w] + [v, Jw]

)
− [Jv, Jw],

where [ , ] is the Lie bracket of vector fields. It turns out that NJ is a tensor, meaning

that NJ(v, w) is pointwise bilinear in v and w. We call NJ the Nijenhuis tensor of J .

Second Definition. Let M be a real manifold of dimension 2m, and J an almost com-

plex structure on M . We call J a complex structure if NJ ≡ 0 on M . A complex

manifold is a manifold M equipped with a complex structure J . We shall often use the

notation (M, J) to refer to a manifold and its complex structure.

Here is why the first two definitions are equivalent. Let f : M → C be a smooth

complex function on M . We say that f is holomorphic if Jb
a(df)b ≡ i(df)a on M .

These are called the Cauchy–Riemann equations. It turns out that if m > 1, the equa-

tions are overdetermined, and the Nijenhuis tensor NJ is an obstruction to the existence

of holomorphic functions. Simply put, if NJ ≡ 0 there are many holomorphic functions

locally, but if NJ �≡ 0 there are few holomorphic functions.

Let (U, ψ) be a complex chart on M . Then ψ is a set of complex coordinates

(z1, . . . , zm) on U , where zj : U → C is a smooth function. We call (U, ψ) a holo-

morphic chart if each of the functions z1, . . . , zm is holomorphic in the above sense.

The Newlander–Nirenberg Theorem shows that a necessary and sufficient condition

for there to exist a holomorphic chart around each point of M , is the vanishing of the

Nijenhuis tensor NJ of J . Therefore, if (M, J) is a complex manifold in the sense of

the second definition, then M has an atlas of holomorphic charts. This atlas makes M
into a complex manifold in the sense of the first definition.
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Our third way to define the idea of complex structure uses the language of G-

structures and intrinsic torsion, that was defined in §2.6. Let M be a real 2m-manifold

with frame bundle F , and let J be an almost complex structure on M . Define P to be

the subbundle of frames in F in which the components of J assume the standard form

Ja
b =

⎧⎪⎨⎪⎩
1 if a = b + m,

−1 if a = b − m,

0 otherwise,

for a, b = 1, . . . , 2m. Then P is a principal subbundle of F with fibre GL(m, C), which

is a Lie subgroup of GL(2m, R) in the obvious way, and so P is a GL(m, C)-structure

on M . Clearly, this defines a 1-1 correspondence between almost complex structures J
and GL(m, C)-structures P on M .

It turns out that the Nijenhuis tensor NJ of J is equivalent to the intrinsic torsion

T i(P ) of P , in the sense of Definition 2.6.4. Thus, NJ ≡ 0 if and only if P is torsion-

free. So, the second definition of complex structure is equivalent to the following:

Third Definition. Let M be a real manifold of dimension 2m. Then a complex structure

on M is a torsion-free GL(m, C)-structure on M .

All three definitions are useful for different purposes. The second definition is con-

venient for differential geometric calculations, and we will use it most often. But the first

definition is best for defining complex manifolds explicitly. Here is a simple example.

Example 5.1.1 A very important family of complex manifolds are the complex pro-

jective spaces CP
m. Define CP

m to be the set of one-dimensional vector subspaces of

Cm+1. Let (z0, . . . , zm) be a point in Cm+1 \ {0}. Then we write

[z0, . . . , zm] =
{
(αz0, . . . , αzm) : α ∈ C

}
∈ CPm.

Every point in CPm is of the form [z0, . . . , zm] for some (z0, . . . , zm) ∈ Cm+1 \ {0}.

This notation is called homogeneous coordinates for CP
m. The homogeneous coor-

dinates of a point are not unique, since if λ ∈ C is nonzero then [z0, . . . , zm] and

[λz0, . . . , λzm] represent the same point in CPm.

We will define a set of complex charts on CP
m, that make it into a compact com-

plex manifold of dimension m, in the sense of the first definition above. For each j =
0, 1, . . . , m, define Uj =

{
[z0, . . . , zm] ∈ CP

m : zj �= 0
}

. Then Uj is an open set in

CP
m, and every point in Uj can be written uniquely as [z0, . . . , zj−1, 1, zj+1, . . . , zm],

that is, with zj = 1. Define a map ψj : Uj → Cm by

ψj

(
[z0, . . . , zj−1, 1, zj+1, . . . , zm]

)
= (z0, . . . , zj−1, zj+1, . . . , zm).

Then ψj is a diffeomorphism, and (Uj , ψj) is a complex chart on CPm. It is easy to

show that the charts (Uj , ψj) for j = 0, 1, . . . , m form a holomorphic atlas for CP
m,

and thus CP
m is a complex manifold.
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5.1.1 Holomorphic maps and complex submanifolds
Many concepts in real differential geometry have natural analogues in the world of

complex manifolds. We will now examine the ideas of holomorphic maps and complex

submanifolds, which are the complex analogues of smooth maps and submanifolds.

Let M, N be complex manifolds with complex structures JM , JN , and let f : M →
N be a smooth map. At each point p ∈ M , the derivative of f is a linear map dpf :
TpM → Tf(p)N . We say that f is a holomorphic map if, for each point p ∈ M and

each v ∈ TpM , the equation JN

(
dpf(v)

)
= dpf

(
JM(v)

)
holds. In other words, we

must have JN ◦ df = df ◦ JM as maps between the vector bundles TM and f∗(TN)
over M .

A map f : M → N between complex manifolds is called biholomorphic, or a

biholomorphism, if an inverse map f−1 : N → M exists, and both f and f−1 are holo-

morphic maps. Biholomorphic maps are the natural notion of isomorphism of complex

manifolds, just as diffeomorphisms are isomorphisms of smooth manifolds.

Now let M be a complex manifold with complex structure J , and let N be a sub-

manifold of M . Then for each p ∈ N , the tangent space TpN is a vector subspace of the

tangent space TpM . We say that N is a complex submanifold of M if J(TpN) = TpN
for each p ∈ N , that is, if the tangent spaces of N are closed under J .

If N is a complex submanifold, then the restriction of J to TN is a complex struc-

ture on N , so that N is a complex manifold, and the inclusion map i : N → M is

holomorphic. Also, a submanifold N ⊂ M is a complex submanifold if and only if it

can locally be written as the zeros of a finite number of holomorphic functions.

The complex projective spaces CP
m have many complex submanifolds, which are

defined as the set of zeros of a collection of polynomials. Such submanifolds are called

complex algebraic varieties, and will be the subject of §5.8. Here are two examples, to

illustrate the ideas of holomorphic map and complex submanifold.

Example 5.1.2 Define a map f : CP
1 → CP

2 by

f
(
[x, y]

)
= [x2, xy, y2].

As above, if λ ∈ C is nonzero then the points [λx, λy] and [x, y] are the same. To see

that f is well-defined, we must show that the definition is independent of the choice of

homogeneous coordinates. But this is obvious because[
(λx)2, (λx)(λy), (λy)2

]
=
[
λ2x2, λ2xy, λ2y2

]
=
[
x2, xy, y2

]
,

and so f is well-defined. The reason that this works is that the polynomials x2, xy and

y2 are all homogeneous of the same degree.

This map f is a holomorphic map between the complex manifolds CP
1 and CP

2. Its

image N = Im f is a complex submanifold of CP2, which is isomorphic as a complex

manifold to CP
1. We can also define N as a subset of CP

2 by

N =
{
[z0, z1, z2] ∈ CP

2 : z0z2 − z2
1 = 0

}
.

Thus N is an example of a conic in CP
2.
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Example 5.1.3 Let C be the cubic in CP2 given by

C =
{
[z0, z1, z2] ∈ CP

2 : z3
0 + z3

1 + z3
2 = 0

}
.

This is a compact, complex submanifold of CP
2. As a real manifold, C is diffeomorphic

to the torus T 2. More generally, let P (z0, z1, z2) be a homogeneous complex polyno-

mial of degree d � 1, and define a set CP ⊂ CP
2 by

CP =
{
[z0, z1, z2] ∈ CP2 : P (z0, z1, z2) = 0

}
.

For generic polynomials P the curve CP is a compact complex submanifold of CP2,

which is diffeomorphic as a real manifold to a surface of genus g = 1
2 (d − 1)(d − 2).

For more details, see [132, §2.1].

5.2 Tensors on complex manifolds

We showed in §3.5.1 that if G is a Lie subgroup of GL(n, R) and Q is a G-structure on

an n-manifold M , then the bundles of tensors and exterior forms on M decompose into

a direct sum of subbundles corresponding to irreducible representations of G. Now §5.1

defined a complex structure to be a torsion-free GL(m, C)-structure on a 2m-manifold.

Thus, the bundles of tensors and exterior forms on a complex manifold split into sub-

bundles corresponding to irreducible representations of GL(m, C). In this section we

will explain these splittings, and some of their consequences.

Let M be a manifold of dimension 2m, and J a complex structure on M . Then J
acts linearly on vector fields v by v �→ Jv, such that J(Jv) = −v. As vector fields

are sections of the tangent bundle TM of M , we may regard J as a bundle-linear map

J : TM → TM . At a point p in M , this gives a linear map Jp : TpM → TpM . Now

TpM is a real vector space isomorphic to R2m. It is convenient to complexify TpM to

get TpM ⊗R C, which is a complex vector space isomorphic to C
2m. (Note that this

operation of complexification is independent of J .) The map Jp extends naturally to a

map Jp : TpM ⊗R C → TpM ⊗R C, which is linear over C.

Consider the eigenvalues and eigenvectors of Jp in TpM ⊗R C. Since J2
p = − id,

where id is the identity, any eigenvalue λ of Jp must satisfy λ2 = −1. Hence λ = ±i.

Define T
(1,0)
p M to be the eigenspace of Jp in TpM⊗RC with eigenvalue i, and T

(0,1)
p M

to be the eigenspace with eigenvalue −i. It is easy to show that T
(1,0)
p M ∼= C

m ∼=
T

(0,1)
p M , that TpM ⊗R C = T

(1,0)
p M ⊕ T

(0,1)
p M , and that T

(1,0)
p M and T

(0,1)
p M are

complex conjugate subspaces under the natural complex conjugation on TpM ⊗R C.

As this works at every point p in M , we have defined two subbundles T (1,0)M and

T (0,1)M of TM ⊗R C, with TM ⊗R C = T (1,0)M ⊕ T (0,1)M . What we have shown

is that a complex structure on M splits the complexified tangent bundle into two sub-

bundles. In a similar way, the complexified cotangent bundle, and in fact complexified

tensors of all kinds on M , are split into subbundles by the complex structure.

This is an important idea in complex geometry, and to make use of it we will usually

work with complex-valued tensors on complex manifolds, that is, all vector bundles will

be complexified, as above with the tangent bundle. We will now develop the idea in two
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different ways. Firstly, a notation for tensors on complex manifolds will be defined, and

secondly, the decomposition of exterior forms by the complex structure is explained,

and the ∂ and ∂̄ operators are defined.

5.2.1 The decomposition of complex tensors
Let M be a complex manifold with complex structure J , which will be written with

indices as Jk
j . Let S = Sa...

... be a tensor on M , taking values in C. Here a is a con-

travariant index of S, and any other indices of S are represented by dots. The Greek

characters α, β, γ, δ, ε and their conjugates ᾱ, β̄, γ̄, δ̄, ε̄, will be used in place of the Ro-

man indices a, b, c, d, e respectively. They are tensor indices in the normal sense, and

their use is actually a shorthand indicating a modification to the tensor itself.

Define Sα...
... = 1

2 (Sa...
... − iJa

j Sj...
... ) and Sᾱ...

... = 1
2 (Sa...

... + iJa
j Sj...

... ). In the same

way, if b is a covariant index on a complex-valued tensor T ...
b..., define T ...

β... = 1
2 (T ...

b... −
iJj

b T ...
j...) and T ...

β̄...
= 1

2 (T ...
b... + iJj

b T ...
j...). These operations on tensors are projections,

and satisfy Sa...
... = Sα...

... + Sᾱ...
... and T ...

b... = T ...
β... + T ...

β̄...
.

Let δb
a be the Kronecker delta, regarded as a tensor on M . Then δb

a = δβ
α + δβ̄

ᾱ in

this notation. It is also easy to show that Jb
a = iδβ

α − iδβ̄
ᾱ. Thus J acts on tensor indices

of the form α, β, . . . by multiplication by i, so we may think of these as complex linear

components with respect to J . Similarly, J acts on indices of the form ᾱ, β̄, . . . by

multiplication by −i, and we may think of these as complex antilinear components.

5.2.2 Exterior forms on complex manifolds
By the argument used above, the complexified cotangent bundle T ∗M ⊗R C splits into

pieces: T ∗M⊗RC = T ∗(1,0)M⊕T ∗(0,1)M . Now if U, V, W are vector spaces with U =
V ⊕ W , then the exterior powers of U, V and W are related by ΛkU =

⊕k
j=0 ΛjV ⊗

Λk−jW . Using the splitting of T ∗M ⊗R C, it follows that

ΛkT ∗M ⊗R C =
⊕k

j=0 ΛjT ∗(1,0)M ⊗C Λk−jT ∗(0,1)M. (5.1)

Define Λp,qM to be the bundle ΛpT ∗(1,0)M ⊗C ΛqT ∗(0,1)M . Then (5.1) gives

ΛkT ∗M ⊗R C =
⊕k

j=0 Λj,k−jM. (5.2)

This is the decomposition of the exterior k-forms on M induced by the complex struc-

ture J . A section of Λp,qM is called a (p, q)-form.

We may use the splittings of ΛkT ∗M ⊗R C and Λk+1T ∗M ⊗R C to divide the

exterior derivative d on complex k-forms into components, each component mapping

sections of Λp,qM to sections of Λr,sM , where p + q = k and r + s = k + 1. Pro-

vided J is a complex structure (not just an almost complex structure), the only nonzero

components are those that map Λp,qM to Λp+1,qM and to Λp,q+1M .

Define ∂ to be the component of d mapping C∞(Λp,qM) to C∞(Λp+1,qM), and

∂̄ to be the component of d mapping C∞(Λp,qM) to C∞(Λp,q+1M). Then ∂, ∂̄ are

first-order partial differential operators on complex k-forms which satisfy d = ∂ + ∂̄.

The identity d2 = 0 implies that ∂2 = ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0. As ∂̄2 = 0, we may

define the Dolbeault cohomology groups Hp,q

∂̄
(M) of a complex manifold, by
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Hp,q

∂̄
(M) =

Ker
(
∂̄ : C∞(Λp,qM) → C∞(Λp,q+1M)

)
Im
(
∂̄ : C∞(Λp−1,qM) → C∞(Λp,qM)

) . (5.3)

The Dolbeault cohomology groups depend on the complex structure of M .

Now define an operator dc : C∞(ΛkT ∗M ⊗R C) → C∞(Λk+1T ∗M ⊗R C) by

dc = i(∂̄ − ∂). It is easy to show that

ddc + dcd = 0, (dc)2 = 0, ∂ = 1
2 (d + idc), ∂̄ = 1

2 (d − idc) and ddc = 2i∂∂̄.

Also dc is a real operator, that is, if α is a real k-form then dcα is a real (k+1)-form.

5.3 Holomorphic vector bundles
Next we define holomorphic vector bundles over a complex manifold, which are the

analogues in complex geometry of smooth vector bundles over real manifolds. A good

reference for the material in this section is [132, §0.5 & §1.1].

Definition 5.3.1 Let M be a complex manifold. Let {Ep : p ∈ M} be a family of

complex vector spaces of dimension k, parametrized by M . Let E be the total space

of this family, and π : E → M be the natural projection. Suppose also that E has the

structure of a complex manifold. This collection of data (the family of complex vector

spaces, with a complex structure on its total space) is called a holomorphic vector bundle

with fibre Ck, if the following conditions hold.

(i) The map π : E → M is a holomorphic map of complex manifolds.

(ii) For each p ∈ M there exists an open neighbourhood U ⊂ M , and a biholomorphic

map ϕU : π−1(U) → U × C
k.

(iii) In part (ii), for each u ∈ U the map ϕU takes Eu to {u} × Ck, and this is an

isomorphism between Eu and C
k as complex vector spaces.

The vector space Ep is called the fibre of E over p. Usually we will refer to E as the

holomorphic vector bundle, implicitly assuming that the rest of the structure is given.

Let E and F be holomorphic vector bundles over M . Then E∗ and E ⊗ F are also

holomorphic bundles in a natural way, where E∗ is the dual vector bundle to E with

fibre E∗
p at p ∈ M , and E ⊗ F is the tensor product bundle, with fibre Ep ⊗ Fp.

Suppose E is a holomorphic vector bundle over M , with projection π : E → M . A

holomorphic section s of E is a holomorphic map s : M → E, such that π ◦ s is the

identity map on M . Because the fibres of E are complex vector spaces, holomorphic

sections of E can be added together and multiplied by complex constants. Thus the

holomorphic sections of E form a complex vector space, which is finite-dimensional if

M is compact.

Now, every complex manifold M comes equipped with a number of natural holo-

morphic vector bundles. For example, the product M × Ck is a holomorphic vector

bundle over M , called the trivial vector bundle with fibre C
k. Also, the tangent bundle

TM and the cotangent bundle T ∗M are both real vector bundles over M , but we may

make them into complex vector bundles by identifying J with multiplication by i ∈ C.

The total spaces of TM and T ∗M both have natural complex structures, which make

them into holomorphic vector bundles.
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From TM and T ∗M we can make other holomorphic vector bundles by tensor

products. We will consider the bundles of exterior forms. The vector bundles Λp,qM of

§5.2.2 are complex vector bundles, smooth vector bundles with complex vector spaces

as fibres. But which of these are holomorphic vector bundles? It turns out that Λp,qM
is a holomorphic vector bundle in a natural way if and only if q = 0, so that Λp,0M is a

holomorphic vector bundle for p = 0, 1, . . . , m. There are natural isomorphisms

Λ0,0M ∼= M × C, Λ1,0M ∼= T ∗M, and Λp,0M ∼= Λp
C
T ∗M,

as holomorphic vector bundles.

Now let s ∈ C∞(Λp,0M), so that s is a smooth section of Λp,0M . Then s is a

holomorphic section of Λp,0M if and only if ∂̄s = 0 in C∞(Λp,1M). A holomorphic

section of Λp,0M is called a holomorphic p-form. From eqn (5.3) we see that the Dol-

beault group Hp,0

∂̄
(M) is actually the vector space of holomorphic p-forms on M .

5.4 Introduction to Kähler manifolds

Let (M, J) be a complex manifold, and let g be a Riemannian metric on M . We call g
a Hermitian metric if three equivalent conditions hold:

(i) g(v, w) = g(Jv, Jw) for all vector fields v, w on M ,

(ii) in index notation, gab ≡ Jc
aJd

b gcd,

(iii) in the notation of §5.2, gab ≡ gαβ̄ + gᾱβ . That is, gαβ ≡ gᾱβ̄ ≡ 0.

This is a natural compatibility condition between a complex structure and a Riemannian

metric. If g is a Hermitian metric, we define a 2-form ω on M called the Hermitian form

of g in three equivalent ways:

(i) ω(v, w) = g(Jv, w) for all vector fields v, w on M ,

(ii) in index notation, ωac = Jb
agbc,

(iii) in the notation of §5.2, ωab = igαβ̄ − igᾱβ .

Then ω is a (1,1)-form, and we may reconstruct g from ω using the equation g(v, w) =
ω(v, Jw). Define a (1,1)-form ω on a complex manifold to be positive if ω(v, Jv) > 0
for all nonzero vectors v. It is easy to see that if ω is a (1,1)-form on a complex manifold,

then ω is the Hermitian form of a Hermitian metric if and only if ω is positive. The idea

of Hermitian metric also makes sense for J an almost complex structure.

Definition 5.4.1 Let (M, J) be a complex manifold, and g a Hermitian metric on M ,

with Hermitian form ω. We say g is a Kähler metric if dω = 0. In this case we call ω
the Kähler form, and the triple (M, J, g) a Kähler manifold.

Here are some important facts about Kähler metrics.

Proposition 5.4.2 Let M be a manifold of dimension 2m, J an almost complex struc-

ture on M , and g a Hermitian metric, with Hermitian form ω. Let ∇ be the Levi-Civita

connection of g. Then the following conditions are equivalent:

(i) J is a complex structure and g is Kähler.

(ii) ∇J = 0.

(iii) ∇ω = 0.
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(iv) The holonomy group of g is contained in U(m), and J is associated to the corre-

sponding U(m)-structure.

In §5.1 we saw that one way to define a complex structure is as a torsion-free

GL(m, C)-structure on a 2m-manifold M . In the same way, a Kähler structure can

be defined to be a torsion-free U(m)-structure on M , as in §2.6.

Notice that if g is a Hermitian metric on a complex manifold, then the rather weak

condition dω = 0 implies the much stronger conditions that ∇ω = ∇J = 0. One

moral is that Kähler metrics are easy to construct, as closed 2-forms are easy to find, but

they have many interesting properties following from ∇ω = ∇J = 0. Also, note that

a Kähler metric is just a Riemannian metric with holonomy contained in U(m). The

highest exterior power ωm of ω is proportional to the volume form dVg of g, and with

the conventions used in this book, the relationship is

ωm = m! · dVg. (5.4)

Let M be a Kähler manifold with Kähler metric g and Kähler form ω. If N is a

complex submanifold of M in the sense of §5.1.1, then the restriction of g to N is also

Kähler. (One way to see this is that the restriction of ω to N is clearly a closed, positive

(1,1)-form.) Thus, any complex submanifold of a Kähler manifold is a Kähler manifold

in its own right.

Example 5.4.3 The complex manifold CP
m, described in Example 5.1.1, carries a

natural Kähler metric. Here is one way to define it. There is a natural projection

π : C
m+1 \ {0} → CP

m, defined by π : (z0, . . . , zm) �→ [z0, . . . , zm].

Define a real function u : Cm+1\{0} → (0,∞) by u(z0, . . . , zm) = |z0|2+· · ·+|zm|2.

Define a closed (1,1)-form α on C
m+1\{0} by α = ddc(log u). Now α is not the Kähler

form of any Kähler metric on C
m+1 \ {0}, because it is not positive. However, there

does exist a unique positive (1,1)-form ω on CPm, such that α = π∗(ω). The Kähler

metric g on CP
m with Kähler form ω is the Fubini–Study metric.

The idea here of using ddc to make Kähler forms will be explored in §5.5. Since

CP
m is Kähler, it follows that any complex submanifold of CP

m is also a Kähler man-

ifold. Now there are lots of complex submanifolds in the complex projective spaces

CPm. They are studied in the subject of complex algebraic geometry, which will be

introduced in §5.8. This gives a huge number of examples of Kähler manifolds.

5.5 Kähler potentials

Let (M, J) be a complex manifold. We have seen that to each Kähler metric g on M
there is associated a closed real (1,1)-form ω, called the Kähler form. Conversely, if ω
is a closed real (1,1)-form on M , then ω is the Kähler form of a Kähler metric if and

only if ω is positive (that is, ω(v, Jv) > 0 for all nonzero vectors v). Positivity is an

open condition on closed real (1,1)-forms, meaning that it holds on an open set in the

space of closed real (1,1)-forms.
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Let φ be a smooth real function on M . Then ddcφ is clearly a closed (and in fact

exact) real 2-form, as both d and dc are real operators. But since ddc = 2i∂∂̄, it follows

that ddcφ is also a (1,1)-form. Thus if φ is a real function then ddcφ is a closed real

(1,1)-form. The following are converses to this.

The Local ddc-Lemma. Let η be a smooth, closed, real (1, 1)-form on the unit disc in

Cm. Then there is a smooth real function φ on the unit disc with η = ddcφ.

The Global ddc-Lemma. Let M be a compact Kähler manifold, and η a smooth, exact,

real (1, 1)-form on M . Then there is a smooth real function φ on M with η=ddcφ.

In the second it is necessary that M should be Kähler, rather than just complex, for

the result to hold. From the Local ddc-Lemma it follows that if g is a Kähler metric

on M with Kähler form ω, then locally in M we may write ω = ddcφ for some real

function φ. Such a function φ is called a Kähler potential for the metric g. However, in

general we cannot find a global Kähler potential for g, for the following reason.

Suppose M is a compact Kähler manifold of dimension 2m, with Kähler form ω. As

ω is closed, it defines a de Rham cohomology class [ω] ∈ H2(M, R), called the Kähler

class. Now [ω]m =
∫

M ωm = m! vol(M) > 0 by (5.4), so [ω] �= 0. However, ddcφ is

exact, so that [ddcφ] = 0 in H2(M, R). Therefore, on a compact Kähler manifold it is

impossible to find a global Kähler potential; but we do have the following useful result.

Lemma 5.5.1 Let M be a compact complex manifold and g, g′ Kähler metrics on M
with Kähler forms ω, ω′. Suppose [ω] = [ω′] in H2(M, R). Then there is a smooth real

function φ on M with ω′ = ω + ddcφ, which is unique up to addition of a constant.

Proof Since [ω] = [ω′], ω′ − ω is an exact, real (1,1)-form. So, by the Global ddc-

Lemma, a function φ exists with ω′ −ω = ddcφ, and ω′ = ω + ddcφ as we want. If φ1

and φ2 are both solutions, then by subtraction ddc(φ1 − φ2) = 0 on M , which implies

that φ1−φ2 is constant, as M is compact. Therefore φ is unique up to a constant. �

The lemma gives a parametrization of the Kähler metrics with a fixed Kähler class,

by smooth functions on the manifold. We may also express the metric g′ in terms of

g and φ. As ω′ = ω + ddcφ = ω + 2i∂∂̄φ, we have ω′
αβ̄

= ωαβ̄ + i∂α∂̄β̄φ and

ω′
ᾱβ = ωᾱβ−i∂̄ᾱ∂βφ. But gαβ̄ = −iωαβ̄ , gᾱβ = iωᾱβ , g′

αβ̄
= −iω′

αβ̄
and g′ᾱβ = iω′

αβ̄
,

and therefore g′
αβ̄

= gαβ̄ + ∂α∂̄β̄φ and g′ᾱβ = gᾱβ + ∂̄ᾱ∂βφ.

5.6 Curvature of Kähler manifolds

Let M be a 2m-manifold, and g a Kähler metric on M . Then Hol(g) ⊆ U(m), by

Proposition 5.4.2. Applying Theorem 3.1.7, one can show that in the notation of §5.2,

the Riemann curvature tensor of g satisfies

Ra
bcd = Rα

βγδ̄ + Rα
βγ̄δ + Rᾱ

β̄γδ̄ + Rᾱ
β̄γ̄δ. (5.5)

Now a general tensor T a
bcd has 16 components in its complex decomposition. Equa-

tion (5.5) says that 12 of these components vanish for the curvature tensor of a Kähler

manifold, leaving only 4 components. However, using symmetries of Riemann curva-

ture, and complex conjugation, we may identify Rα
βγ̄δ with Rα

βγδ̄
, and identify both
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Rᾱ
β̄γδ̄

and Rᾱ
β̄γ̄δ

with the complex conjugate of Rα
βγδ̄

. Thus the Kähler curvature is

determined by the single component Rα
βγδ̄

.

The Ricci curvature is Rbd = Ra
bad. From (5.5) we see that Rbd = Rα

βαδ̄
+Rᾱ

β̄ᾱδ
.

Hence Rab = Rαβ̄ + Rᾱβ , and Rαβ = Rᾱβ̄ = 0. Also, Rab = Rba by symmetries of

curvature. Therefore, the Ricci curvature satisfies the same conditions as a Hermitian

metric. From a Hermitian metric we can make a Hermitian form, so we will try the

same trick with the Ricci curvature. Define the Ricci form ρ by ρab = iRαβ̄ − iRᾱβ ,

or equivalently ρac = Jb
aRbc. Then ρ is a real (1,1)-form, and we may recover the Ricci

curvature from ρ using the equation Rab = ρacJ
c
b . It is a remarkable fact that ρ is a

closed 2-form. The cohomology class [ρ] ∈ H2(M, R) depends only on the complex

structure of M , and is equal to 2π c1(M), where c1(M) is the first Chern class of M .

To see why this is so, we will give an explicit expression for the Ricci curvature

in coordinates. Let (z1, . . . , zm) be holomorphic coordinates on an open set in M . Let

gab = gαβ̄ + gᾱβ be the Kähler metric. We may regard α as an index for dz1, . . . ,dzm,

and β̄ as an index for dz̄1, . . . ,dz̄m. Hence, α and β̄ are both indices running from 1 to

m, and gαβ̄ is an m × m complex matrix.

It is easy to see gαβ̄ is a Hermitian matrix (that is, gαβ̄ = gβᾱ), so it has real

eigenvalues, and det(gαβ̄) is a real function. This determinant is also given by

ωm = imm! det(gαβ̄)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ · · · ∧ dzm ∧ dz̄m. (5.6)

Here ωm is the m-fold wedge product of ω. We see from (5.6) that det(gαβ̄) is positive,

as ωm is a positive 2m-form by (5.4).

It can be shown that the Ricci curvature is given by Rαβ̄ = −∂α∂̄β̄

[
log det(gγδ̄)

]
,

and therefore the Ricci form is

ρ = −i∂∂̄
[
log det(gγδ̄)

]
= − 1

2 ddc
[
log det(gγδ̄)

]
. (5.7)

Thus locally we may write ρ = − 1
2ddcf for a smooth real function f , so ρ is closed. As

the determinant only makes sense in a holomorphic coordinate system, and we cannot

find holomorphic coordinates on the whole of M , this is only a local expression for ρ.

As we remarked in §3.4.1, a Kähler metric g on M has Hol0(g) ⊆ SU(m) if and

only if it is Ricci-flat, and thus if and only if it has Ricci form ρ = 0. Such metrics are

called Calabi–Yau metrics, because they can be constructed using Yau’s solution of the

Calabi Conjecture, as in Chapter 6.

5.7 Exterior forms on Kähler manifolds

Section 1.1.2 defined the Hodge star ∗ and the operators d∗ and ∆d on an oriented

Riemannian manifold. We begin by defining analogues of these on a Kähler manifold.

Let M be a Kähler manifold of real dimension 2m, with Kähler metric g. The complex

structure induces a natural orientation on M , and the metric and the orientation combine

to give a volume form dVg on M , which is a real 2m-form.

Let α, β be complex k-forms on M . Define a pointwise inner product (α, β) by

(α, β) = αa1...ak
βb1...bk

ga1b1 . . . gakbk
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in index notation. Here (α, β) is a complex function on M , which is linear in α and

antilinear in β, that is, linear in the complex conjugate β of β. Note that (β, α) = (α, β),

and that (α, α) is a nonnegative real function on M .

When M is compact, define the L2 inner product of complex k-forms α, β by

〈α, β〉 =
∫

M (α, β)dVg . Then 〈 , 〉 is a Hermitian inner product on the space of com-

plex k-forms. That is, 〈α, β〉 is a complex number, bilinear in α and β, such that

〈β, α〉 = 〈α, β〉, and 〈α, α〉 = ‖α‖2
L2 is real and nonnegative.

Now let the Hodge star on Kähler manifolds be the unique map ∗ : ΛkT ∗M⊗RC →
Λ2m−kT ∗M ⊗R C satisfying α∧(∗β) = (α, β)dVg for all complex k-forms α, β. Then

∗β is antilinear in β. The relation to the Hodge star on real forms defined in §1.1.2, is

that if β = β1+iβ2 for β1, β2 real k-forms, then ∗β = ∗β1−i∗β2. It satisfies ∗1 = dVg

and ∗(∗β) = (−1)kβ, for β a complex k-form, so that ∗−1 = (−1)k∗.

Since M is complex, we have operators d, ∂ and ∂̄ taking complex k-forms to com-

plex (k+1)-forms. Define operators d∗, ∂∗ and ∂̄∗ by

d∗α = − ∗ d(∗α), ∂∗α = − ∗ ∂(∗α) and ∂̄∗α = − ∗ ∂̄(∗α). (5.8)

Then d∗, ∂∗ and ∂̄∗ all take complex k-forms to complex (k−1)-forms. Moreover, the

argument used in §1.1.2 to show that 〈α, d∗β〉 = 〈dα, β〉 for α a (k−1)-form and β a

k-form on a compact oriented Riemannian manifold, also shows that

〈α, d∗β〉 = 〈dα, β〉, 〈α, ∂∗β〉 = 〈∂α, β〉 and 〈α, ∂̄∗β〉 = 〈∂̄α, β〉,

where α is a complex (k−1)-form and β a complex k-form on M .

In §1.1 we defined the Laplacian ∆ = dd∗ + d∗d on Riemannian manifolds. By

analogy, from d, ∂, ∂̄, d∗, ∂∗, ∂̄∗ we can make three Laplacians on complex k-forms:

∆d = dd∗ + d∗d, ∆∂ = ∂∂∗ + ∂∗∂ and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄.

We call ∆d the d-Laplacian, ∆∂ the ∂-Laplacian and ∆∂̄ the ∂̄-Laplacian. It can be

shown (see [132, p. 115]) that these satisfy

∆∂ = ∆∂̄ = 1
2∆d. (5.9)

Now ∗ takes Λp,qM to Λm−p,m−qM . Since ∂ : C∞(Λp,qM) → C∞(Λp+1,qM)
and ∂̄ : C∞(Λp,qM) → C∞(Λp,q+1M), we see from (5.8) that ∂∗ : C∞(Λp,qM) →
C∞(Λp−1,qM) and ∂̄∗ : C∞(Λp,qM) → C∞(Λp,q−1M). Thus ∆∂ , ∆∂̄ and ∆d map

C∞(Λp,qM) → C∞(Λp,qM).
It is conventional to call the ∂̄-Laplacian on a Kähler manifold the Laplacian, and

to write it ∆ rather than ∆∂̄ . This can lead to confusion, because on a Riemannian

manifold we call the d-Laplacian ∆d the Laplacian, so that the Laplacian on a Kähler

manifold is half the Laplacian on a Riemannian manifold.

5.7.1 Hodge theory on Kähler manifolds
In §1.1.3 we summarized the ideas of Hodge theory for a compact Riemannian manifold

(M, g). Then in §3.5.2 we showed that the space H k of Hodge k-forms is a direct sum

of subspaces H k
i corresponding to irreducible representations of the holonomy group
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Hol(g) of g, and deduced that the de Rham cohomology group Hk(M, R) decomposes

in the same way.

Since a Kähler metric g has Hol(g) ⊆ U(m), these ideas apply to compact Kähler

manifolds, and we will now work them out in more detail. Our notation differs slightly

from §1.1.3 and §3.5.2, in that we deal with complex rather than real k-forms, and write

the summands H p,q rather than H k
i . Let M be a compact Kähler manifold, and define

H p,q = Ker
(
∆ : C∞(Λp,qM) → C∞(Λp,qM)

)
so that H p,q is the vector space of harmonic (p, q)-forms on M . It is easy to show by

(5.9) and integration by parts that α ∈ H p,q if and only if ∂α = ∂̄α = ∂∗α = ∂̄∗α =
0. Here is a version of the Hodge decomposition theorem for the ∂̄ operator, proved

in [132, p. 84].

Theorem 5.7.1 Let M be a compact Kähler manifold. Then

C∞(Λp,qM) = H p,q ⊕ ∂̄
[
C∞(Λp,q−1M)

]
⊕ ∂̄∗[C∞(Λp,q+1M)

]
, where

Ker ∂̄ = H p,q ⊕ ∂̄
[
C∞(Λp,q−1M)

]
and Ker ∂̄∗ = H p,q ⊕ ∂̄∗[C∞(Λp,q+1M)

]
.

Comparing Theorem 5.7.1 with (5.3) defining the Dolbeault groups Hp,q

∂̄
(M) of M

we see that Hp,q

∂̄
(M) ∼= H p,q . Now define

H k = Ker
(
∆ : C∞(ΛkT ∗M ⊗R C) → C∞(ΛkT ∗M ⊗R C)

)
.

As ∆ = 1
2∆d by (5.9), Theorem 1.1.4 implies that there is a natural isomorphism

between H k and the complex cohomology Hk(M, C) of M . But

H k =
⊕k

j=0 H j,k−j .

Define Hp,q(M) to be the vector subspace of Hp+q(M, C) with representatives in

H p,q . Then we have:

Theorem 5.7.2 Let M be a compact Kähler manifold of real dimension 2m. Then

Hk(M, C)=
⊕k

j=0 Hj,k−j(M). Every element of Hp,q(M) is represented by a unique

harmonic (p, q)-form. Moreover for all p, q we have Hp,q(M) ∼= Hp,q

∂̄
(M),

Hp,q(M) ∼= Hq,p(M) and Hp,q(M) ∼=
(
Hm−p,m−q(M)

)∗
.

Note that if M is a compact complex manifold admitting Kähler metrics, then the

decomposition Hk(M, C) =
⊕k

j=0 Hj,k−j(M) above depends only on the complex

structure of M , and not on the choice of a particular Kähler structure. Define the Hodge

numbers hp,q or hp,q(M) by hp,q = dim Hp,q(M). Theorem 5.7.2 implies that

bk =
∑k

j=0 hj,k−j and hp,q = hq,p = hm−p,m−q = hm−q,m−p. (5.10)

From these equations one can deduce that some compact manifolds, even complex

manifolds, cannot admit a Kähler metric for topological reasons. Here are two ways this
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can happen. First, if k = 2l + 1 then bk = 2
∑l

j=0 hj,k−j , so that if M is a compact

Kähler manifold, then bk is even when k is odd. Thus, any compact manifold that admits

a Kähler metric must satisfy this topological condition. For instance, the 4-manifold

S3 × S1 has a complex structure, but as b1 = 1 it can have no Kähler metric.

Secondly, a compact complex manifold M has Dolbeault groups Hp,q

∂̄
(M) de-

pending on its complex structure. Theorem 5.7.2 shows that a necessary condition

for M to admit a Kähler metric with this complex structure is that dimHp,q

∂̄
(M) =

dimHq,p

∂̄
(M) for all p, q, which is not always the case.

Now in the splitting (5.2) of complex k-forms on a complex manifold into (p, q)-
forms, the summands Λp,qM correspond to irreducible representations of GL(m, C).
However, when 1 � p, q � m−1, the corresponding representation of U(m) is not

irreducible, but is the sum of several irreducible subrepresentations. This means that

H p,q and Hp,q(M) can be split into smaller pieces, using the U(m)-structure. The

simplest example of this is that Λ1,1M = 〈ω〉 ⊕ Λ1,1
0 M , where ω is the Kähler form

and Λ1,1
0 M is the bundle of (1,1)-forms orthogonal to ω. However, we prefer to work

with the splitting into (p, q)-forms, as it is simpler and loses little information.

Finally we consider Kähler classes and the Kähler cone.

Definition 5.7.3 Let (M, J) be a compact complex manifold admitting Kähler met-

rics. If g is a Kähler metric on M , then the Kähler form ω of g is a closed real 2-form,

and so defines a de Rham cohomology class [ω] ∈ H2(M, R), called the Kähler class

of g. It is a topological invariant of g. Since ω is also a (1,1)-form, [ω] lies in the

intersection H1,1(M) ∩ H2(M, R), regarding H1,1(M) and H2(M, R) as vector sub-

spaces of H2(M, C). Define the Kähler cone KM of M to be the set of Kähler classes

[ω] ∈ H1,1(M) ∩ H2(M, R) of Kähler metrics on M .

If g1, g2 are Kähler metrics on M and t1, t2 > 0, then t1g1 + t2g2 is also Kähler.

Thus, if α1, α2 ∈ KM and t1, t2 > 0 then t1α1 + t2α2 ∈ KM , so that KM is a convex

cone. Furthermore, if ω is the Kähler form of a Kähler metric and η is a smooth, closed

real (1,1)-form on M with |η| < 1 on M , then ω + η is also the Kähler form of a Kähler

metric on M . As M is compact, this implies that KM is open in H1,1(M)∩H2(M, R).
Suppose that Σ is a compact complex curve in a complex manifold (M, J), and that

ω is the Kähler form of a Kähler metric g on M . Then Σ defines a homology class

[Σ] ∈ H2(M, R), and the area of Σ with respect to g is [ω] · [Σ] ∈ R. But this area must

be positive. Therefore, each α in the Kähler cone KM of M must satisfy α · [Σ] > 0,

for each compact complex curve Σ ⊂ M . In simple cases KM is exactly the subset of

H1,1(M) ∩ H2(M, R) satisfying these inequalities, and is a polyhedral cone bounded

by a finite number of hyperplanes, but this is not always true.

5.8 Complex algebraic varieties
This section is designed as a rather brief introduction to complex algebraic geome-

try. We shall define complex algebraic varieties, and discuss related ideas such as the

Zariski topology, sheaves, and schemes. Here are some introductory books on algebraic

geometry. Griffiths and Harris [132] cover complex algebraic geometry, taking quite a

differential geometric point of view, and discussing manifolds, Kähler metrics, Hodge

theory, and so on. Hartshorne [149] has a more algebraic approach, and this section is
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largely based on [149, §1 & §2]. Two other books, both rather algebraic, are Harris [148]

and Iitaka [171]. Harris’ book is more elementary and contains lots of examples.

Let C
m have complex coordinates (z1, . . . , zm), and C[z1, . . . , zm] be the ring of

polynomials in the variables z1, . . . , zm, with complex coefficients. Then C[z1, . . . , zm]
is a ring of complex functions on C

m. Now C
m is a topological space, with the usual

manifold topology. However, there is another natural topology on Cm called the Zariski

topology, which is more useful for the purposes of algebraic geometry.

Definition 5.8.1 An algebraic set in C
m is the set of common zeros of a finite number

of polynomials in C[z1, . . . , zm]. It is easy to show that if X, Y are algebraic sets in

C
m, then X ∩ Y and X ∪ Y are algebraic sets. Also, ∅ and C

m are algebraic sets.

Define the Zariski topology on C
m by taking the open subsets to be C

m \X , for all

algebraic sets X . This gives a topology on Cm, in which a subset X ⊂ Cm is closed if

and only if it is algebraic.

In this section, we shall regard C
m as a topological space with the Zariski topology,

rather than the usual topology. The simplest sort of complex algebraic varieties are affine

varieties, which we define now.

Definition 5.8.2 An algebraic set X in C
m is said to be irreducible if it is not the union

X1 ∪ X2 of two proper subsets, which are also algebraic sets in C
m.

An affine algebraic variety, or simply affine variety, is an irreducible algebraic set

in C
m. It is considered to be a topological space, with the induced (Zariski) topology.

A quasi-affine variety is an open set in an affine variety.

Let X be an affine variety in Cm. Let I(X) be the set of f ∈ C[z1, . . . , zm] that

vanish on X , and A(X) the set
{
f |X : f ∈ C[z1, . . . , zm]

}
of functions on X . Then

A(X) is a ring of functions on X , and I(X) is an ideal in the ring C[z1, . . . , zm], with

A(X) ∼= C[z1, . . . , zm]/I(X). We call A(X) the affine coordinate ring of X .

Choose x ∈ X , and define Ix to be the set of functions in A(X) that are zero at

x. Clearly, Ix is an ideal in A(X). In fact, Ix is a maximal ideal in A(X). Moreover,

every maximal ideal in A(X) is of the form Ix for some x ∈ X , and if x1, x2 ∈ X ,

then Ix1 = Ix2 if and only if x1 = x2. It follows that there is a 1-1 correspondence

between the points of X , and the set of maximal ideals in A(X). This is the beginning

of the subject of affine algebraic geometry. The idea is that the ring A(X) is regarded as

the primary object, and then X is derived from A(X). The philosophy is to investigate

affine varieties by using the algebraic properties of rings of functions on them.

Next, we will discuss projective varieties. Projective varieties are subsets of CP
m,

just as affine varieties are subsets of Cm. Since we cannot define polynomials on CPm,

instead we use homogeneous polynomials on C
m+1.

Definition 5.8.3 Let CP
m be the complex projective space, and let [z0, . . . , zm] be

homogeneous coordinates on CPm, as described in Example 5.1.1. Let d be a non-

negative integer. A polynomial f ∈ C[z0, . . . , zm] is called homogeneous of degree

d if f(λz0, . . . , λzm) = λdf(z0, . . . , zm) for all λ and z0, . . . , zm ∈ C. Let f be a

homogeneous polynomial in C[z0, . . . , zm], and let [z0, . . . , zm] ∈ CPm. We say that

[z0, . . . , zm] is a zero of f if f(z0, . . . , zm) = 0. As f is homogeneous, this definition

does not depend on the choice of homogeneous coordinates for [z0, . . . , zm].
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Here are the analogous definitions of the Zariski topology on CPm, and projective

and quasi-projective varieties.

Definition 5.8.4 Define an algebraic set in CPm to be the set of common zeros of a

finite number of homogeneous polynomials in C[z0, . . . , zm]. Define the Zariski topol-

ogy on CP
m by taking the open subsets to be CP

m\X , for all algebraic sets X ⊂ CP
m.

An algebraic set X in CPm is said to be irreducible if it is not the union of two proper

algebraic subsets. A projective algebraic variety, or simply projective variety, is defined

to be an irreducible algebraic set in CPm. A quasi-projective variety is defined to be an

open subset of a projective variety, in the Zariski topology.

Now Cm can be identified with the open set
{
[z0, . . . , zm]∈CPm : z0 �=0

}
in CPm.

Making this identification, we see that affine, quasi-affine and projective varieties are

all examples of quasi-projective varieties. Because of this, quasi-projective varieties are

often referred to as algebraic varieties, or simply varieties. In this section we consider

varieties to be topological spaces with the Zariski topology, unless we specify otherwise.

An affine variety is studied using the ring of polynomials on it. On projective va-

rieties we cannot consider polynomials, so we consider two other classes of functions,

the rational functions and regular functions.

Definition 5.8.5 Let X be a quasi-projective variety in CPm. Let g, h ∈ C[z0, . . . , zm]
be homogeneous polynomials of the same degree d. Define a subset Uh in X by Uh ={
[z0, . . . , zm] ∈ X : h(z0, . . . , zm) �= 0

}
. Then Uh is a Zariski open set. Define the

rational function f : Uh → C by

f
(
[z0, . . . , zm]

)
=

g(z0, . . . , zm)
h(z0, . . . , zm)

.

As g and h are both homogeneous of the same degree, f is independent of the choice of

homogeneous coordinates for each point, and so is well-defined.

Let U be open in X and let f : U → C be a function. If p ∈ U , we say that f is

regular at p if there is an open set U ′ ⊂ U containing p, and f is equal to a rational

function on U ′. If f is regular at every point p ∈ U , we say f is regular. A regular

function is one that is locally equal to a rational function.

Next we define two ideas of map between varieties, morphisms and rational maps.

Definition 5.8.6 Let X and Y be varieties. A morphism φ : X → Y is a continuous

map (with the Zariski topologies) such that whenever V is open in Y and f : V → C is

regular, then f ◦φ : φ−1(V ) → C is also regular. Clearly, if φ : X → Y and ψ : Y → Z
are morphisms of varieties, then ψ ◦φ : X → Z is also a morphism. A map φ : X → Y
is called an isomorphism if φ is bijective, so that it has an inverse φ−1 : Y → X , and

both φ and φ−1 are morphisms.

Definition 5.8.7 Let X and Y be varieties. A rational map φ : X ��� Y is an equiv-

alence class of morphisms φU : U → Y , where U is a dense open set in X , and

morphisms φU : U → Y and φV : V → Y are equivalent if φU |U∩V = φV |U∩V . Note

that a rational map is not in general a map of the set X to the set Y .
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A birational map φ : X ��� Y is a rational map which admits a rational inverse.

That is, φ is an equivalence class of maps φU : U → V , where U, V are dense open sets

in X, Y respectively, and φU is an isomorphism of varieties. If there is a birational map

between X and Y , we say X and Y are birationally equivalent, or simply birational.

This is an equivalence relation.

A birational morphism φ : X → Y is a morphism of varieties which is also a

birational map. That is, there should exist dense open subsets U ⊂ X and V ⊂ Y
such that φ(U) = V and φ|U : U → V is an isomorphism. A birational morphism

φ : X → Y is a genuine map from the set X to Y .

If X and Y are isomorphic varieties, then they are birational. However, if X and Y
are birational, they need not be isomorphic. Thus, birationality is a cruder equivalence

relation on varieties than isomorphism.

Let X be a variety, and U be open in X . Define AU to be the set of regular func-

tions on U . Then AU is a ring of functions on U . If U, V are open sets with U ⊆ V ,

then restriction from V to U gives a natural map rV,U : AV → AU , which is a ring

homomorphism. All this information is packaged together in a composite mathematical

object called a sheaf of rings on X (see [132, p. 35] or [171, p. 27]).

Definition 5.8.8 Let X be a topological space with topology T . A sheaf of rings F on

X associates to each open set U ∈ T a ring F (U), called the sections of F over U ,

and to each pair U ⊂ V in T a ring homomorphism rV,U : F (V ) → F (U), such that

conditions (i)–(v) below are satisfied. The map rV,U is called the restriction map, and

for σ ∈ F (V ) we write rV,U (σ) = σ|U . Here are the necessary axioms.

(i) F (∅) = {0}.

(ii) rU,U : F (U) → F (U) is the identity for all U ∈ T .

(iii) If U, V, W ∈ T with U ⊂ V ⊂ W , then rW,U = rW,V ◦ rV,U .

(iv) If U, V ∈ T and σ ∈ F (U), τ ∈ F (V ) satisfy σ|U∩V = τ |U∩V , then there exists

ρ ∈ F (U ∪ V ) such that ρ|U = σ and ρ|V = τ .

(v) If U, V ∈ T and σ ∈ F (U ∪ V ) satisfies σ|U = 0 and σ|V = 0, then σ = 0.

A sheaf of groups on X is defined in exactly the same way, except that F (U) should be

a group rather than a ring, and the restrictions rV,U should be group homomorphisms.

A ringed space is defined to be a pair (X, O), where X is a topological space and O a

sheaf of rings on X . We call X the base space, and O the structure sheaf.

If F is a sheaf of groups or rings over a topological space X , then one can define

the sheaf cohomology groups Hj(X, F ) for j = 0, 1, 2, . . .. They are an important tool

in algebraic geometry. The group H0(X, F ) is F (X), the group of global sections of

F over X , but the groups Hk(X, F ) for k � 1 are more difficult to interpret. For more

details, see [132, §0.3], [149, §3] or [171, §4].

Let X be a projective variety. Then X is a topological space, with the Zariski topol-

ogy, and the regular functions on X form a sheaf O of rings on X , called the sheaf of

regular functions on X . Thus (X, O) is a ringed space. Moreover, for each open set U ,

the ring O(U) is actually a ring of complex functions on U .

Complex algebraic geometry can be described as the study of complex algebraic va-

rieties up to isomorphisms. Let X and Y be varieties, and φ : X → Y an isomorphism
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of varieties. Consider the question: if X and Y are isomorphic, what features of X and

Y have to be ‘the same’? Well, from the definition we see that X and Y have to be iso-

morphic as topological spaces, with the Zariski topologies, and the sheaves of regular

functions must also agree. However, there is no need for the embeddings X ↪→ CPm

and Y ↪→ CP
n to be related at all.

Because of this, it is useful to think of a variety not as a particular subset of CPm,

but as a topological space X equipped with a sheaf of rings O . Following this idea,

one can define the concept of an abstract variety, which is a variety without a given

embedding in CPm. In affine algebraic geometry, the primary object is a ring A. The

topological space X is derived from A as the set of maximal ideals, and is studied using

algebraic tools and a lot of ring theory.

In more general algebraic geometry, the primary object is often an abstract variety,

regarded as a topological space X equipped with a sheaf of rings O . It is also studied

from a very algebraic point of view. In fact, a lot of algebraic geometry is written in

terms of schemes [149, §2], which are closely related to varieties. Recall that in an

affine variety, the points of the topological space are the maximal ideals of a ring. In an

affine scheme the points of the topological space are instead the prime ideals of a ring.

A scheme is a ringed space (X, O) that is locally isomorphic to an affine scheme.

5.9 Singular varieties, resolutions, and deformations
Let X be a variety in CPm, and let x ∈ X . We say that x is a nonsingular point

if X is a complex submanifold of CP
m in a neighbourhood of x. We call x singular

if it is not nonsingular. The variety X is called singular if it has singular points, and

nonsingular otherwise. In general, the nonsingular points form a dense open subset of

X , and the singular points are a finite union of subvarieties of X . There is also an

equivalent, algebraic way to define singular points, using the idea of local ring.

For example, let p(z1, . . . , zm) be a complex polynomial that is not constant with no

repeated factors, and X be the hypersurface
{
(z1, . . . , zm) ∈ C

m : p(z1, . . . , zm) = 0
}

in Cm. Then a point x ∈ X is singular if and only if ∂p/∂zj = 0 at x for j = 1, . . . , m.

So, for instance, the quadric z2
1+z2

2+z2
3 = 0 in C

3 has just one singular point at (0, 0, 0).
Clearly, a complex algebraic variety X is a complex manifold if and only if it is

nonsingular. The converse, however, is not true: not every complex manifold is an al-

gebraic variety. Let X be a compact complex manifold. A meromorphic function f on

X is a singular holomorphic function, that can be written locally as the quotient of two

holomorphic functions. On an algebraic variety, all the regular functions are meromor-

phic. Therefore a variety must have a lot of meromorphic functions—enough to form a

holomorphic coordinate system near each point, for instance.

So, if a compact complex manifold has only a few meromorphic functions, then it

cannot be an algebraic variety. There are many compact complex manifolds that ad-

mit no nonconstant meromorphic functions at all, and these are not algebraic varieties.

However, Chow’s Theorem [132, p. 167] states that any compact complex submanifold

of CP
m is algebraic. The study of nonalgebraic complex manifolds is sometimes called

transcendental complex geometry.

There is a natural generalization of the idea of complex manifold to include singu-

larities, called a complex analytic variety.
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Definition 5.9.1 Let U be an open set in Cm, in the usual topology, rather than the

Zariski topology. An analytic subset of U is a subset S ⊆ U defined by the vanishing

of a finite number of holomorphic functions on U . The restriction to S of the sheaf OU

of holomorphic functions on U is a sheaf of rings OS on S. We define a (complex)

analytic variety to be a ringed space (X, OX) such that X is Hausdorff, and (X, OX)
is locally isomorphic to (S, OS) for analytic subsets S ⊆ U ⊆ Cm. Here sheaves and

ringed spaces are defined in Definition 5.8.8.

We call a point x ∈ X nonsingular if (X, OX) is locally isomorphic to (Ck, OCk)
near x, where k is the dimension of X near x. We call x singular if it is not nonsingular.

If X contains no singular points then it is a complex manifold. Otherwise it is a singular

complex manifold. For more information about analytic varieties, see [132, p. 12–14].

Complex algebraic varieties are examples of complex analytic varieties. Conversely,

complex analytic varieties are locally isomorphic to complex algebraic varieties, but not

necessarily globally isomorphic. All the ideas in the rest of this section work equally

well in the setting of algebraic varieties or analytic varieties, but we will only give

definitions for one of the two.

Now a singular point in a variety X is a point where the manifold structure of X
breaks down in some way. Given a singular variety X , it is an important problem in

algebraic geometry to understand how to repair the singularities of X , and make a new,

nonsingular variety X̃ closely related to X . There are two main strategies used to do

this, called resolution and deformation.

5.9.1 Resolutions of singular varieties
Definition 5.9.2 Let X be a singular variety. A resolution (X̃, π) of X is a normal,

nonsingular variety X̃ with a proper birational morphism π : X̃ → X . Here normal

varieties are defined by Griffiths and Harris [132, p. 177] and Iitaka [171, §2], and

proper morphisms by Hartshorne [149, p. 95–105]. From [149, p. 95], a morphism

f : X→Y of complex algebraic varieties is proper if it pulls back compact sets in Y to

compact sets in X , using the manifold topologies on X, Y , not the Zariski topologies.

This means that X̃ is a complex manifold, and the map π : X̃ → X is surjec-

tive. There are dense open sets of X and X̃ on which π is also injective, and in fact

biholomorphic. But if x is a singular point of X , then π−1(x) is in general a compact

subvariety of X̃ , rather than a single point. Often π−1(x) is a submanifold of X̃ , or a fi-

nite union of submanifolds. Thus, in a resolution we repair the singularities by replacing

each singular point by a submanifold, or more general subvariety.

One way to construct resolutions is to use a technique called blowing up, which we

define first for affine varieties.

Definition 5.9.3 Let X ⊂ C
m be an affine variety with affine coordinate ring A(X), let

Y be a closed subvariety of X , and let IY ⊂ A(X) be the ideal of functions in A(X)
that are zero on Y . Then IY is finitely generated, and we can choose a set of generators

f0, . . . , fn ∈ IY for IY . Define a map φ : X \Y → CPn by φ(x) = [f0(x), . . . , fn(x)].
The (algebraic) blow-up X̃ of X along Y is the closure in X ×CP

n of the graph of

φ, that is, X̃ =
{(

x, φ(x)
)

: x ∈ X \ Y
}
⊂ X × CP

n. The projection π : X̃ → X is
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the map π : (x, z) �→ x. Then X̃ is a variety, and π : X̃ → X is a birational morphism.

In a similar way, one can define the blow-up (X̃, π) of a general algebraic or analytic

variety X along a closed subvariety Y . For more information, see [132, p. 182, p. 602]

and [148, p. 82].

Here π : X̃ → X is surjective, and π : X̃ \ π−1(Y ) → X \ Y is an isomorphism.

The pull-back π−1(Y ) is a finite union of closed subvarieties of X̃ of codimension one,

called the exceptional divisor. If X is nonsingular and Y is a submanifold of X , then

π−1(Y ) is the projectivized normal bundle of Y in X . In particular, if Y is the single

point y, then π−1(y) is the complex projective space P (TyX).
Now suppose X is a singular variety, and let Y ⊂ X be the set of singular points

in X . Then Y is a finite union of subvarieties of X , and we can consider the blow-up

X̃ of X along Y . Although X̃ may not be nonsingular, it is a general principle that the

singularities of X̃ are usually of a less severe kind, and easier to resolve, than those of

X . Our next result, sometimes called the Resolution of Singularities Theorem, shows

that the singularities of any variety can be resolved by a finite number of blow-ups.

Theorem 5.9.4. (Hironaka [159]) Let X be a complex algebraic variety. Then there

exists a resolution π : X̃ → X , which is the result of a finite sequence of blow-ups

of X . That is, there are varieties X = X0, X1, . . . , Xn = X̃ , such that Xj is a blow-

up of Xj−1 along some subvariety, with projection πj : Xj → Xj−1, and the map

π : X̃ → X is π = π1 ◦ · · · ◦ πn.

5.9.2 Deformations of singular and nonsingular varieties
Definition 5.9.5 Let X be a complex analytic variety of dimension m. A 1-parameter

family of deformations of X is a complex analytic variety X of dimension m+1,

together with a proper holomorphic map f : X → ∆ where ∆ is the unit disc in C,

such that X0 = f−1(0) is isomorphic to X . The other fibres Xt = f−1(t) for t �= 0 are

called deformations of X .

If the deformations Xt are nonsingular for t �= 0, they are called smoothings of

X . By a small deformation of X we mean a deformation Xt where t is small. That

is, when we say something is true for all small deformations of X , we mean that in

any 1-parameter family of deformations {Xt : t ∈ ∆} of X , the statement holds for

all sufficiently small t. We say that X is rigid if all small deformations Xt of X are

biholomorphic to X .

We shall be interested in deformations of complex analytic varieties for two reasons.

Firstly, a singular variety X may admit a family of nonsingular deformations Xt. Thus,

as with resolutions, deformation gives a way of repairing the singularities of X to get a

nonsingular variety.

From the point of view of algebraic geometry, there is a big difference between res-

olution and deformation. If X is a singular variety and X̃ a resolution of X , then X and

X̃ are birationally equivalent, and share the same field of meromorphic functions. So

to algebraic geometers, who often try to classify varieties up to birational equivalence,

X and X̃ are nearly the same thing. But a variety X and its deformations Xt can be

algebraically very different.
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The second reason we will be interested in deformations is when we wish to describe

the family of all integrable complex structures upon a particular compact manifold, up

to isomorphism. Suppose that (X, J) is a compact complex manifold. Then all small de-

formations Xt of X are nonsingular, and are diffeomorphic to X as real manifolds. Thus

small deformations of X are equivalent to complex structures Jt on X that are close to

the complex structure J , in a suitable sense. So, to understand the local geometry of the

moduli space of complex structures on X , we need a way to study the collection of all

small deformations of a complex analytic variety.

Definition 5.9.6 Let X be a complex analytic variety. A family of deformations of

X consists of a (possibly singular) complex analytic variety T called the base space

containing a base point t0, and a complex analytic variety X with a flat holomorphic

map f : X → T , such that Xt0 = f−1(t0) is isomorphic to X . The other fibres

Xt = f−1(t0) are then deformations of X . Here flatness is a technical condition upon

morphisms of algebraic or analytic varieties defined in [149, §III.9]. It implies, in par-

ticular, that dimXt = dimX for all t ∈ T .

If (S, s0) is another complex analytic variety with base point and F : S → T is

a holomorphic map with F (s0) = t0, then we get an induced family of deformations

F ∗(X ) of X over S. A family of deformations of X is called versal or semi-universal

if any other family of small deformations of X can be induced from it by a suitable map

F . It is called universal if this map F is unique.

Note that some authors (e.g. Slodowy [315, p. 7]) define semi-universality differ-

ently, and distinguish between versal and semi-universal deformations. If {Xt : t ∈ T }
is a universal family of deformations of X , then every small deformation of X ap-

pears exactly once in the family. Thus the collection of all deformations of X is lo-

cally isomorphic to the base space T of the universal family, and has the structure of

a complex analytic variety. In particular, if (X, J) is a compact complex manifold and

{Xt : t ∈ T } is a universal family of deformations of (X, J), then the moduli space of

all complex structures Jt on X is locally isomorphic to T .

However, there exist compact complex manifolds (X, J) which have no universal

family of deformations. The moduli space of complex structures on X up to isomor-

phism has a natural topology. If this topology is not Hausdorff near J then (X, J)
cannot have a universal family of deformations, because the base space T would be

non-Hausdorff, contradicting its definition as a complex analytic variety.

Rather than working with moduli spaces of pathological topology, it is helpful in this

case to consider a versal family of deformations of X . In a versal family every small

deformation of X is represented at least once, but some may appear many times. Now

the theory of deformations of compact complex manifolds was developed by Kodaira,

Spencer and Kuranishi, and is described in Kodaira [217]. The main result in this theory

is that a versal family of deformations exists for any compact complex manifold, and

can be constructed using sheaf cohomology.

Let X be a compact complex manifold, and let ΘX be the sheaf of holomorphic

vector fields of X . Then the sheaf cohomology groups H∗(X, ΘX) are the cohomology

of the complex
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0 → C∞(T 1,0X) ∂̄−→C∞(T 1,0X ⊗ Λ0,1X) ∂̄−→C∞(T 1,0X ⊗ Λ0,2X) ∂̄−→· · · .

Here we interpret H1(X, ΘX) as the space of infinitesimal deformations of the

complex structure of X , and H2(X, ΘX) as the space of obstructions to lifting an in-

finitesimal deformation to an actual deformation of the complex structure of X . Ko-

daira, Spencer and Kuranishi prove that there is an open neighbourhood U of 0 in

H1(X, ΘX) and a holomorphic map Φ : U → H2(X, ΘX) with Φ(0) = dΦ(0) = 0,

such that T = Φ−1(0) is the base of a versal family of deformations of X , with base

point 0, called the Kuranishi family of X . The group H0(X, ΘX) also has an inter-

pretation as the Lie algebra of the group of holomorphic automorphisms of X , and if

H0(X, ΘX) = 0 then the Kuranishi family is universal.

5.10 Line bundles and divisors
Let M be a complex manifold. A holomorphic line bundle over M is a holomorphic

vector bundle with fibre C, the complex line. Holomorphic lines bundles are important

in algebraic geometry. If L, L′ and L′′ are holomorphic line bundles over M , then the

dual bundle L∗ and the tensor product L⊗L′ are also holomorphic line bundles. These

operations satisfy the equations L ⊗ L′ ∼= L′ ⊗ L, (L ⊗ L′) ⊗ L′′ ∼= L ⊗ (L′ ⊗ L′′),
and L ⊗ L∗ ∼= C̄, where C̄ is the trivial line bundle M × C.

Define PM to be the set of isomorphism classes of holomorphic line bundles over

M . From the equations above we see that PM is an abelian group, where multiplication

is given by the tensor product, inverses are dual bundles, and the identity is the trivial

bundle C̄. This group is called the Picard group of M . It can be identified with the sheaf

cohomology group H1(M, O∗) [132, p. 133], but we will not explain this.

Because of the group structure on PM , it is convenient to use a multiplicative nota-

tion for line bundles. Let M be a complex manifold, L a holomorphic line bundle over

M , and k ∈ Z. Then we write Lk =
⊗k

L if k > 0, Lk =
⊗−k

L∗ if k < 0, and

L0 = C̄. In particular, the dual L∗ is written L−1.

If M is a complex manifold of dimension m, then Λp,0M is a holomorphic vector

bundle with fibre dimension
(
m
p

)
. Thus, when p = m, the fibre of Λm,0M is C, and

Λm,0M is a holomorphic line bundle. This is called the canonical bundle of M , and is

written KM . It is the bundle of complex volume forms on M , and is an important tool

in algebraic geometry.

Let L be a holomorphic line bundle over a complex manifold M . The first Chern

class c1(L) of L is a topological invariant of L called a characteristic class, which lies

in the cohomology group H2(M, Z). Characteristic classes are described in [261]. The

first Chern class classifies line bundles as smooth vector bundles. It satisfies

c1(L∗) = −c1(L) and c1(L ⊗ L′) = c1(L) + c1(L′).

Thus c1 : PM → H2(M, Z) is a homomorphism of abelian groups.

Let M be a complex manifold, and L a holomorphic line bundle over M . For each

open set U ⊂ M , define OL(U) to be the vector space of holomorphic sections of L
over U , and if U, V are open in M with U ⊂ V , let rV,U : OL(V ) → OL(U) be

the restriction map. Then OL is a sheaf of groups over M , the sheaf of holomorphic

sections of L. Now we describe the line bundles over the projective space CP
m.
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Example 5.10.1 Recall that in Example 5.1.1, CPm was defined to be the set of one-

dimensional vector spaces of C
m+1. Define the tautological line bundle L−1 over CP

m

to be the subbundle of the trivial bundle CP
m × C

m+1, whose fibre at x ∈ CP
m is the

line in Cm+1 represented by x. Then L−1 is a vector bundle over CPm with fibre C.

The total space of L−1 is a complex submanifold of CP
m×C

m+1, and has the structure

of a complex manifold. Thus, L−1 is a holomorphic line bundle over CPm.

Define L to be the dual of L−1. Then L is a holomorphic line bundle over CP
m,

called the hyperplane bundle. So, Lk is a holomorphic line bundle over CP
m for each

k ∈ Z. It can be shown [132, p. 145] that every holomorphic line bundle over CPm

is isomorphic to Lk for some k ∈ Z. There is an isomorphism H2(CP
m, Z) ∼= Z,

and making this identification we find that c1(Lk) = k ∈ Z. Thus c1 : PCPm →
H2(CPm, Z) ∼= Z is a group isomorphism. The canonical bundle KCPm of CPm is

isomorphic to L−m−1.

The sheaf of holomorphic sections OLk of Lk over CPm is written O(k). (Also,

by an abuse of notation, O(k) often denotes the line bundle Lk.) The vector space of

holomorphic sections of Lk is H0(CP
m, O(k)), in the notation of sheaf cohomology.

If k < 0 then H0(CPm, O(k)) is zero, and if k � 0 it is canonically identified with

the set of homogeneous polynomials of degree k on C
m+1, which is a vector space of

dimension
(
m+k

m

)
.

Let M be a compact complex manifold, and L a holomorphic line bundle over M .

Let V be the vector space H0(M, OL) of holomorphic sections of L over M . Then V
is a finite-dimensional vector space over C, of dimension m + 1, say. For each point

p ∈ M , define a map φp : V → Lp by φp(s) = s(p). Then φp is linear, so that

φp ∈ V ∗ ⊗ Lp. Define p to be a base point of L if φp = 0, and let B ⊂ M be the

set of base points of L. Then if p ∈ M \ B, then φp is nonzero in V ∗ ⊗ Lp, and

thus [φp] ∈ P (V ∗ ⊗ Lp).
But L is a line bundle, so Lp

∼= C as complex vector spaces. Therefore the projective

spaces P (V ∗) and P (V ∗ ⊗ Lp) are naturally isomorphic, and we can regard [φp] as a

point in P (V ∗). So, define a map ιL : M \ B → P (V ∗) by ιL(p) = [φp]. Now P (V ∗)
is a complex projective space CP

m, and thus a complex manifold, and B is closed in

M , so that M \B is also a complex manifold. It is easy to show that ιL : M \B → CPm

is a holomorphic map of complex manifolds. When L = Kr
M , a power of the canonical

bundle, the maps ιKr
M

are called the pluricanonical maps, and are important in algebraic

geometry.

A line bundle L over a compact complex manifold M is called very ample if L
has no base points in M , and the map ιL : M → CPm is an embedding of M in

CP
m. Also, L is called ample if Lk is very ample for some k > 0. Thus, if L is very

ample, then ιL identifies M with a complex submanifold of CP
m, its image ιL(M).

Now by Chow’s Theorem [132, p. 167], every compact complex submanifold of CPm

is a nonsingular projective variety. Thus, if M is a compact complex manifold with an

ample line bundle, then M is a projective variety.

The remarkable Kodaira Embedding Theorem [132, p. 181] gives a simple criterion

for a holomorphic line bundle L over a compact complex manifold M to be ample. A

line bundle L is called positive if its first Chern class c1(L) can be represented, as a
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de Rham cohomology class, by a closed (1, 1)-form α which is positive in the sense of

§5.4. The Kodaira Embedding Theorem says that L is ample if and only if it is positive.

Therefore, a compact complex manifold with a positive line bundle is a projective vari-

ety. Because of this, many problems on compact complex and Kähler manifolds become

problems about projective varieties, and can be attacked algebraically.

5.10.1 Divisors
Now we shall explore the connections between line bundles and divisors, which are

formal sums of hypersurfaces in complex manifolds.

Definition 5.10.2 Let M be a complex manifold. A closed subset N ⊂ M is said to be

a hypersurface in M if for each p ∈ N there is an open neighbourhood U of p in M and

a nonzero holomorphic function f : U → C, such that N ∩ U =
{
u ∈ U : f(u) = 0

}
.

A hypersurface N ⊂ M is called irreducible if it is not the union of two hypersurfaces

N1, N2 with N1, N2 �= N .

In general, a hypersurface N ⊂ M is a singular submanifold of M , of codimension

one. Every hypersurface in M can be written uniquely as a union of irreducible hyper-

surfaces, and if M is compact then this union is finite. Suppose now that M is a complex

manifold, L a holomorphic line bundle over M , and s a nonzero holomorphic section

of L. Define N ⊂ M to be the set
{
m ∈ M : s(m) = 0

}
. Then N is a hypersurface in

M . Thus, there is a link between holomorphic line bundles, holomorphic sections, and

hypersurfaces. To render this link more explicit, we make another definition.

Definition 5.10.3 Let M be a complex manifold. An irreducible hypersurface N ⊂ M
is called a prime divisor on M . A divisor D on M is a locally finite formal linear combi-

nation D =
∑

i aiNi, where ai ∈ Z, and each Ni is a prime divisor. Here ‘locally finite’

means that each compact subset of M meets only a finite number of the hypersurfaces

Ni. The divisor D is called effective if ai � 0 for all i.

Suppose as before that M is a complex manifold, L a holomorphic line bundle over

M , and s a nonzero holomorphic section of L. Let N be the hypersurface N =
{
m ∈

M : s(m) = 0
}

. Then N may be written in a unique way as a locally finite union

N =
⋃

i Ni, where the Ni are prime divisors. For each i, there is a unique positive

integer ai, such that s vanishes to order ai along Ni. Define D =
∑

i aiNi. Then D is

an effective divisor. In this way, whenever we have a nonzero holomorphic section of a

holomorphic line bundle over M , we construct an effective divisor on M .

This construction is reversible, in the following sense. Suppose that L1, L2 are holo-

morphic line bundles over M , and s1, s2 are nonzero holomorphic sections of L1, L2

respectively. Let D1, D2 be the effective divisors constructed from s1, s2. It can be

shown that D1 = D2 if and only if there exists an isomorphism φ : L1 → L2 of holo-

morphic line bundles, such that φ(s1) = s2, and the isomorphism φ is then unique.

Moreover, if D is an effective divisor on M , then there exists a holomorphic line bundle

L over M , and a nonzero holomorphic section s of L, that yields the divisor D.

Thus there is a 1-1 correspondence between effective divisors on M , and isomor-

phism classes of holomorphic line bundles equipped with nonzero holomorphic sec-

tions. In the same way, there is a 1-1 correspondence between divisors on M , and iso-
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morphism classes of line bundles equipped with nonzero meromorphic sections. In this

case, the divisor
∑

i aiNi corresponds to a section s with a zero of order ai along Ni if

ai > 0, and a pole of order −ai along Ni if ai < 0.

Let M be a compact complex manifold of complex dimension m, and L a holomor-

phic line bundle over M , with a nonzero meromorphic section associated to a divisor

D. Then D =
∑

i aiNi defines a homology class [D] =
∑

i ai[Ni] ∈ H2m−2(M, Z).
Under the natural isomorphism H2(M, Z) ∼= H2m−2(M, Z), this homology class is

identified with c1(L), the first Chern class of L. This gives one way to understand c1(L).
Here is a result on the topology of a hypersurface N in M associated to a positive

line bundle L.

Theorem 5.10.4. (Lefschetz Hyperplane Theorem) Let M be a compact complex

m-manifold, N a nonsingular hypersurface in M , and L the holomorphic line bundle

over M associated to the divisor N . Suppose L is positive. Then

(a) the map Hk(M, C) → Hk(N, C) induced by the inclusion N ↪→ M is an iso-

morphism for 0 � k � m − 2 and injective for k = m − 1, and

(b) the map of homotopy groups πk(N) → πk(M) induced by the inclusion N ↪→ M
is an isomorphism for 0 � k � m − 2 and surjective for k = m − 1.

The result also holds if M and N are orbifolds instead of manifolds, and N is a non-

singular hypersurface in the orbifold sense.

This is known as the Lefschetz Hyperplane Theorem, as we can take M to be a

submanifold of CP
n and L the restriction to M of the line bundle O(1) over CP

n, and

then N is the intersection of M with a hyperplane H in CPn. Part (a) is proved in

Griffiths and Harris [132, p. 156] for complex manifolds, and rather more general and

complicated versions of (b) are proved by Goresky and MacPherson [129, p. 153] and

Hamm [147], in which M, N can be singular complex varieties, not just orbifolds.



6
The Calabi Conjecture

Let (M, J) be a compact, complex manifold, and g a Kähler metric on M , with Ricci

form ρ. From §5.6 we know that ρ is a closed (1,1)-form and [ρ] = 2π c1(M) in

H2(M, R). It is natural to ask which closed (1,1)-forms can be the Ricci forms of a

Kähler metric on M . The Calabi Conjecture [67, 68] answers this question.

The Calabi Conjecture. Let (M, J) be a compact, complex manifold, and g a Kähler

metric on M , with Kähler form ω. Suppose that ρ′ is a real, closed (1, 1)-form on M
with [ρ′] = 2π c1(M). Then there exists a unique Kähler metric g′ on M with Kähler

form ω′, such that [ω′] = [ω] ∈ H2(M, R), and the Ricci form of g′ is ρ′.

The conjecture was posed by Calabi in 1954, who also showed that if g′ exists it

must be unique. It was eventually proved by Yau in 1976, [344,345]. Before this, Aubin

[15] had made significant progress towards a proof. In this chapter we will give a proof

of the Calabi Conjecture that broadly follows Yau’s own proof, with some differences.

My main references were Yau’s paper [345], and the treatment given in Aubin’s book

[16, §7]. The proof is also explained, in French, by Bourguignon et al. [42].

In §6.1 the Calabi Conjecture is reformulated as a nonlinear, elliptic partial differ-

ential equation in a real function φ. Section 6.2 states four results, Theorems C1–C4,

and then proves the Calabi Conjecture assuming these theorems. After some prepara-

tory work in §6.3, Theorems C1–C4 are proved in §6.4–§6.7 respectively, and the proof

of the Calabi Conjecture is complete. Finally, section 6.8 discusses some analytic issues

from the proof.

The proof of the Calabi Conjecture is very important in the subject of Riemannian

holonomy groups, for the following reason. Suppose M is a compact Kähler manifold

with c1(M) = 0. Then we may choose the 2-form ρ′ in the Calabi Conjecture to be

zero, and so the proof of the conjecture guarantees the existence of a Kähler metric g′

on M with zero Ricci form. Thus, we construct families of Ricci-flat Kähler metrics on

compact complex manifolds.

Now from §3.4.1, a generic Kähler metric g has Hol0(g) = U(m), but if g is Ricci-

flat then Hol0(g) ⊆ SU(m). If g is irreducible, Berger’s Theorem implies that either

Hol0(g) = SU(m), or m = 2k and Hol0(g) = Sp(k). Therefore, the Calabi Conjec-

ture proof yields examples of compact Riemannian manifolds with holonomy SU(m)
and Sp(k). These manifolds, called Calabi–Yau manifolds and hyperkähler manifolds

respectively, will be the subjects of Chapters 7 and 10.
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There are other applications of the proof of the Calabi Conjecture which we shall

not discuss; for instance, it can be used to find Kähler metrics with positive or negative

definite Ricci curvature on some compact complex manifolds M , and this has conse-

quences for the fundamental group π1(M), and the group of biholomorphisms of M .

There are also results on the existence of Kähler–Einstein metrics on complex mani-

folds that are closely related to the Calabi Conjecture proof. For more information on

these topics, see Besse [30, §11].

6.1 Reformulating the Calabi Conjecture

We shall rewrite the Calabi Conjecture in terms of a partial differential equation. Let

(M, J) be a compact, complex manifold, g a Kähler metric on M with Kähler form

ω, and ρ the Ricci form of g. Let ρ′ be a real, closed (1,1)-form on M with [ρ′] =
2π c1(M). To solve the Calabi Conjecture we must find a Kähler metric g′, with Kähler

form ω′, such that [ω] = [ω′] and g′ has Ricci form ρ′.
As [ρ′] = 2π c1(M) = [ρ] we have [ρ′ − ρ] = 0 in H2(M, R), so by the proof

of Lemma 5.5.1 there exists a smooth real function f on M , unique up to addition of

a constant, such that ρ′ = ρ − 1
2ddcf . Define a smooth, positive function F on M by

(ω′)m = F · ωm. Using eqns (5.6) and (5.7) of §5.6 we deduce that 1
2ddc(log F ) =

ρ − ρ′ = 1
2ddcf . Thus ddc(f − log F ) = 0, so that f − log F is constant on M .

Define A > 0 by f − log F = − log A. Then F = Aef , and g′ must satisfy

(ω′)m = Aefωm. (6.1)

As [ω′] = [ω] ∈ H2(M, R), and M is compact, we see that
∫

M (ω′)m =
∫

M ωm.

Substituting (6.1) in and applying (5.4), we deduce that

A

∫
M

efdVg =
∫

M

dVg = volg(M), (6.2)

where dVg is the volume form on M induced by g, and volg(M) the volume of M with

this volume form. This determines the constant A.

Note that in this book, all manifolds are by definition assumed to be connected. If

M were not connected then we would have to choose a different constant A for each

connected component of M . We have shown that the Calabi Conjecture is equivalent to

the following:

The Calabi Conjecture (second version). Let (M, J) be a compact, complex mani-

fold, and g a Kähler metric on M , with Kähler form ω. Let f be a smooth real function

on M , and define A > 0 by A
∫

M efdVg = volg(M). Then there exists a unique

Kähler metric g′ on M with Kähler form ω′, such that [ω′] = [ω] ∈ H2(M, R),
and (ω′)m = Aefωm.

Here is a way to understand this. The conjecture is about the existence of metrics

with prescribed volume forms. Every volume form on M may be written as FdVg , for

F a smooth real function. We impose two conditions on this volume form: firstly that

it should be positive, so that F > 0, and secondly that it should have the same total

volume as dVg , so that
∫

M FdVg =
∫

M dVg . Then the Calabi Conjecture says that
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there is a unique Kähler metric g′ with the same Kähler class, such that dVg′ = FdVg ,

that is, with the chosen volume form.

This is in fact a considerable simplification. The first statement of the conjecture

prescribed the Ricci curvature of g′, which depends on g′ and its second derivatives,

and was in effect m2 real equations on g′. But this second statement depends only on

g′, not on its derivatives, and imposes only one real equation on g′.
Next, observe that as [ω′] = [ω], by Lemma 5.5.1 there exists a smooth real function

φ on M , unique up to addition of a constant, such that

ω′ = ω + ddcφ. (6.3)

Suppose also that φ satisfies the equation
∫

M
φdVg = 0. This then specifies φ uniquely.

So, we deduce that the Calabi Conjecture is equivalent to the following:

The Calabi Conjecture (third version). Let (M, J) be a compact, complex manifold,

and g a Kähler metric on M , with Kähler form ω. Let f be a smooth real function on

M , and define A > 0 by A
∫

M
efdVg = volg(M). Then there exists a unique smooth

real function φ such that

(i) ω + ddcφ is a positive (1, 1)-form,

(ii)
∫

M
φdVg = 0, and

(iii) (ω + ddcφ)m = Aefωm on M .

Moreover, part (iii) is equivalent to the following:

(iii)′ Choose holomorphic coordinates z1, . . . , zm on an open set U in M . Then gαβ̄

may be interpreted as an m × m Hermitian matrix indexed by α, β̄ = 1, 2, . . . , m
in U . The condition on φ is

det
(

gαβ̄ +
∂2φ

∂zα∂z̄β̄

)
= Aef det

(
gαβ̄

)
. (6.4)

For part (iii)′, eqn (6.3) gives g′
αβ̄

= gαβ̄ + ∂α∂̄β̄φ, and the result follows from

eqn (5.6) of §5.6. Equation (6.4) is a nonlinear, elliptic, second-order partial differential

equation in φ, of a kind known as a Monge–Ampère equation. We have reduced the

Calabi Conjecture to a problem in analysis, that of showing that a particular p.d.e. has a

unique, smooth solution.

The difficulty of the Calabi Conjecture, and the reason it took twenty years to com-

plete, is that nonlinear equations in general are difficult to solve, and the nonlinearities

of (6.4) are of a particularly severe kind, as they are nonlinear in the derivatives of

highest order.

In fact part (i) follows from part (iii), as the following lemma shows.

Lemma 6.1.1 Let (M, J) be a compact, complex manifold, and g a Kähler metric on

M , with Kähler form ω. Let f ∈ C0(M), and define A by A
∫

M efdVg = volg(M).
Suppose φ ∈ C2(M) satisfies the equation (ω + ddcφ)m = Aefωm on M . Then

ω + ddcφ is a positive (1, 1)-form.

Proof Choose holomorphic coordinates z1, . . . , zm on a connected open set U in M .

Then in U , the new metric g′ is g′
αβ̄

= gαβ̄ + ∂2φ/∂zα∂z̄β̄ . As usual, we may interpret
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g′αβ̄ as an m × m Hermitian matrix indexed by α, β̄ = 1, 2, . . . , m in U . A Hermitian

matrix has real eigenvalues. From §5.4, ω + ddcφ is a positive (1,1)-form if and only if

g′ is a Hermitian metric, that is, if and only if the eigenvalues of the matrix g′αβ̄ are all

positive.

But from (6.4), det(g′αβ̄) > 0 on U , so g′αβ̄ has no zero eigenvalues. Therefore by

continuity of g′αβ̄ , if the eigenvalues of g′αβ̄ are positive at some point p ∈ U then they

are positive everywhere in U . So by covering M with such open sets U and using the

connectedness of M , we can show that if ω + ddcφ is positive at some point p ∈ M ,

then it is positive on all of M .

Since M is compact and φ is continuous, φ has a minimum on M . Let p ∈ M
be a minimum point of φ, and U a coordinate patch containing p. It is easy to show

that at p the matrix ∂2φ/∂zα∂z̄β̄ has nonnegative eigenvalues, and so g′αβ̄ has positive

eigenvalues at p. Thus ω + ddcφ is positive at p, and everywhere on M . �

6.2 Overview of the proof of the Calabi Conjecture

We begin by stating four results, Theorems C1–C4, which will be proved later in the

chapter. These are the four main theorems which make up our proof of the Calabi Con-

jecture. After this, we will prove the Calabi Conjecture assuming Theorems C1–C4, and

make some comments on the proof.

Theorem C1 Let (M, J) be a compact, complex manifold, and g a Kähler metric on

M , with Kähler form ω. Let Q1 � 0. Then there exist Q2, Q3, Q4 � 0 depending only

on M, J, g and Q1, such that the following holds.

Suppose f ∈ C3(M), φ ∈ C5(M) and A > 0 satisfy the equations

‖f‖C3 � Q1,

∫
M

φdVg = 0, and (ω + ddcφ)m = Aefωm.

Then ‖φ‖C0 � Q2, ‖ddcφ‖C0 � Q3 and ‖∇ddcφ‖C0 � Q4.

Theorem C2 Let (M, J) be a compact, complex manifold, and g a Kähler metric on

M , with Kähler form ω. Let Q1, . . . , Q4 � 0 and α ∈ (0, 1). Then there exists Q5 � 0
depending only on M, J, g, Q1, . . . , Q4 and α, such that the following holds.

Suppose f ∈ C3,α(M), φ ∈ C5(M) and A > 0 satisfy (ω + ddcφ)m = Aefωm

and the inequalities

‖f‖C3,α � Q1, ‖φ‖C0 � Q2, ‖ddcφ‖C0 � Q3 and ‖∇ddcφ‖C0 � Q4.

Then φ ∈ C5,α(M) and ‖φ‖C5,α � Q5. Also, if f ∈ Ck,α(M) for k � 3 then

φ ∈ Ck+2,α(M), and if f ∈ C∞(M) then φ ∈ C∞(M).

Theorem C3 Let (M, J) be a compact complex manifold, and g a Kähler metric on

M , with Kähler form ω. Fix α ∈ (0, 1), and suppose that f ′ ∈ C3,α(M), φ′ ∈
C5,α(M) and A′ > 0 satisfy the equations∫

M

φ′ dVg = 0 and (ω + ddcφ′)m = A′ef ′
ωm.
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Then whenever f ∈ C3,α(M) and ‖f − f ′‖C3,α is sufficiently small, there exist φ ∈
C5,α(M) and A > 0 such that∫

M

φdVg = 0 and (ω + ddcφ)m = Aefωm.

Theorem C4 Let (M, J) be a compact complex manifold, and g a Kähler metric on

M , with Kähler form ω. Let f ∈ C1(M). Then there is at most one function φ ∈
C3(M) such that

∫
M

φdVg = 0 and (ω + ddcφ)m = Aefωm on M .

Here are some remarks on these results. The positive constants A, A′ above are

determined entirely by f, f ′ using (6.2). Theorem C1 is due to Yau [345, §2]. Results

of this type are called a priori estimates, because it tells us in advance (a priori) that any

solution to a given equation must satisfy a certain bound. Finding such a priori estimates

was the most difficult part of the Calabi Conjecture, and was Yau’s biggest contribution

to the proof.

As eqn (6.4) is a nonlinear, elliptic p.d.e., we can draw on the fruit of decades of hard

work on the properties of solutions of elliptic equations. Theorem C2 uses results about

the differentiability of solutions of elliptic equations, and Theorem C3 uses results on

the existence of solutions of elliptic equations. Theorem C4 shows that if φ exists, then

it is unique. It has an elementary proof found by Calabi [68, p. 86]. Broadly speaking,

Theorems C1–C3 concern the existence of the function φ, Theorem C2 is about the

smoothness of φ, and Theorem C4 is about the uniqueness of φ. Using Theorems C1–

C4 we now prove the Calabi Conjecture.

6.2.1 The proof of the Calabi Conjecture
We start with a definition, the purpose of which will become clear soon.

Definition 6.2.1 Let (M, J) be a compact complex manifold, and g a Kähler metric on

M , with Kähler form ω. Fix α ∈ (0, 1) and f ∈ C3,α(M). Define S to be the set of all

t ∈ [0, 1] for which there exists φ ∈ C5,α(M) with
∫

M φdVg = 0 and A > 0, such that

(ω + ddcφ)m = Aetfωm on M .

Now, using Theorems C1 and C2 we will show that this set S is closed, and using

Theorem C3 we will show that S is open.

Theorem 6.2.2 In Definition 6.2.1, the set S is a closed subset of [0, 1].

Proof It must be shown that S contains its limit points, and therefore is closed. Let

{tj}∞j=0 be a sequence in S, which converges to some t′ ∈ [0, 1]. We will prove that

t′ ∈ S. Since tj ∈ S, by definition there exists φj ∈ C5,α(M) and Aj > 0 such that∫
M

φj dVg = 0 and (ω + ddcφj)m = Ajetjfωm. (6.5)

Define Q1 by Q1 = ‖f‖C3,α . Let Q2, Q3, Q4 be the constants given by Theorem

C1, which depend on Q1, and Q5 the constant given by Theorem C2, which depends

on Q1, . . . , Q4.

As tj ∈ [0, 1], ‖tjf‖C3 � Q1. So, applying Theorem C1 with φj in place of φ and

tjf in place of f , we see that ‖φj‖C0 � Q2, ‖ddcφj‖C0 � Q3 and ‖∇ddcφj‖C0 � Q4



OVERVIEW OF THE PROOF OF THE CALABI CONJECTURE 105

for all j. Thus, by Theorem C2, φj ∈ C5,α(M) and ‖φj‖C5,α � Q5 for all j. Now the

Kondrakov Theorem, Theorem 1.2.3, says that the inclusion C5,α(M) → C5(M) is

compact, in the sense of Definition 1.2.2. It follows that as the sequence {φj}∞j=0 is

bounded in C5,α(M), it lies in a compact subset of C5(M). Therefore there exists a

subsequence {φij}∞j=0 which converges in C5(M). Let φ′ ∈ C5(M) be the limit of

this subsequence.

Define A′ > 0 by A′ ∫
M

et′fdVg = volg(M). Then Aij → A′ as j → ∞, because

tij → t′ as j → ∞. Since {φij}∞j=0 converges in C2 we may take the limit in (6.5),

giving ∫
M

φ′ dVg = 0 and (ω + ddcφ′)m = A′et′fωm. (6.6)

Theorems C1 and C2 then show that φ′ ∈ C5,α(M). Therefore t′ ∈ S. So S contains

its limit points, and is closed. �

Theorem 6.2.3 In Definition 6.2.1, the set S is an open subset of [0, 1].

Proof Suppose t′ ∈ S. Then by definition there exist φ′ ∈ C5,α(M) with
∫

M φ′ dVg =
0 and A′ > 0, such that (ω + ddcφ′)m = A′et′fωm on M . Apply Theorem C3, with

t′f in place of f ′, and tf in place of f , for t ∈ [0, 1]. The theorem shows that whenever

|t − t′| · ‖f‖C3,α is sufficiently small, there exist φ ∈ C5,α(M) and A > 0 such that∫
M φdVg = 0 and (ω + ddcφ)m = Aetfωm.

But then t ∈ S. Thus, if t ∈ [0, 1] is sufficiently close to t′ then t ∈ S, and S contains

an open neighbourhood in [0, 1] of each t′ in S. So S is open. �

Using Lemma 6.1.1 and Theorems 6.2.2 and 6.2.3 we shall prove an existence result

for the function φ. Notice that parts (i)–(iii) come from the third version of the Calabi

Conjecture.

Theorem 6.2.4 Let (M, J) be a compact complex manifold, and g a Kähler metric on

M with Kähler form ω. Choose α ∈ (0, 1), and let f ∈ C3,α(M). Then there exist

φ ∈ C5,α(M) and A > 0 such that

(i) ω + ddcφ is a positive (1, 1)-form,

(ii)
∫

M
φdVg = 0, and

(iii) (ω + ddcφ)m = Aefωm on M .

Proof Theorems 6.2.2 and 6.2.3 imply that S is an open and closed subset of [0, 1].
Since [0, 1] is connected, either S = ∅ or S = [0, 1]. But when t = 0, the function

φ ≡ 0 satisfies the conditions in Definition 6.2.1, so that 0 ∈ S. Thus S cannot be

empty, and S = [0, 1]. It follows that 1 ∈ S. So, setting t = 1, there exist φ ∈ C5,α(M)
with

∫
M

φdVg = 0 and A > 0 such that (ω + ddcφ)m = Aefωm on M . Therefore

parts (ii) and (iii) of the theorem hold for φ. By Lemma 6.1.1, part (i) holds as well.

This completes the proof. �

Finally, using Theorem 6.2.4 and Theorems C2 and C4, we show:

Theorem 6.2.5 The Calabi Conjecture is true.
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Proof Suppose (M, J) is a compact, complex manifold, and g a Kähler metric on M ,

with Kähler form ω. Let f ∈ C∞(M). Then Theorem 6.2.4 constructs φ ∈ C5,α(M)
and A > 0 for which conditions (i)–(iii) of the third version of the Calabi Conjecture

hold. Theorems C2 and C4 show that φ is smooth and unique. This proves the third

version of the Calabi Conjecture. �

6.2.2 The continuity method
The idea used in the proofs above is known as the continuity method, and it works like

this. The goal is to prove that a particular nonlinear equation, in our case the equation

(ω + ddcφ)m = Aefωm,

has a solution φ. The first step is to think of a similar equation which we already know

has a solution. In this case we choose the equation

(ω + ddcφ)m = ωm,

which has the obvious solution φ = 0.

The second step is to write down a 1-parameter family of equations depending con-

tinuously on t ∈ [0, 1], such that when t = 0 the equation is the one we know has a

solution, and when t = 1 the equation is the one which must be solved. In our case this

family of equations is

(ω + ddcφt)m = Atetfωm.

To complete the proof one must show that the set S of t ∈ [0, 1] for which the cor-

responding equation has a solution φt, is both open and closed in [0, 1]. For then, as

the equation is soluble when t = 0, it is also soluble when t = 1 by the argument in

Theorem 6.2.4, which is what we want.

Here are two standard arguments that are used to show S is open and closed. To

show S is open, suppose that t′ ∈ S, so a solution φt′ exists. Then, one tries to show that

when t is close to t′ in [0, 1], there is a solution φt that is close to φt′ (in some Banach

space). To do this it is usually enough to consider the linearization of the equation about

φt′ , which simplifies the problem.

To show S is closed, one shows that S contains its limit points. Suppose {tj}∞j=0 is a

sequence in S that converges to t′. Then there is a corresponding sequence of solutions

{φtj}∞j=0. Now by establishing a priori bounds on all solutions φt in some Banach

norm, it may be possible to show that they lie in some compact subset in a Banach

space. If this is so, the sequence {φtj}∞j=0 contains a convergent subsequence. One then

shows that the limit of this subsequence is a solution φt′ for t = t′, so t′ ∈ S, and S is

closed. This is the continuity method.

6.3 Calculations at a point

Let (M, J) be a compact, complex manifold of dimension m, and g a Kähler metric on

M with Kähler form ω. Let f ∈ C0(M), φ ∈ C2(M) and A > 0. Set ω′ = ω + ddcφ,

and suppose (ω′)m = Aefωm on M . Lemma 6.1.1 then shows that ω′ is a real, positive

(1,1)-form, which therefore determines a Kähler metric g′. Let p be a point in M . In
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this section we shall find expressions for ω and ω′ at p, and derive several inequalities

that will be useful later.

Lemma 6.3.1 In the situation above there are holomorphic coordinates z1, . . . , zm on

M near p, such that g, g′, ω and ω′ are given at p by

gp = 2|dz1|2 + · · · + 2|dzm|2, g′p = 2a1|dz1|2 + · · · + 2am|dzm|2, (6.7)

ωp = i(dz1 ∧ dz̄1 + · · · + dzm ∧ dz̄m),
and ω′

p = i(a1dz1 ∧ dz̄1 + · · · + amdzm ∧ dz̄m),
(6.8)

where a1, . . . , am are positive real numbers.

Proof Since T
(1,0)
p M is isomorphic to Cm as a complex vector space, if we fix a basis

for T
(1,0)
p M over C, then we may regard (gp)αβ̄ and (g′p)αβ̄ as invertible, Hermitian m×

m complex matrices. By elementary linear algebra, using simultaneous diagonalization,

one can choose a basis (v1, . . . , vm) for TpM over C with respect to which

(gp)αβ̄ =

{
1 if α = β̄,

0 if α �= β̄,
and (g′p)αβ̄ =

{
aj if α = β̄ = j,

0 if α �= β̄,
(6.9)

where a1, . . . , am are real numbers, and aj > 0 for j = 1, . . . , m as g′ is a metric.

Clearly, it is possible to find holomorphic coordinates z1, . . . , zm on M near p, such

that vj = ∂/∂zj at p. Equations (6.7) and (6.8) then follow immediately from (6.9) and

the equation ωac = Jb
agbc. �

Next, we relate a1, . . . , am to Aef and ∆φ. In order to be consistent with [345]

and [16], we define the Laplacian ∆ on a Kähler manifold by ∆φ = −gαβ̄∂α∂̄β̄φ. Be

warned that this is equal to half of the usual d-Laplacian on a Riemannian manifold.

Lemma 6.3.2 In the situation of the previous lemma, we have

m∏
j=1

aj = Aef(p),
∂2φ

∂zj∂z̄j
(p) = aj − 1 and (∆φ)(p) = m −

m∑
j=1

aj . (6.10)

Proof From (6.8) we see that ωm
p = imm! dz1 ∧dz̄1 ∧ · · · ∧dzm ∧ dz̄m and (ω′

p)
m =∏m

j=1 aj · imm! dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m. But (ω′)m = Aefωm, and therefore∏m
j=1 aj = Aef(p), the first equation of (6.10). As ω′ = ω + ddcφ, we have

(g′p)αβ̄ = (gp)αβ̄ +
∂2φ

∂zα∂z̄β̄

.

Putting α = β̄ = j and substituting (6.9) in gives the second equation of (6.10). Now

gαβ̄ is the inverse of gαβ̄ as an m × m matrix. Hence by (6.9), gαβ̄
p is 1 if α = β̄, and

0 otherwise. So, as ∆φ = −gαβ̄∂α∂̄β̄φ, the third equation of (6.10) follows from the

second. �
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Let T = T a1···ak
c1···cl

be a tensor and g a Riemannian metric on M . Define |T |g by

|T |2g = T a1···ak
c1···cl

T b1···bk

d1···dl
ga1b1 · · · gakbk

gc1d1 · · · gcldl . (6.11)

Using this notation, and the material of the previous two lemmas, the following result

is very easy, so we omit the proof.

Lemma 6.3.3 In the situation of Lemma 6.3.1, at p we have

|ddcφ|2g = 2
∑m

j=1(aj − 1)2, |g′ab|2g = 2
∑m

j=1 a2
j and |g′ab|2g = 2

∑m
j=1 a−2

j .

Here g′ab is the matrix inverse of g′ab in coordinates. Now we shall prove some

inequalities that will be useful in the next few sections.

Proposition 6.3.4 Let (M, J) be a compact, complex manifold and g a Kähler metric

on M , with Kähler form ω. Let f ∈ C0(M), φ ∈ C2(M) and A > 0. Set ω′ =
ω+ddcφ, suppose (ω′)m =Aefωm, and let g′ be the metric with Kähler form ω′. Then

∆φ � m − mA1/mef/m < m, (6.12)

and there are constants c1, c2 and c3 depending only on m and upper bounds for ‖f‖C0

and ‖∆φ‖C0 , such that∥∥g′ab

∥∥
C0 � c1,

∥∥g′ab
∥∥

C0 � c2 and
∥∥ddcφ

∥∥
C0 � c3. (6.13)

Here all norms are with respect to the metric g.

Proof Inequality (6.12) follows immediately from the first and last equations of (6.10),

and the fact that the geometric mean (a1 · · · am)1/m is less than or equal to the arith-

metic mean 1
m (a1 + · · · + am). As ∆φ(p) = m −

∑m
j=1 aj by (6.10), and the aj are

positive, from Lemma 6.3.3 one can show that at p, |ddcφ|2g � 2m + 2(m−∆φ)2, and∣∣g′ab

∣∣2
g

� 2(m − ∆φ)2. As these hold for all p ∈ M , the first and last inequalities of

(6.13) hold with constants c1, c3 depending only on m and ‖∆φ‖C0 .

Now if log A > − infM f then Aef > 1 on M , which contradicts the equation∫
M

AefdVg =
∫

M
dVg . Similarly log A < − supM f leads to a contradiction. Hence,

− supM f � log A � − infM f , and | log A| � ‖f‖C0 . It follows that

e−2‖f‖C0 � Aef � e2‖f‖C0 (6.14)

on M . Since
∏m

j=1 aj = Aef(p) by (6.10), we see that

a−1
j = A−1e−f(p)∏

1�k�m, j �=k ak.

Using (6.14) to estimate A−1e−f(p) and the inequality ak � m − ∆φ(p) derived from

the third equation of (6.10), we find that a−2
j � e4‖f‖C0

(
m − ∆φ(p)

)2m−2
. From this

and Lemma 6.3.3 the second inequality of (6.13) follows for some c2 depending on

m, ‖f‖C0 and ‖∆φ‖C0 , and the proof is complete. �
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This shows that an a priori bound for ∆φ yields a priori bounds for g′ and ddcφ.

Lemma 6.3.5 In the situation of Proposition 6.3.4, we have

dφ ∧ dcφ ∧ ωm−1 = 1
m |∇φ|2g ωm and dφ ∧ dcφ ∧ ωm−j−1∧ (ω′)j = Fj ωm

for j = 1, 2, . . . , m−1, where Fj is a nonnegative real function on M .

Proof We have dφ ∧ dcφ ∧ ωm−1 =
(
dφ ∧ dcφ, ∗(ωm−1)

)
dVg by properties of the

Hodge star. But ∗
(
ωm−1

)
= (m−1)! ω, and ωm = m! dVg by (5.4). Therefore

dφ ∧ dcφ ∧ ωm−1 =
(m−1)!

m!
(
dφ ∧ dcφ, ω

)
· ωm. (6.15)

Now (dcφ)a = −Jb
a(dφ)b, so (dφ ∧ dcφ, ω) = −(dφ)aJe

b (dφ)eωcdg
acgbd = |∇φ|2g ,

since −Je
b ωcdg

acgbd = gae. Substituting this into (6.15) gives the first equation.

The reason dφ ∧ dcφ ∧ ωm−1 is a nonnegative multiple of ωm is that ∗(ωm−1) is a

positive (1,1)-form, in the sense of §5.4. In the same way, if we can show ∗
(
ωm−j−1∧

(ω′)j
)

is a positive (1,1)-form, it will follow that dφ ∧ dcφ ∧ ωm−j−1 ∧ (ω′)j is a

nonnegative multiple of ωm, which is what we have to prove. But using (6.8) one can

readily show that ∗
(
ωm−j−1∧ (ω′)j

)
is positive, and the proof is finished. �

6.4 The proof of Theorem C1

We will now prove Theorem C1 of §6.2.

Theorem C1 Let (M, J) be a compact, complex manifold, and g a Kähler metric on

M , with Kähler form ω. Let Q1 � 0. Then there exist Q2, Q3, Q4 � 0 depending only

on M, J, g and Q1, such that the following holds.

Suppose f ∈ C3(M), φ ∈ C5(M) and A > 0 satisfy the equations

‖f‖C3 � Q1,

∫
M

φdVg = 0, and (ω + ddcφ)m = Aefωm.

Then ‖φ‖C0 � Q2, ‖ddcφ‖C0 � Q3 and ‖∇ddcφ‖C0 � Q4.

The result was first proved by Yau [345, Prop. 2.1]. Parts of the proof (in particular,

the a priori estimate of ‖φ‖C0 in §6.4.1) were simplified by Kazhdan, Bourguignon and

Aubin, and the treatment we will give is based on that in Aubin’s book [16, p. 260–267].

The way the proof works is to make a sequence of a priori estimates of φ in different

Banach norms. Each estimate depends on the previous estimate, and each estimate is

slightly stronger than the last.

First an estimate of ‖φ‖L2 is found. Then we show that an estimate of ‖φ‖Lp leads

to an estimate of ‖φ‖Lpε , where ε = m
m−1 , and so by an induction argument we estimate

‖φ‖Lp for all p. Taking the limit as p → ∞ yields an estimate for ‖φ‖C0 , proving the

first part of the theorem. Using this estimate we are then able to bound ‖∆φ‖C0 , and

from this we bound ‖ddcφ‖C0 . Finally we bound ‖∇ddcφ‖C0 and the theorem follows.

For the rest of this section, we study the following situation. Let M be a compact

Kähler manifold, with complex structure J , Kähler metric g and Kähler form ω. Let
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f ∈ C3(M) be a fixed function satisfying ‖f‖C3 � Q1, where Q1 is a given constant.

For simplicity we shall assume, by adding a constant to f if necessary, that
∫

M efdVg =
volg(M), so that the constant A is 1. (As A can be estimated in terms of ‖f‖C0 , this

assumption does not matter.) Let φ ∈ C5(M) satisfy the equations∫
M

φdVg = 0 and (ω + ddcφ)m = efωm,

define ω′ = ω + ddcφ, and let g′ be the associated Kähler metric.

6.4.1 Estimates of order zero
We begin with the following proposition.

Proposition 6.4.1 Let p > 1 be a real number. Then in the situation above,∫
M

∣∣∣∇|φ|p/2
∣∣∣2
g
dVg � mp2

4(p − 1)

∫
M

(1 − ef )φ|φ|p−2dVg. (6.16)

Proof As (ω′)m = efωm and ω − ω′ = −ddcφ, we see that

(1 − ef )ωm = ωm − (ω′)m = −ddcφ ∧
(
ωm−1 + · · · + (ω′)m−1

)
. (6.17)

Now M is compact, and so Stokes’ Theorem shows that∫
M

d
[
φ|φ|p−2dcφ ∧

(
ωm−1 + ωm−2 ∧ ω′ + · · · + (ω′)m−1

)]
= 0.

Expanding this equation, remembering that dω = dω′ = 0, and substituting in (6.17)

and the equation d
(
φ|φ|p−2

)
= (p − 1)|φ|p−2dφ, we find∫

M

φ|φ|p−2(1 − ef )ωm = (p − 1)
∫

M

|φ|p−2dφ ∧ dcφ

∧
(
ωm−1 + ωm−2 ∧ ω′ + · · · + (ω′)m−1

)
.

Now Lemma 6.3.5 gives expressions for dφ∧dcφ∧ωm−1 and dφ∧dcφ∧ωm−j−1∧
(ω′)j , and substituting these in shows that∫

M

(1 − ef )φ|φ|p−2ωm =
p − 1

m

∫
M

|φ|p−2
(
|∇φ|2g + F1 + · · · + Fm−1

)
ωm,

where F1, . . . , Fm−1 are nonnegative functions on M . Thus (5.4) yields∫
M

|φ|p−2
(
|∇φ|2g + F1 + · · · + Fm−1

)
dVg =

m

p − 1

∫
M

(1 − ef )φ|φ|p−2dVg.

Combining this with the equation 1
4p2|φ|p−2|∇φ|2g =

∣∣∇|φ|p/2
∣∣2
g

and the inequality

0 � |φ|p−2Fj gives (6.16), as we have to show. �
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For the rest of this section, let ε = m
m−1 . Next we prove

Lemma 6.4.2 There are constants C1, C2 depending on M, g, such that if ψ∈L2
1(M)

then ‖ψ‖2
L2ε �C1

(
‖∇ψ‖2

L2+‖ψ‖2
L2

)
, and if

∫
M ψ dVg =0 then ‖ψ‖L2 �C2‖∇ψ‖L2 .

Proof By the Sobolev Embedding Theorem, Theorem 1.2.1, L2
1(M) is continuously

embedded in L2ε(M), and the first inequality of the lemma easily follows. Now con-

sider the operator d∗d : C∞(M) → C∞(M). It is well-known that Ker(d∗d) is the

constant functions, and the nonzero eigenvalues of d∗d are positive and form a discrete

spectrum. Let λ1 > 0 be the smallest positive eigenvalue of d∗d. If ψ ∈ C∞(M) satis-

fies
∫

M ψdVg = 0, then ψ is L2-orthogonal to Ker(d∗d), so ψ is a sum of eigenvectors

of d∗d with eigenvalues not less than λ1.

It follows that 〈ψ, d∗dψ〉 � λ1〈ψ, ψ〉, so ‖dψ‖2
L2 � λ1‖ψ‖2

L2 by integration by

parts. As C∞(M) is dense in L2
1(M), this inequality extends to ψ ∈ L2

1(M), by conti-

nuity. Thus if ψ ∈ L2
1(M) and

∫
M

ψdVg = 0 then ‖ψ‖L2 � λ−1/2
1 ‖∇ψ‖L2 , giving the

second inequality of the lemma with C2 = λ−1/2
1 . �

In the next two results we find a priori estimates of ‖φ‖Lp for p ∈ [2, 2ε] and

p ∈ [2,∞) respectively.

Lemma 6.4.3 There is a constant C3 depending on M, g and Q1 such that if p ∈ [2, 2ε]
then ‖φ‖Lp � C3.

Proof Putting p = 2 in Proposition 6.4.1 and using the inequality |1 − ef | � eQ1 , we

see that ‖∇φ‖2
L2 � m eQ1‖φ‖L1 . As

∫
M φdVg = 0, Lemma 6.4.2 shows that ‖φ‖L2 �

C2‖∇φ‖L2 , and ‖φ‖L1 � volg(M)1/2‖φ‖L2 by Hölder’s inequality. Combining these

three shows that

‖∇φ‖2
L2 � m C2eQ1volg(M)1/2 · ‖∇φ‖L2,

and so ‖∇φ‖L2 � c, where c = m C2eQ1 volg(M)1/2. Therefore

‖φ‖L2 � c C2 and so ‖φ‖2
L2ε � C1

(
c2 + c2C2

2

)
,

using Lemma 6.4.2. Define C3 by C3 = max
(
c C2, c C

1/2
1 (1+C2

2 )1/2
)
. Then ‖φ‖L2 �

C3 and ‖φ‖L2ε � C3, so by Hölder’s inequality if p ∈ [2, 2ε] then ‖φ‖Lp � C3. �

Proposition 6.4.4 There are constants Q2, C4 depending on M, g and Q1 such that for

each p � 2, we have ‖φ‖Lp � Q2(C4p)−m/p.

Proof Define C4 = C1ε
m−1
(
m eQ1 + 1

2

)
> 0, and choose Q2 > 0 such that

Q2 � C3(C4p)m/p for 2 � p � 2ε, and

Q2 � (C4p)m/p for 2 � p < ∞.
(6.18)

Such a constant must exist, as limp→∞(C4p)m/p = 1.

We will prove the proposition by a form of induction on p. The first step is that if

p ∈ [2, 2ε], then ‖φ‖Lp � C3 by Lemma 6.4.3, and C3 � Q2(C4p)−m/p by the first

inequality of (6.18), and so ‖φ‖Lp � Q2(C4p)−m/p as we want. For the inductive step,

suppose that ‖φ‖Lp � Q2(C4p)−m/p holds for all p with 2 � p � k, where k � 2ε. We
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shall show that ‖φ‖Lq � Q2(C4q)−m/q holds for all q with 2 � q � εk, and therefore

by induction, the inequality holds for all p ∈ [2,∞).
Let p ∈ [2, k]. Then p2/4(p − 1) � p as p � 2, and since |1 − ef | � eQ1 we see

from Proposition 6.4.1 that
∥∥∇|φ|p/2

∥∥2
L2 � mp eQ1‖φ‖p−1

Lp−1 . Applying Lemma 6.4.2

with ψ = |φ|p/2 gives ‖φ‖p
Lεp � C1

(
‖∇|φ|p/2‖2

L2 + ‖φ‖p
Lp

)
. Combining these two

equations shows that

‖φ‖p
Lεp � mp C1eQ1‖φ‖p−1

Lp−1 + C1‖φ‖p
Lp .

Let q = εp. As p ∈ [2, k] we have ‖φ‖Lp � Q2(C4p)−m/p, and by the second part

of (6.18) we see that Q2(C4p)−m/p � 1, and thus

‖φ‖p
Lq � Qp

2(C4p)−m
(
mp C1eQ1 + C1

)
,

and also
(
Q2(C4q)−m/q

)p = Qp
2(C4pε)1−m.

However, as p � 2 the inequality mp C1eQ1 + C1 � C4pε1−m follows from the de-

finition of C4, so comparing the right hand sides of the above equations we see that

‖φ‖p
Lq �

(
Q2(C4q)−m/q

)p
, and therefore ‖φ‖Lq � Q2(C4q)−m/q. This holds for all

q ∈ [2ε, εk], and the inductive step is complete. �

Now we can prove the first part of Theorem C1.

Corollary 6.4.5 The function φ satisfies ‖φ‖C0 � Q2.

Proof As φ is continuous on a compact manifold, ‖φ‖C0 = limp→∞ ‖φ‖Lp . But

‖φ‖Lp � Q2(C4p)−m/p by Proposition 6.4.4, and limp→∞(C4p)−m/p = 1, so the

result follows. �

6.4.2 Second-order estimates
Here is some notation that will be used for the next calculations. We have two Kähler

metrics g and g′ on M . Let ∇ be the Levi-Civita connection of g. If T is a tensor on

M , we will write ∇a1···ak
T in place of ∇a1 · · · ∇ak

T , the kth derivative of T using ∇.

This notation will be used together with the notation for complex tensors introduced in

§5.2. Let Ra
bcd be the Riemann curvature of g. Also, for ψ ∈ C2(M), let ∆ψ be the

Laplacian of ψ with respect to g, and let ∆′ψ be the Laplacian of ψ with respect to g′.
Then in this notation,

∆ψ = −gαβ̄∇αβ̄ψ and ∆′ψ = −g′αβ̄∇αβ̄ψ.

The second formula defines the Laplacian with respect to g′ using the Levi-Civita con-

nection of g. It is valid because this component of ∇2ψ is independent of the choice of

Kähler metric.

Using this notation we shall prove:

Proposition 6.4.6 In the situation above, we have

∆′(∆φ) = −∆f + gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ

+ g′αβ̄gγδ̄
(
Rε̄

δ̄γβ̄∇αε̄φ − Rε̄
β̄αδ̄∇γε̄φ

)
.

(6.19)



THE PROOF OF THEOREM C1 113

Proof Taking the log of eqn (6.4) and applying ∇ gives ∇λ̄f = g′µν̄∇λ̄µν̄φ. There-

fore, as ∆f = −gαλ̄∇αλ̄f , we have

∆f = −gαλ̄(∇αg′µν̄)∇λ̄µν̄φ − gαλ̄g′µν̄∇αλ̄µν̄φ. (6.20)

But g′µβ̄g ′̄
βγ

= δµ
γ , and ∇αg ′̄

βγ
= ∇αβ̄γφ as g ′̄

βγ
= gβ̄γ + ∇β̄γφ, so that

0 = ∇αδµ
γ = g ′̄βγ∇αg′µβ̄ + g′µβ̄∇αβ̄γφ.

Contracting with g′γν̄ shows that ∇αg′µν̄ = −g′µβ̄g′γν̄∇αβ̄γφ. Substituting this into

(6.20) yields

∆f = gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ − gαλ̄g′µν̄∇αλ̄µν̄φ,

and rearranging and changing some indices gives

g′αβ̄gγδ̄∇γδ̄αβ̄φ = −∆f + gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ. (6.21)

However, it can be shown that

g′αβ̄gγδ̄∇αβ̄γδ̄φ − g′αβ̄gγδ̄∇γδ̄αβ̄φ = g′αβ̄gγδ̄
(
Rε̄

δ̄γβ̄∇αε̄φ − Rε̄
β̄αδ̄∇γε̄φ

)
,

and this combines with (6.21) and ∆′∆φ = g′αβ̄gγδ̄∇αβ̄γδ̄φ to give (6.19), as we want.

�

The next result gives the second part of Theorem C1.

Proposition 6.4.7 There are constants c1, c2 and Q3 depending on M, J, g and Q1,

such that

‖g′ab‖C0 � c1, ‖g′ab‖C0 � c2 and ‖ddcφ‖C0 � Q3. (6.22)

Proof Define a function F on M by F = log(m−∆φ)−κφ, where κ is a constant to

be chosen later. Note that m − ∆φ > 0 by Proposition 6.3.4, so F is well-defined. We

shall find an expression for ∆′F . It is easy to show that

∆′F = −(m − ∆φ)−1∆′∆φ + (m − ∆φ)−2g′αλ̄gµβ̄gγν̄∇αβ̄γφ∇λ̄µν̄φ − κ∆′φ.

Now ∆′φ = −g′αβ̄∇αβ̄φ = g′αβ̄(gαβ̄−g′
αβ̄

) = g′αβ̄gαβ̄−m, so (6.19) and the equation

above give

∆′F = (m − ∆φ)−1∆f + κ
(
m − g′αβ̄gαβ̄

)
− (m − ∆φ)−1(G + H), (6.23)

where G and H are defined by

G = gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ − (m − ∆φ)−1g′αλ̄gµβ̄gγν̄∇αβ̄γφ∇λ̄µν̄φ,

H = g′αβ̄gγδ̄
(
Rε̄

δ̄γβ̄∇αε̄φ − Rε̄
β̄αδ̄∇γε̄φ

)
.

Now expanding the inequality

gαλ̄g′µβ̄g′γν̄
[
(m−∆φ)∇αβ̄γφ − g′αβ̄∇γ∆φ

]
·
[
(m−∆φ)∇λ̄µν̄φ − g ′̄λµ∇ν̄∆φ

]
� 0

and dividing by (m − ∆φ)2 shows that G � 0. Also, using the inequalities |∇αβ̄φ|g �
(m−∆φ) and |g′αβ̄ |g � g′αβ̄gαβ̄ one can see that there is a constant C5 � 0 depending
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on m and ‖R‖C0 such that |H | � C5(m−∆φ)g′αβ̄gαβ̄ . Substituting these inequalities

and ∆f � Q1 into (6.23) gives

∆′F � (m − ∆φ)−1Q1 + κ
(
m − g′αβ̄gαβ̄

)
+ C5g

′αβ̄gαβ̄. (6.24)

At a point p where F is maximum, ∆′F � 0, and so by (6.24) at p we get

(κ − C5)g′αβ̄gαβ̄ � mκ + Q1(m − ∆φ)−1. (6.25)

Rearranging eqn (6.12) of Proposition 6.3.4 gives m−∆φ � m ef/m, and as ‖f‖C0 �
Q1 this shows that (m − ∆φ)−1 � 1

meQ1/m. Now choose κ = C5 + 1. Then (6.25)

implies that g′αβ̄gαβ̄ � C6 at p, where C6 = mκ + 1
mQ1eQ1/m.

Let us apply Lemma 6.3.1 to find expressions for g and g′ at p in terms of positive

constants a1, . . . , am. In this notation, using Lemma 6.3.2 we have

m − ∆φ =
∑m

j=1 aj , g′αβ̄gαβ̄ =
∑m

j=1 a−1
j , and

∏m
j=1 aj = ef(p).

It easily follows that at p we have

m − ∆φ � ef(p)
(
g′αβ̄gαβ̄

)m−1 � eQ1Cm−1
6 .

Therefore at a maximum of F , we see that F � Q1 + (m − 1) log C6 − κ inf φ, and

as ‖φ‖C0 � Q2 by Corollary 6.4.5 this shows that F � Q1 + (m − 1) log C6 + κQ2

everywhere on M . Substituting for F and exponentiating gives

0 < m − ∆φ � Cm−1
6 exp(Q1 + κQ2 + κφ) � Cm−1

6 exp(Q1 + 2κQ2)

on M . This gives an a priori estimate for ‖∆φ‖C0 . But Proposition 6.3.4 gives esti-

mates for ‖g′ab‖C0, ‖g′ab‖C0 and ‖ddcφ‖C0 in terms of upper bounds for ‖f‖C0 and

‖∆φ‖C0 , so (6.22) holds for some constants c1, c2 and Q3. All the constants in this

proof, including c1, c2 and Q3, depend only on M, J, g and Q1. �

6.4.3 Third-order estimates
Define a function S � 0 on M by 4S2 = |∇ddcφ|2g′ , so that in index notation

S2 = g′αλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ.

Our goal is to find an a priori upper bound for S, and this will be done by finding a

formula for ∆′(S2) and then using an argument similar to that used in Proposition 6.4.7.

First, here is some notation that will be used for the next result. Suppose A, B, C are

tensors on M . Let us write P a,b,c(A, B, C) for any polynomial in the tensors A, B, C
alone, that is homogeneous of degree a in A, degree b in B and degree c in C.

Using this notation, we shall give in the next proposition an expression for ∆′(S2).
The proof is a straightforward but rather long and tedious calculation, and we will omit

it. Readers can find it in [345, App. A] and [15, p. 410–411].



THE PROOF OF THEOREM C1 115

Proposition 6.4.8 In the notation above, we have:

−∆′(S2
)

=
∣∣∇ᾱβγ̄δφ − g′λµ̄∇ᾱλγ̄φ∇βµ̄δφ

∣∣2
g′

+
∣∣∇αβγ̄δφ − g′λµ̄∇αγ̄λφ∇βµ̄δφ − g′λµ̄∇αµ̄δφ∇λγ̄βφ

∣∣2
g′

+ P 4,2,1
(
g′αβ̄ , ∇αβ̄γφ, ∇αβ̄f

)
+ P 4,2,1

(
g′αβ̄ , ∇αβ̄γφ, Ra

bcd

)
+ P 3,1,1

(
g′αβ̄ , ∇αβ̄γφ, ∇ᾱβγ̄f

)
+ P 3,1,1

(
g′αβ̄ , ∇αβ̄γφ, ∇eRa

bcd

)
.

(6.26)

In (6.26), we use the notation defined in (6.11) that for T a tensor on M , |T |g′ is the

modulus of T calculated with respect to the metric g′. Also, the four polynomials P a,b,c

in (6.26) are not the same but different polynomials. Now there is a certain similarity

between Proposition 6.4.8 and Proposition 6.4.6. Here is one way to see it.

In (6.19), the left hand side ∆′(∆φ) involves ∇4φ. However, the right hand side

involves only ∇2φ and ∇3φ, together with g′, ∆f and R. Moreover, the terms on the

right hand side involving ∇3φ are nonnegative. In the same way, the left hand side of

(6.26) involves ∇5φ, but the right hand side involves only ∇3φ and ∇4φ, and the terms

on the right hand side involving ∇4φ are nonnegative.

So, both (6.19) and (6.26) express a derivative of φ in terms of lower derivatives of

φ, and g′, f and R, and the highest derivative of φ on the right hand side contributes

only nonnegative terms. Now Proposition 6.4.7 used (6.19) to find an a priori bound for

‖∆φ‖C0 . Because of the similarities between (6.19) and (6.26), we will be able to use

the same method to find an a priori bound for S, and hence for ‖∇ddcφ‖C0 .

It follows quickly from (6.26) that

Corollary 6.4.9 There is a constant C7 depending on Q1, c1, c2 and ‖Ra
bcd‖C1 with

∆′(S2
)

� C7

(
S2 + S

)
.

Here c1, c2 are the constants from Proposition 6.4.7. To prove the corollary, observe

that the first two terms on the right hand side of (6.26) are nonnegative, and can be

neglected. Of the four terms of type P a,b,c, the first two are quadratic in ∇αβ̄γφ and

must be estimated by a multiple of S2, and the second two are linear in ∇αβ̄γφ and

must be estimated by a multiple of S. As ‖f‖C3 � Q1, the factors of ∇αβ̄f and ∇ᾱβγ̄f
are estimated using Q1, and by using the estimates (6.22) of Proposition 6.4.7 for g′ab

and g′ab, the corollary quickly follows.

The next result, together with Corollary 6.4.5 and Proposition 6.4.7, completes the

proof of Theorem C1.

Proposition 6.4.10 ‖∇ddcφ‖C0 � Q4 for Q4 depending only on M, J, g and Q1.

Proof Using the formulae for g′ in §6.3, it is easy to show that

gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ � c−1
2 S2,

where c2 > 0 comes from Proposition 6.4.7. So Proposition 6.4.6 gives
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∆′(∆φ) � c−1
2 S2 − C8, (6.27)

where C8 depends on M, J, g and Q1. Consider the function S2 − 2c2C7∆φ on M .

From Corollary 6.4.9 and (6.27) it follows that

∆′(S2 − 2c2C7∆φ
)

� C7

(
S2 + S

)
− 2c2C7(c−1

2 S2 − C8)

= −C7

(
S − 1

2

)2 + 2c2C7C8 + 1
4C7.

At a maximum p of S2 − 2c2C7∆φ, we have ∆′(S2 − 2c2C7∆φ
)

� 0, and thus(
S − 1

2

)2 � 2c2C8 + 1
4

at p. So, there is a constant C9 > 0 depending on c2, C8 and the a priori estimate for

‖∆φ‖C0 found in Proposition 6.4.7, such that S2 − 2c2C7∆φ � C9 at p. As p is a

maximum, S2 − 2c2C7∆φ � C9 holds on M . Using the estimate on ‖∆φ‖C0 again,

we find an a priori estimate for ‖S‖C0.

Now 2S = |∇ddcφ|g′ . It can be seen that |∇ddcφ|g � c
3/2
1 |∇ddcφ|g′ , where

c1 comes from Proposition 6.4.7. Thus, an a priori bound for ‖S‖C0 gives one for

‖∇ddcφ‖C0 , and there is Q4 depending on M, J, g, Q1 with ‖∇ddcφ‖C0 � Q4. �

6.5 The proof of Theorem C2

Here is the proof of Theorem C2 of §6.2.

Theorem C2 Let (M, J) be a compact, complex manifold, and g a Kähler metric on

M , with Kähler form ω. Let Q1, . . . , Q4 � 0 and α ∈ (0, 1). Then there exists Q5 � 0
depending only on M, J, g, Q1, . . . , Q4 and α, such that the following holds.

Suppose f ∈ C3,α(M), φ ∈ C5(M) and A > 0 satisfy (ω + ddcφ)m = Aefωm

and the inequalities

‖f‖C3,α � Q1, ‖φ‖C0 � Q2, ‖ddcφ‖C0 � Q3 and ‖∇ddcφ‖C0 � Q4.

Then φ ∈ C5,α(M) and ‖φ‖C5,α � Q5. Also, if f ∈ Ck,α(M) for k � 3 then

φ ∈ Ck+2,α(M), and if f ∈ C∞(M) then φ ∈ C∞(M).

We shall continue to use most of the notation of §6.4. In particular, the metrics g and

g′ and the Levi-Civita connection ∇ of g will be the same, repeated derivatives using

∇ will be written ∇a1...ak
, and the operators ∆ = gαβ̄∇αβ̄ and ∆′ = g′αβ̄∇αβ̄ will be

used. All norms in this section will be with respect to g.

Let us begin by stating three elliptic regularity results for ∆ and ∆′, which come

from §1.4. Lemma 6.5.1 follows from (1.7) of Theorem 1.4.1. Lemmas 6.5.2 and 6.5.3

follow from estimates (1.10) and (1.11) of Theorem 1.4.3 respectively. To prove Lem-

mas 6.5.2 and 6.5.3, we cover M by a finite number of overlapping coordinate patches

identified with the unit ball in R
2m, using the argument described in §1.4.1.

Lemma 6.5.1 Let k � 0 and α ∈ (0, 1). Then there exists a constant Ek,α > 0
depending on k, α, M and g, such that if ψ ∈ C2(M), ξ ∈ Ck,α(M) and ∆ψ = ξ,

then ψ ∈ Ck+2,α(M) and ‖ψ‖Ck+2,α � Ek,α

(
‖ξ‖Ck,α + ‖ψ‖C0

)
.
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Lemma 6.5.2 Let α ∈ (0, 1). Then there exists a constant E′
α > 0 depending on

α, M, g and the norms ‖g′ab‖C0 and ‖g′ab‖C0,α , such that if ψ ∈ C2(M), ξ ∈ C0(M)
and ∆′ψ = ξ, then ψ ∈ C1,α(M) and ‖ψ‖C1,α � E′

α

(
‖ξ‖C0 + ‖ψ‖C0

)
.

Lemma 6.5.3 Let k � 0 be an integer, and α ∈ (0, 1). Then there exists a constant

E′
k,α > 0 depending on k, α, M, g and the norms ‖g′ab‖C0 and ‖g′ab‖Ck,α , such that if

ψ ∈ C2(M), ξ ∈ Ck,α(M) and ∆′ψ = ξ, then ψ ∈ Ck+2,α(M) and ‖ψ‖Ck+2,α �
E′

k,α

(
‖ξ‖Ck,α + ‖ψ‖C0

)
.

The proof of Theorem C2 is based on eqn (6.19) of Proposition 6.4.6, which we

reproduce here.

∆′(∆φ) = −∆f + gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ

+ g′αβ̄gγδ̄
(
Rε̄

δ̄γβ̄∇αε̄φ − Rε̄
β̄αδ̄∇γε̄φ

)
.

(6.28)

Applying the three lemmas to this equation, we prove the theorem by an inductive

process known as ‘bootstrapping’. First we find an a priori estimate for ‖φ‖C3,α .

Proposition 6.5.4 There is a constant D1 depending on M, g, J, Q1, . . . , Q4 and α
such that ‖φ‖C3,α � D1.

Proof In this proof, all estimates and all constants depend only on M, g, J , Q1, . . . , Q4

and α. By Proposition 6.4.7, ‖ddcφ‖C0 � Q3 implies ‖g′ab‖C0 � c1 and ‖g′ab‖C0 �
c2. Also, ∇g′ab can be expressed in terms of∇ddcφ, g′ab and J , so that the estimates for

‖g′ab‖C0 and ‖∇ddcφ‖C0 yield an estimate for ‖∇g′ab‖C0 . Combining the estimates

for ‖g′ab‖C0 and ‖∇g′ab‖C0 , we can find an estimate for ‖g′ab‖C0,α .

Thus there are a priori estimates for ‖g′ab‖C0 and ‖g′ab‖C0,α . Therefore, Lemma

6.5.2 holds with a constant E′
α depending on M, g, J, Q1, . . . , Q4 and α. Put ψ = ∆φ,

and let ξ be the right hand side of (6.28), so that ∆ψ = ξ. Now, combining a priori

estimates of the C0 norms of g′ab, ∇αβ̄φ and ∇αβ̄γφ, the inequality ‖f‖C2 � Q1 and

a bound for Ra
bcd, we can find a constant D2 such that ‖ξ‖C0 � D2.

So, by Lemma 6.5.2, ∆φ = ψ lies in C1,α(M) and ‖∆φ‖C1,α � E′
α(D2 + Q3), as

‖∆φ‖C0 � ‖ddcφ‖C0 � Q3. Therefore by Lemma 6.5.1, φ ∈ C3,α(M) and

‖φ‖C3,α � E1,α

(
‖∆φ‖C1,α + ‖φ‖C0

)
� E1,α

(
E′

α(D2 + Q3) + Q2

)
.

Thus, putting D1 = E1,α(E′
α(D2 + Q3) + Q2), the proposition is complete. �

Theorem C2 will follow from the next proposition.

Proposition 6.5.5 For each k � 3, if f ∈ Ck,α(M) then φ ∈ Ck+2,α(M), and there

exists an a priori bound for ‖φ‖Ck+2,α(M) depending on M, g, J , Q1, . . . , Q4, k, α,

and a bound for ‖f‖Ck,α .

Proof The proof is by induction on k. The result is stated for k � 3 only, because

Theorem C1 uses ‖f‖C3 to bound ‖∇ddcφ‖C0 . However, it is convenient to start the

induction at k = 2. In this proof, we say a constant ‘depends on the k-data’ if it depends

only on M, g, J, Q1, . . . , Q4, k, α and bounds for ‖f‖Ck,α and ‖f‖C3 . Our inductive

hypothesis is that f ∈ Ck,α(M) and φ ∈ Ck+1,α(M), and that there is an a priori
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bound for ‖φ‖Ck+1,α depending on the (k−1)-data. By Proposition 6.5.4, this holds for

k = 2, and this is the first step in the induction.

Write ψ = ∆φ, and let ξ be the right hand side of (6.28), so that ∆′ψ = ξ. Now

the term −∆f on the right hand side of (6.28) is bounded in Ck−2,α(M) by ‖f‖Ck,α,

and hence in terms of the k-data. It is easy to see that every other term on the right

hand side of (6.28) can be bounded in Ck−2,α(M) in terms of M, g, J and bounds for

‖g′ab‖C0 and ‖φ‖Ck+1,α . By the inductive hypothesis, these are all bounded in terms of

the (k−1)-data. Therefore, we can find a bound Fk,α depending on the k-data, such that

‖ξ‖Ck−2,α � Fk,α.

Using the inductive hypothesis again, we may bound ‖g′ab‖C0 and ‖g′ab‖Ck,α in

terms of the (k−1)-data. Therefore we may apply Lemma 6.5.3 to ψ = ∆φ, which

shows that ∆φ ∈ Ck,α(M) and

‖∆φ‖Ck,α � E′
k−2,α

(
‖ξ‖Ck−2,α + ‖∆φ‖C0

)
� E′

k−2,α

(
Fk,α + Q3

)
,

since ‖∆φ‖C0 � Q3, where E′
k−2,α depends on the (k−1)-data. Thus by Lemma 6.5.1,

φ ∈ Ck+2,α(M) as we have to prove, and

‖φ‖Ck+2,α � Ek,α

(
‖∆φ‖Ck,α + ‖φ‖C0

)
� Ek,α

(
E′

k−2,α(Fk,α + Q3) + Q2

)
,

since ‖φ‖C0 � Q2. This is an a priori bound for ‖φ‖Ck+2,α depending only on the

k-data. Therefore by induction, the result holds for all k. �

Now, to prove Theorem C2, first put k = 3 in Proposition 6.5.5. This shows that

φ ∈ C5,α(M) and gives an a priori bound for ‖φ‖C5,α . Let Q5 be this bound. Then

‖φ‖C5,α � Q5, and Q5 depends only on M, J, g, Q1, . . . , Q4 and α, since Q1 is a

bound for ‖f‖C3,α . Also, if k � 3 and f ∈ Ck,α(M), Proposition 6.5.5 shows that

φ ∈ Ck+2,α(M). Since this holds for all k, if f ∈ C∞(M) then φ ∈ C∞(M), and the

theorem is proved.

6.6 The proof of Theorem C3

Now we prove Theorem C3 of §6.2.

Theorem C3 Let (M, J) be a compact complex manifold, and g a Kähler metric on

M , with Kähler form ω. Fix α ∈ (0, 1), and suppose that f ′ ∈ C3,α(M), φ′ ∈
C5,α(M) and A′ > 0 satisfy the equations∫

M

φ′ dVg = 0 and (ω + ddcφ′)m = A′ef ′
ωm. (6.29)

Then whenever f ∈ C3,α(M) and ‖f − f ′‖C3,α is sufficiently small, there exist φ ∈
C5,α(M) and A > 0 such that∫

M

φdVg = 0 and (ω + ddcφ)m = Aefωm. (6.30)
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Proof Define X to be the vector subspace of φ ∈ C5,α(M) for which
∫

M
φdVg = 0.

Let U be the subset of φ ∈ X such that ω + ddcφ is a positive (1,1)-form on M . Then

U is open in X . Let Y be the Banach space C3,α(M). Suppose that φ ∈ U and a ∈ R.

Then ω + ddcφ is a positive (1,1)-form, so that (ω + ddcφ)m is a positive multiple

of ωm at each point. Therefore there exists a unique real function f on M such that

(ω + ddcφ)m = ea+fωm on M , and as φ ∈ C5,α(M), it follows that f ∈ C3,α(M).
Define a function F : U ×R → Y by F (φ, a) = f , where (ω+ddcφ)m = ea+fωm

on M . We have just shown that F is well-defined, and it is easy to see that F is a smooth

map of Banach spaces. Now let f ′, φ′ and A′ be as in the theorem, and let a′ = log A′.
By (6.29), φ′ lies in U and F (φ′, a′) = f ′. We shall evaluate the first derivative dF(φ′,a′)
of F at (φ′, a′). Calculation shows that(

ω + ddc(φ′ + εψ)
)m = exp

(
a′ + εb + fε

)
ωm,

where fε = f ′ − εb − ε∆′ψ + O(ε2). Here g′ is the C3,α Kähler metric with Kähler

form ω + ddcφ′, and ∆′ = −g′αβ̄∇αβ̄ is the Laplacian with respect to g′. Therefore

F (φ′ + εψ, a′ + εb) = fε. From the first order term in ε in the expression for fε, we see

that the first derivative of F is

dF(φ′,a′) : X × R → Y, given by dF(φ′,a′)(ψ, b) = −b − ∆′ψ. (6.31)

Now the operator ∆′ : C5,α(M) → C3,α(M) is a linear elliptic operator of order

2 with C3,α coefficients. As M is connected, the kernel Ker∆′ is the set of constant

functions on M . Calculated with respect to the metric g, the dual (∆′)∗ of ∆′ is given

by (∆′)∗ψ = ef ′
∆′(e−f ′

ψ). Therefore Ker(∆′)∗ is the set of constant multiples of

e−f ′
. It follows that ψ ⊥ Ker∆′ if and only if

∫
M ψ dVg = 0, and χ ⊥ Ker(∆′)∗ if

and only if 〈χ, e−f ′〉 = 0.

Let us apply Theorem 1.5.4 of §1.5 to ∆′. The theorem shows that if χ ∈ C3,α(M),
then there exists ψ ∈ C5,α(M) with ∆′ψ = f if and only if 〈χ, e−f ′〉 = 0. Also, if

in addition we require that
∫

M ψ dVg = 0, then ψ is unique. Let χ ∈ Y = C3,α(M).
Then there is a unique b ∈ R such that 〈χ + b, e−f ′〉 = 0. Hence, there exists a unique

ψ ∈ C5,α(M) with
∫

M
ψ dVg = 0, such that ∆′ψ = −b − χ. But then ψ ∈ X , and

(6.31) shows that dF(φ′,a′)(ψ, b) = χ.

Thus, if χ ∈ Y , there exist unique ψ ∈ X and b ∈ R, such that dF(φ′,a′)(ψ, b) =
χ. So dF(φ′,a′) : X × R → Y is an invertible linear map. It is continuous and has

continuous inverse, and thus is an isomorphism of X × R and Y as both vector spaces

and topological spaces. Therefore, applying the Inverse Mapping Theorem for Banach

spaces, Theorem 1.2.4, there is an open neighbourhood U ′ ⊂ U × R of (φ′, a′) in

X × R and an open neighbourhood V ′ ⊂ Y of f ′ in Y , such that F : U ′ → V ′ is a

homeomorphism.

So, whenever f ∈ C3,α(M) = Y and ‖f − f ′‖C3,α is sufficiently small, we have

f ∈ V ′, and there is a unique (φ, a) ∈ U ′ with F (φ, a) = f . Since φ ∈ X , the first

equation of (6.30) holds, and φ ∈ C5,α(M). Putting A = ea gives A > 0, and as

F (φ, a) = f , the second equation of (6.30) holds by definition of F . This completes

the proof of Theorem C3. �
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6.7 The proof of Theorem C4

We now prove Theorem C4 of §6.2, which completes our proof of the Calabi Conjecture.

Note that the proof is very similar to that of Proposition 6.4.1.

Theorem C4 Let (M, J) be a compact complex manifold, and g a Kähler metric on

M , with Kähler form ω. Let f ∈ C1(M). Then there is at most one function φ ∈
C3(M) such that

∫
M φdVg = 0 and (ω + ddcφ)m = Aefωm on M .

Proof Suppose φ1, φ2 ∈ C3(M) satisfy
∫

M φj dVg = 0 and (ω+ddcφj)m = Aefωm

for j = 1, 2. We shall show that φ1 = φ2, so that any solution φ of these two equations is

unique in C3(M). Write ω1 = ω +ddcφ1 and ω2 = ω +ddcφ2. By Lemma 6.1.1, both

ω1 and ω2 are positive (1,1)-forms. Let g1 and g2 be the C1 Kähler metrics associated

to ω1 and ω2.

As ωm
1 = Aefωm = ωm

2 and ω1 − ω2 = ddc(φ1 − φ2), we see that

0 = ωm
1 − ωm

2 = ddc(φ1 − φ2) ∧
(
ωm−1

1 + ωm−2
1 ∧ ω2 + · · · + ωm−1

2

)
.

Now M is compact, and so Stokes’ Theorem gives∫
M

d
[
(φ1 − φ2)dc(φ1 − φ2) ∧

(
ωm−1

1 + · · · + ωm−1
2

)]
= 0.

Combining the previous two equations and using dω1 = dω2 = 0, we find∫
M

d(φ1 − φ2) ∧ dc(φ1 − φ2) ∧
(
ωm−1

1 + · · · + ωm−1
2

)
= 0. (6.32)

Following the proof of Lemma 6.3.5, we can prove that

d(φ1 − φ2) ∧ dc(φ1 − φ2) ∧ ωm−1
1 =

1
m

∣∣d(φ1 − φ2)
∣∣2
g1

ωm
1

and d(φ1 − φ2) ∧ dc(φ1 − φ2) ∧ ωm−1−j
1 ∧ ωj

2 = Fjω
m
1 ,

where Fj is a nonnegative function on M . Substituting these into (6.32), and using

the fact that d(φ1 − φ2) is continuous, we deduce that d(φ1 − φ2) = 0. Since M is

connected, φ1 −φ2 is constant. But
∫

M φ1 dVg = 0 =
∫

M φ2 dVg , so φ1 −φ2 = 0, and

φ1 = φ2. This completes the proof. �

6.8 A discussion of the proof
One question that preoccupied the author during the writing of this chapter is: can the

proof be simplified? In particular, is it really necessary to find a priori estimates for the

first three derivatives of φ, and must one assume that φ is five times differentiable, or can

one work with fewer derivatives? Here are the reasons for using this many derivatives of

φ and f , and for choosing the Banach spaces such as C5,α(M) that appear in the proof.

Clearly φ must be at least twice differentiable, or else the eqn (6.4) that φ must

satisfy makes no sense. So one must find a priori estimates for at least the first two

derivatives of φ. However, it is less obvious that one really needs the third-order es-

timates of §6.4.3. There are results that show that if φ is a C2 solution of a smooth,
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nonlinear, elliptic, second-order differential equation, then φ is C∞. For example, this

follows from Morrey [267, Th. 6.8.1]. These suggest that one could make do with only

the second-order estimates in §6.4.2.

However, a careful examination shows that Morrey’s results, and others of the same

kind, tend to rely not only on bounds on ∇2φ, but also on a modulus of continuity for

∇2φ. Every continuous function on a compact manifold has a modulus of continuity,

which is a real function that bounds how quickly the function varies from point to point.

To apply these smoothness results in our situation would require an a priori bound for

the modulus of continuity of ddcφ. Finding one is probably no easier than making the

third-order estimates of §6.4.3, and having made them we are then able to complete the

proof using more elementary results on linear elliptic equations.

Now, about the spaces used in the proofs. In Theorem C1, we need φ ∈ C5(M) so

that ∆′(S2) should exist in Proposition 6.4.8 of §6.4.3. Theorems C2 and C3 require

φ ∈ C5,α(M) for several reasons: φ must be in C5(M) for Theorem C1, Hölder spaces

have good elliptic regularity properties, and the embedding C5,α(M) ↪→ C5(M) is

compact, which is used in Theorem 6.2.2. In Theorem C4, we take φ ∈ C3(M) because

in applying Stokes’ Theorem in §6.7 we suppose that dω1 = dω2 = 0, which involves

the third derivatives of φ.

Here is another issue. In §6.4.2, the bound computed for ‖ddcφ‖C0 depends on

‖f‖C2 , that is, on C0 bounds for f and ∆f . However, if φ ∈ C2(M), it is only neces-

sary that f ∈ C0(M), and experience with linear elliptic equations suggests that if f
is bounded in C0,α(M), then φ should be bounded in C2,α(M). So, the proof seems

to use an unnecessarily strong bound on f . Similarly, the third-order estimates for φ
in §6.4.3 involve ‖f‖C3 , when one would expect to use only ‖f‖C1,α . I do not know

whether it is possible to make the a priori estimates of φ without using these strong

bounds on f , but I suspect the answer may be no.



7
Calabi–Yau manifolds

In this chapter we study compact Riemannian manifolds with holonomy SU(m). If

(X, g) is a compact Riemannian 2m-manifold with Hol(g) ⊆ SU(m) then g is Ricci-

flat, and X admits a complex structure J with (X, J, g) Kähler and a holomorphic

(m, 0)-form θ with |θ| ≡ 2m/2. The quadruple (X, J, g, θ) is then called a Calabi–

Yau manifold or Calabi–Yau m-fold. They have this name because one can use Yau’s

solution of the Calabi Conjecture to show that suitable compact complex manifolds

(X, J) can be extended to Calabi–Yau manifolds (X, J, g, θ).
The holonomy groups Sp(k) and SU(m) are closely related, since Sp(k) is a sub-

group of SU(2k). Thus any metric g with Hol(g) = Sp(k) is also Kähler and Ricci-flat.

The inclusion Sp(k) ⊆ SU(2k) is proper for k > 1, but SU(2) = Sp(1). The holonomy

groups Sp(k) will be covered in Chapter 10. We postpone discussion of SU(2) = Sp(1)
until then, as it fits in better with the material there. This means that much of the focus

of this chapter is on the holonomy group SU(3).
If (X, J, g) is a compact Kähler manifold with holonomy SU(m) for m � 3, then

the complex manifold (X, J) is projective with c1(X) = 0. Thus the complex manifolds

underlying Calabi–Yau manifolds are algebraic objects, and it is natural to study them

using complex algebraic geometry. Projective manifolds exist in huge numbers, and the

condition c1(X) = 0 is comparatively easy to test for. Many examples of Calabi–Yau

manifolds can be constructed simply by considering some class of projective manifolds,

and calculating which ones satisfy c1(X) = 0.

Although much of the chapter is algebraic geometry, a rather technical subject, we

will try to present it in an elementary way and keep the technicalities to a minimum.

One thing we will not say much about is what the metrics on the Calabi–Yau manifolds

are like: here we are mostly interested in the underlying complex manifolds. In fact little

is known about general Calabi–Yau metrics.

The subject of Calabi–Yau manifolds is too big to be properly described in one chap-

ter of a book. We aim to cover three main areas in detail: firstly, the basic differential

geometry of Calabi–Yau manifolds; secondly, orbifolds and crepant resolutions; and

thirdly, ways of constructing Calabi–Yau manifolds. There are other important areas,

such as rational curves on Calabi–Yau 3-folds, that we shall not have space to discuss.

Section 7.1 introduces the holonomy groups SU(m), and the differential geometry

of compact Ricci-flat Kähler manifolds. Then §7.2–§7.5 discuss a special class of res-

olutions of singular complex manifolds, called crepant resolutions. Their importance

to Calabi–Yau geometry is that if X is a singular Calabi–Yau manifold and (X̃, π) a

122
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Kähler crepant resolution of X , then X̃ is a nonsingular Calabi–Yau manifold. This

plays a part in a number of constructions of Calabi–Yau manifolds. We focus in partic-

ular on crepant resolutions of complex orbifolds.

Section 7.6 describes constructions of Calabi–Yau manifolds, and Calabi–Yau 3-

folds in particular, using algebraic geometry. For example, a nonsingular hypersurface

of degree m+1 in CPm is a Calabi–Yau manifold. By replacing CPm by a weighted

projective space, or more generally by a compact toric variety, one can construct many

examples of Calabi–Yau manifolds. Finally, §7.7 explains the deformation theory of the

complex manifolds underlying Calabi–Yau manifolds.

For further reading, two books primarily about Calabi–Yau manifolds are Gross,

Huybrechts and Joyce [138], and Hübsch [167], which is now rather out of date. Some

books on mirror symmetry, which also cover Calabi–Yau manifolds, are Cox and Katz

[80] and Voisin [335] (both written from a mathematical point of view), and the monu-

mental Hori et al. [166] (which mixes mathematics and string theory).

7.1 Ricci-flat Kähler manifolds and Calabi–Yau manifolds
Identify R

2m with C
m with complex coordinates (z1, . . . , zm), and define a metric g, a

real 2-form ω and a complex m-form θ on Cm by

g = |dz1|2 + · · · + |dzm|2, ω = i
2 (dz1 ∧ dz̄1 + · · · + dzm ∧ dz̄m),

and θ = dz1 ∧ · · · ∧ dzm.
(7.1)

The subgroup of GL(2m, R) preserving g, ω and θ is SU(m). Therefore, by the results

of §2.5.1, every Riemannian manifold (X, g) with holonomy SU(m) admits natural

forms ω and θ, constant under the Levi-Civita connection, such that g, ω and θ can be

written in the form (7.1) at each point of X .

There is a unique complex structure J on X such that ωac = Jb
agbc. Then g is a

Kähler metric on (X, J), with Kähler form ω, as in Chapter 5. Also, θ is a holomorphic

(m, 0)-form with respect to J , so we call θ the holomorphic volume form on X . Thus,

every Riemannian manifold with holonomy SU(m) is a Kähler manifold with a constant

holomorphic volume form. Conversely, if (X, J, g) is Kähler and θ is a holomorphic

volume form on X with ∇θ = 0, then Hol(g) ⊆ SU(m).
Now Λm,0 is the canonical bundle KX of X , a holomorphic line bundle, and a

holomorphic volume form θ is a nonvanishing holomorphic section of KX . Such a θ
exists if and only if KX is trivial, that is, if it is isomorphic to the trivial holomorphic

line bundle X ×C over X . Thus, if (X, J, g) is Kähler and Hol(g) ⊆ SU(m), then KX

is trivial.

Also, since the first Chern class c1(X) of X is a characteristic class of KX , we

see that c1(X) = 0 in H2(X, Z). Hence, any complex manifold X admitting Kähler

metrics with holonomy in SU(m) must have c1(X) = 0. Another important property

of metrics with holonomy SU(m) is that they are Ricci-flat.

Proposition 7.1.1 Let (X, J, g) be a Kähler manifold. Then Hol0(g) ⊆ SU(m) if and

only if g is Ricci-flat.

Proof As g is Kähler, the Levi-Civita connection ∇ of g induces a connection ∇K on

KX = Λm,0X , which has holonomy group Hol(∇K) ⊆ U(1). Now if A ∈ U(m)
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acts on Cm, the induced map on Λm,0Cm is multiplication by detA. Therefore, the

relationship between Hol0(∇) = Hol0(g) and Hol0(∇K) is given by Hol0(∇K) =
det(Hol0(∇)), where det : U(m) → U(1) is the determinant map. It follows that

Hol0(∇K) = {1} if and only if Hol0(g) ⊆ SU(m).
But by the Frobenius Theorem, Hol0(∇K) = {1} if and only if ∇K is flat, that is,

if the curvature of ∇K is identically zero. Since the gauge group of ∇K is U(1), the

curvature of ∇K is just a closed 2-form. It can be shown using (5.7) that this 2-form is

exactly the Ricci form ρ of g. Thus, we have shown that Hol0(g) ⊆ SU(m) if and only

if ρ ≡ 0, that is, if and only if g is Ricci-flat. �

One important consequence of the proof of the Calabi Conjecture in Chapter 6, is

the existence of families of Ricci-flat Kähler metrics on suitable compact complex man-

ifolds. As we explained in the introduction to Chapter 6, if X is Kähler and c1(X) = 0
in H2(X, R) then the Calabi Conjecture yields a Kähler metric g′ on X with Ricci form

ρ′ = 0, so that g′ is Ricci-flat. We state this in the following theorem.

Theorem 7.1.2 Let (X, J) be a compact complex manifold admitting Kähler metrics,

with c1(X) = 0. Then there is a unique Ricci-flat Kähler metric in each Kähler class on

X . The Ricci-flat Kähler metrics on X form a smooth family of dimension h1,1(X),
isomorphic to the Kähler cone KX of X .

Now, a generic Kähler metric g on a complex m-manifold X has holonomy group

Hol(g) = U(m). But by Proposition 7.1.1 Hol0(g) ⊆ SU(m) if and only if g is Ricci-

flat. Thus Theorem 7.1.2 constructs metrics with special holonomy on compact mani-

folds. Our next three results pin down their holonomy groups more precisely.

By Theorem 3.5.5 any compact Ricci-flat Riemannian manifold (X, g) admits a

finite cover isometric to (T n × N, g′ × g′′), where (T n, g′) is a flat Riemannian torus,

and (N, g′′) a compact, simply-connected Ricci-flat Riemannian manifold. If g is also

Kähler then so are (T n, g′) and (N, g′′), so that n = 2l. But N is simply-connected, and

g′′ is complete as N is compact. Therefore Theorem 3.2.7 applies, and we may write

(N, g′′) as a Riemannian product (X1 × · · · ×Xk, g1 × · · · × gk), where each (Xj , gj)
is irreducible. If (N, g′′) is Kähler then the factors (Xj , gj) are Kähler. This gives:

Proposition 7.1.3 Each compact Ricci-flat Kähler manifold (X, J, g) admits a finite

cover isomorphic to a product Kähler manifold

(T 2l× X1 × · · · × Xk, J0 × · · · × Jk, g0 × · · · × gk),

where (T 2l, J0, g0) is a flat Kähler torus and (Xj , Jj , gj) a compact, simply-connected,

irreducible, Ricci-flat Kähler manifold for j = 1, . . . , k.

Now let (X, J, g) be a compact, simply-connected, irreducible, Ricci-flat Kähler

manifold. As g is Ricci-flat, but not flat, it must be nonsymmetric. So X is simply-

connected and g is nonsymmetric and irreducible, and Theorem 3.4.1 shows that Hol(g)
lies on Berger’s list. Because g is also Kähler, we see that Hol(g) must be one of U(m),
SU(m) or Sp(m/2). But Hol0(g) ⊆ SU(m) as g is Ricci-flat, which excludes U(m),
so Hol(g) = SU(m) or Sp(m/2).

On the other hand, if (X, J, g) is compact and Kähler and Hol(g) is SU(m) or

Sp(m/2) then g is Ricci-flat as Hol0(g) ⊆ SU(m), and irreducible as Hol0(g) does not
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split. By the previous proposition X has a simply-connected finite cover, and so π1(X)
is finite. Thus we have proved:

Proposition 7.1.4 Let (X, J, g) be a compact, simply-connected, irreducible, Ricci-flat

Kähler manifold, of dimension m. Then either m � 2 and Hol(g) = SU(m), or m � 4
is even and Hol(g) = Sp(m/2). Conversely, if (X, J, g) is a compact Kähler manifold

and Hol(g) is SU(m) or Sp(m/2), then g is Ricci-flat and irreducible and X has finite

fundamental group.

Next we show that any closed (p, 0)-form on a compact Ricci-flat manifold is con-

stant. The proof involves the ‘Bochner argument’ used to prove Theorem 3.5.4.

Proposition 7.1.5 Suppose (X, J, g) is a compact Ricci-flat Kähler manifold and ξ a

smooth (p, 0)-form on X . Then ∇ξ = 0 if and only if dξ = 0 if and only if ∂̄ξ = 0,

where ∇ is the Levi-Civita connection of g. Hence Hp,0(X) is isomorphic to the vector

space of constant (p, 0)-forms ξ on X .

Proof For the first part, we shall show ∇ξ = 0 implies dξ = 0 implies ∂̄ξ = 0 implies

∇ξ = 0. The first two implications are obvious. For the third, as ∂̄∗ is zero on (p, 0)-
forms, ∂̄ξ = 0 implies ∆∂̄ξ = 0, so (dd∗ + d∗d)ξ = 0 by (5.9). Taking the inner

product with ξ and integrating by parts then shows that dξ = d∗ξ = 0, as X is compact,

and thus ξ lies in the space H p,0 of harmonic (p, 0)-forms defined in §5.7.1, which is

isomorphic to Hp,0(X).
Now the Weitzenbock formula for p-forms (3.13) shows that (dd∗ + d∗d)ξ =

∇∗∇ξ − 2R̃(ξ), where R̃ is defined in (3.14) and depends on the Riemann curvature

Ra
bcd of g. Combining the symmetries (3.2) and (3.3) of Ra

bcd with the decomposition

(5.5) of the curvature tensor of a Kähler metric, we may show that Rα
βγ̄δ = Rα

δγ̄β , in

the notation of §5.2.1.

Since ξ is a (p, 0)-form, this implies that the first term on the right hand side of

(3.14) is zero. However, the second term depends on the Ricci curvature, and g is Ricci-

flat. Thus R̃(ξ) = 0, so that (dd∗ + d∗d)ξ = ∇∗∇ξ by the Weitzenbock formula. So

∇∗∇ξ = 0, and integrating by parts shows that ∇ξ = 0, as X is compact. This proves

that if ∂̄ξ = 0 then ∇ξ = 0. The last part is immediate. �

Applying the proposition to (m, 0)-forms when dimX = m, we get:

Corollary 7.1.6 Suppose (X, J, g) is a compact Ricci-flat Kähler m-manifold. Then

Hol(g) ⊆ SU(m) if and only if the canonical bundle KX of X is trivial.

Now as we explained in §2.5.1, the tensors constant under a connection ∇ are en-

tirely determined by the holonomy group Hol(∇). Combining this with Proposition

7.1.5, we see that if (X, J, g) is a compact Ricci-flat Kähler manifold, then Hp,0(X)
is determined by Hol(g). That is, Hol(g) is (up to conjugation) a subgroup of U(m),
which acts naturally on Λp,0C

m, and Hp,0(X) is isomorphic to the subspace of Λp,0C
m

invariant under Hol(g). In particular, the group SU(m) fixes Λ0,0C
m and Λm,0C

m, but

fixes no nonzero elements of Λp,0Cm for 0 < p < m. Hence if Hol(g) = SU(m) then

Hp,0(X) is C if p = 0, m and zero otherwise. We have proved:

Proposition 7.1.7 Suppose (X, J, g) is a compact Kähler m-manifold with holonomy

SU(m) and Hodge numbers hp,q . Then h0,0 = hm,0 = 1 and hp,0 = 0 for p �= 0, m.
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Compact Kähler manifolds with holonomy SU(m) for m � 3 are algebraic.

Theorem 7.1.8 Let (X, J, g) be a compact Kähler m-manifold with Hol(g) = SU(m)
for m � 3. Then (X, J) is projective, that is, it is isomorphic to a complex submanifold

of CPN for some N > m, and is an algebraic variety.

Proof From Proposition 7.1.7 we see that h2,0(X) = h0,2(X) = 0. Thus H1,1(X) =
H2(X, C), and H1,1(X) ∩ H2(X, R) = H2(X, R). Now the Kähler cone KX of X
is a nonempty open subset of H1,1(X) ∩ H2(X, R), so that KX is open in H2(X, R).
But H2(X, Q) is dense in H2(X, R), so KX ∩ H2(X, Q) is nonempty. Choose α in

KX ∩H2(X, Q). Let k be a positive integer such that kα ∈ H2(X, Z). Then kα ∈ KX ,

as KX is a cone, so there exists a closed positive (1,1)-form β on X such that [β] = kα.

Using the theory of holomorphic line bundles explained in §5.10, one can show that

there exists a holomorphic line bundle L over X with c1(L) = kα. Since c1(L) is

represented by a positive (1,1)-form β, the Kodaira Embedding Theorem [132, p. 181]

shows that L is ample. That is, for large n the holomorphic sections of Ln embed X as

a complex submanifold of CP
N . But by Chow’s Theorem [132, p. 167], any complex

submanifold of CP
N is an algebraic variety. �

Wilson [339,340] studies the Kähler cone of compact Kähler manifolds with holon-

omy SU(3). We summarize his results.

Theorem 7.1.9 Let (X, J) be a compact complex 3-manifold admitting Kähler metrics

with holonomy SU(3). Define the cubic cone W =
{
D ∈ H2(X, R) : D3 = 0

}
. Then

the closure KX in H2(X, R) of the Kähler cone KX of X is locally rational polyhedral

away from W . Furthermore, the codimension one faces of KX correspond to primitive

birational contractions π : X → Y of X .

Wilson also shows that such contractions π : X → Y have a coarse classification

into Types I, II and III, depending on which curves or surfaces in X are contracted. He

uses his results to show that KX is invariant under small deformations of X unless X
contains a quasi-ruled elliptic surface E.

We now come to define Calabi–Yau manifolds. Here are five inequivalent definitions

the author found in the literature:

• a compact complex manifold (X, J) with c1(X) = 0 admitting Kähler metrics,

• a projective manifold X with c1(X) = 0,

• a compact Ricci-flat Kähler manifold,

• a compact Kähler manifold (X, J, g) with Hol(g) ⊆ SU(m), and

• a compact Kähler manifold (X, J, g) with Hol(g) = SU(m).

Manifolds such as Enriques surfaces or complex tori satisfy some of these definitions,

but not others. We adopt the following sixth definition. It is unusual in regarding a choice

of holomorphic volume form θ as part of the structure. The reason for this is that for the

special Lagrangian geometry of Chapters 8 and 9 we will always need a choice of θ.

Definition 7.1.10 Let m � 2. A Calabi–Yau m-fold is a quadruple (X, J, g, θ) such

that (X, J) is a compact m-dimensional complex manifold, g a Kähler metric on (X, J)
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with Kähler form ω, and θ a nonvanishing holomorphic (m, 0)-form on X called the

holomorphic volume form, which satisfies

ωm/m! = (−1)m(m−1)/2(i/2)mθ ∧ θ̄. (7.2)

The constant factor in (7.2) is chosen to make Re θ a calibration.

Here is the point of this. If (X, J, g) is a Kähler manifold and θ a nonvanishing

holomorphic volume form on X then KX is trivial, as it has a nonvanishing section θ,

so c1(X) = 0. Thus the Ricci form ρ of g is exact, and using (5.6) and (5.7) we can

show that ρ is given explicitly by ρ = ddc log det |θ|, where |θ| is computed using g. If

ω, θ satisfy (7.2) then an easy calculation gives |θ| ≡ 2m/2, so ρ ≡ 0, and g is Ricci-flat.

Proposition 7.1.5 and Corollary 7.1.6 then show that ∇θ = 0 and Hol(g) ⊆ SU(m).
If (X, J, g) is a Kähler manifold with Hol(g) ⊆ SU(m), as some authors define

Calabi–Yau manifolds, then KX is trivial and the vector space of constant (m, 0)-forms

is isomorphic to C. So we can choose a constant (m, 0)-form θ with |θ| ≡ 2m/2, which

then satisfies (7.2). It is unique up to change of phase, θ �→ eiψθ.

The rest of the chapter will focus on Calabi–Yau m-folds (X, J, g, θ) with Hol(g) =
SU(m), for m � 3. Then (X, J) is projective by Theorem 7.1.8, with KX trivial. Thus

we can study the underlying complex manifold (X, J) and the holomorphic volume

form θ using complex algebraic geometry. We can also use complex algebraic geometry

to describe the Kähler cone KX of X , as in Theorem 7.1.9. Then Theorem 7.1.2 shows

that the family of Calabi–Yau metrics g on (X, J) is isomorphic to KX . So the chapter

will be mostly algebraic geometry.

7.2 Crepant resolutions, small resolutions, and flops
Let X be a singular complex algebraic variety, and (X̃, π) a resolution of X , as in

§5.9.1. We call X̃ a crepant resolution of X if π∗(KX) ∼= KX̃ , where KX and KX̃ are

the canonical bundles of X and X̃ . However, this statement is not as simple as it seems.

What do we mean by a holomorphic line bundle such as KX over a singular variety?

How do we define the pull-back π∗(KX), and is it really a holomorphic line bundle on

X̃ , or some more singular object?

There is an extensive and complicated theory of line bundles over singular vari-

eties, involving Weil divisors, Cartier divisors, and so on. But as this is not an algebraic

geometry text we will bypass most of these ideas to simplify things. We shall interpret

holomorphic line bundles on singular varieties in terms of invertible sheaves.

Definition 7.2.1 Let X be a complex algebraic variety, and O the sheaf of regular

functions on X . An invertible sheaf F on X is a sheaf of O-modules that is locally

isomorphic to O .

If X is nonsingular, L is a holomorphic line bundle over X , and O(L) is the sheaf of

holomorphic sections of L, then O(L) is an invertible sheaf. Conversely, each invertible

sheaf over a nonsingular variety comes from a line bundle. Thus, invertible sheaves are

a natural generalization to singular varieties of the idea of holomorphic line bundle.

A useful property of invertible sheaves is that if F is an invertible sheaf over Y and

π : X → Y is a morphism, then by [149, §II.5] one can define the inverse image sheaf
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π∗(F ), which is an invertible sheaf on X . Hence, if X is a singular variety with O(KX)
invertible, and (X̃, π) is a resolution of X , then π∗(KX) is a well-defined holomorphic

line bundle on X̃ .

Definition 7.2.2 Let X be a complex algebraic variety, and suppose that the sheaf of

regular sections O(KX) of KX is an invertible sheaf. Let (X̃, π) be a resolution of X .

Then the inverse image sheaf π∗(O(KX)) is an invertible sheaf on X̃ , and so represents

a holomorphic line bundle on X̃ , written π∗(KX).
We say that a prime divisor E in X̃ is exceptional if π(E) has codimension at least

2 in X . Let the exceptional divisors be E1, . . . , En. Then there exist unique integers

a1, . . . , an such that in divisors on X̃ , we have

[KX̃ ] = [π∗(KX)] +
∑n

i=1 aiEi.

We call the divisor
∑n

i=1 aiEi on X̃ the discrepancy of (X̃, π).
(i) If ai � 0 for all i, we say X has canonical singularities.

(ii) if ai > 0 for all i, we say X has terminal singularities.

(iii) If ai = 0 for all i, we say π : X̃ → X is a minimal resolution or crepant resolution,

because it has zero discrepancy. Then KX̃
∼= π∗(KX).

Canonical and terminal singularities were defined by Reid [284, 285]. It can be

shown that their definition is independent of the choice of resolution π : X̃ → X .

They are of interest because they are the singularities which occur in the pluricanonical

models of varieties of general type.

Next we consider another special class of resolutions, called small resolutions.

Definition 7.2.3 Let X be a singular algebraic variety, and let (X̃, π) be a resolution of

X . We call X̃ a small resolution if it has no exceptional divisors. Here is another way

to say this. Define the exceptional set E of the resolution to be the set of points e ∈ X̃
such that dim

[
π−1(π(e))

]
� 1. Usually E = π−1(S), where S is the singular set of

X . Then X̃ is a small resolution if E is of codimension at least 2 in X̃ .

Clearly, any small resolution is a crepant resolution, as the condition in Definition

7.2.2 that ai = 0 for all exceptional prime divisors Ei holds trivially because there are

no Ei. For the same reason, any singular manifold X which admits a small resolution

has terminal singularities. Conversely, if X has terminal singularities then any crepant

resolution of X must be a small resolution.

Because blowing up always introduces new exceptional divisors, small resolutions

cannot be constructed by the usual strategy of blowing up singular points. This makes

small resolutions difficult to find, for general singularities. One common situation in

which small resolutions arise is if X is a complex 3-fold with isolated singularities, and

X̃ is a resolution of X in which each singular point is replaced by a rational curve CP
1,

or a finite union of rational curves. Such singularities are called double points, and are

studied in [112]. Here is an example.

Example 7.2.4 Define a hypersurface X in C
4 by

X =
{
(z1, . . . , z4) ∈ C

4 : z1z2 = z3z4

}
.
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Then X has a single, isolated singular point at 0, called an ordinary double point, or

node. Define X̃1 ⊂ C
4 × CP

1 by

X̃1 =
{(

(z1, . . . , z4), [x1, x2]
)
∈ C4 × CP1 : z1x2 = z4x1, z3x2 = z2x1

}
,

and define π1 : X̃1 → C
4 by π1 :

(
(z1, . . . , z4), [x1, x2]

)
�→ (z1, . . . , z4). Now since

x1, x2 are not both zero, the equations z1x2 = z4x1, z3x2 = z2x1 together imply that

z1z2 = z3z4. Therefore π1 maps X̃1 to X . It is easy to see that π1 is surjective, that

π−1
1 (0) = CP

1, and that π1 is injective except at 0 ∈ X . So π1 : X̃1 → X is a small

resolution of X .

Similarly, define X̃2 ⊂ C
4 × CP

1 by

X̃2 =
{(

(z1, . . . , z4), [y1, y2]
)
∈ C4 × CP1 : z1y2 = z3y1, z4y2 = z2y1

}
,

and define π2 : X̃2 → X as above. Then π2 : X̃2 → X is also a small resolution of

X . It can be shown (using toric geometry) that X̃1 and X̃2 are the only two crepant

resolutions of X , and that they are topologically distinct. Thus, a singularity can admit

more than one crepant resolution.

This example is the basis of an important construction in the algebraic geometry

of 3-folds, called a flop. Suppose that Y is a 3-fold with a single node. Then we can

resolve the singularity with a small resolution in two different ways as above, to get

two different nonsingular 3-folds Y1, Y2, each containing a rational curve CP
1. Con-

versely, if we have a nonsingular 3-fold Y1 containing a suitable CP1, with normal

bundle O(−1) ⊕ O(−1), we can contract the CP
1 to a point to get a 3-fold Y with a

single node, and then resolve it in the other way to get a nonsingular 3-fold Y2 that is

different from Y1.

This process of passing from Y1 to Y2 is called a flop. Now c1(Y1) = 0 if and only

if c1(Y2) = 0. Thus, if Y1 is a Calabi–Yau 3-fold and Y2 is a flop of Y1, then Y2 will

also be a Calabi–Yau 3-fold, provided that it is Kähler (which is not always the case).

So given one Calabi–Yau 3-fold, one can often construct many more by flopping.

7.3 Crepant resolutions of quotient singularities

Let G be a nontrivial finite subgroup of GL(m, C). Then G acts on C
m, and the quotient

C
m/G is a singular complex manifold called a quotient singularity. It can be made into

an algebraic variety, using the algebra of G-invariant polynomials on Cm. If x ∈ Cm,

then xG is a singular point of C
m/G if and only if the stabilizer subgroup Stab(x) =

{γ ∈ G : γ · x = x} of x is nontrivial. Thus 0 is always a singular point of Cm/G. If G
acts freely on C

m \ {0}, then 0 is the unique singular point of C
m/G.

For reasons to be explained in §7.5, we are interested in crepant resolutions of quo-

tient singularities Cm/G. Now γ ∈ G acts on Λm,0Cm by multiplication by det γ.

Thus the canonical bundle of C
m/G is only well-defined at 0 if det γ = 1 for all

γ ∈ G, that is, if G ⊂ SL(m, C). It follows that C
m/G can have a crepant resolution

only if G ⊂ SL(m, C).
Therefore we will restrict our attention to finite subgroups G ⊂ SL(m, C). Since

any such G is conjugate to a subgroup of SU(m), we may take G ⊂ SU(m) if we
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wish. In §7.3.1 we discuss crepant resolutions of C2/G. Then §7.3.2 summarizes what

is known about the existence of crepant resolutions of C
m/G for m � 3 and G ⊂

SL(m, C) a finite subgroup. Finally §7.3.3 explains the McKay correspondence, which

relates the topology of a crepant resolution of Cm/G to the group theory of G.

7.3.1 The Kleinian singularities C
2/G and their resolutions

The quotient singularities C2/G, for G a finite subgroup of SU(2), were first classified

by Klein in 1884 and are called Kleinian singularities; they are also called Du Val

surface singularities, or rational double points. The theory of these singularities and

their resolutions (see for instance Slodowy [315]) is very rich, and has many connections

to other areas of mathematics. There is a 1-1 correspondence between nontrivial finite

subgroups G ⊂ SU(2) and the Dynkin diagrams of type Ar (r � 1), Dr (r � 4), E6,

E7 and E8. Let Γ be the Dynkin diagram associated to G. These diagrams appear in the

classification of Lie groups, and each one corresponds to a unique compact, simple Lie

group; they are the set of such diagrams containing no double or triple edges.

Each singularity C
2/G admits a unique crepant resolution (X, π). The preimage

π−1(0) of the singular point is a union of a finite number of rational curves in X . These

curves correspond naturally to the vertices of Γ. They all have self-intersection −2, and

two curves intersect transversely at one point if and only if the corresponding vertices

are joined by an edge in the diagram; otherwise the curves do not intersect.

These curves give a basis for the homology group H2(X, Z), which may be identi-

fied with the root lattice of the diagram, and the intersection form with respect to this

basis is the negative of the Cartan matrix of Γ. Define ∆ to be {δ ∈ H2(X, Z) : δ · δ =
−2}. Then ∆ is the set of roots of the diagram. There are also 1-1 correspondences

between the curves and the nonidentity conjugacy classes in G, and also the nontrivial

representations of G; it makes sense to regard the nonidentity conjugacy classes as a

basis for H2(X, Z), and the nontrivial representations as a basis for H2(X, Z).
This correspondence between the Kleinian singularities C

2/G, Dynkin diagrams,

and other areas of mathematics became known as the McKay correspondence, after

John McKay, who pointed it out [258].

7.3.2 Crepant resolutions of C
m/G for m � 3

We start with a brief introduction to toric geometry. Let C
∗ be C \ {0}, regarded as

a complex Lie group, with multiplication as the group operation. A toric variety is a

normal complex algebraic variety X of dimension m, equipped with a holomorphic

action of (C∗)m, and with a dense open subset T ⊂ X upon which (C∗)m acts freely

and transitively. For an introduction to toric varieties, see Fulton [119] or Oda [270].

Toric geometry is the geometry of toric varieties.

Each toric variety is the union of a finite number of orbits of (C∗)m. All of the

information about these orbits, and the way they fit together, is represented in a finite

collection of combinatorial data called a fan [119, §1.4], and the toric variety can be

reconstructed from its fan. The importance of toric varieties is that they are very well

understood, they are easy to work with and to compute invariants for, and they provide

a large family of examples of varieties that can be used to test ideas on.
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Now suppose G ⊂ SL(m, C) is a finite abelian group. Then we can choose a coordi-

nate system (z1, . . . , zm) on C
m such that all elements of G are represented by diagonal

matrices. The group of all invertible diagonal matrices is isomorphic to (C∗)m and com-

mutes with G, and so (C∗)m acts on Cm/G. This makes Cm/G into a toric variety, and

its structure is described by a fan.

Any resolution of Cm/G that is also a toric variety is described by a subdivision

of the fan of C
m/G. There is a simple condition on this subdivision that determines

whether or not the resolution is crepant. Moreover, any crepant resolution of C
m/G

must be a toric variety. Thus, if G ⊂ SL(m, C) is a finite abelian group, then toric

geometry gives a simple method for finding all the crepant resolutions of C
m/G.

This method was described independently by Roan [288], and Markushevich [253,

App.]. Both of them proved [288, p. 528], [253, p. 273] that if m = 2 or 3, then a toric

crepant resolution of C
m/G always exists. For examples of such resolutions, see [253,

p. 269–271]. When m = 2 the resolution is unique, but for m � 3 there can be finitely

many different crepant resolutions of C
m/G. If G ⊂ SL(m, C) is abelian and m � 4

then C
m/G may or may not admit a crepant resolution, depending on the fan of C

m/G.

For example, we will show below that C4/{±1} has no crepant resolution.

For more general subgroups of SL(3, C), Roan [289, Th. 1] proves

Theorem 7.3.1 Let G be any finite subgroup of SL(3, C). Then the quotient singularity

C
3/G admits a crepant resolution.

Roan’s proof is by explicit construction, using the classification of finite subgroups

of SU(3), and it relies on previous work by Ito [174,175] and Markushevich. In dimen-

sion four and above, singularities are less well understood. However, there are simple

criteria to determine when a quotient singularity C
m/G is terminal, which we now give.

To state them we first define the age grading on G, following Reid [286, §2].

Definition 7.3.2 Let G ⊂ SL(m, C) be a finite group. Then each γ ∈ G has m
eigenvalues e2πia1 , . . . , e2πiam , where a1, . . . , am ∈ [0, 1) are uniquely defined up

to order. Define the age of γ to be age(γ) = a1 + · · · + am. Then age(γ) is well-

defined with 0 � age(γ) < m. Since det(γ) = 1, we see that e2πi age(γ) = 1, so

age(γ) is an integer. Thus age(γ) ∈ {0, 1, . . . , m−1}, and we have defined a mapping

age : G → {0, 1, . . . , m−1}.

The next result (see [269, Th. 2.3]) is due to Reid.

Theorem 7.3.3 Let G ⊂ SL(m, C) be a finite subgroup. Then C
m/G is a terminal

singularity if and only if age(γ) �= 1 for all γ ∈ G.

But terminal quotient singularities have no crepant resolutions:

Proposition 7.3.4 Let G be a nontrivial subgroup of SL(m, C), and suppose Cm/G is

a terminal singularity. Then C
m/G admits no crepant resolution.

Proof From §7.2, any crepant resolution of a terminal singularity must be a small reso-

lution. Thus it is enough to show that C
m/G admits no small resolutions. Suppose first

that Cm/G has only an isolated singularity at 0, and that (X, π) is a small resolution

of C
m/G. Then π−1(0) is a finite union of compact algebraic varieties of dimension at

least one. By constructing complex curves in π−1(0) one can show that b2(X) � 1.
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Regard X as a compact manifold with boundary S2m−1/G. Poincaré duality for

manifolds with boundary gives b2(X) = b2m−2(X), and so b2m−2(X) � 1. But X
contracts onto π−1(0), and dimπ−1(0) < m−1 since X is a small resolution, and

together these imply that b2m−2(X) = 0, a contradiction. If the singularities of Cm/G
are not isolated, then the generic singular point looks locally like (Ck/H) × C

m−k,

where H ⊂ SL(k, C) and Ck/H has an isolated singularity at 0. Using this we reduce

to the previous case. �

By combining Theorem 7.3.3 and Proposition 7.3.4 we can show some singularities

Cm/G with G ⊂ SL(m, C) have no crepant resolutions, as in the next example.

Example 7.3.5 Let G be the group {±1} ⊂ SL(4, C). Then age(1) = 0 and age(−1) =
2, so age(γ) �= 1 for all γ ∈ G. Thus C

4/{±1} is a terminal singularity by Theorem

7.3.3, and does not admit any crepant resolution.

Here is a summary of the above. Let G ⊂ SL(m, C) be a nontrivial finite subgroup.

If m = 2, there is a unique crepant resolution of C
2/G. If m = 3 there is a crepant

resolution of C3/G, but it may not be unique. If m � 4 then Cm/G may or may

not have a crepant resolution, which then may or may not be unique. If G is abelian,

one can calculate whether or not a crepant resolution exists using toric geometry. Also,

Theorem 7.3.3 gives a criterion to determine whether Cm/G is terminal, and if it is then

no crepant resolution exists.

7.3.3 The McKay correspondence
We now discuss some conjectures and results which aim to describe the topology and

geometry of crepant resolutions (X, π) of C
m/G in terms of the group theory of G. The

main idea is given in the following conjecture, from Ito and Reid [176, p. 1–2]. Note

that in Definition 7.3.2, the age grading age(γ) is unchanged under conjugation, and is

therefore an invariant of the conjugacy class of γ.

Conjecture 7.3.6 Let G be a finite subgroup of SL(m, C), and (X, π) a crepant reso-

lution of C
m/G. Then there exists a basis of H∗(X, Q) consisting of algebraic cycles

in 1-1 correspondence with conjugacy classes of G, such that conjugacy classes with

age k correspond to basis elements of H2k(X, Q).

Reid calls this conjecture the McKay correspondence, because it generalizes the

McKay correspondence for subgroups of SL(2, C) mentioned in §7.3.1 to higher di-

mensions. For a good survey on it, see Reid [286]. In the case m = 2 the conjecture is

already known. A partial proof of Conjecture 7.3.6 for m � 3 is given by Ito and Reid

[176, Cor. 1.5], in the following result.

Theorem 7.3.7 Let G be a finite subgroup of SL(m, C), and (X, π) a crepant resolu-

tion of C
m/G. Then there is a 1-1 correspondence between exceptional prime divisors

in X , which form a basis for H2(X, Q), and elements of G with age 1.

Ito and Reid then deduce that Conjecture 7.3.6 is true for m = 3, using Poincaré

duality to relate H4(X, Q) and H2
c (X, Q). Batyrev and Dais [22, Th. 5.4] prove Con-

jecture 7.3.6 for arbitrary m when G is abelian, using toric geometry, and also give their
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own proof for the m = 3 case [22, Prop. 5.6]. Batyrev [21] and Denef and Loeser [94]

prove the following corollary of Conjecture 7.3.6 using motivic integration:

Theorem 7.3.8 Let G be a finite subgroup of SL(m, C), and (X, π) a crepant resolu-

tion of C
m/G. Then the Betti number b2k(X) is the number of conjugacy classes of

G with age k, and b2k+1(X) = 0, so the Euler characteristic χ(X) is the number of

conjugacy classes in G.

This means we can work out the Betti numbers of a crepant resolution X of Cm/G
without knowing anything about the resolution. Although singularities C

m/G for m �
3 often admit several different crepant resolutions, Theorem 7.3.8 shows that they must

all have the same Betti numbers. In the case m = 3 this is true because all the different

crepant resolutions of C
3/G are related by flops, as in §7.2, and a flop does not change

the Betti numbers.

7.3.4 Deformations of C
m/G

Section 5.9 defined two ways to desingularize a singular variety: resolution and defor-

mation. Having discussed crepant resolutions of the quotient singularities Cm/G, we

now briefly consider their deformations. In particular we would like to understand the

smoothings Xt of C
m/G with c1(Xt) = 0 for G ⊂ SL(m, C). Such smoothings are

analogues of crepant resolutions of Cm/G.

The deformation theory of the Kleinian singularities C
2/G of §7.3.1 is very well

understood (see for instance Slodowy [315]). In studying deformations of C
m/G for

m � 3, it turns out that the codimension of the singularities of C
m/G is important. If

G ⊂ SL(m, C) then C
m/G cannot have singularities of codimension one, since no non-

identity element of SL(m, C) can fix a subspace Cm−1 ⊂ Cm. Thus the singularities

of C
m/G are of codimension at least two. However, the Schlessinger Rigidity Theorem

[299] shows that if the singularities are of codimension three or more, then C
m/G has

no deformations.

Theorem 7.3.9. (Schlessinger) Let G be a finite subgroup of GL(m, C) for some

m � 3, that acts freely on Cm \ {0}. Then the singularity Cm/G is rigid, that is, it ad-

mits no nontrivial deformations. More generally, if G is a finite subgroup of GL(m, C)
and the singularities of Cm/G are of codimension at least three, then Cm/G is rigid.

Thus, if G ⊂ SL(m, C) then C
m/G can have nontrivial deformations Xt only if

the singularities of Cm/G are of codimension two. It turns out that c1(Xt) = 0 holds

automatically in this case.

7.4 Complex orbifolds

Orbifolds are a special class of singular manifolds.

Definition 7.4.1 An orbifold is a singular real manifold X of dimension n whose

singularities are locally isomorphic to quotient singularities Rn/G for finite subgroups

G ⊂ GL(n, R), such that if 1 �= γ ∈ G then the subspace Vγ of R
n fixed by γ

has dim Vγ � n − 2.
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For each singular point x ∈ X there is a finite subgroup Gx ⊂ GL(n, R), unique

up to conjugation, such that open neighbourhoods of x in X and 0 in R
n/Gx are home-

omorphic (and, in a suitable sense, diffeomorphic). We call x an orbifold point of X ,

and Gx the orbifold group or isotropy group of x.

Orbifolds are studied in detail by Satake [298], who calls them V-manifolds. The

condition on γ means that the singularities of the orbifold have real codimension at

least two. This makes orbifolds behave like manifolds in many respects. For instance,

compact orbifolds satisfy Poincaré duality, but this fails if we allow singularities of

codimension one.

Here is an easy method for constructing orbifolds. Let M be a manifold, and G a

finite group acting smoothly on M , with nonidentity fixed point sets of codimension at

least two. Then the quotient M/G is an orbifold. The following proposition describes

the singular set of M/G. The proof is elementary, and we omit it.

Proposition 7.4.2 Let M be an oriented manifold and G a finite group acting smoothly

and faithfully on M preserving orientation. Then M/G is an orbifold. For each x∈M ,

define the stabilizer subgroup of x to be Stab(x)={g ∈ G : g·x=x}. If Stab(x)={1}
then xG is a nonsingular point of M/G. If Stab(x) �={1} then xG is a singular point,

with orbifold group Stab(x). Thus the singular set of M/G is

S =
{
xG ∈ M/G : x ∈ M and g · x = x for some 1 �= g ∈ G

}
.

Here the condition that G preserves orientation eliminates the possibility that M/G
could have singularities in codimension one, which is not allowed by Definition 7.4.1.

In a similar way, we define complex orbifolds.

Definition 7.4.3 A complex orbifold is a singular complex manifold of dimension m
whose singularities are all locally isomorphic to quotient singularities C

m/G, for finite

subgroups G ⊂ GL(m, C). Orbifold points x and orbifold groups Gx ⊂ GL(m, C) are

defined as above.

Clearly, any complex orbifold is also a real orbifold. Notice that the singular points

of orbifolds do not need to be isolated. For example, a complex orbifold of dimension

m can have singularities locally modelled on (Ck/G) × C
m−k, where G is a finite

subgroup of GL(k, C). If G acts freely on C
k \ {0} then the singular set of (Ck/G) ×

Cm−k is a copy of Cm−k.

The singular set of a complex orbifold is itself a locally finite union of complex

orbifolds of lower dimension. If M is a complex manifold and G a finite group acting

holomorphically on M then M/G is a complex orbifold, as in Proposition 7.4.2. The

weighted projective spaces are a special class of complex orbifolds.

Definition 7.4.4 Let m � 1 be an integer, and let a0, a1, . . . , am be positive integers

with highest common factor 1. Let Cm+1 have complex coordinates (z0, . . . , zm), and

define an action of the complex Lie group C
∗ on C

m+1 by

(z0, . . . , zm) u�−→(ua0z0, . . . , u
amzm), for u ∈ C

∗. (7.3)
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Define the weighted projective space CPm
a0,...,am

to be
(
Cm+1 \ {0}

)
/C∗, where C∗

acts on C
m+1 \ {0} with the action (7.3). Then CP

m
a0,...,am

is compact and Hausdorff,

and has the structure of a complex orbifold.

Note that CP
m
1,...,1 is the usual complex projective space CP

m. Thus the weighted

projective spaces CPm
a0,...,am

are a large family of complex orbifolds that generalize the

complex manifolds CP
m. For each (z0, . . . , zm) ∈ C

m+1 \ {0}, define [z0, . . . , zm] ∈
CPm

a0,...,am
to be the orbit of (z0, . . . , zm) under C∗.

Here is why CP
m
a0,...,am

is a complex orbifold. Consider the point [1, 0, . . . , 0]. Un-

der the action of u ∈ C
∗ the point (1, 0, . . . , 0) is taken to (ua0 , 0, . . . , 0). Therefore

the stabilizer of (1, 0, . . . , 0) in C∗ is G = {u ∈ C∗ : ua0 = 1}, which is a finite

group isomorphic to Za0 . It can be shown that the open set U0 =
{
[z0, . . . , zm] ∈

CP
m
a0,...,am

: z0 �= 0
}

is naturally isomorphic to C
m/G, where C

m has complex coor-

dinates (z1, . . . , zm) and u ∈ G acts on Cm by

(z1, . . . , zm) u�−→(ua1z1, . . . , u
amzm).

Thus, if a0 > 1 then [1, 0, . . . , 0] is an orbifold point of CP
m
a0,...,am

with orbifold

group Za0 . In the same way, one can prove the following. Let [z0, . . . , zm] be a point

in CP
m
a0,...,am

, and let k be the highest common factor of the set of those aj for which

zj �= 0. If k = 1 then [z0, . . . , zm] is nonsingular, and if k > 1 then [z0, . . . , zm] is an

orbifold point with orbifold group Zk.

Note that we cannot write CPm
a0,...,am

as M/G for M a complex manifold and G a

finite group, and so not all orbifolds are of the form M/G. The construction of weighted

projective spaces is an example of a more general phenomenon. Suppose a complex Lie

group K acts holomorphically on a complex manifold M , such that the stabilizers of

points in M are always finite subgroups of K . Then the quotient M/K is a complex

orbifold, provided it is Hausdorff. Because of this, orbifold singularities occur naturally

in moduli spaces and other geometrical problems.

7.4.1 Kähler and Calabi–Yau orbifolds
There is a natural notion of Kähler metric on complex orbifolds.

Definition 7.4.5 We say that g is a Kähler metric on a complex orbifold X if g is Kähler

in the usual sense on the nonsingular part of X , and wherever X is locally isomorphic

to Cm/G, we can identify g with the quotient of a G-invariant Kähler metric defined

near 0 in C
m. A Kähler orbifold (X, J, g) is a complex orbifold (X, J) equipped with

a Kähler metric g.

Examples of Kähler orbifolds are easy to find. For instance, all the weighted pro-

jective spaces CPm
a0,...,am

admit Kähler metrics, generalizing the Fubini–Study met-

ric on CP
m. Also, suppose (M, J, g) is a Kähler manifold, and G is a finite group

acting holomorphically on M , not necessarily preserving the Kähler metric g. Then

g′ = 1
|G|
∑

α∈G α∗(g) is a G-invariant Kähler metric on M , and so (M/G, J, g′) is a

Kähler orbifold. Thus, if M/G is a complex orbifold and M is Kähler, then M/G is

Kähler too.
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Because orbifold points are quite a mild form of singularity, orbifolds share many of

the good properties of manifolds. Many definitions and results about manifolds can be

very easily generalized to definitions and results about orbifolds, such as the definition

of orbifold Kähler metrics above. In particular, the ideas of smooth k-forms and (p, q)-
forms make sense on complex orbifolds. De Rham and Dolbeault cohomology are well-

defined on orbifolds and have nearly all of their usual properties.

Another result of interest to us is that the Calabi Conjecture holds for compact

Kähler orbifolds. To interpret this, we first need to know what we mean by the first

Chern class c1(X) when X is a complex orbifold. Now c1(X) is a characteristic class

of the canonical bundle KX of X . If all the orbifold groups of singular points in X lie

in SL(m, C), then KX is a genuine line bundle over X , and c1(X) is a well-defined

element of H2(X, Z) in the usual way.

However, if the orbifold groups do not lie in SL(m, C) then KX is a singular bundle

with fibre C over nonsingular points of X , but with fibres C/Zk over orbifold points of

X , for k � 1. It can be shown that in this case c1(X) is still well-defined, but exists

in H2(X, Q) rather than H2(X, Z). So in both cases c1(X) ∈ H2(X, R), and if X is

Kähler with Ricci form ρ then [ρ] = 2π c1(X) in H2(X, R).
Thus the statement of the Calabi Conjecture in the introduction to Chapter 6 does

at least make sense in the category of complex orbifolds. Moreover, the proof of the

conjecture also works for orbifolds, with only cosmetic changes. Since an orbifold is

locally the quotient of a manifold by a finite group G, locally one can lift any problem

on an orbifold up to a G-invariant problem on a manifold, and using this principle one

can adapt many proofs in geometry and analysis to the orbifold case. So, by analogy

with Theorem 7.1.2 we may prove:

Theorem 7.4.6 Let X be a compact complex orbifold with c1(X) = 0, admitting

Kähler metrics. Then there is a unique Ricci-flat Kähler metric in every Kähler class

on X .

Let X be a real or complex orbifold with singular set S, and g a Riemannian or

Kähler metric on X . We define the holonomy group Hol(g) to be the holonomy group

(in the usual sense) of the restriction of g to X \ S. With this definition, holonomy

groups on orbifolds have most of the good properties of the manifold case. However,

X \ S may not be simply-connected if X is simply-connected. Thus, if X is a simply-

connected orbifold and g a metric on X then Hol(g) may not be connected, in contrast

to the manifold case.

Let (X, J, g) be a Kähler manifold, and G a finite group of holomorphic isometries

of X . Then (X/G, J, g) is a Kähler orbifold. Write gX , gX/G for the metrics g on X and

X/G. Then it is easy to show that the restricted holonomy groups satisfy Hol0(gX/G) =
Hol0(gX). Furthermore, Hol(gX) is the normal subgroup of Hol(gX/G) consisting

of parallel transport around those based loops in X/G that lift to based loops in X .

There is a natural, surjective group homomorphism ρ : G → Hol(gX/G)/Hol(gX). So

Hol(gX/G) is a finite extension of Hol(gX) by a quotient group of G.

By analogy with Definition 7.1.10, we define a Calabi–Yau orbifold (X, J, g, θ) to

be a compact Kähler orbifold (X, J, g) with a holomorphic volume form θ satisfying

(7.2). Since from §7.1 a Kähler metric g is Ricci-flat if and only if Hol0(g) ⊆ SU(m),
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we can use Theorem 7.4.6 to construct metrics with holonomy SU(m) on suitable com-

pact complex orbifolds, making them into Calabi–Yau orbifolds. Also, if (X, J, g, θ) is

a Calabi–Yau manifold, and G a finite group of holomorphic isometries of X preserving

θ, then (X/G, J, g, θ) is a Calabi–Yau orbifold.

If (X, J, g) is a Kähler orbifold and an orbifold point x in X has orbifold group G,

then there is a natural inclusion

G ⊆ Hol(g) ⊆ U(m) ⊂ GL(m, C).

In particular, G is a subgroup of Hol(g). So if (X, J, g, θ) is a Calabi–Yau orbifold then

G ⊂ SU(m) ⊂ SL(m, C). This shows that if (X, J, g, θ) is a Calabi–Yau orbifold then

the orbifold groups of singular points of X all lie in SL(m, C).
Let G be a finite subgroup of SL(m, C). Choose α ∈ G with α �= 1, and let Vα be

the vector subspace of C
m fixed by α. Then dimVα < m as α �= 1. If dim Vα = m− 1

then α has exactly one eigenvalue that is not 1, contradicting det(α) = 1. So dimVα �
m − 2. But the singular set of C

m/G is the image in C
m/G of the Vα for α �= 1. Thus

the singular set of C
m/G has codimension at least two. Hence the singularities of a

Calabi–Yau orbifold are of complex codimension at least two.

7.5 Crepant resolutions of orbifolds
Let X be a complex orbifold of dimension m. We shall consider crepant resolutions

(X̃, π) of X . Since the singularities of X are locally isomorphic to quotient singular-

ities C
m/G for finite G ⊂ GL(m, C), any crepant resolution (X̃, π) of X is locally

isomorphic to crepant resolutions of C
m/G. But from §7.3 we already understand the

crepant resolutions of Cm/G quite well, especially when m = 2 or 3. Thus, we can use

our knowledge of crepant resolutions of C
m/G to study crepant resolutions of general

complex orbifolds.

From §7.3, a necessary condition for Cm/G to admit crepant resolutions is that

G ⊂ SL(m, C). Thus, a complex orbifold X can admit a crepant resolution only if

all its orbifold groups lie in SL(m, C). (From §7.4, this condition holds automatically

for Calabi–Yau orbifolds.) So let X be a complex orbifold with all orbifold groups in

SL(m, C). For each singular point there are a finite number of possible crepant resolu-

tions (which may be zero if m � 4). If G is an orbifold group of X and Cm/G admits

no crepant resolution, then clearly X has no crepant resolution either. So suppose that

C
m/G has at least one crepant resolution for all orbifold groups G of X .

The obvious way to construct a crepant resolution of X is to choose a crepant res-

olution of C
m/G for each singular point of X with orbifold group G, and then try to

patch these together to form a crepant resolution (X̃, π) of X . If the singularities of X
are isolated then we can independently choose any crepant resolution of each singular

point, and fit them together in a unique way to get a crepant resolution of X .

For nonisolated singularities things are more complicated, as choosing a crepant

resolution for one singular point x uniquely determines the choice of resolution of all

other singular points in an open neighbourhood of x. The choice of resolution must

vary continuously over the singular set, in an appropriate sense. However, in the case

m = 3 this imposes no restrictions, as we show in the proof of the next result, due to

Roan [289, p. 493].
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Theorem 7.5.1 Let X be a complex 3-orbifold with orbifold groups in SL(3, C). Then

X admits a crepant resolution.

Proof If X is a complex 3-orbifold with orbifold groups in SL(3, C) then the singular

points of X divide into two types:

(a) singular points modelled on (C2/H) × C, for H a finite subgroup of SU(2), and

(b) singular points not of type (a).

The singular points of type (a) form a complex 1-manifold in X , but the singular points

of type (b) are a discrete set of isolated points.

Now singular points of type (a) have a unique crepant resolution, by §7.3.1. So we

only have more than one possible choice of resolution at singular points of type (b).

But these are isolated from one another, and so there are no compatibility conditions

between the choices. By Theorem 7.3.1 there is at least one possible crepant resolution

for each singular point of type (b). Making an arbitrary choice in each case, we can

patch the resolutions together in a unique way to get a crepant resolution of X . �

It can happen that if X is a Kähler orbifold with nonisolated singularities, then some

of the crepant resolutions (X̃, π) of X are not Kähler. This is because, for reasons of

global topology, it may not be possible to choose a class in H1,1(X̃) which is simulta-

neously positive on homology classes of all the rational curves in X̃ introduced by the

resolution, and this is a necessary condition for the existence of a Kähler class. How-

ever, extending the argument of Theorem 7.5.1 one can show that a Kähler 3-orbifold

admitting crepant resolutions has at least one Kähler crepant resolution.

7.5.1 Crepant resolutions of quotients of complex tori
If X is a Calabi–Yau orbifold and (X̃, π) is a Kähler crepant resolution of X , then X̃
has a family of Ricci-flat Kähler metrics which make it into a Calabi–Yau manifold. This

gives a method of constructing Calabi–Yau manifolds. We start with a compact Kähler

orbifold (X, J, g) with Hol(g) ⊆ SU(m). If (X̃, π) is any Kähler crepant resolution of

X , then X̃ has a family of Ricci-flat Kähler metrics g̃. It can be shown that Hol(g) ⊆
Hol(g̃) ⊆ SU(m). Often we find that although Hol(g) may be a proper subgroup of

SU(m), yet Hol(g̃) = SU(m), and so X̃ is a Calabi–Yau manifold.

In particular we can take X to be T 2m/G, where T 2m is a flat Kähler torus and G
a finite group. Let Cm have its standard complex structure J , Euclidean metric g, and

holomorphic volume form θ, and let Λ be a lattice in C
m. Then C

m/Λ is a compact

torus T 2m, with a flat Kähler structure (J, g) and holomorphic volume form θ.

Let G be a finite group of automorphisms of T 2m preserving g, J and θ. Then

(T 2m/G, J, g) is a compact Kähler orbifold with orbifold groups in SL(m, C). Sup-

pose (X̃, π) is a crepant resolution of T 2m/G. Under good conditions, X̃ turns out to

be a Calabi–Yau manifold.

The simplest case of this is the Kummer construction, in which T 4/{±1} is re-

solved to give a K3 surface. It will be described in Examples 10.3.2 and 10.3.14. The

method was studied in higher dimensions by Roan [288]. Here is a useful result in the

3-dimensional case.
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Theorem 7.5.2 Let (T 6, J, g) be a flat Kähler torus with a holomorphic volume form

θ, and suppose G is a finite group of automorphisms of T 6 preserving J, g and θ. Then

X = T 6/G is a compact complex orbifold with at least one Kähler crepant resolu-

tion (X̃, π). There exist Ricci-flat Kähler metrics g̃ on X̃ with Hol(g̃) ⊆ SU(3), and

Hol(g̃) = SU(3) if and only if π1(T 6/G) is finite.

Proof As G preserves θ the orbifold groups of T 6/G all lie in SL(3, C), so by The-

orem 7.5.1 and the discussion after it, T 6/G has at least one Kähler crepant resolution

(X̃, π), which has trivial canonical bundle. This X̃ admits Ricci-flat Kähler metrics g̃
with Hol(g̃) ⊆ SU(3) by Theorem 7.1.2 and Corollary 7.1.6.

By the classification of holonomy groups, Hol0(g̃) must be {1}, SU(2) or SU(3).
Propositions 7.1.3 and 7.1.4 then show that Hol(g̃) = SU(3) if and only if π1(X̃) is

finite. But π1(X̃) ∼= π1(T 6/G), as crepant resolutions of orbifolds replace each singular

point by a simply-connected set. Therefore Hol(g̃) = SU(3) if and only if π1(T 6/G) is

finite, as we have to prove. �

Here is a simple example.

Example 7.5.3 Let ζ =− 1
2 +i

√
3

2 , so that ζ3 =1, and define a lattice Λ in C3 by

Λ =
{
(a1 + b1ζ, a2 + b2ζ, a3 + b3ζ) : aj , bj ∈ Z

}
.

Then T 6 = C3/Λ is a complex torus, with a natural metric g and holomorphic volume

form θ. Define a map α : T 6 → T 6 by

α : (z1, z2, z3) + Λ �−→ (ζz1, ζz2, ζz3) + Λ.

Then α is well-defined, preserves g and θ, and α3 is the identity. Hence G = {1, α, α2}
is a group of automorphisms of T 6 isomorphic to Z3, and T 6/G is a Kähler orbifold.

The fixed points of α on T 6 are the 27 points{
(c1, c2, c3) + Λ : c1, c2, c3 ∈ {0, i√

3
, 2i√

3
}
}
.

Thus T 6/G has 27 isolated fixed points modelled on C
3/Z3, where the action of Z3 on

C3 is generated by (z1, z2, z3) �−→ (ζz1, ζz2, ζz3). Now C3/Z3 has a unique crepant

resolution, the blow-up of the singular point, in which the singular point is replaced by

a copy of CP
2. Therefore T 6/G has a unique crepant resolution Z , made by blowing

up the 27 singular points.

Calculation shows that π1(T 6/G) = {1}, so Z is a Calabi–Yau 3-fold by Theorem

7.5.2. Let us compute the Hodge numbers hp,q of Z . Since

hp,q = hq,p = h3−p,3−q = h3−q,3−p and h0,0 = h3,0 = 1, h1,0 = h2,0 = 0

by (5.10) and Proposition 7.1.7, it is enough to find h1,1 and h2,1. Now the forms dzj ∧
dz̄k for j, k = 1, 2, 3 are a natural basis for H1,1(T 6), so that h1,1(T 6) = 9. The

action of α ∈ G multiplies dzj by ζ and dz̄k by ζ̄, so that dzj ∧ dz̄k is multiplied

by ζζ̄ = 1. Thus G acts trivially on H1,1(T 6), and so H1,1(T 6/G) ∼= H1,1(T 6), and
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h1,1(T 6/G) = 9. The resolution of each singular point adds 1 to h1,1. Thus h1,1(Z) =
9 + 27 = 36.

Similarly, a basis for H2,1(T 6) is dzj ∧ dzk ∧ dz̄l for j, k, l = 1, 2, 3 and j < k.

The action of α ∈ G multiplies dzj ∧ dzk ∧ dz̄l by ζ2ζ̄ = ζ. Thus the G-invariant part

of H2,1(T 6) is {0}, and h2,1(T 6/G) = 0. The resolution of the singular points does

not change h2,1, and so h2,1(Z) = 0. Therefore the Hodge numbers of Z are h1,1 = 36
and h2,1 = 0. An interesting feature of this example is that h2,1 = 0. As we will see in

§7.7, this implies that the complex 3-fold Z is rigid, and has no deformations.

Many other examples of Calabi–Yau manifolds can be constructed in this way using

other finite groups G acting on T 2m, especially in the case m = 3. But one can show

the number of distinct manifolds arising in this way in any one dimension is finite.

7.6 Complete intersections

Let CPm have homogeneous coordinates [z0, . . . , zm], let f(z0, . . . , zm) be a nonzero

homogeneous polynomial of degree d, and define X to be{
[z0, . . . , zm] ∈ CP

m : f(z0, . . . , zm) = 0
}
.

Then we call X a hypersurface of degree d. Suppose X is nonsingular, which is true for

generic f , so that X is a compact complex manifold of dimension m−1. Now, under

what conditions do we have c1(X) = 0?

The adjunction formula for complex hypersurfaces [132, p. 147] gives that

KX = (KCPm ⊗ LX)|X ,

where LX is the line bundle associated to the divisor [X ]. In the notation of Example

5.10.1, any line bundle over CP
m is of the form O(k) for some integer k. It can be

shown that KCPm = O(−m−1) and LX = O(d), and thus KX = O(d−m−1)|X .

Therefore KX is trivial, so that c1(X) = 0, if and only if d = m+1.

We have shown that any nonsingular hypersurface X in CP
m of degree m + 1 has

c1(X) = 0. But as X is also compact and Kähler, Theorem 7.1.2 shows X has a family

of Ricci-flat Kähler metrics. In fact these metrics have holonomy SU(m−1), and X is a

Calabi–Yau manifold for m � 3. This is perhaps the simplest known method of finding

Calabi–Yau manifolds. Now all nonsingular hypersurfaces in CP
m of degree m + 1 are

diffeomorphic, and thus this method yields only one smooth manifold admitting Calabi–

Yau structures in each dimension. We shall now describe three ways of generalizing this

idea that give Calabi–Yau structures on many more manifolds.

7.6.1 Complete intersections in CP
m

An algebraic variety X in CPm is a complete intersection if X = H1 ∩ · · · ∩ Hk,

where H1, . . . , Hk are hypersurfaces in CP
m which intersect transversely along X ,

so that dimX = m − k. Suppose that X is a complete intersection of hypersurfaces

H1, . . . , Hk, and let dj be the degree of Hj . Finding an expression for c1(X) as above,

one easily proves that c1(X) = 0 if and only if d1 + · · ·+ dk = m + 1, and in this case

X is a Calabi–Yau manifold.
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Since complete intersections with fixed m and d1, . . . , dk are all equivalent under

deformation, X depends as a smooth manifold only on m and d1, . . . , dk. By [131,

Th. 1], if hypersurfaces Hj in CP
m of degree dj are chosen generically then X =

H1 ∩ · · · ∩ Hk is a nonsingular complete intersection. Now if dj = 1 for any j then

X may be regarded as the intersection of k−1 hypersurfaces in CP
m−1 of degrees

d1, . . . , dk, omitting dj .

Thus Calabi–Yau manifolds of dimension m − k which are complete intersections

are classified, as smooth manifolds, by integers m and d1, . . . , dk, where dj � 2 for

j = 1, . . . , k and d1+· · ·+dk = m+1. There are only a finite number of possibilities for

m and d1, . . . , dk in each dimension. For example, using the notation (m | d1, . . . , dk),
the five complete intersections giving Calabi–Yau 3-folds are

(4 | 5), (5 | 2, 4), (5 | 3, 3), (6 | 2, 2, 3) and (7 | 2, 2, 2, 2).

By applying the Lefschetz Hyperplane Theorem, Theorem 5.10.4, we see that if X
is a complete intersection of dimension m− k in CP

m then Hj(X, C) ∼= Hj(CP
m, C)

for 0 � j < m − k. This gives the Betti numbers bj(X) of X , except in the middle

dimension m − k. To determine bm−k(X) we calculate the Euler characteristic of X ,

using a formula for the Chern classes of X .

7.6.2 Hypersurfaces in weighted projective spaces and toric varieties
The construction above may be generalized by replacing CP

m by a weighted projective

space CP
m
a0,...,am

, as in Definition 7.4.4. This was studied in depth by Candelas, Lynker

and Schimmrigk [71] in the case m = 4, and we now summarize their ideas. The

weighted projective space CP
m
a0,...,am

is the quotient of C
m+1 \ {0} by the C

∗-action

(z0, . . . , zm) u�−→(ua0z0, . . . , u
amzm) for u ∈ C

∗.

We call a nonzero polynomial f(z0, . . . , zm) weighted homogeneous of degree d if

f(ua0z0, . . . , u
amzm) = udf(z0, . . . , zm) for all u, z0, . . . , zm ∈ C.

Let f be such a polynomial, and define a hypersurface X in CPm
a0,...,am

by

X =
{
[z0, . . . , zm] ∈ CP

m
a0,...,am

: f(z0, . . . , zm) = 0
}
.

Then we call X a hypersurface of degree d in CPm
a0,...,am

.

Now CP
m
a0,...,am

is an orbifold. Usually the hypersurface X intersects the singular-

ities of CPm
a0,...,am

, and at these points X itself is singular. We don’t want to exclude

all such X , and therefore we cannot restrict our attention to nonsingular X . Instead, we

define the polynomial f to be transverse if f(z0, . . . , zm) = 0 and df(z0, . . . , zm) = 0
have no common solutions in Cm+1\{0}. If f is transverse then the only singular points

of X are also singular points of CP
m
a0,...,am

, and in fact X is an orbifold, all of whose

orbifold groups are cyclic.

So we restrict our attention to hypersurfaces X defined by transverse polynomials

f . Note that for given weights a0, . . . , am and degree d, there may not exist any trans-

verse polynomials f . Any such f must be the sum of monomials zb0
0 · · · zbm

m , where
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b0, . . . , bm are nonnegative integers with a0b0 + · · · + ambm = d. If there are not

enough suitable solutions {bj} to this equation, then there are no transverse f . For

example, by [71, p. 389] a necessary (but not sufficient) criterion for there to exist a

transverse polynomial f of degree d is that for each i = 0, . . . , m there exists a j such

that ai divides d − aj .

Let X be a hypersurface in CPm
a0,...,am

of degree d, defined by a transverse poly-

nomial f . Then since X is an orbifold, the first Chern class c1(X) is well-defined. It

can be shown that c1(X) = 0 if and only if d = a0 + · · · + am. Moreover, in this case

the canonical bundle KX of X is trivial, and this implies that the orbifold groups of X
lie in SL(m−1, C). Therefore X is a Calabi–Yau orbifold, and if (X̃, π) is a Kähler

crepant resolution of X , then X̃ is a Calabi–Yau manifold.

In particular, when m = 4 the dimension of X is 3, and so by Theorem 7.5.1 and

the discussion after it, X admits at least one Kähler crepant resolution X̃ , which is then

a Calabi–Yau 3-fold. This gives a method for constructing Calabi–Yau 3-folds:

• First choose a weighted projective space CP4
a0,...,a4

, where a0, . . . , a4 are positive

integers with highest common factor 1.

• If possible, find a hypersurface X in CP4
a0,...,a4

defined by a transverse polynomial

f of degree a0 + · · · + a4.

• This X is a Calabi–Yau orbifold, whose orbifold groups are cyclic subgroups of

SL(3, C). Let (X̃, π) be a Kähler crepant resolution of X . There is at least one

such resolution. Then X̃ is a Calabi–Yau 3-fold.

The two big advantages of this method are that, firstly, there are many possibilities for

a0, . . . , a4 and so the construction yields many Calabi–Yau 3-folds, and secondly, the

calculations involved are sufficiently mechanical that the construction can be imple-

mented on a computer.

In particular, once a0, . . . , a4 are fixed, all hypersurfaces X defined by transverse f
of degree a0 + · · ·+a4 are deformation equivalent. Thus the topology of the orbifold X
depends only on a0, . . . , a4. Although X may admit several different crepant resolutions

X̃1, . . . , X̃k, the Hodge numbers of X̃j depend only on the topology of X , and hence

only on a0, . . . , a4.

Candelas et al. [71, §3] explained how to calculate the Hodge numbers of X̃ from

a0, . . . , a4. They then used a computer program to search for quintuples (a0, . . . , a4)
for which a suitable transverse polynomial f exists, and to calculate the Hodge num-

bers of the corresponding Calabi–Yau 3-folds. In this way they constructed some 6000

examples of Calabi–Yau 3-folds, which realized 2339 distinct pairs of Hodge numbers

(h1,1, h2,1). This was many more examples than were known at the time.

When Candelas et al. plotted the Hodge numbers (h1,1, h2,1) of their examples on

a graph [71, Fig. 1, p. 384], they found that their graph had an approximate, but very

persuasive symmetry: for nearly every Calabi–Yau 3-fold with h1,1 = x and h2,1 = y
in their examples, there was another Calabi–Yau 3-fold with h1,1 = y and h2,1 = x.

This was one of the first pieces of experimental evidence supporting the idea of Mirror

Symmetry for Calabi–Yau 3-folds, which will be the subject of Chapter 9.

Batyrev [20] made significant progress in explaining this by studying Calabi–Yau

manifolds which are hypersurfaces in compact toric varieties. As weighted projective
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spaces are toric this includes the examples of [71], and also some others. Batyrev

showed that nonsingular toric 4-folds T containing Calabi–Yau 3-folds X as anticanon-

ical divisors are classified by reflexive polytopes ∆ in R
4, with vertices in Z

4. Each

such ∆ has a dual reflexive polytope ∆̂, and if X, X̂ are Calabi–Yau 3-fold divisors in

T, T̂ then h1,1(X) = h2,1(X̂) and h2,1(X) = h1,1(X̂). Thus, this construction auto-

matically yields Calabi–Yau 3-folds in mirror pairs.
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Fig. 7.1 h11 + h12 versus Euler number χ = 2(h11 − h12) of Calabi–Yau 3-folds.

Reflexive polytopes ∆ in R4 are specified by a finite amount of data, the set of

vertices of ∆ in Z
4. Kreuzer and Skarke [225] used a computer to produce a complete

list of such polytopes, consisting of 473,800,776 examples. They also calculated the

Hodge numbers of the corresponding Calabi–Yau 3-fold hypersurfaces, which realize

30,108 distinct pairs of Hodge numbers (h1,1, h2,1). A graph of these Hodge numbers is

given in Figure 7.1, reproduced from [225] by kind permission of Maximilian Kreuzer.

Its symmetry under reflection in the vertical axis is a striking illustration of mirror
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symmetry. The patterns in the graph, and the nature of the curve bounding the inhabited

region from above, have never been explained.

7.7 Deformations of Calabi–Yau manifolds

The Kodaira–Spencer–Kuranishi deformation theory for compact complex manifolds

was explained in §5.9.2. It turns out that when (X, J, g, θ) is a Calabi–Yau manifold, the

deformation theory of the underlying complex manifold (X, J) is particularly simple.

Our next result is due independently to Tian [326, Th. 1] and Todorov [329, Th. 1].

Theorem 7.7.1 Let X be a compact Kähler m-manifold with trivial canonical bundle.

Then the local moduli space of deformations of the complex structure of X is a complex

manifold of dimension hm−1,1(X). All the complex structures in this local moduli

space are also Kähler with trivial canonical bundle.

Here is why the moduli space has dimension hm−1,1(X). The deformation theory of

a compact complex manifold X depends on the sheaf cohomology groups H∗(X, ΘX),
which are the cohomology of the complex

0 → C∞(T 1,0X) ∂̄−→C∞(T 1,0X ⊗ Λ0,1X) ∂̄−→C∞(T 1,0X ⊗ Λ0,2X) ∂̄−→· · · .

But since X has trivial canonical bundle there exists a holomorphic volume form θ on

X , which is a section of Λm,0. Contraction with θ gives an isomorphism between T 1,0X
and Λm−1,0X . Thus

T 1,0 ⊗ Λ0,qX ∼= Λm−1,0X ⊗ Λ0,qX ∼= Λm−1,qX.

Therefore the complex above is isomorphic to the complex

0 → C∞(Λm−1,0X) ∂̄−→C∞(Λm−1,1X) ∂̄−→C∞(Λm−1,2X) ∂̄−→· · · .

But this is part of the Dolbeault complex of X , as in §5.2.2 and §5.7.1. So Hq(X, ΘX)
is isomorphic to Hm−1,q(X).

Thus in the Kodaira–Spencer–Kuranishi deformation theory of §5.9.2, the space of

infinitesimal deformations of X is Hm−1,1(X), and the space of obstructions to de-

forming X is Hm−1,2(X). Now Tian and Todorov show that even though Hm−1,2(X)
may be nonzero, the obstructions are ineffective, and every infinitesimal deformation

of X lifts to an actual deformation. Hence the base space of the Kuranishi family of

deformations of X is an open set in Hm−1,1(X). They also show that the Kuranishi

family is universal. So the local moduli space of deformations of the complex struc-

ture of X is isomorphic to an open set in Hm−1,1(X), and is a complex manifold with

dimension hm−1,1(X).

Corollary 7.7.2 Let (X, J, g, θ) be a Calabi–Yau m-fold of dimension m. Then the

local moduli space of deformations of the Calabi–Yau structure (J, g, θ) of X is a

smooth real manifold of dimension h1,1(X) + 2hm−1,1(X) + 1.
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Proof From Theorem 7.7.1, the local deformations of J form a manifold of complex

dimension hm−1,1(X), and thus of real dimension 2hm−1,1(X). But from §7.1, the

family of Calabi–Yau metrics g on the fixed complex manifold (X, J) is a real man-

ifold of dimension h1,1(X) isomorphic to the Kähler cone KX of (X, J). This also

holds on (X, Jt) for any small deformation Jt of J . Having chosen J, g, the holomor-

phic volume form θ is unique up to phase θ �→ eiψθ, which contributes one more real

parameter. So the local moduli space of Calabi–Yau structures on X is a real manifold

of dimension h1,1(X) + 2hm−1,1(X) + 1. �

Now let X be a compact real manifold of dimension 2m, let AX be the set of

integrable complex structures J on X extending to Calabi–Yau m-folds (X, J, g, θ),
and let DX be the group of diffeomorphisms of X isotopic to the identity map. Then

M X = AX/DX is the moduli space of Calabi–Yau complex structures on X .

Note that AX and DX are both infinite-dimensional. However, by Theorem 7.7.1 we

see that M X is a nonsingular complex manifold of dimension hm−1,1(X), where the

Hodge number is a locally constant function of complex structure in M X . We would

like to study the global geometry of M X , and hence to get some information about the

entire collection of Calabi–Yau structures on a fixed real manifold. Here is a tool that

helps us to do this.

For each J ∈ AX , write XJ for the complex manifold (X, J). Then Hm(X, C)
splits into a direct sum of Dolbeault groups Hp,q(XJ) for p + q = m. In particu-

lar, Hm,0(XJ) is a 1-dimensional subspace of Hm(X, C), and so it defines a point

in the complex projective space P
(
Hm(X, C)

)
. Clearly, this point depends only on

the equivalence class of J in M X . Define a map Φ : M X → P
(
Hm(X, C)

)
by

Φ(J · DX) = Hm,0(XJ ). We call Φ the period map of X .

We showed above how to use a holomorphic volume form θ on XJ to define an

isomorphism between Hm−1,1(XJ ) and the tangent space to M X at the equivalence

class of J . This tangent space is isomorphic to Hm,0(XJ )∗ ⊗ Hm−1,1(XJ), without

making any choice of θ. However, Hm,0(XJ )∗ ⊗ Hm−1,1(XJ ) is also isomorphic to a

subspace of the tangent space to P
(
Hm(X, C)

)
at the point Hm,0(XJ).

Thus there is a natural isomorphism between the tangent space to M X at J ·DX , and

a subspace of the tangent space to P
(
Hm(X, C)

)
at Φ(J ·DX), and dΦ induces exactly

this isomorphism. This has two important consequences: firstly, Φ is a holomorphic map

of complex manifolds, and secondly, Φ is an immersion. Hence we have proved:

Theorem 7.7.3 Let X be a compact real 2m-manifold, M X be the moduli space of

Calabi–Yau complex structures on X , and Φ : M X → P
(
Hm(X, C)

)
the map defined

above. Then M X has the structure of a complex manifold of dimension hm−1,1(X),
and Φ is a holomorphic immersion of complex manifolds.

Now in good cases, we can hope that Φ is an embedding rather than just an immer-

sion, and its image Im Φ can be explicitly identified in P
(
Hm(X, C)

)
. We can then give

a very precise description of the moduli space of Calabi–Yau complex structures M X

on X . This happens for K3 surfaces, which are Calabi–Yau manifolds of dimension 2,

as we will explain in §10.3. One can also describe the moduli space M X when X is a

Calabi–Yau m-fold for m � 3 defined as a complete intersection in some CP
n using

this method, as all small deformations of X are also complete intersections in CP
n.
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Special Lagrangian geometry

Special Lagrangian submanifolds (or SL m-folds for short) in C
m, or in a Calabi–Yau

m-fold or almost Calabi–Yau m-fold (X, J, g, θ), are real m-dimensional submanifolds

in C
m or X calibrated by the real part Re θ of the holomorphic volume form θ. They

were invented by Harvey and Lawson [151, §III], who concentrated on SL m-folds in

Cm. For a long time, essentially the only nontrivial result on SL m-folds in Calabi–

Yau m-folds was McLean’s beautiful theorem on the deformation theory of compact

SL m-folds in §8.4.1 below.

However, in 1996 Strominger, Yau and Zaslow [317] put forward the SYZ Con-

jecture explaining mirror symmetry of Calabi–Yau 3-folds X, X̂ in terms of fibrations

of X, X̂ by SL 3-folds, including singular fibres, as we shall describe in Chapter 9.

This generated considerable interest in special Lagrangian geometry amongst mathe-

maticians and physicists, and there are now many more examples known, and a fairly

well-developed theory of singularities of SL m-folds.

Sections 8.1–8.3 concern SL m-folds in C
m, covering the basic theory, construc-

tions of examples, and more detail on SL cones and Asymptotically Conical SL m-

folds. Then §8.4 discusses SL m-folds in (almost) Calabi–Yau m-folds, focussing on

compact, nonsingular SL m-folds, and §8.5 surveys what is known about singular SL

m-folds in (almost) Calabi–Yau m-folds.

8.1 Special Lagrangian submanifolds in Cm

Here is the basic definition.

Definition 8.1.1 Let C
m ∼= R

2m have complex coordinates (z1, . . . , zm), and as in

(7.1) define a metric g, Kähler form ω and complex volume form θ on C
m by

g = |dz1|2 + · · · + |dzm|2, ω = i
2 (dz1 ∧ dz̄1 + · · · + dzm ∧ dz̄m),

and θ = dz1 ∧ · · · ∧ dzm.
(8.1)

Then Re θ and Im θ are real m-forms on Cm, both calibrations. Let L be an oriented

real m-submanifold of C
m. We call L a special Lagrangian submanifold of C

m, or SL

m-fold for short, if L is calibrated with respect to Re θ, in the sense of §4.1.

More generally, if ψ ∈ R we call L special Lagrangian with phase eiψ if it is

calibrated w.r.t. cosψ Re θ + sinψ Im θ. When we refer to SL m-folds L without spec-

ifying a phase we mean phase 1, that is, calibrated w.r.t. Re θ as above. Since L is an

146
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SL m-fold with phase eiψ in Cm if and only if e−iψ/mL is an SL m-fold with phase 1,

studying SL m-folds with phase 1 tells us about SL m-folds with arbitrary phase.

Here [151, Cor. III.1.11] is an alternative characterization of SL m-folds.

Proposition 8.1.2 Let L be a real m-dimensional submanifold of C
m. Then L admits

an orientation making it into an SL m-fold if and only if ω|L ≡ 0 and Im θ|L ≡ 0.

More generally, it admits an orientation making it into an SL m-fold with phase eiψ if

and only if ω|L ≡ 0 and (cos ψ Im θ − sin ψ Re θ)|L ≡ 0.

In practice, the condition ω|L ≡ Im θ|L ≡ 0 is a more useful definition of SL m-

folds than being calibrated with respect to Re θ. Also, an m-submanifold L in Cm is

called Lagrangian if ω|L ≡ 0. (This is a term from symplectic geometry, and ω is a sym-

plectic structure.) Thus special Lagrangian submanifolds are Lagrangian submanifolds

satisfying the extra condition Im θ|L ≡ 0, which is how they get their name.

Using Proposition 8.1.2 it is easy to determine the family F of SL m-planes in C
m:

Proposition 8.1.3 The family F of oriented real m-planes V in Cm with Re θ|V =
volV is isomorphic to SU(m)/ SO(m), with dimension 1

2 (m2 + m − 2).

As special Lagrangian submanifolds in Cm are calibrated, they are minimal. Harvey

and Lawson [151, Th. III.2.7] use this to show that they are real analytic:

Theorem 8.1.4 Let L be an SL m-fold in C
m. Then L is real analytic wherever it is

nonsingular.

Examples are known [151, p. 97] of special Lagrangian singularities which are not

real analytic. Harvey and Lawson also prove [151, Th. III.5.5]:

Theorem 8.1.5 Let P be a real analytic (m − 1)-submanifold in C
m with ω|P ≡ 0.

Then there exists a locally unique SL m-fold L in C
m containing P .

They assume P is real analytic because their proof uses the Cartan–Kähler Theorem,

from the subject of exterior differential systems, and this only works in the real analytic

category. The submanifold L is defined by a kind of Taylor series, which converges in

a small neighbourhood of P . One can use the same methods to show that SL m-folds

in C
m ‘depend on 2 functions of m − 1 variables’, in the sense of exterior differential

systems. Thus, there are very many special Lagrangian submanifolds in Cm.

8.1.1 Special Lagrangian 2-folds in C
2 and the quaternions

The smallest interesting dimension, m = 2, is a special case. Let C
2 have complex

coordinates (z1, z2), complex structure I , and metric g, Kähler form ω and holomorphic

2-form θ as in (8.1). Define real coordinates (x0, x1, x2, x3) on C
2 ∼= R

4 by z0 =
x0 + ix1, z1 = x2 + ix3. Then

g = dx2
0 + · · · + dx2

3, ω = dx0 ∧ dx1 + dx2 ∧ dx3,

Re θ = dx0 ∧ dx2 − dx1 ∧ dx3 and Im θ = dx0 ∧ dx3 + dx1 ∧ dx2.

Now define a different set of complex coordinates (w1, w2) on C
2 = R

4 by w1 =
x0 + ix2 and w2 = x1 − ix3. Then ω − i Im θ = dw1 ∧ dw2.



148 SPECIAL LAGRANGIAN GEOMETRY

But by Proposition 8.1.2, a real 2-submanifold L ⊂ R4 is special Lagrangian if and

only if ω|L ≡ Im θ|L ≡ 0. Thus, L is special Lagrangian if and only if (dw1∧dw2)|L ≡
0. But this holds if and only if L is a holomorphic curve with respect to the complex

coordinates (w1, w2).
Here is another way to say this. There are two different complex structures I and

J involved in this problem, associated to the two different complex coordinate systems

(z1, z2) and (w1, w2) on R
4. In the coordinates (x0, . . . , x3), I and J are given by

I
(

∂
∂x0

)
= ∂

∂x1
, I
(

∂
∂x1

)
= − ∂

∂x0
, I
(

∂
∂x2

)
= ∂

∂x3
, I

(
∂

∂x3

)
= − ∂

∂x2
,

J
(

∂
∂x0

)
= ∂

∂x2
, J
(

∂
∂x1

)
= − ∂

∂x3
, J
(

∂
∂x2

)
= − ∂

∂x0
, J
(

∂
∂x3

)
= ∂

∂x1
.

The usual complex structure on C
2 is I , but a 2-fold L in C

2 is special Lagrangian if

and only if it is holomorphic w.r.t. the alternative complex structure J . This means that

special Lagrangian 2-folds are already very well understood, so we generally focus our

attention on dimensions m � 3.

We can express all this in terms of the quaternions H. The complex structures I, J
anticommute, so that IJ = −JI , and K = IJ is also a complex structure on R

4, and

〈1, I, J, K〉 is an algebra of automorphisms of R
4 isomorphic to H.

8.1.2 Special Lagrangian submanifolds in C
m as graphs

In symplectic geometry, there is a well-known way of manufacturing Lagrangian sub-

manifolds of R
2m ∼= C

m, which works as follows. Let f : R
m → R be a smooth

function, and define

Γf =
{(

x1+i ∂f
∂x1

(x1, . . . , xm), . . . , xm+i ∂f
∂xm

(x1, . . . , xm)
)

: x1, . . . , xm∈R
}
.

Then Γf is a smooth real m-dimensional submanifold of C
m, with ω|Γf

≡ 0. Iden-

tifying Cm ∼= R2m ∼= Rm × (Rm)∗, we may regard Γf as the graph of the 1-form

df on R
m, so that Γf is the graph of a closed 1-form. Locally, but not globally, every

Lagrangian submanifold arises from this construction.

Now by Proposition 8.1.2, a special Lagrangian m-fold in Cm is a Lagrangian m-

fold L satisfying the additional condition that Im θ|L ≡ 0. We shall find the condition

for Γf to be a special Lagrangian m-fold. Define the Hessian Hess f of f to be the

m × m matrix ( ∂2f
∂xi∂xj

)m
i,j=1 of real functions on R

m. Then it is easy to show that

Im θ|Γf
≡ 0 if and only if

Im detC

(
Im + i Hess f

)
≡ 0 on R

m, (8.2)

where Im is the m×m identity matrix. This is a nonlinear second-order elliptic partial

differential equation upon the function f : R
m → R.

It is known that if f : Rm → R is a global solution of (8.2) satisfying one of several

extra conditions, to do with convexity or order of growth, then f must be a quadratic

polynomial, so that Γf is a real affine m-plane in C
m. For more details see Yuan [346].

8.1.3 Local discussion of special Lagrangian deformations
Suppose L0 is a special Lagrangian submanifold in Cm (or, more generally, in some

Calabi–Yau m-fold). What can we say about the family of special Lagrangian defor-

mations of L0, that is, the set of special Lagrangian m-folds L that are ‘close to L0’



CONSTRUCTING EXAMPLES OF SL m-FOLDS IN C
m 149

in a suitable sense? Essentially, deformation theory is one way of thinking about the

question ‘how many special Lagrangian submanifolds are there in C
m?’.

Locally (that is, in small enough open sets), every special Lagrangian m-fold looks

quite like Rm in Cm. Therefore deformations of special Lagrangian m-folds should

look like special Lagrangian deformations of R
m in C

m. So, we would like to know

what special Lagrangian m-folds L in Cm close to Rm look like.

As R
m is the graph Γf associated to the function f ≡ 0, a graph Γf will be close to

R
m if the function f and its derivatives are small. But then Hess f is small, so we can

approximate eqn (8.2) by its linearization. Now

Im detC

(
Im + i Hess f

)
= Tr Hess f + higher order terms.

Thus, when the second derivatives of f are small, eqn (8.2) reduces approximately to

TrHess f ≡ 0. But TrHess f = ∂2f
(∂x1)2

+ · · · + ∂2f
(∂xm)2 = −∆f , where ∆ is the

Laplacian on Rm.

Hence, the small special Lagrangian deformations of R
m in C

m are approximately

parametrized by small harmonic functions on R
m. Actually, because adding a constant

to f has no effect on Γf , this parametrization is degenerate. We can get round this by

parametrizing instead by df , which is a closed and coclosed 1-form. This justifies the

following:

Principle. Small special Lagrangian deformations of a special Lagrangian m-fold L
are approximately parametrized by closed and coclosed 1-forms α on L.

This is the idea behind McLean’s Theorem, Theorem 8.4.5 below.

We have seen using (8.2) that the deformation problem for special Lagrangian m-

folds can be written as an elliptic equation. In particular, there are the same number of

equations as functions, so the problem is neither overdetermined nor underdetermined.

Therefore we do not expect special Lagrangian m-folds to be very few and very rigid

(as would be the case if (8.2) were overdetermined), nor to be very abundant and very

flabby (as would be the case if (8.2) were underdetermined).

If we think about Proposition 8.1.3 for a while, this may seem surprising. For the

set F of special Lagrangian m-planes in Cm has dimension 1
2 (m2 + m − 2), but the

set of all real m-planes in C
m has dimension m2. So the special Lagrangian m-planes

have codimension 1
2 (m2 − m + 2) in the set of all m-planes.

This means that the condition for a real m-submanifold L in Cm to be special La-

grangian is 1
2 (m2 − m + 2) real equations on each tangent space of L. However, the

freedom to vary L is the sections of its normal bundle in Cm, which is m real func-

tions. When m � 3, there are more equations than functions, so we would expect the

deformation problem to be overdetermined.

The explanation is that because ω is a closed 2-form, submanifolds L with ω|L ≡ 0
are much more abundant than would otherwise be the case. So the closure of ω is a

kind of integrability condition necessary for the existence of many special Lagrangian

submanifolds, just as the integrability of an almost complex structure is a necessary

condition for the existence of many complex submanifolds of dimension greater than 1

in a complex manifold.
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8.2 Constructing examples of SL m-folds in Cm

We now survey constructions of SL m-folds in Cm. This has been a very active area

in recent years, and we give many references. The same examples have often been dis-

covered independently by different people, and described in different terminology. For

instance, special Lagrangian cones in C
m, and special Legendrian or minimal Legen-

drian (m−1)-folds in S2m−1, and minimal Lagrangian (m−1)-folds in CP
m−1, are all

essentially the same thing, but appear in different branches of the literature.

Our principal interest in these constructions is that they yield many examples of

singular SL m-folds in C
m, and so hopefully will help in understanding what general

singularities of SL m-folds in Calabi–Yau m-folds are like. In particular, later we shall

be interested in examples of SL cones and asymptotically conical SL m-folds in C
m.

8.2.1 Special Lagrangian m-folds with large symmetry groups
Here is a method used by Harvey and Lawson [151, §III.3], Haskins [155], Goldstein

[127, 128] and the author [196] to construct examples of SL m-folds in C
m. The group

SU(m)�Cm acts on Cm preserving all the structure g, ω, θ, so that it takes SL m-folds

to SL m-folds in C
m. Let G be a Lie subgroup of SU(m)� C

m with Lie algebra g, and

N a connected G-invariant SL m-fold in C
m.

Since G preserves the symplectic form ω on C
m, one can show that it has a moment

map µ : C
m → g∗. As N is Lagrangian, one can show that µ is constant on N , that is,

µ ≡ c on N for some c ∈ Z(g∗), the centre of g∗.

If the orbits of G in N are of codimension 1 (that is, dimension m − 1), then N is

a 1-parameter family of G-orbits Ot for t ∈ R. After reparametrizing the variable t, it

can be shown that the special Lagrangian condition is equivalent to an o.d.e. in t upon

the orbits Ot.

Thus, we can construct examples of cohomogeneity one SL m-folds in C
m by solv-

ing an o.d.e. in the family of (m− 1)-dimensional G-orbits O in C
m with µ|O ≡ c, for

fixed c ∈ Z(g∗). This o.d.e. usually turns out to be integrable.

Now suppose N is a special Lagrangian cone in Cm, invariant under a subgroup

G ⊂ SU(m) which has orbits of dimension m − 2 in N . In effect the symmetry group

of N is G × R+, where R+ acts by dilations, as N is a cone. Thus, in this situation

too the symmetry group of N acts with cohomogeneity one, and we again expect the

problem to reduce to an o.d.e.

One can show that N ∩ S2m−1 is a 1-parameter family of G-orbits Ot in S2m−1 ∩
µ−1(0) satisfying an o.d.e. By solving this o.d.e. we construct SL cones in C

m. When

G = U(1)m−2, the o.d.e. has many periodic solutions yielding large families of distinct

SL cones on T m−1. In particular, this gives many examples of SL T 2-cones in C3,

studied by Haskins [155], the author [196], and in different language by Castro and

Urbano [73].

Bryant [62] proves a different kind of result, on SL m-folds in Cm invariant under

SO(m−1) acting on C×C
m−1 trivially on C and in the usual way on C

m−1. He shows

that for each real analytic curve C in C × {0}, there are locally exactly m − 1 distinct

SO(m − 1)-invariant SL m-folds N in C
m whose fixed locus under SO(m − 1) is C.
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8.2.2 Evolution equations for special Lagrangian m-folds
The following method was used by the author in [190, 191] to construct examples of

SL m-folds in C
m. A related but less general method was used by Lawlor [231], and

completed by Harvey [150, p. 139–143]. Let P be a real analytic (m − 1)-dimensional

manifold, and χ a nonvanishing real analytic section of Λm−1TP . Let {φt : t ∈ R} be

a 1-parameter family of real analytic maps φt : P → C
m. Consider the o.d.e.(

dφt

dt

)b

= (φt)∗(χ)a1...am−1(Re θ)a1...am−1amgamb, (8.3)

using the index notation for (real) tensors on C
m, where gab is the inverse of the Euclid-

ean metric gab on C
m.

It is shown in [190, §3] that if the φt satisfy (8.3) and φ∗
0(ω) ≡ 0, then φ∗

t (ω) ≡ 0
for all t, and N =

{
φt(p) : p ∈ P , t ∈ R

}
is an SL m-fold in C

m wherever it is

nonsingular. We think of (8.3) as an evolution equation, and N as the result of evolving

a 1-parameter family of (m−1)-submanifolds φt(P ) in Cm.

Here is one way to understand this result. Suppose we are given φt : P → C
m for

some t, and we want to find an SL m-fold N in C
m containing the (m−1)-submanifold

φt(P ). As N is Lagrangian, a necessary condition for this is that ω|φt(P ) ≡ 0, and

hence φ∗
t (ω) ≡ 0 on P .

The effect of eqn (8.3) is to flow φt(P ) in the direction in which Re θ is ‘largest’.

The result is that Re θ is ‘maximized’ on N , given the initial conditions. But Re θ is

maximal on N exactly when N is calibrated w.r.t. Re θ, that is, when N is special La-

grangian. The same technique also works for other calibrations, such as the associative

and coassociative calibrations on R
7, and the Cayley calibration on R

8.

Now (8.3) evolves amongst the infinite-dimensional family of real analytic maps

φ : P → Cm with φ∗(ω) ≡ 0, so it is an infinite-dimensional problem, and thus

difficult to solve explicitly. However, there are finite-dimensional families C of maps

φ : P → Cm such that evolution stays in C. This gives a finite-dimensional o.d.e.,

which can hopefully be solved fairly explicitly. For example, if we take G to be a Lie

subgroup of SU(m) � C
m, P to be an (m−1)-dimensional homogeneous space G/H ,

and φ : P → Cm to be G-equivariant, we recover the construction of §8.2.1.

But there are also other possibilities for C which do not involve a symmetry assump-

tion. Suppose P is a submanifold of R
n, and χ the restriction to P of a linear or affine

map Rn → Λm−1Rn. (This is a strong condition on P and χ.) Then we can take C to

be the set of restrictions to P of linear or affine maps R
n → C

m.

For instance, set m = n and let P be a quadric in Rm. Then one can construct SL

m-folds in C
m with few symmetries by evolving quadrics in Lagrangian planes R

m

in C
m. When P is a quadric cone in R

m this gives many SL cones on products of

spheres Sa × Sb × S1.

8.2.3 Ruled special Lagrangian 3-folds
A 3-submanifold N in C3 is called ruled if it is fibred by a 2-dimensional family F
of real lines in C

3. A cone N0 in C
3 is called two-sided if N0 = −N0. Two-sided

cones are automatically ruled. If N is a ruled 3-fold in C
3, the asymptotic cone N0 of
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N is the two-sided cone fibred by the lines passing through 0 and parallel to those in F .

Nonsingular ruled SL 3-folds N are automatically Asymptotically Conical in the sense

of §8.3.3, with cone N0.

Ruled SL 3-folds are studied by Harvey and Lawson [151, §III.3.C, §III.4.B], Bryant

[60, §3] and the author [195]. Each (oriented) real line in C
3 is determined by its direc-

tion in S5 together with an orthogonal translation from the origin. Thus a ruled 3-fold

N is determined by a 2-dimensional family of directions and translations.

The condition that N be special Lagrangian turns out [195, §5] to reduce to two

equations, the first involving only the direction components, and the second linear in

the translation components. Thus, if a ruled 3-fold N in C
3 is special Lagrangian, so is

its asymptotic cone N0. And the ruled SL 3-folds N asymptotic to a given two-sided

SL cone N0 come from solutions of a linear equation, and so form a vector space.

Let N0 be a two-sided SL cone, and let Σ = N0∩S5. Then Σ is a Riemann surface.

Holomorphic vector fields on Σ give solutions to the linear equation (though not all

solutions) [195, §6], and so yield new ruled SL 3-folds. In particular, each SL T 2-cone

gives a 2-dimensional family of ruled SL 3-folds, which are generically diffeomorphic

to T 2 × R as immersed 3-submanifolds.

8.2.4 Integrable systems
Let N0 be a special Lagrangian cone in C

3, and set Σ = N0∩S5. As N0 is calibrated, it

is minimal in C3, and so Σ is minimal in S5. That is, Σ is a minimal Legendrian surface

in S5. Let π : S5 → CP
2 be the Hopf projection. One can also show that π(Σ) is a

minimal Lagrangian surface in CP2.

Regard Σ as a Riemann surface. Then the inclusions ι : Σ → S5 and π ◦ ι : Σ →
CP

2 are conformal harmonic maps. Now harmonic maps from Riemann surfaces into

Sn and CPm are an integrable system. There is a complicated theory for classifying

them in terms of algebro-geometric ‘spectral data’, and finding ‘explicit’ solutions. In

principle, this gives all harmonic maps from T 2 into Sn and CP
m. So, the field of

integrable systems offers the hope of a classification of all SL T 2-cones in C3.

For a good general introduction to this field, see Fordy and Wood [109]. Sharipov

[309] and Ma and Ma [252] apply this integrable systems machinery to describe min-

imal Legendrian tori in S5, and minimal Lagrangian tori in CP
2, respectively, giving

explicit formulae in terms of Prym theta functions. McIntosh [257] provides a more

recent, readable, and complete discussion of special Lagrangian cones in C3 from the

integrable systems perspective.

Carberry and McIntosh [72] use integrable systems to prove that for every n � 1
there exists a smooth n-dimensional family of SL T 2-cones in C3, with spectral curves

of genus 2n + 4, which are pairwise non-congruent under the SU(3) action. This is

surprising, as on naı̈ve geometric grounds one would expect special Lagrangian cones

with isolated singularities to have no nontrivial deformations, and it shows that any

classification of SL singularities will involve continuous as well as discrete parameters.

Haskins [154] estimates geometric quantities associated to an SL T 2-cone N0, such

as the area of Σ, in terms of the spectral genus of Σ. The families of SL T 2-cones

constructed by U(1)-invariance in §8.2.1, and by evolving quadrics in §8.2.2, are both

part of a more general, explicit, ‘integrable systems’ family of conformal harmonic
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maps R2 → S5 with Legendrian image, involving two commuting, integrable o.d.e.s.,

described in [193].

8.2.5 Exterior differential systems
The theory of exterior differential systems, or Cartan–Kähler theory, can be used to

study SL m-folds in C
m satisfying various extra conditions. The standard text on ex-

terior differential systems is Bryant et al. [63], and a gentler introduction is Ivey and

Landsberg [177]. Here are some papers using these techniques. Bryant [60] and Ionel

[172] study and largely classify special Lagrangian submanifolds in C
3 and C

4 respec-

tively, whose second fundamental form at a generic point has nontrivial stabilizer group

in SO(3) or SO(4). Also Bryant [62] studies SO(m−1)-invariant SL m-folds in C
m

with fixed loci, and [59] shows that any compact, oriented, real analytic Riemannian

3-manifold can be embedded as an SL 3-fold in a noncompact Calabi–Yau 3-fold.

8.2.6 Analytic construction of U(1)-invariant SL 3-folds in C
3

Next we summarize the author’s three papers [205–207], which study SL 3-folds N in

C
3 invariant under the U(1)-action

eiψ : (z1, z2, z3) �→ (eiψz1, e−iψz2, z3) for eiψ ∈ U(1). (8.4)

These three papers are briefly surveyed in [198]. Locally we can write N in the form

N =
{
(z1, z2, z3) ∈ C3 : z1z2 = v(x, y) + iy, z3 = x + iu(x, y),

|z1|2 − |z2|2 = 2a, (x, y) ∈ S
}
,

(8.5)

where S is a domain in R
2, a ∈ R and u, v : S → R are continuous.

Here we may take |z1|2 − |z2|2 = 2a to be one of the equations defining N as

|z1|2−|z2|2 is the moment map of the U(1)-action (8.4), and so |z1|2−|z2|2 is constant

on any U(1)-invariant Lagrangian 3-fold in C
3. Effectively (8.5) just means that we are

choosing x = Re z3 and y = Im(z1z2) as local coordinates on the 2-manifold N/ U(1).
Then we find [205, Prop. 4.1]:

Proposition 8.2.1 Let S, a, u, v and N be as above. Then

(a) If a = 0, then N is a (possibly singular) SL 3-fold in C3 if u, v are differentiable

and satisfy
∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −2

(
v2 + y2

)1/2 ∂u

∂y
, (8.6)

except at points (x, 0) in S with v(x, 0) = 0, where u, v need not be differentiable.

The singular points of N are those of the form (0, 0, z3), where z3 = x+ iu(x, 0)
for (x, 0) ∈ S with v(x, 0) = 0.

(b) If a �= 0, then N is a nonsingular SL 3-fold in C3 if and only if u, v are differen-

tiable in S and satisfy

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −2

(
v2 + y2 + a2

)1/2 ∂u

∂y
. (8.7)
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Now (8.6) and (8.7) are nonlinear Cauchy–Riemann equations. Thus, we may treat

u + iv as like a holomorphic function of x + iy. Many of the results in [205–207] are

analogues of well-known results in elementary complex analysis.

In [205, Prop. 7.1] we show that solutions u, v ∈ C1(S) of (8.7) come from a

potential f ∈ C2(S) satisfying a second-order quasilinear elliptic equation.

Proposition 8.2.2 Let S be a domain in R
2 and u, v ∈ C1(S) satisfy (8.7) for a �= 0.

Then there exists f ∈ C2(S) with ∂f
∂y = u, ∂f

∂x = v and

P (f) =
((∂f

∂x

)2

+ y2 + a2
)−1/2 ∂2f

∂x2
+ 2

∂2f

∂y2
= 0. (8.8)

This f is unique up to addition of a constant, f �→ f + c. Conversely, all solutions of

(8.8) yield solutions of (8.7).

In the following result, a condensation of [205, Th. 7.6] and [206, Th.s 9.20 & 9.21],

we prove existence and uniqueness for the Dirichlet problem for (8.8).

Theorem 8.2.3 Suppose S is a strictly convex domain in R
2 invariant under (x, y) �→

(x,−y), and α ∈ (0, 1). Let a ∈ R and φ ∈ C3,α(∂S). Then if a �= 0 there exists a

unique solution f of (8.8) in C3,α(S) with f |∂S = φ. If a = 0 there exists a unique

f ∈ C1(S) with f |∂S = φ, which is twice weakly differentiable and satisfies (8.8) with

weak derivatives. Furthermore, the map C3,α(∂S)× R → C1(S) taking (φ, a) �→ f is

continuous.

Here a domain S in R2 is strictly convex if it is convex and the curvature of ∂S is

nonzero at each point. Also domains are by definition compact, with smooth boundary,

and C3,α(∂S) and C3,α(S) are Hölder spaces of functions on ∂S and S, as in §1.2.2.

For more details see [205, 206].

Combining Propositions 8.2.1 and 8.2.2 and Theorem 8.2.3 gives existence and

uniqueness for a large class of U(1)-invariant SL 3-folds in C3, with boundary condi-

tions, and including singular SL 3-folds. It is interesting that this existence and unique-

ness is entirely unaffected by singularities appearing in S◦.

Here are some other areas covered in [205–207]. Examples of solutions u, v of (8.6)

and (8.7) are given in [205, §5]. In [206] we give more precise statements on the regu-

larity of singular solutions of (8.6) and (8.8). In [205, §6] and [207, §7] we consider the

zeroes of (u1, v1) − (u2, v2), where (uj , vj) are (possibly singular) solutions of (8.6)

and (8.7).

We show that if (u1, v1) �≡ (u2, v2) then the zeroes of (u1, v1) − (u2, v2) in S◦ are

isolated, with a positive integer multiplicity, and that the zeroes of (u1, v1) − (u2, v2)
in S◦ can be counted with multiplicity in terms of boundary data on ∂S. In particular,

under some boundary conditions we can show (u1, v1)−(u2, v2) has no zeroes in S◦, so

that the corresponding SL 3-folds do not intersect. This will be important in constructing

U(1)-invariant SL fibrations in §9.4.5.

In [207, §9–§10] we study singularities of solutions u, v of (8.6). We show that

either u(x,−y) ≡ u(x, y) and v(x,−y) ≡ −v(x, y), so that u, v are singular all along

the x-axis, or else the singular points of u, v in S◦ are all isolated, with a positive
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integer multiplicity, and one of two types. We also show that singularities exist with

every multiplicity and type, and multiplicity n singularities occur in codimension n in

the family of all U(1)-invariant SL 3-folds.

A partial extension of these results to higher dimensions is given by Castro and

Urbano [74], who consider SL m-folds in C
m invariant under SO(a)×SO(b) for a, b �

1 with a + b = m, and show that such SL m-folds can be written locally in terms of

solutions u, v of a nonlinear Cauchy–Riemann equation generalizing (8.6). When a =
2, b = 1 and m = 3 their result reduces to Proposition 8.2.1(a). However, Theorem 8.2.3

and other analytic results of [205–207] have not yet been generalized to this context.

Section 9.4.5 will apply these results to special Lagrangian fibrations and the SYZ

Conjecture.

8.2.7 SL cones on higher genus surfaces in C3

In an elegant but difficult paper, Haskins and Kapouleas [156] construct examples of

SL cones C in C
3 whose intersection with the unit sphere Σ = C ∩ S5 is a compact

Riemann surface of genus g, for all odd g � 1. Their method is analytic, and involves

gluing together pieces of several SL cones in C3 invariant under different U(1) sub-

groups of SU(3) to get an approximately special Lagrangian cone, and then deforming

to an exactly special Lagrangian one. The construction involves a large integer para-

meter, and Σ has large area, so the ‘stability index’ s-ind(C) of §8.3.1 below is also

large.

See also Wang [337] for another analytic construction of SL cones C on higher

genus surfaces Σ in C
3, which works by minimizing the area of Legendrian surfaces

Σ in S5 invariant under a finite group Γ ⊂ SU(3), so Σ has small area. However, the

author is unsure whether the proof is yet complete. Note too that the integrable systems

ideas of §8.2.4 presently give no information on SL cones on surfaces Σ of genus g > 1.

8.2.8 Examples of singular special Lagrangian 3-folds in C
3

We finish by describing four families of SL 3-folds in C
3, as examples of the material

of §8.2.1–§8.2.4. They have been chosen to illustrate different kinds of singular behav-

iour of SL 3-folds, and also to show how nonsingular SL 3-folds can converge to a

singular SL 3-fold, to serve as a preparation for our discussion of singularities of SL

m-folds in §8.5. Our first example derives from Harvey and Lawson [151, §III.3.A],

and is discussed in detail in [194, §3] and [197, §4].

Example 8.2.4 Define a subset L0 in C
3 by

L0 =
{
(reiψ1 , reiψ2 , reiψ3) : r � 0, ψ1, ψ2, ψ3 ∈ R, ψ1 + ψ2 + ψ3 = 0

}
. (8.9)

Then L0 is a special Lagrangian cone on T 2. An alternative definition is

L0 =
{
(z1, z2, z3) ∈ C3 : |z1| = |z2| = |z3|, Im(z1z2z3) = 0, Re(z1z2z3) � 0

}
.

Let a > 0, write S1 =
{
eiψ : ψ ∈ R

}
, and define φa : S1 × C → C

3 by

φa : (eiψ, z) �→
(
(|z|2 + 2a)1/2eiψ , z, e−iψz̄

)
.
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Then φa is an embedding. Define La = Imageφa. Then La is a nonsingular special

Lagrangian 3-fold in C
3 diffeomorphic to S1 × R

2. An equivalent definition is

La =
{
(z1, z2, z3) ∈ C

3 : |z1|2 − 2a = |z2|2 = |z3|2,
Im(z1z2z3) = 0, Re(z1z2z3) � 0

}
.

As a → 0+, the nonsingular SL 3-fold La converges to the singular SL cone L0.

Note that La is asymptotic to L0 at infinity, so it is asymptotically conical, and that

La = a1/2L1 for a > 0, so that the La for a > 0 are all homothetic to each other. Also,

each La for a � 0 is invariant under the T 2 subgroup of SU(3) acting by

(z1, z2, z3) �→ (eiψ1z1, eiψ2z2, eiψ3z3) for ψ1, ψ2, ψ3 ∈ R with ψ1 + ψ2 + ψ3 = 0,

and so fits into the framework of §8.2.1. By [205, Th. 5.1] the La may also be written

in the form (8.5) for continuous u, v : R
2 → R, as in §8.2.6.

Our second example is taken from [196, Ex. 9.4 & Ex. 9.5].

Example 8.2.5 Let a1, a2 be positive, coprime integers, and set a3 = −a1 − a2. Let

c ∈ R, and define

La1,a2
c =

{
(eia1ψx1, eia2ψx2, ieia3ψx3) : ψ ∈ R, xj ∈ R, a1x

2
1+a2x

2
2+a3x

2
3 =c
}
.

Then La1,a2
c is a special Lagrangian 3-fold, which comes from the ‘evolving quadrics’

construction of §8.2.2. It is also symmetric under the U(1)-action

(z1, z2, z3) �→ (eia1ψz1, eia2ψz2, ieia3ψz3) for ψ ∈ R,

but this is not a necessary feature of the construction; these are just the easiest examples

to write down.

When c = 0 and a3 is odd, La1,a2
0 is an embedded special Lagrangian cone on

T 2, with one singular point at 0. When c = 0 and a3 is even, La1,a2
0 is two opposite

embedded SL T 2-cones with one singular point at 0.

When c > 0 and a3 is odd, La1,a2
c is an embedded 3-fold diffeomorphic to a non-

trivial real line bundle over the Klein bottle. When c > 0 and a3 is even, La1,a2
c is an

embedded 3-fold diffeomorphic to T 2 × R. In both cases, La1,a2
c is a ruled SL 3-fold,

as in §8.2.3, since it is fibred by hyperboloids of one sheet in R3, which are ruled in two

different ways.

When c < 0 and a3 is odd, La1,a2
c is an immersed copy of S1 × R2. When c < 0

and a3 is even, La1,a2
c is two immersed copies of S1 × R

2. In every case with c �= 0,

La1,a2
c is asymptotically conical as in §8.3.3, with cone La1,a2

0 .

Our third example is adapted from Harvey and Lawson [151, §III.3.B].

Example 8.2.6 For each t > 0, define

Lt =
{
(eiψx1, eiψx2, eiψx3) : xj ∈ R, ψ ∈ (0, π/3),

x2
1 + x2

2 + x2
3 = t2(sin 3ψ)−2/3

}
.
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Then Lt is a nonsingular embedded SL 3-fold in C3 diffeomorphic to S2 × R. As

t → 0+ it converges to the singular union L0 of the two SL 3-planes

Π1 =
{
(x1, x2, x3) : xj ∈ R

}
and Π2 =

{
(eiπ/3x1, eiπ/3x2, eiπ/3x3) : xj ∈ R

}
,

which intersect at 0. Note that Lt is invariant under the action of the Lie subgroup

SO(3) of SU(3), acting on C
3 in the obvious way, so again this comes from the method

of §8.2.1. Also Lt is asymptotically conical, with asymptotic cone L0.

All the singular SL 3-folds we have seen so far have been cones in C3. Our final

example, taken from [191], has more complicated singularities which are not cones.

They are difficult to describe in a simple way, so we will not say much about them. For

more details, see [191].

Example 8.2.7 In [191, §5] the author constructed a family of smooth maps Φ : R3 →
C

3 with special Lagrangian image N = ImageΦ. It is shown in [191, §6] that generic

Φ in this family are immersions, so that N is nonsingular as an immersed SL 3-fold, but

in codimension 1 in the family they develop isolated singularities.

Here is a rough description of these singularities, taken from [191, §6]. Taking the

singular point to be at Φ(0, 0, 0) = 0, one can write Φ as

Φ(x, y, t) =
(
x + 1

4g(u,v)t2
)
u +
(
y2 − 1

4 |u|
2t2
)
v

+ 2ytu× v + O
(
x2 + |xy| + |xt| + |y|3 + |t|3

)
,

(8.10)

where u,v are linearly independent vectors in C3 with ω(u,v) = 0, and× : C3×C3 →
C

3 is defined by

(r1, r2, r3) × (s1, s2, s3) = 1
2 (r̄2s̄3 − r̄3s̄2, r̄3s̄1 − r̄1s̄3, r̄1s̄2 − r̄2s̄1).

The next few terms in the expansion (8.10) can also be given very explicitly, but we

will not write them down as they are rather complex, and involve further choices of

vectors w,x, . . ..
What is going on here is that the lowest order terms in Φ are a double cover of

the special Lagrangian plane 〈u,v,u × v〉R in C
3, branched along the real line 〈u〉R.

The branching occurs when y = t = 0. Higher order terms deviate from the 3-plane

〈u,v,u × v〉R, and make the singularity isolated.

8.3 SL cones and Asymptotically Conical SL m-folds

We now discuss special Lagrangian cones in C
m, SL m-folds C in C

m invariant under

dilations C �→ tC for t > 0 which are generally singular at their vertex 0, and Asymp-

totically Conical special Lagrangian m-folds (AC SL m-folds) L in Cm, nonsingular

SL m-folds which are asymptotic to a special Lagrangian cone C at infinity in C
m.

There are two main reasons we are interested in these.

Firstly, it is natural to ask if there are any attractive distinguished classes of SL m-

folds in C
m. There are no compact SL m-folds L without boundary in C

m, since then

vol(L) =
∫

L Re Ω = 0 as Re Ω is exact on C
m, a contradiction. Thus we must impose
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some kind of boundary condition on L, either in the interior or at infinity in Cm. To be

asymptotically conical is a simple boundary condition at infinity in C
m, and we will see

that AC SL m-folds behave like compact SL m-folds in Calabi–Yau m-folds.

Secondly, SL cones and AC SL m-folds are important in the theory of singular SL

m-folds N in (almost) Calabi–Yau m-folds M , which will be discussed in §8.5. As

in §4.4, geometric measure theory defines a large class of singular SL m-folds called

special Lagrangian integral currents N in M , and each singular point x of N has a

special Lagrangian tangent cone C in TxM , which describes N near x to leading order.

Thus, SL cones are the local models for general singularities of SL m-folds. Also, as in

§8.5.3, AC SL m-folds L with cone C provide local models for how to desingularize

SL m-folds in (almost) Calabi–Yau m-folds with singularities modelled on C.

Some topics included here really relate to later sections. In particular, stable and

rigid SL cones C and the stability index s-ind(C) in §8.3.1 are important in the theory

of SL m-folds with conical singularities in §8.5, and the deformation theory in Theorem

8.3.10 is modelled on McLean’s Theorem for compact SL m-folds, Theorem 8.4.5 be-

low, and makes more sense if read in parallel with §8.4.1. But it seemed better to collect

material on SL m-folds in Cm together in §8.1–§8.3, as we have done.

8.3.1 Preliminaries on special Lagrangian cones
We define special Lagrangian cones, and some notation.

Definition 8.3.1 A (singular) SL m-fold C in C
m is called a cone if C = tC for all

t > 0, where tC = {tx : x ∈ C}. Let C be a closed SL cone in Cm with an isolated

singularity at 0. Then Σ = C ∩ S2m−1 is a compact, nonsingular (m−1)-submanifold

of S2m−1. Let gΣ be the restriction of g to Σ, where g is as in (8.1).

Set C′ = C \ {0}. Define ι : Σ× (0,∞) → C
m by ι(σ, r) = rσ. Then ι has image

C′. By an abuse of notation, identify C′ with Σ × (0,∞) using ι. The cone metric on

C′ ∼= Σ × (0,∞) is g = ι∗(g) = dr2 + r2gΣ.

For α ∈ R, we say that a function u : C′ → R is homogeneous of order α if

u◦t ≡ tαu for all t > 0. Equivalently, u is homogeneous of order α if u(σ, r) ≡ rαv(σ)
for some function v : Σ → R.

In [200, Lem. 2.3] we study homogeneous harmonic functions on C′.

Lemma 8.3.2 In the situation of Definition 8.3.1, let u(σ, r) ≡ rαv(σ) be a homoge-

neous function of order α on C′ = Σ × (0,∞), for v ∈ C2(Σ). Then

∆u(σ, r) = rα−2
(
∆Σv − α(α + m − 2)v

)
(σ),

where ∆, ∆Σ are the Laplacians on (C′, g) and (Σ, gΣ). Hence, u is harmonic on C′ if

and only if v is an eigenfunction of ∆Σ with eigenvalue α(α + m − 2).

Following [200, Def. 2.5], we define:

Definition 8.3.3 In Definition 8.3.1, suppose m > 2 and define

DΣ =
{
α ∈ R : α(α + m − 2) is an eigenvalue of ∆Σ

}
. (8.11)

Then DΣ is a countable, discrete subset of R. By Lemma 8.3.2, an equivalent definition

is that DΣ is the set of α ∈ R for which there exists a nonzero homogeneous harmonic

function u of order α on C′.
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Define mΣ : DΣ → N by taking mΣ(α) to be the multiplicity of the eigenvalue

α(α+m−2) of ∆Σ, or equivalently the dimension of the vector space of homogeneous

harmonic functions u of order α on C′. Define NΣ : R → Z by

NΣ(δ) = −
∑

α∈DΣ∩(δ,0)

mΣ(α) if δ < 0, and NΣ(δ) =
∑

α∈DΣ∩[0,δ]

mΣ(α) if δ � 0. (8.12)

Then NΣ is monotone increasing and upper semicontinuous, and is discontinuous ex-

actly on DΣ, increasing by mΣ(α) at each α ∈ DΣ. As the eigenvalues of ∆Σ are

nonnegative, we see that DΣ ∩ (2 − m, 0) = ∅ and NΣ ≡ 0 on (2 − m, 0).

We define the stability index of C, and stable and rigid cones [201, Def. 3.6]. These

definitions will be important in the conical singularities material of §8.5.

Definition 8.3.4 Let C be an SL cone in C
m for m > 2 with an isolated singularity at

0, let G be the Lie subgroup of SU(m) preserving C, and use the notation of Definitions

8.3.1 and 8.3.3. Then [201, eqn (8)] shows that

mΣ(0) = b0(Σ), mΣ(1) � 2m and mΣ(2) � m2 − 1 − dimG. (8.13)

Define the stability index s-ind(C) to be

s-ind(C) = NΣ(2) − b0(Σ) − m2 − 2m + 1 + dim G.

Then s-ind(C) � 0 by (8.13), as NΣ(2) � mΣ(0) + mΣ(1) + mΣ(2) by (8.12). We call

C stable if s-ind(C) = 0.

Following [200, Def. 6.7], we call C rigid if mΣ(2) = m2 − 1 − dimG. As

s-ind(C) � mΣ(2) − (m2 − 1 − dimG) � 0,

we see that if C is stable, then C is rigid.

We shall see in §8.5.2 that s-ind(C) is the dimension of an obstruction space to

deforming an SL m-fold N with a conical singularity with cone C, and that if C is stable

then the deformation theory of N simplifies. An SL cone C is rigid if all infinitesimal

deformations of C as an SL cone come from SU(m) rotations of C.

Haskins [154] uses integrable systems techniques as in §8.2.4 to study the stability

index s-ind(C) of special Lagrangian T 2-cones C in C
3. Amongst other results, he

derives a lower bound for s-ind(C) in terms of the spectral genus of Σ = C ∩ S5, and

proves that the Clifford torus cone L0 of (8.9) is up to SU(3) isomorphism the unique

stable SL T 2-cone C in C
3.

8.3.2 Examples of special Lagrangian cones
In our first example, generalizing Example 8.2.4, we can compute the data of §8.3.1

very explicitly.
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Example 8.3.5 Here is a family of special Lagrangian cones constructed by Harvey

and Lawson [151, §III.3.A]. For m � 3, define

Cm
HL =

{
(z1, . . . , zm) ∈ C

m : im+1z1 · · · zm ∈ [0,∞), |z1| = · · · = |zm|
}
. (8.14)

Then Cm
HL is a special Lagrangian cone in Cm with an isolated singularity at 0, and

Σm
HL = Cm

HL ∩ S2m−1 is an (m−1)-torus T m−1. Both Cm
HL and Σm

HL are invariant under

the U(1)m−1 subgroup of SU(m) acting by

(z1, . . . , zm) �→ (eiψ1z1, . . . , eiψmzm) for ψj ∈R with ψ1+· · ·+ψm = 0. (8.15)

In fact ±Cm
HL for m odd, and Cm

HL, iC
m
HL for m even, are the unique SL cones in C

m

invariant under (8.15), which is how Harvey and Lawson constructed them.

The metric on Σm
HL

∼= T m−1 is flat, so it is easy to compute the eigenvalues of

∆Σm
HL

. This was done by Marshall [254, §6.3.4]. There is a 1-1 correspondence between

(n1, . . . , nm−1) ∈ Zm−1 and eigenvectors of ∆Σm
HL

with eigenvalue

m
∑m−1

i=1 n2
i −
∑m−1

i,j=1 ninj. (8.16)

Using (8.16) and a computer we can find the eigenvalues of ∆Σm
HL

and their mul-

tiplicities. The Lie subgroup Gm
HL of SU(m) preserving Cm

HL has identity component

the U(1)m−1 of (8.15), so that dimGm
HL = m − 1. Thus we can calculate DΣm

HL
,

mΣm
HL

, NΣm
HL

, and the stability index s-ind(Cm
HL). This was done by Marshall [254, Ta-

ble 6.1] and the author [201, §3.2]. Table 8.1 gives the data m, NΣm
HL

(2), mΣm
HL

(2) and

s-ind(Cm
HL) for 3 � m � 12.

Table 8.1 Data for U(1)m−1-invariant SL cones Cm
HL in Cm

m 3 4 5 6 7 8 9 10 11 12

NΣm
HL

(2) 13 27 51 93 169 311 331 201 243 289

mΣm
HL

(2) 6 12 20 30 42 126 240 90 110 132

s-ind(Cm
HL) 0 6 20 50 112 238 240 90 110 132

One can also prove that

NΣm
HL

(2) = 2m2 + 1 and mΣm
HL

(2) = s-ind(Cm
HL) = m2 − m for m � 10. (8.17)

As Cm
HL is stable when s-ind(Cm

HL) = 0 we see from Table 8.1 and (8.17) that C3
HL is a

stable cone in C3, but Cm
HL is unstable for m � 4. Also Cm

HL is rigid when mΣm
HL

(2) =
m2 −m, as dimGm

HL = m− 1. Thus Cm
HL is rigid if and only if m �= 8, 9, by Table 8.1

and (8.17).

Here is an example from [196, Ex. 9.4], generalizing Example 8.2.5.
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Example 8.3.6 Let a1, . . . , am ∈ Z with a1 + · · ·+am = 0 and highest common factor

1, such that a1, . . . , ak > 0 and ak+1, . . . , am < 0 for 0 < k < m. Define

La1,...,am

0 =
{(

ieia1ψx1, eia2ψx2, . . . , eiamψxm

)
: ψ ∈ [0, 2π),

x1, . . . , xm ∈ R, a1x
2
1 + · · · + amx2

m = 0
}
.

Then La1,...,am

0 is an immersed SL cone in Cm, with an isolated singularity at 0.

Define Ca1,...,am =
{
(x1, . . . , xm) ∈ R

m : a1x
2
1 + · · · + amx2

m = 0
}

. Then

Ca1,...,am is a quadric cone on Sk−1 × Sm−k−1 in R
m, and La1,...,am

0 is the image of

an immersion Φ : Ca1,...,am ×S1 → Cm, which is generically 2:1. Therefore La1,...,am

0

is an immersed SL cone on (Sk−1 × Sm−k−1 × S1)/Z2.

Ohnita [273] studies the symmetric spaces SU(p), SU(p)/ SO(p), SU(2p)/ Sp(p)
for p � 3 and E6/F4, which may be embedded as homogeneous minimal Legen-

drian (m − 1)-folds Σ in S2m−1, so that the cone CΣ on Σ in C
m is special La-

grangian. Ohnita uses the representation theory of Lie groups to compute the spec-

trum of the Laplacian on Σ, and so determine the stability index and rigidity of the

cone CΣ. He shows that all these cones CΣ are rigid, and that CΣ is stable if and only

if Σ = SU(3), SU(3)/ SO(3), SU(6)/ Sp(3) or E6/F4. This gives new examples of

stable SL cones in C
m for m = 6, 9, 15 and 27. Many other examples of special La-

grangian cones have been constructed by the methods described in §8.2.

8.3.3 Asymptotically conical special Lagrangian submanifolds in C
m

We now discuss Asymptotically Conical SL m-folds L in C
m, [200, Def. 7.1].

Definition 8.3.7 Let C be a closed SL cone in C
m with isolated singularity at 0 for

m > 2, and let Σ = C ∩S2m−1, so that Σ is a compact, nonsingular (m−1)-manifold,

not necessarily connected. Let gΣ be the metric on Σ induced by the metric g on Cm in

(8.1), and r the radius function on C
m. Define ι : Σ × (0,∞) → C

m by ι(σ, r) = rσ.

Then the image of ι is C \ {0}, and ι∗(g) = r2gΣ + dr2 is the cone metric on C \ {0}.

Let L be a closed, nonsingular SL m-fold in C
m. We call L asymptotically conical

(AC) with rate λ < 2 and cone C if there exists a compact subset K ⊂ L and a

diffeomorphism ϕ : Σ × (T,∞) → L \ K for T > 0, such that∣∣∇k(ϕ − ι)
∣∣ = O(rλ−1−k) as r → ∞ for k = 0, 1, and (8.18)

(φ − ι)(σ, r) ⊥ Tι(σ,r)C in C
m for all (σ, r) ∈ Σ × (T,∞). (8.19)

Here ∇, | . | are computed using the cone metric ι∗(g).

Actually (8.19) is not part of the original definition, but we show in [200, Th. 7.4]

that if L satisfies all of Definition 8.3.7 except (8.19), and T > 0 is large enough, we

can choose φ uniquely so that (8.19) holds. In [200, Ths 7.7 and 7.11] we study the

asymptotic behaviour of L at infinity, showing that we can extend (8.18) to all k � 0,

and also vary λ in R \ DΣ.

Theorem 8.3.8 Suppose L is an AC SL m-fold in C
m with cone C and rate λ, and use

the notation of Definitions 8.3.1, 8.3.3 and 8.3.7. If either λ = λ′, or λ, λ′ lie in the
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same connected component of R \ DΣ, then L is an AC SL m-fold with rate λ′ and∣∣∇k(ϕ − ι)
∣∣ = O(rλ′−1−k) for all k � 0. Here ∇, | . | are computed using the cone

metric ι∗(g) on Σ × (T,∞).

This is proved by showing that φ− ι in Definition 8.3.7 satisfies a nonlinear elliptic

equation, and then using elliptic regularity results to deduce asymptotic bounds for φ−
ι and all its derivatives, using the theories of analysis on manifolds with cylindrical

ends developed by Lockhart and McOwen [245] or Melrose. The deformation theory

of asymptotically conical SL m-folds in Cm has been studied independently by Pacini

[274] and Marshall [254]. Pacini’s results are earlier, but Marshall’s are more complete.

Definition 8.3.9 Suppose L is an asymptotically conical SL m-fold in Cm with cone C
and rate λ < 2, as in Definition 8.3.7. Define the moduli space M λ

L
of deformations of

L with rate λ to be the set of AC SL m-folds L̂ in C
m with cone C and rate λ, such that

L̂ is diffeomorphic to L and isotopic to L as an asymptotically conical submanifold of

C
m. One can define a natural topology on M λ

L.

Note that if L is an AC SL m-fold with rate λ, then it is also an AC SL m-fold

with rate λ′ for any λ′ ∈ [λ, 2). Thus we have defined a 1-parameter family of moduli

spaces M λ′
L for L, and not just one. The following result can be deduced from Marshall

[254, Th. 6.2.15] and [254, Table 5.1]. (See also Pacini [274, Th.s 2 & 3].) It implies

conjectures by the author in [194, Conj. 2.12] and [138, §10.2].

Theorem 8.3.10 Let L be an asymptotically conical SL m-fold in Cm with cone C
and rate λ < 2, and let M λ

L be as in Definition 8.3.9. Set Σ = C ∩ S2m−1, and

let DΣ, NΣ be as in §8.3.1 and bk(L), bk
cs(L) be the Betti numbers in ordinary and

compactly-supported cohomology. Then

(a) If λ ∈ (0, 2) \ DΣ then M λ
L

is smooth with dimM λ
L

= b1(L)− b0(L) + NΣ(λ).
Note that if 0 < λ < min

(
DΣ ∩ (0,∞)

)
then NΣ(λ) = b0(Σ).

(b) If λ ∈ (2 − m, 0) then M λ
L

is smooth with dimM λ
L

= b1
cs(L) = bm−1(L).

To get a feel for this theorem, readers are advised to first read §8.4.1 on the defor-

mation theory of compact SL m-folds in Calabi–Yau m-folds. The theorem says that

if λ ∈ (2 − m, 2) \ DΣ then the deformation theory for L with rate λ is unobstructed

and M λ
L is a smooth manifold with a given dimension, which is the sum of a topologi-

cal contribution depending on L (roughly b1(L), as in Theorem 8.4.5), and an analytic

contribution depending on the cone C and rate λ, involving an eigenvalue count over Σ.

For rates λ < 2 − m the deformation theory will in general be obstructed, and

similar to the conical singularities case of §8.5.1. Theorem 8.3.10 is proved in a similar

way to Theorem 8.4.5, but using the theory of analysis on manifolds with cylindrical

ends developed by Lockhart and McOwen [245].

Following [200, Def. 7.2] we define cohomological invariants Y (L), Z(L) of L.

Definition 8.3.11 Let L be an AC SL m-fold in C
m with cone C, and let Σ = C ∩

S2m−1. As ω, Im θ in (8.1) are closed forms with ω|L ≡ Im θ|L ≡ 0, they define classes

in the relative de Rham cohomology groups Hk(Cm; L, R) for k = 2, m. Since Σ is in

effect the boundary of L there is a long exact sequence
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· · · → Hk
cs(L, R) → Hk(L, R) → Hk(Σ, R) → Hk+1

cs (L, R) → · · · . (8.20)

But for k > 1 we have the exact sequence

0 = Hk−1(Cm, R) → Hk−1(L, R)
∼=−→Hk(Cm; L, R) → Hk(Cm, R) = 0.

Let Y (L) ∈ H1(Σ, R) be the image of [ω] in H2(Cm; L, R) ∼= H1(L, R) under

H1(L, R) → H1(Σ, R) in (8.20), and Z(L) ∈ Hm−1(Σ, R) be the image of [Im θ]
in Hm(Cm; L, R) ∼= Hm−1(L, R) under Hm−1(L, R) → Hm−1(Σ, R) in (8.20).

Here are some conditions for Y (L) or Z(L) to be zero, [200, Prop. 7.3].

Proposition 8.3.12 Let L be an AC SL m-fold in Cm with cone C and rate λ, and let

Σ = C ∩ S2m−1. If λ < 0 or b1(L) = 0 then Y (L) = 0. If λ < 2 − m or b0(Σ) = 1
then Z(L) = 0.

8.3.4 Examples of asymptotically conical SL m-folds
Many of the examples of SL m-folds in C

m constructed by methods described in §8.2

turn out to be asymptotically conical. Nearly all the known examples (up to translations)

have minimum rate λ either 0 or 2 − m, which are topologically significant values by

Proposition 8.3.12. The only explicit, nontrivial examples known to the author with

λ �= 0, 2 − m are in [191, Th. 11.6], and have λ = 3
2 .

We shall give three families of examples of AC SL m-folds L in C
m explicitly. The

first is adapted from Harvey and Lawson [151, §III.3.A], and generalizes Example 8.2.4.

Example 8.3.13 Let Cm
HL be the SL cone in C

m of Example 8.3.5. We shall define a

family of AC SL m-folds in C
m with cone Cm

HL. Let a1, . . . , am � 0 with exactly two

of the aj zero and the rest positive. Write a = (a1, . . . , am), and define

La
HL =

{
(z1, . . . , zm) ∈ Cm : im+1z1 · · · zm ∈ [0,∞),

|z1|2 − a1 = · · · = |zm|2 − am

}
.

(8.21)

Then La
HL is an AC SL m-fold in C

m diffeomorphic to T m−2 ×R
2, with cone Cm

HL and

rate 0. It is invariant under the U(1)m−1 group (8.15). It is surprising that equations of

the form (8.21) should define a nonsingular submanifold of C
m without boundary, but

in fact they do.

Now suppose for simplicity that a1, . . . , am−2 > 0 and am−1 = am = 0. As

Σm
HL

∼= T m−1 we have H1(Σm
HL, R) ∼= R

m−1, and calculation shows that Y (La
HL) =

(πa1, . . . , πam−2, 0) ∈ Rm−1 in the natural coordinates. Since La
HL

∼= T m−2 × R2

we have H1(La
HL, R) = R

m−2, and Y (La
HL) lies in the image R

m−2 ⊂ R
m−1 of

H1(La
HL, R) in H1(Σm

HL, R), as in Definition 8.3.11. As b0(Σm
HL) = 1, Proposition

8.3.12 shows that Z(La
HL) = 0.

Take C = Cm
HL, Σ = Σm

HL and L = La
HL in Theorem 8.3.10, and let 0 < λ <

min
(
DΣ ∩ (0,∞)

)
. Then b1(L) = m − 2, b0(L) = 1 and NΣ(λ) = b0(Σ) = 1, so

Theorem 8.3.10(a) shows that dim M λ
L = m− 2. This is consistent with the fact that L

depends on m − 2 real parameters a1, . . . , am−2 > 0.
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The family of all La
HL has 1

2m(m−1) connected components, indexed by which two

of a1, . . . , am are zero. Using the theory of §8.5.3, these can give many topologically

distinct ways to desingularize SL m-folds with conical singularities with these cones.

Our second family, from [196, Ex. 9.4], generalizes Example 8.2.5.

Example 8.3.14 Let m, a1, . . . , am, k and La1,...,am

0 be as in Example 8.3.6. For 0 �=
c ∈ R define

La1,...,am
c =

{(
ieia1ψx1, eia2ψx2, . . . , eiamψxm

)
: ψ ∈ [0, 2π),

x1, . . . , xm ∈ R, a1x
2
1 + · · · + amx2

m = c
}
.

Then La1,...,am
c is an AC SL m-fold in C

m with rate 0 and cone La1,...,am

0 . It is dif-

feomorphic as an immersed SL m-fold to (Sk−1 × R
m−k × S1)/Z2 if c > 0, and to

(Rk × Sm−k−1 × S1)/Z2 if c < 0.

Our third family generalizes Example 8.2.6. It was first found by Lawlor [231],

made more explicit by Harvey [150, p. 139–140], and discussed from a different point

of view by the author in [190, §5.4(b)]. Our treatment is based on that of Harvey.

Example 8.3.15 Let m > 2 and a1, . . . , am > 0, and define polynomials p, P by

p(x) = (1 + a1x
2) · · · (1 + amx2) − 1 and P (x) =

p(x)
x2

.

Define real numbers ψ1, . . . , ψm and A by

ψk = ak

∫ ∞

−∞

dx

(1 + akx2)
√

P (x)
and A = ωm(a1 · · ·am)−1/2, (8.22)

where ωm is the volume of the unit sphere in R
m. Clearly ψk, A > 0. But writing

ψ1 + · · · + ψm as one integral gives

ψ1 + · · · + ψm =
∫ ∞

0

p′(x)dx

(p(x) + 1)
√

p(x)
= 2
∫ ∞

0

dw

w2 + 1
= π,

making the substitution w =
√

p(x). So ψk ∈ (0, π) and ψ1+· · ·+ψm = π. This yields

a 1-1 correspondence between m-tuples (a1, . . . , am) with ak > 0, and (m+1)-tuples

(ψ1, . . . , ψm, A) with ψk ∈ (0, π), ψ1 + · · · + ψm = π and A > 0.

For k = 1, . . . , m and y ∈ R, define a function zk : R → C by

zk(y) = eiφk(y)
√

a−1
k + y2, where φk(y) = ak

∫ y

−∞

dx

(1 + akx2)
√

P (x)
.

Now write ψ = (ψ1, . . . , ψm), and define a submanifold Lψ,A in C
m by

Lψ,A =
{
(z1(y)x1, . . . , zm(y)xm) : y ∈ R, xk ∈ R, x2

1 + · · · + x2
m = 1

}
.

Then Lψ,A is closed, embedded, and diffeomorphic to Sm−1 × R, and Harvey

[150, Th. 7.78] shows that Lψ,A is special Lagrangian. One can also show that Lψ,A is
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asymptotically conical, with rate 2 − m and cone the union Π0 ∪ Πψ of two special

Lagrangian m-planes Π0, Πψ in C
m given by

Π0 =
{
(x1, . . . , xm) : xj ∈R

}
and Πψ =

{
(eiψ1x1, . . . , eiψmxm) : xj ∈R

}
. (8.23)

As λ = 2 − m < 0 we have Y (Lψ,A) = 0 by Proposition 8.3.12. Now Lψ,A ∼=
Sm−1 × R so Hm−1(Lψ,A, R) ∼= R, and Σ = (Π0 ∪ Πψ) ∩ S2m−1 is the dis-

joint union of two unit (m− 1)-spheres Sm−1, so Hm−1(Σ, R) ∼= R2. The image

of Hm−1(Lψ,A, R) in Hm−1(Σ, R) is
{
(x,−x) : x ∈ R

}
in the natural coordinates.

Calculation shows that Z(Lψ,A) = (A,−A) ∈ Hm−1(Σ, R), which is why we defined

A this way in (8.22).

Apply Theorem 8.3.10 with L = Lψ,A and λ ∈ (2 − m, 0). As L ∼= Sm−1 × R

we have b1
cs(L) = 1, so part (b) of Theorem 8.3.10 shows that dimM λ

L
= 1. This

is consistent with the fact that when ψ is fixed, Lψ,A depends on one real parameter

A > 0. Here ψ is fixed in M λ
L as the cone C = Π0 ∪ Πψ of L depends on ψ, and all

L̂ ∈ M λ
L

have the same cone C, by definition.

8.4 SL m-folds in (almost) Calabi–Yau m-folds

Here is how we define SL m-folds in Calabi–Yau m-folds.

Definition 8.4.1 Let (X, J, g, θ) be a Calabi–Yau m-fold. Then Re θ is a calibration on

(X, g). An oriented real m-submanifold N in X is called a special Lagrangian subman-

ifold (SL m-fold) if it is calibrated with respect to Re θ.

More generally, if ψ ∈ R we call N special Lagrangian with phase eiψ if it is

calibrated with respect to cosψ Re θ + sin ψ Im θ. When we refer to SL m-folds L
without specifying a phase we mean phase 1, that is, calibrated w.r.t. Re θ as above.

From Proposition 8.1.2 we deduce an alternative definition of SL m-folds. It is often

more useful than Definition 8.4.1.

Proposition 8.4.2 Let (X, J, g, θ) be a Calabi–Yau m-fold, with Kähler form ω, and

N a real m-dimensional submanifold in X . Then N admits an orientation making it

into an SL m-fold in X if and only if ω|N ≡ 0 and Im θ|N ≡ 0. More generally, it

admits an orientation making it into an SL m-fold with phase eiψ if and only if ω|N ≡ 0
and (cosψ Im θ − sin ψ Re θ)|N ≡ 0.

We also define SL m-folds in the much larger class of almost Calabi–Yau m-folds.

The idea of extending special Lagrangian geometry to almost Calabi–Yau manifolds

appears in the work of Goldstein [128, §3.1], Bryant [60, §1], who uses the term ‘special

Kähler’ instead of ‘almost Calabi–Yau’, and the author [197].

Definition 8.4.3 Let m � 2. An almost Calabi–Yau m-fold, or ACY m-fold for short,

is a quadruple (X, J, g, θ) such that (X, J, g) is a compact m-dimensional Kähler man-

ifold, and θ is a non-vanishing holomorphic (m, 0)-form on X .

The difference between this and Definition 7.1.10 is that we do not require θ and

the Kähler form ω of g to satisfy eqn (7.2), and hence g need not be Ricci-flat, nor have

holonomy in SU(m).
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Definition 8.4.4 Let (X, J, g, θ) be an ACY m-fold with Kähler form ω, and N a real

m-dimensional submanifold of X . We call N a special Lagrangian submanifold (SL

m-fold) if ω|N ≡ Im θ|N ≡ 0. Then Re θ|N is a nonvanishing m-form on N , so N is

orientable, with a unique orientation in which Re θ|N is positive.

More generally, we call N special Lagrangian with phase eiψ if ω|N ≡ 0 and

(cosψ Im θ − sin ψ Re θ)|N ≡ 0, and then N has a unique orientation in which

(cosψ Re θ + sinψ Im θ)|N is positive.

Definitions 8.4.1 and 8.4.4 are equivalent when (X, J, g, θ) is a Calabi–Yau m-fold,

by Proposition 8.4.2. We can also express SL m-folds in ACY m-folds as calibrated

submanifolds, as follows. Suppose (X, J, g, θ) is an almost Calabi–Yau m-fold, with

Kähler form ω. Let f : X → (0,∞) be the unique smooth function such that

f2mωm/m! = (−1)m(m−1)/2(i/2)mθ ∧ θ̄, (8.24)

and define g̃ to be the conformally equivalent metric f2g on X . Then Re θ is a cali-

bration on the Riemannian manifold (X, g̃), and SL m-folds N in (X, J, g, θ) are cal-

ibrated with respect to it, so that they are minimal with respect to g̃. If (X, J, g, θ) is

Calabi–Yau then f ≡ 1 by (7.2), so g̃ = g, and N is special Lagrangian if and only if it

is calibrated with respect to Re θ on (X, g), as in Definition 8.4.1.

Here are two reasons why working with almost Calabi–Yau m-folds is a good

idea. Firstly, many examples of almost Calabi–Yau m-folds can be written down very

explicitly—for instance, a quintic in CP
4 with the Fubini–Study metric is an almost

Calabi–Yau 3-fold. However, the only compact Calabi–Yau m-folds for which the met-

ric is known explicitly are finite quotients of flat tori T 2m. For other examples we know

only the existence of the metric, using Theorem 7.1.2. Problems such as constructing

examples of special Lagrangian fibrations will probably be more feasible upon an ex-

plicit almost Calabi–Yau m-fold than on an inexplicit Calabi–Yau m-fold.

Secondly, SL m-folds should have much stronger genericness properties in almost

Calabi–Yau m-folds than in Calabi–Yau m-folds. There are many situations in geometry

in which one uses a genericity assumption to control singular behaviour. For instance,

pseudo-holomorphic curves in an arbitrary almost complex manifold may have bad sin-

gularities, but the possible singularities in a generic almost complex manifold are much

simpler. In the same way, one might hope that in a generic Calabi–Yau m-fold, compact

SL m-folds may be better behaved than in an arbitrary Calabi–Yau m-fold.

But because Calabi–Yau manifolds come in only finite-dimensional families by

Corollary 7.7.2, choosing a generic Calabi–Yau structure is a fairly weak assumption,

and probably will not help very much. However, almost Calabi–Yau manifolds come

in infinite-dimensional families, because of the freedom to change the metric using a

Kähler potential as in §5.5, so choosing a generic almost Calabi–Yau structure is a much

more powerful thing to do, and will probably simplify the singular behaviour of compact

SL m-folds considerably. We will return to this idea in §8.5.2 and §8.5.5.

8.4.1 Deformations of compact special Lagrangian m-folds
The deformation theory of compact SL m-folds was studied by McLean [259, §3], who

proved the following result in the Calabi–Yau case. The extension to the almost Calabi–

Yau case is described in [138, §9.5].
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Theorem 8.4.5 Let N be a compact special Lagrangian m-fold in an almost Calabi–

Yau m-fold (X, J, g, θ). Then the moduli space MN of special Lagrangian deforma-

tions of N is a smooth manifold of dimension b1(N).

Sketch proof Suppose for simplicity that N is an embedded submanifold. There is a

natural orthogonal decomposition TX |N = TN ⊕ ν, where ν → N is the normal

bundle of N in X . As N is Lagrangian, the complex structure J : TX → TX gives

an isomorphism J : ν → TN . But the metric g gives an isomorphism TN ∼= T ∗N .

Composing these two gives an isomorphism ν ∼= T ∗N .

Let T be a small tubular neighbourhood of N in X . Then we can identify T with

a neighbourhood of the zero section in ν. Using the isomorphism ν ∼= T ∗N , we have

an identification between T and a neighbourhood of the zero section in T ∗N . This can

be chosen to identify the Kähler form ω on T with the natural symplectic structure on

T ∗N . Let π : T → N be the obvious projection.

Under this identification, submanifolds N ′ in T ⊂ X which are C1 close to N are

identified with the graphs of small smooth sections α of T ∗N . That is, submanifolds N ′

of X close to N are identified with 1-forms α on N . We need to know: which 1-forms

α are identified with special Lagrangian submanifolds N ′?
Well, N ′ is special Lagrangian if ω|N ′ ≡ Im θ|N ′ ≡ 0. Now π|N ′ : N ′ → N is

a diffeomorphism, so we can push ω|N ′ and Im θ|N ′ down to N , and regard them as

functions of α. Calculation shows that

π∗
(
ω|N ′
)

= dα and π∗
(
Im θ|N ′

)
= F (α,∇α),

where F is a nonlinear function of its arguments. Thus, the moduli space MN is locally

isomorphic to the set of small 1-forms α on N such that dα ≡ 0 and F (α,∇α) ≡ 0.

Now it turns out that F satisfies F (α,∇α) ≈ d(∗α) when α is small. Therefore

MN is locally approximately isomorphic to the vector space of 1-forms α with dα =
d(∗α) = 0. But by Hodge theory, this is isomorphic to the de Rham cohomology group

H1(N, R), and is a manifold with dimension b1(N).
To carry out this last step rigorously requires some technical machinery: one must

work with certain Banach spaces of sections of T ∗N , Λ2T ∗N and ΛmT ∗N , use elliptic

regularity results to prove that α �→
(
dα, F (α,∇α)

)
has closed image in these Banach

spaces, and then use the Implicit Mapping Theorem for Banach spaces, Theorem 1.2.5,

to show that the kernel of the map is what we expect. �

8.4.2 Obstructions to the existence of compact SL m-folds
Let (X, J, g, θ) be an almost Calabi–Yau m-fold, with Kähler form ω, and N an im-

mersed real m-submanifold in X , with immersion ι : N → X . If N is special La-

grangian then ω|N ≡ Im θ|N ≡ 0, so [ω|N ] = [Im θ|N ] = 0 in de Rham cohomology

H∗(N, R). Now [ω|N ] and [Im θ|N ] are unchanged under continuous variations of ι.
Thus, [ω|N ] = [Im θ|N ] = 0 is necessary not just for N to be special Lagrangian, but

also for any isotopic submanifold N ′ in X to be special Lagrangian. That is, [ω|N ] and

[Im θ|N ] are obstructions to the existence of isotopic SL m-folds N ′. This proves:
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Proposition 8.4.6 Let (X, J, g, θ) be an almost Calabi–Yau m-fold, and N a compact

real m-submanifold in X . Then a necessary condition for N to be isotopic to an SL

m-fold N ′ in X is that [ω|N ] = 0 in H2(N, R) and [Im θ|N ] = 0 in Hm(N, R).

Now let
{
(X, Jt, gt, θt) : t ∈ (−ε, ε)

}
be a smooth 1-parameter family of almost

Calabi–Yau m-folds with Kähler forms ωt. Suppose N0 is a special Lagrangian m-fold

in (X, J0, g0, θ0). When can we extend N0 to a smooth family of special Lagrangian

m-folds Nt in (X, Jt, gt, θt) for t ∈ (−ε, ε)? From above, a necessary condition is that

[ωt|N0 ] = [Im θt|N0 ] = 0 for all t. Locally, this is also a sufficient condition.

Theorem 8.4.7 Let
{
(X, Jt, gt, θt) : t ∈ (−ε, ε)

}
be a smooth 1-parameter family of

almost Calabi–Yau m-folds, with Kähler forms ωt. Let N0 be a compact SL m-fold

in (X, J0, g0, θ0), and suppose that [ωt|N0 ] = 0 in H2(N0, R) and [Im θt|N0 ] = 0
in Hm(N0, R) for all t ∈ (−ε, ε). Then N0 extends to a smooth 1-parameter family{
Nt : t∈(−δ, δ)

}
, where 0<δ�ε and Nt is a compact SL m-fold in (X, Jt, gt, θt).

This can be proved using similar techniques to Theorem 8.4.5, though McLean did

not prove it. Note that the condition [Im θt|N0 ] = 0 for all t can be satisfied by choosing

the phases of the θt appropriately, and if the image of H2(N, R) in H2(X, R) is zero,

then the condition [ω|N ] = 0 holds automatically. Thus, the obstructions [ωt|N0 ] =
[Im θt|N0 ] = 0 in Theorem 8.4.7 are actually fairly mild restrictions, and special La-

grangian m-folds should be thought of as pretty stable under small deformations of the

almost Calabi–Yau structure.

8.4.3 Natural coordinates on the moduli space MN

Let N be a compact SL m-fold in an almost Calabi–Yau m-fold (X, J, g, θ). Theo-

rem 8.4.5 shows that the moduli space MN has dimension b1(N). By Poincaré duality

b1(N) = bm−1(N). Thus MN has the same dimension as the de Rham cohomology

groups H1(N, R) and Hm−1(N, R).
We shall construct natural local diffeomorphisms Φ : MN → H1(N, R) and Ψ :

MN → Hm−1(N, R). These induce two natural affine structures on MN , and can be

thought of as two natural coordinate systems on MN . The material of this section can

be found in Hitchin [162, §4].

Here is how to define Φ, Ψ. Let U be a connected and simply-connected open neigh-

bourhood of N in MN . We will construct smooth maps Φ : U → H1(N, R) and

Ψ : U → Hm−1(N, R) with Φ(N) = Ψ(N) = 0, which are local diffeomorphisms.

Let N ′ ∈ U . Then as U is connected, there exists a smooth path γ : [0, 1] → U with

γ(0) = N and γ(1) = N ′, and as U is simply-connected, γ is unique up to isotopy.

Now γ parametrizes a family of submanifolds of X diffeomorphic to N , which we can

lift to a smooth map Γ : N × [0, 1] → X with Γ(N × {t}) = γ(t).
Consider the 2-form Γ∗(ω) on N × [0, 1]. As each fibre γ(t) is Lagrangian, we have

Γ∗(ω)|N×{t} ≡ 0 for each t ∈ [0, 1]. Therefore we may write Γ∗(ω) = αt ∧ dt, where

αt is a closed 1-form on N for t ∈ [0, 1]. Define Φ(N ′) =
[∫ 1

0
αt dt

]
∈ H1(N, R).

That is, we integrate the 1-forms αt with respect to t to get a closed 1-form
∫ 1

0 αt dt on

N , and then take its cohomology class.
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Similarly, write Γ∗(Im θ) = βt∧dt, where βt is a closed (m−1)-form on N for t ∈
[0, 1], and define Ψ(N ′) =

[∫ 1

0
βt dt

]
∈ Hm−1(N, R). Then Φ and Ψ are independent

of choices made in the construction. We need to restrict to a simply-connected subset U
of MN so that γ is unique up to isotopy. Alternatively, one can define Φ and Ψ on the

universal cover M̃N of MN .

8.4.4 Examples of SL m-folds in (almost) Calabi–Yau m-folds
Here is a method for finding examples of compact SL m-folds in compact Calabi–

Yau m-folds. It is used by Bryant [58], for example, to produce examples of special

Lagrangian 3-tori in Calabi–Yau 3-folds. It relies on the following proposition, which

is well-known and easy to prove.

Proposition 8.4.8 Let (X, J, g, θ) be an (almost) Calabi–Yau m-fold, and σ : X → X
be an involution with σ∗(J) = −J , σ∗(g) = g and σ∗(θ) = θ̄. Then the fixed point set

N of σ is a compact, nonsingular SL m-fold in X .

Calabi–Yau m-folds (X, J, g, θ) with such involutions σ are easy to construct. One

uses algebraic geometry to find a complex manifold (X, J) with KX trivial and an

antiholomorphic involution σ : X → X . For instance, (X, J) could be a quintic in CP
4

defined by a polynomial with real coefficients, and σ the restriction to X of complex

conjugation [z0, . . . , z4] �→ [z̄0, . . . , z̄4] on CP
4. Theorem 7.1.2 implies that any Kähler

class invariant under σ contains a unique Ricci-flat Kähler metric g with σ∗(g) = g.

Then there exists a holomorphic volume θ, unique up to sign, such that (X, J, g, θ) is

a Calabi–Yau m-fold and σ∗(θ) = θ̄. Theorem 8.4.5 then shows that N in Proposition

8.4.8 lies in a smooth family of compact SL m-folds in X with dimension b1(N).
This is at present almost the only known successful method for producing com-

pact SL m-folds in compact Calabi–Yau m-folds with holonomy SU(m) for m � 3.

However, there are very good conjectural reasons for believing that compact SL m-

folds in (almost) Calabi–Yau m-folds are actually very abundant. Schoen and Wolfson

[300, 301] propose that given a Calabi–Yau m-fold (X, J, g, θ) and a suitable class of

compact Lagrangian submanifolds in X , then by minimizing volume in this class one

should be able to construct a minimal Lagrangian integral current, which is a finite sum

of special Lagrangian integral currents with different phases eiψ .

Thomas and Yau [324,325] express a similar idea in terms of Lagrangian mean cur-

vature flow, and regard SL m-folds as representing (semi)stable objects w.r.t. a stability

condition induced by θ on the derived Fukaya category Db(F (X)) of (X, ω), which

will be discussed in §9.3. In the author’s opinion, Thomas and Yau’s notion of stability

should be replaced by Bridgeland’s concept of stability condition on a triangulated cat-

egory [51]. Overall, the rough expectation is that every graded Lagrangian in X with

unobstructed Floer homology should be Hamiltonian equivalent to a connected sum of

finitely many (possibly singular) SL m-folds in X with different phases, in a unique

way. So X should have enough SL m-folds to generate the whole Fukaya category.

Many examples are known of SL m-folds in noncompact Calabi–Yau m-folds.

Bryant [59] proves that any compact, oriented, real analytic Riemannian 3-manifold can

be embedded as an SL 3-fold in a noncompact Calabi–Yau 3-fold, as the fixed points

of an involution σ as above. Explicit examples of SL m-folds in explicit noncompact
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Calabi–Yau m-folds such as T ∗Sm and O(−1) ⊕ O(−1) → CP1 have been found by

several authors using the ideas of §8.2, in particular the symmetries method of §8.2.1.

8.5 SL m-folds with isolated conical singularities
Finally we shall discuss singular SL m-folds in (almost) Calabi–Yau m-folds. As in

§4.4, geometric measure theory gives one approach to this. However, GMT is too gen-

eral for many purposes: it studies all kinds of singularities at once, including the most

horrible. As a result almost nothing is known about the singularities of a general special

Lagrangian integral current, except that they have Hausdorff codimension two.

An alternative approach is to define some class of fairly simple singularities of SL

m-folds, and study such singular SL m-folds in depth. The author did this in a se-

ries of papers [200–204] on SL m-folds with isolated conical singularities in almost

Calabi–Yau m-folds, whose singularities are locally modelled on SL cones with iso-

lated singular points. We now describe the main results. For further discussion of spe-

cial Lagrangian singularities, see [199]. Here [200, Def. 3.6 and Th. 4.4] is the basic

definition.

Definition 8.5.1 Let (X, J, g, θ) be an almost Calabi–Yau m-fold for m > 2 with

Kähler form ω, and define f : X → (0,∞) as in (8.24). Suppose N is a compact

singular SL m-fold in X with singularities at distinct points x1, . . . , xn ∈ N , and no

other singularities.

Fix isomorphisms υi : C
m → TxiX for i = 1, . . . , n such that υ∗

i (ω) = ω′ and

υ∗
i (θ) = f(xi)mθ′, where ω′, θ′ are the forms on Cm from (8.1). Let C1, . . . , Cn be SL

cones in C
m with isolated singularities at 0. For i = 1, . . . , n let Σi = Ci ∩S2m−1, and

let µi ∈ (2, 3) with (2, µi] ∩DΣi
= ∅, where DΣi

is defined in (8.11). Then we say that

N has a conical singularity or conical singular point at xi, with rate µi and cone Ci for

i = 1, . . . , n, if the following holds.

By Darboux’s Theorem [256, Th. 3.15] there exist embeddings Υi : BR → X for

i = 1, . . . , n satisfying Υi(0) = xi, dΥi|0 = υi and Υ∗
i (ω) = ω, where BR is the open

ball of radius R about 0 in C
m for some small R > 0. Define ιi : Σi × (0, R) → BR

by ιi(σ, r) = rσ for i = 1, . . . , n.

Define N ′ = N \ {x1, . . . , xn}. Then there should exist a compact subset K ⊂ N ′

such that N ′ \K is a union of open sets S1, . . . , Sn with Si ⊂ Υi(BR), whose closures

S̄1, . . . , S̄n are disjoint in N . For i = 1, . . . , n and some R′ ∈ (0, R] there should

exist a smooth φi : Σi × (0, R′) → BR such that Υi ◦ φi : Σi × (0, R′) → X is a

diffeomorphism Σi × (0, R′) → Si, and∣∣∇k(φi − ιi)
∣∣ = O(rµi−1−k) as r → 0 for k = 0, 1, and (8.25)

(φi − ιi)(σ, r) ⊥ Tιi(σ,r)Ci in C
m for all (σ, r) ∈ Σi × (0, R′). (8.26)

Here ∇ is the Levi-Civita connection of the cone metric ι∗i (g) on Σi × (0, R′), | . | is

computed using ι∗i (g). If the cones C1, . . . , Cn are stable in the sense of Definition

8.3.4, then we say that N has stable conical singularities.

This is similar to Definition 8.3.7, and in fact there are strong parallels between the

theories of SL m-folds with conical singularities and of asymptotically conical SL m-

folds. Actually (8.26) is not part of the original definition, but we show in [200, Th. 4.4]
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that if N satisfies all of Definition 8.5.1 except (8.26), we can choose the φi essentially

uniquely so that (8.26) holds.

Not all singularities of SL m-folds satisfy Definition 8.5.1. For example, if L is

an SL a-fold in Ca for a > 0 and N is an SL b-fold in Cb with a singularity at x ∈
C

b, then L × N is an SL (a + b)-fold in C
a+b with nonisolated singularities along

L × {x}. There are also isolated SL singularities which are not conical. For example,

using Theorem 8.2.3 as in §8.2.6 one can construct U(1)-invariant SL 3-folds in C
3

with isolated singularities of multiplicity k for all k � 1. When k � 2 these are not

conical singularities, as their tangent cone C is two copies of R3 intersecting in R,

which does not have an isolated singularity at 0. Also, Example 8.2.7 describes SL 3-

folds with isolated singularities that are not conical, whose tangent cone is an R
3 with

multiplicity 2.

8.5.1 The asymptotic behaviour of N near xi

Let X be an almost Calabi–Yau m-fold and N an SL m-fold in X with conical sin-

gularities at x1, . . . , xn, with identifications υi and cones Ci. In [200] we study how

quickly N converges to the cone υ(Ci) in TxiX near xi, and [200, Th. 5.5] gives:

Theorem 8.5.2 Let (X, J, g, θ) be an almost Calabi–Yau m-fold and N a compact SL

m-fold in X with conical singularities, and use the notation of Definition 8.5.1. Suppose

µ′
i ∈ (2, 3) with (2, µ′

i] ∩ DΣi
= ∅ for i = 1, . . . , n. Then∣∣∇k(φi − ιi)

∣∣ = O(rµ′
i−1−k) for all k � 0 and i = 1, . . . , n. (8.27)

Hence N has conical singularities at xi with cone Ci and rate µ′
i, for all possible

rates µ′
i allowed by Definition 8.5.1. Therefore, the definition of conical singularities is

essentially independent of the choice of rate µi.

Theorem 8.5.2 in effect strengthens the definition of SL m-folds with conical sin-

gularities, Definition 8.5.1, as it shows that (8.25) actually implies the much stronger

condition (8.27) on all derivatives. It is proved by showing that φi − ιi in Definition

8.5.1 satisfies a nonlinear elliptic equation, and then using elliptic regularity results to

deduce asymptotic bounds for φi − ιi and all its derivatives.

Our next result [200, Th. 6.8] uses geometric measure theory, as in §4.4.

Theorem 8.5.3 Let (X, J, g, θ) be an almost Calabi–Yau m-fold and x ∈ X , and fix an

isomorphism υ : C
m → TxX as in Definition 8.5.1. Using the ideas of §4.4, suppose T

is a special Lagrangian integral current in X with x ∈ T ◦, and υ∗(C) is a multiplicity 1
tangent cone to T at x, where C is a rigid special Lagrangian cone in C

m, in the sense of

Definition 8.3.4. Then T has a conical singularity at x, in the sense of Definition 8.5.1.

This is a weakening of Definition 8.5.1 for rigid cones C. It is proved by applying

Theorem 4.4.5, and using rigidity of C to improve the weak asymptotic estimate (4.1)

to the stronger estimate (8.25). Theorem 8.5.3 also holds for the larger class of Jacobi

integrable SL cones C, defined in [200, Def. 6.7]. Basically, it shows that if a singular

SL m-fold T in X is locally modelled on a rigid SL cone C in only a very weak sense,

then it necessarily satisfies Definition 8.5.1.
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Theorems 8.5.2 and 8.5.3 justify the apparent arbitrariness of Definition 8.5.1, as

they show that almost any other sensible definition of SL m-folds with singularities

modelled on (rigid) SL cones C is equivalent to Definition 8.5.1.

8.5.2 Moduli spaces of SL m-folds with conical singularities
In [201] we study the deformation theory of compact SL m-folds with conical singu-

larities, generalizing the nonsingular case of §8.4.1. Here is [201, Def. 5.4].

Definition 8.5.4 Let (X, J, g, θ) be an almost Calabi–Yau m-fold and N a compact SL

m-fold in X with conical singularities at x1, . . . , xn with identifications υi : C
m →

TxiX and cones C1, . . . , Cn. Define the moduli space MN of deformations of N to be

the set of N̂ such that

(i) N̂ is a compact SL m-fold in X with conical singularities at x̂1, . . . , x̂n with cones

C1, . . . , Cn, for some x̂i and identifications υ̂i : Cm → Tx̂iX .

(ii) There exists a homeomorphism ι̂ : N → N̂ with ι̂(xi) = x̂i for i = 1, . . . , n such

that ι̂|N ′ : N ′ → N̂ ′ is a diffeomorphism and ι̂ and ι are isotopic as continuous

maps N → X , where ι : N → X is the inclusion.

In [201, Def. 5.6] we define a topology on MN , and explain why it is the natural one.

In [201, Th. 6.10] we describe MN near N , in terms of a smooth map Φ between

the infinitesimal deformation space IN′ and the obstruction space ON′ .

Theorem 8.5.5 Suppose (X, J, g, θ) is an almost Calabi–Yau m-fold and N a com-

pact SL m-fold in X with conical singularities at x1, . . . , xn and cones C1, . . . , Cn.

Let MN be the moduli space of deformations of N as an SL m-fold with conical sin-

gularities in X , as in Definition 8.5.4. Set N ′ = N \ {x1, . . . , xn}.

Then there exist natural finite-dimensional vector spaces IN′ , ON′ such that IN′ is

isomorphic to the image of H1
cs(N

′, R) in H1(N ′, R) and dimON′ =
∑n

i=1 s-ind(Ci),
where s-ind(Ci) is the stability index of Definition 8.3.4. There exists an open neigh-

bourhood U of 0 in IN′ , a smooth map Φ : U → ON′ with Φ(0) = 0, and a map

Ξ : {u ∈ U : Φ(u) = 0} → MN with Ξ(0) = N which is a homeomorphism with an

open neighbourhood of N in MN .

The rather complicated proof generalizes that of Theorem 8.4.5, using the theory of

analysis on manifolds with cylindrical ends developed by Lockhart and McOwen [245].

Roughly speaking, the spaces IN′ , ON′ appear as corrected versions of the kernel and

cokernel of a Laplacian acting between weighted Sobolev spaces of functions on N ′. If

the Ci are stable then ON′ = {0} and we deduce [201, Cor. 6.11]:

Corollary 8.5.6 Suppose (X, J, g, θ) is an almost Calabi–Yau m-fold and N a com-

pact SL m-fold in X with stable conical singularities, and let MN and IN′ be as in

Theorem 8.5.5. Then MN is a smooth manifold of dimension dimIN′ .

This has clear similarities with Theorem 8.4.5. Here is another simple condition for

MN to be a manifold near N , [201, Def. 6.12].

Definition 8.5.7 Let (X, J, g, θ) be an almost Calabi–Yau m-fold and N a compact SL

m-fold in X with conical singularities, and let IN′ , ON′ , U and Φ be as in Theorem

8.5.5. We call N transverse if the linear map dΦ|0 : IN′ → ON′ is surjective.
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If N is transverse then {u ∈ U : Φ(u) = 0} is a manifold near 0, so Theorem 8.5.5

yields [201, Cor. 6.13]:

Corollary 8.5.8 Suppose (X, J, g, θ) is an almost Calabi–Yau m-fold and N a trans-

verse compact SL m-fold in X with conical singularities, and let MN , IN′ and ON′ be

as in Theorem 8.5.5. Then MN is smooth of dimension dim IN′ − dimON′ near N .

Now there are a number of well-known moduli space problems in geometry where in

general moduli spaces are obstructed and singular, but after a generic perturbation they

become smooth manifolds. For instance, moduli spaces of instantons on 4-manifolds

can be made smooth by choosing a generic metric, and similar things hold for Seiberg–

Witten equations, and pseudo-holomorphic curves in symplectic manifolds.

In [201, §9] we try (but do not quite succeed) to replicate this for moduli spaces of

SL m-folds with conical singularities, by choosing a generic Kähler metric in a fixed

Kähler class. This is the idea behind [201, Conj. 9.5], partially proved in [201, §9]:

Conjecture 8.5.9 Let (X, J, g, θ) be an almost Calabi–Yau m-fold, N a compact SL

m-fold in X with conical singularities, and IN′ , ON′ be as in Theorem 8.5.5. Then for

a second category subset of Kähler forms ω̌ in the Kähler class of g, the moduli space

M̌N of compact SL m-folds N̂ with conical singularities in (X, J, ω̌, θ) isotopic to N
consists solely of transverse N̂ , and so is smooth of dimension dimIN′−dimON′ .

Notice that Conjecture 8.5.9 constrains the topology and cones of SL m-folds N
with conical singularities that can occur in a generic almost Calabi–Yau m-fold, as we

must have dimIN′ � dimON′ .

8.5.3 Desingularizing compact SL m-folds with conical singularities
We now discuss the work of [202, 203] on desingularizing compact SL m-folds with

conical singularities. Here is the basic idea. Let (X, J, g, θ) be an almost Calabi–Yau

m-fold, and N a compact SL m-fold in X with conical singularities x1, . . . , xn and

cones C1, . . . , Cn. Suppose L1, . . . , Ln are AC SL m-folds in C
m with the same cones

C1, . . . , Cn as N .

If t > 0 then tLi = {tx : x ∈ Li} is also an AC SL m-fold with cone Ci.

We construct a 1-parameter family of compact, nonsingular Lagrangian m-folds N t in

(X, ω) for t ∈ (0, δ) by gluing tLi into N at xi, using a partition of unity.

When t is small, N t is close to special Lagrangian (its phase is nearly constant),

but also close to singular (it has large curvature and small injectivity radius). We prove

using analysis that for small t ∈ (0, δ) we can deform N t to a special Lagrangian

m-fold Ñ t in X , using a small Hamiltonian deformation.

The proof involves a delicate balancing act, showing that the advantage of being

close to special Lagrangian outweighs the disadvantage of being nearly singular. Do-

ing this in full generality is rather complex. Here is our simplest desingularization re-

sult, [202, Th. 6.13].

Theorem 8.5.10 Suppose (X, J, g, θ) is an almost Calabi–Yau m-fold and N a com-

pact SL m-fold in X with conical singularities at x1, . . . , xn and cones C1, . . . , Cn.

Let L1, . . . , Ln be AC SL m-folds in C
m with cones C1, . . . , Cn and rates λ1, . . . , λn.

Suppose λi < 0 for i = 1, . . . , n, and N ′ = N \ {x1, . . . , xn} is connected.
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Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of compact, non-

singular SL m-folds in X , such that Ñ t is constructed by gluing tLi into N at xi for

i=1, . . . , n. In the sense of currents in geometric measure theory, Ñ t→N as t→0.

The theorem contains two simplifying assumptions: (a) that N ′ is connected, and

(b) that λi < 0 for all i. These avoid two kinds of obstructions to desingularizing N
using the Li. In [202, Th. 7.10] we remove assumption (a), allowing N ′ not connected.

Theorem 8.5.11 Suppose (X, J, g, θ) is an almost Calabi–Yau m-fold and N a com-

pact SL m-fold in X with conical singularities at x1, . . . , xn and cones C1, . . . , Cn.

Define f : X → (0,∞) as in (8.24). Let L1, . . . , Ln be AC SL m-folds in C
m

with cones C1, . . . , Cn and rates λ1, . . . , λn. Suppose λi < 0 for i = 1, . . . , n. Write

N ′ = N \ {x1, . . . , xn} and Σi = Ci ∩ S2m−1.

Set q = b0(N ′), and let N ′
1, . . . , N

′
q be the connected components of N ′. For

i = 1, . . . , n let li = b0(Σi), and let Σ1
i , . . . ,Σ

li
i be the connected components of Σi.

Define k(i, j) = 1, . . . , q by Υi ◦ ϕi

(
Σj

i × (0, R′)
)
⊂ N ′

k(i,j) for i = 1, . . . , n and

j = 1, . . . , li. Suppose that∑
1�i�n, 1�j�li:

k(i,j)=k

f(xi)mZ(Li) · [Σj
i ] = 0 for all k = 1, . . . , q. (8.28)

Suppose also that the compact m-manifold N obtained by gluing Li into N ′ at xi

for i = 1, . . . , n is connected. A sufficient condition for this to hold is that N and Li

for i = 1, . . . , n are connected.

Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of compact, nonsin-

gular SL m-folds in (X, J, g, θ) diffeomorphic to N , such that Ñ t is constructed by

gluing tLi into N at xi for i = 1, . . . , n. In the sense of currents, Ñ t → N as t → 0.

The new issue here is that if N ′ is not connected then there is an analytic obstruc-

tion to deforming N t to Ñ t, because the Laplacian ∆t on functions on N t has small

eigenvalues of size O(tm−2). As in §8.3.3 the Li have cohomological invariants Z(Li)
in Hm−1(Σi, R) derived from the relative cohomology class of Im θ. It turns out that

we can only deform N t to Ñ t if the Z(Li) satisfy (8.28). This arises by requiring the

projection of an error term to the eigenspaces of ∆t with small eigenvalues to be zero.

In [203, Th. 6.13] we remove assumption (b), extending Theorem 8.5.10 to the case

λi � 0, and allowing Y (Li) �= 0.

Theorem 8.5.12 Let (X, J, g, θ) be an almost Calabi–Yau m-fold for 2 < m < 6,

and N a compact SL m-fold in X with conical singularities at x1, . . . , xn and cones

C1, . . . , Cn. Let L1, . . . , Ln be AC SL m-folds in C
m with cones C1, . . . , Cn and

rates λ1, . . . , λn. Suppose that λi � 0 for i = 1, . . . , n, that N ′ = N \ {x1, . . . , xn}
is connected, and that there exists � ∈ H1(N ′, R) such that

(
Y (L1), . . . , Y (Ln)

)
is

the image of � under the natural map H1(N ′, R) →
⊕n

i=1 H1(Σi, R), where Σi =
Ci ∩ S2m−1. Then there exists ε > 0 and a smooth family

{
Ñ t : t ∈ (0, ε]

}
of

compact, nonsingular SL m-folds in (X, J, g, θ), such that Ñ t is constructed by gluing

tLi into N at xi for i = 1, . . . , n. In the sense of currents, Ñ t → N as t → 0.
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From §8.3.3, the Li have cohomological invariants Y (Li) in H1(Σi, R) derived

from the relative cohomology class of ω. The new issue in Theorem 8.5.12 is that if

Y (Li) �= 0 then there are obstructions to the existence of N t as a Lagrangian m-fold.

That is, we can only define N t if the Y (Li) satisfy an equation. This did not appear in

Theorem 8.5.10, as λi < 0 implies that Y (Li) = 0 by Proposition 8.3.12.

To define the N t when Y (Li) �= 0 we must also use a more complicated construc-

tion. This introduces new errors. To overcome these errors when we deform N t to Ñ t

we must assume that m < 6. There are also [203, Th. 6.12] a result combining the

modifications of Theorems 8.5.11 and 8.5.12, and [203, §7–§8] extensions of all these

results to families of almost Calabi–Yau m-folds (X, Js, ωs, θs) for s ∈ F , but for

brevity we will not give them.

8.5.4 Connected sums of compact SL m-folds
The results of §8.5.3 were applied in [204, §9] to desingularize self-intersection points

of immersed SL m-folds. Similar theorems were proved by also Adrian Butscher [66],

Dan Lee [241] and Yng-Ing Lee [242]. Here is some notation for self-intersection points

of immersed SL m-folds.

Definition 8.5.13 Let (X, J, g, θ) be an almost Calabi–Yau m-fold for m > 2. Suppose

N is a compact, nonsingular, immersed SL m-fold in X . That is, N is a compact m-

manifold (not necessarily connected) and ι : N → X an immersion, with special

Lagrangian image. Call x ∈ X a self-intersection point of N if ι∗(x) is at least two

points in N . Call such an x transverse if ι∗(x) is exactly two points x+, x− in N , and

ι∗(Tx+N) ∩ ι∗(Tx−N) = {0} in TxX .

Let x be a transverse self-intersection point of N , and x± as above. Then by a kind

of simultaneous diagonalization, it can be shown that we can choose an isomorphism υ :
C

m → TxX satisfying the conditions υ∗(ω) = ω′ and υ∗(θ) = f(x)mθ′ of Definition

8.5.1, such that υ∗(ι∗(Tx+N)
)

= Π0 and υ∗(ι∗(Tx−N)
)

= Πψ , for some unique

Π0, Πψ defined in (8.23) using ψ = (ψ1, . . . , ψm) with 0 < ψ1 � · · · � ψm < π.

Since Πψ is special Lagrangian with some orientation it follows that ψ1+· · ·+ψm =
kπ for some integer k, with 0 < k < m as 0 < ψi < π. Define the type of x to be k.

This depends on the order of x+, x−, and exchanging x± replaces k by m − k.

If N is an immersed SL m-fold in X and x is a transverse self-intersection point of

type one then N has a conical singularity at x with cone Π0 ∪ Πψ , where ψi ∈ (0, π)
with ψ1 + · · ·+ ψm = π. In Example 8.3.15, for each A > 0 we constructed an AC SL

m-fold Lψ,A in Cm with the same cone Π0 ∪ Πψ . So we can use the results of §8.5.3

to glue Lψ,A into N at x. Applying Theorem 8.5.11 as in [204, Th. 9.7] yields:

Theorem 8.5.14 Let (X, J, g, θ) be an almost Calabi–Yau m-fold for m > 2, and N
a compact, immersed SL m-fold in X , not necessarily connected. Define f : X →
(0,∞) as in (8.24). Suppose x1, . . . , xn ∈ X are transverse self-intersection points of

N with type 1, and let x±
i ∈ N be as in Definition 8.5.13. Set q = b0(N), and let

N1, . . . , Nq be the connected components of N . Suppose A1, . . . , An > 0 satisfy∑
i=1,...,n: x+

i ∈Nk

f(xi)mAi =
∑

i=1,...,n: x−
i ∈Nk

f(xi)mAi for all k = 1, . . . , q. (8.29)
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Let Ñ be the oriented multiple connected sum of N with itself at the pairs of points

x+
i , x−

i for i = 1, . . . , n. Suppose Ñ is connected.

Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of compact, im-

mersed SL m-folds in (X, J, g, θ) diffeomorphic to Ñ , such that Ñ t is constructed by

gluing an AC SL m-fold Lψi,t
mAi from Example 8.3.15 into N at xi for i = 1, . . . , n.

In the sense of currents in geometric measure theory, Ñ t → N as t → 0. If x1, . . . , xn

are the only self-intersection points of N then Ñ t is embedded.

When m = 3 the only possible types of a transverse self-intersection point x of N
are 1 and 2 = m− 1, so swapping x+, x− if necessary we can take all self-intersection

points of N to have type 1. If also N is connected, so that q = 1, then (8.29) holds

automatically for all choices of A1, . . . , An > 0. This gives [204, Cor. 9.6]:

Corollary 8.5.15 Let (X, J, g, θ) be an almost Calabi–Yau 3-fold and N a compact,

immersed SL 3-fold with transverse self-intersection points in X , which is connected

as an abstract 3-manifold. Then N is a limit of embedded SL 3-folds in X .

These results also extend to connected sums of SL m-folds in families of almost

Calabi–Yau m-folds (X, Js, gs, θs) for s ∈ F . For details see [204, §9.3].

8.5.5 The index of singularities of SL m-folds
We now consider the boundary ∂MÑ of a moduli space MÑ of SL m-folds.

Definition 8.5.16 Let (X, J, g, θ) be an almost Calabi–Yau m-fold, Ñ a compact, non-

singular SL m-fold in X , and MÑ the moduli space of deformations of Ñ in X . Then

MÑ is a smooth manifold of dimension b1(Ñ), in general noncompact. We can con-

struct a natural compactification MÑ as follows.

Regard MÑ as a moduli space of special Lagrangian integral currents in the sense

of Geometric Measure Theory, as in §4.4. Let MÑ be the closure of MÑ in the space of

integral currents. As elements of MÑ have uniformly bounded volume, MÑ is compact.

Define the boundary ∂MÑ to be MÑ \ MÑ . Then elements of ∂MÑ are singular SL

integral currents.

In good cases, say if (X, J, g, θ) is suitably generic, it seems reasonable that ∂MÑ

should be divided into a number of strata, each of which is a moduli space of singular SL

m-folds with singularities of a particular type, and is itself a manifold with singularities.

In particular, some or all of these strata could be moduli spaces MN of SL m-folds N
with isolated conical singularities, as in §8.5.2.

Let MÑ be a moduli space of compact, nonsingular SL m-folds Ñ in (X, J, g, θ),
and MN a moduli space of singular SL m-folds N in ∂MÑ with singularities of a

particular type, and N ∈ MN . Following [204, §8.3], we (loosely) define the index of

the singularities of N to be ind(N) = dimMÑ − dim MN , provided MN is smooth

near N . Note that ind(N) depends on the choice of desingularization type Ñ of N .

In [204, Th. 8.10] we use the results of [201–203] to compute ind(N) when N is

transverse with conical singularities, in the sense of Definition 8.5.7. Here is a simplified

version of the result, where we assume that H1
cs(Li, R) → H1(Li, R) is surjective to

avoid a complicated correction term to ind(N) related to the obstructions to defining Ñ
as a Lagrangian m-fold.
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Theorem 8.5.17 Let N be a compact, transverse SL m-fold in (X, J, g, θ) with conical

singularities at x1, . . . , xn and rigid SL cones C1, . . . , Cn. Let L1, . . . , Ln be AC SL

m-folds in C
m with cones C1, . . . , Cn, such that the natural projection H1

cs(Li, R) →
H1(Li, R) is surjective. Construct desingularizations Ñ of N by gluing AC SL m-folds

L1, . . . , Ln in at x1, . . . , xn, as in §8.5.3. Then

ind(N) = 1 − b0(N ′) +
∑n

i=1 b1
cs(Li) +

∑n
i=1 s-ind(Ci). (8.30)

If the cones Ci are not rigid, for instance if Ci \ {0} is not connected, then (8.30)

should be corrected, as in [204, §8.3]. If Conjecture 8.5.9 is true then for a generic

Kähler form ω, all compact SL m-folds N with conical singularities are transverse, and

so Theorem 8.5.17 and [204, Th. 8.10] allow us to calculate ind(N).
Now singularities with small index are the most commonly occurring, and so ar-

guably the most interesting kinds of singularity. Also, as ind(N) � dimMÑ , for var-

ious problems, such as the SYZ Conjecture in Chapter 9, it will only be necessary to

know about singularities with index up to a certain value. This motivates the following:

Problem 8.5.18 Classify types of singularities of SL 3-folds with small index in suit-

ably generic almost Calabi–Yau 3-folds, say with index 1, 2 or 3.

Here we restrict to m = 3 to make the problem more feasible, though still difficult.

Note, however, that we do not restrict to conical singularities, so a complete, rigorous

answer will require a theory of more general kinds of singularities of SL 3-folds.

One can make some progress on this problem simply by studying the many known

examples of singular SL 3-folds, calculating or guessing the index of each, and rul-

ing out other kinds of singularities by plausible-sounding arguments. Using these tech-

niques the author has a conjectural classification of index 1 singularities of SL 3-folds,

which involves the SL T 2-cone L0 of (8.9), and several different kinds of singularity

whose tangent cone is two copies of R3, intersecting in 0, R or R3.

Coming from another direction, integrable systems techniques may yield rigorous

classification results for SL T 2-cones by index. Haskins [154, Th. A] has used them

to prove that the SL T 2-cone L0 in C3 of (8.9) is up to SU(3) equivalence the unique

SL T 2-cone C with s-ind(C) = 0. Now the index of a singularity modelled on C is

at least s-ind(C) + 1, so this implies that L0 is the unique SL T 2-cone with index 1 in

Problem 8.5.18.



9
Mirror symmetry and the SYZ
Conjecture

Mirror symmetry is a mysterious, non-classical relationship between pairs of Calabi–

Yau 3-folds X, X̂ . It was discovered by physicists working in string theory, a branch of

theoretical physics that aims to quantize gravity by modelling particles not as points but

as 1-dimensional ‘loops of string’. Special Lagrangian geometry is important in mirror

symmetry, because of the SYZ Conjecture, which explains mirror symmetry in terms of

dual fibrations f : X → B, f̂ : X̂ → B with special Lagrangian fibres.

Readers are warned that this is the most flawed and unsatisfactory chapter in the

book, due partly to the incompetence of the author, and partly to the nature of the sub-

ject. String theory is a huge endeavour, and difficult for mathematicians to penetrate.

Mirror symmetry is not a clean mathematical statement, but a swamp of complicated,

continuously evolving conjectures, which are slowly being turned into theorems. Each

field would take a book far longer than this to explain properly, such as Hori et al. [166]

on mirror symmetry.

We begin in §9.1 with a discussion of string theory and mirror symmetry aimed

at mathematicians new to the subject. Section 9.2 describes the first forms of mirror

symmetry to be discovered, namely the occurrence of Calabi–Yau 3-folds in pairs X, X̂
with Hodge numbers satisfying hp,q(X) = hq,p(X̂), and the prediction of numbers of

rational curves on X̂ in terms of the complex structure moduli space of its mirror X .

Sections 9.3 and 9.4 discuss two rather different ‘explanations’ of mirror symmetry, the

homological mirror symmetry conjecture, and the SYZ Conjecture.

9.1 String theory and mirror symmetry for dummies
I am now going to take the risk of offering a personal perspective on string theory,

which is that of a puzzled mathematician on the outside looking in. I should stress that

the dummy in question is me: although I have been talking to string theorists for most

of my career, and have wanted to be allowed to play string theory with the big boys and

girls for most of that time, I have never come close to understanding it, nor even to being

able to follow an average string theory paper. Two good sources for mathematicians to

learn some basic ideas in string theory are Douglas [99] and Cox and Katz [80, §1].

The greatest problem in modern physics is that our two most successful physical

theories, quantum theory—describing the very small, atoms, particles, and so on—and

general relativity—describing the very large, stars and galaxies—are incompatible. Ever

178
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since Einstein, the dream has been to find a theory of quantum gravity reconciling the

two, perhaps giving quantum theory and general relativity as different limits of one more

complicated theory; which might even be a theory of everything, exactly describing the

whole universe. This has proved extraordinarily difficult.

String theory has for decades been a sexy area of theoretical physics, because its

practitioners claim that it can quantize gravity. As far as I can tell, this claim rests on

the fact that string theory has quantum theory and general relativity in it, and no-one has

yet managed to persuade everyone else that string theory cannot possibly work. This is

stronger evidence than it sounds, as most schemes for quantizing gravity cannot possibly

work for reasons that become apparent very quickly. I am agnostic on whether this claim

is true, or on whether string theory describes the universe in which we actually live. But

I am sure that underlying string theory is some very major area of not yet understood

mathematics, which one could call quantum geometry, that string theorists grasp at a

heuristic, intuitive level.

A source of culture shock for mathematicians is that string theorists seem quite

content to spend their lives working on things with as yet no mathematical definition:

they often really cannot tell you what the things they are talking about actually are.

Also, the parts of string theory we mathematicians might be able to understand if we

try really hard, such as mirror symmetry, are actually only a tiny corner of the whole

theory, obtained by taking several limits, setting various bells and whistles in the theory

to zero, and throwing away almost all of the data.

In string theory, particles are modelled not as points but as 1-dimensional objects—

‘strings’—propagating in some background space-time M . String theorists aim to con-

struct a quantum theory of the string’s motion. The process of quantization is extremely

complicated, and fraught with mathematical difficulties that are as yet still poorly under-

stood. The basic recipe involves a Feynman path integral over all ‘paths’ of the system,

that is, over all possible motions of the string over time in M . This is a huge infinite-

dimensional space with no known good measure, so the integral makes no mathematical

sense. But by treating it as if it did, and using techniques such as perturbative expansions

of the integral, string theorists can do interesting physics.

One curious feature that emerges from the process of quantization is that the di-

mension of the background space time M must take a particular value, which is not

4. The most popular theoretical framework is supersymmetric string theory, which re-

quires dimM = 10. (Other flavours are M-theory, with dim M = 11, F-theory, with

dimM = 12, and non-supersymmetric string theory, with dimM = 26.) To account

for the disparity between the 10 dimensions the theory requires, and the 4 space-time

dimensions we observe, it is supposed that the space we live in looks locally like

M = R
4 × X , where R

4 is Minkowski space, and X is a compact Riemannian 6-

manifold with radius of order 10−33cm, the Planck length. Since the Planck length is so

small, space then appears to macroscopic observers to be 4-dimensional.

It turns out that because of supersymmetry, which is to do with constant spinors, X
has to be a Calabi–Yau 3-fold. Moreover, the geometry and topology of X then deter-

mines the laws of the low-energy physics we observe in our 4-dimensional world. Be-

cause of this, string theorists were interested in understanding and constructing Calabi–

Yau 3-folds, in the hope of finding examples with the right properties to describe our
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own physics. However, the enormous multitude of examples now known has become

an embarrassment, as they lead to so many different versions of 4-dimensional physics

that they drain string theory of any predictive power.

One can consider either closed strings—strings without ends, circles S1—or open

strings—strings allowed to have ends, circles S1 and intervals [0, 1]. Closed strings are

simpler, and were studied first. Generalizing to open strings leads to the idea of branes.

From one point of view, a brane is a boundary condition for an open string. When an

open string moves in a background space-time M , its end points should be constrained

to lie in a submanifold N . This submanifold is thought of as a p-dimensional membrane,

or ‘p-brane’, a joke which a few pea-brained string theorists still find funny.

For the boundary condition to preserve some supersymmetry, N should be cali-

brated by one of the natural calibrations. So the classical limit of a brane in a Calabi–

Yau 3-fold might be an SL 3-fold, or a holomorphic curve or surface. This is important

for us, as it explains string theorists’ interest in calibrated geometry. Actually, things

are more complicated than this. At the least, N must be augmented with some extra

data—something like a flat U(1)-connection for SL 3-folds, or a holomorphic vector

bundle for complex submanifolds. But this is still a very partial description of branes.

String theorists expect that each Calabi–Yau 3-fold X should have a quantization,

which is a super-conformal field theory (SCFT). I am not sure whether there is yet a

rigorous mathematical definition of SCFT (though conformal field theories are well-

defined), but they are certainly very complicated mathematical objects, including things

like Hilbert spaces with large families of multilinear operations satisfying relations,

and (for open strings) probably one or more triangulated categories whose objects are

topological branes. Invariants of X such as the Dolbeault groups Hp,q(X) and numbers

of holomorphic curves in X translate to properties of the SCFT.

This leads to the idea of mirror symmetry. If X is a Calabi–Yau 3-fold, H1,1(X)
and H2,1(X) can be recovered from the associated SCFT as eigenspaces of a certain op-

erator. Furthermore, the only difference between the SCFT representations of H1,1(X)
and H2,1(X) is the sign of their eigenvalue under a particular U(1)-action, and the

choice of sign is only a matter of convention. This led several physicists to conjec-

ture that there should exist a second Calabi–Yau 3-fold X̂ which should have the same

SCFT but with the opposite sign for the U(1)-action, so that H1,1(X) ∼= H2,1(X̂) and

H2,1(X) ∼= H1,1(X̂). We call X and X̂ a mirror pair. All this is very surprising from

the mathematical point of view, but there is by now a great deal of evidence in favour of

mirror symmetry and the existence of mirror pairs.

Although we shall concentrate on mirror symmetry for Calabi–Yau 3-folds, it is also

studied in other contexts. One of these is mirror symmetry between Calabi–Yau m-folds

for other m � 1. Another is mirror symmetry between Fano varieties and Landau–

Ginzburg models. Here a Fano variety X is a nonsingular projective complex variety X
with ample anticanonical bundle K−1

X . A Landau–Ginzburg model (X̂, f̂) is roughly

speaking a noncompact Kähler manifold X̂ with a holomorphic function f̂ : X̂ → C,

and one is primarily interested in the stationary points of f̂ .
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9.2 Early mathematical formulations of mirror symmetry
We now explain two aspects of mirror symmetry of Calabi–Yau 3-folds X, X̂ , devel-

oped by Candelas and others in 1990–1, which were the first really persuasive evidence

for mathematicians that mirror symmetry is true. These are mirror symmetry at the level

of Hodge numbers, and closed string mirror symmetry, which is a relationship between

the variation of Hodge structure of X and numbers of rational curves on X̂ .

9.2.1 Mirror symmetry at the level of Hodge numbers
Mirror symmetry suggests that for each Calabi–Yau 3-fold X there should be another

Calabi–Yau 3-fold X̂ whose Hodge numbers satisfy hp,q(X) = hq,p(X̂), so that

h1,1(X) = h2,1(X̂) and h2,1(X) = h1,1(X̂). This cannot be exactly true, since as

in Example 7.5.3 there exist Calabi–Yau 3-folds X with h2,1(X) = 0, but there can-

not exist any mirror Calabi–Yau 3-fold X̂ with h1,1(X̂) = 0, since h1,1 � 1 for any

compact Kähler manifold. However, it could still be approximately true.

As in §7.6.2, one of the earliest pieces of mathematical evidence for mirror sym-

metry was found by Candelas, Lynker and Schimmrigk [71], who computed the Hodge

numbers (h1,1, h2,1) of Calabi–Yau 3-folds obtained as crepant resolutions of hypersur-

faces in weighted projective spaces CP
4
a0,...,a4

. When plotted on a graph these displayed

an approximate, but very persuasive, symmetry under exchanging h1,1 and h2,1.

Later, Batyrev [20] showed that Calabi–Yau 3-folds that are hypersurfaces in com-

pact toric 4-folds T naturally come in mirror pairs at the Hodge number level, since

each allowed toric 4-fold T has a dual toric 4-fold T̂ , and if X, X̂ are Calabi–Yau hy-

persurfaces in T, T̂ then h1,1(X) = h2,1(X̂) and h2,1(X) = h1,1(X̂). The graph of

the corresponding Hodge numbers, Figure 7.1, above, has an exact reflection symmetry

when h1,1 and h2,1 are exchanged.

9.2.2 Closed string mirror symmetry and counting curves
Suppose X, X̂ are a mirror pair of Calabi–Yau 3-folds, in the string theory sense. What

does this mean mathematically, and how can we relate the geometry of X to the geome-

try of X̂? The first answer to this was given by Candelas, de la Ossa, Green, and Parkes

[70] in 1991, interpreted for mathematicians by Morrison [268]. We shall call this area

closed string mirror symmetry, as it uses only closed rather than open string ideas. It is

now a mature subject. Some good mathematical books taking this approach are Voisin

[335], Gross [138, Part II], and the very thorough Cox and Katz [80].

Here is a very brief sketch. In §9.1 we said that a Calabi–Yau 3-fold (X, J, g, θ)
determines a super-conformal field theory (SCFT), whatever that is. This is an over-

simplification: we also need some extra data on X to determine the SCFT. The most

important is a B-field, a closed 2-form B on X . This appears in the physics in expres-

sions of the form exp
(∫

Σ 2πi(B + iω)
)
, for Σ a closed oriented 2-submanifold in X .

Clearly, this depends only on the cohomology class [B] ∈ H2(X, R), and is also

unchanged by adding elements of H2(X, Z) to [B], so it depends only on the projection

[B] ∈ H2(X, R)/H2(X, Z). Also, it depends holomorphically on the complexified

Kähler form ωC = B + iω, and on the projection of its cohomology class [ωC] ∈
H2(X, C)/H2(X, Z). Thus, the SCFT depends, in some sense holomorphically, on

two complex cohomology classes, [ωC] ∈ H2(X, C)/H2(X, Z) and [θ] ∈ H3(X, C).



182 MIRROR SYMMETRY AND THE SYZ CONJECTURE

Now consider the moduli space M X

SCFT of SCFT’s coming from X in this way.

It turns out that M X

SCFT is a complex manifold locally parametrized by independent

choices of [ωC], [θ]. That is, M X

SCFT is locally a product M X
Käh

× M X
cx of the complex-

ified Kähler moduli space M X
Käh

of X , parametrized by [ωC], and the complex struc-

ture moduli space M X
cx of X , parametrized by [θ]. Here [ωC] locally varies freely in

H2(X, C)/H2(X, Z), but [θ] is confined to a complex Lagrangian cone in H3(X, C),
so that dimC M X

cx = h3,0(X) + h2,1(X) = 1
2 dimC H3(X, C).

Suppose X, X̂ are a mirror pair. Then by definition their SCFT’s are isomorphic un-

der a sign change, so their SCFT moduli spaces must be isomorphic, that is, M X
SCFT

∼=
M X̂

SCFT. This isomorphism turns out to preserve the local product structures but ex-

changes complex and Kähler factors. Thus we expect local isomorphisms

M X

cx
∼= M X̂

Käh
and M X

Käh
∼= M X̂

cx. (9.1)

These isomorphisms do not simply identify [θ] with [ω̂C] and [ωC] with [θ̂], as [θ] lies

in a complex Lagrangian cone in H3(X̂, C) and [ω̂C] in H2(X̂, C)/H2(X̂, Z), which

are very different spaces. Instead, they are given by mirror maps m : M X
cx → M X̂

Käh

and m̂ : M X̂
cx → M X

Käh
, which amount to writing [ω̂C] and [ωC] as some complicated

holomorphic functions of [θ] and [θ̂] respectively.

One of the important problems in the theory is to determine these mirror maps.

It is done as follows. Roughly speaking, the moduli spaces M X
cx, M

X̂
Käh

admit partial

compactifications M X
cx,M

X̂
Käh

including singular limit points. One such singular limit

in M X̂
Käh

is the large radius limit point obtained by letting ω̂ go to infinity in the Kähler

cone of X̂ , that is, by taking the limit of [B̂ + itω̂] as t → ∞. The corresponding

kind of singular limit in M X
cx is called the large complex structure limit, or a maximally

unipotent boundary point, a limiting family of complex structures whose monodromy

is maximally unipotent.

It turns out that near a large complex structure limit point in M X
cx and a large radius

limit point in M X̂
Käh

, one can define systems of canonical coordinates on M X
cx and M X̂

Käh
,

and argue that the mirror map m : M X
cx → M X̂

Käh
must identify these coordinates. So,

after a lot of work, one can actually find the mirror map m explicitly near these limits.

Once we know the mirror map, we can use it to compare aspects of the geometry

of X and X̂ that are reflected in their common SCFT. For example, something that

is easy to compute for X might translate to something difficult to compute for X̂ , so

we could conjecture nontrivial new information about X̂ . This applies for the Yukawa

couplings, which are holomorphic sections of the vector bundles S3T ∗M X
cx, S

3T ∗M X̂
Käh

over M X
cx, M

X̂
Käh

identified by the mirror map m.

On M X
cx, the Yukawa coupling is given exactly by a simple formula involving the

third derivatives of the inclusion M X
cx ↪→ H3(X, C) taking [(X, J, θ)] �→ [θ], and is

easy to compute if we know M X

cx. On M X̂
Käh

, the Yukawa coupling is shown by Feynman

path integral techniques to be the sum over β ∈ H2(X̂, Z) of a term involving a number

nβ of rational curves in X̂ with homology class β; in fact nβ is a Gromov–Witten

invariant. Candelas et al. [70] used these ideas to predict values for the Gromov–Witten

invariants of the quintic Calabi–Yau 3-fold. At the time this was remarkable, as noone
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knew how to compute these invariants, but the conjectures have since been proved by

Givental and Lian, Liu and Yau.

The string theorists Bershadsky, Cecotti, Ooguri and Vafa [29] showed how to use

similar ideas to compute Gromov–Witten invariants of X̂ for curves of every genus

g � 0, rather than just rational curves of genus 0. The story is more complicated, and

involves nonholomorphic potential functions over M X
cx, M

X̂
Käh

satisfying a p.d.e.

We can now refine our notion of mirror pair. Rather than thinking of this as just

a pair of Calabi–Yau 3-folds, it is better to think of mirror symmetry as identifying a

large complex structure limit point of the complex moduli space M X
cx of one Calabi–

Yau 3-fold X with the large radius limit of the Kähler moduli space M X̂
Käh

of another

Calabi–Yau 3-fold X̂ . Better still, we can say that mirror symmetry identifies a large

radius limit times a large complex structure limit in M X
SCFT ≈ M X

Käh
× M X

cx with a

large complex structure limit times a large radius limit in M X̂
SCFT ≈ M X̂

cx × M X̂
Käh

.

We draw two conclusions from this. Firstly, M X
cx could have several large complex

structure limit points, so that X (or rather, the family of Calabi–Yau 3-folds deformation

equivalent to X) could have several mirrors X̂1, . . . , X̂k. Or M X
cx could have no large

complex structure limit points, and no mirrors. This happens if h2,1(X) = 0, agreeing

with the comment in §9.2.1 that no mirror X̂ can exist in this case.

Secondly, mirror symmetry is really about limiting families of Calabi–Yau 3-folds

undergoing some kind of collapse, rather than just about pairs of Calabi–Yau 3-folds.

When string theorists make mathematical conjectures, these limits are often suppressed

for simplicity. But sometimes it is necessary to put the limits back in again to make the

conjectures true.

9.3 Kontsevich’s homological mirror symmetry proposal

Another major advance in the mirror symmetry story was due to Kontsevich [219] in

1994, and is known as homological mirror symmetry (HMS). At the time it was a

visionary proposal, as this was before string theorists had really got started on branes.

Kapustin and Orlov [211] give a survey on homological mirror symmetry, explaining

the physics to mathematicians. Equation (9.1) illustrates the:

Principle 9.3.1 If X and X̂ are a mirror pair of Calabi–Yau 3-folds, then mirror sym-

metry relates the complex geometry of X to the symplectic geometry of X̂ , and the

symplectic geometry of X to the complex geometry of X̂ .

That is, mirror symmetry relates things on X depending on J, θ but independent of

g, ω, B to things on X̂ depending on ω̂, B̂ but independent of ĝ, Ĵ , θ̂, and vice versa. The

Yukawa couplings discussed in §9.2.2 are an example of this. On M X
cx the Yukawa cou-

pling clearly depends only on J, θ. On M X̂
Käh

, the Yukawa coupling depends on numbers

nβ of rational curves in X̂ , which are Ĵ-holomorphic and so appear to depend on Ĵ . But

Gromov–Witten invariants are independent of the choice of almost complex structure

Ĵ ′ compatible with ω̂, so the nβ are independent of Ĵ and depend only on (X̂, ω̂).
A string theory explanation for Principle 9.3.1 is that the SCFT associated to a

Calabi–Yau 3-fold X admits two topological twistings, which are topological quantum

field theories, called the A-model and the B-model. These are simpler theories than
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the original SCFT, containing much less information. The A-model depends only on

X, ω, B, and so only on the symplectic geometry of X , and the B-model depends only

on X, J, θ, and so only on the complex geometry of X . Mirror symmetry identifies the

A-model for X with the B-model for X̂ , and vice versa.

Kontsevich’s homological mirror symmetry conjecture (HMS Conjecture) [219]

says that if X and X̂ are mirror Calabi–Yau 3-folds then there should be an equivalence

of triangulated categories between the (bounded) derived category Db(coh(X)) of the

abelian category coh(X) of coherent sheaves on X and the (bounded) derived category

Db(F (X̂)) of the Fukaya A∞-category F (X̂) of X̂ . Here coh(X) and Db(coh(X))
capture the complex algebraic geometry of X , and depend only on the complex man-

ifold (X, J). Also F (X̂) and Db(F (X̂)) capture the symplectic geometry of X̂ , and

depend (up to an appropriate notion of equivalence) only on the symplectic manifold

(X̂, ω̂) and the B-field B̂. So the conjecture is another example of Principle 9.3.1.

A string theory explanation for the HMS Conjecture is that the data of an open

string topological quantum field theory should include a triangulated category of branes

(boundary conditions). For the B-model on X , this category of topological B-branes

should be equivalent to Db(coh(X)). For the A-model on X̂ , this category of topologi-

cal A-branes should be equivalent to Db(F (X̂)). Equating the open string A-model on

X with the open string B-model on X̂ thus implies the HMS Conjecture.

There is a lot of complicated mathematics going on here. The rest of the section

gives brief descriptions of some of the ideas involved, with references.

9.3.1 Categories, and equivalence of categories
A category C consists of a set (or class) Ob C of objects, and for all X, Y ∈ Ob C a set

Hom(X, Y ) or HomC(X, Y ) of morphisms f : X → Y , and for all X, Y, Z ∈ Ob C
a composition map ◦ : Hom(Y, Z) × Hom(X, Y ) → Hom(X, Z). Composition of

morphisms is associative, that is, (h ◦ g) ◦ f = h ◦ (g ◦ f). Each X ∈ Ob C has an

identity morphism idX ∈ Hom(X, X), with f ◦ idX = f = idY ◦f for all f : X → Y .

A functor F : C → D between categories C,D consists of maps F : Ob C →
ObD and FXY : HomC(X, Y ) → HomD(F (X), F (Y )) for all X, Y ∈ Ob C, which

preserve identities and compositions, that is, FXX(idX) = idF (X) and FXZ(g ◦ f) =
FY Z(g) ◦ FXY (f) for all X, Y, Z ∈ ObC and f : X → Y , g : Y → Z . This is the

natural notion of map (morphism) between categories.

Categories are a universal structure occurring almost everywhere in mathematics.

A good introduction is Gelfand and Manin [123, §II]. Whenever we have some class

of mathematical structures (for example, topological spaces, or smooth manifolds), and

some class of maps between them (for example, continuous maps, or smooth maps),

these generally form the objects and morphisms of a category. But we can also use as

morphisms things which are nothing like maps between the objects of the category, as

we shall see in §9.3.7 for the Fukaya category. The abstract categorical point of view,

in which one forgets about the nature of the objects and morphisms and regards them

simply as points and arrows, can be very powerful.

A question that arises often is: when are two categories C,D the same? The obvious

notion of strict isomorphism, that there should exist a functor F : C → D with F :
Ob C → ObD and all maps FXY bijections, turns out to be too strong, and more-or-
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less useless in applications. Instead, a functor F : C → D is called an equivalence if

FXY : HomC(X, Y ) → HomD(F (X), F (Y )) is a bijection for all X, Y ∈ ObC, and

in addition F : ObC → ObD induces a bijection between isomorphism classes of

objects in ObC and ObD. This allows Ob C, ObD to be very different sets.

9.3.2 Additive and linear categories
A category C is additive if for all X, Y, Z ∈ Ob C the set of morphisms Hom(X, Y ) has

the structure of an abelian group, and composition ◦ : Hom(Y, Z) × Hom(X, Y ) →
Hom(X, Z) is biadditive. It is K-linear if the Hom(X, Y ) are vector spaces over some

field K, and composition is bilinear. Linear categories are additive. All the categories

we are interested in are C-linear.

The identity in the abelian group Hom(X, Y ) is the zero morphism 0 : X → Y . A

complex in an additive category is a finite or infinite sequence of objects and morphisms

· · · → Xk
dk−→Xk+1

dk+1−→ Xk+2 → · · · with dk+1 ◦ dk = 0 for all k.

9.3.3 The exact category Vect(X) of holomorphic vector bundles on X

Before discussing coherent sheaves, we explain a simpler idea. Let (X, J) be a complex

manifold. Then we can define holomorphic vector bundles E → X , with fibre C
k. A

morphism f : E → F of vector bundles E, F → X is a holomorphic bundle map

f : E → F over X which is linear on each fibre. Equivalently, it is a holomorphic

section of the vector bundle E∗ ⊗ F → X .

The category Vect(X) of holomorphic vector bundles is a C-linear category, since

Hom(E, F ) = H0(E∗ ⊗ F ) is a complex vector space. A complex · · · → E → F →
G → · · · in Vect(X) is called exact if for all x ∈ X , the restriction to the fibres

· · · → E|x → F |x → G|x → · · · is an exact sequence of complex vector spaces. With

this notion of exactness, Vect(X) is an exact category, as in [123, p. 275]. The zero

object 0 ∈ Vect(X) is the vector bundle with fibre {0} at each point.

For many purposes in homological algebra it would really useful if every morphism

f : E → F in Vect(X) lay in an exact sequence 0 → K
i−→E

f−→F
π−→C → 0.

Then i : K → E is called the kernel and π : F → C the cokernel of f . But this is

not true. The dimensions of the kernel and cokernel of the fibre maps f |x : E|x → F |x
need not be locally constant in x, and if they jump then f has no kernel or cokernel as a

holomorphic vector bundle. To get round this we enlarge Vect(X) to coh(X).

9.3.4 The abelian category coh(X) of coherent sheaves on X

An abelian category is basically an exact category (an additive category with a good

notion of exact sequences) in which every morphism f : E → F has a kernel and

cokernel. They are the setting for much of homological algebra. An exact category E
can be enlarged to an abelian category in an essentially unique way up to equivalence,

by adding extra objects to be the kernels and cokernels of morphisms in E .

The category coh(X) of coherent sheaves on X is the result of enlarging Vect(X)
to an abelian category in this way. But coherent sheaves are sensible geometric objects

on X , not just categorical abstractions. Sheaves are defined in Definition 5.8.8, and a

coherent sheaf on a C-scheme (X, O) is a sheaf of O-modules F such that X can be

covered by open affine subsets U of the form Spec A for a C-algebra A, with F |U
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isomorphic to the sheaf of O-modules on U induced by a finitely-generated A-module.

Roughly speaking, a coherent sheaf E on X is a generalization of a holomorphic

vector bundle, that has a fibre E|x for each x ∈ X which is a finite-dimensional complex

vector space, but dimE|x need not be constant in x. We actually define E in terms of

the C-vector space of holomorphic sections of E over each open set U ⊆ X . A typical

example is a vector bundle E → W over a complex subvariety W in X . For more

information see Hartshorne [149, §II.5].

9.3.5 Triangulated categories and derived categories
A triangulated category T is an additive category equipped with a shift functor [+1] :
T → T and a class of distinguished triangles X

u−→Y
v−→Z

w−→X [+1] in T , satisfy-

ing a list of axioms given in Gelfand and Manin [123, §IV].

If A is an abelian category, the (bounded) derived category Db(A) is a triangulated

category constructed from A by a complicated procedure. The objects of Db(A) are

bounded complexes in A, that is, complexes · · · → Xk
dk−→Xk+1

dk+1−→ Xk+2 → · · · for

k ∈ Z with Xk = 0 for |k| � 0. The morphisms in Db(A) are obtained by starting

with chain maps on complexes and then inverting quasi-isomorphisms, which are chain

maps on complexes that induce isomorphisms on the cohomology of the complexes.

Thomas [323] gives a helpful short introduction to derived categories. An excel-

lent textbook on derived and triangulated categories is Gelfand and Manin [123, §III].

Thomas expresses the main idea of derived categories as working with complexes rather

than their (co)homology. We shall explain the point of derived categories slightly dif-

ferently, as a way of remedying problems caused by failures of exactness.

A functor F : A → B between abelian categories is called exact if it takes exact

sequences to exact sequences. There are many natural functors between abelian cate-

gories which are not exact, and this causes problems. For example, let A, B, C, D be

vector bundles or coherent sheaves over a C-variety X , and 0 → B → C → D → 0 an

exact sequence in coh(X). Then we have a long exact sequence of C-vector spaces

0 → Hom(A, B) → Hom(A, C) → Hom(A, D) → Ext1(A, B) → · · · .

In particular, 0→Hom(A, B)→Hom(A, C)→Hom(A, D)→ 0 need not be exact at

Hom(A, D). So the functor Hom(A,−) from coh(X) to C-vector spaces is not exact.

A functor F : A → B is left exact if 0 → B → C → D → 0 exact in A implies

0→F (B)→F (C)→F (D) exact in B, and right exact if it implies F (B)→F (C)→
F (D)→0 exact in B. Thus Hom(A,−) is left exact, but not right exact.

An advantage of working with derived categories rather than abelian categories is

that we can usually fix these problems with exactness. If F : A → B is a left exact func-

tor of abelian categories then we can define the right derived functor RF : Db(A) →
Db(B) which is an exact functor of triangulated categories, in the sense that it takes

distinguished triangles (which are the triangulated analogue of short exact sequences)

to distinguished triangles. Similarly, if F is right exact we define the left derived functor

LF : Db(A) → Db(B), which is exact. A consequence of this is that functors between

derived categories are often much better behaved than their abelian counterparts.

There is a problem in the definition of triangulated categories, the ‘nonfunctoriality

of the cone’ described by Gelfand and Manin [123, p. 245], which means that some
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constructions can be done up to isomorphism, but not up to canonical isomorphism.

To fix this requires some modification to the definition of triangulated categories, and

it seems likely that this modification should also be included in the HMS Conjecture.

One possibility is the enhanced triangulated categories of Bondal and Kapranov [36],

involving dg-categories. Diaconescu [95] and Lazaroiu [234] have used string theory to

argue that topological D-branes should form an enhanced triangulated category. Perhaps

triangulated A∞-categories might be another suitable context.

9.3.6 The derived category of coherent sheaves Db(coh(X))

In recent years, algebraic geometers have begun to study the algebraic varieties X via

their derived categories of coherent sheaves Db(coh(X)). An interesting survey on this

is Bridgeland [52]. Bondal and Orlov [37] prove that if X is a smooth algebraic variety

whose canonical bundle KX or its inverse K−1
X is ample, then X can be reconstructed

from the triangulated category Db(coh(X)) uniquely up to isomorphism. Furthermore,

any autoequivalence Φ of Db(coh(X)) is induced by an automorphism φ : X → X .

For Calabi–Yau m-folds X , with KX trivial, things are very different. If X, Y
are Calabi–Yau m-folds, there can exist equivalences of triangulated categories Φ :
Db(coh(X)) → Db(coh(Y )) which do not come from isomorphisms φ : X → Y ,

and X, Y need not be isomorphic. It is conjectured that if X, Y are birational Calabi–

Yau m-folds then there is an equivalence Φ : Db(coh(X)) → Db(coh(Y )), and this

is known for m = 3. Also, if X is a Calabi–Yau m-fold then there may exist many

autoequivalences Φ of Db(coh(X)) not induced by any automorphism φ : X → X ,

and the autoequivalences form a large, interesting group Aut
(
Db(coh(X))

)
.

Thus derived categories Db(coh(X)) are particularly interesting for Calabi–Yau m-

folds X , and they can have many hidden, non-classical symmetries. This is parallel to

the idea of dualities in string theory, which are basically isomorphisms between SCFT’s

which do not come from isomorphisms of the classical geometries used to construct the

SCFT’s, such as mirror symmetry. Since triangulated categories of topological branes

are a small part of the data making up an SCFT, isomorphisms between SCFT’s natu-

rally imply equivalences between triangulated categories.

9.3.7 The Fukaya category F (X̂)

Fukaya categories were introduced informally by Fukaya [116]. Fukaya, Oh, Ohta and

Ono [118] have undertaken the mammoth task of laying the foundations of the theory

and making it rigorous. Seidel’s book [306] is a good place to learn the ideas; Seidel

avoids many of the technical problems by only considering noncompact, exact sym-

plectic manifolds. We first explain them in a rather oversimplified way, to give the basic

ideas, and then explain modifications to and difficulties with this scheme.

The Fukaya category is an A∞-category A, which has objects ObA and morphisms

Hom(A, B) for A, B ∈ A as usual. However, we do not have associative composi-

tion or morphisms ◦, as in a usual category. Instead, we have families of multilinear

composition maps mk : Hom(A1, A2) × Hom(A2, A3) × · · · × Hom(Ak, Ak+1) →
Hom(A1, Ak+1) for all k � 1 and A1, . . . , Ak+1 ∈ A, satisfying many complicated

identities. Roughly speaking, m2 is composition of morphisms, but it is only associative

up to a homotopy given by m3.
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The Fukaya category F (X̂) of a symplectic manifold (X̂, ω̂) is an A∞-category

defined as follows. The objects of F (X̂) are compact Lagrangian submanifolds of X̂ .

Let L1, L2 be Lagrangians intersecting transversely. Then we define Hom(L1, L2) =
CL1∩L2 , that is, Hom(L1, L2) is the C-vector space with basis L1∩L2, a finite set. The

maps mk : Hom(L1, L2)×· · ·×Hom(Lk, Lk+1) → Hom(L1, Lk+1), for transversely

intersecting Lagrangians L1, . . . , Lk+1, are defined by ‘counting’ pseudoholomorphic

discs D with boundary in (X̂, ω̂), with respect to some almost complex structure Ĵ ′

compatible with ω̂, such that the boundary ∂D lies in L1 ∪ · · · ∪ Lk+1, and includes

prescribed points in Li ∩ Li+1 for i = 1, . . . , k and L1 ∩ Lk+1. The identities on mk

come from gluing results for pseudoholomorphic discs.

Here are the ways in which this must be modified for use in the HMS Conjecture.

• Rather than Lagrangians L in the Calabi–Yau m-fold X̂ we must consider graded

Lagrangians L̃ = (L, φ) as in Seidel [302], that is, Lagrangians L equipped with

a phase function φ : L → R such that θ̂|L ≡ eiφ volL.

If L̃1, L̃2 are two graded Lagrangians intersecting transversely, to each x ∈ L1∩L2

we assign a Maslov index I(L̃1, L̃2, x) ∈ Z, the sum of 1
π (φ1(x) − φ2(x)) and a

correction term depending on the Lagrangian subspaces TxL1, TxL2 in TxX̂ . We

use these to make Hom(L̃1, L̃2) = C
L1∩L2 into a graded vector space, where each

basis vector x ∈ L1 ∩ L2 has grading I(L̃1, L̃2, x).

• Actually, the objects in F (X̂) should be triples (L̃, E, A), where L̃ = (L, φ)
is a graded Lagrangian in X̂ , E a complex line bundle over L, and A a U(1)-
connection on E. In the absence of B-fields A should be a flat connection, but with

B-fields we require FA ≡ −2πiB̂|L, where FA is the curvature of A, a closed 2-

form. We set Hom
(
(L̃1, E1, A1), (L̃2, E2, A2)

)
=
⊕

x∈L1∩L2
Hom(E1|x, E2|x)

when L1, L2 intersect transversely. The contribution of a pseudoholomorphic disc

D to mk involves parallel translation along intervals Li ∩ ∂D using Ai.

Here is an (incomplete) list of difficulties in the theory. It illustrates the fact the

Fukaya categories, while a really clever idea, are also technically a complete nightmare.

• We define morphisms Hom(L1, L2) only when L1, L2 intersect transversely. In

particular, we never define identity morphisms.

• The mk are defined by ‘counting’ moduli spaces M of pseudoholomorphic discs

D. We count only those moduli spaces of virtual dimension 0. The identities on the

mk are proved by considering moduli spaces M ′ of pseudoholomorphic discs D′

with virtual dimension 1. These M ′ are basically collections of oriented intervals,

whose boundaries are unions of pieces of the form M 1×M 2, where M 1, M 2 are

virtual dimension 0 moduli spaces contributing to mk, ml. The identities follow

from the fact that the number of boundary points of an oriented interval [0, 1],
counted with signs, is zero.

However, there is a problem. If there exist holomorphic discs D̃ with boundary in

some Li, these can also contribute to the boundary of M ′ in an unwanted way, and

this invalidates the proof of the identities on the mk. If a Lagrangian L (or rather, a

triple (L̃, E, A)) has such bad discs which do not cancel when counted with signs,

it has obstructed Lagrangian Floer homology. A lot of effort in [118] goes into un-
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derstanding these obstructions. Lagrangians with obstructed Floer homology must

be excluded from the Fukaya category.

• The definition of mk involves a sum over pseudoholomorphic discs D weighted by

a factor exp
(∫

D 2πi(B̂+ iω̂)
)
. There are likely to be infinitely many such discs D,

whose areas diverge to infinity. It is not known whether this infinite sum converges.

To get round this it is usual to work not over C but over a ring Λ of formal power

series known as the Novikov ring. Roughly speaking this is equivalent to working

not with a single symplectic manifold (X̂, ω̂) but with the 1-parameter family of

symplectic manifolds (X̂, tω̂) for t � 0 in R. Effectively this is taking a large

radius limit as t → ∞, as in §9.2.2.

This is a problem, because if Db(F (X̂)) is defined over a Novikov ring Λ it cannot

be equivalent to Db(coh(X)) defined over C. To get round this, perhaps one should

start with a Calabi–Yau 3-fold X defined over Λ rather than C, so that Db(coh(X))
is defined over Λ. Effectively this means working with a 1-parameter family of

Calabi–Yau 3-folds Xt for t � 0 in R. Since (X̂, tω̂) goes to the large radius limit

as t → ∞, the mirror Xt must go to the large complex structure limit as t → ∞.

Thus we recover aspects of the picture of §9.2.2.

• Kapustin and Orlov [210] use physics to argue that for the HMS Conjecture to be

true on Calabi–Yau 3-folds with nonzero first Betti number, the Fukaya category

must be enlarged to include extra objects they call coisotropic A-branes, which are

not Lagrangian submanifolds. It is not yet clear how to form these into a category.

9.3.8 The derived Fukaya category Db(F (X̂))
As for abelian categories, given an A∞-category A one can construct a triangulated

category Db(A) called the (bounded) derived category of A, which was introduced by

Kontsevich [219, p. 133-4] and is described at greater length by Seidel [305, §2], [306,

§I.3]. One first constructs a triangulated A∞-category Tw(A) of twisted complexes in

A . The morphism groups HomTw(A)(X, Y ) in Tw(A) have the structure of complexes

of vector spaces, and we define Db(A) to be H0
(
Tw(A)

)
, that is, the triangulated

category with the same objects as Tw(A), but with morphisms HomDb(A)(X, Y ) =
H0
(
HomTw(A)(X, Y )

)
, taking cohomology of the complex.

When this is applied to the Fukaya category F (X̂) it gives a triangulated category

Db(F (X̂)). For simplicity consider F (X̂) to have objects Lagrangians L in X̂ , rather

than triples (L̃, E, A). Then the Lagrangians L in F (X̂) occur as objects in Db(F (X̂)),
though Db(F (X̂)) also contains many more general objects which are twisted com-

plexes rather than single Lagrangians. For Lagrangians L1, L2 in Db(F (X̂)), the mor-

phism group HomDb(F (X̂))(L1, L2) is the Floer homology group HF 0(L1, L2). La-

grangian Floer homology is studied by Fukaya et al. [118], and is the foundation of

Fukaya categories. If L1, L2 are Hamiltonian equivalent Lagrangians in X̂ then they

are isomorphic objects in Db(F (X̂)).

9.3.9 Extensions and further developments of homological mirror symmetry
Polishchuk [280] strengthens the homological mirror symmetry proposal by giving

Db(coh(X)) the structure of a triangulated A∞-category, which is stronger than that of

a triangulated category, and then conjecturing that Db(coh(X)) and Db(F (X̂)) should
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be equivalent as triangulated A∞-categories, not just as triangulated categories. This

implies that families of higher products on morphisms in Db(coh(X)) and Db(F (X̂))
have to agree. In a similar vein, Diaconescu [95] and Lazaroiu [234] have used String

Theory to argue that topological D-branes should form an enhanced triangulated cate-

gory in the sense of Bondal and Kapranov [36].

As in §9.1, one can study mirror symmetry between Calabi–Yau m-folds for other

m � 1, and between Fano varieties and Landau–Ginzburg models, as well as for

Calabi–Yau 3-folds. There are also HMS Conjectures in these contexts. The case of

Calabi–Yau 1-folds, that is, elliptic curves T 2, was studied by Kontsevich [219], Pol-

ishchuk and Zaslow [281] and Polishchuk [280], and is well understood.

For Calabi–Yau 2-folds, that is, K3 surfaces, an important paper of Seidel [305]

proves a form of homological mirror symmetry for quartic K3 surfaces in CP3. On the

complex side, consider the 1-parameter family of quartic surfaces Xq in CP
3 given by

z0z1z2z3+q(z4
0+z4

1+z4
2+z4

3) = 0, regarded as a single surface over a Novikov ring Λq

of formal power series in q for small q. On the symplectic side, consider the 1-parameter

family of symplectic manifolds (X̂, tω̂) for t � 0, regarded as a single symplectic

manifold over a Novikov ring Λ̂t of series in e−ct. Then Seidel shows that for some

unknown isomorphism ψ : Λq → Λ̂t there is an equivalence between the triangulated

category Db(coh(Xq)) over Λq and the triangulated category Db(F (X̂)) over Λ̂t. The

equivalence is found ‘by hand’, by comparing finite systems of generators for each side.

Homological mirror symmetry between Fano varieties and Landau–Ginzburg mod-

els is discussed in physical terms by Hori, Iqbal and Vafa [165]. On the complex side for

the Fano variety X , the appropriate triangulated category is just the derived category of

coherent sheaves Db(coh(X)). On the symplectic side for the Landau–Ginzburg model

(X̂, f̂), the correct analogue of the derived Fukaya category is the derived category of

Lagrangian vanishing cycles, which is rigorously defined by Seidel [303] when the sta-

tionary points of f̂ are isolated and nondegenerate. Examples of homological mirror

symmetry equivalences between categories of this kind of are proved by Seidel [304]

when X is CP
2, and by Auroux, Katzarkov and Orlov [17, 18] when X is a weighted

projective line CP
1
a0,a1

or plane CP
2
a0,a1,a2

, or a Fano surface.

9.3.10 Relations between closed string and homological mirror symmetry
It is an interesting question how the closed string mirror symmetry of §9.2.2, and the

homological mirror symmetry of §9.3, are related. An answer is provided by Costello

[78, 79], using elegant but formidably difficult constructions in category theory and ho-

mological algebra. The starting point is that the triangulated categories Db(coh(X)),
Db(F (X̂)) of the HMS Conjecture, enhanced to triangulated A∞-categories as in Pol-

ishchuk [280], are examples of what Costello calls Calabi–Yau A∞-categories.

Costello shows Calabi–Yau A∞-categories are equivalent to what he calls open

topological conformal field theories (TCFTs), which are functors from a complicated

category constructed using singular chains on moduli spaces of open Riemann surfaces,

to a category of chain complexes. He proves that each open TCFT can be enhanced to

an open-closed TCFT, and then restricted to a closed TCFT. But closed TCFTs exactly

encode the structures of closed string mirror symmetry. Applied to the Fukaya category

Db(F (X̂)), the closed TCFT encodes the Gromov–Witten invariants of X̂ , for curves
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of every genus g � 0. Thus, closed string mirror symmetry is a consequence of homo-

logical mirror symmetry, but in a rather hidden form.

9.4 The SYZ Conjecture

The most geometric formulation of mirror symmetry was proposed by Strominger, Yau

and Zaslow [317] in 1996, and is known as the SYZ Conjecture. Strominger et al. ex-

pressed their ideas in physics terms, and did not make a mathematically precise con-

jecture. Sections 9.4.1 and 9.4.2 discuss ways to make it precise, and §9.4.3–§9.4.5

summarize some mathematical progress in this area.

9.4.1 The basic idea
Here is a first attempt to state the SYZ Conjecture, which we admit from the outset is

inadequate. The maps f, f̂ below are called special Lagrangian fibrations, and the set of

singular fibres ∆ is called the discriminant.

Conjecture 9.4.1. (SYZ Conjecture, first approximation) Let X and X̂ be mirror

Calabi–Yau 3-folds. Then (under some additional conditions) there should exist a com-

pact 3-manifold B and surjective, continuous maps f : X → B and f̂ : X̂ → B, with

fibres T b = f−1(b) and T̂ b = f̂−1(b) for b ∈ B, and a closed set ∆ in B with B \ ∆
dense, such that:

(i) For each b ∈ B \ ∆, the fibres T b and T̂ b are nonsingular special Lagrangian

3-tori T 3 in X and X̂ , which are in some sense dual to one another.

(ii) For each b ∈ ∆, the fibres T b and T̂ b are singular special Lagrangian 3-folds in

X and X̂ .

There are two main problems with Conjecture 9.4.1. The first concerns the singu-

lar fibres of f, f̂ . As Strominger, Yau and Zaslow explain, some of their string theory

arguments break down near singular fibres, as if b ∈ B is close to ∆ then there may

exist holomorphic discs D in X with boundary ∂D in f−1(b) and with area(D) arbi-

trarily small, and these ‘instantons’ will correct the moduli space geometry in a poorly

understood way. So the SYZ prediction becomes unreliable near the singular fibres.

As a mathematical confirmation of this, using local models for special Lagrangian

fibrations the author [197] argued that the statement above cannot be true in general.

The idea is that there are types of singularities expected to occur in mirror special La-

grangian fibrations f, f̂ (if these exist at all) such that the discriminants ∆, ∆̂ of f, f̂
are not locally homeomorphic. So part (ii) above, saying that f, f̂ should have the same

discriminant in B, cannot hold. This does not mean that the SYZ Conjecture is false,

only that we have not yet found the right statement.

The second problem is that we have not said what we mean by dual tori in part (i).

On the topological level, we can define duality between two tori T, T̂ to be a choice

of isomorphism H1(T, Z) ∼= H1(T̂ , Z). But Strominger et al. have in mind something

stronger than this. There is a natural notion of duality between tori equipped with flat

Riemannian metrics. Such a torus may be written T = V/Λ, where V is a Euclidean

vector space and Λ a lattice in V . Then the dual torus T̂ is V ∗/Λ∗, where V ∗ is the dual

Euclidean vector space and Λ∗ the dual lattice. In the situation considered by Strominger
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et al., the metrics on nonsingular fibres T b, T̂ b for b not close to ∆ are expected to be

approximately flat, and approximately dual in this sense.

We briefly explain the physical justification for the SYZ Conjecture, ignoring issues

to do with singularities. Strominger et al. begin by assuming quantum mirror symme-

try, that is, that the full quantum string theories of X, X̂ are equivalent, not just their

SCFT’s. Now each point x in X is a 0-brane in X , so that X can be reconstructed from

its quantum string theory as a moduli space M X of 0-branes in X . Since the quantum

string theories are equivalent, M X is also a moduli space of 3-branes in X̂ . The clas-

sical limit of a 3-brane is an SL 3-fold T̂ in X̂ with a flat U(1) connection Â. To get a

moduli space of real dimension 6 we need b1(T̂ ) = 3, by Theorem 8.4.5.

Thus we expect X to be diffeomorphic to a moduli space M X of pairs (T̂ , Â),
where T̂ is an SL 3-fold in X̂ with b1(T̂ ) = 3, and Â a flat U(1) connection on T̂ .

Each family T ⊂ M X of pairs (T̂ , Â) with T̂ fixed is naturally isomorphic to T 3,

and corresponds to a 3-submanifold of X , which Strominger et al. argue is special

Lagrangian. Let B be the set of SL 3-folds T̂ occurring in M X , which has dimension

3 by Theorem 8.4.5. Then the projection f : X ∼= M X → B taking (T̂ , Â) �→ T̂
should be a special Lagrangian fibration, with fibres T diffeomorphic to T 3. Note that

B corresponds to families of both SL 3-folds T in X , and SL 3-folds T̂ in X̂ .

We can now exchange X and X̂ , and realize X̂ as a moduli space M X̂ of 0-branes

in X̂ , and so of 3-branes in X , which in the classical limit are pairs (T, A) of an SL

3-fold T in X with b1(T ) = 3 and a flat U(1)-connection A on T , and the projection

f : X̂ ∼= M X̂ → B̂ taking (T, A) �→ T is a special Lagrangian fibration with fibres T̂

diffeomorphic to T 3. Strominger et al. claim that B and B̂ should be identified, since

both correspond to families of both SL 3-folds T̂ in X̂ , and T in X . Hence the SL 3-folds

T̂ , T with b1(T̂ ) = b1(T ) = 3 above must be 3-tori. This yields the SYZ Conjecture.

9.4.2 Rewriting the SYZ Conjecture as a limiting statement
Many mathematical claims made by string theorists implicitly involve taking various

limits, and to make mathematically plausible statements it is often necessary to put

these limits in explicitly. To improve Conjecture 9.4.1, we must pay attention to the

notion of ‘classical limit’ of 3-branes in §9.4.1. The claim that the classical limit of a

3-brane in X̂ is an SL 3-fold T̂ in X̂ with a flat U(1) connection Â really means that X̂
should approach the large radius limit, as in §9.2.2, and so its mirror X should approach

the large complex structure limit. The corresponding classical limit in X requires X to

approach the large radius limit, and X̂ the large complex structure limit.

Thus, we should rewrite the SYZ Conjecture in terms of 1-parameter families of

mirror Calabi–Yau 3-folds Xt, X̂t for t � 0, which both approach both large radius

and large complex structure limits as t → ∞. Here is an attempt to do this.

Conjecture 9.4.2. (SYZ Conjecture, second approximation, optimistic) Let R > 0
and Xt, X̂t for t ∈ (R,∞) be smooth 1-parameter families of mirror Calabi–Yau

3-folds, which both approach both large radius and large complex structure limits as

t → ∞. Then (under some additional conditions) there should exist S � R, a compact

3-manifold B and surjective, continuous maps ft : Xt → B and f̂t : X̂t → B for

t ∈ (S,∞), with fibres T b
t = f−1

t (b) and T̂ b
t = f̂−1

t (b) for b ∈ B, such that:
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(a) For t ∈ (S,∞) there are closed sets ∆t, ∆̂t in B with B \∆t, B \ ∆̂t dense, such

that T b
t is a nonsingular SL 3-torus in Xt if b ∈ B \ ∆t and a singular SL 3-fold

in Xt if b ∈ ∆t, and T̂ b
t is a nonsingular SL 3-torus in X̂t if b ∈ B \ ∆̂t and a

singular SL 3-fold in X̂t if b ∈ ∆̂t.

(b) There is a closed set ∆∞ in B with B \∆∞ dense, such that ∆t and ∆̂t converge

to ∆∞ as t → ∞, in an appropriate sense.

(c) If b ∈ B \ ∆∞ then T b
t , T̂ b

t are nonsingular SL 3-tori in Xt, X̂t for sufficiently

large t. There exist flat Riemannian 3-tori T b
∞, T̂ b

∞ which are dual in the sense

above, such that T b
t → T b

∞ and T̂ b
t → T̂ b

∞ as t → ∞, as Riemannian 3-manifolds.

Conjecture 9.4.2 is optimistic as it makes strong claims on the existence of SL fi-

brations of Calabi–Yau 3-folds Xt, X̂t sufficiently close to the large radius and complex

structure limits. These claims would only really be plausible if the singularities of SL

3-folds are very well behaved. There is some evidence for this from special Lagrangian

geometry, and the author expects something similar to Conjecture 9.4.2 to be true.

In Conjecture 9.4.2 we have retained the idea from Conjecture 9.4.1 that actual

Calabi–Yau 3-folds Xt, X̂t should have special Lagrangian fibrations, without taking

any limit. But the mirror relationship between Xt, X̂t is described in (b),(c) only in the

limit as t → ∞. This may be too strong, and it is conceivable that Calabi–Yau 3-folds

with holonomy SU(3) never admit special Lagrangian fibrations at all. So we give an

alternative, weaker statement:

Conjecture 9.4.3. (SYZ Conjecture, second approximation, pessimistic) Let R > 0
and Xt, X̂t for t ∈ (R,∞) be smooth 1-parameter families of mirror Calabi–Yau

3-folds, which both approach both large radius and large complex structure limits as

t → ∞. Then (under some additional conditions) there should exist S � R, a compact

3-manifold B and surjective, continuous maps ft : Xt → B and f̂t : X̂t → B for

t ∈ (S,∞), with fibres T b
t = f−1

t (b) and T̂ b
t = f̂−1

t (b) for b ∈ B, such that:

(a) For t ∈ (S,∞) there are closed sets ∆t, ∆̂t in B with B \∆t, B \ ∆̂t dense, such

that T b
t is a nonsingular 3-torus in Xt if b ∈ B \ ∆t and a singular 3-fold in Xt

if b ∈ ∆t, and T̂ b
t is a nonsingular 3-torus in X̂t if b ∈ B \ ∆̂t and a singular

3-fold in X̂t if b ∈ ∆̂t. Furthermore, the fibres T b
t , T̂ b

t are approximately special

Lagrangian in Xt, X̂t, and converge to exactly special Lagrangian as t → ∞.

(b) There is a closed set ∆∞ in B with B \∆∞ dense, such that ∆t and ∆̂t converge

to ∆∞ as t → ∞, in an appropriate sense.

(c) If b ∈ B \ ∆∞ then T b
t , T̂ b

t are nonsingular 3-tori in Xt, X̂t for sufficiently large

t. There exist flat Riemannian 3-tori T b∞, T̂ b∞ which are dual in the sense above,

such that T b
t → T b

∞ and T̂ b
t → T̂ b

∞ as t → ∞, as Riemannian 3-manifolds.

Here we have not said what we mean by T b
t , T̂ b

t being ‘approximately special La-

grangian’ in (a), or how they converge to exactly special Lagrangian. Since T b
t is SL

in Xt if ωt|T b
t
≡ Im θt|T b

t
≡ 0, one way to interpret this might be to require Banach

norms of ωt|T b
t

and Im θt|T b
t

to converge to zero as t → ∞, and similarly for T̂ b
t .

Conjecture 9.4.3 is only a limiting statement: it says essentially nothing about the

special Lagrangian geometry of any Calabi–Yau 3-fold, it just predicts how families
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of Calabi–Yau 3-folds can collapse to a simpler structure in a singular limit. As such,

it is rather disappointing from the point of view of the special Lagrangian geometer.

One could also formulate statements intermediate between Conjectures 9.4.2 and 9.4.3

which do make nontrivial claims on the special Lagrangian geometry of Xt, X̂t, without

asserting the existence of special Lagrangian fibrations.

For example, an SL fibration f of a Calabi–Yau m-fold X is basically a moduli

space of disjoint SL m-folds, with one passing through each point x ∈ X . Now two

SL 2-folds in homology classes with zero intersection number must be disjoint, as from

§8.1.1 SL 2-folds are holomorphic curves in disguise, and always intersect with positive

intersection number. But for SL m-folds with m � 3 this does not apply, so there is no

particular reason for a pair of SL m-folds to be disjoint. Thus, it might be a good idea

to replace the idea of SL fibration of X by a moduli space M of SL m-folds in X , such

that M is a compact manifold without boundary, and for generic x ∈ X there is exactly

one SL m-fold in M passing through x when counted with signs.

See §9.4.4 for a discussion of related SYZ-type conjectures on the limit t → ∞.

9.4.3 The symplectic topological approach to SYZ of Gross and Ruan
Early mathematical work on the SYZ Conjecture generally took an approach we de-

scribe as symplectic topological. In this approach, we mostly forget about complex

structures, and treat X, X̂ just as symplectic manifolds. We mostly forget about the

‘special’ condition, and treat f, f̂ just as Lagrangian fibrations. We also impose the

condition that B is a smooth 3-manifold and f : X → B and f̂ : X̂ → B are smooth

maps. (It is not clear that f, f̂ can in fact be smooth at every point, though).

Under these simplifying assumptions, Gross [133–136], Ruan [290–293], and others

have built up a beautiful, detailed picture of how dual SYZ fibrations work at the global

topological level, in particular for examples such as the quintic and its mirror, and for

Calabi–Yau 3-folds constructed as hypersurfaces in toric 4-folds, using combinatorial

data. A good introduction to this can be found in Gross [138, §19].

Here are some of the basic ideas. Let f : X → B be a Lagrangian fibration of a

Calabi–Yau 3-fold X , with discriminant ∆. Define B0 = B \ ∆ and X0 = f−1(B0).
Regard X as a compact symplectic manifold (X, ω), and its dense open set X0 as a

noncompact symplectic manifold (X0, ω). Then f : X0 → B0 is a smooth fibration of

(X0, ω), all of whose fibres are Lagrangian T 3’s. The aim is:

(a) to describe (X0, ω) in terms of essentially combinatorial data on B0, and

(b) to reconstruct the compactification (X, ω) from (X0, ω) in some natural way.

For (a), the most basic topological invariant of the fibration f : X0 → B0 is its

monodromy µ. The fibres T b of f are all diffeomorphic to T 3, so H1(T b, Z) ∼= Z
3.

Thus b �→ H1(T b, Z) is a local system with fibre Z
3. Fix some base-point b0 ∈ B0

and an identification H1(T b0 , Z) ∼= Z3. Then parallel transport around loops γ based at

b0 induces a group homomorphism µ : π1(B0, b0) → Aut
(
H1(T b0 , Z)

)
= GL(3, Z)

called the monodromy. If f is an SL fibration its fibres are oriented, which implies that

µ actually maps π1(B0, b0) → SL(3, Z). If the fibration f : X0 → B0 admits a section

s : B0 → X0 then B0, b0 and µ determine f : X0 → B0 up to isomorphism as a

smooth T 3-bundle, though they do not determine (X0, ω) as a symplectic manifold.
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To reconstruct (X0, ω) we need some extra data on B0, which comes from the ma-

terial on affine structures on moduli spaces of SL m-folds in §8.4.3. Given a base point

b0 ∈ B0 and an identification H1(T b0 , Z) ∼= Z
3 as above, if U is small open ball about

b0 in B0 then as in §8.4.3 we can define local coordinates Φ : U → H1(T b0 , Z) = R3

by integrating the symplectic form ω on X0 along paths in U . The transition maps be-

tween two such Φ are locally affine transformations ψ : R3 → R3 whose linear parts

lie in GL(3, Z). Thus these Φ give B0 the structure of an integral affine 3-manifold. We

write this structure as I, and an integral affine manifold as (B0, I).
This can also be expressed in the language of Chapter 2. An affine n-manifold is

equivalent to an n-manifold M with a torsion-free flat connection ∇, and it is integral

if the holonomy Hol(∇) lies in GL(n, Z) ⊂ GL(n, R). Alternatively, an integral affine

n-manifold (B0, I) is an n-manifold with a torsion-free GL(n, Z)-structure. The mon-

odromy µ : π1(B0, b0) → GL(3, Z) above comes from the holonomy of ∇. For Propo-

sition 2.2.6 gives a surjective homomorphism φ : π1(B0, b0) → Holb0(∇)/Hol0b0(∇).
But Hol0b0(∇) = {1} as ∇ is flat, and Holb0(∇) ⊆ GL(3, Z), so φ induces a homomor-

phism π1(B0, b0)→GL(3, Z) which is just µ. In fact, much of the structure I on B0 is

contained in a lifting of µ to a homomorphism π1(B0, b0) → GL(3, Z) � R3.

Thus, the integral affine structure I on B0 includes the monodromy µ, so if f admits

a section s : B0 → X0 then we can reconstruct f : X0 → B0 up to isomorphism as a

smooth T 3-bundle from (B0, I). If s can also be chosen so that its graph in X0 is La-

grangian, then the symplectic structure ω on X0 can also be reconstructed from (B0, I),
up to diffeomorphisms of X0 commuting with f . Therefore, under mild assumptions,

(X0, ω) and f : X0 → B0 depend only on (B0, I). This is our answer to (a) above.

To make progress on (b) we need to impose strong assumptions on the discrimi-

nant ∆, and the nature of the singular fibres. At the level of cohomology, Gross [133]

deals with this by defining simple fibrations f : X → B. For a simple fibration the

cohomology H∗(T b, R) of the singular fibres, and their contribution to H∗(X, R), are

determined by the monodromy µ, and so H∗(X, R) can be reconstructed from B, B0

and µ. If f : X → B and f̂ : X̂ → B are simple fibrations with the same discrimi-

nant ∆ and topologically dual T 3-fibrations over B0, Gross [133, §2], [138, Th. 19.16]

proves Mirror Symmetry of Hodge numbers for X, X̂ , as in §9.2.1.

To try to reconstruct X and ω, Gross [134] assumes that B is a smooth 3-manifold,

and the Lagrangian fibration f : X → B is smooth everywhere, including at singular

points of singular fibres. This is a strong assumption, with powerful consequences for

∆ and the nature of the singular fibres of f ; in particular, it implies the discriminant

∆ is 1-dimensional. Motivated by this and by examples, Gross [135, §1] defined well-

behaved fibrations of Calabi–Yau 3-folds, encapsulating the topological features that

were expected of special Lagrangian fibrations at the time. The discriminant ∆ of a

well-behaved fibration is a graph in B with finitely many vertices.

Gross [135] constructs explicit, non-Lagrangian, well-behaved mirror fibrations f :
X → B, f̂ : X̂ → B, and uses the classification of 6-manifolds to show that X, X̂ are

diffeomorphic to the quintic in CP
4 and its mirror. Pursuing a different course, Ruan

[290–292] studies Lagrangian fibrations of the quintic in CP
4, and [293] generalizes this

to Calabi–Yau 3-hypersurfaces in toric 4-folds. Ruan’s method is to construct an initial
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piecewise-smooth Lagrangian fibration f ′ : X → B via gradient flow, whose discrim-

inant ∆′ has codimension 1, and whose singular fibres have singularities incompatible

with being special Lagrangian. Then he tries to modify f to a smooth, well-behaved

Lagrangian fibration f : X → B whose discriminant ∆ has codimension 2.

When X is a quintic in CP
4, or more generally a Calabi–Yau hypersurface in a

toric 4-fold P , Gross and Ruan’s work gives a clear picture of the topological structure

expected for the SYZ fibration f : X → B, and to a large extent its symplectic structure

as well. In their description, B is S3, and ∆ is a trivalent graph in S3 derived from

the combinatorial data (fan) defining the toric 4-fold P ; the construction of B, ∆ and

(B0, I) from the fan of P is described in an explicit, succinct way by Haase and Zharkov

[146]. The monodromy µ of f : X0 → B0 is understood, and there are reasonable

guesses for the topology of all the singular fibres.

In the opinion of the author, the discriminants ∆ in B = S3 constructed by Gross

and Ruan, which are 1-dimensional trivalent graphs, are the right answer for the limiting

discriminant ∆∞ in Conjectures 9.4.2 and 9.4.3. We discuss this further in §9.4.5.

Both the closed string mirror symmetry of §9.2.2, and the homological mirror sym-

metry of §9.3, involve only half of the geometric structures on each side of the mirror:

the complex structure on X , and the symplectic structure on X̂ . The SYZ Conjecture in-

volves all the structure on both sides, since SL 3-folds make no sense without both com-

plex and symplectic structures. But the Gross–Ruan strategy of studying Lagrangian

fibrations f : X → B uses only the symplectic structure on X .

In a similar way, one can weaken the idea of special Lagrangian fibrations by work-

ing with only the complex structure. Let (X, J) be a complex 3-fold, and θ a holomor-

phic volume form on X . Define a special fibration f : X → B to be a fibration whose

nonsingular fibres T b for b ∈ B0 = B \ ∆ are totally real 3-tori with Im θ|T b ≡ 0.

Much of the story above for Lagrangian fibrations has an analogue for special fibra-

tions. Using Im θ and H2(T b, Z) instead of ω and H1(T b, Z), we can define an integral

affine structure I ′ on B0. From (B0, I ′), under mild conditions, we can reconstruct the

T 3-bundle f : X0 → B0 up to isomorphism, and we can define a complex structure J0

and holomorphic 3-form θ0 on X0.

However, there is an important difference with the Lagrangian case: J0, θ0 are not

expected to be isomorphic to J, θ on X0, but are only first approximations to them.

Conjectures by Fukaya [117] indicate how to construct J, θ near the large complex

structure limit by making a series of corrections to J0, θ0, which depend on counts of

holomorphic discs in the mirror X̂ . Thus, recovering X, J, θ from fibration data is much

harder than recovering X, ω, and has not been pursued as far.

9.4.4 More sophisticated limiting conjectures related to SYZ
We now review conjectures by a number of authors which elaborate on the SYZ Con-

jecture, and are the fruit of several years of work and reflection upon it. They all concern

the limiting behaviour as t → ∞ of the geometric structures of mirror Calabi–Yau 3-

folds Xt, X̂t approaching large radius and complex structure limits, as in Conjectures

9.4.2 and 9.4.3. They apparently have little to do with special Lagrangian fibrations.

Some similar conjectures are expressed by Gross and Wilson [141, Conj. 6.2] and

Gross [136, §5], and independently by Kontsevich and Soibelman [220, §3]. They are
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proved for K3 surfaces by Gross and Wilson [141]. Think of the Riemannian manifold

(Xt, gt) as a metric space with fibration ft : Xt → B. For large t, the diameters of

the fibres (T b
t , gt) are expected to be small compared to the diameter of the base space

B. Let us choose the parameter t and the scaling of the gt up to homothety so that

the fibres (T b
t , gt) have diameter O(1), and the base space B has diameter O(t). We

can also consider the rescaled metric (Xt, t
−2gt); in this the fibres (T b

t , t−2gt) have

diameter O(t−1), and the base space B has diameter O(1).
There is a notion of limits of compact metric spaces called Gromov–Hausdorff con-

vergence. Using this, Gross–Wilson and Kontsevich–Soibelman suggest that for b ∈
B \ ∆, the Gromov–Hausdorff limit of (T b

t , gt) as t → ∞ should be a flat Riemannian

3-torus (T b
∞, g∞), as in Conjectures 9.4.2(c) and 9.4.3(c). Also, the Gromov–Hausdorff

limit of (Xt, t
−2gt) as t → ∞ should be a metric space (B, d). On B0 = B \ ∆ this

d comes from a nonsingular Riemannian metric h, which is singular along ∆. That is,

a family of Riemannian 6-manifolds converge to a (singular) Riemannian 3-manifold;

this kind of change of dimension is allowed in Gromov–Hausdorff limits.

Furthermore, B0 carries two integral affine structures I, I ′, coming from ωt and

Im θt as t → ∞. These structures satisfy a compatibility called the real Monge–Ampère

equation, and h is derived from I, I ′. In this context, mirror symmetry says that the

Gromov–Hausdorff limits (T b
∞, g∞), (T̂ b

∞, ĝ∞) of the fibres of f, f̂ for b ∈ B0 should

be dual flat Riemannian 3-tori, and the Gromov–Hausdorff limits of (Xt, t
−2gt) and

(X̂t, t
−2ĝt) should be the same metric space (B, d), with the same metric h on B0, but

the integral affine structures Î, Î ′ coming from X̂t satisfy Î = I ′ and Î ′ = I.

Fukaya [117] takes the ideas of Gross–Wilson and Kontsevich–Soibelman further.

As in §9.4.3, the symplectic structure ωt on f−1
t (B0) ⊂ Xt is determined exactly by

an integral affine structure on B0. Fukaya explains how to write down a conjectural

asymptotic expansion for gt, Jt on f−1
t (B0) as t → ∞, compatible with ωt, where

the leading term is the Gross–Wilson–Kontsevich–Soibelman picture. This specifies the

Fourier modes of gt, Jt on the T 3 fibres of ft asymptotically as t → ∞, in terms

of counts of trees in B whose edges are gradient flow lines of certain functions, or

equivalently, in terms of counts of holomorphic discs in X̂t.

Another paper of Kontsevich and Soibelman [221] sets out a programme similar to

Fukaya’s, but works with analytic spaces over the non-Archimedean field C((t)) instead

of asymptotic expansions. An analytic space over C((t)) is roughly speaking a family

of complex analytic varieties Xt for t ∈ C with 0 < |t| � 1, which the authors want

to approach a large complex structure limit as t → 0. Let B, ∆, B0, I be as in §9.4.3.

Then from the integral affine manifold (B0, I), Kontsevich and Soibelman construct a

noncompact analytic space over C((t)). The problem is to compactify this over ∆. To

make this possible, the analytic space over B0 must first be modified by terms analogous

to Fukaya’s corrections. The authors carry out the compactification for K3 surfaces.

Gross and Siebert [137, 139, 140] have begun an exciting programme which trans-

forms the SYZ Conjecture into algebraic geometry. Let Xt for t ∈ C with |t| > 1
be a family of complex 3-folds with trivial canonical bundle. There is a well-defined

algebro-geometric notion of when the family Xt approaches a large complex structure

limit as t → ∞, which is crucial in mirror symmetry. Gross and Siebert define when

such a family Xt is a toric degeneration, which implies that it is a large complex struc-



198 MIRROR SYMMETRY AND THE SYZ CONJECTURE

ture limit. This includes many known examples of large complex structure limits, such

as the Batyrev–Borisov construction.

Given a toric degeneration (Xt)|t|>1, Gross and Siebert construct a limit X∞ as

t → ∞, a singular scheme built out of toric varieties. They would like to recover the

family (Xt)|t|>1 from X∞, uniquely up to deformation, by smoothing X∞. However,

there may be many different ways to smooth X∞, and to select one they must put

a logarithmic structure on X∞, making it into a log scheme X†
∞. Log geometry is

difficult to explain, and we shall not attempt it.

Now mirror symmetry exchanges complex and symplectic geometry, so to formulate

a wholly algebro-geometric version of mirror symmetry, we must somehow include

symplectic structures in the algebraic geometry. Gross and Siebert do this by including a

family of ample line bundles, or polarizations,Lt on Xt. The curvature of an appropriate

connection on Lt is then the symplectic form ωt on Xt. Taking the limit t → ∞ gives

a polarization L∞ on X†
∞.

Gross and Siebert then express mirror symmetry between families (Xt)|t|>1 and

(X̂t)|t|>1 undergoing toric degenerations as a correspondence between the limiting po-

larized log schemes (X†
∞,L∞) and (X̂†

∞, L̂∞). This correspondence goes via singular

affine 3-manifolds, in a similar way to §9.4.3. From the log scheme X†∞ one constructs

a 3-manifold B, a singular set ∆ ⊂ B, an integral affine structure I on B0 = B \ ∆,

and a polyhedral decomposition P of B. The polarization L∞ gives also a multivalued

piecewise-linear function ϕ on B. Then (X†∞,L∞) is equivalent to (B, ∆, I,P , ϕ), and

the correspondence between (X†
∞,L∞) and (X̂†

∞, L̂∞) works via a discrete Legendre

transform explicitly relating the quintuples (B, ∆, I,P , ϕ) and (B̂, ∆̂, Î, P̂ , ϕ̂).

9.4.5 U(1)-invariant SL fibrations in C
3 and the SYZ Conjecture

In §8.2.6 we described the work of the author in [198,205–207] on SL 3-folds N in C
3

invariant under the U(1)-action

eiψ : (z1, z2, z3) �→ (eiψz1, e−iψz2, z3) for eiψ ∈ U(1). (9.2)

We now explain how this is applied in [197, 198] and [207, §8] to construct U(1)-
invariant SL fibrations of subsets of C

3, and draw conclusions about SL fibrations of

general Calabi–Yau 3-folds and the SYZ Conjecture. Following [207, Def. 8.1], define:

Definition 9.4.4 Let S be a strictly convex domain in R2 invariant under (x, y) �→
(x,−y), let U be an open set in R

3, and α ∈ (0, 1). Suppose Φ : U → C3,α(∂S) is a

continuous map such that if (a, b, c) �= (a, b′, c′) in U then Φ(a, b, c) − Φ(a, b′, c′) has

exactly one local maximum and one local minimum in ∂S.

For α = (a, b, c) ∈ U , let fα ∈ C3,α(S) or C1(S) be the unique (weak) solution

of (8.8) with fα|∂S = Φ(α), which exists by Theorem 8.2.3. Define uα = ∂fα

∂y and

vα = ∂fα

∂x . Then (uα, vα) is a solution of (8.7) in C2,α(S) if a �= 0, and a weak solution

of (8.6) in C0(S) if a = 0. Also uα, vα depend continuously on α ∈ U in C0(S), by

Theorem 8.2.3. For each α = (a, b, c) in U , define Nα in C3 by

Nα =
{
(z1, z2, z3) ∈ C

3 : z1z2 = vα(x, y) + iy, z3 = x + iuα(x, y),

|z1|2 − |z2|2 = 2a, (x, y) ∈ S◦}. (9.3)
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Then Nα is a noncompact SL 3-fold without boundary in C3, invariant under (9.2),

which is nonsingular if a �= 0, by Proposition 8.2.1.

In [207, Th. 8.2] we show that the Nα are the fibres of an SL fibration.

Theorem 9.4.5 In the situation of Definition 9.4.4, if α �= α′ in U then Nα∩Nα′ = ∅.

There exists an open set V ⊂ C3 and a continuous, surjective map F : V → U such that

F−1(α) = Nα for all α ∈ U . Thus, F is a special Lagrangian fibration of V ⊂ C
3,

which may include singular fibres.

The key point here is that the SL 3-folds Nα for α in U are disjoint. It is fairly

obvious that a 3-dimensional family of disjoint SL 3-folds in C
3 will locally form an SL

fibration. Here is how we prove the Nα are disjoint. Roughly speaking, U(1)-invariant

SL 3-folds in C
3 are equivalent to SL 2-folds in a Kähler quotient C

3// U(1) of C
3

by U(1). But as in §8.1.1, SL 2-folds are holomorphic curves in disguise, and so they

always intersect with positive intersection number. Thus, two SL 2-folds which intersect

trivially in homology must be disjoint. Using this, the boundary conditions in Definition

9.4.4 ensure that Nα/ U(1) and Nα′/ U(1) are disjoint for all α �= α′ in U .

It is easy to find families Φ satisfying Definition 9.4.4. For example [207, Ex. 8.3],

given any φ ∈ C3,α(∂S) we may define U = R
3 and Φ : R

3 → C3,α(∂S) by

Φ(a, b, c) = φ + bx + cy. So this construction produces very large families of U(1)-
invariant SL fibrations, including singular fibres, which can have any multiplicity and

type in the sense of §8.2.6.

Here is a simple, explicit example. Define F : C3 → R × C by

F (z1, z2, z3) = (a, b), where 2a = |z1|2 − |z2|2

and b =

⎧⎪⎨⎪⎩
z3, a = z1 = z2 = 0,

z3 + z̄1z̄2/|z1|, a � 0, z1 �= 0,

z3 + z̄1z̄2/|z2|, a < 0.

(9.4)

This is a piecewise-smooth SL fibration of C3. It is not smooth on |z1| = |z2|.
The fibres F−1(a, b) are T 2-cones singular at (0, 0, b) when a = 0, and nonsingular

S1 × R
2 when a �= 0. They are isomorphic to the SL 3-folds of Example 8.2.4 under

transformations of C3, but they are assembled to make a fibration in a novel way.

As a goes from positive to negative the fibres undergo a surgery, a Dehn twist on

S1. The reason why the fibration is only piecewise-smooth, rather than smooth, is really

this topological transition, rather than the singularities themselves. The fibration is not

differentiable at every point of a singular fibre, rather than just at singular points, and

this is because we are jumping from one moduli space of SL 3-folds to another at the

singular fibres.

The author conjectures that (9.4) is the local model for codimension one singu-

larities of SL fibrations of generic almost Calabi–Yau 3-folds, if such fibrations exist.

The justification for this is that the T 2-cone singularities have ‘index one’ in the sense

of §8.3, and so should occur in codimension one in families of SL 3-folds in generic

almost Calabi–Yau 3-folds. Since they occur in codimension one in this family, the sin-

gular behaviour should be stable under small perturbations of the almost Calabi–Yau

structure.
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In [197, §7] we also describe a U(1)-invariant local model for codimension two

singularities of SL fibrations, in which two of the codimension one T 2-cones come

together to give a multiplicity two singularity in the sense of §8.2.6. The author expects

this to be a typical codimension two singular behaviour in SL fibrations of generic

almost Calabi–Yau 3-folds. However, the author expects that SL fibrations of Calabi–

Yau 3-folds must include singular behaviour in codimension three that cannot be locally

modelled on U(1)-invariant SL fibrations, so this approach does not provide all the

ingredients necessary to understand SL fibrations of Calabi–Yau 3-folds.

Suppose f : X → B is an SL fibration of a generic (almost) Calabi–Yau 3-fold,

with discriminant ∆. Based on the ideas above, we predict:

• f is smooth on f−1(B \ ∆), but is only continuous and not smooth on f−1(∆).
• The discriminant ∆ is of dimension 2, and is typically composed of intersecting

‘ribbons’, that is, closed 2-submanifolds with boundary in B.

• Every singular fibre T b = f−1(b) for b ∈ ∆ has only finitely many singular points.

• In Conjecture 9.4.2, if this holds, the discriminants ∆t, ∆̂t should be composed of

2-dimensional ribbons as above, but the limiting discriminant ∆∞ should be a 1-

dimensional graph in B, as in the Gross–Ruan picture. The convergence ∆t, ∆̂t →
∆∞ as t → ∞ happens by the ribbons contracting to zero width, via a local model

described in [197, §7].

In [197, §8] the author used this to argue that the naı̈ve form Conjecture 9.4.1 of the

SYZ Conjecture does not hold, since if f : X → B and f̂ : X̂ → B are SL fibrations of

general mirror Calabi–Yau 3-folds, then f, f̂ should have different discriminants ∆, ∆̂
in B. In Conjecture 9.4.2, if ∆∞ is a Gross–Ruan graph and |t| � 0 so that ∆t, ∆̂t

are composed of ribbons thickening ∆∞, then near a trivalent vertex v of ∆∞ in B we

expect ∆t to look like a Y-shaped ribbon lying in a single plane in B, but ∆̂t to look

like three ribbons with ends lying in three different planes in B and intersecting in an

interval. So ∆t, ∆̂t are locally nonhomeomorphic, and cannot be identified.

The ideas of §8.5.5 on the index of special Lagrangian singularities may be helpful

in studying SL fibrations f : X → B of generic almost Calabi–Yau 3-folds X . Such

fibrations come from compactifications M T 3 of 3-dimensional moduli spaces M T 3 of

SL 3-tori in X , so the SL 3-folds in ∂M T 3 = M T 3 \ M T 3 must have singularities of

index 1, 2 or 3. If we could classify SL singularities with index 1, 2 and 3, as in Problem

8.5.18, then we would understand the local models for all possible singular fibres of SL

fibrations of generic almost Calabi–Yau 3-folds.
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Hyperkähler and quaternionic
Kähler manifolds

We now discuss hyperkähler and quaternionic Kähler manifolds, that is, Riemannian

4m-manifolds (X, g) whose holonomy lies in Sp(m) and Sp(m) Sp(1). As Sp(m) ⊆
SU(2m), a metric g with holonomy in Sp(m) is Kähler and Ricci-flat, and closely

related to the Calabi–Yau metrics of Chapter 7. But since Sp(m) preserves three com-

plex structures J1, J2, J3 on R
4m there are corresponding constant complex structures

J1, J2, J3 on X . Furthermore, if a1, a2, a3 ∈ R with a2
1 + a2

2 + a2
3 = 1 then a1J1 +

a2J2 + a3J3 is a complex structure on X , and g is Kähler with respect to it.

Thus, a metric g with Hol(g) ⊆ Sp(m) is Kähler with respect to a whole 2-sphere

S2 of complex structures. We call g a hyperkähler metric, (J1, J2, J3, g) a hyperkähler

structure, and (X, J1, J2, J3, g) a hyperkähler manifold. Hyperkähler geometry should

be understood in terms of the quaternions H. The complex structures J1, J2, J3 on X
make each tangent space into a left H-module isomorphic to Hm.

We begin in §10.1 with an introduction to hyperkähler geometry. Sections 10.2

and 10.3 describe examples of noncompact hyperkähler 4-manifolds, hyperkähler ALE

spaces, and compact hyperkähler 4-manifolds, K3 surfaces. These are very well under-

stood, by treating them as complex surfaces and using complex algebraic geometry, and

we give a very precise description of the moduli space of hyperkähler structures on K3.

Then §10.4 explains the theory of compact hyperkähler manifolds in higher dimensions.

In comparison to Calabi–Yau manifolds, rather few examples are known.

Section 10.5 discusses quaternionic Kähler manifolds (X, g), with holonomy in

Sp(m) Sp(1) for m � 2. They are Einstein, with positive or negative scalar curva-

ture. The name is unfortunate, as quaternionic Kähler manifolds are never Kähler. How-

ever, each quaternionic Kähler manifold X has a twistor space, an S2-bundle over X ,

which is a complex manifold, and Kähler–Einstein if X has positive scalar curvature.

Rather few examples are known, and it is conjectured that the only compact quater-

nionic Kähler manifolds with positive scalar curvature are symmetric spaces. We close

in §10.6 with brief discussions of several other topics in quaternionic geometry.

10.1 An introduction to hyperkähler geometry

We now introduce the holonomy groups Sp(m) in 4m dimensions. If (X, g) is a Rie-

mannian 4m-manifold and Hol(g) ⊆ Sp(m), then g is Kähler with respect to complex

structures J1, J2, J3 on X with J1J2 = J3. If a1, a2, a3 ∈ R and a2
1 + a2

2 + a2
3 = 1

201
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then a1J1 + a2J2 + a3J3 is also a complex structure on X , which makes g Kähler.

Thus g is Kähler with respect to a whole 2-sphere S2 of complex structures. We call

(J1, J2, J3, g) a hyperkähler structure on X .

It is convenient to define the Lie groups Sp(m) and hyperkähler manifolds using the

quaternions H. We shall also discuss twistor spaces of hyperkähler manifolds, a device

for translating hyperkähler geometry in 4m real dimensions into holomorphic geometry

in 2m + 1 complex dimensions. Some references for this section are the foundational

paper of Hitchin, Karlhede, Lindström and Roček [164], and Salamon [296, Ch.s 8–9].

A good survey on the material of §10.1–§10.4 is Dancer [92].

10.1.1 The Lie groups Sp(m)
The quaternions H are the associative, nonabelian real algebra

H = {x0 + x1i1 + x2i2 + x3i3 : xj ∈ R} ∼= R4.

The imaginary quaternions are Im H=〈i1, i2, i3〉∼=R3. Multiplication is given by

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2, i21 = i22 = i23 = −1.

When x = x0 + x1i1 + x2i2 + x3i3, we define x̄ and |x| by

x̄ = x0 − x1i1 − x2i2 − x3i3 and |x|2 = x2
0 + x2

1 + x2
2 + x2

3.

These satisfy (pq) = q̄ p̄, |p| = |p̄| and |pq| = |p||q| for all p, q ∈ H.

Let Hm have coordinates (q1, . . . , qm), with qj = xj
0 + xj

1i1 + xj
2i2 + xj

3i3 ∈ H

and xj
k ∈ R. Define a metric g and 2-forms ω1, ω2, ω3 on Hm by

g =
∑m

j=1

∑3
k=0(dxj

k)2, ω1 =
∑m

j=1 dxj
0∧dxj

1 + dxj
2∧dxj

3,

ω2 =
∑m

j=1 dxj
0∧dxj

2 − dxj
1∧dxj

3, ω3 =
∑m

j=1 dxj
0∧dxj

3 + dxj
1∧dxj

2.
(10.1)

We can also express g, ω1, ω2, ω3 neatly as g +ω1i1 +ω2i2 +ω3i3 =
∑m

j=1 dq̄j ⊗dqj ,

using multiplication in H to interpret dq̄j ⊗ dqj as an H-valued tensor.

Identify Hm with R4m. Then g is the Euclidean metric on R4m. Let J1, J2 and J3

be the complex structures on R
4m corresponding to left multiplication by i1, i2 and i3

in H
m respectively. Then g is Kähler with respect to each Jj , with Kähler form ωj .

Furthermore, if a1, a2, a3 ∈ R with a2
1 + a2

2 + a2
3 = 1 then a1J1 + a2J2 + a3J3 is a

complex structure on R
4m, and g is Kähler with respect to it, with Kähler form a1ω1 +

a2ω2 + a3ω3.

The subgroup of GL(4m, R) preserving g, ω1, ω2 and ω3 is Sp(m). It is a compact,

connected, simply-connected, semisimple Lie group of dimension 2m2+m, a subgroup

of SO(4m). Since any of g, ωj and Jj can be written in terms of the other two, Sp(m)
also preserves J1, J2 and J3.

We can write Sp(m) as a group of m × m matrices over H by

Sp(m) ∼=
{
A ∈ Mm(H) : AĀt = I

}
. (10.2)

To understand the action of Sp(m) on H
m we think of H

m as row matrices over H,

and then A ∈ Sp(m) acts by (q1 q2 · · · qm) �→ (q1 q2 · · · qm)Āt. The point here is
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that J1, J2, J3 are defined by left multiplication by i2, i2, i3, so to commute with this A
must act on the right; but as by convention mappings act on the left we right-multiply

by Āt, to preserve the order of multiplication.

We can also identify Hm with C2m. Define complex coordinates (z1, . . . , z2m) on

R
4m by z2j−1 =xj

0+ixj
1 and z2j =xj

2+ixj
3 for j=1, . . . , m. Then g, ω1, ω2, ω3 satisfy

g =
∑2m

j=1 |dzj |2, ω1 = i
2

∑2m
j=1 dzj ∧ dz̄j and ω2 + iω3 =

∑m
j=1 dz2j−1 ∧ dz2j.

That is, g and ω1 are the standard Hermitian metric and Hermitian form on C2m, and

the (2,0)-form ω2 + iω3 is a complex symplectic form on C
2m.

Observe that 1
m! (ω2 + iω3)m = dz1 ∧ · · · ∧ dz2m, which is the usual holomor-

phic volume form θ on C
2m. As Sp(m) preserves ω2 and ω3 it preserves θ. So Sp(m)

preserves the metric g, Hermitian form ω1 and complex volume form θ on C2m. From

§7.1, this means that Sp(m) is a subgroup of SU(2m), the subgroup fixing the complex

symplectic form ω2 + iω3.

Now dimSp(m) = 2m2 + m and dimSU(2m) = 4m2 − 1. Thus, for all m > 1
we have dimSp(m) < dimSU(2m), and Sp(m) is a proper subgroup of SU(2m).
However, when m = 1 we have dimSp(1) = dim SU(2) = 3, and in fact SU(2) =
Sp(1), so the holonomy groups SU(2) and Sp(1) are the same.

10.1.2 The holonomy groups Sp(m) and hyperkähler structures
Let (X, g) be a Riemannian 4m-manifold with Hol(g) ⊆ Sp(m). By Proposition 2.5.2,

each Sp(m)-invariant tensor on R
4m corresponds to a tensor on X constant under the

Levi-Civita connection ∇ of g. So from above there exist almost complex structures

J1, J2, J3 and 2-forms ω1, ω2, ω3 on X , each constant under ∇, and isomorphic to the

standard models on R
4m at each point of X .

As ∇Jj = 0, each Jj is an integrable complex structure, and g is Kähler with

respect to Jj , with Kähler form ωj . Similarly, if a1, a2, a3 ∈ R with a2
1 + a2

2 + a2
3 = 1

then a1J1 + a2J2 + a3J3 is a complex structure on X , and g is Kähler with respect

to it, with Kähler form a1ω1 + a2ω2 + a3ω3. Therefore g is Kähler in lots of different

ways, with respect to a whole 2-sphere of complex structures. Because of this, we call

g hyperkähler.

Definition 10.1.1 Let X be a 4m-manifold. An almost hyperkähler structure on X is

a quadruple (J1, J2, J3, g), where Jj are almost complex structures on X with J1J2 =
J3, and g is a Riemannian metric on X which is Hermitian with respect to J1, J2 and J3.

We call (J1, J2, J3, g) a hyperkähler structure on X if in addition ∇Jj = 0 for

j = 1, 2, 3, where ∇ is the Levi-Civita connection of g. Then (X, J1, J2, J3, g) is a hy-

perkähler manifold, and g a hyperkähler metric. Each Jj is integrable, and g is Kähler

with respect to Jj . We refer to the Kähler forms ω1, ω2, ω3 of J1, J2, J3 as the hy-

perkähler 2-forms of X .

An almost hyperkähler structure is equivalent to an Sp(m)-structure, and a hy-

perkähler structure to a torsion-free Sp(m)-structure. The next proposition comes from

[296, Lem. 8.4], except the last part, which follows from Proposition 7.1.1 using the

inclusion Sp(m) ⊆ SU(2m).
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Proposition 10.1.2 Suppose X is a 4m-manifold and (J1, J2, J3, g) an almost hy-

perkähler structure on X , and let ω1, ω2, ω3 be the Hermitian forms of J1, J2 and J3.

Then the following conditions are equivalent:

(i) (J1, J2, J3, g) is a hyperkähler structure,

(ii) dω1 = dω2 = dω3 = 0,

(iii) ∇ω1 = ∇ω2 = ∇ω3 = 0, and

(iv) Hol(g) ⊆ Sp(m), and J1, J2, J3 are the induced complex structures.

All hyperkähler metrics are Ricci-flat.

10.1.3 Twistor spaces of hyperkähler manifolds
Suppose (X, J1, J2, J3, g) is a hyperkähler 4m-manifold. Set Z = CP

1 × X , where

CP
1 ∼= S2 = {a1J1 + a2J2 + a3J3 : aj ∈ R, a2

1 + a2
2 + a2

3 = 1}
is the natural 2-sphere of complex structures on X . Then CP

1 has a natural complex

structure J0, say. Each point z ∈ Z is of the form (J, x) for J ∈ CP1 and x ∈ X , and

the tangent space TzZ is TzZ = TJCP
1 ⊕ TxX .

Now J0 is a complex structure on TJCP1, and J is a complex structure on TxX .

Thus JZ = J0 ⊕ J is a complex structure on TzZ = TJCP
1 ⊕ TxX . This defines an

almost complex structure JZ on Z , which turns out to be integrable. Hence (Z, JZ) is a

complex (2m+1)-manifold, called the twistor space of X .

Let p : Z → CP
1 and π : Z → X be the natural projections. Then p is holomorphic,

and the hypersurface p−1(J) is isomorphic to X with complex structure J , for each

J ∈ CP1. Define σ : Z → Z by σ : (J, x) �→ (−J, x). Then σ is a free antiholomorphic

involution of Z . For each x ∈ X , the fibre Σx = π−1(x) of π is a holomorphic curve

in Z isomorphic to CP1, with normal bundle 2mO(1), which is preserved by σ.

There is one other piece of holomorphic data on Z given by the hyperkähler struc-

ture on X . Let D be the kernel of dp : TZ → TCP
1. Then D is a vector subbundle

of TZ , which is holomorphic as p is holomorphic; D is the bundle of tangent spaces to

the fibres of p. Then one can construct a nondegenerate holomorphic section ω of the

holomorphic vector bundle p∗(O(2)) ⊗ Λ2D∗ over Z .

Effectively this amounts to a choice of complex symplectic form on each of the

fibres p−1(J) ∼= (X, J) of p. For instance, the complex 2-form ω2 + iω3 on X is

holomorphic with respect to J1, and on p−1(J1) we take ω to be ω2 + iω3, multiplied

by some fixed element in the fibre of O(2) over J1 in CP
1. We summarize these ideas

in the following theorem, taken from [164, §3(F)].

Theorem 10.1.3 Let (X, J1, J2, J3, g) be a hyperkähler 4m-manifold. Then the twistor

space (Z, JZ) of X is a complex (2m+1)-manifold diffeomorphic to CP
1 × X . Let

p : Z → CP
1 and π : Z → X be the projections. Then p is holomorphic, and there

exists a holomorphic section ω of p∗(O(2)) ⊗ Λ2D∗ which is symplectic on the fibres

of the kernel D of dp : TZ → TCP
1. There is also a natural, free antiholomorphic

involution σ : Z → Z satisfying σ∗(ω) = ω, π ◦ σ = π and p ◦ σ = σ′ ◦ p, where

σ′ : CP1 → CP1 is the antipodal map.

It turns out that the holomorphic data Z, p, ω and σ is sufficient to reconstruct

(X, J1, J2, J3, g). We express this in our next result, deduced from [164, Th. 3.3].
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Theorem 10.1.4 Suppose (Z, JZ) is a complex (2m+1)-manifold equipped with

(a) a holomorphic projection p : Z → CP1,

(b) a holomorphic section ω of p∗(O(2)) ⊗ Λ2D∗ which is symplectic on the fibres

of D, where D is the kernel of dp : TZ → TCP1, and

(c) a free antiholomorphic involution σ : Z → Z satisfying σ∗(ω) = ω and p ◦ σ =
σ′◦ p, where σ′ : CP1 → CP1 is the antipodal map.

Define X ′ to be the set of holomorphic curves C in Z isomorphic to CP
1, with normal

bundle 2mO(1) and σ(C) = C. Then X ′ is a hypercomplex 4m-manifold, equipped

with a natural pseudo-hyperkähler metric g. If g is positive definite, then X ′ is hy-

perkähler. Let Z ′ be the twistor space of X ′. Then there is a natural, locally biholo-

morphic map ι : Z ′ → Z , which identifies p, ω and σ with their analogues on Z ′.

A pseudo-hyperkähler metric is a pseudo-Riemannian metric g of type (4k, 4m −
4k) with Hol(g) ⊆ Sp(k, m−k). It is Riemannian if k = m. One moral of this theorem

is that hyperkähler manifolds can be written solely in terms of holomorphic data, and

so they can be studied and explicit examples found using complex algebraic geometry.

10.2 Hyperkähler ALE spaces

The ALE spaces are a special class of noncompact hyperkähler 4-manifolds.

Definition 10.2.1 Let G be a finite subgroup of Sp(1), and let (Ĵ1, Ĵ2, Ĵ3, ĝ) be the

Euclidean hyperkähler structure and r : H /G → [0,∞) the radius function on H /G.

We say that a hyperkähler 4-manifold (X, J1, J2, J3, g) is asymptotically locally Eu-

clidean, or ALE, and asymptotic to H /G, if there exists a compact subset S ⊂ X and

a map π : X \ S → H /G that is a diffeomorphism between X \ S and {x ∈ H /G :
r(x) > R} for some R > 0, such that

∇̂k
(
π∗(g) − ĝ

)
= O(r−4−k) and ∇̂k

(
π∗(Jj) − Ĵj

)
= O(r−4−k) (10.3)

as r → ∞, for j = 1, 2, 3 and k � 0, where ∇̂ is the Levi-Civita connection of ĝ.

Hyperkähler ALE spaces are called gravitational instantons by physicists. What

this definition means is that a hyperkähler ALE space is a noncompact hyperkähler 4-

manifold X with one end which at infinity resembles H /G, and the hyperkähler struc-

ture on X and its derivatives are required to approximate the Euclidean hyperkähler

structure on H /G with a prescribed rate of decay.

One reason hyperkähler ALE spaces are interesting is that they give a local model

for how to desingularize hyperkähler 4-orbifolds to give hyperkähler 4-manifolds, as we

will see when we discuss the Kummer construction of the K3 surface in §10.4. They

are also the simplest examples of ALE manifolds with holonomy SU(m).
The first examples of hyperkähler ALE spaces, asymptotic to H /{±1}, were written

down by Eguchi and Hanson [100] and are called Eguchi–Hanson spaces.

Example 10.2.2 Consider C
2 with complex coordinates (z1, z2), acted upon by the

involution −1 : (z1, z2) �→ (−z1,−z2). Let (X, π) be the blow-up of C
2/{±1} at
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0. Then X is a crepant resolution of C2/{±1}. It is biholomorphic to T ∗CP1, with

π1(X) = {1} and H2(X, R) = R. Define f : X \ π−1(0) → R by

f =
√

r4 + 1 + 2 log r − log
(√

r4 + 1 + 1
)
, (10.4)

where r =
(
|z1|2 + |z2|2

)1/2
is the radius function on X .

Define a 2-form ω1 on X \ π−1(0) by ω1 = i∂∂̄f . Then ω1 extends smoothly

and uniquely to X . Furthermore, ω1 is a closed, real, positive (1,1)-form, and is thus

the Kähler form of a Kähler metric g on X . This is the Eguchi–Hanson metric on X ,

which has holonomy SU(2). It extends to a hyperkähler structure (J1, J2, J3, g) on X ,

where J1 is the natural complex structure on X , and the Kähler forms ω2, ω3 of J2, J3

satisfy ω2 + iω3 = π∗(dz1 ∧ dz2).
For large r we have f = r2 + O(r−2), so that ω1 = i∂∂̄(r2) + O(r−4). But

i∂∂̄(r2) is the Kähler form of the Euclidean metric ĝ on C
2/{±1}, so that g = ĝ +

O(r−4) for large r, as in the first equation of (10.3). In the same way we can show that

(X, J1, J2, J3, g) is a hyperkähler ALE space asymptotic to H /{±1}.

There is a 3-dimensional family of hyperkähler ALE spaces (X ′, J ′
1, J

′
2, J

′
3, g

′) as-

ymptotic to H /{±1}, which are called Eguchi–Hanson spaces, and are all isomorphic

to the example (X, J1, J2, J3, g) above under homotheties and rotations of the 2-sphere

S2 of complex structures. That is, if (X ′, J ′
1, J

′
2, J

′
3, g

′) is any hyperkähler ALE space

asymptotic to H /{±1} then X ′ is diffeomorphic to X , and we can choose a diffeomor-

phism φ : X → X ′ such that φ∗(g′) = t2g for some t > 0, and φ∗(J ′
j) =

∑3
k=1 ajkJk

for some 3 × 3 matrix (ajk) in SO(3).

The Eguchi–Hanson spaces were soon generalized by Gibbons and Hawking [124],

who gave explicit examples of hyperkähler ALE spaces asymptotic to H /Zk for all

k � 2. Hitchin [160] constructed the same spaces using twistor methods.

Eventually, a complete construction and classification of all hyperkähler ALE spaces

was achieved by Kronheimer [226, 227]. The construction makes use of the McKay

correspondence of §7.3.1, which links the Kleinian singularities C
2/G, their crepant

resolutions, and the Dynkin diagrams of type Ar (r � 1), Dr (r � 4), E6, E7 and E8.

Here is a statement of Kronheimer’s results, following from [226, 227].

Theorem 10.2.3 Let G be a nontrivial finite subgroup of SU(2) with Dynkin diagram

Γ, and let hR be the real vector space with basis the set of nontrivial irreducible represen-

tations of G. Let ∆ be the set of roots and W the Weyl group of Γ. Then Aut(Γ) � W
acts naturally on hR, and ∆ is a finite subset of h∗

R
preserved by Aut(Γ) � W . Define

U ⊂ hR ⊗ R
3 by

U =
{
(α1, α2, α3) ∈ hR ⊗ R3 : for each δ ∈ ∆,

δ(α1), δ(α2), δ(α3) are not all zero
}
.

(10.5)

There is a continuous family of noncompact hyperkähler 4-manifolds and 4-orbifolds

Xα parametrized by α = (α1, α2, α3) in hR⊗R
3, which can be written down explicitly

using the hyperkähler quotient construction, satisfying the following conditions:

(a) If α ∈ U then Xα is a hyperkähler ALE space asymptotic to H /G, diffeomorphic

to the crepant resolution of C
2/G, with a natural isomorphism H2(Xα, R) ∼= hR.
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(b) If α /∈ U then Xα is a singular orbifold asymptotic to H /G, with X0
∼= H /G.

(c) Let α ∈ U . Then the isomorphism H2(Xα, R) ∼= hR identifies [ωj ] ∈ H2(Xα, R)
and αj ∈ hR for j = 1, 2, 3.

(d) Let α, β ∈ hR ⊗ R
3. Then Xα and Xβ are isomorphic as hyperkähler manifolds

if and only if α = (γ, w) · β for some (γ, w) ∈ Aut(Γ) � W .

(e) Suppose X ′ is a hyperkähler ALE space asymptotic to H /G. Then there exists

α ∈ U such that X ′ ∼= Xα.

Here the hyperkähler quotient is a method of producing hyperkähler manifolds due

to Hitchin et al. [164, §3], described in §10.6.4. Given a hyperkähler 4m-manifold

(X, J1, J2, J3, g) and a suitable k-dimensional Lie group G of automorphisms of it, the

hyperkähler quotient of X by G is a new hyperkähler manifold of dimension 4(m− k).
Kronheimer’s proof of this theorem comes in two parts. First, in [226], for each

finite group G ⊂ SU(2) he uses the Dynkin diagram Γ of G to write down an explicit

hyperkähler quotient of H
n by a product of unitary groups U(k), and shows that for

suitable values of the moment map, this quotient is a hyperkähler ALE space asymptotic

to H /G. Then in [227] he shows that every hyperkähler ALE space X asymptotic to

H /G arises from this construction. The proof uses the twistor space of X , and facts

about the deformations of C2/G taken from Slodowy [315].

Here is the reason for the condition defining U in (10.5). Each element δ ∈ ∆
corresponds to a 2-sphereS2 in X , with self-intersection−2. It turns out that the volume

of the corresponding S2 in Xα is
(∑3

j=1 δ(αj)2
)1/2

. Thus if δ(αj) = 0 for j = 1, 2, 3
then this S2 collapses to a point, and Xα becomes singular.

We shall also explain the rôle of the group Aut(Γ) � W in part (d). Here W is the

Weyl group, and Aut(Γ) the automorphism group of the graph Γ, given by

Aut(Γ) =

⎧⎪⎨⎪⎩
{1} if Γ = A1, E7 or E8,

Z2 if Γ = Ak (k � 2), Dk (k � 5) or E6,

S3 if Γ = D4.

There is a natural, surjective group homomorphism ρ : Aut(H /G) → Aut(Γ), such

that Ker ρ is the identity component of Aut(H /G). Hence Aut(Γ) is the group of

isotopy classes of automorphisms of H /G.

Let X be the crepant resolution of C
2/G, regarded as a real 4-manifold. Isotopy

(continuous deformation) is an equivalence relation on the diffeomorphism group of X .

It turns out that Aut(Γ)�W acts on X as a group of isotopy classes of diffeomorphisms.

For each (γ, w) ∈ Aut(Γ) � W there is an isotopy class of diffeomorphisms Φ : X →
X , such that Φ∗ : H2(X, C) → H2(X, C) coincides with (γ, w) : hC → hC under the

isomorphism H2(X, C) ∼= hC.

If γ = 1, so that (γ, w) ∈ W , then we can choose Φ to be the identity outside a

compact subset in X . More generally, we can choose Φ to be asymptotic to any τ ∈
Aut(H /G) with ρ(τ) = γ. Thus Aut(Γ) � W is a kind of symmetry group of the

topology of X .
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10.3 K3 surfaces

A K3 surface is defined to be a compact, complex surface (X, J) with h1,0(X) = 0 and

trivial canonical bundle. K3 surfaces occupy a special place in Kodaira’s classification

of complex surfaces. They are also important in Riemannian holonomy, as they are the

only compact 4-manifolds carrying metrics with holonomy SU(2) = Sp(1).
Thus K3 surfaces are the lowest-dimensional examples of both Calabi–Yau man-

ifolds (with holonomy SU(m)), and compact hyperkähler manifolds (with holonomy

Sp(m)). But because their behaviour is more typical of the hyperkähler than the Calabi–

Yau case, we cover them here and not in Chapter 7. We begin with some examples, and

then discuss K3 surfaces first as complex surfaces, and then as hyperkähler 4-manifolds.

10.3.1 Examples of K3 surfaces
Example 10.3.1 Define S to be the Fermat quartic

S =
{
[z0, . . . , z3] ∈ CP

3 : z4
0 + z4

1 + z4
2 + z4

3 = 0
}
.

The adjunction formula [132, p. 147] shows that KS = (KCP3 ⊗ LS)|S , where LS is

the line bundle over CP3 associated to the divisor S. But KCP3 = O(−4) and LS =
O(4) as S is a quartic. So KCP3 ⊗ LS = O(0), and the canonical bundle KS of S is

trivial. Theorem 5.10.4 shows that Hk(S, C) ∼= Hk(CP
3, C) and πk(S) ∼= πk(CP

3)
for k = 0, 1, so S is connected and simply-connected. Thus h1,0(S) = 0 and KS is

trivial, so that S is a K3 surface, by definition.

We shall work out the Hodge and Betti numbers hp,q, bk of S. The Riemann–Roch

formula shows that χ(S)=24, and as b0 =1 and b1 =0 we have b2 =22. Also h2,0 =1
as KS is trivial, so h0,2 = 1 and h1,1 = 20. But the signature τ(S) = b2

+ − b2− satisfies

τ(S)=
∑2

p,q=0(−1)php,q =−16. Hence b2
+ =3 and b2−=19.

More generally, using §7.6 we find that the following are all K3 surfaces:

• Any nonsingular quartic in CP
3.

• A complete intersection of a cubic and a quadric in CP
4.

• A complete intersection of 3 quadrics in CP
5.

But these are all projective varieties. Here are some non-algebraic K3 surfaces.

Example 10.3.2 Let Λ be a lattice in C
2, so that Λ ∼= Z

4. Then C
2/Λ is a complex

4-torus T 4. Define a map σ : T 4 → T 4 by σ : (z1, z2) + Λ �→ (−z1,−z2) + Λ. Then

σ fixes the 16 points {
(z1, z2) + Λ : (z1, z2) ∈ 1

2Λ
}
.

Thus T 4/〈σ〉 is a complex orbifold, with 16 singular points modelled on C
2/{±1}.

Let S be the blow-up of T 4/〈σ〉 at the 16 singular points. Then S is a crepant reso-

lution of T 4/〈σ〉, and is a K3 surface. We call this the Kummer construction, and S a

Kummer surface. For a generic choice of lattice Λ, the torus T 4 is not an algebraic sur-

face, and neither is the Kummer surface S. Thus there exist non-algebraic K3 surfaces.

Now T 4/〈σ〉 is simply-connected, and Hk(T 4/〈σ〉, C) is the σ-invariant part of

Hk(T 4, C). Thus we find that b2±(T 4/〈σ〉) = 3. The blow-up replaces each singular

point with a copy of CP
1, with self-intersection −2. This leaves π1 and b2

+ unchanged,
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and adds one to b2
− for each of the 16 points. Hence S is simply-connected and has

b2
+ = 3 and b2− = 19, as in Example 10.3.1.

We shall return to the Kummer construction in Example 10.3.14.

10.3.2 K3 surfaces as complex surfaces
The theory of complex surfaces (including non-algebraic surfaces) is an old and very

well understood branch of complex algebraic geometry. We now discuss what is known

about K3 surfaces from this point of view. We begin with a result on the topology of

K3 surfaces.

Theorem 10.3.3 Let (X, J) be a K3 surface. Then X is simply-connected, with Betti

numbers b2 = 22, b2
+ = 3, and b2

− = 19. Also X is Kähler, and has Hodge numbers

h2,0 = h0,2 = 1 and h1,1 = 20. All K3 surfaces are diffeomorphic.

Proof Kodaira [216, Th. 13] showed that every K3 surface is a deformation of a non-

singular quartic surface in CP3. Thus all K3 surfaces are diffeomorphic to the surface

S of Example 10.3.1. Hence π1(X) = {1}, b2 = 22, b2
+ = 3, and b2− = 19, from

above. Todorov [328, Th. 2] and Siu [314] prove that every K3 surface is Kähler. (This

is not obvious.) As KX is trivial we have h2,0 = 1, so h0,2 = 1 as X is Kähler, and this

leaves h1,1 = 20 as b2 = 22. �

Work on K3 surfaces has focussed on two main areas: firstly, the study of algebraic

K3 surfaces, and secondly, the description of the moduli space of all K3 surfaces,

including the non-algebraic ones. We shall explain the principal results in this second

area. Some good general references on the following material are Beauville et al. [26],

Barth et al. [19, Ch. VIII] and Besse [30, p. 365–368].

Here are some important tools for studying the moduli space of K3 surfaces.

Definition 10.3.4 Let Λ be a lattice isomorphic to Z
22, with an even, unimodular

quadratic form qΛ : Λ → Z of signature (3, 19). All such lattices are isomorphic.

A marked K3 surface (X, J, φ) is a K3 surface (X, J) with an isomorphism φ :
H2(X, Z) → Λ identifying the intersection form qX on H2(X, Z) with the quadratic

form qΛ on Λ. Let M K3 be the moduli space of marked K3 surfaces. It is locally

a complex manifold of dimension 20, by Theorem 7.7.1. However, note that globally,

M K3 is not Hausdorff.

Write ΛR = Λ ⊗Z R and ΛC = Λ ⊗Z C. Then φ induces isomorphisms

φR : H2(X, R) → ΛR and φC : H2(X, C) → ΛC. Now H2,0(X) ∼= C. We de-

fine the period of (X, J, φ) to be φC

(
H2,0(X)

)
, which we regard as a point in the

complex projective space P (ΛC). Define the period map P : M K3 → P (ΛC) by

P : (X, J, φ) �→ φC

(
H2,0(X)

)
. Then P is holomorphic.

Now M K3 is a (non-Hausdorff) complex manifold of dimension 20, and P (ΛC) ∼=
CP

21. Thus we expect P(M K3) to be a complex hypersurface in P (ΛC). To identify

which hypersurface, let (X, J, φ) be a marked K3 surface, and choose a holomorphic

volume form ωC on X . Then [ωC] ∈ H2,0(X). Define λX = φC([ωC]) ∈ ΛC. As ωC is a

(2,0)-form we have ωC ∧ ωC = 0. Thus
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qΛ(λX) = qX

(
[ωC]
)

=
∫

X

ωC ∧ ωC = 0.

Near each point in X we can choose holomorphic coordinates (z1, z2) such that

ωC = dz1 ∧ dz2. Then

(ωC + ω̄C)2 = (dz1 ∧ dz2 + dz̄1 ∧ dz̄2)2 = 2dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2,

which is a positive 4-form. Hence

qΛ(λX + λ̄X) = qX

(
[ωC] + [ω̄C]

)
=
∫

X

(ωC + ω̄C)2 > 0.

We have shown that qΛ(λX) = 0 and qΛ(λX + λ̄X) > 0. But the period of X is

〈λX〉 ∈ P (ΛC). Thus we have found two conditions on the period of (X, J, φ).

Definition 10.3.5 Define the period domain Q by

Q =
{
[λ] ∈ P (ΛC) : λ ∈ ΛC \ {0}, qΛ(λ) = 0, qΛ(λ + λ̄) > 0

}
. (10.6)

From above, if (X, J, φ) is a marked K3 surface then the period of X lies in Q, and the

period map P maps M K3 → Q.

We now state a series of important results on the period map. The first was published

by Kodaira [216, Th. 17], who attributes it to Weil and Andreotti.

Theorem 10.3.6. (Local Torelli Theorem) The period map P : M K3 → Q is a local

isomorphism of complex manifolds.

The second is due to Todorov [328, Th. 1] (see also Looijenga [246]).

Theorem 10.3.7 The period map P : M K3 → Q is surjective.

The third is due to Burns and Rapoport [65, Th. 1], and known as the Global Torelli

Theorem. We state it in a weak form.

Theorem 10.3.8. (Weak Torelli Theorem) Let (X, J, φ) and (X ′, J ′, φ′) be marked

K3 surfaces with the same period. Then (X, J) ∼= (X ′, J ′).

Notice what is not said here: the theorem does not claim that the isomorphism X ∼=
X ′ identifies φ and φ′, and this is not in general true. To explain why, we must discuss

the Kähler cones of K3 surfaces.

Definition 10.3.9 Let 〈 , 〉R be the indefinite inner product on ΛR induced by qΛ, and

〈 , 〉C the complex inner product on ΛC induced by qΛ. Let Π ∈ P (ΛC). Define the root

system ∆Π of Π by

∆Π =
{
λ ∈ Λ : qΛ(λ) = −2, 〈λ, p〉C = 0 for all p ∈ Π

}
.

Define the Kähler chambers of Π to be the connected components of{
ω ∈ ΛR : qΛ(ω) > 0, 〈ω, p〉C = 0 for all p ∈ Π, 〈ω, λ〉R �= 0 for all λ ∈ ∆Π

}
.
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It can be shown that the group G of automorphisms of Λ preserving qΛ and Π acts

transitively on the set of Kähler chambers of Π, so the Kähler chambers are really all

isomorphic. Now Looijenga [246] proves

Theorem 10.3.10 Let (X, J, φ) be a marked K3 surface with period Π and Kähler

cone KX . Then φR(KX) is one of the Kähler chambers of Π.

Motivated by this, we define the augmented period domain and map:

Definition 10.3.11 Define the augmented period domain Q̃ by

Q̃ =
{
(Π, C) : Π ∈ Q and C ⊂ ΛR is a Kähler chamber of Π

}
,

where Q is given in (10.6). Define the augmented period map P̃ : M K3 → Q̃ by

P̃ : (X, J, φ) �→
(
φC(H2,0(X)), φR(KX)

)
,

where KX is the Kähler cone of (X, J).

Observe that P̃
(
(X, J, φ)

)
lies in Q̃ by Theorem 10.3.7, so P̃ does map M K3 to Q̃.

Looijenga’s main result [246] may then be written:

Theorem 10.3.12 This map P̃ : M K3 → Q̃ is a 1-1 correspondence.

Thus we have a very precise description of the moduli space M K3 of marked K3
surfaces. Note that M K3 is not Hausdorff. However, the moduli space of unmarked K3
surfaces is a Hausdorff complex orbifold isomorphic to Q/ Aut(Λ).

10.3.3 K3 surfaces as hyperkähler 4-manifolds
We are primarily interested in K3 surfaces not as complex surfaces (X, J), but as

Riemannian 4-manifolds (X, g) with holonomy Sp(1), or as hyperkähler 4-manifolds

(X, J1, J2, J3, g). By combining the above results with Yau’s solution of the Calabi

Conjecture, we can deduce a great deal about metrics with holonomy Sp(1) and hy-

perkähler structures on the K3 4-manifold.

Theorem 10.3.13 Let (X, J) be a K3 surface. Then each Kähler class on X contains a

unique metric with holonomy SU(2). Conversely, any compact Riemannian 4-manifold

(X, g) with Hol(g) = SU(2) = Sp(1) admits a constant complex structure J such that

(X, J) is a K3 surface.

Proof As X is Kähler and c1(X) = 0 there is a unique Ricci-flat Kähler metric g
in every Kähler class on X by Theorem 7.1.2, and Hol0(g) ⊆ SU(2) by Proposition

7.1.1. From Berger’s Theorem, the only possibilities for Hol0(g) are SU(2) and {1}.

But X is compact and simply-connected, so Hol0(g) = Hol(g), and Hol0(g) = {1} is

not possible. Hence Hol(g) = SU(2).
Now let (X, g) be a compact Riemannian 4-manifold with Hol(g) = SU(2). As

SU(2) preserves the complex structure J and (2,0)-form dz1∧dz2 on C
2, there exists a

constant complex structure J and a constant (2,0)-form θ on X . Proposition 7.1.4 shows

that π1(X) is finite, so h1,0(X) = 0, and KX is trivial as θ is holomorphic. Thus (X, J)
is a K3 surface. �
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From §10.1, if (X, g) has Hol(g) = Sp(1) there are complex structures J1, J2, J3

on X such that (X, J1, J2, J3, g) is hyperkähler. In the context of the theorem, let

(X, J1, g) be a Kähler surface with Hol(g) = Sp(1), and Kähler form ω1. Choose a

constant (2,0)-form ωC on X , scaled so that ωC ∧ ω̄C = 2ω1 ∧ω1. Then ω2 = Re ωC and

ω3 = Im ωC are the Kähler forms of complex structures J2, J3 on X , and (J1, J2, J3, g)
is a hyperkähler structure.

Now this theorem tells us that holonomy SU(2) metrics exist on any K3 surface,

but it tells us nothing about what these metrics actually look like. No explicit formulae

are known for any holonomy SU(2) metric on a K3 surface, and it seems likely that no

such formulae exist; that is, that these metrics are transcendental objects that admit no

exact algebraic description.

However, there is one way of getting an approximate description of some of these

hyperkähler K3 metrics, using the Kummer construction of Example 10.3.2. This idea

was suggested by Page [275], and made rigorous by LeBrun and Singer [240] and Top-

iwala [330] using twistor theory, as an alternative proof of the existence of hyperkähler

structures on K3. We explain it in our next example.

Example 10.3.14 Let the complex torus T 4, involution σ : T 4 → T 4, and Kummer

surface S resolving T 4/〈σ〉 be as in Example 10.3.2. Then S is a K3 surface, and there

is a 20-dimensional family of Kähler metrics on S with holonomy SU(2), isomorphic

to the Kähler cone KS of S, by Theorem 10.3.13.

Now T 4 = C2/Λ, where Λ acts on C2 by translations. Choose a Hermitian metric

g0 on C
2. Then g0 is invariant under Λ and σ, and so pushes down to give a flat Kähler

orbifold metric g0 on T 4/〈σ〉. Let π : S → T 4/〈σ〉 be the blow-up map. Then π∗(g0)
is a singular Kähler metric on S, which is degenerate at the 16 CP1 in S introduced by

blowing up the 16 singular points of T 4/〈σ〉.
We can think of π∗(g0) as a point in the boundary KS \ KS of the family KS of

holonomy SU(2) metrics on S, as there exists a smooth family
{
gt : t ∈ (0, 1)

}
of

nonsingular holonomy SU(2) metrics on S such that gt → π∗(g0) as t → 0, in a

suitable sense. Thus π∗(g0) approximates gt for small t.
However, π∗(g0) is not a good description of gt near the 16 CP

1 in S where π∗(g0)
is singular. Instead, near each CP

1 we can approximate gt by an Eguchi–Hanson metric,

as in Example 10.2.2. Near each CP1 we can naturally identify S with the blow-up X
of C

2/{±1} at 0, and when t is small gt is close to one of the Eguchi–Hanson metrics

on X . Explicitly, we can choose gt to be close to the Eguchi–Hanson metric on X with

Kähler potential

ft =
√

r4 + t4 + 2t2 log r − t2 log
(√

r4 + t4 + t2
)
,

which is a natural 1-parameter generalization of the function f of (10.4). Thus we regard

the holonomy SU(2) metrics gt on S as being the result of gluing a flat metric on T 4/〈σ〉
together with 16 small Eguchi–Hanson spaces. The parameter t > 0 is a measure of the

diameter of the central S2 in each Eguchi–Hanson space, and the approximation is best

when t is small.

This example is the motivation for more complicated ‘Kummer constructions’ of

metrics with special holonomy in higher dimensions—in particular, those of Calabi–
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Yau 3-folds described in §7.5.1, and of compact manifolds with exceptional holonomy

in Chapter 11.

As we studied marked K3 surfaces (X, J, φ) above, so we can consider marked hy-

perkähler K3 surfaces (X, J1, J2, J3, g, φ). Here are the appropriate notions of moduli

space, period and period domain.

Definition 10.3.15 Let M hk
K3 be the moduli space of marked hyperkähler K3 surfaces.

Define the hyperkähler period map Phk : M hk
K3 → (ΛR)3 by

Phk : (X, J1, J2, J3, g, φ) �→
(
φR([ω1]), φR([ω2]), φR([ω3])

)
,

where ω1, ω2, ω3 are the Kähler forms of J1, J2, J3, and φR maps H2(X, R) → ΛR. Let

〈 , 〉R be as in Definition 10.3.5. Define the hyperkähler period domain Qhk by

Qhk =
{
(α1, α2, α3) : αi ∈ ΛR, 〈αi, αj〉R = a δij for some a > 0, and for each

λ ∈ Λ with qΛ(λ) = −2, there exists i = 1, 2 or 3 with 〈αi, λ〉R �= 0
}
.

The reason for requiring 〈αi, αj〉R = a δij here is that the 2-forms ωi satisfy ωi ∧
ωj = 2δijdVg , where dVg is the volume form on X . Hence

〈αi, αj〉R = [ωi] ∪ [ωj] =
∫

X

ωi ∧ ωj = 2δij

∫
X

dVg = 2 vol(X)δij ,

so that 〈αi, αj〉R = a δij with a = 2 vol(X) > 0. As a marked K3 surface, (X, J1, φ)
has period [α2 + iα3] ∈ P (ΛC). So by Theorem 10.3.10, a necessary condition for

(α1, α2, α3) to be a hyperkähler period is that α1 should lie in one of the Kähler cham-

bers of [α2 + iα3]. By Definition 10.3.9, this implies that 〈αi, λ〉R �= 0 for some

i = 1, 2, 3 whenever λ ∈ Λ with qΛ(λ) = −2. Thus we see that the period of

(X, J1, J2, J3, g, φ) lies in Qhk, and Phk maps M hk
K3 → Qhk. From Theorems 10.3.10,

10.3.12 and 10.3.13 one can prove:

Theorem 10.3.16 This map Phk : M hk
K3 → Qhk is a diffeomorphism.

This description of the hyperkähler moduli space M hk
K3 is simpler than that of the

complex structure moduli space M K3 in §10.3.2, and M hk
K3 is Hausdorff although

M K3 is not. One can regard M hk
K3 as more fundamental, and M K3 as derived from it.

Observe also that there is a strong similarity between Theorem 10.3.16, describ-

ing the moduli space of hyperkähler K3 surfaces, and Theorem 10.2.3, describing the

moduli space of hyperkähler ALE spaces asymptotic to H /G.

Here is a geometric interpretation of the condition that 〈αi, λ〉R �= 0 for some i =
1, 2, 3 whenever λ ∈ Λ with qΛ(λ) = −2. Each such λ corresponds to a unique minimal

2-sphere S2 in X with self-intersection −2. The area A of this S2 is given by A2 =∑3
j=1〈αi, λ〉2R. If 〈αi, λ〉R = 0 for i = 1, 2, 3 then A = 0, which is impossible.

That is, the periods for which 〈αi, λ〉R = 0 for i = 1, 2, 3 correspond to singular

hyperkähler structures on X in which an S2 collapses down to a point, giving a hy-

perkähler orbifold. We can think of this process as blowing down one or more CP
1’s in

a complex surface X to get a singular complex surface X ′.
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10.4 Higher-dimensional compact hyperkähler manifolds

We now move on to discuss hyperkähler manifolds of dimension 4m, for m � 2. There

are many similarities with K3 surfaces. As in §10.3, we find it convenient to first explain

the algebraic geometry of the underlying complex manifolds, which are called complex

symplectic manifolds, and then translate this into results on hyperkähler manifolds. We

finish with some examples. Our treatment is based on Huybrechts’ papers [168–170],

though many of the important ideas are originally due to Beauville [25, §6–§9]. An

excellent reference on this area is Huybrechts [138, Part III].

10.4.1 Complex symplectic manifolds
Complex symplectic manifolds are higher-dimensional analogues of K3 surfaces.

Definition 10.4.1 A complex symplectic manifold (X, J, ωC) is a compact complex

2m-manifold (X, J) admitting Kähler metrics, with a closed (2,0)-form ωC, such that

ωm
C

is a nonvanishing (2m, 0)-form. We call (X, J, ωC) irreducible if X is simply-

connected and cannot be written as a product X1 × X2 of lower-dimensional complex

manifolds.

Note the assumption that (X, J) admits Kähler metrics here, which applies through-

out the section. In contrast to the K3 case, there do exist non-Kähler complex symplec-

tic 2m-manifolds for m � 2, and simply-connected examples are given by Guan [143].

But they are not of interest to us, as they carry no metrics with holonomy Sp(m).
We shall discuss deformations of complex symplectic manifolds. If (X, J, ωC) is

an irreducible complex symplectic manifold, then the canonical bundle of X is triv-

ial, so Theorem 7.7.1 shows that the local moduli space M of deformations of (X, J)
is a complex manifold of dimension h2m−1,1(X). But we shall prove in (10.8) that

h2m−1,1(X) = h1,1(X), so dimM = h1,1(X). It can also be shown [25, §8], [168,

§2.4] that small deformations of (X, J) are also irreducible complex symplectic mani-

folds. Thus we have:

Theorem 10.4.2 Let (X, J, ωC) be an irreducible complex symplectic manifold. Then

the moduli space of deformations of (X, J) is locally a complex manifold of dimension

h1,1(X). Every small deformation (X ′, J ′) of (X, J) has a (2, 0)-form ω′
C

such that

(X ′, J ′, ω′
C
) is an irreducible complex symplectic manifold.

There is a natural quadratic form on the second cohomology of a complex symplec-

tic manifold, due to Beauville [25, Th. 5]. The final part is from Fujiki [115, Th. 4.7].

Theorem 10.4.3 Let (X, J, ωC) be an irreducible complex symplectic 2m-fold, scaled

so that
∫

X ωm
C

∧ ω̄m
C

= 1. Define a quadratic form f on H2(X, R) by

f
(
[α]
)

= m
2

∫
X

ωm−1
C

∧ω̄m−1
C

∧ α2

+ (1 − m)
(∫

X ωm−1
C

∧ ω̄m
C

∧ α
)
·
(∫

X ωm
C

∧ ω̄m−1
C

∧ α
)
.

Then there exists a unique constant c > 0 such that qX = c · f is a primitive integral

quadratic form on H2(X, Z), of index
(
3, b2(X) − 3

)
. Furthermore, there is a rational

number CX > 0 such that
∫

X α2m = CXqX([α])m for all closed 2-forms α on X .
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The form qX is called Beauville’s form, and the constant CX Fujiki’s constant.

When m = 1, so that X is a K3 surface, qX is just the intersection form on H2(X, Z).
As qX is integer-valued on H2(X, Z) it is invariant under continuous deformations of

the complex symplectic structure on X , even though the definition appears to depend

on the cohomology class [ωC] ∈ H2(X, C) for m > 1.

Definition 10.4.4 Let Λ be a lattice, so that Λ ∼= Z
d, and let qΛ be a primitive

integral quadratic form on Λ of index (3, d − 3). Let (X, J, ωC) be an irreducible

complex symplectic manifold with b2(X) = d. A marking of X is an isomorphism

φ : H2(X, Z) → Λ identifying the quadratic forms qX on H2(X, Z) and qΛ on Λ. We

call (X, J, ωC, φ) a marked irreducible complex symplectic manifold.

We would like to understand the moduli space of all marked irreducible complex

symplectic manifolds (X, J, ωC, φ). In fact it is more convenient to study the underlying

marked complex manifolds (X, J, φ).

Definition 10.4.5 Let (X, J, ωC, φ) be a marked irreducible complex symplectic mani-

fold. Define M X to be the moduli space of marked complex deformations (X ′, J ′, φ′)
of (X, J, φ). That is, (X ′, J ′) is a deformation of (X, J) admitting a (2,0)-form ω′

C
mak-

ing (X ′, J ′, ω′
C
) into an irreducible complex symplectic manifold, and φ′ is a marking of

(X ′, J ′, ω′
C
). Then M X is locally a complex manifold of dimension h1,1(X) = d − 2,

by Theorem 10.4.2. However, globally the topology of M X may not be Hausdorff; that

is, M X is a non-Hausdorff complex manifold.

An important tool in studying the moduli space M X is the period map.

Definition 10.4.6 Let (X, J, ωC, φ) be a marked irreducible complex symplectic mani-

fold, with lattice Λ. Write ΛR = Λ ⊗Z R and ΛC = Λ ⊗Z C. Then φ induces isomor-

phisms φR : H2(X, R) → ΛR and φC : H2(X, C) → ΛC. Now H2,0(X) ∼= C. We

define the period of (X, J, ωC, φ) to be φC

(
H2,0(X)

)
, which we regard as a point in the

complex projective space P (ΛC).
Observe that the period depends only on (X, J, φ), and not on ωC. Let M X be

as above, and define the period map P : M X → P (ΛC) by P : (X ′, J ′, φ′) �→
φ′

C

(
H2,0(X ′)

)
. It is easy to show that P is holomorphic. From the definition of qX

in Theorem 10.4.3, we find that qX(ωC) = 0, and qX(ωC + ω̄C) > 0. Therefore, if as in

(10.6) we define Q ⊂ P (ΛC) by

Q =
{
[λ] ∈ P (ΛC) : λ ∈ ΛC \ {0}, qΛ(λ) = 0, qΛ(λ + λ̄) > 0

}
, (10.7)

then P maps M X → Q. We call Q the period domain.

Analogues of Theorems 10.3.6 and 10.3.7 (the Local Torelli Theorem and the

Surjectivity Theorem for K3 surfaces) were proved by Beauville [25, Th. 5(b)] and

Huybrechts [168, Th. 8.1], and we give them in our next result.

Theorem 10.4.7 The period map P : M X → Q is a local isomorphism of complex

manifolds. Let M 0
X be a nonempty connected component of M X . Then P : M 0

X →
Q is surjective.
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No good analogue of the Global Torelli Theorem ([65, Th. 1], partially stated in

Theorem 10.3.8) is currently known. In fact Theorem 10.3.8 is false for complex sym-

plectic manifolds in complex dimension 4 and above, as Debarre has found examples

of complex symplectic manifolds with the same period, which are birational but not

biholomorphic. For more information see Huybrechts [138, §25.5]. Here is a result of

Huybrechts [170, §2] on birational complex symplectic manifolds.

Theorem 10.4.8 Suppose (X, J, ωC), (X ′, J ′, ω′
C
) are birational irreducible complex

symplectic manifolds. Then X, X ′ are deformation equivalent, so they are diffeomor-

phic and have the same Betti and Hodge numbers, and the Hodge structures and period

maps of X, X ′ coincide.

As for K3 surfaces in Theorem 10.3.10, Huybrechts [170, §3] and Boucksom [41]

identify the Kähler cone of an irreducible complex symplectic manifold.

Theorem 10.4.9 Let (X, J, ωC) be an irreducible complex symplectic manifold with

Beauville form qX and Kähler cone KX . Define CX to be the connected component of{
α ∈ H1,1(X, R) : qX(α) > 0

}
containing KX . Then KX is the set of α ∈ CX with∫

C α > 0 for all smooth rational curves C in X .

If X has no rational curves, which holds for generic X , this simplifies to KX =CX .

10.4.2 General theory of compact hyperkähler manifolds
Here are three topological results on compact manifolds with holonomy Sp(m).

Proposition 10.4.10 Let (X, g) be a compact 4m-manifold with Hol(g) = Sp(m).
Then X is simply-connected and has Â-genus Â(X) = m + 1.

Proof Theorem 3.6.5 shows that Â(X) = m+1, and Corollary 3.5.6 shows that π1(X)
is finite. Let (X̃, g̃) be the universal cover of (X, g), and d = |π1(X)| the degree of the

cover. Then X̃ is compact, as π1(X) is finite, and Hol(g̃) = Hol0(g) = Sp(m). Thus

Â(X̃) = m +1 as above. But Â(X̃) = d · Â(X) by properties of characteristic classes.

So m + 1 = d(m + 1), giving d = 1, and X is simply-connected. �

By analogy with Proposition 7.1.7 we have:

Proposition 10.4.11 Let (X, J, g) be a compact Kähler manifold of dimension 2m
with Hol(g)=Sp(m), and let hp,q be the Hodge numbers of X . Then

h2k,0 =1 for 0� k � m, h2k+1,0 =0 for all k, and hp,q = h2m−p,q. (10.8)

Proof From §10.1.1, Sp(m) is the subgroup of SU(2m) fixing a complex symplectic

form ω2+iω3 in Λ2,0C2m. Thus Sp(m) also fixes the powers (ω2+iω3)k in Λ2k,0C2m,

for k = 0, 1, . . . , m. Any form in Λp,0C
2m fixed by Sp(m) is proportional to some

(ω2 + iω3)k. Therefore by Proposition 7.1.5, if Hol(g) = Sp(m) then H2k,0(X) is C

if k = 0, . . . , m and H2k+1,0(X) = 0.

Suppose that 0 � p � m, as otherwise we may replace p by 2m − p. Define a

linear map φ : Λp,qC
2m → Λ2m−p,qC

2m by φ(α) = α ∧ (ω2 + iω3)m−p. Then φ is a
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vector space isomorphism, and as Sp(m) preserves ω2 + iω3, it is also an isomorphism

of Sp(m)-representations. Thus Theorem 3.5.3 shows that Hp,q(X) ∼= H2m−p,q(X),
and so hp,q = h2m−p,q . �

Combining the last part of the proposition with (5.10), we find that

hp,q =h2m−p,q =hp,2m−q =h2m−p,2m−q =hq,p =h2m−q,p =hq,2m−p =h2m−q,2m−p.

A great deal is known about the cohomology of compact hyperkähler manifolds, from

work of Beauville, Bogomolov, Fujiki, Guan, Looijenga and Lunts, Salamon, Verbitsky,

Wakakuwa and others; details and references can be found in Huybrechts [138, §24].

For example, the odd Betti numbers of a compact hyperkähler manifold are divisible

by 4, and for a compact hyperkähler 8-manifold we have 3 � b2 � 8 or b2 = 23, and

0 � 2b3 � (23 − b2)(b2 + 4), and b4 = 10b2 − b3 + 46, so there are only finitely

many possibilities for the Betti numbers in 8 dimensions. For results suggesting there

are only finitely many deformation types of compact hyperkähler manifolds in any given

dimension, see Huybrechts [138, §26.5].

Next we discuss the relation between compact manifolds with holonomy Sp(m) and

irreducible complex symplectic manifolds.

Theorem 10.4.12 Let (X, J, ωC) be an irreducible complex symplectic 2m-fold. Then

there is a unique metric with holonomy Sp(m) in each Kähler class on X . Conversely, if

(X, g) is a compact Riemannian 4m-manifold with holonomy Sp(m) then there exist

a constant complex structure J and (2, 0)-form ωC on X such that (X, J, ωC) is an

irreducible complex symplectic 2m-fold.

Proof Observe that ωm
C

is a nonvanishing holomorphic section of the canonical bundle

KX of X . Thus KX is trivial, and c1(X) = 0. So by Theorem 7.1.2, each Kähler class

κ contains a unique Ricci-flat Kähler metric g. Let ∇ be the Levi-Civita connection of

g. Then Proposition 7.1.5 shows that ∇ωC = 0, as ωC is a closed (2,0)-form.

Therefore ∇g = ∇J = ∇ωC = 0, and Hol(g) preserves a metric, complex struc-

ture and complex symplectic form on C
2m. This forces Hol(g) ⊆ Sp(m). But g is

irreducible, as X is irreducible, and from the classification of holonomy groups we see

that Hol(g) = Sp(m). Any holonomy Sp(m) metric is Ricci-flat, so g is the only metric

in κ with holonomy Sp(m), by Theorem 7.1.2.

Now let (X, g) be a compact Riemannian 4m-manifold with holonomy Sp(m).
Then from §10.1 there exist a constant complex structure J = J1 and (2,0)-form

ωC = ω2 + iω3 on X . Clearly (X, J, ωC) is a complex symplectic manifold. Also

π1(X) = {1} by Proposition 10.4.10, and X cannot be written as a product of lower-

dimensional complex manifolds, as this would force g to be reducible. Hence (X, J, ωC)
is irreducible. �

Now in §10.3.3 we applied results on the moduli of K3 surfaces to describe the

moduli space of hyperkähler structures on K3. In a similar way, we can apply Theorem

10.4.7 and other results in [168–170] to describe the moduli space of hyperkähler struc-

tures on X . But as we lack both a Global Torelli Theorem and a simple picture of the

Kähler cone, our results will not be as strong. Following Definition 10.3.15, we define:
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Definition 10.4.13 Let M hk
X be the moduli space of marked hyperkähler structures on

X . Define the hyperkähler period map Phk : M hk
X → (ΛR)3 by

Phk : (X, J1, J2, J3, g, φ) �→
(
φR([ω1]), φR([ω2]), φR([ω3])

)
,

where ω1, ω2, ω3 are the Kähler forms of J1, J2, J3, and φR maps H2(X, R) → ΛR. Let

〈 , 〉R be as in Definition 10.3.5. Define the hyperkähler period domain Qhk
X by

Qhk
X =

{
(α1, α2, α3) : αi ∈ ΛR, 〈αi, αj〉R = a δij for some a > 0

}
.

Here is a rough analogue of Theorem 10.3.16.

Theorem 10.4.14 Phk : M hk
X → Qhk

X is a local diffeomorphism, with image a dense

open set in Qhk
X .

It is not yet known whether Phk is injective, nor what its image is in Qhk
X .

10.4.3 Examples of compact hyperkähler manifolds
In comparison to Calabi–Yau manifolds, examples of compact hyperkähler manifolds

are difficult to find, and only a few are known in each dimension. The first examples

were two series of manifolds due to Beauville [25, §6–§7] and [24, §2], which generalize

an example of Fujiki [114] in real dimension 8. We now explain Beauville’s examples.

Let X be a compact complex surface. For m > 1, define Xm to be the product

X × X × · · · × X of m copies of X , and X(m) to be the mth symmetric product

of X , that is, X(m) = Xm/Sm, where Sm is the symmetric group acting on Xm by

permutations. Then X(m) is a complex orbifold, of dimension 2m.

Let X [m] be the Hilbert scheme of zero-dimensional subspaces (Z, OZ) of X of

length dimC OZ = m. Then X [m] is a compact, nonsingular complex 2m-manifold,

with a projection π : X [m] → X(m) which is a crepant resolution. By results of

Varouchas [332], X [m] is Kähler whenever X is Kähler.

Now suppose that X is a K3 surface or a complex torus T 4, so that X is complex

symplectic. Then Xm and X(m) both have complex symplectic forms. As X [m] is a

crepant resolution of X(m), it also has a complex symplectic form, and it admits Kähler

metrics from above, so X [m] is a complex symplectic manifold.

If X is a K3 surface then Beauville [25, Prop. 6] shows that X [m] is also irreducible,

with b2 = 23. Applying Theorems 10.4.12 and 10.4.14, we find:

Theorem 10.4.15 Let X be a K3 surface and m � 2. Then the Hilbert scheme X [m]

is an irreducible complex symplectic 2m-manifold, with b2(X [m]) = 23. There ex-

ists a 61-dimensional family of metrics g on X [m] with holonomy Sp(m), and a 64-

dimensional family of hyperkähler structures (J1, J2, J3, g).

These were the first known examples of compact Riemannian manifolds with holon-

omy Sp(m) for m � 2. If Y is a complex torus T 4 then Y [m] is complex symplectic, but

not irreducible. Instead, Y [m] has a finite cover isomorphic to Km−1(Y ) × Y , where

Km−1(Y ) is an irreducible complex symplectic (2m−2)-manifold. To define it ex-

plicitly, regard Y as an abelian Lie group, so there is a natural map Σ : Y (m) →
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Y given by summing the m points. Then Km−1(Y ) is the kernel of the composi-

tion Y [m] π−→Y (m) Σ−→Y .

Now K1(Y ) is a K3 surface, got from Y by the Kummer construction as in Example

10.3.2. But for m � 2, Beauville [25, Prop. 8] shows that Km(Y ) is an irreducible

complex symplectic manifold with b2 = 7. So as above we get:

Theorem 10.4.16 Let Y be a complex torus T 4 and m � 2. Then Km(Y ) is an

irreducible complex symplectic 2m-manifold, with b2(Km(Y )) = 7. There exists a

smooth 13-dimensional family of metrics g on Km(Y ) with holonomy Sp(m), and a

smooth 16-dimensional family of hyperkähler structures (J1, J2, J3, g).

The Betti and Hodge numbers of the X [m] and Km(Y ) are known by work of

Göttsche and Sorgel [130]. As compact real manifolds, X [m] and Km(Y ) are indepen-

dent of the choice of K3 surface X and complex torus Y . Thus Theorems 10.4.15 and

10.4.16 give only two distinct compact 4m-manifolds with holonomy Sp(m), for each

m � 2. Several other constructions of such manifolds are described in [168, §2], but

they are all deformation equivalent (and hence diffeomorphic) to X [m] or Km(Y ).
Two further examples of compact hyperkähler manifolds have been constructed by

O’Grady [271, 272]. The first [271] is an irreducible complex symplectic 10-manifold

M̃ constructed as a crepant resolution of a moduli space M of a certain kind of sheaf

on a K3 surface. Thus M̃ carries metrics with holonomy Sp(5), by Theorem 10.4.12.

O’Grady proved that b2(M̃ ) � 24, so that M̃ is not diffeomorphic to X [5] or K5(Y ).
The second [272] is an irreducible complex symplectic 6-manifold M̂ constructed

in a similar way from a moduli space of sheaves on an abelian surface, and admits

metrics with holonomy Sp(3). O’Grady proved that b2(M̂ ) = 8, so that M̂ is not

diffeomorphic to either X [3] or K3(Y ). Rapagnetta [283] studies this example further,

and shows that χ(M̂ ) = 1920. A related, conjectural approach to finding new examples

of compact hyperkähler manifolds is described by Verbitsky in [334].

10.5 Quaternionic Kähler manifolds

Next we consider the holonomy group Sp(m) Sp(1) in SO(4m). Some good references

are Salamon [294,297]. First we explain how Sp(m) Sp(1) acts on H
m. Regard Sp(m)

as a group of m × m matrices over the quaternions H as in (10.2), and H
m as row

matrices over H. Then (A, q) ∈ Sp(m) × Sp(1) acts on H
m by (q1 q2 · · · qm) �→

q(q1 q2 · · · qm)Āt, generalizing the Sp(m) action in §10.1.1. Write Im for the m × m
identity matrix. Then (−Im,−1) ∈ Sp(m) × Sp(1) acts trivially on Hm, so the action

pushes down to an action of Sp(m) Sp(1) =
(
Sp(m) × Sp(1)

)
/
{
±(Im, 1)

}
.

Note that as multiplication in H is not commutative, left multiplying (q1 · · · qm)
by q is not the same as right multiplying by qIm, so the Sp(1) action is not part of

the Sp(m) action. Since Sp(1) Sp(1) = SO(4), which is uninteresting as a holonomy

group, we restrict for the moment to m � 2.

Definition 10.5.1 A quaternionic Kähler manifold of dimension 4m � 8 is a Rie-

mannian 4m-manifold (X, g) with holonomy group Hol(g) ⊆ Sp(m) Sp(1).
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Quaternionic Kähler manifolds are not in general Kähler, as Sp(m) Sp(1) is not a

subgroup of U(2m). From [296, Cor. 9.4] we have:

Proposition 10.5.2 Any quaternionic Kähler manifold (X, g) is Einstein, and if g is

Ricci-flat then Hol0(g) ⊆ Sp(m).

Thus a quaternionic Kähler manifold (X, g) has constant scalar curvature s. The

cases s > 0 and s < 0 are called positive and negative quaternionic Kähler manifolds

respectively. We do not consider s = 0, as then g is (locally) hyperkähler. Define 2-

forms ω1, ω2, ω3 on H
m = R

4m as in (10.1). Then Sp(m) Sp(1) preserves the 4-form

Ω0 = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3

on R4m. So by Proposition 2.5.2, every quaternionic Kähler manifold (X, g) has a con-

stant 4-form Ω isomorphic to Ω0 at each point. The stabilizer group of Ω0 in GL(4m, R)
is Sp(m) Sp(1), so Sp(m) Sp(1)-structures on a 4m-manifold X are equivalent to 4-

forms Ω on X isomorphic to Ω0 at each point. By a result of Swann, when m � 3
the Sp(m) Sp(1)-structure is torsion-free if and only if dΩ = 0, that is, dΩ = 0 is

equivalent to ∇Ω = 0. But dΩ = 0 is weaker than ∇Ω = 0 when m = 2.

As for hyperkähler manifolds in §10.1.3, quaternionic Kähler manifolds have com-

plex twistor spaces. Let (X, g) be a quaternionic Kähler 4m-manifold. Then X has

a Sp(m) Sp(1)-structure, a principal Sp(m) Sp(1)-bundle P which is a subbundle of

the frame bundle of X . Define Z = P/ Sp(m)U(1), the quotient by the subgroup

Sp(m)U(1) in Sp(m) Sp(1). Then Z is a bundle over X with projection π : Z → X
and fibre Sp(m) Sp(1)/ Sp(m)U(1) ∼= Sp(1)/U(1) ∼= S2.

Points z ∈ Z may be identified with complex structures on tangent spaces Tπ(z)X

in the following way. If x ∈ X then there is a nonunique identification TxX ∼= R
4m

identifying the metric g and 4-form Ω on TxX with the Euclidean versions g0, Ω0 on

R
4m. Then the fibre π−1(x) is naturally identified with the family of complex structures

a1J1 + a2J2 + a3J3 on R
4m for (a1, a2, a3) ∈ S2 ⊂ R

3, where J1, J2, J3 are as in

§10.1.1. Alternative choices of identification TxX ∼= R4m are related by the action of

Sp(m) Sp(1) on R
4m, and as Sp(m) Sp(1) preserves the family of complex structures

a1J1 + a2J2 + a3J3 the construction is well-defined.

The fundamental theorem on twistor spaces is due to Salamon [294].

Theorem 10.5.3 Let (X, g) be a quaternionic Kähler 4m-manifold, and Z, π be as

above. Then Z has the following natural geometric structures:

(i) An integrable complex structure J making Z into a complex (2m + 1)-manifold,

such that for each x ∈ X the fibre π−1(x) is a complex curve CP1 in Z with

normal bundle 2mO(1).
(ii) An antiholomorphic involution σ : Z → Z with π ◦σ = π, acting as σ : J �→ −J

under the identification of points z ∈ Z with complex structures J on Tπ(z)X .

(iii) If g has nonzero scalar curvature then Z carries a holomorphic contact structure τ .

(iv) If g has positive scalar curvature then Z has a Kähler–Einstein metric h with

positive scalar curvature.
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This should be compared with Theorem 10.1.3. As for Theorem 10.1.4, the quater-

nionic Kähler structure on X can be recovered uniquely (up to homothety) from the

holomorphic data Z, J, σ, τ . Thus twistor spaces are powerful tools for studying quater-

nionic Kähler manifolds, particularly in the positive case. Theorem 10.5.3 also suggests

the appropriate definition of quaternionic Kähler manifolds in dimension 4. By Atiyah,

Hitchin and Singer [12], self-dual Einstein metrics on 4-manifolds have twistor spaces

Z with these properties. So we define:

Definition 10.5.4 A quaternionic Kähler manifold of dimension 4 is an oriented Rie-

mannian 4-manifold (X, g) which is Einstein with self-dual Weyl curvature.

Then Theorem 10.5.3 holds in dimension 4. Other aspects of quaternionic Kähler

geometry are also nicely compatible with this definition, for instance, the quaternionic

Kähler quotient construction of Galicki and Lawson [121] produces quaternionic Kähler

manifolds in dimension 4m � 8 and self-dual Einstein manifolds in dimension 4.

The most basic examples of positive quaternionic Kähler manifolds are the Wolf

spaces, a family of compact quaternionic Kähler symmetric spaces described in 1965

by Wolf [341], who also discussed their twistor spaces. There is one Wolf space for each

compact simple Lie group. In dimension 4m there are three families:

HP
m =

Sp(m + 1)
Sp(m)×Sp(1)

, Gr(2,Cm+2)=
U(m + 2)

U(m)×U(2)
, Gr(4,Rm+4)=

SO(m + 4)
SO(m)×SO(4)

.

These satisfy HP1 ∼= S4 ∼= Gr(4, R5) when m = 1 and Gr(2, C4) ∼= Gr(4, R7) when

m = 2. In addition, for m = 2, 7, 10, 16, 28 there are the exceptional spaces

G2

SO(4)
,

F4

Sp(3) Sp(1)
,

E6

SU(6) Sp(1)
,

E7

Spin(12) Sp(1)
,

E8

E7 Sp(1)
.

Each Wolf space also has a noncompact dual, which is a negative quaternionic Kähler

manifold. Note that the holonomy groups of the Wolf spaces are of the form K Sp(1)
for various Lie subgroups K ⊆ Sp(m); this does not contradict Theorem 3.4.1, as the

Wolf spaces are symmetric.

By a result of Myers [30, §6.E] on positive Ricci curvature, any complete posi-

tive quaternionic Kähler manifold is compact, with finite fundamental group. Theorem

10.5.3 shows that the twistor space Z of a compact, positive quaternionic Kähler mani-

fold (X, g) is a compact Kähler–Einstein manifold with positive scalar curvature. Thus

it has ample anticanonical bundle K−1
Z , and so is projective, and is by definition a Fano

variety, and also a complex contact manifold. Such Z are very special objects in alge-

braic geometry, and a lot is known about them.

It is conjectured that the Wolf spaces are the only compact positive quaternionic

Kähler manifolds, that is, that every compact positive quaternionic Kähler manifold is

symmetric. The following theorem collects the state of play at the time of writing.

Theorem 10.5.5 A compact positive quaternionic Kähler manifold (X, g) of dimen-

sion 4m is a Wolf space if one of: (i) m � 3, (ii) b2 � 1, or (iii) m = 4 and b4 = 1.

Any compact positive quaternionic Kähler manifold has odd Betti numbers zero.

Up to homothety there are only finitely many compact positive quaternionic Kähler

manifolds of dimension 4m, for each m � 1.
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Proof Part (i) follows from Hitchin [161] when m = 1, Poon and Salamon [282]

when m = 2 and Herrera and Herrera [158] when m = 3, using twistor space methods

and index theory. Part (ii) follows from LeBrun and Salamon [239, Th. 0.3], and (iii)

from Galicki and Salamon [122, Th. 5.1]. The last two parts come from Salamon [294,

Th. 6.6] and LeBrun and Salamon [239]. �

There exist many examples of nonsymmetric, singular positive or negative quater-

nionic Kähler manifolds. In particular, the quaternionic Kähler quotient construction of

Galicki and Lawson [121] produces examples of compact, positive quaternionic Kähler

orbifolds, with only quotient singularities.

In the negative case, Alekseevsky [8] found a large class of complete, nonsymmet-

ric, negative quaternionic Kähler manifolds, which are homogeneous metrics on solv-

able Lie groups. It is not known whether these admit compact quotients. LeBrun [237]

found an infinite-dimensional family of complete negative quaternionic Kähler metrics

on R4m, which arise as deformations of quaternionic hyperbolic space HH4m.

It is known that all the noncompact duals of the Wolf spaces admit compact quo-

tients, but the author is unaware of any other examples of compact negative quaternionic

Kähler manifolds. Semmelmann and Weingart [308] use eigenvalue estimates for Dirac

operators to prove vanishing theorems and inequalities on the Betti numbers of compact

negative quaternionic Kähler 4m-manifolds, including b2k+1 = 0 for 2k + 1 < m.

10.6 Other topics in quaternionic geometry

We finish by giving brief discussions, with references, of other interesting areas in

quaternionic geometry that we have not space to explain at length.

10.6.1 3-Sasakian manifolds
A Riemannian manifold (S, g) of dimension 4m + 3 is called 3-Sasakian if the cone(
S × (0,∞), dr2 + r2g

)
on S is hyperkähler, that is, if Hol(dr2 + r2g) is contained

in Sp(m + 1). 3-Sasakian manifolds are quaternionic analogues of Sasakian manifolds,

which are Riemannian manifolds of dimension 2m + 1 whose cones are Kähler. 3-

Sasakian manifolds were introduced by Kuo in the 1970’s and studied for a few years

by Japanese geometers, but then fell into obscurity until revived in the 1990’s by Boyer,

Galicki, Mann and others. A good survey on them is Boyer and Galicki [44].

Let (S, g) be a 3-Sasakian (4m+3)-manifold. Then g is Einstein with positive scalar

curvature 2(2m+1)(4m+3). Thus, as for positive quaternionic Kähler manifolds, com-

plete 3-Sasakian manifolds are necessarily compact, with finite fundamental group. The

metric dr2+r2g on S×(0,∞) extends to a hyperkähler structure (J1, J2, J3, dr2+r2g).
Define orthonormal vector fields v1, v2, v3 on S by va = Ja(r ∂

∂r ) on S × {1} ∼= S.

They satisfy the su(2) Lie algebra relations [v1, v2] = v3, [v2, v3] = v1, [v3, v1] = v2,

so if g is complete then v1, v2, v3 exponentiate to an isometric SU(2) action on S.

By [44, Th. 3.3.3], the quotient X = S/ SU(2) is an orbifold of dimension 4m,

which turns out to be quaternionic Kähler with positive scalar curvature 16m(m +
2). Conversely, if X is a positive quaternionic Kähler 4m-manifold (orbifold) with

associated Sp(m) Sp(1)-bundle P then S = P/ Sp(m) is a 3-Sasakian (4m + 3)-
manifold (orbifold), and the projection π : S → X has fibre Sp(m) Sp(1)/ Sp(m) ∼=
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Sp(1)/Z2
∼= SO(3). Note that the twistor space Z of X is S/ U(1), so that S is the total

space of a U(1)-bundle over Z .

Note too the connection between hyperkähler and quaternionic Kähler geometry

that this implies. If (X, g) is a positive quaternionic Kähler manifold then the cone(
S × (0,∞), dr2 + r2h

)
on the associated 3-Sasakian manifold (S, h) is a hyperkähler

manifold known as the Swann bundle, which fibres over X with fibre (H \ {0})/{±1}.

As we saw in §10.5, the only known compact positive quaternionic Kähler manifolds

are symmetric spaces, so one might expect compact 3-Sasakian manifolds to be equally

rare. But this is not so. It is a nice observation of Boyer, Galicki and Mann [45] that

if X is a quaternionic Kähler orbifold, the associated 3-Sasakian manifold S may be

nonsingular; this happens provided each orbifold point of X is modelled on R
4m/G for

some finite G ⊂ Sp(m) Sp(1) acting freely on Sp(m) Sp(1)/ Sp(m) ∼= SO(3).
This spawned a small industry in constructing and studying examples of compact 3-

Sasakian manifolds. Some important contributions are Boyer et al. [45] who produced

infinitely many nonhomotopic examples of compact 3-Sasakian (4m+3)-manifolds

for each m � 1 using quotients as in §10.6.4, [46] who found compact 3-Sasakian

7-manifolds with b2 arbitrary, and Pedersen and Poon [279] who show compact 3-

Sasakian manifolds are rigid, that is, admit no nontrivial deformations. For more ref-

erences see Boyer and Galicki [44].

10.6.2 Hypercomplex manifolds
We call (X, J1, J2, J3) a hypercomplex manifold, and (J1, J2, J3) a hypercomplex

structure on X , if X is a manifold of dimension 4m and J1, J2, J3 are integrable

complex structures on X such that J1J2 = J3. If (X, J1, J2, J3, g) is hyperkähler

then (X, J1, J2, J3) is hypercomplex. However, not all hypercomplex manifolds ad-

mit hyperkähler metrics, even locally. General references on hypercomplex manifolds

are Salamon [295, §6] and [296, §9].

A hypercomplex manifold (X, J1, J2, J3) carries a unique torsion-free connection

∇ on TX with ∇Jj = 0 called the Obata connection, whose holonomy is a subgroup

of GL(m, H). In the language of §2.6, a hypercomplex structure on X is equivalent to a

torsion-free GL(m, H)-structure on X . Note that if ∇ is not flat then (X, J1, J2, J3) is

not locally isomorphic to H
m with its flat hypercomplex structure. This is an important

difference between complex and hypercomplex geometry, since all complex manifolds

are locally trivial.

If (X, J1, J2, J3) is hypercomplex and a1, a2, a3 ∈ R with a2
1 + a2

2 + a2
3 = 1, then

a1J2 + a2J2 + a3J3 is a complex structure on X . Thus a hypercomplex manifold has

a 2-sphere S2 of complex structures. As for the hyperkähler case of §10.1.3, there is

a twistor construction for hypercomplex manifolds; the difference is that in Theorem

10.1.3 there need be no holomorphic section ω of p∗(O(2)) ⊗ Λ2D∗.

Compact hypercomplex 4-manifolds are classified by Boyer [43], and are either K3
surfaces or flat examples such as 4-tori and Hopf surfaces. The first known compact

hypercomplex manifolds of dimension 4m > 4 which are not locally hyperkähler were

hypercomplex structures on Lie groups, found by Spindel et al. [316]. They were gener-

alized by the author [180] to hypercomplex structures on homogeneous spaces. In [182]

this is extended to inhomogeneous hypercomplex structures on biquotients A\B/C of
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Lie groups. The author also gave in [180] a second way of constructing compact, inho-

mogeneous hypercomplex manifolds, using the idea of ‘twisting by an instanton’.

The deformations of compact hypercomplex manifolds are studied by Pedersen and

Poon [277], who use their theory to prove that the homogeneous hypercomplex mani-

folds of [180, 316] admit inhomogeneous deformations [278]. The author has proposed

a theory of hypercomplex algebraic geometry [186], a quaternionic analogue of com-

plex algebraic geometry, in which one studies (noncompact) hypercomplex manifolds

using an ‘algebra’ of H-valued ‘q-holomorphic functions’ upon them.

10.6.3 Quaternionic manifolds
Underlying a hyperkähler structure (J1, J2, J3, g) there is a hypercomplex structure

(J1, J2, J3), which is a weaker structure not involving a metric, and can be studied on

its own. In the same way, under any quaternionic Kähler structure is a weaker, metric-

free geometry called a quaternionic structure, which is studied by Salamon [295].

In 4m dimensions for m � 2, a quaternionic structure on X is a torsion-free

GL(m, H)GL(1, H)-structure Q on X , where GL(m, H)GL(1, H) is a Lie subgroup

of GL(4m, R). That is, Q is a GL(m, H)GL(1, H)-structure on X , and there exists

a torsion-free connection ∇ on TX preserving Q. However, this connection ∇ is not

unique, and not part of the quaternionic structure. We call (X, Q) a quaternionic man-

ifold. Following Definition 10.5.4, a quaternionic 4-manifold is an oriented conformal

4-manifold (X, [g]) with self-dual Weyl curvature.

Hyperkähler manifolds, quaternionic Kähler manifolds and hypercomplex mani-

folds all have an underlying quaternionic structure. As for the other three quaternionic

geometries, the twistor construction works for quaternionic manifolds [295, §7]. Let

(X, Q) be a quaternionic manifold, so that Q is a principal GL(m, H)GL(1, H)-bundle

over X , and define the twistor space Z = Q/ GL(m, H)C∗. It has a natural projection

π : Z → X , with fibre GL(1, H)/C
∗ ∼= CP

1, and Theorem 10.5.3(i),(ii) hold, but

in general Z has neither a complex contact structure nor a Kähler metric, as in parts

(iii),(iv) for the quaternionic Kähler case. We can reconstruct (X, Q) from holomorphic

data on Z . Note that quaternionic manifolds are the weakest geometry for which the

twistor transform works.

Explicit examples of compact quaternionic 4-manifolds (self-dual 4-manifolds) are

given by LeBrun [235, 236, 238] and the author [181]. Analytic existence theorems for

compact self-dual 4-manifolds are given by Donaldson and Friedman [97] and Taubes

[319, 320]. Compact quaternionic manifolds of dimension 4m > 4 which are neither

locally quaternionic Kähler nor hypercomplex were constructed by the author [180] on

homogeneous spaces, and by ‘twisting by an instanton’.

10.6.4 Quotient constructions
There are quotient constructions for hyperkähler, quaternionic Kähler, 3-Sasakian, hy-

percomplex and quaternionic manifolds, which given such a manifold X acted on by

a Lie group G preserving the geometric structure, produce a new manifold Y with the

same structure but of smaller dimension dimY = dimX − 4 dimG. This is a fertile

source of examples. We explain the hyperkähler case first, as it is simplest.

Suppose (X, J1, J2, J3, g) is a hyperkähler 4m-manifold, and ω1, ω2, ω3 are the
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Kähler forms of J1, J2, J3. Let G be a Lie group of dimension k with Lie algebra g
which acts freely on X preserving the hyperkähler structure. Write φ : g → C∞(TX)
for the corresponding Lie algebra action. Then for each v ∈ g and a = 1, 2, 3 the Lie

derivative Lφ(v)ωa = 0, so φ(v) · ωa is a closed 1-form on X . If H1(X, R) = 0 there

is a smooth map µa : X → g∗ for a = 1, 2, 3, unique up addition of a constant in g∗,

satisfying d(v · µa) = φ(v) · ωa for all v ∈ g.

Under mild conditions we can choose µa to be equivariant under the actions of G
on X and g∗, and then µa is unique up to addition of an element of the centre Z(g∗),
and is a moment map for the action of G on the Kähler manifold (X, Ja, g). We call

µ = (µ1, µ2, µ3) : X → g∗ ⊗ R
3 the hyperkähler moment map. Hitchin et al. [164,

§3] show that where it is nonsingular, Y = µ−1(0)/G is a new hyperkähler manifold of

dimension 4(m − k), called the hyperkähler quotient of X by G.

A similar quotient construction for quaternionic Kähler manifolds X was found by

Galicki and Lawson [120, 121]. In this case, the quaternionic Kähler moment map µ is

a section of g∗ ⊗ E, where E is a vector bundle over X with fibre R
3, and it is defined

uniquely rather than up to addition of a constant. Boyer, Galicki and Mann [45] wrote

down a 3-Sasakian version of this by lifting the quaternionic Kähler quotient up to the

associated 3-Sasakian SO(3)-bundles.

Quotient constructions for hypercomplex and quaternionic manifolds were found by

the author [179], and work on a slightly different principle. In the hypercomplex case,

we start from the observation that the hyperkähler moment maps (µ1, µ2, µ3) above

satisfy the p.d.e. J1(dµ1) = J1(dµ2) = J3(dµ3), which also makes sense in the hy-

percomplex setting. So given a hypercomplex manifold (X, J1, J2, J3) invariant under

a Lie group G, we define a hypercomplex moment map to be a smooth G-equivariant

map µ : X → g∗ ⊗ R3 satisfying J1(dµ1) = J1(dµ2) = J3(dµ3). Nontrivial moment

maps µ need not exist, and if they do they may not be unique. If dµ : TX → g∗⊗R
3 is

injective along µ−1(0) then Y = µ−1(0)/G is hypercomplex where it is nonsingular.

10.6.5 Hyperkähler moduli spaces
Let (X, J1, J2, J3, g) be a hyperkähler 4-manifold such as T 4, K3 or H, which should

be either compact, or complete and well-behaved at infinity. Let P → X be a principal

bundle over X with fibre G, a compact Lie group. An instanton is a connection on

P with anti-self-dual curvature. The moduli space M of (finite energy) instantons on

P modulo gauge transformations will in general be a finite-dimensional hyperkähler

manifold, which may be singular, and may be noncompact. Instanton moduli spaces

are important in the study of 4-manifolds. For more information, see Donaldson and

Kronheimer [98].

Here is the rough reason why M is hyperkähler, following Atiyah and Hitchin [11,

§4]. Write A for the family of connections on the fixed principal bundle P . This is an

infinite-dimensional affine space modelled on the vector space C∞(Ad(P ) ⊗ T ∗X
)
.

Here Ad(P ) is the vector bundle over X with fibre g, the Lie algebra of G, induced by

the adjoint representation of G on g. Write G for the gauge group of P , the infinite-

dimensional Lie group of smooth maps X → G. Then M =
{
A ∈ A : F+

A = 0
}
/G .

As A has tangent spaces C∞(ad(P )⊗T ∗X
)

the action J1, J2, J3 on T ∗X induce

complex structures Ĵ1, Ĵ2, Ĵ3 on A , and an Ad(G)-invariant metric on g and the L2-
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norm w.r.t. g on C∞(ad(P ) ⊗ T ∗X
)

induce a metric ĝ on A , making (Ĵ1, Ĵ2, Ĵ3, ĝ)
into a flat infinite-dimensional hyperkähler structure on A . It turns out that G preserves

this hyperkähler structure, and the instanton equation F+
A = 0 can be interpreted as

the moment map equation µ = 0 for this G action. Hence M is constructed as an

infinite-dimensional hyperkähler quotient as in §10.6.4, and so is hyperkähler.

A related problem is the study of magnetic monopoles on noncompact 3-manifolds.

Monopole moduli spaces on R
3 turn out to be hyperkähler, for similar reasons to the

instanton case; in fact, monopoles on R
3 can be interpreted as instantons on R

3 × R

invariant under translations in R. Atiyah and Hitchin [11] use these hyperkähler metrics

to resolve questions about scattering of magnetic monopoles.

Moduli space techniques can be used to find interesting examples of hyperkähler

manifolds, in particular metrics on coadjoint orbits. Let G be a compact, semisimple Lie

group, with complexification GC, and complexified Lie algebra gC. Then the coadjoint

orbits of GC in (gC)∗ are all noncompact complex symplectic manifolds. Each such orbit

admits G-invariant Kähler metrics making it into a hyperkähler manifold. These metrics

were constructed by Kronheimer [228,229] for the highest-dimensional orbits in (gC)∗,

and extended to general orbits by Biquard [31] and Kovalev [222].

Kronheimer’s construction was analytic: he obtained the coadjoint orbits as moduli

spaces of SU(2)-invariant G-instantons on R
4 \ {0}, and used the fact that instanton

moduli spaces on R4 are hyperkähler. The author considers the metrics from a more

algebraic point of view in [186, §11–§12].
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The exceptional holonomy
groups

We now discuss the exceptional holonomy groups G2 in 7 dimensions, and Spin(7) in

8 dimensions. Metrics with these holonomy groups are Ricci-flat, and on compact man-

ifolds come in smooth moduli spaces of known dimension. Sections 11.1–11.3 define

G2, study the topology of compact Riemannian 7-manifolds (M, g) with holonomy G2,

and describe constructions of such manifolds. Sections 11.4–11.6 give a similar treat-

ment of Spin(7). Section 11.7 gives a reading list on exceptional holonomy. For much

more detail on compact manifolds with exceptional holonomy and many examples, see

the author’s monograph [188, Chs 10–15].

Since the introduction of M-theory in string theory, G2-manifolds have been of

particular interest to theoretical physicists. We saw in §9.1 that supersymmetric string

theory requires the universe to have 10 dimensions, which are supposed to locally re-

semble R
4 × M , where R

4 is Minkowski 4-space and M is a Calabi–Yau 3-fold with

diameter of order the Planck length, 10−33cm. M-theory is a variant of string theory in

which the universe has 11 dimensions, and locally resembles R4 × M for M a com-

pact G2-manifold with diameter of order the Planck length; though to achieve realistic

physics, M must have singularities [5]. We shall not discuss M-theory as it is beyond

the competence of the author, but we note that it has been the driving force behind much

recent research in exceptional holonomy.

11.1 The holonomy group G2

Here is a definition of G2 as a subgroup of GL(7, R).

Definition 11.1.1 Let (x1, . . . , x7) be coordinates on R
7. Write dxij...l for the exterior

form dxi ∧ dxj ∧ · · · ∧ dxl on R7. Define a 3-form ϕ0 on R7 by

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356. (11.1)

The subgroup of GL(7, R) preserving ϕ0 is the exceptional Lie group G2. It is compact,

connected, simply-connected, semisimple and 14-dimensional, and it fixes the 4-form

∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247, (11.2)

the Euclidean metric g0 = dx2
1 + · · · + dx2

7, and the orientation on R
7. Note that ϕ0

and ∗ϕ0 are related by the Hodge star.

227
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The forms ϕ0 and ∗ϕ0 above are those given by Bryant [56, p. 539] and used in

[188]. They differ from those used in the author’s papers [183, 184] and by Harvey

and Lawson [151, p. 113] and McLean [259, p. 733], but are equivalent to them under

permutations of x1, . . . , x7 and changes of sign of ϕ0 and ∗ϕ0.

Let M be an oriented 7-manifold. For each p ∈ M , define P3
pM to be the sub-

set of 3-forms ϕ ∈ Λ3T ∗
p M for which there exists an oriented isomorphism between

TpM and R
7 identifying ϕ and the 3-form ϕ0 of (11.1). Then P3

pM is isomorphic to

GL+(7, R)/G2, since ϕ0 has symmetry group G2.

Now dim GL+(7, R) = 49 and dimG2 = 14, so GL+(7, R)/G2 has dimension

49 − 14 = 35. But Λ3T ∗
p M also has dimension

(
7
3

)
= 35, and thus P3

pM is an open

subset of Λ3T ∗
p M . Let P3M be the bundle over M with fibre P3

pM at each p ∈ M .

Then P3M is an open subbundle of Λ3T ∗M with fibre GL+(7, R)/G2. Note that

P3M is not a vector subbundle of Λ3T ∗M . We say that a 3-form ϕ on M is positive

if ϕ|p ∈ P3
pM for each p ∈ M .

Similarly, define P4
pM to be the subset of 4-forms ψ ∈ Λ4T ∗

p M with an oriented

isomorphism between TpM and R
7 identifying ψ and the 4-form ∗ϕ0 of (11.2), and let

P4M have fibre P4
pM at each p ∈ M . Then P4M is an open subbundle of Λ4T ∗M

with fibre GL+(7, R)/G2, and sections of P4M are called positive 4-forms.

The frame bundle F of M is the bundle over M whose fibre at p ∈ M is the set of

isomorphisms between TpM and R7. Let ϕ be a positive 3-form on M , and let Q be the

subset of F consisting of isomorphisms between TpM and R
7 which identify ϕ|p and

ϕ0 of (11.1). It is easy to show that Q is a principal subbundle of F , with fibre G2. That

is, Q is a G2-structure, as in Definition 2.6.1.

Conversely, if Q is a G2-structure on M then, as ϕ0, ∗ϕ0 and g0 are G2-invariant,

we can use Q to define a 3-form ϕ, a 4-form ∗ϕ and a metric g on M corresponding

to ϕ0, ∗ϕ0 and g0. This 3-form ϕ will be positive if and only if Q is an oriented G2-

structure, that is, a G2-structure which induces the given orientation on M .

Thus we have found a 1-1 correspondence between positive 3-forms ϕ and oriented

G2-structures Q on M . Furthermore, to any positive 3-form ϕ on M we can associate

a unique positive 4-form ∗ϕ and metric g, such that ϕ, ∗ϕ and g are identified with ϕ0,

∗ϕ0 and g0 under an isomorphism between TpM and R7, for each p ∈ M . We will call

g and ∗ϕ the metric and 4-form associated to ϕ.

Definition 11.1.2 Let M be an oriented 7-manifold, ϕ a positive 3-form on M , and

g the associated metric. For the rest of the book, we will adopt the following abuse

of notation: we shall refer to the pair (ϕ, g) as a G2-structure. Of course (ϕ, g) is not,

exactly, a G2-structure, but it does at least define a unique G2-structure.

Define a map Θ : P3M → P4M by Θ(ϕ) = ∗ϕ. That is, if ϕ is a positive

3-form, then Θ(ϕ) is the associated 4-form ∗ϕ. It is important to note that Θ depends

solely on M and its orientation, and also that Θ is a nonlinear map. Although we define

Θ(ϕ) = ∗ϕ and the Hodge star ∗ is linear, actually ∗ depends on the metric g, which

itself depends on ϕ, so Θ(ϕ) is not linear in ϕ.

Let M be a 7-manifold, (ϕ, g) a G2-structure on M , and ∇ the Levi-Civita connec-

tion of g. We call ∇ϕ the torsion of (ϕ, g). If ∇ϕ = 0 then (ϕ, g) is called torsion-free.

We define a G2-manifold to be a triple (M, ϕ, g), where M is a 7-manifold, and (ϕ, g)
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a torsion-free G2-structure on M .

The next proposition follows from [296, Lem. 11.5].

Proposition 11.1.3 Let M be a 7-manifold and (ϕ, g) a G2-structure on M . Then the

following are equivalent: (i) (ϕ, g) is torsion-free,

(ii) Hol(g) ⊆ G2, and ϕ is the induced 3-form,

(iii) ∇ϕ = 0 on M , where ∇ is the Levi-Civita connection of g,

(iv) dϕ = d∗ϕ = 0 on M , and

(v) dϕ = d Θ(ϕ) = 0 on M .

Torsion-free G2-structures will play an essential rôle in our construction of compact

7-manifolds with holonomy G2. The basic idea is to find a torsion-free G2-structure

(ϕ, g) on M , and then show that Hol(g) = G2 provided π1(M) is finite.

The condition that (ϕ, g) be torsion-free is a nonlinear p.d.e. on the positive 3-form

ϕ. This is most clearly seen in part (v) of Proposition 11.1.3, as Θ is a nonlinear map.

Although in parts (iii) and (iv) the conditions ∇ϕ = 0 and dϕ = d∗ϕ = 0 appear linear

in ϕ, in fact the operators ∇ and d∗ depend on g, which depends on ϕ, so the equations

∇ϕ = 0 and d∗ϕ = 0 should be considered nonlinear in ϕ.

In §3.5.1 we explained that a G-structure on M induces a splitting of the bundles

of tensors on M into irreducible components. Here is the decomposition of the exterior

forms on a 7-manifold with a G2-structure, which follows from [296, Lem. 11.4].

Proposition 11.1.4 Let M be a 7-manifold and (ϕ, g) a G2-structure on M . Then

ΛkT ∗M splits orthogonally into components as follows, where Λk
l corresponds to an

irreducible representation of G2 of dimension l:

(i) Λ1T ∗M = Λ1
7, (ii) Λ2T ∗M = Λ2

7 ⊕ Λ2
14,

(iii) Λ3T ∗M = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27, (iv) Λ4T ∗M = Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27,

(v) Λ5T ∗M = Λ5
7 ⊕ Λ5

14, and (vi) Λ6T ∗M = Λ6
7.

The Hodge star ∗ of g gives an isometry between Λk
l and Λ7−k

l . Also Λ3
1 = 〈ϕ〉 and

Λ4
1 = 〈∗ϕ〉, and the spaces Λk

7 for k = 1, 2, . . . , 6 are canonically isomorphic.

Let the orthogonal projection from ΛkT ∗M to Λk
l be denoted πl. So, for instance,

if ξ ∈ C∞(Λ2T ∗M), then ξ = π7(ξ) + π14(ξ). We saw in Theorem 3.1.7 that the

holonomy group of a Riemannian metric g constrains its Riemann curvature. Using

this, Salamon [296, Lem. 11.8] shows:

Proposition 11.1.5 Let (M, g) be a Riemannian 7-manifold. If Hol(g) ⊆ G2, then g
is Ricci-flat.

Since G2 is a simply-connected subgroup of SO(7), any 7-manifold M with a G2-

structure must be a spin manifold, by Proposition 3.6.2. Furthermore, from Theorem

3.6.1 the natural representation of G2 on the spinors on R7 fixes a nonzero spinor, and

so a torsion-free G2-structure has a corresponding parallel spinor. In fact if S is the spin

bundle of M , then there is a natural isomorphism S ∼= Λ0
1 ⊕ Λ1

7. Thus we have:
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Proposition 11.1.6 Let (ϕ, g) be a G2-structure on a 7-manifold M . Then M is spin,

with a preferred spin structure. If (ϕ, g) is torsion-free, then (M, g) has a nonzero

parallel spinor.

From the classification of Riemannian holonomy groups in §3.4 we deduce:

Theorem 11.1.7 Write R7 ∼= R3 ⊕C2, and let SU(2) act on R7 trivially on R3 and as

usual on C
2. Similarly, write R

7 ∼= R⊕C
3, and let SU(3) act on R

7 trivially on R and

as usual on C
3. Then SU(2) ⊂ SU(3) ⊂ G2 ⊂ SO(7).

The only connected Lie subgroups of G2 which can be the holonomy group of a Rie-

mannian metric on a 7-manifold are {1}, SU(2), SU(3) and G2, where the subgroups

SU(2) and SU(3) are defined above. Hence, if (ϕ, g) is a torsion-free G2-structure on

a 7-manifold, then Hol0(g) is one of {1}, SU(2), SU(3) or G2.

These inclusions SU(2) ⊂ G2 and SU(3) ⊂ G2 imply that from each Calabi–Yau

2- or 3-fold with holonomy SU(2) or SU(3) we can make a G2-manifold. Here is how to

do this explicitly in terms of differential forms, following [188, Prop.s 11.1.1 & 11.1.2].

Proposition 11.1.8 Let (M, J, h, θ) be a Calabi–Yau 2-fold, with Kähler form ω. Let

(x1, x2, x3) be coordinates on R
3 or T 3. Define a metric g = dx2

1 + dx2
2 + dx2

3 + h
and a 3-form ϕ on R3 × M or T 3 × M by

ϕ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ ω + dx2 ∧ Re θ − dx3 ∧ Im θ.

Then (ϕ, g) is a torsion-free G2-structure on R
3 × M or T 3 × M , and

∗ϕ = 1
2ω ∧ ω + dx2 ∧ dx3 ∧ ω − dx1 ∧ dx3 ∧ Re θ − dx1 ∧ dx2 ∧ Im θ.

Proposition 11.1.9 Let (M, J, h, θ) be a Calabi–Yau 3-fold, with Kähler form ω. Let x
be a coordinate on R or S1. Define a metric g = dx2+h and a 3-form ϕ = dx∧ω+Re θ
on R×M or S1×M . Then (ϕ, g) is a torsion-free G2-structure on R×M or S1×M ,

and ∗ϕ = 1
2ω ∧ ω − dx ∧ Im θ.

11.2 Topological properties of compact G2-manifolds
We now discuss the topology of compact G2-manifolds, that is, compact manifolds M
equipped with a torsion-free G2-structure (ϕ, g). The material of this section can be

found in [183, 184] and [188, Ch. 10]. First we prove:

Proposition 11.2.1 Let (M, ϕ, g) be a compact G2-manifold. Then Hol(g) = G2 if

and only if π1(M) is finite.

Proof Since M is compact and g is Ricci-flat, Theorem 3.5.5 shows that M has a finite

cover isometric to T k×N , where N is simply-connected. Thus π1(M) ∼= F�Zk, where

F is a finite group. Clearly, π1(M) is finite if and only if k=0.

Now Hol(g) ⊆ G2 as (ϕ, g) is torsion-free, so Theorem 11.1.7 shows that Hol0(g)
is {1}, SU(2), SU(3) or G2. Clearly k=7 when Hol0(g)={1}, k=3 when Hol0(g)=
SU(2), k=1 when Hol0(g)=SU(3), and k=0 when Hol0(g)=G2. Thus Hol(g)=G2

if and only if π1(M) is finite. �
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Next we apply the ideas of §3.5.2 to compact G2-manifolds.

Definition 11.2.2 Let (M, ϕ, g) be a compact G2-manifold. For each of the subbundles

Λk
l of ΛkT ∗M defined in Proposition 11.1.4, write

H k
l =

{
η ∈ C∞(Λk

l ) : dη = d∗η = 0
}
,

and let Hk
l (M, R) be the vector subspace of Hk(M, R) with representatives in H k

l .

Define the refined Betti numbers bk
l of M by bk

l = dim Hk
l (M, R).

Combining Proposition 11.1.4 and Theorem 3.5.3 we find:

Theorem 11.2.3 Let (M, ϕ, g) be a compact G2-manifold. Then

H2(M, R) = H2
7 (M, R) ⊕ H2

14(M, R),

H3(M, R) = H3
1 (M, R) ⊕ H3

7 (M, R) ⊕ H3
27(M, R),

H4(M, R) = H4
1 (M, R) ⊕ H4

7 (M, R) ⊕ H4
27(M, R),

and H5(M, R) = H5
7 (M, R) ⊕ H5

14(M, R).

Here H3
1 (M, R) =

〈
[ϕ]
〉
, H4

1 (M, R) =
〈
[∗ϕ]
〉

and Hk
l (M, R) ∼= H7−k

l (M, R), so

that b3
1 = b4

1 = 1 and bk
l = b7−k

l . Also, if Hol(g) = G2 then Hk
7 (M, R) = {0}

for k = 1, . . . , 6.

This shows that if (M, g) is a compact Riemannian 7-manifold with holonomy G2

then M has only two independent, nontrivial refined Betti numbers, b2
14 and b3

27, with

b2 = b2
14 and b3 = b3

27 +1. Thus all the refined Betti numbers of M are given by b2 and

b3. To prove the last part of the theorem, observe that π1(M) is finite by Proposition

11.2.1, and so H1(M, R) = {0}. But Hk
7 (M, R) ∼= H1

7 (M, R) for k = 1, . . . , 6 by

Theorem 3.5.3, as the G2 representations associated to Λk
7 and Λ1

7 are isomorphic.

The following lemma is easily proved by calculating in coordinates.

Lemma 11.2.4 Let (ϕ, g) be a G2-structure on a 7-manifold M , and η a 2-form on

M . Then η ∧ ϕ = 2 ∗ π7(η) − ∗π14(η) and

η ∧ η ∧ ϕ =
(
2|π7(η)|2 − |π14(η)|2

)
dVg,

where dVg is the volume form of g.

We use this to prove two results on the cohomology of M .

Proposition 11.2.5 Let (M, ϕ, g) be a compact G2-manifold, with Hol(g)=G2. Then〈
σ ∪ σ ∪ [ϕ], [M ]

〉
< 0 for each nonzero σ ∈ H2(M, R).

Proof Theorem 11.2.3 gives H2
7 (M, R) = {0}, so that H2(M, R) = H2

14(M, R).
Thus each σ ∈ H2(M, R) is represented by a unique η ∈ H 2

14. So〈
σ ∪ σ ∪ [ϕ], [M ]

〉
=
∫

M

η ∧ η ∧ ϕ = −
∫

M

|η|2dVg,

since η ∧ η ∧ϕ = −|η|2dVg by Lemma 11.2.4. Therefore
〈
σ∪σ∪ [ϕ], [M ]

〉
< 0 when

σ �= 0, as η �= 0. �
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Proposition 11.2.6 Let (M, ϕ, g) be a compact G2-manifold, R the Riemann curva-

ture of g, and p1(M) ∈ H4(M, Z) the first Pontryagin class. Then〈
p1(M) ∪ [ϕ], [M ]

〉
= − 1

8π2

∫
M

|R|2dVg.

If Hol(g) = G2 then g is not flat, so
〈
p1(M) ∪ [ϕ], [M ]

〉
< 0, and p1(M) �= 0.

Proof From Chern–Weil theory, p1(M) is represented by 1
8π2 Tr(R ∧ R), a closed 4-

form. But the 2-form part of R lies in Λ2
14. Using this and the equation η ∧ η ∧ ϕ =

−|η|2dVg for η ∈ Λ2
14, we find that Tr(R ∧ R) ∧ ϕ = −|R|2dVg . Integrating this over

M , the result follows. �

We summarize Propositions 11.1.6, 11.2.1 and 11.2.6 in the following theorem,

which gives topological restrictions on compact 7-manifolds M with holonomy G2.

Theorem 11.2.7 Suppose M is a compact 7-manifold admitting metrics with holon-

omy G2. Then M is orientable and spin, π1(M) is finite and p1(M) �= 0.

For further interesting results on the cohomology of compact G2-manifolds, which

goes some way towards proving that compact G2-manifolds are formal in the sense of

rational homotopy theory, see Verbitsky [333].

We finish with two results on moduli spaces of metrics with holonomy G2. Let M be

a compact, oriented 7-manifold. Then as in §11.1, we can identify the set of all oriented

G2-structures on M with C∞(P3M), the set of positive 3-forms on M . Let X be the

set of positive 3-forms corresponding to oriented, torsion-free G2-structures. That is,

X =
{
ϕ ∈ C∞(P3M) : dϕ = d Θ(ϕ) = 0

}
.

Let D be the group of all diffeomorphisms Ψ of M isotopic to the identity. Then D

acts naturally on C∞(P3M) and X by ϕ
Ψ�−→Ψ∗(ϕ). We define the moduli space of

torsion-free G2-structures on M to be M = X /D . Then we have:

Theorem 11.2.8 Let M be a compact 7-manifold, and M = X /D the moduli space

of torsion-free G2-structures on M defined above. Then M is a smooth manifold of

dimension b3(M), and the natural projection π : M → H3(M, R) given by π(ϕD) =
[ϕ] is a local diffeomorphism.

This is proved in [183, Th. C], and also in [188, Th. 10.4.4]. Note that Theorem

11.2.8 is an entirely local result, and it gives little information about the global structure

of M . For instance, we do not know whether M is nonempty, or if it has one connected

component or many, or whether π is injective, or what its image is.

In [184, Lem. 1.1.3] and [188, Prop. 10.4.5] we show that the image of M in

H3(M, R) × H4(M, R) is a Lagrangian submanifold.

Proposition 11.2.9 Let M be a compact, oriented 7-manifold. By Poincaré duality

H4(M, R) ∼= H3(M, R)∗, so H3(M, R) × H4(M, R) has a natural symplectic struc-

ture. Define a subset L in H3(M, R) × H4(M, R) by

L =
{(

[ϕ], [∗ϕ]
)

: (ϕ, g) is a torsion-free G2-structure on M
}
.

Then L is a Lagrangian submanifold of H3(M, R) × H4(M, R).
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11.3 Constructing compact G2-manifolds

We now explain the method used in [183,184] and [188, §11–§12] to construct examples

of compact 7-manifolds with holonomy G2. It is based on the Kummer construction for

Calabi–Yau metrics on the K3 surface discussed in Examples 10.3.2 and 10.3.14, and

may be divided into four steps.

Step 1. Let T 7 be the 7-torus and (ϕ0, g0) a flat G2-structure on T 7. Choose a finite

group Γ of isometries of T 7 preserving (ϕ0, g0). Then the quotient T 7/Γ is a

singular, compact 7-manifold, an orbifold.

Step 2. For certain special groups Γ there is a method to resolve the singularities of

T 7/Γ in a natural way, using complex geometry. We get a nonsingular, compact

7-manifold M , together with a map π : M → T 7/Γ, the resolving map.

Step 3. On M , we explicitly write down a 1-parameter family of G2-structures (ϕt, gt)
depending on t ∈ (0, ε). They are not torsion-free, but have small torsion when

t is small. As t → 0, the G2-structure (ϕt, gt) converges to the singular G2-

structure π∗(ϕ0, g0).
Step 4. We prove using analysis that for sufficiently small t, the G2-structure (ϕt, gt)

on M , with small torsion, can be deformed to a G2-structure (ϕ̃t, g̃t), with zero

torsion. Finally, we show that g̃t is a metric with holonomy G2 on the compact

7-manifold M .

We discuss each step in greater detail.

11.3.1 Step 1: Choosing an orbifold
Let (ϕ0, g0) be the Euclidean G2-structure on R

7 from Definition 11.1.1. Suppose Λ
is a lattice in R7, that is, a discrete additive subgroup isomorphic to Z7. Then R7/Λ is

the torus T 7, and (ϕ0, g0) pushes down to a torsion-free G2-structure on T 7. We must

choose a finite group Γ acting on T 7 preserving (ϕ0, g0). That is, the elements of Γ are

the push-forwards to T 7/Λ of affine transformations of R
7 which fix (ϕ0, g0), and take

Λ to itself under conjugation.

Here is an example of a suitable group Γ, taken from [188, §12.2].

Example 11.3.1 Let (x1, . . . , x7) be coordinates on T 7 = R7/Z7, where xi ∈ R/Z.

Let (ϕ0, g0) be the flat G2-structure on T 7 from Definition 11.1.1. Let α, β and γ be the

involutions of T 7 defined by

α : (x1, . . . , x7) �→ (x1, x2, x3,−x4,−x5,−x6,−x7), (11.3)

β : (x1, . . . , x7) �→ (x1,−x2,−x3, x4, x5,
1
2 − x6,−x7), (11.4)

γ : (x1, . . . , x7) �→
(
−x1, x2,−x3, x4,

1
2 − x5, x6,

1
2 − x7). (11.5)

By inspection, α, β and γ preserve (ϕ0, g0), because of the careful choice of exactly

which signs to change. Also, α2 = β2 = γ2 = 1, and α, β and γ commute. Thus they

generate a group Γ = 〈α, β, γ〉 ∼= Z
3
2 of isometries of T 7 preserving (ϕ0, g0).

Having chosen a lattice Λ and finite group Γ, the quotient T 7/Γ is an orbifold,

a singular manifold with only quotient singularities. The singularities of T 7/Γ come
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from the fixed points of non-identity elements of Γ. We now describe the singularities

in our example.

Lemma 11.3.2 In Example 11.3.1, βγ, γα, αβ and αβγ have no fixed points on T 7.

The fixed points of α, β, γ are each 16 copies of T 3. The singular set S of T 7/Γ is a

disjoint union of 12 copies of T 3, 4 copies from each of α, β, γ. Each component of S
is a singularity modelled on that of T 3 × C

2/{±1}.

Note that the translations 1
2 in (11.3)–(11.5) are carefully chosen and play an es-

sential rôle in simplifying the group Γ and the singular set. For example, αβ takes

x6 �→ x6 + 1
2 , so αβ has no fixed points, and contributes no singularities. Also,

(αβ)2 : x6 �→ x6 + 1 = x6 in R/Z, so (αβ)2 = 1, which would not hold if we

replaced 1
2 in (11.4) by any other number in (0, 1).

The most important consideration in choosing Γ is that we should be able to resolve

the singularities of T 7/Γ within holonomy G2. We will explain how to do this next.

11.3.2 Step 2: Resolving the singularities
Our goal is to resolve the singular set S of T 7/Γ to get a compact 7-manifold M with

holonomy G2. How can we do this? In general we cannot, because we have no idea of

how to resolve general orbifold singularities with holonomy G2. However, suppose we

can arrange that every connected component of S is locally isomorphic to either

(a) T 3 × C
2/G, for G a finite subgroup of SU(2), or

(b) S1 × C3/G, for G a finite subgroup of SU(3) acting freely on C3 \ {0}.

One can use complex algebraic geometry to find a crepant resolution X of C
2/G

or Y of C3/G. Then T 3 × X or S1 × Y gives a local model for how to resolve the

corresponding component of S in T 7/Γ. Thus we construct a nonsingular, compact 7-

manifold M by using the patches T 3×X or S1 ×Y to repair the singularities of T 7/Γ.

In the case of Example 11.3.1, this means gluing 12 copies of T 3×X into T 7/Γ, where

X is the Eguchi–Hanson space of Example 10.2.2.

Now the point of using crepant resolutions is this. In both case (a) and (b), there

exists a Calabi–Yau metric on X or Y which is asymptotic to the flat Euclidean metric

on C
2/G or C

3/G. Such metrics are called asymptotically locally Euclidean (ALE). In

case (a), these are the hyperkähler ALE spaces described in §10.2, and exist for all finite

G ⊂ SU(2). In case (b), crepant resolutions of C
3/G exist for all finite G ⊂ SU(3)

by Roan [289], and the author [189], [188, §8] proved that they carry ALE Calabi–Yau

metrics, using a noncompact version of the Calabi Conjecture.

By Propositions 11.1.8 and 11.1.9, we can use the Calabi–Yau metrics on X or Y to

construct a torsion-free G2-structure on T 3×X or S1×Y . This gives a local model for

how to resolve the singularity T 3 × C
2/G or S1 × C

3/G with holonomy G2. So, this

method gives not only a way to smooth out the singularities of T 7/Γ as a manifold, but

also a family of torsion-free G2-structures on the resolution which show how to smooth

out the singularities of the G2-structure.

The requirement above that S be divided into connected components of the form (a)

and (b) is in fact unnecessarily restrictive. There is a more complicated and powerful

method, described in [188, §11–§12], for resolving singularities of a more general kind.

We require only that the singularities should locally be of the form R
3 × C

2/G or
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R × C3/G, for G a finite subgroup of SU(2) or SU(3), and when G ⊂ SU(3) we do

not require that G act freely on C
3 \ {0}.

If X is a crepant resolution of C
3/G, where G does not act freely on C

3 \ {0},

then the author shows [188, §9], [192] that X carries a family of Calabi–Yau metrics

satisfying a complicated asymptotic condition at infinity, called quasi-ALE metrics.

These yield the local models necessary to resolve singularities locally of the form R ×
C

3/G with holonomy G2. Using this method we can resolve many orbifolds T 7/Γ, and

prove the existence of large numbers of compact 7-manifolds with holonomy G2.

11.3.3 Step 3: Finding G2-structures with small torsion
For each resolution X of C2/G in case (a), and Y of C3/G in case (b) above, we can

find a 1-parameter family {ht : t > 0} of metrics with the properties:

(a) ht is a Kähler metric on X with Hol(ht) = SU(2). Its injectivity radius satisfies

δ(ht) = O(t), its Riemann curvature satisfies ‖R(ht)‖C0 = O(t−2), and ht =
h + O(t4r−4) for large r, where h is the Euclidean metric on C

2/G, and r the

distance from the origin.

(b) ht is Kähler on Y with Hol(ht) = SU(3), where δ(ht) = O(t), ‖R(ht)‖C0 =
O(t−2), and ht = h + O(t6r−6) for large r.

In fact we can choose ht to be isometric to t2h1, and then (a), (b) are easy to prove.

Suppose one of the components of the singular set S of T 7/Γ is locally modelled

on T 3 × C2/G. Then T 3 has a natural flat metric hT 3 . Let X be the crepant resolution

of C
2/G and let {ht : t > 0} satisfy property (a). Then Proposition 11.1.8 gives a 1-

parameter family of torsion-free G2-structures (ϕ̂t, ĝt) on T 3 ×X with ĝt = hT 3 + ht.

Similarly, if a component of S is modelled on S1 ×C3/G, using Proposition 11.1.9 we

get a family of torsion-free G2-structures (ϕ̂t, ĝt) on S1 × Y .

The idea is to make a G2-structure (ϕt, gt) on M by gluing together the torsion-free

G2-structures (ϕ̂t, ĝt) on the patches T 3 × X and S1 × Y , and (ϕ0, g0) on T 7/Γ. The

gluing is done using a partition of unity. Naturally, the first derivative of the partition of

unity introduces ‘errors’, so that (ϕt, gt) is not torsion-free. The size of the torsion ∇ϕt

depends on the difference ϕ̂t − ϕ0 in the region where the partition of unity changes.

On the patches T 3×X , since ht−h = O(t4r−4) and the partition of unity has nonzero

derivative when r = O(1), we find that ∇ϕt = O(t4). Similarly ∇ϕt = O(t6) on the

patches S1 × Y , and so ∇ϕt = O(t4) on M .

For small t, the dominant contributions to the injectivity radius δ(gt) and Riemann

curvature R(gt) are made by those of the metrics ht on X and Y , so we expect δ(gt) =
O(t) and ‖R(gt)‖C0 = O(t−2) by properties (a) and (b) above. In this way we prove

the following result [188, Th. 11.5.7], giving the estimates on (ϕt, gt) that we need.

Theorem 11.3.3 On the compact 7-manifold M described above, and on many other

7-manifolds constructed in a similar fashion, one can write down the following data

explicitly in coordinates:

• positive constants A1, A2, A3 and ε,

• a G2-structure (ϕt, gt) on M with dϕt = 0 for each t ∈ (0, ε), and

• a 3-form ψt on M with d∗ψt = d∗ϕt for each t ∈ (0, ε).
These satisfy three conditions:
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(i) ‖ψt‖L2 � A1t
4, ‖ψt‖C0 � A1t

3 and ‖d∗ψt‖L14 � A1t
16/7,

(ii) the injectivity radius δ(gt) satisfies δ(gt) � A2t,
(iii) the Riemann curvature R(gt) of gt satisfies ‖R(gt)‖C0 � A3t

−2.

Here the operator d∗ and the norms ‖ . ‖L2, ‖ . ‖L14 and ‖ . ‖C0 depend on gt.

Here one should regard ψt as a first integral of the torsion ∇ϕt of (ϕt, gt). Thus the

norms ‖ψt‖L2 , ‖ψt‖C0 and ‖d∗ψt‖L14 are measures of ∇ϕt. So parts (i)–(iii) say that

∇ϕt is small compared to the injectivity radius and Riemann curvature of (M, gt).

11.3.4 Step 4: Deforming to a torsion-free G2-structure
We prove the following analysis result.

Theorem 11.3.4 Let A1, A2, A3 be positive constants. Then there exist positive con-

stants κ, K such that whenever 0 < t � κ, the following is true.

Let M be a compact 7-manifold, and (ϕ, g) a G2-structure on M with dϕ = 0.

Suppose ψ is a smooth 3-form on M with d∗ψ = d∗ϕ, and

(i) ‖ψ‖L2 � A1t
4, ‖ψ‖C0 � A1t

1/2 and ‖d∗ψ‖L14 � A1,

(ii) the injectivity radius δ(g) satisfies δ(g) � A2t, and

(iii) the Riemann curvature R(g) satisfies ‖R(g)‖C0 � A3t
−2.

Then there is a smooth, torsion-free G2-structure (ϕ̃, g̃) on M with ‖ϕ̃−ϕ‖C0 �Kt1/2.

Basically, this says that if (ϕ, g) is a G2-structure on M , and the torsion ∇ϕ is

sufficiently small, then we can deform to a nearby G2-structure (ϕ̃, g̃) that is torsion-

free. Here is a sketch of the proof of Theorem 11.3.4, ignoring several technical points.

The proof is that given in [188, §11.6–§11.8], which improves that in [183].

We have a 3-form ϕ with dϕ = 0 and d∗ϕ = d∗ψ for small ψ, and we wish to

construct a nearby 3-form ϕ̃ with dϕ̃ = 0 and d̃∗ϕ̃ = 0. Set ϕ̃ = ϕ + dη, where η is a

small 2-form. Then η must satisfy a nonlinear p.d.e., which we write as

d∗dη = −d∗ψ + d∗F (dη), (11.6)

where F is nonlinear, satisfying F (dη) = O
(
|dη|2

)
.

We solve (11.6) by iteration, introducing a sequence {ηj}∞j=0 with η0 = 0, satisfying

the inductive equations

d∗dηj+1 = −d∗ψ + d∗F (dηj), d∗ηj+1 = 0. (11.7)

If such a sequence exists and converges to η, then taking the limit in (11.7) shows that

η satisfies (11.6), giving us the solution we want.

The key to proving this is an inductive estimate on the sequence {ηj}∞j=0. The in-

ductive estimate we use has three ingredients, the equations

‖dηj+1‖L2 � ‖ψ‖L2 + C1‖dηj‖L2‖dηj‖C0 , (11.8)

‖∇dηj+1‖L14 � C2

(
‖d∗ψ‖L14 + ‖∇dηj‖L14‖dηj‖C0 + t−4‖dηj+1‖L2

)
, (11.9)

‖dηj‖C0 � C3

(
t1/2‖∇dηj‖L14 + t−7/2‖dηj‖L2

)
. (11.10)

Here C1, C2, C3 are positive constants independent of t. Equation (11.8) is obtained

from (11.7) by taking the L2-inner product with ηj+1 and integrating by parts. Using
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the fact that d∗ϕ = d∗ψ and ‖ψ‖L2 = O(t4), |ψ| = O(t1/2) we get a powerful estimate

of the L2-norm of dηj+1.

Equation (11.9) is derived from an elliptic regularity estimate for the operator d+d∗

acting on 3-forms on M , as in §1.4. Equation (11.10) follows from the Sobolev Embed-

ding Theorem Theorem 1.2.1, since L14
1 (M) ↪→ C0(M). Both (11.9) and (11.10) are

proved on small balls of radius O(t) in M , using parts (ii) and (iii) of Theorem 11.3.3,

and this is where the powers of t come from.

Using (11.8)–(11.10) and part (i) of Theorem 11.3.3 we show that if

‖dηj‖L2 � C4t
4, ‖∇dηj‖L14 � C5, and ‖dηj‖C0 � Kt1/2, (11.11)

where C4, C5 and K are positive constants depending on C1, C2, C3 and A1, and if t is

sufficiently small, then the same inequalities (11.11) apply to dηj+1. Since η0 = 0, by

induction (11.11) applies for all j and the sequence {dηj}∞j=0 is bounded in the Banach

space L14
1 (Λ3T ∗M). One can then use standard techniques in analysis to prove that this

sequence converges to a smooth limit dη. This concludes the proof of Theorem 11.3.4.

From Theorems 11.3.3 and 11.3.4 we see that the compact 7-manifold M con-

structed in Step 2 admits torsion-free G2-structures (ϕ̃, g̃). Proposition 11.2.1 then

shows that Hol(g̃) = G2 if and only if π1(M) is finite. In the example above M is

simply-connected, and so M has metrics with holonomy G2, as we want.

By considering different groups Γ acting on T 7, and also by finding topologically

distinct resolutions M1, . . . , Mk of the same orbifold T 7/Γ, we can construct many

compact Riemannian 7-manifolds with holonomy G2. Figure 11.1 displays the 252 dif-

ferent sets of Betti numbers of compact, simply-connected 7-manifolds with holonomy

G2 constructed in [183, 184] and [188, §12], together with 5 more sets from Kovalev

[223]. They satisfy 0 � b2 � 28 and 4 � b3 � 215.

Examples are also known [188, §12.4] of compact 7-manifolds with holonomy G2

with finite, nontrivial fundamental group. It seems likely to the author that the Betti

numbers given in Figure 11.1 are only a small proportion of the Betti numbers of all

compact, simply-connected 7-manifolds with holonomy G2.

11.3.5 Other constructions of compact G2-manifolds
Here are two more methods, from [188, §11.9], of constructing compact 7-manifolds

with holonomy G2. The first has been successfully applied by Kovalev [223], and is

based on an idea due to Simon Donaldson.

Method 1. Let X be a projective complex 3-fold with canonical bundle KX , and s a

holomorphic section of K−1
X which vanishes to order 1 on a smooth divisor D in X .

Then D has trivial canonical bundle, so D is T 4 or K3. Suppose D is a K3 surface.

Define Y = X \ D, and suppose Y is simply-connected.

Then Y is a noncompact complex 3-fold with KY trivial, and one infinite end mod-

elled on D × S1 × [0,∞). Using a version of the proof of the Calabi Conjecture for

noncompact manifolds one constructs a complete Calabi–Yau metric h on Y , which

is asymptotic to the product on D × S1 × [0,∞) of a Calabi–Yau metric on D, and

Euclidean metrics on S1 and [0,∞). We call such metrics asymptotically cylindrical.

Suppose we have such a metric on Y . Define a torsion-free G2-structure (ϕ, g) on

S1 × Y as in Proposition 11.1.9. Then S1 × Y is a noncompact G2-manifold with
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Fig. 11.1 Betti numbers (b2, b3) of compact, simply-connected G2-manifolds

one end modelled on D × T 2 × [0,∞), whose metric is asymptotic to the product on

D×T 2× [0,∞) of a Calabi–Yau metric on D, and Euclidean metrics on T 2 and [0,∞).
Donaldson and Kovalev’s idea is to take two such products S1 × Y1 and S1 × Y2

whose infinite ends are isomorphic in a suitable way, and glue them together to get a

compact 7-manifold M with holonomy G2. The gluing process swaps round the S1

factors. That is, the S1 factor in S1 × Y1 is identified with the asymptotic S1 factor in
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Y2 ∼ D2 × S1 × [0,∞), and vice versa.

Kovalev computes the Betti numbers (b2, b3) of the G2-manifolds he constructs in

[223, §8]. His examples satisfy 0 � b2 � 9 and 71 � b3 � 155, and typically have b2

smaller than the examples of [188]. He finds 5 sets of Betti numbers not given in [188],

which all have b2 = 0 or 1, and are included in Figure 11.1.

The second method was outlined in [184, §4.3], but has not yet been implemented.

Method 2. Let (Y, J, h, θ) be a Calabi–Yau 3-fold, with Kähler form ω. Suppose σ :
Y → Y is an involution, satisfying σ∗(h) = h, σ∗(J) = −J and σ∗(θ) = θ̄. We call σ
a real structure on Y . Let N be the fixed point set of σ in Y . It is a real 3-dimensional

submanifold of Y , a special Lagrangian 3-fold.

Let S1 = R/Z, and define a torsion-free G2-structure (ϕ, g) on S1 × Y as in

Proposition 11.1.9. Then ϕ = dx ∧ ω + Re θ, where x ∈ R/Z is the coordinate on S1.

Define σ̂ : S1 × Y → S1 × Y by σ̂
(
(x, y)

)
=
(
−x, σ(y)

)
. Then σ̂ preserves (ϕ, g)

and σ̂2 = 1. The fixed points of σ̂ in S1 × Y are {Z, 1
2 + Z} × N . Thus (S1 × Y )/〈σ̂〉

is an orbifold. Its singular set is 2 copies of N , and each singular point is modelled

on R3 × R4/{±1}.

We aim to resolve (S1 × Y )/〈σ̂〉 to get a compact 7-manifold M with holonomy

G2. Locally, each singular point should be resolved like R
3 × X , where X is an ALE

Calabi–Yau 2-fold asymptotic to C2/{±1}. There is a 3-dimensional family of such X ,

and we need to choose one member of this family for each singular point.

Calculations by the author indicate that the data needed to do this is a closed, co-

closed 1-form α on N that is nonzero at every point of N . The existence of a suitable

1-form α depends on the metric on N , which is the restriction of the metric g on Y .

But g comes from the solution of the Calabi Conjecture, so we know little about it. This

may make the method difficult to apply in practice.

11.4 The holonomy group Spin(7)

We shall now discuss the holonomy group Spin(7), following the pattern of §11.1 for

G2. First we define Spin(7) as a subgroup of GL(8, R).

Definition 11.4.1 Let R
8 have coordinates (x1, . . . , x8). Write dxijkl for the 4-form

dxi ∧ dxj ∧ dxk ∧ dxl on R
8. Define a 4-form Ω0 on R

8 by

Ω0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

−dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678.
(11.12)

The subgroup of GL(8, R) preserving Ω0 is the holonomy group Spin(7). It is a com-

pact, connected, simply-connected, semisimple, 21-dimensional Lie group, which is

isomorphic as a Lie group to the double cover of SO(7). This group also preserves the

orientation on R8 and the Euclidean metric g0 = dx2
1 + · · · + dx2

8 on R8. We have

∗Ω0 = Ω0, where ∗ is the Hodge star on R
8, so that Ω0 is a self-dual 4-form.

Let M be an oriented 8-manifold. For each p ∈ M , define ApM to be the sub-

set of 4-forms Ω ∈ Λ4T ∗
p M for which there exists an oriented isomorphism between

TpM and R
8 identifying Ω and the 4-form Ω0 of (11.12). Then ApM is isomorphic to
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GL+(8, R)/ Spin(7). Let A M be the bundle over M with fibre ApM at each p ∈ M .

Then A M is a subbundle of Λ4T ∗M with fibre GL+(8, R)/ Spin(7). We say that a

4-form Ω on M is admissible if Ω|p ∈ ApM for each p ∈ M .

The form Ω0 above is given by Bryant [56, p. 545] and used in [185, 187, 188]. It

differs from that used by Harvey and Lawson [151, p. 120] and McLean [259, p. 738],

but is equivalent to it under changes of sign of some xi and a change of sign of Ω0.

Note that A M is not a vector subbundle of Λ4T ∗M . As dim GL+(8, R) = 64 and

dimSpin(7) = 21, we see that ApM has dimension 64 − 21 = 43. But Λ4T ∗
p M has

dimension
(
8
4

)
= 70, so ApM has codimension 27 in Λ4T ∗

p M . This is rather different

from the G2 case of §11.1, in which P3
pM is open in Λ3T ∗

p M . As in §11.1, there is

a 1-1 correspondence between oriented Spin(7)-structures Q and admissible 4-forms

Ω ∈ C∞(A M) on M . Each Spin(7)-structure Q induces a 4-form Ω on M and a

metric g on M , corresponding to Ω0 and g0 on R
8.

Definition 11.4.2 Let M be an oriented 8-manifold, Ω an admissible 4-form on M ,

and g the associated metric. As for G2, we shall abuse notation by referring to the pair

(Ω, g) as a Spin(7)-structure on M . Let ∇ be the Levi-Civita connection of g. We call

∇Ω the torsion of (Ω, g), and we say that (Ω, g) is torsion-free if ∇Ω = 0. A triple

(M, Ω, g) is called a Spin(7)-manifold if M is an oriented 8-manifold, and (Ω, g) a

torsion-free Spin(7)-structure on M .

The next four results are analogues of Propositions 11.1.3–11.1.6. The first three fol-

low from Salamon [296, Lem. 12.4], [296, Prop. 12.5] and [296, Cor. 12.6] respectively,

and the fourth is proved in the same way as Proposition 11.1.6.

Proposition 11.4.3 Let M be an 8-manifold and (Ω, g) a Spin(7)-structure on M .

Then the following are equivalent: (i) (Ω, g) is torsion-free,

(ii) Hol(g) ⊆ Spin(7), and Ω is the induced 4-form,

(iii) ∇Ω = 0 on M , where ∇ is the Levi-Civita connection of g, and

(iv) dΩ = 0 on M .

Here dΩ = 0 is a linear equation on the 4-form Ω. However, the restriction that

Ω ∈ C∞(A M) is nonlinear. Thus, as in the G2 case, the condition that (Ω, g) be a

torsion-free Spin(7)-structure should be interpreted as a nonlinear p.d.e. upon Ω.

Proposition 11.4.4 Let M be an oriented 8-manifold and (Ω, g) a Spin(7)-structure

on M . Then ΛkT ∗M splits orthogonally into components, where Λk
l corresponds to an

irreducible representation of Spin(7) of dimension l:

(i) Λ1T ∗M = Λ1
8, (ii) Λ2T ∗M = Λ2

7 ⊕ Λ2
21, (iii) Λ3T ∗M = Λ3

8 ⊕ Λ3
48,

(iv) Λ4T ∗M = Λ4
+T ∗M⊕Λ4

−T ∗M, Λ4
+T ∗M = Λ4

1⊕Λ4
7⊕Λ4

27, Λ4
−T ∗M = Λ4

35,

(v) Λ5T ∗M = Λ5
8 ⊕ Λ5

48, (vi) Λ6T ∗M = Λ6
7 ⊕ Λ6

21, (vii) Λ7T ∗M = Λ7
8.

The Hodge star ∗ gives an isometry between Λk
l and Λ8−k

l . In part (iv), Λ4
±T ∗M are the

±1-eigenspaces of ∗ on Λ4T ∗M . Note also that Λ4
1 = 〈Ω〉, and that there are canonical

isomorphisms Λ1
8
∼= Λ3

8
∼= Λ5

8
∼= Λ7

8 and Λ2
7
∼= Λ4

7
∼= Λ6

7.
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The orthogonal projection from ΛkT ∗M to Λk
l will be written πl.

Proposition 11.4.5 Let (M, g) be a Riemannian 8-manifold. If Hol(g) is a subgroup

of Spin(7), then g is Ricci-flat.

Proposition 11.4.6 Let (Ω, g) be a Spin(7)-structure on an 8-manifold M . Then M is

orientable and spin, with a preferred spin structure and orientation. If (Ω, g) is torsion-

free, then (M, g) has a nonzero parallel positive spinor.

In fact, if S = S+⊕S− is the spin bundle of M , then there are natural isomorphisms

S+
∼= Λ0

1 ⊕ Λ2
7 and S− ∼= Λ1

8. Here is the analogue of Theorem 11.1.7 for Spin(7).

Theorem 11.4.7 The only connected Lie subgroups of Spin(7) which can be holon-

omy groups of Riemannian metrics on 8-manifolds are: (i) {1},

(ii) SU(2), acting on R
8 ∼= R

4 ⊕ C
2 trivially on R

4 and as usual on C
2,

(iii) SU(2) × SU(2), acting on R
8 ∼= C

2 ⊕ C
2 in the obvious way,

(iv) SU(3), acting on R
8 ∼= R

2 ⊕ C
3 trivially on R

2 and as usual on C
3,

(v) G2, acting on R
8 ∼= R ⊕ R

7 trivially on R and as usual on R
7,

(vi) Sp(2), (vii) SU(4), and (viii) Spin(7), each acting as usual on R
8.

Thus, if (Ω, g) is a torsion-free Spin(7)-structure on an 8-manifold, then Hol0(g) is

one of {1}, SU(2), SU(2) × SU(2), SU(3), G2, Sp(2), SU(4) or Spin(7).

The inclusions ‘−→’ between these groups are shown below.

SU(2)

��

SU(2) ��

��

SU(3) ��

��

G2

��
SU(2) × SU(2) �� Sp(2) �� SU(4) �� Spin(7).

As in Propositions 11.1.8 and 11.1.9, we can use these inclusions to construct Spin(7)-
manifolds out of Calabi–Yau 2-, 3- or 4-folds and G2-manifolds. Here is how to do this

explicitly in terms of differential forms, following [188, Prop.s 13.1.1–13.1.4].

Proposition 11.4.8 Let (M, J, h, θ) be a Calabi–Yau 2-fold, with Kähler form ω. Let

(x1, . . . , x4) be coordinates on R4 or T 4. Define a metric g and a 4-form Ω on R4×M
or T 4 × M by g = dx2

1 + · · · + dx2
4 + h and

Ω = dx1234 + (dx12 + dx34) ∧ ω + (dx13 − dx24) ∧ Re θ

− (dx14 + dx23) ∧ Im θ + 1
2ω ∧ ω.

Then (Ω, g) is a torsion-free Spin(7)-structure on R
4 × M or T 4 × M .

Proposition 11.4.9 Let (M, J, h, θ) be a Calabi–Yau 3-fold, with Kähler form ω. Let

(x1, x2) be coordinates on R
2 or T 2. Define a metric g and a 4-form Ω on R

2 × M or

T 2 × M by g = dx2
1 + dx2

2 + h and

Ω = dx1 ∧ dx2 ∧ ω + dx1 ∧ Re θ − dx2 ∧ Im θ + 1
2ω ∧ ω.

Then (Ω, g) is a torsion-free Spin(7)-structure on R
2 × M or T 2 × M .
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Proposition 11.4.10 Let (M, ϕ, h) be a G2-manifold. Define a metric g and a 4-form

Ω on R×Y or S1 ×Y by g = dx2 +h and Ω = dx∧ϕ+ ∗ϕ, where x is a coordinate

on R or S1. Then (Ω, g) is a torsion-free Spin(7)-structure on R × M or S1 × M .

Proposition 11.4.11 Let (M, J, g, θ) be a Calabi–Yau 4-fold, with Kähler form ω. De-

fine a 4-form Ω on M by Ω = 1
2ω ∧ ω + Re θ. Then (Ω, g) is a torsion-free Spin(7)-

structure on M .

11.5 Topological properties of compact Spin(7)-manifolds
Next we study the topology of compact Spin(7)-manifolds (M, Ω, g), that is, compact

8-manifolds M with a torsion-free Spin(7)-structure (Ω, g). Because the dimension is

divisible by four, we are able to use the spin geometry discussed in §3.6 to deduce

important topological restrictions on M , which have no parallel in the G2 case. Since

M is oriented and spin by Proposition 11.4.6, we may consider the spin bundle S =
S+ ⊕ S− and the positive Dirac operator D+ : C∞(S+) → C∞(S−) on M .

As in §3.6.2, the index ind(D+) of D+ is determined by Hol(g), since g is Ricci-

flat. But in §3.6.3 we explained that by the Atiyah–Singer Index Theorem, ind(D+)
is equal to Â(M), a characteristic class of M . Thus the geometric invariant Hol(g)
determines the topological invariant Â(M). We use this idea in the following theorem,

taken from [185, Th. C].

Theorem 11.5.1 Suppose (M, Ω, g) is a compact Spin(7)-manifold. Then the Â-genus

Â(M) of M satisfies

24Â(M) = −1 + b1 − b2 + b3 + b4
+ − 2b4

−, (11.13)

where bi are the Betti numbers of M and b4
± the dimensions of H4

±(M, R). Moreover,

if M is simply-connected then Â(M) is 1, 2, 3 or 4, and the holonomy group Hol(g)
of g is determined by Â(M) as follows:

(i) Hol(g) = Spin(7) if and only if Â(M) = 1,

(ii) Hol(g) = SU(4) if and only if Â(M) = 2,

(iii) Hol(g) = Sp(2) if and only if Â(M) = 3, and

(iv) Hol(g) = SU(2) × SU(2) if and only if Â(M) = 4.

Proof To prove (11.13) we follow the reasoning of [294, §7]. For an 8-manifold, Â(M)
is given in terms of the Pontryagin classes p1(M) and p2(M) by

45.27Â(M) = 7p1(M)2 − 4p2(M).

From [294, eqn (7.1)], the signature b4
+ − b4

− of M is given by

7p2(M) − p1(M)2 = 45(b4
+ − b4

−),

and by [294, eqn (7.3)], which applies to manifolds with structure group Spin(7) by the

remark on [294, p. 166], the Euler characteristic of M satisfies

4p2(M) − p1(M)2 = 8(2 − 2b1 + 2b2 − 2b3 + b4).

Combining the last three equations gives (11.13), as we want.
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Now suppose M is simply-connected. Theorem 11.4.7 shows that Hol(g) must be

Spin(7), SU(4), Sp(2) or SU(2)×SU(2). Then Theorem 3.6.5 gives the value of Â(M)
for each holonomy group, which proves the ‘only if’ part of (i)–(iv). But as Â(M) takes

different values in the four cases, Â(M) determines Hol(g). This gives the ‘if’ part of

(i)–(iv), and completes the proof. �

Next we show compact 8-manifolds with holonomy Spin(7) are simply-connected.

Proposition 11.5.2 Suppose (M, g) is a compact Riemannian 8-manifold and Hol(g)
is one of Spin(7), SU(4), Sp(2) or SU(2) × SU(2). Then M is simply-connected.

Proof As g is Ricci-flat, π1(M) is finite by the argument used to prove Proposition

11.2.1. Let M̃ be the universal cover of M , and d the degree of the covering. Then M̃
is compact, and g lifts to a metric g̃ on M̃ with Hol(g̃) = Hol0(g) = Hol(g). Thus

Â(M̃) = Â(M) by Theorem 11.5.1, and Â(M) = 1, 2, 3 or 4, depending on Hol(g).
But Â(M̃) = d · Â(M), as the Â-genus is a characteristic class. Since Â(M) �= 0, we

see that d = 1, and so M is simply-connected. �

By analogy with Definition 11.2.2 and Theorem 11.2.3, we have:

Definition 11.5.3 Let (M, Ω, g) be a compact Spin(7)-manifold. For each of the sub-

bundles Λk
l of ΛkT ∗M defined in Proposition 11.4.4, write

H k
l =

{
ξ ∈ C∞(Λk

l ) : dξ = d∗ξ = 0
}
,

and let Hk
l (M, R) be the vector subspace of Hk(M, R) with representatives in H k

l .

Define the refined Betti numbers bk
l of M by bk

l = dim Hk
l (M, R).

Theorem 11.5.4 Let (M, Ω, g) be a compact Spin(7)-manifold. Then

H2(M, R)=H2
7 (M, R)⊕H2

21(M, R), H3(M, R)=H3
8 (M, R)⊕H3

48(M, R),

H4
+(M, R)=H4

1 (M, R)⊕H4
7 (M, R)⊕H4

27(M, R), H4
−(M, R)=H4

35(M, R),

H5(M, R)=H5
8 (M, R)⊕H5

48(M, R), H6(M, R)=H6
7 (M, R)⊕H6

21(M, R).

Here H4
1 (M, R) =

〈
[Ω]
〉

and Hk
l (M, R) ∼= H8−k

l (M, R), so b4
1 = 1 and bk

l = b8−k
l .

If (M, Ω, g) is a compact Spin(7)-manifold, then

Â(M) = b4
1 + b4

7 − b5
8 = 1 + b2

7 − b1.

To prove this we identify the Dirac operator D+ : C∞(S+) → C∞(S−) with π8 ◦ d :
C∞(Λ4

1 ⊕ Λ4
7) → C∞(Λ5

8). This also suggests (correctly) that H 4
1 , H 4

7 and H 5
8

should consist of constant k-forms.

Proposition 11.5.5 Let (M, Ω, g) be a compact Spin(7)-manifold. Then the spaces

Hk
8 (M, R) for k = 1, 3, 5, 7 and Hk

7 (M, R) for k = 2, 4, 6 are represented by constant

k-forms, and so are determined solely by Hol(g). In particular, if Hol(g) = Spin(7)
then these spaces are all zero, so that b1

8 = b3
8 = b5

8 = b7
8 = 0 and b2

7 = b4
7 = b6

7 = 0.
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Proof We use the ideas of §3.5.2. Let ξ ∈ H k
l , so that ξ ∈ C∞(Λk

l ) and (dd∗ +
d∗d)ξ = 0. But (dd∗+d∗d)ξ = ∇∗∇ξ−2R̃(ξ), by (3.13). By considering Spin(7)
representations we find that if ξ lies in H k

8 for k = 1, 3, 5, 7 or H k
7 for k = 2, 4, 6 then

R̃(ξ) = 0. Thus ∇∗∇ξ = 0, and integrating by parts gives ∇ξ = 0.

Thus H k
8 for k = 1, 3, 5, 7 and H k

7 for k = 2, 4, 6 consist of constant k-forms,

and so are determined by Hol(g). As H k
l

∼= Hk
l (M, R) we see that Hk

8 (M, R) and

Hk
7 (M, R) are determined by Hol(g). When Hol(g) = Spin(7) these spaces are zero,

as the corresponding Spin(7)-representations are nontrivial. �

The last two results show that if (M, g) is a compact Riemannian 8-manifold with

holonomy Spin(7) then M has only four nontrivial refined Betti numbers, b2
21, b3

48, b4
27

and b4
35. However, these are not independent, since the equation Â(M) = 1 implies that

b3
48 + b4

27 = b2
21 + 2b4

35 + 24.

Thus we see that there are only three independent Betti-type invariants of a compact

8-manifold with holonomy Spin(7), and we can calculate all the refined Betti numbers

from b2, b3 and b4.

Let (Ω, g) be a Spin(7)-structure on M . As in the G2 case, if ξ ∈ C∞(Λ2
21) then

ξ ∧ ξ ∧ Ω = −|ξ|2dVg . So, by analogy with Propositions 11.2.5 and 11.2.6, we prove:

Proposition 11.5.6 Suppose (M, Ω, g) is a compact Spin(7)-manifold with holonomy

Spin(7). Then
〈
σ ∪ σ ∪ [Ω], [M ]

〉
< 0 for each nonzero σ ∈ H2(M, R).

Proposition 11.5.7 Let (M, Ω, g) be a compact Spin(7)-manifold, R the Riemann cur-

vature of g, and p1(M) ∈ H4(M, Z) the first Pontryagin class. Then

〈
p1(M) ∪ [Ω], [M ]

〉
= − 1

8π2

∫
M

|R|2dVg.

If Hol(g) = Spin(7) then g is not flat, so
〈
p1(M) ∪ [Ω], [M ]

〉
< 0, and p1(M) �= 0.

We summarize the results above as follows.

Theorem 11.5.8 Suppose (M, Ω, g) is a compact Spin(7)-manifold. Then g has holon-

omy Spin(7) if and only if M is simply-connected and the Betti numbers of M satisfy

b3 + b4
+ = b2 + 2b4

− + 25. Also, if Hol(g) = Spin(7) then M is spin and p1(M) �= 0.

Let M be a compact, oriented 8-manifold. Then as in §11.4, we can identify the set

of all oriented Spin(7)-structures on M with C∞(A M). Let X =
{
Ω ∈ C∞(A M) :

dΩ = 0
}

be the set of admissible 4-forms corresponding to torsion-free Spin(7)-
structures, and let D be the group of all diffeomorphisms of M isotopic to the identity.

Then D acts naturally on C∞(A M) and X . We define the moduli space of torsion-free

Spin(7)-structures on M to be M = X /D .

In a similar way to Theorem 11.2.8, our next result describes M . It is proved in [185,

Th. D] and [188, Th. 10.7.1]. Note that if M admits metrics with holonomy Spin(7) then

Â(M) = 1 and b1(M) = 0, so dim M = 1 + b4
−(M).
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Theorem 11.5.9 Let M be a compact, oriented 8-manifold, and M = X /D the

moduli space of torsion-free Spin(7)-structures on M . Then M is smooth with

dim M = b4
1 + b4

7 + b4
35 = Â(M) + b1(M) + b4

−(M),

and the projection π : M → H4(M, R) given by π(ΩD) = [Ω] is an immersion.

11.6 Constructing compact Spin(7)-manifolds

There are at present two known methods for constructing examples of compact 8-

manifolds with holonomy Spin(7). The first, due to the author in [185] and [188, §13–

§14], is to resolve the singularities of torus orbifolds T 8/Γ in a similar way to the G2

case of §11.3. It will be discussed in §11.6.1. The second, due to the author in [187] and

[188, §15], is a little like Method 2 of §11.3.5 and starts with a Calabi–Yau 4-orbifold.

It will be discussed in §11.6.2.

11.6.1 Spin(7)-manifolds from resolving orbifolds T 8/Γ

The construction of compact 8-manifolds with holonomy Spin(7) from orbifolds T 8/Γ
in [185] and [188, §13–§14] is very similar to the G2 case of §11.3, so we describe it

briefly using the same Steps 1–4, emphasizing only the differences with the G2 case.

Step 1: Choosing an orbifold

The following example and lemma, taken from [185, §3.2], describe the simplest orb-

ifold T 8/Γ the author knows that can be resolved to give a compact Spin(7)-manifold.

Example 11.6.1 Let (x1, . . . , x8) be coordinates on T 8 = R
8/Z

8, where xi ∈ R/Z.

Define a flat Spin(7)-structure (Ω0, g0) on T 8 as in Definition 11.4.1. Let α, β, γ and δ
be the involutions of T 8 defined by

α
(
(x1, . . . , x8)

)
= (−x1,−x2,−x3,−x4, x5, x6, x7, x8),

β
(
(x1, . . . , x8)

)
= (x1, x2, x3, x4,−x5,−x6,−x7,−x8),

γ
(
(x1, . . . , x8)

)
= (1

2 − x1,
1
2 − x2, x3, x4,

1
2 − x5,

1
2 − x6, x7, x8),

δ
(
(x1, . . . , x8)

)
= (−x1, x2,

1
2 − x3, x4,

1
2 − x5, x6,

1
2 − x7, x8).

By inspection, α, β, γ and δ preserve Ω0 and g0. It is easy to see that α2 = β2 = γ2 =
δ2 = 1, and that α, β, γ, δ all commute. Define Γ to be the group 〈α, β, γ, δ〉. Then

Γ ∼= (Z2)4 is a group of automorphisms of T 8 preserving (Ω0, g0).

Lemma 11.6.2 The nonidentity elements of Γ with fixed points in T 8 are α, β, γ, δ
and αβ. The corresponding singular sets are as follows: Sα is 4 copies of T 4/{±1},

Sβ is 4 copies of T 4/{±1}, Sγ is 2 copies of T 4, Sδ is 2 copies of T 4, and Sαβ is 64
points. Here Sα ∩ Sβ = Sαβ , and each xΓ ∈ Sαβ has stabilizer Γx = {1, α, β, αβ}.

Thus, the singular set of T 8/Γ is rather more complex than that of Example 11.3.1.
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Step 2: Resolving the singularities

Much as in §11.3.2, we can try to resolve the orbifolds T 8/Γ by gluing in ALE spaces

with holonomy SU(2), SU(3) or SU(4), or more generally Quasi-ALE spaces with

holonomy SU(3), SU(4) or Sp(2). Thus, we must choose T 8/Γ with all singularities of

the form R
8/G for G ⊂ Spin(7) conjugate in Spin(7) to a subgroup of SU(2), SU(3),

SU(4) or Sp(2). However, not all such singularities can be resolved. If G ⊂ SU(m)
is a finite subgroup then Cm/G always admits a crepant resolution when m = 2, 3,

but not necessarily when m � 4; for instance, C
4/{±1} has no crepant resolution by

Example 7.3.5.

This makes it more difficult to choose orbifolds T 8/Γ whose singularities can be

resolved than in the G2 case. Another problem is that in the G2 case the singular set

is made up of 1 and 3-dimensional pieces in a 7-dimensional space, so one can often

arrange for the pieces to avoid each other, and resolve them independently. But in the

Spin(7) case the singular set is typically made up of 4-dimensional pieces in an 8-

dimensional space, so they nearly always intersect. This happens even in our simple

Example 11.6.1, when Sα, Sβ intersect in Sαβ . The moral appears to be that when you

increase the dimension, things become more difficult.

In Example 11.6.1 we can resolve T 8/Γ to get a compact 8-manifold M , using only

the Eguchi–Hanson space X of Example 10.2.2. First consider Sγ , which is two disjoint

copies of T 4, each modelled on the singularity of T 4×C2/{±1}. The resolution of this

singularity is T 4 × X , and we may use this to resolve both Sγ and Sδ.

Now the singular sets Sα and Sβ are not disjoint, but each component T 4/{±1} in

Sα meets each component T 4/{±1} in Sβ in 4 points, which lie in Sαβ . The singularity

at each point in Sαβ is modelled on C
2/{±1}×C

2/{±1}. Here Sα corresponds locally

to the subset C
2/{±1}×{0}, and Sβ corresponds locally to the subset {0}×C

2/{±1}.

Now the natural resolution of C2/{±1}×C2/{±1} is X×X , and this is how we resolve

near each point in Sαβ .

Each component of Sα and Sβ is modelled locally on T 4/{±1} × C2/{±1}, and

the resolution of this is K3 × X , where T 4/{±1} is resolved to give the K3 surface

using the Eguchi-Hanson space X , as in Examples 10.3.2 and 10.3.14. Combining these

resolutions gives a compact 8-manifold M with a map π : M → T 8/Γ, making (M, π)
a resolution of T 8/Γ. In [185, §3.2] we show M is simply-connected with Betti numbers

b2 = 12, b3 = 16, b4
+ = 107, b4

− = 43 and b4 = 150, so (11.13) gives Â(M) = 1.

Step 3: Finding Spin(7)-structures with small torsion

By a similar method to the G2 case of §11.3.3, we rescale the Calabi–Yau structures on

the resolutions of singularities of T 8/Γ by a small factor t > 0, and glue them to the flat

Spin(7)-structure on T 8/Γ using a partition of unity to produce a 1-parameter family

of Spin(7)-structures (Ωt, gt) on M for t ∈ (0, ε), such that (Ωt, gt) has small torsion

when t is small. A convenient way to measure this torsion is to write down a small 4-

form φt with dΩt + dφt = 0. We then prove the following estimates [188, Th. 13.5.8]

on (Ωt, gt) and φt, similar to Theorem 11.3.3.

Theorem 11.6.3 On the compact 8-manifold M described above, and on many other

8-manifolds constructed in a similar fashion, one can write down the following data
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explicitly in coordinates:

• positive constants λ, µ, ν and ε,

• a Spin(7)-structure (Ωt, gt) on M for each t ∈ (0, ε), and

• a 4-form φt on M for each t ∈ (0, ε) such that dΩt + dφt = 0.

These satisfy three conditions:

(i) ‖φt‖L2 � λt13/3 and ‖dφt‖L10 � λt7/5,

(ii) the injectivity radius δ(gt) satisfies δ(gt) � µt, and

(iii) the Riemann curvature R(gt) satisfies ‖R(gt)‖C0 � νt−2.

Here all norms are calculated using the metric gt.

Step 4: Deforming to a torsion-free Spin(7)-structure

We prove the following analysis result [188, Th. 13.6.1], similar to Theorem 11.3.4.

Theorem 11.6.4 Let λ, µ, ν be positive constants. Then there exist positive constants

κ, K such that whenever 0 < t � κ, the following is true.

Let M be a compact 8-manifold, and (Ω, g) a Spin(7)-structure on M . Suppose

that φ is a smooth 4-form on M with dΩ + dφ = 0, and

(i) ‖φ‖L2 � λt13/3 and ‖dφ‖L10 � λt7/5,

(ii) the injectivity radius δ(g) satisfies δ(g) � µt, and

(iii) the Riemann curvature R(g) satisfies ‖R(g)‖C0 � νt−2.

Then there exists a smooth, torsion-free Spin(7)-structure (Ω̃, g̃) on M with ‖Ω̃−Ω‖C0

� Kt1/3.

Here is how to interpret this. As ∇Ω = 0 if and only if dΩ = 0, and dφ + dΩ = 0,

the torsion ∇Ω is determined by dφ. Thus we can think of φ as a first integral of the

torsion of (Ω, g). So ‖φ‖L2 and ‖dφ‖L10 are both measures of the torsion of (Ω, g). As

t is small, part (i) says that (Ω, g) has small torsion in a certain sense. Parts (ii) and (iii)

mean that g is not too close to being singular.

Thus, the theorem as a whole says that if the torsion of (Ω, g) is small enough, and g
is not too singular, then we can deform (Ω, g) to a nearby, torsion-free Spin(7)-structure

(Ω̃, g̃) on M . Combining Theorems 11.6.3 and 11.6.4 gives many compact Spin(7)-
manifolds (M, Ω̃, g̃). We can then use Theorem 11.5.1 to determine the holonomy group

of g̃, which is Spin(7) for the case of Example 11.6.1.

In [185] and [188, §14], examples are constructed with 205 sets of Betti numbers.

Using the methods of [185], Taylor [321] found 15 more examples with b3 = 0, and

Jang [178] (published in brief in Kim and Jang [213]) found 66 examples not given in

[185]. Because of overlaps these examples realize 262 different sets of Betti numbers,

which are listed in Table 11.1.

They satisfy 1 � b2 � 50, 0 � b3 � 80 and 82 � b4 � 382. Many of the

examples also satisfy 2b2 − 2b3 + b4 = 142, but this is because [185, 213, 321] all

use the same rather limited construction, which automatically produces manifolds with

Euler characteristic 144. Two compact 8-manifolds with holonomy Spin(7) and the

same Betti numbers may be distinguished by the cup products on their cohomologies

(examples of this are given in [185, §3.4]), so they probably represent rather more than

262 topologically distinct 8-manifolds.
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Table 11.1 Betti numbers (b2, b3, b4) of compact Spin(7)-manifolds from resolving T 8/Γ

(1,0,140) (2,0,138) (2,8,154) (2,26,382) (2,40,218) (3,0,136) (3,4,144)

(3,8,152) (3,24,328) (3,36,208) (4,0,134) (4,2,138) (4,4,142) (4,8,150)

(4,12,158) (4,22,274) (4,22,286) (4,32,198) (5,0,132) (5,2,136) (5,4,140)

(5,8,148) (5,12,156) (5,20,220) (5,20,244) (5,28,188) (6,0,130) (6,2,134)

(6,4,138) (6,6,142) (6,8,146) (6,12,154) (6,16,162) (6,18,166) (6,18,202)

(6,18,214) (6,24,178) (6,28,186) (7,0,128) (7,2,132) (7,4,136) (7,6,140)

(7,8,144) (7,12,152) (7,16,160) (7,16,184) (7,20,168) (7,24,176) (7,28,184)

(7,38,204) (8,0,126) (8,2,130) (8,4,134) (8,6,138) (8,8,142) (8,10,146)

(8,12,150) (8,14,154) (8,14,166) (8,16,158) (8,20,166) (8,24,174) (8,26,130)

(8,32,190) (8,36,150) (9,0,124) (9,2,128) (9,4,132) (9,6,136) (9,8,140)

(9,10,144) (9,12,148) (9,16,156) (9,20,164) (9,22,132) (9,26,176) (9,28,180)

(9,30,148) (10,0,122) (10,0,128) (10,2,126) (10,4,130) (10,6,134) (10,8,138)

(10,10,142) (10,12,146) (10,16,154) (10,18,134) (10,20,162) (10,24,146) (10,24,170)

(10,44,114) (10,54,134) (11,0,120) (11,0,126) (11,2,124) (11,4,128) (11,6,132)

(11,8,136) (11,10,140) (11,12,144) (11,14,136) (11,14,148) (11,16,152) (11,18,144)

(11,20,160) (11,28,176) (11,36,120) (11,44,136) (12,0,118) (12,0,127) (12,0,130)

(12,2,122) (12,4,126) (12,6,130) (12,8,134) (12,10,138) (12,12,142) (12,16,150)

(12,20,158) (12,24,166) (12,28,126) (12,32,182) (12,34,138) (12,62,98) (13,0,116)

(13,0,125) (13,0,128) (13,2,120) (13,4,124) (13,6,128) (13,8,132) (13,10,136)

(13,12,140) (13,16,148) (13,20,132) (13,20,156) (13,24,140) (13,28,172) (13,50,108)

(14,0,114) (14,0,126) (14,0,129) (14,0,132) (14,0,138) (14,4,122) (14,8,130)

(14,8,142) (14,12,138) (14,14,142) (14,16,146) (14,24,162) (14,26,166) (14,32,178)

(14,38,118) (14,80,82) (15,0,112) (15,0,124) (15,0,127) (15,0,130) (15,0,133)

(15,0,136) (15,4,120) (15,8,128) (15,10,144) (15,12,136) (15,16,144) (15,20,152)

(15,26,128) (15,28,168) (15,64,96) (16,0,128) (16,0,131) (16,0,134) (16,0,140)

(16,8,126) (16,12,134) (16,14,138) (16,14,150) (16,16,142) (16,20,150) (16,24,158)

(16,48,110) (17,0,132) (17,0,135) (17,0,138) (17,0,144) (17,8,124) (17,8,148)

(17,12,132) (17,16,140) (17,20,148) (17,32,124) (17,36,180) (18,0,130) (18,0,133)

(18,0,136) (18,0,139) (18,0,142) (18,8,122) (18,10,150) (18,12,130) (18,16,138)

(18,20,146) (18,24,154) (18,32,170) (19,0,134) (19,0,137) (19,0,140) (19,0,146)

(19,12,152) (19,20,144) (19,26,156) (19,28,160) (20,0,138) (20,0,141) (20,0,144)

(20,8,154) (20,16,134) (20,16,158) (20,24,150) (21,0,136) (21,0,142) (21,0,145)

(21,0,148) (21,20,140) (22,0,140) (22,0,143) (22,0,146) (22,0,152) (22,0,158)

(22,8,162) (22,24,146) (22,26,150) (23,0,144) (23,0,147) (23,0,150) (23,0,156)

(23,8,160) (23,14,160) (23,20,136) (23,28,152) (24,12,166) (24,24,142) (26,0,150)

(26,0,153) (26,0,156) (26,0,162) (26,18,174) (26,24,138) (26,32,154) (27,8,176)

(27,16,168) (27,28,144) (29,28,140) (30,14,182) (32,8,190) (32,32,142) (34,8,198)

(36,16,198) (41,8,220) (50,8,250)

11.6.2 Spin(7)-manifolds from Calabi–Yau 4-orbifolds
We now discuss a second construction of compact 8-manifolds with holonomy Spin(7)
from [187] and [188, §15], similar to Method 2 of §11.3.5. In it we start from a Calabi–

Yau 4-orbifold rather than from T 8. We divide the construction into five steps.

Step 1. Find a compact, complex 4-orbifold (Y, J) satisfying the conditions:

(a) Y has only finitely many singular points p1, . . . , pk, for k � 1.
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(b) Y is modelled on C4/〈i〉 near each pj , where i acts on C4 by complex

multiplication.

(c) There exists an antiholomorphic involution σ : Y → Y whose fixed

point set is {p1, . . . , pk}.

(d) Y \ {p1, . . . , pk} is simply-connected, and h2,0(Y ) = 0.

Step 2. Choose a σ-invariant Kähler class on Y . Then by Theorem 7.4.6 there exists

a unique σ-invariant Ricci-flat Kähler metric g in this Kähler class. Let ω
be the Kähler form of g and θ a holomorphic volume form for (Y, J, g). By

multiplying θ by eiφ if necessary, we can arrange that σ∗(θ) = θ̄.

Define Ω = 1
2ω ∧ ω + Re θ. Then (Ω, g) is a torsion-free Spin(7)-structure

on Y , by Proposition 11.4.11. Also, (Ω, g) is σ-invariant, as σ∗(ω) = −ω
and σ∗(θ) = θ̄. Define Z = Y/〈σ〉. Then Z is a compact real 8-orbifold with

isolated singular points p1, . . . , pk, and (Ω, g) pushes down to a torsion-free

Spin(7)-structure (Ω, g) on Z .

Step 3. Z is modelled on R
8/G near each pj , where G is a certain finite subgroup

of Spin(7) with |G| = 8. We can write down two explicit, topologically dis-

tinct ALE Spin(7)-manifolds X1, X2 asymptotic to R
8/G. Each carries a

1-parameter family of homothetic ALE metrics ht for t > 0 with Hol(ht) =
Z2 � SU(4) ⊂ Spin(7).
For j = 1, . . . , k we choose ij = 1 or 2, and resolve the singularities of Z
by gluing in Xij at the singular point pj for j = 1, . . . , k, to get a compact,

nonsingular 8-manifold M , with projection π : M → Z .

Step 4. On M , we explicitly write down a 1-parameter family of Spin(7)-structures

(Ωt, gt) depending on t ∈ (0, ε). They are not torsion-free, but have small

torsion when t is small. As t → 0, the Spin(7)-structure (Ωt, gt) converges

to the singular Spin(7)-structure π∗(Ω0, g0).
Step 5. We prove using analysis that for sufficiently small t, the Spin(7)-structure

(Ωt, gt) on M , with small torsion, can be deformed to a Spin(7)-structure

(Ω̃t, g̃t), with zero torsion.

It turns out that if ij = 1 for j = 1, . . . , k we have π1(M) ∼= Z2 and

Hol(g̃t) = Z2 � SU(4), and for the other 2k − 1 choices of i1, . . . , ik we

have π1(M) = {1} and Hol(g̃t) = Spin(7). So g̃t is a metric with holonomy

Spin(7) on the compact 8-manifold M for (i1, . . . , ik) �= (1, . . . , 1).

Once we have completed Step 1, Step 2 is immediate. Steps 4 and 5 are essentially

the same as Steps 3 and 4 of §11.6.1, so we discuss only Steps 1 and 3.

Step 1: An example of a suitable complex orbifold

We do Step 1 using complex algebraic geometry. The problem is that conditions (a)–

(d) above are very restrictive, so it is not that easy to find any Y satisfying all four

conditions. All the examples Y the author has found are constructed using weighted

projective spaces CP
m
a0,...,am

, as in Definition 7.4.4.

Here is the simplest example the author knows.

Example 11.6.5 Let Y be the hypersurface of degree 12 in CP
5
1,1,1,1,4,4 given by
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Y =
{
[z0, . . . , z5] ∈ CP5

1,1,1,1,4,4 : z12
0 + z12

1 + z12
2 + z12

3 + z3
4 + z3

5 = 0
}
.

Calculation shows Y has singular points p1 =[0, 0, 0, 0, 1,−1], p2 =[0, 0, 0, 0, 1, eπi/3]
and p3 =[0, 0, 0, 0, 1, e−πi/3] modelled on C

4/〈i〉, and trivial canonical bundle.

Now define a map σ : Y → Y by

σ : [z0, . . . , z5] �−→ [z̄1,−z̄0, z̄3,−z̄2, z̄5, z̄4].

Note that σ2 = 1, though this is not immediately obvious, because of the geometry of

CP5
1,1,1,1,4,4. It can be shown that conditions (a)–(d) of Step 1 above hold for Y and σ.

More suitable 4-folds Y may be found by taking hypersurfaces or complete inter-

sections in other weighted projective spaces, possibly also dividing by a finite group,

and then doing a crepant resolution to get rid of any singularities that we don’t want.

Examples are given in [187], [188, §15].

Step 3: Resolving R
8/G

Define α, β : R8 → R8 by

α : (x1, . . . , x8) �→ (−x2, x1,−x4, x3,−x6, x5,−x8, x7),
β : (x1, . . . , x8) �→ (x3,−x4,−x1, x2, x7,−x8,−x5, x6).

Then α, β preserve Ω0 given in (11.12), so they lie in Spin(7). Also α4 = β4 = 1,

α2 = β2 and αβ = βα3. Let G = 〈α, β〉. Then G is a finite nonabelian subgroup of

Spin(7) of order 8, which acts freely on R
8\{0}. One can show that if Z is the compact

Spin(7)-orbifold constructed in Step 2 above, then Tpj Z is isomorphic to R8/G for

j = 1, . . . , k, with an isomorphism identifying the Spin(7)-structures (Ω, g) on Z and

(Ω0, g0) on R8/G, such that β corresponds to the σ-action on Y .

In the next two examples we shall construct two different ALE Spin(7)-manifolds

(X1, Ω1, g1) and (X2, Ω2, g2) asymptotic to R
8/G.

Example 11.6.6 Define complex coordinates (z1, . . . , z4) on R
8 by

(z1, z2, z3, z4) = (x1 + ix2, x3 + ix4, x5 + ix6, x7 + ix8),

Then g0 = |dz1|2 + · · ·+ |dz4|2, and Ω0 = 1
2ω0 ∧ω0 + Re θ0, where ω0 and θ0 are the

usual Kähler form and complex volume form on C
4. In these coordinates, α and β are

given by

α : (z1, . . . , z4) �→ (iz1, iz2, iz3, iz4),
β : (z1, . . . , z4) �→ (z̄2,−z̄1, z̄4,−z̄3).

(11.14)

Now C
4/〈α〉 is a complex singularity, as α ∈ SU(4). Let (Y1, π1) be the blow-up

of C
4/〈α〉 at 0. Then Y1 is the unique crepant resolution of C

4/〈α〉. The action of β on

C4/〈α〉 lifts to a free antiholomorphic map β : Y1 → Y1 with β2 = 1. Define X1 =
Y1/〈β〉. Then X1 is a nonsingular 8-manifold, and the projection π1 : Y1 → C

4/〈α〉
pushes down to π1 : X1 → R

8/G.
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There exist ALE Calabi–Yau metrics g1 on Y1, which were written down explic-

itly by Calabi [69, p. 285], and are invariant under the action of β on Y1. Let ω1 be

the Kähler form of g1, and θ1 = π∗
1(θ0) the holomorphic volume form on Y1. Define

Ω1 = 1
2ω1 ∧ ω1 + Re θ1. Then (Ω1, g1) is a torsion-free Spin(7)-structure on Y1, as in

Proposition 11.4.11.

As β∗(ω1) = −ω1 and β∗(θ1) = θ̄1, we see that β preserves (Ω1, g1). Thus (Ω1, g1)
pushes down to a torsion-free Spin(7)-structure (Ω1, g1) on X1. Then (X1, Ω1, g1) is

an ALE Spin(7)-manifold asymptotic to R
8/G.

Example 11.6.7 Define new complex coordinates (w1, . . . , w4) on R
8 by

(w1, w2, w3, w4) = (−x1 + ix3, x2 + ix4,−x5 + ix7, x6 + ix8).

Again we find that g0 = |dw1|2 + · · · + |dw4|2 and Ω0 = 1
2ω0 ∧ ω0 + Re θ0. In these

coordinates, α and β are given by

α : (w1, . . . , w4) �→ (w̄2,−w̄1, w̄4,−w̄3),
β : (w1, . . . , w4) �→ (iw1, iw2, iw3, iw4).

(11.15)

Observe that (11.14) and (11.15) are the same, except that the rôles of α, β are reversed.

Therefore we can use the ideas of Example 11.6.6 again.

Let Y2 be the crepant resolution of C
4/〈β〉. The action of α on C

4/〈β〉 lifts to

a free antiholomorphic involution of Y2. Let X2 = Y2/〈α〉. Then X2 is nonsingular,

and carries a torsion-free Spin(7)-structure (Ω2, g2), making (X2, Ω2, g2) into an ALE

Spin(7)-manifold asymptotic to R
8/G.

We can now explain the remarks on holonomy groups at the end of Step 5. The

holonomy groups Hol(gi) of the metrics g1, g2 in Examples 11.6.6 and 11.6.7 are both

isomorphic to Z2 � SU(4), a subgroup of Spin(7). However, they are two different

inclusions of Z2 � SU(4) in Spin(7), as in the first case the complex structure is α and

in the second β.

The Spin(7)-structure (Ω, g) on Z also has holonomy Hol(g) = Z2 � SU(4). Un-

der the natural identifications we have Hol(g1) = Hol(g) but Hol(g2) �= Hol(g) as

subgroups of Spin(7). Therefore, if we choose ij = 1 for all j = 1, . . . , k, then Z and

Xij all have the same holonomy group Z2 � SU(4), so they combine to give metrics g̃t

on M with Hol(g̃t) = Z2 � SU(4).
However, if ij = 2 for some j then the holonomy of g on Z and gij on Xij are

different Z2 � SU(4) subgroups of Spin(7), which together generate the whole group

Spin(7). Thus they combine to give metrics g̃t on M with Hol(g̃t) = Spin(7).

The author was able in [187] and [188, Ch. 15] to construct compact 8-manifolds

with holonomy Spin(7) realizing 14 distinct sets of Betti numbers, which are given in

Table 11.2. They satisfy 0 � b2 � 4, 0 � b3 � 33 and 200 � b4 � 11 662. None of

them also occur in Table 11.1. Probably there are many other examples which can be

produced by similar methods.

Comparing these Betti numbers with those of Table 11.1 we see that in these ex-

amples generally b2 is smaller and b4 much larger. Given that the two constructions of
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Table 11.2 Betti numbers (b2, b3, b4) of compact Spin(7)-manifolds

from resolving Calabi–Yau 4-orbifolds divided by Z2

(0, 0, 910) (0, 0, 1294) (0, 0, 2446) (0, 0, 4750) (0, 0, 11 662)

(0, 6, 3730) (0, 33, 208) (1, 0, 908) (1, 0, 1292) (1, 0, 2444)

(1, 33, 206) (2, 33, 204) (3, 33, 202) (4, 33, 200)

compact 8-manifolds with holonomy Spin(7) that we know appear to produce sets of

8-manifolds with rather different ‘geography’, it is tempting to speculate that the set

of all compact 8-manifolds with holonomy Spin(7) may be rather large, and that those

constructed so far are a small sample with atypical behaviour.

11.7 Further reading on the exceptional holonomy groups

Four landmarks in the history of the exceptional holonomy groups are Berger’s classi-

fication of holonomy groups in 1955, Bryant’s proof of the local existence of metrics

with exceptional holonomy in 1984, the author’s construction of compact manifolds

with exceptional holonomy in 1994, and the development of M-theory around 1995,

which made string theorists very interested in G2-manifolds, particularly from about

2001. We use these to divide our list of papers into four periods.

• Early papers, 1955–1984. Bonan [35] wrote down the G2-invariant forms ϕ0, ∗ϕ0

of (11.1) and (11.2) and the Spin(7)-invariant 4-form Ω0 of (11.12), and showed

that metrics with holonomy G2 and Spin(7) are Ricci-flat.

Fernández and Gray [106] took a G2-structure (ϕ, g) on a 7-manifold, and de-

composed ∇ϕ into irreducible pieces. Similarly, Fernández [103] took a Spin(7)-
structure (Ω, g) on an 8-manifold, and decomposed ∇Ω into irreducible pieces.

• Existence of exceptional holonomy metrics, 1984–1994. In a very significant

paper, Bryant [55,56] used the theory of exterior differential systems to prove that

there exist many metrics with holonomy G2 and Spin(7) on small balls in R
7 and

R
8. He also gave some explicit, noncomplete examples of such metrics.

Later, Bryant and Salamon [64] wrote down explicit, complete metrics with holon-

omy G2 and Spin(7) on noncompact manifolds, which are the total spaces of vec-

tor bundles over manifolds of dimension 3 and 4, and have large symmetry groups.

The same metrics were also found by Gibbons et al. [125].

In 1986–7 Fernández and others [77, 104, 105, 107] gave examples of compact 7-

manifolds M with G2-structures (ϕ, g) such that either dϕ = 0 or d∗ϕ = 0, but

not both. Simple examples with d∗ϕ = 0 are also provided by real hypersurfaces

in O = R8. Bryant’s paper [61] gives local results on G2-structures which date

from this period, though not published until 2003.

• Compact manifolds with exceptional holonomy, 1994–2000. In 1994–5 the au-

thor constructed examples of compact 7-manifolds with holonomy G2 [183, 184],

and of compact 8-manifolds with holonomy Spin(7) [185]. The constructions were

made more powerful and many more examples constructed in the author’s mono-

graph [188]. Kovalev [223] gave a second construction of compact 7-manifolds

with holonomy G2. All this is described in §11.3 and §11.6.
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At about the same time, physicists working in string theory became interested in

using compact manifolds with holonomy G2 and Spin(7) as vacua for string the-

ories. Some papers on this are Papadopoulos and Townsend [276], Shatashvili and

Vafa [310, 311], Acharya [1–3], Figueroa-O’Farrill [108] and Vafa [331].

Hitchin [163] introduced an attractive point of view on G2-structures, which has

been influential in string theory, as in [96]. Given a compact oriented 7-manifold

M , he considered the infinite-dimensional manifold Pα of closed 3-forms ϕ on M
with [ϕ] = α ∈ H3(M, R) which are positive in the sense of §11.1, and so extend

to a G2-structure (ϕ, g). He defined a functional Φ : Pα → R taking ϕ to the

volume of M with respect to g, and showed that ϕ is a stationary point of Φ if and

only if (ϕ, g) is torsion-free. This led to an alternative proof of Theorem 11.2.8.

• M-theory and explicit metrics with exceptional holonomy, 2001–. String the-

orists constructed and studied many new examples of explicit metrics on non-

compact manifolds with exceptional holonomy, generally of cohomogeneity one

or two, in a similar way to Bryant and Salamon [64]. A lot of these are nonsin-

gular and complete, and asymptotically conical or asymptotically locally conical.

For examples with holonomy G2 see Brandhuber et al. [47, 48], Chong et al. [76]

and Cvetič et al. [81–83, 85, 86, 89], and for examples with holonomy Spin(7)
see Cvetič et al. [82, 84, 88, 89], Gukov and Sparks [144] and Kanno and Yasui

[208, 209]. Cvetič et al. [87] give a review of this area.

Some other significant string theory papers from this period are Gukov, Yau and

Zaslow [145] on fibrations of G2-manifolds by coassociative 4-folds, Atiyah and

Witten [14] and Acharya and Gukov [5] on the physics of singularities of manifolds

with exceptional holonomy, and Dijkgraaf et al. [96] on topological M-theory.

Here are some papers on other topics related to exceptional holonomy:

• Gauge theory over compact manifolds with exceptional holonomy. Let (Ω, g)
be a Spin(7)-structure on a compact 8-manifold M , let E be a vector bundle over

M , and A a connection on E with curvature FA. We call A a Spin(7) instanton

if π7(FA) = 0. Such connections occur in finite-dimensional moduli spaces, and

have many properties in common with instantons on 4-manifolds.

Spin(7) instantons have been studied from the mathematical point of view by

Thomas [322], Lewis [243] who constructs nontrivial examples of Spin(7) instan-

tons over compact 8-manifolds with holonomy Spin(7), Reyes Carrión [287], Tian

[327], Tao and Tian [318], and Brendle [50], and from the string theory point of

view by Acharya et al. [6] and Baulieu et al. [23].

One can also consider connections A on vector bundles E over a compact G2-

manifold with π7(FA) = 0, which we call G2 instantons. But the expected dimen-

sion of moduli spaces of G2 instantons is always zero, which may make them less

interesting than the Spin(7) case.

• Nearly parallel G2-structures. These are G2-structures (ϕ, g) on M which have a

Killing spinor, rather than a constant spinor. They satisfy dϕ=−8λ∗ϕ and d∗ϕ=
0, for some λ ∈ R, and are Einstein with nonnegative scalar curvature 168λ2.

Such manifolds (M, ϕ, g) include 3-Sasakian 7-manifolds, Einstein–Sasakian 7-

manifolds, and G2-manifolds. For more details see Friedrich et al. [113].
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Associative, coassociative and
Cayley submanifolds

In Chapter 4 we defined calibrations and calibrated submanifolds. We now apply these

ideas to manifolds with exceptional holonomy. There are two types of calibrated sub-

manifolds in 7-manifolds with holonomy G2, called associative 3-folds and coassocia-

tive 4-folds, and one in 8-manifolds with holonomy Spin(7), called Cayley 4-folds.

Coassociative 4-folds can be defined in terms of the vanishing of a closed form.

This implies that they behave rather like special Lagrangian submanifolds in Chapter

8, so that moduli spaces of compact coassociative 4-folds are smooth, for instance.

Associative 3-folds and Cayley 4-folds cannot be so defined, and this gives their theories

a slightly different character. We discuss associative 3-folds and coassociative 4-folds

in §12.1–§12.3, and Cayley 4-folds in §12.4–§12.5.

12.1 Associative 3-folds and coassociative 4-folds in R7

Here is the basic definition.

Definition 12.1.1 Let R7 have coordinates (x1, . . . , x7), and as in Definition 11.1.1

define a metric g0 = dx2
1 + · · · + dx2

7, a 3-form ϕ0 and a 4-form ∗ϕ0 on R
7 by

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356,

∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247,
(12.1)

where dxij...l is short for dxi∧dxj ∧· · ·∧dxl. By Harvey and Lawson [151, Ths IV.1.4

and IV.1.16], ϕ0 and ∗ϕ0 have comass one and so are calibrations on R
7. We define an

associative 3-fold in R7 to be an oriented 3-dimensional submanifold of R7 calibrated

with respect to ϕ0, and a coassociative 4-fold in R
7 to be an oriented 4-dimensional

submanifold of R
7 calibrated with respect to ∗ϕ0.

As in §4.3, one of the first steps towards understanding a calibration on Rn is to

determine the family of oriented k-planes in R
n that it calibrates. Define an associative

3-plane in R
7 to be an oriented 3-plane U in R

7 with ϕ0|U = volU , and a coassociative

4-plane in R7 to be an oriented 4-plane V in R7 with ∗ϕ0|V = volV . Write Fϕ0,F∗ϕ0

for the families of associative 3- and coassociative 4-planes, which are subsets of the

oriented Grassmannians Gr+(3, R7) and Gr+(4, R7), respectively.

254
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We wish to describe Fϕ0 and F∗ϕ0 . Examples of an associative 3-plane U and a

coassociative 4-plane V are

U =
{
(x1, x2, x3, 0, 0, 0, 0) : x1, x2, x3 ∈ R

}
⊂ R

7, (12.2)

V =
{
(0, 0, 0, x4, x5, x6, x7) : x4, . . . , x7 ∈ R

}
⊂ R7, (12.3)

with the obvious orientations. These form an orthogonal splitting R
7 = U ⊕ V , which

illustrates a general principle: as in §4.3, an oriented 3-plane W in R
7 is calibrated with

respect to ϕ0 if and only if the orthogonal oriented 4-plane W⊥ is calibrated w.r.t. ∗ϕ0.

So taking perpendicular subspaces yields a bijection between Fϕ0 and F∗ϕ0 .

The cross product × : R
7×R

7 → R
7 provides a good way to understand associative

3-planes. For u,v ∈ R7 define

(u × v)d = uavb(ϕ0)abc(g0)cd, (12.4)

using index notation, where (g0)cd is the inverse of (g0)cd. Then u × v is orthogonal

to u,v with |u × v|2 = |u|2|v|2 − (u · v)2. Let W be an oriented 3-plane in R7, and

u1,u2,u3 an oriented orthonormal basis of W . Then a calculation shows that ϕ0|W =(
(u1 × u2) · u3

)
volW . Therefore W is calibrated with respect to ϕ0, that is, W is

associative, if and only if u3 = u1 × u2.

This implies that if u,v are linearly independent in R
7 then the 2-plane 〈u,v〉R is

contained in a unique associative 3-plane, which has oriented basis u,v,u × v. Now

G2 acts transitively on the Grassmannian Gr(2, R7) of 2-planes in R
7, so G2 must act

transitively on Fϕ0 . Thus Fϕ0 is the orbit of U in (12.2) under G2. The subgroup of G2

fixing U is SO(4). So we deduce [151, Th. IV.1.8]:

Proposition 12.1.2 The families Fϕ0 of associative 3-planes in R
7 and F∗ϕ0 of coas-

sociative 4-planes in R7 are both isomorphic to G2/ SO(4), with dimension 8.

From (12.1) and (12.3) we see that ϕ0|V = 0. Therefore ϕ0|W = 0 for every

coassociative 4-plane W in R7, since W = γ · V for some γ ∈ G2, and ϕ0 is G2-

invariant. It follows from [151, Cor. IV.1.20] that the converse is also true, which proves:

Proposition 12.1.3 A 4-plane W in R7 is coassociative, with some unique orientation,

if and only if ϕ0|W ≡ 0.

This implies an analogue of Proposition 8.1.2 for coassociative 4-folds.

Proposition 12.1.4 Let L be a real 4-dimensional submanifold of R
7. Then L admits

an orientation making it into a coassociative 4-fold in R
7 if and only if ϕ0|L ≡ 0.

This can be regarded as an alternative definition of coassociative 4-folds. Describing

coassociative 4-folds as 4-submanifolds L in R
7 with ϕ0|L ≡ 0 is often more useful,

and easier to work with, than saying they are calibrated with respect to ∗ϕ0. As associa-

tive and coassociative submanifolds in R
7 are calibrated, they are minimal. Harvey and

Lawson [151, Cors IV.2.5 & IV.2.10] use this to show that they are real analytic:

Theorem 12.1.5 Let L be an associative 3-fold or a coassociative 4-fold in R
7. Then

L is real analytic wherever it is nonsingular.
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They also use exterior differential systems to prove [151, Th.s IV.4.1 & IV.4.6]:

Theorem 12.1.6 Let P be a real analytic 2-submanifold in R
7. Then there exists a

locally unique associative 3-fold L in R7 containing P .

Theorem 12.1.7 Let P be a real analytic 3-submanifold in R
7 with ϕ0|P ≡ 0. Then

there exists a locally unique coassociative 4-fold L in R7 containing P .

The condition ϕ0|P ≡ 0 is necessary by Proposition 12.1.4. One can use the same

methods to show that associative 3-folds in R7 ‘depend on 4 functions of 2 variables’,

and coassociative 4-folds in R
7 ‘depend on 2 functions of 3 variables’, in the sense of

exterior differential systems. Thus, there are very many associative and coassociative

submanifolds in R7.

12.1.1 Associative 3-folds as graphs, and local deformations
In a similar way to SL m-folds in §8.1.2, we can write a class of associative 3-folds in

R
7 as graphs. It is convenient to do this using the quaternions H. Let f : R

3 → H be a

smooth function, written

f(x1, x2, x3) = f0(x1, x2, x3) + f1(x1, x2, x3)i + f2(x1, x2, x3)j + f3(x1, x2, x3)k.

Define a 3-submanifold L in R
7, the graph of f , by

L =
{(

x1, x2, x3, f0(x1, x2, x3), . . . , f3(x1, x2, x3)
)

: xj ∈ R
}
.

Then Harvey and Lawson [151, §IV.2.A] calculate the conditions on f for L to be asso-

ciative. Using G2 forms as in (12.1) (different to those of [151]), the equation is

i
∂f

∂x1
+ j

∂f

∂x2
− k

∂f

∂x3
= C
( ∂f

∂x1
,

∂f

∂x2
,

∂f

∂x3

)
, (12.5)

where C : H×H×H → H is a trilinear cross product. When f , df are small, so that L
approximates the associative 3-plane U of (12.2), eqn (12.5) reduces approximately to

the linear equation i ∂f
∂x1

+ j ∂f
∂x2

− k ∂f
∂x3

= 0, which is equivalent to the Dirac equation

on R
3, and is elliptic. One can also show (12.5) is a nonlinear elliptic equation.

We can use this to discuss small deformations of associative 3-folds in R
7, which

are the local model for deformations of associative 3-folds in a G2-manifold (M, ϕ, g).
The family Gr+(3, R7) of all oriented 3-planes in R

7 has dimension 12, and the family

Fϕ0 of associative 3-planes has dimension 8 by Proposition 12.1.2. Thus the associative

3-planes are of codimension 4 in the set of all 3-planes. Therefore the condition for a

3-submanifold L in R
7 to be associative is 4 real equations on each tangent space.

The freedom to vary L is the sections of its normal bundle in R7, which is 4 real

functions. Thus, the deformation problem for associative 3-folds involves 4 equations

on 4 functions, so it is a determined problem. This corresponds to the fact that (12.5)

is 4 equations on 4 functions. As (12.5) is elliptic, we see that deformations of associa-

tive 3-folds are controlled by a first-order nonlinear elliptic p.d.e., which makes their

deformation theory fairly well behaved.
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12.1.2 Coassociative 4-folds as graphs, and local deformations
In a similar way, let f : H → R

3 be a smooth function, written

f(x0 + x1i + x2j + x3k) = (f1, f2, f3)(x0 + x1i + x2j + x3k).

Define a 4-submanifold N in R
7, the graph of f , by

N =
{(

f1(x0 + x1i + x2j + x3k), f2(x0 + x1i + x2j + x3k),

f3(x0 + x1i + x2j + x3k), x0, . . . , x3

)
: xj ∈ R

}
.

Then Harvey and Lawson [151, §IV.2.B] calculate the conditions on f for N to be

coassociative. Using G2 forms as in (12.1) (different to those of [151]), the equation is

i∂f1 + j∂f2 − k∂f3 = C(∂f1, ∂f2, ∂f3), (12.6)

where the derivatives ∂fj = ∂fj(x0+x1i+x2j+x3k) are interpreted as functions H →
H, and C is as in (12.5). When f, ∂f are small, so that L approximates the coassociative

4-plane V of (12.3), eqn (12.6) reduces approximately to the linear equation i∂f1 +
j∂f2 − k∂f3 = 0. This is an overdetermined first order linear elliptic equation, and

more generally (12.6) is an overdetermined first order nonlinear elliptic equation.

We now discuss deformations of coassociative 4-folds. The families Gr+(4, R7) of

oriented 4-planes in R
7 and F∗ϕ0 of coassociative 4-planes in R

7 have dimensions 12

and 8, so F∗ϕ0 has codimension 4 in Gr+(4, R7). Thus the condition for a 4-fold L in

R
7 to be coassociative is 4 equations on each tangent space. The freedom to vary L is the

sections of its normal bundle in R
7, which is 3 real functions. Hence, the deformation

problem for coassociative 4-folds involves 4 equations on 3 functions, as in (12.6), and

is controlled by an overdetermined first order nonlinear elliptic p.d.e.

Now overdetermined elliptic equations have good regularity theory, but very poor

existence theory. That is, solutions of overdetermined elliptic equations tend to be very

smooth (confirming Theorem 12.1.5), but such equations tend to have few solutions or

none at all, even locally. So we would expect there to exist few coassociative 4-folds in

R
7, even locally, which contradicts our claim before §12.1.1 that coassociative 4-folds

in R
7 ‘depend on 2 functions of 3 variables’ and are very abundant.

The explanation, which can be made precise using exterior differential systems, is

that the closure dϕ0 = 0 of ϕ0 acts as a kind of integrability condition for the existence

of many coassociative 4-folds locally, just as the integrability of an almost complex

structure ensures the existence of many complex submanifolds of dimension k > 1
locally. If (ϕ, g) is a G2-structure on R

7 with dϕ �≡ 0 and L is a 4-fold in R
7 then

ϕ|L ≡ 0 implies dϕ|L ≡ 0, which is an extra 1 equation on each tangent space of

L. But dϕ0|L ≡ 0 holds automatically as dϕ0 ≡ 0, and this automatic 1 equation

compensates for the difference 4 − 3 between the 4 real equations and 3 real functions,

making the problem act like a determined elliptic equation.

An important conclusion is that in any generalization of coassociative 4-folds to

some class of ‘almost G2-manifolds’, as we generalized special Lagrangian m-folds to

almost Calabi–Yau m-folds in §8.4, we should require the G2-structure (ϕ, g) to satisfy

dϕ = 0 (or more generally dϕ = α∧ϕ for some closed 1-form α). Otherwise there will

be very few coassociative 4-folds even locally, and the theory will not be interesting.



258 ASSOCIATIVE, COASSOCIATIVE AND CAYLEY SUBMANIFOLDS

12.1.3 Cones and asymptotically conical associative and coassociative k-folds
In a similar way to the special Lagrangian case of §8.3, one can study conical and

asymptotically conical associative 3-folds and coassociative 4-folds in R
7.

Definition 12.1.8 A closed, generally singular associative 3-fold or coassociative 4-

fold C in R7 is called a cone if C = tC for all t > 0. The vertex 0 of C is always a

singular point unless C is a linear associative R
3 or coassociative R

4. We call the cone

C two-sided if C = −C, and one-sided otherwise.

Suppose C′ = C \ {0} is nonsingular. Write S6 for the unit sphere in R
7. Then the

link Σ = C∩S6 of C is a compact, nonsingular submanifold of S6, of dimension 2 if C
is associative and 3 if C is coassociative. Define ι : Σ × (0,∞) → R7 by ι(σ, r) = rσ.

Then ι : Σ × (0,∞) → C′ is a diffeomorphism.

A 3-dimensional cone C in R
7 is associative if and only if its link Σ is a pseudo-

holomorphic curve in S6, with respect to a certain non-integrable almost complex struc-

ture. So papers about pseudoholomorphic curves in S6 are effectively about associa-

tive cones. Curvature properties of pseudoholomorphic curves in S6 are studied by

Hashimoto [153] and Sekigawa [307]. In the same way, a 4-dimensional cone C in R
7

is coassociative if and only if its link Σ is special Lagrangian with respect to a certain

SU(3)-structure with torsion on S6, but this notation is rarely used.

Definition 12.1.9 Let C be an associative or coassociative cone in R
7 with C \ {0}

nonsingular, and define C′, Σ, ι as above. Suppose L is a closed, nonsingular associative

3-fold or coassociative 4-fold in R7. We call L Asymptotically Conical (AC) with rate

λ < 1 and cone C if there exists a compact subset K ⊂ L and a diffeomorphism

φ : Σ × (T,∞) → L \ K for some T > 0, such that∣∣∇k(φ − ι)
∣∣ = O(rλ−k) as r → ∞ for k = 0, 1. (12.7)

Here ∇, | . | are computed using the cone metric ι∗(g0) on Σ × (T,∞).

This is modelled on Definition 8.3.7, but with a different convention on the rate λ:

here λ < 1 and |φ − ι| = O(rλ), but in §8.3 we chose λ < 2 and |φ − ι| = O(rλ−1).
This is because in §8.3 we worked in terms of a real function f with φ − ι ≈ df and

f = O(rλ), but here we cannot do that.

Definition 12.1.9 is written to be as weak as possible, but it is equivalent to a stronger

definition. One can show that if Definition 12.1.9 holds then making K, T larger if

necessary, there exists a unique diffeomorphism φ′ : Σ × (T,∞) → L \ K with

(φ′ − ι)(σ, r) ⊥ Tι(σ,r)C in R7 for all (σ, r) ∈ Σ × (T,∞),

as in (8.19), and this is the natural choice for φ. Furthermore, using elliptic regularity

of the associative or coassociative equations and analysis on manifolds with ends as in

Lockhart [245], one can show that∣∣∇k(φ′ − ι)
∣∣ = O(rλ−k) as r → ∞ for all k = 0, 1, 2, . . ..

Thus it does not really matter how many derivatives we require (12.7) to hold for, any

number from 1 to ∞ gives the same classes of AC (co)associative manifolds.
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As in Chapter 8, (co)associative cones are interesting as local models for singulari-

ties of (co)associative manifolds in G2-manifolds, and AC (co)associative submanifolds

are interesting as local models for how to desingularize singular (co)associative sub-

manifolds in G2-manifolds, and also in themselves as attractive distinguished classes of

calibrated submanifolds in R
7.

Lotay [247] develops a coassociative analogue of the deformation theory for AC SL

m-folds, Theorem 8.3.10 above. Here is his main result [247, Th. 7.1 & §8].

Theorem 12.1.10 Let C be a coassociative cone in R
7 with C \ {0} nonsingular, and

define Σ as above. For µ ∈ R define Dµ to be the finite-dimensional vector space of

(α, β) ∈ C∞(Λ2T ∗Σ ⊕ Λ3T ∗Σ) satisfying dα = µβ and d(∗α) + d∗β = (µ + 2)α.

Suppose λ ∈ (−2, 1) with Dλ = 0, which holds for all but finitely many λ ∈ (−2, 1).
Let L be an asymptotically conical coassociative 4-fold in R

7 with cone C and rate

λ. Write M λ
L for the moduli space of asymptotically conical coassociative 4-folds in

R7 with cone C and rate λ isotopic to L. Then M λ
L

is a smooth manifold of computable

dimension. When λ ∈ (−2, 0) it satisfies

dimM λ
L = b0(L)− b1(L) + b2

+(L) + b3(L)− b0(Σ) + b1(Σ) +
∑

µ∈(−2,λ):Dµ �=0

dimDµ. (12.8)

Here bk(L), bk(Σ) are the usual Betti numbers of L, Σ, but b2
+(L) is defined as fol-

lows. Write I for the image of the projection H2
cs(L, R) → H2(L, R) from compactly-

supported to ordinary de Rham cohomology. Then the intersection form on H2
cs(L, R)

descends to a nondegenerate real quadratic form on I , and b2
+(L) is the dimension of a

maximal subspace of I on which this form is positive definite.

This is a noncompact analogue of McLean’s Theorem on deformations of compact

coassociative 4-folds in G2-manifolds, Theorem 12.3.4 below, proved using the theory

of analysis on manifolds with cylindrical ends developed by Lockhart and McOwen

[245]. To get a feel for Theorem 12.1.10, readers are advised to first read §12.3.1 on

McLean’s Theorem and its proof.

So far as the author knows, noone has yet developed a deformation theory for AC

associative 3-folds in R7. As for compact associative 3-folds in §12.3.2 below, there will

be obstruction spaces in this theory, so moduli spaces of such 3-folds will not generally

be smooth. However, in contrast to the compact case, because of analytic contributions

similar to the dimDµ terms in (12.8), the virtual dimension of these moduli spaces

can be positive. So the asymptotically conical case may be more interesting than the

compact case, as we expect to find moduli spaces of AC associative 3-folds which are

singular, but smooth of positive, computable dimension at generic points.

Constructions are known which yield very many examples of conical and asymptot-

ically conical associative 3-folds and coassociative 4-folds (in particular, ruled AC as-

sociative 3-folds and 2-ruled coassociative cones and AC coassociative 4-folds). These

will be discussed in §12.2.

12.2 Constructing associative and coassociative k-folds in R7

We now review methods of constructing examples of associative 3-folds and coasso-

ciative 4-folds in R
7, in a similar way to §8.2. Examples in other explicit noncompact
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G2-manifolds, such as those of Bryant and Salamon [64], may also be constructed using

similar techniques; see for instance Karigiannis and Min-Oo [212].

12.2.1 Reduction to lower-dimensional calibrated geometries
Write R

7 = R⊕C
3, with coordinates

(
x1, (x2 + ix3, x4 + ix5, x6 + ix7)

)
. Then as in

Proposition 11.1.9 we have ϕ0 = dx1 ∧ ω + Re θ and ∗ϕ0 = 1
2ω ∧ ω − dx1 ∧ Im θ,

where ω, θ are the Kähler form and holomorphic volume on C
3 given in (7.1). It follows

easily that:

• If Σ is a holomorphic curve in C3 (and so calibrated with respect to ω) then R×Σ
is an associative 3-fold in R

7.

• If x ∈ R and L is a special Lagrangian 3-fold in C3 (and so calibrated with respect

to Re Ω) then {x} × L is an associative 3-fold in R
7.

• If x ∈ R and S is a holomorphic surface in C3 (and so calibrated with respect to
1
2ω ∧ ω) then {x} × S is a coassociative 4-fold in R

7.

• If L is a special Lagrangian 3-fold in C
3 with phase −i (and so calibrated with

respect to − Im Ω) then R × L is a coassociative 4-fold in R7.

Enormous numbers of examples of holomorphic curves and surfaces in C3 may be

produced using algebraic geometry. Many examples of SL 3-folds in C
3 may be found

as in §8.2. Together these give many examples of associative 3-folds and coassociative

4-folds in R7, including singular examples which are interesting as local models for

singular associative 3-folds and coassociative 4-folds in G2-manifolds.

These enable us to draw some useful conclusions. Roughly speaking, anything that

goes wrong for holomorphic curves or surfaces or SL 3-folds will also go wrong for

associative 3-folds or coassociative 4-folds. For instance, as singularities of SL 3-folds

need not be real analytic [151, p. 97], singularities of associative 3-folds and coasso-

ciative 4-folds need not be real analytic either. But in general, we regard associative

3-folds and coassociative 4-folds in R
7 as more interesting if they are not derived from

lower-dimensional calibrated geometries.

12.2.2 Symmetry group and evolution equation constructions
As for the special Lagrangian case in §8.2.1, the simplest way to find nontrivial exam-

ples of associative or coassociative submanifolds L in R
7 is to suppose L is preserved

by a Lie subgroup G of the group G2 �R
7 of automorphisms of R

7 preserving (ϕ0, g0).
If G acts with cohomogeneity one on L then the (co)associative condition reduces to a

first-order p.d.e. on G-orbits of the appropriate dimension, which can often be solved

explicitly. One can also study associative or coassociative cones C in R7 preserved by a

Lie subgroup G of G2. This is easiest when G acts transitively or with cohomogeneity

one on the link Σ = C ∩ S6 of C.

Here are some papers using symmetry methods to study associative cones in R7,

often expressed in terms of pseudoholomorphic curves in S6. Borůvka [39] finds a

pseudoholomorphicS2 orbit of an SO(3) subgroup of G2 acting irreducibly on R
7. Ejiri

[101, §5–§6] classifies pseudoholomorphic S2’s in S6 invariant under a U(1) subgroup

of G2. Kong, Terng and Wang [218, §6] give an integrable systems construction of

all associative cones in R
7 invariant under some U(1) subgroup of G2. The authors
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do not address the periodicity question, and so determine whether there exist many

U(1)-invariant T 2-cones, but this should be a solvable problem. Lotay [250, §4] also

studies U(1)-invariant associative cones by more elementary methods; he constructs

[250, Ths 4.3 and 4.4] a 4-dimensional family of very explicit U(1)-invariant associative

T 2-cones.

Constructions of non-conical associative 3-folds in R7 using analogues of the ideas

of §8.2.1–§8.2.3 are given by Lotay [248] and [250, Th. 4.7].

For coassociative 4-folds there are fewer papers. Harvey and Lawson [151, §IV.3]

give examples of coassociative 4-folds in R7 invariant under SU(2), acting on R7 ∼=
R

3 ⊕ C
2 as SO(3) = SU(2)/{±1} on R

3 and SU(2) on C
2. Mashimo [255] classifies

coassociative cones C in R
7 with C ∩ S6 an orbit of a Lie subgroup of G2.

12.2.3 Integrable systems approaches to studying associative cones in R
7

Bryant [54, §4] studies compact Riemann surfaces Σ in S6 pseudoholomorphic with

respect to the almost complex structure J on S6 induced by its inclusion in Im O ∼= R7.

Then the cone on Σ is an associative cone on R
7. He shows that any Σ has a torsion τ ,

a holomorphic analogue of the Serret–Frenet torsion of real curves in R
3.

The torsion τ is a section of a holomorphic line bundle on Σ, and τ = 0 if Σ ∼= CP1.

If τ = 0 then Σ is the projection to S6 = G2/ SU(3) of a holomorphic curve Σ̃ in

the projective complex manifold G2/ U(2). This reduces the problem of understanding

null-torsion associative cones in R7 to that of finding holomorphic curves Σ̃ in G2/ U(2)
satisfying a horizontality condition, which is a problem in complex algebraic geometry.

In integrable systems language, null torsion curves are called superminimal.

Bryant also shows that every Riemann surface Σ may be embedded in S6 with null

torsion in infinitely many ways, of arbitrarily high degree. This shows that there are

many associative cones in R7, on oriented surfaces of every genus. These provide many

local models for singularities of associative 3-folds.

Perhaps the simplest nontrivial example of a pseudoholomorphic curve Σ in S6

with null torsion is the Borůvka sphere [39], which is an S2 orbit of an SO(3) subgroup

of G2 acting irreducibly on R
7. Other examples are given by Ejiri [101, §5–§6], who

classifies pseudoholomorphic S2’s in S6 invariant under a U(1) subgroup of G2, and

Sekigawa [307].

Bryant’s paper is one of the first steps in the study of associative cones in R
7 using

the theory of integrable systems. Bolton et al. [33, §6], [34] use integrable systems

methods to prove important results on pseudoholomorphic curves Σ in S6. When Σ
is a torus T 2, they show it is of finite type [33, Cor. 6.4], and so can be classified in

terms of algebro-geometric spectral data, and perhaps even in principle be written down

explicitly. Further results along these lines are given by Kong, Terng and Wang [218].

12.2.4 Ruled associative 3-folds
Motivated by the special Lagrangian case of §8.2.3, Lotay [248, §6] studies ruled asso-

ciative 3-folds L in R
7, that is, associative 3-folds L with a smooth map π : L → Σ to

a 2-manifold Σ such that each fibre π−1(σ) is an affine line R in R7.

Actually, to allow singularities in L we need a more subtle idea: we take L to be a

smooth 3-manifold with a smooth map ι : L → R
7 which is generically an immersion,
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and whose image is associative where it is nonsingular, such that ι
(
π−1(σ)

)
is an affine

line in R
7 for each σ ∈ Σ. Then ι(L) can be singular at the image of points where ι is

not an immersion. But we shall neglect this issue. With this convention, any two-sided

associative cone is ruled, as we shall shortly explain.

From each ruled associative 3-fold L we can construct a unique, 2-sided cone C
with ruling π0 : C → Σ, such that π−1

0 (σ) is the real line through 0 in R7 parallel to

π−1(σ) for all σ ∈ Σ. It can happen that C collapses to a 1 or 2 dimensional cone. But

if C is 3-dimensional then it is associative where it is nonsingular. If also L and C \ {0}
are nonsingular then L is asymptotically conical , with cone C, and rate 0.

Let C be a two-sided associative cone with isolated singularity at 0. Define Σ̃ = C∩
S6. Then Σ̃ is an oriented Riemann surface. Since C is two-sided, the map −1 : S6 →
S6 restricts to an orientation-reversing involution −1 : Σ̃ → Σ̃. Define Σ = Σ̃/{±1}, a

surface with a conformal structure. We can recover Σ̃ from Σ as the set of points (x, o)
for x ∈ Σ and o an orientation on TxΣ. Let C̃ be the real blow-up of C at 0, with

blow-up map ι : C̃ → C. It is a nonsingular 3-manifold, with ι−1(0) ∼= Σ. There is a

natural smooth projection π0 : C̃ → Σ such that ι ◦ π−1
0 ({±σ}) = {rσ : r ∈ R} for all

σ ∈ Σ̃. Then C̃, ι,Σ, π0 make up a ruled associative 3-fold.

Lotay [248, §6] shows that the ruled associative 3-folds L with cone C correspond to

solutions of a linear equation on Σ, and so form a finite-dimensional vector space. These

solutions can be interpreted as holomorphic sections of TS6|Σ̃ which are invariant under

−1 : Σ̃ → Σ̃, and so push down to Σ. Holomorphic vector fields on Σ̃ automatically

yield holomorphic sections of TS6|Σ̃. Let v be a holomorphic vector field on Σ̃ invariant

under −1. Then Lotay [248, Th. 6.9] constructs a ruled associative 3-fold Lv in R7. For

generically nonzero v this should be nonsingular, and is asymptotically conical with

cone C and rate −1.

Requiring Σ̃ to have a generically nonzero holomorphic vector field forces each

component of Σ̃ to be S2 or T 2. For Lv connected, there are four possibilities:

(a) Σ is S2 and Σ̃ is two S2 exchanged by −1, the space of −1-invariant holomorphic

vector fields v on Σ̃ is R
6, and Lv is diffeomorphic to S2 × R for generic v.

(b) Σ is RP2 and Σ̃ is S2, the space of allowed v is R3, and Lv is diffeomorphic to the

canonical bundle of RP
2 for generic v.

(c) Σ is T 2 and Σ̃ is two T 2 exchanged by −1, the space of allowed v is R
2, and Lv

is diffeomorphic to T 2 × R for generic v.

(d) Σ is the Klein bottle K and Σ̃ is T 2, the space of allowed v is R, and Lv is diffeo-

morphic to the canonical bundle of K for generic v.

Using the material of [110, §6], it seems plausible that one could also prove the

existence of nontrivial holomorphic sections of TS6|Σ̃ for pseudoholomorphic curves

Σ̃ in S6 of genus g > 1, and so construct AC associative 3-folds in R
7 asymptotic to

cones on surfaces of every genus. Combined with §12.2.3, these ideas give a way to

construct many asymptotically conical associative 3-folds.

Given any 2-dimensional minimal surface M in R4, Ionel, Karigiannis and Min-Oo

[173, §4.3] construct a vector subbundle E → M with fibre R of the restriction to M of

the trivial bundle Λ2−(R4) → R
4 with fibre R

3, such that the total space of E is a ruled

associative 3-fold in the total space R
7 of Λ2

−(R4).
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12.2.5 2-ruled coassociative 4-folds
A similar theory to §12.2.4 for coassociative 4-folds is developed by Lotay [249] and

Fox [110]. A 2-ruled coassociative 4-fold L is a coassociative 4-fold L in R7 with a

smooth map π : L → Σ to a 2-manifold Σ such that each fibre π−1(σ) is an affine 2-

plane R2 in R7. Actually, to include singularities we allow L to be a smooth 4-manifold

with a smooth map ι : L → R
7 which is generically an immersion, and whose image is

coassociative where it is nonsingular, such that ι
(
π−1(σ)

)
is an affine 2-plane R

2 in R
7

for each σ ∈ Σ. But we neglect this point.

From each 2-ruled coassociative 4-fold L we can construct a unique, 2-ruled cone C
with 2-ruling π0 : C → Σ, such that π−1

0 (σ) is the 2-plane R
2 through 0 in R

7 parallel

to π−1(σ) for all σ ∈ Σ. It can happen that C collapses to a 2 or 3 dimensional cone.

But if C is 4-dimensional then it is coassociative where it is nonsingular. If also L and

C \ {0} are nonsingular then L is asymptotically conical, with cone C, and rate 0.

From [249, §4], the 2-ruled coassociative 4-folds L asymptotic to a given 2-ruled

coassociative cone C with isolated singularity at 0 correspond to solutions of a linear

equation on Σ, and so form a finite-dimensional vector space. Here Σ has the structure of

a Riemann surface (or at least of a conformal 2-manifold, since it may not be orientable),

and solutions of the linear equation can be roughly interpreted as holomorphic sections

of a vector bundle over Σ with fibre C2. When L is in the flat gauge in the sense of

[249, §4.1], by [249, Th. 4.10], holomorphic vector fields v on Σ give solutions of

the equation. Thus if Σ is S2, RP2, T 2, or the Klein bottle K, as in §12.2.4 we can

construct 2-ruled coassociative 4-folds Lv, which should be nonsingular for generic v,

and asymptotically conical with cone C and rate −1.

Fox [110] produces a beautiful correspondence between associative cones and 2-

ruled coassociative cones. The basic idea is this. Let CΣ be a 2-ruled coassociative cone

with 2-ruling π : CΣ → Σ, for Σ an oriented 2-manifold. Construct a map φ : Σ → S6

as follows. For σ ∈ Σ, π−1(σ) is a vector space R2 ⊂ R7, with orientation determined

by the orientations of CΣ and Σ. Let v1,v2 be an oriented orthonormal basis of π−1(σ)
and define φ(σ) = v1 × v2, using the cross product of (12.4). Then the image of the

map Σ × [0,∞) → R
7 given by (σ, r) �→ rφ(σ) is an associative cone AΣ in R

7.

The extraordinary thing is that this map CΣ �→ AΣ admits a right inverse. That is,

for any associative cone AΣ, Fox constructs a preferred 2-ruled coassociative cone CΣ

yielding AΣ under the above construction. There may also be other C′
Σ yielding AΣ,

which correspond to holomorphic sections of a certain CP
2-bundle over Σ.

Fox [110, §9] also constructs a family of non-2-ruled, non-conical coassociative 4-

folds in R
7 from each 2-ruled coassociative cone. These are generally asymptotically

conical with rate − 3
2 , and Fox’s method also yields a new, non-2-ruled coassociative

cone from each 2-ruled coassociative cone. Combined with the material of §12.2.3,

these ideas give ways of constructing very many coassociative cones and asymptotically

conical coassociative 4-folds.

Ionel, Karigiannis and Min-Oo [173] construct 2-ruled coassociative 4-folds in R
7

as the total spaces of vector bundles with fibre R
2 over a minimal surface M in R

4. Their

first attempt [173, §4.2] turns out to yield only complex surfaces in some C3 ⊂ R7, as

in §12.2.1. But their second construction [173, §4.5] (which was intended to find Cayley
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4-folds in R8) produces genuine 2-ruled coassociative 4-folds which do not come from

a lower-dimensional calibration.

12.2.6 Exterior differential systems
As for special Lagrangian submanifolds in §8.2.5, one can apply the theory of exte-

rior differential systems to study coassociative 4-folds in R
7 whose second fundamen-

tal form at a generic point has a prescribed stabilizer group. This has been done by

Daniel Fox [110,111]. Several interesting distinguished classes of coassociative 4-folds

emerge, including a special type of 2-ruled coassociative 4-folds, which explains Fox’s

interest in these. Presumably a similar analysis is possible for associative 3-folds.

12.3 Associative 3- and coassociative 4-folds in G2-manifolds

We now discuss the calibrated submanifolds of G2-manifolds.

Definition 12.3.1 Let (M, ϕ, g) be a G2-manifold, as in §11.1. Then the 3-form ϕ and

4-form ∗ϕ are calibrations on (M, g). We define an associative 3-fold in M to be an

oriented 3-submanifold N of M calibrated with respect to ϕ, and a coassociative 4-fold

in M to be an oriented 4-submanifold N of M calibrated with respect to ∗ϕ.

Proposition 12.1.4 implies an alternative characterization of coassociative 4-folds:

Proposition 12.3.2 Let (M, ϕ, g) be a G2-manifold, and N a 4-dimensional subman-

ifold of M . Then N admits an orientation making it into a coassociative 4-fold if and

only if ϕ|N ≡ 0.

In §8.4 we defined almost Calabi–Yau m-folds, and showed how special Lagrangian

geometry in Calabi–Yau m-folds also works in almost Calabi–Yau m-folds. The follow-

ing is a good analogue of this for G2 geometry.

Definition 12.3.3 An almost G2-manifold (M, ϕ, g) is a 7-manifold M equipped with

a G2-structure (ϕ, g) such that dϕ ≡ 0. Note that we do not require d ∗ ϕ ≡ 0.

Let (M, ϕ, g) be an almost G2-manifold. Then ϕ is a calibration on (M, g), and we

define an associative 3-fold in M to be an oriented 3-submanifold of M calibrated with

respect to ϕ. Following Proposition 12.3.2, define a coassociative 4-fold in M to be a

4-submanifold N in M with ϕ|N ≡ 0. Then N admits a unique orientation such that

∗ϕ|TxN = volTxN for all x ∈ N . This would be the condition for N to be calibrated

w.r.t. ∗ϕ, except that ∗ϕ may not be a calibration as we have not assumed d ∗ ϕ ≡ 0.

The motivation for this comes from the end of §12.1.2, where we saw that dϕ ≡ 0
is a kind of ‘integrability condition’ for the existence of many coassociative 4-folds

locally in a 7-manifold M with G2-structure (ϕ, g). However, the condition d ∗ ϕ ≡ 0
is not used in an important way in associative or coassociative geometry. The main

thing we lose by omitting it is that compact coassociative 4-folds need not be volume-

minimizing, and their volume is not given by a (co)homological formula.

As for almost Calabi–Yau m-folds, there are two main advantages in working with

almost G2-manifolds rather than G2-manifolds. Firstly, examples of (compact) almost

G2-manifolds can be constructed very explicitly, but no explicit compact G2-manifolds
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(M, ϕ, g) are known except finite quotients of (T 7, ϕ0, g0); for other examples we know

only the existence of (ϕ, g), as in §11.3.

Secondly, almost G2-manifolds come in infinite-dimensional families. If (M, ϕ, g)
is an almost G2-manifold and ϕ′ is any closed 3-form with |ϕ′ − ϕ|g sufficiently small

then ϕ′ has stabilizer G2 at every point, since to have stabilizer G2 is an open condition

on 3-forms. Thus there is a unique Riemannian metric g′ on M such that (M, ϕ′, g′) is

also an almost G2-manifold. For instance, we can take ϕ′ = ϕ + dη for any C1-small

2-form η on M . By contrast, Theorem 11.2.8 shows that compact G2-manifolds come

in finite-dimensional families up to diffeomorphism.

Therefore, choosing a generic almost G2-manifold is a powerful thing to do. The

author expects that singularities of compact associative 3-folds and coassociative 4-folds

should be significantly simpler in a generic almost G2-manifold than in an arbitrary

almost G2-manifold, in a similar way to the special Lagrangian case of Conjecture 8.5.9.

12.3.1 Deformation and obstruction theory of coassociative 4-folds
Here is the main result in the deformation theory of compact coassociative 4-folds,

proved by McLean [259, Th. 4.5] in the G2-manifold case. The extension to almost G2-

manifolds is immediate, as McLean does not use d ∗ ϕ ≡ 0. As our sign conventions

for ϕ0, ∗ϕ0 in (12.1) are different to McLean’s, we use self-dual 2-forms in place of

McLean’s anti-self-dual 2-forms.

Theorem 12.3.4 Let (M, ϕ, g) be an (almost) G2-manifold, and N a compact coasso-

ciative 4-fold in M . Then the moduli space M N of coassociative 4-folds isotopic to

N in M is a smooth manifold of dimension b2
+(N).

Sketch proof Suppose for simplicity that N is an embedded submanifold. There is a

natural orthogonal decomposition TM |N = TN ⊕ ν, where ν → N is the normal

bundle of N in M . We shall construct a natural isomorphism ν ∼= Λ2
+T ∗N . Let x ∈ N

and V ∈ νx. Then V ∈ TxM , so V · ϕ|x ∈ Λ2T ∗
xM , and (V · ϕ|x)|TxN ∈ Λ2T ∗

x N .

It turns out that (V · ϕ|x)|TxN actually lies in Λ2
+T ∗

xN , the bundle of self-dual 2-forms

on N , and that the map V �→ (V · ϕ|x)|TxN defines an isomorphism ν
∼=−→Λ2

+T ∗N .

Let T be a small tubular neighbourhood of N in M . Then we can identify T with

a neighbourhood of the zero section in ν, using the exponential map. The isomorphism

ν ∼= Λ2
+T ∗N then identifies T with a neighbourhood U of the zero section in Λ2

+T ∗N .

Let π : T → N be the obvious projection.

Under this identification, submanifolds N ′ in T ⊂ M which are C1-close to N are

identified with the graphs Γ(α) of small smooth sections α of Λ2
+T ∗N lying in U . Write

C∞(U) for the subset of the vector space of smooth self-dual 2-forms C∞(Λ2
+T ∗N) on

N lying in U ⊂ Λ2
+T ∗N . Then for each α ∈ C∞(U) the graph Γ(α) is a 4-submanifold

of U , and so is identified with a 4-submanifold of T . We need to know: which 2-forms

α correspond to coassociative 4-folds Γ(α) in T ?

Well, N ′ is coassociative if ϕ|N ′ ≡ 0. Now π|N ′ : N ′ → N is a diffeomorphism,

so we can push ϕ|N ′ down to N , and regard it as a function of α. That is, we define

P : C∞(U) −→ C∞(Λ3T ∗N) by P (α) = π∗(ϕ|Γ(α)). (12.9)
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Then the moduli space M N is locally isomorphic near N to the set of small self-dual

2-forms α on N with ϕ|Γ(α) ≡ 0, that is, to a neighbourhood of 0 in P−1(0).
To understand the equation P (α) = 0, note that at x ∈ N , P (α)|x depends on the

tangent space to Γ(α) at α|x, and so on α|x and ∇α|x. Thus the functional form of P is

P (α)|x = F
(
x, α|x,∇α|x

)
for x ∈ N ,

where F is a smooth function of its arguments. Hence P (α) = 0 is a nonlinear first

order p.d.e. in α. The linearization dP (0) of P at α = 0 turns out to be

dP (0)(β) = lim
ε→0

(
ε−1P (εβ)

)
= dβ.

Therefore Ker(dP (0)) is the vector space H2
+ of closed self-dual 2-forms β on N ,

which by Hodge theory is a finite-dimensional vector space isomorphic to H2
+(N, R),

with dimension b2
+(N). This is the Zariski tangent space of M N at N , the infinitesimal

deformation space of N as a coassociative 4-fold.

To complete the proof we must show that M N is locally isomorphic to its Zariski

tangent space H2
+, and so is a smooth manifold of dimension b2

+(N). To do this rigor-

ously requires some technical analytic machinery, which is passed over in a few lines in

[259, p. 731]. Here is one way to do it.

As C∞(Λ2
+T ∗N), C∞(Λ3T ∗N) are not Banach spaces, we extend P in (12.9) to

act on Hölder spaces Ck+1,γ(Λ2
+T ∗N), Ck,γ(Λ3T ∗N) for k � 0 and γ ∈ (0, 1),

giving

Pk,γ : Ck+1,γ(U) −→ Ck,γ(Λ3T ∗N) defined by Pk,γ(α) = π∗(ϕ|Γ(α)).

Then Pk,γ is a smooth map of Banach manifolds. Let Vk,γ ⊂ Ck,γ(Λ3T ∗N) be the

Banach subspace of exact Ck,γ 3-forms on N .

As ϕ is closed, ϕ|N ≡ 0, and Γ(α) is isotopic to N , we see that ϕ|Γ(α) is an exact

3-form on Γ(α), so that Pk,γ maps into Vk,γ . Using elliptic regularity results for d + d∗

we can show that the linearization

dPk,γ(0) : Ck+1,γ(Λ2
+T ∗N) −→ Vk,γ , dPk,γ(0) : β �−→ dβ

is surjective as a map of Banach spaces.

Thus, Pk,γ : Ck+1,γ(U) → Vk,γ is a smooth map of Banach manifolds, with

dPk,γ(0) surjective. The Implicit Mapping Theorem for Banach spaces, Theorem 1.2.5,

now implies that P−1
k,γ (0) is, near 0, a smooth submanifold of Ck+1,γ(U), locally iso-

morphic to Ker(dPk,γ(0)). But Pk,γ(α) = 0 is an overdetermined elliptic equation

for small α, and so elliptic regularity implies that solutions α are smooth. Therefore

P−1
k,γ (0) = P−1(0) near 0, and similarly Ker(dPk,γ(0)) = Ker(dP (0)) = H2

+. This

completes the proof. �

The theorem shows that, as for SL m-folds in §8.4.1, the deformation theory of

compact coassociative 4-folds is unobstructed, and the moduli space is always a smooth

manifold with dimension given by a topological formula. This is unusual in moduli
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problems; a more common pattern is to find obstruction spaces and possibly singular

moduli spaces, as we will see in the associative and Cayley cases of §12.3.2 and §12.5.1.

At the heart of the proof is the fact that a 4-submanifold N in M is coassociative,

with the appropriate orientation, if and only if ϕ|N ≡ 0, for ϕ a closed 3-form on M .

SL m-folds are also defined by the vanishing of closed forms ω, ImΩ, which is why

the two theories are so similar. We saw in §12.1.2 that the condition for a 4-fold N in

M to be coassociative is overdetermined. But Theorem 12.3.4 shows that coassociative

4-folds may often form positive-dimensional moduli spaces, which seems surprising

for an overdetermined equation. Again, the reason is that dϕ ≡ 0 acts as a kind of

integrability condition, so that coassociative 4-folds are more abundant than one might

expect.

By the same method as Proposition 8.4.6, from Proposition 12.3.2 we deduce:

Proposition 12.3.5 Let (M, ϕ, g) be an (almost) G2-manifold, and N a 4-submanifold

in M . Then a necessary condition for N to be isotopic to a coassociative 4-fold N ′ in

M is that [ϕ|N ] = 0 in H3(N, R).

Now suppose
{
(M, ϕt, gt) : t ∈ (−ε, ε)

}
is a smooth 1-parameter family of (al-

most) G2-manifolds, and N0 a compact coassociative 4-fold in (M, ϕ0, g0). When can

we extend N0 to a smooth family of coassociative 4-folds Nt in (M, ϕt, gt) for small

t? By Proposition 12.3.5, a necessary condition is that [ϕt|N0 ] = 0 for all t. Our next

result shows that locally, this is also sufficient.

Theorem 12.3.6 Let
{
(M, ϕt, gt) : t ∈ (−ε, ε)

}
be a smooth 1-parameter family of

(almost) G2-manifolds, and N0 a compact coassociative 4-fold in (M, ϕ0, g0). Sup-

pose that [ϕt|N0 ] = 0 in H3(N0, R) for all t ∈ (−ε, ε). Then N0 extends to a smooth

1-parameter family
{
Nt : t ∈ (−δ, δ)

}
, where 0 < δ � ε and Nt is a compact coasso-

ciative 4-fold in (M, ϕt, gt).

This can be proved using similar techniques to Theorem 12.3.4, though McLean did

not prove it. It shows that coassociative 4-folds are pretty stable under small deforma-

tions of the underlying almost G2-manifold (M, ϕ, g).

12.3.2 Deformation theory of associative 3-folds
Associative 3-folds cannot be defined in terms of the vanishing of closed forms, and

this gives their deformation theory a different character to the coassociative case. Here

is how the theory works, drawn mostly from McLean [259, §5].

Let N be a compact associative 3-fold in an almost G2-manifold (M, ϕ, g). The

normal bundle ν → N of N in M has fibre R4, and it can be regarded as a twisted spin

bundle on N , since there is an isomorphism ν ⊗R C ∼= S ⊗C E, where S, E are vector

bundles over N with fibre C
2, with S the spin bundle of N . Complex conjugation on

ν ⊗R C is of the form σ ⊗ σ̃, where σ : S → S and σ̃ : E → E are complex antilinear

vector bundle isomorphisms with σ2 = −1 = σ̃2.

There is an anti-self-adjoint first order linear elliptic operator DN : C∞(ν) →
C∞(ν) which is a twisted Dirac operator, since it is derived from the usual Dirac op-

erator D : C∞(S) → C∞(S). The kernel KerDN is the set of infinitesimal deforma-

tions of N as an associative 3-fold or Cayley 4-fold. The cokernel CokerDN is the
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obstruction space for these deformations. But as DN is anti-self-adjoint, the kernel and

cokernel are equal, so the infinitesimal deformation space is equal to the obstruction

space. Thus the index of DN is ind(DN ) = dimKerDN −dimCokerDN = 0, which

is obvious anyway as indices on compact odd-dimensional manifolds are always zero.

The expected, or virtual, dimension of the moduli space M N of associative de-

formations of N is ind(DN ) = 0. If (M, ϕ, g) is a generic almost G2-manifold then

the obstruction spaces Coker(DN ) are zero. This means the infinitesimal deformation

spaces Ker(DN ) are zero, and so M N is a smooth 0-dimensional manifold, that is, a

discrete set of points, which will probably be finite if we restrict to 3-folds in a fixed

homology class in H3(M, Z). Furthermore, the associative 3-folds in M N will persist

under small deformations of (M, ϕ, g).
For nongeneric (M, ϕ, g) the deformation and obstruction spaces may be nonzero,

and then M N may not be smooth, or may have a larger than expected dimension; but

M N will reduce to a discrete set of points under small generic deformations of (ϕ, g).
For example, the 7-torus T 7 has a 35-dimensional family of flat G2-structures. Writing

T 7 as a product T 3 × T 4, it turns out that for a 31-dimensional subfamily of these G2-

structures, T 3 × {p} is an associative 3-fold for each p ∈ T 4. These associative T 3’s

deform in a moduli space of dimension 4. However, for generic flat G2-structures there

exist no associative 3-folds in T 7 at all. Thus the family of associative T 3’s vanishes

under small deformations of the underlying G2-structure.

A general conclusion is that moduli spaces of associative 3-folds are fairly boring.

However, it is plausible that one could define interesting invariants by counting (with

some appropriate weight) associative 3-folds in a generic almost G2-manifold (M, ϕ, g)
in a fixed class α in H3(M, Z). See [194] for some similar ideas for SL 3-folds.

12.3.3 Examples of compact associative 3-folds and coassociative 4-folds
Here is a method used in [188, §10.8 and §12.6] to find examples of compact associative

3-folds in compact 7-manifolds with holonomy G2. A nontrivial isometric involution of

(M, g) is a diffeomorphism σ : M → M such that σ∗(g) = g, and σ �= id but σ2 = id,

where id is the identity on M .

Proposition 12.3.7 Let (M, ϕ, g) be an (almost) G2-manifold, and σ : M → M a

nontrivial isometric involution with σ∗(ϕ) = ϕ. Then N =
{
p ∈ M : σ(p) = p

}
is a

closed, nonsingular, embedded associative 3-fold in M , which is compact if M is.

Proof Clearly N is a closed, nonsingular, embedded submanifold of M , and compact

if M is compact. If p ∈ N then dσ : TpM → TpM satisfies (dσ)2 = 1, and TpN
is the subspace of TpM fixed by dσ. If dσ = 1 then TpN = TpM and dimN = 7,

so N = M as M is connected. But this contradicts σ �= id, and so dσ �= 1. Also, dσ
preserves ϕ|p. Thus, identifying TpM with R

7, we can regard dσ : TpM → TpM as an

element of G2. If γ ∈ G2 and γ �= 1 but γ2 = 1, then γ is conjugate in G2 to the map

(x1, . . . , x7) �−→ (x1, x2, x3,−x4,−x5,−x6,−x7).

The fixed set of this map is the associative 3-plane U of (12.2). Thus, if γ ∈ G2 and

γ �= 1 but γ2 = 1, then the fixed set of γ in R
7 is an associative 3-plane. So TpN is an

associative 3-plane in TpM . As this holds for all p ∈ N , we see N is associative. �
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Following [188, Ex. 12.6.1], we can use this to construct examples of compact as-

sociative 3-folds in the compact 7-manifolds with holonomy G2 discussed in §11.3.

Example 12.3.8 Let T 7 and Γ be as in Example 11.3.1. Define σ : T 7 → T 7 by

σ : (x1, . . . , x7) �→ (x1, x2, x3,
1
2 − x4,−x5,−x6,−x7).

Then σ preserves (ϕ0, g0) and commutes with Γ, and so its action pushes down to T 7/Γ.

The fixed points of σ on T 7 are 16 copies of T 3, and σδ has no fixed points in T 7 for

all δ �= 1 in Γ. Thus the fixed points of σ in T 7/Γ are the image of the 16 T 3 fixed by

σ in T 7. Calculation shows that these 16 T 3 do not intersect the fixed points of α, β or

γ, and that Γ acts freely on the set of 16 T 3 fixed by σ. So the image of the 16 T 3 in T 7

is 2 T 3 in T 7/Γ. Now the resolution of T 7/Γ to get a compact G2-manifold (M, ϕ̃, g̃)
with Hol(g̃) = G2 described in §11.3 may be done in a σ-equivariant way, so that σ
lifts to σ : M → M with σ∗(ϕ̃) = ϕ̃. The fixed points of σ in M are again 2 copies of

T 3, which are associative 3-folds by Proposition 12.3.7.

The same idea works for coassociative 4-folds. If γ : R7 → R7 is linear with γ2 = 1
and γ∗(ϕ0) = −ϕ0, then either γ = −1, or γ is conjugate under G2 to the map

(x1, . . . , x7) �−→ (−x1,−x2,−x3, x4, x5, x6, x7).

The fixed set of this is the coassociative 4-plane V of (12.3). Thus, the fixed point set

of α is either {0}, or a coassociative 4-plane in R7. So following Proposition 12.3.7 we

prove [188, Prop. 10.8.5]:

Proposition 12.3.9 Let (M, ϕ, g) be an (almost) G2-manifold, and σ : M → M a

nontrivial isometric involution with σ∗(ϕ) = −ϕ. Then each connected component of

the fixed point set
{
p ∈ M : σ(p) = p

}
of σ is either a closed, nonsingular, embedded

coassociative 4-fold which is compact if M is, or a single point.

Here [188, Ex. 12.6.4] is an example in the G2-manifold of §11.3.

Example 12.3.10 Let T 7 and Γ be as in Example 11.3.1. Define σ : T 7 → T 7 by

σ : (x1, . . . , x7) �→ (1
2 − x1, x2, x3, x4, x5,

1
2 − x6,

1
2 − x7).

Then σ commutes with Γ, preserves g0 and takes ϕ0 to −ϕ0. The fixed points of σ in

T 7 are 8 copies of T 4, and the fixed points of σαβ in T 7 are 128 points. If δ ∈ Γ then

σδ has no fixed points unless δ = 1, αβ. Thus the fixed points of σ in T 7/Γ are the

image of the fixed points of σ and σαβ in T 7.

Now Γ acts freely on the sets of 8 σ T 4’s and 128 σαβ points. So the fixed point

set of σ in T 7/Γ is the union of T 4 and 16 isolated points, none of which intersect the

singular set of T 7/Γ. When we resolve T 7/Γ to get (M, ϕ̃, g̃) with Hol(g̃) = G2 in a

σ-equivariant way, the action of σ on M has σ∗(ϕ̃) = −ϕ̃, and again fixes T 4 and 16

points. By Proposition 12.3.9, this T 4 is coassociative.

More examples of compact associative and coassociative submanifolds with differ-

ent topologies are given in [188, §12.6]. Bryant [59] uses the idea of Proposition 12.3.9

to construct many local examples of compact coassociative 4-folds in G2-manifolds.
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Theorem 12.3.11. (Bryant [59]) Let (N, g) be a compact, real analytic, oriented Rie-

mannian 4-manifold whose bundle of self-dual 2-forms is trivial. Then N may be em-

bedded isometrically as a coassociative 4-fold in a G2-manifold (M, ϕ, g), as the fixed

point set of an involution σ.

Note here that M need not be compact, nor (M, g) complete. Roughly speaking,

Bryant’s proof constructs (ϕ, g) as the sum of a power series on Λ2
+T ∗N converging

near the zero section N ⊂ Λ2
+T ∗N , using the theory of exterior differential systems.

The involution σ acts as −1 on Λ2
+T ∗N , fixing the zero section. The requirement that

Λ2
+T ∗N be trivial is technical, and probably not necessary. One moral of Theorem

12.3.11 is that to be coassociative places no significant geometric restrictions on a Rie-

mannian 4-manifold, other than real analyticity and orientability; for instance, it implies

no extra curvature identities on (N, g).
There is also a second method for constructing examples of compact associative

or coassociative submanifolds of compact G2-manifolds, which we now describe. It is

implicit in Kovalev’s proposal [224], but the author is not aware of other uses of it in the

literature. We illustrate it for the T 7/Γ construction of §11.3.1–§11.3.4, but the same

idea should work for the other constructions of G2-manifolds in §11.3.5.

Suppose, as in §11.3, that we construct a 1-parameter family of torsion-free G2-

structures (ϕ̃t, g̃t) for t ∈ (0, ε) on a compact 7-manifold M , by resolving the singular-

ities of an orbifold T 7/Γ with flat G2-structure (ϕ0, g0). Then (ϕ̃t, g̃t) → (ϕ0, g0) in

T 7/Γ away from the singular set S of T 7/Γ as t → 0.

Let N0 be a compact coassociative 4-fold in T 7/Γ which does not intersect S, and

which need not be the fixed set of any isometric involution. For instance, using the ideas

of §12.2.1 we could try taking N0 to be the image in T 7/Γ of {x}×H in T 7 = S1×T 6,

where x ∈ S1 and H is a complex hypersurface in the complex 3-fold T 6. By a mild

generalization of Theorem 12.3.6 (needed because the convergence (ϕ̃t, g̃t) → (ϕ0, g0)
may not be smooth in t at t = 0) we can show that if [ϕ̃t|N0 ] = 0 in H3(N0, R) for

t ∈ (0, ε) then for some δ ∈ (0, ε] we can extend N0 to a smooth family of coassociative

4-folds Ñt in (M, ϕ̃t, g̃t) for t ∈ (0, δ), with Ñt → N0 as t → 0. But this condition

[ϕ̃t|N0 ] = 0 is automatic in the construction of §11.3, so Ñt exists for small t.
In a similar way, suppose N0 is a compact associative 3-fold in T 7/Γ which does not

intersect S, and which is unobstructed in the sense that KerDN0 = CokerDN0 = {0}
in the notation of §12.3.2. (Note that N0 cannot be the bijective image of an associative

3-fold in T 7, since using translations in T 7 as infinitesimal deformations we can prove

dimKerDN0 � 4, so any such N0 is obstructed.) Then one can show that for some

δ ∈ (0, ε] we can extend N0 to a smooth family of associative 3-folds Ñt in (M, ϕ̃t, g̃t)
for t ∈ (0, δ), with Ñt → N0 as t → 0.

12.3.4 Further topics in coassociative geometry
Here are two other interesting topics in coassociative geometry.

Coassociative 4-folds with isolated conical singularities

The theory of SL m-folds with isolated conical singularities described in §8.5 should

also have an analogue for coassociative 4-folds. The first part of this programme has
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been carried out by Jason Lotay [251]. His main result [251, Ths 7.9 and 7.13] de-

scribes the deformation and obstruction theory of coassociative 4-folds with conical

singularities, in a similar way to the special Lagrangian case Theorem 8.5.5 and the

asymptotically conical coassociative case Theorem 12.1.10. Lotay is also developing a

coassociative analogue of the desingularization theory of §8.5.3.

One could also study associative 3-folds with isolated conical singularities, but the

theory will be less interesting as the virtual dimension of their moduli spaces will always

be nonpositive.

Coassociative fibrations

In §9.4 we discussed the SYZ Conjecture and fibrations of Calabi–Yau 3-folds by SL

3-folds, including singular fibres. As coassociative 4-folds behave like SL 3-folds, it is

natural also to consider fibrations of G2-manifolds by compact coassociative 4-folds,

including singular fibres.

If N is a nonsingular fibre of such a fibration, then to get one coassociative 4-fold

passing through each point of M near N we need the moduli space M N of coassocia-

tive deformations of N to have dimension 3, so that b2
+(N) = 3 by Theorem 12.3.4,

and Λ2
+T ∗N needs to be trivial, since this is the normal bundle of N in M . The obvi-

ous 4-manifolds satisfying these two conditions are T 4 and the K3 surface. From [188,

§12.6], examples are known of coassociative T 4’s and K3’s in compact 7-manifolds

with holonomy G2, by the method of Proposition 12.3.9.

The idea of studying coassociative K3 fibrations was first suggested by McLean

[259, p. 745] (written in 1990, before the SYZ Conjecture, though published in 1998).

In string theory, coassociative fibrations appear in the work of Acharya [3,4] and Gukov,

Yau and Zaslow [145]. Kovalev [224] has published a proposal for constructing an ex-

ample of a fibration of a compact 7-manifold with holonomy G2 by coassociative K3’s,

including singular fibres. In the opinion of the author, the geometric idea in Kovalev’s

construction is beautiful, and can almost certainly be made to work; however, at the

time of writing, the analytic proofs are still incomplete. To finish them will require a

well-developed theory of coassociative 4-folds with isolated conical singularities, as

discussed above.

Here is a sketch of Kovalev’s idea. We work in the situation of the construction of

Method 1 in §11.3.5. This involves a noncompact Calabi–Yau 3-fold Y with a cylindri-

cal end modelled on D × S1 × [0,∞), where D is a K3 surface. We find a holomor-

phic function f : Y → C which is asymptotic on the cylindrical end to the function

(x, eiθ , t) �→ et+iθ , for x ∈ D, eiθ ∈ S1 and t ∈ [0,∞). Provided Y is chosen suf-

ficiently generically, this f can be taken to be a holomorphic Morse function. That is,

there are finitely many stationary points of f on Y , which occur at distinct values c ∈ C

of f , and near each stationary point f looks like f = z2
1 + z2

2 + z2
3 + c in appropriate

local holomorphic coordinates (z1, z2, z3) on Y .

Then f : Y → C is a fibration of Y by complex surfaces, with generic fibre K3,

and has finitely many singular fibres each of which has one isolated conical singularity

modelled on a quadric cone in C
3. From the ideas of §12.2.1, if S is a surface in a

Calabi–Yau 3-fold X and x ∈ S1 then {x} × S is coassociative in the natural G2-

structure on S1 × X . Therefore id×f : S1 × Y → S1 × C is a coassociative fibration
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of S1 × Y , with generic fibre K3. The family of singular fibres is finitely many copies

of S1, and each singular fibre has one isolated conical singularity.

Now Kovalev [223] constructs a compact 7-manifold M with holonomy G2 by glu-

ing together two such G2-manifolds S1 × Y1,S1 × Y2 along their common cylindrical

end D × S1 × S1 × R. The idea of [224] is that one can take coassociative fibrations

id×f1 : S1×Y1 → S1×C and id×f2 : S1×Y2 → S1×C of the two pieces, as above,

and glue them together to make a coassociative fibration of the G2-manifold M . The

main analytic problem in doing this is ensuring that the coassociative fibrations near

and including the singular fibres continue to exist under the small deformation between

the G2-structures on S1 × Yi and M .

Associative fibrations are not really a sensible idea, since compact associative 3-

folds are not expected to form 4-dimensional moduli spaces in any generic situation,

though they have been considered by physicists such as Acharya [3, 4]. In the opinion

of the author, a good way to interpret Acharya’s ideas mathematically is to consider the

formulations Conjectures 9.4.2 and 9.4.3 of the SYZ Conjecture in §9.4.2.

A G2 analogue of Conjecture 9.4.2 involving fibrations ft : Xt → B of G2-

manifolds Xt over a 4-manifold B, whose generic fibres T b
t = f−1

t (b) are associative

T 3’s in Xt, is not plausible, as T b
t should not admit nontrivial associative deformations.

But it would be plausible, and in the spirit of the conjectures of §9.4.4, to make a G2

analogue of Conjecture 9.4.3, in which the fibres T b
t are required to be only approxi-

mately associative, and to converge to exactly associative, flat T 3’s as t → ∞.

12.4 Cayley 4-folds in R8

We now turn to the geometry of Cayley submanifolds in R8 and Spin(7)-manifolds.

Definition 12.4.1 Let R
8 have coordinates (x1, . . . , x8), and as in Definition 11.4.1

define a metric g0 = dx2
1 + · · · + dx2

8 and a 4-form Ω0 on R8 by

Ω0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

−dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678,
(12.10)

where dxi...l is short for dxi ∧ · · ·∧dxl. By Harvey and Lawson [151, Th. IV.1.24], Ω0

has comass one and so is a calibration on R
8. We define a Cayley 4-fold in R

8 to be an

oriented 4-dimensional submanifold of R8 calibrated with respect to Ω0.

We shall describe the family FΩ0 of Cayley 4-planes in R
8, that is, 4-dimensional

oriented vector subspaces in R8 calibrated by Ω0. An example of a Cayley 4-plane is

V =
{
(x1, x2, x3, x4, 0, 0, 0, 0) : x1, x2, x3, x4 ∈ R

}
⊂ R

8,

with the obvious orientation. The stabilizer subgroup of V in Spin(7) is isomorphic to

SU(2)3/Z2, where Z2 is the subgroup
{
(1, 1, 1), (−1,−1,−1)

}
in SU(2)3. By [151,

Th. IV.1.38] the action of Spin(7) on FΩ0 is transitive. This proves:

Proposition 12.4.2 The family FΩ0 of Cayley 4-planes in R
8 has dimension 12 and is

isomorphic to Spin(7)/K , where K ∼= SU(2)3/Z2 is a Lie subgroup of Spin(7).

As for Theorem 12.1.5 we have:
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Theorem 12.4.3 A Cayley 4-fold L in R8 is real analytic wherever it is nonsingular.

Harvey and Lawson use exterior differential systems to prove [151, Th. IV.4.3]:

Theorem 12.4.4 Let P be a real analytic 3-submanifold in R
8. Then there exists a

locally unique Cayley 4-fold L in R
8 containing P .

This implies there are very many Cayley 4-folds in R
8. In the sense of exterior

differential systems, Cayley 4-folds ‘depend on 4 functions of 3 variables’.

12.4.1 Cayley 4-folds as graphs, and local deformations
As in §12.1.1–§12.1.2, we can write a class of Cayley 4-folds in R

8 as graphs. Let

f = f0 + f1i + f2j + f3k = f(x0 + x1i + x2j + x3k) : H → H be smooth. Choosing

signs for compatibility with (11.12), define a 4-submanifold L in R
8 by

L =
{(

−x0, x1, x2, x3, f0(x0 + x1i + x2j + x3k),−f1(x0 + x1i + x2j + x3k),

−f2(x0 + x1i + x2j + x3k), f3(x0 + x1i + x2j + x3k)
)

: xj ∈ R
}
.

Following [151, §IV.2.C], but using the Spin(7) form (11.12), we find L is Cayley if

∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
= C(∂f), (12.11)

for C : H ⊗R H → H a homogeneous cubic polynomial. This is a first-order nonlinear

elliptic p.d.e. on f . The linearization at f = 0 is equivalent to the positive Dirac equation

on R4. More generally, first order deformations of a Cayley 4-fold L in a Spin(7)-
manifold (M, Ω, g) correspond to solutions of a twisted positive Dirac equation on L.

We can use this to discuss small deformations of Cayley 4-folds in R8. The families

Gr+(4, R8) of oriented 4-planes in R
8 and FΩ0 of Cayley 4-planes in R

8 have dimen-

sions 16 and 12, so FΩ0 has codimension 4 in Gr+(4, R8). Thus the condition for a

4-fold L in R8 to be Cayley is 4 equations on each tangent space. The freedom to vary

L is the sections of its normal bundle in R
8, which is 4 real functions. Hence, the defor-

mation problem for Cayley 4-folds involves 4 equations on 4 functions, as in (12.11),

and is controlled by a first order nonlinear elliptic p.d.e. This makes their deformation

theory fairly well behaved.

12.4.2 Examples of Cayley 4-folds in R
8

As in §12.2.1, we can make examples of Cayley 4-folds from simpler calibrations on R
7

and R8. Write R8 = C4, with complex coordinates (x1 + ix2, x3 + ix4, x5 + ix6, x7 +
ix8). Then as in Proposition 11.4.11 we have Ω0 = 1

2ω ∧ ω + Re θ, where ω, θ are the

Kähler form and holomorphic volume on C
4 given in (7.1). It follows easily that:

• If L is a holomorphic surface in C
4 (and so calibrated with respect to 1

2ω∧ω, with

Re θ|L ≡ 0) then L is Cayley in R
8.

• If L is a special Lagrangian 4-fold in C
4 (and so calibrated with respect to ReΩ,

with 1
2ω ∧ ω|L ≡ 0) then L is Cayley in R8.

Similarly, write R8 = R⊕R7. Then as in Proposition 11.4.10 we have Ω0 = dx1∧ϕ0+
∗ϕ0, where ϕ0, ∗ϕ0 are the G2-forms of (12.1) with x1, . . . , x7 replaced by x2, . . . , x8.

It follows easily that:
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• If L is an associative 3-fold in R7 then R × L is Cayley in R8.

• If x ∈ R and L is a coassociative 4-fold in R7 then {x} × L is Cayley in R8.

Thus, singularities of holomorphic surfaces, SL 4-folds, associative 3-folds, and coas-

sociative 4-folds all yield models for singularities of Cayley 4-folds. In general though,

we regard examples of Cayley 4-folds in R
8 as more interesting (as Cayley 4-folds) if

they do not come from one of these simpler geometries.

There are few papers on examples of Cayley 4-folds in R8 at the time of writing.

Lotay [249] studies 2-ruled Cayley 4-folds in R
8, that is, Cayley 4-folds L fibred by

a 2-dimensional family Σ of affine 2-planes R
2 in R

8, as for the coassociative case in

§12.2.5. He constructs explicit families of 2-ruled Cayley 4-folds in R8, including some

depending on an arbitrary holomorphic function w : C → C, [249, Th. 5.1], which do

not reduce to a simpler geometry as above. Lotay [250, §5] and Gu and Pries [142] both

study Cayley 4-folds in R
8 invariant under SU(2) subgroups in Spin(7); there is some

overlap between their examples.

As in §12.2.5, Ionel, Karigiannis and Min-Oo [173] construct 2-ruled Cayley 4-folds

in R
8 from minimal surfaces in R

4, but unfortunately their method yields only examples

of the form R × L for L associative in R
7 or {x} × L for L coassociative in R

7. In a

sequel, Karigiannis and Min-Oo [212] find examples of Cayley 4-folds in the explicit

noncompact 8-manifolds with holonomy Spin(7) of Bryant and Salamon [64].

12.5 Cayley 4-folds in Spin(7)-manifolds
Definition 12.5.1 Let (M, Ω, g) be a Spin(7)-manifold, as in §11.4. Then the 4-form

Ω is a calibration on (M, g). We define a Cayley 4-fold in M to be an oriented 4-

submanifold of M calibrated with respect to Ω.

As for the special Lagrangian case of §8.4 and the G2 cases of §12.3, it is natural

to ask whether there is some natural class of ‘almost Spin(7)-manifolds’ generalizing

Spin(7)-manifolds, in which Cayley 4-folds make sense and still have good proper-

ties. Recall from §11.4 that a Spin(7)-manifold is an 8-manifold M with a torsion-free

Spin(7)-structure (Ω, g), and that (Ω, g) is torsion-free if and only if dΩ = 0.

Now the deformation theory of Cayley 4-folds in §12.5.1 does not use dΩ = 0, nor

is this condition very important in other parts of the theory. Thus, the appropriate notion

of almost Spin(7)-manifold (M, Ω, g) is an 8-manifold M with a Spin(7)-structure

(Ω, g), but without assuming dΩ = 0. We then define a Cayley 4-fold in (M, Ω, g) to

be an oriented 4-submanifold N in M with Ω|TxN = volTxN for all x ∈ N , which

would be the condition for N to be Ω-calibrated if Ω were a calibration.

Spin(7)-structures on M are parametrized by arbitrary smooth sections of a bundle

with fibre GL(8, R)/ Spin(7), of dimension 43, so almost Spin(7)-manifolds come in

infinite-dimensional families. Thus choosing a generic almost Spin(7)-manifold is a

powerful thing to do, and should simplify the singular behaviour of Cayley 4-folds.

12.5.1 Deformations of Cayley 4-folds
Cayley 4-folds cannot be defined in terms of the vanishing of closed forms, and this

makes their deformation theory like that of associative 3-folds in §12.3.1, rather than

the special Lagrangian and coassociative cases of §8.4.1 and §12.3.1. Here is how the
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theory works, drawn mostly from McLean [259, §6]. Since we use a different convention

for Ω0 in (12.10) to McLean, we exchange S+, S− below compared to [259, §6].

Let N be a compact Cayley 4-fold in a Spin(7)-manifold (or almost Spin(7)-
manifold) (M, Ω, g). Let ν → N be the normal bundle of N in M . Then there is a

vector bundle E → N with fibre R
4, and a first-order elliptic operator DN : C∞(ν) →

C∞(E) on N . The kernel KerDN is the set of infinitesimal deformations of N as a

Cayley 4-fold. The cokernel CokerDN is the obstruction space for these deformations.

Both are finite-dimensional vector spaces, and the index of DN is

ind(DN ) = dimKerDN − dim CokerDN .

It is a topological invariant, given in terms of characteristic classes by the Atiyah–Singer

Index Theorem. A calculation by Christopher Lewis and the author shows that

ind(DN ) = −τ(N) − 1
2χ(N) − 1

2 [N ] · [N ], (12.12)

with τ the signature, χ the Euler characteristic and [N ] · [N ] the self-intersection of N .

Note that the sign of τ(N) in (12.12) depends on our convention (12.10) for Ω0; with

McLean’s conventions the orientation of N is reversed, giving τ(N) instead of −τ(N).
Now Cayley 4-folds need not be spin—for instance, a complex surface CP

2 in a

Calabi–Yau 4-fold is an example of a non-spin Cayley 4-fold in a Spin(7)-manifold.

Suppose N is spin, with positive and negative spin bundles S±. Then in a similar way

to §12.3.2, there are isomorphisms ν ⊗R C ∼= S+ ⊗C F and E ⊗R C ∼= S−⊗C F , where

S±, F are vector bundles with fibre C2. Complex conjugation on ν ⊗R C and E ⊗R C

are of the form σ+ ⊗σ and σ−⊗σ, where σ± : S± → S± and σ : F → F are complex

anti-linear isomorphisms with σ2± = −1 = σ2. Then DN is a twisted version of the

positive Dirac operator D+ : C∞(S+) → C∞(S−) of N .

In a generic situation we expect CokerDN = 0, and then deformations of N will be

unobstructed, so that the moduli space M N of Cayley deformations of N will locally

be a smooth manifold of dimension ind(DN ). However, in nongeneric situations the

obstruction space may be nonzero, and then the moduli space may not be smooth, or

may have a larger than expected dimension.

This general structure is found in the deformation theory of other important mathe-

matical objects—for instance, pseudoholomorphic curves in almost complex manifolds,

and instantons and Seiberg–Witten solutions on 4-manifolds. In each case, the moduli

space is only smooth with topologically determined dimension under a genericity as-

sumption which forces the obstructions to vanish.

12.5.2 Examples of compact Cayley 4-folds
By the method of Propositions 12.3.7 and 12.3.9 one can prove [188, Prop. 10.8.6]:

Proposition 12.5.2 Let (M, Ω, g) be a Spin(7)-manifold, and σ : M → M a nontriv-

ial isometric involution with σ∗(Ω) = Ω. Then each connected component of the fixed

point set
{
p ∈ M : σ(p) = p

}
of σ is either a closed, nonsingular, embedded Cayley

4-fold which is compact if M is, or a single point.

Following [188, Ex. 14.3.1], we use this to construct examples of compact Cayley

4-folds in the compact 8-manifolds with holonomy Spin(7) discussed in §11.6.
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Example 12.5.3 Let T 8 and Γ be as in Example 11.6.1. Define σ : T 8 → T 8 by

σ : (x1, . . . , x8) �→ (−x1,
1
2 − x2, x3, x4, x5, x6,−x7,

1
2 − x8).

Then σ commutes with Γ and σ∗(Ω0) = Ω0. The fixed points of σ in T 8 are 16 T 4’s,

the fixed points of σαγ are 256 points, and σε acts freely on T 8 for all ε �= 1, αγ in Γ.

Also Γ acts freely on the 16 σ T 4’s and the 256 σαγ points.

Thus the fixed points of σ in T 8/Γ are the disjoint union of T 4 and 16 points, none

of which intersect the singular set of T 8/Γ. When we resolve T 8/Γ in a σ-equivariant

way to get M with holonomy Spin(7), the fixed points of σ in M are again the disjoint

union of T 4 and 16 points. Proposition 12.5.2 shows this T 4 is a Cayley 4-fold in M .

Using different involutions σ, in [188, §14.3] we find examples of Cayley 4-folds in

the same 8-manifold M diffeomorphic to T 4/Z2, K3, S2 × S2, and with other topolo-

gies. Note too that the second method for constructing examples of associative 3-folds

described after Theorem 12.3.11 will also work for Cayley 4-folds, supposing N0 is a

compact Cayley 4-fold in T 8/Γ not intersecting the singular set S of T 8/Γ, which is

unobstructed in the sense that Coker(DN ) = 0 in the notation of §12.5.1.

12.5.3 Further topics in Cayley geometry
Here are three other topics to do with Cayley 4-folds.

Cayley 4-folds with isolated conical singularities

As for SL m-folds in §8.5 and coassociative 4-folds in §12.3.4, it would be interesting

to develop a theory of Cayley 4-folds with isolated conical singularities in Spin(7)-
manifolds. So far as the author knows, no work has yet been done on this.

Cayley fibrations

As for special Lagrangians in §9.4 and coassociative 4-folds in §12.3.4, it is natural

to ask whether a compact 8-manifold with holonomy Spin(7) can be fibred by Cayley

4-folds N with some singular fibres. In String Theory, Cayley fibrations appear in the

work of Acharya [3, 4], with generic fibre T 4. Here are some general considerations.

Suppose (M, Ω, g) is a compact Spin(7)-manifold, f : M → B is a Cayley fi-

bration, and N = f−1(b) is a nonsingular fibre of f . Then df |N induces an isomor-

phism of the normal bundle ν of N with the trivial bundle N × TbB. As ν is triv-

ial, the self-intersection [N ] · [N ] appearing in (12.12) is zero. In §12.5.1 we saw that

ν ⊗R C ∼= S+ ⊗C F if N is spin, and this holds locally in N even if N is not spin.

Using this one can show that N is spin, with a unique spin structure such that under

ν ⊗R C ∼= S+ ⊗C F the trivialization of ν is compatible with trivializations of S+

and F . Thus N is spin with trivial positive spin bundle S+, implying that N admits an

SU(2)-structure. This suggests N should be T 4 or K3. Using characteristic classes one

can show that S+ trivial implies 3τ(N) + 2χ(N) = 0.

If Cayley fibrations are to exist in any generic situation, we expect deformations of

N to be unobstructed in the sense of §12.5.1, and clearly we would like the moduli

space M N of Cayley deformations of N to be smooth of dimension 4, so that it locally

parametrizes the fibres of f . Thus as [N ] · [N ] = 0, from (12.12) we want −τ(N) −
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2χ(N) = 4. Combined with 3τ(N) + 2χ(N) = 0 this forces τ(N) = −16 and

χ(N) = 24. These hold for N = K3, but not for N = T 4 as τ(T 4) = χ(T 4) = 0. So

we can rule out T 4 as a plausible nonsingular fibre for generic Cayley fibrations, despite

[3, 4]. But Cayley fibrations with nonsingular fibre K3 may well be a workable idea.

As for associative fibrations at the end of §12.3.4, the author suggests that Acharya’s

proposal [3, 4] involving Cayley T 4-fibrations should be interpreted via a Spin(7) ana-

logue of Conjecture 9.4.3, involving 1-parameter families of fibrations ft : Xt → B of

Spin(7)-manifolds Xt, whose fibres T b
t are required to be only approximately Cayley

in Xt, and to converge to exactly Cayley, flat T 4’s as t → ∞.

The author has an idea for a method to construct a Cayley fibration, including sin-

gular fibres, of the compact 8-manifold M with holonomy Spin(7) constructed from a

Calabi–Yau 4-orbifold in §11.6.2. It is a little similar to Kovalev’s proposal [224] for

the G2 case, and will be described in a future paper.

Cayley 4-folds as the bubbling loci of Spin(7) instantons

In §11.7 we briefly discussed Spin(7) instantons, that is, connections A on a vector or

principal bundle E over a compact Spin(7)-manifold (M, Ω, g) whose curvature FA

satisfies π7(FA) = 0. An important result of Tian [327] shows that for a sequence

A1, A2, . . . of such connections on a fixed bundle E, there is a sequence of gauge

transformations γ1, γ2, . . . of E such that γi(Ai) converges to a nonsingular Spin(7)
instanton on M outside a closed singular set S, the ‘blow-up locus’.

Furthermore, S can be given the structure of a closed integral current in M , in the

sense of geometric measure theory, which is calibrated with respect to Ω. That is, S
is a (possibly very singular) Cayley 4-fold in M . So Cayley 4-folds appear naturally

in gauge theory as the bubbling loci of Spin(7) instantons. Christopher Lewis [243]

constructed nontrivial examples of families of Spin(7) instantons with gauge group

SU(2) on the compact 8-manifold M with holonomy Spin(7) described in §11.6.1,

which bubble along two Cayley K3’s in M .

We can now make the following very speculative argument, which is probably non-

sense, but may contain a grain of truth. Let (M, Ω, g) be a generic compact almost

Spin(7)-manifold. Then we can form moduli spaces M E of Spin(7) instantons on a

bundle E on M . By Tian’s work M E has a compactification M E , whose boundary

∂M E =M E \ M E is (very) roughly a moduli space of Cayley integral currents.

Therefore we expect moduli spaces of Cayley integral currents in a generic com-

pact (almost) Spin(7)-manifold (or at least, those that are suitable to be bubbling loci

of Spin(7) instantons, which may not be all Cayley integral currents) to be compact

and without boundary, since the boundary of a boundary is empty. This suggests that

the singular behaviour of Cayley 4-folds that can happen in real codimension 1 may

be special, and more well-controlled than one might expect. If so, perhaps interesting

invariants ‘counting’ Cayley 4-folds in a given homology class can be defined.
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[85] M. Cvetič, G.W. Gibbons, H. Lü, and C.N. Pope, ‘Supersymmetric M3-branes

and G2-manifolds,’ Nuclear Physics B620 (2002), 3–28. hep-th/0106026.
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∗, see Hodge star

Â-genus, 64, 216, 242
A-model, 184
affine structure, 168, 194

integral, 195, 197, 198
age grading, 131–133
ALE manifold

Calabi–Yau, 234, 250–251
Eguchi–Hanson space, 205–206, 212, 234,

246
hyperkähler, 201, 205–207
Spin(7), 250–251

almost Calabi–Yau m-folds, 165–166
generic, 166, 173, 177, 199–200

Ambrose–Singer Holonomy Theorem, 31, 36
associative 3-folds, 68, 71, 72, 254–272

deformations, 256
examples, 259–264, 268–270
ruled, 261–262

associative cones, 258, 260, 263
and pseudoholomorphic curves in S6, 258,

261, 262
as an integrable system, 261
two-sided, 258

associative fibrations, 272
asymptotic cone, 152
asymptotically conical SL m-folds, 152,

161–165
deformations, 162
examples, 155–157, 163–165

asymptotically cylindrical manifold, 237
asymptotically locally Euclidean, see ALE

manifold
Atiyah–Singer Index Theorem, 18, 64, 242, 275

B-model, 184
Berger’s Theorem, 52
Betti number, 2, 238, 248, 252

refined, 59, 231, 243
Bianchi identities, 34, 41, 43, 56
blow-up, 93–94
Bochner Theorem, 60, 125
bootstrap method, 117
brane, 180, 183, 184

Ck space, 5

Ck,α(M), see Hölder space
Calabi Conjecture, 54, 85, 100–121, 211, 234,

237, 239
Calabi–Yau manifold, 54, 68, 85, 100, 122–145,

239
A-model, 184
almost, 165–166, 173, 177, 199–200
B-model, 184
constructions, 139–144
definition, 126
deformations, 144–145
Hodge numbers, 126
mirror pair, 143, 180, 183

Calabi–Yau orbifold, 136
calibrated geometry, 65–74, 146–177, 254–277
calibrated submanifold, 67
calibration, 67, 126

classification on R
n, 69–72

canonical bundle, 96
Cartan–Kähler theory, 147, 153
category, 184–185

A∞-, 187
abelian, 185–186
additive, 185
Calabi–Yau A∞-, 190
definition, 184
derived, 186–187
derived Fukaya, 184, 189
dg-, 187
enhanced triangulated, 190
equivalence, 184, 185
exact, 185
Fukaya, 184, 187–189
functor, 184
linear, 185
of coherent sheaves, 184, 185, 187
triangulated, 186–187
triangulated A∞-, 187, 189–190

Cayley 4-folds, 68, 71, 272–277
2-ruled, 274
and Spin(7) instantons, 277
and associative 3-folds, 274
and coassociative 4-folds, 274
and holomorphic surfaces, 273
and SL 4-folds, 273
deformations, 273
examples, 273–276
with isolated conical singularities, 276
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Cayley fibrations, 276–277
Cayley integral current, 277
Cayley numbers, see octonions
characteristic class, 96

Â-genus, 64, 216, 242
first Chern class, 96, 99, 100, 123
first Pontryagin class, 232, 242, 244

Cheeger–Gromoll Theorem, 61
Chow’s Theorem, 92, 97, 126
closed string mirror symmetry, 181–183,

190–191
closed strings, 180
coassociative 4-folds, 68, 71, 72, 254–272

2-ruled, 263–264
asymptotically conical, 263
deformations, 257
examples, 259–264, 268–270
with isolated conical singularities, 270–271

coassociative cones, 258, 261
2-ruled, 263

coassociative fibrations, 271–272
coherent sheaf, 184, 185, 187, 190
cohomology

de Rham, 2
Dolbeault, 81
Hodge numbers, 87
of sheaves, 91, 95
other cohomology theories, 2
Poincaré duality, 2, 131, 132, 134, 168, 232

compact linear map, 6, 104
complete intersection, 140
complex manifold, 76–79

biholomorphism, 78
holomorphic function, 76
holomorphic map, 78
rigid, 94, 133, 140

complex projective space, 77
weighted, 134, 135, 141–142, 181, 190, 249

complex structure, 76–77
almost, 76

complex symplectic manifold, 214–216
irreducible, 214
marked, 215
moduli space, 215

connection, 19–24
Levi-Civita, 39–41
on principal bundle, 22
on tangent bundle, 32–36
on vector bundle, 21
torsion-free, 34–36

continuity method, 106
crepant resolution, 127–133
current, 72

calibrated, 73
Cayley, 277
integral, 72
rectifiable, 72
special Lagrangian, 158, 176

curvature

and holonomy groups, 30–32
in principal bundles, 23
in vector bundles, 21–22
of Kähler metrics, 84–85
Ricci, 42
Riemann, 40–43, 45, 50, 52, 56, 58, 84, 112,

125, 229, 232, 235, 236, 244, 247
scalar, 42

de Rham Theorem, 2
deformation, 94–95

of C
m/G, 133

of Calabi–Yau manifold, 144–145
smoothing, 94
universal, 95
versal, 95

derived category, 186–187
of coherent sheaves, 184, 187

derived Fukaya category, 169, 184
dg-category, 187
Dirac operator, 62–64, 242, 243
discriminant, 191

trivalent graph, 196
divisor, 98–99

exceptional, 94, 128
prime, 98

Dolbeault cohomology, 81
double point, 128

ordinary, 129
rational, 130

Eguchi–Hanson space, 205–206, 212, 234, 246
elliptic operator, 7–18

definition, 9, 11
existence of solutions, 16–18
kernel finite-dimensional, 16
Lp estimate, 13
nonlinear, 9, 102
regularity, 12–15, 66, 74, 116, 121, 162, 167,

171, 237, 258, 266
Schauder estimate, 13–14
symbol, 9, 11

embedding, 65
enhanced triangulated category, 190
equivalence of categories, 185
exterior differential systems, 54, 147, 153, 252,

256, 264, 270, 273
exterior form, see form

Fano variety, 180, 190, 221
Floer homology

Lagrangian, 189
obstructions, 169, 188–189

flop, 129
form, 1–4

complex symplectic, 203
G-structure splitting, 56–58
Hermitian, 82
holomorphic volume, 123, 126
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hyperkähler 2-form, 203
Kähler, 82, 123
of type (p, q), 80
on Kähler manifolds, 85–86

Frobenius Theorem, 46
Fukaya category, 169, 184, 187–189

derived , 189
functor, 184, 190

(left or right) derived, 186
(left or right) exact, 186

G-structure, 36
G2, definition, 227
G2 holonomy, 54–55, 227–239

associative 3-fold, 68, 71, 72, 254–272
coassociative 4-fold, 68, 71, 72, 254–272
explicit metrics, 253
holonomy subgroups, 230
metrics Ricci-flat, 229
parallel spinors, 230

G2 holonomy, compact manifolds
Betti numbers of, 238
constructing, 233–239
moduli space of, 232, 253
topology of, 230–232

G2 instanton, 253
G2-manifold, 228

with holonomy SU(2) or SU(3), 230
G2-structure, 228, 252

function Θ, 228
nearly parallel, 253
positive 3-form, 228, 253
positive 4-form, 228
small torsion, 233, 235
splitting of forms, 229, 231
torsion, 228
torsion-free, 228, 233, 236

geometric measure theory, 72–74, 158, 170, 171,
176, 277

Green’s representation, 14
Gromov–Hausdorff limit, 197
Gromov–Witten invariants, 182–183, 191

H, see quaternions
Hilbert scheme, 218
HMS Conjecture, 184, 187–190
Hodge numbers, 87

of hyperkähler manifolds, 216
Hodge star, 3, 57

on Kähler manifolds, 86
Hodge theory, 3–4, 58–60

on Kähler manifolds, 86–88
Hölder space, 5–6
Hölder’s inequality, 4
holomorphic vector bundle, 81, 185
holomorphic volume form, 126
holonomy algebra, 27, 29, 43
holonomy group

and cohomology, 56–61

and curvature, 30–32
classification, 52–56
constant tensors, 32–34
definition, 25, 28, 42
exceptional, see G2 holonomy, Spin(7)

holonomy, etc.
for principal bundles, 28–30
for vector bundles, 24–28
restricted, 26, 28, 42
Ricci-flat, 55
Riemannian, 42–43

homological mirror symmetry, 183–191
homological mirror symmetry conjecture, see

HMS Conjecture
hypercomplex algebraic geometry, 224
hypercomplex manifold, 223–224
hypercomplex quotient construction, 225
hyperkähler manifold, 54, 100, 201–219

ALE, 201, 205–207
cohomology, 217
examples, 218–219
Hodge numbers, 216
moduli space, 217
twistor space, 204–205

hyperkähler quotient construction, 207, 224
hyperkähler structure, 201, 203
hypersurface, 98

Calabi–Yau, 140
degree d, 140
in toric variety, 143
in weighted projective space, 141–142

immersion, 65
Implicit Mapping Theorem, 7
injectivity radius, 5, 173, 235, 236, 247
instanton, 225, 253
integrable systems, 152–153, 155, 159, 177,

260–261
integral affine structure, 195, 197, 198
integral current, 72

Cayley, 277
special Lagrangian, 158, 171, 176

interior estimate, 15
intrinsic torsion, 38
Inverse Mapping Theorem, 7, 119

K3 surface, 208–213
examples, 208
marked, 209
moduli space, 209, 213

Kähler chamber, 210
Kähler class, 84, 88
Kähler cone, 88, 210, 216
Kähler form, 82, 123
Kähler manifold, 54, 82
Kähler metric, 82
Kähler potential, 84
Kodaira Embedding Theorem, 98, 126
Kondrakov Theorem, 6, 16, 104
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Kummer construction, 138, 208–209, 212–213
Kuranishi family, 96, 144

Lp(M), see Lebesgue space
Lp

k(M), see Sobolev space
Lagrangian Floer homology, 189

obstructions, 169, 188–189
Lagrangian submanifolds, 147
Landau–Ginzburg model, 180, 190
Laplacian, 3, 7, 9, 13, 58

on Kähler manifolds, 86, 107
large complex structure limit, 182, 183, 189,

192–194, 196
large radius limit, 182, 183, 189, 192–194, 196
Lebesgue space, 4–5
Lefschetz Hyperplane Theorem, 99, 141
Levi-Civita connection, 39–41
line bundle, 96–98

ample, 97, 126
canonical, 96, 123, 127
first Chern class, 96, 99, 100, 123
over CP

m, 96
positive, 98
very ample, 97

log scheme, 198

M-theory, 179, 227, 252, 253
maximum principle, 15
McKay correspondence, 130, 132, 206
mean curvature vector, 66
metric

Fubini–Study, 51, 83
Hermitian, 82
hyperkähler, 203
Kähler, 82
reducible, 44–48
symmetric, 48–52

minimal submanifold, 66
mirror pair, 143, 183
mirror pair of Calabi–Yau 3-folds, 180, 183
mirror symmetry, 142, 178–200

closed string, 181–183, 190–191
homological, 183–191
of Hodge numbers, 181
quantum, 192

moduli space, 60, 225
of Calabi–Yau manifolds, 144–145
of complex symplectic manifolds, 215
of G2-manifolds, 232, 253
of hyperkähler manifolds, 217
of K3 surfaces, 209, 213
of Spin(7)-manifolds, 245

moment map, 150, 153
Monge–Ampère equation, 102, 197
monodromy, 194

Newlander–Nirenberg Theorem, 76
Nijenhuis tensor, 76
node, 129

Novikov ring, 189, 190

O, see octonions
octonions, 54
open strings, 180
orbifold, 133–137

Calabi–Yau, 136, 248–252
complex, 134, 218
crepant resolution, 137–140
group, 134
Kähler, 135
of torus, 138, 233–237, 245–247
point, 134
quaternionic Kähler, 222
real, 134

parallel transport, 25
period domain, 210, 215

hyperkähler, 213, 218
period map, 145, 209, 215

hyperkähler, 213, 218
Picard group, 96
Poincaré duality, 2, 131, 132, 134, 168, 232
principal bundle, 19

connection, 22
pseudoholomorphic curves in S6, 258, 261, 262

quantum mirror symmetry, 192
quasi-ALE manifold

Calabi–Yau, 235, 246
quaternionic Kähler manifold, 54, 201, 219–222

negative, 220
positive, 220
twistor space, 220

quaternionic Kähler quotient construction, 225
quaternionic manifold, 224
quaternionic quotient construction, 225
quaternions, 54, 148, 202
quotient constructions, 224–225

real Monge–Ampère equation, 197
rectifiable current, 72
Reduction Theorem, 29
resolution, 93

crepant, 127–133
of C

m/G, 129–133
small, 128

Ricci curvature, 42, 85
and 1-forms, 60–61

Ricci form, 85, 100, 124
Riemann curvature, 40–43, 45, 50, 52, 56, 58,

84, 112, 125, 229, 232, 235, 236,
244, 247

Riemannian holonomy, see holonomy group
Riemannian metric, see metric

3-Sasakian manifold, 222–223
3-Sasakian quotient construction, 225
scalar curvature, 42
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SCFT, 180–183, 187, 192
topological twisting, 183

Schauder estimate, 13–14
scheme, 92
Schlessinger Rigidity Theorem, 133
second fundamental form, 66
self-dual 4-manifold, 224

Einstein, 221
sheaf, 91

coherent, 184, 185, 187, 190
cohomology, 91, 95
invertible, 127

singularity
canonical, 128
crepant resolution, 127–133
deformation, 94–95
Kleinian, 130
of variety, 92
resolution, 93
terminal, 128, 131

SL m-fold, see special Lagrangian m-folds
smoothing, 94
Sobolev Embedding Theorem, 6, 111, 237
Sobolev space, 4–5
Sp(m) holonomy, see hyperkähler manifold
Sp(m) Sp(1) holonomy, see quaternionic

Kähler manifold
special Lagrangian m-folds, 68, 71, 146–177,

239
affine structures on moduli space, 168–169
as (semi)stable objects, 169
asymptotically conical, 152, 155–157,

161–165
deformations, 162

boundary of moduli space, 176
compact, 166–169
connected sums, 175–176
constructions, 150–157
deformations, 148–149, 166–167
examples, 155–157, 159–161, 163–165
in (almost) Calabi–Yau m-folds, 165–177

examples, 169–170
index of singularities, 176–177, 199, 200
obstructions, 167–168
ruled, 151–152
with isolated conical singularities, 74,

170–177
behaviour near singularities, 171–172
deformations, 172–173
desingularizing, 173–175

with phase eiψ , 147
special Lagrangian cones, 150, 158–161

as an integrable system, 152
examples, 155–157, 159–161

special Lagrangian fibrations, 155, 191–193,
198–200

discriminant, 191
singularities, 198–200
U(1)-invariant, 198–199

special Lagrangian integral current, 158, 176
spin geometry, 61–64
spin structure, 62
Spin(7), definition, 239
Spin(7) holonomy, 54–55, 239–252

Cayley 4-fold, 68, 272–277
explicit metrics, 253
holonomy subgroups, 241
metrics Ricci-flat, 241
parallel spinors, 241

Spin(7) holonomy, compact manifolds
Betti numbers of, 248, 252
constructing, 245–252
moduli space of, 245
topology of, 242–245

Spin(7) instanton, 253, 277
Spin(7)-manifold, 240

with holonomy SU(2), SU(3), etc., 241–242
Spin(7)-structure, 240

admissible 4-form, 240
small torsion, 246, 249
splitting of forms, 240, 243
torsion, 240
torsion-free, 240, 247, 249

spinor, 62
harmonic, 64
parallel, 62, 230, 241

Stokes’ Theorem, 2
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