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Preface

This book is designed as a broad introduction to the mathematics of Un-
certainty Quantification (UQ) at the fourth year (senior) undergraduate or
beginning postgraduate level. It is aimed primarily at readers from a math-
ematical or statistical (rather than, say, engineering) background. The main
mathematical prerequisite is familiarity with the language of linear functional
analysis and measure / probability theory, and some familiarity with basic
optimization theory. Chapters 2–5 of the text provide a review of this mate-
rial, generally without detailed proof.

The aim of this book has been to give a survey of the main objectives in
the field of UQ and a few of the mathematical methods by which they can
be achieved. However, this book is no exception to the old saying that books
are never completed, only abandoned. There are many more UQ problems
and solution methods in the world than those covered here. For any grievous
omissions, I ask for your indulgence, and would be happy to receive sugges-
tions for improvements. With the exception of the preliminary material on
measure theory and functional analysis, this book should serve as a basis
for a course comprising 30–45 hours’ worth of lectures, depending upon the
instructor’s choices in terms of selection of topics and depth of treatment.

The examples and exercises in this book aim to be simple but informative
about individual components of UQ studies: practical applications almost
always require some ad hoc combination of multiple techniques (e.g., Gaus-
sian process regression plus quadrature plus reduced-order modelling). Such
compound examples have been omitted in the interests of keeping the pre-
sentation of the mathematical ideas clean, and in order to focus on examples
and exercises that will be more useful to instructors and students.

Each chapter concludes with a bibliography, the aim of which is threefold:
to give sources for results discussed but not proved in the text; to give some
historical overview and context; and, most importantly, to give students a
jumping-off point for further reading and research. This has led to a large
bibliography, but hopefully a more useful text for budding researchers.
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7.4 Ensemble Kálmán Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Orthogonal Polynomials and Applications . . . . . . . . . . . . . . . . 133
8.1 Basic Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4 Roots of Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.5 Polynomial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.6 Polynomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.7 Multivariate Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . 154
8.8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.10 Tables of Classical Orthogonal Polynomials . . . . . . . . . . . . . . . . 161



Contents xi

9 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.1 Univariate Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2 Gaussian Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.3 Clenshaw–Curtis/Fejér Quadrature . . . . . . . . . . . . . . . . . . . . . . . 173
9.4 Multivariate Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.5 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.6 Pseudo-Random Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10 Sensitivity Analysis and Model Reduction . . . . . . . . . . . . . . . . 197
10.1 Model Reduction for Linear Models . . . . . . . . . . . . . . . . . . . . . . . 198
10.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.3 McDiarmid Diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
10.4 ANOVA/HDMR Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.5 Active Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

11 Spectral Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
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Chapter 1

Introduction

We must think differently about our ideas —
and how we test them. We must become more
comfortable with probability and uncertainty.
We must think more carefully about the as-
sumptions and beliefs that we bring to a
problem.

The Signal and the Noise: The Art of
Science and Prediction

Nate Silver

1.1 What is Uncertainty Quantification?

This book is an introduction to the mathematics of Uncertainty Quantifi-
cation (UQ), but what is UQ? It is, roughly put, the coming together of
probability theory and statistical practice with ‘the real world’. These two
anecdotes illustrate something of what is meant by this statement:
• Until the early-to-mid 1990s, risk modelling for catastrophe insurance
and re-insurance (i.e. insurance for property owners against risks aris-
ing from earthquakes, hurricanes, terrorism, etc., and then insurance for
the providers of such insurance) was done on a purely statistical basis.
Since that time, catastrophe modellers have tried to incorporate models
for the underlying physics or human behaviour, hoping to gain a more
accurate predictive understanding of risks by blending the statistics and
the physics, e.g. by focussing on what is both statistically and physically
reasonable. This approach also allows risk modellers to study interesting
hypothetical scenarios in a meaningful way, e.g. using a physics-based
model of water drainage to assess potential damage from rainfall 10% in
excess of the historical maximum.

© Springer International Publishing Switzerland 2015
T.J. Sullivan, Introduction to Uncertainty Quantification, Texts
in Applied Mathematics 63, DOI 10.1007/978-3-319-23395-6 1
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2 1 Introduction

• Over roughly the same period of time, deterministic engineering mod-
els of complex physical processes began to incorporate some element of
uncertainty to account for lack of knowledge about important physical
parameters, random variability in operating circumstances, or outright
ignorance about what the form of a ‘correct’ model would be. Again the
aim is to provide more accurate predictions about systems’ behaviour.

Thus, a ‘typical’ UQ problem involves one or more mathematical models for
a process of interest, subject to some uncertainty about the correct form
of, or parameter values for, those models. Often, though not always, these
uncertainties are treated probabilistically.

Perhaps as a result of its history, there are many perspectives on what
UQ is, including at the extremes assertions like “UQ is just a buzzword for
statistics” or “UQ is just error analysis”. These points of view are somewhat
extremist, but they do contain a kernel of truth: very often, the probabilistic
theory underlying UQ methods is actually quite simple, but is obscured by
the details of the application. However, the complications that practical app-
lications present are also part of the essence of UQ: it is all very well giving
an accurate prediction for some insurance risk in terms of an elementary
mathematical object such as an expected value, but how will you actually go
about evaluating that expected value when it is an integral over a million-
dimensional parameter space? Thus, it is important to appreciate both the
underlying mathematics and the practicalities of implementation, and the
presentation here leans towards the former while keeping the latter in mind.

Typical UQ problems of interest include certification, prediction, model
and software verification and validation, parameter estimation, data assimi-
lation, and inverse problems. At its very broadest,

“UQ studies all sources of error and uncertainty, including the following: system-
atic and stochastic measurement error; ignorance; limitations of theoretical models;
limitations of numerical representations of those models; limitations of the accuracy
and reliability of computations, approximations, and algorithms; and human error.
A more precise definition is UQ is the end-to-end study of the reliability of scientific
inferences.” (U.S. Department of Energy, 2009, p. 135)

It is especially important to appreciate the “end-to-end” nature of UQ
studies: one is interested in relationships between pieces of information, not
the ‘truth’ of those pieces of information/assumptions, bearing in mind that
they are only approximations of reality. There is always going to be a risk of
‘Garbage In, Garbage Out’. UQ cannot tell you that your model is ‘right’ or
‘true’, but only that, if you accept the validity of the model (to some quanti-
fied degree), then you must logically accept the validity of certain conclusions
(to some quantified degree). In the author’s view, this is the proper interpre-
tation of philosophically sound but somewhat unhelpful assertions like “Veri-
fication and validation of numerical models of natural systems is impossible”
and “The primary value of models is heuristic” (Oreskes et al., 1994). UQ
can, however, tell you that two or more of your modelling assumptions are
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mutually contradictory, and hence that your model is wrong, and a complete
UQ analysis will include a meta-analysis examining the sensitivity of the
original analysis to perturbations of the governing assumptions.

A prototypical, if rather over-used, example for UQ is an elliptic PDE with
uncertainty coefficients:

Example 1.1. Consider the following elliptic boundary value problem on a
connected Lipschitz domain X ⊆ R

n (typically n = 2 or 3):

−∇ · (κ∇u) = f in X , (1.1)

u = b on ∂X .

Problem (1.1) is a simple but not overly näıve model for the pressure field u
of some fluid occupying a domain X . The domain X consists of a material,
and the tensor field κ : X → R

n×n describes the permeability of this material
to the fluid. There is a source term f : X → R, and the boundary condition
specifies the values b : ∂X → R that the pressure takes on the boundary of X .
This model is of interest in the earth sciences because Darcy’s law asserts that
the velocity field v of the fluid flow in this medium is related to the gradient
of the pressure field by

v = κ∇u.

If the fluid contains some kind of contaminant, then it may be important to
understand where fluid following the velocity field v will end up, and when.

In a course on PDE theory, you will learn that, for each given positive-
definite and essentially bounded permeability field κ, problem (1.1) has a
unique weak solution u in the Sobolev space H1

0 (X ) for each forcing term f
in the dual Sobolev space H−1(X ). This is known as the forward problem.
One objective of this book is to tell you that this is far from the end of
the story! As far as practical applications go, existence and uniqueness of
solutions to the forward problem is only the beginning. For one thing, this
PDE model is only an approximation of reality. Secondly, even if the PDE
were a perfectly accurate model, the ‘true’ κ, f and b are not known precisely,
so our knowledge about u = u(κ, f, b) is also uncertain in some way. If κ, f
and b are treated as random variables, then u is also a random variable,
and one is naturally interested in properties of that random variable such
as mean, variance, deviation probabilities, etc. This is known as the forward
propagation of uncertainty, and to perform it we must build some theory for
probability on function spaces.

Another issue is that often we want to solve an inverse problem: perhaps
we know something about f , b and u and want to infer κ via the relationship
(1.1). For example, we may observe the pressure u(xi) at finitely many points
xi ∈ X ; This problem is hugely underdetermined, and hence ill-posed; ill-
posedness is characteristic of many inverse problems, and is only worsened
by the fact that the observations may be corrupted by observational noise.
Even a prototypical inverse problem such as this one is of enormous practical
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interest: it is by solving such inverse problems that oil companies attempt to
infer the location of oil deposits in order to make a profit, and seismologists
the structure of the planet in order to make earthquake predictions. Both
of these problems, the forward and inverse propagation of uncertainty, fall
under the very general remit of UQ. Furthermore, in practice, the domain
X and the fields f , b, κ and u are all discretized and solved for numerically
(i.e. approximately and finite-dimensionally), so it is of interest to understand
the impact of these discretization errors.

Epistemic and Aleatoric Uncertainty. It is common to divide uncer-
tainty into two types, aleatoric and epistemic uncertainty. Aleatoric uncer-
tainty — from the Latin alea, meaning a die — refers to uncertainty about
an inherently variable phenomenon. Epistemic uncertainty — from the Greek
ὲπιστήμη, meaning knowledge — refers to uncertainty arising from lack of
knowledge. If one has at hand a model for some system of interest, then epis-
temic uncertainty is often further subdivided into model form uncertainty, in
which one has significant doubts that the model is even ‘structurally correct’,
and parametric uncertainty, in which one believes that the form of the model
reflects reality well, but one is uncertain about the correct values to use for
particular parameters in the model.

To a certain extent, the distinction between epistemic and aleatoric un-
certainty is an imprecise one, and repeats the old debate between frequentist
and subjectivist (e.g. Bayesian) statisticians. Someone who was simultane-
ously a devout Newtonian physicist and a devout Bayesian might argue that
the results of dice rolls are not aleatoric uncertainties — one simply doesn’t
have complete enough information about the initial conditions of die, the
material and geometry of the die, any gusts of wind that might affect the
flight of the die, and so forth. On the other hand, it is usually clear that
some forms of uncertainty are epistemic rather than aleatoric: for example,
when physicists say that they have yet to come up with a Theory of Every-
thing, they are expressing a lack of knowledge about the laws of physics in
our universe, and the correct mathematical description of those laws. In any
case, regardless of one’s favoured interpretation of probability, the language
of probability theory is a powerful tool in describing uncertainty.

Some Typical UQ Objectives. Many common UQ objectives can be illus-
trated in the context of a system, F , that maps inputs X in some space X to
outputs Y = F (X) in some space Y. Some common UQ objectives include:
• The forward propagation or push-forward problem. Suppose that the un-
certainty about the inputs of F can be summarized in a probability distri-
bution μ on X . Given this, determine the induced probability distribution
F∗μ on the output space Y, as defined by

(F∗μ)(E) := Pμ({x ∈ X | F (x) ∈ E}) ≡ Pμ[F (X) ∈ E].
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This task is typically complicated by μ being a complicated distribution,
or F being non-linear. Because (F∗μ) is a very high-dimensional object,
it is often more practical to identify some specific outcomes of interest
and settle for a solution of the following problem:

• The reliability or certification problem. Suppose that some set Yfail ⊆ Y
is identified as a ‘failure set’, i.e. the outcome F (X) ∈ Yfail is undesirable
in some way. Given appropriate information about the inputs X and
forward process F , determine the failure probability,

Pμ[F (X) ∈ Yfail].

Furthermore, in the case of a failure, how large will the deviation from
acceptable performance be, and what are the consequences?

• The prediction problem. Dually to the reliability problem, given a maxi-
mum acceptable probability of error ε > 0, find a set Yε ⊆ Y such that

Pμ[F (X) ∈ Yε] ≥ 1− ε.

i.e. the prediction F (X) ∈ Yε is wrong with probability at most ε.
• An inverse problem, such as state estimation (often for a quantity that
is changing in time) or parameter identification (usually for a quantity
that is not changing, or is non-physical model parameter). Given some
observations of the output, Y , which may be corrupted or unreliable in
some way, attempt to determine the corresponding inputs X such that
F (X) = Y . In what sense are some estimates for X more or less reliable
than others?

• The model reduction or model calibration problem. Construct another
function Fh (perhaps a numerical model with certain numerical parame-
ters to be calibrated, or one involving far fewer input or output variables)
such that Fh ≈ F in an appropriate sense. Quantifying the accuracy of
the approximation may itself be a certification or prediction problem.

Sometimes a UQ problem consists of several of these problems coupled
together: for example, one might have to solve an inverse problem to produce
or improve some model parameters, and then use those parameters to propa-
gate some other uncertainties forwards, and hence produce a prediction that
can be used for decision support in some certification problem.

Typical issues to be confronted in addressing these problems include the
high dimension of the parameter spaces associated with practical problems;
the approximation of integrals (expected values) by numerical quadrature;
the cost of evaluating functions that often correspond to expensive computer
simulations or physical experiments; and non-negligible epistemic uncertainty
about the correct form of vital ingredients in the analysis, such as the func-
tions and probability measures in key integrals.

The aim of this book is to provide an introduction to the fundamen-
tal mathematical ideas underlying the basic approaches to these types of
problems. Practical UQ applications almost always require some ad hoc
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combination of multiple techniques, adapted and specialized to suit the cir-
cumstances, but the emphasis here is on basic ideas, with simple illustrative
examples. The hope is that interested students or practitioners will be able
to generalize from the topics covered here to their particular problems of int-
erest, with the help of additional resources cited in the bibliographic discus-
sions at the end of each chapter. So, for example, while Chapter 12 discusses
intrusive (Galerkin) methods for UQ with an implicit assumption that the
basis is a polynomial chaos basis, one should be able to adapt these ideas to
non-polynomial bases.

A Word of Warning. UQ is not a mature field like linear algebra or single-�
variable complex analysis, with stately textbooks containing well-polished
presentations of classical theorems bearing August names like Cauchy, Gauss
and Hamilton. Both because of its youth as a field and its very close eng-
agement with applications, UQ is much more about problems, methods and
‘good enough for the job’. There are some very elegant approaches within
UQ, but as yet no single, general, over-arching theory of UQ.

1.2 Mathematical Prerequisites

Like any course or text, this book has some prerequisites. The perspective on�
UQ that runs through this book is strongly (but not exclusively) grounded
in probability theory and Hilbert spaces, so the main prerequisite is familiar-
ity with the language of linear functional analysis and measure/probability
theory. As a crude diagnostic test, read the following sentence:

Given any σ-finite measure space (X ,F , μ), the set of all F -measurable functions
f : X → C for which

∫
X |f |2 dμ is finite, modulo equality μ-almost everywhere, is a

Hilbert space with respect to the inner product 〈f, g〉 := ∫
X f̄g dμ.

None of the symbols, concepts or terms used or implicit in that sentence
should give prospective students or readers any serious problems. Chapters 2
and 3 give a recap, without proof, of the necessary concepts and results, and
most of the material therein should be familiar territory. In addition, Chap-
ters 4 and 5 provide additional mathematical background on optimization
and information theory respectively. It is assumed that readers have greater
prior familiarity with the material in Chapters 2 and 3 than the material in
Chapters 4 and 5; this is reflected in the way that results are presented mostly
without proof in Chapters 2 and 3, but with proof in Chapters 4 and 5.

If, in addition, students or readers have some familiarity with topics such as
numerical analysis, ordinary and partial differential equations, and stochas-
tic analysis, then certain techniques, examples and remarks will make more
sense. None of these are essential prerequisites, but, some ability and willing-
ness to implement UQ methods — even in simple settings — in, e.g., C/C++,
Mathematica, Matlab, or Python is highly desirable. (Some of the concepts
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Fig. 1.1: Outline of the book (Leitfaden). An arrow from m to n indicates
that Chapter n substantially depends upon material in Chapter m.

covered in the book will be given example numerical implementations in
Python.) Although the aim of this book is to give an overview of the mathe-
matical elements of UQ, this is a topic best learned in the doing, not through
pure theory. However, in the interests of accessibility and pedagogy, none
of the examples or exercises in this book will involve serious programming
legerdemain.

1.3 Outline of the Book

The first part of this book lays out basic and general mathematical tools
for the later discussion of UQ. Chapter 2 covers measure and probability
theory, which are essential tools given the probabilistic description of many
UQ problems. Chapter 3 covers some elements of linear functional analysis
on Banach and Hilbert spaces, and constructions such as tensor products, all
of which are natural spaces for the representation of random quantities and
fields. Many UQ problems involve a notion of ‘best fit’, and so Chapter 4 pro-
vides a brief introduction to optimization theory in general, with particular
attention to linear programming and least squares. Finally, although much of
the UQ theory in this book is probabilistic, and is furthermore an L2 theory,
Chapter 5 covers more general notions of information and uncertainty.
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The second part of the book is concerned with mathematical tools that
are much closer to the practice of UQ. We begin in Chapter 6 with a mathe-
matical treatment of inverse problems, and specifically their Bayesian inter-
pretation; we take advantage of the tools developed in Chapters 2 and 3 to
discuss Bayesian inverse problems on function spaces, which are especially
important in PDE applications. In Chapter 7, this leads to a specific class of
inverse problems, filtering and data assimilation problems, in which data and
unknowns are decomposed in a sequential manner. Chapter 8 introduces or-
thogonal polynomial theory, a classical area of mathematics that has a double
application in UQ: orthogonal polynomials are useful basis functions for the
representation of random processes, and form the basis of powerful numer-
ical integration (quadrature) algorithms. Chapter 9 discusses these quadra-
ture methods in more detail, along with other methods such as Monte Carlo.
Chapter 10 covers one aspect of forward uncertainty propagation, namely
sensitivity analysis and model reduction, i.e. finding out which input par-
ameters are influential in determining the values of some output process.
Chapter 11 introduces spectral decompositions of random variables and other
random quantities, including but not limited to polynomial chaos methods.
Chapter 12 covers the intrusive (or Galerkin) approach to the determination
of coefficients in spectral expansions; Chapter 13 covers the alternative non-
intrusive (sample-based) paradigm. Finally, Chapter 14 discusses approaches
to probability-based UQ that apply when even the probability distributions
of interest are uncertain in some way.

The conceptual relationships among the chapters are summarized in Figure
1.1.

1.4 The Road Not Taken

There are many topics relevant to UQ that are either not covered or discussed
only briefly here, including: detailed treatment of data assimilation beyond
the confines of the Kálmán filter and its variations; accuracy, stability and
computational cost of numerical methods; details of numerical implementa-
tion of optimization methods; stochastic homogenization and other multiscale
methods; optimal control and robust optimization; machine learning; issues
related to ‘big data’; and the visualization of uncertainty.



Chapter 2

Measure and Probability Theory

To be conscious that you are ignorant is a
great step to knowledge.

Sybil
Benjamin Disraeli

Probability theory, grounded in Kolmogorov’s axioms and the general
foundations of measure theory, is an essential tool in the quantitative mathe-
matical treatment of uncertainty. Of course, probability is not the only frame-
work for the discussion of uncertainty: there is also the paradigm of interval
analysis, and intermediate paradigms such as Dempster–Shafer theory, as
discussed in Section 2.8 and Chapter 5.

This chapter serves as a review, without detailed proof, of concepts from
measure and probability theory that will be used in the rest of the text.
Like Chapter 3, this chapter is intended as a review of material that should
be understood as a prerequisite before proceeding; to an extent, Chapters 2
and 3 are interdependent and so can (and should) be read in parallel with
one another.

2.1 Measure and Probability Spaces

The basic objects of measure and probability theory are sample spaces, which
are abstract sets; we distinguish certain subsets of these sample spaces as
being ‘measurable’, and assign to each of them a numerical notion of ‘size’.
In probability theory, this size will always be a real number between 0 and 1,
but more general values are possible, and indeed useful.

© Springer International Publishing Switzerland 2015
T.J. Sullivan, Introduction to Uncertainty Quantification, Texts
in Applied Mathematics 63, DOI 10.1007/978-3-319-23395-6 2
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Definition 2.1. A measurable space is a pair (X ,F ), where
(a) X is a set, called the sample space; and
(b) F is a σ-algebra on X , i.e. a collection of subsets of X containing ∅

and closed under countable applications of the operations of union, in-
tersection and complementation relative to X ; elements of F are called
measurable sets or events.

Example 2.2. (a) On any set X , there is a trivial σ-algebra in which the
only measurable sets are the empty set ∅ and the whole space X .

(b) On any set X , there is also the power set σ-algebra in which every subset
of X is measurable. It is a fact of life that this σ-algebra contains too
many measurable sets to be useful for most applications in analysis and
probability.

(c) When X is a topological — or, better yet, metric or normed — space,
it is common to take F to be the Borel σ-algebra B(X ), the smallest
σ-algebra on X so that every open set (and hence also every closed set)
is measurable.

Definition 2.3. (a) A signed measure (or charge) on a measurable space
(X ,F ) is a function μ : F → R∪{±∞} that takes at most one of the two
infinite values, has μ(∅) = 0, and, whenever E1, E2, . . . ∈ F are pairwise
disjoint with union E ∈ F , then μ(E) =

∑
n∈N

μ(En). In the case that
μ(E) is finite, we require that the series

∑
n∈N

μ(En) converges absolutely
to μ(E).

(b) A measure is a signed measure that does not take negative values.
(c) A probability measure is a measure such that μ(X ) = 1.

The triple (X ,F , μ) is called a signed measure space, measure space, or
probability space as appropriate. The sets of all signed measures, measures,
and probability measures on (X ,F ) are denoted M±(X ,F ), M+(X ,F ),
and M1(X ,F ) respectively.

Example 2.4. (a) The trivial measure can be defined on any set X and
σ-algebra: τ(E) := 0 for every E ∈ F .

(b) The unit Dirac measure at a ∈ X can also be defined on any set X and
σ-algebra:

δa(E) :=

{
1, if a ∈ E, E ∈ F ,

0, if a /∈ E, E ∈ F .

(c) Similarly, we can define counting measure:

κ(E) :=

{
n, if E ∈ F is a finite set with exactly n elements,

+∞, if E ∈ F is an infinite set.

(d) Lebesgue measure on R
n is the unique measure on R

n (equipped with
its Borel σ-algebra B(Rn), generated by the Euclidean open balls) that
assigns to every rectangle its n-dimensional volume in the ordinary sense.
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To be more precise, Lebesgue measure is actually defined on the com-
pletion B0(R

n) of B(Rn), which is a larger σ-algebra than B(Rn). The
rigorous construction of Lebesgue measure is a non-trivial undertaking.

(e) Signed measures/charges arise naturally in the modelling of distributions
with positive and negative values, e.g. μ(E) = the net electrical charge
within some measurable region E ⊆ R

3. They also arise naturally as
differences of non-negative measures: see Theorem 2.24 later on.

Remark 2.5. Probability theorists usually denote the sample space of a
probability space by Ω; PDE theorists often use the same letter to denote a
domain in R

n on which a partial differential equation is to be solved. In UQ,
where the worlds of probability and PDE theory often collide, the possibility
of confusion is clear. Therefore, this book will tend to use Θ for a probability
space and X for a more general measurable space, which may happen to be
the spatial domain for some PDE.

Definition 2.6. Let (X ,F , μ) be a measure space.
(a) If N ⊆ X is a subset of a measurable set E ∈ F such that μ(E) = 0,

then N is called a μ-null set.
(b) If the set of x ∈ X for which some property P (x) does not hold is μ-null,

then P is said to hold μ-almost everywhere (or, when μ is a probability
measure, μ-almost surely).

(c) If every μ-null set is in fact an F -measurable set, then the measure space
(X ,F , μ) is said to be complete.

Example 2.7. Let (X ,F , μ) be a measure space, and let f : X → R be some
function. If f(x) ≥ t for μ-almost every x ∈ X , then t is an essential lower
bound for f ; the greatest such t is called the essential infimum of f :

ess inf f := sup {t ∈ R | f ≥ t μ-almost everywhere} .

Similarly, if f(x) ≤ t for μ-almost every x ∈ X , then t is an essential upper
bound for f ; the least such t is called the essential supremum of f :

ess sup f := inf {t ∈ R | f ≤ t μ-almost everywhere} .

It is so common in measure and probability theory to need to refer to
the set of all points x ∈ X such that some property P (x) holds true that
an abbreviated notation has been adopted: simply [P ]. Thus, for example, if
f : X → R is some function, then

[f ≤ t] := {x ∈ X | f(x) ≤ t}.

As noted above, when the sample space is a topological space, it is usual
to use the Borel σ-algebra (i.e. the smallest σ-algebra that contains all the
open sets); measures on the Borel σ-algebra are called Borel measures. Unless
noted otherwise, this is the convention followed here.
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δ1

δ2

δ3

M1({1, 2, 3})

⊂ M±({1, 2, 3}) ∼= R3

Fig. 2.1: The probability simplexM1({1, 2, 3}), drawn as the triangle spanned
by the unit Dirac masses δi, i ∈ {1, 2, 3}, in the vector space of signed mea-
sures on {1, 2, 3}.

Definition 2.8. The support of a measure μ defined on a topological space
X is

supp(μ) :=
⋂
{F ⊆ X | F is closed and μ(X \ F ) = 0}.

That is, supp(μ) is the smallest closed subset of X that has full μ-measure.
Equivalently, supp(μ) is the complement of the union of all open sets of μ-
measure zero, or the set of all points x ∈ X for which every neighbourhood
of x has strictly positive μ-measure.

Especially in Chapter 14, we shall need to consider the set of all probability
measures defined on a measurable space.M1(X ) is often called the probability
simplex on X . The motivation for this terminology comes from the case in
which X = {1, . . . , n} is a finite set equipped with the power set σ-algebra,
which is the same as the Borel σ-algebra for the discrete topology on X .1 In
this case, functions f : X → R are in bijection with column vectors

⎡

⎢
⎢
⎣

f(1)
...

f(n)

⎤

⎥
⎥
⎦

and probability measures μ on the power set of X are in bijection with the
(n− 1)-dimensional set of row vectors

[
μ({1}) · · · μ({n})

]

1 It is an entertaining exercise to see what pathological properties can hold for a probability
measures on a σ-algebra other than the power set of a finite set X .
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such that μ({i}) ≥ 0 for all i ∈ {1, . . . , n} and
∑n

i=1 μ({i}) = 1. As illustrated
in Figure 2.1, the set of such μ is the (n− 1)-dimensional simplex in R

n that
is the convex hull of the n points δ1, . . . , δn,

δi =
[
0 · · · 0 1 0 · · · 0

]
,

with 1 in the ith column. Looking ahead, the expected value of f under μ
(to be defined properly in Section 2.3) is exactly the matrix product:

Eμ[f ] =
n∑

i=1

μ({i})f(i) = 〈μ | f〉 =
[
μ({1}) · · · μ({n})

]

⎡

⎢
⎢
⎣

f(1)
...

f(n)

⎤

⎥
⎥
⎦ .

It is useful to keep in mind this geometric picture ofM1(X ) in addition to the
algebraic and analytical properties of any given μ ∈ M1(X ). As poetically
highlighted by Sir Michael Atiyah (2004, Paper 160, p. 7):

“Algebra is the offer made by the devil to the mathematician. The devil says: ‘I
will give you this powerful machine, it will answer any question you like. All you
need to do is give me your soul: give up geometry and you will have this marvellous
machine.’ ”

Or, as is traditionally but perhaps apocryphally said to have been inscribed
over the entrance to Plato’s Academy:

AΓEΩMETPHTOΣ MHΔEIΣ EIΣITΩ

In a sense that will be made precise in Chapter 14, for any ‘nice’ space
X , M1(X ) is the simplex spanned by the collection of unit Dirac measures
{δx | x ∈ X}. Given a bounded, measurable function f : X → R and c ∈ R,

{μ ∈M(X ) | Eμ[f ] ≤ c}

is a half-space of M(X ), and so a set of the form

{μ ∈ M1(X ) | Eμ[f1] ≤ c1, . . . ,Eμ[fm] ≤ cm}

can be thought of as a polytope of probability measures.
One operation on probability measures that must frequently be performed

in UQ applications is conditioning, i.e. forming a new probability measure
μ( · |B) out of an old one μ by restricting attention to subsets of a measurable
set B. Conditioning is the operation of supposing that B has happened,
and examining the consequently updated probabilities for other measurable
events.

Definition 2.9. If (Θ,F , μ) is a probability space and B ∈ F has μ(B) > 0,
then the conditional probability measure μ( · |B) on (Θ,F ) is defined by
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μ(E|B) := μ(E ∩B)
μ(B)

for E ∈ F .

The following theorem on conditional probabilities is fundamental to sub-
jective (Bayesian) probability and statistics (q.v. Section 2.8:

Theorem 2.10 (Bayes’ rule). If (Θ,F , μ) is a probability space and A,
B ∈ F have μ(A), μ(B) > 0, then

μ(A|B) = μ(B|A)μ(A)
μ(B)

.

Both the definition of conditional probability and Bayes’ rule can be ext-
ended to much more general contexts (including cases in which μ(B) = 0)
using advanced tools such as regular conditional probabilities and the disinte-
gration theorem. In Bayesian settings, μ(A) represents the ‘prior’ probability
of some event A, and μ(A|B) its ‘posterior’ probability, having observed some
additional data B.

2.2 Random Variables and Stochastic Processes

Definition 2.11. Let (X ,F ) and (Y,G ) be measurable spaces. A function
f : X → Y generates a σ-algebra on X by

σ(f) := σ
(
{[f ∈ E] | E ∈ G }

)
,

and f is called a measurable function if σ(f) ⊆ F . That is, f is measur-
able if the pre-image f−1(E) of every G -measurable subset E of Y is an
F -measurable subset of X . A measurable function whose domain is a prob-
ability space is usually called a random variable.

Remark 2.12. Note that if F is the power set of Y, or if G is the trivial
σ-algebra {∅,Y}, then every function f : X → Y is measurable. At the oppo-
site extreme, if F is the trivial σ-algebra {∅,X}, then the only measurable
functions f : X → Y are the constant functions. Thus, in some sense, the
sizes of the σ-algebras used to define measurability provide a notion of how
well- or ill-behaved the measurable functions are.

Definition 2.13. A measurable function f : X → Y from a measure space
(X ,F , μ) to a measurable space (Y,G ) defines a measure f∗μ on (Y,G ),
called the push-forward of μ by f , by

(f∗μ)(E) := μ
(
[f ∈ E]

)
, for E ∈ G .

When μ is a probability measure, f∗μ is called the distribution or law of the
random variable f .
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Definition 2.14. Let S be any set and let (Θ,F , μ) be a probability space.
A function U : S × Θ → X such that each U(s, · ) is a random variable is
called an X -valued stochastic process on S.

Whereas measurability questions for a single random variable are discussed
in terms of a single σ-algebra, measurability questions for stochastic processes
are discussed in terms of families of σ-algebras; when the indexing set S is
linearly ordered, e.g. by the natural numbers, or by a continuous parameter
such as time, these families of σ-algebras are increasing in the following sense:

Definition 2.15. (a) A filtration of a σ-algebra F is a family F• = {Fi |
i ∈ I} of sub-σ-algebras of F , indexed by an ordered set I, such that

i ≤ j in I =⇒ Fi ⊆ Fj .

(b) The natural filtration associated with a stochastic process U : I×Θ→ X
is the filtration FU• defined by

FU
i := σ

(
{U(j, · )−1(E) ⊆ Θ | E ⊆ X is measurable and j ≤ i}

)
.

(c) A stochastic process U is adapted to a filtration F• if FU
i ⊆ Fi for

each i ∈ I.
Measurability and adaptedness are important properties of stochastic pro-

cesses, and loosely correspond to certain questions being ‘answerable’ or ‘dec-
idable’ with respect to the information contained in a given σ-algebra. For
instance, if the event [X ∈ E] is not F -measurable, then it does not even
make sense to ask about the probability Pμ[X ∈ E]. For another example,
suppose that some stream of observed data is modelled as a stochastic pro-
cess Y , and it is necessary to make some decision U(t) at each time t. It is
common sense to require that the decision stochastic process be FY

• -adapted,
since the decision U(t) must be made on the basis of the observations Y (s),
s ≤ t, not on observations from any future time.

2.3 Lebesgue Integration

Integration of a measurable function with respect to a (signed or non-
negative) measure is referred to as Lebesgue integration. Despite the many
technical details that must be checked in the construction of the Lebesgue int-
egral, it remains the integral of choice for most mathematical and probabilis-
tic applications because it extends the simple Riemann integral of functions
of a single real variable, can handle worse singularities than the Riemann
integral, has better convergence properties, and also naturally captures the
notion of an expected value in probability theory. The issue of numerical
evaluation of integrals — a vital one in UQ applications — will be addressed
separately in Chapter 9.
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The construction of the Lebesgue integral is accomplished in three steps:
first, the integral is defined for simple functions, which are analogous to step
functions from elementary calculus, except that their plateaus are not inter-
vals in R but measurable events in the sample space.

Definition 2.16. Let (X ,F , μ) be a measure space. The indicator function
IE of a set E ∈ F is the measurable function defined by

IE(x) :=

{
1, if x ∈ E
0, if x /∈ E.

A function f : X → K is called simple if

f =
n∑

i=1

αiIEi

for some scalars α1, . . . , αn ∈ K and some pairwise disjoint measurable sets
E1, . . . , En ∈ F with μ(Ei) finite for i = 1, . . . , n. The Lebesgue integral of a
simple function f :=

∑n
i=1 αiIEi is defined to be

∫

X
f dμ :=

n∑

i=1

αiμ(Ei).

In the second step, the integral of a non-negative measurable function is
defined through approximation from below by the integrals of simple func-
tions:

Definition 2.17. Let (X ,F , μ) be a measure space and let f : X → [0,+∞]
be a measurable function. The Lebesgue integral of f is defined to be

∫

X
f dμ := sup

{∫

X
φdμ

∣
∣
∣
∣
φ : X → R is a simple function, and

0 ≤ φ(x) ≤ f(x) for μ-almost all x ∈ X

}

.

Finally, the integral of a real- or complex-valued function is defined through
integration of positive and negative real and imaginary parts, with care being
taken to avoid the undefined expression ‘∞−∞’:

Definition 2.18. Let (X ,F , μ) be a measure space and let f : X → R be a
measurable function. The Lebesgue integral of f is defined to be

∫

X
f dμ :=

∫

X
f+ dμ−

∫

X
f− dμ

provided that at least one of the integrals on the right-hand side is finite. The
integral of a complex-valued measurable function f : X → C is defined to be

∫

X
f dμ :=

∫

X
(Re f) dμ+ i

∫

X
(Im f) dμ.
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The Lebesgue integral satisfies all the natural requirements for a useful
notion of integration: integration is a linear function of the integrand, inte-
grals are additive over disjoint domains of integration, and in the case X = R

every Riemann-integrable function is Lebesgue integrable. However, one of
the chief attractions of the Lebesgue integral over other notions of integration
is that, subject to a simple domination condition, pointwise convergence of
integrands is enough to ensure convergence of integral values:

Theorem 2.19 (Dominated convergence theorem). Let (X ,F , μ) be a mea-
sure space and let fn : X → K be a measurable function for each n ∈ N. If
f : X → K is such that limn→∞ fn(x) = f(x) for every x ∈ X and there
is a measurable function g : X → [0,∞] such that

∫
X |g| dμ is finite and

|fn(x)| ≤ g(x) for all x ∈ X and all large enough n ∈ N, then

∫

X
f dμ = lim

n→∞

∫

X
fn dμ.

Furthermore, if the measure space is complete, then the conditions on point-
wise convergence and pointwise domination of fn(x) can be relaxed to hold
μ-almost everywhere.

As alluded to earlier, the Lebesgue integral is the standard one in proba-
bility theory, and is used to define the mean or expected value of a random
variable:

Definition 2.20. When (Θ,F , μ) is a probability space and X : Θ → K is
a random variable, it is conventional to write Eμ[X ] for

∫
Θ
X(θ) dμ(θ) and

to call Eμ[X ] the expected value or expectation of X . Also,

Vμ[X ] := Eμ

[∣
∣X − Eμ[X ]

∣
∣2
]
≡ Eμ[|X |2]− |Eμ[X ]|2

is called the variance of X . If X is a K
d-valued random variable, then Eμ[X ],

if it exists, is an element of Kd, and

C := Eμ

[
(X − Eμ[X ])(X − Eμ[X ])∗

]
∈ K

d×d

i.e. Cij := Eμ

[
(Xi − Eμ[Xi])(Xj − Eμ[Xj ])

]
∈ K

is the covariance matrix of X .

Spaces of Lebesgue-integrable functions are ubiquitous in analysis and
probability theory:

Definition 2.21. Let (X ,F , μ) be a measure space. For 1 ≤ p ≤ ∞, the Lp

space (or Lebesgue space) is defined by

Lp(X , μ;K) := {f : X → K | f is measurable and ‖f‖Lp(μ) is finite}.



18 2 Measure and Probability Theory

For 1 ≤ p <∞, the norm is defined by the integral expression

‖f‖Lp(μ) :=

(∫

X
|f(x)|p dμ(x)

)1/p

; (2.1)

for p =∞, the norm is defined by the essential supremum (cf. Example 2.7)

‖f‖L∞(μ) := ess sup
x∈X

|f(x)| (2.2)

= inf {‖g‖∞ | f = g : X → K μ-almost everywhere}
= inf {t ≥ 0 | |f | ≤ t μ-almost everywhere} .

To be more precise, Lp(X , μ;K) is the set of equivalence classes of such func-
tions, where functions that differ only on a set of μ-measure zero are identified.

When (Θ,F , μ) is a probability space, we have the containments

1 ≤ p ≤ q ≤ ∞ =⇒ Lp(Θ, μ;R) ⊇ Lq(Θ, μ;R).

Thus, random variables in higher-order Lebesgue spaces are ‘better behaved’
than those in lower-order ones. As a simple example of this slogan, the fol-
lowing inequality shows that the Lp-norm of a random variable X provides
control on the probability X deviates strongly from its mean value:

Theorem 2.22 (Chebyshev’s inequality). Let X ∈ Lp(Θ, μ;K), 1 ≤ p <∞,
be a random variable. Then, for all t ≥ 0,

Pμ

[
|X − Eμ[X ]| ≥ t

]
≤ t−p

Eμ

[
|X |p

]
. (2.3)

(The case p = 1 is also known as Markov’s inequality.) It is natural to ask
if (2.3) is the best inequality of this type given the stated assumptions on X ,
and this is a question that will be addressed in Chapter 14, and specifically
Example 14.18.

Integration of Vector-Valued Functions. Lebesgue integration of func-
tions that take values in R

n can be handled componentwise, as indeed was
done above for complex-valued integrands. However, many UQ problems con-
cern random fields, i.e. random variables with values in infinite-dimensional
spaces of functions. For definiteness, consider a function f defined on a mea-
sure space (X ,F , μ) taking values in a Banach space V . There are two ways
to proceed, and they are in general inequivalent:
(a) The strong integral or Bochner integral of f is defined by integrating

simple V-valued functions as in the construction of the Lebesgue integral,
and then defining ∫

X
f dμ := lim

n→∞

∫

X
φn dμ

whenever (φn)n∈N is a sequence of simple functions such that the (scalar-
valued) Lebesgue integral

∫
X ‖f − φn‖ dμ converges to 0 as n → ∞.
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It transpires that f is Bochner integrable if and only if ‖f‖ is Lebesgue
integrable. The Bochner integral satisfies a version of the Dominated Con-
vergence Theorem, but there are some subtleties concerning the Radon–
Nikodým theorem.

(b) The weak integral or Pettis integral of f is defined using duality:
∫
X f dμ

is defined to be an element v ∈ V such that

〈� | v〉 =
∫

X
〈� | f(x)〉dμ(x) for all � ∈ V ′.

Since this is a weaker integrability criterion, there are naturally more
Pettis-integrable functions than Bochner-integrable ones, but the Pettis
integral has deficiencies such as the space of Pettis-integrable functions
being incomplete, the existence of a Pettis-integrable function f : [0, 1]→
V such that F (t) :=

∫
[0,t] f(τ) dτ is not differentiable (Kadets, 1994), and

so on.

2.4 Decomposition and Total Variation of Signed
Measures

If a good mental model for a non-negative measure is a distribution of mass,
then a good mental model for a signed measure is a distribution of electrical
charge. A natural question to ask is whether every distribution of charge can
be decomposed into regions of purely positive and purely negative charge, and
hence whether it can be written as the difference of two non-negative distri-
butions, with one supported entirely on the positive set and the other on the
negative set. The answer is provided by the Hahn and Jordan decomposition
theorems.

Definition 2.23. Two non-negative measures μ and ν on a measurable space
(X ,F ) are said to be mutually singular, denoted μ ⊥ ν, if there exists E ∈ F
such that μ(E) = ν(X \ E) = 0.

Theorem 2.24 (Hahn–Jordan decomposition). Let μ be a signed measure
on a measurable space (X ,F ).
(a) Hahn decomposition: there exist sets P,N ∈ F such that P ∪ N = X ,

P ∩N = ∅, and

for all measurable E ⊆ P , μ(E) ≥ 0,

for all measurable E ⊆ N , μ(E) ≤ 0.

This decomposition is essentially unique in the sense that if P ′ and N ′

also satisfy these conditions, then every measurable subset of the sym-
metric differences P � P ′ and N �N ′ is of μ-measure zero.
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(b) Jordan decomposition: there are unique mutually singular non-negative
measures μ+ and μ− on (X ,F ), at least one of which is a finite measure,
such that μ = μ+ − μ−; indeed, for all E ∈ F ,

μ+(E) = μ(E ∩ P ),
μ−(E) = −μ(E ∩N).

From a probabilistic perspective, the main importance of signed measures
and their Hahn and Jordan decompositions is that they provide a useful
notion of distance between probability measures:

Definition 2.25. Let μ be a signed measure on a measurable space (X ,F ),
with Jordan decomposition μ = μ+ − μ−. The associated total variation
measure is the non-negative measure |μ| := μ+ + μ−. The total variation of
μ is ‖μ‖TV := |μ|(X ).

Remark 2.26. (a) As the notation ‖μ‖TV suggests, ‖ · ‖TV is a norm on the
space M±(X ,F ) of signed measures on (X ,F ).

(b) The total variation measure can be equivalently defined using measurable
partitions:

|μ|(E) = sup

{
n∑

i=1

|μ(Ei)|
∣
∣
∣
∣
∣

n ∈ N0, E1, . . . , En ∈ F ,
and E = E1 ∪ · · · ∪En

}

.

(c) The total variation distance between two probability measures μ and ν
(i.e. the total variation norm of their difference) can thus be character-
ized as

dTV(μ, ν) ≡ ‖μ− ν‖TV = 2 sup
{
|μ(E)− ν(E)|

∣
∣E ∈ F

}
, (2.4)

i.e. twice the greatest absolute difference in the two probability values
that μ and ν assign to any measurable event E.

2.5 The Radon–Nikodým Theorem and Densities

Let (X ,F , μ) be a measure space and let ρ : X → [0,+∞] be a measurable
function. The operation

ν : E �→
∫

E

ρ(x) dμ(x) (2.5)

defines a measure ν on (X ,F ). It is natural to ask whether every measure
ν on (X ,F ) can be expressed in this way. A moment’s thought reveals that
the answer, in general, is no: there is no such function ρ that will make (2.5)
hold when μ and ν are Lebesgue measure and a unit Dirac measure (or vice
versa) on R.
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Definition 2.27. Let μ and ν be measures on a measurable space (X ,F ).
If, for E ∈ F , ν(E) = 0 whenever μ(E) = 0, then ν is said to be absolutely
continuous with respect to μ, denoted ν � μ. If ν � μ � ν, then μ and ν
are said to be equivalent, and this is denoted μ ≈ ν.

Definition 2.28. A measure space (X ,F , μ) is said to be σ-finite if X
can be expressed as a countable union of F -measurable sets, each of finite
μ-measure.

Theorem 2.29 (Radon–Nikodým). Suppose that μ and ν are σ-finite mea-
sures on a measurable space (X ,F ) and that ν � μ. Then there exists a
measurable function ρ : X → [0,∞] such that, for all measurable functions
f : X → R and all E ∈ F ,

∫

E

f dν =

∫

E

fρ dμ

whenever either integral exists. Furthermore, any two functions ρ with this
property are equal μ-almost everywhere.

The function ρ in the Radon–Nikodým theorem is called the Radon–
Nikodým derivative of ν with respect to μ, and the suggestive notation ρ = dν

dμ

is often used. In probability theory, when ν is a probability measure, dν
dμ is

called the probability density function (PDF) of ν (or any ν-distributed ran-
dom variable) with respect to μ. Radon–Nikodým derivatives behave very
much like the derivatives of elementary calculus:

Theorem 2.30 (Chain rule). Suppose that μ, ν and π are σ-finite measures
on a measurable space (X ,F ) and that π � ν � μ. Then π � μ and

dπ

dμ
=

dπ

dν

dν

dμ
μ-almost everywhere.

Remark 2.31. The Radon–Nikodým theorem also holds for a signed mea-
sure ν and a non-negative measure μ, but in this case the absolute continuity
condition is that the total variation measure |ν| satisfies |ν| � μ, and of
course the density ρ is no longer required to be a non-negative function.

2.6 Product Measures and Independence

The previous section considered one way of making new measures from old
ones, namely by re-weighting them using a locally integrable density func-
tion. By way of contrast, this section considers another way of making new
measures from old, namely forming a product measure. Geometrically speak-
ing, the product of two measures is analogous to ‘area’ as the product of
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two ‘length’ measures. Products of measures also arise naturally in probabil-
ity theory, since they are the distributions of mutually independent random
variables.

Definition 2.32. Let (Θ,F , μ) be a probability space.
(a) Two measurable sets (events) E1, E2 ∈ F are said to be independent if

μ(E1 ∩ E2) = μ(E1)μ(E2).
(b) Two sub-σ-algebras G1 and G2 of F are said to be independent if E1 and

E2 are independent events whenever E1 ∈ G1 and E2 ∈ G2.
(c) Two measurable functions (random variables)X : Θ → X and Y : Θ→ Y

are said to be independent if the σ-algebras generated by X and Y are
independent.

Definition 2.33. Let (X ,F , μ) and (Y,G , ν) be σ-finite measure spaces.
The product σ-algebra F ⊗ G is the σ-algebra on X × Y that is generated
by the measurable rectangles, i.e. the smallest σ-algebra for which all the
products

F ×G, F ∈ F , G ∈ G ,

are measurable sets. The product measure μ ⊗ ν : F ⊗ G → [0,+∞] is the
measure such that

(μ⊗ ν)(F ×G) = μ(F )ν(G), for all F ∈ F , G ∈ G .

In the other direction, given a measure on a product space, we can consider
the measures induced on the factor spaces:

Definition 2.34. Let (X × Y,F , μ) be a measure space and suppose that
the factor space X is equipped with a σ-algebra such that the projections
ΠX : (x, y) �→ x is a measurable function. Then the marginal measure μX is
the measure on X defined by

μX (E) :=
(
(ΠX )∗μ

)
(E) = μ(E × Y).

The marginal measure μY on Y is defined similarly.

Theorem 2.35. Let X = (X1, X2) be a random variable taking values in a
product space X = X1×X2. Let μ be the (joint) distribution of X, and μi the
(marginal) distribution of Xi for i = 1, 2. Then X1 and X2 are independent
random variables if and only if μ = μ1 ⊗ μ2.

The important property of integration with respect to a product measure,
and hence taking expected values of independent random variables, is that it
can be performed by iterated integration:

Theorem 2.36 (Fubini–Tonelli). Let (X ,F , μ) and (Y,G , ν) be σ-finite
measure spaces, and let f : X × Y → [0,+∞] be measurable. Then, of the
following three integrals, if one exists in [0,∞], then all three exist and are
equal:
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∫

X

∫

Y
f(x, y) dν(y) dμ(x),

∫

Y

∫

X
f(x, y) dμ(x) dν(y),

and

∫

X×Y
f(x, y) d(μ⊗ ν)(x, y).

Infinite product measures (or, put another way, infinite sequences of inde-
pendent random variables) have some interesting extreme properties. Infor-
mally, the following result says that any property of a sequence of independent
random variables that is independent of any finite subcollection (i.e. depends
only on the ‘infinite tail’ of the sequence) must be almost surely true or
almost surely false:

Theorem 2.37 (Kolmogorov zero-one law). Let (Xn)n∈N be a sequence of
independent random variables defined over a probability space (Θ,F , μ), and
let Fn := σ(Xn). For each n ∈ N, let Gn := σ

(⋃
k≥n Fk

)
, and let

T :=
⋂

n∈N

Gn =
⋂

n∈N

σ(Xn, Xn+1, . . . ) ⊆ F

be the so-called tail σ-algebra. Then, for every E ∈ T , μ(E) ∈ {0, 1}.

Thus, for example, it is impossible to have a sequence of real-valued ran-
dom variables (Xn)n∈N such that limn→∞Xn exists with probability 1

2 ; either
the sequence converges with probability one, or else with probability one it
has no limit at all. There are many other zero-one laws in probability and
statistics: one that will come up later in the study of Monte Carlo averages
is Kesten’s theorem (Theorem 9.17).

2.7 Gaussian Measures

An important class of probability measures and random variables is the class
of Gaussians, also known as normal distributions. For many practical prob-
lems, especially those that are linear or nearly so, Gaussian measures can
serve as appropriate descriptions of uncertainty; even in the nonlinear sit-
uation, the Gaussian picture can be an appropriate approximation, though
not always. In either case, a significant attraction of Gaussian measures is
that many operations on them (e.g. conditioning) can be performed using
elementary linear algebra.

On a theoretical level, Gaussian measures are particularly important bec-
ause, unlike Lebesgue measure, they are well defined on infinite-dimensional
spaces, such as function spaces. In R

d, Lebesgue measure is characterized up
to normalization as the unique Borel measure that is simultaneously
• locally finite, i.e. every point of Rd has an open neighbourhood of finite
Lebesgue measure;
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• strictly positive, i.e. every open subset ofRd has strictly positive Lebesgue
measure; and

• translation invariant, i.e. λ(x+E) = λ(E) for all x ∈ R
d and measurable

E ⊆ R
d.

In addition, Lebesgue measure is σ-finite. However, the following theorem
shows that there can be nothing like an infinite-dimensional Lebesgue
measure:

Theorem 2.38. Let μ be a Borel measure on an infinite-dimensional Banach
space V, and, for v ∈ V, let Tv : V → V be the translation map Tv(x) := v+x.
(a) If μ is locally finite and invariant under all translations, then μ is the

trivial (zero) measure.
(b) If μ is σ-finite and quasi-invariant under all translations (i.e. (Tv)∗μ is

equivalent to μ), then μ is the trivial (zero) measure.

Gaussian measures on R
d are defined using a Radon–Nikodým derivative

with respect to Lebesgue measure. To save space, when P is a self-adjoint
and positive-definite matrix or operator on a Hilbert space (see Section 3.3),
write

〈x, y〉P := 〈x, Py〉 ≡ 〈P 1/2x, P 1/2y〉,
‖x‖P :=

√
〈x, x〉P ≡ ‖P 1/2x‖

for the new inner product and norm induced by P .

Definition 2.39. Let m ∈ R
d and let C ∈ R

d×d be symmetric and positive
definite. The Gaussian measure with mean m and covariance C is denoted
N (m,C) and defined by

N (m,C)(E) :=
1

√
detC

√
2π

d

∫

E

exp

(

− (x−m) · C−1(x−m)

2

)

dx

:=
1

√
detC

√
2π

d

∫

E

exp

(

−1

2
‖x−m‖2C−1

)

dx

for each measurable set E ⊆ R
d. The Gaussian measure γ := N (0, I) is called

the standard Gaussian measure. A Dirac measure δm can be considered as a
degenerate Gaussian measure on R, one with variance equal to zero.

A non-degenerate Gaussian measure is a strictly positive probability mea-
sure on R

d, i.e. it assigns strictly positive mass to every open subset of Rd;
however, unlike Lebesgue measure, it is not translation invariant:

Lemma 2.40 (Cameron–Martin formula). Let μ = N (m,C) be a Gaussian
measure on R

d. Then the push-forward (Tv)∗μ of μ by translation by any
v ∈ R

d, i.e. N (m+ v, C), is equivalent to N (m,C) and

d(Tv)∗μ
dμ

(x) = exp

(

〈v, x −m〉C−1 − 1

2
‖v‖2C−1

)

,
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i.e., for every integrable function f ,

∫

Rd

f(x+ v) dμ(x) =

∫

Rd

f(x) exp

(

〈v, x−m〉C−1 − 1

2
‖v‖2C−1

)

dμ(x).

It is easily verified that the push-forward of N (m,C) by any linear func-
tional � : Rd → R is a Gaussian measure on R, and this is taken as the defining
property of a general Gaussian measure for settings in which, by Theorem
2.38, there may not be a Lebesgue measure with respect to which densities
can be taken:

Definition 2.41. A Borel measure μ on a normed vector space V is said
to be a (non-degenerate) Gaussian measure if, for every continuous linear
functional � : V → R, the push-forward measure �∗μ is a (non-degenerate)
Gaussian measure on R. Equivalently, μ is Gaussian if, for every linear map
T : V → R

d, T∗μ = N (mT , CT ) for some mT ∈ R
d and some symmetric

positive-definite CT ∈ R
d×d.

Definition 2.42. Let μ be a probability measure on a Banach space V . An
element mμ ∈ V is called the mean of μ if

∫

V
〈� |x−mμ〉dμ(x) = 0 for all � ∈ V ′,

so that
∫
V xdμ(x) = mμ in the sense of a Pettis integral. If mμ = 0, then μ is

said to be centred. The covariance operator is the self-adjoint (i.e. conjugate-
symmetric) operator Cμ : V ′ × V ′ → K defined by

Cμ(k, �) =

∫

V
〈k |x−mμ〉〈� |x−mμ〉dμ(x) for all k, � ∈ V ′.

We often abuse notation and write Cμ : V ′ → V ′′ for the operator defined by

〈Cμk | �〉 := Cμ(k, �)

In the case that V = H is a Hilbert space, it is usual to employ the Riesz
representation theorem to identify H with H′ and H′′ and hence treat Cμ as
a linear operator from H into itself. The inverse of Cμ, if it exists, is called
the precision operator of μ.

The covariance operator of a Gaussian measure is closely connected to its
non-degeneracy:

Theorem 2.43 (Vakhania, 1975). Let μ be a Gaussian measure on a
separable, reflexive Banach space V with mean mμ ∈ V and covariance
operator Cμ : V ′ → V. Then the support of μ is the affine subspace of V that
is the translation by the mean of the closure of the range of the covariance
operator, i.e.

supp(μ) = mμ + CμV ′.
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Corollary 2.44. For a Gaussian measure μ on a separable, reflexive Banach
space V, the following are equivalent:
(a) μ is non-degenerate;
(b) Cμ : V ′ → V is one-to-one;
(c) CμV ′ = V.
Example 2.45. Consider a Gaussian random variable X = (X1, X2) ∼ μ
taking values in R

2. Suppose that the mean and covariance of X (or, equiv-
alently, μ) are, in the usual basis of R2,

m =

[
0

1

]

C =

[
1 0

0 0

]

.

Then X = (Z, 1), where Z ∼ N (0, 1) is a standard Gaussian random variable
on R; the values of X all lie on the affine line L := {(x1, x2) ∈ R

2 | x2 = 1}.
Indeed, Vakhania’s theorem says that

supp(μ) = m+ C(R2) =

[
0

1

]

+

{[
x1

0

] ∣
∣
∣
∣
∣
x1 ∈ R

}

= L.

Gaussian measures can also be identified by reference to their Fourier
transforms:

Theorem 2.46. A probability measure μ on V is a Gaussian measure if and
only if its Fourier transform μ̂ : V ′ → C satisfies

μ̂(�) :=

∫

V
ei〈� | x〉 dμ(x) = exp

(

i〈� |m〉 − Q(�)
2

)

for all � ∈ V ′.

for some m ∈ V and some positive-definite quadratic form Q on V ′. Indeed, m
is the mean of μ and Q(�) = Cμ(�, �). Furthermore, if two Gaussian measures
μ and ν have the same mean and covariance operator, then μ = ν.

Not only does a Gaussian measure have a well-defined mean and variance,
it in fact has moments of all orders:

Theorem 2.47 (Fernique, 1970). Let μ be a centred Gaussian measure on
a separable Banach space V. Then there exists α > 0 such that

∫

V
exp(α‖x‖2) dμ(x) < +∞.

A fortiori, μ has moments of all orders: for all k ≥ 0,
∫

V
‖x‖k dμ(x) < +∞.

The covariance operator of a Gaussian measure on a Hilbert space H is
a self-adjoint operator from H into itself. A classification of exactly which
self-adjoint operators on H can be Gaussian covariance operators is provided
by the next result, Sazonov’s theorem:
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Definition 2.48. Let K : H → H be a linear operator on a separable Hilbert
space H.
(a) K is said to be compact if it has a singular value decomposition, i.e. if

there exist finite or countably infinite orthonormal sequences (un) and
(vn) in H and a sequence of non-negative reals (σn) such that

K =
∑

n

σn〈vn, · 〉un,

with limn→∞ σn = 0 if the sequences are infinite.
(b) K is said to be trace class or nuclear if

∑
n σn is finite, and Hilbert–

Schmidt or nuclear of order 2 if
∑

n σ
2
n is finite.

(c) If K is trace class, then its trace is defined to be

tr(K) :=
∑

n

〈en,Ken〉

for any orthonormal basis (en) of H, and (by Lidskĭı’s theorem) this
equals the sum of the eigenvalues of K, counted with multiplicity.

Theorem 2.49 (Sazonov, 1958). Let μ be a centred Gaussian measure on a
separable Hilbert space H. Then Cμ : H → H is trace class and

tr(Cμ) =

∫

H
‖x‖2 dμ(x).

Conversely, if K : H → H is positive, self-adjoint and of trace class, then
there is a Gaussian measure μ on H such that Cμ = K.

Sazonov’s theorem is often stated in terms of the square root C
1/2
μ of Cμ:

C
1/2
μ is Hilbert–Schmidt, i.e. has square-summable singular values (σn)n∈N.
As noted above, even finite-dimensional Gaussian measures are not invari-

ant under translations, and the change-of-measure formula is given by Lemma
2.40. In the infinite-dimensional setting, it is not even true that translation
produces a new measure that has a density with respect to the old one. This
phenomenon leads to an important object associated with any Gaussian mea-
sure, its Cameron–Martin space:

Definition 2.50. Let μ = N (m,C) be a Gaussian measure on a Banach
space V . The Cameron–Martin space is the Hilbert space Hμ defined equiv-
alently by:
• Hμ is the completion of

{
h ∈ V

∣
∣ for some h∗ ∈ V ′, C(h∗, · ) = 〈 · |h〉

}

with respect to the inner product 〈h, k〉μ := C(h∗, k∗).
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• Hμ is the completion of the range of the covariance operator C : V ′ → V
with respect to this inner product (cf. the closure with respect to the
norm in V in Theorem 2.43).

• If V is Hilbert, then Hμ is the completion of ranC1/2 with the inner
product 〈h, k〉C−1 := 〈C−1/2h,C−1/2k〉V .

• Hμ is the set of all v ∈ V such that (Tv)∗μ ≈ μ, with

d(Tv)∗μ
dμ

(x) = exp

(

〈v, x〉C−1 − ‖v‖2C−1

2

)

as in Lemma 2.40.
• Hμ is the intersection of all linear subspaces of V that have full μ-measure.�
By Theorem 2.38, if μ is any probability measure (Gaussian or otherwise)

on an infinite-dimensional space V , then we certainly cannot have Hμ = V .
In fact, one should think of Hμ as being a very small subspace of V : if Hμ

is infinite dimensional, then μ(Hμ) = 0. Also, infinite-dimensional spaces
have the extreme property that Gaussian measures on such spaces are either
equivalent or mutually singular — there is no middle ground in the way that
Lebesgue measure on [0, 1] has a density with respect to Lebesgue measure
on R but is not equivalent to it.

Theorem 2.51 (Feldman–Hájek). Let μ, ν be Gaussian probability measures
on a normed vector space V. Then either
• μ and ν are equivalent, i.e. μ(E) = 0 ⇐⇒ ν(E) = 0, and hence each
has a strictly positive density with respect to the other; or

• μ and ν are mutually singular, i.e. there exists E such that μ(E) = 0 and
ν(E) = 1, and so neither μ nor ν can have a density with respect to the
other.

Furthermore, equivalence holds if and only if

(a) ranC
1/2
μ = ranC

1/2
ν ;

(b) mμ −mν ∈ ranC
1/2
μ = ranC

1/2
ν ; and

(c) T := (C
−1/2
μ C

1/2
ν )(C

−1/2
μ C

1/2
ν )∗ − I is Hilbert–Schmidt in ranC

1/2
μ .

The Cameron–Martin and Feldman–Hájek theorems show that translation
by any vector not in the Cameron–Martin space Hμ ⊆ V produces a new
measure that is mutually singular with respect to the old one. It turns out
that dilation by a non-unitary constant also destroys equivalence:

Proposition 2.52. Let μ be a centred Gaussian measure on a separable real
Banach space V such that dimHμ = ∞. For c ∈ R, let Dc : V → V be the
dilation map Dc(x) := cx. Then (Dc)∗μ is equivalent to μ if and only if
c ∈ {±1}, and (Dc)∗μ and μ are mutually singular otherwise.

Remark 2.53. There is another attractive viewpoint on Gaussian measures
on Hilbert spaces, namely that draws from a Gaussian measure N (m,C) on
a Hilbert space are the same as draws from random series of the form
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m+
∑

k∈N

√
λkξkψk,

where {ψk}k∈N are orthonormal eigenvectors for the covariance operator C,
{λk}k∈N are the corresponding eigenvalues, and {ξk}k∈N are independent
draws from the standard normal distribution N (0, 1) on R. This point of view
will be revisited in more detail in Section 11.1 in the context of Karhunen–
Loève expansions of Gaussian and Besov measures.

The conditioning properties of Gaussian measures can easily be expressed
using an elementary construction from linear algebra, the Schur complement.
This result will be very useful in Chapters 6, 7, and 13.

Theorem 2.54 (Conditioning of Gaussian measures). Let H = H1⊕H2 be a
direct sum of separable Hilbert spaces. Let X = (X1, X2) ∼ μ be an H-valued
Gaussian random variable with mean m = (m1,m2) and positive-definite
covariance operator C. For i, j = 1, 2, let

Cij(ki, kj) := Eμ

[
〈ki, x−mi〉〈kj , x−mj〉

]
(2.6)

for all ki ∈ Hi, kj ∈ Hj, so that C is decomposed2 in block form as

C =

[
C11 C12

C21 C22

]

; (2.7)

in particular, the marginal distribution of Xi is N (mi, Cii), and C21 = C∗
12.

Then C22 is invertible and, for each x2 ∈ H2, the conditional distribution of
X1 given X2 = x2 is Gaussian:

(X1|X2 = x2) ∼ N
(
m1 + C12C

−1
22 (x2 −m2), C11 − C12C

−1
22 C21

)
. (2.8)

2.8 Interpretations of Probability

It is worth noting that the above discussions are purely mathematical: a
probability measure is an abstract algebraic–analytic object with no neces-
sary connection to everyday notions of chance or probability. The question
of what interpretation of probability to adopt, i.e. what practical meaning
to ascribe to probability measures, is a question of philosophy and math-
ematical modelling. The two main points of view are the frequentist and
Bayesian perspectives. To a frequentist, the probability μ(E) of an event E
is the relative frequency of occurrence of the event E in the limit of infinitely
many independent but identical trials; to a Bayesian, μ(E) is a numerical

2 Here we are again abusing notation to conflate Cij : Hi ⊕Hj → K defined in (2.6) with
Cij : Hj → Hi given by 〈Cij (kj), ki〉Hi

= Cij(ki, kj).
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representation of one’s degree of belief in the truth of a proposition E. The
frequentist’s point of view is objective; the Bayesian’s is subjective; both use
the same mathematical machinery of probability measures to describe the
properties of the function μ.

Frequentists are careful to distinguish between parts of their analyses that
are fixed and deterministic versus those that have a probabilistic character.
However, for a Bayesian, any uncertainty can be described in terms of a
suitable probability measure. In particular, one’s beliefs about some unknown
θ (taking values in a space Θ) in advance of observing data are summarized
by a prior probability measure π on Θ. The other ingredient of a Bayesian
analysis is a likelihood function, which is up to normalization a conditional
probability: given any observed datum y, L(y|θ) is the likelihood of observing
y if the parameter value θ were the truth. A Bayesian’s belief about θ given
the prior π and the observed datum y is the posterior probability measure
π( · |y) on Θ, which is just the conditional probability

π(θ|y) = L(y|θ)π(θ)
Eπ[L(y|θ)]

=
L(y|θ)π(θ)

∫
Θ L(y|θ) dπ(θ)

or, written in a way that generalizes better to infinite-dimensional Θ, we have
a density/Radon–Nikodým derivative

dπ( · |y)
dπ

(θ) ∝ L(y|θ).

Both the previous two equations are referred to as Bayes’ rule, and are at
this stage informal applications of the standard Bayes’ rule (Theorem 2.10)
for events A and B of non-zero probability.

Example 2.55. Parameter estimation provides a good example of the philo-
sophical difference between frequentist and subjectivist uses of probability.
Suppose that X1, . . . , Xn are n independent and identically distributed ob-
servations of some random variable X , which is distributed according to the
normal distribution N (θ, 1) of mean θ and variance 1. We set our frequen-
tist and Bayesian statisticians the challenge of estimating θ from the data
d := (X1, . . . , Xn).
(a) To the frequentist, θ is a well-defined real number that happens to be

unknown. This number can be estimated using the estimator

θ̂n :=
1

n

n∑

i=1

Xi,

which is a random variable. It makes sense to say that θ̂n is close to θ
with high probability, and hence to give a confidence interval for θ, but
θ itself does not have a distribution.
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(b) To the Bayesian, θ is a random variable, and its distribution in advance
of seeing the data is encoded in a prior π. Upon seeing the data and
conditioning upon it using Bayes’ rule, the distribution of the parameter
is the posterior distribution π(θ|d). The posterior encodes everything that
is known about θ in view of π, L(y|θ) ∝ e−|y−θ|2/2 and d, although this
information may be summarized by a single number such as the maximum
a posteriori estimator

θ̂MAP := argmax
θ∈R

π(θ|d)

or the maximum likelihood estimator

θ̂MLE := argmax
θ∈R

L(d|θ).

The Bayesian perspective can be seen as the natural extension of classical
Aristotelian bivalent (i.e. true-or-false) logic to propositions of uncertain
truth value. This point of view is underwritten by Cox’s theorem (Cox,
1946, 1961), which asserts that any ‘natural’ extension of Aristotelian logic to
R-valued truth values is probabilistic, and specifically Bayesian, although the
‘naturality’ of the hypotheses has been challenged by, e.g., Halpern (1999a,b).

It is also worth noting that there is a significant community that, in
addition to being frequentist or Bayesian, asserts that selecting a single
probability measure is too precise a description of uncertainty. These ‘imp-
recise probabilists’ count such distinguished figures as George Boole and
John Maynard Keynes among their ranks, and would prefer to say that
1
2 − 2−100 ≤ P[heads] ≤ 1

2 + 2−100 than commit themselves to the assertion
that P[heads] = 1

2 ; imprecise probabilists would argue that the former asser-
tion can be verified, to a prescribed level of confidence, in finite time, whereas
the latter cannot. Techniques like the use of lower and upper probabilities (or
interval probabilities) are popular in this community, including sophisticated
generalizations like Dempster–Shafer theory; one can also consider feasible
sets of probability measures, which is the approach taken in Chapter 14.
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ter 1, Section 5). The Feldman–Hájek dichotomy (Theorem 2.51) was proved
independently by Feldman (1958) and Hájek (1958), and can also be found
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2.10 Exercises

Exercise 2.1. Let X be any C
n-valued random variable with mean m ∈ C

n

and covariance matrix

C := E
[
(X −m)(X −m)∗

]
∈ C

n×n.

(a) Show that C is conjugate-symmetric and positive semi-definite. For what
collection of vectors in C

n is C the Gram matrix?
(b) Show that if the support of X is all of Cn, then C is positive definite.

Hint: suppose that C has non-trivial kernel, construct an open half-space
H of Cn such that X /∈ H almost surely.
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Exercise 2.2. LetX be any random variable taking values in a Hilbert space
H, with mean m ∈ H and covariance operator C : H×H → C defined by

C(h, k) := E

[
〈h,X −m〉〈k,X −m〉

]

for h, k ∈ H. Show that C is conjugate-symmetric and positive semi-definite.
Show also that if there is no subspace S ⊆ H with dimS ≥ 1 such that
X ⊥ S with probability one), then C is positive definite.

Exercise 2.3. Prove the finite-dimensional Cameron–Martin formula of
Lemma 2.40. That is, let μ = N (m,C) be a Gaussian measure on R

d and
let v ∈ R

d, and show that the push-forward of μ by translation by v, namely
N (m+ v, C), is equivalent to μ and

d(Tv)∗μ
dμ

(x) = exp

(

〈v, x −m〉C−1 − 1

2
‖v‖2C−1

)

,

i.e., for every integrable function f ,

∫

Rd

f(x+ v) dμ(x) =

∫

Rd

f(x) exp

(

〈v, x−m〉C−1 − 1

2
‖v‖2C−1

)

dμ(x).

Exercise 2.4. Let T : H → K be a bounded linear map between Hilbert
spaces H and K, with adjoint T ∗ : K → H, and let μ = N (m,C) be a Gaus-
sian measure on H. Show that the push-forward measure T∗μ is a Gaussian
measure on K and that T∗μ = N (Tm, TCT ∗).

Exercise 2.5. For i = 1, 2, let Xi ∼ N (mi, Ci) independent Gaussian
random variables taking values in Hilbert spaces Hi, and let Ti : Hi → K be
a bounded linear map taking values in another Hilbert space K, with adjoint
T ∗
i : K → Hi. Show that T1X1 + T2X2 is a Gaussian random variable in K

with
T1X1 + T2X2 ∼ N

(
T1m1 + T2m2, T1C1T

∗
1 + T2C2T

∗
2

)
.

Give an example to show that the independence assumption is necessary.

Exercise 2.6. Let H and K be Hilbert spaces. Suppose that A : H → H and
C : K → K are self-adjoint and positive definite, that B : H → K, and that
D : K → K is self-adjoint and positive semi-definite. Show that the operator
from H⊕K to itself given in block form by

[
A+B∗CB −B∗C
−CB C +D

]

is self-adjoint and positive-definite.

Exercise 2.7 (Inversion lemma). Let H and K be Hilbert spaces, and let
A : H → H, B : K → H, C : H → K, and D : K → K be linear maps. Define
M : H⊕K → H⊕K in block form by
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M =

[
A B

C D

]

.

Show that if A, D, A−BD−1C and D − CA−1B are all non-singular, then

M−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

and

M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]

.

Hence derive the Woodbury formula

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1. (2.9)

Exercise 2.8. Exercise 2.7 has a natural interpretation in terms of the con-
ditioning of Gaussian random variables. Let (X,Y ) ∼ N (m,C) be jointly
Gaussian, where, in block form,

m =

[
m1

m2

]

, C =

[
C11 C12

C∗
12 C22

]

,

and C is self-adjoint and positive definite.
(a) Show that C11 and C22 are self-adjoint and positive-definite.
(b) Show that the Schur complement S defined by S := C11−C12C

−1
22 C

∗
12 is

self-adjoint and positive definite, and

C−1 =

[
S−1 −S−1C12C

−1
22

−C−1
22 C

∗
12S

−1 C−1
22 + C−1

22 C
∗
12S

−1C12C
−1
22

]

.

(c) Hence prove Theorem 2.54, that the conditional distribution of X given
that Y = y is Gaussian:

(X |Y = y) ∼ N
(
m1 + C12C

−1
22 (y −m2), S

)
.



Chapter 3

Banach and Hilbert Spaces

Dr. von Neumann, ich möchte gern wissen,
was ist dann eigentlich ein Hilbertscher
Raum?

David Hilbert

This chapter covers the necessary concepts from linear functional analysis
on Hilbert and Banach spaces: in particular, we review here basic construc-
tions such as orthogonality, direct sums and tensor products. Like Chapter 2,
this chapter is intended as a review of material that should be understood as
a prerequisite before proceeding; to an extent, Chapters 2 and 3 are interde-
pendent and so can (and should) be read in parallel with one another.

3.1 Basic Definitions and Properties

In what follows, K will denote either the real numbers R or the complex
numbers C, and | · | denotes the absolute value function on K. All the vector
spaces considered in this book will be vector spaces over one of these two
fields. In K, notions of ‘size’ and ‘closeness’ are provided by the absolute
value function | · |. In a normed vector space, similar notions of ‘size’ and
‘closeness’ are provided by a function called a norm, from which we can build
up notions of convergence, continuity, limits and so on.

Definition 3.1. A norm on a vector space V overK is a function ‖ · ‖ : V → R

that is
(a) positive semi-definite: for all x ∈ V , ‖x‖ ≥ 0;
(b) positive definite: for all x ∈ V , ‖x‖ = 0 if and only if x = 0;

© Springer International Publishing Switzerland 2015
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(c) positively homogeneous : for all x ∈ V and α ∈ K, ‖αx‖ = |α|‖x‖; and
(d) sublinear : for all x, y ∈ V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
If the positive definiteness requirement is omitted, then ‖ · ‖ is said to be a
seminorm. A vector space equipped with a norm (resp. seminorm) is called
a normed space (resp. seminormed space).

In a normed vector space, we can sensibly talk about the ‘size’ or ‘length’
of a single vector, but there is no sensible notion of ‘angle’ between two
vectors, and in particular there is no notion of orthogonality. Such notions
are provided by an inner product:

Definition 3.2. An inner product on a vector space V over K is a function
〈 · , · 〉 : V × V → K that is
(a) positive semi-definite: for all x ∈ V , 〈x, x〉 ≥ 0;
(b) positive definite: for all x ∈ V , 〈x, x〉 = 0 if and only if x = 0;
(c) conjugate symmetric: for all x, y ∈ V , 〈x, y〉 = 〈y, x〉; and
(d) sesquilinear : for all x, y, z ∈ V and all α, β ∈ K, 〈x, αy+ βz〉 = α〈x, y〉+

β〈x, z〉.
A vector space equipped with an inner product is called an inner product
space. In the case K = R, conjugate symmetry becomes symmetry, and
sesquilinearity becomes bilinearity.

Many texts have sesquilinear forms be linear in the first argument, rather
than the second as is done here; this is an entirely cosmetic difference that
has no serious consequences, provided that one makes a consistent choice and
sticks with it.

It is easily verified that every inner product space is a normed space under
the induced norm

‖x‖ :=
√
〈x, x〉.

The inner product and norm satisfy the Cauchy–Schwarz inequality

|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ V , (3.1)

where equality holds in (3.1) if and only if x and y are scalar multiples of one
another. Every norm on V that is induced by an inner product satisfies the
parallelogram identity

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ V . (3.2)

In the opposite direction, if ‖ · ‖ is a norm on V that satisfies the parallelogram
identity (3.2), then the unique inner product 〈 · , · 〉 that induces this norm is
found by the polarization identity

〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2
4

(3.3)
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in the real case, and

〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2
4

+ i
‖ix− y‖2 − ‖ix+ y‖2

4
(3.4)

in the complex case.
The simplest examples of normed and inner product spaces are the familiar

finite-dimensional Euclidean spaces:

Example 3.3. Here are some finite-dimensional examples of norms on K
n:

(a) The absolute value function | · | is a norm on K.
(b) The most familiar example of a norm is probably the Euclidean norm or

2-norm on K
n. The Euclidean norm of v = (v1, . . . , vn) ∈ K

n is given by

‖v‖2 :=

√
√
√
√

n∑

i=1

|vi|2 =

√
√
√
√

n∑

i=1

|v · ei|2. (3.5)

The Euclidean norm is the induced norm for the inner product

〈u, v〉 :=
n∑

i=1

uivi. (3.6)

In the case K = R this inner product is commonly called the dot product
and denoted u · v.

(c) The analogous inner product and norm on K
m×n of m × n matrices is

the Frobenius inner product

〈A,B〉 ≡ A : B :=
∑

i=1,...,m
j=1,...,n

aijbij .

(d) The 1-norm, also known as the Manhattan norm or taxicab norm, on K
n

is defined by

‖v‖1 :=
n∑

i=1

|vi|. (3.7)

(e) More generally, for 1 ≤ p <∞, the p-norm on K
n is defined by

‖v‖p :=

(
n∑

i=1

|vi|p
)1/p

. (3.8)

(f) Note, however, that the formula in (3.8) does not define a norm on K
n

if p < 1.
(g) The analogous norm for p =∞ is the∞-norm or maximum norm on K

n:

‖v‖∞ := max
i=1,...,n

|vi|. (3.9)
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There are also many straightforward examples of infinite-dimensional
normed spaces. In UQ applications, these spaces often arise as the solution
spaces for ordinary or partial differential equations, spaces of random vari-
ables, or spaces for sequences of coefficients of expansions of random fields
and stochastic processes.

Example 3.4. (a) An obvious norm to define for a sequence v = (vn)n∈N

is the analogue of the maximum norm. That is, define the supremum
norm by

‖v‖∞ := sup
n∈N

|vn|. (3.10)

Clearly, if v is not a bounded sequence, then ‖v‖∞ = ∞. Since norms
are not allowed to take the value ∞, the supremum norm is only a norm
on the space of bounded sequences ; this space is often denoted �∞, or
sometimes �∞(K) if we wish to emphasize the field of scalars, or B(N;K)
if we want to emphasize that it is a space of bounded functions on some
set, in this case N.

(b) Similarly, for 1 ≤ p <∞, the p-norm of a sequence is defined by

‖v‖p :=

(
∑

n∈N

|vn|p
)1/p

. (3.11)

The space of sequences for which this norm is finite is the space of p-
summable sequences, which is often denoted �p(K) or just �p. The state-
ment from elementary analysis courses that

∑∞
n=1

1
n (the harmonic series)

diverges but that
∑∞

n=1
1
n2 converges is the statement that

(
1, 12 ,

1
3 , . . .

)
∈ �2 but

(
1, 12 ,

1
3 , . . .

)
/∈ �1.

(c) If S is any set, and B(S;K) denotes the vector space of all bounded K-
valued functions on S, then a norm on B(S;K) is the supremum norm
(or uniform norm) defined by

‖f‖∞ := sup
x∈S

|f(x)|.

(d) Since every continuous function on a closed and bounded interval is
bounded, the supremum norm is also a norm on the space C0([0, 1];R) of
continuous real-valued functions on the unit interval.

There is a natural norm to use for linear functions between two normed
spaces:

Definition 3.5. Given normed spaces V and W , the operator norm of a
linear map A : V → W is

‖A‖ := sup
0
=v∈V

‖A(v)‖W
‖v‖V

≡ sup
v∈V

‖v‖V=1

‖A(v)‖W ≡ sup
v∈V

‖v‖V≤1

‖A(v)‖W .
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If ‖A‖ is finite, then A is called a bounded linear operator. The operator norm
of A will also be denoted ‖A‖op or ‖A‖V→W . There are many equivalent
expressions for this norm: see Exercise 3.1.

Definition 3.6. Two inner product spaces (V , 〈 · , · 〉V) and (W , 〈 · , · 〉W)
are said to be isometrically isomorphic if there is an invertible linear map
T : V → W such that

〈Tu, T v〉W = 〈u, v〉V for all u, v ∈ V .

The two inner product spaces are then ‘the same up to relabelling’. Similarly,
two normed spaces are isometrically isomorphic if there is an invertible linear
map that preserves the norm.

Finally, normed spaces are examples of topological spaces, in that the norm
structure induces a collection of open sets and (as will be revisited in the next
section) a notion of convergence:

Definition 3.7. Let V be a normed space:
(a) For x ∈ V and r > 0, the open ball of radius r centred on x is

Br(x) := {y ∈ V | ‖x− y‖ < r} (3.12)

and the closed ball of radius r centred on x is

Br(x) := {y ∈ V | ‖x− y‖ ≤ r}. (3.13)

(b) A subset U ⊆ V is called an open set if, for all x ∈ A, there exists
r = r(x) > 0 such that Br(x) ⊆ U .

(c) A subset F ⊆ V is called a closed set if V \ F is an open set.

3.2 Banach and Hilbert Spaces

For the purposes of analysis, rather than pure algebra, it is convenient if
normed spaces are complete in the same way that R is complete and Q is
not:

Definition 3.8. Let (V , ‖ · ‖) be a normed space.
(a) A sequence (xn)n∈N in V converges to x ∈ V if, for every ε > 0, there

exists N ∈ N such that, whenever n ≥ N , ‖xn − x‖ < ε.
(b) A sequence (xn)n∈N in V is called Cauchy if, for every ε > 0, there exists

N ∈ N such that, whenever m,n ≥ N , ‖xm − xn‖ < ε.
(c) A complete space is one in which each Cauchy sequence in V converges

to some element of V . Complete normed spaces are called Banach spaces,
and complete inner product spaces are called Hilbert spaces.
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It is easily verified that a subset F of a normed space is closed (in the
topological sense of being the complement of an open set) if and only if it is
closed under the operation of taking limits of sequences (i.e. every convergent
sequence in F has its limit also in F ), and that closed linear subspaces of
Banach (resp. Hilbert) spaces are again Banach (resp. Hilbert) spaces.

Example 3.9. (a) K
n and K

m×n are finite-dimensional Hilbert spaces with
respect to their usual inner products.

(b) The standard example of an infinite-dimensional Hilbert space is the
space �2(K) of square-summable K-valued sequences, which is a Hilbert
space with respect to the inner product

〈x, y〉�2 :=
∑

n∈N

xnyn.

This space is the prototypical example of a separable Hilbert space, i.e.
it has a countably infinite dense subset, and hence countably infinite
dimension.

(c) On the other hand, the subspace of �2 consisting of all sequences with
only finitely many non-zero terms is a non-closed subspace of �2, and not
a Hilbert space. Of course, if the non-zero terms are restricted to lie in a
predetermined finite range of indices, say {1, . . . , n}, then the subspace
is an isomorphic copy of the Hilbert space K

n.
(d) Given a measure space (X ,F , μ), the space L2(X , μ;K) of (equivalence

classes modulo equality μ-almost everywhere of) square-integrable func-
tions from X to K is a Hilbert space with respect to the inner product

〈f, g〉L2(μ) :=

∫

X
f(x)g(x) dμ(x). (3.14)

Note that it is necessary to take the quotient by the equivalence relation
of equality μ-almost everywhere since a function f that vanishes on a set
of full measure but is non-zero on a set of zero measure is not the zero
function but nonetheless has ‖f‖L2(μ) = 0. When (X ,F , μ) is a proba-
bility space, elements of L2(X , μ;K) are thought of as random variables
of finite variance, and the L2 inner product is the covariance:

〈X,Y 〉L2(μ) := Eμ

[
XY

]
= cov(X,Y ).

When L2(X , μ;K) is a separable space, it is isometrically isomorphic to
�2(K) (see Theorem 3.24).

(e) Indeed, Hilbert spaces over a fixed field K are classified by their dim-
ension: whenever H and K are Hilbert spaces of the same dimension over
K, there is an invertible K-linear map T : H → K such that 〈Tx, T y〉K =
〈x, y〉H for all x, y ∈ H.
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Example 3.10. (a) For a compact topological space X , the space C0(X ;K)
of continuous functions f : X → K is a Banach space with respect to the
supremum norm

‖f‖∞ := sup
x∈X

|f(x)|. (3.15)

For non-compact X , the supremum norm is only a bona fide norm if
we restrict attention to bounded continuous functions, since otherwise it
would take the inadmissible value +∞.

(b) More generally, if X is the compact closure of an open subset of a Banach
space V , and r ∈ N0, then the space Cr(X ;K) of all r-times continuously
differentiable functions from X to K is a Banach space with respect to
the norm

‖f‖Cr :=
r∑

k=0

∥
∥Dkf

∥
∥
∞.

Here, Df(x) : V → K denotes the first-order Fréchet derivative of f at x,
the unique bounded linear map such that

lim
y→x
in X

|f(y)− f(x)−Df(x)(y − x)|
‖y − x‖ = 0,

D2f(x) = D(Df)(x) : V×V → K denotes the second-order Fréchet deriva-
tive, etc.

(c) For 1 ≤ p ≤ ∞, the spaces Lp(X , μ;K) from Definition 2.21 are Banach
spaces, but only the L2 spaces are Hilbert spaces. As special cases (X =
N, and μ = counting measure), the sequence spaces �p are also Banach
spaces, and are Hilbert if and only if p = 2.

Another family of Banach spaces that arises very often in PDE appli-
cations is the family of Sobolev spaces. For the sake of brevity, we limit
the discussion to those Sobolev spaces that are also Hilbert spaces. To
save space, we use multi-index notation for derivatives: for a multi-index
α := (α1, . . . , αn) ∈ N

n
0 , with |α| := α1 + · · ·+ αn,

∂αu(x) :=
∂|α|u

∂α1x1 . . . ∂αnxn
(x).

Sobolev spaces consist of functions1 that have appropriately integrable weak
derivatives, as defined by integrating by parts against smooth test functions:

1 To be more precise, as with the Lebesgue Lp spaces, Sobolev spaces consist of equivalence
classes of such functions, with equivalence being equality almost everywhere.
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Definition 3.11. Let X ⊆ R
n, let α ∈ N

n
0 , and consider u : X → R. A weak

derivative of order α for u is a function v : X → R such that

∫

X
u(x)∂αφ(x) dx = (−1)|α|

∫

X
v(x)φ(x) dx (3.16)

for every smooth function φ : X → R that vanishes outside a compact subset
supp(φ) ⊆ X . Such a weak derivative is usually denoted ∂αu as if it were a
strong derivative, and indeed coincides with the classical (strong) derivative
if the latter exists. For s ∈ N0, the Sobolev space Hs(X ) is

Hs(X ) :=

{

u ∈ L2(X )

∣
∣
∣
∣

for all α ∈ N
n
0 with |α| ≤ s,

u has a weak derivative ∂αu ∈ L2(X )

}

(3.17)

with the inner product

〈u, v〉Hs :=
∑

|α|≤s

〈∂αu, ∂αv〉L2 . (3.18)

The following result shows that smoothness in the Sobolev sense implies
either a greater degree of integrability or even Hölder continuity. In partic-
ular, possibly after modification on sets of Lebesgue measure zero, Sobolev
functions in Hs are continuous when s > n/2. Thus, such functions can be
considered to have well-defined pointwise values.

Theorem 3.12 (Sobolev embedding theorem). Let X ⊆ R
n be a Lips-

chitz domain (i.e. a connected set with non-empty interior, such that ∂X
can always be locally written as the graph of a Lipschitz function of n − 1
variables).
(a) If s < n/2, then Hs(X ) ⊆ Lq(X ), where 1

q = 1
2 −

s
n , and there is a

constant C = C(s, n,X ) such that

‖u‖Lq(X ) ≤ C‖u‖Hs(X ) for all u ∈ Hs(X ).

(b) If s > n/2, then Hs(X ) ⊆ Cs−n/2�−1,γ(X ), where

γ =

{
�n/2�+ 1− n/2, if n is odd,

any element of (0, 1), if n is even,

and there is a constant C = C(s, n, γ,X ) such that

‖u‖Cs−�n/2�−1,γ(X ) ≤ C‖u‖Hs(X ) for all u ∈ Hs(X ),

where the Hölder norm is defined (up to equivalence) by

‖u‖Ck,γ(X ) := ‖u‖Ck + sup
x,y∈X
x 
=y

∣
∣Dku(x)−Dku(y)

∣
∣

|x− y| .
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3.3 Dual Spaces and Adjoints

Dual Spaces. Many interesting properties of a vector space are encoded
in a second vector space whose elements are the linear functions from the
first space to its field. When the vector space is a normed space,2 so that
concepts like continuity are defined, it makes sense to study continuous linear
functions:

Definition 3.13. The continuous dual space of a normed space V over K is
the vector space V ′ of all bounded (equivalently, continuous) linear functionals
� : V → K. The dual pairing between an element � ∈ V ′ and an element v ∈ V
is denoted 〈� | v〉 or simply �(v). For a linear functional � on a seminormed
space V , being continuous is equivalent to being bounded in the sense that
its operator norm (or dual norm)

‖�‖′ := sup
0
=v∈V

|〈� | v〉|
‖v‖ ≡ sup

v∈V
‖v‖=1

|〈� | v〉| ≡ sup
v∈V

‖v‖≤1

|〈� | v〉|

is finite.

Proposition 3.14. For every normed space V, the dual space V ′ is a Banach
space with respect to ‖ · ‖′.

An important property of Hilbert spaces is that they are naturally self-
dual : every continuous linear functional on a Hilbert space can be naturally
identified with the action of taking the inner product with some element of
the space:

Theorem 3.15 (Riesz representation theorem). Let H be a Hilbert space.
For every continuous linear functional f ∈ H′, there exists f 
 ∈ H such that
〈f |x〉 = 〈f 
, x〉 for all x ∈ H. Furthermore, the map f �→ f 
 is an isometric
isomorphism between H and its dual.

The simplicity of the Riesz representation theorem for duals of Hilbert
spaces stands in stark contrast to the duals of even elementary Banach spaces,
which are identified on a more case-by-case basis:
• For 1 < p < ∞, Lp(X , μ) is isometrically isomorphic to the dual of
Lq(X , μ), where 1

p + 1
q = 1. This result applies to the sequence space �p,

and indeed to the finite-dimensional Banach spaces Rn and C
n with the

norm ‖x‖p :=
(∑n

i=1 |xi|p
)1/p

.
• By the Riesz–Markov–Kakutani representation theorem, the dual of the
Banach space Cc(X ) of compactly supported continuous functions on a
locally compact Hausdorff space X is isomorphic to the space of regular
signed measures on X .

2 Or even just a topological vector space.
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The second example stands as another piece of motivation for measure theory
in general and signed measures in particular. Readers interested in the details
of these constructions should refer to a specialist text on functional analysis.

Adjoint Maps. Given a linear map A : V → W between normed spaces V
and W , the adjoint of A is the linear map A∗ : W ′ → V ′ defined by

〈A∗� | v〉 = 〈� |Av〉 for all v ∈ V and � ∈ W ′.

The following properties of adjoint maps are fundamental:

Proposition 3.16. Let U , V and W be normed spaces, let A,B : V → W
and C : U → V be bounded linear maps, and let α and β be scalars. Then
(a) A∗ : W ′ → V ′ is bounded, with operator norm ‖A∗‖ = ‖A‖;
(b) (αA + βB)∗ = αA∗ + βB∗;
(c) (AC)∗ = C∗A∗;
(d) the kernel and range of A and A∗ satisfy

kerA∗ = (ranA)⊥ := {� ∈ W ′ | 〈� |Av〉 = 0 for all v ∈ V}
(kerA∗)⊥ = ranA.

When considering a linear map A : H → K between Hilbert spaces H and
K, we can appeal to the Riesz representation theorem to identify H′ with H,
K′ with K, and hence define the adjoint in terms of inner products:

〈A∗k, h〉H = 〈k,Ah〉K for all h ∈ H and k ∈ K.

With this simplification, we can add to Proposition 3.16 the additional prop-
erties that A∗∗ = A and ‖A∗A‖ = ‖AA∗‖ = ‖A‖2. Also, in the Hilbert
space setting, a linear map A : H → H is said to be self-adjoint if A = A∗.
A self-adjoint map A is said to be positive semi-definite if

inf
x∈H
x 
=0

〈x,Ax〉
‖x‖2 ≥ 0,

and positive definite if this inequality is strict.
Given a basis {ei}i∈I of H, the corresponding dual basis {ei}i∈I of H

is defined by the relation 〈ei, ej〉H = δij . The matrix of A with respect to
bases {ei}i∈I of H and {fj}j∈J of K and the matrix of A∗ with respect to
the corresponding dual bases are very simply related: the one is the conju-
gate transpose of the other, and so by abuse of terminology the conjugate
transpose of a matrix is often referred to as the adjoint.

Thus, self-adjoint bounded linear maps are the appropriate generalization
to Hilbert spaces of symmetric matrices over R or Hermitian matrices over
C. They are also particularly useful in probability because the covariance
operator of anH-valued random variable is a self-adjoint (and indeed positive
semi-definite) bounded linear operator on H.
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3.4 Orthogonality and Direct Sums

Orthogonal decompositions of Hilbert spaces will be fundamental tools in
many of the methods considered later on.

Definition 3.17. A subset E of an inner product space V is said to be
orthogonal if 〈x, y〉 = 0 for all distinct elements x, y ∈ E; it is said to be
orthonormal if

〈x, y〉 =
{
1, if x = y ∈ E,
0, if x, y ∈ E and x �= y.

Lemma 3.18 (Gram–Schmidt). Let (xn)n∈N be any sequence in an inner
product space V, with the first d ∈ N0 ∪ {∞} terms linearly independent.
Inductively define (un)n∈N and (en)n∈N by

un := xn −
n−1∑

k=1

〈xn, uk〉
‖uk‖2

uk,

en :=
un
‖un‖

Then (un)n∈N (resp. (en)n∈N) is a sequence of d orthogonal (resp. orthonor-
mal) elements of V, followed by zeros if d <∞.

Definition 3.19. The orthogonal complement E⊥ of a subset E of an inner
product space V is

E⊥ := {y ∈ V | for all x ∈ E, 〈y, x〉 = 0}.

The orthogonal complement of E ⊆ V is always a closed linear subspace
of V , and hence if V = H is a Hilbert space, then E⊥ is also a Hilbert space
in its own right.

Theorem 3.20. Let K be a closed subspace of a Hilbert space H. Then, for
any x ∈ H, there is a unique ΠKx ∈ K that is closest to x in the sense that

‖ΠKx− x‖ = inf
y∈K

‖y − x‖.

Furthermore, x can be written uniquely as x = ΠKx + z, where z ∈ K⊥.
Hence, H decomposes as the orthogonal direct sum

H = K
⊥
⊕ K⊥.

Theorem 3.20 can be seen as a special case of closest-point approxima-
tion among convex sets: see Lemma 4.25 and Exercise 4.2. The operator
ΠK : H → K is called the orthogonal projection onto K.
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Theorem 3.21. Let K be a closed subspace of a Hilbert space H. The cor-
responding orthogonal projection operator ΠK is
(a) a continuous linear operator of norm at most 1;
(b) with I −ΠK = ΠK⊥ ;
and satisfies, for every x ∈ H,
(c) ‖x‖2 = ‖ΠKx‖2 + ‖(I −ΠK)x‖2;
(d) ΠKx = x ⇐⇒ x ∈ K;
(e) ΠKx = 0 ⇐⇒ x ∈ K⊥.

Example 3.22 (Conditional expectation). An important probabilistic app-
lication of orthogonal projection is the operation of conditioning a random
variable. Let (Θ,F , μ) be a probability space and let X ∈ L2(Θ,F , μ;K)
be a square-integrable random variable. If G ⊆ F is a σ-algebra, then the
conditional expectation ofX with respect to G , usually denoted E[X |G ], is the
orthogonal projection of X onto the subspace L2(Θ,G , μ;K). In elementary
contexts, G is usually taken to be the σ-algebra generated by a single event
E of positive μ-probability, i.e.

G = {∅, [X ∈ E], [X /∈ E], Θ};

or even the trivial σ-algebra {∅, Θ}, for which the only measurable functions
are the constant functions, and hence the conditional expectation coincides
with the usual expectation. The orthogonal projection point of view makes
two important properties of conditional expectation intuitively obvious:
(a) Whenever G1 ⊆ G2 ⊆ F , L2(Θ,G1, μ;K) is a subspace of L2(Θ,G2, μ;K)

and composition of the orthogonal projections onto these subspace yields
the tower rule for conditional expectations:

E[X |G1] = E
[
E[X |G2]

∣
∣G1

]
,

and, in particular, taking G1 to be the trivial σ-algebra {∅, Θ},

E[X ] = E[E[X |G2]].

(b) Whenever X,Y ∈ L2(Θ,F , μ;K) and X is, in fact, G -measurable,

E[XY |G ] = XE[Y |G ].

Direct Sums. Suppose that V andW are vector spaces over a common field
K. The Cartesian product V×W can be given the structure of a vector space
over K by defining the operations componentwise:

(v, w) + (v′, w′) := (v + v′, w + w′),
α(v, w) := (αv, αw),
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for all v, v′ ∈ V , w,w′ ∈ W , and α ∈ K. The resulting vector space is called
the (algebraic) direct sum of V and W and is usually denoted by V ⊕ W ,
while elements of V ⊕W are usually denoted by v ⊕ w instead of (v, w).

If {ei|i ∈ I} is a basis of V and {ej |j ∈ J} is a basis of W , then {ek | k ∈
K := I � J} is basis of V ⊕ W . Hence, the dimension of V ⊕ W over K is
equal to the sum of the dimensions of V and W .

When H and K are Hilbert spaces, their (algebraic) direct sum H⊕K can
be given a Hilbert space structure by defining

〈h⊕ k, h′ ⊕ k′〉H⊕K := 〈h, h′〉H + 〈k, k′〉K

for all h, h′ ∈ H and k, k′ ∈ K. The original spaces H and K embed into
H ⊕ K as the subspaces H ⊕ {0} and {0} ⊕ K respectively, and these two
subspaces are mutually orthogonal. For this reason, the orthogonality of the
two summands in a Hilbert direct sum is sometimes emphasized by the not-

ation H
⊥
⊕ K. The Hilbert space projection theorem (Theorem 3.20) was

the statement that whenever K is a closed subspace of a Hilbert space H,

H = K
⊥
⊕ K⊥.

It is necessary to be a bit more careful in defining the direct sum of count-
ably many Hilbert spaces. Let Hn be a Hilbert space over K for each n ∈ N.
Then the Hilbert space direct sum H :=

⊕
n∈N

Hn is defined to be

H :=

{

x = (xn)n∈N

∣
∣
∣
∣

xn ∈ Hn for each n ∈ N, and
xn = 0 for all but finitely many n

}

,

where the completion3 is taken with respect to the inner product

〈x, y〉H :=
∑

n∈N

〈xn, yn〉Hn ,

which is always a finite sum when applied to elements of the generating
set. This construction ensures that every element x of H has finite norm
‖x‖2H =

∑
n∈N

‖xn‖2Hn
. As before, each of the summands Hn is a subspace

of H that is orthogonal to all the others.
Orthogonal direct sums and orthogonal bases are among the most impor-

tant constructions in Hilbert space theory, and will be very useful in what
follows. Prototypical examples include the standard ‘Euclidean’ basis of �2

and the Fourier basis {en | n ∈ Z} of L2(S1;C), where

en(x) :=
1

2π
exp(inx).

3 Completions of normed spaces are formed in the same way as the completion of Q to form
R: the completion is the space of equivalence classes of Cauchy sequences, with sequences
whose difference tends to zero in norm being regarded as equivalent.
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Indeed, Fourier’s claim4 that any periodic function f could be written as

f(x) =
∑

n∈Z

f̂nen(x),

f̂n :=

∫

S1

f(y)en(y) dy,

can be seen as one of the historical drivers behind the development of much
of analysis. For the purposes of this book’s treatment of UQ, key examples
of an orthogonal bases are given by orthogonal polynomials, which will be
considered at length in Chapter 8.

Some important results about orthogonal systems are summarized below;
classically, many of these results arose in the study of Fourier series, but hold
for any orthonormal basis of a general Hilbert space.

Lemma 3.23 (Bessel’s inequality). Let V be an inner product space and
(en)n∈N an orthonormal sequence in V. Then, for any x ∈ V, the series∑

n∈N
|〈en, x〉|2 converges and satisfies

∑

n∈N

|〈en, x〉|2 ≤ ‖x‖2. (3.19)

Theorem 3.24 (Parseval identity). Let (en)n∈N be an orthonormal sequence
in a Hilbert space H, and let (αn)n∈N be a sequence in K. Then the series∑

n∈N
αnen converges in H if and only if the series

∑
n∈N

|αn|2 converges in
R, in which case

∥
∥
∥
∥
∥

∑

n∈N

αnen

∥
∥
∥
∥
∥

2

=
∑

n∈N

|αn|2. (3.20)

Hence, for any x ∈ H, the series
∑

n∈N
〈en, x〉en converges.

Theorem 3.25. Let (en)n∈N be an orthonormal sequence in a Hilbert space
H. Then the following are equivalent:
(a) {en | n ∈ N}⊥ = {0};
(b) H = span{en | n ∈ N};
(c) H =

⊕
n∈N

Ken as a direct sum of Hilbert spaces;
(d) for all x ∈ H, ‖x‖2 =

∑
n∈N

|〈en, x〉|2;
(e) for all x ∈ H, x =

∑
n∈N

〈en, x〉en.
If one (and hence all) of these conditions holds true, then (en)n∈N is called a
complete orthonormal basis for H

4 Of course, Fourier did not use the modern notation of Hilbert spaces! Furthermore, if he
had, then it would have been ‘obvious’ that his claim could only hold true for L2 functions
and in the L2 sense, not pointwise for arbitrary functions.
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Corollary 3.26. Let (en)n∈N be a complete orthonormal basis for a Hilbert

space H. For every x ∈ H, the truncation error x−
∑N

n=1〈en, x〉en is orthog-
onal to span{e1, . . . , eN}.

Proof. Let v :=
∑N

m=1 vmem ∈ span{e1, . . . , eN} be arbitrary. By complete-
ness,

x =
∑

n∈N

〈en, x〉en.

Hence,

〈

x−
N∑

n=1

〈en, x〉en, v
〉

=

〈
∑

n>N

〈en, x〉en,
N∑

m=1

vmem

〉

=
∑

n>N
m∈{0,...,N}

〈
〈en, x〉en, vmem

〉

=
∑

n>N
m∈{0,...,N}

〈x, en〉vm〈en, em〉

= 0

since 〈en, em〉 = δnm, and m �= n in the double sum.  !

Remark 3.27. The results cited above (in particular, Theorems 3.20, 3.21,
and 3.25, and Corollary 3.26) imply that if we wish to find the closest point of
span{e1, . . . , eN} to some x =

∑
n∈N

〈en, x〉en, then this is a simple matter of

series truncation: the optimal approximation is x ≈ x(N) :=
∑N

n=1〈en, x〉en.
Furthermore, this operation is a continuous linear operation as a function of
x, and if it is desired to improve the quality of an approximation x ≈ x(N) in
span{e1, . . . , eN} to an approximation in, say, span{e1, . . . , eN+1}, then the
improvement is a simple matter of calculating 〈eN+1, x〉 and adjoining the
new term 〈eN+1, x〉eN+1 to form a new norm-optimal approximation

x ≈ x(N+1) :=

N+1∑

n=1

〈en, x〉en = x(N) + 〈eN+1, x〉eN+1.

However, in Banach spaces (even finite-dimensional ones), closest-point app-
roximation is not as simple as series truncation, and the improvement of
approximations is not as simple as adjoining new terms: see Exercise 3.4.
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3.5 Tensor Products

The heuristic definition of the tensor product V ⊗W of two vector spaces V
and W over a common field K is that it is the vector space over K with basis
given by the formal symbols {ei ⊗ fj | i ∈ I, j ∈ J}, where {ei|i ∈ I} is a
basis of V and {fj |j ∈ J} is a basis of W . Alternatively, we might say that
elements of V ⊗ W are elements of W with V-valued rather than K-valued
coefficients (or elements of V with W-valued coefficients). However, it is not
immediately clear that this definition is independent of the bases chosen for
V and W . A more thorough definition is as follows.

Definition 3.28. The free vector space FV×W on the Cartesian product
V ×W is defined by taking the vector space in which the elements of V ×W
are a basis:

FV×W :=

{
n∑

i=1

αie(vi,wi)

∣
∣
∣
∣
∣

n ∈ N and, for i = 1, . . . , n,
αi ∈ K, (vi, wi) ∈ V ×W

}

.

The ‘freeness’ of FV×W is that the elements e(v,w) are, by definition, lin-
early independent for distinct pairs (v, w) ∈ V×W ; even e(v,0) and e(−v,0) are
linearly independent. Now define an equivalence relation ∼ on FV×W such
that

e(v+v′,w) ∼ e(v,w) + e(v′,w),

e(v,w+w′) ∼ e(v,w) + e(v,w′),

αe(v,w) ∼ e(αv,w) ∼ e(v,αw)

for arbitrary v, v′ ∈ V , w,w′ ∈ W , and α ∈ K. Let R be the subspace of
FV×W generated by these equivalence relations, i.e. the equivalence class of
e(0,0).

Definition 3.29. The (algebraic) tensor product V⊗W is the quotient space

V ⊗W :=
FV×W
R

.

One can easily check that V ⊗ W , as defined in this way, is indeed a
vector space over K. The subspace R of FV×W is mapped to the zero element
of V ⊗ W under the quotient map, and so the above equivalences become
equalities in the tensor product space:

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w,
v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,
α(v ⊗ w) = (αv) ⊗ w = v ⊗ (αw)

for all v, v′ ∈ V , w,w′ ∈ W , and α ∈ K.
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One can also check that the heuristic definition in terms of bases holds
true under the formal definition: if {ei|i ∈ I} is a basis of V and {fj|j ∈ J}
is a basis of W , then {ei ⊗ fj | i ∈ I, j ∈ J} is basis of V ⊗ W . Hence, the
dimension of the tensor product is the product of dimensions of the original
spaces.

Definition 3.30. The Hilbert space tensor product of two Hilbert spaces H
and K over the same field K is given by defining an inner product on the
algebraic tensor product H⊗K by

〈h⊗ k, h′ ⊗ k′〉H⊗K := 〈h, h′〉H〈k, k′〉K for all h, h′ ∈ H and k, k′ ∈ K,

extending this definition to all of the algebraic tensor product by sesquilinear-
ity, and defining the Hilbert space tensor product H⊗K to be the completion
of the algebraic tensor product with respect to this inner product and its as-
sociated norm.

Tensor products of Hilbert spaces arise very naturally when considering
spaces of functions of more than one variable, or spaces of functions that
take values in other function spaces. A prime example of the second type is
a space of stochastic processes.

Example 3.31. (a) Given two measure spaces (X ,F , μ) and (Y,G , ν), con-
sider L2(X ×Y, μ⊗ν;K), the space of functions on X ×Y that are square
integrable with respect to the product measure μ⊗ ν. If f ∈ L2(X , μ;K)
and g ∈ L2(Y, ν;K), then we can define a function h : X × Y → K by
h(x, y) := f(x)g(y). The definition of the product measure ensures that
h ∈ L2(X × Y, μ ⊗ ν;K), so this procedure defines a bilinear mapping
L2(X , μ;K) × L2(Y, ν;K) → L2(X × Y, μ ⊗ ν;K). It turns out that the
span of the range of this bilinear map is dense in L2(X × Y, μ⊗ ν;K) if
L2(X , μ;K) and L2(Y, ν;K) are separable. This shows that

L2(X , μ;K)⊗ L2(Y, ν;K) ∼= L2(X × Y, μ⊗ ν;K),

and it also explains why it is necessary to take the completion in the
construction of the Hilbert space tensor product.

(b) Similarly, L2(X , μ;H), the space of functions f : X → H that are square
integrable in the sense that

∫

X
‖f(x)‖2H dμ(x) < +∞,

is isomorphic to L2(X , μ;K) ⊗H if this space is separable. The isomor-
phism maps f⊗ϕ ∈ L2(X , μ;K)⊗H to the H-valued function x �→ f(x)ϕ
in L2(X , μ;H).

(c) Combining the previous two examples reveals that

L2(X , μ;K)⊗L2(Y, ν;K) ∼= L2(X ×Y, μ⊗ν;K) ∼= L2
(
X , μ;L2(Y, ν;K)

)
.
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Similarly, one can consider a Bochner space Lp(X , μ;V) of functions
(random variables) taking values in a Banach space V that are pth-power-
integrable in the sense that

∫
X ‖f(x)‖

p
V dμ(x) is finite, and identify this space

with a suitable tensor product Lp(X , μ;R) ⊗ V . However, several subtleties
arise in doing this, as there is no single ‘natural’ Banach tensor product of
Banach spaces as there is for Hilbert spaces.
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Border (2006) is a surprisingly readable encyclopaedic text.

3.7 Exercises

Exercise 3.1 (Formulae for the operator norm). Let A : V → W be a linear
map between normed vector spaces (V , ‖ · ‖V) and (W , ‖ ·‖W). Show that the
operator norm ‖A‖V→W of A is equivalently defined by any of the following
expressions:

‖A‖V→W = sup
0
=v∈V

‖Av‖W
‖v‖V

= sup
‖v‖V=1

‖Av‖W
‖v‖V

= sup
‖v‖V=1

‖Av‖W

= sup
0<‖v‖V≤1

‖Av‖W
‖v‖V

= sup
‖v‖V≤1

‖Av‖W

= sup
0<‖v‖V<1

‖Av‖W
‖v‖V

= sup
‖v‖V<1

‖Av‖W .



3.7 Exercises 53

Exercise 3.2 (Properties of the operator norm). Suppose that U , V , andW
are normed vector spaces, and let A : U → V and B : V → W be bounded
linear maps. Prove that the operator norm is
(a) compatible (or consistent) with ‖ · ‖U and ‖ ·‖V : for all x ∈ U ,

‖Au‖V ≤ ‖A‖U→V‖u‖U .

(b) sub-multiplicative: ‖B ◦A‖U→W ≤ ‖B‖V→W‖A‖U→V .

Exercise 3.3 (Definiteness of the Gram matrix). Let V be a vector space
over K, equipped with a semi-definite inner product 〈 · , · 〉 (i.e. one satisfying
all the requirements of Definition 3.2 except possibly positive definiteness).
Given vectors v1, . . . , vn ∈ V , the associated Gram matrix is

G(v1, . . . , vn) :=

⎡

⎢
⎢
⎣

〈v1, v1〉 · · · 〈v1, vn〉
...

. . .
...

〈vn, v1〉 · · · 〈vn, vn〉

⎤

⎥
⎥
⎦ .

(a) Show that, in the case that V = K
n with its usual inner product,

G(v1, . . . , vn) = V ∗V , where V is the matrix with the vectors vi as its
columns, and V ∗ denotes the conjugate transpose of V .

(b) Show that G(v1, . . . , vn) is a conjugate-symmetric (a.k.a. Hermitian) ma-
trix, and hence is symmetric in the case K = R.

(c) Show that detG(v1, . . . , vn) ≥ 0. Show also that detG(v1, . . . , vn) = 0 if
v1, . . . , vn are linearly dependent, and that this is an ‘if and only if’ if
〈 · , · 〉 is positive definite.

(d) Using the case n = 2, prove the Cauchy–Schwarz inequality (3.1).

Exercise 3.4 (Closest-point approximation in Banach spaces). LetRθ : R
2 →

R
2 denote the linear map that is rotation of the Euclidean plane about the

origin through a fixed angle −π
4 < θ <

π
4 . Define a Banach norm ‖ · ‖θ on R

2

in terms of Rθ and the usual 1-norm by

‖(x, y)‖θ := ‖Rθ(x, y)‖1.

Find the closest point of the x-axis to the point (1, 1), i.e. find x′ ∈ R to
minimize ‖(x′, 0)− (1, 1)‖θ; in particular, show that the closest point is not
(1, 0). Hint: sketch some norm balls centred on (1, 1).

Exercise 3.5 (Series in normed spaces). Many UQ methods involve series
expansions in spaces of deterministic functions and/or random variables, so it
is useful to understand when such series converge. Let (vn)n∈N be a sequence
in a normed space V . As in R, we say that the series

∑
n∈N

vn converges to
v ∈ V if the sequence of partial sums converges to v, i.e. if, for all ε > 0, there
exists Nε ∈ N such that
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N ≥ Nε =⇒
∥
∥
∥
∥
∥
v −

N∑

n=1

vn

∥
∥
∥
∥
∥
< ε.

(a) Suppose that
∑

n∈N
vn converges absolutely to v ∈ V , i.e. the series con-

verges and also
∑

n∈N
‖vn‖ is finite. Prove the infinite triangle inequality

‖v‖ ≤
∑

n∈N

‖vn‖.

(b) Suppose that
∑

n∈N
vn converges absolutely to v ∈ V . Show that

∑
n∈N

vn
converges unconditionally to v ∈ V , i.e.

∑
n∈N

vπ(n) converges to x ∈ V
for every bijection π : N → N. Thus, the order of summation ‘does not
matter’. (Note that the converse of this result is false: Dvoretzky and�
Rogers (1950) showed that every infinite-dimensional Banach space con-
tains series that converge unconditionally but not absolutely.)

(c) Suppose that V is a Banach space and that
∑

n∈N
‖vn‖ is finite. Show

that
∑

n∈N
vn converges to some v ∈ V .

Exercise 3.6 (Weierstrass M -test). Let S be any set, let V be a Banach
space, and, for each n ∈ N, let fn : S → V . Suppose that Mn is such that

‖fn(x)‖ ≤Mn for all x ∈ S and n ∈ N,

and that
∑

n∈N
Mn is finite. Show that the series

∑
n∈N

fn converges uni-
formly on S, i.e. there exists f : S → V such that, for all ε > 0, there exists
Nε ∈ N so that

N ≥ Nε =⇒ sup
x∈S

∥
∥
∥
∥
∥
f(x)−

N∑

n=1

fn(x)

∥
∥
∥
∥
∥
< ε.



Chapter 4

Optimization Theory

We demand rigidly defined areas of doubt and
uncertainty!

The Hitchhiker’s Guide to the Galaxy
Douglas Adams

This chapter reviews the basic elements of optimization theory and practice,
without going into the fine details of numerical implementation. Many UQ
problems involve a notion of ‘best fit’, in the sense of minimizing some error
function, and so it is helpful to establish some terminology for optimiza-
tion problems. In particular, many of the optimization problems in this book
will fall into the simple settings of linear programming and least squares
(quadratic programming), with and without constraints.

4.1 Optimization Problems and Terminology

In an optimization problem, the objective is to find the extreme values (either
the minimal value, the maximal value, or both) f(x) of a given function f
among all x in a given subset of the domain of f , along with the point or
points x that realize those extreme values. The general form of a constrained
optimization problem is

extremize: f(x)

with respect to: x ∈ X
subject to: gi(x) ∈ Ei for i = 1, 2, . . . ,

where X is some set; f : X → R ∪ {±∞} is a function called the objective
function; and, for each i, gi : X → Yi is a function and Ei ⊆ Yi some subset.

© Springer International Publishing Switzerland 2015
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The conditions {gi(x) ∈ Ei | i = 1, 2, . . .} are called constraints, and a point
x ∈ X for which all the constraints are satisfied is called feasible; the set of
feasible points,

{x ∈ X | gi(x) ∈ Ei for i = 1, 2, . . . },

is called the feasible set. If there are no constraints, so that the problem is
a search over all of X , then the problem is said to be unconstrained. In the
case of a minimization problem, the objective function f is also called the
cost function or energy; for maximization problems, the objective function is
also called the utility function.

From a purely mathematical point of view, the distinction between con-
strained and unconstrained optimization is artificial: constrained minimiza-
tion over X is the same as unconstrained minimization over the feasible set.
However, from a practical standpoint, the difference is huge. Typically, X is
R

n for some n, or perhaps a simple subset specified using inequalities on one
coordinate at a time, such as [a1, b1] × · · · × [an, bn]; a bona fide non-trivial
constraint is one that involves a more complicated function of one coordinate,
or two or more coordinates, such as

g1(x) := cos(x)− sin(x) > 0

or

g2(x1, x2, x3) := x1x2 − x3 = 0.

Definition 4.1. Given f : X → R ∪ {±∞}, the arg min or set of global
minimizers of f is defined to be

argmin
x∈X

f(x) :=

{

x ∈ X
∣
∣
∣
∣ f(x) = inf

x′∈X
f(x′)

}

,

and the arg max or set of global maximizers of f is defined to be

argmax
x∈X

f(x) :=

{

x ∈ X
∣
∣
∣
∣ f(x) = sup

x′∈X
f(x′)

}

.

Definition 4.2. For a given constrained or unconstrained optimization prob-
lem, a constraint is said to be
(a) redundant if it does not change the feasible set, and non-redundant or

relevant otherwise;
(b) non-binding if it does not change the extreme value, and binding other-

wise;
(c) active if it is an inequality constraint that holds as an equality at the

extremizer, and inactive otherwise.

Example 4.3. Consider f : R2 → R, f(x, y) := y. Suppose that we wish to
minimize f over the unbounded w-shaped region

W := {(x, y) ∈ R
2 | y ≥ (x2 − 1)2}.
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Over W , f takes the minimum value 0 at (x, y) = (±1, 0). Note that the
inequality constraint y ≥ (x2 − 1)2 is an active constraint. The additional
constraint y ≥ 0 would be redundant with respect to this feasible set W ,
and hence also non-binding. The additional constraint x > 0 would be non-
redundant, but also non-binding, since it excludes the previous minimizer at
(x, y) = (−1, 0) but not the one at (x, y) = (1, 0). Similarly, the additional
equality constraint y = (x2 − 1)2 would be non-redundant and non-binding.

The importance of these concepts for UQ lies in the fact that many UQ
problems are, in part or in whole, optimization problems: a good example
is the calibration of parameters in a model in order to best explain some
observed data. Each piece of information about the problem (e.g. a hypoth-
esis about the form of the model, such as a physical law) can be seen as
a constraint on that optimization problem. It is easy to imagine that each
additional constraint may introduce additional difficulties in computing the
parameters of best fit. Therefore, it is natural to want to exclude from consid-
eration those constraints (pieces of information) that are merely complicating
the solution process, and not actually determining the optimal parameters,
and to have some terminology for describing the various ways in which this
can occur.

4.2 Unconstrained Global Optimization

In general, finding a global minimizer of an arbitrary function is very hard,
especially in high-dimensional settings and without nice features like convex-
ity. Except in very simple settings like linear least squares (Section 4.6), it is
necessary to construct an approximate solution, and to do so iteratively; that
is, one computes a sequence (xn)n∈N in X such that xn converges as n→∞
to an extremizer of the objective function within the feasible set. A simple
example of a deterministic iterative method for finding the critical points,
and hence extrema, of a smooth function is Newton’s method:

Definition 4.4. Let X be a normed vector space. Given a differentiable
function g : X → X and an initial state x0, Newton’s method for finding a
zero of g is the sequence generated by the iteration

xn+1 := xn −
(
Dg(xn)

)−1
g(xn), (4.1)

where Dg(xn) : X → X is the Fréchet derivative of g at xn. Newton’s method
is often applied to find critical points of f : X → R, i.e. points where Df
vanishes, in which case the iteration is.

xn+1 := xn −
(
D2f(xn)

)−1
Df(xn). (4.2)

(In (4.2), the second derivative (Hessian) D2f(xn) is interpreted as a linear
map X → X rather than a bilinear map X × X → R.)



58 4 Optimization Theory

Remark 4.5. (a) Newton’s method for the determination of critical points
of f amounts to local quadratic approximation: we model f about xn
using its Taylor expansion up to second order, and then take as xn+1

a critical point of this quadratic approximation. In particular, as shown
in Exercise 4.3, Newton’s method yields the exact minimizer of f in one
iteration when f is in fact a quadratic function.

(b) We will not dwell at this point on the important practical issue of num-
erical (and hence approximate) evaluation of derivatives for methods such
as Newton iteration. However, this issue will be revisited in Section 10.2
in the context of sensitivity analysis.

For objective functions f : X → R ∪ {±∞} that have little to no smooth-
ness, or that have many local extremizers, it is often necessary to resort
to random searches of the space X . For such algorithms, there can only be
a probabilistic guarantee of convergence. The rate of convergence and the
degree of approximate optimality naturally depend upon features like ran-
domness of the generation of new elements of X and whether the extremizers
of f are difficult to reach, e.g. because they are located in narrow ‘valleys’. We
now describe three very simple random iterative algorithms for minimization
of a prescribed objective function f, in order to illustrate some of the relevant
issues. For simplicity, suppose that f has a unique global minimizer x_min

and write f_min for f(x_min).

Algorithm 4.6 (Random sampling). For simplicity, the following algorithm
runs for n_max steps with no convergence checks. The algorithm returns
an approximate minimizer x_best along with the corresponding value of f.
Suppose that random() generates independent samples of X from a proba-
bility measure μ with support X .

f_best = +inf

n = 0

while n < n_max:

x_new = random()

f_new = f(x_new)

if f_new < f_best:

x_best = x_new

f_best = f_new

n = n + 1

return [x_best, f_best]

A weakness of Algorithm 4.6 is that it completely neglects local informa-
tion about f. Even if the current state x_best is very close to the global
minimizer x_min, the algorithm may continue to sample points x_new that
are very far away and have f(x_new)# f(x_best). It would be preferable to
explore a neighbourhood of x_best more thoroughly and hence find a better
approximation of [x_min, f_min]. The next algorithm attempts to rectify
this deficiency.
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Algorithm 4.7 (Random walk). As before, this algorithm runs for n_max

steps. The algorithm returns an approximate minimizer x_best along with
the corresponding value of f. Suppose that an initial state x0 is given, and
that jump() generates independent samples of X from a probability measure
μ with support equal to the unit ball of X .

x_best = x0

f_best = f(x_best)

n = 0

while n < n_max:

x_new = x_best + jump()

f_new = f(x_new)

if f_new < f_best:

x_best = x_new

f_best = f_new

n = n + 1

return [x_best, f_best]

Algorithm 4.7 also has a weakness: since the state is only ever updated to
states with a strictly lower value of f, and only looks for new states within
unit distance of the current one, the algorithm is prone to becoming stuck in
local minima if they are surrounded by wells that are sufficiently wide, even
if they are very shallow. The next algorithm, the simulated annealing method
of Kirkpatrick et al. (1983), attempts to rectify this problem by allowing the
optimizer to make some ‘uphill’ moves, which can be accepted or rejected
according to comparison of a uniformly distributed random variable with a
user-prescribed acceptance probability function. Therefore, in the simulated
annealing algorithm, a distinction is made between the current state x of
the algorithm and the best state so far, x_best; unlike in the previous two
algorithms, proposed states x_new may be accepted and become x even if
f(x_new)> f(x_best). The idea is to introduce a parameter T, to be thought
of as ‘temperature’: the optimizer starts off ‘hot’, and ‘uphill’ moves are likely
to be accepted; by the end of the calculation, the optimizer is relatively ‘cold’,
and ‘uphill’ moves are unlikely to accepted.

Algorithm 4.8 (Simulated annealing). Suppose that an initial state x0

is given. Suppose also that functions temperature(), neighbour() and
acceptance_prob() have been specified. Suppose that uniform() generates
independent samples from the uniform distribution on [0, 1]. Then the simu-
lated annealing algorithm is

x = x0

fx = f(x)

x_best = x

f_best = fx

n = 0

while n < n_max:
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T = temperature(n / n_max)

x_new = neighbour(x)

f_new = f(x_new)

if acceptance_prob(fx, f_new, T) > uniform():

x = x_new

fx = f_new

if f_new < f_best:

x_best = x_new

f_best = f_new

n = n + 1

return [x_best, f_best]

Like Algorithm 4.6, the simulated annealing method can guarantee to
find the global minimizer of f provided that the neighbour() function
allows full exploration of the state space and the maximum run time n_max

is large enough. However, the difficulty lies in coming up with functions
temperature() and acceptance_prob() such that the algorithm finds the
global minimizer in reasonable time: simulated annealing calculations can
be extremely computationally costly. A commonly used acceptance probabil-
ity function P is the one from the Metropolis–Hastings algorithm (see also
Section 9.5):

P (e, e′, T ) =

{
1, if e′ < e,
exp(−(e′ − e)/T ), if e′ ≥ e.

There are, however, many other choices; in particular, it is not neces-
sary to automatically accept downhill moves, and it is permissible to have
P (e, e′, T ) < 1 for e′ < e.

4.3 Constrained Optimization

It is well known that the unconstrained extremizers of smooth enough func-
tions must be critical points, i.e. points where the derivative vanishes. The fol-
lowing theorem, the Lagrange multiplier theorem, states that the constrained
minimizers of a smooth enough function, subject to smooth enough equality
constraints, are critical points of an appropriately generalized function:

Theorem 4.9 (Lagrange multipliers). Let X and Y be real Banach spaces.
Let U ⊆ X be open and let f ∈ C1(U ;R). Let g ∈ C1(U ;Y), and suppose that
x ∈ U is a constrained extremizer of f subject to the constraint that g(x) = 0.
Suppose also that the Fréchet derivative Dg(x) : X → Y is surjective. Then
there exists a Lagrange multiplier λ ∈ Y ′ such that (x, λ) is an unconstrained
critical point of the Lagrangian L defined by

U × Y ′ $ (x, λ) �→ L(x, λ) := f(x) + 〈λ | g(x)〉 ∈ R.

i.e. Df(x) = −λ ◦Dg(x) as linear maps from X to R.
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The corresponding result for inequality constraints is the Karush–Kuhn–
Tucker theorem, which we state here for a finite system of inequality
constraints:

Theorem 4.10 (Karush–Kuhn–Tucker). Let U be an open subset of a
Banach space X , and let f ∈ C1(U ;R) and h ∈ C1(U ;Rm). Suppose that
x ∈ U is a local minimizer of f subject to the inequality constraints hi(x) ≤ 0
for i = 1, . . . ,m, and suppose that Dh(x) : X → R

m is surjective. Then there
exists μ = (μ1, . . . , μm) ∈ (Rm)′ such that

−Df(x) = μ ◦Dh(x),

where μ satisfies the dual feasibility criteria μi ≥ 0 and the complementary
slackness criteria μihi(x) = 0 for i = 1, . . . ,m.

The Lagrange and Karush–Kuhn–Tucker theorems can be combined to inc-
orporate equality constraints gi and inequality constraints hj. Strictly speak-
ing, the validity of the Karush–Kuhn–Tucker theorem also depends upon
some regularity conditions on the constraints called constraint qualification
conditions, of which there are many variations that can easily be found in the
literature. A very simple one is that if gi and hj are affine functions, then no
further regularity is needed; another is that the gradients of the active ine-
quality constraints and the gradients of the equality constraints be linearly
independent at the optimal point x.

Numerical Implementation of Constraints. In the numerical treatment
of constrained optimization problems, there are many ways to implement
constraints, not all of which actually enforce the constraints in the sense of
ensuring that trial states x_new, accepted states x, or even the final solution
x_best are actually members of the feasible set. For definiteness, consider
the constrained minimization problem

minimize: f(x)

with respect to: x ∈ X
subject to: c(x) ≤ 0

for some functions f, c : X → R ∪ {±∞}. One way of seeing the constraint
‘c(x) ≤ 0’ is as a Boolean true/false condition: either the inequality is sat-
isfied, or it is not. Supposing that neighbour(x) generates new (possibly
infeasible) elements of X given a current state x, one approach to generating
feasible trial states x_new is the following:

x’ = neighbour(x)

while c(x’) > 0:

x’ = neighbour(x)

x_new = x’
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However, this accept/reject approach is extremely wasteful: if the feasible
set is very small, then x’ will ‘usually’ be rejected, thereby wasting a lot
of computational time, and this approach takes no account of how ‘nearly
feasible’ an infeasible x’ might be.

One alternative approach is to use penalty functions : instead of considering
the constrained problem of minimizing f(x) subject to c(x) ≤ 0, one can
consider the unconstrained problem of minimizing x �→ f(x) + p(x), where
p : X → [0,∞) is some function that equals zero on the feasible set and takes
larger values the ‘more’ the constraint inequality c(x) ≤ 0 is violated, e.g.,
for μ > 0.

pμ(x) =

{
0, if c(x) ≤ 0,

exp(c(x)/μ)− 1, if c(x) > 0.

The hope is that (a) the minimization of f + pμ over all of X is easy, and (b)
as μ → 0, minimizers of f + pμ converge to minimizers of f on the original
feasible set. The penalty function approach is attractive, but the choice of
penalty function is rather ad hoc, and issues can easily arise of competition
between the penalties corresponding to multiple constraints.

An alternative to the use of penalty functions is to construct constraining
functions that enforce the constraints exactly. That is, we seek a function C()

that takes as input a possibly infeasible x’ and returns some x_new = C(x’)

that is guaranteed to satisfy the constraint c(x_new) <= 0. For example,
suppose that X = R

n and the feasible set is the Euclidean unit ball, so the
constraint is

c(x) := ‖x‖22 − 1 ≤ 0.

Then a suitable constraining function could be

C(x) :=

{
x, if ‖x‖2 ≤ 1,

x/‖x‖2, if ‖x‖2 > 1.

Constraining functions are very attractive because the constraints are treated
exactly. However, they must often be designed on a case-by-case basis for each
constraint function c, and care must be taken to ensure that multiple con-
straining functions interact well and do not unduly favour parts of the feasible
set over others; for example, the above constraining function C maps the en-
tire infeasible set to the unit sphere, which might be considered undesirable
in certain settings, and so a function such as

C̃(x) :=

{
x, if ‖x‖2 ≤ 1,

x/‖x‖22, if ‖x‖2 > 1.

might be more appropriate. Finally, note that the original accept/reject
method of finding feasible states is a constraining function in this sense,
albeit a very inefficient one.
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4.4 Convex Optimization

The topic of this section is convex optimization. As will be seen, convexity is
a powerful property that makes optimization problems tractable to a much
greater extent than any amount of smoothness (which still permits local
minima) or low-dimensionality can do.

In this section, X will be a normed vector space. (More generally, the
properties that are of importance to the discussion hold for any Hausdorff,
locally convex topological vector space.) Given two points x0 and x1 of X
and t ∈ [0, 1], xt will denote the convex combination

xt := (1− t)x0 + tx1.

More generally, given points x0, . . . , xn of a vector space, a sum of the form

α0x0 + · · ·+ αnxn

is called a linear combination if the αi are any field elements, an affine com-
bination if their sum is 1, and a convex combination if they are non-negative
and sum to 1.

Definition 4.11. (a) A subset K ⊆ X is a convex set if, for all x0, x1 ∈ K
and t ∈ [0, 1], xt ∈ K; it is said to be strictly convex if xt ∈ K̊ whenever
x0 and x1 are distinct points of K̄ and t ∈ (0, 1).

(b) An extreme point of a convex setK is a point ofK that cannot be written
as a non-trivial convex combination of distinct elements of K; the set of
all extreme points of K is denoted ext(K).

(c) The convex hull co(S) (resp. closed convex hull co(S)) of S ⊆ X is defined
to be the intersection of all convex (resp. closed and convex) subsets of
X that contain S.

Example 4.12. (a) The square [−1, 1]2 is a convex subset of R2, but is not
strictly convex, and its extreme points are the four vertices (±1,±1).

(b) The closed unit disc {(x, y) ∈ R
2 | x2 + y2 ≤ 1} is a strictly convex

subset of R
2, and its extreme points are the points of the unit circle

{(x, y) ∈ R
2 | x2 + y2 = 1}.

(c) If p0, . . . , pd ∈ X are distinct points such that p1 − p0, . . . , pd − p0
are linearly independent, then their (closed) convex hull is called a
d-dimensional simplex. The points p0, . . . , pd are the extreme points of
the simplex.

(d) See Figure 4.1 for further examples.

Example 4.13. M1(X ) is a convex subset of the space of all (signed) Borel
measures on X . The extremal probability measures are the zero-one mea-
sures, i.e. those for which, for every measurable set E ⊆ X , μ(E) ∈ {0, 1}.
Furthermore, as will be discussed in Chapter 14, if X is, say, a Polish space,
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A convex set (grey) and its set of
extreme points (black).

A non-convex set (black) and its
convex hull (grey).

a b

Fig. 4.1: Convex sets, extreme points and convex hulls of some subsets of the
plane R

2.

then the zero-one measures (and hence the extremal probability measures)
on X are the Dirac point masses. Indeed, in this situation,

M1(X ) = co
(
{δx | x ∈ X}

)
⊆M±(X ).

The principal reason to confine attention to normed spaces1 X is that it
is highly inconvenient to have to work with spaces for which the following
‘common sense’ results do not hold:

Theorem 4.14 (Krĕın–Milman). Let K ⊆ X be compact and convex. Then
K is the closed convex hull of its extreme points.

Theorem 4.15 (Choquet–Bishop–de Leeuw). Let K ⊆ X be compact and
convex, and let c ∈ K. Then there exists a probability measure p supported
on ext(K) such that, for all affine functions f on K,

f(c) =

∫

ext(K)

f(e) dp(e).

The point c in Theorem 4.15 is called a barycentre of the set K, and the
probability measure p is said to represent the point c. Informally speaking, the
Krĕın–Milman and Choquet–Bishop–de Leeuw theorems together ensure that
a compact, convex subset K of a topologically respectable space is entirely
characterized by its set of extreme points in the following sense: every point
of K can be obtained as an average of extremal points of K, and, indeed, the
value of any affine function at any point of K can be obtained as an average
of its values at the extremal points in the same way.

1 Or, more generally, Hausdorff, locally convex, topological vector spaces.
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Definition 4.16. Let K ⊆ X be convex. A function f : K → R ∪ {±∞} is
a convex function if, for all x0, x1 ∈ K and t ∈ [0, 1],

f(xt) ≤ (1− t)f(x0) + tf(x1), (4.3)

and is called a strictly convex function if, for all distinct x0, x1 ∈ K and
t ∈ (0, 1),

f(xt) < (1− t)f(x0) + tf(x1).

The inequality (4.3) defining convexity can be seen as a special case —
with X ∼ μ supported on two points x0 and x1 — of the following result:

Theorem 4.17 (Jensen). Let (Θ,F , μ) be a probability space, let K ⊆ X
and f : K → R ∪ {±∞} be convex, and let X ∈ L1(Θ, μ;X ) take values in
K. Then

f
(
Eμ[X ]

)
≤ Eμ

[
f(X)

]
, (4.4)

where Eμ[X ] ∈ X is defined by the relation 〈� |Eμ[X ]〉 = Eμ[〈� |X〉] for every
� ∈ X ′. Furthermore, if f is strictly convex, then equality holds in (4.4) if
and only if X is μ-almost surely constant.

It is straightforward to see that f : K → R∪{±∞} is convex (resp. strictly
convex) if and only if its epigraph

epi(f) := {(x, v) ∈ K × R | v ≥ f(x)}

is a convex (resp. strictly convex) subset of K × R. Furthermore, twice-
differentiable convex functions are easily characterized in terms of their sec-
ond derivative (Hessian):

Theorem 4.18. Let f : K → R be twice continuously differentiable on an
open, convex set K. Then f is convex if and only if D2f(x) is positive semi-
definite for all x ∈ K. If D2f(x) is positive definite for all x ∈ K, then f is
strictly convex, though the converse is false.

Convex functions have many convenient properties with respect to mini-
mization and maximization:

Theorem 4.19. Let f : K → R be a convex function on a convex set K ⊆ X .
Then
(a) any local minimizer of f in K is also a global minimizer;
(b) the set argminK f of global minimizers of f in K is convex;
(c) if f is strictly convex, then it has at most one global minimizer in K;
(d) f has the same maximum values on K and ext(K).

Proof. (a) Suppose that x0 is a local minimizer of f in K that is not a
global minimizer: that is, suppose that x0 is a minimizer of f in some
open neighbourhood N of x0, and also that there exists x1 ∈ K \ N
such that f(x1) < f(x0). Then, for sufficiently small t > 0, xt ∈ N , but
convexity implies that
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f(xt) ≤ (1− t)f(x0) + tf(x1) < (1 − t)f(x0) + tf(x0) = f(x0),

which contradicts the assumption that x0 is a minimizer of f in N .
(b) Suppose that x0, x1 ∈ K are global minimizers of f . Then, for all t ∈

[0, 1], xt ∈ K and

f(x0) ≤ f(xt) ≤ (1 − t)f(x0) + tf(x1) = f(x0).

Hence, xt ∈ argminK f , and so argminK f is convex.
(c) Suppose that x0, x1 ∈ K are distinct global minimizers of f , and let

t ∈ (0, 1). Then xt ∈ K and

f(x0) ≤ f(xt) < (1 − t)f(x0) + tf(x1) = f(x0),

which is a contradiction. Hence, f has at most one minimizer in K.
(d) Suppose that c ∈ K \ ext(K) has f(c) > supext(K) f . By Theorem 4.15,

there exists a probability measure p on ext(K) such that, for all affine
functions � on K,

�(c) =

∫

ext(K)

�(x) dp(x).

i.e. c = EX∼p[X ]. Then Jensen’s inequality implies that

EX∼p

[
f(X)

]
≥ f(c) > sup

ext(K)

f,

which is a contradiction. Hence, since supK f ≥ supext(K) f , f must have
the same maximum value on ext(K) as it does on K.  !

Remark 4.20. Note well that Theorem 4.19 does not assert the existence of�
minimizers, which requires non-emptiness and compactness of K, and lower
semicontinuity of f . For example:
• the exponential function on R is strictly convex, continuous and bounded
below by 0 yet has no minimizer;

• the interval [−1, 1] is compact, and the function f : [−1, 1]→ R ∪ {±∞}
defined by

f(x) :=

{
x, if |x| < 1

2 ,

+∞, if |x| ≥ 1
2 ,

is convex, yet f has no minimizer — although infx∈[−1,1] f(x) = − 1
2 ,

there is no x for which f(x) attains this infimal value.

Definition 4.21. A convex optimization problem (or convex program) is a
minimization problem in which the objective function and all constraints are
equalities or inequalities with respect to convex functions.

Remark 4.22. (a) Beware of the common pitfall of saying that a convex�
program is simply the minimization of a convex function over a convex
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set. Of course, by Theorem 4.19, such minimization problems are nicer
than general minimization problems, but bona fide convex programs are
an even nicer special case.

(b) In practice, many problems are not obviously convex programs, but can
be transformed into convex programs by, e.g., a cunning change of vari-
ables. Being able to spot the right equivalent problem is a major part of
the art of optimization.

It is difficult to overstate the importance of convexity in making optimiza-
tion problems tractable. Indeed, it has been remarked that lack of convexity
is a much greater obstacle to tractability than high dimension. There are
many powerful methods for the solution of convex programs, with corre-
sponding standard software libraries such as cvxopt. For example, interior
point methods explore the interior of the feasible set in search of the solution
to the convex program, while being kept away from the boundary of the fea-
sible set by a barrier function. The discussion that follows is only intended
as an outline; for details, see Boyd and Vandenberghe (2004, Chapter 11).

Consider the convex program

minimize: f(x)

with respect to: x ∈ R
n

subject to: ci(x) ≤ 0 for i = 1, . . . ,m,

where the functions f, c1, . . . , cm : Rn → R are all convex and differentiable.
Let F denote the feasible set for this program. Let 0 < μ � 1 be a small
scalar, called the barrier parameter, and define the barrier function associated
to the program by

B(x;μ) := f(x)− μ
m∑

i=1

log ci(x).

Note thatB( · ;μ) is strictly convex for μ > 0, thatB(x;μ) → +∞ as x→ ∂F ,
and that B( · ; 0) = f ; therefore, the unique minimizer x∗μ of B( · ;μ) lies in F̊
and (hopefully) converges to the minimizer of the original problem as μ→ 0.
Indeed, using arguments based on convex duality, one can show that

f(x∗μ)− inf
x∈F

f(x) ≤ mμ.

The strictly convex problem of minimizing B( · ;μ) can be solved approxi-
mately using Newton’s method. In fact, however, one settles for a partial
minimization of B( · ;μ) using only one or two steps of Newton’s method,
then decreases μ to μ′, performs another partial minimization of B( · ;μ′)
using Newton’s method, and so on in this alternating fashion.

http://cvxopt.org/
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4.5 Linear Programming

Theorem 4.19 has the following immediate corollary for the minimization and
maximization of affine functions on convex sets:

Corollary 4.23. Let � : K → R be a continuous affine function on a non-
empty, compact, convex set K ⊆ X . Then

ext{�(x) | x ∈ K} = ext{�(x) | x ∈ ext(K)}.

That is, � has the same minimum and maximum values over both K and the
set of extreme points of K.

Definition 4.24. A linear program is an optimization problem of the form

extremize: f(x)

with respect to: x ∈ R
p

subject to: gi(x) ≤ 0 for i = 1, . . . , q,

where the functions f, g1, . . . , gq : R
p → R are all affine functions. Linear

programs are often written in the canonical form

maximize: c · x
with respect to: x ∈ R

n

subject to: Ax ≤ b
x ≥ 0,

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m are given, and the two inequalities are

interpreted componentwise. (Conversion to canonical form, and in particular
the introduction of the non-negativity constraint x ≥ 0, is accomplished
by augmenting the original x ∈ R

p with additional variables called slack
variables to form the extended variable x ∈ R

n.)

Note that the feasible set for a linear program is an intersection of finitely
many half-spaces of Rn, i.e. a polytope. This polytope may be empty, in which
case the constraints are mutually contradictory and the program is said to
be infeasible. Also, the polytope may be unbounded in the direction of c, in
which case the extreme value of the problem is infinite.

Since linear programs are special cases of convex programs, methods such
as interior point methods are applicable to linear programs as well. Such
methods approach the optimum point x∗, which is necessarily an extremal
element of the feasible polytope, from the interior of the feasible poly-
tope. Historically, however, such methods were preceded by methods such
as Dantzig’s simplex algorithm, which sets out to directly explore the set of
extreme points in a (hopefully) efficient way. Although the theoretical worst-
case complexity of simplex method as formulated by Dantzig is exponential
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in n and m, in practice the simplex method is remarkably efficient (typically
having polynomial running time) provided that certain precautions are taken
to avoid pathologies such as ‘stalling’.

4.6 Least Squares

An elementary example of convex programming is unconstrained quadratic
minimization, otherwise known as least squares. Least squares minimization
plays a central role in elementary statistical estimation, as will be demon-
strated by the Gauss–Markov theorem (Theorem 6.2). The next three results
show that least squares problems have unique solutions, which are given in
terms of an orthogonality criterion, which in turn reduces to a system of
linear equations, the normal equations.

Lemma 4.25. Let K be a non-empty, closed, convex subset of a Hilbert space
H. Then, for each y ∈ H, there is a unique element x̂ = ΠKy ∈ K such that

x̂ ∈ argmin
x∈K

‖y − x‖.

Proof. By Exercise 4.1, the function J : X → [0,∞) defined by J(x) :=
‖y − x‖2 is strictly convex, and hence it has at most one minimizer in K.
Therefore, it only remains to show that J has at least one minimizer in
K. Since J is bounded below (on X , not just on K), J has a sequence of
approximate minimizers: let

I := inf
x∈K

‖y − x‖2, I2 ≤ ‖y − xn‖2 ≤ I2 + 1
n .

By the parallelogram identity for the Hilbert norm ‖ · ‖,

‖(y− xm) + (y− xn)‖2 + ‖(y− xm)− (y− xn)‖2 = 2‖y− xm‖2 +2‖y− xn‖2,

and hence

‖2y − (xm + xn)‖2 + ‖xn − xm‖2 ≤ 4I2 + 2
n + 2

m .

Since K is convex, 1
2 (xm + xn) ∈ K, so the first term on the left-hand side

above is bounded below as follows:

‖2y − (xm + xn)‖2 = 4

∥
∥
∥
∥y −

xm + xn
2

∥
∥
∥
∥

2

≥ 4I2.

Hence,

‖xn − xm‖2 ≤ 4I2 + 2
n + 2

m − 4I2 = 2
n + 2

m ,

and so the sequence (xn)n∈N is Cauchy; since H is complete and K is closed,
this sequence converges to some x̂ ∈ K. Since the norm ‖ · ‖ is continuous,
‖y − x̂‖ = I.  !
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Lemma 4.26 (Orthogonality of the residual). Let V be a closed subspace of
a Hilbert space H and let b ∈ H. Then x̂ ∈ V minimizes the distance to b if
and only if the residual x̂− b is orthogonal to V , i.e.

x̂ = argmin
x∈V

‖x− b‖ ⇐⇒ (x̂− b) ⊥ V.

Proof. Let J(x) := 1
2‖x − b‖2, which has the same minimizers as x �→

‖x− b‖; by Lemma 4.25, such a minimizer exists and is unique. Suppose that
(x− b) ⊥ V and let y ∈ V . Then y − x ∈ V and so (y − x) ⊥ (x− b). Hence,
by Pythagoras’ theorem,

‖y − b‖2 = ‖y − x‖2 + ‖x− b‖2 ≥ ‖x− b‖2,

and so x minimizes J .
Conversely, suppose that x minimizes J . Then, for every y ∈ V ,

0 =
∂

∂λ
J(x+ λy)

∣
∣
∣
∣
λ=0

=
1

2
(〈y, x− b〉+ 〈x− b, y〉) = Re〈x− b, y〉

and, in the complex case,

0 =
∂

∂λ
J(x + λiy)

∣
∣
∣
∣
λ=0

=
1

2
(−i〈y, x− b〉+ i〈x− b, y〉) = − Im〈x − b, y〉.

Hence, 〈x− b, y〉 = 0, and since y was arbitrary, (x− b) ⊥ V .  !

Lemma 4.27 (Normal equations). Let A : H → K be a linear operator
between Hilbert spaces such that ranA ⊆ K is closed. Then, given b ∈ K,

x̂ ∈ argmin
x∈H

‖Ax− b‖K ⇐⇒ A∗Ax̂ = A∗b, (4.5)

the equations on the right-hand side being known as the normal equations.
If, in addition, A is injective, then A∗A is invertible and the least squares
problem / normal equations have a unique solution.

Proof. As a consequence of completeness, the only element of a Hilbert space
that is orthogonal to every other element of the space is the zero element.
Hence,

‖Ax− b‖K is minimal

⇐⇒ (Ax − b) ⊥ Av for all v ∈ H by Lemma 4.26

⇐⇒ 〈Ax − b, Av〉K = 0 for all v ∈ H
⇐⇒ 〈A∗Ax−A∗b, v〉H = 0 for all v ∈ H
⇐⇒ A∗Ax = A∗b by completeness of H,

and this shows the equivalence (4.5).
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By Proposition 3.16(d), kerA∗ = (ranA)⊥. Therefore, the restriction of A∗

to the range of A is injective. Hence, if A itself is injective, then it follows that
A∗A is injective. Again by Proposition 3.16(d), (ranA∗)⊥ = kerA = {0}, and
since H is complete, this implies that A∗ is surjective. Since A is surjective
onto its range, it follows that A∗A is surjective, and hence bijective and
invertible.  !

Weighting and Regularization. It is common in practice that one does
not want to minimize the K-norm directly, but perhaps some re-weighted
version of the K-norm. This re-weighting is accomplished by a self-adjoint
and positive definite2 operator Q : K → K: we define a new inner product
and norm on K by

〈k, k′〉Q := 〈k,Qk′〉K,

‖k‖Q := 〈k, k〉1/2Q .

It is a standard fact that the self-adjoint operator Q possesses an operator
square root, i.e. a self-adjoint Q1/2 : K → K such that Q1/2Q1/2 = Q; for
reasons of symmetry, it is common to express the inner product and norm
induced by Q using this square root:

〈k, k′〉Q =
〈
Q1/2k,Q1/2k′

〉
K,

‖k‖Q =
∥
∥Q1/2k

∥
∥
K.

We then consider the problem, given b ∈ K, of finding x ∈ H to minimize

1

2
‖Ax− b‖2Q ≡ 1

2

∥
∥Q1/2(Ax− b)

∥
∥2
K.

Another situation that arises frequently in practice is that the normal
equations do not have a unique solution (e.g. because A∗A is not invertible)
and so it is necessary to select one by some means, or that one has some
prior belief that ‘the right solution’ should be close to some initial guess x0.
A technique that accomplishes both of these aims is Tikhonov regularization
(known in the statistics literature as ridge regression). In this situation, we
minimize the following sum of two quadratic functionals:

1

2
‖Ax− b‖2K +

1

2
‖x− x0‖2R,

where R : H → H is self-adjoint and positive definite, and x0 ∈ H.

2 If Q is not positive definite, but merely positive semi-definite and self-adjoint, then
existence of solutions to the associated least squares problems still holds, but uniqueness
can fail.
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These two modifications to ordinary least squares, weighting and regular-
ization, can be combined. The normal equations for weighted and regularized
least squares are easily derived from Lemma 4.27:

Theorem 4.28 (Normal equations for weighted and Tikhonov-regularized
least squares). Let H and K be Hilbert spaces, let A : H → K have closed
range, let Q and R be self-adjoint and positive definite on K and H respec-
tively, and let b ∈ K, x0 ∈ H. Let

J(x) :=
1

2
‖Ax− b‖2Q +

1

2
‖x− x0‖2R.

Then

x̂ ∈ argmin
x∈H

J(x) ⇐⇒ (A∗QA+R)x̂ = A∗Qb+Rx0.

Proof. Exercise 4.4.  !

It is also interesting to consider regularizations that do not come from a
Hilbert norm, but instead from some other function. As will be elaborated
upon in Chapter 6, there is a strong connection between regularized opti-
mization problems and inverse problems, and the choice of regularization in
some sense describes the practitioner’s ‘prior beliefs’ about the structure of
the solution.

Nonlinear Least Squares and Gauss–Newton Iteration. It often occurs
in practice that one wishes to find a vector of parameters θ ∈ R

p such that a
function R

k $ x �→ f(x; θ) ∈ R
� best fits a collection of data points {(xi, yi) ∈

R
k × R

� | i = 1, . . . ,m}. For each candidate parameter vector θ, define the
residual vector

r(θ) :=

⎡

⎢
⎢
⎣

r1(θ)
...

rm(θ)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

y1 − f(x1; θ)
...

ym − f(xm; θ)

⎤

⎥
⎥
⎦ ∈ R

m.

The aim is to find θ to minimize the objective function J(θ) := ‖r(θ)‖22. Let

A :=

⎡

⎢
⎢
⎣

∂r1(θ)
∂θ1 · · · ∂r1(θ)

∂θp

...
. . .

...
∂rm(θ)
∂θ1 · · · ∂rm(θ)

∂θp

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
θ=θn

∈ R
m×p

be the Jacobian matrix of the residual vector, and note that A = −DF (θn),
where

F (θ) :=

⎡

⎢
⎢
⎣

f(x1; θ)
...

f(xm; θ)

⎤

⎥
⎥
⎦ ∈ R

m.
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Consider the first-order Taylor approximation

r(θ) ≈ r(θn) +A(r(θ) − r(θn)).

Thus, to approximately minimize ‖r(θ)‖2, we find δ := r(θ) − r(θn) that
makes the right-hand side of the approximation equal to zero. This is an
ordinary linear least squares problem, the solution of which is given by the
normal equations as

δ = (A∗A)−1A∗r(θn).

Thus, we obtain the Gauss–Newton iteration for a sequence (θn)n∈N of app-
roximate minimizers of J :

θn+1 := θn − (A∗A)−1A∗r(θn)

= θn +
(
(DF (θn))

∗(DF (θn))
)−1

(DF (θn))
∗r(θn).

In general, the Gauss–Newton iteration is not guaranteed to converge to
the exact solution, particularly if δ is ‘too large’, in which case it may be
appropriate to use a judiciously chosen small positive multiple of δ. The
use of Tikhonov regularization in this context is known as the Levenberg–
Marquardt algorithm or trust region method, and the small multiplier applied
to δ is essentially the reciprocal of the Tikhonov regularization parameter.
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The book of Boyd and Vandenberghe (2004) is an excellent reference on
the theory and practice of convex optimization, as is the associated software
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particular, Theorems 4.14 and 4.15 are due to Krein and Milman (1940) and
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be found in Zeidler (1995, Section 4.14). Theorem 4.10 originates with Karush
(1939) and Kuhn and Tucker (1951); see, e.g., Gould and Tolle (1975) for
discussion of the infinite-dimensional version.

For constrained global optimization in the absence of ‘nice’ features, par-
ticularly for the UQ methods in Chapter 14, variations upon the genetic
evolution approach, e.g. the differential evolution algorithm (Price et al.,
2005; Storn and Price, 1997), have proved up to the task of producing robust
results, if not always quick ones. There is no ‘one size fits all’ approach to
constrained global optimization: it is basically impossible to be quick, robust,
and general all at the same time.

http://cvxopt.org/
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In practice, it is very useful to work using an optimization framework that
provides easy interfaces to many optimization methods, with easy interchange
among strategies for population generation, enforcement of constraints, ter-
mination criteria, and so on: see, for example, the DAKOTA (Adams et al.,
2014) and Mystic (McKerns et al., 2009, 2011) projects.

4.8 Exercises

Exercise 4.1. Let ‖ · ‖ be a norm on a vector space V , and fix x̄ ∈ V . Show
that the function J : V → [0,∞) defined by J(x) := ‖x − x̄‖ is convex, and
that J(x) := 1

2‖x− x̄‖2 is strictly convex if the norm is induced by an inner
product. Give an example of a norm for which J(x) := 1

2‖x − x̄‖2 is not
strictly convex.

Exercise 4.2. LetK be a non-empty, closed, convex subset of a Hilbert space
H. Lemma 4.25 shows that there is a well-defined function ΠK : H → K that
assigns to each y ∈ H the unique ΠKy ∈ K that is closest to y with respect
to the norm on H.
(a) Prove the variational inequality that x = ΠKy if and only if x ∈ K and

〈x, z − x〉 ≥ 〈y, z − x〉 for all z ∈ K.

(b) Prove that ΠK is non-expansive, i.e.

‖ΠKy1 −ΠKy2‖ ≤ ‖y1 − y2‖ for all y1, y2 ∈ H,

and hence a continuous function.

Exercise 4.3. Let A : H → K be a linear operator between Hilbert spaces
such that ranA is a closed subspace of K, let Q : K → K be self-adjoint and
positive-definite, and let b ∈ K. Let

J(x) :=
1

2
‖Ax− b‖2Q

Calculate the gradient and Hessian (second derivative) of J . Hence show
that, regardless of the initial condition x0 ∈ H, Newton’s method finds the
minimum of J in one step.

Exercise 4.4. Prove Theorem 4.28. Hint: Consider the operator from H into
K ⊕ L given by

x �→
[
Q1/2Ax

R1/2x

]

.



Chapter 5

Measures of Information
and Uncertainty

As we know, there are known knowns. There
are things we know we know. We also know
there are known unknowns. That is to say we
know there are some things we do not know.

But there are also unknown unknowns, the
ones we don’t know we don’t know.

Donald Rumsfeld

This chapter briefly summarizes some basic numerical measures of unce-
rtainty, from interval bounds to information-theoretic quantities such as
(Shannon) information and entropy. This discussion then naturally leads to
consideration of distances (and distance-like functions) between probability
measures.

5.1 The Existence of Uncertainty

At a very fundamental level, the first level in understanding the uncertainties
affecting some system is to identify the sources of uncertainty. Sometimes,
this can be a challenging task because there may be so much lack of knowledge
about, e.g. the relevant physical mechanisms, that one does not even know
what a list of the important parameters would be, let alone what uncertainty
one has about their values. The presence of such so-called unknown unknowns
is of major concern in high-impact settings like risk assessment.

One way of assessing the presence of unknown unknowns is that if one
subscribes to a deterministic view of the universe in which reality maps inputs
x ∈ X to outputs y = f(x) ∈ Y by a well-defined single-valued function

© Springer International Publishing Switzerland 2015
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f : X → Y, then unknown unknowns are additional variables z ∈ Z whose
existence one infers from contradictory observations like

f(x) = y1 and f(x) = y2 �= y1.

Unknown unknowns explain away this contradiction by asserting the exis-
tence of a space Z containing distinct elements z1 and z2, that in fact f is a
function f : X × Z → Y, and that the observations were actually

f(x, z1) = y1 and f(x, z2) = y2.

Of course, this viewpoint does nothing to actually identify the relevant space
Z nor the values z1 and z2.

A related issue is that of model form uncertainty, i.e. an epistemic lack
of knowledge about which of a number of competing models for some sys-
tem of interest is ‘correct’. Usually, the choice to be made is a qualitative
one. For example, should one model some observed data using a linear or
a non-linear statistical regression model? Or, should one model a fluid flow
through a pipe using a high-fidelity computational fluid dynamics model in
three spatial dimensions, or using a coarse model that treats the pipe as
one-dimensional? This apparently qualitative choice can be rendered into a
quantitative form by placing a Bayesian prior on the discrete index set of
the models, conditioning upon observed data, and examining the resulting
posterior. However, it is important to not misinterpret the resulting posterior
probabilities of the models: we do not claim that the more probable model
is ‘correct’, only that it has relatively better explanatory power compared to
the other models in the model class.

5.2 Interval Estimates

Sometimes, nothing more can be said about some unknown quantity than
a range of possible values, with none more or less probable than any other.
In the case of an unknown real number x, such information may boil down
to an interval such as [a, b] in which x is known to lie. This is, of course, a
very basic form of uncertainty, and one may simply summarize the degree of
uncertainty by the length of the interval.

Interval Arithmetic. As well as summarizing the degree of uncertainty
by the length of the interval estimate, it is often of interest to manipulate
the interval estimates themselves as if they were numbers. One method of
manipulating interval estimates of real quantities is interval arithmetic. Each
of the basic arithmetic operations ∗ ∈ {+,−, ·, /} is extended to intervals
A,B ⊆ R by

A ∗B := {x ∈ R | x = a ∗ b for some a ∈ A, b ∈ B}.
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Hence,

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c],
[a, b] · [c, d] =

[
min{a · c, a · d, b · c, b · d},max{a · c, a · d, b · c, b · d}

]
,

[a, b]/[c, d] =
[
min{a/c, a/d, b/c, b/d},max{a/c, a/d, b/c, b/d}

]
,

where the expression for [a, b]/[c, d] is defined only when 0 /∈ [c, d]. The
addition and multiplication operations are commutative, associative and sub-
distributive:

A(B + C) ⊆ AB +AC.

These ideas can be extended to elementary functions without too much dif-
ficulty: monotone functions are straightforward, and the Intermediate Value
Theorem ensures that the continuous image of an interval is again an interval.
However, for general functions f , it is not straightforward to compute (the
convex hull of) the image of f .

Interval analysis corresponds to a worst-case propagation of uncertainty:
the interval estimate on the output f is the greatest lower bound and least
upper bound compatible with the interval estimates on the input of f . How-
ever, in practical settings, one shortcoming of interval analysis is that it
can yield interval bounds on output quantities of interest that are too pes-
simistic (i.e. too wide) to be useful: there is no scope in the interval arithmetic
paradigm to consider how likely or unlikely it would be for the various inputs
to ‘conspire’ in a highly correlated way to produce the most extreme output
values. (The heuristic idea that a function of many independent or weakly
correlated random variables is unlikely to stray far from its mean or median
value is known as the concentration of measure phenomenon, and will be dis-
cussed in Chapter 10.) In order to produce more refined interval estimates,
one will need further information, usually probabilistic in nature, on possible
correlations among inputs.

‘Intervals’ of Probability Measures. The distributional robustness appr-
oaches covered in Chapter 14 — as well as other theories of imprecise
probability, e.g. Dempster–Shafer theory — can be seen as an extension
of the interval arithmetic approach from partially known real numbers to
partially known probability measures. As hybrid interval-probabilistic app-
roaches, they are one way to resolve the ‘overly pessimistic’ shortcomings of
classical interval arithmetic as discussed in the previous paragraph. These
ideas will be revisited in Chapter 14.
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5.3 Variance, Information and Entropy

Suppose that one adopts a subjectivist (e.g. Bayesian) interpretation of
probability, so that one’s knowledge about some system of interest with pos-
sible values in X is summarized by a probability measure μ ∈ M1(X ). The
probability measure μ is a very rich and high-dimensional object; often it is
necessary to summarize the degree of uncertainty implicit in μ with a few
numbers — perhaps even just one number.

Variance. One obvious summary statistic, when X is (a subset of) a normed
vector space and μ has mean m, is the variance of μ, i.e.

V(μ) :=

∫

X
‖x−m‖2 dμ(x) ≡ EX∼μ

[
‖X −m‖2

]
.

If V(μ) is small (resp. large), then we are relatively certain (resp. uncertain)
that X ∼ μ is in fact quite close tom. A more refined variance-based measure
of informativeness is the covariance operator

C(μ) := EX∼μ

[
(X −m)⊗ (X −m)

]
.

A distribution μ for which the operator norm of C(μ) is large may be said to
be a relatively uninformative distribution. Note that when X = R

n, C(μ) is
an n× n symmetric positive-semi-definite matrix. Hence, such a C(μ) has n
positive real eigenvalues (counted with multiplicity)

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

with corresponding normalized eigenvectors v1, . . . , vn ∈ R
n. The direction

v1 corresponding to the largest eigenvalue λ1 is the direction in which the
uncertainty about the random vector X is greatest; correspondingly, the dir-
ection vn is the direction in which the uncertainty about the random vector
X is least.

A beautiful and classical result concerning the variance of two quantities of
interest is the uncertainty principle from quantum mechanics. In this setting,
the probability distribution is written as p = |ψ|2, where ψ is a unit-norm
element of a suitable Hilbert space, usually one such as L2(Rn;C). Physical
observables like position, momentum, etc. act as self-adjoint operators on this
Hilbert space; e.g. the position operator Q is

(Qψ)(x) := xψ(x),

so that the expected position is

〈ψ,Qψ〉 =
∫

Rn

ψ(x)xψ(x) dx =

∫

Rn

x|ψ(x)|2 dx.



5.3 Variance, Information and Entropy 79

In general, for a fixed unit-norm element ψ ∈ H, the expected value 〈A〉 and
variance V(A) ≡ σ2A of a self-adjoint operator A : H → H are defined by

〈A〉 := 〈ψ,Aψ〉,
σ2A := 〈(A− 〈A〉)2〉.

The following inequality provides a fundamental lower bound on the product
of the variances of any two observables A and B in terms of their commutator
[A,B] := AB − BA and their anti-commutator {A,B} := AB + BA. When
this lower bound is positive, the two variances cannot both be close to zero,
so simultaneous high-precision measurements of A and B are impossible.

Theorem 5.1 (Uncertainty principle: Schrödinger’s inequality). Let A, B be
self-adjoint operators on a Hilbert space H, and let ψ ∈ H have unit norm.
Then

σ2Aσ
2
B ≥

∣
∣
∣
∣
〈{A,B}〉 − 2〈A〉〈B〉

2

∣
∣
∣
∣

2

+

∣
∣
∣
∣
〈[A,B]〉

2

∣
∣
∣
∣

2

(5.1)

and, a fortiori, σAσB ≥ 1
2

∣
∣〈[A,B]〉

∣
∣.

Proof. Let f := (A− 〈A〉)ψ and g := (B − 〈B〉)ψ, so that

σ2A = 〈f, f〉 = ‖f‖2,
σ2B = 〈g, g〉 = ‖g‖2.

Therefore, by the Cauchy–Schwarz inequality (3.1),

σ2Aσ
2
B = ‖f‖2‖g‖2 ≥ |〈f, g〉|2.

Now write the right-hand side of this inequality as

|〈f, g〉|2 =
(
Re(〈f, g〉)

)2
+
(
Im(〈f, g〉)

)2

=

(
〈f, g〉+ 〈g, f〉

2

)2

+

(
〈f, g〉 − 〈g, f〉

2i

)2

.

Using the self-adjointness of A and B,

〈f, g〉 = 〈(A− 〈A〉)ψ, (B − 〈B〉)ψ〉
= 〈AB〉 − 〈A〉〈B〉 − 〈A〉〈B〉 + 〈A〉〈B〉
= 〈AB〉 − 〈A〉〈B〉;

similarly, 〈g, f〉 = 〈BA〉 − 〈A〉〈B〉. Hence,

〈f, g〉 − 〈g, f〉 = 〈[A,B]〉,
〈f, g〉+ 〈g, f〉 = 〈{A,B}〉 − 2〈A〉〈B〉,

which yields (5.1).  !
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An alternative measure of information content, not based on variances, is
the information-theoretic notion of entropy:

Information and Entropy. In information theory as pioneered by Claude
Shannon, the information (or surprisal) associated with a possible outcome
x of a random variable X ∼ μ taking values in a finite set X is defined to be

I(x) := − logPX∼μ[X = x] ≡ − logμ(x). (5.2)

Information has units according to the base of the logarithm used:

base 2 ↔ bits, base e ↔ nats/nits, base 10 ↔ bans/dits/hartleys.

The negative sign in (5.2) makes I(x) non-negative, and logarithms are used
because one seeks a quantity I( · ) that represents in an additive way the
‘surprise value’ of observing x. For example, if x has half the probability of y,
then one is ‘twice as surprised’ to see the outcome X = x instead of X = y,
and so I(x) = I(y) + log 2. The entropy of the measure μ is the expected
information:

H(μ) := EX∼μ[I(X)] ≡ −
∑

x∈X
μ(x) log μ(x). (5.3)

(We follow the convention that 0 log 0 := limp→0 p log p = 0.) These defini-
tions are readily extended to a random variable X taking values in R

n and
distributed according to a probability measure μ that has Lebesgue density ρ:

I(x) := − log ρ(x),

H(μ) := −
∫

Rn

ρ(x) log ρ(x) dx.

Since entropy measures the average information content of the possible val-
ues of X ∼ μ, entropy is often interpreted as a measure of the uncertainty
implicit in μ. (Remember that if μ is very ‘spread out’ and describes a lot of
uncertainty about X , then observing a particular value of X carries a lot of
‘surprise value’ and hence a lot of information.)

Example 5.2. Consider a Bernoulli random variable X taking values in
x1, x2 ∈ X with probabilities p, 1− p ∈ [0, 1] respectively. This random vari-
able has entropy

−p log p− (1− p) log(1− p).

If X is certain to equal x1, then p = 1, and the entropy is 0; similarly, if X is
certain to equal x2, then p = 0, and the entropy is again 0; these two distribu-
tions carry zero information and have minimal entropy. On the other hand,
if p = 1

2 , in which case X is uniformly distributed on X , then the entropy is
log 2; indeed, this is the maximum possible entropy for a Bernoulli random
variable. This example is often interpreted as saying that when interrogat-
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ing someone with questions that demand “yes” or “no” answers, one gains
maximum information by asking questions that have an equal probability of
being answered “yes” versus “no”.

Proposition 5.3. Let μ and ν be probability measures on discrete sets or
R

n. Then the product measure μ⊗ ν satisfies

H(μ⊗ ν) = H(μ) +H(ν).

That is, the entropy of a random vector with independent components is the
sum of the entropies of the component random variables.

Proof. Exercise 5.1.  !

5.4 Information Gain, Distances and Divergences

The definition of entropy in (5.3) implicitly uses a uniform measure (counting
measure on a finite set, or Lebesgue measure on R

n) as a reference measure.
Upon reflection, there is no need to privilege uniform measure with being
the unique reference measure; indeed, in some settings, such as infinite-
dimensional Banach spaces, there is no such thing as a uniform measure
(cf. Theorem 2.38). In general, if μ is a probability measure on a measur-
able space (X ,F ) with reference measure π, then we would like to define the
entropy of μ with respect to π by an expression like

H(μ|π) = −
∫

R

dμ

dπ
(x) log

dμ

dπ
(x) dπ(x)

whenever μ has a Radon–Nikodým derivative with respect to π. The negative
of this functional is a distance-like function on the set of probability measures
on (X ,F ):

Definition 5.4. Let μ, ν be σ-finite measures on (X ,F ). The Kullback–
Leibler divergence from μ to ν is defined to be

DKL(μ‖ν) :=
∫

X

dμ

dν
log

dμ

dν
dν ≡

∫

X
log

dμ

dν
dμ

if μ� ν and this integral is finite, and +∞ otherwise.

While DKL( · ‖ · ) is non-negative, and vanishes if and only if its arguments
are identical (see Exercise 5.3), it is neither symmetric nor does it satisfy
the triangle inequality. Nevertheless, it can be used to define a topology on
M+(X ) or M1(X ) by taking as a basis of open sets for the topology the
‘balls’

U(μ, ε) := {ν | DKL(μ‖ν) < ε}
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for arbitrary μ and ε > 0. The following result and Exercise 5.6 show that
DKL( · ‖ · ) generates a topology onM1(X ) that is strictly finer/stronger than
that generated by the total variation distance (2.4):

Theorem 5.5 (Pinsker, 1964). For any μ, ν ∈ M1(X ,F ),

dTV(μ, ν) ≤
√
2DKL(μ‖ν).

Proof. Consider a Hahn decomposition (Theorem 2.24) of (X ,F ) with
respect to the signed measure μ − ν: let A0 and A1 be disjoint measurable
sets with union X such that every measurable subset of A0 (resp. A1) has
non-negative (resp. non-positive) measure under μ − ν. Let A := {A0, A1}.
Then the induced measures μA and νA on {0, 1} satisfy

dTV(μ, ν) = ‖μ− ν‖TV

= (μ− ν)(A1)− (μ− ν)(A2)

= (μA(0)− νA(0))− (μA(1)− νA(1))
= dTV(μA, νA).

By the partition inequality (Exercise 5.5), DKL(μ‖ν) ≥ DKL(μA‖νA), so it
suffices to prove Pinsker’s inequality in the case that X has only two elements
and F is the power set of X .

To that end, let X := {0, 1}, and let

μ = pδ0 + (1 − p)δ1,
ν = qδ0 + (1− q)δ1.

Consider, for fixed c ∈ R and p ∈ [0, 1],

g(q) := p log
p

q
+ (1− p) log 1− p

1− q − 4c(p− q)2.

Note that g(p) = 0 and that, for q ∈ (0, 1),

∂

∂q
g(q) = −p

q
+

1− p
1− q + 8c(p− q)

= (q − p)
(

1

q(1− q) − 8c

)

.

Since, for all q ∈ [0, 1], 0 ≤ q(1 − q) ≤ 1
4 , it follows that for any c ≤

1
2 , g(q)

attains its minimum at q = p. Thus, for c ≤ 1
2 ,

g(q) = DKL(μ‖ν)− c
(
|p− q|+ |(1 − p)− (1 − q)|

)2

= DKL(μ‖ν)− c
(
dTV(μ, ν)

)2

≥ 0.

Setting c = 1
2 yields Pinsker’s inequality.  !
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One practical use of information-theoretic quantities such as the Kullback–
Leibler divergence is to design experiments that will, if run, yield a maximal
gain in the Shannon information about the system of interest:

Example 5.6 (Bayesian experimental design). Suppose that a Bayesian
point of view is adopted, and for simplicity that all the random variables
of interest are finite-dimensional with Lebesgue densities ρ( · ). Consider the
problem of selecting an optimal experimental design λ for the inference of
some parameters/unknowns θ from the observed data y that will result from
the experiment λ. If, for each λ and θ, we know the conditional distribution
y|λ, θ of the observed data y given λ and θ, then the conditional distribution
y|λ is obtained by integration with respect to the prior distribution of θ:

ρ(y|λ) =
∫

ρ(y|λ, θ)ρ(θ) dθ.

Let U(y, λ) be a real-valued measure of the utility of the posterior distribution

ρ(θ|y, λ) = ρ(y|θ, λ)ρ(θ)
ρ(y|λ) .

For example, one could take the utility function U(y, λ) to be the Kullback–
Leibler divergence DKL

(
ρ( · |y, λ)

∥
∥ρ( · |λ)

)
between the prior and posterior

distributions on θ. An experimental design λ that maximizes

U(λ) :=

∫

U(y, λ)ρ(y|λ) dy

is one that is optimal in the sense of maximizing the expected gain in Shannon
information.

In general, the optimization problem of finding a maximally informative
experimental design is highly non-trivial, especially in the case of compu-
tationally intensive likelihood functions. See, e.g., Chaloner and Verdinelli
(1995) for a survey of this large field of study.

Divergences and Other Distances. The total variation distance and
Kullback–Leibler divergence are special cases of a more general class of
distance-like functions between pairs of probability measures:

Definition 5.7. Let μ and ν be σ-finite measures on a common measurable
space (X ,F ), and let f : [0,∞] → R ∪ {+∞} be any convex function such
that f(1) = 0. The f -divergence from μ to ν is defined to be

Df (μ‖ν) :=

⎧
⎨

⎩

∫

X
f

(
dμ

dν

)

dν, if μ� ν,

+∞, otherwise.

(5.4)



84 5 Measures of Information and Uncertainty

Equivalently, in terms of any reference measure ρ with respect to which both
μ and ν are absolutely continuous (such as μ+ ν),

Df (μ‖ν) :=
∫

X
f

(
dμ

dρ

/
dν

dρ

)
dν

dρ
dρ. (5.5)

It is good practice to check that the alternative definition (5.5) is, in fact,
independent of the reference measure used:

Lemma 5.8. Suppose that μ and ν are absolutely continuous with respect to
both ρ1 and ρ2. Then ρ1 and ρ2 are equivalent measures except for sets of
(μ+ ν)-measure zero, and (5.5) defines the same value with ρ = ρ1 as it does
with ρ = ρ2.

Proof. Suppose that ρ1 and ρ2 are inequivalent. Then, without loss of gen-
erality, there exists a measurable set E such that ρ1(E) = 0 but ρ2(E) > 0.
Therefore, since μ� ρ1 and ν � ρ1, it follows that μ(E) = ν(E) = 0. Thus,
although ρ1 and ρ2 may be inequivalent for arbitrary measurable sets, they
are equivalent for sets of positive (μ+ ν)-measure.

Now let E be a set of full measure under ν, so that dρ2

dρ1
exists and is nowhere

zero in E. Then the chain rule for Radon–Nikodým derivatives (Theorem
2.30) yields

∫

X
f

(
dμ

dρ1

/
dν

dρ1

)
dν

dρ1
dρ1

=

∫

E

f

(
dμ

dρ1

/
dν

dρ1

)

dν since ν(X \ E) = 0

=

∫

E

f

((
dμ

dρ2

dρ2
dρ1

)/(
dν

dρ2

dρ2
dρ1

))

dν by Theorem 2.30

=

∫

E

f

(
dμ

dρ2

/
dν

dρ2

)

dν

=

∫

X
f

(
dμ

dρ2

/
dν

dρ2

)
dν

dρ2
dρ2.  !

Jensen’s inequality and the conditions on f immediately imply that
f -divergences of probability measures are non-negative:

Df (μ‖ν) =
∫

X
f

(
dμ

dν

)

dν ≥ f
(∫

X

dμ

dν
dν

)

= f(1) = 0.

For strictly convex f , equality holds if and only if μ = ν, and for the Kullback–
Leibler distance this is known as Gibbs’ inequality (Exercise 5.3).

Example 5.9. (a) The total variation distance defined in (2.4) is the f -
divergence with f(t) := |t − 1|; this can be seen most directly from for-
mulation (5.5). As already discussed, dTV is a metric on the space of
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probability measures on (X ,F ), and indeed it is a norm on the space of
signed measures on (X ,F ). Under the total variation distance, M1(X )
has diameter at most 2.

(b) The Kullback–Leibler divergence is the f -divergence with f(t) := t log t.
This does not define a metric, since in general it is neither symmetric nor
does it satisfy the triangle inequality.

(c) The Hellinger distance is the square root of the f -divergence with f(t) :=
|
√
t− 1|2, i.e.

dH(μ, ν)
2 =

∫

X

∣
∣
∣
∣
∣

√
dμ

dν
− 1

∣
∣
∣
∣
∣

2

dν

=

∫

X

∣
∣
∣
∣
∣

√
dμ

dρ
−

√
dν

dρ

∣
∣
∣
∣
∣

2

dρ

for any reference measure ρ, and is a bona fide metric.

The total variation and Kullback–Leibler distances and their associated
topologies are related by Pinsker’s inequality (Theorem 5.5); the correspond-
ing result for the total variation and Hellinger distances and their topologies
is Kraft’s inequality (see Steerneman (1983) for generalizations to signed and
product measures):

Theorem 5.10 (Kraft, 1955). Let μ, ν be probability measures on (Θ,F ).
Then

dH(μ, ν)
2 ≤ dTV(μ, ν) ≤ 2dH(μ, ν). (5.6)

Hence, the total variation metric and Hellinger metric induce the same topol-
ogy on M1(Θ).

Remark 5.11. It also is common in the literature to see the total variation
distance defined as the f -divergence with f(t) := 1

2 |t − 1| and the Hellinger �
distance defined as the square root of the f -divergence with f(t) := 1

2 |
√
t−1|2.

In this case, Kraft’s inequality (5.6) becomes

dH(μ, ν)
2 ≤ dTV(μ, ν) ≤

√
2 dH(μ, ν). (5.7)

A useful property of the Hellinger distance is that it provides a Lipschitz-
continuous bound on how the expectation of a random variable changes when
changing measure from one measure to another. This property will be useful
in the results of Chapter 6 on the well-posedness of Bayesian inverse problems.

Proposition 5.12. Let (V , ‖ · ‖) be a Banach space, and suppose that f : X →
V has finite second moment with respect to μ, ν ∈M1(X ). Then

∥
∥Eμ[f ]− Eν [f ]

∥
∥ ≤ 2

√
Eμ[‖f‖2] + Eν [‖f‖2] dH(μ, ν).
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Proof. Exercise 5.7.  !

There are also useful measures of distance between probability measures
that make use of the metric space structure of the sample space, if it has
one. The following metric, the Lévy–Prokhorov distance, is particularly imp-
ortant in analysis because it corresponds to the often-used topology of weak
convergence of probability measures:

Definition 5.13. The Lévy–Prokhorov distance between probability mea-
sures μ and ν on a metric space (X , d) is defined by

dLP(μ, ν) := inf

{

ε ≥ 0

∣
∣
∣
∣

μ(A) ≤ ν(Aε) + ε and
ν(A) ≤ μ(Aε) + ε for all measurable A ⊆ X

}

,

where Aε denotes the open ε-neighbourhood of A in the metric d, i.e.

Aε :=
⋃

a∈A

Bε(a) = {x ∈ X | d(a, x) < ε for some a ∈ A}.

It can be shown that this defines a metric on the space of probability
measures on X . The Lévy–Prokhorov metric dLP on M1(X ) inherits many
of the properties of the original metric d on X : if (X , d) is separable, then so
too is (M1(X ), dLP); and if (X , d) is complete, then so too is (M1(X ), dLP).
By (h) below, the Lévy–Prokhorov metric metrizes the topology of weak
convergence of probability measures, which by (d) below is essentially the
topology of convergence of bounded and continuous statistics:

Theorem 5.14 (Portmanteau theorem for weak convergence). Let (μn)n∈N

be a sequence of probability measures on a topological space X , and let
μ ∈ M1(X ). Then the following are equivalent, and determine the weak
convergence of μn to μ:
(a) lim supn→∞ μn(F ) ≤ μ(F ) for all closed F ⊆ X ;
(b) lim infn→∞ μn(U) ≥ μ(U) for all open U ⊆ X ;
(c) limn→∞ μn(A) = μ(A) for all A ⊆ X with μ(∂A) = 0;
(d) limn→∞ Eμn [f ] = Eμ[f ] for every bounded and continuous f : X → R;
(e) limn→∞ Eμn [f ] = Eμ[f ] for every bounded and Lipschitz f : X → R;
(f) lim supn→∞ Eμn [f ] ≤ Eμ[f ] for every f : X → R that is upper semi-

continuous and bounded above;
(g) lim infn→∞ Eμn [f ] ≥ Eμ[f ] for every f : X → R that is lower semi-

continuous and bounded below;
(h) when X is metrized by a metric d, limn→∞ dLP(μn, μ) = 0.

Some further examples of distances between probability measures are in-
cluded in the exercises at the end of the chapter, and the bibliography gives
references for more comprehensive surveys.
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5.5 Bibliography

The book of Ayyub and Klir (2006) provides a wide-ranging discussion of
many notions of uncertainty and their description, elicitation, propagation
and visualization, all with a practical eye on applications to engineering and
the sciences.

Wasserman (2000) gives a survey of Bayesian model selection and model
averaging. Comprehensive treatments of interval analysis include the classic
monograph of Moore (1966) and the more recent text of Jaulin et al. (2001).
Hansen and Walster (2004) also provide a modern introduction to interval
analysis, with an eye on applications to optimization.

The books of Cover and Thomas (2006) and MacKay (2003) provide a
thorough introduction to information theory, which was pioneered by Shan-
non in his seminal 1948 paper (Shannon, 1948). See also Jaynes (2003) for a
unified perspective on information theory, inference, and logic in the sciences.

The Kullback–Leibler divergence was introduced by Kullback and Leibler
(1951), who in fact considered the symmetrized version of the divergence that
now bears their names. The more general theory of f -divergences was intro-
duced and studied independently by Csiszár (1963), Morimoto (1963), and Ali
and Silvey (1966). Lindley (1956) was an early proponent of what would now
be called Bayesian experimental design; see Chaloner and Verdinelli (1995)
for a comprehensive review of this large field.

Weak convergence of probability measures was introduced by Aleksan-
drov (1940, 1941, 1943). Theorem 5.14, the portmanteau theorem for weak
convergence, can be found in many texts on probability theory, e.g. that of
Billingsley (1995, Section 2).

The Wasserstein metric (also known as the Kantorovich or Rubinstein
metric, or earth-mover’s distance) of Exercise 5.11 plays a central role in
the theory of optimal transportation; for comprehensive treatments of this
topic, see the books of Villani (2003, 2009), and also Ambrosio et al. (2008,
Chapter 6). Gibbs and Su (2002) give a short self-contained survey of many
distances between probability measures, and the relationships among them.
Deza and Deza (2014, Chapter 14) give a more extensive treatment of
distances between probability measures, in the context of a wide-ranging
discussion of distances of all kinds.

5.6 Exercises

Exercise 5.1. Prove Proposition 5.3. That is, suppose that μ and ν are prob-
ability measures on discrete sets or Rn, and show that the product measure
μ⊗ ν satisfies

H(μ⊗ ν) = H(μ) +H(ν).
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That is, the entropy of a random vector with independent components is the
sum of the entropies of the component random variables.

Exercise 5.2. Let μ0 = N (m0, C0) and μ1 = N (m1, C1) be non-degenerate
Gaussian measures on R

n. Show that

DKL(μ0‖μ1) =
1

2

(

log
detC1

detC0
− n+ tr(C−1

1 C0) +
∥
∥m0 −m1

∥
∥2
C−1

1

)

.

Hint: use the fact that, whenX ∼ N (m,C) is an R
n-valued Gaussian random

vector and A ∈ R
n×n is symmetric,

E[X ·AX ] = tr(AC) +m · Am.

Exercise 5.3. Let μ and ν be probability measures on a measurable space
(X ,F ). ProveGibbs’ inequality that DKL(μ‖ν) ≥ 0, with equality if and only
if μ = ν.

Exercise 5.4. Let f satisfy the requirements for Df( · ‖ · ) to be a divergence.
(a) Show that the function (x, y) �→ yf(x/y) is a convex function from

(0,∞)× (0,∞) to R ∪ {+∞}.
(b) Hence show that Df( · ‖ · ) is jointly convex in its two arguments, i.e. for

all probability measures μ0, μ1, ν0, and ν1 and t ∈ [0, 1],

Df

(
(1− t)μ0 + tμ1

∥
∥(1− t)ν0 + tν1

)
≤ (1− t)Df (μ0‖ν0) + tDf (μ1‖ν1).

Exercise 5.5. The following result is a useful one that frequently allows
statements about f -divergences to be reduced to the case of a finite or count-
able sample space. Let (X ,F , μ) be a probability space, and let f : [0,∞]→
[0,∞] be convex. Given a partition A = {An | n ∈ N} of X into countably
many pairwise disjoint measurable sets, define a probability measure μA on
N by μA(n) := μ(An).
(a) Suppose that μ(An) > 0 and that μ� ν. Show that, for each n ∈ N,

1

ν(An)

∫

An

f

(
dμ

dν

)

dν ≥ f
(
μ(An)

ν(An)

)

.

(b) Hence prove the following result, known as the partition inequality: for
any two probability measures μ and ν on X with μ� ν,

Df(μ‖ν) ≥ Df (μA‖νA).

Show also that, for strictly convex f , equality holds if and only if μ(An) =
ν(An) for each n.

Exercise 5.6. Show that Pinsker’s inequality (Theorem 5.5) cannot be
reversed. In particular, give an example of a measurable space (X ,F ) such
that, for any ε > 0, there exist probability measures μ and ν on (X ,F ) with
dTV(μ, ν) ≤ ε but DKL(μ‖ν) = +∞. Hint: consider a ‘small’ perturbation to
the CDF of a probability measure on R.
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Exercise 5.7. Prove Proposition 5.12. That is, let (V , ‖ · ‖) be a Banach
space, and suppose that f : X → V has finite second moment with respect to
μ, ν ∈M1(X ). Then

∥
∥Eμ[f ]− Eν [f ]

∥
∥ ≤ 2

√
Eμ[‖f‖2] + Eν [‖f‖2] dH(μ, ν).

Exercise 5.8. Suppose that μ and ν are equivalent probability measures on
(X ,F ) and define

d(μ, ν) := ess sup
x∈X

∣
∣
∣
∣log

dμ

dν
(x)

∣
∣
∣
∣ .

(See Example 2.7 for the definition of the essential supremum.) Show that this
defines a well-defined metric on the measure equivalence class E containing
μ and ν. In particular, show that neither the choice of function used as the
Radon–Nikodým derivative dμ

dν , nor the choice of measure in E with respect
to which the essential supremum is taken, affects the value of d(μ, ν).

Exercise 5.9. For a probability measure μ on R, let Fμ : R → [0, 1] be the
cumulative distribution function (CDF) defined by

Fμ(x) := μ((−∞, x]).

Show that the Lévy–Prokhorov distance between probability measures μ,
ν ∈ M1(R) reduces to the Lévy distance, defined in terms of their CDFs Fμ,
Fν by

dL(μ, ν) := inf
{
ε > 0

∣
∣Fμ(x − ε)− ε ≤ Fν(x) ≤ Fμ(x+ ε) + ε

}
.

Convince yourself that this distance can be visualized as the side length of the
largest square with sides parallel to the coordinate axes that can be placed
between the graphs of Fμ and Fν .

Exercise 5.10. Let (X , d) be a metric space, equipped with its Borel
σ-algebra. The �Lukaszyk–Karmowski distance between probability measures
μ and ν is defined by

d�LK(μ, ν) :=

∫

X

∫

X
d(x, x′) dμ(x)dν(x′).

Show that this satisfies all the requirements to be a metric on the space of
probability measures on X except for the requirement that d�LK(μ, μ) = 0.
Hint: suppose that μ = N (m,σ2) on R, and show that d�LK(μ, μ) =

2σ
π .

Exercise 5.11. Let (X , d) be a metric space, equipped with its Borel
σ-algebra. The Wasserstein distance between probability measures μ and
ν is defined by

dW(μ, ν) := inf
γ∈Γ (μ,ν)

∫

X×X
d(x, x′) dγ(x, x′),



90 5 Measures of Information and Uncertainty

where the infimum is taken over the set Γ (μ, ν) of all measures γ on X × X
such that the push-forward of γ onto the first (resp. second) copy of X is μ
(resp. ν). Show that this defines a metric on the space of probability measures
on X , bounded above by the �Lukaszyk–Karmowski distance, i.e.

dW(μ, ν) ≤ d�LK(μ, ν).

Verify also that the p-Wasserstein distance

dW,p(μ, ν) :=

(

inf
γ∈Γ (μ,ν)

∫

X×X
d(x, x′)p dγ(x, x′)

)1/p

,

where p ≥ 1, is a metric. Metrics of this type, and in particular the case p = 1,
are sometimes known as the earth-mover’s distance or optimal transportation
distance, since the minimization over γ ∈ Γ (μ, ν) can be seen as finding the
optimal way of moving/rearranging the pile of earth μ into the pile ν.



Chapter 6

Bayesian Inverse Problems

It ain’t what you don’t know that gets you
into trouble. It’s what you know for sure that
just ain’t so.

Mark Twain

This chapter provides a general introduction, at the high level, to the back-
ward propagation of uncertainty/information in the solution of inverse prob-
lems, and specifically a Bayesian probabilistic perspective on such inverse
problems. Under the umbrella of inverse problems, we consider parameter
estimation and regression. One specific aim is to make clear the connection
between regularization and the application of a Bayesian prior. The filtering
methods of Chapter 7 fall under the general umbrella of Bayesian approaches
to inverse problems, but have an additional emphasis on real-time computa-
tional expediency.

Many modern UQ applications involve inverse problems where the unknown
to be inferred is an element of some infinite-dimensional function space, e.g.
inference problems involving PDEs with uncertain coefficients. Naturally,
such problems can be discretized, and the inference problem solved on the
finite-dimensional space, but this is not always a well-behaved procedure:
similar issues arise in Bayesian inversion on function spaces as arise in the
numerical analysis of PDEs. For example, there are ‘stable’ and ‘unstable’
ways to discretize a PDE (e.g. the Courant–Friedrichs–Lewy condition), and
analogously there are ‘stable’ and ‘unstable’ ways to discretize a Bayesian inv-
erse problem. Sometimes, a discretized PDE problem has a solution, but the
original continuum problem does not (e.g. the backward heat equation, or the
control problem for the wave equation), and this phenomenon can be seen in
the ill-conditioning of the discretized problem as the discretization dimension
tends to infinity; similar problems can afflict a discretized Bayesian inverse

© Springer International Publishing Switzerland 2015
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problem. Therefore, one aim of this chapter is to present an elementary well-
posedness theory for Bayesian inversion on the function space, so that this
well-posedness will automatically be inherited by any finite-dimensional dis-
cretization. For a thorough treatment of all these questions, see the sources
cited in the bibliography.

6.1 Inverse Problems and Regularization

Many mathematical models, and UQ problems, are forward problems, i.e. we
are given some input u for a mathematical model H , and are required to
determine the corresponding output y given by

y = H(u), (6.1)

where U , Y are, say, Banach spaces, u ∈ U , y ∈ Y, and H : U → Y is the
observation operator. However, many applications require the solution of the
inverse problem: we are given y and H and must determine u such that (6.1)
holds. Inverse problems are typically ill-posed: there may be no solution, the
solution may not be unique, or there may be a unique solution that depends
sensitively on y. Indeed, very often we do not actually observe H(u), but
some noisily corrupted version of it, such as

y = H(u) + η. (6.2)

The inverse problem framework encompasses that problem of model cal-
ibration (or parameter estimation), where a model Hθ relating inputs to
outputs depends upon some parameters θ ∈ Θ, e.g., when U = Y = Θ,
Hθ(u) = θu. The problem is, given some observations of inputs ui and corre-
sponding outputs yi, to find the parameter value θ such that

yi = Hθ(ui) for each i.

Again, this problem is typically ill-posed.
One approach to the problem of ill-posedness is to seek a least-squares

solution: find, for the norm ‖ · ‖Y on Y,

argmin
u∈U

∥
∥y −H(u)

∥
∥2
Y .

However, this problem, too, can be difficult to solve as it may possess min-
imizing sequences that do not have a limit in U ,1 or may possess multiple
minima, or may depend sensitively on the observed data y. Especially in this

1 Take a moment to reconcile the statement “there may exist minimizing sequences that
do not have a limit in U” with U being a Banach space.
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last case, it may be advantageous to not try to fit the observed data too
closely, and instead regularize the problem by seeking

argmin
{∥
∥y −H(u)

∥
∥2
Y +

∥
∥u− ū

∥
∥2
V

∣
∣
∣u ∈ V ⊆ U

}

for some Banach space V embedded in U and a chosen ū ∈ V . The standard
example of this regularization setup is Tikhonov regularization, as in Theorem
4.28: when U and Y are Hilbert spaces, given a compact, positive, self-adjoint
operator R on U , we seek

argmin
{∥
∥y −H(u)

∥
∥2
Y +

∥
∥R−1/2(u − ū)

∥
∥2
U

∣
∣
∣ u ∈ U

}
.

The operator R describes the structure of the regularization, which in some
sense is the practitioner’s ‘prior belief about what the solution should look
like’. More generally, since it might be desired to weight the various compo-
nents of y differently from the given Hilbert norm on Y, we might seek

argmin
{∥
∥Q−1/2(y −H(u))

∥
∥2
Y +

∥
∥R−1/2(u− ū)

∥
∥2
U

∣
∣
∣u ∈ U

}

for a given positive self-adjoint operator Q on Y. However, this approach all
appears to be somewhat ad hoc, especially where the choice of regularization
is concerned.

Taking a probabilistic — specifically, Bayesian — viewpoint alleviates
these difficulties. If we think of u and y as random variables, then (6.2)
defines the conditioned random variable y|u, and we define the ‘solution’ of
the inverse problem to be the conditioned random variable u|y. This allows
us to model the noise, η, via its statistical properties, even if we do not know
the exact instance of η that corrupted the given data, and it also allows us
to specify a priori the form of solutions that we believe to be more likely,
thereby enabling us to attach weights to multiple solutions which explain the
data. This is the essence of the Bayesian approach to inverse problems.

Remark 6.1. In practice the true observation operator is often approxi-
mated by some numerical model H( · ;h), where h denotes a mesh parameter,
or parameter controlling missing physics. In this case (6.2) becomes

y = H(u;h) + ε+ η,

where ε := H(u) − H(u;h). In principle, the observational noise η and the
computational error ε could be combined into a single term, but keeping them
separate is usually more appropriate: unlike η, ε is typically not of mean zero,
and is dependent upon u.

To illustrate the central role that least squares minimization plays in ele-
mentary statistical estimation, and hence motivate the more general consid-
erations of the rest of the chapter, consider the following finite-dimensional
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linear problem. Suppose that we are interested in learning some vector of
parameters u ∈ R

n, which gives rise to a vector y ∈ R
m of observations via

y = Au+ η,

where A ∈ R
m×n is a known linear operator (matrix) and η is a (not nec-

essarily Gaussian) noise vector known to have mean zero and symmetric,
positive-definite covariance matrix Q := E[η ⊗ η] ≡ E[ηη∗] ∈ R

m×m, with η
independent of u. A common approach is to seek an estimate û of u that is
a linear function Ky of the data y is unbiased in the sense that E[û] = u,
and is the best estimate in that it minimizes an appropriate cost function.
The following theorem, the Gauss–Markov theorem, states that there is pre-
cisely one such estimator, and it is the solution to the weighted least squares
problem with weight Q−1, i.e.

û = argmin
u∈H

J(u), J(u) :=
1

2
‖Au− y‖2Q−1 .

In fact, this result holds true even in the setting of Hilbert spaces:

Theorem 6.2 (Gauss–Markov). Let H and K be separable Hilbert spaces, and
let A : H → K. Let u ∈ H and let y = Au + η, where η is a centred K-valued
random variable with self-adjoint and positive definite covariance operator Q.
Suppose that Q1/2A has closed range and that A∗Q−1A is invertible. Then,
among all unbiased linear estimators K : K → H, producing an estimate
û = Ky of u given y, the one that minimizes both the mean-squared error
E[‖û− u‖2] and the covariance operator2 E[(û − u)⊗ (û − u)] is

K = (A∗Q−1A)−1A∗Q−1, (6.3)

and the resulting estimate û has E[û] = u and covariance operator

E[(û− u)⊗ (û− u)] = (A∗Q−1A)−1.

Remark 6.3. Indeed, by Theorem 4.28, û = (A∗Q−1A)−1A∗Q−1y is also
the solution to the weighted least squares problem with weight Q−1, i.e.

û = argmin
u∈H

J(u), J(u) :=
1

2
‖Au− y‖2Q−1 .

Note that the first and second derivatives (gradient and Hessian) of J are

∇J(u) = A∗Q−1Au −A∗Q−1y, and ∇2J(u) = A∗Q−1A,

so the covariance of û is the inverse of the Hessian of J . These observations
will be useful in the construction of the Kálmán filter in Chapter 7.

2 Here, the minimization is meant in the sense of positive semi-definite operators: for two
operators A and B, we say that A ≤ B if B −A is a positive semi-definite operator.
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Proof of Theorem 6.2. It is easily verified that K as given by (6.3) is an
unbiased estimator:

û = (A∗Q−1A)−1A∗Q−1(Au+ η) = u+ (A∗Q−1A)−1A∗Q−1η

and so, taking expectations of both sides and using the assumption that η is
centred, E[û] = u. Moreover, the covariance of this estimator satisfies

E[(û − u)⊗ (û− u)] = KE[η ⊗ η]K = (A∗Q−1A)−1,

as claimed.
Now suppose that L = K +D is any linear unbiased estimator; note that

DA = 0. Then the covariance of the estimate Ly satisfies

E[(Ly − u)⊗ (Ly − u)] = E[(K +D)η ⊗ η(K∗ +D∗)]
= (K +D)Q(K∗ +D∗)
= KQK∗ +DQD∗ +KQD∗ + (KQD∗)∗.

Since DA = 0,

KQD∗ = (A∗Q−1A)−1A∗Q−1QD∗ = (A∗Q−1A)−1(DA)∗ = 0,

and so

E[(Ly − u)⊗ (Ly − u)] = KQK∗ +DQD∗ ≥ KQK∗.

Since DQD∗ is self-adjoint and positive semi-definite, this shows that

E[(Ly − u)⊗ (Ly − u)] ≥ KQK∗.  !

Remark 6.4. In the finite-dimensional case, if A∗Q−1A is not invertible,
then it is common to use the estimator

K = (A∗Q−1A)†A∗Q−1,

where B† denotes the Moore–Penrose pseudo-inverse of B, defined equiva-
lently by

B† := lim
δ→0

(B∗B + δI)B∗,

B† := lim
δ→0

B∗(BB∗ + δI)B∗, or

B† := V Σ†U∗,

where B = UΣV ∗ is the singular value decomposition of B, and Σ† is
the transpose of the matrix obtained from Σ by replacing all the strictly
positive singular values by their reciprocals. In infinite-dimensional settings,
the use of regularization and pseudo-inverses is a more subtle topic, especially
when the noise η has degenerate covariance operator Q.
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Bayesian Interpretation of Regularization.The Gauss–Markov estimator
is not ideal: for example, because of its characterization as the minimizer of
a quadratic cost function, it is sensitive to large outliers in the data, i.e. com-
ponents of y that differ greatly from the corresponding component of Aû. In
such a situation, it may be desirable to not try to fit the observed data y too
closely, and instead regularize the problem by seeking û, the minimizer of

J(u) :=
1

2
‖Au− y‖2Q−1 +

1

2
‖u− ū‖2R−1 , (6.4)

for some chosen ū ∈ K
n and positive-definite Tikhonov matrix R ∈ K

n×n.
Depending upon the relative sizes of Q and R, û will be influenced more
by the data y and hence lie close to the Gauss–Markov estimator, or be
influenced more by the regularization term and hence lie close to ū. At first
sight this procedure may seem somewhat ad hoc, but it has a natural Bayesian
interpretation.

Let us make the additional assumption that, not only is η centred with
covariance operator Q, but it is in fact Gaussian. Then, to a Bayesian prac-
titioner, the observation equation

y = Au+ η

defines the conditional distribution y|u as (y−Au)|u = η ∼ N (0, Q). Finding
the minimizer of u �→ 1

2‖Au − y‖2Q−1 , i.e. û = Ky, amounts to finding the
maximum likelihood estimator of u given y. The Bayesian interpretation of
the regularization term is that N (ū, R) is a prior distribution for u. The
resulting posterior distribution for u|y has Lebesgue density ρ(u|y) with

ρ(u|y) ∝ exp

(

−1

2
‖Au− y‖2Q−1

)

exp

(

−1

2
‖u− ū‖2R−1

)

= exp

(

−1

2
‖Au− y‖2Q−1 −

1

2
‖u− ū‖2R−1

)

= exp

(

−1

2
‖u−Ky‖2A∗Q−1A −

1

2
‖u− ū‖2R−1

)

= exp

(

−1

2
‖u− P−1(A∗Q−1AKy +R−1ū)‖2P

)

where, by Exercise 6.1, P is the precision matrix

P = A∗Q−1A+R−1.

The solution of the regularized least squares problem of minimizing the func-
tional J in (6.4) — i.e. minimizing the exponent in the above posterior distri-
bution — is the maximum a posteriori estimator of u given y. However, the
full posterior contains more information than the MAP estimator alone. In
particular, the posterior covariance matrix P−1 = (A∗Q−1A+R−1)−1 reveals
those components of u about which we are relatively more or less certain.
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Non-Quadratic Regularization and Recovery of Sparse Signals. This
chapter mostly deals with the case in which both the noise model (i.e. the
likelihood) and the prior are Gaussian measures, which is the same as saying
that the maximum a posteriori estimator is obtained by minimizing the sum
of the squares of two Hilbert norms, just as in (6.4). However, there is no
fundamental reason not to consider other regularizations — or, in Bayesian
terms, other priors. Indeed, in many cases an appropriate choice of prior is a
probability distribution with both a heavy centre and a heavy tail, such as

dμ0
du

(u) ∝ exp

⎛

⎝−
(

n∑

i=1

|ui|p
)1/p

⎞

⎠

on R
n, for 0 < p < 1. Such regularizations correspond to a prior belief that

the u to be recovered from noisy observations y is sparse, in the sense that it
has a simple low-dimensional structure, e.g. that most of its components in
some coordinate system are zero.

For definiteness, consider a finite-dimensional example in which it is
desired to recover u ∈ K

n from noisy observations y ∈ K
m of Au, where

A ∈ K
m×n is known. Let

‖u‖0 := #
{
i ∈ {1, . . . , n}

∣
∣ui �= 0

}
.

(Note well that, despite the suggestive notation, ‖ · ‖0 is not a norm, since �
in general ‖λu‖0 �= |λ|‖u‖0.) If the corruption of Au into y occurs through
additive Gaussian noise distributed according to N (0, Q), then the ordinary
least squares estimate of u is found by minimizing 1

2‖Au− y‖2Q−1 . However,

a prior belief that u is sparse, i.e. that ‖u‖0 is small, is reflected in the
regularized least squares problem

find u ∈ K
n to minimize J0(u) :=

1

2
‖Au− y‖2Q−1 + λ‖u‖0, (6.5)

where λ > 0 is a regularization parameter. Unfortunately, problem (6.5) is
very difficult to solve numerically, since the objective function is not convex.
Instead, we consider

find u ∈ K
n to minimize J1(u) :=

1

2
‖Au− y‖2Q−1 + λ‖u‖1. (6.6)

Remarkably, the two optimization problems (6.5) and (6.6) are ‘often’ equiv-
alent in the sense of having the same minimizers; this near-equivalence can
be made precise by a detailed probabilistic analysis using the so-called res-
tricted isometry property, which will not be covered here, and is foundational
in the field of compressed sensing. Regularization using the 1-norm amounts
to putting a Laplace distribution Bayesian prior on u, and is known in the
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statistical regression literature as the LASSO (least absolute shrinkage and
selection operator); in the signal processing literature, it is known as basis
pursuit denoising.

For a heuristic understanding of why regularizing using the norm ‖ · ‖1 pro-
motes sparsity, let us consider an even more general problem: let R : Kn → R

be any convex function, and consider the problem

find u ∈ K
n to minimize JR(u) := ‖Au− Y ‖2Q−1 +R(u), (6.7)

which clearly includes (6.4) and (6.6) as special cases. Observe that, by writ-
ing r = R(x) for the value of the regularization term, we have

inf
u∈Kn

JR(u) = inf
r≥0

(

r + inf
u:R(u)=r

‖Au− b‖2Q−1

)

. (6.8)

The equality constraint in (6.8) can in fact be relaxed to an inequality:

inf
u∈Kn

JR(u) = inf
r≥0

(

r + inf
u:R(u)≤r

‖Au− b‖2Q−1

)

. (6.9)

Note that convexity of R implies that {u ∈ K
n | R(u) ≤ r} is a convex subset

of Kn. The reason for the equivalence of (6.8) and (6.9) is quite simple: if
(r, u) = (r∗, u∗) were minimal for the right-hand side and also R(u∗) < r∗,
then the right-hand side could be reduced by considering instead (r, u) =
(R(u∗), u∗), which preserves the value of the quadratic term but decreases
the regularization term. This contradicts the optimality of (r∗, u∗). Hence,
in (6.9), we may assume that the optimizer has R(u∗) = r∗, which is exactly
the earlier problem (6.8).

In the case that R(u) is a multiple of the 1- or 2-norm of u, the region
R(u) ≤ r is a norm ball centred on the origin, and the above arguments
show that the minimizer u∗ of J1 or J2 will be a boundary point of that
ball. However, as indicated in Figure 6.1, in the 1-norm case, this u∗ will
‘typically’ lie on one of the low-dimensional faces of the 1-norm ball, and so
‖u∗‖0 will be small and u∗ will be sparse. There are, of course, y for which
u∗ is non-sparse, but this is the exception for 1-norm regularization, whereas
it is the rule for ordinary 2-norm (Tikhonov) regularization.

6.2 Bayesian Inversion in Banach Spaces

This section concerns Bayesian inversion in Banach spaces, and, in particular,
establishing the appropriate rigorous statement of Bayes’ rule in settings
where — by Theorem 2.38 — there is no Lebesgue measure with respect
to which we can take densities. Therefore, in such settings, it is necessary
to use as the prior a measure such as a Gaussian or Besov measure, often
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u∗ Ky

Quadratic ( 2) regularization.

u∗

Ky

Sparse ( 1) regularization.

a b

Fig. 6.1: Comparison of �2 versus �1 regularization of a least squares
minimization problem. The shaded region indicates a norm ball centred
on the origin for the appropriate regularizing norm. The black ellipses,
centred on the unregularized least squares (Gauss–Markov) solution Ky =
(A∗Q−1A)−1A∗Q−1y, are contours of the original objective function, u �→
‖Au− y‖2Q−1 . By (6.9), the regularized solution u∗ lies on the intersection of
an objective function contour and the boundary of the regularization norm
ball; for the 1-norm, u∗ is sparse for ‘most’ y.

accessed through a sampling scheme such as a Karhunen–Loève expansion, as
in Section 11.1. Note, however, then when the observation operatorH is non-
linear, although the prior may be a ‘simple’ Gaussian measure, the posterior
will in general be a non-Gaussian measure with features such as multiple
modes of different widths. Thus, the posterior is an object much richer in
information than a simple maximum likelihood or maximum a posteriori
estimator obtained from the optimization-theoretic point of view.

Example 6.5. There are many applications in which it is of interest to det-
ermine the permeability of subsurface rock, e.g. the prediction of transport of
radioactive waste from an underground waste repository, or the optimization
of oil recovery from underground fields. The flow velocity v of a fluid under
pressure p in a medium or permeability κ is given by Darcy’s law

v = −κ∇p.

The pressure field p within a bounded, open domain X ⊂ R
d is governed by

the elliptic PDE
−∇ · (κ∇p) = 0 in X ,

together with some boundary conditions, e.g. the Neumann (zero flux) bound-
ary condition ∇p · n̂∂X = 0 on ∂X ; one can also consider a non-zero source
term f on the right-hand side. For simplicity, take the permeability tensor
field κ to be a scalar field k times the identity tensor; for mathematical and
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physical reasons, it is important that k be positive, so write k = eu. The obj-
ective is to recover u from, say, observations of the pressure field at known
points x1, . . . , xm ∈ X :

yi = p(xi) + ηi.

Note that this fits the general ‘y = H(u) + η’ setup, with H being defined
implicitly by the solution operator to the elliptic boundary value problem.

In general, let u be a random variable with (prior) distribution μ0 — which
we do not at this stage assume to be Gaussian — on a separable Banach space
U . Suppose that we observe data y ∈ R

m according to (6.2), where η is an
R

m-valued random variable independent of u with probability density ρ with
respect to Lebesgue measure. Let Φ(u; y) be any function that differs from
− log ρ(y −H(u)) by an additive function of y alone, so that

ρ(y −H(u))

ρ(y)
∝ exp(−Φ(u; y))

with a constant of proportionality independent of u. An informal application
of Bayes’ rule suggests that the posterior probability distribution of u given
y, μy ≡ μ0( · |y), has Radon–Nikodým derivative with respect to the prior,
μ0, given by

dμy

dμ0
(u) ∝ exp(−Φ(u; y)).

The next theorem makes this argument rigorous:

Theorem 6.6 (Generalized Bayes’ rule). Suppose that H : U → R
m is con-

tinuous, and that η is absolutely continuous with support Rm. If u ∼ μ0, then
u|y ∼ μy, where μy � μ0 and

dμy

dμ0
(u) ∝ exp(−Φ(u; y)). (6.10)

The proof of Theorem 6.6 uses the following technical lemma:

Lemma 6.7 (Dudley, 2002, Section 10.2). Let μ, ν be probability measures
on U × Y, where (U ,A ) and (Y,B) are measurable spaces. Assume that
μ � ν and that dμ

dν = ϕ, and that the conditional distribution of u|y under
ν, denoted by νy(du), exists. Then the distribution of u|y under μ, denoted
μy(du), exists and μy � νy, with Radon–Nikodým derivative given by

dμy

dνy
(u) =

{
ϕ(u,y)
Z(y) , if Z(y) > 0,

1, otherwise,

where Z(y) :=
∫
U ϕ(u, y) dν

y(u).
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Proof of Theorem 6.6. Let Q0(dy) := ρ(y) dy on R
m and Q(du|y) :=

ρ(y −H(u)) dy, so that, by construction

dQ

dQ0
(y|u) = C(y) exp(−Φ(u; y)).

Define measures ν0 and ν on R
m × U by

ν0(dy, du) := Q0(dy)⊗ μ0(du),
ν(dy, du) := Q0(dy|u)μ0(du).

Note that ν0 is a product measure under which u and y are independent,
whereas ν is not. Since H is continuous, so is Φ; since μ0(U) = 1, it follows
that Φ is μ0-measurable. Therefore, ν is well defined, ν � ν0, and

dν

dν0
(y, u) = C(y) exp(−Φ(u; y)).

Note that
∫

U
exp(−Φ(u; y)) dμ0(u) = C(y)

∫

U
ρ(y −H(u)) dμ0(u) > 0,

since ρ is strictly positive on R
m and H is continuous. Since ν0(du|y) =

μ0(du), the result follows from Lemma 6.7.  !

Exercise 6.2 shows that, if the prior μ0 is a Gaussian measure and the
potential Φ is quadratic in u, then, for all y, the posterior μy is Gaussian.
In particular, if the observation operator is a continuous linear map and the
observations are corrupted by additive Gaussian noise, then the posterior is
Gaussian — see Exercise 2.8 for the relationships between the means and
covariances of the prior, noise and posterior. On the other hand, if either the
observation operator is non-linear or the observational noise is non-Gaussian,
then a Gaussian prior is generally transformed into a non-Gaussian posterior.

6.3 Well-Posedness and Approximation

This section concerns the well-posedness of the Bayesian inference problem for
Gaussian priors on Banach spaces. To save space later on, the following will be
taken as our standard assumptions on the negative log-likelihood/potential Φ.
In essence, we wish to restrict attention to potentials Φ that are Lipschitz in
both arguments, bounded on bounded sets, and that do not decay to −∞ at
infinity ‘too quickly’.
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Assumptions on Φ. Assume that Φ : U × Y → R satisfies:
(A1) For every ε > 0 and r > 0, there exists M =M(ε, r) ∈ R such that, for

all u ∈ U and all y ∈ Y with ‖y‖Y < r,

Φ(u; y) ≥M − ε‖u‖2U .

(A2) For every r > 0, there exists K = K(r) > 0 such that, for all u ∈ U
and all y ∈ Y with ‖u‖U , ‖y‖Y < r,

Φ(u; y) ≤ K.

(A3) For every r > 0, there exists L = L(r) > 0 such that, for all u1, u2 ∈ U
and all y ∈ Y with ‖u1‖U , ‖u2‖U , ‖y‖Y < r,

∣
∣Φ(u1; y)− Φ(u2; y)

∣
∣ ≤ L

∥
∥u1 − u2

∥
∥
U .

(A4) For every ε > 0 and r > 0, there exists C = C(ε, r) > 0 such that, for
all u ∈ U and all y1, y2 ∈ Y with ‖y1‖Y , ‖y2‖Y < r,

∣
∣Φ(u; y1)− Φ(u; y2)

∣
∣ ≤ exp

(
ε‖u‖2U + C

)∥
∥y1 − y2

∥
∥
Y .

We first show that, for Gaussian priors, these assumptions yield a well-
defined posterior measure for each possible instance of the observed data:

Theorem 6.8. Let Φ satisfy standard assumptions (A1), (A2), and (A3)
and assume that μ0 is a Gaussian probability measure on U . Then, for each
y ∈ Y, μy given by

dμy

dμ0
(u) =

exp(−Φ(u; y))
Z(y)

,

Z(y) =

∫

U
exp(−Φ(u; y)) dμ0(u),

is a well-defined probability measure on U .

Proof. Assumption (A2) implies that Z(y) is bounded below:

Z(y) ≥
∫

{u|‖u‖U≤r}
exp(−K(r)) dμ0(u) = exp(−K(r))μ0

[
‖u‖U ≤ r

]
> 0

for r > 0, since μ0 is a strictly positive measure on U . By (A3), Φ is
μ0-measurable, and so μy is a well-defined measure. By (A1), for ‖y‖Y ≤ r
and ε sufficiently small,

Z(y) =

∫

U
exp(−Φ(u; y)) dμ0(u)

≤
∫

U
exp(ε‖u‖2U −M(ε, r)) dμ0(u)

≤ C exp(−M(ε, r)) <∞,
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since μ0 is Gaussian and we may choose ε small enough that the Fernique
theorem (Theorem 2.47) applies. Thus, μy can indeed be normalized to be a
probability measure on U .  !

Recall from Chapter 5 that the Hellinger distance between two probability
measures μ and ν on U is defined in terms of any reference measure ρ with
respect to which both μ and ν are absolutely continuous by

dH(μ, ν) :=

√
√
√
√
∫

U

∣
∣
∣
∣
∣

√
dμ

dρ
(u)−

√
dν

dρ
(u)

∣
∣
∣
∣
∣

2

dρ(u).

A particularly useful property of the Hellinger metric is that closeness in the
Hellinger metric implies closeness of expected values of polynomially bounded
functions: if f : U → V , for some Banach space V , then Proposition 5.12 gives
that

∥
∥Eμ[f ]− Eν [f ]

∥
∥ ≤ 2

√
Eμ

[
‖f‖2

]
+ Eν

[
‖f‖2

]
dH(μ, ν).

Therefore, Hellinger-close prior and posterior measures give similar expected
values to quantities of interest; indeed, for fixed f , the perturbation in the
expected value is Lipschitz with respect to the Hellinger size of the pertur-
bation in the measure.

The following theorem shows that Bayesian inference with respect to a
Gaussian prior measure is well-posed with respect to perturbations of the
observed data y, in the sense that the Hellinger distance between the corre-
sponding posteriors is Lipschitz in the size of the perturbation in the data:

Theorem 6.9. Let Φ satisfy the standard assumptions (A1), (A2), and (A4),
suppose that μ0 is a Gaussian probability measure on U , and that μy � μ0
with density given by the generalized Bayes’ rule for each y ∈ Y. Then there
exists a constant C ≥ 0 such that, for all y, y′ ∈ Y,

dH(μ
y, μy

′
) ≤ C‖y − y′‖Y .

Proof. As in the proof of Theorem 6.8, (A2) gives a lower bound on Z(y).
We also have the following Lipschitz continuity estimate for the difference
between the normalizing constants for y and y′:

|Z(y)− Z(y′)|

≤
∫

U

∣
∣e−Φ(u;y) − e−Φ(u;y′)∣∣ dμ0(u)

≤
∫

U
max

{
e−Φ(u;y), e−Φ(u;y′)}∣∣Φ(u; y)− Φ(u; y′)

∣
∣ dμ0(u)

by the mean value theorem (MVT). Hence,
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|Z(y)− Z(y′)|

≤
∫

U
eε‖u‖

2
U+M · eε‖u‖2

U+C‖y − y′‖Y dμ0(u) by (A1) and (A4)

≤ C‖y − y′‖Y by Fernique.

By the definition of the Hellinger distance, using the prior μ0 as the reference
measure,

dH(μ
y, μy

′
)2 =

∫

U

∣
∣
∣
∣
∣

1
√
Z(y)

e−Φ(u;y)/2 − 1
√
Z(y′)

e−Φ(u;y′)/2

∣
∣
∣
∣
∣

2

dμ0(u)

=
1

Z(y)

∫

U

∣
∣
∣
∣
∣
e−Φ(u;y)/2 −

√
Z(y)

Z(y′)
e−Φ(u;y′)/2

∣
∣
∣
∣
∣

2

dμ0(u)

≤ I1 + I2,

where

I1 :=
1

Z(y)

∫

U

∣
∣
∣e−Φ(u;y)/2 − e−Φ(u;y′)/2

∣
∣
∣
2

dμ0(u),

I2 :=

∣
∣
∣
∣
∣

1
√
Z(y)

− 1
√
Z(y′)

∣
∣
∣
∣
∣

2 ∫

U
e−Φ(u;y′)/2 dμ0(u).

For I1, a similar application of the MVT, (A1) and (A4), and the Fernique
theorem to the one above yields that

I1 ≤
1

Z(y)

∫

U
max

{
1
2e

−Φ(u;y)/2, 12e
−Φ(u;y′)/2}2 ·

∣
∣Φ(u; y)− Φ(u; y′)

∣
∣2 dμ0(u)

≤ 1

4Z(y)

∫

U
eε‖u‖

2
U+M · e2ε‖u‖

2
U+2C‖y − y′‖2Y dμ0(u)

≤ C‖y − y′‖2Y .

A similar application of (A1) and the Fernique theorem shows that the inte-
gral in I2 is finite. Also, the lower bound on Z( · ) implies that

∣
∣
∣
∣
∣

1
√
Z(y)

− 1
√
Z(y′)

∣
∣
∣
∣
∣

2

≤ Cmax

{
1

Z(y)3
,

1

Z(y′)3

}

|Z(y)− Z(y′)|2

≤ C‖y − y′‖2Y .

Thus, I2 ≤ C‖y − y′‖2Y , which completes the proof.  !

Similarly, the next theorem shows that Bayesian inference with respect to
a Gaussian prior measure is well-posed with respect to approximation of mea-
sures and log-likelihoods. The approximation of Φ by some ΦN typically arises
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through the approximation of H by some discretized numerical model HN .
The importance of Theorem 6.10 is that it allows error estimates for the
forward models H and HN , which typically arise through non-probabilistic
numerical analysis, to be translated into error estimates for the Bayesian
inverse problem.

Theorem 6.10. Suppose that the probability measures μ and μN are the
posteriors arising from potentials Φ and ΦN and are all absolutely continuous
with respect to μ0, and that Φ, ΦN satisfy the standard assumptions (A1) and
(A2) with constants uniform in N . Assume also that, for all ε > 0, there exists
K = K(ε) > 0 such that

∣
∣Φ(u; y)− ΦN (u; y)

∣
∣ ≤ K exp(ε‖u‖2U)ψ(N), (6.11)

where limN→∞ ψ(N) = 0. Then there is a constant C, independent of N ,
such that

dH(μ, μ
N ) ≤ Cψ(N).

Proof. Exercise 6.4.  !

Remark 6.11. Note well that, regardless of the value of the observed data �
y, the Bayesian posterior μy is absolutely continuous with respect to the
prior μ0 and, in particular, cannot associate positive posterior probabil-
ity with any event of prior probability zero. However, the Feldman–Hájek
theorem (Theorem 2.51) says that it is very difficult for probability measures
on infinite-dimensional spaces to be absolutely continuous with respect to
one another. Therefore, the choice of infinite-dimensional prior μ0 is a very
strong modelling assumption that, if it is ‘wrong’, cannot be ‘corrected’ even
by large amounts of data y. In this sense, it is not reasonable to expect that
Bayesian inference on function spaces should be well-posed with respect to
apparently small perturbations of the prior μ0, e.g. by a shift of mean that
lies outside the Cameron–Martin space, or a change of covariance arising from
a non-unit dilation of the space. Nevertheless, the infinite-dimensional per-
spective is not without genuine fruits: in particular, the well-posedness results
(Theorems 6.9 and 6.10) are very important for the design of finite-dimensional
(discretized) Bayesian problems that have good stability properties with
respect to discretization dimension N .

6.4 Accessing the Bayesian Posterior Measure

For given data y ∈ Y, the Bayesian posterior μ0( · |y) on U is determined as a
measure that has a density with respect to the prior μ0 given by Bayes’ rule,
e.g. in the form (6.10),
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dμ0( · |y)
dμ0

(u) ∝ exp(−Φ(u; y)).

The results outlined above have shown some of the analytical properties
of this construction. However, in practice, this well-posedness theory is not
the end of the story, principally because we need to be able to access this
posterior measure: in particular, it is necessary to be able to (numerically)
integrate with respect to the posterior, in order to form the posterior expected
value of quantities of interest. (Note, for example, that (6.10) gives a non-
normalized density for the posterior with respect to the prior, and this lack
of normalization is sometimes an additional practical obstacle.)

The general problem of how to access the Bayesian posterior measure is
a complicated and interesting one. Roughly speaking, there are three classes
of methods for exploration of the posterior, some of which will be discussed
in depth at appropriate points later in the book:
(a) Methods such as Markov chain Monte Carlo, to be discussed in Chapter

9, attempt to sample from the posterior directly, using the formula for
its density with respect to the prior.
In principle, one could also integrate with respect to the posterior by
drawing samples from some other measure (e.g. the prior, or some other
reference measure) and then re-weighting according to the appropriate
probability density. However, some realizations of the data may cause the
density dμ0( · |y)/dμ0 to be significantly different from 1 for most draws
from the prior, leading to severe ill-conditioning. For this reason, ‘direct’
draws from the posterior are highly preferable.
An alternative to re-weighting of prior samples is to transform prior sam-
ples into posterior samples while preserving their probability weights.
That is, one seeks a function T y : U → U from the parameter space U
to itself that pushes forward any prior to its corresponding posterior,
i.e. T y

∗ μ0 = μ0( · |y), and hence turns an ensemble
{
u(1), . . . , u(N)

}
of

independent samples distributed according to the prior into an ensemble{
T y

(
u(1)

)
, . . . , T y

(
u(N)

)}
of independent samples distributed according

to the posterior. Map-based approaches to Bayesian inference include
the approach of El Moselhy and Marzouk (2012), grounded in optimal
transportation theory, and will not be discussed further here.

(b) A second class of methods attempts to approximate the posterior, often
through approximating the forward and observation models, and hence
the likelihood. Many of the modelling methods discussed in Chapters
10–13 are examples of such approaches. For example, the Gauss–Markov
theorem (Theorem 6.2) and Linear Kálmán Filter (see Section 7.2) pro-
vide optimal approximations of the posterior within the class of Gaussian
measures, with linear forward and observation operators.

(c) Finally, as a catch-all term, there are the ‘ad hoc’ methods. In this cat-
egory, we include the Ensemble Kálmán Filter of Evensen (2009), which
will be discussed in Section 7.4.
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6.5 Frequentist Consistency of Bayesian Methods

A surprisingly subtle question about Bayesian inference is whether it yields
the ‘correct’ result, regardless of the prior used, when exposed to enough
sample data. Clearly, when very few data points have been observed, the
prior controls the posterior much more strongly than the observed data do,
so it is necessary to answer such questions in an asymptotic limit. It is also
necessary to clarify what is meant by ‘correctness’. One such notion is that
of frequentist consistency:

“While for a Bayesian statistician the analysis ends in a certain sense with the
posterior, one can ask interesting questions about the properties of posterior-based
inference from a frequentist point of view.” (Nickl, 2013)

To describe frequentist consistency, consider the standard setup of a
Bayesian prior μ0 on some space U , together with a Bayesian likelihood model
for observed data with values in another space Y, i.e. a family of probability
measures μ( · |u) ∈ M1(Y) indexed by u ∈ U . Now introduce a new ingredi-
ent, which is a probability measure μ† ∈M1(Y) that is treated as the ‘truth’
in the sense that the observed data are in fact a sequence of independent and
identically distributed draws from μ†.

Definition 6.12. The likelihood model {μ( · |u) | u ∈ U} is said to be well-
specified if there exists some u† ∈ U such that μ† = μ( · |u†), i.e. if there
is some member of the model family that exactly coincides with the data-
generating distribution. If the model is not well-specified, then it is said to
be misspecified.

In the well-specified case, the model and the parameter space U admit
some u† that explains the frequentist ‘truth’ μ†. The natural question to
ask is whether exposure to enough independent draws Y1, . . . , Yn from μ†

will permit the model to identify u† out of all the other possible u ∈ U . If
some sequence of estimators or other objects (such as Bayesian posteriors)
converges as n → ∞ to u† with respect to some notion of convergence,
then the estimator is said to be consistent. For example, Theorem 6.13 gives
conditions for the maximum likelihood estimator (MLE) to be consistent,
with the mode of convergence being convergence in probability; Theorem
6.17 (the Bernstein–von Mises theorem) gives conditions for the Bayesian
posterior to be consistent, with the mode of convergence being convergence
in probability, and with respect to the total variation distance on probability
measures.

In order to state some concrete results on consistency, suppose now that
U ⊆ R

p and Y ⊆ R
d, and that the likelihood model {μ( · |u) | u ∈ U} can be

written in the form of a parametric family of probability density functions
with respect to Lebesgue measure on R

d, which will be denoted by a function
f( · | · ) : Y × U → [0,∞), i.e.
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μ(E|u) =
∫

E

f(y|u) dy for each measurable E ⊆ Y and each u ∈ U .

Before giving results about the convergence of the Bayesian posterior, we
first state a result about the convergence of the maximum likelihood estimator
(MLE) ûn for u† given the data Y1, . . . , Yn ∼ μ†, which, as the name suggests,
is defined by

ûn ∈ argmax
u∈U

f(Y1|u) · · · f(Yn|u).

Note that, being a function of the random variables Y1, . . . , Yn, ûn is itself a
random variable.

Theorem 6.13 (Consistency of the MLE). Suppose that f(y|u) > 0 for all
(u, y) ∈ U ×Y, that U is compact, and that parameters u ∈ U are identifiable
in the sense that

f( · |u0) = f( · |u1) Lebesgue a.e. ⇐⇒ u0 = u1

and that
∫

Y
sup
u∈U

| log f(y|u)|f(y|u†) dy <∞.

Then the maximum likelihood estimator ûn converges to u† in probability,
i.e. for all ε > 0,

PYi∼μ†
[∣
∣ûn − u†

∣
∣ > ε

]
−−−−→
n→∞ 0. (6.12)

The proof of Theorem 6.13 is omitted, and can be found in Nickl (2013).
The next two results quantify the convergence of the MLE and Bayesian
posterior in terms of the following matrix:

Definition 6.14. The Fisher information matrix iF(u
†) ∈ R

p×p of f at
u† ∈ U is defined by

iF(u
†)ij := EY ∼f( · |u†)

[
∂ log f(Y |u)

∂ui

∂ log f(Y |u)
∂uj

∣
∣
∣
∣
u=u†

]

. (6.13)

Remark 6.15. Under the regularity conditions that will be used later,
iF(u

†) is a symmetric and positive-definite matrix, and so can be viewed
as a Riemannian metric tensor on U , varying from one point u† ∈ U to
another. In that context, it is known as the Fisher–Rao metric tensor, and
plays an important role the field of information geometry in general, and
geodesic Monte Carlo methods in particular.

The next two results, the lengthy proofs of which are also omitted, are
both asymptotic normality results. The first shows that the error in the
MLE is asymptotically a normal distribution with covariance operator given
by the Fisher information; informally, for large n, ûn is normally distributed
with mean u† and precision niF(u

†). The second result — the celebrated
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Bernstein–von Mises theorem or Bayesian CLT (central limit theorem) —
shows that the entire Bayesian posterior distribution is asymptotically a nor-
mal distribution centred on the MLE, which, under the conditions of Theorem
6.13, converges to the frequentist ‘truth’. These results hold under suitable
regularity conditions on the likelihood model, which are summarized here for
later reference:

Regularity Assumptions. The parametric family f : Y × U → [0,∞) will
be said to satisfy the regularity assumptions with respect to a data-generating
distribution μ† ∈ M1(Y) if
(a) for all u ∈ U and y ∈ Y, f(y|u) > 0;
(b) the model is well-specified, with μ† = μ( · |u†), where u† is an interior

point of U ;
(c) there exists an open set U with u† ∈ U ⊆ U such that, for each y ∈ Y,

f(y| · ) ∈ C2(U ;R);
(d) EY ∼μ† [∇2

u log f(Y |u)|u=u† ] ∈ R
p×p is non-singular and

EY∼μ†

[∥
∥∇u log f(Y |u)

∣
∣
u=u†

∥
∥2
]
<∞;

(e) there exists r > 0 such that B = Br(u
†) ⊆ U and

EY ∼μ†

[

sup
u∈B

∇2
u log f(Y |u)

]

<∞,
∫

Y
sup
u∈B

∥
∥∇u log f(Y |u)

∥
∥dy <∞,

∫

Y
sup
u∈B

∥
∥∇2

u log f(Y |u)
∥
∥dy <∞.

Theorem 6.16 (Local asymptotic normality of the MLE). Suppose that
f satisfies the regularity assumptions. Then the Fisher information matrix
(6.13) satisfies

iF(u
†)ij = −EY∼f( · |u†)

[
∂2 log f(Y |u)
∂ui∂uj

∣
∣
∣
∣
u=u†

]

and the maximum likelihood estimator satisfies

√
n
(
ûn − u†

) d−−−−→
n→∞ X ∼ N (0, iF(u

†)−1), (6.14)

where
d−→ denotes convergence in distribution (also known as weak conver-

gence, q.v. Theorem 5.14), i.e. Xn
d−→ X if E[ϕ(Xn)] → E[ϕ(X)] for all

bounded continuous functions ϕ : Rp → R.

Theorem 6.17 (Bernstein–vonMises). Suppose that f satisfies the regularity
assumptions. Suppose that the prior μ0 ∈ M1(U) is absolutely continuous
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with respect to Lebesgue measure and has u† ∈ supp(μ0). Suppose also that
the model admits a uniformly consistent estimator, i.e. a Tn : Yn → R

p such
that, for all ε > 0,

sup
u∈U

PYi∼f( · |u)
[
∥
∥Tn(Y1, . . . , Yn)− u

∥
∥ > ε

]

−−−−→
n→∞ 0. (6.15)

Let μn := μ0( · |Y1, . . . , Yn) denote the (random) posterior measure obtained
by conditioning μ0 on n independent μ†-distributed samples Yi. Then, for all
ε > 0,

PYi∼μ†

[∥
∥
∥
∥μn −N

(

ûn,
iF(u

†)−1

n

)∥
∥
∥
∥
TV

> ε

]

−−−−→
n→∞ 0. (6.16)

The Bernstein–von Mises theorem is often interpreted as saying that so
long as the prior μ0 is strictly positive — i.e. puts positive probability mass
on every open set in U — the Bayesian posterior will asymptotically put all
its mass on the frequentist ‘truth’ u† (assuming, of course, that u† ∈ U).
Naturally, if u† /∈ supp(μ0), then there is no hope of learning u† in this
way, since the posterior is always absolutely continuous with respect to the
prior, and so cannot put mass where the prior does not. Therefore, it seems
sensible to use ‘open-minded’ priors that are everywhere strictly positive;
Lindley (1985) calls this requirement “Cromwell’s Rule” in reference to Oliver
Cromwell’s famous injunction to the Synod of the Church of Scotland in 1650:

“I beseech you, in the bowels of Christ, think it possible that you may be mistaken.”

Unfortunately, the Bernstein–von Mises theorem is no longer true when
the space U is infinite-dimensional, and Cromwell’s Rule is not a sufficient
condition for consistency. In infinite-dimensional spaces, there are counterex-
amples in which the posterior either fails to converge or converges to some-�
thing other than the ‘true’ parameter value — the latter being a particularly
worrisome situation, since then a Bayesian practitioner will become more and
more convinced of a wrong answer as more data come in. There are, however,
some infinite-dimensional situations in which consistency properties do hold.
In general, the presence or absence of consistency depends in subtle ways
upon choices such as the topology of convergence of measures, and the types
of sets for which one requires posterior consistency. See the bibliography at
the end of the chapter for further details.
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(2015) and others. There are also positive results for infinite-dimensional set-
tings, such as those of Castillo and Nickl (2013, 2014) and Szabó et al. (2014,
2015). It is now becoming clear that the crossover from consistency to incon-
sistency depends subtly upon the topology of convergence and the geometry
of the proposed credible/confidence sets.

6.7 Exercises

Exercise 6.1. Let μ1 = N (m1, C1) and μ2 = N (m2, C2) be non-degenerate
Gaussian measures on R

n with Lebesgue densities ρ1 and ρ2 respectively.
Show that the probability measure with Lebesgue density proportional to
ρ1ρ2 is a Gaussian measure μ3 = N (m3, C3), where

C−1
3 = C−1

1 + C−1
2 ,

m3 = C3(C
−1
1 m1 + C

−1
2 m2).

Note well the property that the precision matrices sum, whereas the covari-
ance matrices undergo a kind of harmonic average. (This result is sometimes
known as completing the square.)

Exercise 6.2. Let μ0 be a Gaussian probability measure on R
n and sup-

pose that the potential Φ(u; y) is quadratic in u. Show that the posterior
dμy ∝ e−Φ(u;y) dμ0 is also a Gaussian measure on R

n. Using whatever char-
acterization of Gaussian measures you feel most comfortable with, extend this
result to a Gaussian probability measure μ0 on a separable Banach space U .
Exercise 6.3. Let Γ ∈ R

q×q be symmetric and positive definite. Suppose
that H : U → R

q satisfies
(a) For every ε > 0, there exists M ∈ R such that, for all u ∈ U ,

‖H(u)‖Γ−1 ≤ exp
(
ε‖u‖2U +M

)
.

(b) For every r > 0, there exists K > 0 such that, for all u1, u2 ∈ U with
‖u1‖U , ‖u2‖U < r,

‖H(u1)−H(u2)‖Γ−1 ≤ K
∥
∥u1 − u2

∥
∥
U .

Show that Φ : U × R
q → R defined by

Φ(u; y) :=
1

2

〈
y −H(u), Γ−1(y −H(u))

〉

satisfies the standard assumptions.

Exercise 6.4. Prove Theorem 6.10. Hint: follow the model of Theorem 6.9,
with (μ, μN ) in place of (μy, μy

′
), and using (6.11) instead of (A4).



Chapter 7

Filtering and Data Assimilation

It is not bigotry to be certain we are right;
but it is bigotry to be unable to imagine how
we might possibly have gone wrong.

The Catholic Church and Conversion
G. K. Chesterton

Data assimilation is the integration of two information sources:
• a mathematical model of a time-dependent physical system, or a numer-
ical implementation of such a model; and

• a sequence of observations of that system, usually corrupted by some
noise.

The objective is to combine these two ingredients to produce a more accurate
estimate of the system’s true state, and hence more accurate predictions of the
system’s future state. Very often, data assimilation is synonymous with fil-
tering, which incorporates many of the same ideas but arose in the context of
signal processing. An additional component of the data assimilation/filtering
problem is that one typically wants to achieve it in real time: if today is
Monday, then a data assimilation scheme that takes until Friday to produce
an accurate prediction of Tuesday’s weather using Monday’s observations is
basically useless.

Data assimilation methods are typically Bayesian, in the sense that the
current knowledge of the system state can be thought of as a prior, and the
incorporation of the dynamics and observations as an update/conditioning
step that produces a posterior. Bearing in mind considerations of computa-
tional cost and the imperative for real time data assimilation, there are two
key ideas underlying filtering: the first is to build up knowledge about the
posterior sequentially, and hence perhaps more efficiently; the second is to
break up the unknown state and build up knowledge about its constituent

© Springer International Publishing Switzerland 2015
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parts sequentially, hence reducing the computational dimension of each sam-
pling problem. Thus, the first idea means decomposing the data sequentially,
while the second means decomposing the unknown state sequentially.

A general mathematical formulation can be given in terms of stochastic
processes. Suppose that T is an ordered index set, to be thought of as ‘time’;
typically either T = N0 or T = [0,∞) ⊂ R. It is desired to gain information
about a stochastic process X : T × Θ → X , defined over a probability space
(Θ,F , μ) and taking values in some space X , from a second stochastic process
Y : T × Θ → Y. The first process, X , represents the state of the system,
which we do not know but wish to learn; the second process, Y , represents
the observations or data; typically, Y is a lower-dimensional and/or corrupted
version of X .

Definition 7.1. Given stochastic processes X and Y as above, the filtering
problem is to construct a stochastic process X̂ : T ×Θ → X such that
• the estimate X̂t is a ‘good’ approximation to the true state Xt, in a sense
to be made precise, for each t ∈ T ; and

• X̂ is a FY• -adapted process, i.e. the estimate X̂t of Xt depends only upon
the observed data Ys for s ≤ t, and not on as-yet-unobserved future data
Ys with s > t.

To make this problem tractable requires some a priori information about
the state processX , and how it relates to the observation process Y , as well as
a notion of optimality. This chapter makes these ideas more concrete with an
L2 notion of optimality, and beginning with a discrete time filter with linear
dynamics for X and a linear map from the state Xt to the observations Yt:
the Kálmán filter.

7.1 State Estimation in Discrete Time

In the Kálmán filter, the probability distributions representing the system
state and various noise terms are described purely in terms of their mean
and covariance, so they are effectively being approximated as Gaussian dis-
tributions.

For simplicity, the first description of the Kálmán filter will be of a con-
trolled linear dynamical system that evolves in discrete time steps

t0 < t1 < · · · < tk < . . . .

The state of the system at time tk is a vector xk in a Hilbert space X , and it
evolves from the state xk−1 ∈ X at time tk−1 according to the linear model

xk = Fkxk−1 +Gkuk + ξk (7.1)

where, for each time tk,
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• Fk : X → X is the state transition model, which is a linear map applied
to the previous state xk−1 ∈ X ;

• Gk : U → X is the control-to-input model, which is applied to the control
vector uk in a Hilbert space U ; and

• ξk is the process noise, an X -valued random variable with mean 0 and
(self-adjoint, positive-definite, trace class) covariance operator
Qk : X → X .

Naturally, the terms Fkxk−1 and Gkuk can be combined into a single term,
but since many applications involve both uncontrolled dynamics and a control
uk, which may in turn have been derived from estimates of x� for � < k, the
presentation here will keep the two terms separate.

At time tk an observation yk in a Hilbert space Y of the true state xk is
made according to

yk = Hkxk + ηk, (7.2)

where
• Hk : X → Y is the linear observation operator ; and
• ηk ∼ N (0, Rk) is the observation noise, a Y-valued random variable with
mean 0 and (self-adjoint, positive-definite, trace class) covariance opera-
tor Qk : Y → Y.

As an initial condition, the state of the system at time t0 is taken to be
x0 ∼ m0 + ξ0, where m0 ∈ X is known and ξ0 is an X -valued random
variable with (self-adjoint, positive-definite, trace class) covariance operator
Q0 : X → X . All the noise vectors are assumed to be mutually and pairwise
independent.

As a preliminary to constructing the actual Kálmán filter, we consider
the problem of estimating states x1, . . . , xk given the corresponding controls
u1, . . . , uk and � known observations y1, . . . , y�, where k ≥ �. In particular,
we seek the best linear unbiased estimate of x1, . . . , xk.

Remark 7.2. If all the noise vectors ξk are Gaussian, then since the forward
dynamics (7.1) are linear, Exercise 2.5 then implies that the joint distribu-
tion of all the xk is Gaussian. Similarly, if the ηk are Gaussian, then since
the observation relation (7.2) is linear, the yk are also Gaussian. Since, by
Theorem 2.54, the conditional distribution of a Gaussian measure is again
a Gaussian measure, we can achieve our objective of estimating x1, . . . , xk
given y1, . . . , y� using a Gaussian description alone.

In general, without making Gaussian assumptions, note that (7.1)–(7.2) is
equivalent to the single equation

bk|� = Ak|�zk + ζk|�, (7.3)

where, in block form,
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bk|� :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m0

G1u1

y1
...

G�u�

y�

G�+1u�+1

...

Gkuk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, zk :=

⎡

⎢
⎢
⎣

x0
...

xk

⎤

⎥
⎥
⎦ , ζk|� :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ξ0
−ξ1
+η1
...

−ξ�
+η�

−ξ�+1

...

−ξk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Ak|� is

Ak|� :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 0 · · · · · · · · · · · · 0

−F1 I 0 0
. . .

. . .
. . .

. . .
...

0 H1 0 0
. . .

. . .
. . .

. . .
...

0 −F2 I 0
. . .

. . .
. . .

. . .
...

0 0 H2 0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . −F� I
. . .

. . .
...

...
. . .

. . .
. . . 0 H� 0

. . .
...

...
. . .

. . .
. . . 0 −F�+1 I

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 −Fk I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that the noise vector ζk|� is X k+1 × Y�-valued and has mean zero and
block-diagonal positive-definite precision operator (inverse covariance) Wk|�
given in block form by

Wk|� := diag
(
Q−1

0 , Q
−1
1 , R

−1
1 , . . . , Q

−1
� , R

−1
� , Q

−1
�+1, . . . , Q

−1
k

)
.

By the Gauss–Markov theorem (Theorem 6.2), the best linear unbiased
estimate ẑk|� = [x̂0|�, . . . , x̂k|�]∗ of zk satisfies

ẑk|� ∈ argmin
zk∈X

Jk|�(zk), Jk|�(zk) :=
1

2

∥
∥Ak|�zk − bk|�

∥
∥2
Wk|�

, (7.4)
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and by Lemma 4.27 is the solution of the normal equations

A∗
k|�Wk|�Ak|�ẑk|� = A∗

k|�Wk|�bk|�.

By Exercise 7.1, it follows from the assumptions made above that these
normal equations have a unique solution

ẑk|� =
(
A∗

k|�Wk|�Ak|�
)−1
A∗

k|�Wk|�bk|�. (7.5)

By Theorem 6.2 and Remark 6.3, E[ẑk|�] = zk and the covariance operator
of the estimate ẑk|� is (A∗

k|�Wk|�Ak|�)−1; note that this covariance operator is
exactly the inverse of the Hessian of the quadratic form Jk|�.

Since a Gaussian measure is characterized by its mean and variance, a
Bayesian statistician forming a Gaussian model for the process (7.1)–(7.2)
would say that the state history zk = (x0, . . . , xk), conditioned upon the
control and observation data bk|�, is the Gaussian random variable with dis-

tribution N
(
ẑk|�, (A∗

k|�Wk|�Ak|�)−1
)
.

Note that, since Wk|� is block diagonal, Jk|� can be written as

Jk|�(zk) =
1

2
‖x0 −m0‖2Q−1

0

+
1

2

�∑

i=1

∥
∥yi −Hixi

∥
∥2
R−1

i

+
1

2

k∑

i=1

∥
∥xi − Fixi−1 −Giui

∥
∥2
Q−1

i

. (7.6)

An expansion of this type will prove very useful in derivation of the linear
Kálmán filter in the next section.

7.2 Linear Kálmán Filter

We now consider the state estimation problem in the common practical sit-
uation that k = m. Why is the state estimate (7.5) not the end of the story?
For one thing, there is an issue of immediacy: one does not want to have to
wait for observation y1000 to come in before estimating states x1, . . . , x999 as
well as x1000, in particular because the choice of the control uk+1 typically
depends upon the estimate of xk; what one wants is to estimate xk upon obs-
erving yk. However, there is also an issue of computational cost, and hence
computation time: the solution of the least squares problem

find x̂ = argmin
x∈Kn

‖Ax− b‖2
Km
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where A ∈ K
m×n, at least by direct methods such as solving the normal

equations or QR factorization, requires of the order of mn2 floating-point
operations. Hence, calculation of the state estimate ẑk by direct solution of
(7.5) takes of the order of

(
(k + 1)(dimX ) +m(dimY)

)
((k + 1) dimX )2

operations. It is clearly impractical to work with a state estimation scheme
with a computational cost that increases cubically with the number of time
steps to be considered. The idea of filtering is to break the state estimation
problem down into a sequence of estimation problems that can be solved with
constant computational cost per time step, as each observation comes in.

The two-step linear Kálmán filter (LKF) is an iterative1 method for con-
structing the best linear unbiased estimate x̂k|k (with covariance operator
Ck|k) of xk in terms of the previous state estimate x̂k−1|k−1 and the data uk
and yk. It is called the two-step filter because the process of updating the state
estimate (x̂k−1|k−1, Ck−1|k−1) for time tk−1 into the estimate (x̂k|k, Ck|k) for
tk is split into two steps (which can, of course, be algebraically unified into a
single step):
• the prediction step uses the dynamics but not the observation yk to
update (x̂k−1|k−1, Ck−1|k−1) into an estimate (x̂k|k−1, Ck|k−1) for the
state at time tk;

• the correction step uses the observation yk but not the dynamics to
update (x̂k|k−1, Ck|k−1) into a new estimate (x̂k|k, Ck|k).

It is possible to show, though we will not do so here, that the computational
cost of each iteration of the LKF is at most a constant times the computa-
tional cost of matrix-matrix multiplication.

The literature contains many derivations of the Kálmán filter, but there
are two especially attractive viewpoints. One is to view the LKF purely as
a statement about the linear push-forward and subsequent conditioning of
Gaussian measures; in this paradigm, from a Bayesian point of view, the
LKF is an exact description of the evolving system and its associated unc-
ertainties, under the prior assumption that everything is Gaussian. Another
point of view is to derive the LKF in a variational fashion, forming a sequence
of Gauss–Markov-like estimation problems, and exploiting the additive de-
composition (7.6) of the quadratic form that must be minimized to obtain
the best linear unbiased estimator. One advantage of the variational point
of view is that it forms the basis of iterative methods for non-linear filtering
problems, in which Gaussian descriptions are only approximate.

Initialization. We begin by initializing the state estimate as

(x̂0|0, C0|0) := (m0, Q0).

1 That is, the LKF is iterative in the sense that it performs the state estimation sequentially
with respect to the time steps; each individual update, however, is an elementary linear
algebra problem, which could itself be solved either directly or iteratively.
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In practice, one does not usually know the initial state of the system, or
the concept of an ‘initial state’ is somewhat arbitrary (e.g. when tracking an
astronomical body such as an asteroid). In such cases, it is common to use a
placeholder value for the mean x̂0|0 and an extremely large covariance C0|0
that reflects great ignorance/open-mindedness about the system’s state at
the start of the filtering process.

Prediction: Push-Forward Method. The prediction step of the LKF is
simply a linear push-forward of the Gaussian measure N (x̂k−1|k−1, Ck−1|k−1)
through the linear dynamical model (7.1). By Exercise 2.5, this push-forward
measure is N (x̂k|k−1, Ck|k−1), where

x̂k|k−1 := Fkx̂k−1|k−1 +Gkuk, (7.7)

Ck|k−1 := FkCk−1|k−1F
∗
k +Qk. (7.8)

These two updates comprise the prediction step of the Kálmán filter, the
result of which can be seen as a Bayesian prior for the next step of the
Kálmán filter.

Prediction: Variational Method. The prediction step can also be char-
acterized in a variational fashion: x̂m|k−1 should be the best linear unbiased
estimate of xk given y0, . . . , yk−1, i.e. it should minimize Jk|k−1. Recall the

notation from Section 7.1: a state history zk ∈ X k+1 is a k-tuple of states
(x0, . . . , xk). Let

F̃k :=
[
0 · · · 0 Fk

]
,

with Fk in the kth block, i.e. the block corresponding to xk−1, so that

F̃kzk−1 = Fkxk−1. By (7.6),

Jk|k−1(zk) = Jk−1|k−1(zk−1) +
1

2

∥
∥xk − F̃kzk−1 −Gkuk

∥
∥2
Q−1

k

.

The gradient and Hessian of Jk|k−1 are given (in block form, splitting zk into
zk−1 and xk components) by

∇Jk|k−1(zk) =

[
∇Jk−1|k−1(zk−1) + F̃

∗
kQ

−1
k

(
F̃kzk−1 +Gkuk − xk

)

Q−1
k

(
F̃kzk−1 +Gkuk − xk

)

]

,

∇2Jk|k−1(zk) =

[
∇2Jk−1|k−1(zk−1) + F̃

∗
kQ

−1
k F̃k −F̃ ∗

kQ
−1
k

−Q−1
k F̃k Q−1

k

]

.

It is readily verified that

∇Jk|k−1(zk) = 0 ⇐⇒ zk = ẑk|k−1 = (x̂0|0, . . . , x̂k−1|k−1, x̂k|k−1),

with x̂k|k−1 as in (7.7). We can use this ẑk|k−1 as the initial condition for (and,
indeed, fixed point of) a single iteration of the Newton algorithm, which
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by Exercise 4.3 finds the minimum of Jk|k−1 in one step; if the dynamics
were nonlinear, ẑk|k−1 would still be a sensible initial condition for Newton
iteration to find the minimum of Jk|k−1, but might not be the minimizer.
The covariance of this Gauss–Markov estimator for xk is the bottom-right

block of
(
∇2Jk|k−1(zk)

)−1
: by the inversion lemma (Exercise 2.7) and the

inductive assumption that the bottom-right (zk−1) block of
(
∇2Jk−1|k−1

)−1

is the covariance of the previous state estimate x̂k−1|k−1,

Ck|k−1 = Qk + F̃k
(
∇2Jk−1|k−1(ẑk−1|k−1)

)−1
F̃ ∗
k by Exercise 2.7

= Qk + FkCk−1|k−1F
∗
k , by induction,

just as in (7.8).

Correction: Conditioning Method. The next step is a correction step
(also known as the analysis or update step) that corrects the prior dis-
tribution N (x̂k|k−1, Ck|k−1) to a posterior distribution N (x̂k|k, Ck|k) using
the observation yk. The key insight here is to observe that xk|k−1 and yk are
jointly normally distributed, and the observation equation (7.2) defines the
conditional distribution of yk given xk|k−1 = x as N (Hkx,Rk), and hence

(yk|xk|k−1 ∼ N (x̂k|k−1, Ck|k−1)) ∼ N (Hkx̂k|k−1, HkCk|k−1H
∗
k +Rk).

The joint distribution of xk|k−1 and yk is, in block form,

[
xk|k−1

yk

]

∼ N
([

x̂k|k−1

Hkx̂k|k−1

]

,

[
Ck|k−1 Ck|k−1H

∗
k

HkCk|k−1 HkCk|k−1H
∗
k +Rk

])

.

Theorem 2.54 on the conditioning of Gaussian measures now gives the con-
ditional distribution of xk given yk as N (x̂k|k , Ck|k) with

x̂k|k = x̂k|k−1 + Ck|k−1H
∗
kS

−1
k (yk −Hkx̂k|k−1) (7.9)

and

Ck|k = Ck|k−1 − Ck|k−1H
∗
kS

−1
k HkCk|k−1. (7.10)

where the self-adjoint and positive-definite operator Sk : Y → Y defined by

Sk := HkCk|k−1H
∗
k +Rk (7.11)

is known as the innovation covariance.
Another expression for the posterior covariance Ck|k, or rather the poste-

rior precision C−1
k|k, can be easily obtained by applying the Woodbury formula

(2.9) from Exercise 2.7 to (7.10):
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C−1
k|k =

(
Ck|k−1 − Ck|k−1H

∗
kS

−1
k HkCk|k−1

)−1

= C−1
k|k−1 +H

∗
k

(
Sk −HkCk|k−1C

−1
k|k−1Ck|k−1H

∗
k

)−1
Hk

= C−1
k|k−1 +H

∗
k

(
HkCk|k−1H

∗
k +Rk −HkCk|k−1H

∗
k

)−1
Hk

= C−1
k|k−1 +H

∗
kR

−1
k Hk. (7.12)

Application of this formula gives another useful expression for the posterior
mean x̂k|k:

x̂k|k = x̂k|k−1 + Ck|kH∗
kR

−1
k (yk −Hkx̂k|k−1). (7.13)

To prove the equivalence of (7.9) and (7.13), it is enough to show that
Ck|kH∗

kR
−1
k = Ck|k−1H

∗
kS

−1
k , and this follows easily after multiplying on the

left by C−1
k|k, on the right by Sk, inserting (7.12) and (7.11), and simplifying

the resulting expressions.

Correction: Variational Method. As with the prediction step, the correc-
tion step can be characterized in a variational fashion: x̂k|k should be the best
linear unbiased estimate x̂k|k of xk given y0, . . . , yk, i.e. it should minimize
Jk|k. Let

H̃k :=
[
0 · · · 0 Hk

]
,

with Hk in the (k + 1)st block, i.e. the block corresponding to xk, so that

H̃kzk = Hkxk. By (7.6),

Jk|k(zk) = Jk|k−1(zk) +
1

2

∥
∥H̃kzk − yk

∥
∥2
R−1

k

.

The gradient and Hessian of Jk|k are given by

∇Jk|k(zk) = ∇Jk|k−1(zk) + H̃
∗
kR

−1
k

(
H̃kzk − yk

)

= ∇Jk|k−1(zk) + H̃
∗
kR

−1
k

(
Hkxk − yk

)
,

∇2Jk|k(zk) = ∇2Jk|k−1(zk) + H̃
∗
kR

−1
k H̃k.

Note that, in block form, the Hessian of Jk|k is that of Jk|k−1 plus a ‘rank
one update’:

∇2Jk|k(zk) = ∇2Jk|k−1(zk) +

[
0 0

0 H∗
kR

−1
k Hk

]

.

By Exercise 4.3, a single Newton iteration with any initial condition will
find the minimizer x̂k|k of the quadratic form Jk|k. A good choice of initial
condition is

zk = ẑk|k−1 = (x̂0|0, . . . , x̂k−1|k−1, x̂k|k−1),

so that ∇Jk|k−1(zk) vanishes and the bottom-right block of ∇2Jk|k−1(zk)
−1

is Ck|k−1.
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The bottom-right (zk) block of
(
∇2Jk|k(zk)

)−1
, i.e. the covariance operator

Ck|k, can now be found by blockwise inversion. Observe that, when A, B, C
and D +D′ satisfy the conditions of the inversion lemma (Exercise 2.7), we
have

[
A B

C D +D′

]−1

=

[
∗ ∗
∗

(
D′ + (D + CA−1B)

)−1

]

,

where ∗ denotes entries that are irrelevant for this discussion of bottom-right
blocks. Now apply this observation with

[
A B

C D

]

= ∇2Jk|k−1(zk) and D′ = H∗
kR

−1
k Hk,

so that D+CA−1B = C−1
k|k−1. Therefore, with this choice of initial condition

for the Newton iteration, we see that Ck|k, which is the bottom-right block

of
(
∇2Jk|k(zk)

)−1
, is

(
C−1

k|k−1 +H
∗
kR

−1
k Hk

)−1
, in accordance with (7.13).

The Kálmán Gain. The correction step of the Kálmán filter is often phrased
in terms of the Kálmán gain Kk : Y → X defined by

Kk := Ck|k−1H
∗
kS

−1
k = Ck|k−1H

∗
k

(
HkCk|k−1H

∗
k +Rk

)−1
. (7.14)

With this definition of Kk,

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (7.15)

Ck|k = (I −KkHk)Ck|k−1 = Ck|k−1 −KkSkK
∗
k . (7.16)

It is also common to refer to

ỹk := yk −Hkx̂k|k−1

as the innovation residual, so that

x̂k|k = x̂k|k−1 +Kkỹk.

Thus, the rôle of the Kálmán gain is to quantify how much of the innovation
residual should be used in correcting the predictive estimate x̂k|k−1. It is an
exercise in algebra to show that the first presentation of the correction step
(7.9)–(7.10) and the Kálmán gain formulation (7.14)–(7.16) are the same.

Example 7.3 (LKF for a simple harmonic oscillator). Consider the simple
harmonic oscillator equation ẍ(t) = −ω2x(t), with ω > 0. Given a time step
Δt > 0, this system can be discretized in an energy-conserving way by the
semi-implicit Euler scheme

xk = xk−1 + vkΔt,

vk = vk−1 − ω2xk−1Δt.
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Note that position, x, is updated using the already-updated value of
velocity, v. The energy conservation property is very useful in practice, and
has the added advantage that we can use a relatively large time step in Figure
7.1 and thereby avoid cluttering the illustration. We initialize this oscillator
with the initial conditions (x0, v0) = (1, 0).

Suppose that noisy measurements of the x-component of this oscillator are
made at each time step:

yk = xk + ηk, ηk ∼ N (0, 1/2).

For illustrative purposes, we give the oscillator the initial position and velocity
(x(0), v(0)) = (1, 0); note that this makes the observational errors almost of
the same order of magnitude as the amplitude of the oscillator. The LKF is
initialized with the erroneous estimate (x̂0|0, v̂0|0) = (0, 0) and an extremely
conservative covariance of C0|0 = 1010I. In this case, there is no need for
control terms, and we have Qk = 0,

Fk =

[
1− ω2Δt2 Δt

−ω2Δt 1

]

, Hk =
[
1 0

]
, Rk =

[
1
2

]
.

The results, for ω = 1 and Δt = 1
10 , are illustrated in Figure 7.1. The initially

huge covariance disappears within the first iteration of the algorithm, rapidly
producing effective estimates for the evolving position of the oscillator that
are significantly more accurate than the observed data alone.

Continuous Time Linear Kálmán Filters. The LKF can also be formu-
lated in continuous time, or in a hybrid form with continuous evolution but
discrete observations. For example, the hybrid LKF has the evolution and
observation equations

ẋ(t) = F (t)x(t) +G(t)u(t) + w(t),

yk = Hkxk + ηk,

where xk := x(tk). The prediction equations are that x̂k|k−1 is the solution
at time tk of the initial value problem

dx̂(t)

dt
= F (t)x̂(t) +G(t)u(t),

x̂(tk−1) = x̂k−1|k−1,

and that Ck|k−1 is the solution at time tk of the initial value problem

Ċ(t) = F (t)P (t)F (t)∗ +Q(t),
C(tk−1) = Ck−1|k−1.
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The dashed curve shows the true evolution of position. The solid black curve
shows the filtered mean estimate of the position; the grey envelope shows the mean
± one standard deviation. The black crosses show the observed data.

0

0.5

1.0

1.5

0 1 2 3 4 5 6
t

error

The filtered prediction errors |x̂k|k − xk| (solid curve) are consistently smaller
than the observation errors |yk − xk| (dashed curve).

a

b

Fig. 7.1: The LKF applied to a simple harmonic oscillator, as in Example
7.3. Despite the comparatively large scatter in the observed data, as shown
in (a), and the large time step (Δt = 1

10 ), the LKF consistently provides
better estimates of the system’s state than the data alone, as shown in (b).

The correction equations (in Kálmán gain form) are as before:

Kk = Ck|k−1H
∗
k

(
HkCk|k−1H

∗
k +Rk

)−1

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1)

Ck|k = (I −KkHk)Ck|k−1.

The LKF with continuous time evolution and observation is known as the
Kálmán–Bucy filter. The evolution and observation equations are

ẋ(t) = F (t)x(t) +G(t)u(t) + w(t),

y(t) = H(t)x(t) + v(t).
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Notably, in the Kálmán–Bucy filter, the distinction between prediction and
correction does not exist.

dx̂(t)

dt
= F (t)x̂(t) +G(t)u(t) +K(t)

(
y(t)−H(t)x̂(t)

)
,

Ċ(t) = F (t)C(t) + C(t)F (t)∗ +Q(t)−K(t)R(t)K(t)∗,

where

K(t) := C(t)H(t)∗R(t)−1.

7.3 Extended Kálmán Filter

The extended Kálmán filter (ExKF or EKF) is an extension of the Kálmán
filter to nonlinear dynamical systems. In discrete time, the evolution and
observation equations are

xk = fk(xk−1, uk) + ξk,

yk = hk(xk) + ηk,

where, as before, xk ∈ X are the states, uk ∈ U are the controls, yk ∈ Y
are the observations, fk : X × U → X are the vector fields for the dynamics,
hk : X → Y are the observation maps, and the noise processes ξk and ηk
are uncorrelated with zero mean and positive-definite covariances Qk and Rk

respectively.
The classical derivation of the ExKF is to approximate the nonlinear

evolution–observation equations with a linear system and then use the LKF
on that linear system. In contrast to the LKF, the ExKF is neither the
unbiased minimum mean-squared error estimator nor the minimum vari-
ance unbiased estimator of the state; in fact, the ExKF is generally biased.
However, the ExKF is the best linear unbiased estimator of the linearized
dynamical system, which can often be a good approximation of the nonlinear
system. As a result, how well the local linear dynamics match the nonlinear
dynamics determines in large part how well the ExKF will perform. Indeed,
when the dynamics are strongly nonlinear, all approximate Gaussian filters �
(including KF-like methods) perform badly, since the push-forward of the
previous state estimate (a Gaussian measure) by a strongly nonlinear map is
poorly approximated by a Gaussian.

The approximate linearized system is obtained by first-order Taylor
expansion of fk about the previous estimated state x̂k−1|k−1 and hk about
x̂k|k−1

xk = fk(x̂k−1|k−1, uk) + Dfk(x̂k−1|k−1, uk)(xk−1 − x̂k−1|k−1) + ξk,

yk = hk(x̂k|k−1) + Dhk(x̂k|k−1)(xk − x̂k|k−1) + ηk.
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Taking

Fk := Dfk(x̂k−1|k−1, uk),

Hk := Dhk(x̂k|k−1),

ũk := fk(x̂k−1|k−1, uk)− Fkx̂k−1|k−1,

ỹk := hk(x̂k|k−1)−Hkx̂k|k−1,

the linearized system is

xk = Fkxk−1 + ũk + ξk,

yk = Hkxk + ỹk + ηk.

The terms ũk and ỹk can be seen as spurious control forces and observations
respectively, induced by the errors involved in approximating fk and hk by
their derivatives. The ExKF is now obtained by applying the standard LKF
to this system, treating ũk as the controls for the linear system and yk − ỹk
as the observations, to obtain

x̂k|k−1 = fk(x̂k−1|k−1, uk), (7.17)

Ck|k−1 = FkCk−1|k−1F
∗
k +Qk, (7.18)

Ck|k =
(
C−1

k|k−1 +H
∗
kR

−1
k Hk

)−1
, (7.19)

x̂k|k = x̂k|k−1 − Ck|kH∗
kR

−1
k (hk(x̂k|k−1)− yk). (7.20)

7.4 Ensemble Kálmán Filter

The EnKF is a Monte Carlo approximation of the Kálmán filter that avoids
evolving the covariance operator of the state vector x ∈ X , and thus elim-
inates the computational costs associated with storing, multiplying and
inverting the matrix representation of this operator. These computational
costs can be huge: in applications such as weather forecasting, dimX can
easily be of order 106 to 109. Instead, the EnKF uses an ensemble of E ∈ N

state estimates x̂(e) ∈ X , e = 1, . . . , E, arranged into a matrix

X̂ = [x̂(1), . . . , x̂(E)].

The columns of the matrix X̂ are the ensemble members.

Initialization. The ensemble is initialized by choosing the columns of X̂0|0
to be E independent draws from, say, N (m0, Q0). However, the ensemble
members are not generally independent except in the initial ensemble, since
every EnKF step ties them together, but all the calculations proceed as if
they actually were independent.
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Prediction. The prediction step of the EnKF is straightforward: each column

x̂
(e)
k−1|k−1 is evolved to x̂

(e)
k|k−1 using the LKF prediction step (7.7)

x̂
(e)
k|k−1 = Fkx̂

(e)
k−1|k−1 +Gkuk,

or the ExKF prediction step (7.17)

x̂
(e)
k|k−1 = fk(x̂

(e)
k−1|k−1, uk).

The matrix X̂k|k−1 has as its columns the ensemble members x̂
(e)
k|k−1 for

e = 1, . . . , E.

Correction. The correction step for the EnKF uses a trick called data repli-
cation: the observation yk = Hkxk + ηk is replicated into an m× E matrix

D = [d(1), . . . , d(E)], d(e) := yk + η
(e), η(e) ∼ N (0, Rk).

so that each column d(e) consists of the actual observed data vector yk ∈ Y
plus a perturbation that is an independent random draw from N (0, Rk). If

the columns of X̂k|k−1 are a sample from the prior distribution, then the
columns of

X̂k|k−1 +Kk

(
D −HkX̂k|k−1

)

form a sample from the posterior probability distribution, in the sense of a
Bayesian prior (before data) and posterior (conditioned upon the data). The
EnKF approximates this sample by replacing the exact Kálmán gain (7.14)

Kk := Ck|k−1H
∗
k

(
HkCk|k−1H

∗
k +Rk

)−1
,

which involves the covariance Ck|k−1, which is not tracked in the EnKF, by
an approximate covariance. The empirical mean and empirical covariance of
X̂k|k−1 are

〈
X̂k|k−1

〉
:=

1

E

E∑

e=1

x̂
(e)
k|k−1,

CE
k|k−1 :=

(
X̂k|k−1 −

〈
X̂k|k−1

〉)(
X̂k|k−1 −

〈
X̂k|k−1

〉)∗

E − 1
.

where, by abuse of notation,
〈
X̂k|k−1

〉
stands both for the vector in X that

is the arithmetic mean of the E columns of the matrix X̂k|k−1 and also for
the matrix in XE that has that vector in every one of its E columns. The
Kálmán gain for the EnKF uses CE

k|k−1 in place of Ck|k−1:

KE
k := CE

k|k−1H
∗
k

(
HkC

E
k|k−1H

∗
k +Rk

)−1
, (7.21)
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so that the correction step becomes

X̂k|k := X̂k|k−1 +K
E
k

(
D −HkX̂k|k−1

)
. (7.22)

One can also use sampling to dispense with Rk, and instead use the empirical
covariance of the replicated data,

(D − 〈D〉)(D − 〈D〉)∗
E − 1

.

Note, however, that the empirical covariance matrix is typically rank-deficient
(in practical applications, there are usually many more state variables than
ensemble members), in which case the inverse in (7.21) may fail to exist; in
such situations, a pseudo-inverse may be used.

Remark 7.4. Even when the matrices involved are positive-definite, instead
of computing the inverse of a matrix and multiplying by it, it is much better
(several times cheaper and also more accurate) to compute the Cholesky
decomposition of the matrix and treat the multiplication by the inverse as
solution of a system of linear equations. This is a general point relevant to
the implementation of all KF-like methods.

Remark 7.5. Filtering methods, and in particular the EnKF, can be used
to provide approximate solutions to static inverse problems. The idea is that,
for a static problem, the filtering distribution will converge as the number of
iterations (‘algorithmic time’) tends to infinity, and that the limiting filtering
distribution is the posterior for the original inverse problem. Of course, such
arguments depend crucially upon the asymptotic properties of the filtering
scheme; under suitable assumptions, the forward operator for the error can
be shown to be a contraction, which yields the desired convergence. See, e.g.,
Iglesias et al. (2013) for further details and discussion.

7.5 Bibliography

The original presentation of the Kálmán (Kalman, 1960) and Kálmán–Bucy
(Kalman and Bucy, 1961) filters was in the context of signal processing, and
encountered some initial resistance from the engineering community, as rel-
ated in the article of Humpherys et al. (2012). Filtering is now fully accepted
in applications communities and has a sound algorithmic and theoretical
base; for a stochastic processes point of view on filtering, see, e.g., the books
of Jazwinski (1970) and Øksendal (2003, Chapter 6). Boutayeb et al. (1997)
and Ljung (1979) discuss the asymptotic properties of Kálmán filters.

The EnKF was introduced by Evensen (2009). See Kelly et al. (2014) for
discussion of the well-posedness and accuracy of the EnKF, and Iglesias et al.
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(2013) for applications of the EnKF to static inverse problems. The varia-
tional derivation of the Kálmán filter given here is based on the one given by
Humpherys et al. (2012), which is also the source for Exercise 7.7.

A thorough treatment of probabilistic forecasting using data assimila-
tion and filtering is given by Reich and Cotter (2015). The article of Apte
et al. (2008) provides a mathematical overview of data assimilation, with an
emphasis on connecting the optimization approaches common in the data
assimilation community (e.g. 3D-Var, 4D-Var, and weak constraint 4D-Var)
to their Bayesian statistical analogues; this paper also illustrates some of the
shortcomings of the EnKF. In another paper, Apte et al. (2007) also provide
a treatment of non-Gaussian data assimilation.

7.6 Exercises

Exercise 7.1. Verify that the normal equations for the state estimation
problem (7.4) have a unique solution.

Exercise 7.2 (Fading memory). In the LKF, the current state variable is
updated as the latest inputs and measurements become known, but the esti-
mation is based on the least squares solution of all the previous states where
all measurements are weighted according to their covariance. One can also
use an estimator that discounts the error in older measurements leading to
a greater emphasis on recent observations, which is particularly useful in
situations where there is some modelling error in the system.

To do this, consider the objective function

J
(λ)
k|k (zk) :=

λk

2
‖x0 −m0‖2Q−1

0

+
1

2

k∑

i=1

λk−i‖yi −Hixi‖2R−1
i

+
1

2

k∑

i=1

λk−i‖xi − Fixi−1 −Giui‖2Q−1
i

,

where the parameter λ ∈ [0, 1] is called the forgetting factor ; note that the
standard LKF is the case λ = 1, and the objective function increasingly
relies upon recent measurements as λ → 0. Find a recursive expression for

the objective function J
(λ)
k|k and follow the steps in the variational derivation

of the usual LKF to derive the LKF with fading memory λ.

Exercise 7.3. Write the prediction and correction equations (7.17)–(7.20)
for the ExKF in terms of the Kálmán gain.

Exercise 7.4. Use the ExKF to perform position and velocity estimation
for the Van der Pol oscillator

ẍ(t)− μ(1− x(t)2)ẋ(t) + ω2x(t) = 0,
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with natural frequency ω > 0 and damping μ ≥ 0, given noisy observations
of the position of the oscillator. (Note that μ = 0 is the simple harmonic
oscillator of Example 7.3.)

Exercise 7.5. Building on Example 7.3 and Exercise 7.4, investigate the
robustness of the Kálmán filter to the forward model being ‘wrong’. Generate
synthetic data using the Van der Pol oscillator, but assimilate these data using
the LKF for the simple harmonic oscillator with a different value of ω.

Exercise 7.6. Filtering can also be used to estimate model parameters,
not just states. Consider the oscillator example from Example 7.3, but with
an augmented state (x, v, ω). Write down the forward model, which is no
longer linear. Generate synthetic position data using your choice of ω, then
assimilate these data using the ExKF with an initial estimate for (x0, v0, ω)
of large covariance. Perform the same exercise for the Van der Pol oscillator
from Exercise 7.4.

Exercise 7.7. This exercise considers the ExKF with noisy linear dynamics
and noisy non-linear observations with the aim of trajectory estimation for a
projectile. For simplicity, we will work in a two-dimensional setting, so that
ground level is the line x2 = 0, the Earth is the half-space x2 ≤ 0, and
gravity acts in the (0,−1) direction, the acceleration due to gravity being
g = 9.807N/kg. Suppose that the projectile is launched at time t0 from
x0 := � = (0, 0)m with initial velocity v0 := (300, 600)m/s.
(a) Suppose that at time tk = kΔt, Δt = 10−1 s, the projectile has position

xk ∈ R
2 and velocity vk ∈ R

2; let Xk := (xk,vk) ∈ R
4. Write down

a2 discrete-time forward dynamical model Fk ∈ R
4×4 that maps Xk to

Xk+1 in terms of the time step Δt, and g. Suppose that the projectile
has drag coefficient b = 10−4 (i.e. the effect of drag is v̇ = −bv). Suppose
also that the wind velocity at every time and place is horizontal, and
is given by mutually independent Gaussian random variables with mean
10m/s and standard deviation 5m/s. Evolve the system forward through
1200 time steps, and save this synthetic data.

(b) Suppose that a radar site, located at a ground-level observation post
o = (30, 0) km, makes measurements of the projectile’s position x (but
not the velocity v) in polar coordinates centred on o, i.e. an angle of
elevation φ ∈ [0◦, 90◦] from the ground level, and a radial straight-line
distance r ≥ 0 from o to x. Write down the observation function h : X �→
y := (φ, r), and calculate the derivative matrix H = Dh of h.

(c) Assume that observation errors in (φ, r) coordinates are normally dis-
tributed with mean zero, independent errors in the φ and r directions,
and standard deviations 5◦ and 500m respectively. Using the synthetic
trajectory calculated above, calculate synthetic observational data for
times tk with 400 ≤ k ≤ 600

2 There are many choices for this discrete-time model: each corresponds to a choice of
numerical integration scheme for the underlying continuous-time ODE.
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(d) Use the ExKF to assimilate these data and produce filtered estimates

X̂k|k of Xk = (xk,vk). Use the observation (φ400, r400) to initialize the
position estimate with a very large covariance matrix of your choice;
make and justify a similar choice for the initialization of the velocity est-
imate. Compare and contrast the true trajectory, the observations, and
the filtered position estimates. On appropriately scaled axes, plot norms
of your position covariance matrices Ck|k and the errors (i.e. the differ-
ences between the synthetic ‘true’ trajectory and the filtered estimate).
Produce similar plots for the true velocity and filtered velocity estimates,
and comment on both sets of plots.

(e) Extend your predictions both forward and backward in time to produce
filtered estimates of the time and point of impact, and also the time
and point of launch. To give an idea of how quickly the filter acquires
confidence about these events, produce plots of the estimated launch and
impact points with the mean ± standard deviation on the vertical axis
and time (i.e. observation number) on the horizontal axis.

Exercise 7.8. Consider, as a paradigmatic example of a nonlinear — and,
indeed, chaotic — dynamical system, the Lorenz 63 ODE system (Lorenz,
1963; Sparrow, 1982):

ẋ(t) = σ(y(t)− x(t)),
ẏ(t) = x(t)(ρ− z(t))− y(t),
ż(t) = x(t)y(t)− βz(t),

with the usual parameter values σ = 10, β = 8/3, and ρ = 28.
(a) Choose an initial condition for this system, then initialize an ensemble

of E = 1000 Gaussian perturbations of this initial condition. Evolve this
ensemble forward in time using a numerical ODE solver. Plot histograms
of the projections of the ensemble at time t > 0 onto the x-, y-, and z-axes
to gain an impression of when the ensemble ceases to be Gaussian.

(b) Apply the EnKF to estimate the evolution of the Lorenz 63 system, given
noisy observations of the state. Comment on the accuracy of the EnKF
predictions, particularly during the early phase when the dynamics are
almost linear and preserve the Gaussian nature of the ensemble, and over
longer times when the Gaussian nature breaks down.



Chapter 8

Orthogonal Polynomials and
Applications

Although our intellect always longs for clarity
and certainty, our nature often finds uncer-
tainty fascinating.

On War
Karl von Clausewitz

Orthogonal polynomials are an important example of orthogonal decom-
positions of Hilbert spaces. They are also of great practical importance:
they play a central role in numerical integration using quadrature rules
(Chapter 9) and approximation theory; in the context of UQ, they are also
a foundational tool in polynomial chaos expansions (Chapter 11).

There are multiple equivalent characterizations of orthogonal polynomials
via their three-term recurrence relations, via differential operators, and other
properties; however, since the primary use of orthogonal polynomials in UQ
applications is to provide an orthogonal basis of a probability space, here
L2-orthogonality is taken and as the primary definition, and the spectral
properties then follow as consequences.

As well as introducing the theory of orthogonal polynomials, this chapter
also discusses their applications to polynomial interpolation and approxima-
tion. There are many other interpolation and approximation schemes beyond
those based on polynomials — notable examples being splines, radial basis
functions, and the Gaussian processes of Chapter 13 — but this chapter
focusses on the polynomial case as a prototypical one.

In this chapter, N := N0 or {0, 1, . . . , N} for some N ∈ N0. For simplicity,
we work over R instead of C, and so the L2 inner product is a symmetric
bilinear form rather than a conjugate-symmetric sesquilinear form.

© Springer International Publishing Switzerland 2015
T.J. Sullivan, Introduction to Uncertainty Quantification, Texts
in Applied Mathematics 63, DOI 10.1007/978-3-319-23395-6 8
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8.1 Basic Definitions and Properties

Recall that a real polynomial is a function p : R→ R of the form

p(x) = c0 + c1x+ · · ·+ cn−1x
n−1 + cnx

n,

where the coefficients c0, . . . , cn ∈ R are scalars. The greatest n ∈ N0 for
which cn �= 0 is called the degree of p, deg(p); sometimes it is convenient to
regard the zero polynomial as having degree −1. If deg(p) = n and cn = 1,
then p is said to be monic. The space of all (real) polynomials in x is denoted
P, and the space of polynomials of degree at most n is denoted P≤n.

Definition 8.1. Let μ be a non-negative measure on R. A family of polyno-
mials Q = {qn | n ∈ N} ⊆ P is called an orthogonal system of polynomials
if, for each n ∈ N , deg(qn) = n, qn ∈ L2(R, μ), and

〈qm, qn〉L2(μ) :=

∫

R

qm(x)qn(x) dμ(x) = 0 ⇐⇒ m,n ∈ N are distinct.

That is, 〈qm, qn〉L2(μ) = γnδmn for some constants

γn := ‖qn‖2L2(μ) =

∫

R

q2n dμ,

called the normalization constants of the system Q. To avoid complications
later on, we require that the normalization constants are all strictly positive.
If γn = 1 for all n ∈ N , then Q is an orthonormal system.

In other words, a system of orthogonal polynomials is nothing but a col-
lection of non-trivial orthogonal elements of the Hilbert space L2(R, μ) that
happen to be polynomials, with some natural conditions on the degrees of the
polynomials. Note that, given μ, orthogonal (resp. orthonormal) polynomials
for μ can be found inductively by using the Gram–Schmidt orthogonalization
(resp. orthonormalization) procedure on the monomials 1, x, x2, . . . . In prac-
tice, however, the Gram–Schmidt procedure is numerically unstable, so it is
more common to generate orthogonal polynomials by other means, e.g. the
three-term recurrence relation (Theorem 8.9).

Example 8.2. (a) The Legendre polynomials Len (also commonly denoted
by Pn in the literature), indexed by n ∈ N0, are orthogonal polynomials
for uniform measure on [−1, 1]:

∫ 1

−1

Lem(x)Len(x) dx =
2

2n+ 1
δmn.

(b) The Legendre polynomials arise as the special case α = β = 0 of the

Jacobi polynomials P
(α,β)
n , defined for α, β > −1 and indexed by n ∈ N0.
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The Jacobi polynomials are orthogonal polynomials for the beta distri-
bution (1 − x)α(1− x)β dx on [−1, 1]:
∫ 1

−1

P (α,β)
m (x)P (α,β)

n (x) dx =
2α+β+1Γ (n+ α+ 1)Γ (n+ β + 1)

n!(2n+ α+ β + 1)Γ (n+ α+ β + 1)
δmn,

where Γ denotes the gamma function

Γ (t) :=

∫ ∞

0

st−1e−s ds

= (t− 1)! if t ∈ N.

(c) Other notable special cases of the Jacobi polynomials include the Cheby-
shev polynomials of the first kind Tn, which are the special case
α = β = − 1

2 , and the Chebyshev polynomials of the second kind Un, which
are the special case α = β = 1

2 . The Chebyshev polynomials are inti-
mately connected with trigonometric functions: for example,

Tn(x) = cos(n arccos(x)) for |x| ≤ 1,

and the n roots of Tn are zj := cos
(
π
2
2j−1
n

)
for j = 1, . . . , n.

(d) The (associated) Laguerre polynomials La(α)n , defined for α > −1 and ind-
exed by n ∈ N0, are orthogonal polynomials for the gamma distribution
xαe−x dx on the positive real half-line:

∫ ∞

0

La(α)m (x)La(α)n (x)xαe−x dx =
Γ (1 + α+ n)

n!
δmn.

The polynomials Lan := La(0)n are known simply as the Laguerre polyno-
mials.

(e) The Hermite polynomials Hen, indexed by n ∈ N0, are orthogonal poly-

nomials for standard Gaussian measure γ := (2π)−1/2e−x2/2 dx on R:

∫ ∞

−∞
Hem(x)Hen(x)

exp(−x2/2)√
2π

dx = n!δmn.

Together, the Jacobi, Laguerre and Hermite polynomials are known as
the classical orthogonal polynomials. They encompass the essential features
of orthogonal polynomials on the real line, according to whether the (abso-
lutely continuous) measure μ that generates them is supported on a bounded
interval, a semi-infinite interval, or the whole real line. (The theory of ort-
hogonal polynomials generated by discrete measures is similar, but has some
additional complications.) The first few Legendre, Hermite and Chebyshev
polynomials are given in Table 8.1 and illustrated in Figure 8.1. See Tables 8.2
and 8.3 at the end of the chapter for a summary of some other classi-
cal systems of orthogonal polynomials corresponding to various probability



136 8 Orthogonal Polynomials and Applications

n Len(x) Hen(x) Tn(x)

0 1 1 1
1 x x x

2 1
2
(3x2 − 1) x2 − 1 2x2 − 1

3 1
2
(5x3 − 3x) x3 − 3x 4x3 − 3x

4 1
8
(35x4 − 30x2 + 3) x4 − 6x2 + 3 8x4 − 8x2 + 1

5 1
8
(63x5 − 70x3 + 15x) x5 − 10x3 + 15x 16x5 − 20x3 + 5x

Table 8.1: The first few Legendre polynomials Len, which are orthogonal poly-
nomials for uniform measure dx on [−1, 1]; Hermite polynomials Hen, which

are orthogonal polynomials for standard Gaussian measure (2π)−1/2e−x2/2 dx
on R; and Chebyshev polynomials of the first kind Tn, which are orthogonal
polynomials for the measure (1− x2)−1/2 dx on [−1, 1].

measures on subsets of the real line. See also Figure 8.4 for an illustration of
the Askey scheme, which classifies the various limit relations among families
of orthogonal polynomials.

Remark 8.3. Many sources, typically physicists’ texts, use the weight func-�
tion e−x2

dx instead of probabilists’ preferred (2π)−1/2e−x2/2 dx or e−x2/2 dx
for the Hermite polynomials. Changing from one normalization to the other
is not difficult, but special care must be exercised in practice to see which
normalization a source is using, especially when relying on third-party soft-
ware packages.1 To convert integrals with respect to one Gaussian measure
to integrals with respect to another (and hence get the right answers for
Gauss–Hermite quadrature), use the following change-of-variables formula:

1√
2π

∫

R

f(x)e−x2/2 dx =
1

π

∫

R

f(
√
2x)e−x2

dx.

It follows from this that conversion between the physicists’ and probabilists’
Gauss–Hermite quadrature formulae (see Chapter 9) is achieved by

wprob
i =

wphys
i√
π
, xprobi =

√
2xphysi .

Existence of Orthogonal Polynomials. One thing that should be imme-
diately obvious is that if the measure μ is supported on only N ∈ N points,
then dimL2(R, μ) = N , and so μ admits only N orthogonal polynomials.

1 For example, the GAUSSQ Gaussian quadrature package from http://netlib.org/ uses

the physicists’ e−x2
dx normalization. The numpy.polynomial package for Python provides

separate interfaces to the physicists’ and probabilists’ Hermite polynomials, quadrature
rules, etc. as numpy.polynomial.hermite and numpy.polynomial.hermite e respectively.

http://netlib.org
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Legendre polynomials, Len, on [−1, 1].
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Hermite polynomials, Hen, on R.
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Chebyshev polynomials of the first kind, Tn, on [−1, 1].
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Fig. 8.1: The Legendre, Hermite and Chebyshev polynomials of degrees 0
(black, dotted), 1 (black, dashed), 2 (black, solid), 3 (grey, dotted), 4 (grey,
dashed) and 5 (grey, solid).
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This observation invites the question: what conditions on μ are necessary in
order to ensure the existence of a desired number of orthogonal polynomials
for μ? Recall that a matrix A is called a Hankel matrix if it has constant anti-
diagonals, i.e. if aij depends only upon i+ j. The definiteness of L2(μ) inner
products, and hence the existence of orthogonal polynomials, is intimately
connected to determinants of Hankel matrices of moments of the measure μ:

Lemma 8.4. The L2(μ) inner product is positive definite on P≤d if and only
if the Hankel determinant det(Hn) is strictly positive for n = 1, . . . , d + 1,
where

Hn :=

⎡

⎢
⎢
⎢
⎢
⎣

m0 m1 · · · mn−1

m1 m2 · · · mn

...
...

. . .
...

mn−1 mn · · · m2n−2

⎤

⎥
⎥
⎥
⎥
⎦
, mn :=

∫

R

xn dμ(x). (8.1)

Hence, the L2(μ) inner product is positive definite on P if and only if, for
all n ∈ N, 0 < det(Hn) <∞.

Proof. Let p(x) := cdx
d + · · ·+ c1x+ c0 ∈ P≤d be arbitrary. Note that

‖p‖2L2(μ) =

∫

R

d∑

k,�=0

ckc�x
k+� dμ(x) =

d∑

k,�=0

ckc�mk+�,

and so ‖p‖L2(μ) ∈ (0,∞) if and only if Hd+1 is a positive-definite matrix. By
Sylvester’s criterion, this is Hd+1 is positive definite if and only if det(Hn) ∈
(0,∞) for n = 1, 2, . . . , d+ 1, which completes the proof.  !

Theorem 8.5. If the L2(μ) inner product is positive definite on P, then
there exists an infinite sequence of orthogonal polynomials for μ.

Proof. Apply the Gram–Schmidt procedure to the monomials xn, n ∈ N0.
That is, take q0(x) = 1, and for n ∈ N recursively define

qn(x) := x
n −

n−1∑

k=0

〈xn, qk〉
〈qk, qk〉

qk(x).

Since the inner product is positive definite, 〈qk, qk〉 > 0, and so each qn is
uniquely defined. By construction, each qn is orthogonal to qk for k < n.  !

By Exercise 8.1, the hypothesis of Theorem 8.5 is satisfied if the measure μ
has infinite support and all polynomials are μ-integrable. For example, there
are infinitely many Legendre polynomials because polynomials are bounded
on [−1, 1], and hence integrable with respect to uniform (Lebesgue) measure;
polynomials are unbounded on R, but are integrable with respect to Gaussian
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measure by Fernique’s theorem (Theorem 2.47), so there are infinitely many
Hermite polynomials. In the other direction, there is the following converse
result:

Theorem 8.6. If the L2(μ) inner product is positive definite on P≤d, but
not on P≤n for any n > d, then μ admits only d+1 orthogonal polynomials.

Proof. The Gram–Schmidt procedure can be applied so long as the denom-
inators 〈qk, qk〉 are strictly positive and finite, i.e. for k ≤ d + 1. The poly-
nomial qd+1 is orthogonal to qn for n ≤ d; we now show that qd+1 = 0. By
assumption, there exists a polynomial p of degree d + 1, having the same
leading coefficient as qd+1, such that ‖p‖L2(μ) is 0, ∞, or even undefined;
for simplicity, consider the case ‖p‖L2(μ) = 0, as the other cases are similar.
Hence, p − qd+1 has degree d, so it can be written in the orthogonal basis
{q0, . . . , qd} as

p− qd+1 =
d∑

k=0

ckqk

for some coefficients c0, . . . , cd. Hence,

0 = ‖p‖2L2(μ) = ‖qd+1‖2L2(μ) +

d∑

k=0

c2k‖qk‖2L2(μ),

which implies, in particular, that ‖qd+1‖L2(μ) = 0. Hence, the normalization
constant γd+1 = 0, which is not permitted, and so qd+1 is not a member of a
sequence of orthogonal polynomials for μ.  !

Theorem 8.7. If μ has finite moments only of degrees 0, 1, . . . , r, then μ
admits only a finite system of orthogonal polynomials q0, . . . , qd, where d is
the minimum of �r/2� and #supp(μ)− 1.

Proof. Exercise 8.2.  !

Completeness of Orthogonal Polynomial Bases. A subtle point in the
theory of orthogonal polynomials is that although an infinite family Q of
orthogonal polynomials for μ forms an orthogonal set in L2(R, μ), it is not
always true that Q forms a complete orthogonal basis for L2(R, μ), i.e. it is �
possible that

spanQ � L2(R, μ).

Examples of sufficient conditions for Q to form a complete orthogonal basis
for L2(R, μ) include finite exponential moments (i.e. EX∼μ[exp(a|X |)] is finite
for some a > 0), or the even stronger condition that the support of μ is a
bounded set. See Ernst et al. (2012) for a more detailed discussion, and see
Exercise 8.7 for the construction of an explicit example of an incomplete but
infinite set of orthogonal polynomials, namely those corresponding to the
probability distribution of a log-normal random variable.
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8.2 Recurrence Relations

An aesthetically pleasing fact about orthogonal polynomials, and one that is
of vital importance in numerical methods, is that every system of orthogonal
polynomials satisfies a three-term recurrence relation of the form

qn+1(x) = (Anx+Bn)qn(x) − Cnqn−1(x) (8.2)

for some sequences (An), (Bn), (Cn), with the initial terms q0(x) = 1 and
q−1(x) = 0. There are many variations in the way that this three-term rec-
urrence is presented: another one, which is particularly commonly used for
orthogonal polynomials arising from discrete measures, is

− xqn(x) = Anqn+1(x)− (An + Cn)qn(x) + Cnqn−1(x) (8.3)

and in Theorem 8.9 we give the three-term recurrence for the monic orthog-
onal polynomials associated with a measure μ.

Example 8.8. The Legendre, Hermite and Chebyshev polynomials satisfy
the recurrence relations

Len+1(x) =
2n+ 1

n+ 1
xLen(x)−

n

n+ 1
Len−1(x),

Hen+1(x) = xHen(x) − nHen−1(x),

Tn+1(x) = 2xTn(x)− Tn−1(x).

These relations can all be verified by direct substitution and an integration
by parts with respect to the appropriate generating measure μ on R. The
Jacobi polynomials also satisfy the three-term recurrence (8.2) with

An =
(2n+ 1 + α+ β)(2n+ 2 + α+ β)

2(n+ 1)(n+ 1 + α+ β)

Bn =
(α2 − β2)(2n+ 1 + α+ β)

2(n+ 1)(2n+ α+ β)(n+ 1 + α+ β)
(8.4)

Cn =
(n+ α)(n + β)(2n+ 2 + α+ β)

(n+ 1)(n+ 1 + α+ β)(2n+ α+ β)
.

The coefficients for the three-term recurrence relation are determined
(up to multiplication by a constant for each degree) by the following theorem,
which gives the coefficients for the monic orthogonal polynomials associated
with a measure μ:

Theorem 8.9. Let Q = {qn | n ∈ N} be the monic orthogonal polynomials
for a measure μ. Then
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qn+1(x) = (x− αn)qn(x) − βnqn−1(x), (8.5)

q0(x) = 1,

q−1(x) = 0,

where

αn :=
〈xqn, qn〉L2(μ)

〈qn, qn〉L2(μ)
, for n ≥ 0,

βn :=
〈qn, qn〉L2(μ)

〈qn−1, qn−1〉L2(μ)
, for n ≥ 1,

β0 := 〈q0, q0〉L2(μ) ≡
∫

R

dμ.

Hence, the orthonormal polynomials {pn | n ∈ N} for μ satisfy

√
βn+1pn+1(x) = (x− αn)pn(x)−

√
βnpn−1(x), (8.6)

p0(x) = β
−1/2
0 ,

p−1(x) = 0.

Proof. First, note that the L2 inner product2 satisfies the shift property

〈xf, g〉L2(μ) = 〈f, xg〉L2(μ) (8.7)

for all f, g : R→ R for which either side exists.
Since deg(qn+1 − xqn) ≤ n, it follows that

qn+1(x)− xqn(x) = −αnqn(x)− βnqn−1(x) +

n−2∑

j=0

cnjqj(x) (8.8)

for suitable scalars αn, βn and cnj . Taking the inner product of both sides of
(8.8) with qn yields, by orthogonality,

−〈xqn, qn〉L2(μ) = −αn〈qn, qn〉L2(μ),

so that αn = 〈xqn, qn〉L2(μ)/〈qn, qn〉L2(μ) as claimed. The expression for βn is
obtained similarly, by taking the inner product of (8.8) with qn−1 instead of
with qn:

〈qn+1 − xqn, qn−1〉L2(μ) = −〈xqn(x), qn−1〉L2(μ) = −βn〈qn−1, qn−1〉L2(μ),

2 The Sobolev inner product, for example, does not satisfy the shift property (8.7). Hence,
the recurrence theory for Sobolev orthogonal polynomials is more complicated than the
L2 case considered here.
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and so

βn =
〈qn, xqn−1〉L2(μ)

〈qn−1, qn−1〉L2(μ)

=
〈qn, qn + r〉L2(μ)

〈qn−1, qn−1〉L2(μ)
with deg(r) < n

=
〈qn, qn〉L2(μ)

〈qn−1, qn−1〉L2(μ)
since qn ⊥ P≤n−1.

Finally, taking the inner product of (8.8) with qj for j < n− 1 yields

− 〈xqn, qj〉L2(μ) = cnj〈qj , qj〉L2(μ). (8.9)

It follows from the shift property (8.7) that 〈xqn, qj〉L2(μ) = 〈qn, xqj〉L2(μ).
Since deg(xqj) ≤ n− 1, it follows that the left-hand side of (8.9) vanishes, so
cnj ≡ 0, and the recurrence relation (8.5) is proved.  !

Furthermore, there is a converse theorem, which provides a characteriza-
tion of precisely which three-term recurrences of the form (8.5) arise from
systems of orthogonal polynomials:

Theorem 8.10 (Favard, 1935). Let (α̃n)n∈N and (β̃n)n∈N be real sequences
and let Q = {qn | n ∈ N} be defined by the recurrence

qn+1(x) = (x+ α̃n)qn(x) − β̃nqn−1(x),

q0(x) = 1,

q−1(x) = 0.

Then Q is a system of monic orthogonal polynomials for some non-negative
measure μ if and only if, for all n ∈ N , α̃n �= 0 and β̃n > 0.

The proof of Favard’s theorem will be omitted here, but can be found in,
e.g., Chihara (1978, Theorem 4.4).

A useful consequence of the three-term recurrence is the following formula
for sums of products of orthogonal polynomial values at any two points:

Theorem 8.11 (Christoffel–Darboux formula). The orthonormal polynomi-
als {pn | n ∈ N} for a measure μ satisfy

n∑

k=0

pk(y)pk(x) =
√
βn+1

pn+1(y)pn(x) − pn(y)pn+1(x)

y − x , (8.10)

and

n∑

k=0

|pk(x)|2 =
√
βn+1

(
p′n+1(x)pn(x) − p′n(x)pn+1(x)

)
. (8.11)



8.3 Differential Equations 143

Proof. Multiply the recurrence relation (8.6), i.e.
√
βk+1pk+1(x) = (x− αk)pk(x) −

√
βkpk−1(x),

by pk(y) on both sides and subtract the corresponding expression with x and
y interchanged to obtain

(y − x)pk(y)pk(x) =
√
βk+1

(
pk+1(y)pk(x) − pk(y)pk+1(x)

)

−
√
βk
(
pk(y)pk−1(x)− pk−1(y)pk(x)

)
.

Sum both sides from k = 0 to k = n and use the telescoping nature of the sum
on the right to obtain (8.10). Take the limit as y → x to obtain (8.11).  !

Corollary 8.12. The orthonormal polynomials {pn | n ∈ N} for a measure
μ satisfy

p′n+1(x)pn(x) − p′n(x)pn+1(x) > 0.

Proof. Since βn > 0 for all n, (8.11) implies that

p′n+1(x)pn(x) − p′n(x)pn+1(x) ≥ 0,

with equality if and only if the sum on the left-hand side of (8.11) vanishes.
However, since

n∑

k=0

|pk(x)|2 ≥ |p0(x)|2 = β−1
0 > 0,

the claim follows.  !

8.3 Differential Equations

In addition to their orthogonality and recurrence properties, the classical
orthogonal polynomials are eigenfunctions for second-order differential oper-
ators. In particular, these operators take the form

L = Q(x)
d2

dx2
+ L(x)

d

dx
,

where Q ∈ P≤2 is quadratic, L ∈ P≤1 is linear, and the degree-n orthogonal
polynomial qn satisfies

(Lqn)(x) ≡ Q(x)q′′n(x) + L(x)q′n(x) = λnqn(x), (8.12)

where the eigenvalue is

λn = n
(n− 1

2
Q′′ + L′). (8.13)

Note that it makes sense for Q to be quadratic and L to be linear, since then
(8.12) is an equality of two degree-n polynomials.
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Example 8.13. (a) The Jacobi polynomials satisfy LP (α,β)
n = λnP

(α,β)
n ,

where

L := (1− x2) d2

dx2
+ (β − α− (α + β + 2)x)

d

dx
,

λn := −n(n+ α+ β + 1).

(b) The Hermite polynomials satisfy LHen = λnHen, where

L :=
d2

dx2
− x d

dx
,

λn := −n.

(c) The Laguerre polynomials satisfy LLa(α)n = λnLa
(α)
n , where

L := x
d2

dx2
− (1 + α− x) d

dx
,

λn := −n.

It is not difficult to verify that if Q = {qn | n ∈ N} is a system of monic
orthogonal polynomials, which therefore satisfy the three-term recurrence

qn+1(x) = (x− αn)qn(x)− βnqn−1(x)

from Theorem 8.9, then qn is an eigenfunction for L with eigenvalue λn as
(8.12)–(8.13): simply apply the three-term recurrence to the claimed equation
Lqn+1 = λn+1qn+1 and examine the highest-degree terms. What is more dif-
ficult to show is the converse result (which uses results from Sturm–Liouville
theory and is beyond the scope of this text) that, subject to suitable con-
ditions on Q and L, the only eigenfunctions of L are polynomials of the
correct degrees, with the claimed eigenvalues, orthogonal under the measure
dμ = w(x) dx, where

w(x) ∝ 1

Q(x)
exp

(∫
L(x)

Q(x)
dx

)

.

Furthermore, the degree-n orthogonal polynomial qn is given by Rodrigues’
formula

qn(x) ∝
1

w(x)

dn

dxn
(
w(x)Q(x)n

)
.

(Naturally, w and the resulting polynomials are only unique up to choices
of normalization.) For our purposes, the main importance of the differential
properties of orthogonal polynomials is that, as a consequence, the conver-
gence rate of orthogonal polynomial approximations to a given function f
is improved when f has a high degree of differentiability; see Theorem 8.23
later in this chapter.
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8.4 Roots of Orthogonal Polynomials

The points x at which an orthogonal polynomial qn(x) = 0 are its roots, or
zeros, and enjoy a number of useful properties. They play a fundamental role
in the method of approximate integration known as Gaussian quadrature,
which will be treated in Section 9.2.

The roots of an orthogonal polynomial can be found as the eigenvalues of
a suitable matrix:

Definition 8.14. The Jacobi matrix of a measure μ is the infinite, symmet-
ric, tridiagonal matrix

J∞(μ) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0
√
β1 0 · · ·

√
β1 α1

√
β2

. . .

0
√
β2 α2

. . .

...
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where αk and βk are as in Theorem 8.9. The upper-left n×n minor of J∞(μ)
is denoted Jn(μ).

Theorem 8.15. Let p0, p1, . . . be the orthonormal polynomials for μ. The
zeros of pn are all real, are the eigenvalues of Jn(μ), and the eigenvector of
Jn(μ) corresponding to the zero of pn at z is

p(z) :=

⎡

⎢
⎢
⎣

p0(z)
...

pn−1(z)

⎤

⎥
⎥
⎦ .

Proof. Let p(x) := [p0(x), . . . , pn−1(x)]
T as above. Then the first n recur-

rence relations for the orthonormal polynomials, as given in Theorem 8.9,
can be summarized as

xp(x) = Jn(μ)p(x) +
√
βnpn(x)[0, . . . , 0, 1]

T. (8.14)

Now let x = z be any zero of pn. Note that p(z) �= [0, . . . , 0]T, since p(z) has
1/
√
β0 as its first component p0(z). Hence, (8.14) immediately implies that

p(z) is an eigenvector of Jn(μ) with eigenvalue z. Finally, since Jn(μ) is a
symmetric matrix, its eigenvalues (the zeros of pn) are all real.  !

All that can be said about the roots of an arbitrarily polynomial p of
degree n is that, by the Fundamental Theorem of Algebra, p has n roots in C

when counted with multiplicity. Since the zeros of orthogonal polynomials are
eigenvalues of a symmetric matrix (the Jacobi matrix), these zeros must be
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real. In fact, though, orthogonal polynomials are guaranteed to have simple
real roots, and the roots of successive orthogonal polynomials alternate with
one another:

Theorem 8.16 (Zeros of orthogonal polynomials). Let μ be supported in a
non-degenerate interval I ⊆ R, and let Q = {qn | n ∈ N} be a system of
orthogonal polynomials for μ

(a) For each n ∈ N , qn has exactly n distinct real roots z
(n)
1 , . . . , z

(n)
n ∈ I.

(b) If (a, b) is an open interval of μ-measure zero, then (a, b) contains at most
one root of any orthogonal polynomial qn for μ.

(c) The zeros z
(n)
i of qn and z

(n+1)
i of qn+1 alternate:

z
(n+1)
1 < z

(n)
1 < z

(n+1)
2 < · · · < z(n+1)

n < z(n)n < z
(n+1)
n+1 ;

hence, whenever m > n, between any two zeros of qn there is a zero of qm.

Proof. (a) First observe that 〈qn, 1〉L2(μ) = 0, and so qn changes sign in I.
Since qn is continuous, the intermediate value theorem implies that qn
has at least one real root z

(n)
1 ∈ I. For n > 1, there must be another root

z
(n)
2 ∈ I of qn distinct from z

(n)
1 , since if qn were to vanish only at z

(n)
1 ,

then
(
x−z(n)1

)
qn would not change sign in I, which would contradict the

orthogonality relation 〈x−z(n)1 , qn〉L2(μ) = 0. Similarly, if n > 2, consider
(
x− z(n)1

)(
x− z(n)2

)
qn to deduce the existence of yet a third distinct root

z
(n)
3 ∈ I. This procedure terminates when all the n complex roots of qn
are shown to lie in I.

(b) Suppose that (a, b) contains two distinct zeros z
(n)
i and z

(n)
j of qn. Let

an �= 0 denote the coefficient of xn in qn(x). Then

〈

qn,
∏

k 
=i,j

(
x− z(n)k

)
〉

L2(μ)

=

∫

R

qn(x)
∏

k 
=i,j

(
x− z(n)k

)
dμ(x)

= an

∫

R

(
x− z(n)i

)(
x− z(n)j

) ∏

k 
=i,j

(
x− z(n)k

)2
dμ(x)

> 0,

since the integrand is positive outside of (a, b). However, this contradicts
the orthogonality of qn to all polynomials of degree less than n.

(c) As usual, let pn be the normalized version of qn. Let σ, τ be consecutive
zeros of pn, so that p′n(σ)p

′
n(τ) < 0. Then Corollary 8.12 implies that

pn+1 has opposite signs at σ and τ , and so the IVT implies that pn+1

has at least one zero between σ and τ . This observation accounts for
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n − 1 of the n + 1 zeros of pn+1, namely z
(n+1)
2 < · · · < z(n+1)

n . There

are two further zeros of pn+1, one to the left of z
(n)
1 and one to the right

of z
(n)
n . This follows because p′n

(
z
(n)
n

)
> 0, so Corollary 8.12 implies that

pn+1

(
z
(n)
n

)
< 0. Since pn+1(x) → +∞ as x → +∞, the IVT implies the

existence of z
(n+1)
n+1 > z

(n)
n . A similar argument establishes the existence

of z
(n+1)
1 < z

(n)
1 .  !

8.5 Polynomial Interpolation

The existence of a unique polynomial p(x) =
∑n

i=0 cix
i of degree at most n

that interpolates the values y0, . . . , yn ∈ R at n + 1 distinct points x0, . . . ,
xn ∈ R follows from the invertibility of the Vandermonde matrix

Vn(x0, . . . , xn) :=

⎡

⎢
⎢
⎢
⎢
⎣

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn

⎤

⎥
⎥
⎥
⎥
⎦
∈ R

(n+1)×(n+1) (8.15)

and hence the unique solvability of the system of simultaneous linear equations

Vn(x0, . . . , xn)

⎡

⎢
⎢
⎣

c0
...

cn

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

y0
...

yn

⎤

⎥
⎥
⎦ . (8.16)

In practice, a polynomial interpolant would never be constructed in this way
since, for nearly coincident nodes, the Vandermonde matrix is notoriously
ill-conditioned: the determinant is given by

det(Vn) =
∏

0≤i<j≤n

(xi − xj)

and, while the condition number of the Vandermonde matrix is hard to cal-
culate exactly, there are dishearteningly large lower bounds such as

κn,∞ := ‖Vn‖∞→∞‖V −1
n ‖∞→∞ � 2n/2 (8.17)

for sets of nodes that are symmetric about the origin, where

‖Vn‖∞→∞ := sup
{
‖Vnx‖∞

∣
∣ x ∈ R

n+1, ‖x‖∞ = 1
}

denotes the matrix (operator) norm on R
(n+1)×(n+1) induced by the∞-norm

on R
n+1 (Gautschi and Inglese, 1988).
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However, there is another — and better-conditioned — way to express
the polynomial interpolation problem, the so-called Lagrange form, which
amounts to a clever choice of basis for P≤n (instead of the usual monomial
basis {1, x, x2, . . . , xn}) so that the matrix in (8.16) in the new basis is the
identity matrix.

Definition 8.17. Let x0, . . . , xn ∈ R be distinct. The associated nodal poly-
nomial is defined to be

n∏

j=0

(x− xj) ∈ P≤n+1.

For 0 ≤ j ≤ n, the associated Lagrange basis polynomial �j ∈ P≤n is
defined by

�j(x) :=
∏

0≤k≤n
k 
=j

x− xk
xj − xk

.

Given also arbitrary values y0, . . . , yn ∈ R, the associated Lagrange interpo-
lation polynomial is

L(x) :=
n∑

j=0

yj�j(x).

Theorem 8.18. Given distinct x0, . . . , xn ∈ R and any y0, . . . , yn ∈ R, the
associated Lagrange interpolation polynomial L is the unique polynomial of
degree at most n such that L(xk) = yk for k = 0, . . . , n.

Proof. Observe that each Lagrange basis polynomial �j ∈ P≤n, and so
L ∈ P≤n. Observe also that �j(xk) = δjk. Hence,

L(xk) =

n∑

j=0

yj�j(xk) =

n∑

j=0

yjδjk = yk.

For uniqueness, consider the basis {�0, . . . , �n} of P≤n and suppose that p =∑n
j=0 cj�j is any polynomial that interpolates the values {yk}nk=0 at the points

{xk}nk=0. But then, for each k = 0, . . . , n,

yk =

n∑

j=0

cj�j(xk) =

n∑

j=0

cjδjk = ck,

and so p = L, as claimed.  !

Runge’s Phenomenon. Given the task of choosing nodes xk ∈ [a, b]
between which to interpolate functions f : [a, b] → R, it might seem natural
to choose the nodes xk to be equally spaced in [a, b]. Runge (1901) famously
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showed that this is not always a good choice of interpolation scheme. Consider
the function f : [−1, 1]→ R defined by

f(x) :=
1

1 + 25x2
, (8.18)

and let Ln be the degree-n (Lagrange) interpolation polynomial for f on
the equally spaced nodes xk := 2k

n − 1. As illustrated in Figure 8.2(a), Ln

oscillates wildly near the endpoints of the interval [−1, 1]. Even worse, as n
increases, these oscillations do not die down but increase without bound: it
can be shown that

lim
n→∞ sup

x∈[−1,1]

∣
∣f(x)− Ln(x)

∣
∣ =∞.

As a consequence, polynomial interpolation and numerical integration using
uniformly spaced nodes — as in the Newton–Cotes formula (Definition 9.5) —
can in general be very inaccurate. The oscillations near ±1 can be controlled
by using a non-uniform set of nodes, in particular one that is denser near ±1
than near 0; the standard example is the set of Chebyshev nodes defined by

xk := cos

(
2k − 1

2n
π

)

, for k = 1, . . . , n,

i.e. the roots of the Chebyshev polynomials of the first kind Tn, which are
orthogonal polynomials for the measure (1 − x2)−1/2 dx on [−1, 1]. As ill-
ustrated in Figure 8.2(b), the Chebyshev interpolant of f shows no Runge
oscillations. In fact, for every absolutely continuous function f : [−1, 1] →
R, the sequence of interpolating polynomials through the Chebyshev nodes
converges uniformly to f .

However, Chebyshev nodes are not a panacea. Indeed, Faber (1914) showed
that, for every predefined sequence of sets of interpolation nodes, there is a
continuous function for which the interpolation process on those nodal sets
diverges. For every continuous function there is a set of nodes on which the
interpolation process converges. In practice, in the absence of guarantees of
convergence, one should always perform ‘sanity checks’ to see if an interpo-
lation scheme has given rise to potentially spurious Runge-type oscillations.
One should also check whether or not the interpolant depends sensitively
upon the nodal set and data.

Norms of Interpolation Operators. The convergence and optimality of
interpolation schemes can be quantified using the norm of the corresponding
interpolation operator. From an abstract functional-analytic point of view,
interpolation is the result of applying a suitable projection operator Π to a
function f in some space V to yield an interpolating function Πf in some
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a b

Fig. 8.2: Runge’s phenomenon: the function f(x) := (1 + 25x2)−1 is the
heavy grey curve, and also shown are the degree-n polynomial interpolants
of f through n nodes, for n = 6 (dotted), 10 (dashed), and 14 (solid).

prescribed subspace U of V . For example, in the above discussion, given n+ 1
distinct nodes x0, . . . , xn, the interpolation subspace U is P≤n and the oper-
ator Π is

Π : f �→
n∑

i=0

f(xi)�i,

or, in terms of pointwise evaluation functionals (Dirac measures) δa, Π =∑n
i=1 δxi�i. Note, in particular, that Π is a projection operator that acts as

the identity function on the interpolation subspace, i.e. the degree-n poly-
nomial interpolation of a polynomial p ∈ P≤n is just p itself. The following
general lemma gives an upper bound on the error incurred by any interpola-
tion scheme that can be written as a projection operator:

Lemma 8.19 (Lebesgue’s approximation lemma). Let (V , ‖ · ‖) be a normed
space, U ⊆ V, and Π : V → U a linear projection onto U (i.e. for all u ∈ U ,
Πu = u) with finite operator norm ‖Π‖op. Then, for all v ∈ V,

‖v −Πv‖ ≤ (1 + ‖Π‖op) inf
u∈U

‖v − u‖. (8.19)

Proof. Let ε > 0 be arbitrary, and let u∗ ∈ U be ε-suboptimal for the
infimum on the right-hand side of (8.19), i.e.

‖v − u∗‖ ≤ ε+ inf
u∈U

‖v − u‖. (8.20)
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Now

‖v −Πv‖
≤ ‖v − u∗‖+ ‖u∗ −Πv‖
= ‖v − u∗‖+ ‖Πu∗ −Πv‖ since Π |U = idU
≤ ‖v − u∗‖+ ‖Π‖op‖u∗ − v‖ by definition of ‖Π‖op
= (1 + ‖Π‖op)‖v − u∗‖
= (1 + ‖Π‖op) inf

u∈U
‖v − u‖+ ε(1 + ‖Π‖op) by (8.20).

Since ε > 0 was arbitrary, (8.19) follows.  !

Thus, with respect to a given norm ‖ · ‖, polynomial interpolation is quasi-
optimal up to a constant factor given by the operator norm of the interpola-
tion operator in that norm; in this context, ‖Π‖op is often called the Lebesgue
constant of the interpolation scheme. For the maximum norm, the Lebesgue
constant has a convenient expression in terms of the Lagrange basis polyno-
mials; see Exercise 8.10. The next section considers optimal approximation
with respect to L2 norms, which amounts to orthogonal projection.

8.6 Polynomial Approximation

The following theorem on the uniform approximation (on compact sets) of
continuous functions by polynomials should hopefully be familiar:

Theorem 8.20 (Weierstrass, 1885). Let [a, b] ⊂ R be a bounded interval, let
f : [a, b]→ R be continuous, and let ε > 0. Then there exists a polynomial p
such that

sup
a≤x≤b

|f(x)− p(x)| < ε.

Remark 8.21. Note well that Theorem 8.20 only ensures uniform approxi- �
mation of continuous functions on compact sets. The reason is simple: since
any polynomial of finite degree tends to ±∞ at the extremes of the real line
R, no polynomial can be uniformly close, over all of R, to any non-constant
bounded function.

Theorem 8.20 concerns uniform approximation; for approximation in mean
square, as a consequence of standard results on orthogonal projection in
Hilbert spaces, we have the following:

Theorem 8.22. Let Q = {qn | n ∈ N} be a system of orthogonal polynomials
for a measure μ on a subinterval I ⊆ R. For any f ∈ L2(I, μ) and any d ∈ N0,
the orthogonal projection Πdf of f onto P≤d is the best degree-d polynomial
approximation of f in mean square, i.e.
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Πdf = argmin
p∈P≤d

‖p− f‖L2(μ),

where, denoting the orthogonal polynomials for μ by {qk | k ≥ 0},

Πdf :=
d∑

k=0

〈f, qk〉L2(μ)

‖qk‖2L2(μ)

qk,

and the residual is orthogonal to the projection subspace:

〈f −Πdf, p〉L2(μ) = 0 for all p ∈ P≤d.

An important property of polynomial expansions of functions is that the
quality of the approximation (i.e. the rate of convergence) improves as the
regularity of the function to be approximated increases. This property is
referred to as spectral convergence and is easily quantified by using the ma-
chinery of Sobolev spaces. Recall that, given k ∈ N0 and a measure μ on a
subinterval I ⊆ R, the Sobolev inner product and norm are defined by

〈u, v〉Hk(μ) :=

k∑

m=0

〈
dmu

dxm
,
dmv

dxm

〉

L2(μ)

=

k∑

m=0

∫

I

dmu

dxm
dmv

dxm
dμ

‖u‖Hk(μ) := 〈u, u〉1/2
Hk(μ)

.

The Sobolev space Hk(X , μ) consists of all L2 functions that have weak
derivatives of all orders up to k in L2, and is equipped with the above inner
product and norm. (As usual, we abuse terminology and confuse functions
with their equivalence classes modulo equality μ-almost everywhere.)

Legendre expansions of Sobolev functions on [−1, 1] satisfy the following
spectral convergence theorem; the analogous result for Hermite expansions
of Sobolev functions on R is Exercise 8.13, and the general result is Exercise
8.14.

Theorem 8.23 (Spectral convergence of Legendre expansions). There is a
constant Ck ≥ 0 that may depend upon k but is independent of d and f such
that, for all f ∈ Hk([−1, 1], dx),

‖f −Πdf‖L2(dx) ≤ Ckd
−k‖f‖Hk(dx). (8.21)

Proof. As a special case of the Jacobi polynomials (or by Exercise 8.11), the
Legendre polynomials satisfy LLen = λnLen, where the differential operator
L and eigenvalues λn are

L =
d

dx

(

(1− x2) d

dx

)

= (1− x2) d2

dx2
− 2x

d

dx
, λn = −n(n+ 1).
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If f ∈ Hk([−1, 1], dx), then, by the definition of the Sobolev norm and the
operator L, ‖Lf‖L2 ≤ C‖f‖H2 and, indeed, for anym ∈ N such that 2m ≤ k,

‖Lmf‖L2 ≤ C‖f‖H2m . (8.22)

The key ingredient of the proof is integration by parts:

〈f,Len〉L2 = λ−1
n

∫ 1

−1

(LLen)(x)f(x) dx

= λ−1
n

∫ 1

−1

(
(1− x2)Le′′n(x)f(x) − 2xLe′n(x)f(x)

)
dx

= −λ−1
n

∫ 1

−1

(
((1− x2)f)′(x)Le′n(x) + 2xLe′n(x)f(x)

)
dx by IBP

= −λ−1
n

∫ 1

−1

(1 − x2)f ′(x)Le′n(x) dx

= λ−1
n

∫ 1

−1

(
(1− x2)f ′

)′
(x)Len(x) dx by IBP

= λ−1
n 〈Lf,Len〉L2 .

Hence, for all m ∈ N0 for which f has 2m weak derivatives,

〈f,Len〉L2 =
〈Lmf,Len〉L2

λmn
. (8.23)

Hence,

‖f −Πdf‖2L2 =

∞∑

n=d+1

|〈f,Len〉L2 |2
‖Len‖2L2

=

∞∑

n=d+1

|〈Lmf,Len〉L2 |2
λ2mn ‖Len‖2L2

by (8.23)

≤ 1

λ2md

∞∑

n=d+1

|〈Lmf,Len〉L2 |2
‖Len‖2L2

≤ 1

λ2md

∞∑

n=0

|〈Lmf,Len〉L2 |2
‖Len‖2L2

=
1

λ2md
‖Lmf‖2L2 by Parseval (Theorem 3.24)

≤ C2d−4m‖f‖2H2m by (8.22)

since |λd| ≥ d2. Setting k = 2m and taking square roots yields (8.21).  !
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Gibbs’ Phenomenon. However, in the other direction, poor regularity can
completely ruin the nice convergence of spectral expansions. The classic
example of this is Gibbs’ phenomenon, in which one tries to approximate
the sign function

sgn(x) :=

⎧
⎪⎨

⎪⎩

−1, if x < 0,

0, if x = 0,

1, if x > 0,

on [−1, 1] by its expansion with respect to a system of orthogonal polynomials
such as the Legendre polynomials Len(x) or the Fourier polynomials einx. The
degree-(2N + 1) Legendre expansion of the sign function is

(Π2N+1 sgn)(x) =

N∑

n=0

(−1)n(4n+ 3)(2n)!

22n+1(n+ 1)!n!
Le2n+1(x). (8.24)

See Figure 8.3 for an illustration. Although Π2N+1 sgn → sgn as N → ∞
in the L2 sense, there is no hope of uniform convergence: the oscillations
at the discontinuity at 0, and indeed at the endpoints ±1, do not decay to
zero as N → ∞. The inability of globally smooth basis functions such as
Legendre polynomials to accurately resolve discontinuities naturally leads to
the consideration of non-smooth basis functions such as wavelets.

Remark 8.21 Revisited. To repeat, even though smoothness of f improves�
the rate of convergence of the orthogonal polynomial expansion Πdf → f as
d → ∞ in the L2 sense, the uniform convergence and pointwise predictive
value of an orthogonal polynomial expansion Πdf are almost certain to be
poor on unbounded (non-compact) domains, and no amount of smoothness
of f can rectify this problem.

8.7 Multivariate Orthogonal Polynomials

For working with polynomials in d variables, we will use standard multi-index
notation. Multi-indices will be denoted by Greek letters α = (α1, . . . , αd) ∈
N

d
0. For x = (x1, . . . , xd) ∈ R

d and α ∈ N
d
0, the monomial xα is defined by

xα := xα1
1 x

α2
2 . . . xαd

d ,

and |α| := α1 + · · · + αd is called the total degree of xα. A polynomial is a
function p : Rd → R of the form

p(x) :=
∑

α∈Nd
0

cαx
α
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Fig. 8.3: Legendre expansions of the sign function on [−1, 1] exhibit Gibbsian
oscillations at 0 and at ±1. The sign function is shown as the heavy black;
also shown are the Legendre expansions (8.24) to degree 2N − 1 for N = 5
(dotted), 15 (dashed), and 25 (solid).

for some coefficients cα ∈ R. The total degree of p is denoted deg(p) and is
the maximum of the total degrees of the non-trivial summands, i.e.

deg(p) := max
{
|α|

∣
∣ cα �= 0

}
.

The space of all polynomials in x1, . . . , xd is denoted Pd, while the subset
consisting of those d-variate polynomials of total degree at most k is denoted
Pd

≤k. These spaces of multivariate polynomials can be written as (direct sums
of) tensor products of spaces of univariate polynomials:

Pd = P⊗ · · · ⊗P

Pd
≤k =

⊕

|α|≤k

Pα1 ⊗ · · · ⊗Pαd
.

A polynomial that contains only terms of fixed total degree k ∈ N0, i.e.
one of the form

p(x) =
∑

|α|=k

cαx
α
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for coefficients cα ∈ R, is said to be homogenous of degree k: p satisfies
the homogeneity relation p(λx) = λkp(x) for every scalar λ. Homogeneous
polynomials are useful in both theory and practice because every polynomial
can be written as a sum of homogeneous ones, and the total degree provides
a grading of the space of polynomials:

Pd =
⊕

k∈N0

{
p ∈ Pd

∣
∣ p is homogeneous of degree k

}
.

Given a measure μ on R
d, it is tempting to apply the Gram–Schmidt

process with respect to the inner product

〈f, g〉L2(μ) :=

∫

Rd

f(x)g(x) dμ(x)

to the monomials {xα | α ∈ N
d
0} to obtain a system of orthogonal polyno-

mials for the measure μ. However, there is an immediate problem, in that
orthogonal polynomials of several variables are not unique. In order to apply
the Gram–Schmidt process, we need to give a linear order to multi-indices
α ∈ N

d
0. Common choices of ordering for multi-indices α (here illustrated for

d = 2) include the lexicographic ordering

α (0, 0) (0, 1) (0, 2) (0, 3) · · · (1, 1) (1, 2) · · ·

|α| 0 1 2 3 · · · 2 3 · · ·

which has the disadvantage that it does not respect the total degree |α|, and
the graded reverse-lexicographic ordering

α (0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (0, 3) · · ·

|α| 0 1 1 2 2 2 3 · · ·
which does respect total degree; the reversals of these orderings, in which
one orders first by α1 instead of αn, are also commonly used. In any case,
there is no natural ordering of Nd

0, and different orders will give different
sequences of orthogonal polynomials. Instead of fixing such a total order, we
relax Definition 8.1 slightly:

Definition 8.24. Let μ be a non-negative measure onR
d. A family of polyno-

mials Q = {qα | α ∈ N
d
0} is called a weakly orthogonal system of polynomials

if qα is such that

〈qα, p〉L2(μ) = 0 for all p ∈ Pd with deg(p) < |α|.

The system Q is called a strongly orthogonal system of polynomials if

〈qα, qβ〉L2(μ) = 0 ⇐⇒ α �= β.
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Hence, in the many-variables case, an orthogonal polynomial of total
degree n, while it is required to be orthogonal to all polynomials of strictly
lower total degree, may be non-orthogonal to other polynomials of the same
total degree n. However, the meaning of orthonormality is unchanged: a sys-
tem of polynomials {pα | α ∈ N

d
0} is orthonormal if

〈pα, pβ〉L2(μ) = δαβ .

While the computation of orthogonal polynomials of many variables is, in
general, a difficult task, it is substantially simpler if the measure is a product
measure: multivariate orthogonal polynomials can be obtained as products
of univariate orthogonal polynomials.

Theorem 8.25. Suppose that μ =
⊗d

i=1 μi is a product measure on R
d and

that, for each i = 1, . . . , d, Q(i) = {q(i)αi | αi ∈ Ni} is a system of orthogonal
polynomials for the marginal measure μi on R. Then

Q =
d⊗

i=1

Q(i) =

{

qα :=
d∏

i=1

q(i)αi

∣
∣
∣
∣
∣
α ∈ N1 × · · · × Nd

}

is a strongly orthogonal system of polynomials for μ in which deg(qα) = |α|.

Proof. It is clear that qα, as defined above, has total degree |α|. Let qα and
qβ be distinct polynomials in the proposed orthogonal systemQ. Since α �= β,
it follows that α and β differ in at least one component, so suppose without
loss of generality that α1 �= β1. By Fubini’s theorem,

〈qα, qβ〉L2(μ) =

∫

Rd

qαqβ dμ =

∫

Rd−1

d∏

j=2

q(j)αj
q
(j)
βj

[∫

R

q(1)α1
q
(1)
β1

dμ1

]

dμ2⊗· · ·⊗μd.

But, since Q(1) is a system of orthogonal univariate polynomials for μ1, and
since α1 �= β1, ∫

R

q(1)α1
(x1)q

(1)
β1

(x1) dμ1(x1) = 0.

Hence, 〈qα, qβ〉L2(μ) = 0.
On the other hand, for each polynomial qα ∈ Q,

‖qα‖2L2(μ) =
∥
∥q(1)α1

∥
∥2
L2(μ1)

∥
∥q(2)α2

∥
∥2
L2(μ2)

. . .
∥
∥q(d)αd

∥
∥2
L2(μd)

,

which is strictly positive by the assumption that each Q(i) is a system of
orthogonal univariate polynomials for μi.

Hence, 〈qα, qβ〉L2(μ) = 0 if and only if α and β are distinct, so Q is a
system of strongly orthogonal polynomials for μ.  !
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8.9 Exercises

Exercise 8.1. Prove that the L2(R, μ) inner product is positive definite on
the space P of all polynomials if all polynomials are μ-integrable and the
measure μ has infinite support.

Exercise 8.2. Prove Theorem 8.7. That is, show that if μ has finite moments
only of degrees 0, 1, . . . , r, then μ admits only a finite system of orthogonal
polynomials q0, . . . , qd, where d = min{�r/2�,#supp(μ)− 1}.

Exercise 8.3. Define a Borel measure, the Cauchy–Lorentz distribution, μ
on R by

dμ

dx
(x) =

1

π

1

1 + x2
.

Show that μ is a probability measure, that dimL2(R, μ;R) = ∞, find all
orthogonal polynomials for μ, and explain your results.

Exercise 8.4. Following the example of the Cauchy–Lorentz distribution,
given � ∈ [0,∞), construct an explicit example of a probability measure
μ ∈M1(R) with moments of orders up to � but no higher.
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Exercise 8.5. Calculate orthogonal polynomials for the generalized Maxwell
distribution dμ(x) = xαe−x2

dx on the half-line [0,∞), where α > −1 is a
constant. The case α = 2 is known as the Maxwell distribution and the case
α = 0 as the half-range Hermite distribution.

Exercise 8.6. The coefficients of any system of orthogonal polynomials are
determined, up to multiplication by an arbitrary constant for each degree, by
the Hankel determinants of the polynomial moments. Show that, if mn and
Hn are as in (8.1), then the degree-n orthogonal polynomial qn for μ is

qn(x) = cn det

⎡

⎢
⎢
⎢
⎢
⎣

mn

Hn

...
m2n−1

1 · · · xn−1 xn

⎤

⎥
⎥
⎥
⎥
⎦
,

i.e.

qn(x) = cn det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m0 m1 m2 · · · mn

m1 m2 m3 · · · mn+1

...
...

...
. . .

...

mn−1 mn mn+2 · · · m2n−1

1 x x2 · · · xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where, for each n, cn �= 0 is an arbitrary choice of normalization (e.g. cn = 1
for monic orthogonal polynomials).

Exercise 8.7. Let μ be the probability distribution of Y := eX , where
X ∼ N (0, 1) is a standard normal random variable, i.e. let μ be the standard
log-normal distribution. The following exercise shows that the system Q =
{qk | k ∈ N0} of orthogonal polynomials for μ is not a complete orthogonal
basis for L2((0,∞), μ;R).
(a) Show that μ has the Lebesgue density function ρ : R→ R given by

ρ(y) := I[y > 0]
1

y
√
2π

exp

(

−1

2
(log y)2

)

.

(b) Let f ∈ L1(R, μ;R) be odd and 1-periodic, i.e. f(x) = −f(−x) = f(x+1)
for all x ∈ R. Show that, for all k ∈ N0,

∫ ∞

0

ykf(log y) dμ(y) = 0.

(c) Let g := f ◦ log and suppose that g ∈ L2((0,∞), μ;R). Show that the
expansion of g in the orthogonal polynomials {qk | k ∈ N0} has all
coefficients equal to zero, and thus that this expansion does not converge
to g when g �= 0.
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Exercise 8.8. Complete the proof of Theorem 8.9 by deriving the formula
for βn.

Exercise 8.9. Calculate the orthogonal polynomials of Table 8.2 by hand
for degree at most 5, and write a numerical program to compute them for
higher degree.

Exercise 8.10. Let x0, . . . , xn be distinct nodes in an interval I and let
�i ∈ P≤n be the associated Lagrange basis polynomials. Define λ : I → R by

λ(x) :=

n∑

i=0

|�i(x)|.

Show that, with respect to the supremum norm ‖f‖∞ := supx∈I |f(x)|, the
polynomial interpolation operatorΠ from C0(I;R) toP≤n has operator norm
given by

‖Π‖op = ‖λ‖∞,

i.e. the Lebesgue constant of the interpolation scheme is the supremum norm
of the sum of absolute values of the Lagrange basis polynomials.

Exercise 8.11. Using the three-term recurrence relation (n+1)Len+1(x) =
(2n+ 1)xLen(x) − nLen−1(x), prove by induction that, for all n ∈ N0,

d

dx
Len(x) =

n

x2 − 1
(xLen(x)− Len−1(x)),

and

d

dx

(

(1− x2) d

dx

)

Len(x) = −n(n+ 1)Len(x).

Exercise 8.12. Let γ = N (0, 1) be standard Gaussian measure on R. Es-
tablish the integration-by-parts formula

∫

R

f(x)g′(x) dγ(x) = −
∫

R

(f ′(x)− xf(x))g(x) dγ(x).

Using the three-term recurrence relation Hen+1(x) = xHen(x) − nHen−1(x),
prove by induction that, for all n ∈ N0,

d

dx
Hen(x) = nHen−1(x),

and
(

d2

dx2
− x d

dx

)

Hen(x) = −nHen(x).

Exercise 8.13 (Spectral convergence of Hermite expansions). Let γ =
N (0, 1) be standard Gaussian measure on R. Use Exercise 8.12 to mimic
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the proof of Theorem 8.23 to show that there is a constant Ck ≥ 0 that may
depend upon k but is independent of d and f such that, for all f ∈ Hk(R, γ),
f and its degree d expansion in the Hermite orthogonal basis of L2(R, γ)
satisfy

‖f −Πdf‖L2(γ) ≤ Ckd
−k/2‖f‖Hk(γ).

Exercise 8.14 (Spectral convergence for classical orthogonal polynomial
expansions). Let Q = {qn | n ∈ N0} be orthogonal polynomials for an abso-
lutely continuous measure dμ = w(x) dx on R, where the weight function w

is proportional to 1
Q(x) exp

(∫ L(x)
Q(x) dx

)
with L linear and Q quadratic, which

are eigenfunctions for the differential operator L = Q(x) d2

dx2 + L(x) d
dx with

eigenvalues λn = n
(
n−1
2 Q

′′ + L′).
(a) Show that μ has an integration-by-parts formula of the following form:

for all smooth functions f and g with compact support in the interior of
supp(μ),

∫

R

f(x)g′(x) dμ(x) = −
∫

R

(Tf)(x)g(x) dμ(x),

where

(Tf)(x) = f ′(x) + f(x)
L(x) −Q′(x)

Q(x)
.

(b) Hence show that, for smooth enough f , Lf = T 2(Qf)− T (Lf).
(c) Hence show that, whenever f has 2m derivatives,

〈f, qn〉L2(μ) =
〈Lmf, qn〉L2(μ)

λmn

Show also that L is a symmetric and negative semi-definite operator
(i.e. 〈Lf, g〉L2(μ) = 〈f,Lg〉L2(μ) and 〈Lf, f〉L2(μ) ≤ 0), so that (−L) has
a square root (−L)1/2, and L has a square root L1/2 = i(−L)1/2.

(d) Conclude that there is a constant Ck ≥ 0 that may depend upon k but is
independent of d and f such that f : R → R and its degree d expansion
Πdf in the basis Q of L2(R, μ) satisfy

‖f −Πdf‖L2(μ) ≤ Ck|λd|−k/2
∥
∥Lk/2f

∥
∥
L2(μ)

.

8.10 Tables of Classical Orthogonal Polynomials

Tables 8.2 and 8.3 and Figure 8.4 on the next pages summarize the key
properties of the classical families of orthogonal polynomials associated with
continuous and discrete probability distributions on R. More extensive infor-
mation of this kind can be found in Chapter 22 of Abramowitz and Stegun
(1992) and in Chapter 18 of the NIST Handbook (Olver et al., 2010), and
these tables are based upon those sources.
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Chapter 9

Numerical Integration

A turkey is fed for 1000 days — every
day confirms to its statistical department
that the human race cares about its welfare
“with increased statistical significance”. On

the 1001st day, the turkey has a surprise.

The Fourth Quadrant: A Map of the Limits
of Statistics

Nassim Taleb

The topic of this chapter is the numerical evaluation of definite integrals.
Many UQ methods have at their core simple probabilistic constructions such
as expected values, and expectations are nothing more than Lebesgue inte-
grals. However, while it is mathematically enough to know that the Lebesgue
integral of some function exists, practical applications demand the evaluation
of such an integral — or, rather, its approximate evaluation. This usually
means evaluating the integrand at some finite collection of sample points. It
is important to bear in mind, though, that sampling is not free (each sam-
ple of the integration domain, or function evaluation, may correspond to a
multi-million-dollar experiment) and that practical applications often involve
many dependent and independent variables, i.e. high-dimensional domains
of integration. Hence, the accurate numerical integration of integrands over
high-dimensional spaces using few samples is something of a ‘Holy Grail’ in
this area.

The topic of integration has a long history, being along with differentia-
tion one of the twin pillars of calculus, and was historically also known as
quadrature. Nowadays, quadrature usually refers to a particular method of
numerical integration, namely a finite-sum approximation of the form

∫

Θ

f(x) dμ(x) ≈
n∑

i=1

wif(xi),

© Springer International Publishing Switzerland 2015
T.J. Sullivan, Introduction to Uncertainty Quantification, Texts
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166 9 Numerical Integration

where the nodes x1, . . . , xn ∈ Θ and weights w1, . . . , wn ∈ R are chosen
depending only upon the measure space (Θ,F , μ), independently of the
integrand f : Θ→ R. This chapter will cover three principal forms of quadra-
ture that are distinguished by the manner in which the nodes are gener-
ated: classical deterministic quadrature, in which the nodes are determined
in a deterministic fashion from the measure μ; random sampling (Monte
Carlo) methods, in which the nodes are random samples from the measure
μ; and pseudo-random (quasi-Monte Carlo) methods, in which the nodes
are in fact deterministic, but are in some sense ‘approximately random’ and
μ-distributed. Along the way, there will be some remarks about how the
various methods scale to high-dimensional domains of integration.

9.1 Univariate Quadrature

This section concerns the numerical integration of a real-valued function f
with respect to a measure μ on a sub-interval I ⊆ R, doing so by sampling
the function at pre-determined points of I and taking a suitable weighted
average. That is, the aim is to construct an approximation of the form

∫

I

f(x) dμ(x) ≈ Q(f) :=
n∑

i=1

wif(xi),

with prescribed nodes x1, . . . , xn ∈ I and weights w1, . . . , wn ∈ R. The app-
roximation Q(f) is called a quadrature formula. The aim is to choose nodes
and weights wisely, so that the quality of the approximation

∫
I f dμ ≈ Q(f)

is good for a large class of integrands f . One measure of the quality of the
approximation is the following:

Definition 9.1. A quadrature formula is said to have order of accuracy
n ∈ N0 if

∫
I
p dμ = Q(p) whenever p ∈ P≤n, i.e. if it exactly integrates every

polynomial of degree at most n.

A quadrature formula Q(f) =
∑n

i=1 wif(xi) can be identified with the
discrete measure

∑n
i=1 wiδxi . If some of the weights wi are negative, then

this measure is a signed measure. This point of view will be particularly
useful when considering multi-dimensional quadrature formulae. Regardless
of the signature of the weights, the following limitation on the accuracy of
quadrature formulae is fundamental:

Lemma 9.2. Let μ be a non-negative measure on an interval I ⊆ R. Then
no quadrature formula with n distinct nodes in the interior of supp(μ) can
have order of accuracy 2n or greater.
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Proof. Let x1, . . . , xn be any n distinct points in the interior of the support of
μ, and let w1, . . . , wn ∈ R be any weights. Let f be the degree-2n polynomial
f(x) :=

∏n
j=1(x− xj)2, i.e. the square of the nodal polynomial. Then

∫

I

f(x) dμ(x) > 0 =

n∑

j=1

wjf(xj),

since f vanishes at each node xj . Hence, the quadrature formula is not exact
for polynomials of degree 2n.  !

The first, simplest, quadrature formulae to consider are those in which
the nodes form an equally spaced discrete set of points in [a, b]. Many of
these quadrature formulae may be familiar from high-school mathematics.
Suppose in what follows that μ is Lebesgue measure on the interval [a, b].

Definition 9.3 (Midpoint rule). The midpoint quadrature formula has the
single node x1 := b−a

2 and the single weight w1 := |b − a|. That is, it is the
approximation

∫ b

a

f(x) dx ≈ Q1(f) := f

(
b− a
2

)

|b− a|.

Another viewpoint on the midpoint rule is that it is the approximation
of the integrand f by the constant function with value f

(
b−a
2

)
. The next

quadrature formula, on the other hand, amounts to the approximation of f
by the affine function

x �→ f(a) +
x− a
b− a (f(b)− f(a))

that equals f(a) at a and f(b) at b.

Definition 9.4 (Trapezoidal rule). The trapezoidal quadrature formula has

the nodes x1 := a and x2 := b and the weights w1 := |b−a|
2 and w2 := |b−a|

2 .
That is, it is the approximation

∫ b

a

f(x) dx ≈ Q2(f) :=
(
f(a) + f(b)

) |b− a|
2

.

Recall the definitions of the Lagrange basis polynomials �j and the
Lagrange interpolation polynomial L for a set of nodes and values from
Definition 8.17. The midpoint and trapezoidal quadrature formulae amount
to approximating f by a Lagrange interpolation polynomial L of degree 0

or 1 and hence approximating
∫ b

a
f(x) dx by

∫ b

a
L(x) dx. The general such

construction for equidistant nodes is the following:
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Definition 9.5 (Newton–Cotes formula). Consider n + 1 equally spaced
points

a = x0 < x1 = x0 + h < x2 = x0 + 2h < · · · < xn = b,

where h = 1
n . The closed Newton–Cotes quadrature formula is the quadrature

formula that arises from approximating f by the Lagrange interpolating poly-
nomial L that runs through the points (xj , f(xj))

n
j=0; the open Newton–Cotes

quadrature formula is the quadrature formula that arises from approximating
f by the Lagrange interpolating polynomial L that runs through the points
(xj , f(xj))

n−1
j=1 .

In general, when a quadrature rule is formed based upon an polynomial
interpolation of the integrand, we have the following formula for the weights
in terms of the Lagrange basis polynomials:

Proposition 9.6. Given an integrand f : [a, b]→ R and nodes x0, . . . , xn in
[a, b], let Lf denote the (Lagrange form) degree-n polynomial interpolant of
f through x0, . . . , xn, and let Q denote the quadrature rule

∫ b

a

f(x)dx ≈ Q(f) :=
∫ b

a

Lf(x)dx.

Then Q is the quadrature rule Q(f) =
∑n

j=0 wjf(xj) with weights

wj =

∫ b

a

�j(x) dx.

Proof. Simply observe that

∫ b

a

Lf(x) dx =

∫ b

a

n∑

j=0

f(xj)�j(x) dx

=

n∑

j=0

f(xj)

∫ b

a

�j(x) dx.  !

The midpoint rule is the open Newton–Cotes quadrature formula on three
points; the trapezoidal rule is the closed Newton–Cotes quadrature formula
on two points. Milne’s rule is the open Newton–Cotes formula on five points;
Simpson’s rule, Simpson’s 3

8 rule, and Boole’s rule are the closed Newton–
Cotes formulae on three, four, and five points respectively. The quality of
Newton–Cotes quadrature formulae can be very poor, essentially because
Runge’s phenomenon can make the quality of the approximation f ≈ L very
poor.

Remark 9.7. In practice, quadrature over [a, b] is often performed by taking
a partition (which may or may not be uniform)

a = p0 < p1 < · · · < pk = b
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of the interval [a, b], applying a primitive quadrature rule such as the ones
developed in this chapter to each subinterval [pi−1, pi], and taking a weighted
sum of the results. Such quadrature rules are called compound quadrature
rules. For example, the elementary n-point ‘Riemann sum’ quadrature rule

∫ b

a

f(x)dx ≈
n−1∑

i=0

1

n
f

(

a+
b− a
2n

+ i
b− a
n

)

(9.1)

is a compound application of the mid-point quadrature formula from Defini-
tion 9.3. Note well that (9.1) is not the same as the n-point Newton–Cotes
rule.

9.2 Gaussian Quadrature

Gaussian quadrature is a powerful method for numerical integration in which
both the nodes and the weights are chosen so as to maximize the order of
accuracy of the quadrature formula. Remarkably, by the correct choice of
n nodes and weights, the quadrature formula can be made accurate for all
polynomials of degree at most 2n−1. Moreover, the weights in this quadrature
formula are all positive, and so the quadrature formula is stable even for high
n; see Exercise 9.1 for an illustration of the shortcomings of quadrature rules
with weights of both signs.

Recall that the objective of quadrature is to approximate a definite integral
∫ b

a
f(x) dμ(x), where μ is a (non-negative) measure on [a, b] by a finite sum

Qn(f) :=
∑n

j=1 wjf(xj), where the nodes x1, . . . , xn and weights w1, . . . , wn

will be chosen appropriately. For the method of Gaussian quadrature, let
Q = {qn | n ∈ N} be a system of orthogonal polynomials for μ. That is, qn
is a polynomial of degree exactly n such that

∫ b

a

p(x)qn(x) dμ(x) = 0 for all p ∈ P≤n−1.

Recalling that, by Theorem 8.16, qn has n distinct roots in [a, b], let the nodes
x1, . . . , xn be the zeros of qn.

Definition 9.8. The n-point Gauss quadrature formula Qn is the quadrature
formula with nodes (sometimes called Gauss points) x1, . . . , xn given by the
zeros of the orthogonal polynomial qn and weights given in terms of the
Lagrange basis polynomials �i for the nodes x1, . . . , xn by

wi :=

∫ b

a

�i dμ =

∫ b

a

∏

1≤j≤n
j 
=i

x− xj
xi − xj

dμ(x). (9.2)
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If p ∈ P≤n−1, then p obviously coincides with its Lagrange-form interpo-
lation on the nodal set {x1, . . . , xn}, i.e.

p(x) =

n∑

i=1

p(xi)�i(x) for all x ∈ R.

Therefore,

∫ b

a

p(x) dμ(x) =

∫ b

a

n∑

i=1

p(xi)�i(x) dμ(x) =
n∑

i=1

p(xi)wi =: Qn(p),

and so the n-point Gauss quadrature rule is exact for polynomial integrands
of degree at most n − 1. However, Gauss quadrature in fact has an optimal
degree of polynomial exactness:

Theorem 9.9. The n-point Gauss quadrature formula has order of accuracy
exactly 2n− 1, and no quadrature formula on n nodes has order of accuracy
higher than this.

Proof. Lemma 9.2 shows that no quadrature formula can have order of
accuracy greater than 2n− 1.

On the other hand, suppose that p ∈ P≤2n−1. Factor this polynomial as

p(x) = g(x)qn(x) + r(x),

where deg(g) ≤ n− 1, and the remainder r is also a polynomial of degree at
most n− 1. Since qn is orthogonal to all polynomials of degree at most n− 1,
∫ b

a
gqn dμ = 0. However, since g(xj)qn(xj) = 0 for each node xj ,

Qn(gqn) =

n∑

j=1

wjg(xj)qn(xj) = 0.

Since
∫ b

a · dμ and Qn( · ) are both linear operators,

∫ b

a

p dμ =

∫ b

a

r dμ and Qn(p) = Qn(r).

Since deg(r) ≤ n−1,
∫ b

a r dμ = Qn(r), and so
∫ b

a p dμ = Qn(p), as claimed.  !

Recall that the Gauss weights were defined in (9.2) by wi :=
∫ b

a �i dμ. The
next theorem gives a neat expression for the Gauss weights in terms of the
orthogonal polynomials {qn | n ∈ N}.
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Theorem 9.10. The Gauss weights for a non-negative measure μ satisfy

wj =
an
an−1

∫ b

a
qn−1(x)

2 dμ(x)

q′n(xj)qn−1(xj)
, (9.3)

where ak is the coefficient of xk in qk(x).

Proof. First note that

∏

1≤j≤n
j 
=i

(x− xj) =
1

x− xi
∏

1≤j≤n

(x − xj) =
1

an

qn(x)

x− xi
.

Furthermore, taking the limit x→ xi using l’Hôpital’s rule yields

∏

1≤j≤n
j 
=i

(xi − xj) =
q′n(xi)
an

.

Therefore,

wi =
1

q′n(xi)

∫ b

a

qn(x)

x− xi
dμ(x). (9.4)

The remainder of the proof concerns this integral
∫ b

a
qn(x)
x−xi

dμ(x).
Observe that

1

x− xi
=

1−
(

x
xi

)k

x− xi
+

(
x

xi

)k
1

x− xi
, (9.5)

and that the first term on the right-hand side is a polynomial of degree at
most k−1. Hence, upon multiplying both sides of (9.5) by qn and integrating,
it follows that, for k ≤ n,

∫ b

a

xkqn(x)

x− xi
dμ(x) = xki

∫ b

a

qn(x)

x− xi
dμ(x).

Hence, for any polynomial p ∈ P≤n,

∫ b

a

p(x)qn(x)

x− xi
dμ(x) = p(xi)

∫ b

a

qn(x)

x− xi
dμ(x). (9.6)

In particular, for p = qn−1, since deg
(

qn
x−xi

)
≤ n− 1, write

qn
x− xi

= anx
n−1 + s(x) for some s ∈ P≤n−2

= an

(

xn−1 − qn−1(x)

an−1

)

+
anqn−1(x)

an−1
+ s(x).
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Since the first and third terms on the right-hand side are orthogonal to qn−1,
(9.6) with p = qn−1 implies that

∫ b

a

qn(x)

x− xi
dμ(x) =

1

qn−1(xi)

∫ b

a

anqn−1(x)

an−1
qn−1(x) dμ(x)

=
an

an−1qn−1(xi)

∫ b

a

qn−1(x)
2 dμ(x).

Substituting this into (9.4) yields (9.3).  !

Furthermore:

Theorem 9.11. For any non-negative measure μ on R, the Gauss quadrature
weights are positive.

Proof. Fix 1 ≤ i ≤ n and consider the polynomial

p(x) :=
∏

1≤j≤n
j 
=i

(x− xj)2

i.e. the square of the nodal polynomial, divided by (x− xi)2. Since deg(p) <
2n− 1, the Gauss quadrature formula is exact, and since p vanishes at every
node other than xi, it follows that

∫ b

a

p dμ =

n∑

j=1

wjp(xj) = wip(xi).

Since μ is a non-negative measure, p ≥ 0 everywhere, and p(xi) > 0, it follows
that wi > 0.  !

Finally, we already know that Gauss quadrature on n nodes has the opti-
mal degree of polynomial accuracy; for not necessarily polynomial integrands,
the following error estimate holds:

Theorem 9.12 (Stoer and Bulirsch, 2002, Theorem 3.6.24). Suppose that
f ∈ C2n([a, b];R). Then there exists ξ ∈ [a, b] such that

∫ b

a

f(x) dμ(x) −Qn(f) =
f (2n)(ξ)

(2n)!
‖pn‖2L2(μ),

where pn is the monic orthogonal polynomial of degree n for μ. In particular,

∣
∣
∣
∣
∣

∫ b

a

f(x) dμ(x)−Qn(f)

∣
∣
∣
∣
∣
≤ ‖f (2n)‖∞

(2n)!
‖pn‖2L2(μ),

and the error is zero if f is a polynomial of degree at most 2n− 1.
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In practice, the accuracy of a Gaussian quadrature for a given integrand f
can be estimated by computing Qn(f) and Qm(f) for some m > n. However,
this can be an expensive proposition, since none of the evaluations of f for
Qn(f) will be re-used in the calculation of Qm(f). This deficiency motivates
the development of nested quadrature rules in the next section.

9.3 Clenshaw–Curtis/Fejér Quadrature

Despite its optimal degree of polynomial exactness, Gaussian quadrature
has some major drawbacks in practice. One principal drawback is that, by
Theorem 8.16, the Gaussian quadrature nodes are never nested — that is,
if one wishes to increase the accuracy of the numerical integral by passing
from using, say, n nodes to 2n nodes, then none of the first n nodes will be
re-used. If evaluations of the integrand are computationally expensive, then
this lack of nesting is a major concern. Another drawback of Gaussian quadra-
ture on n nodes is the computational cost of computing the weights, which
is O(n2) by classical methods such as the Golub–Welsch algorithm, though
there also exist O(n) algorithms that are more expensive than the Golub–
Welsch method for small n, but vastly preferable for large n. By contrast, the
Clenshaw–Curtis quadrature rules (although in fact discovered thirty years
previously by Fejér) are nested quadrature rules, with accuracy comparable
to Gaussian quadrature in many circumstances, and with weights that can
be computed with cost O(n logn).

The Clenshaw–Curtis quadrature formula for the integration of a function
f : [−1, 1]→ R with respect to uniform (Lebesgue) measure on [−1, 1] begins
with a change of variables:

∫ 1

−1

f(x) dx =

∫ π

0

f(cos θ) sin θ dθ.

Now suppose that f has a cosine series

f(cos θ) =
a0
2

+

∞∑

k=1

ak cos(kθ),

where the cosine series coefficients are given by

ak =
2

π

∫ π

0

f(cos θ) cos(kθ) dθ.

If so, then
∫ π

0

f(cos θ) sin θ dθ = a0 +

∞∑

k=1

2a2k
1− (2k)2

.
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By the Nyquist–Shannon sampling theorem, for k ≤ n, ak can be computed
exactly by evaluating f(cos θ) at n + 1 equally spaced nodes {θj = jπ

n | j =
0, . . . , n}, where the interior nodes have weight 1

n and the endpoints have
weight 1

2n :

ak =
2

n

⎛

⎝(−1)k f(−1)
2

+
f(1)

2
+

n−1∑

j=1

f
(
cos jπ

n

)
cos kjπ

n

⎞

⎠ . (9.7)

For k > n, formula (9.7) for ak is false, and falls prey to aliasing error :
sampling θ �→ cos(θ) and θ �→ cos((n + 1)θ) at n + 1 equally spaced nodes
produces identical sequences of sample values even though the functions being
sampled are distinct.1 Clearly, this choice of nodes has the nesting property
that doubling n produces a new set of nodes containing all of the previous
ones.

Note that the cosine series expansion of f is also a Chebyshev polynomial
expansion of f , since by construction Tk(cos θ) = cos(kθ):

f(x) =
a0
2
T0(x) +

∞∑

k=1

akTk(x). (9.8)

The nodes xj = cos jπ
n are the extrema of the Chebyshev polynomial Tn.

In contrast to Gaussian quadrature, which evaluates the integrand at n+1
points and exactly integrates polynomials up to degree 2n + 1, Clenshaw–
Curtis quadrature evaluates the integrand at n + 1 points and exactly inte-
grates polynomials only up to degree n. However, in practice, the fact that
Clenshaw–Curtis quadrature has lower polynomial accuracy is not of great
concern, and has accuracy comparable to Gaussian quadrature for ‘most’
integrands (which are ipso facto not polynomials). Heuristically, this may
be attributed to the rapid convergence of the Chebyshev expansion (9.8).
Trefethen (2008) presents numerical evidence that the ‘typical’ error for both
Gaussian and Clenshaw–Curtis quadrature of an integrand in Ck is of the
order of 1

(2n)kk . This comparable level of accuracy, the nesting property of

the Clenshaw–Curtis nodes, and the fact that the weights can be computed
in O(n logn) time, make Clenshaw–Curtis quadrature an attractive option
for numerical integration.

1 This is exactly the phenomenon that makes car wheels appear to spin backwards instead
of forwards in movies. The frame rates in common use are f = 24, 25 and 30 frames per
second. A wheel spinning at f revolutions per second will appear to be stationary; one
spinning at f + 1 revolutions per second (i.e. 1 + 1

f
revolutions per frame) will appear to

be spinning at 1 revolution per second; and one spinning at f − 1 revolutions per second
will appear to be spinning in reverse at 1 revolution per second.
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9.4 Multivariate Quadrature

Having established quadrature rules for integrals with a one-dimensional
domain of integration, the next agendum is to produce quadrature formu-
lae for multi-dimensional (i.e. iterated) integrals of the form

∫

∏d
j=1[aj ,bj]

f(x) dx =

∫ bd

ad

. . .

∫ b1

a1

f(x1, . . . , xd) dx1 . . . dxd.

This kind of multivariate quadrature is also known as cubature. At first sight,
multivariate quadrature does not seem to require mathematical ideas more
sophisticated than univariate quadrature. However, practical applications
often involve high-dimensional domains of integration, which leads to an exp-
onential growth in the computational cost of quadrature if it is performed
näıvely. Therefore, it becomes necessary to develop new techniques in order
to circumvent this curse of dimension.

Tensor Product Quadrature Formulae. The first, obvious, strategy to
try is to treat d-dimensional integration as a succession of d one-dimensional
integrals and apply our favourite one-dimensional quadrature formula d
times. This is the idea underlying tensor product quadrature formulae, and it
has one major flaw: if the one-dimensional quadrature formula uses n nodes,
then the tensor product rule uses N = nd nodes, which very rapidly leads to
an impractically large number of integrand evaluations for even moderately
large values of n and d. In general, when the one-dimensional quadrature
formula uses n nodes, the error for an integrand in Cr using a tensor product
rule is O(n−r/d).

Remark 9.13 (Sobolev spaces for quadrature). The Sobolev embedding
theorem (Morrey’s inequality) only gives continuity, and hence well-defined
pointwise values, of functions in Hs(X ) when 2s > dimX . Therefore, since
pointwise evaluation of integrands is a necessary ingredient of quadrature, the
correct Sobolev spaces for the study of multidimensional quadrature rules are
the spaces Hs

mix(X ) of dominating mixed smoothness. Whereas the norm in
Hs(X ) is, up to equivalence,

‖u‖Hs(X ) =
∑

‖α‖1≤s

∥
∥
∥
∥
∂‖α‖1u

∂xα

∥
∥
∥
∥
L2(X )

,

the norm in Hs
mix(X ) is, up to equivalence,

‖u‖Hs
mix(X ) =

∑

‖α‖∞≤s

∥
∥
∥
∥
∂‖α‖1u

∂xα

∥
∥
∥
∥
L2(X )

.
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Fig. 9.1: Illustration of the nodes of the 2-dimensional Smolyak sparse quadra-

ture formulae Q
(2)
� for levels � = 1, . . . , 6, in the case that the 1-dimensional

quadrature formula Q
(1)
� has 2� − 1 equally spaced nodes in the interior of

[0, 1], i.e. is an open Newton–Cotes formula.

So, for example, in two or more variables, H1
mix(X ) is a space intermediate

between H1(X ) and H2(X ), and is a space in which pointwise evaluation
always makes sense. In particular, functions in Hs

mix(X ) enjoy Hs regularity
in every direction individually, and ‘using’ derivative in one direction does
not ‘deplete’ the number of derivatives available in any other.

Sparse Quadrature Formulae. The curse of dimension, which quickly
renders tensor product quadrature formulae impractical in high dimension,
spurs the consideration of sparse quadrature formulae, in which far fewer than
nd nodes are used, at the cost of some accuracy in the quadrature formula: in
practice, we are willing to pay the price of loss of accuracy in order to get any
answer at all! One example of a popular family of sparse quadrature rules
is the recursive construction of Smolyak sparse grids, which is particularly
useful when combined with a nested one-dimensional quadrature rule such as
the Clenshaw–Curtis rule.

Definition 9.14. Suppose that, for each � ∈ N, a one-dimensional quadra-

ture formula Q
(1)
� is given. Suppose also that the quadrature rules are nested,
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i.e. the nodes for Q
(1)
� are a subset of those for Q

(1)
�+1. The Smolyak quadra-

ture formula in dimension d ∈ N at level � ∈ N is defined in terms of the
lower-dimensional quadrature formulae by

Q
(d)
� (f) :=

(
�∑

i=1

(
Q

(1)
i −Q(1)

i−1

)
⊗Q(d−1)

�−i+1

)

(f) (9.9)

Formula (9.9) takes a little getting used to, and it helps to first consider
the case d = 2 and a few small values of �. First, for � = 1, Smolyak’s rule

is the quadrature formula Q
(2)
1 = Q

(1)
1 ⊗Q(1)

1 , i.e. the full tensor product of

the one-dimensional quadrature formula Q
(1)
1 with itself. For the next level,

� = 2, Smolyak’s rule is

Q
(2)
2 =

2∑

i=1

(
Q

(1)
i −Q(1)

i−1

)
⊗Q(1)

�−i+1

= Q
(1)
1 ⊗Q(1)

2 +
(
Q

(1)
2 −Q(1)

1

)
⊗Q(1)

1

= Q
(1)
1 ⊗Q(1)

2 +Q
(1)
2 ⊗Q(1)

1 −Q(1)
1 ⊗Q(1)

1 .

The “−Q(1)
1 ⊗Q(1)

1 ” term is included to avoid double counting. See Figure 9.1
for illustrations of Smolyak sparse grids in two dimensions, using the simple
(although practically undesirable, due to Runge’s phenomenon) Newton–
Cotes quadrature rules as the one-dimensional basis for the sparse product.

In general, when the one-dimensional quadrature formula at level � uses n�
nodes, the quadrature error for an integrand in Cr using Smolyak recursion is

∣
∣
∣
∣
∣

∫

[0,1]d
f(x) dx−Q(f)

∣
∣
∣
∣
∣
= O(n−r

� (log n�)
(d−1)(r+1)). (9.10)

In practice, one needs a lot of smoothness for the integrand f , or many sample
points, to obtain a numerical integral for f that is accurate to within 0 ≤ ε�
1: the necessary number of function evaluations grows like d−c log ε for c > 0.
Note also that the Smolyak quadrature rule includes nodes with negative �
weights, and so it can fall prey to the problems outlined in Exercise 9.1.

Remark 9.15 (Sparse quadratures as reduced bases). As indicated above in
the discussion preceding Definition 9.5, there is a deep connection between
quadrature and interpolation theory. The sparse quadrature rules of Smolyak
and others can be interpreted in the interpolation context as the deletion
of certain cross terms to form a reduced interpolation basis. For example,
consider the Smolyak–Newton–Cotes nodes in the square [−1, 1]× [−1, 1] as
illustrated in Figure 9.1.
(a) At level � = 1, the only polynomial functions in the two variables x1 and

x2 that can be reconstructed exactly by interpolation of their values at
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the unique node are the constant functions. Thus, the interpolation basis
at level � = 1 is just {1} and the interpolation space is P2

≤0.
(b) At level � = 2, the three nodes in the first coordinate direction allow

perfect reconstruction of quadratic polynomials in x1 alone; similarly,
quadratic polynomials in x2 alone can be reconstructed. However, it is not
true that every quadratic polynomial in x1 and x2 can be reconstructed
from its values on the sparse nodes: p(x1, x2) = x1x2 is a non-trivial
quadratic that vanishes on the nodes. Thus, the interpolation basis at
level � = 2 is

{1, x1, x2, x21, x22},

and so the corresponding interpolation space is a proper subspace of P2
≤2.

In contrast, the tensor product of two 1-dimensional 3-point quadrature
rules corresponds to the full interpolation space P2

≤2.

9.5 Monte Carlo Methods

As seen above, tensor product quadrature formulae suffer from the curse of
dimensionality: they require exponentially many evaluations of the integrand
as a function of the dimension of the integration domain. Sparse grid con-
structions only partially alleviate this problem. Remarkably, however, the
curse of dimensionality can be entirely circumvented by resorting to random
sampling of the integration domain — provided, of course, that it is possi-
ble to draw samples from the measure against which the integrand is to be
integrated.

Monte Carlo methods are, in essence, an application of the Law of Large
Numbers (LLN). Recall that the LLN states that if Y (1), Y (2), . . . are ind-
ependently and identically distributed according to the law of a random vari-
able Y with finite expectation E[Y ], then the sample average

Sn :=
1

n

n∑

i=1

Y (i)

converges in some sense to E[Y ] as n → ∞. The weak LLN states that the
mode of convergence is convergence in probability:

for all ε > 0, lim
n→∞P

[∣
∣
∣
∣
∣

1

n

n∑

i=1

Y (i) − E[Y ]

∣
∣
∣
∣
∣
> ε

]

= 0;

whereas the strong LLN states that the mode of convergence is actually
almost sure:

P

[

lim
n→∞

1

n

n∑

i=1

Y (i) = E[Y ]

]

= 1.
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The LLN is further generalized by the Birkhoff–Khinchin ergodic theorem,
and indeed ergodicity properties are fundamental to more advanced variants
of Monte Carlo methods such as Markov chain Monte Carlo.

Remark 9.16. The assumption that the expected value exists and is finite is
essential. If this assumption fails, then Monte Carlo estimates can give app- �
arently plausible but ‘infinitely wrong’ results; in particular, a ‘lucky’ Monte
Carlo run may appear to converge to some value and mislead a practitioner
into believing that the expected value of Y has indeed been found.

For example, suppose that X ∼ γ = N (0, 1) is a standard normal random
variable, and let a ∈ R. Now take

Y :=
1

a−X .

Note that Y is γ-almost surely finite. However, Eγ [Y ] is undefined: if Eγ [Y ]
did exist, then x �→ |a − x|−1 would have to be γ-integrable, and indeed
it would have to be integrable with respect to Lebesgue measure on some
neighbourhood of a, which it is not.

It is interesting to observe, as illustrated in Figure 9.2, that for small values
of a, Monte Carlo estimates of E[Y ] are obviously poorly behaved; seeing
these, one would not be surprised to learn that Eγ [Y ] does not exist. However,
for |a| # 1, the Monte Carlo average appears (but only appears) to converge
to a−1, even though Eγ [Y ] still does not exist. There is, in fact, no qualitative
difference between the two cases illustrated in Figure 9.2. That the Monte
Carlo average cannot, in fact, converge to a−1 follows from the following
result, which should be seen as a result in the same vein as Kolmogorov’s
zero-one law (Theorem 2.37):

Theorem 9.17 (Kesten, 1970). Let Y ∼ μ be a real-valued random variable
for which Eμ[Y ] is undefined, i.e. Eμ[max{0, Y }] = Eμ[max{0,−Y }] = +∞.
Let (Y (i))i∈N be a sequence of i.i.d. draws from μ, and let Sn := 1

n

∑n
i=1 Y

(i).
Then exactly one of the following holds true:

(a) Pμ

[
limn→∞ Sn = +∞

]
= 1;

(b) Pμ

[
limn→∞ Sn = −∞

]
= 1;

(c) Pμ

[
lim infn→∞ Sn = −∞ and lim supn→∞ Sn = +∞

]
= 1.

‘Vanilla’ Monte Carlo. The simplest formulation of Monte Carlo integra-
tion applies the LLN to the random variable Y = f(X), where f is the
function to be integrated with respect to a probability measure μ and X is
distributed according to μ. Assuming that one can generate independent and
identically distributed samples X(1), X(2), . . . from the probability measure
μ, the nth Monte Carlo approximation is

EX∼μ[f(X)] ≈ Sn(f) :=
1

n

n∑

i=1

f
(
X(i)

)
.
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Fig. 9.2: ‘Convergence’ of Sn := 1
n

∑n
i=1(a − X(i))−1 to a−1 when X(i) ∼

N (0, 1) are i.i.d. E
[
(a+X(1))−1

]
is undefined for every a ∈ R, which is easily

guessed from the plot for a = 2, but less easily guessed from the apparent
convergence of Sn to a−1 when a = 8. Each figure shows 10 independent
Monte Carlo runs.

To obtain an error estimate for such Monte Carlo integrals, we simply
apply Chebyshev’s inequality to Sn(f), which has expected value E[Sn(f)] =
E[f(X)] and variance

V[Sn(f)] =
1

n2

n∑

i=1

V[f(X)] =
V[f(X)]

n
,
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to obtain that, for any t ≥ 0,

P
[
|Sn(f)− E[f(X)]| ≥ t

]
≤ V[f(X)]

nt2
.

That is, for any ε ∈ (0, 1], with probability at least 1 − ε with respect
to the n Monte Carlo samples, the Monte Carlo average Sn(f) lies within
(V[f(X)]/nε)1/2 of the true expected value E[f(X)]. Thus, for a fixed int-
egrand f , the error decays like n−1/2 regardless of the dimension of the
domain of integration, and this is a major advantage of Monte Carlo int-
egration: as a function of the number of samples, n, the Monte Carlo error
is not something dimension- or smoothness-dependent, like the tensor prod-
uct quadrature rule’s error of O(n−r/d). However, the slowness of the n−1/2

decay rate is a major limitation of ‘vanilla’ Monte Carlo methods; it is unde-
sirable to have to quadruple the number of samples to double the accuracy
of the approximate integral. That said, part of the reason why the above
error bound is so ‘bad’ is that it only uses variance information; much better
bounds are available for bounded random variables, q.v. Hoeffding’s inequal-
ity (Corollary 10.13).

One obvious omission in the above presentation of Monte Carlo integration
is the accessibility of the measure of integration μ. We now survey a few of
the many approaches to this problem.

Re-Weighting of Samples. In the case that we wish to evaluate an exp-
ected value Eμ[f ] for some integrand f against μ, but can only easily draw
samples from some other measure ν, one approach is to re-weight the samples
of ν: if the density dμ

dν exists and is computationally accessible, then we can
estimate Eμ[f ] via

Eμ[f ] = Eν

[

f
dμ

dν

]

≈ 1

n

n∑

i=1

f
(
X(i)

)dμ

dν

(
X(i)

)
,

where X(1), . . . , X(n) are independent and identically ν-distributed. Some-
times, the density dμ

dν is only known up to a normalization constant, i.e.
dμ
dν ∝ ρ, in which case we use the estimate

Eμ[f ] =
Eν [fρ]

Eν [ρ]
≈

∑n
i=1 f

(
X(i)

)
ρ
(
X(i)

)

∑n
i=1 ρ

(
X(i)

) .

A prime example of this situation is integration with respect to a Bayesian
posterior in the sense of Chapter 6, which is easily expressed in terms of its
non-normalized density with respect to the prior. Note, though, that while �
this approach yields convergent estimates for expected values of integrals
against μ, it does not yield μ-distributed samples.
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CDF Inversion. If μ is a measure onR with cumulative distribution function

Fμ(x) :=

∫

(−∞,x]

dμ,

and, moreover, the inverse cumulative distribution function F−1
μ is computa-

tionally accessible, then samples from μ can be generated using the implica-
tion

U ∼ Unif([0, 1]) =⇒ F−1
μ (U) ∼ μ. (9.11)

Similar transformations can be used to convert samples from other ‘stan-
dard’ distributions (e.g. the Gaussian measure N (0, 1) on R) into samples
from related distributions (e.g. the Gaussian measure N (m,C) on R

d). How-
ever, in general, such explicit transformations are not available; often, μ
is a complicated distribution on a high-dimensional space. One method for
(approximately) sampling from such distributions, when a density function
is known, is Markov chain Monte Carlo.

Markov Chain Monte Carlo. Markov chain Monte Carlo (MCMC) meth-
ods are a class of algorithms for sampling from a probability distribution μ
based on constructing a Markov chain that has μ as its equilibrium distribu-
tion. The state of the chain after a large number of steps is then used as a
sample of μ. The quality of the sample improves as a function of the number
of steps. Usually it is not hard to construct a Markov chain with the desired
properties; the more difficult problem is to determine how many steps are
needed to converge to μ within an acceptable error.

More formally, suppose that μ is a measure on R
d that has Lebesgue den-

sity proportional to a known function ρ, and although ρ(x) can be evaluated
for any x ∈ R

d, drawing samples from μ is difficult. Suppose that, for each
x ∈ R

d, q( · |x) is a probability density on R
d that can be both easily eval-

uated and sampled. The Metropolis–Hastings algorithm is to pick an initial
state x0 ∈ R

d and then iteratively construct xn+1 from xn in the following
manner:
(a) draw a proposal state x′ from q( · |xn);
(b) calculate the acceptance probability a := min{1, r}, where r is the accep-

tance ratio

r :=
ρ(x′)
ρ(xn)

q(xn|x′)
q(x′|xn)

; (9.12)

(c) let u be a sample from the uniform distribution on [0, 1];
(d) set

xn+1 :=

{
x′, (‘accept’) if u ≤ a,
xn, (‘reject’) if u > a.

(9.13)

In the simplest case that q is symmetric, (9.12) reduces to ρ(x′)/ρ(xn), and
so, on a heuristic level, the accept-or-reject step (9.13) drives the Markov
chain (xn)n∈N towards regions of high μ-probability.
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It can be shown, under suitable technical assumptions on ρ and q, that the
random sequence (xn)n∈N in R

d has μ as its stationary distribution, i.e. for
large enough n, xn is approximately μ-distributed; furthermore, for suffi-
ciently large n and m, xn, xn+m, xn+2m . . . are approximately independent
μ-distributed samples. There are, however, always some correlations between
successive samples.

Remark 9.18. Note that, when the proposal and target distributions coin-
cide, the acceptance ratio (9.12) equals one. Note also that, since only ratios
of the proposal and target densities appear in (9.12), it is sufficient to know
q and ρ up to an arbitrary multiplicative normalization factor.

Example 9.19. To illustrate the second observation of Remark 9.18, con-
sider the problem of sampling the uniform distribution Unif(E) on a subset
E ⊆ R

d. The Lebesgue density of this measure is

dUnif(E)

dx
(x) =

{
1/ vol(E), if x ∈ E,
0, if x /∈ E,

which is difficult to access, since E may have a sufficiently complicated geo-
metry that its volume vol(E) is difficult to calculate. However, by Remark
9.18, we can use the MCMC approach with the non-normalized density

ρE(x) := IE(x) :=

{
1, if x ∈ E,
0, if x /∈ E,

in order to sample Unif(E).
Figure 9.3 shows the results of applying this method to sample the uniform

distribution on the square S := [−1, 1]2 — for which, of course, many simpler
sampling strategies exist — and to sample the uniform distribution on the
crescent-shaped region

E := {(x, y) ∈ R
2 | 1− x2 < y < 2− 2x2}.

In each case, after an initial burn-in period of one million steps, every mth

MCMC sample was taken as an approximate draw from Unif(S) or Unif(E),
with a stride of m = 200. The proposal distribution was x′ ∼ N (xn,

1
4 ). The

approximate draws from Unif(S) and Unif(E) are shown in Figure 9.3(b) and
(c) respectively. Direct draws from the standard uniform distribution on S,
using an off-the-shelf random number generator, are shown for comparison
in Figure 9.3(a). To give an idea of the approximate uniformity of the draws,
the absolute Pearson correlation coefficient of any two components of Figure
9.3(a) and (b) is at most 0.02, as is the correlation of successive draws.

Note that simply rescaling the y-coordinates of samples from Unif(S) �
would not yield samples from Unif(E), since samples transformed in this
way would cluster near the end-points of the crescent; the samples illustrated
in Figure 9.3(c) show no such clustering.
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Fig. 9.3: Samples of uniform distributions generated using Metropolis–
Hastings Markov chain Monte Carlo, as in Example 9.19. In (a), N = 1000
draws from the uniform distribution on the square [−1, 1]2. In (b), N draws
from the uniform distribution on [−1, 1]2 generated using MH MCMC. In
(c), N draws from the uniform distribution on a crescent-shaped region. To
give an additional indication of the approximately uniform distribution of
the points in space and in ‘time’ n, in each figure they are shaded on a linear
greyscale from white (at n = 1) to black (at n = N), a colouring convention
that is compatible with the unsampled background also being white.

There are many variations on the basic Metropolis–Hastings scheme that
try to improve the rate of convergence, decrease correlations, or allow more
efficient exploration of distributions μ with ‘nasty’ features, e.g. being multi-
modal, or concentrated on or near a low-dimensional submanifold of Rd.

For example, the HMC approach (‘HMC’ originally stood for hybrid Monte
Carlo, but Hamiltonian Monte Carlo is also used, and is more descriptive)
uses gradient-based information and Hamiltonian dynamics to produce the
proposals for the Metropolis algorithm; this method allows the generation of
larger jumps x′ − xn that still have large acceptance probability α, thereby
reducing the correlation between successive states, and also can also target
new states with a higher acceptance probability than the usual Metropolis–
Hastings algorithm. The reversible-jump MCMC method allows exploration
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of probability distributions on spaces whose dimension varies during the
course of the algorithm: this approach is appropriate when ‘the number
of things you don’t know is one of the things you don’t know’, and when
used judiciously it also promotes sparsity in the solution (i.e. parsimony of
explanation).

Multi-Level Monte Carlo. A situation that often arises in problems where
the integrand f is associated with the solution of some ODE or PDE is that
one has a choice about how accurately to numerically (i.e. approximately)
solve that differential equation, e.g. through a choice of time step or spa-
tial mesh size. Of course, a more accurate solution is more computationally
costly to obtain, especially for PDEs. However, for Monte Carlo methods,
this problem is actually an opportunity in disguise.

Suppose that we wish to calculate Eμ[f ], but have at our disposal hierarchy
f0, f1, . . . , fL of approximations to f , indexed by a level parameter � — as
mentioned above, the level typically corresponds to a choice of time step or
mesh size in an ODE or PDE solver. Assume that f = fL; one should think
of f0 as a coarse model for f , f1 as a better model, and so on. By the linearity
property of the expectation,

Eμ[f ] ≡ Eμ[fL] = Eμ[f0] +

L∑

�=1

Eμ[f� − f�−1].

Each of the summands can be estimated independently using Monte Carlo:

Eμ[f ] ≈
1

n0

n0∑

i=1

f0
(
X(i)

)
+

L∑

�=1

1

n�

n�∑

i=1

(
f�
(
X(i)

)
− f�−1

(
X(i)

))
. (9.14)

On the face of it, there appears to be no advantage to this decomposition
of the Monte Carlo estimator, but this misses two important factors: the
computational cost of evaluating f�(X

(i)) is much lower for lower values of
�, and the error of the Monte Carlo estimate for the �th summand scales like√
Vμ[f� − f�−1]/n�. Therefore, if the ‘correction terms’ between successive

fidelity levels are of low variance, then smaller sample sizes n� can be used
for lower values of �. The MLMC estimator (9.14) is prototypical of a family
of variance reduction methods for improving the performance of the näıve
Monte Carlo estimator.

One practical complication that must be addressed is that the domains of
the functions f� and f�′ are usually distinct. Therefore, strictly speaking, the
MLMC estimator (9.14) does not make sense as written. A more accurate
version of (9.14) would be

Eμ[f ] ≈
1

n0

n0∑

i=1

f0
(
X(i)

)
+

L∑

�=1

1

n�

n�∑

i=1

(
f�
(
X(�,i)

)
− f�−1

((
X(�,i)

))
,
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where the X(�,i) are i.i.d. draws of the projection of the law of X onto the
domain of f�, and we further assume that X(�,i) can be ‘coarsened’ to be
a valid input for f�−1 as well. (Equally well, we could take valid inputs for
f�−1 and assume that they can be ‘refined’ to become valid inputs for f�.)
Naturally, these complications make necessary a careful convergence analysis
for the MLMC estimator.

9.6 Pseudo-Random Methods

This chapter concludes with a brief survey of numerical integration methods
that are in fact based upon deterministic sampling, but in such a way as the
sample points ‘might as well be’ random. To motivate this discussion, observe
that all the numerical integration schemes — over, say, [0, 1]d with respect
to uniform measure — that have been considered in this chapter are of the
form

∫

[0,1]d
f(x) dx ≈

n∑

i=1

wif(xi)

for some sequence of nodes xi ∈ [0, 1]d and weights wi; for example, Monte
Carlo integration takes the nodes to be independent uniformly distributed
samples, and wi ≡ 1

n . By the Koksma–Hlawka inequality (Theorem 9.23
below), the difference between the exact value of the integral and the result
of the numerical quadrature is bounded above by the product of two terms:
one term is a measure of the smoothness of f , independent of the nodes; the
other term is the discrepancy of the nodal set, which can be thought of as
measuring how non-uniformly-distributed the nodes are.

As noted above in the comparison between Gaussian and Clenshaw–Curtis
quadrature, it is convenient for the nodal set {x1, . . . , xn} to have the prop-
erty that it can be extended to a larger nodal set (e.g. with n + 1 or 2n
points) without having to discard the original n nodes and their associated
evaluations of the integrand f . The Monte Carlo approach clearly has this
extensibility property, but has a slow rate of convergence that is independent
both of the spatial dimension and the smoothness of f . Deterministic quadra-
tures may or may not be extensible, and have a convergence rate better than
that of Monte Carlo, but fall prey to the curse of dimension. What is desired
is an integration scheme that somehow combines all the desirable features.
One attempt to do so is a quasi-Monte Carlo method in which the nodes are
drawn from a sequence with low discrepancy.

Definition 9.20. The discrepancy of a finite set of points P ⊆ [0, 1]d is
defined by

D(P ) := sup
B∈J

∣
∣
∣
∣
#(P ∩B)

#P
− λd(B)

∣
∣
∣
∣
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where λd denotes d-dimensional Lebesgue measure, and J is the collection
of all products of the form

∏d
i=1[ai, bi), with 0 ≤ ai < bi ≤ 1. The star

discrepancy of P is defined by

D∗(P ) := sup
B∈J ∗

∣
∣
∣
∣
#(P ∩B)

#P
− λd(B)

∣
∣
∣
∣

where J ∗ is the collection of all products of the form
∏d

i=1[0, bi), with
0 ≤ bi < 1.

It can be shown that, for general d ∈ N, D∗(P ) ≤ D(P ) ≤ 2dD∗(P ). In
dimension d = 1, the star discrepancy satisfies

D∗(x1, . . . , xn) = sup
[0,b)∈J ∗

∣
∣
∣
∣
#({x1, . . . , xn} ∩ [0, b))

n
− λ1([0, b))

∣
∣
∣
∣

= sup
0≤b<1

∣
∣
∣
∣
#{i | xi < b}

n
− b

∣
∣
∣
∣

= ‖FX − id‖∞,

where FX : [0, 1]→ [0, 1] is the (left-continuous) cumulative distribution func-
tion of the nodes x1, . . . , xn defined by

FX(x) :=
#{i | xi < x}

n
.

Note that, when x1 < · · · < xn,

FX(xi) =
i− 1

n
for i = 1, . . . , n. (9.15)

and so, for ordered nodes xi,

D∗(x1, . . . , xn) = max
1≤i≤n

max

{∣
∣
∣
∣
i− 1

n
− xi

∣
∣
∣
∣ ,

∣
∣
∣
∣
i

n
− xi

∣
∣
∣
∣

}

. (9.16)

See Figure 9.4 for an illustration.

Definition 9.21. Let f : [0, 1]d → R. If J ⊆ [0, 1]d is a sub-rectangle of
[0, 1]d, i.e. a d-fold product of subintervals of [0, 1], let ΔJ(f) be the sum
of the values of f at the 2d vertices of J , with alternating signs at nearest-
neighbour vertices. The Vitali variation of f : [0, 1]d → R is defined to be

V Vit(f) := sup

{
∑

J∈Π

∣
∣ΔJ(f)

∣
∣

∣
∣
∣
∣
∣
Π is a partition of [0, 1]d into finitely
many non-overlapping sub-rectangles

}
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x1 x2 x3 x4 x5

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

Fig. 9.4: The star discrepancy of a finite set of nodes is the ‖ · ‖∞ distance
between the cumulative distribution function of the nodes (in black) and that
of the uniform measure on [0, 1] (in grey). The set of five nodes shown has
star discrepancy 3

10 , due to the placement of node x4.

For 1 ≤ s ≤ d, the Hardy–Krause variation of f is defined to be

V HK(f) :=
∑

F

V Vit(f |F ),

where the sum runs over all faces F of [0, 1]d having dimension at most s.

In dimension d = 1, the Vitali and Hardy–Krause variations are equal, and
coincide with the usual notion of total variation of a function f : [0, 1]→ R:

V (f) := sup

⎧
⎨

⎩

n∑

j=1

∣
∣f(xj)− f(xj−1)

∣
∣

∣
∣
∣
∣
∣
∣

n ∈ N and
0 = x0 < x1 < · · · < xn = 1

⎫
⎬

⎭
.

For quasi-Monte Carlo integration over an interval, Koksma’s inequality
provides an upper bound on the error of the quadrature rule in terms of the
variation of the integrand and the discrepancy of the nodal set:

Theorem 9.22 (Koksma). If f : [0, 1] → R has bounded variation, then,
whenever x1, . . . , xn ∈ [0, 1),

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−
∫ 1

0

f(x) dx

∣
∣
∣
∣
∣
≤ V (f)D∗(x1, . . . , xn).

This bound is sharp in the sense that, for every x1, . . . , xn ∈ [0, 1), there
exists f : [0, 1]→ R with V (f) = 1 such that
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∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−
∫ 1

0

f(x) dx

∣
∣
∣
∣
∣
= D∗(x1, . . . , xn).

Proof. A short proof of Koksma’s inequality can be given using the Stieltjes
integral:

1

n

n∑

i=1

f(xi)−
∫ 1

0

f(x) dx =

∫ 1

0

f(x) d(FX − id)(x)

= −
∫ 1

0

(FX(x)− x) df(x)

by integration by parts, since the boundary terms FX(0)− id(0) and FX(1)−
id(1) both vanish. The triangle inequality for the Stieltjes integral then yields

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−
∫ 1

0

f(x) dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫ 1

0

(FX(x) − x) df(x)
∣
∣
∣
∣

≤ ‖FX − id‖∞V (f)
= D∗(x1, . . . , xn)V (f).

To see that Koksma’s inequality is indeed sharp, fix nodes x1, . . . , xn ∈
[0, 1); for ease of notation, let xn+1 := 1. By (9.16), there is a node xj such
that either

|FX(xj)− xj | = D∗(x1, . . . , xn) (9.17)

or

|FX(xj+1)− xj | = D∗(x1, . . . , xn).

If |FX(xj)− xj | = D∗(x1, . . . , xn), then define f : [0, 1]→ R by

f(x) := I[x < xj ] ≡
{
1, if x < xj ,

0, if x ≥ xj ;

Note that f has a single jump discontinuity of height 1 at xj , and is constant
either side of the discontinuity, so f is of bounded variation with V (f) = 1.
Then

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−
∫ 1

0

f(x) dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
j − 1

n
− xj

∣
∣
∣
∣

= |F (xj)− xj | by (9.15)

= D∗(x1, . . . , xn) by (9.17)

as claimed. The other case, in which |FX(xj+1) − xj | = D∗(x1, . . . , xn), is
similar, with integrand f(x) := I[x < xj+1].  !
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The multidimensional version of Koksma’s inequality is the Koksma–
Hlawka inequality:

Theorem 9.23 (Koksma–Hlakwa). Let f : [0, 1]d → R have bounded Hardy–
Krause variation. Then, for any x1, . . . , xn ∈ [0, 1)d,

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−
∫

[0,1]d
f(x) dx

∣
∣
∣
∣
∣
≤ V HK(f)D∗(x1, . . . , xn).

This bound is sharp in the sense that, for every x1, . . . , xn ∈ [0, 1)d and every
ε > 0, there exists f : [0, 1]d → R with V HK(f) = 1 such that

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−
∫

[0,1]d
f(x) dx

∣
∣
∣
∣
∣
> D∗(x1, . . . , xN )− ε.

There are several well-known sequences, such as those of Van der Corput,
Halton, and Sobol′, with star discrepancy D∗(x1, . . . , xn) ≤ C(logn)d/n,
which is conjectured to be the best possible star discrepancy. Hence, for
quasi-Monte Carlo integration using such sequences,

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−
∫

[0,1]d
f(x) dx

∣
∣
∣
∣
∣
≤ CV

HK(f)(logn)d

n
.

It is essentially the number-theoretic properties of these sequences that ensure
their quasi-randomness, equidistributedness and low discrepancy.

Definition 9.24. The Van der Corput sequence in (0, 1) with base b ∈ N,
b > 1, is defined by

x(b)n :=

K∑

k=0

dk(n)b
−k−1,

where n =
∑K

k=0 dk(n)b
k is the unique representation of n in base b with

0 ≤ dn(n) < b. The Halton sequence in (0, 1)d with bases b1, . . . , bd ∈ N, each
greater than 1, is defined in terms of Van der Corput sequences by

xn =
(
x(b1)n , . . . , x(bd)n

)
.

In practice, to assure that the discrepancy of a Halton sequence is low,
the generating bases are chosen to be pairwise coprime. See Figure 9.5
(a–c) for an illustration of the Halton sequence generated by the prime (and
hence coprime) bases 2 and 3, and Figure 9.5(d) for an illustration of why
the coprimality assumption is necessary if the Halton sequence is to be even
approximately uniformly distributed.

Quasi-Monte Carlo quadrature nodes for uniform measure on [0, 1] can
be transformed into quasi-Monte Carlo quadrature nodes for other measures
in much the same way as for Monte Carlo nodes, e.g. by re-weighting or
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Fig. 9.5: The first N points in the two-dimensional Halton sequence with base
b ∈ N

2, for various N , with shading as in Figure 9.3. Subfigure (d) illustrates
the strong correlation structure when b has non-coprime components.

by coordinate transformations, as in (9.11). Thus, for example, quasi-Monte
Carlo sampling of N (m,C) on R

d can be performed by taking (xn)n∈N to be
a low-discrepancy sequence in the d-dimensional unit cube

x̂n := m+ C1/2
(
Φ−1(xn,1), . . . , Φ

−1(xn,d)
)

where Φ : R→ [0, 1] denotes the cumulative distribution function of the stan-
dard normal distribution,

Φ(x) :=
1√
2π

∫ x

−∞
exp(−t2/2) dt = 1

2

(

1 + erf
x√
2

)

,
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0 1 2 3 4 5−1−2−3−4−5

0
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−1
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−3

Fig. 9.6: The Halton sequence from Figure 9.5(c), transformed to be a se-
quence of approximate draws from the Gaussian distribution N (m,C) on R

2

with m = 0 and C =

[
5/4 1/4

1/4 1

]

, with shading as in Figure 9.3.

and Φ−1 is its inverse (the probit function). This procedure is illustrated in
Figure 9.6 for the Gaussian measure

N
([

0

0

]

,

[
5/4 1/4

1/4 1

])

on R
2.
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9.8 Exercises

Exercise 9.1. A quadrature rule Q with weights of both signs has the unde-
sirable property that an integrand f can take strictly positive values every-
where in the integration domain, yet have Q(f) = 0. Explicitly, suppose that
Q has nodes m+ n nodes x+1 , . . . , x

+
m, x

−
1 , . . . , x

−
n ∈ [a, b] with corresponding

weights w+
1 , . . . , w

+
m > 0 and w−

1 , . . . , w
−
n > 0, so that

Q(f) =
m∑

i=1

w+
i f(x

+
i ) +

n∑

j=1

w−
j f(x

−
j ).

(a) Consider first the case m = n = 1. Construct a smooth, strictly positive
function f : [a, b]→ R with f(x1) = −w1 and f(x2) = w1. Show that this
f has Q(f) = 0.

(b) Generalize the previous part to generalm,n ≥ 1 to find a smooth, strictly
positive function f : [a, b]→ R with Q(f) = 0.

(c) Further generalize this result to multivariate quadrature for the approx-
imate integration of f : X → R with respect to μ, where X ⊆ R

d and μ
is a non-negative measure on X .

Exercise 9.2 (Takahasi–Mori (tanh–sinh) Quadrature (Takahasi and Mori,

1973/74)). Consider a definite integral over [−1, 1] of the form
∫ 1

−1
f(x) dx.

Employ a change of variables x = ϕ(t) := tanh(π2 sinh(t)) to convert this to
an integral over the real line. Let h > 0 and K ∈ N, and approximate this
integral over R using 2K+1 points equally spaced from −Kh to Kh to derive
a quadrature rule

∫ 1

−1

f(x) dx ≈ Qh,K(f) :=

k=K∑

k=−K

wkf(xk),

where xk := tanh(π2 sinh(kh)),

and wk :=
π
2h cosh(kh)

cosh2(π2 sinh(kh))
.

How are these nodes distributed in [−1, 1]? Why is excluding the nodes xk
with |k| > K a reasonable approximation?

Exercise 9.3. Following Remark 9.15, find the interpolation basis associated
with the Smolyak–Newton–Cotes quadrature rule in d ∈ N variables at level
� ∈ N.

Exercise 9.4. Implement the Metropolis–Hastings Markov chain Monte
Carlo method and use it to sample the uniform measure on your favourite
open subset E ⊂ R

d, ideally a non-convex one, as in Example 9.19. Do the
same for a density that is not an indicator function, but has non-convex
superlevel sets, e.g. a bimodal convex combination of two Gaussian measures
with distinct means.
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Exercise 9.5. Let μ be a probability measure on R with known probability
density function ρ and cumulative distribution function F with known inverse
F−1. Sample μ using

(a) inversion of F , as in (9.11);
(b) the Metropolis–Hastings MCMC method, as in Exercise 9.4.

Use histograms/empirical cumulative distribution functions to compare the
closeness of the sample distributions to μ.

Exercise 9.6. Using (9.16), generate Van der Corput sequences and produce
numerical evidence for the assertion that they have star discrepancy at most
C logn

n .

Exercise 9.7. Consider, for k ∈ N, the function fn : [0, 1]
2 → R defined by

fk(x, y) := cos(2kπx) +
(
y − 1

2

)
,

for which clearly
∫ 1

0

∫ 1

0
fk(x, y) dxdy = 0. Integrate this function approxi-

mately using

(a) Gaussian quadrature;
(b) Clenshaw–Curtis quadrature;
(c) Monte Carlo; and
(d) a Halton sequence.

Compare accuracy of the results that you obtain as a function of N , the
number of sample points used, and as a function of k.



Chapter 10

Sensitivity Analysis and Model
Reduction

Le doute n’est pas un état bien agréable, mais
l’assurance est un état ridicule.

Voltaire

The topic of this chapter is sensitivity analysis, which may be broadly
understood as understanding how f(x1, . . . , xn) depends upon variations not
only in the xi individually, but also combined or correlated effects among
the xi. There are two broad classes of sensitivity analyses: local sensitivity
analyses study the sensitivity of f to variations in its inputs at or near a
particular base point, as exemplified by the calculation of derivatives; global
sensitivity analyses study the ‘average’ sensitivity of f to variations of its
inputs across the domain of definition of f , as exemplified by the McDiarmid
diameters and Sobol′ indices introduced in Sections 10.3 and 10.4 respectively.

A closely related topic is that of model order reduction, in which it is
desired to find a new function f̃ , a function of many fewer inputs than f , that
can serve as a good approximation to f . Practical problems from engineering
and the sciences can easily have models with millions or billions of inputs
(degrees of freedom). Thorough exploration of such high-dimensional spaces,
e.g. for the purposes of parameter optimization or a Bayesian inversion, is all
but impossible; in such situations, it is essential to be able to resort to some
kind of proxy f̃ for f in order to obtain results of any kind, even though their
accuracy will be controlled by the accuracy of the approximation f̃ ≈ f .

© Springer International Publishing Switzerland 2015
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10.1 Model Reduction for Linear Models

Suppose that the model mapping inputs x ∈ C
n to outputs y = f(x) ∈ C

m

is actually a linear map, and so can be represented by a matrix A ∈ C
m×n.

There is essentially only one method for the dimensional reduction of such
linear models, the singular value decomposition (SVD).

Theorem 10.1 (Singular value decomposition). Every matrix A ∈ C
m×n

can be factorized as A = UΣV ∗, where U ∈ C
m×m is unitary (i.e. U∗U =

UU∗ = I), V ∈ C
n×n is unitary, and Σ ∈ R

m×n
≥0 is diagonal. Furthermore,

if A is real, then U and V are also real.

Remark 10.2. The existence of an SVD-like decomposition for an operator
A between Hilbert spaces is essentially the definition of A being a compact
operator (cf. Definition 2.48).

The columns of U are called the left singular vectors of A; the columns
of V are called the right singular vectors of A; and the diagonal entries of
Σ are called the singular values of A. While the singular values are unique,
the singular vectors may fail to be. By convention, the singular values and
corresponding singular vectors are ordered so that the singular values form a
decreasing sequence

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0.

Thus, the SVD is a decomposition of A into a sum of rank-1 operators:

A = UΣV ∗ =

min{m,n}∑

j=1

σjuj ⊗ vj =
min{m,n}∑

j=1

σjuj〈vj , · 〉.

The singular values and singular vectors are closely related to the eigen-
pairs of self-adjoint and positive semi-definite matrices A∗A:
(a) If m < n, then the eigenvalues of A∗A are σ21 , . . . , σ

2
m and n−m zeros,

and the eigenvalues of AA∗ are σ21 , . . . , σ
2
m.

(b) If m = n, then the eigenvalues of A∗A and of AA∗ are σ21 , . . . , σ
2
n.

(c) If m > n, then the eigenvalues of A∗A are σ21 , . . . , σ
2
n and the eigenvalues

of AA∗ are σ21 , . . . , σ
2
n and m− n zeros.

In all cases, the eigenvectors of A∗A are the columns of V , i.e. the right
singular vectors of A, and the eigenvectors of AA∗ are the columns of U , i.e.
the left singular vectors of A.

The appeal of the SVD is that it can be calculated in a numerically stable
fashion (e.g. by bidiagonalization via Householder reflections, followed by a
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variant of the QR algorithm for eigenvalues), and that it provides optimal
low-rank approximation of linear operators in a sense made precise by the
next two results:

Theorem 10.3 (Courant–Fischer minimax theorem). For A ∈ C
m×n and a

subspace E ⊆ C
n, let

∥
∥A|E

∥
∥
2
:= sup

x∈E\{0}

‖Ax‖2
‖x‖2

≡ sup
x∈E\{0}

〈x,A∗Ax〉1/2
‖x‖2

be the operator 2-norm of A restricted to E. Then the singular values of A
satisfy, for k = 1, . . . ,min{m,n},

σk = inf
subspaces E s.t.
codimE=k−1

∥
∥A|E

∥
∥
2
= inf

subspaces E s.t.
codimE≤k−1

∥
∥A|E

∥
∥
2
.

Proof. Let A have SVD A = UΣV ∗, and let v1, . . . , vn be the columns of
V , i.e. the eigenvectors of A∗A. Then, for any x ∈ C

n,

x =

n∑

j=1

〈x, vj〉vj , ‖x‖2 =

n∑

j=1

|〈x, vj〉|2,

A∗Ax =

n∑

j=1

σ2j 〈x, vj〉vj , 〈x,A∗Ax〉 =
n∑

j=1

σ2j |〈x, vj〉|2.

Let E ⊆ C
n have codimE ≤ k−1. Then the k-dimensional subspace spanned

by v1, . . . , vk has some x �= 0 in common with E, and so

〈x,A∗Ax〉 =
k∑

j=1

σ2j |〈x, vj〉|2 ≥ σ2k
k∑

j=1

|〈x, vj〉|2 = σ2k‖x‖2.

Hence, σk ≤
∥
∥A|E

∥
∥ for any E with codimE ≤ k − 1.

It remains only to find some E with codimE = k−1 for which σk ≥
∥
∥A|E

∥
∥.

Take E := span{vk, . . . , vn}. Then, for any x ∈ E,

〈x,A∗Ax〉 =
n∑

j=k

σ2j |〈x, vj〉|2 ≤ σ2k
n∑

j=k

|〈x, vj〉|2 = σ2k‖x‖2,

which completes the proof.  !

Theorem 10.4 (Eckart–Young low-rank approximation theorem). Given
A ∈ C

m×n, let Ak ∈ C
m×n be the matrix formed from the first k singular

vectors and singular values of A, i.e.

Ak :=

k∑

j=1

σjuj ⊗ vj . (10.1)
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Then
σk+1 = ‖A−Ak‖2 = inf

X∈C
m×n

rankX≤k

‖A−X‖2.

Hence, as measured by the operator 2-norm,
(a) Ak is the best approximation to A of rank at most k; and
(b) if A ∈ C

n×n, then A is invertible if and only if σn > 0, and σn is the
distance of A from the set of singular matrices.

Proof. Let Mk denote the set of matrices in C
m×n with rank ≤ k, and let

X ∈ Mk. Since rankX +dimkerX = n, it follows that codimkerX ≤ k. By
Theorem 10.3,

σk+1 ≤ sup
x∈E

codimE≤k

‖Ax‖2
‖x‖2

.

Hence,

σk+1 ≤ sup
x∈kerX

‖Ax‖2
‖x‖2

= sup
x∈kerX

‖(A−X)x‖2
‖x‖2

≤ ‖A−X‖2.

Hence σk+1 ≤ infX∈Mk
‖A−X‖2.

Now consider Ak as given by (10.1), which certainly has rankAk ≤ k.
Now,

A−Ak =

r∑

j=k+1

σjuj ⊗ vj ,

where r := rankA. Write x ∈ C
n as x =

∑n
j=1〈x, vj〉vj . Then

(A−Ak)x =

r∑

j=k+1

σjuj〈vj , x〉,

and so

‖(A−Ak)x‖22 =

r∑

j=k+1

σ2j |〈vj , x〉|2

≤ σ2k+1

r∑

j=k+1

|〈vj , x〉|2

≤ σ2k+1‖x‖22

Hence, ‖A−Ak‖2 ≤ σk+1.  !

See Chapter 11 for an application of the SVD to the analysis of sam-
ple data from random variables, a discrete variant of the Karhunen–Loève
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expansion, known as principal component analysis (PCA). Simply put, when
A is a matrix whose columns are independent samples from some stochastic
process (random vector), the SVD of A is the ideal way to fit a linear structure
to those data points. One may consider nonlinear fitting and dimensionality
reduction methods in the same way, and this is known as manifold learning.
There are many nonlinear generalizations of the SVD/PCA: see the bibliog-
raphy for some references.

10.2 Derivatives

One way to understand the dependence of f(x1, . . . , xn) upon x1, . . . , xn near
some nominal point x̄ = (x̄1, . . . , x̄n) is to estimate the partial derivatives of
f at x̄, i.e. to approximate

∂f

∂xi
(x̄) := lim

h→0

f(x̄1, . . . , x̄i + h, . . . , x̄n)− f(x̄)
h

.

For example, for a function f of a single real variable x, and with a fixed step
size h > 0, the derivative of f at x̄ may be approximated using the forward
difference

df

dx
(x̄) ≈ f(x̄+ h)− f(x̄)

h

or the backward difference

df

dx
(x̄) ≈ f(x̄)− f(x̄− h)

h
.

Similarly, the second derivative of f might be approximated using the second
order central difference

d2f

dx2
(x̄) ≈ f(x̄+ h)− 2f(x̄) + f(x̄− h)

h2
.

Ultimately, approximating the derivatives of f in this way is implicitly a poly-
nomial approximation: polynomials coincide with their Taylor expansions,
their derivatives can be computed exactly, and we make the approximation
that f ≈ p =⇒ f ′ ≈ p′. Alternatively, we can construct a randomized
estimate of the derivative of f at x̄ by random sampling of x near x̄ (i.e. x
not necessarily of the form x = x̄+ hei), as in the simultaneous perturbation
stochastic approximation (SPSA) method of Spall (1992).

An alternative paradigm for differentiation is based on the observation that
many numerical operations on a computer are in fact polynomial operations,
so they can be differentiated accurately using the algebraic properties of
differential calculus, rather than the analytical definitions of those objects.
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A simple algebraic structure that encodes first derivatives is the concept of
dual numbers, the abstract algebraic definition of which is as follows:

Definition 10.5. The dual numbers Rε are defined to be the quotient of the
polynomial ring R[x] by the ideal generated by the monomial x2.

In plain terms, Rε = {x0+x1ε | x0, x1 ∈ R}, where ε �= 0 has the property
that ε2 = 0 (ε is said to be nilpotent). Addition and subtraction of dual
numbers is handled componentwise; multiplication of dual numbers is han-
dled similarly to multiplication of complex numbers, except that the relation
ε2 = 0 is used in place of the relation i2 = −1; however, there are some addi-
tional subtleties in division, which is only well defined when the real part of
the denominator is non-zero, and is otherwise multivalued or even undefined.
In summary:

(x0 + x1ε) + (y0 + y1ε) = (x0 + y0) + (x1 + y1)ε,

(x0 + x1ε)− (y0 + y1ε) = (x0 − y0) + (x1 − y1)ε,
(x0 + x1ε)(y0 + y1ε) = x0y0 + (x0y1 + x1y0)ε

x0 + x1ε

y0 + y1ε
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0
y0

+
y0x1 − x0y1

y20
ε, if y0 �= 0,

x1
y1

+ zε, for any z ∈ R if x0 = y0 = 0,

undefined, if y0 = 0 and x0 �= 0.

A helpful representation of Rε in terms of 2× 2 real matrices is given by

x0 + x1ε←→
[
x0 x1

0 x0

]

so that ε←→
[
0 1

0 0

]

.

One can easily check that the algebraic rules for addition, multiplication, etc.
in Rε correspond exactly to the usual rules for addition, multiplication, etc.
of 2× 2 matrices.

Automatic Differentiation. A useful application of dual numbers is auto-
matic differentiation, which is a form of exact differentiation that arises as
a side-effect of the algebraic properties of the nilpotent element ε, which
behaves rather like an infinitesimal in non-standard analysis. Given the al-
gebraic properties of the dual numbers, any polynomial p(x) := p0 + p1x +
· · ·+ pnxn ∈ R[x]≤n, thought of as a function p : R→ R, can be extended to
a function p : Rε → Rε. Then, for any x0 + x1ε ∈ Rε,
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p(x0 + x1ε) =

n∑

k=0

pk(x0 + x1ε)
k

=

(
n∑

k=0

pkx
k
0

)

+
(
p1x1ε+ 2p2x0x1ε+ · · ·+ npnxn−1

0 x1ε
)

= p(x0) + p
′(x0)x1ε.

Thus the derivative of a real polynomial at x is exactly the coefficient of ε in its
dual-number extension p(x+ε). Indeed, by considering Taylor series, it follows
that the same result holds true for any analytic function (see Exercise 10.1).
Since many numerical functions on a computer are evaluations of polynomials
or power series, the use of dual numbers offers accurate symbolic differenti-
ation of such functions, once those functions have been extended to accept
dual number arguments and return dual number values. Implementation of
dual number arithmetic is relatively straightforward for many common pro-
gramming languages such as C/C++, Python, and so on; however, technical
problems can arise when interfacing with legacy codes that cannot be modi-
fied to operate with dual numbers.

Remark 10.6. (a) An attractive feature of automatic differentiation is that
complicated compositions of functions can be differentiated exactly using
the chain rule

(f ◦ g)′(x) = f ′(g(x))g′(x)

and automatic differentiation of the functions being composed.
(b) For higher-order derivatives, instead of working in a number system for

which ε2 = 0, one works in a system in which ε3 or some other higher
power of ε is zero. For example, to obtain automatic second derivatives,
consider

Rε,ε2 = {x0 + x1ε + x2ε2 | x0, x1, x2 ∈ R}

with ε3 = 0. The derivative at x of a polynomial p is again the coefficient
of ε in p(x + ε), and the second derivative is twice (i.e. 2! times) the
coefficient of ε2 in p(x+ ε).

(c) Analogous dual systems can be constructed for any commutative ring R,
by defining the dual ring to be the quotient ring R[x]/(x2) — a good
example being the ring of square matrices over some field. The image of
x under the quotient map then has square equal to zero and plays the
role of ε in the above discussion.

(d) Automatic differentiation of vector-valued functions of vector arguments
can be accomplished using a nilpotent vector ε = (ε1, . . . , εn) with the
property that εiεj = 0 for all i, j ∈ {1, . . . , n}; see Exercise 10.3.

The Adjoint Method. A common technique for understanding the impact
of uncertain or otherwise variable parameters on a system is the so-called
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adjoint method, which is in fact a cunning application of the implicit function
theorem (IFT) from multivariate calculus:

Theorem 10.7 (Implicit function theorem). Let X , Y and Z be Banach
spaces, let W ⊆ X × Y be open, and let f ∈ Ck(W ;Z) for some k ≥ 1.
Suppose that, at (x̄, ȳ) ∈ W , the partial Fréchet derivative ∂f

∂y (x̄, ȳ) : Y → Z
is an invertible bounded linear map. Then there exist open sets U ⊆ X about
x̄, V ⊆ Y about ȳ, with U × V ⊆W , and a unique ϕ ∈ Ck(U ;V ) such that

{(x, y) ∈ U × V | f(x, y) = f(x̄, ȳ)} = {(x, y) ∈ U × V | y = ϕ(x)} ,

i.e. the contour of f through (x̄, ȳ) is locally the graph of ϕ. Furthermore, U
can be chosen so that ∂f

∂y (x, ϕ(x)) is boundedly invertible for all x ∈ U , and
the Fréchet derivative dϕ

dx (x) : X → Y of ϕ at any x ∈ U is the composition

dϕ

dx
(x) = −

(
∂f

∂y
(x, ϕ(x))

)−1(
∂f

∂x
(x, ϕ(x))

)

. (10.2)

We now apply the IFT to derive the adjoint method for sensitivity analysis.
Let U and Θ be (open subsets of) Banach spaces. Suppose that uncertain
parameters θ ∈ Θ and a derived quantity u ∈ U are related by an implicit
function of the form F (u, θ) = 0; to take a very simple example, suppose that
u : [−1, 1]→ R solves the boundary value problem

− d

dx

(

eθ
d

dx
u(x)

)

= (x− 1)(x+ 1), − 1 < x < 1,

u(x) = 0, x ∈ {±1}.

Suppose also that we are interested in understanding the effect of changing
θ upon the value of a quantity of interest q : U ×Θ→ R. To be more precise,
the aim is to understand the derivative of q(u, θ) with respect to θ, with u
depending on θ via F (u, θ) = 0, at some nominal point (ū, θ̄).

Observe that, by the chain rule,

dq

dθ
(ū, θ̄) =

∂q

∂u
(ū, θ̄)

∂u

∂θ
(ū, θ̄) +

∂q

∂θ
(ū, θ̄). (10.3)

Note that (10.3) only makes sense if u can be locally expressed as a differen-
tiable function of θ near (ū, θ̄): by the IFT, a sufficient condition for this is
that F is continuously Fréchet differentiable near (ū, θ̄) with ∂F

∂u (ū, θ̄) invert-
ible. Using this insight, the partial derivative of the solution u with respect
to the parameters θ can be eliminated from (10.3) to yield an expression that
uses only the partial derivatives of the explicit functions F and q.

To perform this elimination, observe that the total derivative of F vanishes
everywhere on the set of (u, θ) ∈ U ×Θ such that F (u, θ) = 0 (or, indeed, on
any level set of F ), and so the chain rule gives
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dF

dθ
=
∂F

∂u

∂u

∂θ
+
∂F

∂θ
≡ 0.

Therefore, since ∂F
∂u (ū, θ̄) is invertible,

∂u

∂θ
(ū, θ̄) = −

(
∂F

∂u
(ū, θ̄)

)−1
∂F

∂θ
(ū, θ̄), (10.4)

as in (10.2) in the conclusion of the IFT. Thus, (10.3) becomes

dq

dθ
(ū, θ̄) = − ∂q

∂u
(ū, θ̄)

(
∂F

∂u
(ū, θ̄)

)−1
∂F

∂θ
(ū, θ̄) +

∂q

∂θ
(ū, θ̄), (10.5)

which, as desired, avoids explicit reference to ∂u
∂θ .

Equation (10.4) can be re-written as

∂q

∂θ
(ū, θ̄) = λ

∂F

∂θ
(ū, θ̄)

where the linear functional λ ∈ U ′ is the solution to

λ
∂F

∂u
(ū, θ̄) = − ∂q

∂u
(ū, θ̄), (10.6)

or, equivalently, taking the adjoint (conjugate transpose) of (10.6),

(
∂F

∂u
(ū, θ̄)

)∗
λ∗ = −

(
∂q

∂u
(ū, θ̄)

)∗
, (10.7)

which is known as the adjoint equation. This is a powerful tool for investi-
gating the dependence of q upon θ, because we can now compute dq

dθ without
ever having to work out the relationship between θ and u or its derivative
∂u
∂θ explicitly — we only need partial derivatives of F and q with respect to
θ and u, which are usually much easier to calculate. We then need only solve
(10.6)/(10.7) for λ, and then substitute that result into (10.5).

Naturally, the system (10.6)/(10.7) is almost never solved by explicitly
computing the inverse matrix; instead, the usual direct (e.g. Gaussian elimi-
nation with partial pivoting, the QR method) or iterative methods (e.g. the
Jacobi or Gauss–Seidel iterations) are used. See Exercise 10.4 for an example
of the adjoint method for an ODE.

Remark 10.8. Besides their local nature, the use of partial derivatives as
sensitivity indices suffers from another problem well known to students of
multivariate differential calculus: a function can have well-defined partial
derivatives that all vanish, yet not be continuous, let alone locally constant.
The standard example of such a function is f : R2 → R defined by
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f(x, y) :=

⎧
⎨

⎩

xy

x2 + y2
, if (x, y) �= (0, 0),

0, if (x, y) = (0, 0).

This function f is discontinuous at (0, 0), since approaching (0, 0) along the
line x = 0 gives

lim
x=0
y→0

f(x, y) = lim
y→0

f(0, y) = lim
y→0

0 = 0

but approaching (0, 0) along the line x = y gives

lim
y=x→0

f(x, y) = lim
x→0

x2

2x2
=

1

2
�= 0.

However, f has well-defined partial derivatives with respect to x and y at
every point in R

2, and in particular at the origin:

∂f

∂x
(x, y) =

⎧
⎨

⎩

y3 − x2y
(x2 + y2)2

, if (x, y) �= (0, 0),

0, if (x, y) = (0, 0),

∂f

∂y
(x, y) =

⎧
⎨

⎩

x3 − xy2
(x2 + y2)2

, if (x, y) �= (0, 0),

0, if (x, y) = (0, 0).

Such pathologies do not arise if the partial derivatives are themselves contin-
uous functions. Therefore, before placing much trust in the partial derivatives
of f as local sensitivity indices, one should check that f is C1.

10.3 McDiarmid Diameters

Unlike the partial derivatives of the previous section, which are local measures
of parameter sensitivity, this section considers global ‘L∞-type’ sensitivity
indices that measure the sensitivity of a function of n variables or parameters
to variations in those variables/parameters individually.

Definition 10.9. The ith McDiarmid subdiameter of f : X :=
∏n

i=1 Xi → K

is defined by

Di[f ] := sup
{
|f(x)− f(y)|

∣
∣x, y ∈ X such that xj = yj for j �= i

}
;

equivalently, Di[f ] is

sup

{

|f(x)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)|

∣
∣
∣
∣
x = (x1, . . . , xn) ∈ X

and x′i ∈ Xi

}

.
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The McDiarmid diameter of f is

D[f ] :=

√
√
√
√

n∑

i=1

Di[f ]2.

Remark 10.10. Note that although the two definitions of Di[f ] given above
are obviously mathematically equivalent, they are very different from a com-
putational point of view: the first formulation is ‘obviously’ a constrained
optimization problem in 2n variables with n− 1 constraints (i.e. ‘difficult’),
whereas the second formulation is ‘obviously’ an unconstrained optimization
problem in n+ 1 variables (i.e. ‘easy’).

Lemma 10.11. For each j = 1, . . . , n, Dj [ · ] is a seminorm on the space of
bounded functions f : X → K, as is D[ · ].

Proof. Exercise 10.5.  !

The McDiarmid subdiameters and diameter are useful not only as sensi-
tivity indices, but also for providing a rigorous upper bound on deviations of
a function of independent random variables from its mean value:

Theorem 10.12 (McDiarmid’s bounded differences inequality). Let X =
(X1, . . . , Xn) be any random variable with independent components taking
values in X =

∏n
i=1 Xi, and let f : X → R be absolutely integrable with

respect to the law of X and have finite McDiarmid diameter D[f ]. Then, for
any t ≥ 0,

P
[
f(X) ≥ E[f(X)] + t

]
≤ exp

(

− 2t2

D[f ]2

)

, (10.8)

P
[
f(X) ≤ E[f(X)]− t

]
≤ exp

(

− 2t2

D[f ]2

)

, (10.9)

P
[
|f(X)− E[f(X)]| ≥ t

]
≤ 2 exp

(

− 2t2

D[f ]2

)

. (10.10)

Corollary 10.13 (Hoeffding’s inequality). Let X = (X1, . . . , Xn) be a
random variable with independent components, taking values in the cuboid∏n

i=1[ai, bi]. Let Sn := 1
n

∑n
i=1Xi. Then, for any t ≥ 0,

P
[
Sn − E[Sn] ≥ t

]
≤ exp

(

− −2n2t2
∑n

i=1(bi − ai)2

)

,

and similarly for deviations below, and either side, of the mean.

McDiarmid’s and Hoeffding’s inequalities are just two examples of a
broad family of inequalities known as concentration of measure inequalities.
Roughly put, the concentration of measure phenomenon, which was first
noticed by Lévy (1951), is the fact that a function of a high-dimensional
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random variable with many independent (or weakly correlated) components
has its values overwhelmingly concentrated about the mean (or median). An
inequality such as McDiarmid’s provides a rigorous certification criterion: to
be sure that f(X) will deviate above its mean by more than t with probability
no greater than ε ∈ [0, 1], it suffices to show that

exp

(

− 2t2

D[f ]2

)

≤ ε

i.e.

D[f ] ≤ t
√

2

log ε−1
.

Experimental effort then revolves around determining E[f(X)] and D[f ];
given those ingredients, the certification criterion is mathematically rigor-
ous. That said, it is unlikely to be the optimal rigorous certification criterion,
because McDiarmid’s inequality is not guaranteed to be sharp. The calcula-
tion of optimal probability inequalities is considered in Chapter 14.

To prove McDiarmid’s inequality first requires a lemma bounding the
moment-generating function of a random variable:

Lemma 10.14 (Hoeffding’s lemma). Let X be a random variable with mean
zero taking values in [a, b]. Then, for t ≥ 0,

E
[
etX

]
≤ exp

(
t2(b− a)2

8

)

.

Proof. By the convexity of the exponential function, for each x ∈ [a, b],

etx ≤ b − x
b− ae

ta +
x− a
b− a e

tb.

Therefore, applying the expectation operator,

E
[
etX

]
≤ b

b− ae
ta +

a

b− ae
tb = eφ(t).

Observe that φ(0) = 0, φ′(0) = 0, and φ′′(t) ≤ 1
4 (b− a)2. Hence, since exp is

an increasing and convex function,

E
[
etX

]
≤ exp

(

0 + 0t+
(b− a)2

4

t2

2

)

= exp

(
t2(b− a)2

8

)

.  !

We can now give the proof of McDiarmid’s inequality, which uses Ho-
effding’s lemma and the properties of conditional expectation outlined in
Example 3.22.
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Proof of McDiarmid’s inequality (Theorem 10.12). Let Fi be the
σ-algebra generated by X1, . . . , Xi, and define random variables Z0, . . . , Zn

by Zi := E[f(X)|Fi]. Note that Z0 = E[f(X)] and Zn = f(X). Now consider
the conditional increment (Zi − Zi−1)|Fi−1. First observe that

E[Zi − Zi−1|Fi−1] = 0,

so that the sequence (Zi)i≥0 is a martingale. Secondly, observe that

Li ≤
(
Zi − Zi−1

∣
∣Fi−1

)
≤ Ui,

where

Li := inf
�
E[f(X)|Fi−1, Xi = �]− E[f(X)|Fi−1],

Ui := sup
u

E[f(X)|Fi−1, Xi = u]− E[f(X)|Fi−1].

Since Ui − Li ≤ Di[f ], Hoeffding’s lemma implies that

E

[
es(Zi−Zi−1)

∣
∣
∣Fi−1

]
≤ es

2Di[f ]
2/8. (10.11)

Hence, for any s ≥ 0,

P[f(X)− E[f(X)] ≥ t]
= P

[
es(f(X)−E[f(X)]) ≥ est

]

≤ e−st
E
[
es(f(X)−E[f(X)])

]
by Markov’s ineq.

= e−st
E

[
es

∑n
i=1 Zi−Zi−1

]
as a telescoping sum

= e−st
E

[
E

[
es

∑n
i=1 Zi−Zi−1

∣
∣
∣Fn−1

]]
by the tower rule

= e−st
E

[
es

∑n−1
i=1 Zi−Zi−1E

[
es(Zn−Zn−1)

∣
∣
∣Fn−1

]]

since Z0, . . . , Zn−1 are Fn−1-measurable, and

≤ e−stes
2Dn[f ]

2/8
E

[
es

∑n−1
i=1 Zi−Zi−1

]

by (10.11). Repeating this argument a further n− 1 times shows that

P[f(X)− E[f(X)] ≥ t] ≤ exp

(

−st+ s
2

8
D[f ]2

)

. (10.12)

The right-hand side of (10.12) is minimized by s = 4t/D[f ]2, which yields
McDiarmid’s inequality (10.8). The inequalities (10.9) and (10.10) follow
easily from (10.8).  !
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10.4 ANOVA/HDMR Decompositions

The topic of this section is a variance-based decomposition of a function
of n variables that goes by various names such as the analysis of variance
(ANOVA), the functional ANOVA, the high-dimensional model representa-
tion (HDMR), or the integral representation. As before, let (Xi,Fi, μi) be a
probability space for i = 1, . . . , n, and let (X ,F , μ) be the product space.
Write N := {1, . . . , n}, and consider a (F -measurable) function of interest
f : X → R. Bearing in mind that in practical applications n may be large
(103 or more), it is of interest to efficiently identify
• which of the xi contribute in the most dominant ways to the variations
in f(x1, . . . , xn),

• how the effects of multiple xi are cooperative or competitive with one
another,

• and hence construct a surrogate model for f that uses a lower-dimensional
set of input variables, by using only those that give rise to dominant
effects.

The idea is to write f(x1, . . . , xn) as a sum of the form

f(x1, . . . , xn) = f∅ +

n∑

i=1

f{i}(xi) +
∑

1≤i<j≤n

f{i,j}(xi, xj) + . . . (10.13)

=
∑

I⊆N
fI(xI).

Experience suggests that ‘typical real-world systems’ f exhibit only low-order
cooperativity in the effects of the input variables x1, . . . , xn. That is, the terms
fI with |I| # 1 are typically small, and a good approximation of f is given
by, say, a second-order expansion,

f(x1, . . . , xn) ≈ f∅ +
n∑

i=1

f{i}(xi) +
∑

1≤i<j≤n

f{i,j}(xi, xj).

Note, however, that low-order cooperativity does not necessarily imply that
there is a small set of significant variables (it is possible that f{i} is large
for most i ∈ {1, . . . , n}), nor does it say anything about the linearity or
non-linearity of the input-output relationship. Furthermore, there are many
HDMR-type expansions of the form given above; orthogonality criteria can
be used to select a particular HDMR representation.

Recall that, for I ⊆ N , the conditional expectation operator

f �→ Eμ[f(x1, . . . , xn)|xi, i ∈ I] =
∫

∏
i∈I Xi

f(x1, . . . , xn) d
⊗

i∈I

μi(xi)

is an orthogonal projection operator from L2(X , μ;R) to the set of square-
integrable measurable functions that are independent of xi for i ∈ I, i.e. that
depend only on xi for i ∈ N \ I. Let
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P∅f := Eμ[f ]

and, for non-empty I ⊆ N ,

PIf := Eμ[f(x1, . . . , xn)|xi, i /∈ I]−
∑

J�I

PJf.

The functions fI := PIf provide a decomposition of f of the desired form
(10.13). By construction, we have the following:

Theorem 10.15 (ANOVA). For each i ⊆ N , the linear operator PI is an
orthogonal projection of L2(X , μ;R) onto

FI :=

{

f

∣
∣
∣
∣
∣

f is independent of xj for j /∈ I
and, for i ∈ I,

∫ 1

0 f(x) dμi(xi) = 0

}

⊆ L2(X , μ;R).

Furthermore, the linear operators PI are idempotent, commutative and
mutually orthogonal, i.e.

PIPJf = PJPIf =

{
PIf, if I = J ,

0, if I �= J ,

and form a resolution of the identity:

∑

I⊆N
PIf = f.

Thus, L2(X , μ;R) =
⊕

I⊆N FI is an orthogonal decomposition of L2(X , μ;R),
so Parseval’s formula implies the following decomposition of the variance
σ2 := ‖f − P∅f‖2L2(μ) of f :

σ2 =
∑

I⊆D
σ2I , (10.14)

where

σ2∅ := 0,

σ2I :=

∫

X
(PIf)(x)

2 dμ(x).

Two commonly used ANOVA/HDMR decompositions are random sam-
pling HDMR, in which μi is uniform measure on [0, 1], and Cut-HDMR, in
which an expansion is performed with respect to a reference point x̄ ∈ X ,
i.e. μ is the unit Dirac measure δx̄:
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f∅(x) = f(x̄),

f{i}(x) = f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n)− f∅(x)
f{i,j}(x) = f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n)

− f{i}(x)− f{j}(x)− f∅(x)
...

Note that a component function fI of a Cut-HDMR expansion vanishes at
any x ∈ X that has a component in common with x̄, i.e.

fI(x) = 0 whenever xi = x̄i for some i ∈ I.

Hence,

fI(x)fJ (x) = 0 whenever xk = x̄k for some k ∈ I ∪ J .

Indeed, this orthogonality relation defines the Cut-HDMR expansion.

Sobol′ Sensitivity Indices. The decomposition of the variance (10.14)
given by an HDMR/ANOVA decomposition naturally gives rise to a set of
sensitivity indices for ranking the most important input variables and their
cooperative effects. An obvious (and näıve) assessment of the relative imp-
ortance of the variables xI is the variance component σ2I , or the normalized
contribution σ2I/σ

2. However, this measure neglects the contributions of those
xJ with J ⊆ I, or those xJ such that J has some indices in common with I.
With this in mind, Sobol′ (1990) defined sensitivity indices as follows:

Definition 10.16. Given an HDMR decomposition of a function f of n
variables, the lower and upper Sobol′ sensitivity indices of I ⊆ N are,
respectively,

τ2I :=
∑

J⊆I

σ2J , and τ
2
I :=

∑

J∩I 
=∅

σ2J .

The normalized lower and upper Sobol′ sensitivity indices of I ⊆ N are,
respectively,

s2I := τ2I/σ
2, and s2I := τ2I/σ

2.

Since
∑

I⊆N σ
2
I = σ2 = ‖f − f∅‖2L2, it follows immediately that, for each

I ⊆ N ,

0 ≤ s2I ≤ s2I ≤ 1.

Note, however, that while Theorem 10.15 guarantees that σ2 =
∑

I⊆N σ
2
I , in�

general Sobol′ indices satisfy no such additivity relation:

1 �=
∑

I⊆N
s2I <

∑

I⊆N
s2I �= 1.
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The decomposition of variance (10.14), and sensitivity indices such as the
Sobol′ indices, can also be used to form approximations to f with lower-
dimensional input domain: see Exercise 10.8.

10.5 Active Subspaces

The global sensitivity measures discussed above, such as Sobol′ indices and
McDiarmid diameters, can be used to identify a collection of important input
parameters for a given response function. By way of contrast, the active
subspace method seeks to identify a collection of important directions that
are not necessarily aligned with the coordinate axes.

In this case, we take as the model input space X = [−1, 1]n ⊆ R
n, and

f : X → R is a function of interest. Suppose that, for each x ∈ X , both
f(x) ∈ R and ∇f(x) ∈ R

n can be easily evaluated — note that evaluation of
∇f(x) might be accomplished by many means, e.g. finite differences, auto-
matic differentiation, or use of the adjoint method. Also, let X be equipped
with a probability measure μ. Informally, an active subspace for f will be a
linear subspace of Rn for which f varies a lot more on average (with respect
to μ) along directions in the active subspace than along those in the comple-
mentary inactive subspace.

Suppose that all pairwise products of the partial derivatives of f are inte-
grable with respect to μ. Define C = C(∇f, μ) ∈ R

n×n by

C := EX∼μ

[
(∇f(X))(∇f(X))T

]
. (10.15)

Note that C is symmetric and positive semi-definite, so it diagonalizes as

C =WΛWT,

where W ∈ R
n×n is an orthogonal matrix whose columns w1, . . . , wn are

the eigenvectors of C, and Λ ∈ R
n×n is a diagonal matrix with diagonal

entries λ1 ≥ · · · ≥ λn ≥ 0, which are the corresponding eigenvalues of C.
A quick calculation reveals that the eigenvalue λi is nothing other than the
mean-squared value of the directional derivative in the direction wi:

λi = w
T
i Cwi = w

T
i Eμ

[
(∇f)(∇f)T

]
wi = Eμ

[
(∇f · wi)

2
]
. (10.16)

In general, the eigenvalues of C may be any non-negative reals. If, however,
some are clearly ‘large’ and some are ‘small’, then this partitioning of the
eigenvalues and observation (10.16) can be used to define a new coordinate
system on R

n such that in some directions f values ‘a lot’ and on others it
varies ‘only a little’. More precisely, write Λ and W in block form as
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Λ =

[
Λ1 0

0 Λ2

]

, and W =
[
W1 W2

]
, (10.17)

where Λ1 ∈ R
k×k and W1 ∈ R

n×k with k ≤ n; of course, the idea is that
k � n, and that λk # λk+1. This partitioning of the eigenvalues and eigen-
vectors of C defines new variables y ∈ R

k and z ∈ R
n−k by

y :=WT
1 x, and z :=WT

2 x. (10.18)

so that x = W1y +W2z. Note that the (y, z) coordinate system is simply
a rotation of the original x coordinate system. The k-dimensional subspace
spanned by w1, . . . , wk is called the active subspace for f over X with respect
to μ. The heuristic requirement that f should vary mostly in the directions
of the active subspace is quantified by the eigenvalues of C:

Proposition 10.17. The mean-squared gradients of f with respect to the
active coordinates y ∈ R

k and inactive coordinates z ∈ R
n−k satisfy

Eμ

[
(∇yf)

T(∇yf)
]
= λ1 + · · ·+ λk,

Eμ

[
(∇zf)

T(∇zf)
]
= λk+1 + · · ·+ λn.

Proof. By the chain rule, the gradient of f(x) = f(W1y+W2z) with respect
to y is given by

∇yf(x) = ∇yf(W1y +W2z)

=WT
1 ∇xf(W1y +W2z)

=WT
1 ∇xf(x).

Thus,

Eμ

[
(∇yf)

T(∇yf)
]
= Eμ

[
tr
(
(∇yf)(∇yf)

T
)]

= trEμ

[
(∇yf)(∇yf)

T
]

= tr
(
WT

1 Eμ

[
(∇xf)(∇xf)

T
]
W1

)

= tr
(
WT

1 CW1

)

= trΛ1

= λ1 + · · ·+ λk.

This proves the claim for the active coordinates y ∈ R
k; the proof for the

inactive coordinates z ∈ R
n−k is similar.  !

Proposition 10.17 implies that a function for which λk+1 = · · · = λn = 0
has ∇zf = 0 μ-almost everywhere in X . Unsurprisingly, for such functions,
the value of f depends only on the active variable y and not upon the inactive
variable z:
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Proposition 10.18. Suppose that μ is absolutely continuous with respect to
Lebesgue measure on X , and suppose that f : X → R is such that λk+1 =
· · · = λn = 0. Then, whenever x1, x2 ∈ X have equal active component, i.e.
WT

1 x1 =WT
1 x2, it follows that f(x1) = f(x2) and ∇xf(x1) = ∇xf(x2).

Proof. The gradient ∇zf being zero everywhere in X implies that f(x1) =
f(x2). To show that the gradients are equal, assume that x1 and x2 lie in the
interior of X . Then for any v ∈ R

n, let

x′1 = x1 + hv, and x′2 = x2 + hv,

where h ∈ R is small enough that x′1 and x′2 lie in the interior of X . Note
that WT

1 x
′
1 =WT

1 x
′
2, and so f(x′1) = f(x

′
2). Then

c = v · (∇xf(x1)−∇xf(x2))

= lim
h→0

(f(x′1)− f(x1))− (f(x′2)− f(x2))
h

= 0.

Simple limiting arguments can be used to extend this result to x1 or x2 ∈ ∂X .
Since v ∈ R

n was arbitrary, it follows that ∇xf(x1) = ∇xf(x2).  !

Example 10.19. In some cases, the active subspace can be identified exactly
from the form of the function f :
(a) Suppose that f is a ridge function, i.e. a function of the form f(x) :=

h(a · x), where h : R→ R and a ∈ R
n. In this case, C has rank one, and

the eigenvector defining the active subspace is w1 = a/‖a‖, which can be
discovered by a single evaluation of the gradient anywhere in X .

(b) Consider f(x) := h(x·Ax), where h : R→ R and A ∈ R
n×n is symmetric.

In this case,
C = 4AE[(h′)2xxT]AT,

where h′ = h′(x·Ax) is the derivative of h. Provided h′ is non-degenerate,
kerC = kerA.

Numerical Approximation of Active Subspaces. When the expected
value used to define the matrix C and hence the active subspace decom-
position is approximated using Monte Carlo sampling, the active subspace
method has a nice connection to the singular value decomposition (SVD).
That is, suppose that x(1), . . . , x(M) areM independent draws from the prob-
ability measure μ. The corresponding Monte Carlo approximation to C is

C ≈ Ĉ :=
1

M

M∑

m=1

∇f(x(m))∇f(x(m))T.
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The eigendecomposition of Ĉ as Ĉ = Ŵ Λ̂ŴT can be computed as before.
However, if

G :=
1√
M

[
∇f(x(1)) · · · ∇f(x(M))

]
∈ R

n×M ,

then Ĉ = GGT, and an SVD of G is given by G = Ŵ Λ̂1/2V T for some
orthogonal matrix V . In practice, the eigenpairs Ŵ and Λ̂ from the finite-
sample approximation Ĉ are used as approximations of the true eigenpairs
W and Λ of C.

The SVD approach is more numerically stable than an eigendecomposition,
and is also used in the technique of principal component analysis (PCA).
However, PCA applies the SVD to the rectangular matrix whose columns
are samples of a vector-valued response function, and posits a linear model
for the data; the active subspace method applies the SVD to the rectangular
matrix whose columns are the gradient vectors of a scalar-valued response
function, and makes no linearity assumption about the model.

Example 10.20. Consider the Van der Pol oscillator

ü(t)− μ(1− u(t)2)u̇(t) + ω2u(t) = 0,

with the initial conditions u(0) = 1, u̇(0) = 0. Suppose that we are interested
in the state of the oscillator at time T := 2π; if ω = 1 and μ = 0, then
u(T ) = u(0) = 1. Now suppose that ω ∼ Unif([0.8, 1.2]) and μ ∼ Unif([0, 5]);
a contour plot of u(T ) as a function of ω and μ is shown in Figure 10.1(a).

Sampling the gradient of u(T ) with respect to the normalized coordinates

x1 := 2
ω − 0.8

1.2− 0.8
− 1 ∈ [−1, 1]

x2 := 2
μ

5
− 1 ∈ [−1, 1]

gives an approximate covariance matrix

E
[
∇xu(T )(∇xu(T ))

T
]
≈ Ĉ =

[
1.776 −1.389

−1.389 1.672

]

,

which has the eigendecomposition Ĉ = Ŵ Λ̂ŴT with

Λ̂ =

[
3.115 0

0 0.3339

]

and Ŵ =

[
0.7202 0.6938

−0.6938 0.7202

]

.

Thus — at least over this range of the ω and μ parameters — this system has
an active subspace in the direction w1 = (0.7202,−0.6938) in the normalized
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Fig. 10.1: Illustration of Example 10.20. Subfigure (a) shows contours of the
state at time T = 2π of a Van der Pol oscillator with initial state 1.0 and
velocity 0.0, as a function of natural frequency ω and damping μ. This system
has an active subspace in the (0.144,−1.735) direction; roughly speaking,
‘most’ of the contours are perpendicular to this direction. Subfigure (b) shows
a projection onto this directions of 1000 samples of u(T ), with uniformly
distributed ω and μ, in the style of Exercise 10.9; this further illustrates the
almost one-dimensional nature of the system response.
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x-coordinate system. In the original (ω, μ)-coordinate system, this active sub-
space lies in the (0.144,−1.735) direction.

Applications of Active Subspaces. The main motivation for determining
an active subspace for f : X → R is to then approximate f by a function F
of the active variables alone, i.e.

f(x) = f(W1y +W2z) ≈ F (W1y).

Given such an approximation, F ◦W1 can be used as a proxy for f for the
purposes of optimization, optimal control, forward and inverse uncertainty
propagation, and so forth.
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10.7 Exercises

Exercise 10.1. Consider a power series f(x) :=
∑

n∈N0
anx

n, thought of as
a function f : R→ R, with radius of convergence R. Show that the extension
f : Rε → Rε of f to the dual numbers satisfies

f(x+ ε) = f(x) + f ′(x)ε

whenever |x| < R. Hence show that, if g : R→ R is an analytic function, then
g′(x) is the coefficient of ε in g(x+ ε).

Exercise 10.2. An example partial implementation of dual numbers in
Python is as follows:

class DualNumber(object):

def __init__(self, r, e):

# Initialization of real and infinitesimal parts.

self.r = r

self.e = e

def __repr__(self):

# How to print dual numbers

return str(self.r) + " + " + str(self.e) + " * e"

def __add__(self, other):

# Overload the addition operator to allow addition of

# dual numbers.

if not isinstance(other, DualNumber):

new_other = DualNumber(other, 0)

else:

new_other = other

r_part = self.r + new_other.r

e_part = self.e + new_other.e

return DualNumber(r_part, e_part)

Following the template of the overloaded addition operator, write anal-
ogous methods def __sub__(self, other), def __mul__(self, other),
and def __div__(self, other) for this DualNumber class to overload the
subtraction, multiplication and division operators. The result will be that any
numerical function you have written using the standard arithmetic operations
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+, -, *, and / will now accept DualNumber arguments and return DualNumber

values in accordance with the rules of dual number arithmetic.
Once you have done this, the following function will accept a function f

as its argument and return a new function f_prime that is the derivative of
f, calculated using automatic differentiation:

def AutomaticDerivative(f):

# Accepts a function f as an argument and returns a new

# function that is the derivative of f, calculated using

# automatic differentiation.

def f_prime(x):

f_x_plus_eps = f(DualNumber(x, 1))

deriv = f_x_plus_eps.e

return deriv

return f_prime

Test this function using several functions of your choice, and verify that it
correctly calculates the derivative of a product (the Leibniz rule), a quotient
and a composition (the chain rule).

Exercise 10.3. Let f : Rn → R
m be a polynomial or convergent power series

f(x) =
∑

α

cαx
α

in x = (x1, . . . , xn), where α = (α1, . . . , αn) ∈ N
n
0 are multi-indices, cα ∈ R

m,
and xα := xα1

1 · · ·xαn
n . Consider the dual vectors over Rn obtained by adjoin-

ing a vector element ε = (ε1, . . . , εn) such that εiεj = 0 for all i, j ∈ {1, . . . , n}.
Show that

f(x+ ε) =
∑

α

cα

n∑

i=1

αix
α−eiεi

and hence that ∂f
∂xi

(x) is the coefficient of εi in f(x+ ε).

Exercise 10.4. Consider an ODE of the form u̇(t) = f(u(t); θ) for an un-
known u(t) ∈ R, where θ ∈ R is a vector of parameters, and f : R2 → R is
a smooth vector field. Define the local sensitivity of the solution u about a
nominal parameter value θ∗ ∈ R to be the partial derivative s := ∂u

∂θ (θ
∗).

Show that this sensitivity index s evolves according to the adjoint equation

ṡ(t) =
∂f

∂u

(
u(t; θ∗); θ∗

)
s(t) +

∂f

∂θ

(
u(t; θ∗); θ∗

)
.

Extend this result to a vector-valued unknown u(t), and vector of parameters
θ = (θ1, . . . , θn).

Exercise 10.5. Show that, for each j = 1, . . . , n, the McDiarmid subdiam-
eter Dj [ · ] is a seminorm on the space of bounded functions f : X → K, as is
the McDiarmid diameter D[ · ]. What are the null-spaces of these seminorms?
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Exercise 10.6. Define, for constants a, b, c, d ∈ R, f : [0, 1]2 → R by

f(x1, x2) := a+ bx1 + cx2 + dx1x2.

Show that the ANOVA decomposition of f (with respect to uniform measure
on the square) is

f∅ = a+ b
2 + c

2 + d
2 ,

f{1}(x1) =
(
b + d

2

)(
x1 − 1

2

)
,

f{2}(x2) =
(
c+ d

2

)(
x2 − 1

2

)
,

f{1,2}(x1, x2) = d
(
x1 − 1

2

)(
x2 − 1

2

)
.

Exercise 10.7. Let f : [−1, 1]2 → R be a function of two variables. Sketch
the vanishing sets of the component functions of f in a Cut-HDMR expansion
through x̄ = (0, 0). Do the same exercise for f : [−1, 1]3 → R and x̄ = (0, 0, 0),
taking particular care with second-order terms like f{1,2}.

Exercise 10.8. For a function f : [0, 1]n → R with variance σ2, suppose that
the input variables of f have been ordered according to their importance in
the sense that σ2{1} ≥ σ2{2} ≥ · · · ≥ σ2{n} ≥ 0. The truncation dimension of f

with proportion α ∈ [0, 1] is defined to be the least dt = dt(α) ∈ {1, . . . , n}
such that ∑

∅ 
=I⊆{1,...,dt}
σ2I ≥ ασ2,

i.e. the first dt inputs explain a proportion α of the variance of f . Show that

fdt(x) :=
∑

I⊆{1,...,dt}
fI(xI)

is an approximation to f with error
∥
∥f − fdt

∥
∥2
L2 ≤ (1 − α)σ2. Formulate

and prove a similar result for the superposition dimension ds, the least ds =
ds(α) ∈ {1, . . . , n} such that

∑

∅ 
=I⊆{1,...,n}
#I≤ds

σ2I ≥ ασ2,

Exercise 10.9. Building upon the notion of a sufficient summary plot
developed by Cook (1998), Constantine (2015, Section 1.3) offers the fol-
lowing “quick and dirty” check for a one-dimensional active subspace for
f : [−1, 1]n → R that can be evaluated a limited number — say, M — times
with the available resources:
(a) Draw M samples x1, . . . , xM ∈ [−1, 1]n according to some probability

distribution on the cube, e.g. uniform measure.
(b) Evaluate f(xm) for m = 1, . . . ,M .
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(c) Find (a0, a1, . . . , an) ∈ R
1+n to minimize

J(a) :=
1

2

∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎣

1 xT1
...

...

1 xTM

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

a0
...

an

⎤

⎥
⎥
⎦−

⎡

⎢
⎢
⎣

f(x1)
...

f(xn)

⎤

⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥

2

2

.

is minimal. Note that this step can be interpreted as forming a linear
statistical regression model.

(d) Let a′ := (a1, . . . , an), and define a unit vector w ∈ R
n by w := a′/‖a′‖2.

(e) Produce a scatter plot of the points (w · xm, f(xm)) for m = 1, . . . ,M .
If this scatter plot looks like the graph of a single-valued function, then
this is a good indication that f has a one-dimensional active subspace in
the w direction.

One interpretation of this procedure is that it looks for a rotation of the
domain [−1, 1]n such that, in this rotated frame of reference, the graph of f
looks ‘almost’ like a curve — though it is not necessary that f be a linear
function of w ·x. Examine your favourite model f for a one-dimensional active
subspace in this way.



Chapter 11

Spectral Expansions

The mark of a mature, psychologically
healthy mind is indeed the ability to live with
uncertainty and ambiguity, but only as much
as there really is.

Julian Baggini

This chapter and its sequels consider several spectral methods for uncer-
tainty quantification. At their core, these are orthogonal decomposition
methods in which a random variable stochastic process (usually the solution
of interest) over a probability space (Θ,F , μ) is expanded with respect to an
appropriate orthogonal basis of L2(Θ, μ;R). This chapter lays the foundations
by considering spectral expansions in general, starting with the Karhunen–
Loève bi-orthogonal decomposition, and continuing with orthogonal polyno-
mial bases for L2(Θ, μ;R) and the resulting polynomial chaos decompositions.
Chapters 12 and 13 will then treat two classes of methods for the determi-
nation of coefficients in spectral expansions, the intrusive and non-intrusive
approaches respectively.

11.1 Karhunen–Loève Expansions

Fix a domain X ⊆ R
d (which could be thought of as ‘space’, ‘time’ or a

general parameter space) and a probability space (Θ,F , μ). The Karhunen–
Loève expansion of a square-integrable stochastic process U : X × Θ → R

is a particularly nice spectral decomposition, in that it decomposes U in a
bi-orthogonal fashion, i.e. in terms of components that are both orthogonal
over the spatio-temporal domain X and the probability space Θ.

© Springer International Publishing Switzerland 2015
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To be more precise, consider a stochastic process U : X ×Θ→ R such that

• for all x ∈ X , U(x) ∈ L2(Θ, μ;R);
• for all x ∈ X , Eμ[U(x)] = 0;
• the covariance function CU (x, y) := Eμ[U(x)U(y)] is a well-defined con-
tinuous function of x, y ∈ X .

Remark 11.1. (a) The condition that U is a zero-mean process is not a
serious restriction; if U is not a zero-mean process, then simply consider
Ũ defined by Ũ(x, θ) := U(x, θ)− Eμ[U(x)].

(b) It is common in practice to see the covariance function interpreted as
providing some information on the correlation length of the process U .
That is, CU (x, y) depends only upon ‖x − y‖ and, for some function
g : [0,∞) → [0,∞), CU (x, y) = g(‖x − y‖). A typical such g is g(r) =
exp(−r/r0), and the constant r0 encodes how similar values of U at
nearby points of X are expected to be; when the correlation length r0
is small, the field U has dissimilar values near to one another, and so is
rough; when r0 is large, the field U has only similar values near to one
another, and so is more smooth.

By abuse of notation, CU will also denote the covariance operator of U ,
which the linear operator CU : L2(X , dx;R)→ L2(X , dx;R) defined by

(CUf)(x) :=

∫

X
CU (x, y)f(y) dy.

Now let {ψn | n ∈ N} be an orthonormal basis of eigenvectors of L2(X , dx;R)
with corresponding eigenvalues {λn | n ∈ N}, i.e.

∫

X
CU (x, y)ψn(y) dy = λnψn(x),

∫

X
ψm(x)ψn(x) dx = δmn.

Definition 11.2. Let X be a first-countable topological space. A function
K : X × X → R is called a Mercer kernel if

(a) K is continuous;
(b) K is symmetric, i.e. K(x, x′) = K(x′, x) for all x, x′ ∈ X ; and
(c) K is positive semi-definite in the sense that, for all choices of finitely

many points x1, . . . , xn ∈ X , the Gram matrix

G :=

⎡

⎢
⎢
⎣

K(x1, x1) · · · K(x1, xn)
...

. . .
...

K(xn, x1) · · · K(xn, xn)

⎤

⎥
⎥
⎦

is positive semi-definite, i.e. satisfies ξ ·Gξ ≥ 0 for all ξ ∈ R
n.



11.1 Karhunen–Loève Expansions 225

Theorem 11.3 (Mercer). Let X be a first-countable topological space equipped
with a complete Borel measure μ. Let K : X × X → R be a Mercer kernel. If
x �→ K(x, x) lies in L1(X , μ;R), then there is an orthonormal basis {ψn}n∈N

of L2(X , μ;R) consisting of eigenfunctions of the operator

f �→
∫

X
K( · , y)f(y) dμ(y)

with non-negative eigenvalues {λn}n∈N. Furthermore, the eigenfunctions cor-
responding to non-zero eigenvalues are continuous, and

K(x, y) =
∑

n∈N

λnψn(x)ψn(y),

and this series converges absolutely, uniformly over compact subsets of X .

The proof of Mercer’s theorem will be omitted, since the main use of the
theorem is just to inform various statements about the eigendecomposition
of the covariance operator in the Karhunen–Loève theorem. However, it is
worth comparing the conditions of Mercer’s theorem to those of Sazonov’s
theorem (Theorem 2.49): together, these two theorems show which integral
kernels can be associated with covariance operators of Gaussian measures.

Theorem 11.4 (Karhunen–Loève). Let U : X ×Θ → R be square-integrable
stochastic process, with mean zero and continuous and square-integrable1 co-
variance function. Then

U =
∑

n∈N

Znψn

in L2, where the {ψn}n∈N are orthonormal eigenfunctions of the covariance
operator CU , the corresponding eigenvalues {λn}n∈N are non-negative, the
convergence of the series is in L2(Θ, μ;R) and uniform among compact fam-
ilies of x ∈ X , with

Zn =

∫

X
U(x)ψn(x) dx.

Furthermore, the random variables Zn are centred, uncorrelated, and have
variance λn:

Eμ[Zn] = 0, and Eμ[ZmZn] = λnδmn.

Proof. By Exercise 2.1, and since the covariance function CU is continuous
and square-integrable on X × X , it is integrable on the diagonal, and hence
is a Mercer kernel. So, by Mercer’s theorem, there is an orthonormal basis
{ψn}n∈N of L2(X , dx;R) consisting of eigenfunctions of the covariance op-
erator with non-negative eigenvalues {λn}n∈N. In this basis, the covariance
function has the representation

1 In the case that X is compact, it is enough to assume that the covariance function is
continuous, from which it follows that it is bounded and hence square-integrable on X ×X .
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CU (x, y) =
∑

n∈N

λnψn(x)ψn(y).

Write the process U in terms of this basis as

U(x, θ) =
∑

n∈N

Zn(θ)ψn(x),

where the coefficients Zn = Zn(θ) are given by orthogonal projection:

Zn(θ) :=

∫

X
U(x, θ)ψn(x) dx.

(Note that these coefficients Zn are real-valued random variables.) Then

Eμ[Zn] = Eμ

[∫

X
U(x)ψn(x) dx

]

=

∫

X
Eμ[U(x)]ψn(x) dx = 0.

and

Eμ[ZmZn] = Eμ

[∫

X
U(x)ψm(x) dx

∫

X
U(x)ψn(x) dx

]

= Eμ

[∫

X

∫

X
ψm(x)U(x)U(y)ψn(y) dydx

]

=

∫

X
ψm(x)

∫

X
Eμ[U(x)U(y)]ψn(y) dydx

=

∫

X
ψm(x)

∫

X
CU (x, y)ψn(y) dydx

=

∫

X
ψm(x)λnψn(x) dx

= λnδmn.

Let SN :=
∑N

n=1 Znψn : X ×Θ → R. Then, for any x ∈ X ,

Eμ

[
|U(x)− SN (x)|2

]

= Eμ[U(x)
2] + Eμ[SN (x)2]− 2Eμ[U(x)SN (x)]

= CU (x, x) + Eμ

[
N∑

n=1

N∑

m=1

ZnZmψm(x)ψn(x)

]

− 2Eμ

[

U(x)

N∑

n=1

Znψn(x)

]

= CU (x, x) +

N∑

n=1

λnψn(x)
2 − 2Eμ

[
N∑

n=1

∫

X
U(x)U(y)ψn(y)ψn(x) dy

]

= CU (x, x) +

N∑

n=1

λnψn(x)
2 − 2

N∑

n=1

∫

X
CU (x, y)ψn(y)ψn(x) dy

= CU (x, x) −
N∑

n=1

λnψn(x)
2

→ 0 as N →∞,
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where the convergence with respect of x, uniformly over compact subsets of
X , follows from Mercer’s theorem.  !

Among many possible decompositions of a random field, the Karhunen–
Loève expansion is optimal in the sense that the mean-square error of any
truncation of the expansion after finitely many terms is minimal. However, its
utility is limited since the covariance function of the solution process is often
not known a priori. Nevertheless, the Karhunen–Loève expansion provides an
effective means of representing input random processes when their covariance
structure is known, and provides a simple method for sampling Gaussian
measures on Hilbert spaces, which is a necessary step in the implementation
of the methods outlined in Chapter 6.

Example 11.5. Suppose that C : H → H is a self-adjoint, positive-definite,
nuclear operator on a Hilbert space H and let m ∈ H. Let (λk, ψk)k∈N be a
sequence of orthonormal eigenpairs for C, ordered by decreasing eigenvalue
λk. Let Ξ1, Ξ2, . . . be independently distributed according to the standard
Gaussian measure N (0, 1) on R. Then, by the Karhunen–Loève theorem,

U := m+

∞∑

k=1

λ
1/2
k Ξkψk (11.1)

is anH-valued random variable with distribution N (m,C). Therefore, a finite

sum of the form m+
∑K

k=1 λ
1/2
k Ξkψk for large K is a reasonable approxima-

tion to a N (m,C)-distributed random variable; this is the procedure used to
generate the sample paths in Figure 11.1.

Note that the real-valued random variable λ
1/2
k Ξk has Lebesgue density

proportional to exp(−|ξk|2/2λk). Therefore, although Theorem 2.38 shows
that the infinite product of Lebesgue measures on span{ψk | k ∈ N} cannot
define an infinite-dimensional Lebesgue measure on H, U − m defined by
(11.1) may be said to have a ‘formal Lebesgue density’ proportional to

∏

k∈N

exp

(

−|ξk|
2

2λk

)

= exp

(

−1

2

∑

k∈N

|ξk|2
λk

)

= exp

(

−1

2

∑

k∈N

|〈u −m,ψk〉H|2
λk

)

= exp

(

−1

2

∥
∥C−1/2(u−m)

∥
∥2
H

)

by Parseval’s theorem and the eigenbasis representation of C. This formal
derivation should make it intuitively reasonable that U is a Gaussian random
variable on H with mean m and covariance operator C. For more general
sampling schemes of this type, see the later remarks on the sampling of Besov
measures.
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Fig. 11.1: Approximate sample paths of the Gaussian distribution on
H1

0 ([0, 1]) that has mean path m(x) = x(1 − x) and covariance operator
(
− d2

dx2

)−1
. Along with the mean path (black), six sample paths (grey) are

shown for truncated Karhunen–Loève expansions using K ∈ N terms. Ex-
cept for the non-trivial mean, these are approximate draws from the unit
Brownian bridge on [0, 1].

Principal Component Analysis. As well as being useful for the analysis
of random paths, surfaces, and so on, Karhunen–Loève expansions are also
useful in the analysis of finite-dimensional random vectors and sample data:

Definition 11.6. A principal component analysis of an R
N -valued random

vector U is the Karhunen–Loève expansion of U seen as a stochastic process
U : {1, . . . , N} × X → R. It is also known as the discrete Karhunen–Loève
transform, the Hotelling transform and the proper orthogonal decomposition.

Principal component analysis is often applied to sample data, and is inti-
mately related to the singular value decomposition:

Example 11.7. Let X ∈ R
N×M be a matrix whose columns areM indepen-

dent and identically distributed samples from some probability measure on
R

N , and assume without loss of generality that the samples have empirical
mean zero. The empirical covariance matrix of the samples is

Ĉ := 1
MXX

T.
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(If the samples do not have empirical mean zero, then the empirical mean

should be subtracted first, and then 1
M in the definition of Ĉ should be

replaced by 1
M−1 so that Ĉ will be an unbiased estimator of the true covari-

ance matrix C.) The eigenvalues λn and eigenfunctions ψn of the Karhunen–

Loève expansion are just the eigenvalues and eigenvectors of this matrix Ĉ.
Let Λ ∈ R

N×N be the diagonal matrix of the eigenvalues λn (which are non-
negative, and are assumed to be in decreasing order) and Ψ ∈ R

N×N the

matrix of corresponding orthonormal eigenvectors, so that Ĉ diagonalizes as

Ĉ = ΨΛΨT.

The principal component transform of the data X is W := ΨTX ; this is
an orthogonal transformation of RN that transforms X to a new coordinate
system in which the greatest component-wise variance comes to lie on the
first coordinate (called the first principal component), the second greatest
variance on the second coordinate, and so on.

On the other hand, taking the singular value decomposition of the data
(normalized by the number of samples) yields

1√
M
X = UΣV T,

where U ∈ R
N×N and V ∈ R

M×M are orthogonal and Σ ∈ R
N×M is diagonal

with decreasing non-negative diagonal entries (the singular values of 1√
M
X).

Then

Ĉ = UΣV T(UΣV T)T = UΣV TV ΣTUT = UΣ2UT.

from which we see that U = Ψ and Σ2 = Λ. This is just another instance
of the well-known relation that, for any matrix A, the eigenvalues of AA∗

are the singular values of A and the right eigenvectors of AA∗ are the left
singular vectors of A; however, in this context, it also provides an alternative
way to compute the principal component transform.

In fact, performing principal component analysis via the singular value
decomposition is numerically preferable to forming and then diagonalizing
the covariance matrix, since the formation of XXT can cause a disastrous
loss of precision; the classic example of this phenomenon is the Läuchli matrix

⎡

⎢
⎣

1 ε 0 0

1 0 ε 0

1 0 0 ε

⎤

⎥
⎦ (0 < ε� 1),

for which taking the singular value decomposition (e.g. by bidiagonalization
followed by QR iteration) is stable, but forming and diagonalizing XXT is
unstable.
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Karhunen–Loève Sampling of Non-Gaussian Besov Measures. The
Karhunen–Loève approach to generating samples from Gaussian measures of
known covariance operator, as in Example 11.5, can be extended to more
general settings, in which a basis is prescribed a priori and (not necessarily
Gaussian) random coefficients with a suitable decay rate are used. The choice
of basis elements and the rate of decay of the coefficients together control the
smoothness of the sample realizations; the mathematical hard work lies in
showing that such random series do indeed converge to a well-defined limit,
and thereby define a probability measure on the desired function space.

One method for the construction of function spaces — and hence ran-
dom functions — of desired smoothness is to use wavelets. Wavelet bases are
particularly attractive because they allow for the representation of sharply
localized features — e.g. the interface between two media with different mat-
erial properties — in a way that globally smooth basis functions such as
polynomials and the Fourier basis do not. Omitting several technicalities, a
wavelet basis of L2(Rd) or L2(Td) can be thought of as an orthonormal basis
consisting of appropriately scaled and shifted copies of a single basic element
that has some self-similarity. By controlling the rate of decay of the coeffi-
cients in a wavelet expansion, we obtain a family of function spaces — the
Besov spaces — with three scales of smoothness, here denoted p, q and s. In
what follows, for any function f on R

d or T
d, define the scaled and shifted

version fj,k of f for j, k ∈ Z by

fj,k(x) := f(2
jx− k). (11.2)

The starting point of a wavelet construction is a scaling function (also

known as the averaging function or father wavelet) φ̃ : R → R and a family
of closed subspaces Vj ⊆ L2(R), j ∈ Z, called a multiresolution analysis of
L2(R), satisfying

(a) (nesting) for all j ∈ Z, Vj ⊆ Vj+1;

(b) (density and zero intersection)
⋃

j∈Z
Vj = L

2(R) and
⋂

j∈Z
Vj = {0};

(c) (scaling) for all j, k ∈ Z, f ∈ V0 ⇐⇒ fj,k ∈ Vj ;

(d) (translates of φ̃ generate V0) V0 = span{φ̃0,k | k ∈ Z};
(e) (Riesz basis) there are finite positive constants A and B such that, for

all sequences (ck)k∈Z ∈ �2(Z),

A‖(ck)‖�2(Z) ≤
∥
∥
∥
∥
∥

∑

k∈Z

ckφ̃0,k

∥
∥
∥
∥
∥
L2(R)

≤ B‖(ck)‖�2(Z).

Given such a scaling function φ̃ : R → R, the associated mother wavelet
ψ̃ : R→ R is defined as follows:
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if φ̃(x) =
∑

k∈Z

ckφ̃(2x− k),

then ψ̃(x) =
∑

k∈Z

(−1)kck+1φ̃(2x+ k).

It is the scaled and shifted copies of the mother wavelet ψ̃ that will form the
desired orthonormal basis of L2.

Example 11.8. (a) The indicator function φ̃ = I[0,1) satisfies the self-

similarity relation φ̃(x) = φ̃(2x) + φ̃(2x− 1); the associated ψ̃ given by

ψ̃(x) = φ̃(2x)− φ̃(2x− 1) =

⎧
⎪⎨

⎪⎩

1, if 0 ≤ x < 1
2 ,

−1, if 1
2 ≤ x < 1,

0, otherwise.

is called the Haar wavelet.
(b) The B-spline scaling functions σr, r ∈ N0, are piecewise polynomial of

degree r and globally Cr−1, and are defined recursively by convolution:

σr :=

{
I[0,1), for r = 0,

σr−1 $ σ0, for r ∈ N,
(11.3)

where

(f $ g)(x) :=

∫

R

f(y)g(x− y) dy.

Here, the presentation focusses on Besov spaces of 1-periodic functions,
i.e. functions on the unit circle T := R/Z, and on the d-dimensional unit
torus Td := R

d/Zd. To this end, set

φ(x) :=
∑

s∈Z

φ̃(x+ s) and ψ(x) :=
∑

s∈Z

ψ̃(x+ s).

Scaled and translated versions of these functions are defined as usual by
(11.2). Note that in the toroidal case the spaces Vj for j < 0 consist of
constant functions, and that, for each scale j ∈ N0, φ ∈ V0 has only 2j

distinct scaled translates φj,k ∈ Vj , i.e. those with k = 0, . . . , 2j−1. Let

Vj := span{φj,k | k = 0, . . . , 2j − 1},
Wj := span{ψj,k | k = 0, . . . , 2j − 1},

so that Wj is the orthogonal complement of Vj in Vj+1 and

L2(T) =
⋃

j∈N0

Vj =
⊕

j∈N0

Wj
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Indeed, if ψ has unit norm, then 2j/2ψj,k also has unit norm, and

{2j/2ψj,k | k = 0, . . . , 2j − 1}is an orthonormal basis of Wj , and

{2j/2ψj,k | j ∈ N0, k = 0, . . . , 2j − 1} is an orthonormal basis of L2(T),

a so-called wavelet basis.
To construct an analogous wavelet basis of L2(Td) for d ≥ 1, proceed as

follows: for ν ∈ {0, 1}d \ {(0, . . . , 0)}, j ∈ N0, and k ∈ {0, . . . , 2j − 1}d, define
the scaled and translated wavelet ψν

j,k : T
d → R by

ψν
j,k(x) := 2dj/2ψν1(2jx1 − k1) · · ·ψνd(2jxd − kd)

where ψ0 = φ and ψ1 = ψ. The system

{
ψν
j,k

∣
∣ j ∈ N0, k ∈ {0, . . . , 2j − 1}d, ν ∈ {0, 1}d \ {(0, . . . , 0)}

}

is an orthonormal wavelet basis of L2(Td).
The Besov space Bs

pq(T
d) can be characterized in terms of the summability

of wavelet coefficients at the various scales:

Definition 11.9. Let 1 ≤ p, q < ∞ and let s > 0. The Besov (p, q, s) norm
of a function u =

∑
j,k,ν u

ν
j,kψ

ν
j,k : T

d → R is defined by

∥
∥
∥
∥
∥
∥

∑

j∈N0

∑

ν,k

uνj,kψ
ν
j,k

∥
∥
∥
∥
∥
∥
Bs

pq(T
d)

:=
∥
∥
∥j �→ 2js2jd(

1
2− 1

p )
∥
∥(k, ν) �→ uνj,k

∥
∥
�p

∥
∥
∥
�q(N0)

:=

⎛

⎜
⎝
∑

j∈N0

2qjs2qjd(
1
2− 1

p )

⎛

⎝
∑

ν,k

|uνj,k|p
⎞

⎠

q/p
⎞

⎟
⎠

1/q

,

and the Besov space Bs
pq(T

d) is the completion of the space of functions for
which this norm is finite.

Note that at each scale j, there are (2d − 1)2jd = 2(j+1)d − 2jd wavelet
coefficients. The indices j, k and ν can be combined into a single index � ∈ N.
First, � = 1 corresponds to the scaling function φ(x1) · · ·φ(xd). The remaining
numbering is done scale by scale; that is, we first number wavelets with j = 0,
then wavelets with j = 1, and so on. Within each scale j ∈ N0, the 2d − 1
indices ν are ordered by thinking them as binary representation of integers,
and an ordering of the 2jd translations k can be chosen arbitrarily. With this
renumbering,

∞∑

�=1

c�ψ� ∈ Bs
pq(T

d) ⇐⇒ 2js2jd(
1
2− 1

p )

⎛

⎝
2(j+1)d−1∑

�=2jd

|c�|p
⎞

⎠

1/p

∈ �q(N0)
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For p = q, since at scale j it holds that 2jd ≤ � < 2(j+1)d, an equivalent norm
for Bs

pp(T
d) is

∥
∥
∥
∥
∥

∑

�∈N

u�ψ�

∥
∥
∥
∥
∥
Bs

pp(T
d)

)
∥
∥
∥
∥
∥

∑

�∈N

u�ψ�

∥
∥
∥
∥
∥
Xs,p

:=

( ∞∑

�=1

�(ps/d+p/2−1)|u�|p
)1/p

;

in particular if the original scaling function and mother wavelet are r times
differentiable with r > s, then Bs

22 coincides with the Sobolev space Hs.
This leads to a Karhunen–Loève-type sampling procedure for Bs

pp(T
d), as in

Example 11.5: U defined by

U :=
∑

�∈N

�−( s
d+

1
2− 1

p )κ−
1
pΞ�ψ�, (11.4)

where Ξ� are sampled independently and identically from the generalized
Gaussian measure on R with Lebesgue density proportional to exp(− 1

2 |ξ�|p),
can be said to have ‘formal Lebesgue density’ proportional to exp(−κ

2 ‖u‖
p
Bs

pp
),

and is therefore a natural candidate for a ‘typical’ element of the Besov space
Bs

pp(T
d). More generally, given any orthonormal basis {ψk | k ∈ N} of some

Hilbert space, one can define a Banach subspace Xs,p with norm

∥
∥
∥
∥
∥

∑

�∈N

u�ψ�

∥
∥
∥
∥
∥
Xs,p

:=

( ∞∑

�=1

�(ps/d+p/2−1)|u�|p
)1/p

and define a Besov-distributed random variable U by (11.4).
It remains, however, to check that (11.4) not only defines a measure, but

that it assigns unit probability mass to the Besov space from which it is
desired to draw samples. It turns out that the question of whether or not
U ∈ Xs,p with probability one is closely related to having a Fernique theorem
(q.v. Theorem 2.47) for Besov measures:

Theorem 11.10. Let U be defined as in (11.4), with 1 ≤ p <∞ and s > 0.
Then

‖U‖Xt,p <∞ almost surely ⇐⇒ E[exp(α‖U‖pXt,p)] <∞ for all α ∈ (0, κ2 )

⇐⇒ t < s− d
p

Furthermore, for p ≥ 1, s > d
p , and t < s−

d
p , there is a constant r∗ depending

only on p, d, s and t such that, for all α ∈ (0, κ
2r∗ ),

E[exp(α‖U‖Ct)] <∞.
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11.2 Wiener–Hermite Polynomial Chaos

The next section will cover polynomial chaos (PC) expansions in greater gen-
erality, and this section serves as an introductory prelude. In this, the classical
and notationally simplest setting, we consider expansions of a real-valued ran-
dom variable U with respect to a single standard Gaussian random variable
Ξ, using appropriate orthogonal polynomials of Ξ, i.e. the Hermite polyno-
mials. This setting was pioneered by Norbert Wiener, and so it is known
as the Wiener–Hermite polynomial chaos. The term ‘chaos’ is perhaps a bit
confusing, and is not related to the use of the term in the study of dynami-
cal systems; its original meaning, as used by Wiener (1938), was something
closer to what would nowadays be called a stochastic process:

“Of all the forms of chaos occurring in physics, there is only one class which has
been studied with anything approaching completeness. This is the class of types of
chaos connected with the theory of Brownian motion.”

Let Ξ ∼ γ = N (0, 1) be a standard Gaussian random variable, and let
Hen ∈ P, for n ∈ N0, be the Hermite polynomials, the orthogonal polynomials
for the standard Gaussian measure γ with the normalization

∫

R

Hem(ξ)Hen(ξ) dγ(ξ) = n!δmn.

By the Weierstrass approximation theorem (Theorem 8.20) and the approx-
imability of L2 functions by continuous ones, the Hermite polynomials form
a complete orthogonal basis of the Hilbert space L2(R, γ;R) with the inner
product

〈U, V 〉L2(γ) := E[U(Ξ)V (Ξ)] ≡
∫

R

U(ξ)V (ξ) dγ(ξ).

Definition 11.11. Let U ∈ L2(R, γ;R) be a square-integrable real-valued
random variable. The Wiener–Hermite polynomial chaos expansion of U with
respect to the standard Gaussian Ξ is the expansion of U in the orthogonal
basis {Hen}n∈N0, i.e.

U =
∑

n∈N0

unHen(Ξ)

with scalar Wiener–Hermite polynomial chaos coefficients {un}n∈N0 ⊆ R

given by

un =
〈U,Hen〉L2(γ)

‖Hen‖2L2(γ)

=
1

n!
√
2π

∫ ∞

−∞
U(ξ)Hen(ξ)e

−ξ2/2 dξ.

Note that, in particular, since He0 ≡ 1,

E[U ] = 〈He0, U〉L2(γ) =
∑

n∈N0

un〈He0,Hen〉L2(γ) = u0,
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so the expected value of U is simply its 0th PC coefficient. Similarly, its
variance is a weighted sum of the squares of its PC coefficients:

V[U ] = E
[
|U − E[U ]|2

]

= E

⎡

⎣

∣
∣
∣
∣
∣

∑

n∈N

unHen

∣
∣
∣
∣
∣

2
⎤

⎦ since E[U ] = u0

=
∑

m,n∈N

umun〈Hem,Hen〉L2(γ)

=
∑

n∈N

u2n‖Hen‖2L2(γ) by Hermitian orthogonality

=
∑

n∈N

u2nn!.

Example 11.12. Let X ∼ N (m,σ2) be a real-valued Gaussian random
variable with mean m ∈ R and variance σ2 ≥ 0. Let Y := eX ; since logY is
normally distributed, the non-negative-valued random variable Y is said to
be a log-normal random variable. As usual, let Ξ ∼ N (0, 1) be the standard
Gaussian random variable; clearly X has the same distribution as m + σΞ,
and Y has the same distribution as emeσΞ . The Wiener–Hermite expansion
of Y as

∑
k∈N0

ykHek(Ξ) has coefficients

yk =
〈em+σΞ ,Hek(Ξ)〉

‖Hek(Ξ)‖2

=
em

k!

1√
2π

∫

R

eσξHek(ξ)e
−ξ2/2 dξ

=
em+σ2/2

k!

1√
2π

∫

R

Hek(ξ)e
−(ξ−σ)2/2 dξ

=
em+σ2/2

k!

1√
2π

∫

R

Hek(w + σ)e−w2/2 dw.

This Gaussian integral can be evaluated directly using the Cameron–Martin
formula (Lemma 2.40), or else using the formula

Hen(x + y) =

n∑

k=0

(
n

k

)

xn−kHek(y),

which follows from the derivative property He′n = nHen−1, with x = σ and
y = w: this formula yields that

yk =
em+σ2/2

k!

1√
2π

∫

R

k∑

j=0

(
k

j

)

σk−jHej(w)e
−w2/2 dw =

em+σ2/2σk

k!
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since the orthogonality relation 〈Hem,Hen〉L2(γ) = n!δmn with n = 0 implies
that every Hermite polynomial other than He0 has mean 0 under standard
Gaussian measure. That is,

Y = em+σ2/2
∑

k∈N0

σk

k!
Hek(Ξ). (11.5)

The Wiener–Hermite expansion (11.5) reveals that E[Y ] = em+σ2/2 and

V[Y ] = e2m+σ2 ∑

k∈N

(
σk

k!

)2

‖Hek‖2L2(γ) = e
2m+σ2

(
eσ

2

− 1
)
.

Truncation of Wiener–Hermite Expansions. Of course, in practice, the
series expansion U =

∑
k∈N0

ukHek(Ξ) must be truncated after finitely many
terms, and so it is natural to ask about the quality of the approximation

U ≈ UK :=
K∑

k=0

ukHek(Ξ).

Since the Hermite polynomials {Hek}k∈N0 form a complete orthogonal basis
for L2(R, γ;R), the standard results about orthogonal approximations in
Hilbert spaces apply. In particular, by Corollary 3.26, the truncation error
U − UK is orthogonal to the space from which UK was chosen, i.e.

span{He0,He1, . . . ,HeK},

and tends to zero in mean square; in the stochastic context, this observation
was first made by Cameron and Martin (1947, Section 2).

Lemma 11.13. The truncation error U − UK is orthogonal to the subspace

span{He0,He1, . . . ,HeK}

of L2(R, dγ;R). Furthermore, limK→∞ UK = U in L2(R, γ;R).

Proof. Let V :=
∑K

m=0 vmHem be any element of the subspace of L2(R, γ;R)
spanned by the Hermite polynomials of degree at most K. Then

〈U − UK , V 〉L2(γ) =

〈(
∑

n>K

unHen

)

,

(
K∑

m=0

vmHem

)〉

=
∑

n>K
m∈{0,...,K}

unvm〈Hen,Hem〉

= 0.
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Hence, by Pythagoras’ theorem,

‖U‖2L2(γ) = ‖UK‖2L2(γ) + ‖U − UK‖2L2(γ),

and hence ‖U − UK‖L2(γ) → 0 as K →∞.  !

11.3 Generalized Polynomial Chaos Expansions

The ideas of polynomial chaos can be generalized well beyond the setting
in which the elementary random variable Ξ used to generate the orthogo-
nal decomposition is a standard Gaussian random variable, or even a vector
Ξ = (Ξ1, . . . , Ξd) of mutually orthogonal Gaussian random variables. Such
expansions are referred to as generalized polynomial chaos (gPC) expansions.

Let Ξ = (Ξ1, . . . , Ξd) be an R
d-valued random variable with independent

(and hence L2-orthogonal) components, called the stochastic germ. Let the
measurable rectangle Θ = Θ1 × · · · ×Θd ⊆ R

d be the support (i.e. range) of
Ξ. Denote by μ = μ1⊗· · ·⊗μd the distribution of Ξ on Θ. The objective is to
express any function (random variable, random vector, or even random field)
U ∈ L2(Θ, μ) in terms of elementary μ-orthogonal functions of the stochastic
germ Ξ.

As usual, let Pd denote the ring of all d-variate polynomials with real
coefficients, and let Pd

≤p denote those polynomials of total degree at most

p ∈ N0. Let Γp ⊆ Pd
≤p be a collection of polynomials that are mutually

orthogonal, orthogonal to Pd
≤p−1, and span Pd

=p. Assuming for convenience,
as usual, the completeness of the resulting system of orthogonal polynomials,
this yields the orthogonal decomposition

L2(Θ, μ;R) =
⊕

p∈N0

spanΓp.

It is important to note that there is a lack of uniqueness in these basis poly-
nomials whenever d ≥ 2: each choice of ordering of multi-indices α ∈ N

d
0

can yield a different orthogonal basis of L2(Θ, μ) when the Gram–Schmidt
procedure is applied to the monomials ξα.

Note that (as usual, assuming separability) the L2 space over the product
probability space (Θ,F , μ) is isomorphic to the Hilbert space tensor product
of the L2 spaces over the marginal probability spaces:

L2(Θ1 × · · · ×Θd, μ1 ⊗ · · · ⊗ μd;R) =
d⊗

i=1

L2(Θi, μi;R);
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hence, as in Theorem 8.25, an orthogonal system of multivariate polynomials
for L2(Θ, μ;R) can be found by taking products of univariate orthogonal
polynomials for the marginal spaces L2(Θi, μi;R). A generalized polynomial
chaos (gPC) expansion of a random variable or stochastic process U is simply
the expansion of U with respect to such a complete orthogonal polynomial
basis of L2(Θ, μ).

Example 11.14. Let Ξ = (Ξ1, Ξ2) be such that Ξ1 and Ξ2 are independent
(and hence orthogonal) and such that Ξ1 is a standard Gaussian random
variable and Ξ2 is uniformly distributed on [−1, 1]. Hence, the univariate
orthogonal polynomials for Ξ1 are the Hermite polynomials Hen and the
univariate orthogonal polynomials for Ξ2 are the Legendre polynomials Len.
Thus, by Theorem 8.25, a system of orthogonal polynomials for Ξ up to total
degree 3 is

Γ0 = {1},
Γ1 = {He1(ξ1),Le1(ξ2)}

= {ξ1, ξ2},
Γ2 = {He2(ξ1),He1(ξ1)Le1(ξ2),Le2(ξ2)}

= {ξ21 − 1, ξ1ξ2,
1
2 (3ξ

2
2 − 1)},

Γ3 = {He3(ξ1),He2(ξ1)Le1(ξ2),He1(ξ1)Le2(ξ2),Le3(ξ2)}
= {ξ31 − 3ξ1, ξ

2
1ξ2 − ξ2, 12 (3ξ1ξ

2
2 − ξ1), 12 (5ξ

3
2 − 3ξ2)}.

Remark 11.15. To simplify the notation in what follows, the following con-
ventions will be observed:

(a) To simplify expectations, inner products and norms, 〈 · 〉μ or simply 〈 · 〉
will denote integration (i.e. expectation) with respect to the probability
measure μ, so that the L2(μ) inner product is simply 〈X,Y 〉L2(μ) =
〈XY 〉μ.

(b) Rather than have the orthogonal basis polynomials be indexed by multi-
indices α ∈ N

d
0, or have two scalar indices, one for the degree p and one

within each set Γp, it is convenient to order the basis polynomials using
a single scalar index k ∈ N0. It is common in practice to take Ψ0 = 1 and
to have the polynomial degree be (weakly) increasing with respect to the
new index k. So, to continue Example 11.14, one could use the graded
lexicographic ordering on α ∈ N

2
0 so that Ψ0(ξ) = 1 and

Ψ1(ξ) = ξ1, Ψ2(ξ) = ξ2, Ψ3(ξ) = ξ
2
1 − 1,

Ψ4(ξ) = ξ1ξ2, Ψ5(ξ) =
1
2 (3ξ

2
2 − 1), Ψ6(ξ) = ξ

3
1 − 3ξ1,

Ψ7(ξ) = ξ
2
1ξ2 − ξ2, Ψ8(ξ) =

1
2 (3ξ1ξ

2
2 − ξ1), Ψ9(ξ) =

1
2 (5ξ

3
2 − 3ξ2).

(c) By abuse of notation, Ψk will stand for both a polynomial function (which
is a deterministic function from R

d to R) and for the real-valued random
variable that is the composition of that polynomial with the stochastic
germ Ξ (which is a function from an abstract probability space to R).
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Truncation of gPC Expansions. Suppose that a gPC expansion of the
form U =

∑
k∈N0

ukΨk is truncated, i.e. we consider

UK =

K∑

k=0

ukΨk.

It is an easy exercise to show that the truncation error U −UK is orthogonal
to span{Ψ0, . . . , ΨK}. It is also worth considering how many terms there are
in such a truncated gPC expansion. Suppose that the stochastic germ Ξ has
dimension d (i.e. has d independent components), and we work only with
polynomials of total degree at most p. The total number of coefficients in the
truncated expansion UK is

K + 1 =
(d+ p)!

d!p!
.

That is, the total number of gPC coefficients that must be calculated grows
combinatorially as a function of the number of input random variables and the
degree of polynomial approximation. Such rapid growth limits the usefulness
of gPC expansions for practical applications where d and p are much greater
than the order of 10 or so.

Expansions of Random Variables. Consider a real-valued random vari-
able U , which we expand in terms of a stochastic germ Ξ as

UK(Ξ) =
∑

k∈N0

ukΨk(Ξ),

where the basis functions Ψk are orthogonal with respect to the law of Ξ,
and with the usual convention that Ψ0 = 1. A first, easy, observation is that

E[U ] = 〈Ψ0U〉 =
∑

k∈N0

uk〈Ψ0Ψk〉 = u0,

so the expected value of U is simply its 0th gPC coefficient. Similarly, its
variance is a weighted sum of the squares of its gPC coefficients:

E
[
|U − E[U ]|2

]
= E

⎡

⎣

∣
∣
∣
∣
∣

∑

k∈N0

ukΨk

∣
∣
∣
∣
∣

2
⎤

⎦

=
∑

k,�∈N

uku�〈ΨkΨ�〉

=
∑

k∈N

u2k〈Ψ2
k 〉.
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Similar remarks apply to any truncation UK =
∑K

k=1 ukΨk of the gPC exp-
ansion of U . In view of the expression for the variance, the gPC coefficients
can be used as sensitivity indices. That is, a natural measure of how strongly
U depends upon Ψk(Ξ) is

u2k〈Ψ2
k 〉∑

�≥1 u
2
�〈Ψ2

� 〉
.

Expansions of Random Vectors. Similarly, if U1, . . . , Un are (not neces-
sarily independent) real-valued random variables, then the R

n-valued ran-
dom variable U = [U1, . . . , Un]

T with the Ui as its components can be given
a (possibly truncated) expansion

U(ξ) =
∑

k∈N0

ukΨk(ξ),

with vector-valued gPC coefficients uk = [u1,k, . . . , un,k]
T ∈ R

n for each
k ∈ N0. As before,

E[U ] = 〈Ψ0U〉 =
∑

k∈N0

uk〈Ψ0Ψk〉 = u0 ∈ R
n

and the covariance matrix C ∈ R
n×n of U is given by

C =
∑

k∈N

uku
T
k 〈Ψ2

k 〉

i.e. its components are Cij =
∑

k∈N
ui,kuj,k〈Ψ2

k 〉.

Expansions of Stochastic Processes. Consider now a stochastic process
U , i.e. a function U : Θ × X → R. Suppose that U is square integrable in
the sense that, for each x ∈ X , U( · , x) ∈ L2(Θ, μ) is a real-valued random
variable, and, for each θ ∈ Θ, U(θ, · ) ∈ L2(X , dx) is a scalar field on the
domain X . Recall that

L2(Θ, μ;R)⊗ L2(X , dx;R) ∼= L2(Θ ×X , μ⊗ dx;R) ∼= L2
(
Θ, μ;L2(X , dx)

)
,

so U can be equivalently viewed as a linear combination of products of
R-valued random variables with deterministic scalar fields, or as a function
on Θ×X , or as a field-valued random variable. As usual, take {Ψk | k ∈ N0}
to be an orthogonal polynomial basis of L2(Θ, μ;R), ordered (weakly) by
total degree, with Ψ0 = 1. A gPC expansion of the random field U is an
L2-convergent expansion of the form

U(x, ξ) =
∑

k∈N0

uk(x)Ψk(ξ).
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The functions uk : X → R are called the stochastic modes of the process U .
The stochastic mode u0 : X → R is the mean field of U :

E[U(x)] = u0(x).

The variance of the field at x ∈ X is

V[U(x)] =
∑

k∈N

uk(x)
2〈Ψ2

k 〉,

whereas, for two points x, y ∈ X ,

E[U(x)U(y)] =

〈
∑

k∈N0

uk(x)Ψk(ξ)
∑

�∈N0

u�(y)Ψ�(ξ)

〉

=
∑

k∈N0

uk(x)uk(y)〈Ψ2
k 〉

and so the covariance function of U is given by

CU (x, y) =
∑

k∈N

uk(x)uk(y)〈Ψ2
k 〉.

The previous remarks about gPC expansions of vector-valued random vari-
ables are a special case of these remarks about stochastic processe, namely
X = {1, . . . , n}. At least when dimX is low, it is very common to see the
behaviour of a stochastic field U (or its truncation UK) summarized by plots
of the mean field and the variance field, as well as a few ‘typical’ sample re-
alizations. The visualization of high-dimensional data is a subject unto itself,
with many ingenious uses of shading, colour, transparency, videos and user
interaction tools.

Changes of gPC Basis. It is possible to change between representations
of a stochastic quantity U with respect to gPC bases {Ψk | k ∈ N0} and
{Φk | k ∈ N0} generated by measures μ and ν respectively. Obviously, for
such changes of basis to work in both directions, μ and ν must at least have
the same support. Suppose that

U =
∑

k∈N0

ukΨk =
∑

k∈N0

vkΦk.

Then, taking the L2(ν)-inner product of this equation with Φ�,

〈UΦ�〉ν =
∑

k∈N0

uk〈ΨkΦ�〉ν = v�〈Ψ2
� 〉ν ,

provided that ΨkΦ� ∈ L2(ν) for all k ∈ N0, i.e.
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v� =
∑

k∈N0

uk〈ΨkΦ�〉ν
〈Ψ2

� 〉ν
.

Similarly, taking the L2(μ)-inner product of this equation with Ψ� yields that,
provided that ΦkΨ� ∈ L2(μ) for all k ∈ N0,

u� =
∑

k∈N0

vk〈ΦkΨ�〉μ
〈Ψ2

� 〉μ
.

Remark 11.16. It is possible to adapt the notion of a gPC expansion to
the situation of a stochastic germ Ξ with arbitrary dependencies among its
components, but there are some complications. In summary, suppose that
Ξ = (Ξ1, . . . , Ξd), taking values in Θ = Θ1× · · ·×Θd, has joint law μ, which
is not necessarily a product measure. Nevertheless, let μi denote the marginal
law of Ξi, i.e.

μi(Ei) := μ(Θ1 × · · · ×Θi−1 × Ei ×Θi+1 × · · · ×Θd).

To simplify matters further, assume that μ (resp. μi) has Lebesgue density

ρ (resp. ρi). Now let φ
(i)
p ∈ P, p ∈ N0, be univariate orthogonal polynomials

for μi. The chaos function associated with a multi-index α ∈ N
d
0 is defined

to be

Ψα(ξ) :=

√
ρ1(ξ1) . . . ρd(ξd)

ρ(ξ)
φ(1)α1

(ξ1) . . . φ
(d)
αd

(ξd).

It can be shown that the family {Ψα | α ∈ N
d
0} is a complete orthonormal

basis for L2(Θ, μ;R), so we have the usual series expansion U =
∑

α uαΨα.
Note, however, that with the exception of Ψ0 = 1, the functions Ψα are not
polynomials. Nevertheless, we still have the usual properties that truncation
error is orthogonal to the approximation subspace, and

Eμ[U ] = u0, Vμ[U ] =
∑

α
=0

u2α〈Ψ2
α〉μ.

Remark 11.17. Polynomial chaos expansions were originally introduced in
stochastic analysis, and in that setting the stochastic germ Ξ typically has
countably infinite dimension, i.e. Ξ = (Ξ1, . . . , Ξd, . . . ). Again, for simplicity,
suppose that the components of Ξ are independent, and hence orthogonal;
let Θ denote the range of Ξ, which is an infinite product domain, and let

μ =
⊗

d∈N
μd denote the law of Ξ. For each d ∈ N, let {ψ(d)

αd | αd ∈ N0} be
a system of univariate orthogonal polynomials for Ξd ∼ μd, again with the

usual convention that ψ
(d)
0 ≡ 1. Products of the form

ψα(ξ) :=
∏

d∈N

ψ(d)
αd

(ξd)
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are again polynomials when only finitely many αd �= 0, and form an orthog-
onal system of polynomials in L2(Θ, μ;R).

As in the finite-dimensional case, there are many choices of ordering for the
basis polynomials, some of which may lend themselves to particular problems.
One possible orthogonal PC decomposition of u(Ξ) for u ∈ L2(Θ, μ;R), in
which summands are arranged in order of increasing ‘complexity’, is

u(Ξ) = f0 +
∑

d∈N

uαd
ψ(d)
αd

(Ξd)

+
∑

d1,d2∈N

uαd1
αd2
ψ(d1)
αd1

(Ξd1)ψ
(d2)
αd2

(Ξd2)

· · ·

+
∑

d1,d2,...,dk∈N

uαd1
αd2

...αdk
ψ(d1)
αd1

(Ξd1)ψ
(d2)
αd2

(Ξd2) · · ·ψ(dk)
αdk

(Ξdk
)

· · · ;

i.e., writing Ψ
(d)
αd for the image random variable ψ

(d)
αd (Ξd),

U = u0 +
∑

d∈N

uαd
Ψ (d)
αd

+
∑

d1,d2∈N

uαd1
αd2
Ψ (d1)
αd1
Ψ (d2)
αd2

(Ξd2)

· · ·

+
∑

d1,d2,...,dk∈N

uαd1
αd2

...αdk
Ψ (d1)
αd1
Ψ (d2)
αd2

· · ·Ψ (dk)
αdk

· · · .

The PC coefficients uαd
∈ R, etc. are determined by the usual orthogonal

projection relation. In practice, this expansion must be terminated at finite
k, and provided that u is square-integrable, the L2 truncation error decays
to 0 as k → ∞, with more rapid decay for smoother u, as in, e.g., Theorem
8.23.

11.4 Wavelet Expansions

Recall from the earlier discussion of Gibbs’ phenomenon in Chapter 8 that
expansions of non-smooth functions in terms of smooth basis functions such
as polynomials, while guaranteed to be convergent in the L2 sense, can have
poor pointwise convergence properties. However, to remedy such problems,
one can consider spectral expansions in terms of orthogonal bases of functions
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in L2(Θ, μ;R) that are no longer polynomials: a classic example of such a
construction is the use of wavelets, which were developed to resolve the same
problem in harmonic analysis and its applications. This section considers, by
way of example, orthogonal decomposition of random variables using Haar
wavelets, the so-called Wiener–Haar expansion.

Definition 11.18. The Haar scaling function is φ(x) := I[0,1)(x). For j ∈ N0

and k ∈ {0, . . . , 2j − 1}, let φj,k(x) := 2j/2φ(2jx− k) and

Vj := span{φj,0, . . . , φj,2j−1}.

The Haar function (or Haar mother wavelet) ψ : [0, 1]→ R is defined by

ψ(x) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ x < 1
2 ,

−1, if 1
2 ≤ x < 1,

0, otherwise.

The Haar wavelet family is the collection of scaled and shifted versions ψj,k

of the mother wavelet ψ defined by

ψj,k(x) := 2j/2ψ(2jx− k) for j ∈ N0 and k ∈ {0, . . . , 2j − 1}.

The spaces Vj form an increasing family of subspaces of L2([0, 1], dx;R),
with the index j representing the level of ‘detail’ permissible in a function
f ∈ Vj : more concretely, Vj is the set of functions on [0, 1] that are constant
on each half-open interval [2−jk, 2−j(k + 1)). A straightforward calculation
from the above definition yields the following:

Lemma 11.19. For all j, j′ ∈ N0, k ∈ {0, . . . , 2j−1} and k′ ∈ {0, . . . , 2j
′−1},

∫ 1

0

ψj,k(x) dx = 0, and

∫ 1

0

ψj,k(x)ψj′,k′(x) dx = δjj′δkk′ .

Hence, {1}∪ {ψj,k | j ∈ N0, k ∈ {0, 1, . . . , 2j − 1}} is a complete orthonormal
basis of L2([0, 1], dx;R). If Wj denotes the orthogonal complement of Vj in
Vj+1, then

Wj = span{ψj,0, . . . , ψj,2j−1}, and

L2([0, 1], dx;R) =
⊕

j∈N0

Wj .

Consider a stochastic germ Ξ ∼ μ ∈ M1(R) with cumulative distribution
function FΞ : R → [0, 1]. For simplicity, suppose that FΞ is continuous and
strictly increasing, so that FΞ is differentiable (with F ′

Ξ = dμ
dx = ρΞ) almost
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everywhere, and also invertible. We wish to write a random variable U ∈
L2(R, μ;R), in particular one that may be a non-smooth function of Ξ, as

U(ξ) = u0 +
∑

j∈N0

2j−1∑

k=0

uj,kψj,k(FΞ (ξ))

= u0 +
∑

j∈N0

2j−1∑

k=0

uj,kWj,k(ξ);

such an expansion will be called a Wiener–Haar expansion of U . See Figure
11.2 for an illustration comparing the cumulative distribution function of a
truncated Wiener–Haar expansion to that of a standard Gaussian, showing
the ‘clumping’ of probability mass that is to be expected of Wiener–Haar
wavelet expansions but not of Wiener–Hermite polynomial chaos expansions.
Indeed, the (sample) law of a Wiener–Haar expansion even has regions of
zero probability mass.

Note that, by a straightforward change of variables x = FΞ(ξ):

∫

R

Wj,k(ξ)Wj′ ,k′(ξ) dμ(ξ) =

∫

R

Wj,k(ξ)Wj′,k′ (ξ)ρΞ(ξ) dξ

=

∫ 1

0

ψj,k(x)ψj′,k′(x) dx

= δjj′δkk′ ,

so the family {Wj,k | j ∈ N0, k ∈ {0, . . . , 2j − 1}} forms a complete
orthonormal basis for L2(R, μ;R). Hence, the Wiener–Haar coefficients are
determined by

uj,k = 〈UWj,k〉 =
∫

R

U(ξ)Wj,k(ξ)ρΞ(ξ) dξ

=

∫ 1

0

U(F−1
Ξ (x))ψj,k(x) dx.

As in the case of a gPC expansion, the usual expressions for the mean and
variance of U hold:

E[U ] = u0 and V[U ] =
∑

j∈N0

2j−1∑

k=0

|uj,k|2.

Comparison of Wavelet and gPC Expansions. Despite the formal simi-
larities of the corresponding expansions, there are differences between wavelet
and gPC spectral expansions. For gPC expansions, the globally smooth
orthogonal polynomials used as the basis elements have the property that
expansions of smooth functions/random variables enjoy a fast convergence
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Fig. 11.2: The cumulative distribution function and binned peak-normalized
probability density function of 105 i.i.d. samples of a random variable U

with truncatedWiener–Haar expansionU =
∑J

j=0

∑2j−1
k=0 uj,kWj,k(Ξ), where

Ξ ∼ N (0, 1). The coefficients uj,k were sampled independently from uj,k ∼
2−jN (0, 1). The cumulative distribution function of a standard Gaussian is
shown dashed for comparison.
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rate, as in Theorem 8.23; no such connection between smoothness and conver-
gence rate is to be expected for Wiener–Haar expansions, in which the basis
functions are non-smooth. However, in cases in which U shows a localized
sharp variation or a discontinuity, a Wiener–Haar expansion may be more
efficient than a gPC expansion, since the convergence rate of the latter would
be impaired by Gibbs-type phenomena. Another distinctive feature of the
Wiener–Haar expansion concerns products of piecewise constant processes.
For instance, for f, g ∈ Vj the product fg is again an element of Vj ; it is
not true that the product of two polynomials of degree at most n is again a
polynomial of degree at most n. Therefore, for problems with strong depen-
dence upon high-degree/high-detail features, or with multiplicative structure,
Wiener–Haar expansions may be more appropriate than gPC expansions.
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11.6 Exercises

Exercise 11.1. Consider the negative Laplacian operator L := − d2

dx2 acting
on real-valued functions on the interval [0, 1], with zero boundary conditions.
Show that the eigenvalues μn and normalized eigenfunctions ψn of L are

μn = (πn)2,

ψn(x) =
√
2 sin(πnx).

Hence show that C := L−1 has the same eigenfunctions with eigenvalues
λn = (πn)−2. Hence, using the Karhunen–Loève theorem, generate figures
similar to Figure 11.1 for your choice of mean field m : [0, 1]→ R.

Exercise 11.2. Do the analogue of Exercise 11.1 for L = (−Δ)α acting on
real-valued functions on the square [0, 1]2, again with zero boundary condi-
tions. Try α = 2 first, then try α = 1, and try coarser and finer meshes in
each case. You should see that your numerical draws from the Gaussian field
with α = 1 fail to converge, whereas they converge nicely for α > 1. Loosely
speaking, the reason for this is that a Gaussian random variable with covari-
ance (−Δ)α is almost surely in the Sobolev space Hs or the Hölder space
Cs for s < α − d

2 , where d is the spatial dimension; thus, α = 1 on the
two-dimensional square is exactly on the borderline of divergence.

Exercise 11.3. Show that the eigenvalues λn and eigenfunctions en of the
exponential covariance function C(x, y) = exp(−|x − y|/a) on [−b, b] are
given by

λn =

{
2a

1+a2w2
n
, if n ∈ 2Z,

2a
1+a2v2

n
, if n ∈ 2Z+ 1,

en(x) =

⎧
⎨

⎩

sin(wnx)
/√
b− sin(2wnb)

2wn
, if n ∈ 2Z,

cos(vnx)
/√
b+ sin(2vnb)

2vn
, if n ∈ 2Z+ 1,

where wn and vn solve the transcendental equations

{
awn + tan(wnb) = 0, for n ∈ 2Z,

1− avn tan(vnb) = 0, for n ∈ 2Z+ 1.

Hence, using the Karhunen–Loève theorem, generate sample paths from the
Gaussian measure with covariance kernel C and your choice of mean path.
Note that you will need to use a numerical method such as Newton’s method
to find approximate values for wn and vn.

Exercise 11.4 (Karhunen–Loève-type sampling of Besov measures). Let
T
d := R

d/Zd denote the d-dimensional unit torus. Let {ψ� | � ∈ N} be an
orthonormal basis for L2(Td, dx;R). Let q ∈ [1,∞) and s ∈ (0,∞), and define
a new norm ‖ · ‖Xs,q on series u =

∑
�∈N
u�ψ� by
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∥
∥
∥
∥
∥

∑

�∈N

u�ψ�

∥
∥
∥
∥
∥
Xs,q

:=

(
∑

�∈N

�
sq
d + q

2−1|u�|q
)1/q

.

Show that ‖ · ‖Xs,q is indeed a norm and that the set of u with ‖u‖Xs,q finite
forms a Banach space. Now, for q ∈ [1,∞), s > 0, and κ > 0, define a random
function U by

U(x) :=
∑

�∈N

�−( s
d+

1
2− 1

q )κ−
1
qΞ�ψ�(x)

where Ξ� are sampled independently and identically from the generalized
Gaussian measure on R with Lebesgue density proportional to exp(− 1

2 |ξ|q).
By treating the above construction as an infinite product measure and con-
sidering the product of the densities exp(− 1

2 |ξ�|q), show formally that U has
‘Lebesgue density’ proportional to exp(−κ

2 ‖u‖
q
Xs,q).

Generate sample realizations of U and investigate the effect of the var-
ious parameters q, s and κ. It may be useful to know that samples from

the probability measure β1/2

2Γ (1+ 1
q )

exp(−βq/2|x−m|q) dx can be generated as

m + β−1/2S|Y |1/q where S is uniformly distributed in {−1,+1} and Y is
distributed according to the gamma distribution on [0,∞) with parameter q,
which has Lebesgue density qe−qx

I[0,∞)(x).



Chapter 12

Stochastic Galerkin Methods

Not to be absolutely certain is, I think, one
of the essential things in rationality.

Am I an Atheist or an Agnostic?
Bertrand Russell

Chapter 11 considered spectral expansions of square-integrable random
variables, random vectors and random fields of the form

U =
∑

k∈N0

ukΨk,

where U ∈ L2(Θ, μ;U), U is a Hilbert space in which the corresponding det-
erministic variables/vectors/fields lie, and {Ψk | k ∈ N0} is some orthogonal
basis for L2(Θ, μ;R). However, beyond the standard Hilbert space orthogonal
projection relation

uk =
〈UΨk〉
〈Ψ2

k 〉
,

we know very little about how to solve for the stochastic modes uk ∈ U . For
example, if U is the solution to a stochastic version of some problem such as
an ODE or PDE (e.g. with randomized coefficients), how are the stochastic
modes uk related to solutions of the original deterministic problem, or to the
stochastic modes of the random coefficients in the ODE/PDE? This chapter
and the next one focus on the determination of stochastic modes by two
classes of methods, the intrusive and the non-intrusive respectively.

This chapter considers intrusive spectral methods for UQ, and in particular
Galerkin methods. The Galerkin approach, also known as the Ritz–Galerkin
method or the method of mean weighted residuals, uses the formalism of weak

© Springer International Publishing Switzerland 2015
T.J. Sullivan, Introduction to Uncertainty Quantification, Texts
in Applied Mathematics 63, DOI 10.1007/978-3-319-23395-6 12
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solutions, as expressed in terms of inner products, to form systems of equa-
tions for the stochastic modes, which are generally coupled together. In terms
of practical implementation, this means that pre-existing numerical solution
schemes for the deterministic problem cannot be used as they are, and must
be coupled or otherwise modified to solve the stochastic problem. This situa-
tion is the opposite of that in the next chapter: non-intrusive methods rely on
individual realizations to determine the stochastic model response to random
inputs, and hence can use a pre-existing deterministic solver ‘as is’.

Suppose that the model relationship between some input data d and the
output (solution) u can be expressed formally as

R(u; d) = 0, (12.1)

an equality in some normed vector space1 U . A weak interpretation of this
model relationship is that, for some collection of test functions T ⊆ U ′,

〈τ | R(u; d)〉 = 0 for all τ ∈ T . (12.2)

Although it is clear that (12.1) =⇒ (12.2), the converse implication is not
generally true, which is why (12.2) is known as a ‘weak’ interpretation of
(12.1). The weak formulation (12.2) is very attractive both for theory and for
practical implementation: in particular, the requirement that (12.2) should
hold only for τ in some basis of a finite-dimensional test space T lies at the
foundation of many numerical methods.

In this chapter, the input data and hence the sought-for solution are both
uncertain, and modelled as random variables. For simplicity, we shall restrict
attention to the L2 case and assume that U is a square-integrable U-valued
random variable. Thus, throughout this chapter, S := L2(Θ, μ;R) will denote
the stochastic part of the solution space, so that U ∈ U ⊗ S. Furthermore,
given an orthogonal basis {Ψk | k ∈ N0} of S, we will take

SK := span{Ψ0, . . . , ΨK}.

12.1 Weak Formulation of Nonlinearities

Nonlinearities of various types occur throughout UQ, and their treatment is
critical in the context of stochastic Galerkin methods, which require us to
approximate these nonlinearities within the finite-dimensional solution space
SK or U ⊗ SK . Put another way, given gPC expansions for some random
variables, how can the gPC expansion of a nonlinear function of those vari-
ables be calculated? What is the induced map from gPC coefficients to gPC
coefficients, i.e. what is the spectral representation of the nonlinearity?

1 Or, more generally, topological vector space.



12.1 Weak Formulation of Nonlinearities 253

For example, given an infinite or truncated gPC expansion

U =
∑

k∈N0

ukΨk,

how does one calculate the gPC coefficients of, say, U2 or
√
U in terms of

those of U? The first example, U2, is a special case of taking the product of
two gPC expansions:

Galerkin Multiplication. The first, simplest, kind of nonlinearity to con-
sider is the product of two or more random variables in terms of their gPC
expansions. The natural question to ask is how to quickly compute the gPC
coefficients of a product in terms of the gPC coefficients of the factors —
particularly if expansions are truncated to finite order.

Definition 12.1. Let {Ψk}k∈N0 be an orthogonal set in L2(Θ, μ;R). The
associated multiplication tensor2 (or Galerkin tensor) is the rank-3 tensor
Mijk, (i, j, k) ∈ N

3
0, defined by

Mijk :=
〈ΨiΨjΨk〉
〈ΨkΨk〉

whenever ΨiΨjΨk is μ-integrable. By mild abuse of notation, we also write
Mijk for the finite-dimensional rank-3 tensor defined by the same formula for
0 ≤ i, j, k ≤ K.

Remark 12.2. (a) The multiplication tensor Mijk is symmetric in the first
two indices (i.e. Mijk = Mjik). In general, there are no symmetries
involving the third index.

(b) Furthermore, since {Ψk}k∈N0 is an orthogonal system, many of the entries
of Mijk are zero, and so it is a sparse tensor.

(c) Note that the multiplication tensor is determined entirely by the gPC
basis {Ψk}k∈N0 and the measure μ, and so while there is a significant
computational cost associated with evaluating its entries, this is a one-
time cost: the multiplication tensor can be pre-computed, stored, and
then used for many different problems. In a few special cases, the mul-
tiplication tensor can be calculated in closed form, see, e.g., Exercise
12.1. In other cases, it is necessary to resort to numerical integration;
note, however, that since Ψk is a polynomial, so is ΨiΨjΨk, and hence the
multiplication tensor can be evaluated numerically but exactly by Gauss
quadrature once the orthogonal polynomials of sufficiently high degree
and their zeros have been identified.

2 Readers familiar with tensor notation from continuum mechanics or differential geometry
will see that Mijk is covariant in the indices i and j and contravariant in the index k, and
thus is a (2, 1)-tensor; therefore, if this text were following standard tensor algebra notation
and writing vectors as

∑
k ukΨk , then the multiplication tensor would be denoted Mk

ij . In

terms of the dual basis {Ψk | k ∈ N0} defined by 〈Ψk |Ψ�〉 = δk� , M
k
ij = 〈Ψk |ΨiΨj〉.
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Example 12.3. Suppose that U =
∑

k∈N0
ukΨk and V =

∑
k∈N0

vkΨk are

random variables in S := L2(Θ, μ;R), with coefficients uk, vk ∈ R. Suppose
that their product W := UV is again a random variable in S. The strong
form of this relationship is that W = UV in S, i.e.

W (θ) = U(θ)V (θ) for μ-a.e. θ ∈ Θ.

A weak interpretation, however, is that W = UV holds only when tested
against the basis {Ψk}k∈N0 of S, and this leads to a method for determining
the coefficients wk in the expansion W =

∑
k∈N0

wkΨk. Note that

W =
∑

i,j∈N0

uivjΨiΨj,

so the coefficients {wk | k ∈ N0} are given by

wk =
〈WΨk〉
〈Ψ2

k 〉
=

∑

i,j∈N0

Mijkuivj .

It is this formula that motivates the name multiplication tensor for Mijk.

Now suppose that U and V in fact lie in SK , i.e. U =
∑K

k=0 ukΨk and

V =
∑K

k=0 vkΨk. Then their product W := UV has the expansion

W =
∑

k∈N0

K∑

i,j=0

uivjΨiΨjΨk.

Note that, while W lies in L2, it is not necessarily in SK . Nevertheless, the
truncated expansion

∑K
i,j,k=0MijkuivjΨk is the orthogonal projection of W

onto SK , and hence the L2-closest approximation ofW in SK . It is called the
Galerkin product, or pseudo-spectral product, of U and V , denoted U ∗K V
or simply U ∗ V if it is not necessary to call attention to the order of the
truncation.

Remark 12.4. If U, V /∈ SK , then we can have U ∗ V �= ΠSK (UV ).�
The fact that multiplication of two random variables can be handled effi-

ciently, albeit with some truncation error, in terms of their expansions in the
gPC basis and the multiplication tensor is very useful, and is a good reason to
pre-compute and store the multiplication tensor of a basis for use in multiple
problems.

Proposition 12.5. For fixed K ∈ N0, the Galerkin product satisfies for all
U, V,W ∈ SK and α, β ∈ R,
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U ∗ V = ΠSK (UV ),

U ∗ V = V ∗ U,
(αU) ∗ (βV ) = αβ(U ∗ V ),
(U + V ) ∗W = U ∗W + V ∗W.

However, the Galerkin product is not associative, i.e. there can exist U, V,W ∈
SK such that U ∗ (V ∗W ) �= (U ∗ V ) ∗W .

Proof. Exercise 12.3.  !

Outside the situation of binary products, Galerkin multiplication has unde-
sirable features that largely stem from the non-associativity property, which
in turn is a result of compounded truncation error from repeated orthogonal
projection into SK . As shown by Exercise 12.3, it is not even true that one
can make unambiguous sense of Un for n ≥ 4!

For example, suppose that we wish to multiply three random variables
U, V,W ∈ L2(Θ, μ) in terms of their gPC expansions in a fashion similar
to the Galerkin product above. First of all, it must be acknowledged that
perhaps Z := UVW /∈ L2(Θ, μ). Nevertheless, assuming that Z is, after all,
square-integrable, a gPC expansion of the triple product is

Z =
∑

m∈N0

zmΨm =
∑

m∈N0

⎡

⎣
∑

j,k,�∈N0

Tjk�mujvkw�

⎤

⎦Ψm,

or an appropriate truncation of the same, where the rank-4 tensor Tjk�m is
defined by

Tjk�m :=
〈ΨjΨkΨ�Ψm〉

〈Ψ2
m〉

.

This approach can be extended to higher-order multiplication. However, even
with sparsity, computation and storage of these tensors — which have (K+1)d

entries when working with products of d random variables to polynomial
degree K — quickly becomes prohibitively expensive. Therefore, it is com-
mon to approximate the triple product in Galerkin fashion by two binary
products, i.e.

UVW ≈ U ∗ (V ∗W ).

Unfortunately, this approximation incurs additional truncation errors, since
each binary multiplication discards the part orthogonal to SK ; the terms
that are discarded depend upon the order of approximate multiplication and
truncation, and in general

U ∗ (V ∗W ) �= V ∗ (W ∗ U) �=W ∗ (U ∗ V ).
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As a result, in general, higher-order Galerkin multiplication can fail to com-
mutative if it is approached using binary multiplication; to restore commu-
tativity and a well-defined triple product, we must pay the price of working
with the larger tensor Tjk�m.

Galerkin Inversion. After exponentiation to a positive integral power,
another common transformation that must be performed is to form the rec-
iprocal of a random variable: given

U =
∑

k≥0

ukΨk ≈
K∑

k=0

ukΨk ∈ SK ,

we seek a random variable V =
∑

k≥0 vkΨk ≈
∑K

k=0 vkΨk such that
U(θ)V (θ) = 1 for almost every θ ∈ Θ. The weak interpretation in SK of
this requirement is to find V ∈ SK such that U ∗ V = Ψ0. Since U ∗ V has
as its kth gPC coefficient

∑K
i,j=0Mijkuivj , we arrive at the following matrix-

vector equation for the gPC coefficients of V :

⎡

⎢
⎢
⎢
⎢
⎣

∑K
i=0Mi00ui · · ·

∑K
i=0MiK0ui

∑K
i=0Mi01ui · · ·

∑K
i=0MiK1ui

...
. . .

...
∑K

i=0Mi0Kui · · ·
∑K

i=0MiKKui

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

v0

v1
...

vK

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

1

0
...

0

⎤

⎥
⎥
⎥
⎥
⎦

(12.3)

Naturally, if U(θ) = 0 for some θ, then V (θ) will be undefined for that θ.
Furthermore, if U ≈ 0 with ‘too large’ probability, then V may exist a.e.
but fail to be in L2. Hence, it is not surprising to learn that while (12.3)
has a unique solution whenever the matrix on the left-hand side (12.3) is
non-singular, the system becomes highly ill-conditioned as the amount of
probability mass near U = 0 increases.

In practice, it is essential to check the conditioning of the matrix on the
left-hand side of (12.3), and to try several values of truncation orderK, before
placing any confidence in the results of a Galerkin inversion. Just as Remark
9.16 highlighted the spurious ‘convergence’ of the Monte Carlo averages of
the reciprocal of a Gaussian random variable, which in fact has no mean,
Galerkin inversion can produce a ‘formal’ reciprocal for a random variable in
SK that has no sensible reciprocal in S. See Exercise 12.4 for an exploration
of this phenomenon in the Gaussian setting.

Similar ideas to those described above can be used to produce a Galerkin
division algorithm for Galerkin gPC coefficients of U/V in terms of the gPC
coefficients of U and V respectively; see Exercise 12.5.

More General Nonlinearities. More general nonlinearities can be treated
by the methods outlined above if one knows the Taylor expansion of the
nonlinearity. The standard words of warning about compounded truncation
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error all apply, as do warnings about slowly convergent power series, which
necessitate very high order approximation of random variables in order to
accurately resolve nonlinearities even at low order.

Galerkin Formulation of Other Products. The methods described above
for the multiplication of real-valued random variables can easily be extended
to other settings, e.g. multiplication of random matrices of the appropriate
sizes. If

A =

K∑

k=0

akΨk ∈ L2(Θ, μ;Rm×n) ∼= R
m×n ⊗ S,

B =

K∑

k=0

bkΨk ∈ L2(Θ, μ;Rn×p) ∼= R
n×p ⊗ S

are random matrices with coefficient matrices ak ∈ R
m×n and bk ∈ R

n×p,
then their degree-K Galerkin product is the random matrix

C =

K∑

k=0

ckΨk ∈ L2(Θ, μ;Rm×p) ∼= R
m×p ⊗ S

with coefficient matrices ck ∈ R
m×p given by

ck =Mijkaibj .

Similar ideas apply for operators, bilinear forms, etc., and are particularly
useful in the Lax–Milgram theory of PDEs with uncertain coefficients, as
considered later on in this chapter.

12.2 Random Ordinary Differential Equations

The Galerkin method is quite straightforward to apply to ordinary differential
equations with uncertain coefficients, initial conditions, etc. that are modelled
by random variables. Heuristically, the approach is as simple is multiplying
the ODE by a gPC basis element Ψk and averaging; we consider some concrete
examples below. Simple examples such as these serve to illustrate one of the
recurrent features of stochastic Galerkin methods, which is that the governing
equations for the stochastic modes of the solutions are formally similar to
the original deterministic problem, but generally couple together multiple
instances of that problem in a non-trivial way.

Example 12.6. Consider the linear first-order ordinary differential equation

u̇(t) = −λu(t), u(0) = b, (12.4)
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where b, λ > 0. This ODE arises frequently in the natural sciences, e.g. as a
simple model for the amount of radiation u(t) emitted at time t by a sample of
radioactive material with decay constant λ, i.e. half-life λ−1 log 2; the initial
level of radiation emission at time t = 0 is b. Now suppose that the decay
constant and initial condition are not known perfectly, but can be described
by random variables Λ,B ∈ L2(Θ, μ;R) (both independent of time t), so that
the amount of radiation U(t) emitted at time t is now a random variable that
satisfies the random linear first-order ordinary differential equation

U̇(t) = −ΛU(t), U(0) = B, (12.5)

for square-integrable U : [0, T ] × Θ → R, or, equivalently, U : [0, T ] →
L2(Θ, μ;R).

Let {Ψk}k∈N0 be an orthogonal basis for L2(Θ, μ;R) with the usual con-
vention that Ψ0 = 1. Suppose that our knowledge about Λ and B is encoded
in the gPC expansions Λ =

∑
k∈N0

λkΨk, B =
∑

k∈N0
bkΨk; the aim is to

find the gPC expansion of U(t) =
∑

k∈N0
uk(t)Ψk. Projecting the evolution

equation (12.5) onto the basis {Ψk}k∈N0 yields

〈
U̇(t)Ψk

〉
= −〈ΛUΨk〉 for each k ∈ N0.

Inserting the gPC expansions for Λ and U into this yields, for every k ∈ N0,

〈
∑

j∈N0

u̇j(t)ΨjΨk

〉

= −
〈
∑

i∈N0

λiΨi
∑

j∈N0

uj(t)ΨjΨk

〉

,

i.e. u̇k(t)〈Ψ2
k 〉 = −

∑

i,j∈N0

λiuj(t)〈ΨiΨjΨk〉,

i.e. u̇k(t) = −
∑

i,j∈N0

Mijkλiuj(t).

The coefficients uk are a coupled system of countably many ordinary differ-
ential equations.

If all the chaos expansions are truncated at order K, then all the above
summations over N0 become summations over {0, . . . ,K}, yielding a cou-
pled system of K + 1 ordinary differential equations. In matrix-vector form,
the vector u(t) ∈ R

K+1 of coefficients of the degree-K Galerkin solution
U (K)(t) ∈ SK satisfies

u̇(t) = −A(Λ)u(t), u(0) = b, (12.6)

where the matrixA(Λ) ∈ R
(K+1)×(K+1) has as its (k, i)th entry

∑K
j=0Mijkλj ,

and b = (b0, . . . , bK) ∈ R
K+1.

Note that the system (12.6) has the same form as the original deterministic
problem (12.4); however, since A(Λ) is not generally diagonal, (12.6) consists
ofK+1 non-trivially coupled instances of the original problem (12.4), coupled
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Fig. 12.1: The degree-10 Hermite PC Galerkin solution to the random ODE
(12.5), with log-normally distributed decay constant and initial condition.
The solid curve shows the mean of the solution, the dashed curves show the
higher-degree Hermite coefficients, and the grey envelope shows the mean
± one standard deviation. Note that, on these axes, only the coefficients of
degree ≤ 5 are visible; the others are all of order 10−2 or smaller.

through the multiplication tensor and hence the matrix A(Λ). In terms of the
pseudo-spectral product, (12.6) gives the evolution of the Galerkin solution
U (K) as

dU (K)

dt
(t) = −

(
ΠSKΛ

)
∗ U (K)(t), U (K)(0) = ΠSKB. (12.7)

See Figure 12.1 for an illustration of the evolution of the solution to (12.6)
in the Hermite basis when logΛ, logB ∼ N (0, 1) are independent. Recall
from Example 11.12 that, under such assumptions, Λ and B have Hermite
PC coefficients λk = bk =

√
e/k!.

Note well that we do not claim that the Galerkin solution is the optimal �
approximation in SK to the true solution, i.e. we can have U (K) �= ΠSKU ,
although Galerkin solutions can be seen as weighted projections. This is a
point that will be revisited in the more general context of Lax–Milgram
theory.

Example 12.7. Consider the simple harmonic oscillator equation

Ü(t) = −Ω2U(t). (12.8)

For simplicity, suppose that the initial conditions U(0) = 1 and U̇(0) = 0
are known, but that Ω is stochastic. Let {Ψk}k∈N0 be an orthogonal basis for
L2(Θ, μ;R) with the usual convention that Ψ0 = 1. Suppose that Ω has a
gPC expansion Ω =

∑
k∈N0

ωkΨk and it is desired to find the gPC expansion
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of U , i.e. U(t) =
∑

k∈N0
uk(t)Ψk. Note that the random variable Y := Ω2 has

a gPC expansion Y =
∑

k∈N0
ykΨk with

yk =
∑

i,j∈N0

Mijkωiωj .

Projecting the evolution equation (12.8) onto the basis {Ψk}k∈N0 yields

〈
Ü(t)Ψk

〉
= −

〈
Y U(t)Ψk

〉
for each k ∈ N0.

Inserting the chaos expansions forW and U into this yields, for every k ∈ N0,

〈
∑

i∈N0

üi(t)ΨiΨk

〉

= −
〈
∑

j∈N0

yjΨj
∑

i∈N0

ui(t)ΨiΨk

〉

,

i.e. ük(t)〈Ψ2
k 〉 = −

∑

i,j∈N0

yjui(t)〈ΨiΨjΨk〉,

i.e. ük(t) = −
∑

i,j∈N0

Mijkyjui(t).

If all these gPC expansions are truncated at order K, and A ∈ R
(K+1)×(K+1)

is defined by

Aik :=

K∑

j=0

Mijkyj =

K∑

j,p,q=0

MijkMpqjωpωq,

then the vector u(t) of coefficients for the degree-K Galerkin solution U (K)(t)
satisfies the vector oscillator equation

ü(t) = −ATu(t) (12.9)

with the obvious initial conditions.
See Figure 12.2 for illustrations of the solution to the Galerkin problem

(12.9) when the Hermite basis is used and Ω is log-normally distributed with
logΩ ∼ N (0, σ2) for various values of σ ≥ 0. Recall from Example 11.12

that the Hermite coefficients of such a log-normal Ω are ωk = eσ
2/2σk/k!.

For these illustrations, the ODE (12.9) is integrated using the symplectic
(energy-conserving) semi-implicit Euler method

u(t+Δt) = u(t) + v(t+Δt)Δt,

v(t+Δt) = u(t)−ATu(t)Δt,

which has a global error of order Δt.
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σ = 0, i.e. deterministic solution.
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Fig. 12.2: The degree-10 Hermite PC Galerkin solution to the simple har-
monic oscillator equation of Example 12.7 with log-normally distributed an-
gular velocity Ω, logΩ ∼ N (0, σ2). The solid curve shows the mean of the
solution, the dashed curves show the higher-degree Hermite coefficients, and
the grey envelope shows the mean ± one standard deviation. In the case
σ = 1

10 , the variance grows so quickly that accurate predictions of the sys-
tem’s state after just one or two cycles are essentially impossible.
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12.3 Lax–Milgram Theory and Random PDEs

The Galerkin method lies at the heart of modern methods for the analyt-
ical treatment and numerical solution of PDEs. Furthermore, when those
PDEs have uncertain data (e.g. uncertainty coefficients, or uncertain initial
or boundary conditions), we have the possibility of a ‘double Galerkin’ app-
roach, using the notion of a weak solution over both the deterministic and
the stochastic spaces. This section covers the deterministic picture first, and
the following section covers the stochastic case, and discusses the coupling
phenomena that have already been discussed for ODEs above.

The abstract weak formulation of many PDEs is that, given a real Hilbert
space H equipped with a bilinear form a : H × H → R, and f ∈ H′ (i.e. a
continuous linear functional f : H → R), we seek

u ∈ H such that a(u, v) = 〈f | v〉 for all v ∈ H. (12.10)

Such a u is called a weak solution, and (12.10) is called the weak problem.
The cardinal example of this setup is an elliptic boundary value problem:

Example 12.8. Let X ⊆ R
n be a bounded, connected domain. Let a matrix-

valued function κ : X → R
n×n and a scalar-valued function f : X → R be

given, and consider the elliptic problem

−∇ · (κ(x)∇u(x)) = f(x) for x ∈ X , (12.11)

u(x) = 0 for x ∈ ∂X .

The appropriate bilinear form a( · , · ) is defined by

a(u, v) := 〈−∇ · (κ∇u), v〉L2(X ) = 〈κ∇u,∇v〉L2(X ),

where the second equality follows from integration by parts when u, v are
smooth functions that vanish on ∂X ; such functions form a dense subset of
the Sobolev space H1

0 (X ). This short calculation motivates two important
developments in the treatment of the PDE (12.11). First, even though the
original formulation (12.11) seems to require the solution u to have two orders
of differentiability, the last line of the above calculation makes sense even if
u and v have only one order of (weak) differentiability, and so we restrict
attention to H1

0 (X ). Second, we declare u ∈ H1
0 (X ) to be a weak solution of

(12.11) if the L2(X ) inner product of (12.11) with any v ∈ H1
0 (X ) holds as

an equality of real numbers, i.e. if

−
∫

X
∇ · (κ(x)∇u(x))v(x) dx =

∫

X
f(x)v(x) dx

i.e. if
a(u, v) = 〈f, v〉L2(X ) for all v ∈ H1

0 (X ),

which is a special case of (12.10).
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The existence and uniqueness of solutions problems like (12.10), under
appropriate conditions on a (which of course are inherited from appropriate
conditions on κ), is ensured by the Lax–Milgram theorem, which generalizes
the Riesz representation theorem that any Hilbert space is isomorphic to its
dual space.

Theorem 12.9 (Lax–Milgram). Let a be a bilinear form on a Hilbert space
H, i.e. a ∈ H′ ⊗H′, such that

(a) (boundedness) there exists a constant C > 0 such that, for all u, v ∈ H,
|a(u, v)| ≤ C‖u‖‖v‖; and

(b) (coercivity) there exists a constant c > 0 such that, for all v ∈ H,
|a(v, v)| ≥ c‖v‖2.

Then, for all f ∈ H′, there exists a unique u ∈ H such that, for all v ∈ H,
a(u, v) = 〈f | v〉. Furthermore, u satisfies the estimate ‖u‖H ≤ c−1‖f‖H′.

Proof. For each u ∈ H, v �→ a(u, v) is a bounded linear functional on H. So,
by the Riesz representation theorem (Theorem 3.15), given u ∈ H, there is
a unique w ∈ H such that 〈w, · 〉 = a(u, · ). Define Au := w. This defines a
well-defined function A : H → H, the properties of which we now check:

(a) A is linear. Let α1 and α2 be scalars and let u1, u2 ∈ H. Then

〈A(α1u1 + α2u2), v〉 = a(α1u1 + α2u2, v)
= α1a(u1, v) + α2a(u2, v)

= α1〈Au1, v〉+ α2〈Au2, v〉
= 〈α1Au1 + α2Au2, v〉.

(b) A is a bounded (i.e. continuous) map, since, for any u ∈ H,

‖Au‖2 = 〈Au,Au〉 = a(u,Au) ≤ C‖u‖‖Au‖,

so ‖Au‖ ≤ C‖u‖.
(c) A is injective, since, for any u ∈ H,

‖Au‖‖u‖ ≥ |〈Au, u〉| = |a(u, u)| ≥ c‖u‖2,

so Au = 0 =⇒ u = 0.
(d) The range of A, ranA ⊆ H, is closed. Consider a convergent sequence

(vn)n∈N in ranA that converges to some v ∈ H. Choose un ∈ H such
that Aun = vn for each n ∈ N. The sequence (Aun)n∈N is Cauchy, so

‖Aun −Aum‖‖un − um‖ ≥ |〈Aun −Aum, un − um〉|
= |a(un − um, un − um)|
≥ c‖un − um‖2.
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So c‖un−um‖ ≤ ‖vn− vm‖ → 0. So (un)n∈N is Cauchy and converges to
some u ∈ H. So vn = Aun → Au = v by the continuity (boundedness) of
A, so v ∈ ranA, and so ranA is closed.

(e) Finally, A is surjective. Since H is Hilbert and ranA is closed, if ranA �=
H, then there must exist some non-zero s ∈ H such that s ⊥ ranA. But
then

c‖s‖2 ≤ a(s, s) = 〈s, As〉 = 0,

so s = 0, a contradiction.

Now, to summarize, take f ∈ H′. By the Riesz representation theorem,
there is a unique w ∈ H such that 〈w, v〉 = 〈f | v〉 for all v ∈ H. Since
A is invertible, the equation Au = w has a unique solution u ∈ H. Thus,
〈Au, v〉 = 〈f | v〉 for all v ∈ H. But 〈Au, v〉 = a(u, v). So there is a unique
u ∈ H such that a(u, v) = 〈f | v〉.

The proof of the estimate ‖u‖H ≤ c−1‖f‖H′ is left as an exercise
(Exercise 12.9).  !

Galerkin Projection. Now consider the problem of finding a good approx-
imation to u in a prescribed subspace UM ⊆ H of finite dimension3 — as
we must necessarily do when working discretely on a computer. We could,
of course, consider the optimal approximation to u in UM , namely the ort-
hogonal projection of u onto UM . However, since u is not known a priori,
and in any case cannot be stored to arbitrary precision on a computer, this
‘optimal’ approximation is not much use in practice.

An alternative approach to approximating u is Galerkin projection: we
seek a Galerkin solution u ≈ u(M) ∈ UM , an approximation to the exact
solution u, such that

a(u(M), v(M)) = 〈f | v(M)〉 for all v(M) ∈ UM . (12.12)

Note that if the hypotheses of the Lax–Milgram theorem are satisfied on the
full space H, then they are certainly satisfied on the subspace UM , thereby
ensuring the existence and uniqueness of solutions to the Galerkin problem.
Note well, though, that existence of a unique Galerkin solution for eachM ∈
N0 does not imply the existence of a unique weak solution (nor even multiple
weak solutions) to the full problem; for this, one typically needs to show that
the Galerkin approximations are uniformly bounded and appeal to a Sobolev
embedding theorem to extract a convergent subsequence.

Example 12.10. (a) The Fourier basis {ek}k∈Z of L2
per([0, 2π], dx;C), the

space of complex-valued 2π-periodic functions on [0, 2π], is defined by

ek(x) =
1√
2π

exp(ikx).

3 Usually, but not always, the convention will be that dimUM = M ; sometimes, alternative
conventions will be followed.
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For Galerkin projection, one can use the (2M +1)-dimensional subspace

UM := span{e−M , . . . , e−1, e0, e1, . . . , eM}

of functions that are band-limited to contain frequencies at most M . In
case of real-valued functions, one can use the functions

x �→ cos(kx), for k ∈ N0,

x �→ sin(kx), for k ∈ N.

(b) Fix a partition a = x0 < x1 < · · · < xM = b of a compact interval
[a, b] � R and consider the associated tent functions defined by

φm(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a or x ≤ xm−1;
x− xm−1

xm − xm−1
, if xm−1 ≤ x ≤ xm;

xm+1 − x
xm+1 − xm

, if xm ≤ x ≤ xm+1;

0, if x ≥ b or x ≥ xm+1.

The function φm takes the value 1 at xm and decays linearly to 0 along the
two line segments adjacent to xm. The (M +1)-dimensional vector space
UM := span{φ0, . . . , φM} consists of all continuous functions on [a, b] that
are piecewise affine on the partition, i.e. have constant derivative on each
of the open intervals (xm−1, xm). The space ŨM := span{φ1, . . . , φM−1}
consists of the continuous functions that piecewise affine on the partition
and take the value 0 at a and b; hence, ŨM is one good choice for a finite-
dimensional space to approximate the Sobolev space H1

0 ([a, b]). More
generally, one could consider tent functions associated with any simplicial
mesh in R

n.

Another viewpoint on the Galerkin solution u(M) is to see it as the projec-
tion P ũ of some ũ ∈ H, where P : H → UM denotes projection (truncation),
and the adjoint operator P ∗ is the inclusion map in the other direction.
Suppose for simplicity that the operator A corresponding to the bilinear
form a, as constructed in the proof of the Lax–Milgram theorem, is a self-
adjoint operator. If we were to try to minimize the A-weighted norm of the
residual, i.e.

find ũ ∈ H to minimize ‖P ũ− u‖A,

then Theorem 4.28 says that ũ satisfies the normal equations

P ∗APũ = P ∗Au

i.e. P ∗Au(M) = P ∗f,

and the weak interpretation of this equation in H′ is that it should hold as
an equality of scalars whenever it is tested against any v ∈ H ∼= H′′,
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i.e. 〈v |P ∗Au(M)〉 = 〈v |P ∗f〉 for all v ∈ H,

i.e. 〈Pv |Au(M)〉 = 〈Pv | f〉 for all v ∈ H,

i.e. 〈v(M) |Au(M)〉 = 〈v(M) | f〉 for all v(M) ∈ UM .

Abusing notation slightly by writing these dual pairings as inner products in
H yields that the weak form of the normal equations is

〈Au(M), v(M)〉 = 〈f, v(M)〉 for all v(M) ∈ UM ,

and since 〈Au(M), v(M)〉 = a(u(M), v(M)), this is exactly the Galerkin prob-
lem (12.12) for u(M). That is, the Galerkin problem (12.12) for u(M) is the
weak formulation of the variational problem of minimizing the norm of the
difference between the approximate solution and the true one, with the norm
being weighted by the operator corresponding to the bilinear form a.

From this variational characterization of the Galerkin solution, it follows
immediately that the error u − u(M) is a-orthogonal to the approximation
subspace UM : for any choice of v(M) ∈ UM ⊆ H,

a(u− u(M), v(M)) = a(u, v(M))− a(u(M), v(M))

= 〈f | v(M)〉 − 〈f | v(M)〉
= 0.

However, note well that u(M) is generally not the optimal approximation�
of u from the subspace UM with respect to the original norm on H, i.e.

∥
∥u− u(M)

∥
∥ �= inf

{∥
∥u− v(M)

∥
∥
∣
∣
∣ v(M) ∈ UM

}
.

The optimal approximation of u from UM is the orthogonal projection of u
onto UM ; if H has an orthonormal basis {en} and u =

∑
n∈N

unen, then the

optimal approximation of u in UM = span{e1, . . . , eM} is
∑M

n=1 u
nen, but

this is not generally the same as the Galerkin solution u(M). However, the
next result, Céa’s lemma, shows that u(M) is a quasi-optimal approximation
to u (note that the ratio C/c is always at least 1):

Lemma 12.11 (Céa’s lemma). Let a, c and C be as in the statement of
the Lax–Milgram theorem. Then the weak solution u ∈ H and the Galerkin
solution u(M) ∈ UM satisfy

∥
∥u− u(M)

∥
∥ ≤ C

c
inf

{∥
∥u− v(M)

∥
∥
∣
∣
∣ v(M) ∈ UM

}
.

Proof. Exercise 12.11.  !
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Matrix Form. It is helpful to cast the Galerkin problem in the form of a
matrix-vector equation by expressing it in terms of a basis {φ1, . . . , φM} of
UM . Then u = uΓ solves the Galerkin problem if and only if

a(u, φm) = 〈f |φm〉 for m ∈ {1, . . . ,M}.

Now expand u in this basis as u =
∑M

m=1 umφm and insert this into the
previous equation:

a

(
M∑

m=1

umφm, φi

)

=

M∑

m=1

uma(φm, φi) = 〈f |φi〉〉 for i ∈ {1, . . . ,M}.

That is, the column vector u := [u1, . . . , uM ]T ∈ R
M of coefficients of u in

the basis {φ1, . . . , φM} solves the matrix-vector equation

au = b :=

⎡

⎢
⎢
⎣

〈f |φ1〉
...

〈f |φM 〉

⎤

⎥
⎥
⎦ (12.13)

where the matrix

a :=

⎡

⎢
⎢
⎣

a(φ1, φ1) . . . a(φM , φ1)
...

. . .
...

a(φ1, φM ) . . . a(φM , φM )

⎤

⎥
⎥
⎦ ∈ R

M×M

is the Gram matrix of the bilinear form a, and is of course a symmetric matrix
whenever a is a symmetric bilinear form.

Remark 12.12. In practice the matrix-vector equation au = b is never
solved by explicitly inverting the Gram matrix a to obtain the coefficients
um via u = a−1b. Even a relatively näıve solution using a Cholesky factor-
ization of the Gram matrix and forward and backward substitution would
be cheaper and more numerically stable than an explicit inversion. Indeed,
in many situations the Gram matrix is sparse, and so solution methods that
take advantage of that sparsity are used; furthermore, for large systems, the
methods used are often iterative rather than direct.

Stochastic Lax–Milgram Theory. The next step is to build appropriate
Lax–Milgram theory and Galerkin projection for stochastic problems, for
which a good prototype is

−∇ · (κ(θ, x)∇u(θ, x)) = f(θ, x) for x ∈ X ,

u(x) = 0 for x ∈ ∂X ,



268 12 Stochastic Galerkin Methods

with θ being drawn from some probability space (Θ,F , μ). To that end, we
introduce a stochastic space S, which in the following will be L2(Θ, μ;R).
We retain also a Hilbert space U in which the deterministic solution u(θ) is
sought for each θ ∈ Θ; implicitly, U is independent of the problem data, or
rather of θ. Thus, the space in which the stochastic solution U is sought is
the tensor product Hilbert space H := U ⊗ S, which is isomorphic to the
space L2(Θ, μ;U) of square-integrable U-valued random variables.

In terms of bilinear forms, the setup is that of a bilinear-form-on-U-valued
random variable A and a U ′-valued random variable F . Define a bilinear form
α on H by

α(X,Y ) := Eμ[A(X,Y )] ≡
∫

Θ

A(θ)
(
X(θ), Y (θ)

)
dμ(θ)

and, similarly, a linear functional β on H by

〈β |Y 〉 := Eμ[〈F |Y 〉U ].

Clearly, if α satisfies the boundedness and coercivity assumptions of the Lax–
Milgram theorem on H, then, for every F ∈ L2(Θ, μ;U ′), there is a unique
weak solution U ∈ L2(Θ, μ;U) satisfying

α(U, Y ) = 〈β |Y 〉 for all Y ∈ L2(Θ, μ;U).

A sufficient, but not necessary, condition for α to satisfy the hypotheses of the
Lax–Milgram theorem on H is for A(θ) to satisfy those hypotheses uniformly
in θ on U :
Theorem 12.13 (‘Uniform’ stochastic Lax–Milgram theorem). Let (Θ,F , μ)
be a probability space, and let A be a random variable on Θ, taking values
in the space of bilinear forms on a Hilbert space U , and satisfying the hyp-
otheses of the deterministic Lax–Milgram theorem (Theorem 12.9) uniformly
with respect to θ ∈ Θ. Define a bilinear form α and a linear functional β on
L2(Θ, μ;U) by

α(X,Y ) := Eμ[A(X,Y )],

〈β |Y 〉 := Eμ[〈F |Y 〉U ].

Then, for every F ∈ L2(Θ, μ;U ′), there is a unique U ∈ L2(Θ, μ;U) such
that

α(U, V ) = 〈β |V 〉 for all V ∈ L2(Θ, μ;U).

Proof. Suppose that A(θ) satisfies the boundedness assumption with con-
stant C(θ) and the coercivity assumption with constant c(θ). By hypothesis,

C′ := sup
θ∈Θ

C(θ) and

c′ := inf
θ∈Θ

c(θ)
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are both strictly positive and finite. Then α satisfies, for all X,Y ∈ H,

α(X,Y ) = Eμ[A(X,Y )]

≤ Eμ

[
C‖X‖U‖Y ‖U

]

≤ C′
Eμ

[
‖X‖2U ]1/2Eμ[‖Y ‖2U

]1/2

= C′‖X‖H‖Y ‖H,

and

α(X,X) = Eμ[A(X,X)]

≥ Eμ

[
c‖X‖2U

]

≥ c′‖X‖2H.

Hence, by the deterministic Lax–Milgram theorem applied to the bilinear
form α on the Hilbert space H, for every F ∈ L2(Θ, μ;U ′), there exists a
unique U ∈ L2(Θ, μ;U) such that

α(U, V ) = 〈β |V 〉 for all V ∈ L2(Θ, μ;U),

which completes the proof.  !

Remark 12.14. Note, however, that uniform boundedness and coercivity of
A are quite strong assumptions, and are not necessary for α to be bounded
and coercive. For example, the constants c(θ) and C(θ) may degenerate to
0 or ∞ as θ approaches certain points of the sample space Θ. Provided that
these degeneracies are integrable and yield positive and finite expected values,
this will not ruin the boundedness and coercivity of α. Indeed, there may be
an arbitrarily large (but μ-measure zero) set of θ for which there is no weak
solution u(θ) to the deterministic problem

A(θ)(u(θ), v) = 〈F (θ) | v〉 for all v ∈ U .

Stochastic Galerkin Projection. Let UM be a finite-dimensional subspace
of U , with basis {φ1, . . . , φM}. As indicated above, take the stochastic space
S to be L2(Θ, μ;R), which we assume to be equipped with an orthogonal
decomposition such as a gPC decomposition. Let SK be a finite-dimensional
subspace of S, for example the span of a system of orthogonal polynomials
up to degree K. The Galerkin projection of the stochastic problem on H is
to find

U ≈ U (M,K) =
∑

m=1,...M
k=0,...,K

umkφm ⊗ Ψk ∈ UM ⊗ SK

such that
α(U (M,K), V ) = 〈β |V 〉 for all V ∈ UM ⊗ SK .
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In particular, it suffices to find U (M,K) that satisfies this condition for each
basis element V = φn ⊗ Ψ� of UM ⊗ SK . Recall that φn ⊗ Ψ� is the function
(θ, x) �→ φn(x)Ψ�(θ).

Matrix Form. Letα ∈ R
M(K+1)×M(K+1) be the Grammatrix of the bilinear

form α with respect to the basis {φm ⊗ Ψk | m = 1, . . .M ; k = 0, . . . ,K} of
UM ⊗SK . As before, the Galerkin problem is equivalent to the matrix-vector
equation

αU = β,

where U ∈ R
M(K+1) is the column vector comprised of the coefficients umk

and β ∈ R
M(K+1) has components 〈β |φm ⊗ Ψk〉. It is natural to ask: how is

the Gram matrix α related to the R
M×M -valued random variable A that is

the Gram matrix of the random bilinear form A?
It turns out that there are two natural ways to formulate the answers

to this problem: one formulation is a block-symmetric matrix in which the
stochastic modes are not properly normalized; the other features the prop-
erly normalized stochastic modes and the multiplication tensor, but loses the
symmetry.

Symmetric Formulation. Suppose that, for each fixed θ ∈ Θ, the deter-
ministic problem, discretized and written in matrix-vector form in the basis
{φ1, . . . , φM} of UM , is

A(θ)U (θ) = B(θ).

Here, the Galerkin solution is U(θ) ∈ UM and U(θ) ∈ R
M is the column

vector of coefficients of U(θ) with respect to {φ1, . . . , φM}. Write the Galerkin

solution U ∈ UM ⊗ SK as U =
∑K

k=0 ukΨk, and further write uk ∈ R
M for

the column vector corresponding to the stochastic mode uk ∈ UM in the
basis {φ1, . . . , φM}, so that U =

∑K
k=0 ukΨk. Galerkin projection — more

specifically, testing the equation AU = B against Ψk — reveals that

K∑

j=0

〈ΨkAΨj〉uj = 〈BΨk〉 for each k ∈ {0, . . . ,K}.

This is equivalent to the (large!) block system

⎡

⎢
⎢
⎣

〈̃A〉00 . . . 〈̃A〉0K
...

. . .
...

〈̃A〉K0 . . . 〈̃A〉KK

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

u0

...

uK

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

〈BΨ0〉
...

〈BΨK〉

⎤

⎥
⎥
⎦ , (12.14)

where, for 0 ≤ i, j ≤ K,

〈̃A〉ij := 〈ΨiAΨj〉 ∈ R
M×M .
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Note that, in general, the stochastic modes uj of the solution U (and,
indeed the coefficients ujm of the stochastic modes in the deterministic basis
{φ1, . . . , φM}) are all coupled together through the matrix on the left-hand
side of (12.14). Note that this matrix is block-symmetric, since clearly

〈̃A〉ij := 〈ΨiAΨj〉 = 〈̃A〉ji.

However, the entries 〈BΨk〉 on the right-hand side of (12.14) are not the
stochastic modes bk ∈ R

M ofB, since they have not been normalized by 〈Ψ2
k 〉.

Multiplication Tensor Formulation. On the other hand, we can con-
sider the case in which the random Gram matrix A has a (truncated) gPC
expansion

A =

K∑

k=0

akΨk

with coefficient matrices

ak =
〈AΨk〉
〈Ψ2

k 〉
∈ R

M×M .

In this case, the blocks 〈̃A〉kj in (12.14) are given by

〈̃A〉kj = 〈ΨkAΨj〉 =
K∑

i=0

ai〈ΨiΨjΨk〉.

Hence, the Galerkin block system (12.14) is equivalent to

⎡

⎢
⎢
⎣

〈A〉00 . . . 〈A〉0K
...

. . .
...

〈A〉K0 . . . 〈A〉KK

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

u0

...

uK

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

b0
...

bK

⎤

⎥
⎥
⎦ , (12.15)

where bk = 〈BΨk〉
〈Ψ2

k〉
∈ R

M is the column vector of coefficients of the kth

stochastic mode bk of B in the basis {φ1, . . . , φM} of UM , and

〈A〉kj :=
K∑

i=0

Mijkai,

where

Mijk :=
〈ΨiΨjΨk〉
〈Ψ2

k 〉
.
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is the multiplication tensor for the basis {Ψk | k ∈ N0}. Thus, the system
(12.15) is the system

K∑

i,j=0

Mijkaiuj = bk

i.e. the pseudo-spectral product A ∗U = B.
The matrix in (12.15) is not block-symmetric, since the kth block row is

normalized by 〈Ψ2
k 〉, and in general the normalizing factors for each block

row will be distinct. On the other hand, formulation (12.15) has the advan-
tage that the properly normalized stochastic modes of A, U and B appear
throughout, and it makes clear use of the multiplication tensor Mijk.

Example 12.15. As a special case, suppose that the random data have
no impact on the differential operator and affect only the right-hand side
B =

∑
k∈N0

bkΨk. In this case the random bilinear form θ �→ A(θ)( · , · ) is
identically equal to one bilinear form a( · , · ), so the random Gram matrix A

is a deterministic matrix a, and so the blocks 〈̃A〉ij in (12.14) are given by

〈̃A〉ij := 〈ΨiaΨj〉 = a〈ΨiΨj〉 = aδij〈Ψ2
i 〉.

Hence, the stochastic Galerkin system, in its block-symmetric matrix form
(12.14), becomes the block-diagonal system

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a 0 . . . 0

0 a〈Ψ2
1 〉

. . .
...

...
. . .

. . . 0

0 . . . 0 a〈Ψ2
K〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

u0

u1

...

uK

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

〈BΨ0〉
〈BΨ1〉

...

〈BΨK〉

⎤

⎥
⎥
⎥
⎥
⎦
.

In the alternative formulation (12.15), we simply have

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a 0 . . . 0

0 a
. . .

...
...

. . .
. . . 0

0 . . . 0 a

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

u0

u1

...

uK

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

b0

b1
...

bK

⎤

⎥
⎥
⎥
⎥
⎦
.

Hence, the stochastic modes uk decouple and are given by uk = a−1bk. Thus,
in this case, any pre-existing solver for the deterministic problem au = b can
simply be re-used ‘as is’ K + 1 times with b = bk for k = 0, . . . ,K to obtain
the Galerkin solution of the stochastic problem.
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Lax–Milgram theory and Galerkin methods for PDEs can be found in any
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provides a general introduction to spectral methods for uncertainty quantifi-
cation, including Galerkin methods in Chapter 6. Le Mâıtre and Knio (2010)
discuss Galerkin methods in Chapter 4, including an extensive treatment of
nonlinearities in Section 4.5. For further details on the computational aspects
of randomODEs and PDEs, including Galerkin methods, see the book of Lord
et al. (2014). See Cohen et al. (2010) for results on the convergence rates
of Galerkin approximations for the classic elliptic stochastic PDE problem,
under uniform ellipticity assumptions.

Constantine et al. (2011) present an interesting change of basis for the
Galerkin system (12.14) from the usual basis representation to a nodal repre-
sentation that enables easy cost and accuracy comparisons with the stochastic
collocation methods of Chapter 13.

12.5 Exercises

Exercise 12.1. Let γ = N (0, 1) be the standard Gaussian measure on R, and
let {Hen}n∈N0 be the associated orthogonal system of Hermite polynomials
with 〈He2n〉 = n!. Show that

〈HeiHejHek〉 =
i!j!k!

(s− i)!(s− j)!(s− k)!

whenever 2s = i + j + k is even, i + j ≥ k, j + k ≥ i, and k + i ≥ j; and
zero otherwise. Hence, show that the Galerkin multiplication tensor for the
Hermite polynomials is

Mijk =

⎧
⎪⎨

⎪⎩

i!j!
(s−i)!(s−j)!(s−k)! , if 2s = i+ j + k ∈ 2Z, i+ j ≥ k,

j + k ≥ i, and k + i ≥ j,
0, otherwise.

Exercise 12.2. Show that the multiplication tensor Mijk is covariant in the
indices i and j and contravariant in the index k. That is, if {Ψk | k ∈ N0} and{
Ψ̃k
∣
∣k ∈ N0

}
are two orthogonal bases and A is the change-of-basis matrix in
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the sense that Ψ̃j =
∑

iAijΨi, then the corresponding multiplication tensors

Mijk and M̃ijk satisfy

M̃ijk =
∑

m,n,p

AmiAnj(A
−1)kpMmnp.

(Thus, the multiplication tensor is a (2, 1)-tensor and differential geometers
would denote it by Mk

ij .)

Exercise 12.3. (a) Show that, for fixed K, the Galerkin product satisfies
for all U, V,W ∈ SK and α, β ∈ R,

U ∗ V = ΠSK (UV ),

U ∗ V = V ∗ U,
(αU) ∗ (βV ) = αβ(U ∗ V ),
(U + V ) ∗W = U ∗W + V ∗W.

(b) Show that the Galerkin product on SK is not associative, i.e.

U ∗ (V ∗W ) �= (U ∗ V ) ∗W for some U, V,W ∈ SK .

To do so, show that

(U ∗ V ) ∗W =

K∑

m=0

⎡

⎣
K∑

i,j,k,�=0

uivjwkMij�M�km

⎤

⎦Ψm,

U ∗ (V ∗W ) =

K∑

m=0

⎡

⎣
K∑

i,j,k,�=0

uivjwkMkj�M�im

⎤

⎦Ψm.

Show that the two (3, 1)-tensors
∑K

�=0Mij�M�km and
∑K

�=0Mkj�M�im

need not be equal.
(c) Show that the Galerkin product on SK is not power-associative, by

finding U ∈ SK for which

((U ∗ U) ∗ U) ∗ U �= (U ∗ U) ∗ (U ∗ U).

Hint: Counterexamples can be found using the Hermite multiplication
tensor from Exercise 12.1 in the case K = 2.

Exercise 12.4. The operation of Galerkin inversion can have some patho-
logical properties. Let Ξ ∼ N (0, 1), and let S := L2(R, γ;R) have its usual
orthogonal basis of Hermite polynomials {Hek | k ∈ N0}. Following the dis-
cussion in Remark 9.16, let a ∈ R, and let

U := a+ Ξ = a ·He0(Ξ) + 1 ·He1(Ξ).
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Using (12.3), determine — or, rather, attempt to determine — the Hermite–
Galerkin reciprocal V := U−1 in SK for several values of K ∈ N and a ∈ R

(make sure to try a = 0 for some especially interesting results!). For a = 0,
what do you observe about the invertibility of the matrix in (12.3) when K is
odd or even? When it is invertible, what is its condition number (the product
of its norm and the norm of its inverse)? How does v0, which would equal
E[V ] if V were an integrable random variable, compare to a−1 when a �= 0?

Exercise 12.5. Following the model of Galerkin inversion, formulate a
Galerkin method for calculating the spectral coefficients of a degree-K
Galerkin approximation to U/V given truncated spectral expansions U =
∑K

k=0 ukΨk and V =
∑K

k=0 vkΨk.

Exercise 12.6. Formulate a method for calculating a pseudo-spectral app-
roximation to the square root of a non-negative random variable. Apply your
method to calculate the Hermite spectral coefficients of a degree-K Galerkin
approximation to

√
expU , where U ∼ N (m,σ2).

Exercise 12.7. Extend Example 12.7 to incorporate uncertainty in the ini-
tial position and velocity of the oscillator. Assume that the initial position
X and initial position V are independent random variables with (truncated)

gPC expansions X =
∑K

i=0 xiΨ
(x)
i and V =

∑K
j=0 vjΨ

(v)
j . Expand the solu-

tion of the oscillator equation in the tensor product basis Ψ
(x,v)
(i,j) := Ψ

(x)
i Ψ

(v)
j

and calculate ANOVA-style sensitivity indices, i.e.

s2(i,j) := |u(i,j)|2〈Ψ (x,v)
(i,j) 〉

/
∑

(i,j) 
=0

|u(i,j)|2〈Ψ (x,v)
(i,j) 〉

Exercise 12.8. Perform the analogues of Example 12.7 and Exercise 12.7
for the Van der Pol oscillator

ü(t)− μ(1− u(t)2)u̇(t) + ω2u(t) = 0,

with natural frequency ω > 0 and damping μ ≥ 0. Model both ω and μ as
random variables with gPC expansions of your choice, and, for various T > 0,
calculate sensitivity indices for u(T ) with respect to the uncertainties in ω,
μ, and initial data.

Exercise 12.9. Let a be a bilinear form satisfying the hypotheses of the
Lax–Milgram theorem. Given f ∈ H∗, show that the unique u such that
a(u, v) = 〈f | v〉 for all v ∈ H satisfies ‖u‖H ≤ c−1‖f‖H′.

Exercise 12.10 (Lax–Milgram with two Hilbert spaces). Let U and V be
Hilbert spaces, and let a : U ×V → K be a bilinear form such that there exist
constants 0 < c ≤ C <∞ such that, for all u ∈ U and v ∈ V ,

c‖u‖U‖v‖V ≤ |a(u, v)| ≤ C‖u‖U‖v‖V .
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By following the steps in the proof of the usual Lax–Milgram theorem, show
that, for all f ∈ V ′, there exists a unique u ∈ U such that, for all v ∈ V ,
a(u, v) = 〈f | v〉, and show also that this u satisfies the estimate ‖u‖U ≤
c−1‖f‖V′.

Exercise 12.11 (Céa’s lemma). Let a, c and C be as in the statement of the
Lax–Milgram theorem. Show that the weak solution u ∈ H and the Galerkin
solution u(M) ∈ UM satisfy

∥
∥u− u(M)

∥
∥ ≤ C

c
inf

{∥
∥u− v(M)

∥
∥
∣
∣
∣ v(M) ∈ UM

}
.

Exercise 12.12. Consider a partition of the unit interval [0, 1] into N + 1
equally spaced nodes

0 = x0 < x1 = h < x2 = 2h < · · · < xN = 1,

where h = 1
N > 0. For n = 0, . . . , N , let

φn(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x ≤ 0 or x ≤ xn−1;

(x− xn−1)/h, if xn−1 ≤ x ≤ xn;
(xn+1 − x)/h, if xn ≤ x ≤ xn+1;

0, if x ≥ 1 or x ≥ xn+1.

What space of functions is spanned by φ0, . . . , φN? For these functions
φ0, . . . , φN , calculate the Gram matrix for the bilinear form

a(u, v) :=

∫ 1

0

u′(x)v′(x) dx

corresponding to the Laplace operator. Determine also the vector components
〈f, φn〉 in the Galerkin equation (12.13).



Chapter 13

Non-Intrusive Methods

[W]hen people thought the Earth was flat,
they were wrong. When people thought the
Earth was spherical, they were wrong. But if
you think that thinking the Earth is spherical
is just as wrong as thinking the Earth is flat,
then your view is wronger than both of them
put together.

The Relativity of Wrong
Isaac Asimov

Chapter 12 considers a spectral approach to UQ, namely Galerkin expansion,
that is mathematically very attractive in that it is a natural extension of the
Galerkin methods that are commonly used for deterministic PDEs and (up
to a constant) minimizes the stochastic residual, but has the severe disad-
vantage that the stochastic modes of the solution are coupled together by a
large system such as (12.15). Hence, the Galerkin formalism is not suitable for
situations in which deterministic solutions are slow and expensive to obtain,
and the deterministic solution method cannot be modified. Many so-called
legacy codes are not amenable to such intrusive methods of UQ.

In contrast, this chapter considers non-intrusive spectral methods for UQ.
These are characterized by the feature that the solution U(θ) of the deter-
ministic problem is a ‘black box’ that does not need to be modified for use
in the spectral method, beyond being able to be evaluated at any desired
point θ of the probability space (Θ,F , μ). Indeed, sometimes, it is necessary
to go one step further than this and consider the case of legacy data, i.e. an
archive or data set of past input-output pairs {(θn, U(θn)) | n = 1, . . . , N},
sampled according to a possibly unknown or sub-optimal strategy, that is
provided ‘as is’ and that cannot be modified or extended at all: the reasons
for such restrictions may range from financial or practical difficulties to legal
and ethical concerns.

© Springer International Publishing Switzerland 2015
T.J. Sullivan, Introduction to Uncertainty Quantification, Texts
in Applied Mathematics 63, DOI 10.1007/978-3-319-23395-6 13
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There is a substantial overlap between non-intrusive methods for UQ and
deterministic methods for interpolation and approximation as discussed in
Chapter 8. However, this chapter additionally considers the method of Gaus-
sian process regression (also known as kriging), which produces a probabilis-
tic prediction of U(θ) away from the data set, including a variance-based
measure of uncertainty in that prediction.

13.1 Non-Intrusive Spectral Methods

One class of non-intrusive UQ methods is the family of non-intrusive spectral
methods, namely the determination of approximate spectral coefficients, e.g.
polynomial chaos coefficients, of an uncertain quantity U . The distinguishing
feature here, in contrast to the approximate spectral coefficients calculated in
Chapter 12, is that realizations of U are used directly. A good mental model
is that the realizations of U will be used as evaluations in a quadrature rule,
to determine an approximate orthogonal projection onto a finite-dimensional
subspace of the stochastic solution space. For this reason, these methods are
sometimes called non-intrusive spectral projection (NISP).

Consider a square-integrable stochastic process U : Θ → U taking values
in a separable Hilbert space1 U , with a spectral expansion

U =
∑

k∈N0

ukΨk

of U ∈ L2(Θ, μ;U) ∼= U ⊗ L2(Θ, μ;R) in terms of coefficients (stochastic
modes) uk ∈ U and an orthogonal basis {Ψk | k ∈ N0} of L2(Θ, μ;R). As
usual, the stochastic modes are given by

uk =
〈UΨk〉
〈Ψ2

k 〉
=

1

γk

∫

Θ

U(θ)Ψk(θ) dμ(θ). (13.1)

If the normalization constants γk := 〈Ψ2
k 〉 ≡ ‖Ψk‖2L2(μ) are known ahead of

time, then it remains only to approximate the integral with respect to μ of
the product of U with each basis function Ψk; in some cases, the normal-
ization constants must also be approximated. In any case, the aim is to use
realizations of U to determine approximate stochastic modes ũk ∈ U , with
ũk ≈ uk, and hence an approximation

Ũ :=
∑

k∈N0

ũkΨk ≈ U.

Such a stochastic process Ũ is sometimes called a surrogate or emulator for
the original process U .

1 As usual, readers will lose little by assuming that U = R on a first reading. Later, U
should be thought of as a non-trivial space of time- and space-dependent fields, so that
U(t, x; θ) =

∑
k∈N0

(t, x)Ψk(θ).
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Deterministic Quadrature. If the dimension of Θ is low and U(θ) is rela-
tively smooth as a function of θ, then an appealing approach to the estima-
tion of 〈UΨk〉 is deterministic quadrature. For optimal polynomial accuracy,
Gaussian quadrature (i.e. nodes at the roots of μ-orthogonal polynomials)
may be used. In practice, nested quadrature rules such as Clenshaw–Curtis
may be preferable since one does not wish to have to discard past solutions
of U upon passing to a more accurate quadrature rule. For multi-dimensional
domains of integration Θ, sparse quadrature rules may be used to partially
alleviate the curse of dimension.

Note that, if the basis elements Ψk are polynomials, then the normalization
constant γk := 〈Ψ2

k 〉 can be evaluated numerically but with zero quadrature
error by Gaussian quadrature with at least (k + 1)/2 nodes.

Monte Carlo and Quasi-Monte Carlo Integration. If the dimension
of Θ is high, or U(θ) is a non-smooth function of θ, then it is tempting
to resort to Monte Carlo approximation of 〈UΨk〉. This approach is also
appealing because the calculation of the stochastic modes uk can be writ-
ten as a straightforward (but often large) matrix-matrix multiplication. The
problem with Monte Carlo methods, as ever, is the slow convergence rate of
∼ (number of samples)−1/2; quasi-Monte Carlo quadrature may be used to
improve the convergence rate for smoother integrands.

Connection with Linear Least Squares. There is a close connection
between least-squares minimization and the determination of approximate
spectral coefficients via quadrature (be it deterministic or stochastic). Let
basis functions Ψ0, . . . , ΨK and nodes θ1, . . . , θN be given, and let

V :=

⎡

⎢
⎢
⎣

Ψ0(θ1) · · · ΨK(θ1)
...

. . .
...

Ψ0(θN ) · · · ΨK(θN )

⎤

⎥
⎥
⎦ ∈ R

N×(K+1) (13.2)

be the associated Vandermonde-like matrix. Also, let Q(f) :=
∑N

n=1 wnf(θn)
be an N -point quadrature rule using the nodes θ1, . . . , θN , and let W :=
diag(w1, . . . , wN ) ∈ R

N×N . For example, if the θn are i.i.d. draws from the
measure μ on Θ, then

w1 = · · · = wN =
1

N

corresponds to the ‘vanilla’ Monte Carlo quadrature rule Q.

Theorem 13.1. Given observed data yn := U(θn) for n = 1, . . . , N , and y =
[y1, . . . , yN ], the following statements about approximate spectral coefficients

ũ = (ũ0, . . . , ũK) for Ũ :=
∑K

k=0 ũkΨk are equivalent:

(a) Ũ minimizes the weighted sum of squared residuals

R2 :=

N∑

n=1

wn

∣
∣Ũ(θn)− yn

∣
∣2;
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(b) ũ satisfies

V TWV ũ = V TWyT; (13.3)

(c) Ũ = U in the weak sense, tested against Ψ0, . . . , ΨK using the quadrature
rule Q, i.e., for k = 0, . . . ,K,

Q
(
ΨkŨ

)
= Q

(
ΨkU

)
.

Proof. Since

V ũ =

⎡

⎢
⎢
⎣

Ũ(θ1)
...

Ũ(θN )

⎤

⎥
⎥
⎦ ,

the weighted sum of squared residuals
∑N

n=1 wn

∣
∣Ũ(θn)−yn

∣
∣2 for approximate

model Ũ equals ‖V ũ − yT‖2W . By Theorem 4.28, this function of ũ is mini-
mized if and only if ũ satisfies the normal equations (13.3), which shows that
(a) ⇐⇒ (b). Explicit calculation of the left- and right-hand sides of (13.3)
yields

N∑

n=1

wn

⎡

⎢
⎢
⎣

Ψ0(θn)Ũ(θn)
...

ΨK(θn)Ũ(θn)

⎤

⎥
⎥
⎦ =

N∑

n=1

wn

⎡

⎢
⎢
⎣

Ψ0(θn)yn
...

ΨK(θn)yn

⎤

⎥
⎥
⎦ ,

which shows that (b)⇐⇒ (c)  !

Note that the matrix V TWV on the left-hand side of (13.3) is

V TWV =

⎡

⎢
⎢
⎣

Q(Ψ0Ψ0) · · · Q(Ψ0ΨK)
...

. . .
...

Q(ΨKΨ0) · · · Q(ΨKΨK)

⎤

⎥
⎥
⎦ ∈ R

(K+1)×(K+1),

i.e. is the Gram matrix of the basis functions Ψ0, . . . , ΨK with respect to the
quadrature rule Q’s associated inner product. Therefore, if the quadrature
rule Q is one associated to μ (e.g. a Gaussian quadrature formula for μ, or a
Monte Carlo quadrature with i.i.d. θn ∼ μ), then V TWV will be an approx-
imation to the Gram matrix of the basis functions Ψ0, . . . , ΨK in the L2(μ)
inner product. In particular, dependent upon the accuracy of the quadrature
rule Q, we will have V TWV ≈ diag(γ0, . . . , γK), and then

ũk ≈
Q(ΨkU)

γk
,

i.e. ũk approximately satisfies the orthogonal projection condition (13.1)
satisfied by uk.
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In practice, when given {θn}Nn=1 that are not necessarily associated with
some quadrature rule for μ, along with corresponding output values {yn :=
U(θn)}Nn=1, it is common to construct approximate stochastic modes and

hence an approximate spectral expansion Ũ by choosing ũ0, . . . ũk to minimize
the some weighted sum of squared residuals, i.e. according to (13.3).

Conversely, one can engage in the design of experiments — i.e. the selection
of {θn}Nn=1 — to optimize some derived quantity of the matrix V ; common
choices include
• A-optimality, in which the trace of (V TV )−1 is minimized;
• D-optimality, in which the determinant of V TV is maximized;
• E-optimality, in which the least singular value of V TV is maximized; and
• G-optimality, in which the largest diagonal term in the orthogonal pro-
jection V (V TV )−1V T ∈ R

N×N is minimized.

Remark 13.2. The Vandermonde-like matrix V from (13.2) is often ill-
conditioned, i.e. has singular values of hugely different magnitudes. Often, this
is a property of the normalization constants of the basis functions {Ψk}Kk=0.
As can be seen from Table 8.2, many of the standard families of orthogonal
polynomials have normalization constants ‖ψk‖L2 that tend to 0 or to ∞
as k → ∞. A tensor product system {ψα}α∈Nd

0
of multivariate orthogonal

polynomials, as in Theorem 8.25, might well have

lim inf
|α|→∞

‖ψα‖L2 = 0 and lim sup
|α|→∞

‖ψα‖L2 =∞;

this phenomenon arises in, for example, the products of the Legendre and
Hermite, or the Legendre and Charlier, bases. Working with orthonormal
bases, or using preconditioners, alleviates the difficulties caused by such ill-
conditioned matrices V .

Remark 13.3. In practice, the following sources of error arise when com-
puting non-intrusive approximate spectral expansions in the fashion outlined
in this section:
(a) discretization error comes about through the approximation of U by a

finite-dimensional subspace UM , i.e. the approximation the stochastic
modes uk by a finite sum uk ≈

∑M
m=1 ukmφm, where {φm | m ∈ N} is

some basis for U ;
(b) truncation error comes about through the truncation of the spectral

expansion for U after finitely many terms, i.e. U ≈
∑K

k=0 ukΨk;
(c) quadrature error comes about through the approximate nature of the

numerical integration scheme used to find the stochastic modes; classical
statistical concerns about the unbiasedness of estimators for expected
values fall into this category. The choice of integration nodes contributes
greatly to this source of error.

A complete quantification of the uncertainty associated with predictions of U
made using a truncated non-intrusively constructed spectral stochastic model
Ũ :=

∑K
k=0 ũkΨk requires an understanding of all three of these sources of
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error, and there is necessarily some tradeoff among them when trying to give
‘optimal’ predictions for a given level of computational and experimental cost.

Remark 13.4. It often happens in practice that the process U is not initially
defined on the same probability space as the gPC basis functions, in which
case some appropriate changes of variables must be used. In particular, this
situation can arise if we are given an archive of legacy data values of U
without the corresponding inputs. See Exercise 13.5 for a discussion of these
issues in the example setting of Gaussian mixtures.

Example 13.5. Consider again the simple harmonic oscillator

Ü(t) = −Ω2U(t)

with the initial conditions U(0) = 1, U̇(0) = 0. Suppose that Ω ∼
Unif([0.8, 1.2]), so that Ω = 1.0 + 0.2Ξ, where Ξ ∼ Unif([−1, 1]) is the
stochastic germ, with its associated Legendre basis polynomials. Figure 13.1
shows the evolution of the approximate stochastic modes for U , calculated
using N = 1000 i.i.d. samples of Ξ and the least squares approach of The-
orem 13.1. As in previous examples of this type, the forward solution of the
ODE is performed using a symplectic integrator with time step 0.01.

Note that many standard computational algebra routines, such as Python’s
numpy.linalg.lstsq, will solve the all the least squares problems of finding
{ũk(ti)}Kk=0 for all time points ti in a vectorized manner. That is, it is not nec-
essary to call numpy.linalg.lstsq with matrix V and data {U(t0, ωn)}Nn=1

to obtain {ũk(t0)}Kk=0, and then do the same for t1, etc. Instead, all the data
{U(ti, ωn) | n = 1, . . . , N ; i ∈ N0} can be supplied at once as a matrix,
yielding a matrix {ũk(ti) | k = 0, . . . ,K; i ∈ N0}.

13.2 Stochastic Collocation

Collocation methods for ordinary and partial differential equations are
another form of interpolation. The idea is to find a low-dimensional object —
usually a polynomial — that approximates the true solution to the differential
equation by means of exactly satisfying the differential equation at a selected
set of points, called collocation points or collocation nodes. An important
feature of the collocation approach is that an approximation is constructed
not on a pre-defined stochastic subspace, but instead uses interpolation, and
hence both the approximation and the approximation space are implicitly
prescribed by the collocation nodes. As the number of collocation nodes inc-
reases, the space in which the solution is sought becomes correspondingly
larger.
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Fig. 13.1: The degree-10 Legendre PC NISP solution to the simple harmonic
oscillator equation of Example 13.5 with Ω ∼ Unif([0.8, 1.2]).
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Example 13.6 (Collocation for an ODE). Consider, for example, the initial
value problem

u̇(t) = f(t, u(t)), for t ∈ [a, b]

u(a) = ua,

to be solved on an interval of time [a, b]. Choose n points

a ≤ t1 < t2 < · · · < tn ≤ b,

called collocation nodes. Now find a polynomial p(t) ∈ R≤n[t] so that the
ODE

ṗ(tk) = f(tk, p(tk))

is satisfied for k = 1, . . . , n, as is the initial condition p(a) = ua. For example,
if n = 2, t1 = a and t2 = b, then the coefficients c2, c1, c0 ∈ R of the
polynomial approximation

p(t) =

2∑

k=0

ck(t− a)k,

which has derivative ṗ(t) = 2c2(t− a) + c1, are required to satisfy

ṗ(a) = c1 = f(a, p(a))

ṗ(b) = 2c2(b − a) + c1 = f(b, p(b))

p(a) = c0 = ua

i.e.

p(t) =
f(b, p(b))− f(a, ua)

2(b− a) (t− a)2 + f(a, ua)(t− a) + ua.

The above equation implicitly defines the final value p(b) of the collocation
solution. This method is also known as the trapezoidal rule for ODEs, since
the same solution is obtained by rewriting the differential equation as

u(t) = u(a) +

∫ t

a

f(s, u(s)) ds

and approximating the integral on the right-hand side by the trapezoidal
quadrature rule for integrals.

It should be made clear at the outset that there is nothing stochastic about
‘stochastic collocation’, just as there is nothing chaotic about ‘polynomial
chaos’. The meaning of the term ‘stochastic’ in this case is that the colloca-
tion principle is being applied across the ‘stochastic space’ (i.e. the proba-
bility space) of a stochastic process, rather than the space/time/space-time
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domain. That is, for a stochastic process U with known values U(θn) at known

collocation points θ1, . . . , θN ∈ Θ, we seek an approximation Ũ such that

Ũ(θn) = U(θn) for n = 1, . . . , N .

There is, however, some flexibility in how to approximate Uθ) for θ �=
θ1, . . . , θN .

Example 13.7. Consider, for example, the random PDE

Lθ[U(x, θ)] = 0 for x ∈ X , θ ∈ Θ,
Bθ[U(x, θ)] = 0 for x ∈ ∂X , θ ∈ Θ,

where, for μ-a.e. θ in some probability space (Θ,F , μ), the differential ope-
rator Lθ and boundary operator Bθ are well defined and the PDE admits
a unique solution U( · , θ) : X → R. The solution U : X × Θ → R is then a
stochastic process. We now let ΘM := {θ1, . . . , θM} ⊆ Θ be a finite set of
prescribed collocation nodes. The collocation problem is to find a collocation
solution Ũ , an approximation to the exact solution U , that satisfies

Lθm

[
Ũ
(
x, θm

)]
= 0 for x ∈ X ,

Bθm

[
Ũ
(
x, θm

)]
= 0 for x ∈ ∂X ,

for m = 1, . . . ,M .

Interpolation Approach. An obvious first approach is to use interpolating
polynomials when they are available. This is easiest when the stochastic space
Θ is one-dimensional, in which case the Lagrange basis polynomials of a given
nodal set are an attractive choice of interpolation basis. As always, though,
care must be taken to use nodal sets that will not lead to Runge oscillations; if
there is very little a priori information about the process U , then constructing
a ‘good’ nodal set may be a matter of trial and error. In general, the choice
of collocation nodes is a significant contributor to the error and uncertainty
in the resulting predictions.

Given the values U(θ1), . . . , U(θN ) of U at nodes θ1, . . . , θN in a one-
dimensional space Θ, the (Lagrange-form polynomial interpolation) colloca-

tion approximation Ũ to U is given by

Ũ(θ) =
N∑

n=1

U(θn)�n(θ) =
N∑

n=1

U(θn)
∏

1≤k≤N
k 
=n

θ − θk
θn − θk

.

Example 13.8. Figure 13.2 shows the results of the interpolation-collocation
approach for the simple harmonic oscillator equation considered earlier, again
for ω ∈ [0.8, 1.2]. Two nodal sets ω1, . . . , ωN ∈ R are considered: uniform
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nodes, and Chebyshev nodes. In order to make the differences between the
two solutions more easily visible, only N = 4 nodes are used.

The collocation solution Ũ( · , ωn) at each of the collocation nodes ωn is
the solution of the deterministic problem

d2

dt2
Ũ(t, ωn) = −ω2

nU(t, ωn),

Ũ(0, ωn) = 1,

d

dt
Ũ(0, ωn) = 0.

Away from the collocation nodes, Ũ is defined by polynomial interpolation:
for each t, Ũ(t, ω) is a polynomial in ω of degree at most N with pre-
scribed values at the collocation nodes. Writing this interpolation in terms
of Lagrange basis polynomials

�n(ω;ω1, . . . ωN ) :=
∏

1≤k≤N
k 
=n

ω − ωk
ωn − ωk

yields

Ũ(t, ω) =

N∑

n=1

U(t, ωn)�n(ω).

As can be seen in Figure 13.2(c–d), both nodal sets have the undesir-

able property that the approximate solution Ũ(t, ω) has with the undesirable

property that
∣
∣Ũ(t, ω)

∣
∣ >

∣
∣Ũ(0, ω)

∣
∣ = 1 for some t > 0 and ω ∈ [0.8, 1.2].

Therefore, for general ω, Ũ(t, ω) is not a solution of the original ODE. How-
ever, as the discussion around Runge’s phenomenon in Section 8.5 would
lead us to expect, the regions in (t, ω)-space where such unphysical values
are attained are smaller with the Chebyshev nodes than the uniformly dis-
tributed ones.

The extension of one-dimensional interpolation methods to the multi-
dimensional case can be handled in a theoretically straightforward manner
using tensor product grids, similar to the constructions used in quadrature.
In tensor product constructions, both the grid of interpolation points and
the interpolation polynomials are products of the associated one-dimensional
objects. Thus, in a product space Θ = Θ1 × · · · ×Θd, we take nodes

θ11 , . . . , θ
1
N1

∈ Θ1

...

θd1 , . . . , θ
d
Nd

∈ Θd
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Fig. 13.2: Interpolation solutions for a simple harmonic oscillator with un-
certain natural frequency ω, U(0, ω) = 1, U̇(0, ω) = 0. Both cases use four
interpolation nodes. Note that the Chebyshev nodes produce smaller regions
in (t, ω)-space with unphysical values

∣
∣Ũ(t, ω)

∣
∣ > 1.
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and construct a product grid of nodes θn := (θ1n1
, . . . , θdnd

) ∈ Θ, where the
multi-index n = (n1, . . . , nd) runs over {1, . . . , N1} × · · · × {1, . . . , Nd}. The
corresponding interpolation formula, in terms of Lagrange basis polynomials,
is then

Ũ(θ) =

(N1,...,Nd)∑

n=(1,...,1)

U(θn)
d∏

i=1

�ni

(
θi; θi1, . . . , θ

i
Ni

)
.

The problem with tensor product grids for interpolative collocation is the
same as for tensor product quadrature: the curse of dimension, i.e. the large
number of nodes needed to adequately resolve features of functions on high-
dimensional spaces. The curse of dimension can be partially circumvented by
using interpolation through sparse grids, e.g. those of Smolyak type.

Collocation for arbitrary unstructured sets of nodes — such as those that
arise when inheriting an archive of ‘legacy’ data that cannot be modified
or extended for whatever reason — is a notably tricky subject, essentially
because it boils down to polynomial interpolation through an unstructured set
of nodes. Even the existence of interpolating polynomials such as analogues
of the Lagrange basis polynomials is not, in general, guaranteed.

Other Approximation Strategies. There are many other strategies for
the construction of collocation solutions, especially in high dimension, besides
polynomial bases. Common choices include splines and radial basis functions;
see the bibliographic notes at the end of the chapter for references. Another
popular method is Gaussian process regression, which is the topic of the next
section.

13.3 Gaussian Process Regression

The interpolation approaches of the previous section were all deterministic in
two senses: they assume that the values U(θn) are observed exactly, without
error and with perfect reproducibility; they also assume that the correct form
for an interpolated value Ũ(θ) away from the nodal set is a deterministic
function of the nodes and observed values. In many situations in the natural
sciences and commerce, these assumptions are not appropriate. Instead, it
is appropriate to incorporate an estimate of the observational uncertainties,
and to produce probabilistic predictions; this is another area in which the
Bayesian perspective is quite natural.

This section surveys one such method of stochastic interpolation, known
as Gaussian process regression or kriging; as ever, the quite rigid properties
of Gaussian measures hugely simplify the presentation. The essential idea is
that we will model U as a Gaussian random field; the prior information on U
consists of a mean field and a covariance operator, the latter often being given
in practice by a correlation length; the observations of U at discrete points
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are then used to condition the prior Gaussian using Schur complementation,
and thereby produce a posterior Gaussian prediction for the value of U at
any other point.

Noise-Free Observations. Suppose for simplicity that we observe the
values yn := U(θn) exactly, without any observational error. We wish to use
the data {(θn, yn) | n = 1, . . . , N} to make a prediction for the values of U at
other points in the domain Θ. To save space, we will refer to θo = (θ1, . . . , θN )
as the observed points and yo = (y1, . . . , yN) as the observed values ; together,
(θo, yo) constitute the observed data or training set. By way of contrast, we
wish to predict the value(s) yp of U at point(s) θp, referred to as the pre-
diction points or test points. We will abuse notation and write m(θo) for
(m(θ0), . . . ,m(θN )), and so on.

Under the prior assumption that U is a Gaussian random field with known
mean m : Θ→ R and known covariance function C : Θ×Θ→ R, the random
vector (yo, yp) is a draw from a multivariate Gaussian distribution with mean
(m(θo),m(θp)) and covariance matrix

[
C(θo, θo) C(θo, θp)T

C(θo, θp) C(θp, θp)

]

(Note that in the case of N observed data points and one new value to be
predicted, C(θo, θo) is an N ×N block, C(θp, θp) is 1× 1, and C(θo, θp) is a
1×N ‘row vector’.) By Theorem 2.54, the conditional distribution of U(θp)
given the observations U(θo) = yo is Gaussian, with its mean and variance
given in terms of the Schur complement

S := C(θp, θp)− C(θp, θo)TC(θo, θo)−1C(θo, θp)

by

U(θp)|θo, yo ∼ N
(
mp + C(θp, θo)C(θo, θo)−1(yo −m(θo)), S

)
.

This means that, in practice, a draw Ũ(θp) from this conditioned Gaussian
measure would be used as a proxy/prediction for the value U(θp). Note that
S depends only upon the locations of the interpolation nodes θo and θp. Thus,
if variance is to be used as a measure of the precision of the estimate Ũ(θp),
then it will be independent of the observed data yo.

Noisy Observations. The above derivation is very easily adapted to the case
of noisy observations, i.e. yo = U(θo)+η, where η is some random noise vector.
As usual, the Gaussian case is the simplest, and if η ∼ N (0, Γ ), then the net
effect is to replace each occurrence of “C(θo, θo)” above by “Γ + C(θo, θo)”.
In terms of regularization, this is nothing other than quadratic regularization
using the norm ‖ · ‖Γ 1/2 = ‖Γ−1/2 · ‖ on R

N .



290 13 Non-Intrusive Methods

One advantage of regularization, as ever, is that it sacrifices the interpola-
tion property (exactly fitting the data) for better-conditioned solutions and
even the ability to assimilate ‘contradictory’ observed data, i.e. θn = θm but
yn �= ym. See Figure 13.3 for simple examples.

Example 13.9. Consider Θ = [0, 1], and suppose that the prior description
of U is as a zero-mean Gaussian process with Gaussian covariance kernel

C(θ, θ′) := exp

(

−|θ − θ
′|2

2�2

)

;

� > 0 is the correlation length of the process, and the numerical results
illustrated in Figure 13.3 use � = 1

4 .

(a) Suppose that values yo = 0.1, 0.8 and 0.5 are observed for U at θo = 0.1,
0.5, 0.9 respectively. In this case, the matrix C(θo, θo) and its inverse are
approximately

C(θo, θo) =

⎡

⎢
⎣

1.000 0.278 0.006

0.278 1.000 0.278

0.006 0.278 1.000

⎤

⎥
⎦

C(θo, θo)−1 =

⎡

⎢
⎣

1.090 −0.327 0.084

−0.327 1.182 −0.327
0.084 −0.327 1.090

⎤

⎥
⎦ .

Figure 13.3(a) shows the posterior mean field and posterior variance: note
that the posterior mean interpolates the given data.

(b) Now suppose that values yo = 0.1, 0.8, 0.9, and 0.5 are observed for U
at θo = 0.1, 0.5, 0.5, 0.9 respectively. In this case, because there are two
contradictory values for U at θ = 0.5, we do not expect the posterior
mean to be a function that interpolates the data. Indeed, the matrix
C(θo, θo) has a repeated row and column:

C(θo, θo) =

⎡

⎢
⎢
⎢
⎣

1.000 0.278 0.278 0.006

0.278 1.000 1.000 0.278

0.278 1.000 1.000 0.278

0.006 0.278 0.278 1.000

⎤

⎥
⎥
⎥
⎦
,

and hence C(θo, θo) is not invertible. However, assuming that yo =
U(θo) + N (0, η2), with η > 0, restores well-posedness to the problem.
Figure 13.3(b) shows the posterior mean and covariance field with the
regularization η = 0.1.



13.3 Gaussian Process Regression 291

0

0.2

0.4

0.6

0.8

1.0

1.2

−0.2

−0.4

0.2 0.4 0.6 0.8 1.0
θ

U(θ)

Perfectly observed data: the pos-
terior mean interpolates the ob-
served data.

0

0.2

0.4

0.6

0.8

1.0

1.2

−0.2

−0.4

0.2 0.4 0.6 0.8 1.0
θ

U (θ)

Data additively perturbed by
i.i.d. draws from N (0, 0.01): the pos-
terior mean is not interpolative.

a b

Fig. 13.3: A simple example of Gaussian process regression/kriging in one
dimension. The dots show the observed data points, the black curve the
posterior mean of the Gaussian process Ũ , and the shaded region the posterior
mean ± one posterior standard deviation.

Variations. There are many ‘flavours’ of the kriging method, essentially
determined by the choice of the prior, and in particular the choice of the
prior mean. For example, simple kriging assumes a known spatially constant
mean field, i.e. E[U(θ)] = m for all θ.

A mild generalization is ordinary kriging, in which it is again assumed
that E[U(θ)] = m for all θ, but m is not assumed to be known. This under-
determined situation can be rendered tractable by including additional ass-
umptions on the form of Ũ(θp) as a function of the data (θo, yo): one simple

assumption of this type is a linear model of the form Ũ(θp) =
∑N

n=1 wnyn
for some weights w = (w1, . . . , wN ) ∈ R

N — note well that this is not the �
same as linearly interpolating the observed data.

In this situation, as in the Gauss–Markov theorem (Theorem 6.2), the
natural criteria of zero mean error (unbiasedness) and minimal squared error

are used to determine the estimate of U(θp): writing Ũ(θp) =
∑N

n=1 wnyn, the

unbiasedness requirement that E
[
Ũ(θp)−U(θp)

]
= 0 implies that the weights

wn sum to 1, and minimizing E
[(
Ũ(θp)− U(θp)

)2]
becomes the constrained

optimization problem

minimize: C(θp, θp)− 2wTC(θp, θo) + wTC(θo, θo)w

among: w ∈ R
N

subject to:
N∑

n=1

wn = 1.
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By the method of Lagrange multipliers, the weight vector w and the Lagrange
multiplier λ ∈ R are given jointly as the solutions of

[
C(θo, θo) 1

1 0

][
w

λ

]

=

[
C(θp, θo)

1

]

. (13.4)

Even when C(θo, θo) is positive-definite, the matrix on the left-hand side is
not invertible: however, the column vector on the right-hand side does lie in
the range, and so it is possible2 to solve for (w, λ).

13.4 Bibliography

Non-intrusive methods for UQ, including non-intrusive spectral projection
and stochastic collocation, are covered by Le Mâıtre and Knio (2010, Chap-
ter 3) and Xiu (2010, Chapter 7). A classic paper on interpolation using sparse
grids is that of Barthelmann et al. (2000), and applications to UQ for PDEs
with random input data have been explored by, e.g., Nobile et al. (2008a,b).
Narayan and Xiu (2012) give a method for stochastic collocation on arbitrary
sets of nodes using the framework of least orthogonal interpolation, following
an earlier Gaussian construction of de Boor and Ron (1990). Yan et al. (2012)
consider stochastic collocation algorithms with sparsity-promoting �1 regu-
larizations. Buhmann (2003) provides a general introduction to the theory
and practical usage of radial basis functions. A comprehensive introduction
to splines is the book of de Boor (2001); for a more statistical interpretation,
see, e.g., Smith (1979).

Kriging was introduced by Krige (1951) and popularized in geostatistics by
Matheron (1963). See, e.g., Conti et al. (2009) for applications to the interpo-
lation of results from slow or expensive computational methods. Rasmussen
and Williams (2006) cover the theory and application of Gaussian processes
to machine learning; their text also gives a good overview of the relationships
between Gaussian processes and other modelling perspectives, including reg-
ularization, reproducing kernel Hilbert spaces, and support vector machines.

13.5 Exercises

Exercise 13.1. Choose distinct nodes θ1, . . . , θN ∈ Θ = [0, 1] and corre-
sponding values y1, . . . , yN ∈ R. Interpolate these data points in all the
ways discussed so far in the text. In particular, interpolate the data using

2 Indeed, many standard numerical linear algebra packages will readily solve the system
(13.4) without throwing any error whatsoever.
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apiecewise linear interpolation, using a polynomial of degree N − 1, and
using Gaussian processes with various choices of covariance kernel. Plot the
interpolants on the same axes to get an idea of their qualitative features.

Exercise 13.2. Extend the analysis of the simple harmonic oscillator from
Examples 13.5 and 13.8 to incorporate uncertainty in the initial condition,
and calculate sensitivity indices with respect to the various uncertainties.
Perform the same analyses with an alternative uncertainty model, e.g. the
log-normal model of Example 12.6.

Exercise 13.3. Perform the analogue of Exercise 13.2 for the Van der Pol
oscillator

ü(t)− μ(1− u(t)2)u̇(t) + ω2u(t) = 0.

Compare your results with those of the active subspace method (Example
10.20 and Figure 10.1).

Exercise 13.4. Extend the analysis of Exercises 13.2 and 13.3 by treating
the time step h > 0 of the numerical ODE solver as an additional source of
uncertainty and error. Suppose that the numerical integration scheme for the
ODE has a global truncation error at most Chr for some C, r > 0, and so
model the exact solution to the ODE as the computed solution plus a draw
from Unif(−Chr, Chr). Using this randomly perturbed observational data,
calculate approximate spectral coefficients for the process using the NISP
scheme. (For more sophisticated randomized numerical schemes for ODEs
and PDEs, see, e.g., Schober et al. (2014) and the works listed as part of the
Probabilistic Numerics project http://www.probabilistic-numerics.org.)

Exercise 13.5. It often happens that the process U is not initially defined
on the same probability space as the gPC basis functions: in particular, this
situation can arise if we are given an archive of legacy data values of U
without corresponding inputs. In this situation, it is necessary to transform
both sets of random variables to a common probability space. This exercise
concerns an example implementation of this procedure in the case that U is
a real-valued Gaussian mixture: for some weights w1, . . . , wJ ≥ 0 summing
to 1, means m1, . . . ,mJ ∈ R, and variances σ21 , . . . , σ

2
J > 0, the Lebesgue

probability density fU : R → [0,∞) of U is given as the following convex
combination of Gaussian densities:

fU (x) :=

J∑

j=1

wj√
2πσ2j

exp

(

− (x−mj)
2

2σ2j

)

. (13.5)

Suppose that we wish to perform a Hermite expansion of U , i.e. to write U =∑
k∈N0

ukHek(Z), where Z ∼ γ = N (0, 1). The immediate problem is that
U is defined as a function of θ in some abstract probability space (Θ,F , μ),
not as a function of z in the concrete probability space (R,B(R), γ).
(a) Let Θ = {1, . . . , J} × R, and define a probability measure μ on Θ by

http://www.probabilistic-numerics.org
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μ :=

J∑

j=1

wjδj ⊗N (mj , σ
2
j ).

(In terms of sampling, this means that draws (j, y) from μ are per-
formed by first choosing j ∈ {1, . . . , J} at random according the weight-
ing w1, . . . , wJ , and then drawing a Gaussian sample y ∼ N (mj , σ

2
j ).)

Let P : Θ → R denote projection onto the second component, i.e.
P (j, y) := y. Show that the push-forward measure P∗μ on R is the
Gaussian mixture (13.5).

(b) Let FU : R → [0, 1] denote the cumulative distribution function (CDF)
of U , i.e.

FU (x) := Pμ[U ≤ x] =
∫ x

−∞
fU (s) ds.

Show that FU is invertible, and that if V ∼ Unif([0, 1]), then F−1
U (V ) has

the same distribution as U .
(c) Let Φ denote the CDF of the standard normal distribution γ. Show, by

change of integration variables, that

〈U,Hek〉L2(γ) =

∫ 1

0

F−1
U (v)Hek(Φ

−1(v)) dv. (13.6)

(d) Use your favourite quadrature rule for uniform measure on [0, 1] to app-
roximately evaluate (13.6), and hence calculate approximate Hermite
PC coefficients ũk for U .

(e) Choose some mj and σ2j , and generate N i.i.d. sample realizations
y1, . . . , yN of U using the observation of part (a). Approximate FU by
the empirical CDF of the data, i.e.

FU (x) ≈ F̂y(x) :=
|{1 ≤ n ≤ N | yn ≤ x}|

N
.

Use this approximation and your favourite quadrature rule for uniform
measure on [0, 1] to approximately evaluate (13.6), and hence calculate
approximate Hermite PC coefficients ũk for U . (This procedure, using the
empirical CDF, is essentially the one that we must use if we are given
only the data y and no functional relationship of the form yn = U(θn).)

(f) Compare the results of parts (d) and (e).

Exercise 13.6. Choose nodes in the square [0, 1]2 and corresponding data
values, and interpolate them using Gaussian process regression with a radial
covariance function such as C(x, x′) = exp(−‖x− x′‖2/r2), with r > 0 being
a correlation length parameter. Produce accompanying plots of the posterior
variance field.



Chapter 14

Distributional Uncertainty

Technology, in common with many other
activities, tends toward avoidance of risks by
investors. Uncertainty is ruled out if possible.
[P]eople generally prefer the predictable. Few

recognize how destructive this can be, how it
imposes severe limits on variability and thus
makes whole populations fatally vulnerable to
the shocking ways our universe can throw the
dice.

Heretics of Dune
Frank Herbert

In the previous chapters, it has been assumed that an exact model is
available for the probabilistic components of a system, i.e. that all probability
distributions involved are known and can be sampled. In practice, however,
such assumptions about probability distributions are always wrong to some
degree: the distributions used in practice may only be simple approximations
of more complicated real ones, or there may be significant uncertainty about
what the real distributions actually are. The same is true of uncertainty about
the correct form of the forward physical model. In the Bayesian paradigm,
similar issues arise if the available information is insufficient for us to specify
(or ‘elicit’) a unique prior and likelihood model. Therefore, the topic of this
chapter is how to deal with such uncertainty about probability distributions
and response functions.

© Springer International Publishing Switzerland 2015
T.J. Sullivan, Introduction to Uncertainty Quantification, Texts
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14.1 Maximum Entropy Distributions

Suppose that we are interested in the value Q(μ†) of some quantity of interest
that is a functional of a partially known probability measure μ† on a space
X . Very often, Q(μ†) arises as the expected value with respect to μ† of some
function q : X → R, so the objective is to determine

Q(μ†) ≡ EX∼μ† [q(X)].

Now suppose that μ† is known only to lie in some subset A ⊆M1(X ). How
should we try to understand or approximate Q(μ†)? One approach is the
following MaxEnt Principle:

Definition 14.1. The Principle of Maximum Entropy states that if all one
knows about a probability measure μ is that it lies in some set A ⊆M1(X ),
then one should take μ to be the element μME ∈ A of maximum entropy.

There are many heuristics underlying the MaxEnt Principle, including
appeals to equilibrium thermodynamics and attractive derivations due to
Wallis and Jaynes (2003). If entropy is understood as being a measure of
uninformativeness, then the MaxEnt Principle can be seen as an attempt to
avoid bias by selecting the ‘least biased’ or ‘most uninformative’ distribution.

Example 14.2 (Unconstrained maximum entropy distributions). If X =
{1, . . . ,m} and p ∈ R

m
>0 is a probability measure on X , then the entropy of

p is

H(p) := −
m∑

i=1

pi log pi. (14.1)

The only constraints on p are the natural ones that pi ≥ 0 and that S(p) :=∑m
i=1 pi = 1. Temporarily neglect the inequality constraints and use the

method of Lagrange multipliers to find the extrema ofH(p) among all p ∈ R
m

with S(p) = 1; such p must satisfy, for some λ ∈ R,

0 = ∇H(p)− λ∇S(p) = −

⎡

⎢
⎢
⎣

1 + log p1 + λ
...

1 + log pm + λ

⎤

⎥
⎥
⎦ .

It is clear that any solution to this equation must have p1 = · · · = pm, for if
pi and pj differ, then at most one of 1+ log pi+λ and 1+log pj+λ can equal
0 for the same value of λ. Therefore, since S(p) = 1, it follows that the unique
extremizer of H(p) among {p ∈ R

m | S(p) = 1} is p1 = · · · = pm = 1
m . The

inequality constraints that were neglected initially are satisfied, and are not
active constraints, so it follows that the uniform probability measure on X is
the unique maximum entropy distribution on X .
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A similar argument using the calculus of variations shows that the unique
maximum entropy probability distribution on an interval [a, b] � R is the
uniform distribution 1

|b−a| dx.

Example 14.3 (Constrained maximum entropy distributions). Consider the
set of all probability measures μ on R that have mean m and variance s2;
what is the maximum entropy distribution in this set? Consider probability
measures μ that are absolutely continuous with respect to Lebesgue measure,
having density ρ. Then the aim is to find μ to maximize

H(ρ) = −
∫

R

ρ(x) log ρ(x) dx,

subject to the constraints that ρ ≥ 0,
∫
R
ρ(x) dx = 1,

∫
R
xρ(x) dx = m and∫

R
(x −m)2ρ(x) dx = s2. Introduce Lagrange multipliers c = (c0, c1, c2) and

the Lagrangian

Fc(ρ) := H(ρ) + c0

∫

R

ρ(x) dx+ c1

∫

R

xρ(x) dx+ c2

∫

R

(x−m)2ρ(x) dx.

Consider a perturbation ρ + tσ; if ρ is indeed a critical point of Fc, then,
regardless of σ, it must be true that

d

dt
Fc(ρ+ tσ)

∣
∣
∣
∣
t=0

= 0.

This derivative is given by

d

dt
Fc(ρ+ tσ)

∣
∣
∣
∣
t=0

=

∫

R

σ(x)
[
− log ρ(x)− 1 + c0 + c1x+ c2(x −m)2

]
dx.

Since it is required that d
dtFc(ρ+ tσ)

∣
∣
t=0

= 0 for every σ, the expression in
the brackets must vanish, i.e.

ρ(x) = exp(−c0 + 1− c1x− c2(x −m)2).

Since ρ(x) is the exponential of a quadratic form in x, μmust be a Gaussian of
some mean and variance, which, by hypothesis, are m and s2 respectively, i.e.

c0 = 1− log
(
1/
√
2πs2

)
,

c1 = 0,

c2 = 1
2s2 .

Thus, the maximum entropy distribution on R of with mean m and variance
s2 is N (m, s2), with entropy

H(N (m, s2)) =
1

2
log(2πes2).
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Discrete Entropy and Convex Programming. In discrete settings, the
entropy of a probability measure p ∈ M1({1, . . . ,m}) with respect to the
uniform measure as defined in (14.1) is a strictly convex function of p ∈ R

m
>0.

Therefore, when p is constrained by a family of convex constraints, finding
the maximum entropy distribution is a convex program:

minimize:

m∑

i=1

pi log pi

with respect to: p ∈ R
m

subject to: p ≥ 0

p · 1 = 1

ϕi(p) ≤ 0 for i = 1, . . . , n,

for given convex functions ϕ1, . . . , ϕn : R
m → R. This is useful because an

explicit formula for the maximum entropy distribution, such as in Example
14.3, is rarely available. Therefore, the possibility of efficiently computing the
maximum entropy distribution, as in this convex programming situation, is
very attractive.

Remark 14.4. Note well that not all classes of probability measures contain�
maximum entropy distributions:
(a) The class of all absolutely continuous μ ∈M1(R) with mean 0 but arbi-

trary variance contains distributions of arbitrarily large entropy.
(b) The class of all absolutely continuous μ ∈ M1(R) with mean 0 and

second and third moments equal to 1 has all entropies bounded above
but there is no distribution which attains the maximal entropy.

Remark 14.5. There are some philosophical, mathematical, and practical
objections to the use of the Principle of Maximum Entropy:
(a) The MaxEnt Principle is an application-blind selection mechanism. It

asserts that the correct course of action when faced with a collection
A ⊆M1(X ) and an unknown μ† ∈ A is to select a single representative
μME ∈ A and to make the approximation Q(μ†) ≈ Q(μME) regardless
of what Q is. This is in contrast to hierarchical and optimization-based
methods later in this chapter. Furthermore, MaxEnt distributions are
typically ‘nice’ (exponentially small tails, etc.), whereas many practical
problems with high consequences involve heavy-tailed distributions.

(b) Recalling that in fact all entropies are relative entropies (Kullback–
Leibler divergences), the result of applying the MaxEnt Principle is dep-
endent upon the reference measure chosen, and by Theorem 2.38 even
moderately complex systems do not admit a uniform measure for use as a
reference measure. Thus, the MaxEnt Principle would appear to depend
upon an ad hoc choice of reference measure.
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14.2 Hierarchical Methods

As before, suppose that we are interested in the value Q(μ†) of some quantity
of interest that is a functional of a partially known probability measure μ† on
a space X , and that μ† is known to lie in some subset A ⊆M1(X ). Suppose
also that there is some knowledge about which μ ∈ A are more or less likely
to be μ†, and that this knowledge can be encoded in a probability measure
π ∈ M1(A).

In such a setting, Q(μ†) may be studied via its expected value

Eμ∼π [Q(μ)]

(i.e. the average value of Q(μ) when μ is interpreted as a measure-valued ran-
dom variable distributed according to π) and measures of dispersion such as
variance. This point of view is appealing when there is good reason to believe
a particular form for a probability model but there is doubt about parame-
ter values, e.g. there are physical reasons to suppose that μ† is a Gaussian
measure N (m†, C†), and π describes a probability distribution (perhaps a
Bayesian prior) on possible values m and C for m† and C†.

Sometimes this approach is repeated, with another probability measure
on the parameters of π, and so forth. This leads to the study of hierarchical
Bayesian models.

14.3 Distributional Robustness

As before, suppose that we are interested in the value Q(μ†) of some quantity
of interest that is a functional of a partially-known probability measure μ†

on a space X , and that μ† is known only to lie in some subset A ⊆M1(X ).
In the absence of any further information about which μ ∈ A are more or less
likely to be μ†, and particular if the consequences of planning based on an
inaccurate estimate of Q(μ†) are very high, it makes sense to adopt a posture
of ‘healthy conservatism’ and compute bounds on Q(μ†) that are as tight as
justified by the information that μ† ∈ A, but no tighter, i.e. to find

Q(A) := inf
μ∈A

Q(μ) and Q(A) := sup
μ∈A

Q(μ).

When Q(μ) is the expected value with respect to μ of some function q : X →
R, the objective is to determine

Q(A) := inf
μ∈A

Eμ[q] and Q(A) := sup
μ∈A

Eμ[q].

The inequality
Q(A) ≤ Q(μ†) ≤ Q(A)
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is, by construction, the sharpest possible bound on Q(μ†) given only infor-
mation that μ† ∈ A: any wider inequality would be unnecessarily pessimistic,
with one of its bounds not attained; any narrower inequality would ignore
some feasible scenario μ ∈ A that could be μ†. The obvious question is, can
Q(A) and Q(A) be computed?

Naturally, the answer to this question depends upon the form of the adm-
issible set A. In the case that A is, say, a Hellinger ball centred upon a
nominal probability distribution μ∗, i.e. the available information about μ†

is that

dH(μ
†, μ∗) ≤ δ,

for known δ > 0, then Proposition 5.12 gives an estimate for Eμ† [q] in terms of
Eμ∗ [q]. The remainder of this chapter, however, will consider admissible sets
A of a very different type, those specified by equality or inequality constraints
on expected values of test functions, otherwise known as generalized moment
classes.

Example 14.6. As an example of this paradigm, suppose that it is desired
to give bounds on the quality of some output Y = g(X) of a manufacturing
process in which the probability distribution of the inputs X is partially
known. For example, quality control procedures may prescribe upper and
lower bounds on the cumulative distribution function of X , but not the exact
CDF of X , e.g.

0 ≤ PX∼μ† [−∞ < X ≤ a] ≤ 0.1

0.8 ≤ PX∼μ† [a < X ≤ b] ≤ 1.0

0 ≤ PX∼μ† [b < X ≤ ∞] ≤ 0.1.

Let A denote the (infinite-dimensional) set of all probability measures μ on R

that are consistent with these three inequality constraints. Given the input-
to-output map f , what are optimal bounds on the cumulative distribution
function of Y , i.e., for t ∈ R, what are

inf
μ∈A

PX∼μ[f(X) ≤ t] and sup
μ∈A

PX∼μ[f(X) ≤ t]?. (14.2)

The results of this section will show that these extremal values can be found
by solving an optimization problem involving at most eight optimization
variables, namely four possible values x0, . . . , x3 ∈ R for X , and the four
corresponding probability masses w0, . . . , w3 ≥ 0 that sum to unity. More
precisely, we minimize or maximize

3∑

i=0

wiI[f(xi) ≤ t]
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subject to the constraints

0 ≤
3∑

i=0

wiI[xi ≤ a] ≤ 0.1

0.8 ≤
3∑

i=0

wiI[a < xi ≤ b] ≤ 1.0

0 ≤
3∑

i=0

wiI[xi > b] ≤ 0.1.

In general, this problem is a non-convex global optimization problem that
can only be solved approximately. However, for fixed positions {xi}3i=0, the
optimal weights {wi}3i=0 can be determined quickly and accurately using the
tools of linear programming. Thus, the problem (14.2) reduces to a nonlinear
family of linear programs, parametrized by {xi}3i=0.

Finite Sample Spaces. Suppose that the sample space X = {1, . . . ,K} is
a finite set equipped with the discrete topology. Then the space of measur-
able functions f : X → R is isomorphic to R

K and the space of probability
measures μ on X is isomorphic to the unit simplex in R

K . If the available
information on μ† is that it lies in the set

A := {μ ∈M1(X ) | Eμ[ϕn] ≤ cn for n = 1, . . . , N}

for known measurable functions ϕ1, . . . , ϕN : X → R and values c1, . . . , cN ∈
R, then the problem of finding the extreme values of Eμ[q] among μ ∈ A
reduces to linear programming:

extremize: p · q
with respect to: p ∈ R

K

subject to: p ≥ 0

p · 1 = 1

p · ϕn ≤ cn for n = 1, . . . , N .

Note that the feasible set A for this problem is a convex subset of RK ; indeed,
A is a polytope, i.e. the intersection of finitely many closed half-spaces of
R

K . Furthermore, as a closed subset of the probability simplex in R
K , A is

compact. Therefore, by Corollary 4.23, the extreme values of this problem are
certain to be found in the extremal set ext(A). This insight can be exploited
to great effect in the study of distributional robustness problems for general
sample spaces X .

Remarkably, when the feasible set A of probability measures is suffi-
ciently like a polytope, it is not necessary to consider finite sample spaces.
What would appear to be an intractable optimization problem over an
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infinite-dimensional set of measures is in fact equivalent to a tractable
finite-dimensional problem. Thus, the aim of this section is to find a finite-
dimensional subset AΔ of A with the property that

ext
μ∈A

Q(μ) = ext
μ∈AΔ

Q(μ).

To perform this reduction, it is necessary to restrict attention to probability
measures, topological spaces, and functionals that are sufficiently well-behaved.

Extreme Points of Moment Classes. The first step in this reduction is
to classify the extremal measures in sets of probability measures that are
prescribed by inequality or equality constraints on the expected value of
finitely many arbitrary measurable test functions, so-called moment classes.
Since, in finite time, we can only verify — even approximately, numerically
— the truth of finitely many inequalities, such moment classes are appealing
feasible sets from an epistemological point of view because they conform to
the dictum of Karl Popper (1963) that “Our knowledge can be only finite,
while our ignorance must necessarily be infinite.”

Definition 14.7. A Borel measure μ on a topological space X is called inner
regular if, for every Borel-measurable set E ⊆ X ,

μ(E) = sup{μ(K) | K ⊆ E and K is compact}.

A pseudo-Radon space is a topological space on which every Borel probability
measure is inner regular. A Radon space is a separable, metrizable, pseudo-
Radon space.

Example 14.8. (a) Lebesgue measure on Euclidean space Rn (restricted to
the Borel σ-algebra B(Rn), if pedantry is the order of the day) is an
inner regular measure. Similarly, Gaussian measure is an inner regular
probability measure on R

n.
(b) However, Lebesgue/Gaussian measures on R equipped with the topology

of one-sided convergence are not inner regular measures: see Exercise
14.3.

(c) Every Polish space (i.e. every separable and completely metrizable topo-
logical space) is a pseudo-Radon space.

Compare the following definition of a barycentre (a centre of mass) for a
set of probability measures with the conclusion of the Choquet–Bishop–de
Leeuw theorem (Theorem 4.15):

Definition 14.9. A barycentre for a setA ⊆M1(X ) is a probability measure
μ ∈M1(X ) such that there exists p ∈ M1(ext(A)) such that

μ(B) =

∫

ext(A)

ν(B) dp(ν) for all measurable B ⊆ X . (14.3)

The measure p is said to represent the barycentre μ.
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a b

Fig. 14.1: By the Choquet–Kendall theorem (Theorem 14.11), like finite-
dimensional simplices, Choquet simplices S in a vector space V are charac-
terized by the property that the intersection of any two homothetic images
of S, (α1S+ v1)∩ (α1S+ v2), with α1, α2 > 0 and v1, v2 ∈ V , is either empty,
a single point, or another homothetic image of S. This property holds for the
simplex (a), but not for the non-simplicial convex set (b).

Recall that a d-dimensional simplex is the closed convex hull of d + 1
points p0, . . . , dd such that p1− p0, . . . , pd− p0 are linearly independent. The
next ingredient in the analysis of distributional robustness is an appropriate
infinite-dimensional generalization of the notion of a simplex — a Choquet
simplex — as a subset of the vector space of signed measures on a given mea-
surable space. One way to define Choquet simplices is through orderings and
cones on vector spaces, but this definition can be somewhat cumbersome. In-
stead, the following geometrical description of Choquet simplices, illustrated
in Figure 14.1, is much more amenable to visual intuition, and more easily
checked in practice:

Definition 14.10. A homothety of a real topological vector space V is the
composition of a positive dilation with a translation, i.e. a function f : V → V
of the form f(x) = αx+ v, for fixed α > 0 and v ∈ V .

Theorem 14.11 (Choquet–Kendall). A convex subset S of a topological
vector space V is a Choquet simplex if and only if the intersection of any
two homothetic images of S is empty, a single point, or another homothetic
image of S.

With these definitions, the extreme points of moment sets of probability
measures can be described by the following theorem:

Theorem 14.12 (Winkler, 1988). Let (X ,F ) be a measurable space and
let S ⊆ M1(F ) be a Choquet simplex such that ext(S) consists of Dirac
measures. Fix measurable functions ϕ1, . . . , ϕn : X → R and c1, . . . , cn ∈ R

and let

A :=

{

μ ∈ S
∣
∣
∣
∣

for i = 1, . . . , n,
ϕi ∈ L1(X , μ) and Eμ[ϕi] ≤ ci

}

.



304 14 Distributional Uncertainty

δx1

δx2

δx3

A = {μ ∈ M1(X ) | Eµ[ϕ] ≤ c}

∈ ext(A) ⊆ Δ1 ∩ A

⊂ M±(X )

Fig. 14.2: Heuristic justification of Winkler’s classification of extreme points
of moment sets (Theorem 14.12). Observe that the extreme points of the
dark grey set A consist of convex combinations of at most 2 point masses,
and 2 = 1 + the number of constraints defining A.

Then A is convex and its extremal set satisfies

ext(A) ⊆ AΔ :=

⎧
⎪⎪⎨

⎪⎪⎩

μ ∈ A

∣
∣
∣
∣
∣
∣
∣
∣

μ =
∑m

i=1 wiδxi ,
1 ≤ m ≤ n+ 1, and

the vectors (ϕ1(xi), . . . , ϕn(xi), 1)
m
i=1

are linearly independent

⎫
⎪⎪⎬

⎪⎪⎭

;

Furthermore, if all the moment conditions defining A are equalities Eμ[ϕi] =
ci instead of inequalities Eμ[ϕi] ≤ ci, then ext(A) = AΔ.

The proof of Winkler’s theorem is rather technical, and is omitted. The
important point for our purposes is that, when X is a pseudo-Radon space,
Winkler’s theorem applies with S =M1(X ), so ext(A) ⊆ A∩Δn(X ), where

ΔN (X ) :=

⎧
⎨

⎩
μ =

N∑

i=0

wiδxi ∈M1(X )

∣
∣
∣
∣
∣
∣

w0, . . . , wN ≥ 0,
w0 + · · ·+ wN = 1,
x0, . . . , xN ∈ X

⎫
⎬

⎭

denotes the set of all convex combinations of at most N + 1 unit Dirac
measures on the space X . Pictures like Figure 14.2 should make this an
intuitively plausible claim.

Optimization of Measure Affine Functionals. Having understood the
extreme points of moment classes, the next step is to show that the opti-
mization of suitably nice functionals on such classes can be exactly reduced
to optimization over the extremal measures in the class.

Definition 14.13. For A ⊆ M1(X ), a function F : A → R ∪ {±∞} is said
to be measure affine if, for all μ ∈ A and p ∈ M1(ext(A)) for which (14.3)
holds, F is p-integrable with
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F (μ) =

∫

ext(A)

F (ν) dp(ν). (14.4)

As always, the reader should check that the terminology ‘measure affine’
is a sensible choice by verifying that when X = {1, . . . ,K} is a finite sample
space, the restriction of any affine function F : RK ∼= M±(X ) → R to a
subset A ⊆ M1(X ) is a measure affine function in the sense of Definition
14.13.

An important and simple example of a measure affine functional is an
evaluation functional, i.e. the integration of a fixed measurable function q:

Proposition 14.14. If q is bounded either below or above, then μ �→ Eμ[q]
is a measure affine map.

Proof. First consider the case that q = IE is the indicator function of a
measurable set E ⊆ X . Suppose that μ is a barycentre for A and that p ∈
M1(ext(A)) represents μ, i.e.

μ(B) =

∫

ext(A)

ν(B) dp(ν) for all measurable B ⊆ X .

For B = E, this is the statement that

Eμ[IE ] =

∫

ext(A)

Eν [IE ] dp(ν),

which is (14.4). To complete the proof, verify the claim for q a linear
combination of indicator functions, then for a sequence of such functions
increasing to a function that is bounded above (resp. decreasing to a func-
tion that is bounded below), and apply the monotone class theorem — see
Exercise 14.4.  !

Proposition 14.15. Let A ⊆ M1(X ) be convex and let F be a measure
affine function on A. Then F has the same extreme values on A and ext(A).

Proof. Without loss of generality, consider the maximization problem; the
proof for minimization is similar. Let μ ∈ A be arbitrary and choose a prob-
ability measure p ∈M1(ext(A)) with barycentre μ. Then, it follows from the
barycentric formula (14.4) that

F (μ) ≤ sup
ν∈supp(p)

F (ν) ≤ sup
ν∈ext(A)

F (ν). (14.5)

First suppose that supμ∈A F (μ) is finite. Necessarily, supν∈ext(A) F (ν) is
also finite, but it remains to show that the two suprema are equal. Let ε > 0
be arbitrary. Let μ∗ be ε

2 -suboptimal for the problem of maximizing F over
A, i.e. F (μ∗) ≥ supμ∈A F (μ)− ε

2 , and let ν∗ be ε
2 -suboptimal for the problem

of maximizing F over ext(A). Then
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F (ν∗) ≥ sup
ν∈ext(A)

F (ν)− ε
2

≥ F (μ∗)− ε
2

by (14.5) with μ = μ∗

≥ sup
μ∈A

F (μ)− ε.

Since ε > 0 was arbitrary, supμ∈A F (μ) = supν∈ext(A) F (ν), and this proves
the claim in this case.

In the case that supμ∈A F (μ) = +∞, let C, ε > 0. Then there exists
some μ∗ ∈ A such that F (μ∗) ≥ C + ε. Then, regardless of whether or
not supν∈ext(A) F (ν) is finite, (14.5) with μ = μ∗ implies that there is some
ν∗ ∈ ext(A) such that

F (ν∗) ≥ F (μ∗)− ε ≥ C + ε− ε = C.

However, since C > 0 was arbitrary, it follows that in fact supν∈ext(A) F (ν) =
+∞, and this completes the proof.  !

In summary, we now have the following:

Theorem 14.16. Let X be a pseudo-Radon space and let A ⊆M1(X ) be a
moment class of the form

A := {μ ∈ M1(X ) | Eμ[ϕj ] ≤ 0 for j = 1, . . . , N}

for prescribed measurable functions ϕj : X → R. Then the extreme points of
A are given by

ext(A) ⊆ AΔ := A ∩ΔN (X )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ ∈ M1(A)

∣
∣
∣
∣
∣
∣
∣
∣
∣

for some w0, . . . , wN ∈ [0, 1], x0, . . . , xN ∈ X ,

μ =
∑N

i=0 wiδxi∑N
i=0 wi = 1,

and
∑N

i=0 wiϕj(xi) ≤ 0 for j = 1, . . . , N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Hence, if q is bounded either below or above, then Q(A) = Q(AΔ) and

Q(A) = Q(AΔ).

Proof. Winkler’s theorem (Theorem 14.12) implies that ext(A) ⊆ AΔ. Since
q is bounded on at least one side, Proposition 14.14 implies that μ �→ F (μ) :=
Eμ[q] is measure affine. The claim then follows from Proposition 14.15.  !
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Remark 14.17. (a) Theorem 14.16 is good news from a computational
standpoint for two reasons:
(i) Since any feasible measure in AΔ is completely described by N +1

scalars andN+1 points of X , the reduced set of feasible measures is
a finite-dimensional object — or, at least, it is as finite-dimensional
as the space X is — and so it can in principle be explored using
the finite-dimensional numerical optimization techniques that can
be implemented on a computer.

(ii) Furthermore, since the probability measures in AΔ are finite sums
of Dirac measures, expectations against such measures can be per-
formed exactly using finite sums — there is no quadrature error.

(b) That said, when μ ∈ AΔ has # supp(μ) # 1, as may be the case �
with problems exhibiting independence structure like those considered
below, it may be cheaper to integrate against a discrete measure μ =∑N

i=0 αiδxi ∈ AΔ in a Monte Carlo fashion, by drawing some number
1�M � #supp(μ) of independent samples from μ (i.e. xi with proba-
bility αi).

In general, the optimization problems over AΔ in Theorem 14.16 can only
be solved approximately, using the tools of numerical global optimization.
However, some of the classical inequalities of basic probability theory can be
obtained in closed form by this approach.

Example 14.18 (Markov’s inequality). Suppose that X is a non-negative
real-valued random variable with mean E[X ] ≤ m > 0. Given t ≥ m, what is
the least upper bound on P[X ≥ t]?

To answer this question, observe that the given information says that the
distribution μ† of X is some (and could be any!) element of A, where

A :=
{
μ ∈M1([0,∞))

∣
∣EX∼μ[X ] ≤ m

}
.

This A is a moment class with a single moment constraint. By Theorem
14.16, the least upper bound on PX∼μ[X ≥ t] among μ ∈ A can be found by
restricting attention to the set AΔ of probability measures with support on
at most two points x0, x1 ∈ [0,∞), with masses w0, w1 respectively.

Assume without loss of generality that the two point masses are located
at x0 and x1 with 0 ≤ x0 ≤ x1 <∞. Now make a few observations:
(a) In order to satisfy the mean constraint that E[X ] ≤ m, we must have

x0 ≤ m.
(b) If x1 > t and the mean constraint is satisfied, then moving the mass w1 at

x1 to x′1 := t does not decrease the objective function value PX∼μ[X ≥ t]
and the mean constraint is still satisfied. Therefore, it is sufficient to
consider two-point distributions with x1 = t.

(c) By similar reasoning, it is sufficient to consider two-point distributions
with x0 = 0.

(d) Finally, suppose that x0 = 0, x1 = t, but that

EX∼μ[X ] = w0x0 + w1x1 = w1t < m.
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Then we may change the masses to

w′
1 := m/t > w1,

w′
0 := 1−m/t < w0,

keeping the positions fixed, thereby increasing the objective function
value PX∼μ[X ≥ t] while still satisfying the mean constraint.

Putting together the above observations yields that

sup
μ∈A

PX∼μ[X ≥ t] = m

t
,

with the maximum being attained by the two-point distribution

(
1− m

t

)
δ0 +

m

t
δt.

This result is exactly Markov’s inequality (the case p = 1 of Theorem 2.22).

Independence. The kinds of constraints on measures (or, if you prefer, ran-
dom variables) that can be considered in Theorem 14.16 include values for,
or bounds on, functions of one or more of those random variables: e.g. the
mean of X1, the variance of X2, the covariance of X3 and X4, and so on.
However, one commonly encountered piece of information that is not of this
type is that X5 and X6 are independent random variables, i.e. that their joint
law is a product measure. The problem here is that sets of product measures
can fail to be convex (see Exercise 14.5), so the reduction to extreme points
cannot be applied directly. Fortunately, a cunning application of Fubini’s the-
orem resolves this difficulty. Note well, though, that unlike Theorem 14.16,�
Theorem 14.19 does not say that AΔ = ext(A); it only says that the opti-
mization problem has the same extreme values over AΔ and A.

Theorem 14.19. Let A ⊆M1(X ) be a moment class of the form

A :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ =
K⊗

k=1

μk ∈
K⊗

k=1

M1(Xk)

∣
∣
∣
∣
∣
∣
∣
∣
∣

Eμ[ϕj ] ≤ 0 for j = 1, . . . , N ,
Eμ1 [ϕ1j ] ≤ 0 for j = 1, . . . , N1,

...
EμK [ϕKj ] ≤ 0 for j = 1, . . . , NK

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

for prescribed measurable functions ϕj : X → R and ϕkj : X → R. Let

AΔ := {μ ∈ A |μk ∈ ΔN+Nk
(Xk)} .

Then, if q is bounded either above or below, Q(A) = Q(AΔ) and Q(A) =

Q(AΔ).
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A

Ay∗

Ax∗

Fig. 14.3: Optimization of a bilinear form B over a non-convex set A ⊆ R
2

that has convex cross-sections. The black curves show level sets of B(x, y) =
xy. Note that the maximum value of B over A is found at a point (x∗, y∗)
(marked with a diamond) such that x∗ and y∗ are both extreme points of the
corresponding sections Ay∗

and Ax∗ respectively.

Proof. Let ε > 0 and let μ∗ ∈ A be ε
K+1 -suboptimal for the maximization

of μ �→ Eμ[q] over μ ∈ A, i.e.

Eμ∗ [q] ≥ sup
μ∈A

Eμ[q]−
ε

K + 1
.

By Fubini’s theorem,

Eμ∗
1⊗···⊗μ∗

K
[q] = Eμ∗

1

[
Eμ∗

2⊗···⊗μ∗
K
[q]
]

By the same arguments used in the proof of Theorem 14.16, μ∗1 can be rep-
laced by some probability measure ν1 ∈ M1(X1) with support on at most
N +N1 points, such that ν1 ⊗ μ∗2 ⊗ · · · ⊗ μ∗K ∈ A, and

Eν1

[
Eμ∗

2⊗···⊗μ∗
K
[q]
]
≥ Eμ∗

1

[
Eμ∗

2⊗···⊗μ∗
K
[q]
]
− ε

K + 1
≥ sup

μ∈A
Eμ[q]−

2ε

K + 1
.

Repeating this argument a further K − 1 times yields ν =
⊗K

k=1 νk ∈ AΔ

such that

Eν [q] ≥ sup
μ∈A

Eμ[q]− ε.

Since ε > 0 was arbitrary, it follows that

sup
μ∈AΔ

Eμ[q] = sup
μ∈A

Eμ[q].

The proof for the infimum is similar.  !
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Example 14.20. A simple two-dimensional optimization problem that illus-
trates the essential features of Theorem 14.19 is that of optimizing a bilinear
form on R

2 over a non-convex set with convex cross-sections. Suppose that
A ⊆ R

2 is such that, for each x, y ∈ R, the sections

Ax = {y ∈ R | (x, y) ∈ A}, and

Ay = {x ∈ R | (x, y) ∈ A}

are convex sets. Note that this does not imply that A itself is convex, as ill-
ustrated in Figure 14.3. Let B : R × R → R be a bilinear functional: for
definiteness, consider B(x, y) = xy. Since A is not convex, its extremal
set is undefined, so it does not even make sense to claim that B has the
same extreme values on A and ext(A). However, as can be seen in Figure
14.3, the extreme values of B over A are found at points (x∗, y∗) for which
x∗ ∈ ext(Ay∗

) and y∗ ∈ ext(Ax∗). Just as in the Fubini argument in the
proof of Theorem 14.19, the optimal point can be found by either maximiz-
ing maxx∈Ay B(x, y) with respect to y or maximizing maxy∈Ax B(x, y) with
respect to x.

Remark 14.21. (a) In the context of Theorem 14.19, a measure μ ∈ AΔ is
of the form

μ =

K⊗

k=1

N+Nk∑

ik=0

wkikδxkik
=

(N+N1,...,N+NK)∑

i=(0,...,0)

wiδxi

where, for a multi-index i ∈ {0, . . . , N +N1} × · · · × {0, . . . , N +NK},

wi := w1i1w2i2 . . . wKiK ≥ 0,

xi :=
(
x1i1 , . . . xKiK

)
∈ X .

Note that this means that the support of μ is a rectangular grid in X .
(b) As noted in Remark 14.17(b), the support of a discrete measure μ ∈ AΔ,�

while finite, can be very large when K is large: the upper bound is

# supp(μ) =

K∏

k=1

(1 +N +Nk).

In such cases, it is usually necessary to sacrifice exact integration against
μ for the sake of computational cost and resort to Monte Carlo averages
against μ.

(c) However, it is often found in practice that the μ∗ ∈ AΔ that extremizes
Q(μ∗) does not have support on as many distinct points of X as Theorem
14.19 permits as an upper bound, and that not all of the constraints
determining A hold as equalities. That is, there are often many inactive
and non-binding constraints, and only those that are active and binding
truly carry information about the extreme values of Q.
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(d) Finally, note that this approach to UQ is non-intrusive in the sense that
if we have a deterministic solver for g : X → Y and are interested in
EX∼μ† [q(g(X))] for some quantity of interest q : Y → R, then the deter-
ministic solver can be used ‘as is’ at each support point x of μ ∈ AΔ in
the optimization with respect to μ over A.

14.4 Functional and Distributional Robustness

In addition to epistemic uncertainty about probability measures, applications
often feature epistemic uncertainty about the functions involved. For exam-
ple, if the system of interest is in reality some function g† from a space X
of inputs to another space Y of outputs, it may only be known that g† lies
in some subset G of the set of all (measurable) functions from X to Y; fur-
thermore, our information about g† and our information about μ† may be
coupled in some way, e.g. by knowledge of EX∼μ† [g†(X)]. Therefore, we now
consider admissible sets of the form

A ⊆
{

(g, μ)

∣
∣
∣
∣
g : X → Y is measurable

and μ ∈M1(X )

}

,

quantities of interest of the form Q(g, μ) = EX∼μ[q(X, g(X))] for some
measurable function q : X × Y → R, and seek the extreme values

Q(A) := inf
(g,μ)∈A

EX∼μ[q(X, g(X))] and Q(A) := sup
(g,μ)∈A

EX∼μ[q(X, g(X))].

Obviously, if for each g : X → Y the set of μ ∈ M1(X ) such that (g, μ) ∈ A
is a moment class of the form considered in Theorem 14.19, then

ext
(g,μ)∈A

EX∼μ[q(X, g(X))] = ext
(g,μ)∈A

μ∈⊗K
k=1 ΔN+Nk

(Xk)

EX∼μ[q(X, g(X))].

In principle, though, although the search over μ is finite-dimensional for each
g, the search over g is still infinite-dimensional. However, the passage to
discrete measures often enables us to finite-dimensionalize the search over g,
since, in some sense, only the values of g on the finite set supp(μ) ‘matter’
in computing EX∼μ[q(X, g(X))].

The idea is quite simple: instead of optimizing with respect to g ∈ G, we
optimize with respect to the finite-dimensional vector y = g|supp(μ). However,
this reduction step requires some care:
(a) Some ‘functions’ do not have their values defined pointwise, e.g. ‘func-

tions’ in Lebesgue and Sobolev spaces, which are actually equivalence
classes of functions modulo equality almost everywhere. If isolated points
have measure zero, then it makes no sense to restrict such ‘functions’ to
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a finite set supp(μ). These difficulties are circumvented by insisting that
G be a space of functions with pointwise-defined values.

(b) In the other direction, it is sometimes difficult to verify whether a vector
y indeed arises as the restriction to supp(μ) of some g ∈ G; we need
functions that can be extended from supp(μ) to all of X . Suitable ext-
ension properties are ensured if we restrict attention to smooth enough
functions between the right kinds of spaces.

Theorem 14.22 (Minty, 1970). Let (X , d) be a metric space, let H be a
Hilbert space, let E ⊆ X , and suppose that f : E → H satisfies

‖f(x)− f(y)‖H ≤ d(x, y)α for all x, y ∈ E (14.6)

with Hölder constant 0 < α ≤ 1. Then there exists F : X → H such that
F |E = f and (14.6) holds for all x, y ∈ X if either α ≤ 1

2 or if X is an inner

product space with metric given by d(x, y) = k1/α‖x − y‖ for some k > 0.
Furthermore, the extension can be performed so that F (X ) ⊆ co(f(E)), and
hence without increasing the Hölder norm

‖f‖C0,α := sup
x
‖f(x)‖H + sup

x 
=y

‖f(x)− f(y)‖H
d(x, y)α

,

where the suprema are taken over E or X as appropriate.

Minty’s extension theorem includes as special cases the Kirszbraun–
Valentine theorem (which assures that Lipschitz functions between Hilbert
spaces can be extended without increasing the Lipschitz constant) and
McShane’s theorem (which assures that scalar-valued continuous functions
on metric spaces can be extended without increasing a prescribed convex
modulus of continuity). However, the extensibility property fails for Lipschitz
functions between Banach spaces, even finite-dimensional ones, as shown by
the following example of Federer (1969, p. 202):

Example 14.23. Let E ⊆ R
2 be given by E := {(1,−1), (−1, 1), (1, 1)} and

define f : E → R
2 by

f((1,−1)) := (1, 0), f((−1, 1)) := (−1, 0), and f((1, 1)) := (0,
√
3).

Suppose that we wish to extend this f to F : R2 → R
2, where E and the

domain copy of R2 are given the metric arising from the maximum norm
‖·‖∞ and the range copy of R2 is given the metric arising from the Euclidean
norm ‖ · ‖2. Then, for all distinct x, y ∈ E,

‖x− y‖∞ = 2 = ‖f(x)− f(y)‖2,

so f has Lipschitz constant 1 on E. What value should F take at the
origin, (0, 0), if it is to have Lipschitz constant at most 1? Since (0, 0) lies
at ‖ · ‖∞-distance 1 from all three points of E, F ((0, 0)) must lie within
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1

−1

1−1

(R2, ∞)

f

1

2

3

−1

1 2−1−2

(R2, 2)

Fig. 14.4: Illustration of Example 14.23. The function f that takes the three
points on the left (equipped with ‖ · ‖∞) to the three points on the right
(equipped with ‖ · ‖2) has Lipschitz constant 1, but has no 1-Lipschitz exten-
sion F to (0, 0), let alone the whole plane R

2, since F ((0, 0)) would have to
lie in the (empty) intersection of the three grey discs.

‖ · ‖2-distance 1 of all three points of f(E). However, there is no such point
of R2 within distance 1 of all three points of f(E), and hence any extension
of f to F : R2 → R

2 must have Lip(F ) > 1; indeed, any such F must have
Lip(F ) ≥ 2√

3
. See Figure 14.4.

Theorem 14.24. Let G be a collection of measurable functions from X to
Y such that, for every finite subset E ⊆ X and g : E → Y, it is possible to
determine whether or not g can be extended to an element of G. Let A ⊆
G ×M1(X ) be such that, for each g ∈ G, the set of μ ∈ M1(X ) such that
(g, μ) ∈ A is a moment class of the form considered in Theorem 14.19. Let

AΔ :=

⎧
⎨

⎩
(y, μ)

∣
∣
∣
∣
∣
∣

μ ∈
⊗K

k=1ΔN+Nk
(Xk),

y is the restriction to supp(μ) of some g ∈ G,
and (g, μ) ∈ A

⎫
⎬

⎭
.

Then, if q is bounded either above or below, Q(A) = Q(AΔ) and Q(A) =

Q(AΔ).

Proof. Exercise 14.8.  !

Example 14.25. Suppose that g† : [−1, 1] → R is known to have Lipschitz
constant Lip(g†) ≤ L. Suppose also that the inputs of g† are distributed
according to μ† ∈M1([−1, 1]), and it is known that

EX∼μ† [X ] = 0 and EX∼μ† [g†(X)] ≥ m > 0.

Hence, the corresponding feasible set is

A =

{

(g, μ)

∣
∣
∣
∣

g : [−1, 1]→ R has Lipschitz constant ≤ L,
μ ∈M1([−1, 1]), EX∼μ[X ] = 0, and EX∼μ[g(X)] ≥ m

}

.
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Suppose that our quantity of interest is the probability of output values
below 0, i.e. q(x, y) = I[y ≤ 0]. Then Theorem 14.24 ensures that the extreme
values of

Q(g, μ) = EX∼μ[I[g(X) ≤ 0]] = PX∼μ[g(X) ≤ 0]

are the solutions of

extremize:

2∑

i=0

wiI[yi ≤ 0]

with respect to: w0, w1, w2 ≥ 0

x0, x1, x2 ∈ [−1, 1]
y0, y1, y2 ∈ R

subject to:

2∑

i=0

wi = 1

2∑

i=0

wixi = 0

2∑

i=0

wiyi ≥ m

|yi − yj | ≤ L|xi − xj | for i, j ∈ {0, 1, 2}.

Example 14.26 (McDiarmid). The following admissible set corresponds to
the assumptions of McDiarmid’s inequality (Theorem 10.12):

AMcD =

⎧
⎨

⎩
(g, μ)

∣
∣
∣
∣
∣
∣

g : X → R has Dk[g] ≤ Dk,

μ =
⊗K

k=1 μk ∈M1(X ),
and EX∼μ[g(X)] = m

⎫
⎬

⎭
.

Let m+ := max{0,m}. McDiarmid’s inequality is the upper bound

Q(AMcD) := sup
(g,μ)∈AMcD

Pμ[g(X) ≤ 0] ≤ exp

(

−
2m2

+
∑K

k=1D
2
k

)

.

Perhaps not surprisingly given its general form, McDiarmid’s inequality is
not the least upper bound on Pμ[g(X) ≤ 0]; the actual least upper bound
can be calculated using the reduction theorems. The proofs are lengthy, and
the results are dependent upon K.

(a) For K = 1,

Q(AMcD) =

{
0, if D1 ≤ m+,

1− m+

D1
, if 0 ≤ m+ ≤ D1.

(14.7)
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(b) For K = 2,

Q(AMcD) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if D1 +D2 ≤ m+,
(D1+D2−m+)2

4D1D2
, if |D1 −D2| ≤ m+ ≤ D1 +D2,

1− m+

max{D1,D2} , if 0 ≤ m+ ≤ |D1 −D2|.
(14.8)

Note that in the third case, min{D1, D2} does not contribute to the least
upper bound on Pμ[g(X) ≤ 0]. In other words, if most of the uncertainty
is contained in the first variable (i.e.m++D2 ≤ D1), then the uncertainty
associated with the second variable does not affect the global uncertainty;
the inequality D2[g] ≤ D2 is non-binding information, and a reduction of
the global uncertainty requires a reduction in D1.

(c) Similar, but more complicated, results are possible for K ≥ 3, and
there are similar ‘screening effects’ in which only a few of the diame-
ter constraints supply binding information to the optimization problem
for Q(AMcD).

Dominant Uncertainties and Screening Effects. The phenomenon obs-
erved in the K = 2 solution of the optimal McDiarmid inequality (14.8)
occurs in many contexts: not all of the constraints that specify A necessarily
hold as binding or active constraints at the extremizing solution (g∗, μ∗) ∈ A.
That is, the best- and worst-case predictions for the quantity of interest
Q(g†, μ†) are controlled by only a few pieces of input information, and the
others have not just no impact, but none at all! Far from being undesirable,
this phenomenon is actually very useful, since it can be used to direct future
information-gathering activities, such as expensive experimental campaigns,
by attempting to acquire information (and hence pass to a smaller feasible
set A′

� A)) that will modify the binding/active constraints for the previ-
ous problem, i.e. invalidate the previous extremizer in A and lead to a new
extremizer in A′. In this way, we hence pass from the optimal bounds given
the information in A

Q(A) ≤ Q(g†, μ†) ≤ Q(A)

to improved optimal bounds given the information in A′

Q(A) < Q(A′) ≤ Q(g†, μ†) ≤ Q(A′) < Q(A).

14.5 Bibliography

The principle of maximum entropy was proposed by Jaynes (1957a,b), app-
ealing to a correspondence between statistical mechanics and information
theory. On the basis of this principle and Cox’s theorem (Cox, 1946, 1961),
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Jaynes (2003) developed a comprehensive viewpoint on probability theory,
viewing it as the natural extension of Aristotelian logic.

Berger (1994) makes the case for distributional robustness, with respect
to priors and likelihoods, in Bayesian inference. Smith (1995) provides theory
and several practical examples for generalized Chebyshev inequalities in deci-
sion analysis. Boyd and Vandenberghe (2004, Section 7.2) cover some aspects
of distributional robustness under the heading of nonparametric distribution
estimation, in the case in which it is a convex problem. Convex optimization
approaches to distributional robustness and optimal probability inequalities
are also considered by Bertsimas and Popescu (2005). There is also an exten-
sive literature on the related topic of majorization, for which see the book of
Marshall et al. (2011).

A standard short reference on Choquet theory is the book of Phelps (2001).
Theorem 14.11 was proved first by Choquet under the additional assumption
that the simplex is compact; the assumption was later dropped by Kendall
(1962). For linear programming in infinite-dimensional spaces, with careful
attention to what parts of the analysis are purely algebraic and what parts
require topology/order theory, see Anderson and Nash (1987).

The classification of the extreme points of moment sets, and the conse-
quences for the optimization of measure affine functionals, are due to von
Weizsäcker and Winkler (1979/80, 1980) and Winkler (1988). Theorem 14.19
and the Lipschitz version of Theorem 14.24 can be found in Owhadi et al.
(2013) and Sullivan et al. (2013) respectively. Theorem 14.22 is due to Minty
(1970), and generalizes earlier results by McShane (1934), Kirszbraun (1934),
and Valentine (1945). The optimal version of McDiarmid’s inequality is given
by Owhadi et al. (2013, Section 5.1.1).

14.6 Exercises

Exercise 14.1. Let Pk denote the set of probability measures μ on R with
finite moments up to order k ≥ 0, i.e.

Pk :=

{

μ ∈M1(R)

∣
∣
∣
∣

∫

R

xk dμ(x) <∞
}

.

Show that Pk is a ‘small’ subset of P� whenever k > � in the sense that, for
every μ ∈ Pk and every ε > 0, there exists ν ∈ P� \ Pk with dTV(μ, ν) < ε.
Hint: follow the example of the Cauchy–Lorentz distribution considered in
Exercise 8.3 to construct a ‘standard’ probability measure with polynomial
moments of order � and no higher, and consider convex combinations of this
‘standard’ measure with μ.
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Exercise 14.2. Suppose that a six-sided die (with the six sides bearing 1 to
6 spots) has been tossed N # 1 times and that the sample average number
of spots is 4.5, rather than 3.5 as one would usually expect. Assume that this
sample average is, in fact, the true average.
(a) What, according to the Principle of Maximum Entropy, is the correct

probability distribution on the six sides of the die given this information?
(b) What are the optimal lower and upper probabilities of each of the 6 sides

of the die given this information?

Exercise 14.3. Consider the topology T on R generated by the basis of
open sets [a, b), where a, b ∈ R.
1. Show that this topology generates the same σ-algebra on R as the usual

Euclidean topology does. Hence, show that Gaussian measure is a well-
defined probability measure on the Borel σ-algebra of (R, T ).

2. Show that every compact subset of (R, T ) is a countable set.
3. Conclude that Gaussian measure on (R, T ) is not inner regular and that

(R, T ) is not a pseudo-Radon space.

Exercise 14.4. Suppose that A is a moment class of probability measures
on X and that q : X → R ∪ {±∞} is bounded either below or above. Show
that μ �→ Eμ[q] is a measure affine map. Hint: verify the assertion for the
case in which q is the indicator function of a measurable set; extend it to
bounded measurable functions using the monotone class theorem; for non-
negative μ-integrable functions q, use monotone convergence to verify the
barycentric formula.

Exercise 14.5. Let λ denote uniform measure on the unit interval [0, 1] � R.
Show that the line segment in M1([0, 1]

2) joining the measures λ ⊗ δ0 and
δ0 ⊗ λ contains measures that are not product measures. Hence show that a
set A of product probability measures like that considered in Theorem 14.19
is typically not convex.

Exercise 14.6. Calculate by hand, as a function of t ∈ R, D ≥ 0 andm ∈ R,

sup
μ∈A

PX∼μ[X ≤ t],

where

A :=

{

μ ∈M1(R)

∣
∣
∣
∣
EX∼μ[X ] ≥ m, and
diam(supp(μ)) ≤ D

}

.

Exercise 14.7. Calculate by hand, as a function of t ∈ R, s ≥ 0 and m ∈ R,

sup
μ∈A

PX∼μ[X −m ≥ st],

and

sup
μ∈A

PX∼μ[|X −m| ≥ st],
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where

A :=

{

μ ∈ M1(R)

∣
∣
∣
∣

EX∼μ[X ] ≤ m, and
EX∼μ[|X −m|2] ≤ s2

}

.

Exercise 14.8. Prove Theorem 14.24.

Exercise 14.9. Calculate by hand, as a function of t ∈ R, m ∈ R, z ∈ [0, 1]
and v ∈ R,

sup
(g,μ)∈A

PX∼μ[g(X) ≤ t],

where

A :=

⎧
⎨

⎩
(g, μ)

∣
∣
∣
∣
∣
∣

g : [0, 1]→ R has Lipschitz constant 1,
μ ∈ M1([0, 1]), EX∼μ[g(X)] ≥ m,

and g(z) = v

⎫
⎬

⎭
.

Numerically verify your calculations.
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H. Rabitz and Ö. F. Alış. General foundations of high-dimensional model
representations. J. Math. Chem., 25(2-3):197–233, 1999. doi: 10.1023/A:
1019188517934.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. MIT Press, Cam-
bridge, MA, 2006.

M. Reed and B. Simon. Methods of Modern Mathematical Physics. I. Func-
tional Analysis. Academic Press, New York, 1972.

S. Reich and C. J. Cotter. Probabilistic Forecasting and Data Assimilation.
Cambridge University Press, Cambridge, 2015.

M. Renardy and R. C. Rogers. An Introduction to Partial Differential
Equations, volume 13 of Texts in Applied Mathematics. Springer-Verlag,
New York, second edition, 2004.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer
Texts in Statistics. Springer-Verlag, New York, second edition, 2004.

G. O. Roberts and J. S. Rosenthal. General state space Markov chains
and MCMC algorithms. Probab. Surv., 1:20–71, 2004. doi: 10.1214/
154957804100000024.

R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathemat-
ics. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970
original.

J. P. Romano and A. F. Siegel. Counterexamples in Probability and Statistics.
The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth
& Brooks/Cole Advanced Books & Software, Monterey, CA, 1986.

W. Rudin. Functional Analysis. International Series in Pure and Applied
Mathematics. McGraw-Hill Inc., New York, second edition, 1991.
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