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Foreword

The idea of mathematicS induction has been with us for ages, certainly since the
16th century, but was made rigorous only in the 19th century by Augustus de
Morgan who, incidentally, also introduced the term 'niatheniatical induction'. By
now, induction is ubiquitous in mathematics and is taken for granted by every
mathematician. Nevertheless, those who are getting into matheniatics are likely to
need much practice before induction is in their blood: The aim of this book is to
speed up this process.

Proofs by induction vary a great deal. In fact, when it conies to finite structures
or. more generally, sequences of assertions. every proof may be viewed as a l)rOoi
by induction; when proving a particular proposition, we may as well assume that
we have already proved every assertion which comes earlier iii the sequence. For
example, when proving the simple result that every graph with ii vertices and more
than n2/4 edges contains a triangle, we may as well assume that this is true for
graphs with fewer than a vertices. Thus, when a professor asks his class for ideas
as to how to try to prove a result about finite groups and gets the suggestion 'By
induction!', he is right to dismiss this as being unhelpful, since we are always free
to use induction, and in some sense we are always using it. Nevertheless, it is true
that in sortie cases induction plays a major role, while in others we hardly make any
use of it. And the question is not whether to use induction but, when using it, how
to use it.

It would be impossible for this Handbook of Mathematical Induction to cover all
aspects of mathematical induction and its variants for infinite sets, but there is Plenty'
of exciting material here, selected with much care, with emphasis on some of the
most elegant results. This hook contains all the standard exercises on induction and
many more, ranging from the trifle and the trivial to the significant and challenging.

There are numerous examples from graph theory, point set topology, elementary
number theory. linear algebra, analysis, probability theory, georrietry, group theory,
game theory, and the theory of inequalities, with results about continued fractions,
logical fonnulae, Latin rectangles, Hankel matrices, Hilbert's afline cube, and the
numbers of Fibonacci, Bernoulli. Euler, Catalan and Schröder, among others. l"nr—

xvii



xviii Foreword

thermore, the reader is guided through appropriate proofs of the theorems of Ram-
sey, Schur, Kneser, Hales and Jewett, Helly, Radon, Caratheodory, and many other
results.

What prompts someone to write a hook on mathematical induction? To share his
passion for mathematics? Cunderson's passion for all of mathematics is evident.
Perhaps this remarkable passion is due to the unusual road he has taken to math-
ernatics. When I first rriet him, at Emory University in 1993, lie was a graduate
student. A rather 'mature' graduate student; as I learned later, in his youth he
had flown aerobatics, and then had been a laborer and truck driver for ten years or
so before starting in pure mathematics for the fun of puzzle solving. Although lie
has been in mathematics for over two decades, his physical prowess is still amazing:
he has a penchant for ripping telephone books, and has not lost an arm-wrestling
match since 1982.

This book is the first example that I know of which treats mathematical induction
seriously, more than just a collection of recipes. It is sure to be an excellent student
companion and instructor's guide for a host of courses.

Bela Bollobás
University of Cambridge and University of Memphis



Preface

Mathematical induction is a powerful proof technique that is generally used to prove
statements involving whole numbers. Students often first encounter this technique in
first or second year university courses on numher theory, graph theory, or computer
science. Many students report that their first exposure to mathematical induction
was both scary yet simple and intriguing. in high school, formal proof techniques are
rarely covered in great detail, and just the word "proof" seems daunting to many.
Mathematical induction is a tool that seems quite different from anything taught in
high school.

After just a few examples of proof by mathematical induction, the average stu-
dent; seems to gain an appreciation for the technique because the format for such a
proof is straightforward arid prescribed, yet; the consequences are quite grand. Some
students are further fascinated by the technique because of the erroneous conclusions
available when the format. is riot followed precisely. It seems as if many students
view mathematical induction as simply a necessary evil. Few beginning students in
mathematics or computer science realize that all of mathematics is based on math-
emnatical induction, nor do they realize that the foundations for the technique are
of a completely different tyl)e than "scicntific induction", or the "scientific method"
forms of "hypothesis, testing, and conclusion" arguments used in most sciences.

in part, because of the recent explosion of knowledge in combinatorics, coin-
puting, and discrete mathematics, mathematical induction is now, more than ever,
critical in education, perhaps surpassing calculus in its relevance and utility. The
theory of recursion in computing science is practically the study of mathematical in-
duction applied to algorithms. The theory of mathematical logic and model theory
rests entirely on mathematical induction, as does set theory. it may be interesting
to note that even in calculus, mathematical induction plays a vital role. Contin-
uous mathematics (like calculus or analysis) uses counting numbers, dimension of
a space, iterated derivatives, exponents in polynomials, or size of a matrix, and so
mathematical induction might one day be taught in all junior math courses. in fact,
mathematical induction is absolutely essential in linear algebra, probability theory,
modelling, and analysis, to name bitt a few areas. Mathematical induction is a
common thread that joins all of mathematics and computing science.

This book contains hundreds of examples of mathematical induction applied in
a vast array of scientific areas, as well study of the 1.heory arid how to find

xix



xx Preface

and write mathematical induction proofs. The presentation here is quite unlike that
of a discrete mathematics hook, as theory and examples took precedence over nice
pictures, charts, and chapters intended for one or two lectures.

The inception of this book

As with many books in mathematics, the incipient version of this book was a col-
lection of notes for students. Nearly a decade ago, I put together a few pages with
some standard induction problems for discrete math students. To help their writing
of inductive proofs, I then provided a template and a few pages of advice on writing
up induction proofs, producing a small booklet for the students that I distributed
in any course requiring induction.

Since there seemed to be no readily available books on induction (most were
out of print), I originally had the idea to write something small that could be
universally available as a supplement to courses iii discrete mathematics, including
linear algebra, combinatorics. or even geometry. My first goal was to have around
a hundred of the standard exercises in induction, colnl)lete with solutions. I also
wanted the solutions to be written in a format that students could follow easily and
reproduce. When I began to collect and write up problems for this small planned
booklet, I found so many examples and major theorems that engaged roe, I couldn't
wait to write them down and share them with anyone who would listen. I then tried
l;o supplement this early collection to somehow give a fair treatment to all of the
mathematical sciences, including computing science.

By that time, it was too late. As many collectors do, I became obsessed with
finding different kinds of inductive proofs from as many areas as possible. Even after
gathering many different types of questions, I continued to add to the collection,
giving more examples of some types, and also including a healthy amount of set
theory and foundations——in an attempt to give a "credible" or "scholarly" repre-
sentation of the theory and applications surrounding induction. In a sense, I was
constructing a tribute to one of the major proof techniques in mathematics.

After the book quickly burgeoned into a few hundred pages, people (including
l)ublishers) asked me, "for whom is this book?" or "can this book be used for
any course?" I could only reply that this book will work well with nearly any
mathematics or computing science course. Then I just kept adding problems! Only
when the collection began to point north of 500 pages, did Chapman & FlaIl/CRC
suggest that I put together an encyclopedia of induction, a handbook. So, I added a
few hundred more pages, sampling from as many fields I had the courage and time
for. 'This is the product.



Preface xxi

Who is this book for?

This book is intended for anyone who enjoys a good proof, and for those who
would like to master the technique of mathematical induction. I think that nearly
every student and professor of mathematics and computer science can get a little
something from this book.

Students may find inductive solutions for their practice or even their homework,
they may learn how to write inductive proofs, and they may discover some interesting
mathematics along the way. Most topics in this book include definitions and simple
theory in order to deliver the exercises, and any studçnt perusing these might acquire
new interests in areas previously unexplored.

The professor may find examples to give as exercises, test questions, or contest
practice questions. Some professors and high school teachers might appreciate sec-
tions here on writing mathematical induction proofs, both for themselves and in
passing along such skills to their students.

The professor or student might also use this text for definitions and references,
as well as many famous theorems arid their proofs. This book is designed to be a
source book for everyone interested in mathematics. When 1 was an undergraduate,
I spent all of my spare money (arid imiore) on reference books, including collections
of worked exercises, amid had this book been available back then, I would have most
certainly purchased it—not only to help me with induction homework, but also as
a resource of popular results arid mathematical tricks.

This book may enhance nearly every course in mathematics—from freshman to
graduate courses. At time university, mathematical induction is taught in many dif-
ferent courses, including those in discrete mathematics, graph theory, theoretical
computer science, set theory, logic, combinatorics, linear algebra, arid math edu-
cation. Oilier areas, including courses in computing science, engineering, analysis,
statistics, niodelling. game theory, and ecoiiomnics now use induction as a standard
tool. These and many other areas are treated generously.

Structure of this book

The book is essentially divided into three parts: "theory", "applications and exer-
cises", and "solutions". These titles aren't completely accurate. as there are exer-
cises and solutions in the theory part and there is theory in the exercises part. The
theory part also contains far more thami just theory, but a more appropriate title
could not be found.

In the theory part, first a brief introduction is given. The introduction is not
meant to he expository nor comnplete in a way that sonic discrete moat hemnatics books
might cover mathematical induction. The formal development of natural numbers
from axioms is given by mathematical imiduction. Many readers will want to skip this
section, as it can he a little dry, but this material can be ii mi(lerstOod and appreciated
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by most undergraduates in their second or third year. Having basic arithmetic skills
in hand, different inductive techniques are discussed: well-ordered sets, basic math-
ematical induction, strong induction, double induction, infinite descent, downward
induction, and variants of some of these.

Chapter 4 is about mathematical induction arid infinity, including an introduc-
tion to ordinals and cardinals, transfinite induction, more on well-ordering, the
axiom of choice, and Zorn's lemma. The material in Chapter 4 is intended for the
senior math or computer science student. and can be omitted by the inexperienced
reader. One reviewer suggested that this material be moved to much later in the
hook; however, I feel that it fits well from a logical perspective, perhmaps just not
from a pedagogical one when viewed by first-year students.

There are sections on the history of induction (Section 1.8) and the present
state of literature on mathematical induction (Section 1.9). Fallacies and induction
(Chapter 5) and empirical induction (Chapter 6) are also surveyed. Chapters 7
and 8 on doing and writing inductive proofs are giveu with the intention of helping
the student arid perhaps providing some guidelines that a teacher might use when
teaching presentation skills. Much of these two chapters are directed at the student,
and so the advanced reader can safely skip these.

Part II, "Applications and exercises", contains over 750 exercises, showcasing the
different levels of difficulty of an inductive proof, the variety of inductive techniques
available, and the scope of results provable by mathematical induction. Topics are
grouped into areas, complete with necessary definitions, theory, and notation, so
each chapter is nearly independent from all others. I tried to include some famous
or fundamental theorems from most major fields. fri many areas, I include some
very specialized problems, if only because I en.joyed theni. In general, exercises
are not ranked according to difficulty, so expect surprises. Many advanced topics
are covered here, so there are many exarriples appropriate for even graduate-level
courses.

The number of published mathematical induction proofs is finite; however, one
might get the impression that this number is infinite! There can be rio comprehensive
coverage. The present collection identifies results spanning many fields, arid there
seems to be no end of topics that I could continue to add. It seemed that whenever I
researched some mathematical induction proof, I found yet another nearby. People
have joked that, by induction, I could then find inlinitely many examples. At some
point, I had to (at least temporarily) wrap up the project, and this is the outcome.

In part, I feel like a travel guide commissioned to write a handbook about touring
Europe; after staying in Budapest for a month but only driving through Paris, time
"handbook" may seem like only a biased "guidebook". I have delved deeply into
specialist areas, and only glossed over some more usual topics.

If this 1)00k survives to a second edition, many more topics will be developed. For
example, the theory of Turing machines or Markov processes mmiiglit make worthy
additions. Additive miummiber theory, computational geometry, the theory of algo—
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rithrns and recursion might be developed. I welcome suggestions for possible future
inclusion.

Tn Part III, solutions to most exercises are given. Solutions are most often written
in a strict format, making them slightly longer than what might be ordinarily found
in texts (and much longer than those found in journals). The extra structure does
riot seem to interfere with reading the proof and, in fact, it. may sometimes help. I

have also attempted to eliminate as many pronouns as possible, and have avoided
the royal "we" that often occurs in mathematics.

Of the over 750 exercises, over 500 have complete solutions, and many of the
rest. have cit her brief hints or references.

For some unusual exercises presented here without solutions, I have tried to
provide references. Many induction exercises are now "folklore" with origins difficult
to trace, so citations often just direct the reader to at least one instance of where a
problem has occurred previously. Readers are invited to inform me if! have missed
some key citations.

There are nearly 600 bibliography references, and results are cross referenced
and indexed thoroughly. I have given over 3000 index entries to assist in quick
referencing. The bibliography is also hack-referenced; hold face numbers following
each entry indicate where in this book the entry is cited [s].

DSG

Winnipeg. Canada
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Chapter 1

What is mathematical
induction?

Induction makes you feel guilty for getting something out of nothing,
and it is artificial, but it is one of the greatest ideas of civilization.

Herbert S. WiIf,

MAA address, Baltimore, 10 Jan. 1998.

1.1 Introduction
In the sciences and in philosophy, essentially two types of inference are used, deduc-
tive and inductive. Deductive inference is usually based on the strict rules of logic
and in most settings, deductive logic is irrefutable. Inductive reasoning is the act of
guessing a pattern or rule or predicting future behavior based on past experience.
For example, for the average person, the sun has risen every day of that person's life;
it might seem safe to then conclude that the sun will rise again tomorrow. Flowever,
one can not prove beyond a shadow of a doubt that the sun will rise tomorrow.
There may be a certain set of circumstances that prevent the sun rising tomorrow.

Guessing a larger pattern based upon smaller patterns in observations is called
empirical induction. (See Chapter 6 for more on empirical induction.) Proving that.
the larger pattern always holds is another matter. For example, after a number of
experiments with force, one might conclude that Newton's second "law" of motion
f = ma holds; nobody actually proved that f ma always holds, and in fact, this
"law" has recently been shown to be flawed (see nearly any modern text in physics,
e.g., [56, p.76]).

Another type of induction is more reliable: Mathematical induction is a form
of reasoning that proves, without a doubt, some particular rule or pattern, usually
infinite. The process of mathematical induction uses two steps. The first step
is the "base step": sonic simple cases are established. The second step is called
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the "induction step", and usually involves showing that an arbitrary large example
follows logically from a slightly sriialler pattern. Observations or patterns proved by
mathematical induction share the veracity or assurance of those statements proved
by deductive logic. The validity of a proof by mathematical induction follows from
basic axioms regarding positive integers (see Chapter 2 for more on the foundations
of the theory).

In its most basic form, mathematical induction, abbreviated "MI", is a proof
technique used to prove the truth of statements regarding the positive integers.
(The statements themselves are rarely discovered using mathematical induction.) in
this chapter, mathematical induction is only briefly introduced, with later chapters
spelling out a more formal presentation.

It is easy to get excited about introducing the proof technique called "mathemat-
ical induction", especially since no mathematical aptitude or training is necessary
to understand the underlying concept. With only very little high school algebra
(and sometimes none at all!), mathematical induction enables a student to quickly
prove hundreds of fascinating results. What more can a teacher ask for—an easy to
understand technique complete with an amazing array of consequences!

1.2 An informal introduction to mathematical induc-
tion

To demonstrate the claim that no mathematical sophistication is necessary to corn-
prebend the idea of mathematical induction, let me share an anecdote. When my
daughter Christine decided to keep a stray cat as a pet, the two of them soon be-
came inseparable—until it was time to go to bed. Christine slept in the top of a
set of large bunk beds, but the cat was not so eager about climbing this strange
contraption we humans know as a ladder. The cat, named Jupiter, sat on the floor
meowing until I lifted him to Christine's warm bed each night. (He could jump
down without fear, however, via the dresser.)

So I tried to teach Jupiter how to climb the ladder. (The cat probably could climb
a ladder without my help, however it seemed as if lie was waiting for permission—so
for the sake of this story, assume that he did not know how.) There seemed to be
two separate skills that Jupiter needed to acquire. First, he was apprehensive about
just getting on the ladder, so with a little guidance and much encouragement, he
discovered that he could indeed get on arid balance on the first rung. Second, he had
to learn how to climb from one ruug to the next higher rung. I Put his front paws
on the next step and then tickled his back feet; to escape the tickle, he brought up
his hind legs to the next rung. I repeated this on the next rung; lie quickly realized
how to go tip one more (or that it was okay to do so?), and almost immediately
upon "learning" this second skill, lie applied it a few more tunes. amid a moment
later was rewarded with a big hug from Christine at the top.

That's the basic idea behind what is called "the principle of mathematical iii-



1.3. Ingredients of a proof by mathematical induction 3

duction": in order to show that one cart get to any rung on a ladder, it suffices to
first show that one can get on the first rung, arid then show that one can climb from
any rung to the next. This heuristic applies no matter how tall the ladder, or even
how far up the "first" rung is; one might even consider the O-th rung to he the floor.

1.3 Ingredients of a proof by mathematical induction
In mathematical jargon, let 8(n) denote a statement with one "free" variable a,
where, say, n = 1, 2, 3 For example, 8(n) might be "the cat can get on the n-th
rung of the ladder" or say, "rolling n dice, there are Sn + I totals possible" (see next
section). To show that for every n � 1, the proposition 8(n) is true, tire argument
is often in two parts: first show that 8(1) is true (called the "base step"). The
second part (called the "induction step") is to pick some arbitrary k � 1 and show
that if 8(k) is true, then 8(k + 1) follows. In this case, 8(k) is called the "inductive
hypothesis". Once these two parts have been shown, if one were then asked to
demonstrate that 8(4) is true, begin with 8(1), then by repeating the second part
three times,

8(1) 8(2); 8(2) 8(3); 8(3) —' 8(4).

This method succeeds in rcaching the truth of 8(n) for any a � 1, not just a = 4.

The base step above iteed riot have been n = 1. Sometimes induction starts a
little later. For example, the statement 8(n) : n2 C 2" is not true for a = 1,2,3, or
4, but is true for any larger a = 5, 6, 7 In this case, the base step is 8(5) :

52 <
which is verified by 25 < 32. The inductive step is, for k � 5. 8(k) —' S(k + 1)

(which is not difficult: see Exercise 159).
So tite principle of mathematical induction cart be restated so that the base step

can be any integer (positive or negative or zero): [This is stated again formally in
Chapters 2 and 3.]

Principle of mathematical induction: For some fixed integer b,
and for each integer a b, let 8(n) be a statement involving a. If
(i) 8(5) is true, and
(ii) for any integer k � 5, 8(k) —' 8(k + 1),
then for all a 5. the statement 8(n) is true.

The expression "principle of mathematical induction" is often abbreviated by
'PM I", however in this text, simply "MI" is uscd. In the .statenient of thc principle
of imiatheniatical induction above. (i) is the base step and (ii) is the induction step,
in which 8(k) is the inductive hypothesis. A proof that uses mathematical induction
is sometimes called simply proof by induction" when ito confusion can arise.

For an assortment of reasons, mathematical induction proofs are, in general, easy.
First, the general rule often does not need to he guessed, it is usually given. A great
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deal of work is often required to guess the rule, but an inductive proof starts after
that hard work has been done. Another aspect of proving by mathematical induction
that makes it easy is that there are usually clearly defined steps to take, and when
the last step is achieved, the logic of the proof makes the answer undeniable. For
some, the most challenging part of an inductive step is only in applying sitriple
arithmetic or algebra to simplify expressions.

A proof by mathematical induction has essentially four parts:

I. Carefully describe the statement to be proved and any ranges on certain vari-
ables.

2. The base step: prove one or more base cases.

3. The inductive step: show how the truth of one statement follows from the
truth of some previous statement(s).

4. State the precise conclusion that follows by mathematical induction.

For more on the structure of a proof by mathematical induction, see Chapters 2,
3; for the reader just learning how to prove by mathematical induction, see Chapter 7
for techniques and Chapter 8 for how to write lip a proof by mathematical induction.

1.4 Two other ways to think of mathematical induction
Many authors compare mathematical induction to dominoes toppling iii succession.
If the b-tb domino is tipped, (see Figure 1.1) then all successive dominoes also fall.

DEl
Figure 1 .1: Dominoes fall si iccessively

This comparison allows one to view mathematical induction in a slightly more
general forni, since all dominoes need not be in a single row for the phenomenon
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to work; as long as each "non-starting" domino [las one "before it" which is close
enough to topple it. So, in a sense, mathematical induction is not just done from
any one integer to the next; induction can operate for many sequences of statements
as long as for each non-initial case, there is a previous case by which one can use a.
rule to jump up from.

Another analogy for mathematical induction is given by Hugo Steinhaus n Math-
ematical Snapshots [508] [in the 1983 edition see page 299]: Consider a pile of en-
velopes, as high as one likes. Suppose that each envelope except the bottom one
contains the same message "open the next envelope on the pile and follow the in-
structions contained therein". If someone opens the first (top) envelope, reads the
message, and follows its instructions, then that person is compelled to open enve-
lope number two of the pile. If the person decides to follow each instruction, that
person then opens all the envelopes in the pile. The last envelope might contain
a message "Done". This is the principle of mathematical induction applied to a
finite set, perhaps called "finite induction". Of course, if the pile is infinite and
each envelope is numbered with consecutive positive integers, anyone following the
instructions would (if there were enough time) open all of them; such a situation is
analogous to mathematical induction as it is most often used.

1.5 A simple example: Dice

Here is an example of a problem, a conjecture, amid a proof of this conjecture by
mathematical induction.

When rolling a single die, there are six possible outcomes: 1,2,3.4.5,6. When
rolling two dice, there are 11 possible totals among two dice: 2,3 12, and for
three dice, the 16 possible totals are 3,4..... 18. After a moment of reflection, one
might guess that for n � I nice, the number of possible totals is Sn 4 1.

Proposition 1.5.1. The number of possible totals formed by rolling ri � I dice is
Srt+ I.

Proof: (By mathematical induction on n) For each positive integer n, denote the
statement

.9(n) : When rolling Ti dice, there are Sn + 1 possible totals.

So 8(1), S(2). 5(3). . . . form an infinite of statements. (Using mmiathernatical
induction, all such statements are proved.)

BASE STEP: The statement. is already verified as there are 6 = 5(1) + 1
Outcomes.

INDuCTIvE STEP: Fix k � I. and suppose that 8(k) is true (the inductive hypoth-
esis), that is. among k dice, there are 5k + I possible outcomes. To complete the
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inductive step, one needs only to show that the subsequent statement

S(k + 1): When rolling k + 1 dice, there are 5(k + 1) + 1 possible totals

is also true.
Consider k + I dice, say D1, D2,... , Dk+1. Among the first k dice there are

(by the inductive assumption S(k)) 5k + 1 possible totals. Among these totals, the
smallest possible is k (where each dice shows 1), and so the lowest total possible
using all k + 1 dice is k + 1 (when Dk+1 also shows 1). The highest possible total
for all the first k dice is 6k (when each of D1 Dk show a 6). Then using Dk+1,
each of 6k + 1, 6k + 2,.. . , 6k + 6 is a new possible total. Hence, there are six new
possible totals, and one old possible total (k) which no longer occurs among k + 1
dice. Hence, there are 5 more totals possible with k+ 1 dice than with k dice, giving
5k + 1 + 5 — 5(k + 1) + 1 outcomes as desired. This completes the inductive step.

Hence, one concludes by mathematical induction that for any it 1, the state-
ment S(n) is true. This concludes the proof of Proposition 1.5.1. 0

[The "0" indicates the end of a proof.)

1.6 Gauss arid sums

It seems to he tradition in teaching induction that the first example demonstrating
how well MI can work is in proving a formula for summing the first it positive
integers.

There is a story about a young Carl Friedrich Gauss (1777-1855) that is often
told. I first give the apocryphal version, which is an over-simplification of the
supposed facts, because it so aptly creates a segue to the inductive proof. [The
more historical version which is even iriore unbelievable—--'is given after the proof
of Theorem 1.6.1.]

Gauss was extremely quick as a child, arid his teachers had a tough time keeping
ahead of him, To keep Gauss busy, his teacher once asked him to sum the numbers
from I to 100—- to which Gauss almost immediately replied "5050". Perhaps he had
discovered the following facL

Theorem 1.6.1. For each positive integer it,

Proof of Theorem 1.6.1 by MI: Let 8(n) be the statement

8(n): l+2+3+'-'+n= n(n+1)
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BASE STEP (a = 1): The statement 5(1) says that 1 = which is clearly true,
so 5(1) holds.

INDUCTIVE STEP(S(k) S(k + 1)): Fix sonic k � 1, and suppose that

5(k): 1+2+3+...+k= k(k±1)

holds. (This statement is called the inductive hypothesis.) To complete the induc-
tive step, it suffices to verify that the statement

S(k+1):

also holds. Beginning with the left-hand side of S(k + 1),

1÷2+3+...+k+(k+1)=(1+2÷3+...÷k)+(k+l)
k(k+1)

= 2
+ (k + 1) (by 'rid. hyp.),

= (k +1

which is equal to the right-hand side of S(k + I). Hence 5(k) S(k t 1)is proved.
completing the inductive step.

Conclusion: By the principle of mathematical induction, for each a 1, the state-
merit 5(n) is true. U

Many statements provable by mathematical induction are also provable iii a
direct manner. For example, here is one of many other proofs of the expression in
Theorem 1.6.1:

Direct proof of Theorem 1.6.1: (without explicit use of Ml) Write the sum
8(n) = 1 + 2 + ... + a twice, the second time with the summands in reverse order,
and add:

s(n) r 1+ 2 + 3 -3 F (a— 1) +n
s(n) = n+ (n—l) + (n-2) 2 +1

2s(n) = (n+1)+ (n+1) + (n+1) +...+ (n+1) +(n+l)

The suminanci (a + 1) occurs a times, and so 2s(n) = n(n + 1); division by 2
completes the proof. LI
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The numbers T,, = 1 ± 2 ± 3 +.. ± it are called the triangular numbers. One
reason that they are called triangular might he because if one makes a diagram with
it rows of dots, starting with one dot in the first row, and in subsequent rows putting
one more dot, then the dots form a triangle, and is the total number of dots.

Here is an example for it = 6:

.

. .

. . .

. . S •
S S S S S

S • S S S S

To compute of Theorem 1.6.1, put an it by ii ± 1 box around such a triangle,
and notice that accounts for half of the box. See also Nelsen's wonderful little
1)00k Proof without words [403, p. 69], where the caption is "—'The ancient Greeks"
(as cited by Martin Gardner)". Another similar 'Proof without words" of the for-
niula for is given by Ian Richards [453] (also reprinted in [403, p. 70]). See also
[404, p. 83]. One can also think of the triangle above as being equilateral. For other
polygons, there arc other "ligurate numbers", for example, n(3n — 1)/2 is a pentago-
nal number (the square numbers you already know). See the wonderfully illustrated
[116 pp. 38ff1 for more on polygonal (and polyhedral) numbers. [Polygonal nunibers
are also a rich source for induction problems as most are defined recursively, though
few appear in this volume.]

For a moment, return to Gauss in the classroom. Expanding on the account
given above, here is an excerpt from E. 'F. Bell's Gauss, Prince of Mathematicians
[44] (also found in Newman's 1956 anthology [45]):

Shortly after his seventh birthday Gauss entered his first school, a
squalid relic of the Middle Ages run by a virile brute, one Büttner,

Then, in his tenth year, Gauss was admitted to the class in arith-
metic. As it was the beginning class none of the boys have heard of
an aritlunetical progression. It was easy then for the heroic Büttner
to give out; a long prohlem in addition whose answer lie could find by
a formula in a few seconds. The problem was of the following sort,
81297 ± 81495 ± 81693 ± 100899, where the step from one number
to the next is the same all along (here 198), and a given number of terms
(here 100) are to be added.

It was the custom, of the school for the boy who first got the answer
to lay his slate on the table; the next laid his slate on top of the first,
and so on. Biittner had barely finished stating the problem when Gauss
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flung his slate on the table: "There it lies," he said—"Liggit se" in his
pleasant dialect. Then, for the ensuing hour, while the other boys toiled,
he sat with his hands folded, favored now and then by a sarcastic glance
from Büttner, who imagined the youngest pupil in the class was just
another blockhead. At the end of the period Büttner looked over the
slates. On Gauss' slate there appeared but a single number. To the end
of his days Gauss loved to tell how the one number he had written was
the correct answer and how all the others were wrong.

1.7 A variety of applications
One aspect of mathematical induction is that it can be found in the proofs of a broad
spectrum of results. In this section a sample is given of areas that mathematical
induction is found.

Hundreds of equalities and inequalities have proofs by induction. For example,
Exercise 54 asks to show the well-known formula

12+22 + 32+... = n(n+ lR2n + 1)

Trigonometric identities also can be proved by induction, as in Exercise 124 where
for any real number x and ri 1,

cos2Tt(x) + �
Many such identities (or inequalities) are proved in a manner very similar to that
in Theorem 1.6.1. Some inequalities have mathematical induction proofs that are
not so evident. For example, in Exercise 204, induction is applied to show that any
positive integer a,

Suppose that a sequence of numbers is defined recursively, that is, a few initial
values are given, and then a formula or rule shows how to get the ath number from
earlier numbers. For example, define a sequence at, a2, a2,... by first setting
a0 = 3 and let a1 3. Then for each a > 2, define
a combination of the two previous values. Working out the first few values are
3. 3. 9, 15, 33. There is a method by which to come up with a formula for the general
term however, one might also guess that for each a � 0,

= 2n+1 +

Mathematical induction can be used to prove that this guess is correct. In the
theory of recursion, mathematical induction is indispensable in proving correctness
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of formulas or algorithms. See Chapter 16 for mathematical induction in the theory
of recursion. Many popular algorithms are analyzed here by mathematical induction.

Induction can also solve problems that have no apparent equation associated
with it. For example, on a circular track, put ii cars (with engines off), and among
all cars, distribute just enough gas for one car to go around a track. In Exercise
590, induction is used to prove that there is a car that can make its way around a
lap by collecting gas from the other cars on its way.

In an election, a votes are cast for candidate A and S < a votes cast for candidate
B. In Exercise 764, one counts the number of ways a + S votes can he ordered so
that after each vote, candidate A is winning. 5imilar results have an impact in game
theory, probability theory, arid economics.

Various forms of mathematical induction can be used to prove very general and
powerful results about infinite structures. For example, a special form of mathemat-
ical induction, called Zorn's lemma, is applied in Exercise 692, to show that every
vector space has a basis.

An abundance of results in discrete math arid graph theory are proved by in-
duction. For example, if a graph on ii vertices has more than 112/4 edges, Exercise
509 shows that the graph always contains a triangle. Problems in geometry (see
Chapter 20) have surprising solutions using induction, as well.

Many basic counting principles have proofs by mathematical induction; for exam-
plc, both the pigeonhole principle and the inclusion—exclusion principle have proofs
by induction (see Exercises 743 and 427, respectively).

Model theory, foundations of mathematics. and computing theory are highly
reliant on inductive proof techniques. Most elementary properties of arithmetic are
derived using induction.

Mathematical induction is often associated with discrete counting; however, it
can be used to prove many results in calculus and analysis. For example, starting
with the simple product rule (19)' = f'g + fg', by induction one can prove (sec
Exercise fill) an extended version:

I I / I /

This example hints at a theme.
Very loosely speaking, there are countless examples in mathematics where a

concept is generalized or extended from one dimension to two; then from two to
three; if a pattern becomes obvious in these first jumps, the pattern often describes
a recursion, one that can serve as a model for an induction step taking the concept
to any finite dimension required. The same is true for linear algebra and matrix
theory; in fact, it might appear that most concepts in linear algebra 4grow by
induction" from smaller ones. See Exercises 637—668 for what might seem to be
most of the major results in matrix theory. including a few applications, all proved
by mathematical induction.

After only a brief perusal of the exercises in this book, one might conclude that
most of mathematics is tied to induction. To many, this conies as no surprise,
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because counting numbers arid basic rules of arithmetic and algebra are either de-
veloped or proved true using induction. Hence nearly all of discrete mathematics is
based on induction, in a sense.

The first part of Chapter 2 establishes sonic useful notation and terminology,
and the latter parts of that chapter are for those interested in the theory behind
induction. To continue the introduction to mathematical induction, Chapter 3 gives
cxarriples of the many different inductive techniques and examples of each. If the
reader is just beginning to learn induction and how to write proofs, I recommend
also reading Chapters 7 and 8.

1.8 History of mathematical induction
I have read somewhere or other, in Dionysius of Halicarnassus, I
think, that History is Philosophy teaching by examples.

--Henry St. John (Viscount Bolingbroke) (1678-1751),

On the study and use of history.

A usual (modern) development of the principle of mathematical induction begins
with Peano's axioms. In this book, too, this approach is adopted. This perspective
is admittedly a bit naive, since there were many other key players in establishing
the present confidence held in the concept.

It is not clear who first used mathematical induction, but in Bussey's 1917 article
[91.], he reported that Blaise Pascal (1623 1662) recognized that an Italian named D.
Franciscus Maurolycus (1494—1575) (also spelled Francesco or Prancesko Maurolico
or Maurolyci) used induction in his book [376] published in 1575. In that book,
(actually, in Book I) he proved by induction that the odd numbers are formed by
successively adding 2 to the first odd number, 1. Maurolycus used what is now
called "induction" to prove that the sum of the first n odd numbers is 712. These
and ritany other ideas were learned by Blaise Pascal, in the mid 1600s, with Pascal
perhaps being the first to apply induction for a formula for the sum of the first
n natural numbers. In Struik's [515, p. 106] A Concise History of Mathematics,
two works ([201] and [448]) are cited as evidence that "He [Pascal] was the first to
establish a satisfying formulation of the principle of complete induction."

Maurolycus' proof of the formula for the sum of the first ii numbers was non-
inductive, although (Jeorg Cantor (1845—1918) claimed that Pascal got his inductive
proof from Maurolycus; Bussey refutes this claim. Cantor (Ceorg Ferdinand Lud-
wig Philip Cantor) once claimed that Pascal was the originator of mathematical
induction, but later withdrew his claim after lie was informed by someone named
C. Vacca about Maurolycus (see [544]). So it seems, Pascal learned induction from
Nlaurolycus.
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It might be interesting to note that Bussey's article was published while Cantor
was still alive. Cantor quit teaching at the University of Halle in 1905, was very ill
late in life, and died in a mental hospital in Halle in 1918, so perhaps he never saw
the article. Cantor is now credited with being the founder of set theory, particularly,
the theory of infinite sets.

In George Pólya's (1887—1985) 1962 book Mathematical Discovenj [435], math-
ematical induction is credited to Pascal as well, but in Bourhaki's The Set Theory
[69] (1965), "Maurolico F." receives credit. [Bourhaki was not a person, but a group
of sometimes 20 persons, at various times including C. Chevally, J. Delsarete, .1.
Dieudonne, and A. Weil they had to retire from the group at age 50.]

It seems odd that such a simple technique was only learned in the 16th century.
In fact, it would riot be a surprise if Euclid (ca. 330—275 BC) used mathematical
induction, though there does not seem to be ally explicit instance of it. lt might be
worth noting that Euclid's result that states that there are infinitely many primes
can be easily proved by induction; see Exercise 207. This has led some authors to
the opinion that Euclid used, if even tacitly, induction. The debate as to whether or
not Euclid knew of mathematical induction has gone as far as to interpret induction
less formally. For more on Euclid and induction, see [175], [197], [541], [542], and
[557]. It has been suggested [523] that Pappus (cc. 300AD) also knew of induction,
though I have riot yet seen the evidence. Even Plato might have known of the
principle (see [3]).

The method of mathematical induction has been compared to the "method of
exhaustion", due to Eudoxus (408-355 B.C.) [about a century before Euclid] and
used by Archumne.des (287 212 B.C.) in his derivation of many formulas (for areas
and volumes), and his "method of equilibriumn"---which often uses the method of
slicing called the method of indivisibles by Cavalieri (1598—1647), a technique still
used in modern integral calculus. The method of exhaustion begins with an as-
sumption that magnitudes can be divided an infinite number of times, For example,
the method can be used to prove that the formula A = 7rr2 for the area of a circle
is correct by finding larger arid larger polygons that fit inside a circle. (See [180,
11-3] for a details.) What this method has in common with mathematical induction
is that a formula must first be guessed, and the proof is an iteration of (perhaps)
infinitely marty steps. often based on some kind of recursion depending on earlier
steps. Sonic proofs by the method of exhaustion can be translated into proofs by
induction, however the method of induction does riot seem to be used explicitly by
any of these masters front (nearly) ancient times.

Internet sources suggest that Ralbag (Rabbi Levi Ben Gershon) gave proofs that
used induction in the 13th century. One such correspondence was from Boar Tzaban,
Bar Ilan University, Israel; another was from Ed Sandifer at Western Connecticut
State University, l)anbury, CT. They reported on a talk given by Shai Simonson of
Stonehill College in Massachusetts, a scholar of Ben Gershon's work. It is riot clear
that Cershon formalized the concept, hut there scents to he some agreement that
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he used mathematical induction. For niore support on these ideas, see [444]. Many
other authors report on the use of induction or inductive techniques by al-Karaji
(sum of cubes formula, around 1000 A.D.), al-l-Iaytham (surri of fourth powers).
and al-Samawal (binomial theorem). [1 have not yet directly seen these references
however, more information is available in [307].]

According to Quine [443, p. 243], "Mathematical induction was used and ex-
plicitly recognized by Pascal in 1654 ... and Fermat in 1659 ... But the principle
of mathematical induction retained the status of art ultimate arithmetic axiom un-
til 1879 when Frege defined the ancestral and by its means the class of natural
nunibers." Quine also says that "...Such inference, called mathematical induction,
is afforded by the following metatheorem" and then uses very careful (and barely
readable) logical notation to give the metatheorem.

Grimaldi reports in his textbook on discrete mathematics [238], that it was
Augustus fleMorgan (18061871) who, in 1838, carefully described the principle
arid gave it its present name "mathematical induction". The reference C rirnaldi
gave for this fact was Bussey's paper [91], however, a quick look at Bussey's paper
does riot scent to confirni this. In fact, on the website Earliest Known Uses of Some
of the Words of Mathematics [384], it is reported':

The term INDUCTION was first used in the phrase per modum. in-
ductionis by JoInt Wallis in 1656 in Aritiimctica Infinitorum. Wallis was
the first person to designate a name for this process; Maurolico and
Pascal used no term for it (Burton? page 440).

and

The term MATHEMATICAL INDUCTION was introduced by Au-
gustus de Morgan (1806-1871) in 1838 in the article Induction (Mat/ic-
mnatics) that; he wrote for the Penny (lyclopedia. De Morgan had stig—
gested the name successive induction iii the saute article and only used
the term mathematical induction incidentally'. The expression complete
induction attained popularity in Germany after Dedekind used it in a
pa.per of 1887 (Burton, page 440; Boyer, page 404).

The references for the above citations are Boyer [70] and Burton [89]. See also [92]
for more on the history of the name "mathematical induction". One might note that
the met hod of mathematical induction still is occasionally referred to as
induction" (e.g., in [556]) or induction,.''

Near the end of the 19th century, David Hilbert (1862 1943) was writing a
book [269]. attempting to establish geometry based riot on but on axioms.
Cottlob Frege (1.848—1925) had been studying mathematical logic and counnunicated
regularly with Ililbert. Much debate arose about what axioms were, what they
"should" be, and what "truth" in mathematics is. (See [451] for art account of

'Used with kind permission from Jeff Mitler
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the discussions between Frege and Hubert regarding axioms.) Frege was essentially
trying to reduce mathematical reasoning to purely logical reasoning. For some
kinds of reasoning, a "second-order" kind of logic was necessary, but Frege wanted
(perhaps) to rephrase mathematical induction that did not rely on second-order
logic. To this end. he used terms like "ancestors" (well, in German, lie must have
used "\Torfahren" or something similar) and "ancestor induction". The basic idea
was to extend reasoning of the form: "Ole is an ancestor of John, and John is an
ancestor of David, so Ole is an ancestor of David." [These, inasmuch as my parents
tell me, are accurate statements.]

In [128] [thanks to Dr. Peter Morton for supplying this reference] Demopoulos
mentions that Crispin Wright presented an argument that Hurne 's principle [the
number of elements in a set S is equal to the number of elements T if and only
if there is a one-to-one correspondence between elements of S and TI implies one
of Peano's axioms: "...in the context of the system of second-order logic of Frege's
Bereffsschrift, Peano's second Postulate [every natural number has a successor ] is

derivable from Humne's principle." Demnopoulos continues to mention "...that Frege
discovered that, in the context of second-order logic, Hume's principle implies the
infinity of the natural numbers, &ege 's theorem." (If the reader wants another
perspective, readable but confusing, on these matters, see [5561.)

Ernst Zermelo (1871—1953), Richard Dedekiud (1831- 1916), Bourbaki, Bertrand
Russell (1872-1970), and many others continued the debate regarding assumptions
about the natural numbers. Concepts like "well-ordering" and "Axiom of Choice"
were also introduced in an attempt to logically legitimize what students of math-
ematics all "know" to be "true" about natural numbers. For present purposes,
assume that all the necessary groundwork has been done to establish that present
assumptions (or Peano's assumptions) are reasonable. For more facts and debates
regarding the history of induction, see [175], [197], [300], [523], [541], [542], and
[581].

The interested reader may pursue these discussions from a model theoretic per-
spective as well; the mathematical logician Leon Henkin [265] examines Peano mod-
els in contrast to induction models (those with only the induction axiom). Classify-
ing algebraic systems accord ing to time set of axioms that generate tIne system, and
examining which functions arise from "primitive recursion", is too deep a subject
to entertain here. The reader is recommended to see sonic of time popular literature
that is referred to iii Section 2.2. The theory can get quite complex; it is hard to
say what the best approach is.

Instead of being drawn into further discussions regarding epistemology and phi-
losophy. this discussion is conchided with a quotation from Ernst Mach, as found in
[433], regarding Jacques Bernoulli (1667—1748):

Jacques Bernoulli's method is important to the naturalist. We find
what seems to he a property A of the concept B by observing cases

C3. We learn from Bernoulli's method that we should not
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attribute such a property A, found by incomplete, non-mathematical
induction, to the concept B, unless we perceive that A is linked to the
characteristics of B and is independent of the variation of the cases. As in
many other points, mathematics offers here a model to natural science.

1.9 Mathematical induction in modern literature
One of the chicfcst triumphs of modern mathematics consists in hav-
ing discovered what mathematics really is.

—Bertrand Russell

International Monthly, 1901.

In any mathematics textbook that contains a section on induction, there is usu-
ally a collection of problems, a handful of which are now used repeatedly in nearly
every such text. There are perhaps about a hundred problems in toto that might,
due to their frequency, be called "standard"; virtually all problems appearing in
modern texts arc adaptations of these. A few books have been devoted exclusively
to induction. This chapter contains a brief overview of books specifically on induc-
tion, articles about induction, and typical books containing chapters or sections on
induction, primarily from the last century; for articles concerning mathematical in-
duction before that, see Section 1.8 on the history of mathematical induction. This
overview hopefully contains most major works and a few less well-known. Aside from
references given here, there are likely thousands more articles concerning induction,
so parts of this review can never hope to be comprehensive. On 11 February 2009,
MathSciNet showed 395 matches to "mathematical induction", 74 of which were in
the title. There were 1436 titles containing simply the word "induction", most in
well respected refereed journals. The number of books or articles that use induction
in them is probably in the hundreds of thousands.

My own introduction to induction in high school was from Mathematical Induc-
tion and Conic Sections [550], a booklet excerpt from a textbook. That booklet has
only a few pages on induction, but it lists 39 exercises. There have been a few other
books specifically on induction, most of which I only recently became aware of, and
none of which seem to be in print any more.

In 1958, a 63-page book [388] by Mitrinovié on mathematical induction appeared
in Serho-Croatian, the last chapter of which contains a short history of induction.
The translated title was The Method of Mathematical Induction. A dozen years later,
the same author carrie out with another book [3891, about half of which is reportedly
devoted to problems solvable by mathematical induction, (also in Serbo-Croatian),
however I have not seen either.

In 1956, 1. S. Sominskii's Russian text [498] on induction was already enjoying
its fourth edition. In 1959, he published Metod Matematicheskoii Jnduktsii; this
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was translated into English and published in 1961 as The Method of Mathematical
Induction [499]. a 57-page collection of theorems and 52 problems; most appear with
helpful, complete solutions. A reviewer named N. 0. Kazarinoli reviewed that 1)00k
for Math Reviews [27 5669] and wrote "In addition to a high school training in these
subjects, the reader must have good eyesight: symbols in formulas are often about
the size of periods." This book has enjoyed dozens of editions in various languages,
including Russian (e.g., [498], 4th ed., 48 pages), German (e.g., [501], 13th ed., 55
pp., [287], 120 examples, 183 pp., with two other authors), Spanish ([502], 2nd ed.,
62 pp.), and Turkish (e.g., [500], viii+72 pp.).

In 1964, a 55 page booklet, Mathematical Induction [582], by Bevan K Youse
[note: there is no period after the "K" in his name] appeared, repeating many of the
problems in Sominskii's book, but with a few interesting additions. Youse's book
has 72 problems, most of which now commonly appear itt today's texts without
reference. There are only 29 complete solutions.

In 1979, the 133-page 1)00k Induction in Geomctry [2201, published in Moscow,
contains inductive proofs of many difficult theorems in geometry (only a few of
which are covered in this volume). This book is no longer in print and is hard to
find [thanks to H.. Padmanahltan for giving rae his copy], but, in my opinion, well
worth an effort to locate.

Another. more recent book is Manuel d'Inductiorz Mathématique (Handbook of
mathematical induction) by LuIs Lopes [350]; this book has 100 problems complete
with solutions (in French), many of which are also standard amid easy; however, the
author does not shy away front sonic really challenging solutions. The exercises
occupy just over a dozen pages, with the bulk of the 127 pages being solutions.

The principles behind mathematical induction are studied in almost every logic
text or set theory text (for example, in [95], [2891). There are numerous articles
on mathematical induction from different points of view in logic, language, model
theory, universal algebra, or philosophy (e.g., [200] ott predicate synthesis, [265] on
model theory, [383] on formal theory of finite sets, [145] on variable free algebra and
Galois connections, [111] on material implication, [139] on predicates on any well-
founded set, [471] on ramified type theory as an adequate formalization of predictive
methods).

More general works, like [181], [274], [400], and [556] give broad historical per-
spective in the modern foundations of mnatheittatics arid induction. History of math—
ernatics texts almost always describe how induction arrived on the mathematical
scene (e.g., [180]) and how it. relates to other areas of niatlmernatics.

Hundreds of references have been used in assembling the collection of exercises
here. problenìs using rrtathetna.tical induction are now part of the folklore, but
unusual problems are referenced. Here are a few kinds of books that deal explicitly
with mathematical induction.

Many texts in discrete mathenmatics have sections on induction (e.g., see [1 0[,
[S], [33], [38], [52], [55[, [83], [147], [195',, [222], [238], [292], [299], [355], [363], [373],
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[375], (4311, [462], (464], arid [535]). Of these volumes, [238], [292]. and [462] are very
popular in North America, probably because of the colossal amount of mathematics
(including induction, of course) contained in each.

Closely related are books on corubinatorics, many with a prodigious array of
applications of induction (for example, see [6], [77, 78], [94], (255], [266], (455], or
[506]). Lovdsz's now classic compilation, Combinatorial Problems and Exercises
(354] is also an abundant source of wonderful inductive proofs, many highly non-
trivial. Also, for induction in advanced combinatorics. see [58].

One might be delighted to know that even some calculus books (for example,
the classic book by Apostol [20], and the more modern text by Trim [534]) devote
a section to induction. Books on programming cover induction, as well (see. e.g.,
(483]). Texts that concentrate on mathematical problem solving often contain sec-
tions on induction and are a rich source of problems. In particular, Engel's book
Problem-solving Strategies (161] contains a chapter on induction in which 39 exer-
cises and solutions are discussed; hundreds of solutions using induction also occur
throughout the book. (Some solutions are little on the brief side, but considering
the plethora of problems that are actually solved, Engel's work might he considered
as one of the richest sources for problem solving available today.] Three more ref-
erences of this type that come to mind are (47], (124] arid [461]. Such texts are an
invaluable resource for mathlete training. Other works concentrate on aspects of
teaching induction (e.g., [194]. [382], (490], and (516] to name hut a few).

For anyone wanting a gencral insight into how to conjecture and prove mathemat-
ical statements, particularly by induction, one might be pleasantly rewarded with
a look at POlya's books f433]. [434], ('135]. A fairly recent collection of non-trivial
problems over a broad range of fields, many of which employ induction, quickly be-
came one of my favorites: The Art of Mathematics: Coffee Time in Memphis [61],
by Bela Bollobds.

Leo Zippin's classic monograph Uses of Infinity [589] shows off induction in van-
ous settings, most notably in proving limits, in What is Mathematics? [120,
1.2.7, pp. 9—20] by Richard Courant and Herbert Robbins one finds a particularly
easy-to-read discussion of mathematical induction. (Zippin, (589, p. 106] also refers
the reader to the Courant and Robbins book.) Another, more recent delightful
problem book (which has a section on induction, and various induction problems
throughout) is Winning Solutions, by Edward Lozansky arid Cecil Rousseau (357],
a collection of contest problems and their solutions that might complement any
library.

Some books on recreational mathematics and popular science include discussion
of mathematical induction. One of the most noteworthy of these is Martin Gard-
ner's Penrose Tiles to Trapdoor Ciphers, ]214, Ch. 10, pp. 137—149], a chapter
called "Mathematical induction and colored hats". Another, [560], discusses Pen-
rose's non-computability of thought, consciousness, self-referencing, and discusses
mathematical thinking viz-a-viz Cödel's theorem. PoincarC, and Calois. and some-
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how manages to tie in mathematical induction.
There has been some work on computer programs designed to produce induc-

tive proofs (also called "automated induction"). See, for example, [28], [68] (using
SPIKE), [87], [187], [303], [398], [543], [557] (using LISP), and [588]. There is a great
deal more literature on this subject, as proofs by mathematical induction are central
in many computer science and A! applications. An older article [139] highlights the
importance of mathematical induction in termination of programs and properties of
programming languages.

A special kind of mathematical induction, called "transfinite induction" (see
Section 4.2) is closely related to complexity theory in [489]. The invariance theorem
Iwhatever that is] and induction are studied in [278]. Induction and program yen-
fication and modelling are also closely related and many books and articles discuss
this relation (see, e.g., [302], [361], [452]).

Many texts with "finite mathematics" in the title contain sections on mathemat-
ical induction, as induction is often taught in high school and beginning university
math courses. Various other subject areas (for example, number theory, algebra, and
graph theory) use induction quite heavily, and some related texts contain sections
on induction (e.g., [150], [566]).

One can find numerous articles on induction in various popular journals, too; for
example, see [82] or [265]. The article by Dragos Hrimiuc [280] is short (3 pages!)
arid easy to read, yet is a substantial introduction to the subject. Some are from a
historical perspective (e.g., [91], [175], [197], [300], [523], [541], [542], [581]). There
are a variety of journal articles on induction in general (e.g., [138], [175], [237] (in
Spanish), [262] (in Japanese), [290] (in Chinese), and [504]).

Induction is not only applied in discrete situations. Analysis and induction are
more closely related than one might think (see [155] for some classical connections).
in fact, there is a kind of continuous, or non-discrete induction at play. Some of the
first (and most referred to) articles in this area seem to be by Ptdk [441, 442] (with
the Banach fixed point theorem, Banach algebra, closed graph theorem, Newton's
process, and more): see also [26], [25], [27], [578J, [579]. For those who can read
Russian and are interested in differential equations, see [318].

Induction is ubiquitous. In fact, in any volume of a mathematics journal (popular
or specialized) it seems rare not to find at least one proof by induction!

Incidentally, it might come as a bit of a surprise that the word "induction"
does riot seem to he mentioned in George Gamow's classic book One Two Three
Infinity one can be comforted. though, by the knowledge that Gamnow [205, pp.
19—23] explains well two problems that are solved inductively.

Finally, there is the internet. In September 2005, a Google search for "niathe-
matical induction" produced "about 2,610,000" hits! For some reason, this number
dropped to 436,000 as of January 2009. Any ranking of these sites is hopeless, how-
ever, many seem to be rather well done. The sites seem to range from the very
elementary to some collections of somewhat challenging problems.



Chapter 2

Foundations

The reasoning of mathematicians is founded on certain and infallible
principles. Every word they use conveys a determinate idea, and by
accurate definitions they excite the same ideas in the mind of 1/ic
reader that were in the mind of the writer. When they have defined
the ten-as they intend to 'make use of, they premise a few axioms,
or self-evident principles, that every one must assent to as soon as
proposed. They then take for granted certain postulates and
from these plain, simple principles they have raised most astonishing
speculations, and proved the extent of the human mind to be more
spacious and capacious than any science.

—John Adams,

Diary.

This chapter attempts to put mathematical induction (Ml) on a sound logical
ground, and the principle of mathematical induction is described more formally. The
usual starting point is a set of axioms called axioms", the last of which
is, essentially, the principle of mathematical induction. Using these axioms one can
prove many of the basic properties of natural numbers, perhaps a reasonable place
to start in mathematics.

2.1 Notation
The notation used in this text is fairly standard. If S is a set, "x E 5" denotes that
x is an element, of 8. The notation "x, p E 8" is a common shorthand hr "x S
and p 5". Use "'1' C 8" or T that

T is of T can be equal to S. If
1' 5, yet T C 5, then T is a proper subset of S (denoted by T ç 5, if necessary).

19
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Though they have yet to rigorously defined, let N = (1, 2, 3, .. .} denotc the set of
natural numbers. The empty set is denoted by 0 (this is not a computer 0).

Note: Many authors, especially coinbinatorists, set theorists, and those trained
in the British system, include the number 0 in the natural numbers; here 0 is not
included, and so where ever confusion can arise, diflèrent notation is used. In some
schools, the set W = {0, 1, 2, 3,..

. } is called the set of whole numbers, though the
expression "non-negative integers" is used here. [I was taught to remember the
difference by observing that the whole numbers had an extra "hole".] To avoid
confusion, one might also say "positive integers" rather than "natural numbers".

There is, however, good reason to include 0 in the natural numhers (as one
might witness with ordinal numbers arid the Zermelo hierarchy—set theoretic inter-
pretations of counting numbers). The tradition of natural numbers without 0 is a
tradition followed in many North American schools. [I deliberated for some time on
this choice of notation, and I am still not sure that I have made the correct choice;
from a mathematical perspective, it seems to make more sense to include 0.]

The symbols Z, Q, R, and C denote the sets of integers. rationals, reals, and
complex numbers, respectively. The notation = { 1, 2, 3,. . . } is often used to
indicate the set of the positive integers; this notation is somewhat universal, and
hence is occasionally used instead of N to avoid confusion (regarding the inclusion of
0). Throughout, unless otherwise noted, all variables in this text are non-negative
integers. For statements p and q, use the shorthand p q to abbreviate "if p then
q", or "p implies q". and p q for logically implies q". In mathematics, one
often confuses their meanings; the is implication in the object language, and

is in the metalanguage. Many mathematicians use the double arrow to mean
simply "implies", perhaps to differentiate from the single arrow used for functions.

The symbol V means "for all" arid the symbol means exists"; as handy as
these quantifiers are, their use is linrited in this text since they tend to make simple
statements unreadable to some non-mathematics students. The symbols "A" and

are occasionally used to represent "and" and "or" respectively. If a paragraph
is followed by "0", then this indicates tIme end of a proof. The expression "iff" is an
abbreviation for "if and only if".

2.2 Axioms

There are many statements in mathematics that are not proven, but are simply
assumed to be true. For example, in Euclidean geonietry, it is assumed that for
any pair of distinct points in the plane, there is a unique linc that contains them.
Some people find this to be a reasonable assumption, however, might have difficulty
proving such an assumption (whatever that might mean).

A statement thai, is assunied to he true (but not necessarily provable) is called
an axiom or postulate. To state an axiom, one often requires that certain terms are
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accepted without meaning. For example, undefined terms might include
"set"1 , "line", "plane", "is incident with", arid "is in between". Uavirig
established the terms, one might agree on rules of logic (where the default is usually
to simply accept standard Boolean logic, with or without quantifiers, for example,
and the standard connectives). With these in place, one can state an axiom, either
a property of a term, (e.g., "there exists something called a point") or a relation
between terms (e.g., "there exists a set which does not contain any elements").

A theorem is a statement that then follows deductively froni the axioms, either
directly or indirectly using other theorems. A lemma is a "lesser" theorem, often
used to help 7prove a more significant theorem. ('I'he plural for "lemma" is "lemrnata"
or more simply, "lemmas".) A corollary is a statement that is a consequence of a
theorem; usually a corollary follows front a theorem in a fairly obvious

When speaking of the validity of a particular result, one actually only refers to
whether or not the result follows from axioms. In Edmund Landau's book Grand-
lagen der Analysis [339], lie begins with axioms and derives niost of the foundations
of arithmetic. The approach here is similar, beginning with the same set of axioms.

Any discussion in set theory, logic, geometry, rnirnher theory, or even mechanics,
usually presumes that a. set of axioms has been agreed upon. F-low would a scientist
decide on a list of absolute truths (axioms) front which to develop a particular
system? Of any collection of axioms a scientist might assemble, there are two
properties of the collection that may be desirable:

First, insist that the list is as short as possible. Perhaps most importantly, it
would not be desirable to want so many axioms that from aiiy (or all) of the axioms,
one could derive a contradiction (that is, both a statement and its negation). If one
can not deductively derive arty' contradictions from a particulat' collection of axioms,
the collection is called consistent, arid the system that rests upon these axioms is
also called consistent or son-nd.

If a particular system is sound, it might he very difficult to prove such a fact.
Even proving the inconsistency of a system by exhibiting a contradiction might be
an impossible ta.sk.

One reassurance of soundness is to find a nrodcl or interpretation that realizes all
of tile axioms. In fact, depending on your assumptions about the world, finding a
model is sometimes proof that a set of axionis is consistent—as it is in many math-
ematical situations. For example. the naive irriage of standard Enclidean geometry
seems to he a model that satisfies the postulates in Euclid's Elements of Geometry
(written around 300 B.C.). If a collection of axioms is consistent. amiy' suhcolleetion
is also consistent. Different models for geonietries have been foiuicl that realize all
but the fifth of Euclid's postulates. (e.g, elliptic or hyperbolic geouuietries). See [274,
pp. 88-- 93] for a lively, easy to read discussion of the discoveries that led to various
"non-Euclidean" geometries.

Any attempt to constru(:t a set of consistent axioms might start by selecting a
very large set of axioms, deriving sortie contradiction. then throwing out one possibly
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offending axiom, and trying again, continuing until no contradictions are derivable.
It is yet another problem, however, to show that contradictions can riot arise at
any one stage. To support a claim that one particular axiom is consistent with a
given set of axioms, one might assume its negation and try to prove a contradiction.
Enough about consistency for the moment.

The second desirable property for a collection of axioms to satisfy is that the
collection of axioms is large enough so as to be able to derive all truths in the
system from the axioms. Such an axiomatic system is called complete. In Euclid's
thirteen books of Elements of Geometry is a set of five postulates, however it seems
that Euclid's postulates are not complete (see [264, p. 1636]) for what is now called
"Euclidean geometry". Hilbert's set of axioms for geometry [269] arose out of efforts
to find "completeness", efforts which were destined for failure as well.

There has been much discussion about what sort of niinimn& collection of axioms
"should be" agreed upon so that one can do, say, set theory, geometry, or arithmetic.
In this text, !:c .L the natural numbers, a set of axioms (now commonly thought
to be not too problematic), Peano's axioms, is the starting point. The standard
axioms of ZFC are implicitly assumed here. (See appendix IV for a list of Z1"C
axioms and further discussion about consistency arid completeness.)

2.3 Peano's axioms

In the 19th century, Giuseppe Peano (1858—1932), a professor from the University
of Turin (Italy), published (in Formulario Maternatico, 1889), a collection of axioms
for the natural numbers N, defined here to he Z

Peano received the axioms from Dedekind in a letter, and he even recognized
this in his publication, however, the term "Peano's axioms" has survived to refer
to Dedekind's axioms (e.g., see Pollock's book [432], though Pollock does not give
references). This fact doesn't seem to he widely cited in other textbooks. Peano's
axioms are generally now accepted by the mathematical community as a starting
point for arithmetic.

To describe these axioms, common function notation is used: The cartesian
product of sets Sand T is S x T = {(s,t) : $ S,t T}. A function f from a
domain S to T (written f : S T) is a subset f C S x T so that for every s E 8,
there is exactly one t T so that (s, t) f. In this case, write f(s) = 1. (See
Section 18.2 for more details omi functions.)

Peano's axioms are usually given as a list of five, yet one more appears in his
writings, one roughly equivalent to "N is a class of things called miunibers." (See
[340, p. 1872] for a translation; triany other wonderful articles regarding axiontis are
also found in the same collection.) His fifth axiomn is really the principle that is now
known as "mathematical induction".
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Peano's axioms:

P1 leN.
P2 There is a function 8: N — N where for each cc C N, 8(x) = cc' C

N is called the successor of cc.

P3 For every x C N, x' 1.

P4 lfx'=y',thenx=y.
P5 If & C N is such that

(i) 1 C S, and
(ii) for every x C N, x C & —' cc' C 8,

then S = N.

A proof employing P5 is said to he "inductive" or "is by induction". The step
P5(i) is called the base step and P5(u) is called the inductive step. Some philosophers
call these two parts the basic clause arid the inductive clause (for example, see [29,
p. 468J). The antecedent "cc C 5" in P5(u) is called the inductive hypothesis (or
someti rnes induction hypothesis.)

2.4 Principle of mathematical induction
This section contains a very brief formulation of what is called the "principle of
mathematical induction" as it is applied to various statements, instead of just for
sets. Applications and various forms of this principle are discussed again in Chap-
ter 3.

There are many forms of mathematical induction—weak, strong, and backward,
to name a few. In what follows, n is a variable denoting an integer (usually non-
negative) and 5(n) denotes a mathematical statement with one or more occurrences
of the variable n. The following is the standard presentation of mathematical induc-
tion, also called "weak mathematical induction". Observe that 8(x) = cc' = cc + 1
is a successor function satisfying P2, P3, and P4 (it is shown in Theorem 2.5.4 that
this is the only successor function on natural numbers).

Theorem 2.4.1 (Principle of Mathematical Induction (MI)).
If 8(n) i.s a statement involving ii and if

5(l) holds, arid
(ii) for every Ic � 1, 5(k) implies &(k + 1),

then for every ri 1, the statement 5(a) holds.
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The two stages (i) and (ii) in a proof by MI are still called the base step (in
which the base case is proved), and the inductive step, respectively. In (ii), S(k) is
called the inductive hypothesis (also called the induction hypothesis). Depending on
the definition of the natural numbers used by different authors, the base step might
also be 8(0).

Proof of MI from Peano's axioms: Define A = {n e N : 8(n) is true}. Then
by (i), 1 e A. By (ii), if k e A, then k + 1 E A. So by P5, A = N, proving MI. [1

2.5 of natural numbers
T he next few results (proved fwm Peano's axioms) will enable one to talk about N
in more familiar terms.

First observe that for any successor function 8(x) = x'. to each x there is a
unique x', and hence [x = y] [x' y'].

Lemma 2.5.1. For any x,y E N, [x yJ fx' y'].

Proof: This is just the contrapositive of P4. [If a statement is of the form If P,
then Q, the contrapositive of the statement is If not Q, then not P" The two
statements are logically equivalent.]

Theorem 2.5.2. If x E N then x' x.

Proof: (By induction) Let A = {x E N : x' .x}.

BASE STEP: By P3, 1 E A.

INDUCTIVE STEP: Assume that y E A, that is. y' y. Lemma 2.5.1 then implies
(y')' y', and so y' E A.

Hence, by PS. A = N. 0

The next result shows that predecessors are unique.

Theorem 2.5.3. If x E N and x 1, then there is a unique y so that x = y'.

Proof: (By induction) Let

A=(xcN:x=torthercexistsyeNsothat x=y'}.

BASE STEP: 1 e .4 by definition.
INDUCTiVE STEP: Suppose that x E A. Then either x = 1 or x = y' for some y E N.
To be shown is that x' E A. If x = 1, then x' E N; if x = y', then :c N by P2.
Hence, in any case, x E N, and by the definition of A, .r' E A.

Therefore, by PS, A = N. Thus, for any x 1, there is some y E N so that
x y'. The uniqueness of y follows from P4. 0
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The next theorem shows that the successor function is what one might expect
it to be, namely x' x + I. In this theorem, a function is defined from N x N to N,
that is, it takes ordered pairs and returns natural numbers. For such a function f,
ii. is standard to write f(x, y) instead of the more proper f((x, y)).

Theorem 2.5.4. 'I'hcre exists a unique function f : N x N N so that for all

x,y EN,

(a) f(x, 1) =
(b) f(x,y') (f(x,y))'.

Proof: There are two things to show, existence and uniqueness.

(Existence) A function from N x N to N can be described by an infinite matrix:

1(1, 1) 1(1,2) 1(1.3) f(1 ,4)
1(2,1) f(2,2) f(2,3) f(2,4)
1(3,1) 1(3.2) f(3,3) f(3,4)
f(4, 1) f(4, 2) f(4, 3) f(4. 4)

The idea in this existence part of the proof is to create this matrix row by row. It
will sullice show that the first row can he constructed so that (a) arid (b) hold,
and then to show that art arbitrary row cart be constructed from a previous one.

[)efitie B to be the set of all x E N so that one cart find a set of function values
{f(x, i) : i c N} so that for all both (a) and (h) hold (for the fixed x). 'to he
shown is that B = N.

BASE STEP (x = 1): For every yEN, define f(1.y) = y'. By definition, 1(1,1) = I',
and so (a) holds with x = 1. Also, by definition. f(1,y') = (y')' = (f(1,y))', and so
(b) holds with x = 1.

TNI)UCTIVE STEP: Suppose that x E B. Then f(x, y) is defined for all y E N so
that (a) and (b) hold. Define f(x',y) = (f(x,y))'. Then, by definition, f(x', 1)
(f(x, 1))' = (x')' and so (a) holds with x' in place of x. Also

f(:r',y') (f(x,y'))' (by definition)

= ((f(x,y))')' (by (h) since x E B)
= (f(x', y))' (by definition),

and so (h) holds for x'. Thus, x' E B, completing die inductivc stcp.

By induction, B N, finishing the existence part of the proof.

(Uniqueness) Suppose that f is defined so that for all x, y E N both (a) and (14 hold
and also suppose that g is a function satisfying the corresponding equalities:

(a') g(x, I) = x', and
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(b') g(x, y') = (g(x, y))'
Let xe N be fixed and define the set A1 = {y eN: f(x,y) = g(x,y)}. Induction is
used to first to show that A1 = N.

BASE STEP: I e A1 since f(x, 1) = = gfr, 1).

INDUCTIVE STEP: Suppose flint y C A1. that is, f(x,y) = g(x,y). Then by (b) and
(b'), f(r,y') = (f(x,y))' and g(x,y') = (g(x,y))'. Hence, by P4, f(x,y') = g(x,y').
So y' C A1.

Hence by P5, = N. Since X was arbitrary, this completes the uniqueness part
of the proof, and hence the entire proof. . 0

The function f above is better known by its common notation, f(x, y) = X + y,
and hence the successor function is X' = X ± 1 (as one might expect). One can now
freely use the result of the previous theorem, namely, the existence of the unique
function f defined so that

(a) f(X, I) =
(b) f(X,y') = (f(x,y))';
(c) f(l,y) =
(d) = (f(x,y))',

where (c) and (d) are from the way f was defined in the existence part of the proof;
translating (a) •(d) into common notation using the sign,

(a') X 4 1 =
(b') X 4 y' = (a: {. y)';
(c') l+y=y';
(d') x' + y = (a: + y)'.

The expression "x -i y" is called the sum of x and y, and the process of computing
x + y is called addition.

Theorem 2.5.5. Addition of natural numbers is associative, that is, for every
x,y,z C N,

(X + y) + z = X + (y + z).

Proof: Let X and y be fixed natural numbers and put

A = (a E N: (.x + y) + a = x + (y + z)}.

BASE STEP: 1 A because

(x+y)+l=(x+y)' (hy(a'))
= X + (by (h'))
=x+(y±i) (by (a')).

INDUCTIVE STEP: Suppose that a A. Then

(r+y)+z'= ((x+y)+z)' (by (b'))
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= (x + (y + z))' (because z E A)
(by(b'))

= x + (y + z') (by (b')),

and so z' E A, completing the inductive step. Hence, by P5, A = N. D

Since addition is associative, it matters not which adjacent terms are added first,
and hence parentheses are not needed.

For natural numbers £1 define inductively

Il +12 + ... = (Il +12+...

To abbreviate the left side, one uses so-called sigma notation:

IL +12 + + = txi.
Such notation extends in the obvious way, for example,

Y3 + 114 + + YG #

J:oi. later reference, a formal definition of the sigma notation is given:

Definition 2.5.6. Let Il, 12. 13,14,. .. be a sequence of natural numbers. Define
= and recursively define for each ii > 1,

Ii

Generalizing this slightly, for any j e N, define x1 and recursively define
for each n > j,

= +Xn.

Finally, define the sum over an empty set of indices to be zero.

According to [556], the next theorem is due to H. Grassrnan, from Lehrbuch der
Arithmetik, 1861 (though I have not seen the original proof).

Theorem 2.5.7. Addition in natural numbers is commutative, that is, for every
',yEN,

I + If = If +
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Proof: LetxeNbeflxed,andputA={yEN:x+y=y+x}.
BASE STEP: 1 e A because by (a') and (c') respectively,

x + 1 = x' = 1 + x.

INDUCTIVE STEP: Suppose that y E A. Then

x+y' =(x+y)' (by (b'))

= (y + x)' (because y A)

=y'+x (by(d')),

and so y' A, completing the inductive step.
Hence, by P5, A = N. finishing the proof of the theorem. 0

Theorem 2.5.8. For every x,y N, x+y 7L x

Proof: Let A be the set of all those x N such that for every y N, x + y x.

BASE STEP: By P3 and property (c'), for every p N, 1 + p 1, and so I A.

INDUCTIVE STEP: Assume that x A, that is, x is such that for any p N,

x 4 y x. If for sonic y, x' + y = x' holds, then by property (b'), it follows that
(x -F- y)' = x', and so by P4, x + p = x, contradicting that x C A; hence conclude
that x' + y $ x', and thus x' C A.

By PS, A N.

The next sequence of exercises establishes the properties for the operation known
as "multiplication" of natural numbers; they are proved in a very similar manner to
those above. The content of the exercises in this chapter are really theorems whose
proofs are perhaps boring or repetitive and are not intended as the first exercises
regarding induction that a student might see.

Exercise 1. Prove that there exists a unique function g : N x N - N so that for
allx,y €N

(e) g(x, 1) =
U) y(x,y') = (x + g(x,y)).

Replace the notation g(x, -y) by x y, the multiplication of x and y, and then
abbreviate x y by xy.

Oddly enough. it helps to first. prove distributivity before associativity of multi-
plication.
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Exercise 2. Prove that the distributive laws hold, that is, prove that for any x, y, z E
N,

x(y + z) = xy + xz,

and

(x + y)z = xz ± yz.

Exercise 3. Prove that the general distributive laws hold for natural numbers, that
is,forxi,x2

Using one of the basic distributive laws, a.ssociativity comes fairly easily.

Exercise 4. Prove that multiplication of natural numbers is associative, that is,
prove that for any x, y, z E N,

(xy)z = x(yz).

Definition 2.5.9. The notation is defined recursively by and
for a > 1,

=

Since multiplication of natural numbers is associative, if the xi's are natural num-
bers, the meaning of

= X1X2"Xu

is unambiguous. Finally, define the product over an empty set of vertices to be equal
to one, that is,

fix2 = 1.

iCø

Note that when all x;s are equal, the first simple definition of exponentiation
is given (for positive integers): define a1 = a, amid for it > 1, having defined x"m,
define = x.

The discussions above are just a bcginning to thoroughly define the real numbers,
or to check all of the properties of or operations on the natural numbers. A few of
these are given as exercises.
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2.6 Well-ordered sets

Given a set S, a binary relation on S is a subset of the cartesian product S x S =
{(a,b) : a E S,b E S}.

A binary relation R on S is

• reflexive 1ff for every x E 8, (x, x) E .11.

• symmetric if for every x,y 5, [(x,y) RJ —' [(y,x) R].

• antisymmetric if for every x,y 5, [((x,y) It) A (x y)] [(y,x) R].

• transitive if for every x,y,z 5, [((x,y) It) A ((y, z) 11)] —' j(x,z) H].

A binary relation H on S is a partial order if and only if H is reflexive, antisymmetric,
and transitive. If H is a partial order on S. the set (S, H) is called a partially ordered
set, abbreviated, poset.

One can write x �R y if (x,y) H, and if also x y, write x y and say
that x is less than y. The notation xHy is also quite common. If the relation H
is implicitly understood, simply write x � y or x < y, rather than y or
a: <jq y (or xRy). (Sonic texts define a partial order without reflexivity, and so a
total order is then always written with "c" rather than "<"; such notation is often
practiced regardless of whether or not reflexivity is insisted on in the definitions,
since a relation without reflexive property determines precisely one with reflexivity.)

A least element in a partially ordered set (P, �) is an element x P so that
for every y P. x < y. For example, the poset {(a, c), (b, c)} has rio least element
(instead it has two minimal elements: a and b) hut the poset {(x,y), (x, z)} has a
least element x. If a least element exists, then it is unique. For a subset Q P, a
lower bound for Q is an element u P so that for every q Q, a q; if u is a lower
bound for Q, write u < Q. Similarly define greatest element and upper bound. A
least upper bound for Q c P is a least element in the set of all tipper bounds; note
that if a least upper bound for Q exists, it is unique. Similarly define greatest lower
bound. Sometimes the notation x < Q denotes that for every q Q, x < Q.

A partial order H on a set S is called a total order (or linear order) if for every
x, y 5, either (x, y) H or (y, x) H holds; in this case, the ordered set (5, H) is
called a totally ordered set.

The standard order on N is often defined by x < y if and only if there exists
a N so that y = x-s-n. (Note that one can not yet really say in this definition
and only if there exists n I so that...", since the order � is being defined!) As
one might expect, this standard order on N is indeed a linear order or total order.
One first step in proving this is to show that any two elements in N are comparable,
that is, for any x, y N, one of x < y, x = y, or p < x holds. The following "Law
of Trichotomy" says precisely that.

Exercise 5 (Law of Trichotoniy). For any x,y N, exactly one of x < y, x = y,
y <x holds. Prove this result by induction.
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This law also confirms that since means < or =, the relation < as defined is
antisymmetric. It also follows that < defines a total order. Again, by induction,
addition preserves order:

Exercise 6. For any natural numbers x, y, p,

x<y 'ifandonlyif x+p<y+p.

There are different kinds of total orderings. For example, N, the integers Z. the
rationals Q. and the reals JR all have no largest element. Of these, only N has a
smallest element. Also, both Q and JR are dense (between any two there is another),
yet of these two, only JR contains all its limit points.

Definition 2.6.1. A well-ordering on a set W is a total order � (or cc) on W so
that for any non-empty S C H', S contains a least element. Any ordered set (LV <)
where is a well-ordering is called well-ordered.

As well [pun intended] noted in [95]. the term "well-ordering" might very well
be replaced with "good-ordering", because "svell" in this instance is an adjective,
not an adverb, however this usage has survived to heconte standard these days.

Peano's axioms imply that every' non-empty subset of natural numbers indeed
has a least element:

Theorem 2.6.2. 'I/ic standard order on N is a 'well-ordering.

Proof: Let S C N. First observe that if any' least element in S exists, then it is
unique. since if there were two least elements, say' in and 1712, then one would have
both !Ilj < in2 and '1112 < in1. Consequently', by' the Law of 'rrichotomny, = in2.

Assume that, S is without a least element; to finish the proof, it suffices to show
that S = 0. Let

A = {m E N : no number less than in belongs to S}.

By P3. 1 A. Suppose that k A. If it cc k + I, then either ii cc k (in which case
it 0 S since k E A) or a = k (in which case a 5, for if ii E 5, then a would be
least iii .S'). In any case, such an a is not in .9. Hence k + I E A. Thus by' P5.
A=N.andsoS—0, 0

Exercise 7. Let (X. <) be a well-ordered set and let Y ç X. Show that if f: X -. -8

V is an then for all a; E X, f(x) ? a'.

Theorem 2.6.3. A linearly ordered set (H'. cc) is well-ordered and only if there
is 110 infinite sequence in lV.
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Proof: Suppose that W is well-ordered. If wi > w2 > ... is art infinite decreasing
sequence in 11", put S = {Wi, w2, .. .}. By well-ordering, let Wk be the least element
of 5; then wk > 5, contradicting the minimality of ink.

Assume that j4t is a linearly ordered set with no infinite decreasing sequence. Fix
any non-empty S W, and let t 5. If t is not the least element of 5, pick Wi 6 5,
to1 c t. If w1 is not the least element of 5, pick to2 S with W2 < tot. Continue
choosing successively smaller elements. Since W contains no infinite decreasing
sequence, the same is true for 5, so this process must stop after finitely many steps,
and at that time, the least element of S is produced. D

Note: Jech f289, p. 18] states that the direction "no infinite decreasing subset
implies well-ordered" in Theorem 2.6.3 follows from the Axiom of Choice (see Section
4.5); however, AC does riot scent to be needed in the above proof.

Definition 2.6.4. For totally ordered sets (Wi, and (l4'2, a function f
W2 is order preserving (o.p.) ff1 x p implies f(x) �2 f(y). Well-ordered

sets A arid B are similar, written A B, if there is an order preserving bijection
between them.

.kn order preserving bijection is also called a similarity. [Caution: "similarity" is
also a term used in geometry for functions that preserve ratios of distances.I Sonic
authors use the term "isomorphism" to describe a similarity; is often
used for a bijection that preserves algebraic or relational structure; in this case the
structure is only the order.

Theorem 2.6.5. 2.6.3 Let (14/. <) be a Well-ordered set and let Y ç W. 1ff: IV
Y is an order prt'scning bijection, then for all w e 147, 1(w) w.

There are two ways to present this proof, one by induction, and the other by
contradiction; the difference is subtle.

First proof of Theorem 2.6.3: Let Al = (to 6 W : f(w) C w}. If *1 is non-
empty, pick some in 6 Al; then f(m) < in arid f being order preserving imply
f(f(rn)) <f(m), so f(m) Al as well. Continue applying f, by induction, giving
an infinite decreasing sequence rn, f(m), f(f(m)),... in M. But since Itt is a subset
of the well-ordered set W. A'! has a least element, so the assumption that itI is
non-empty must be abandoned. Thus conclude that M = 0. 0
Second proof of Theorem 2.6.3: With the same notation as above, if A/ $ 0,
since A'! is a subset of a well-ordered set, Al contains a least element Then

C po implies that f(f(yo)) < f(yo) and hence E Al, contradicting that
yoisleastinM.SoM=O. [1

The first proof above can he thought of as a proof that uses downward induction
t.o produce an infinite decreasing sequence, a sequence which contradicts a previously
established fact. This very saute technique is used in Fermat's method of infinite
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descent (see Section 3.6). Thus, many proofs by contraclictioti might be considered
as proofs by induction.

2.7 Well-founded sets
A partial order (P, <) is called well-founded if for every non-empty subset X c P,
X contains a niiriitnal (with respect to �). In a well-founded partial order, for
every element x E P, there is a well-ordered set containing both x and a minimal
element of P. Just as mathematical induction is used on well-ordered sets, so too
is mathematical induction valid for well-founded sets. '[his kind of induction might
he called generalized induction. For example, suppose that one wants to prove a
sequence of statements P(mn, n) that depend on two variables, say, for finitely many
in. Suppose also that one knows Pent, n) P(m, n + 1). An inductive proof could
start with the base cases as 0), and from each base case, ordinary induction
can be to reach all statements of the form P1rn1, n). Generalized induction is
most often used for itultiction on two variables. called "double inc.luction", discussed
in the next chapter. Generalized induction also includes the notion of "alternative
induction", also iii the next chapter.





Chapter 3

Variants of finite mathematical
induct ion

Mathematics is either Pure or Mixed And as for Mixed Mathe-
matics, I may only make this prediction, that there cannot fail to be
more kinds of them, as nature grows further disclosed.

—Francis Bacon,

Advancement of Learninq.

are many fbrins of mathematical induction—weak, strong, and backward.
to name a few. In what follows, n is a variable denoting an integer (usually non-
negative) and S(n) denotes a mathematical statement with one or more occurrences
of the variable n.

3.1 The first principle

For convenience, the standard presentation of mathematical induction is repeated
here. Sometimes this standard version of induction is called the "first principle
of mathematical induction", and is also called "weak mathematical induction" (as
opposed to "strong" induction, a modification appearing in Section 3.2). Recall that
the notation P Q is short for "P implies Q".

Theorem 2.4.1 [Principle of Mathematical Induction (MI)]
Let S(n) be a statement involving n. If

(I) S(1) holds, and
(ii) for every k � 1, S(k) —i S(k + 1),

then for every n � 1, the statement S(n) holds.

35
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By Theorem 4.5.5, an inductive step can also be accomplished indirectly by
showing that the set of integers for which 8(n) fails has no least element, contra-
dicting the well-ordering of N. Such an example occurs in the following Section 3.2
on strong mathematical induction. (See also one solution to Exercise 477.)

Note that the base step in an inductive proof is essential, since, for example, if
one were 1.0 attempt to prove that for any positive integer n, the statement 8(n)

—1) n2 +5 holds, it is not hard to show that 8(n) —t 8(n+ 1), however,
8(1) does not even hold, arid so one may not conclude that 8(n) holds for all n > 1.

Another such statement (where a is a positive integer) is -1- 5n + 1 is even", for
which the inductive step works, bitt the statement is in fact never true!

The base case for MI need not he 1 (or 0); in fact, one may start at any integer.
Here is a slightly moore general (but equivalent) form of the principle of induction:

Theorem 3.1.1 (Principle of Mathematical Induction (MI)).
Let 8(n) denote a statement regarding an integer n, and lct k Z be fixed. If

(i) 8(k) holds. and
(ii) for in � k, 8(m) —* 8(m 'I- 1),

then for evcry n > k, the statement 8(n) holds.

Proof: Let T(n) be the statement S(n + k — 1), and repeat the above proof,
instead with '1' replacing every occurrence of 8. Then the base case becomes T(l) =
8(1 + k — 1) 8(k) as desired. 0

3.2 Strong mathematical induction
While attempting an inductive proof, in the inductive step one often needs only the
truth of 8(n) to prove 8(n + 1); sometimes a little more is needed, and
often this is mmmdc possible by strengthening the inductive hypothesis. The following
version of niatlientatical induction cart be viewed as contained in the principle of
transfinite induction (see Section 4.2).

Theorem 3.2.1 (Strong Mathematical Induction).
Let 8(n) denote a statement involving an integer rm.. If

(i) 8(k) is true and
(ii) for every in � k, [8(k) A 8(k + I) A . A 8cm)] 8(m + 1)

then for every ii � k, the statement 8(n) is true,

The principle of strong induction is also referred to by some as course-of-values
induction (e.g., see [42]). A few professionals use induction" or comnplete in-
duction" to denol.e strong induction: these terms have long been accepted as meaning
sunply "mathematical induction" (as opposed to empirical induction). [See Section
1.8 on history of' induction.]
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In 'l'heorem 2.6.2, it was shown that Peano's axioms imply the well-ordering of
N. This well-ordering is used (below) to prove strong induction, and hence, to show
that strong induction also follows from P5. Notice that Theorem 4.5.5 also shows
that both forms of induction follow from well-ordering.

Proof of strong induction principle from weak: Assume that for some k, the
statement 8(k) is true and for every m � k, A8(m)] 8(m+1).
Let B be the set of all n > in for which 8(n) is false. If B 0, B C N and so
by well-ordering, B has a least element, say t. By the definition of B, for every
k � t < t, 8(t) is true. The premise of the inductive hypothesis is true, and so 8(t)
is true, eontradictiiig that £ E B. Hence B = 0. D

Strong induction also implies weak induction.

Proof of weak induction from strong: Assume that strong induction holds (in
particular, for k = 1). That is, assume that if 8(1) is true and for every m � 1,
[8(1) A 8(2) A . . A. 8(m)] 8(mn 4 1), then for every mm � 1, 8(n) is true.

Observe (by truth tables, if you will). that for m + 1 statements

[Pm P21 A [P2 P3] A... A [Pm Prn+1] [(Pi A P2 A.. . A Pin) —)

itself a result provable by induction (see Exercise 456).
Assume that the hypotheses of weak induction are true, that is, that 8(1) is

true, and that for arbitrary t, 8(t) 8(t + 1). By repeated application of these
recent assumptions, 8(1) 8(2), 8(2) 8(3) 8(m) —* 8(m + 1) each hold.
By the above observation, then

[8(1) A .9(2) A ''. A 8(m)I 8(m + 1).

Thus the hypotheses of strong induction are complete, and so one concludes that
for every a ? 1, the statement 8(n) is true, the consequence desired to complete
the proof of weak induction, U

Hence it has been demonstrated that weak and strong forms of mathematical
induction are equivalent. For remarks on this relationship, see [477].

here is an example where strong induction is used. Recall that a prime number
(or simply, a prime) is one svhose only divisors are itself and 1 (and convention says
that I is not a prime); the first few primes are

2,3.5,7,11,13,17,19,23,29,31,37,41,43,47,53

Theorem 3.2.2. Any positive integer a � 2 is a product of primes.

Proof: Let 8(n) he the statement "a is a product of primes."
BASE STEP (a = 2): Since a = 2 is trivially a product of primes (well, actually only
one prime), 8(2) is true.
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INDUCTIVE STEP: Fix some in � 2. and assume that for every t satisfying 2 � t Cm.,
the statement 8(t) is true. To be shown is that

8(m + 1): m + 1 is a product of primes,

is true. If m + 1 is prime, then 8(m + 1) is true. If in + 1 is not prime, then there
existsr and s with 2Cr < mand 2<3 � mso that m+1 =rs. Since 8(r) is
assumed to be true, r is a product of primes; similarly, by 8(s), s is a product of
primes. Hence m + 1 = rs is a product of primes, and so 8(m + 1) holds. So, in
either case, 8(m. + 1) holds, completing the inductive step.

Thus, by mathematical induction, for all n � 2, the statement 8(n) is true. 0

The so-called "Fundamental theorem of arithmetic" says that any integer n � 2
is a product of primes in exactly one way, that is, the prime factorization is unique—
another result provable by induction (see Exercise 206).

3.3 Downward induction

Suppose that you are trying to prove a statement 8(n) and a forward inductive
argument is difficult for every a. Here is another strategy: first prove the statement
for infinitely many a (for example, when a is a power of 2 either directly or by
an inductive step of the form 8(k) 8(2k), say) and then prove 8(n) for the gaps
between. The proof for the gaps can either he by forward induction, or backward
induction. For example, in the case where one has the truth of 8(n) for all powers
of 2, one can then fill in the gaps with an inductive argument for cacti fixed k of the
form S(2k + t) 8(21c + t — I) for each t satisfying I < t 2k.

Downward (also called "backward") inductive arguments have been around a
long time; many authors, including Cauchy (1759—1857) and Weierstrass (1815—
1897) (see [259, p.l9]) have used them. The term "backward induction" can also he
used in game theory where players reason "working backward from the last possible
move in a game to anticipate each other's rational choices." [1 14J. What has recently
become known as "downward induction" defined below might be more appropriately
called "upward-downward" induction.

Downward induction: Let 8(n) be a statement involving a. If
(i) 8(n) is true for infinitely many a, and
(ii) for each in � 2, 8(m) —, 8(m — 1)

then for every a � 1, the statement 8(n) is true.

Proof of downward induction from MI: Assume the hypotheses (i) and (ii) hold
and let n1, n3,... be an infinite sequence so that for each i E Z+, 8(n1) holds.
Fix some k e Z+, and prove 8(k) holds as follows: Fix i so such that n2_1 <k n2.
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For j = 0, 1. n1 — ni—i, define the statement T(j) = — j). It suffices to
prove that T(n1 — k) = 8(k); this is done by induction on j.

BASE STEP Q = 0): T(j) = T(O) = — 0) = which was assumed to he
true by (i).

INDUCTIVE STEP: Suppose that for some j � 0, T(j) = — j) holds. By (ii),
T(j -1- 1) = S(nj — j — 1) holds, completing the inductive step T(j) T(j + 1).

Therefore, by MI, T(j) holds for all j � 0, in particular, — k) = 8(k) holds,
finishing the proof of downward induction. 0

There are different proofs of the so-called "theorem of arithmetic and geometric
means"; for example, there is one downward induction proof appearing in [259] and
another simpler one also suggested there. The simpler one is presented here. An-
other proof follows froni Jensen's inequality on convex functions—see Exercise 602
or 603 -both provable by downward induction. After giving the proof by downward
induction, one more simple, but tricky proof by ordinary induction due to Kong-
Ming Chiong [102] is presented. For other proofs prior to 1976 (mentioned in [1.02])
of the AM-GM inequality, see, e.g., [5. pp. 200—224], [43, §5 pp. 4 5; §11 pp. 9—10],
[104, p.46], [259], [135], and ]397].

Theorem 3.3.1 (AM-GM inequality). Let (Li.... be non-negative real numbers.
Then

a7,) < —,

with equality holding if and only if all a, 's are equal.

Proof: Let .9(n) be the statement that for any

a1 I
(aja2 . . . a,,) .

7'

with equality holding if and only if all are equal. The first part of the proof is
to show that .5(n) holds whenever n is a power of 2. This requires a form of strong
induction, one with two base cases.
BASE STEP n = 1: The statement 8(l) reduces to a1 = a1, which is true.

BASE rt = 2: To show 8(2), let ai = a and a2 = b; then

(a+h\2 (a-bY
aS

-= —

(+fl2
—

with equality holding if and only if a = S.
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UPWARD INDUCTIVE STEP (8(k) —' 8(2k)): For some k � 2 assunie that 8(k)
holds, that is, assume that for non-negative ci, c2, . .. ,

k

k

with equality if and only if the ci's are all equal. To show that 8(2k) follows:

aIa2 akblb2• . .

<
(by 8(k) twice)

—
k

:
((ai+...+ak+bi+...bk)21)k

by8(2),

—

2k

and inequalities are strict unless all at's and arc equal. Hence 8(k) -—' 8(2k),
completing this inductive step.

By induction, for all ii that are powers of 2, the statement 8(n) holds.

DowNwAIm INDUCIIVE STEP (8(m) 8(m — 1)): For some n � 2, assume that
8(m) holds, and let. a1 , a2 am. .i be non-negative, not all equal, and put

aI+ + ... +
rn — I

Then

a2 + +
a1a2 am_i/I <

m
(by 8(m)),

=
772 )

=

and hence a1a2 < thus showing 8(rn — 1). This completes the proof
of the downward induction step, and hence the proof. U

Note: Theorem 3.3.1 has a more direct proof, based on Exercise 199, the solution
of which is a fairly easy inductive proof; see comments after the solution to Exercise
199.

As mentioned ahove, here is an outline of Chong's simple (hint tricky) inductive
proof of the AM-GM inequality. Suppose that the base case n = 2 is done, and for
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some k � 3, suppose that 8(k — 1) is true, in particular. suppose that for any choice
of bj,a2,..., 0'k not all equal,

_j_
k — 1

> ak_I)

To he shown is that 8(k) holds (in the case when all numbers are riot equal). Let
a1 (12 be not all equal, that is, < and let .4 = (at+a2+..
be their arithmetic mean. Then a1 C A < which implies that.

A(ai 1- — A) — (al — A)(A — ak) > 0,

and so
(3.1)

Let b1 = a1 + -- A; then

— — kA—A
—

— k—i k—i
Thus, by induction hypothesis,

A > (bia2u3 ..
,alak

> . by eqii (3.1)

which yields

A
>

showing that 8(k) is true, completing the (upward) inductive step, and hence
Chong's l)roOf. D

There are other inductive proofs of the AM-GM inequality; one inductive step
hegins by assuming that for any a2's satisfying a1a2 a

1; without loss of generality, let < 1 and
> 1. Then b1 i— + � a + 1 by setting ai b1, a2 = =

but = Then by inductive hypothesis, b1 + b2 + 1- � a.
To finish the inductive step. it suffices to show

b11 � ± 1,

or

(i -— — b,1.1 i) <0,
which is true by the initial assumption oii and finishing the inductive
step. 0

See [146, pp. 37—40] for yet another solution by induction based on the following
leni Ella:
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Lemma 3.3.2. For real nwmbers w, x, y, and z, if w + x = y + z, then the largest
of the two products wi and yz is formed by the pair with the smallest difference.

Proof: Let w + x = v + z. Note the following two identities:

(w + — (w — =

(y + — (y — = 4yz.

Since w + x = y + z. also (w + 42 = (y + z)2, so the left-hand side of the two
identities is made largest when the second term is smallest. D

It might be interesting to note that the ease n = 2 in Theorem 3.3.1 can be
used to prove that no chord of a circle is longer than the diameter. Let three points
A, B, C form a straight line segment with distances = a and IBCI = b units
(see Figure 3.1.

Figure 3.1: Chords are shorter than diameters

Using the line segment AC as a diameter, form the circle whose diameter is
IACI a + b units. Form a chord of that circle perpendicular to AC through B.
Then with a simple application of Pythagoras' theorem, one finds that the length of
that chord is By Theorem 3.3.1, and so the length of the chord
is not. longer than the diameter of thc circle.

3.4 Alternative forms of mathematical induction
There are many ways to apply inductive reasoning. For example, if 8(0) and 8(1)
are trite, and if for any ri 0, 8(n) —* 8(n i 2) holds, then for all n 0, 8(n)
is true, since actually, two separate inductive proofs are comnlnncd in one (one for
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the even cases, and one for the odd cases). Here is an example of a situation where
three inductive proofs are rolled into one. [Note: This very example is listed again as
Exercise 311.1 Other applications of this alternative form of mathematical induction
appear throughout the exercises, e.g., in Exercises 113 and 275.)

Theorem 3.4.1. For any integer ii � 14, n is expressible as a sum of 3'á and/or
8's.

Proof: Let 8(n) be the statement: n is expressible as a sum of 3's arid/or 8's.
BASE CASES (8(14),8(15),8(16)): Since 14 = 3 + 3 + 8, 15 = 3 + 3 -F 3 + 3 +
3, and 16 8 + 8, the base steps are shown.

INDUCTI\'E STEP (8(k) —÷ 8(k+3)): Assume that for some k � 14, 8(k) holds, that
Then k+3=a'3+fl'8+3=

(a + 1) '3 + fi ' 8, that is, k + 3 is expressible as a sum of 3's and/or 8's, showing
8(k + 3) holds, completing the inductive step.

By MI, for all ii � 14, the statement 8(n) is true. (Actually, there are three
separate proofs by Ml rolled into one, one proving the statement for the sequence
n = 14,17,20,..., one for ii 15,18,21 and another for n = 16, 19,22,...

[1

An inductive proof might be also encountered when both 8(2) and 8(3) hold arid
for k > 2, [8(k) A 8(k + 1)] 8(k + 2), then 8(n) holds for all n 2; such a proof
might be classified somewhere between weak and strong induction. In Section 12.2
on Fihonacci numbers, there are many exercises where such a technique is required.

Many mathematical induction proofs use immure than one base case, and such
proofs can fall into the category of "generalized induction" on well-founded sets.
The technique relies on the fact that in any well-founded set (a partial order with
minimal elements) and a statement S about elements of that; set, for each x in the
set, there is an inductive argument for 5(x) that has as its base case one of the
minimal elements. For example, consider the set X = {2, 3,4,5, 6, . . . }. If X is
ordered according to divisibility, the proof of any statement 8 about members of X
mrmight start with the base cases being a proof about each prime, the primes being
the set of minimal elements in the partially ordered set X.

3.5 Double induction

A special kind of inductive argument is called "double induction"; some texts refer to
double induction as an inductive step that requires, say, 8(n) and S(n + 1) to prove
S(n + 2). Another kind of "double induction" is where two statements involving ri
are proved simultaneously (see, for example, Excrcise 320 or Exercise 122 where the
inductive step consists of two proofs, one for each of two statements). In this section,
however, "double induction", means an induction on two variables simultaneously.
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Many mathematical statements involve two (or more) variables, each of which
may vary independently over, say, N. Some such statements can he proved by
induction iii different ways. Let S(rn, ii) be a statement involving two positive
integer variables rn and ii. One met hod to prove S(m, n) for all in � 1 and ii � I
is to first prove 5(1, 1), then by induction prove S(rn, 1) for each in, and then for
each fixed 714), inductively prove S(rno, ii) for all n. Here is a rather simple example
of the technique.

Theorem 3.5.1. Let positive integers rn and n be given.
viz vi rn.n(rn+n+2)

2i=I j=I

Proof: Let S(m, a) be the equality in the statement of the theorem.
First it is proved that for all in � 1, S(m, 1) is tnie.

BASE STEP: The statement S(1, 1) is true since 1 + I = 1 . 1(1 + 1 + 2)/2.

INDUCTiVE STEP (inducting on in): For some k � 1, assume that S(k, 1) is true,
that is, + 1) = k(k + 3)12. Beginning with the left-hand side of S(k + 1,1),

/c

Di+i) = (Di+1) +(k+1)+l

= k(k+ 3) + k +2 (by S(k, 1))

k2+5k+4

(k ul)(k+i+I+2)
— 2

the right-hand side of S(k + 1, 1). Hence S(k, I) S(k + 1,1), and so by rnathe-
matical induction, for all in � 1, S(m, 1) is true.

Fix an arbitrary in0- Then S(ino, 1) is true and so this is a base step for proving
that. for all rì, S(rno, n) holds.

INDUCT!VE STEP (inducting on a): This step is of the form S(rn0,t) — S(mo,t+l).
Let £ � I be fixed and assume that S(rn0,t) is true, that is,

e

> E@+-n
i=1 j=i

Beginning with the left side of S(-rno, f i 1),

€+1 / / t \
iv,,' j'=l i=i \ /
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nofE flu)

=>{>(i+i)J
i=J / i=1

iii))
rnu4mo+ £ + 2)

+ + t 4 1) (by 8(rno, £)),

= m0efrn0+ £ + 2)
+

rno(tno + 1)
± mo& + 1)

— mof(mo + £ + 2)
+

rn0(rno + 1 1- 2(E -F 1))

2 2

—- rno(€mo ±t2 4- 2'±Tno + 1 +2(t+ 1))
2

— mo(€± 1)(mo ±t+ 1+2)
2

which is the right-hand side of S(rno, £ + 1). Hence. by induction, for each fixed me
and all ii � 1, 8(mo, it) is true, completing this inductive step.

Since Tao was arbitrary-, by induction, for all In. � 1 and a � 1 the statement
S(rn, a) is proved. 0

Sometimes the inductive proofs contained in each stage of the double induction
require multiple base cases and alternative forms of induction (or strong induction).
Sec Exercise 304 for such a situation, where the alternative form of induction in the
second stage requires two proofs by induction in the first stagc.

Another way to apply a double induction argunient would be to use 8(1, 1) as a
base step, then show that both 8(m, a) — 5(m + 1, Ti), and 5(m, a) —-t 5(in, Ti + 1).
This would hrove S(m. a) for all at and a. One must l)e careful, however, for only
the step 8(m. a) —p 5(m + 1, a + 1) would not prove the statement for all in and a,
only the cases where Tfl = a-

A slightly trickier double induction occurs in Exercise 380, where the induction
step shows S(a — 2, k — 1) A S(n — 1, k) —* 8(n, k). In this case, one needs to prove
two families of base cases, those of the forms 5(0, k), 5(1, k) and those of the form
S(a, 0), 8(11, 1). Then, for example, to prove 8(6,3), one proceeds as follows:

5(0,1)AS(I,2) 5(2,2)
S(1,1)AS(2,2) — 8(3,2)
8(2, 1) A 5(3,2) 5(4, 2)

S(3,1)AS(4,2) 5(5,2)

8(0,2) A 5(13) 5(2,3)
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8(1,2) A 8(2,3) 8(3,3)
8(2, 2) A 8(3, 3) 8(4, 3)

S(3,2)AS(4,3) 8(5,3)

8(4, 2) A 8(5, 3) —* 8(6, 3).

So in this situation, one fixes k — 1 and k, inducts on n, then one repeats the process
for Jr arid Jr + I, and so on. Given that the base cases and the inductive step are
proved, the interested reader can try to write up the proof formally.

3.6 Fermat's method of infinite descent
One of the more famous applications of Ferrnat's method of infinite descent showed
that any right angle triangle with sides having rational lengths could not have in-
tegral area. His technique was to first show that the truth of the theorem follows
from the special case for right triangles with integer lengths. that is, for Pythagorean
triangles. Then lie showed that if one could find such a Pythagorean triangle with
integer area, one could then (using the number-theoretic properties of the lengths of
the sides from the first one) produce a smaller Pythagorean triangle with the sarnc
property. From the smaller one, applying precisely the same argument, one would
find yet a smaller one. By induction, one gets an infinite sequence of consecutively
smaller triangles with the desired property. Clearly there is no infinite descend-
irig sequence of Pythagorean triangles (by the well-ordering of natural numbers) -a

contradiction. So one must abandon the assumption that one found a Pythagorean
triangle with integer area.

The above discussion hints at the possibility that there are proofs that are in-
ductive, but not in any straightforward way. To demonstrate the beauty of Fermat's
technique, the next theorem is given with a proof by infinite descent; in many re-
spects, it duplicates the proof alluded to above for Pythagorean triangles.

Theorem 3.6.1. The equation

(3.2)

has no solution in non-zero integers x, y, and z.

Proof by infinite descent: If any triple of integers (x, y, z) satisfy (3.2), then so
do any of (+x, ±y, +z); thus to show the theorem, it suffices to show that are 110
positive integer solutions to (3.2).

The proof is accomplished by showing that if some solution r, y, z to (3.2) exists,
then from that solution one can create another "smaller" solution a', y', 2, where
"smaller" means that z' < z. Since the positive integers are well-ordered, this
process can not continue forever, and so one must abandon the original assumption
some solution exists.
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Hypothetically, suppose that x, y, z is a solution to (3.2).
Considering the equation (3.2) inodulo 4, one observes that x and y can not both

be odd (any odd number squared is congruent to J inodulo 4, and since then z has
to be even, z2 is 0 modulo 4).

Let x and y be even, say x = 2k, y = 2€; then 16 divides z2, and so 4 divides z,
say z = 4m. Then (2k)4 + (tn)2, and division by 16 yields k4 + = in2,
a smaller solution. Similarly, if any prime p divides both x and y, write x = pk,
y = p€, and z = p2m. Division by p4 shows that a? = k, = €, and a' = in
is another smaller solution to (3.2). Hence, it suffices to assume that x and y are
relatively prime.

So suppose that exactly one of x and y is even, the other odd (and x arid y are
relatively prime). Without loss of generality, suppose that x is even and y is odd.
Then x2 and y2 are relatively prime, and so the triple x2, y2, a form a fundamental
Pythagorean triple (a triple of positive integers a, b, c, each pair relatively prime,
satisfying a2 + b2 = c2). It is well known (e.g., see [150]) that a fundamental
Pythagorean triple is a triple of the form 2mn, in2 — and in2 + n2, where in and
n are relatively prime positive integers with exactly one of in, n odd.

Fix such an in and ii, and write x2 = 2mn, y2 = m2—n2. and a = m2+n2. Since
+ in2 = n2, the triple y, in, ii is a Pythagorean triple. Since in and n are relatively

prime, so are y and in, with y odd and it even, and so y, in, it is a fundamental triple.
hence, there are relatively prime p and q, so that in 2pq arid it p2 + q2.

Since x2 = 2mn = 4pq(p2 + q2) and p and q are relatively prime, each of p, q,
and p2 + are all relatively prime and hence each must be a perfect square, say
p=a2,q=52.andp2+q2=72. Thenn4+1i"=72with-y<m<z,givinga
smaller solution to (3.2). LI

Since is a perfect square, Theorem 3.6.1 implies that a:4 + y4 = a4 has rio non-
zero integer solutions, a special case of what is now called last theorem":
for each integer it 3, the equation x" + = has no non-zero solutions. (This
was a conjecture until Andrew Wiles et al. finally proved it in 1995 (see [569]). In
1753, Euler gave an incorrect proof for it = 3, later corrected by Gauss; both ideas
were using descent, however Gauss failed to notice that unique factorization did not
hold in his "proof". The case it 5 was solved with infinite descent by Dirichlet
(1805- 1859) and Legendre (1752—1833) in 1825 (both proofs were based on a result
by Sophie Gerinain ); Dirichlet also rrranaged it 14 in 1832. Lamé settled the
case it = in 1839. [Added note: I forget the reference, bitt I recall reading that it
was proved that the method of descent would riot work for it > ii. Also, Kumrner
proved Ferrnat's last theorem for all "regular primes".]

Some authors prove that is irrational by the method of infinite descent.
The argument is by contradiction arid begins by assuming that is rational, say,

= for some positive integers a and b. Squaring each side, 2 = and so
2a2 = b2. Then 2 divides b2. and hence 2 divides Li, so write Li = 2k. Then replacing
this in the previous equation gives 2a2 = 4k2, yielding a2 = 2k2. Again, this shows
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that now 2 divides a, and so a = for sonic positive integert > 1. Replacing a
in the previous equation now gives = 2k2, and hence 2 = %-. Thus two smaller
integers k and e are found with = This process of finding smaller integers to
represent as a fraction can continue forever, contradicting the well-ordering of
the natural numbers.

The above proof of the irrationality of does not have to take the form of
infinite descent if one merely assumes at the outset that a and b are relatively prime.
The contradiction is then quickly arrived at since the above proof then delivers that
2 is a common factor to both a and b. See, for example, [216] or [260] for more on
proving the irrationality of

Exercise 8. Using infinite descent, prove that for each positive integer n, s/4n -- 1

is not a rational number.

For more results provable by descent, see (arriong others) Exercises 214, 222,
223, 224, and 225.

3.7 Structural induction
Computer scientists refer to mathematical induction, when applied to a recursively
defined structure, as "structural induction". Apparently, the term originally carrie
from model theory (although I cannot find the origin) where various properties of
models are proved by using chains of models, and some kind of induction on each
chain. The discussion here is far less serious. In the rest of mathematics, the term
"structural induction" is rarely used outside of computer science applications—as a
friend once said, "it's all just induction".

Assume that S is a class of structures (it is not important what kind of structure)
with some partial order C relating individual structures. Suppose S contains mini-
mal elements, and for every structure S E S there is a well-ordered set of structures
beginning with a minimal element in S and culminating in S (in other words, S is
well-founded). Let P be some proposition about elements of S. Then to prove the
truth of P(S), it suffices to prove inductively along the chain leading to 5, where
each inductive step is maintained by some property of the recursion used to generate
structures. Then such a proof might be called a "structural induction" proof.

'l'he niost common way in which structural induction is implemented is on re-
cursively defined sl,ructures that have some kind of "rank"—-a measure of how many
recursions are necessary to construct a structure from minimal structures. The typ-
ical example to help make things clear is that of rooted trees (see Section 15.2 for
terminology), the rank of a rooted tree is its height, and any finite rooted tree of
height h can be constructed recursively from trees of height It — 1 by simply adding
a new root. The inductive step for structural induction is usually proved by some
simple property that follows from a recursive definition for the structure.
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Structural induction is also used to prove properties with many base cases (as in
generalized induction on well—founded sets) and can even be applied with transfinite
induction (see Chapter 4).

Structural induction appears throughout this book. For examples using permu-
tations, see the proof of (12.5). For examples regarding well-formed formulae, see
Exercises 465, 466, 467. For examples using trees, see Exercises 483, 484. or 485.
Graph theory uses structural induction frequently; as just one example, see Exercise
513, where structures are partite graphs, arid r-partite graphs are constructed from

— 1)-partite graphs recursively. Other examples in graph theory where structural
induction is used include theorems for amalgamation (see e.g., Theorem 21.5.1 as
a restricted form of amalgamation) because certain classes of graphs can be con-
structed by recursively gluing together two graphs on some common suhgraph(s).

Hadarnard matrices might be the structures concerned, and a simple tensor
product construction creates recursively larger arid larger Hadamard matrices (see
Exercise 659). A similar notion is encountered when constructing latin squares
recursively from latin rectangles (see Exercise 666). Fumic:tions form a large class
of structures, and one can recursively define a function by its behavior on larger
and larger domains (see, e.g., Exercise 426). Colorings of objects are themselves
functions, and so, for example, Exercise 731 is solved with structural induction.
Certain classes of georrietric objects can be considered as structures, iii which case
many exercises in Chapter 20 are by structural induction.

The instances of structural induction in this book are too nunierous to list here.
The index points to a few more examples of structural induction.





Chapter 4

Inductive techniques applied to
the infinite

But of all other ideas, it is number, which I think furnishes us with
the clearest and most distinct idea of infinity we arc capable of.

—John Locke,

An essay concerning human understanding.

So far, mathematical induction has only been applied to one type of infinity,
namely that of the counting numbers. In fact, mathematical induction can be
performed on many other kinds of sets that have some kind of order defined on
them, in particular, to sets that have a larger cardinality than that of Z+. These
different forms of induction often depend on the axiom system decided upon. In
the most common axiom systems, forms of induction for infinite sets are used to
prove very powerful theorems. For example, the fact every vector space has a basis
is easily proved by one of these forms.

4.1 More on well-ordered sets
Theorem 4.1.1. There is at most one order-preserving bijection between any two
well-ordered sets.

Proof: Let (A, <) and (B. -.<) be well-ordered sets. Suppose that both f and g are
order-preserving l)ijections from a A onto B. Then g' o f is an order preserving
bijection from A to itself. By Theorem 2.6.3, for all a A, a g_t(f(a)), and
applying g to each side, g(a) < f(a). Similarly, applying 1og to A, for each a E A,
1(a) <g(a). Combining these two facts shows that for all a e A, 1(a) = g(a). U

5]
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Definition 4.1.2. For a well-ordered set (14", <) and I W, define the initial
segment of <) up to I by

seg(w<)(t) = {w w < t}.

Define a closed initial segment by

seg(t) = {w W 'w � t} = seg(t) U (t}.

When no confusion can arise, the notations segw(t). seg<(t), or seg(t) denote
seg(t%'<)(t). If a subset S of 1j satisfies a S,b < a b 5, then either S is an
initial segment of or S = 11'.

A closed initial segment seg(t) is also an initial segment, for if is the least
element of W\seg(t), then seg(t) = seg(f). However, an initial segment need not he
closed; for example, consider the well-ordered set X = to + 1 = {O, 1,2,3,... ,w}.
Then = to, which is not a closed initial segment in X.

A well-ordered set is similar (or isomorphic) to the collection of all its initial
segments:

Theorem 4.1.3. Let <) be a well-ordered set, and put S = {seg('w) : w W}.
Then (14', cc) (5, c).
Proof outline: It is not difficult to verify that the function f(x) = seg(x) is the
desired order preserving bijection. C

Lemma 4.1.4. Let (P, and (Q, be well-ordered sets :wit/l a,b P and
s, t Q and let g : — and h : sc'qp(b) —'segQ(t) be order jresening
bijections. If a < h, then h .9.

Proof: Let a < h. Suppose the conclusion fails, that is, suppose h g.

Because the set of all those p segp(a) with that g(y) $ h(y) is a subset of a
well-ordered set, fix the least element segj,(a) such that g(yu) h(y0). There
are a number of ways to derive a contradiction. If cc h(yo), then for every
x,z seg(a),' with x cc Pu cc z. since In is order-preserving, h(x) = g(x) cc g(yo) <
h(yo) cc h(z) shows that g(yo) is not in the range of h, contradicting h being onto
an initial segment. Similarly, "(ye) cc g(Yo) implies that g is not onto an initial
segment. C

Theorem 4.1.5. Let (14'. cc) be a well-ordered set. For any w 14', there is no
order preserving bijection from 14' to seq(w).

Proof: If f 11' seg(w) is any function. then f(w) cc w. so by Theurem 2.6.3,
such a function can not be an order preserving bijection. 0

Exercise 9. Show that a??. arbitrary union of initial segments in a well-ordered set
(U', cc) is cit/ncr another initial segment of 11' or is itself. Similarly, the union
of closed initial segments will always be an initial segment, the closure of an initial
segment, or TV itself.
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4.2 Transfinite induction
The principle of mathematical induction, as seen so far, applies to only sets that
have a well-ordering identifiable with the well-ordered set N. In short, transfinite
induction works just like the principle of mathematical induction, however applies
to any well-ordered set, particularly, to infinite ordinals other than w. In fact,
trnnslinite induction is a generalization of "strong induction" (see Theorem 3.2.1).

Principle of transfinite induction: Let A he a subset of a well-
ordered set X with x0 being the least element of X. If

(1)

x C X, [segx(x) c A] [Xe A]
then A = X.

In fact, in the statement of the principle of transfinite induction, one can even
dispense with part (i), since 0 C A and if (ii) holds, 0 = seg(xo) implies that x0 .4.

Proof of the transfinite induction principle: Suppose that it fails, that is,
suppose the condition (ii) holds, hut A X. Put C = X\A. Since X is well-
ordered and C C X, C has a least element, say c A. Then c

c A, a contradiction. D

Transfinite induction is suited to proving theorems about initial segments of
well-ordered sets. The same principle can he adapted to other statements, however,
caution is necded regarding what axioms are being used (see [1W)] and the comments
at the end of Section 4.4). Loosely speaking, if some process or construction is based
on transfinite induction over a well-ordered set, the process is called transfinite
recursion. For example, if LV is a well-ordered set, one can define a function f on
It' to au set X by dcfining inductively the map f, by defining each f(w) e K
according to how f is defined before w. By transfinite induction, the resulting map
on all of IF is again a function.

Lemma 4.2.1. For any two well-ordered sets P and Q, either they are similar or
one is similar to an initial seqment of the other.

There are many proofs of Lemma 4.2.1; the proof below can be found in, e.g.,
[160]. Given any function g and set A contained iii the domain of g, the shorthand
g[A] = {g(a) o c A} is used for the image of .4 under g; the function g restricl,ed
to A is denoted by gIA. If either of P or Q is finite, then the smaller one is similar
to air initial segment of the other; hence any proof riced only be applied when P and
Q are infinite. One may interpret the idea in the proof given below as an atttnnpt
to construct (inductively) an order—preserving injection .1 from P onto an initial
segment of Q; if this process fails for sonic P' c P. then f takes P' onto Q (then

is a bijection from Q onto P').
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Proof of Lemma 4.2.1: Let P and Q be well-ordered sets. Fix some symbol x
not in Q. By transfinite recursion, define the function P —* Q U {x} by

— f the least element of Q \ if Q \ f[seg(p)j $ 0
otherwise.

Set Q' = Q fl f{P] ftp] \ {x} and P' = = f1{Q'J and define f': P'
Q' by f' = lip'. Then f' is onto Q'.

To see that f' is one-to-one, let a, b P' with a < b; since a E seg(b) and
f(b) Q \ f[seg(b)] ç Q \ {f(a)}, f(b) 1(a).

To see that f' is order preserving, let a, b P' with a � b. Then since ç
.flseg(b)], Q \ f[seg(a)j 2 Q \ f[seg(b)J and so f(a) 7(a) � 7(b) = f(b).
Claim: Either P' P or Q' = Q.
Proof of claim: If P' $ P, then there is a P so that 1(a) Q, in which case
f(a) = x; this means that Q c f[seg(a)] ç f[PJ and hence Q' = Q, proving the
claim.

Also, P' is an initial segment of P or P' P and Q' is an initial segment of Q
or Q' = Q. Ifa,b€ P with a <band he P', then® $ Q\f[segb] c Q\f{seg(a)].
Thus 1(a) eQ and hence a C P'. Given z,w EQ with z <wand we Q', let pEP
be such that f(p) = w. Then w is the least element of Q \ f[seg p] and since z < a',
z Q \ and so z f[seg(p)j f[P} and hence z Q'.

Therefore, f' is an order-preserving bijection either from P onto an initial seg-
merit of Q or else from an initial segment of P onto Q. U

'fransfinite induction can be applied with any well-founded sets (not just well-
ordered), including iii proofs by structural induction (the term 'structnral induc-
tion" likely originated in model theory); see Section 3.7.

4.3 Cardinals

This section is a very brief introduction to cardinals to establish some terminology.
If there is an injection from a set A into a set B, write Al � 121. If there is
a bijection from A to B, write Al 1B1, and say that A and 13 have the same
cardinality, or are equzmumerous. This definition is due to Cantor.

To define a cardinal, one needs to give an interpretation for Given two sets
.4 and B. if there is a hijection from A to B, write A B. It is easily seen that the
relation is an equivalence relation on the collection of all sets. (Note that one does
not say "an equivalence relation on the set of all sets", for this leads to Russell's
paradox.) Although the following definition leaves open just what an element of an
equivalence class is, it is convenient:

Definition 4.3.1, A cardinal number, or siniply a cardinal, is an equivalence class
for
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Denote the cardinal number containing A by Al. Then two sets have the same
cardinality if = IBI.

A set A is called countable if A is either finite or is equiniimerous with N. and
uncountable otherwise. Standard proofs show that Z and Q are countable, yet IR is
uncountable. Even the set of algebraic numbers in R is countable. It is known that
a union of countably many countable sets is again countable (see Exercise 434).

Cardinal numbers are well-ordered, so induction is often carried out on cardi-
nalities of sets.

Cardinal numbers say something about the 'size" of a set. The cardinal number
(or cardinality of) for a well-ordered set says something about its size; to differentiate
between well-ordered sets of the same size, something called ordinals are introduced.

4.4 Ordinals
There are different ways to define all equivalent. Recall that for well-
ordered sets A and B (iii fact, for any linearly ordered sets) A is similar to B, written
A H, if and only if there exists an order preserving bijection f : .4 B.

Definition 4.4.1. An ordinal is an equivalence class tinder

Ordinals are soutetimnes called ordinal numbers. Different ordinals have different
If a is an ordinal and A e a, then is said to be of type a. An ordinal

a is oft:.en identified with any set of type a. For two ordinals a and /3. say that a
precedes (3 if and only if there exist A C a and B C (3 so that .4 c 1.3. The order on
ordinals is given by a < /3 if a precedes 3. Thus, with an abuse of notation, a < /3
can be written a' ç /3, or simply a C

For an ordinal (3, one can identify each element a C /3 with its initial segment
seg(a), the set of predecessors of a. Given this identification. some define an ordinal.
to be a well-ordered set (X. <) with the property that every element a C X is equal
to its initial segment. One can (and some do) define natural numbers (and 0) as
ordinaLs: Put 0 = g; 1 = {ø}={0};2 = {ø,{ø}} = {0,1}; 3 = {ø,{ø},{O,{ø}}} =
{0,I,2}, and in general, n= {0,1 ,n— l}.

The ordinal number a' = {0, 1, 2, . .
. } (with the usual well-order) is the first

infinite ordinal, which is really the set of all natural numbers together with 0. (This
is a reason why sonic texts use 0 in the definition of natural nmnnbers—so
that; they can identify a' with N.) In ordinal arithmetic, if any one of a < j3, a C £3,
or a C (3 hold, then all hold.

Au ordinal (3 0 is one of two types:

• is called a limit ordinal if (3 = and

• 3 is called a successor ordinal if /3 a u {a'} for some ordinal a (in this case,
(3 is the smallest ordinal larger than a, sometinies denoted by B = a + I or



56 Chapter 4. Inductive techniques applied to the infinite

Recall that two sets have the same cardinality (think "size") if there is a bijection
between them (see Exercises 430 and 431). A cardinal number is an ordinal B whose
every initial segment has a different cardinality than j3. Every infinite cardinal
number is a limit ordinal.

Here are (without proof) a sequence of lenunas that can be used to prove the
subsequent theorem. Some of these facts have proof.s that rely on facts already
proved for well-ordered sets in general; most proofs are simple, and can be considered
as exercises. (For details, see [95, pp. 42—43].) The subsequent theorem is used later
to give a simple proof hy transfinit,e induction, a proof that could otherwise be very
complicated.

Lemma 4.4.2. Every initial segment of an ordinal is again an ordinal.

Lemma 4.4.3. If a and -y are ordinais with a C -y, thcn a is an initial segment of
7.

Lemma 4.4.4. For any distinct ordinals a and j3, one is an initial segment of the
other. Titus any collection of distinct ordinals is linearly ordered by inclusion. This
order is indeed a well-order.

Lemma 4.4.5. The union of a set of ordinals is again an ordinal.

Theorem 4.4.6 (Burali-F'orti paradox). The collections of all ordinals is not a set.

Proof outline: Let C be the collection of all ordinals. Then C itself is an ordinal,
greater than each of its members, a contradiction. [TI

Suppose that P(a) is a statement. involving an ordinal a, perhaps infinite. If
P(ao) holds and P(a) P(a + 1) then by transfinite induction, one can conclude
that P(fl) holds from ao up to any ordinal below the next limit ordinal. As is,
however, one can not 'jump' to the limit ordinal.

For a limit ordinal 13 the statement P(B) is proved by showing that for every
a E 11, P(a) holds. This allows one to prove P "across limit ordinals". Ordinary
inducl,ion can l)e thought of as pushing up' froni n to n + 1; transfinite induction
can be considered more as 'reaching down and pulling up'. Proofs by transfinitc
induction are often divided into three cases, onc for the base case, one for successor
ordinals, and one for limit ordinals. In many instances, only two steps are required,
since the process for limit ordinals usually works for successor ordinals, too. In fact,
by the comment above, often only one case is necessary.

There are many proofs in sct theory that rely on constructing functions by trans-
tinitc induction. One might find different proofs in the literature for the same result,
both using some kind of transfinite induction, some relatively short, some very long
(and horrid). Thanks to an explanation by Prof. Kucera [331] the reason for differ-
ence in complexity lies in a subtlety not usually a concern for non-foundationalists
(translation: mere mortals). Here is a very rough account of that subtlety: lii the de-
velopnient of set theory, some authors prefer proofs that don't invoke a "replacement
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axiom" (see Appendix IV for statement) unless necessary. Avoiding unnecessary as-
sumptions can make a proof very difficult.

As Kucera commented, the replacement axioms are not necessary if transfinite
induction is used to construct functions from ordinals to ordinals, however for func-
tions from ordinals to the class of all sets, often the extra axioms are required. (See
[160, Pp. 178—9] for more intelligent discussion on this matter.) Others implicitly
assume these axioms (or assume them at the onset. many pages before the proof in
question). For example, (these abbreviations are defined below) compare proofs of
AC implying WO, [160, Thm GM] or [347, p. 182] with [289. Thni 15], or proofs of
AC implying ZL, [416, p.531] with [289, p. 40].)

4.5 Axiom of choice and its equivalent forms

In set theory, one begins not with Peano's axioms, hut with axioms tha.t apply to
sets in general, not just N. (See Appendix IV for such a collection of axioms.)
The most famous of such axioms is the "Axiom of Choice" (AC). There are, in fact,
many axioms that have been shown to be equivalent to the Axiom of Choice. In this
section, a few of these forms are given together with a sequence of proofs showing
them all to be equivalent. In any such sequence, it seems that there is always at
least one step that is difficult, especially if one restricts the tools available. For more
on such equivalences, the reader might look at the reference standards by Herman
and Jean Rubin [472, 473]; see also a more recent. 1)00k [281] by P. Howard and Jean
Rubin on consequences of the Axiom of Choice.

To state the Axiom of Choice, a definition is helpful. If F is a family of sets, a
choice function for F is a function

y: F

so that for every F F, 7(F) e F. So a choice function picks an element from
every set in the family.

Axiom of Choice (AC): Jf F is a non-empty family of non-empty
[__sets, then .1 has a choice function.

A standard example (some say it goes back to Bertrand Russell (1872 1970))
used to demonstrate what AC says is: among infinitely many pairs of shoes, it would
be easy to pick one shoe from each pair—pick the left one of each pair. If, however,
there were infinitely many pairs of socks, AC guarantees that there is still a choice
function that picks one sock from each pair. This doesn't seem very surprising, and
in fact, most would argue that this goes without saying. The subtlety might lie in
thc fact that the Axiom of Choice says that all these socks can be picked at once
even though there is no way to differentiate between socks of a pair.
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It might be interesting to note that the following apparently weaker "Axiom of
Choice" is indeed equivalent to the Axiom of Choice:

Zermelo's Postulate: For every non-empty family of disjoint non-
empty sets S there exists a choice function f : S -

Theorem 4.5.1. The Axiom of Choice is equivalent to Zermelo 's Postulate.

Proof: The Axiom of Choice clearly implies Zermelo's Postulate, so it suffices to
prove only the other direction, Assume that Zermelo's Postulate is true and let S =

: i I). be a non-empty faniily of sets, not necessarily disjoint. 5, create a
disjoint family as follows. For each i 1, set = S1 x {i} = {(s,i) : 5€ Then

= : i f} is a disjoint family of non-empty sets. By Zermelo's postulate, fix
a choice function f* : 5* and for each i I, set f * (So = (si, i). Then
the function f : 8 -- defined by = is a choice function for 8, D

Note: In the above proof, the fact was used that the family of sets was indexed.
If a given family of sets is riot indexed, how cart one create an index set for this
family? One has to look more closely at what at an indexed set is. An indexing of
a family of sets F by a set I is a bijection

-q: 1 ---÷ F.

In this case, write rj(i) F1 and F = {F1}161. If one chooses rj to be the identity
function on F. a family of sets can itself act as the index set! Hence, any family of
sets can be indexed.

The Axiom of Choice can he stated for indexed families of sets, but is often done
using product notation. Since product notation can be a bit confusing for infinite
products, the reader might lie forgiven for erring on the side of being too pedantic
iii the following explanation.

Recall that the cartesian product of two sets is written

X1 x X2 {(a,b) : a X1,b X2}.

To generalize this to a product of infinitely many sets, reinterpret the product
x X2 as follows: Each (a, h) X1 x X2 can lie considered as the image of a

function, -y- : {X1. X2} X1 U X2, where 7(X1) = a X1 and 7(X2) = b X2.
As a trivial example, if X1 f5, 10} and X2 = {3, 5}. since there are four ordered
pairs in X1 x X2, there are four different functions, say -i, 5, to be considered:

= 5, 7(X2) = 3;

5(X1) = 5, 5(X2) = 5;

th(X1) 10, c5(X9) = 3;
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= 10, = 5.

Notice that the meaning of the function -y is clear without the order mattering:
5 and (X2) = 3" means precisely the same thing as = 3 and

= 5". The meaning of the ordered pair (3, 5) captures this if one remembers
that the 3 caine from X1 and the 5 came from X9. Then

X1xX2={f:{Xt,X2}—'X1uX2:f(Xi)€Xt,f(X2)eX2}.

Dealing with indices only, write

X1 x X2 = {f: {1,2} —* X1 UX2 : f(1) e Xi,f(2) e

If the sets were indexed by something other than numbers, the meaning of their
product would then not depend on order at all:

X4, x = {f: {4, X4 U : f(4) E X4. f(A) XA}.

Recall that A x B $ B x A, because the first is ordered pairs of the form (a, b) while
the second consists of ordered pairs of the form (b, a). The difference is only in the
order in which one writes theta down. In fact, either would be fine, if only one had
some way of knowing which of the ordered pair came from which set- Usually, the
first coordinal.e is to mean that the element came from the first set listed in the
collection A, B. If there are infinitely many sets, however, and no order imposed
on the list, then what does one do? The answer is simple: go back to the function
interpretation of the product.

Definition 4.5.2. For a family of indexed sets define the infinite product

fi i e -

jet

Any function f : I u1€1F1 for which each f(i) in fact determines a
choice function. Thus, the Axiom of Choice can be restated as follows:

Axiom of Choice (indexed version): Let be a family of
non-empty sets. Then [lie! A1 0.

Another axiom that is often a starting point in set theory is called the well-
ordering principle. By Theorem 2.6.2, the natural numbers can be (or are) well-
ordered; caii any set be wcll-ordcred? No one has been able to prove otherwise, so
the following might seem like a reasonable axiom:

flWell_ordering principle (WO): Any set can he well-ordered.
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In 1904, Zermelo wrote in a letter to Hubert that the Axiom of Choice implied
the well-ordering principle (see [586]). Flowever, Eves [181., p. 297] says that after
Zermelo proved the well-ordering principle, it was Emile Borel who was searching
for a flaw in Zermelo's proof, and discovered that it relied on the Axiom of Choice,
and pointed out that the Axiom of Choice (AC) is equivalent to the well-ordering
principle (WO) (that is, if AC is true, then is true, and if WO is true, then AC
is true). A modified proof of AC implying WO was then published hy Zernielo [587]
in 1908. Some authors call the well-ordering principle the well-ordering theorem
(since it can be derived it from the Axiom of Choice). The reverse direction is easy:

Theorem 4.5.3. The well-ordering principle implies the Axiom of Choice.

Proof: Suppose that WO holds and that F is a family of non-empty sets. Since
WO holds, each F e F can be well-ordered. Since every well-ordered set F contains
a minimal element, say, mm F, then the function f : F —p UpcrF defined by
f(F) = mm F is a choice function. 0

The other direction (AC implying WO) is not as simple. Two proofs are given
here. The first is an adaptation of that found in [347, p. 182] combined with notes
on a lecture given by It. Aharoni, (at University of Calgary, 1986). This proof
apparently does not rely on replacement axioms. A second proof, occupying only
one paragraph, is from Jech [289, p. awl is vastly simpler. relying on the stronger
form of transfinite induction.

Theorem 4.5.4. The Axiom of C'hoicc implies the well-ordering principle.

First proof of Theorem 4.5.4: Let X be a set let f : 2"\{ø} —* X be a choice
function.

Look at pairs of the form (W, <), where 14' ç X and < is a well-ordering of 14.
Define a pair (14/, <) to he f-compatible if for every I EF I'l/,

= I.

Such f-compatible sets exist by the following: let x0 = f(X), x1 = f(X\{xo}),
and x2 = f(X\{xo,xi}). It is not difficult to verify that 14' = {xo,xi,x2} with the
ordering x0 < < x2 is indeed f-compatible.

[Comment: If (W, <) is f-compatible, then (11/, <) was created according to the
rule: choose a next element to be f(X\elements chosen so far)}.

Fact 0: For any f—compatible sets (Wi. <: ) and (1412, <2), either they are equal
or one is an initial segment of the other.

Proof of Fact 0: Let and (M'2, <2) he f-compatible. Since (I'V1,
and <2) are well-ordered sets, by Lemma 4.2.1, either they are similar or one
is similar to an initial segment of the other. Without loss, let o : —-> V42 be a
similarity from WI onto either 14'2 or an initial segment of W2.
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Let = {w E W1 : a(w) w}, everything that a moves. If = 0, then
either W1 = or W1 is an initial segment of (since a is either a similarity onto
F!2 or onto an initial segment of 14/2). Thus, Fact 0 is proven if it can be shown that
Wi'. = 0.

Suppose, in hopes of contradiction, that 14/j'. f 0, and let t0 be the least element
of Wj'.. 'l'hen

to f(X\seg(I,v1<1)(to)) -=

contradicting to E Hence Wt 0, proving Fact. 0.

So by Fact 0, without loss assume that (W1, and (F!2, <2) are such that F!1
is an initial segment of F!2 (or F!2). If a, h E C 14/2 their a <1 b if a <2 b
(that is, the orders are "compatible" for f-compatible well-orderings).

Let V = {x E X : for some f-compatible w.o. (14', <),x W}. Define (V. -<) =
u{(W. <) : (F!, <) is f-compatible, TV C X}.

By the compatibility of the f-compatible well-orderings, the next fact follows:

Fact 1: (V. is a totally ordered set.

Fact 2: (V, is a well-ordered set.

Proof of Fact 2: Let 7' C V, T $ 0, and let t T. Then for some well-ordered
set (F!, <), t e 14'. Since F! is well-ordered, w n :r has a least element, call it x.

[Aside: If and j47 is a w.o. such that x C W, their for any y C V, if y x,
then y C TV because for some w.o. Ui', y C TV', hut one of 11' or 14/' is an initial
segment. of the other, so y C TV fl 11".]

Butthens Wfl7',
contradicting x being the least iii TV fl 7'. Therefore, x is the least element. of 7',
proving Fact 2.

Fact 3: (V. is f-compatible.

Proof of Fact 3: Pick v C V with (Wi, an f-compatible set such that
V C

The next thing to show is that seg(w1<1)(v) = seg(v.<)(V). Since <i) C
(V it follows that seg(Wi (v) c seg(v.<)(v). Let x C seg(1/.,)(v); then for any
(W2,<2) with V C 14/2, (by the aside above) x C sox C Therefore,

=
So f(X\seg(v.<)(v)) = f(X\segjv, <1)(v)) = v since F!1 is f-compatible.

Fact 4: V = X.

Proof of Fact 4: Suppose not, that is, suppose that X\V $ 0, and since f
is a choice function, put z = f(X\V). Put j/' = V U {z} and extend the order
-< to —<' by defining for every v V. v z. Then = V arid so

f(X\V) = z. So (1". is f-compatible, and so z V' C V



62 Chapter 4. Inductive techniques applied to the infinite

(since V was the union of all f-compatible sets). Then z = f(X\V) 0 X\V,
contradicting that f is a choice function. Hence no such z exists, and so V = X,
finishing the proof of Fact 4.

Therefore, X is well-ordered. 0

Second proof of Theorem 4.5.4: (Based on [289, p. Let A he a set.
To well-order A, it suffices to construct a transfinite sequence (a0 : a < 9) that
enumerates A. Such a sequence can be found by induction, using a choice function
f for the family S of all noneinpty subsets of A. Let ao = f(A), and

if A\{ae : ca} is non-empty. Let 9 be the least ordinal such that A = : < 9}.
Then (a0 a <9) enumerates A. U

Instead of assuming Peano's axioms for the natural numbers, one could take as
an axiom that the natural numbers are well-ordered and then derive that P5 holds.

Theorem 4.5.5 AssUiTLiTLg that the usual order on N is a well-ordering,
then PS holds.

Proof: Assume that N is well-ordered and assume the hypothesis of P5 holds, that
is, that S 0 is a non-empty S(?t of natural numbers with 1 E S and satisfying
(.z: e 5') (x' e 5). Let 7' = {t E S : I NJ. To show that P5 holds, one must
show that 5' = N, that is, that T = 0.

In hopes of a contradiction, suppose that 'F 0. By well-ordering, 'F contains a
least element, say t0 'F. Since 1 c 5, to 1. Since to is the least element in 'F,
to -- 1 0 'F, and so to — 1 E N. By the hypothesis of PS, then (to — 1)' = to E N,
contradicting that to e 7'. So one must abandon the assumption that 'F 0 and
conclude that T = 0 and hence S = N, thereby showing that PS holds. 0

For an article (in Spanish) on the equivalence between WO arid PS, see [237]. lt is
interesting to note that there has been some controversy regarding the implication
WO to PS. In a review [Math. Reviews 2002k:03003] of an article "Is the least
integer principle equivalent to the principle of rriathematical induction?" [140],
tIme reviewer (Victor V. Pambuccian) writes: the purported equivalence may
have been erroneously read into an article by Pieri, in which he proposes an axiom
system which differs from the one proposed by Padoa (a variant of Peano's) not
only in replacing P1 [P5] with LET [WO]. but in the other axioms as well, such
as in adding an axiom requiring that there is at most one number which is riot a
successor." [I have not seen the article, so I can riot corn went more here, but it
might he interesting to investigate the matter more.]

One more axiom. also equivalent to the Axiom of Choice, is called "Zorn's
lemmaT (named after Max Zorn (1906—1993)). It has many forms.
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Zorn's lemma (version 1): In a partial order (P, <), if every totally
ordered subset of P has an upper hound in P, their P contains at least
one maximal element.

Note: Stating Zorn's lemma without the phrase "in P" can allow for misinter-
pretation.

Some authors suggest that Zorn's lemma is more appropriately called Kura-
tows/ri's Lemma as Kuratowski published the statement in 1922 [333] whereas, Zorn
published in 1935 [590, statement (42)]. Jech [289, p.40] avoids this controversy
by calling it the "Kuratowski Zorn Lemma". 1-lausdorif arid Brouwer also stated
"Zorn's lemma" before Zorn did.

Another version of Zorn's lemma is often used in application. Recall that for
a set X, a chain of subsets of X is a totally ordered sequence of sets, ordered by
containment. For example, {4}, {4, 7}, {4, 5, 7}, {4, 5,6, 7} is a chain. If C is a chain,
then the notation uC denotes the union of all sets in C. If F is a family of sets, a
maximal element of F is a set S F so that for every T F, if S C T their S = T.
Note, maximal elements might not be unique (for example, the family of three sets
{ 2}, (2, 4}, {2, 5} has two maximal elements).

Zorn's lemma (version 2): Let F be a family of subsets of a set X
with tire property that for every chain C c F, UC F. Therm F has
at least one maximal element. —-

___________________________

The first version of Zorn's lenimna easily implies the second:

Exercise 10. Prove that version 2 of Zorn's lemma follows from version 1.

On the other hand, somewhat surprisingly, the second version also implies the
first!

Theorem 4.5.6. The two versions of Zor-a's lemma arc equivalent.

Proof: As one direction is left as an exercise above, assume that version 2 holds,
and let (P, <) be a poset so that every totally ordered subset of P has an upper
bound in P. Let X he the set of all chains (totally ordered subsets) in P. Order .X
by inclusion arid now consider chains in X. If C is a chain in (X. c), then

uC = U c
ccc

is also an element of X (another chain in (P. <)). Thus, by version 2, (X. c) contains
a maximal chain F.

Then F = UF is a maximal totally ordered subset of (P, <); by assumption, F
has an upper bound x in P. Then x is a maximal element of P (for if riot, there
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is another element y E P with I" c y, in which case F U y together with I form a
larger chain, contradicting the maximality of .1). 0

The utility of Zorn's lemma is demonstrated in many well-known results, many of
them occurring as exercises in this book. These results include Tychonoff's product
theorem for compact spaces (see Exercise 449), the Hahn—Banach theorem (see
Exercise 607), the existence and uniqueness of the algebraic closure of a field, the
existence of maximal ideals in rings with 1 (see Exercise 682), and that every vector
space has a basis (see Exercise 692). See also Exercise 592.

Theorem 4.5.7. Zorri's lemma (version 1) implies the Axiom of Ghoicc.

Proof outline: Let S l)e a family of non-empty sets. Let P be the set of all choice
functions on subsets of S. The set P is ordered by restriction (or inclusion) in the
natural way: for two subsets T1 and of 5, if lj C and f is a choice function for

then the restriction of f to 2j is a choice function g for In this case, f y
(as f both functions are sets of ordered pairs). In this manner, P(, is a partially
ordered set. For any chain C in (P, the union

Uf

is a choice function for the union of the domains, so Zorn's lemma applies, yielding
a maximal h e P.

Observe that It is a choice function for 5, for if it were not, there is some
e S for which it is not a choice function. Extending it to a function iC defined

by fj*(5) = h(S) for any S in the domain of ii, and selecting any x e put
h is a proper subset of contradicting the maxiinality of Ii. 0

Theorem 4.5.8. Zorn's lemma implies the Wetl-Orde.ring Principtc.

Proof: Let X be a set, and assume that Zorn's lemma is true. To show is that X
can be well-ordered, that is, that there exists a well-ordering of X. Define the set

S ((W, <) : H' CL X, (111, <) is a well—ordered set}.

Since each well-ordered (11", <) is a subset of X x X, consider the partially ordered
set (5, CL), where the order is containment. Note that if (W1, ) C S2), then
W1 c W/2 and the orders agree on

Observe that S is non-empty because the trivial ordering defined by equality,
(X, =_) {(x,x) : x X}, is indeed a well-ordered set.

Let C : i I} be a chain in (5, c). The next claim is that
the union of the chain is again a well-ordered set. The sets tV2 are nested and so
any subset Y C is contained entirely within some W1, and so has a least
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element (each is well-ordered); this proves the claim. Hence the union of any
chain in S is again an element of S.

Since the conditions for Zorn's lemma are satisfied, S has a maximal element,
say (M, 3) (where 3 is a well-ordering of some subset Al). The next claim is that
X = Al. If otherwise, that is, if X $ M, then there exists y E X that is not in M.
Then one can create a larger well-ordered set (M U {y}, 3*) defined by 4* .r for

all x E Al. But then (M, 3) (Al U {y}, 3*), contrary to (Al, 3) being maximal.
This finishes the claim that X = Al. Hence 4 is a well-ordering of X. 0

Since ZL WO AC has been shown, to complete tlte demonstration that
all three are equivalent, it suffices to show that AC ZL. This is accomplished by
giving a principle from which Zorri's lemma easily follows, and proving that principle
using the Axiom of Choice.

flHausdorff's maximality principle: Every partially ordered set has
a maximal totally ordered subset (chain).

The Hausdorif maximality principle is sometimes called the "Hausdorff-l3irkhoff
maximality principle", a special version of which is called the "high-chain princille"
(a high chain is a chain with no proper upper bound, so maximal chains are high
chains), but the proofs below are attempted without this extra terminology.

Theorem 4.5.9. Hausdorff's maximality principle implies Zorn's lemma.

Proof: Let (P, <) he a poset, arid assume that every chain in P has an upper
bound in P. By Hausdorff's maximahity principle, let C be a maximal chain iii P.
By assumption, C has an upper bound in P, say ii P. Observe that 'a is a maximmial
element in P, for if there were to exist an element t' with 'a < v, then C U {v} would
be a larger chain containing C, contrary to C being maximal. El

Eor the reader interested iii Hausdorff's maximality principle, its applications,
and connection to inductive proofs, see [1551, a short article in the American Math-
ernatical Monthly. The Heine-Borel theorem and the uniform continuity of contin-
uous functions are examples discussed.

The proof of Zorn's lemma from the Axiom of Choice is now completed by
showing that the Axiom of Choice implies the mnaximahity principle.

Theorem 4.5.10. The Axiom of choice implies the Hausdorff mnaximality principle.

Three proofs arc given, each significantly different front the others. The first
proof is reminiscent of the (difficult) proof of Theorem 4.5.4 and is adapted from
[416, pp. 529-532], without invoking terms like "high chain". The correlation
between "f-compatible" sets from the proof of Theorem 4.5.4 and "f-chains" below
will soofl be apparent. Apparently, this proof has evolved from Zcrmelo's first (1904)
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proof of the well-ordering principle, Hellmuth Kneser's proof 13191 of Zorn's lemma,
and a (one page!) proof outline by Weston [567].

Proof of Theorem 4.5.10: The outline of the proof is given, with some details to
be filled in by the reader. Let 1k! be a partially ordered set. For any chain (totally
ordered subset) C in Al, let C denote the set of all proper upper bounds for C,
(often called the roof of C), that is, all upper bounds for C not including any upper
bound contained in C. -

Step 1: By AC, let f be a choice function for the family of all non-empty C's,
that is, for any chain C in Al, if C 0, then f(C) C. Call a chain K in Al an
f-chain if for any subchain C C K satisfying 6 n K 0, then 1(C) is the least
element of Cn K. That is, if C is a chain in K with proper upper bound in K, then
f(C) is the least of these proper tipper bounds.

- Step 2: Show that if K is a chain and C ç K, then k = O is equivalent to
CnK =0

Step 3: Show that if K: is an f-chain with k 0, then K4 = K U 1(k) is an
f-chain.

Proof of Step 3: First observe that K4 is indeed a chain with greatest element
f(K) and K4 K. Assume that C c K4 with C n K4 $ 0 and let .9 C fl Kt.
Then for every c C, c < s <f(K), and so f(K) C and C c K.

If 6= K, thenf(C) = =f(k). k, it
follows from Step 2 that f(O) K and f(O 6 n K. -

Step 4: Show that if K and L are f-chains, then L c K U K and K c L U L.
Step 5: If K and L are f-chains, then either K C I, or L C K.
Step 6: Show that the union of an arbitrary set of f-chains is again an f-chain.
Step 7: Let V be the union of all f-chains. By Step 6. V is an f-chain, and so

by Step 3, V = 0. 0

Two niore ways to show that AC implies Zorn's lemma are more direct.

Theorem 4.5.11. The Axiom of Choice implies Zorn's lemma.

Two outlines of proof are presented here, the first from Thomas Jech, the second
from Peter Cameron. Both proofs follow the sante general philosophy, however they
are distinct in their approach. Both assume AC.

First proof of Theorem 4.5.11: (Paraphrnsed from [289, p. 40]) Let (P. <) be a
partially ordered set so that every chain has an upper bound. The idea is by using
a choice function for the non-empty subsets of P. construct a chain in P that leads
to a maximal element of P.

Let, by translinite induction, P be such that for every < a (if there are
any) <aa. If a > 0 is a limit ordinal, then

C(4 = {ae : c < a}
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is a chain in P and aCk exists by assumption. "Eventually" there is a 8 such that
there is no a0÷1 E P with ag+I E P. Thus ao is a maximal element of p. El

Second proof of Theorem 4.5.11: (See [95, p. 119].) Let (P, C) be a partially
ordered set in which every chain has an upper bound. Suppose, in hopes of con-
tradiction, that P has no maximal element. Attempt to construct a function by
transfinite induction front ordinals to P. Let f be a choicc function for non-empty
subsets of P.

Set h(O) = f(P). Since every chain has an upper bound, and 0 is a chain, it
has an upper bound, so P 0, and thus h(O) is defined. If h(a) has been defined,
{ x P x > h(a)} is non-empty, for otherwise, h(a) would he a inaxinial element
of P. Hence, for each a, let a+ be the successor to a, and put

= f({x P: x > h(a))}).

Finally, if A is a limit ordinal, observe that A = {'y : y < A} and so can be considered
as a chain, and since for a < fi, h(cr) < h(3), {h('y) < .4 is a chain in P.
Then set

h(A) = f(the set of all upper bounds for G.3.

By transfinite induction, It is a function from the class of all ordinals into X. how-
ever, h is 1:1, arid since the class of all ordinals is not a set, this is a contradiction. El

See Theorem 13.2.2 fur a countable version of Zorn's lemma for rnea.surable sets.





Chapter 5

Paradoxes and sophisms from
induction

As lzghtnznq clears the air of impalpable vapours, so an incisive para-
dox frees the human intelligence from the letharqic influence of latent
and unsuspected assumptions. Paradox is the slayer of Prejudice.

J. J. Sylvester.

On a lady's fan, etc.

In 1589] is a quotation from Cijrano de Bergerac, describing a jocular
version of mathematical induction":

1 stand on a platform holding a strong magnet which I hurl upwards.
The platform follows. 1 catch the magnet. and hurl it up again, the
platform following, and repeating this is in stages, I ascend to the moon.

Mathematical induction can be used 1,0 prove both simple mundane results and
truly fantastic constructs. Occa.sionally. however, inductive reasoning lea4s to con-
troversial coflc]II.sinmls. Sometimes this is because the inductive reasoning itself is
faulty, or at times, deliberately deceitful! (See [86] for a few remarkable exam-
l)les.) There might be. however, some bizarre results that. mathematical induction

yet no error in reasoning can be found. In this chapter are introduced
a few standard inductive arguments that yield questionable results. Can you tell
which type cacti is? Some of the conclusions below are (lime to faulty reasoning. sonic
may lead to unsolved paradoxes.

69



70 Chapter 5. Paradoxes and sophisms from induction

5.1 Trouble with the language?
5.1.1 Richard's paradox
There are a couple of paradoxes arising from induction that have become quite
famous, the first of which mentioned here is called "Richard's paradox", given by
the French mathematician Jules Richard in 1905.

Statement: "Every natural number is definable by an English expression of less
than thirty syllables."

Proof (?) by strong induction: Let 8(n) be the statement 'ri is definable by
an English expression of less than thirty syllables."
BASE STEP: n 1 is definable as "the least natural number", an expression with
less than thirty syllables, and so 8(1) holds.

INDUCTION STEP: Let k � 1 be fixed and assume that 8(1), 8(2) 8(k -- 1) hold,
that is, every number less than k is definable by an English expression of less than
30 syllables. If k is not so definable, then k is "the least natural number that is not
definable by an English expression of less than thirty syllables" expression of
29 syllables, arid so is definable after all. This contradiction proves the inductive
step.

Hence by mathematical induction, 8(n) is true for all n, and so the statement
of theorem is true. 0
Exercise 11. Decide whether or not the result in Richard's paradox is true, and if
it is not, find the error (if any) in the gwen inductive proof.

Richard's paradox is very similar to something called "Berry's least integer para-
dox". given by a British librarian, G. C. Berry in 1908. (For a more thorough
discussion, see Nicholas Falletta's book The Paradoxicon [185, p. 49].) Here's the
paradox: Since the set of all natural numbers is well-ordered, the set of all integers
n describable by time expression "n is not nameable in fewer than 19 syllables" has a
least element, say nt. (According to [185], Bertrand Russell claimed this number is
111,777.) But if is then described by the expression "the least integer riot nameable
in fewer than nineteen syllables" has eighteen syllables, a contradiction.

5.1.2 Paradox of the unexpected exam

Suppose that a professor announces to a class that "there swill be an exam in the
next week, and that the exam will be unexpected".

The students agree that the exam can not he on the following Friday-because if
by l'hursday night they still have not yet had the exam, then the exam mast occur
on Friday. In this ease. the exam would be expected.
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So, the exam could only occur on one of Monday, Tuesday, Wednesday, or Thurs-
day. If by Wednesday night, the exam has still not yet taken place, the exam could
then only occur on Thursday, and it would he expected so now they have argued
that the exam could not occur on either Thursday or Friday! Continuing inductively,
the exam could not take place on Wednesday, it could not take place on Tuesday,
and so it must occur on Monday—again an expected scenario. So the class concludes
that they will not have an exam the next week and that the professor was deceitful.

Exercise 12. The professor gives the exam on Tuesday, and the students were
surprised. Where did the inductive reasoning go awry?

5.2 Fuzzy definitions

Another kind of paradox comes when examining certain definitions that are not
really precise.

5.2.1 No crowds allowed

How many people does it Lake to form a crowd? If a certain group of people do not
already form a crowd, it is unlikely that the addition of just one more person would
create a crowd. Continuing one person at a time, one could prove by induction that
110 crowds ever assemble.

5.2.2 Nobody is rich

Reasoning similar to that used for no crowds could be used to show that nobody
could ever be rich, since the addition of one penny to your bank account would not
ever transform you from being "riot rich" to "rich". Thus, by induction, one could
prove that nobody is rich! This reasoning can also "show" that there are no heaps
of sand.

5.2.3 Everyone is bald

Certainly, a person with rio hair is called "bald". However, if a person has only a
single hair. it is likely that most would consider that person to bald, too. Adding a
single hair to someone's head would not change one from being bald to "not bald".
Therefore, by induction, everyone is bald.

5.3 Missed a case?

Many attemirpts at an inductive proof fail because the base case is missing. A classic
example (e.g., see [355. p. 29]) is the following "proof" that for every positive integer
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ii, the number n(n -u- 1) is an odd number: since n(n + 1) = (n — 1)n + 2n, if (n — 1)n
is odd, then certainly so is n(n + 1), and so the inductive step flies. however, when
checking any value for n, one sees that n(n + 1) is always even. The error is that no
base case was proved. Sometimes, however, it is not the base case that is missing,
but some other case.

5.3.1 All is for naught
Here is a clever example that has appeared in many books (e.g., see [373]).

Statenient: non-negative integer is equal to 0."

False Proof: For each non-negative integer it, let 8(n) be the statement "11 =
0". Certainly the base case 8(0) is true. So fix some k � 0 and assume that
8(0) ,...,8 (k) are true. To prove that 8(k + 1) is true, notice that 8(k) says k = 0

and .9(1) says 1 0, hence k + 1 0-F 0 = 0, proving S(k + 1). This concludes the
inductive step, arid hence the proof by strong induction.

Exercise 13. Why is this reasoning faulty?

5.3.2 All horses are the same color
llere is one that has appeared in a nuniher of plac:es; it is apparently due to Pdlya.

Statement: ,iil horses the seine color.

False proof: The "proof" is by induction. The base case is that one horse is
the same color as itself, which is clearly true. For sonic fixed k � 1, assuinc that
any k horses are the same color. Examine a. reniuda of k + I horses, say
112 By induction hypothesis, H1, . . , Ilk are the same color,
roan. Also by induction hypothesis. the horses H2, 113 are of the
same color, and since 112 is roan, so are all the others. Hence, all k + I horses are
the same color, completing the inductive step, and hence the proof.

Exercise 14. Find the flaw in the reasoning that "proves" that all horses have the
same color.

5.3.3 Non-parallel lines go through one point
No discussion of bizarre conclusions from inductive reasoning would be complete
without this old classic (se.e, e.g. [355. 2.1.13 p.3(1]).
Statement 8(n): For any collection of n lines in the plane, if no two are parallel,
then. all hues intersect in one point.
Proof? For ii. = I the statement is plainly true, as it is for a = 2 (since no two
lines are parallel). Let A: � 2 and assume 8(k), that is, that any collection of k
non—parallel lutes intersect iii a single point. To prove 8(k + 1), it suffices to
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that any k + 1 non-parallel lines intersect in a point. Let , £2.... ,4+i be lines,
no two of which are parallel. By the induction hypothesis 8(k), the first, k lines
£1.... intersect in some point X. Again by 5(k), the last k hues £2,...
intersect in sonic point Y. The point X is on hues £2 arid £3, and so is Y. Since
two lines intersect iii a unique point, X = Y, which is the intersection of all lines,
concluding the proof of 8(k ± 1).

By mathematical induic:tiori, for all it. the statement 8(n) is true.

Exercise 15. Find the flaw in the reasoning above.

5.4 More deceit?

5.4.1 A. new formula for triangular numbers

Recall that in Section 1.6, the sum of the first n positive integers was coiled the
triangular number and by Theorem 1.6.1, = ru(rz — 1)/2.

Problem: prove for that for all positive integers n. the assertion

A(n): (.T1

1)2

Bogus solution: .4(1) is true, so assume that for sonic k � 1. A(k) is true. Then

(ti)
(k + 1)22f k-il (by A(k))

('ii + 1 + 1)2

2
(by algebra)

proves .4(k + 1) amid hence the inductive step. Hence, for all n � 1, .4(n) gives a
new formula for the sum of the first rm positive integers.

Exercise 16. Find thc error in the above boqus solution.

The next. two examples are quoted from [36], where it is cited that they appeared
a few years earlier in Mathematical Gazette 72. 'Flie first one is rather standard (e.g..
see [180. pp. 450—4511), however the second one might raise an eyebrow! Can you
find the flaw in each?
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5.4.2 All positive integers are equal
Here is a "proof" by induction that all positive integers arc equal. The first step is
to prove by induction that for each ii � 1 the statement 8(n): if ii is the maximum
of two positive integers a and b, (a, b E then a = 6.
BASE STEP: When n = 1, max{a,b} = 1, arid a,b E then a = 6 = 1, so 8(1)
holds.

INDUcTIvE STEP: Let k and suppose that 8(k) holds. Suppose that two
positive integers e,d satisfy max{c,d} = k + 1. Then max{c — 1,d — 1} = k,
and so by 8(k), c — 1 = d — 1, and so c d. This completes the inductive step
S(k) S(k + 1).

By MI, one concludes that for all n � 1, 8(n) is true.

Once this is achieved, then, for any two positive integers x and y, taking n to
be their maximum. one concludes that x = p.

Exercise 17. Find the flaw in the above rcasoning that all positive integers are
equal.

5.4.3 Four weighings suffice

An old popular puzzle concerns 12 coins, one of which is counterfeit and has a
different weight from the others; using a balance scale (and no extra weights), the
counterfeit coin can be identified with three weighings. In general, if in coins are
given, one of which is counterfeit, what is the minimum number of weighings required
to identify the fake? This question is answered in Exercise 586.

This puzzle has a variant that is much easier to solve (see Exercise 585); if the
counterfeit coin is known to be lighter than the rest, three weighings can locate the
counterfeit coin from amnoiig 27 coins. It seems reasonable that as the number of
coins goes up, so does the number of weighings required to spot the bogus coin, so
one might be suspicious of the following claim:

Statement: For any sri ? 2. if exactly one of in coins is counterfeit arid weighs less
than the rest, then the light coin can he identified with at most four weighings on
a balance scale.

Proof (?): Base step: If there are only two coins, only one wcighing is required.
Induction step: Suppose that the result is true for in � 2 coins, arid consider in + I
coins, only one of which is lighter. Lay any one coin aside and apply the induction
hypothesis to the remaining in coins. If the light coin is not determined from among
these in coins in four weighings, then the coin set aside is the counterfeit, so the
result is true for n-i + 1 coins, completing the inductive step. By Ml, the statement
above is true for any number iv ? 2 of coins.

Exercise 18. What is wrong with the 'proof' for the above coin weighing statement?
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In Martin Gardner's article "Mathematical induction and colored Fiats" [214]

more paradoxes concerning induction are entertained. Two articles Gardner refer-
ences are the first chapter of [348] and [378J, an article on paradoxes. (The problem
of the colored hats is introduced in Section 17.4 in this volume.)





Chapter 6

Empirical induction

What is the good of drawing conclusions from experience?

--C. C. Lichtenherg, 18th century.

6.1 Introduction
The above quotation was found in a daily bridge column by Philip Alder (Calgary
Sun, 25 February, 2001); the column was entitled "Don't jump to conclusions".
(Alder says that Liclitenberg was an 18th century German physicist and philoso-
pher.)

Every cow that I have seen has four legs, and so it would be easy for inc to
conclude that all cows have four legs. Such reasoning is called empirical induction— -.
eml)irical evidence suggesting a pattern that holds in all cases. (Come to think of it,
I have seen a variety of cow with no legs—- it's called "ground beef".) Okay, perhaps
a better example is that since the sun has risen every day this century, it will rise
again tomorrow, arid hence the expression "is as certain as the sun rising tomorrow."
Quoting Martin Gardner [214, p. 137], Charles Sanders Peirce once wrote "1 like
that phrase, for its great moderation because it. is infinitely far from certain that the
sun will rise tomorrow." Gardner continues: "There is not a single truth of science,
Peirce said, on which he would 'bet more than about a million of millions to one.'

Exercise 19. Give an example of a statement S(n) that is true only for n = I to
n = 1.000,000, but fails at n 1,000,001.

When working on a problem, one often gathers information about small cases,
arid based on this empirical evidence, one might spot what seems to be a pattern;
it is "empirical induction" that leads one to believe, at least in part, that the same
pattern always holds in more general situations. This guess at the pattern can
then sometimes be proved directly. or by mathematical induction. Both empirical

77
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induction arid mathematical induction are types of what one might call 'inductive
reasoning". Coming up with tire guess is usually done by empirical induction, and
proving it is sometimes done by mathematical induction. The difference between
the two types of induction is highlighted in this chapter. It seenis that experience
is the only tcacher of how to use empirical induction in formulating guesses, and so
no explicit training is given here on how to guess patterns.

There are many examples through the ages of famous mathematicians or other
scientists making incorrect guesses based on patterns. In [245] and [247], Richard
Guy exhibits a collection of patterns in sequences from which it would be easy
to "conclude" a general rule, but many times, incorrectly. Such patterns exhibit
something Guy has called "The Strong Law of Small Numbers", roughly to be
interpreted as "there aren't enough small numbers to fit all perceived patterns."

Richard Guy has toured the world giving many wonderful lectures based on this
theme and has been the subject of many articles and interviews (for example, see
[427]). Later in this section arid throughout this text are included a few of the more
famous examples found Guy's lectures arid articles. In [247], Richard Guy also cites
Leonhard Euler (1707—F783) as one of the earlier discoverers of l'he Strong Law of
Small Numbers, , which Euler called

niemnorable inductionis fallacis."

The word "induction" has been used even in mathematical literature with differ-
ent meanings. An interesting quotation due to Neils Henrik Abel (1802--1829) was
given by Lakatos [336, p. 133]:

In a letter to 1-lansteemi dated 29 March 1826, Al.el characterized
erable Eulerian induction" as a method that leads to false and unfounded
generalizations and he asks what the reason is for such procedures having
in fact led to so few calamities. his answer is

To my mind the reason is that in analysis one is largely concerned with
functions that can be represented by power-series. As soon as other functions
enter—-arid this happens but rarely—then [induction] does not work any more
and an infinite number of incorrect theorems arise from these false conclusions,
one leading to others. I have investigated several of these and I was lucky
enough to solve the problem...

It is noteworthy to see that in the above quotation, "theorems" can be incorrect!
Also in the above quotation, it is not exactly clear what induction" is, but
certainly this can't have the same meaning as what is now known as
induction." If one reads POlya (e.g., [433, p. 90ff]), it becomes immediately clear
that "Eulerian induction" is so named because of Euler's techniques, reasoning, and
presentation of reasons that led liinni to his discoveries. Pdlya writes:

Yet Euler seems to inc almost unique iii one respect: lie takes pains to
present the relevant inductive evidence carefully, in detail, in good order.
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He presents convincingly but honestly, as a genuine scientist should do.
His presentation is "the candid exposition of the ideas that led him to
those discoveries" and has a distinctive charm.

Pólya's sentiments are implicitly shared in [499], where Leonhard Euler was called
"one of the first St. Petersburg Academicians".

Later, in [336], Lakatos goes on to contrast the deductivist approach in mathe-
matics with to the inductivist style of science in general. He claims that deductive
reasoning stifles independent and critical thought (see pp. 142—143). The present
concept of mathematical induction really does typify deductivism, hut one might
benefit from viewing a Ml proof as a final stage in sonic creative mathematical
thinking. The first stages in finding a theorem usually consist of a different type
of induction, namely, collecting data, seeing general patterns, making conjecture
after conjecture (as in most science), and then finally trying to prove some of the
conjectures.

The reader is cautioned that most books with "induction" in the title (even
some math texts!) are philosophical discussions about inference, not mathematical
induction. For example, in Foundations of Geometry and Induction [413] by Jean
Nicod (a student of Bertrand Hussell) one finds a definition of induction:

Definition of sort of inference is induction? It
is defined in current times by the logical form of its premises and its
conclusion by saying that it is a passage from the individual to the
universal.

Nicod then later says "...perfect induction does not concern us here." What
lie really examines is how one establishes probabilities concerning generalizing from
the individual to the universal. Nicod also notes that probability is different front
certainty not only in degree, but in nature. One must be careful even when a
probability is I. If an integer taken at random from a given set X satisfies a certain
property with probability' 1, this still does not guarantee that every number from
X satisfies the property; for example, a randonm natural number in base 10 has at
least 3 digits with probability 1, however there are 99 numbers that do not have 3
digits.

In many of the hard sciences (and perhaps iriany of the soft, too), empirical
induction is the only way to guess "the rule". Mathematical induction differs in
that it cart be used to prove (or sometimes disprove) the rule once it is conjectured.
Here are sonic situations where it is easy to guess the rule, yet ultimately, it is not
obvious how to prove the rule. Some of tIme exaimiples iii this chapter have beemi
reported by Guy in [245] (also see [247J).
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6.2 Guess the pattern?
Many intelligencc tests give a pattern of numbers and ask to provide the next number
in the sequence. If you find too ingenious a rule, you won't get the answer that was
intended. Your rule could have been a polynomial! For any finite sequence of
integers, there are infinitely trianv polynomials that produce the given sequence; the
next number in the sequence could really be anything, depending on "the rule" you
find. As an easy example [564, p. 123], consider the polynomial

p(x) = 4? — 18x2 + 32x 15.

One can check that p(l) = 3, p(2) = 9, p(3) = 27, arid p(4) = 81. Is it reasonable
to guess what p(5) is? Would you guess 35 = 243, or the correct answer 195?

6.3 A pattern in primes?
This example is mentioned in the delightful hook Hidden Connections, Double Mean-
ings by David Wells [564, p. 122]. All primes except 3 are either one more than a
multiple of 3 or one less. Call these "more-primes" and "less-primes", respectively.
Of the primes less than 1.00. there are (two) more than more-primes.
This property persists through the hundreds of thousands. It might be reasonable
to conjecture that this property is true forever, however, it fails at the plus-prime
608,981,813,029, where the plus-primes then dominate for a while. It has been
proved that the lead changes an infinite number of times, thereby destroying any
hope of a conjecture either way.

As an added note, Chebychev once conjectured that primes of the form 4k + 3
eventually outnumber those of the form 4k -f 1; however, it has been proven that
the lead again changes bands infinitely often. For more on this and the distribution
of primes, see [199].

6.4 A sequence of integers?
Let I and for n � 0, let

5n±1
— n+1

For example, = 2. 3, 83 = 5, = 10, 55 28, = 154, .97 = 3520,
= 1, 551 .880, .sg = 267,593, 772, 160, and

= 7,160,642690,122,633,501,504.

Exercise 20. Is .s,, always an
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6.5 Sequences with only primes?

Pierre de Fermat (1601—1665), along with Mann Mersenne (1588—1648) and a host
of others, worked extensively searching for primes among integers of the form 2k + 1,
or 2k — 1. If k is even and greater than 2, the number 2k — I is not prime, since
22rn

1
= — fl(2rn + 1). For k = 2, 3,5. 7, the expression 2k — I is prime, however

2h1 = 2047 23 89, which spoiLs the conjecture that if p is prime, then r — 1 is

prime.
For t � 0, define the l"ermaf. numbers h = + 1. Then Fo = 3, F1 = 5,

F2 = 17. F3 257, and F4 (15537, all prime numbers. Fermat conjectured that
for every non-negative integer t, fl is prime, but Euler proved this to be false.

Theorem 6.5.1 (Euler). F5 = 232 + 1 is not prime.

Proof: Puta = andb = 5. Then a—b3 = 128—125 = 3 and 1+ab—b4 =
l-{(a—h3)b=1+3b=i6=24. Hence

= I

(1+ab—b4)a1+1
= (1 + ab)a4 — (a4b4 — 1)

= (1 + ab)a4 — (a2b2 1)(a2b2 + I)

= (1 +ab)a4 -- (ab+ I)(ab — 1)(a2b2 + 1)
= (1 + ab)[a4 - (ab — i)(a2b2 ± 1)),

andsol I ah=l+27.5=fi4lisadivisorofF3. 0

Over a century later. Laudry proved that F5 is not prime either! Since then, it
has heen shown that for 5 � n 21. is composite. For further references, see,
e.g., [456, pp. 214—215].

Fermal. numbers (10, however, share one properly (provable by induction):

Exercise 21. Prvve: that for every t ? 2, the last digit of the Fcrmat number is
7,

The next property of Ferinat numbers was mentioned in Proofs from the Book
[7], and altbough it says nothing about producing primes, it has an amazing cmi—

nection to the number of primes being infinite. The following statement follows the

convention that an enipty product is 1

Exercise 22. Prove that far it. — 0, 1 , 2

it—I

I"n[IF2+2. (6.1)
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From Equation (6.1), it follows that the Fermat numbers are relatively prime (if
any two had a common divisor, it would also have to divide 2, but Ferniat numbers
are odd). As pointed out in [7]. it then follows easily that there are infinitely many
primes (as there are infinitely many Fermat numbers). (Compare with Exercise
207, a variation of Euclid's proof.) Note that a similar divisibility situation to
that iii Euclid's proof (with a product arid something small added) occurs in the
consequence of Exercise 6.1.

When addressing the next question, a table of primes might be used to verify the
first few values; one might write a small computer program to check larger values if
a proof by induction is not immediately apparent.

Exercise 23. Are all of the numbers in the infinite sequence

31,331,3331,33331,333331,3333331,33333331,333333331,.

prime?

Another classic example is a remarkable polynomial discovered by Leonhard
Euler that generates a long sequence of primes. For ri � 0, define f(n) = it2 — it +41.
One notices that f(0) = 41, f(1) = 41, f(2) 43, f(3) = 47, are all prime numbers.

Checking more values, f(4) = 53, f(5) 61, f(6) = 71, f(7) = 83, f(S) = 97,

f(9) 113, f(10) = 131, f(11) = 151, f(12) = 173, f(13) = 197, f(14) = 223,
f(15) = 251, f(16) = 281. f(17) = 313—all primes! Given the empirical evidence,
one might make the following guess:

Conjecture: For each it � 0, f(n) = it'2 — it + 41 is prime.
The reader can check the next twenty values, arid still get primes! Car i you prove

the conjecture iii general? It seems that an inductive proof is required, however,
primes are curious creatures; knowing the first it primes, there is no known way to
predict what the (it + 1)-st prime is.

Exercise 24. Determine whether or not for every ri � 1, f(n) it'2 — it + 41 is
prime.

The history of prime-producing polynomials is quite rich; the interested reader
might look in [150] or [247] for a start. See also [215] for interesting discussion and
references.

6.6 Divisibility

Leihniz observed that for any positive integer it, 3 divides it3 — it (see Exercise 213),
5 divides it3 — it (Exercise 252), and 7 divides — it, arid for a short time, thought
that. if t is odd, then t divides & — it, until he noticed that with ii = 2 and t = 9,

2 = 510, which is not divisible by 9.
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According to [220], the Soviet mathematician D. A. Crave once conjectured that
for any prime p, that p2 divides 1. This conjecture may seem reasonable since
it is true for all primes less than 1000.

Exercise 25. Find the first prime p that proves Grave 's conjecture false.

6.7 Never a square?
In attempting to solve the next exercise, one might he inclined to invoke a computer
search.

Exercise 26. Define f(n) = 99 in2 + 1. Decide whether or not for each n � 1, f(n)
is never a perfect square.

6.8 Goldbach's conjecture
Christian Coldbach (1690-1764) conjectured in 1742 that every even number greater
than 2 is the sum of two primes. For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, and
16 = 3 + 13. Some even numbers are the sum of two primes in more than one way,
for example,

20= 3+17=7+13.
(See [24] for an early work on how many ways an even number can be the sum of
two prunes.) To this (lay, Goldbach's conjecture has not been resolved, though it
has been verified for all even numbers up to 1.615 x 1012 in 1988 [133J. For progress
on Coldhach's conjecture up to the late 1940s. see [288]; popular, inviting discussion
and more facts can also be found in more recent works, for example, [120], (153],
[248], [428].

In 1752. Coldbach also conjectured that any odd natural number greater than 1
is either a prime, or a perfect square, or can he written as the sum of a prime and
twice a square. For example, the first non-prime non-square is 15, which is 7 + 2 4,
and the next is 21 = 13 4. 2 x 4. Calculations for the first few thousand cases
might have very well caused some mathematicians to search for a proof, perhaps an
inductive proof. However, all such efforts were doomed to fail. The first value for
which this breaks down is 5777. The following exercise can he resolved with niuch
less effort.

Exercise 27. Gan e'uenj odd natural number greater than 3 be written as the sum of
a prime and a power of 2? For example. 5 = 3+2, 7 = 5+2 = 3+4, 9 = 5+4 = 7+2.

6.9 Cutting the cake
Mark n dots on the edge of a circle, arid then connect all dots with straight chords
as in Figure 6.1; this cuts the circle into various regions. Given n clots, what is the
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maximum number of regions the circle can be cut into? For n = 1 dot, there are
rio chords, and hence only I region. The numbers of regions for the first five cases
are 1,2,4,8,16.

F'igure 6.1: Cutting the cake

By empirical induction, one might pose the following guess for the number of
regions:

Conjecture: The rnaxiniurri niirnher of regions in a circle created by n dots joined
by chords is '.

Apparently (see [564, PP. 1 19—120}), the disruption in the pattern was discovered
by the mathematician Leo Moser.

Exercise 28. Show that this conjecture is false by checking the case n = 6.

Exercise 29. Show that by cutting a cake between every pair of n dots on its cir-
cumfcrence, the manrnum number of regions formed is

=
— + 24,12 — 18n + 24).

6.10 Sums of hex numbers
Start with a penny on a table, then surround this penny with six others to forni a

hexagon (see Figure 6.2). Again, surround this hexagon with 12 more pennies to
form yet a larger hexagon, now with a total of 19 pennies.

Continue this process and get a sequence of so-called hex numbers:

1,7,19,37,61,91,127,169

Adding these hex numbers cutriulatively, the partial sums are

1 = 1,

1 +7=8,
I + 7 + 19 = 27,

1+7+19+37=64,
1 + 7 + 19 + 37 + 61 = 125,

1+7+19+37÷61+91 = 216,
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I

147 -1 19 + 37 + 61+ 91+ 127+ 169 = 512,

each of which is a perfect cube, 4's. 73, Will this always hap-
pen? Perhaps one could begin by finding a general formula for the n—tb hex number,
and then show that the total of the first ii hex numbers is the desired difference of
cubes'?

Exercise 30. Prove or disp;vve that the of consecutive cubes is always a
hcx number.

6.11 Factoring x" — 1

The polynomial p(x) = -- 1 occurs iii mathematics in a number of different

contexts. For example, if r is a real number with < 1, one can ask what the
infinite geommietric series

1 + r + 4- r3 +'•'
converges to. if indeed it does. l'reating r like a variable, one begins by noticing
(multiply it out!) that for any positive integer ri,

and so

I + r + r2 + .. . + =

As a this last equation says

-
- 1.11

- I
1+r+r2+r3+''- = bin

r -- 1

Figure 6.2: Pennies aud the second hex number
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and since ri < 1, = 0, and so

r—1 1—r

Other common occurrences of the polynomial p(x) = x" — 1 are in the study of
power series, in finding roots of unity in complex numbers, iii number theory, in
field theory, and even in cryptography.

The polynomial p(x) = x" 1 appears in many mathematical calculations, and
hence it might be interesting to look at p(x) a little more closely. Can one factor this
polynomial into polynomials with integer coefficients? The answer is "of course", as
has already been seen:

—1

\Vhat if one asks further to have p(x) factored into polynomials each with integer
coefficients and each polynomial is as small as possible (irreducible, not having
further factorization into polynomials with integer coefficients)? For example,

= (x—1)(x+1)
x3—l = (x—i)(x2+x+1)
x4—1 (x—1)(x+1)(x2+l)

x5—1 = (x -1)(x4-1x3lx2-l-x( 1)
-1 = (x — l)(x + l)(x2 —x + 1)(x2 +x ± 1).

In each of these five all coefficients are ±1 or 0. in 1938, the Soviet
mathematician N. C. Chehotarëv [100] (also spelled "Tschebotareff") asked if this
always holds. It wasn't until 1941 that lvanov [285] pul)lishe(l an answer to the
question. It turns out that for all n < 105, the coefficients are indeed 0 or + 1,
hut when ri = 105, this fails. One irreducible factor of x105 1 has degree 48 and
coefficients l,1,1,0,0,—i.---l,—2,—-i,—1,0,0, E.1,i,l,l,1.0,0,—l.0,—1,
0, —1, 0, —1, 0, —1, 0, 0, 1, 1, I, 1, I, 1, 0, 0, —1, —1, —2, —1, —1, 0, 0, 1, 1,

1, (where the first 1 is the coefficient of x48). In fact, what Ivanov proved was the

following (from the review written by J. A. Shohat in Math. Reviews 3,164a): Let
Xm be the irreducible factor of the polynomial xm — 1 whose zeros are the primitive
rn-th root of unity. If m = pq is the product of two distinct (odd) primes, then the
coefficients in Xi,, have only values -1.0,1. If rn pqr (p < q < r, p + q > r) is the
product of three distinct primes then in the coefficient of f is —2. [Note that
105 3 . 5 ' 7.[ If in has sufficiently many distinct primes in its factorization, then
coefficients in Xm can attain arbitrarily large absolute values.

6.12 Goodstein sequences
Hercules had a fight with the Hydra, and every time Hercules chopped off one of the
heads of the Flydra, two more grew back. Can Hercules ever kill the Hydra? It seems
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not, for if the fight goes on tong enough. Hydra will eventually have millions of heads,
a monster that even Hercules might iiot be able to conquer. In the Hercules—Hydra
fight, only simple subtraction of 1 and addition of 2 is required to calculate the
number of heads at each step. However, what hides behind that "mathematics" is
yet another monster, and this monster is defeated by well-ordering. [This delightful
paradox was first shown to me by Ron Aharoni over 20 years ago, and only recently
did I find its name—thanks to KR!]

Consider the sequence: 1' = 1, 22 4, = 27, 44 = 256, 55 = 3125. 66 = 46656,
The terms are growing faster than any simple exponential sequence. The

situation is much more drastic with exponents stacked three high:

222 = 16,
333

= 7625597484987,
444

> iO'54,
550

> 102184, 666 >

One can only imagine how fast such expressions grow if the exponents are stacked
even higher.

Expressions of the above form can be used to write large numbers using only
small digits. 1kw example, using only l's and 2's, one can express

300 = 222+1 + 22+1 4 22+1 + 22.

Using only digits at most 3,

300 = 33+2 + 2 33 + 3.

In general, if a is a large integer and h � 2 is smaller, a simplc algorithm produces
such a form. First write ii = qbx+r, where q < b, x is the largest power possible, and
r < bX is the remainder upon dividing a by bx. Now apply the same decomposition
to each of x and r. and continue until all the exponents are are at most b. For
example, with b = 4,

3205 3 45 + 133 = 3.44+1 +2 .43 5 = 3
. 44±1 + 2 . 43 + 41 + 1.

Such a representation is called the hereditary base b representation of a. When
6 = w, the first infinite ordinal, such a representation is called the Cantor normal
form (see [1601) of an ordinal.

For each ii, 6 e 6 � 2, define 131(n) to be the positive integer obtaincd by
replacing each with "6 + 1" in the hereditary base 6 representation of a. For
example,

= 4412 + 4 = 4612.

Beginning with any number a, define the Goodstein sequence rio, a1. mm2,.. . recur-
sively by setting a0 = a (written in hereditary base 2), and for each k = 0, 1,2
if 11k > 0, then define

I3k÷2(nk) — 1;
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if some = 0, the sequencc terminates. So the sequence begins with a base 2 form,
and at each stage, the base is increased and then 1 is subtracted. The following
example for ii = 266 is given in [67, p. 36] [and many other places on-line]:

+22±1+21;

nl = B2(no) 1

=
+ 33+1 +31 1

= 333t1 33+1 + 2;

= — 1

= 444+1
+ + 1;

723 = B4(n2) — 1

= 555+1
+

B5(n3) — 1

+66H_l;

= B6('n4) — I
-=7 +57

Despite thc rapid growth of this sequence, it actually terminates at 0. Indeed, this
is true for any Goodstein sequence, which was proved by R. L. Goodstein [223] in
1944. Most pcople might agree that this result is not to be believed, because the
growth of the sequence seems to vastly outweigh subtracting just 1 each time.

here is a proof sketch: Given any hereditary base 2 representation, replace all
2's with w's. This new ordinal is larger than each tenu iii the sequence, and since
an ordinal is a well-ordered set, subtracting I from the ordinal number can only be
done a finite number of times. 0

In a sense. this proof might scent like a cheat since one had to "go through
infinity", whereas every term in the sequence is finite. In fact, in 1982, Kirby
and Paris [312] showed that any proof of Goodsteiri's theorem indeed had to go
outside of Peario arithmetic. (The Kirby Paris result seems very similar to the
Paris—Harrington theorem in Ramsey theory—see [231].)

'i'he calculations reported on in [67] are amazing. For the above Goodstein
sequence starting with n = 266, for k = 3(24026532h1 — 1) (which is roughly

72k = 0, and the sequence terminates.
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How to prove by induction

A good proof is one that makes us wiser.

—Yu I. Manin,

A COUTSe tn mathematical logic.

When learning to prove theorems by rnatheniatical induction, there are usually
two challenges. First one must find the proof idea (or understand one from the
literature). The second concern is how to present the proof formally. This chapter
is concerned with the discovery or understanding process. Sortie tips include how
a stronger result might be easier to prove, or how induction can be used to prove
limits. Reading this chapter might implicitly help one's written l)rOol, as well. The
next chapter focusses more on aspects of how to present the written proof, complete
with a template for writing an inductive proof, and information on notation.

For more on the thinking that surrounds the discovery arid writing of an inductive
proof, see Pólya [433].

7.1 Tips on proving by induction
Here are some tips that niight help while trying to prove a statement 8(n) using
induction.

1. A problem that says fl... for all it � 0..." says the same as t. for each
n � 0...". Sometimes, a problem might ask to prove any 'a � 0..."—tlris
does not urean that you can pick your favorite a and solve only that case; it
really means that you must show the prohlemn for arty arbitrary n, that is, for
each possible a,

2. Work out a few examples with actual numbers in 8(n) and confirm tire truth of
the statement for yourself. This process helps one to see how an inductive proof

89
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might go. Furthermore, it is very easy to copy the question down incorrectly
(heaven knows, I have done it dozens of times while writing this book!), and
then get frustrated trying to prove something that is not even true! Needless
to say (so 1 say it anyway) a few minutes of simple checking can often prevent
a big headache (or cure it).

3. Work backwards. When proving the inductive step of an equality (or ine.qual-
ity), what one often does in practice is to put the left side of S(k) at the top
of a page, and put S(k 4- 1) at the bottom. If one gets stuck going down, one
might start at the other end and try working back. For example, in the solu-
tion to Exercise 61, one is faced with trying to derive a sequence of equalities
of the form

+ + ... + (2k— + (2(k+ 1)—

= k2(2k2 — 1) + (2k + (by E(k))

= (k + i)2(2(k + 1)2 — 1).

It looks pretty daunting, so the next step might be to write

= k2(2k2 — 1) + (2k ± (by E(k))

= 2k4 — k2±8k3+ 12k2+6k± 1

= (k2 + 2k + 1)(2k2 + 4k + 1)

= (k ± I)2(2(k + 1)2 - 1),

working from each end. When you get to the middle and the expressions are
the same, you know that you have it!

Note: It is easy to sometimes fool yourself with this method, so be honest with
yourself about every step. To write up a proof with this method and then pull
some magic trick in the middle might go unnoticed by your instructor, but if
it is noticed, it will say more about your work habits than a simple note to the
instructor that says that you can't quite bridge the gap. (Many instructors
would prefer to see an inductive proof in proper format with an admission of
difficulty in the middle rather than a poorly formatted proof or an outright
'fudge".)

4. There are usually many different solutions to one problem, so don't panic if
yours does not agree precisely with the solution given. For example. there
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might be completely different sequences of algebraic manipulation that will
prove a particular equality. In fact, it is often very instructive to deliberately
seek a different solution.

5. Use only simple algebra in the steps so that any reader (including yourself)
can clearly follow what. has happened. It is much better to err on the side
of showing too many operations than too few. The only steps one should
feel comfortable in omitting are those that can be verified with the simplest
of high school algebra in a very few steps. For example, adding fractions
first requires common denominators - showing this intermediate step is often
helpful but not required. Just don't force your readers to go off and do a page
of calculations just to verify one equality

To ease simplification of a huge expression, it is often helpful to put. all common
factors "out front" first, then simplify the smaller inner factor. For example,
in the inductive step of Exercise 54, one is faced with simplifying

k(k+1)(2k+l)
k 12

6

One could proceed like

k(k ± i)(2k + 1)
+ (k + 1)2

= k(k + 1)(2k -i 1) + 6(k + 1)2
6 6

2k3 + 3k2 + k + 6k2 + 12k + 6
6

2k3 + 9k2 + 13k + 6
6

and then one would have to factor a cubic polynomial——sometimes not very
much fuji. However, if one factors out the term (k + 1.) first, things get a bit
simpler, having only to factor a quadratic:

k(k+lX2k+1)(kl)2 =

—
—

6

2k2 + k 6k + 6(k+i)
6

2k2 + 7k + 6
=
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=

This idea of separating common factors from the rest of the calculations can
be extremely helpful for more complicated expressions, especially when adding
terms each having many factors.

6. The base step can be vacuously true (as in Exercise 684, the base case is true
l)ecallse it never applies) but it is good practice to explicitly mention this fact
in an inductive proof. Many writers might say something like "since for ii = ü

this is clearly true, so assume it > o." This is often the only clue that you are
reading an inductive proof.

7. If an inductive proof in some text ends up confusing you, try rewriting it in a
formal style, using your own variables, clearly identifying the statement, the
parameters, and both the hypothesis and conclusion of the inductive step. For
example. when I first discovered the result in Exercise 684, I tried reading the
proof iii sortie text, and got lost—it said that the result was "elementary", and
so I felt a bit stupid. The notation was a little different from that I was used
to, and perhaps that threw me. Only after rewriting it carefully did 1 agree
that it was indeed fairly elementary!

8. Sometinies in the inductive step. there seems to be no way to relate an ex-
pression to that found in the inductive hypothesis. One trick is to add and
subtract the same term. For example, in Exercise 279, in the inductive step,
one has to show that 6k12 + 72k+1 is divisible by 43, based on the hypothesis
that 6k i I 72k is divisible by 43. To connect; the two expressions, one can
add and subtract the expression 6 72k1 as follows:

6ki2
F
72k+1 = 6

72k—1 + 72k±I

= I)+(_(3+?2)72k_1

In the last line, the first of the two expressions in parentheses is divisible by 43
by the induction hypothesis, and in the second expression, a 43 serendipitously
drops out, making the whole expression divisible by 43.

Don't feel bad if you miss this trick- for it is only that, a trick. After a
few math courses, you might witness this trick only a few times, but it is

nevertheless worth rcmemmxbering. In this particular case, the can take
a different form by writing

6k+2 + = 6 6k 72k—1 = 6(6k+1 + 72k—1) + 72k—l

essentially the sanmie idea as above.

9. Recheck your inductive step with the first case. For examnple, if 8(n) is true for
ii � 1, recheck your inductive step to see that it indeed proves 8(1) —' 8(2).
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Often, one has to subtract 1 in a denominator, say, making an expression
nonsensical if k = 1. Once you have checked it for the first jump, try another.
say, for ii = 4 to n = 5. Checking the inductive step that gets you from
ii = 1 to it = 2, say, often prevents errors of the type mentioned Chapter 5 on
paradoxes in this volume.

10. In tlte inductive step 8(k) —* S(k + 1), try to do it in one long sequence of
equalities (or inequalities). If one has to manipulate 8(k) to get 8(k + 1), he
aware of the rules that preserve equality. For example, taking square roots of
each side does not necessarily preserve equality. Here is a silly example! was
taught in high school that shows how dangerous it is to go from equation to
equation, rather than using one long string of equalities (or inequalities):

—20 = —20 (obviously true)

16 — 36 = 25 — 45 (rewrite each side)

16—36 = 25 ± (add to each side)

(4._k) (s—i) (factor)

4 — 5 (take square roots)

4 5 (add to each side)

11. When proving time inductive step, one often gets stuck, not seeing how to get
to the last line in a sequence of equalities or ineqoalities. Often a simple
observation must be made, but one that requires a separate proof. Figure out
this step, usually working backwards, and then put this observation, usually
with proof, before you start the string of inequalities so that you can simply
refer to it when needed, streamlining the presentation. For example, in the
solution to Exercise 188, one soon finds that art inequality like 2Vk -f

would he very handy. To check this, one might first investigate by
multiplying by squaring, and then standing back and staring—the
actual proof is then done in reverse, starting with the obvious 4k2 + 4k C
4k2 + 4k + 1.

12. If the statement to be proved has the variable it in it, use a different variable,
say k, for the inductive step. The reason is that in an inductive step, the k
is fixed, whereas n could be thought to be varying. [This comment is echoed
in [194].] Some authors use the saute variable for both, bitt this can easily
lead to confusion. For example, if 8(n) is stated, the inductive step could be
8(k) S(k + 1)— some express this by "Assume that the statement is true
for k (inductive hypothesis); to be proved is the statement for it = k ± 1.,'
For the beginner, I suggest to stay away from such a format. Professional



94 Chapter 7. how to prove by induction

mathematicians often use more concise shortcuts; e.g.. in [58, p. 201, tIre fol-
lowing is used: "The case it = I being trivial, we assume that it > I and that
the assertion holds for all smaller values of a." Thuis is particularly poor style
for a novice; such shorthand might be reserved for only those with years of
experience with induction.

In this volume, many different variables are used so that the student thinks
more about the proof than the letters on the page; it helps one's problem
solving ability to be flexible in notation, Standard variables for inductive
proofs are usually those reserved for integers, like in, a, p, q, i, j, Ic, it'!, and

but you are certainly not restricted to these. Some ant hors prefer lower
case Greek letters like a, j3, arid 6, arid these are recommended when working
with ordinals. Try to select variables that might remind the reader (or author)
as to their meaning.

13. Be suspicious! When reading a proof in some book (including this one) and
something doesn't seem quite right, don't just blindly copy it dowrì arid hope
that sense can be made of it later. Everyone nrakes mistakes, including pro-
fessors arid textbook authors. Ask your instructor! Convince yourself whole-
hrcartedly l.hial. each step is justified—you learn a great deal more this way.

l.ight the urge to read the solution after only a few minutes of effort. If after
scratching your head for a day, maybe take a peek, get an idea, then try
again without tIre solution in front of you. If you must gain the idea from a
published solution, try to rewrite the proof in your own style, perhaps using
new variables. If you are submitting your work, and you have discovered the
solution in some text, cite your sources! It mnmiglit be considered academic
dishonesty by some instructors to find a solution somnrewliere, use it, arid not
tell anyone of tire source.

7.2 Proving more can be easier
Art interesting feature regarding proofs is that it sometimes makes a proof easier if
one strengthens the original statement! This is particularly true for some statements
provable by induction; such a technique is sometimes called "loading the inductive
hypothesis", or "inductive loading". Pólya [434, p. 121] calls this the inventor's
paradox an inventor might be more successful in trying a nrore annibitiotis project.

For example, if one were to try to prove tire statement "the sumnr of tire first. a
cubes is a perfect square", one might have trouble finding tire proof, however, if one

strengthens the staterirent to "the sum of tire first n cubes is [n(n: the proof
is straightforward (see Exercise 56).

In his wonderful book Problem-solving Strategies, Engel [161, p. 180, 7.16] gives
the following as an exercise (see Exercise 192 in this volume): prove that for every
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n> 1,
1 3 5 2n—l 1

2 4 6 2n Th/3n+l
Engel then asks the reader to try and prove by a weaker result, namely

1 3 5 2'n—l< 1

2 4 6 2n

Though the second inequality is not as tight, it is much harder to prove by induction
(try it!). (This example also occurs in a number of other texts; e.g., see [462].)

Another example (regarding Fibonacci numbers) is found in the proof of Exercise
332 in this volume; there it helps to actually prove two statements simultaneously,
the truth of which imply the one result asked for. Perhaps an even more bizarre
example (also with Fibonacci numbers) occurs in Exercise 365, a very simple looking
result which seems impossible to prove without first proving a more general state-
ment, that of Exercise 352. (The reader is invited to try and prove Exercise 365
first! In fact, when I was writing an earlier draft of this book, I tried to do the
innocuous looking one before the more complicated looking one—and got stumped;
the more complicated one is really quite easy, and the other follows directly.) In
Exercise 381, one is asked to prove that a particular sum is a Fibonacci number; if
one first guesses as to which Fibonacci muiniber is arrived at, then one has a better
chance of proving the result. The similar situation arises iii Exercise 577, counting
ways to place dominoes, where a more precise count is easy to prove by induction,
and the proof yields a result stronger than what was asked for! Without making
the extra assumption in the inductive step, it is not appnrent how one would solve
the question. See also the solution of Exercise 515, where a far stronger claim is
easier to prove inductively. Again, proving a more precise result is often easier than
proving a weaker statement.

Here is yet another exarriple from Pdlya [433, Pp. 119, 243, Ex. 12] that requires
only freshman calculus:

l)efine a sequence of functions Jo, fm, f2,... recursively by

Jo(x) =

and for n � 0. define

=

The goal is to prove (by' induction) that for each n 0, the statement

8(n) : The numerator of is a polynomial.

For the moment. ignore the fact that the statement is meaningless, because one has
placed no constraints on the denominator, or made any claims about f being a ra-
tional function, but the intent might be made clear. [Thanks to Sasho Kalajdzievski
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for this observation.3 Perhaps 8(n) was to mean that f is naturally written as a
ratio of two simple looking expressions, and the expression in the numerator is a
polynomial, as opposed to, say, an exponential function or a square root. One might
naively attempt a proof as follows:

BASE STEP: Since the numerator of fo(x) is 1, 8(0) is clearly true.

INDUCTIVE STEP: (8(k) —, 8(k + 1). For some fixed k 0, assume that 8(k) is
true, that is, assume that the numerator of fk(x) is a polynomial, say p(x). To be
proved is that 8(k + 1) holds, that is, it remains to jrove that the numerator of
fk±1(x) is also a polynomial.

All one has at hand is that fk÷L(x) = and that the numerator of
fk(x) is a polynomial. How can one conclude anything about fk±[(x)? In fact,
one can not—not without more information. One needs to strengthen the inductive
hypothesis. So, instead, examine the following statement:

T(n): The denominator of is (I — and the numerator of is a
polynomial of degree ii having constant terni 0 and with all other coefficients being
positive integers.

The statement T(0) is still true, and for each ii, the statement T(n) is stronger
than 8(n), that is, 1(n) 8(n). So instead of proving 8(k) S(k + 1), the
following is I)rOved:
iNDUCTIVE STEP (T(k) —* T(k + I)): For some fixed k � 0, assume that T(k) is
true, that is, there are positive integers a1 so that

a1x -F f... + Uk?
fkfr) = (1 --

Then putting p(x) = a1x + + . .

d p(x)fk±1(X) —
[(1

(p'(x)(i — 1)k+l
— p(x)(k + 1)(1 — x)k(_l)

— (1_x)k+t)2 -—

— — x) +p(x)(k + 1)]
—

— x[ai + 2a2x + + kak? 'j(l — x) + xp(x)(k -i- 1)

— (1 _1)kt2

— 2a2x2 + - + kak?)(1 — x) + xp(x)(1 -+ k)
—

the numerator of which is

a1x + (2a2 -I- kai)x2 + (3aa + (k —- i)a2)x3 + + 2aai)? +
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Thus 1k-ri satisfies T(k + 1), completing the inductive step T(k) T(k + 1).
hence by MI, for all it � ü, T(n) is true. anti so for all n � 0, the original

statement 8(n) is trite. [1

7.3 Proving limits by induction
Mathematical induction can be an invaluable tool in evaluating the tong tenn be-
havior of a sequence or a series. Induction can be used to prove if a sequence or
series has a limit, and often, some information about a limit when it exists. Many
sequences are defined inductively, and so occasionally, an inductive proof of some
property of a sequence is fairly simple.

A sequence is an ordered list, and some sequences have terms that tend to a
particular value L as one goes further down the sequence. An infinite sequence

83,... said to converge to a limit L iff for any small real number number
e > 0, there is an integer N N(e), so that for all a N. the nth term is within
e of L; in this case, write urn8 = L. If no such L exists, say that the sequence
divergcs or is divergent. Two divergent sequences are 0, 1, 0. 1, 0, 1 and 2, 4, 6,
8

For example, the sequence 1.1, 1.11, 1.1 11 tends to the value 10/9, hecause
as nearly every child knows, dividing 10 by 9 gives the infinite decimal 1.11111....
Induction can he used to come to the same conclusion in a rather indirect way. En
this example, it hardly seems worth the work, but one way is to find an expression
for the nth term in the sequence,

lon_t±lon2+ •F 10+1= 1 +

that will clearly reveal the same conclusion. Express the ath term of the sequence
by

Ion 1
an = I +

and simplify to get

(7.1)

The expression (7.1) is easy to verify using mathematical induction, as is the relation
an + 10 It then follows that In fact, from (7.1), one

observes that each an is strictly less than 10/9, an observation that is also seen by
looking at the sequence directly. When a given sequence is not so simple. induction
can often be used to prove that a sequence is hounded above (or below) by some
number used as a guess for any I)utative limit.

The following theorem is a standard result (which follows from the completeness
of the real numbers, or the l-3olzano--\'Veirstrass theorem, one version of which that
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says any bounded infinite sequence of real numbers has a convergent subsequence)
that is most useful in analyzing "monotonic" sequences. Recall that a sequence

of real numbers is called non-decreasing if for each i 1,2,3,...,
< or non-increasing if for each i = 1,2,3,..., � sj+i.

Theorem 7.3.1. If , is a non- decreasing sequence of real numbers bounded
abovc by a real number U (i.e., for each i = 1,2,..., U), then the sequence
converges, and converges to a value that is at most U. The analogous result is true
for non-increasing sequences bounded from below.

As an example, for each n = 1,2,..., define

/ 1\fl
a,1 = 11 + —

n

To see that the sequence converges, by Theorem 7.3.1 it suffices to show this
sequence is increasing and bounded above. One way to see that this sequence is
increasing is to check the derivative of the function f given by f(x) = (1 + x_l)X.
Here is the outline of an inductive proof that is increasing: expand (1 + 1/n)"
by the binomial theorem (see Exercises 103 or 104), and expand (1 + 1/(n +

1 n. compare the (k + 1)-th terms of each. The (k + 1) term of
the second is greater than equal to the first if (n + 1 — k)(n + 1)"'' � and this
is provable by induction on k. So corresponding terms in the expansion get bigger
and the second expansion has an additional term, so a,,+i. To see that the
sequence is bounded from above, prove by induction that for each k = 0, 1 n

It! <n
(n — k)! —

and then (see also Exercise 182 for another proof)

(1 +
=

� �
So the sequence is bounded above by 3. In fact, the limit of the sequence is e,
roughly 2.71828....

Knowing that a particular sequence has a limit (say, by use of Theorem 7.3.1)
can sometimes reveal precisely what the limit is. For example, let a1 = and
for each n � 1, define = It can be shown that the sequence {a,,} is
increasing and bounded above by 2. so by Theorem 7.3.1, the sequence has a limit
L. Using standard properties of limits (of continuous functions)

L = = = lim J2 = + =

and so L = from which it follows that L2 — L — 2 = 0. The roots of this
quadratic are L = —1 and L = 2, and since L > 0, L 2 is the desired limit.
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As another example occurring in Exercise 546, for any real number c (0, 11

define the sequencc 5i, so,... recursively by st = c/2, and for each ii � 1,

+ c
5n+1 =

Mathematical induction is used to show that the sequence is strictly increasing and
strictly bounded above by 1, that is, for each rm � 1, < < 1. Then one can
conclude that exists and is at most 1. Throughout analysis, induction is
used to prove that certain sequences are monotonic and hounded.

Induction can also help to prove that a complicated sequence can be compared
with some known simple sequence (see Exercises 561 and 559 and many others
in Section 16.3 and elsewhere throughout this book). Occasionally, a complicated
looking sequence can be bounded above and below by two convergent sequences,
thereby restricting the limit of the complicated sequence, either precisely, or to
some small interval. As a trivial example, in Exercise 191, it is shown that

1 1'3'5'.'(2n—l) I

2n — 2'4'6..'(2n) —

Viewing this as a comparison of three sequences, the center sequence is then forced
to converge to 0 (by what some call "the squeeze theorem").

An infinite series is a sum of the form

= a1 + 02 + +'''

Loosely speaking. an infinite series is said to converge if the series sunts to a single
finite number. To have infinitely many numbers adding up to a finite number might
be counterintuitive, but. the following standard example might hell).

Consider a square with side length 1. As in Figure 7.1, cut it in half, cut one of
the remaining halves in half, cut one of the remaining quarters in half, and so on.

Measuring areas of all (infinitely many) pieces gives an intuitive proof of

1 11
I = + +.

Using summation notation, this reads

7' = I

or

(7.2)
zn .2
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Figure 7.1: The series + + +

At the n—Lu step, by construction, the renlairurig area is

(1 1 1 i\ 1
(7.3)

a result also provable by induction without too much difficulty (see Exercise 49 for
the general formula for a geometric series). In particular, equation (7.3) implies that

1 1 1 1 1=1—i--, (7.4)

and so in the limit,

Zeno's paradox (that finite distance can be up by an infinite number of steps)
is soon resolved by equation (7.2).

If one is faced with an arbitrary imilinite series, say what does it mean
for it to converge? By definition, this series converges if the sequence of partial
sums

S2

S3 -= b1+b2+b3

s — b1 -t- h2 -t . .. f.
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converges. If one can find a closed form for each of the partial sums (as was done
in equation (7.2) above), then one might be able to evaluate the sum of the series
because then

00

= Inn
7001

might be obvious. Even if one can riot find an explicit form for each partial sum,
onc might be able to prove that each sum is bounded above by sonw number
or expression.

Notice, that if each term in a series is positive, then the partial sums are increas-
ing. In particular, Theorem 7.3.1 can often be applied to the sequence of partial
sums. If each term in a series is positive or zero, then the partial sums are non-
decreasing, and so if the partial sums are all at most U. then the above theorem
shows that the partial sums have a limit, that is, the series converges, to a value at
most U.

For example, in Exercise 180, the inequality to be shown is that for each it � I,

1 1 1 1

49 a a

Once this has been shown, one can then conclude that the series converges,
and converges to a value that is at most

bin (2 — 4") 2.
3—00\ 3/

In fact, the sum of the reciprocals of the squares converges 1:0 the value a
rather unexpected value, hut it is at most. 2 as promised. A statement involving
limits is siniilarly implicit in Exercise 181 and others.

There are many other ways to apply mathematical induction regarding limits.
In some cases, finding an expression for a partial sum by induction then gives way
to seeing that a series diverges (sums to infinity, or does not sum to any single finite
number). If the partial sums grow larger than any given it, the series (ilVCiVes (see
Exercise 395 for such an example).

Sequences that are defined recursively often don't easily lend themselves to de-
tailed analysis unless some intermediary observations can be shown, and such obser-
vations are often proved by induction. Examine the sequence x1, x2. x3, . . . defined
recursively by x1 2, and for a = 1,2,3,..., i = + 6). This sequence
converges to 6, and this is shown below by first proving that the sequence is increas-
ing, and then by showing each term is hounded above by 6. These two facts show
(by Theorem 7.3J) that the sequence converges to something at most 6. Finally,
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knowing the limit exists, a simple computation shows that it is indeed 6. Computing
a few terms,

2, X2 = 4, = 5, Z4 = 5.5, = 5.75. x6 5.875, x7 = 5.9375

so the result seetns reasonable. To show that the sequence is increasing is done by
induction. Let [(it) he the statement that XTZ <

I3ASE STEP (1(1): The statement 1(1) is true since x1 = 2 <4 =
INDUCTION STEP (1(k) -—' I(k + 1)): Suppose that for some fixed k � 1, 1(k) is

true, that is, xk < Xk+1. Next, it is shown that I(k + 1): xk÷t < follows:

Xk±2 = + 6)

> + 6) (which follows by 1(k))

= xk+1 (by def'n).

This completes the inductive step.

By mathematical induction, for each n � 1, 1(n) is true, and so the sequence is
increasing.

'lb show boundedness: For each ii 1, let 9(n) be the statement that < 6.
Since a:1 = 2 < 6, the base case B(0) is true. For some k � I, suppose that 9(k) is
true. Then

= + 6) < + 6) (by B(k))

= 6,

shows B(k 4 1) is also true, completing the inductive step. Therefore. by induction,
each term of the sequence is bounded above by 6. Hence, the sequence converges
to a limit L that is at most 6. Using the fact (which only holds for convergent
sequences) that

— L =

one has

1 1 . I
L = hm = lim = —(bin +6)= -(L+6);

n"oo2 2n--'oo 2

solving the equation L = + 6) gives L 6. This concludes the example.

Some other interesting applications of induction to limits can be found in exam-
ining interesting expressions such as
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(see Exercise 203, for one). Results for continued fractions are also often obtained
using induction.

There are many exercises in this volume that can be used to derive certain limits,
sometimes in a less than obvious manner. (See the index under "limits, proving by
induction" for many other exercises.)

7.4 Which kind of induction is preferable?

Determining which kind of mathematical induction to use is a dii licult problem.
There are no general rules. When is it reasonable to use the first principle of
mathematical induction instead of strong induction? For which kinds of prob'ems
does well-ordering help; when is it feasible to attempt a proof by contradiction and
downward induction? What kind of inductive step is preferable? If a problem has
two variables, how do you decide upon which to induct? How mriany base cases riced
be employed? None of these questions scent to have firm answers.

7.4.1 When is induction needed?

How does someone decide whether or not to attempt an inductive solution to a
problem? A few mathematicians may not believe in induction at all, and are only
willing to accept theorems that have a direct proof. Some mathematicians suggest
(in good fun) that an inductive proof is used only as a last resort, for if one really
knows the subject, induction is not required. Others insist (or joke) that only real
mathematicians use induction, and they use it often. [Names of individuals in each
class are suppressed.]

Some scholars examine theorems that have been proved using the axiom of choice
(AC) and work very hard to timid proofs that don't rely on AC. There is a large school
of thought that prefers proofs that don't rely on contradiction, for the law of the
excluded middle is forbidden to them; for these people, inductive proofs that use
infinite descent might be troublesome. [See, e.g.. [316, p. 332—340] for a discussion
of 3-valued logic.]

For many, whether or not to use induction boils down to simply a matter of
individual taste, ignoring the deep philosophical questions regarding axiomatic as-
sumnptions. Sometimes, a proof by mathematical induction seems just
and sometimes not. To decide among which of all proofs for a result is more beau-
tiful, or more appropriate, is very personal.

There is the ol)inion that induction is used excessively. One writer [71] said in a
letter to the editor of MA.4 Focus. iiiduction tends to he over-used
as a proof technique." "...I am sure that I am not alomme in feeling that induction
should generally be avoided, ... If we comrme across an identity for which the only
known proof relies on induction, then it's our job to gain a better understanding of
that identity until a iriore conceptual proof is found." Perhaps the word
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in the above quotation is inappropriate, since induction is often taught via., at first,
simple examples (perhaps those that can be verified independent of induction).
[Personally, I object to the word "should" when it is used as an imperative; if an
instance of the word "should" is a true imperative, it would be nice to see the rest
of the tacitly assumed "if you want... then you should (must?)..." sentence, so
that it can he verified logically.] Perhaps one reason that induction seems to be
overused is that iii teaching induction, often simple statentents are used, statements
that otherwise have simple direct proofs. For example, for n � 7, to prove that
it2 — 5x 6 > 0 can be done by induction, however a simpler proof is by factoring:
fl2

— 5x — 6 = (it — + 1), each factor of which is positive for n � 7. The
inductive proof might be discovered first, hosvever the latter argument is certainly
more efficient.

On the other hand, in a response to the letter referred to above, Stockmeyer [514]
replies "We can certainly construct proofs of conibinatorial identities, such as his
example -1+2+3+• .+ii n(n+ 1)/2—that hide the induction from our students.
As mathematicians, though, we should [sic] keep in mind that with identities of this
type induction is always present, at least in the background." Stockmeyer continues
"We should not be surprised, then, when induction turns out to be a natural proof
technique for identities that sum over the positive integers." Stocknmeyer has a
point: since the counting numbers are defined recursively, and many operations in
math (like addition of integers) are defined recursively, and confirmed inductively,
induction is almost always at work. One might take this reasoning a hit further and
argue that induction is actually alive in any mathematical statement. [The term
"mathematical statement" is used here deliberately without. definition.]

Induction certainly suffers from the weakness that one already needs to "know"
(or guess) the desired result before induction can be applied; only in certain situa-
tions can induction be used to discover, say, a particular identity. Finding a partic-
ular identity might be done without induction, but for more complicated prol)lerrms,
one often guesses at a formula via non-inductive techniques, whereas induction may
provide the easiest proof.

Somnetimes a statement (like the sum mentioned above, see Theorem 1.6.1) with
an inductive proof has a simple direct proof. Some l)refer a direct proof—if one is
at all available. For example, some rmmight say that since the formula for the sum of
squares (Exercise 54) has many "non-inductive" proofs, induction "should" never
be used to prove the formula! One advantage of an irtductive proof is that one never
has to remember the "trick" behind some direct proof. The formula for the sum
of the first n squares can be proved in a way analogous to the Gauss proof for the
sum of the first n. integers, and similarly so can a formula for the summi of the first.
cubes (see Exercise 56) be proved however such proofs soon become more
involved for more complicated stuns.

Another simple example is in showing that for any positive integer ii, the niinibcr
a2 — a is even. Since — = n(n —- 1). amid one of n or n — 1 is even. the result
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is nearly immediate. An inductive proof of this fact is also available. Is n3 — rt

always divisible by 3? Is there a pattern? An advantage of MI is that perhaps just
one technique can be executed repeatedly with little variation, producing a host of
results, and even though each individual result may have a "cute" proof, there is no
need to remember all the cute proofs. Mathematical induction often requires little
thought when applied in such situations. There is an old adage that says something
like "why remember all of the details, when you can just remember where to find
them?" In a sense, mathematical induction is like a place where one can find many
proofs, and so induction is like having the proofs forever at hand.

Sometimes a proof by upward induction can be turned into a proof using well-
ordering and downward induction (descent). Some people feel rather strongly about
which way is preferable. In fact, it may be true that a va.st majority of inductive
proofs can be given using a minimal counterexample, and to give such a proof
might be pedagogically interesting. Some problems only seem to have a proof by
contradiction and downward induction (see, e.g., Exercise 201), so discovering any
proof might entail trying a number of tecimiques. Again, it may seem to be a matter
of taste as to which kind of inductive proof need be attempted, or taught, but one
can imagine that there are situations where one method seems preferable to another.

It seems that not all statements provable by induction also have direct (using
only deductive logic and no induction) proofs (like Theorem 1.6.1), though proving
this claim might be difficult! It's very likely that there are mathematical statements
for which only an inductive proof is known.

There is probably no good answer to "When is induction needed?". As Charles
Caleb Colton said in 1825, "... for the greatest fool may ask more than the wisest
man can answer". This next exercise might indeed ask more than can be answered,
but the questions iii it might make for interesting discussion.

Exercise 31. Does there exist a mathematical truth that does not have a (mean-
ingful) proof by induction? If someone handed you such a truth, how could you
guarantee that no inductive proof exists? Does there exist a property provable by
induction, but with no other kind of proof? Again, how would one show that no
direct proof exists? Can one characterize those mathematical truths for which no
inductive proof exists, or can one characterize those statements that have inductive
proofs, but fail to have any other proof?

Perhaps. one might be able to more safely approximate an answer to "Should
I try an inductive proof for this problem?" There are some obvious earmarks to a
problem that might easily be solved using induction. Finding a particular formula
is often not done by induction, however once a correct: formula is guessed, mathe-
rnatical induction is often a natural choice for a proof technique. If the statement
of the problem contains only one variable, amid that variable is meant to only hold
integer values, then induction might be a reasonable choice for a proof technique. If
the problem involves a process of steps that can be matched to the positive integers,
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then induction might be efficacious. It seems that many problems involving recur-
sive definitions (like those in logic, set theory, combinatorics, or computer science)
might be candidates for an inductive solution.

Some might say that induction should be one of the first choices of proof tech-
nique. Often one gets lucky, even when there are different choices for variables to
induct on. For example, one can prove the handshaking lemma (Lemma 15.1.1) by
either inducting on the number of vertices in a graph or on the number of edges in
a graph; the first of these two proofs is slightly more difficult, so sometimes it pays
to try different approaches.

Mathematical induction is often a more powerful technique than one might ex-
pect. Even if one attempts an inductive proof and fails, invaluable familiarity with
the problem may be gained, knowledge that might very well lead to a direct proof.
It may seem that attempting a proof of a conjecture by induction is rarely a (total)
waste of time. Induction is an invaluable technique to any student of mathematics
and is one of the most powerful tools in the hands of any working mathemati-
cian. Practicing induction by proving known results is often how one first learns the
method.

7.4.2 Which kind of induction to use?

There are many theorems having two or more different kinds of inductive proof. For
example (see Exercise 477), to prove that a tree on ii vertices has it — 1 edges, one
can use either the first principle of mathematical induction, or one can use strong
mathematical induction—or one can use well-ordering. The choice of which kind
of induction to use ma depend upon the idea behind the proof. In the inductive
step of one such proof, one assumes the existence of a leaf in a tree (by Lemma
15.2.1), and deleting this leaf gives a tree with one fewer vertex and one fewer edge.
Then the induction hypothesis need only he applied to the remaining tree on it i
vertices, giving mt — 2 edges; together with the edge deleted, this gives it — i edges
in all.

On the other hand, if one did not think to delete a leaf vertex, one could, by
Lemma 15.2.3, delete any edge and get two smaller trees. To apply arty induction
hypothesis to the smaller trees, one must assume that the the statement holds for
all smaller trees, that is, one must. use strong induction. See the solutions for yet
another proof, one using well-ordering and contradiction.

Another example of a theorem that has various proofs is that in the statement of
Exercise 515, showing that a tournament has a king. One inductive proof is slightly
tricky, however a proof by strong induction is remarkably straightforward! [Thanks
to Liji Huang for reminding inc uf this example.1

In Exercise 214, one is asked to show that. if s and t are relatively prime (non-
zero) integers so that .ct is a perfect square, then both s and t are perfect squares. A
fairly simple proof comes to mind involving unique faetorizatiori, however two very
different proofs are available by sortie form of induction; a proof by strong induction
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and a proof by infinite descent are given in l,he solutions. Both seem relatively
natural and painless, but there are likely fans of both proofs.

Often one can not tell that strong induction is needed until after failing in an
attempt to prove the inductive step using only one inductive hypothesis. It is for
this reason that some authors tend to use strong induction for every induction proof,
for then it matters not that the extra inductive hypotheses arc superfluous.

Proving as many (small) cases as you can without any induction serves many
purposes. Doing so might make it obvious as to which kind of proof will work. For
example, doing just the first two cases directly might reveal that a general proof of
the n-tb statement might depend on whether n is even or odd. This might suggest
two base cases, and an inductive step of the form 8(k) —* 8(k+2) to prove all cases.

Some results involving more than one variable often require some kind of double
induction (see Section 3.5), where it is often easy to identify which variable to induct
on first. Sometimes a variable occupies essentially two different roles, and so perhaps
a more general statement involving two variables is easier to prove than the one with
a single variable. See Exercise 330 for a problem where, at first, it is not clear as to
which variable one might try to induct on.

Making decisions about what other types of inductive proof to try is challeng-
ing. About all that one can hope is that after many failed attempts, one gains a
better sense of when to use, for example, Hausdorif's maximality principle instead
of translinite induction, or when to use infinite descent over induction. Studying
the many famous proofs might be the best advice toward learning which kind of
inductive proof to try first. Consequently, many failed at.teinl)ts may be invaluable
in any attempt to gain a "feel" for svhich kind of inductive proof is tilost apt.

Comment: Professor Farahat once told inc that pages of seemingly wasted work
(mistakes, preliminary calculations, failed proof attempts, and clumsy proof expo-
sition) are never really wasted; "they build character". Of course, he might have
meant "character" in the sense that hard-working people have solid character, but
he probably also intended "character" to mean "mathematical character", the wis-
doni to choose appropriate efficient notation, the mathematical maturity [pardon
the trite phrase] to select proof techniques that are elegant, and the faith that hard
work will produce many answers. His wisdom can be especially appropriate when
trying to find (or write or teach) inductive proofs.





Chapter 8

The written MI proof

We may always depend upon it that algebra, which cannot be trans-
lated into good English and sound common sense, is bad alge Inn.

—William Kinston Clifford (1845—1879),

Coirrrnon sense in the exact sciences.

This chapter is directed at the student, especially the student just learning how to
write aa inductive proof. Many teachers might also benefit from guidelines presented
here when experimenting in how to teach MI writing. Some comments given here
may also be useful to professional mathematicians, however most professionals can
afford to be slightly relaxed in their presentation because they may expect that most
of their audience can reconstruct a formally written proof from their outline.

In this chapter, the student is given a template to follow for writing tip aim
inductive proof. Other aspects of the written proof are given that not only may
help with style, hut with organization and logical presentation.

Many mathematicians have different ideas as to what is "well written math",
and this collection of comments is an attempt to capture the best from many of my
teachers. When I was being taught how to write mathematics, at first 1 resented all
the red ink on my assignments—but have since appreciated the incredible work my
professors put into my education. Three profcssors, E. C. Milner, 11. K. Faraliat,
and N. Saner, stand out as profound influences on my written word (hut don't blame
them for any idiosyncracies here).

The style of an inductive proof has certain necessary parts, arid when learning
to write such proofs, I have found that a very strict format is helpful. In my
opinion, only after writing tip many inductive proofs should the student attempt to
ahbreviate this style. Most proofs in this text are written keeping iii mind this strict
foririat; only a few are written up in more conversational style.

Before getting into what an "ideal" inductive proof might look like, let inc tell a
brief story. I once gavc a one-hour lecture on induction to a group of keen freshman,
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going over the theory and a few examples. At the end of the lecture, all nodded their
heads politely that they understood, and so 1 announced that, in next class, I would
give a quiz—just one proof by induction. The outcome was extremely disappointing.
So, I developed a plan. I told the class that I would give therri yet another quiz,
but I offered them a template most inductive proofs "should" follow. I promised
that any submitted solution that followed the template PRECISELY would earn
9 out of 10 marks. To gain full marks, the student needed only to manage the
algebraic manipulation proving the inductive step. My goal was to first eliminate
many common logical mistakes by teaching them how to format arid present their
proofs.

8.1 A template
here is some of the rationale behind the template (the actual template then follows).
Suppose that a particular statement regarding ïì is to be proved for ii �

1. Define the stateriient that needs to be proved. For example: "For each ii � 3,
let 8(n) be the statement . If there is imiore than one variable, be careful
of quantification; for example, the expression

For each ii � 3 let 8(n) be the statement that for all in n

is different from

For each n � 3 and all in <n. let 8(n) be the stat,einemit that

In the second expression, the lower bound for m• is not stated, and it is not
clear whether or not 8(n) depends on the particular value of in, so perhaps
something like

F'or each a � 3 and each m satisfying I in < n.. let 8(ni, 'a) be the
statement...

is better. It might help to also identify in advance for which variables a
particular sentence even makes sense, later restricting the variable to the cases
that are beiiig proved.

2. State the range of 'a for which the statement. is to be proved: For example:
'To be proved is that for each integer 'a 3, the statement 8(n) is true."

3. Base step: Write the words "Base step" and verify that the base case is true
(giving reasomis if it is not trivial). For example:

BASE STEP: 8(3) says ... whicli is true.
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4. Inductive step: Write out the words "INDUCTIVE STEP:"

5. State the inductive hypothesis. For simple mathematical induction, this will
read like: For some fixed k � 3, assume that 8(k) is true. fWriting out
precisely what 8(k) says is usually an excellent idea.] For strong induction,
this will read something like: "For some fixed k � 3, assume that 8(3), 8(4),

8(k) are all true," or "For some fixed k � 3, assume that for 3 � i � k,
8(j) is true." Labelling the inductive hypothesis with the words "inductive

hypothesis" (or "III") is often a useful practice for the novice.

6. State what needs to be proved, namely 8(k + 1). It is highly recommended
that one writes out 8(k + 1) specifically so that one sees the required form of
the conclusion in the inductive step.

7. Prove 8(k+1). If 8(n) is an equality (or inequality), it is best (see comments in
Section 7.1) to start with one side of 8(k + I), and via a sequence of equalities

inequalities), derive the other side. At the point where the inductive
hypothesis is used, this should be mentioned either as a side comment "by
8(k)", "by induction hypothesis", or even by putting the initials "IH" over the
relevant equal sign. For example, in the solution to Exercise 245, the induction
hypothesis 8(k) is that there exists an integer in so that 22k — 1 = 3m. The
equalities

— = 22k
—

= 4(22k
— 1) + 3 '4' 4(3m) + 3 = 3(4m + 1)

are then used. The above equations could have been written

=

=

4(3m) + 3

= 3(4mn + 1),

or in the manner most commonly used:

— 1 = 4 —

= 4(22k — 1) + 3

= 4(3rn) 4- 3 (by 8(k))
= 3(4rn + 1).

8. Mention when the inductive step is done. For example, one might write "...
completing the inductive step 8(k) 8(k ÷ 1).", or simply "This completes
the inductive step."
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9. State the conclusion: "Therefore by mathematical induction, for all a � 3,
8(n) is true. 0", using the symbol "0" to denote that the entire proof is
complete. Some mathematicians prefer to quantify variables beibre they are
used, as in "... for all n 3, 8(n) is true." This is a good practice, as it reads
more logically, however remember to insert a corniria (because "it � 8(n)"
might be meaningless) or an extra phrase like ... for it 3, the statement
8(n) holds."

The template I gave was the following, with the instructions to change certain
letters and numbers as appropriate:

Problem: Prove that for all n � 3, ... holds.

Solution: For any integer ii 3, let 8(n) denote the statement...
BASE STEP (n = 3): 8(3) says ... which is true because...

INDUCTIVE STEP 8(k) S(k + 1): Fix some k > 3. Assume that

8(k) : (write out what 8(k) says)

holds. [8(k) is called the inductive hypothesis.) To he proved is that

8(k + 1): (write out what 8(k + I) says)

follows. Beginning with the left sidc of S(k + 1),

LHS of 8(k + I) sirriplify or rearrange

(by 8(k))

= RHSofS(k+1),

one arrives at the right side of S(k + 1), thereby showing S(k + I) is
also true, completing the inductive step.

CONCLUSION: By mathematical induction, it is proved that for all
a 3, the statement S(n) is true. El

Note: In the above template. if the proof is by strong induction, the induction
hypothesis should be replaced with "assume that for each j, 3 <j < k,

8(j) (write out what 8(j) says)



&2. Improving the flow 113

holds." Also, in the sequence of equations, at the point where the induction hy-
pothesis is invoked, either write "by UI" or mention which statements of the 11-1 are
used (e.g., by 3(4) and 3(k)).

Amazingly, in an attempt to simply rnen1orize the format of an inductive proof
(for which my students received healthy marks), the students also seemed to discover
what was wrong with their previous formats. Also incredibly, students began to ask
for more induction problems to practice on! (That was the genesis of this book.) The
result was that nearly every student scorned to look forward to cracking inductive
proofs on exams (believe it or not!).

8.2 Improving the flow

In some sense, there are two languages for mathematics. There is the language of
doing mathematics, and there is the language for writing mathematics as a formal
record of logical implications.

When doing mathematics, one often tries a few cases, drafts a dozen or so dia-
grams with dots, arrows. and sausages all over the place, and makes a few guesses.
Details are often worked out from the desired result, that is, backwards, and vari-
ables are changed a few times depending on how confused the writer gets. Only
after all the mathematics has been done, can it be written.

Unfortunately, in mathematics journals, the output that readers see is often
sterile, uninspiring, a hit on the terse side, usually without superfluous or auxiliary
observations, and with a strict adherence to notational consistency. A proof might
start out. 'tet ö = with rio insight as to why such a choice was made. Some
authors like to develop a proof, showing why it is required to use such a 8, say, and
do the proof from the bottoiri up. It takes years of practise to come to a balance
between the two styles that is acceptable to both the writer and reader.

There are many ways to make an inductive proof read more "smoothly". Some
of these ways include rearranging details and careful use of language. In the next
section are a few corrimnents on notation, proper use of which may improve presenta-
tion. Again, please be reminded that many comments are intended for the novice,
and that much of what follows are my personal opinion or style, riot rigid rules.
Other styles can be equally effective.

8.2.1 Using other results in a proof

lf some auxiliary fact is used in proving an inductive step, state the fact (arid prove
it. if necessary) helhre starting the induction; this streamlines fIre proof, as you can
simply reference it when needed in the body of the proof. (Tins topic was briefly
discussed in Section 7.1. where Exercise 1S8 was mentioned.) This mmmeans that
sometimes you will have to rewrite the proof two or three times. llcre is a sirmiple
example (from the solution of Exercise 236), which uses only basic number theory:
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For n 1, let 8(n) be the statement that 3fl + 711 2 (mod 8) [the notation x 2

(mod 8) means that x is 2 more than a multiple of 8).
What happens when one tries a proof of the inductive step 8(k) —* S(k + 1)?

Fix k � 1 and assume 8(k) is true. In a first attempt to prove S(k + I),

3k+i + = +
_33k7k (inod8)
m4.3k_(3k+7k) (inod8)

(mod 8) (hy8(k))

one gets stuck. Notice that if 4' 3k (mod 8) were to hold, the proof becomes
simple. In fact, upon a moment of reflection, one sees that 3k is always an odd
number (for k � 1), and multiplying any odd number by 4, say (2b + 1)4 = Sb + 4,
gives precisely 4 modulo 8. Put this observation first, and then write the proof, citing
this observation in the appropriate place. One might even comment as to why a
particular observation may be needed later. The proof then reads more smoothly
(See the solution for Exercise 236 for the final outcome.)

8.2.2 Clearly, it's trivial!
Particularly in the base step of an inductive proof, there is a tendency to want to
say something like "8(1) clearly holds", or "which is obviously true". In general, try
to avoid such phrases. There are many examples in mathematical literature that an
author uses such a phrase, only to find out later that some special case violates the
claim. Eric Temple Bell (a famous mathematician and mathematics historian) once
said

Obvious' is the most dangerous word in Mathematics."

Another interesting relevant quotation is from Pdlya [433):

"The advanced reader who skips parts that appear too elementary may
miss more than the less advanced reader who skips parts that appear
too complex."

In other words, there is often immense value in checking what appear to be simple
details. As a rule, if something is obvious, or trivial, then it doesn't take very much
effort to give a rigorous proof • so do so.

Also, if one person has a certain picture in their head, indeed an observation
can be trivial, hut not everyone will have that same picture. so it might help the
reader to give at least a strong indication as to why something is true. Once you
have seen why something is true, it is easy to say that "it is trivial". There is a
story (perhaps apocryphal) about a professor giving a lecture arid in the middle,
said "this is trivial". lie then scratched his head, standing there speechless for a
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minute. To the surprise of the audience, without saying anything, he left the rootri.
The crowd remained seated, waiting patiently for some news. After 20 minutes, hc
came back, and announced "yes, it's indeed trivial." [At least five versions of this
story persist----I cannot locate the source.]

The famous physicist Richard P. Feynman wrote in Surely You 'it Joking, Mr.
Feynman [189, p. 70]:

We decided that 'trivial' means 'proved'. So we joked with mat.liemati-
cians: 'We have a new theorem --that mathematicians can only prove
trivial theorems, because every theorem that is proved is trivial'.

8.2.3 Pronouns

Try to avoid using too many pronouns or vague descriptors. For example, in the
middle of your proof, if you write "...then it is an even number..." the term "it"
might be meant to indicate any of a long list of things. Generally, any occurrence
of words like "it" or "this" will point to the very last thing written, so he careful
to check what "it" might mean. Also, if you want to refer to a fonnula or equation
already mentioned, one can go back, display that formula on its own line. iiiark it
with a star or a number, and then later say something like "... and so by equation
(*) above, one has...". This saves one having to repeat the same fonnula again, yet
there is no ambiguity as to which equation you are now referring to.

8.2.4 Footnotes

In mathematical writing, it was once common practice to use footnotes, especially
for comments and referenecs. F'ootnotes can be used to provide a comment, one
which would interrupt the flow if included in the text. Footnotes were often used
for bibliographic references, saving the reader from flipping to the back of the 1)00k.
Mathematical typesetting has evolved a great deal in the past few years. and it
seems that footnotes are now on the way out in math; in other sciences, footnotes
are still rather common. Today, in mathematics it is now customary to refer the
reader to a bibliography by use of labels. For comments that are an aside, footnotes
are still efficacious, but putting such comments in square brackets also works.

8.2.5 We, let's, our, will, now, must
in mathematical writing, it is conirnon to encounter the "royal we", a.s in see
that...", or "we have or "Let's calculate...", or our assumption that
In most cases. there is no need for such, and some might think that such usages
are downright silly. Once a reader gets used to 'we wish to lrove •, it is rather
difficult to write while avoiding such phrases.

Some authors believe that using "we" makes the mathematics more personal,
that its use makes the reader feel invited to a cooperative process with the author.
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Students emulate that which they see in the literature, and so "we" is now commonly
found in homework, too. [This might be appropriate for joint submissions where
the authors say "We researched this problem...", in first person.] If one attempts
to write mathematics without the word "we", a writer is often forced to switch
from a narrative about how to proceed, to concentrating on the logic behind the
mathematics. I cncourage younger mathematicians to try writing without "we"; the
irtat.hernatics then tends to stand out. Alter all, the royal "we" is just a tradition,
and in my opinion, an unnecessary one. [For consistency, I have removed most
occurrences of "we" in this 1)00k, hut doing so was a real challenge.]

There is only one situation where I can see using the word "we", and that is
when two or more authors are passing along thoughts in a first person manner. Some
authors write in the first. person (e.g., "I once proved that...", or "Erdôs once told
me ) whereas some find such conversational writing a bit too informal; I think
that first person prose in mathematics is sometimes refreshing.

Sortie authors insist, on not using the word "will". For example, the phrase "the
proof will he prescnted in Section 2..." might be written as "the proof is presented
in Section 2". One reason for elitninat.ing such a "will" is that word can he taken
to mean that something in the future is about to liappen-—-or as an order ("you will
soon see..."). ['I'lianks to Ted Bisztriczky for the suggestion.] If an author wants
to indicate what will he done in an subsequent volume, "will" might he replaced
with "plan to". quite possibly a more reliable phrase. In a similar vein, sentences
beginning "Now, let. x be cart he avoided, especially since the word "Now" cart
ofi.en he tacitly assumed, and it is very easy to overuse it.

There is one more word that a writer must he careful about: "must". This word
smells more of imperative than of proof. If one wants to skip sortie logic, one might
say "this must be true". Such a phrase can mean arty number of things; first, it
could mean "this is true", arid supporting arguments have been given. On cite other
hand, it could mean "it is probably true, yet I don't have a proof handy". %SThen
refereeing a journal article, a professional rmrathematician might raise an e,yebrow if
the word "must" is used anywhere; "must" often points to where errors are hiding.

8.3 Using notation and abbreviations
Here are a few points on notation that might be worthwhile to know. These points
refer riot only to inductive proofs, but written mathematics in general.

Perhaps one of the most useful things to keep in mind is that when using some
particular notation, it is always safe to describe it first. For example, in calculus,
one often denotes by simply y', however, if given the expression

?12 = .s2 —

the term might not be so meaningful; if one is asked to find one might
start by saying "let p' = and a' and then calculating might begin "upon
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differentiating with respect to s, one finds

y' = 2s — 3X ln(3)x',

and so . ." With the extra words about notation at the beginning, there is little
room for doubt about what later expressions mean.

On the other hand, there is much notation that is standard and has well accepted
meaning in any circumstances. Unfortunately, some students have learned to use
certain notations without remembering what they really mean. It is often helpful
to read out loud that which you have written in symbols; this technique may help
the author to find better notation.

Symbols that are commonly misused are and "—*". Let P arid C) be (com-
plete) sentences that can be either true or false. The expression "P —* C)" is notation
for "P implies C)" or "if P then C)". The statement P C) is an implication. The
expression P C) means that P logically implies C), that is, the truth of P — C)

follows directly from the rules of the language. Many mathematicians tend to use
the logical implication arrow when they mean only —'; however, this abuse of the
notation is often handy when there many other arrows, like those used in limits. In
lectures, it is often tacitly assumed that means only "implies". Sometimes tIme
expression "P (2" is replaced with "P therefore C)". The word "therefore" (often
capitalized to indicate the beginning of a new sentence) used too many times in a
row can appear boring, so the words "hence" or "thus" are often used. The word

means "from which" and its use is not generally preferred (however, 1 like
to use it once in a while). "From whence" is improper, n.s is any sentence beginning
"Whence , "whcnce" is not a fancy form of "hence".

if both P —÷ C) and C) —+ P. then write P C), often expressed as "P if and
only if C)" (where the "P if C)" part is the implication C) P). The expression "if
and only if" is often abbreviated "if".

Two pieces of notation that seem to creep into (and take over!) solutions on
math exams or homework are and "Y'shorthand for "therefore" and "because"
respectively. My guess is that in university homework assignments, such notation
is misused over half of the time. It seems that many students have learned to write

beside nearly every expression, and include rio real reasons. Students copy their
teachers, amid since it seemed cool for their teacher to use these symbols, it, is cool
fur them too. In my own classes, I have since forbidden the use of these symbols,
requiring my students to instead use words (and complete sentences) to convey
what "therefore" means. (The proper use of implication arrows is encouraged, also.)
Misused, these notations confuse the reader; overused, they offer no real help to the
reader. [Also. their usage seems to be becoming passé-—maybe that is only wishful
thinking.]

When practical, I encourage students to use tIme words instead of symbols, at
least until proper usage of notation is learned. "Longhand" has an added l)enefit
of forcing thc student to think while writing, with time goal of communicating their
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ideas, rather than writing something that merely looks "technically fancy". The
central reason for learning how to write up proofs is to learn how to communicate
ideas clearly. Often, an added benefit to writing things out in longhand is that doing
so forces you to organize your thoughts more.

It is incredible how many exams and assignments are turned in for grading that
do not contain a single word. only equations, dots, arrows, and charts with numbers.
One marked difference between high school and university is that in high school,
students seem to get away with writing only a record of steps processed, whereas
in university. most often, the student is expected to give coherent and complete

Someone once told me "good mathematics is good prose," perhaps a
thought worthwhile remembering. Most math texts are written so that everything
is a part of a complete sentence (look for periods at the end of equations, even in
this book). The process by which a student learns to write in this manner is often
painful, but the rewards are incredible.

As in ordinary prose, abbreviations are useful, hut incorrect usage can drastically
alter meaning in mathematics—or at least make reading clumsy. Here are a few more
abbreviations that are often misused. The expression "ç. E.D." is short for "quod
erat demonstraturn", literally, "that which was to be demonstrated", and often
appears at the end of a proof. This does not mean that one can put "QED" at the
end of every proof—only use it if the phrase "that which was to be demonstrated"
would make sense in its place. ["QED" is also short for "quantum electrodynamics",
as in Richard Feynman's book QED Thc strange theory of light and matter [1901,
but I digress.] Similarly, "Q.E.F" is short for "quod erat faciendum", meaning "that
which was to be done". (This is sometimes used when, for example, a construction of
a promised object is accomplished, so a loose translation might be "that which was
to be made"; iii any case, QEF is rather archaic and is seldom used in mathematical
works lately.) One standard way to indicate the cnd a proof these days is with

Two other commonly misused abbreviations are "e.g.", an abbreviation for cx-
empli gratia, ("for the sake of example"), and "i.e.", short for id est ("that is").
Misuse of these abbreviations only detracts from a beautiful proof. One particu-
larly bad place to use "i.e." is in any proof with complex numbers (since i
or exponential functions (where e = 2.718...).

Avoid using "etc." in mathematical proofs, e.specially in proofs by induction,
since it can to lead to ambiguity in what is really intended. After all, "etc." is only
an abbreviation for et cetera, meaning, "and the rest", a notion that can usually be
made precise in mathematics.

The notation "s.t." is used in place of "such that", or "so that", and is often
safely employed in a proof with no variables named s or t. Another notation for
this notion is .", bitt this is not so common (some professors use this notation
without the dots on either side, but this can be confused with "contains as an
element"). Finally, the notation "v" means "for all", and "R" means "there exists",
and are examples of what are called "quantihers". The sentence 3 •y > it
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then says that for every x there is a y so that y is larger than x.
Requiring complete sentences in proofs often helps the student organize thoughts;

appropriate notation helps one to express these thoughts efficiently. Acquiring both
of these skills is often quite painful. Learning to write induction proofs properly can
often be a gentle introduction to these arts, as the format and notation are usually
straightforward.





Part II

Applications and exercises
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In open statements in this part, it is an integer, usually a � I unless otherwise
specified. For the most part, all necessary notation and definitions used in a ques-
tion are given in the same section as the question. so many problems here can be
understood without much previous knowledge. With only a few exceptions, nearly
all exercises here can be solved hy using sonic form of induction; nearly all exer-
cises requiring an infinite form of induction or not requiring induction are clearly
identified.

Among these exercises one can find an amazing array of classic theorems. Most
exercises can be done with only simple algebra; only a few require calculus or more
sophisticated machinery. Most questions have solutions, hints, or references in Part
Ill.





Chapter 9

Identities

The business of concrete mathematics is to discover the equations
which ezpress the mathematical laws of the phenomenon under con-
sideration; and these equations are the starting-point of the calculus,
which must obtain from them certain quantities by means of others.

-—Comte,

Positive philosophy.

Identities are tools of every working mathematician. Standard identities involv-
ing simple sums, products, fractions, or exponents are used by every student; it may
be amazing to see how many of these can be proved by induction. Sonic of the more
useful identities involve binomial coefficients or trigonometry, and many of these
also can he proved by mathematical induction. Exercises below are often roughly
grouped by category; however, many exercises could easily hill into more than one
category.

Many of the identities below have "proofs without. words", that is, a pictorial
representation. The interested reader can find many of these in Roger B. Nelsen's
two delightful books [4031, [404], available front the MAA. A few specific references
to these "picture proofs" are mentioned below. Many identities regarding integers
also have combinatorial proofs; in fact, many of these identities form the heart of
combinatorics. Riordan's Combinatorial Identities [454] is a rich handbook for those
studying identities that come from counting in different ways. Many of the identities
in that text are provable by induction, so Riordan's text might he a great place to
start for references or other resources.

9.1 Arithmetic progressions
For the hrst. two exercises, let 0,, denote the nth non-negative odd number and E,,
denote the nth even number. So = 1,02 = 3,03 = 5 and B1 = =

125
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2, P3 = 4 The first two theorems have been attributed to Maurolycus (see, for
example, [91], where the reference is [376]).

This next exercise has a direct proof, and proving it inductively is not nearly as
straightforward as one might think.

Exercise 32. Prove that for each positive integer ii,

+ 2 =

Exercise 33. Use the result in Exercise 32 and mathematical induction to prove
that for each positive integer n,

it -I- (n — 1) on.

Although I haven't seen the following referenced. it's very likely that the identity
in the next exercise was also used by Maurolycus. Its proof is nearly identical to
that of Exercise 32.

Exercise 34. Prove that. for each positive integer ii. = En + 2.

Exercise 35. Define = 1 + 2 + 4. ii. Use induction to prove that for n � 1,

— n(n + 1)
2

in Section 1.6, the numhers Tn are called triangular numbers.
Recalling Definition 2.5.6, the summation notation is x — ± Xa±1 +

Exercise 36. Prove that for any I <tn <n,

E (n—m)(n+m+1)
2

I

A special case of Exercise 36 is the following (see [404, p. 85] for a pictorial
representation).

FJxercise 37. Prove that for every positive integer ii,

+ 1) -F (a2 +2)+ I- (n2±u) = (n2 ±n± +(n2+2n) = (2,t+

The solution to the next exercisc was given by Maurolycus, and Bussey [91]
commented that the proof given was clear case of a complete induction proof."
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Exercise 38. Prove that for n � 1,

1+3+5++(2n—i)=n2.

Exercise 39. Prove that for n � 1.,

Exercise 40. Prove that for n � 1.

n(3n + 1)2+5+8+'•.+(3n—1)=

Exercise 41. Show that for n � 1,

3+11±19+••+(Sn—5)=4n2 IL

Exercise 42. Prove that for it ? I,

(ti)
Exercise 43. Prove that for it

5+9+13-i-..+(zln.f-1)=rI(2u+3).

Exercise 44. Prove that for ii 1,

(2rt + 1) -4 (2n + 3) + (2n + 5) +•• F. (4n — 1) 3m2.

The next exercise generalizes nearly every exercise in this section so far.

Exercise 45 (Summing arithmetic progressions). Let a and d be fixed real numbers.
Prove that for each n 1,

a+(a+d)+(a+2d)+."+(a+(n-- 1)d) = 1)dj.

As ia Section 1.6, for each ii � 1, the n-tb triangular number is T,1 = 1+2-I +n.

Exercise 46. Prove by induction that for each ii 2,

=n3,
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9.2 Sums of finite geometric series and related series

Exercise 47. Prove that for every ii � 1,

Exercise 48. Prove i/tat for each ii

1+3+32 = 31

The next exercise generalizes Exercises 47 and 48:

Exercise 49 (Summing a geometric series). Let a and r be real numbers with a 0
and r 1. Prove that for each integer n � 1,

•1

r — 1

r = a = Exercise 49 gives equation
(7.3) in Section 7.3.

Exercise 50. Prove that for each natural number n 1,

I +2.22 + 3.2:3+... +ii• = 2 +(n—

Here is the same problem stated slightly differently' (and with its own solution).

Exercise 51. Prove that for every n. � 1,

=(n—1)r+i.

Exercise 52. ['rove that for every ii 1,

= r(2n—1)+1

Note: Results in Exercises 50, 51, and 52 can all be found by taking the derivative
of the identity in Exercise 49 and, if necessary, shifting exponents by multiplying
each side hr the appropriate term.

Exercise 53. Generalize Exercises 50, 51, and 52 to powers of an arbitrary k � 2,
and prove youi answer by induction.
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9.3 Power sums, sums of a single power
Exercise 54. Prove that for n 1.

12+22 32 +
= n(n+ lX2n + 1)

Exercise 55. Prove that for eveni n 1,

(1+24 Fn)(2n+1)=3(!2+22+.±n2).

Exercise 56. For n � 1, -

2

3 3 3 n(n-i-i)
2

By virtue of Exercise 35. the equality in Exercise 56 can also be stated as

which was the form in which it appeared in the 1990 Canadian Mathematical
Olympiad (a solution appears in [367], for example).

For integers k > 0 and n > 0, define

lk+2k+3k++nk (9.1)

For any in 0 define Srn(O) = 0.

Note: many authors (e.g. [230]) define Sk(n) 0k + 1k + 2k + 3k + + (n —
which can lead to a great deal of confusion when researching such sums.

Identities in Theorem 1.6.1 and in Exercises 54 and 56 say

n(n + 1)
2

n(n+ 1)(2m+ 1)
S2(n) = 6

2n(n + 1)
S3(n) =

The formula for Si(n) was derived independently, and then proved by induction.
The expressions for 82(n) and 83(72) were simply given, and an inductive proof was
used to check each. Nichomaclius (ca. 100 A.D.) knew of the expression for 83(n).
How were they found? Here are a few more (each of which also has an inductive
proof. for those with the energy):

84(n) = = 6n(n + 1)(2n + l)(3n2 + 3m— 1)
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S5(n)
=

= + i)2(2n2 + 2n — I)

S6(n) = + 1)(2n+ 1)(3ri4 + 6n3 — n2 — 3n + 1)

S7(n)
L=l

= 1n2(n + 1)2(3n4 +6n3 — n2 — 4n +2)

Ss(n) = = + 1)(2n + 1)(5n6 + 15n5 + 5n4 — 15n3 — n2 ± On —3)

Sg(n) = = + l)2(2ri6 + 6n5 + it4 8n3 + n2 + 6n. —3)

= = + 33fl9 + 66n6 + 66n4 — + 5).

Each Sm(Ti) above is a polynomial in n of degree in + I with 0 constant term.
A general expression for called formula", is given in Section
9.6.3; each is indeed a polynomial with properties shared by those listed above.
(One development of Faulhaber's formula relies heavily on binomial coefficients and
induction, so it appears in a later section.)

Exercise 57. Show that for each n � 1.

Exercise 58. Prove that for each a > 1,

22 + 42 + 62 + (2n)2 — 2n(n + l)(2ri. 4 1)

Exercise 59. Show by induction that for each n > I,

Exercise 60. Show that for every n � 1,

Note: this equality follows directly from that in Exercise 59 by Theorem 1.6.1 and
division by however this equality is to be proved by induction without Ex-
ercise 59 or Theorem 1.6.!.

Exercise 61. Prove that for cach ii � 1,

+ 33 f... + (2n — =
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9.4 Products and sums of products
Recall that the definition of the factorial function is recursive: 0! = 1 and for ii? 1,

= n (n — 1)!. The first exercise in this section is not. really a sum unless the
trivial sum is counted as such.

Exercise 62. For each n � 1, prvve that

2.6
n!

Exercise 63. Prove that for n> 1,

1 .2 + + 34 +n(n + 1) =
n(n + 1)(n ± 2)

Exercise 64. Show by induction that for each n � 2,
(n—1)(n)(2n+5)

Exercise 65. Prove that for n> 1,

n � 1,

+ 1)(j + 2)(j + 3) = n(n + 2)(n +

The next exercise generalizes Exercises 63, 6.5 and 66.

Exercise 67. For a fixed k Z+, show that for each natural number 11 > 1,

(k ± n)!

Exercise 68. Prove that for each ii � 1,

— 1)(2k + 1)(2k -1-3) = n(2n3 + Sn2 + 7n — 2).

Exercise 69. Prove that for any n E ZT,

— 2n + 3) —6.

One might want to compare the next exercise to Exercise 593.

Exercise 70. Pivve that for n > 0,

0•0!+i n-ri!
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9.5 Sums or products of fractions
Exercise 71. Prove that for everq n � 1,

1 1 1 1

Exercise 72. Show that for each rt � 1,

i — 1

(ii + i)(n + i +1) 2n

Exercise 73. Provc that for each n � 1,

1 1 1 1 — n(n+3)
1•2•3 +234 3.4.5 +

Exercise 74. Prove that for each ii � i,

1 1 1 1 1 1 11---+---+...+
2 3 4 2n — 1 2n n + 1 ri + 2

Exercise 75. Show that for each n � 1,

1 1 1 1 n

Related to Exercise 75 is the following:

Exercise 76. Prove that for each n

1 — (n— l)(3n+2)
i2 — 1 4m(n + 1)

Exercise 77. Show that for every n> 1,

1 1 1 1 — n(3n+5)
4(n+1)(n

Exercise 78. Prove that for n > 1,

1 1 1 1 n
+ 59 + 913 + (4n - 3)(4n + I) = 4n + 1

Exercise 79. Show that for n � 1,

12 22 32 n(n + 1)
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Exercise 80. Use Exercise 7! to prove that for ri 1,

n
1

k=1
k2 +3k + 2 = 2(n + 2)'

then give an inductive proof (that does not on Exercise 71).

Exercise 81. Prove by induction on n that

i n(n+1)
1 + i2 + i4 — 2(n2 + n ±

Exercise 82. Prove that for each n � 1,

1 1 1 1 n
1.4+4.7+7.1O++(3n_2)(3n+1)3n+1

Exercise 83. Prove that for each ii E Z',

in + 4 — + 7)

rn
rn(rri + 1)(ni + 2) 2(72 -1- 1)(n 4-

Exercise 84. Prove that for each ri 2.

- - ... (1 =3)\ 4J 72) fl

Exercise 85. Prove that for each ii � 2,

/ i\( I\/ t\ / i\ n+i
4) \ 9) 16) \ n2J 2n

Exercise 86. For n > 3. suppose that a1, , are positive integers so that all
the

+ (12 a1 + += P2 Jin =
a1 a2 an

u-re integers. S/io a; that

P1 + + -- 1.
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9.6 Identities with binomial coefficients
Recall the definition of binomial coefficients: for integers 0 k ii, "ri choose k"
is defined by

—

k!(n—k)!
Binomial coefficients are so-called because they are the coefficients in the binomial

theorem (see Exercise 104). In other texts this same number is represented by
various other notations, including and C(n,k). If n < k, or if n <0, then
by convention put = 0. One might note that is defined for other choices of
n and k, (for example, when k is rational) but these situations are described only
as needed. As it is, the number counts the number of different collections of k
objects chosen from a set of ii distinguishable elements (see Exercise 419).

Certain recursions regarding binomial coefficients are often useful, especially in
inductive proofs.

Lemma 9.6.1. Let s and m be non-negative inteqers. If 0 s < 1, then

= m (m 1)
(9.2)

If I < S < in,
(in)

= (9.3)

and

(T) (9.4)

Proof:

in! — rn (in — 1)!

(in — s)!s! in — s (in — 1 — s)!s!

- m
— m—st\ s )'

in — S + :ini!
(rn — s)!s!

in!

s (in — s + 1)!(s -- 1)!

in!

s (rn — (s — i))!(s — 1)!

— rn

-- .s

in!
—

- (rn— 1)!

(ni —— .9)!s! —— s (ni -- s)!(s — 1)!

— in (rn—i)!
s (in — 1 — (s — 1))!(s — 1)!
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— 'm(m—l
-

Exercise 87. Show by induction that for each ii 0,

=211.

Exercise 88. For each ri> 1, show that

(2'\ (3'\ (4'\ (ii + 1\ — n(rv+ i)(n + 2)
2 ) 6

Exercise 89. Prove that for every n � 2,

and conclude that

=9
—,

i k 2

The next exercise asks to prove identity", one of the most useful iden-
tities in combinatorics and discrete mathematics. (It's very likely that the original
proof was riot inductive per se, but instead based on properties of Pascal's triangle.)
There are (at least) two standard simple proofs of the identity, however it may also
he proved by induction. (The proof by induction is not nearly so elegant as the
counting proof, but Lemma 9.6.1 helps.) In the solution to this exercise, one proof
of each kind is presented; see the comments following Exercise 94 for yet another
(non-inductive) proof.

Exercise 90 (Pascal's identity). Prove that for any fixed r 1, and all n �

n.
J \rj \r—1

'The next exercise has a direct counting proof, and another very simple proof
invoking the binomial theorem (see Exercise 104); however, as is the case with
niany identities involving binomial coefficients, the next exercise can also be solved
by induction (where at least one proof uses Pascal's identity).

Exercise 91. For any n � 0, prove that

(n)
=
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The next result was also proved by Pascal, probably circa (see [91], where
the reference is "Consequence XII, Vol. III. p.248 of [424]"). The result has a very
simple direct proof using the definition of binomial coefficients, namely

__________

• i— — n!(k + 1).(n — k—I). — k+ I

— (k4-1)!(n-k-1)! — n!k!(ri — k)! — n —

Exercise 92 (Pascal). Using Lemma 9.6. 1, prove by mathematical induction that
for each n � 2 and all k satisfying I k � n — 1,

G) k+1

The next exercise asks to reprove the result from Exercise 92, again using induc-
tion, but in a different (more cumbersome) way.

Exercise 93 (Pascal). Using Pascal's identity, prvve by mathematical induction
that for each n � 2 and all k satisfying 1 k � n 1,

k+l
— n—kS

In the following exercise, it might, help to imagine an in x n rectangular array
of city blocks. in blocks east to west, amid n blocks north to south. All streets are
one—way either northbound or eastbound. The goal is to count the number of ways
to drive from the southwest corner to the northeast corner.

Exercise 94. Consider the integer lattice grid [0, in] x [0, nj, points in the plane
with integral coordinates (x, y) where 0 < x in and 0 y n. Prove that the
number of walks from (0, 0) to (in. n) on the grid that go UI) and/or to the right is

(in + n\ — (in + n
m n

Though not an inductive exercise, one can use the resull from Exercise 94 1.0
give a new proof of Pascal's identity. The idea is to separate the paths froni (0,0) to
(ii, in), into Iwo groups. t.hosc going through the point (in, n — 1) and those which
do not. The number of paths from (0,0) to (ni,n) that pass through (rn, n — 1)

is (by Exercise 94) All other paths must go through (in — 1,ii) and the
number of such paths is (again by Exercise 94) Putting p in -i- ii, then
p � in arid the total number of paths is

\mJ \ rn J
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which is Pascal's identity. 0

The next wonderful identity is often attributed to Euler, hut is also called "Van-
dermonde's convolution". This identity is stated next in terms of a theorem, together
with a simple counting proof; an exercise is to find a purely inductive proof.

Theorem 9.6.2 (Euler). For any non-negative integers in arid a and p,

n
p

Proof: Let X be a set with in + n elements, and fix a partition X L U II, where
fl = in and JRJ = a. If a subset of X with p elements intersects L in i elements,
then it intersects R in p — i elements. This can occur in ways. Note that
if i > in, then (T) = C) or if p - i > n. then = 0. Summing over all i finishes
the proof. 0

Exercise 95. Find a purely inductive proof of Theorem 9.6.2.

A special case of 'l'heoreni 9.6.2 leads to what is sonietiines called
identity" (after Joseph Louis Lagrange (l736--1813), one of the most powerful math-
emnaticians of his time, rivalling even Euler). tThis result is special to me, as it was
flrst shown to inc by Paul Erdôs when I was in grad school; this beautiful simple
resi.ilt had somehow escaped my attention until then.]

Corollary 9.6.3 (Lagrange). For each non-negative integer k,

(9k) = k (k)2

Proof: By Theorem 9.6.2 with in = a p =

(2k\ k

It is easy to check by merely writing out the definitions for corresponding binomial
coefficients that they are svminetne, that is, for each i = 0

— ( k

and so the result follows directly. 0
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Exercise 96. Discuss why any inductive proof of Corollary 9. 6.S might be more
complicated than the inductive proof of Theorem 9.6.2, if indeed one can be found.

In the next two exercises, one must first decide on the ranges for in.

Exercise 97. Pivve that for each ii � 0,

— (m+n+i

Exercise 98. Show that for each ii ü, -

(m+n+1)

Exercise 99. Prove that for any I m ii,

n—ni

=

Note: Here is ati interesting consequence of Exercise 99; this consequence can
he proved in other ways.

±

=

:
— 1)

(with in 1 in Ex. 99)

and so for n � 1,

(95)

Exercise 100. Find a proof by induction of the identity (for ri � 1.)

(1)i(n)
0

that does not use Exercise 99. You may, however, use Pascal's identity.
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Another interesting identity follows from equation (9.5):

>i:
(ii) =1

The proof actuaHy follows fairly easily from equation (9.5), if the left side is rewritten
as

E C)j=O i=()

arid is used in place of n in equation (9.5), giving 0 for each of the outer snmniands
except for when j = 0.

The "well-known" identity in the following exercise relates to something called
the "Euler characteristic" (see [315] for details). Conventions dictate that =
1 = and for i > = 0.

Exercise 101. Prove that for in � 0 and any ii 0,

'7'

=
1)

i=0

Exercise 102. Prove that for every ii � 0,

(i\fi\ fn+1\(n+1\ [n+2\ /n4-2
2 A 6 8

Exercise 103 (liinoniial theorem. simple case). Prove that for each ii i.

(I + xi' = (g) + + (fl);2 ± ... + ()x".

The following more general version of the binomial theorem is sometimes callerl
binomial theorem" named after Isaac Ncwton (1642—1727) (e.g., in [499]),

hut is most often referred to as simply "the binomial theorem".

Exercise 104 (Binomial theorem). Give an inductive proof of the binomial theorem:
for each a > 1,

(x + y)fl = (n)ri + 2y2 •}

(
°

+

In. .'JlLTfluIiatZO7l notation, the hiiWinzai theorem can be written

(x + y)"
=

(9.6)
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Observe that (1 — = CL and expanding (9.6) (with x = I and y = —I),
equation (9.5) is obtained, that is, = 0, offering another solution to
Exercise 100.

Exercise 105. Show that differentiating the simple binomial theorem (Exercise 103)
with respect to x gives

= nx(1 +

then give an inductive proof of this equality.

The identities called of squares", x2 — p2 = (x -- y)(x + y), and
"difference of cubes", x3 -- p3 (x — y)(x2 + xy + y2), are special cases of a more
general equality:

Exercise 106. Prove that for every positive integer it

= (x —

The idea in Exercise 105 of differentiating a known equality is very powerful.
For example, by the binomial theorem,

(x - i)fl
=

differentiating with respect to x yields

n(x — ir'
=

If n 2, using x = I gives a fairly remarkable identity,

=
(9.7)

which can l)e used as a base case for proving a family of (perhaps surprising) equal-
ities:

Exercise 107. induct on j to s/tow that for every I j <it,

0.

A similar identity to that in Exercise 107, but for j � n, appears when counting
surjective functions in Exercise 595.

For many more identities involving binomial coefficients, see, e.g., [225] or [454].
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9.6.1 Abel identities
The next two identities are attributed to the Norwegian Neils Henrik Abel (1802—
1829) [1], perhaps most famous for showing that fifth degree equations are not, in
general, solvable by radicals.

Exercise 108 (Abel identity 1). For any a E R and ear/i n? 1, show that

(x + y)"
=

()x(x +

Exercise 109 (Abel identity 2). Prove that for each a � 1,

+ y ± n)'t
= to

()x(x + k)k_l (y + n —

Vandermonde's convolution (Theorem 9.6.2) is the special case of b = 0, a = in,
and c n in Itothe's formula [468], given in 1793: For n � 1, and any a,b E C,

____c

a+c (a+c+bn
k n—k ) n

If one is energetic, one might be able to prove R.othe's formula by induction as well.
Rothe's equality is a special case of yet an even more general equality proved by
Hagen [2511 in 1891:

12

a (a+hk\ c jc±b(n—k)
k n—k

— p(a_+-c)+aqn(a+c+bn
a+c+bn a

Perhaps p and q are meant to be positive integers, so maybe with even more effort,
one can prove Ilagen's formula by induction as well. In [324], Knuth shows how
the identities of Rothe, Hagen, and Abel, all follow from the binomial theorem and
Vandermonde's convolution. [Note: I have not seen if these proofs are by induction.]

9.6.2 Bernoulli numbers
Jakob Bernoulli (16.54—1705) (and independently, perhaps earlier. Seki Takakazu;
see [558]) studied time following numbers:

Definition 9.6.4. For n � 0, define the Bernoulli numbers B,,. recursively: set

= 1, and for n � 1,
= -l (n
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The first few Bernoulli numbers are B() = 1. B1 = = B3 = 0, B4 =
B5 = 0, B6 = (For ii � 1, = 0.) Bernoulli numbers do not seem to have
a simple description. One property of Bernoulli numbers needed below is nearly
immediate from the definition:

(n =0. (9.8)

For the reader who knows about exponential generating functions,

ex_l

and by induction, one can check that this definition agrees with the above definition
(e.g., see [5581).

The interested reader might try to prove by induction the Garlitz identity: for
any non-negative integers in and n,

m a
=

9.6.3 Fauthaber's formula for power sums
For integers k 2 0 amI n 1. define

Sm(n) lm +... +

For in � 0, one can also define Sm(0) = 0. As observed following Exercise 56, for
in < 12, each is a polynomial in n of degree in + I with 0 constant term (so
n divides In fact, for any in � 0, this fact is true, and is provable by strong
induction on m. The induction can be based on the following trick:

Lemma 9.6.5. For integers m > 0 and n > 0,

+ =
(m+

(9.9)
j=()

Proof: There are two proofs, bothì relying on the binomial theorem (Exercise 104).
here is the first: for n 2 0 and in �

I (n + I

= + (replace i -.- k + 1)

k=()
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it tn+1

= >
(in t Ic3 (binomial thm)

k=0 j=0
rn+1 it

=
3=0 k=0
m+ I

rn+ I

=

(in; 1)83(n).

Subtracting gives equation (9.9). 0

The second proof of (9.9) uses a collapsing sum:

(n +
=

— k + — (n — k)m±l)

k=0
in it

=EE (in; ')(n_k)3
k=0

=

(in; 1) - Ic)3

=

(m±

0

Exercise 110. Prove by strong induction on in that each is a polynomial of
degree in + 1 in n wit/i constant term 0.

As noted in the solution to Exercise 110, the following is a consequence of Lemma
9.6.5:

Corollary 9.6.6. For positive integers in, ii,

(in + = (n + 1)m+I

—

(in; 1)s() (9.10)
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Is there a way to calculate the coefficients of the polynomial Sk(n)? Since the
degree of Sk(n) is k + 1, any k ± 2 values uniquely determine the polynomial and
this is seen easily with a little linear algebra. For example. if one sets 82(n)
an3 ± Sn2 + cn + d, the values 82(1) = 1, 82(2) = 5, 82(3) = 14, 82(4) = 30 give the
system

a+b+c+d= 1

8a -f- 45 + 2c + d = 5

27a±9b+3c+d= 14
64a+ 16b+4d+d=30.

which has a unique solution a = S = c = d = 0. In general, the above
technique works since the coefficient matrix used is a Vanderrnonde matrix and so
is invertible (see Exercise 661). However, this technique does not yield any simple
formula for the coefficients. See [157] for more related matrix methods. Another
way to find a polynomial of degree n — 1 that fits n values is to use the Lagrange
interpolation formula: if f : R —' R is a function and Li,. .. , are distinct, then

p(x) =
i-

is a degree ii — 1 polynomial so that for each i, p(xj) =
The following expression for Sk(n) is now eponymous with Johann Faulhaher

(1580—1635), who published a form in the 1631 edition of Academiae Algebrae [186]
(though the form here is due to Bernoulli). See [116, p. 10(1] and [325] for more
references.

Theorem 9.6.7 (Faulhaher's fortnula). For integers k � 0 and n � 1,

Sk(fl)

k (k+ 1)
+

No solution is given for the following exercise; solving it uses some tricky sums
involving binomial coefficients; the reader is recommended to see [230] -however,
he warned that their notation is different than that used here.

Exercise 111. By induction on k, prove Theorem 9.6.7.

9.7 Gaussian coefficients

This next definition. similar to that of the binomial coefficient, relies upon the
versatile notion of a finite-dimensional vector space over a finite field (see Sections
19.4 and 19.5 for definitions). The notation and terminology varies in the literature.
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For integers 0 k < n and a prime power q, the Gaussian coefficient

r

a

is the number of k-dimensional subspaccs of the n-dimensional vector space over
the field GF(q). These coefficients are sometimes called the q-analogues of binomial
coefficients (and this carl be justified by examining limits as q I below). It is
known that

(qk_1)(qkl_1)...(q_l)
and from this, one can also directly prove a q-analogue of Pascal's identity

n+1 n—I k Ti[k =[ k
a a a

Using the last equality, the statement iii the next exercise is (relatively easily) proved
by induction on n (as in [94, p. 127]).

Iii Definition 2.5.9, product notation for natural numbers was introduced; the
same notation applies to real numbers and polynomials since multiplication is as-
sociative: = x1x2 [See Exercise for proof that multiplication of

integers is associative.]

Exercise 112 (q-binornial theorem). Prove that for rr � 1,

fJ(i =
[

9.8 Trigonometry identities
Recall the three main identities in trigonometry:

+ = + (9.11)

+ = cos(fl) — siri(a) (9.12)

sin2(O)+cos2(O) = 1. (9.13)

From these, all other standard trigonometric identities follow. For example, a stan-
dard trigonometric identity is:

tan(a) ± tan(b)
taii(a -1- b) = (9.14)

1 — tan(a) tan(b)

Here is one derivation of equation 9.14:

sin(a + b)
t.an(a + b)

cos(a + b)
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— sin(a) cos(b) + cos(a) sin(b)
— cos(a) cos(b) —siri(a) sin(b)

sin(a) cos(b) cos(a) sin(b)
— cos(a)cos(b) +

1 —

— cos(a) cos(b)-
cos(a) cos(b) -

— tan(a) + tan(b)
— 1 — tan(a) tan(b)

Remembering that tan(—b) = — tan(b),

tan(a) — tan(b)
tan(a -- b) = . (9.15)

1 + tan(a) tan(b)

\cark)lls other identities are required in the following exercises, and the reader will
benefit most by deriving each at least once. Complete solutions using induction are
given for all exercises in this section, though some may have direct proofs.

Exercise 113. Show that for every positive integer n,

cos(nir) = (_1)ht.

Exercise 114. Let x E IR be fixed. Show that for each ii � i,

sin(nx)I < njsin(x)I.

The result in the next exercise is named for Abraham l)e Moivre (1667—1754),
a friend of Isaac Newton. (In Newman's anthology The world of mathematics, his
name is spelled "Demnoivre".) De Moivre, as mentioned in [4, p. 155] "emigrated
from France to England to escape religious prosecution, and made his living as a
coffee-house consultant to students of mathematics."

Recall that i is a (complex) number satisfying i2 = —1.

Exercise 115 (De Moivre's Theorem). Prove that for each ii � 1,

[cos(O) + isiu(O)]Th = cos(nO) + isin(nO).

In [550] it is explained how some of the these next statements aid in high speed
computing.

Exercise 116. Prove that for any n � I and any angle 0,

sin(0 + nw) =
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Exercise 117. Prove that for any n � 1 and any angle 0,

cos(8+n2r) = (—Ircos(9).

Exercise 118. Prove that for each n � 1, and any angle 8 that is not a multiple of
27r,

sin(5.±!ti)
sin 0 + sin(29) ± sin(nO) =

n that a multiple of 27r,

cos0+cos(20)+.-•+cos(nO) = 2

Exercise 120. Prove that for each n � 1, and any angle 8 that is not a multiple of

siri(0) + sin(39) +... + sin((2n — 1)9)
= stii(nO)

Exercise 121. Prove that for each n � 1, and any angle 0 that is not a multiple
of it,

COS 9 + cos(30) + + cos((2ri — 1)9) =

Exercise 122. Fix some 0 that is not a multiple of it. Let = 0, Si = 1, and for
ri � 2, recursively define

"I —

If 0 'is not a multiple of it, prove that for each ri � 0,

— sin(ri0)
Sn— sin(9)

and for each ii � 1,

cos(nO) = —

The next exercise uses the same recursion as in Exercise 122, however with
different initial values.

Exercise 123. Let 0 be any fixed angle. Define a sequence of real numbers recur-
sively by = cos(6), s2 = cos(29) and for n > 2, define

—

Prove for n.> I, that = cos(nO).

The following was a contest question in t429]; the solution follows with help from
another exercise given iii Chapter 10.



148 Chapter 9. Identities

Exercise 124. Let x be any real number. Prove that for any n 1.

cos2lt(x) �
Exercise 125. Prove that for n � 0,

sin(2'" 'a)
a) =

2fl+1 sin(ct)

Exercise 126. Prove that for it � 1, and any angle t that is not a multiple of 27r,

1 sin((2n + 1)t/2)
+ cos(t) + cos(2t) + ... + cos(rit) = 2(t/2) -.

The expression

= +Ecos(it)

is called the Dirichlet kernel, arising in the theory of convex functions and Fourier
series (see, e.g., [154], p.64). The next exercise regards the average of Dirichlet
kernels, and wa.s developed by Lipot Fejér, perhaps appearing first iii B.. Courant's
1937 book Differential and Integral Galeulus. 2nd. ed., (although I have not yet been
able to verify this]. It is also interesting to note that among Fejér's students was Paul
Erdôs, and that Fejér's advisor was Schwarz (as in "Caucliy Schwarz inequality").

Exercise 127. Using the notation from Exercise /26 put

N± 1

K!v(t) is called the Pejér kernel (see, e.g., [154. p.54 J). Note that when it = 0, the
sum in is empty. so Do(t) 1/2. Prove that for N � 0,

K (1) —
sin ((N + 1)1/2)

N
—

Exercise 128. Prove that for each n � 1 and any real number x that is not a
multiple of 2w,

sinx -f 2sin(2x) + 3sin(3x) -1 ± nsin(nx)
— (n + 1) sin(nx) - a sin((n + 1)x)
— 4siti2(:r/2)

Exercise 129. Prove that for each n � 1 and any real number x that is not a
multiple of 2w.

cos(x) 4- 2 cos(2,c) 4 3 cos(3x) + ... ± a cos(nx)
— (ii .j.. 1) cos(nx) — ii cos((n + I )x) — I

4sin2(x/2)
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Exercise 130. For any x that is not a multiple of it, prove that for each n � 1,

tan
+ tan (i-) + + tan = cot(f) cot(x).

Exercise 131. Prove that for each ii >

coC1(3) I cot'(5) + . -f- cot'(2n + I)

= tan'(2) + tan + taiCt -- ntan'(l).

Exercise 132. Use mathematical induction to show that for n 2, there exist
constants a0,a1,. andb0.b1 so that

= cos(rx) + sin(rx)).

Exercise 133. Let x and a be real numbers so that x + 2cos(n). Prove that
for every ii 1,

+ = 2cos(na).

9.9 Miscellaneous identities
Exercise 134. Prove that for any ii � i and non-negative real numbers x1

Exercise 135. For x. b E R with b / 1, prove that for all in e ZTh

Exercise 136. For any real numbers (1[, (12 and h1. h2,.., h,,,

+

Exercise 137 (Telescoping sum). Prove that ifai,a2, a3 are real numbers, then
for each positive integer in 1,

—. Uj i) = oi —

Exercise 1 38. Prove that for any n 1,

j ± 2) = n(n2 + in + 2).
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In 1366], José Nieto, Unversidad del Zulia, Venezuela, posed the problem of
showing that there are infinitely many a > b > e > d > 1 with a!d! = b!e!. The
equality in the next exercise exhibits such families of four numbers. The equality is
trivial to verify, hut with a little more work, one can prove it inductively as well.

Exercise 139. Prove by induction that for every n � 3,

(n2 + n)!(n 1)! = (it2 + it 1)!(n + 1)!.

Here is an elegant result that seems related to Exercise 139:

Lemma 9.9.1. Show that any rational number can bc cxpressed as a quotient, where
each of the numerator and denominator is a product of factorials of prime numbers.

A question in the 2009 Putnam exam (question Bi) asked to prove Lemma 9.9.1,
and the example given in the question was

10 — 5!2!

9 — 3!3!31

At the time of writing this exercise, the official solutions to the Putnam have not
yet been released (usually appearing in the American Mathematical Monthly in the
fall), however one easy solution is to use induction:

Exercise 140. Prove Lemma 9.9. 1.

En the next few exercises, x represents an indeterminate or variable (representing,
for example. a real number).

Exercise 141. Prove by induction that for n � 1,

1 1 1 ii

Exercise 142. Prove that for n � 1,

1 2 4 I
+ +...+ I.l-fx 1+x2 1+x4 1+x2 x—1

Exercise 143. Prove that for any non-integer x and for every n � 1,

1_f+x(x_1)_... (1\flX(X1)(XTt+l)
1! 2!

+\
/ it!

=
1)(x-2)..(x-n)

Exercise 144. Show by induction that for any it �
(1)(3)(5).. (2n +1) = (2n+1)!
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Exercise 145. Show that for each non-negative inteqer n,

1 + n(n + 1)(n + 2)(n + 3)

is a perfect square. Hint: Work out the first five or six cases, conjecture an inequal-
ity, and prove it by induction.

This next exercise contains a surprisingly elegant result. Recall that the notation
S c [nJ means that S is a set of positive integers all at most n, and that is

the product of all elements in S. (See the example given after the exercise.)

Exercise 146. Show that for each n � I,

E =
seS

For example, when n 3, the possible subsets in Exercise 146 are

(l}. {2}, {3}, {1, 2), (1,3), {2,3}. {1,2.3},

and so the rigbthand side of the equality in Exercise 146 becomes

11 1 11 11
+ + 1- + ± ± = 3.

Exercise 147. For any fixed real number x that is not an integer, and for all n � 1,

Ti 17(77 — 1) ri(;z — i)(n 2) — ii
+ -f

x .r(x— 1) x(x— 1)(x-—2) x-—n+1

Exercise 148. For any given a 1, consider all the subsets of (I, 2 77) that
do not contain two consecutive numbers. For example, 'when n = 4, the sets are
{1}, (2), {3}, (4), (1,3), {1,4}, and (2,4). Prove that the sum of the squares of
the products in each set is (n + 1)! — 1. (For example, when ii = 4, the number is
12 + 22 + 32 4.42 + 32 + 42 + 82 = 119 = 5! — 1.)

Exercise 149. Let positive integers x1, and yi, .. . , yr,-, be given so that +
± = y + ye,, < mn. Prove that there are proper subsets I C f 1,.. :, n}

and Ic (1
, rn} so that





Chapter 10

Inequalities

It is from this absolute difference and tranquility of the mind, that
mathematical speculations derive some of their most considerable ad-
vantages; . All proportions, every arrangement of quantity, ts alike
the understanding, because the same truths result to it from all; from
greater and lesser, from equality and inequality.

—Edmund Burke,

On the sublime and beautiful.

When proving inequalities, it might serve well to be reminded of transitivity. For
exatuple,ifa=h<c<d_e,thena<e. Furthennore,ifa=bcc_d<e=f,
then both a < f arid a < f are true. Also when proving inequalities, the reader is
reminded that many inequalities often fail for some or all integers less than some
threshold value.

Proving inequalities is usually taimtarnount to comparing functions; comparing
polynomial functions with exponential functions gives some sense as to which func-
tions are "larger". Let p(x) be army polynomial and let f(x) = It is well known,
that eventually, f will "dominate" p, that is, there is a smallest x0 so that if x �
then f(x) > p(x). Many of these problc'rns ask to prove this notion in particular
settings. Recall that the relative "sizes" of sonic functions might be captured in
increasing order as follows: n, p(n), 2", n!, n", and so on. Many of
these relationships are demonstrated in the exercises.

Exercise 1 50. Prove by induction that if x and p are positive real numbers with
x < y, then for each n � I, xT' < y".

Note: another simple inequality based on the above idea is also presented in
Exercise 698.

Exercise 151. Prove that for n � 6, 4n < n2 — 7.

153
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Exercise 152. Show that i/n 3, then 2n + 1 <n2.

Exercise 153. Prove that for n � 2, >

Exercise 154. Prove by induction that if n � 3 then 2n <

Exercise 155. Prove by induction that for each ii � 2, 1 + <

Exercise 156. Prove by induction that if n > 2, then n + 1 < 2".

Exercise 157. Prove by induction that for each n � 1,

(i + � +
Exercise 158. Prove by induction that for n � 4, 2" <ii!.

The next problem was commented on in Chapter 1.

Exercise 159. Prove by induction that if n 5, then n2 < 2".

Exercise 160. Prove by induction that for any integer � 6,

6 <

Exercise 161. Use Exercise 160 and mathematical induction to show that for any
inteqer k � 10.

3k2 + 3k + i <2k

Exercise 162. Use Exercise 161 to prove inductively that for n 10,

< 2".

Exercise 163. Use Exercise 160 and mathematical induction to show that fork � 4,

3k2 + 3k + 1 <2(3k)

(Note: in order to apply Exercise .160, the cases k = 4, 5 have to be handled sepa-
rately.)

Exercise 164. Use 163 to prove by induction that for n � 4,

n3 <3".

(Although this result follows indirectly from Exercises 150 and 162 this exercise asks
for yet another solution.)

Exercise 165. Prove by induction that if n > 6, then 3" < ii!.
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Exercise 166. Prove by induction that for cacti positive integer k,

Exercise 167. Prove by induction that for ii? 1, n2 � 2n — 1.

Exercise 168. Prove by induction that if ii � 1, then 2ii + I

Exercise 169. Prove by induction that for ii > 3.

� (n + I.)!.

Exercise 170. Prove by induction that for ii �
nfl+l > (n + ir.

Exercise 171. Prove by induction that for ii � 5,

(n + fl! >

Exercise 172. Prove by induction that if ii � 3 then (n!)2 >

Exercise 173. Prove by induction that for 71 > 2,

l•3•5 (2n—1)<rz".

Exercise 174. Prove by induc.twn that for ri � 5,

(2ri)! < (,1r)24n'.

) 4 . (2n)!Exercise 175. 1 ivve by induction that if a 2, then <.

A statement. S(n) is said to be true for sufficiently large a ifi there exists an
so that for every a > a0, S(n) holds; to prove that S(n) is true for sufficiently large
n, one iieed tiot name the least such n0, only show that. such an a0 exists. If one
can find any suitable no. and S(n) is defined only for natural numbers, then, by the
well-ordering of N, a least such n0 exists.

Exercise 176. Prove by induction that for n sufficiently large, > 'V'.

Exercise 177. Prove that for each positive inteqer a, ln(n) < ri holds.

Similar inequalities are sometimes hard to prove by induction. For example, for
n> 16,

log2(n) <

is true, and a base step of n = 17 is true (check with a calculator, and find
log2(17) = 4.0874..., and = 4.123...): however, to find an inductive step might
be challenging. On the other hand, calculus easily proves this inequality since both
sides are equal for a = 16, and derivatives show that h)g2(x) grows more slowly than
doeS for x > 16.
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Exercise 178. Let b e R with b> 1. Prove that for each n 2, if k is the number
of prime factors in a, then Iog5(n) � Ic

Exercise 179. Prove by induction that for a 1,

Exercise 180. Prove that for each a 1,

4 9 a a

What does this result imply regarding the corresponding infinite series 1 + + V

Exercise 181. Prove that for every a> 1,

\ 8 2j n3j n

Exercise 182. Prove by induction that for a 4,

1 1 1 1

Exercise 183. Prove by induction that for a 1,

1 2 3 a 1
f

1! 3! 5! (2n — 1)! (2a)!

Exercise 184. Prove that for a � 1,

1 2 3 a 1—+—+—+...+ <1-
2! 3! 4! (a -I I)! — (a + 1)!

Exercise 185. Prove by induction that for n 2,

1 1 1 13

a+1 a-{-2 2a 24

Exercise 186. Prove that for each a 2,

21t

<
< jfl

Exercise 187. Prove that for each n 1,

(2it\ 221t
I I>—.\rzJ — 2n
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Exercise 188. Prove that for ii � 1,

Exercise 189. Prove that for n � 1.,

Exercise 190. Prove that for n � 1, -

Exercise 191. Prove that for each n- � 1,

1 < 13-5--•(2n—l)< 1

2n 2-4-6•--(2n.)

Exercise 192. Prove by induction that for ri 1,

135 2n_1< 1

2 4 6 2n —

In solutions to sonic of the following exercises, the following common observation
(which is actually a special case of the staterrient of Exercise 1St]) iiiight come in
handy:

Lemma 10.0.2. If a,h ER are both then a < h, if and only a2 < b2.

Proof of Lemma 10.0.2: Let a � 0 and h � 0. If a b, the result is trivial, so
suppose that a b, and if either a = (I or b 0. then again the result is obvious.
so assume that both a and b are non-zero. If a < b then h2 = (a + (b — a))2
a2 + 2a(b — a) + (b a)2 > since both a(b — a) and (h — a)2 are positive. If
a2 b2, then 0 < b2 — a2 = (b — a)(b + a), arid since b + a > 0, it follows that
b—a>0,thatis,b>a. U

Exercise 193 (Triangle inequality). Prove that for each ri > I and for real numbers
Xl,X2

lxi + X2 + + < lxi + x2l 4 +

Exercise 194. Prove that for ii N, and for any non-negative real numbers x and

XFL+y2

2
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Exercise 195. Prove 1/tat for each it 1, ifsi, are positive integers, then

Exercise 196. For non-negative real numbers XI..X2 prove that

:rta:2•- 'x �
n n

Exercise 197. Let a: he a positive real number. Prove that for each it � 1,

2 1 1 1 �n+l.x-2
There are many proofs of the following exercise, named for Jacques Bernoulli

(1654- 1705), that do not require induction; for example, one can use the binomial
theorem.

Exercise 198 (Bernoulli's inequality). For any non-zero real nuinberx withx > —1,
prove by induction f/tat for each n ? 2,

(1 + xr> 1 nx.

Exercise 199. Prove that if ii ? 2 and a1,a2 E are so that =
1, then

Ut + ' ' + �
The geometric mean of a positive numbers a1. aa... . , is (ala2• . . The

harmonic mean of a1, a2,... , afl is

TI

This next exercise relates the geometric arid haririonic means. The proof asked
for does not use induction, but instead the AM-CM inequality. Since the AM-CM
iiieqiialit was proved by induction in Theorem 3.3.1 , the result is still, technically,
one provable by induction.

Exercise 200 (CM—HM inequality). Let at. a2, . . . , be positive real numbers.
Using the AM-CM inequality. (not induction) prove the CM-JIM inequality:

?
± ÷

IJsing dosvnsvarcl induction, uric can solve this next probleimt.
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Exercise 201: Let 1 < a2 < ... be positive integers. Prove that if

1 1 1—+--±..,+—=1l
ai

a a seqaence of real numbers, each � 1. Prove
that

1 1 + (ala2 .

Prove that equality holds if and only if ai = a2 =

The next three exercises give results that might he helpful in evaluating certain
limits.

Exercise 203. Prove that

Exercise 204. Prove that for any positive integer ii,

A more general form of Exercise 204 is the following:

Exercise 205. Prove that for every ii E V and every non-negative real number a,

I 'I- + < a + 3.

The reader interested in "nested square root" problems can find more problems
and references in the 2008 article 12721.

There are a number of other famous inequalities one could list here, but they
occur in other sections. For example, inequalities that often arise in vector spaces
are given in Section 19.5. Perhaps the most popular of these is the Cauchy Schwarz
inequality (see Theorem 19.5.2):

For each n� 1 and real numbers a1,a2 then

+ +... + � (aibi

a generalization of the triangle inequality, called Minkowski's inequality, see Ex-
ercise 694. Ebr Holder's inequality for vectors, see Theorem 19.5.4. For Minkowski's
inequality for p-norms, see Exercise 695.





Chapter 11

Number theory

Mathematics is the Queen of Sciences, and number theory, the Quecn
of Mathematics. She often condescends to render service to astron-
omy and other natural sciences, but under all circumstances thc first
place is her due.

—Carl Friedrich Gauss (1777 1855).

The area of mathernatic.s called 'nuniber theory" might be loosely described as
the study of arithmetic properties of integers, usually those concerning divisibility,
prune factorization, congruences, and representations of a natural number as sums
of others. See virtually any text on number theory (for example, [19]) for a better
idea of what other topics might be considered as number theoretic.

In this chapter, many of the most popular aspects of number theory are con-
sidered, together with a few others, for example, the decomposition of integers into
sinus of fractions. For many more examples of proof by mathematical induction iii
advanced additive number theory, the books by Nathanson [401] and Tao and Vu
1527] are hi ly recommended.

11.1 Primes

Recall that a prime number is a natural number ii � 2 with only two (positive
integer) divisors, it itself, arid 1, The next exercise asks to prove what is called
fundatnenta.l theorem of arithmetic", often abbreviated by

Exercise 206 (FTOA). Prove that every integer a 2 can be written uniquely as
a product of powers of primes (also called przmc powcrs), that is, for each it 2,
therc exist unique primes P1,. .. ,Pk and positive integers erk so that

161
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Euclid proved that there are infinitely many primes. The standard proof is by
contradiction: suppose that there are only many primes, say p1, P2
Since the number x P11)2 • ± I is not divisible by any of the primes p1
then x itself must he either prime or a product of primes not listed. Tins contradicts
that are the oniy primes. D

There has been debate as to whether or not Euclid knew of mathematical induc-
tion, a debate that has gone as far as to interpret induction less formally. (See, for
example, [1751, [1971, [541], [542], [557].) The next exercise addresses Euclid's tacit
use of induction.

Exercise 207. Rewrite the above proof for Euclid 's theorem as a proof by induction.

Compare Exercise 6.1 for another proof of Euclid's theorem, which is based on
a simple equation that is proved by induction.

For any positive integer n, let o(n) denote the sum of all positive divisors of
ii. For example, if p is a prime arid m is some positive integer, then g(pm)
1 + p ± + + = — l)/(p — 1.).

Exercise 208. Prove that if n = .. . is the prime power decomposition of
n, then

a(n)

(See Exercise 213 for an extension of Exercise 208.)

Exercise 209 (Division lemma). Use well-ordering to prove that for any natural
numbers rn, ii, there exist unique integers q � 0 and r with 0 � r <in so that n
qm + r. (The numbers q and r are called the quotient and remainder, respectively,
upon dividing n by m.) Hint: examine tile set {a E Z : ii + am � 0}.

Two non-zero integers m and n are said to be relatively prime if they share rio
common factors other than 1. For example, 40 arid 27 are relatively prime, however
40 and 28 are not (they share a common factor of 4).

Exercise 210. Let rn1... be pairwise relatively prime natural numbers. Prove
that if y is a natural number so that for each i = 1, 2.... , n, divides y, then so
also the product m1rn2 divides y.

Tile greatest common divisor of two natural numbers x and y is denoted gcd(x, y)
and their least common multiple is denoted by lcm(x, y). For example, gcd(4, 6) = 2

and lcm(4, 6) = 12. Positive integers ii and in are relatively prime if and only if
gcd(m. n) = 1. The greatest common divisor and least common multiple are related
by mn = gcd(m, ii) Icm(rn, n).

There are two minor technicalities regarding the gcd(rn, n) notation when in and
n are allowed to be any integers. Since for any positive integer a, a 'divides' 0, say
that, gcd(0, ii) = ii. If either in or ii are negative integers, the greatest common
factor is non-negative, and so gcd(m, n) = ni). The results below are used
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primarily when in and n are non-negative, and since using negative integers adds
little information, generally, non-negative integers are used— the interested reader
can make the generalizations to all integers.

For any positive integers in and ii, how does one know that gcd(m, n) exists and
is unique? One simple way to see this is to write out the prune factorizations of each
(which are unique by the FTOA), and see which factors are common to both. For
example, if in = 1680 = 3 5. 7 and n = 3528 = 32. 72, then 3 and 7 are
the only factors common to each, so gcd(m, n) 3 . 7 168. One can calculate
gcd(m, n) without factoring—by something called the Euclidean division algorithm
(see below). Proving that it works can be done by induction. The following simple
lemma is at the heart of that inductive proof.

Lemma 11.1.1. For positive integers in and n, if q and r are integers satisfying
q �0, andn=mq+r, then gcd(rn,r)

Proof: Let d = gcd(m, n). Since d divides two of the three terms in n mq + r,
it must divide the third, namely r. So d divides both in and r. Next, let c be any
common divisor of in and r. Again, since 'ii = mq + r, c divides n; hence e is a
common divisor of in and ii, and so divides gcdçm,n) = d. Thus c < d. So indeed,
d is the greatest common divisor of in and r. D

The following central result has a proof by induction, which is given as Exercise
211 below:

Theorem 11.1.2 (Euclidean (livision algorithm). Given natural numbers in and ii,
n not a multiple of in, if one applies the division lemma repeatedly producing k � 2
quotients qi and remainders r1. r2 ,...,rk, where

n=qim+ri (0cr1<m)
in = q2rl +r2 (0< r2 < ri)
r1 =q3r2+r3 (0< r3 < r2)
r2=q4r3+rs (0< r4 < r3)

rk..3 -1- (0 <

rk (0 = rk),

then = gcd(m,n).

So, in the above example, with in = 1680 and ii = 3528, applying the Euclidean
division algorithm, the gcd is arrived at rather quickly:

3528 = 2 1680 + 168

1680 =
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and so by Theorem 11.1.2, = 168.

Perhaps one more example is instructive: Let m = 192 arid ii = 513. 'l'hen

513=2•192+129 (11.1)

(11.2)

129=2•63+3 (11.3)

63=21

So gcd( 192, 513) = 3.

Exercise 211. Prove the Euclidean division algorithm by induction. Hint: use
Lemma 11.1.1.

One powerful consequence of the Euclidean division algorithm is the following
simple result that underpins much of number theory.

Lemma 11.1.3 (Bezout's Lemma). Let a and b be positive integers, and put d =
gcd(a, b). Then there exist integers k and f so that

d = ha + Lb.

In particular, if a and b are relatively prime, then there exist integeiw k and L so
that I = ha ± Lb.

Rather than give a formal proof. here is an example of how it works wIth the
above m = 219, ii = 513 and d 3; let us just say that Bezout's Lemma is proved
by undoing the Euclidean division algorithm, actually enabling one to compute the
desired k arid L:

3 = —263 (by eq'n (11.3))
= 129 2(192 1 . 129) (by eq'n (11.2))

= 3. 129 -— 2 192

= 3. (513—2. 192) 192 (by eq'n (11.1))

= 3 513 — 192,

and so k = 3 and L = —8 in the statement of Bezout's Lemma. This seemingly trivial
result has rather grand consequences in the theory of numbers and, for example, in
the study of finite fields.

l'br more regarding the Euclidean division algoritlnn, and bounds on the number
steps the algorithm takes, see Exercises 377, 378, amid 379.

Next are a few other standard results in number theory that are provable by
induction.

Exercise 212. Prove that for n � 2, the product of all primes at most n is at most
22n.
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Let d(n) denote the number of positive divisors of n, and let be the sum of
these divisors. For example, if p is a prime, then d(p) = 2 and c(p) = p ± 1. The
next exercise contains, in part, the result of Exercise 208.

Exercise 213. Prove that for each ii � 2, if ii = is the prime factoriza-
tion, then

d(n) = (aj f 1)(n2 + 1)... (cia + 1), (11.4)

and
a2±1 — —

1•
(11.5)

Prl P2—' Pc'
In number theory, a function f Z÷ — is said to be completely multiplicative

if and only if for any in, ii, f(mn) = f(m)f(n), and f is called multiplicative if
and only if for any relatively prime in, n, f(rnn) = f(m)f(n). As a consequence
of the second part of Exercise 213, a is multiplicative. (This fact is also implicitly
contained in the solution of Exercise 208.)

An integer k is called a perfect square (or simply, a square) if for some integer
€. k = £2. This next exercise has at least three different proofs, one of which is by
strong induction, and another is by infinite descent.

Exercise 214. Prove by induction that ifs and t are relatively prime natural aiim-
bers. and st is a perfect square, then both a and t are perfect squares. Hint: use
strong induction, but not on either s or t. Then give a proof of this result by infinite
descent.

Exercise 215. Prove that if a, b, and q = art mon-negative integers, then
q = (ged(a, b))2. Hint: induct on ab.

Exercise 216. For a � 1 let 8,., = E = 1 where the sum is taken over all

x, y � is. with gcd(x, y) = 1, and x -f y > n. Prove that for 5,-, = 1.

Exercise 217. Let a � 0 be a non-neqative integer, p be a prime, s he the sum of
p-ary digits needed to represent a in base p, and let in be the largest integer so that
ptm divides a!. Prove by induction on a that

Ti- — 5
in =

p—I
Exercise 218. Prove that for each positive integer n,

22?2i- +42m_1 +92n1

is not a perfect square.

Exercise 219. Prove that for each positive integer a,

82" 52"

is not a perfect square.
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Exercise 220. Show by infinite descent that there are no non—trivial integer solu-
tion.s to

a2 + b2 = 3(c2 + d2).

Hint: first show that if a2 + b2 is divisible by 3, then so are each of a and b.

Another application of descent occurs in the next exercise.

Exercise 221. Prove that the equation

a2+b2±c2+d2=2abcd (11.6)

has no solutions in positive integers.

The resUlt in the next exercise shows (with a little work) that the area of a
Pythagorean triangle is never a perfect square a negative answer to Bachet's prob-
lern).

Exercise 222. Adapt the above proof of Theorem 3.6.1 by infinite descent to show
that x4 —. y4 = z2 has no non-trivial (none of x, y, z are zero) integer solutions.

Exercise 223. Use infinite descent to show that the equation x4 — 4y4 = z2 has no
non-trivial integer solutions.

Exercise 224. Use infinite descent to prove that .x4 + 2y4 = z2 has no non-trivial
integer solutions.

The equation in the next exercise was studied by Brahmagupta (circa 600 AD)
and Bhaskara (circa 1100 AD), but is presently (and mistakenly) named after John
Pell.

Exercise 225. Let N > I be a non-square integer. Prove (by induction) that the

equation Fell's equation)

— Ny2 = 1 (11.7)

has infinitely many solutions ye-,) in positive integers. Furthermore, prove that
if x1 and Yi are the values for which x + is least, then satisfy

+ (x1

The and can be czplieitly computed by

= + + (x1

= ± — (x1

or recursively by

= +

Yn+i = yjXn±Xjyn.
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11.2 Congruences
For integers a arid b and for a positive integer in, the notation

a b (mod in)

means that a — b is divisible by in, which is equivalent to saying that there exists
k e Z so that a = b + km. The notation above is read "a is congruent to 8 modulo
in." So, for example, 8 2 (mod 3), 1€ 0 (mod 4), and 32 2 (mod 5). These
equations are sometimes called "congruences". For a fixed n, if 0 in < n, all those
integers congruent to in modulo n form what is called a congruence class, denoted
[in] or [in]74. For example, when n = 5,

[1] = {... ,—9, —4, 1,6, 11, 16,...}.

When trying to prove an equation, it sometimes helps to first try and prove it
modulo some n (see, for example, Exercise 232) though the truth of a statement
modulo it does not guarantee the truth of the statement in general.

Congruences yield many surprises. One (though not provable by induction) is
a spectacular example from [245}: 3 (mod n) for the first time when n =
4700063497.

A useful fact regarding congruences is that if a 8 (mod n), then for any c Z,
ac bc (mod n). This has an easy proof (left to the reader) using the definition of
congruence. Another powerful fact is an immediate consequence of Bezout's lemma:

Lemma 11.2.1. If gcd(a,n) = 1, then there exists 8 {1,2.... ,n — 1} so that
ab 1 (mod ii).

Define Euler's totient function, : —' Z , by

= fri e {1 ii — 1} : gcd(m,n) = lfl,
the number of positive integers less than ii relatively prime to ii. For example,

1, = 1+2+3+4= 10, andØ(6) = 1+5=6. Apparently (see [230,
p. 132]) the totient function was so named by James ,Joscph Sylvester, "a British
mathematician who liked to invent new words" in his 1883 paper [520] on Farey
fractions.

As is well-known, Euler's totient function is multiplicative, that is, for any rela-
tively prime pair a, b, = Ø(a)çô(b). It is also easy to see that for each prime p
and each k E

= — (i
—

and so a simple proof by induction shows that

çb(n)=n fJ
p]n

p prime
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Another result that is often needed is Euler's theorem (see nearly any book on
number theory for the proof; one particularly easy arid popular proof is in [357]. for
example). Its proof is generally riot by induction.

Theorem 11.2.2 (Euler's theorem [1.77]). If gcd(a,m) = 1, then

1 (mod in).

Exercise 226. Prove by induction that for any fixed positive integer n, the sequence

2,22,222,2222 (mod n)

is eventually constant.

Exercise 227. Prove by induction that for every k Z+, and every odd number
n EE Z+,

(mod2n).

The result in the next exercise is sometimes called "Fermat's little theorem", and
can be proved by induction (although the now standard proof is not inductive—-see
[1501, for example).

Exercise 228 (Fermat's little theorem). Prove that p is a prime and a is an
integer, then a is divisible by p.

Another formulation of Fermat's little theorem is that if p is a prime and p does
not divide a, then 1 (mod p). This follows from the result in Exercise 228
since a being divisible by p is equivalent to a7 a (mod p): if p does riot divide
a, then a is relatively prime to p, arid so, (by Lemma 11.2.1) modulo p, a has an
inverse simply multiply this last equation by this inverse. Note also that Fermat's
little theorem is a special case of Euler's theorem.

Exercise 229. Prove that for each it � 0, and prime number p, and for any poly-
nomial f(x) = + + + a1x + ao where each a1 C 4 if is not
divisible by p, then f(x) 0 (mod p) has at most ii distinct solutions modulo p.

Exercise 230. Prove by induction that for any n � I, the number (16)" always
ends in a 6 (in standard decimal representation, of course). Restating this in terms
of congruences, this says that (16)Th 6 (mod 10).

Exercise 231. Prove that for attn � 1. 10" (—1)" (mod 11).

A famous unsolved conjecture in number theory is called Coldbach's conjecture;
it states that each even number greater than 2 is the sum of exactly two prime
numbers (in at least one way). For example. 16 = 5 + 11, and 16 = 3 + 13. This
conjecture essentially dates back to a letter Christian Coldbach wrote to Euler in
1742, and is still unsolved. (Goldbachi was a tutor to the royal family in Moscow in
1728.) 'l'he conjecture has recently been verified for all even n up to 4 x 1014 by
Richstein (see [428]). Here is afinite (i.e., modular) version of Coldhach's conjecture.
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Exercise 232. Prove that for any positive inteqers in and ii, there exist positive
intçyjers a and 6 relatively prime to 2m so that 2n a + b (mod 2in).

The next result is called the Chinese Remainder Theorem because it was appar-
ently discovered by Sun Zi (4th century), the author of Sunzi suanjing (Master Sun's
Mathematical manual), a manual of arithmetic, part of a required course for Chinese
civil servants. A general proce(lure for solving systems of linear congruences was
published by Qin Jiushao (1201—1261) in Shushu jiuzhang (Mathematical treatises
in nine sections), in 1247.

Theorem 11.2.3 (Chinese Remainder Theorem). For n 1, let

be pair-wise relatively prime, and let a1, a2 be arbitrary integers. Then there
exists x so that

x (mod in1),

x a2 (mod rn.2).

2: a. a,, (mod in,1),

and x' is another solution to the above ii equations if and only if

a: (mod m1rri2 . . .

There are (Ii Iferent proofs of the Chinese ltemmiainder Theorem; however, seldom
is a proof given bs indi.iction. 'Flie reader might he surprised to see just how easy the
proof is when it is presented as a standard induction argument. Only the notation
seems cumbersome, hut even this problem is easily overcome by first proving the
cases ii 1. 2, just to get the idea (the arbitrary inductive step is virtually identical
to proving tile case a 2 from 'a = 1).

Exercise 233. Prove the C'hinese Remainder Theorem by induction on a, Hint:
Use Bezont 's Lemma with d = 1 for relatively prime pairs. You might also need the
result fro in Exercise 210.

all the many prollemns from Section 11.3 on divisibility can be couched
in terms of congrueimces, so only a few problems of that type are giveti here using
congruence notation.

Exercise 234. Prove that if a E their 2" + 371 5" (mod 6).

Exercise 235. l'rove that if a CE then I — iOn. (mod 25).

Exercise 236. Prove that if a ? 1, then 3" + 7'l 2 (mod 8).

Exercise 237. Prove that if a > 0. then (— 1)" (mod 11).
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11.3 Divisibility

The notation a I b means a divides b (for exampLe, 4 12; since 5 does not divide 12,
one writes 5 J 12). In divisibility problems, one might find it handy to first observe
that if n a and n

j
b, then ii

I
(a + b),

I
(a — b), and n ab. Many of the fol-

lowing problems have direct proofs using congruences (or even more straightforward
techniques), but they also can be proved by induction.

Exercise 238. Prove that for any integer it 2, the product of a odd numbers is
also odd.

Exercise 239. Prove that if a is odd, the sum of a odd numbers is odd.

The following lemma is proved using the pigeonhole principle (see Exercise 743),
however it also has an inductive proof.

Theorem 11.3.1. Let a be a positive integer. If n + I distinct numbers are chosen
from {1, 2,... . 2n}, then one of these numbers divides another.

Proof: leix a � 1. and let x1 he numhers chosen froni (1,2 ,...,2n}. For
each i 1 + I, write = where in2 is odd. Since {mi m,2÷I} c
{ 1 .3 2n — 1 }, by the pigeonhole principle. there exists i j so that m1 =
Since one of and divides the other, oiie of or x1 divides the other. 0

One niight think that an inductive proof of Theorem 11.3.1 is elementary. and
after discovering a simple trick, it is elementary!

Exercise 240. Give an inductive proof of Theorem 17.3.1.

The following exercise generalizes Exercise 240; (the case r = 1 is Theorem
11.3.1):

Exercise 241. Prove by induction that for any positive integers r and a, if T C
(1,2 2"n} has TI = (2T — 1)n + I elements, then there exist r + 1 numbers
t11 < t22 < ... < in T so that for each j = I . . . r, divides

The next problem has a one line direct proof (do you see it?); however, the proof
asked for is by induction.

Exercise 242. Prove by induction that for every n > 1, n(n + 1) is even, that is,
2 n(n -El).

The next result was observed by Leibniz.

Exercise 243. Prove by induction that for every non-negative integer a, 3 divides
— n.

Exercise 244. Prove that for every a 1, 3 (n3 + 2n).
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Exercise 245. Prove that if a 1, then 3 J 1)

Exercise 246. Prove a that for every a? 1, 3 I + 1).

Exercise 247. Prove that if n � 1 then 3 J (5271
— 1)

Exercise 248. Prove that for every n � 1,

3
(lOfl+ 5

+ 4fl±2)

Exercise 249. Prove that if n. is a non-negative integer, then 3 (7" + 2).

Exercise 250. Prove that for every n � 1, 4 n2(n + 1)2. (A direct proof is trivial;
can you see it?)

Exercise 251. Prove that for every ri � 1, 4
I

(6 7fl
— 2 371).

The fbllowing popular exercise was also known by Leibniz.

Exercise 252. Prove that if n � 1 then 5 (n5 — 71).

Exercise 253. Prove that for all ii � I (3211. + is divisible by 5.

Exercise 254. Prove that for any natural number a, 8' 3" is divisible by 5.

Exercise 255. Prove that for every n 1, 6 I (a3 — a).

Exercise 256. Prove that for each a � 1, 6 I
(7.11 — 1)

Exercise 257. Prove that for every a � 1, 6 divides n3 + 5n.

Exercise 258. Prove that for every a � 0, 6 n(n -f 1)(n + 2).

Exercise 259. Prove by induction that for every ri. ? 0, n(ii . . 1)(2ri — 1) is divisible
by 6.

The result in the following was also known to Leihniz.

Exercise 260. fly induction, prove that for every n ? 0, 7 divides a7 — a.

Exercise 261. Prove that for every a 1, 7 + 32n±t)

Exercise 262. Prove by induction that for every a � 7 (11" — 471).

Exercise 263. Prove by induction that for every a > 1. 7 I (23311 — I).

For vet another result concerning divisibility 1w 7, See Exercise 3'14 (involving
Fihonacci numbers).

Exercise 264. Prove that or every n ? I, 32n — is divisible by 8.
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Exercise 265. Prove that for every ii. � 1, 8 divides 3fl + 7fl — 2.

Exercise 266. Prove that for every n � I,

Exercise 267. Prove that for every ri. � 1,

9j(n3+(n+1)3+(n+2)3).

Exercise 268. Prove that for-every 'ii � + 6n -' 1 is divisible by 9.

Exercise 269. Prove that for every ii? 1, n5 — TI, is a multiple of 10.

For an exercise for divisibility by 13, see Exercise 351 (involving Fibonacci num-
bers).

Exercise 270. Prove that for everzj ii � 1,

15 I
(4(47)4fl + — 7).

Exercise 271. Prove that for every ii � 0, 15 (2" - 1).

Exercise 272. Prove that for every n � 1, .16 divides — —

Exercise 273. Prove that for every ri > 0,

17 1(3- 52fl+1 +

Exercise 274. Prove that all numbers of the forrri

12008, 120308. 1203308, 12033308, 120333308,

are divisible by 19.

The next exercise has a remarkably elegant solution if the given hint is followed;
without following the hint, it is very challenging. [Note: this is a special case of
Exercise 295 part (c)]

Exercise 275. Prove that for every positive int'egcr n,

22" + + 52

is divisible by 19. hint: induct from k to k + 2.

Exercise 276. Prove that for every 'ii � 1,

211
(4T1+1 +
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Exercise 277. Prove by induction that for every odd positive integer n,

24 I n(n2 — 1).

Exercise 278. Let f be a function satisfying f(1) = f(2) = 1, and for ii �

1(n) = 3f(n — 2) + 3f(n — 1) + 1.

Prove that for all positive inteqers n, f(3n) + f(3n + 1) is divisible by 32. Hint:
Show that f has a period of 12 modulo 32.

Exercise 279. Prove that for every ii � 1,

+

Exercise 280. Prove that all numbers of the form 1007, 10017, 100117, 1001117,
10011117, ... are divisible by 53.

Exercise 281. Prove that for every n � 1,

57 (711+2 + 82n+1).

Exercise 282. Prove that for every n 0,

64 I
(341141 + 3211

— 13).

Exercise 283. Prove by mathematical induction that for any positive integer ri, the
number — 8n 9 is divisible by 64.

Exercise 284. Prove by mathematical induction that for any positive lntcger fl,
8n — I is divisible by 64.

Exercise 285. I'rove that for every n ? 0,

73 I +

Exercise 286. Prove that if n � 1, then 80 (3411
— 1).

Exercise 287. I'rove that for every n � 0,

133 I +

Exercise 288. Prove that for every ii i,

576 I — 24n — 25).

Exercise 289. If n is an arbitrary natural number, prove by mathematical induction
that 72n — 48n — I is divisible by 2304.



174 Chapter 11. Number theory

The next exercise uses the ceiling function. For any real number x, define lxi
to be the least integer not less than x. For example, f3.2] = 4, 141 = 4, and
1—4.81 = —4.

Exercise 290. Prove that for every n � 1,

f(1 +

Exercise 291. Prove that if n > 0, then + 1 is divisible by 3n1-1•

Exercise 292. Prove by induction that the polynomial — y2fl is divisible by
—

Exercise 293. Prove by induction that the polynomial + is divisible by
:r + y.

Exercise 294. Prove by induction that for any n � 1, divides j5. [Note:
No satisfactory solution has been found, yet.]

In the following exercise, part (c) generalizes Exercise 275.

Exercise 295. Let a, b. and c be positive integers with a + b = c, arid let d be an
odd factor of a2 + + c2. Prove that for alt positive ri:

(a) + + is divisible by d.
(b) + + is divisible by d2.
(c) a2 + ± c2" is divisible by d.
(dj) a41' + b41' ± c41' is divisible by d2.

For parts (c) and (d), assuming that d is not divisible by makes the problem slightly
easier.

Exercise 296. Suppose that A, B, and C arc positive integers so that BC I (A —

B C). Prove that for every ii � 1., BC I — Ca).

Exercise 297. Let p be a prime and a1, a2 a71,... be positive integers each larger
than one. Prove by induction that if p I (al ... . ar,), then p divides one of the

's.

Exercise 298. Prove that for each rt 1, there is an n-digit number N (in standard
deci7rial representation), where each digit is a 1 or a 2, so that N is divisible by T1.

(2n)!
Exercise 299. Prove that for every n � 1, —i—— is on integer. This ezercise has a
very easy direct proof but prove it by induction anyway.

\,
Exercise 300. Prove by induction that for every n> 1, is an integer.n!2'

Exercise 301. Prove that if n > 1. then + + is an integer.
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Exercise 302. For each n � 1, prove that ± ç + is an integer.

Exercise 303. Prove that if n is a positive integer, so is (n3 + (in2 + 2n)/3.

Exercise 304. Suppose that j; and y are non-zero real numbers for which x +
y + and zy + are integers. Prove that for all inteqers in and n, xmyn +
is an integer.

Exercise 305. Prove that for everzj n E (2 + + (2 -- is an integer.

Exercise 306. Let n be a power of 2. Prove that for any n � 1, in any set of 2n — 1

positive integers, there is a subset of n of these integers whose sum is divisible by ii.

Exercise 307. Prove that for each ri 1, — 1 is divisible by at least n distinct
primes.

The next few problems are due to José Fspinosa [176]. [They are reproduced
here with kind permission.]

Exercise 308. Let p be a prime of the form 4k + 3. Prove that for each n > 1,

2k-4- I

is divisible by p.

Exercise 309. Let p he a prime of the form 6k + 5. Prove that for all n> 0,

.3k±2

is divisible by p.

Exercise 310. Let p be a prime of the form. 4k + 1. Prove that for all n 0,

i4fl-.-2

is divisible by p.

The reader is invited to see website [176] for ninny inure challenging
induction problems regarding divisibility. For example, Espinosa's Problem 13 asks
to show that for each ii > 0,

I + 31rz+2 ± 2
F

54nt2 +

is divisible l)y 13.
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11.4 Numbers expressible as sums
Let x and p he positive integers, and say that a positive integer k is expressible as
a sum of x 's and y 's if there exist non-negative integers (9 so that k = nx + fly.
Marty of the following statements have multiple base cases. The first result has
already been proved as Theorem 3.4.1 in case a hint as to the techniques is needed.

Exercise 311. Prove that any integer n � 1.4, can be written as a sum of 3's and
8's.

Exercise 312. Prove that any integer n � 8 is expressible as a sum of 3's and S's.

Exercise 313. Prove that any positive integer n, where n 0 {1, 3}, can be written
as a sum of 2's and S's.

Exercise 314. Prove that any integer n � 24 can be written as a sum of S's and
7's.

Exercise 315. Prove that any integer n 64 can be expressed as a sum of S's and
17's.

11.5 Egyptian fractions
Ancient records show that at a time, some Egyptians used only fractions of the form

(called unit fractions).
In 1858, Scot Henry Rhind bought a 3200 year-old papyrus written by a scribe

named Ahmose. and Ahmose wrote that lie copied it from work sonie 400 years pre-
vious. (Ahniose is also referred to as "the priest. Ahnies, who lived before 1700 B.C."
in Ttiriibull's article [5381.) According to Newman (see his commentary just l)efore
[412]) this papyrus is the second oldest mathematical document known in existeace,
as of 1956, anyway. ('l'he oldest is an Egyptian papyrus called the Colenischev, now
in Moscow, also from the same dynasty.) The Rhind papyrus is now a roll 13 inches
high and almost 18 feet long. See [4121 for a detailed discussion of its contents,
along with a photo of part of the papyrus. It was found alongside a leather scroll,
both now in the British Museum. (See [42] for a photo of the leather scroll.)

According to Turnhull, the Rhind papyrus was called "directions for knowing all
dark things". The papyrus holds a collection of problems in geometry and arith-
rnetic. For example, it seems to indicate that the Egyptians of the Twelfth Dynasty
(2000—1788 l3.C.) knew the formula for the volume of a truncated pyraritid. Much
in the papyrus is concerned with expressing fractions as sums of unit fractions such
as

2 1 1 1 1= +
+ +

and they did it without + signs! Problem 23 of the papyrus asks hosv to complete

1 1 1 1 1 1
1 + + + + +
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using as few as possible unit fractions. The answer given was

1 1= — + —
9

For more on such decompositions and hisi.ory, together with further references, see
[72J.

For positive integers p and q, if there are positive integers ni < < <
so that

p 1 1 1

q 121

then the fraction is said to be written in Egyptian form. If a fraction is in Egyptian
form, its representation is not necessarily unique. For example,

5 1 1=

11 1

=
1 1 1 1

=

In [510], Ian Stewart examines a problem regarding the division of camels among
sons, and discusses the number of representations of a fraction in nearly Egyptian
form. Fhr example, Stewart lists the 14 solutions of equation

1 1 1 1abed
subject to a b � c d.

Exercise 316. Prove that if a fraction can be written in Egyptian form, there are
infinitely many representations of the fraction in Egyptian form. Flint: Express

as a sum of two unit fractions.

Exercise 317. Prove by induction that for every pair of positive integers p and q
•with 1. p cc q, the fraction <c 1 can he written in Egyptian fonn. Hint: Use a
greedy algorithm, finding the largest unit fractions possible.

Exercise 318. Provc by induction that for every pair of positive integers p and q,
the fraction can be written in Egyptian fonn, that is, every positive fraction can
be written in Egyptian form.

See also Exercise 20] for a problem related to Egyptian fractions.
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11.6 Farey fractions

All variables here represent non-negative integers. For each n � 1, the set of
Farey fractions is the set of reduced proper fractions 0 I where 0 p � q n.
For example,

10 1 1 1 2 3 1

Farey fractions are usually written as a sequence, and so the set is often called
a Farey sequence, and the list of all Farcy sequences is sometimes called the Farey
series.

Exercise 319. Prove that for each n � 2, has an odd number of elements.

Say that are adjacent iii if no other 5 exists in with 5 <
here is a useful fact that has an easy proof (not inductive).

Lemma 11.6.1. < then for every h,k E V

a ha + kc c

b hh+kd

Another useful fact that has a fairly direct proof is the following.

Lemma 11.6.2. If with bc — ad = 1, and 5 satisfies < 5 < then there
exists h, k > 0, so that c a/A + ck and f = bh + dk.

To prove the above lemma, solve the system of equations c oh + ck and
f = bit -+- dk for the unknowns ii and k, and show that they are indeed positive
integers.

This next exercise is proved by induction on n (lemmas above may be used.)

Exercise 320. Prove that if c are reduced fractions adjacent in then both
SiAn): bc—ad= I, and
52(n): If the reduced fraction 5 E scparates and that is, < 5 <

then e = a + c and f = h + d.

As a consequence of Exercise 320, if are adjacent Farey fractions, then

e a 1

gives a recursive way to generate Egyptian forms for fractions.
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11.7 Continued fractions

In some circles, the most famous book on continued fractions is the classic Continued
.&aetions [311] by Aleksaxidr Ya, Rhinchin (1894—1959); this little book has been
recently reprinted by Dover. Among the many other possible resources, I recommend
Number Theory with ('omputer Applications [332] by Kumanduri arid Romero;
the authors discuss history, theory, and applications of continued fractions. The
introduction given here is naive and very sporadic, touching on only selected basics.
For example, the deep connections between continued fractions and approximation
theory, transcendental numbers, generating functions, hypergeometric functions, or
solutions to quadratics are not discussed here.

According to the references above, continued fractions in the modern sense were
apparent in the work of Rafal Bombelli (1526—1573), whose techniques were used by
Christiaan Huygens (1629—1695) in the construction of a mechanical planetarium
(of the first six planets). Similar methods were used by the Indian astronomer
Aryabhata. See [73] for more on time history of continued fractions. According to
the references mentioned, the basic properties of continued fractions given below
were developed by Euler and Lagrange.

For present purposes, a continued fraction is an expression of the form (where
each of the at's and b2's are real numbers):

______—

-m

a1 +

U2 +
b4

a3+
a4 4

either stopping after finitely many steps or continuing on to infinity. implicit in the
above form is that each of al,a2,... are non-zero. In what follows, the and b1's
are niost often positive integer values, with perhaps ao being non-positive, and if
any, the last perhaps being a positive real. A continued fraction is called finite
if its expansion is finite, and infinite otherwise. A finite continued fraction can
be evaluated from the bottom up, i.e., by first calculating a bottom level

a continued fraction with one fewer level. Simplification is repeated
recursively on each new last level. Any finite continued fraction is a real number
(since there are only finitely many simple operations to evaluate a finite continued
fraction). When all the at's and are rational numbers, such a finite continued
fraction is again a rational (see Exercise 321 below).

Do infinite continued fractions have meaning? Let C he an infinite continued
fraction with coefficients and as above. For each Ic � 0, define the Ic-
convcrqent (denoted C'k) ofC to be the finite continued fraction formed by truncating
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the expression after ak and bk:

Ck=ao+

a2+ —
a3 4

bk_i

ak_i + —
ak

[A k-convergent is also sometimes called an initial k-segment.) Since each Ck is

finite, each is a real number. The infinite continued fraction C is said to converge
to some limit L E if (7k -r L.

In some very special circumstances, an infinite continued fraction can he given
meaning by calculating convergents, or simply by its algebraic properties. For ex-
ample, if one writes

C=1+ 11
1+

1+
1+

the first few convergents are C1 = 2, C'2 = ('3 = ('4 = The numbers used in
these convergents look familiar. In Section 12.2, the Fibonacci numbers are defined
recursively by F0 = 0 and F1 1, and form � 2, = the first few are
0.1,1,2,3,5,8,. .., One soon guesses (and proves by induction) that the convergents
are ratios of consecutive Fibonacci numbers (see Exercise 322 below), which tend to

= the golden ratio. Another way to confirm this result is to observe that,
as expressions, C = 1 + so if x is a convergent of C, x = 1 + Upon solving,

— x — 1 = 0, the only non-negative root of which is indeed r.
One might conclude that if C is a continued fraction whose coefficients eventually

repeat with a fixed period, the same idea as above can be used to find a quadratic
polynomial, one of whose roots is the limit of the convergents of C. The reader is
invited to try this with

h= [2,1,1,1,4,1,1,1.4,1,1, 1,4,...).

In fact, a continued fraction C is eventually periodic if C is a quadratic irrational.
See, e.g. [332, §11.4). It was Lagrange that proved the expansion of any quadratic
irrational is eventually periodic.
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If an infinite continued fraction is denoted by, say, the letter C, sometimes C is
interpreted as a real number, and until it is established that C is a. real number, C
is taken to denote only the continued fraction expresszon.

By a construction described below, for any real number x. there is a unique
continued fraction converging to x that has, in the continued fraction expansion.
all the b2's equal to 1 and all the are integers with all hut perhaps a0 being
positive. For any continued fractions with all b1's being 1. there is a convenient
one-line notation:

=ao+ — 1

a2+
1

a3 +

1

1

°'711 + —

and a corresponding infinite continued fraction of this form is [an;
a continued fraction of the form C = [ao; a1. 02,. .], (or (LI a,1]), for

each k = 0,1.2. ... (or k = 0, 1,.. . n), the k-convergent of C is Ck = [a0; al at].
Similarly define a k-remainder to be [at, ak÷1, .. 4. Observe that k-convergents are
themselves finite continued fractions (hence are real numbers) and k—remainders of
a. continued fraction a.re again continued fractions, perhaps infinite. Many theorems
can be proved by using remainders rather than eonvergents; however, most proofs
below rely on con vergents.

A simple continued fraction is a continued fraction of the form [ao, a1. a2, . . . , a,,]

(or lao, a1, a2,. . .]) where a0 Z and all remaining are positive integers. Before
showing how every real number can be represented by a simple continued fraction,
it is instructive to first consider expansions of rational numbers.

11.7.1 Finite continued fractions
By the Euclidean division algorithm, (see Exercise 211) every rational number has
a unique represemitatiomi as a finite simple continued fraction. For example,

119 11 1 1 1
3 3+ 3 3+

and so = [3;2.2].
A finite continued fraction [ao. a1, . . . . a,,] is evaluated with finitely many op-

erations, so when the are rational, the number [ao; a1 ,...,a,,] is rational; this
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claim is also justified by a (nearly trivial) inductive argument based on the following
observation: For each n � 1,

1
[ao,ai = tao,ai ,..., + —]. (11.8)

Exercise 321. Use equation (11.8) and induction to prove that if a real number
x has a finite continued fraction expansion x [a0, a1,... , where all 's are
rational, then x is rational. Conclude that a number is rational if its continued
fraction expansion is finite.

Oddly enough, the proof suggested in Exercise 321 fails for simple (integer)
continued fractions; one seems forced to prove the theorem for a class of finite
continued fractions whose last is allowed to be rational. This is an instance of
"proving more is easier". [Perhaps it is for this reason that some authors (e.g., [332J)
define a "simple" continued fraction to be of the form [aC, a1, a2 where
is an integer, each of 01 are positive integers and is allowed to be any
rational (or real).J

Let C = [ao, a1, 02,. ..] he a continued fraction with all 's rational, and for
cacti i � 1, > 0. In much of what follows, proofs do not depend on al,a2,...
being positive; however, for simplicity assume that from now on, all such are
positive, and that a0 0. For each k � 1, the k-convergent of C is a positive
rational number, so write

Ck = (11.9)
qk

where Pk and are relatively positive integers. The 0-th convergent G0
a0 = [xj can also be considered as a fraction over 1.

Exercise 322. Let denote the n-th Fibonacci number = 0, F1 = 1, and for
n � 2, = + see Section 12.2,). Prove that for n � 2, the continued
fraction expansion of .LZL. is of the form [1, 1,... , 1], where there are n — I ones.
It follows that any simple continued fraction of the form [1, 1 is a ratio of

consecutive Fibonacci numbers.

Theorem 11.7.1. Let C = [00, aI, a2,...] be a rational continued fraction and for
each k � 0, let G'k = Then fork > 2,

P/c + Pk—2 (11.10)

qk = +qk.2. (11.11)

Exercise 323. Prove equations (11.10) and (11.11) by induction on k. [Hint: To
start the inductive step, apply equation (11.8).]

Corollary 11.7.2. Let C = [an, a!... . be a rational continued fraction with,
for 0 < k < n, k-convergent Ck = Then

fork � 1, pkqk—1 —pk--lqk = (11.12)
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for k � 2, — pk—2qk (—1)'ak. (11.13)

Exercise 324. Prove equation (11. 12) of Corollary 11.7.2.

Exercise 325. Prove equation (11.18,) of Corollary /1.7.2.

Multiplying the equations (11.12) and (11.12) by gives the following
useful result.

Corollary 11.7.3. Let C = [ao,ai ,J be a rational continued fraction (finite or
not), where for each k = 0, 1,2,..., the k-converqent is 6'k = Their

(_1\k—i
Ck—Ck_1 = ' " (11.14)

qk— lqk

ak(—1)
(11.15)

Lemma 11.7.4. Let cia be rational, and for each i = 1, 2,..., let � 1 be rational,
and fonn the continued fraction C [ao, a1, 02,...] (finite or not,?, and for each
k � 0, let 6'k = [ao,ai Uk] = Then the sequence 1 = is
strictly increasing.

Exercise 326. Prove Lemma 11.7.4.

In Lemma 11.7.4, denominators of the convergetits are increasing, hut more can
be said about just how fast.

Exercise 327. Let be rational, and for each i = 1,2 let a rational,
and form the continued fraction C = (ao, a1, a2,...] (finite or not,?, and for each
k 0, let 6'k = [ao,ai,... ,akl = Prove by induction that for each k � 2,

�
The following exercise is somewhat novel in that continued fractions are turned

out".

Exercise 328. Let [a0, a1, a continued fraction with all a 's ralional, and
for each k � 0, Ck = [ao,ai,. .. ,ak] = Prove by induction that for each k � I,

=
qk—1
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11.7.2 Infinite continued fractions
Theoreni 11.7.5. Let ao, a1 ,02,... be an infinite sequence of rational numbers
where, fori � 1, � 1. Then C = [ao,ai,a2... .}

Proof: By equation (11.14) of the previous section, the convergents of C satisfy
C1

— = +
—

> since the qj's are increasing by
Lemma 11.7.4. Continuing in the same manner, C'3 = G'2 + th3 + eon = C1,
so < < C3 < C1. By equation (11.15) it is easier to see that the even
convergents are increasing, C'0 < C2 < C'4 < ..., and the odd convergemits are
decreasing, C1 > (73 > C5 > ..., and by equation (11.14), each C2

arid C"i+i' Thus, the convergents form the partial sums of an alternating decreasing
series,

CY0+(C1

which converges to some limit; call this limit C. 0

Notice that, from the above proof, each convergent C'k is within of C. It
might be interesting to know (see [311] for details) that an infinite continued fraction
of the form [ao, a1. a2,.. converges if the series diverges (so just forcing
the as's to be at least one is a very weak condition).

Corollary 11.7.6. If C = [ao. aj, a2,...] is an infinite simple continued fraction
(where a0 E Z and for each i � 1, a E Z+), then the continued fraction C converges
to an irrational real number.

Proof: Any infinite simple continued fraction satisfies the hypothesis of Theorem
11.7.5, and so converges to some x ER. By Exercise 321, x is irrational. 0

Recall that [xj denotes the largest integer not greater than a real number x, often
called the integer part or floor of x. For any real mmuniber :r, write x [xi +
where E [0, 1) is often called the fractional part of x..

To each irrational number x, there is a "canonical" simple infinite continued
fraction C(x) = [ao, a1, a2,...] that converges to x; this representation of x is re-
cursively defined in the same manner that the Eimclidean division algorithm yields a
finite expansion for a rational- - -at each stage, break off the integer part, and invert
the fractional part. Here is the process:

Fix an irrational x. By Exercise 321., rio finite simple continued fraction defines
a:. confirming that the process about to be defined does not stop. Define recursively
a sequence x0, xi, X2,... of real numbers, by = x, and for each i � 1,

1
.L, —

]]

For each i � I, (by induction) is an irrational number between 0 and 1,
and so each of x1. x2, ... is a real number larger titan one (thus the recursion never
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stops-- --or explodes with some division by zero). Using these xfs, the first few steps
in an expansion of x are:

x = Lxoi +

1
= [xoj + [xiJ ÷

=koi+
[xij+—

1
=[xoj+

1

[xij+
[x2j +
1

[xij+
[x2j+—

23

For each i -= 0, 1.2,.. ., put = Then for each ii � 1,

x = Iao,ai

Then for each n � 0,

(11.16)
Xn+1

Define the canonical representation of an irrational x to be the infinite sim-
pie continued fraction C = lao, a1, defined above. By Corollary 11.7.6, C
converges to an irrational number y. Since the n — 1 first, k-convergents of both
x = [ao,ai. . . . and C = [ao,ai

. .J are the same, it follows
(as in the proof of Theorem 11.7.5) that x = y. Hence any real number r has
a unique simple continued fraction expansion, and that expansion is found by the
algorithm above.

As a penultimate note of interest, the continued expansion of e, the base of the
natural logarithm, is

c = 12.1,2,1,1,4,1,1,6,1,1,8,1,1,10,.. .1•

In the 1760s, Johann Heinrich Lambert (1728—1777) proved that the pattern above
continues on forever, hence first proving that e is irrational (Legeridre is sometimes
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credited) the proof (see e.g., [332, pp. 276-8]) is another (beautiful?) application of
induction.

In this section, the have been virtually ignored. For an intriguing intro-
duction to more general continued fractions (even with complex numbers), starting
with a famous continued fraction by John Wallis (1616—1703) for ir/4, and contain-
ing many more inductive proofs regarding continued fractions. I highly recommend
the reader to look at The Number it [182, pp. 65—78]. [This book is alt incredible
introduction to most undergraduate mathematics, including geometry and analysis.
The irrationality of it is another goal the authors use to introduce continued frnc-
tions used in approximation theory, which then, through Liouville's work, lead to
showing it is trancscendental. Also, all theorems given in this section are implicitly
contained in that book.]
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Sequences

As yet a child, nor yet a fool to fame,
I lisp 'd in numbers, for the numbens caine.

Pope (1688- 1744),

Epistle to Dr. Arbuthnot.

Sequences seem to fascinate the young mathematician iii all of us. In Chapters
9 and 10, most of the equalities (or inequalities) can be seen as a coniparison of two
sequences. In this section, more relevant are properties of elements of a particular
sequence, rather than simply seeing if two sequences are comparable.

It is helpful to make clear what is meant by the term "sequence". If you were
asked to explain to a child what "a sequence of numbers" is, what comes to mind?
Would you tell the child that it is merely a list of numbers, ordered so that one
comes after another? This reply might seem satisfactory in most instances, but
how would you respond if a precocious child then asked whether or not such a list,
can go on forever, or, say, if it must have a starting point? Can there he infinitely
many numbers between two numbers in the list? If two numbers in a sequence are
interchanged, is the new sequence the same as the old? Must you be able to describe
each number in the list, that is to say, for example, if one wanted to know what the
lOOl-th number in the sequence is, must you be able to calculate it without first
calculating the previous 1000 numbers? You could respond to all of these questions
by giving the following definition to the child:

Definition 12.0.7. A finite sequence of elements from a set X is a function, where
for some ii

An infinite sequence of elements from a set X is a function

f X.

187
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With this definition, elements of a sequence are f(1), f(2), f(3),... and the se-
quence can be called simply "f". In practice, however, one often writes a sequence
by listing the elements in the range of f in the order determined by the natural
numbers. For example, if X = {a,b,5,x,y}, and f is defined by f(1) =3, f(2) = a,
f(3) = a, and f(4) = y, then the sequence f is written as 3,a,a,y. By definition,
the sequence 3, a, y. a is different from y, a, a, 4, so order is important. Often, in-
stead of naming a sequence by f, use subscripted variables, like x1, X2, X3,..., where

= f(1), X2 = 1(2), and so on.
In the literature, there is not any one standard way to denote sequences. For

example, an infinite sequence s3 can be denoted by (or simply
(si)); by (or simply by s (where s is viewed as a function and for each

s (especially for finite sequences---as in vector notation);
or by (si)jEz÷. Even though set braces { } are often used, and ordinarily "sets"
are collections with no order imposed, this notation for sequences is very popular.
Some authors prefer the angle bracket notation ( ), however angle brackets are also
reserved for something called "inner products" and a few other notions. Sometimes
sequences are indexed starting at 0, in which case a sequence so, an be
denoted by '11w notation varies throughout the exercises, but I hope that
no confusion arises.

Some mathematicians might mean "sequence" to include sequences that are
infinite in both directions, that is, functions of the form

f : Z X,

however here, ordinarily only sequences with a first element are used.
Perhaps the most famous of all sequences are those whose adjacent elements

are equally far apart. For fixed integers a, d, and £, a sequence of the form a, a +
d. a ± 2d. a + 3d,... ,a + (€ — 1)d is called an arithmetic progression of length £ with
difference d. For example, 2, 5, 8, 11,... , 62 is an arithmetic progression of length
21.

12.1 Difference sequences

Given some sequence s define the differEnce sequence As =
The second difference sequence A2s is found by taking the differences

between consecutive elements in the difference sequence. In general, one finds the
p-th difference sequence A"s by taking the difference sequence for the previous
difference sequence A" 1s. To be precise, let x = Xi. X2, X3,... be a sequence. Then

AX = X2X1.X3X2,X4X3,...
A2x = — 2x2 + x1 , — 2x3 + X2, x5 — 2x4 + x3,...
A3x = x4—3r3-1-3x2—XI,Xs—3x4±3x3--x2,x6—3x5+3x4—x3,..

= x5 +6x3 —4x2±x1,x6 —4x5 +6x4 —4x3 +X2,...
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Exercise 329. If x = 12, :1:3 . is a sequence of real numbers, prove by induc-
tion on k that the n-th term in the k-th difference sequence Ak1

EF')' (t)xn4ki.

While playing with Fermat's last theorem (i.e.. for n > 2, the equation x"+yTh
Zn has no non-trivial solutions in integers) one might be interested in differences of
consecutive "like powers". Some amazing patterns evolve if one repeatedly takes
differences. Examine the sequence of squares

s = 1,4,9, 16,... ,n2,..

the difference sequence is
As = 3, 5, 7,9, 11,,..

an arithmetic progression. If one again takes differences, the second difference se-

qitence is the constant sequence

= 2,2,2,2

Examine the sequence of the cubes,

s = 1,8, 27,64, 125,216,343, 512, 729. 1000

The first difference sequence is

As =7.19,37,61.91,127,169,217,271

and the second difference sequence is

A2s = 12, 18, 24, 30,36, 42, 48, 54,...;

the third differences are all 6 2. If one tries the same procedure for fourth
powers, the fourth differences are all equal to 24 = 3. 2 (try it!). Similarly, the
fifth differences of fifth powers are all 120 = 5 4 3 2.

Exercise 330. For each positive inteqer k, guess an expression for the k-lh differ-
ence of the sequence 1k, 2k 3k, 4k, and prove your result by induction.

The following exercise, in a sense, is concerned with differences, but not iii the
same way as described ahovc.

Exercise 331. Suppose that a sequence of positive znt(vers a1, a2,... 'ad satisfies,
for each i = 1,2

= Iaj±i —

Prove that if a1 < a2, then d � + 1). Hint: induct on
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12.2 Fibonacci numbers
The next, few statements use tire Fibonacci numbers, which arc defined by = 0,

F1 = 1. and for n � 2, the recursion

= FTL_2 + Fa_i.

So = + Fi = 0 + I = 1, = F1 + F2 = 1 ± 1 = 2, F4 = F2 + F3 1 + 2 3.
F5 = F3 + F4 2 + 3 = 5, and so on. licre are the first 31 Fihonacci numbers:

n0123456 789101112131.4
FT, 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

n 15 16 17 18 19 20 21 22 23

F1, 610 987 1597 2584 4181 6765 10946 17711

28 29 3ö']
75025 121393 196418 317811 514229 832040

'The Pibonacci iLumbers were named after Fihonacci, also called "Leonardo of
Pisa" (11751.230), a mathematician and merchant from Italy. ("Fiboziacci" means
"Son of good fortune".) The sequence occurred in his book 11 Liber Abaci, published
in Visa in 1202 AD. A second edition appeared in 1228 and, according t.o [589], it.
is the one that survived for inaiiy centuries. Apparently. the sequence arose from
studying rabbits.

Suppose that rabbits are fertile by the age of one month, (some say that this
period should l)e two riionthis. but even so, the development is analogous) and that
one begins with a matching pair (one male, one female) of mature, or fertile rabbits.
Every matching pair of rabbits produce two rabbits after one month, let's say one
male and one female. At the end of one month, there is one new pair. At the end
of two months, the first pair produces another pair, arid the second pair matures.
giving 3 pairs, 2 of which are mature. At the end of three months, the first 2 1)airS
produce a pair each, giving a total of 5 pairs, three of which are mature. In Exercise
332, one is asked to complete this analysis to see that indeed one arrives at the
number of rabbits at tire end of each month to be a Fibonacci number.

When proving results regarding Fibonacci numbers, a form of strong induction
is often useful. In particular. the inductive step in many proofs is of the form
[S(k — 1) A S(k)J S(k ± 1); note that in such instances, two base cases are often
required. The exercise has a solution that is just slightly underhanded.

Exercise 332. Prove by induction that after k � 0 months, in the above description
there are Fk r2 pairs of rabbits. What result do you get if rabbits mature only after
two months instead of one month
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Exercise 333. Show that if n > 5, then F7, >
1

Exercise 334. Prove that if n? 1, then < (flm".

Exercise 335. Prove that if n � 1, then F,, < (18)"l

Exercise 336. Prove by induction that if n � 0, then F,, (ft)"
'.

Exercise 337. Give an inductive proof (one whose inductive step actually uses the
inductive hypothesis) of the fact that for each n ? 0,

+ =

Exercise 338. Prove by induction that (for non-negative integers n) F,, is an even
number if and only if n is divisible by 3.

Lemma 12.2.1. Jfk? 0, then F4k÷4 = 2F4k +3F4k41.

For example, F8 = 2F4 + 3F2 since 21 = 2 . 3 + 3 . 5 and F8 = 21, F4 = 3, and
= 5. The general proof is non-inductive and only relies on the recursive definition

of Fibonacci numbers:
Proof of Lemma 12.2.1:

F4k44 =
= Flk + + F4k÷1 ÷ F4k÷2

= Flk + F4k.L1 + F4k+1 + F4k 1' F4k±1

D

An inductive proof is also available for a slight generalization of the equality in
Lemma 12.2.1:

Exercise 339. Prove by induction on in that for every in? 0,

= 2F,,, + 3Fm.F1.

Note that Lemma 12.2.1 is the special case m = 4k in Exercise 339.

Exercise 340. Use Lemma 12,2.1 or Exercise 339 to prove by induction that for
each i ? 0, F11 is divisible by 3.

Exercise 341. Beginning with F0, prove that every fifth Fibonacci number is divis-
ible by 5.

The result in time next exercise has a simple, albeit cumbersome, direct proof; it
also has an inductive proof.
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Exercise 342. Prove by induction that if ii. � 0, then +8 = 7F,4÷4 —

Exercise 343. Use Exercise 342 to prove by induction that every 8-th Fibonacci
number (beginning at F'0) is divisible by 7.

Exercise 344. Prove that for all positive integers n,

1 4 22t4 + 3274 + + 1]

is divisible by 7.

Exercise 345. Prove by induction that for a � 0,

= + F74.

Exercise 346. Using Exercise 345, prove that every 10th Fibonacci number (start-
ing with Fo) is divisible by 11, that is, for every i � 0, is divisible by 11.

Exercise 347. Prove that for all non-negative integers n, F'sn+3 + is divisible
by 11.

Exercise 348. Prove that for every non-negative integer n, F127, is divisible by 6,
8, 9, and 12.

The following result has a number of different proofs, cite that is asked for in
Exercise 350:

Lemma 12.2.2. For each n � 0,

= + ± 1OF,,, + 7F,,.

Before giving the proof of Lemma 12.2.2, here is a verification that the above
equality for n 0 (this is not a base step to any inductive proof, hut merely a
check to see if it works): F15 = 610 and 10F,,4 10 + 10F744.5 + tOE,,.4..1 + 715?,, =
10(55) + 10(5) + 10(1) + 7(0), which is 610.

Proof of Lemma 12.2.2:

F,, +

= 11 F,,÷10 ± (by Exercise 345)

= 1OF,,±to + F74410 + F,,+s

= + (hF,,45 + F,,) + F,,., (by Exercise 345)

= 1OF,,÷10 + IOF,,÷5 + 2F,,45 + F,,
= IOF,,÷10 + + 2(3F,, + SF,7,÷1) F,, (see Ex. 341 sol'n)

= 10 + + lOP,,1.1 4 715',,.

D
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Exercise 349. Give an inductive proof of the equality in Lemma 12.2.2.

Exercise 350. Relying on previous exercises, give a simple proof that, beginning
wit/i F0, every fifteenth Fibonacci number is divisible by 10. Then, using Lemma
12.2.2, find an inductive proof of this result. Verify that the among F3, F1, .. . , F30,

the only Fibonacci numbers that arc divisible by 10 are those of the form F15k.

Exercise 351. Prove that for every n > 0,

2(221t + + 6272) + 3(—lr' + 1]

is divisible by 13.

The next exercise asks to prove a simple but powerful identity, one that geit-
eralizes some of the results stated above arid facilitates the proofs of more elegant
results below.

Exercise 352. Prove that for all integers m and n satisfying n > m> 1,

Fr,_rn±r &. 4 = F,,.

Which of the above exercises does this result generalize?

Exercise 353. Use the result from Exercise 352 to prove by induction that for any
positive integers rn and mm, F,,, divides 1nm

It might be interesting to note that Exercise 352 (or Exercise 376 below) implies
the following remarkable fact:

Corollary 12.2.3. if is prime, and n > 4, then n is prime.

Unfortunately, the implication in Corollary 12.2.3 does not go the other way.
For example, r'Ig = 4181 = 113 . 37 is riot prime. The first few prime Fibonacci
numbers occur when n = 3, 4. 5, 7, 11, 13, 17, 23, 29, 43. 47, 83, 131, 137, 359, 431,
433, 449, 509, 569. 571,... (See [148] for more discussion.)

The following identity, known as "Cassirri's identity", was presented by the
Italian astronomer Giovanni Domenico CassiIii (1625—1712) to the Royal Academy
(Paris) in 1680, but these proceedings [97J were published only in 1733 (under the
name Jean Dominique Cassini). In 1671, Cassini moved from Bologna to Paris and
became the first royal astronomer of France, and so sometimes is considered to he
French. His son, Jacques Cassini (1677—1756), grandson. César-Francois Cassini,
and great grandson Jacque Dominique Cassini (1748-1845) all were French scien-
tists. Giovanni is also known for the Cassinian curve, the locus of points whose
product of distances from two fixed points is constant.

Cassini's identity is also often called identity", since it was indepen-
dently discovered by the Scottish georrieter Robert Simsomm (1687-- 1768) in 1753 [493]
(see also, e.g. [122, pp. 165—168], and [123, p. 41]). Perhaps the identity should
be known as "Kepler's identity", as, according to Graham. Knuth, and Patashnik
[230, p. 292], Johannes Kepler (157 1—1630) knew of it in 1608. [They offer [310J as
evidence of this.]
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Exercise 354 (Cassini's identity). Prove, using mathematical induction, that for
71 1,

= +

Note that Cassini's identity can be written as

1 —. =

arid so by multiplying by —1 and taking absolute values, it takes t.he form rn2 --
£rrz — e21 1. A remarkable fact is that this equation essentially implies that £ and
m are adjacent F'ibonacci iiumbers, giving a kind of converse to Exercise 354.

Exercise 355. Prove that if £ and m are integers such that ni2 £21 = 1,

then there is an integer ii so that e and rn =

Cassini's identity can now be viewed as a special case (r = 1) of a more general
result, known as identity":

Exercise 356 (Catalan's identity). Prove that for I � r

— ( 1\n—r1'2
n--r )

Related to Catalan's identity is a result sometimes known as 'd'Ocagne's iden-
tity":

Exercise 357 (d'Ocagne's identity). Prove that for 0 m n,

Note that with m 1 in d'Ocagne's identity, the original Fibonacci recurrence
relation — == is recovered.

The next exercise contains a result that Yuri Matijasevich [370] found arid used
in his (negative) answer to Hilberts tenth problem: Is there an algorithm to solve
an arbitrary diophantine equation?. For more on the solution to hubert's tenth
problem, see the book by Matiyasevich [371], or websites [591] (with an article by
YM) and [592). [Note: sometimes the "j" is replaced by "y" in "Matijasevich" .J

Exercise 358 (Matijasevich's lemma). Prove that for ii > 2, Fm 7rlUltiple of
if and only if m is a multiple of

Exercise 359. Prove that for every 71 � 0.

Exercise 360. Show that for every 11 � 0,

F? + +
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Exercise 361. Show that for each ii � 1,

Exercise 362. Prove that for any n � 1,

Exercise 363. Show that for every 1?. 1,

F1F2 + F2F3 + + =

Exercise 364. Prove that for every n 1,

F1F2 + F2F3 + ... + = — 1.

For use in Exercise 365, the following fact is presented:

Lemma 12.2.4. For every in 1,

= +

Proof: Using n = 2711 in the result of Exercise 352,

k'2mn FmtiFnz+FrnFrn_i
= F,,1_1)

= Frrt(Fra_i ± +

D

The equality in the next exercise is merely a special case of the more general
statement given in Exercise 352. though it seems difficult to prove it without first
proving t;he more general statement!

Exercise 365. Using Lemma 12.2.4, give an inductive proof that for every n � 0,

+ =

Verify that this equality also follows directly (no induction) from Exercise 852 using
ii = 2m + 1 and then replacing all in 's by ii.

Another elegant equality follows from Lemma 12.2.4, though it may be difficult
to prove by induction (without using sonic consequence of Exercise 352):

2 2= —

This follows directly from Lemma 12.2.4, since

— = — F,1_1)(F11÷1 + -í
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Exercise 366. Prove that for all n � 0,

+ + + = 3F2n+3.

Exercise 367. Prove that for every ii � 1,
F0 11

Exercise 368. Prove by induction that for n. � 1,

1 1 in— Fn+i En
1 0] En En1

One might notice that the ratio of consecutive Fibonacci numbers seems to
approach something near to 1.6 (or 8/5). For the moment, suppose that this ratio
indeed approaches some number in the limit, that is, suppose that there is some
number t so that

En-i-itim —=1
En

Beginning with the recursion F,14.1 = + F,,, dividing throughout by F,,, and
taking limits gives

lim = 1 + i'm
F',, F',,

Since tpi. and = the above equation be-
conies t = 1 + f, arid so

= t + 1. (12.1)

The roots of this equation are = and These two numbers arise
in a closed forni for 1"ihonacci numbers. This closed form formula was discovered
by Daniel Bernoulli in 1728; however, it was Jacques Philippe Marie Binet's [53]
rediscovery in 1843 that makes the form eponyinous with him

Exercise 369 (l3inet's formula, Fibonacci numbers). Give an inductive proof of the
fact that for every n 0,

1

t\ 2 ) k\ 2 )
\Vith the notation above,

= —

Using Binet's formula, without too much difficulty, one can now prove, for example,
that the ratio tends to the golden ratio approximately 1.618031.

Bitiet's formula can also he used to prove sonic interesting identities directly,
some of which are difficult to see using induction. For example, here is one due to
the Italian mathematician Ernesto Cesaro (1859-1906) given around 1888.
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Lemma 12.2.5. For ii 0,

+ +... =

Proof: ((fl)1[
=

I

= - (by eqn (12.1))

=

0
Similarly, one can prove that (see [277, pp. 109 110]). The

next exercise generalizes Cesaro's result.

Exercise 370. Prove that for awi,' non-ncqatzve integers in and n.

+ (;') ... +
(n) r'

flint: Use Lent-run 12.2.5 for the case in 0, profle a sirrizlar result for in = I, and
then use these both as base cases for an inductive proof

Exercise 371. Prove that for a> 1,

/'2n\ (2n -- i\ /2n — 2'\ (n\
2

and
/2n + i\ 72n\ 72n — i\ fri + 1\

0 2
)=l'2n+'2.

I-lint: To prove just one of these identities by induction might be far more difficult
than to prove them together.

The result of the following exercise is often attributed to Edouard Zeckeridorf
(see [585] arid [345]) and can he to establish a unique representation nlItnl.)er
system:

Exercise 372 (Zeckendorf's theorem). Prove that eveT7) a E zs a unique SUwi of
distinct -non-consecutive Fibonacci numbers.
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Exercise 373. The number of binary strings of length n � 1 not containing "11"
as a substring is

Exercise 374. Let be the number of binanj strings of length n that do not have
two l's at distance 2 apart. Find a,1 in terms of Fibonacci numbers.

The next exercise uses the "floor function": for any real number x, the number
[x] is the largest integer less than or equal to x. For example, ]ir] = 3, [7] = 7,

and [—1.2] = —2. Exercise 375 appears implicitly as Example 40 in [247]; another
way to interpret the exercise is to draw Pascal's triangle shifted so that () appears
in the n-th row and (n + r)-th column of art array, and then calculate the sums of
the columns: 012345678

0
1

2

3

4
5

6

7

±

1

11
121

1 3 3 114641
1 5 10 101615...17...

1..._
1 1 2 3 5 8 13 21 34

Exercise 375. Prove that for each ii> 1,

[(n+1)/2j (n-El_i)

The next exercise can be solved by the Euclidean division algorithm, not really
niathematical induction; however, since the division algorithm follows from well-
ordering, the result can be considered as related. In any case, the exercise reveals a
very interesting property of Fihonacci numbers.

Exercise 376. Prove that for n � 1, adjacent Fibonacci numbers and air
relatively prime. Purthennore, if c = gcd(a, b), then gcd(F0, Fh)

The result in Exercise 353 said that Fm,1 is a multiple of A converse of this
statement is also true:

Lemma 12.2.6. For rn > 2, if F,-, is divisible by F,r,, then n is divisible by in.
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Proof: Let in > 2, and suppose that divides Then Fm divides Fm)

and by Exercise 376, = Fgcd(Tnn), so divides Fgccj(iri,n). Thus in �
gcd(rrr, n), which occurs only when in = gcd(m, a), that is, when in divides n. 0

The next three exercises are steps toward a result proved by Gabriel Lamé (1795—
1870) in 1845; this result is apparently (see [195]) historically important as the first
practical application of the Fibonacci numbers. (These exercises are also proved in
[363), pp. 66-67; 1 have included proof outlines of the last two in thc Hints and
Solutions section.) Lamé is also known for his solution of Fermat's Last Theorem
for n = 7 in 1839.

Exercise 377. ij in and n are positive integers with in < a, and if the Euclidean
division algorithm computes gcd(m, n) in k steps, then in �

The following exercise has a proof that follows from the previous one by simple
algebra and Binet's formula for Fk+I (not by induction).

Exercise 378. If in and a are positive integers with iii < n, the Euclidean division
algorithm will compute gcd(m, n) in no more than I steps, where =
is the golden ratio.

Exercise 379 (Lamé's Theorem). If in and a are positive integers with in < a,
and N is the number of digits in the decimal expansion of in, then the Euclidean
division algorithm will compute gcd(rn, a) in no more than 5N steps.

For the next exercise, the expression "k-subset of a set" means a subset with k
elements (with no order imposed and no element repeated).

Exercise 380. Let be the number of k-subsets of (1,2,. .. , n} that do not
contain a pair of consecutive integers. Prove that

(a — k + 1'\
k

and that

k>O

Exercise 381. Show that is always a Fibonacci number.

The next clever result was first communicated to me in 1997 by Louis Shapiro,
at Howard University. It is based on Kirchoff's law: if two resistors with resistance
R1 and R2 are put in parallel, the net resistance is
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A..

K

Figure 12.1: The Fibonacci electrical circuit FC(4)

Exercise 382. For each n = 1,2, 3. ... define an elcctrical circuit FC(n) with 2n
resistors, each with resistance ici (one ohm), as in Figure 12. 1 (where there are
n = 4 resistors across the top).

Prove that for each n, the net resistance between points A and B in FG(n) is

F2,,

Exercise 383. Recursively define a sequence 11, of rational functions by
f1(x) = and for ii > i, (x) = Prove that for n � 2,

+
=

+ i',,x

Exercise 384. Prove by induction that for iniegeiw in 2 and mi � 0,

— mF,, ( 1 (mod 7772 + ra + I).

Another popular exercise regarding Fiboiiacci numbers is one using dominoes
(Exercise 577). See also Exercises 679 and 680 for Fibonacci numbers arising from
counting permutations. Fibonacci numbers also arise in the study of continued
fractions (see Exercise 322). See the journal Fihonacci Quarterly for many more
properties of Fibonacci numbers. See also Conway and Guy's book The Book of
Numbers [116].

12.3 Lucas numbers
Closely related to Fihonacci numbers are Luca.s numbers, defined by = 2, L1 = 1,

and for ri > 2, the same recursion as in Fibortacci numbers:

+

Leonhard Euler (1707 1783) wrote about the Lucas numbers iii his Introdaclio in
Analysin Infinitorum. published in 1748.

Exercise 385. Prove that if ri � I, then = F,,. +
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Exercise 386. Prove that if n � 0, then Fn + =

Exercise 387. Prove that for n � 1,
r r r2 /
LIn_1J_!n+1 — =

Exercise 388. Prove that for it � i, = —

Exercise 389. Prove that if n � 1, then Ln + =

Exercise 390. Prove that for n � 1,

Instead of the equality in Exercise 390, one could instead prove

another common form for this identity.

Exercise 391. Prove that for n � 1,

2 1 +

Exercise 392. Prove that if n � 1, then = — Ln.

The next formula is called the Binet Formula for En, (after Jacques Philippe
Marie Binet) even though it was given earlier by Euler in 1765.

Exercise 393 (Binet's formula, Lucas numbers). Prove that for each it � 1,

Exercise 394. Prove that for it � 1, F2n = FnLn.

12.4 Harmonic numbers
For each in 1, the m-th Harmonic number is defined to be

1 1 1

2 3 in
There are many statements about harmonic numbers and most seem provable by
induction; only a few are given here. One of the first properties of the harmonic
numbers that a student is likely to encounter is that the harmonic series

I ii
diverges. This is formalized in the next exercise.
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Exercise 395. Prove by induction that for any n j+, there exists an in so that
P4,, � n. Conclude that as rn —÷

Exercise 396. Prove that for n � 1,

1 i—i

-
Exercise 397. Prove that for each ii � 1,

Exercise 398. Prove that for n � 1,

S H2n < 1+n.

Exercise 399. Prove that for n � 1,

n(n+1)H n(n±1)

Exercise 400. Prove that for a � 2,

n+I
Exercise 401. Prove that for every n � 1 and 1 5 in 5 a,

[Hn+r1].

The next exercise is the subject of a rich discussion in [106] and [88, pp. 90- 99].
For generalizations and more references, see the recent articles [4251 or [426].

Exercise 402. Suppose that n identical planks, each of length L, are stacked flat
on top of each other, upper planks shifted to the right as in Figure 12.2, how much

TII.1111J IIITT
Figure 12.2: Overhanging planks, n = 4

further to the right can the top plank span past the end of the bottom plank without
the stack falling over? Prove that this maximum span is

1 1 1
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Notice that by Exercise 395, the span above can be made arbitrarily large if
only enough planks are used-—it may seem highly non-intuitive that with enough
1-meter planks, one could reach an overhang sufficient to cross the Pacific Ocean!
[How many planks would this take? How high is such a stack?]

12.5 Catalan numbers
12.5.1 Introduction
The ('atalan numbers C1, G'2,... form an increasing sequence of integers begin-
ning

1, 1,2,5, 14,42, 132,429, 1430,4862,16796,58786,208012,742900,....

and have many different definitions and interpretations. It may be interesting to

try and discover the nile for this sequence; two definitions are given below, one in
terms of a short formula, awl the other, in terms of counting the number of ways
to perfoi-rn some combinatorial feat. Each definition has its own advantages.

The Catalan numbers arise naturally in a variety of contexts, including for-
mal logic, combinatorial geometry, probability, and computing science. It is not
uncommon to see (lefinitions for Catalan numbers using different, combinatorial in-
terpretat.ions; for example, Stanley [506, Vol 2. p. 219] lists 66 of these, with many
more occurring throughout the text and exercises, and 9 more advanced algebraic
interpretations [p. 2311. Only a few of the possibly hundreds of representations are
given below.

On 15 September, 1988, Richard K. Guy gave a lecture at tire University of
Calgary titled "The ubiquitous Catalan numbers"; some of his observations appear
here. See Guy's article [247] for many more, along with many references. The
interested reader can spend a lifetime investigating Catalan numbers; sonic general
sources include [14], [301, [78], [93]. [105], [116], [158], [210], [213, Ch. 20], [224],
[230], [270], [276], [277, 146 150], [377], [458], [474], [494], [552], and [563]. In many
of these sources listed, two conimnon areas where Catalan numbers occur are in
triangulating polygons, and in counting certain trees (both of these ideas are briefly
examined below). For inure detailed information on polygon division and Catalan
numbers, see papers ]146, 21-27], and [244]. For treatments regarding specifically
trees, see [103]. [131j, [314], and [506, Vol. 2].

12.5.2 Catalan numbers defined by a formula
One succinct way to define the Catalan numbers is as follows:

Definition 12.5.1. For each n = 0,1,2,..., define the Catalan number

ri ± 1 \ a
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Recall that binomial coefficients have two common definitions, one is a formula,
and the second is a combinatorial definition; from the second, it is clear that the
biiiomial coefficients are integers, but the from the formula, it takes a bit of work to
show this. The situation is similar with Catalan numbers. As defined above, each
Catalan number is indeed an integer; according to John H. Conway (as quoted in
[247]), a more general observation is that

gcd(rn,n)(m+n— 1)!
in!

is an integer because
m(m+n—1)! — (m+n—1

m!n! rn—i
and

n(m+n—1)! — (m4n—i
m!ri! n—i

are both integers, and by the Euclidean division algorithm, gcd(rn, n) is a linear
combination of m and n. (Use m = n -+ 1, where gcd(n + 1, n) = 1.) For further
remarks on divisibility and Catalan numbers, see [15]. Frorri any of the many Com-
binatorial interpretations (a few are given below), it is easier to see that Catalan
numbers are indeed integers.

With only a little algebra, Catalan numbers can take on many different forms;
three common forms are

1 (2n\ 1 (2n + 1\ (2n\ ( 2n
-I J1n+l\flJ 2n+1\ Ti / \TL/ \fl—1

12.5.3 as a number of ways to compute a product
If x, y, z are real numbers, the expression "xyz", written in this specific order can
be parenthesized in two ways, (xy)z or x(yz). In the real numbers, multiplica-
tion is both commutative [xrj = yx] and associative [(xy)z = x(yz)1, so order and
parentheses do not matter when working out a product given by symbols in some
order. However, since multiplication is defined as a product of only two elements,
parentheses are needed to indicate the order of operations.

It is a straightforward induction that shows a product xlX2 - of real numbers
is performed by n — 1 multiplications. Each multiplication requires Iwo factors, and
if n > 2, n — 2 pairs of matching left-right parentheses are required. For example,
when n 4,

((x1x2)x3)x4. (xl(x2x3))X4, (x1x2)(x3x4), x1((x2x3)x4), xl(x2(13x4))

are the five different ways to multiply out in that order. In the third of
the above five expressions, it; does not matter which of x1X2 or X3X4 is evaluated
first; precisely the same operations are performed.
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Parentheses are inserted in matching left-right pairs subject to certain rules.
Every time a multiplication is executed, it is of tile form AR where each of A
or B is a single or is a product previously worked out that is surrounded by
a matching pair of parentheses. The result of AR is then indicated by putting
parenthesis around it, as in (AR), unless it is the last multiplication, in which case
parentheses are not required. If matching pairs of parentheses are considered as an
open interval, any two intervals are either nested or are disjoint.

For ïi � 3, a brief proof by induction shows that when multiplying xj..z.
exactly ii --2 matching pairs of parentheses are inserted (recursively) and ii — I pairs
of factors are multiplied. -

Here is a second definition for Catalan numbers (compare with Definition 12.5.1
above):

Definition 12.5.2. Define C0 = 1 and for ri � 1, define to be the number of
ways to evaluate a product of n ÷ 1 elements in a given order, in other words, the
number of ways to properly parenthesize a product of vi ± 1 elements by using vi — i

pairs of parentheses.

Checking the first few values, C0 = 1, and C1 = 1 since rio parentheses are
required to multiply two elements. Also, by above, G2 = 2, and ('3 = 4, so these
numbers agree with with Definition 12.5.1. In Section 12.5.4, it is shown that indeed
these two definitions are equivalent. Before showing this, a popular recursion for
Catalan numbers is given.

In evaluating a product of vi elements as in Definition 12.5.2, the last multipli-
cation occurs between two terms (arid the number of ways to evaluate each term is
again a Catalan number) and so the following recursion for the Catalan numbers
comes directly from Definition 12.5.2. Let C'0 ('1 = 1 and when vi i, having
defined define by

= + + G'2C,L_l + C,,.C1. (12.2)

This formula was discovered by Euler and rediscovered by Segner (1704—1777) while
solving tire problem of counting the number of ways to triangulate an n-gon (see Ex-
ercise 405 below) and is sometimes called "Segner's recurrence relation" for Catalan
numbers.

12.5.4 The definitions are equivalent

Proving that Definition 12.5.2 or equatiomi (12.2) follows from Definition 12.5.1 seems
rather difficult; generating functions can l)e used to prove that this recursive defini-
tion yields Definition 12.5.1. However, one can easily show (as in [2861) that the two
definitions are equivalent by considering a related problem provable by induction.

I"or each positive integer vi, let he the number of ways to evaluate a product
of vi elements in any order (using vi — 1 multiplications); so = I. P2 = 2. The
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possible products of three elements a, b, c are

(ab)c, a(bc), (ac)b, a(cb), (ba)e, b(ac), (bc)a, b(ca), (ca)b, c(ab), (cb)a, c(ba),

and so P3 = 12.

Theorem 12.5.3. For each n 0, the number of ways to multiply it + 1 elements
zn any order is

=

Proof: The proof is by induction onii; for each n � 0, let 8(n) be tile statement
that Let x1, x2, be given elements to be multiplied.
BASE STEP: When n = 0, P1 = 1 = so 8(0) is true. To further check when
ii = I, there are two products (x1x2 and x2xj), so = 2. since 2 = 5(1) is also
true.

INDUCTION STEP: Fix k � 1 and assume that

S(k — 1): Pt = (2(k—i))!

is true. Consider k + 1 elements Xi xk,xk+l. Fix sonic product of x1 ,...,xrn,
which contains m — 1 pairs of factors. Then tm+1 can be attached to either end of
this product, or on either side of two existing factors. For example, for the fixed
product xl(x213), the nwnber x4 can he attached at either end: or
(XL(X2x3))x4. Looking at the factors x1 and x2x3, insertion of X4 can be before or
after either:

(x4xi)(x2x3). (xix4)(x2x3). x1(x4(x2x3)), xi((x2x3)x4)),

and looking at the factors X2 and x3, get

x1((x2x4)x3), xt(z2(x4x3)), xi(x2(x3x4)).

In all, for any fixed product of Xi,... there are 2+4(k— 1) = 4k—2 products
created this way. Since every product of k + I elements arises iii such a way, the
recursion Pt+i = (4k — 2) holds. Then

(4k —

(4k
—

(by S(k — 1))

— 2(2k — 1)(2k 2)!

— (k—I)! —

— 2(2k—i)!
(k-I)!
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— 2(2k — 1)!

— (k—I)!
— 2k(2k — 1)!

— k(k—l)!
(2k)!

k!

verifying 5(k), completing the inductive step.

Therefore, by Ml, for each n � 0, the number of ways to multiply n+ 1 elements
in any order is =

Since there are (n + 1)! ways to order n + I elements, it follows from Definition
12.5.2 that = (n + 1)!GIL, and so, by Theorem 12.5.3,

1 1 (2n)! 1 (2ncn= Pn+i=(ii -+- 1)! (n + 1)! n! n + 1 n

thereby proving that the definitions agree.
A recursion for Catalan numbers also follows directly from the equalities =

(n + I and = (4k — 2)Pk derived above, namely,

4n — 2
Cr1 Cn_i.n+1

In retrospect, this recursion is also easy to prove from Definition 12.5.1.

12.5.5 Some occurrences of Catalan numbers

A point (x, y) e in the cartesian plane is called a lattice point if both x and y
are integers. The set of all lattice points

a,b e Z}.

is sometimes called the integer lattice. [The term 1attice" has another mathematical
meaning: a partially ordered set with meets and joins.] A walk on a lattice is a
sequence of lattice points, consecutive points differing by one of the vectors (0, 1),
(0,—I) (1,0), or (—1,0). Iii the next exercise, consider walks on the integer lattice,
or lattice paths that move only up or to the right, that is, each step in the walk is
of the form (0,1) or (1,0).

Exercise 403. Prove by induction that the number of lattice paths from (0, 0) to
(n. n) that move only up and to the right is

One way to view Exercise 403 is to tilt the grid by 37r/4 clockwise, and then ask
how many downward paths there are from the top to the bottom. (This approach
was developed in [125], along with other intere.sting [to mc, at least] approaches to
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identifying sequences constructed recursively.) Using this tilting idea, a downward
path is obtained by choosing ii down—left segments. and n down-right segments,
among 2n segments in total. There are many other combinatorial proofs of the
result in Exercise 403.

This next exercise also has a direct combinatorial proof, but an inductive proof
is possible. (No solution is given.)

Exercise 404. Show that the 'number of walks on the integer lattice from (0, 0)
to (n, n) without crossing x = y and moving only to the right or upward is
[Touching the line w = p is okay.J

Adding a diagonal to a square divides the square into two triangles; this process
may be called "triangulating the square". There are two different ways to triangulate
a square. A convex pentagon can he triangulated in exactly five ways (see Figure
12.3).

N v,'
N N7 N

I 'V.__. /

Figure 1 2.3: Five ways to triangulate a pentagon

Exercise 405. Show that for n > I , there arc (I,, ways to trtamujniatc a convex
(n + 2)-goir. (See also Exercise 710.)

Two of many relations between Catalan numbers and trees are also given in
Exercise 481 (on rooted plane trees) and Exercise 482 (on full binary trees) Rooted
plane trees and parenthesizing are related. For another exercise surrounding Catalan
numbers and matrices, see Exercise 668, Catalan numl)ers also count the number
of ways votes can be east so that the eventual winner is ahead at all times (see the
"ballot problem" iii Exercises 764, and 765 and comments following them).

12.6 Schröder numbers

Scliroder numbers are named after F. 'N. K. Ernst Schröder (1841—1902), a German
mathematician and logician. Let denote the nth Sehroder number, defined to be
the number of lattice paths from (0.0) to (a, a) where each step is of the form (0,1),
(1,0), or (Li) [that is, each step is one up, one to the right, or diagonally up and to
the right] and contains no points above the line x p. Define 5o = 1. The first few
are = 2, 52 = 6, S3 = 22, and 84 = 90.
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Exercise 406. Prove that the Sehroder numbers satisfy the recurrence

it—.1

Sn=STt_I+ESkSn_I..k. (12.3)

For more information on Schröder numbers, the interested reader might see [395],
[459], [479], [505], [517]. The reader might be aware that there are both large and
sinai1 Schröder numbers, and variants of each; if crossing the line x = y is allowed,
the Delannoy numbers are the analog to the Schröder numbers (see, for example,
[394] or [552]).

12.7 Eulerian numbers
Another family of numbers, called the 'Eulerian numbers", (due to Euler [178])
is implicitly tied to counting kinds of permutations, and they are often defined in
that manner. In the literature, I have found at least six ways to define Eulerian
numbers, and some of these ways arc conflicting. In different sources, there are
different meanings for the same word, leading to even more confusion.

The presentation here is somewhat standard, however with a bit more notation so
that one can compare different definitions for the Eulerian numbers. For most of the
ways to define Eulerian numbers, permutations are used. Although the discussion
surrounding permutations here is self-contained, 0110 can also see Section 19.2.2.

12.7.1 Ascents, descents, rises, falls
Recall that a pcrnzutation on a set X is a hijection a X X. Any permutation
a an ordered n-element set can he seen as a permutation on (1,... ,n}, and so
can be written

a (a(1).a(2),... ,a(n)).

An ascent in a permutation a on [ui] = {1,.. . , n} is a consecutive pair (a(i). c(i+
1)) with a(i) < a(i + 1), and a descent is an adjacent pair of entries (a(i),c(i -I- 1))
with a(i) > o-(i f- 1). An ascending run (sometimes called a rise) in a permutation
is a maximal consecutive sequence of entries whose every pair is an ascent. Similarly
define a descending ni.im. (or fall). For example, the perrmumt.ation (2, 3. 4, 7, 5, 1 ,6)
has ascents (2,3), (3,4). (4, 7), and (1,6); descents (7,5) and (5, 1); rises (2,3,4, 7)
and (1, 6); and only only omie fall (7, 5, 1).

For integers ii and k. 0 < k cn define

!v.2(n, k) = the number of permutations [ii] with exactly k ascents;

Nd(n, k) the number of permutations on [71] with exactly k descents;

Nr(n, k) = the number of perniutations on [n] with exactly Ii rises;
Nf(n k) = the number of permutations on [n] with exactly k falls.
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By symmetry, k) = Nd(n, k) and Nr(n, k) = Nj(n, k). Since a permutation
with k rises (ascending runs) has precisely k — 1 descents, k) = Nd(n, k — 1).

Similarly, Nf(n, k) Ic — 1). Note that the number of ascents plus the number
of descents in a permutation of length ii is always n—i, so Na(n, Ic) Nd(n, n 1—k),
arid then by symmetry, Na(n, Ic) = — 1 — Ic). Concluding some of the
relationships so far,

Na(n, k) = N4n, Ic) = Ic -I- 1) = N1(n, k + 1)

Na(n,n 1 — Ic) = N(J(n,n 1k) = Nr(n,n Ic) = Nf(n,n Ic).

How does one actually compute these numbers? Since there is only one per-
mutation of each length with 110 ascents, for every n � 1, 0) = 1. Similarly,
Na(n,n 1) 1. Also, Na(2,1) = 1, 4; Na(3,2) = 1; Na(4,0) 1;

and 1V,(4, 1) is already a bit clumsy to compute directly. Of the 24 permutations
on {i, 2,3, 4}, only the permutations (deleting brackets and commas) 1432, 2143,
2431, 3142, 3214, 3241, 3421, 4132, 4213, 4231, 4312 have exactly one ascent, so

1) = 11. The permutations with exactly two ascents are all others except
1234 and 4321, another 11, so Na(4,2) = ii, and Na(4,3) 1.

To develop a recursion formula for Na(n, Ic), consider a recursive construction for
permutations. Any perrriutation a on {1,2 n} can be constructed by inserting n
in a permutation r on {l,2 n — l}. For example, the permutation (1,2,4,5,3)
is created by inserting the 5 in between the third and fourth entry of (1, 2, 4. 3).
Insertion of a can be done in one of two ways: (i) at the beginning or inside an
ascent, keeping the same number of ascents, or (ii) at the end or inside a descent,
increasing the number of ascents by one.

There are (Ic + flNa(n — I. Ic) permutations of length mm with Ic ascents created in
way (i). Since a permutation of length mm — 1 with Ic — 1 ascents has n — Ic — 1 descents,
there are mm — Ic positions described by (ii), arid so there are (n — Ic l)Na(n — 1, Ic — 1)

permutations formed by (ii). In all, for each Ic & {1 -— 1}.

Na(n,k) = (n — k)Na(n 1,k 1) + (Ic + 1)Na(n 1,k). (12.4)

To verify this Na(4. 2) 11 and (4 2)Na(3, 1) + (3)Na(3, 2) = 2 4 + 1 = 11.

12.7.2 Definitions for Eulerian numbers

Mathematicians essentially give two different definitions for "the" Eulerian numbers;
some seem to agree on Na(n. Ic) but most agree on N,.(n, Ic) = N0(n, k — 1); it
often takes some work to understand what is meant by some authors. Bóna [62,
p. uses A(n, Ic) = Nd(n, Ic — I) as the definition of an Eulerian number, and so
Nan, — 1 is his definition. Aigner [6, p. 123] uses = Nd(n, k), and defines the
Eulerian numbers to be = 14n,k-.i, which, iii present notation is Nd(n, Ic — 1) =
Na(n, k — 1). Graham, Knuth and Patashnik [230, pp. 267—271] define Eulerian
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numbers to he ( ) = k). Weisstein [562] defines Eulerian numbers to be

), "the number of permutation runs of length n with k � it", which is an obvious

typo for many reasons (the k is not identified, it is not the runs that are counted,
arid "run" could mean ascending or descending). [This may have been corrected
in the later edition.] Conway and Guy [116] define Eulerian numbers to be "the
total number of arrangements of 1, 2, . . . ,n in which there are just k -- 1 rises ... the
Eulerian number, A(n, k)." One might guess because of tile that they meant
"asc.ents" and not "rises"; this is confirmed only after they cite an explicit expression
for them, and so Conway and Guy also use Na(n, k — I) for Eulerian numbers.

Other authors first derive some polynomial and define its coefficients to be Eu-
lerian numbers (actually, the number from Aigner arises in this way, too). For
example, Stanley [506, Vol. 1] lets dfr) be the number of descents iii ir, and defines
the Eulerian polynomial

= XL
all it on (1 n}

arid defines A(n, A:) to be the k—th coefficient of .4(n), in which case, 4(n, A:)
k — 1).

The definition here goes with the majority, even though the other definition
is often easier to work with. [it may be that the standout., Graham, knuth and
Patashnik, actually looked at Euler's original work, and are consistent with that - -I

don't know, as I have never looked at the actual manuscript.]

Definition 12.7.1. For integers it and Jr with 0 c Jr it, define the Pnleriari
number to be the number of permutations of { 1, 2. n} with precisely Jr — 1

ascents (or equivalently, with Jr rises) as defined above.

in present notation,

k) = Fl'

Only values for 1 c Ic � it make sense. and based on the values for Na(n, Ic) computed
above, P1,1 1; E21 1; B2,2 = 1. B31 1, B32 = 4; = 1; P4,1 1;

P4,2 = = 11, and = 1.

Perhaps to avoid further confusion, authors might call ascents "up-steps", and
rises "upward runs", or sonic such, because in English (according to the O.E.D.),
an can niean an upward slope or an instance of ascending, as in a climb to
the top of a mountain, arid a "rise" can be taken to mean "the vertical height of a
step". [I ani not suggesting that there needs to be an uprisiiig" to settle tliLs, but
perhaps "steps" can be taken to correct things.]
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12.7.3 Eulerian number exercises
The recursion equation (12.4) for Aç(n. k) says (with the present definition of Eu-
lerian numbers):

— + (k + (12.5)

Find a similar equation to (12.5) and use it solve the following.

Exercise 407. Show (by induction) that for all 1 k � in, the Eulerian numbers
can be defined recursively by: for each positive integer j, set = 1 and

= 1. For each 2 C k C in — I, put

Em,k = (in — k + + kE,n_I,k. (12.6)

Exercise 408. Prove that for each fixed in � 1,
III

E Emi =m!.

The next identity is named after Julius Daniel Theodor Worpitzky, who proved
it in 1883. [577].

Exercise 409 (Worpitzky's identity). For any fixed rn. E and for each ii � 1,
show that

÷i 1).

For example,

(iIi\ liii ± i\ (iii •i- 2'\)and

±
(m± 1)

+
(m±2)

+

The following exercise apparently has many diflèrent proofs, one of which in-
volves counting and the inclusion-exclusion principle (sec [62, pp. 89]). 1 think
that a direct approach with induction is also possible, although I have not yet
worked out a solution:

Exercise 410. Prove that the Eulerian numbers are given explicitly by

= 1)(k

Just as a check,

which is correct.
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12.8 Euler numbers

Another collection of numbers is named after Euler (see [232]): for ii � 0, the Euler
number is the number of permutations of the integers 1, 2 a that first rise,
then alternately fall and rise between consecutive elements. Call a permutation
a = (a(1) a(n)) alternating if either

a(1) <a(2) > a(3) <a(4) >

or

a(1) > a(2) ca(3) > a(4) <

For an alternating permutation a, if a begins with an ascent, a(1) < a(2) then
say a is up-alternating and say a is down-alternating if a starts off with a descent,
a(1) > a(2). If a is an up-alternating permutation on {1, 2,... ,n}, then turning
its graph upsidedown (by setting r(i) = n + 1 -- a(i), also called the complement
permutation) produces a down-alternating permutation, (and similarly, a down gives
an tip) so the number of each are the same. Thus the definition for the Euler
number E71 can he restated as either the number of up-alternating permutations on
{ 1,... , n}, or the number of down-alternating permutations on {1 . n}.

For example. for n = 3, the only permutations that are up-alternating are
132 and 231, so = 2. Thrning each of these upside down gives 312 and 213,
both down-alternating. Defining the term E0 = 1, the first ten Euler nutnhers are
1,1,1,2,5,16,61,272,1.385,7936, as found in sequence # 587 in [497). According to
Grassl [232], Euler numbers were first studied by D. André in 1879 (though the
reference cites a paper from 1871, so I don't know precisely which date is accurate);
many other (perhaps) useful references occur in Crassl's paper. The Euler numbers
satisfy a recursion:

Exercise 411. Prove that E0 = = 1 and that for a � 1,

= (i?')

The even Euler numbers occur in coefficients of the Maclaurin expansion for
secant:

sec(x) = E0 + + E4j- + +...,

and so the even Euler numbers are also called secant numbers. Similarly, the odd
Euler numbers E27,.1 i occur in the coefficients of the Maclaurin expansion for tan(x),
and so are called tangent numbers.
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12.9 Stirling numbers of the second kind
For 0 k � n, the Stirling number of the second kind 5,L,k is the number of
partitions of an n-element set into k non-empty parts. Restating the definition in
another way, 5n,k is the number of ways to put n distinguishable elements into k
indistinguishable cells. These numbers are named after James Stirling (1692—1770).

One can easily verify that Sg,o = 1, = 0, = 1, S2,0 = 0, 82,1 = 1,

82,2 = 1, and for example with n = 5, 850 0, S5,1 = 1, 85,2 15, 85,3 = 25,

85.4 = 10, and = 1. In general, S(n.n) = 1, and for k > n, S(n,k) = 0.

By a simple combinatorial argument, Stirling numbers of the second kind enjoy the
following recursion:

Lemma 12.9.1. For n � 1, k � 1:

5n,k = 5n—1,k—1 + kSn_i,c. (12.7)

Proof: Let X {Xi } he any set of ii elements. Focus on any one element

of a partition of X into k non-empty parts: when is alone
in its own part, or when is in a part with other elements.

For the first case, start with a partition of X' into k — I parts (which can be
done in 5n1,k1 ways), and add {xn} as the k-tb part. l"or the second case, begin
with a partition of X' into k parts, (which can be done in ways) and add
to any one of these k parts. 0

In practice, one often uses the recursion in (12.7) only when 1 k < n, however
the formula continues to hold whezi k � n: when k = n, the second summand on
the right is zero, so the recursion reads = 5n1,n1, which is true because each
side is 1; when k > n, each side of (12.7) is 0.

Exercise 412. Using the above recursion in (12.7,). prove by induction on n I/vat
for any variable x,

A standard inclusion-exclusion argument (see Exercise 427) yields an explicit
formula for the Stirling numbers of the second kind, however, with a little effort this
formula can also be proved directly (so to speak) by induction:

Exercise 413. Prove that for positive integers n and k,
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Exercise 414. For a fixed n, let f(n) = . and let M(n) =
rnax{k : = f(n)}. Prove by induction on n that the sequence

Sn,2,. . . , Sn,n

is unimodal of one of the following forms:

Sn,0 <Sn,i <.•• > > > Sn,n

or
< Srj,i < <Sfl,M(11)_I = > > Snn,

where either M(n) = M(n — 1) or M(n) = M(n — 1) + 1.

The result in the next exercise can be thought of as an exponential generating
function for the Stirling numbers of the second kind.

Exercise 415. Let x denote a real variable. Prove by induction on k that for k � 1,

= - 1)k.

hint: taking a derivative miqht help.

For a relationship between surjective functions and Stirling numbers of the sec-
ond kind, see Exercise 595.





Chapter 13

Sets

The essence of mathematics lies in its freedom.

—Ceorg Cantor;

Mathern.atische A nnalen.

['he study of sets can be taken to include most of mathematics, however this
chapter is restricted to exercises regarding "basic" properties of sets, some set theory
per se, posets and lattices, topology, and Ramsey theory.

13.1 Properties of sets
Exercise 416. Use strong induction to show that in every of ii natural numbers,
there is a greatest.

One might see the following exercise cuuehed iii any number of notations. For a.
set X, the collection of all subsets of X is often called the power set of X, denoted
P(X), or sometimes X2,

Exercise 417. Prove by induction that number of subsets of a Ic-etement set is 2k,

Exercise 418. Fix a set .4 with IA! = m C oc elements. Prove by induction on
that for aug set B with IBI = ii � 1 elements, the cartesian product

A x B = {(a,b) a E A,b C B}

is a set with A x = in 'n elements.

Exercise 419. For 0 C Ii C ii, let the definition of the binomial coefficient "ii

choose k" be
(n\

— (n--k)!k!'

217
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Use this definition (and Pascal's identity—-see Exercise 90,) to prove inductively that
the number of different k-element sets thai. cart be chosen from an n-element set is
indeed thereby justifying the terminology.

Using Exercise 417, the result in the next exercise has a fairly obvious proof;
however, an inductive proof is also available.

Exercise 420. Give an inductive proof that any set with n elements has — 1

partitions into two non-empty subsets.

For each n � I, if A1, A2 A1,+i C U, the intersection

is defined recursively to be

Exercise 421. For 1 r < n,

For sets A and B, let A\B = {a E A a B} denote set substraction, the set of
those elements in A but not in B. Other texts also use A — B to denote this, however
such subtraction also has other meanings, so the backslash is preferred here. For
subsets of a universal set U, the complement of B in U is denoted by B = LT\B.
Some texts also use BC denote the complement of B. Just like the sigma notation
abbreviates sums. the big cup is used to denote unions; for example,

UAj = A3uA4 uA5.

The analogous notation is used for intersections.
The results in the next two exercises are often called the "extended DeMorgan's

laws".

Exercise 422. Prove that for every k � 1, if A1, A2,... ,Ak are subsets of a uni-
versal set U, then

A1 = A.

Exercise 423. Prove that for each k > I, if A1, A2,.. . are subsets of a univeTwal
set U. then

U
= El
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Exercise 424. Prove that for every n � 1. if A1. A2,..., A,, and B are subsets of
U, then (a)

flB=U(AknB).

Exercise 425. Prove that for each a> 1, if A1.A2 c U, then

(U A1) \B U(Ak\13).

If A and B are two sets, let

AAB = (A U B)\(A n B)

denote the symmetric difference of the sets A and B; in other words, the symmetric
difference of two sets consists of elements that are in precisely one of the sets (not
both).

Exercise 426. Let X be a set and recursively define functions D1, D2,... by the
following: for any subset S ç X, define D1(S) = 8, and for any and subsets

ofX, define

n,S'n+i) D,,(81,52. ,,)AS,,+i.

Prove that for any subsets 8i, 52 the
set of atl elements of X that are contained in an odd number of thc sets ,...,S,,.

The next exercise is to prove the so-called "inclusion-exclusion l)rinciple", also
called the "sieve formula". The standard proof is by counting, however an inductive
proof is possible. As an exam pie of the principle, if S is a set, arid both A C S and
B C 8, then the number of elements in S that are not in either A or B is

(Au B)! = !SI — IBI ± An B!.

Exercise 427 (Inclusion-exclusion principle, (IE)). Fix ii i and a finite universe
set S. Let A1,A2,. . . ,A,, be subsets of S. For any subset B C S use B = 5'\B to
denote tire complement with respect to 5, and let IA! denote the cardinality of a set
A (the number of elements in A). Prove that

= flA1
ni=1 K[..:nj ICK

= A,nAJnA&l±
1=1 i<i'cj<k<a

+ (—i)"IA1 n A2 n Afl!.
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Exercise 428. Let I? be a transitive binary relation on an infinite set X and let
Xl, x2, X3,... he a sequence of elements in X satisfyinq for each i E Z+, (xi,
R. Prove that for each ii Ft. Thcn prove that for eachj,n Z±
that (xi, B, hence Xl, x2,..., is a totally ordered sequence.

John Wilder Tukey (1 5—?) was a co-inventor of the fast Fourier transform. He
also coined the term "bit1' to mean a binary digit.

Exercise 429. Using lemma, prove Tukey 's Lemma: Let F be a family of
subsets of X wilh the property that if F F if and only if every finite subset of F
is in F. Then F has a maximal member.

Two sets, A and B, are said to be of the same cardinality if there is a hijection
between them, and this is denoted by Al = 121.

Exercise 430. Form,n if{O,l,...,n— i} and {O,1,...,m— 1} have the
same eardinality, then in = ii.

If A and B are sets, write Al � IBI if there exists an injection from A into B.

Exercise 431 (Cantor—Bernstein—Schroder Theorem). Prove that for any sets A
and 13, if Al � IBI and 121 � Al, then Al = Bl.

A set A is said to be Peano finite if and only if there exists an n so that there
is a bijection between A and n = {0, 1,2,... , n — 1}. (By Exercise 430, if there
exists such an n, it is unique.) A set A is said to be Peano infinite if and only if
A is not Peano finite. In 1882, Declekind proposed to Cantor another definition of
infinite (see, e.g., [2841 for more details): Dedekind called a set A infinite if there
is a bijection between A and so-nc proper subset of A; a set satisfying Dedekind's
definition is said to be Dedekind infinite, (and Dedekind finite if it does not).

Exercise 432. Prove by induction that if a set is Pcano finite, then it is Dedekind
finite.

Exercise 433. Assuming the Axiom of C'hoice, (or Well- Ordering Principle) prove
that if a set is Peano infinite, then it is Dedekind infinite.

Exercise 434. Assuming the Axiom of C'hoice, prove that a countable union of
countable sets is again countable.

The next theorem contains a popular result that, in 1965, t3dla Bollohks orig-
inally proved by induction. Other proofs that do not explicitly rely on induction
have since been given, e.g., by ICatona [3061 in 1974 (see, e.g., [58] and [539] for
more references and related results).
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Definition 13.1.1. Two families of distinct sets A1 Ak and Bi Bk are a
cross-inteiwecting family of sets if and only if for each i = 1,.. . ,

(13.1)

and for every j i
(13.2)

Theorem 13.1.2 (J3ollobás [57]). Fork � 1, if AI,...,Ak andfi1 Bk form a
cross-intersecting family, then

k ([Ad+[BiI)'
1. (13.3)

Setting X = U it was furthermore shown (using induction) that
equality in (13.3) holds if and only if there is an a and b so that [X[ = a + b, the
k's are all a-element subsets of X, the B1's are all the b-element subsets (and so
k = and each U = X).

Perhaps the most popular consequence of Theorem 13.1.2 is when all the k's
are of the same size, and all the arc of the same size.

Corollary 13.1.3. Let B1,... ,Bk be a cross-intersecting family where
for each i, Ad = a, b. Then k (a+b)

One remarkable feature of both results is that the number of elements in any
ground set is irrelevant, and so it might he some surprise that inductive proofs of
both can be made by inducting on the order of the ground set.

In a sense, proving Theorem 13.1.2 by induction is easier than an inductive proof
of the simpler Corollary 13.1.3 because one does not need to worry about the sizes
of the sets (proving more is easier).

Exercise 435. Prove Theorem 13.1.2 by induction on the number of elements in
the ground set,

To provide context for the next exercise, a famous conjecture by Martin Kneser
[321] is discussed.

Conjecture 13.1.4 (M. Kneser, 1955). For each ii � I and k � 0, if the n-subsets
of a (2n + k)-set arc partitioned into k + 1 classes, then some class contains two
disjoint n-sets.

This was proved by Lovász in 1978 [353], and a simpler proof was given by
Bárányi [35] later the same year; both proofs use Borsuk's theorem. See [235] for
another simple proof (again, using Borsuk's theorem).

Kneser's conjecture with n = 2 says that if the pairs of a (k + 4)-set are parti-
tio[Ic(l into k + 1 classes, then some class contains at least two disjoint pairs. Thus if
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the pairs of an (k + 4)-set are partitioned into r classes so that no two such disjoint
pairs exist in any one class, then r k + 2. This case was shown by Krteser in 1956
[322], where in the next exercise, it now plays the role of k + 4.

Exercise 436. Prove by induction on n � 3 that if the pairs of an n-set arc parti-
tioned into k classes so that every two pairs in the same class share a vertex, then
Ic � ii —2.

In the next exercise, some special terminology is used [perhaps unnecessarily so,
but it helps to make the statement of the exercise and the proof briefer, and it is
used in many other related problems].

For 1 � q � p, a family of sets is said to have the (p, q) property if among every
p sets in the family, there are q with non-empty intersection. For the solution of the
next exercise, the following observation cart be helpful:

Lemma 13.1.5. Let 2 < q < p and let F be a family of sets that has the (p,q)
property; then for each r = 1, 2 q — 1, F has the (p — r, q — r) property.

Proof: Fix r, arid suppose that p — r sets are chosen. Extend this family to any
p sets by adding r "new sets" (from F of course). By the (p, q) property, some q
of these p sets have non-empty intersection, and so any q — r of these q sets have
non-empty intersection; in particular, when omitting the r new sets at least some
q — r sets from the original p -. r sets have non-empty intersection, proving the
lemma. 0

The next exercise looks simple, however, even with the help of Lemma 13.1.5
arid the hint, solving it might he challenging:

Exercise 437. Let 2 � q p be inteqers. and suppose that a collection of (at least
p) closed segments of the real tine has the (p. q) property. Prove that the segments
can be partitioned into p — q + 1 classes so that sets in each class have non-empty
intersection. Hint: Induct on p q.

For the next exercise, some special terminology is used. Let X he a set and let
N c P(X) be a family of subsets of X. For any Y C X, let

Njy = {H flY : H E N},

called the restriction of N to Y. A set V C X is called shattered by N if and only
if N]y = P(Y), that is, for every subset W c: Y. there exists H C N such that
11 n 1' = W. Define the i/C-dimension of N to be

VC-dim(N) = sup : V is shattered}.
Ycx

The notion of shattered sets is often expressed in 1,erms of hypegraplis, and has
been used in set theory, combinatorics, combinatorial geometry, and probability.
For more on VC dimension. see, for example, [372] or [421].
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Observe that if Q C 9-1, any set shattered by Q is certainly shattered by N and
so � VC-dim(N).

For example, (from [372, p. 238]), let X = 11(2 and let N be the set of all closed
half-planes. Perhaps surprisingly (by reasoning given below) VG-dim(7-t) r- 3• To
see this, any set of three points in general position is shattered, but no four-point
set is shattered because

• if three of the four points are iii a row, the middle point cannot be separated
by a half-plane;

• if four points are convex, a pair of points at opposite corners can be not be
separated; and

• if one point lies in the convex hull of the others, then that point can not he
separated.

Below, only finite sets X (and hence finite families) are considered. Note that if N
is the empty family, no set is shattered, in which case VC-dim(7-t) 0. To eliminate
complete trivialities, assume that X is non-empty.

In the early 1970s, the following theorem was proved independently by Sauer
[475], Shelah [487], and Vapnik and Chervonenkis [551].

Theorem 13.1.6. Let X be a set with a � 1 elements, and let N C 2(X). If
VC-dinm = d, then

and this bound is best possible.

To see that the bound iii Theorem 13.1.6 is best possible, let JXI a and let N
be the family of subsets of X that have at most d elements, that is, let =
Then any d-set is shattered, but any (d + 1)-subset is not, and equality holds.

Exercise 438. Using mathematical induction, prove the inequality in Theorem
13.1.6.

13.2 Posets and lattices
See Section 2.6 for some of the terminology used here.

Recall that a poset (P, �) is a set P together with a binary relation that is
reflexive, antisymnmetric, and transitive. Let X l)e any set with JX[ = e. The pcnver
set 2(X) (which has elements) together with the partial order ç is a poset,
sometimes called the C-dimensional boolean lattice 8(C) = (2(X), c).

A chain is a fain ily C of sets so that fur any two distinct elements A, B E C.
either .4 C B or B c A. A chain in a poset (P, <) is a set (? C P so that for any
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a, b E C, one of a < b or b < a holds. A subset A C P is an antichain if no two
elements in A are comparable.

Perhaps the most famous result on antichains was published by R. P. Dilworth
[1411 in 1950, and is now eponymous with Dilworth, even though it was, according
to Tverberg [540], discovered earlier by T. Gahlai in 1936.

Exercise 439 (Dilworth's theorem, finite). Let (P, �) be a finite poset. Prove
that the minimum number of disjoint chains necessary to cover P is equal to the
maximum number of elements in an antichain. Hint: Induct on I P1.

Dilworth's theorem is perhaps the beginiiing of what is now called "dimension
theory" for posets, and has far-reaching consequences in many aspects of combina-
torics and set theory.

Djlworth's theorem is also valid for infinite sets:

Theorem 13.2.1 (Dilworth's theorem, infinite). Let P be poset (not necessarily
finite) whose largest antichain contains a < no elements. Then P can be covered by
a union of a chains.

Exercise 440. (challenging) Prove Theorem 13.2.1. Hint: Use a compactness
argument (perhaps using Tychonoff's theorem, Theorem 13.3.4 below).

The claim in the following exercise is due to Mirsky [387[, and is a dual to
Dilworth's theorem.

Exercise 441. If S is a poset with no chains of length grcatcr than m, then S can
be covered by at most m antichains. Hint: induct on in. For in > 1, let Al be the
set of all maximal elements in S. Then S \ M has no chains of length git'ater than
m — 1, and M is an antichain.

For a set X with n elements, a chain C ç 2(X) is convex if whenever A C B C C
and A, C C, then B E C. A chain C c 2(X) is symmetric if for every C E C there
exists C' E C so that for some i � 0, {ICI, C'I} = {fe/2] + 1, i}.

For any set X, a symmetric chain decomposition of 2(X) is a partition

2(X) = C1u C2 U... U C3,

into disjoint symmetric convex chains. The goal of Exercise 442 below is to show that
for any finite X. such a decomposition always exists. There are a number of methods
by which a symmetric chain decomposition can be found or constructed (see, for
example, [234]); however, one of the easiest ways to construct one is by induction.
Note that since each chain contains precisely one set with elements, any
symmetric chain decomposition has } chains.
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As an example, it is convenient to use X = = {1,2,... ,n}, where sets are
written without commas or set brackets, and chains are vertical. For n = 4:

1234
123 124 234 134

12 14 23 24 13 34

1 4 2 3

0

It might be enlightening for the reader to find such a decomposition for ii = before
examining the following example (a recursion mentioned in the subsequent solution
was used):

12345

1234 1235 1245 2345 1345

123 125 124 145 234 235 245 131 135 345
12 15 14 45 23 25 24 1.3 35 34
1 5 4 2 3

0

Exercise 442. hr any finite set X, prove that there is a partition of (P(X), c)
znto disjoint symmetric convex chains.

'l'his next section introduces a version of a countable Zorn's lenimna applied to
measurable sets. described to me by Steve Kalikow [297], a form of which appears in
his new book [298]. [Kalikow suspects that this result has been known for decades,
however I could riot find another source.]

Let (X, ft be a finite measure space, that is, X is a set, Q c P(X) is a a-
algebra (closed under finite intersections, countable unions), an(l p : Il R± U {O}
is a measure with 14(X) < oc.

Let e c 1? l)e an arbitrary subset of measurable sets. Define a partial order
on 9 as follows: For A, B E 9, define A B if and only if p(A\B) = 0. If both
A B and B A, then 14ALsB) = 0 (where XAY = (X U Y)\(Y fl X)). So define
the relation by A B if and only if = 0.

It is nearly trivial to check that is indeed a partial order; reflexivity and
a.ntisymmetry are built into the definition, and transitivity follows since if A, B, C' E
9 satisfy A B and B C. then ;t(A\C) = p(A\B) + 1i(B\C) = 0 +0 = 0.

Theorem 13.2.2 (Countable Zorn's lemma for measurable sets). As defined above,
let P (9, have the property that any countable chain in P has an upper bound
in P, then P contains a maximal element.

Proof: Define a chain (by the axiom of choice or the principle of MI)

A = A1 A9 A3
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in P as follows: Choose A1 e e arbitrarily, and put

= : B e, A1 B}.

For i Z+, having defined and choose A1+1 so that

and define
= : B E B, B}.

So each sits at least halfway (in measure) up from to any potential set in
B which is above (in P) A is at most countable. By hypothesis, let
U E B be an upper bound for the chain A, and put A Note that for each
n, A and so = 0. Thus, = + = 0+0 = 0

shows that U.

Claim: = 0 (and so U A).

Exercise 443. Prove the claim and complete the proof of Theorem L9.2.2.

13.3 Topology

The first few exercises ask to prove some standard results regarding the real line R.

Exercise 444. Prove that for open intervals (ai, bt), (a2, b2) b,,) of real
numbers, if for each i, j, n (a3. lii) 0. then

0.

For A ç R, a point a R is a called a limit point of A if there exists a sequence
{ so that a as ms —, 00.

Exercise 445. Using the Axiom of Choice, prove that if/or every c > 0, there exists
x A such that x — aj < €, then a is a limit point of A.

Exercise 446. Let X and Y be and let F be a collection of functions from
some subset of X into Y. Define a partial order on F by I g if g extends f
(i.e., dom(f) c dom(g), and for all x E dom(f), 1(x) = g(x)). Prove that the union
of any chain in (F, is again a function (whose domain is the union of domains
of f in the chain and range is the union of the ranges).

The next few paragraphs give some basic definitions in topology SO that a very
few rrla.jor results may be stated. and perhaps proved by induction.
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Definition 13.3.1. A topological space is a pair (X, 7), where X is a set, and
7 ç 2(X) is a collection of subsets satisfying (i) X e 7, (ii) 0 'F, (iii) the union
of any elements in 'F is an element of 7, and (iv) the intersection of finitely many
elements of 'F is an element of 'F. The elements of 'F are called open sets.

A topological space (X, 'F) is often referred to by simply X, when it is clear
what 'F is; 'F is called a topology on X. If 'F and U are topologies on X, then 'F is
said to be coarser than U 1ff 'F ç U.

A set S C X is closed if the coniplernent X \ S is an open set. For a set 5, the
closure of 5, is denoted (the smallest closed set containing 5, found by intersecting
all closed supersets of 5). -

If X is a topological space, an open cover of a subset A ç X is a collection of
open sets whose union contains A. A subset A of a topological space is compact if
for any open cover of A, there exists a finite snbcollection of the open cover that is
an open cover of A ("any open cover contains a finite suhcover"). A family of sets
has the finite intersection property (FIP) if any finite subcollection has non-empty
intersection.

The next lemma gives another way to look at compactness.

Lemma 13.3.2. A topological space X is compact if for every family i

J} C 2(X) with the FIP, $ 0.

Proof: Let X be compact, and let i I} C 2(X) be a family with FTP.
For each I, define = X \ A. If F c 1 is finite,

UJEFUj = UIEFX \ A7 = X \

and by FIP, the family (LI2 j F} does not cover X. Since X is compact and the
family i I} has no finite subcover, the family (f-li : i 1} is not a cover, that
is, $ X, and it follows that 0.

Suppose that every family of sets with FTP has a non-empty intersection.
To show that X is compact, let {Y1 i I} be an open cover of X and for each
i I, put = X\Y1, Then

0 = =

so the family i I} does not have FTP; therefore, there exists some finite
F c I so that = 0, and so {Y i F} is a finite subeover. U

Exercise 447. Use Zor-n's lemma to show that for a set X, there exists a maximal
('with respect to inclusion) family of subsets of X with F! P.

Given any family : i I} of sets. let X = X1 denote their cartesian
product. Recall that (see Section 4.5, indexed version of AC) the axiom of choice
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is equivalent to saying that any product of non-empty sets is again non-empty. A
point in X is of the form x = E : i I). For j I, the f-tb projection

X —* X, is defined by ir3(x) = x3. If one assumes the well-ordering principle,
consider I to be well-ordered, and so elements of the product space are "generalized"
sequences (ordered tuples, perhaps infinite). A function f on a topological space is
called continuous if for every open set 0, 1 '(O) is again open.

Definition 13.3.3. Let {(X2, T) i e I} be a family of topological spaces, arid let
X = flici X topology X

X are continuous.

Each X2 in the product topology denoted above is called a coordinate space (or
factor space—-but some authors reserve this term to mean "quotient space", a term
not defined here).

Theorem 13.3.4 (Tychonoff's theorem). (Assume AC) If for each i I, X i5 a
compact topological space, then X = Xjis compact in the product topology.

The next exercise asks to prove a finite version version of Tychonoff's theorem,
hut it may be helpful t.o review four facts about compact spaces (all of which have
easy proofs):

1. A space X is conipact iff every open cover of X with basic open sets has a finite
subcover.
2. The set

{ U x V : U is open in X and V is open in Y}

forms a basis for the product topology on X x Y.
3. Compactness is preserved by isoniorphisrn.
4. Associativity of products: A'1 x x x is isomorphic to (X1 x x

x X,,.

Exercise 448. Prove the finite version of Tychonoff's theorem: Pbr any n � 1, if
are compact topological spaces, then the space Xi x X2 x x is

compact.

The following exercise is quite ambitious, and might be directed to only those
individuals with much experience in topology:

Exercise 449. Assuming AC (and Zorn's lemma1), prove 'J'ychonoff's theorem (The-
orem 1.9.3.4). Hint: There are many proofs, one using Lemma 13.3.2. another using
Exercise 446.

The following exercise has a fairly elementary proof, often left as an exercise in
topology texts (e.g., see [571]).
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Exercise 450. Prove that if Tychonoff 's theorem is rewritten to say that any non-
empty product of compact spaces is compact. then this version implies the Axiom of
Choice.

It is well known that the reals have the Arehimedean property, that is, for every
x E IR, there exists an a e N so that x < a. (Note: there are sinuilar properties that
are also referred to by "the Arch imedean property", so don't take this as a standard
definition.) Here's an easy proof: Suppose the contrary, that there is an x so that
for every ii N, a x holds. Then N is hounded from above by x and so has a
least upper bound s. Then s � 2 implies s — I � 1, and similarly, s — 1 � n for all
a E N, showing that $ — 1 is an upper bound, and so s is not the least upper bound.

Exercise 451. Show that Q is dense in IR, that is, between any two distinct real
numbers, there exists a rational number. Hint: Well-ordering.

Recall that a function f : JR —. JR is continuous at a JR if and only liinx_.a f(x) =
f(a). The limit 'a f(x) exists only if both one-sided limits limxa_ f(x) and

f(x) exist, are finite, and agree. Equivalently, a function f is continuous at
a point a if for any e > 0, there exists S > 0 so that for every x R, if 1w aJ C S

then fix) — f(a)I < e.

Exercise 452. Let f : JR —, JR be a function and let a e JR be fixed. Use the Axiom
of (Yhoice to prove that if for every sequence {x,,} that converges to a, the sequence
(f(x,3} converges to f(a), then f is continuous.

13.4 Ultrafilters
For a set S. recall that 2(8) = = {X : S c X} denotes the power set of S.
For A c 5, let A = S\A denote the complement of A (with respect to 8). In this
section, occasionally families of sets, and families of families of sets are used, so the
usual notation for elements, sets, and families of sets (e.g. x C X X) is often
abandoned.

A collection F c 7(5) is called a filter on S if
(i) S e F,
(ii) A e F and A C B C S imply B F, and
(iii) A F and B F imply A fl B e F.
If moreover, 0 F. then F is called a proper filter. A trivial filter on a set S

consists only of the set S. From now on, only non-trivial filters are considered. Note
that when F is non—empty, (ii) imphes (i), so often condition (i) is not mentioned
explic:itly, but instead filters are restricted to non-empty collections.

There are three typical (or standard) examples of filters; the reader is invited to
prove the simple exercises verifying that each is indeed a filter:

1. Let S he a set and fix some C C S. Then F = {A C 5: C C A} is a filter,
called a principal filter. (A principal filter F is one that. satisfies 0.)
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2. For fixed infinite set 5, the family F = {A c S : A is finite} is a filter, called
the F'rechet filter on S. (A set whose complenient is finite is often called co-finite.)

3. Let M = {T C 5: fl <oo} he the family of all finite subsets of S. For any
A E M, define A = {M M : M D A}. Then

F={AcM :BAs.t. AcA}

is a filter on M.

Another example of a filter can be found by intersecting filters.

Lemma 13.4.1. Let {F1 : j E J} be a collection of filters on S. 'I'Izen F =
is a filter.

Proof: (THvial) (a) For each i e I, S e F1, and so S e F.
(b) If A E F and A C B, then for each i E I, B F1, so B F.
(c) If A, B F, then for each i I, A fl B hence A fl B F. U

Notation: For S ç define

Fe=fl{FDE:Fisafllteron S}.

called the filter generated by S (which is the smallest filter containing 5). By Lemma
13.4.1, Fe is a filter. When is Fe a proper filter? Recall that a collection F c
is said to have the finite intersection property (FIP) if the intersection of finitely
many elements in F is not empty.

Theorem 13.4.2. For any S c Fe is a proper filter on S if S has PIP.

Proof: One direction is given here; the other direction is an exercise.
Let S have FIP, and put

F is a filter. Clearly S F. Also, if A E F and B j A, then B F holds.
For B1 B,, F, and F, if Ac and Cc
then AnB ThusFis afilter, and by FIP, Fis
a proper filter. Also, every filter containing S must also contain F, since a filter
having elements B1 S lia.s elements of F by properties (ii) and (iii). So F = Fe.

The proof of the other direction is a simple induction.

Exercise 453. Prove the remaining direction of Lemma 13.4.2.

A filter F on a set S is called an nitrafilter on S if for all A c 5, either A F
or A S and not both. (Hence an ultrafilter is a proper filter.) A filter F on S is
called a maximal filter on S if F is proper and whenever F' F is a filter, then
F' = The following well-known result has a fairly straightforward proof using
Theorem 13.4.2.
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Theorem 13.4.3. A filter F is maximal if and only if F is an ultrafilter.

The following theorem is one of the central theorems for ultrafilters:

Theorem 13.4.4. Every proper filter F on a set .9 can be extended to an alt rafilter
on S.

it suffices to show that F can be extended to a maximal filter. The proof below
relies on Zorn's lemma, but

Exercise 454. Prove Theorem 19.4.4 by Zorn's lemma.

For (at least) countable cases, a more constructive enumeration is possible with-
out AC. Theorem 13.4.4 has another form (which appears, e.g., in [271, Thm 6.5J)
which says that any family with FIP can be extended to an ultrafilter; this result
follows directly from Theorems 13.4.2 and 13.4.4.

The following is a simple, hut useful, property of ultrafilters.

Exercise 455. Let F be an ultrafilter on X, k and let X = X1 U be

a partition of X. Then for precisely one i E [1, k], e F.

The theory of ultrafilters (and ultraproducts) is closely related to semigroup the-
ory, I.o1)oh gv, dynamical systems, Ramsey theory, and model tl ieory. Unfortunately,
these many exciting pursuits are not covered here.





Chapter 14

Logic and language

Logic, properly used, does not shackle thought. It gives freedom, and
above all, boldness.

—Alfred North Whitehead (1861—1947),

The Organization of Thought.

14.1 Sentential logic
In this section, it is assumed that the reader is familiar with basic logic and can
verify truth of stat.enients by truth tables. For example, p A q p is a fairly
simple true statement. Many more exercises could be given in the section, many
duplicating those given for hoolean algebras, sets with unions and intersections, or
even associative laws for marty binary relations like integer addition. The rightarrow

is implication, whereas is logical implication. The symbols A arid V are short
for and "OR" respectively, arid —p is the negation of p. Only a few solutions
are given to the following exercises as most are rather routine.

For n � 2, define recursively the conjunction of n+ 1 statements Pi Pn,Pn+i
by

Pi A ..

Exercise 456. Prove by induction that for statements ..

112] A ft2 1'31 A ... A pm+iI [(Pt A P2 A... A Pm)

Exercise 457. Prove that for every m � 1, and statements . , and (j,

and
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For sentences p2, m, it is easily checked by truth tables that

(14.1)

and similarly.

m (14.2)

Exercise 458. Prove inductively that for n � 3 and 1 <r < n,

Exercise 459. Give a recursive definition for the disjunction of n + 1 statements

. ,Pn,Pn+1

Exercise 460. Prove inductively that for 71 � 3 and 1 <r � ii,

(pj V V Pr) V (Pr±1 V ... V P1 V V Pr+1 V . .. V

Exercise 461. Use the result from Exercise 458 to show that for n > 2 and state-
p,ql,q2

pV(qi

The next two exercises state the sentential equivalents of the extended DeMor-
gan's laws (cf. Exercises 422 and 423).

Exercise 462. Prove that for ri. 2 and statements P1,P2

V P2 V ... V Pn) A A•• A

Exercise 463. Prove that for n > 2 and statements Pi, P2

A P2 A ... A V V... V

Exercise 464. For each n > 2, let q(xi , 12 be defined inductively by

q(xl,x2) 3 12),

and fork 22,

Prove that for every n 2, q(xi .12
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14.2 Equational logic

Only a comment or two is made here. When L is a set, a partial order on L is
a binary relation which is symmetric, antisymmetric, and transitive; in other
words, a partial order on L is a relation � that satisfies the three axioms

P1: Vx€L,x<x;

P2: Vx L, Vy c L, jx <p & p < x] x =

P3: Vx L, Vp L,Vz e L, [x � p & p z] x � z. -

If one adds either of the least upper bound or greatest lower bound axioms,

P4: Vx L, Vp L, 9s L such that [x � s & p s] and Vz[x z & p z]

s < z (l.u.h. axiom);

P5: Vx L. Vp L, ap L such that [p x & p � y] and Vz[z � x & z y]

z (g.l.b. axiom);

then the partial order is called either a join .semilattice or a meet semilattice (respec-
tively). For each x and y, the elements s and p. if they exist, are unique, enabling
one to define an with two operations, join where xVp = s, and meet A,
where x A p = p. lf all P1 P5 hold, the structure is called a lattice. Such a system
of axioms was proposed by Charles Sanders Peirce iu the early 1880s, arid corrected
by Oystein Ore in 1935. There have been various axiom systems for tart ices.

Given any algebra, what is the fewest number of axioms that define it? Certain
classes of axioms for sernilattices can be reduced (by induction) to smaller classes.
For more on such results. please see Padmanabhan and Rudeanu's new book Axioms
for Lattices and Boo/can .4/gebras [423]. In particular, see Theorem 1.1.2. a result
due to Padmanabhan and Wolk, and on page 117, where if a finite lattice satisfies
a certain axiom system, then any lattice in its variety does, too.

14.3 Well-formed formulae

Consider a propositional language built only on negation arid conjunction. Let
A = {ai, a2, as.. . 4 be a set of (atomic) sentence symbols. The elements of A are
often referred to as atoms or primitive statements. Define TvV to be the smallest (see
below for meaning of set of expressions satisfying the following recursive
definition:

(i) A ç W, and
(ii) If p W and q W, then both (-'p) W and (p A q) TV.

(To say "smallest" means that if any oilier set 14" satisfies both (i) and (ii), then
W C TV': one could define IV as the intersection of all sets satisfying (i) arid (ii),
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but that definition might. introduce more questions than it answers. The definition
suggests that W is unique, and the reader may assume this.)

The set 141 is called a set of well-formed formulae in the language. Induction
on the length of well-formed formulae can be considered structural induction (see
Sect ion 3.7 and Chapter 16 for more on structural induction).

Exercise 465. Show that any formula x E I'V has an even number of parentheses.

Exercise 466. Show that the set of all expressions (constntcted from atomic sen-
tence symbols with -, and A and parenlheses) with an even number of parenthesis is
exactly 14/S

Let T0 denote the tautology, and F0 denote the contradiction. [Jnterestingly, the
seems to have been introduced by Wittgenstein only in 1921.] Extend the

above language to include

A' = AU Eo}. A, V, f—', C).

Let WEE denote the set of well-funned formulae defined as the "smallest" set that
satisfies the following recursive definition:

0') A' ç WEE. and
(ii') If p E WEb' and q E WEE, then (-ip) E WFF, (pA q) E WFE, (p V q) E

U' FE, (p q) E WEL'. and (p i—÷ q) E WEE.

Exercise 467. Show that any well-formed formula x E U'WE has an even number
of parentheses.

For more on parenthesizing, see Section 12.5, where it is shown that the nimrn-
ber of ways parentheses can be placed in a zion-associative product is a "Catalan
number"; in particular, the result applies to repeated occurrences of V (or to A).

14.4 Language

If is an alphabet, then is the set of all finite strings formed by letters from
(including A, the empty string). Subsets of E* are called languages. If C and D are
languages, then CD is the language formed by concatenating strings, first one from
C, then one [ruin I).

Exercise 468. Prove that if A ç B c Et, then for all n � 1, A" c

The following exercise deals with a purely combinatorial question about words
that has a surprisingly elegant looking solution. Let lie a finite alphabet. For
n � 1, let (ai,a2 e N' lie denoted by simply ala2• called a word, or
string, of length n (or simply, an n-string). For m < n, a word b = . . . b,,, is a
substring of a = al a2 a,, if the letters of b all occur iii proper order in a they
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need not appear consecutively in a. For example. let A = {a, b, c}, and s = cc. The
words in A3 that contain s as a substring are

ccc, ace, bce, cca, ecb, cac, ebc.

The result in the following exercise is a general formula for counting the number of
words containing some fixed substring was given by Chvátal and Sankoff [109]. [No
solution is

Exercise 469. For any alphabet A wit/i k letters, and any in-siring s E Atm, for
each n � rn, define F(k, ii, s) to be the number of n-strings in A'2 that contain s as
a substring. Prove by induction on n that

F(k,n,s) = -. iy--t.
i=rn

In particular, this number does riot depend on the content in s, only its length.

Note that the example above with n 3, k = 3, and in 3. gives the correct
answer, 7, as given by Exercise 469. For another exercise on words, see Exercise
373.

For ruore combiuatorics on words, see, e.g., the standard [351].





Chapter 15

Graphs

The time has now come when graph theory should be part of the edu-
cation of every serious student of mathematics and computer science,
but/i for its own sake and to enhance the appreciation of mathematics
as a whole.

--back cover of Modern Graph Theory [59]

Perhaps thousands of theorems in graph theory have been proved using iriduc-
tion. The selection given here is rather arbitrary and is a bit sparse, but contains
at least a few standard highlights. For references and more examples, the interested
reader can consult virtually any modern graph theory text (e.g., see [59], (64], [137],
[226], or [566]).

For those not familiar with the language of graph theory, here is a brief intro-
duction.

15.1 Graph theory basics
For a given set S and k t1, let the collection of k-sets in S be defined by

={TcS:]T[=k}.

A graph (also called a "simple graph") is a pair B) where V is a set of elemenl.s
called vertices and K c (V]2 is a collection of distinct unordered pairs of distinct
elements in %7; elements of B are called edges.

A multigraph is a pair C = (V, B) where B is allowed to contain a pair {x, y}
more than once (called multi-edges) and pairs of the form {x. x}, called loops, are
also allowed. Most definitions and problems below apply to rnultigraplis, however,
usually the graph under consideration is simple (no multi—edges, no loops).

239
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A hypergraph is an ordered pair C = (17, E) where each hyperedge e E E is a
subset of V. If all hyperedges of C contain the same number, say k, of vertices, tire
hypergraph is called k-unifonn; 2-uniform hypergraphs are just graphs.

The graph on n vertices with all possible edges is denoted by a complete
graph. [Should K9 be called "the dog graph"?] The notation denotes in vertex
disjoint copies of

Exercise 470. Prove that any graph G on n vertices has at most C) edges.

If the graph is named C, then write V V(C) and E = E(C). A graph H is
a (weak) subgraph of C if V(II) c V(C) and E(H) c (E(C) fl [V(H)]2) and is an
induced subgraph if E(H) = (E(C) fl Iv(H)i2).

For any vertex x e the degree of x is the number of edges containing x. (In
a multigraph, loops count twice.) The degree of a vertex x in C is denoted by da(x)
or or when clear, simply by d(x) or deg(x). A vertex x with deg(x) = 0 is
said to be an isolated vertex. Since each edge of a graph contributes to counting
two degrees, one proof of the following is direct:

Lemma 15.1.1 (Handshaking lemma). For any graph C,

deg(x) 21F(C)I.
xCV(G)

(The handshaking lenitna is trite also for nrultigraphs, where loops count 2 toward
the degree of vertex.)

Exercise 471 (handshaking lemma). By induction, prove the handshaking lemma.
Hint: inducting on the number of vertices is possible, but inducting on the number
of edges is nearly trivial.

The result in the next excrcise is often called the "handshake problem", not to
be confused with the handshaking lemIna (Lemma 15.1.1).

Exercise 472 (The handshake problem). At a party with n couples, (including a
host and hostess) people shake hands subject to the following conditions: no couple
shakes hands; no pair shakes hands more than once; and besides the host, all people
shake a different number of hands. Prove that the hostess shakes hands with precisely
n — 1 people.

The smallest degree in a graph C is denoted by 8(C) and the largest degree by

A walk of length in in a graph C is sequence of vertices (not necessarily distinct)
wm so that for each i = 0 rn — 1, (u'1, E E(C). A closed

walk is a walk with iv,,, = wo; a walk is open if it is riot closed. A trail is a walk
with rio edge repeated and a path is an (open) walk with no vertex repeated (and
hence rio edge repeated). A path with k edges (and hence k + 1 vertices) is denoted
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by Pk, and is said to be of length k. [Note: this terminology varies iii the literature,
as some use Pk+1 to denote a path with k edges.]

A leaf in a graph is a vertex of degree 1; the edge incident to a leaf is called a
pendant edge.

A cycle is a closed walk with no vertex repeated (except the first arid last in the
walk, of course). A cycle with k vertices is denoted by Ck. A graph with no cycles
is called acyclic. (Note: in some older texts, the word "circuit" is used to denote a
cycle; however, it is now standard that a circuit is a closed trail, that is, a trail with
initial and terminal vertex the same.)

The following lemma is useful:

Lemma 15.1.2. For a graph C, if 5(G) = k, then G contains a path of length k;
furthermore, if k � 2, then G contains a cycle of length k + 1.

Proof: Let k � 1 and suppose that C is a graph with 8(0) k. Let P be a longest
path in C, between, say, u and v. Since P is maximal, every neighbor of u is in P;
since it has at least k neighbors. P has at least k vcrtices besides a, that is, P has
length at least k. If k � 2, the edge to the farthest neighbor of a in P completes a
cycle of length at least k ± 1. 0

A graph is connected if there is a path between every pair of vertices. A connected
component of a graph is a maximal connected subgraph.

A graph C is called Eulenan if there is a closed trail (called an Eulcriart circuit)
containing all the edges of C. That is. a graph is Eulerian itT there exists a closed
walk passing through every edge of the graph precisely once (and returning to the
original start point). [Note: if C has isolated vertices, and an Eulerian circuit in the
remainder of C, then C is still called Eulerian, however, some texts insist that. C is
connected.]

Exercise 473. Prove that a graph C is Eulerian if C is connected (up to isolated
vertices) and every vcrtex has even deqrce. Ilint: use Lemma 15. 1.2.

See material surrounding Exercise 514 for the related result on digraphs.

Exercise 474. Let C be a graph with n vertices. Prove that if C has at least n
edges, then C contains a cycle.

Exercise 475 (Erdös•-Gallai, 1Q59 [169]). Let 3 <c ii. If C is a graph with more
than (c — 1)(n — 1)/2 edges, then the lenqth of the longest cycle in C is at least c.
Hint: 1"ix c and induct on it.

The distance between vertices v and w in a connected component of a graph C
is the length of the shortest walk between them; this distance is denoted dc(v, w),
or simply d(v. w) when clear. If v and iv lie in different components of C, one can
say d(u, v) is undefined or is oc. depending on the application.

Exercise 476. Let v be a vertex in a connected graph C. Prove that the sum of the
distances front v to all other vertices of B, d(v, w), is at most
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15.2 Trees and forests
A tree is a connected acyclic graph. A forest is an acyclic graph; so connected
components of a forest are trees. The next few leminata demonstrate some basic
properties of trees and forests.

Lemma 15.2.1. Every tree contains at least one leaf

Proof: Let T be a tree. If every vertex has degree at least two, then by Lemma
15.1.2, T contains a cycle, contrary to 7' being a tree, so there exists at least one
vertex with degree either 0 or 1. Since T is connected, there are no isolated vertices,
that is, T contains no vertices of degree 0. Hence, T contains at least one vertex of
degree 1. 0

Lemma 15.2.2. Between any two distinct vertices in a tree, there is a unique path.

Proof outline: If two vertices x and y are connected by two different paths, a cycle
results. 0

A bridge in a connected graph is an edge whose removal disconnects the graph.

Lemma 15.2.3. Every edge in a tree is a bridge, and removal of any edge creates
two trces.

Proof: Suppose that 7' is a tree. By Lemma 15.2.2, for any x, yV(T), there is
precisely one path joining x and y. If {x, y} E(T). there is no other x — y path
than {x, y} itself, hence its removal produces a graph with no x — y path, that is, a
disconnected graph. Let X c E(T) be the set of those vertices connected to x via a
path that does not use y, arid let 1' he those vertices connected to y by a path riot
going through x. After removing the edge {x,y}, the graph induced by X is still
connected and contains no cycles, so is a. tree. Similarly, the vertex set Y induces a
tree. 0

The following exercise characterizes trees on ii vertices.

Excrcise 477. For a graph on ii. I vertices, prove that the following statements
A, B. C ore equivalent:

A: C is connected and acyclic (i. e., C is a tree);

B: & is connected and has n — 1 edges;

C: C is acyclic and has ri — 1 edges.

/11 int: The proof of A implies B can be done in at least three ways, each induetzve.J

Lernnia 15.2.4. Every tree has at least two leaves.
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Proof: A tree is connected, so if a tree T has more than one vertex, 6(T) � 1. For a
tree T on n vertices, by Exercises 471 and 477, d(x) = 21E(T)I = 2(n — 1),

and if T were to have fewer than two leaves, then this sum would be at least
2n—L 0

Exercise 478. Prove that if C is a graph with minimum dcgrec 5(G) = k, then G
contains every tree with k edges as a (weak) subgraph.

The diameter of a graph C is the maximum distance between vertices in G, that
is, diarn(G) = niaxVWEv(c) d(v, w). The eccentricity of a vertex v, denoted e(v),
is maxWEv(G) d(v, in). The radius of C is the minimum eccentricity of any vertex
in C, and the center of C is the subgraph induced by those vertices of minimum
eccentricity. The result in the next exercise is sometimes called Jordan's lemma.

Exercise 479. Prove that the center of a tree is cither a vertex or a single edge.
flint: Use induction on the number of vertices in a tree.

In 1972, Horn proved j279] three theorems regarding trees. The notation and
names might have changed since then, but they can be roughly described as follows.
Let T be a tree and let be a collection of subtrees of T.

1. A recursive algorithm is proved to find a set P of vertices in T, of least cardi-
nalitv, containing at least one point from each

2. An algorithm is proved to find a collection T,... , of suhtrees of T with
each T1 C and fl 0 and is minimized.

3. If each pair of Tj's have a common vertex, then there is a vertex common to
all.

Exercise 480. Which of the above three results by Horn has an inductive proof?

A rooted tree is a tree with one vertex specified as its root. Rooted trees are often
drawn with the root at the bottom and branches extending upward with no edges
crossing. The rank of a vertex in a rooted tree is its distance from the root. In a
rooted tree, a descendant of a vertex v is a neighbor x of v with rank(x) = rank(v)+ 1.

The height of a rooted tree is the maximum rank of its vertices.
A plane tree is a rooted tree together with its drawing having a left-right orien-

tation. In Figure 15.1 are depicted the five plane trees with 3 edges.
Recall that the Catalan numbers are defined in two ways, in Definition 12.5.1

by C,, = and in Definition 12.5.2, by the number of ways to parenthesize
a product of n + 1 elements in a fixed order. The result in the next exercise follows
almost directly from Definition 12.5.2, if interpreted properly. A separate proof by
induction is also possible.
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Y
Figure 15.1: The 5 plane trees with three edges

Exercise 481. Prove that the number of (rooted,) plane trees 'with n edges is the
Gatalan number

A binary tree is a plane rooted tree where each vertex has at most two descen-
daiits, and if there are two descendants, they are designated "left" or "right". (If a
vertex has a single descendant, it is not considered left or right.) In Figure 15.1 are
depicted the five binary trees with precisely three edges.

A full binary tree is one where every non-leaf has precisely two descendants.
See Figure 15.2 for two examples of two full plane binary trees of height 3, that
without left-right orientation, are otherwise isomorphic.

rank 3

rank 2

rank 1

rank 0

Figure 15.2: Two different full plane binary trees of height 3

The next exercise is a hit more challenging (and is
the references given in Section 12.5).

given without solution; see

Exercise 482. Prove that the number of full binary trees with ri interrial nodes m'
the Gatalan number

A plane binary t.ree is called complete if and only if every leaf has rank equal t.o
the height of the tree. [Caution: sonic authors use "full" to menu So

a corriplete plane binary tree has I vertex of rank 0. 2 vertices of rank 1, 4 vertices
of rank 2, 8 vertices with rank 3, arid so on. It. is fairly clear that a full binary tree
of height h has 1 + 2 + . + 2h vertices, arid by Exercise 47, the total number of

root
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vertices is — 1. Another proof is suggested in the next exercise, and although
it is nearly trivial, it uses a technique quite common in induction for graphs.

Exercise 483. Induct on h to show that if T is a complete plane binary tree with
height h, then V(T) I 2hf —

Virtually the same proof as for Exercise 483 solves the following (however there
is much simpler proof based on the fact that every binary tree is contained iii a
complete binary tree):

Exercise 484. Use induction on h to show that if T is a plane binary tree with
height h, then V(T)I < — 1.

If a rooted tree T has vertices labelled 0, 1, 2... , n, where 0 is the root and every
path starting at 0 consists of an increasing sequence of vertices, then T is called
increasing. For example, ignoring left-right orientation, there are six increasing
trees on vertices (0. 1 , 2, 3}, as listed in Figure 15.3.

Figure 15.3: The six increasing trees on {0, 1,2, 3}

To prove the next exercise. instead of deleting the root as in Exercise 483 (or
Exercise 484), one deletes (or attaches) a leaf.

Exercise 485. Prove by induction that time number of increasing rooted trees on
{0, 1,... , n} is n!. [Consider two trees with precisely the same edge set to be equal,
reqardle.ss of what orientation is used to draw them.!

Recall from Section 12.7.2 the Euleriami number is the number of per-
mutations on (1.2 n} that have precisely k ascents (adjacent pairs (i(i), o(i—i—1))
with o(i) <a(i + 1)).

Exercise 486. Prove that the number of incrcasinq trees on ri + 1 vertices with
precisely k leaves (endpoints) is the Eulerian number E,,,k.

See [50(1, Vol 1, pp. 24 25] for other exercises on increasing trees.
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15.3 Minimum spanning trees
Recall that for a graph C arid a subgraph H C C, the subgraph H is said to be
a spanning subgraph if and only if IV(C)I = IV(H)I; in other words, a spanning
subgraph contains all of the vertices of C and some of the edges in C. A spanning
tree of C is any spanning subgraph that happens to be a tree (or any tree that
happens to be a spanning subgraph of C).

Let C be a graph, and let w : E(C) —÷ [0, no) be called a weight function,
assigning non-negative real numbers to the edges in C. [One can and does also
entertain vertex weights, but such is not used here.] For example, one might use a
graph C to indicate a certain network of highways between cities; if there is a highway
joining two particular cities, the corresponding edge in B might be weighted with
mileage, or cost of transport. One might say then that such a graph is weighted by
vi. The weight of any subgraph of an edge-weighted graph is the total weight of all
its edges. In notation, if H is a subgraph of a weighted graph C, define

w(e).
eE E(ll)

Given an edge-weighted graph C, a minimum spanning trce (MST) (or minimum
weight spanning tree) of C is a spanning tree T of C with minimum weight, where
the minimum is taken over all spanning trees of C. Note that MST's are not, in
general unique, but always exist (the set of weights for all spanning trees is finite,

and so has a minimum, perhaps not a unique minimum, however). The minimum
spanning tree problem is to find a MST. See f229] for a history of the problem and
[529] for additional references. The MST problem is also known as the minimum
connector problem. Is there an effective procedure to find a MST? There are two very
simple algorithms that produce MSTs called "Print's algorithm" (due to Prim, [439]
in 1957) and "Kruskal's algorithm" (due to Kruskal [330] in 1956). Both algorithms
are simple to describe, greedy algorithms (at each step, take the "least", somehow,
option available). These algorithms were discovered independently arid earlier by
other authors, but somehow it is these names that survive.

Briefly, Prim's algorithm "grows" a tree starting at any vertex by attaching
recursively available edges of least weight without forming a cycle.

Prim's algorithm:
INPUT: a non-empty graph C = (V, E) on fl = mm vertices with weighted edges
(given by a weight function w : E [0, no)).

BASE STEP: Pick x1 E V arbitrarily. Set 14 = {x} and C1 to be the graph consisting
of just a'.

RECURSIVE STEP: Suppose that a subgraph C1 = (14, E1) has been formed, has been
formed by the previous step. Among all edges using having one vertex in select
an edge {x, y} (say, with x e ½) with least weight so that the addition of (a', y}
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does not form a cycle together with edges of C2 (so y 14). Set = V2 U {y},
and C2÷1 =

Terminate the algorithm only when V74 = V, that is, after n — 1 recursive steps.

OUTPUT: =

Theorem 15.3.1. The output of Prim's algorithm is a minimum weight spanning

tree.

Exercise 487. Prove Theorem 15.3.1.

The other easy algorithm for the MST problem is called "Kruskal's algorithm."
Informally, instead of taking the least weight edge attaching to the last tree in
the construction, Kruskal's algorithm merely selects the minimum weight edge still
available that does not form a cycle. The graph at each stage is not necessarily a
tree. In a sense, instead of growing a tree, one is throwing a tree, just throwing in
the cheapest edges possible.

Kruskal's algorithm:

INPUT: a non-empty graph C = (V. E) on IV] = n vertices with a weight function

in : F [0, oo). and edges labelled e1 , e2 so that w(ei) � w(e2) < . .. <
w(epE!) weights are increasing order.

BASE STEP: Pick e1 the least weighted edge, and set C1 to be the graph consisting
of just e1 on vertex set V.

RECURSIVE STEP: Suppose that a suhgraph = (V, has been formed, has been
formed by the previous step. Select an edge e E F \ F1 of least weight that does not
does not form a cycle if added to C,, and set E1±i = EU {e} and = (1',

Terminate the algorithm after a -- I recursive steps.

OUTPUT: =

Exercise 488. Prove that when Krnskal's algorithm terminates, C,., is a minimum
spanning tree. hint: see the proof of Prim's algorithm (the solution to Exercise .487)
for a possible methodology.

15.4 Connectivity, walks
If a graph C is connected, a set S c V(G) of vertices is called a cutset if the removal
of S (and all edges using these vertices) disconnects the graph. A graph is called
k-connected if every cutset contains at least k vertices.

Exercise 489 (Whitney's theorem). Prove that a graph with at least 3 vertices
is 2-connected if and only every pair of vertices are connected by two disjoint paths
(vertex disjoint, except for endpoints, of course; in other words, every pair of vertices
lies on a common cycle).
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For the following exercise, it is assumed that the reader is familiar with matrices
arid how to multiply them——see Chapter 19 for details. The adjacency matrix of a
graph C on vertices VJ,, '02 ,

is an ii x n 0-1 matrix A = with -= I if
and only if (vi, E E(C).

Exercise 490. If A = is the adjacency matrix of a graph C on vertices
v,2, then t/re (i,j)-entry of Ac is the number of walks of length k from m

to 01.

All binary strings of length ii can be viewed as the numbers from 0 to 2" — 1 in
their hinary expansion. Another way to write all such binary strings is the n-fold
cartesian product of the set {0, 1},

= {0,1}" = {(eo,ei E {0,1}}.

The n-dimensional unit cube (also called the unit n-cube) has as its vertices, and
the graph of the unit cube is defined to be the graph with vertex set where two
vertices are connected by an edge if and only if their binary representations differ
in exactly one coordinate. A hamiltonian cycle in a graph is a cycle containing all
vertices of the graph (each vertex contained precisely once). A hamiltonian path is
a path containing all vertices precisely once. Compare this definition with that of
a Gray code (cf Exercise 564) and see that a hamiltonian path in the n-cube is a
Gray code. A graph containing a liatniltonian cycle is called hamiltonian.

Exercise 491. For every a > 2, prove that the graph of the n-dimensional unit cube
is harniltonian.

Exercise 492. For airy ii 2, prove that the graph of the n-dimensional unit cube
is n-connected.

l'he next theorem, due to G. A. Dirac [143] in 1952, is one of the more central
results regarding hamiltonicity. Recall that 6(G) is the minimum degree of vertices
iii C.

Theorem 15.4.1 (Dime's theorerti). Let C he a simple graph on n 3 vertices. If
6(C) � n/2, then C is ham iltonian.

Dirac's theorem has at least. three simple proofs (see [63. pp. 21—22]), however,
Bondy [63, pp. 23] mentions that no inductive proofs are known. It is also men-
tioned that Woodall constructed a bogus proof to "illustrate the potential pitfalls"
of inductive reasoning. [1 have not seen Woodall's demonstration, but it can be
found in [576]. an article with the delightful title "Reductio ad absurdum?".]

Exercise 493. (Unsolved!,) Find an inductive proof of Drrac 's theorem.
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15.5 Matchings

A matching in a graph G is a collection of edges M E(G), so that M is an
independent set of edges (i.e., no two edges share a vertex). The empty set can be
considered as an matching", though such is seldom used. A perfect matching
is a matching that uses all vertices (so a graph with a perfect niatching must have
an even number of vertices). For a definitive work on matching theory, see [356].

Exercise 494. Prove by induction that thc number of perfect matchings in is

2"(n!) -

If X C V(G) and Y C V(G), where X fl Y = 0. a matching Al in (7 matches X
to Y if for every x E X, there exists a y E Y so that {x, y} lvi. (Such a matching
is often called X-saturated.)

Recall that for x V(G), N<-;(x) is the neighborhood of x; when clear, only
N(x) is written. For any S C V(G), define N(S) =

An obvious necessary condition for a bipartite graph C = (X U Y, E) to have a
matching from X into Y is

VS c X, � SI. (15.1)

It turns out that condition (15.1) is also sufficient! This was given by Philip flail in
1935 [2561 in what is now often called "Hall's marriage theorem". The sets X and Y
in the marriage theorem below are often considered ns men arid women respectively,
and an edge between some x X arid y Y can he taken to indicate that x and y
find each other acceptable as mates.

Theorem 15.5.1 (Philip Hall's matching theorem). A bipartite graph C = (X U

Y, E) has a matching from X into Y if and only if

VS c X, IN(S)I � SI.

Exercise 495. Prove Hall's marriage theorem (Theorem 15.5.1) by inducting on
Ix'.

Hall's marriage theorem can be interpreted as follows. Let C = (X, Y, E) be
a bipartite graph where X to be a set of men and 1' to be a
set of women, and call a pair (x, y) X x Y acceptable if and only if (x, y) F].

An acceptable man-woman pair may be thought of as pair each of whom find the
thought of marriage to the other to he "acceptable". Hall's theorem then says that
if the pattern of acceptability is appropriate, a perfect matching pairs up all of
the men with acceptable partners, what one might call an "acceptable" marriage,
although using graph theory vernacular, the marriage is a "perfect" matching when

= 1Yl.
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15.6 Stable marriages
As above, let X denote a set of men, and let Y denote a set of women. For now,
consider only the case where men and women are equinumerous (JX] = 1"]). A

perfect matching Al c X x Y = {(rn,w) : in E X,w E Y} is called a rnarriagc,
and an edge (in, w) E M is called a married couple, or a couple married by M. It
is convenient to drop the parentheses and comma and denote a married couple by
siniply mu.

Suppose that each person ranks the members of the opposite sex, amid in the case
of a tie, breaks it. arbitrarily; in other words, each man provides a linear order on
the women, and each woman provides a linear order on tire men. (So, in contrast to
marriages in the last section, all members of the opposite sex are acceptable, just
some are "more acceptable" than others.)

How does one decide what marriage is best? What can "best" mean? Consider
the following example (which extends an exarriple from [326]), with men in1, rn2,
rn3, women WI, ui2, and preference lists:

LNlazr first

L?m L u122

second thirdi
J

Woman [ first
in1

second
m3

Wj W3 J V)2

Lrn3 WI W3 7fl 1713

If Al0 = (in1 Wj. mn2u'2, rn3w3) is a marriage, the last two couples might want to
divorce and swap partners, because in doing so, each of the four people rn3,W2, W3

would get a mate higher on their list So in trying to create a marriage,
one might want to avoid having two couples, each mnait preferring the other's wife,
and each woman preferring the other's husband. If there exists a pair of couples
where each of the two men and two women prefer the mate of the other, one might
say that this pair of couples is unstable. Some authors (see, e.g., [528]) say that
"a marriage is unstable" if and only if there exists an unstable pair of couples (and
stable otherwise). In swapping among an unstable pair of couples, nobody gets hurt.
The standard definition of a stable marriage precludes even more:

Definition 15.6.1. Fbr a given marriage M, a man-woman pair (rn,w) Ill is
called unstable if in prefers w to his mate in Al and w prefers in to her niate in Al.
A marriage is called unstable if there exists an unstable pair, and stable otherwise.

For example, the marriage {rnLwl, rn2wa, rn3w2} is stable since each woman gets
their first pick, and hence there are no unstable pairs. two women have the
same first choice arid two men have tire same first choice, another strategy to find a
stable marriage is needed.

Can an unstable marriage be made stable l)y marrying unstable pairs (and mar-
rying the remaining partners)? In each of the following marriages, an unstable pair
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is identified in boldface, and the subsequent marriage is created by marrying the
marked unstable pair:

M1 ={mlw3, m2w1, maw2}

A!2 ={miw3, 7fl2W2, }

={m1wi , rn3wa}

it!4 m3w3}

A!5 ={mìw3,m2wj,maw2} =

arriving back at the original marriage M1
So it seems that marrying unstable pairs may not be a good strategy to find a

stable marriage (recall that a stable marriage is a marriage of all men and women).
Is there a strategy to find a stable marriage? The answer to this question is "yes",
and the proof is in an algorithm that finds a stable marriage.

Theorem 15.6.2 (Stable marriage theorem). For any collection of n men and ii.
women, each person with a ranking of all members of the opposite sex, there exists
a stable marriage marrying all men and women.

An algorithm that proves the stable marriage theorem is called the Gale—Shapley
algorithm, due to David Gale and Lloyd Stowell Shapley in 1962 (204]. First the
algorithm is described (often called a "deferred acceptance algorithm"), and the
proof that it works is left) as an exercise.

Gale—Shapley algorithm: Men propose to women in rounds.

RoUND 1: Each man proposes to the favorite woman on his list. If every woman
receives a proposal, tile!! stop, and have each woman accept that proposal; this
produces a perfect marriage (and easily seen to be stable, because all men got their
first choice). If some woman has not been proposed to, proceed to the next round. If
any woman receives one or more proposals, she gives her favorite of these a "maybe"
and rejects all others.

Suppose that j > I and that the algorithm has not terminated in round j — 1.

ROUND j: Every man rejected in Round j — 1 proposes to the next woman on his
list. Again, any woman receiving more thanì one proposal keeps the highest proposer
(among all rounds) as a "maybe and rejects all others. Any man with "maybe"
status can lie rejected later if some more preferred man proposes to her on any later
round and she upgrades.

At the end of each round, if every woman has received at least one proposal,
(in tIle course of all rounds) terminate the algorithm arid marry each woman to her
"maybe'

Exercise 496. Prove that the Gale—Shapley algorithm terminates and produces a
stable marriage.
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It might be interesting to note that the Gale Shapley algorithm car' be extended
to the ease where the number of men and women are different (see, e.g., [380]), and
to the case where some men or women have equal preferences for some other women
or men. Another (solved) problem asks to find a stable marriage where each person
gets a partner as high on his/her list as possible, a "minimum regret" problem.

One hint given in [462, Prob. 24, p. 293] for the next exercise is to use strong
induction.

Exercise 497. Prove that the stable marriage provided by the Gale—Shapley alga.
rithrn is optimal for men, that is, in any other stable marriage any man could not
get a woman preferable to the one he was paired up with.

The book Insights into Game Theory [241] has an easy-to-read chapter with
many examples regarding stable matchings and the Gale—Shapley algorithm. The
small (74 pages + xiii) book, Stable Marriages and its Relation to other Combi-
natorial Problems: an Introduction to the Mathematical Analysis of Algorithms by
Knuth [326] is a much more theoretical examination of the problem, providing many
higher level connections to other problems and abstractions (including probability,
hashing, the coupon collector problem, the shortest path, and data structures).
Knuth's book also contains sonic key references.

The stable matching problem is also associated with the problem of university
acceptance algorithms. Briefly, if certain schools have a quota, they might decide
on whom they accept by first ranking them. Similarly, prospective students rank
time universities they would like to attend. Some variants of the Gale Sliapley al-
gorithm are presently applied in placement of college students (e.g., the National
Resident Matching Program). In fact, the title of the original Gale—Shapley paper
is "College admissions and stability of marriage", but a version of their algorithm
placing medical students had been in use since 1952. 'Flie algorithm is also in use
in other countries for student placement (Singapore, for example). For more on
placing students, see also [2], [9], [188], [381[. and [495, pp. 245 246].

15.7 Graph coloring
A graph C is k-colorable if there is an assignment of k colors to the vertices of C, so
that no two vertices connected by an edge receive the same color. For exaniple, the
triangle K3 is 3-colorable but not 2-colorable; in fact, any cycle with an odd number
of vertices is 3-colorable but not 2-colorable. The least number of colors c for which
a graph C is c-colorable is called the chromatic number of C, usually denoted x(G).
For this next exercise, recall that A(C) is the maximum degree of vertice.s in C.

Exercise 498. Show that for any simple graph C, K(C) + 1. II int: Induct
on ]V(C)], not on

A stronger result than Exercise 498 was proved by R. L. Brooks [75] in 1941,
mmamely that if C is neither the complete graph Kk.4..n on k + I vertices nor a cycle
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with an odd number of vertices, then < Essentially, the proof of
Brooks' theorem is also by induction on however one needs to separate cases
depending on whether or not C has a cut-vertex (a vertex which upon removal
disconnects the graph). This proof is slightly beyond the scope of this book, so it
is recommended that the reader looks at any almost. any text on graph theory. e.g.,
[566, pp. 197--199].

In the next exercise, the notation denotes the complement of the graph C,
that is, V(G) = and edges [non-edges] in C are replace by non-edges [edges,
resp.] in C.

Exercise 499. Prove that for any graph C,

+ <JV(G)I + 1.

Hint: Induct on IV(G)I.

For a set X and a positive integer r, a coloring : S .. [r] is said to be onto if
for each i E [r], 0. A coloring of X is said to be a rainbow coloring iff for
all s, I E X, s t implies s(s) Rainbow colorings are often called injective.

The result in the following exercise appears to be part of folklore:

Exercise 500. Prove that for n > 3, if : —-÷ [a] is an onto n-coloring,
then there exists a triangle that is rainbow colored.

The following theorem is often called the de 13raijn-Erdôs compactness theorem
[80], and is intimately related to model theory.

Theorem 15.7.1. An infinite graph C is k-colorable if every subgraph of C
is also k-colorable.

Exercise 501. Prove Theorem 15.7.1 using Zorn's lemma.

For more exercises regarding chromatic number, see Chapter 21.

15.8 Planar graphs
A graph is called planar if it can he drawn in the Euclidean plane with no edges
crossing. A face is a connected region of the plane not crossing any edges; the
outside infinite region is counted as a face.

Although ii. is somewhat obvious that any tree is planar, OflC forrrial proof of
this fact is by induction. [Recall that a plane tree is a tree together with a planar
drawing; this next exercise shows that every tree can be drawii as a plane tree.]

Exercise 502. Prove that any tree is planar.

The next theorem might be considered the most important theorem regarding
planar graphs and has many proofs.
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Exercise 503 (Euler's formula for planar graphs). JiG is a connected planar graph
with v = IV(G)j vertices, e = 1E(GH edges, and f faces (in some planar drawing),
then

v — e + f = 2 (Euler's formula,).

Note that. Euler's formula implies that any planar drawing of a graph has the
same number of faces.

Exercise 504. Show by induction that if a planar graph has it components, then

v—e+f=n+L

The following basic facts about planar graphs might be helpful in later exercises.

Lemma 15.8.1. If G is a planar graph on v vertices with e edges, then

e <3v — 6. (15.2)

Proof: Let C be a planar graph on v vertices, with e edges and f faces and fix
some planar drawing of C. Let k be the number of edge-face incidences, that is,
count pairs (edge, face). where the edge forms a border of the corresponding face.
Since each edge is adjacent to at most two faces, k � 2e. On the other hand, since
every face has at least 3 edges, 3f k. Thus

3f C 2e. (15.3)

Multiplying Euler's formula by 3 gives 3v ± 3f = 3e + 6, and so (15.3) yields
3v -4- 2e � 3e + 6, whence tine result follows. D

Lemma 15.8.2. Every planar graph contains a vertex of degree at most 5; that is,
if C is planar, then 8(C) � 5.

Proof: Let C be planar; it suffices to consider only when C is connected. If every
vertex of C has degree at least 6, then 2e deg(x) � 6-v, and so e � 3v,
which violates Lemma 15.8.1. D

Using Lemma 15.8.2, the next exercise has an almost immediate solution by
induction on the number of vertices of a planar graph.

Exercise 505. Prove that every planar graph is 6-colorable.

If C = (1/, E) is a planar graph, it has a dual, or planar duaL If C has faces
, Fj-. then the dual of C. denoted G* = (Vt, E*), is defined with vertices

= v}. and edge set defined hy {vt.v} E Em if and only if faces F1 and
F, share a common border. Note that Ct might not be siniple, that is, it might
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have multiple edges or loops, but that it is still planar. To color the regions of a
map is equivalent to coloring the vertices of its dual.

The next exercise has a proof also by induction on the number of vertices, but is
considerably more complicated than the 6-colorable case. It is generally attributed
separately to Kempe and Heawood, and is a precursor to the famous "four color
conjecture" for map colorings which said that any map with contiguous countries
could be colored with four colors so that neighboring countries were colored differ-
ently. The four color conjecture is now a theorem, first proved by Appel, Haken,
and Koch (see [21], [22] or see [573] for a description of the problem and its his-
tory) with a rather difficult proof involving hundreds of cases; it was recently proved
again by Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas [457],
apparently in a more elegant and efficient fashion; both proofs were accomplished
with the aid of computers. Another substantial (but earlier) reference for the four
color theorem (4CT) is a book by Oystein Ore [418].

Exercise 506. Prove that every planar graph is 5-colorable.

Exercise 507. Prove that if G is a planar graph, its faces can be properly s-colored
(that is, its dual is 2-colorable) if and only if every vertex in G has even degree.

15.9 Extremal graph theory
An area of graph theory. called exfrerrial graph theory, is concerned with thresholds
at which certain substructures or properties occur. For example, if a graph on n
vertices has n edges. the graph contains a cycle, and there are examples (trees) that
have one less edge and no cycle. So the threshold for cycles is ii edges.

In the following exercise, the graph K1 + is an n-vertex graph with two
components, an isolated vertex and a complete graph.

Exercise 508. Prove that the maximum number of edges in a disconnected simple
n-vertex graph is (fl; with equality only for K1 +

The following exercise is usually one of the first studied in extremal graph theory.

Exercise 509 (Mantel's theorem [3621). If a simple graph C on ii � 3 vertices has
more than edges, then C contains a triangle.

The energetic reader might notice that in fact two triangles are formed under
the condition of Exercise 509, (try to prove it!). The addition of one more edge
actually forces two triangles tied together:

Exercise 510. Prove that if a simple graph C on n 5 vertices has more. than
+ 1 edges, then C contains two triangles joined at a single vertex. Hint: an

inductive proof has one case that require.s special treatment.
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Exercise 511. Prove that a graph on n vertices with more than [n2/3j edges con-
tains the graph of a tetrahedron (a K4).

Both Mantel's theorem (Exercise 509) and the result in Exercise 511 are special
cases of a much stronger theorem proved by Paul Turán (1910-1976). say
that he proved this while in a concentration camp, although I can not recall the
source for this story.] Turári was also known for his work in number theory and
analysis. To state this theorem, a few definitions help.

For positive integers n, k, let T(n, k) be the complete k-partite graph on n ver-
tices whose partite sets have sizes that are as nearly equal as possible. Denote the
number of edges in T(n, k) by E(T(n, t(n, k). If n = qk 1- r, where q and r
are non-negative integers with 0 r < k, then r of the partite sets in T(n, k) have
q +1. = In/ki vertices, and the remaining k — r have q = Ln/ki vertices (see Figure
15.4).

Figure 15.4: The Turan graph T(n, k)

Hence

t(n,k) = j)2 +r(k — r)(q+ (k _r)q2

Theorem 15.9.1 (Turán [536, 537]). Let k > 1. Then ex(n; = t(n, k) and
T(n, k) is the unique cxtrcinal Kk graph.

Exercise 512. Prove Turdn's theorem by induction on n. Hint: One proof has an
inductive step that leaps from rn. to rn ± k vertices.

Erdös [165] has related results for certain rniiltipartit.e hypergraphs. The follow-
iiig theoreui is due to ErcRis [166]:
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Theorem 15.9.2. Let G = (V, E) be a graph containing no Kr+i. Then there
exists an r-partite grnph H on vertex set V so that for each z V, d0(z) � dff(z).
If C is not a complete r-partite graph, then there exists at least one z for which
dc(z) <djj(z).

Exercise 513. Prove 'i'heorern 15.9.2 by induction on r.

The observant reader may notice that Turan's theorem (Theorem 15.9.1) follows
from Theorem 15.9.2.

15.10 Digraphs and tournaments
The term digraph denotes a graph with directed edges. To be precise, a digraph
D (V E) is a set V of vertices, and a collection E of ordered pairs from V.
Elements of E are called directed edges, or sometimes arcs. Directed edges are
usually drawn with an arrow; if (x, y) 8, the arrow usually goes from x to y, in
which case say that x dominates y.

A digraph I) is called simple iff for every x, y e V, precisely one of (a:, y) or (y, x)
is in E, any ordered pair occurs as a directed edge at most once, and there are no
loops, that is, arcs of the form (x, x). So a simple digraph D can be obtained from
a simple graph C = (V, E) by simply orienting each edge in 8, that is. for each
{x. 8, choosing either (x,y) or (y,x) to be a directed edge in 1). Another way
to say this is that D is an orientation of some graph C. A path in a (ligraph must
follow the arrows, so one might say, for example, that there is a directed path front
V4 tO v1, but there might not be one front v1 to ¼•

If x V is a vertex of some digraph D, then the outdegree of x, denoted dt(x),
is the number of edges of the form (x, z), that is, in the case of a simple digraph,

= 1{z 17: (x,z) E(D)}].

Similarly define the indegree t(x).
A digraph D is called Eulerian if there is a closed (directed) trail (called art

Eulerian circuit) containing all the edges of D. The following version of Euler's
theorem was found by Good [221] in 1946.

Exercise 514. Prove that a digraph is Eulerian if and onlg if the underlying (andi-
rected,.) graph has one non-trivial component and for each vertex v, d± ( v) d (v).
Hint: if 11) is a digraph with 'minimum outdegrec at least 1, then 1) contains a
directed cycle; then use strong induction on the number of directed edges.

In graph theory, a tournament is an orientation of a complete graph, that is,
a tournament '1' on vertex set V is a collection 8(1') c V x of ordered pairs
so that for every pair of distinct vertices a, b V, precisely one of (a, b) 8(T)
or (6, a) 8(T) holds. The reason for the name is that if in a real (round-robin)
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tournament with n players where every player meets every other in a match precisely
once, the winner of each match carl be recorded by an appropriate arrow.

If T is a tournament, a fixed vertex v E V(T) is a king ill for every other vertex
y E V(T)\{v}, there is a directed path from v to y with at most two edges. So a
king can he thought of as a person in a tournament so that for every other player,
the king either beat that player, or bea.t someone who beat that player. There are
at least three proofs of the result in the following exercise, two of which are by
induction.

Exercise 515. Prove that every tournament on finitely many vertices has a king.

Exercise 516. Let Pl,P2 Pu be integers with 0 Pm � p2 < .. and for
each k = 1,... ,n, denote the partial sums by Sk = Prove that there exists
a tournament with outdegrees . .. , if and only if for each k <n, Sk � and

Hint: Use induction on —

The result in the following exercise is known as Rcdei theorem, published by
L. Redei in 1934 [449].

Exercise 517. A tournament among ri player's is held, where every pair meets.
Prove that there is a listing of all the players a, b, c,... , so that a beats b, b beats c,
and so on, continuing until the last player.

In graph theory parlance, Exercise 517 SayS that every finite tournament has a
directed hamiltonian path; such a listing of players is also called a ranking.

Exercise 518. Prove that for any n � 3, if a tournament has a (directed,) cycle on
n vertices, then it contains a directed cycle on three vertices.

A related exercise occurred as a Piitnani problem in 1958, with inductive solution
published in the Monthly [90]:

Exercise 519. For in 3, let T be a tournament on vertices Xi,... , and for
each i = 1,... ,n, let d+(xi) denote the outdegree of(the number of players that
x, beat). Prove that there exists a directed cycle on three vertices if and only if

(n — 1)n(2n —

15.11 Geometric graphs
This short section is au introduction to an area of combinatorial geometry that
concerns graphs, each graph considered together with a drawing of that graph in the
plane. For many more combinatorial geometry problems with solutions by induction
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(along with countless other results that might seem beautiful and amazing), see, e.g.,
the comprehensive textbooks [372] or [421].

A geometric graph is a collection of points in the plane in general position to-
gether with line segments (edges) drawn between pairs of points; a geometric graph
on ii points is complete if each of the pairs of points is joined by an edge. Note
that because the points are in general position (no three on a line), each edge con-
tains only two of the given points. More simply put, a geometric graph is a graph
that has been drawn in the plane so that the structure is completely visible.

The results in the next two exercises were published with elegant solutions by
Kdrolyi, Pach, and Toth in 1997 [304, Thm. 1.1]. Analogous results for convex
patterns of points were known by Bialostocki and Dierker, and appeared in an
exercise in combinatorial Geometry [421, 14.9, p. 240] by Pach and Agarwal. (See
also [304] for more details.) The results for ordinary graphs analogous to those in
the next two exercises were known some time earlier (again, sec [304] for details),
the first being trivial.

Recall that a tree is a connected acyclic graph; a plane tree is a tree drawn in
the plane with no crossing edges.

Exercise 520. Prove by strong induction on n � 2 that if the edges of a complete
geometric graph on n vertices are 2-colored, there exists a plane spanning tree that
is monochromatic.

The result of the next. exercise was also proved by induction in [304]; no solution
is given here, hut the proof idea is similar to that from Exercise 520.

Exercise 521. Prove that if the edges of a complete geometric graph on 3n
vertices are 2-colored, there exist n pairwise disjoint edges of the same color.





Chapter 16

Recursion and algorithms

recursive adj. See RECURSIVE.

- Stan Kelly-Bootie,

tire I)evil's DP Dictionanj.

Many common operations in mathertintics are defined recursively, that is, sonic
initial values are given, and then some rule is repeated successively. For example,
in Definition 2.5.9, the product of it numbers is defined by successively multiplying
a number by the previous product.

In a proof by ruatheniatical induction, suppose that some base step 8(1) is
proved, and for ans' k � 1, the induction step 8(k) 8(k + 1) is also proved. The
induction step can be thought of as a rule that generates a true S(k ± 1) from a true
8(k). In the inductive step, the proof of the statement 8(k + 1) usually depends,
in a critical way, on the truth of sonic previous statements, either the base case,
or from tire output of some previous application of the rule. Then for any large ii,
the truth of 8(n) follows by beginning at 8(1), and applying the rule n — 1 times.
Applying the rule just once might be called 'inducting" and the application of the
rule many times might be called "induction". Analogously, recursion is the repeated
application of a recurrence relation.

Iii this chapter, only sonic cleinentary aspects of recursion are considered. For
more on pure recursion theory, as applied to model theory arid language, including
the theory of recursive invariance, recursively enuitierable sets, recursive functions
and decidability questions, see, e.g., [460].

Many exercises elsewhere in this text could also fall under the heading "re-
cursion"; for example, see Exercises 122. and 123 (trig identities), Exercise 427
(inclusion-exclusion). Exercises 595, 596 (counting functions), and Exercise 719
(counting triangles).

261
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16.1 Recursively defined operations
Many operations are really defined recursively front binary operations. For example,
exponentiation can be defined recursively by defining x2 = x x and for n � 3, =

x. Another way to define exponentiation is to first show that multiplication
is associative and thus an expression of the form x1 x,, is meaningful; proving
associativity can often be done by induction (see Exercise 4 for associativity for
multiplication of natural numbers). The definition of n! can he given in two ways.
One way is ii! = ftL1 i, and another way is recursively: 0! = 1, and for it � 1,

= n(n — 1)!. Keeping in mind this recursive nature of many definitions, one can
prove results extending those at the end of Section 2.3. Here are a couple (presented
without solution).

Exercise 522. Form � 3. 1 <r <n, and real numbers x1,x2,... ,Zr, Xr+l,.. .
prove that

Exercise 523. Form � 3, 1 <r cc n, and real numbers x1,x2. r, .Tr+l,.. .
prove that

(x1x2 . . . Xr)(Xrfl .. . =

16.2 Recursively defined sets
This book is filled with recursivcly dcfiued sets, elements of which may be, for
example, numbers, vectors, functions, geometric shapes, edges (in the graph sense)
or words. It doesn't scent practical to even attempt to list the various examples here.
For more on recursively defined sets (and induction), see, e.g., {464J or [4621. Some
recursively defined structures are discussed later in this chapter. In the following
Section 16.3, recursively defined sequences are examined in more detail.

Instead, here are slightly different examples of recursively defined sets and one
sequence. In the first example, one can not enumerate the set nor ascertain too
many properties of the set:

Define the set A recursively by

(i) I E A,

(ii) if n E A, then 2in C A, and

(iii) if ii is odd and 3ri+ 1€ A then mE A.

Question 16.2.1. Is A the set of positive integers?

As of this writing, Question 16.2.1 is still notoriously unsolved (see, e.g., [464, p.
Question 16.2.1 is more fatuously known as the "3m + I problem" (or the
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Collatz conjecture, the Ulam conjecture, or....), hut is often stated in terms of se-
quences, as follows:

To test whether or not some fixed n E Z± is in A, recursively (or inductively)
define tire sequence of positive integers 52, 53,... by setting n = 51, and for A: � 1,
having defined 8k, define

if is even,
8k+1

+ if 8k is odd.

For example, starting with n 9, the sequence is

9,28,14,7,22,11,34,17,52,26,13,40,20,1O,5,16,8,4,2,1,4,2,l,4,2,1,...

Since by (1), 1 E A, the above sequence shows that 9 A. So the 3n + 1 problemn
is to show whether or not for every starting number n, the corresponding sequence
eventually hits 1 (in finitely many steps). There is an immense amount of literature
on this problem; one starting point may be, for example, [335]. [I think that the
preponderance of opinions is that Question 16.2.1 has an affirmative answer.]

This next example might be of interest to Ramsey theorists or combinatorial
number theorists.

Exercise 524. Define sets and Tn as follows: Let { 1 } = 'J\. For a > 1,
recursively define

Sn =
5nUTn-t.

Prove that does not contain any 3-term arithmetic progression and that T,,J

with the largest element in being -t 1)/2.

16.3 Recursively defined sequences

A sequence 5j , 53,..., perhaps infinite, is called recursively defined if and only
if for some i � 1, some initial values, say so, Si, , are defined individually,
arid for every a i, is defined by a rule which depends only on previous values

5i This "rule" can be viewed as a function of previous values. sonic-
times depending on more and mmiore inputs, arid is sometimes called a recurrence
relation (or simply, a recurrence) and the process of executing the recurrence rela-
tion repeatedly is called recursion; however, it is common to use these expressions
interchangeably.

Note: Doubly indexed sequences like tire Stirling numbers of the second kind
(and marry others in this hook, too many to list) also cart be defined recursively (see
equation (12.7)), however, only linearly ordered sequences are discussed here.
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For example, consider the sequence of Positive integers a0, a1, a2, a3,... defined
by a0 = 2, and having defined ito let he the product a0 a1 ar,.
One can work out the first few ternis:

ito = 2, = = 2, a2 = aoal = 2 2 = 4, a3 = a0a1a2 = 2 . 4 = 16.

is there a simple general formula for that depends only on Working out a few
more terms,

a4 = a0a1a2a3 = 21 . . .
= 21+1t2+4 = 28,

and
a5 = = .21 . 21 • 22

.

. 28 = 21+1+2+4+8 = 216.

It seems like for n � 1 a general formula for might be

(16.1)

which has been verified for ii = 1,2,3,4,5.

Exercise 525. Use Exercise 47 to give a simple inductive proof that in the sequence
defined above, for each it i, equation (16. 1) is trite.

Is there an expression for that applies also for n = 0? If so. it is not clear
how to find such an expression.

The above formula was found by "inspection"; are there formal rules about how
to find such a forniula (provided one exists)? In general, recursively defined se-
quences (10 riot necessarily have a "closed form", a general formula for aT, that uses
finitely many simple operations, including addition, niultiplicatiori, exponentiation,
arid inverses. (See Section 18.5 for discussion of primitive recursive functions, ones
that can be written in closed form). For some recurrences (for example, see the Ack-
ermann function, Section 18.6), the only "adequate" way to describe the sequence is
by the recursion itself, Most recurrence relations here, however, yield a closed form
for the ntli term in the resulting sequence.

Given some initial values and some recurrence, finding a genera.l formula for the
utli term of the sequence is called "solving the recurrence". For some functions
sometimes an exact value for each term in a recursively defined sequence is not
required, but only some loose bound or approximation. This is especially true in
the study of complexity (the study of run-times of algorithms: see Section 16.6
below).

Just as in the theory of differential equations , or difference equations, there is a
variety of specialized techniques to solve various kinds of recurrences. [I am told that
ninny of the ways to solve recurrences caine directly from differential

In many of the problems below, the recurrence has been solved arid it only
remains to verify the solution by' induction. In general, mathematical induction
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is well suited to verifying solutions to recursion, but is virtually useless in solving
recursions (except for proving parts of some general methods for solving them). The
general theory of how each was solved is not included here (see nearly any book on
combinatorics).

in the recursion given above for for terms later in the sequence, an increasing
number of l)reviOus terms are used. This chapter focusses on recursions where sortie
maximum number of previous terms is required.

Perhaps some of the easiest recurrences involve a dependence on only the one
previous term. For example, if P = and for n � 1, define =
after executing the recurrence a couple of times, the solution is clear, as in this next.
exercise.

Exercise 526. Let r denote an interest rate expressed as a decimal (e.g., 7% = .07).
If an initial principle P is deposited in an account that pays interest r compounded
annually, prove by mathematical induction that the amount A(n) in the account at
the end of n 0 years is

A(n) = P(1 + r)'t.

A recursively defined sequence is called recursive of order p if for some
p � I, the initial values x1,x2,x3, are given, and there exists function f

R of p variables (that uses all variables) so that for each it > p, the recurrence
relation (or briefly, the recurrence)

= x,,-- ii

holds; one also defines such a recurrence relation to be of order p. [Notice that,, for
convenience of exposition, the sequence x1, x2, ... started with index I., whereas in
marty situations, calculations are easier if the sequence begins with index 0.]

16.3.1 Linear homogeneous recurrences of order 2

A recurrence f of order p is called linear (with constant coeflicients) if and only if
there exist non-zero constants c0, c1 so that

f(y1,y2 yp)=co+clym+c2y2+'.'+cpyp;

A linear recurrence of finite order is said to be homogeneous if co = 0.

For example, since Fibonacci numbers are defined by F,, = + the
recursion is of order 2. linear (with both c1 = c2 1), and homogeneous. Similarly,
the recursion behind the Lucas numbers is also linear homogeneous of order 2.
A recurrence relation of order 1 given by = 5n—i + is riot linear because

is riot a constant. Catalan numbers can be defined by the recursion =
+ +.. . which is not linear. '1' he recurrence (12.3) for Schröder

numbers is also not linear.
Q riestions regarding recurrences can often he answered without solving the re-

cursion.



266 Chapter 16. Recursion and algorithms

Exercise 527. Define the sequence a0, a1, a2 by a1 = a2 = 1, and for it
2, define = ÷ Prove by induction that for ear/i ii = 1,2, 3

= 1, that is, consecutive elements are relatively prime.

16.3.2 Method of characteristic roots
Linear homogeneous recurrences are 'easy to solve", that is, there is a method,
called the "method of characteristic roots" (a simple case of which is shown below),
by which a closed form for the nth term can be found. Any closed form that
arises from this method can usually be verified by induction rather easily, since the
given recurrence is the key to the inductive step. Thus choosing arbitrary linear
homogeneous recurrences of order 2 provides an endless source of exercises of the
form "here is a recurrence, and a general forni for the mith term; prove this form by
induction."

The method of characteristic roots also has analogues for many higher order
linear homogeneous recursions, however only tlic case p = 2 is discussed here in
detail. Also, generating functions can be used to solve linear homogeneous recur-
rences of higher order, but these methods are not presented here. See many texts
on combinatorics for these additional techniques and results (e.g., f455}).

Suppose that a0, a1, a2,... is a recursively defined sequence, where initial values
a0 and a1 are defined, and for non-zero constants c1 and c2, consider the linear
homogeneous recurrence of order 2 given by, for ui 2,

= + c2a,,_J. (16.2)

The trick is to first "guess" that there may be a number x E R so that the sequence
1,x,x2,x3,.. . satisfies the recurrence (16.2), ignoring the initial values. Such a
sequence is called a general solution to the recurrence. For the moment, suppose
that such an x exists. Then for any it > 2,

= c111t2 + (16.3)

Further assuming that x $ 0, cancelling XTL_2 from each side of the last equation
gives

c1 + c2x,

or
— o2x — c1 = 0. (16.4)

Equation (16.4) is called the characteristic equation for the recurrence (16.2), and
roots of this equation are called characteristic roots. [The case for p > 2 is handled
similarly.] By the quadratic equation, the characteristic equation has two (perhaps
complex) roots, say a arid /3, riot necessarily distinct.

Some critical observations enable the next. step in the method, the first few of
which are easy to confirm.
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Observation 1: If ci is a root of the characteristic equation (16.4), then the
sequence 1, a, a2, a3,... is a solution to the recurrence (16.2). So both sequences

and satisfy the recurrence.

Observation 2: If two sequences and both satisfy the recur-
rence (16.2), then the sequence + also does.

Observation 3: If a sequence satisfies (16.2), then for any constant
A E C. so does the sequence

Combining Observations 1, 2, and 3:

Observation 4: For any (constant) complex numbers A and B, a general solu-
tion to the recurrence (16.2) is {A&t +

B and the first
two terms of the above sequence? The answer depends on a and /3 (and hence on
c1 and c2). In sonic cases, one more observation is required:

Observation 5: Let a be a root of (16.4). Then the sequence is a
solution to the recurrence (16.2).

Proof of Observation 5: There are many ways to show this; however, the
simplest might be just to take derivatives (with respect to x) of each side of
(16.3), yielding

nxlt_l = ci(n — -I- c2(n —

and then multiplication through by x gives

-ax" = cjfrz — 2)x"2 ± c2(n —.

from which Observation 5 now follows directly. 0
The method now breaks down into cases:
Case 1: Let a 13 be real roots of (16.4). Replacing a = 0 and a I respectively

in = + gives a] = A 4- B and a2 = Aa + B/3, two equations in
A and B that have solutions since a Thus for each a � 0,
a specific solution to the recurrence that agrees also with the initial values.

Case 2: Let a = /3 he a repeated root of (16.4). Then it suffices to find A such
that for each a ? 0, = An". Using the two initial values and a], seek A such
that both a0 A and a1 = Aci. Unless a = these equations do not have a
simultaneous solution for A. if there is rio such A?

Combining the Observations 1, 2, 3. and 5. if ci is a solution to (16.3). then for
any constants A arid 13, the sequence {Aa" ± is also a general solution
to (16.3). 'lb find the particular solution. use a = 0 and a = 1 respectively in

= An-" + Jina",

get a0 = A, and a1 An + Ba, in which case one can solve for B — a0.
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Case 3: Let a and /3 he complex numbers (where a /3). This case proceeds
nearly identically to that of Case 1, however with some extra work at the end. Polar
coordinates arid DeMoivre's formula are used.

From the quadratic formula, it follows that these two roots are complex conju-
gates (that is, if a = c + di, then /3 -= c — di). Recall that al = v'c2 + d2 = 1/31. Let
0 6 [O,2ir) be such that cosO = c and sin0 = d. Then a = Ial(cos0 + isirrO) and

= lakcos0 — isinO).
Continuing from Case 1, seek A and B so that for every n � 0, the particular

solution to the recurrence is
= Aa'1 +

the difference now is that A and B may be complex. Replacing the above expressions
for a and /3, and using DeMoivre's theorem (see Exercise 115) from the second to
third line below:

= A(lal(cos 0 + isin0))Th + B(lal(cos0 — isino)r
= laIThtA(cos0+ isin0)"+B(cos0—isinO)'1]
= IaVtIA(cos(nO) + isin(nO)) + B(cos(n8) — isin(nO))]

= + isin(nO)) + B(cos(nO) — isin(nO))]

= IalTh[(A + B)(cos(nO) + i(A — B)sin(nO)].

Using ii = 0, a = 1, and the initial values a1 respectively,

a0 = A + B;

— laI[(A + B) cos(0) + i(/l — B) sirr(0).]

Reducing the equation for a1 by

a1 = c(A + B) + id(A — B) = (c + id)A + (c — id)B = aA + fiB,

and since a /3 and each is non-zero, such a solution for A arid B exists. In fact,
the solutions are found by simple reduction to be B = and A a0 — B.
Having found the desired A and B, the solution to the recurrence is complete, arid
is = Aa?' + In the more convenient form above, the solution is

= IaItt[(A + B)(cos(nO) + i(A — B) sin(nO)1,

where A + B = ao arid A -- B = (1.0 — 0

If one works out tire various solutions for A and B needed above, the summary
of outcomes of tire irrethod of characteristic roots can be expressed in a three part
theorem:

Theorem 16.3.1 (2nd order linear homogeneous recurrence solutions). Let a iv-
cursively defined sequence a0. a1, a2, a3,... have initial values ao and a1 given, and
for non—zero constants (:1 and for it � 2, let a7, = c1a71_2 + c2a71_1. Suppose that
a and /3 are the roots of the associated characteristic polynomial.
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1. If a and are distinct and real, a general solution is of the form
A and B, solve the system of two equations found for ii = 0 and

n = 1 (and the two initial values), giving

a (a1 a (aj
A=odj— t—--aol,

fl—a\ao J

2. If a fi, then the solution is = aoa'2 + — ao) na1'

3. If a and B are distinct and complex. a general solution is still of the form
= Aa'2 + where A and B are described in Case 7. If a = (lal, 0) in

polar coordinates, an easier form of the solution to work with is

= + iLsin(nO)],

where L = a0 2

16.3.3 Applying the method of characteristic roots
Exercise 528. Recursively define a sequence by a0 = 3, a1 = 3, and for n � 2,

= First prove by induction that every is odd. Use the method of
characteristic roots to solve this recursion, and then prove the result by induction.

Exercise 529. The recursive definition of the Fibonacci numbers is F0 = 0. F1 = 1,

and for n > 1, = F,, 2 + Solve this recursion and obtain Binet formula
for F,,,

F
'2

2 ) 2

(which was to be proved by induction, iii Exercise 36.9).

Exercise 530. Solve the recurrence given by a0 = 2, a1 = 5, and for ri 2,

= —

Exercise 531. : J..et a0 = 1, a1 2, and for n 3, define a,, +
2a,,_ First, prove by induction that all but the first term are even. Then solve the
recursion.

Exercise 532. L)eflne the sequence a1, a2, a3,... by ai = 1, a2 = 3 and for each

k >2,

= — 2(Zk_1.

Prnee that for all n � I, a,, = — 1.

Exercise 533. For a constant be define a sequence by at = b, = 0, and for

Ti 3, = ba,,...2 b2a,,_.1. Solve this recursion, and then prove the solution by
ziujuct 10Th.
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Exercise 534. Put = a1 1 and for n � 1, define i + Prove
by induction that for each n ? 1,

(16.5)

Confirm this solution by the method of characteristic roots.

Exercise 535. Define a1,a21a3,... by a1 2, a2 = 3 and for each k? 2,

ak+1 =3ak—2ak_1.

Show by the method of characteristic roots that for all n 1, = '+ 1. conflnn
this by mathematical induction.

16.3.4 Linear homogeneous recurrences of higher order

The method of characteristic roots also applies to solving linear homogeneous recur-
rences of order p > 2. Repeating the method of characteristic roots given above for
p 2. the following generalization is obtained (given here without proof): Suppose
that some characteristic equation of degree p 2 has roots a1 0r each respec-
tively occurring wit Ii mnultiplicities in i in,. (where in1 + + = Then for
each i = 1,. . . , r a particular solution to the given recursion is of the form

+ A2nci' + .43n2a" + .. +

and so a general solution can be found by forming linear combinations of the r
expressions above.

In this section, only a few examples are given, and solving recurrences of higher
order is not asked for.

Exercise 536. Let Ii = X2 = 1, = 4, and form> 1, define

= 2Xnf2 + 2Xnf.i —

Using mathematical induction, prove that for each ii 1, is a perfect square.

Exercise 537. Define the sequence of integers 5o = si = 1

and for n � 3,
5n —i + 5,,—:j

prove by induction that for all it 0, �
Exercise 538. Define the sequences0—- 1,= 2. ,s2 =- 3. and for ii

= + 8n—2 4

Prove by induction that for n � 0. s,, <
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Exercise 539. Define the sequence 83, 54.... by = = 83 = 1, and for
n>1,

= 8n + 8n+1 + 8rti-2-

Prove by induction that for each n � 1,

Exercise 540. Define the sequence 82.83,84,... by sj = 2, = 4, 53 = 7, and
for ii 1,

5n±3 8n + 5n+I ±

Prove that is the number of binary strings of length n that do not contain the
substring "000". fA non-trivial formula for exists and has a proof by induction,
however both the discovery and proof of the formula are more challenging exercises./

16.3.5 Non-homogeneous recurrences

Non-homogeneous recurrences are common; for example, the recurrence 1(n) =
2f(ri — 1) + I is found in Exercise 562 below (Towers of Hanoi). There are many
specific techniques for solving various non-homogeneous recurrences; however, that
theory is riot covered here.

Exercise 541. Suppose that a function f satisfies f(l) = f(2) = 1, and for all
n � 3, f(n) -= f(n I.) ± 2f(n — 2) + 1. Using mathematical induction, prove that
for any positive integer n,

(-lr±1

Exercise 542. Let a and b be fixed real numbers. Define the seqneiiees0, 82,

of i-eat numbers by = a and

= + b.

Prove that for each ii � 1, = + —. i)b.

The next theorem includes the result from Exercise 542. For more on difference
equations, see [159J.

Theorem 16.3.2. Consider the first-order linear nonhomogeneous difference equa-
tion defined for t = 0. 1, 2,... by

= atxt ±

Jf an initial value is known, then the sotution is unique and is given by

= [üai] xo +h1-.1 +
[

ai.] iii.
2' 0 i'O r=i+1

In particular,
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• If Xt÷i = axt then

Xt = atxo +
i=o

• If Xt.+1 = axt + b, then

( at—iJatxo+b
a—i

lxo+bt a=1.

Exercise 543. Prove Theorem 16.3.2 by mathematical induction.

Exercise 544. Let a i, a2, a3,... be a sequence of positive integers satisfying
(1) = + n, and
(2) if is prime, then so is n.
Prove that for each n I, = n.

16.3.6 Finding recurrences

A problem that a computer scientist might run into is opposite in nature to solving
a recurrence. Given a formula for the n-tb term in a sequence, how can one arrive at
a recursive definition? In general, the methods are quite ad hoc, varying according
to the individual situation, and only one simple example is considered here.

Suppose the sequence s2, S3,... is defined by

Sn = —
47'

(so = = arid so on). Can one give a purely recursive definition for .Sn?
The reciprocals = = 4n form an arithmetic progression with difference 4 and
satisfy

tfl t71_1 + 4 = + — = —

It now follows that

Sn =
tn

= 2tn_ 1 —

=
2

9n—2

1

=
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—

—

Hence. the recursive definition for the sequence { } is

1 1 5n—15n--2andforn�3
4 8 25n—1

nastier looking than the closed form formula = Ideally, a recursive defini-
tion first gives some initial values for the sequence, and then defines subsequent
elements in terms of only previously defined elements. In [437, soln to 17-2, p.202],
a definition" for this sequence was given by

5n+1 = +

and .s1 = = This definition fails to be an ideal recursive definition in two
ways: it is not precisely recursive (one would have to solve for first, of course
try recursively finding 53. for example, using their formula). and initial values are
given after the general forrni.ila for recursion.

To verify that indeed the correct (non-linear) recursive definition was found, one
can use induction:

Exercise 545. Define the sequence of integers recursively by =
= and for ii 2,

5n 15n—2

— 5n—i

Prove by induction that =

16.3.7 Non-linear recurrence

Exercise 546. Suppose that c is a real number where 0 < c 1. 1)efine recursively
the sequence 5i, by = c/2, and for each ii 1, define

± (;
5nFi=

2

Prove that the sequence is strictly increasing and strictly bounded above by 1, that
is. for each n � 1. c c 1. /'l'hen one can conclude lhat exists
and is at most i.J

Exercise 547. Define the sequence ai,a2.o3,... by a1 1 and for each n � 1,

an.t i = 5.

Prove that for a/i n ? 1, both < 3 and > ar. Since the sequence is bounded
above and increasing, it has a limit: find it.
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Exercise 548. Define the sequence at, by = I and for each n 1,

— 1 + +5.

Prove that for all n � 1, > 4 —

Exercise 549. Define the sequence a1,a2,a3,... by a1 I and for each � 1,

= + 1.

Prove that for all n � 1, both < 4 and > Decide if the sequeitce
converges or diverges, and if it converges, find the limit.

Exercise 550. Define the sequence a1, a2, a3,... by a1 4 and for each n � 1,

= + 2.

Prove that for all n > 1, both > 2 and + <an. Find or show that
it does not exist.

Exercise 551. Define the sequence a1, a2, a31... by 2 and for each ii

1 + + 5.

Prove that for all ii � 1, both < 4 and > Then find if it
cxi St .9.

Exercise 552. Let xj = 1, and for it � 1, define 1 + Show that

1.

Exercise 553. Let be an integer sequence recursively defined by sj = 0

and for n 2,

Sfl I +

Prove that for every ii s,2 =

Exercise 554. Let S2, .93,... be recursively defined by .s1 = 3, and for it

the smallest odd integer � if it -f- 1 is odd

the smallest even. in.teqer � if n + I is even

Prove that (si, is an increasing sequence of positive integers satisfying

< 5n-i-i < + 2

and prove by induction that for each n. �
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Exercise 555. Let a fi be reals. Define the sequence UI. u2, u3,... by

n'2—fl2 a3fl3
U1 ,a—fl a—fl

and for k > 2, dcfine Uk (a + — Prove that for each n � 1,
13n+1

Un = a—fl

Exercise 556. Let a0 = 9, and for each n � 0, define = + 4). Show
that the decimal of ends in nines.

Exercise 557. Put 1(x) — and let y' = f(x). Then put

+ 1
= =

—

and for each n � 1, put = Prove that for each odd ii = and for
each even n, = x.

For the next exercise, the reader is reniinded of the product notation (see Defi-
nition 2.5.9)

xn.

Exercise 558. Define the sequence ta,... by t1 2 and for n � 1, define

tfl1j i+flt1.

Prove by induction that for each n � 1, > a and

=
1)

Exercise 559. Let x0 1, and for n � 0, define = x,, + Prove that as
U —' 00, —* 00 and that

< + log tI.

The sequence in the next exercise is used by many pocket ca!culators to calculate
square roots, and is based Ofl all CXpfeSSlOu of the form x f(x), where f(x) =

+ clx). IDo you see the relation between this exercise and Newton's method?
See nearly any calculus text for Newton's rnethod.1
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Exercise 560. Let c > 0 be a fixed real number. Define a sequence by selecting any
£0 > 0, and for each non-negative integer n, define

+

Prove that if is an approximation for correct to t decimal places, (lien 1n+1
is correct to at least 2t — I places. Furthermore, = regardless of the
choice for xo > 0.

For example, in the above exercise, for c = 2, ii xo = 1.5 is chosen, then Ii

1.416666..., 12 = 1.4142 15686274..., and 13 = 1.414213562375..., compare favorably

with

= 1.414213562373...

Exercise 561. Let 0 < b < a be positive reals. Put a1 =- and b1 = the
arithmetic and geometric means, respectively. For each ii i, recursively define

= and = Using induction, prove that

c < a,,±i < ar,,

and show that both and h,, exist, and are equal.

Gauss called the limit iii Exercise 561 the arithrnctic-geoznetric mean of a and
6. (See [513, p. 703].)

16.3.8 Towers of Hanoi

Many computer science students are taught the puzzle or game called 4Tlie Towers
of Hanoi". usually in tile context of recursive programming. Though some say that
the Towers of Hanoi puzzle was invented in India, it was apparently produced by
Edouard Lucas in 1883. It appeared in [358] (see [292, p. 229] or [42. p. 48]; also
see [ii] or[207]). [1 once read that it was while Catalan was playing with this puzzle
that he discovered Definition 12.5.2 (the one using parentheses) for what are now
called Catalan numbers.]

here is how the game works. There are n discs of increasing diameter, each with
a hole in the center and three pegs on which discs can be positioned. Start with ii.
discs on the first peg, the discs in increasing size with the smallest disc on the top
and the largest on the bottom (see Figure 16.1). The goal is to move all a discs to
another peg using the following rules: Discs are mnove(l froni peg to peg one at a
tinre. At any stage, rio larger disc can sit on any smaller one. In the original puzzle,
there were a = 8 disks.

Exercise 562 (Towers of Hanoi). Using all three pegs in the Towers of Hanoi game,
,show that the number of moves required to move all •n discs from the first peg to
another peg is -- 1.
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A myth originally accompanied the puzzle: monks of I3rahma were to transfer a
tower of 64 discs, and when this task was complete, the world would end. Well, the
time necessary for the

264 —1 = 18,446,744,073,700,551,615

moves is certainly a long timnc—-over 58 billion centuries at one move per second!
For oilier interesting references or renditions of the stories regarding the Towers of
hanoi and the towers of Brahma, see [12], [99]. [1491, [193], [205, 20-231 [2081, [209],
[305, pp. 169—171], [329, §3.12.1, pp. 91—93] [436], [478], [552], and [574].

The following variation of the Towers of Hanoi problem was discovered by S. Al-
thoen and his students [16], published in 2009. He says that his students inadver-
tently assumed two extra rules. thereby changing the game. [It woLild be surprising
to me if this variation had riot beeii previously discovered because this variation nor!
its solution are so elegant.] In addition to the usual rules (move disks one at a time,
a larger disk can never he placed upon a smaller one), further insist that a disks
start on peg 1, the final position to have all disks on peg 3, and disks cnn he moved
only between adjacent pegs. With some simple experimentation, when ii = 1. 2

moves (1 2 3) are required, and when ii = 2, the following 8-move sequence is
optimal (and virtually forced): 1 — 2, 2 —÷ 3 1 —' 2, 2 3, 1 2, 2 :3, 1 —. 2,

and 2 •-÷ 3. When ri = 3, it turns out that 26 moves are required. Before looking
below, can you guess the pattern (beginning 2, 8, 26,...) and prove it?

Exercise 563 (Hanoi revisited). Solve the game of Towers of Hanoi with a disks
with 1/tree pegs A, B, C, given in a row, subject to two additional rules: disks start
on peg .4, and must finish on peg C, and disks are moved only betwecn adjacent pegs.
Prove that — I is the minimum number of moves required to complete this altered
Towers of Hanoi game.

16.4 Loop invariants and algorithms
'[he term "loop invariant" is frequently used in computcr science. Some say that a
loop invariant is a relationship among variables that is maintained in all iterations
of a 1001). In fact, it is probably fair to say that a invariant" is the same as

Figure 16.1: Towers of Hanoi, with a = 3 disks
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"a statement to he proved by induction", denoted throughout this book as 8(n), or
some such. According to [119], the notion of a 1001) invariant is first due to due R..
W. Floyd. [The basic reference for algorithms is [3231.1 The use of loop invariants
in programming is the use of (finite) mathematical induction.

The importance of induction to computing scientists and engineers can not be
overstated, it seems, however, that many engineering schools give very limited
instruction in formal mathematical induction. In 13021 is a report on how mathe-
matical induction is the basis for "verification arid validation (V&V) iii modeling".
They examined universities and collcges that taught courses in Modeling and Simu-
lation (M&S) and observed how few are teaching V&V arid mathematical induction,
yet how valuable M&S is today. Here is a quote from that paper: "Upon contacting
ten other universities, none were found that introduce any Formal technique [mci.
Ml] into their classrooms, ... This is an oversight that must be corrected, otherwise
universities will be producing not engineers of technology, but users of technology."

The basic idea is that in most computer programs, there are while loops, and
upon execution of each pass through a loop, some desired property continues to
1101(1. This "property" could just be a number staying the same (invariant), or
it could be the truth of a particular claim being maintained. Proving that sonic
property continues to hold after all passes through the loop (and so outputs a correct
result) is often easily done by mathematical induction. Many recursive procedures
(algorithms) can bc complicated, and in many cases, looking at an algorithm as
an inductive machine makes clear whether or not the procedure outputs a correct
result.

The textbooks [119], and [496], and [570] have been recommended to me for
the modern study of algorithms. In the first, there are loop invariants for search
algorithms, sorting algorithms, spanning-tree algorithms, merging, exponentiation,
the simplex algorithm, and many more. Only a few basics are given here.

Some computer scientists say that checking loop invariants is like induction, and
others say that this is just applying induction on the number of iterations of a loop.
Since while loops are to be executed only finitely many times, induction here is
finite. Some refer to the three stages of an induction proof, base case, inductive
step, and conclusion, as initialization, maintenance, and termination, respectively.
Aside from terminology, computer scientists are doing induction all the time.

Suppose at each iteration i = 0, 1.... , n through a loop in a program, there are
variables w1, and 8(i) is some statement about these three variables. In the
initialization step, one checks that. 8(0) is true prior to tlic iteration of the first ioop.
At the maintenance step, one shows that for any k, if 8(k) is true, then 8(k + 1)

is true. In the termination step, the loop invariant 8 gives a property, namely 8(n)
that is useful.

Examine the following pseudocode:

1. x := 0

2. y : 0
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3. INPUT: a
4. while y a
4a.
4b.
5. OUTPUT: x

What does it do? Working out a few steps, it seems to giveS x = a2. To prove
this, for each i = 0, 1,2,.. ., let x y after the i-tb iteration
of the while ioop. Then for each i = 1,2 hy line 4a, x1 = + a. Is there
some property of that remains true throughout the program? It appears as if for
each i that = ia, which, if true, after the a-th iteration, = a a as desired.
here is a formal proof of the loop invariant 8(i) : = ia. It is helpful to notice
(also by an inductive proof, if need be) that = i.

INITIALIZATION: For i = 0, 8(0) states x0 = 0 . a = 0, which is correct.

MAINTENANCE: Fix 0 � k < a, and assume that 8(k) is true. Then at the end of
the k-th iteration, xk = ka and ijk k. Since k < a, a, so the while loop is
executed the A: + I time; then upon execution of 4a,

Xk÷1 = xk ± a
=ka+a (by8(k))
= (k + l)a.

Hence 8(k + 1) is true.

TERMINATION: mathematical induction, as long as the loop executes, the state-
ment 8(i) remains true. However, when i = a, i/a = a, and so the while loop
fails to be executed, and the program terminates. At that time, (by 8(a)), x = a2.

Thus the program outputs the correct output, and so the program is the squaring
function. 0

This book has a number of algorithms, each with a proof of correctness by
induction. For example., some algorithms analyzed or used in this book are:

• Euclidean division algorithm for finding gcd's (Exercise 211);

• greedy algorithm for Zeckendorf's theorem (Exercise 372):

• Prim's algorithm for finding minimum spanning trees (Exercise 487);

• Kruskal's algorithm for minimum spanning trees (Exercise 488);

• greedy coloring algorithm for graphs (Exercise 498);

• Cale--Shapley algorithm for finding stable marriages (Exercise 496);
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• detecting a counterfeit coin (see Section 17.5).

• soldiers in a circle (see Exercise 588)

• greedy algorithm for producing Egyptian fraction representation (Exercise
317).

Not only can induction be used to check programs, but it can be used in determining
the number of steps a program takes, also called the running time, or complexity of
the algorithm. Counting steps in a recursive proof can often be done inductively-
especially when a procedure calls itself and there are nested loops that complicate
the picture.

One challenge in applying induction to programs, algorithms, or recursive pro-
cedures, is to select the proper variables upon which to induct. Another challenge
is to separate the steps sufficiently so it is clear what properties are required of
a given structure before a recursive step will succeed. Such dilemmas are usually
solved after going through some loops manually a few times, keeping careful track
of all variables. For example, when reading some of the standard proolè of Prim's
algorithm, it is not immediately clear what magic property makes the algorithm
work; it just seemed to work. [The solution to Exercise 487 is written so that it is
clear what property is being preserved from step to step.]

16.5 Data structures
Computers are used to store information as well as to compute. Depending on how
information is stored, modifying sets of data (like inserting, deleting, or sorting) or
locating aa-xd retrieving data can he accomplished at different speeds. As a trivial
example, if one million numbers are stored in a simple list, finding the largest of
these numbers can be very easy if the list is already sorted in increasing or decreasing
order. For sonie applications, it may he convenient to put one million numbers in
a 1000 x 1000 array (a matrix). For other data sets, trees can be used to model
relationships between individual entries. Loosely speaking a data structure is a way
to store data in order to enable modification or retrieval. Many data structures are
created or defined recursively, and so mathematical induction is a natural tool to
analyze such structures; when induction is applied to a recursively defined structure,
it is sometimes called structural induction, especially in computing science.

A few of the well-studied data structures are linked lists, rooted trees, arrays,
heaps, red-blue trees, stacks, hash tables, and dictionaries. Data structures are
often defined recursively; for example, one can imagine that a large binary tree can
be created by adding a new root adjoining the roots of two smaller trees. It then
seems like mathematical induction might be a natural choice to prove properties
of various data structures. In the vernacular of computer science, these properties
are proved by structural induction, which may be considered as an abbreviation for
"mathematical induction on recursively defined structures".
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Rooted trees have already been examined in Section 15.2 and elsewhere in this
text. For example, Exercise 502 asks to show (the nearly obvious) that all trees are
planar; plane binary trees and and the height of full binary trees are discussed in
Exercises 482, 483, and 484; increasing trees occur in Exercises 486 and 485. Arrays
are irriplicitly discussed in Chapter 19.

This section contains only a few other examples; to give any reasonably broad
overview of data structures would take another chapter. For a more accurate picture
of data structures, the reader may want to consult e.g., [334] (with Java), [346], [529]
or any of many more recent titles on data structures. Tn 1980, Musser published on
proving inductive ProPerties of abstract data types [398]. See also nearly any book
on discrete mathematics, algorithms (e.g.,[1 19] or [496]) for more on data structures.

16.5.1 Gray codes

Let Bn be the set of binary strings of length n. A Gray code for Bn is a listing of
the strings in Bn so that any two adjacent strings differ in exactly one position.
Compare this with the definition of a hainiltonian circuit in the unit n-cube (see
Exercise 491).

Exercise 564. For n 1, that thcre is a Cray code for by finding
a recursive construction.

Gray codes are named after F. Gray, who published a paper [233] where these
codes are developed and applied in computing. For other information on Gray codes,
see 151], [553]. or [555]; for an unexpected application in combinatorial (polytope)
geometry, see [51].

16.5.2 The hypercube
The next exercise concerns a graph called the n-dimensional hypcrcube also
called the n-cube graph or the binary n-cube graph. The n-cube consists of vertices

V = {(c1,e2 :Vi= E {0,l}},

and for each d = 1 ii, d-dimensional facets, each facet a collection of vertices
determined by fixing n — d coordinates, and letting the remaining d coordinates vary
over {0, I }. For example, the vertices of are

Vr (0,0,1), (0,1,0), (0,1,1), (i,0.0),(1.0,1), (1, 1,0), (1,1, 1)},

and the 2-dimensional facets are:

{(0, 0,0), (0,0. 1), (0, 1,0), (0,1, 1)}, (fixing (0, *, *));

{(i,0,0),(i,o, 1),(1, 1, 1)}, (fixing (I,*,*fl;
{(0,0,0), (0,0,1), (1,0,0), (1,0, 1)}, (fixing (*,0, *fl;
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{(0, 1,0), (0,1,1), (1.1,0), (1. 1, i)}, (fixing (*, 1, *));

0,0), (0,1,0), (1,0,0), (1,1, 0)}, (fixing (*, *, 0));

{(0,0, 1),(0, 1, 1), (1,0, 1), (1, 1, 1)), (fixing (*,*,1)),

each corresponding to a face of the cube. One-dimensional facets of are called
'hedges" and one can consider vertices as 0-dimensional facets. Ordinarily, simply
refers to the simple graph formed by the vertices and the edges alone. See Exercises
491 is hamiltonian), 492 is n-connected) and 564 (Gray codes) for other
properties of the graph

Exercise 565. Let denote the number of facets of If either
i > n or i < 0 holds, put 0. Prove that for each n � 1, = and

Give an inductive proof that for general i,

=

16.5.3 Red-black trees
Red-black trees on n vertices are a class of binary trees with height O(log ii), nearly
optimal.

Definition 16.5.1. A red-black tree is a binary search tree T with nodes (vertices)
2-colored, say red and black, so that

1. Every node is either red or black.

2. The root is black.

3. Every leaf node is black.

4. If a node is red, then both its children are black.

5. For each node, all paths from that node to descendant leaves contain the same
number of black nodes.

Figure 16.5.3 shows a red-black tree based on [119, p. 275J.
The height of a node v in a red-black tree is the length of a longest path from v

to any leaf. (For trees or other partial orders drawn with a root at the bottom, often
the height of a node is defined to be the length of the path to the root.) Define the
height of a red-black tree to be the height of the root. To confirm ideas, the height
of the red-black tree in Figure 16.5.3 is 6.

By property 5 above, for any node v, the un mber of black nodes on any descend-
ing path to a leaf is the same. For each node v in a red-black tree, define the black
height of v, denoted bh(v), to be the number of black nodes, not including v, on arty
dascending path from v to a leaf. So all leaves have black height 0. Define the black
height of a red-black tree to be the black height of the root. The black height of the
tree in Figure 16.5.3 is 3.
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Lemma 16.5.2. A red-black tree with n internal nodes has height at most

21og2(n+ 1).

Proof: The proof is in two parts: first a claim (involving black height) is made arid
proved inductively, and then some calculations follow the claim.

Claim: For any red-black tree T and any node v of T, the subtree rooted at v
contains at least 2b1,(v) — internal nodes.

Proof of Claim: This is achieved by induction on the height of a node. [This
is another example of structural induction; the usual formal style is partially aban-
doned here. This proof could have easily been given as an exercise-— if the hint to
induct on height was
BASE STEP: If the height of v is 0, then v is a leaf (with bh(v) = 0). In this case,
the suhtree rooted at v contains no internal nodes, and 2bht(x) — 1 = 20 — I = 0.
INDuCTION STEP: Let r > 0 and suppose that for all nodesw of height less than
r, the subtree rooted at w contains at least — 1 internal nodes. Let v have
height r > 0; then v is an internal node with 2 children. If v is black, then each of
its children has black height bh(v) — 1; if v is red, each of these children has black
height bh(v). By the induction hypothesis (where each of these two children play
the role of w above), the subtrees rooted at these two children each have at least

— 1 internal children. In all, the tree rooted at v has at least

— 1) + 1 = 2bh(u)
— 2 + 1 = 2bh(v)

—

internal nodes, satisfying the claim for any vertex at height r, thereby completing
the inductive stcp.

Figure 16.2: A red-black tree with 20 internal vertices and 21 leaves
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By mathematical induction on height, for all v, the Claim is true. 0
Returning to the proof of Lemma 16.5.2, let T be a red-black tree of height h

and with it internal nodes.
Because of property 4, where v is the root of the tree, along any downward path

from the root to a leaf, for every red, there is a black, and so the number of non-root
blacks is at least the number of reds on that same path. Hence the black height of
the root of T is at least h/2. By the claim above, since the tree rooted at v is T
itself, n 2h/2

— 1. Upon solving for h,

Ii � 2log2(n+ 1),

as desired, completing the proof of Lemma 16.5.2. 0

16.6 Complexity

Recall that complexity is the "run—time" of an algorithm. Usually it is the size of the
input, and f(n) is the number of operations performed by executing the algorithm
upon such an input of size rz.

16.6.1 Landau notation
Often one is not concerned with finding precisely values for some function 1 :

hut only the "order of magnitude" of values 1(n). For example, in the study of
run times for algorithms, one may care only that, for "large it", f(n) behaves more
like a2 or like a log2(n). To compare functions and their asymptotic rates of growth,
certain notation is helpful (due to Landau).

For two functions f and g, write f = o(q) [read "f is little oh of g"] or f(n) =
o(g(n)) if and only if = 0. For example, ln(x) = o(x2). and = o(1).

Hence, the notation f(n) = (1 + o(1))g(n) means that f and g are approximately
equal for large it, that is, = 1, in which case one often writes f g.

two functions f and g, if there is a constant C > 0 and some rio so that
for every mm � f(n) < C . g(rm), say that f is big 0/i of g. One often writes
f(n) = O(g(n)), even though this is really an abuse of notation since 0(g(n)) is
really the class of functions that are big Oh of g, and so one might more properly
write f(n) e O(g(n)). For example. 3n(ln(rz)+ 1) 0(n2), or n2+l 0(3n2 + 14n).

turning the big oh notation inside out, define f = if arid only if g = 0(f).
If both f = 0(g) and f = Q(g), write f = 0(g); this essentially describes the
situation where f and g satisfy cg <f Cg for some constants c and C.

In analysis of algorithms, another notation is convenient: for a positive integer
A: and positive reals i,b with fi > 1, let denote the iterated logarithm, i.e.,

— and for k > 1, =
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16.6.2 The master theorem
In marty "divide and conquer" algorithms, erie encounters a recurrence of the form

= 2f(n/2) + h(n), where h is usually a linear function of ri. For example,
when n = 2k, suppose that f(n) is the number of comparisons necessary to find
the maximum and minimum elements of a set of n distinct real numbers. Split the
set of numbers into two groups, find the max and mm in each group, thereby using
2f(n/2) comparisons. To find the global max and mins, two more comparisons are
necessary. So f(1) = 0, 1(2) = 1, and for larger n, the recurrence 1(n) = 2f(n/2)+2
is found. How does one solve such a recurrence? With a little experimentation, one
discovers that f(4) = 2, f(4) = 21(2) + 2 = 4, 1(8) 2f(4) + 2 = 10, f(16) = 22,

f(32) = 46. It seems as if f(n) E 0(n). In fact, this is true and follows from a
special case of a more general "master theorem" explained below.

For many such recurrences, it is nearly hopeless to arrive at a closed form;
however, an order of magnitude can be calculated in some cases. Some divide and
conquer algorithms have simple run time (the basis for binary searches):

Exercise 566. If A,, = {ai, a2 a2n } C IR is a set of 2" real numbers in increas-
ing order (i.e., if i < j then < a1) and x e IR, then the number of comparisons
necessary to detennine whether or not x E is n + 1. Hint: divide and conquer.

The following, called "the master theorem", covers many cases of divide and
conquer, even when the number of parts b a job is divided into is larger than two.
The proof of this master theorem has a proof which is largely based on induction
(beginning with the case where n is a power of b, and then a lot of careful detail to
handle cases where n/b is not an integer). There are many variations of this theorem
in the literature, many more adapted for special cases. See, e.g., [119, pp. 73—84]
(with complete proof), [346, p. 32]. or [464, pp. 244ff] (for the case a = b = 2 with
a nice induction proof).

Theorem 16.6.1 (Master theorem). Let a, h E Z+ where h > 1, and let some
function Ii: Z÷ —* Z+ be given. If f is defined by the recurrence, f(l) = 1, and for
n > b,

f(rt) = af(n/b) + h(n),

where f(n/b) is taken to mean either f(k/bj) or f(In/bl), then

I. If there exists a constant e > 0 so that h E ()(711o56(a)—C), then 1(n) =

2. If there exists a constant K � 0 so that h e logs' n), then f(n)
O(nIOSh@) n).

3. If there exists a constant e > 0 so that h(n) = and if for some
constant c c 1 and sufficiently large n, a h(n/b) � h(n), then f(n) =
e(h(n.)).
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In the problem above for finding both the maximum and minimum in a collection
of 2k distinct real numbers, use a = b = 2, h(n) 2, and 1, Theorem 16.6.1
confirms that = 0(n).

An inductive proof for the case a = b = 2 is similar to that of a proof by upward
and downward induction as in Section 3.3, first solving the cases when it is a power
of 2, and then filling in the steps going downward—however induction does not
seem to be needed to fill in the gaps, only meticulous handling of floor and ceiling
functions (which take a few pages).

16.6.3 Closest pair of

The next example is a computational geometry problem brilliantly solved with a
divide and conquer approach as given by Shamos and Hoey [484] in 1975. The given
case here is only for points on the plane. but a similar result can be obtained for
points in any metric space.

Problem: Given n points in the plane find a pair of points whose distance is
closest.

One way to find such a closest pair of points is to simply compute and list
each of the distances for all C) = 0(n2) pairs, and then in a single pass (with
it — 1 comparisons in a "take the best so far" algorithm), find a closest pair. [One
may assume that no distance is repeated, and so only one such pair is found.] If
computing a distance counts as an operation and if comparison is an operation, then
the total number of operations in this "brute force" algorithm is 0(n2) + ii — 1

0(n2). However, with a simple divide arid conquer approach, an algorithm uses only
0(n log2 n) steps.

Here is a brief explanation of the algorithm from [484] (also see [1191 for the many
details overlooked here.) Describe the procedure with run time f(n) as follows: Put
f(i) = 0, f(2) = 0, and 1(3) = 3, Let n � 3, and suppose that for all in < n, the
procedure has been defined for in points, taking f(rn) steps. Let X be a set of a
points in the plane, and without loss of generality, suppose that all x-coordinates are
different (if they are not, one can rotate them a bit, or use non-vertical lines in the
algorithm). Let X = XL U XR be a partition of X into equal or almost equal parts
determined by some vertical line €. Now call the procedure twice, once for each of
XL and Thus the closest pair in Xt and and the closest pair in XI? are found in
IQn/2j) + f([n/21) steps. For simplicity, assume that a is even. Then the two pairs
are found in 2f(n/2) steps. Pairs with one point on each side of £ may have smaller
distance than in either of XL or XR, so such pairs must be checked. in all, there are
n2/4 pairs. but they need not all be checked. The remarkable observation is that, for
ally point near £, only six neighboring points need to he checked (essentially because
if a point is at minimum distance to another, at most six other points can fit in a
circle having the previous minimum distance as its radius)! So at worst. 6n/2 = 3ii.
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triore pairs need to be checked. Thus f(n) < 2f(n/2) -4- 3n. By the master theorem,
f(n) E O(nlog2(n)). D

See Exercise 700 for another exercise regarding distances in the plane.
Many other algorithms, like those finding a convex hull of points (see, e.g. [438]

or [119, 947—957]), or other computational geometry problems (see, e.g. [481, [420])
can be analyzed in a similar "divide and conqi.mer" method.

The following is the key behind "mergesort", where a linear order is found by
splitting the input into two halves, sorting each, then gluing them together. The
following two exercises might be considered typical applications of structural induc-
tion.

Exercise 567. Prove by induction that the number of comparisons needed to merge
two disjoint sorted sets with k and £ distinct elements respectively is at most 1.

Exercise 568. Prove that the number of comparisons needed to place a set of
different real numbers in order is bounded above by





Chapter 17

Games and recreations

One day, when I was doing well in class and had finished my lessons,
I was sitting there trying to analyze the game of tic-tac-toe... The
teacher came along and snatched my papers on which I had been
doodling... She did not realize that analyzing tie-tac-toe can lead into
dozens of non.trivial mathematical questions.

—Martin Gardner,

Math. Intell., 1997.

17.1 Introduction to game theory
Games have been played by humans for centuries, and until receiitlv, the study
of games seems to have concentrated on some board games and games of chance.
Presently, the study of games concentrates more on strategy and maximizing payoffs
or minimizing losses, especially in business ventures or tactical situations. Early in
the 20th century, Emile Borel is often credited as starting t.he new theory of games.
In 1928, ,John von Neumann [5541 published his first paper on game theory, withì the
more extensive treatise Theory of Games and Economic Behavior [3931 co-authored
with the economist Oskar Morgenstern appearing in 1944. Another soon to be classic
'I'Iie Gompleat Strategyst [572] (primarily on two-person zero sum games), appeared
in 1954 and 1966. Other "modern" texts on game theory include [41], [359], [379],
and [447] (to name but a very few). Game theory today is now extensively studied
in economics, operations research, military, political arid other social settings, with
the foundational work of von Neumann and John Nash standing out. The book
[530] gives an account of game theory in terms of livpergraphs.

Game theory is now a very broad subject, addressing many questions regard-
irig (to list just a few) winning strategies, expected winnings, minimizing losses and

289
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maximizing gains, zero-sums gaines, perfect and non-perfect information gaines, con-
tinuous or infinite gaines, equilibriums and saddle points, n-person games, games
with no natural outcome, voting theory, and tree games. Much of modern game
theory is represented with and analyzed by matrix theory, probability (for games of
chance), and linear programming-—mathematical induction seems to be only occa-
sionally used explicitly in such discussions regarding game theory.

The paper [113] discusses extensively backward induction in game theory, in-
cluding the centipede game, NIM, the Prisoner's dilemma, the chain-store game (a
game with real world business implications), and essentially, the colored hats puz-
zle (with muddy children, instead). The "backward induction paradox" and many
topics mentioned in that paper are not developed fully here. A second paper about
induction in game theory is [127], about backward induction in mortgage analysis,
with reference to Monte Carlo analysis in finance. The paper [301] addresses "in-
ductive game theory" with respect to Nash equilibrium and other topics. In [530,
103-108] is an inductive proof of a major result due to Snevily regarding Chvátal
points in a simple game (details go beyond the intended scope of this section).

The following sections on games only include the analysis of a small class of
games where induction is highlighted. For many more examples of induction applied
to games, see ]462]. For a general introduction to gaines that has many carefully
worked simple examples regarding matching algorithms, social justice issues (includ-
ing voting theory and Arrow's theorem), cooperative games. arid many others, see
[241.].

In many simple finite two-person gaines, analysis of strategy can invoke inductive
reasoning: aft.er all. a player's next often depends on the position that arose
from previous moves. ln On Numbers and Games [us], John Conway developed a
notation for such gaines that is inductively defined.

17.2 Tree games

17.2.1 Definitions and terminology

Definition 17.2.1. A lice game is a two-player (White and Black) game where the
players take alternate turns mnakiimg a move, where

(i) at each turn the next. player has only finitely imiany possible moves,

(ii) cacti player knows the moves of the opponent (the game is a "perfect informa-
tion game"), and

(iii) the game takes at roost a l)redetermnined number of moves, and at or before
the end of that number of moves, the outcome (one player wins or there is a
draw) is determined.

Note: Sonic authors (e.g., sec [533]) insist that there are no draws in their
definition of a tree game.
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For example, tic-tac-toe is a tree game, but poker is not. Bridge is a tree game,
where a player is really a team of two players. Chess can he considered as a tree
game, for under many systems of rules, if a position is repeated three times, a draw
is declared. (Many chess games are timed, or have a limit of say, 52 moves.) The
famous compilation Winning Ways [49] (the older version has two volumes, a more
recent edition has four volumes) is perhaps the bible of two-person tree games; see
also [246]. Backgammon, flex, and NJM are all tree gaines. Rock-scissors-paper is
not a tree game as players do not alternate moves. For topics covered here and more,
the delightful book Excursions into Mathematics [42, Ch. 5] contains a very easy to
read introduction to game theory, in particular, tree games. Simi'ar comments can
he made about [533], although it is probably harder to find outside of the Chicago
area.

Tree games can be represented by a rooted tree (see Section 15.2 for relevant
terminology): the vertices of the tree are the possible positions of thc game (where
the root is a starting Position) and there is a directed edge from position Pi to P2 if
there is a proper move from Pi to [To get an actual tree structure, some positions
max' be repeated; also, a game may have many starting positions, so one null position
might serve as a root for the tree—or could one call these "forest games"?] Condition
(i) above ensures that the associated tree is locally finite (for each vertex v, there are
only a finite number of positions P1 so that v —* Condition (iii) above guarantees
that the tree has only finite height (tile length of its longest branch).

A strategy for playing a game is a set of rules that determine the moves of a
player, that is, if S is the set of possible positions of a game. then a strategy is a
function tb : S —, S.

Convention dictates that White is the player who moves first. If it is possible for
White to win no matter what Black then moves, one says that "White to win" is a
natural outcome, or that White has a winning strategy. Similarly, define the natural
outcome "Black to win". If both players can prevent the other from winning, the
natural outcome is a draw. If 9 is a game, then Q' is the game with the roles of
Black and White reversed; 9' is called an inverted game, the inverse of 9. If 9 is a
game with a natural outcome, then 9' also has a natural outcome.

A position of the game is called an N-position if the next player to niove can
force a win, and a position is called a P-position if the previous player can force
a win. An N-position is often called a winning position and a P-position is called
a losing position. These definitions avoid one having to say that a position is a
winning or losing position for which player.

Remark: A position is an N-position if every proper move results in a P-posit ion,
and a position is a P-position if every proper move then results in an N-position.

Exercise 569. Prove by induction on the length of the tongest sequence of moves
that every tree game has a natural outcome.

Exercise 570 (December 31 game). Two players alternately select from among the
365 dates in a calendar year. On any move, a player can increase the month, or
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the day, but not both. The starling position is January 1, and the player naming
December 3! is the winner. The first player can name any day in January, or the
first of any month. Derive a winning strategy for the first player.

17.2.2 The game of NIM
The game of NIM is played by two players. 'l'o begin, some stones arc presented
in various piles. A move consists of one player removing any positive number of
stones from any one pile. The players alternately make a move. The winner is the
player who picks up the last stone(s). For example, if there are only two piles each
consisting of two stones and the first player removes both stones from the first pile,
the second player wins by removing both stones from the second pile. If however,
the first player removes only one stone from the first pile, the second player can force
a win by removing only one stone from the second pile (because the first player can
not remove both remaining stones on the next move).

Consider p piles to he in some order, and at some point in the game, suppose
that for each i, let denote the number of stones in the i-tli pile. Such a position
is denoted by (nt,n2,... In the above example with starting position (2,2),
the position (1,1) is a losing position (a P-position); the position (0,0) is also a
P-position.

The game with starting position (1,3,5,7) is now popular; a variant of it was
played iii the movie "Last year at Marienbad" (see [42, p. 341]). The word "NIM"
apparently comes from the German word which means take". [In
Germany, take-out food is ordered 'nehmnen mit", to "take with".]

Exercise 571. Prove that the posilion (1, a, it 1) is a losing position in NJM if
and only zf a is even.

The secret to finding a winning strategy in NIM is in evaluating what are called
For a position (ill, a2.... cleflne at(ni, . . . to be suni of

the i-tIn binary digits of nj (1 � < t). The following is well-known:

Theorem 17.2.2. A position ,n2 at) in NIlvi is a P-position iff for each
j = I I, the NJM-sum a is even.

So a winning strategy for a game of NIM is to remove stories from one pile
that makes all NIM-sums even. One might notice that if a position already has all
NIM-sums even, then it is impossible to remove any stones without destroying this
pattern. The example (1. 3, 5, 7) is a losing position (P-position) because 1=1, 3=11,
5=101, and 7= lii; the MM-sums are (from left to right) 2, 2, and 4 respectively.

As another example, (41,58.26,9) is a P-position: 41=101001, 58=111010,
26=11010, and 9r1001. The sums of the six columns are (from left to right)
2,2,2,0,2,2, respectively.

On the other hand. the position (150, 37, 93. 106) is an N-position:

= 10010110,37 = 100101.93 = 1011101, and 106 = 1101010.
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and the column sums are 1,2,2,2,2,3,2,2 respectively (so bad columns correspond to
the digits in the column and the 22 column). In fact, there is only one winning
move, removing 132 = 128 + 4 = + 22 from the first pile:

150 = 10010110 —* 00010010 = 18.

The following exercise is given without solution. however the same idea is used
in Exercise 573, which does have a solution.

Exercise 572. Prove Theorem 17.2.2. Hint: Induct on the sum of the n2 's.

One can extend the game of NIM to NIM(k), where the rules are the sane as
NIM, except that a player may remove stones from up to k different piles. (So NIM
is the same as NJM(1).) Call a position in NIM(k) satisfactory if for every i, Cj 0

(mod k + 1).
The following exercise is non-trivial.

Exercise 573. Prove by induction on n = n1 + + ng that a position (ni,.. ,n1)
in NIM(2,,) is a losing position (P-position) if and only if it is satisfactory.

For example, the position (7, 8, 9, 10) is an N—position for NIM(2); the move to
(1,8,9,9) creates a P-position.

'Ilie reader might have already observed thai Theorem 17.2.2 says that a position
in NIM is a P-position ill for every i, 0 (mod 2), and so is a satisfactory
position. The interested might guess that NIM and NIM(2) are special cases of the
following exercise (given without solution).

Exercise 574. that for each k ? 1. a position in NJ !VJ(k) is a P-position if
it is satisfactory.

17.2.3 Chess

In chess, a move consists in moving two squares vertically and one horizon-
tally, or or two squares horizontally and one vertically.

Exercise 575. Suppose that a knight sits on a chessboard, infinite in every direction.
Let f(n) denote the number of squares the knight could reach after precisely n moves.
Observe that front Figure 172.3, f(0) -= 1 and f(1) = 8. Prove that f(2) = 33, and
for n � 3, f(n) = in2 + 4n 1- 1.

Exercise 576. Let an infinite chessboard have squares labelled (in, it), where m and
it are positive integers. Show that by starting at (1, 1), a knight can reach any square
on the chessboard in a finite number of moves.
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17.3 Tiling with dominoes and trominoes

The next few problems fall under what are known as tiling problems. A polyomino
of order s is a shape consisting of s identical squares attached by edges. Solomon W.
Golomb introduced polyominoes in 1954 [2181, and wrote a popular book [2191 on
the topic. For the interested reader, a standard modern reference is George Martin's
hook [365) on the subject. (See also [292, p. 45], for further references.)

A domino is a shape formed by joining two squares of same size along an edge.
(In actuality, dominoes have dots on them, but the dots will not be used here.) A
standard problem regarding dominoes is found in Exercise 577, related to Fibonacci
numbers.

Exercise 577. Show that the nurrther of ways to place dominoes in a 2 x n array is
a Fibonacci number.

There are only two polyominoes of order 3, called trominoe.s, namely three
squares in a row, and three forming the shape of an L. There are many tiling
problems for polyorninoes in general: however, only a srriall sample of problems for
L-shaped trominoes is given here.

To gain familiarity with the general idea, the reader might first try to take three
L-shaped trominoes and form a perfect 3 x 3 square—it can't he done. How about
a 3 x 5 rectangle? A 5 x 5 hoard with a missing square next to a corner can not be
covered by L-shaped trominoes; however, such a board with a corner missing can
he tiled.

The next exercise is rather easy, and does not really riced induction:

Exercise 578. For any rn and ii that are multiples of 2 and respectively, an rn x n
checkerboard no squares missing,) can be covered with L-shaped trominoes.

Exercise 579. For any n � 2, a 6 x n checkerboard can be covered by L-shaped
t'rorninoes.

Figure 17.1: Squares reachable by knight after 0 or 1 moves
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Exercise 580. For each n E V, a x 272 checkerboard with any one square
removed can be covered with L-shaped trominocs.

The next two exercises are far more challcnging; solutions are only outlined.

Exercise 581. For any even number ii � 14 thaI is not a multiple of 3, an ii x n
checkerboard with any one squarc removed can be covered by L-shaped trominoes.

Exercise 582. For a > 5, every n x ii checkerboard with a square missing can be
covered wit/i L-shaped trominoes if a is odd and 3 divides n2 — 1.

17.4 Dirty faces, cheating wives, muddy children, and
colored hats

Problems and puzzles in this section may he roughly described to be of the type

I know that you know that I know that you know that I know

The remarkable feature of the puzzles in this section is that information is gained
by people repeatedly saying "1 don't know." Some authors might loosely classify
the problems in this section as "knowledge propagation" problems, or "common
knowledge" problems, falling into a modern area of epistemology some have recently
called "reasoning about knowledge" (see [184]).

The variety of problems of this type now includes puzzles regarding (to name but
a few) dirty faces, holding cards tip to one's forehead, cheating wives, muddy cliil-
dren. and colored hats. (See [511] and other references below for examples.) Some
of these problems are simply a restatement of others; some enjoy subtle differences.
Only a very brief chronology of four such problems is given here, the first three of
which are essentially the same problem, and the fourth a slight strengthening of the
first three.

17.4.1 A parlor game with sooty fingers
According to [66], the history of the following problem goes back to at least 1832,
from a game where people pinch their neighbor on the face, amid sonic of the people
have soot on their fingers. If two people end up with a smudge on their faces,
everybody laughs, hut each of the two with a smudge think that the rest are laughing
at the other. Also according to [66], a version with three people was mentioned in
the mathematical literature in 1935.

One of the popular variants appeared in Littlewood's W53 A Mathematician's
Miscellany [348, p.3] (or [3'19, p. 25]). Implicit in Littlewood's story are the following
rules or assunil)tions:

• Three intelligent and honest women A, B, and C, are riding together on a
train.
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• Sonic or all of the women have a dirty face, each woman riot knowing the
condition of their own face.

• If a woman sees dirt on the face of another, she begins to laugh.

• Any worrian who is laughing stops laughing if and when she (correctly) deduces
that she also has a dirty face.

The original statement of the problem starts out by saying that all three women
have dirty faces, and hence all begin to laugh; carl each deduce the condition of their
own face?

Can A deduce that her face is dirty? She might argue as follows: Suppose that
her face is not dirty. Then B ought to know that B has a dirty face because C is
laughing at someone other than A. Since B is still laughing, A deduces that her
face must he dirty.

Litt.lewood ioint.s out that an extension to n ladies, all laughing, is possible
and is provable by induction. How would such an argument go? The induction
essentially proceeds on the number of dirty ladies—arid some kind of time-step for
each logical conclusion: suppose that ladies A1 AT, all have dirty faces. Then
A1 can conclude her face is dirty when the remaining ii — i women have not, after
a reasonable amount of time, yet concluded what their own conditions are.

What is a amount of time? The next two variations of the dirty
face puzzle have since clarified how long is reasonable by incorporating into the
puzzle steps thai can count the decisions and inferences being made.

17.4.2 Unfaithful wives

In 1958, George Garnow and Marvin Stern [206, pp. 20- 231 published time problem
(or puzzle. or paradox) of time "unfaithful wivcs".

The unfaithful wives problem highlights that the reasoning by the women in the
train riot only must take place in steps, but also that the reasoning also works when
not all of the faces arc dirty. [The analysis for dirty faces on the train also works
when not all women are dirty.]

In the original version, Sultan Ibn-al-Kua knows that 41 wives in a city are
unfaithful, including time wife of his vizier, and decides that something needs to be
done. The sultan proclaims that if a husband can correctly deduce that his wife is
cheating, he should shoot her. The vizier was not so intelligent as the rest of the
citizens in the city, arid only 40 of these wives were discovered and shot. The version
here only has 40 cheating wives. The assumptions are:

• A city has ii � 40 married couples. and a Sultan who rules the city; the Sultan
is not married.

• Precisely 40 of the wives are cheating on their husbands.
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• The Sultan announces that at least one wife is cheating, but does riot share
precisely how many.

• If a particular wife is cheating, everybody iii the city except her husband is
aware of the infidelity.

• Husbands never find out about their wives' activities through personal corn-
rnunication.

• All husbands are honest, intelligent, and think logically.

• If a husband of a cheating wife carl logically (and correctly) deduce that his
wife has been stepping out, then he makes such a deduction, and by an order
from the Sultan of the city, shoots his wife.

Two more assumptions are implicit in the problem, but for clarity are given explic-
itly:

• All shootings are to occur at roughly the same lime each evening.

• All husbands can hear precisely how tmiariy shots, if any, are fired each evening.

On the day the proclamation was announced (day 1), rio shots are fired (and all
citizens "hear" no shots). Up to and including day 39, no shots are fired, however,
on the 40th day, there were 40 shots, all of the cheating wives being shot (and no
more). [The version from [206] actually started on day 0, arid on day 40, forty wives
were shot, but one wife escaped execution because her husband was incapable of the
logic required.]

What is the logic behind the unfaithful wives problem? Rather than totally
expounding on such a morbid, insensitive, arid politically incorrect puzzle, only a
brief discussion is given here. The 'muddy children" puzzle in the next section has
precisely the same ingredients, and so more of the logic is examined then.

Rather than forty wives cheating. suppose that only one wifc, W is cheating on
husband H. On day 1, all but H know that 14' is cheating, and H knows that no
other wife is cheating, but because of the announcement, by the Sultan, knows that
at least one wife is unfaithful, so it must be his wife.

The next simplest case is when two wives are cheating. say W1 and W2, married
to H1 and respectively. On day 1, both H1 and 112 know about each other's wife,
but not about their own wives. At the end of the first day, no shots are tired, and
so each concludes that at. least two have been unfaithful (otherwise the scenario is
like in the last paragraph, arid someone would have been shot). Since, for example,

knows that l4'2 is cheating and at most one more is cheating (his own wife, fl71),
H1 deduces that his wife is cheating; 1-12 arrives at a similar conclusion, so on day
2, both W1 and are shot.

An inductive argument then shows how it was that on the fortieth day, all
cheating women were shot,. See the next section (Exercise 583) for the proof.
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17.4.3 The muddy children puzzle

A more sensitive variant of the cheating wives puzzle, which is
identical'S, has recently become a standard presentation. This variant is called the
"muddy children puzzle", perhaps first formulated by Barwise [39] in 1981. A slight
variation of this puzzle is as follows:

• n > 1 children are in a playground, all honest and very clever.

• Each child may or may not have a muddy forehead; each child cannot see mud
on their own forehead, but can clearly see all oilier foreheads.

• There are k � 0 children with a muddy forehead.

• A teacher proclaims publicly that at least one child has a muddy forehead,
that is, the teacher informs the group of children that k � 1. The teacher does
not. state the precise value of k.

• Oiice each minute, the teacher announces the same statement: "if any of you
know for certain that your forehead is muddy, all at once, raise your hand—
now".

n = I, then k = I and so the one child knows before the first announce-
ment. by the teacher.

When it = 2 and k = 1, the muddy child sees no mud on the other, and so
can raise a hand upon the first announcement; the non-muddy child sees mud on
the other, and cannot yet tell the state of his/her own forehead. When n 2

and A = 2, each of the two children see a muddy forehead, and so upon the first,
announcement, neither can raise a hand. Upon the second announcement, each may
conclude properly that their own forehead is muddy; each argues that if only one
had a muddy forehead, one would see no muddy forehead and so that. child would
have been able to deduce mud on his/her forehead before the first announcement.

The general claim is that after k — 1 announcements, nobody has yet put up
a hand, and after the kth announcement, only the k muddy children raise a hand.
However simple this claim is, in order to prove it by induction, it is convenient to
state the claim in much more detail:

Proposition 17.4.1. If ii � 1 children play the above game, where precisely k � 1
of the children have muddy foreheads (1 � k < it), thcn after each of the first k — I
repetitions of the teacher's announcement, no child raises a hand, but only after the
kth announcement, all of the k muddy children raise their hand (arid no others do)
by using reasoning based on seeing only k — I other muddy faces. Furthermore, after
the (k •i— 1)st announcement, all children raise their hand, the non-muddy children
basing their conclusions upon seeing k muddy faces (and those children raising their
hands upon the kth announcement).
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The solution to the following exercise is given:

Exercise 583. Prove Proposition 17.4.1 by induction on k.

17.4.4 Colored hats

In Martin Gardner's book Penrose Tiles to Trapdoor Giphers 1214, pp. 138-1491,
the dirty faces (or muddy children) puzzle is taken to yet another level.

Three men, A, B, and C are in a dark room, and someone puts on each head
either a red hat or a black hat. The lights are turned on, and each can see the hats
of the other two men, but not his own. Any man seeing a red hat must raise his
hand. The first person to deduce the color of his own hat is the winner.

If all three hats are red, everyone raises their hand, and the fastest thinker of
the three, say C, could deduce the color of his own hat as follows: if C's hat were
to have been black, A would know that since B sees a red hat, it must be A's, so
A would quickly announce that his hat was red, but lie hasn't done so yet, so C
deduces that his hat is red.

Consider the case with four men, all with red hats, arid suppose that D is even
quicker than the rest. He reasons as follows: "The other three have red hats. If
I have a black hat, the remaining three have red hats, and they now are in the
situation above. So if I have a black hat. the fastest of the remaining three, say C
again, will deduce his hat is red, but he doesn't, so mine must be red."

Arguing by induction, if it. men have red hats. the fastest thinker, after waiting
an appropriate time, would deduce that his hat is red. Of course, the fastest thinker
would have to know how long it would take C to make the first deducl.ion, and
failing that, how fast it would take D to deduce his color, and so on, so in this
solution, one assumes that the fastest thinker also knows how fast the others are.

To eliminate vague aspects of the aforementioned inductive solution, suppose
that there are n men seated in a column, one behind aIiother, so that each can only
see the color of hats on mcii in front of them. There only n — 1 black hats and it
red hats (and the men know this). Each of the men are asked, in order (from the
back of the column), if they know the color of their own hat. Assume that each is
capable of making the deductive reasoning as above (arid they are honest). For the
case of three men, all with red hats, the man in the hack, A, answers "no", because
lie sees two red hats, and knows that one remains, perhaps on his head or not. B
sees one red hat and similarly can not deduce his color, so replies "no". Then C
deduccs that, because A said "no", there is at least one red hat in front of C, arid
if B were to have seen only a black hat, B would know that his was red; so B's
negative response indicates that B saw a red hat, and C answers

Exercise 584. Extend this last scenario to it men, ('it red hats, it — 1 black hats,
and all receive red) and prove that the man sitting at the front can be blind and still
deduce the that his hat is red.
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Returning to the original scenario with three men A, B, and C, each being able
to see the other two. If questioned in order, A will say "no", B will say "no" and
then C will say "yes". In fact, before A is questioned, both B arid C know that A
will say 'no", so to ask A provides no useful information. However, if the questioning
begins with B (skipping A), it seems that C can not make his deduction. Is this a
paradox? Not really, since when A is asked, C does not know that B knows A will
say "no".

17.4.5 More related puzzles and references

See Gardner's book [214] for a more detailed and lively discussion of induction and
colored hats. Gardner also expands on a wonderful paradox regarding cards with
consecutive integers on opposite sides, taken from Littlewood's Mathematician's
Miscellany [349, p. 26], a "monstrous hypothesis" attributed to the physicist Erwin
Schrödinger. [Note: There is a mistake iii Gardner's bibliography; the title he gave
Littlewood's book was A Mathematician's Apoloqy, the title of a book by G. H.
Hardy (1877—1947).] Gardner also cites [81], [144], [211, prob. 87], [3781, and [417],
(among others) as references for further reading.

Terence Tao recently put a version of the muddy children puzzle (called the
"blue-eyed islander puzzle") on his blog [526]. TIme comments posted might make
very interesting reading, as many readers seem to try very hard to find a flaw in the
language used to present the puzzle.

A recent (2009) article by E. Brown and J. Tanton [76] is an entertaining
introduction to the colored hats problem (arid many of its variants). The article
[66] also has many other puzzles related to the muddy children puzzle, including
the "consecutive integer game" (briefly mentioned above) the "arithmetic mean
game" (by David Silverman). the "sum game" (by Andy Liii), and the powerful
"Conway—Paterson game" (due to John l-Iorton Conway and Mike Paterson), which
generalizes the muddy children Puzzle.

See [548] or [258] for on-line articles for more on "reasoning about knowledge".
As mentioned above, the book Reasoning About Knowledge [184] describes many
applications of the kind of reasoning shown above to game theory, economics, arid
commnun icatiorm theory.

17.5 Detecting a counterfeit coin

Omme is given a collection of m ? 3 coins that all look the same, but one of which is
known to he counterfeit amid has a weight slightly different from that of a genuine
coin. Using only a balance scale (with two pans and equal arm lengths), how many
weighings are necessary to find the coin? This problem calm lie stated in another
way:
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Question 17.5.1. For an integer n � 1, what is the maximum number of coins
from among which a (single) counterfeit can be detected by at most it weighings.

Since the actual weight of the counterfeit coin is unknown, but close to the
original, the only kind of useful weighing is with the same number of coins are put.
in each pan (call them left and right). Note that for two coins, there is essentially
only one weighing. arid such a weighing does not reveal which is counterfeit, only
which is heavier. It follows then that in Question 17.5.1 only ii. � 2 and m � 3 need
be examined.

A fairly simple argument shows that a counterfeit coin can be found from among
at most m = 3 coins with at most n = 2 weighings: Suppose that one of three coins

(J2, arid G3 is counterfeit. Setting one coin aside, say C1, put C'2 in the left pan
and in the right. If the scale balances, then neither of G'2 or is counterfeit,
and so C1 is the fake (found after only one weighing). If the scale tilts to one side,
then C1 is not counterfeit, and one more weighing with C1 against C'2 gives enough
information to to say which is the counterfeit (arid whether or not it is heavy or
light).

With a bit of work, one cati see that two weighings are riot sufficient to determine
a counterfeit from among m � 4 coins, hut three weighings are. So the answer to
Question 17.5.1 for n 2 is in = 3 coins.

The next case, for three weighings, is already a hit complicated. It turns out that
from among at most 12 coins, a counterfeit can be found with three weighings. There
are essentially two different sequences of weighings, one sequence being contingent
upon outcomes, and another sequence prescribed in advance.

For the contingency method, label 12 coins A, B, C, . .. , J, and K. Follow the
weighings in the chart below, depending ott the outcomes; follow the left branch if
the left side is heavy, the center branch if the scales balance, and the right branch
if the right side is heavy.

Notice that there are only 24 possible outcomes. as three positions for the fitial
weighing are impossible (due to information gained from first two weighings).

Examine more closely the second weighing; some information from the first is
carried down. In the first ease, where ABCD is heavier than EFOR, then I, J, K,
and L are all genuine, so in the first weighing of the second row, I can he taken as
a genuine (or test) coin. Furthermore. A, B, and C are not light, and E and F are
riot heavy.

For the second case in the second row (when ABCD--EFCH balances), eight
coins are known to be genuine, leaving only I, J, K, and L, as unknown. Any one of
the first coins, in this case, A, can he used as a reference (or test) coin. The third
case in the second row is symmetric with the first case.

These two patterns (3 riot light, 2 not heavy, and 1 test coin, or, 4 unknown
coins arid a test coin) are actually early cases of some special variants of Question
1.7.5.1. To give a solution to Question 17.5.1, certain special cases or variants of the
question are shown first (each Iw induction). Some variants of the counterfeit coin
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1st ABCD EFGH
A

2nd ABE CFI IJ AK ABE CFI
A A A

-r -r #4'

3rd BGEIE I JALI J EJGHAB
A A rr A 1 A

-C

Ii&h! _E a_Q -K-- L I B
fièasyAB D E I J L K E GH F

Figure 17.2: Three weighings to find counterfeit among 12 coins

problem may now seem natural:

• The weight of the counterfeit coin is known (to be, say, lighter).

• One marked coin is known to be genuine (a reference, or labelled test coin, is
011€' of the coins).

• All coins are either white or black; if the counterfeit is white, it is light, and
if the counterfeit is black, it is heavy.

• Identify the n weighings in advance (riot using information from one weighing
to decide what to weigh next). [Suppose that some algorithm successfully
identifies a counterfeit coin from among in coins using ii weighings. If this
algorithm has steps that depend on previous weighings, such an algorithm is
called a contingency algorithm. If a sequence of n weighings can be prescribed
in advance, then this sequence is called a prescriptive algorithm. So this variant
is to insist upon a prescriptive algorithm.]

• At most one coin is counterfeit (as opposed to exactly one).

• After the counterfeit coin is identified, one must identify whether it is heavier
or lighter than a genuine coin.

• There are two (or more) counterfeit coins.

• There are any number less than in/2 counterfeit coins (there may be none).

The answer to the first variant (and including the sixth variant) is surprisingly
sin iple:
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Exercise 585. Suppose that a counterfeit coin is always lighter titan a genuine
coin. Use induction to prove that for each n E Z+, 3m is the greatest number of
coiru for which a single counterfeit coin can identified by (at most) n weighings.
flint: Partition coins into three equal givups.

The information that a counterfeit is always lighter is rather powerful; losing
this information reduces the number of coins (to about half-—see below) that work
for it weighings, but this number is still 3h1 for the black-white variant above:

Lemma 17.5.2. Sup pose that all coins are either white or black; if the counterfeit
is white, it is light, and if the counterfeit is black, it is heavy. Furthermore, assume
that the number of white coins and the number of black coins differ by at most one.
Under these conditions, for each n E Z+, a counterfeit coin can be identified and
classified among coins by (at most,) n weighings.

Proof outline: For each n e t, let 0(n) be the statement of the lemma.

BASE STEP: For n = 1. consider 31 3 coins, arid without loss of generality, suppose
that two are black and one is white. Put a black on each part and set the white aside;
if the scale balances, the white coin is counterfeit, and since it is white, is lighter
than a genuine coin. If the scales tips, say the left side clown, then the black on the
left is heavy (the black on the right can riot he light). In any case, the counterfeit
coin is identified from among three coins and classified as heavy or light, so 0(1)
holds.
INDUCTION IDEA: To see how the induction works, it is helpful to look next at the
case n = 3, assuming, for the moment, that 0(2) has been shown. Consider 33 = 27
coins, with, say, 11 black, and 13 white. Partition these 27 coins into three groups,
say with 4 black and 5 white, and 02 and 03 each with 5 black and 4 white. Put

on the left, weighed against 03 on the right. If the scale balances. the counterfeit
coin is in group and so 0(2) applies to a set of 9 coins, 4 black and 5 white. If
the left pan goes down, either one of the 5 black from 02 is heavy, or one of the 4
white from 03 is light; the induction hypothesis 0(2) now applies to these 32 = 9

coins. Similarly, if the scale tips to the right, the counterfeit is among the 4 white
in 02 or the 5 black in 03, and again 0(2) applies.

Once the inductive step is proved (see Exercise 586 below), the result is true by
mathematical induction. 0

Exercise 586. Finish the inductive step in the proof of Lemma 17.5.2.

Two points are to be made: First, Lemma 17.5.2 is still true for any distribution
of black and white (see [3641). Second. Lemma 17.5.2 is optimal; if more than 3"
coins are used, then at least -vi + 1 weighings are required (no matt:er what the
(listriblition of black and white).
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The following discussion might make the second assertion I)elievahle. Since each
weighing yields one of L, R, or B(alance), and in n weighings, there are 372 (theoreti-
cally) possible outcomes, one could not expect to have gathered enough infonuation
when more coins are used.

In fact, when one coin is counterfeit, a sequence of n balances does not help to
find and classify the coin, so at most 372 — outcomes make sense. When the relative
weight of the counterfeit is required, the number of different outcomes must be at.
least twice the number m of coins (each could be light or heavy), 372 — 1 � 2rn.
In fact, m must be slightly smaller, but before presenting the answer to Question
17.5.1, another variant is solved, where one coin is known as a test-coin.

Lemma 17.5.3. Fix n e Zt and consider a collection of coins, exactly one of
which is counterfeit, and one genuine coin is marked "test-coin". Then in =
is the maximum number of coins so that ii weighings identifies the counterfeit coin
and finds if it is light or heavy.

The following gives an answer to Question 17.5.1:

Theorem 17.5.4. For n e t', is the maximum number of coins, one of which
is counterfeit, so that n weighings identifies the coin and finds if it is light or hcavy.
If one needs only locate a counterfeit coin, and not classify it. as light or heavy, then
one more coin can he used, givin.g coins (and this number is optimal).

17.6 More recreations
En this section, only four puzzles are given, the first two of which have solutions that
involve iteration.

17.6.1 Pennies in boxes
Online sources say that this next problem is first found in [98, pp. 27281, where
there are many other applications and games that are solved by iterative processes.

Exercise 587. Suppose that N pennies are distributed among n boxes labelled
B1, B2. . . . , B,,. If box and have p, and pennies respectively, with
an allowable move is to transfer pennies from B3 to (doubling the number of
pennies in thc less full box). Prove that no matter what the original distribution
of pennies is, it is possible after only finitely many allowable moves, to transfer all
pennies into one or two boxes, and if the total number N of pennies is a power of
2, then all pennies can be transferred to just one box.

17.6.2 Josephus problem
The next problem is often called the "Josephus" problem, or the "Flavius" problem.
Josephus heti Matthias was a Jewish "priest' who became an unwilling soldier in tIme
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Jewish rebellion against the Rornans (in fact, he was made commander of Galilee).
The Jews were defeated in 66 A.D. and Josephus Was taken prisoner tinder Vespasion
Flavius. Two years later, Vespasion was named emperor, and subsequently, Josephus
was released, took the emperor's family name (calling himself Josephus Flavius) and
then became a soldier and historian for the Romans. Much of the history lie writes
about, he himself took part in.

The situation regarding the capture of Josephus is the basis of an intriguing
[to some, at least] mathematical problem. Facing ultimate defeat, Josephus's men
agreed that it would be better to comniit suicide rather than to he captured and
enslaved by the Romnans; Josephus was of another mind—- his men could not convince
Josephus to join the mass suicide. In fact, some passages of Josephus's writings seem
to indicate a certain animosity on behalf of his soldiers and they wanted him dead.
Josephus seemed to agree to join in if there were some kind of rule that would
determine how they would all die, a rule which perhaps appeared random, however
"allowed" himself (and one co-conspirator) to survive. Jn his own words [295, p.
787, 3.8.7, line 3881:

now" said he, it is resolved among you that you will die,
come on, let us commit our mutual deaths to determination by lot. 1-ic

whom the lot falls to first, let hint be killed by hint that. hath the second
lot, and thus fortune shall make its progress through us all: nor shall
any of us perish by his own right hand, for it would be unfair if, when
the rest are gone, somebody should repent and save himself."

Josephus did riot say how lots were arranged •—in his biography. he just coritin—
ties (line 391) "yet was lie [Josephus] with another [co-conspirator] left to the last,
whether he must say it happened so by chance, or whether by providence of Cod;..",
that he made a pact with another last survivor [whom I called the "co-conspirator"
above, though lie might have been innocent] and then the story moves on. [The
order of execution might have been else first"!]

From this story, somehow a mathematical question arose; I have not located
precisely who first invented this question, but somehow the story above has evolved
(into many similar stories). Perhaps someone first asked "if the pattern of suicides
is as follows - where should Josephus place himself in the pattern to survive?"
At least in the biographical-historical records of Josephus. there does not seem to
be any evidence of Joseplius applying xiiathematins to the l)rObleni.

So one story goes (see [267, pp. 121—126}) •Josephus and 39 others remained in a
cave, and to avoid their ultimate defeat and surrender, they lbrnned a suicide pact.
The soldiers were to stand around in a circle, say numbered 1—40. Beginning with
soldier number 7, every seventh surviving soldier in rotation was to he killed. In
one version, Flavimis did not want to die, and so calculated where lie must stand to
be the last person standing. (The soldier to be killed was to be killed by the next
soldier in the sequence, but for present purposes, it suffices to assume that each
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commits suicide.) In order, soldiers numbered 7, 14, 21, 28, 35, 2, 10, 18, 27, 36, 4,
13, 25, 32, 1, 12, 24, 34, 6, 19, 31, 5, 20, 37, 11, 29, 8, 26, 9, 33, 17, 3, 40, 39, 15,
22, 38, 16, 25, 30 are to be killed, so Josephus stood in position 30. [Note: in [267],
they claim position 24 is the right one; however, this must be because the soldier
numbered 1 was the first to go.] One could ask a more general question: what if
Josephus had a co-conspirator and both were to be spared? Where should the two
of them stand to he in the last two positions standing?

In another version (see [230, 8—20]) there were 41 soldiers in all, and every third
soldier is killed, in which case Josephus and his friend should then stand in positions
16 arid 31 if to survive. For more history of this problem, further references, and
other interpretations and generalizations, see [267] and [481].

For each n � 2, and q � 2 (it is possible that q � it) define J(n,q) to be the
last surviving position when it soldiers are in a circle and beginning with position
q, every q-th remaining soldier is killed. Apparently (see 12671), there is no closed
formula for J(n, q), however there is one for .J(n. 2) (given as an exercise below).
Before looking at the result in the exercise below, here is a chart for some small
values of it; can you spot the pattern?

it 2 3 4 5 6 7 8 9 10 11 12 13 14

1(71,2) 1 3 1 3 5 7 1 3 5 7 9 11 13

An expression for J(ri, 2) is remarkably easy to compute (see Exercise 588 below),
and one proof for this expression relies on an idea contained following more general
lernnia.

Lemma 17.6.1. For positive integers ri arid q (where q > it is allowed),

J(it+ 1,q) = J(n,q) ±q (mod it+ 1). (17.1)

Proof: Suppose that it + 1 soldiers are in a circle, named 1,2 . it + 1. The first
soldier to (lie is q modulo it + 1. The remaining it soldiers are

1,2,...,q—1,q+1,...,n+1 (modn+1),
and starting with q + 1, the soldiers

n,it+1,1,...,q—1,
form a new "game" with J(m, q) + q being the last to go. 0

Note that when q = 2, equation (17.1) says that

J(n+1,2) =J(it,2)+2 (niodit+1),
a key inductive step to finding a formula for f(it, 2).

Exercise 588. Provc that if it = + t, where t < then J(n, 2) = 2t + 1. Hint:
First prove the result by downward induction when it is a power of 2, and then apply
upward induction bettl'een powers of 2.
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17.6.3 The gossip problem
Consider a collection of n people, each person with a secret unknown to all others.
People phone each other sharing all information known at the time of the phone call.
Conference calls are not allowed. What is the strategy that allows for the fewest
number of phone calls that result in everybody knowing all the secrets?

For only one person, no phone calls are required; for two people, only one call
is necessary; for three people, three phone calls are required. With four people, say
A,B,C, and D, four calls are sufficient, say A-B, C-D, then A-C and B-D.

One obvious way to communicate all secrets is to first order the people, say,
F1, P2 If P1 calls P2, then P2 calls P3, and so on until calls then

is the only person knowing all the secrets. Then P71 knows everything, as does
so P,1 makes ii — 2 calls to inform the first n — 2, giving 2n 3 calls in all.

However, one can do slightly better.
In advance, the people are divided into four groups—to set ideas, portion the

people into roughly quarters, however the same proof works when the four groups
are lopsided. One person from each group is identified as a leader. Each leader
places phone calls to all other merribers of his/her group; the four leaders in total
placing n — 4 phoiie calls. Four phone calls between the leaders then share all
secrets, and each leader then returns to call everyone in their group. In all, there
are (n — 4) + 4 + (n — 4) 2uz — 4 phone calls.

Exercise 589. Show by induction that at most 2n — 4 calls among n people are
required for the gossip problem.

17.6.4 Cars on a circular track
Exercise 590. There are n identical cars (with engines off) stationed around a
circular track. Only enough gas for one car to complete a lap is distributed among
all cars. Show that there is a car that can make its way around a lap by collecting
gas from the other cars on its way.





Chapter 18

Relations and functions

2 hat flower of modern mathematical thought— the notion of a func-
tion.

—Thomas J. McCormack,

On the nature of scientific law and scientific explanation.

18.1 Binary relations
For more definitions relating to this section, see Section 2.6. Lct A and B be sets.
A binary ,elation from A to 13 is a subset of the ordered pairs A x B = {(x,y)
XE A,y B}.

If H is a binary relation from A to B, and S is a binary relation from B to C,
the cornposztzon of I? with S is a binary relation from A to C defined by

RoS= {(x.z) E A x C: Ry B[(x.y) E H, (y,z) Sfl.

(Caution: this notation can differ with the common notation for composition of
functions—-see comments following that definition.) Note that if H x B, S c
B x C, and T c C x 1) arc binary relations, then

(Ho 5) o T = Ho (SoT);

so in a sense, composition of relations is associative.
If H is a binary relation froni A to A (that is, H C A x A = 112) II is said to be

a binary relation on A. For a binary relation on a set A, define H' to he simply H,
and for each a ? 2. define recursively another relation on A, called the n-th iterate
of H, by

= { (i. z) : if there exists y A so that (x, y) C and (y, z) R}.

309



310 Chapter 18. Relations and functions

Under this definition of B't. R't' is composed with B; the reader can check that
if one were to define it recursively as the composition of B with instead, the
result, is identical. For example, if A = {a, b, c, d} and

B = {(a., b), (a, c), (b, a), (b, c), (c, d)},

then
B2 ={(a.a)Ja,c),(a,d),(b,b).(b,c),(b,d)}

and
B3 = {(a,b),(a,c),(a,d),(b,a),(b,c),(b,d)}.

Recall that a binary relation B on A is symmetric if (a, b) E B(b, a) E B.

Exercise 591. Let B be a symmetric relation on a set A. Prove that for each n � 1,
the relation B'2 is also symmetnc.

18.2 Functions

A binary relation f from A to B is a function (or mapping) from A to B if for every
a c A, there exists precisely one b c B satisfying (a, b) E f. If (a, b) e f, one usually
writes 1(a) = b arid say "f of a is equal to b". In this case, A is called the domain
of f, and {f(a) : a E A} is the range of f, sometimes abbreviated by "dom(f)" and
"ran(f)" respectively. The set B is sometimes called the codomain of 1.

Exercise 592. Let B C A x B be a binary relation from A to B so that for every
a A, there exists b B with (a, h) B. (In other words, A is the domain for the
relation B.) Use Zora's lemma to prove that there is a function f C B that is a
function from A to B.

(Compare Exercise 592 to Exercise 594.)

Exercise 593. Find all functions f : that satisfy f(2) 2, and for every
n V,

f('n+ 1) = 1+l.f(1)+2.f(3)±...n.f(n).
The next, exercises use the notation for composition for functions: if f : A B,

and g B C, then the composition of f with g is g o f : A C defined by
(g o f)(x) = g(f(a)) for each a A.

Note: In many texts, (for example [95]) the notation for composition of functions
is reversed so that in (f a g)(x) g(f(x)); iii this case, the function notation would
agree with the relation notation and ordered pairs, and to many students is the
most natural notation. The usage defined for this text, however, seems to be the
most common in American freshman texts; it also agrees with algebraic notation:
the order of action on r starts from the operator closest to x.
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Recall that a function f : A B is called sitijective (or is called a surjection)
(or onto B) if for every b B there exists a A so that 1(a) = h. The notation 'B
is also used to denote the identity function on B, that is, for every b B, 18(b) = b.

(Notation for the identity function on a set X varies widely, including ix and

Exercise 594. Let A and B be sets and let f : A B be a function. Prove, using
the Axiom of choice, that if f is surjective, there is a function g B A so that
Jo g = 113.

Exercise 595. Let °m,n be the number of surjcctioris (onto functions) from an in
element set onto an. n element set. counting onto functions, establish the recursion

°,n+1,n +

and use it to prove by induction that for each in, n 0,

Ornn

Prove also that this number is equal to n! times (the Stirling number of the
second kind, see Exercise Then derive the forowla for °rn,ii directly using the
definition of (see Section 12.9).

Recall that a function f A LI is one-to-one (or is injective or is an injection)
if for any a1 a2 E A, then f(a1) f(a2) = a2. Alt.ernativel, stating this in

the coi&traposit.ive, f is one-to-one if (11 02 f(ai) f(02).

Exercise 596. Let X and Y be fixed sets, each with ri elements. Let 771,, be the
number of injections from some subset of X into Y. Prove the recursion

m7, 'nm01 +- 1

and use this to show by induction that

ri!

caii you prove this by a direct argument? Remember that 0! = 1.

If the domains and ranges of functions are appropriate, then composition of
functions is a.ssociative, that is, for appropriate f, g, and h, f o (g o h) = (fog) o ii.
In the special case where f : .4 A, define f" to be f composed with itself ii times
(by associativitv, it matters not in what order the composition is carried out). The
function f" is often called the n—th iterate of f. For example, if f is a. function
fTh

: IR defiricd recursively by ft f and for any n 2 2 (and each x E
= 1(x))
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Exercise 597. For fixed real numbers a and b, define f : 1W —, 1W by f(x) = a(x +
b) — b. Prove that for every n e f"(x) = aTt(x + b) — b.

Exercise 598. Prove that for any function f X X and all in, n EE V, f"tof't =
fm-f-n

Exercise 599. Assume that a function f: 1W 1W is so that for every x, y E 1W,

f(x+y) =f(x)+f(y).

Show that f(O) = 0 and for every n E f(rz) nf(1).

In part of the solution to the next exercise, induction is used:

Exercise 600. Find all functions f : so that for all x,y E (i)
f(x(f(y)) yf(x), and (ii) f(x) — 0 as x —÷ cc.

The next function has the properties of the derivative operator.

Exercise 601. Assume that f : JR —, JR is so that for cvcry x, y E 1W,

f(xy) = xf(y) + yf(x).

Show that f(1) = 0 and for every n e f(x")

A function is called convex on [a, b] if for every a, y [a, b]. and for any
t (0, 1), f(tx + (1 — t)y) < tf(x) + (1 — t)f(y). (Often this dcuiiiition is stated just
for the case t = 1/2.)

Exercise 602. Prove that if f is convex on some closed interval Ia, hj, then for any
x1,. .. [a,b},

One can extend Exercise 602 to the following:

Exercise 603 (Jensen's inequality). Prove that for . ,p,, E- 1WH, if f
convex, then

f
<

Exercise 604. Fix some positive inteqer in. For any vector with positive integer
entries x = (xg,xj,x2,... ,x,) (regardless of length). put s(x) = Prove
that over all vectors x = (xv. x1, x2 xi) with positive inteqer entries that satisfy
x0 + x1 + x2 + ... + rn. the function s(x) is at most and reaches this
maximum precisely for the vector (1, 1 1) (of length in).
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The next problem uses C, the complex numbers. liz = 0 + bi (where i2 —1),

the complex conjugate of z is = a — bi.

Exercise 605. Prove that for any z E C and any ii e Z,

Perhaps the above exercise can be used as a warm-up for the following:

Exercise 606. Prove that for Zr, Z2,... E C, if f(zi, Z2 is obtained by a
finite number of rational operations (i. e., addition, subtraction, rrrultiplication, and
division), then

= f(zi,z2

The following few definitions are necessary to state a theorem that is central in
functional analysis.

A norm on a vector space V over some field F is a function II ' 1

: V - R that
satisfies the following three conditions: (1) Va E IF and Vv E V. ijavil — FailIvi]; (2)
lvii — 0 if and only if v 0; (3) Vv, w E V, liv 4. wIl � lvii + liwil. If IF iR. a
real linear functional on V is a function f : V R so that for all v, w c V and all
A C R, 1)0th f(v + w) = f(v) + f(w) and f(Av) = )tf(v). (So a linear functional
on V is a linear transformation f : V —-÷ R.) The set of linear functionals on V is a
vector space, called the dual space, denoted Vt. The norm on Vt is defined by

if ii = sup{lf(x)i x E V, lxii � i},

and a linear functional f on a real vector space is said to he hounded if there exists
c > 0 so that for every v C V, if(v)F

If X ç Y are sets and In : X is a function, then say that a function
f: Y —-' R extends fo if for every x C X, f(x) = fo(x).

'PIie next theorem is one of the so—called "three pillars of fmtctional analysis'.
The theorem has a complex analogue, yet is given here only for reals.

Theorem 18.2.1 (hahn Banach Theorem). Let X be a real normed linear space
(i.e., a vector' space over the field R with a non-n) and Al C X be a subspacc. If
f is a bounded (real,) linear functional on A'!, then f can he extended to a bounded
linear functional P on X so that ilFii = if ii.

[Notes: Al need not be closed, that is, Al need not he linit.e dimensional. Also,
norms are relative to their own domains. 'l'lte llahn—Banach theorem can be used to
give a separating hyperplane defined by P(x) = 0, and P(y) is positive or negative
depending on which side y lies ou.i

Exercise 607. Prove the Hahn—Banach Theorem using Zorn's 1cm-irma (or Hays-
dorif 's Maximality Principle) by extending f one dinrension at a time.
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18.3 Calculus

There are a few other problems in this volume that use or mention calculus; for
example, see Exercises 601 and 684.

18.3.1 Derivatives

Exercise 608. For rn � n, the n-th derivative of with respect to x is

d7'— —

(in—ri)!"

Exercise 609. If u1, , are differentiable functions of x, prove that

d duj. du2

dx dx dx dx

Exercise 610. Let f',f.2 be functions where for each i, limx....a exists.
Prove that

lirnHfj(x) = fjlimfj(x),

and

= Elimft(x).

Recall the basic product rule for derivatives: For differentiable real functions f
and g of a single real variable. the derivative of their product is

(fq)' = fg + fy'. (18.1)

The result in the next exercise might be called "the general product rule for deriva-
tives".

Exercise 611. Assuming the product rule in (18.1), prove by induction on ii � 2

that if fr,..., are differentiable functions then the derivative of their product is

(18.2)

The next exercise shows a different way to write the general product rule for
derivatives. (See Exercise 611 and its solution.)

Exercise 612. If uj, u2 are differentiable functions of x and

then y is a differentiable function of x and

y' it' ii'

7/ UI
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Exercise 613. Prove that if y = in x, (the natural logarithm), then

dtmy — 1)!

A similar exercise is found in Pdiya's book Mathematical discovery [435, Prob
3.85, pp. 97-98, Vol IJ:

Exercise 614. Using induction, show that the nth derivative f(") of the function
f(x) = is of the form

= ( flfln.irlx
+' / ' 1n+1 " /

where is an integer depending only on n (and not on x); express c,2 in terms of
n.

Exercise 615 (Leibniz's theorem). Prove that if u and v are differentiable functions
of x. then (using the notation £[f(x] = f(r))

/ \ fl, An—i.a 1fl1a U a. 1)

—liLt'] = I I—Jut dx' dx"'

18.3.2 Differential equations

'F he field of differential equations relies, in nranv ways, upon induction. 'I'he expo-
sure given here is only very hrief.

If y is an unknown function of x, but some information is known about the
method of undeter,nirtcd coefficients is often successful. Set y = c0 + c1x + c2x2 ÷
c3x3 , and find the constants c0, c1 c2, (:3, . . . by manipulating this power series,
multiplying it, and most often, by differentiating (at least once).

The following example was given by Pólya (see Problem 3.81 in [435, Vol 1, pp.
96—97]). If x and p satisfy p = I when x = 0 and

2. = x2 + y2 (18.3)

Express p iii powers of x as follows: Ebr unknown constants put p = co + c1x +
c2x2 + c3:r3 .. . Then equation (18.3) beconies

cm ± 2c2.r + + 4c3x3 + 2eoci x + (2coc2 + 4 + I)? . (18.4)

Comparing coefficients of terms with the same power of x,

ci =
2c2 = 2c0c1
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3c3 = 2c0c2 + + 1

4c4 = 2coca + 2C1c2

Vsing the initial condition y = I when x = 0, 1, and from the above system,
it is not difficult to recursively compute the next few constants: e1 = 1, c2 — 1,

= 4/3, and c4 7/6. What is the general expression?

Exercise 616. In the above example, prove by mathematical induction that for each
n�3,

Although the following is not exactly a question specifically requiring induction,
solving it familiarizes one with the method of undetermined coefficients.

Exercise 617. Show that the power series in x for the function p satisfying the
differential equation

d2y
=

and the initial Conditions y(O) = I and 0, has coefficients C2n and
= 0.

This next exercise was kindly written by Julien Arino for inclusion here, as my
knowledge of differential equations forms nearly an empty set. He informs me that
induction is a fundamental frequently used tool in differential equations. A standard
reference he gave inc was [46].

An initial value problem of the form

= f(t, x(t), x(t — 1))

x(t) = t E [—1,0]
.0

involves the delay differential equation x' = f(t, x(t), x(t — 1)), with delay here equal
to 1, and the initial data The next exercise addresses the existence, uniqueness
and regularity of the solutions to a delay differential equation.

Exercise 618. Use the so-called method of steps to prove that if f is a C' (con-
tinuously differentiable) function, then the solution to (18.5) exists and is unique
for all t � 0, given a C° (continuous) fanction on [—1,0], and that if is a
function of class 6W on [—1,0], then the solution x(t) to (18.5) is of class on
the interval [k — 1, Ii], for all k E N \ {0}.

18.3.3 Integration
Mathematical induction can sometimes be used when integrands have an integer
exponent. Recall that integration by parts (for either definite or indefinite integrals)
is applying the rule

/ u dv = uv
— f v du



f dx

arid bringing
forrrnila

I u =
(n

dv
V

siri(x)dx

'(x)(— cos(x)) — f(— cos(x))(n — 1) cos(x) dx

(x) cos(:i:) + (71 -- I) J cos2(x) sin"2(.x) dx

— cos(x) + (ri — 1) /(l — sin2(x)) dx

+ (n i)f —

the last term to the other side and dividing by ii gives the reduction

fsinhz(x)dx = '(x) + (18.7)

Application of (18.7) can be iterated until the most complicated integral remaining
is either fsin(x) dx (when ii is odd) or f dx (when n is even).

Sometimes, integration by parts needs to be used twice to find a reduction for-
mula. Other reduction formulae, also derived using integration by parts, include

J co.s"(x)dx =
f COS" 2(x) dx:
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for appropriate choices of u and dv that make the second integral "simpler", either
simpler to solve or easier to approximate. For example, if n is a positive integer,

/ IxnhinxIn_1!dx dv=dx
j j z du=nIlnxl v=xJ
whence one arrives at

f (18.6)

The equation (18.6) is called a reduction formula as it reduces an integral to an
expression with another integral of the sairie form, however with a smaller exponent
in the iritegrand. A more general form, derived in a similar manner is

/ dx = 1 [Xml dx.
J rn+1 m+1j

Reduction formulae can he found for some trigonometric iritegrnis; tbr example,
where n � 2,
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J

(it

f
f =

f
f f sin(x) dx.

The last two equations arc not precisely reduction formulae, but combining them
produces acl.i ml reduction formulae:

f sin(x) dx = cos(x) ± sin(x) — — 1) f sirt(x) dx:

fx" cos(x) dx = x1L sin(x) + cos(x) — rt(n — 1) f sin(x) dx.

Successive applications of a reduction formula sometimes reveal a pattern that is
provable by induction, however to spot such a pattern often takes a few applications
and a lot of paper (try this for (18.6)). Once thc pattern is observed, the reduction
formula makes short work of the inductive step in proving the pattern. For example,
the reduction formula

/ xrne_x dx = +flfxti_lcxdx

is easily proved with one application of integration by parts with u = ft and dv =
e_Tdx. For each it � 0, put

=
xfleTX dx.

Then Jo = —C1 + 1, and = — Working out a few values suggests that

(18.8)
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Exercise 619. Prove equation (18.8) by mathematical induction.

The next exercise is a challenging application of induction (and is given without
solution; see [534, p. 594j).

Exercise 620. Use a reduction formula to prove that

Kn—U/21
/xnlcos(x)dx sin(x)

(—1) n!

The next two exercises occur in many calculus texts.

Exercise 621. Prove that for any even integer ii � 2,

=
= 1.

Exercise 622. Prove that for any odd integer n 1,

9.4.6•.(n— I
I dx = I cos'2(x) clx —

Jo Jo

Applying Exercises 621 and 622 gives a strange formula fbr in put

p

J
sin"(x)dx.

0

and discover that for each n, � i. Also find that, for cacti k.

'2k —

2k 1

2k+2 — —

and so 1. Applying the Exercises. arrive at

224466 2k 2k 'a

2k—I 2k+1 2'
which is called the Wallis formula for 'a, which has many applications (see, e.g.
[1821: this formula can also be derived using continued fractions).

Exercise 623. For a positive inteqer a, derive the reduction formula

— x2)Tt dx
= / (1 dx,

and conclude by induction that
1 j2/(i
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18.4 Polynomials

Many other exercises could appear in this section; for example, see Exercises 229,
292, and 684. See also Section 9.6.2 on Bernoulli numbers.

Exercise 624. Prove that if polynomials p and q in any number of variables are of
degrees in and n respectivetq, then the product pq is of degree in + n.

The result in the next exercise may scent rather surprising. Fbr example, consider
the quadratic q(x) = x2 + 3x — 1. Letting the roots of q be a = and

= notice that a-i-fl = —3 (an integer) and a2 +132 = ii, another integer,
and relatively prime to -3. Is there a pattern?

Exercise 625. Let p be an odd positive integer and let a' and 13 be roots of the
equation x2 + px — 1 = 0. For each n � 0, set Y,t = a72 -I Prove that for each
n � 0, p72 is an integer and and Y7L-I-1 are relatively prime.

Exercise 626. Prove that, for any n � I, a polynomial p(x i, x2, - .. ,x72) in n vari-
ables vanishes everywhere if and only if it vanishes in a neighborhood of a point.

Exercise 627. Prove that a polynomial in any number of variables vanishes every-
where if and only if all of its coefficients are zero.

Related to the above problem is Exercise 229, where arithmetic is done rnodulo
p. Also see Exercise 684.

Exercise 628. Prove that for an n-th degree polynomial

f (x) a72x72 ± a,,_. + 4- a1x1 + a0

there exist unique constants a1, ,.... a7, so that

f (x) = a77(x aj)(x — a2)' - - (a — a72).

From [911, "To prove this theorem by complete induction one needs the funda-
mental theorem of algebra that there is at least one value of x for which such a
polynomial f(x) vanishes."

The following problem was recently posed by D. Marghidanu in The College
Mathematics ,Journal "Problems and Solutions" section (number 879):

Problem: Suppose that a, b, c, and d are positive rcal numbers so that the
polynomial f(a:) = a4 4ax3 + 6b2x2 — 4c3x + d4 has four positive distinct roots.
Show that a> b> c> d.

i'lie solution given in the May 2009 issue of the sante journal proves a general-
i-zation of the above problem. The statement in this generalization was also proved
in 1729 by Maclaurin (see the book Inequalities [259, Thm. 52]), but the (inductive)
proof supplied in [117, p.219] is due to, independently, H.. Mosier and J. Nieto.
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Exercise 629. For n 2, let a1 denote positive real numbers. Show that if
the polynomial

1(') = f +

has ri distinct positive roots, then > > >

Let F be a field and let Fix] he the ring of finite polynomials in the indeterminate
x with coefficients chosen from F. The following exercise might be viewed as a
generalization of Exercise 229. See also Exercise 684.

Exercise 630. Prove that if p(x) E F[x] is of degrre n � 1, then has at most
ii roots 271 IF'.

Exercise 631. Let p(x, y) be a polynomial with x-degree rn and y-degree it. Prove
that p(x, ex) can have at most mn + m + n real zeros.

The next Problem appeared in [91], however it is a standard question in many
algebra texts. A function f of n variables is called symmetric if for any permutation
(see Section 19.2) a (1 n} ---* {1, . . . ,

f(xi,.. . =

f is defined by

f(x, y, z) = 4x2y2z * 4x2z2y + 4xy2z2 —
1

(xyz)

then f(x, y, z) = f(y, z, x). In particular, a polynomial in n variables is symmetric
if permuting variables gives back the same polynomial. Among the symmetric
polynomials in a variables, there are n polynomials called elementary symmetric
polynomials (or functions) denoted by

=
=

53 = X1X2X3 + X1X2X4 + +

=

where for cacti k = 1, 2,... , n, the elementary symmetric polynomial 5k is formed by
summing all possible products of k different variables. Observe that arty polynomial
in symmetric functions is again a symmetric function. For example, with n = 2,

— 282 = (x + y)2 — 2xy = x2 + y2 is symmetric. The following is a standard
theorem with proofs given in many advanced algebra books (e.g., [23, p. 166]).

Exercise 632. Prove that a symmetric polynomial in ii variables can he expressed as
a polynomial in elementary symmetric functions. Hint: Examine p(xi,... 'zn_I, 0).

In fact, the polynomial of elementary symmetric functions mentioned in Exercise
632 is unique, however this fact is not asked to be proved.
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18.5 Primitive recursive functions
A certain class of (number theoretic) functions are defined from to = (0, 1, 2.. . . }
to to recursively. For example, the successor function defined by, for each x E to,

s(x) x + 1, gives a recursive definition of positive integers. Let x1, x2,... denote
non-negative integers, ri be a positive integer; then for any (constant) y E to,

fix1

is called a constant function. The function defined by

x11)

is called the i-th projection function.
Define a class P of functions recursively. First, let the successor function be in P.

Put all constant functions (of a finite number of variables) in P. For each positive
integer n and each i = 1,. .. , n, put all projection functions it1 —p to in P. If
fi fm P are functions of it variables, and g P is a function in m variables,
then the composition function g(fi.... , is also a function (of it variables) in
P. Finally, any function recursively defined by a finite number of compositions of
functions in P is also ill P.

The functions in P are called primitive recursive. With some work (all by in-
duction, as in Chapter 2), a very large class of functions is proved to be primitive
recursive, including all bounded sums and products (and so all finite polynomials
in any finite number of variables) and event those with, say, 7 levels of exponents.
Primitive recursive functions are, essentially, those that can be written in a finite
form that does not depend on the input.

Examples of functions that are riot primitive recursive arise out of attempts to
solve very difficult computing or combinatorial problems where often double induc-
tion is used and bounds are of the form where a tower of exponents grows exponen-
tially fast in height. See the comments surrounding the Hales—Jewett theorem in
Chapter 21 on Ramsey theory (and further comments in [231]).

For a more formal and complete discussion of primitive recursive functions, see,
e.g., [118, pp. 8ff] or [316, pp. Also see [470, pp. 416ff] for a recent discus-
sion of primitive recursive functions (and relations to Turing machines and DNA
computers).

18.6 Ackermann's function
Wilhelm Ackermann (1896—1962) was a student of David Hilbert (1862-1943). 'The
next exercises involve Ackermnann's function (as described in, e.g., 1238] or [292]).
The range of an Ackermann function is an example of a sequence that grows faster
than can be described by any closed-form formula (it is not primitive recursive),
and so it has been of interest to computer scientists, mathematicians. arid logicians.



18.6. Ackermann's function 323

It has been used as a kind a measure of how fast certain algorithms run. There are
many equivalent definitions of the Ackermann function; see [118] and [231] for forms
other than the one given below.

For non-negative integers m. n define A(m, n) recursively as follows: for ii � ü,
AQJ,n) = n + 1, and for nn,n � 1,

A(rn,O) A(rn—1,1), and
A(rn,n) =

So, for example, A(O, 1) = 2 and

A(1, 1) = A(O,A(1,O)) = A(O,A(O, 1)) = A(O,2) = 3.

Exercise 633. Prove by induction that for n � 0,

A(1,n) =n+2.

Exercise 634. Prove by induction that for n 0,

A(2,n) = 2n + 3.

Exercise 635. Prove by induction that for n � 0,

A(3, n) — 3.

Exercise 636. Use double induction to prove that for all in, ii � 0,

A(rrz,n) > n.





Chapter 19

Linear and abstract algebra

If you don't like your analyst, see your local algebraist.

Gert Almkvist,

founder and director of The Institute for Algebraic Meditation.

19.1 Matrices and linear equations
Unless otherwise mentioned, all matrices here are real-valued; however, mans' the—
orerns arid exercises given here apply to rtiatrices over any field (including complex
ruiiiibers).

The following exercise is proved iii nearly every text on elettientary linear algebra,
arid is shown in an article by Ynster

Exercise 637. Prove that a reduced row echelon fovea of a matrix is unique (jasti-
fijing tire expression 'the reduced row echelon form of a matrix"). Hint: induct on
the number of columns.

'l'he next exercise might be called "the marked matrix problem", and may be
considered a classic old problem. [I do not know the original source.]

Exercise 638. In an 71St x ii matrix of real numbers, mark at least p of lhe larpest
numbers in each column � in,), and at least q of the largest numbers in each wv;
Prove that at least pq of the numbers are marked at least twice. flint: induct on
in + fl.

Exercise 639. Let A and B be matrices with AB = BA. Show that for each positive
integer ii, =

A = is an n x in matrix, the transpose of A is an m x it matrix /3 defined
by B = where The transpose of a. matrix A is denoted A"

325
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Exercise 640. Show that for each positive integer n, if A1, A2,..., are matrices
of the same size, then

Exercise 641. Prove that if A1. A2,... , A,L arc square matrices of the same size,
then

Exercise 642. Show that for each positive integer n, if A1, A2,... , arc matrices
with sizes so that the product A1A2 .. A,., is defined, then

(AlA2

Exercise 643. Show that if A1, A2,. .. , A,., are invertible matrices of the same size,
then (letting A—' denote the inverse of A)

For the next exercises, some definitions are needed (some of which probably come
from linear programming). A non-invertible square matrix (with zero determinant)
is called singular (so an invertible matrix is also called "non-singular"). A square
matrix with integer entries is called unimodular if its (ieternIli[Iaflt is 1 or —1. A
principal submatrix of a matrix is one obtained by deleting rows and/or columns.
An rn >< ii integer matrix is totally unirnodular if every square non-singular principal
subinatrix of A is uniniodular.

Exercise 644. Let A be an rn x ii matrix with tile following properties: The rows
of A can be partitioned into disjoint sets R1 and R2 so that

(i) Every column of A contains at most two non-zero entries.
(ii) Every entry in A is either --1, 0, or 1.
(iii,) For i j, if and n.m are non-zero and have the same sign, then row i

is iii R1 and row j is in R2, or row i is in R2 and row j is in R1.
(iv) For i j, if and are non-zero and have different signs, then row i

and row j are both in H1, or row i and row j are both in R2.
Prove that A is totally unimodular.

Some of the following statements have direct proofs using the definition of deter-
minant as the sum of signed elementary products, however, if one defines the deter-
n'iinant recursively by cofactor expansions (also called Laplace expansions, named
after Pierre-Simon Laplace (1749-1827)), inductive proofs are natural. To quickly
review this latter definition, here is some terminology. For an n x n matrix A, for
each i,j E {1 n} let. denote the principal (a — 1) x (n — 1) submatrix of A
formed by deleting the i-th row and j-th column. The determinant is called
the (i,j). minor of A. and the (i,j)—cofa.ctor of A. is Gj1 Letting
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denote the (i, j)-entry of A, the cof actor expansion (or Laplace expansion) along
row j is

+ + +

and the cofactor expansion along column j is

+ +• +

A main theorem in linear algebra is that the determinant of a matrix is its cofactor
expansion along any row or column.

Exercise 645. Prove by induction that if A is an n x n matrix containing a row of
zeros, then det(A) = 0.

Exercise 646. Prove by induction that if A is an n x n matrix with two columns
equal, then det(A) = 0.

The following result is one key result in proving that the Laplace expansion along
any row or column always yields the same number, the determinant.

Exercise 647. Let A be an n x n matrix with columns a1 For a fixed k,
let B and C be n x n matrices given by

B=[alI..Jak.llbdak+lI...Iafl],
and

C=falI..Hak_llcklak÷j...[afl],
(where the 's, bk, Ck are all n x I column vectors). Prove that if for some 3 and
7, ak = Bbk + then det(A) = ,3det(B) + ydct(C).

Exercise 648. Prove by induction that for every n 1. if A is an n x n matrix,
then det(AT) = det(A).

A square matrix is called upper triangular if all entries below the main diagonal
are zero, and lower triangular if all entries above the main diagonal are zero. A
matrix is triangular if it is either upper or lower triangular.

Exercise 649. Prove by induction that the determinant of a triangular matrix
the product of the entries on the main diagonal.

A matrix A has an L U-decomposition if and only if there exists an invertible
lower-triangular matrix L and an upper-triangular matrix U so that A = LU. [Note:
in this definition, letters L and U have two different roles; inì
they simply stand for "Lower" and "Upper", respectively, whereas in "A = LU",
L and U denote specific matrices.] Not all matrices have an LU-decomposition; it
turns out that if A can lie row-reduced (to an upper triangular matrix) without
using the row operation that switches rows, then .4 has an LU-decomposition (L is
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found by writing the row reduction as a product R = EkEk...1 E1A). The next
exercise determines precisely those matrices having an LU-decomposition.

Recall that a principal submatrix of a matrix A is a submatrix formed by delet-
ing rows and or columns; a leading principal submatrix of A is a square principal
submatrix formed by the first rows and columns; in notation, if A = [ajj]n,xn, then
Ak = [at,]kXk is the k-th leading principal submatrix.

Exercise 650. Prove 1/tat a non-singular matrix has an L U-decomposition if every
one of its leading principal subrnatrices is invertible (non-singular).

Recall that a square matrix A is diagonalizable if there exists an invertible matrix
Q so that D = is diagonal; equivalently, A is diagonalizable if there exists
an invertible matrix A arid a diagonal matrix D so that A = QDQ'. It follows
that if A is diagonalizable, then Q is found with eigenvectors as columns. [Note:
Some texts replace Q with so then D = QAQ' is used.I

The next few exercises concern complex matrices. For positive integers m, n, let
iVImxr,(R) denote the set (or vector space) of all in x ii matrices with real entries.
This notation extends to any field, not just hR. So denotes the set of all
in x n matrices with complex entries. For any A define the complex
conjugate transpose = [at] by = ?LIh.

A complex matrix P is called unitary if P is invertible with inverse =

its complex conjugate transpose, that is, P is unitary if = 1.

Exercise 651. Prove Schur's decomposition theorem: For any A E there
exists a unitary matrix U e and art upper triangular matrix T E
so that 7' = UtAU. Note 1/tat on equivalent consequence is A UTU4, called the
"Schmzr decomposition of .4

As a corollary to the proof given for Exercise 651, by induction, the main diagonal
of T (in Schur's decomposition theorem) consists of eigenvalues for A.

A matrix A is called Hennitian if A = N. [Real Hernmitian matrices are sym-
metric.] Corollaries of Schur's decomposition theorem include the following central
results in linear algebra (see e.g. [561, 337—3391 for more details):

Theorem 19.1.1 (Spectral theorem. Hermnitian matrices). Let A E be
1-lennitian. Then there exists a unitary matrix U MRXT,(C) and diagonal ma-
trix D so that D = U*AU; furthennore, diagonal elements of D are
eigenvalues of A, and corresponding columns of U are associated eigenvectors for
A.

Proof outline: By Schur's decomposition theorem, there exists a unitary U and
triangular T so that '1' = U*AU. Then T* = (U*/IU)* = u*A*tJ** = fJ*A*1j —

U*AU and 50 1' is Hermnitian, hence diagonal. From the corollary to Schur's theorem
mentioned above, diagonal entries of T are eigeavalues for A. To see that columns



19.1. Matrices and linear equations 329

of U are eigenvectors. repeat the proof that a matrix A is diagonalizable if there
exist a basis for CT1 consisting of eigenvectors of A. D

Corollary 19.1.2. Hermitian n x it rrratnces have real eigenvalues and an orthonor-
mal set of it eigenveetors.

A real unitary matrix is called orthogonal; in other words, a real matrix A is
orthogonal if A' = AT. Two complex matrices A and B are unitarily similar
if there exists a unitary matrix P such that A = PBPt. A complex matrix A is
unztanly diagonalizable if A is unitarily similar to some diagonal matrix D (so then
A = PDPt).

Which matrices are unitarily diagonalizable? Which real matrices are unitarily
diagonalizable? Which real matrices are orthogonally diagonalizable?

Recall that a complex matrix M is called nonnal if MtM = MMt.

Exercise 652. Prove that a complex matrix A is unitarily diaqonalizable if A is
normal.

As a corollary to the result in Exercise 652, an n x n matrix A is normal if A
has a set of it orthonormal eigenvectors.

A matrix A e is called semisirnple or non-defective ill A has it lin-
early independent eigeovectors. As a consequence of the above exercises, a matrix
is normal if it is semisimple, and unitary matrices are semisimple. [In fact, even
skew-Herinitian matrices, those satisfying At = — A, are also semnisimnple.] Fol-
lowing the above proofs also shows that real symmetric matrices are orthogonally
diagonahizable, and they have a complete orthonormal set of real eigenvectors (arid
real eigenvalues); this fact is often called the "Spectral theorem for real symmetric
matrices"..

Recall that a real symmetric it x it matrix A is positive definite if for all non-zero
a x 1 column vectors x, xTAx > 0.

Exercise 653. Let A be a real, symmetric and positive definite matrix. Prove that
there exists a unique upper triangular R with positive diagonal entries such that
A = (called the Gholesky decomposition of A).

Exercise 654. For any constant c, prove that for each n � 1,
7'

I c j — 1 en
Lo ij — 0 1

Exercise 655. For any fixed constants a. b, prove that for each n � 1,

a 0 o

0 b [ o if'
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Exercise 656. Prove that for each n? 2,

[4 2 5n_1[/t 2

The following exercise involves the standard rotation matrix for R2.

Exercise 657. For any 9 e IR prove that for each a � 1,

[ cos(9) —sin(9) 1' [ cos(nO) —sin(nO)

[ sin(O) cos(9) J [ siri(nO) cos(nO)

For any a � 1, let denote the a x a identity matrix and let he the fl X a
matrix whose every entry is 1. For example,

100 111
0 1 0 , and J3= 1 1 1001 111

Note that = Pitt Mn = — the adjacency matrix for the complete
graph Kn (see Exercise 490). By Exercise 490, if Kn has vertex set v1, 1)2 V71.

the (1, j) entry of M,t is the rmrnher of walks from vertex a2 For example,

= — fl2
=
= ?iJn2Jn+In
= (a — 2)Jn -1- In

a—i n—2 n—2
n—2 n—i n—2

n—2 rr—-2 n—i

and the number of walks of length 2 between distinct vertices is a — 2 (for example,
v1v3v2, v1v4v2 viv,1v2 are the walks between v1 arid v2), arid the number of walks
from v1 to is a — 1.

Exercise 658. Let a � 1 be fixed. Prove by induction on k that for cacti k E Z H

((n_1)k_ (_l)k)

A Hadarnard matrix of order a is any a x a matrix H that. satisfies a 1.
For example,

H— +1 +1
— +1 -1

is a lladainard matrix.
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Exercise 659. Prove that for any k � 0, there exists a 1-Jadamard matrix of order

Exercise 660. For each ii � 1, let be the n x n matrix with Os on the main
diagonal, 1 's above the main diagonal, and —1 '.s he/ow. Prove by induction that if n
is odd then det(A) = 0, and if n is even then det(A) = 1.

The following exercise is about a kind of matrix called a Vandermonde matrix,
named after Alexandre-Théophile Vandermonde (1735 1 796), a significant contrib-
utor to the study of roots of equations and determinants. F'or each ri 1 and real
numbers co ci,, a Vandernionde matrix is one of the form:

i 4
1 c1 e.? ...

111= . . . . , (19.1)

1 c

or its transpose.

Exercise 661 (Vamuiermonde determinant). I'rove that for a Vanderinondt: matrix
of the form in (/9.1),

det(M) = fJ — ci).
o'cicjsn

Exercise 662. Let x 1. Show that for each n> 1,

1+1 -1 +1

J
0 x 0 a:"

What if x = 1?

Exercise 663. For each n � 1, prove that the determinant of the n x n rnatriv

2 —i 0 ... 0 0
—i 2 —1 ... 0 0

o —1 2 ... 1) 0

A,,.= 0 0 —1 ... 0 0

o 0 0 ... —1 2

is n + 1.
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Exercise 664. For each Ic � 1, and scalars a0 ak_i, prove that the Ic x Ic matrix
of the form

o 0 0 ... 0 —a0100...o
o1o...o
oo1...o

000...1
has characteristic polynomial

det(A — = cA(x) = + a4x + + x?Z).

(In this case, A, or its transpose, is called a companion matrix for eA(x).)

The following is an application in economics. In a paper [5801 by Xie entitled
induction applied on Leontief systems" the abstract reads [definitions

appear after the note establishes a necessary and sufficient condition
for a matrix to be positive. The recursive nature of the condition allows one to
use mathematical induction to greatly simplify the proof of the existence and the
solvability conditions of the Leontief system."

For notational convenience, if x is a vector (or column or row matrix) in r,
write x � 0 if every entry in x is non-negative. To state this next problem, a
few definitions from Xie's work are needed. Define a square matrix B to
be Leontief if for every i j, < 0, and define a matrix B to be positive if
B is Leontief and Bx � 0 implies x 0. [This definition does not appear to l)e
universal; e.g., compare [101].]

Here are two lemmas from Xie's paper that have relatively simple proofs (but
omitted here).

Lemma 19.1.3. The necessary and sufficient condition for a (square) matrix H of
order n + 1 to be positive is:

C -A
-B y

where G is Leontief of order ri, A and B are non-negative (ri x 1) and (1 x n) matrices
respectively, and -y is a positive number. Furthermore, C — 4AB is a positive matrix
of order n.

Recall that a permutation matrix is a square 0-1 matrix with exactly one 1 in each
row amid in each column. Stick a matrix obtains its name because multiplying one on
the right by a column vector permutes the elements in the vector (or multiplication
on the left by a row vector giving another permutation). See Section 19.2 for
definitions surrounding permutations.
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Lemma 19.1.4. A matrix B is positive if for any (appropriately sized) permutation
matrix P, BP is positive.

The following theorem [524, Thm 4.C.4J) was first proved without induction (and
Xie reports that the early proof was more difficult than his inductive proof).

Theorem 19.1.5. For any Leontief matrix H, the following conditions are equiva-
lent.

(1) There exists a vector x � 0 so that Hx > 0.
(2,) H is a positive matrix.
('3,) H is nonsingular and all of the entries of H are non-negative.

Exercise 665. Using Lemmas 19.1.3 and 19.1.4, prove implications and
of Theorem 19.1.5 by induction on the order of B. [That ('3,) implies (1)

is trivial.J

For the next exercise, recall that w is the first infinite ordinal, and w + to is an
ordinal formed by following one copy of to by another.

For positive integers m and n with in < it, an in x n latin rectangle is an in x n
array (or matrix) A = where each entry azj E {i, 2 n} and no element is
repeated in any row or in any column. [In fact, one can use any n symbols to choose
entries from; however, integers in [1, nJ are the most convenient.] A latin square is
an in x it latin rectangle where in = n. In 1944, Marshall Hall [254] published the
result in the next exercise. The solution uses a famous theorem in graph theory
(covered in Chapter 15).

Exercise 666. Usc (Philip) Hall's theorem (Theorem 15.51) and induction to show
that for in < ii, any in x ii latin rectangle can be completed to an ii x n latin square
by the addition of n — in rows.

See Exercise 667 below for an exercise showing the existence of an infinite latin
square. For more on latin squares, see [129] or [1301.

Exercise 667. Show that it is possible to have an infinite matrix of size (to + to) x
(to + to) so that every positive integer occurs in each row precisely once and in each
column precisely once.

Such an infinite matrix in Exercise 667 is called an infinite latin square. See also
Section 19.4 for more exercises regarding eigenvalues and eigenvectors and linear
independence.

The next exercise relies on something called a Hankel matrix and on the Catalan
numbers (see Section 12.5). Civen any sequence a1, a2, as,... of integers, and for
any positive integer n, define the n x n Hankel matrix = by hi,, =
Define the shifted Hankel niatrix ii,ç defined to he the llankel matrix for the shifted
sequence a2, a3, a4 This next non-trivial exercise has a solution by induction,
which was donated kindly by Michael Doob for inclusion here.
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Exercise 668. Prove that the Gatalan sequence sequence 1,1,2,5,14,... is the only
sequence so that for every it I, both its Hankel matrix and shifted Hankel
matrix have determinant 1.

Exercise 669. Prove that for cacti in, n � 1, there exists an m x n matrix A so
that all mn entries of .4 are different, cacti a perfect square, and all row sums and
column sums are also perfect squares. Hint: induct on in + n � 2.

19.2 Groups and permutations
19.2.1 Semigroups and groups

For more detailed discussion on the following topics, the reader might consult one
of the standard references for algebra (e.g., [152], 1283]).

A dosed binary operation on a set S is a function from S x S to S. Examples
of binary operations are multiplication and addition of real numbers. The notation
for the binary operation varies according to the situation; common notations are
a -f- b, a * b, a b, ab, or (ab). A semigroup is a non-empty set together with a binary
operation that is associative. The reader interested in semigroups might take a look
at Seth Warner's article [559] to consider mathematical induction over an arbitrary
commutative semigroup.

A monoid is a semigroup with a two-sided identity, and a group is a inonoid with
inverses. A group is called abelian if the binary operation is commutative.

Exercise 670. Let C he an abelian group. that is, C is a group and for every
x, y E C, zy = yx. Prove that for every positive integer n, = atLIlL.

Definition 19.2.1. For a prime p. a group C is a p-group if every element of C has
order which is a power of p.

The following is a standard result in group theory:

Theorem 19.2.2 (Cauchy's theorem). if C is a group and p is a prime dividing
Cl, then C has an element of order p.

As a consequence of Cauchy's theorem, if p divides (C], then C contains a sub-
group of order p (namely one generated by an element of order p) and hence a
p-group. In fact, much more is trite; namely, for any prime power dividing the order
of a group, there is a subgroup whose order is that prime power:

Theorem 19.2.3 (Sylow's first theorem, 1872). [set C be a finite group and let p be
a prime. ? is the largest power of p that divides then for each i 1.... ,
there exists a subgroup of order p'.

Sylow's first theorem is often cited as also saying that for each i = 1 k — 1,

is a normal subgroup of

Exercise 671. Prove part of Bylaw's first theorem, namely that if divides (C(,
then for each i = 1,2 ,...,k, C contains a subgroup of order pt.
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19.2.2 Permutations

In general, a permutation on a set X is a bijection from X to itself, but this definition
can be stated in many ways. One can denote a permutation by functional notation;
in this setting, say that a permutation on {1, 2 n} is a bijection

a: {1,2,...,n} —* {1,2

and represent a by an ordered n-tuple (a(1), a(2),... , a(n)), where for i j, a(i)
a(j). In this fashion, a permutation of the symbols 1,2,... ,n is seen as a linear
(re)arrangement of these symbols. -

By simple counting. there are n! permutations on ii symbols; however, this result
also has an easy inductive proof.

Exercise 672. Prove by induction that for each ii � 1, there are ii! distinct permu-
tations of the symbols 1,2,... ,iz.

An inversion in a pern1utation r = (r(1) r(n)) is is any pair of the form
(r(i), r(j)) where i <j and r(i) >

For example, the permutation (2, 3,4, 7, 5, 1, 6) has seven inversions: (2, 1), (3, 1),
(4, 1). (7, 1), (5, 1), (7, 5), and (7, 6). Define 'uk to be the number of
on {1,2 n} with exactly k inversions.

Exercise 673. Prove = 1; 'n.l = n — 1; fork � n, Tn,k = 0; Tn(")k =
and for k < 'n.k 'nk—-l *

Permutations with an even [oddi number of permutations is called even [resp.
odd]. Even and odd permutations are used in one way to define a determinant.

One of the most common groups is the symmetric group The synunetric

group is commonly represented by permutations, (Si-, being the set of all permuta-
tions on n given elements, with composition as the operation (see below for notation
omi composition). F'or example, when n = 3, there are six permutations on {1, 2, 3};
eliminating set brackets arid commas, these can be denoted by 123, 132, 213, 231,
312, 321.

Notation for permutations varies. For example, the permutation denoted by 132
is the bijection

a: {l,2,3} —÷ {1,2,3}

given by a(1) = 1, a(2) = 3, and a(3) = 2. Another standard way to describe a
pennutation on a set A is using two rows, the top row being an arbitrary (but fixed)
ordering of the elements in A. arid the second row showing the images:

1 1 2 3 ...a=I
\ a(1) a(2) a(3) ... a(n)
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For example, the above permutation denoted by 132 would be writ;ten as

(123
32

Yet another way to denote permutations is by cycle notation. Perhaps the easiest
way to describe the notation is first by an example:

Example 19.2.4. Let

(i 2 3 4 5 6 7 8 9

5 4 9 7 1 6 8 3

If one follows where elements are moved, cycles arise:

1 2—÷5 7—86 1 — 2-••

and starting from the lirsi, imusecl elemeni. in the above cycle,

3 —* 4 - -* 9 —4 3 --4 4.

the element 8 remains fixed by a. In cycle notation, one writes

r = (12576)(349)(8),

or simply r = (12576)(349). Note that the cycle notation (57612)(934) describes
the same perniutation.

If p and a are both permutations on the same set, define the composition of p
with a by

a o p(x) = a(p(x))

for each element x in the set. Rather than write a o p, it is common to use product
notation ap. Since permutations can be viewed as functions. composition of permu-
tations inherits all properties of composition of functions, for example, associativity.
1n the above example, a is the product (composition) of disjoint cycles of length
5, 3, (and 1) respectively. A cycle of length two is called a transposition, that is,
a permutation a on {1, 2 n} is a transposition if arid only there exist j and k,
j $ k so that a(j) = k. a(k) = j, and if i j and i k then a(i) = i.

Exercise 674. Prove that for each r 2, every cycle of length r can be written as
a product of transpositions, as in

(xm ,...,xr) = (xi,x2)o (xJ,x3) . o(xi,xr).

Exercise 675. Prove that every permutation of a finite set that is not the identity
permutation and is not itself a cycle, can be written as a product of disjoint cycles
of length at least two. Show also that the decomposition into cycles is unique except
for I/ic order of the cycles.
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Exercise 676. Show that for each positive integer n, if a is a permutation on a
finite setA then sotoo isa"=aooo...oa.

times
A derangement is a permutation that fixes no elements, that is, a derangement

of the (ordered) symbols 1, 2 n is a permutation

(a(1),a(2),...
so that for every i, a(i) i. For example. (3, 1, 4, 2) is a derangement of four el-
ements. The number of derangements on n symbols is denoted by Counting
derangements can he done by the principle, but since that prin-
ciple has au inductive proof (see Exercise 427), it might be no surprise that so does
the following:

Exercise 677. Prove that for n � 1,

Exercise 678. Denote the number of permutations of f 1. 2. n} that fix precisely
p points by Prove that

= -j)!.

Exercise 679. Prove that the number of permutations ir of f1,2 n} that satisfy
(for each k = 1,2 n)

— 1

is precisely F,1, the n-th Fibonacci number (where I'() = 0, 1, and for n � 2,

An extension of Exercise 679 is as follows.

Exercise 680. Let denote the set of permutations of { 1, 2,... , n}. For any
f,g E define d(f,g) f(i) — g(i)I. (So is a metric on 5,,.) For
n, r E and f E define

a1(n,r) E :

Prove that the numbers aj(n, r) are independent of f, and so a(n, r) = a1(n, 7) is
well defined. Show that for ri > 6,

a(n, 2) 2a(m — 1, 2) + 2a(n — 3, 2) — a(n — 5, 2),

and that a(n. 1) = the (mi + 1)-st Fibonacci number (where F0 0, F1 1,

and form>2, F,, = 4

For more on permutations, see also Section 12.7 on Eulerian numbers, where
permutations are counted according to the number of ascents, descents, rises, and
falls.
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19.3 Rings

A ring (R, +,.) is a set R together with two binary operations addition (+) and
inultiphcation (.) so that (R, +) is an ahelian group, R is closed and associative under
multiplication, and both distributive laws hold. A rinq with unity is a ring containing
a multiplicative identity Multiplication is not necessarily commutative, nor need
there be multiplicative inverses or cancellation laws. The set Z of integers is the
most common example of a ring. Another common example is the ring Z[xj of finite
polynomials in an indeterminate x with integer coefficients. More generally, if B
is a ring, then R[xj is also a ring, as is the set of all functions on R with ordinary
addition and multiplication of functions.

Exercise 681. Prove that if f : (B, —* (S, W, 0) is a ring homomorphism,
then for every n � I arid every a e U, 1(a") =

An ideal in a ring R is a subring I c R such that KR = RI = 1 (that is, for every
i E I and r E B, ir E I and ri E I). An ideal I is proper if I R. A maximal ideal
in a ring is an ideal I wit,h the property that if J is an ideal satisfying I ç ,J ç U,
then J = I or J = II.

Exercise 682. Use Zorn's lemma to show that in a commutative ring U wit/i unity,
ever proper ideal is contained in a mo.rimal ideal.

An algebraic integer is a number a E C that is a root of a inonic polynomial
0 in Z[x) (the ring of finite polynomials with integet coefficients). Let Z[ct] be

the smallest siibring containing a.

Exercise 683. Prove that if a E- C is an aiqebraic integer, then the additive gmup
Z[oj is finitely generated.

19.4 Fields

A set F, together with two binary operations, addition and multiplication, usually
denoted by + and is called a field if it satisfies the following axioms:

Al Va, b e F, (a + b) E F. (closure under addition)

A2 Va, b. c e F (a + b) + c = a + (h + c). (associativity of addition)

A3 There exists an element called 0 so that Va F, a + 0 a 0 + a. (Iii an
additive group, this element is unique; 0 is called an additive identity)

.k.l Va F, b b + a. (In an additive group, such a b is
unique and is denoted by b = —a, the additive inverse of a.)

A5 Va.h€F,a+b=b+a.
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Ml Va. b e F, (a . b) e F. (closure tinder multiplication)

M2 Va, b, c e F, (a . 1,) c (b. c). (multiplication is associative)

M3 There exists an element called 1 so that Va F, a 1 = a = 1 - a. (1 is called
a multiplicative identity)

M4 Va E F, Bb E F so that a b = 1 b

b a1, the multiplicative inverse of a.)

M5 Va. b E F. a - b = b . a. (multiplication is commutative)

LD Va,b,e€ F, (b+c) = a-b+a e. (left distributivity)

RD Va, b, c E F, (a + b) . c) = c + b c. (right distributivity)

II 0 1.

The axiotmi [lID] follows from [LU] and [M5J, so is sometimes not mentioned. The
axioms [Al) •)A5] show that (F, +) is an abelian (commutative) group; setting F* =
F\{0}, axioms [M1J—[M51 show that (Frn,-) is an abelian group.

The number of elemeni.s in any finite field is a prime power (i.e., tIme field has
prime power order), and for each prime p and positive integer s, the field of order
is unique, called the Galois field of order p5, denoted GF(p8). For any z e GF(pS),

pz 0, where pz means z + z + + a with a repeated p times. [GF(p8) has
characteristic p.)

As in Section 18.4, if R is a ring, lift] denotes the ring of polynomials in hide-
terminate x with coefficients in 1?. In many situations, I? is a field. For a field F
and f(x) c F[x], let fV)(x) denote the t-th derivative of f(x) with respect to x.

Exercise 684. Let p be a prime and let F = GP(p). For L p, if E F and
f(x) e F[x} art so that for 0 � F < L, fV)(xo) = 0, then x0 is a zero of f with
multiplicity at least L.

The next exercise relies on the division algorithm for polynomials, similar to
Theorem 11.1.2 for integers: Let K be a field and let f,g e K[xj, where deg(g)
deg(f). Then there exist polynomials q, r E K[x) with deg(r) < deg(g) so that
/ qy + 1.. Furthermore, when K[x] is viewed as a constant polynomial,
if f and g are relatively prime, then there exist polynomials s, I E K[x] so that
1 sf 1- ty (similar to Hezout's Lemma 11.1.3). The following question might bring
the method of partial fractions to mind.

Exercise 685. Let K be a field and let f, g e K[x]. Let g = 9192 where the
th '5 are relatively prime. Prove that there exists a1 E K[x] so that

— e
g(x)
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Exercise 686. Let K be a field, b(x) E K[x] with deg(b) � 1. Prove that each
f (x) E K[x] has an expression

f(x) = + + + do(x),

where for each j, d1(x) K[x] and either dj(x) = 0 or cdeg(b).

A field K can be ordered (or is orderable) if there exists a subset P C K (called
a domain of positivity) satisfying (i) a, b P ab, a + b P; (ii) °K 0 P; (iii)
{—p : p P} U {0} U P K. An ordered field has a fixed domain of positivity. A
field F is defined to be formally real if —1 can not be represented as the sum of
squares. An equivalent definition of a formally real field is one that satisfies

The next exercise uses Zorn's lemma.

Exercise 687 (ArtinSchreier). Every formally real flcld can be ordered.

For the next exercise, sonic basics about field extensions are reviewed. For more
details, see, e.g., Stewart's Galois Theory [509, 512] or [261, p. 418]. If K is a
field and a degree n polynomial p(x) K[x] is irreducible, then for any zero a of
p(x), the extension K(a) formed by adjoining a to K is a vector space over K with
dimension n.

Lemma 19.4.1. If a is a root of an irreducible polynomial over K, then every
b K(a) is a zero of an irreducible polynomial in K[x[ (in other words, b is algebraic
over K).

Proof of lemma: Since K(a) is a ring, theelements b° = 1,b' = b,b2 are
elements in K(a), bitt since K(a) has dimension n, these must be linearly dependent
over K, and so for some constants c1 K not all zero, c0b0 +c1b' 4.. . =

An extension K' of K is said to be algebraic (over K) if every element b K'
is algebraic over K. An extension E of K is called finite over K if E is a vector
space of finite dimension over K. Then Lemma 19.4.1 implies:

Theorem 19.4.2. If K is a field and E is a finite field extension of K, then 13 is
algebraic over K.

Exercise 688. Let K bc a field. Prove by induction that every extension of K
formed by adding finitely many aigebnzic (over K) elements is finite and therefore
algebraic over K.

[Conversely, every finite extension of K can be generated by adding finitely many
elements each algebraic over K.]

The result in the next exercise guarantees a "splitting field", and is due to
Kroriecker (1823—1891). The following fact is needed (and given without proof):

Fact: If K is a field and p(x) K[x] is irreducible, then the quotient field
is a field containing (art isomorphic copy of) K and a root z of p(x).
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Exercise 689. Let K be a field and f(x) & K[x]. Prove that there exists a field B
containing IC as a subfield so that f(x) is a product of linear polynomials in E[x].

19.5 Vector spaces

Given a field F, a vector space over F is a set V of objects (called vectors), together
with two operations, addition and scalar product 'c." so that for cvery ii, v, w &
V and a, /3 & F,

1.- U + v & V. [closure of addition]

2. a v & V. [closure of scalar prod uct]

3. u + v = v + u. [addition is commutative]

4. (u + v) + w u + (v + w). [addition is associative]

5. There is a vector 0 & V so that for all v & V, 0 + v = v. [additive identity
exists]

6. If is the identity in IF, then 'F v = v. [scalar product identity]

7. a (u + v) = a u + a v. [distributive property over vector addition]

8. (a + .d)v = a v v. [distributive property over field addition]

9. (a,d) . v = (,8• v). [associativity of scalar product]

A vector space is sometimes called a linear space. The elements of F are called
scalars. Vectors are often written in boldface, and scalars are in math italics. No-
tation for vectors varies: v, 13, i7, íç and y are all common notations for the vectors.
(The squiggly line underneath a letter is a typesetter's notation for making some-
thing bold—this notation is often employed when writing math hand.)

Perhaps the most common example of a vector space is, for a positive integer n,
the Fiuclidean vector space V = r, the set of n-tuples of real numbers, considered
as a vector space over the field L For a set X, and a positive integer n, define

= : x1.x2 & X}, the set of all ordered n-tnples whose
coordinates are in X. This notation is often used when X is one of the fields {O, I},
It or C. Elements of XTL can be called vectors, and are occasionally written as
column matrices. The zero vector 0 is the vector all of whose coordinates are 0.

A subspace of a vector space V is a non-empty subset 147 C V that. is itself a
vector space under the same operations as in V.

For a vector space V over a field F. a linear corn bination of vectors v1, V2 &

V is an expression of the form

c1v1 +C2V2 +CkVk,



342 Chapter 19. Linear and abstract algebra

where the cj's are elements (scalars) of the field F.
A collection of vectors v1, v2,... , e C'2 is called linearly independent (over C)

if the oniy complex numbers c1,. . , for which the equation

CIVI + + + CkVk = 0

has a solution arc c1 = c2 = = ck = 0. (The vectors are said to be linearly
dependent if they fail to be linearly independent, that is, if there exists some non-
trivial linear combination of these vectors that vanishes.)

The definitions for eigenvalues and eigenvectors from Section 19.1 apply in gen-
eral; they are repeated here for convenience. Let A be an ii x n matrix with entries
from C (actually, any field will do). An element A C is called an eigenvalue for A
if there exists a non-zero column matrix x so that Ax = Ax; such an x is called an
eigenvector associated with A.

Exercise 690. Let A be an n x a matrix that has distinct eigenvalues A1 Ar.
Prove that if vi v,. are eigenvectors each associated with a different cigenvalue,
then they aiv linearly independent.

Given two vector spaces V and W over a field F, a function T: V W is called
a linear transformation iff for any u, v e V and any k E F,

T(ku + v) = kT(u) + T(v).

(Equivalently, T is a linear transformation if for any u, v E V and any k E F,
both T(u ± v) = T(u) + T(v) and T(ku) = /cT(u) hold.) A linear transformation
T: V V T is called a linear operator on V.

Let T be a linear operator on a vector space V over a field F. For A E IF, if there
exists a non-zero v E V with T(v) Av, then A is an eigenvalue for T and v is an
eigcnvector associated with A. A subspace W of V is called T-invariant if for any
w E W, T(w) E W.

Exercise 691. Let T be a linear operator on a finite dimensional vector space V
and let W be a T-invariant subspace of V. Suppose that v1 vk are eigcrivectors
ofT that correspond to distinct eigenvalues. Prove that if v1 + vk E W, then
each E W.

Recall that if S is a subset of a vector space V over a field F, the span of S is
the set (denoted span(S)) of all finite linear combinations of vectors from S (where
coefficients in any iinear combination occur in F). It is not hard to show that for any
Sc V, span(S) is itself a vector space (and so is a subspace of V). If span(S) =
the set S is said to W".

If V is a vector space, a subset B C V of vectors is called a basis for V if B is
linearly independent and span(B) = V.

One standard application of Zorri's lemma is the following.
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Theorem 19.5.1. Every vector space has a basis.

Proof idea: Let V be a vector space and let B be the set of all linearly inde-
pendent subsets of V. Then show that the union of any chain of independent sets
is again independent. 0

Exercise 692. Fill in the details to the proof of Theorem 19.5.1.

The dimension of a vector space is the number of elements in a basis for that
space.

Exercise 693. Let A e Prove that A, A2,.. .)) it.

An inner product on a vector space V over a field F is a function (.,.) V2 F
that satisfies (for all a, b. c V, and k, £ F)

(i) (a, b) = (b,a) (the complex conjugate, in the case that F = C).

(ii) (ka + Lb. c) = k(a, c) + £(b. c).

(iii) (a, a) � I) and (a, a) = 0 if and only if a = 0.

A vector space with an inner product is called an inner product space.
For any positive integer it, arid vectors a = (a1, a2 ar,.) E JR" and b =

(b1, b2 kit, define the dot product of a and b to be

One can easily verify that the dot product is indeed an inner product, and is some-
times called the Euclidean inner product.

In an inner product space V, for any v V, define the norm of v to be

lvii = (v,v)"2.

When the inner product is the dot product, the norm is called the Euclidean norm;
if a = (aj,a2 R't, then the Euclidean norm of a is

\Vhen it = 1, the norm is just the absolute value.
Consider the fatuous "Cauchy Schwarz" inequality, named after Augustin Louis

Cauchy arid Karl Herman Amandus Schwarz. Its proof given here is not inductive,
however it is a very useful inequality in most areas of mathematics, and it is needed
later. The proof might also give one ideas as to bow to prove some later results by
induction.
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Theorem 19.5.2 (Cauchy—Schwarz inequality for dot products). For each positive
rntegern and real numbers al.02 then

or equivalently,
a. b < ilall

Proof: One common proof is to examine la + tbll2 � 0, and after sonic simplifl-
cation, use known properties of quadratic polynomials. Such a proof is easily du-
plicated to prove the general inner product version of 1(a, b)) K

tall . Ilbil. Here is another proof of Cauehy—Schwarz for the dot product: When
ii = 1, the theorem is true since it says a2b2 (ab)2. When n � 2, relying on the
fact that for any real numbers x and y, 0 < (x — y)2 = x2 + y2 — 2xy,

2xy x2 ± p2. (19.2)

In particular, for a = (01,02 and b = (b1.b2, ... ,b,.3. in the following se-
quence of inequalities, Equation (19.2) is used for each i = I a. using a; =
and p =

a.b

+ (az)21 .

tall. lIblI

+ 1)llall .

and so a. b � 11a11 IlbIL 0

An apparently stronger result also holds for real numbers a2 and

+ 4- . 4- + � (kitn 1 4 la2bal 4 ... +

though one sees that this follows from the Cauchy—Schwarz inequality directly: for
all a1b, that are negative, replace a, with and apply Cauchy Schwarz; the left
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side remains unchanged. On the other hand, this stronger-looking inequality implies
Caucby-Schwarz immediately because

(laibil + 1a2b21 +-. 4 � (aibi + a2b2 +•• +

It' the case that b = (1, 1,... , 1), the Cauchy—Schwarz inequality yields

and thus gives an upper bound for the arithmetic mean

In 1R2 and R3, if u and v are vectors with angle 0 between them, then the dot
product is often first defined by

u.v ljulljJvIlcosO.

Thus in dimensions 2 arid 3, Cauchy-Schwarz (for dot products) follows directly
from this definition. (TIre cosine law is then used to show that this definition of
clot product agrees with the more usual definition.) In higher dimensions, the dot
product is defined first. then

u.v
O=cos I -

\llullIlvl1
is defined to be the angle between the vectors—so the Cauchy Schwarz inequality
guarantees that the argument of cost is bounded between —1 and 1 and hencc the
angle is defined.

The next exercise generalizes the triangle inequality (see Exercise 193) to a
dimensions; it is one form of what is known as "Minkowski's inequality"; llermann
Minkowski (1864 1909) Was one of Einstein's mathematics teachers.

Exercise 694 (Minkowski's inequality). Fix some non-negative integer n. Use the
Cauchy—Se.hwarz inequality and induction on m to prove that for every n � I, and
every collection of vectors v1 , v2,... ,Vm in

lvi + V2 + <liv iii + llv2)i +

Another form of Minkowski's inequality that generalizes the triangle inequality
occurs when the notion of norm is generalized. If a = (ai ,a2 is a
vector, and p > 1 is a real number, define

= (Iai + + ... + Ian P) LIP

called the p-norm of a. Just as the Cauchy---Schwarz inequality was required to
prove Minkowski's inequality, something called Holder's inequality (for vectors) is
used to generalize Minkowski's inequality for p-norms. First a useful lemma (which
appears in, for example, [74J) is given:
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Lemma 19.5.3. For real numbers x, y > 0 arid 0 < ci < 1,

� CiX + (1 — (:i)y.

Proof outline: For u > 0, consider the function 1(u) u° — ciu i + ci. Simple
calculus shows that. on the interval (0, cc), f achieves a maximum of 0 at u 1,

that is, 1(u) � 0 for all u> 0. Putting u = and a little algebra yields the desired
inequality. o

Theorem 19.5.4 (holder's inequality for vectors). If p > I and q > 1 are real
numbers with + 1, then

n ii I/p n�
Iliat is, if x, y E ftp, then X • �
Proof: If x = 0 or y = 0, then the result is trivial, so suppose that both > 0
and > 0. In the following sequence of inequalities, Lemma 19.5.3 Is used n
times, each time with ci = and =

(by the triangle inequality)
IlYIIq

\ (—

kJixlIp) 1'JiYIIq

— ( (
—

+ (by Lemma 19.5,3)

=

+

and so

�
as desired. In fact, it was proved that 0
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Exercise 695 (Minkowski's inequality for p-norm). Use Holder's inequality to prove
that for any real ;> 1, and any vectors x,y

ix 4 y5 lxii,, +

Then prove by induction that for any vectors X2,. . . x.,, E R",

lixi + x2 + + � + i(X2iip + +

Two vectors u and v in an inner product space V are said to be orthogonal if
and only if (u, v) = 0. A set of vectors is called orthogonal iff any two vectors in
the set are orthogonal.

Lemma 19.5.5. Let V be an inner product space. Any set of non-zero orthogonal
vectors in V is linearly independent.

Proof: Suppose that {vj vr} is a set of non-zero pairwise orthogonal vectors
and let c1 c., be real constants so that

+" 4 = 0.

For each i (1. }, taking the inner product of both sides with yields
= 0. and so each = 0. 0

In the next theorem, the construction of the orthogonal set (vj, . . . , } is called
the "Grain—Schmidt ortliogonalization process".

Theorem 19.5.6 (Grain-Schmidt process). Let V be an inner product space, and
let S {w1,. .. ,w.,,} C V. For each i I , vi define recursively as follows:
Put v1 — w1, and for' each k — 2, put

vk

Then T = (vi . is an orthogonal set of non-zero vectors with span(T) =
span(S).

So the Gram- Schmidt orthogonalization process produces an orthogonal basis
for span(S). A a set W of vectors is called orthomorrnal if and only if W is orthogonal
and each v E W is a unit vector, that is. = I. Any orthogonal basis T can he
transformed to an orthonormal basis by simply taking multiples of vectors in 7' that
are unit vectors (if W 6 T, use v =

Exercise 696. Prove Theorem 19.5.6 by induction on n, and conclude that every
finite dimensional vector space with an inner produet has an orthonornial basis.

Exercise 697. Let V be a vector space, '1': V V be a linear operator on V., and let
be a T-invariant subspace of V. .. , arc cigenvectors of I' corresponding

to distinct eigcnvalucs, prove that if + 6 U" then for each i = I,... ,

v1 c- l'V. Hint: Induct on Jr.
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Geometry -

Geometry supplies sustenance and meaning to bare formulas... One
can still believe Plato 's statement that 'Geometry draws the soul to-
ward truth."

—- Morris Kline

Exercise 698. If a, b, c are sides of a right, angle triangle wit/i c being the hypotenuse,
prove that for every natural number n 3,

+ <ca.

Exercise 699. For every n � 2, given a line seqment of length 7 and using a
straightedge and compass only, inductively construct a line segment of length

One area of combinatorial geometry that Erdös seemed to love was the study of
the frequency of the distances between points in the plane. For example, in 1946
[163], he conjectured that, in the real euclicleari plane with the usual distance
metric the ri vertices of any convex n-gon determine at least distances. A
regular n-gon shows that this number can not be increased. This conjecture was
finally proved in 1963 by Altman [17]. In the 1946 paper, Erdös gave the solution
to the following problem:

Exercise 700. Show that for each ii > 1, the greatest among a set of n.
points is realized by at most ri different pairs of points.

For iriany more problems of the above type, the reader is recommended to begin
with [250, pp. 21 --25, 47—50]. There are many more modern surveys. The list of
mathematicians producing results in distance-realization problems is very inipres-
sive.

349
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It is fairly easy to see that the maxirriurn number k of points that can he chosen
in the real interval [— so any two are more than distance 2 apart is k = 2.

At most k = 3 points can 1)0 chosen in a 2-D circle of radius so that each of the
k points has distance greater than 2 from all others. This pattern continues.

Exercise 701. Prove by induction on d that if n points in Rd are contained in a
ball of radius so that every pair of points are at distance greatcr than 2, thcn
•n <d+ 1.

Exercise 702. Mark it points around a circle and label them either red or blue.
Prove that there are at most [(3ri + 2)/2] chords that join differently labelled points
and that do not intersect inside the circle.

Exercise 703. Given n � 2 squares with respective side lengths a1 a2 � �
show that one can dissect the squares each into at most four pieces so that the pieces
can be reassembled into a single square.

20.1 Convexity

For information on convex sets not given here, see nearly any of the many books
titled Convex sets (e.g., [343]). 'l'liroirghout this discussion, a is a positive integer
and lR° is endowed with the usual metric (in which case. this space is often denoted
by E". the n-dimensional Fuelidean space). Tf x = (xi,... , E then lxi] =

+ x and y is ]Ix — y]].
Recall that for points x1 ,,...;rk in a linear combination of these points is

any expression of the form

(20.1)

where each A1 JR. The linear cojnl)ination (20.1) is called an affine combination if
and only if A2 1, and is called a convex combination if and only if E = 1

and each A, � 0.
A set C ç JRT' is called affmne if and only if for any two points x and y in C, for

every A e R, the affine combination Ax+ (I — A)y is also in C. Intuitively, this says
that if two points are in an affine set, the entire (infinite) straight line containing
these two points is also in the set. One can show that the intersection of any two
afline sets is again afflue, and so by induction, that the intersection of finitely many
affiuie sets is again affine.

A set C C IR" is called convex if arid only if for every A E [0, iJ, tIre convex
combination Ax + (1 — A)y is also in C. Intuitively, this says that if two points are in
a convex set, then the straight line segment containing these two points is also in the

One can prove that if C1 6'k lR7t are convex sets, then their intersection
is also convex. An affine set is, by definition (restricting the A's) convex,

however a convex set riced not be atfine (a straighthine segment is convex, but is not
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affine). An affine set in W' is sometimes called an affine space (for reasons made
apparent below).

Recall that a linear suhspace of W' is closed under arbitrary finite linear combi-
nations. The similar statements are true for affine and convex subspaces of W'.

Exercise 704. Let C c Wi be a convex set. Prove by induction on m � 1, that if
XL,.. . , C, then for any [0, 1] satisfying 1, the convex
combination

is also in C. Repeat this exercise for affine sets.

It is not difficult to check that every plane, line, or point in R3 is an affirie space.
In fact, these are the only affine spaces in 1R3, as is stated in the next theorem (whose
simple l)rOOf is ornitted—see [343, p. 14J).

Theorem 20.1.1. Let A C be an affine space. Then there exists a linear
subspace (containing the origin) LV c W2 and a vector (or point) v R" so that

A = v ± W = {v -f w : a W}.

When H' is a (linear) subspace and v is a vector, a set of the form v + in
Theorem 20.1.1 is called a translate of LV, a shifted linear space, or a flat. The
dimension of an afline space A = v + LV is defined to be the dimension of W. A
subspace W C R't is called a hyperplane if W has dimension n — I. The dirnensioii
of any set S ç is defined to be the dimension of the smallest flat containing S.

Recall from linear algebra, that vectors v1 Va in a vector space V (over the
reals) are called linearly independent if and only if for any scalars c1 R, the
equation

+ ... + = 0 (20.2)

is sat isfied only when ci = = 0. If there exist q's not all zero satisfying the
above equation, the vectors are linearly dependent. If there exist c1 not
all zero but with = 0 satisfying (20.2), then v1 Va are called affinely
dependent, and are affinely independent if the only ci's satisfying c1 = 0 and
(20.2) are all zeros. Recall from linear algebra that any a + 1 vectors in Wi are
liimearlv dependent.

Lemma 20.1.2. Any collection of ri -4.- 2 vectors in are affinely dependent.

Proof: Let x1 Xfl42 W'. Time n+ 1 vectors —x1, X3 Xj, ..., —X1

are linearly dependent, so let A2,... , R satisfy

A2(x2—xl)+As(xa-xl) +..+A+2(x+2-xm)0
Rewriting,

x1 +A2x2 + A3x3 + 0.
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The coefficients in this expression sum to 0, so this expression shows the vectors
• , are affinely dependent. 0

From the proof of Lemma 20.1.2, observe that by multiplication of an appropriate
constant, any one of the n -4 2 vectors can be written as an affine combination of
the remaining ones.

For a set S c r, define the convex hull of 5, denoted cony(S), to be the
intersection of all convex sets containing S. The convex hull of a set S is the
smallest convex set containing all of S. If C is a convex set, then conv(C) = C.
By Exercise 704, -the convex hull of S is the set of all convex linear combinations of
points in 5; for later reference, this fact is identified as a lemma:

Lemma 20.1.3. A setS is convex if and only if every convex combination of finitely
many points in S is also in S.

Theorem 20.1.4. Let S be a set and let T consist of all (finite) convex linear
combinations of points in S. Then cony(S) 7'.

Proof: By definition. S ç T. By Leinnia 20.1.3, applied to the convex set cony(S),
T c cony(S). It remains to show that cony(S) c 7, and for this, it suffices to show
that T is convex- Suppose that x and y are points in 7'. with

x = and y = I%Yj,
i=1 j=l

where all the xi's and are in S. Then for any A C [0. 1],

Ax+(l — A)y = +

is a linear combination of points in 5, where the sum of the coefficients is

1(1 -A)(1)=1.

'I'hus T is convex, and so cony(S) c 7'. 0

The following theorem was proved by Caratheodory [96] in 1907.

Theorem 20.1.5 (Caratlieodory). if S then every x C cony(S) can be
expressed as a convex linear combination of at most a + 1 points from S.

Proof outline: Let x be expressed as a convex combination of more than n + I
points in S. By Lemma. 20.1.2, there is an affine combination of these points that
equals 0. Subtract suitable multiples of these two equations to eliminate one of
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the points, and then with scaling, make make this new sum a convex combination.
If neccssary, continue by induction until a new representation uses at most n + 1
Points.

Another proof (see [61, p. 88]) of Caratheodory's theorem uses the following
theorem due to Radon, published in 1921.

Theorem 20.1.6 (Radon's theorem [445]). Let S = {xi,... x,.} be set of points inr. If r � n + 2, then S can be partitioned into two thsjovnt sets S = U 52 so
that cony(S1) fl cony(S2) 0.

Proof: Suppose r n + 2. By Lemma 20.1.2, there exist A1,... ,A,.. not all zero,
with = 0 and A1x1 = 0. Since the A2's sum to zero, sOme are positive,
and some are negative; without loss of generality, let k {1 r — 1} be so that

are non-negative and Ak+1,... , A,. are all negative. Again since their sum
is zero,

+ = —(Ak±1± + Ar).

Letting s = A1 -f +Ak >0, for each i = I r put = &; then a, = 1,

= 1, and

=
i=1 i=k4 I

a vector expressed as a convex coml)ination of = {x1 xfr} arid as a convex
combination of 52 { . . . , Xr}. D

Exercise 705. Let It? 2 be an integer and X = {xt.x2,.,. ,Xkj c Prove
that there exists a point y E so that for any subcollection of It of the points in
X, p is a convex linear combination of these It points.

The following, perhaps surprising, theorem was published by Edward Helly
(1884—1943) in 1923 [263], but appeared in a paper published by Radon in 1921.
Helly actually discovered this theorem and told Radon of it in 1913, hut was delayed
in publishing by joining the Austrian army that year, getting wounded by Russians,
taken prisoner to Siberia, and only finding his way back to Vienna two years after
the war ended.

Theorem 20.1.7 (Belly's theorem). For ii � 1, if convex sets C1,C2 C,. in 1W'
have the property that any n + I of them share a conrmon point, then some point is
contained in all of the sets.

By a compactness argument (see, e.g. [250, p. 60]) the number of convex sets
in Belly's theorem may also he infinite.

Using Exercise 705, one can show that Belly's theorem follows (see [58, Ex. 2,
p. 86]). Using Radon's theorem is relatively straightforward:
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Exercise 706. Prove Helly 's theorem by induction on r. using Radon's theorem.

For more references and a survey of applications of Ilelly's theorem, see the
article by Danzer, Grünbaum, and Rice [126].

20.2 Polygons

Occasionally, the term "n-gon" abbreviates "n-sided polygon" - A polygon is called
convex if every line segment joining two interior points lies entirely inside the poly-
gon. See Figure 20.1.

Figure 20.1: Convex and non-convex polygons

A polygon is simple if every vertex is incident with precisely two edges (so, for
example, something resembling a figure eight is not simple).

Exercise 707. Prove that for ri � 3, the sum of interior angles of a simple convex
ri-gon is (it — 2)180 degrees.

Does the result in Exercise 707 generalize to non-convex polygons?

Exercise 708. Prove that n � 3, the sum of the exterior angles of any polygon with
it sides is ir(n + 2) (in radians).

A diagonal of a polygon is a line segment joining two non-consecutive vertices
of the polygon. In a convex n-gon, each vertex is the endpoint of it 3 diagonals,
so counting over all vertices, then dividing by 2 because each diagonal is counted
twice shows that there are n(n — 3)/2 diagonals in a convex n-gon. Another way to

Convex Non-convex
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see the same result is to observe that the number of diagonals is the number of all
segments minus those n used for the n-gon, giving

n(n— 1) n2—n—2n n(n—3)
2

diagonals. There is also a fairly simple inductive proof of the above result:

Exercise 709. Prove, by induction, that for it � 4. a convex n-gon has n(n — 3)/2
diagonals.

The next exercise is really covered by Exercise 405, but is stated here without
mention of Catalan numbers. A polygon is said to be triangulated if the polygon is
divided into triangles, each of which has vertices that are vertices of the polygon.
For convex n-guns, it is fairly easy to triangulate them, for one adds it — 2 diagonals
that don't cross, say, all containing some fixed vertex, so induction is not really
necessary in the next exercise.

Exercise 710. Prove by induction that every convex polygon with three or more
sides can be triangulated.

Although induction was not necessary to solve Exercise 710, when generalizing
from convex polygons to arbitrary simple polygons, the following is very useful in
an inductive proof for the more general simple polygons.

Lemma 20.2.1. Every simple polygon (convex or not) has at least one diagonal
lying completely inside the polygon.

Proof: In any polygon, there exists at least one triple of vertices vt, v2, v3 (taken
in counterclockwise order) so that the interior angle at v2 is less titan ii. Fix such a
triple. If segment lies entirely inside P. then is a diagonal as desired. So
suppose that V103 is not entirely contained in P. Then Avlv2v3 contains additional
points of P. Of these points, choose the one 'to so that mLvjv2w is smallest. Since
w is inside the triangle, w does not lie on the ray so 'w is visible from v2, and
so is the desired diagonal. 0

Exercise 711. Using the result in Lemma 20.2.1, prove that any simple n-gon can
be triangulated with diagonals that lie inside the n-gon, producing n. —- 2 triangles.

Exercise 712. Prove that in any triangulation of a simple polygon, there exists at
least one triangle with two sides forming edges of the polygon. Hint: The solution
is easier if one proves that there are always two such triangles!

Exercise 713. Finally, prove that the vertices of a triangulated n-gon can be colored
wzth three colors so that no two vertices of the same color are connected by an edge.
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Exercise 714. Suppose that n I points are given in the interior of some square.
Prove that the square cart be divided into 2n + 2 triangles wit/i vertices chosen from
the n given points and the four vertices of the square.

Exercise 715. Prove that if a polygon P is convex and contained in the polygon Q,
the perimeter of P is shorter than the perimeter of Q.

This next exercise asks to prove a famous problem in computational geometry;
to find a solution without peeking might be challenging, however, the solution given
is easy to read and may be entertaining.

Exercise 716 (The art gallery problem). An art gallery has walls fonning a polygon
with n sides. Show that [n/3j guards can be placed so that all areas of the gallery
are watched. For each n � 3, draw the floor plan of a gallery that requires Ln/3i
guards.

For present purposes. a lattice point is a point (x, y) C lR2 in the real cartesian
plane whose coordinates x, y are integers. In other words, a lattice point is an
element of V.

'Tb calculate the area of an arbitrary polygon might be very cumbersome, however
if the polygon has vertices that are lattice points, then finding its area is nearly trivia.l
by the spectacular 1899 result of Georg Alexander Pick (1859--1942) [430].

Theorem 20.2.2 (Pick's theorem). Let P be a simple polygon
whose vertices are lattice points, let 1(P) be the number of lattice points in the
interior of P. and let 13(P) be the number of lattice occurring on the boundary
of P. Then the area of P is

A(P) = 1(P) + — 1. (20.3)

For example, in Figure 2().2. there are 4 interior l)oints, and 9 boundary 1)oiitts,
and the area is 4 -F — 1 =

Pick's theorem has many proofs, but (at least) one is by induction:

Exercise 717. Prove Pick's theorem in the following steps: (i,) when P is a simple
rectangle with sides parallel to the axes; (ii) when P is a right triangle with two
icg.s parallel to the axes; when P is arty triangle (by first surrvundzrig P with
a rectangle, then subtracting the area of the outside right triangles and rectangles
thereby formed,); (iv) when P is art arbitrary simple n-gon by induction on n (using
Lemma 20.2.1, either by splitting the polygon into two pieces or by adjoining a
triongle).

The next few results show that. the square is the only regular n-gon that can
have all vertices as lattice points.

Lemma 20.2.3. jVo three points in the integer lattice V form, an equilateral triangle.
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Figure 20.2: Pick's theorem: 1(P) = 4. 13(P) = 9; Area =7.5.

Proof: Let T be an equilateral triangle with side length c, arid suppose that the
corners of T are lattice points. If two of these points have (integer) coordinates
(xi,yj) and (x2,y2). then by the distance ftrrnula, e.2 = (x1 — x2)2 + (yi -. 112)2 is an
integer. Hence the area c2 is irrational. However, the area of any polygon with
vertices on the integer lattice is rational (see Pick's theorem, if necessary). D

For each Ic e then no regular 3k-gon can have all vertices as integer lattice
points (because such a polygon has vertices that determine an equilateral triangle).
For example, no regular hexagon can have all integer lattice points for vertices. Of
course, it is easy to find a square with integer lattice points. The result in the next
exercise might seem rather strong, hut one proof is snrprisingly simple.

Exercise 718. Show that for each positive integer ii 5. no regular exists
whose vertices arc integer lattice points. Hint: Do not usc induction on n, but
instead use infinite descent.

The next challenging exercise is answered several in [341], including by
or Recursion".

Exercise 719. Consider an. equilateral triangle with side length ii, drawn with a grid
on it forming unit equilateral triangles whose sides are parallel to the large triangle
(as in Figure 20.8). Prove that the number of triangles that can be counted in such
a figure is

n(n -I- 2)(2n + 1)

[ 8

(For example, when n = 3, there arc 18 triangles.)
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Figure 20.3: Count the triangles; n = 4

Exercise 720. For n � 1, suppose that 3m points in a plane given in general
position (no three on a By induction on n, prove that these points form the
vertices of n mutually disjoint triangles.

20.3 Lines, planes, regions, and polyhedra
'I'he first exercise in this section is an old classic; it asks to show that for any set of n
non-collinear points. there are at least n different lines joining pairs of them. A very
simple proof is available by induction if one first "notices" the following property:

Lemma 20.3.1. If a finite set of points in the plane has the property that any line
that passes through two of the points also contains a third, then all the points are on
a line.

This property was first posed by Sylvester [521] as a question in 1893. Erdös
rediscovered the problem in 1933 (while reading the book (7cometcy and the Imagi-
nation by Hilbert and Cohn-Vossen), and Tibor Gallai found a proof the same year.
(Gallai's name was previously Céza Orlinwald.)

Some 10 years later, Erdôs in posed the problem in the Amer. Math. Monthly
[162], with the "ingenious proof" [167, p.208] due to Callai appearing (together
with a proof by Steinberg) a year later [172]. See [79], 11671, [309], and 13961 for
more history and generalizations of this problem. The following simpler solution,
attributed to L. M. Kelly (appearing in a 1948 paper, but by Coxeter [121]), might
make one wonder how the problent went unsolved for so long!

Proof of Lemma 20.3.1: [Kelly] Suppose that a set S of points is given so
that any line passing through two of these points also contains a third. In hope of
a contradiction, suppose that this set is not colliuear (arid so some points do not lie
on all lines).

Let P e S be a point not on a line F (which contains three other points in 8) SO
that the distance from P to F is minimum (but not zero). Let X be the point (not
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necessarily in S) on £ that is closest to P. Since t contains at least three points from
S, either two points are on one side of F, or the middle of these three is F itself.
Let A, B, F occur in order on F (where B — F is allowed). Let Y be the point on
AP closest to B (see Figure 20.4). Since triangles AAPX and are similar,
the distance IDYll front B to the line AP is less than JIPXII, the supposed minimal
distance. 0

Figure 20.4: Kelly's proof rising sirniilar triangles

\'Vith Ga]lai's result in hand, the solution to tIre following exercise is nearly
trivial by induction; this exercise is very popular, appearing in many modern works
on problem solving (see, e.g., [161, 8.35, p. 209]).

Exercise 721. Use mathematical induction arid Lemma / to prove that if ii � 3
points do not al/lie on a line, then at least ii of the lines joining them are different.

Among tIre next. exercises, many are often referred to as plane separation prob-
lems (which is ambiguous, as sometimes it is the plane being separated, or it is a
plane doing the separating).

Exercise 722. Prove that if a convex region in the plane is crossed by F lines
with p interior points of intersection, then the number of disjoint regions created is
r=F+p+1. Hint: induct onF.

Using Exercise 722 helps to solve Exercise 29; this latter exercise is repeated
next, hut with a little more apparent conclusion. Lines in a geometry are called
concurrent if they share a common point.

Exercise 723. Place n points on a circle arid draw in all possible chords joining
these points. If no three chords are concurrent, show that the number of regions
created is + + 1.

Very much related to Exercise 722 is a problem (arid solution) made famous by
a young Lovász in a game show.

Lemma 20.3.2. Ghords determined by ii � 4 points around a circle intersect in at
most points.

p

Y

BX
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One proof of Lemma 20.3.2 is trivial: every four points determine two intersecting
chords, and by perturhing the points slightly, all of these intersections can he made
to be distinct.

Exercise 724. Prove Lemma 20.3.2 by induction.

A set of lines in the (Euclidean) plane are said to he in general position if no two
are parallel and no three are concurrent.

Exercise 725. For n � 0 prove that n lines in general position in the plane partition
the plane into 1 -F regions.

Although it is not inductive, Moore [392] gives a very elegant solution to Exercise
725 using Euler's formula for planar graphs (see Exercise 503): Draw a circle around
all the points of intersection of the n lines in general position. Throw away the
rays on the outside of this circle, and get a planar graph C. 'l'hen C has ()
interior points, and since each line cuts the circle iii two points, there are 2n exterior
points. Since interior points have degree 4 arid exterior points have degree 3, by the
handshaking lemma, C has

+ 2n] = n(n — 1) + 3n = n2 +n

edges. The number of interior regions of C is the same as the number of regions iii
the plane determined, so by Euler's formula v + f = e + 2, the number of regions
(disregarding the external face of C) is

2 /'n\ n2+n+2 /n± 1f—1=e-i-1—v=n +n+1— = 2 2

The next result has a similar solution using Euler's formula.

Exercise 726. Let ii, circles be in the plane so that any two circles intersect in two
points, and no three intersect in a single point. Prove by induction on ii that these
circles divide the plane into n2 — n + 2 regions.

It might be interesting to note that Exercise 726 has an unexpected consequence:
since four circles divide the plane into at most 14 regions, there can never be a Venn
diagram using precisely 4 circles, no matter what their sizes, because a Vemmn diagramrì
on four sets requires = 16 regions. [Note, if three circles are concurrent, one gets
fewer regions.]

Rather than use circles or lines to partition the plane, the next two exercises use
"bent lines" and "zig-zag lines", as in Figure 20.5.

Let two rays originating from the same point be called a bent line. A continuous
line made from one segment and two rays (arid not self-intersecting) is called a zzg-
zag line. Following notation from [230], let he the maximum number of regions
that n bent lines can partition the plane into. It is not too difficult to cheek that
Z1 — 2 and Z2 — 7.



20.3. Lines, planes, regions, and polyhedra 361

bent line zig-zag

Figure 20.5: Partitioning the plane with other shapes

Exercise 727. Prove that for eat/i Ti � 1, Z71 = 2n2 — ii + 1.

The similar problem for zig-zag lines is slightly more difficult.

Exercise 728. Let be the maximum number regions determined by n zig-zags
lines. For positive integers 'ii, first prove the recursion = + 9n — 8, and
conclude that

Un2 — 7n + 2
zzfl —

Recall that a point. (x, y) in the real plane is called a lattice point ill both x and
y are integers.

Exercise 729. For each ii. ü, consider I/zr set of lattice points bounded by
x 0, y � 0. and x + y < it Prove that can be covered by no fewer than ri 4 1

hi/eS.

Suppose the plane is divided into regions (by lines or curves). If one colors each
region with one of A: colors so that any two regions sharing a (non—trivial) corn mon
l)order receive two different colors, such a coloring is called a proper k-coloring.

Exercise 730. For each ri � 0 show that n lines in the plane in general position
divide the plane into regions that can be properly 2-colored.

The very same idea occurs in the next exercise:

Exercise 731. Prove that for n � 0 czrcies in the plane, the reqions thereby deter-
mined can be properly 2-colored.

Exercise 732. Let n r + A; lines he given in 1/ic plane with no three concurrent
and exactly k of the lines are parallel (but no others). lf f(r, k) is the number of
regions the plane is partitioned iT/to, prove that

k)
r2 +r + 2

+ k(r + 1).
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Exercise 733. Given N � I lines in a plane in general position, prove that it is
possible to assign a non-zero integer of absolute value at most N to each region of
the plane determined by these lines such that the sum of the integers on either side
of any of the lines is 0.

For use in the next exercise, a fairly easy lerniria is provided (which does riot
need induction):

Lemma 20.3.3. Suppose that a line (for example, the real line) is covered by a
finite collection of rays ('half-lines). Then some two of these rays cover the entire
line.

Proof: Let p be the rightmost endpoint of all rays pointing to the left, and let q
be the leftmost endpoint of all rays pointing to the right. By assumption, all rays
cover the linc, arid so p is not to the left of q. So the two rays starting at p and q
respectively cover the line. 0

For the next exercise, a half-plane is a region of the plane on one side of a line.
[It. does not matter if one considers only open half-planes or oiiiy closed

Exercise 734. Show by induction on n that if a plane is covered with n � 2 half-
planes, then there exist two or three half-plan.es that cover all of the plane.

Exercise 735. Prove that n planes, passing through one point in a way that no
three pass through the sume line, divide space into n(n — 2) + 2 parts.

Planes in three dimensional space are said to be in general position if no three
planes share a common line and no two planes are parallel.

Exercise 736. 'l'lre maximum number of regions three dimensional space is divided
into by n planes in general position is

I

arid the number of infinite (unbounded) regions is

2(g) +2(i).

Exercise 737. Show that n � 2 spheres, any two of which intersect, partition 3-
space into at most

n(n2 — 3n + 8)
3

regions.
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The result in Exercise 734 has a three-dimensional version, with a solution that
follows the same idea (not included here; see [220, Ex. 35, pp. A hal/-
space is a region on one side of a plane.

Exercise 738. Prove that if n � 2 hal/-spaces cover all of three-dimensional space,
then there exist two, three, or four of them that cover the whole space.

Exercise 739 (Euler's formula for polyhedra). I/v is the number of vertices, e the
number of edges, and / the number of faces in a convex polyhedron, then

v±f=e+2.
In fact, this formula is trae for any simple polyhedron, that is, one with no holes
and all faces intersecting only in edges.

Exercise 740. For n � 0, let P1,... , be 2n + 1 poinls on a unit circle, all on
the same side of some diameter. Using 0 to denote the center of the circle, prove
that

� I.
For an authoritative work on some of the fantastic. applications of induction to

(mostly) Euclidean geometry (inducting on points, lines. l)l�tnes. spheres. (lirnen-
sion), the reader may be well rewarded with a glimpse at Induction in Geometry
1220]. The more accessible book [161] contains a number of classic relations between
induction and geometry. The textbooks Concrete Mathematics [230] and Discrete
Mathematics and its Applications, 6th ed., [462] collectively cover many of the popu-
lar [and not so popular] theorems in geometry that are provable by induction. These
are all highly recommended.

20.4 Finite geometries
In the study of finite projective planes (FPP's--- briefly described below), there seem
to be few inductive proofs, except for trivial ones like "if one line is finite, all are
finite", after one shows that any two lines in a projective p'ane have the same number
of points. There seem to be more inductive proofs iii the theory of "block designs",
a class of set systems that contain FPP's. (See [142[ for surveys on design theory.)
The only example presented here can also be thought of in terms of block designs,
hut comes from Lynn Batten's rich little book C'oinbinatorics of finite geometries
[40, 15—16]. A few simple definitions are required. [I have changed the notation
somewhat to be more consistent with general literature on designs and FPP's. The
proof given in the solutions here seems far easier to read with this notation.]

For present purposes, define a finite geometry to he an ordered pair (P, £), where
P is a finite set of points and £ is a set (so rio repeats) of finite subsets of P, each
subset L E t called a line. A point p E P is said to be on a line L C £ (or incident
with L) if and only if p E L.
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A finite geometry S = (P, C) is called a near linear space or partial plane if and
only if

(i) Every line L contains at least two points, and
(ii) For any distinct points p, q E P, there exists at most one line incident with both.

In a near linear space, distinct lines intcrsect in at most one point (for if two
lines intersect in two points, these two points violate (ii)).

A linear space is a near linear space where in addition, for every pair of points,
there is a unique line containing them. One example of a linear space is a finite
projective plane, a geometry that satisfies the following three axioms:

Al: For any pair of points, there exists a unique line containing them;
A2: For any pair of lines, there exists a unique point incident with both lines;
A3: There exist four points, no three of which are on a line.

So a linear space satisfies Al and lines intersect in at most one point.

Theorem 20.4.1. Let S = (P, C) be a near linear space wit/i = v points, and
lines labelled L1, L2,. . . where each contains = k points. Then S is
linear if and only if

(;).
Proof: Only one direction is proved here, the remaining direction left as Exercise
741 below. Assume that S is linear. Counting all pairs of points give but since
no pair of points is contained on different lines, arid for every pair there is a line
containing them, counting all pairs of points l)y just looking at the pairs on each
line gives (So the inequality is actually an equalityj U

Exercise 741. Prove the remaining direction of Theorem 20.4.1 by induction on v.
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Ramsey theory

Mocking the air with colours idly spread.

---Shakespeare,

King John.

Roughly speaking, Ramsey theory is the study of partitions or colorings of a
set and properties preserved (or not) in some partition class or color. It may seem
like nearly every theorem in Ramsey theory is provable by induction, however there
are still some "Ramsey-type" theorems proved by, say, the probabilistic method, for
which no inductive proof has yet been found. The collection of problems addressed
here is rather eclectic, including both simple and difficult results. For a far more
comprehensive look at Ramsey theory and the many inductive proofs used in the
field, see e.g, [231}, [409]. or [440]. Some of the material here is reproduced (with
permission!) from [242].

An r-partition of a set X is a decomposition as a union of r sets,

x = X1u X2 U ... U

where for i j, fl Xj = 0.

The above partition language can be couched in terms of colorings: An (ordered)
i-partition of a set X = X1 U X2 U X,. can be viewed as a "coloring function"
c: X {1,2,...,r}, where for each i, C'(i) = X is called
monochromatic if for some i, Y c X. The elements 1, 2,... ,r are called colors, but
any r-set can play the role of the colors; for example, when r 2, often {red, hlue}
is used. Note that any r-coloring of a set defines an ordered partition of that set. The
symbols x or are also common choices to denote a coloring function c as above.
Often, the most common sets of r colors are (using ordinals) r = {0, 1,2 r
or [r] = {1,2,....r}.

365
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For integers a b, define the interval notation

[a,b] = {x E Z: a x b}.

For convenience write [1, nJ [al.
A set X with jXJ = it is often called an ri-set. For a set X and a positive integer

k, denote the collection of all k-subsets of X by

{Y c X: Yl = k}.

[A competing notation was once (f).] The similar definition holds for any cardinal
number k. The notation [K]" denotes the collection of all countahly infinite subsets
of X, and [X]<t" denotes the family of finite subsets of X. Note that
the expression Xk denoting a cartesian product. When denoting all k-subsets of
integers from [n], write [n]k rather than the more accurate notation

Exercise 742. Prove that for n I and any a -coloring of the 271 subsets of [n],

P([n]) In],

there exist subsets A, B P([n]) with A ç B and =

Perhaps the simplest of all combinatorial results having a "Ramsey flavor" is

the pigeonhole principle, also called "Dirichlet's Schubfach Prinzip" (named after
P. G. Lejeune Dirichiet (1805--1859)). or the "box" or "drawer" principle. If r + I
pigeons roost in r holes. then (at least) two pigeons have to share a hole. In general,
if rm + 1 pigeons roost in r holes. then there is at least one hole with at least m + 1
pigeons in it. The easiest proof of this is by contradiction: if every hole has at
most m pigeons, then the total is at most rin, contradicting that there are rm 4- 1.

pigeons. An infinite version of the pigeonhole principle states that for any infinite
set partitioned into finitely many parts, (at least) one part must he infinite.

The (finite) pigeonhole principle also has a fairly simple inductive proof:

Exercise 743 (Pigeonhole principle). Prove by induction that for any n � 0 and
k 1, if X is a set with at lcast ri-k + I elements, then for any k-partition X

there exists ani so that � n±l.

21.1 The Ramsey arrow
The main results in the next sections use special notation. For any l)Ositive integers
k, r, and positive integers Pr, write

n (pt,p2

ill' for every i-partition [n]" = C1 U U C,.. there exists an i and a m—set X 6
so that [X]k c Any X so that [X]k is contained wholly in some C1 is said to
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he monochromatic (in color i). The above arrow notation is called a Ramsey arrow.
In the Ramsey arrow notation, one often suppresses the subscript r when it is clear
how many there are. When all are the same, use the shorthand

to denote

When k = I, a Ramsey arrow notation boils down a pigeonhole statement. To
be precise

(21.1)

and ao smaller number arrows (pl,p2,. . .
(for the partition into r parts each

of size 1 fails the arrow). A simple proof of (21.1) is by contradiction; another
is available by induction, either inducting on r or on some (starting with all
equal to 1).

21.2 Basic Ramsey theorems
Considering the Ramsey arrow when Ic � 2 is the starting point behind what is now
called "Ramsey theory". The main theorem in the field is eponymous with Frank
Plumpton Ramsey (1903—1930). It has two versions, the finite and the infinite;
many authors prefer to first prove the infinite version (by induction) and derive the
finite version from it by a compactness argument (using König's theorem which
that any infinite but locally finite rooted tree has an infinite branch the vertices of
the tree are restricted colorings, and vertices are connected ill one coloring extends
another). 'l'he finite version also has an inductive proof, which is asked for as an
exercise below after sonic initial observations.

The following theorem was l)roved in 1928, and published in 1930 [146].

Theorem 21 .2.1 (Finite Ramsey theorem). For any positive integers Ic, 7', and
positive integers ,Pr, all at least Ic, there exists a leastn Rk(pI.p2, .',Pr)
so that

By the pigeonhole principle, when Ic = 1, the existence of such numbers is
guaranteed.

When Ic = 2 and r 2. the numbers R2(p1 ,p2) guaranteed above by Ramsey's
theorem arc called Ramsey numbers, and are abbreviated by simply R(pi. P2). and
are called diagonal Ramsey numbers when Pi = P2- One could, by definition, for
any in � 2, define R(1,rn) = 1. Observe that R(a,b) = R(b,a), and for all am � 2,
and R(2, ni) = R(m, 2) = in. Jt is helpful to view any 2-coloring of the pairs [n]2
as a 2-coloring of the edges of the complete graph 1<,,. F'or sonic a. b, and a, to
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show that R(a, 5) � ii, it suffices to show that under any red-blue coloring of edges
of there exists either a copy of Ka with all edges red or a copy of Kb with all
blue edges. To show that R(a, 5) > n — 1, it suffices to show a red-blue coloring of
F(Kr,_1) for which there is no red Ka or blue Kb. Proving both inequalities shows
R(a,b) =n.

A standard proof shows that R(3, 3) = 6. First show that R(3, 3) � 6 by the
following: Consider any red-blue coloring of the edges in a copy of with vertices
labelled A, B, C, D, F, P. Of the five edges from A, at least three are of the same
color, say those joining B. C, D. If any of the three edges BC, CD, or BD are of
the same color as edges AB,AC, AD, get a monochromatic triple including A; if
they are all of the opposite color, BCD is a monochromatic triangle. To see that
R(3, 3) > 5, consider a pentagon with inner edges red and outer edges blue.

In 1935, ErdSs and Szekeres [173] discovered Ramsey theory, not by looking at
logic arid Ramsey's proofs, but quite independently by looking at convex polygons.
I think that their paper contained the first published proof of R(3,3) = 6. One of
the main contributions from that original paper was a recursion that showed all
Ramsey numbers I?(s, 1) exist by specifying an upper bound; Ramsey's proof only
proved the existence of these numbers with no attention devoted to calculating how
large they are.

Theorem 21.2.2 (Erdds-Szekeres recursion). For all s. t > 2,

R(s,t) R(s,t —1) + R(s — 1,1).

For k = 2, and r = 2, Theorem 21.2.2 implies the Ramsey theorem:

Corollary 21.2.3. Por each s, t � 2, R2(s, t) = R(s, t) exists.

The proof idea for Theorem 21.2.2 is to examine any 2-coloring of the edges of the
complete graph on R(s, t — 1) ± R(s — 1, t) vertices, and fix some vertex x. Consider
the two neighborhoods. those connected to x by one color, arid those connected to
x by the other color. By the pigeonhole principle, either the first neighborhood
has at least R(s, t — 1) vertices or the second neighborhood has at least R(s — 1, t)
vertices. The proof is complete l)y applying the appropriate Ramsey statement 1.0
each respective subgraph. [This proof is repeated below with more details.]

As an example,

R(3,4) C R(3,3)±R(2,4) =6+4 = 10.

In fact, R(3, 4) = 9. proved in 1955 {236]—the proof is not difficult.

Exercise 744. Use the F]rdds-Szekcres recursion to prove that for each s, t 2,

R(s,t) < (s+t_2)
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The ErcIfls-Szekeres recursion works analogously when partitioning subsets larger
than just pairs:

Exercise 745. By induction, prove the finite Ramsey theorem (Theorem 21.2.1)
for r = 2 colors. hint: Induct on k, and in the inductive step, look for a recursion
formula similar to the Erdó's-Szekeres recursion, then induct on P1 + P2•

The technique used in the proof of Theorem 2 1.2.2 easily extends to give a
many-color version of the Erdös-Szekeres recursion.

Theorem 21.2.4. Forr >2, and ,•,5r—I, each >2, R(so,si C

R(s01,s:,...,sr.1)+R(so,sl—1,...,sr_1)+...+R(so,sl,...,sr_.2,sr_.11)r+2.
Proof: F'or each i E r, put = R(so,sj — 1,81÷1 r—i), and set

= (Eier n1) — r + 2. Let A : —+ r be a given coloring, and fix x E
For each i r, set X2 = {y : A(x,y) = i}. There exists an i so that X1[ � n,, since
if not, ii = ± IXzl = 1 + — — r + 1, a contradiction. Fix
such an i with XZJ � If for every i i, X1 does not induce a j-monochrornatic
copy of then by the choice of there exists C which induces an i-
inotioclirornatic copy of K, --•i, and, in this case, {x}uY, induces an i—monochromatic
copy of U

All elenients of the inductive proof for the finite Ramsey theorem are now in
p lace:

Exercise 746. By induction, prove the finite Ramsey theorem (Theorem 21.2.1)
for any number of r 2 colors. Hint: induct on k, and in the inductive step, then
induct on the sum of the p, 'S.

Exercise 747. Prove by induction on r ? 2 that

R2(3. 3 3) C (er!j + 1. (21.2)

r

hint (as in [er!j + 1 = -- 1)!jr + 1.

An infinite form of Ramsey's theorem has an inductive proof:

Theorem 2 1.2.5 (Ramsey's theorem. infinite, 2 colors). For any infinite set X and
any 2-colorinq : [X]2 —, {1 .2} there exists an infinite subset Y c X so that
is monochromatic.

Proof: Fix a 2-coloring x : [XJ2 —' {1,2}. Pick an arbitrary x0 E X. Then x
induces a coloring Xe : X\{xn} {1,2} l)y .vo(x) = x({x,xo)). By the infinite
[)igeonhole principle, one of the two color classes (2) is infinite; call this
infinite set A0. Hence x is constant on

{xo} x A0 {{xo,y} : y C C
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say x({xo} x A0) = r0E (1,2}.
Select any element x1 A0. Repeating the same argument as above, there exists

an infinite set A1 c A0 so that x is constant on {xi} x A1, say x({xi} x A1) = E

{1,2}. [Note: r0 and may differ, while still x({xo} x A1) = ro.]
Continue in this manner (inductively), and get a set i = 0, 1, 2,.

. .} C
X so that for any E and E' in x(E) = x(E') whcnever rnin(E) = inin(E').
[If i = min{j x1 e E}, write min(E) = This induces a 2-coloring f of X* l)y
x*(xi) = x(E) for any E e [X*]2 satisfying niin(E) = x1.

By the pigeonhole principle, there is an infinite set Y C so that is constant
on -Y, and since

[Y]2 c {E e : min(E) E Y},

the coloring x is constant on [Y]2. 0

Exercise 748. By induction on r, prove the following r-coloring version of the
infinite form of Ramsey 's theorem: Let T be an infinite set and let r � 2 be an
integer. For any r-coloring of [T]2, there exists an infinite set S c T so that [5]2 is
monochromatic.

Before looking at other classic Ramsey-type theorems, the Erdös-Szekercs result
for polygons is given, and for this, a definition is needed.

Definition 21.2.6. Points Pr, . in R2 with strictly increasing x-coordiriates,
(so no two have the same x-coordinate, arid they are given in order from left to
right) form an rn-cup if for i = 1, 2,... , m — 1, the slopes of the line segments PiPI+1
are increasing; these points form an tn-cap if the slopes are decreasing.

So art rn—cup is a collection of points on a graph of a (strictly) convex function.

Theorem 21.2.7 (Erdös-Szekeres [1731). For each k,E � 2, if (k4) + 1 points
in the plane have increasing x-coordinates, either some k of these points forms a
k-cup, or some £ of these points form an f-cap.

Exercise 749. Prove Theorem 21.2.7 by induction on k + £.

Twenty-five years later, the same two authors finally published the proof that
Theorem 21.2.7 was optimal.

Theorem 21.2.8 ([1743). For each k,f � 2, there exists a configuration of
points that contains no k-cup, nor any f-cap.

Exercise 750. Study the proof in Exercise 749 and recover the inductive construc-
tion that proves Theorem 21.2.8.

Since any k—cap or k-cup forms the vertices of a convex k—gomr, it follows that
Erdós and Szekeres showed a Ramsey-type theorem for strictly convex (convex, and
no three points in a straight litre) k-gons.
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Theorem 21.2.9. For any given k � 3, there exists a least number f(k) so that
if 1(k) points in R2 occur in general position (no three in a line), then this set of
points contains k points that are the vertices of a strictly convex k-gon.

It is conjectured that f(k) = + 1, and if this is true, it is known to be best
possible by an example on 2k points containing no convex k-gon. [This exam-
pie may be constructcd by induction. For other proofs of this result by Ramsey's
theorem, see [231].]

Definition 21.2.10. For d + 1 positive integers x0,x1,.. . , the collection

H(xo,xi Xd) = Jxo + : [d]

t iEJ

is called a d-dimensional affine cube, or simply. an affine d-cube.

In 1892, Hubert [268] showed that for all positive integers d arid r, there exists a
least number h(d; r) so that for every r-coloring x : [1, h(d; r)] [1, r], there exists
an affine d-cuhe monochromatic under x• At first, proving Ililbert's "affine cube
lemma" might appear daunting. hut a proof by iaduction is surprisingly simple.

Exercise 751. Prove Ililbert 's ajjirzc cube lerrirna by induction on d. Hint: show
that h(d -I- 1; r) < + h(d; r).

Historically, the next major result in Ramsey theory is known as 4Schur's The-
orem" [482], a slight strengthening of the original. [Other results are also called

theorem"; for example. see Exercise 651.]

Theorem 21.2.11 (Schur's theorem). For any positive znicgcrr, there exists a least
positive integer ii 8(r) so that for any colorinq [1, ri] .' [1, r], there exist
positive integers x, y E [1, n] so that

A(x) = = zX(x + y).

Schur's theorem remains true when the condition x y is added. For a standard
inductive proof of Schur's theorem that shows

S(r)<r! ...fI)Le.r!i
see, e.g., [266, pp. 177—178] (For a simple modern proof of Schur's theorem using
Ramsey's theorem, see [231].) The interested reader might be impressed as to how
many more Ramsey-type theorems concern sums awl "sum-sets"; only a tiny sample
is given here but the hooks Additive Gornbinatories by Tao arid Vu [527] and Additive
Number Theory: Inverse Problems and the Geometry of Sumsets [401] by Nathanson
might be excellent references to begin further research in this area.

For sets A and 13 arid a binary operation -I-. define A+B = {a+b a E A, b E B}.
The notation a + B is also used to denote {a} 4 B. Martin Kneser [320] proved the
following in 1953.
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Theorem 21.2.12 (Kneser's theorem). Let G he a non-trivial ahelian group, and
let A and B be non-empty finite subsets of G. If [A] + [B[ [GI, then there exists
a proper subgroup H of C with

A +81 � [A] + IBI —

Exercise 752. Prove Kneser's theorem by induction on 181.

One kind of affine cube is an arithmetic progression; in particular,

H(a.d,d,...,d)=(a,a+d,a±2d a+(k—l)d}
k—i

is called an arithmetic progression of k terms with difference d. One often abbrevi-
ates "k-term arithmetic progression" by "APk". Hubert's affine cube lemma does
not prove the existence of monochromatic progressions.

B. L. van der Waerden attended a lecture given by Baudet in which he learned
of a conjecture by Schur (for his own account of the story see [547]). He managed to
give a proof [546] for the so-called "Baudet's conjecture", now becoming eponymous
with van der Waerden. Here is one form of van der Waerden's theorem:

Theorem 21.2.13 (van der Wacrden's theorem). For any positive integers r and
k, there exists a smallest integer n = lV(k; r) so that for any coloring : [n] .. r,
there exzsts (I rtionochivmatic A

The original proof is inductive, and is now called "the block proof", or the "fan
proof" (see [525] for a proof using fans). This proof is also given in [231]; another
apl)roach to the same proof is in [337] arid variants of this proof for r = 3 are
detailed in [243]. For the student of induction, this proof is a gem (but takes a
few pages to describe well). Van der Waerden's theorem also follows from the more
general Hales-Jewett theorem ('Iheorem 21.3.1 below). Since the block proof is a
double induction, no useful bounds for W(k; r) arise. Only in 1988 was it shown by
Shelah [488] that the van der Waerden function W(k; r) is prirniitive recursive (see
Section 18.5 for definition) (arid the proof is inductive—unfortunately, not included
here). More recently, Cowers showed that W(k; r) can be bounded above by a tower
function (see, for one of many sources, [227]). For a survey of theorems relating to
van der Waerden's theorem, see [291].

See also Exercise 524 for a related result (for arithmetic progressions of length
3).

In 1.928, very soon after van der Waerden's original 1927 proof, Brauer published
a paper proving that; for cacti k. arid suffieienl.ly large primes p, there are k con-
secutive integers that are quadratic residues modulo p, and there are k consecutive
integers that are quadratic nonresidues modulo p. in his proof, l3rauer uses a result:
whom he attributes to Schur; this result generalizes both van der Waerden's theo-
rein and Schur's theorem, arid has a fairly straightforward inductive proof (based
on van der Waerden's theorem):
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Theorem 21.2.14. Let k and r be positive integers. 'I'here exists a least inteqer
SB(k; r) so that for any r2 � SLI(k; r) and any r-coloring of [1, ri]2 there exists a, d
so that {d, a. a + d, a + 2d a(k I )d} is monochromatic.

Exercise 753. lfsing van der Waerden's theorem, prove Theorem 21.2.14 by induc-
tion on r.

Virtually the same proof as that for Theorem 21.2.14 works to prove a slightly
stronger theorem:

Theorem 21.2.15. For positive integers k,r. s, there exists a least n = n(k,r,s) so
that for any coloring A : [1, n] —* [1, r]. there exist positive integers a and d so that
the set

{a,a+d,a+2d,....a+(k— 1)d}U{sd}
is monochromatic.

Exercise 754. Prove Theorem 21.2.15 by induction OTt 1.

Proving lower bounds for Ramsey-type functions often consists in finding (or
showing the existence of) examples of large structures that are somehow "baanced".
This notion of balance is a central aspect of the next prohlem, although apparently
it has not yet found application in Ramsey theory (if it has, this fact does not seem
to be well—known).

The problem is called the Tarr'y-Escott problem, and has a long history (see [851
for further references) going back to at least 185 1, a generalization called "Prouhet's
problem'. The goal is to partition numbers of the form 0, 1, 2, 3, . .

,
— 1 into

two equal classes so that not only the sum of numbers in each class is the same, but
the sums of squares, cubes, and so on up until nth powers, are also (respectively)
equal. For example. with a = 2, let 1,2,4,7 be in uric class, 0,3,5,6 in the other.
'Then Ike sum in each class is 14, and the sum of the squares in each class is 70. In
the following statement of the problem, the convention that o° = 1 is used.

Exercise 755. For each non-neqative integer n, prove that there is a partition of
{ 0, 1,2 2ntti I } into two classes AT, and H,, so that for each j = 0, 1

hEN,,

21.3 Parameter words and combinatorial spaces
The triple 200, 210, 220 may be interpreted as words over the alphabet {O, 1, 2},
or as a horizontal line in some geometric space, or, if viewed as base 3 numbers,
the aritlutietic progression 18, 21, 24. This triple of words may be abbreviated by
the "parameter word" 2A0, where the parameter A varies in {0, 1, 2}. One Ramsey-
type result for svords, called the l-lales—Jewett thcoremu (Theorem 21.3.1), not only



374 Chapter 21. Ramsey theory

generalizes van der Waerden's theorem (Theorem 21.2.13), but perhaps surprisingly,
one proof of the Hales—Jewett theorem gives better bounds on the van der Waerden
function than could be previously obtained without the generalization. For the
statement and proof the Hales—Jewett theorem, some notation is convenient.

Recall that for it e Z÷, [it] = {1,.. . , n}, or in ordinal notation, it = {O, 1,.. . ,n—
1 } (so i it means 0 � i � it — 1). An alphabet is a set of symbols; throughout this
section, A denotes an alphabet with a. finite number of symbols. A word over A is a
sequence, usually written without commas, of symbols from A. For each it Z÷, a
word L1L2. . . of length n over A can be viewed as a function f: [ru A, where
for each i 1(i) = As usual, = {f [it] A}. Let A0,A1
be symbols not in A, called parameters. For in it define the set of rn-parameter
words of length it over A by

[Al(it) = {f: [it] (Au {A0,A1

Vj rn, Vi and for i cj,

T lie last condition (that the first occurrences of each parameter are in order)
is not really required, although it helps to fix ideas. So [A](Z) can be viewed as
a set of ordered n-tuples containing each A at least once, and whenever i < j,
the first occurrence of A1 must precede the first occurrence of A3. For convenience,
these ordered n-tuples are often written as "strings" or by omitting the
parentheses and commas. For example, if A = {a, b,c}, abA1A2 and A1cA2A1 are in

but aA2A1A2 and aA1A1b are not. Note that A" = [A](g).
For f and g define the composition 1 0 g by

—5 1(i) iff(i) A,
Ihi—1

if f aA1A2A1 and g bA1, then Jog abAjb.
it is not difficult to prove that the composition of parameter words is associative.
For f [A](), define the space of

sp(J) = {i 09:9
('v) }'

sometimes denoted 10 [A] (Tg), to be the set of words from [A](g) that are formed by
faithfully replacing parameters in f with elements from A. Define an rn-dimensional
(:ombmatonat subspace of Atm to be the space of some word in [A](3. If f [A](?)
then sp(f) is called a combinatorial line in or simply, a line. For example, if
f = aA1A2A1, then sp(f) = {axix2xi : xi,x2 A} C A4. In this example sp(J) can
be seen as a 2-dimensional subspace of A4 where [A] (i).

The set AT' = {f : —* A} is often called an n-dimensional cube. Elements
of this cube can he viewed as words. Note that if A = (0, 1 t — i} and if
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A" is viewed as a discrete "geometric" n-cube, then not all "geometric lines" are
combinatorial lines. For example, ({2,0,0}, {1, 1,O}, (0, 2,O}) is a geometric line
with equations x + 2, z 0 in the three dimensional cube over {O, 1, 2} but 200,
110, 020 is not a combinatorial line in [(0,

A type of concatenation of parameter words distinguishes between parameters
from respective words. If f e [A] and g E [A] define f g E [A]
follows:

1 1(i) if i [ii].
fy(i) = g(i—-n) ifi >n and g(i—n) A,

An,+j if > n and g(i — n) = A3.

For example, aAibA2 eA1A2A1a = aA1bA2cA3A4A3a. Note that

sp(fg) = (f''g' f' E sp(f),g' sp(g)}.

Another way to talk about combinatorial suhspaces avoids the notation
and composition of functions. For any in ii an m-diniensional combinatorial
subspace of N' can be defined to be any subset S C A4 obtained in the following
man ncr:

Fix a partition [n] = P U U where each M1 -$ 0 (F = 0 may occur)
and fix some f0 e PA, that is, fbr each j F, fix foU) e A. Now let S be the set
of all g E A4 satisfying

(I) for each j F, g(j) fo(i), and
(2) for each M1, if j,k e M1, then g(j) g(k).

In the above definition. P is called the set of fixed coordinates and each M, is
called a set of moving coordinates. For example. when A (0, 1}, n = 5, in = 2,

F = {3, 4}. M1 = {1}, and M2 = (2, 5}, fo = 10, the 2-dimensional combinatorial
subspace determined is the set of all words of the form xylOy, that is, the set
(00100. 01101, 10100, lllOl}.

A 1-dimensional combinatorial subspace is called a combinatorial line, and an
in-dimensional combinatorial suhspace is called a combinatorial rn-space. A 0-
dimensional combinatorial subspace of A" is a single word of length n over the
alphabet A. If one needs to identify S by the partition and the constant portion,
one might write S = S(F. M1 M42, J0).

The following result is one of the main tools in Ramsey theory. •The proof is too
complicated to be given as an exercise: however, the result is so central in Ramsey
theory that an inductive proof is given below.

Theorem 2 1.3.1 (Hales-Jewett Theorem [253]). Let m,r Z÷ and a finite alphabet
A be given. There exists a smallest number n = HJ([A[, in, r) c V so that for every
coloring : A° [r] there is an f E [A](Z) for which sp(f) is monochromatic.

Proof: The proof given here is by mathematical induction; this proof uses an outer
loop inducting on 1. and for each fixed I, induction on both in and r is used.
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For this proof, the induction is driven by the following two inequalities, whose
proofs are delayed until after the induction is explained:

HJ(t, + 1, r) � HJ(t. I, r) + HJ(t,m, (21.3)

HJ(t + 1, l,r + I) � HJ(t. I + HJ(t + 1, 1,r),r + 1). (21.4)

For each t,rn,r e t, let P(t,rn,-r) he the proposition that H.J(t,m,r) exists.

BASE STEP (1 = 1): For all rn and r, HJ(1,m,r) = in since for any n � in the space
of any word in is the only word in the trivial space {a}". Hence, for any
in and r, P(1,in,r) holds true.

INDIJOTEVE STEP: Fix to � 1 and suppose that for all in and r, P(to.in, r) holds.
The first step is to show that for every r, P(to + 1, 1, r) holds, and this is shown
by induction on r. Since P(t0 + 1, 1, 1) holds trivially, the base step holds. For the
inductive step, suppose that r0 � I is so that P(t0 ± 1, 1, ro) is true. Then HJ(tü +
1, 1.i'0) exists, and using in0 = 1 ± HJ(t0 + 1, 1,ro) and P(to,m0,ro + 1) (which
is part of the inductive hypothesis with in = in0 and r = r0 + 1), equation (21.1)
implies P(t0 + 1, 1, r0 + fl, completing the inductive step for r. By mathematical
induction on r, for every r, P(t0 +- 1. 1, r) holds.

For a fixed t. a brief induction on in using (21.3) implies

{Vr, P(t. 1, r)] [V-rn, Vr, P0, in, r)]. (21.5)

So with t = 4- 1 and for every r, P(t0 + 1, 1, r), it follows from (21.5) that for
every in and r. P(t9 + I , in, r) is true, completing the inductive step for t.

By mathematical induction on 1, equations (21.3) and (21.4) imply that for all
t, i-n and ,', P(t,rn.r) holds.

Thus it remains to prove (21.3) and (21.4). Throughout the remainder of the
proof, fix t, rn, and r.
Proof of (21.3): Set Al = l-LJ(t, 1,r) and N = HJ(t,rrr,rtM). Fix a coloring

A : AM+N — [r]

and define AN : A" [rt"] by

AN(f) = (A(gf) : g E

i.e., each I is colored with a sequence induced by A. Let 1* E [A](Z), guaranteed
by the choice of be so that sp(f,v) is nionnochromuatic with respect to AN. For
any Ii E define : it" [r] l)y

= A(g (IN oh)).

By the choice of IN, does riot depend on h. So there exists fj,j C so
that sp(f,v,) is nioiiochrornatic with respect to AA,/.
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Setting
(M+Nf=fM

sp(f) is monochromatic with respect to A by the following: For any I e and
h

fo(Uh) (fMoIY(fNoh)
and so A(f o (Hi)) = AAI(ffvf o I) is constant. Hence (21.3) holds.

Proof of (21.4): In this part, put M = FIJ(t + 1, 1, r) and N = HJ(t, 1 + 116, r +

1). With AJ = t, choose a symbol b 0 A and put B = A U {b}. Fix a coloring

A : [r + 1].

It remains to show there exists a monochromatic line in BN, i.e., an h [B] so
that sp(h) = ho [B]a) is monochromatic with respect to A.

Define
AN ft +

the restriction of A to A, in the natural way (i.e., for any f AN, AA(f) = A(f)).
By the choice of N, there is IA that has monochromatic with
respect to AA. Without loss, for every f IA o AUM, let AA(f) =

If there is a g so that aLso A(fA (Kb) g)) = r (i.e., if there is a word iii
containing b's that occur in the same positions as A1 occurs in [A and is colored

the sanie as construct h by replacing the occurrence of each b in JA ° (Kb) g)
with A1. Then h [B](t) and whenever x A,

hoKx)

and so in this case A(h o Kx)) r. Also

ho Kb) fA0(Kb)9)

and so A(h o (b)) = i So in this case ho is monochromatic with respect to

So suppose there is no such g satisfying A(f4 ° (Kb) g)) = r. Define
[rj by

A,tq(g) = A(JA ° (Kb) g)).

13%' the theorem, there is with fM o [B] monochromatic with respect
to For

(N
h=fAo(Kb)

ho is monochromatic with respect to A, finishing the proof of (21.1). Q
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21.4 Shelah bound

The inequalities (21.3) and (21.4) do not yield primitive recursive (see Section 18.5
for definition); bounds for HJ(t,m, r). In fact, it was not until 1988 beforc it was
shown that the function FIJ is primitive recursive; this was accomplished by Slielah
[488] (given here as Theorem 21.4.5, below) with an elementary inductive proof
of the Hales—Jewett theorem that avoided the double induction used in the above
proof. and yielded bounds that were expressible in terms of "simple" functions.
Shelah's proof is a discovery that may already be deemed to be a classic example
of an inductive proof that overcomes the weakness of a double induction and yields
a much stronger result; the style in which induction is applied niay also be very
instructive. Also, since the Hales—Jewett theorem is a central theorem in Ramsey
theory, Shelah's proof seemed worthy of inclusion here, even though it takes a non-
trivial effort to work through the details.

The innovative tool that Shelah used in his proof of the Hales-Jewett theorem
(Theorem 21.3.1) is now often called cube lemma"; to avoid confusion
with other 'tribe lemmas", here it is called "Shelah's string lemma" (Lemma 21.4.1,
below), a name that may be slightly more apt. The proof of the string lemma is ele-
inentary (although the proof requires special notation that makes ii, look unwieldy)
arid is by induction. Using this string lemma, a short inductive proof shows that
1-1.1(1. 1, r) exists arid is primitive recursive. The more general result for H.J(t, in, r)
can be proven similarly. but also follows from the 1-dimensional case with a simple
observation.

Even for the case in = 1, the bounds obtained for HJ(t, I, r) are extremely
large; one can see a more complete discussion in. e.g., [231, PP. 60ff], together with
many other Ramsey-type results related to the Hales—Jewett theorem. For a brief
version of the Shelah proof, see [41.4], or for a variant of Shelah's proof, see [368].
(See also comments surrounding Theorem 2 1.2.13 concerning l)Ounds on the van der
Waerclen function.) In the and on the web, Shelah's proof is explained
in many different ways; the presentation here arose from lectures by Norbert Sauer
[476] (who learned this proof from Deuber while in Germany in in 1988; also see
[134] regarding a lecture in Norwich, 1989) for the case in = 1, and uses standard
parameter-set notation.

F'or a positive integer it, recall the notations [it] = [1, it] {1, 2 . n} arid
[it]2 = {{x. y} x, y E [it], x y}. The main objects of consideration in Shelah's
string lemnnia are "strings" of the form (where in, it E Z± and i E [m])

({xl,yi}, . . , . . . , {xin,y,n})

chosen from

[n]2 x [it]2 x x [p12 x [it] x[n]2 x x [it]2

i—th position rn—th position
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Slightly abusing notation, subscripts are added to indicate position of each [nJ2 and
In]; so the set of such strings with a singleton in the i-th position (call them
i1' strings) is indicated by

x x x [n]j x x x

Lemma 21.4.1 (Shelah's string lenuria [488]). For each in, r E ZTh there exists a
smallest ii Sh(m, r) so that for any family of m r-colorings,

Aj:

A: In]? x ... x x [n]1 x [n]?+1 x ... x —* H

Am : In]? x x x [nIL1 x [n]m [r].

there exist {xj . . . {x74, [n]2 so that for each i = 1, . . . , m, the two type
i words have the same color:

A1({xj.yi} {x1}. {Xz+l,yj+J},. . . , =

m }, .
, {x1_[, iii—! }, {y2 }, yi+i } }).

(Each A1 is in a string.)

Proof: Fix r e Z throughout the proof. The proof is by induction on in. For each
positive integer m. let C(m) denote that Sh(m, r) exists.

BASE SeEP: When in = the theorem says only that there exists a so that for any
coloring A1 : [a] [r], there exists (x,y} so that Aj(x) Ai(y), which. by
the pigeonhole principle, is true if n = r + 1; so, Sli(1, r) = r + 1, and so C(1) is
true.

INDUCTION STEP: Fix t 1 and assume that C(t) holds, i.e., Sh(t, r) exists. The
statement C(t! + 1) follows by proving the following claim:

Ish(&r)\E
Sh(e+ 1,r) < 1 2 ) (21.6)

£

To prove (21.6). set, it = i + r( 2 ) and consider any £ + 1 colorings

A1 : ]n}i x x x x x [n]?÷i .

A, : [iii? x x [n]?_1 x [n]1 x [n]?+1 x x [n]?÷i —+ [r]
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x [ng x x x [rJ.

Consider Ae+i restricted to the set

[Sh&,r)I? x x x (21.7)

For each z E there are strings in

T(z) = x x x {z} (21.8)

and so for each z, the coloring restricted to T(z) can be represented by a
"color-pattern" vector of length IT(z)J = with entries from [ri (where the

Isb(e,r)\e
strings in T(z) are ordered in some way). There are only there are only 2 1 such

color-pattern vectors. Since there are ii >
I)

choices for z, by the pigeonhole
..principle, there are z1, z2 E [nJ,+i, z1 such that the color-pattern vector of

restricted to T(zj) equals the color-pattern vector of Ae÷i restricted to T(zi);
that is, for each (x1. y' } C [Sh&, r)]2, . . . , {xg, Ye} C [Sh(e, r)]2,

vi} {xg, ye}, {zi })) Ae÷i (({x1, y' }, y,}, {z2})).

Finally, consider the remaining £ colorings A1 arid for each i = 1
the restriction of A1 to

[Sh(C. i)]2 . >< [Sh(e, r)]1 . . [Sh(e, x {zi, z2 } ——-' [r].

By the definition of Sh(€, r) for each i = 1 £ select a pair {x1, [Sh(e, r)]2
so that A (arid so also is insensitive to a switch iii position i. i'hiis the pairs
(xi , m } {zi , z2} witness the conclusion of + 1).

Thus (21.6) holds, completing the inductive step.

For a fixed r, by mathematical induction, for every m C Z 1, Sh(m, r) exists.
The theorem follows since r was arbitrary. D

Lemma 2 1.4.2. The function Sh(in, r) is primitive recursive.

Proof: Replacing in, by mit — I iii the recursion (21.6),

Sli(nt, r) < 27.Sli(rn—1,r)21"' (21.9)

Applying (21.9) twice more gives

3)(nz 2)('n— 1)

2r2'"-
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An easy proof by induction then shows (again, with very loose bounds),

2r2)
Sh(m,, r) a tower of height in + 2.

The next result by Shelah not only shows (by induction) that HJ(t, 1, r) exists,
hut it also leads to showing that HJ(t, 1, r) is primitive recursive.

Theorem 21.4.3 (Shelah [488]). For any positive integers 1,7W,

HJ(t + 1, 1, r) 1, r) . Sit 1, r(t4 (21.10)

Proof: Let in = HJ(t,1,r) and n = Sh Fix an alphabet A with
A and A be given. Set B = Au{b}. Let A: [rJ

be given. To prove the theorem, one must show the existence of a monochromatic
line in B"t. 'l'his is accomplished by first looking only at special words with in —• 1

parameters A1, ... , A,,41 so that for each i, all copies of A, occur in a single block.
These special words are constructed by concatenating words of only two kinds: For
each pair of positive integers x < y < ii, define the words

In
1

£ 7J—X fl—y

£ Tt—X

For the moment, fix i E [in]. For each positive integer sequence c1 < d1 � ii,
c2 < d2 < n Cm cz i-i, define two words in

fi 1d ,Vc.Uc.,d.," ucfl& Urns
12 = . .

Say that these words are of "type i". Note that in the concatenation process, the A's
in the subword are replaced by A3's in either ft or 12. A word in sp(fi) is of the
form f1 o in for some w C 8m—i List jjm_1 {1ni wk}, where Ic = (t + ir''.

For arty i" sequence (or Shelah string) of the form

s = ({cj,di} {cj_i,d1_i}, {cm,dm})

where each I � <a, and fi as defined above, define the vector

At(s) = (A(f1 o w1)), A(f1 0 w2) A(f1 o ink)).
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So is an of all type i Slielah strings.
So by the choice of ii and Lemma 21.4.1, there exists a fixed choice of rim pairs

c .., {xm,ym} e so that for each i E [in],

- .

ux, IY;IVY,UXi+iYt+l . Uxmy,j.

Since these two color vectors agree, by the definition of for each

A(f1 ow) = A(f2ow). (21.11)

Consider the rn-parameter word

7mm
E

Then A induces an r-coloring A0 A"t [r] defined by A0(g) = A(uog). [Recall,
b A.] By the choice of m = IIJ(t, 1. r), there exists a A0-mnonochromatic line
h e [A] Tn other words, for any zm, 22 E A,

A0(h o = A,1(h o 22) A(u oh o

o Ii is the required line in [B](7) to finish the proof that HJ(t +
1, 1. i-) < mm, it remains only to show for some z E A that A(uohob) = A(aoho z).
•The natural choice for z isa, so to conclude the proof of (21.10), it remains to show
that A(zzohob) =A(uohoa).

Observe that for cacti i E [m], o a = and o I) = Letting fi
and f2 denote the type i words as defined at the beginning of this proof but instead
using the pairs {xi.yi} {xm,y,n}, equation (21.11) says that for any wE BIn_I,
A(fi ow) = A(f2ow). Write h = , h(m)), and suppose that h(i) = A (there
may be more A's). Then h o b is of the form a1_iba1+i where each

e B. The w to he used when applying (21.11) below is 'in = a1 ar,.

A((uoh)ob) = A(uo(hob))
= a a

- UXrn,Ym a am)

= a a1 - UXm,Y,n a cm,fl) (by (21.11))

= A(ux1,qi a a(--- a . . a a10).

If there h has another A in, say, position j. repeat the process above calculations as
applied to words of j-type; continue so that every occurrence of b in Ii a b is changed
to an a in the above calculation, arriving at A((uah)ab) = A((uoh)oa) as desired.
Hence (21.10) holds. 0
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In the proof of Theorem 21.4.3, nowhere was it (essentially) relied upon that
in = 1, except in some details near the end. The interested reader can verify that
the proof works for arbitrary rn, but if this assertion is not convincing, the following
Lemma 21.4.4 can be applied. This alternative method (see e.g. [231, p. 40]) relates
the Hales-Jewett number for rn-spaces to that for lines. The simple idea used is that
if B is an alphabet and A = B", then a combinatorial line in A" is an rn-space in
B".
Lemma 21.4.4. For any t,rn,r E V,

HJ(t,rn.,r) < rn HJ(tm. 1,r). (21.12)

Proof: Fix t,rn,r. Let B he an alphabet with R] = t and set A = B = {f
rn —' B}. Let n 1IJ(t", 1,r). If g E B", then for each i = 0,1,... ,n — 1, set
Pi = .q(irri + 1)g(irn + 2).. .

g . E A",

showing B"" c A". En fact. B"' can be viewed as precisely A". Fix a coloring
A : B" [r] (which is also a coloring of A"). By the choice of ii, there exists
g E [A](?) so that A is constant on sp(g). But since the parameter of g can be
replaced by any f : iii B, g E [BJ('') and A is constant on sp(g), (21.12)
holds. 0

Beginning with HJ(1, 1.') = 1, applying Theorem 21.4.3 t — 1 times (and then
Lemma 21.4.4), another inductive proof of the Hales Jewett theorem is achieved.
This induction reveals an explicit (but very large) upper bound for HJ(t, rn, r); see
[231, pp. 60 68] for discussion of just how large this bound is; it falls into a class of
functions called "wowzer" functions (towers of towers). This outlines the proof for
the theorem mentioned at the begnunug of this section:

Theorem 21.4.5 (Shelah [488]). The function J*J(t, rn, r) is primitive recursive.

21.5 High chromatic number and large girth
The next result concerns the existence of hypergraphs with high chromatic num-
ber and containing ito small cycles. [See Chapter 15 for notation and definitions.]
Naively, one might think that since short cycles forc:e the chromatic number up,
short cycles are necessary to do so. In fact, quite the opposite is true.

A simple construction produces triangle-free graphs wi arbitrarily high chro-
niatic number. The following construction is clue to Mycielski [399]: given a graph C
on vertices V = , construct a graph Ct as follows: let U = {ui
V = 0, arid let j be a vertcx not in U U V. Dc6ne cr on vertex set U U V U {x} by
including all edges of C, and for each i 1, add edges joining to each of
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the neighbors of and then finally join x to each vertex in U. It is not difficult to
verify that = C'5, and is the graph in Figure 21.1, also called the Crötzsch
graph (independently, Crotzsch found this graph just a few years later).

Figure 21.1: The Crötzsch graph and the Mvcielski construction

Exercise 756. (lying the Myczelskt construction described above, let G2 = K2, and
recursively, for each i � 3, put = Prove that for each i 2, is
triangle-free and � ii.

There are graphs with both arbitrarily large girth and arbitrarily large chromatic
number. According to [406], the study of such questions began with Tutte arid Zykov
(see [132]) in the 1940s. The question was finally answered by Erdös [164] and Erdôs
and Flajnal [1701 in the 1960s using probabilistic methods. The first constructive
proof was given by Lovasy, [352] in 1968.

A later inductive construction (given below) is due to and Rödl [4061
arid is apparently an extension of an idea of Thtte 11321. This construction is a sim-
ple example of a more general technique called partite amalgamation, a technique
developed to prove theorems in Ramsey theory. One may think of partite amalga-
mnation as inductively gluing partite graphs together but only along certain partite
sets or "coordinates"; this particular application consists of gluing only at a single
partite set (part). Because of the difficulty of the general process of partite amalga-
mnation, tire proof given here of the existence of sparse (large girth) highly chromatic
hypergraphs serves as an introduction to tire process. [For more information on the
powerful applications of partite amalgamation, see, e.g., [407], [408] or [409].]

As usual, let x(G) denote the chrorriatic number of C. The girth of a hypergraph
is tire length of a smallest cycle contained in C.

Theorem 21.5.1. For positive inteqers k � 2, n, p there exists a k-unifonn hyper-
graph G so that girth(C) > p and x(C) > n.

Before seeing an inductive proof of Theorem 21.5.1., one might wonder why this
result is in a section on Ramsey theory. The proof below follows that of a Ramsey
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theorem (see above references) for edge partitions. This is riot surprising since one
can interpret Theorem 21.5.1 as a Ramsey result. For a k-unifonn graph C. let a
copy of an edge of C (all of which are isomorphic) be denoted by Ec. Also, let;
G2 be a k-uniform hypergraph that is a cycle of length i (cycles are not unique in
a hypergraph setting, so further suppose that contains no smaller cycles, and
so hyperedges intersect in at most one vertex, making unique). Then Theorem
21.5.1 can be restated as follows.

Theorem 21.5.2. For positive integers k � 2, r, and p, there exists a k-uniform
hypergraph C with girth(C) > p so that C —÷ that is, under any r-coloring
of the vertices of C, at least one edge is monochromatic.

For a short probabilistic proof of Theorem 2 1.5.1, see, e.g., [13J.
Proof of Theorem 21.5.1: For subscripts, ordinal notation (a = {O, 1 a -- 1}
is convenient. For an a-partite k-uniform hypergraph C = ((Vj)j€a, E) and some
r a with 1141 = €, and an C-uniform hypergraph If = (X, D), define the a-partite
k-uniform hypergraph HC = E') as follows:

For i r, set = 14 x D and set = X. For each d C I) fix an injection
Ujra14 —* Ujeal'c' taking 14 to d C 1< and for i r. lPdU4) = {(v.d) : v 6 Vj}.

Define
F' = {{th4vi) Wd(Vk)} : {v1 vk} 6 E,dc D}.

An edge e 6 E' will be denoted for some e 6 B, and d e D. So is formed
by taking IDI copies of C and identifying the copies of 14. with edges of H. Copies
of G have been amalgamated along the r-th part, using II as a template for the new
r-th part.

The theorem is proved by induction on p.

BASE STEP: For p = 1, observe that any loopless hypergraplr C satisfies qirth(C) �
2, and for each k, trivial examples of k-graphs exist with x(°) a
INDUCTIvE STEP: Fix p > I and suppose that the theorem holds for every q satis-
fying 1 q <p and for all edge sizes k'. Put a = (k — 1)n + I and let

C° = ((14°) ica, B°)

be an a-partite k-uniform hypergraph so that for every set A c and for every
i E A there is an edge e 6 B° with e fl 14' 0 arid has girth(C°) > p. (One could
take C0 to he a collection of disjoint k-edges.)

For each j -= 1,... ,a, inductively define a-partite k-graphs = ((t13)ica, B3),
as follows. Having defined cm ((i"7'1)ica, (in < a). put and let

= (Xm, D"') be an em-graph which satisfies girth(IIT") � p and >
(Such a hypergraph exists by induction hypothesis using a. diftererrt value for k)
Put

C"' = H"' *m C" = ((V"' B"' 41).

Claim: The graph cr = ((va)j€a, K") satisfies the theorem.
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To see that for each j � a, girth(C3) > p. induct on j: suppose that for some
fixed j, girth(C3) > p. In E3+l, pick a sequence of vertices

C = {0d0(vo) ødq_i(t'q_1)}

of minimal length q that determine a cycle. If all the d1, i e q are equal, by the
induction hypothesis there are no small cycles in a copy of and so q > p holds as
desired. So suppose that not all the d2 are equal. In this case, the only way that C
can he a cycle is if C uses vertices from P7k', the j-th l)art of G3+l. Now use the
fact that, by induction hypothesis, girth(H2) � p and conclude that q > p (in fact,
q, in this case, is at least 2p) as desired.

To see the proof of x(Ca) > n, fix a coloring : V(CU) ii. The restriction
of to X_1, the last part of imposes a coloring on XU_l, the vertices of
By the inductive hypothesis > vi, and so there exists a monochromatic
edge da_i E Setting Za_1 = do_i e [xg_1]ea_1 to be the last part of a new
graph Fa_I CU—I, that is,

rU--i — it va—h '7 r'U—I r t'a—l ik
— bra—i, tai, n fl U "a—i]

look only at how colors Certainly is constant on by design.
Repea.t in this manner, using the vertices of a monochromatic edge of IV' 2 as
a new part. a subset of X,'9j, create Fa_2, being constant on the second last
part thereoL Continuing inductively in this manner, get F0 = E(F°)), a
copy of C°, the vertices of which have colors depending only on the part whence
they came. By the choice of a, there exist k parts all colored the same. By the
design of (70, there exists a k-edge determined by those parts, guaranteed now to
he ntonochromatic.

By NIl, for any i � 1, the construction works. 0

Rauisey theory for graphs is a very popular area of research with hundreds of
amazing [to nrc, at least] and deep theorems proved by induction. See [65] for an
extensive survey of graph Ramsey theory available on-line. Other surveys occur in
references cited above, but I neglected to mention some other excellent surveys and
other areas in Ramsey theory (like Euclidean Ramsey theory, where induction is
applied quite hazidilv): other reconuneuded surveys include those by Graham [228]
and [405].



Chapter 22

Probability and statistics

It is remarkable that a science (probabilities/ which began wit/i the
consideration of games of chance, should have become the most im-
portant object of human knowledge,

Pierre-Simon Laplace (1749-1827),

Théorie .4nalytique des Probabilités.

Here is an easy exercise to start.

Exercise 757. Show that if X2,..., are real numbers each satisfying a
b, then the mean of the 's is also in the closed interval [a, b].

The next. exercise computes the mean of the binomial distribution.

Exercise 758. For non-negative p and q with p + q = 1, prove that for each n � 1,

np.

Exercise 759. Let aj,a2 ak be positive integers, and set

S = {x E : Vi, does not divide x}.

Prove that the density of S in is at least

\ a21 \

22.1 Probability basics
This section is a collection o[ basic definitions and statements used in probability
theory (and implicitly also in statistics). This section contains no exercises.

387
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22.1.1 Probability spaces

For most purposes in combinatorics and computing science, a probability space is a
pair (Il, P) where fl is a (usually finite) set (called a sample space) and P
[0, 1] is a function satisfying

P(C) = P(fi) 1.

The function P is called a probability function or probability measure. There are
many notations for a probability function, including Prob[Cj or Pr(C).

If (ft F) is a probability space where for each w E fl, P(w) then the space
is called a uniform probability space. [Infinite uniform probability spaces take a little
more to deflne.}

Definition 22.1.1. Let (Il, F) be a probability space. Art event is some subset
A c Si, and the probability of event A is P(A) P(C).

One is often able to equate events (that is, certain suhsets A c Si) with qualities,
as is shown in Section 22.1.2 arid others below.

In a finite uniform l)robnbility space. calculating probabilities is tantamount to
counting, that is. P(A) = 141. In an infinite "uniform probability space" (and marl)'
other infinite probability spaces), one must he a bit more careful about counting.
For example, let Si = {C1. C9, C;3, . . .} be an infinite (but countable) sequence of
grapE's and put A = {C2,C3, C.1... .}. Then P(A) = 1 = P(fl) bitt A $ ft In other
words, one says that a certain property of graphs in Si holds with probability 1, yet
there are graphs (namely C1) that. do not satisfy that property Iii such cases, one
says that a property holds almost surely or almost always, or almost all graphs have
the property.

Lemma 22.1.2. For events A and B in a probability spare.

P(A\B) = P(A) — P(A n B).

Lemma 22.1.3. For airy events A wad B in a probability space,

P(A U B) P(A) ± P(B) — P(A n B).

Proof idea?; Fbr any sets X and 1", In the irichision—exclusion
X flYJ.

It follows that P(A1).
Let Q\A = A denote tIre complementary event to A. Since events correspond to

sets, often the script notation is dispensed with and an event is sortie A c Si. Also,
events can be thought of "occurring", so the event A fl B can he taken as the event
"A and B", written A A B, and the event A can be written
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22.1.2 Independence and random variables

Two events A arid B iii a probability space are said to be independent if ['(An B) =
P(A) . P(B).

Lemma 22.1.4. Let A and B be independent events. Then the events A =
and 8 are also independent.

Proof: Let P(A) = P1 and P(B) = P2, and so P(A) = I — m and P(B) = — P2.

Since A arid B are independent. P(A n B) = PIP2 'Elicit

P(A n = 1'((II\A) n (Q\B))
= U B))

= 1-P(AuB)
= 1 — (P(A) + P(B) — P(A n B)) (by Lemma 22.1.3)

= 1—(pl+p2—pIp2)
= (1 —Pm)(l p2)

P(A)P(B).

which shows that (.4) and are irlclependent. U

Definition 22.1.5. An event A is mutually independent of evemits 13d if A
is iridel)endent of army hoolean commibimia.tiomi of the B2's.

As mentioned by J ukna. [296. p. 222], an event A cami be independent of each of
B1 antI 82, but not mutually independent of and B2. For example, flip a fair coin
twice; let B1 be the event that the first flip is heads, l)e the event that the second
flip is heads, arid let A be the event that both flips are the same. Then P(A) =
P(B1) = P(B2) = P(A n B1) = P(A n B2) = and so .4 is independent of each
B1 and but

= P(AnB1 nB2) P(A)P(B1 nB2) =

so 11 is riot independent of fl F)2.

Definition 22.1.6. A (real valued) random variable is a function X Q It

If a randoimi variable X takes on exactly two values, then X is called a Bei-noalli
random variable. For an event A c ft an indicator random variable X = XA of the
event A is the 0-1 Bernoulli random variable X defined by

IifGeA' "
— 1.. 0 if C A.
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Indicator random variables are often used to count the number of sets with a given
property Q. For example, suppose that Q is a set of graphs C1,... ,Gm, and let
A be the set of all graphs with some property Q. Letting each of X1,. . . , be
indicator random variables defined by = = 1 if has property Q, then
X = X1 + . . - + X,,,. counts the numher of graphs with property Q, that is, At.

In general, if the image of X is a finite (or countable) set, X is called a discrete
random variable. If for some k E IR, sonic X,

A = {C X(G) � Jc},

then P(A) can be written P(X � k).
Given a real valued random variable X, define the function Fx : IR —' 1] by

Fx(x) = P(X Cr); then Fx is called the distribution function for X. For example,
it might be that for some f : R R, that Fx(x) = f(z)dz. In such a case,
f is called the density function for X. Often, when a random variable X arises
from a probability experiment, f is called the probability density function for X. A
sequence of random variables, X1, X2,. . . is said to converge in distribution to that
of X if for each t E R, P(X C t) = Fx(t).

22.1.3 Expected value and conditional probability

The expected value (or mean value) of a random variable X in a probability space
(Q,P) is

E[XI = X(G)P(C).

The expected value E[XJ is often denoted by /L. Expectation is linear, that is, for
any random variables X, Y, and c E IR,

E[cX + Y] = cE[X] + E[Y].

For an event B with P(B) > 0, the conditional probability of an event A given
that event B has occurred (or relative to B) is defined to be

P(AnB)
P(A I B)

= P(B)
(22.1)

Equation (22.1) is sometimes called "Bayes' formula", and Bayes' theorem is an ex-
tension of this (see Lemma 22.6.1). A common application of conditional probability
is the following:

Lemma 22.1.7. If P(B) > 0, thcn A and B are independent if and only if P(A
B) = P(A).
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22.1.4 Conditional expectation
Just as expectation is defined in terms of probability, one can define
expectation" in terms of conditional probabiht

Definition 22.1.8. Given an event S in a probability space arid a discrete randorri
variable X, define the conditional expectation of X conditioned on the event S by

E[X J 5) = > X(C)P(G I
5).

CEw

Note that depending on the event 5, many of the summands in the above defi-
nition might he zero. Written another way,

E[X 5] = EXP(X = x)5).

Lemma 22.1.9. For any random variables X and Y,

E[Y] = = x)E[Y X = x], (22.2)

where the sum is taken over ii e {X(G) G Q} and all of the expectations exist.

Proof: Beginning with the right-hand side of equation (22.2),

> P(X = x)E{Y
I
X = xJ = P(X = yP(Y p F X

= = uI X = x)F(X = x)

= >> P((Y = y) A (X = x)) (l.y I3ayes)

= 1P(Y =y)

= E[Y].

E

It follows from the above that conditional expectation is also linear, arid so for
ally random variables Xi, and V where each E[X1} <no,

E[X I Y] a function of the randoni variable Y, and hence is itself
a randoni variable.

Lemma 22.1.10. For random variables X and Y,

E[X} = E[E[X
I
Yfi.
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22.2 Basic probability exercises
No discussion of probability might seem complete without at least one prob-
lem".

Exercise 760. Suppose that an urn initially contains one red and one black marble
and that, at each time it = 1, 2,..., you randomly select a ball from the urn and
replace it with two balls of the same color. Let denote the number of red balls in
the urn at time n (note Xo = 1).

a) What is E(X1)'?

b) What is E(X2)?

e) l'Vhat is E(X3)?

il,) Conjecture a formula for

e) Using mathematical induction, prove the conjectured formula.

f,) Suppose that instead of replacing the ball with an additional ball of the same
color, you replace it with an additional ball of the opposite color. Coujec:ture
and prove.

The following simple lerrinia sets the stage for a famous problem.

Lemma 22.2.1. Let X1, X2,... be distinct real numbers chosen at random from the
interval 10,11 and define N = tnin{n � 2 1 < Then E[X] = e.

Proof: For each a 2, there are ii! possible orderings of X1 and only the
ordering X1 > X2 > . > has no increasing adjacent pair, so Prob(N > ii.) =
'l'hus

E[N] = > Proh(IV > n) = >
n=O

which concludes the proof. D

The following exercise is quite popular, appearing in many settings. For example,
the case x = I appeared as a Putnam problem 1.3 from the 1958 contest (see [90])
and a restricted version appears in [4911. This next exercise also appears in [467,
120—121], where it is combined with Lemma 22.2.1, and stated with a = 1, hut
proved more generally. The solution given here uses integrals.

Exercise 761. Let X1 X2,... be distinct and chosen at random from the interval
/0,11, and let a E (0,11 be fixed. 1)efine Ma = min{n � 2 : X1 + ... + X,, > a}.
Prove by induction that for any positive integer n,

Proh(M,1 > n)



22.3. Branching processes 393

Setting a = 1 and M1 = Al in Exercise 761, by the same reasoning in Lemma
22.2.1, conclude that E[M] = e. It may he somewhat surprising to have N and M
with precisely the same distribution.

22.3 Branching processes

Exercise 762. A microbe either splits into two perfect copies of itself or it disinte-
grates. If the probability of splitting is p > prove that the probability one microbe
will produce an everlasting colony is at least 2

This next example appears in Stochastic processes [466] by Sheldon Ross. Con-
sider organisms that don't split, but yet have finitely many offspring (of the same
kind). Such reproduction is considered to be asexual, so the number of offspring
from a particular organism in no way depends on the number of offspring of an-
other. To each individual, there is thc same probability. that it will produce
i � 0 descendants.

Let C0 be an initial population (the "0-generation) of organisms, am! for each
j e let C1 be the generation (called the j-th gerierat ion) of offspring collectively
produced by all of those in the previous generation

For each i = 0, 1, 2,..., let = the random variable denoting the popula-
tion size after i generations. The Markov chain Xo, X1, X2,... is called a branching
process. One can calculate the expected value of each as follows. For any indi-
vidual x, let d(x) be the number of descendants of x. Then for each ii.

d(x).

For simplicity, consider only the case = 1, where a population starts from a
single individual. Let j.t be the expected value of d(x). Then conditioning on X,,..1,

= — 1J]

=
=

(by induction?)

=
=

Let be the probability that (with Xo = 1) the population dies out. Then

=
Prob(population dies out =
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For the population to die out, given X1 = j, all the j members of G1 must spawn
families that also die out. The d(x)'s are independent, and since the probability
that the family started by x dies out is it (applying the model to that sub-family),

=
j=o

Theorem 22.3.1. [466. p. 192/ Let P0 > 0, and Po + P1 < 1. Then it is the
smallest number satisfying

'It it3

Exercise 763. Prove Theorem 22.3.1 by induction.

22.4 The ballot problem and the hitting game
Consider art election for one of two candidates. A and B, where A wins. Row likely is
it that after each vote, A has more votes than B? The result in the following exercise
is often called the problem", or "ballot theorem", sometimes attributed to
.Joseph Bertrand [50] in a half-page article published iii 1887, with generalizations
due to many authors. See e.g., the 2007 article by Renault [450J for references,
proofs, and the connection to Catalan numbers.

Exercise 764 (Ballot problem). Let a and h be non-negative integers with a > b.
in an clectzon suppose that a + b ballots are cast, a votes for candidate A and b votes
for candidate B. Let N(a, 6) be the number of ways a + b votes can he ordered so
that after each vote, candidate A is winning. Prove that for a + b � 1,

a+b\a
Considering all (a + b)! possible orderings of votes, the ballot problem result

shows that the probability A stayed ahead during the entire vote is N(a, b)/(a + 6)!.
Variants of the ballot problem occur in the study of branching processes, random
walks, Markov chains, and mart ingales, but little discussion of t liese topics is given
here. Very briefly, if art individual is taking a walk on the integers, a vote for A can
be interpreted as a step to the right, and a vote for B as a step to the left. 'Flien
the position in the walk nieasures the advantage of A over B; analysis similar to
that used for the ballot l)rol)leiml can be used to find the probability (given a certain
probability distribution of right-vs.-lelt steps) that a walk starting at. 0 stays to the
right of 0, even if the walk is infinite. Related questions might ask what is the
expected time for the individual to first return to 0 (see the hitting time problem iii
Exercise 767 below) or what is the probability that a random walk ever extends past
some threshold k (at which time, the walk may terminate, like falling off a cliff).
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The following exercise can be given in many disguises (see Exercise 404, for
example), and establishes a connection to the Untalari numbers. A solution to
the next exercise is nearly direct from Exercise 764; however, an inductive proof
is available by nearly duplicating the solution to Exercise 764. [The simple proof
follows the exercise.]

Exercise 765 (Ballot problem weakened). Let a and b be mom-negative integers with
a > b. In an election suppose that a ÷ b ballots are east, a votes for candidate A
and b votes for candidate B. Let IV*(a, b) be the number of ways a ± b votes can
be ordered so that after each vote, candidate .4 is not behind is either tied or is
ahead). Prove by induction that for a + b � 1,

a — b + I (a + bN*(a,b)= Ia+1 \ a

Note that N*(a, a) = the Catalan number Ca. The weakened ballot
problem follows from the ballot problem fairly easily: If an ordering of votes keeps A
at least even, then by adding one more vote for A at the beginning, get an ordering
for a + I + h votes where A (receiving a + 1 votes) is always ahead. So

a+l -. b(a±1±b\ a—h+i(a+bN (a,b)=Iv(a±I.b)=z— —1a+1±h\ a±1 j a+I \ a

This tidy little proof uses a technique quite common to these problems. Another
is called the "reflection principle", or the "reversing technique", which essentially
looks at the votes occurring iii precisely the opposite order; see [.150] for more details
(or the solution to Exercisc 668 here).

Essentially repeating the solution to Exercise 764 also solves a stronger version
of the ballot problem, first mentioned by Barbier [37] in the same year (and journal)
as the Bertrand note.

Exercise 766 (Ballot problem, generalized). Let a and b be non-negative integers
and let m E where a > mb. In an election suppose that a + b ballots are cast, a
votes for candidate A and b votes for candidate B. Let b) be the number of
ways a + b votes can be ordered so that after each vote, candidate A is winning with
a rnarqin of more than in timcs the number of votes for B. Prove that for a + b � 1,

a

See also the solution to Exercise 668, where the ballot problem terminology
reveals a useful identity for a matrix theory problem involving Catalan numbers.

The result in the next exercise is sometimes called the 'thitting time theorem" or
the "first return to 0" theorem. For a recent paper inehm.tding many references (as well
as relationships with the ballot problem and branching process) and applications.



396 Chapter 22. Probability and statistics

sec [545]. The hitting time theorem is equivalent to the ballot problem result (each
can be easily derived from the other). The "elementary" solution in [545] to this
exercise is not quite so elementary for the novice, and so is riot included here; their
inductive solution does, however, show that the distributions for different starting
points need not be the same.

Exercise 767. Let Y1, 1'2, be integers chosen independently and at random
from {—1, 1, 2, 3, .. .} = [—1, oo), and let k be a positive integer. Denote the position
in a random walk starting at k after n steps by = k + Y1 + Given that
such a walk eventually lands on 0, .prove that the conditional probability that the
walk hits Oat time n is

As an easy example of the hitting time theorem, let k = I and n = 3. 'l'he only
three sequences of stel)s Y2, Y3) that return toO are (—1, —1, 1), (—1,1,—i), and
(1, —1, —1), and all are equally likely, so the conditional probability desired is 1/3.

22.5 Pascal's game
The next result is due to Pascal himself and regards a gambling problem. Sonic of
the details presented here come front [91]. For an easy to read account of Pascal's
dealings with Chevalier de Méré and probability problems arising from casino games.
see [4, pp. 209—212]. It seems that Pascal might have had help from Fermat in
solving such problems. You might have heard of this problem under the name
problem of the points. In fact. this problem goes hack to Luca Pacioli (1445-ca.
1509), who wrote about it in his Suma [422] of 1494. According to [180], Girolamo
Cardano (1501-- 1576) arid Nicola Fontana (ca. 1499 1557), also known as Tartaglia,
discussed the mathematics of this problem as well.

Exercise 768 (Pascal's game). Two players A and B of equal skill arc playing for
a stake of P, and wish to leave the game table beforv finishing their game. Their
scores and the number of points that constitute the game arc given indirectly: Player
A lacks a points of winning and player B needs /9 points. If a + 0 = n, Pascal says
that the stakes should be divided between B and A in the mutio

Since (n—i) 2n-1, this is the same as saying that A's share is

n—I

and B 's share is
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Use Pascal's identity (see Exercise 90) to prove this result by induction (on a) for
all n � 2.

22.6 Local Lemma

The main result in this section, called the "Lovász Local Lemma" is a tool developed
for some questions in Ramsey theory. Its proof is by induction and relies heavily
on extension of Bayes' formula. For iriore detailed examination of this topic, see
either [13] or [391]; most of tIme material here is taken from these two classics.

Recall that Bayes' formula for conditional probability says that for a probability
P, P(AIB) = P(A fl B)/P(B). Bayes' theorem can take on many forms; one form
is useful here, where I now use the notation "Prob" instead of "P" for clarity later:

Lemma 22.6.1.
Prob(AABJ C)

Prob(AIBAC)= Prob(BIC)
Proof outline: Expand the left side by Bayes' formula, then divide both nit-

merator and denominator by Proh(C). 0

Let A1,. .. . be events in a probability space 12. Let C = (17, E) be a graph
on V = [ai {1, 2 n}. If for each i V. A2 is mutually independent of all
A3 : {j. i} then C is a dependency graph for the events A1 [Note: A
digraph could have been used here.]

'l'he following appeared in L171], a parer (:0—authored with Erdhs, however, is
now eponyinous with its second author:

Theorem 22.6.2 (Lovász Local Lemma). Let A1 be events 271 sonic proba-
bility space (12. P), and let C be a dependcncy graph for these events. If there exist
reals x1, [0. 1) such that for each i = 1...., n.

P(A1)<x2 fi (I—xj),
{i,j}cE

then

in porticular, the probability that no event occurs is positive.

Proof: The following claim is central:
Claim: For any S c Jni], S [ii], and any i 5,

P A2IAAj Cr2.
\ )ES J
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Exercise 769. Prove the above claim by induction. on SI. Hint: Use Lemma 22.6.1.

Using A) and P(AABIC)= P(B BAG)
repeatedly,

=
I

=

=

fl --1

= (I - P(A1))(i - P(A2 - A

> (1— .rj)(1 — . (1 (by claim with S = {1,...,i — i}).

0

In the following well-known inequality, e is the base of the natural logarithm:
for any 1)OSitiVC real d.

(I
. i)d

(22.3)

Here is one way to see equation (22.3): The Maclaurin expansion = 1+x+x2/2+
x3/3!+...showsthatcx>1+xforx>O.
this implies e > (e.±!)d awi thus

I / d \d 7 \d
-<(—-—i
a \ d+l

as desired. Another way to see this inequality is to observe that. equation (22.3) is
eqluvaleilt to ln(1 + 1/d) < l/d. and using the series expansion of ln(x) confirms
this last inequality.

Corollary 22.6.3. Supposc that C is a dependency graph for events A1,.. ,

0< < d, and for every i. p. If ep(d + 1) 1, then >0.
Proof: Let d > 0, where I{j : {i,j} E E(C)}I d. For each i, let _: Then
for every i. P(111) K p,

x,
i.j } k. uC.)



22.6. Local Lomma 399

So if � p, LLL applies, that is, if ep(d + 1) < I. In this case, LLL yields

D

Note: The inequality ep(d + 1) < 1 is often relaxed to 4pd I. Shearer [486]
proved that the e cannot be replaced by a smaller constant.





Part III

Solutions and hints to exercises
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Everything should be made as simple as possible, but aol simpler.

-—Albert Einstein

It may be that ziiost mathematical exercises have more than one solution; the
ones given here might serve as only a beginning to any investigations. As Erdós
inight have said, not all solutions here are necessarily proofs from "The Book" (a
book in the "heavens" containing the most elegant proofs. see [7] for more about
The Book).
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Solutions: Foundations

To think the thinkable-—that is the mathematician's aim.

—C. J. Keyser,

The univeiwe and beyond; Hibbert Journal.

23.1 Solutions: Properties of natural numbers
Exercise 1: (Multiplication is defined) This exercise asks to show that there
exists a unique function 9 N x N --—- N SO that for all x, y E N

(e) g(x, I) =
(1) g(x, y') = x + g(x, y).

The proof parallels that given for Theorem 2.5.4. There are two parts to this
proof, the first, showing existence and the second showing uniqueness.

(Existence) Define B C N to be the set of those x for which there exists a set
{g(x,y) : y E N} such that for all y E N (and the fixed x) both (e) and (f) hold. It
Suffices to show that B = N; this is done by induction on x.

BASE STEP (x 1): First, for every y e N, define g(1. y) = y. Then by definition,
g(1, 1) 1, and Sc) (e) holds for x = 1. Also, by definition, g(1. y') = y' = I + y =
1 + g(l, y), and So (f) holds for x = 1. Hence, 1 B.

INDUCTIVE SiEP: Suppose that x B, that is, for all y C N, g(x, y) is defined so
that (c) and (f) hold for this fixed x. For all y C N. define g(x', y) = y + g(x, y).
Then q(x'. 1) = 1 + g(x, I) = g(x, 1)' and so (e) holds for x'. Also, for all y e N, for
all y E N

g(x', y') = y' ± y(x, y') (by definition)

y' ± ± y(x,y)) (by (f)). since x cH B)

'105
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= (y' + x) + g(x, y) (addition is associative)
= (x + y') -i- g(x, y) (addition is commutative)
= (x' + y) + g(x, y) (by (b') and (d')

= x' + (y + g(x, y)) (addition is associative)
= il + g(x', y) (by definition),

showing that (f) holds for x'. Hence x' B, completing the inductive step.

Hence, by P5, B = N. This completes the existence proof.

(Uniqueness) Suppose that p is defined so that for all x, y N (e) and (f) hold, and
further suppose that h is a function satisfying the corresponding equalities (for all
x,y EN):

(e') h(x, 1) = x, and
(f') h(x, y') = x + g(x, y).

Let x €N be fixed and put A1 {y N: g(x,y) h(x,y)}. Induction is now used
to show that A1 = N:

BASE STEP: By assumptions (e) and (e'),

g(x,1) =x=h(x,1),

and so L A1, proving the base case.

INDUCTIVE STEP: For some y N, assume that p A1, that is, g(x,y) = h(x,p).
By (f) and (f'),

g(x,y') = x+g(x±y) (by (f)

= x -i- h(x + y) (by induction hypothesis)
= h(x,y') (by (f') ),

and so y' A1, completing the inductive step.

Thus, by PS, A1 = N, and since x was arbitrary, this completes the uniqueness
part of the proof, and hence the whole proof. 0

Note: It was probably clear to the reader that the notation "g(x, y)" really
denoted the product of x and y. Now that it has been established that multiplication
is well defined (for natural numbers), one can replace the notation "g(x, y)" with
any of the more familiar notations, "x x y", "x y" or simply "xy". Also, the above
proof shows that for every natural number x, 1 x = x = x 1, 50 1 is truly a
multiplicative identity.

Exercise 2: (Distributivity in N) The proof is by induction on x that for any
x,y,z N,

4 z) = zy + xz.
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Fix natural numbers y arid z. Let

A = {x N x(y + z) = xy + xz}.

(Below, it is convenient to use notation from Exercise 1.)

BASE STEP: Since 1(x + y) = g(1, x + y) x + y, it follows that 1 A.

INDUCTIVE STEP: For some x N, assume that x A. Therm

x'(z+y)=g(x',y+z)
= y + z+g(x,y + z)

y + z + x(y + z)

= y + z + xy + xz (by induction hypothesis)

=y+g(x,y)+z+g(x,z)
= g(x',y) +g(x',z)
= xIy +

so x' A, completing the inductive step.

By P5. A = N, finishing the proof of x(y + z) zy + xz. The proof of the other
equality is similar and is left to the reader. 0

Exercise 3: (General distributivity in N) For ii � 1, let 8(n) he the statement that
for any x1,x2, . .. N,

c(Exi) =Ecxi.

The one inductive proof given here is to induct upon n and apply time recursive
definition of the sum. To be consistent with previous notation, time proof here shows

{n : 8(n) is true} = N,

without naming the set on time left as A. (For another proof, one could induct on.
say, x1, as in the solution to Exercise 2, where each step is for at! n,)
BASE STEP: When n = 1, 8(1) says that cx1 = Cxi, which is true, so 8(1) holds.
Also, by Exercise 2, 8(2) is also true.

INDUCTIVE STEP: Fix k � 1 and a.ssurne that 8(k) is true. Let
and c be natural numbers. To see that

km-I k+i
S(k+l): c(Exi) =Eex,
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holds, beginning with the left side,

xi) = c ((i xi) + xk÷1) (by def'n of sum)

=c(txi) +cxk+1 (by 8(2))

(tcxi) +CXk+l (by 8(k))

k+i

= (Eat)

the right side of S(k + 1) is arrived at. Thus 8(k + 1) is also true, completing the
inductive step.

Therefore, by P5, the set of all positive integers ri for which 8(n) is true is indeed
allofN. 0

Exercise 4: (Multiplication in N is associative) The exercise asks to prove that
for any x, y, a E N,

(xy)z = x(yz).

Let x and y be fixed natural numbers arid put

A (a N : (xy)z = x(yz)}.

Since x and are arbitrary, it suffices to show that A N; this is done by induction.

BASE STEP: Using the notation from Exercise I,

(xy) . 1 g(xy, 1)

= xy (by (e))
=x.g(y,1) (hy(e))

1),

arid so 1 A.

INDUCTIVE STEP: Suppose that .a C A. Then

(xy)z' g(xy,z')
(by (f) )

xy + (xy)z

= xy -1 x(yz) (because a c A)

= xQj + yz) (by distributivity)
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= x(y + g(y. z)) (by (f) )
= .r g(y, z')

= x(yz'),

showing that. z' A, completing the inductive step.

Thus, by P5, .4 = N: t;his completes the proof that multiplication is associative.
0

23.2 Solutions: Well-ordered sets
Exercise 5 (Law of trichotomy): To be shown is that for any x, y N, exactly
one of x < y, x = y, or y < x holds. (There may he a more elegant solution than
the Uric given here.)

Let P(x) be the property that for each y N, at least one of x < y, x = y, or
y < x holds. I2et A = {x N: P(x) is true}. The first goal is to show that A = N.

STEP (1 6 .4: To show I /1 one must show that for each y G N, exactly one
of 1 y. I = y, or y c 1 holds.

Begin tw showing that y < I never holds: Suppose, in hopes of a contradiction,
that y < 1; their for some n C N, y + ii 1. If n —r 1, then 1 has a predecessor,
contrary to P3. 11 a 1 then, by Theorem 2.5.3, a has a unique predecessor, z so
that z' a, that is, z + l = a; iii this case, y + (z -F 1) = I implies (y + z) 1 1,

again violating P3. So p < 1 can never occur.
I"ix some g C N. It remains to show that either p = I or 1 < p. If p I, then p

has a predecessor a N, in which case a + 1 = y, or equivalently (by commutativity),
I + a y: but this satisfies the definition for 1 < p. This completes the base st.ep
showing 1 .4.

INDUCrLvE SUEL': For some fixed .r N, assume that a; A, that, is, for any p C N,
one of x <p. .r = y, or p <x holds. To be shown is that x' A. Fix some p N. If
x p, then by the observation just before Lemma 2.5.1, x' = p', and so x' = p + 1;
hence, by definition of p < a:'.

Consider the situation where x f p. Since x .4, one of p < x or x < p. Suppose
that p <c x. that is, there is air a N so that p ± a a. Then (p ± a)' = x', arid so
p ± (a + I) x', showing that :v < x'.

Suppose that x < p. There are two cases: :r' = p antI a? $ p. If a? = y, then
a:' .4: so assume that p (and x < p). Since x < p. there is sonic at N so
that x in = p. however. a? p, arid so in 1. Then an has a unique predecessor
(again. by Theorem 2.5.3), say e, whcre e ± 1 = in. Thcn X + ( + 1 = p iiinl)lics
a? = p, giving ;n' < This finishes the proof of x' .4. and hence the inductive
step.

'i'herefore. by PS, A= N.
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It remains to show that for any x. y E N, exactly one of x < y, .t y, y C x
holds. Suppose that x,y N and x $ p. It suffices to show that at most one of
x <p and p < x hold. Begin by assuming (in hopes of a contradiction) that both
x <p and p < xhold, and that m,ri E N are so that

x+rn=p and y+n=x.
Replacing the p with x+m from the first equation into the second gives x+m+n = x.
By Theorem 2.5.8 (using in + ii instead of p in the statement of that theorem), this
is impossible. Therefore, abandon the assumption that both x < p and x > p
hold. 0

Exercise 6 (Addition preserves order): There are two directions to prove.
(—*): Let x and p be fixed natural numbers with x < p. Let = {p N

x+p<p+p}. Sincex<y.thereissomemeNsothatx+m=p. Then
(x+in)' y', and by property (4'). x'+rn = y'; hence x' <p', that is, x+1 <p+1.
This says that I e Assume that p A, that is, x+p < p+p. 'l'hen there exists
an it so that x +p+ it = p +p. Using properties (b'), (d'), (x + p + n)' x +p' + it
and (p+p)' = p+p', sox+p'+n = p+p' and therefore x+p' < p+p'. Hence
p' By P5. = N. Since x and p were arbitrary, this finishes the proof of
the forward direction.

(i—): Suppose that x + p < p + p. If x = p, then since the addition function f
produces a unique number, x + p = p + p, contradicting (by the Law of trichotomy)
thatx+p<p+p. Ify<x,thereissomnensothaty-i-n=x;thenx-$--p=
p+'n+p = p+p+n shows that p+p <x +p, contradicting x 4-p < p+p. Hence
x = p and p < x do not occur and so by the Law of trichotomy. x < p. 0

Exercise 7: This proof appears in [95, Lemma 2,1. p. 41].
Let (X, <) be a well-ordered set and let Y ç X. Suppose f X Y is an

isomorphism (an order preserving bijection).
Let = {x X : 1(x) < x}. If 1/V 0, then W has a least element, call it
Since f is order preserving, f(wo) < ti:0 implies that f(f(wo)) < f(wü), and so

f(w0) W. But 1(wo) < contradicts that w0 is the least element of W. Hence,
117=0 0

23.3 Solutions: Fermat's method of infinite descent
Exercise 8: This exercise occurred iii [437, 20-4, Challenge 2, pp. 61, 230], however
the solution there is more direct, not using infinite descent.

Suppose, in hopes of a contradict.ion, that n i.s so that s/4n — I is rational, say.

1
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Squaring each side, 4n 1 = and so (4n l)q2 = p2.

If q is even, say q 2t, then (4n —- 1)4€2 p2 implies that p is even, say p = 2k.
So, if q is even, = with k <p and t <p.

Examine the case when q is odd, say q = 2b+ 1. Then q2 is odd, and since 4n— 1

is odd, then so too is (4n. — 1)q2 = p2, and thus also p is odd, say p = 2a + 1. Then

(4n— I)(4b2+4h+ 1) =4a2+4a+ 1,

and multiplying out,

.ln(4b2 + 4b + 1) — 4b2 4b — 1 = 4a2 + 4a + 1.

The left side has remainder 3 (or —1) when divided by 4, and the right side has
remainder I when divided by 4. Hence, q can not be odd.

So, return to the only' possibility, namely that q is even. In this case, it has
been shown that one call find with k < p and e < q. If £ is odd, then a
contradiction is arrived at by the second part above. If F is even. then continue to
find vet another representation for with even smaller numerator and denominator.
Applying the sante reasoning. this process can continue ad infInitum (if every new
denominator l)roduced is even). Since the natural nuzrlI)ers are well—ordered, such a
process must stop, the fiuial desired contradiction. D
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Solutions: Inductive techniques
applied to the infinite

24.1 Solutions: More on well-ordered sets
Exercise 9: Let (14". <) be a well-ordered set, and let X ç W. Put

S

Since each initial segment in It" is a subset of TV, S ç TV. Suppose that S
and put Y = W\5'. Since 0 Y C fland TV is well-ordered, Y has a least element
y. Then S = seg(y). The proof for closed segments is similar. 0

24.2 Solutions: Axiom of choice and equivalent forms
Exercise 10: Assume that version 1 of Zorn's lemma holds, and suppose that F
is a family of subsets of some set X has the property that for every chain C ç F,
uC E F. Order F by inclusion; then every chain in C c F is a totally ordered set,
and UC is an upper bound for C. The proof is complete by applying version 1 of
Zorn's lemiiia. 0
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Solutions: Paradoxes and
sophisms

25.1 Solutions: Trouble with the language?

Exercise 11: To think about: Can one prove a statement about a particular Jan-
guage using that same language? Richard's paradox is discussed at length in [400,
pp. 1686—1688]; 1 recommend the reader to have a look at that article, from the
beginning, to become familiar with the kinds of questions that arise surrounding this
paradox. Richard's paradox is also treated in Kleene's Introduction to Met amat he-
matics [316, p. 38]. Also see [274] and [275], popular readings for "self reference"
iii logic and logic in general. You might be drawn into learning things like Gödel's
incompleteness theorem, a result which says. roughly, if a language is rich enough
so as to be able to decide the truth (in a finite mechanistic way) of any statement
in the language, then contradictions arise; it also says that, essentially, any con-
sistent system is not complete enough so as to he able to prove (from within the
system) all the truths expressible in that system. For example, second order logic
(where quantification is allowed over subsets, rather than just individual elements)
is not complete, and so there are statements iii mathematics whose truth is never
decidable. See, for example, Section 6.12 for the discussion of such a truth.

The amount of literature on these phenomena is incredihle (phenomenal?), so to
gain a bit more understanding of these issues, see almost any text in formal logic,
or, say, for a fairly complete. yet concise and readable introduction.

Exercise 12: (The unexpected exam) For an expository article on this paradox,
see [1.85, pp. 161 —166]. This paradox was first published in the British logic journal
Mind (1948), A Swedish professor of mathematics, Lennart Ekbozn, apparently first
noticed the paradoxical aspect of a similar claim made on Swedish radio regarding
a civil defense exercise.

It seems that no satisfactory resolution to this paradox has been found; however,

415
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there might be some recent ref erence.s shedding more light on this paradox.

25.2 Solutions: Missed a case?
Exercise 13: The statement .9(1) does not follow from 8(0). 0

Exercise 14: This example is apparently due to Pólya. The "proof" does not prove
the case that. two horses are tire same color, that is, one can not get from the base
case (one horse is the same color) to the first non-trivial case, since the induction
hypothesis used implicitly requires two. The faulty reasoning is similar to that in
Exercises 13 and 15. 0

Exercise 15: The inductive step does not work when k = 2; a fourth line is
necessary in the "proof" of the inductive step. 0

25.3 Solutions: More deceit?
Exercise 16: This example appears in [462, 48, p.281]. In fact, the base case
does riot hold. The left side of A(1) is i = 1. 'l'he right side of A(1) is
(ii 1)2/2=9/8 0

Exercise 18: Since the number of weighings (in this case, four) does not seem to
he used in the proof, tire same "proof' seems to reveal the stronger statement:

8(m): For any rn coins, at. iriost one weighing is required to identify the lighter
counterfeit coin.

in = 2. exactly one weighing determines the ersatz coin, so 8(2) is true.
Assume that for sonic k � 2, 8(k) holds. Consider k + 1. coins, and set one coin
aside. There are two cases:

Case 1: The coin set aside is genuine.
Case 2: The coin set aside is counterfeit.
In Case 1, the remaining k coins contain one counterfeit. and so 8(k) applies to

this set, arid the counterfeit coin is found in one In Case 2, the remaining
k coins are identical. so 8(k) can not be applied. One can verify directly that 8(3)
holds by any weighing with one coin in each pan. However, with four coins, if the
coin set aside is the counterfeit coin, the truth of 8(3) can riot be applied to the
remaining three gent tine coi us.

Perhaps a stronger statement could he proved:

8'(m): For any in coins, at most one weighing is required to determine if there
is a lighter counterfeit coin among these, arid if so, to identify it.

Since C)IIC weighing of two coins determines whether or not they are the same
or which is lighter, 5"(2) remains true. Consider the case with three coins; if airy
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two coins are put on the scale and the scale balances, the third coin set aside is not
identifiable as either genuine or counterfeit. So S'(3) fails, and thus the stronger
statement is not true either.

in general, by Exercise 585, is the most number of coins so that 'ii weighings
identify the lighter counterfeit coin; so the statement in this exercise (with four
weighings) is false for 82 coins. 0
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Solutions: Empirical induction

26.1 Solutions: Introduction

Exercise 19: There are many obvious choices for such a statenient. Here is one
(albeit not terribly inventive): S(n) : a � 1,000, 000. 0

26.2 Solutions: A sequence of integers?

Exercise 20: ].'his problem was given in a lecture by (the late) Dr. Eric Milner, 9
October 1987; 1 (10 not know the original source. The solution presented here might
not be the intended one. It turns out that this sequence is well-known, called a
Gobs! sequence and is related to a family of sequences called Somos sequences. For
reference, see hiS of Guy's hook [2481 Unsolved Problems in Number Theory (pp.
214—5). [Also, an article by Fritz and Lenstra appeared iii, I think, Gnix Mathe-
Trzatzcoram perhaps volume 15 (1989), however, I can not now find this reference).
No, it is not always an integer; the hint given in the lecture was to work modulo 43.
My guess is that what was intended was the following idea: if each of
is indeed an integer, calculate them modulo 43, then find the numerator of 543 is not
divisible by 43 (the denominator of 843 is 43). [For those not. familiar with inodulo
notation, see Section 1.1.2 (Congruences).)

Define = 1 + 4 + -I- the numerator of Then t7, + 4. The
following table will help to verify the technique given later:

419
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.s7, mod 43 mod 43
0 1 1 1

1 2 2 4 2 2

2 3 3 9 6 6
3 5 5 25 15 15

4 10 10 14 40 4(1

5 28 28 10 140 11

6 154 25 23 924 21

7 3520 37 36 24640 1

8 10 14 12415040 37

9 20 13 8

10 15 10 21

Since 43 is prime, every number ii {1, 2, 3,... , 42} has a unique inverse rr1
niodulo 43, that is, the number vi so that mn 1 (mod 43). These inverses can
found by the Euclidean algorithm. For example, since 5 is rclativcly prime to 43,
gcd(5, 43) = I and so, by the Euclidean division algorithm, (see Exercise 211) there
are integers x and y so that 1 Scr-l-43y. (The fact that if gcd(a, b) = d, there exists
x and y so that d = ax 4- by is a standard consequence of the Euclidean division
algorithm, and is called Bézout 's Lemma see Lemma 11.1.3.)

To find these x and y, the Euclidean division algorithm yields

43 = 8(5)+3
5 = 1(3)+2
3 = 1(2)+i,

and undoing this sequence, beginning at the bottom,

1 =
= 3--(5---3)
= 2(3)—S

= 2(43 — 8(5)) 5

= 2(43) — 17(5).

Hence. I 2(43) — 17(5) ---17(5) 26(5) (mod 43) shows that 5' 26. This
establishes the existence of inverses modulo 43, however calculating them is a dit1
ferent story. In practice, one might write a computer program to do this, especially
when one requires all inverses mnodulo some large number. (Actually, one can cut
the calculations in half, since (—x)' —x*)

Since
(Ti +
12+1
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write = -f -i— Theii calculating niodulo 43,

4- ,_nri

helps to extend the table above without ever actually having to find for larger n.
Remember-, the values are calculated if each previous is aim integer; they would
be meaningless if, say, was not an integer (iii which case this would answer
the question anyway). The results are tabulated in the next chart; these should
be checked by a computer program, since calculations were performed individually
(checking by hand took a few hours!). All values (except ri) are calculated ruodulo
43:

So, if each of 8] ,•.•,842 is arm integer, (arid assuming that calculations arc
correct) therm the numerator of is congruent to 24 rnodulo 43. but the denominator
of 843 is 43, hence 843 is riot an integer. fl

U 5fl
0
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2
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3
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26.3 Solutions: Sequences with only primes?
Exercise 21: (Last digit in Ferinat numbers) Let 8(t) be the statement "The last
digit of is a 7."

BASE STEP (t = 2): F2 = 222 + I = + 1 = 16+1 = 17, which shows F(2) is true.

INDUCTIVE STEP: Suppose that for some k � 2, 8(k) is true, that is, the last digit
of a is indeed 7, say Fk = iOn + 7 for some ii � i. Then

= 22k+1 +
= (22k)2

+

= (Fk -- 1)2 + I

= (iOn + 7 — 1)2 + 1 (by induction hypothesis)

= lOOn2 + l2On + 36 + 1,

a number ending in 7. This shows that S(k + 1) is true and therefore completes the
inductive step 8(k) 8(k i- 1).

Hence, by mathematical induction, for all /. � 2, the statement 8(t) is true. D

Exercise 22: This proof is also found in [7]. For 1' = 0, 1. 2,..., let A(n) he the
assertion that

+2.

BASE STEP: Considering an empty product to be 1, Fo 3 = 1 + 2, and so A(0) is
true. To be sure, however, also check that since F = 22 + I = 5 = 3 + 2 = Fo + 2,
íl(1) also holds.

INDUCTION STEP: Fix k � 1, and suppose that A(Ic) holds. It remains to show

A(k+i): Fk+I=

Beginning with the left side of A(k + 1),

2k+1h+i=2 +1
= 22k

. + 1

= (Fk — l)(Fk — 1) ± I
= Fk(Fk — 1) — Fk + 2

Fk(flFi+2—1)—Pk+2 (byA(k))
,=0



26.4. Solutions: Divisibility 423

= Li
+ Fk - Fk +2

=

which finishes the proof of A(k + 1) and hence 1,he inductive step.

By MI. for each ii 0, the expression A(n) holds. D

Exercise 23: It turns out that the first seven terms are prime numbers, however
the eighth is 17 x 19607843. By empirical induction it might be easy to conclude
that all such numbers are prime. 0

Exercise 24: Observe that f(40) = 1641 3 547. Perhaps even easier is to
examine 1(41); in fact, for any vi that is a multiple of 41, it2 + it + 41 is easily seen
to he not prime. 0

The reader might check that f(—40).f(--39) f(39) are all prime. According
to [150), it is not known whether or not it2 + it + 41 is prime for infinitely many
values of it.

Two other popular "prime producing polynomials" are p(n) = + + 17,
which gives primes for vi = 0, 1 16, and q(ri) = 2n2 + 29, which gives primes up
to vi 28. Another, found in [205, p. 38] is — + 1601. which gives primes with
n• all the way up to 79 but fails at 80.

26.4 Solutions: Divisibility

Exercise 25: For the prime p = 1093, (1093)2 divides 21092 — 1. D

26.5 Solutions: Never a square?

Exercise 26: According to [519. p.69), the first time that f(n) is a perfect square
is when

vi = 12055735790331359447442538767.

26.6 Solutions: Goldbach's conjecture

Exercise 27: The first number for which this is not true is 127. 0
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26.7 Solutions: Cutting the cake
Exercise 28: The next number iii the sequence is 31. 0

Exercise 29: This appears as Problem 36 in [247] and Example 5 of [2451, and
also as sequence # 427 in [497J. First compare Exercise 725. It might be helpful to
observe that

74 Gm3 + 24n2 — 18n + 24
24

fn—1\ (n—1\ frt—1\ (n—1\ fri—i
0 1 2 3 4

26.8 Solutions: Sums of hex numbers
Exercise 30: At each step, one adds a surrounding ring of pennies; the number
of pennies in each ring increases by 6 each time (one extra for each of the
hexagon) and so the n-th hex uurnber is

This formula can be easily he proved by induction if one is not convinced by the
above discussion.

Factoring out the 6 and using the formula for the sum of the first it — I positive
integers gives,

1+6+12+18+...+6(n—1)

1 4 6
((it —

(by Thni. 1.6.1),

= l+3(n--1)n
= 3n2—3n+1
= it3 —[it3 —3n2+3rt—l]

a difference of adjacent cubes. Knowing this formula for one can prove in-
iluctively that h1 + h2 ± = or simply observe that the sum telescopes
(neighboring terms cancel; see Exercise 137):

h1 + h2 +... ± = — o31 + — +... + [it3 — (it — =

0



Chapter 27

Solutions: Identities

27.1 Solutions: Arithmetic progressions

Exercise 32: Let 8(n) be the statement + 2 = This statement was
called Proposition IV by Maurolycus; in fact, it read "The odd nurithers are obtained
from unity by successive additions of 2."

Define an odd number as a natural number which, upon division by 2 has a
remainder 1. To prove S(n) for any specific n � 1, induction is riot necessary: If

is merely defined by being the next number after that is odd, then since
is the n-th odd riuniber, it has remainder 1 upon division by 2. The next natural

number is + 1, which will have remainder () upon division by 2, so it is not
the next odd number. The next number is + I + 1, which will have remainder
1 upon division by 2, so it is odd, indeed the next odd number after 0,,. Hence

+ 2 = and so 8(n) is true.
If one were to try and transform the above idea into an inductive proof, the

truth of 5(k) is not needed for the proof of S(k + 1), in fact, it seems difficult to
find a way to prove S(k ± 1) based on the truth of S(k). So let us try and interpret
this exercise in another way.

Starting with the first odd number 1 = S(1) says that the way to find the
next odd number is to add 2. To find the next odd number, S(2) says to add 2
more. in general, 8(n) says that the (n + odd number is found by beginning with
1 and adding ri 2's. So one could translate S(n) into the statement

S*(n): 1 + 2n,

a statement that seems to be true for ii � ü. Proving is easy by induction:

BASE s'rnp (n 0): The first odd miurmiber is 1 which is equal to I ± 2(0),
proving 8(0).

INDUCr[vE STEP: Assume that for sonic k � 0, S*(k) is true, that is, 8(k -}- I) =

425
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I + 2k. To he proved is

8*(k+1): Ok÷2=1+2(k+1).

The number °k+i is odd (by definition, it is the (k ± 1)-tb odd number) and so
it has remainder I. upon division by 2. The next natural number is °k+1 + 1, which
will have remainder 0 upon division by 2, so it is not the next odd number. The
next number is °k+1 + 1 + 1, which will have remainder 1 upon division by 2, so it
is odd, indeed the next odd number after Hence °k+1 + 2 = and so by
induction hypothesis,

°k±1 + 2 = (1 + 2k) + 2 = 1 + 2(k + 1),

and so 8*(k + 1) is true.

Therefore, by mathematical induction, for all ii � 0, the statement 8*(n) is
true. 0

Note: Above, 8*(n) and 8'(n + 1) together imply the truth of 8(n), 50 one can
now freely use 8(n) iii any subsequent proofs.

Exercise 33: For interest's sake, here is the translation of Maurolycus's proof as
reproduced in [911. [Note: in this quotation, numbers are numbers in
the same row of some table whose columns were the natural numbers n, the even
numbers 2(n — 1), the odd numbers 2n — 1, the triangular numbers n(n—1) (see
Section 1.6), the squares n2, and nurnerus pafle alt.e.ra longior numbers n(n — I).]

The integer 2 added to unity makes the integer 3 hut when added
to 3 it makes an amount greater by 2 and this (by virtue of Proposition

is the next odd integer, namely 5. Again since the integer 3 added
to 2 makes 5, which is the collateral odd integer, when it is added to 4
the result will be greater by 2, that is (by virtue of Proposition IV) it
will be the next odd integer which is 7. And in like manner to infinity
as the proposition states.

In modern parlance, one might give the solution of this exercise as follows: For
each n � 1, let Q(n) be the statement "it + (n — 1) =
BASE STEP: 1 -I- (1 — 1) = I, which is so Q(1) holds.

INDUCTIVE STEP: For some fixed k � 1, assume that Q(k) : k + (k — 1) = °k is

true; to show is
Q(k±l): (k+I)+k=Ok+l.

Starting with the left side,

(k * 1) -F k = k + (k — 1) 42
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Ok+2 (byQ(k))

= °k-i-1 (by Exercise 32),

which is the right side of Q(k + 1). This completes the inductive step.

Therefore, conclude by the principle of matheiiia.tical induction that for all a � 1,
the statement Q(n) is true. U

Exercise 34: Duplicate the proof of Exercise 32.

Exercise 35: This was already proved as Theorem 1.6.1.

Exercise 36: Induction is not really required, since it is also provable by direct
application of Theorem 1.6.1:

E
i"-m+I i=I i=I

= -- rn.(m+ 1)
(by Thm 1.6.1)

jj2 + ii. — — in

9

—. (n — m)(n fin-h 1)

The reader is invited to provide a strictly inductive p:ooi It may he interesting to
note that this exercise implies that any sum of consecutive integers can never he a
power of 2 (see [.583]).

Exercise 37: By. Exercise 36 with Tfl replaced by it2 — I and ii replaced with n2 + a.

— (a + l)(2n2 + a)
2

= (2n+

The equality

is simple algebra. U

Both equalities also have fairly? simple inductive prools, which are left to the
reader.
Exercise 38: lor a 1. denote the statement

S(n): ij r:u2.
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BASE STEP: 8(1) says I = 12, clearly true.

INI)UCrl'ION S'l'IW: Let some k � I be fixed, and suppose that

8(k): 1+3+5+...+(2k—l)=k2

holds. It remains to show that

8(k+l): 1+3+5+... +(2k— l)±(2k+l)=(k+1)2

follows. Beginning with the left-hand side of 8(k + 1),

1+3+5+...+(2k—l)±(2k f 1)=k2+(2k+I) (hy8(k)),
= (k + 1)2,

the right-hand side of 8(k + 1). This completes the inductive step 8(k) 8(k + 1).

Ilence, by mathematical induction, 8(n) holds for all a 1. C]

Comment: The above proof was due to Maurocylus (Proposition XV). He first
proved a lemma (called Proposition XIII) that said "every square number plus the
following odd number equals the following square number" in other words, a2 +
(2rr + 1) = (n + 1)2. According to Bussey [91], the translated version was1:

By a previous the first square number (unity) added to
the following odd number (3) makes the following square number (4);
and this second square number (4) added to the 3d odd number (5)
makes the 3d square number (9): arid likewise the 3d square number (9)
added to the 4th odd number (7) rriakes the 4th square number; and so
successively to infinity the proposition is demonstrated by the repeated
application of Proposition XIIL

Bussey says "This is a clear case of complete induction proof" and seems to indicate
that this might be the first real example of an inductive proof (given in the year
1575). Bussey then goes on to say that "In modern symbols the proof would be
this:"

1st. The theorem is true when a 1 . 2d. Assume that it is true
when a = k, i. e., assume 0i + 02 ± ... + Oe add °k-Fi to 1)0th
sides of this equation arid get 01 + 02 + °kl-l = 8k + 0k+1 which
equals Sk+u by Proposition Xlii.

'Used with kind permission fronu MAA: Copyright the Mathematical Association of America
2010. All rights reserved.



27.1. Solutions: Arithmetic progressions 429

Bussey's interpretation of the proof relies on adding something to each side of
the statement 5(k); notice that in the proof given above, this was riot necessary.
In general, it may l)e poor practice to add something to each side of an equation
to obtain a desired equation when the desired result can be obtained by a direci,
sequence of equalities just as easily. See Section 7.1 for more corrunents on this.

Exercise 39: For n � 1, let S(n) be the statement

S(n): 2+4±6+".+2n=n(n+1).

BASE STEP (a = 1): The statement 5(1) says 2 = I (1+ 1), clearly a true statement.

INDUCTIVE STEP: Fix some k � 1 and suppose that 8(k) holds; that is, the inductive
hypothesis is

5(k): 2+4-f6+..+2k=k(k+l).
To be shown is

S(k + 1): 2 + 4 + 6-i + 2k + 2(k + 1) = (k 4 i)(k + 2)

holds. Starting with the left-hand side of 5(k + 1),

2+4+6+.-i2k+2(k+1) = k(k+l)+2(k+i) (by md. hyp.),
= (k+1)(k-i-2),

the right-hand side of 5(k + 1), completing the inductive step 5(k) S(k + 1).

By the principle of mathematical induction, conclude that for all a 1, the
statement 5(n) holds. El

Exercise 40: For a � 1, let 8(n) be the statement

n(3n + 1)8(n):

BASE STEP (a = 1): 8(1) says 2 = 1(34+1) a true statement.

INDUCTION STEP (5(k) : S(k + 1)): Fix some k � I and let the induction liypoth-
esis

8(k):

be assumed to be true. It is yet to be proved that

5(k+l): 2+5+8+...+(3k—l)+(3(k+1)—1)= (k+1)(3(k+ 1) 4-1)
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follows. It might help to simplify S(k + 1) a bit first so that it is easier to see what
is needed to prove:

8(k+1): 1)±(3k+2)= (k+lX3k+4)

Starting with the left side of S(k + 1),

+(3k —
k(3k+ 1) +3k+2 (by md. hyp.)

3k24k Gk+4
= 2

+
2

— 3k2 + 7k + 4
2

— (k•i-1)(3k-f-4)
2

which agrees with the right side of 8(k + 1). This completes the inductive step.

Consequently, by the principle of matliertiatical induction, for all n 1, the
statement 8(n) is true. 0

Note: Observe how much easier the proof was made by cleaning up the
in advance that needed to be derived at the end of the inductive step. Without this
preliminary calculation, one must transform 3k2 + 7k ± 4 into (k + 1 )(3(k + 1) + 1),
a slightly clumsy calculation.

Exercise 41: For it � 1, let 8(n) he the statement

8(n): 3 + 11 + 19 ± (8n — 5) = —

BASE STEP (it = 1): 8(1) 3 z,4 . 12 — 1, which is true.

IN000TI\TE STEP (8(k) 8(k + 1)): Let some k � I he fixed, and suppose that

8(k): 3+114 19-F +(8k—5) =4k2 —k

is true. The next identity to be shown is

S(k+ 1): 3+11 + ± (8k —5) + (8(k + I) - 5) = 4(k-i- 1)2 — (k+ I).

Beginning with the left side of 8(k -i— 1),

= '1k2 k + (8(k + I) — 5) (by 8(k))
=
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= 4(k-t-1)2—(k+1),

which is the right side of 8(k + 1). [Note: The second last expression above was
determined by looking at the last line and regrouping accordingly—it was not a
natural step that one should see without "looking ahead".] This completes the
inductive step 5(k) 8(k 1- 1).

By the principle of mathematical induction, for all ii ? 1, the statement 8(n) is
true. 0

Exercise 42: For ii � 1, let 8(n) be the statement

8(n): — 1)

=
(ti) +

BASE STEP (it = 1): 8(1) says 3• I — I = I + 12, which is true.

INDUCTIVE STEP (8(k) —+ 8(k+ 1)): Fix some k � 1 and suppose that

8(k):

is true. Yet to he proved is

k+1 k+I

S(k+1):

Beginning with the left side of 8(k ± 1),

k+i k

>(3i—1) =

= i)+k2±3(k±1)_l (by8(k))

=

= (L1i)±(k±l)÷k2+2k±1

k±1
=

k+1
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the right-hand side of 8(k + 1). This completes the inductive step.

Thus, by the principle of mathematical induction, for all n � 1, 8(n) holds. U

Exercise 43: For n � 1, let 8(n) be the statement

5+9+13+..+4n+1=n(2n+3).
BASE STEP (n = 1): 8(1) says 5 1(1 2 + 3), which is true.

INDUCTIVE STEP (8(k) 8(k + 1)): Fix sonic k � 1, and assume that

8(k):

is true. To complete the inductive step, it suffices to prove

8(k+l): (k+ 1)(2(k+1)+3).

Beginning with the left-hand side of 8(k + I),

5+9+..+4k+1+4(k+1)±1 = k(2k+3)±4(k+l)+l(byS(k))
= 2k2+3k+4k+5
= 2k2+7k+5
= (k + 1)(2k + Ti),

which agrees with the right-hand side of 8(k + 1), completing the inductive step.

Hence, by the principle of mathematical induction, for all n 1. 8(n) holds. U

Exercise 44: For n � 1, let 8(n) be the statement

8(n): (2n+1)+(2n+3)+(2n+5)+...+(4n— l)=3n2.

It is easier to see what is going on 8(n) is rewritten as

8(n): (2n+1)+(2n+3)+(2n+5)+...+(2n+2n—3)+(2n+2n— 1) =3n2.

BASE STEP (n = 1): The statement 8(1) says I + 1 = I — 3, which is true.

INDUCTION STEP: Fix some k � 1, and assume that

8(k): (2k+l)+(2k+3)+(2k+5)+..+(2k+2k—3)±(2k+2k--l)=3k2

is true. To be shown is

8(k+1):

Beginning with the left-hand side of S(k + 1),

(2(k+1)+1)+...+(2(k+t)+2(k+1)-.3)+(2(k+l)+2(k+1)— 1)
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=
=
= 3k2+6k+3 (byS(k))
= 3(k2+2k+l)

which is the right side of S(k + 1), completing the inductive step.

Hence. by mathematical induction, for all n� 1, 8(n) is true. D

Exercise 45: Let a and d be fixed real numbers. For any natural number ii 1,

let 8(n) be the statement

8(n): 1)d)=

BASE STEP: The case ii = 1 says a + (1 -- 1)d]. which holds.

INDUCTION SEEP: Let k � 1 l)e fixed and suppose that

8(k):

holds. To show that

8(k+ 1):

follows, starting with the left side of 8(k + 1),

a + (a + d) + (a + 2d) + ... + (a + (k — 1)d) + (a + kd)

= (by8(k))

+ k2d — kdj +

=

=

precisely the right—hand side of S(k + 1), completing the inductive step.

Thus, by mathematical induction, for each n 1, 8(n) holds. 0

Note: A direct proof is also available by rearranging terms, factoring, and using
Theorem 1.6.1 as follows:

a+(at-d)+...+(a+(n— 1)d) = 1)]d
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= na+ (hyThm. 1.6.1)

=

D

Exercise 46: The result in this exercise is obtained by simple algebra and Theo-
rein 1.6.1:

T2 T2
_In(n+1) 2 [(n—l)ri]2

2 j

— n2(n + 1)2 — (n — 1)2n2

4

— n2[n2 + i-i + 1 — (ii2 — 2n + 1)]
4

— ri2(4n)4,
completes the proof. An inductive proof is also available: For each ii 2, let 5(n)
denote the statement

— 7's_i =

BASE CASE: 5(2) says — = 9 — 1 = so 5(2) holds.

INDUCTIVE STEP: Let k � 2 and suppose that

5(k): '1'5 — = k3

holds. It remains to show that

S(k-{-1):

follows. Starting with the LHS of S(k + 1),

= (Tk i (k 1
1))2 1k)2

= + 2Tk(k + 1) + (k + 1)2 — — 2Tk_Ik + k2

— L5_1 ± 2T,Jk + 1) — 2Tk_lk + 2k + 1

(byS(k))

= k3 + k(k + 1)(k + 1) — (k — 1)k . k + 2k + 1 (by Thin 1.6.1)

= k3 + k[k2 + 2k + I — k2 + k] + 2k +

= k3 + 3k2 + 3k ± 1,

which is (k + the RHS of S(k + I), completing the inductive step.

By MI, for each it 2, 5(n) is true. 0



27.1. Solutions: Arithmetic progressions 435

Exercise 47: See the solution to Exercise 49 when r = 2. D

Exercise 48: Again, this is the special case r = 3 in Exercise 49. 0

Exercise 49: Fix r E R, r 1, and for ii � 1, let S(n) be the statement

r + + + =

To solve the problem, it suffices to prove that for each n � 1, S(n) holds, that is,
it suffices to-consider only a = 1. For r 0, the statement S(n) becomes 1 = 1,

so assume without loss of generality that r 0. (This assumption might not be
needed, but sometimes simple initial observations save headaches later.)

BASE STEP (n 1): The statement 8(1) says 1 + r = which is true since
— I = (r + 1)(r — 1) and r 1. ENote, one could actually begin the induction at

n 0 since S(0) says 1 =
INDUCTIVE STEP (S(k) --' S(k +1)): Fix some k � 1 and suppose that S(k) is true,
that is. assume

25(k) : 1 + r + r + - - + r I
(inductive hypothesis)

is true. To complete the inductive step, one needs to show that.

— IS(k+1):

is also true. Beginning with the left side of S(k + 1),

k+i
11+r+r21---- (by hid. hyp)

— 1 — 1)
+r—1 r—l

— -— 1 + — I)
r— 1

— I j 7k+2 —

r— I

—

which is the righthand side of S(k+ 1). So 8(k) 8(k+ 1), completing the inductive
step.
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hence, by the principle of MI, for all it 1, the statement 8(n) holds. D

Exercise 50: For it � 1, let 8(n) he the statement

1 2' + 2.22 + 3 2 + (it —

BASE STEP (it = 1): 8(1) says 1 2' 2 + (1 — 1)22, which is true.

INDUCTIVE STEP (8(k) 8(k + 1)): Fix some k � I anti suppose that

8(k): + 2.22 + + k.2k =2+(k —

is true. To he shown is

8(k+ 1): =2+(k)2k4.2.

The left side of 8(k + 1) is

1 ...+k.2k+(k+1)2k±l
= 2 1 (k i)9k±I ± (k ± 1)2k-Fl (by 8(k))
= 2+(k_1+k±l)2k+l
= 2 +
= 2+(k)2k12,

which is the right side of 8(k ± 1). so 8(k + 1) is also true. This completes the
inductive step 8(k) 8(k + 1).

By mathematical induction, for all it i, is true. D

Exercise 51: For each it > 1. let 8(n) denote the statement

I + 2'2 + 3.22 I- = (n — 1)2" + 1.

BASE STEP (it = 1): 1 = (1 — 1)2° + 1, so 8(1) holds.

INDUCTIVE STEP: For some fixed k � 1. assume the inductive hypothesis 8(k)

to be true. To be shown is that 8(k + 1)

1+2.2f.3.22+...+k2k_t+(k+l)2k=(k)2k+i+l.

follows. Starting with the left side of 8(k + I),

1+2.2±3.22±...±k2k_I+(k+1)2k
= (k — + I + (k-i- 1)2k (1w 8(k))
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= (k_1+k+1)2k+1
= 2k2k+l
= + 1,

agreeing with the right side of S(k + 1). This completes the proof of the inductive
step 8(k) 8(k + 1).

Therefore, by the principle of mathematical induction, for each ii i, 5(n) is
indeed true. 0

Exercise 54: For it � 1, let 8(n) be the statement

8(n): 12+22+32÷... = n(n+ lX2n+ 1)

BASE STEP (it 1): The statement 8(1) says = 1(2)(3)/6 which is okay.

JNDEJCFJVE STEP (5(k) S(k + 1)): Fix some k � and suppose that

8(k): k(k+1)(2k+l)

holds. Needed to be shown is that

S(k+l):

follows. Starting with the left-hand side of 8(k + 1),

12+22+32+..+k2+(k÷1)2
= (byind. hyp.),

= (k+1) [k(2k+1) +(k+1)]

=

2k2 +k+6k 1-6)= (k+1)—
6

2k2 + 7k + 6)
= (k+1)—

6

=

which equals the right-hand side of 8(k + 1). This compietes the inductive step.
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By MI, for every it � 1, 8(n) is true. 0

Exercise 56: For any it 1, let 8(n) be the statement

8(n): j3 + n3
= l)]2

BASE STEP (it = 1): 8(1) says = = 1, which holds.

INDUCTIVE STEP (8(k) 8(k + 1)): Fix some k � 1, and assume that

8(k): l3+23+al++k3=[1)]

holds (the inductive hypothesis). To be shown is

+ 1): + + 33 + ... + k3 + (k +
= [(k + lXk + 2)12

Beginning with the left side of 8(k -t- I),

is f.2:%+...+ks+(k+1)s = (hyind. hyp.),

= (k+1)

(k +
4 + 1)

= (k f

which is precisely the right-hand side of 8(k + 1), completing the inductive step.

Hence, by the principle of mathematical induction, for each it � 1, the statement
S(n) holds. U

Exercise 57: For it > 1, denote the proposition in the exercise by

P(n): 12 j32 +524 •..+(2rt — 1)2
n(2n— 1)(2n+ 1)

BASE STEP (ti = 1): Since 12 = the statement P(I) holds.

INDUCTIVE STEP: For some fixed k � 1, assume the inductive hypothesis

P(k): 12+32+.+(2k-- 1)2= k(2k—1)(2k+1)
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to be true. To show that

P(k+1): 12+32+.+(2(k+1)—1)2 = (k+l)(2(k+1)1)(2(k+1)+1)
3

follows, begin with the left side of P(k + 1) (adding the second last term so that it
is easy to see how to apply P(k)):

12+32 + 52} .71 - 1)2 + (2k + 1)2

k(2k — 1)(2k ± 1)
= + (2k + 1)2 (by P(k))

3

k—i)= (2k+l)r23 +(2k+1)]

=
3

3
—

3

—
3

which is the same as the right side of P(k + 1). This concludes the inductive step
P(k) —, P(k+ 1).

By the principle of mathematical induction, for each n � 1, P(n) is true. D

Exercise 58: For it 1, denote the statement in the exercise by

8(n):
3

2 2(14 fl(2 *1) the statement 8(1) holds.BASE STEP (ii. 1): Since 2 = 4 =

INDUCTIVE STEP: For some fixed k � 1, assume the inductive hypothesis

8(k):
3

to be true. It remains to show that

8(k+i): 22+42+62+...+(2(k+1))2-



440 Chapter 27. Solutions: Identities

follows from 8(k). Starting with the left side of 8(k + 1), (leriVe the right side:

22+42+62+••+(2k)2+(2(k+1))2

= 2k(k+1)(2k+l)+(2(k+l))2 (byind. hyp. 8(k))

— k
2k(2k + 1) (3(4(k + 1)2

3
+

3

= 2(k + fl
[k(2k3+ 1)

+
1)]

2k2 + k + 6k +6
= 2(k+1)—

2k2 + 7k + 6= 2(k+1)

=

which agrees with the right side of S(k + 1). This completes the inductive step
8(k) 8(k + 1).

Therefore, by the principle of mathematical induction, 8(n) is true for all ii
1. 0

Exercise 59: For each it 1, denote the statement in the exercise by

8(n): 1

BASE STEP (n = 1): The statement 8(1) says 1 = which is true.

INDUCTIVE STEP: For some fixed k � 1, assume the inductive hypothesis 8(k) to
be true. To show that S(k + 1) follows from 8(k), use two applications of Theorerii
1.6.1, one with n = k and another with it = k + 1. The left side of 8(k + 1) is

1 —4 + 9— 16 + ... + + (_1)k±2(k +

(by 8(k))

=(—1)"1[(1+2+3+...+k)—(k÷1)21

(1)k+1 [k(k+ 1)
— (k + 1)2] (by Thm 1.6.1)

— 1
2
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+ k — 2k2 — 4k — 2

2

(l)kf — 3k —2

2

=
2

2

(by Thm 1.6.1),

which is the right side of 8(k + 1), completing the inductive step.

Therefore, by the principle of iriathematical induction, for every n � 1, 8(n) is
true. 0

Exercise 60: For each n 1, let 8(n) denote the statement

n2 (a 1)2 + (n — 2)2 + (
= n(n+l)

BASE S'I'EP (n = 1): 8(1) says 12 = which is true.

INDUCTIVE STEP: For some fixed k � 1, assume the inductive hypothesis

8(k): k2 — (k — 1)2 + (k — 2)2
3 ... + (_1)k-1(i)2 = k(k+ 1)

to be true. To see that

8(k+i):

follows, start with the left-hand side of S(k + 1):

(k + 1)2 — k2 + (k — 1)2 .f ... ±

= (k + 1)2 — [k2 — (k -- 1)2 + (k _2)2 ... +

(k + - k(k+1)
(l)y 8(k))

=

2k + 2 — k
= (k-il)

2
k+2

=
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which is the right-hand side of S(k + 1). This completes the inductive step.

Therefore, by the principle of mathematical induction, for all ii. � 1, the state-
ment S(n) is true. 0

Exercise 61: For each m � 1. denote the equality in the exercise by

E(n) : i3 + 33 ± 53 + ... + (2n — = — 1).

BASE STEP (it = I): Since = (1)2(2(1)2 — 1), E(1) is true.

INDUCTIvE STEP: For some fixed k � 1. assume the inductive hypothesis E(k) to

he true. To see that E(k + 1) follows.

13+33±53+...-i-(2k — ±(2(k+ 1)—
= 13+33+53+...+(2k-- 1)3+(2k±1)3
= k2(2k2 — 1) ± (2k + (by E(k))
= 2k4—k2±8k3+12k2+Gk+1
= 2k4±4k3-f-k2+4k3+8k2+2k+2k2 +4k+ 1
= k2(2k2+4k+ 1)+2k(2k2±4k4- 1)±2k2+4k+1

= (k2+2k+I)(2k2+4k+1)
= (k + 1)2(2(k + 1)2 — 1).

and so + + (2k — ± (2(k + 1)— = (k+ l)2(2(k + 1)2_i),

which is E(k + I). This concludes the inductive step E(k) E(k -I- 1).

By the principle of mathematical induction, for cacti a � 1. E(n) is trite. 0

Exercise 63: For each ii> 1, define the statement

n(n i— i)(a -12)S(n): 1.2±2.3+.-.±n(n+l)=
3

BASE STEP: The statement 8(1) says 1 2 = which is true.

INDUCTION STEP: Let k � 1. arid suppose that the inductive hypothesis

8(k):

is trite. Yet to be proved is

S(k+ 1): 1 1) ± (k+ 1)(k4 2)
(k± 1)(k +2)(kt3)

Beginning with the left side of .9(k + 1),

1.2±2.3±...-i•k(k±1)+ (k+1)(k±2)
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— k(k+l)(k+2) +(k 1)(k2) (byS(k))
— 3

=

which is the right side of S(k + 1), completing the inductive step.

Hence, by the principle of mathematical induction, for every n � 1, S(n) holds.
0

Exercise 64: For each ii 1, let A(n) be the assertion

(ii 1)(n)(2ri + 5)A(n): I .3+2.4±...+(ri-- l)(n+1)
6

BASE STEP (n = 2): A(2) says 1 3
(fl(2)(9) which is true.6

INDUCTIVE STEP: For some k > 2 assume that

(k — 1)(k)(2k + 5)
A(k): 1•3+2.4-i-.•+(k— I)(k+1)=

6

holds. To see that

(k)(k + i)(2k + 7)
A(Ic+1): l.3+24+...+(k—1)(k± 1)+k(k+2) =

6

holds, start with the left side:

1.3+2.4+...+(k— l)(k+1)+k(k+2)

— (k — 1)(kR2k +5)
+ k(k -f 2) (by md. hyp.)

— 6

=

=

— k(k-i-I)(2k+7)
— 6
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which is the right-hand side of A(k + 1). So A(k + 1) follows from A(k), completing
the inductive step.

Thus by mathematical induction, for each n � 2, A(n) holds. 0

Exercise 65: For each n � 1, let 8(n) denote the statement

1 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + n(n + i)(n + 2) = + 1)(n + 2)(n + 3).

BASE STEP (n = 1): Since I . 2.3 = 6 = the base case 8(1) is true.

INDUCTIVE s'rEp: For some fixed k � I, assume the inductive hypothesis

8(k): 1.2.3+2.3.4+...+k(k+1)(k±2)=

to be true. To be shown is that

S(k+l):

follows. Beginning with the left side of 8(k + 1), (rewritten with the l)ellUltimate
term inserted for clarity)

I .2 . 3+ 2 .3 .4 + k(k + 1)(k +2) + (k + 1)(k + 2)(k +3)

f I)(k + 2)(k + 3) + (k + 1)(k + 2)(k + 3) (by md. Iiyp.)

= (k+1)(k+2)(k+3)

= (k+1)(k+2)(k+3)ftk+4)].

which is indeed the right side of 8(k + 1), concluding the inductive step 8(k)
8(k + 1).

Therefore, by the Priliciple of mathematical induction, for each n � 1, the state-
ment 8(n) is true. 0

Exercise 66: For each n � 1. let 8(n) denote the statement

8(n): + 1)(j + 2)(j + 3)
= n(n + 1)(n + 2)(n + 3)(n + 4)

.1= I
5

BASE STEP (ii — 1): The left side of 8(1) is I . 2 3 . 4 = 24, and the right side of
.9(1) is = 24 as well, proving the base case.
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INDUCTIVE STEP: For some fixed k � 1, assume the inductive hypothesis

8(k):
k

+ 1)(j + 2)(j + 3) =
k(k + 1)(k + 2)(k + 3)(k + 4)

to be true. It remains to show that

S(k+l):

follows. Starting with the left side of S(k + 1) and separating the last term,

k-fl

Ej(j+1)ut2)u+3)
.1=1

= (iii + 1)(j + 2)U + 3))

+(k+ 1)(k+2)(k+3)(k+4)

— k(k + 1)(k + 2)(k + 3)(k + 4)

5

±(k + 1)(k ± 2)(k + 3)(k + 4) (by 5(k))

=

which agrees with the right side of 8(k + 1), completing the inductive step 8(k)
S(k+1).

Therefore, by the principle of mathematical induction, for all n 1, 8(n) is
true. D

Exercise 67: Fix some k E and for cad: n � 1, denote the statement

1W

BASE STEP (n = 1): The statement 8(1) says (where j = 1 produces the only
snmrnand on the left)

(k+1)!
—
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since (k + 1)! = (k + 1)(k!) and 0! = 1, the two sides agree, completing the proof of
the base case S(1).

INDUCTIVE STEP: For some fixed rn> 1, assume the inductive hypothesis

S(m): 1)...U+k -1)
= (k +l).(m- 1)!

to be true. lNote: One shouldn't use 8(k) here, because the statement needed to
prove already has a Ic in it. so employ a new variable in in the inductive step.] It
remains to show that

S(m+1):

follows. Beginning with the left side of S(in ± 1) arid separating the last summand,

rn+I

j=1

=
J

= (k 131
+ (in + 1)(m + 2). .. (m + k) (l)y 8(m))

(k+ni)!
— (k+1).(rn—-1)! in!

(k+m)!m (k+m)!
(k±1).(m)!+ rn!

(k+m)! I in
rn! + 1

— (k±rn)!rn+k±1
— in! k±1

which reduces to the right side of S(rn + 1) as desired. This concludes the inductive
step S(rn) S(m + 1).

Therefore, by the principle of mathematical induction, for all ri 1. 8(n) is
true.
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Exercise 68: This identity was mentioned by Peter Ross in [465], a media review of
the article A LISP pivver for induction formulae, where he says that an induction
proof of this identity "is tedious, although straightforward."

For each n � 1, denote the statement in the exercise by

S(n): — 1)(2k + 1)(2k + 3) = n(2n3 + 8n2 + 7n — 2).

BASE STEP (n = 1): The statement S(1) says (where k = 1 gives the only summand
on the left)

(2.1 — 1)(2 .1 + 1)(2 . 1 + 3) = + 8(22) + 7(1) —2).

This simplifies to 1•3•5 = 2+8+7—2, or 15 = 15, showing that indeed 8(1) holds.

INDUCTIVE STEP: For some fixed I � 1, assume the inductive hypothesis

8(t): — 1)(2k + 1)(2k + 3) = t(213 + 8t2 + 71 — 2)

to be true. It remains to show that

t+1

S(t + 1): — 1)(2k + 1)(2k + 3) = (t + 1)(2(t + + 8(t + + 7(t. -1- 1) —2)

follows. Beginning with the left side of 5(1 + 1),

— 1)(2k + 1)(2k + 3)

= — 1)(2k + 1)(2k + 3)] + (21 + 1)(2t + 3)(2t + 5)

= t(2t3 -1- 8t2 + 7t — 2) + (2t + I)(2t + 3)(2t + 5) (by 8(t))
= 2t + 36t2 + 46t + 15

= 2t4 + 16t3 4 4312 + 44t + 15

(t + -F 1412 + 25t + 15) (by polynomial division)

(t 1.)(2(t + + 8(t 1
1)2

I 7(t + 1) — 2).

where the last equality is easiest to see by multiplying out the second expression in

tile last line. This completes the derivation of S(i + 1) using 8(t), concluding the
inductive step.
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Therefore, by the principle of mathematical induction, for all vi � 1, 8(n) is
true. El

Exercise 70: For each vi � 1, let S(n) denote the statement

00! + I 1! + 2.2! + + ... + nit! (vi + 1)! — 1.

BASE STEP (vi 1): 8(1) says 0 . 0! + 1 . 1! = 2! — 1, which is correct, since both
sides equal 1.

INDUCTIVE STEP: For some fixed k � I, assume the inductive hypothesis 8(k) to
be true. To see that S(k ± 1) follows, the left side of 8(k + 1) is

0. 0! + 1! + 2! + k• k! + (k + 1) (k + 1)!

= (k+1)!—1±(k+1).(k+1)! (by8(k))
(1+(k+1)).(k+1)!—1

= (k+2).(k±l)!—l
= (k+2)!—I,

which equals the right side of S(k + 1). This completes the inductive step 8(k)
8(k + I).

Therefore, by the principle of mathematical induction, for all 'ii 1, 8(n) is
true. U

Exercise 71: For each vi 1, let 8(n) denote the statement

I 1 1 vi

BASE STEP (vi = 1): 8(1) merely says = a true statement.

INDUCTIVE STEP: For some fixed k � 1, assume the inductive hypothesis 8(k) to
be true. To be shown is that 8(k + 1) follows:

1 1 1 1

12+23++k(k+1)+(k+1)(k+2)

(by 8(k))k+1 (k+1)(k+2)

— k(k+2)+i
— (k+I)(k+2)
— k2+2k+1
— (k+1)(k+2)

— (k±I)2
— (k+1)(k+2)
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k+1
k+2'

which proves 8(k ± 1) from the truth of 8(k), thereby completing the inductive step.

Therefore, by the principle of mathematical induction, for all ii � 1, 8(n) is
true. D

Another solution to Exercise 71: Proving the equality in the exercise can be done
directly with an old trick: the partial fraction identity = —

The sum
can then be seen to telescope, a phenomenon that itself can be proved by induction
(see Exercise 137).

1 1 1 1

2•3 3.4 n(n+1)

-. iz+l
U

7? + 1

This completes the second proof. 0

Exercise 72: For each 12 > 1, let 8(n) denote the statement

n•-l

(ii +i)(n i+ 1) —

The truth of 8(n.) for all n > 1 follows from Exercise 71 . since the sum in 5(n) is
the sum of roughly the last half of a niuch longer series beginning at th rather than
at n(it+I) These calculations are given first, followed by an inductive proof of 8(n).
Direct proof of Exercise 72:

n--I 2n—2 n—2

(i+1)(i±2) (i+l)(i+2)

2',i—l n—i= - - (by Excrcise 71)
2n 2n

2n — I — 2n + 2
2ii

0
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Indzzctive proof of Exercise 72:
BASE STEP (n = 1): In S(1), the sum on the left is the trivial sum
whereas the right-hand side is these two are equal, so S(1) is true.

INDUCTIVE STEP: For some fixed k � 1, assume the inductive hypothesis

k—i

S'k"
1 1

" .0(k+i)(k+i+l) 2k

to be true. To see that
k

S(k + 1):
(k + 1+ iXk + i+2) = 2(k+1)

follows, starting with the left-hand side,

k

+i)(k+2+i)

k—I
1 1 1

= 2k k(k ÷ 1)
+

2k(2k + 1)
+ (2k+1)(2k ±2) (by S(k))

— 1 1 2k+2+2k
2k k(k + 1) ± 2k(2k + 1)(2k + 2)

•1 1 1

2k — k(k + 1)
+

2k(k + 1)

— k-j- 1 —2 ± 1

— 2k(k+1)

= 2(k±1)'
completing the proof of S(k + 1) and hence the inductive step.

Therefore, by the principle of mathematical induction, for all n � 1, S(n) is
true. D

Exercise 73: For each n � I, let S(n) denote the statement

1 1 1 1 -- n(n + 3)
2.3.4 ± 345+

nen+1)(n+2) —
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BASE STEP: 8(1) says it = which is correct, since 1)0th sides are equal to

INDUCTIVE, STEP: For some fixed k � 1, assume the inductive hypothesis

8k
k k(k4-3)
.1i(i+1)(i+2)4(k+l)(k+2)

to be true. It remains to show that

k+l ( \j'J
S'k —.

" I' 1i(i+1)(i+2r4(k+2)(k+3)

follow's. Starting with the left-hand side of S(k + 1),

i(i 4 1)(i + 2)

= k

i(i + 1)(i + 2)
+

(k + 1)(k + 2)(k + 3)

— k(k+3) 4
1 '

4 ——

4(k + i)(k+ 2)(k +3) 4(k+ 1)(k + 2)(k+3)

k3 + 6k2 + 9k + 4

4(k+ 1)(k+2)(k+3)

— (k+1)2(k+4)
— 4(k+ I)(k+2)(k+3)

— (k+1)(k+4)
— 4(k+2)(k+3)'

one arrivcs at the right-hand side of 8(k + I). This completes the inductive step.

Therefore, by the 1)ritlciple of mathematical induction, for each it i. 8(n) is
true. 0

Exercise 74; For each ii 1, Jet .9(n) denote the statement

1 1 1 1 1 1 1 11--+--
2 3 2n—l 2n ii+1 n+2 2n

The expression on the left constitutes the first 2n — 1 tcrms of what is called the
"alternating harmonic series".
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BASE STEP (n = 1): Note that the left side of 8(n) has denominators which range
from I to 2n, whereas the denominators on the right range from ii + 1 to 2n. So,
for n = 1, the denominators on the left range from I to 2, whereas on the right,
they range from 1 + 1 = 2 to I = 2, that is, on the right, there is only one term.
Hence, 8(1) says I -- which is true.

INDUCTI\'E STEP: For some fixed k? 1, assume the inductive hypothesis 8(k):

1 1 1 1 1 I 1 1

to be true. It remains to prove that 8(k + 1):

111 1 1 1 1 1

follows. Beginning with the left side of 8(k + 1) (and filling two more penultimate
terms)

1 1 1 1 1 1 112+31++2k12k+2k+12k12
1 1 1 1 1

k±1 12h 12k±i 2k+2 (by8(k))

1 I 1 1 1

k+2++2k+2k±1+k+12k+2
— I

+
1 1

+
2 1

k+2 2k+22k12
1. 1 1 1

+k±2 2k 2k+1 2k+2
agreeing with the right side of S(k+ 1). (This sequence of equalities turned out to be
far easier than one might have thought at the onset!) This completes the inductive
step 8(k) 8(k + 1).

Therefore, by the principle of mathematical induction, for all ii 1. 8(n) is
true. D

Exercise 75: ('ibis exercise is the suhject of an exposition in [433, Vol I, p. 112-
114].)

For each it � 1, let P(n) l)e the proposition

1 1 1 1 ii

BASE STEP: P(1) says = which is true.
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INDUCTIVE STEP: For some fixed k � 1, assiune the inductive hypothesis P(k):

1 1 1 k

to he true. The consequence to be proved is P(k + I):

1 1 1 1 k+1

The expression to the left of the equal sign in P(k + 1) (written with the second last
summand explicit) is equal to

1 1 1 1 1

13+35+r7++(2k1)(2k+1)+(2k+l)(2k+3)
k 1

= 2k + I + (2k l)(2k +3)
(by S(k))

- k(2k+3)+l
— (2k+l)(2k+3)

— 2k2+3k+l
— (2k + i)(2k + 3)

— (2k + 1)(k + 1)
— (2k + 1)(2k + 3)

k + I
— 2k+3'

which equals the expression on the right side of P(k + 1). This completes the proof
of P(k + 1), and hence the inductive step P(k) —* P(k + 1).

By mathematical induction, one concludes that for all a 1, P(n) is true. 0

Exercise 77: For a > I, denote the statement in the exercise by

1 1 1 TL(3fl+5)5(n): 191++n( 2) 4('n+1)(n+2)

BASE STEP: Since = S(1) is true.

INDUC1fl'E STEP: For some fixed in � 1, assume that

I I I rrz(3nz + 5)
1•3 24 (m)(m+2) 4(rn+1)(m+2)
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is true. It remains to show that

1 1 1 — (rn+l)(3in+8)
S(m +1). + + +

(rn + 1)(m +3) 4(rn + 2)(rn +3)

follows. Starting with the left-hand side of S(m + 1),

1 1 1 1

m(3m+5) 1= + (by 8(m))4(m+1)(m+2) (rn+1)(m+3)

— rn(3rn+5)(m+3)+4(m+2)
— 4(m+ 1)(m+2)(m+3)

m3 + 14rn2 + 19m + 8
4(m+1)(m+2)(m+3)

(3m2 + urn + 8)(rn + 1)
— 4(m+1)(rn+2)(rn+3)

3in2-f-llm+8= (since m + 1 0)
4(m + 2)(m + 3)

— (rn+1)(3m+8)
— 4(rn+2)(m+3)'

proving S(m + 1) as desired, thereby concluding the inductive step.

By Ml, for each n � 1, 8(n) is true.

Exercise 78: For n � 1, denote the equality in the exercise by

1 1 1 1 — n
1.5+5.9+9.13+ +(4i3)(4r1+1)

BASE STEP: It is trivial that = and so Q(1) is true.
INDUCTIVE STEP: Suppose that for some k � 1, Q(k) holds. It suffices to show that

1 1 1 1 k+t
Q(k+1): 4k+5

follows. Beginning with the expression on the left side of the equality in Q(k + 1),

1 1 1 1 115+59+913++(4k3)(4k{ 1



27.1. Solutions: Arithmetic progressions 455

k I

= 4k+ I
+ (4k+ 1)(4k+5) (by Q(k))

— k(4k+5)+1
(4k+I)(lk+5)

— 4k2+5k+1
(4k+1)(4k+5)

— (4k+1)(k+l)
— (4k+1)(4k+5)

k+ 1
— 4k+5'

proving Q(k + 1), arid hence completing the inductive step Q(k) Q(k + 1).

Therefore, by the principle of mathematical induction, for all ii > 1, Q(n) is
true. D

Exercise 79: This appeared in [499, Prob. i'll. for example.
For n � 1., let P(n) be the proposition

j2 22 32 n(n + 1)

BASE STEP: The left side of P(l) is and the right side of P(l) is which is

also so P(1) is true.

INDUCTIVE STEP: Let k? 1 be fixed and suppose that

i2 — k(k+1)
2(2k+1)

is true. To be proved is that

Pk 1
(k+l)(k+2)+ ).
2(2k+3)

follows; this is accomplished by:

k-fl -2 Iv 2 2
2 (k+I)

(2i — 1)(2i ± 1) = (2i — 1)(2i + 1) (2(k + I) — 1)(2(k + 1) + 1)

k(k+1) (k+1)2

2(2k + 1)
+

(2k ± I )(2k +3)
(by P(k))
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— k(k+1)(2k+3)+2(k+1)2
— 2(2k+l)(2k+3)

(k + ])[k(2k +3) +2(k+ 1)1
— 2(2k+1)(2k+3)

— (k-i-1)[2k2+5k+2]
— 2(2k+fl(2k+3)

— (k + l)(2k + 1)(k + 2)
— 2(2k+l)(2k+3)

— (k + 1)(k + 2)
— 2(2k+3)

proves P(k + 1). This completes the inductive step.

By Mi, for all ii. 1, that P(n) is true. D

Exercise 80: For cacti it 1, let Q(rt) denote the statement

11

I it

k

J'roof using Exeicise 71: Notice that the deuominators iii each suminand factors:

P1+1

1 1

2

Tt+1 1= --a-- (by Exercise 71)

— 2n 4- 2 — (a 1 2)
— 2(n ±2)

a
— 2(n+2)'

as desired. 0

Inductive proof of Q(n):
cAst-:: Q(l) says which reduces to = and so is true.
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INDUCTIVE STEP: For Some rn � 1, suppose that

Q(rn):
= 2(in±2)

is true. Prove the statement

in+ 1

- I rn±1Q(rn±l):

2
(by Q(k))2(rn±2) rn ±oin+6

— in 1

-- 2(in 2)
+

(in + 2)(m + 3)
-- in(m 3) + 2
— 2(nm I- + 3)
— in2 4- 3m ± 2

2(m + 2)(m + 3)
- (in + 1)(m 4-2)

2(rn + 2)(in + 3)

—- rn-f- 1

— 2(m ± 3)

This completes the inductive step Q('n) —, Q(m + I).
By mathematical induction, for any a > 2, Q(n) is trite.

Exercise 81: This problem occurs in an old Canadian grade school text. [385)
without solution. Ha a � 1, denote the statement of the exercise by

n(n --F 1)
8(n):

BASE STEP: 8(1) says = 2(1+1+1) , which is true.

INDUCTIVE StEP: Fix in � I and suppose that 8(m) is true. To prepare for
S(rn + 1), observe that

f-3m *3).
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To prove S(m + 1), start with the LIIS of S(m + 1):

rn+1 m

I + i2 + i4 = 1 4- i2 + i4
+

1 + (in ±1)2+ (m +

m(m±1) in+1= + (by 8(m))
2(rn2 + m ± 1) 1. + (in + 1)2 f (in +

— m(m+1) in+1
— 2(m2 + m + 1)

+ (2 + rn + 1)(m2 + 3m + 3)
— rn+l 1

— Tfl2 + rn + 1 L 2 in2 + 3m + 3
m + 1 m(m2 + 3m ± 3) + 2

m2+rn+1 2(m2+3m+3)
m+1 m3+3rn2+3m+2

— 7fl2+m±12((flZ+1)2+(m±1)+I))
— m±1 (m2±m+1)(rn±2)
— m2 + in + 1 2((m + 1)2 + (in + 1) ± 1))

(in + l)(m + 2)
2((m + 1)2 + (in ± 1) ± 1))'

which is the right side of S(m ± 1), concluding the inductive step.

By the priiiciple of mathematical induction, for each n � 1, S(n) is true. [In
fact, 8(0) is also true.I 0

Exercise 82: For each n. � 1. tel, S(n) he the statement

1 1 1 1 n

1

n = 1, 8(1) says = a true statement.

INJ)tJCTLVE STEP: some fixed k � I. suppose that 8(k) is true. To see that
S(k ± 1) is true,

kfl k

= [3k + 1] ± (3k ± 1.)(3k ± '1)
(by S(k))
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— k(3k+4)+1
— (3k+1)(3k+4)
—. 3k2-i-4k+1
— (3k±1)(3k+4)
— (k+1)(3k+1)
— (3k±1)(3k+4)

k + 1.

— 3k + 4
k+1

= 3(k + 1) + 1'

which proves S(k + 1). This completes the inductive step.

By the principle of mathematical induction, for all n � 2, the statement 8(n) is
true. 0

Exercise 84: For each ri 2, let 8(n) be the statement

\ 3)\ 4) vi n

or using product notation,

BASE STEP: When n = 2, the equality says I — = which is true.

INDUCTI\'E SEEP: For some k ? 2, .suppose that 8(k) is true. Then

(i p (1
—

(1
—

(bv8(/c))

k k+1
I

k+ 1'

proves that S(k + 1) follows. This completes the inductive step.

By mathematical induction, for all îì � 2, S(n) is true. El

Exercise 85: For each n 2, let 8(n) be the statement

(1
I\n+I

4)k, 16) n2) 2n
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or in product notation, I'\n+i
2n

BASE STEP (n = 2): S(2) says 1 — which is correct, both sides being

INDUCTION STEP: For sonic fixed k � 2, suppose that S(k) is true. Then

= (k41)2)

2k (' (k + 1)2) (by

k+1 k2+2k
— 2k (k+l)2

k+2
— 2(k±i)'

shows that S(k + 1) follows, completing the inductive step.

Therefore. by niatheinatical induction, for all n > 2, the statement S(m) holds
tnie. 0

Exercise 86: See (266, pp. 125—6] for solution.

27.2 Solutions: Sums with binomial coefficients

Exercise 88: For each ii � 1. let S(n) be the statement

(3'\ (4'\ (n + 1'\ + i)(n + 2)
2 6

BASE STEP (n = 1): The statement S(1) says _=
so S(1) holds.

INDUCTION STEP (S(k) S(k+l)): Fix some k > 1 and suppose that the induction
hypothesis

/2\ 13'\ 1k + i\ k(k + 1)(k 2)
S(k):

2 ) = 6

is true. Next, show that

S(k+l): () + ()
+ (4) (k±1) (k
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follows. Starting with the left side of 8(k + I),

(2\ (k±i\ /k+2
2 2

+1)(k+2) + (k2)
(by 8(k))

k(k+l)(k+2) (k+1)(k+2)
— 6

-+
2

— k(k + 1)(k + 2) + 3(k + l)(k + 2)
— 6 6
— k(k + 1)(k + 2) + 3(k + 1)(k + 2)
— 6

which yields the right side of 8(k + 1). the inductive step 8(k) S(k + 1) is
completed.

By mathematical induction, for all n � 1, 8(n) holds. 0

Exercise 89: For n I, denote the first proposition in the statement of the exercise
by

P(n):

1 2

STEP: For some fixed k � 1, assume that P(k) holds. Then

(byP(k))

(k + 2)(k + I)

2 k+I
— k±1 k+2

- k+2'
proving P(k 4- 1), and completing the inductive step.
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By mathematical induction, for all ii � 1, P(rz) is true.

An infinite series converges iff the limit of the partial sums exists. In this case,
the limit exists because the partial sums are increasing and each is less than 2.
Hence, conclude that this limit exists (and is at most 2). Indeed, one can calculate
the limit directly:

� 2
= = = 2.

0
See [402] for a related diagram.
It turns out that all of this machinery Was unnecessary, since = (ITI) =

—
and so the sum telescopes to 2

—

Exercise 90 (Pascal's identity): Two proofs are presented; the first is by induction
and is rather cumbersome, whereas the second is direct and very simple. This
demonstrates that induction is not always the preferred proof, but the inductive
method is presented here anyway, if only to show its utility.

Proof by induction: Fix r, and for all ii � r, let P(n) be the proposition

P(rz):

Basn STEP (a = r): The statement P(r) says + (rrj, that is, r + 1 =
I + r, and so P(r) is true.

iNDUCTION STEP: Fix some k r and suppose that

P(k): (k+l)(k)+(k)

is true. Consider the statement

P(k+l): (k+2)(k+l)+(k+1)

Beginning with the left side of P(k + 1), apply Lemma 9.6.1 four times, in the first.,
third amid sixth lines below (iii the first line, use iii = Jr + 2 and s = r; in the third
line, use in = Jr + 1 and s = r and s = r — I respectively; in the sixth line, use
in Jr -i- I and .s =

(Jr ± 2
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- k+2 (k+I
r

+ (.r 3] (by P(k))

k+1

— (k+2)(k f-i — r)(k-f- 1'\
+

k+2(k+ I.
i )

— (k+2)(k+_1_—r)(k+1'\
+

(k+1
— r ) I

— (k-i- 2)(k+ 1 —r)(k±
+

r (k+ 1\ (k+1
— (k+2—r)(k r ) (k4 r )

r ) kr-i
7k-i

P )
which is the right-hand side of P(k ± 1), completing the inductive step.

Consequently, by triathematical induction, for all n 0, P(n) holds. fl

Direct Let. S be a set with n + I elerrierits, and consider some fixed x E S.
There are r-subsets of S -. count them according to whether or not they contain

x: there are not containing ;i:, (each formed by choosing r of the remaining
ri elements in S\{x}). and there are r—sets containing x, (each formed by
selecting an additional r I elements in S\(x}).

Exercise 92 [Pascalj: For each a > 2 let 8(n) he the assertion that for all k
satisfying 1 k ii — 1,

-- k+I
n—k

The proof is by induction on a. arid in the inductive step, Lemma 9.6.1. is applied.

BAsE s'rEp (ii = 2): \,\T[ien a 2, the only choice for k is k 1. In this case,

- 2- 1+1
(2) - 21'
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and so 8(2) is true.

INDUCTIVE STEP (8(m) --' 8(m + 1)): Fix in � 2, and suppose that 8(m) is true,
that is, for any k satisfying 1 � k � m — 1,

(T) k-i-i
SkfrTl).

— km

is trite. To be shown is that for any 1 � k � in,

(mi-I)
— k-i-i

For in = k, the desired equality is true, so assume that k < in. Then

mi-I (m\

= (by Lemma 9.6.1, twice)
kk+l) m—kklc+11

— itt—-k (Tfl)

m+J —k

rn—k k+1
(by 8k(m))m+1—k rn-k

k+ 1
m+ 1-k'

as desired. TEdS completes the inductive step.

hence, by mnathemnatical induction, for each n � 2. the statement 8(n) holds
true. 0

Exercise 93 [Pascal]: The proof provided here is far less intuitive than that in
Exercise 92, and was arrived at by working backwards from what was required.

For each ii � 2 let 8(n) be tile claim that for all k satisfying I � k � it — 1,

k+i

Proceed by induction on it. and use Pascal's identity:

STEP (it = 2): When n = 2, the only choice for k is k = 1. In this ease,

_2_1+1- 2-1'

and so 8(2) is true.
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INDUCTIVE STEP (8(m) 8(m +- 1)): Fix m � 2, and suppose that 8(m) is true,
that is, for any k satisfying 1 � k < m — 1.

('fl k+1
8k(m).

is trite. It remains to prove that for any I < k < iii,

('t) k+1
(T÷flm+1-k

For m k. the desired equality is true, so assume that k < m. By the inductive
hypothesis,

k+1
m — k

— (kTl)'
and simple algebra shows

k+l
in+1--k rn—k

Thus,
f'fl\ k
kkJ — rn—k-Fl ft +

(kTJ rn+i—k

By inductive hypotheses 8k_lent) and Sk(m),

(k'2)(lii) J+(?fl) k+l
— i + in + 1 —

Multiplying out, one arrives at

/-m'\ / in in '\ Tm

Applying Pascal's identity,

(m+I

whence the desired equality follows, completing the inductive step.

So, by mathematical induction, for all ii � 2, 8(n) is (rue. D
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Exercise 95 [Euler]: For t > 0, let S(t) be the statement that for any non-negative
integers m and n with m + n t, and any p � 0,

(m+n'\ (rn\( n

BASE STEP (1 = 0): When t = 0, only m = = 0 is possible. In this case, S(0) says

0

If p = 0, the left side of S(0) is equal to 1, and the right side has only one summand,
namely © (000), also equal to I. If p � 1, the left side is equal to 0, and every
summand on the right-hand side will have a factor of the form where i > 0, and
so every summand on thc right is also 0. Thus, S(0) holds.

Suppose that for some k � 0, S(k) holds, that is. for every m � 0 and ii � ü
with m ± n = k, and any p � 0,

n

)

holds. To show that S(k + 1) holds, show that for any m 0 and n ? 0 with
in n = k, and any p> 0,

(m + n + — (n + 1
)

If p = 0, then both sides are equal to 1, so assume that p > 1. Beginning with the
left side of the above equality.

(rn+n+1\ fm±n'\ (m±n\
) = )

+
p — 1) (Pascal s id.)

=
(T) (T) (md. hyp.)

[( .) + ( - +

+ (rn) (n 1)
(Pascal's
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= t (7) C'
finishing the proof of the desired equality, and hence the proof of 8(k + 1). This
completes the inductive step.

Therefore, by mathematical induction, for all � 0, 8(t) holds. 0

Exercise 96 This is a very interesting equality, because proving it di-
rectly by induction seems far more difficult, than proving the more general statement
of Theorem 9.6.2. One attempt to prove this by induction was given in [350, Ex.
551, however the careful reader will spot that this proof is not "purely inductive".
In fact, in the inductive step of this proof, another special case of Theorem 9.6.2
is invoked; this seems rather pointless, since the Corollary 9.6.3 follows directly in
one step from another special case of Theorem 9.6.2! Nevertheless, there is value in
examining such an attempt. The presentation given here differs slightly from that
in [350], mostly in the order of equalities used; the main idea is the same.

Proof of Corollary 9.6.3: For each integer n � 0, let 8(n) denote the statement

8(n):
C:1)

BASE STEP (ii = 0, 1): The statement 8(0) says (g) = (g)2, which is true since both
sides are equal to 1. To start the induction step for Jr � 1, also check the case n = 1:
the statement 8(1) says ('i) (g)2 + and upon evaluating, says 2 1 + 1,
which is true.

INDUCTIVE STEP (8(k) 8(k + 1)): Fix some Jr � I amid assume that the inductive
hypothesis

8(k): (2k)

=
is true. It remains to prove

8(k+l):

Starting with the left side of 8(k + I) and applying Pascal's identity twice,

(2k+2\ (2k+ l\ (2k+l
= Jr

/ 2k \ /2k\ /2k\ / 2k
— I I—I—I I—I—I 11—I\k+lJ \kJ \/CJ \k—1
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/2k\ / 2k \ /2k
=

where the last line used = In applying the inductive hypothesis to the
first summand in the bracket in the last line, how is the last term handled? Notice
that by Theorem 9.6.2,

(2k k

and so, by also applying the inductive hypothesis,

(2k+2)

k (k)2k

= (k)2

(k ± 1)2 1)2

÷
(Pascal's id.)

This completes the inductive step.

Therefore, by induction, for each n � 0, the statement S(m) is true. D

Note: The technique used to begin the sequence of equalities above
was to use the 1(lentity

—- ) (which follows by direct computation or by
Lemma 9.6.1 twice) as follows:

(2k + — 2k-i- 2(2k ± i'\ — 2(2k + 1
k\k+i) k±1 k ) k

and then apply Pascal's identity. This technique (toes iiot; seem as natural as the
one employed above.
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it scents that Lagrange's identity is more difficult to prove than Euler's equality
because upon using Pascal's identity, certain variables are reduced only by one, and
then the inductivc hypothesis is of no help because there arc binomial coefficients
which are not of the form it is entirely possible, however, that a purely
inductive proof exists, though it seems as if it would he either messy or intricate.

Exercise 97: This exercise occurs in [350, Ex. 59], however there strong induction
is used, although not needed. 'I'he proof is rather simple.

For each is. > 0, let 5(n) be the statement that for any its � 0,

(m+i"\(rn-I-n+1
in rn+1

BASE STEP: When ii = 0, 5(0) says which is true since both
sides are equal to I.

IN1)UCTION 511w: Suppose thnt for sonic k > 0. 5(k) is true. To be shown is that
S(k 1) is trite, that is, for any in > 0,

- (ni+kI 2)k rn+l

Starting with the left side of this equation,

(nn÷ i) — k (rn+i) ±

+

I)

(rn+k+ I)
+

(rn 3k ± 1)
(by 5(k))

(rn+k±2'\
= I I (by Pascal s id),\ m+1 )

finishing the proof of S(k + I) and hence the inductive step.

Therefore. by the principle of mathematical induction, for all a 0, the state-
mesa 5(n) is true. El

Exercise 98t This exercise occurs in [350, Ex. 601, where strong induction is
used, however unnecessarily so. The equality in this exercise is the very same
a,s that in Exercise 97, because binomial coefficients are symmetric, that is, for

< AT (Ti) so in this ease, (In-I-I) (mE?) and (m.f-n4 1)

yield precisely the same problem! However, pretending not to notice this, here is a
Proof of the result by induction nevertheless.
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For each n � 0, let 8(n) be the declaration that for every ni � 0,

(nt±i) — (in+n+ 1)

BASE STEP: 8(0) says (mJ 1) = (rng l), which is true since both sides equal 1.

INDUCTION STEP: For some k � 0, assume that 8(k) is true. To be shown is that
8(k + 1) is true, that is, for any rn � 0,

k+1 (in-+2\
i k+1

Beginning with the left side of this equation,

(in *k +
+

1)
(by 8(k))

(in+k+2'\
k+1 (byPascalsid.)

completing tue proof of S(k 1- 1), and hence the inductive step.

Therefore, by the principle of MI, for all n � 0, 8(n) is true. D

Exercise 99: There are two choices for the variable to induct on. The most natural
choice is to fix in and induct on n in. There is a small problem here: while
indtl(:ting on n, say, from n = k to n = k + 1, the truth of the statement is needed
not just for k and m, but for k and in 1 as well. Ilence, fixing in in advance
might be troublesome. Instead, induct on n, but for each n, "do" all rn n. In the
induction step then, with n = k + 1, the case in = k + 1 is unavailable, and so this
is handled separately.

Let 8(ni, ii) be the statement.

ii

\m + i,/ \rn — 1

Let T(n) be the statement that for all in � n, S(m, ii) holds.

BASE; s'uFw(n 1): When ii = I, the only choice for in = i, in which case
T(1) = 8(1,1) says = (h); this sum has only one term (when
i = 0), which is () = I. and since (11)= 1 as well, T(1) is true.
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INDUCTION STEP: For some k > 1, assume that 1(k) is true, that is for all m =
1,..., k, S(rn, k). is true. That. is. assume that for all 'in = 1,...,

k

+ iJ \in — 1

It remains to show T(k + 1), that is, to show that. for all m I k, k + 1,

Examine two cases, m < k, and in k + 1.
First. let in < k. Then

k+ I—rn

k-}

L—rn k4-1—rri

+ 1)

k—rn, k-(rn--1)

= (ni+i) +0+

(ki) (ki)
(by md. hyp. S(m.,k) arid S(m — 1,k))

(k+ 1
--

finishing the ifldll(:tive step for the case in k.
Let rn = k -I- 1. Then

1)

=

011 the other hand, = = I as well. Evei'i though the inductive hypothesis
was riot required here, this completes the inductive step when in = k + 1. Hence
T(k) + 1), completing the inductive step.



472 Chapter 27. Solutions: Identities

Therefore, by mathematical induction, for each n � 1, T(n) holds. D

Exercise 100: For each n � 1, let A(n) be the assertion that

fl

=0.

BASE STEP: A(1) says + (—i)'(l) = 0, which is true.

INDUCTIVE STEP: Fix some k � I and assume that A(k) is true. Then

k+1

i=o

/k+i\ 1)k4l(k+1 i(k+i)
0 )+(-

k
k

k
k

1)]
i= I

rk -,

= -

= +
-

\jJ

k

=
-0 (byA(k))

1

=

= 0 (again by A(k))

shows that A(k 4- 1) is also true, completing the inductive step.

By the principle of mathematical induction, for all n ? 1, A(n) holds. [
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Exercise 101: This "well-known" identit;y is mentioned by Klee in [315], complete
with proof, where it appears in discussion regarding the Euler characteristic. By
convention, I = and for i > ii, = 0. First, the exercise is done for
U m <n. (See the technique used in Exercise 99.)

Fbr each ii � 1, let Q(n) be the proposition that for every m satisfying 0 � m <

P(m,n): =
1)

BASE STEP: When ii = 1, the only possible m is m = 0. In this case, the above
equation reads = and since both sides equal 1, Q(1) is true.

INDUCTION STEP: For some fixed k � 1, assume that Q(k) is true. It remains show
that Q(k + 1) is also true, namely, that for every rn = 0, 1.... ,

1) =

Divide this inductive step into two cases.
If in < k. then

k k
=

ru in—i

=
+

= (_l)m(k 1)
(by P(m,k))

= (_I)rn(k (byP(rn-I,k))

= ( I ( k 1

\mJ
/k—1'\ (k—I

Tfl / \Ifl— I
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= (_l)m(k),

which completes the inductive step in this case, showing P(m, k + 1) where in < k.
For in k, to be shown is P(k,k + 1) :

= (_i)k(2). This
follows from equation (9.5) with n = k + I by examining all but the last summand
in the sum or the binomial theorem and using = So,

in any case, P(rn, k + 1) holds and so Q(k + I) is true; so the inductive step holds.

Therefore, by mathematical induction, the result holds for all 0 rn < n.

To be shown is that the desired equality holds for any choice of non-negative
integers in and ii (not just 0 < in < n). If m = n., then the equality

In
= (.1)m(hi 1)

l)CcoIneS

=0,

precisely the statement in equation (9.5). If n < in, the right—hand side remains 0,
and the additional sumniatids on the left are all zero, so the result still holds. 0

Exercise 102: This problem appeared in [350, Ex. 62].
For each n � 0, let 8(n) denote the expression

(i\ (n+ i\ (n+ 1\ mn+2\ (n+2
2 6 s

BASE STEP: When n 0, both sides are 0; similarly, one can verify that both sides
are 0 for n = 1,2,3,4. When n = 5, S(n) reduces to

(s\ /5\ (6'\ 76\ (7\

or 10 = 15 + 0 -- 5 which is correct, so S(5) is true. The case ii = 5 can be the
base case for the induction (although n = 0 works, too, but with n 0, there are a
lot of trivial binomial coefficients floating around, and applying certain tricks, like
Pascal'.s identity, requires more checking to make sure things make sense with zeros
everywhere).

INDUCTIVE STEP: Fix some k � 5 and suppose that

8(k): (L) (i) (k 1) (k 1) + (k 2) - k(k ± 2)
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is true. To be showti is that

S(k+l): = (k±2)(k±2) +

follows. (The sequence of equalities that works is a bit tricky, applying Pascal's
identity four times, in two different ways.) Begiiiiiing with the left side of S(k + 1),

=

(bvS(k))

(k+I) [(k+1)(k+I)](k±2)k(k;2)

7k + i\ 7k + 2'\ 7k 1 2'\ 7k + 2
I II 1+1 )kl2 J\ 6 J \ 8 ) 7

[(k+2)(k+1)J(k+2)[(k43)(k;2)]&(k+2)

(k + (k (k 2) (k F 2)]

1k + 2\ 1k i- 2\ 1k 3'\ 7k 3=
2 A 6 7

which is equal to the right side of S(k + 1). This 6uishies the inductive step
S(k) S(k + 1).

By the principle of mathematical induction, &-jr all n > 0, the statement S(n) is

true.

Exercise 103: For each n 1, let 5(u) be the statement

(1
=

+ +. +...
+

BAsE S'FEI: S(1) says (1 + x)' + which is valid.
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INI)UCTLVE STEP: Suppose that for some k � 1, S(k) is true. Then

(1 + x)k+1 = (1 + x)k(l + x)

=
+ +... + (1+ x) (by 8(k))

1k\ /k\ Ik\ k
=

1k'\ 1k\ 2 1k\ k+1

= +

= (k 1) (k
+

± (Pascal's ii)

1k + I\ 1k + 1\ 1k + 1\ 2 1k + 1\ k+L

finishing the proof of S(k + 1). and hence the inductive step.

Therefore, by MI, S(n) holds for all n � 1.

Exercise 104: The letters x and y are variables indicating non-zero values for
which x0 = 1 and y0 = 1 make sense—these values can be taken from any number
field, for example. For each n > 1, let 8(n) be the statement

(x +
=

BAsE STEP: 8(1) says (x -I- y)1 = + (Dy which is valid.

1NDUCTL\'E STEP: For some k 2 1. suppose that 8(k) is true. To complete t he
inductive step, it suffices to prove that

k+1

S(k + 1): (x + = (k ±

holds. To prove S(k + 1), the same trick is used as in the inductive step for Exercise
103, namely break off one factor, apply the inductive hypothesis. use distributivity,
combine like terms (that is, ones with the same and use Pascal's equality.
Just how to collect like ternis is most easily seeti by writing out a. few terms in each
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surri, however due to space constraints, sigma notation is used throughout. [If the
notation is at all confusing, the reader might write out the sigma expressions over
two lines, lining up like terms.1 Beginning with the left side of S(k ± 1),

(x +
(x+y)k(x+y)
1k

= (x + y) (by S(k))

= I +
[3=0 i

=
+

j=0

k k--
= + + +

(k + I
I

= /

—

1k + 1=
o

+ +
+

(Pasc. id.)
+ 1/j=1

k11
= (k +

'I

finishing the proof of S(k + 1), and hence the inductive step.

Therefore, by MI, S(n) holds for all n � 1. D

Exercise 106: Let 8(n) be the statement

I
— = (x y)
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BASE STEP: When ii = 1,

— (x -- y)x°y° = (x y)

and so 5(1) is true.

JNL)UCTIVE STEP: For some fixed k � 1, assume that 5(k) is true, that is,

= (x

Next to show is that S(k + I)

k+1
?f1 — (x y) (Erk+1_VYV_1)

is true. To accomplish this, perform a trick of adding and subtracting an extra term:

-— ± — I

= — 11k) + (x

r(x—y) 1) +(x_y)yk (l)y 5(k))

= —

F

(x

(x - y) x

thereby proving S(k + 1).

Mathematical induction proves that for all i-i � 1, the statement 5(n) is true. U

Exercise 107: For each n � 2 and 0 < j < a, let P(n,j) be the statement that
EZ=0 (— 0. As suggested in the exercise, one proof is by iziduetioti on
j. Note that when j = 0, if one interprets p0 as 1, then P(n, 0) is true by equation
(9.5).
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BASE STEP (P(n. 1)): When n > 2, P(n, 1) is simply equation (9.7).

INDUCTIVE STEP: ([P(n,j— 1)AP(n— 1,i— 1)] . P(n,i)): Fix i � 2 and let n> 1.
Suppose that both P(n, i — 1) and P(n — 1, i — 1) are true. Then

(- +

n—I

=
I 1)7L_kkz) +

n (by

n 1

I

(n
—

= (byP(n,i— 1) and P(n— Li - 1)).

shows that P(n, i) holds. completing the inductive step.

By mathematical induction, for all j > 1, arid any n > j. P(n,j) is trite. D

Exercise 108 [Abel identity 1]: Let. a C R and for each n � 1, let 8(n) denote
the statement,

It seenis quite difficult, to prove 8(n) by a standard inductive argunient. so a
trick contained in the following lemma (which needs a bit of calculus for its proof)
is used.

Lemma 27.2.1. Polynomials p(x, y) and q(x, y) agree if and only if both p(x, —x)
q(x, —x), and

— aq

Dy — Oy•



480 Chapter 27. Solutions: Identities

Proof outline: If p and q are differentiable functions with donrain R2, the con-
ditions imply that for every fixed x0, the restriction of p aix! q to single variabic
functions 1(y) = y) and g(y) = q(xo, y) is identical because they agree at the
point y = —x0 and their derivatives are the same. (This is a standard result in first-
year calculus, following easily from the Mean Value Theorem.) Then use the fact
that if two polynomials agree everywhere, they must be the same polynomial. D

Let pn(x, y) be the left-hand side of 8(n) and let qn(x, y) he the right side. The
conditions in Lemma 27.2.1 are proved separately; denote these two statements by

T(n) : pn(X, —x) =

arid dpfl8qfl

Statement T(n) is proved directly, and 11(n) is proved by induction.

Proof of T(n): First rewrite

T(n): (n)(l)n_k(X — = 0.

Indeed, by expanding the term (x — ka)"' and reinterpreting the order of summa-
tion, find an expression equal to zero inside:

XE —

k=()

xt (by binomial thm)

=
(ri—

= x 1)(l))E(n)(lYI_kki

I
1)(_l)3 .0 Exercise 107)

as desired.
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Proof of U(n):
BASE STEP: For ii = 1, it is straightforward to check that both partials equal 1.
INDUCTIVE STEP: For sonic fixed m � 1, assume that U(m) holds. Then by T(rn),
S(rn) holds. To prove that U(m -f- 1) follows from S(rn),

8=

7fl + I (rn+1)(k)ki(+k)m+lk]

=
[xix — (m + +

(m+ l)(
— + ka)m+1_k]

(m± 1)(
+ ka)m+1_k]

=

(m+
+ 1 — k)x(x — ka)k_l(y

± i)(T)x(x — +
k=()

(m. + 1) (T)'' ka)k_I(V +

= (in + i)(x +. yr (by S(rn))

=

which is the partial with respect t.o y of y) as desired. This completes the
inductive step U(m) U(m + 1).

Hence, by Ml, for every vi > 1. U(n) is true, and so it follows that for every
n � 1, S(n) is true.

Exercise 109 [Abel identity 2]: A proof appeared in [354, Prob. 1.44(a)]. here
is one outline of a proof. For each ii > 1, let S(n) denote time statement

+ k = (x +y +nr.



482 Chapter 27. Solutions: Identities

A direct proof of S(n) is available by Exercise 108 with a = —l and replacing y
with y + n. The inductive proof can be found by imitating the solution of Exercise
108 using these replacements. 0

Exercise 110: For in � 0, let A(rn) be the assertion that is a l)OlYflotflial lfl
n of degree in + 1 with constant term 0.
BASE STEP: So(n) 10 + 20 + + n0 = n, which is a polynomial of degree 1.

INDUCTIVE STEP: Fix p> 0, and assume that for 0 <j <p that A(j) holds, that is,
each of So(n) is a polynomial of appropriate degree with constant term
0. Using in = p in (9.9),

1)s() = (n+ (p+ (27.1)

By induction hypothesis, for each j <p, is a polynomial in n of degree j + 1
with constant term 0, and so the right-hand side of (27.1) is a polynomial in n of
degree p + 1 with constant term 0. Thus is a polyiiouiial in n of degree p + 1
with constant term 0, proving A(p), completing the inductive step.

By mathematical induction, for each in > 0, is a l)olYIlOrnial inn of degree
in -f- 1 and with constant term 0.

27.3 Solutions: Trigonometry
Exercise 113: l'his exercise appeared, e.g., in [.582, Prob. 391. There are many
proofs; one simple proof is givell here with two base cases and an inductive step
that jumps by two (similar to the proof of i'heoreni 3.4.1, where there are three
base cases).

Let Sen) denote the proposition cos(mr) =

BASE STEPS (n 1,2): Since cos(ir) = —-1, 8(1) holds. Since = 1. =
and so S(2) also holds.

INDUCTIVE STEP (S(m.) . S(rn 4- 2)): Suppose, for some -in � I. that S(rn) holds.
Recall the identity cos(8 + 2ir) = cos(8). Starting with the left side of S(iri. + 2).

cos((m+2)ir) =
= cos(rnir) (by above identity with 0 = inir)
= (_i)m
= (_1)m±2,

which is the right side of S(m 2). This completes the inductive step S(m)
S(m + 2).
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By the principle of mathematical induction, (or as referred to in Section 3.4,
"alternative mathematical induction") for all ri � 1, S(n) holds. 0

Exercise 114: Let S(n) be the statement

S(n) : for any real x, lsin(nx)J nlsin(x)I.

BASE STEP: The statement S(1) says sin(x)I � I which is trivially true.

INDUCTIVE STEP: Fix some k � 1 and assume that

S(k) : sin(kx)I < kf sin(x)I

holds. To be proved is that

S(k + 1): sin((k + 1)x)I < (k + 1)Isin(x)I

holds. Beginning with the left-hand side of S(k + 1),

I
sin((k + 1)x)J = J sin(kx -f x)I

= I sin(kx) cos(x) cos(kx) sin(x)l

sin(kx) cos(x)I + cos(kx) sin(x)l (triangle ineq.)

= Jsin(kx)l Icos(x)I ± cos(kx)l lsin(x)t

+ Isin(x)I (because lcos(O)I � I.)

< kjsin(x)j + lsin(x)I (by in hyp.)

(k+1)jsin(x)I,

the right-hand side of S(k + 1). completing the inductive step.

By mathematical induction, for all n 1, the statement S(n) is true. 0

Exercise 115 (Dc Moivre's Theorem): Let D(n) be the statement

D(ri) : [cos(O) + = cos(nO) + isin(nO).

BASE STEP: D(l) is trivially true because it says only = cos(O)+
i sin(O).

IND(JCTJVE STEP: Let k � 1 be fixed and assume that D(k) is true, Then

[cos(O) +

= (cos(9) + isin(9))fcos(O) + isin(8)]k

= (cos(O) + isin(O))(cos(kO) + isin(kG)) (by D(k))
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= cos(9) cos(kO) -- sin(S) sin(k9) + i(sin(9) cos(kO) + cos(9) sin(k9))

= cos(O + kO) + isin(O + kO) (by eq'ns (9.12) and (9.11))
= cos((k + 1)9) + isin((k -1- 1)9)

proves D(k -1- 1). completing the inductive step.

By MI, for each n � 1, D(n) is true, completing the inductive proof of Do
Moivre's theorem (also called De Moivre's formula). 0

Exercise 116: For any n � 1 let

8(n) : sin(9 + nit) (—lrsin(9)

denote the statement in the exercise. In fact, 8(n) is defined for any integer n—see
remark following the proof. The identity sin(a + it) = — sin(a) is relied on, which
can be proved either by noticing that the angles a and a + ir correspond to antipodal
points on the unit circle, or directly by equation (9.11) as follows:

sin(a ± it) = sin(a) cos(it) + cos(a) sin(ir) = sin(a)(—1) + cos(a) . 0 = — sin(a).

BASE STEP: Sinc:e sin(9 + it) = — sin(S), 8(n) is true. [Notice that 8(0) is true as
well, so the base case could have been n = 0.]
INDUcTIvE STEP: For some fixed k > 1, assume that 8(k) is true. Then

sin(O + (k + 1)ir) sin((O + k-it) + it)

— sin(9 + kit)
= sin(S) (by 8(k))

(_1)k+: sin(S)

proves S(k + 1). completing the inductive step 8(k) — 8(k + 1).

Therefore, by Ml. for all ti > 1 the state:nent 8(n) is true. 0

Remark: Notice that since 8(0) is also true, one could have concluded that
8(n) is true for all n � 0. In fact, 8(n) is true for all n e Z; this can be shown
in a number of ways. One could prove this by induction for the negative integers
using sin(ci — it) = sin(a), and imitating the proof above, showing sin(9 — nit) =

sin(S) for ii ü. One can also see that sin(9 - nit) = (— sin(S) follows
directly from 8(n) by

sin(9 — nit) = sin(9 + nit — n2ir) = sin(9 + nit).

Lastly, sin(9 — = follows from 8(n) using equation (9.11) and
Exercise 113:

sin(O - nit) = sin(S) cos(—nir) ± cos(S) sin(—nir)
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= sin(O) cos(nir) + cos(O) . 0

= sin(O)(—lr.

Exercise 117: This exercise appeared in, for example, [550].
For each 'a � 1, let

E(n) : cos(O ± air) = (—lreos(O)

denote i,he equality iii the exercise. Use the identity cos(a + it) = — eos(a) which
follows because the angles + it and a correspond to antipodal points on the unit
circle; one can also derive this identity by applying equation (9.12) as follows: cos(a+
it) = cos(a) cos(ir) — sinQ4sin(ir) = cos(a)(—l) -- sin(a) . 0 — cos(a).

BASE STEP: By the identity mentioned above, cos(O ± it) = — cos(O), and so E(1)
is true. (Notice that E(0) is also true, so this could have been the base case.)
INDUCTIVE STEP: For some fixed k � 1, assume that E(k) is true. Then

cos(f) + (k 1)ir) = cos((9 + kit) + it)
—cos(O+kir)

= _(_1)Ccos(O) (by .6(k))
=

Proves E(k + 1). completing the inductive step .6(k) E(k + 1).

Therefore, by Ml, for all 'a � 1 the st.atertient E(n) is true. 0

Remark: Notice that since .6(0) is also true, one could conclude that E(n) is
true for all "a � 0. Furthermore, just as in Exercise 116, one can show that .6(n) is
true for all 'a Z.

Exercise 118: This exercise appeared in many places, for example, [550] and [499,
Prob. 33].

For each 'a > 1, denote the statement in the exercise by

fl ffl+l/J\ triO

S(n) : =
sin(O/2)

BASE STEP: The statement 8(1) says

14-Ig . 0

sin(O)
= sin

which is true.
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INDUCTIVE STEP: For some fixed k � 1, suppose that

k

S(k) :
— sin(O/2)j=1

is true. It remains to prove that

(k+l)Uk+1

S(k + 1): Sifl j9
siri(9/2)j=1

is true.
To streamline the proof of S(k + I), use the identity

k+2 \(k+1 \
2cos sin(9/2) = sin sin(kO/2), (27.2)

which follows from using A = and B = in the following identity

sin(A + B) — sin(A B)

= sinAcos8 f-cosflsinB (sinAcos(—B) +cosAsin(—B))
= SI!LACOSB+COSASIIkB—(SUIACO.SB cosflsinB)
= 2cosAsinB.

Beginning with the left side of S(k + 1),

k+ 1

sin(jO)
j=l

1k 1

= +sin((k+1)O)
Li—' j

+ sin((k + 1)0) (by S(k))
sin(9/2)

sin sin
+ sin

+ I k + 1 \
sin(0/2) +

fk+2 \
+ 2sin

= sin(9/2) (20) COS (by equ (9.11))

— sin
sin(kO/2) 2cos siri(0/2)

—
- sin(0/2)

(k+10) sin(kO/2)+ sin -- sin(kO/2)
(by eqn (27.2))—

sin(0/2)

=
sin (k+29)

2 J sin(0/2)
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proves that S(k + 1) follows, completing the inductive step.

By MI, for every n � 1, 8(n) holds. 0

Exercise 119: This problem appeared in, for example, [550].
For each integer n � 1, let the statement 8(n) denote the statement

cosO+cos(20)+."-J-cos(nO) = 2

BASE STEP: Since
cos(14L9)

= cos(9),
sin(9/2)

8(1) is true.

In a naive attempt to prove the inductive step, one sees that a rather strange
identity is necessary; one which boils down to the following:

cos(A + B) sin(A) + cos(2A + 2B) sin(B) = cos(A + 2B) sin(A ± B). (27.3)

The following sequence of identities shows one way to derive equation (27.3), though
there might he other simpler ways: Beginning with

sin A(1 — sin2 B) = sin Acos2 B.

and adding cos A cos B sin B to each side gives

sin A -j cosAcosBsin B --sin AsinflsinB sin Acos Bcosfl + cosAsinflcos B.

First use the identities (9.12) and (9.11) and then multiply each side by cos(A + B).
giving

cos(A ± B)[sin A + cos(A + B) sin B) = cos(A + B) sin(A + B) cos 13.

Multiplying out the left side,

cos(A + B) sin A + cos2(A + B) sin B = cos(A + B) sin(A + B) cos B.

Subtracting sin2(A + B) sin B from each side gives

cos(A + B) sin A + [cos2(A + B) — .sin2(A + B)) sin B

[cos(A + B) cos B — sin(A -I- B) sin B) sin(A + B).

Finally, applying identity (9.12) twice, on the left with a = A -h B = 3, and on the
right with = A + B and fi = B, arrive at

cos(A + B) sin(A) + cos(2A + 213) sin(S) cos(A + 211) sin(.4 + 13).

fInishing the proof of equation (27.3)
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INDUCTIVE STEP: For some fixed A: � 1, assume that

S(k) :

is true. It remains to prove that

k4•1 k+2 (k+1)O
cos(—r—0) sln(—r--—-)

S(k + 1): =
- sin(0/2)

2

follows. Beginning with the left side of S(/c + 1),

k+I k

>cos(jO) = Ecos(jO) +cos((k+I)9)
j1

(k-I-i0 .=
(9/9) +cos((k+1)0) (hyS(k))

—

— sin(0/2)

= sin(0/2)
(by eq'n 27.3)

where the last equality follows from equation (27.3) with A = kO/2 and B = 6/2.
This completes the proof of S(k + I) arid hence the inductive step.

By MI. for all it � 1 the statement S(n) is true. D

Exercise 120: This problem appeared in, for example, [550].
For ii � 1, let the statement in the exercise he denoted by

P(rr): sin(9) + sin(30) + sin((2rr — 1)0)
= sill (nO)

BASE STEP: Since sin(O) = P(I) is clearly true.

In the inductive step, the following identity is used:

sin(A + B) sin(A — B) + sin2(B) = siii2(A). (27.4)

'I'he proof of equation (27.4) is fairly straightforward:

sin(A + B) sin(A — B) + sin2(B)
(sin Acos B + cos .4sin B)(sin Acos(—B) + cos Asin(—B)) + sin2 B

= (sinAcosB +cosAsinlJ)(sinAeos B — cosAsinB)+ sin2 B
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= .sin2Acos2B — cos2Asin2B+sin2B
= sin2 cos2 B + (1 — eos2 A) sin2 B

= sin2 A cos2 B + sin2 A sin2 B
= sin2 A(cos2 B + sin2 B)

= sin2 A.

INDUCTIVE STETh: l.eor some fixed k � 1, suppose that

P(k): Esin((2j - 1)0)
sniR0)

is true. It remains to show that

P(k +1): si:i((2j - 1)0)
=

follows. Indeed.

k

Esin((21 — 1)0) 1)0)

sin((2k + 1)0)

sin((2k + 1)0) sin(8)
sin(0)

-—
— sin2((k + 1)0)

sin(0)

where the last equality follows from equation (27.4) using A = (k ÷ 1)0 and B = kG.

This finishes the proof of P(k -3 1), and hence the inductive step.

Therefore, by MI, for all ti � i, P(rr) is true. 0

Exercise 121: This exercise appeared, for example, in [550].
Fix sonic angle 0 which is riot a multiple of ir. For n � 1, denote the statement

in the exercise by

5(n) : ens (2j — 1)0 =

BAsil Siur: 8(1) says
sin(20)

eos(0) =
2 sin(6)

which is true because sin(20) 2 cos(0) sin(0).
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INDUCTIVE STEP: For some fixed k > 1, assume that

S(k): 1)0) =

is true. To be proved is

S(k +1): cos((2j - 1)0)
sifl(2(k+l)8)

To this end, use the following identity:

sin(2k0) + 2 cos((2k + 1)8) sin(0) siii(2(k + 1)0). (27.5)

A proof of equation (27.5) might go as follows:

sin(2k0) + 2cos((2k + 1)0) siri(9)
sin(2k0) + cos((2k + 1)0) sin(0) ± cos((2k -i 1)0) siii(0)

= sin(2k0) + cos(2k0 + 0) sin(8) + cos((2k +. 1)0) siri(0)

= sin(2k0) + [cos(2k0) cos(0) — sin(2k0) sin(0)) sin(0) + cos((2k + 1)9) siri(0)
= sin(2k0) — sin(2k0) sin2 (0) + cos(2k0) sin(0) cos(0) + cos((2k + 1)0) sin(0)
= sin(2k9) cos2(O) cos(2k0) sin(0) cos(0) + cos((2k + 1)6) sin(9)

= Lsixi(2k0) cos(8) + cos(2k0) sin(0)] cos(0) + cos((2k 1)0) sin(0)

= [sin(2k0 + 0)] cos(8) + cos((2k f• 1)0) siii(O)

[sin((2k + 1)0)] cos(9) + cos((2k + 1)6) siri(6)

= sin((2k + 1)8 + 0)

sin((2k + 2)0).

Now that the tools are assembled, here is the proof of S(k + 1):

k+1 k

-- 1)0 — 1)0) +cos((2k + 1)0)

f cos((2k + 1)0) (by S(k))

— sin(2k6) i 4- l)8)sin(0)

-- 2sin(0)
1)0)

2sin(9)
(by eq n (27.5).

This proves S(k + 1), and hence finishes the inductive step.
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By Ml, for every it � i, 8(n) is true. 0

Exercise 122: This exercise appeared in e.g., [550].
It is given that so = 0, = 1, and for ii 2,

= — 2-

To he proved is that for each n � 0 the statement

siri(nO)8(n):
sin(O)

and for each n � 1,
C(n) : cos(r�.G) = —

are true. Both 8(n) and C(n) are proved by simple induction, inducting on each at
the same time.
BASE 8(0), 8(1), AND C(1): Sioce is defined by two previous values, one
would think that there should be two base cases for 8(n). In fact, the only reason
that two base cases arc needed for 8(n) is to have 8(1), since the induction is started
on C(n) at n = I as well; the actual induction is simple (as opposed to strong),

8(0) says that = which is true since both sides are 0. 8(1) says =
suQ9) also true since each side equals 1. Finally, C(1) says cos(1.0) = cos(O)si —so,
which is true since = I and = 0.

INDUC1'IVE STEP: For sonic fixed k � 1, assume that both 8(k) and C(k) are true.
The inductive step is accomplished in two stages, one for 8(k + 1), and the other

for (J(k ± I). First show

sin((k + 1)0)
S(k + 1): =

sm(0)

Here is the derivation:

sk*1 = 2cos(O)sk 5k—1 (def'n of sn)

= cos(O)sk + cos(O)sk — 8k—1

= cos(O)sk + cos(kO) (by (1(k))

cos(0) cos(kO) sin(0)
sin(0)

— sin(kO-t-0)
sin(0)

— sin((k + 1)0)
sin(0)
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completing the proof of S(k + 1).
'Tb finish the inductive step, one needs to prove

C(k + 1): cos((k + 1)0) = cos(0)skf.1 —

llavirtg both S(k) and S(k + 1) in hand,

cos((k+1)0) = cos(0+kO)
= cos(6) cos(kG) — sin(9) sin(kO)

— cos(0)cos(kO)sin(0) sin2(O)sin(kO)

sin(0)

cos(8)cos(kO)sin(0) —(1 —cos2(0))sin(kO)

sin(8)

— cos(0) cos(kO) sin(0) + cos2(8) sin(kO) — sin(kO)

sin(9)

cos(9)fcos(kO) sin(0) 4 cos(8) sin(k6)] — sin(kG)

sin(0)
cos(8) sin((k + 1)8) — siii(kO)

sin(9)

— cos(0)sin((k + 1)0) sin(kO)

— sin(0) sin(8)

= 1 — 5k (by S(k + 1) and S(k)),

completing the proof of C(k + 1). Since the implications S(k) A C(k) S(k + 1)
and S(k) A S(k ± 1) C(k + 1), are proved, the implication

[S(k) A C(k)] [S(k + 1) A C(k + 1)]

is proved, completing the inductive step.

By MI, for all n 1, S(n) and C(n) hold. Together with the base case 5(0), all
that was required is proved. D

Exercise 123: This exercise appears in [499, Prob. 32], together with a sketch of
the solution.

Write s1 = cos(0), cos(20) and for n > 2,

= —

For every ii i, denote the assertion in the exercise by

/1(n) : = cos(nO).

BASE si'I;P: Both A(l) and il(2) are true by definition of and 82.
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INDUCTIVE STEP: For some fixed k > 2, assume that both A(k — 1) and A(k) are
true. 'lb be shown is that

A(k + 1): cos((k + 1)0)

follows. Indeed,

= 2cos(8)cos(kO) — cos((k — 1)0) (by A(k) and A(k — 1))

= 2 cos(0) cos(/cO) — cos(kO — 0)

= 2cos(6)cos(kO) — [cos(kO)cos(—0) —sin(kO)sin(—0)j

= 2 cos(0) cos(/cO) — [cos(kO) cos(0) + sin(kO) sin(0)I

= cos(0) cos(kO) —sin(kO) sin(0)

= cos(kO + 0) (by identity (9.12))
cos((k + 1)0).

as desired. This completes the inductive step.

By Ml, for all it � 1, A(n) is true. U

Exercise 124: Use Exercise 194 with x replaced by cos2(x) and y replaced by
sin2(x). Then x + y = 1, and the result follows directly. [1

Exercise 125: This exercise appears in many places, fur example, [499, Prob. 311,
where a brief solution outline is given.

For n � 0, let A(n) he the assertion thai.

cos(a) cos(2n) cos(4a) . . . cos(2 a) = 2rt-11

BASE SI'F;1': Since cos(a) = (just expand the numerator using identity
(9.11)), A(1) is seen to be true.
INDUCTIVE STEP: For some k � 0 suppose that

I

/1(k): cos(a)cos(2a)."cos(2

is true. Then using the identity si[1(A) cos(A) sin(2A)/2,

cos(a) cos(2n) . . . cos(2ka)

2kf I sin(a) (by /1(k))

— sin(2k41a +
— 2k+Isin(a)
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—

—

shows that A(k + 1) is true. This completes the inductive step.

By Nil, for every ii o, A(n) is true. 0

Exercise 126: (Dirichlet kernel) This exercise appears in many places, for example,
[499. Prob. 34].

Let U be an angle which is not an integer multiple of 2ir; for each ii i. denote
the statement in the exercise by -

+
= sin((2m±i)t/2)

STEP: To prove P(1), use the identity

sin(A + B) — sin(A — B) = 2 cos A sin 8, (27.6)

which was l)roved in the solution of Exercise 118. Using A = I and B = 1/2, equation
(27.6) yields

sin(31/2) — sin(t/2) = 2cos(t)sin(t/2);

hence
+ . sin(t/2) + 2cos(t) sin(t/2) sin(3t/2)

2 — 2sin(t/2) — 2sin(t/2)'
which proves P(1).

INDUCTIVE STEP: For some fixed k � I assume that

k - (2k+l)t
+ >jcos(jt)

= 2 sin)

is true. To be proved is

k+1 . (2k+3)t

P(k+ 1):
=

Starting with the left side of P(k + ]),

I
k+I

+ >cos(ji)

= + cos(ji) + cos((k + 1)1)
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= —
•

/ + cos((Ic + 1)t) (by (P(/c))

— + 2cos((k +

1)t + sin((k + 1)t —

sin( (2k+3)t)

— 2sin(U

this proves P(k + and hence finishes the inductive step.

By mathematical induction, for all ii i. P(n) is true. 0

Exercise 127: (Fejer kernel) Using tIre notation from Exercise 126 put

Kzv(t)

For N � 0. let denote the statement to be proved by

/ ((N + 1)t/2)
2(N + l)sin2(t/2)

BASE STEP: When N = 0, there is only one summand in D0, namely when it ü;

in this case, K0 and

sin2 ((0 ± 1)t/2)
— I

2(0+ 1)sin2(t/2) — 2

as well, so S(0) is true.

instead of proving 8(n) by induction, a simpler but equivalent statement is
proved. Since by Exercise 126,

= —
sin((2n+i)t/2)

8(N) says

1 sin — sin2 (N+lt)
N + 2siii(t/2) 2(N 4
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Cancelling the term 2ttV+1)'sn(t/2) shows that S(N) is equivalent to

8*(JV) : (2n± 1t) sin2 (N+It)

siu(t/2)

Proceed with the induction using 5* rather than S. (The base case for S*(N)
is proved by 5(0).)

INDUCTIVE STEP: For some fixed k � 0, assume that

k + I + 1 \
-F 1): xsin (\ 2

n -0

—

sin(s)

— sin2

— sin(%)

Starting with the left side of (k ± 1).

k+I

>sin (2n± it) 1k /2n±1 \lIEsinç 2
t)j • /2k+3

+ sin

sin2 . /2k + 3=
.

+sin( t
\ 2

—
sin2 (4-1t) + + sin

sin(

k+1
— sin2

which is precisely St(k + 1). Since this is equivalent to S(k + I), the inductive step
is conipleted.

Hence, by mathematical induction, for all n. > 0, 8(N) is true. [j

Note: The statement 5*(N) is equivalent to that. in Exercisc 120, using the
replacement = 20.

Exercise 128: This exercise occurs in [499, Prob. 35], for example.

S*(k) >Isin

is true. To be proved is

(by S*(k))

Using sin2 B + sin(A + B) sin(A — B) = sin2 A (this is equation (27.4), proved in
Exercise 120) with A = and B in the last line above, obtain
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Let x be a real number which is not an integer multiple of 2ir. For each ii � 1
let 8(n) be the statement

(n + 1)sin(nx) — nsin((n + 1)x)j sin(jx)
4 sin2(x/2) -

I3ASE STEP: 8(1) says sin(x) = Why is this true? To begin with, a
standard identity is arrived at by applying identity (9.12) with a 11 =

cos(x) -_ cos2(x/2) — sin2(x/2) = 1 — sin2(x/2) — sin2(x/2) = 1 — 2sin2(x/2).

It: follows that
4sin2(x/2) = 2 -- 2cos(x). (27.7)

Also, identity (9.11) with a = 8 = x yields sin(2x) 2sin(x)cos(x). Using these
identities,

? siii(x) — sin(2.r) — 2 sin(x) — 2 sin(x) eos(x) —

4sin2(x/2) -— — 2 — 2cos(x)
— siri(x

shows that 8(1) is indeed true.

INDUCTIVE STEP: Fix k � I. arid suppose that

8(k) >: cin(jT)
— (k 1)sin(kx)—ksin((k ± i)x)

is true. It remains to show that

9(k + 1) —
2)sin((k flx)—(k-t 1)sin((k + 2)x)

follows. To prove 8(k + 1), use the following identity

sin(kr) — 2 sin((k -i- 1)x) cos(x) = — sin((A: + 2)x), (27.8)

winch is perhaps most easily seen by using the trick ki = (k + 1 )x — r and expanding
sin(kx) using identity (9. 11) as follows:

sin(kx) 2 sin((k + 1 )x) cos(x)
—r sin((k + 1 )x -- 4 2 sin((k + I )x) cos(x)

sin((k + ):r) cos(—x) ± cos((k 1- 1)x sin(—x) — 2 sin((k + 1)x) cos(x)
= sin((k 1- I )x) cos(x) cos((k -I 1)x sin(x) — 2 sin((k + 1)4 eos(x)

— sin((k 1)x) cos(x) — cos((Jc: + 1 )x sin(x)
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—sin((k-i-2)x).

Starting with the left side of S(k + 1),

k+

j sin(jx)
j=1

Ik 1

j sin(jx) I + (k +1) sin((k + 1)x)
Li=' ]
(k + l)sin(kx) — ksin((k + 1)x)

+ (k + 1) siii((k + 1)x) (by S(k))
4 sin2 (x/2)

— (k ± 1)sin(kx) — ksin((k ±1)x) + 2(k + 1)sin((k+ 1)x)(l — cos(x))

— 4 sin2 (x/2)
(by eq'n (27.7))

(k + ) sin((k + 1)x) + (k + 1) sin(kx) —2(k + 1) sin((k + 1)x) cos(x)
4

(k+ l)sin((k 1- i)x) -I- (k + 1)[siri(kx) 2sin((k + 1)x)cos(x)]
4 sin2(x/2)

(A: + 2) sin((k 1)x) — (A: ± 1) sin((k + 2)x)
(by eq'n (27.8)),

4s1n2(x/2)

which is the right side of S(k + 1). This completes the inductive step.

By MI, for all n � 1, S(n) is true, completing the solution to Exercise 128. []

Exercise 129: This exercise occurs in e.g., [499, Prob. 361.
Let x R be fixed which is not an integer multiple of 2ir. For each n � 1 let

8(n) be the statement
fl

>c05(jx)
—ncos((n+ 1)x) —1

4sin2(x/2)
3—-'

2cos(x) — cos(2x) —1
STEP: S(1) says cos(x) Using

4sin2(x/2)

cos(2:r) = cos2(x) — sin2(x) 2cos2(x) — 1,

arid equation (27.7) [which says 4sin2(x/2) 2— 2cos(x), proved in Exercise 1281,

2cos(x) — cos(2x) —I -. 2cos(x) — (2cos2(x) —1)—i
-= cos(x),

4siii2(x/2) 2 -- 2cos(x)
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verifies that 8(1) indeed holds.

STEP: Let k � 1 be fixed and assume that

S(k)
(k + 1)cos(kx)-kcos((k +1)x)—i

is true. To complete the inductive step, one must prove

S(k + 1): cos(jx) = (k+ 2) cos((k
+

cos((k + 2)x)—l

Similar to that used in Exercise 128, the following identity is used to accomplish the
proof of S(k + 1):

(k + 1)cos(kx) — 2(k ± l)cos(x)cos((k + l)x) = —(k + 1)cos((k + 2)x). (27.9)

The sequence of steps in proving equation (27.9) is very similar to that used to prove

equation (27.8), so only an outline is given:

cos(kx) — 2 cos(x) cos((k + i)x)

— [cos((k + 1)2:) cos(x) + sin((k ± I)x) sin(x)J — 2cos(x) cos((k + I)a:)

—[cos((k -i- 1)x) cos(x) — sin((k -i- I)x) sin(x)]

—cos((k+2)x).

NI ulliplication throughout. by (k + 1) finishes the proof of (27.9). Tb prove S(k ± 1),

kI- I

j (X)S(jX)
j=1

(by S(k))

+(k+1)cos((k+1)x)

(k -1- 1) cos(kx) — k cos((k ± 1).T) —
+ (k + 1) cos((k + t)r)

4 sin2(x/2)

+ 1)cos(kx) --kcos((k+(k 1)x) — I + 2(1 -- cos(x))(k + 1) cos((k + 1)x)

4 sin2 (x/2)

(by eq'n 27.7)

(k+2)cos((k+ I)x) + (k-i- 1)cos(kx) —(k+ 1)x) —I

4

(k + 2) 1)x) --(k cos((k
(by eq'n (279)).

4 stn(x/2)
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finishing the proof of S(k + 1), and hence the inductive step.

By mathematical induction, for all ii � i, £S(n) is true. completing the solution
to Exercise 129. 0

Exercise 130: This exercise occurred in, for example, [499, Prob. 37].
Suppose that x E R is not an integer multiple of it. For each n � 1, let T(n) be

the statement
12

tan = cot cot(x).

BASE STEP: Applying identity (9.12) with a = = x/2, one gets cos(x) =
cos2(x/2) — sin2(x/2). Similarly, using equation (9.11). sin(x) =
Using these, together with the definitions cot(A) = and tan(B) = one
proof of T(1) is:

I , —

—

— sin2(fl -

—-

2x "r -2x— cos —. [cs(7) -

—

— cos(x)
— sin(x)

= cot — cot(x).
2 \21

Thus T(i) is true.

INLX'C'I'IVE STEP: For sonic fixed k � I, suppose that

tan = - cot(x)

is true. It remains to prove

k+1

T(k + 1): tan cot - eot(x).

To save a little work, notice that. iii proving the base case, for any angle A which is
riot a niultiple of w, the identity.

I /A\ I /A\5tan —cot(A),
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was actually proved, or equivalently,

1 (A'\ 1 7A\
cot(A) + t,jj• (27.10)

In proving T(k + 1), use this with A = vastly simplifying calculations:

k+ 1

i
=

= (byT(k))

= [cot +
tan

—

= cot — cot(x) (by eq'n 27.10)

= -cot(x).

This proves T(k —F 1), completing the inductive step.

By MI, for every ii i, T(n) is true, completing the sohition to Exercise 130. 0

Exercise 131: This exercise occurs iii, for example, [199. Prob. 38]. It serves as a
good workout for understanding of inverse trigonometric functions (though all steps
are found to be simple). Recall that if tan(O) = y, then the tan inverse function

is defined by tan1(y) = 0. The reciprocal of tan(0) is (tan(0))' = cot(0),
though remember that and cot are different functions (one is the inverse with
respect to functions, arid the other is the inverse with respect to multiplication).

For each � 1 let 5(u) 1w the statement

cot-'(2k 1)
(I_k_i)

—

BASE STEP: 5(1) says

cot '(3) = tan'(2) — tan 1(1).
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To prove 8(1), take the tangent of each side. For the left side, let cot(O) = 3; then
tan(O) = and 0 = coC1(3), so tan(coc1(3)) = tan(O) = For the right side, an
application of (9.15) gives

tan(taxc'(2)) — tan(tan'(l))tan(tan (2)—tan (1))
1

1 +tan(tan (2))tan(tan (1))

(2)—(1)
— 1+(2)(1)

1—

which agrees with the tangent of the left side. Since tangent is defined so that it is
one-to-one, conclude that since the tangents of both sides of S(1) agree, then 8(1)
itself is true.

INDUCTIVE STEP: Fix some in � I and assume that

8(m): coC'(2k+1) = —intarC'(l)

is true. It remains to show that

in+1 rn+1

S(rn + 1): E cot '(2k -F 1) = tarr" — (in +

is trLIe. Beginning with the left side of S(k + 1),

+ 1)

= {Ecoc'2k+ i)} -l-coc'(2m+3)

= {
_rntarrl(1)} +cor'(2m+3) (by 5(m))

= [Etanl —(m+1)taxr'(l)±tan1(1) fcoV'(2m+3)

So, to finish the proof of S(m + I), it suffices to prove that

—l .' 1(rn+2\
cot (2m 43) = tan i) — tan (1).
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This can be checked by taking tangents of each side:

tan(cot1(2ni + 3)) =
2m-f-3

and

2

1
= 2m+ 3

agree, and so S(ra + 1) is true. This concludes the inductive step.

By MI, for each ii 1, S(ri) is true. 0

Exercise 132: This exercise occurs in Trim's calculus book [534, Ex. 40, p. A-6]—
it received a three star rating (out of three). For n � 0, let P(n) he the proposition
that there exist constants a0,a1 a,,, and b0,b1 so that

= Liar cos(rx) + brsin(rx)j.

BASE STEP: '[lie exercise asks to prove P(n) for it � 2, however, it appears to be
true for even it > 0. If x is not a multiple of it, sin(x) $ 0, and then the result is
true even for it = 0, since sin°(x) = 1 = 1 cos(0 . x) + x). When a = 1, pick

= 0, = 0, b0 can be anything, and b1 = 1.

For it 2, equations (9.12) and (9.13) yield cos(2x) = 1 — 2sin2(x), arid hence

sin2 —

so a0 = anything for b0, a1 = = b2 = 0 and a2 = jt show that S(2) is true.

INI)UCTIVE STEP: Let Ic � 2 be fixed, and suppose that P(k) is true, that is, assume
for some fixed constants and b0,b1,.. .

simik(x) = Lkr cos(rx) ±&,sin(rx)J.

To he shown Ls that P(k+ I) is true, that is. that there exist constants al
and h0.51 hk÷1, so that

k-li

sirik*I(x) >[circos(rx) + brsin(rx)1.
r=0

Starting with the left-hand side of this above equation,

= sin(x)sin"(x).
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.....

.....

__ ___

Applying P(k) to the factor sin'(x) above, there exist at's and b's so that

sink+l(x) = sin(x) ([arcos(rx) + hrsin(rx)1)

= [ar sin(x) cos(rx) + br sin(x) sin(rx)I.

It suffices to express, for each r = 0, 1,.... k, each of sin(x) cos(rx) and sin(x) sin(rx)
cos((k + 1)x), and sin(0), sin(x)as linear combinations of cos(0), cos(x)

sin((k + 1)x). This is done via the two identities

sin(x) cos(rx) sin((1 + r)x) + sin((1 -

sin(x) sin(rx) = cos((1 - r)x) - - cos((1 -i- r)x).

(The proofs of these are simple: for the first, expand each ofsin(A+B) and sin(A-B)
using equation (9.11) and add the two equations; for the second, expand cos(A + B)
and cos(A -- B) using equation (9.12) and subtract the two equations.)

Notice also that when r > 1, one replaces sin((1 -. r)x) with - sin((r - l)x)
and cos((1 r)x) with cos((r - 1)x). So. using these replacements, sin(x) is
indeed expressible as linear coml.iiiatioiis of cos(0), cos(x) cos((k + 1)x), and
sin(O),sin(x),..,siri((k+ l)r). This completes the proof of P(k+ 1) and hence the
inductive step.

By Ml, for all ii 2. the statement is true (in fact,, for all n 1. and if sin(x) 0.
for all n > 0). 0

- G1ornrnents on Exercise 132: In the inductive step above, what are the d1's and
b's explicitly? I think that they work out as follows:

r ar br
0

-
L _ __________

I
_ .

_________ ao-a2
2 !(ala3)

24 9:' - a2_._

- ' - °k-2) Iiak2 - ak

k + 1 -- bk Jak
Actually, if one were to develop a recursion, perhaps b0 0 should be declared

in every case. Using the chart above recursively, one arrives at

sin3(x) = sin(x) - .sin(3x)
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or equivalently,
4sin3(x) = 3sin(x) — sin(3x).

which can be easily verified. One also notices that the c11's depend only on previous
by's and k's depend only on previous a3's, arid since for it = 2, all are zero, by
induction, if ii is even, sin't(x) is expressible as a linear combination of only cos(rx)'s
and if a is odd, sin'1(x) is expressible only as a linear combination of sin(rx)'s. it
might be interesting to try and give a formula which would describe the coefficients
explicitly for any a. Perhaps this has been done.

Exercise 133: This appeared in, e.g., [161, 8.19, pp. 208, 215]. Fix x and a so
that x + = 2cos(a). For every a � 1, denote the equality in the exercise by

E(n): + 1 2cos(na).

BASE STEP: E(1) is given. To see E(2), x2 + 2 4cos2(a) —2 =
2 cos(2a).

INDUCTIVE Sin?: Suppose that for some A: 2, both E(k) and E(k —- 1) hold. To
see that E(k + 1) follows, the identity

cos(A+.B) +cos(A — B) = 2cos(A)cos(B) (27.11)

helps. [This follows from expanding cos( A + /3) and cos(.-l -. /1) using eqtiatioii (9.12)
and adding the two equations.[ ['hen

4cos(a)cos(ka) — 2cos((k — l)o) (by E(1),E(k),E(k —1))

= 2cos((k + 1)a) -I- 2cos((k 1)a) — 2cos((k — 1)a) (by equ (27.11))

= 2cos((k+1)a),

which shows that E(k + 1) is trite, completing the inductive step.

By induction, for each � 1, the statement E(n) is proved. 0

27.4 Solutions: Miscellaneous identities
Exercise 134: (Outline) Let 8(n) be the statement in the exercise. For I , the
result is clear. Fbr a = 2, if x1 + x2 = 0 and say, :r1 > 0. theta <C 0. contrary to
x2 being non-negative, so 8(2) hold.
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For the inductive step, use 8(2) and 8(k) to prove S(k + 1) as follows: + - - +
rk -I-- Xk± 1 = 0 implies by 8(2) that both ri +--• + Xk = 0 arid Xk+I = 0. Applying
8(k) to the first expression shows that x1 = •- = = 0 as well. 0

Exercise 135: Fix x arid b. Use the fact that for every y lIP, log5(xy) =
+ log5(y). {The proof of this is quite simple, since bt'M if +S.J Here is the

proof of the result by induction on ii:

BASE STEP: For n = 1, the statement is trivial.

INDUcTIvE STEP: Suppose that for some k � 1, log6(xk) = klog6(x). To be shown
is that = (k + 1) log5(x). Then

= log6(x-?)
= log5(x) + log5(?) (by fact above with y =?)

log5(x) + k log5(x) (by induction hypothesis)
= (k ± 1)

concluding t lie inductive step.

Hence, by MI. the result is true for all i-i 0

Exercise 136: Let and b1,b27... be real numbers, and let P(n) denote
the proposition

P(n): +

STEP (it = 1): Since + = a1 + and both = al and
= b1, the staterrierit

P(1): +

follows.

INDUCTiVE STEP (P(k) P(k i- 1)): FOr some fixed k � 1, assume that

P(k): +

holds. To he proved is that

k-i-I k+1 k+1

P(k+1): >(a1+bj)=Eaj +
i=1 i=1 j=i
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follows. Beginning with the left side of P(k + 1),

+ = + Si)] + (ak÷1 + bk÷1) (by Def'n 2.5.6)

= (byind. hyp. P(k))

= +bk+[)

/k+l \ (k+i \
= + ( )

(by Def'n 2.5.6),
i=1 \j=i /

the right-hand side of P(k + I), completing the inductive step.

Hence. by the principle of mathematical induction, for all a � 1, P(n) is true. 0

Exercise 137: (Telescoping sum) Let a1, a2, a sequence of real numbers.
For each positive integer a � 1, let T(n) be the claim that

— = a1
1=1

BASE STEP: When i 1. there is only one summand and so T(1) is trivially true.

INDUCTION STEP: For some fixed k � 1, assume that T(k) is true. that is. assume
that

k

— i) = a1 —

To prove ?'(k + 1), one needs to show

ks-i

— = a1 —

Beginning with the left side of this equation,

k-i-i k

— = [Eai — + (ak+I — ak+2)

= — ak+1 + (ak 1 — ak+2) (by Y(k))
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= al—ak+2

as desired. This contpletes the inductive step T(k) --> T(k ÷ 1).

Hence, by MI, for all ri E the statement T(n) is true. 0

Exercise 138: This exercise appeared in, e.g., [582. Prob. 22].
For n 1, let 5(n) denote the statement

8(n): E(3j2j+2)—n(n2+n+2)

BASE STEP (n = 1): Checking 8(1), it says 3(12) — 1 + 2 = 1(12 + 1 + 2), which
boils down to 4 = 4, so 8(1) is true.

INDUCTivE STEP: For some fixed k � 1, assume the inductive hypothesis

5(k):

To be shown is that

k I

S(k+1): 2)=(k fl)((k+1)2+(k±i)+2).

follows. Beginning with the left side of 8(k + 1),

k+I

>1(3i2 —j+2)
j=i

k(k2+k+2)+3(k+1)2—(k+1)+2 (byind.hyp.)

— k2(k+1)+2k+3(k+1)2--(k±1)+2
= k2(k+1)+3(k+l)2+k+1

(k+1)[k2+3(k-i-l)+1]
= (k+1)[k21•3k+4]
= (k+1)[k2+2k+l+k+l+2],

which is precisely the tight side of S(k + 1). This concludes the inductive stei
8(k) 8(k + 1).
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Therefore, by the principle of mathematical induction, for all ri 1, 8(n) is
true. U

Exercise 140: Outline: Observe that 1 = , so for the purpose of this exercise, it
suffices to consider I as a prime. Now suppose that E Q is some given rational
number. Let p he the largest prime in the factorization of either a or b; without

loss, suppose that for some in � 1, = (where p does not divide k). Use time
induction assumption that for all fractions with x and p having all prime factors
smaller than p, that is expressible as desired. Then, for example, when in = 1,

apk p!k
bb(p—1)!b'

and k, p — I, and b all have factorizations using primes smaller than p, so apply the
induction hypothesis to When in> 1, a similar argument applies. 0

Exercise 141: This exercise appeared in [499, Problem 171. Induct on it to show
that for every ii � 1, tile proposition P(n):

1 1 1 ii+...+x(x+1) (x+l)(x+2) (x+n—1)(x+n) x(x+n)

is true.

BASE STEP: P(1) says = x(x-m-fl' which is clearly true.

INDUCTION .SFEI: For some fixed A: � I, assume that P(k) is true. To be shown is

that PR + I):

1 1 1 — k+1
x(x+k+1)

is true. Beginning with the left side, (writing in the second last term so that it is
clear how to apply tIne inductive hypothesis)

1 1 1

+...± +x(x±1) (xi-k—1)(x+k) (x+k)(x+k+1)

= + (by P(k))x(x+k) (x4k)(x+k+l)
k(x+k+1) x

= +x(x+k)(x+k+l) x(x+k)(x-fk+l)

k(x ± k) + k + x
x(x -I- k)(x + Ic + I)
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— (k+1)(x+k)
— x(x+k)(x+k+1)

k+1
— x(x+k+l)'

arrive at the right side of P(k + I), completing the inductive step.

Therefore, by MI, for all n � 1 the statement P(n) is true. 0

Exercise 142: This problem appeared in, e.g.. [499, Prob. 21]. To be shown is
that for n � 1, the expression

1 2 21t 1 2Tt+1
E(n): —+ +"+1+x 1+x2 l+x- x—1 1—x2

is true.

BASE STEP: E(I) says + = + putting everything over a common

denominator of 1 — x4 indeed shows that this is an equality. (Details are left to the

reader.)

INDUCTION STEP: For some fixed k � I, assume that E(k) is true. To prove E(k+1),

use sigma notation for brevity:

k-il k 'k+l

j=O j0
2k+l 2k-j-1 -

= r_l+
1

+ (byb(k))

— 2k+I(i F +2k+1(l
— x_1+

1
2k+I +

=

I ---x2

giving the truth of E(k + 1), completing the inductive step.

By lnathematical induction, for a 1, the expression E(n) holds. 0

Exercise 143: This problem has appeared many places, e.g., [499, Prob. 23].
For Ti 1, let 8(n) denote the staterrient

+
1)...(x—n+J.)

1! 2! a!



BASE STEP: 8(1) states 1 — x = (_1)1 which is true.

iNDUCTIVE SI'EP: Let k � 1 and assume that 8(k) is true; to be shown is 8(k + 1):

a: .r(x — 1) — 1)
1

2!
+(

1)

(k+1)!

— (1)k+l(T1)(x2)(Tk)(xk1)
-. (k+1)!

By the inductive hypothesis. the left side of S(k + 1.) is equal to

1)..(x—k)
(k-t 1)!

—
k+lx(x1b"(1—k)- (k+1)! U (k+1)!

— (

1)k±l(X')CL 2) (a. •-k)(x—k—l)
(k+1)!

that which was desired. This completes the inductive step.

By mathematical induction, for all ii � 1. the statement 8(n) holds. 0

Exercise 144: For each a (I, denote the in the exercise hy

(2n + 1)

[Note: "c" is the lower case Greek letter pronounced 'tsee"

BASE STEP: For p. ft C(n) reads (1) since = 1 and 0! = 0. is indeed
an equality.

iNDUCTIVE STEP: For sonic

is true. It remains to show that

+ 1): (1)(3)(5) (2(k ± I) -F
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(—
(x — (x -- a)

a!

lixed k � 0. assume t hat

(1)(3)(5)•• (2k±1) = (2k±i)!
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follows from the truth Rewriting the left side ofe(k+1) with the penultimate
factor for clarity,

(2k+ 1)(2(k + 1) ±1) =

— (2k -F 3)(2k + 2)(2k + 1)!
— (2k +

— (2k+3)!
— (2)2k(k+1)k!

— (2k+3)!
— 2k+1(k+1)!'

thereby proving C(k + 1) and hence completing the inductive step.

Thus, by MI, for all a � 0, the statement C(n) is true. D

Exercise 145: This problem appeared in [583, 10.191. Working out the first values
for ii = 0,1,2,3,4 gives 1, 112, 192, and 292. The bases increase by 4, 6,

8, 10, respectively, so an expression for the base of the perfect square might be
2+4+6+."+2(n+1)—1. By Exercise39, thislastexpressionis (n-l-1)(n+2)—1.

Thus the statement to try proving is

5(n): 1 + rt(n + I)(n + 2)(n + 3) Rn + 1)(n + 2) — 1j2.

Simply multiplying out each side verifies 8(n); however, this is a book on induction,
so an inductive proof is given:

The base case is done above, so assume that for some in � 0, 8(m) is true.
Starting with the left side of S(in + 1),

1+(m± 1)(m+2)(m+3)(m+4)
1 + m(m + 1)(m + 2)(m + 3) ± 4(m + 1)(m + 2)(m + 3)

= Km + 1)(rn + 2) — 112 + 4(m + 1)(m + 2)(m .f 3) (by 8(m))

= [m2 + 3m + 112 ± 4(m2 + 3m + 2)(m + 3)

= in4 + 9m2 + 1 + Gm3 + 2m2 + 6m + 4m3 + 24m2 + 44m + 24

= in4 + TOm3 + 35m2 + SUm + 25

= (in2 + 5m + 5)2

= [(in + 2)(m + 3) — 112,

arrive at the right side of 8(m + 1), as desired, completing the inductive step. By
niatheinatical induction, for all n � 0, the statement 8(n) is true. D
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Exercise 146: This problem occurs in (at least) [462, p. 282J. For each ii � 1, let
8(n) denote the statement

8(n):
ø/scfnl 11S55

BASE STEP: When ri = 1, the set [1] has only one non-erripty subset, namely {I},
in which case the sum in the left side of 8(1) is siniply = 1; so 8(1) is true.

INDUCTIVE SIEP: Fix some k � 1 and assume that

8(k): =k
QvsclkJ SES

is true. To complete the inductive step, it suffices to show that

8(k+1):

follows. Starting with thc left side of 8(k + 1),

1 1 1

S flsES seS

=k+ 1 (by8(k))
sCS

1 1 4—k+1 fUsS k+tSt..

(by 8(k))

= k + 1,

shows that 8(k + 1) is true, competing the inductive step.

By mathematical induction, for each it 1, the statement 8(n) is true. 0

Exercise 147: For ever)' n > 1, let 8(n) he the statement that for every x E \Z,

n n(n —1) n(n l)(n -—2) a
1 =

x x(z - 1) xfr — l)(x — 2) i — a + I

Note that in the above infinite sum, only the first a terms are non-zero.
BASE STEP: Let x C lR \ Z. Since = r—fr'. 8(1) is true.
INDUCTIVE STEP: Let It � I arid suppose that 8(k) holds. Fix x C R \ Z. Then,

k+i (k-i-1)k (It 4.1)!+...+
x :r(x . 1) x(x— —(k+ 1)—I)
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k+1( k

k (bv8(k)witlix—1)
x \ x—1—k+1J

k+1( x—k+k
— x

k+1
— x — (k + 1) + 1•

Thus S(k + 1) ILolds.

By Ml, for all n � 1, 8(n) remains true. Eli

Exercise 148: (Brief solution) This problem appeared in [280, Prob. 5], with a
brief solution—though perhaps a hit too brief, since technically, two base cases are
needed. This also appeared in [161, 8.22, p. 208]. If n = 1, then the sum of the
products is 1 = 2!— 1. Ifn = 2, the sum of the products is 12 +22 = 5 = 3!— L
So assume the statement is true for ri = k, am! examine all subsets
of {1, 2,... , k + 1} that contain no two consecutive numbers. Of these, there are
two kinds of subsets, those containing k + 1, and those which don't. Of those which
contain k+ 1, they can not contain k, and so by inductive hypothesis with n = k—i,
the contribution to the sum of the squares of products for sets in {1, 2 k 1 } is

— 1. Since the product of numbers in the sets containing both k + 1 and elements
from {1, 2,.. . , k — 1} have an additional factor of (k + 1)2, the total for such sets
is (k + 1)9k! — 1]. Together with the set {k + 1}, the total for all suitable subsets
containing k + 1 is (k i 1)2[k! 1] -f (k + 1)2. For those sets not containing k + 1,
this reduces precisely to the case when n = k. and so by inductive hypothesis, the
sum of the squares of the products of subsets not containing k + I is (k + 1)! — 1.

Therefore. in all, the sum of the squarcs is

(k + 1)2[k! — 1] + (k + j)2 + (k + 1)! — 1 = (k + 1)2k! + (k + 1)! — I

This finishes the inductive step, and hence by Ml, thc solution. U



Chapter 28

Solutions: Inequalities

Exercise 150: Let x and y be fixed positive real numbers with x < y. For each
ii � 1, let P(n) denote the statement

P(n): x" <y".

BASE STEP: For n = I, P(1) says x1 < y', which is assumed, so P(1) is trivially
true.

INDUCTIVE STEP: Suppose that for some k � 1,

P(k) : xk <.7,,k

or equivalently, suppose that

k

P'(k):
y

Needed to show is
P(k + I): xk+l <yk+i

Since

?+l
=

ct 1 (by P'(k))

< I (since x < y),

the statement P(k + 1) follows. This completes the inductive step.

By the principle of mathematical induction, for every a 1, P(n) is true.

Since x and y were arbitrary (but fixed!) positive reals with x < y, the proof is
complete. 0

515
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Exercise 151: The inductive proof is presented first, then commented on, and
finally a different proof not requiring induction is given.

For it � 6, let P(n) be the statement

P(n): 4n<n2—7.

BASE STEP (it = 6): Since 24 < 36 — 7, S(6) holds.

INDUCTIVE STEP: Fix some k � 6 and suppose that the inductive hypothesis

P(k) : k2 — 7

holds. To be shown is

P(k+1): 4(k+1)<(k±l)2—7.

Beginning with the left side of P(k + 1),

4(k±i) = 4k+4
< — 7 + 4 (by inductive hypothesis)

(k2+2k+I)—7+4—(2k i-i)
< (k+ j)2_7 (since k � 6. —2k±3 � —9<0)
= (k + j)2 -- 7

which is the right side of P(k+1). This concludes the inductive step P(k) P(k+I).

Therefore, by MI, for all it � 6, the proposition P(n) is true. U

comments on the above proof: Note that the above proof was not. very
the base step had room to improve as did the inductive step. Can this he improved
to 4ri < it2 — II for it � 6? In this case, the base step is still true (albeit with a
lesser rrmargin) and the inductive step is nearly identical. When a proof has so much
'play", it is very natural to question whether or not the proof is a good one. It is
often comforting to find another way to see the result of the exercise. One simple
solution uses high school algebra:

Another solution of Exercise 151: If x2 — 7 > 4x, then x2 — 4x — 7 > 0, So examniiie
the polynomial p(x) = x2 — 4x — 7. If p(x) > 0 for every x � 6, then the statement
in the exercise is true. By the quadratic formula, the roots of p(r) are

In army case, the roots are smaller than 6, and since the graph of y = p(x) is a
parabola opening upward (with vertex at x = 2), it follows that p(x) > 0 for all
x � 6, and hence also p(n) > 0 for all natural numbers it � 6. U
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Exercise 152: For it 3. let Q(n) denote the statement in the exercise,

Q(n) : Zn -I 1 cc

IJasu (a = 3): Since 2 3 <32, Q(3) holds.

INDUCTIVE STEP: Fix some k> 3 and suppose that

Q(k): 2k+l<k2

is true. It suffices to prove

Q(k+1): 2(k-f1)+1<(k+l)2.

This is done by starting with the left side of Q(k + 1), arid deriving the right:

2(k 1) + 1 (2k + 1) 2

cc k2 + 2 (1w md. hyp. Q(k))

ck2±2k+1 (sincek� 3,2k>!)
(k + 1)2,

which is the right side of Q(k + 1). This concludes the inductive step Q(k)
Q(k + I).

Therefore. by Ml, for all a 3, the inequality Q(n) is true. U

Exercise 153: For a 2, denote the inequality

8(n): 4n2>n+11.

BASE STEP (ii = 2): The statement 8(2) says 16 > 2 + 11, and so 8(2) holds.

INDUCTIVE STEP: For sonic fixed k � 2, suppose that the inductive hypothesis

8(k): 4k2>k+11

holds. in l)e shown is

8(k-f 1): 4(k-t 1)2 >k+12

Then
4(k + 1)2 = 4k2 4 8k + 4 > k + 11 + 8k + 4 > k 4 12,

where the first inequality follows from the inductive hypothesis and the second
inequality is true because k � 2. So + 1) is true, and thus this concludes the
inductive step 8(k) S(k + 1).

Therefore, liv MI, for all ii 2, 8(n) is true. Li
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Exercise 154: For it � 3, define the statement

P(n) : 2n Cr.

BASE STEP (n = 3): P(3) says 2 3 < or 6 <8, which is true, proving the base
case.

INDUCTIVE STEP: Suppose that for some k � 3,

P(k): 2k<2k

is true. To be shown is

P(k+l):

Starting with the left side of P(k + 1),

2(k I 1) = 2k + 2

< 2c + 2 (by 13(k))
2k +2k (sincek�3)

= 2(2")
=

proving P(k + 1). This concludes the inductive step P(k)P(k + 1).

Therefore, by MI, for all a ? 3, the proposition P(n) is true.

Exercise 155: For each a � 2, define the statement

8(n):

BASE STEP (a = 2): The statement 8(2) says I + 22 < 32 or 5 < 9, which Proves
the base case.

iNDUCTIVE STEP: Fix some k � 2, and assume that the inductive hypothesis

8(k): I+t<3k
is true. To be shown is the statement

S(k + 1): 1 <3k41

Then

I + 2 .
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< + (looki rig ahead)

= 3(1 +
<3(3k) (by 8(k))
=

which proves S(k + 1). This concludes the inductive step 8(k) S(k I- 1).

Therefore, by MI, for all ii � 2, the statement 8(n) is true. 0

Exercise 156: For each n � 2, define the proposition

P(n): n+I
BASE STEP (it = 2): P(2) says 2 + 1 <22, which is true.

INDUCTIVE STEP: Suppose that for sonic fixed k � 2,

P(k):

is true. Then applying the inductive hypothesis in the first step below, and the fact
that k � 2 implies 1 <

(k+1)-f I <2k+2k _2(2k)_2kf!

and so
P(k+l):

has bcen proved. This concludes the inductive step P(k) —* P(k -I 1).

Therefore, by MI, for ii 2, the proposition P(ri) is true. 0

Exercise 157: This is a special case of Bernoulli's inequality; see Exercise 198 for
the general solution.

For each ii i, define the statement

8(n):

STEP (ii = 1): Since 8(1) merely says 1 + = 1 + the base case is true.

INDUCTIVE STEP: Fix some k � 1, and suppose that

/ 1\k k8(k):

is true. To he shown is that the statement

7 1\k+1 k+l8(k+I): (\1-f
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is also true. Beginning with the left side of 8(k + 1).

1
k±l

1 1
k

=

� (bys(k))

=

k 1
>

k-H
=

and so S(k + 1) is true (actually, a slightly stronger statement where inequality is
replace with strict inequality is true). This concludes the inductive step 8(k)
8(k + 1).

By MI, for all ii � 1, the statement 8(n) holds true. 0

Exercise 158: For ii denote the statement involving ir by

8(n) : r <n!.

BASE STEP (ii = 4): Since 16 and 4! = 24, the statement 8(4) is true.

INDUCTfVE STEP: Fix sonic k � 4 and assume that

8(k): 2k<k!

is true. To be shown is that

8(/c41): 2k-i <(k+i)!

follows. Beginning with the left side of 8(k + 1),

= 2(2k)

< 2(k!) (by 8(k))
< (k + fl(k!) (since k � 4)
= (k + 1)!,

the right side of 8(k + 1). This concludes the inductive step 8(k) 8(k + 1).

Therefore, by NIT, for all > 4, the inequality 8(n) is true.

Exercise 159: For ii 5, denote the inequality

8(n) : < 2".
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BASE STEP (it = 5): Since = 25 < 32 = 8(5) is true, completing the proof of
the base step.

INDUCTIVE STEP: For some fixed k � 5, let the induction hypothesis

8(k): k2c2k

be assumed to be true. To prove the inductive step, one needs to show that

S(k+l): (k+1)2 <2k+1

also holds. There are a number of sequences of inequalities which prove this—only
one is given here. [There are often many ways to prove inequalities!]

Beginning with the left side of S(k + 1),

(k -j- 1)2 = k2 + 2k -f 1

=2"+2k+i (by8(k))
<2k+k+1

(byEx. 156, sincek�5 � 2)
= 2(2k)

=

the right side of 8(k + 1), which proves 8(k + 1). This concludes the inductive step
8(k) 8(k + 1).

Therefore, by MI. for all it 5, the inequality 8(n) is true. 0

Exercise 160: For C ? 6, let 8(t) denote the statement

8(t): 6t+6<2t.

BASE STEP: When £ = 6, the statement is true since 42 <64, proving the base case
8(6).

INDUCTIVE STEP: Assume that for sonic fixed m � 6,

8(m) : (fin + 6 <2m.

Then

6Qn+ 1)+6=6m+6-f6
<2m+fl (by 8(m))

-I- (because rn 6)
=
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proves S(rn + 1), finishing the inductive step.

So, by MI, for all 6, the inequality S(s) is true,

Exercise 161: For k � 10, denote by S(k) the statement

S(k) : 3k2 -1- 3k + 1 <2k

BASE STEP: S(lO), is true, because 331 < 1000. [The base case k 8 is actually
true, and so the result in the exercise could be strengthened!J

INDUCTIVE STEP: Fix � 10 and suppose that is true. Then proving 1),

3(e+1)2+3(e+1)+1 i

(by S&))

1- (by Exercise 160)

—

arid so S(s) + 1), finishing the inductive step.

Hence, by the principle of mathematical induction, for all k � 10, the statement
S(k) is true. 0

Exercise 162: For n > 10, let 1(n) denote the inequality

1(n) : n3 <

BASE STEP (n = 10): The statement 1(10) says i03 < 210, which is true because
i03 = 1000 whereas 210 = 1024.

INDUCTIVE STEP: Suppose that for some fixed k 10,

1(k): k3<2k

holds. It remains to show that

1(k+1):

follows. Beginning with the left side of 1(k + 1),

(k+ +3k+1

+ 3k2 +3k + 1 (1w 1(k))

< + 2" (by Exercise 16l)
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=

the right; side of I(k + 1). This proves that 1(k + 1) is also true, and so concludes
the inductive step 1(k) I(k + 1).

Therefore, by Ml, for all ii � 10, the statement 1(n) is true. D

Exercise 163: For k > 4, let 8(k) he the statement

8(k) : 3k2 -t- 3k + 1 <2(3").

One could prove this directly by checking the values k = 4, 5 9 directly and
then apply Exercise 161 for the cases thereafter since 2k is (by Exercise 150, say)
less than 2(3k), however, an inductive proof is given here.

BASE STEP: Since 3(42) + 3(4) ± I = 61 C 162 = the base case 8(4) is true.
Similarly. 8(5) says 91 <2 2 243, which is true, and 8(6) says 127 729. (The
extra base cases have been added only so as to use Exercise 160 below, avoiding
having to prove yet another auxiliary result.)

INDUCTIvE STEP: For sonic rn ? 6, assume

8(m) : 3m2 + 3m + 1 < 2(3111).

To he proved is

8(rn + 1): 3frn 1)2 +3(m + 1) + 1

Beginning with the left. side and deriving the right side,

3(m + 1)2 I) + 1 = (3m2+3m+ 1) +Gm+6
< + 6m + 6 (by md. hyp. 8(m))
< 2(3m) + (by Exercise 160)
<2(3m) + 3fl (by Exercise 150)
= 3(3111)

= 3rn-j-i

<

finishing the inductive step.

By Ml, for all k � 4, for all k � 4, the statement 8(k) is true. D

(7mriment: This result above seems rather weak perhaps the "2" on the right
can be eliminated? The main feature of this exercise was the algebra behind 3m
3m = 311131
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Exercise 164: For ii define the proposition

P(n) : cc 312

BASE STEP (it = 4): Since 43 = 64 <81 = 34, the statement P(4) is true.

INDUCTIVE STEP: Suppose that for some fixed Ic � 4,

P(k): k3<3k

holds. It remains to show that

P(k±1): (k+ 1):1 <3k+l

follows. Beginning with the left side of P(k + 1),

(k± = k3±3k2 ±3k+1
<3k ±3k2 +3k±1 (by P(k))

< 3k ± 2(3k) (by Exercise 163)
= 3(3k)

3k+1

the right side of P(k ± 1). This proves that P(k + 1) is also true, and so concludes
the inductive step P(k) P(k •+ 1).

Therefore, by MT. for all it � P(ri) is true. 0

Exercise 165: For it > 6, define the statement

Q(ri) : 312 <it!.

BASE STEP (it = 7): Since 37 = 2157 and 7! = 5040, the base case Q(7) is true.
(Note that Q(6) is false, since = 729, yet 6! = 720.)

iNDUCTIVE STEP: Let Ic � 7 be fixed, and suppose that

Q(k): 3k<k!

holds. Then

<3(3!) (by Q(k))
cc (k + 1)(k!) (since k � 7)
= (Ic ± 1)!,

shows that Q(k ± 1) also holds. This concludes the inductive step Q(k) Q(k ± 1).
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Therefore, by mathematical induction, fbr each n � 7, the inequality Q(n) is
true. 0

Exercise 167: The solution given here has a peculiarity in the inductive step; see
comments after the proof.

For vi � 1, define the statement

5(n): n2�2n—L

BASE STEP (a = 1): 5(1) says 12 � 2(1) — 1, which is true.

INDUCTIVE STEP: Suppose that for some fixed Ic � I, the statement

5(k): k2>2k—1

is true. Observe that (Ic + 1)2 = k2 + 2k + 1 > 2k + 1 = 2(k + 1) — 1, whence

5(k ± I): (k + 1)2 � 2(k + 1)— 1

follows directly. This concludes the inductive step 5(k) 5(k + 1).

Therefore, by MI, for all vi � 1, 5(n) is true. 0
Gonvinent on above solution: Notice that 5(k) was not used in the inductive

step! Had 5(k) been employed, the sequence might have looked like (k + 1)2 =
k2+2k+1 1)—I.

Exercise 168: For n � 1, define the proposition

PEn): 2n+1<3Tt.

BASE STEP (vi = 1): P(1) says 2(i) + 1 3', which is true.

INI)UCTIVE STEP: Fix sonic k � 1 and suppose that

P(k): 2k+1<3k.

Necdecl to show is

P(k+1):

Starting with the left side of P(k + 1),

2(k + I) + I = (2k + 1) +2

(by 5(k))

<3k+223k (since k� 3k >3>1)
= (1 +

=
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which is equal to the right-hand side of P(k + 1); hence P(k + 1) is also true. This
concludes the inductive step P(k) —' P(k + 1).

Therefore, by Ml, for all it � i, P(iz) is true . 0

Exercise 169: For it � define the assertion

A(rt) : � (it + 1)!.

BASE STEP (it = 3): Since 33 = 27 � 24 = 4!, 8(3) is true, proving the base case
A(3).

INDUCTIVE STEP: Fix k � 3 and suppose that A(k) : � (k + 1)! is true. It
remains to prove A(k + I): (k flk+1 � (k + 2)!. This is done by looking at the
expansion of (k + i)k+1 by the binomial theorem:

(k + J)k÷i = +(k ±

=kk(k±(k+l)±t+1Ct1)kl

> k

(since k � 3)

> (k + 2)

(k + 2)!,

which completes the proof of A(k+ 1), and hence the inductive step A(k) A(k+ 1).

By mathematical induction, for all it A(n) is trite. 0

Note: In the sequence of inequalities above, the inequality 2k + I > k + 2 was
used, hardly an optimal inequality for large k, so one might guess that an even
stronger inequality holds, name] y

it" > 2(n + 1)!,

which indeed is true for it � 4. This can be proved in a nearly identical manner to
that used above.

Exercise 1.70: This problem appears in, for example, [350].
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For ti> 3, define the statement

P(n) : > (ri + i)Th.

BASE STEP (n = 3): The statement P(3) says 34 > 43, which is equivalent to
81 > 64, so P(3) is true.

INDUCTIVE STEP: Fix some k � 3, and suppose that

P(k):

is true. Next to prove is

P(k+1): (k+1)k+2>(k+2)k+I.

First, restate P(k) in a form convenient to use later:

and so P(k) can be rewritten as

P'(k): (k±I)kk

Observe that (k + 1)2 k2 + 2k + 1 > k2 + 2k = k(k + 2), and so for positive k,

k+2 k+1
k+1 k

which implies (by Exercise 150)

<
. (28.1)

Starting with the right side of P(k + 1),

2 k+1

(k + (k +

k+1 k+1

<
(k .1

1)k+1 (by eqn (28.1))

=

+ (by P'(k))
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= (k + 1)k4 2

arrive at the left side of P(k + I), proving the required statement. This concludes
the inductive step P(k) —' P(k + 1).

Therefore, by MI, for all n � 3, the statement P(n) is true. D

Exercise 171: For n � 5, define the statement

8(n) : (n + 1)! >

BASE STEP (n = 5): 8(5) says 6! > 28, which is true since 720 > 2.56.

INDUCTIVE STEP: Fix some k � 5 and suppose that

8(k):

is true. It suffices to prove that

S(k+1):

holds. Beginning with the left side of 8(k + I),

(k + 2)! = (k + 1)! . (k + 2)

(hyind. hyp. 8(k))

(sincek�5)
> 2

= 9kt4

the right side of 8(k + 1). Thus, 8(k) 8(k + I), eoinpletiiig the inductive step.

Hence, by MI, for all � 5, the statement 8(n) is true. D

Exercise 172: This problem occurred iii, for example, [350].
For n � 3, let 8(n) denote the statement

(ri!)2 >

Two proofs are provided here, an easy direct proof, and an inductive proof. An
inductive proof following from Exercise 170 appears iii [350], however, for interests
sake, a slightly different proof is offered here.

Direct proof for Exercise 172: Interpret the expression (n!)2 = (n!)(n!) as the prod-
uct of n terms, each term a pair of the form (k + 1)(n — k), where k = 0, 1 n — 1.

For 1 < k < n—2. each term is l)(n—k) = k(n.—k)-i-n--k = n+k(n—k— I).
which is greater than n (since rm � 3). Thus, since there are n terms with the two
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outside terms equal to n and the middle terms all greater than n, the product is
greater than n". 0

Inductive proof for Exercise 172:
BASE SEEP: Since (3!)2 = 62 = 36 > 27 = 33, 5(3) holds.

INDUCTIVE STEP: For sonic fixed k � 4, suppose that 5(k) is true. It remains to
prove

S(k-Fl):
First, an observation is made that will streamline the proof. For any k � 3 and each
2 � £ < k, < and so, by the binomial theorem,

(k + 1)k = kk + + < (k +

To prove S(k + 1),

((k + 1)fl2 = ((k + I)k!)2

= (k + 1)2(k!)2

> (k + 1)2. kk (by 8(k))

= (k + 1)[(k + 1)kk]

> (k ± l)(k i)k (by above observation)

= (k + 1)kf I.

This completes the inductive step 8(k) S(k -3-- 1).

By mathematical induction, for all ii � 3, 8(n) is true. 0

Exercise 173: This exercise appeared in [350J (Exercise 13), together with two
solutions. The first, apparently found in [282], is a rather clever application of the
AM-CM inequality (Theorem 3.3.1) and the formula for the sum of the first ii odd
numbers (which itself has an inductive proof—see Exercise 38). The second proof
given in [350] is that which one would arrive at naturally when trying to prove the
result inductively. Both proofs are given here.

For n � 2, let P(n) denote the statement

(2n—l)<-n'2.

Proof using AM-GM: By Exercise 38, 1 + 3 + 5 + (2n — 1) = it2, and so by
the AM-CM inequality,

(1 (2n
+ + (2n — 1)

— Ti.
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Raising each side to the power of ii (and applying Exercise 150) finishes the proof.
0

Proof by induction:
BASE STEP: Since 3 c 22, P(2) is true.

INDUCTIVE STEP: For some fixed k � 2, suppose that

P(k): (2k_i)<kk

is true. It remains to prove the statement

P(k+1):

Indeed,

ti) (hyP(k))
+(k+1)kk

= ke+1 +
±

where the last inequality follows from the binomial theorem. Thus, P(k -1-- 1) is trite,
finishing the inductive step.

Therefore, by Ml, for each a � 2, the statement P(71) is true. 0

Added note: In the inductive step above, it was essentially proved that (k +
flk±1 > kk(2k + 1) (just as in Exercise 169, too). This can also be seen by applying
the Bernoulli inequality (Exercise 198, which says (1 ± x)Th > 1 + nx when x > I))
as follows:

k 1(k+1)k±l =kk+l >kk+1(1+±)=kk(2k±1).

Exercise 174: For ii � denote the inequality in the exercise by

P(rz) : (2n)! <

BASE STEP (a = 5): One need only verify that (10)! < (5!)241, which is true, since
10! = 3628800 and (5!)2 . 16 = 3686400, so P(5) holds.

lsnuciivn 5 and suppose that P(k) is true. Consider the
statement

P(k + 1): (2k + 2)! c ((k +
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Beginning with the left side of P(k + 1),

(2k + 2)! = (2k)!(2k + 1)(2k + 2)
c + 1))(2k + 2) (by P(k))
< +2)

+ 1)2 4

= ((k + l)!)24k,

the right side of P(k + 1). So P(k + 1) also holds, completing the inductive step.
By mathematical induction, for every n � 5, the statement P(rt) holds. 0

Exercise 175: This exercise appears in [350, Ex. 16J. For n � 2, denote the
inequality in the exercise by

4" (2n)!5(n): it+1 (rd)

Basi-: STEP: The left side of 8(2) is 16/3 and the right side is 6, so 8(2) is trite.

INE)IJCTEVE STEP: For some fixed k � 2, suppose that

4k (2k)!8(k): k+1

is true. it remains to prove that

4k-il 2k+l
&

' k+2 ((k+1)!)2

follows. lb streamline the derivation of 8(k + 1), the following fact is used (which
holds for any ii 1):

4n+4 4ii+2
(28.2)n+2 zi+1

To see this, simply cross-multiply to obtain 4n2 + 8n + 4 < In2 + iOn + 4.
Beginning with the left side of S(k + 1),

4k-i-l — 4k 4(k+1)
k+2 — k+1 k+2

(2k)! 4(k+1)
< (k'.)2 k+2 (byS(k))

(2k)! 4k+2
< W)2 k+1 (hyeqn(2&2)

— (2k)! (2k ± 2)(2k + I)
— (k!)2 (k •1- 1)2
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— (2k+2)!
((k+1)!)2'

which is the right side of 8(k 4-1). This proves 8(k+ 1) also holds, and so completes
the inductive step.

Consequently. by MI, for each ii � 2, 8(n) is true. D

Exercise 176: For each positive integer ii, denote the assertion in the exercise by

A(n) : it! >

Observe that .4(8) is false since 8! = 40320, yet 48 = 65536. However, A(9) is true,
since 9! = 362880 and 49 = 262144. It should seem clear that for every ii> 9, A(n)
is true since at each step, the previous term on the left is multiplied by a + 1, yet
the right side increases only by a factor of 4. Nevertheless, here is the inductive
proof that .4(n) is true for every a � 9:
BASE STEP: The case a 9 was verified above.

INDUCTIvE STEP: For some k � 9. Sul)PO5C that .4(k) is true. Thcn

(k+1)! -= (k+l).k!
> (k+i).4k (byA(k))
> 44k (sincek�9)
= 4k+i

proving that, A(k + 1) follows. This completes the inductive step.

By mathematical induction, it follows that for all a 9, .4(n) is true. U

Exercise 177: For each positive integer a, let 8(n) be the assertion that ln(n) < it.

BASE STEP: Since ln(l) = 0 < 1, 8(1) is true.

INDUCTIVE STEP: For some k � 1, assume that 8(k) is true, that is, ln(k) < k, or
equivalently, k < eP. It remains to prove S(k + 1), that is, ln(k + 1) < k = 1, or
equivalently, k + 1 < Tb accomplish this, a little trick is used: since 2 < e, it
follows that 1 < c — I and so -4- < e — 1. Hence 1 + 4 < e and multiplying each
side yields + 1 < 13y induction hypothesis, k < and so the previous
equation yields k + 1 < ekf 1, the statement equivalent to S(k + 1). i'bis completes
the inductive step.

By MI, for all it � 1 the statement 8(n) is true . U

Exercise 179: For n � 1, let 8(a) denote the statement
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BASE STEP (n = 1): Since 1 c 8(1) holds.

INDUCTION STEP: Fix k > 1 and SUPpOSe that 5(k) holds. Consider the statement

S(k+1): 1+2

Beginning with the left side of 8(k + 1),

< (by 8(k))

=

=

= *12k+9}

=

completing the proof of S(k + 1), and hence the inductive step.

By the principle of iiiatlieniatical induction, for all i-i. 1, the statement 8(n) is
true. 0

Exercise 180: This exercise shows that the sum of the reciprocals of the squares
converges to something at most 2; in fact. the series converges to

For ri > 1, denote the statement in the exercise by

1 1 1 18(n):

BASE STEP = 1): Since 1 2 — 8(1) holds.

INDUCTION STEP: Fix some k > 1 and suppose that 8(k) is true. it remains to
show that

8(k+i):

holds. Starting with the left side of 8(k 1 1),

1 1

(by 8(k))

— k+1( k k+l)
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1 (k2—k

I
<2———--— (sincek> 1,k2—k>O),- k+1 - -

the right side of S(k + 1). Thus S(k + I) is true, thereby completing the inductive
step.

By mathematical induction, for any n � I, the statement 8(n) is true. 0

Exercise 181: For n � 2, denote the statement in the exercise by

/ 1 1 I\ 18(n): <3——f.

This exercise shows that the series converges to soirietliing at most

BASE STEP (n = 2): Since 8(2) says 2(1 + < 3— or equivalently, < which
is true.

INDUCTION STEP: Suppose that for some fixed k � 2, 8(k) is true. Consider the
statement

8(k+l):

Beginning with the left side of 8(k + 1),

= (hy8(k))

— 3(k+1)3-k2
— k2(k+1)3

k3 + 2k2 + 3k + 1
—

k3 + k2
<

— k2(k +

—
k2(k-i-l)

—
— k2(k +

=

arrive at the right side of 8(k + 1). Thus, 8(k + 1) is true, which completes the
inductive step 8(k) 8(k + I).

By Ml, one concludes that for every ii � 2, 8(n) is true. 0
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Exercise 182: This exercise is very popular, but 1 can not find an early source; it
recently appeared in [534], for example. The result of this exercise shows that the
power series expansion for e indeed converges, and to something at most 3.

For ii 4, denote the inequality in the exercise by

1 1 1 1 13(n):

BASE STEP: 3(4) reads or < and since = c2, 3(4)
is truc. (For ri = 1. 2, 3, one has equality, so the statement with strict inequality
must start at ii = 4.) -

INDUCTION STEP: Fix in � 4, and suppose that 3(m) is true. It remains to show
that

S(m+1): 1+!+!+i+..,+i+ 1

�3—
1

1! 2! 3! in! (rn+1)!

follows. In a sequence of inequalities below, the following inequality (which holds
for in � 1) is used:

I

_____.

(28.3)
in (rn + 1)!

This holds because tn! < (in — 1)!(m + I) (check for in = 1, then multiply out for
larger in), and so

I + I m!+i>(rn-1)!(m+1)i
m+1 (m+1)! — -- (m+1)!

With this in hand, beginning with the left side of S(m -I 1),

(bv3(rn))
1! 2! in! (rn+1)! in (m+1)!

1
(by eq'n (28.3)),

which proves S(m + 1), thereby completing the inductive step.

By mathematical induction, for each ii 3(n) holds. D

Exercise 183: For ii 1, let L(n) denote the inequality

1 2 3 n 1

1! 3! a! (2n — 1)!

BASE STEP: For ii — 1, L(1) reads f < 2 — which is true.
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INDUC11VE STEP: For some fixed k > 1, let the inductive hypothesis be that L(k)
is true. The next step is to show that L(k + 1):

1 2 3 Ic k+I 1

±

is also true. Starting with the left side of L(k + 1),

1 2 Ic k+1 1 k+i
+ 31+ +(2k1)!+(2k1)! � (2k)!+(2k+1)! (hyL(k))

— 22k+1—(k+1)
— (2k+1)!

k
— 2

(2k±1)!

<

C

which is the right side of L(k+1). This completes the inductive step L(k) L(k±i).

By mathematical induction, for all vi 1. the statement L(n) is true. 0

Added notes: The inductive step above seems to have too much room, and hence
indicates that a much tighter result is possible (or sonic simple mistake was made?).
Furthermore, the above result shows that the infinite series converges
to a number which is at must 2. Can you find out what this series actually converges
to?

Exercise 184: For 'a ? 1 let [(a) denote the inequality

1 2 3 it 1
—+— F —+"+ <1—
2! 3! 4! (n-fl)! ' (n+1)!

1(1) says < I — which is true because, in fact. equality is attained.

INDUCTION STEP: Let Ic � 1 and suppose that 1(k) holds. Then

1 2 k k+l I k+1� I byl(k)

k4-2 k+1
= 1 (k+2)! F (k+2)!

1
— (k+2)!'
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proves that I(k + 1) also holds, completing the inductive step.

Therefore, by induction, for all n � 1, the statement 1(n) holds. D

Exercise 185: For n � 2, let 5(n) be the statement

1 1 1 135(n): rr+1 n+2 2n 24

BASE STEP (n = 2): S(2) says th + th> which is true since th + W

INDUCTION STEP: Fix some k � 2, and suppose that

1 1 1 135(k):

is true (the induction hypothesis). The next step is to show that

S(k+1): +2k+2>

is true. Beginning with the left—hand side of S(k + 1), one irrust add and subtract
an extra term so that the inductive hypothesis can he applied:

1 1 1 1 1

k+2+k+3+±2k±2k+1 +2k+2
1 1 1 1 1 1

=

> +
2k -3- 2 kI (hy md. hyp.)

— 13 1 1 2
— 24+2k+1 +2k+2 2k4-2

— 13 1 1

— 2k+12k+2

— 13 1

—

13
>

proving S(k + 1), and completing the inductive step 5(k) S(k + 1).

Flence, by mathematical induction, 5(n) holds for all n � 2. D
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Exercise 186: For each it � 2, let. R(n) denote the statement

<
(2n) 4fl

BASE STEP: R(2) says 22 < (4) <42 a true statement since 4 < 6 < 16.

INDUCTIVE STEP: Let k � 2 and SUPI)OSC that R(k) is true. It remains to prove

R(k + 1): 2k+1 < <4k+1

First note that

(2k+ (2k +2)! — (2k+2)(2k + I)(2k)! — 2(2k + 1) (2k
(k+1)(k+1) k!k! — k+l

To see the left inequality in R(k + 1),

2(2k+1)(2k
k+1 1\k

> (byR(k))

> 2.2k = 2k4J

To see the second inequality in R(k+l), first note that = = 4— < 4,
and so

(2k + 2'\ — 2(2k + 1) (2k
k+1

2(2k+1)4k (by R(k))

<4• 4k 4k+1

So both inequalities in R(k ± I) hold, completing the inductive step.

By mathematical induction, for each n 2, fl(n) holds. 0

Exercise 187: For each v. ? 1, let the statement in the exercise be denoted by

C(n): �nj 2n

UASE STEP: G(l) says � or equivalently, 2 2, and so C(1) holds.
Inductive step: Fix some rn > I and suppose that

/2m\ 22in
C(m): (\\rnJ 2m
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is true. To be shown is that

(2in + 2\ 22h1L+21>—-\rn+1 J — 2rn±2

follows. Using the equality mentioned in Exercise 186,

(2m + 2'\ — 2(2rn + 1) (2ni
m+1 \\fl

+ P> / (by C(rn))m+1 2m
— 2(2rn-l- 1) 227Tt

— ra 2(rn+l)
22m-I-2

> 2m+22m+2'
and so C(m + 1) indeed follows from C(rn), completing the inductive step.

By mathematical induction, for each ii 1, the inequality G'(n) is true. D

Exercise 188: For a � 1, let 11(n) denote the inequality

BASE STEP: The statement 11(1) says � 211 — 1. and so is true.

INDUCTIVE SEEP: Suppose that for some fixed k > 1,

I I I I
11(k): k—I

holds. To complete this inductive step, it remains to show that

R(k+i):

follows. In doing so, the following inequality (which one discovers is needed only
after one tries proving the inductive step) is helpful:

+ (for k > 0) (28.4)

One proof of equation (28.1) is by the following reasoning: 4k(k + I) < (2k 4 1)2.
and taking square roots yields < 2k ; 1; then + I < 2(k + 1)
and division by now yields the result. Okay, with that. in hand, beginning
with the left side of R(k + 1),

1 1 1 1 1� (hyfl(k))
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cc — 1 (by equation (28.4)),

the right side of R(k + 1). This completes the inductive step R(k) —, R(k + 1).

By mathematical induction, for all ii � 1, R(n) holds. 0

Exercise 189: For it � 1, denote the given inequality by

8(n):

BASE STEP: Since 1 � s/i, 8(l) holds.

Before proceeding with the inductive step, inequality is given (and proved) which
streamlines calculations: For any x > 1,

(28.5)

To see this, observe that for x � 1, s/x(x + 1) > x, and so + 1) + 1 > x + 1.
Division by proves equation (28.5).

INDUCTIVE STEP: For sonic fixed k � 1, suppose that 8(k) is true. Then

� (by8(k))

> (by eqn 28.5),

which shows that 8(k + 1) is true as well. This completes the inductive step.

By the principle of mathematical induction, for all it � i, 8(n) is true. 0

Exercise 190: For it � 1, let 8(n) denote the statement

BASE STEP: Since 2 + 1 > 2 1, 8(1) is clearly true.

INDUCTIVE STEP: For some fixed k � 1, suppose that 8(k) is true. To complete the
inductive step, it remains to prove 8(k + 1):

1 1 1 1

Beginning with the left side of S(k + 1),

24 + + + > + (by 8(k)).
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To finish the proof of 8(k + 1), it suffices to prove

�
Perhaps the easiest way to see this is by the following sequence of equations, each
following from the previous:

(2k-f-3)2 > 4(k+2)(k+1);
- 2k+3 >

2(k+1)+1

This yields the desired inequality and so completes the proof of 8(k + 1) and hence
the inductive step.

By Ml, for all n ? 1, 1;he holds true.

Exercise 191: For each ii 1. let 8(n) be the statement

1 1.3.5---(2ri-— 1) 18(n): —< <
2n 2-4-6--.(2n)

BASE STEP: Since 8(1) says � which is true.

INDUCI'ION STEP: Assume tha.t for some k > 1,

I I 3.5..(2k —1)
2k 2-4.6...(2k)

is true. The statement

8(k+1) 1 <1•3-5--j2k—1)(2k+fl< 1

2k+2 — 2-4-6•--(2k)(2k+2) —

is to be shown. Each inequality is proved separately. For the first inequalit, in
8(k + 1), begin with the right side:

J.3.5..(2A:_1)(9k+1) I 2k-+-1 -

2.4.6...(2k)(2k+2) 2k 2k+2 (by imt hyp.),

>

the left-hand side of the first inequality in 8(k + 1).



542 Chapter 28. Solutions: Inequalities

To prove the second equality in S(k + 1), begin with left side:

1 2k+1
2 •4 G•• (2k)(2k +2) — 2k +2

m .

— 1

—

— 1

-

— 1

— + 12k2+12k +4

<

the right-hand side of the second inequality in S(k4 1). This conipletes the inductive
step for both inequalities.

Hence, by mathematical induction, S(n) holds for all n 1. 0

Exercise 192: This problem appears in many places (e.g. [1.61, p. 180, 7.16)). For
a > 1, let P(n) denote the proposition

1 3 2n—1 I

2n

BASE STEP: When ri 1, both sides of 8(1) are equal.

INDUCTIVE STEP: Only the details of the solution as found in [161, 188) are
provided; the reader is left to Fill in the steps. Suppose that for sonic k � 1, S(k)
is valid. To prove S(k + 1). it suffices to prove < The derivation is as
follows (with the proof starting at the other end, of course):

2k+2V3k+4 3k+4
(4k2 + 4k + 1)(3k + 4) (4k2 + 8k + 4)(3k + 2)
12k3 + 28k2 + 19k + 4 < + 28k2 + 20k + 4
0 <k.

0
Many authors (including [161) and [462]) Point out that the inequality

1 3 5 2n—1 I

2 4 6 2n
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is more difficult to prove, even though it is a weaker statement.

Exercise 193 (Triangle inequality); For each it � 1, let 5(n) be the statement,

5(n):

To prove 5(n) for all � 1, first prove 5(1) and 5(2) separately, then proceed by
strong in(luctiorl.

BASE STEP:
Base case it = 1: The statement 5(1) says that for any x1 e 1k, lxii � lxii,

which is trivially true.

Base case it = 2: Let x and y he any real numbers. Since

= (x+y)2
x2+2xy+y2

�
= ixi2 ± 2Jxi + ivi2

(lxi + iyi)2,

and so by Lemma 10.0.2, with h = lxi + and a = jx + one concludes that
Jx + vi C xi + which is precisely the statement 5(2). The base step is done.

INDUCTIVE STEP: Fix some k � 2 and suppose that 5(2), 5(3) 5(k) all hold.
Yet to prove is

S(k+l): lxi +x2±"+xk+Xk÷1l

Beginning with the left-hand side of S(k + 1),

ixl+x2+..+xk+xk+ii C ixi+x2±...+xki+ixk+ii (byS(2)),
� (byS(k)),

the right-hand side of 5(k + 1), completing the inductive step.

By the principle of strong mathematical induction, 5(n) is trite for all it � 2;
together with the statement 5(1), this proves that for all it 1, the statement 5(n)
is true. 0

Exercise 194: This is a famous inequality, appearing in many places (e.g., see [499,
Problem 50]). First a slightly stronger result for a special case is proved; the general
result then follows quite easily.

Let x ± y > 0, and x y and let 5(n) be the statement

5(n) : + V') > (x +
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Proving 8(n) for n � 2 is done by induction on it:
BASE STEP: 8(2) says 2(x2 + y2) > (x + y)2. Since x y, (x — y)2 > 0, and so
adding (x + y)2 to each side gives 8(2).
INDUCTIVE STEP: Suppose that for some k � 2, that

8(k): 2k--1(xk + > (x +

holds. It remains to prove

S(k+ 1): 2k(xk+l > (x+y)k+1.

Proving S(k + 1) directly is a bit messy, so first observe that xk — and x — y are
both the same sign (using Exercise 150) and so

(?— yk)(x — y) >0 + > +?y.

Adding + yk÷l to each side of the last inequality gives

= (?+ 1 y)

� (byind. hyp.),

= +

and so division by 2 gives

>

which is precisely S(k + 1). This completes the inductive step.
Hence, by MI. S(n) holds. To finish the proof of the inequality in the exercise,

one observes that equality holds when x = y. and the inequality is trivial when
eitherx=Oory=O. D

Exercise 195: This appeared as [280, Challenge Problem 2] (without
solution, but solutions most likely appeared in a later issue).

Exercise 196: The problem is to show that for any non-negative real nurrihers
fl,

11X2 {

p n

The renowned problem poser/solver Murray S. Klamkin gave this inequality
Problem 1324 in AIathcrnalics Magazine. June 1989: In fact, the problem was
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actually proposed with the added condition x1 + x2 +... + = 1. arid many solu-
tions were received which used the method of Lagrange multipliers (a method from
rnultivariate calculus often used to solve problems with such constraints); however,
Klamkin gave a solution in [313] which was by induction on n; that solution is given
here, but with just a few more details supplied. Some simple algebraic steps are still
left to the reader.

Let x1, x2,... , be non-negative reals, and let 8(n) be the statement

X1X2"Xn�( -______
n n

it is convenient to rewrite 8(n) as

/

Ti

First observe that the inequality is trivial if any of the xi's are 0, so will assume
that each > 0.

BASE STEPS: For n = 1, 8(l) says "2 < For it = 2, 8(2) says

(4 4

which reduces to 0 < (Ti which is certainly true.

INDUCTIVE STEP: Let k � 2 he fixed and suppose that 8(k) holds:

8(k): +1k)t

Yet to prove is (using x =

8(k+ 1): (4 ± C (k+ 1) (ri +

X1+X2±"'+Xk ,.Put A
= k

and P x1 x2 3k With this notation, the inductive
hypothesis is

8(k):
and would like to prove

8(k+1):

The left-hand side of 8(k + 1) is

(4 i-'.+4+x2)Px =
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� + Pr3 (by S(k)).

So to prove S(k + 1), it suffices to prove that

kA k+3

k+j
By the AM-GM inequality (Theorem 3.3.1). P � g, so it suffices to prove

kA k+3
kAk±2x+Akx3�(k+1)( k+j

The next idea is to restrict to the situation where the sum xi + X2 + xk + X
is held constant, and prove the result with this added constraint. The general
result then follows. Observe that for any constant c, the statement S(n) holds for

if arid only if it holds for cx11. . . , (the factor cfl+2 appears on each
side). So, consider only those (xi,... ,xk,x) E for which .

k + 1, that is,
kA+x = k+ 1.

So. to prove S(k + 1), it suffices to show

k + 1.

The left-hand of the above inequality is a function of A (and x = k ± 1 — kA, also
a function of A), and so maximize the expression using calculus:

+ A'x3}

= k(k + 2)Ak±] x + + kAk_ix3 +

= k(k + + — +

A = lx, this expression becomes (after a hit of algebra)

(I — t)(k12 — 21 +

Since k � 2, the above has roots at only t 0 and I = 1, and so the derivative
is positive for 0 < I < 1 and negative for I > 1. Thus, + AICX3 achieves a
maximum when I = I, that is, when A = r = 1. Hence,

kAkl2x + k + 1,

and so S(k + 1) follows, completing the inductive step.
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Thus, by mathematical induction, for all n � 1, the statement 8(n) is true. U

Exercise 197: This exercise occurred in, e.g., [437), (Prob. 11-7) and [499) (Prob.
51).

Fix a positive real number x, arid for each n � 1, let 8(n) denote the statement

�n+i.
Notice that when n is even, there are n+ 1 terms on the left side of 8(n), the middle
of which is I. For example, when n = 4, the left side is

1 1
X + X + X + —r +xl x

On the other hand, when n is odd, there are also n + 1 terms; for example, when
n = 3, the left side of 8(n) is

1 1x +a: +---+.—-.
x1 x

Before beginning the proof, another simple observation helps: For any real rium-
ber y, g2 — 2y + I = (y — 1)2 � 0; this iniplies y2 + 1 � 2g. and when p > 0, yields
the inequality

�2. (28.6)

Jt should now be apparent as to the method of die solution: pair lip terms in
the sum, and proceed with two cases, a even, and n odd; this will mean that. the
inductive step will jump by two, and hence two base cases arc needed.
BASE STEP: When n = 1, 8(1) says Iix +—>2,

which was proved precisely in equation (28.6). For a = 2. 8(2) says

+ 1 + � 3,

which is again true by equation (28.6) with p = x2.

INDUCTIVE STEP: (8(k) 8(k + 2)) Fix some k ? 1 and assuirie that

holds. One now wants to show that

43
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follows. Indeed.

+ + xk_2 + . +
2

k

k (by

8(k + 2) as desired.
By mathematical induction (actually, two inductive proofs are wrapped up in

one, one for odd n and one for even ii), for n � 1, 8(n) is true. 0

Exercise 198: (Bernoulli's inequality) Fix x E R with x > —1 and x 0. For each
n � 2, let 8(n) be the statement that (1 + > 1 + nx holds.

BASE STEP: Since x 0, x2 > 0, and so (1 ± = 1 + 2x ± > 1 + 2x, 8(2) holds.

INDUCTIVE STEP: Fix k � 2, and suppose that 8(k) holds, that is. (l+x)k > l-F•kx.
Before proving 8(k + 1), a subtlety regarding inequalities is addressed: If a > b and
c > 0, then ac > be; if e < 0, then a > b implies ac < bc. Here is the proof of
S(k ± 1):

(1 .} x)k+1 = (1 .1-
1)k(i + x)

> (I±kx)(i+x) (sincex+1>0)
= 1±x+kx±kx2
= I f(k+1)x±kx2
> I+(k+1)x

So 8(k + 1) is true: completing the inductive step.

By MI, for all n > 2. the statement 8(n) is true . 0

Exercise 199: This exercise occurs in, for example, [437]; that solution is very
elegant; however, here the solution is presented in a slightly different manner.

For n > 2, let 8(n) he the statement that for any mm positive real numbers, if
their product is omic, then their sum is at least ii.

BASE STEP: Let a1 a2 = I. Then a2 ;[, arid then a1 + = al -1- Since the
sum of a number and its reciprocal is at least, 2 (see Exercise 197) then a1 + a2 � 2:
proving the base step 8(2).

INDUCTIVE STEP: Suppose that for sonic k � 2, 8(k) holds. It remains to prove
that 8(k+1) holds. Let . 1 = I. Since ala2.. . = I is a product
equal to one, by 8(k). a1 + a2 + -I- i and
j so that � a1 + a3 — 1. If a1 a2 - = ak+1 — 1, then any i and j will
do. If some 1, say :> 1, then sonic aj < I , say ak4. i < 1 . In this case,
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(ak — 1)(1 — — 1) > 0, which says ak — akak+i — 1 + > 0. Putting this all
together (with > I and ak.i < 1),

al+a2-t-...+ak+1 =
� k + ak — akak.f 1 -1- (by S(k))

= (k+1)+ak—akak+1—1+ak+j
= k+l+(ak—1)(1—ak+1—l)
� k+1 (sinceak >1 and 0k'1 <1).

This proves S(k + 1), and hence finishes the inductive step.

Therefore, by induction, for n 1, the statement 5(n) is true. D

Remark on Solution to Exercise 199: From the statement 5(n), one can prove
quite easily thc AM-GM inequality (Theorem 3.3.1) without the complicated down-
ward induction proof. Here is the proof (see, e.g., [437]):

Let g = . .
a1,)11fl be the geometric mean. Then

I'n
=1,

g gJ
and hence ¶.. = 1. Thus, by Exercise 199, + � n, arid so

� g. [3

Exercise 200: (GM-FIN! inequality) To he proved is that for any positive real
numbers a1,a2 a11,

Here is a direct (non-inductive) proof:
By the AM-GM inequality,

—1 —1a1 +a2
-., 1 —1 —hI/n
— tai a2

= (aj a) I/n

Taking reciprocals (which reverses the inequality) finishes the proof. [3

Exercise 201: The solution is outlined in [161, 8.24, pp. 208, 216], where the
following inequality is used without proof:

Lemma 28.0.1. Let n � 2, and let a1 , a2 be positive integers with

1 1

a1 a2
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(the a7 's don't need to be increasing). For in <ii,

1

(28.7)

a positive rational number so that

1 1 1 1

U2

Simplifying,

— ala2••'am
—

Since both sides above are positive, the denominator of the right-hand side is pos-
itive, and since this is an expression in positive integers, the the denominator is at
least I . Hence, y 01(12 a,77, and inverting, equation (28.7) follows. 0

Here is the solution to the exercise: For ii � 2, let 8(n) be the statement that
for positive integers satisfying I a1 a2 < if + + ... + = I,
then a77 <

Suppose, in hopes of a contradiction, for some fixed a ? 2, that 8(n) fails, that
is, the statement

P(n) : � 2"
holds. Using P(n) as the base step, by (strong) downward induction, prove that
for each j = 1,... ,n, that PU) : a3 > 23! holds: Fix I � ni < n, and let the
inductive hypothesis (III) be that for each lv = TI! + 1, in I 2, . . . , n, P(k) is true; it
remains to prove P(m). lb this goal,

I

a,,, — \ai . .

\ a1 a,,,)
/ 1 1\h/m

+—

/ \ 1/777

E (by Ill)
k=rn1-1

<_L.
27n!
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Hence S(n) failing implies P(1), P(2),..., P(n) hold. It remains to be observed that

1 1 1

so S(n) does not hold. 0

Exercise 202: This exercise, complete with solution can be found in [350, prol).
501.

Exercise 204: This appeared as Challenge Problem 1 in the article [2801, but with
the hint to see the solution to Exercise 205. In fact, this is oniy the special case
a = 0 of Exercise 205, so only the more general solution is given here. 0

Exercise 205: This appeared complete with solution in [280, Problem 1]; it also
appeared as a problem in the contest "Tournament of the Towns" (1987).

For n ? 1, let S(n) be the statement that for any rca! a,

BASE STEP: S(1) says < a .j- 3, which is verifiable since a + 1 < (a + 3)2

0 < a2 ± 5a ± 8, which is true for a � 0.
INDUCTIVE STEP: Fix some k > 0, and suppose that for alky lion-negative a,

is true. To prove is that for every non-negative b,

<b+3.

Indeed, using a b + 1,

=

< Vb+1-i-a+3 (byS(k))
= 5

< h+3,
where the last inequality follows since 2b + 5 < (b + 3)2 = b2 + fib + 9 and b2 � 0.
This proves S(k + 1). concluding the inductive step.

Hence, by MI. for all ii> 1, S(n) is true. [1





Chapter 29

Solutions: Number theory

29.1 Solutions: Primes
Exercise 206: (I"TOA, Outline) Use the result from Exercise 297 and strong in-
duction on ri, and at, the inductive step, argue by contradiction. that is, suppose
that ii has two different fa.ctorizations. There are other proofs of this result that
don't use induction; the standard one supposes that there are two different prime
factorizations, then one argues that the primes niust be the same (up to relabelling),
and then one shows by contradiction that the exponents are the same.

Exercise 207: For ri c Z , let 8(n) be the statement that there are at least ri
l)rirries.
BASE S'I'EP (ri = I): Since 2 is a prime, 8(1) holds.
INDUCTIVE S'I'EP: For some fixed k � 1., suppose 8(k), that is, suppose that there
are k different primes, say ,Pk• Examine the number

When dividing x by any one of the primes given, there is a remainder of 1, so none
of the primes given are factors of x. That means that either x is itself a prime or
a product of primes not yet listed. Tn either case, there is at least one more prime,
that is, there are at least k + 1 primes, showing 8(k + 1), and thus completing the
inductive step.

By induction, it is proved that for any (finite) � 1, there are at least ii primes.
Hence, there are infinitely many primes. U

Exercise 208: For each: k � 1, let 8(k) he the statement that for any n � 1, if

is the prime poiver decomposition of ii, then the sum of the divisors of ri is

e(n) — . . .

353
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BASE STEP: When k = 1 there is nothing to prove, so 8(1) is trivially true.
INDUCTION STEP: Let £ � 1 and suppose that 8(1) is true. Let = . .

be the prime power decomposition of n, and for convenience, put

arid put
—
— p€+1,

so ii = ab. Since a and b are relatively prime, any divisor of ii is a product of a
divisor of a and a divisor of b. For ease of notation, if z is a divisor of n, then write
z = xy, where x is a divisor of a and y is a divisor of b. Also write z j n to mean
that z divides n. Summing all the divisors of n,

Er = = >x>y = cr(a)a(b).
zlt, xla x}a

By induction assumption a(a) = c(p'' )uQ42) .. . so the equation above
shows that 8(1 + 1)is true, completing the inductive step.

By mathematical induction, for each k � 1, the statement. 8(k) is true. 0

Exercise 209 (Division lemma): Fix natural numbers m and n. The proof is
divided into two parts, first showing existence of q � 0 and r with 0 r < in so
that n = qin + r, then showing the uniqueness of such a q and r.

(Existence) One needs to find integers q and r which satisfy

q�0, )
O�r<rn, (29.1)
n=qm+r. 3

One might want to say "pick the largest q for which qrn < Ti", however, to be
formal, this is done in terms of well-ordering. There are at least two proofs based
on well-ordering, probably the first of which is most common.

First proof of existence: (All variables are integers.) Examine the set R = {r �
o : there exists q � Oso thatn = qin r}. Since n � 0, putting q = 0 shows that
a E R. and so R is non-empty. Since R is a non-empty well-ordered set, it contains
a least element r*, and so there is a q � 0 so that a = qin + r*. Rewriting this,

—z (q l)rn + (rt — in) shows that if r* — in � 0, then r* — in E I?, and in this case,
r* would not be the least element, so r * —m <0, that is, r* <in. By the definition
of the set 11, r � 0, so the existence of q and r satisfying (29.1) has been proved.

Second proof of existence: Examine the set

S = {a e Z : ii. + urn � O}.
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Since in > 0, n + (—ii 1)tn � 0. and hence any a E S must satisfy a —n.

Since n > 0, n + 0• in > 0 and so 0 e S. Thus. S is a well-ordered set which is
non-empty, and so has a [east element s. [Note: S is not precisely a subset of N, so
the well-ordering theorem can not be used directly, however S is a subset of integers
each greater titan or equal to —ii, so it, too, is a well-ordered set.) Since 0 E 5,
.s � mm(S) = 0. Putting q = —s, then q � 0 is the largest integer with n — qrn � 0.
Put r = ii — qm.

Claim: 0 < r < in. By the choice of elements in 5, ii — qrn = ii -F- sin 0, so
r�0. Ifr>rn,say,r=rn+kforsomnek>0,thenr=n--.qrn=rn-l-kixnphes

— (q + 1)in k � 0. and so = (q + 1) is in 5; but s* is then smaller than
s, contradicting the minimality of s--so r � in leads to a contradiction. Hence,
r < in as desired, completing the proof of the claim, and the proof of (29.1). This
completes the existence part of the proof.

(Uniqueness) Suppose that ii = q1rn + r1 and n = q2rn + r2, where qi � 0,
0 < V1 < i-n, � 0, 0 r2 < in. Subtracting these two equations, obtain
(qi q2)m = Vt fl. Without loss of generality, assume that � If =
then 0 = Ti — r2, which shows that r1 = r2 as well.

So examine the case when > Then (qi -- q2)in = --- r2 implies that
—- r2 � in and r1 = r2 + rn. In this situation, it is impossible for both r1 and r2

to be in the interval 10, in), so the case qj > is not possible.
Conclude that and r1 = r2, that is, the q and r found in the existence

proof are indeed unique. 0

Exercise 210: For cacti it � 1, let (7(n) be the claim that if in1, in2 are
pairwise relatively prime natural numbers. and p is a natural number so that cacti

divides p. then in1rn2 . . . in71, divides p.

BASE STEP: If in1 divides y, then the product of only one in1 trivially divides y, so
(7(1) is true.
lNDuc'rIvE STEP: Let k > 1 and that 1122, . . rnk+1 are pairwise
relatively prime. Assume that (7(k) is true, that is, if p is such that each of in1,
in2 . ink divide y, then mi—n2 T1'Zk (livides p as well. Suppose that each of
ml, in2, ..., mk,znk±1 divides p. By (7(k), the product Ill = . . . divides p.
Since ink÷l is relatively prime to each of ini... ,ink, conclude that Al and ink+1
arc relatively prime. Since Al divides p and ink4 1 divides p, there exist integers a
and b so that p = aj\'f and p = brnkk i; hence alt! hrnk+l. Since mk+1 is relatively
prime to iv!, ink+1 divides a, say a = and so p emk÷IA'f, giving that
mk÷lM = mlm2 inkink÷l divides p, completing the inductive step.

By mathematical induction, for every ii > 1, the statenient (7(n) is true. 0

Exercise 211 (Euclidean Division Algorithm): Recall that Lemma 11.1.1 says
for in, n e Z+, if q and i are integers satisfying q � 0, 0 < r c in and ii = mq + r,
then gcd(m, r) = gcd(in, ri).
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Let in and n be positive integers, it not a multiple of in, and apply the divi-
sion lemma repeatedly, producing quotients qi, q2,... , (k � 2) and remainders

• where

(0 <r1 <vii)
ITt = + r2 (0 < r2 < ri)

(0<r3<r2)
r2=r3q4+r4 (0cr4cr3)

rk.a = + rk_1 (0 <Tk_1 < rk..2)

rk_2 = (0 = r,j.

If Ic = 1, then put r1 = 0. in which case in divides it, and gcd(rn,n) = in. Note
that since the ri's are decreasing positive integers, by well-ordering, there is a least
Ic for which = 0 (and so 0). One must prove that rk_, =
One can either induct upward or downward, making certain that certain gcd's are
maintained; in either case, the proof is tantamount to proving the chain

ged(m.m) = gcd(m,r,) gcd(r,,r2) = gcdfr2,r3) = •.. =

The final equality is clear since divides rk_2. For any of the other equalities,
say the j-th equality (j < Ic)

= gcd(r1j, ri),

follows from the corresponding equation from the above algorithm,

= iqj +

and Lemma 11.1.1. By induction, equality holds throughout. 0

Exercise 212: (Proof outline) For a 2, let 5(n) he the statement that the
product of all primes at most it is at most 2271.

To get ready for the induction step, make a couple of oI)servat.iOIls: The two
middle terms and from the binomial expansion of (1 + are
equal, and so � (2rnI 1,). Also, for each prime p between in and 2rn + I,
is divisible by p. Thus, the product of all primes between in arid 2rn + 1 must divide
(21n+1) and hence he less than 22171. Apply induction on it, and examine two cases,
even arid odd. (The details are spelled out in [150, pp. 177-8]; this is one step in
proving Bertrand's theorem, namely that for every it 2, there is a prime between
it and 2n.)
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Exercise 213: A solution can be found in, for example, [19. p. 82j; it is by induction
on the number of prime factors of n. Note that part of this exercise (regarding o(n))
is irriplicitly proved in Exercise 208, however, that solution is not relied upon here.

BASE STEP: If n has one prime factor, say n =pa, then the factors of n are
1.p,p2,. .

. ,pU, of which there are d(n) = a + I and their sum is (by Exercise 49)
=

INDUCTIVE STEP: Let m = where n = p and
o 1. Assume that the two equalities (11.4) and (11.5) for d(n) and o(n) hold true
for m.

Any divisor d of m is of the form d'p13, where d' is a divisor of ii arid 0 � a.
By the induction hypothesis, d(m) = + l)(02 + 1). .. + 1) and the number of
divisors of pa is a + 1, so

This completes the inductive step for the expression (11.4) for d(n).
Partitioning the divisors of m into a ÷ 1 classes, depending on the power of p,

d = d' + d'p + d'p2 +... +
dim d'in d'In d'In d'In

= d' + p > d' + p2 d'p2 -1- + pa d'
d'ln

=
d'ln

pa-I-i
— 1

= cr(n)

—

— Pr—1 P21 p—i

where the last equality holds by induction hypothesis. Since this last expression
is of the proper form (for s + 1 prinie factors), this completes the inductive step for
the expression (11.5) for o(n).

Therefore, by mathematical induction, both expressions are valid for all s � 1.
This completes the solution to the exercise. U

Exercise 214: This problem appears in, e.g., [150, Ex. 3. p. 130]. All variables
here denote positive integers. To be shown is that if r2 = st and s and t are relatively
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prime, then both s and t are squares. One straightforward non-inductive proof is
based on the following fact: if a has prime factorization a = .. . a is
a perfect square if and only if each is even. An inductive proof can be based
around the same fact, yet it seems that such an inductive proof might be somewhat
redundant. Two other inductive proofs are given—--one using strong induction, and
the other by infinite descent..

Proof by strong induction: For r > 1, let 8(r) be the statement of the
exercise, arid induct on r:

BASE STEP (r = 1): 8(l) says 12 = 1 . 1, in which case both factors on the right are
perfect squares. (For r = 2, 22 = I . 4 or 22 4. 1 are the only decompositions into
two relatively prime numbers, and both 1 and 4 are perfect squares, so 8(2) is true
as well.)

lNoucrnoN STEP: Fix mi � 1, and assume that for all r � ii, 8(n) is true. It remains
to show that 8(ii + 1) is true.

Let (n + 1)2 = si with s and t relatively prime. For any prime divisor p of n + I,
(ii + 1)2, and only one of s p t holds. Without loss of generality, suppose

that p is a prime divisor of a -F 1 and p s. Siiice p2 (a + 1)2, arid p does not divide
2 ii+lLet k—

(n-j—l)2 st

p2

where r and t are pritite. Applying the induction hypothesis to Ic =
(a + l)/p (since Ic a), both a and t are perfect squares. Hence s = p2x and t are
both squares. This completes the inductive step.

Therefore, by the principle of strong mathematical induction, for all r 1, 8(r)
is true. U

Proof by infinite descent: For positive integers r, s, and 1, let 8(r, s, t) denote
the statement that s and I are relatively prime with r2 = si, where s and I are not
both squares.

For the sake of argument. suppose that 8(r, s, I) holds. Without loss of generality,
suppose that s is not a square. So •s 0 and s 0 1. Hence s has a prime divisor
p; write s = kp. Then p divides r2 and hence r, say r = C)). Then (Cp)2 = kpt
implies P2p = kt. But gcd(s. 1) 1. so p does not divide I, and hence p divides Ic, say

= nip. Since .s = kp ' nip2 is riot a perfect square, neither is m. Furthermore, in
divides s, and since gcd(s, I) = 1, so also gcd(m, 1) 1. hence 8(1, rn, t) holds, and
£ < r; repeated application of the argument above produces yet another, smaller,
triple. By induction, this process continues forever, violating tile well-ordering of
positive integers, and so tile original 8(r, .s, t) must, be false. By the method of
inhnite descent, both s and I must he perfect squares. 0.
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Exercise 215: This problem appears in [161, 8.1, pp. 207, 211], (complete with
typo), and is referred to as famous IMO 1988 problem". The solution given
there is a proof credited to J. Campbell (Canberra), which is reproduced here in
spirit.

For non-negative integers a and b, let S(ab) be the statement that if q
is an integer, then q = (gcd(a, b))2. The proof here is by induction on ab.
BASE STEP: When ab = 0, one of a = 0 or h = 0 holds, and so either q = a2 or
q = b2. In either case, the result is true using gcd(a, 0) = a or gcd(0, b) =

INDUCTIVE STEP: Fix a, b, and for every c with 0 c < h, assume that S(ac) holds.
Put q = it remains to show that q = gcd(a,b)2. Without loss of generality,
assume that a b. First seek a c giving the same q, that is, look for c so that

a2 + c2

(IC + 1

To accomplish this, use an old trick: if 4 = = q, then = = q as well.
Sc) putting

a2+62 a2-l-c2=
ab+l

and suhtracting both numerators and denominators as in the trick, get

b2—c2 b-i-c
q = ab — ac = a

arid so C = aq — b works.
Claim: 0 c c h. To see the upper hound.

a2+b2 a2+b2 a h<——----=--+-.
ah+1 ab b a

which gives aq < ç +b +b = 2b, and soc = aq— b <c b. To see the lower
bound, q = implies that ac + 1 > 0 and so c � (3. Thus, the claim is proved.

Since a suitable c less than b has been found, it remains to observe that

gcd(a, c) = gcd(a, aq — h) = gcd(a, b),

arid so by the induction hypothesis S(ac), q = gcd(a. c)2 = ged(a, b)2, completing
the proof of S(ab).

Thus, by induction, for all a, b, the statement S(ab) holds. D

Rema'rt The above proof could be translated into a• l)roof by induction on b. It
is riot clear why the condition a < b was necessary.
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Exercise 216: This problem is adapted from [161, 8.33, p. 209]. For n ? 1 let
= = 1 where the sum is taken over all x,y � n with ged(x,y) = 1, and

a: + y > ii.
BASE STEP: = 1 since the only choices for a: and p are a: = p = 1.

INDUCTIVE STEP: For some k � 1, suppose that 5k = 1. Then all terms in 5k with
x+y> k+1 stay in the sum 5k+1 In 5k+i, the terms hi 5k with x+y k+ 1 are
gone; these are fractions of the form For each such deleted fraction, two
other fractions arid (k+i x)(k+1) are introduced. If a: and it + 1 are relatively
prime, then so too are k + 1 — a: and Jr + 1. Since

1 — 1 1

a:(n+1—a:)

it follows that Sk+l = 5k, which was by induction hypothesis, equal to 1. This
completes the inductive step.

By mathematical induction, for all it? 1, = 1. D

Exercise 217: This problem (with solution) comes from [138j, a paper entitled
"Some beautiful arguments using mathematica' induction."

Fix a prime p. The proof is by induction on it. Write both rn = rn(n!) and
s = s(it) as functions. To streamline the proof, two observations arc helpful.

Observation 1: Since p is prime, for all positive integers a:, p. rn(xy) = m(a:) +
rri(y); hence

rn((ri + 1)!) = m(m!(m + 1)) = rn(n!) + men + 1). (29.2)

Observation 2: The value rn(n) is the number of zeros at the end of the p-
ary representation of it. For example, when p = 5, rn(500) = rn(4 . 53) 3 and
500 = 40005 has three zeros at the end. Also, men + 1) is the number of times the
digit p — 1 occurs at the end of the p-ary representation of it. Hence s(it + 1) =
s(it) mn(it + 1)(p — 1) + 1, which implies

men + 1) =
s(n) + 1— sen +

(29.3)

For any non-negative integer it, let the assertion of the exercise be denoted by

A(it): m(it!) = n-s(n)

I3ASE STEP: When it = 0, Ti! = I, which has base p representation 0 and so the sum
of p-ary digits is s(0) = 0. On the other hand, m(0!) = m(1) = 0. Thus, A(0) holds.

INrnJcnoN STEP: Fix some k � 0 and suppose that A(k) holds. Consider it k+ 1.
Then

m((k + 1)!) = m(k!) + m(k + 1) (by (29.2))
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= ks(k) + m(k +1) (by A(k))

k_s(k)+s(n)+I_s(n+1)
— p—i p—i

k+1—s(k+1)
p—i

shows that A(k + 1) is also true, completing the inductive step.

By induction on n, for each n 0, A(n) is true. 0

Exercise 218: This problems appears with kind permission from José Espinosa's
website [176, No. 9] on uncommon mathematical induction problems. Can you find
an inductive proof? A non-inductive proof given (by Naoki Sato) is as follows:

The expression is congruent to 2(2Th1)2 mnodulo 13. Since 2 is not a square
modulo 13, neither is the expression. In fact, as Espinosa points out, that it is not
difficult to prove that the expression 4271—1 92n1 is divisible by 13. 0

Exercise 219: This problems appears with kind permission from José Espinosa's
website [176, No. 10] A hint Espinosa gives is that the expression is divisible by 13,
hut not by 132. [There may be a typo in his hint.]

Exercise 221: This problem appears iii [161, p. 376]. Suppose that positive
integers a,b, c,d satisfy eqoation (11.6). Since the right side (11.6) iseven, so is the
left side. hence among a, b. c. d, the number of odd numbers is even. If all four are
odd, the left side is divisible by 4 but the right is divisible by only two. if exactly
two are odd, the left is divisible by only 2 (not 4) and the right is divisible by 8.
hence all of a, h, c, d are even, say a = 2a1, h = c = 2c1 , d = 2d1 . Replacing
these values into (11.6) gives (after a bit of simplification)

+ + + 4 = 8a1b1c1 dm. (29.4)

Arguing as before, the left side of (29.4) is even; if all of a1, b1, c1, d1 are odd, then
the left is divisible by only 4, whereas the right is divisible by 8; ifjust two are odd,
the left is divisible by only 2. So all are even, say a1 = 2a2, b1 2b2, c1 = 2c1, and

= 2d2. Replacing these values in (29.4),

+ + + = 32a2b2cod2. (29.5)

Continuing inductively, for each I E tIme numbers a, = a/2', ,b, = b/2t, Cm = c/2t,
and d/2' are positive integers so that

a? + + + 4 = (29.6)

However, this gives an infinite decreasing sequence of positive integers ai's (for

example), contrary to the well-ordering property of V . hence no such solution
a. Ii. c, d exists. 0
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Exercise 223 occurred as Exercise 4 in [332, p.352] with no solution; however, I
think the proof is standard; the result is attributed to Fermat.

Exercise 224 occurred as Exercise 8 in [332, p.352] with no solution; however, I
think the proof is standard, only slightly more difficult than the last exercise; this
result is attributed to Fermat as well.

Exercise 225: This is a standard exercise in many number theory books; see,
e.g., [485, Thm 77, p. 174] for a complete proof. This can also be proved by
infinite descent (see, e.g., [332, p.344]). The "smallest" solution (xi,yi) is called the
fundamental solution to Pell's equation.

Solutions: Congruences
Exercise 226: This problem appeared as a question in the 1991 USA Mathematical
Olympiad, and was reproduced in [357} complete with solution. The style of the
following proof could be improved.

For it � 1. let T(n) denote the statement that mnodulo it, the sequence of towers
of 2's is eventually constant. One proof is by strong induction on it.
BASE STEP: When it = 1, the sequence is the constant sequence of Os. For those
not convinced that it = 1 is not a meaningful base step, when it = 2, the sequence
is still the constant zero sequence.

INDUCTIVE STEP: Fix k � 2, and suppose that T(1), ..., T(k — 1) are all true. To
complete the inductive step, it re:nairis to show that T(k) (that the tower sequence
is eventually constant mod ulo k) is also true

The proof is now separated into two cases, depending on whether Ic is even or
odd. For convenience, denote the sequence

2,22,222,222,..., (mod it)

by a1,a2,a3,a4
Case I: Ic is even. Write Ic = 22q, where s � 1 and q < Ic is odd. For large

enough j, aJ_2 � s, and for such j,

= 223

is a multiple of thus, for sufficiently large j. 0 (mod 2s). It follows that for
large enough i, divides — ai).

By the induction hypothesis T(q), the sequence a1, a2, a3,... is eventually con-
stant modulo q, and so for large enough i, q divides (a1+: —

Since q and are relatively prime, and both divide large — their product
Ic also divides — for sufficiently large i. Hence, for large i, -— 0
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(mod k), that is, the sequence is eventually constant modulo k, completing the proof
of T(k) for even k.

Case 2: k is odd. When k is odd, gcd(2, k) 1, and so by Euler's theorem
(Theorem 11.2.2)

2Ø(k)
1 (mod k).

Put r = d{k). Since r < k, by the induction hypothesis T(r), the sequence

ai, a2, as,... is eventually constant modulo r, say congruent to c modulo r, that
is, for large enough i, c (mod r), or equivalently, for some mj, a2 = m1r + c
Then

= = — (1)1fl12C — 2C (mod k)

shows that the sequence a1,a2,a3,... is eventually constant modulo k. This corn-
pletes the proof of T(k) for odd k.

Together, the two cases complete the inductive step.

By the principle of strong mathematical induction, for every n 1, the result
T(n) holds. 0

Exercise 227: In the inductive step below, one might get stuck without the fol-
lowing simple fact:
Fact: %\Then ii is odd, then 712 Ti (mod 2ri).
To see this, write n = 2m + 1 and calculate

= (2m + 1)2

= 4m2+4in+1
= rn(4rn-3-2)+2rn+i

2rn+1 (rnod4rn+2),

and since the last line is n (mod 2n), the fact is proved.

Let ii be a fixed odd positive integer, and for k � I, let 8(k) be the statement t.hat
(ii + l)k ii + 1 (mod 2n). Induction is on k.
BASE STEP: When Ic = 1, 8(1) reads (a + 1)' a + I (mod 2ri). which is clearly
true.

INDUCTIVE STEP: For some fixed j � 1, assume that 8(j) is true. Then

(ii + 1)

(it + 1) (mod 2n) (by 8(j))

mn2+2n+l (mod2n)

+ 1 (mod 2n)

it + 1 (mod 2n) (by above fact).

This proves S(j + 1), completing the inductive step.
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By the principle of mathematical induction, for all k � 1, 8(k) is true. 0

Exercise 228: Fix a prime p. The solution given here relies on the binomial
theorem and the following simple fact: if p is prime, then for all 0 < C p, the
binomial coefficient is divisible by p. (Note, this does not work if p is not prime:
for example, if p = 4. then = 6. which is not divisible by 4. The result in the
exercise is not always true if p is not prime—for example, 34 -- 3 = 78 is not divisible
by 4. However, it is sometimes true when p is not prime—for example, 54 — 5 = 620
is divisible by 4.]

For a � 0, let F(a) be the statement that a

a is divisible by

STEP: 0, is divisible
by by the binomial theorem,

=

= >

By induction hypothesis F(b), the first terni in the last line above is divisible by p,
and by the comments preceding the proof, each term in the sum is also divisible by
p; hence (b + 1) is also divisible by p. This proves F(b 1), completing
the inductive step.

Fletice, by mathematical induction, for all a � 0, the statement F(a) is true. To
complete the proof, a way is needed to handle the negative a's. This can be done by
induction downward (using F'(a) " P(—-a)) in an identical manner to above, or one
can take a more direct approach based on the truth of P(a) for positive integers. If
p = 2, F(a) says a2 — a is divisible by 2. which is true regardless of the value of a,
since a2 a = a(a 1), and one of a or a — 1 is divisible by 2, so also is their product.
If p > 2, then p is odd, and if a 0, then (—a? — (—a) = _au' + a = —(ar — a)
shows that (—a) is also divisible by p, proving F(—a). 0

Exercise 229: For p(x) = 1 + + + ao, where each
a prime p does not divide then the congruence p(x) 0 (mod p) has at most ii
distinct (mod p) solutions. Here, strong induction on n is used, however, proving
something which appears to be stronger: if p(x) has more than ii roots (mod p),
then it is the zero polynomial modulo p.

BASE CASES: For a = 0, if 0, then p(x) = a0 has no solutions. For it = 1

and p(x) = a1x + ao, if ai 0. then exists, and so zr = is the unique
solution (mod p). For a 1., if p divides a1, reduce to the case 'a = 0, in which case
there are no roots, or all integers are solutions, and since p � 2, this gives either no
solutions or two distinct solutions.
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JNI)UCTIVE STEP: Fix k � 1 and suppose that the result holds for all ii < k. Let
f(x) = ak? + +... + ± 04). ASSUme, that f(x) has k + I different
roots niodulo p, say wj Wk,Wk±1. Examine

g(x) = f(x) — ak(x — — (x —

Then g(x) is a polynomial of degree less than k. Each of w1 Wk is a root of g(x),
and so, by the induction hypothesis, g(x) is the zero polynomial modulo p. Then
also g(wk+1) 0, giving

f(wk+,) — — w2).• . 1 — 20k) (mod p).

However, f(wk÷,) 0, and for each i = 1,... , k, (wk+, — 0 (mod p), which is
impossible when 0k Conclude Chat p divides ak, that is, that 0 (mod p).
Repeating this argument inductively shows that each a2 must be congruent to 0
modulo p, giving that if 1(x) has more than k roots, then f(x) is the zero polynomial.
This completes the inductive step.

Therefore, by strong mathematical induction, the statement is true for all a
0. C

Exercise 230: For each positive integer ii, let 5(n) be the statement that ends
in a 6.

BASE STEP: (16)1 = 16, which ends iii a 6.

INDUCTIVE STEP: For sonic k � I, assume that 5(k) is true, that is, (16)k ends in aG.
Then for somne 0k, (16)k = akIO+b. Then = (16)k.16 = (ak.I0+6)(10+6) =

102 + (6ak + 6)10 + 36. Siniplifying, (16)k+I (l6ak + 9)10-f 6, and so
also ends in a 6, proving 5(k + 1).

By MI, for all n � 1, the statement 5(n) is true. 0

Exercise 231: Let 5(n) be the statement that (mod 11). Since
10 -—1 (mod 11). 5(n) is trivially true by raising each side of the congruence
to the n-th power, and so induction is hardly necessary. Nevertheless, a purely
inductive proof is given.

BASE STEP: Since 10' = 10 —1 (rood 11), 5(1) is true.

INDUCTIVE S'I' EP: For some fixed k � 1, assume that 5(k) is true. Them:

10k 10 (mod It)

10k (—1) (mod 11)
(_i)k(_i) (mod II) (by 5(k))
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proves S(k + 1), finishing the inductive step.

Consequently, by mathematical induction, for all n 1, 8(n) is true. 0

Exercise 232: The result in this exercise was given by Robert Haas as Lemma 3.1
in [249j, where he labelled it "Finite Goldbach". Hint: induct on the number of
prime factors of 2in.

Exercise 233: (Chinese Remainder Theorem) The solution is by induction on it.
BASE STEP: When ii 1, select x = a1 and then the conditions are trivially
satisfied.

INDUCTIVE STEP: For some k � 1, assume that the theorem is true for n
and let m1,m2 mk,rnk÷1 and aI,a2,... ,ak,ak+l be fixed, where each in2 > 1
and the mi's are pairwise relatively prime. To be found is a solution to the k + 1
congruences

x a1 (mod ni1),
x (mod in2).

(29.7)

x (mod mk),
x (mod mkf1),

and then prove that all solutions are those congruent to the given solution modulo
iiiIifl2 . . . •TrikTnk+I

Assuming for the moment that one can find a solution to (29.7), the last condition
above is taken care of first (since induction is not required----in fa(:t, this could have
been proved before the inductive proof was begun). If is a solution to (29.7) and
a? xt (mod mkrnk±I), then for some be Z

a? = + hm1in2 . .

andsoforeachi=1,2 k,k+l,

a? = xt + bnr1mn2. . . E a, (mod mi),

and so a? is also a solution to (29.7). Suppose that and a? are two solutions
to (29.7); then for each i = 1,2 k,k + 1, f — a? is divisible by in1. Since
the in,'s are relatively prime, by Exercise 2 1(1, — .x' is divisible by the product
n11m2 • rnkmk+I, that is, a? f (mod m1m2 This finishes the proof
of the last condition stated above. So, it remains only to find one solution to (29.7).

By induction hypothesis, there is a which is a solution to the first k lines of
(29.7), and in is a solution to these first k lines if arid only if

to x0 (mmmd inl .
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The next idea is to find one of these solutions f which is also a solution to the last
line, that is, find y. z E Z so that

= ro + y(mumn2 .. .

and

= +

Combining these two equations, it suffices to find y arid z so that

xo + y(rnirn2 . . . = + (29.8)

Examine two situations, depending on the value of x0.
If x0 = then obvious choices for y and z are

y = mk÷1 and z = rn1m2

Then (29.8) is satisfied and the number f defined by

= 4- rnrin2-- fllkTitk+1

satisfies each line of (29.7) because for each i = 1,2 ,...,k, k + 1.

= + mkmk÷1 S 10 2 a1 nr1).

Consider the case where Xe ak+1. A little more l)oWer" is needed
to find a suitable y and z. This is where Bezout's Lemma comes in: Since rnk+i
is relatively prime to each of in1, nm2 ink, it is relatively prime to the product.
rn1rn2 - - - in/a, that is, gcd(rn1rn2 . . . = 1, and so by Bezout's Lemma,
there exist integers r and s so that

1 = r1fl1fl12 . +

Multiplying this equation on each side by (10 — ak+1) yields

— ak÷m = (xo — ak+m)rinhrn2- - -ink + (Xe — ak+I)smk÷1. (29.9)

With the choices y = (xo—ak+J )r and z (Xu —ak±m)s, (and a very little rearranging
of terms) (29.9) becomes (29.8) as desired. So the number

= + (xo ak÷r)rrnl - + (10 — ak+l)smkI

is a solution to (29.7). This completes time inductive step.

By mathematical induction, for all ii 1. the statement of the Chinese Remain-
der Theorem is true. 0
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Exercise 234: For each positive integer it, let Cfrt) be the statement that

(mod6).

First notice that a direct proof of C(n) is fairly easy: by the binomial theorem, for
any k? 1,

(2 + =

and in the above sum, for each i = 1,2 ii — 1, each expression 223ThT2 is divisible
by 6, so

= (2 + 3)Ti + 3Tt (mod 6),

from which the result follows. Here is an attempt at an inductive proof:

BASE STEP: Since 21 + 31 = 51, C(1) is true.

INDUCTION STEP: Fix in � 1 and let the inductive hypothesis be that C(m) holds,
that is,

1 (mod 6).

It remains to show that

C(rn + 1): + 31n+1 . (mod 6)

follows. Starting with the left side of C(rn + 1), employ the trick of adding and
subtracting the same terms in order to use

2m+1+3mn+1 = 2.2m+2.3m+3.2m+3.3m_(2.3m+3.2m)
= (2+3)(2m+3m)_(2.3m+3.2m)

5(2m + r)— 6(3m_1 + 2m_1)

+ 3fh) (mod 6) (since in � 1)

5' 5711 (mod 6) (by md. hyp. C(rn))
5717+1 (mod 6),

arriving at the right side of C(m + 1), and so C(rn + 1) is true. This completes the
inductive step C(m) —' C(rn + 1).

By mathematical induction, for each n � 1, C(n) holds. 0

Exercise 235: For each positive integer n, let M(n) be the statement that

1 — iOn (mod 25).

BASE STEP: M(1) says that 16 —9 (mod 25), which is true.
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iNDUCTIVE STEP: Fix k � 1 arid assume that

M(k) : 1 — 10k (mod 25)

holds. It remains to show that

M(k + 16ki 1
— i0(k + I) (rood 25)

follows. One can SILOW this using just modular arithmetic, however, being a hit more
pedantic, a few niore steps are added for clarity. Since M(k) holds, there is some
integer y so that 16k I — 10k + 25y. [Note that y > 0, but this fact is not needed.j
Then

16k+1 = 16k 16

(1 — 10k + 25y)lG

= 16—160k+400y
= 1+15—lGOk+400y

1+15--10k--150k+400y

1+15—lOk+25(169-.-Gk)

l+15—10k (nrod25)

1 + 15 + 10 — 10(k + 1) (mod 25)

1 — I0(k + 1) (mod 25),

as desired. coiripleting the proof of M(k + 1), and hence the inductive step.

By mathematical induction, for each a I, the statement M(n) holds. D

Exercise 236: For each ri 1, let 8(n) be the statement that

371 + 2 (mod 8).

BASE STEP: 8(1) says 3 ± 7 2 (mod 8), which is true.

INDUCTIVE STEP: Fix sonic k � 1 and assume that 8(k) is true. Before showing

8(k -F I), first note the following simple fact which helps: for any positive integer j,
3' is odd and so 4 4 (rood 8). Starting with the left side of S(k + 1),

3k-i-1 + +

(inod8)
E4.3k_(3k±7k) (modS)

= 3k
— 2 (mod 8) (by 8(k))

4 — 2 (mod 8) (by above fact),
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which is 2, concluding the demonstration of 8(k + 1), and hence the inductive step
S(k) S(k + 1).

By mathematical induction, for each 12 1, the statement S(n) holds. D

Exercise 237: (Brief solution) For each non-negative integer n, let T(n) be the
assertion that

(mod ii).

Since 10 —1 (mod 11), T(1) holds. For some k � I, assuming that T(k) holds,

10k+1 = 10 10k 10• (_i)k (_flk — (_1)k+1 (mod 11).

and so T(k + 1) follows. Hence by induction, for all ii � 1, T(n) holds. 0

29.3 Solutions: Divisibility

Exercise 238: For any integer a � 2, let P(n) be the statement that the product
of a odd numbers is also odd.
Base step (a = 2): Let a. = 2k + I and b = 2/? + 1 be 0(1(1 11t1Uil)ers (where k and 1?
are integers). Then

ab = 4kf *- 2k + 2/? + 1 = 2(2k1 ± k + 1?) + 1,

which is again odd.

1NDUCE'IvE STEP: Suppose that. for some fixed in � 2, P(rn) holds. Let a1. 02
am. be 0(1(1 numbers. with. for each i = 1,2 in + 1, a, = + 1. By
induction hypothesis. the product a1a2 is 0(1(1, say 2s 1 1. Then

a1a2 ajnar,,÷1 = (2s 1) = 1- 2s F 2k7,,

2(2skm4i+S+km+i)+1.

and so the larger product is also odd. Thus, P(in + 1) is true as well, completing
the inductive step.

By MI, for each a � 2, the product of a odd numbers is again odd, 0

Exercise 239: Let 8(n) be the statement that if a is odd. the sum of a odd numbers
is odd.
BASE S1'E1': F\r a = 1, the sum of one odd number is trivially odd so 8(1) is true.

INDUCTIVE STEP (8(k) -+ 8(k + 2): Let k = 2rn + I be odd, where k � 1 (and so
rn � 0). and suppose that the sum of any k odd numbers is again odd. Since the
next 0(1(1 number is k + 2 = 2m + 3. it remains to show that 8(k + 2) follows, that
is, that the sum of any k + 2 numbers is again odd. Let ak. 0k
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where each = + 1 is odd. By induction hypothesis, a1 -I- +.. . + is odd,
say a1 + a2 4- . . . + = + 1 for some integer F. 'I'hen

al+a2+...+ak+ak+i+ak±2 = 2E+l j

= 2F+1+2flik+1 +1 +2Tflk+2+I
= 2(1 + + + 1) + 1,

and so the sum of the k + 2 odd numbers is again odd. This completes the inductive
step.

By mathematical induction, for all a 1, 8(n) is true. D

Exercise 240: This question appears in [462, 50. p.281], without solution. Here is
one possible solution, perhaps not the intended one.

For each vi 1, let S(n) be the statement that if vi + 1 distinct numbers are
selected from [1, 2n] = {i, 2, . . . , 2n}, then one of these numbers must divide another.

Base; STEP: When vi = 1, there are only vi + i = 2 numbers in [1, 2], one of which
divides l.he other, so 8(1) is true.

INDUCTIVE STEP: Fix sonic k � 1, and asstinie that 8(k) holds. It remains to
show 8(k + 1), that is, that among any k + 2 numbers chosen from [1,2k + 2],
one divides the other. So let 7' = {ii'. . , C [1,2k + 2] he given in order

< < . < If 12 Fl } c [I, 2k], them' by 8(k), 1' contains two
elements one dividing the other. So suppose that tk+I > 2k. so both tk+1 = 2k 4- 1

and tk+2 — 2k + 2.
Since 2k + 2 E 7', one cart eliminate, without loss of generality, the obvious

divisors 1. 2, and k + 1 from 7'. Furthermore, assume that no two elements in
7" = tk} C [1,2k] \ {k + 1} divide one another. For the moment, add k 1- 1
to T' to give a set 7'" of k+ I numbers in [1,2k]. B 8(k). there are two numbers in
7", one of which divides the other. Since 7" has no such pair, and k + 1 is too large
to divide other number in [1, 2k] it follows that for sonic i k, divides k + 1.
Thus. divides 2k + 2 = tk f2' So 8(k + 1) is true, completing the inductive step.

By mathematical induction, for all vi � i, 8(n) is true. D

comment on the above solution: When the extra k + I was added back in the set to
produce a situation where the induction hypothesis could l)e used, one could have
done the sante with the number 2, proving (since I is forbidden) that 2 and some
other even number was in 7" C [1,2k].

Exercise 241: Repeat the solution of Exercise 240 (which is this problem when
7' :.z 1.). introducing a dummy element when necessary.

Exercise 242: For every vi � 1, let P(rn) be the statement that n(n + 1) is even,
that is, 2 n(n i- 1). (A direct proof is nearly trivial since for every integer vi, one
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of it or n + 1 is even, and so too is the product. Nevertheless, an inductive proof is
presented.)
BASE STEP: For n = 1, since 1(1 + 1) = 2 is even. P(1) holds.

INDUCTION STEP: For some fixed k � 1, suppose that P(k) is true, that is, k(k + 1)

is even. Then
(k + 1)((k + 1) + 1) = (k + 1)k + (k + 1) •2,

and by the induction hypothesis. (k + 1)k = k(k + 1) is even, arid the second term
(k + 1) 2 is also even. Since the sum of even numbers is again even, it follows that
(k + 1)((k + 1) + 1) is also even, proving P(k + 1) is true as well. This completes
the inductive step P(k) .. P(k + 1).

By MI, for each ii � i, P(n) is true. 0

Exercise 243: Showing that 3 divides n3 vi is done in a manner similar to that
of Exercise 252.

Exercise 244: For every integer a 1, let D(n) he the statement that 3 divides
a3 + 2n.

J3ASE STEP: When a = 1, a3 + 2a = 3, which is of course divisible by 3.

INDUCTION STEP: For some fixed k � 1, suppose that D(k) is true, that is, for some
integer m, k3 + 2k = 3m. To see that D(k + 1) is true.

(k+l)3+2(k+1) = k3±3k2+3k+l1-2k+2
= k3+2k-i-3(k2+k+l)
= 3m + 3(k2 k + I) by irid. hyp.

= 3[m+k2+k+lI,

and so (k + 1)2 + 2(k + 1) is divisible by 3. This shows D(k + 1), and so completes
the inductive step D(k) —* D(k + 1).

By induction, for each a � 1, D(n) is true. 0

Exercise 245: For a � 1, let 8(a) be the statement that 3 (22TL — 1).

BASE STEP: Since 22.1 — 1 3, the statement 8(1) is true.

INDUCTION STEP: For some fixed k � 1, suppose that 8(k) holds, that is, the
induction hypothesis (TH) is that there is some integer rn so that 22k — = 3m.
Then

— 1 = 22k
— 1

= 4(22k — 1) 43W 4(arn) + 3 = 3(lm + 1)

shows that — 1 is also divisible by 3, proving 8(k 4 1). [Note: The notation
In . .= indicates where the Induction Hypothesis is used.I
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Since 8(1) is true and 8(k) .. 8(k + 1), by mathematical induction, for any
n > 1, the statement 8(n) holds. 0

Exercise 246: For ii � 1, let D(n) be the statement that 3 + 1).

BASE STEP: With n = 1. + 1 = 9 and 3 divides 9, so D(1) holds.

INDUCTIVE SEEP: Let k � 1 and suppose that D(k) is true, say for some integer
in, 224*1 + 1 = 3m. it remains to show that D(k + 1) is also true, that is, that 3
divides 22(k±1)+l + 1. Then

+1—4 22k+1 +1 _4(22k-I1 +1) 34(3m) —3=3(4m— 1),

(where the penultimate equality is true by induction hypothesis D(k)) which shows
that D(k + 1) is also true. This completes the inductive step.

By mathematical induction, for each n � 1, the statement D(n) holds. 0

Exercise 247: For every n � 1, let 8(n) denote the statement 3 (52Th
— 1).

BASE STEP: Since — 1 = 24 is divisible by 3, 8(1) holds.

INDUCTION STEP: Let k � 1 and assume that 8(k) holds, that is, for some integer
m 52k 1 = 3m. Then

proves 8(k + I), completing the inductive step.

By mathematical induction, for every integer n ? 1, 8(n) is true. 0

Exercise 248: For n � I. let be the statement

3 p + 472+2)

BASE STEP: Sj says that 3 divides 5+64 which is true.

INDUCTION SI' EP: Let k � 1 be fixed, and assume that

(lok÷s
+44*2)

is true, with say, + 44*2 = 3f for some positive integer e. To be shown is that

3j
(thk+i-i_5)
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follows. With a little algebra,

= lOk+5310k4kr234k÷2

= 3€ + 3(10/c +

from which it follows that 3 +5 ± that is, Sk+1 follows. This completes
the inductive step.

By mathematical induction, for all ii � 1, the statement Sn is true. 0

Exercise 249: This problem appears in, e.g., [350]. For every ii � 0, let Sn denote
the statement 3 + 2).

BASE STEP: 5o says that 3 divides 3, which is true. Checking one more step,
says that 3 divides 9, again true.

Ir'rnucTIoN STEP: For some fixed k � 0, assume that 5k is true, that is, for some
positive integer in, 7/c + 2 = 3m. '[he statement Sk+1

j

7k+1 + 2 remains to be
proved. Noting that?
the statement Sk+1 now evidently follows. This completes the inductive step.

By mathematical induction, for all ii > 0, the statement. Sn is true. 0

Exercise 250: The exercise is to show that for every a � 1,

5,, : 4 r12(n 1 1)2

is true. [Without using inductiou, the direct proof follows from the fact that among
n and ii + 1, one is even, and so one of 712 and (a + 1)2 has a factor of 4.]

S'FEP: When n = 1. n2(n + 1)2 = 4 holds.

INDUCTIVE STEP: Let k � I and let the induction hypothesis be that S/c holds; in
particular, suppose that rn is such that k2(k 1)2 = 4w.. It remains to show that

S/ct]: '1
J

(k ± I)2(k + 2)2

follows. Indeed,

(k + 1)2(k + = (k2 + 4k ± 4)(k + 1)2
k2(k + (4k + 4)(k + 1)2

= 4w. 4. 4(k + l)(k + 1)2 (In' S/c)

shows that (k + 1)2(k + 2)2 is also divisible by 4, concluding the proof of 5k+1 and
hence the inductive step.

By the principle of mathematical induction, it is true that for any positive integer
n, time number n2(n + 1)2 is divisible by 4. 0
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Exercise 251: For each it 1, let 5(n) be the statement "4 (6 . 771 — 2

BASE STEP (it = 1): 8(1) says 4 1(6. 7— 2.3), or 4 36, which is clearly true.
INDUCTIVE STEP: For some fixed k � 1. assume that 8(k) is true, that is, that there
is an F so that 6 7k

— 2 . = 4t. To be proved is

8(k+1): 41(6.7k+12.3k+1),

Calculating,

67k+123k+1
= 3(14.7k_2.3k)
= 3(s.7k+6.7k2.3k)
= 3(8- 7k + 4F) by hid. hyp.)
= 4(6.7k+3F)

showing that 4 (6 . 7k+1
— 2- 3k+I), completing the inductive step.

By MI, for all it E .9(n) holds. 0

Exercise 252: Let 8(n) be the statement 5 (it5 — it).

BASE STEP (it = 1): '['he statement 8(1) says 5 I — fl or 5 0, which is true.
INDUCTIVE STEP: Assume that for some fixed k � 1, 8(k) holds, that is, k5 — k = se

for some F e Z. To he proved is

S(k+ 1): 51 (k+ - (k+ 1)

holds, Calculating

(k+1)5—(k+1) = (k5+5k4+10k3+lDk2+5k+i)—(k-ll)
= (k5—k)+5(k4-i-2k3 1-2k2+k)

5f + 5(k4 + 2k3 + 2k2 + k) (by hid. hyp),
= 5[F+k4+2k3+2k2+k],

a multiple of 5. Thus 5 I (k-t — (k f- 1). proving 8(k -I— 1), completing the inductive
step.

Hence by Nil, for all it � 1, 8(n) holds. 0

Exercise 253: For any it ? 1, let P(n) denote the proposition that 32n ± k
divisible by 5.

BASE STEP: P(1) says that 32 + 42 is divisible by 5, which is true.
INDUCTIVE STEP: Let k � 1 be fixed, arid suppose that

P(k) : 32k + 4k'+i is divisible by 5



576 Chapter 29. Solutions: Number theory

holds, say, with 32k + 4k+1 = Sm for some integer m. To be shown is that

P(k + 1): 32k±2 + 4kf2 is divisible by 5

follows. Calculating,

32k+2+4k+2 = 9.32k+4.4k+1
=

= 32k 4(32k +
= 4(Smn) by it'd. hyp.
= + 4mm),

showing that 32k+2 + 4k±2 is also divisible by 5, proving P(k + 1), and hence con-
eluding time inductive step.

By the principle of mathematical induction, for all n � 1, the statement P(n) is
true. 0

Exercise 255: For n � 1, let 8(n) denote the statement 6 (n3 — ii).
BASE STEP: 8(1) says that 6 divides 0, which is true.
INDUCTIVE STEP: Let k � 1 and suppose that 8(k) is true, say k3 — k = 6m. 'I'o

show that S(k + 1) follows, show that 6 divides (k + (k + 1). To this purpose,

(k+1)3-•(k±1) =
= (k3 — k) 1- (3k2 3k)

= 6m+3k(k+1) (hy8(k)),

and since one of k or k + 1. is even, the last term is also divisible by 6, and so S(k + 1)
is true, completing the inductive step.

By the principle of mathematical induction, for every ii � 1, 8(n) is true. 0

Exercise 256: For every positive integer n � 1, let M(n) denote the statement
6 (7" — I).

BASE STEP: Since 6 I (7 — 1), M(1) is true.
INDUCTIVE STEP: For some fixed k � 1, suppose that M(k) is true; in particular,
let rn be an integer with Gin = — 1. It remains to prove A'f(k + I), namely, that
6 divides 7k+l

7k+i _7(7k —1)+7—l =7(Gm)+6

shows that — 1 is also divisible by 6, concluding tIme proof of M(k + 1), and
hence the i riduct n'e step.

By MI, for every positive integer n. M(n) is true. (In fact, 111(0) is also true.) 0
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Exercise 257: For any positive integer ii, let. D(n) denote the statement 6 J +
Sn).

BASE STEP: For a = 1, a3 +5n = 6, so D(l) holds.

INDUCTIVE STEP: Let k � 1 be fixed, and suppose that D(k) holds; in particular,
let £ be an integer with 6f = k3 + 5k. Then

= k3+3k2+3k+1+5k+5
= k3+5k+3k2+3k+6
= (byD(k)).

Since one of k or k + I is even, the term 3k(k 4- 1) is divisible by 6, arid so the last
expression above is divisible by 6. '[his proves D(k± 1). and concludes the inductive
step D(k) D(k + 1).

By MI, for each ii 1, the statement D(n) is true. D

Exercise 258: This exercise has a direct solution because among ri, (a + 1), and
(a + 2), one is a multiple of 3 and at least one is even, yielding a factor of 6. An
inductive proof is however also possible:

For each a � 0, let 8(n) denote the statement 6 n(n -I- 1)(n + 2).

BASE S'I'KP: Since 6 divides 0. 8(0) holds.

INDUCTIVE STEP: Fix k � 0, and suppose that 8(k) holds, that is. suppose that C
is an integer so that

k(k 1 l)(k + 2) 6f.

Then trying to prove 8(k + 1).

(k-f- 1)(k+2)(k+3) = k(k+ 1)(k+2)-h3(k+1)(k-I2)
= 6t-f-3(k-l-1)(k+2).

and since one of k + I or k + 2 is even, 6 divides 3(k + 1)(k + 2), and so 6 divides
(k + 1)((k + 1) -1- 1)((k + 1) + 2), proving 8(k + 1), and concluding the inductive step
8(k) 8(k + 1).

By MI, for every a > 0, 8(n) holds. 0

Exercise 259: For every a � 0, let P(n) he the proposition that n(n — l)(2n - 1)

is divisible by 6.

BASE STEP: P(0) says that 0 is divisible by 6, a true statement.

INDUCTIVE STEP: Fix k � 0, and suppose that P(k) is true, that is, fix an integer
so that k(k I)(2k — 1) = 6t. To show that P(k + 1) is true, it remains to show

that (k + 1)(k)(2(k + 1) — 1) is also divisible by 6. Calculating,

(k+I)(k)(2k+I) = (k+I)k(2k—1)+2(k+1)k
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= k(k— 1)(2k—1)+2k(2k— 1)+2(k+1)k
= oe + 2k(3k) (by P(k))
=

shows P(k + 1) is also true, completing the inductive step.

By MI, for every ii � 0, the statement P(n) is true. D

Exercise 260: Show that 7 divides nT — it in a manner similar to that done in the
solution to Exercise 252.

Exercise 261: For each it 1. let A(n) be the assertion that 7 (2T2+2 + 32fl+1)

BASE STEP: A(l) says that 7 divides + 33 = 35, which holds true.

INDUCTIVE STEP: Fix k ? and assume that A(k) holds, say for some integer
+ = 71. To show that A(k + 1) follows, show that 7 aLso divides

2k+3 32k+3 To this end,

+ = 2 + 32k-F-I

= 2(2kII

= by A(k),

which is divisible by 7, and thus A(k + 1) is also true, completing the inductive step.

By the principle of mathematical induction, for each n 1. A(n) holds. 0

Exercise 262: To be shown is that for every a 1.

S(n) : 7 (11" — 4").

Before presenting the inductive proof. one might notice that a simple factorization
shows that this result is true, and induction is not really necessary.
BASE STEP: 111 — 4' 7, and so 8(l) holds.

INDUCTIVE STEP: Fix k > 1 and suppose that S(k) is true, where I is some integer
satisfying 1k - = 71. 'lb see that S(k 1- 1) is also true, compute:

11k-+-1 _4k+I =
= 11(11k — 1k) ±
= 11(71) + 4k (by 8(k)).

This last expression is divisible by 7, and so S(k + 1) is also true, completing the
inductive step.

By Nil, for each a 1, 8(n) is true. 0
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Exercise 263: For every it � i, denote the assertion in the exercise by

A(nj:

BASE STEP: —1 = (23— 1)(232 +23+1) 22(553) = 22(79-7), so A(1) holds.

INDUCTIVE STEP: Fix k � 1 and suppose that A(k) is true, where I is some integer

satisfying
233k

— 1 = 71.

Then

233(k÷1) — 1 = . 233k —

= 233(233k
— 1) ± — 1

= + 79 7 (by A(k))

shows that 7 divides -- 1, proving that A(/c + 1) follows. This completes the
inductive step.

By MI, for each it � 1, A(n) is true. 0

Exercise 264: For every it � 1, let D(n) denote the statement "32n — 1 is divisible
by 8".
BASE STEP: Since 32 — I = 8, D(l) holds.

INDUCTIVE S'J'EP: Fix k � 1 and suppose that D(k) is true, where is sonic integer
satisfying

32k
— 1 = 8€.

To see D(k 4- 1), show that 32(k± 1) — I is divisible by 8:

32k+2_1 = 9(32k—1)+8
= 9•8€+8
= 8(91+1) (byD(k)).

This completes the proof of D(k + 1) and hence the inductive step.

By Ml, for each n � 1, D(n) is true. 0

Exercise 265: For it � i, denote the statement in the exercise by

A(n):

BASE STEP: Since 31 + 71 2 = 8, A(l) is true. (In fact, so is A(O). so the result in
this problem could be stated for it � 0.)
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INDUCTIVE STEP (A(k) '. A(k + 1)): Fix Ic � 1 and suppose that A(k) is true,
where £ is some integer satisfying

3k + 7/C
— 2 = 8€.

To show A(k + 1), if suffices to show that + 7k+l
— 2 is also divisible by 8.

Calculating,

3k+1 --2 = 3.3/C —2

=
= 3.St+4(7k+J) (byA(k)).

For k � 1, the number 7k -F 1 is an even number, so the entire last expression above
is divisible by 8, which proves .4(k + 1), concluding the inductive step.

By MI, for each ii � i, A(n) is true. 0

Exercise 266: For every n 1, denote the statement by

S(n) : 8 (5fl-F1
-I 2' In + 1).

BASE STEP: S(1) says 8 divides 52 + 2 . 31 + = 32, which is true.

INDUCTIVE STEP: Fix Ic � 1 and suppose that S(k) is true, where is some integer
satisfying

rk-rl + 2 . + 1 = 8€.

Then to see S(k -i 1),

+ 2 . 3k+1
4 1 -- 5 + 2 . + 1

= 5(5k + 2 3k + 1) + 3k

1) (byS(k)).

Since for Ic � 1, 3k is odd, 3k — 1 is divisible by 2, and so the last expression above
is divisible by 8, proving S(k + 1), which concludes the inductive step.

By MI, for each ii � i, 8(n) is true. 0

Exercise 267: For ii ü, define the proposition

P(n): 9 I (n3 + (n + + (a +

BASE STEP (Ti = 0): Since o3 + + = 9, P(O) is true. As an extra check,
+ + 33 = 1 +8+27 = 36 4•9 shows P(1) is true, too.

INDUCTIVE STEP: Let Ic � 0 be a fixed integer, arid suppose that P(k) is true, where
for some integer F,

Ic3 + (Ic + + (Ic + = 9€.
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To see that P(k ± 1) is true,

(k±l)3+(k+2)3+(k±3)3 =
= 9e+(k±3)3—k3 (byP(k))
= 9f+k3+9k2+27k±27—k3
= 9f±9(k2±3k±3),

and so 9 divides (k + + ((k + 1) + + ((k + 1) + proving P(k -F I). This
completes the inductive step.

By MI, for each ii � 0, the statement J'(n) holds. D

Exercise 269: For every vi � 1. denot.e the statement 10 (n5 — vi) by 5(n). One
could simply use Exercise 252 to guarantee a factor of 5, then observe that n5 — vi is

always even to yield the remaining factor of 2. 1-lowever, an inductive proof is also
possible:
BASE STEP: 8(1) says 10 divides — 1 0 which is truc.

INDUCTION STEP: Let k � 1 and suppose that 8(k) is true, namely that k5 -— k =
lOin for sonic non-negative integer in. To show 8(k + 1), one needs to show that 10
divides (k ± — (k ± 1). Indeed,

(k+l)5—(k+l) = k5±5k4-i-10k3+10k2±5k±1—k—l
= k5—k+l0(k3k2)+5(k4+k)
= 1Dm + iU(k3 + k2) + 5(k' + k)

and it only remains to observe that k4+k is always even for one to conclude 8(k4-1).
This completes the inductive step.

By mathematical induction, conclml(le that for every vi 1, the imurnber n5 — n
is divisible by 10.

Exercise 270: For every vi ? 1, let

P(n): 15] + 3(17)4nt — 7).

denote the statement in the exercise.
BASE s-rnP: One can calculate

4(47)4 —7 19769280 = 151317952,

and observe that fl( I) is true. Note: One could have noticed that P(0) is also true
arid more easily verified, and so proving the statement for all vi � 0, is actually
easier. The details of this suggestion are left to the reader.
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INDUCTIVE STEP: Fix some k � 1 arid assume that P(k) holds. To prove P(k + 1),
it suffices to show that 15 divides + — 7. This is perhaps most
easily done working modulo 15:

4(47)41C+4 + 3(iy)4k+4 7 = 4(47)4(47)4k + 3(17)4(17)4k 7
4(24)(47)4k + 3(24)(17)4k

— 7 (mod 15)

+ 3(17)4k
— 7 (mod 15),

0, (mod 15) (by P(k))

and so P(k -f- 1) follows.

By mathematical induction, for every ii � 1 (or ii 0 if the suggestion in the
base step above was followed). P(n) is true. U

Exercise 271: For every ri 0, let S(n) denote the statement 15 1).

BASE STEP: The statement S(0) says that 15 divides — 1, which is true.

INDUCTIVE STEP: Fix k � 0, and suppose S(k) is true; in particular, let £ be an
integer so that 24k — = 15€. To see that S(k 1- 1) follows,

= 1624k1
— I) + 15

=
= l5(l6e+1).

This completes the inductive step.

By MI, for each it � 0, the statement 8(n) holds. 0

Exercise 272: For every a � 1, let T(n) be the statement that 16 divides 1.

BASE STEP: T(1) holds because 51 — 4(1) — I = 0, and 16 divides 0.

INDUCTIVE STEP: Fix some k � 1 and suppose that T(k) holds, that is, suppose
that there is some integer j so that 5k — 4k — 1 = 16j. It remains to show T(k + I),
that is, it remains to show that 16 also divides 5k41 — 4(k + 1) — 1. With a little
algebra,

sk+I4(k+l)l = S(5k)4k5
= 5(5k)_20k_l+lGk
= 5[5k40k1]+l6k
= 5[16j] + 16k (by T(k))

l6(5j+k),

and so 16 divides 5k*1 — 4(k + 1) — 1, as desired. This concludes the inductive step
T(k)—*T(k+l).
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By mathematical induction, for each n 1, the statement T(n) is true. D

Exercise 273: For any ii � 0, let A(n) be the assertion that

171(3- +

BASE STEP: When n = 0, the expression 3- 5272±1 ± is equal to 17. so A(O) is
true.

INDucrivE STEP: Let k � 0 and let the induction hypothesis he that A(k) holds.
To show that A(k + 1) follows, one must show that. 3- 5272*3 ± 2371*4 is divisible by
17. Calculating,

52n-+3 + 2374*4 = 25 - 3 - 52ki-1 + 8- 23k-4.I

= 17.3.52k+1+8(352k+1±8.23k+1)

and since, by induction hypothesis A(k), the last expression in parentheses is di-
visible by 17, it now follows that so too is 3 - ± 2371+4. 'This completes the
inductive step.

By mathematical induction, for every ii � 0, the statement A(n) holds.

Exercise 275: This problem (with kind permission) is reproduced from José Es-
pinosa's website [176, No. 15], with solution by Naoki Sato.

For ii � 1, put f(n) = + + and let C(n) be the claim that [(n) is
divisible by 19. The proof is by an alternative form of mathematical induction.
BASE STEP: As f(i) = 38 and f(2) = 38- 19, both C(1) and C(2) hold.

INDUCTIVE STEP: Fix some k � 1 and suppose that C(k) is true. To see that
C(k -I- 2) follows,

21c42 2k-f2 2k+2f(k+2) = 2 +3 +o
= 242k

+
342k

+
= 162k +

812k
+ 6252k

9 ±
52k

+ 9 (mod 19)

= 1(k),

and by induction hypothesis C(k), 1(k) is divisible by 19, so also is f(k -'- 2). This
completes the proof of C(k + 2) and hence the inductive step.

By mathematical induction, for all ii � 1, f(n) is divisible by 19. 0

Exercise 276: For it � 1. let S(n) be the statement that

21J (4n+1 + 52fl1)
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HASE STEP: With = 1, 41+1 +521_i = 16 + 5 = 21, so S(1) is true.

INIuJCTIVE STEP: Let m> 1 and assume that S(m) is true, that is, 4m+1 + 52m—1
is divisible by 21. To complete the inductive step, it remains to show that S(m + 1)

is true, namely, that 4(m+1)+1 + 52(m+1)_1 is also divisible by 21.

4(rn+1)+1 + 52(712+1)_i = 4. 4712+1 + 52712_i

= 4(47r7+1 + 52m_i) + 21 .

md since by induction hypothesis, 4712+1 + 52m_i is divisible by 21, so too is
.l(rn+1)+l + 52(m11)_1, completing the inductive step 8(m) —* S(rn + 1).

Thus, by MI, for all n> 1, the statement S(n) holds true. 0

Exercise 277: For every positive integer n, let T(n) be the statement that 24
divides ri(n2 — 1). To be shown is that for every odd n � 1, T(n) holds.
E3ASE STEP: Since 1(12 — 1) = 0, and 24 trivially divides 0, T(1) is true.

INDUCTIVE STEP: Fix an odd number k � 1, say k = + 1 and suppose that T(k)
is true, that is, suppose that there is some integer m so that k(k2 — 1) = 24m. The
mtext odd number after k is k + 2, so it remains to prove T(k + 2), that is, that 24
divides (k + 2)((k + 2)2 1). To this end,

(k + 2)((k + 2)2 — 1) = k(k2 + 4k + 3) + 2(k2 +4k +3)
k(k2 — 1) + k(4k + 4) + 2(k2 + 4k + 3)
24rn+4k(k+1)+2(k+ 1)(k+3) (byT(k))

24m+(k+1)(6k+6)

= 24m + (2é + + 12)

24mn+24(t+1)2,

which is evidently divisible by 24, concluding the inductive step T(k) —* T(k + 2)
for k odd. [Note: The above sequence of equalities might not be the most efficient
derivation of the result.]

By mathematical induction, for all odd positive integers n, the statement T(n)
is true.

Exercise 278: This problem appears courtesy of José Espinosa and can be found
on his website [176, No. 171; the hint "Show that f(n) has period 12 modulo 32."
is provided by Naoki Sato.

The solution provided by Espinosa proceeds as follows: For n = 1, f(3. 1) +
1 ± 1) = f(3) + f(4) = 3(1 + 1) + 1 + 3(7 + 1) + 1 = 7 + 25 = 32, which is trivially
(livisible by 32. For the inductive step,

f(3(k + 1)) + .f(3(k + 1) + 1) = f(3k + 3) + f(3k + 4)
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= f(3k + 3) + 3[f(3k + 3) + 1(3k + 2)1 + 1
= 41(3k + 3) + 3f(3k + 2) + 1
= 4f3(f(3k + 2) + f(3k + 1)) + 1} + 3f(3k + 2) + 1

= 151 (3k + 2) + 121(3k + 1) + 5
= 15(3(f(3k + 1) + f(3k)) + 1) + 121 (3k + 1) + 5
= 12! (3k + 1) + 20+ 45(f(3k + 1) + f(3k))
= 4(3f(3k +1) +5) + 45(1(3k +1) + f(3k)).

So if one can prove that 3(1(3k + 1) + 5 is divisible by 8, the proof can be completed.
To this end, another proof by induction is helpful. Fork = 1, 3f(4)+5 = =
80, which is divisible by 8. Then

3f(3(k + 1) + 1) + 5 = 3f(3k + 4) + 5

= 3(3(1(3k + 3) + f(3k + 2)) + 1) + 5

= 3(3(3(1(3k +2) + 1(3k + 1)) + I + f(3k + 2)) + 1) + 5
= 3(121(3k + 2) + 9f(3k + 1) + 2) + 5
= 36! (3k + 2) + 27! (3k + 1) + 17

= 361 (3k + 2) + 9(31(3k + 1) + 5) — 28

= 4(9f(3k + 2) — 7) + 9(3f(3k + 1) + 5).

To see that 91(3k + 2) — 7 is divisible by 2. prove that 1(3k + 2) — 1 is divisible by
2. For k = 1, 1(3 1 + 2) — 1 = f(5) —2 97 — 1 96, divisible by 2. TheIL

f(3(k + 1) + 2) — 1 = 1(3k + 5)

= 3(f(3k + 4) + 1(3k + 4)) + 1 — 1

= 3(3(1(3k + 3) + 1(3k + 2)) + 1 + 1(3k + 3)
= 12f(3k+3)+9f(3k+2)+3
= 121 (3k + 3) + 1) + 9(1(3k + 2) — 1).

Therefore, if 1(3k + 2) — 1 is divisible by 2, then so is f(3(k + 1) + 2) — 1. Hence

91(3k + 2) — 7 is divisible by 2, and so 3(1(3k + 1) + 5 is divisible by 8, and also,
for all positive integers n, 1(3k) + 1(3k + 1) is divisible by 32. 0

Exercise 279: For each ii � 1, let D(n) be the statement that 43 divideS +
72n—1

BASE STEP (n = 1); Since 6'" + 72(1)_i = 36 + 7, D(1) holds.

INDUCTIVE STEP; Suppose that for some k 1, D(k) holds, that is, 6k+1 + =

43m for some positive integer m. To see that D(k + 1) is true, use the trick of adding
and subtracting the expression 6 72k1 as follows;

+ 72(k+l)—I = +
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= 6k+2÷G.72k_1

= 6(6k+i + + (—6 + 72)72k—i

= 6 43m + 72k—I (by D(k))
= 43(6m+72k_l).

Since rn � 1 and k � 1, the number 6rn + 72kt is also a positive integer arid so
6(k+1)+1 + is divisible by 43. that is, D(k + 1) follows from D(k). This
concludes the inductive step.

By Ml, for each it 1, the statement D(n) is true. D

Exercise 280: This problem appeared in [161, 8.37, p. 209] with a nasty typo.
The original problem read "1007, 10017. 10117,..." from which it was impossible to
determine what the sequence was. Use the fact that the successive differences are
of the form 9010...0, a number divisible by 53.

Exercise 281: For every it 0, denìote the assertion by

A(n) : 57] (771+2 + 82h1+ì).

BASE STEP: Since 72 + 5 = 57, A(0) is true.

INDUCTiVE STEP: Let k � 0 be a fixed integer, and suppose that .4(k) is true with
some integer £ satisfying

+ = 57€.

Then.

7k±3
F = 7kf2 + 82k4-I

= 7(7k+2 + 82k÷t) +
= 7.57e+57.S2k±l (by .4(k)),

whence it follows that 57 divides + 82(k+fl±i, proving A(k + 1), and con-
eluding the inductive step.

By MI, for each n � 0, A(n) is true.

Exercise 282: This problem appears in, e.g., [350. Problem 8]. The solution is a
little tricky, as another inductive proof is used inside the inductive step of the main
proof.

For each n � 0, denote the statement in the exercise by

S(n) 64 (3472+1 + 10 . 3277
— 13).

BASE STEP 8(0): Using ii = 0, 31 + 10 — 13 = 0, and 64 divides 0, so 8(0) holds.
As an extra check, with n = 1. 35 + 10.32 — 13 = 243 + 90— 13 = 320 = 5. SO
8(1) holds. too.
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INDUCTIVE STEP (8(k) — 8(k -f I)): Fix some k � 0, and suppose that 8(k) is
true, with some integer so that 34k+1 + — 13 r 64€. To show that S(k + 1)
follo%vs, show that 34(A2r1) -i-

32(krl)
— 13 is also a multiple of 64:

34k+5+l032k+213
= 9(34k+1 + — 13) + 72 34k+1 + 8 13

= 9(64t) -I- 72• 34k+1 + 13.

So to show 8(k + 1), it suffices to show that 72• 34k+l + 8 13 is divisible by 64,
or, equivalently, that T(k) 34k+I .i- 13 is divisible by 8. The statement T(k) is
proved separately by induction:

BASE STEP (T(0)): 9 . 31 + 13 = 40 = 5, so T1'(O) holds.

INDUCTIVE STEP (T(j) T(j+ 1)): For some fixed j � 0, suppose that T(j) holds
with some integer z so that 9 343+1 + 13 = 8z. (Observe that z � 5.) Then to see
that T(j + 1) holds,

34C2+1)+1 + 13 = 9 . + 13

=
=
= 8(8hz — 130).

This completes the inductive step.
By MI, for each k � 0, T(k) holds. Returning to the main body of the proof,

since T(k) holds, so does S(k+1); this completes the inductive step 8(k) ; 8(k+1).

By MI, for each a � 0, 8(n) holds. 0

Exercise 285: For each integer a > 0, denote the statement in the exercise by

5(n) 73 2 + p211+ 1)

BASE STEP: 82 + 9 = 73, 50 8(0) holds. As an extra check, + 93 = 512 ± 729 =
1251 = 73• 17, so 8(1) is true, as well.

iNDUCTIvE STEP: Fix some k � 0 and suppose that 8(k) holds, where for some
integer + p2k 1.1 = Then

92(t±1)+1 = 8k+2 ± 92k±3

=
= 8(8k±I +92k1.1) +73.92k41

8• 73€ + 73 g24+1 (by 8(k))
73(8 + 92t
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shows that 73 divides 8(k+1)+1 + 92(k-i-1)+I which is S(k + 1). This completes the
inductive step.

By MI, for each ii 0, the statement 8(n) is true. D

Exercise 286: For each n � 1, let P(n) denote the proposition that 80 — I).

BASE STEP: Since 34 - 1 = 80, P(1) is true.

INDUCTIVE STEP: Fix sonic integer k � 1, and let the inductive hypothesis be that
P(k) is true; to he precise, assume that £ is an integer so that 34k — = Sot The
goal is to show that P(k + 1) is true, that is, that 80 divides — 1. Toward
this goal,

34k+4 = 3434k — 1

=

= (byP(k))
= 80(81€ + 1)

shows that P(k + 1) indeed follows from P(k).

By MI, for each a � 1, 80 divides —

Exercise 287: This problem appears in [350J and many other places. For every
a � 0, let 8(n) be the statement that 133 divides 11n+2 +

12 = 133, the statement 8(0) is true.

INDUCTION STEP: Fix k > 0 and suppose that 8(k) is true, say for some integer m,
11k-t-2 + = 133mn. Then

11k±3 + = + 144 122k±1

= 144(11k+2
4 u2k+1) —

= 144(133rn) —
1k+2 (by 8(k))

= 133(l44ni — 11k+2)

and so 8(k + 1) follows. This completes the inductive step.
By MI, for each a � 0. the statement 8(n) is true.

Exercise 288: For every a � 1, let 8(n) be the statement that

576 (52Th+2 — 24n — 25).

BASE STEP: When n = I, — 24 - 1 — 25 = 625 — 49 = 576, which is (of course)
divisible by 576, so 8(1) is true.
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INDUCTION STEP: Suppose that for some fixed in � 1. 9(m) is true, that is, there
exists an integer k so that -- 24k — 25 = 576k. Then

i 1).j.2
— 24(in + 1) — 25 = 25 52771+2 24m — 49

= 25 52777+2
— 25 24m — 625 + 57Gm + 576

= 25[52h17+2 — 2'lm — 25] + 576(m 1)

= 25'576k±576(m+l)
= 576(25k+rn+l),

which proves that 52(777+1)42 — 24(m + 1) 25 is divisible by 576. Hence, S(rrt + 1)
follows from 8(m), finishing the inductive step.

By mathematical induction, for each n � 1, 8(n) is true. U

Exercise 290: This problem can he found in, e.g., [350. Problem 88], however,
the proof given there is essentially a direct proof—the inductive hypothesis is not
required; however, one small lemma used in the main proof might 1)0 proved by
induction. Note also that part of this proof also appears separately in Exercise 305.

To he shown is that for each it 1, the proposition

P(n) : [1(1 +

holds. For example, P(l) says that 4 divides

+ = [1 ± + 3] = 4 + = 4 + 4,

which is true. 'to deal with the ceiling function iii general, observe that for any
positive integer a.

2n 26

(1 + —

= I(' + +. >(l —

= +

i=()

= E

=

is an (even) integer. Since (1 —- cc I (a simple, hut unnecessary, proof of
which is by induction) it follows that for any positive integer ii,

[(I = (1.4. ycj)21) + (1 -



590 Chapter 29. Solutions: Number theory

Thus,

1(1 + (1 + + (1 —

= [E + E
= 21t •2

i=O
i even

[n/2J

=

shows that P(rt) is true. 0
Remark: I have not yet found a purely inductive proof of P(rt) (i.e., one that

uses the inductive hypothesis in an inductive step).

Exercise 292: For ii> 1, let 8(u) be the statement that the polynomial x2" —
is divisible by x2 y2. In fact, S(n) is a special case of a more general statement:
let T(n) be the property thai; for any polynomials p and q.
p p = x2 and Bq = y2.) One proof for 1(n) is direct by the
fac torization

— = (p + p'12q i,.. + ± 2 ± q" I)

however, for completeness, a proof of 1(n) by induction is included:
BASE STEP: Statement T(1) says that for any polynomials p. q, p' qt is divisible
by p — q, which is true.
INDUCTIVE STEP: Fix k � 1 and suppose that T(k) is true, with say, — qk =

(p — q)r, where r is some polynomial. It remains to show that T(k + 1) follows, that
is, that p'"1 — is also divisible by p q. Toward this goal, calculate

=

p(p — q)r + (p — q)qk (by T(k))
= (p_q)[pr±qk],

showing the desired result T(k + I). This completes the inductive step T(k) —4
T(k 1 1).
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By the principle of mathematical induction, for every positive integer a, the
stronger result T(n) holds, and hence 8(n) holds as well. 0

Exercise 293: For each ii � 0, let 8(n) he the statement that the polynomial
x +

x + y x + is valid.

INDUCTIVE STEP (8(k) S(k + 1)): Fix some k � 0 and suppose that 8(k) holds,
in particular, suppose that r is a polynomial so that

+ = r(x + y).

Yet to be shown is that S(k + 1) holds, namely, that x2k*3 +
y as well:

+ x2x2k+l +

+ — +
=

x2 r(x ± y) + (y — x)(y + x)y2k+1.

front which it follows that x ± y is a factor, and so 8(k 4 1) follows, completing the
inductive step.

By Ml, for each ix 0, 8(n) holds. 0

Exercise 294: This problem appeared in [582, Prob. 28] without solution, but I
scorn to recall Bevan telling me that there was kind of a trick that made the problem
simple. One such trick that almost works is to work niodulo 5, a trick investigated
below; another idea is to first prove

0
5 12 2 2

=r (n + 1) (2n ± 2n — 1),

by induction, then use this formula to show that is indeed a factor—however,
this idea does not seem to be in the spirit of the question.

For any n � 1, let P(n) denote the proposition that divides j5.

BASE STEP: If = 1, then = 1 = and so P(l) is true.

INI)UCTIVE STEP: For some k � 1, suppose that P(k) holds. Exercise 252,
for any a 1, 5 divides n° a, and so, n5 a (mod 5). Then

k+I

>i (mod 5)

= (k + 2)
(mod 5).
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So where does that get us? The inductive hypothesis has riot been used yet.

Exercise 295: This problem appears with kind permission from José Espinosa
[176, No. 5]. The solution outlines provided there by Naoki Sato were as follows:

For all vi, let = a2" + b2" + Then ± 62 + = 2(a2 + ab ± b2) and since
d is odd, d divides a2 ± ab i- Also,

a2b2 + a2c2 + b2c2 = a2!? 4. (a2 + 62)(a

= a4 + 2a3h + 3a2h2 4 2ab3 +

= (a2±ab+b2)2,

so a2b2 + a2c2 + b2c2 is divisible by d2. Finally, by results on recursion, for all n � 3,

= (a2 + b2 + (a2!? + a2!? + +

(a) Note that a6"4 + + c6"4 = 53n—2, and for all m ? 2,

= (a2 + b2 4- c2)s3,,_3 (a2!? -i- a2!? + + a2b2e.2s3n_5.

For it = 2, 53,, _5 = ci = 02 .i- + c2, which is divisible by d. Hence, by induction,
for all ii 1, is divisible by d.

(b) Note that .4 t and for all ii � 2,

2 2 2 22 22 22 222=(a -i--h -Ic (a b -i-ac -i-bc be

For a = 2,

= = a4 -I-!? + = 2a4 ± 4 = 2(a2 + ah + 62)2.

which is divisible by d2. By part (a), is divisible by d. Also a2 ± b2 ± is
divisible by d and a2b2 + a2c2 ± b2c2 is divisible by d2. 1{ence, by induction, for all

> 1, is divisible by d2.

(c) For all vi � 1, 2" is congruent to 2 or 4 modulo 6. The result then follows
from parts (a) and (b).

(ci) First observe that for vi � i, 4 niodulo 6. The result then
follows from part (b). C

Exercise 296: This problem essentially appears in [437. Prob. 12-25], where a
slightly different question is posed, yet the proof presented there implicitly contains
the proof of this result.

Suppose that A, B, and C are positive integers where BC (A — B — C). For
each a � I, let S(ut) be the statement that BC (4,1 —

J3'Z - - C").
BASE. STEP: 8(1) is just a restatement of the hypothesis. awl so holds vacuously.
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INI)UCTIVE STEP: Fix some k � 1, and suppose that 8(k) is true, that is, suppose
BC divides Ak + Bk 6'k (and BC divides A — H — C). Let £,m be integers with

and (29.10)

To show 8(k -I- 1), it suffices to show that BC divides — Bkl I — Ck÷t. Observe
that

= (BCe + B ± C)(BCm ± Bk + Cc) (by eq'ns (29.10))
= (BC)2€m + BCk+I€

+B2Cm + + BCk + BC2m + BkC +
= + + BC(BCE + Btt+ C"E + Bin + + Cm +

and so BC divides — i•I — as required. This completes the inductive
step 8(k) —* 8(k -F 1).

By Nil, it follows that for each it � i, 8(n) is true. D

Exercise 297: Let p be a priuie and a1, a2, . . . ,a, he positive integers each
larger than one. Let :1(u) be the assertion that if

p (ai a2 . . . . a,,),

then p divides some a,.

BAsk; STEPS (it = 1, ii = 2): The statement, for it = 1 is trivially true.
Here is a standard proof for the case a = 2: If a prune p divides a product

oh, and p does not divide a. then gcd(a,p) = 1 and so (by the Euclidean division
algorithm) there exist integers k and £so that 1 = ka+fp. Multiplying this equation
by b gives b = kab + £pb; since p divides both terms on the right-hand side, p divides
the left side. that is, p b. Hence A(2) has been proved.

INDUCTION STEP: Let k � 2 and suppose that A(k) holds. To prove is that

A(k -F 1): "if p I . . then p divides one of the

So assume that p (aia2 . . . aflak÷1). Putting a = o1a2

a or;' I &. lip b, the antecedent of A(k + 1) is true, since then p I ak+i. If
p fails to divide &, therm p

I
(ala2 ak), and so by induction hypothesis

p divides some and again the antecedent of A(k + 1) is trne. Thus A(k -1- 1)
holds, completing the inductive step.

By MI. for every ii I, the statement .4(u) is true. C

Exercise 298: This result occurred in [280, Problem 2], complete with a solution.
A few details are added to that solution.
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BASE STEP: For n = 1, N = 2 suffices.
INDUCTIVE STEP: For some k � 1, suppose that N is divisible say, N =

+ a/C_210' 2 + a110 +
If N is also divisible by 2k+I, then put = 2 in front of N, getting a new

number N' = 2- 10/C + N which is divisible by 2kt1 since both 2- and N are.
If N is not divisible by 2k, then put C/C = 1 in front of N, getting the new number

N' = 10k + N. Since does not divide N, N
is a product of and an even number, that is,

divides + N.
In either case, there is a (k + 1)-digit number N' with all digits being I or 2, and

which is divisible by This concludes the inductive step.
By Ml, for each n � 1, the result is true. 0

Exercise 299: This exercise has a very easy direct proof, accomplished simply by
observing that in the expansion of (2n)!, there are n even numbers, each of which
has a factor of (at least one) 2.

Here is the inductive proof: For any n � 1, let 5(n) denote the statement that
(2rt)!

is an integer.

BASE STEP: 8(1) says 2/2 is an integer, so 8(1) is true.
INDUCTIVE STEP: Fix some k � I and suppose that 5(k) holds, say with some

positive integer in satisfying = in. Then

(2k + 2)! — (2k + 2)(2k + 1)((2k)!)
—

— (2k + 2)(2k + 1) (2k)!

— 2

(2k + 2)(2k + 1)
2

= (k+1)(2k+l)m,

which is an integer, so 8(k + 1) holds, completing the inductive step.
By MI, for each n � 1, 8(n) is true. 0

Exercise 300: For each integer n � 1, let 1(n) denote the statement that is

an integer.
BASE STEP: Since = 1, 1(1) holds.
INDUCTIVE STEP: For some fixed k? 1, suppose that 1(k) holds; in particular, let
rn be the integer To prove I(k + 1), it suffices to show that is also
an integer. Rewriting this expression,

(2k + 2)! — (2k + 2)(2k 4. I)[(2k)q
(k + 1)!2k÷1 2(k +
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(2k + 2)(2k + 1)
= in

2(k + 1)
(by 1(k))

= in(2k+1),

which is an integer, so I(k + 1) also holds, completing the inductive step 1(k)
I(k + 1).

By Mi, for each positive integer n, 1(n) holds. D

Exercise 301: This exercise has appeared in many places, [582], for one.
Fbr each positive integer ii, let P(n) he the proposition that

n5 n3 7iz

is an integer.
BASE STEP: -I- + = 1, so P(l) is true.
INDuCTIvE STEP: Fix k > 1, and suppose that 8(k) is true; in particular, let

rn = + -F he an integer. To show that 8(k + I) holds, examine

(k-Fl)5 (k+l)3 7(k+1)
5 3 15

k5 i5k4 + 10k3 + 10k2+5k+ 1 k3 +3k2+3k + 1 7k+7
= 5

+
3

+
15

k5 k3 7k 5k4+10k3+10k2+5k+1 3k2+3k+i 7

5
-- +3

(hyP(k))

= rn-i-k4+2k3+2k2+k-i-k2+k+1,

which is an integer. Thus S(k + 1) is true, completing the inductive step.

So by MI, for each n � 1, the statement 8(n) is true. U

Exercise 302: This problem, too, appeared in Youse's book [582] (however, that
is the only place where I have seen it).

For each positive integer ii, let A(n) he the assertion that

a7 1hz

+ I +

is an integer. Putting these three fractions over a common denoniiiiator gives

3n7 + 7n3 + lln
21

so equivalently, to be shown is that 21 divides 3n7 + 7n3 +
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BASE STEP: With vi = 1, + Tn3 + 11-n = 21, so A(1) is true.
INDUCTION STEP: Fix some k � 1 and suppose that A(k) is true, that is, suppose
that 3k7 4 7k3 4- ilk is divisible by 21. lb show that A(k + 1) is then true, show
that = 3(k .t + 7(k + + 11(k + 1) is also divisible by 21. Expanding,

3(k7 + 7k6 + 21k5 + 35k4 ± 35k3 + 21k2 + 7k + 1)

+7(k3+3k2 +3k+ i)+ llk+ 11
= :3k7 + 21k6 + 63k° + 105k4 + 105k3 + 63k2 1- 21k + 3

-1-7k3 ± 21k2 + 21k + 7 + ilk ii
= (3k7 ± 7k3 + ilk) + 21k6 + 63k5 + 105k4 + 105k3 ± 84k2 + 42k + 21

= (3k7±7k3± llk)±21(k6±3k5±5k4 -i-5k3±4k2+2k+1).

In the last line above, by induction hypothesis, the first term is divisible by 21,
and so the entire expression is also. This shows that Xk is divisible by 21, proving
A(k ± 1), and concluding the induction step.

By mathematical induction, for every vi � 1, the statement A(n) is true. D

Comment: One might think that since 3m7 + Tn3 + I in has a common factor of
vi. it might suffice to prove by induction that 3m6 + + ii is always divisible by
21. however, already when n = 3, this expression is equal to 2261, not divisible by
21 (but divisible by 7).

Exercise 303: This exercise appeared in Trim's hook [534J.
Let 8(n) be the statement that if vi is a positive integer, so is + 6rz2 + 2n)/3.

Ilasn STEP: Since i3 + 6 12 + 2 - 1 9, 8(1) is true.
INDuCTIVE STEP: Fix k ? 1 and suppose that 8(k) is true, that is, (k3+6k2+2k)/3
is an integer. lb show that S(k+1) holds, show that ((k+1)3+6(k+1)24-2(k-l-1))/3
is also an integer. Indeed.

(k± 1)3±6(k± 1)2 +2(k+ I)

k3 + 3k2 + 3k + 1 1 6 + 2k + 2
3

— (k3 + 6k2 + 2k)+ 3k2 + 15k±3

k3 -F 6k2 4- 2k 2 -== , +k +ok+i,

and by induction hypothesis, this is an integer as well. Thus S(k + 1) is verified,
completing the inductive step 8(k) 8(k + 1).

By mathematical induction, for all positive integers vi, the statement 8(n) is
true. El
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Exercise 304: '['his exercise occurred in [280. Problem 6]. The solution is by double
induction, but there are some subtleties. so the presentation here is rather pedantic

Let x and y be tiori-zero reals so that x + j, p + and xy -1- are integers. Let
5(m, n) he the statement that + is an integcr. The proof that 8(m, ii)
is true for all integers rn and n is given in four stages:

(i) For all in � ü, Sfrrz,0) is true.
(ii) For all in > 0, 8(m, 1) is true.
(iii) For any fixed in � 0 and all ii ü, S(m,n) is true.
(iv) If either in or a (or both) are negative, then 8(711, it) is true.

Steps (i) -(iii) are proved below by induction each with two base cases. Step (iv)
uses a direct proof.

(i) For all in � 0, S(in. 0) is true:

BASE STEP: Since I + j- is an integer, 8(0, 0) is truc. and 1w assumption, .9(1, 0) is
true.
INDUCTIVE STEP: (8(k — 1,0) A 8(k, 0) 8(1,: 4- 1))

For some fixed k � 1, assume that. both S(k — 1. 0) and 8(k. 0) are true. Then
si rice

ki / i\/k 1'\ TkI 1

+—mçX+—)çX +-kj-
and the three bracketed terms on the right. are integers by assumption, by 8(k), and
8(k — I) respectively, so S(k + 1,0) holds as well.

By an alternative form of mathematical induction. (or a restricted type of strong
induction) for all in ? 0. 8(m. 0) is trite.

(ii) For all in � 0, 8(m, 1) is true:

BASE STEP: Both 8(0. 1) and 8(1,1) are true by assumption.
INDUCTION STEP: (8(k — 1,1) A 8(k, 1) —÷ 8(k + I. I))

For some fixed k � 1, suppose that 8(k — 1, 1) and .9(A:, I) he l.rue. Then

k--I 1 7 1\/k I \
X 1 1/

and the three l)racketed terms on the right are integers by assumption, S(k, 1) and
S(k — 1, 1) respectively, showing that 8(k + 1, 1) is true.

By an alternative form of induction, for all in � 0, tIre statemitent 8(rn. 1) is true.

(iii) F'or_any fixed -in � 0 and all a 0. S(m, a) is true:

Fix some in � 0.
BASE STEP: In parts (i) and (ii), S(m, 0) arid 8(;-im, 1) were shown to be true.
INI)UCTIVE STEP: (S(rn,f — I) A 8(rn.. C — 1) 8(rrm. C 1))
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For some fixed £ � 1, suppose that both S(rn, e — 1) and S(rn, t) are true. Then

11 1 1 \
+ + = 1¼\XY + + — - +

and by S(m, f), assumption, and S'(rn, e — 1) respectively, the three bracketed ex-
pressions on the right are integers. This shows that S(irm, £ + 1) is true, finishing the
inductive step.

Therefore, by an alternative form of induction, S(m, ii) is true for the fixed
in 0 and all n 0; since in was arbitrary, this shows that for all non-negative
integers in and n, the statement S(m, 72) is true.

(iv) If either iii or n is negative (or both), S(m, n) is true:

If both in and n are positive, then since

1 11myn + x-my_n
+x_m yn

is an integer, S(—m, —n) is true as well.
Also. siace

1 1 i\1 1\ / 1xmnzy't + x-rnyn = ± + — yetm? +

aud = it follows that is an integer. Interchanging
the roles of x arid y, it follows that is also an integer. This concludes
the proof of (iv) and hence the exercise. 0

Exercise 305: This exercise appears in [582, Problem 691 without solution. First,
an (overly complicated) inductive solution is presented, then a much simpler direct,
non-inductive proof (which was implicitly used in Exercise 290, as well) follows.

Let 1(n) denote the proposition that (2 4 + (2 —- is an integers.

Inductive Proof of 1(n):
B\SE STEP (ii. = 1): (2 4 i (2 — s/3)1 = 4, which is an integer, so 1(1) is true.

INDUCTIVE STEP: For some k � 1, assume that 1(k) is true. that is, (2 + +
(2 — is an integer. Then

=

=
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By 1(k), the first surnmand 2((2 + + (2 — is an integer. It remains to
show that + — (2 — is an integer. This is shown by expanding
both inner terms using the binomial theorem:

—

=

-

When i is even, — 0, and when i is odd, — =
and together with the term in front, produces an integer. Thus

(2 + 1- (2 — is an integer as well, that is, 1(k + 1) is true, coiiipleting
the inductive step.

'L'herefore, by mathematical induction, for all n � I the statement 1(n) is true.
0

Direct Proof of 1(n):

[2 + + (2-
= +

2

i even

n/21

= 2

which is an (even) integer. 0

Exercise 306: This problem occurred in the 1981 West Germany Mathematical
Olympiad; the solution appears, e.g., in [277, pp. 88 89], where it is also mentioned
that. a more general proof for all positive integers (not just powers of 2) was given
by Ronald Graham in Mathematical Intetligencer, 1979, p. 250. Only the proof for
the powers of 2 is given here. This also appeared in [161, 8.28, p.208].
BASE S'I:EP: Since n 1 is the first power of 2, note that the claim holds rather
trivially (since there is only one number in the set). One might also observe that
for the next case. ri 2, the claim also is true, because in any set of 3 numbers, two
have the same parity, and so their sum is even (divisible by 2).
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INDUCTION STEP: Suppose that the claim holds for ii = and let S be a set of
2 — 1 elements. Apply the induction hypothesis,

producing integers whose sum is divisible by 2ki, say, whose sum is = 2k_la.
Delete these 2k1 elements from S. producing with 2k

— 1
— 2k1 = 2k—i

— 1

integers left. Again pick any 2 — I elements from Si, apply the inductive
hypothesis, and get more integers whose sum is divisible by say with sum

= 2b. Delete these from giving 82 with 3 — 1
— 2k4 = — 1

integers remaining. From 82, again by induction hypothesis. pick with some
equal to, say, 53 = 2k_ic.

Two of the integers a, b, c have the same parity, say a and b. In this case, the
two subsets having stuns and respectively contain 2k integers in all, and have
grand total 2k_i(a + b). But a + b is even, say a + & = 2€, so the grand total
is . 2€ = 2kg, that is, the grand total is divisible by This completes the
inductive step, and hence the proof. 0
Exercise 307: This exercise was found on the wel) [518]; 1 don't know the original
source. The solution here might riot be the intended one. For ii � 1, let r't(n) be
the assertion of the exercise.

BASE STEP: Since 22' = 4 > I., at least one prime (namely, 2) is a divisor.

INDUCTION STEP: Suppose that for some k � 1, A(k) is true. Their — I =
(22k

— +1) and by .4(k), the first factor is divisible by at least k ci istirict primes
Pi To prove 4(k + 1), it remains to show that at least one prime factor of
22" + I is not in {Pr'

. . . , In hopes of contradiction, suppose that P1 divides
22" + 1. Putting q = — 1, p would then divide both q and q + 2, and so would
divide the difference 2. showing that Pt must l)e 2 itself. However,

2 is impossible. Thus, one must abandon the assuniption that P1 divides
22" + 1. Since tins argument holds for airy m' none of Pr I'k divides 22" + 1, and
so 22" + 1 contains yet erie more prime factor. This completes the proof of A(k + 1)
and hence the inductive step.

By rnatherrratical induction, for each ii � 1, the statement A(n) holds. 0
Exercise 308: This problenni appears witir kind permission from José Espinosa's
website [176, No. 7] of "unconirnon" [=hardi'] mathematical induction problennns.
Three proofs are provided by Espinosa, occupying nearly three pages of deiise rnathe—
inatics, and so the reader is referred to tIne source for a coin plete proofs. One solution
outlined (by Naoki Sate) does riot appear to be inductive, though it might aid in
finding an inductive proof:

First prove a lemma:

Lemma 29.3.1. For any prime p and positive tntegcr a not divisible by p — 1,

U (mniod p).
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Proof: Let s denote the given sum, and let g be a primitive root module p. Since
it is not divisible by p — 1, f 1 (mod p). Therefore.

p.-' p—i
gfl,g = s (mod p),

so (g4 — 1)s 0 (mod p) implies s 0 (mod p). D

Let t denote the sum in the problem, and let a denoi,e

p—i 2k±i 4k+2
=

>i:
i=i i=l i=2k+2

2k+i 2k+L

4 ( —-

2! (modp).

Since 2Ti is not divisible by p — I = 4k + 2 = 2(2k + 1), by Lemma 29.3.1, n 0

(mired p). so t 1) (mod 0

Exercise 309: This problem appears with kind permission from José Espinosa's
website [176, No. 241. An inductive proof is not given, 1)111. appears challenging.
One solution provided (by Naoki Sat;o) does riot appear to be by induction:

Let s denote tire given stint, and let t denote

p—i 3k+2 6k-t4

-=
f23" E

i=1 i—i i=3k+3
2k4-i 2k±l

= + > (p —

2s (mod p).

Hence p — 1 6k + 4 = 2(3k + 2), which can riot divide 2 3". Therefore. I 0

(niod p), and so s = 0 (mod p).

The hint provided by Espinosa is to see the solution to Exercise 308. and to use
tire fact that if a and b are relatively prime, then both a2 — oh + i? and a2 + ab ±
are divisible by primes of the forum 6k + I or 3 (when 5 is relatively prime to 3).

Exercise 310: This problem appears with kind permission from José Espinosa's
website [176, Nc). 29] without, aim inductive solution, but one (by Naoki Sato) that
does not appear to he inductive:
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Let s denote the given sum, and let t denote

p—i 2k 4k

>2
14n+2

>2 + >2
i=1 i=l

>2 + — j)dfl+2

2s (mod p).

Since p — 1 = 4k does not divide 4n + 2, t 0 (mod p), so s 0 (mod p). D

Note: A hint given for an inductive proof says: From Wilson's theorem, there
exists an integer a so that a2 —1 (mod 4k + 1); then prove that the integers
1,2 2k can be arranged into k pairs so that the sum of the squares of each pair
is divisible by 4k + 1. By the well-known fact that
x + y, the result follows.

29.4 Solutions: Expressible as sums
Exercise 311: See proof of Theorem 3.4.1.

Exercise 312: For each integer n � 8 let S(n) be the statement that n is expressible
as a sum of 3's and 5's.

BASE STEP: Since 8 3 + 5, 9 = 3 + 3 + 3, 10 5 + 5, S(8), S(9), and S(10) arc
true.

INDUCTIVE STEP (8(k) - S(k+3)): Let k � 8 and assume that S(k) is true, where
for some non-negative integers a, b. k = a- 3 + Then k + 3 = (a + 1). 3 + 6-5,
a suni of 3's and 5's, SO S(k + 3) is true.

By Ml (actually, by three cases of Mi), for all n 8, S(n) is true. 0

Exercise 313: (Outline) To show that any positive integer n {1,3} can he
written as a sum of 2's and 5's, it suffices to check when ri = 2, and when n = 5. The
inductive step k to k + 2 then covers all the cases: 2 4 —+ 6-- and 5 7 9-
IFollow the write up of Exercise 312.) 0

Exercise 314: (Outline) To show that any integer ri 24 can he written as a sum
of S's and 7's, 6rst show thai, 24,25,26,27,28 all can be, and then induct from k to
k+5. 0

Exercise 315: (Outline) To show that any integer n 64 can he expressed as a
sum of S's and 17's, first. show that 64, 65, 66, 67, 68 all can be, and then induct from
ktok+5. 0
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29.5 Solutions: Egyptian fractions
Exercise 316: (Outline) Use the partial fractions identity

1 1 1

This expression can he used as many times as desired, each time applying it to the
last term in the Egyptian fraction representation most recently obtained. Then a
proof by mathematical induction shows that if any representation is given with k
fractions, then for any Ti � k, there is an expression that uses at least ii fractions.

Exercise 317: (Outline) 1.'he idea is a greedy algorithm, and although it may
seem quite natural, this algorithm is credited to Leonardo Fihonacci in 1202 [191],
and is sometimes called Fibonacci 's algorithm. This algorithm was rediscovered by
.1. 3. Sylvester [522, pp. 440-445]. The idea is to, recursively, find the largest unit
fraction that is at most p/q, subtract off, and then repeat with the new remainder.

Thus

—
The numerator of the remainder (without reducing the fraction) is

bp — q = bp — p + p — q < q + p — q = p is smaller than the original numerator. So
+ Repeat this process with = Eventually, the numerator of a

remainder is 1 by the well-ordering of positive integers. 0

Exercise 318: (Outline) One idea is l)y Exercise 395, use a sufficiently long series
of harmonic numbers to get the original expression down to less than 1, and then
apply Exercise 317. 0

Note.: Induction is not really necessary in the solution to Exercise 318, as the
two main ingredients of the proof were already clone by induction.

29.6 Solutions: Farey fractions
Exercise 319: If E is in then so is (1

—
= ILl!

Exercise 320: Check the two statements Sj(n) and 82(n) for n = 1,2,3. and then
for the inductive hypothesis, assume that both Sj(n) and 82(n) hold am! prove both

+ 1) and 82(11 + 2).

29.7 Solutions: Continued fractions
Exercise 323: First observe that po = a0 and qo 1. Also, C1 acj + = apal.±i

50 Pi a0a1 ± I and = a1. Let 8(k) be tile two statements of equations (II. 10)
and (11.11).
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BASE STEP: With simple algebra, C2 = a2(auai+i)-fao 50 P2 = a2(aoal + 1) + ao =
a2p1 + po and = a2a1 + 1 = + qo confirm 5(2).

INDUCTIVE STEP: Fix in � 3 and assume that for any rational continued fraction,
the corresponding equations in S(m — 1) are true. It remains to show that 5(m)
holds. Consider the rational continued fraction D = [ao, al, . .. , a,,,_1 + By
equation (11.8), 6'm = [ao,ai, ... ,a,,,] = D, and for each j = 0,1,2,... ,m —2, each
of C arid D have the same j-convergents, that is, D3. However, Gm Dm_i.

For each i, let = Then
'It

Pm — ,-., — ,-., Pn,_i— — — L/,n_i

= (am_i + +Pm_3
(by S(m — I) applied to D)

(am_i + +
+ aL)Pm_2 -4- Pm—3

= (since C,,, 2) = Dm_3
(am_i ± + Qm—3

— + Pm—2 +

— amam. - Iqnz—2 + qm—2 +
= + Prn--3) + Pzn—2

am(arn.]qm_2 + + qm-2
a,npm_i +P,,,—2

(by 5(m — 1) applied to C),
+ qm—2

and so comparing numerators and denominators, both equations in 5(m) hold true.

By mathematical induction, for every k ? 3 arid for any rational continued
fraction, equations (11.10) and (11.11) are true. 0

Exercise 324: For each k � 1. let 5(k) denote the equality (11.12): pkqki —
pk—iqk

= (_i)k1.

BASE STEP: Using the values Pu a0, qn = 1, pi = aoai + 1, and = a1, 5(1) says

(a0ai + 1) . I — aQat
=

which is true.

INI)UCTLVE STEP: For some fixed m � 2, assume

S(m — 1): P,n—iq,n—2
= (_1)m—2

holds. Then

Pm Rim
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= (ampm_: + p1n2)q,,,.1 4 (by Thm 11.7.1)

= Pm 2qtn-1 — pm—lqfl2—2

= (Prn-lqm—2 i)
= ._(_1)m_2 (by 8(rn — 1))

= (...j)TTL—l,

shows that 8(m) is true, completing the inductive step.

By mathematical induction, for each k � 1, 8(k) is true. D

Exercise 325: The solution is very similar to that of Exercise 324, however, for
the base case, one needs also the values P2 = ag(aIa2 + 1) + a2 and = a1a2 + 1.
The rest is left to the reader.

Exercise 326: (Outline) Let C = [ao,ai,a2,...] be as in the hypothesis. Then
and = a1 � 1, and = ala2 + 1 > show that the first three terms

are in increasing order. By equation (II .11), the result follows. If one were to use
induction, one gets a slightly stronger result (after i � 2, the jump by at least
two). U

Exercise 327: The solution is straightforward by induction using equation (11.11).
Let 8(k) be the statement that � 2k/2,

BASE STEPS: When k = 2, = a1a2 + 1 � 2 = 22/2. so 8(2) holds. A small
calculation shows q3 = as(a:a2 + 1) + a1 3 > 23/2, 50 8(3) holds as well.

INDUCTIVE STEP (8(m — 2) A .$(m — 1) 8(m)): Let in � 4 and suppose that
8Qn — 2) and 8(m — 1) hold. Then

(byeqn (11.11)

� + (since am � 1)

+ (by 8Qn — 1) arid Sfrn. — 2))

= 2m/2 (2—1/2 +

>

shows 8(m) is true, completing the inductive step. [Note: It appears as if the result
could be strengthened considerably, since 21/2 + 2' > 1.207.]

By MI, for each k � 2, the statement 8(k) holds. U

Exercise 328: See [311, p. 7J.
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Solutions: Sequences

30.1 Solutions: Difference sequences

Exercise 329: Fix some sequence x = x3,... , and let denote the
n-th term of the k-tb difference sequence. Let S(k) denote the statement "For each
n>1,

(Akt)

holds." The proof is by induction on k.

BASE STEP: Fork = 0. is simply and = as desired.
One might also check k = 1: = — which is precisely

INDUCTION STEP: For some k � 0, assume that 8(k) is true. To be shown is
S(k + 1), namely, that for each n � 1.

(skI 'x)71
f 1)

Beginning with the left side of S(k + 1), for each it,

—-
k — \..S 3-ht

= - (_1)LC)xn+ki (by 8(k))

= -- ±... + (-

607
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[ /k\ klT k \ Ic

—
— .i + + (—1) - — )xn±i F1)

Xn+I+k + E(_1)' [C) + Xn+k_j — (l)kx

= Xn+1+k +
(k ± 1)

— (l)kflx (by Pascal's i(l.)

k ±1
1

= E(—fl ç

conipleti rig the inductive step.
By mathematical induction, for all k � 0, the statement S(k) holds. Li

Exercise 330: According to Dickson 11.36, p. 60] it was shown by Schubert [480]
that the k-th difference sequence of the k-tb powers is the constant sequence k!. An
inductive proof of this fact is in [77, p. 263]; it seems to parallel a proof of the fact
that the k-derivative of? is k!.

'Eu solve this exercise (l)y in(luction), one must first decide what to induct on.
At first, it seems as if there are two choices, to induct on k, or to induct on the
position in the sequence. Even after some initial experimentation, neither choice
reveals itself to be natural. Indeed, one proof inducts on k, hut the k froni "k-tb
difference", and not the k from the exponents. First derive an expression for the
k-th difference sequence of the sequence 1", 2", 3" If one wanted to be pedantic,
this derivation caii really be written up in the style of an inductive proof; however,
since it is found via a recursive procedure, and the expressions are kind of hard to
typeset. the formality is dispensed with here.

Fix sonic a and examine the sequence s = 1", 2", 3" '[he rn-tb term of the
first difference sequence As is (rn + 1)" — rn"; denote this by simply Am. Then, by
the binomial theorem, (see Exercise 104)

A.,,, rn" + (
fl

+ ... ± (7)rn ± i in"

=
(n .)m" '.

Looking at the next term, A,,,.1.1 = (in ± 1)"'. Their difference is the
rn—tb term iii the second difference sequence, denoted by simply Then, again
applying the binomial theorem to each (in + 1)"', one obtains
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=
(n

) [(m + - ']

=

Continuing this procedure down to the k-th differences, (and replacing i with ii. j
with i2. etc.) the rn-th term of the k-ti, difference sequence Ak is

it . n—ti — (n-it-..

In particular, when ri = k, it is kind of remarkable that the only term which survives
is when ii = = = 1, in which case

0

Note: The last expression for above looks nothing like the expression from
Exercise 329 when Xm'S are replaced with m't's However, one should verify that
both expressions indeed yield correct results. Can one find a more direct inductive
proof that. both expressions are indeed equal for the sequence here? This might he
quite difficult, to (10 directly; however, it would not lie surprising to find that a more
elegant proof exists.

Exercise 331: See [266. p.141]. The base case consists of four consideratious, and
the proof is not entirely trivial.

30.2 Solutions: Fibonacci numbers
Exercise 332: Let 5(k) be the statement that after k months, there are Pk+2 pairs
of rabbits. The solution involves proving a a stronger statement than 5(k), namely
T(k), the statement that after k months, there are Fk pairs of immature rabbits
and pairs of mature rabbits. Since Fk+2 u 1(k) implies 5(k).

BASE STEP (k '- 0): After 0 months there are 0 = Po immature pairs, and 1 = F,
pair of mature rabbits, so the base case T(O) holds.

INDuCTIoN STEP: Fix some ii. 0, and suppose that T(n) is true, that is, that
after n months, there are pairs of immature rabbits and pairs of mature
rabbits. I)uring the (mm + 1)-st month, the mature pairs each have a pair, giving

new (immature) pairs, and the previously immature mature, giving
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4 = mature rabbit pairs. So at the end of the (ii + 1)-st month, there
are F12÷1 immature pairs and mature rabbit pairs, agreeing with T(n + 1).
This completes the inductive step T(n) T(n + 1).

Hence, by mathematical induction, for all k � 0, the statement T(k) holds. 0

Exercise 333: For every it � 6, let 5(n) denote the statement

(3)12_i

36--i 243BASE STEPS (it 6,7): Since F5 = 8 and = which is less than 8, the case

5(6) is proved. (Note that the case it = 5 fails since F5 = 5 and = > 5.)

Also, F-, = 13 and = C 13, showing 8(7).

INDUCTION STEP: Suppose that for some k � 7, both S(k — 1) arid 8(k) hold. To
be shown is

S(k+1):

Beginning with the left side of 8(k + 1),

=

(3)k_2

f

(by 8(k — 1) and 8(k))

1/3\k2
9

> (\j)
—

— 'j)
(3\k
k\2)

which is the right side of S(k -I- 1). completing the proof of S(k + 1), and hence the
inductive step [S(k — 1) A 8(k)] S(k + 1).

Therefore, by mathematical induction, (a limited type of strong induction) for
all it � 6, the statement 5(n) holds. 0

Exercise 334: For every it > 1, let 5(n) denote the statement

Sea): F12

(7)11_i



30.2. Solutions: Fihonacci numbers 611

70 . . 7BASE STEP: S(1) says F1 < , and since = 1, this is true. S(2) says
or 1 � again this is true.

INDUCTION STEP: Fix some k � 2 and assume that both S(k — I) arid S(k) are
true. Then

Fk

(by S(k — 1) and S(k))

—

<

— '\16

-
shows S(k + 1) is also true, completing the inductive step.

Therefore, by mathematical induction, for all n � 1. 8(n) holds. 0

Exercise 335: For each ii � 1, let S(n) denote the statement

S(n):

BASE STEP: S(l) says F1 < and since F1 = 1. this is true. S(2) says F2 �
or 1 again this is true.

INDUCTION STEP: Fix some k � 2 and assume that both S(k — 1) and S(k) are
true. To be shown is that S(k ± 1) is true.

Fk±1 =
+

(by S(k — 1) and S(k))

(18\k2(
18

-

—

— (18\k_2(3i9
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/324

(182
—

-

k\u)
which shows S(k + 1) is also true. This completes the inductive step.

Therefore. by mathematical induction, for all n � I, S(n) holds. D

Exercise 336: For n � 0, denote the statement by

S(n): F71

(5)fl_1

BASE CASES: S(0) says F0 < and since 0 < this is true. S(1) says
F1 or 1 1; again a true stateinenit..

INDUCTION STEP: Fix some k � I and assume that both S(k 1) and S(k) are
true. To see that S(k ± 1) is true, calculate

= Fk.I+Fk
< (s)a_2 ±

(by S(k - 1) and S(k))

5

=

—

(r\k2 /25
<

(5\k
-

which shows S(k + 1) is also true. This completes t;Iie inductive step.

By MI, for all n 0, the statement 8(n) holds. 0

Exercise 337: For each n > 0. let 8(n) be the statement

2'7'ni1 3.

First observe that 8(n) has a trivial direct proof:

= + + (F,1 + F,1+[) = F,1 + 2F,1+1,
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so it may seem rather silly to prove this by induction. Nevertheless, here is one such
proof:

BASE STEP: 5(0) says F0 + 2F1 = F4, which is true since F0 = 0, F1 = 1. and
F3 =2.

INDUCTIVE S1'EP: For some fixed k � 0, assiinie that 5(k) is true. To he shown is
that

S(k ± 1): + 2Fk+2 =

follows from 5(k). Note that 8(k + 1) can be proved without the inductive hypoth-
esis; however to formulate the proof as an inductive proof, following sequence of
equalities uses the inductive hypothesis:

Fh+1 + 2Fk÷2 = Fk+l + 2(Ft + Fk+1)

+ 11k) + (Fk +

=

= T'k4-2 + Fk±3 (by 8(k)

Fk+4.

This completes the inductive step 8(k) 8(k + 1).

Therefore, by the principle of mathematical induction, 8(n) is true for every
n�0. D

Exercise 338: For a non-negative integer ii, let 8(n) be the staterrient that is

an even number if arid only if is divisible by 3. One can view 8(n) as saying if n
is divisible by 3, then F,, is even, arid if in is not divisible by 3, then F,, is odd.

BASE STEPS: Since 0 is divisible by 3, and F0 = 0 is even, 8(0) is true. Since 1 is

not divisible by 3 and 1, .9(1) is true. Since 2 is not divisible by 3 and F2 = 1,

8(2) is also true.

INDUCTIVE STEP: For some k � 1, suppose that both 8(k — 1) and 8(k) are true.
To prove S(k + 1) is true, there are three cases.

If k + I is divisible by 3, then both k — 1 and k are not divisible by 3, and by
S(k — 1) and 8(k) respectively, both Fk arc odd; tItus = Fk.t +
is even.

%\Thcn A: + I is not divisible by 3, there are two possibilities: It + 1 3P + I for
some 1? � 1, or k ÷ 1 = 3f + 2 for some 1? � 0.

Suppose that k -i- 1 ;se + 1; Then k — 1 3€ — 1 is not divisible by 3 and hy
8(k — I), Fk_1 is odd. Also, k = 31? is divisible by 3. and by 8(k) is

even. Thus Fk is odd plus even which is odd.
Finally, suppose k + I = 3€ + 2. Then k — I is divisible by 3, so by 8(k 1),

is even. Also, k is not divisible by three, so by 8(k), fl is even. Thus,
± Ft is even plus odd, which is odd.
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The inductive step [8(k — 1) A 8(k)1 8(k + 1) is now established in all three
cases.

Therefore, by mathematical induction, for all n � 0, the statement 8(n) is
true. 0

Exercise 339: For every m � 0. let 8(m) be the statement

Frn+4 = + 3Fm±i.

BASE STEP: When m = 0, 8(m) says F4 = 2F'o + 3F1, which is true since F4 = 3,
F0 = 1, and F1 = 1.

INDUCTIVE STEP: Suppose that for some rz � 0, 8(n) is trite, To show that

8(n -t- I): = +

follows from 8(n), calculate

=
= + (21",., + ) (by 8(n))
= (F,1÷i

1'nfI ± + t?nri) + +
= +
=

This completes tlic inductive step 8(n) 8(ri + 1).

Ilence, mathematical induction proves that for all rim 0, the statement 8(m)
is true. 0

Exercise 340: For each i � 0, let 8(i) be the statement that is divisible by 3.

BASE STEP: F0 = 0 and is divisible by 3, so 8(0) is true.

INDUCTION STEP (8(k) . 8(k + I)): Fix k � 0 and suppose that F4k is divisible
by 3. To be shown is that is also divisible by 3. By Exercise 337, F4k+4
2F4k + 3Fk+1. The term 3Fkf is certainly divisible by 3, and since by induction
hypothesis, F'4k is also divisible by 3, so too is 2F4k + 3Fk÷m, that is, F'4k4 is also
divisible by 3, concluding the inductive step.

Therefore, by mathematical induction, for every i � 0, 8(i) holds, that is, is

divisible by 3. 0

Exercise 341: (Hint) To prove that every fifth Fibonacci number is divisible by 5,
imitate the proof of Exercise 340. For the inductive step, one can either derive the
identity
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from Exercise 339 (in one easy step), prove it by induction, or prove it. directly; here
is a solution where this identity is derived directly.

For each r' 0, let A(n) be the assertion that F571 is divisible by 5.
BASE STEP: Since F(0) = 0, which is divisible by 5, A(0) holds.

INDUCTIvE STEP: Fix sonic k � 0, and assume that

A(k) : F54 is divisible by 5.

To complete the inductive step, it remains to show

A(k + 1): F54÷5 is divisible by 5.

Then

P34+S = F54÷4 ± F54+a

= (P3443 + + (P54+2 + F54+1)

= ± P34+i) + + P3k) + (F54÷i + F34) + F5k+i

= ((F54÷1 + F54) + F54+1) ± (P54÷1 +- F54) + (F34÷1 + €54) ± F3k-tl
= 5F54÷1 ± 3P34.

By induction hypothesis, is divisible by 5, and since is also divisible l)y
5, so is their sum, and thus by calculations above, so is P3k÷5. This concludes the
inductive step A(k) A(k + 1).

By mathematical induction, for each n � 0, A(n) holds. [1

Exercise 342: The proof is by induction on ii that for every n � 0, the statement

P(rz) : P3+s = 7F71+4 — Fri

is true.

BASE CASES: For ii = 0, P3 = 21, P4 = 3, and F0 = 0, so F8 = 7F4 — F0 shows that
P(0) holds. For it = 1, P3 = 34, F3 = 5, and F1 I, so Ti; = 7F3 — F'0 holds true
as well.

INDUCTEVE STEP: Fix some k � 0 arid suppose that both P(k) and P(k + 1) are
true. To see that P(k + 2) follows,

= F4FS±F(k+;)Is
= F4) + (7F(k±i) — (by P(k) and PR + 1))
= 1)+4 -I T4+4) — ± F4)

= 7F(k+2)+4 —

and so J'(k •F 2) is true. concluding the inductive step.
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By mathematical induction, for all it � 0, the statement P(n) is true. 0

Exercise 343: (Hint) Imitate the proof of Exercise 340, using Exercise 342 in the
inductive step to prove by induction that every 8th Fibonacci number is indeed
divisible by '7.

Exercise 344: (Hint) 'I'his problem appears with kind permission from ,José Es-
pinosa [176, No. 2]. The hint provided there (iii solutions by Naoki Sato) was to
show first that the expression has period 6 mod ulo 7.

Espinosa suggests to break the problem into three parts, for it of the form it
3m, it = 3m — 1, and it = 3m — 2. Another suggested solution is of the form
8(k) A S(k + 1) S(k + 2), where two base cases 8(1) and 8(2) are required.

Exercise 345: (Hint) To show by induction that for every it 0, the proposition

P(n) : E,,÷10 = + En

holds, repeat the proof technique as was used in Exercise 342.

Exercise 346: (Hint) Using Exercise 345, imitate the proof of Exercise 341).

Exercise 347: This problem comes from (with kind permission) José Espinosa's
website [176, No. 26]. The hint given in accompanying solutions by Naiko Sato is
to show that the expression has period 10 modulo 11. The hint given by Espinosa
says to consider when it is even, and to use

= •+ = + +

Exercise 348: (Flint) For every non-negative integer it, is divisible by each of
6, 8, 9, and 12. Some of the.se follow from combinations of previous exercises. This
exercise has a fairly substantial, however straightforward solution, and is left to the
reader.

Exercise 350: Two proofs are given to show that every fifteenth Fibonacci number
is divisible by 10; the first is riot specifically by induction: By Exercise 338, every
third Fibonacci is even, and by Exercise 341, every fifth I"ibonacci number is divisible
by 5. Since 15 is both a multiple of 3 and a rmiltiple of 5, every fifteenth Fihonacci
number is divisible by 2 . 5 = 10. 0

Inductive proof for Exercise 350: For each � 0, let 8(1) be the statement that
P151 is divisible by 10.

BASE STEP: Checking = 0 shows 8(0) to be true.
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INI)1JC1'LVE SIEP: For sonic fixed k � 0, suppose that S(k) is true, that is, is

divisible by 10. Then by Lemma 12.2.2 with a = 15k.

"15(k+1) hsk+15 = 10h5k+iO + + + 7F15k.

Since the first three terms of the right-hand side are clearly divisible by 10, and by
induction assumption, so is the last term, conclude that is also divisible by
1.0. This completes the inductive step.

Therefore, by MI, every is divisible by 10. 0

Checking the chart at the beginning of Section 12.2, F0 = 0, F15 = 610, and
F3() = 832040 are the only Fihonacci numbers shown that are multiples of 10.

Exercise 351: This problem appears with kind permission from José Espinosa's
website [176, No. 3]. One hint l)rovi(led (in solutions by Naoki Sato) was to prove
that the expression has period 12 niodulo 13.

Espinosa suggests to let

f(n) = 2(2211 + + 62n) + + 1).

He also suggests to prove that f(n) — f(n + I) + f(n + 2) is divisible by 13, or that
1(n)2 f(n + 1)2 + f(n + 2)2 is divisible by 13, noting that if f(n)2 is divisible by
13. then so is f(n).

Exercise 352: For the moment, let at he fixed, and for every a> in, let be
the statement

Fn...zn+iFm + ' En.

The proof of all such S,12(n) is by induction on a.

BASE STEP: (a = Tim + i,m + 2) When a = am ± 1, Sm(n) says

+ hlm—j =

which is true because F2 = 1. Sitnilarly, when a = in + 2,

F3r;,, + = 2Pm I;,., 1"m ± (Fm + + Frn+i =

shows that 2) is also correct.

INDUCTIVE STEP: + k 1) A + k)] - Sm(m + k + 1)) Suppose that
for some k � 2, both

Sm(urt + k — 1): + = and

Sm(rn+k): Fm+k
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are true. To show that

+ k + 1) : + =

follows, beginning with the left side of + k + 1),

+
= (Fk + Jj+i)Fm + (Fkl + Fk)Frn_l

= (FkEm + Fic_iFzn_t) + (Fk+iFm + bkPrn

= + (by Sm(7n + k — 1) and + k))

=

obtain the right side of + k + 1), completing the inductive step.

By an alternative form of mathematical induction, for all ii > m 1, is

trite. Since rn � 1 was arbitrary, this completes the solution. 0

Exercise 353: To be shown is that for any positive integers in and ii, divides
flrry 'Tb accomplish this, fix zn > I arid induct on n. For each ii 1, let 8(n)
denote the statement that F,,, divides Fmn.

BASE STEP: For ri = is identical to Fm 1, so the fumier divides the latter and
8(1) is then true.

INDUCTIVE STEP: For some fixed k > 1, suppose that .9(k) is true, that is, F,,,
divides F,,,1,, say, qF,, = Fm1,. To he shown is .$(k + 1), namely, that Fm divides

By Exercise 352, (with n replaced by rn(k ± 1)),

brn(kl1) F1n(k+I)—m±1'nt +

F,nk+lFtn+FmkF,n_I
— + (by 8(k))

F,n(F1,÷1

and so Fm divides F,,(k.1.l) as well, proving 8(k + 1) and thereby completing the
inductive step.

By mathematical induction, for all n 1, the statement 8(n) is true. Since in
was arbitrary, this completes the solution. 0

Exercise 354: (Cassini's identity) For every ii 1, let 8(n) denote the statement

F,, = + (— 1)".

BASE STEP: .9(1) says — 1, which is true since both sides are 0.
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INDUCTIVE STEP: For sonic fixed k � 1, suppose that

8(k): = +

is true. To he proved is

of ' -, r'2 /Oiji. + L) "k' k+2 = I t')
Starting with the left side of 8(k + 1).

=
=
= (Fk_IFk+i (i)k) + Fk.Fk+l (by 8(k))

= (Fk_I + Fk)Fk+I — (_flk

= —

= +

This concludes the proof of 8(k + 1) and hence the inductive step.

Hence, by MI, for all � 1, the statement 8(n) is true. 0

Exercise 355: (Cassini converse) This exercise appeared in 1230, 6.44, PP 314,
553], with tile following solution outline; details are added below. The credit given
is originally due to Matiiasevich [369J.

Outline: Replace the pair (f, rn) by (—-f, in), (f, —Tn) or (—C. —in) so that 0 <
C < in. The result is clear if in = C. if in. > C, replace (C, in) by (in. in — C) and rise
induction to show that there is an integer 'ii so that C = and rn.

Details: Let M(f, in) be the statement that if C and in are integers such that
— fin — £21 = 1, then there exists a so that f i F'11 and rn = If M(C. in)

is true. then so are M(—C, -—in). it! (in, —C), and ?v!(—-rn. C) (notice the order is
switched for the second two) so assume, without loss of generality, that 0 £ rn.

M(m,rn) says that if 1vn2I = 1, then for some n, rn and in =
This is clear since if = 1, their in = Li; when -at = 1, both in = F1 and in. =
hold. and when ni = —1, both in = —F1 and i-n. = —F2 hold. So. for every in
satisfying the hypothesis of M(in, in), the conclusion of JtI(m, in) holds.
INDUCTIVE STEP M(k,rn) M(rn,m + Ic):. For some Ic and in with 0 < Ic � in,
suppose that M(k,rn) holds. Suppose that, the hypothesis in AI(rn,rn. + Ic) holds,
that is, I(rn + Ic)2 — m(in Ic) — rn2[ = 1. Then jrn2 — ink — k21 = 1 as well, arid so
by M(k. in) (and since 0 � Ic � in), there is an a so that k and in r
Then Ic + itt = Frt+2 shows that M(m. in + Ic) holds, finishing the inductive step.

So how does this prove the result? \-Vhat is the base step? The inductive step
above shows that to prove 11-1(1?, in). with 0 < £ < in. it suffices to prove IiI(;n, i-it—C).
Complete details are left to the reader.
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Exercise 356: (Catalan's identity) For 1 � r < it, let C(ri, r) denote the identity

I?— n—v n—f-v yr.

The solution for all r and it satisfying 1 r it is art induction of a special kind,
essentially, inducting on it + r, but with the restriction that for each r, it must be at
least r. The induction process can be viewed as follows: if one considers the pairs
(it, r) as points in the Cartesian plane, the first step is prove the result when a =
that is, on the line y = x. '[he next step is to prove the result for r = 1, that is, for
points on the line y = I. Then, prove the result recursively for points along p = 2,

that is, for (2,2), (3.2), (4,2) each time using the truth for points (x, 2), (x, 1)
and (x + 1,1) to prove it for (x + 1,2). Then continue along p = 3, starting with
(4, 3) and each time, using the three points of the square to the lower left of each
(x, 3). The induction then fills in each horizontal row consecutively.

The (equivalent) formulation of C(n, r) preferred in the solution below is

.\ . U' 12 — cf2 ,' vt—v c2n—r nfr — k')
STEP: For any it > 1 and r = 1, C(n, 1) is precisely Cassini's (or Siinson's, or

Kepler's) identity, proved in Exercise 354. The case when it = r says 0 = 0, so for
all r 1, C(r,r) is true.

INDUCTION STEP C(k, £ --- I) A C(k, s) A C(k + 1,8 — 1) C(k + 1, s): Let k. s be
flxed, with 2 < s < k, and assume that each of

C(k,s — 1) : Fk.($l)Fk+(S_j) = —

C(k,s) : = and

C(k+1,s— 1) : Fk+1_(8_I)Fkt its--i = Fj?fl

hold. lb complete the inductive step, one must show

C(k+ l,s) : = —

Starting with the left side of G(k 1- 1, s),

114 .c

Fk+1_5(Fk_1+3 -f Fk÷5)

= +

= — (1)k—(S—i)p2
-I (by G(k,s — I))

= + — I + (by C(k,s))

= (Ek-s + + — (_i)k
— i 2 / '2
— + --

— U' j i \k—(S—1) r2— + r8 — (j—i)
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= — + ( i)k—$11'2 — (1)k—($—l)p2

(by C(k+ 1,s— I))
— i?2 1 L'2
— k+11S )

which is equal to the right side of C(k + 1, s). This completes the inductive step.

By mathematical induction on two variables, for all n and r satisfying I r ii,
the statement C(n, r) is true. 0

Exercise 358: Matijasevich's lemma and its proof can be found in [230, pp. 294—
5]. One proof might begin with: For n > 2, let M(n) denote the statement "Fm is
a multiple of if and only if ni is a multiple of For each k = 1,2,3,...,
examine (mod and see when this is zero.

Exercise 359: For every n � 0, let 8(n) denote the statement

BASE STEP: 8(0) says F0 = F2 — 1, which is 0 = 1 — 1, a true statement.

iNDUCTIVE STEP: For some fixed k � 0, suppose that 8(k) is true. Then

= Fk+2—1+Fk+I (hy8(k))
=
= Fk+3

verifies that 8(k + I) is also true, completing the inductive step.

Therefore, by Ml, for all n � 1, the statement 8(n) is true. 0

Exercise 360: For every it 0, let P(n) denote tile proposition

BASE STEP: When ii = 0, P(0) reads = F0 F1, which is true since both sides are
zero.

INDUCTIVE STEP: For sorrie fixed in � 0, let the inductive hypothesis he that P(m)
is true. To be proved is

P(m+ I): Fm+IF(m+l)±m.

Starting with the left side of P(rn+ 1), (writing in one more term so that it is clear
how to apply the inductive hypothesis)

+ F? + + + + (by 8(m))

= (Fm+Fm+i)F,n+i
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= Fm+2Frn+1
= Fm+1F(nzf.I).4 j.

This proves S(m + 1), concluding the inductive step.

From the principle of mathematical induction, one concludes that P(n) holds
foralln�0. U

Exercise 361: For each ii 1, let S(m) denote the statement

F1+ F3 + +

BASE STEP: 8(1) says F1 F2, which is correct. both being equal to one.

INDUCTIVE STEP: Fix some k � 1 and suppose that 8(k) is true. It reniains to
show that

8(k + 1): F1 + + ... + F2k. 1 ± = F2(k÷I)

follows. Starting with the left-hand side of 8(k + 1),

=
+ '2k-i-i (by 8(k))

= F2k÷2,

which is equal to the right side of 8(k + 1), thereby finishing the inductive step
8(k) —* 8(k + I).

By mathematical induction, for any positive integer IL, the statement 8(n) is
true. U

Exercise 362: For each ii > I, let A(rt) he the &isertion that

BASE STEP: A(0) says Fe = — 1 which is a true statement since F0 = 0 and
= 1.

INDUCTIVE STEP: Fix sonic > 0 arid 5UPPO5C that

A(j): -1

holds. i'o be shown is that

A(j+1): = 1

follows. Starting with the left side of + 1) (and rewriting it slightly)

4 12j12 (byA(j))
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— 1,

one arrives at the right side of A(j + 1). This concludes the inductive step.

Therefore, by mathematical induction, for all n 0, A(n) is true. 0

Exercise 363: For every n 1, denote the equality in the statement of the exercise
by

8(n):

BASE STEP: When n = 1, 8(1) says F1F2 = which is correct because F1 = F2 =

INDUCTIVE STEP: Fix some k � 1 and assume the inductive hypothesis

8(k): FIF2+F2FS+...+F2k_lF2k=4

to he true. The next statement to he proved is

8(k+ 1): F1F2 + F2k+[F2k+2 F2k+2.

Starting from the left side of 8(k + 1),

+F2F3 + ... + F2k_lF2k + F2kb2k÷l +

+ + (by 8(k)
=

2 2= r2k + r2kr2k.I I + f2kr2k+I + r9kLl
= (Fkk +

2k+2'

this completes the proof of S(k + 1), and hence the inductive step.

By the principle of mathematical induction, for every n � 1. 8(n) holds. 0

Exercise 364: For it � 1, let A(n) be the assertion in the exercise:

A(n): F1F2 + + F2÷1 = FL÷, — 1.

BASE STEP: The statement A(i) says

F1F2 + = - 1,

which is true because I 1 -} 1 2 = 22 — 1.

INDUCTIVE STEP: Fix k � 1 and suppose that .4(k) is true. Then

F + F2F3 + ... + k2kF2k+j + F2k bib 2k+2
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= 1'2k4-1 + + F2k÷2F2k÷3 (by A(k))

= + F2k+2) + —

= F2k±lF2k÷3 + k2k÷2k2k÷3 — 1

= (F2k÷1 + F2k÷2)F2k÷:3 — I

= F2k÷sF2k÷a — 1

proves A(k + 1), completing the inductive step.

By MI, for all ii � i, A(n) is true. D

Exercise 365: For ii � 0, denote the equation in the exercise by

P(n): F? + =

BASE STEP: Since F? + F? + 12 12 F?, P(0) is true.

INDUCTIVE STEP: For sonic fixed k, assume that P(k) is true. To prove

P(k + 1): F?+1 ± F?±2 = F2k+3,

begin with the left side:,

2 r'2 — r'2 i'
—

= Fk2+l + F? + 2FkFk+1 +

= (F? + F?±1) + 2FkFk+1 +

1 + 2FkFk+i + F?±1 (by P(/c))
= F2k÷1 ± Fk÷l(Fk÷1 — 2Fk)

F2k+1 + F2k+2 (by Lemma 12.2.4 with m = Ic + 1)

= "2k+3,

which is the right side of P(k + 1). This completes the proof of P(k 1 1) and hence
the inductive step.

By mathematical induction, for all it � 0 the statement P(n) is true. 0

Exercise 366: This problem is reproduced (with kind permission) from José Es-
pinosa's website [176, No. 25]. The solutions by Naoki Sato give a hint, to use the
fact that F? + = (which is Exercise 365 here). The inductive solution
given by Espinosa relies on Exercise 360 here, and an identity similar to that iii
Exercise 365 here which itself has an inductive proof [in Espinosa's Problem & -
beware of a typo and different notation for Fibonacci numbers; both identities fail
as written]. A direct proof is also available using Binet's formula.

Exercise 367: For every it 1, let 8(n) denote the statement

F0 F1 "2
—.

2 4 8 2"
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BASE STEP: Since F0 = 0, F1 = I, and F3 = 2, the statement 8(1) says =
a true statement.

INDUCTIVE STEP: Fix some k � 1 and suppose that

8(k):

holds. To show

8(k±l):

start with the left side of 8(k + 1):

F0 F1 Fk Fk+2 Fk
(by 8(k))

=

1 ± + Fk±2 —

= + — Fk+l)

2k+1'

which is the right side of 8(k± I). This completes the inductive step 8(k) 8(k±i).
By mathematical induction, for all ii 1, the statement 8(n) holds. H

Exercise 368: For a 1, let P(n) he the proposition

11 i

H 0

F1 = 1 and bb = 0, the base case P(1) is true.

INDUCTIVE STEP: For some fixed k � 1, suppose that P(k) is true. Then

11 1
k+i

11
k1

1 i
[i 0 Li 0 [1 0

= ] [t (byP(k))

— [ F h-i-i 1
— L [FkII Fk

which proves P(k + 1). completing the inductive step.
Hence, by niathernatical induction, for every a � 1, P(n) is true. 1]
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Exercise 369: (Binet's formula for Fibonacci numbers) For every n � 0, let A(rt)
be the assertion that

i
2 ) 2

BASE STEPS: When ii = 0, the expression on the right side A(n) is 0, which is
For n = 1, it is also not difficult to check that each side of A(n) is 1.

INDtJCI'IVE STEP ([A(k— 1)AAk] A(k+ 1)): Suppose that for some fixed k, that
A(k -— 1) and A(k) are true. Calculating, (where the second equality below follows
from A(k — 1) and A(k)),

Fk+[

-—

k—i k-I k k

1

(

12(

2 ) 2 ) 2

k—i / 2 k—i 2

2) 2 2) 2

/ k41 / k+i

so .4(k + 1) is also trite, completing the inductive step.

By mathematical induction, for each n � 0. A(n) is true. D

Exercise 370: For any non-negative integers rn and a, let P(in, n) be the propo-
sition

C) Fm + + C) Fm+iz

For each a, P(O, a) is true by Lemma 12.2.5. Here is the similar result when m = 1:

Lemma 30.2.1. For n � 0,

+ (7)F2+... +
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Proof:

t (7) (7) —

= ± Øi)7' - 02)"]

= - 02(S'] (by eqn (12.1))

=

0
Al! is now ready for the inductive proof; fix an arbitrary it, and induct on in.

BASE STEP: The eases P(0,zn) and P(1,n) are handled above, by Lemmas 12.2.5
and 30.2.1.

JNDUC1IVE STEP ([P(rn,rt) A P(rn + 1,n)] —p P(m + 2,n)): Fix some rn � 1, and
suppose that both

P(m, it): (7) km+i = Fm+21,

and

P(m + 1, it): (7) f1±i

hold. Then

(7) (7) (Frn+i +
n=O

+t
= ± Fm+i+2n (by md. hyp.)

= Fm+2+2n

proves P(m ± 2, it), completing the inductive step.

Since it was arbitrary, by mathematical induction, for all m � 0 and all it � 0,
P(m, ii) is true. 0

Exercise 371: For it � 1, denote the statements by

S(n) :
(2ri_ i)

=
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and
Ti in + 1 + zT(ri): =
ia"

Proving either one of these statements alone can be challenging, however, if one
proves therri simultaneously, the task is fairly simple.
I3A5E STEP: 8(1) says + = F3. which is correct since both sides equal 2, and
T(1) says (g) + = Fl1, again correct since both sides are equal to 3.

INDUCTIVE STEPS: Fix sonic k � 1, and assume that both 8(k) and T(k) hold.
Showing that 8(k + 1) and T(k + 1) hold is done in two steps, first [8(k) A T(k)j
S(k + 1), and then T(k + 1). here are the equations showing
the first step; beginning with the left side of S(k + 1), take off the first and last
summand, and apply Pascal's identity:

=

= 1 1-

((2k+1_ i)
+

(2k — i))]
+

= _i)

F2k4i + F2k+2 (Ely 8(k) and T(k) resp.)
=

giving the right side of 8(k +1), completing the step [8(k) AT(k)] 8(k + 1). The
induction hypothesis can be extended to 8(k + 1) and T(k). Starting with the left
side of T(k + I), c:alculations are siinl)ler than in the above step:

(2k+3)

+
(2k +2 — i))

=

=
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F2k÷2 + F2k+3 (by T(k) and S(k + 1), resp.)
F2fr4.4.

This proves that T(k ± 1) is true, completing the step [T(k) A S(k + 1)] : T(k + 1).

Thus, by mathematical induction, for all vi > 1, both statements S(n) and T(n)
are true. 0

Comment: is there an inductive proof of just one of these statements that does
not rely on the other? For example, to prove S(n), one might try expressing a
Fibonacci number with an odd index as a sum of others with only odd indices, such
as F9 = 2F7 + F5 + F3 + and proceed using strong induction.

Exercise 372: (Zeckendorf's theorem) Hint: Use a greedy algorithm.

Exercise 373: For vi a 1, let C(n) be the claim that the number of binary strings
of length a not containing 11" as a substring is F,1÷2. First note that the result
in this exercise also follows from Exercise 380, (whose proof is considerably more
complicated).

CASES: Both binary strings 0 and I of length 1 do not contain "11", and since
= ['3 2, C(l) is valid. TIme strings of length vi = 2 not containing "11" are

00, 01. 10. of which there are 3 = ['4 = and so too C(2) is valid.

IrcDucrlvE STEP: For some fixed k 1, suppose that the claims C(k) and C(k + 1)
are true. Jo be proved is C(k -f- 2). A string of length A: + 2 can begin either with a
0 or a 1.

If a string of length k + 2 begins with a 1, for it to not contain a "11" substring,
then a 0 must occupy the second position; in this case, the remaining string of
length k can not have ii as a substring, and (by induction assumption C(k)) there
are ['k÷2 such strings.

if a string of length k + 2 begins with a 0, then the remaining string of length
k + 1 can be (by induction assumption C(k + 1)) completed in ['k÷3 ways.

So, in all, there are Fa+2 + 3 = ['k+4 = F(k+2)÷2 strings of length k + 2 which
(10 not contain "ii" as a .suhstring; this is precisely the claim C(k + 2), finishing the
inductive step.

Therefore, by n-mathematical induction, for every vi � 1. C(n) is valid. 0

Exercise 374: This exercise appeared in [161, 8.11, p. 2071. In the following
solution, first a recursion is derived. A string beginning with 0 can he continued

ways; a string beginning with 100 can he continued in ways; a string
beginning with 1100 can be continued in a11._4 ways. Thus

+a,1_3 ±Un—4.
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Working out the first few values, aj = 2, a2 = 4 = Fj = 6 = F3F4, a4 = 9 =
and a5 = F4 F5. So one might conjecture that

a2m = a2m+I = Fm+2Frn+3.

In fact, these two can be proved by induction on in. If this conjecture is true for all
k cc 2m. then

a2m = + a2m_3 + a2m_4

Fm+iFm+2 + FmFm+j + (by III)

= Fm+iFm+2 + Frn(F,n±i + Fm)

= Fm+lFm+2 +
=
— £

and with similar calculations, one shows a2,n÷1 = Fm+2F;n+3. Hence the conjecture
is true for ii 2m and n = 2in + 1, completing the inductive step, and hence the
proof of the conjecture in general. U

Exercise 377: Use strong induction on Ic?

Exercise 378: Use Exercise 377 and Binet's formula. If in = I, then Ic = 0 =
log0(1) and the result holds. If m � 2 then Ic � 1, and using the approximation

<0.6 S (0.3)m,

cc + (0.3)rn = + 0.3)m.

Taking logarithms,

Ic -E 1 =

<

= + 0.3) +
cc 2+log4m),

and so k cc + 1. LI

Exercise 379 (Lamé's Theorem): Proof outline: The proof is by induction on
N. For N = 1, in 5 9, and so by Exercise 378, the Euclidean algorithm computes
gcd(rn,rz) in at most + 1 = 5 steps.

To prove the inductive step, increasing the number of digits of in � 9 increases
the number of steps by at most five since

+ 9) 5 = +
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and <5. D

Exercise 380: This problem appears in [6, Ex. 8, p. 981. Note that the final conclu-
sion follows directly from Exercise 373 because there is a one-to-one correspondence
between binary words of length ii arid subsets of {l,2,... ,ri}. For example, 0111
corresponds to the subset {2, 3, 4} of { 1, 2,3, 4}; the corresponding binary vector
(0. 1, 1, 1) is called tire characteristic vector for the subset. So a binary word with
consecutive l's corresponds directly to a subset with consecutive integers. The so-
lution provided here is slightly different than the one for Exercise 373.

Let be the number of k-subsets of {i, 2 n} which do not contain a pair
of consecutive integers. Consider the statements

5'(n,k):

arid
.9(n) > =

k>0

'lb see S(n, k), proceed by induction on both a and k.
BASE CASES: When a = 0, there is only one 0-subset (namely the empty set)1 and
for A: � 1, there are 110 k-subsets, so a0,0 — 1 = (01+1) and for k � I, 00,k = 0 =
(—k4-1) = 0. Also, for each a � 1, a = 1)

So it
is shown that for all a � 0, k � 0, .9(0. k), .9(1, k), .9(n, 0), arid S(n, 1) are all true.

IN[)UCTION STEP: For some n � 2 and k � 1, assume that both S(n — 2, k — 1) and
S(n — 1, k) hold. Examine a k-set {xi, X2, . . . xk} from { 1.2 ,...,n} that contains no
consecutive integers. If Xk a, then there are 0'N2,k— ways to select x1, . . . , i

since a — 1 then can riot be one of the remaining xi's. If a {.z. then there
are a71.. 1,k ways to select the xi's. hence,

a,1_2,k_1 +

(n—2--(k—l)+1\ (n—1—k+1\
k 1

+ (by irid. hyps.)

/n—k'\ 7iz--k

(a — k + I)
(by Pascal's identity)

proving S(n. A:), completing the inductive step S(n —2, k 1) A S(iz — 1, k) S(n, k).

By mathematical induction, S(;i. k) is true for all a, k 0. LI

Note: The reader might check that the above base cases arid inductive steps
actually prove 8(n, k) for all a, k. The idea is to first induct on a for fixed k and
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k 1, then induct on k. For example, if
proceed with implications as follows:

8(0,1.) A 8(1,2)

S(1,1) A S(2.2)

S(2, 1) A S(3,2)

8(3,1) A S(4, 2)

one wanted to see that S(6, 3) is true,

8(2,2)
S(3,2)
8(4,2)
8(5,2)

S(0,2) AS(1,3)

S(1,2) AS(2,3)

8(2,2) AS(3,3)
S(3,2) A 8(4,3)
S(4, 2) A S(5, 3)

—* 8(2, 3)

—+ S(3,3)
-4 S(4,3)
—# S(5,3)
—* S(6,3).

For ri � 0, prove S(n)
BASE STEP: For n = 0,

by induction:

(1. k)
=

= 1+0 = I = F2,

SC) S(0) is trite. For ii

(2_ k)

k >0

SC) S(1) also holds.

INDUCTIVE STEP: Let n � 2
that is, both

(rz_2_J+I)
i�()

and
k>0

k ) =

=

k >(i

and assume that, both S(m 2) and S(n — I) are true,

Then

k

k>0

I
k>l



30.2. Solutions: E'ibonacci numbers 633

=

k>O i?O
=
=

shows that 8(n) also holds,

By induction, for each n 0, the statement S(n) is true. 0

Exercise 381: This problem appears in [6, Ex. 10, p. 08]. To be shown is that
k Fm+A. is always a Fibonacci number. First make clear what the sum ranges

over: If 0 k vi, then is non-zero; if k < 0, the binomial coefficient is
undefined and if k > vi, then = 0, so one might try to show that
is always a Fibonacci number.

One approach is to guess what Fibonacci number is obtained from this sum, and
then prove this by induction. lt seems natural to ask "Does one have to explicitly
find which Fibonacci number is arrived at?" The answer is "perhaps not", however, I
couldn't see any other way; this exercise might be possible to solve without answering
this question.

With n 1, the expression is Fm + = With vi = 2,

+
C)

+ = Fm + + Fm+2

= (Fm + Fm+i) + (Fm÷i + Fm+2)

=

Similarly (with quite a few more lines of eomnputatioii) with vi = 3, one arrives at
F,,, 6' One might then conjecture that

S(ni, vi) : = "in F2n

is the rule. as it holds for any rn � 0 and vi = 1,2,3. Inducting on vi, a bit of a
trick is involved. As is often the ease with identities for Fibonacci numbers, two
statements are needed in the inductive hypothesis, but rather than fixing an in and
proving S(rn, vi —. 1) A S(mu, ii) 8(m, vi + 1). use 8(in, vi) and S(rrt + 1,vi) to get
S(rn,n + 1):

BASE STEP: For all rn, the statements 5'(m, 1) and S(rn, 2) are true as verified
above.

INDUCTION STEP: Let p > 2 and let in I be arbitrary, but fixed. Assume that
both 8(rn, 7)) and S(rn + 1. p) are true, that is, assume that C)
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and = To show that Sfrn,p + 1) follows,

(P+1)F = k;n+ I)F) +Fm+i+p

— + (t + (i
+

Fm + (t "rn4 + (E P i)Fm+i) + Fm+i+p

= Lf)Pm+i+ +Fm+i+p

E(P+1)Fm+i±EFm+i±i

= + (by S(rn, ii) and S(m + 1, ii))

which proves 8(in.p + 1). completing the inductive step S(m,p) A S(m ± 1,n)
S(rn,p + 1).

Thus, by mathematical induction (inducting on ii). for every rn � 0 and ii
the sum is a Pibonacci number, in particular, D

Exercise 382: For each n = 1,2,3,... let .9(n) he tire statement that the net
resistance B71 between points A and B in FC(n) is

=

BASE SI'EP: Since FC(n) has only two resistors in series, B1 = 2 = = Q, so 8(1)
is true.

INDUCTIvE STEP: Fix some k � 1 arid assume that 8(k) is true, namely that
Rh tp±i. To prove .9(k + 1), one must show that

1-2

Let FC(k) be drawn (or fixed) with points A and B as per the diagram in
l,he question. Form the circuit FC(k + 1) by adding two resistors on the left of
FC(k + 1), one resistor joining A awl B. the other to the left of A, and extending
the ground wire to tIre left, thereby determining new measuring points A' and B'
with net resistance between A' arid B' being R(k + 1).
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'Flie resistance now between A and B is (by Kirchoff's law)

1. B,,
1 + Bk

Together with the new resistor on the left, the net resistance between A' and B' is

1. B,,
B,,41

= 1*-B

1-i-
1

=2-
i +

=2- F2k

F2k + F2,,+1

= 2--

—- —

+2

F2,,±2

which agrees with S(k + 1), completing the inductive step.

By inatliernatica.l induction, for all ii, the statement 8(n) is true. C

Exercise 384: See [328, Lenirna 34.1, Pp. 408 -409] for a proof [which I have not
seen] and [410] for related discussion.

30.3 Solutions: Lucas numbers
Exercise 385: For every ii 1. let 8(n) be the statement that = Fr_i +

BASE STEP: Since L1 = 1 = 0 + 1 ± F0 + F2 and L3 = 3 = I + 2 = F1 + F3. 8(1)
and 8(2) hold.

INL)IJCTIVE STEP: Let k � 2 and suppose that both 8(k — 1) and 8(k) hold. To
show that 8(k + 1) holds,

Lk÷1 = + (by definition of

= F,,.2+F,,+F,,1 -l-Fk+1 (by8(k— 1) arid 8(k))
= (Fk_2 + F,, i) 4 (F,, +
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= Fk + Fk÷2.

Thus, 8(k + 1) holds, completing the inductive step.

By mathematical induction, for each n � 1, the statement 3(n) is true. D

Exercise 386: For every n � 0. let 8(n) be the statement that + =

BASE STEP: Since P0 to 0+2 = 21 2F1 and F1 ± L[ = 1 ± 1 = 21 2F1.
8(0) and 8(1) both hold.

INDUCTI\TE STEP: For some fixed k � 2, suppose that both 8(k— 1) and 8(k) holds.
To show that S(k + 1) holds,

Fk÷j + Lk÷1 = + + Lk + Lk_I (by the recursive definitions)

Fk + Lk + Fk_1 + Lk_]
= + (by 8(k — 1) and 8(k))

= + Fk)

=

Thus, 8(k + 1) holds, completing the inductive step.

By Nil, for each ii � 0, 8(n) holds. D

iVot.e: '['his result also has a non-inductive proof using Exercise 385: For it � i,
F,, + L,, = F,, + F,1.1 + = "n+l 4 Eni = U

Exercise 387: For every ii > 1, let 8(tt) be the statement that

—
= 5(_j)fl+I

BASE STEP: Since L0L2 — 14 = 23— 12 = 5 5(—l)''1, 8(1) holds.

LNDEJCTI\'E S'1'EP: Let k � 1 and assume that 8(k) holds. Then

LkLk÷2 — = LkLk÷2 — LkLk÷l 4. —

= — Lk+1) 4- Lk4.L(tk --

Lk(tk+1 + — + Lk+1(Lk —

= LkLk
— 14)

= (_1)5(_1)k1 (by 8(k))
= 5(1)k+2

Thus, 8(k + 1) holds, completing the inductive step.

By matheniatica.I induction, for each it � i, 8(n) is true. 0
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Exercise 388: For it � 1. let 8(n) be the statement that — 3.

BASE STEP: Since L1 = 2 = 5 —3 = —3, 8(1) holds.

INDUCTIVE STEP: Suppose that for some k � 1, 8(k) holds. Then,

= + Lk÷I

= La+2 — 3 ± (by 8(k))

= Lkf3 —3,

and hence 8(k + 1) holds, completing the inductivc step.

By mathematical induction, for each it � 1, the equality 8(n) holds. 0

Exercise 389: For it � I, let 1(n) be the identity + =

BASE STEP: Since L1 ±2L2 = 1±23 = 7 = 1,4 and L2+2L3 3+24 = 11 = L5.
both 1(1) and 1(2) hold.

INDUCTIVE STEP: Let k � 2 and suppose that both 1(k - 1) and 1(k) hold. Then,

Lk+l + 2tk4 2 = tk + LkI + 2(Lk 1 + (by the recursive definition)

=Lk+2Lk+l+Lk_j ±2Lk
La+:s "k-f 2 (by 1(k) and I(k — 1))

=

and so 1(k ± 1) holds. The inductive step ]1(k -- 1) A 1(k)] 1(k -I-- 1) is complete.

By mathematical induction, for each it � i, 1(n) is correct. 0

Exercise 390: For it > I, let 8(n) be the statement that EL1 = — 2.

BASE STEP: Since = 12 1 — 2 = —2, the statement 8(1) holds.

INDUCTIVE STEP: Fix k � I and assume that 8(k) holds. Then,

k+1 k

>r2 r2

i=1 i=I

= — 2 -+ (by 8(k))

=Lk+I(Lk+1 4-Lk)—2

= La 2 -- 2,

proving that 8(k ± 1) holds, completing the inductive step.

By the principle of mathematical induction, for each it � i, S(n) is true. 0
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Exercise 391: For it � 1, let A(n) be the assertion that

2EL3j =

BASE STEP: Since 2(Lo + L3) = 2(2 + 4) = 12 = 1 + 11 = 1 + L5, A(1) holds.

INDUCTIVE STEP: Let k � 1 and assume that A(k) holds. Then

k+1 k

2>: = 2>: + 2Lak+3

= 1 + L3k÷2 + L3k+3 + L3k+3 (by A(k))
= 1 + L3k+4 + L3k÷3
= 1 + L3k±5 = 1 +

and therefore A(k + 1) follows, completing the inductive step.

By MI, for each ii 1, the assertion A(n) is true. 0

Exercise 392: For each n � 1, let 8(n) he the statement that = —

BASE STEP: Since SF3 = 52 = 10 11 — 1 = L5 — L1 and 5Eh — 5.3 15 =
18 — 3 = L6 both 8(1) and 8(2) hold.

INDUCTIVE STEP: Fix k � 2, and a.ssume that both S(k — I) and 8(k) hold. Then,
starting with the right side of 8(k + I),

— Lk÷: (Lk÷4 + — (Lk +
= (Lk÷4 — Lk) + (Lk+3 — Lk_I)

SFk+2 + 5Fk+1 (by 8(k — I) and 8(k))
= 5(Fk±2 -F Fk÷I)

which is the left side of 8(k + 1), completing the inductive step.

By mathematical induction, for each 1, the equality 8(n) holds. 0

30.4 Solutions: Harmonic numbers
Exercise 395: To see that the harmonic series diverges, it suffices to show that for
any ii e Z+, there exists an in so that � n. To see this, partition 1.he series into
groups, each group totalling at least: 1/2 as follows:1111 11

?1/2 >1/2 �I/2



30.4. Solutions: harmonic numbers 639

the number of groups can be made as large as necessary. To formalize this idea, for
each k � 1,

>i >
j_2k÷j j.2k+i

Claim: for each p � 0,
5(p):

Proving this claim proves what is desired in this exercise, since for every a, choose
p so large that I + � a, and then use m Here is an inductive proof of the
claim:

BASE STEP: When p = 0, ? 1 confirms that 5(0) is true.

INDUCTION STEP: Fix some £ � 0, and assume that 5(C) is true. To show that
+ 1) follows,

1

= 1129+ >

� 1121 + (by fact above)

> (by5(C))

C+ 114-7—j

which coiiip letes the it iductive step.

By mathematical induction, for every p � 0, the statement 5(p) holds true. 0

So, for every a, there exists an rn so that H777 ? a. In other words, Mm =
00.

Exercise 396: Th following identity simplifies the inductive step below:

Lemma 30.4.1. For any positive integer a.

(30.1)

Proof: Expanding (1 — 1)71±1 using the binomial theorem,

0 (1 —

lIE I

=
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n

I (by eq'n (9.4))

7111

=

so
n-i-i i—i

which gives (30.1). 0
For ii 1, consider the statement

8(n) : =

BASE STEP: 8(1) says that H1 = 141° which is correct.

INDUCTIVE STEP: Fix some k � 1 and assume that

k i1' kS(k): Hk=> C)
holds. To coiriplete the induction step, it suffices to show

S(k + 1): "k+l
k+1 (fl71

C
1)

Starting with the right-hand side of S(k + 1),

(If' (k + 1)

- (k ± 1\ +

i k+1

=

(-1)''
(C) + C

+
id.)

=

(_flt-1

± (
Ic')] ±
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± (i 1)]
+ (by 8(k))

k±I i—i k

(i_I)
= Hk + (by (30.1))

= He+1.

which is the left side of 8(k + 1), completing the inductive step 8(k) 8(k + 1).

By MI, for each it � 1, 8(n) is true. D

Exercise 397: For each a I. denote the assertion in the exercise by

A(n): H1-i

BASE STEP: Since A(1) says H1 = — 1); tltLs is easily verified.

INDUCTIVE STEP: Suppose that for some e � 1, .4(e) is true. Then

t+1

> (f+ (by

= __L] —C+IIe+i

shows that f- 1) is true also. This completes the inductive step.

So by Ml, for every a � 1, the statement .4(n) holds. D

Exercise 398: (Outline) This appeared as an exercise in [6, p. 99, 12(iv)]. For
a � 1, denote the statement in the exercise by

8(n): � � 1±TL

Since the left-hand inequality in 8(n) was proved in Exercise 395 (by induction), it
remains to prove the right-hand inequality.

Hint: In Exercise 395, one relied on the inequality

9k+ 1t'l
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The remaining inequality in this exercise is based on a similar trick, something like

>
+

Exercise 399: To he. shown that for rt 1,

n(n+i) n(n+i)8(n): >kHk= 2 4k 'I

BASE STEP: 8(l) says H1 = that is, 1 = 1(3/2)—(1/2), which is correct.

INDUCTIVE STEP: Fix m � 1, and suppose that

m(rn + 1) Hrn+i — m(m + 1)8(m): >kHk_-
2 4

is true. It remains to show that

in-it
S(m + I): (rn + lXm+2)

2
(in + 1)(rn+2)

k= I

follows. Beginning with the left side of + 1).

rn-ft rn

- >i: kilk 4 (in 4
k1 k:1

= m('rn+l)
2

m-j-t
—

+ (m + l)Hm-j-t (by IH)

= (rn+2)(rn+1)H — 'rn(in+l)
2 4

= (-in + 1)(rn 1 — rn(rn+ 1)

2 2rn+2 4
(in + l)(in b2)H — rn+ 1 — rn(rrt + 1)

2 2 4

= 2(rn+1)+m(in+1)
—

2 4

which is indeed equal to the right side of 8(m + 1). This concludes the inductive
step 8(m) 8(m + 1).

By maLlicinatical induction, for each ii > 1, the statement 8(n) 1101(18. 0
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Exercise 400: This has appeared in many places, for example, [350, Ex. 661. For
a � 2, denote the statement in the exercise by

1 18(n): ii+1 a

BASE STEP: 8(2) says = 2 — — and since each side works out to 3/4,
8(2) is true.

INDUCTIVE STEP: Let k � 2, and suppose that 8(k) is true. Then

=
+

= (by HI)

(1 1 \ 1

=

2
Hk+2 I

— k+l k+2
shows thnt 8(k + 1) is also true, completing the inductive step.

By MI, for cacti n � 2, the statement 8(n) is true. 0

Exercise 401: This has appeared as an exercise in 16, p. 99, 12(iiiij and [350, Ex.
65]. For a � 1 let 8(n) denote the statement that for any ni satisfying 0 rn � n,

= -
(30.2)

Note that when rn > vi, both sides of (30.2) are zero, so from 8(n), the stronger
statement that for all in � 0, equation (30.2) follows.

BASE STEP (n = fl: 8(1.0) says = — 1). which is correct aiid 8(1,1)
says (t) fIj = ©(112 — 1/2), which is again correct.

INDUCTiVE STEP: Fix k � 1, and suppose that 8(k) is correct, that is, for all at 0,

the statement

S(k,rn):
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is true. To show S(k + I), one must show that for any p � 0. the statement

follows. Fix p. In the sixth equality below, the identity is used:

k+1

= (z)
+

(k+
)

=
(byS(k,p))

(k+2\ 1 (k+1\—i (1w Pascal's id.)
p+l\p+lJ

(k+-2\ F 1 1 fk+1
I ———-——I

L k+2 p+l\p+l
(k+2\ 1 (k+2'\ 1 (k+l

=

(k+2\ I (k+1'\ I (k-i 1'\
I -- I — I

p p

p+l \ P / \p+I
I (ki-2\

= I I iIk-i-2 — I } (by Pascal s id.)\p+lJ
(k+2\

=

Thus S(k ± i,p) is also true, and so S(k + 1) holds, completing the inductive step.

By mathematical induction on ri, for every n � I, and all rn > 0, the statement
S(m,n) is true. U

30.5 Solutions: Catalan numbers
Only one solution to one of the classic exercises is given here. Sec [247] for these
exercises, among a number of other examples regarding Catalan numbers and many
references. Most comnbinatorics books seem to have solutions to one or all of the
exercises in this section. 'l'he exercises given here either rely on being able to see
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the number of items being counted as an expression involving binomial coefficients,
or on sonic kind of parenthesizing, or on Segner's formula and strong induction, as
iii the next solution:
Exercise 405: (Outline of inductive step) Let 3(n) he the claim that an (n+2)-gon
can be triangulated in ways. The proof is by strong induction on ii.

Fix m � 3, arid suppose that each of 8(3) 8(m) holds. Let P be a convex
polygon with in + 3 vertices x,y,p1 mI-I in cyclic order, and for some i =
1,... , m + 1, consider the triangle T1 = Axyp1.

If either i = 1 or i = in + 1, lies on the outside of P, leaving a polygon on
m + 2 vertices to he further triangulated; if I < i < rn + 1, T2 breaks P into two
polygons, P1 on vertices y,P1,P2 and P2 with vertices Y,Pi,Pi+1,•..
So P1 has i + I vertices and P2 has iii + — i vertices. By induction hypothesis,
P1 can be triangulated in G1_1 ways, and P2 can be triangulated in ways.
In all, there are c2_1 ways to triangulate P that use. the triangle So
counting over all there are

rn-fl

>i: Ci...iCrn±1_i
i=1

possible ways t.o triangulat.e P. By Segner's recursion (12.2), this number is
which proves 8(m ± 1). D

30.6 Solutions: Eulerian numbers
Exercise 407: The equation related to (12.5) is precisely (12.6), the one given in
the exercise, which also follows froul equation (12.4), by replacing k with k 1. For
any I k C m, let S(m. k) denote the statement that the number derived
from tile recursion agrees with the definition. fo prove that all S(rn, k) hold is done
by simply inducting on m:

BASE STEP: When in = 1, there is only one possible value for k, namely k = I, and
= 1 by the initial values given, which is correct by the definition (the number

of length I permutations with 0 ascents is I).

INDUC'nvt; STEP ON in: Suppose that for that for some in' � 2, that for every
1 e 8(iii' — 1, A?) holds. Then S(rn', 1) holds by the initial values given arid
by the definition as in the base step. For aiiy 1 < Ic' � iii — I , by the inductive
hypothesis, both S(rn' — 1. Ic' — 1) and S(rn' — 1, Ic') are true. But then equation
(12.6) is precisely the recursion developed previous to the exercise, so derived
from the recursion is correct. F'inally, Ejn',n-z' is correct by the initial values given
and the fact that there is only l)ermnutatiori of length in' with m' I ascents, namely
the strictly! increasing one. So for all i Ic' derived from the recursion
is correct. i.e., 8(m', Ic') is true, completing the inductive step.
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By mathematical induction, for any in � 1 (and all 1 � Ic � in), S(rn, k) is
correct. 0

Exercise 408: For each rn � 1, let P(n) denote the proposition that

Emj =rn!.

BASE STEP: Eij 1 = 1!, so P(1) is true.

INDUCTION STEP: Fix n � 1 and assume P(n) is true. Then

=

= 2+ + 1 — k + l)E14,k_l + (by (12.6))

= 2 + (it + L)

k=2
+

— 2

—

= 2 + (n + 1) + +
—

= 2 + (it + l)(—l + it!) + — > (by P(n))

= 1 — it + (it + 1)! + it —

= (it + 1)!

as desired, showing P(n + 1)is true.

By mathematical induction on m, for every in � 1, P(m) holds. 0

30.7 Solutions: Euler numbers
Exercise 411: By definition, E0 = 1 (one might think of the "empty
as vacuously satisfying the requirements for being alternating). There is only one
permutation (1) on {1}, which is also trivially alternating, so E1 = 1.

For it 1, it reniains to show

=
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Checking ii =

= (C)EoEi ± (DEIEO) = + 1) = 1,

which is correct.
Some preliminary observations make the proof simple. By comments previ-

ous to the exercise, the number of np-alternating permutations anti the number of
down-alternating permutations is the same (by looking at the complement of a per-
mutation). If an up-alternating permutation is reversed, an alternating permutation
ending in a descent is created; similarly, a permutation ending in a descent, when
reversed, begins with an ascent. So the number of alternating permutations on a
k-set that end in a descent is also Note also that for any subset J C {1
with IJI = j elements, there are as many up-alternating (or down) permutations on
J as there are on {1 j}. With these facts in hand. the proof can begin:

Consider a permutation a on {l,2, . . . ,n} and for some i = 0 n, let a'
be the permutation formed by inserting n + 1 in between positions i and i + 1
(between 0 and 1 is the position previous to a(i), arid between ii and Ti + I is

after the last entry). In order for a' to be alternating, both = (a(1), . . . , a(i))
and T2 = (a(i + 1).... , u(n)) must also be alternnting, where -r1 ends in a descent
and r2 begins with an ascent. There are E, ways to have y1 as a permutation
on {a(l) a(i)}; similarly, there are ways to have r2 on the remaining
Ti — i values. Since a subset {a(1) a(i)} can lie choseu ways, there are
E1—0 ways to create all alternating permutations of length ii + 1, and
the number of up-alternating permutations is half of this. 0

30.8 Solutions: Stirling numbers
Exercise 412: The proof is by induction on it. For each it � 1, denote the propo-
sition in the exercise by

P(n): — (x — k+ I).

B1tsE STEP: When it 1, the sum — 1) . . . (x — k + 1) is simply
= zr = so P(l) is true.

INDUCTIVE STEP: Fix sonic in � 2 and assume that P(rn — 1) is true. The proof of
P(rn) begins on the right side {for clarity, not all terms are shown]:
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f kS,n_i,k)X(X — 1). (x — k + 1) (by (12.7))

(Sm—i,o ÷ 1 . + (Srn_i.i + 2Sm_1,2)X(X — 1)

+ 38n,_13)x(x — 1)(x — 2) +...
+(S,n_i,rn_i + mSnj_i,rn)x(x — (x — n + 1)

.Sm-_i,i(.t + x(x -- 1)) + — 1) + xfr — i)(x —2))

+Sm_13(3x(x — 1)(x —2) +x(x — l)(x 2)(x —3))

= + — 1) + Sm_1,3x2(x — 1)(x — 2) 4.

x[Srn_i,ix + S,n_i,2x(x — — 1)(x — 2) +"]
= x (by P(rn — 1)),

which agrees with the left side of P(rn), completing the inductive step.

By mathematical induction, for each ii 1, P(n) is true. 0

Exercise 413: For positive integers ii and k, let A(n, k) be the assertion

8nk =

of the exercise. The proof here is by induction on n; the cases where k = I have to
be separated, but otherwise. k is arbitrary, and can even be fixed in advance-—no
induction on k is necessary.

BASE STEP: Since 81.1 = 1. and

= 1,

the assertion A(1, 1) holds. For /c � 2. 81.k = 0, and by Exercise 107 (or equation
9.7).

=0,

so A(i,k) is true.

INDUCTIVE STEP: Fix in 2. Since 8i't,I = I, and

= 1,

A(m, 1) holds. So let k � 2. and assume that both A(m — I, k — 1) and A(rn — 1. k)
are true.
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Note regarding inductive hypothesis: The base step shows that for all k, A(1, k)
holds (one does not need to fix a k in advance to be carried into the inductive step).
So the inductive hypothesis could have been that for all e � I, — 1, £) holds.
However, after fixing k � 2, the only value.s of £ needed are P = A: and P = k — 1.

Then for arty k � 2.

= Sm_1,k_i + (by (12.7))

=
I- + (by 111)

= (k 1)!
+

= ÷ km_1]

=
1)! (C)

- I)) + km1]

= (k — 1)! C: ± (by Pascals id.)

= (k -- 1)!
)k

C)
(by Lemma 9.6.1)

=

shows that for any k > 2, A(rn, k) is also trite. completing the inductive step.

By mathematical induction, for each ii and k, A(n, k) is true. U

Exercise 41.4: The proof is in [6, p. 91]. For a � 3, it is not known whether or
riot Sfl,k always has a single maximum.

Exercise 415: Here is an outline of a proof as found in [549, p. 126]: For cacti
k � 1, let P(k) denote the equality

SEa, = k(e
— (30.3)

n=k

BASE STEP: When k = 1, for each it 1, $'(n, 1) = I. and so P(1) reads

— 1,

a 1



650 — Chapter 30. Solutions: Sequences

which is true, so P(1) holds.

INDUCTIVE STEP: For each k � 1, denote the left side of (30.3) as a function

fk(x)

Fix rn � 2 and suppose that P(rn — 1) holds, that. is, equation (30.3) with k = in — 1

holds. Taking derivatives,

= > S(n, rn)

= E[m.8n_ l,m)+S(n— l)1(X1),
(by (12.7)

n=m

in E S(n 1, rn)
1)' +

S(n - i,m -1)
fl=fli ri=rn

= ru S(n— E
fl.— I ii— --

(since S(rn — 1. rn) 0)

-I

= + — ir' (by P(rn — 1)

n=irI-— I

Solving this differential equation and using the condition S(rn, in) = 1, arrive at the
desired expressioo for 0
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Solutions: Sets

31.1 Solutions: Properties of sets
Exercise 416: For this simple problem, see [181, p. 209, prob. 7.3.6(c)].

Exercise 419: The reader likely does not need to 1)0 reminded that an inductive
proof is not the preferred method here; however, it may be an interesting exercise
to show that induction can be used to prove the result nevertheless. Let "N-set"
be an abbreviation for with N elements". A proof is by induction on n the
statement 5(n): For every k satisfying 0 k ii, the number of distinct k-sets in
an n-set is

BASE STEP: For ii = 0. the only choice (no [)IJI1 intended] for k is k = 0. and
(g) = 1, and the number of 0-sets in a 0—set is I (the empty set is a subset
of the empty set). When n r there are two possibilities, k 0 or k 1. In
each case, there is precisely one k-set in a set consisting of one element. Also, by
definition, = = 1 and = = 1, so the statement is true for ii = 1.

INDUCTION STEP (5(m) S(rn + 1)): For some m � 1, assume that 5(m) is true.
Let A be an (in + 1)-set. To show S(in + 1), one needs to prove that for every k
satisfying 0 � k m ± 1, that the number of k-sets in A is (mt).

When k = in ± 1, there is precisely one k-set in A, namely A itself, and

(m-f-1\ — (m+1\ — (m+ 1)!
—1

k ) — krn + 1) — 0!im± 1)!

Also, when k 0,
(m+1'\ — (rn+1)!

0 )(m+I)!0!
the number of 0-sets iii .4.

So let k satisfy 1 ç k � in. The number of k-sets in A can l)e calculated as
follows: Fix sonic x A. The number of k-sets in A which contain .r is the number

651
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of (k — 1)-sets in A\{x}, and since JA\(x}I = rn, by the induction hypothesis, there
are such sets. The number of (k — 1)-sets which do not contain x is (again by
induction hypothesis) ('p). Thus, by Pascal's identity, the number of k-sets in A is

(m\
k

the desired number to complete the inductive step.

By mathematical induction, for all n 0, the statement 8(n) is true. 0

Exercise 426: (Functions defined with symmetric differences) Fix some set X.
Let A(n) be the assertion that for any n subsets of X, say 82,... , the set
D(S1, 82,... , consists precisely of those elements in X belonging to an odd
number of the Si's. Let Cx(Sj Sm) denote the set of all elements in X contained
in exactly an odd number of the sets

BASE STEP: With n = 1, there is only one set, and each element of Si occurs in
precisely once, so Gx(Si) = Sr, arid by definition, D(S1) = 8], so these notions

agree. [Just as an added check, for ii = 2, the symmetric difference of two sets
contain precisely the elements in one hut not both sets, and one is odd.J

INDUCTION STEP: Fix some k � I arid assume that A(k) holds. Let Sj
be subsets of X, put D = Dk+r(S1 Sk.I-I) and put C = Cx(Si,. .. To
complete the induction step, it suffices to show that C = D, which is accomplished
by showing both D c C and C c D.

First pick some x E D. By definition, D = Dk(Si, . . . ,Sk)ASk+l. arid so either
x E Dk(Si,.. . , or x E 5k•+•i' and not both. If a; E Dk(Sm then by the
induction hypothesis A(k), x is contained in an odd number of the sets 51
and since x 0 xis still contained in an odd number of the sets Si Sk, 5k+
If x e 8k+1 and not in Dk(SI,.. . , then by induction hypothesis A(k), x is in an
even number of the sets 8k, so together with its membership in 5k+1 again
puts x in an odd number of the sets. In any case, x E C, so D c C.

Pick a e C. If x 0 5k+I, then x is contained in an odd number of the sets
Si,... and so by A(k), x e Dk(81 and hence a: E D. If x E 5k+1'
then x is contained in an even number of the sets Si,... ,Sk, arid thus by A(k),
x 0 Sk); then conclude that x E Dk(Sj,... 1). In any
case, x D, showing that C c D. This completes the inductive step.

By mathematical induction, for any n � 1, the assertion A(rr) is true. 0

Exercise 429: (Thkey's lemma) Let F he a family of subsets of X with the property
that F F if and only if every finite subset of F is in F. To be shown is that F
has a maximal member with respect to the partial order coutairirrient.

First of all, F is non-empty since 0 F.
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Let C be a chain in {F, ç} and set Fc = UFECE. In ordcr to apply Zorn's
lemma, it suffices to show that Fc is in F, that is, to show that any finite subset of

is in F.
Let I? C Fy be finite, say E = xT,}. Since B is contained in a union,

for each i 1 ii, there exists C so that x2 Since C is a chain in F,
= C and so. The sct B is a finite subset of E* and E* e F, so by the

assumption on F, it follows that B F. Since B was an arbitrary finite subset of
Bc, conclude that Fc F.

By Zorn's lemma, F contains a maximal element. D

Exercise 430: This proof is found in [95], however with natural numbers starting
at 0, giving a slightly different base case (and perhaps in a more elegant style).

Let 8(n) be the statement "if {0,1,... ,n — I} and {O,1 in — i} have the
same cardinality, then in =
BASE STEP: When ii = 1, 8(1) says that if {0} and {O, 1 in — 1 } have the same
cardinality, then in = 1. If there is a bijection between {0} and (0, 1 in — 1},
then {O, 1 rn — 1} can have only one element, and this occurs precisely when
in = 1, proving 8(1).

INDUCTIVE STEP: Assume that for some k � 1, 8(k) is tnie. To complete the
inductive step, one proves 8(k + 1), namely, that if there is a bijection between
(0,1 k— l,(k+ 1)— 1} and {0, 1 in— 1}, then in = k+ 1. So suppose that
f : (0, 1 k — 1, (k + 1) — l} {0, 1.. . . ,rn — 1} is a bijection.

If f(k) = in — 1, then the function f restricted to {0, 1, . . . , k — I } is a bijection
to {0, 1.... , in — 2}, and so by 8(k). k = in — 1, giving in = k + 1 as desired.

If f(k) = e in — 1, then create a new function g which differs froni f in just
two places. If ID is so that f(w) = in — 1, then put g(w) = e, g(k) = in — 1, and for
all x e {0, L.. . , k}\{w,k}, put g(x) = f(x). Then g is a bijection from (0, 1, . . , k}
to (0, 1 in 1 } satisfying g(k) = in — 1. As in the last paragraph, conclude that
k = in — 1 as desired, ending the inductive step.

By MI, for all n � I the statement 8(n) is true. D

Note: The set {0, 1,... , n — 1} is called the ordinal n. This exercise proves that
two distinct finite ordinals have distinct cardinalities. See Section 4.2 for a brief
discussion of ordinals; to give a complete theory of ordinals is well beyond the scope
of this 1)00k, SO the interested reader might look at nearly any hook on set theory
(e.g.. [289, 347]) for niore on ordinals.

Exercise 431: Assume that both IBI and IBI C with injections (one-to-
one functions) f : A —i B and g : B A as witnesses. To prove the theorem, it
suffices to find a hijection Ii : A B, injective and onto B. Two proofs are given,
the first, of which may be more transparent; an accompanying diagram is given for
each method in Figure 31.1. The idea in both is the same: construct ii inductively.
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See also [316, p. 11] for a proof (with a version of the first diagram), or [1601, where
a similar proof occurs (and the same diagram is on its cover!).

g(f[Aj

A B

Figure 31.1: Two proofs for Cantor-'Bernsetin--Schröder

Proof 1: (Due, essentially, to Ron Aharoni, personal comniurucation.) Assume
that A fl B = 0, since otherwise, construction of a hijection between the two non-
intersecting parts is easily extended to a bijection by using the identity function on
An B. Consider f : x E A} and = : B} as sets of
ordered pairs. 'Then f U g can he seen as the edges of a bipartite graph on sets A
and B, where any vertex is in at most two edges. Components of this graph are
either finite cycles or infinite paths.

[Gorament: There can be no infinite cycles, because in a cycle, each vertex has
a unique predecessor and unique successor; for example, if Xi, is an rnfinite
sequence of vertices in a cycle (whose indices are Z+), the predecessor of Xl is riot
identifiable; similarly, any "first infinite" vertex has no well-defined predecessor.
If indeed "infinite cycles" could he defined, the idea in the proof below would be
identical: take every (second) pair in this cycle whose first vertex is in A, that is,
use only the f part of the cycle to give a bijection between one "half" of the cycle
and the other half —or use only the part. To see that paths are infinite, argue
by contradiction; if some path ,...,Xr is finite, if Xr A, (Xr, f(Xr)) extends the
path, and jfXr E B, (g(Xr),X,) extends the

If C is a cycle on elements xI,x2.... where x1 E A, for each j 1,...
define X21.

Similarly, for every doubly infinite chain (with rio circuits), take every second
pair to be in h (there are two choices for h here. those pairs in f, or those pairs in

either works). For those infinite paths with a starting point, take the first and
every subsequent pair to he in h, that is, for paths beginning in A, include in h all
pairs in f from this path; for those paths beginning in B, include in h only those

A B
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pairs from g
The function Is. created is a bijection. 0

Proof 2: (Based on Jech [289, p.23]) For any set S c A, use the standard shorthand
1181 = {f(s) : a E S}; similarly define Instead of assuming A and B are
disjoint, Jech argues as follows: Letting B' = g[B] ç A, and A1 = g[f[.4]], then
since f[A] c B, A1 ç 13' ç A, and so a = gof is an injection from A onto that
is, (A1] = A]. Thus, it suffices to prove the theorem when A1 ç B ç A and a is an
injection from A1 onto A. Still yet to be proved is that At = 8].

Inductively define sets A7, and by setting A0 = A, n- B, and for each
n � 0, = and B7,4 = Define the desired bijection h by

—5 cs.(x)
— x otherwise

Theit Is. is an injection from A onto B "as the reader will gladly verify". 0

Exercise 432: (Hint) Use the same trick of adjusting two values of a function as
seen in the solution to Exercise 430. (This argument appears in Cameron's book
[95, p. 22].)

Exercise 433: Let A be a set and suppose that it is Peano infinite. Select a
sequence of elements a0, a1 rom A. Since A is Peano infinite, one can continue
this sequence ad infinitum. because otherwise. if A\{ao a0_i} is empty at some
point, then there would be a bijection from A to {0. 1 n — I } showing that A
is Peano finite. (Selecting the infinite sequence all at once is where the .Axiom of
Choice is used.)

Let f : A A he the function defined by 1(a2) = a7÷i for each a, in the
sequence, and f(a) = a for those not in the sequence. This function is a hijeetion
from A to A\{ao}. a proper subset, and so A is Dedekind infinite. 0

Comment: The above proof is even easier if one well-orders A first (then f is
just a. shift operator, shifting everything down by one—as in tile 'ililbert Hotel", a
fanciful hotel containing infinitely many guests, where room is made for a new guest
by simply shifting everyone up one room, leaving room 1 empty).

Exercise 434 (countable union): This standard exercise is solved in [160, pp. 159--
160] or [2S9, p. 39].

Exercise 435: '['lie proof is by induction on the size of X = U B,. For each
n 0, let 5(n) he the statement that if XI = ii and a family of subsets of X is
cross-intersecting, then equation (13.3) holds (for the corresponding value of k).
BASE STEE': When n = 0, necessarily A: = 1 and A1 = = 0, in which case the
left side of (13.3) is (°t°) = 1, so 5(0) is true.
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INDUCTIVE STEP: For some fixed m > 0, suppose that S(7n 1) holds. Let X be
a set with = m elements, and let A1,. .. , B1 BA. be a cross-intersecting
family of subsets of X.

it is not difficult to verify that for each x X, the family : x U

\ {x} : i is also cross-intersecting. Therefore, for each z E X, (with
= I{i : x replacing k), the induction hypothesis S(m — 1) yields

(lAd {x}l)' <1. (31.1)

Summing (31.1) over allx eX, For each i= 1,...,k,

(lAil + \ {x}lyi <m. (31.2)

Using the following facts

l{x e X \ : Ri \ {x}t = rn.— Ad —

the left-hand side of (31.2) is

(
(lAil+1B1\{x}I)1)

z=1

=

_1) +
(rn - Ad -

).
To simplify the last expression, the equality

a+b)a!b! (b)a!(b—1)!
(a + b)! — (a b I)!'

implies that
(a+b\'(a+b)t

a ) a

which in turn yields

1a+b— 1

1\aJ a )
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Thus equation (31.2) becomes

fl') � ii,

from which 8(m) follows, thereby concluding the inductive step.

By mathematical induction on IX], for any set X and any cross-intersecting
family of subsets of X, equation (13.3) holds. D

Exercise 436: This solution can be also found in [250, Prob. 71]. For n � 3, let
8(n) be the statement that if the pairs of an n-set are partitioned into k classes so
that every two pairs in the same class share a vertex, then k � ii — 2.

BASE STEP: When ii = 3, any partition of the three pairs of elements into either
k = 1,2,3 classes has the desired property, so 5(3) holds trivially.

Jr4r)ucTIoN STEP: Fix in � 3 and suppose that 5(m) holds. Let X {xo, m}
and let [X] = {Y C X : JYJ = 2) denote the pairs in A. Suppose that

is a partition of the pairs in X so that for each i, any two pairs in the class share
a common point.

Case 1: There exists an element of X, say 50 that xc is contained in at
least thrcc pairs froni the same class, say {xo,xi}, {xo.x2}, {xO,X3} E Let
Z = X\{x0} = {xi x,71.}. Since any pair in Z contains at most two of x2,x3,
no pair in Z occurs in k

k — k < (in + 1) — 2, and so 8(m 4- 1) holds in this case.
Case 2: There is no element of X as in Case 1. Then every class contnins at

most 3 pairs, and so 3k � (711±1) which gives k � m(m+1) and for in � 3, it is not
difficult to check that for in � 3, k in — 1, again proving 8(m + 1). These two
cases complete the inductive step.

Mathematical induction shows that for each n � 3, the statement 8(n) holds. [1

comment: Note that the result in Exercise 436 can not he improved because a
partition into n -— 2 classes exists so that all pairs in the same class share a vertex;
such a partition exists by a simple induction argument (put all three pairs from
three vertices in one class; add a vertex, and put all newly formed pairs in the next
class, and continue similarly adding each new vertex).

Exercise 437: This problem and solution can be found in the classic reference by
Hadwiger, Debrunner, and Klee [250, Prob. 78]. The proof here is by induction on

— q � 0.
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BASE STEP: For 2 S q = p, let F be a family of segments with the (p, q) property.
By Lemma 13.1.5, F has the (2,2) property, and so by Helly's theorem (Theorem
20.1.7 and comments after for infinite families), some point is common to all sets
in F. So when p = q, p — q + 1 = I and the unique class, all of F. ha.s non-empty
intersection.
INDUCTIVE STEP: Fix d � 1 and suppose that the result is true whenever p — q < d,
and fix some Po and qo so that Po — = d and let F be a family with the (po, qo)
property.

First, suppose that F is finite. Let P denote the leftmost of the right endpoints
of the segments. Let F' c F be the family of those sets containing P and F" he
those sets not containing P. [The idea is to now partition F" into d - I classes, and
use F' as the d-th class.]

Claim: F" can be partitioned into at most Po — q0 classes so that each class has
non-empty intersection.

Proof of claim: If F" contains at most Po — qo sets, the result is trivial. So
suppose that F" contains more than Po — sets. By Lemma 13.1.5 with r = qo —2,

F has the (P0 — q0 + 2, 2) property. So any — qn + 1 sets from F" together with
the segment ending in P has a pair intersecting, and since one of these cannot be
the one ending in P, this pair resides in F". Thus F" has the (Po — qo + 1,2)
property, and since -- + I — 2 < Po -— q0 d, by the inductive hypothesis. F"
has a partition into (Pu — q0 + 1) — (2) 1 1 vu — qo classes so that each class has
non-empty intersection, finishing the proof of the claim.

Together with F' as one more class (which has common intersection P), F is
partitioned into 1 classes, each with non-empty intersection, and completing
the inductive step.

When F is infinite, the solution is only outlined. Let I? c R be the set of
right-hand endpoints of segments in F. Then R is bounded on the left (for if riot,
arbitrarily many, more thazi disjoint segments are present, contradicting the
(po,qo) property). Hence, there is a rightmost point such that no point from R
lies to the left of Now proceed as in the fInite case to complete the inductive
step.

By mathematical induction, for every p � q � 2, tIme assertion in the exercise is
true. 0

Exercise 438: The proof is by induction on n and d. For d 0 and ii 1,

let S(d. n) be the statement that if N is a set-system on = n elements with
VC-dim = 4, then

BASE. STEP: If either d = 0, or n 5 4, the inequality given in .9(4, n) is trivial. [So,
if the d's are plotted on the x-axis, and the n's are plotted on the y-axis. the base
step covers the y-axis and the (infinite) triangle at or below x =- y.
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INDUCTION STEP ([S(c — l,m — 1) A S(c,m — 1)1 - S(c,rn)): Let 0 <c < m and
suppose that both S(c — 1, m — 1) and S(c, m — 1) hold. Let N be a set system on
X with JXJ = m and VC-dim(fl) = c. Fix any x E X and consider the two families
N1 and of sets defined on X\{x} by

= {H\{x} : x E H E 7-(},

N2 ={H EN: x and HU{x} E N}.

If H E N contains x and also H\{x} E N, then H\{x} in N1 arises from two
different N1 in N. Hence = IN1I + 1N21.

Since any subset that is shattered in N remains shattered in N1, it follows that

VC-dim(N1) � VC-dim(N =

and so the hypothesis S(c, m — 1) applies to If some Y C X\{x} is shattered in
N2, then Y U {x} is shattered in N, so VC-dim(NE) c — 1, and so S(c — 1. rn — 1)

applies to N2.
Putting all of these facts together,

(NI cal IIi( -F N2(

(in-- I)
+

1)
(by S(c, m — 1), S(c — l,m — 1))

= (rn_ 1) (Tn

—

I) + (rn_I)

+.

(by Pascal's id.)

=

and so S(c, m) holds, completing the inductive step.

By a form of double induction, for all d > 0 and n > 1, S(d, n) ho'ds. 0

Comment: One can think of the induction step as an outer induction on d, with
the inner induction done on n. Another way to see that the inductive step above
indeed accomplishes the task, is start with those indices corresponding to the line
y = x arid x 0 as mentioned in the base step, and then to consecutively prove the
theorem for each of = x + 1, y x -F- 2, arid so on.
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31.2 Solutions: Posets and lattices
Exercise 439: (Dilworth's theorem) For any poset (P, let d(P) denote the
minimum number of disjoint chains required to cover P, and let a(P) be the number
of elements in a largest antichain. Since any antichain A ç P requires AJ chains to
cover A alone, a(P) � d(P). It remains to prove the reverse inequality, and this is
achieved by strong induction on For each it � 0, let 8(n) denote the statement
"For any poset (F, C) with Fl = it, P can be covered by at most a(P) disjoint
chains."
BASE STEP: If P1 = 0, then P = 0, and both a(P) = d(P) = 0, verifying that P(0)
holds.

INDUCTIVE STEP: Fix some k � 1 and assume that for all k' {0, 1 k — l},
P(k') is true. Let (P, <) be a poset with = k elements and let a = a(P) be the
length of the longest antichain in P. It remains to show that P can he covered by
(at most) a chains.

Let C be any maximal chain in P.
Case 1: If every antichain in P \ C contains less than a elements, then by
\ Ci), P \ C can he covered by at most a — 1 disjoint chains, and so together

with C, P can be covered by at most a disjoint chains, arid 8(m) is satisfied.
Case 2: Suppose there exists an antichain A = {ai , a0} in P \ C with a

elements. Longer antichains do not exist by the definition of a, and so every element
in P \ C is comparable to some element of A. Define

U={p€ P:aa2€Awith aiCp}

and
L = {p P: A with p < a1}.

Then U ti L = P. The maximum element of C is not in L, for if it were, C could he
extended by adding some a1; but C is maximal. Similarly, the minimum element of
C is not in U. Thus U P and L $ P. By induction hypotheses 5(1111) and S(lLl),
let each of U and L can be covered by at most a disjoint chains, say and c'r's.
Since A is an antichain with a elements, each a2 A is contained in precisely one
chain in U and one in L; relabelling the Cf's and G'f's if necessary, suppose that
for each i, a1 CV and a1 Cf.

Observe that for each j, both a2 = minCf and a1 = maxC'f, for if, say, a2 $
mm CV, that is, for some x CV, x < a1, then for some C x < contradicts
A being an antichairm. Thus for each i, form the chain = CV U (Jf; tIme chains

are disjoint and cover P, completing the inductive step 8(IPI) = 8(n).
By strong mathematical induction on IPI, for each finite poset P, I)ilworth's

theoreni holds. D

Exercise 440: For those wanting a bit :nore of hint, see [59. p.98, prob 53]. For
a complete proof, see, e.g.. [pp Gl62}[386]; tIme Rado selection principle is used,
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which is given with a compactness argument using Tychonif's theorem (see [386,

Exercise 441: See [387[.

Exercise 442: One solution to this exercise appears in, e.g., [58, p. 18j, however,
was not mentioned (though it is a consequence of the proof given). The

proof is by induction on = ri.
BASE STEP: When ii = i, 2(X) is itself a (symmetric and convex) chain with two
elements (X and 0).

INDUCTION STEP: Let X be a set with k � 2 elements, and suppose that any
set with k — 1 elements has a symmetric chain decomposition. Let x E X, and
Y = X\fr}. By induction hypothesis, let

P(Y)=C1uC2U•••UC3

be a partition of all subsets of Y into (disjoint) convex symmetric non—empty chains.
[Note that since each chain contains precisely one set of Uk — 1)/21 elements,

( (k_1L/2])] In 2(X), each such chain is replaced by two chains (one of which
be empty). If some C1 consists of i sets C A2 C C let

Q,

and
= {Ai U {x}. A2 U {x} U {:r}}

(which may be empty ifj 1). Since is, by the induction hypothesis, convex and
svmnietric. it is not difficult to verify that so are both and R2 (see the example
above-- -examine the eveit and 0(1(1 cases separately). Also, (excluding the empty

X = u U

a partition of 2(X), concluding the inductive step.
13y Nil. for all ii � I, the power set of n—element set can be partitioned into

symmetric convex chains. U

Comment: One can check that the inductive step pro(luces the correct number
of sets, doubling from to 2k, since j sets in are replaced by j + I sets and
j — 1 sets respectively. Also as noted by Bollobá.s, the number of chains produced
is correct as well. When lxi = k = 2€ is even, two chains are produced from each
in 2(Y), giving

91 k—i '\ 2,1'2€1\ (2€
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the correct nuniber. However, when 1XI = + 1 is odd, there are chains in P(Y)
consisting of a single set—in the decomposition for Y, (where = 2t), there are

chains, of which only have more than one set (this takes some thought),
so the construction gives (by Pascal's identity)

(2€+1

chainis, precisely the number desired.

31.3 Solutions: Countable Zorn's lemma for measur-
able sets

Exercise 443: The proof is by contradiction; suppose that ji(U\A) > 0. Since

: i 1,2,.. .} =

n be so large that

— <

By construction,

> : B E e, A7, B} +
/4'

— 2

(since A,, U)

— ii(U\A) + /2(A) +

ii(U\A) + +
(because A)

/L(U\A)

> /2(A) -- + /2(A,,)

= /2(A),

and so > bt(A), contradicting ç A. Thus one concludes that
= 0, and so U A.

Flence any upper hound V E (3 for .4 satisfies 1i(V) = /2(U) = /2(A), and so
= 0. Thus U is maximal in P. 0
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31.4 Solutions: Topology

Exercise 444: This problem is an old classic (sec e.g., [220, P. 114], or more
recently, [462, Ex. 69, p. 282]). For ii � 1 let P(n) be the proposition that if
(a1, b1), (a2, b2),.. , (ar,, are open intervals of real numbers that pairwise inter-
sect, then $ 0. Note that the assumption that every pair of intervals
intersect ensures the tacit assumption that each a, <b1.

Two different versions of the inductive step are given; they differ in notation and
style, but rely on the same general principles. The second, (based on [220, P. 114])
is perhaps a little easier to read.

BASE STEP: When n = 1, the statement P(1) is trivial. (The case ii = 2 is also
trivial.)

INDUCTIVE STEP, VERSION 1: Let in � 1 and suppose that P(m) is true. Let
(ai, b1), (a2, b2) (am, (am+i, he open intervals that are pairwise in-
tersecting. Without loss of generality, assume that a1 � � < � a,flFI.
By P(m), is non-empty. Let bft = min{hi bm}; therl =
(am,ba) $0, so > am.

Case 1: If <be, then

m+ 1

(fl = (am*i,bm÷i),

which is non-empty l)y assumption.
Case 2: If b0 then

m+l
=(am,ba)fl(am+i,bm+i) =

which is non-empty because intervals pairwise intersect.
In both cases, (am÷i,bfl,+1) $0, completing the proof of P(m + 1).

INDUCTIVE STEP, VERSION 2: Note that if two open intervals intersect, they do so in
an open interval. Let in � 1 and assume that P(m) is true. Let 11, 12 tm, 'rn±l
be pairwise intersecting open intervals in R. By P(nt), Ij 1,,, niutually intersect,
and the intersection is an interval 1. To prove that I intersects 'm÷I' suppose
the contrary, that is, suppose that Ifl Tm*I = 0. Then there exists a point X E R in
between land Each of the intervaLs contains 1, and l)y assumption,
intersects with Im+1, and so contains all points between, namely X. So X belongs
to I. The contradiction shows that I ii Im+i 0. and all points iii this intersection

are contained all intervals

By MI, for each ii � 1, if n open intervals intersect pairsvise, they mutually
intersect. C



664 Chapter 31. Solutions: Sets

Exercise 445: Suppose that for every e > 0, there exists x e A such that Ix—al <.
In particular, for each 'a e N, the set

X,, ={x A: x—aI<

is non-empty. By the Axiom of Choice, flneN $ 0, and so there exists a sequence
{ so that each e Then each E A and —÷ a as ii —. oc. 0

Exercise 446: This proof is well-known (see, e.g., [463]).
Let, X and Y be sets, and let F c X x Y be a collection of functions from

some subset of X into Y. Let C be a chain in (F, -S), arid put Ii = Ufecf. Put
= dom(h) = U1 To be shown is that h is a function, that is, for any

x X', there is unique y so that (x, y) It. In hopes of a contradiction, suppose
that both (x, y') Ii and (x, y2) h. Since It is defined as a union of functions, there
are and in C so that (x, Yi) g' and (x, 112) %\Tithout loss of generality,
suppose that 91 C Then (x,yi) 692 as well, and since 92 is a function, Yi =

It is rudimentary to verify that the domain and range of h is as in the statement
of the exercise, and so this is left to the reader. 0

Notc: By the above proof, chains in the above order have their union in the
family, so Zorn's lerrima applies to any subset of all functions from subsets of X
to Y to give the existence of a maximal elements in the ordering given above.
However, without Zorn's lemma, it is nearly trivial to notice that any function with
domain X and range in Y is maximal in this sense. So Zorn's lemma doesn't yield
anything interesting for the entire set of such functions. It might, however, imply
soniething interesting for some special subset of functions whose domains are in X.
(See solution to Exercise 449, Tychonoff's theorem.)

Exercise 447: (using Zorn's lemma) Let A C 2(X) be a family with F1P, and
define

= {C ç 2(X): A ç C and C has FIP}.
For any C if 0 then flce4C 2 flcecC 0.

Let {Ca : a 6 A} C be a chain (ordered by inclusion), and set C' = UaE ACQ. Fix
Cj G,,. C'. For each i = 1 ii. let (time at's need riot be distinct).
Since form achain. thereexistsj {1,... ,n.} so that C1,G'2 6 Ca,.
Since has FIP, C1 n 0. Thus, C' has FIP. and so is an upper bound
for {C0 : a A}. By Zorn's lemma, has a maximal element. 0

Exercise 448: [Thanks to KR for this proof.] For each it ? 1, let 5(n) be the
statement that if X1. X2 are compact topological spaces, then X1 x X2 x

x equipped with the product topology, is compact.
BASE STEP (S(1),S(2)): 5(1) is immediate. To prove 5(2). let X1, X2 be compact
topological spaces and let {U0 x V0 : a be an open cover of X1 x X2 by basic
open sets.
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For every b X2, let 4 = {a I : b Va}. Then x Va : a C Ih} covers
x {b} and hence {Ua : a C 4} is an open cover of X1. Since X1 is compact,

there is a finite subcover : 1 � S kb}. Then X1 x {b} c X

Set Vb = Then be V5 is open in X2, and {V,, : be X2} is an open
cover of X2. Since X2 is compact, there is a finite suhcover {V51, V52 }. For

everyj = 1 t, if I <i 5kb3, then c
a x X2.

INDUCTIVE STEP: Suppose that for some t � 2, 5(t) holds. Let X1
he compact spaces. By the inductive hypothesis, X1 x x Xe is compact and. by
5(2), X1 x x Xe x Xe÷i (Xi x x x is compact, finishing the proof
of S(t + 1) and so the inductive step.

By MI, for each ii � 2, 5(n) holds. 0

Exercise 449: Two solutions are given, the first perhaps more elegant. Proofs for
Tychonoff's theorem are also found in most topology texts (e.g., Dugundji [151]).
The first proof given here is really based on the idea of filters/ideals, without actu-
ally mentioning them, and is ba.se.l on Lemma 13.3.2 (and can be found in [390].)
[Thanks to KR for help writing this proof.] Both proofs assume the axiom of choice
and hence Zoru's lemma.

Proof 1: Assume that for each i I, is a compact topological space, and set
X = with the product topology.

By Exercise 447, let C* be a maximal family of subsets of X with FIP If Y C X
ha.s the property that for every C C fl Y $ 0, then Y C.

In each coordinate space the family {ir(C) : C has PIP, and so by the
compactness of each

(JeC*

By AC, for each i E I, pick x X. It remains
to show that x flcccC.

Since each is closed, to show that x it suffices to show that for
every open set U c X containing x, and for every C C, U fl C $ 0.

For each i I, let C he an open neighborhood of For every C C,
ir1(C), and since is an open neighborhood of it follows that $ 0.

Thus 0$ ir['(Uj) nC, and by the maximality of C, C.
Let U be open in X with x U. Approximating by basis elements of X, there

are i1,... €1 and C XjL,...,Ufl so that

x€flnj'(Uj)cU.
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By the previous paragraph, since for j = 1,..., ii, U3 is an open neighborhood for
C Ct, and since Ct has FtP,

flr:'(Uj)nC$O.

Thus, 0.
Therefore, for every C e Ct, x C, and hence x C 0. 0

The second proof given here is an adaptation of that found iii [463], a proof for
which Paul Chernoff (1992) receives credit. Recall that a net is a generalization of
an infinite sequence (a sequence is a function f whose domain is a well-ordered set I,
whereas a net is a function from a partially ordered set with least upper hounds—see
[571, p.73]).

Proof 2: For each i C I, let X1 be a compact topological space, and set X =
U2€1 X show that every net in X has a
cluster point. Any element of X can be viewed as a function with domain 1. Fix a
net (fO)OEA.

For each non-empty subset I c I and g in X2, y is called a partial cluster
point of ill g is a cluster point of the net (f0

When .1 = {i} is a single index, Jj)aeA is a net in and since is

compact, X1 has a cluster point. Hence, partial cluster points exist. Let P be the
non-empty set of all partial cluster points in (fa)ojnA. As in Exercise 146, let he
the partial order on functions ordered by extension.

By Exercise 446, for any chain C in P he = is a function with domain
=
For the moment, fix a chain C in (P, the claim is that he is a partial cluster

point of the net To show this, it suffices to show that he is a cluster point
of (I,, Ifc)acA. Let F' be a ['mite suhset of and for each i E F. let U, be art open
set in Put

W={he
15./c

a basic neighborhood of he. Since C is a chain, there exists fi C A so that for each
i C F, f0 and so liFE V-IT. Since C A is arbitrary and the basic
neighborhood W of he is arbitrary, he is a cluster point of (ía Thus,
he C P.

So any chain in P has an upper bound in F, naniely he. By Zorn's lemma, P
has a maximal element, say, lie.

Let dom(ht) = Jf Jt = I, then has a cluster point in X and in this
case, the theorem is proved. So suppose that doin(ht) = j I, antI let k C J\J*.
Since ht C P, some subnet Lie converges to Since Xk is compact, the
net (f3 j. (k))eEB in X5 must [rave a cluster point p. Extend /zt to g on U {k} by
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putting g = h* and g * (k) = p. Then h is a partial cluster point of (fa)acA,
putting h e P. However, /1* g, contradicting that /1* was maximal, so .1' I is
not possible. o

Exercise 450: See {308J; a solution is also given in several topology texts.

Exercise 451: (Q is dense in R) First consider the case when U <x < y. By the
Archirnedean property, there exists q so that

y—x

and so 1 <q(y x). Again, by the Archirnedean property, there exists an ii
so that qx < ii; by the well-ordering of V, there is a least such ii, say p. Then
p — 1 � qx < p (because if p = 1, 0 � qx which is true, and If p $ 1, p — 1 > qx
would contradict the minimality of p). So qi <p = (p — 1) + 1 <qx -f q(y — x) <qy;
and division by q yields

<
q

To prove the case where x < 0, use the Archumnedean property to find in 6
so that —x <ni, and apply the above proof to find p/q Q satisfying

x + rn < <p + ra,
q

giving — in as the desired rational number. 0

Exercise 452: Suppose that the conclusion is false, that is, suppose f is tiot con-
tinuotis. Then there exists t > 0 so that for every 5 > 0, there is an •xso that,

— aJ < 5, yet 11(x) — f(a)I � c. Fix such an epsilon. Using S's of the form 1/n,
for each 71 = 1,2,3,... there is so that — at < and — f(a)I � e.

For ii = 1,2,3..., let be the set of reals x which satisfy Ix — aJ < and
11(x) — f(a)j � C; then each is non-empty (for example, 6 X71). By the
Axiom of Choice, there exists a sequence so that x,, a but jf(x,,fl does not
converge to f(a). 0

Question: Was the Axiom of Choice really requircd here? Why couldn't. one
just use the sequence {ya} from the proof? Essentially, the Axiom of Choice was
used to select a sequence all at once, and the sequence {yrt} was just used to
show one-by-one that all the X7,'s were non-empty. It seems as if this proof could
be restated using MI rather than AC.
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31.5 Solutions: Ultrafilters
Exorcise 453: Let Fe be a proper filter, that is, 0 Fe. Since Fe is a filter,
and the intersection of any two sets must also be in the filter, every pair of sets in
Fe intersect non-trivially, and since E ç Fe, then any two sets in E intersect. It
follows by induction that E has FIP. Hence the remaining direction of Lemma 13.4.2
holds. LI

Exercise 454: Let N be the set of proper filters on S containing F, ordered by
inclusion (where F c F' [A F A F']). To apply Zorn's lemma, one needs
to show the union of a chain or proper filters is again a proper filter.

First cheek that the union of a chain of filters is again a filter: Let F0 : a < A

be a chain of filters where a < a' F0 C

F Uo<AF0 = {A: A F0 for some a C A}.

For each a, S F0, and so S F. Now suppose A F and A c B c S. Then
for some a, A F0, and since F0 is a filter, B F0, and hence B F. S11l)I)ose
that C, D F with C F0 and D Then C fl D and hence
CflD E F. So F is a filter.

Furthermore, F is a proper filter since 0 never occurred as an element in any
F0, so 0 F. So Zorn's lemma applies giving the desired result. 0

Exercise 455: For k = 1, X1 = X F, so assume that k > 1. If 0 F. then
since F is an ultrafilter, = X1 U ... U F. The result now follows by
induction on It. 0
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Solutions: Logic and language

32.1 Solutions: Sentential logic
Exercise 456: For each m e Z4, let 8(m) be the statement that for rn + 1 state-
ititnits

Em —'p2]A[p2 AP2A...APmn)—4Prn+l].

BASE Si'EF': The statement 8(1) says

En P2] [(P1 A P2) —> P2], (32.1)

which is true (since the right side is a tautology).

INDUCTIVE STEP: Fix k � I. and assume that for any statements qi,.. . ,qk+1, both

8(1): [qi p2] [(qi A

and

8(k): [qi A[qk qk+i] [(qi Aq2A... qk÷iI

hold. It remains to show that for any statements . ,Pk,Pk.4-1,Pk+2,

8(k+ 1): -->P2] A [P2 P3] A... A Pk+2] [(pi A... Apk÷i) Pk+2]

follows. Begin with the left side of 8(k 4 1):

'P2]A...A[Pkii
4). (definition of conjuction)

P2] A [P2 P3] A ... A LPk+l Pk+2]] A [pk+1 Pk÷2]

tL (by 8(k) with eadi qj =
Am A... A Pk) pkt.i] A Pk+2]

669
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4 (by 5(1) with = P' A... Apk) and = Pk4 1)

4 (by definition of conjuction)

[(P1 A P2 A... A Pk A Pk-E1) Pk÷ij A [Pk÷i Pk÷2]

4 (since a A b b with b = [Pk+I pkl-21)

[(p' A P2 A... A J'k A Pk± I) Pk+2] A LPk÷l 73k-J-2]

4 (since A b a)

[P1AP2A...APkAPk÷i]—tPk÷2,

precisely the right side of S(k + 1), which completes the inductive step.

By mathematical induction, for each a � 1, 5(n) holds. 0

Exercise 458: For each a � 3. let G(n) be the claim that for each r satisfying
1 r < Ti,

BASE STEP: Let a = 3; the cases i- = 1 and r = 2 are, respectively equations (14.2)
and (14,1), declared just before the statement of the exercise. so C(3) holds.

INDUCTIVE STEP: Fix k � 3 and suppose that (1(k) is true. To show C(k + 1), one
has to show that for each s E {1 .

(p1 A'''Apt.±j.

Applying each of the results of Exercise 457

(pi A ,.. A A (P5±i A ... A Pk

(pi A i's) A A Pk) A Pkt

(Pt A Ap8) A (Ps÷i ... Apk÷I) (by C(3))
(hyC(3))
(byC(k))

which is the right side of C(k ± 1), coiiipletiiig the inductive step.
By Triatheniatical induction, for each n � 3. the claim G(n) holds. 0

Exercise 459: For a ? 2. define recursively the disjunction of n + I statements
Pl,P2 Pn.,Pn ,i by

P1 V .. V V Pn±i (Pi Vp,,) V

0



32.2. Solutions: Well-formed formulae 671

Exercise 460: To show that

repeat the solution to Exercise 458, however replacing A with V.

Exercise 464: Having q defined as in the question, for it 2, let 1(n) denote the
implication

— —>

BASE STEP: The implication 1(2) says q(x1,x2) —* fri £2), which is the first
part of the definition of q.

INDUCTIVE STEP: Fix k � 2, and suppose that

1(k): q(xI,x2,...,xk) fri
is true. It remains to prove

J(k+ 1): q(xi,x2 Xk+I) (x1

Beginning with the left side of 1(k + 1) and applying the recursive definition of q,

qfr1,x2 xk÷I) -= qfri,x2 Xk)A(Xk Xktl)
fr: Xk) A (xk xk÷l) (by 1(k))

(xj

which completes the proof of 1(L: + I) am! so the inductive step.

mathematical induction, for each it 2. the implication 1(n) holds. [1

32.2 Solutions: Well-formed formulae
Exercise 465: The proof given here is in two parts. Set W() = A and for each
Ti � 0, set

= U {(—'p : p E W,J {(p A q) : p, q E

and U" — Since j4/' contains A and is closed under and A, 14' c lIi'.
Claim: it' it". For every' it 0, let 8(n) be the statenient that W1 c W.

BASE STEP: 8(0) is trite since = A c W.

INDUCTIVE STEP: Let k � 0, and suppose that 8(k) is true. Let x E If
x E U/k, then x E lV h the induction hypothesis. If there is a p e IVk so that
x = p) or if there are p and q P/k such that r = (p A q), then x C W by the
induction hypothesis and since U' is closed under and A. Thus ç Hi.
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By MI, for every m � 0, W and hence UT' = ç w.

For each ii � 0, let E(n) be the statement that for every x x has an even
number of parentheses.

BASE STEP: If x W0, then for some i � 1, x = A has no parentheses, an even
number.

INDUCTIVE STEP: Fix /c � 0, suppose that E(k) holds, and fix x If x Wk,
then x has an even number of parentheses by E(k). If there is a p Wk so that
x = p), then by E(k), p has an even number of parenthesis, say 2E. Then x
has 1 + 2€ + 1 2(E + 1) parenthesis. Otherwise, there are q, w such that
x = (q A in). By the induction hypothesis, there are s, I � 0 so that q has 2s
parentheses and in has 21 parentheses. Then x has 1 + 2s + 21 + 1 = 2(s + + 1)
parentheses.

By MI, for every ii 0, every word in Wa has an even number of parentheses. 0
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Solutions: Graphs

33.1 Solutions: Graph theory basics

Exercise 470: This exercise has a simple direct proof- since E is a subset of the
unordered pairs of vertices, El < (I'1). Here is an inductive proof: For each it � 0,
let A(n) be the assertion that any graph G on ii vertices has at most G) edges.

BASE STEP: When ii = o, there are no vertices and hence no edges, and 0,

so 5(0) holds. Similarly, when vi = I there are no edges and = 0, so 5(1) holds.
The first non-trivial case (actually, it is trivial, too) is for vi = 2. The maximum
number of edges on two vertices is one, and since = 1, 5(2) holds as well. Three
base cases were riot actually necessary, however, often it doesn't hurt to be sure to
prove the first base case that actually says something.

INDUCTION STEP: Fix some k � 2, and suppose that 5(k) is true. Examine a graph
(7 on k + 1 vertices and fix a vertex x E 17(G). There are at most k edges incident
with x, and in the remaining graph, by 5(k). there at most edges. Thus, in all,
G contains at most

(k\ k(k—l) k2—k+2k (k-i-l)k /'k+l
2

+k=
2 2 2

edges, which shows that S(k + 1) is true as well. This completes the inductive step.

By mathematical induction, for each vi � 0, the statement S(n) is true. 0

Exercise 471: As pointed out, there is no riced for a proof by induction, since each
edge contributes 2 to the degree sum, making the result immediate. •Two inductive
proofs are available, one by induction on IV(C)I, arid the other by induction on

I
The first natural choice might be to induct on the number of vertices, so

this proof is presented here. As the reader cart verify, however, inducting on the
number of edges is far easier.

673
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For ii � 1, let 8(n) be the statement that for any graph G on n vertices,

fleV(c) deg(x) = 21E(G)J.

BASE STEP: For n = 1, the only graph is a single vertex x; both deg(x) 0 and
21E(C)1 0, so 8(1) holds.

INDUCTIVE STEP: Let k � 1 and suppose that 8(k) is true. Let C be a graph on
k-j-1 vertices, and let v 6 V(C). Suppose that deg(v) d, and let yi,... ,Yd be the
neighbors of x. Form C by deleting v (and all incident edges, of course). Then C'
has k vertices, and so by induction hypothesis 8(k), = 21E(G')I.
Since the degree of each is precisely one less in C' than in C,

> deg0(x) = d + E
d d (by 8(k))

= 2(d+IE(C')I)
= 21E(C)I (d edges in C contain v).

This shows that 8(k + I) is true, completing the inductive step.
By Ml, for any it i, 8(n) holds. 0

Exercise 472: [Handshake problem[ This problem is a classic; for example, it
appears with solution (and non-solution) in, e.g., [566. pp. 4812].

Translating the problem to one of graph theory, for the moment, fix a party with
the set of people V = where for each i = 1 ii, {xj,yj}
is the i-th couple. Let C = (V,E) he the graph on V be defined by {v,w} e E(C)
if my shakes hands with w.

For ii � 1, let 11(n) he the statement that for any party of ii couples, with host
Ti and hostess if in the graph for the party, the degrees of all vertices hut the
host are different, then deg(y1) — 1.

If rio partners shake hands, then for any v 6 V, 0 deg(v) 2n — 2.

BASE STEP: When ri = 1, there is only one coul)le, no handshakes, and the hostess
shakes n — 1 = 1 — ] = 0 hands as required.

INDUCTIVE STEP: Fix some rn � 1 and suppose that H(in) holds. Consider a party
with in +1 couples fri, G being its graph, no couple shaking hands, x1 the host,
yj the hostess, where the degrees in C of all but the host are different. Since any
vertex has degree at most 2(rn + 1.) — 2 = 2m.. the degrees of all vertices but the
host are 0,1.2.... ,2m.

The person other than the host with degree 2in shook hands with everyone else
except the person of degree 0, so these two form a couple. Since the hosi, is not part
of this couple, neither is the hostess, so let Xm+I,Ym+I he the couple with degrees
0, respectively.
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Consider the party where the couple Xm+i, Yrn+I is deleted, with C' its graph on
2rn vertices V' = {xi,yl,x2,y2, ...,Xm,yin}, where xi,yi are host, hostess, respec-
tively. Because = 2rn and {Xm±i, Ym+1} E(C), Xm+1 was connected
in C to all vertices in VI, so the degrees of vertices in V'\xi are reduced by one in
C'; thus, the degrees of vertices in V'\{xj} are 0,1,2,... ,2zn—2. So C' corresponds
to a party with rn couples satisfying H(zn), and so = in—i. Adjoining the
two deleted vertices shows that = rn, the required degree of the hostess.
This concludes the inductive step H(rn) .. H(m + 1).

By mathematical induction, for every n � 1, H(n) is true. 0

Exercise 473: (Eulerian graphs) Induct on in = IE(C)I.
BASE STEP: For rn 0, the graph is a single vertex, in which case the theorem is
trivially true.
INDUCTIVE STEP: Fix £ � 0, and suppose that the theorem is true for all graphs
with at most £ edges. Without loss of generality, let C be connected, with all degrees
even, and with I edges.

Since d(x) = 0 is impossible, 6(C) � 2, and so hy Lemma 15.1.2, C contains a
cycle C. Delete edges of C from C, giving a graph H that still has even degrees.
Let , he the components of II. Since each has fewer than £ edges,
apply the 1Ff to each to get an Eulerian circuit in each Splice these circuits
together with C to get an Eulerian circuit for C (traverse C, and at the first vertex
of each 14 in C, stop, traverse C1 all the way (returning to the point in C where the
diversion began), then continue on with C). Hence the theorem holds for graphs on
£ + 1 edges, completing the inductive step.

By MI, the theorem holds for graphs with any number of edges. 0

Exercise 474: For ii � 3. let 8(n) he the statement that for any graph C with n
vertices, if C has at least n edges, then C contains a cycle. An equivalent formulation
of 8(n) is 8'(n): if C is a graph on rm vertices, if C contains no cycle, then C has at
most n — 1 edges.

BASE STEP: For n = 3, the only graph with 3 edges is 1(3, which is a 3-cycle, so
8(3) holds.

INDUCTIVE STEP: Let. £ � 3, and suppose that S(€) is true. Let C be a graph on
£ + 1 vertices. It suffices to show that if C contains no cycle, then C has at most £
edges. So suppose that C has no cycle.

Divide the proof into two cases. First suppose that C has a vertex x with degree
either 0 or 1. Deleting x produces an acyclic graph C' with £ vertices, amid so by
8'(€), C' contains less than edges. Putting back x shows that C has less than £+ 1
edges, proving 8'(€ + 1), completing the inductive step. Second, consider the case
where C has 'to vertex of degree 0 or 1, that is, 6(C) � 2; in this case, it is shown
that C has a cycle, regardless of the edge count. Let P be a maxinial path in C,
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between, say, vertices u and v. Since P is maximal, any neighbor of a appears in
P. Let x he the vertex in P that i.s farthest from a. Then the path from u to x
contains at least 6(C) + 1 � 3 vertices, and the edge {n, x} completes a cycle in C.
This completes the proof of S'(e + 1).

By Ml, for all a � 3, 8(n) holds. 0

Exercise 475: [Erdds-Gallai] This result appeared in [169, Thm 2.7j; another
proof by Woodall appears in [575] (and reproduced in [566, p.416]). \Voodall's proof
(given, below) relies oft Dirac's theorem [143] (Theorem 15.4.1 here). Bollobás [59]
also discusses this problem, but leaves it as an exercise.

Let 8(n) be the statement; that for any constant c > 3, for arty ri c, if C is a
graph with more than (c — 1)(n — 1)/2 edges, then the length of the longest cycle
in C is at least c.
Proof: Fix c � 3 and use strong induction on a.

BASE STEP (8(c)): Since = () - (a— 1)/2, arty graph with more than
edges has 6(C) � n/2, and so C is harniltonian by Dirac's theorem. Thus 8(c) is
true.

INDUCTIVE STEP: Fix in � c and suppose that each of 8(c). + 1) 8(m) is
true. The inductive step is to show that 8(mn + 1) follows. To this end, let C be a
graph on in + 1 vertices with > (c — 1)(m + 1 — 1)12 = (c — 1)in/2 edges.

Case 1: 6(C) < (c — 1)/2. Fix x E V(C) with d(x) < (c l)/2. Deleting :z:
produces a graph with IE(C\x)I � (c - 1)iii/2 -- (c -- 1)12 — (c — 1)(m -- 1)/2; by
induction hypothesis. G\x contains a cycle of length c. hence so does C.

Case 2: 6(C) > (c— 1)/2. 'Without. loss of generality, assume that C is connected,
for if C is disconnected, then some component will have more than the average
number of edges, in which case the induction hypothesis applies to that component.

A natural tactic used in inductive proofs for graphs is to find a set 14' ç V(C)
that has few edges incident with it, delete W. obtain a smaller graph with a higher
concentration of edges, and apply the inductive hypothesis to the smaller graph.

Among all longest paths in C pick a path P = .. - ye with d = deg(vt) max-
imum. Observe that if £ < rn ± 1, (vi , vc} 0 F(C) because otherwise, any edge
leaving P would be in a longer path, and since C is connected (and £ < in + 1), such
an edge exists.

Let W = : {vr, v14 } E E(C)}. Then = d. Since P is maximal. every
neighbor of v1 lies in P and so deg(vi ) � C — 1.. if for some Uk C TV j � Ic + 1 � c.
the edge {vk. v,} is present, then tire cycle - . . . . hns length c,
satisfying the theorem. So a.ssurne that for any wk e W and j > Ic + 1 � c, then
{vk,vJ} 0 E(C).

For any C the path . . . vk + 2 -
- also has C vertic:es, so

deg(vk) d and as this new path is maximum length C. hence maximal, it follows
that N(v&) c V(P).
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Let r = rnin{€,c — 1} arid put X = {vi, ...,vr}. Since for each vk e 47
N(vk) c X, and degQ(vk) <d. For the moment, suppose that r = c — 1 P.

The number of edges in G[W] (the graph induced by W) is at most

> �
vS W

Let H be the bipartite subgraph consisting of edges between W and Z\W. Then
IE(H)I WJ . d(r — d). Let dw, dg denote degrees in the graphs induced

ITT, X respectively, and put dH = Then

E(G[WJ)J dw(w)
— wEW

= > dw(w) + > dç,'(w)
wEW w€W wCW

E (dw(w) + d,j(w)) — >
wELl' wE- It

= > — > d11(w)
wEt-V tiC 14

> d4w) -
wE 14-'

< —

Adding IE(H)j to cacti side of the above equation shows that the nuinher of edges
incident with 47 is

IE(CEW])I 1- IE(HH +

C
-1- — d)

=

tJpon deleting 1-V and all edges incident with 47, obtain a graph on in — d vertices
with more than

— 1)(c I) d — I)(c 1)

edges. 13v the induction hypothesis 8(m — il), this reiiiaining graph contains a cycle
of length at least c, hence so does G, proving S(rn -t 1).

When r = £ < c — 1, even fewer edges are incident with 47, and the induction
hypothesis again applies.

By (strong) mathematical induction, for all n c, S(rm) is true. D
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33.2 Solutions: Trees and forests
Exercise 476: For n 1, let C(n) be the claim that for any connected graph C
on ii vertices, the sum of the distances from any fixed v to all other vertices of B,

is at most

BASE STEP: When n = 1, the sum of distances from the single vertex is 0, and
= = 0 as well, so C(1) holds.

INDUCTIVE STEP: For some in � 1, suppose that C(rrz) holds, and let C be a graph
on rn + I vertices with sonic vertex v fixed. Pick x E V(C)\{v}, and consider the
graph C' formed by deleting x (and all edges incident with x). Since C is connected,
d(v,x) <in. Then

> d(v.y) = Ed(v,y)
yeV(G)

+772

(in) + in (by C(m))

(in + 1

showing that C(m + 1) follows, completing the inductive step.

By mathematical induction, for every it � i, C(ri) holds. 0

Remark: Here is one idea for a non-inductive proof. Let C be connected on it
vertices and fix some vertex ix The sian of the distances from ii is maximized when
there is one vertex at maximal distance it — 1, in which case the vertices are a l)atll,
with distances from v being 1,2 a — 1 whose sum is ().

Exercise 477: For it > 1 consider only graphs C on it vertices, and denote the
three statements in the exercise by

A(n): C is connected and acyclic (i.e., C is a tree);
iI(n): C is connected arid has it — 1 edges;
C(n): C is acyclic and Eras it — 1 edges.

Of the three implications, only the proof of A(n) B(n) given here is by
induction; three such proofs are given.

A(n) — B(n): By induction on it: For it 1, let 8(n) be the statement that
any tree on it vertices has it — 1 edges.

Proof 1:
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BASE STEP: For it = 1, the only tree with a single vertex has 1 — I = 0 edges1
so 8(1) holds.

INDUCTiVE STEP: Proof 1 (simple induction): For some fixed k � I, suppose
that 8(k) is true, and let T be a tree on k + 1 vertices. By Lemma 15.2.1, let
x E V(T) be a leaf, and form the tree 'F' by deleting x (and the edge incident with
x). Then V(T')t = k, and so by 8(k), 'F' has k — 1 edges. Together with the edge
removed, this shows that E(T)j k = (k + 1) — 1 = V(T)l — 1. showing that
8(k + 1) follows, completing the inductive step.

Proof 2 (strong induction): Fix k � 1 and suppose that 8(1) 8(k) are all
true.. Let 'F be a tree on k + I vertices. By Lemma 15.2.3, let a = {x, y} be a bridge
in 7'; removal of a produces two trees, say and T2, each with at most k vertices.
By the inductive hypotheses S(JV(TjJ) and 8(IV(T2)I), has IV(Ti)] — 1 edges
and T2 has IV(Th)t — I edges. Since and together have k 1 vertices,

= V(Tj)1— t+]V(T2)]— 1+1 = k+l -1—1+1 =

completing the proof of 8(k 4- 1).

By mathematical induction, for every it i, 8(n) holds. D

A third proof of A(n.) .8(n) is by well—ordering (and is the preferred method
by some, e.g., see [71]). As pointed out above, 8(1) is true. Let X = {x E Z±
8(x) is false}. Suppose, for the moment, that X 0; then .V is well-ordered, and so
has a least element, call it i, where i> 1. Let T be a tree on i vertices for which 8(i)
fails, that is, E(T)] $ £ — 1. Removing a leaf from 'F produces a tree 'F' with i — 1

vertices, and one fewer edge than in 'F; so 2(7")] 2(T)] — I 5L C—2 ]V(T')I —1,
contradicting the mninimality of £. Thus, X = 0. [1

Note: One can not use Lemma 15.2.4 in any of the above proofs as Lenuna 15.2.1
uses the result from this exercise!

2(n) —* 0(n): (For a connected graph C on it vertices, if C has it — 1 edges,
then C is acyclic.)

Let C be connected on it vertices with it — i edges. Let C' ç C be arty acyclic
connected subgraph of C (delete edges front cycles in C, which doesn't disconnect the
graph) on V(G) = V(G'). By A(n) —, 2(n), C' has n—l edges. Since 2(0)] = it—I
was assumed, C' = C, and so C is acyclic.

0(n) A(rt): Let G be an acyclic graph on it vertices, it — i edges. One needs
only to show that C is connected. Let Ci, 0k be the connected components of
C. By .4(n) —* 2(n), each component satisfies = ]V(C1)] — 1. Summing all
coniponents, E(C)] = it —. k. But 2(0)] = it — I was given, so k = 1, and thus C
is connected. (So 1)0th A(n) and 2(n) follow.) fl
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Exercise 478: This problem is an old standard, and can be found in many places.
See, e.g., [566, p.70, Prop. 2.1.8] for a proof and further references.

For k � 0, let A(k) be the assertion that if G is a graph with 5(G) � k, then C
contains every tree with k edges as a (weak) subgraph.

BASE STEP: The only tree with 0 edges is a single vertex, which is contained as a
weak subgraph of any graph (with at least one vertex). Thus A(0) is true.

INDUCTLVE STEP: Suppose that t. > 0 and that A(t) holds. Let C be a graph with
5(C) � t + 1. It remains to show that C contains every tree on t + 1 vertices. Let T
be a tree with 1+1 vertices. Because 1+1 � 1, 7' contains a leaf (vertex with degree
1) x, say, attached to y E V(T); form D on I vertices by deleting x. By A(t), since
5(C) � I I C contains a copy of T'. Let z E V(C) be the vertex corresponding
to y in T'. Since 5(C) � + 1, y is adjacent to some vertex w not in the copy of 7";
adjoining w to the copy of T' produces a copy of T. Thus, C contains a copy of T,
ending the inductive st.ep.

By the principle of mathematical induction, for ally k � 0, .4(k) holds. 0

Exercise 479: This was observed in 1869, proved hy C. Jordan [294] and is found
in, e.g., [566, p. 72].

One has to show that the center of a tree is either a vertex or a single edge.
Recall that a vertex it is in the center of a graph C ill the eccentricity of it, ec(u) =

deg(;(u, v), is minimal.
For it � 1., let) .J(n) be the statement that the center of a tree on it vertices is

either a vertex or a single edge. The theorem is l)roved by strong induction on it.
BASE STEP: When it = I or n = 2, there is nothing to prove as the center of a tree
on I or 2 vertices is the tree itself.

INDUCTIVE STEP: Let it � 2 and suppose that for each i < n, 1(i) holds. Let T be
a tree on it -F 1 � 3 vertices. F'orui 1" by deleting all leaves of '1'. Then 7" is a tree
with at least one vertex, and so by inductive hypothesis, the center of T' is either a
vertex or a single edge. It suffices to show that the center of T is also the center of
T'.

For any vertex it e V(T'), another vertex at maximum distance from it is a leaf
in 7' (otherwise one could extend the path from a farther). Since all leaves have
been deleted arid edges between other vertices remain. the length of any maximal
path from a vertex v V(T') is shortened by I. Hence, for any a V(T'), CT'(u) =
CT(u) — 1. The eccentricity of any leaf in 7' is greater than its neighbor, so the
vertices minimizing eccentricity in r also minimize eccentricity in T. Hence, the
center of T1 is the center of '1', as required. This completes the inductive step.

By MI, for every a � I, the statement 1(n) is true. 0

Exercise 483: For any non-negative integer Ii, let .9(h) be the statement that if T
is any full binary tree with height Ii, then ]V(T)] = 2/'H
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BASE STEP: When h = 0, there is only one full binary tree of height 0, namely a
single vertex, arid 20 — 1 1, so 8(0) is true.

INDUCTIVE STEP: Fix £ � 0 and suppose 8(t) is true. Let T be the full binary tree
with height £ + 1. Deleting the root of T produces two binary trees TL and T1j,
each of height 1, and so by 8(t), V(Ti)J = V(T2)l = — 1. Thus the number of
vertices in T is

1 + V(T1 )j ± (V(T2)I = I -F — 1) = —- I

and so 8(t+ 1) is true. -

By mathematical induction, for all h � 0, 8(h) is true. 0

Exercise 484: Repeat the proof for Exercise 483, and bound each by the
maximum of the two.

Exercise 485: (Outline) When n = 0, there is only one increasing tree, and 0! = 1,

so the base case is true. To see the inductive step, first an observation is made. Let T
be an increasing tree on f0, 1,... , k}. Since T is increasing, k is a leaf and removal of
k creates another increasing tree T'. Furthermore, if T' is increasing, the attaching
of k by an edge to any j E V(T') creates an increasing tree on {O, 1,... , k}. Since
there are k vertices 0, 1,... , k — 1 in 7" where the new vertex k can be attached, the
number of increasing trees on {O, 1.... ,k} is k times the number of increasing trees
on {0, 1 k — 1}. If one assumes the inductive hypothesis that for any k � 1.
there are (k —- 1)! increasing trees on {0, 1,. . , k — 1}, then there are k(k — 1)! = k!
increasing trees on (0, 1 k}. D

Exercise 487: By an easy induction on i, each C1 is a tree, and so is a spanning
tree. It remains to prove that is a minimal.

For k � 1. let 8(k) be the statement that Ck is a subtree of a minimum weight
spanning tree.

BASE STEP: C1 is a single vertex, which is a suhtree of every spanning tree, so 8(1)
is true.

INDUCTION STEP: Fix k � 1, and suppose 8(k), that 0k is a subtree of a minitmium
weight spanning tree 7'. Consider Gk÷1; if Gk÷1 is a subtree of 7', there is nothing
to show. So suppose that 0k+r is not a subtree of T.

Let e = {x,y} he the edge chosen by the algorithm with x E 14 = V(Ck).
y E V \ Ttk, Gk+1 = 0k U {c} and e E(T).

Consider the graph T U {e}; since T is a tree containing x and y, 7' U {e} has
a unique cycle containing e. and so there is another edge e' of 7' from:: some vertex
in V(Ck) = t/k to a vertex outside of 1%. Because e' was not chosen at step k.
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w(e) w(e'). Examine the graph U formed by deleting e' from I' and inserting a
Since e and e' are on the same cycle in TU {e}, U is a tree spanning 17k U {y} with

w(U) = w(T) — 'w(e') + w(e) C w(T).

But 7' has minimum weight, so w(U) = w(T), and w(e) = w(c'). Then U is a
spanning tree with minimum weight. Hence, Gi÷i is a subtree of the minimum
spanning tree U, proving S(k + 1).

By mathematical induction, produced by the algorithm is a tree contained
in a minimum spanning tree—--so is a mininiurn spanning tree. C

33.3 Solutions: Connectivity, walks

Exercise 489: This theorem might. be called Whitney's theorem (due to Whitney
[568]) however Whitney is famous for man theorems. This result can also be found
in, e.g., [566].

To prove: any graph svith at least 3 vertices is 2-connected if and only every pair
of vertices are connected by two disjoint paths (vertex disjoint, except for endpoints,
of course; in other words. every pair of vertices lie on a common cycle).

First, suppose that any two vertices ;r and y in a graph C are connected by
disjoint paths. Then x and y can not be separaterl by removing a single vertex, and
so C can not be disconnected by the removal of a vertex, and so is 2-connected.

Second, suppose that C is a graph with JV(C)I � 3, and that C is 2-connected.
Since C is 2-connected, C is connected, and so for any it, v C V(C), the distance
d(u, v) is finite. Induction on d(a, v) shows that there are two disjoint a — v paths:
BASE STEP: When d(u,v) = 1. the pair (it. t'} is an edge of C, and since removal
of either it or it does not disconnect the graph, removing the edge nit does not
disconnect C. Hence there is a it — it path in C that does not use the edge no; thus
are there two disjoint 'it — it paths (one of which is {'a,v}).
INDUCTIVE STEP: Let k � 1 and suppose that for any 2-connected graph If (with
at least 3 vertices), if two vertices x, y C [rave d(x, y) C k, then there exists
two disjoint x — y paths. Fix a 2-connected graph C and two vertices a, it with
dc(u, v) = k + 1, arid let P be a (shortest) a it path with length k + 1. Let iti
be the vertex in P next to it. Then dc('a,vi) < k. and so by induction hypothesis,
there are two disjoint a —- it1 paths R1 and 112. Since C\vt is connected (C is 2-
connected), there exists a a — it path S not containing it1. If S is disjoint from either

or R2, then there are two disjoint a - it paths (S arid the extended by {v1, v}).
So suppose that S intersects both arid ft2 in an internal vertex. If y is the last
vertex on S (closest to it) that lies on U I-?2. say, on then the a — it path that
starts svith and continues with {y. it} is disjoint from the path 112 U {v1, v}. This
completes the inductive step, showing two disjoint it — it lat.hls.
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By mathematical induction, for any 2-connected graph G, and any two vertices
u, v V(G), (regardless of their distance) there are two disjoint it — v paths. 0

Exercise 490: Let A = be the n x ii adjacency matrix of a graph C on vertices
74 For each k � 1, let 8(k) be the statement that the (i,j)-entry of is

the number of walks of length k from to v3. The proof given here is by induction
on k.

BASE STEP: For k = 1, A' = A and = 1 if {v1,v3} E(G), and = 0

otherwise, and since a walk of length 1 is simply an edge, 8(1) holds.

INDUCTIVE STEP: Fix some k � 1 and suppose that 8(k) holds. Fix a graph on
vertices {V,, 74.... , with adjacency matrix A. It remains to show S(k + 1), that
is, the (i,j) entry of is the number of walks of length k + I from to v1.

Put g = B = [b23]. Then AkA = BA and so the (i,j) entry of
A walk of length k + I consists of a walk of length k first, to some v€,

then one final edge from ye to For each £ = 1 n, by induction hypothesis,
the number of walks of length k front to vg is bje. Such a walk can be completed
to a walk of length k + ito if {ve.vj} E(G), that is, if = 1. Counting
all walks of length k + 1 from v1 to v3 then shows the total to be precisely the sum
above, the (i,j) entry of Ak+t. This completes the inductive step.

By MI, for any k � 1, 8(k) holds. 0

Exercise 491: As mentioned, this problem has an instant solution given the exis-
tence of a cyclic Gray code. 'I'he inductive solution given below essentially employs
the recursive procedure used (see Exercise 564) to create a reflected Gray code, (just
using a different language) and so shows the existence of Gray codes as well.

Let r denote the graph of the n-dimensional unit cube; to be specific.

V(Q'2) = {0.1} = :Vi,a1 E {0,1}}.

and {(a, an), E if there exists i (1 n} so that a1 =
b1 + I (mod 2) and for each j i. a3 = 4j, that is, if the two vertices differ in
precisely one coordinate.

For n 2, let A(n) be the assertion that Qfl is hainiltonian.

BASE STEP: For n = 2, the graph of Q2 is simply a 4-cycle, which is itself harnilto-
nian.

INDUCTIVE STEP: Fix some k � 2 and suppose that A(k) holds, that is, Qk is
hamiltonian. Examine the vertices of partitioned into two classes, V, U ½,
where 14 is the set of vertices with i as the first coordinate. Each 14 induces a
graph isomorphic to Qk (as only A: coordinates vary), call it H1. By the inductive
hypothesis, each has a hamiltonian cycle, say C1; take these to be the same (up
to labelling of first coordinate). Without loss of generality, suppose that in each
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the harniltonian cycle contains consecutive vertices = (i,O,a2,...
and = (1, 1, an). The following is a hamiltonian cycle in begin at
V0 E C'o, traverse C0 the long way around to no, then take the edge {uo, u1)} to
C1, traverse the long way around to v1 (in the opposite direction as in C1), then
finally close the cycle along the edge {v1, vo } to ti0.

By MI, for every n � 2, A(n) is true. 0

Exercise 492: Proceed by induction on n, using the fact that the n-cube is formed
by taking two disjoint copies of the (n 1)-cube and adding an edges between
corresponding vertices of each smaller cube. See, e.g., [566, p.150].

33.4 Solutions: Matchings

Exercise 494: For n � 1, let P(n) be the statement that the number of perfect
matchings in

K2 has only one perfect matching, and = 1, SO P(1) is true.

INDUCTIVE STEP: For some k � 1, suppose that P(k) is true. Examine a copy
of Kzk+2, and fix one vertex, say x. If an edge containing x is fixed, there are 2k
remaining vertices to be matched, and by P(k), this can be done in ways. As

there are 2k + I edges containing x, in all there are

2k 1

(2k)! (2k + 1)(2k +2) (2k)! — (2k + 2)!
+

— 2(k + 1) 2k(k!) — 2k±1(k ± 1)!

different perfect matchings in proving P(k+ 1), and completing the inductive
step.

By MI, for every ii � I, the statement P(n) is true. 0

Exercise 495: [Hall's theorem] The following proof is essentially (lue to Ea.sterfleld
[156], rediscovered by Halmos and Vaughn [257].

The condition N(S)] � ]S[ is necessary, so it remains to show sufficiency. The
proof of sufficiency is by induction on in = X].

BASE STEP: When in = 1, the condition is equivalent to saying that there is at least
one edge leaving x.

INDUCTIVE STEP: Fix k � I and suppose that the condition is sufficient k)r all
rn= 1,...,k. Let C=(XuY,E) be bipartite with X]=k±l.

Case I: Suppose that any j E {1, 2,.. . , k}, if any j elements from X are adjacent
to at least j + 1 elements of V. Then pick one x E X and y E N(x) and delete the
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edge {r, y} together with the vertices; the remaining graph satisfies the induction
hypothesis for m = k, so all k + 1 elements of X can he matched.

Case 2: Suppose that for some j, 1 < J < k. there are j vertices in X with
precisely j neighbors in Y. By induction hypothesis, these j vertices can be matched.
Remove these j vertices from X and their matches in Y. If some < k + 1 — j of
the remaining vertices in X are adjacent to less than vertices in Y, then these
together with the original k vertices in X would have less than k + £ neighbors in
Y, violating the condition, thus the remaining graph satisfies the condition, and so
remaining vertices in X can be matched by induction hypothesis (with rn = k4-1—j).
These two matchings match all of X, concluding the inductive step.

By mathematical induction, the condition is sufficient for all bipartite graphs.
0

Remark: Given a set X and a family S = 82 of subsets of X. a system
of distinct representatives (denoted "SDR") for S is a collection of distinct elements
XI,X2 x71 X so that for each i = 1,2 n, C Tlte above proof can he
adapted to prove the following theorem (see, e.g., [7, i. 146J):

Theorem 33.4.1. A family S has an SPIt iff for each in = 1, 2 the union
of any in sets in S contains at least in elements.

33.5 Solutions: Stable matchings
Exercise 496: if in the first round every woniati receives a proposal, the algorithm
terminates. In this case, .since each man proposed to exactly one woman, and all
women received proposals, each man is married to his favorite woman. Such a
marriage is stable just because no man would want to switch partners (though the
women might not get their top picks).

Suppose that after round j some woman has still not received one proposal.
Each man either proposed in round j, or was some woman's maybe at the end of
round j — 1. In either case, at the end of round j, each man is either freshly rejected,
remains a or freshly receives maybe status. Since not all women have a
maybe on hold, there is at least one man that is freshly rejected in round j.

If some man receives a rejection and still has women he has not yet proposed
to, the algorithm continues to the next round. Is it possible that the algorithm
continues to the point where sortie titan has been rejected by everyone arid has no
further proposals to make? No, because if some man has received n rejections, then
he has proposed to all women (since he can only to each at most
once), in which case no woman has been passed over, conrrarv to there existing a
woman with no proposals. So the algorithm continues if arid only if there are worries
with rio proposals (or there are newly rejected men).
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Why must the algorithm terminate? One easy way to see this is that since each
man proposes to n women, so (by the pigeonhole principle) after at most it2 — it + i
rounds, some man will have exhausted all his choices, in which case each woman will
have had at least one proposal. [In fact, with a closer analysis, at most it2 — 2n ± 2
rounds are necessary, and one can design a scenario requiring this many steps.]

To see that when the algorithm terminates a stable marriage ensues, suppose
that the algorithm terminates (each woman has her "maybe"), and consider a man
in and a woman to whom in prefers over the wife given him by the algorithm. It
suffices to show that to does not prefer vi over the husband given to her by the
algorithm. Since itt prefers to over his mate, in must have proposed to to at sonic
earlier iteration and was either outright rejected, or was to's maybe, but later rejected
when to accepted the proposal from a another man she prefers to vi. In either case,
to prefers her mate to in. 0

Exercise 497: For a solution, see [241, p.45—48], or for those who can read pscu-
clocode, see [326, p. 50].

33.6 Solutions: Graph coloring
Exercise 498: Let .9(n) he the statement that if C is a graph on it vertices with
maximum degree -= k., then C is (k + 1)-colorable, that is, x(G) � + 1.
Proceed by induction on the number of vertices of C (not k).

BASE STEP: If n = 1, C is a single vertex with = 0, and is 1-colorable, so
8(1) holds.

INDUCTION STEP: Suppose that for sonic in � 1, 8(m) holds, and let H he a graph
on rn±1 vertices 01,02,. .. , Examine the graph C formed by deleting 0m4 I

(and all edges incident with vm+i). Put = k and note that � k. By
induction hypothesis 8(m), C is (A(C) + 1)-colorable, and hence is (k+ 1)-colorable,
so fix a good (k + 1)-coloring of C.

It remains to color 0m i. Since A(H) = k, Vm+i has at most k neighbors (among
1)1. V2 vm), already colored, so choose some remaining color for v1704, thereby
producing a good (k + 1)-coloring of H. This completes the inductive step.

By mathematical induction ott the. number of vertices ii. of graph, any graph C
on it vertices is + 1)-colorable. 0

Comment 1: The greedy coloring algorithm is based on the above idea, however
it colors vertices consecutively, each vertex with the least available color (colors arc
ordered, say, 1,2 k + 1). In this setting, it is worth rioting that recursion and
mathematical induction are essentially the same notion.

Comment 2: Can you find a proof using induction on k =
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Comment 3: Don't confuse the result of this exercisc with Vizing '.c theorem,
which states that x'(G) � + 1, where is the edge-chromatic number, or
chromatic index, the least number of colors required to color the edges so that all
edges incident at a vertex receive different colors. See, e.g., [566, pp. 275 -2781 for
details.

Exercise 499: This result was proved in 1956 by Gaddum and Nordhaus [203],
and appears as an exercise in [566, 5.1.41, p. 202].

Let 8(n) be the statement that if C is a graph with IV(G)I = n vertices, then
x(G)+S)�n+1. -

BASE STEP: When n = 1, both C and C consist of a single vertex, each with
chromatic number 1, so 8(1) is true. Checking ii =. 2, either C is a pair of isolated
vertices or C is a single edge (and so is either an edge or a pair of isolated vertices,
resp.) and so the sum of chromatic numbers is 1+2=3, showing that 8(2) is also
true. (This second base case is not needed for the proof, however.)

INDUCTION STEP: Fix k � I and suppose that 8(k) is true. Fix a graph H on
V(H)j = k + 1 vertices, arid identify one vertex x E ¶7(11). To show that 8(k + 1)

holds, it suffices to show that

x(H) + x(H) < (k-i- 1) + I.

Let C be the graph formed by deleting x (and all edges incident with x) from H.
Then V(C)I = k, and so by 8(k),

Since H is only one vertex larger than C, itis clear that x(H) � x(C) + 1 and
x(H) -Fl. If either x(H) = x(C) or x(H) = (C), (or both) then

x(H) + xO'i) � x(C) + -El

< (k+1)+1 (byS(k))

confirms 8(k + 1). —
There is only one case left: assume that both x(H) = x(C) + 1 and y(iI) =

x(C) + 1. Let there be g edges in H between x and C, and let there be g' edges
iii H between x and Since IV(C)j = k, g + g' = k. The key observation is that
since x(H) = x(C) + 1, necessarily g � x(C) (since otherwise, one could extend a
coloring of C to a coloring of H by coloring x with one of the colors riot used by
neighbors of x). Similarly, g' � Hence,

k = g+g' � x(C) + x(G),

and so x(C) + � k. Then

x(H)+x(H)=x(G)+x&I)+2� k+2=(k+ 1)+ I
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confirms 8(k + 1) in this case as well. This completes the inductive step 8(k)
S(k + 1).

By mathematical induction, for all n > 1, 8(n) is true. 0

Exercise 500: For n � 3, let 8(n) be the statement that for any onto n-coloring
of E(K13, there exists a rainbow colored triangle.
BASE STEP: All six onto 3-colorings of E(K3) are indeed injective.

INDUCTION STEP: Fix some k > 3, and assume that 8(k) holds. Let : E(Kkfl) ---p
[k ± 1] be onto. Pick any x E V(Kkl '), and let C = Kk.{.I \ (x}, which is a copy of
Kk. If E(G) is k-colored, then by 8(k), C contains a rainbow K3. So consider the
cases when C is riot k-colored. If E(C) is (k+ 1)-colored, again C contains a rainbow
K3 (identify two colors, apply 8(k) with this new coloring). So assume that E(C) is
(k — 1)-colored. Then two of the colors are missing in C, so two edges incident with
x receive these two colors; the third edge induced by these two receives yet another
color, producing the rainbow triangle. Hence, S(k + 1) is true.

By MI, for each n � 3, 8(n) is true. 0

Exercise 501: Proofs appears in many l)laces besides the original, e.g., a proof by
L. POsa appears in [354, 9,14, pp.67, 398—9] the first part of which is given here.
First, a lemma proves an interesting property of infinite k-colorable graphs that
have a maximal set of edges. Such a graph is then shown 1.0 exist by Zorn's lemma.

Lemma 33.6.1. Suppose that C is an infinite (simple) graph whose every finite
sub graph is k-colorable, but if any two non-adjacent vertices in C are joined by
an edge, theit there exists a finite subqraph that fails to be k-colorable. Then C is
k-colorable.

Note: The existence of such a graph is not yet established, hut this question is
answered below.

Proof of Lemma 33.6.1: First observe that since any finite subgraph of C is k-
colorable, C does not contain any Kk+i (for such a graph is not k-colorable). Hence,
if there exists such a desired partition, there are at most k (non-empty) classes.

To show that C is k-colorable, it suffices to show that V(C) has a partition into
at most k classes such that two poinl.s are iii the sanie class if F they are non-adjacent
(equivalently, they are adjacent if they belong to different classes). To prove the
lemma, it then suffices to prove that "non—adjacency' is an equivalence relation.

Since C is simple, both reflexivity and symmetry of "non-adjacency" are trivial.
Suppose that (a. b) E(C) and (h. c) E(G). By maximality, there exists a finite
subgraph Hso that (V(II). E(II)U{{a, b}} = H+{a, b} is not k-colorable. Similarly,
there exists a finite subgraph K so that K + {b, e} is riot k-colorable. Consider the
graph B = HuK + {a,c}. It is now shown that B is not k-colorable. In hopes of a
contradiction, suppose that B has a good k-coloring, say 3: V(B) -> {1.2,...,k }.
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Since under any good k-coloring of H (in particular, the one induced by /9) the edge
(a, b) can not be added, it follows that 0(a) = /9(b). Similarly, /9(b) = /9(c), and by
transitivity of equality, /9(a) = /3(c), which contradicts /9 being a good k-coloring
of V(B). So B is not k-colorable, and hence is riot a subgrapli of C (yet H U K
clearly is). Thus, {a, c} E(C), completing the proof of transitivity, and so, too,
that non-adjacency is an equivalence relation, thereby proving the lemma. 0

Note that Lemma 33.6.1 says that any such graph C satisfying its hypothesis is
k-colorable. The goal is now to show that such a graph exists; this is done using
Zorn's lemma. -

Proof of Theorem 15.7.1: Let C be an infinite graph whose every finite subgraph
is k-colorable. Consider the class of supergraphs of C,

= {C U C' : V(C') = V(C), all finite subgraphs of C U C' are k-colorable},

and order Q by inclusion. [Note: C using C' to be the empty graph on V(C).]
Let C be a chain in g, and let U be the union of the chain. Every finite subgraph H
of U is k-colorable, because if not, H "appeared" in some C, e g, C, ç C. whose
every finite subgraph is assumed to be k-colorable. Hence, for every chain in Q, the
union of the chain is also in Q. By Zorn's lemma, contains a maximal element.
llence, without loss of generality, one can assume that C is maximal, that. is, C
satisfies the hypothesis of Lemma 33.6.1, and so C is k-colorable. 0

Note: The proof in [354] does not state Zorn's lemma explicitly; a second ending
is given that. uses Tychonoff's theorem after establishing a notion of "closed sets" of
colorings. This above form of compactness can also be translated to hypergraphs,
and to theorems kr other relational structures, and even to model theory (where, so
I am told, some l)refer to create a metric and a topology arid then apply. Tychonoff's
compactness result for product spaces).

33.7 Solutions: Planar graphs
Exercise 503: The equation v + f = e ± 2 for planar connected graphs is due to
Euler [179]. There arc many inductive proofs of this formula, some inducting on a,
sonic on c. Perhaps the easiest is to induct on

Before beginning the proof, note that this result holds for general mnultigraphs,
that is, those containing loops (edges of the form fx, x}) or multiple edges, (where
a pair {x, y} occurs as an edge more than once) yet the restriction here is to sini-
pIe graphs. Perhaps the result for more general graphs is more easily proved by
induction on v (see [566, p. 241], for example).

For e ? 0, let 8(e) be the statement that if C is a connected planar graph with
e edges, (with a planar embedding) then a + f = e + 2 (where a = V(C)] and f is
number of faces or regions).
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BASE STEP: When e = 0, any connected graph with no edges must be a single vertex,
and there is only one face (the outer one). Then v + f = 1 + 1 = 0 + 2 = e + 2, so
5(0) holds. As an added check, if e = 1, since the graph must be connected, there
are only v = 2 vertices and exactly f = 1 face, so v + f = 2 + 1 = 1 + 2 = e + 2
holds, showing 8(1), too.

INDUCTIVE STEP: Fix some e > 1. and assume that S(e — 1) is true, that is, for a
graph with e' = e — 1 edges, v' vertices, and f' faces, v' + f' = e' -1- 2 e + 1. Let
C be a planar connected graph (with a planar embedding) with e edges, v vertices
and faces. To be shown is that 8(e) holds, namely that v + f = e ± 2.

If C contains rio éycle, then since C is conncctcd, C is a tree. In this case, there
is only one face, and (by Exercise 477) e = v — 1, 50 v + f = e + 2 holds (without
any induction).

So now suppose that C contains a cycle; fix one edge {x, y} in that cycle and
delete it, forming C' with e' = e — 1 edges, v' v vertices, and f' faces. Deletion
of one edge in a cycle does not disconnect a graph, so C' is connected (and still
planar). Since removal of an edge on a cycle joins one face inside the cycle to one
outside, C' has f' = f — 1 faces. By 8(e — I), v' + f' c' + 2, which implies
i + (f — 1) = (e — 1) + 2 and so u + f = c + 2 as desired. This completes the
inductive step.

By .MI, for every e 0, Euler's formula for connected planar graphs with e edges
is true. 0

Comment: Try an inductive proof which inducts on the number of vertices;
however, he careful that when a vertex is deleted, the rerriaining graph is connected.

Exercise 504 (Euler's formula for planar graphs with ii components): To be shown
is that if a planar graph has ii components, then

v — e + f = it + 1.

The proof is by induction on it.

BASE STEP: The base case it = 1 is true by Euler's formula for connected planar
graphs (Exercise 503).

INDUCTIVE STEP: Suppose that the formula holds for a planar graph with k � 1
components, and consider a planar graph C with k + 1 connected components, say
C'o, C1,. . . Let C' he the graph obtained from C by removing If C' has v'
vertices. e' edges and f' faces. then by the induction hypothesis,

— e' + I' = k + 1.

Tf the single component (Yb has vertices, edges and J0 faces, then by Euler's
formula (for a connected planar graph),

— + 2.
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Then C has v = v' + vertices, e = e' + e0 edges, and f = 1' + — 1 faces (since
the infinite face of G' is a. face of Go), and hence

v—e+f = (vo —eo+fo)+(v'—e'+f')—i
= 2 + (k + 1) — 1 (by Euler's formula and in hyp)

= (k+1)+1,

proving l,he formula for graphs with k + 1 components, completing the inductive
step.

Therefore, by induction, for every ii 1, the result holds for all graphs with n
components. 0

Exercise 505: Let 5(n) be the statement that every planar graph with n vertices
is 6-colorable.

BASE STEP: Every planar graph on six or fewer vertices is trivially 6-colorable (color
each vertex with a different color) and so 8(n) is true for ii = 0, 1. 2, 3, 4. 5, 6.

INDIJC1'ION STEP: Let k � 6 and suppose that 8(k) is true. Let C be a planar
graph with k + 1 vertices. By Lemma 15.8.2, let x e V(C) be a vertex of degree
at most 5. Delete x (and all edges incident with x), forming a graph H. Since C
was planar, so is H. and thus by 8(k), fix a good 6-coloring of FL Since x was of
degree at most 5, there are at most 5 vertices in 17(H) connected to x in C. so color
x with a color unused for these 5 (arid color remaining vertices of C as in if). This
represents a good 6-coloring of C. and so shows that S(k + 1) is true.

By mathematical induction, for every a. > 0, 8(n) holds, and so the statement
of the exercise is true. []

Exercise 506: 'l'he proof that every planar graph is .5-colorable relies on what.
are called "Kempe chains". See 13271 for a discussion of Kempe chains, arid how
the 5-color proof arose from a failed 4-color proof by Kempe. It was h-leawood
wilt) discovered that Kempe's ideas actually showed that every planar graph is 5-
colorable. For a proof of the 5-color theorem by induction, see [64, pp. 291-2], where
two more proofs are outlined.

33.8 Solutions: Extremal graph theory
Exercise 508: For a 2. let 8(n) be the statement that the maximum nummiber
of edges in a disconnected simple ri—vertex graph is with equality only for
K1 +

BASE STEP: The only disconnected graph on a = 2 vertices is a pair of isolated
vertices, i.e., K1 .i.. so 8(2) is true.
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INDUCTION STEP: Let k � 2 and suppose that 8(k) is true. Let H he a disconnected
graph with k + 1 vertices, and suppose that among all disconnected graphs on k + 1
vertices, H has the maximum number of edges. Fix a vertex x E V(H) and delete
it, producing a graph G on k vertices.

If x is an isolated vertex, then E(G)I edges, and when C = Kk, equality
is attained, in which case H = K1 + Kk.

So assume that x is not isolated. Then C is disconnected, and deg11(x) k — 1.

Thus an tipper bound for the number of edges in II is k — 1 plus the maximum
number of edges in a disconnected graph on k vertices. By 8(k), this total is

(k 1)
+k— 1 =

(k 1)(k2) +k-- I
= ().

In order to achieve this bound, one requires both edges in C and degff(x)
k — 1. The first condition says (by 8(k)) that C = K1 4- Kk_i, and in this case, the
only way to have to = k — 1 (and still have H disconnected) is to have x
connected to every vertex in the component Kk_i of C. Thus K1 + Kk is the unique
disconnected graph on k + 1 with maximal number of edges. This proves 8(k + 1)
and hence the inductive step.

Therefore, by mathematical induction, for every a � 2, the statement 8(n) is
true. 0

Exercise 509 (Mantel's theorem): This result, apparently proved in 1905, was
published in 1907 13621 and is the simplest case of Turán's theorem (published in
1941 (see Exercise 512)). This problem occurs in many graph theory texts; it even
appears in disguise in [161, 8.1, p. 207J.

Let 8(n) be the statement that if a simple graph C on a vertices has more than
rm2/4 edges, then C contains a triangle.

BASE STEP: Since any graph on 1 or 2 vertices is triangle-free, consider the case
a = 3. In this case n2/4 = 2.25, so 8(3) says that any graph on three vertices with
at least 3 edges has a triangle, a true statement.

There are two proofs of the inductive step. The first, rather short and sweet,
is the proof that 8(k) —. 8(k + 2), and since there are two base cases done, it
will suffice. The second proof is 8(k) —# 8(k + 1) and needs only a bit more care;
however, it is often the first proof taught to students.

INDuCTIvE STEP 8(k) 8(k + 2): suppose that for some k � 3, 8(k) holds, and
let II be a graph on k + 2 edges with no triangle. Consider sonic edge e {x, y}
iii H, and the graph C = H\{x,y}. There can be at most k edges from e to C,
for otherwise a triangle is formed. By 8(k), C has at most k2/4 edges, so H has at
most k2/4 + k + 1 = (k + 2)2/4 edges, thereby confirming 8(k + 2).

INDUCTIVE STEP 8(k) 8(k + 1): Suppose that for some k � 3, 8(k) is true. Let
II be a graph on k + 1 vertices. The idea is to delete a vertex in II with smallest
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possible degree to create G on k vertices, and then show there are still lots of edges
left, enough to apply 8(k).

Let 11 have more than (k + 1)2/4 edges. Note that if H has a triangle, then any
graph with additional edges will also, so suppose, without loss of generality, that H
has as few edges as possible, but still more than k + 12/4. It is convenient to break
the proof that H has a triangle into two cases, k even, and k odd.

First suppose that k = 2m. Then = 4rn2 f4rn+l and so assume that H has
in2 + in + 1 edges. The average degree of vertices in H is = in +
and so there is a vertex x e V(H) with degree at most in. Delete x (and all
edges incident with x) to give a graph G on k = 2nt vertices and with at least
in2 + in + 1 — in = in2 + 1 = k2/4 + 1 edges. Thus by 8(k), C contains a triangle,
and hence so did H.

Suppose that k = 2m + 1. Then (27nt2)2 (in + 1)2, so assume that
H has (in + 1)2 + 1 in2 i- 2m + 2 edges. Then vertices in H have average degree
2(m2±2Tn4 2) = in 4 1 1- 2' so there is a vertex x with degree at most rn + 1. Delete
x to give C with k vertices and at least

2 2 1 (2w-f-i)2 k2
in -4- 'bit + 2— (in + 1) in2 1 in + 1 > in 1- in +

=
edges remaining. Thus 5(k), C contains a triangle, and hence H also.

So iii either case. k even or odd, 8(k + I) is true. This completes the inductive
step 8(k) —' S(k + 1).

Thus by mathematical induction, for all ii � 3, 8(n) is true. D

C'oinrnent: Among all triangle-free graphs on a vertices, there is only one with
the most number of edges. namely the complete bipartite graph Irt/21 , where
the partite sets are chosen as equal as possible in size.

Exercise 510: This exercise (without solution) occurred in [226, 320, Q. 15],

and was generalized in [168]. Here, the term bow tie is used to describe the graph
on 5 vertices consisting of two triangles with precisely one vertex in common (see
Figure 33.1).

Let 8(n) be the statement that if a simple graph C on a 5 vertices has more
than -1- 1 edges, then C contains a bow tie (as a weak subgraph).

Figure 33.1: The how tie graph
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BASE STEP: For n = 5, + 1 = 7.25, so it suffices to show that a graph on 5
vertices and 8 edges contains a bow tic. (If such a graph contains a bow tie, then
any graph with 5 vertices and 9 or 10 edges does, too.) It is not difficult to verify
that there are only two such graphs; take the complete graph K5 arid remove two
edges—these edges can be touching, or not. (One has vertices with degrees 4,4,3,3,3,
and the other has degrees 4,3,3,3,3). Each has a bow tie, where the center of the
bow tie is a vertex of degree 4.

INDUCTIVE STEP: Let p> 5 and suppose that S(p) holds, that is, any graph with
p vertices and more than + 1 edges contains a bow tie. Let G be a graph with
p + 1 vertices and q edges, where q is the smallest number larger than + 1.
Split the proof that G contains a bow tie into two cases. [Recall that G\x denotes
a graph G with vertex x (and all edges incident with x) deleted.]

First consider the case when p is odd, say p = 2m + I (and so m � 2). Then

(p+I)2 + = (2m± 2)2
+ 1 = in2 + 2rn + 2,

so q = in2 + 2m + 3. The average degree of a vertex in G is

2(i,i2 + 2m + 3) 4=in+1+2m+2 2m+2
and so there is a vertex x E V(G) with in ± 1. Deleting x leaves

> + 2m + 3 — (iii ± 1)

rn2+m+2
— 4'm2+4rn+8

4
— (2rn+1)2+7

4

>

edges, so by S(p), G\x contains a bow tie, and hence so does G.
Next consider when p is even, say p = 2rn. Since p � 5, it follows that m 3.

Then
(p+1)2

+
(2rn± 1)2

+ + in +

so q = m2 + m + 2. The average degree of a vertex in G is

2(rn2 f rn + 2) in -I- 4=rn+2rn+1 2rn-l-1

and so there is a vertex x E V(G) with m+ Now there is a bit of a
problem. In general, might be as large as 1 when in = 3, hut deleting a vertex
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of degree in + i leaves in2 + 1 = 4 + 1 edges, not quite enough to use the inductive
hypothesis 8(p). It turns out, however, that when in > 3, this trick works, so let's
take care of this first, then return to in = 3. Suppose for now that in > 3. Then

< 1, making the average degree less than in + 1, so there is a vertex x with
degree at most in. Delete x, leaving n-i2 + 2 = 4 +2 edges in G\x, and so by S(p),
the graph C\x contains a bow tie, and hence so does C.

What remains is the annoying case in = 3, that is, p = 7. In this case 4 + 1

13.25, so assume that C has 7 vertices and 14 edges. If some vertex x in C has
deg0(x) 3, then delete x, leaving a graph on 6 vertices and at least 11 = ç + 2

edges, so by 8(6), [which follows from the above inductive step where p 5 is odd]
C contains a bow tie.

So suppose that every vertex has degree at least 4. Note that since the sum of
the degrees (� 7• 4)is exactly twice the number of edges (14), every vertex has
precisely degree 4 (that is, C is 4-regular). Thus, it remains to show that any 4-
regular graph on 7 vertices contains a bow tie. 'I'his can be done by an exhaustive
analysis, however it is made slightly easier by first deleting a vertex, getting a graph
on 6 vertices with 10 edges, and vertex degrees 4,4,3,3,3,3. Up to isomorphisni, there
are only three such graphs (whose complements are C4 + K2, and 1(3 + P2, where
P2 denotes a path of length i), two of which are easily seen to contain a bow tie.
For the remaining one, re-affix the deleted vertex arid the bow tie is easily spotted.
This concludes the inductive step where p 2in, and hence the inductive step in
general.

By mathematical induction, for each a 5, the statement 8(n) is true. 0

Exercise 511: This appears in [161, 8.23, p. 208J. For each n 0 let 8(n) be the
statement that if C is a graph on a vertices with no tetrahedron, then C contains
at most n3/3 edges.

BASE STEP: Since a tetrahedron contains 4 vertices, any graph on n 0, 1,2,3
vertices contains no tetrahedron. The number of edges in each case is bounded
above by 0, 0, 1, or 3, respectively, each of which is less than n3/3,

iNDUCTIvE STEP 5(k) S(k + 3): Suppose for some k � 3, 8(k) is true. Consider
a graph C with k 3 vertices. If C does not contain a triangle, then it contains
no tetrahedron, and by Mantel's theorem (see Exercise 509), C contains at most
(k + 3)2/4 < (k + 3)2/3 edges. So suppose that three vertices in C form a triangle.
These three cannot he connected to another common neighbor, so there are at most
at most 2k additional edges to the remaining vertices. Since the remainder of the
graph contains no tetrahedron, by 8(k) that part of the graph contains at most
k2/3 edges. In all, the maximum nuniber of edges is k2/3 + 2k + 3 (k + 3)2/3,
completing the proof of 8(k + 3).

By mathematical induction (actually three inductive proofs rolled in one), for
all a � 0, the statement 8(n) is true. 0
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Exercise 512: (Turári's theorem) There are many solutions (see, for example. f7,
pp. 183-187] for five different proofs); here is one by induction on n. Fix k � 1
and for each ii � 1, let S(n) be the statement that if G is a Kk+l-free graph on n
vertices and ex(ri; Kk+1) edges, then G = T(n, k).
BASE CASES: For each i = 0, 1,... , k, the graph with the most edges on i vertices
is K1 = T(i,k). SO 8(i) holds.

INDUCTIVE STEP: Fix soine in � k and suppose that S(m — k) holds. Let G be a
.Kk+l-free graph on m vertices with ex(m, Kk÷1) edges. As C is extremal for Kk+1,
C contains a copy of Kk. call it H. on vertices A = .. , ak}. Put B = V(C)\A,
and let G* be the graph induced on B.

Since C is Kk+i-free, each vertex in B is adjacent to at most k — 1 vertices of
A. Hence

+ IB](k -1) + E(G*)]

< + (m — k)(k — 1) + ex(m — k; Kk÷i) (since G* is Kk+ i-free)

� + (m — k)(k — 1) + t(rn — k, k) (by IH, S(m — k))

= t(m, k) (to see this, look at structure of T(m, k)).

Hence < t(rn,k). Also. since T(m,k) is Kk.41-free arid C has an extremal
number of edges. t(m, k) < E(C)I. Thus E(C)] = t(iri. k). forcing equality in the
equations above. Then each vertex in B is joined to exactly k — I vertices of .4.

For each i = I ,....k. put W, = {x E V(G) : {x, a1} E(G)}. Note that a1 E
and the Wj's partition V(G) since every vertex in B is riot adjacent to one of the
a1's. Each is an iu(lel)enddnt set, since if some x, y c li'1 were adjacent, x, y and
A\{a1} form a Hence, G is k-partite.

Since T(rn, k) is the unique k-partite graph with a.s niany edges as possible,
C T(-rn, k). This completes the inductive step S(m — Ic, Ic) S(m, k).

By mathematical induction, for all n � 0, 8(n) is true. U

Exercise 513: For each r > 1. let A(r) be the assertion (both statements) in the
theorem. The proof is by induction on r.
BASE STEP: When r = 1. C has no edges, so is

INDUCTIVE STEP: Suppose that s > 2 and that A(s — 1) is true. Let C contain no
K8+1. Pick a vertex x C V(C) of maxima.! in G. and put V = Nc(x), the
neighborhood of x, and put X = V \ Y (so x e X). Then the graph G* = C[YJ
induced by vertices of V is K8-free (otherwise = K8+1). Applying A(s.--1), gel.
an (s — 1)-part;ite graph 11* on vertex set V. where for every y E Y, (y) � dH. (y),
and if is tiot. complete (s — 1)—partite, there exists a vertex in V with strict
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inequality. Form the graph H by adding the vertices of V \ Y to H * connecting all
vertices in W to all ILl V \ Y.

For v e X, d0(v) < d0(x) IYI djj(x) clii(v). For z E Y, dc(v) �
dc.(v) + lxi < dy. + lxi = dj,(v). in any case, d0(v) < du(v), as required.

To show the second statement in A(s), it suffices to show that if dc(z) <dy(z)
never holds, then C is a complete s-partite graph. So assume that for every v V,
dc(v) = djq(v). Counting degrees in Y,

+ xi• IYI = � + xi. IYI, (33.1)
vCY vEY vEY vEY

and so dH.(v) � Eve-v d0.(v). However. H* chosen so that for each
y E Y, dc.(-y) dH.(y), so = dH*(y) and equality holds in (33.1). Hence

dc(v) = > + xi
ye-V

which says that the nunther of edges leaving Y in C is maximized, that is, each
vertex in 1' is adjacent. to all of x. Since iE(C)i = IE(R)l. iE(Ct)i = IE(H*)i, and
all edges in H contain at least one vertex in Y, it follows from equality in (33.1)
that iE(C[X])i = 0, and so C is a complete s-partite graph, proving the second
statement in A(s). The inductive step is complete.

By mathematical induction, for each r 1, is true. 0

33.9 Solutions: Digraphs and tournaments
Exercise 514: Repeat the proof of Euler's theorem Ihr graphs—the version for
digraphs is nearly identical. Begin by showing that if all vertices have minimum
outdegree 1, there exists a directed cycle (look at a maximal directed path). 0

Exercise 515: This problent of showing a king exists was first proved by 11. C.
Landau in 1953 13381, and continues to appear in graph theory texts and puzzle
books ever since. For example, ia [161, 8.3, p. 207J, it appears as a problem on
one-way streets in Sikinia (where ever that is!). First a "standard" analysis is given
that leads to an observation (the claim below) which has a simple proof of a stronger
claim that implies every- tournament contains a king; two purely inductive proofs of
the original statement are then given.

Analysis: Let 7' = (V, K) be a tournament with IVI finite, and consider some
vertex x. If x is not a king, then there is some other vertex y so that there is no
path of length at most two from x to y. This means that (y, x) K and for every
other z V, if (a:, z) K, then (y,z) E. But this implies that >
So repeat this argument replacing x with y, a vertex with higher outdegree. This
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process can not continue ad infinitum, and so when it stops, a king is located. Such
a king will have maximum outdegree, arid so perhaps proving a stronger result is
easier:
Claim: In a tournament, any vertex with maximum outdegree is a king.
Proof of claim: Let v be a vertex of maximum outdegree in a tournament T. Let
X = {x E V(T) : (v,x) E(T), and Y = {y V(T) : (y,v) E(T)}. (Then
X n Y = 0, V(T) = {v} U X U Y. and = lxi.) In hopes of contradiction,
suppose that v is not, a king, that is, there exists some z V(T) so that there is
no path of length of at most two from v to z. Then z Y, arid for every x X,
(z,x) E(T). Since (z,v) E E(T) as well, d4(z) = [X[ + 1, contradicting that v
has maximum outdegree. 0

here is an inductive proof of the original exercise:
Inductive proof: Induct on the number of vertices. Let C(n) he the claim that
any tournament on n vertices contains a king. BASE STEP: If a = I or n = 2, the
claim holds trivially.

INDUCTIVE STEP: Suppose that for some Ic � 2, C(k) is true, and let T (V, E)
he a tournament on Ic + 1 vertices, arid fix some vertex x V. The remaining Ic
vertices form a tournament 7" 7'\{x}, and so by C(k), T' contains a king iv.

There are two cases. If (w, x) E(T). then w is a king of T as well, and nothing
is left to show. If there is a path of length two front w to x, again, w is a king in 7'.

So suppose that (x, to) E(T) and that there is no path of length two from to
to x. Thus for every y with (w,y) B, one has (x,y) F (for if riot, (w,y), (y,x)
is a path of length two witnessing to as a king). Since all remaining vertices are
reachable from to through such y's, so are they similarly reachable from x. hence x
is a king. This concludes the inductive step.

Therefore, by mathematical induction, for any a � 1, the claim G(n) is true. 0

Remark: The inductive proof did not immediately reveal the much stronger
statement derived in the first proof. It also might be of interest to know that there
can be more than one king, and in fact, it is easy to construct a tournament with two
kings. Maurer [374] proved that if I Ic � n. there is a tournament on a vertices
with precisely Ic kings—except when Ic = 2 or n = Ic 4. So in large tournaments,
everyone can be king!

A simpler proof uses strong induction, and this inductive step is only outlined.
[Thanks to Liji Fluang for reminding me of this proof.] Let T be a tournament, arid
let x be any vertex in 2'. Let A be the set of all those vertices dominated by x.
and let B be the set of all those vertices that dominate x. By inductive hypothesis,
the tournament induced by vertices of B contains a king, say p. If B = 0, then x
is a king of 2', so assume B 0. For any b B, since p is a king of B, there is a
directed path from p to b of length at most two, and for arty vertex in a A, there
is a path (through x) from p to a of length 2. 0
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Exercise 516: This appeared in [566, 1.4.35, p. 651 marked as a harder problem.
The reference supplied was [338]. Good luck!

Exercise 517: Let 8(n) be the statement that if a tournament is held among n
players, where every pair of players meets precisely once, then there is a listing of
all the players a, b, c,..., so that a bcat Li, Li beat c, and so on, continuing until the
last player. Call such a listing a ranking.

Note: The term "ranking" is often used in a different sense; one could define a
ranking of any n-element set V to be simply a bijection a : V [n]. For example,
see [503, p. 6]. The ordering of vertices in this present context :night more aptly he
called a "chain ranking", or some such.

Base step: If n = 0, the empty list is vacuously a ranking. If ii = 1, the list consisting
of a single player is also vacuously a ranking. When n = 2, there is one match, and
so simply list the winner first and the loser second.

Inductive step: Use strong induction on k. Fix sonic k � 2, and suppose for each
= 0, 1, 2.... , k that 8(i) is true, and that a tournament T has been held with

k +• I players. Fix any player p, and consider the two groups. A made of players who
beat p. and B, those whom p beat. [Think: A=above, B=below] Since [Al < k, hy
induction hypothesis 8([A[), a ranking of players in A exists: similarly a ranking for
/3 exists. Since p was beaten by any member of A, in particular, by the last member
of A, and p beat every member of B, in particular, the first member of B, the new
listing formed by concatenating the ranking of A, followed by p. then followed by
the ranking of B, is a ranking of the k + I players as desired. So S(k 4 1) is true,
completing the inductive step.

By mathematical induction, for each ii � 0, any tournament with n players has
a ranking.

Exercise 518: For n � 3, let PQn) denote the proposition "if a tournament T has
a directed cycle ott n vertices, then it contains a directed cycle ott three vertices."

BASE STEP: When a 3, there is nothing to prove.

INDUCTIVE STEP: Fix k � 4, and assume P(k— 1) holds, that is, if T is a tournament
with a cycle on k — 1 vertices, then T contains a directed cycle.

Let. T (V. D) be a tournament containing a on k vertices, say r1
1k1 & V. where for each i 0, 1, —1, (xi, i) D (addition in indices is done
modulo k). If for any i, 2, xj) E I.), then is a directed triangle. So
suppose that all such pairs (two apart on the cycle) are directed in the same direct ion
as the cycle, i.e., (xt. xi eD. Then, e.g., the vertices x0,x2.x3 rk_i form a
directed cycle with k -— 1 vertices. Thus, by P(k — 1), 7' contains a directed triangle,
and so P(k) is true.

Thus, by MI, for each a � 3, P(n) is true. D
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Exercise 519: (Outline) See [90] for more details. The right side of the equation
in Exercise 519 is the sum of the first n — 1 squares (see Exercise 54). Thus the
critical observation is that there is no directed triangle if arid only if all outdegrees
are different (needs proof), in which case they must be 0,1,2,... ,n— 1. Then prove
that the sum of the squares is maximized when all degrees are different, and this is
done by induction.

33.10 Solutions: Geometric graphs
Exercise 520: For each ii 2, let A(n) be the assertion that if the edges of a corn-
plete geometric graph on n vertices are 2-colored, then there exists a monochromatic
plane spanning tree. The proof is by strong induction on ii.
BASE STEP: A(2) holds trivially as there is only one edge in a spanning tree.

INDUCTION STEP: Let k � 3 and suppose that A(2) A(k — 1) are all true.
Consider points P = , in general position, let C denote the geometric
graph on P, and let a red-blue coloring of E(C) be given.

Case 1: At least two edges on the border of the convex hull of P receive differcnt
colors. Then there exist consecutive points, say m, p, q, on the border of conv(P) so
that the segments rap and pq are colored differently By the induction hypothesis
A(/c — 1) on P' = P\{p}, the geometric graph induced by P' has a monochromatic
plane spanning tree, and together with one of rap or pq a monochromatic plane
spanning tree for C is formed.

Case 2: All edges on the border of conv(P) are colored identically, say red.
Without loss of generality, assume that the x-coordinates of all are strictly
increasing, and so the points are ordered , Pk left to right. For each 1 < i C k,
let and Ct be the graphs induced by {pi,m,. . . and Pk} respectively.
For each such i, by the inductive hypotheses A(i) and A(k — z), each of Cf and Ct
has a monochromatic plane spanning tree, say arid respectively. If for some
i, both '1? and '17 are colored the same, then their union forms a monochromatic
plane spanning tree for C, so assume that each such pair of trees has different colors.
Furthermore, if either or T_1 is red, a red edge on the border of conv(P) joining
either Pi to '1! or to Pk produces a red plane spanning tree for G, so assume
that both 77 arid are blue. Then the sequence of left-right color pairs begins
red-blue, and ends in blue-red; hence there exists an i E {2 k — 2} so that
is red, 77 is blue, is blue, and '17+I is red.

Adjoining any red edge from the border of conv(P) that joins to (which
crosses a vertical line between m and Pif.1) yields a red plane spanning tree for C.
In any case, A(k) is true, completing the inductive step.

By strong mathematical induction, for each ri ? 2, the assertion A(n) is true. 0

Exercise 521: See [304. Thm. 1.2] for the brief solution.



Chapter 34

Solutions: Recursion and
algorithms

34.1 Solutions: Recursively defined sets
Exercise 524: Let AP3 be short for "3-term arithmetic progression". This exercise
appeared as problem 5 of the 1983 IMO competition, where it asked if it is possible
to choose 1983 distinct positive integers in [1, that is AP3-free. The solution
given in [342] uses and Tn (leAned as follows: Let = {1} = T1. For ti > 1,
recursively define

Sn

= SnUTn_i.

Let A(m) he the combined assertions that does riot contain any AP3. = 2n—I,

and the largest element in being + 1 )/2. The proof is by induction on
To get an idea of why this result is true, examine the first few Ti's and

= {1}

52 = {2}
= {1,2}

Sa(3+l,3+2} {4,5}

T3=S3uT2 = {1,2,4,5}
84 = {9+ I9+2,9-s-4,9+5} = {10,1i,13,14}

T4=S4Uih = {1.2,4.5,1O,11,13.14}.

BASE A(1): The singleton T, = {l} certainly contains no AP3, IT,] = 1 =
211. and the largest element in is 1 (3' + i)/2, SO A(l) holds.

701
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INDUCTIVE STEP A(k) A(k + 1): Let k � 1 and suppose that A(k) holds. Then
= 5k+1 U By induction hypothesis 11(k), Tk contains no AP3, and Tk

contains elements, the largest of which is + 1)/2. Since Tk contains no
AP3, neither does 8k+1 a copy of Tk shifted by

Suppose, for the moment, that contains an AP3, say, a, a + d, a + 2d. Then
not all three terms are in the first half of Tk÷i (that is, from Sk÷J), nor could they
be all from the second half (that is, from Tk). Thus d must be greater than, the size
of the gap between Sk4.i and Tk, which is

9k—I 1 9k1
1c' \ k—i + +

mmkok+1)—maxtlk)=o
2 = 2

With such a value for d, it is impossible to have both a arid a + d in Tk, or to have
both a + d and a + 2d in 8k+i• Hence, Tk+1 contains no AP3.

To finish the inductive step, it remains to observe that Tk41 contains 2' elements
and that the largest element in Tk+1 is

max(Tkfi) = rnax(Sk±i) + max(ij) = 3k—i + 3k_1±i 3k+ i

Therefore, by mathematical induction, for each n � I, the assertion 11(n) is
true. D

Comment: Starting with a large set [1, a], one way to form an AP3-free set is
to delete the middle third, which forces any AP3 into one end, then in each of the
remaining thirds, delete the middle thirds again, continuing (as in the construction
of the Cantor set) until this is no longer possible. This can be done "optimally"
when n is a power of 3.

34.2 Solutions: Recursively defined sequences
Exercise 526: Fix the interest rate i' and principal P. For any integer it > 0, let
8(n) he the statement that the amount iii the account is P(1 +

BASE STEP: The value n = 0 corresponds to the tune of the deposit. so there is P
in the account, and since P = P(1 + r)°, 3(0) is true.

INI)UCTIVE STEP: For some k � 0, suppose that 8(k) is true, that is, after k
years, there is r)k in the account. After one more year, interest accrued is
rP(1 r)k. Together with the amount in the account, after k + 1 years, there is
P(1 + r)k + rP(l + r)k = (1 -+ r)P(1 + r)k = P(1 + in the account, which
proves S(k + 1). This concludes the inductive step.

By mathematical induction, for all it 0, the statement S(n) is true. 0
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34.2.1 Solutions: Linear homogeneous recurrences of order 2
Exercise 527: See [150, Prob. 8, p. 209]; the solution is straightforward.

34.2.2 Solutions: Applying the method of characteristic roots
Exercise 528:. (Outline) 'i'he inductive proof is nearly since even plus odd is odd.
Tire characteristic equation is x2 — x —2 0, which has roots a 2, $ = —I. By
Theoreni 16.3.1., the general solution is

= +

The proof of this solution by induction is straightforward, using two base cases and
two cases for the induction hypothesis (the reader is invited to write this proof
formally):

When n = 0, 21 + 1 = 3 a0, arid when n = 1, 22 -- 1 = 3 = aj, concluding the
base step.

For the inductive step, let k/geql and for the induction hypothesis (JH), assume
that both = 2k + (_l)kl and = 2k+1 + (_1)k are correct. Then by the
recurrence relation = + ar_i,

= 2ak_1 +ak
= 2(2c + (1)k—i) + 2kf1 + (_1)k (by 1Ff)
=

-t
2k±i + — 1)

= 2c+2 + ( 1)k-1

= + (_f)k+1,

which is a form for 0k+1 which agrees with the solution (when n = k+ 1), completing
the inductive step.

Then by MI, for all a. � 0, the solution above is verified. D

Exercise 529: The characteristic function is x2 — x — 1 = 0, a = (the golden

ratio) and $ = so Binet's formula follows directly from Theorem 16.3.1. D

Exercise 530: This exaniple appears in [292, Ex. 21, p. 244], where the answer is
a,, = 2(—4) + 3n(--4)". C

Exercise 531: The induction proof asked for is nearly trivial. To solve the re-
cursion. the characteristic equation is x2 — 2x + 2 = 0, with roots a = 1 + i and

3 1 — i. Using 9 = ir/4, Theorem 16.3.1 gives

a,, = +
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This recurrence is also solved directly in [239, Ex. 10.21, pp. 465—466].

Exercise 532: Define a1 = 1, a2 = 3 and for each k � 2, define ak+1 = 3ak — 2ak_l.
For n 1, let P(n) be the proposition that a71 = — 1.

BASE STEPS: Since a1 = 1 = 21 and = 3 = 22_i, both P(1) and P(2) hold.

INDUCTION STEP: Let £ � 3 and suppose that P(t — 2) and P(E — 1) hold, that is,
= 2e-i I and at_i = 2t1 — 1. Then

= 3at_1

= — 1) — 2(2t_2 1)

=
= 4.21_2_ 1 1,

and so P&) is true, completing the inductive step.

Therefore, by (an alternative form of) MI, for all ii � 1, P(1) holds. D

Exercise 533: The characteristic equation is x2 bx + b2, with roots & =
= and so (with further simplification as in the case of complex roots,

using 9 = ir/3) by Theorem 16.3.1,

= b"[cos(nir/3) +

This same recursive definition is also solved in detail in [239, Ex. 10.22, pp. 466-
7], where the sequence is a sequence of determinants. The inductive proof of this
solution is left to the reader (and may be made easier by translating back to numbers
without angles). D

Exercise 534: For n � 1, let P(n) be the statement that equation 16.5 holds.

BASE STEPS: P(0) says a0 = = I, and since by definition, ao = 1, P(0) is true.
P(1) says al = = 1, which is true by definition, so P(i) holds.

INDUCTE\'E S'rEp: ["ix k � I, and suppose that both

P(k — 1): 0k-1
= 2k + (i)k-1

and
2k±1 + (_i)k

3

It. remains to show that

+ (_1)1c4.1P(k+i):
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follows. Starting with the left-hand side of P(k + 1),

ttk + 2ak_1

+ (_i)k 2k +
=

+2• (byS(k)andS(k—1))
— 2k-tl + (_i)k + (_i)k-.1

3
— + + 2)

3
— 2k+2 +

3

— 2k+2+(_l)k+1
— 3

which is the right side of P(k + 1), concluding the inductive step.

By mathematical induction (an alternate form), for each ii � ü, P(n) holds. 0

Remark: This result is for n � 0, slightly more than what the question asked
for.

Exercise 535: A version of this problem appears in [499, Problem 18]. Define
a1.a21a3,... by = 2, a2 = 3 arid for each It � 2,

= --

For each ii 1, let C(n) he the claim that = 2" + I.

BASE STEPS: Since a1 = 2 = + 1, and a., 2' + 1, both C(1) and C(2) hold.

INDUCTIVE STEP: Fix It > 1 and that both C(k) : ak = 2k-l + 1 and
C(k + 1): = + 1 hold. It remains to show C(k + 2): ak÷2 = 2k+i + 1. Then

ak+2 = --
= 3(2k) 2(2k—i + 1) by C(k + 1) and C(k))
=

=

as desired. This completes the inductive step [C(k) A C(k + 1)] — C(k + 2)].

By Ml (an alternative form) for each ii � 1, C(n) is true. 0
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34.2.3 Solutions: Linear homogeneous recurrences of higher order

Exercise 536: This problem appeared in (18, Prob. 4, pp. 85, 209]. One notices
that the first few values for are 1, 1, 4, 9, 25, 64, ..., squares of the Fibonacci
numbers. So, let 5(n) be the statement that = and try to prove this by
induction.
BASE STEPS: Since xj = 1 = 12 = F?, x2 = 1 12 = F?, and X3 = 4 22 = F?,
statements 8(1), 8(2), and 8(3) hold.

INDUCTiVE STEP (8(k)A8(k+1)AS(k+2) —, S(k+3)): Fix some k � 1, and assume
that 8(k). 8(k + 1), and 8(k + 2) hold. One shows that 8(k + 3): Xk+3 = Fk?+3 is
trite by

Xk+3 = 2Xk÷2 + 2Xk+1 — Xk

= — F,? (by S(k+2), S(k+ 1), 8(k), resp.)
— g2
— Jk÷2+2k+i+Ak+2+Lk÷11k
= F,?÷2 + F,?÷1 + F,?÷2 + (Fk÷1 + Pk)(Fk÷1 — Fk)

= + + F,?÷2 + Fk÷2(Fk+i — Fk)

= + + Fk÷2(Fk÷2 + Fk4.1 — Fk)

= + + Fk+2((Fk÷1 + Fk) + Fa÷i — Fk)
= + 2Fk+2Fk±1 + FL1

= (Fk÷2 +
— rk±3.

Thus 8(k + 3) holds, finishing the inductive step.

By MI, for all � 1, 8(n) holds. 0

Exercise 538: Define so = 1, = 2, = 3, and for ii � 3, define = F

5n--2 +
For it � 0, let C(n) be the claim that 371

BASE STEPS: = = 30, = 2 < 31, and = 3 32, so C(0), C(l), and C(2)
hold.

INDUCTION STEP ([C(k —3) A G(k —2) A C(k — 1)] —, C(k)): Fix k � 3, and suppose
that G(k — 3), C(k — 2), and C(k — 1) all hold. Then

5k Sk_3+Sk-2+Sk_i
� 3k_3+3k_2+3k_1
= 3k_3(l+3+9)
< 3k—333 3k

shows that C(k) : 5k < 3k holds (in fact, strict inequality holds), finishing the
inductive step.
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By (an alternative form of) MI, for all n � 0, C(n) is true. 0

Exercise 539: (Outline) Defines1 = = 83 = 1, and for ii 1, 5n+3 =
To show is that for each it i, < r. Repeat, (essentially) the solution

from Exercise 538, where instead of using 1 + 3 + 9 <3d, use I + 2 + 4 <2g. 0

Exercise 540: Define 2, = 4, 83 = 7, and for ii 1, define 8n+3
+ 8n f-i + The si's are called the "tribonacci [Lumbers". Let be the

number of binary strings that do not contain the substring "000". is the number
of binary strings of length n that do not contain the substring "000". For each
n I, let C(n) be the claim that = To show that for all n � 1, C(n) is true,
is by induction:
BASE STEPS: Since t1 = 2, t2 = 4, and t3 = 7 are easily verified, C(1), C(2),and
C(3) are true.

INDUCTION STEP: For some j � 1, suppose that CU), C(j + 1), and C(j + 2) are
true, and let f = (f(1), 1(2).... , f(j+3)) {0, denote a binary word of length
j + 3. Suppose that f does not contain three consecutive Os. If f(1) = 1(2) = 0,

then 1(3) = 1, and so there are ways to complete f. If f(1) = 0 and = 1,

then there are ways to complete f. If f(1) 1, then there are ways to
complete f. All three patterns iii tIne first three letters of f fall into one of the above
categories, so

tj ± + t3.fr2

= Sj + 5j±1 + 5j1-2 (by C(j), + 1), and + 2))
= Sj+3 (by def'n),

showing C(j f 3), completing the inductive step.

By (an alternative form of) MI, for all a � 1, C(n) is true. 0
comment: For the general formula for tribonacci number si,, let a, b, c he the (real)
roots of x3 --- — x — 1; then

bn+t
+(a—b)(a—c) (b-.-a)(b—c) (c—a)(c--b)

Proving this expression by inductiont is cumbersome.

34.2.4 Solutions: Non-homogeneous recurrences

Exercise 541: This problem comes front (with kind permission) José Espinosa's
website [176, No. 20] without solution, however the solution is straightforward.
Espinosa points out that. the form of induction required is to show 8(1) and 8(2),
then show that 8(k) A S(k 1 1) S(k + 2).
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Exercise 542: See the solution to Exercise 5'13.

Exercise 543: Thanks to Stephanie Portet for providing this problem and solution.
For each t define the statement

xt [iiaz] x0

[
ar]

i=0 2=0 r=z+1

BASE STEPS: At rank 1: using the difference equation, = aoxo + b0, so P1 is
true. At rank t 2: x2 -= a1x1 + b1 = + + so P2 is true.

INDUCTIVE STEP: For sonic k> 1, assume that holds true, i.e., assume that

Xk

i=0 i=0 r=i+1

and express xk+l:

akxk +

= ak
{

so ± bk_I +
[

(Zr] + bk
i=O

= So +clkbk i [at. +bk
i-=0 r=i+1

= so +bk + (Lkbk_1
[

ar]
i=o 0

= ai] So I. + [ I-I
i-SO r=i+1

Thus holds, cornplctiiig the inductive step.

By the principle of mathematical induction conclude that, for all t E
true. 0

Exercise 544: Proof outline: a2 = at + 1., (14 = a2 + 2 = a1 + 3, and so U3 = ai + 2
(the sequence is increasing). Then prove that for each ii 1, a1 + n — 1 as
follows: For n. 2k, use induction on k. Then for 2k <

ai.t.2k_l=_a2k<a2k+l<...<afl<...a2k=aI+21_1,

which is only possible when = ± n -F- 1.

Next prove that I by contradiction: if p < q are consecutive primes,
ai <p, then aq — + 1 = a1 + q — a + I = q. and so q — a1 + 1 is also prime. Then
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q—ai -Ii p, and so q--p < —1. But the numbers (aj -i-1)!±2,... , (ai +1)!+aj +1
are all composite, so if p and q are consecutive primes with p < (aj + 1)! -1- 2 <
(01 + 1)! + al + 1 < q, then q — b > a contradiction. Thus al I and so for
each n, = it. 0

34.2.5 Solutions: Non-linear recurrences
Exercise 546: This problem appeared in 1582, Prob. Fix c E (0, 1]. For each
n ? 1, let A(n) he the assertion that .s,, < Observe that each Sn is positive.
siiice c> 0 and x2 0.

BASE STEP: Since = > = A(1) is true.

INDUCTION STEP: Fix some k � 1 and suppose that A(k) is true, that is, C 5k
To show that A(k + 1): SkLI < 5k+2'

- 4+c 12 2
8k-I-2 — =

2 — 2
— —

and since (by A(k)) 5k < 5k+I and 5k+I > 0, the expression above is also positive.
Thus A(k + 1) is true, completing the inductive step.

By mathematical incluctioti. each A(rz) is true, that is, the seqiieIice is increasing.
To sce that each is at most 1, again induction can be used: For each a 1,

let B(n) he the statement that 5n

BASE STEP: Since c < 1, = < 1, so 8(1) holds.

INDUCLIVE STEP: Fix k � and assume that 8(k) : 5k < 1 holds. Then

2 st+c8(k) : < 1 < 1 5k + c < 2 = 1.

and so B(k -I- 1) follows, completing the inductive step.

By Ml, for all a > 1, 8(n) holds. 0

Note: One might observe that since .s1 < 1, the statement 8(n) could have been
proved with strict inequality. So. a strictly increasing sequence hounded above lq I
has a limit, say L, which depends on c. To find L, where 0 < L < 1, solve 1-
to get L = I —

Exercise 547: Define 01 = I and for each it > i, define an÷J = i/On + 5. For
Ti � 1, let 11(n) be the claim that a,, < 3 awl let 8(n) he the claim that a,. >
BASE STEP A(1): Since = 1 < 3, holds.

INDUCTEVE STEP tl(k) .4(k+ 1): Fix k � 1, and assume that A(k) : 0k < 3 holds.
Then = i/ak + 5 < -iTh < 3 shows that A(k + 1) holds.
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By MI, for all n 1. A(n) holds.

BASE STEP /3(1): Since a2 I ai, /3(1) holds.

INDUCTIVE STEP: /3(k) B(k + 1): Fix k � 1, and assume that /3(k): ak+l > a/,
holds. Then

ak+[ + 5> ttk + 5 + 5> \/ak + 5 >

shows that B(k + 1) follows, completing the inductive step.

By MI, for all n � 1. /3(n) holds, and so the sequence is increasing.

The sequence is bounded above and increasing, and so has a limit; let

urn = L.
Ii

To find L. suppose that a is so large that is "close" to L, hut calculate as if
a,-, = an÷i = L: then L = implies that L2 — L -- 5 = 0, and so by the
quadratic formula, L = Since each > 0, the limit must be non-negative,
and so L (and as a check, L is near 2.7913, less than 3). D

Exercise 548: Define a1 = i and for a � 1, define 1 + s/afl + 5. For it � 1,

let P(n) he the proposition that a,, > 4 —

BASE STEP: Ui 1 > 0 = 4 — so P(1) holds.

INDUCTIVE STEP: Fix j � 1. and suppose that : >4 — holds. It remains
to show that PU + I.) : a3÷I > 4 — also holds.

llv PU), aj+i = 1 1 V/äY+ 5> 1 + + = so it remains to show
that

I + 4— -4-—.
V .1 j+l'

or equivalently, (by subtracting I from each side and squaring, since terms are
positive)

4 4 2 24 16
=9—---——+y+l j+l

Subtracting 9 from each side, and multiplying by —j(j + 1)2, the last inequality is
equivalent to

+ 1)2 <24j(j + 1) — 16j,

which simplifies to 4 < 20j2, which is true for every j � I.
By MI, for each a � I. P(n) holds. 0

Note: The sequence appears to have a limit by solving L = 1 + (for
L > 0) giving L = 4: perhaps one can prove by induction that the sequence is
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strictly increasing, and since each term (by the above solution) is bounded above
by 4 — <4. this would be an example of where a limit actually attains the upper
bound.

Exercise 549: Define a1 = I and for each n � 1, define ± 1. For each
n � 1, let 11(n) be the claim that <4 and let V(n) be the claim that > a71.

BASE STEP U(1): Since a1 = I < 4. so U(1) holds.

INDUCTiVE STEP U(k) U(k + 1): Fix k � 1. and suppose that U(k) : < 4
holds. Then ak÷j = \/2ak + 1 < + 1 3 < 4, so U(k + 1) holds. (Note: this
bound is rather sloppy, and so the 4 could have easily been replaced by, say, 3.]

By Ml, for each it i, U(n) holds.

BASE STEP V(i): Since a2 = 1 a1. V(1) holds.

INDt?C'I'IVE STEP V(s) V(t -I- 1): Fix £ � 1, and assume that V(E) : ae+j > ag
holds. Then V(s) implies

2a,÷j > 2at ii + > ± 1 + 1 > + I =

which shows V(t + 1) is true.

By MI, for each ii 1, V(rt) is true.

So the sequence al. a2, a:3,.. . is bounded above and is strictly increasing, there-
fore, converges to some litnit L. Replacing both a,7 and with L gives L =

— 1, and since L > 0, the quadratic formula gives L = 1 + 0

Exercise 550: Solution outline (for a more thorough write-up, repeat the format
given in the solution of Exercise 549):

Define a1 = 4 and for each it � 1, define + 2.
To see that each > 2, the base step is a1 = 4 > 2, and for k � 1, assuniting

that ak > 2, ak÷j = s/ak 4- 2> = 2. To see that the sequence is decreasing,
a2 =- < 4 and for k � 1,

akn <ak + 2 <ak-f- 2 < y'ä 4-2 ak±2

By Ml. each of the desired claims is proved. Since the sequence is bounded below
and decreasing, it has a limit iL � 2. Setting L = 0 implies L2 — L -- 2 = 0,
and tIte quadratic formula gives L == 2 as the only positive solution. 0

Exercise 551: Solution outline (for a more thorough write-up, rel)eat the format
given in the solution of Exercise 549):

Define a1 = 2 and for each a � 1, define = 1 + s/art + 5.



712 Chapter 34. Solutions: Recursion and algorithms

To see that each < 4, a1 = 2 < 4, and for k � 1, assuming that ak < 4,
ak+1 = 1 + Yak + 5 < 1 + = 4. To see that the sequence is increasing, a2 =
1 + 2, and for k � 1, > implies

ak+I + 5 > + 5 Vak+1 + 5> 5 + + 5> 1 + Yak + 5,

and so 12 > ak+l. Thus, by MI, each of the desired properties follows. Since the
sequence is bounded above and is increasing, it has a limit L, where U < a1 < L < 4.
Putting L = 1 + and solving, 1. = 4 is the only positive solution. 0

Exercise 552: This exercise appears in [161, 7.24, pp. 181, 189]. For each ii � 1,
denote the expression in the exercise by

E(n):

BASE STEP: For n = 1, � 1 < + i is a true statement.

INDUCTION STEP: For some rn � 1, suppose that

E(rn):

is true. To be proved is

Efrn+1): */hi+1<xm÷i<v'm+l+L
To see the first inequality,

Xrn+1 = 1 + Tfl/Xjn

� 1 f- (by 2nd ineq. of E(m))

m+1 -1
> 1+

Ym + 1 + 1

=
= Ym+1,

and the second inequality is proved by

I ±

1 + (by 1st ineq. of E(rn))

=
< Vm+1+1.

'1' his completes the inductive step.

By MI, for each it � 1, the expression E(n) is true. In fact, for n ? 2, strict
inequality holds in E(n). 0
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Exercise 553: Define = 0 and for n � 2, define = 1 + Sln/23. For every
n let A(n) be the assertion that = The proof of A(n) is divided
into two parts: when ii is a power of 2, then another step for values of ii between
consecutive powers of two. The first few values of are = 0, = S3 = 1,

34 = 55 = 55 = 87 = 2, = 59 = = 815 = 3, so the pattern might be evident.

FIRST BASE STEP: = 1 = I + 0 = 1 + log2(1), so A(1) = A(2°) holds.

FIRST INDUCTION STEP —, A(2k4d)): Fix some k � 0, arid assume that
A(2k) is true. To see that A(2k±i) follows,

= 1 + S12k4 '/2j

= I+512kj
l+52k

= 1 + by A(2k))

= 1+k
= [log2(2k+]ij.

So by Ml, for each k � 0, A(2k) is trite.

For each k � 0, let C(k) be the claim that for all values of in (0, 1 — I },
that .92k = 82k4 (So, e.g., C(3) says that = 59 = = sis.) The sequence of
claims C(0), C(1), C(2), C(3)... . is proved by induction:

BaSu STEP: When k = 0, the only value of in is in = 0, so C(O) says only = .si.
[When Ic = 1, the values of in are 0,1, so C(1) says 53, and since = 1+81 83,

C(1) also holds.1

INDUCTION STEP (C(r) C(r + 1)): Fix sonic r � 0, and suppose that C(r)
holds, namely, that = = = To show that C(r + 1) holds,
one must show for any in {0, I 2rIl

— 1}, that 32r-i Indeed, let
o rn 2r±t — 1; then

1 +
=

I + 8r (by C(r), since [in/2j — 1)

as desired. This concludes the inductive step (C(r) —* Cci' + 1)).
Hence, by Ml, for all Ic > 0, C(k) is tri.ie.

To coniplete the proof of all A(n) between powers of 2, let n = 2k + i for some
< and note that = + i)J = [jog2 2"j = Ic = 52k. 0

Exercise 554: This problem appeared as question A-5 of the 1983 Putnam ex-
arnination, arid a solution prepared by Loren Larson arid Bruce Ilanson, with the
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assistance of the St. Olaf College Problem Solving Group, appeared in Math. It'fag-
azine 57 (May 1984), 188—189 (published by MAA).

Exercise 555: This problem appears in [499, Problem 19].

Exercise 556: This problem appeared in [161, 8.13, p. 208] from TT (Tournament
of the Towns) where it was asked to show that a10 had more than 1000 nines in
decimal notation.

Exercise 557: This problem appears in [437, Problem 3-1].

Exercise 558: Hint: First prove that = — + I.

Exercise 559: This solution outline is from [411, Prohlem 60}. To prove the result,
set = — 2ri and obtain

1
Yn±1

yn + 2tt

This shows that <yn+i Then by induction show that 0 <yn < logn.
The result then follows. 0

34.2.6 Solutions: Towers of Hanoi

Exercise 562: Let f(n) be the minimum number of moves necessary to move it
disks from one peg to some other peg. One can verify that 1 and f(2) = 3.

Let n 3 and suppose that f(n — 1) is known. Suppose that there are it disks.
Before the bottom disk can be moved, the top n — 1 disks must be moved all
to one other peg, taking f(n — 1) moves. After the bottom disk is moved, the
remaining ii — i disks must be returned, and since the algorithm can be executed
to move it — 1 disks to either of the remaining pegs, f(n — 1) more moves are
required. Since this sequence of moves just described succeeds in moving all it disks,
f(n) = f(n — 1) + 1 + fin — 1) = 2f(n — 1) + 1.

Now a simple proof by induction shows that f(n) = — 1 because 2(27t 1 —

I)+1=2Th—L 0

Exercise 563: This solution outline is also given in [16]. The base cases for a = 1,2
have been confirmed just before the statement of the exercise. Suppose the number
3k — I is correct for k disks, and consider the game with Ic + 1 disks, labelled with
say, 1 2,. .. , Ic + 1, with Ic + 1 being the largest. By induction hypothesis, it takes
3k

— moves to move 1 Ic from A to C, one move to take Ic + 1 front A 1,0 B,
an additional 3k

— moves to bring 1,... ,k back from C to A (using the induction
hypothesis for the reverse game, unaffected by the large disk on B), one move to
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0 0

0 01 010
I

—*
1 1 1 1 0
10 111101100

Thhle 34.1: The Cray codes C1, CJ2, and C3

take k + 1 to C, and finally another 3k — 1 moves to return 1, . . . , k to C. In all,
there are

(3k
— 1) + 1 ± — 1) + 1 + (3k

— 1) = 3(3k
— I) + 2 = 3kE1

—

confirming thc number of moves for k + I di.sks. and so the inductive step. 0

34.3 Solutions: Data structures
Exercise 564: The Cray code given by the following outline is called a "binary
reflected Cray code", which also turns out to be cyclic, that is, also the first and
last word differ in precisely one hit as well.

Since B1 = {0, 1}, C1 (0, 1) is a Cray code for Let k � 1, and suppose
that a Gray code has been constructed for Bk. say Ck = (wi,... , Create a
new code 6'k±J by affixing a I) in front of every word in G'k, and then affixing a 1 in
front of a reversed copy of (1k, and juxtapose these two new lists (see Table 34.3 for
the first few examples). By induction hypothesis, no element in 13k+i is repeated,
and there are 2k + 2'c = 2k+L words in C'k÷l.
Exercise 565 (hypercubc): (Outline) First note that a very simple counting
argument proves the result: For each collection of n — i coordinates and each of
the binary words on such coordinates. there is a unique i-facet arid there are(n

= (7) ways to choose the collection of n —- i such coordinates.
To prove this result by induction, some work must be done. The cases ii = 1

arid i 0 (and any ii) arc trivial: 1 and =

Before proceeding with the inductive arguriment, first prove the recursion

= ' ——
13:411

Then the inductive argument (inducting on n) might go something like

yr = 2v71 +
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= 2
.

+ (by md. hyp.)

1)

(by Pascal's id.).

It remains for the reader to prove the recursion, then to write up the proof formally.

34.4 Solutions: Complexity
Exercise 568: Hint: Use Exercise 567 and induction.



Chapter 35

Solutions: Games and
recreation

35.1 Solutions: Tree games

Exercise 569: Hint,: Use induction on the height of the tree. Look at a tree game
with a tree of height n. Look at the subtrees not including any starting position;
apply the inductive hypotheses to these. For more details, see [42, p. 3231.

Exercise 570: [December 31 game] Reference, hint and partial solution: See [124,
Ex. 3.62], where a hint is to first list winning dates. For cxaniplc, any player naming
30 November can win (because the next player can pick from only 3() December, or
31 November, from which 31 December is a legal" move). The hint also suggests
using strong induction to describe the 'winning dates". If (day, month) is a winning
date, then perhaps (day-i, month-i) is also? Perhaps the second player need only
pick from among 20 Jan., 21 Feb., 22 Mar., 23 Apr., 24 May, 25 June, 26 July. 27
Aug., 28 Sept., 29 Oct., 30 Nov., or 31 Dec., depending on which is a legal move
after the first player moves.

35.1.1 Solutions: The game of NIM

Exercise 571: This solution is based on notes given by Eric Mimer iii PMA'l' :340,
1987 88.

For n > 0, let A(n) be the assertion that tIme position (1, n, a -1- 1) is a losing
position (P-position) in NIM if and only if n is eveni. Use the notation (a, b, c) P
to indicate that the position (a, b, c) is a P-position; similarly use (a, b. E N for

BASE STEP: When n 0, the position (1,0,1) is a P position, and it is even.

717
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INDUCTION STEP: Fix r > 0 and suppose that for every in < r, that A(m) is true.
To accomplish the inductive step, one needs to prove that A(r) is true, that is, (1)
if r is even. then (1, r. r + 1) P, and (2) if r is odd, then (1, r, r 4 1) E N.

(1) Let r be even. It suffices to show that whatever move the first player triakes,
there is a response that results in a P-position. The possible moves by the first
player from (I,r,r + 1) are to (0,r,r + 1), (1,k,r + 1) where k C r, and (1,r,k)
where k r. The responses:

(0,r.r -f-I) —t(0,r,r) E P
(1,k,r+l)—'(l,k.k+l)eP ifkiseven(byA(kfl,or

(1. k. k -- 1) e P if Ic is odd (by switching piles and A(k))
(l,r,k) —+(r,k — I,k) e P if Ic is odd (by A(k — 1)), or

(1, Ic + 1, k) e P if Ic is even, r $ Ic (by switching and A(k)), or
(0,r,r) EJ P if Ic is even, r = Ic.

[Note: If Ic c r antI r is even, then Ic -1-- 1 < r.1

(2) When r odd, the move (1. r, v + 1) (1. r, r — 1) leads to a P-position (by
Aft — 1) with a different order of piles), and so when r is odd, (1,r,r + 1) E N.

These two eases complete the inductive step A(0) A'•• A Aft — 1) —+ Aft).

By mathematical induction, for each a � 0, the assertion A(m) holds. LI

Exercise 573: For each a ? 0. let S(n) be the statement that whenever n
n1 + ' '' ± a position (a1, in NIM(2) is a losing position (a P-position) if
and only if it is satisfactory.
BASE STEP: When n = 0, since each a1 � 0. the only solution to a1 + '' ' + 0

is when each = 0. 'lie position (0, 0. . . . . 0) is a losing (actually, lost) position,
and each a, = 0 0 (mod 3).

INDIJC'J'IVE STEP: Let at > 0 and suppose that for all tn' cc in, S(nt') is true.
Consider the position (ni ,...n1). where in = a1 + ' a1.

Case 1: Suppose that (nj... ,n1) is satisfactory, i.e., for each i. a1 0 (mod 3).
It remains to show that any move (aj,.. . , —, (t4,... , nfl that decreases at
most two piles results in an N—position. which, by the inductive hypothesis, is an
unsatisfactory position.

Without loss of generality. 5Ul)PO5C that r4 < and r4 < and for all
= 3 a1. Letting b,(n) denote the i-tb binary digit of a, there is some

i so that b,(r4) ± b,er4) cc b2('z ) + b(n2) (e.g., take the largest i so that there is
inequality). Thus, for some p E {l,2},

= ,n1) — p.

Thus a(r4 r4) $ 0 (mod 3), and so by induction hypothesis, (a'1. . . . E N,
which proves that it,) EE P.
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Case 2: Suppose that (ni,... ,flt) is not satisfactory, i.e., for some i, 0

(mod 3). To be shown is that (n1.... e N, that is, there is some move to a
P-position. Put

Let = and for each p E {1,2}, set

(mod3)}.

Thus I I' U Also, forE {0, 1}, put

= {i E [P : 2 (mod 3)},

where p is chosen so that = 1. i'hus is the disjoint union of and
Case 2a: 0 and I? = 0, i.e., for all i, + 2 (mod 3). In this case,

make the move

and for .i p, = ri1 (remove stories from the p-tli pile, and leave all others
untouched). Note that E j1 (since I and I? = 0), so that x �
(2" -1 + ± ... + 1) 1 (i.e., the removal of a stones from the p-tli pile is a
proper move). Moreover, for each i E 1, if aj = 1. then = — 1, and if

= 2, then = + 1. Thus for i I. it follows that o,(nç,. . . , n) 0
(mcd 3). For j I. . . . , 0 (mod 3) since i4) = . . . ,

Thus the position n4) is satisfactory, and by the induction hypothesis, is a
P-position.

Case 21): U 0. Put A = max(11 U [2). It is possible that A = but in
this case. I? since = I). i.e., 2 (mod 3), and so there is
q p so that bA(flq) = 1. If A then, since (mod 3), there is again q p
such that = 1. For p {1,2} and e,8 {0. 1}. let

Then, for example. is the disjoint union of and Pitt

2'- > 2',

iEl:uI?,

2'— 2',

arid consider the move

n, = —
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flq _* = nq —

forjØ{p,q}.

Since p = max(I) if, note that x � — + + ... + 1) = 1, and since
A 'tb U y � 2A — (2A--1 + + . + 1) = 1, the removal of x stones from pile
p and y stones from pile q is a proper move, it remains to verify that for each i,

(mod3),

so that (nç,... , r4) is satisfactory and is hence a P-position by the induction hy-
pothesis.

When i 0 1, = a1 0 (mod 3). So suppose that

Only a couple of cases are given here, the remainder being left to the reader as an
exercise. For example, if i then = — 1, = bi(nq), and so

= — 1 0 (mod 3). If i id0, then b1(n,) = + 1 and = &i(nq) + 1,

so o' = aj + 2 0 (mod 3). In each case. when i one must check that 0

(mod 3), which shows 8(m), concluding the inductive step.
By mathematical induction, for each ii 0, the assertion 8(n) is true. U

35.1.2 Solutions: Chess

Exercise 575: See [161, 8.30, pp. 209, 217] for details; only an outline is given here.
Let f(n) denote the number of squares that the knight caii land on after precisely
n moves. Verifying f(0) = 1 and f(1) = 8 is direct (see Figure 17.2.3), and from
Figure 35.1.2, one sees that f(2) = 33 and f(3) 76 (68 new squares labelled 3 arid
the 8 labelled 1). After an odd number of nioves, the knight is on a white square,
and after an even number of moves, the knight lands on a black square.

Observe that after 3 moves, all reachable squares are within an octagon with 4
white cells per side. By induction, one can prove that after n moves, the reachable
cells fill an octagon with n + 1 squares per side (all of the same color). To finish the
proof, one need only count the squares of one color in such an octagon. One idea
is to complete the octagon to a square of size 4it * 1 and remove the four corners,
leaving

(4n+1)2+1 2—rr=7n +4n+l.

(One needs to consider the twocases when ii is even or when ii is odd.) 0

Exercise 576: This is a popular (amid easy) exercise (see, e.g., [462, 51, p. 281]).
For in � I and n 1, let .S'(m + it) denote the statement. that starting at (1. 1),
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L
Figure 35.1: Squares reachable by knight after 2 or 3 moves

721

the square (m, ii) can be reached in a finite number of moves. The induction is on
In + Ii.
BAsE: STEP: Starting at (1, 1), after no moves, one arrives at (1, 1). so S(2) is true.

INDUCTIVE STEP: Fix positive integers s, t, and suppose that (s,t) can he reached
iii a finite number of irioves, that is, assume that S(s + t) holds. It remains to show
that S(s + t + 1) holds, that is, that both (s + 1, 1) arid (s, t + 1) can be reached in
a finite number of moves.

To see that (s, t 4 1) can be reached, consider the moves

(s,t) (si 2,t+1) (s+l,t+3) (s,t+ I).

By S(s + t), (s, t) can l)e reached in a finite number of moves, and together with the
three moves just given, (s. t + 1) can be reached in a finite number of steps. To see
that (s + 1, 1) can he similarly reached, use rrioves

(s,t) (s + 1,t + 2) (s + 3,1+1) (s + l,t).

Hence, S(s + t 1) is true, completing the inductive step.

By mathematical induction, for all k � 2, 8(k) is true. [11

r
L

3 3 3 3

3

323 323

323
1
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35.2 Solutions: Dominoes and trominoes
577: For each it � 1, let denote the number of ways to place dominoes iii a
2 x n array is a Fibonacci number. The proof is tantamount to showing that the di's
satisfy the Fibonacci recursion. Observe that both d1 = 1 = F2 and d2 = 2 = F3

are Fibonacci numbers, completing the base step. For some k � 2, assume that not
only dk_i and 4 are Fibonacci numbers, but in particular, assume both dk_m = Fk
and 4 = Fk+1, and consider a 2 x (k+ 1) arrayt There are two ways the last column
of the array can be covered by dominoes—either by one vertical domino, or by two
horizontal dominoes that occupy column k as well (see Figure 35.2).

k-I k k+l

Figure 35.2: Two ways to finish the k -I-- 1 column

In the first case, there are 4 ways to complete the first k columns, and in the
second way, there are ways to complete the first k — I columns; in all, there
are

= 4 + = F'k+l + F'Ic = Fk÷2

ways to cover the 2 x (k +1) array. So 4+i is the desired Fibonacci number, thereby
completing the inductive step. The general result holds by mathematical induction
on the number of columns. 0

Exercise 578: Let in and it be multiples of 2 and 3 respectively. It is then easy to
partition an rn x it checkerboard (with no squares mnissiiig) into 2 x 3 cells, each of
which can be covered with two L-shaped trontinoes (see Figure 353). So, induction
is riot really needed. 0

Exercise 579: (hint:) For any a 2, a 6 x a checkerboard can be covered by
L-shaped trominoes. If n is a multiple of either 2 or 3, the result itt Exercise 578
guarantees the conclusion. It reiiiains to give a construction whenever a > 2 is
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congruent 1 or 5 inodulo 6. If one can find a tiling for both the 6 x 5 rectangle and
the 6 x 7 rectangle, then a simple induction (adding 6 x 6 squares) gives the result.
In fact, these two patterns have tilings formed by combinations in Figure 35.4.

F
Figure 35.4: Ways to tile an ii x 6 hoard

Exercise 580: This result is due to Golomh [218] and was also stated as a problem
in the West German Mathematical Olympiad (1981, number 3, first round); this
proof also appears in [277, p. 85].

To be shown is that for each n E V, a x 271 checkerboard with any one square
removed can be covered with Irshaped trominoes.

For ri = 1, the remaining squares on the checkerboard are precisely in the shape
of one L-shaped tromino, so the base case holds.

For the remainder of the solution, consider Figure 35.5 and the quote from
Honsberger [277]:

"Quartering a x 21L board gives 4 squares 271_I x The deleted square
must occur in one of these quarters. Placing an L-tromino appropriately at the
center yields a board in which each quarter has a single square that needs no further
attention. Now it is obvious that the conclusion can be obtained easily by induction."

0

Exercise 581: (Outline) This result appeared in [147, p. 86]. In fact, the following
theorem is proved in [107, p. 38] hy induction:

Figure 35.3: The 2 x 3 configuration
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Theorem 35.2.1. If it > 5 is odd and S does not divide it, then any it x it board
with one square removed can be tiled with L-shaped trominoes.

To establish the base case it 7, one first observes that a 5 x 5 board with one
corner removed can he tiled with L-shaped trominoes. Using this fact, one finds a
tiling for each of the cases (by symmetry, if (i,j) is the rriissing square, one riced
only consider 1 < i < 4). Another base case it ii requires looking at one 7 x 7
corner, and partitioning the remainder of the II x II hoard into a 4 x 6 rectangle,
a 6 x 4 rectangle, and a 5 x 5 square with a corner missing.

The induction proceeds similarly to that of obtaining the tiling of the 11 x 11
board from the 7 x 7 board: break off an (n — 6) x (it — 6) corner or break off an
(it — 3) x (it — 3) corner, and get two more rectangles and a square with a corner
missing. See the references for the full details.

Exercise 582: The condition that 3 divides it2 — 1 is equivalent to 3 riot dividing it
since 3 divides (ni )(n + I) iff 3 divides one of the factors. See [107J for a proof that
essentially relies on some cases with separate proofs and the result from Exercise
581.

35.2.1 Solutions: Muddy children

Exercise 583: Fix ii Z+, arid for each k e {l, 2 n}. let S(k) be the statement
of the proposition for k muddy children.

Figure 35.5: The idea behind Golomb's inductive step
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Base step: When k = 1, the child with the muddy forehead sees no other muddy
foreheads, and knowing that there is at least one muddy forehead, raises a hand
upon the first announcement. Since all other children can see the one child with a
muddy forehead raising a hand upon the first announcement, these clean children
can deduce that the only way that the one muddy child can know, is when there
are no others, and so on the second announcement, all can safely raise their hand.
Hence 8(1)is true.

Inductive step: Fix £ C {1,2,... ,ri — 1}, and suppose that 8(I),8(2) 8(€)
are true—and that all children know that each of these statements is true. Suppose
that there are precisely £ + I muddy children.

Because there are £ + 1 muddy faces, by the inductive hypotheses, nobody raises
their hands after each of the first £ announcements. A muddy child sees £ other
muddy faces, and since nobody raised a hand after the £th announcement, by S(f)
a muddy child concludes that there is at least one more—him/herself, and so can
raise a hand upon the (C + 1)st announcement.

A non-muddy child (if there are any) sees C + 1 other muddy foreheads, and so
by each of 8(1) 8(C), knows that his or her own state cannot be determined
until at least after the (C + 1)st announcement. Sincc any non-muddy child sees
£ + 1 hands raise upon the (C -i- 1)st announcement, and since each non-muddy child
knows that those with hands raised used reasoning based upon seeing only C other
muddy faces, each mnudddy child correctly concludes that theirs was not one of these
£ other muddy faces.

So in either case (muddy or not), each child niakes the correct deduction on step
C 4- 1 or C + 2. Thus 8(C + 1) is true, completing the inductive step.

By strong mathematical induction, for each k = I n, 8(k) is true. U

35.2.2 Solutions: Colored hats

Exercise 584: See references provided before the exercise. It is also amazing that
this puzzle was on the on-line version of New York Times, in a blog called "Tierney
Lab"; see [532] for tIme solution and a link to the original puzzle (also see the 3 hat
puzzle, first posted 16 March 2009).

35.3 Solutions: Detecting counterfeit coin

See also Exercise for related discussion of coin weighing.
Exercise 585: For each positive integer ii, let A(n) be the assertion that 3fl is the
largest number of coins so that if exactly one coiu is lighter, n weighings can find
the light coin. The solution is a very simple induction on n.
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BASE STEP: Consider three coins. Put one coin in each pan of the balance, and set
the third coin aside. If the scales tip, then the counterfeit coin is on the side that
raises. If the scales balance, the third coin must then be the counterfeit. Hence the
counterfeit coin can be determined in precisely one weighing. Now consider four
coins: any weighing uses either a 1-1 or 2-2 coin pattern. In the first case, if the
scales balance, one of the two remaining coins is counterfeit, but nothing more can
be concluded; in any 2-2 weighing, the scales will tip, but the only conclusion is that
the raised pan contains the counterfeit; again, there is not enough information to
determine the bad coin. hence, A(1) is true.

INDUCTIVE STEP: Fix k � 1 and suppose that A(k) holds. There are two sides
of A(k + 1) to be shown: k + 1 weighings are sufficient for 3k+1 coins, but k + 1
weighings are insufficient for more coins.

Consider coins. Divide these coins into three groups, each group with 3k
coins. Put the first group in the left pan and the second group in the right pan. If
the scales balance, the counterfeit coin is in the third group, and by A(k), it can
he located with an additional k weighings (k + 1 in all). If the scales tip, the group
in the rising pan contains the counterfeit coin, arid again, the induction hypothesis
A(k) applies. Titus, if one light counterfeit coin is among coins, Ic + 1 weighings
can find it.

On the other hand, suppose that + 1 coins are given. Any weighing with
at most 3k coins in each pan leaves more than 3k coins untested, and by A(k). the
unweighed coins then requires (in general) at least Ic + 1 additional weighings to find
a counterfeit coin. If the counterfeit coin is in a group of niore than coins in one
pan, then one weighing identifies the group; by A(k), k additional weighings are in
general insufficient to find the coin among that group. In any case. for more than
3k±1 coins, Ic + I. weighings are insufficient to accurately identify the lighter coin.

So A(k * 1) is true, completing the inductive step.

By mathematical induction, for each ii � 1, A(n) is true. 0

Exercise 586: INDUCTIVE STEP: Fix Ic � and assume that C(k) is true. Consider
a collection of 3k+1 coins, one of which is counterfeit. Assume that. there is one more
black than white (the same argument works if there is one more white than black),
so suppose that are black and are white. Partition the coins into three
groups, C2, and (73. each with 3k coins, and each with a near balance of black
and white: In LI black arid 4.1. white coins. In both G2 and (73, put

black and white coms.
Putting G1 aside, weigh G2 on the left against (73 on the right, If the scales

balance, the counterfeit coin is in G1, and (7(k) applies to finding the fake coin
in an additional Ic weighings, k ± I in all, and so C(k ± 1) is true in this case. If the
scales go down on the left, either one of the 4.1 black coins from C2 is heavy, or
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one of the 41 white coins from C3 is light; these

3k +
+

— —

2 2

coins satisfy the hypothesis for C(k), and so the coin is found in k + 1 weighings.
The analogous argument works when the right pan lowers.

By mathematical induction, for each positive integer ii, C(m) is true. U

Exercise 587: [Pennies in boxesj If any two boxes have the same number of pennies,
one can be emptied, so assume that all boxes have a different number of pennies,
no box empty. The first step is to show that among any three boxes, it is possible
to empty one.

Claim: Suppose that boxes A, B, C contain a, b, e pennies respectively, where
o < a c b < c. By the division algorithm, let q and r be so that b = aq + r, with
o � r < a. Then by moving pennies from boxes B and/or C into A, it is possible
to leave box B with r pennies.

Proof of Claim: Any move from B or C to A doubles the number of pennies
in A, so after any i such iterations, time number of pennies in A is of the form 2'a.
Write q in binary representation,

q=qo+qm

where 0, and so

b = aq0 + . 2 + aq2 . 22 + ... + aqk , + r.

For each i = 0,1,..., k, if qi $ 0, then move a'2' pennies from box B to A; if q1 = 0,

then move pennies from C to A. This proves the claim,

So applying the claim to three boxes, one arrives at a distribution between three
boxes where one box (in this ease, B) has fewer pennies than the previous "smallest"
box (in this case, A). Since the non-negative integers are well-ordered, eventually
one of the three boxes is emptied. [By induction, get a sequence of decreasing r's,
which must stop.]

Repeatedly applying the claim to ally three boxes, (say, n — 2 times) leaves at
most two boxes non-empty, finishing the proof of the first part of the exercise.

To answer the second part, assume that there are 2" pennies, and the result is
true for 2,n1 pennies. Then the number of boxes with an odd number of pennies
is even, so pair up "odd boxes"; therm between odd boxes ill a pair, uric transfer of
pennies produces an even number in each. So one amy assume that all boxes have an
even number of pennies. In each box, pair up pennies, giving in
all, and applying the inductive hypothesis for half as many penny-pairs shows that
all can be transferred into one box.
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Exercise 588: (Outline) For each n 2, let 8(n) be the statement that if n = 2°+t
(with 0 < t < 2°), then 1(zi, 2) = 2t -i- 1. When t = 0, each turn around the circle
knocks out half of the soldiers, leaving yet another power of two (it is only important
that an even number of soldiers remains after cacti pass), and the next pass again
starts with the second position. In each case, the position 1 survives, and when
only n = 2 remain, position 1 is still the last standing. So by downward induction,

1 = + I, and so 8(2a) is true.
When t > 0, apply equation (17.1) 1 times (by upward induction), showing that

.1(2° + 1, 2) .1(2°, 2) + 21. Hence, .1(2° + 1, 2) = 2t + 1 and so 8(2" + 1) holds. 0

Remark .1: See [230] for a slightly different inductive proof, where equation (17.1)
for q = 2 is a consequence, and also discussion of Josephus permutations and binary
representations. This problem is also related to shuffling and fixed points (see [481]).
See also [34, 32 36] for more history and related problems.

Remark 2: In general, if n is a power of q, then one might think that J(n, q) = 1

since each pass around the circle, a multiple of q remain and the last person in the
circle to he killed is the one just before soldier I. However, it is easy to check by
hand that 1(3, 3) 2, 1(4, 4) = 2, 1(5, 5) = 2, and 1(6, 6) = 4. The problem is
that in the case q = 2, when ii = 2, there is only one person left; however, when q is
larger, the last round" after ii = q remain leaves q standing, and although number
1 survives up until this point, it is not clear who will be left after the next q — 1

suicides.

Exercise 589 [Gossip problem]: (Outline) If a people share all secrets after 2n—4
phone calls using four central organizers, a new person added to the community
could first call one of the organizers (before rite 2n — 4 calls are made), and then
have that same organizer phone back at tIme end, giving 2 more phone calls, that is,
2(n + 1) — 4 calls in total. D

Remark: 'l'o prove that 2n — 5 phone calls are never sufficient is difficult. Essen-
tially, it boils down to proving that some 4-cycle is present. Standard references to
the gossip problem, in chronological order, are [531], [32], [252], [317], and [84]. For
a recent review of the literature (and discussion of the origin of the problem), see
[492].

Exercise 590: This problem is famous. occurring in, e.g., 1161. 8.2, pp. 207,210].
Fix a circular track of circumference C. For ii � 1, let 8(n) he the statement that
if ri cars are placed anywhere on the track with exactly enough gas among them to
coniplcte one lap, there is one car that can make its way around the track traveling
clockwise by collecting gas front the other cars along time way.
BASE STEP: 8(1) is trite since the one car will have enough gas 1.0 complete one lap.

INDUCTIVE STEP: Let k � 1, suppose that 8(k) holds and let k+ I cars be placed on
the track with exactly enough gas among theta to complete one lap. Label the cars
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1, 2 k, k - 1 consecutively clockwise around the track and for I � i � k + 1, let
be the distance car i can travel with the gas in its tank and let d 1)0 the distance

from car i to car i + 1 (addition modulo k + 1). Since

there is an i so that th � Without loss of generality, suppose that g,, � 4.
Consider the distribution of k cars on the track in exactly the same positions

as cars 1, 2 k arid all with the same amount of gas as before, except for car k
which has enough gas to travel a distance 9k + 9k+1 (it has the gas from car Ic and
car Ic + 1 in the previous arrangement). By the induction hypothesis, there is a car,
say i0, that can travel clockwise and complete one lap of the track, collecting gas
from the other cars as it goes.

In the original distribution of Ic + 1 cars on the track, if car io begins traveling
clockwise around the track, collecting gas as it goes, when it reaches car Ic, car
collects enough gas to travel distance 9k � 4 and so can make it to car Ic -I- I and
collect its gas and complete the lap. Thus S(k + 1) is true, coiiipleting the inductive
stc1).

By mathematical induction, the proof is complete. Li





Chapter 36

Solutions: Relations and
functions

36.1 Solutions: Binary relations
Exercise 591: For each ii � I, let C(n) he the claim that fiTh is synunetric on A.

BASE STEP: Since I?1 is equal to R, which is assumed tA) be symmetric oti .4, C(1)
is true.

INDUCTIVE STEP: Fix some k � 1 and suppose that C(k) is true. Fo prove C(k±l).
one has to show that Rk÷t is symmetric. Suppose that (x,y) E 11k oR.
Then there exists z A so that (x,z) E RC and (z,y) E I?. By G(k), (z,:r) e
and by C(1), (y,z) II. Then (y,x) E o 1? Rktl, completing the proof of
G(k + 1), and the inductive step.

By mathematical induction, for each a � 1, is symmetric.

36.2 Solutions: Functions

Exercise 593: This problem appears in that wonderful article by Hriiniuc [280,
Prob. 4], complete with solution. For a = 1, by definition, 2 = [(2) 1 + f(1), and
sof(1)=1. Forn=2,

J(3) = 1 +f(l) +2f(2) = 1 ± 1 +22=6.

One can work out that f(4) = 24 and f(5) = 120. and propose that for each a � 1,

8(n): f(n) = a!.

The proof is by induct ion on a.

731



732 Chapter 36. Solutions: Relations and functions

BASE STEP: The cases ii = 1,2, 3, 4,5 can serve as base cases.

INDUCTIVE STEP: Fix k � 1 (say) and suppose that each of 8(1), 8(2). ..., 8(k) are
all true, that is, that f(1) = 1!, f(2) = 2!, ..., f(k) = k! are all true. To complete
the inductive step, it remains to show that 8(k + 1): f(k + 1) = (k + 1)! also holds.
By the recursion above, then it is sufficient to show that

(k + 1)! = I . 1! + 22! f . . . k. k!. (36.1)

However, equation (36.1) has an easy inductive proof, done here as Exercise 70. The
proof boils down to assuming the inductive hypothesis

(k)! = 1 + 1 1! + 2 . 2! + . . + (k — 1) . (k — 1)!,

and then starting with the right side of equation (36.1),

(byind. hyp.)
=(1 ±k)k! =(k±1)!.

So accepting that (36.1) is true completes lIre inductive step.

By mathematical induction, the only f that satisfies the requirements of the
question is defined by f(n) = it!. [1

Exercise 594: Suppose that f : A B is surjective (onto B). For any b E B, let
f-'(b) c A denote the set {a A : f(a) = b}. Then for each b B, f'(b) 0;
furthermore, UbeBf'(b) = A. By the Axiom of Choice, let 7 : {f—1(b) : b B}
A be a choice function. Define g : B A by g(b) —y(f (b)). I-br the moment, fix
he B and let '(b) = x; then f(x) = band so fog(b) f(g(b)) = f(7(f'(b))
f(x) = b. Since b was arbitrary, this shows that f o g = 0

Exercise 595: Let X = {xI,x2, aad Y = {yr,y2 For some x
riot in X, put Xt = X U (x}. Any surjectiou f : X —* Y cart be extended to

Xt —* Y by assigning 1(x) to any There are °rn,n onto functions f: X
and it ways to extend each to : —* Y, so there are flOmli ways to extend an
existing surjection. how else can one make a surjection from onto Y? For each
i = 1 - it, one could extend a surjection of the form g : X by setting
gt(x) = For each fixed i, such a g is a surjection from art itt-element onto an
(it — 1)-element set, and there are ii such i's, so there are more sinjections
front Xt onto Y. This l)IOves the recursion

°tn+1,n = 1t°m,n + TtOtn,n - i.

Before proving inductively the formula for here is simple identity used

in the proof.
(ii) — (it 1)

=
— (7) = I (36.2)
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For each in 0, let P(m) be the proposition that for every ii � 0, the statement

S(m, n):
=

(—1)71'im

holds.
BASE STEP: If m 0, there are no onto functions from the empty set, so = 0

for each ii. On the other hand, the right-hand side of 8(0, ii) is

which is equal to 0 by Exercise 100, finishing the proof of the base case P(0).

INDUCTIVE STEP: Suppose that for some k � 0, P(k) holds, that is, for every ii,

8(k, ii): °k,n
=

holds. To be proved is P(k + 1), namely that for every ii,

8(k + 1,iz): °k±3,n
=

C)(_i)niik+1.

Beginning with the left-hand side, (and using the inductive hypothesis twice on the
second line),

°k+I,rt = n(Ok,n + Ok,n--I) (by recursion established above)

fl (E C)
+ (ii 1)

=
(it)

— C
1) (_ir*hik)

=
+

[C) - (ii: 1)] (_lrhik)

= n (nk + [(7)1] (-- iruik) (by eqn (36.2) above)

TI—I

= + >
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=

which is the right side of 8(k + 1,n). This proves P(k + 1), finishing the inductive
step.

1-lence, by MI, for all ta � 1, P(nt) is true, that is, the formula for °rn,n is true
forallrn,n�0. 0

Remark on Exercise 595: By Exercise 107, whenever m < n, the formula for
°m,m gives zero, which is reasonable, since there are then no surjections from an
rn-element set onto an n-element set.

Exercise 597: For each n � 1, let 8(n) be the statement that I n(x) = —b.

BASE STEP: Since f1(x) = f(x) = a(x + b) — b a'(x + b) — b, 8(1) is true.

INDUCTIVE STEP: Fix k � 1, and suppose that 8(k) is true. To be shown is

S(k + 1): fk+l(x) = + b) — b.

Beginning with the 'eft side of 8(k + 1),

fki1(x) f(fk(x))
= f(ak(x + b) - b) (by 8(k))
=a(aC(x+b)_b+b)_b
= a(ak(x + b) — b

(x 4- b) --

which is the right side of 8(k+ 1). So the inductive step 8(k) — S(k+ I) is complete.

By mathematical induction, for each ri 1, 8(n) is true. 0

Exercise 598: Fix a function f : X X. For each rn,n � 1, let A(rn, n) be the
assertion that f m o fYi = f712+12 An inductive proof is not really necessary, but an
inductive proof is easy by fixing one variable and inducting on the other. Depending
on which variable is fixed. one could define a statement of one variable to he proved,
but leaving the notation A(rn, it) helps to remember what is being (lone.

Fix it e

BASE STEP A(l,n): Since = = A(l,n) is true.

INDUCTIVE STEP A(k, ii) — A(k + 1, it): Fix k � 1, and assume that.

A(k,n) : 1k01n =

is true. To be shown is that

A(k + 1,n) : j?k+i p = 1k+1 In
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Starting with the left side of A(k + l,n),

fk+I fit = (f fit

f (fk o fTh) (associativity of composition)

= f 0jk+n (by A(k, it))
= fk-?-n+1

which agrees with tIre right side of A(k + 1, n), completing the inductive step.

By niathematical induction on in, for each it 1, and for all rn � 1, A(m, it) is
true. 0

Exercise 600: This problem was a question in the 1983 International Mathematical
Olympiad, and its solution appeared in [342, pp. 121—2}.

Let x E lRt By property (i), f(xf(x)) xf(x), and so f(f(xf(x))) =
f(zrf(x)) = 4(x). and so with x = 1,

f(f(f(i))) = f(l). (36.3)

Putting u) = f(1). f(f(w)) = f(i . f(w)) = wf(1) = f(1)f(l), arid so

f(f(f(1))) = f(1)f(l). (36.4)

From equations (36.3) and (36.4), f(1) = 1.

Suppose that z lIP satisfies f(z) = z. Then

zf(1) =

f (f) =
Claim: f(z't) ztt.

Proof of this clairri is by induction on it. When it = 1, there is nothing to prove, so
suppose that for some in � 1, the claim is true when it = in. Then

= f(?"z)
= f(zmf(z))
= zf(zttt) (by (i) with x = zm, y z)

= z zm (by md. hyp.)
=

showing that the claim is true for vi = lit ± 1, completing the inductive step. Thus,
by MI, for each it � 1, the claim is true.

Since is also a fixed point, by the claim above, for each positive integer it,
1

—
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If z > 1, then f(z") = -- cc, or if z cz 1. then f(*) — cc as well, violating
condition (ii). hence, the oniy number fixed by f is 1. Hence, for any x. the equation
f(xf(x)) = .rf(x) implies xf(x) = I. Thus the only function satisfying (i) arid (ii)

0

Exercise 602: Let f be convex on [a, bj. Let 8(n) be the statement that. for any
reals x1,x2,... in {a,b],

The left-hand side makes sense, since (by Exercise 757, an easy inductive proof), if
XI,X2 are in [a, 5], then is in [a, 5], and so f is defined for this average
value of xi's.

The proof of 8(n) for all n � I is lw "downward induction"; first proving 8(n)
when n is any power of 2. then proving that if 8(k) is true, so too is 8(k — 1).

BASE CASES: 8(2°) = 8(1) says only that for any x [a,bI, f (t) < which is

true. 5(2') says that for any x,y [a,b], f which is true because
f is convex on [a,h].
INDUCTIVE STEP (s(2k) S(2k+1): Assume that for some k � 1, g(2k) is true,
that is. assume that for any xj,x2,... , X2k in [a,b],

<
2k 2k -

Consider $(2k+I): for any m in [a. b],

/ 9k41
p f Yi < f(Yi)

2k+1 2k+1

Beginning with the left side of

f Yz

/ k

I E2_2k1Y,
— H 2k +

2

i +1
(by 8(2))
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10 + f(vi
2k

2
(by twice)

— fOd
2k+1

which finishes the proof of and the upward inductive step.
Therefore by mathematical induction, whenever n is a power of 2, the statement

8(n) is true.
DOWNWARD INDUCTIVE STEP: Suppose that !br some in > 2,

in in

is true for any numbers Urn in [a,b]. To he proved is

>:tj'f(yt)
'(ri—i ) — in—i

To achieve Ibis, two facts are relied upon. First, if yj IJW—I are in }a, bj, then so

too is The second fact used is the equality

(rn — 1) ±1 = s::i' +
ru—i in rn—I ) in

Then

f +
ui—-i j (IL

+
(by 8(m)).

.rri

.The term J appears on both sides of the above inequality, and so solving
for this term gives the

in ui--i

iniphies

j (&=iYi) <
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the desired inequality. This completes the downward step.

Therefore, by downward induction, for all ii � 1, S(n) is true. 0

Exercise 603: inequality) A downward induction proof is available, how-
ever, a simple inductive proof is shorter.

Let f be a convex function on [a, b]. For each n � 1, let S(n) be the statement
that for all P1,7)2 e arid x1, x2, .. , E [a, bi,

Pt Pt

BASE STEP: S(1) says that for every P1 R+ and x1 E [a,b],

<pif(xi)
\Pi J P1

which is true.

INI)UCTIVE STEP: Fix k � 1 arid suppose that S(k) holds. Let P1, .. . Pk. Pk÷1 E
and x1, X2 xk, xk÷ E [a, b]. Note that since xk, S/cf. 1 E [a, b],

4 Pk-i-l'k+I
E [a b]

Thus,

—

f (irA

- + + Pk+1)

+ (71
(by S(k))

pj) + (Pk + P/c-fl)

Pif

Pk

—
—

arid hence S(k 4- fl holds.

Therefore,by MI, for all ii > i, S(n) is true for all n � 1.

Exercise 604: The proof is rather interesting; see [373. pp. 124-1261.
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Exercise 606: This problem has appeared in many places, [499, Problem 41]. for
one.

Exercise 607: (Ilahn—Banach) The idea is to extend f one dimension at a time, use
Zorn's lemma, and then "look back". (The proof presented here is roughly based on
one given in lectures by P. Waitman, Emory University, 1992; the nearly identical
proof is also found on pages 261—263 of Bridges' analysis text

Let X be a real normed linear space and without loss of generality, let (Ill = 1.
Pick x0 E X\M and set

= spaii(M, = {x + Ax0 : a: E A'i, A

If for any fixed a E lit, define fj.: M1 R by

fi(x + Axo) = f(x) + Acr.

It is now shown that fi is again a bounded linear functional. The houndedness is
trivial, so it remains to check linearity:

fi(x+ Axo+k(y+pxa)) = fi(x+ky ±(A+kji)xQ)
f(x+ky)+(A+kjt)a

= 1(x) -I- kf(y) + Aa + kjia
= f(x)+Aa+k(f(y)+jza)
= fì(x + Axo) + kfi(y + px0),

arid so fi is linear.
The next goal is to choose a so that lifill = filM = 1, that is, so that

If(x + Axo)l f(x) + Aal
Mull = sup = sup

_

1.
lix + Ax0 II IIx + Azoll

This is satisfied if for every x E lvi and A E lR,

11(x) + Aal � lIx + Axo)),

or if any of the equivalent statements hold:

Vx E M,VA e lIt, f(—Ax) + Aal � 1 — Ax +
Vx e M,VA e lIt, — Af(x) + <fi — Ax + AxoIl,

Vx E A'I, 11(x) — nj � fix — xc,Il,

Vx e JW, f(x) — 1k — xofi a C f(x) + lIx — xcii.

So if for every x, y E M, 1(x) — 1k — xoll � 1(v) + fly — xo!l, then one can find such
an a; the following shows this to be true:

f(x)—f(y) = f(x—y)
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�
�
= xojl + [jj — xol[.

So there is such an a, and hence there is norm preserving extension Ii : —* R
of f. Such an extension need not be unique, so one introduces some notation to
depict all such extensions. As long as there are still points not yet in the domain
of a bounded linear functional extending f, one can repeat the above construction
getting further extensions.

Define the set A ç X x R with elements

1 — 5 (x, g(x)) : x E G, it'! c C c X, g a bounded linear functional
— on C extending f with = = 1

For example, [A'!, 1] and [span{ A'!, }. are elements in A. Define a partial order
on A by Ic, [H, h] if and only if C C H and h extends g (that is, for every

x E C, h(x) = g(x)).
At this point, there are two ways to go: Zorn's lemma or Hausdorif's Maximality

Principle. First, here is the Zorn's lemma finale.
First check that the union of a chain exists in A: If C is a c}iaiu iii A, say

{ : (1 E I}, (where I is sortie well-ordered set) then the union of the chain
is some pair (C*,g*), where C* = To define the function g*(x) if x E
then there is some p. so that x e in this case, define g*(x) = It is easy to
check that is a functional, (since this value g,t(x) is fixed throughout all extensions
of One has only to check that 9* is linear: this is easy because g(x + ky) is
calculated in sets which contain both x and y. So the union of a chain in (A, is

again an element of A.
By Zorn's lemma, there exists a [C, y[ which is maximal with respect to -* First

observe that C = X, for if not, there is a point Xe E X\C and the above construction
can be used to extend g to on C U {xo}; in this case, y would not he maximal,

C = X. Then g = F is the linear functional desired in the statement of the
theorem.

One could also use Hausdorif's Maximality Principle: Every poset has a maximal
(totally ordered) chain. In particular, (A, has a maximal chain, say {(Bp,gp)
/3 e Take the union of this chain and check that is indeed X and that
the functional F thereby naturally defined is indeed linear. 0

Exercise 611: For each n 2, let 8(n) be the equation (18.2) in the statement of
the exercise. Assume the product rule (18.1) holds.

I3ASE STEP: The statement 8(2) is equation (18.1), which is assumed to be true.

INm)UCTION STEP: For some fixed k � 2, let fi,... , fk-F1 be differentiable func-
tions and assume 8(k) is true. By the product rule 8(2), applied with f = f1f2 A
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and 9

(1112 fkfki 1)' = fkYfk+1 + (11 fk)fL4i.

Expanding the terni Ui 1k)' by 5(k) and then distributing fk÷i over this sum
gives the desired form of the expression required to prove 8(k + 1), thereby conclud-
ing the inductive step.

By mathematical induction, for every ii � 2, the general product rule (18.2) for
derivatives holds. U

Exercise 614: (Outline, from Pólya [435, Prob.3.85, pp. 191—2, vol I]) Let the
function f he defined f(x) = and for each ri 1, let 8(n) he the statement
that the nth derivative of the function is of the form

=
+

flfll

where c,, is an integer depending only on it (and riot on x). To prove this, it suffices
to find explicitly q., in terms of n.

The base case 8(1) is easy to verify (as is 8(0), using ctj = 0). Assuming the
desired form for that is, assuming 8(n), differentiating once more shows

— + (

flflfl! ± (ii + 1)c7,

—

So let i ri! ± (ii + 1 )c,, giving the recurrence relation

CnH c,, I

(n+ I)! — n

Using c1 = 1, find [by induction, using the above recurrence]

/ 11 1

2 3 ii

0

Exercise 616: See Pdlya [435, Prob.3.82, 190, vol 1].

Exercise 618: This solution appears courtesy of Julien Arino.
Suppose that the initial data is of class on [-1,0] and that f is C1. Fix� 1, and assume the induction hypothesis

: Fort e Jn — I,n], the solution to (18.5) exists, is unique and
of class
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To show P1, one constructs the solution to (18.5) on the interval [0,11 by using
the integral form of the solution to the ordinary differential equation initial value
problem

= f(t,x(t))
x(0) =

given for t�0 by
x(t) = xo + f(s, x(s))ds.

Jo

Write (18.5) as -

= f(t, x(t), clo(t — 1))
(36 5)

x(0)=q50(0),

Then consider (18.5) as a nondelayed initial value problem on the interval [0, 1].
Indeed, on this interval, Uric can consider (36.5). That the latter is a riondelayed
problem is obvious if the differential equation is rewritten as

x'(t) = g(t, x(t)) (36.6)

with g(t,x(t)) = 1)), which is well defined on the interval [0,11 since
fortE [0,1], t — I e [—1,01, on which the function is defined.

Then use the integral form to construct the solution on the interval [0, 1],

x(t) = x(0)
+ / g(s, x(s))ds

= + J - 1))ds.

Now consider the nature of the function f. As l)rOblelTl (36.5) is an ordinary differ-
ential equations initial value problem, existence and uniqueness of solutions on the
interval [0, 1J follow the usual scheme. To discuss the required properties on f and

the best strategy is to usc (36.6). Recall that a vector field has to be continuous
both in t and in x for solutions to exist. Thus to have existence of solutions to the
equation (36.6), g niust be continuous in t and x. This implies that f(t,x,Øo(t --1))
must he continuous in t,x. Titus Øo has to be continuous on [—1,0].

For uniqueness of solutions to (36.6), it is required that g is Lipschitz in x, i.e.,
the same property is required from f. Note that this does not affect either or
the way f depends on Øo.

If øo on [—1,0] and f is integrable on [—1,0], then on [0,1], x(t) is
since it is given by

x(t) =
+ f f(s,x(s),øo(s - 1))ds.
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Therefore, P1 holds true.

Now assume that holds true. Let 4a(t) he the solution of (18.5) on the interval
-- 1, Ic]. Using the same method as for F1, write the problem as, for t E [Ic, Ic + 1],

= f(t,x(t),Øk(t 1))
367)

Sincef is integrable, and as E the solution to (36.7) exists on [Ic, k+ 0

Exercise 619: (Brief) The initial condition Io = 1 f is equal to

and so satisfies (18.6). Let Ic � 0 and assuming that 'k is of the proper form,

'kil = (Ic + 1)4 —;

(k+ 1) [Ic!

-- k

(md. hyp.)

(k+l)!
- (k+1PJ

ks-i

e

shows that 'k41 is also of the proper form.

By mathematical induction, 4 is of the form in 18.8. 0

Exercise 625: This exercise occurs in [161, 8.39, p. 209]. For each n � 0, let 8(m)
denote the statement and Yn+I are relatively prime integers. First observe that
a arid 0 are non-zero. Viete's relations are used in this proof: if 12 + px — 1 =
(x — a)(x — fi). then p = —(a ± fi) and —1 = afi.

BASE STEPS: When a = 0. 110 = 2, which is an integer. When n 1, (by Viete's
relations) a ± fi = —p, an integer relatively prime to 2 since p is odd. So 8(0) is
true.

INDUCTIVE STEP: Let Ic � 0 and assume that 8(k) is true, that is. assume that Uk
and v&+i are relatively prime integers. Then

11k-I 2 akt2 +
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+ + — afl(ak +
= —Yk+1P -I- Yk (by Viete's relations),

which is an integer. Furthermore, lid is a common divisor of yk+2 and then by
the above equation, d also divides By S(k), gcd(yk±i,yk) 1, and so d = +1,
showing that Yk±2 and are relatively prime. The statement S(k + 1) is true,
completing the inductive step.

By mathematical induction, for each n � 0, y,., and Yn+i are relatively prime
integers. 0

Exercise 631: This problem appeared in [411, Prob. 77, pp. 14, 36, 91j, complete
with solution. One proof is by induction on ii:

For a fixed m, let Sm(n) be the statement that for any polynomial P(x, y) with
.r-degree m and p-degree ii, then P(x, ex) can have at most mm + in + ii real zeros.
Throughout, fix in 0. For this solution, recall Rolle's theorem: If f : R is a
differentiable function on [a, with 1(a) = f(b) = 0, then there exists c e (a, h) so
that f'(c) = 0.
BASE STEP: When n = 0, P(x,0) is a polynomial in x of degree in, which has at
most m zeros; follows.

INDUCTIVE STEP: Fix k � 0 and suppose that holds. Let P(x,y) he a
polynomial with x-degree rn and p-degree k + I. For the moment, suppose thai.
P(x, y) has N zeros. Then by Rolle's theorem (repeated m -1- 1 times, by induction,
if necessary) the (in + 1)-st derivative of P(x,9) has at least N — (rn + 1) zeros.
Furthermore, this derivative is of the form eXQ(x, where Q(x,y) has x degree in
and p degree k.

By the induction hypothesis .9(k), Q(x,9) has at most ink + in + k zeros, and
so gQ(1, c') also has at most ink + in + k zeros. Thus N — (in + 1) ink + in + k
implies V tn(k + 1) + in + (k + 1), proving S(k + I).

By riiathernatical induction, for any non-negative integers in and n, the state-
ment holds. 0
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Solutions: Linear and abstract
algebra

37.1 Solutions: Linear algebra
Exercise 637: A reduced row echelon form of a matrix is unique. This proof is by
induction on the number of columns, as found in an article by Vuster [584j.
proof is in (273, p. 581, but it is not by induction.

Let (1(n) be the statement that for any in � 1, the RREF of an nt x ii matrix
A is unique.

BASE STEP: For it = 1, the proof is direct.

INDkJC'1'IVE STEP: Fix k � 1 and suppose that. (1(k) is true. Let A be an in x (k + 1)

matrix with two RREF's B = and C Let A' be the in x k matrix
obtained from A by deleting the last column of A: similarly, let B' and C' be
formed from B and C respectively by deleting last columns.

Any sequence of elementary row operations that puts .4 in RRFJI7 also puts A'
in RREF. Thus, by induction hypothesis (1(k), B' = C'; it remains to show that
B = C, and for this, it suffices to show that the last columns of' B and C agree.

For the niornent, suppose that B C, and let i E {1, 2,..., m} he so that
5z,k±1 (This assumption is contradicted by showing that B = C follows,
from which one concludes B C in any case. This j)m'oof strategy seems strange, so
the reader is invited to fiumcl a more direct proof.)

Let x C satisfy Bx = 0. Since elementary row operations do not affect the
solution space, Cx 0 as well, and hence (B (])u = 0. The lirst k columns of'
B — C are columns of zeros. Calculating tIme j-th coordinate of Bx,

— + ''' + = 0;

as the first k columns of B — C are zeros, and h,kf 1 — cz&'fI 0, it follows that
= 0. Thus any solution to Bx 0 or Cx = 0 must have = 0.

715
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Claim: Both the (k + 1)-th columns of B and C contain leading l's.

Proof of Claim: In the system Ax = 0, for x = (L xk+i)T, if the (k + 1)-th
column of B or C does not contain a leading 1, then Xk.f is a free variable (not
necessarily 0), contradicting xk÷1 = 0, proving the claim.

As the first k columns of B and C agree, the leading l's in the (k+ l)-th columns
of B and C occurs in tire same position, namely the first zero row of B' = C'.

Because the remaining entries in the (k + 1)-tb columns of B arid C must all be
zero, these columns agree, giving B = C. This contradicts the assumption B C,
so B = C. This proves U(k + 1), finishing the inductive step.

By MI, for any n � 1, U(rt) holds, and since m was arbitrary, the RREF of airy
in x ii matrix is unique. D

Exercise 638: (Marked matrix) This appeared in [161, 8.26, pp. 208, 216) hut is
an old problem. For positive integers in and n, let P(m, n) be the statement of the
problem: In any in x it matrix of real numbers, if at least p of the largest numbers in
each column (p C iii), and at least q of the largest numbers in each row are marked,
then at least pq of tIre numbers are marked at least twice. The result is trivial if
either p = 0 or q = 0, so assume p, q > 0. Proof is by induction on in ± it.

BASE STEP: If either in = i (then p = 1) or it = 1 (then q = 1) the statement is
easily verified.

INDUCTIVE STEP: Fix in, it, both at least 2, and for some 1 p in, I S q S
and assume that both P(m, it — 1) and P(m — 1, it) hold. If every entry that is
marked is marked twice, then pq entries are marked twice. So assume that sonic
entries that are marked are marked only once; among those marked only once, let
Al be the largest and suppose Al is entry (i,j).

Suppose for the moment that Al is among the p largest in column j. Al is not
among the q largest in row i, but since Al is largest, these q largest in row i are
marked twice. Delete the row i. Then the (in — 1) x it matrix that remains has at
least p — 1 largest entries marked iii each column, and q largest entries in each row
are marked. By induction hypothesis P(m — 1,n), at least (p — l)q entries in tIme
smaller matrix are marked twice. Together with the q entries from the original row
i that are marked twice, there are p(q — 1) + q = pq entries in the original matrix
marked twice. Repeat the argument when Al is among the q largest iii row i, and
conclude that P(nt,n) holds.

By MI, for all in, � 1, P(rn, ii) holds. 0

Exercise 639: For each positive integer it, let P(n,) be the proposition that if /t
and B ale matrices with AB = BA then (AB)?t = A1

BASE STEP: When 'a = 1, there is nothing to prove, so P(I) holds.
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INI)UCTIVE STEP: Fix some k � 1 and suppose that P(k) holds. Then,

= (AB)(AB)... (AD)
= A(BA)'VJ (by associativity)
= A(AB)kB
= (by P(k))

arid so P(k + 1) also holds, completing the inductive step.

By MI, for all n � 1, the statement P(n) is true. D

Exercise 640: For each positive integer ii, let 8(n) be the statement that for any
matrices A1, A2,... of the same size, then

BASE STEPS: 8(i) holds trivially. 'lb see 8(2), let A = [ai,] and B = {b15J be e x m
matrices. Then the (i,j)-th entry of (A + B)T is the (j, i) entry of A + B, namely,
a11 + b,1, which is precisely the (i,j) entry of AT + 8T, so 8(2) holds as well.

INDUCTIVE STEP: For some k � 2, suppose that 8(k) holds, and let A1 ,

Ak÷j be matrices of the same size. Then

(A1 + A2 +... + Ak + Ak+l)T = ([A1 + A2 +... + Ak] +
= fA1 + A2 ± ... + Ak]T + (by 8(2))

= Af+Ar±... +4+Ak+I (by 8(k))

proving that 8(k + 1) holds, completing the inductive step.

By the principle of mathematical induction, for all n 1, 8(n) holds. 0

Exercise 641: For a positive integer Ti, let P(n) denote the statement that if
A1, A2 A11 are square matrices of the same size, then

/ T

As in Exercise 640, most of the work is done in proving P(2).

BASE SEEPS: When ii = 1, there is nothing to prove, so exaniirie the case 'a = 2.

For notational convenience, instead of using A1 and A2, suppose that A and
B = are two rn x in matrices. To show P(2), one needs to prove that

= BrAT. (37.1)
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For k. i {1 ,...,m}; the (k. £) entry of (AR)" is the (t, k) entry of AB, namely

af,,b,,k -f ae,2b2,k I- ''' + C&mbm,k,

which is precisely the (k, £) entry of BTAT, which proves equation (37.1), arid so
the base case P(2).

INDUCTIVE STEP: Fix some q � 2 and suppose that P(q) is true. Let A, Aq,
Aq+i be square matrices of the same size. Then

(A1 . . . AqAq±i)T ((A,A2 . . . Aq)Aq+t)T

= Af ..

A Ar ATAT fL
— fl2 Wy rj)

proves that P(p + 1) also holds, completing the inductive step.

13y MI, for each a � 1, P(ri) holds. 0

Exercise 642: The only difference between this exercise and Exercise 641 is that
A1, A2 are matrices that might not be square. One need only repeat the
proof of Exercise 641 being careful to note that if the sizes of the matrices are such
that the product A,A2 .. is defined, then so is the product 4.. 4A'f'. 0

Exercise 643: If A and 1W are vi x rn matrices and one wants to show that
M = A', by definition, one needs to show that AM = = MA. In fact, it
suffices to show only one of AM I or MA = 1; one proof of this fact uses the fact
that 1W is invertible Hf for any column matrix K, MX = 0 implies X = 0. (Suppose
that AM = I and put MX = 0. Multiplying on the left by A, AMX = 0, arid so
X = 0, which shows that M' exists. Multiplying AM = I on the right by M'
then gives A = it1', so A is invertible with A' = fYI.)

For a � 1, let (7(n) be the claim that if A,, A2 are invertible matrices of
the same size, then

(A,A2 . . .

BASE STEPS: The claim (.1(1) says A, = A,', a trivially true statement. To
prove (7(2), one must show that (AB)' = B—1A'. To this end, observe that, by
associativity of multiplication,

AB(B 'A ') = A(BIF')A' — AIA' = AA' = I.

INDUCTIVE STEP: Fix k � 2 and suppose that (7(k) is true. Let B,,.. . , Bk, Bk±, be
invertible matrices of the same size. By (7(k). tIme matrix B1 . . . Bk is invertible,
with

Iç'...Lç'Iç'.
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By 0(2), with A1 = Di... Bk and A2 = 11k+l' the product B1B2 . BkBk÷1 is also
invertible with

—1 1 / —-1(B1B2..BkBk+J) = Bk+ltBl...Bk)
=

which proves C(k + 1), completing the inductive step.

By MI, for each ri 1, the claim 0(n) is true. 0

Exercise 644: This proof is outlined by Foulds and Johnston in {196}, where totally
unimodular matrices are related to integer programming problems.

Let A be an in x n matrix with the following two properties:
(I) Every column of A contains at most two non-zero entries.
(ii) Every entry in A is either —1, 0, or 1.

Furthermore, assume that there is a partition of the rows of A into disjoint sets Hi
and 112 so that the next. two properties hold:

(iii) ['or i j if alk and ajk are non—zero and have the same sign, then row i is
in and row j is in R2, or row i is in 112 and row j is in

(iv) For i j, if aik and are non-zero and have different signs, then row i
aad row j are both in or row i and row j are both in 112.

To show that A is totally uiiimodular, one applies induction on the size of the
square submatrices (and show each has determinant —1, 0, or 1). Let U(p) dci iote
tlìe statement that any non-singular p x p submatrix of A is unimodular.

BASE STEP: Since A satisfies (ii), each I x 1 submatrix of A is either singular or
has determinant —l or 1, and so U(1) holds.

INDUCTIvE STEP: Fi.x soute I � 1, and suppose that every non-singular £ x £
submnatrix of A is unirnodular, that is, U(E) holds, and let B be a (I + I) x (I + 1)
submatrix of A. If B has a row of zeros, B is singular.

If B has a column, say the k-th column, with precisely one non-zero entry, say,
ath e {•—l, l} then the determinant of B can be expanded along column j, and U(I)
applies to the t' I cofactor of giving B a detcrminant equal to —1 or 1.

Suppose that every column of B has two non-zero entries. Then for every column
A:, (iii) or (iv) applies, and thus

=
iERj 16112

With a little work, one can see that this equation implies that some linear combi-
nation of rows is zero, and so B is singular.

In all cases, B is either singular or unimnodular, concluding the inductive step
U(I) U(I •1. 1).
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By mathematical induction, for each £ � 1, U(t) holds; iii other words, every non-
singular square submatrix of A is unimodular, and so A is totally unimodular. U

Exercise 645: This exercise has a direct proof without induction ---simply look at
the cofactor expansion along a row of zeros. If one expands the determinant along
any column, induction can he used:

For each mi I, let P(n) be the proposition that if A is an ii x Ti matrix containing
a row of zeros, then det(A) = 0.

BASE STEP: The 1 x 1 matrix [0] trivially consists of one row of zeros, and has
determinant 0, so P(1) holds.

INDuctivE STEP: Fix some r � I arid suppose that P(r) holds. Let M = [mU] be
an (r + 1) x (r + 1) matrix with row z all zeros. Examine the cofactor expansion
along the first column, and for each row i, let Mj be the r x r principal subniatrix
determined by deleting the first colunmn and row i. Since A had a row of zeros, for
each i z, Al1 contains a row of zeros arid by induction hypothesis P(r), det(M3=0.
Expanding along the first column,

det(M) = +
/

+ 0

and so det(&t) 0, proving P(r + I) and concluding the inductive step.

By mathematical induction. for each a � 1, P(n) holds. 0

Exercise 646: For each integer n � 2, let P(n) denote the statement that if A is
an a x a matrix with two colummiris equal, then det(A) = 0. (In the proof below',
straight bars outside of a matrix indicate the determinant of the matrix.)

BASE STEP: = ab -- ab = 0 shows P(2) is true.

INDUCTIVE STEP: Let k> 2 and suppose P(k) holds. Let A he a (k + 1) x (k + 1)
matrix with two columns identical. Fix two of the columns that are identical. Use
the cofactor expansion along any of the other columns; all the k x k suhmnatrices
used in the expansion will have iclentic:al columns, to which the inductive hypothesis
P(k) applies, giving zero cofactors, and hence zero detenniinant.

By MI, for each a � 2, the proposition P(n) is true. 0

Remark: If, in the inductive step above, one tries to expand along a row, one
gets all hut at most two cofactors being zero, but then one needs to show that the
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last two are negative of one another, and for this, one needs 1:0 know about the
affect on the determinant of switching two columns—however, if one had that fact,
the result of the exercise is trivial because switching two identical columns gives the
same matrix and —det(A) = dct(A) implies det(A) = 0.

Exercise 647: The proof given here is for,@ = = 1; the general proof is similar
but notationally a hit more cumbersome. Let 8(n) be the statement of the result for
ii x a matrices. The following notation is convenient: if iVI is a matrix, the matrix
produced by deleting the i-tb row and j—tli column is denoted It'ljj (in contrast with

the (i,j) entry of Al). The proof proceeds by induction on ii.

BASE STEP: For n = 1, the result is easily verified (as it is also for ii. = 2).

INDUCTIVE STEP: Fix rn � 2 and suppose that 8(rn — 1) is true. Let A, B, C be
in x in matrices so that the k-th column of A is the sum of the k-th columns of B
and C. Examine the Laplace expansion of A along the first row:

det(A) = det A11 + detA11 . + (--.1 )11 dot .4k,,,. (37.2)

Examine the terms above, considering two cases:
1. When j k. 1w 8(m — I). since A11, B13, and C13 are identical except that

0110 column of is the sum of the corresponding c:oltunns in and C13.

clot A11 = det B1, + det Ci,.

Also. al, = h1, 01.1.

2. When j = k, = bit (:1k and A1k = 81k =

Thins (37.2) becomes

det(A) = det Au 4. (_1)ealkdetAlk
j/k

= B1, + det Ci,] + + det

= l)i dot + I det C11
j/k

1) kblk dci Ait + (— del 1Ik

4 ( -j-

= det(J1) ± det(C),

thereby proving 5(m). This concludes the inductive step.
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By MI, for all rn 1, the result 8(m) holds (for /3 = -y = 1). 0

Exercise 648: (Brief) For ii � 1, let C(rz) be the statement that for any ii x n
matrix A, det(AT) = det(A).

BASE STEP: For ri =1, AT = A and so C(1) is direct.

INDUCTIVE STEP: For some k � 1, assume that G(k) holds, and let A be (k + 1) x
(k + 1). Expand the determinant of A along any row, and compute the determinant
of AT by expanding along the corresponding column. All the corresponding minors
are "transposes" of one another, and so by C(k), have the same determinant. Thus
the expansions are identical, showing C(k + 1).

Thus, by induction, for each ii � i, C(n) is true. 0

Exercise 649: For each ii E Z', let 8(n) he the statement that for any a x n
triangular matrix, its determinant is the product of the entries on the main diagonal.

BASE STEP: Since all 1 x 1 matrices are triangular, and the determinant of such a
matrix T = [t} is t, a trivial product of the diagonal elements, so 8(1) is true.

INDUCTIVE STEP: Fix k � 1, and suppose that 8(k) is true. Let T he an (k +
1.) x (k + 1) triangular matrix with diagonal entries d1,. . . Without loss of
generality, assume that T is upper triangular (for a similar proof holds when T is
lower triangular). Let the (1, 1) minor of 'I' (obtained by deleting the first row and
first column ofT) he denoted by T11. Then expanding the determinant of 'I' along
the first column, only one term survives, namely det(T) = d1det(Tj1). Since the
k x k matrix Ii,i is still triangular, by 8(k), clet(T1,j) is the product of the remaining
di's, and so det(T) is the product of all its diagonal elements, proving S(k + 1).

By mathematical induction, for every n 1, 8(n) is true. D

Exercise 650: S. H. Lui kindly gave this solution in the form of source code from
his class notes [360]; 1 have slightly modified some details.

When it = 1, the result is trivial, so let ii � 2.

To prove one dircction, suppose that an nxn matrix A has the LU-decomposition
A = LU. and let Ak he the k x k leading principal submatrix of A. If one writes

= V11 arid U = ftlii u12
[1L21 "22 0

where L1 and U11 are the k x k leading principal submatrices of L arid U respectively
(and the 0-matrices are of appropriate sizes), then by block multiplication. Ak =
L11 U11.

Since .4 is non-singular. every diagonal entry of U and hence of U11 is non-zero;
thus is invertible, and so Aa is invertible. This proves one direction of the
theorem.



37.1. Solutions: Linear algebra 753

Suppose that for each k (1, 2 n}, the k x k leading principal submatrix
Ak of A is non-singular. '[he proof that A has an LU-decomposition is achieved
by showing inductively that each A1, .42, it3,... has an LU-decomposition, and iii-
tiniately, that A = has an LU-decomposition.

The case k = 1 is trivial. Fix some k � 2 and let the inductive hypothesis be that
Ak. 1 has an LU-decomposition Lk_rUk_l = Ak_I, where Lk_1 is an invertible lower
triangular (k — 1) x (k — 1) matrix, and Uk_i is upper triangular. (By assumption
both Ak •l arid Ak are also invertible.) Write

fAk_I B
Ak = LC akk

for sonic (k — 1) x 1 matrix B and I x (k 1) matrix C. It is not too difficult to
verify that At has an LU factorization = LkUk where

I 0 Uk_I
= i 0 — B

Of course Lk is unit lower triangular while Uk is upper triangular. Note that akk —
$ 0 since Ak is non-singular. D

Exercise 651: The proof is by induction on ii 1. For each ri C Zt let P(n) be
tile propositioa for a x ii matrices.

Basr STEP: The statement P(1) is trivial because any 1 x I matrix is already upper
triangular, so use U = (1] =
INDUCTION STEP: Fix a positive integer k and assume that P(k) is true. Let
A E M(k÷ijx(k+1)(C). Let A be an eigenvnlue of it arid let v 0 be an eigenvector
associated with A. Without loss of generality, assume that lvii 1. Extend v to an
orthonormal ba.sis {v,vt, .. . of Viewing these vectors as column vectors,
form the matrix

= [V V1
I

Vkl C M(k÷I)x(k±l)(C).

It is not difficult to verify that U1 is unitary. (In fact, any unitary matrix with v
as its first column is all that is needed.) Let W e M(k÷J)X(k)(C) he the principal
submatrix of U1 formed by deleting the first column, i.e., W = {v1

i ... I
v,j or

U1 = [v i WJ. Define

I I vtAv v*AW
A1 = AU1

{
fl/* A[vU I

= W*AW

Since Av =Av and v*v = 1, then vtitv A. Also. since the columns of HT are all
orthogonal to v, W*v = °kxl)' and so W*Av = AUT4O = AO = 0. TInts

A v'AW
A1

= °kxl Wt.41V
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Then W*AW e Mkxk(C), and so by the induction hypothesis P(k), there exists a
unitary U2 E MkXk(C) so that T1 = W*AW)U2 e is upper triangular.

Form the matrix
[

°kxl
]

E M(k+1)x(k+:)(C). Then

°kxI [ I Oicxil
(U2) U2 = Ilxk W2)t12 k J

and so is unitary. Also, by simple block multiplication,

- * - A vAWU2 A vAWU2
(U2) A1U2

= (U2)*(1V*AW)U2 = °1x1C T1

which is upper triangular. Then P(k + 1) is satisfied with upper triangular T =
(U2)*AU2 = U2*UcAU1U2 E M(k+1)X(k÷1)(C) and unitary U = U1U2. This com-
pletes the inductive step P(k) P(k + 1).

By mathematical induction, for each n 1, P(n) is true. D

Exercise 652: 5. H. Lui kindly gave this solution in the form of source code from
his class notes [360}; aside from minor typesetting changes, the proof is verbatim.
The statement given by Lui was for real matrices, however I think his proof is for
complex matrices.

Let A = PDP* with P*P = [and D diagonal. Now

AA* = = PDP*PD*P*
= PDD*P* = = PD4PtPDP
= AA*

since D is diagonal and so DDt D*D.
True for n = 1. Suppose true for vi — 1. Let A he a normal ri X vi matrix.

From the Schur decomposition theorem [see Exercise 6511, there exists a unitary U
such that U*AU T, where T is upper triangular. Let t be an (vi. — 1) row vector,
r E C, and S E I) be upper triangular such that

= {

Since A is normal, T is also normal.

* O1[r 1 ri 0s*j[o s 0 s

LHS — ri rt RHS — [ ri2 + 18*
t*r

— L
88*
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Therefore, TI2 = H2 + which implies that t = 0. Now S*S = SS* : S
is normal.

Induction hypothesis implies that there exists unitary V such that V*SV = E E

a diagonal matrix. Let Q = u Then

Q*AQ

_________

Note that Q is unitary since both U and V are. 0

Exercise 653: S. 11. Lui kindly gave this solution in the form of source code from
an early draft of his class notes [360J; I have only slightly modified some typesetting,
otherwise not altering his notes.

Induction on n. n = I is fine.
Suppose true for n 1. Let A E be symmetric positive definite.

A = [_B
a__1 B e symmetric, a

L
a j

Note that arm = > 0 since A is positive definite. Let y E y 0, show
yTRy> 0. Since A is positive definite,

=

[]T
H YTBY >0.

Induction hypothesis implies that there exists a unique upper triangular S with
positive diagonal entries such that B = STS. Let

a IS
antij Lb C

L
CJ

where e E IR, b E From the above system, a = STb and = bTb C2.

Since S is nonsingular, b S_Ta. If it can be shown that — bTb > 0, then one
is able to define c =

By a direct calculation, — b2b = — aTJ3_1a. Define Since A
is positive definite,

0 <
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=
= -- bTh.

This is what was wanted to show.
1'inally, to show uniqueness: Let A = RTR =RTR where R is upper triangular

with positive (hagonal entries. Theit R_TRT = RR'. Note that the inverse of an
upper triangular matrix is upper triangular and the product of two upper triangular
matrices is upper triangular. The same remark applies to lower triangular matrices.
Hence TCTRT = R11' = D, a diagonal matrix. Look at the (i, entry of I? = DR
and of RT to obtain ijj = and rjj = or = ±1. Since and

i and so D is the identity iriatrix which implies that
R=R. fl

Exercise 654: Fix a constant e, and for each n> 1, let C(n) be the claim tha.t

UI C — I en
01 01

BAsE STEP: C(l ) is trivially true.

INDUCTIVE STEP: Fix k > I and let time inductive hypothesis be that C(k) is true.
It remains to prove that

c 1
k+1

— F
I c(k+1)

0 1 1

Starting with the LHS of C(k + 1),

k4-I r krIc ic lie
0 i [o i Lo 1

1 ck Ii c

= 0 1
L

a i
(by C(k))

1 c+ck
— 0 1

which is equal to the RIIS of C(k ÷ 1). This completes the inductive step C(k)
C(k + 1).

By mathematical induction, for each n > 1, C(n) is true, 0

Exercise 655: Fix constants a. b. For each > 1, let C(n) be the claim that
ía () 0

Lo b -- 0
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laO' Ia' 01
BASE STEP: C (1) says

[ 0 b = [ 0 b' j
which is true.

INDUCTIVE STEP: Fix some k � 1 and suppose that C(k) is true. Then

k±1 krja Op pa 0 a 0

[0 bj = [o b [o b

= [t (hyC(k))

I 0

= [ 0

shows that C(k + 1) is also true, completing the inductive step.

By mathematical induction, for each 77 � 1, C(n) is true. LI

Exercise 656: For each ii � 2. let A(n) be the assertion that

14 2 14 9572—li —

[2 1 [2 1

hi fact, even when n 1, A(n) is 1.rue. however, iii keeping with the exercise, this
proof starts at n = 2.

BASE STEP = 2): Since

14 2 14 21 120 10 - 4 2

[21 [2 1J[10 5 21
A(2) holds.

INDUCTIVE STEP: Fix some k � 2 arid assume that is true. i'heri

[4 2
ki-1

— [4 2
k14

2

[2 1 — [2 1 [2 1

=

5

2

1

shows that A(k 4 1) is also true, completing the inductive step.

mathematical induction, for each ii � 2, .4(n) holds. [1
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Exercise 657: (rotation matrix) For any 0 e R and n � 1, let S(n) be the statement

cos(8) —sin(0) [ cos(nO) —sin(nO)

[ sin(8) cos(0) sin(nO) cos(nO)

BAsE STEP: The statement 8(1) holds trivially.

INDUCTIVE STEP: Fix some k � 1 and suppose that S(k) holds. Then

k+1 . rcos(0) —siri(9)
—

cos(6) —sin(0) cos(9) —sin(9)
siri(0) cos(0) — L

sin(9) cos(0) ] sin(9) cos(0)

— [ cos(kO) —sin(k8) 1 . I cos(O) —sin(9) 1 1b S(k
[ sin(kO) cos(kO) J I.

sin(9) cos(0) j
'

— [ cos(k9) cos(0) — sin(k9) sin(0) — cos(k9) sin(kO) — sin(kO) cos(0)
[ sin(kO) cos(9) + cos(kO) sin(9) —sin(kO)sin(0) + cos(kO) cos(0)

(by eq'ns (9.11) and (9.12))

—
cos((k + 1)0) — siii((k + 1)9)

-— [ sin((k + 1)0) cos((k + 1)0)

which shows that S(k + 1) holds as well, completing the inductive step.

By the principle of mathematical induction, for each n � 1, 8(n) holds. D

Comment: There is a connection between this exercise and DeMoivre's formula
(see Exercise 115).

Exercise 658: Let ii I be fixed and let = — For k � 1. let 8(k) denote
the statement that.

!1.fk ((n i)k

k = 1. S(1) reads M,4 — + ( and the right-
hand side is — so S(1) is true.

INI)UCTIvE STEP (S(j) S(j + 1)): Fix some j ? 1 and suppose that 8(j) is true.
One rLeeds to show that. 8(j ± 1)

1\j+J (pi+l\
= ( ) J74 +

Ti /
follows. Beginning with the left side of S(j + 1),

(.J,, — 1)3+1

— —
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—
+ - (by 8(j))

- : Jn(Jn in) + In)

= ( /

- + -
Ti

— l)i — (—1)' \= )(nJn—Jn)+(—l)'(Jn-In)a
= ((a — (_1)3)

(a — 1).Jn + + Ei)i+1j

—. l)i+' — (—1)'(n — 1)

= ç — i- (—1)3) +

— 1U+l — — P

=
/ ¼ /

/ (—1)') +

= ((a — 1)J*1_(_l)3+i)
,, (-

one arrives at the right side of 8(j + 1), concluding the inductive step.

By MI, for each k 8(k) is true. U

Exercise 659: One natural construction of Hadaniard matrices is an easy recursion,
making larger ones from four smaller ones each time—Ibis construction can be
thought of as sonic special kind of product. of two niatric:es. a 2 x 2 Hadarnard
matrix and an a x a Hadamard matrix, giving a 2ii x 2ii matrix. Starting with

H2
= [ — ]

one can recursively generate

Uk ttk
11k±1 = "k 'tk

often denoted by a "tensor product" 14+i = ilk ® H2; this construction is due to
Sylvester and such matrices are said t.o he of Sylvester type.

Note: There are other ways to create Iladaniard matrices. The Sylvester con-
struction only works to create Hadainard matrices whose order is a power of 2; in
general, it is not known if a Hadamard matrix exists for every a divisible by 4 (a
necessary condition for a Hadamnard matrix to exist). I think that Fladaniard ma-
trices have been found for all possible orders up to 264, but no Hadamard matrix
of order 268 has yet beemi found.

Exercise 661: (Vanderrnonde determinant) Let 8(a) be the statement that for any
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I 4 •..
I IM=[. . .

1

The proof is by induction on ii.
1 1 and det(M) = c1 — co, so 8(1) is true.
1 ci j
1. and assume that 8(k) holds. Let d0,...

4 ...
d1 d2

... .,k+l I

141 I

4+i d2

d0 Limes the previous cohinut,

0 0
d1—d11 di—dldl)
4—do

0

— dtd()
411

—

2 A 2k-i-1 Ak A
14kLL—14k+1 0 k+1 k-i-I 0

the above determinant becomes

d0)

4(d2 — do)

d0)Ak fi
—

4
4 4

A Ak

and by the induction hypothesis (using n d1, c1 4 ck = 4+ the above
determinant is

(d1 —do)(d2 —do)(clk÷l —do) fl —i-/,) = [J —d,),

1<i<j<k+1 0<i-cj<k+1

showing that S(k -F 1)hohls. completing the inductive step.

matrix of the form

then det(M) = — cj).

BASE STEP: When n = 1, M
= [

INDUCTEON STEP: Fix some k �
be scalars and let

1

1

each column

•1_1

and

dk+ 1
k+i

first row

By subtracting from

I 4 4
1 d1 d?

A A2k+I ttk+I

Expanding along the

—

4+1 d0

factoring.

-- d0)

4(4 — 4)

dk+l — d0 4+i (dklI — d0)

= (d1 — d0)(d2 — d11) . . - ((/k+1 —(to)
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By MI, for each positive integer n, S(m) holds.

Exercise 662: Let x 1, and for each n > 1, let S(n) denote the statement

-31 1 r — [ +1
L

0 x j 0

BASE STEP: 8(1) is trivially true as = x.

INDUCTIVE STEP: Fix some k � 1 and suppose that

k f 1

S(k): 1
=Im

l_
0 x o

Then

[ +1 1
1k+1

+1 —1
1k

1 +1 —1

L0 xj [o xj[o x

= [

+1
11+.!

1] (by 5(k))

[÷i

— +1
— 0

proves S(k + 1), finishing the inductive step.

By mathematical induction, for each n � 1, the statement S(n) is true. 0

Exercise 663: For each n � 1 and the ii x n matrix

2 --1 0 ... 0 0
—1 2 —1 ... 0 0

o —i 2 ... 0 0

0 0 —1 ... (1 0

o o 0 •.. —1 2

let P(n) be the proposition that det(A7,.) = ii + 1. Since the inductive step given
here uses two previous ca.ses, two base cases are required.
BASE STEPS (ii = 1,2): The 1 x 1 matrix A1 is siniply the number 2, which

hasdet[2]=.2=1+1,soP(i)istrue. Forn=2,A2=[21 _1]and
det(A2) = 3 = 2 + I shows that ['(2) is true.
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INDUCTIVE STEP (P(k) P(k+l)): Fix some k � 2 and assume that the inductive
hypotheses P(k — 1) arid P(k) is true. To show P(k + 1), one must show that
det(Ak±l) = k + 2. Expanding along the first row of Ak÷1 (where vertical bars
around the k x Ic matrix below indicate determinant)

—1 0 0 ... 0 0
—l 2 —1 ... 0 0

o —1 2 ... 0 0

det(Ak+I) = 2det(Ak)+ o o ---i ... o o

o 0 0 ... —I 2

= 2det(Ak) + (—1)det(Ak — I) (expanding along 1st row)

= 2(k+1) —(k—I + I)
k+2,

shows that P(k + 1) also holds, completing the inductive step.

By MI, for each n � I, the statement P(n) holds. D

Exercise 664: (Companion matrix) One solution is by induction on Ic � 2.

BASE STEP: When Ic 2, A = 0 —a0 I, in which cast,,
I —a1y

--t 2det(A — tI)
1 —UI — t

= t +a1t +ao,

which proves the only base case.

INDUCTIVE STEP: Suppose that for some fixed it 2, the result holds for any
constants. Let ao a7, be scalars, arid Pill

g(t) = + a1t + ... + an_itTL_l + ant" + ta").

Let
o 0 ... 0 —a0

1 0 0 —a1

o i 0 —a2Br

0 0 1

Expanding along the first row, and letting denote the principal submatrix
formed by deleting the i-th row and j-th column of Al,

det(A — — (—t)dct(1111,1) +
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The matrix Al11 is a matrix of the same form as A — tie,. so by induction hypothesis,
det(Mi,i) = (—lft(a.i +a2t+' . Also, since MITL+t is upper triangular
with l's on the main diagonal, det(A'ii = 1. Putting these together,

det(A — (--t)det(Ali,j) + (—

= (—t)(—1)'2(ai + a2t + + + C') +
± a2t +... + + C') + 'ao

=

showing that the result holds for k ii + 1, completing the inductive step.

By Ml, for any integer k � 2, the result holds. 0

Exercise 665: (Leontief) The following is essentially the solution in [580], which
leaves a few details to be verified. Let 8(n) be the statement that for any ii x
Leontief matrix H, conditions (1), (2), and (3) are equivalent.

BASE STEP: Let H = [h] be a 1 x I matrix (which is Leontief for any h). Each of
the three above conditions merely says that It > 0.

INDUCTIVE STEP: Fix some k and suppose that 8(k) is true. Let H be a (k + I) x
(k + 1) Leontief matrix.

(2): Let x'
= [ ]

he a column vector with Hx' > 0. Because II

is Leontief, there exists a permutation matrix P and a Leontief k x k matrix C,
non-negative A and B (k x 1 and I x k, respectively) and 'y E with

C -A
—B

for if not, one must have Hx' < 0 (why?). By Lemma 19.1.4. one may assume
without loss of generality that 1-! itself can l)e expressed as

I Gx—SA >0.

To show that H is a positive matrix, by Lemma 19.1.3, one only needs to show that
C is a positive matrix. As C — is seen to be Leontief,

(C — 1AB)x = Cx — 5A ±A(—Bx +
7 '—.

>0 >0

By 8(k), C — is a positive k x k matrix.
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(3): Suppose that
H-1 G -A

7

is a positive matrix. By Lemma 19.1.3, A � 0, B � 0, -y > 0, and G — is a
positive k x k matrix. By S(k), all entries of [C — are non-negative. Using
K = C — verify that

= +

and one can check that all entries of B' are non-negative.
(1) is trivial, so the circle of implications is complete for (k + 1) x (k + 1)

matrices, completing the inductive step.

By mathematical induction, for each n � 1, S(n) is true. 0

Exercise 666: Fix 72 � 2 and let Al be an in x n latin rectangle Al with iii < ii.
For each in < in' < n, let P(m') be the proposition that for any there is an rn' x a
latin rectangle that extends M.
BASE STEP: When rn' = in, itself satisfies P(m.').

INDUCTIVE STEP: Let A'! be an in x n latin rectangle with in < n. Fix p 6
{rn, rn + 1,. .. , n — l}, suppose that P(p) is true, and let M' be a witness to P(p);
that is, Al' is an p x n latin rectangle that extends A-i. To show that P(p -1- 1) holds,
it suffices to show that one can add another row t.o Al' producing an (p + 1) x a
latin rectangle. Put X = {1,2 n}, and for each j 6 {1,2 n}, let 77, C S he
those elements in X not in column j of Al', and put T = {T1 To find one
more row to add to A'!', it suffices to show that there is a matching (in the obvious
bipartite graph) from X into Y, that is, to show the existence of a transversal in T.

By Hall's theorem (Theorem 15.5.1) or its equivalent form for SDR's (Theorem
33.4.1), it suffices to show that the union of any k of the T1's contains at least
distinct k elements. Such a union contains, with repetition, k(n — p) elements, and
if such a union were to contain fewer than k distinct elements, then one element
x 6 X is repeated more than n — p times—meaning that x appears in less than p
rows, contrary to M being a latin rectangle. hence, A'! can be extended by adding
one niore row to an (in' + 1) x n latin rectangle, showing P(p + 1) is true.

By finite mathematical induction, for any in' 6 {in,in+ I -ri}, P(in') is true;
in particular, P(n) is true—if in < n, any in x n latin rectangle can he completed
to a latin square. 0

Exercise 667: See [161, 8.32, p. 209}; this problem also occurred in the 1988
Tournament of the Towns. Ilint: build a sequence of square matrices, each tinie
doubling in size, and take the limit.
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Exercise 668: This solution was kindly written for inclusion here by Michael Doob.
[I have edited only a very little.] For more on Hankel matrices and Hankel trans-
forms, see, e.g., [344]. it appears as if something similar to the following solution
first appeared in 2006 [293], although I can not confirm this [thanks to Liii Huang
for supplying this reference].

For a = 1, get = [aol for the first sequence and [aiJ for the second one,
and so the determinant condition implies a0 = a 2 the two Hankel

matrices arc =
1 1 and H =

1

a2 The assumption that the two
La2 a3

determinants are one implies that a2 = 2 and then a3 = 5.

It may now be clear how to obtain further values. The two a x a Hankel matrices
and can be used to determine and In each case, all but one

element of the matrix is already determined, and the determinant condition yields
the last element. The case a = 3 gives a4 = 14 and a5 = 42.

From here on, it is convenient to use lower case to denote the Catalan number
as a matrix with certain catalan number entries is to be called C.

Consider the a x a matrix C where the i,j entry of C is and C' where the
i,j entry is TIme next goal is to show for all a � 1 that det(C) = det(C') = 1.

To do this, define a lower triangular matrix B in the following way:

1. For the first row, B00 = 1 and = 0 for j > 1.

2. having defined rows 0 i 1, let

• 1- 8i—1,1

• = + 2B1..J,) + otherwise.

(when j = in, interpret to be 0).
For example, when a = 7, get the following matrix:

1 0 0 0 0 0 0

1 1 0 0 0 0 0

2 3 1 0 0 0 0

5 9 5 1 0 0 0
14 28 20 7 1 0 0
42 90 75 35 9 1 0
132 297 275 154 54 11 1

Then B is lower triangular and for each k = 1 a, Bk,k = 1.

Define a matrix B' in a manner similar to B:

1. For the first row, = I and = 0 for j > 1.

2. Having defined rows 0,..., i — 1, let

• = +
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• = + + 8iLj+1 otherwise.

(when j = in, interpret to be 0).
For example, when n = 7, get the following matrix:

1 0 0 0 000
2 1 0 0 000
5 4 1 0 000

B'= 14 14 6 1 0 0 0

42 48 27 8 1 0 0
132 165 110 44 10 1 0
429 572 429 208 65 12 1

Claim 37.1.1. ppT = C and =

The proof relies on Claim 37.1.1, however, before proving Claim 37.1.1, a few
observations are in order.

Consequence of Claim 37.1.1: Since B is I on the diagonal, then det(B) =
det(BT) = 1 and hence det(C) = 1. Similarly det(B') = det(B'T) = I and hence
det(C') = 1.

Note: The matrices B and JJ7 are the LU-decomposition of C, and B' and B"
are the LU-decomposition of C'.

It is a standard application that tIme number of solutions to the ballot problem
with 2rt votes is just the Catalan number C,,, which is denoted here by for
convenience. (See Exercise 765.)

There is a straightforward but useful observation to he made. If at sonic point
in time drawing the number of ballots for £4 is not less than the number of ballots
for B, then in the remaining ballots tIme number of ballots for B is not less than tIme
number of ballots for A. Hence if one starts with a solution to the ballot problem,
reverses the roles of A and B, and then draws the ballots in the opposite order, one
gets a (possibly identical) solution to the ballot problem. Call this tIme reversing
principle.

Extend the ballot problem to the case where the numbers of ballots for each
candidate are not necessarily equal. If there are in votes for candidate A and it for
candidate B, let c,, be the number of ways the the ballots can be drawn so that
candidate A is never behind; then c,,,0 = 1, = c,, and for in < n, = 0.

When counting all the ballots to compute c,,,,,,, there are two cases: the last vote
is .4 (so the previous ballots are in number), or the last vote is B (so the
previous ballot draws where in ILumber). This gives:

Theorem 37.1.2. If in and n are positive, in > n, then

+ (,,,,, —
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Define the matrix C' whose (rn., n) entry is crn,n (limiting its size appropriately);
then

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 01220 0 0 0 0
1 3 5 5 0 0 0 0
1 4 9 14 14 0 0 0
1 5 14 28 42 42 0 0
1 6 20 48 90 132 132 0

- 1 7 27 75 165 297 429 429

Next relate the matrix C' given above with the matrix B defined earlier In fact

the entries of B run down alternate skew diagonals of C'.

Theorem 37.1.3. The entries in B and B'satisfy

= and

=

lb prove Theorem 37.1.3, i.tse induction on the rows of B and B'. Theorem
37.1.2 and the recursive definition of B validate the result. 'l'here is now enough
information to give:

Proof of Claim 37.1.1: Compute the (r, s) entry of BaT: On the one hand,

k=()

On the other hand. one can consider G,.f.5 and the associated ballot problem: in

this case there are r + s votes for candidate A and the same number for candidate
B. Break the counting into two stages: the drawing of the first 2r ballots and the
drawing of the remaining 2s ballots. Let 2k � 0 be the lead of candidate A after
the first 2r ballots are drawn. There are Cr+k.rk possible ways this can happen. So

one can then ask, for each of tlicse possible ways, how many ways can the sequence
be completed to one that is counted by cr+c? Using the reversing principle, get
C5÷k.3 •k such completions. This gives (by Segner's recursion (12.2)),

Crfs = kC.s ks—k
k ()

iFEssentially the same argument gives B B = C . Hence the claim is verified. 0

Exercise 669: See 1266, pp. 145—147] for two proofs, one by induction.
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37.2 Solutions: Groups and permutations
Exercise 670: (Brief solution) Assume that C is abelian, that is, for every x, y C,
xy = yx holds. For each positive integer it, let 8(n) denote the statement "for every
a, 5 C, = holds". The base case 8(1) is trivial, so assume that for some
fixed in 1, 8(m) holds. Then for any a, S C,

= (ah)(ab)
= (ab)(afhblti) (by 8(m))

a(bam)bm (by associativity in a group)
= a(atTtb)bfl (since C is abelian)
= (a .

510) (by associativity)
=

which completes the proof of 8(in f 1), and hence the inductive step. By MI, 8(n)
holds for all ii � 1. 0

Exercise 671: Induct on (7], and use Cauchy's theorem. See, e.g. [198, p. 239] or
[152, pp.142—4] for proofs.

Exercise 673: This exercise appears in [6, p. 97].

Exercise 674: (Solution outline) For each � 2, let 8(r) denote the statement
"every cycle of length r 2 can be written as a product of transpositions, as in

For r = 2, (xj, Zr) is already in desired form, so assume that for some fixed in � 2.
5'(in) holds and let (xi, x2 xm+i) be a cycle. Direct coml)utations show
that

(xi,x2 = (xi,x2,.. . ,x,,,,) 0

Use the inductive hypothesis and substitute the cycle (xi, 12 ,...,xm) with (xi,
(x1,x3) 0 0

Exercise 675: (Hint for induction step) If a given permutation r on ii elements
is not itself a cycle, then inside find a cycle a (by taking an arbitrary element and
following its path like in the decomposition of Example 19.2.4) and express r as the
composition of two permutations, say i- a 0 p, where p is a permutation on fewer
than n elements. Then apply the induction hypothesis to p.

Exercise 676: (Hint for inductive step) One could prove a more general lemma
first, namely, that if r and a are hijections from A to A then so is T 0 a. Then apply
the lemma, with r am
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Exercise 677: (Hint) First prove the recursion

= +

Also, by simple inclusion-exclusion, one arrives at a more direct solution by estab-
lishing

= - i)!.

Exercise 679: Let be the number of permutations with the desired property.
For n = 1, there is only one permutation, namely the trivial one, so Pi = 1; there
are two permutations of two elements, each of which has the desired property, so
P2 = 2.

Let a � 3 be fixed. Of those permutations iv of {1, 2 n} which have the
desired property, either ir(n) = n or ir(n) = ii — 1. There are mt of these that
fix a. For those with ir('n) = it — I, ir(n -— I) = it, so the number of these is 1¼—2
Hence, for it � Pri = Pn—i -2• Thus satisfies the recursion for the Fihonacci
numbers. [1

Exercise 680: (Comments) This problem appears iii [6, p. 25. Ex. 14, p. 98 Ex.
11] without solution. Here are some comments toward to what might constitute a
proof: For any f,g e 5,,. define ö(f,g) = If (1) For it.,- E V. and
f e 5,,, define

aj(n,r) = j{g e Sn: 5(f,g) r}J.

To be shown is dint the numbers aj'('n, r) are independent of f, so that a(n. r)
a1(n,r) is well defined.

Let both f, /t e 8,, be fixed; one must show af(n, r) = a,,(n, i').
Let it E Sn be defined by f o iv = Ii, that is, for each i, h(i) =f(ir(i)). Put

= g o iv. Then for each i, f(ir(i)) — g(ir(i)) = h(i) — g'(i). Hence, the set of
differences {f(j) — g(j) : j = I . . . , n} is the same as {h(i) -- g'(i) : i = 1 n}.
Thus, for every' y with S(f, g) < r, there is a (unique) = g o iv with ó(lz. g') < r.
hence, a1(n,r) is independent of f,so a(n,r) = aj(n,r') is well delined.

It remains to prove that for it � 6,

a(n, 2) = 2a(n -- 1,2) + 2a(n —- 3, 2) -- a(ri — 5,2),

and that. a(n, 1) -= the (it + 1)—st Fiboriacci number. Does this lead to an
inductive solution?
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37.3 Solutions: Rings
Exercise 682: Assume ZFC. As in, e.g., [95, p. 120], cornmutativity is not assumed
for this proof. See also [416, p. 525] (where commutativity is assumed).

Let I be the set of proper ideals of I?, and consider I as partially ordered set
ordered by inclusion.

Let C c I he a chain in I. If C = 0, then the ideal {0} is an upper bound, so
siipl)OSe C a Put I = uC.

One verifies that I E I (which then shows I is an tipper hound for C):
Let x1,x2 E I, with say, E E C and x2 C, and without loss of

generality, assume that c '2• Then x1,x2 and so x1 + x2 (because '2 is
an ideal, arid hence a subring) and thus + X2 C I. In a similar manner, one sees
that x I and r C R implies that. both rx I and xr C I. Since an ideal containing
1 is all of H, and all ideals in C are proper, none contain 1, and so neither does their
union I. Thus I is a proper ideal, that is, I C I.

By Zorn's lemma. I contains a maximal element, namely a maximal ideal of
II. 0

Exercise 683: This appears in many abstract algebra texts; e.g., see [469, p.269].
Let f(x) = + f- b0 Z[x] have a as a root. Put

n—I 90= (a ,...,a,a,1).
To answer the exercise, it suffices to show that for each k > a, a!' e 0. The proof

is by induction on k.
l3AsE STEP: When k = n, using the fact that f is monic,

flfl = + bo) 0.

INI)UCTJVE STEP: Fix k � a, and assume that a" 0, with constants Z so

that
n—I(k

'I'lien

a" + .-. ± c1 a2 + c0a
= + ... + b0)] + ... + c<ia,

which lies in a.
By mathematical induction, for each Ic � a, C, and so C is finitely gener-

ate(l. 0

Exercise 629: See [117].
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37.4 Solutions: Fields

Exercise 684: Let p be a prune arid let F = (JF(p). For 0 � L p, let 8(L) be
the statement that if x0 E F and f(x) E F[x] are so that for 0 <P < L, = 0,

then x0 is a zero of f with multiplicity at least L. The proof given here is a pedantic
version of that found in [60, p. 349], procee(ling by induction on L.

BASE STEP: For L = 0, there is nothing to prove.

INDIJCI'LON STEP: Let N > 0 and suppose that S(0),S(1),... ,S(N —1) hold. To
be shown is that 5(N) holds. Let f(x) e F[x] and suppose that. for 0 F c N,
f&)(xo) = 0 holds. By induction hypothesis S(N — 1), x0 is root of 1(x) with
multiplicity at least N — 1; thus one can write f(x) = (x — xo)"'r(x) for some
polynomial r(x) e IF[x]. Write r(x) = (x — xo)s(x) + c for some s(x) E F[x] and
some c E F. Then f(x) = (x — xo)a's(x) + (x — It is not too difficult
to verify that = c(L — I)!, and since = 0, one concludes that
c 0. Hence 1(x) = (x — xo)"s(x), and so xo is a root of f with multiplicity at
least ,\i

By the principle of mathematical induction, for all L � 0, 8(L) is true. 0
iVote: By Fermnat's little theorem, in CF(p), = x. and so the pth derivative is

zero in arty case-— the reason for assuming £ < L p.

Exercise 685: (Brief) Induct on rn. For in = I, simply pick a1 Suppose
k > 1 and suppose that the result holds when = /t — 1. Since g' is relatively
prime to the product. 92 by the comments just before the exercise, there exist
s, t E K[x] so that I = + t(q2. . Then

= + 1g2' . 9rn)I
9 9

= 92

9 9
sf

91

Applying the induction hypothesis to the first fraction in the last line above shows
that the statement is true when in = k, cotnpleting the inductive step.

By mathematical induction, for each in > 1, the statement in the exercise is
true. 0

Exercise 686: This problem appears in [469, pp. 263-4]. Let f(x) E K[x]. Since
deg(b) � 1, there exists rn � 0 with

deg(f) < (in + I) deg(b) =
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For each in � 0, let 8(m) be the statement that if

deg(bm) � deg(f)

then f has an expression dmbm + dm_ihm_i + d0 of the desired form.

BASE STEP: If in = 0, 0 = deg(h0) < deg(f) < deg(b). so define d0 = f, so 8(0)
holds.

INDUCTIVE STEP: Fix ii � 1 and suppose that for all k c I ii — 1, 5(k) is true.
If in >0,

deg(f)

and the division algorithm gives and r so that f = + r, where either r = 0

or deg(r) < deg(bTh). Notice that 0 [since otherwise, deg(f) � If r = 0,

define = = = 0 and f = is an expression of the desired form. If
r 0, then 8(deg(r)) shows that r, and hence f has an expression of the desired
form.

By mathematical induction, for each in � 0, 8(m) is true. U

Exercise 687: See, e.g., [116, p. 5271.

Exercise 688: For a finite positive integer k. let 5(k) denote the statement that
every extension of K formed by adding k algebraic (over K) elements is finite and
therefore algebraic over K. The proof is by induction on k.
BASE STEP (k = 1): The statement 8(l) is Theorem 19.4.2.

INDUCTIVE STEP: Fix rn � 1 and suppose that for all j < in, 8(m) holds. Let
a1 be elements not in K. but algebraic over K. Let K(ai,... be the
corresponding field extension. By induction hypothesis 8(m), K' = K(ai,...
is algebraic over K, so let {v1 , . . . , v4 be a basis (over K) for K'

If K' = then there is nothing to prove, so assume K' I
Since is algebraic over K, there is a polynomial q(x) E K[x} ç K'[x] so that

= 0. Thus IC'(a,n+i) is algebraic over K'. Again, by Theorem 19.4.2,
K" = K'(a) has a basis over K'. say O,}. For every b C K", there exist
constants c1 so that b = c191 + ... + ceOe. Also, for each i = I,... , f, let

C K be so that
= + ... -fr dirur.

Hence, h = The r . £ elements are linearly independent since b 0

implies that the ;'s are all zero and so each d0 is zero. Since b C K" was arbitrary,
the vectors span K', arid so these vectors are a basis for K" over K. Thus K"
is a finite dimensional vector space over K. concluding the inductive step.

Thus, by MI, for all k> 1, 8(k) holds. LI

Exercise 689: The proof is by induction on deg(J). If deg(f) = I, f is linear, so
choose E = K. So assume that the result is true for all polynomials with degree
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smaller than deg(f). if deg(f) > 1, write p(x)q(x), where p is irreducible. If
p(x) is linear, then f(x) factors as products of linears whenever q(x) does; moreover,
such a factorization of q(x) (over a larger field) clocs exist, l)y induction hypothesis,
because deg(q) <deg(f).

By the fact just before the statement of the exercise, there exists a field F
containing K and a root z of p(x), which implies that p factors as p(x) = (x —

z)h(x) C F[x]. By induction hypothesis, there exists a field E containing F (and
hence K) so that h(x)q(x) and hence f(x) = (.x — z)h(x)q(x) is a product of linear
factors in EfxJ. This completes the induction and so, 1w mathematical induction,
the solution. .

37.5 Solutions: Vector spaces
Exercise 690: (Distinct eigenvalues) The proof is by induction on the number of
distinct eigenvalues (not the size of the matrix).

For each positive integer i-, let C(r) he the claim that if A is a matrix with
r distinct eigenvalues A1 Ar and for each i = 1 r if v1 is an eigenvector
associated with A,. then tile set {v1 Vr } is linearly independent.

BASE STEP (r = 1): Let A be an eigenvalue for A, with associated eigenvector v.
By definition of an eigenvector, v 0, and so is linearly independent.

INDUCTION STEP: For some fixed k � 1, suppose that C(k) is true, and let A
l)e a. matrix with distinct eigenvalues A1 Ak,.I with associated eigenvectors
V1 11 respectively. To show that C(k -4- 1) holds. one must show that the
set {vi Vkl j is linearly independent. lb this end, suppose that Cl,...
are so that

a1v1 f + 0. (37.3)

Multiplying equation (37.3) on the left by .4,

a1A1v1 + ... + ak÷LAk÷lvd±[ = 0. (37.4)

Multiplication of equation (37.3) by Ak+1 and subtracting from equation (37.4) yields

Ak+1)vl ± Ak÷l)vk = 0.

By the induction hypothesis (7(k), the set (vi, vd} is linearly independent and
so

— Ak÷1) .. . a/JAb — Ak+I) = 0.

Since the A1's are distinct, this implies that ai 0. Thus equation (37.3)
now reads ak+lvk+] = 0, and using the fact that VKII 0 one concludes that

= I) as well. hence all of the at's are zero. showing that the set (vi }

is linearly independent, completing the proof of C(k + 1).
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By niathematical induction, for any r � 1, the claim C(r) is true. 0

Remark: Notice that the above proof can be formulated for any linear operator
1' on any vector space V (see, e.g., [202, p. 261]), not just the matrix operator
which is implicitly defined on a finite dimensional vector space.

Exercise 691: This exercise appears as problem 23 in [202, p. 324] (without
solution) with tIme hint to induct on k.

Exercise 693: Fix ri arid A It suffices to show that for any k Z+,
A, A2,. .. , Call this statement 8(k). One proof is by induction

on k.
BASE STEP: For k = 1, A' = A and so 8(1) holds.

INDUCTIVE STEP: Assume that for a fixed k � 1, 8(k) holds, that is, assume that

Ak

that is, there exist constants a0. . . . , so that

Ak +a,A±a2A2 +...

To complete the inductive step, it remains to show that

A, A2

A . Ak,

Ak+m = a0A + a1A2 + a2A3 ±

and by the Cayley-Ilamilton theorem, Art is a linear combination of A,
and hence so is Ak4*

By mathematical induction, for any k 8(k) holds, completing the proof.
0

Exercise 694: (Minkowski's inequality) Fix some non-negative integer ii. Let
111(m) be the statement that for every collection of vectors vm, v2 vrn in Rtl,

kr' + V2 + S ii vi + 1k2ii + (km ii.

BASE STEP (ni = 1.2): When ni = 1, the result is trivial, since itf(i) says only that
(lvii S ((vU

Let v = (01 and w = (wi,... ,w7,). Then

liv + w((2
=

+
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EvN2viwi+w?

=

iivli2 + 11w 112+2 VjWj

s + 11w112 + 2ilvjiifwil (by Cauchy—Schwarz)

= (liv ii + liwIl)2,

and so taking square roots shows

+ wil � livil + liwil,

proving M(2).

INDUCTIVE STEP: For sonic fixed k � 2, assume that M(k) holds. Let v1, v2
and vk+1 be vectors in Then

ilvi+ V2 + + vk + vk÷Ii

=

� vi + V2 + Vk)lI + IiVk+i ii (by M(2))

� lviii + iiv2ii + . + + Ilvk÷lii (by M(k))

shows that M(k + 1) is true as well. This completes the inductive step.

By mathematical induction, for every rn � 1, M(m) holds. 0

Exercise 695: Two things are to be proved, the p-norm triangle inequality (which
is often called Minkowski's inequality)

lix + ilxii, + fy11,1,

and its generalization to larger sums,

iIxi + X2 + xnilp � iki lip + IiX2ilp 4. iiXn lim

Note that when p = 2. this is Minkowski's inequality for two vectors.
Before proving the first inequality, here is a siml)le observation: if p > I and

+ = 1, then q = (1 = and so (p — l)q = p. Putting x = (xj,...
and y = (y' yn), apply Holder's inequality with replaced by as
follows:

ixt + f/ti"
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= f- yjj. + yJP"

C + lxi (l)y the triangle inequality)

=

i/q I/q

� llxllp + + ± vr')9)
(by Holder's inequality, twice)

= (E lx, +
1/q

+ llYlp +
i/q

I/q

= + xt +

Dividing each side by leaves

IL

+ llxllp ±

which proves the first inequality in the exercise.
The second inequality now is a straightforward inductive argument completely

analogous to that used to prove the triangle inequality, (see solution to Exercise
193) and so is left to the reader. 0

Exercise 696: (Cram-Schmidt) Throughout, all vectors are he assumed to be front
some inner product space V. For n I, let 0(n) be the claim that for any linearly
independent set S = {wi,.. . ,w,,} of vectors in V. the vectors T = (vi
defined by v1 = w1, and for each k — 2....

k—i
-

—
(37.a)

:/=1

form an orthogonal set of non-zero vectors with span(T) span(S).

BASE STEP: When n = I, S {w1 } = {vm} = 7' is linearly- independent.

JN1DIICT1\'E STEP: Suppose that for some in � 1. the claim 0(m) holds, and let S =
{wm. . . . W,,,,} be linearly independent. liv 0(m). suppose that T = {v1
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is orthogonal (produced according to the recursion (37.5). Suppose Wm i-i is 50 that
5' = S U } is linearly independent, arid put

= — 2

j.=i
IIvj II

Then for each i = 1 in,

(IL /V' \Wrn+i,Vj(vm+i,v,) = (wm±i,vi) 2

j=1
(wrn+i,

= (Wm+i,Vj)
— Ilw112

(see below for reason)

=0
since by C(m), T is orthogonal, arid so for i j, (v1, v1) 0. Hence, Vm+i is
orthogonal to all vectors in T, and so tire set 2" = 2' U {vrn±i } is orthogonal. By
Lemma 19.5.5, 2" is linearly independent.

By C(ni), it is assumed that span(S) = span(T), and since E span(S'),
then span(T') c span(S'). However, since both 5' and 2" are linearly independent,
in + 1 dirn(span(S')) = dim(span(T')): thus (do you know why?) span(T') =
span(S'), finishing the proof of C(m 4- 1) arid hence the inductive step.

By iriathematical induction, for each ii � 1. the claim C(n) is true.

If V is a finite dimensional vector space with an inner product. apply the Grain—
Schrnidt process to any basis for V, and obtain an orthogonal basis. Normalizing
vectors iii an orthogonal basis then gives an orthoriormal basis. D





Chapter 38

Solutions: Geometry

Exercise 698: This problem occurred in 1161, 7.26, pp. 181. 1891.
BASE STEP: Since c > a and c > b, c3 = c(a2 + h2) > a3 -I i?.

INDUCTIVE STEP: For some k � 3, suppose that c >
c(ak + bk) > (,ksl + proves the result for A: + 1.

By mathematical induction, the statement is true for every a > 2. [1

Exercise 699: (Brief) Begin by constructing a right triangle with legs each of
length 1; its hypotenuse has length Supposing that. for SOniC k > 2, that a
segment of length has been constructed. From one end of this segment, extend
a perpendicular I unit long determining another right triangle WitI1 legs of length
1 and s/k. By Pythagoras's theorem, the new hypotenuse has lengt;h s/KTi.. See

Figure 38.1. D

Figure 38.1: Constructing

Exercise 700: [This solution also occurs in [250. Prob. 521.1 For each a > I,
let A(n) be the assertion that among n points in the plane, the greatest distance
between points is realized by at most a different pairs of points.

771)
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BASE STEP: Each of A(1), A(2), and A(3) hold trivially since for each n = 1,2,3,
the total number of pairs is at most ii, so the pairs realizing a maximum distance is
also.

INDUCTIVE STEP: Fix sonic in � 4 and assume that A(m — 1) is true. Consider a
set of in points 'PT,, and without loss of generality let the diameter of this set
be 1 (that is, the maximum distance between any two points is 1). The proof now
splits into two cases, the first of which does not require the induction hypothesis.

Case 1: Assume that each p2 is at distance 1 froni at most two other points.
Then by the handshaking lemma (Lemma 15.1.1), or simple double counting, there
are at most in pairs with distance 1, so A(m) is true.

Case 2: Assume that some point, say Pi is at distance I from three other points,
say P2, P3, and pi.

Claim: At least one of P2, P3, P4 has only at distance 1.
Since any two of P2, p4 are at distance at most one, all of the angles of the

forni are acute; suppose that these three vertices occur in order around Pi
(that is, p3 is in the sector subtended by the acute angle ZP2pip4). It is now shown
that indeed p3 satisfies the claim.

Suppose that for some k, Pk is at distance I from Then the segment P3Pk is
not disjoint from either P2P1 or P4P1 because of the following fact, whose proof is
left to the reader:

Fact: If two line segments of length 1 are disjoint, two endpoints are at distance
greater than 1.

Thus P3Pk intersects both P2Pi and P4PI• and so Pk = Pi; thus p3 satisfies the
claim.

Deleting the one point guaranteed by the claim (in the above proof, p3) gives a
collection of in — 1 points and by A(m — 1), the number of times distance 1 occurs
is at most in — 1; together with the deleted point gives at most in pairs of points at
distance 1, proving A(m) and completing the inductive step.

By mathematical induction, for each n � 1, the assertion A(n) holds. 0

Comment: If ii is odd, the ma.ximurn distance in a regular n-gon occurs twice at
each vertex, so the hound in Exercise 700 is attained.

Exercise 701: The solution outline of the inductive step provided in [421, Ex. 6.1]
goes as follows: Let points ci... be contained in a ball B C R4 of radius
First show that all points can he moved to the boundary of B without decreasing any
pairwise distances. By rotating B appropriately, assume that ci = ,0).
Let 13' be the intersection of B with the (hyper)plaiie consisting of all points whose
first coordinate is 0. Then show that for each i = 2 n, the point c1 can be
mapped to a point on the boundary of B' so that each — > 2. Apply the
induction hypothesis to B' and [Added note: With the given position
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of ci, by Pythagoras, all remaining points lie on the other side of B', and can be
shifted "out" to meet the boundary of B' just as they were shifted in B.] El

Exercise 703: (Main idea for proof) Given two squares with side lengths a and b,
where a < b, cut the large square with two cuts at right angles to each other, where
the cuts partition each edge in proportions and Do not cut the small
square. Reassemble the five pieces into a larger square as in Figure 38.2. [This
actually gives a standard proof of Pythagoras' theorem!J

Argue by induction using the above step.

38.1 Solutions: Convexity
Exercise 704: Fix ii e and for each in 6 8(m) he the
if in points lie in a convex set, then any convex linear combination
also lies in the convex set.

El

BASE STEP: For in = 1, the result is trivial; the statement for in = 2 is simply the
definition of convexity.

INDUCTION SEEP: Fix k � 2 and suppose that S(k — 1) is true. Let xi Tk he
points in a convex set C, and let [0, 1] be real numbers with
1. To complete the proof of 8(k), it remains only to show that

cC.

To see this, begin by rewriting this sum:

Figure 38.2: T he square reassembled

statenient that
of these points

a1x, = ctixi) + akXk
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= (1 — (4) + akxk. (*)

Then each C 10,11 and ti' l(fl = 1, so by S(k — 1), Et1' E C.
Then by 8(2), the expression (*) is also in C. completing the inductive step.

By the principle of mathematical induction, for each re � I, the statement 8(m)
is true. 0

Exercise 705: This exercise appears in [58, p. 86]. where the hint says to apply
induction on Ic and to show that for some 1 < i < j k + I there is a point

A + p = 1, in the afline plane determined by
=

Exercise 706: (Helly's theorem) This solution appears iii many places, e.g., [61,
p. 901 or [343, p. For each r � n + I. let 8(r) he the statement that if any of
ii + 1 of convex sets C1 (]r have non-empty intersection, then 0.

Base step: The statement 1'(n 4- 1) holds trivially.

Inductive step: Let k � n 4- 1 arid assume that 8(k) is true. Let C1 Ck+1 I)e
convex sets so that n 4- 1 of them have non-empty intersection. By 8(k), for each
j = 1,..., k + 1. there exists

Since k + I � ii + 2, by Radon's theorem applied with the set S = {x1
there exists a partition S = 81 U so that cony(S1) fl cony(S2) 0. Without
loss of generality, let Si {xI and 82 = and let y C
cony(S1) fl cony(S2). Since lxi c 6'p+I fl - fl which is convex, any
convex combination of xi is also in fl .. fl namely

Arguing similarly, . . } c C1 n fl

C concluding the Proof of 8(k 4 1).

By mathematical induction on i, theorem is proved. 0
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38.2 Solutions: Polygons
Exercise 714: See [266, Ex. 2.6(vi)1.

Exercise 715: This problem is discussed in [433, p. 115J.

Exercise 716: (Art gallery problem, outline) The original question was posed
by Victor Klee in 1973, and solved by Václav Chvátal, (1081 published in 1975.
(See [419] for further generalizations and details.) '1' he original proof was a delicate
inductive argument, breaking off a piece of the polygon and reattaching it. A simpler
proof (outlined below) was given by Steve Fisk [192] in 1.978; Fisk's proof also relies
on induction. For another exposition, see O'Rourke's book [420] on computational
geometry.

Let g(n) be the minimum number of guards required to guard the interior of arty
n-gon. It is not difficult to check that g(3) g(4) = g(5) = 1. To see that g(6) 2,

use a diagonal (which exists by Lemma 20.2.1) to split the hexagon into two areas,
one of which is a quadrilateral, and apply g(3) = y(4) = 1. Solving the case n = 6

is a prelude to the general inductive step.
'lb prove the general result, first (by Exercise 711, say, a result proved by in-

duction) triangulate an n-gon into a — 2 triangles. At least one (in fact, at least
two) of these triangles have two sides common to the polygon (another result proved
by induction, see Exercise 712). Then prove by induction that the vertices of the
polygon can then be 3-colored so that each triangle receives alt three colors (or use
Exercise 713). Put guards at all vertices using the least used color. 'l'his shows that
g(rt) [n/3j.

Y

I'
Figure 38.3: An art gallery with 12 vertices requiring 4 guards

To see that [n/3] guards are necessary for a 6. when a -= 3k, consider polygons
of the form in Figure 38.3, (where k = 4). The (liagram shows that as long as the

'I
I'



784 Chapter 38. Solutions: Geometry

extensions of adjacent acute angled walls do not meet inside the gallery, one guard
is required for each of the saw-tooth peaks, arid it suffices to have only one of these
guards close to the bottom wall.

Exercise 717: Pick's theorem is discussed in many popular sources, e.g., [31, P.
17], [122], [212, p. 215], [240], [415], [508, pp. 96—98], and [565, pp. 183—4]. Pick's
theorem also occurs as an exercise in many textbooks; c.g., [462, 19. p. 292] contains
a solution.

See Figure 38.4 for the idea behind step (iii); to measure the area of triangle
ABC, calculate the area of the rectangle BDEF arid subtract off the area of the
three outer triangles, each being a right triangle.

Exercise 718: The proof is by infinite descent. Let ri 5 and that lattice
points P1,..., form the vertices of a regular n-gon (in that order). Alt vectors

and also have integer coordinates.
As in Figure 38.5, attach the vector P2

to Pr-,. These new segments do not overlap unless ii 5, in which case they
just touch (try it!). All new endpoints thereby formed also have integer coordinatcs,
yet form another n—gon with smaller side length (whose square is an integer, as in
the proof of Lemma 20.2.3). Repeating this process of getting a smaller n-gon on
gives an infinite sequence of n-gons on lattice points whose squares of the respective
side lengths is a decreasing sequence of positive integers. This sequence violates the
well-ordering of the positive integers, arid so the original polygon does not exist.. 0

Another proof of Exercise 718: Oleksiy Klurman pointed out that the fol-
lowing standard result (whose proof is included for completeness) can also be used.

Figure 38.4: Finding area of arbitrary triangle
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Figure 38.5: Making a smaller n-gon

Theorem 38.2.1. For each integer n � 5, is irrational.

Proof of Theorem 38.2.1: The proof is by contradiction arid has two steps. In the
first step, a simple pigeonhole argument shows that the the sequence
repeats. In the second step, assuming that is rational, then the remaining
terms in this sequence are also rational with increasing denominators (and so never
repeating), providing the necessary contradict ion.

Step I begins with the following well-known lemma:

Lemma 38.2.2. For any positive integer a, there exist positive integers k < C so
that ri divides 2e ._

Proof: Fix n. and consider the sequence 2, 22, . (mod it). By the pigeonhole
principle, this sequence must eventually repeat. Then 2k 2f (imiod ti) is equivalent
to it dividing 2t — D

Continuing Step 1 in the proof of Theorem 38.2.1, by Leinnia 38.2.2, let k < £
lie so that for some d E Z'1', nd = — Then

kit
at — = tan(2 —) — tan(2 —)

— — 2kg)
Ti,

—

—

— cos(2q)

and so ap with k < C, that is, the sequence repeats, completing the first
step of the proof of Theorem 38.2.1.

Step 2: For sonic it > suppose that is rational, that. is, for some
p,q C with gcd(p,q) = 1, Since a � 5, L and so c 1: that
is, 0 cc p < q.
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put

am = tan(2m_).

Then a0 and

2am
= 1 — — 1 —

Since a0 is assumed to be rational, this last equation above and a simple inductive
argument shows that each is rational; for each rn � 0, write where
(prn, = 1 (and p = P0 and q = qo). As above, for each in, 1 <qrn. Then

Pm-i-i

qm+l — 1 —

CLAINI: For each m � 0, < qrn+i
PROOF OF CLAIM: [The proof submitted by Kiurman was by induction, however

his calculations show that Ml is not needed.] Fix in � 0. Since (Pm, qm) = 1, it
follows that — = 1 and so — = 1.

Case 1: Suppose that — = 1. Then — = 1, and thus
by equation (38.1), both =

2
—

� —
— 1)2 (since Pin <

= — 1

> (since > 1),

finishing Case 1.
Case 2: Suppose that — 1. Then = 2 and by equation

(38.1), Since = l,so also

1 and and so both Prn+i and = (where (pm+i,qm÷i) = 1).

Since Pin (mod 2), Pm — 2. If = 2, then = 0, which is impossible
(because this gives 0), so > 2 and

i2 2
— — Pm

� -- (qm — 2)2)/2 (since pr,, < — 2)

= 2

> (since > 2),

finishing Case 2; this completes the proof of the claim.

By the claim, a0,a1,a2,... are all distinct, contradicting the result in Step 1,
and completing the proof of Theorem 38.2.1, 0
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With Theorem 38.2.1 in hand, another popular solution to Exercise 718 (pro-
vided here by Klurman) is as follows:

Let; n � 5 arid, to reach a contradiction, assume that P is a regular n-gon whose
vertices are lattice points (in Z+). Let r be the circurnradius of P, and let s be the
side-length of P. Let 0 be the center of P, let X and Y be adjacent vertices of
P, and consider the triangle where mZO = r = tIOXtI = IIOYII and
s = IXYIJ. Let the area of he A. By Pick's theorem (see Exercise 717), A
is rational, and, since X and Y are rational points, = is also rational.

By the cosine law (and simple calculation) = r2 +r2—2r2 =-

Also, A = = Combining these two facts,

ir
tan(—

= = =

which is rational, contradicting Theorem 38.2.1. 0

Exercise 719: (Outline) In the article [341), several ways to look at t;his problem
are given, as well as many references for this exercise, which dates back to 1962.
The idea using recursion is simple, however a hit messy because of different, cases
for n even and odd; these calculations are only outlined here.

Let 1(n) denote the number of triangles in a triangular grid with side length
n. To count f(n), count all triangles that use a vertex front the bottom row, and
acid this nunther to f(71 — 1), which counts the number of triangles not touching the
bottom of the 7k,, that is, f(n — 1) is the number of triangles contained iii a
that forms the upper part of Of those triangles touching the bottotit. there are
two types, those whose orientation is the same as the big triangle, and those that
are pointed upside-down with only a vertex touching the base line. Let G(n) be the
number of upward triangles touching the bottom of '1',, (see left side of Figure 38.6)
and H(rt) the number of upside-down triangles touching the bottom of (as in the
right side of Figure 38.6).

n-i
fl

n

Figure 38.6: Counting triangles in T,,

p
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Computing G(n) is easy, as every point iii cletcrrniries an upward triangle
whose base is on and there are

such points. Hence the number of upward triangles in all is

+ C(2) + ... + G(n)
=

(1) ± 1) = (ri ± 2),

where the last equality is proved in Exercise 88.
Counting 11(n) is only a little clumsier. For each vertex p {1 . it — I}

on the bottom row of the largest possible upside-down triangle than can be
formed with p as its vertex has side length the smaller of p or it — p. So for each
p I , 2 [71/2], there are p such triangles, and by symmetry,

2>p when mis odd

H(n)

- when a is even.

In [341], the notation 5(n) is used, which is 0 when it is even, and 1 when it is odd.
With this notation, and a bit of fiddling, find that

whence it follows by induction that there are

n(n + 2)(2n — 1) — 5(n)
24 8

upside down triangles in Together, these two counts (for upward arid downward
triangles) give the desired answer. D

Exercise 720: See [266, p. 229] for two solutions, the first of which is by mathe-
rnatical induction.

38.3 Solutions: Lines, planes, regions, and polyhedra
Exercise 721: This "now standard" solution seems to have initially appeared in
1948 [79]). For each it � 3, let A(n) be the assertion that among it points not all
on a line, there exist. it different lines joining them.
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BASE STEP: If three points are not all on one line, they determine a triangle of three
lines, so A(3) is tnie.

INDUCTION STEP: Fix Ic � 3 and suppose that A(k) is true. Consider a placement
of Ic + 1 points ,Pk,Pk+1, not all on a line.

By Lemma 20.3.1, there exists a line e containing only two points, say Pk and

Pk-4 1. Delete the point Pk a line in,
then the lines joining Pk÷1 to each of pi,... ,Pk are distinct, and together with in,
there are Ic + I lines, proving A(k ± 1). If P1, .. are not all on a line, by A(k),
there are Ic distinct lines through these, and in addition to 4 there are Ic + I
again proving A(k + I).

By mathematical induction, for each it � 3, the statement A(n) is true. El

Exercise 722: (The result in this exercise is contained in [161, 8.31(a), p. 209],
among many popular sources.)

The proof is by induction on £ for arbitrary p. Fix an arbitrary convex region I? in
the plane. For each £ ? 0, let A(t) be the assertion that for each p E {0, 1 },
if £ lines that cross I?, with p intersection points inside of H, then the number of
regions created inside I? is r = f + p + 1.
BaSE STEP: When no lines intersect H, p = 0, r = 1, and so r = £ + p + 1, proving
A(0).

INDUCTION STEP: Fix some Ic � 0 and suppose that A(k) holds for Ic lines and some
p � 0 with Ic + p + 1 regions. Consider a collection C of Ic + 1 lines each crossing 1?
(not just touching), select some line L C, and apply A(k) to C\{L} with some p
intersection points inside H and r Ic + p + 1 regions.

Let s be the number of lines intersecting L inside of H. As one draws a (Ic + 1)-st
line L, starting outside of H, a new region is created when L first crosses the l)order
of 1?, and whenever L crosses a line inside of L. Hence, the number of new regions
is s + 1. So the number of regions determined by the Ic + 1 lines is

r jsf 1=(Ic+p+1)+s+1
(by A(Ic))

= (Ic + 1) + (p + s) + 1,

where p + s is the total number of intersection points inside H; hence A(Ic + 1) is

true.

By mathematical induction, for each £ � 0, the assertion A(f) is true. U

Exercise 723: The solution follows directly from the result in Exercise 722. Since
a circle is convex, and each intersection point is determined by a unique 4-tuple of
points, there are intersection points and chords. El
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Exercise 725: This problem is discussed in [433), one of many sources. The first
published solution [507] in 1826 is due to the Swiss mathematician, Jacob Steiner.

One proof is based on the following recursion:

Lemma 38.3.1. Let denote the maximum number of regions determined by n
lines. Then = + n + :1.

Proof of Lemma 38.3.1: Consider a system S of it lines, and let £ be a line not
in S and let 5' = S U {t}. Without loss of generality, assume that £ is not vertical
(for if it is, rotate the system slightly). In the most left part of the plane, there are
two regions, one above and flone below £ both comprising a single region in S. As
one follows £ to the right, if I is not parallel to any line in 5, then I crosses all lines
of S. As I intersects each line in 5, it cuts a region of S into two new regions. So
when £ is not parallel to any line in 5, then 5' has n + 1 more regions than does S
(if I is parallel to any lines in 5, then there are fewer). Hence, + it + 1,
with equality when £ is not parallel to any previous line. 0

To give the inductive proof of the exercise, for n 0, let 11(n) be the statement
that number of regions determined by it lines in general position is 1 +

BASE STEP: When n = 0, there is only I = 1 + region. Also, when it = 1,

there are 2 = 1 + (1±1) regions.

INDUCTIVE STEP: Let m � 0 and suppose that 11(m) is true. Let S be a system of
m + 1 lines in general position. Denoting the number of regions in S by by
Lemma 38.3.1,

rm÷1 = rm+(m+l)+1
= +

1)
+ m + I (by 11(m))

=

rn(m+1) 2(m+l)
= 1+

2
±

2

—

—

showing that the conclusion of R(mn + 1) holds, completing the inductive step
11(m) R(m + 1).

By MI, for any number n of lines in general position in the plane, the number
of regions determined is I + 0
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Exercise 726: (Outline) The base case it = 1 is clear since I circle creates 2 regions.
For the inductive step, if k circles are present, any new circle added must intersect
other circles in 2k distinct points; this means that there are 2k new arcs, each of
which splits art old region into two parts, so the number of regions for k + 1 circles
is 2k more than for k circles. 0

Exercise 727: See [230, pp 7—8, 19] for solution. The recursion needed is that
is 2n fewer than the number of regions created by 2n lines.

Exercise 728: This problem appeared as [230, Ex.13, p. 19], with outline in the
solution section.

Exercise 729: (Outline) The result is true for it = 0 since 80 is the single point
(0,0), which is covered by a single line. Supposing the result is true for it = k, since
the line x + y = k + 1 is riot covered by any lines covering 8k, at least one more line
is required to cover the points on x + y = k + 1. 0

Exercise 730: (Brief) For one line, the result is clear. For the inductive step,
assuming the result is true for k lines, show that the result is true for k + 1 lines by
taking the 2-coloring of the regions determined by k lines, and reversing the colors
on one side of the new line; see Figure 38.7. 0

L

Exercise 732: This problem is in [437, Prob. 6-8. Challenge 1].

Exercise 734: This problem (with solution) appears in [220, pp. 119-120]. Let
8(n) be the statement that if it half-planes cover 1k2, then some two or three of these
cover 1k2.

BASE STEP: If either 2 or 3 planes cover the plane, then the result is trivial; so 8(2)
arid 8(3) hold.

Figure 38.7: The new coloring after a line is added
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INDUCTIVE STEP: Fix k � 3 and suppose that 8(k) holds. Let H1 1 be
half-planes, combined which cover the plane. For each half-plane H1, let be its
boundary line.

If is entirely contained in one of the half-planes, say "k' then tk arid 4÷1
are parallel. If these two half-planes face opposite directions, then they cover the
plane. If these two half-planes face the same direction, then one is contained in the
other, making one superfluous, and so by 8(k), some two or three cover the entire
plane.

For the remaining case, suppose that 4÷i is not contained entirely in any of the
half-planes "m,.•. , Hk. Since the entire plane is covered by the half-planes, so is all
of 4÷i. The intersection of each other half-plane with 4+r is a ray, and so all these
rays cover 4÷i. By Lemma 20.3.3, some two of these rays cover 4÷r, say those
rays deterniiried by H1 and H2. There are two possible relative locations for the
half-planes H1, H2 arid Hk+i. (a) Hk÷1 contains the intersection of lines Li and £2;
in this case, these three half-planes cover the plane. (b) Hk+i does riot contain the
intersection between amid £2. In this case, the plane is covered by H1,
and so again 8(k) applies, giving at most two half-planes covering the plane.

In any case, S(k + 1) is shown to follow from 8(k), completing the inductive
step.

By mathematical induction, for each n � 2, 8(n) is true. U

Exercise 735: This problem appeared, for example, in [499, Prob. 301.

Exercise 736: This problem is discussed in [433], one of many sources. hint: If
is the maximnuni number of regions determined by n planes, then first prove that

5n+1 = 8,, + r,,,

where r,, is defined in the solution to Exercise 725.

Exercise 737: Hint: duplicate the result for intersecting circles (Exercise 726) to
show that the maximum number of regions n circles can partition a sphere into is

— a + 2. If f(n) is the answer to this question, show the recurrence

f(n+ 1) =f(n)+n2 —n+2

by looking at the pattern made on the (ii + 1)-th sphere by the remaining spheres.

Exercise 739 [Euler's formula for polyhedra]: (Outline) Form the "graph"
of a polyhedron by imagining that one face is removed, and then the remaining
structure is stretched out to lay flat. Since the graph of any simple (faces are non-
intersecting and there are no holes) polyhedron is connected and planar, time result
in this exercise follows directly from Exercise 503, the proof of which is a simple
(strong) induction. This graph theory approach is the standard way to solve this



38.4. Solutions: Finite geometries 793

exercise and ii: answers a slightly more general problem. since not every planar graph
gives rise to a polyhedron (e.g., a planar graph can have vertices of degree 0, 1, or
2, and polyhedra have no such corresponding vertices).

Inductive proofs using actual polyhedra can be tricky, since all simple polyhedra
need to be inductively constructed. There are two approaches that seem to work.
The base case for each is the tetrahedron.

First let P be polyhedron with only triangular faces. The number of edges
per face is 3, and each edge is on 2 faces, and so counting all edge-triangle pairs,
2e = 3f. Multiplying Euler's formula by 3 and making this replacement shows that
it suffices to prove for triangle polyhedra (also called deltahedra), that e = 3v — 6,

and this can be done by induction. For example, adding a new vertex to the center
of any face, and joining it the three corners of the triangle, increases the number of
vertices by 1, the number of edges by 3, and the number of faces by 2, and so each
side of v + f e ± 2 is increased by 1+2=3. But there are other ways to create
a triangulated polygon; an analysis is required for each case. To get the formula
for a general polyhedron. subdivide each face into triangles, and observe that again
Euler's formula is preserved upon each successive subdivision; induction from the
triangulated polyhedron l)ack to the general polyhedron does the rest.

For a second approach, use "truncation", a process by which one cuts oft a corner
of a polyhedron to get, if possible, a polyhedron svith one fewer vertex (and so a
proof is by induction on the number of vertices). For truncation to work one needs
a small observation. Suppose that v is a vertex of a polyhedron P, and let v1 ,....vd
be those d � 3 vertices for which {v. is art edge of I-'. If P is convex, then the v1's
can be shifted so that they all lie on one plane (while preserving all combinatorial
l)roperties of P). Then removal of v together with all edges touching v produces
another polyhedron P' with (/ -. 1 fewer faces, (d faces gone, and one new face with
vertices v1 ed). d edges, and 1 fewer vertex, and so if Euler's formula is
true for P'. then it is true for P.

Exercise 740: This exercise occurs in [161, 8.21, pp. 208, 215].

38.4 Solutions: Finite geometries
Exercise 741: Let S(v) be the statement that for any near linear space S on v
points, (using the notation in Theorem 20.4.1) that if

�
then S is linear.
Base step: If v I. then h 1, and iii any case S is linear.
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Induction step: Fix v � 2 and suppose that S(v — 1) is true. Let S = (P, £) be a
near linear space with P1 = v points, and lines labelled L1, L2,.. . , Li,, where each
L1 contains = k2 points, and suppose that

�
holds. Pick any point p P and delete it-—producing a new geometry 8' = (P', C),
where P = P\{p}, and lines in C are those in £, except those lines L containing
p are now L' = L \ {p}. One can verify that the restricted geometry S is still a near
linear space. Let v' = v — 1 and for each i = 1,... , b, put 1< The first step
is to show that the corresponding inequality also holds for 8'. In this derivation,
there is no need to separate cases for small k2 if one interprets = = 0. The
identity — (n — 1) = is used twice:

= + >i:pEL1

(ki-1)

= +
— (k, — 1)]

i=1 i:pEL,

i:pEL1

()—(v_i)

By S(v — 1), 8' is linear; to show that $ is linear, it remains to show that for every
q E P \ {p}, there is a unique line containing p and q. To see this, let r be any
other point in P, and delete it; by the same argument used above for 8', this new
geometry is also linear, and so p and q are contained on a unique line. Hence, S is
linear.

By mathematical induction, for each v � 1, S(v) holds, finishing the proof of
the other direction in Theorem 20.4.1. D
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Solutions: Ramsey theory

Exercise 742: The proof is by induction on n. For n � 1, let S(n) be the statement
that if P([n}) is n-colored, there are sets A, B E P([n]) monochromatic with A B.
BASE STEP: When ii = 1, if P([1]) = {Ø, {1}} is 1-colored, then 0 and {1.} are the
same color and 0 1 }.

INDUCTIVE STEP: Fix k> 1, and suppose S(k) is true. Let

:P([k+1]) —p [k-i- 1J

be a given (k + 1)-coloring. If for any A ç [k + 1J, if = + 1]), then
B = [k + 1] are as needed. So suppose that all proper subsets of fk + I] are colored
differently from [k+ 1]; thus all proper subsets of [k+ 1] are k-colored. In particular,
all subsets of [k} are k-colored by and so by induction hypothesis S(k), there
exist two sets A, B c P([k]), A ç B, that are colored the same, and since P([kJ) is
contained in P([k + 1]), the statement S(k + 1) is again confirmed.

By mathematical induction, for each ii � 1, 8(n) is true. 0

Exercise 743: (PHP: Brief solution) The proof is by induction on k. Fix some
71 � 0. For k = 1, the statement is trivial, so suppose that the result is true for
k p, that is, for any set with rip + 1 elements partitioned into p parts, one part
contains at least ri + 1 elements. To show that the result is true for k p + 1, let
X be a set with n(p + 1) + 1 elements partitioned into parts X1, X2,. .. ,

If does not contain n + 1 elements. then X1 U X2 U X,, is a set with at
least n(p + 1) + I — ii = rip + 1 elements, and so, by induction hypothesis, for some
i = 1,... ,p, contains n + 1 elements. This completes the inductive step, and
hence the proof by induction. 0

Exercise 745 (Ramsey's theorem for 2-colorings): For k � 1, let A(k) he the
assertion that for every a, b � I, Rk(a, b) exists. The proof is by induction on k, and
for each k, by induction on a + b.

795



796 Chapter 39. Solutions: Ramsey theory

BASE CASES (k = 1,2): The statement A(I) is the pigeonhole principle and A(2)
is Corollary 21.2.3. [The case Ic = 2 is not really required, because as is seen below,
the proof for Ic = 2 below is nearly the sante as for the Erdôs—Szekeres recursion
(Theorem 21.2.2).]

INDUCTIVE STEP (A(j — 1) —' A(j)): Fix some j � 1 and suppose that A(j — 1)

holds, that is, for every a,b � 1, that exists (and is finite). It remains
to show for each a,b � 1 that exists. For each in � 2, let Bj(m) be the
statement that if a i b =rn, then b) exists. The proof of is by induction
Oil Tfl.

BASE STEP (min{a,b} < j): If min(a,b} < j, then min{a.b}. If
min{a,b} = j, then = Rj(b,a) = max{a,b}.

INDUCTIVE STEP (JJ,(m) —, B3(m + 1)): Let s and I satisfy 1 <j � min{s, t},
and suppose that both — 1,1) and I. — 1) exist, that is, for in = s + I — 1,

that B3(m) holds. To prove B1(rn + 1), it suffices to show that I) exists, and
this follows if one can show

Rj(s,t) R3_i(R1(s— 1, I), R,(s,t —-1)) ± 1. (39.1)

since, by AU — 1), the righthand side of equation (39.1 is a finite number: call this
number N. Let X be a set with N elements, and consider any coloring of the form

[X]' —, {red,blue}.

Fix a vertex x C X, put Y = K \ {x} and consider the induced 2-coloring of the
(j — 1)-subsets of F,

[F]3 ' {red, blue }

defined, for each W E [Y}3 '. by — U {x}). By the choice of N, there
exists at least one of two kinds of subsets of Y: a set F0 C Y with — i,t)
elements so that restricted to is monochromatic red, or a set F1 C F
with — 1,1) elements so that restricted to [Y1]'' is monochromatic blue.

Suppose that such a Fo exists. Then either F0 contains s — 1 vertices So so that
is monochromatic red in which case [So U {x}]3 is also, or F0 contains I vertices

To so that [T0]t is blue. TIme similar argument shows that if F1 exists, there is either
an s-set whose j-suhsets are all red, or a I-subset, all of whose j-subsets are blue.
This shows equation (39.1), and hence concludes the proof of the inductive step
B,(in) —÷ + 1).

TItus the inductive step — 1) AU) is complete as well.

By mathematical induction, for Ic � I, A(k) is true. U

Exercise 746: (Outline) Duplicate the solution in Exercise 745, replacing equation
(39.1) with Theorem 21.2.4, arid induct on the sum of the
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Exercise 748: For each r 2, let P(r) be the proposition that the theorem is true
for this value of r. induct on r.
BASE STEP: P(2) is simply Theorem 21 .2.5.

INDUCTiVE STEP: Fix rn � 2 and suppose that P(rrz) is true. Let T be an infinite
set and let A : fT]2 —, [1, rn + 1] be a coloring. Consider the two colors rn and
rn. + 1 as one color c; then A induces an rn-coloring A* : [T]2 [1, rn — 1] U {c}.
Then by P(rn), there exists an infinite set S so that [S]2 is monochromatic under
A*. If [812 is color i [1, rn — 1], then [812 is monochromatic under A. if the color
of [s]2 is c, then [5]2 is 2-colored under A. Applying P(2) (Theorem 21.2.5) with
S playing the role of 7', there exists another infinite set 5' ç S c T so that

[5']2

is monochromatic. In either case, the infinite monochromatic set exists, proving

P(rn + 1). This completes the inductive step.
By mathematical induction, for every r � 2, P(r) holds. El

Notc: The above technique of grouping colors is frequently used to prove that a
2-coloring Ramsey-type theorem implies the corresponding r-coloring theorem.

Exercise 749: For k, £ � 2. let S(k, 1) he the statement that if + 1 points
with no same x coordinates are chosen in R2, then some k of these points contains
a k-cup or some £ of these points forum an £-cap. The proof is by induction on k + £.

BASE STEP: \,\Then k = 2 and £ = 2, any two points form both a 2-cup and a 2-cap,
and since -E 1 2, the case 8(2,2) is true.

INDUCTIVE STEP: Fix s, I � 3. and suppose that 1)0th S(s — 1, t) amid S(s, 1 1)

[mold. It remains to show that S(s, t) holds. Put

N= (5+1—4) = (s+1-4) +1,

and let P = ,p1v} be points listed in order with strictly increasing x-
coordinates. In hope of contradiction, suppose that no subset of P forms either
an s-cup or a I-cap. Since

N� (8+1—5)
+1

by S(.s — 1, 1), the set P contains (s — 1)-cups. in fact, P contains many (s — 1)-cups:
Let L be the set of rightmost points of all (s — 1)-cups. P \ IL is a set with no
(s — 1)-cups, so by S(s —

P\Ll� (s+t-5)

Hence

IL! �N-
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(s+t—4\ (s+t—5
t—2 t—2

C
5)

+ i (Pascal's Id.)

and since L contains no s-cups, by S(s, t — 1), L contains at least one (t — 1)-cap,

say {qI,. . . , qt—i }, given in left-right order, where each qj is the rightmost point of
some (s — 1)-cup. Suppose that qi is the right endpoint of the (s — 1)-cup on points

Ps—2,Ps—1 = qi, where Ps—2 is the second last point. If the slope of Ps—2P.S- I
is greater than or equal to that of then the points Ps—2' Ps—I =

form a t-cap (1 could have interchanged cups-and caps and got a "t-cup" here?]
Now argue depending on the relative position of If the slope of Ps-.2Ps-- is less
than that of then P1, P2, .. . = forms an s-cup. Either position of
contradicts the initial assumption, so S(s, t) holds, thereby completing the inductive
step.

By mathematical induction on k + £, for every k, £ � 2, S(k, £) holds. 0

Exercise 751 (filbert's affine cube lemma):
A simple fact used below is that for some d and r, if h(d, r) exists, then for any

set S of h(d, r) consecutive positive integers (not just S = [1, h(d, r)J) if x : S —* [1, rJ
is given, S contains a monochromatic affine d-cube (just shift the in the cube).

Fix r � 1. For each positive integer d, let C(d) be the claim that h(d, r) exists.
BASE STEP: Since a 1-dimensional affine cube consists of only two integers, by the
pigeonhole principle, li(1, r) = r + 1, proving that C(I) is true.

INDUCTIVE STEP (C(p) —+ C(p + 1)): Fix some 1 and suppose that ii = h(p, r)
exists. Put N = rm+n and let x: [1,N] —* [1,r] he an arbitrary r-coloring of [1, W].
For each i = 0, 1 consider sets of it consecutive integers in [1, N] of the form

Each of the + 1 sets can be colored in at most ways, so by the pigeonhole
principle there are j < k so that the two sequences

and Sk=(k+1,k+2,...,k+n}
receive the same color pattern. As contains mm consecutive integers and is i.-
colored, the inductive hypothesis C(p) applies, yielding a monochromatic affine p-
cube = (xO,xt in Put k — j = Then the corresponding
cube "2 = H(xo + x1 + + in 5k is monochromatic and is
the same color as H1. Thus, the (p + 1)-cube H1 U H2 = H(xo,xi
is monochromatic, showing that h(p + 1, r) exists and so C(p + 1) is true. This
completes the inductive step.

By mathematical induction on d, for each d � 1, h(d, r) exists. Since 1 was fixed
but arbitrary, for any r 1 and d � 1, h(d,r) exists. 0
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Comment: The above proof typifies many coloring arguments iii Ramsey iheory.
In writing such a proof, one might elect to use more formal notation, perhaps like:
"x induces a coloring f : {S0,S1,... ,Srn} by x * (Si) (x@ + 1),x(i +
2) x(i + n))" to record each coloring pattern as a vector. The efficacy of this
notation becomes clear in more complicated arguments.

Exercise 752: The proof here is by induction on IBI, as in, e.g., [296, p. 330].

BASE STEP: When IBI = 1, for every subgroup II,

IA + B( = (A( = Al + IBI — 1 � IAI + IBI — HI.

INDUCTIVE STEP: Let fBI > I and suppose that the theorem holds for all pairs of
finite non-empty subsets A, B' with B'J < 181.

Case 1: For alla E A and allb,c e B, a+b—c E A. In this case, for all b,c B,
A + b — c e A. Let H be the subgroup of C generated by all elements of the form
b — c where b,c B. Then 181 � IH1 and A + H A C. Thus, H is a proper
subgroup of C and

IA + Bl � JAI � Al + (fBI —

Case 2: For some a A and b, c B, suppose that a + b — c $ A. Setting
x = a — c, define

A'=AU(B+x) and
B' = B fl (A — x).

If b B', thcn for some a A, b = a — x = a — a c, implying

a + b — c = a + a a + c — C = a A,

contrary to assumption, so b B'. Since 0 e A — a, e (A — a) + c = A — (a — c),
and since also c B, conclude that c E B'. Together, b 0 B' and c B' show that
B' is a non-empty proper subset of B. By induction hypothesis (applied with A'
and B'), there exists a proper subgroup II of C so that

A' + B'f � A'J + IB'l — HI. (:39.2)

Then

= [AU(B+x)]±[Bfl(A—x)f
c (AuB)U[(B+x)+(A-x)]=A+B.

and

IA'l+IB'l = IAU(B+x)l+lBfl(A—x)l
= IAU(B+x)l+l(B+x)flAl
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= IAI+IB+xI
= Al + IBl,

together with equation (39.2) yield IA+B1 � IAI+IBI—IHI, completing the inductive
step.

By mathematical induction, the theorem is true for any B. 0

Exercise 753: (Using van der Waerden's theorem) The proof is by induction on r.
For r e let P(r) be the statement that for each k � 1, SB(k;r) exists.
BASE STEP: When r = 1, the result is trivial (for any k), so P(1) holds.
INDUCTION STEP: Fix t> 1 and suppose that P(t --- 1) holds, that is, that for each
k � 1, SB(k; t — 1) exists. Consider the van der Waerden number

ii = W(k SB(k;i —1) + 1,t),

and let : [l,rij - [1, t] be a t-coloring. By the choice of a, there exists an
arithmetic progression

{a+-id : i e [O,k . SB(k;t —1)— ifi C [1,n].

that is monochromatic, say, with color i. If for any j < SB(k, I — 1), dj is also
colored i, then {dj} U {a + i(jd) : i E [0, k — 1]} is monochromatic, showing that
SB(k; t) exists. Otherwise, {d, 2d SB(k, I — 1)d} is (t — 1)-colored, and then by
the inductive hypothesis P(t — 1), (with the same k), there exists a' and di so that
(d'd} U ((a' + id')d : i E [0, k — i]} is monochromatic. This is a k-term arithmetic
progression together with difference d'd in the same color, again confirming that
SB(k; t) exists, thereby completing the proof of 8(1), and hence the inductive step.

Thus, by MI, for all r E P(r) is true. 0

Exercise 754: This proof occurs in [231], and relies on van der Waerden's theorem.
Only the beginning of the proof is given; the remainder follows as in Exercise 753.

For r 1, let P(r) be the proposition that for any positive integers k, s, such
an ii = n(k, s, r) exists. The proof is by induction on r.
BASE STEP: For any k,s, let a = rnax{k,s}. If k � s, then the progression
1,2 k = a satisfies the theorem witha = d 1. Ifs> k, then 1,2,... ,k,... ,s
aLso contains both the APk with a = d = 1 and the element s. No smaller a works,
so n(k,s, 1) = a = ma.x{k.s} exists, proving the base case P(1).

INDUCTIVE STEP: Fix I? � 1 and suppose that 12(r) holds, that is, for all k' and s',
n(k',s', it) exists. Fix k and s.

Claim: a(k, s, R + 1) = s fl7(k . ri(k, s, U), R + 1). Proof of claim: Let a =
W(k a(k, s, U), 1? + 1) and let IX: [1, a] [1. U + 1] he given. Now continue as

in Exercise 753.
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Exercise 755: (Tarry-Escott problem) This solution appeared in niany places (e.g.,
see [851 for solution and many references). The desired partition is arrived at re-
cursively. To describe this recursion, for a number x and a set 8, the notation
x + S = {x + .s : s S} is convenient.

Put A0 = {0} and B0 = {i}. For in 0, having defined Am and put
= Am u (2m+1 + and Bmti = Bm u + Ar,). To confirm, the few

first partitions are: OIl; 0,311,2; 0,3,5,611,2,4,7; and

0,3,5,6.9,10,12,15 I 1.2,4,7,8,11,13,14.

For each n � 1, let 5(n) be the statement that A71 and satisfy, for every

>a3=>.b3.

BASE STEP: A0 = {0} and B0 = {i} satisfies 00 = 10, so 5(0) is true.

INDUCTIVE STEP: For some in > 0, assume that 5(m) holds. Then for each (fixed)

bCBm+1

= > &+
—

W+ E2mA+a)3
aE.4,,, hER,4 heR,,, aEA,,,

a3— 1? —

aEA,,, a€A,,,

= a— w] _E(i)r bk]

aCA,,, bED,,, k=0 acA,4

When 0 � j in, by induction hypothesis 5(m), each term above is 0. When
j = in + 1, the above becomes

— — >
1)2(m

— > it]
aC/i,,, bERm aCAm bED4,

and again by 5(m). for each k = 0, 1 in. the expression in the last brackets is
again 0, so the entire expression becomes 0. This shows that S(in + I) is true as
well, completing the inductive step.

By MI, for all non-negative integers 7?., the statement, 5(n) is true. 0

Exercise 756: For each n > 2, let .4(n) be the assertion that G,, is triangle-free
and = n.
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BASE STEP: It is trivial to check that C2 is triangle—free and x(G2) = 2, so A(2) is
true. [It is also easy to check manually that both 8(3) and 8(4) hold as well.]

INDUCTIVE STEP: Fix k � 2 and suppose that A(k) holds, that is, Ck is triangle-
free and x(Ck) = k. Put V V(Gk) = {v1,. .. ,vm}, (where in can be calculated
recursively: in = 21V(Gk_1)I + 1). Define U = {ui,.. . and x as per the
construction of Gk÷1 on vertex set VU Uu {x}. It is not difficult to verify that Gk+I
is again triangle-free; to show A(k + 1), it remains to verify that x(Gk÷1) k + 1.
Tb see that x(Gk+1) � k + 1, consider any good k-coloring C: V(Gk) —* (1 k}

of Gk, and extend this coloring to c' of Ck+I by defining, for each i = 1

= = and assigning x its own color. Since each and share the
same neighbors, c' is a good (k ± 1)-coloring.

To see that Ck+1 is not k-chromatic, consider any k-coloring c of V(Ck+I).
Suppose that c restricted to the 0k portion of Ck+1 is a good k-coloring. By A(k),
Ck is not (k — 1)-colorable and so in each color class C1(i) of V(Ck), there exists a
vertex connected to vertices of all remaining k — 1 colors. Since u1 is connected
to the same vertices in Ck as vj is, if c is to be a good coloring, uj must receive the
same color as vj, and hence all of U receives all k colors—but x is adjacent to every
vertex in U, and so this leaves no color available for x, so c is not a good k-coloring
of Ck+1. So x(Gk+1) = k + 1, proving A(k + 1) and completing the inductive step.

By mathematical induction, for each n 2, A(n) is true. D



Chapter 40

Solutions: Probability and
statistics

Exercise 757: Suppose that XI, X2,... are all real numbers in the interval [a, b].
Let S(n) be the statement that

<b.
Ti

BASE STEP: For n = 1, 8(1) merely says that a b, which is true by the
assumption made on all the xi's.

INDUCTIVE STEP: For some fixed k � 1, assume that 8(k) is true, namely

S(k): Xl.+X2± +Xk

To be shown is

8(k+l): k+ 1

The two inequalities in S(k + 1) are proved separately.
Since a < it follows that ak +X2 and since a < XkF1,

a(k+1)=ak+a<ak+xk+1�xj.+x2+...+xk+xk+l;
division by k + I yields the lower bound of S(k + 1).

Similarly, since X1±X2-f-+Xk � b, it follows that XI+X2+ . bk, and since
<b, then

Xj �bk+b=b(k+1).

dividing by k + 1, one has the upper bound in S(k + 1). This concludes the
inductive step.

803
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By mathematical induction, for all it � 1, 8(n) holds. D

Exercise 759: See [411, Problem 521.

Exercise 760: Thanks to Brad Johnson (University of Manitoba, Dept. of Statis-
tics), who provided this question and proof for inclusion here. (a) Let X0 = 1 and
note that, just prior to the nth draw there is a total of n + 1 baIls in the urn. Then

E(X1) = E[E(X1 X0)]

= E [xo + =

(b)

E(X2) = E[K(X2 X1)j

= E [(xi ± + x1
—x1]

G) =2.

(c)

E(X3) = E[E(X3 I

= E [(x2 + + x24 _X2]

L75X2
4 4

(d) One might guess that = (a + 2)/2.

(e) For each integer n � 0, let 8(n) denote the equality E(X,1) =

BASE S'FEP: 8(0) says E[X0] = 1, which is true because X0 = 1.

INrnJc'r[vE STEP: Fix k � 1, and suppose that

S(k— 1): =
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is true. Then

E(Xk) = E[E(Xk I

=E[(Xk_J 1--Xki]

= (k+1)
(by S(k — 1))

k+22'
confirming S(k), thereby completing the inductive step.

Therefore, by mathematical induction, for every a 0, = (ii + 2)/2.

(fl Using the same arguments as above, E(X1) -= 3/2. E(X2) = 2 and E(X3) =
5/2 and it appears that = (ii + 2)/2 again. As in the inductive step of part
(e). assume S(k — 1). Then

E(Xk) = E[E(Xk I

B + In+l
k+2= (by S(k — I), simplify).

Therefore, by mathematical induction, for each it � 0, = (ii + 2)/2. Note,
however, that the distribution of is different in these two cases. D

Exercise 761: The proof given here follows that in [467) or [901. For each it � 1,
let 8(n) he the statement that for any a E (0, 1],

Prob(M0 > a) =

BASE Si EP: When n = 1.

1) = Proh(X1 <a) a
1!'

so 8(1) is true.
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INDUCTIVE STEP: Fix an integer k � 1, and suppose that 8(k) is true. Conditioning
on

Prob(Ma>k+1)=f Prob(Ma>k+1IX1=x)dx

> k+ 1 X1

= f > k) dx

fa (a _x)k
dx (by 8(k) with a x)

=
du

(k+l)!'
shows S(k + 1) is true, completing the inductive step.

By mathematical induction, for each n � 1, the statement S(n) is true, so the
Exercise is solved for any fixed a. D

Exercise 762: This exercise is adapted from [411, Problem 4].
Let x be the probability desired. The colony can last forever only if the microbe

first splits, arid only if at least one of the daughters leads to an everlasting colony.
Thus one needs t.o solve x = p(l x)2. The solutions to this quadratic are x = 0

and x = 2— Ifp � 1/2, then p— � 0. Assume p> there are still two possible
solutions.

So, let be the probability that the population lasts ii generations. Then

p(l — (1 — pn)2).

Since probabilities are decreasing (they are dependent), it suffices to show that
for each n,

p

This is done by induction. Since P' = 1, the base case is trivial. For the inductive
hypothesis, for some k � 1, assume that

Pk �
p

Then

Pk+i J)(I —(1 Pk)2)
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> p — (2
--

(by md. hyp.)

{i2P_1]2)

1—p2
p

=

= p2—(1--2p+p2)

2p—I
p

=
p

This completes the inductive step.

Ilerice, by induction, for each ri 2 1, the result > 2 — holds as required. 0

Exercise 763: Let T ?. 0 also satisfy

r =

For each n 2 0, let S(n) be the statement that = 0) 'r.

BASE STEP: For n = 0, Proh(Xo = 0) = 0 < tau, so S(0) is true. Also, for ri = 1,

Prob(X1 = 0) = Po = r0P()

so S( 1) is also true.

INDUCTIVE STEP: Fix Jr 2 0 and assume that S(k) is true. Then

Prol)(Xk+I 0) Prob(Xk÷l = 0

-
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(byS(k))
3=0

=

proving S(k + 1).

By mathematical induction, for each n > 0. 0) 'r.

Taking limits,

-r > lim = 0) = Prob(population dies out) = ir.

So indeed, ir is the smallest number satisfying the equality in the theorem. 0

Exercise 764: (Outline) Induct on a + b> 1. For each a > 0, N(a.0) = 1, and for
each b, N(b, b) 0. Consider the two possibilities for the last vote. If the last vote
is for A, there are N(a - 1, h) such distributions; if the last vote is for B, then there
are N(a,b — 1) such distributions. Hence the recursion

N(a,b) = N(a — 1,b) + N(a.h — 1).

Applying the inductive hypothesis to each of the terms on the right-hand side, and
using the identity

a-- I — h "(1 — 1 + If' a — (b — I) ta +h —1
)+a -— 1 +- b a I a /) -- 1

u—i b a (a fb'\ a—b+1) b (a+b
a )

+ a+b—1 h

(a i— b — 1)(a. -l b) a

— a b (a + b
a

a -I- = ri 2, let 9(n) be the statciiierit that stakes should be
divided between B and A iLl the ratio

a--i

or that A's share is
fl—iP fn—1

j .a
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and 13's share is
—1

E ').i=0

B,s.SE CASES (72 — 2,3): For the situation ii = 2 = a -I- 13, each player lacks one
point, (i.e., a = /3 '- 1) and so the so each is as likely to win as the other, so the
share should be divided equally. 8(2) says that the shares should be divided in the
ratio : (i), namely the ratio 1: 1, sü 8(2) is true.

Although thehase ease n = 2 has been shown, it is instructive to examine the
casen=3.
Without loss of generality, suppose that a = L If the play were to continue one
more point and A wins, he is entitled to all of P, however if A loses, by virtue of
8(1), he is entitled to P/2. Thus, since A is as likely to win or lose the next point,
A is entitled to ' and so the ratio should he 1: 3. Indeed, 8(2) says the
ratio should be (2)((2)

C))
the ratio 1: 3, so 8(3) is true.

lNouc-rIvE site (5(m) -——' .$(m + 1)): Fix in � 3, and assume that if A is lacking
a and B is lacking ,d. and a -I— /1 = in, the share should lie divided between B arid
A in the ratio

ct--I rn—i

:

>(n_l)
'--.0 3Ck -

Assume that .4 is lacking k and B is lacking t, where k C in + 1. If the play
were to continue and A wins the next point, then A would lack k --- I points and B
would lack C points and (/c —- I) -F- C = in, so tire inductive hypoth\sis would apply
with a k -— 1 arid /1 = C. giving a ratio

(in_I)
i=0 j=k—i

that is, B's share would be
1)

But if A were to lose, then B would win and the inductive hypothesis would 1101(1
with a = k, giving B's share to he

(in-
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The arithmetic mean of these two figures for B's share is

(m 1))
+

p I)
+

[(m_ l)
+ (by Pascal's identity),

P (m\ (rn

j: I

precisely what. S(m + 1) says B's share should be. This completes the inductive
Step.

Hence, by MI, the statement S(n) is true for all n � 2. 0

Exercise 769: The claim in the proof of Local Lemma was: For any S [n} and
ally i S.

As suggested ill the exercise, the proof is by induction on (S(.

BASE STEP: For (SI = 0. considering the vacuous product to be 1,

P = P(AL) xjfl(1 — xj) =

and so the claim is true when S( 0.

INDL'CTI()s SI'EP: Fix seine S and assume that the claim holds for all smaller 5'.
Fix some 8. Put S1 = N(i) n S (the neighborhood of i in C). and 82 =
Tlieii (with sonic reasons given below due to room constraints),

A = (A (A
kES2
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P A )) Ak€s2
= — (by Lemma 22.6.1)

Ajl Ak)

<

r Ajj AkEs2

P(A1)

'- AkEs2

— x3)

p Akcs2

(The third and fourth line above foflow by the reasons: no control over dependent
events, SO ignore them; because is independent of when j E S2.)

If S1 the denominator is equal to 1, and the claim holds. Without loss of
generality, let Sj r � 1, and S2 = {r-l-1,r+2 s}, whcrei S1 US2.
Rewriting above,

/ \ H (I—x3)
P A A

A A A

A A C) C) recursively, the denominator
above becomes

A A
k-=2 k=r I-i j=2 k r-41

= P(A A

A
k—3

(1
(I

'

Applying the induction hypothesis for each k 1. . . . r with 5' = S\[k]. the de-
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nominator in (40.1) is hounded below by

(1 x1)(1 xr) = [J(i � (1 —a:,)
jESi {i,j}EE

because N(i)\8j might be non-empty, and each x3 � 0 so (1 x,) � 1. Thus,

<au.
\ jES J

This proves the claim for 8, finishing the inductive step.
By mathematical induction, for all S ç [nJ and i 0 5, the claim is true. D
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Appendix A: ZFC axiom system

In Section 2.5, the theory of natural numbers from Peano's axioms is developed.
The arithmetic that arises is called Peano arithmetic, denoted PA. Gödel's incorn-
pleteness theorem says that if PA is consistent. then the consistency of PA is not
provable (using a finite sequence of mechanical steps) from Peano's axioms. A larger,
somehow richer axiomatic system is necessary. This leads to the popular axiomatic
system of set theory called ZFC (from which it is provable that Peano arithmetic is
consistent!). See [95] or any of many recent standard logic hooks for more discussion.

Axioms for set theory rely on two abstract concepts, "element" and "set", and
a binary relation c denoting "is a member of". Usually, one uses capital letters IA)
denote sets and small letters to denote elements, and writes x E A to denote "the
element. x is a member of the set A". The usage of tipper and lower case in these
situations is often a hit too restrictive, since, for example. one might have a set whose
elements are themselves sets. In set theory, a collection of axioms was assembled by
Ernst Zermelo (and apparently improved suggestions front Fraenkel). l)epending
on the source. this collection varies considerably (compare. e.g., Cameron's list of
ten in [95], with list of nine in [2891). Presented here is the list of ten based
on [95]. The first nine form what is known as the Zernielo-Fraeulcel system, denoted
ZF, and together with the tenth. the Axiom of Choice, the system is denoted by
ZFC. See, for example, [95] or for discussion as to what each entails.

ZFI (Extensionality) If two sets have the same members, they are equal.

Zfl (Empty set) There exists a set 0 with no members.

ZF3 (Pairing) If A and B are sets. then there is a set (A, B} whose members are
precisely .4 amid B.

ZF4 (Union) If A is a set, there is a. set UA whose members are tIme members of
members of A.

ZF'5 (Infinity) There is a set A such 0 is a zimemmiber of A. and if .r E A, then so too
{x} E A. (Such a. set has to be infinite.)

ZF6 (Power set) If .4 is a set., there is a set P(A) whose nienthers are all subsets of
A.

MIS
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ZF7 (Selection. Separation, or Specification) If A is a set arid S(x) is a sentence
(with only one free variable x) that. is either true or false for any x E A, then
there exists a set B consisting of all elements in A for which S is true.

ZF8 (Replacement) 1ff is a function. then for any X, there exists a set Y = {F(x)
x E X}. (See Exercise 592 for a different formulation.)

ZF9 (Foundation) Every set A contains a member B that is disjoint from A. (This
prevents Russell's paradox of "tire set of all sets".)

In 1939, Kurt COdel [217}(1885-1978) showed that AC is consistent with ZF,
(that is, adding AC to ZF did riot lead to contradictions) arid in 1963, Paul Cohen
[112] proved that the negation of AC is also consistent with ZF. In this sense, AC
is independent of ZF. In this book, as might be expected, ZFC is assumed.



Appendix B: Inducing you to
laugh?

In many mathematics journals and popular journals, there often appear quips that
use the prineil)le of induction in humor.

Ilere is one that appeared in [429. p. llj (attributed to Quantuni Seep):

My mother is a mathematician, so she knows how to induce good
behavior. "If I've told you ii times, I've told you ii + 1 times...

Here is another (found in, e.g.. [429, p. old joke employing well—ordering:

Statement: All positive integers are interesting.

Proof: If not all positzve integers are interesting, then the set, of all non-interesting
integers (by well- ordering) has a least integer, making it interesting --a contradic-
tion.

A sister joke is the following: [This is not original, bitt I cannot recall a referenct-:.J
Statement: All integers are boring.

Proof: If not, there would be a least not-boring integer. Who cares?

This next one is so old that it seems as if most ma.theimiaticians have heard it
[but I can not track down the original source].

Question: What's yellow and equivalent to the Axiom of Choice?

Answer: Zorn's Lemon.

Here is another whose origin is unclear:

Induction doesn't amount to a hill of beans (heco.nse 1 bean £5 not a
hill. and if n beans did not form a hill, then nezther does r 1 1).

In [110] Richard Cleveland gave some limericks named with Zermelos axioms.
here are a few relevant ones:

817
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1. Extensionality
We assume that our sets are extensional,
As opposed to their being intensional,
So the name of the game
Is that sets are the same
If they have the same members that's sensible!

9. Choice
Zermelo had one more in store.
And this one we mustn't ignore:
By which anyone utay
Take a messy array
And make it well-ordered once more.

OR

9. Choice
There once was maiden named Emma,
Who had a peculiar dileninia:
She had so many benus,
That to choose. heaven knows,
She had to appeal to Zorn's lemma.

The following quote is from Edgar Allen Poe, as in [183, p.289], about two writ-
ers, Cornelius Mathews (referred to here as Mr. lvi.) and Willeam Ellery Channing
[Mr. C.]:

To speak algebraically: Mr. NI. is execrable, hut Mr. C. is (x +
1) =ecrable.

This next quip is from Martin Gardner as it appeared in Penrose tiles to trapdoor
cipherst [214, p. 133].

Because mathemat ical induction often takes the from of "reducing to
the preceding case." I close with an old joke. For a college freshman who
cannot decide between physics arid mathematics as his major subject the
following two-part test has been devised. In the first part the student is
taken to a room that; contains a sink, a small stove with one unlighted
burner and an empty kettle on the floor. The problem is to boil water.
The student passes this part of the lest if he fills the kettle at the sink,
lights the burner and puts the kettle on the flame.

For part two the same student is taken to the same room, but now
the kettle is filled and ott the unlighted burner. Again the problem is
to boil water. The potential physicist simply lights the burner. The

— 'Used with permission; Copyright 1997 by the Mathematical Association of America, Washing-
ton, I)C.
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potential mathematician first empties the kettle and puts it on the floor.
This reduces the problem to the preceding case, which he has already
solved.





Appendix
alphabet

C: The Greek

lower case upper case name

-y

()

Ti

(I

I

It
ii

0

p

T

1)

ci)

x

A

B

E
z
I-I

e

K
A

M

N

0

p

T
T
(J)

x
\i1

alpha
beta
gamma
delta
epsi Ion
zeta
eta
theta.
iOta
kappa
lambda
ni U

flu

xi
omicron

rho
sigma
t.au
upsilon
phi
clii

PSI

omega
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coordinate space, in a product topology,

228
corollary, 21
cosinc law, 345
countable, 55
counterfeit coin, 74, 300, 725
course-of-values induction, 36
cross-intersecting family, 221
crowds, none exist, 71
cubes

sum of consecutive, 580
difference of, 140, 424
sum of odd, 130

cup, 370
cutset, 247
cycle

in a graph, 241, 247, 682
longest in a graph, 241, 676
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notation for pennutations 336

permutation, 768

d'Ocagne's identity, 194
data structures; 280
Dc Moivre's Theorem, 146
l)ecember 31 game. 291, 717
Dedekind

finite, 220
infinite, 220, 655

degree iii a graph, 240
Delannoy numbers, 209
delay differential equation, 316
deltahedra, 793
DeMoivre's formula, 758
DeMorgan's laws

for sentences, 234
for sets, 218

dense. 229
density function, 390
density of non-factors, 387
derangement. 337
derivative, 314. 339

operator. 312
descending run, 209
descent, in a permutation, 201)
descent, method of, 46
determinant notation, 750
diagonal

of a polygon, 354
diagonalizable matrix, 328
diagonals, convex n-goxi, 355
diameter of a graph, 243
dice, s
difference

of cubes, 140, 424
of like powers, 140
of squares, 140
sequence.s, 188

difference equation
linear non-homogeneous, 271

differences
absolute value of, 189

differential equations, 264, 315, 844
and induction, 18

digraph, 257
Dilworth's theorem, 660

finite, 224
infinite, 224

dimension of a vector space, 343
diophantine equation, 194
Dirac's theorem, 248
Dirichiet kernel, 148, 494
dirty faces, 295
discrete random variable, 390
disjunction, 234, 670
dissecting squares, 350
distance iii a graph, 241
distributive laws in N, 29
divergent sequence. 97
divisibility', 170
division lemma, 162
ci ivisors

number of, 1 65
sum of, 162, 165

domain
of a function, 310
of positivity, 340

domino, 4, 294
dot product, 343, 3'lS
double induction, 43,

597, 659
downward induction, 33,

306, 549, 550, 736
dual of planar graph, 254

eccentricity of a vertex, 243, 680
economics. 332

edges in a graph, 239
Egyptian fractions, 176
eigenvalue, 328, 342

for a linear operator, 342
real, 329

eigenvector. 342
for a linear operator, 342

elementary

45, 107, 323, 372,

38, 105, 158,
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synunetric functions, 321 conditional, 391
empirical induction, 1, 77 exponentiation, 29, 262
engineers, 278 extends (a function), 313
English expression, syllables, 70 extension
epistemology, 295 field, finite, 340
equations: identities, 125 extremal graph theory, 255
equinumerous, 54
Erdös -Gallai, 241, 676 face, in a planar graph, 253

facets, 281Euclid's postulates, 22
factorial function, 131Euclidean
factorialsdivision algorithm, 163, 198, 593,

of primes, 150630
fall, in a permutation, 209division lemma, 162
Farey fractions, 178inner product, 343
Faulhaher's formula, 130, 144norm, 343
Fejér kernel, 148, 495vector space, 341
l"ermat numbers. 81Euler
Fermat's

characteristic, 139, 473
last theorem, 47, 189

identity, 137
little theorem, 168, 771

numbers, 213 Fibonacci numbers, 43, 190, 269, 337,
Euler's

769
formula, 360 and continued fractions, 180

for polyhedra, 363 Fibonacci's algorithm, 603
formula for planar graphs, 254 field
theorem, 168 IF, 321
totient function, 167 extension, algebraic, 340

Euler, F5 is not prime, 81 axioms, 338
Eulerian extension, 340

circuit. 241, 257 extension, finite, 340
digraph, 257 formally real, 340
graph, 241, 675 orderable, 340
induction, 78 splitting, 340
number, 210, 211 filter, 229
numbers, 209 maximal, 230

Eulerian polynomial, 211 principal. 229
even numbers proper, 229

and Maurolycus, 126 finite
even pennutation, 335 Dedekind, 220
event, 388 Pcano, 220
exam, unexpected, 70 finite geometry, 363
exhaustion, method of, 12 finite indi.zction, 5
expectation finite intersection property. 227, 230
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finite measure space, 225 Pascal's, 396
finite projective plane, 364 tree game, 290
FIP, 227 game theory, 252, 289, 300
first return to 0, 395 games
flat, 351 casino, 396
floor function, 198 gas, 307
For all practical purposes, 830 Gaussian coefficient, 145
formally real field, 340 general position
four color theorem, 255 lines, 360
Fourier series, 148 planes, 362
fraction generalized induction, 33

Egyptian, 176 generating function, 215
Farey, 178 geometric
unit, 176 graph, 259

fractional part 184 mean, 39, 158, 546
Frechet filter, 230 series, 85, 128
full indimcthrn, 13, 36 geometry, 349
function, 22 combinatorial, 258

continuous, 229 girth, 384
convex, 312 GM-HM inequality, 158
definition, 310 GSdel's incompleteness theorem, 415
elementary symmetric, 321 Goldbach's conjecture, 83, 168
injective, 311. golden ratio, 180, 196
one-to-one, 311 Goodstein sequence, 87
primitive recursive, 322 Google, iS
projection, 322 gossip problem, 307, 728
surjective, 311 Grotzsch graph, 384
symmetric, 321

Gram—Schmidt process, 347
functional analysis, 313

graph, 239
functions, 310

acyclic, 241fundamental solution, 562
definition, 239fundamental theorem
infinite, k-colorable, 688of algebra, 320

of arithmetic, 38, 16! Gray code, 248, 281, 683

fuzzy definitions, 71 greatest common divisor, 162
greatest element, 30

Gohel sequence, 419 greedy algorithm, 246
Gale --Shapley algorithm, 251 for Egyptian fractions, 603
Gale—Shapley stable matching algorithm, greedy coloring algorithm, 686

251 Greek alphabet, 821
gambling, 396 grid, walks on a, 136, 208
game group, 334

game theory, 38 abelian, 334
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Wilder's inequality, 159, 346, 347, 775
Hadamard matrix, 330, 759
Hahn—Banach theorem, 313, 739
Hales-Jewett theorem, 375
half-plane. 362
half-space, 363
Hall's marriage theorem, 249, 333, 684,

764
hamiltonian

cycle, 248
graph, 248, 683
path, directed, 258

handshake problem, 240, 674
Handshaking lemma, 240
llankel matrix, 333, 765
harmonic

mean, 158
numbers, 201, 603
series, alternating, 451
series, diverges, 201

hats, colored, 299, 725
Hausdorif's inaxitnality principle, 65,

313, 740
height

in a red-black tree. 282
Ileine-Borel theorem, 65
Helly's theorem, 353, 658
hereditary base S representation, 87
Herniitian, 328
hex numbers, 84, 424
high chain, 65
high speed computing, 146
Hilbert hotel, 655
Hubert's

affine cuhe lemma, 371, 798
tenth problem, 191

hitting time theorem, 395
homogeneous

linear recurrence, 265
homomorphism, ring, 338
horses, 416
Humne's principle, 14

hypercube, 281, 715
faces, 715

hypergraph, 240
hyperplane, 351
hypothesis, inductive, 7

ideal
in a ring, 338
maximal, 338

identity function, 311
if, 20, 117
II liher Abaci, 190
inclusion-exclusion, 214,

769
indegree d(x), 257
independent events, 389
indivisibles, method of, 12
induced subgraph, 240
md uction

alternative form, 42, 483
ancestor, :1.4
and contradiction, 36
backward. 38
complete, 13
continuous, 862
course-of-values, 36
double, 43, 323, 597, 659
downward, 33, 38, 158, 549. 550, 736
empirical, 77
Eulerian, 78
finite, 5
generalized, 33
hypothesis, 23
in a semigrollp, 334
models, 14
nondiscrete, 853
on dimension, 350
perfect, 79
principle of mathematical, 23, 35
strong, 36, 43, 53, 70, 72, 106, 107,

112, 142, 143, 217, 257, 469, 543,
553, 558. 562, 564, 597, 629, 630,
676, 679. 680, 698, 699

219, 261, 337,
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structural. 48, 54
transfinite, 53, 862
upward-downward, 38
weak, 23, 35

induction hypothesis, 24
not required, 525

inductive
clause, 23
hypothesis, 7, 23, 24
proof, 23
step, 23, 24

inductive proofs, nested, 586
inequalities, 153
infinite, 220

Dedekind, 220
infinite descent, 33, 46, 48,

558, 784
infinite series, 99, 462
initial segment, 52
initialization, 278
injection, 311, 653
injective

coloring, 253
function. 311

inner product, 343
inner product space, 343
integer lattice, 207, 208
integer programming, 749
integration by parts, 316
interest, compounded, 265
invariance theorem, 18
inversion in a permutation, 335
invertible matrices, 326, 748
irrational, 47
irreducible polynomial, 340
isolated vertex, 240
isomorphism, 32

Jensen's inequality, 312
join semilattice, 235
Jordan's lemma, 243
Josephus problem, 301

kettle, 818
king, in a tournament, 258, 697
Kirchoff's law, 199
Kneser's conjecture, 825, 839
Kneser's conjecture for sets, 221
Kneser's theorem

for sum-sets, 372
knight moves, 293, 720
knowledge propagation, 295
Kruskal's algorithm, 247

Lagrange
interpolation formula, 144

Lagrange's identity, 137
Lamé's Theorem, 199, 630
Landau notation, 284
language, 236
Laplace expansion, 327
latin rectangle. 333
latin square, 333

infinite, 333
lattice

partial order, 235
lattice grid

walks on, 136
lattice path, 207, 208
lattice point, 356, 357, 361

lattice points covered by lines, 361
lattice points, 207
Law of '['richotonmy, 30
leaf, 241, 242
least common multiple, 162
least element, 30
least upper boi.mnd, 30
Leihniz's theorem, 315
lemma. 21
Leontief

matrix, 332
systems, 332, 862

less-primes, 80
limericks, 817
limit ordinal, 55
limit point, 226

165, 166, 357,
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line
bent, 360
zig-zag, 360

linear algebra, 325
linear combination, 341
linear functional, 313
linear operator, 342
linear order, 30
linear recurrence, 265
linear space, 313, 341, 364
linear transformation, 342
linearly independent, 342, 351
lines in the plane, 360, 36!
LISP prover, 447, 835
loading inductive hypothesis, 94
logarithm, 149

iterated, 284
natural, 315

looking ahead, 431
loop in a graph, 239
loop invariant, 277
losing position, 291
Lovász Local Lemma, 397
lower hound, 30
LU-decomposition, 327, 766
Lucas numbers, 200

Maclaurin expansion for secant, 213
maintenance, 278
Mantel's theorem, 255, 692, 695
map coloring, 255
mapping, 310
niarked matrix problem, 325, 746
marriage, 250
matching, 249
mnatheniatical induction

principle of, 23, 35
Matijasevicli's lemma, 194
matrix

adjacency, 248, 330

mean
arithmetic, 39, 387
geometric, 39, 158, 546
harmonic, 158

measure space, 225
meet semilattice, 235
merge, 287
niergesort, 287
method of characteristic roots, 266
method of exhaustion, 12
method of steps, 316
metric on 769
MI, abbreviation, 2, 3
microbe, 393, 806
minimum connector problem, 246

limits, proving by induction, 97, 135,
156, 159, 202, 273--275, 462,
533--536, 639, 709—712

companion, 332
diagonalizable, 328
Hadamard, 330, 759
Hankel, 333
Ilermitian, 328
identity, 330
infinite, 333
Leontief, 332
lower diagonal, 327
marked, 325, 746 -

normal, 329
orthogonal, 329
permutation, 332
positive, 332
positive definite, 329
reduced row echelon form, 325, 745
rotation, 330
singular, 326
square sums, 334
triangular, 327
unimodular, 326, 749
unitary, 328
upper triangular, 327
Vandermonde, 144, 331

maximal, 63
maximal ideal, 338, 770
maximum degree in a graph, A(G), 240
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minimum degree in a graph, 241,
254, 680

minimum spanning tree, MST, 246
Minkosvski's inequality, 159, 345, 774,

minor of a matrix, 326
model, 21
model theory, 14
modeling and simulation, 278, 843
monks, 277
ntonochromatic, 365
monoid, 334
monster, 87
more-primes, 80
mortgage analysis, 290
MST. minimum spanning tree, 246
muddy children, 290, 298
multigraph, 239
multiplication in N, 28

associativity, 29
multiplicative function, 165, 167
Mustapha's equation, 177
i niLtually independent, 389

N-position, 291
natural logarithm, 315
natural outcome, 291
near linear space, 364
nested square roots, 159
net, 666
Newton's

binomial theorem. 139
method, 275
process, 18

NIM, 292
NIM(2), 293
non-discrete induction, 18
norm

of a vector, 345
inner product space, 343
on a vector space. 313

normal matrix, 329
number theory, 161

O(g(n)), big oh notation, 284
odd numbers, 425

and Maurolycus, 126
product of, 150, 170, 511, 570
sum of, 570

odd permutation, 335
one-to-one

function, 311
tangent function, 502

one-way streets, 697
onto

coloring, 253
function, 311

onto function, 311
open

cover, 227
set, 227

order
linear or total, 30
on N. 30
partiaL, 31)

order of recursion, 265
order preserving function, 32
ordinal (number). 55
orthogonal

matrix, 329
vectors, 347

orthonormal set, 347
outdegree

in tournament, 258
outdegree 257

P-position, 291
papyrus, 176
paradox

Berry's least integer, 70
Burali-Forti, 56
of no crowds, 71
Richard's, 70

paradoxes from induction, 69
parameter words, 373
parentheses

in WFF, 236

243,

775
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parenthesize a product, 205, 243
partial fractions, 339, 603
partial order, 30, 235
partial plane, 364
partial sums, 100
partially ordered set, 30
partite amalgamation, 384
partition, 365

of n-element set, 214
partitioning

space, 362
the plane, 360, 361

Pascal's
gambling problem, 396
identity, 135, 136, 397, 652

q-analogiie, 145
triangle, 198

Pascal's game, 396
path in a graph, 240
Peano

finite, 220, 655
infinite, 220, 655
models, 14

Peano's axioms, 11 14, 23
a misnomer. 22

Pell's equation, 166, 562
pendant edge, 241

iii boxes, 304
perfect induction, 79
perfect information. 290
perfect matching. 249, 684
perfect square, 165, 166
perimeter of a polygon, 356
permutation, 209

alternating, 213
complement, 213
defInition, 335
fixing rio element, 337
rising arid falling, 213

permutation matrix, 332
permutations. 335

Si,. set of, 335

and Fiboriaeci numbers, 200
number of, 335

phone calls, 307
physics, 818
Pick's theorem, 356, 784, 839
pigeonhole principle, 10, 170, 366—368,

379, 380, 686, 785, 795, 796, 798
infinite, 369, 370

planar graph, 253, 254
plane

separation problems, 359, 849
tree, 243, 244, 259
tree, binary, 244
trees, 844

plar ics, general position, 362
polygon

convex, 351
on lattice points, 356
simple, 354
sum of exterior angles, 354
sum of interior angles, 354
triangulated, 355

polygonal numbers, 8
polyhedra, Euler's formula, 363
polyhedron, 363
polynomial, 174, 564, 590

p(x,y), 321
— 1,85

characteristic, 332
Eulerian, 211
factoring, 320
irreducible, 340
prime producing, 423
ring, 321, 339
symmetric, 321

polynomials, 320, 479
degree of product. 320

polyomino, 294
poset. 30
positive definite matrix, 329
positive matrix, 332
postulate, 20
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power set, 217
powers

of 2, 128
of 3, 128

predecessors, 24
predicate synthesis, 16
Prim's algorithm, 246
prune

factorization, 165
Ferihat numbers, 81
number, 161, 174, 423, 593
number, definition, 37
numbers, 81
numbers, pattern, 80
power decomposition, 162
producing polynomials, 82, 423

primes
infinitely many, 82, 162
product of, 37, 164, 556
sum of two, 83

primitive recursive, 322, 372, 378, 380,
381, 383

primitive statements, 235
principal submatrix, 326
principle

of mathematical induction, 3, 23, 35
of strong mathematical induction, 36
of translinite induction, 53

probabilistic methods, 384
probability, 387, 393
probability function, 388
problem of the points, 396
product

cartesian, 217
notation, 29, 275
of first ii odd numbers, 155
of odd numbers, 150, 170, 511, 570
of primes, 37, 164, 556
topology, 228
ways to corn putc, 204

program verification. 18
projection function, 322

proof by contradiction
induction, 33

proof by induction, 3
proper k-coloring, 361
Prouhet's problem, 373
proving limits by induction, 100
proving more is easier, 94, 182, 195, 221,

697
proving stronger statement, 609
Putnam exam, 150, 258, 392, 713, 829
Pythagoras' theorem, 42, 781
Pythagorean

triangle, 46
triple, fundamental, 47

Q.E.D., 118
quotient, 162

rabbits, 190
radius of a graph, 243
Radon's theorem,
rainbow coloring, 253
Ramsey theory, 365
Rnmsey's theorem

finite, 367, 795
infinite, 369, 370

random variable, 389
Bernoulli, 389
discrete, 390
indicator, 389

range of a function, 310
ranking in a tournament, 258, 699
rational operations, 313
rationals dense in reals, 229
recurrence

linear, 265
recurrence relation, 74 I
recursion, 263, 311

and induction, 686
recursive definition, 272

for disjunction, 234, 670
for Fibonacci numbers, 190
for \VFF's. 236
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recursively defined
operations. 262
sequence, 101, 263

red-black tree, 282
1{edei's theorem, 258
red need row echelon form, 325, 745
reduction formula, 317, 319
reflection principle, 395
reflexive binary relation, 30
regions

determined by chords in a circle, 84
in the plane, 360, 361

regular n-gon, 357
relation

antisyinmetric, 235
reflexive, 235
transitive, 235

relation, binary, 309
relatively prune, 162, 266
remainder. 162
rentaijicler of continued fraction. 181
resistors, 199
reversi iig principle, 395. 766
ftliind papyrus, 176
rich. 71
Richard's paradox, 70
right angle triangle, 46
ring

homomorphism, 338
maximal, 338
of polynomials, 321

rise, in a permutation, 209
[tulle's theorem, 744
roof of a chain, 66
rooted plane trees, 244
rooted tree, 233, 291
rotation matrix, 330
Itotlie's formula, 141
rim miii iiig time, 280
Russell's paradox. 54

sample space, 388
satisfactory position, 293

scalar product, 341
scalars, 341
Schroder numbers, 208
Schur 's decomposition theorem, 328
Schur's theorem, 371
secant numbers, 213
seg(i), 52
semigroup, 334, 861
semilattice, 235
semisimple matrix, 329
sentential logic, 233
sequence, 187

convergent, 226
defined recursively, 101, 263
definition, 187
difference, 189
Göhel, 419
of functions, 95
of powers, 189
of primes, 82
of sets, 63
patterns in, 78

series, 99
reciprocals of squares, 156

series. infinite, 462
set subtraction, 218
shattered set, 222
Shelah's

cube lemma, 378
string lemma, 379

shifted linear space, 351
sieve formula, 219
sigma notation for sums, 27
similar triangles, 359
similar w.o. 's, 32
similarity, 32
simple polygon, 354
Simson's identity. 193
singular matrix, 326
skew-llermitiami, 329
sorting, 287
sound, 21
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space, partitioning, 362
span, 342
spanning subgraph, 246
sparse hypergraphs, 384
spectral theorem

for Hermitian matrices, 328
for real symmetric matrices, 329

spheres
intersecting, 362

splitting field, 340
square roots, calculating, 275
squares, 165

alternating, 130
difference of, 140
dissecting, 350, 781
even, sum of, 130
odd, sum of, 130
sequence of: 189
sum of, 129

theorem. 99
stable marriage

theorem, 251
stable marriages, 250
Stirling numbers. second kind, 214
strategy, 291
strong induction, 36, 43, 53, 70, 72, 106,

107: 112. 142, 143, 217, 257,
259, 469, 543, 553, 558, 562, 564,
597, 629, 630, 660, 676, 679, 680,
69&-700

implies weak, 37
Strong Law of Small Numbers, 78
structural induction, 48, 54, 280, 283.

287, 825
subgraph

induced. 240
weak, 240

submatrix, principal, 326
subset, 19
subsets, number of, 217
subspace

of a vector space, 341.

subspaces, number of, 145
successor. 14, 23, 62

function, 25, 26
successor ordinal, 55
sufficiently large, 155
Sultan Ibn-al-Kuz, 296
sum

of cubes, 13
of divisors, 165
of even squares, 130
of fractions, 178
of odd cubes, 130
of odd squares, 130
of powers, 129
of products, 131
of squares, 129, 340
telescoping, 149, 424

sum game, 300
sunimat ion notation, 27
sums of fractions, 176
surjection, 311

extending, 732
surjective function, 140, 311, 732
syllables, 70
Sylow's first theoreni, 334
Sylvester type Hadamard matrix, 759
symmetric

binary relation, 30, 235, 310
chain, 224
chain decomposition, 224
difference, 219, 652
function, 321
group 6,2, 335
polynomial, 321

system of distinct representatives (SDR),
685

tangent numbers, 213
'I'arry-Escott problem, 373
tautology, 236
teaching induction, 17, 827, 836
telescoping sum, 149, 424, 507
tensor product, 759
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termination, 278
theorem, 21
tic-tac-toe, 291
tiling, 294
topological space, 227
total order, 30
totally unimodular matrix. 326, 749
totient function, 167
tournament, 257, 258, 699
Towers of Hanoi, 276
trail, in a graph, 240
transfinite

induction, 18, 53, 67, 862
rccursion, 53, 54

transitive binary relation, 30, 220, 235
translate of a space, 351
transpose

determinant of, 327
of a matrix, 325

transposition, 336, 768
tree

binary 244
characterization, 242
complete binary, 244. 245
definition, 242
full binary, 244
increasing, 245, 681
minimum spanning, 246
plane, 243, 259
rooted, 243
rooted plane, 244

tree game, 290
triangle inequality, 157

generalized, 345
triangles

equilateral, 357
triangular

matrix, 327
number, 8, 73, 126, 127

triangulating
a convex polygon, 208, 355
a. simple polygon, 355

tribonacci numbers, 707
trichotomy, 30
trigonometry, 145
trorninoes, 294, 295
truncation of polyhedra, 793
Tukey's Lemma, 220
Turán's theorem, 256, 692, 696
Tychonoff's theorem, 224, 228, 664, 665,

689

Ulam conjecture, 262
ultrafilter, 230
unexpected exam, paradox of, 70
unfaithful wives, 296
uniform continuity, 65
uuimodal, 215
unirnodular matrix, 326, 74!)
unit

n-cube, 248
fractions, 176
vector, 347

unitarily diagonahizable. 329
unitary matrix, 328
upper bound, 30
tipper triangular matrix, 327
upward-downward induction, 38

Vandermonde matrix, 144, 331
determinant. 759

Vandermonde's convolution, 137, 141
VO-dimension, 222
vector space. 313, 341

has a basis, 343
Venn diagram, 360
verification and validation, 843
vertex

isolated, 240
vertices iii a graph, 239
\Tiete's relations, 743
Vizing's theorem, 687

walk
in a graph, 240. 330
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on a lattice, 207, 208
\l%TaIlis forniula for ir, 319
weak induction, 23, 35

implies strong, 37
weighings, 74, 300
weight function, 246
well-formed Formulae, 235
well-founded, 33, 48

set, 16, 43, 49, 54
well-ordered

natural numbers, 31, 62
set, 31, 88

well-ordering, 14, 87, 229, 556
of N, 36
of 667
of natural numbers, 46, 48
principle, 59
proof by, lOS, 106, 554, 603

whence, 117
Wlmit:iiey's theorem, 247, 682
winning position, 291
winning strategy, 291
Worpitzky's identity, 212

Zeckendorf's theorem, 197, 629
Zeno's paradox, 100
Zermelo's postulate, 58
ZFC axiomatic system, 815
zig-zag line, 360
Zorn's lemma, 62, 63, 220, 310, 313, 338,

340, 342, 664, 666, 740, 770, 851

countable, for measurable sets, 225

for measurable sets, 67


